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Summary

This thesis presents the design of a simulation method for computer networking 

systems using timed Petri Nets along with the development of a simulation 

program based on this method. The use of this simulation program to evaluate 

the performance of a number of communications systems is described and its 

suitability as a general-purpose performance evaluation tool for networking 

systems is discussed.

The development of the simulation method arose from the installation within 

Glasgow Royal Infirmary of a communications network for the transmission of 

digitised electrocardiograms. This was part of an ongoing project to develop a 

program for the automatic analysis of electrocardiograms by computer. The 

networking methodology currently in use on this network was developed using 

the simulation program.

The aim in designing the simulator was to develop a tool which would be of use 

in simulating as wide a range of systems as possible and to this end a class of 

Petri net was developed which had a wide range of simulation capabilities. It was 

further intended that any extensions to the "Classical" Place/Transition net model 

should be made in such a way that the simplicity of the original model was 

preserved in as large a measure as possible.

During the course of this work, various extensions to the basic Place/Transition 

net model were indeed made in order to increase the power of the simulation 

program. Some of these extensions are believed to be unique to the present 

program, in particular the use of a timed-place scheme. Most current work on 

timed Petri nets concentrates on timed-transition models as these are easier to 

implement and analyse; this thesis seeks to show that a timed-place model is 

viable as a simulation tool and is in many ways preferable to the timed-transition 

model.
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To test the range of the simulator, two extra simulation experiments were 

undertaken in addition to the simulation of the Royal Infirmary network, the first 

being the evaluation of a simple queueing system and the second the simulation 

of an Ethernet network.

The simulation of the Ethernet network also tested the capability of the timed- 

place model to handle stochastic Petri net simulations, a type of simulation which 

is being used increasingly to model computer and networking systems and which 

is currently dominated by timed-transition models.

Descriptions of all three simulation projects are presented along with an analysis 

of the results of each.
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Chapter 1. Introduction 

Petri Nets

The Petri Net is a graphical modeling tool, first developed by C.A. Petri in 19621 

and whose use was to model the flow of control and information in automated 

systems. Petri nets have been found to be a useful modeling technique primarily 

because of their ability to model concurrency and synchronisation, thus making 

them ideal for the analysis of such systems as communications protocols and 

computer operating systems. Although the bulk of the work in Petri net research 

to date has been in the development of analytical techniques to predict system 

behaviour from a net model, the method is also well suited to simulation studies 

because a Petri net contains a simple set of execution rules which allow any 

given net to be simulated by a computer program.

Detailed explanations of the theory of Petri nets are given in the introductory

2 3texts on the subject by Peterson and Reisig . However a short description of 

the operation of Place/Transition nets, upon which the present simulation 

method is based, is given here along with an outline of other developments in 

Petri nets which are of relevance to the present model.

Place/transition nets

An example of a simple Place/Transition (P/T) net is shown in Figure 1. A PfJ 

net is a graph consisting of two types of node, PLACES (represented graphically 

by circles) and TRANSITIONS (represented by squares) with directed arcs 

joining places to transitions and transitions to places. Each arc may be assigned 

a numeric WEIGHT and each place a numeric CAPACITY. A weight is 

represented graphically by writing the value of the weight next to the arc, while 

the place capacity is normally written next to the place in question. If no weight 

or capacity is indicated then a default value of one is assumed Each place may
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contain a number of TOKENS (represented graphically by small dots drawn 

within the place) which is less than or equal to the capacity of the place. The 

disposition of tokens in the net is known as the MARKING of the net.

P 2

FIGURE 1. A simple Place/Transition Net

A transition may fire at any time if it is ENABLED  and this occurs if the number 

of tokens in each of the input places is greater than or equal to the weight of the 

arc joining the input place to the transition AND  the number of tokens to be 

deposited in each output place does not exceed the capacity of the output 

place. When a transition fires, a number of tokens are removed from each of its 

input places depending on the weight of the arc joining each input place to the 

transition and a number of new tokens are added to each output place, again 

depending on the weights of the appropriate arcs. Execution of the net continues 

in this way, with the tokens being moved around the net according to the rules 

given below. This execution pattern is somewhat akin to the moving of pieces in 

a board game and the execution of a net is sometimes referred to as "playing the 

token game."
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Figure 2. shows the effect of firing transition T2 in the net of Figure 1. The 

execution rules for P/T nets are summarised formally in the following section.

FIGURE 2. The net of Figure 1 after firing T2
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Definitions

A Place/Transition net is a 6-tuple N = (P,T,F,K,M,W) where 

P = {PpP?. — >Pnl is the set of places of the net,

T  = ... ,t } is the set of transitions of the net,

F c  (P x T ) U (T  x P) is the flow relation, or the set of input and output arcs of the 

net,

K  = {KpK2, ... ,K.) is the set of place capacities,

M =  {Ml,p2, ... f(i l is the set of place markings,

W : F  -*  N \|0 ) is the weight function which associates a numeric weight with each 

arc of the net.

The preset *t of a transition is the set of all places which act as inputs to the 

transition.

The postset t# of a transition is the set of all places which act as outputs from the 

transition.

Markings

Let N  be a P/T net and let p € P and t G T  be a place and transition belonging to the 

net. Then

A mapping M N: P - » N  U |Q)  is a marking of N  

i f fMp s K p v  p e P.
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In this context, the symbol Q is used to denote an arbitrarily large positive integer. It 

is used when the number of tokens in a place is large, but where the actual value is 

of no consequence. Q is treated as an integer for analytical purposes.

If  M n is a marking of N then 

A transition t € T is  M-enabled

iff jLip > W(p,t) V p G *t

and pp < K p - W(t,p) V p G *t

An M-enabled transition may fire, yielding a follower marking M ' of M  such that 

V p  G P:

M 'p = M p - W(p,t) i f fp G *t \ f

M 'p = M p + W(t,p) i f fp G f  \  *t

M 'p = M p - W(p,t) + W(t,p) iff p G »t H f

M'p = M p otherwise.

If  t j  and t2  are transitions such that t j ,  t2  £ T

and C = * t j  fl *t2 *  (

and mp = 1 V p  G C

then t j and t2  are said to be in conflict.

Modelling with P/T nets

When using P/T nets to model a system, the places of the net are normally used 

to denote conditions, i.e. elements of the state of the system while the transitions 

represent events, i.e. transitions from one state to another. The condition
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associated with a given place is held to be satisfied if there are one or more 

tokens in the place, so that the disposition of tokens in the places of the net 

gives the overall state of the system. For example, Figure 3 shows a Petri net 

representation of a simple job-processing system. The token in P1 indicates that 

the processor is idle. To represent a job arriving for service, a token would be 

placed in P2, as shown in Figure 4. In this case transition T1 would be enabled 

and would fire, leaving places P1 and P2 empty and one token in P3, denoting 

that the job was active. This situation is shown in Figure 5 and leads in turn to 

transition T2 becoming enabled. Figure 6. shows the state of the net after firing 

T2, indicating that the job has been completed and the processor is idle once 

again.
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p r o c e s s o r  idle

p1

P2
t1 P3 t2

p4

s ta r t  j o b
j o b  w a i t i ng  job bemg

p ro c e s s e d

te rm ina te
job jo b  f i n i s h e d

FIGURE 3. P/T net representation of a job-processing system.

p r o c e s s o r  idle

P1

p2
t1 P3 t2

p4

s ta r t  j o b  te rm ina te
j o b  w a i t i ng  job bemg j0b j o b  f i n i sh e d

p roc es s ed

FIGURE 4. The net of Figure 3 with a job waiting to be processed.
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p r o c e s s o r  id le

pi

P2
t1 P3 \2

p4

s ta r t  j o b  te rm ina te
j o b  w a i t ing  j05 bejng j 0b j o b  f i n i s h e d

p r o c e s s e d

FIGURE 5. The job-processor net after firing T1 showing that a job is in
progress.

p r o c e s s o r  id le

P1

P2
tl P3 t2

p4

j o b  w a i t ing
s ta r t  jo b

}ob being 
p r o c e s s e d

te rm in a te
j ob j o b  f i n i s h e d

FIGURE 6. The job processor net after firing T2 and representing com pletion
of the job.
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Time in P/T nets

Transitions in a P/T net may fire whenever they become enabled; the firing of a 

transition is defined to be instantaneous. This means that in practice the 

concept of time has no meaning within the context of the standard P/T net. 

(Although the sequence of events and their synchronisation can be determined, 

the actual time taken by a process cannot be measured.) This makes it 

impossible to use P/T nets to evaluate system performance, where the 

measurement of process times is of the utmost importance. In view of this, and 

other limitations, it is necessary to make various extensions to the standard P/T 

net in order that realistic performance evaluation is made possible.

The addition of time to the P/T net m odel

The expansion of the Petri net model to include an element of time was first 

proposed by Ramchandani4 and expanded by Sifakis5 and Zuberek6. Both these 

authors developed techniques for the analysis of timed Petri nets in order to gain 

a realistic measure of the performance of modelled systems. Sifakis proposed a 

model whereby time was associated with the places of the net, while in 

Zuberek's model the firing of a transition was assigned a finite time. Most work 

on timed nets to date has concentrated on the timed-transition model (Razouk & 

Phelps7, Holliday & Vem on8 )

Stochastic Petri Nets

Stochastic Petri nets are Place/Transition nets with some additional properties. 

Time is added to the net, usually being associated with the transitions, but 

instead of being fixed, the delay associated with a place or the firing time of a 

transition may be a random variable. Similarly where a conflict situation exists 

between several transitions the output can be decided on a probabilistic basis.

9 10This type of net is discussed in Pagnoni and Massan & Chiola . Stochastic



methods, although used primarily for analysis, are of importance in the 

simulation environment, notably for the modelling of queuing systems and noisy 

communications channels.



Page 19

Chapter 2. The Development of the Simulation Method 

Using Petri nets as a simulation tool

In 1981 Torn11 described a simulation tool, based on a timed Petri net model, 

called the Simulation Graph. This was later expanded into the Simulation Net12. 

This is very similar to the net model presented in this thesis and, in fact, the 

method of reporting results and gathering statistics throughout the simulation is 

based on Torn's system. The Simulation Net is a timed-transition model with a 

variety of extensions, which Torn has applied to some simple simulation 

problems. The Simulation Net has no capability for modelling random or 

probabilistic events.

A similar type of system was developed by Alanche, et al13 to simulate a flexible 

manufacturing system. The structure of this simulator is similar to the present 

one in that it consists of a model of the net acted upon by a token player and a 

statistics-gathering agent. However in this case the basic net model has been 

"enhanced" by the addition of extra decision-making functions to the transitions 

of the net, thus adding an extra level of program to the model. Nelson et al14 

similarly complicate the net model to produce a system for net execution which 

maps a Petri Net onto a programming language which can be compiled and run. 

The method appears suited more to analysis and proof-of-correctness type 

problems than generalised simulation work and the application of the system to 

real-world problems was not discussed.

A higher-level model, the Function Net was designed by Schiffner and 

Godberson.15 Once again the simplicity of the net model has been sacrificed for 

the sake of simulation power, but many of the extensions have parallels in the 

present simulator, notably methods of moving variable numbers of tokens from 

place to place during transition firing. Time is not modelled in the Function Net 

system.
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Bauman and Turano16 discuss a mapping of Petri nets on to a production 

language model. The technique is applied successfully to the simulation of a 

simple communications protocol. The method addresses several of the problems 

of using Petri nets as a simulation tool, such as the resolution of conflict sets, but 

the net model used (basically a simple P/T net) is of rather limited power.

The design of a net class for the simulator

The aim in designing the present simulator was to choose a net model which 

preserved the essential simplicity of the P/T net while adding the necessary 

features which would give the method the necessary simulation power. A Petri 

net is a graphical structure - this is true in both the graph-theoretical sense and 

in the sense that a graph is a visual device. The program, i.e. the operational 

structure of the system being modelled, should be discernible from a visual 

inspection of the associated Petri net. (It is of course realised that for large and 

very complex nets, this is not a trivial exercise!)

As a starting point, it was decided to take the simple P/T net model as described 

in Chapter 1 and add an element of time to the model thus enabling the 

performance evaluation of systems. This timed-net model was then extended in 

several other ways to fulfil additional simulation requirements.

Adding time to the net model

It was necessary, in designing a simulation scheme using timed nets, to decide 

whether to use a timed-place or a timed-transition model. In fact, it has been 

stated by Sifakis that the two models are equivalent - this is certainly true for the 

purpose of analysis, but there is a considerable difference between the two 

methods at the conceptual level and at the practical level of implementation as a 

computer program. It was eventually decided to implement a timed-place model 

and the reasons for this decision are given in the following paragraphs. It is
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assumed in the following discussion that time (in the context of the execution of 

a timed Petri net) is a discrete quantity and that the token game is played in fixed 

arbitrary time intervals.

In the timed-transition model, the firing of a transition is said to take a certain 

time. Thus time elapses when the system makes a transition from one state to 

another. In the timed-place model, each place in the net has an associated 

delay. When a token enters the place it is said to be unavailable. This means 

that it may not take any part in the firing of transitions. After the delay associated 

with the place has elapsed, the token becomes available and may participate in 

transition firings as it would normally.

Attaching time to a place or a transition represents an extension of the state 

space of the system. Figure 7. shows a place with a delay value of 4 (the time 

scale is arbitrary.) Figure 8. shows how the action of the place can be modelled 

in an informal fashion by a system of queues, each of which is a simple Petri net 

system, with the number of queues equal to the capacity of the place. As a token 

enters the place it is assigned an empty queue and starts its progress at the first 

place in the queue. At each time interval the token moves up the queue until it 

reaches the end, whereupon it becomes an enabling token for any transition 

having this place as an input. A similar description may be given of a timed 

transition - when the transition fires, tokens which have been removed from the 

input places enter a queue just as in the timed-place example. When they 

emerge from the queue they are assigned to the output places of the transition. 

It should be emphasised that this does not constitute a formal description of 

timed nets nor is it claimed that the net can usefully be decomposed in this 

fashion; the illustration merely serves to show that the operation of timed places 

or transitions is deterministic given that time proceeds in discrete intervals.
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T=4

#  —   -  *  .

p1 P2 t2 P3
(tim ed p lace)

FIGURE 7. A timed p lace  with delay 4.

n  \ ^  /  t2

/

P2

FIGURE 8. Place P2 of Figure 7 m odelled as a system of queues.

It is intuitive that the state space of the process represented by a Petri net is 

modelled entirely by the set of reachable markings of the net and that the state 

of the system at any given time is modelled entirely by the disposition of tokens 

in the places of the net. That transitions fire instantaneously serves to highlight 

this quality. It is also intuitive that changes of state occur instantaneously In view 

of this it seems desirable to associate time with the places of the net.
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If time is assigned to the transitions of the net (and if one preserves the intuitive 

notions of states and transitions outlined above) then an anomalous situation 

arises whereby the changes of state take time while the states of the system 

occupy no time at all. This clearly raises problems since during the firing of a 

timed transition the state of the system is undefined unless one assumes that 

transitions have internal states which themselves represent states of the system 

as a whole thus effectively reversing the roles of the places and transitions. In 

discussing a class of timed-transition nets, Zuberek17 writes "In M-timed nets the 

tokens are removed from corresponding places at the beginning of transition 

firings and remain 'in' transitions for the whole period of firing. The 'state' 

describes the distribution of tokens in the places as well as transitions..." This 

serves to confuse the natural demarcation of states and transitions within the net 

model.

Razouk & Phelps state that it is a moot point whether tokens within the input 

places of a transition remain active within the place during the firing of a timed 

transition and are thus liable to be removed by the firing of another transition, or 

whether they disappear into the transition for the duration of the firing interval 

This possible discrepancy does not exist within the timed-place model.
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Finally, Petri18 concludes that time should be primarily associated with the state- 

elements of the net, i.e. with the places.

There is, inevitably, a price to be paid for choosing timed places over timed 

transitions, mainly in the area of implementation of the simulation method as a 

computer program. It is much easier to program a timed-transition simulator. 

Also, a useful feature such as the ability to cut short a delay (as described in
19Chin & Willsky and also used in the Ethernet simulation of Chapter 6) is more 

elegantly modelled under the timed-transition model. It was, however, 

considered important to adhere as closely as possible to a simple net model with 

places and transitions performing their intuitive functions so the timed-place 

model was implemented.

The resulting net model is known as a Timed Place/Transition Net (TPTN). 

Timed place/transition nets

Time is associated with the places of the net in the following manner:

Execution of the net occurs in fixed instants of time. Each place is assigned a 

delay of an integral number of instants (by means of which execution times may 

be associated with places.) Each token in a place may be in one of two states: 

available or unavailable; only available tokens may participate in the firing of 

transitions. When a token is deposited in a place it is initially set to the 

unavailable state. After a number of instants (determined by the delay of the 

place and during which the token may not participate in any transition firings), 

the token becomes available. At each instant, any transition which is enabled 

(according to the usual firing rules for P/T nets, but using only the available 

tokens) may fire. The appropriate number of available tokens is removed from 

the input places and an appropriate number of unavailable tokens is deposited 

in the output places. A typical firing sequence is shown in Figure 9.
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In addition to the inclusion of time within the net model, several other extensions 

were necessary to increase the simulation power of the nets. Peterson8 and 

others have discussed the conflict between decision power and modelling power 

in Petri nets and related models. A finite-state system, for example, has a very 

high decision power in that a complete analysis of the system is possible. A 

finite-state machine, however, is severely limited in the types of system which 

can be modelled without inducing a state explosion. At the other extreme lies the 

Turing machine with its ability to model any system, but for which the power of 

decideabiity is lost. The standard PfT net model lies somewhere between these 

two extremes. However in the present context where the aim was simulation 

rather than analysis it was felt that extensions to the basic net model which 

increased the simulation power of the net would be advantageous. The 

extensions made were as follows:
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FIGURE 9. The firing sequence for the net of Figure 8.
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Inhibitor Arcs

This type of arc has been in use almost since the inception of the Petri Net. An 

inhibitor arc is an arc from an input place to a transition having the property that 

the transition may not fire unless the input place is empty. This effectively 

supplies a means for zero-testing, which greatly increases the modelling power 

of the net. It has been shown (Peterson8 etc.) that a P/T net extended in this 

way is equivalent to a Turing machine in modelling power (but with a 

corresponding loss of decision power). An inhibitor arc is distinguished 

graphically by having a small circle drawn at the transition end of the arc.

Multi-weighted arcs

This extension, developed as part of the present simulation model, allows an arc 

to have a weight which is defined to lie between upper and lower limits wu and 

w(. The firing rules are modified so that a transition having this type of arc as an

input may fire if the number of tokens p in the corresponding input place lies
P

between wu and w(.

When the transition fires, the number of tokens removed from the input place is

w,, i f  u > w u r p u

u i f  w, < u < w,,Pp 1 u

This type of arc is useful in modelling queues and buffers. An example of the 

operation of such an arc is shown in Figure 10. The multiple-weighted arc 

connects place p2 and transition t2. In net a.) the token count in p2 is below the 

minimum weight of the arc, so transition t2 cannot fire. In b.) the firing of t1 

causes the token count in p2 to equal the lower limit so that t2 can fire.
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FIGURE 10. A multi-weighted arc.

This is shown In c.) In net d.) the token count in p2 is above the upper limit of the 

arc so t2 cannot fire.

Omega-weighted arcs

Arcs with weight omega are restricted to the configuration shown in Figure 11. 

The top row of places and transitions represents the queue, the tokens of which 

are moved along under the control of the places and transitions in the second 

row. Parts a, b and c show the execution of this net. An Omega-weighted arc is
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an enabling arc if the contents of the input place are greater than zero. When 

the transition fires, ALL of the tokens in the input places are removed and 

deposited in the output place. Omega-weighted arcs aro especially useful in 

modelling queues where the entire contents of each place need to be moved 

along, as is shown in the Figure. This element was also developed specially for 

the present system.

Random-input places

In order to provide for the occurrence of random events, the Random-input place 

was developed. This is a place where, at each instant of execution of the net, a 

random number of tokens may appear. This type of place has many uses in 

simulation, including the random arrival of customers at a queue.

Random-delay places

This type of place was developed in order to aid the simulation of stochastic 

nets. The place has the characteristic that a token entering the place is given a 

random delay.

Probabilistic places

A token entering a probabilistic place is initially set to the unavailable state. At 

each subsequent instant it may or may not become available according to the 

probability associated with the place.



FIGURE 11. The operation of an Omega-weighted arc.

Apart from the fact that they were felt to be rather undesirable in themselves, the 

other extensions to P/T nets which have been proposed by various researchers, 

such as attaching conditions to transitions and arithmetic/logical operations to 

places were not necessary to model the systems under consideration here.



Page 31

Chapter 3. The Design of the Simulator.

The simulation method described in the previous chapter was developed into a 

program which could simulate various types of timed Petri net. The aim was to 

produce a piece of software which would take as its input a description of a net, 

execute the net and produce as its output a set of statistics gathered during the 

course of the execution.

The first version of the simulator was implemented as three separate programs 

written in C. The first module, a net editor, allowed the parameters of the net 

model to be entered and edited in a rather primitive manner. The editor 

produced an intermediate net file which could be read by the simulator proper. 

The second module, the simulator, converted the net specified in this file into a 

series of static data structures which were then manipulated by a token player in 

order to execute the net. During this execution, various statistics relating to the 

places and transitions of the net were accumulated. When the simulation had run 

its course a table containing a summary of the various statistics was printed out. 

A third module comprising a net compiler was then added and this allowed the 

net to be specified as a text file containing a clause for each place and transition 

in the net, this specification then being converted into the intermediate net file.

It was felt, after some experience with the original simulator, that it would be 

advantageous to write the simulator in an object-oriented programming language 

because it was clear that Petri Nets fitted the object-oriented paradigm rather 

well. To this end the entire system was eventually re-written as a single program 

using the C++ programming language and it is this final version which will be 

discussed in this chapter. For details of the C++ language, the reader is referred 

to the reference text by Stroustrup20.

The object-oriented method allows various data structures to be encapsulated as 

objects. An object contains various items of data along with a series of methods
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which specify the various operations which may be carried out on these items. 

By means of data-hiding the internal structure of an object may be made invisible 

to the program in which it is used, the external appearance of the object being 

defined by its methods. In the C++ language the methods are implemented as a 

series of functions associated with each object. The program may only access 

the object via these functions which in turn manipulate the data items belonging 

to the object. The mechanism of inheritance allows a new object to be created 

from an existing similar object. The new object inherits both the data types and 

the methods of the ancestor object and may then add new data items and 

methods of its own.

Each of the various components of a Petri net may be treated as an object. For 

example, in the present timed Petri net model a token is characterised by its 

availability, i.e. the token may be either available or unavailable. The state of the 

token is decided by various flags and counters, but these are internal to the 

token itself, only its availability is of importance to the other parts of the net and 

consequently this is the only property of the token which is visible to the rest of 

the program. Similarly a place has only one external characteristic, namely its 

marking, i.e. the number of available tokens within the place. The mechanism by 

which this number is decided is hidden within the place object. Lastly, a transition 

has one external property, namely whether it is enabled or not. It also has the 

ability to fire. Both the calculation of its state and its behaviour in firing are 

decided internally by the transition object.

Obviously, the model is not watertight, for example in order for the transition to 

fire it must have access to the tokens within each of its associated places, but 

such less-than-ideal features are handled quite readily by the C++ language.

The various features of the simulator, including some of the programming and 

implementation details, are discussed in the following short sections.
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Input of net specifications

The net specification is entered as a text file which is then compiled by the 

simulator into a set of internal objects. The specification file takes the form of a 

series of clauses, one for each place or transition in the net, along with a single 

clause which specifies some general parameters of the net as a whole. The 

format of each of these clauses is given below in Figure 12. The keywords for 

each clause are shown in bold face and the parameters are shown in angled- 

brackets. The parameters in square brackets are optional.
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n o t  ( n a m e )

{
run_time < n o  o f  i n s t a n t s >  

}

p l a c e  < n a m e >

{
type < t y p e >  
capacity < c a p a c i t y >  
marking < u n a v a i l a b l e >  
delay < d e l a y >
]

r a n d o i n _ p l a c e  < n a m e >
{

type < t y p e >  
capacity < c a p a c i t y >  
marking < u n a v a i l a b l e >  
delay < d e l a y >  
d is trib u tio n  < m e a n >  < t o l e r a n c e >  
}

p r o b a b i 1 i s t i c _ p l a c e  < n a m e >
{

type < t y p e >  
capacity < c a p a c i t y >  
marking d i n a v a i l a b l e >  
p ro b a b ility  r p r o b a b i 1 i t y >

t r a n s i t i o n  ^name '1 

{

input r p i a c e _ n a m c >  < t y p o >  r l o w e r  w e i q h t >  [ < u p p e r  w e i q h t > l  
input ' p l a c e  n a m e )  r t y p e >  < l o w e r  w o i q h t >  [ < u p p e r  w o i q h t > l

output < p l a c e _ n a m e >  < t y p o >  < w e i q h t >  
output < p l a c e _ n a m e >  < t y p e >  < w e i q h t >

}

FIGURE 12. Format of the net specification file.
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The net clause specifies the name of the net, i.e. the title of the simulation and 

the number of instants for which the simulation is to be run.

The place clause specifies the various parameters associated with the place - 

one clause is included for each place in the net. The type field specifies whether 

the place is a normal place or not. The capacity field specifies the maximum 

number of tokens which may be present in the place. The marking field is used 

to specify the initial marking of each place so that the execution of the net can 

begin from any given state. The delay field specifies the time delay, In instants, 

associated with the place. A value of zero in this field means that tokens entering 

the place will become available immediately.

The random__place and probabilistic_place clauses specify the extra values 

associated with these place types. In the case of the random place, the type 

value determines whether the place is a random-place in which a random 

number of tokens may appear each instant, or a random-delay place in which 

each token is given a random delay value on entry. The mean and tolerance 

fields specify the mean value of the distribution used to calculate these random 

values and the allowed limit of accuracy of the mean value. The probability field 

of the probabilistic place specifies the probability with which each token within 

the place may become active at each instant.

The transition clause specifies the input and output places for each transition so 

that the appropriate arcs may be constructed between them. Places are 

referenced by name so that transitions and places may be entered in any order 

in the specification file. However the order of entry of the transitions may have an 

effect of firing priority; this will be discussed later. The type parameter may be 

normal or omega depending on the type of the arc. If the second weight 

parameter is present then the arc is considered to be multi-weighted, while if it is 

absent then the arc is a normal single-weighted one.
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Place and transition clauses may be mixed freely so that the places and 

transitions belonging to various sub-sections of the overall net structure may be 

grouped together for clarity.

An example of a complete net specification file, namely that for the terminal- 

computer system described in Chapter 5, is given in appendix 1.

Compilation and internal representation of the net

The net specification file is compiled by the simulator into a series of objects. 

Objects are known as classes in C++ and a separate class has been used for 

each of the principal components of the net. There is a place class, a transition 

class, a token class, etc. As an example, the place class and its derived classes 

random_place and probabilistic_place are shown in Figure 13.
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c l a s s  p l a c e

p r o t e c t e d :
s t a t i c  i n t  t i m e ;  
p l a c e _ t y p e  t y p e ;  
i n t  d e l a y ;  
i n t  c a p a c i t y ;  
i n t  u n a v a i l a b l e _ t o k e n s ;  
t o k e n  *  t o k e n s ;  
s t a t _ c o u n t e r  * t i m e _ s p e n t ;  
s t a t _ c o u n t e r  * z e r o ;  
s t a t _ c o u n t e r  * m a r k . i n y ;  
s t a t _ c o u n t e r  * c h a n y e _ o f _ m a r k i n y ;

/ /  y l o b a l  t i m e  f o r  a l l  p l a c e s  
/ /  t y p e  o f  p l a c e

/ /  p o i n t e r  t o  f i r s t  t o k e n  i n  l i s t  
/ /  s t a t i s t i c a l  v a r i a b l e s

p u b l i c :
c h a r  n a m e [ N A M E _ L E N G T H ] ;
i n t  a v a i l a b l e _ t o k e n s ;  / /  n u m b e r  o f  t o k e n s  a v a i l a b l e

p l a c e  * n e x t ;  / /  p o i n t e r  t o  n e x t  p l a c e  i n  l i s t
p l a c e ( c h a r  * n ,  p l a c e _ t y p e  t p ,  i n t  c ,  i n t  d ,  i n t  t )  ;
v o i d  a d d _ t o k e n ( ) ;  / /  a d d  a  n e w  t o k e n
b o o l e a n  r e m o v e _ t o k e n ( ) ;  / /  y e t  r i d  o f  a  t o k e n
b o o l e a n  i s a c t i v e O ;  / /  a n y  a c t i v e  d e l a y s ?
i n t  u p d a t e d ;  / /  u p d a t e  m a r k i n y s

v o i d  p r i n t _ s t a t s ( ) ;  / /  w r i t e  o u t  s t a t i s t i c s
f r i e n d  e n a b l e d _ t y p e  t r a n s i t i o n : : i s e n a b l e d ( ) ;
f r i e n d  v o i d  p e t r i _ n e t : : o u t p u t _ s p e c i a l _ d a t a ( ) ;
f r i e n d  v o i d  p e t r i _ n e t : : u p d a t e _ t i m e ( b o o l e a n  f l a y ) ;
f r i e n d  o s t r e a m &  o p e r a t o r < < ( o s t r e a m & ,  p l a c e & ) ;
) ;

c l a s s  r a n d o m _ p l a c e  :  p u b l i c  p l a c e  
{

p r i v a t e :
f l o a t  m e a n ;  
f l o a t  l i m i t ;
r a n d o m _ v e c t o r  * r a n d o m _ l i s t ; 
r a n d o m _ v e c t o r  * s e t u p _ r a n d o m _ l i  
s t a t  c o u n t e r  * r a n d o m  d a t a ;

/ /  m e a n  n u m b e r  o f  t o k e n s  i n  p l a c e  
/ /  a l l o w e d  e r r o r  l i m i t  f o r  m e a n  
/ /  f i l e  o f  r a n d o m  n u m b e r s  

t ( i n t  c o u n t ) ;
/ . /  S t a t s  o n  r a n d o m  t o k e n s

s

p u b l i c :
r a n d o m _ p l a c e  * n e x t ;  / /  p o i n t e r  t o  n e x t  r a n d o m  p l a c e
r a n d o m _ p l a c e ( c h a r  * n ,  p l a c e _ t v p e  t p  , i n t  c ,  i n t  d ,  i n t  t ,  f l o a t  m u ,  

f l o a t  1 ,  i n t  c o u n t ) ;
v o i d  u p d a t e ( b o o l e a n  f l a y ' ;
} ;

c l a s s  p r o b a b i l i s t i c _ p l a c e  : p u b l i c  p l a c e  
{

p r  i v a t e :
f l o a t  p r o b a b i l i t y ;  
s t a t _ c o u n t e r  * r a n d o m _ d a t a ;  

p u b l i c :
p r o b a b i l i s t i c _ p l a c e  * n e x t ;
p r o b a b i l i s t i c _ p l a c e ( c h a r  * n ,  p l a c e _ t y p e  t p  , i n t  c ,  i n t  t ,  f l o a t  

p r o b a b i l i t y ) ;
v o i d  u p d a t e ( b o o l e a n  f l a y ) ;
v o i d  a d d _ t o k e n ( ) ;  / /  n e e d  s p e c i a l  r o u t i n e s
v o i d  p r i n t _ s t a t s ( ) ;  / /  t o  h a n d l e  t h e  d e l a y s
} ;

FIGURE 13. Class definitions for the place and associated classes.

The classes random_place and probabilistic_place are derived from the class 

place using the C++ inheritance mechanism. This is appropriate since these
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places are just normal places with some extra properties. The elements of each 

class specification prefaced by the private: keyword are internal to the place 

class; they cannot be accessed by any part of the program other than the 

member functions of the place class. The elements in the public: section may be 

accessed by any part of the program. Note that member functions are also 

declared as part of the class - these are the functions by which the elements of 

the class are manipulated. These functions are accessible to the entire program 

and are the only way in which the class or object may be accessed or 

manipulated.

Functions belonging to other classes may access the place class if they are 

declared here using the friend keyword. Thus, for instance, the function 

isenabledO. which is a member of the transition class, may access the tokens 

of a place. This is necessary so that a transition may decide whether it is 

enabled or not.

Similar classes exist for transitions, tokens, input and output arcs, statistical 

counters, etc.

Internal storage

Memory is allocated to the various objects at compile-time from the heap. This 

means that small nets may be simulated on a PC with limited memory resources 

while larger nets may be run on a larger system with more memory and 

processing power.

Each net contains a single instance of the class petri_net. The places and 

transitions of the net are stored as linked lists of instances of the place and 

transition classes, with a pointer to each list being stored in the petri_net 

structure.
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Places with random elements

Random input places, as mentioned earlier, are places into which, at each 

instant of simulation, a random number of tokens may appear. In order that the 

mean of the distribution controlling the operation of the place may be tightly 

specified, the set of random numbers for each random place is calculated and 

stored before simulation is commenced. Because the number of tokens which 

may appear in a place in a given instant is an integer there is considerable 

variation in the mean between sets of random numbers, due mainly to the nature 

of the modular random number generators involved. Pre-calculating the random 

numbers ensures that the means are always accurate, although with some cost 

in storage space. The basic random number generator used was a modified 

version of the congruential pseudo-random type. This generator was modified to 

produce random numbers having a Poisson distribution rather than the uniform 

distribution of the original generator.

Internally, the class random_place contains an instance of another class, the 

random_vector. This is a structure used to hold the list of random numbers. The 

constructor for the random_vector class has been heavily modified so that each 

time a new random_vector is created, a list of random numbers with the correct 

mean is generated and stored in a file. The file is left open for reading and the 

file descriptor is stored in the random_vector structure. A public function exists 

within the random_vector class to return the next random number from the list.

The same method is used for random-delay places. A random-delay place is an 

instance of the random_place class with the type field set to indicate a 

random_delay type. This type of place is treated as a normal place until such 

time as a new token is added. At this point, the next random number is read from 

the associated random_vector and the token is assigned this value as its delay.

The probabilistic place operates slightly differently in that at each instant the 

availability of each token is decided by a "throw of the dice," the token having a



Page 40

1-in-/7 chance of becoming available where n is the reciprocal of the probability 

associated with the place.

Transition-firing priorities

The transition firing order is only of interest in a conflict situation. This was 

defined in Chapter 1 and occurs when two transitions share an input place and 

are simultaneously enabled by a single token in that place. The regular action is 

that the enabled transitions are fired in the order in which they occur in the list of 

transition which is stored in the petri_net structure. First, a pass is made through 

this list and another list is created of those transitions which are enabled. A pass 

is then made through this second list, firing each transition in turn.

There is an option to scramble the firing list before firing the transitions and this 

is useful in situations where conflicts are allowed to occur but need not be 

resolved in any predetermined order. In any case, a check is made for conflicts 

and if any is found to occur, a diagnostic message is printed out by the program.

Time handling

Two methods of advancing the time-frame are possible in discrete event 

simulation systems: next-event time advance and fixed-increment time advance, 

the former method being the most commonly used. In the next-event 

methodology, time is advanced by one clock increment each time an event 

occurs. Because each state-change of the system takes place upon the 

occurrence of an event, periods of inactivity are skipped over.

In the fixed increment method, time is advanced in fixed intervals by means of 

an external clock which corresponds to "real-time." At the end of each interval 

the system is examined to determine whether any events have occurred.
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The present model allows both types of time to be used. A global timer 

advances with each "instant" of simulation of the net while, in addition, a counter 

representing the "simulation time" is advanced whenever a delay is active in any 

place of the net. Any delay associated with a place becomes active immediately 

after the firing of the appropriate transition and continues until the delay has 

elapsed. During this period the net may be said to be "active." Note that this is 

not true "next-event" operation because the state of the net is still evaluated for 

every tick of the global timer.

It would be possible to improve the performance of the simulator by detecting 

those periods when no transitions are enabled, finding the shortest active delay 

and advancing the timers by this amount. This would entail some modification of 

the statistical modules as the statistical counters are presently updated with each 

tick of the global timer.

In models where every place in the net can be considered "active" i.e. each 

place is associated with some time-consuming process, the global time can be 

used effectively. This is also the case with untimed nets, as in the case of the 

first single-terminal model discussed below. Where only a subset of the net 

places are timed, however, the simulation time gives a measure of the total 

activity time of the model. This allows the effect of places which are not part of 

timed processes to be eliminated from the final timings.

Termination of simulations

A simulation run may be terminated in one of three ways:

• Time limit exceeded

When the simulation is started, a maximum allowed value of the global time is 

specified. If this is exceeded then the run will terminate and a report will be 

printed.
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• Terminal marking reached

A terminating marking can be specified at the start of each run. If this marking is 

encountered during the course of the simulation then the run will terminate. This 

allows the simulation to be stopped when the system is in a given state so that 

the statistics may be examined at that point.

• Deadlock reached

Deadlock is defined to occur when no transitions are enabled and no place 

delays are active - in this case no further execution of the net is possible and the 

run is terminated. This feature may be turned on or off depending on the type of 

system under examination. For example if it desired to examine the "steady- 

state" behaviour of a system then deadlock checking may be turned off and the 

system simulated for a given number of instants to allow the system to stabilise. 

In other systems, such as communications protocols, it is useful to see if and 

when deadlock occurs and in this case deadlock checking can be activated.

Gathering of statistical information

A class named "stat_counter" is defined which contains various counters and 

functions for calculating statistical quantities. Several instances of this class 

occur in the transition and place classes to allow measurement of their behaviour 

with respect to several parameters. The parameters which are measured for 

places are:

• Time spent

The time spent parameter is a measure of how long a given place is occupied by 

tokens. Whenever a token enters a place, an episode is said to begin and a 

counter is started. This runs until the place becomes empty once more. The 

maximum, minimum and mean times for these episodes are calculated for each
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place. This is useful in determining the length of time the system (or part of the 

system) remains in a given state, e.g. measuring the idle time of a processor.

• Zero

This parameter is a measure of the amount of time a place remains empty, i.e. 

contains no tokens. The first and last instants at which the place is empty are 

logged, along with the total empty time expressed as a percentage of the total 

simulation time.

• Marking

The maximum, minimum and mean marking for each place is calculated. This 

calculation is made on the basis of available tokens.

• Change of marking

This parameter provides an indication of the activity of each place and is useful 

for determining the level of activity of various parts of the system under 

simulation. The first and last instants at which the marking changed are logged 

along with the number of changes. This parameter is calculated on the basis of 

the total marking, i.e. the number of unavailable tokens plus the number of 

available tokens. In this way a change of marking occurs only when tokens 

enter or leave the place and not when an unavailable token becomes available.

The parameters for transitions are:

• Firing times

The first and last instants at which each transition fires is logged along with the 

total number of firings. The maximum, minimum and mean time between firings is 

also calculated. These parameters yield useful information about the occurrence 

of events within the system.
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Output of results

When each simulation has run its course, a table of results is written out to a file. 

This table contains a listing of the various statistical parameters described above 

for each place and transition in the net, along with various parameters relevant to 

the simulation run as a whole, such as the marking of the net at the start and end 

of the run, the computer runtime for the run, etc. An example of such a table (in 

this case for the communications system described in the next chapter) is given 

in appendix 2.

A function also exists as part of the class petri_net which will write out any 

special output data required for a particular simulation. This function may be 

activated by means of a command-line switch and is useful for writing out data in 

a form which is readable by a spreadsheet or graphics program. The function 

has access to the statistical counters for all of the places and transitions in the 

net by means of the friend mechanism of C++. Although the idea of having to 

write a piece of C++ code for each simulation in order to obtain the output data in 

this way, it was felt that this was preferable to writing an all-purpose output 

routine since the type of output required varies so widely between simulations.
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Chapter 4. Simulation of the Glasgow Royal Infirmary Cart- 
computer communications system

Electrocardiography

Since its inception at the start of the century, clinical electrocardiography has 

progressed to the point where it is the primary non-invasive cardiological 

investigative technique in use today. Electrocardiography is the measurement of 

the electrical activity of the heart as it is manifested at the body surface. This 

electrical activity is measured by placing electrodes at various points on the body 

surface and recording the potential difference between various combinations of 

the electrodes, with each particular combination being known as a lead. The 

equipment used to record the signal is known as an electrocardiograph; the 

output from each lead is usually written out on a strip of paper in real time by a 

chart recorder and is known as an electrocardiogram or an ECG. An 

electrocardiogram thus takes the form of a plot of voltage against time. In a 

normal clinical situation, a 12-lead electrocardiogram is recorded from the patient 

under investigation and Figure 14 shows the positions of the various electrodes 

for this type of electrocardiogram.

The 12 leads in question fall into three groups:

The Bipolar Limb Leads

Lead I - records the voltage between the left arm and the right arm.

Lead II - records the voltage between the left leg and the right arm.

Lead III - records the voltage between the left leg and the left arm.
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FIGURE 14. Electrode positions for the 12-lead Electrocardiogram

The Augmented Limb Leads

Each of these leads records the voltage between one of the limb electrodes LA, 

RA or LL, and a reference potential formed by averaging the potentials on the 

other two. Note that the right leg electrode is not actively part of the lead system. 

The leads are:
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aVR - the voltage between the right arm and the average of LA and LL. 

aVL - the voltage between the left arm and the average of RA and LL. 

aVF - the voltage between the left leg and the average of RA and LA.

The Unipolar Precordial leads

Each of these leads is formed by recording the voltage between one of the chest 

electrodes (V1 to V6 as shown in Figure 14) and a relatively constant reference 

potential formed by averaging RA, LA and LL. This reference is known as the 

Wilson Central Terminal. The precordial leads are named after the chest 

electrode positions, V1 through to V6.

The reason for recording so many different leads is that each one presents, in 

effect, a separate view of the electrical activity of the heart. The left precordial 

leads V3 through V6 predominantly represent the activity of the left ventricle 

while the right precordial leads V1 and V2 "look" at the right ventricle. An 

alternative interpretation is that each lead measures the component of the total 

cardiac electrical activity in the direction associated with the lead. This 

differentiation is of great importance in the localisation of heart defects when 

interpreting an electrocardiogram.

Figure 15 shows an example of a 12-lead ECG recording.

The ECG Waveform

As can be seen from Figure 15, the waveform in each lead consists of a series of 

repeated patterns each of which in fact corresponds to a single beat of the heart 

(or cardiac cycle.) Figure 16 shows a representative waveform for a single 

cardiac cycle with each of the component parts labelled. These parts are as 

follows:
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The P wave

This small wave results from the electrical activation of the atria which produces 

their contraction at the start of the cardiac cycle.

The QRS complex

The QRS complex corresponds to the excitation of the ventricles. The initial 

negative deflection is known as the Q wave while the first positive deflection is 

known as the R wave. The small final negative deflection of the complex is the S 

wave. Not every QRS complex has all three components while some may have 

four or five.

The T wave

The large wide wave following the QRS complex is the T wave which is caused 

by the repolarisation of the ventricular mass after contraction.

Other lead systems

In addition to the 12 lead ECG just described, it is possible to record an ECG 

with a different set of leads using alternative electrode positions. The most 

common alternative approach is that of Vectorcardiography. This technique 

records the electrical activity of the heart in three orthogonal planes by using a 

set of three orthogonal leads named X, Y and Z. The X lead measures the 

voltage between electrodes placed on the right and left sides of the chest, the Y 

lead between electrodes on the left leg and the neck or head and the Z lead 

between electrodes on the sternum and the back of the patient. The X, Y and Z 

leads can be combined in pairs to produce x,y plots or vectorcardiographic loops 

which often show information of clinical value not readily seen in a normal scalar 

ECG display such as that of Figure 16.
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FIGURE 15. A 12-lead ECG recording.
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FIGURE 16 The ECG waveform for a single cardiac cycle. 

Interpretation of the ECG waveform

Interpretation of an electrocardiogram is normally carried out by a physician who 

in large measure adopts a process of pattern recognition. Diagnostic criteria 

have evolved over the years which have established the normal limits for the 

P,QRS,T appearances and the clinical significance of deviations from these 

norms. Variations in the time interval between successive beats and changes in 

the morphology of the waveform from beat to beat are used to asses the cardiac 

rhythm. Once again, a body of diagnostic criteria exists relating these variations 

to different types of cardiac arrhythmia.

The use of computers in ECG analysis

As has been stated previously, the ECG is the primary non-invasive diagnostic 

technique used in modern cardiology. As a result of this, in any cardiology 

department in a large hospital, over 25,000 ECGs are recorded in a typical year, 

placing a heavy workload not only on the clinicians who interpret the ECGs but



Page 51

also on the clerical staff who must archive the recordings and reports. This has 

led to the increasing use of automated interpretation of ECG recordings by 

computer both as a way of reducing this workload and of allowing the use of 

ECG interpretation in clinical areas where no adequate cardiological expertise 

exists for such interpretation to be undertaken.

Digital recording of ECG waveforms

A normal electrocardiograph is a purely analogue device; the voltages from the 

body-surface electrodes are amplified and written on to paper using analogue 

electronics. In order for computer analysis of ECG waveforms to be undertaken, 

the signals must first be converted to digital form. This has resulted in the 

emergence of a new type of electrocardiograph designed specifically for this 

purpose. A simplified block diagram of such a device is shown in Figure 17. After 

amplification by normal analogue means, the ECG signals are sampled at 

regular intervals by a multi-channel analogue-to-digital converter. The resulting 

series of digital values for each lead is then stored in memory for later use. The  

electrocardiograph may contain hardware and software which enable it to 

produce an immediate interpretation from the ECG signals, or the digitised data 

may be compressed and stored for later transmission to a central computer for 

analysis.

The sampling interval used in the digitising process is normally 2 milliseconds or 

4 milliseconds. Studies of the frequency spectrum of the ECG have shown that 

roost of the components which are of diagnostic significance lie in the frequency 

range 0Hz - 100Hz21 so these sampling rates are adequate according to the 

sampling theorem. A more comprehensive view of electrocardiograph 

technology is given in Watts and Shoat22 and the particular approach used in 

Glasgow Royal Infirmary will be presented in a following section.
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FIGURE 17. Simplified block diagram of Digitizing Electrocardiograph.

Automated ECG Analysis at the Glasgow Royal Infirmary

Research began in Glasgow Royal Infirmary into the subject of automated 

reporting of electrocardiograms in 1964. The original system was based on the 

3-orthogonal lead ECG and was implemented on a PDP-8 minicomputer using 

PAL-8 as the programming language; this system is described in detail in 

Macfarlane et al23 and Macfarlane et al24. The system was later expanded by 

Taylor25 to allow analysis of cardiac arrythmias.

This early system used analogue recording methods, the ECGs being recorded 

on magnetic tape using a purpose-built mobile recording trolley and replayed into 

the PDP-8 computer through an analogue-digital converter. A mechanism was 

also developed to transmit ECGs from a remote hospital using analogue 

transmission over telephone lines .

In 1978 a project was begun to upgrade the system to provide improved 

recording and diagnostic facilities. The system was based around the standard
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12-lead ECG rather than the less commonly-used 3-lead ECG of the older 

system. The analogue recording method was abandoned and a new digital 

method adopted, to which end a special-purpose digitising electrocardiograph 

(known as the CART and herein referred to as such) was designed. In addition, 

the ECG analysis program was re-written to run on a PD P-11/60 minicomputer, 

using Fortran instead of assembly-language and a pilot transmission system was 

installed which allowed ECGs to be transmitted from the Coronary Care unit and 

cardiology clinics to the central PD P-11/60 computer via twisted-pair wiring.

In 1982 the decision was taken to design an improved version of the CART  

electrocardiograph and to install a transmission network which would allow 

ECGs to be transmitted from most of the high-usage areas of the hospital, thus 

allowing a substantial proportion of ECGs to be reported automatically. The ECG  

analysis program currently runs on a MicroVAX computer linked via an Ethernet 

to the PDP 11/44 which acts as a front-end to the analysis system, handling 

communications, archiving and database query functions.

The Analysis Program

The ECG analysis software consists of a suite of programs which are executed 

in sequence on a set of ECG waveforms which have previously been digitised by 

a CART and transmitted to the central computer. Each program, or phase as it is 

known, is responsible for a separate aspect of the analysis process. The initial 

phases carry out preliminary signal processing on the digitised signal, including 

removal of low- and high-frequency artifacts such as baseline wander and spikes 

caused by implanted pacemakers. This is followed by an identification of the 

PQRST complexes and the formation of an averaged complex for each of the 12 

leads based upon an analysis of the morphologies of the various complexes. 

Next, a set of measurements is made on each averaged complex comprising the 

amplitudes and durations of the various components of the complex. These
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measurements are fed into the diagnostic phase which produces an 

interpretation based on the measurements by means of a decision tree. The 

diagnostic module contains criteria for 12-lead ECG recordings from both adults 

and children as well as a facility to analyse 3-orthogonal ECG recordings from an 

XYZ lead set.

The CART.

The CART is an automated electrocardiograph which has been specially 

designed for the acquisition and transmission of ECG data2. It is based on the 

Intel 8086 microprocessor and has 32K-bytes of RAM for ECG storage. An 

alphanumeric keyboard and display allow communication with the operator. 

During normal operation, the CART carries out the following functions:

Allows entry of patient details:

Accepts the patient's name, date of birth, sex, clinical classification and 

other relevant details which can be edited if necessary during entry.

• Performs various self-calibration and signal-quality checks, informing the 

operator if there are any problems.

Digitises, compresses and stores eight seconds of ECG data:

Compresses the data using a differencing technique with Huffman coding 

of the residuals. This reduces both the storage requirement and the time 

taken to transmit the data.

Checks the data for any possible coding errors.

Transmits the compressed data to the central computer and waits for 

confirmation that the data has been stored successfully by the computer.
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Optionally provides a hard copy of the ECG waveform.

The Communications System

The network which has been installed is based around a Broadband co-axial 

cable system. Stations are interfaced to the network via radio-frequency 

modems operating at a data rate of 96000 bps. The system is arranged in a 

multipoint configuration whereby all of the modems on the network operate on 

the same channel (i.e. with the same transmit and receive frequencies). Control 

of the network is undertaken by the PDP11/44 minicomputer, situated at the 

head-end of the network. The communications functions of the PDP11 are 

undertaken by a DMR11 controller, a microprocessor controlled unit which 

implements Digital’s DDCM P link level protocol independently of the main 

processor.

The network was initially brought into use by implementing a simple set of 

communications protocols and a simple polling algorithm. This system operated 

at the data-link level with only a simple polling protocol and a rudimentary file 

transfer protocol layered on top of the DDCM P link-level protocol. In order to see 

if the system could be enhanced by adopting a more complex strategy it was 

decided to simulate any such strategy in advance of implementation.

A simplified diagram of the system is shown in Figure 18.
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FIGURE 18. Simplified diagram of the Glasgow Royal Infirmary ECG
transmission network.

Two different approaches to the design of the communications system are 

examined here. The first handles transactions with the Carts on a non­

multiplexed basis while the second attempts to service multiple Carts 

simultaneously. Before examining the two systems in more detail however, some 

of the characteristics of the network and of the system as a whole are examined.

Communications functions required by the Carts

Communication with the central computer is required at two points during the on­

line data acquisition process (described previously). These are:
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• At login time

Each Cart will log in to the network at the start of each recording sequence. The  

purpose of the login procedure is twofold:

To check that the network is operating properly before going ahead with the 

recording.

To transfer the current date and time to the Cart so that the time of recording can 

be printed on any hard copy which is obtained during the recording.

• After data acquisition

The Cart will transmit the ECG data to the central computer for storage and 

analysis. A confirmation message will be sent back informing the operator that 

the ECG has been successfully stored at the central computer. There is a delay 

of around 5 seconds between reception of the ECG and transmission of the 

confirmation message while the ECG is decoded as a check on the integrity of 

the coded data.

A Conceptual Model for the Network Architecture

Before choosing a communications strategy for the system it was necessary to 

decide what type of network the present configuration represented and what 

type of network architecture was best suited to it. The choice of strategy was 

constrained by features of the access method (in this case polling) and by 

limitations in the data link layer protocol (DDCMP) both of which were dictated 

by the choice of network hardware.

As has been described above, the operation of the Cart requires that 

communication be undertaken with the central computer at two points during the 

recording sequence. The average time for any one of these transactions is of the 

order of 1-2 seconds, while the time between any two transactions by the same
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Cart will be around 1-2 minutes. The time taken to perform a complete recording 

cycle is of the order of 5 minutes.

It can be seen that, from the operational point of view, the network resembles a 

transaction system more than it does any normal local area network 

configuration. Transaction processing systems require that each user receives a 

prompt response from the system and also that each transaction is atomic, 

meaning that the total interaction with the central database during the period of 

the transaction is indivisible: either the entire transaction is completed or the 

system is rolled back to the state prior to the transaction. This is necessary for 

the correct transmission of ECG data which must be transmitted, verified and 

successfully written to the central database before the transaction can be 

successfully terminated. Otherwise the transaction must be aborted and the 

entire transmission process begun again. A transaction-processing model was 

therefore adopted as a description of the network to facilitate the detailed design 

of the communications procedures and protocols.

In the following sections a transaction will denote the period during which a Cart 

is logged on to the central computer. Using this terminology, the login procedure 

and the transmission of the ECG data represent two separate transactions.

Subnet operation

The operation of the subnet is now considered. This term is taken to refer to 

those layers which handle the network-dependent aspects of the 

communications system, which in normal cases means the layers up to and 

including the network layer which provide services to the transport layer (using
27

the OSI terminology.) There are two broad categories of subnet: those which 

use virtual circuits and those which transmit datagrams. A full discussion of the 

relative merits of the two types of system is given in Tanenbaum28. It would be 

convenient, in the context of the present system, to use a datagram-based
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approach, since the transactions represent short, independently addressed 

blocks of data. However, as will become clear from the ensuing discussion of the 

polling protocol, the network exhibits many of the charaeteristics of a virtual- 

circuit system because, once a station has been polled and has responded, a 

point-point link effectively exists between the station and the central computer. In 

fact, the description chosen depends in large part on the outcome of the design 

exercise presented below. There is, therefore, a choice of services which the 

subnet can provide to the transport layer. Within the subnet however, the virtual- 

circuit description prevails as each data unit delivered by the subnet is preceded 

by a single polling sequence and delivered in point-point fashion.

The Polling Mechanism

This section describes the method developed to allow the central computer to 

poll the remote stations. This discussion is limited to communication between the 

PDP11/DM R11 controller and the Carts.

Due to the fact that the DM R11 communications controller is designed to operate 

only on point-to-point links and that consequently it was impossible to address 

data frames individually at the data link level it was therefore necessary to devise 

an alternative method of addressing the data. The method chosen was to 

address each message individually using a separate polling protocol, this 

protocol being implemented with the maintenance mode of DDCMP. For a full 

description of the DDCM P protocol, the reader is referred to the relevant 

technical manual.29

The DDCMP protocol operates in two distinct modes. The normal data mode 

provides sequenced error-free data frame transmission between the two ends of 

the link, while the maintenance mode provides a simple non-guaranteed 

broadcast frame transmission service. The maintenance mode provides the 

foundation for the polling protocol, and the sequence of events during the polling
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process is as follows (assuming that several stations are awaiting the attention of 

the central controller):

1.) The controller broadcasts a poll request frame (which contains a remote 

station address as part of the data field).

2.) The frame is received by each remote station.

3.) The remote stations decode the frame and examine the address field.

4.) The remote station with the corresponding address responds with a poll 

response frame (also using maintenance-mode DDCMP).

5.) The central controller begins a data-mode START-STACK sequence with the 

responding station while the other stations return to the listening state.

This mechanism forms the basis of each transaction.

Estimation of Network Delays

One of the most important considerations in attempting to estimate the 

performance of any given implementation is the determination of the various 

delays present in the network. Some of these delays are caused by the network 

hardware (transmission speeds, etc.) and some by the software (operating 

system overhead, protocol performance etc).

As an example, the delays present during a typical transaction are examined. 

This transaction consists of the transmission of a message containing five 1024- 

byte data frames.

Consider the normal message sequence (assuming error free transmission for 

the moment i.e. no retransmissions are necessary):

1
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H o s t  rf.moT f,

POLL  >

 <---------  POLL RESPONSE

START  >

 <---------  STACK

ACK ( 0)  >

 <---------  DATA FRAME (1)

ACK(1)  >

<-------- DATA FRAME

CK i 5) --------- >

The transmission times for the various message types are given in table 1 below  

for a transmission rate of 96000 bps and a data frame size of 1024 bytes. These  

timings are calculated from the bit-transmission time and do not take into 

account any overhead caused by synchronisation and turnaround.
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Message Type Size (in bytes) Transmission time
POLL 29 Tp = 2.5ms
POLL RESPONSE 29 Tr = 2 . 5ms
START 10 Tst ss 0.83ms
STACK 10 Tsk = 0.83ms
DATA FRAME 1036 Tfl = 86.0ms
ACK 10 Tack - 0.83ms

TABLE 1. Frame times for the message sequence.

As can be seen from the message sequence, each poll/response or 

frame/acknowledge sequence has a total time comprising the transmission time 

for the frames involved and the frame processing time in the communicating 

stations. The Data Frame comprises 1024 data bytes and 12 header bytes.

In addition, a frame processing time ( T p r ) has been included, as well as a

decode-check time. These values were calculated, using the pilot transmission 

system, as follows.

For each ECG transmitted on the system, the total run time (transmission of the 

ECG data plus the ECG decode test time) was logged, along with the time taken 

for transmission of the data alone. Subtracting the transmission time from the 

total time gives the decode-test time. The total processing overhead for the data 

transmission was calculated by subtracting the time spent transmitting bits on 

the line (calculated, in turn, from the data rate and frame lengths) from the 

transmission time measured during program execution. Dividing by the number 

of frames transmitted gives the processing overhead per frame. The values 

used for the run times were the mean values from a sample of 100 ECGs. This 

processing delay also includes a contribution from the CART. Due to the design 

of the serial communications controller used in the CART, it was necessary to 

calculate the Cyclic Redundancy Check (CRC) value for the DDCM P frame  

header in software rather than using the on-chip CRC generator. This calculation 

is performed for each data frame transmitted by the CART. The resulting values 

are:
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Processing delay per frame (Tpr) 13 0 ms

ECG decode test time 5.73 seconds

In assigning the processing delay the per-frame delay is divided by two to 

signify that the delay is contributed to by both the transmitting and receiving 

station. This is not strictly accurate, as the PDP11 contributes the larger share of 

the processing delay, but serves the purposes of the analysis and simulation 

adequately. This gives

T = 6 5 m s . 
pr

If Np is the number of frames in a message then the total transaction time for 

one message is:

which, in the case of the 5-frame message, is 1.09 seconds. 

The two implementation methods

In any multidrop system, the performance of the network depends fundamentally 

on the central controller as all communications on the network must pass 

through it and be controlled by it. There are two ways in which the central 

controller can service the various remote stations in the present transaction- 

based system:

a) Non-multiplexed

With this method, the controller will allow a remote station exclusive access to 

the network for the duration of the entire transaction (i.e. the transmission of an 

ECG from a Cart or the output of an ECG report to an output station.) All the

(4.1)
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other stations must wait until the transaction is complete before being serviced 

by the controller.

b) A Multiplexed system

This method attempts to service all active stations simultaneously by limiting the 

number of frames which may be transmitted at any one time. The controller 

behaves somewhat like an operating system task-scheduler, dividing 

transmission time between competing stations.

For the assessment of the two types of service it is assumed that 6 Carts are 

simultaneously waiting to transmit ECGs and that the ECG data comprises 15 

frames. It is also assumed that the central computer has one ECG report of 20  

frames ready to send to an output station.

Analysis of the non-multiplexed system

The performance of this type of system is easily evaluated. The central 

computer polls each Cart and the output station in turn and, accordingly, grants 

permission to transmit in turn. Each ECG or ECG report is sent as a single 

message.

From formula (4.1) above, the time for the transmission of each ECG (Np=15) is

3.26 seconds. The time to transmit the ECG report from the central computer to 

the output station is 4.34 seconds. To each of these figures the ECG decode 

time of 5.73 seconds must be added giving a total transaction time of 8.99  

seconds for the ECG and 10.07 seconds for the report. This gives a total time to 

complete all the transactions of 64.01 seconds. (A decode delay is added to the 

ECG report transaction in order to simplify the comparison with the multiplexed 

system analysed later.)
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If no processing overheads or delays are assumed other than those already 

discussed then the time which each Cart or output station would have to wait 

before starting its transaction would be 9  - 10 seconds multiplied by its position 

in the polling queue. If, for example, the output station were last in the queue 

then it would have to wait for approximately 66 seconds before receiving the 

ECG report, assuming that 6 Carts were waiting to transmit.

Analysis of the multiplexed system

The analysis of this system is considerably more complex than that of the 

previous system. In the first instance, a model which describes one possible 

implementation of a multiplexed system is outlined.

The main components of the system are:

o A transaction queue

o A transaction scheduler

o A list of active stations

The Transaction queue

The transaction queue holds details of all the transactions currently in progress. 

Each entry in the queue holds several pieces of information about a particular 

transaction. This information includes the number of frames to be transferred 

during the transaction, the number of frames transferred so far, the address of 

the remote station and information relating to message buffers etc.

The transaction scheduler

The transaction scheduler controls the multiplexing of transactions between the 

various remote stations. The scheduler operates in the following manner:
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An entry is pulled off the transaction queue. The maximum number of frames 

allowed in the message is calculated according to the number of active stations 

and the maximum time considered acceptable for a station to wait for service. A 

message of size less than or equal to this maximum is transferred between the 

remote station and the host. If the transaction has not been completed (i.e. 

there are some frames still to be transferred) then the data in the queue entry is 

updated and the entry is placed at the end of the transaction queue. Then the 

next entry is pulled off the queue, and so on.

The active station list

This is a list containing the addresses of all the active stations. The information 

in this list is used in the calculation of the maximum permissible message size 

and also to determine which stations are inactive and therefore need to be 

polled periodically to see if they have any information to transmit.

A net model of the Non-multiplexed system

The net representation of the non-multiplexed system is shown in Figure 19. The  

net may be divided broadly into three parts. The section at the top of the diagram  

models the queue of stations waiting to be serviced. The region at the bottom 

right of the net represents the transmission and reception of the individual data 

frames of a message. Finally, the small region to the left of this section models 

the decoding process at the central computer and the return of a confirmation 

message to the sending station.

The firing of transition T14 de-queues the frames for the next station in the 

queue while transitions T 13 - T8 firing in sequence cause the queue to move up. 

The transmission mechanism is modelled by the lower section of the net. The  

transmission and acknowledgement of each frame is modelled individually and 

when all the frames for a particular station have been transmitted, T33  fires and
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initiates the sending of the confirmation message from the central computer. The  

section of the net comprising place P1 and transitions T1-T8 detects if the queue 

is active and is, strictly, superfluous but is included to maintain compatibility with 

the multiplexed system described below.

The timings on the relevant places were derived from the pilot system and are 

similar to those for the multiplexed system discussed below. Finally, place P30  

representing the decode check was given a delay of zero for this run. This is 

because the simulation was being run on a relatively slow computer and the rest 

of the net would have been idle during the period when the decode delay was 

active. The place and its surrounding transitions behave predictably and 

implementation of the delay of 5.73 seconds would merely have slowed down 

the simulation run without imparting any useful information.
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Simulation results

The output report from the simulator is shown in Appendix 3. The total time taken 

to complete all the transmissions is given by the total elapsed simulation time of 

24.04 seconds to which must be added the execution time of the decode check 

for each of the messages; this gives a total time of 64.15 seconds. The time for 

transmission of all the frames for one station is given by the mean time between 

firings of transition T17. This is 3.46 seconds to which must be added the 

decode check time of 5.73 seconds giving a total time of 9.187 seconds. The  

transmission time for each frame is given by the time between firings of transition 

T23. This is 0.218 seconds.

These results are in accordance with those derived from the simple analysis of 

the system presented above. It should be noted that the time for transmission of 

all the frames for one station is a mean value in the simulation results. Taking a 

mean value from the simple analysis (6 ECGs @ 8.99 seconds and 1 report @ 

10.07 seconds) yields a result of 9.14 seconds which is in accordance with the 

simulation result.

This verification is useful because the basic blocks of the non-multiplexed model, 

the queue and the transmission mechanism, are used in the model of the 

multiplexed system which follows.

The TPTN representation of the multiplexed system

The TPTN representation of the multiplexed system is shown in Figure 20. Some 

of the features of this net are carried over from the non-multiplexed model. Of 

the three elements mentioned in the description of the system given previously 

(transaction queue, transaction scheduler and active station list), only the first 

two are explicitly modelled by the net, the active station list being irrelevant to 

the performance evaluation of the system. (Note, however, that the queue, as 

modelled by the net, performs some of the functions of the active station list by
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keeping track of the non-empty queue nodes which represent active transitions). 

The net consists of two main sections, one of which models the transaction 

queue while the other models the transaction scheduling/transmission 

mechanism, and a number of places and transitions which allow communication 

between the queue and the transmission system.

Once again the net may be broadly divided into several regions. As in the case 

of the non-multiplexed system, the section at the top of the diagram models the 

queue of stations waiting to transmit data and the region at the bottom right 

represents the transmission and reception of individual data frames. The  

sections at the middle-right and middle-left control the de-queing of transactions 

and also ensure that the data frames from incomplete transactions go back into 

the queue. Finally, the section at the bottom left-hand side of the diagram  

models the decode process and the return of the confirmation to the sending 

station when a transaction is completed.
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The transaction queue

The transaction queue is modelled by the upper section of the net consisting of 

places 1-17 and transitions 1-23. Places 2-9 represent The queue elements 

which, in turn, represent the transactions, and the tokens therein represent the 

individual frames for each transaction. The queue could have been represented 

as a simple pool containing all of the frames to be transmitted and modelled by a 

single place, but it was felt that the more detailed representation was more 

appropriate in that it allowed events to be simulated on a per-transaction basis 

whereas the simple pool model would only have allowed simulation on a per- 

frame basis. This is especially relevant in the case where some action must be 

taken upon the completion of a transaction; the separate treatment of each 

transaction allows transactions of varying length to be accommodated. 

Specifically, when each ECG/report transaction has been completed, a 

confirmation message is returned to the sender. In addition, the model assumes 

that report transactions will be of a different length from ECG messages.

Omega-weighted arcs are used to link the places representing the queue 

elements; this ensures that the entire contents of each of the places is passed 

on the next when the queue is advanced. Also a multi-weighted arc connects 

the queue head (P9) to T 24  so that if five frames are available for the current 

transaction then they will be de-queued, but if there are less than five available 

(as is the case with the final message of any transaction whose frame count is 

not an integer multiple of five) then all of the remaining frames will be de­

queued.

It should also be noted that queue operations and message transmission take 

place concurrently. W hen T 24  fires, delivering a de-queued transaction to the 

transmission system, a token is also placed in P18, thus enabling the queue to 

be advanced and partially transmitted transactions to be re-queued.
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The transmission mechanism

The transmission system is modelled by the lower section of the net. The model 

consists of a transmitter, which sends out data frames one at a time and a 

receiver which responds to each data frame with an acknowledgement. In this 

model, an error-free link is assumed, i.e. every frame will be acknowledged and 

no NAKs will be sent. Messages are assumed to be five frames long.

Queue-transmitter communication and control functions

Various places and transitions are included for the control of the queue and 

transmission system. These include detecting if the last message of a 

transaction has been de-queued, detecting if there are transactions left in the 

queue and deciding whether to advance the queue in the absence of frames at 

the queue-head. Each message is started by the firing of T24, and tokens 

representing the five frames of the message are deposited in P23 by T30.

Timings

Processing and transmission delays are confined to the transmission section of 

the net. The actual delays are the same as those used for the first-come- first- 

served system. The frame processing delays are assigned to places 24  

(transmit processing overhead) and 29 (receive processing overhead.) These 

places are each assigned half the per-frame processing delay. The delay 

associated with the ECG decode check (5.73 seconds at place 35) was omitted 

from the simulation model for the same reason as that given above for the non- 

multiplexed system. The effect of this delay is easily evaluated by noting the 

number of firings of P35. The delay for the place representing the polling 

sequence includes the combined delays of the poll, poll response, START and 

STACK messages. All delays shown are in milliseconds.



Page 74

Initially, no delays were assigned to section of the net which models the 

transaction queue as this section of the net executes concurrently with the 

transmission mechanism as would be the case in a normal multi-tasking system.

The simulation results

The simulation was run with a time limit of 40000 instants and an initial marking 

as shown in the diagram. The complete output from the simulation is shown in 

Appendix 2.

Performance parameters derived from the simulation

Total time taken to complete all transactions

The total time taken by the process is given by the simulation time at 

termination, i.e. 24.63 seconds. To this must be added the time taken by the 

ECG decode procedure, represented by 7 firings of T37 and 7 delays of 5.73  

seconds assigned to P35. This gives a total time of 64.74 seconds.

Time taken to transmit one message

This can be found by subtracting the time of the first firing of T24 from that of 

T36. This gives a time of 1.09 seconds.

Time between messages for any Cart or output station

This is given by the mean time between firings of T24, i.e. 1.116 seconds. By 

adding the time of the first firing of T24, the time after which the second station 

in the queue would receive service is obtained, i.e. 1.117 seconds. Thereafter, 

stations would be serviced at intervals of 1.116 seconds.
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o Time taken for one Cart to complete transmission of an ECG 
(Transaction time)

This is given by the mean time between firings of transition T39  (send 

confirmation) and is equal to 1.361 seconds.

Queuing delays

! As an exercise, several simulation runs were carried out in order to find out what 

magnitude of transaction queuing delay would impinge upon the total execution 

time of the simulation. It was found that a delay (distributed between places P10  

to P16 which control the movement of the queue) of 10 seconds was necessary. 

This is much larger than any conceivable processing time for servicing the 

queue, so it would appear that the assumption of no queuing delays does no 

harm to the overall performance of the model.

Comparison of the multiplexed and non-multlplexed systems

As can be seen, the total execution times of the two systems are almost 

identical: 64.15 seconds for the non-multiplexed system versus 64.74 seconds 

for the multiplexed system. This system performs the same processing tasks as 

the non-multiplexed system, only in a different order and with some additional 

overheads. The frame transmission times are the same and while the delay in 

waiting for service is shorter in the case of the multiplexed system, this has to be 

balanced against the longer transaction time.

Because the overall performance times of the two systems were nearly 

identical, it was concluded that the choice of system could be made by 

considering the relative merits of the most important operational characteristics 

of the systems. These were:
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Relatively short transmission time with increased waiting time

This represents the non-multiplexed system. Any given station will have to 

wait until all stations which precede it in the transaction queue have 

completed their entire transactions. However once the transaction has 

begun it is completed without interference from any other stations.

Reduced waiting time with increased overall transmission time

This is characteristic of the multiplexed system. Any station with a pending 

transaction will receive the attention of the central computer relatively 

quickly, but the time taken to complete the transaction will necessarily be 

longer than that of the non-multiplexed system.

Choice of system

The choice of system is made easier by considering the behaviour of the pilot 

network over a period of time. This shows that the number of Carts requiring 

service at any one time is usually quite small, typically one or two. Thus, in the 

majority of cases there is little or no delay before receiving service. Taken 

together with the fact that, from the Cart operator’s point of view, it is important to 

complete the transmission of an ECG as quickly as possible, this makes the 

implementation of the non-multiplexed system seem more sensible. In view of 

this, the non-multiplexed method was implemented for the system.
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Chapter 5. The simulation of the single-terminal system

In order to investigate the capabilities of the simulator in the evaluation of queue- 

based models, a system consisting of a single terminal sending characters to a 

CPU was chosen. A block diagram of the system is shown in Figure 21.

channel

terminal

cpu
FIGURE 21. The single-terminal system.

The system consists of three elements: a terminal, a communications channel 

and a CPU. The terminal sends characters at intervals into the channel where 

they are processed by the CPU. The operation of the system may be considered 

to proceed in a series of discrete time-slots. During each time-slot, the terminal 

may transmit a random number of characters into the channel, and during the 

same time-slot the CPU may remove a single character from the channel for 

processing.

An analytic model for the behaviour of this system has been derived by Konheim 

and Chu30 and the aim of this particular simulation was to compare the results of 

this analytical model with the results produced by the simulator.
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The Petri Net model of the single-terminal system

The Petri net model for the single-terminal system is shown in Figure 22. The 

model corresponds closely to the actual system in terms of the elements 

modelled and the behaviour of those elements. The following paragraphs 

describe the operation of the model.

terminal

sav ice  i r t

CPU ide

channel

Ri_____ i

send unit

units serviced

FIGURE 22. Petri net representation of the single-terminal system.

The terminal is modelled by a random place (denoted by the large "R" in the 

diagram) whose mean token count is fixed for a given simulation run. At each 

simulation instant a random number of tokens is deposited in the place and 

become available immediately, there being no time delay attached to the place. 

Each token corresponds to a single character or data unit. The set of random 

numbers used to feed the place during the course of the simulation has a 

Poisson distribution in order to maintain a correspondence with the analytic 

model.
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The channel is modelled by a normal place and is fed by the terminal place via a 

transition (t1) with two omega-weighted arcs. Thus at each firing of transition t1 

all of the tokens in the terminal place are deposited in the channel place.

The CPU is modelled by a place and a transition (p3 and t2.) The place 

represents the CPU-idle state and enables the transition to remove a single 

token from the channel place during each instant. A fourth place, entitled "Units 

sen/iced," serves as a sink for the processed characters.

It should be apparent that this model, although very simple, corresponds very 

closely to the operation of the system as specified above and as such should be 

able to provide a useful comparison with the analytic model.

The analytic model of the single-terminal system

The model developed by Konheim and Chu allows the mean and variance of the 

length of the queue represented by the channel in the single-terminal model to 

be determined given the distribution of data units entering the channel from the 

terminal. It is convenient to assume that each data unit is simply a single 

character from the terminal, although this makes no difference to the operation 

of the model. The equations for the mean (E) and variance (var) of the queue 

length are:
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where

L * is the length of the buffer queue in data units.

^ is the mean of the input distribution, i.e. the mean number of data units

emitted by the terminal at each instant.

a ^ is the variance of the mean of the input distribution.

^  is the 3rd central moment of the input distribution.

The simulation

The simulation was designed to test the equations from the previous section and 

to find out how accurately they modelled the single-terminal system. The method 

used was to conduct a series of simulation runs, varying the mean of the input 

distribution between the limits of 0.01 and 0.99. This was easily achieved by 

varying the mean number of tokens which could appear in the term inal place 

(p1) at each instant. The various probabilities were measured in terms of time 

units which corresponded to the transmission time for a single data unit,

normalised over the total number of time units which elapsed during the

simulation.

The net specification file is shown in Figure 23.
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;  N e t  s p e c i f i c a t i o n  f i l e  f o r  t h e  s i n g l e  t e r m i n a l  s i m u l a t i o n .
t

n e t  S i n g l e _ t e r m i n a 1  s i m u l a t i o n  
{

r u n _ t i m e  3  0 0  
}

r a n d o m _ p l a c e  t e r m i n a l '
{

t y p e  r a n d o m  
c a p a c i t y  100  
m a  r  k  i  n g  0  
d e l a y  0
d i s t r i b u t i o n  0 . 5  1 0 . 0  
}

t r a n s i t i o n  s e n d _ u n i t  
{

i n p u t  t e r m i n a l  o m e g a

o u t p u t  c h a n n e l  o m e g a  
}

p l a c e  c h a n n e l  
{

t y p e  n o r m a l
c a p a c i t y  5 0 0
m a r k i n g  0
d e l a y  0  
■;

p l a c e  c p u _ i d l e  
{

t y p e  n o r m a l  
c a p a c i t y  2  
m a r k i n g  1  
d e l a y  0

t r a n s i t i o n  s e r v i c e _ u n i t  
{

i n p u t  c h a n n e l  n o r m a l  1  
i n p u t  c p u _ i d l e  n o r m a l  1

o u t p u t  c p u _ i d l e  n o r m a l  1  
o u t p u t  u n i t s _ s e r y i c e d  n o r m a l  1  
}

p l a c e  u n i t s _ s e r v i c e d  
{

t y p e  n o r m a l  
c a p a c i t y  1 0 0 0  
m a r k i n g  0  
d e l a y  0  
}

FIGURE 23. The net specification file for the single-terminal simulation.
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The output_special_data() function of the simulator (see Chapter 3) was 

modified to produce an output file which contained the following information for 

each simulation run:

The Input mean

This was the mean number of tokens appearing at the terminal place p1 

at each instant.

The input variance

This was the variance of the mean described above.

The 3rd central moment of the input distribution

Taken from the jû  field of the stat_counter variable associated with place 

P1-

The m easured mean of the channel queue length

This was the mean number of tokens in the channel place (p2) at each 

instant, representing the mean number of characters queued for 

processing.

The m easured variance of the m ean of the channel length.

The variance of the mean number of tokens in the channel.

The resulting data were read into a spreadsheet package where the two 

quantities E (L*) and var (L*) were calculated using the input mean, variance

and 3rd central moment from each simulation run. These values were then 

compared against the mean and variance of the channel length measured during 

the simulation runs. The exercise was repeated three times as a consistency 

check and the resulting data were averaged to produce the final results.
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Simulation results

The graphs of Figures 24-27 show the results for the mean and variance of the 

channel length. Figure 24 shows the measured and calculated mean channel 

lengths plotted against the mean of the input distribution. The "measured" mean  

is the actual mean value measured during the course of the simulation while the 

"calculated" value is that calculated using Konheim and Chu's equations. Figure 

25 shows the corresponding graphs for the measured and calculated variances.

It can be seen that the calculated mean channel length follows the measured 

mean very closely until the mean of the input distribution reaches about 0.9. This 

is demonstrated more clearly in Figure 26 which shows the same graph with the 

y-axis having a logarithmic scale. This is to be expected as the mean channel 

length as calculated from equation 1 above tends to infinity as the input mean 

approaches 1. However, the correspondence to the measured values is good 

over most of the range.

In the case of the variance, this too gives a close fit, up to an input mean value of 

about 0.75 where it diverges for the same reason as the mean. Once again the 

divergence is made clearer by showing the y-axis on a logarithmic scale in 

Figure 27.

The reason that the measured mean and variance values do not tend to infinity 

along with the calculated values id probably due to the relatively short duration of 

each simulation run. This restriction was imposed by the slow hardware (a VAX) 

upon which the simulation program was being run at the time.

Conclusion

The simulation provides a useful vindication of Konheim & Chu's model of the 

single-terminal queueing system. The divergence of the results of the results of 

the equations from those produced by the simulation for values of the input
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mean close to 1 is not too serious a discrepancy. In real life, the output from a 

terminal is necessarily sporadic and it is unlikely that a typist could achieve a 

constant flow of characters for very long as would be the case as the input mean 

approached a value of 1!

This example also shows that the Petri net simulator is useful in this type of 

situation and provides a simple and concise model of the queueing system.
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FIGURE 24. Graph of the measured and calculated mean channel lengths 
for the single-terminal system simulation.

3000

Measured variance 
Calculated variance

2000
<DO

<0>
1000

o - ' - ~ ... — ' ~ _•___ ; .  ..

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Input mean

FIGURE 25. Graph of measured and calculated variance of the channel 
length for the single-terminal system simulation.
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100

10

-^Measured mean 
* Calculated mean
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Input mean

FIGURE 26. The graph of Figure 24 wfth logarithmic y-axis.
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FIGURE 27. The graph of Figure 25 with logarithmic y-axis.
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Chapter 6. Simulation of an Ethernet System

In this chapter, the Timed Petri Net simulation method is applied to the 

simulation of an Ethernet system. Ethernet is a widely-used local-area 

networking system employing a link-level protocol known as Carrier Sense 

Multiple Access with Collision Detection (CSMA/CD.)

The basic CSM A protocol was first used in packet radio networks31 linking 

together communicating stations spread over several widely dispersed 

campuses. The system was refined by Metcalfe and Boggs32 with the addition of 

the collision detection capability which improved the throughput of the protocol 

under medium-to-high traffic loads, leading to the specification of the Ethernet 

protocol by Xerox, Intel and Digital Equipment Corporation33.

Performance issues in Ethernet design were investigated at an early stage by
A J

Shoch and Hupp and various formal analyses and performance analysis 

methods have since been applied to the system. More recently the use of 

stochastic Petri Net models has been advocated to analyse the performance of 

the Ethernet protocol, e.g. G ressier35 and Ajmone Marsan et a l 36.

The work described in the paper by Ajmone Marsan et al36 formed a useful 

starting point for the simulation presented in this chapter, as the authors provide 

a working stochastic Petri net model for the Ethernet protocol along with usable 

values for the timed portions of the net. The first section of the chapter deals with 

the conversion of this model into a form which is usable by the current Petri net 

simulator and the reproduction of the performance indices involved. This 

exercise presents a practical application of some of the issues described in 

Chapter 2, in particular the equivalence between timed-transition and timed- 

place models. The second section attempts to extend the simulation to model 

the behaviour of the Ethernet under high traffic loads.



Page 88

The Ethernet transmission strategy

The Ethernet is a broadcast network in which all of the attached stations have 

equal access to the transmission channel. In the initial state, any station is free 

to transmit packets on to the channel as long as the network is idle. Each station 

is equipped with the means to detect whether the channel is idle and also when 

a packet collision occurs, which may happen if two or more stations attempt to 

transmit simultaneously. If a station detects a collision during the course of 

transmitting a packet, the back-off strategy is used to resolve the conflict. First, 

the station will transmit a jam signal on to the channel, which ensures that any 

other stations involved in the collision are aware that the collision has taken 

place. The station then waits a random length of time before attempting to 

transmit again. This random delay reduces the probability that the competing 

stations will attempt to re-transmit simultaneously.

The Stochastic Petri Net M odel of the Ethernet

A complete description of the original stochastic net model is given in the paper 

by Ajmone Marsan et al.36, but some of the more important features will be 

discussed here. Figure 28 shows the Petri net diagram for one station on the 

Ethernet. The model used in this chapter consists of six stations all of which are 

identical except for the two stations at either end of the bus which lack some of 

the elements modelling propagation of messages along the bus. This model 

uses timed transitions of which there are two types. Those represented by the 

black-filled rectangles are deterministically timed, meaning that the delay 

assigned to the transition remains constant throughout the simulation, while 

those represented by the empty rectangles are exponentially timed, in which 

case the delay varies randomly with an exponential distribution. The empty 

squares represent instantaneous transitions as usual. The exponentially-timed 

transitions are used to model the back-off process, which represents the 

exponential back-off and retransmit strategy of the CSMA/CD protocol and the
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think process which represents the (unspecified) behaviour of the station 

between transmitting packets. The variation in the think delay controls the rate at 

which each station will attempt to transmit packets on to the network. The use of 

an exponentially distributed firing time for the think places fulfils the usual 

assumption of Poisson arrivals at the transmission queue.
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The net components above the thick horizontal line in Figure 28 model the 

activity of the station itself, while those below the line model the propagation of 

packets along the bus. A short description of the function of each element of the 

net follows.

1.) Net elem ents belonging to the station

a.) Places

think a token in this place signifies that the station is processing data and is not 

attempting to transmit.

sense this place represents the station testing to see if the channel is idle.

pers this represents the waiting state while the channel is busy.

start the start of transmission.

tx denotes that the station is in the process of transmitting a packet. 

jam a collision has been detected and the station is transmitting a jam signal. 

back the station is in the back-off state.

ps propagate start-of-transmission to the other stations of the net. 

pe propagate end-of-transmission to the other stations.

b.) Transitions

think exponentially-timed transition which simulates the station's processing 

activity.
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idle this transition fires when the channel is idle and the station is sensing the 

state of the net.

busy fires when the station is in the sense state and the channel is busy.

pend when a station is waiting (token in the pers place) this transition remains 

disabled until the channel becomes free.

start a deterministically-timed transition representing the start-of-transmission 

delay.

tx a deterministically-timed transition representing the time taken to transmit 

a data packet.

coll this transition fires when the station is transmitting (token in place tx) and 

a collision is detected on the channel. A collision is represented by two or 

more tokens in place chstate, signifying that two or more stations are 

trying to transmit simultaneously.

jam deterministically-timed transition representing the sending of the jam 

signal.

back exponentially-timed transition representing the random back-off delay.

2.) Net elem ents belonging to the channel

a.) Places

pstl a token here begins propagation of the start of this station's transmission 

to the station on the left.

pstr starts propagation of start-of-transmission to the station on the right.
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pet/ starts propagation of the end-of-transmission to the station on the left.

petr starts propagation of end-of-transmission to the station on the right.

pefl signifies that the station to the left has propagated an end-of-transmission.

pefr signifies that the station to the right has propagated an end-of- 

transmission.

ch state

represents the state of the channel. The number of tokens in this place 

represents the number of stations which are attempting to transmit at any 

given time.

b.) Transitions

ps propagate start-of-transmission.

pe propagate end-of-transmission.

efr fires when the station to the right propagates an end-of-transmission. 

Removes a token from place chstate to indicate that there is one less 

station transmitting.

efl similar to efr but handles the station to the left.

tl1-tl4, tr1-tr4

deterministically-timed transitions which represent the propagation delay 

of the channel.
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The timed Petri net model used in this chapter was derived from the stochastic 

net model described in the previous section. Where possible, a direct translation 

of the net was made on a place-for-place and transition-for-transition basis and 

for a detailed description of most of the places and transitions the reader is 

referred to the descriptions given above for the stochastic net model. This 

translation was possible in the case of normal (untimed) places and 

instantaneous transitions, but the translation of the timed transitions (both 

deterministic and exponential) of the stochastic model into equivalent timed- 

place representations required some slight modification of the net structure. In 

particular the mechanism whereby the transmission of a packet may be 

interrupted by the detection of a collision required some extra work using the 

firing priority which is implicit in the present simulator. This will be discussed 

later.

The timed Petri net model for a single station on the Ethernet is shown in Figure 

29. As in the case of the stochastic model described above, the net used in the 

simulation consists of six such stations, identical except for the two stations at 

the ends of the bus. The deterministically timed transitions start, tx and jam  

have been replaced by normal instantaneous transitions and the time element 

has been moved to the corresponding places start, tx  and jam. Similarly the 

exponentially-timed transitions back and th ink  have been replaced with 

instantaneous transitions and the time moved to the randomly-timed places back 

and th in k  These places have exponentially distributed delays, so that the 

behaviour of the net is preserved. The deterministically-timed places are 

inscribed with the legend x = n, where n is the delay associated with the place. 

Similarly the random-delay places are inscribed with the legend p = n where n is 

the mean delay associated with the place. All of the timed places have parallel 

normal places associated with them so that whenever a token enters a timed 

place, another token also enters the associated normal place. This is purely for
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the purpose of gathering statistics - the time spent by a token in the normal place 

matches the delay time of the associated timed place and the simulator does not 

include unavailable tokens in the measurement of statistics. This means that 

during the period when a token in a timed place was unavailable the time-spent 

variable for the place would not be updated, leading to erroneous time-spent 

values for that place.

The transmission m echanism

Since no mechanism exists in the present simulator for pre-emption of place 

delays, a rather convoluted process was contrived to model the interruption of a 

packet transmission when a collision is detected. When transmission of a packet 

begins, one token is placed into each of the places tx and tx active. This latter 

place acts as an enabling place for the transition coll, which fires in the case of 

collision detection. When this happens the token is removed from place tx active 

and a new token is deposited in place tx kill. This disables the transition tx and 

enables transition tx disable so that when the delay of place tx expires the 

token in that place is removed and deposited in place trash thus aborting the 

transmission. The delays assigned to the jam, backoff and think mechanisms 

ensure that the transmission delay will elapse before another token is deposited 

in place tx.
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FIGURE 29. Timed Petri net representation of a single Ethernet station.

The propagation delays associated with the ethernet channel and which were 

implemented by the timed transitions t!1 - t!4 and tr1 - tr4  in the stochastic 

model are associated in the present model with the deterministically-timed 

places pstl, p e t l , pefr and pstr. The transitions themselves have been replaced 

•n the present model with instantaneous transitions it1 -it4.
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Time parameters

The time parameters for the net were taken from the stochastic model and are 

shown in table 2. This shows the value of each delay in microseconds along with 

the place in the timed net which implements the delay.

Param eter Delay Associated place
Channel propagation 
Packet transmission 
Jamming delay 
Start delay 
Mean backoff delay 
Mean processing delay

3 0 jliS

200ps
5 j iS  

1 OjLlS 
10Ojus 
1200ps

pstl,petl,pstr,petr  
tx
Jam
start
back
th ink

TABLE 2. Timing parameters for the Ethernet simulation.

In order to check the timed Petri net model against the results of the stochastic 

model, a mean processing delay of 1200jus was chosen for each of the think  

places of the net. This corresponds to the probability of ^  which was assigned to

the corresponding exponentially-timed transitions of the stochastic model.

The simulation run

The simulation was run for a period of 120000 instants, each of which 

represented 1 ps of real time. This was found to be long enough for the system to 

reach a steady state. The computer used was a Sun 4/360 and the total 

processing time for the run was approximately 10 minutes.

The output from the simulator was read into a spreadsheet package where the 

various performance indices could be computed from the raw output data.
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Performance indices

In the paper by Ajmone Marsan et al, the following performance indices were 

calculated:

6

THINK = J^E{#think.J 

i=l

6

BACK  =  YsE\#back)  

i= 1

6

^ /4 /T = ^ £ {# w a /r .|

i=l

6

START = Y jE{#stan .\ 

i=l

6

JAM  =  'y '1E{#jam]\ 

i= 1

CHBUSY = /5{#c/z6M^y1 > 1 or #chbusy2 > 1 or ... #chbusy > 1}

An explanation of each of these and its equivalent with regard to the present 

timed Petri net model is given now.

THINK

This is the steady-state average number of stations processing but not 

actively transmitting data. This is calculated by summing the mean 

markings for all of the think ja c tiv e  places in the net.

• Back

This is the average number of stations in the back-off state after detecting
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a collision during transmission and is formed by summing the mean 

markings of the b a c k ja c tiv e  places.

• Wait

This is the mean number of stations waiting for the channel to clear. This 

is formed from the sum of the mean markings of the pers  places.

Start

This represents the mean number of stations starting transmission, i.e. 

preparing to transmit after having detected that the channel is idle. It is 

formed from the sum of the mean markings of the s ta rtjac tive  places.

Jam

The mean number of stations enforcing a jam after detecting a collision. 

This is formed from the sum of the mean markings of the ja m ja c tiv e  

places.

Chbusy

Channel busy. This is the probability that any of the chstate places of the 

net contains one or more tokens. This was measured by using the zero  

stat_counter associated with each of the chstate  places of the net. At 

the end of the simulation, the number of instants during which each place 

was empty was subtracted from the simulation run time. The chbusy 

parameter was calculated by taking the mean of this quantity across all of 

the places and dividing by the simulation run time.

Comparison of performance indices

Table 3 shows the values of the performance indices described above for both 

the stochastic model and the present timed net model.
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Perform ance index Stochastic m odel Tim ed Petri net model
THINK 3.84 3.38
BACK 1.08 1.02
WAIT 0.36 0.73
START 0.035 0.087
JAM 0.014 0.0505
CHBUSY 0.73 0.74

TABLE 3. Performance indices for the stochastic and timed Petri net
simulations.

It can be seen that the two models are In agreement on most of the indices, 

including the most important one, that of channel busy. This gives an indication 

of the degree of saturation of the Ethernet channel which is the most important 

limiting factor in Ethernet performance under high loads.

The discrepancies between the results for the two models possibly arise from the 

different methods used to implement the random elements of the models. This 

could be investigated further by performing the simulation of the stochastic 

model using the appropriate simulation program. Unfortunately this was not 

possible at the time of writing.

Simulation of the Ethernet under high loads

Once it had been verified that the timed Petri net model of the Ethernet behaved 

in a similar manner to the stochastic model, it was decided to evaluate the 

performance of the Ethernet under varying load conditions.

The six-station Ethernet model described in the previous sections was used, but 

the packet length was reduced to 128 bytes or 102ps. The reason for this choice 

was that this was the packet length used in the original measurements made by 

Shoch and Hupp in 1979.

The simulation method used was to create a net specification file containing all 

the net parameters except the mean processing delay (the mean delay for the 

think places.) A Unix shell script was written which would generate a
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specification file for each of the required values and run the simulation 

accordingly. The mean processing delay was varied between 5 0 jlis and 6000ps  

in increments of 50ns.

The output_special_data() function of the simulator was used to produce a 

series of results for each simulation run which were appended to a single output 

file so that the results of all the individual simulation runs could be processed 

together.

Results

The limiting factor on the performance of an Ethernet under high load is the 

packet throughput in the presence of a large number of collisions. To this end 

two quantities were measured: the probability that the channel was busy, i.e. that 

a packet was being transmitted over the network and the number of packets 

transmitted per second. Each of these quantities was measured against the 

cumulative transmission probability of all the stations. This was the sum of the 

probabilities that each station would transmit a packet at a given instant.

Figure 30 shows the channel busy probability plotted against this cumulative 

transmission probability. It can be seen that the channel usage approaches 1 as 

the cumulative transmission probability approaches a value of 6, i.e. each 

station's individual transmission probability approaches 1.



Page 102

1.000 

0.900 

0.800 —

0.700 

0.600 

0.500 —

0.400 —

0.300 -  

0.200  —

0.100 —— "   ------------------------

0 1 2 3 4 5 8

Cumulative Tx probability

FIGURE 30. Graph of channel busy probability for the Ethernet simulation
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FIGURE 31. Graph of packets per second against cumulative transmission 
probability for the Ethernet simulation.
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FIGURE 32. Shoch & Hupp's measurement of the experimental Ethernet
under high load.

Figure 31 shows the number of packets delivered per second plotted against the 

cumulative transmission probability. It can be seen that the packet throughput 

drops off at a cumulative transmission probability of around 3, which represents 

an per-station probability of around 0.5 or a 50%  load on the network.

In contrast, Figure 32 shows the results measured by Shoch & Hupp on an 

experimental Ethernet and presented in their 1979 paper34. There is an obvious 

difference between the two sets of results. The Petri net model shows channel 

utilisation falling off as the load increases beyond 50%, while Shoch and Hupp 

claim increasing utilisation for a load greater than 80% . This may be due in part 

to the way in which the transmission probabilities were calculated during the 

simulation, as the method used did not take account of stations being in the 

backoff, jamming or waiting states. The probability was calculated simply by 

dividing the total time spent in the transmitting state (time spent in the tx_active  

places) by the total runtime of the simulation. It would have been preferable to 

subtract from the runtime the total time spent in the backoff, jam and wait states, 

but these figures were not readily available from the simulator output. Another



difference between the simulated Ethernet and the real network is that the 

simulation does not modify the mean backoff delay to match the number of 

collisions detected as is the case with the real network. However, in spite of 

these discrepancies the simulator can provide a useful measure of overall 

Ethernet system performance.
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Chapter 7. Conclusions

The overall aim of this thesis was to develop and evaluate a technique of 

simulation using timed Petri nets. In order to evaluate the results produced it is 

helpful to consider separately various aspects of the work which was 

undertaken.

The Petri net model

The aim in designing the present Petri net model was to extend the basic 

PlacefTransition class of Petri net to include an element of time and also to 

include some other extensions which would make the model more suited to 

simulation exercises. From the results of the three simulations presented earlier, 

it is clear that the resulting net model performs adequately in all three cases. 

Leaving aside the question of timed-place versus timed-transition models for the 

moment, it was felt that the other extensions succeeded in increasing the 

simulating ability of the model without significantly increasing the visual 

complexity of the net diagrams. In particular, the omega-weighted arcs and the 

multi-weighted arcs proved especially useful in modelling the queueing elements 

of the simulated systems. As these arcs appear in the diagrams as relatively 

simple variations on the normal arc, their functions are easily understood in the 

context of the net diagram.

The random-input and random-delay places which were introduced in order to 

allow the statistical events also fitted well into the net model. Once again these 

simply appear as variations on the normal place and their functions are easily 

comprehensible in the diagrams.
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The timed-place model proved to be an extremely viable alternative to the timed- 

transition type. The degree of equivalence of the two models was highlighted by 

the relative simplicity of converting the timed-transition model of the Ethernet 

system into the timed-place scheme. However in the case of the interruptible 

transmission interval in the Ethernet system, the timed-place scheme proved 

less successful. The solution to this problem, although it worked satisfactorily, 

was rather clumsy and it would appear that there is no direct method of providing 

such a facility using the timed-place model. This, however, remains a topic for 

further research.

The timed Petri net simulation program as a performance evaluation tool

The results provided by the simulation program were immediately useful in all 

three simulation exercises. In the case of the Cart-computer system in Chapter 

4, the objective was simply to measure the overall run-time of the system and to 

measure the time between the occurrences of certain events. This was easily 

accomplished from the tables of results produced by the simulation program. 

The decision as to which particular net parameters to measure depended to a 

large extent on the work done by Torn12 and it was felt that the usefulness of this 

seat of measurements in this instance justified the choice.

In the cases of the single-terminal queueing model and the Ethernet system, the 

simulation program proved itself capable of simulating the steady-state of the 

systems, and the resulting graphs provided useful estimates of the performances 

of these systems. In particular, the Ethernet simulation may be used to estimate 

the performance limits of various real-world networks by varying the parameters 

of the simulation such as the number of stations, the network length or the size 

of packet transmitted.
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Suitability of the object-oriented model in implementing the simulation 
program

Given the desire to test the applicability of an object-oriented language to writing 

a Petri net simulator, the C++ programming language proved to be a good 

choice, especially as the current program was derived from an older version 

written in C. The object oriented paradigm was shown to be appropriate for the 

manipulation of Petri nets within the program.

Comparison with other simulation methods

In terms of its operation and the results produced, the Petri net simulation 

method described in this thesis is similar to other discrete-event simulation 

methods, such as those based on special-purpose languages, e.g. SIMULA and 

SIMSCRIPT. The main difference is that the Petri net method allows the 

translation from the real-world system to the simulated model to be done 

graphically. Once the appropriate level of abstraction has been chosen, the net 

model can be constructed in a fashion analogous to the design of a logic circuit. 

Indeed one avenue of development for the present simulator would be to add an 

input facility, whereby the net could be drawn graphically and the translation to 

the internal data structures of the simulator performed automatically. This would 

remove the need to translate the net diagram into the textual description which is 

currently required.

It has been shown that the simulation program described in this thesis, along 

with its associated class of timed Petri nets has proved capable of simulating 

systems with a variety of characteristics. Using the simulator it was possible to 

perform simple time-interval measurements on a system, model the steady-state 

behaviour of a queueing system and perform simulations using stochastic net 

techniques. This generality, along with the usefulness of the results obtained, 

show that the simulator represents a useful general-purpose performance 

evaluation tool.
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Appendix 1. Net specification file for the terminal-computer 
system.

;  S p e c  f i l e  f o r  s i n g l e  t e r m i n a l  s i m u l a t i o n .

n e t  S i n g l e _ t e r m i n a l _ s i m u l a t i o n  
{

r u n _ t i m e  10

r a n d o m _ p l a c e  t e r m i n a l  
{

t y p e  r a n d o m  
c a p a c i t y  100  
m a r k i n g  0 
d e l a y  0
d i s t r i b u t i o n  0 . 5  1 0 . 0  
}

t r a n s i t i o n  s e n d _ u n i t  
{

i n p u t  t e r m i n a l  o m e g a

o u t p u t  c h a n n e l  o m e g a  
}

p l a c e  c h a n n e l  
{

t y p e  n o r m a l  
c a p a c i t y  5 0  0  
m a r k i n g  0 
d e l a y  0 
}

p l a c e  c p u _ i d l e  
{

t y p e  n o r m a l  
c a p a c i t y  2 
m a r k i n g  1 
d e l a y  0 
}

t r a n s i t i o n  s e r v i c e _ u n i t  
{

i n p u t  c h a n n e l  n o r m a l  1 
i n p u t  c p u _ i d l e  n o r m a l  1

o u t p u t  c p u _ i d l e  n o r m a l  1 
o u t p u t  u n i t s  s e r v i c e d  n o r m a l  1 
}

p l a c e  u n i t s _ s e r v i c e d  
{

t y p e  n o r m a l  
c a p a c i t y  1 0 0 0  
m a r k i n g  0 
d e l a y  0 
}
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Appendix 2. Net simulator output for the Multiplexed system.

Timing values in the following tables are in milliseconds.

N e t s t a t  V 3 . 0

N e t  S i m u l a t i o n  S t a t i s t i c s

S i m u l a t i o n  n a m e :  m d s 2  3 8  P l a c e s  a n d  4 1  T r a n s i t i o n s .

S i m u l a t i o n  d e s c r i p t i o n :
M u l t i p l e x e d  s y s t e m  w i t h  n o  a d d i t i o n a l  q u e u e i n g  d e l a y s  

I n i t i a l  m a r k i n g :
0  1 5  1 5  2 0  1 5  1 5  1 5  1 5  0  0  0  0  0  0  0  0  0

0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0  
1 0
F i n a l  m a r k i n g :

0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0  1 5  0 0 0 0 1 1 0 1 0 0 0  1 1 0  0  0  0

1 1
T e r m i n a l  m a r k i n g :
2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  

2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  

2 5 5  2 5 5
T i m e  1 i m i t : 4  0 0 0 0

S i m u l a t i o n  t e r m i n a t e d  a t  g l o b a l  t i m e  2 4 8 9 8  S i m u l a t i o n  t i m e  2 4 6 3 3  

T e r m i n a t i o n  c o d e  1

S i m u l a t i o n  r u n t i m e :  5 : 1 8 : 2 5

P l a c e  S t a t i s t i c s

M a r k i n g  d a t a

i m b e r N a m e T y p e M i n M a x M e a n V a r  i a n c e %  Z e r o

1 Q u e u e  a c t i v e n 0 10 9  . 4 9 9 1 4  . 7 0 1 0 4 . 8 7  5 7

2 Q u e u e t a  i  1 n 0 1 5 0 .  0 8 1 8 0  . 7 4 4 3 9 8 . 5 1 0 0

3 ’ Q p 2 n 0 1 5 5  . 6 4 2 7 1 7  . 2 4 4 3 0  . 2 1 6 9

4 Q p 3 n 0 20 6 . 2 8 9 5 1 9  . 6 2 7 8 0 . 2 1 6 9

5 Q p 4 n 0 20 6 . 9 2 0 8 2 1 . 2 6 3 9 0  . 2 1 6 9

6 Q p 5 n 0 20 7  .  5 9 8 3 2 8 . 1 2 4 5 0  . 2 1 6 9

7 Q p 6 n 0 20 8 . 2 2 9 0 2 8 . 0 8 8 8 0  . 2 1 6 9

8 Q p 7 n 0 20 8 . 8 4 5 0 2 7 . 4 3 0 5 0  . 2 1 6 9

9 Q u e u e _ h e a d n 0 20 9  . 4 6 9 4 2 5 . 8 1 6 5 0  . 2 1 6 9

10 Q e l n 0 2 0 . 0 0 2 2 0  .  0 0 4 3 9 9  . 8 9 1 6

11 Q e 2 n 0 2 0 . 0 0 3 3 0 . 0 0 5 4 9 9  . 7 8 3 1

12 Q e 3 n 0 2 0 . 0 0 3 3 0 . 0 0 5 4 9 9  . 7 8 3 1

1 3 Q e 4 n 0 2 0 . 0 0 3 3 0 . 0 0 5 4 9 9  . 7 8 3 1

1 4 Q e 5 n 0 2 0 . 0 0 3 3 0 . 0 0 5 4 9 9  . 7 8 3 1

1 5 Q e 6 n 0 2 0  .  0 0 3 3 0 . 0 0 5 4 9 9  . 7 8 3 1

1
0

0
0

2 5 5
2 5 5



1 6
1 7

1 8
1 9
20
21
22
2 3
2 4
2 5
2 6
2 7

2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
37
3 8

Q e  7 n 0 2 0 . 0 0 3 3 0 . 0 0 5 4
R e  q u e u e i n g n 0 1 0 . 0 0 0 8 0 . 0 0 0 8

S t a r t  p r o c e s s n 0 1 0 . 0 0 2 6 0 . 0 0 2 6
D a t a g r a m  s t a r t e d n 0 1 0 . 0 0 0 9 0 . 0 0 0 9

T r a s h c a n n 0 1 5 10  . 1 6 0 8 2 1 . 7 5 9 3
Q u e u e  h e a d  e m p t y n 0 1 0  . 3 0 8 7 0 - . 2 1 3 4

P o l l i n g n 0 1 0 . 0 0 0 9 0  .  0 0 0 9
P a c k e t s  w a i t i n g n 0 5 1 . 9 3 0 6 2  .  0 7 3 5

P a c k e t  a v a i l a b l e n 0 1 0  . 0 0 4 4 0  . 0 0 4 4
P a c k e t  d o n e n 0 1 0 . 0 4 1 3 0  .  0 3 9 6

T x  i d l e n 1 1 1 . 0 0 0 0 0 .  0 0 0 0
S e n d i n g  p a c k e t n 0 1 0  . 0 0 4 4 0  .  0 0 4 4

R x  i d l e n 1 1 1 . 0 0 0 0 0 .  0 0 0 0
P a c k e t  r e c e i v e d n 0 1 0  . 0 0 4 4 0  .  0 0 4 4

R e c e i v i n g  A C K n 0 1 0  . 0 0 4 4 0  .  0 0 4 4
W a i t i n g _ f o r  r e p l y n 0 1 0 . 6 7 1 5 0 . 2 2 0 6

G l o b a l  c o u n t n 0 11 0 5 5 . 5 3 1 9 1 0 2 6 . 4 4 8 4
R e p l y  r e c e i v e d n 0 5 1 . 9 3 0 6 2  . 0 7 3 5

D a t a g r a m  s e n t n 0 1 0 . 0 0 0 9 0 . 0 0 0 9
D e c o d e  c h e c k n 0 1 0  . 0 0 0 3 0  . 0 0 0 3

S e n d i n g _ c o n f  i r m . n 0 1 0 . 0 0 0 3 0  .  0 0 0 3
D a t a g r a m  d o n e n 0 1 0 . 0 0 4 2 0  .  0 0 4 2

D a t a g r a m _ e n a b l e d n 0 1 0 . 9 8 3 3 0  . 0 1 6 4
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T i m i n g  d a t a

T i m e  s p e n t
m b e r N a m e M i n M a x M e a n N c F c L c

1 Q u e u e  a c t i v e 1 4 1 1 8 7 1 8 7  . 9 7 6 2 1 2 6 0 2  3 4  5 5
2 Q u e u e  t a i l 1 3 1 4 6 .  8 7  0 4 5 4 0 2 3 4 6 8
3 Q p 2 12 1 1 8 8 4 5 1  . 7 2 7 3 5 5 0 2 3 4 6 8
4 Q p 3 10 1 1 8 8 4 5 1 . 7 2 7 3 5 5 0 2 3 4 6 6
5 Q p 4 8 1 1 8 8 4 5 1 . 7 2 7 3 5 5 0 2 3 4 6 4
6 Q p 5 6 1 1 8 8 4 5 1 . 7 2 7 3 5 5 0 2 3 4 6 2
7 Q p 6 4 1 1 8 8 4 5 1 . 7 2 7 3 5 5 0 2 3 4 6 1
8 Q p 7 2 1 1 8 8 4 5 1 . 7 2 7 3 5 5 0 2 3 4 5 9
9 Q u e u e  h e a d 1 3 1 1 8 8 3 6 5 . 3 6 7 6 68 0 2 3 4 5 7

10 Q e l 1 1 0 . 5 0 0 0 5 4 0 2 3 4 6 8
11 Q e 2 2 2 0 . 6 6 6 7 8 1 0 2 3 4 6 7

12 Q e 3 2 2 0 . 6 6 6 7 8 1 0 2 3 4 6 5
1 3 Q e 4 2 2 0  . 6 6 6 7 8 1 0 2 3 4 6 3

1 4 Q e 5 2 2 0  . 6 6 6 7 8 1 0 2 3 4 6 1
1 5 Q e 6 2 2 0 . 6 6 6 7 8 1 0 2 3 4 6 0

1 6 Q e 7 2 2 0 . 6 6 6 7 8 1 0 2 3 4 5 8
1 7 R e - q u e u e i n g 1 1 0 . 5 0 0 0 3 8 2 2 3 4 5 4

1 8 S t a r t _ p r o c e s s 1 3 1 . 2 0 3 7 5 4 0 2 3 4 5 6

1 9 D a t a g r a m  s t a r t e d 1 1 0 . 5 0 0 0 4 4 1 2 3 4 5 6

20 T r a s h c a n 0 0 0 . 0 0 0 0 1 5 2 2 0 0 0 6
21 Q u e u e  h e a d  e m p t y 1 0 9 8 1 0 9 8 5 4 9 . 0 0 0 0 1 4 1 5 2 9 0 2 4 5 4 6

22 P o l l i n g 1 1 0  .  5 0 0 0 4 4 7 2 3 4 6 1
2 3 P a c k e t s  w a i t i n g 8 7 3 8 7  3 1 4 5 . 5 0 0 0 1 3 2 7 2 4 3 3 0

2 4 P a c k e t _ a v a i l a b l e 1 1 0 . 5 0 0 0 22 0 7 2 2 4 3 9 5
2 5 P a c k e t  d o n e 1 1 6 7 4  . 6 5 6 1 221 0 2 4 5 4 6

2 6 T x _ i d l e 0 0 0 .  0 0 0 0 1 0 0
2 7 S e n d i n g _ p a c k e t 1 1 0 . 5 0 0 0 22 0 1 5 8 2 4 4 8 1

2 8 R x _ i d l e 0 0 0 .  0 0 0 0 1 0 0

2 9 P a c k . e t _ r e c e i v e d 1 1 0  . 5 0 0 0 22 0 2 2 3 2 4 5 4 6

3 0 R e c e i v i n g  A C K 1 1 0  . 5 0 0 0 2 2 0 2 2 4 2 4 5 4 6

3 1 W a i t i n g  f o r  r e p l y 1 5 2 1 5 2 7 6  .  0 0 0 0 22 0 7 3 2 4 5 4 6

3 2 G l o b a l _ c o u n t 0 0 0 .  0 0 0 0 110 2 2 4 2 4 5 4 6

3 3 R e p l y _ r e c e i v e d 8 7  3 8 7  3 1 4 5  . 5 0 0 0 1 3 2 2 2 4 2 4 5 4 6

3 4 D a t a g r a m _ s e n t 1 1 0 . 5 0 0 0 4 4 1 0 9 2 2 4 5 4 6

3 5 D e c o d e  c h e c k 1 1 0 . 5 0 0 0 1 4 1 6 3 8 0 2 4 5 4 7

3 6 S e n d i n g  c o n f i r m . 1 1 0 . 5 0 0 0 1 4 1 6 4 6 7 2 4 6 3 3

3 7 D a t a g r a m _ d o n e 1 6 9 2 . 3 3 3 3 4 5 0 2 4 6 3 3

3 8 D a t a g r a m  e n a b l e d 1 1 1 7 4 4 6 1  . 9 4 3 4 5 3 0 2 3 4 6 8
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T r a n s i t i o n  S t a t i s t i c s

F i r i n g s  T . B . F
N u m b e r  N a m e  T o t a l  F i r s t  L a s t  M i n  M a x  M e a n

1 Q t  1 4 4
2 _ Q t l 5 3 7
3 Q t  1 6 4 4
4 Q t  1 7 4 6
5 0 t l 8 3 4
6 Q t  1 9 3 4
7 Q t 2 0 3 5
8 Q t 2 1 2 6
9 Q t l 2 7

10 Q t 2 2 7

11 Q t 3 2 7
12 Q t 4 2 7
1 3 Q t 5 2 7
1 4 Q t 6 2 7
1 5 Q t 7 2 7
1 6 R e - q u e u e 1 9
1 7 R e p l e n i s h _ q u e u e 7

1 8 Q t 8 2 7

1 9 Q t 9 2 7

20 Q t  1 0 2 7

2 1 Q t l l 2 7

22 Q t  1 2 2 7

2 3 Q t l 3 2 7

2 4 G e t _ d a t a g r a m 22
2 5 S h u f f l e  q u e u e 4
2 6 D e - q u e u e 2 7
2 7 S e l e c t _ r e - q u e u e 1 9

2 8 S e t  e m p t y 7

2 9 S e t _ f u l l 1 5

3 0 S t a r t _ d a t a g r a m 22
3 1 G e t  n e x t _ p a c k e t 11 0

3 2 S e n d  p a c k e t 11 0
3 3 R e c e i v e  p a c k e t 1 1 0
3 4 R e c e i v e  r e p l y 1 1 0
3 5 S e n d _ A C K 11 0
3 6 T e r m i n a t e  d a t a g r a m 22
3 7 S t a r t  d e c o d e 7

3 8 C o n t i n u e 1 5

3 9 S e n d  c o n f i r m a t i o n 7

4 0 E n d  m e s s a g e 7

4 1 E n a b l e _ d a t a g r a m 2 7

0 2 0 0 0 9 0 2 0 t ) 0 8 6 6 6 9  . 6 6 6 5
0 2 1 1 0 2 0 5 8 0 7 5 8 6 . 1 6 6 7
0 2 2 2 8 5 0 5 8 0 7 5 1 8 . 2 5 5 8
0 2 3 4 5 4 0 5 8 0 4 5 2 1 . 2 0 0 0
0 2 3 4 5 4 0 4 6 2 4 7 1 0  . 7 2 7 3
0 2 3 4 5 4 0 3 4 4 6 7 1 0  . 7 2 7 3
0 2 3 4 5 4 0 2 3 5 5 6 8 9 . 8 2 3 5
2 2 3 4 5 4 0 4 6 3 1 9 3 8 . 0 8 0 0
0 2 3 4 6 8 0 1 1 8 1 9 0 2 . 6 1 5 4
0 2 3 4 6 6 0 1 1 8 1 9 0 2 . 5 3 8 5
0 2 3 4 6 4 0 1 1 8 1 9 0 2  .  4 6 1 5
0 2 3 4 6 2 0 1 1 8 1 9 0 2 . 3 8 4 6
0 2 3 4 6 1 0 1 1 8 0 9 0 2  . 3 4 6 1
0 2 3 4 5 9 0 1 1 8 1 9 0 2  . 2 6 9 2
0 2 3 4 5 7 0 1 1 8 1 9 0 2  .  1 9 2 3
3 2 3 4 5 4 0 5 8 0 8 1 3 0 2  . 8 3 3 4

1 5 2 9 0 2 3 4 5 6 1 1 7 9 2 2 7 1 1 3 6 1  .  0 0 0 0
0 2 3 4 6 7 0 1 1 8 1 9 0 2  . 5 7 6 9
0 2 3 4 6 5 0 1 1 8 1 9 0 2 . 5 0 0 0
0 2 3 4 6 3 0 1 1 8 1 9 0 2 . 4 2 3 1
0 2 3 4 6 1 0 1 1 8 1 9 0 2 . 3 4 6 1
0 2 3 4 6 0 0 1 1 8 0 9 0 2  . 3 0 7 7

0 2 3 4 5 8 0 1 1 8 1 9 0 2  . 2 3 0 8

1 2 3 4 5 5 1 0 9 2 1 1 7 9 1 1 1 6  .  8 5 7 2
2 3 4 5 4 2 3 4 5 4 0 0 0 . 0 0 0 0

0 2 3 4 5 6 0 1 1 8 1 9 0 2 . 1 5 3 9
2 2 3 4 5 4 0 5 8 0 8 1 3 0 2 . 8 8 8 9

1 5 2 9 0 2 3 4 5 6 1 1 7 9 2 2 7 1 1 3 6 1 . 0 0 0 0
2 2 0 0 0 6 1 0 9 2 5 8 0 8 1 4 2 8  .  8 5 7 2
7 2 3 4 6 1 1 0 9 2 1 1 7 9 1 1 1 6  . 8 5 7 2

8 2 4 3 3 0 2 1 7 3 1 1 2 2 3  . 1 3 7 6

7 3 2 4 3 9 5 2 1 7 3 1 1 2 2 3  .  1 3 7 6

1 5 9 2 4 4 8 1 2 1 7 3 1 1 2 2 3  .  1 3 7 6

2 2 4 2 4 5 4 6 2 1 7 3 1 1 2 2 3  .  1 3 7 6
2 2 4 2 4 5 4 6 2 1 7 3 1 1 2 2 3  .  1 3 7 6

1 0 9 2 2 4 5 4 6 1 0 9 2 1 1 7 9 1 1 1 6 . 8 5 7 2
1 6 3 8 0 2 4 5 4 6 1 1 7 9 2 2 7 1 1 3 6 1  .  0 0 0 0

1 0 9 2 2 1 0 9 6 1 0 9 2 5 8 0 8 1 4 2 8 . 8 5 7 2
1 6 3 8 1 2 4 5 4 7 1 1 7 9 2 2 7 1 1 3 6 1  .  0 0 0 0
1 6 4 6 7 2 4 6 3 3 1 1 7 9 2 2 7 1 1 3 6 1  . 0 0 0 0

0 2 3 4 6 8 0 1 1 8 1 9 0 2 . 6 1 5 4
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Appendix 3. Net Simulator Output for the Non-multiplexed 
System

Timing values in the following tables are in milliseconds.

N e t s t a t  V 3 . 0

N e t :  S i m u l a t i o n  S t a t i s t i c s

S i m u l a t i o n  n a m e :  f c f s  3 1  P l a c e s  a n d  3 2  T r a n s i t i o n s .

S i m u l a t i o n  d e s c r i p t i o n :
F i r  s t _ c o m e _ f  i r s t _ s e r v e d _ s y  s t e m _ w i t h _ n o _ q u e u e i n q _ d e  l a y s  

I n i t i a l  m a r k i n g :
0  1 5  1 5  2 0  1 5  1 5  1 5  1 5  0  0  0  0  0  0  0  2  0  0

0 1 1 0 1 0 0 0 0 0 0 0 0  
F i n a l  m a r k i n g :

1 0  0 0 0 0 0 0 0 0  1 9 9  2 8  0 0 0 0 0 0 0
0 1 1 0 1 0 0 0  110  0 0 0 0 
T e r m i n a l  m a r k i n g :
2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5
2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5  2 5 5
T i m e  l i m i t :  5 0 0 0 0

S i m u l a t i o n  t e r m i n a t e d  a t  g l o b a l  t i m e  1 2 1 0 3  S i m u l a t i o n  t i m e  1 1 9 2 4  

T e r m i n a t i o n  c o d e  1

S i m u l a t i o n  r u n t i m e :  1 : 2 6 :  7

P l a c e  S t a t i s t i c s

M a r k i n g  d a t a

N u m b e r N a m e T y p e M i n M a x M e a n V a r  i a n c e %  Z e r o

1 Q u e u e  a c t i v e n 0 10 9  . 9 9 8 9 0  . 0 0 9 0 0  . 0 0 8 3

2 Q u e u e _ t a i l n 0 1 5 0 . 0 1 6 1 0 . 2 4 1 4 9 9  . 8 9 2 6

3 ’ Q p 2 n 0 1 5 2 . 0 5 1 0 2 6 . 5 6 0 3 86  .  3 2 6 8

4 Q p 3 n 0 20 4  . 0 8 9 6 4 4  . 6 9 6 9 7 2  . 7 6 1 1

5 Q p 4 n 0 20 6 . 7 9 9 8 6 9  .  3 4 7 8 5 9  . 1 9 5 3

6 Q p 5 n 0 20 8 . 8 3 4 7 6 8 . 0 5 6 5 4 5 . 6 2 9 5

7 Q p 6 n 0 20 1 1 . 5 3 8 7 5 3 . 5 2 5 2 2 7 . 6 0 2 4

8 Q p 7 n 0 20 1 3  . 5 7 3 6 3 2  . 9 4 6 2 1 4  . 0 3 6 7

9 Q u e u e _ h e a d n 0 20 0  . 0 0 9 1 0  .  1 4 4 5 9 9  . 9 4 2 2

10 Q e l n 0 1 9 9 3 5  . 3 3 2 0 1 7 5 6  . 8 4 4 4 0  . 0 9 9

11 Q e 2 n 0 3 3 0 . 0 9 2 4 1  . 7 2 0 2 9 9  .  1 4 9 0

12 Q e 3 n 0 1 7 0  . 0 3 4 0 0  .  3 2 0 2 9 9  . 4 3 8 2

1 3 Q e 4 n 0 9 0 . 0 1 0 5 0 . 0 5 0 7 9 9  . 6 8 6 1

1 4 Q e 5 n 0 5 0  . 0 0 4 1 0 . 0 1 0 9 9 9  . 8 0 1 7

1 5 Q e 6 n 0 3 0 . 0 0 2 4 0 . 0 0 4 4 9 9  .  8 5 1 3



1 6
1 7

1 8
1 9
20
21
22
2 3
2 4
25
2 6
2 7

2 8
2 9
3 0
3 1

Q e 7 n 0 2 0 .  0 0 2 0 0 . 0 0 3 3
P o l l i n g n 0 20 0 .  0 0 9 1 0 . 1 4 4 5

P a c k e t s  w a i t i n g n 0 20 7 . 3 2 5 7 22  . 8 5 9 0
P a c k e t  a v a i l a b l e n 0 1 0 .  0 0 9 1 0 . 0 0 9 0

P a c k e t  d o n e n 0 1 0 .  0 2 7 6 0 . 0 2 6 8
T x _ i d l e n 1 1 1 .  0 0 0 0 0- . 0 0 0 0

S e n d i n g  p a c k e t n 0 1 0 .  0 0 9 1 0 . 0 0 9 0
R x _ i d l e n 1 1 1 . 0 0 0 0 0 . 0 0 0 0

P a c k e t  r e c e i v e d n 0 1 0 .  0 0 9 1 0 . 0 0 9 0
R e c e i v i n g _ A C K n 0 1 0 .  0 0 9 1 0 . 0 0 9 0

W a i t i n g  f o r  r e p l y n 0 1 0 .  8 8 1 5 0 . 1 0 4 4
G l o b a l  c o u n t n 0 110 5 4 . 7 2 5 7 1 0 1 6 . 6 6 6 7

R e p l y  r e c e i v e d n 0 20 7 . 3 2 5 7 22  . 8 5 9 0
D a t a g r a m _ s e n t n 0 1 0 . 0 0 0 6 0 . 0 0 0 6

D e c o d e  c h e c k n 0 1 0 .  0 0 0 6 0 . 0 0 0 6
S e n d i n g  c o n f i r m n 0 1 0 .  0 0 0 6 0 . 0 0 0 6



1
11

1 6 3 6
3 2 6 1
4 8 8 7
6 5 1 2
8 6 7 2

1 0 2 9 7

1 0 2 9 8
1 1 9 2 4
1 1 9 2 4
1 1 9 2 4
1 1 9 2 4
1 1 9 2 4
1 1 9 2 4
1 1 9 2 4
1 0 3 0 4
1 1 8 0 3
1 1 8 1 3
1 1 9 0 9

0
1 1 8 9 9

0
1 1 9 0 9
1 1 9 0 9
1 1 9 0 9
1 1 9 0 9
1 1 9 0 9
1 1 9 1 0
1 1 9 1 6
1 1 9 2 4

d a t a

T i m e  s p e n t
N a m e M i n M a x M e a n N c F c

Q u e u e  a c t i v e 0 0 0 .. 0 0 0 0 2 0
Q u e u e  t a i l 1 3 1 3 6 . 5 0 0 0 2 0

Q p 2 11 1 6 4 4 4 1 3  ,. 7 5 0 0 4 0
Q p 3 9 1 6 4 4 5 4 9  ,. 5 0 0 0 6 0
Q p 4 n 1 6 4 4 6 1 7  ,. 3 7 5 0 8 0
Q p 5 5 1 6 4 4 6 5 8  ,. 1 0 0 0 10 0
Q p 6 3 2 1 8 4 7 3 0  ,. 2 5 0 0 12 0
Q p 7 1 2 1 8 4 7 4 3  ,. 2 1 4 3 1 4 0

Q u e u e  h e a d 1 1 0 ,. 5 0 0 0 1 4 0
Q e l 0 0 0 ,. 0 0 0 0 10 1 10
Q e 2 2 3 2 0 ,. 9 3 6 4 11 0 8
Q e 3 2 3 2 0 ,. 8 9 4 7 7 6 7

Q e 4 2 1 6 0 ,. 8 2 6 1 4 6 5

Q e 5 2 8 0 . 7 5 0 0 3 2 3
Q e  6 2 4 0 . 6 9 2 3 2 6 1
Qel 2 2 0 . 6 6 6 7 2 4 0

P o l l i n g 1 1 0 .. 5 0 0 0 1 4 n

P a c k e t s  w a i t i n g 1 5 1 3 2 0 5 3 9 5 . 1 3 6 7 1 1 7 7

P a c k . e t _ a v a i l a b l e 1 1 0 .. 5 0 0 0 2 2 0 1 7

P a c k e t _ d o n e 1 2 7 1 . 5 1 1 3 2 2 1 0
T x _ i d l e 0 0 0 . 0 0 0 0 1 0

S e n d i n g  p a c k e t 1 1 0 . 5 0 0 0 2 2 0 1 0 3

R x  i d l e 0 0 0 . 0 0 0 0 1 0
P a c k e t  r e c e i v e d 1 1 0 . 5 0 0 0 2 2 0 1 1 3

R e c e  i v i n g _ A C K 1 1 0 . 5 0 0 0 2 2 0 1 1 4

W a i t i n g  f o r  r e p l y 9 7 9 7 4 8 . 5 0 0 0 2 2 0 1 8

G l o b a l _ c o u n t 0 0 0 . 0 0 0 0 11 0 1 1 4

R e p l y  r e c e i v e d 1 5 1 3 2 0 5 3 9 5 . 1 3 6 7 1 1 7 1 1 4

D a t a g r a m _ s e n t 1 1 0 . 5 0 0 0 1 4 1 6 1 2

D e c o d e  c h e c k 1 1 0 . 5 0 0 0 1 4 1 6 1 8

S e n d i n g  c o n f i r m 1 1 0 . 5 0 0 0 1 4 1 6 2 7
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T r a n s i t i o n  S t a t i s t i c s

F i r i n q s  T . B . F

i m b e r N a m e T o t a l F i r s t L a s t M i n M a x M e a n

1 Q t  1 4 2 0 1 1 -  1 1.0000
2 S t  1 5 2 0 1 1 1 1 . 0 0 0 0

3 Q t  1 6 2 0 1 1 1 1.0000
4 Q t l 7 1 0 0 0 0 0 . 0 0 0 0

5 Q t  1 8 1 0 0 0 0 0 .  0 0 0 0

6 Q t  1 9 1 0 0 0 0 0 . 0 0 0 0
7 Q t 2 0 1 0 0 0 0 0.0000
8 Q t 2 1 0 -1 -1 0 0 0 . 0 0 0 0
9 Q t l 1 11 11 0 0 0 .  0 0 0 0

10 Q t 2 2 9 1 6 3 6 1 6 2 7 1 6 2 7 1 6 2 7 . 0 0 0 0

11 Q t 3 3 7 3 2 6 1 1 6 2 7 1 6 2 7 1 6 2 7 . 0 0 0 0

12 Q t 4 4 6 4 8 8 7 1 6 2 7 1 6 2 7 1 6 2 7  .  0 0 0 0

1 3 Q t 5 5 4 6 5 1 2 1 6 2 7 1 6 2 7 1 6 2 7 . 0 0 0 0

1 4 O t 6 6 2 8 6 7 2 1 6 2 7 2 1 6 2 1 7 3 4  . 0 0 0 0

1 5 Q t 7 7 0 1 0 2 9 7 1 6 2 7 2 1 6 2 1 7 1 6 . 1 6 6 6

1 6 Q t  8 100 10 1 1 9 2 4 0 2 1 5 5 1 2 0  .  3 4 3 4

1 7 Q t 9 6 5 8 1 1 9 2 4 0 2 1 5 9 1 8 6 . 1 8 7 5

1 8 Q t  1 0 3 4 7 1 1 9 2 4 0 2 1 6 0 3 6 1  . 1 2 1 2

1 9 Q t l  1 1 9 5 1 1 9 2 4 0 2 1 6 1 6 6 2  .  1 6 6 7

20 Q t l 2 12 3 1 1 9 2 4 0 2 1 6 2 1 0 8 3  . 7 2 7 3

21 Q t  1 3 9 1 1 1 9 2 4 0 2 1 6 2 1 4 9 0 . 3 7 5 0

22 G e t  d a t a q r a m 7 1 1 0 2 9 8 1 6 2 7 2 1 6 2 1 7 1 6 . 1 6 6 6

2 3 S t a r t  p r o c e s s 7 1 6 2 7 1 1 9 2 4 1 6 2 7 2 1 6 2 1 7 1 6  . 1 6 6 6

2 4 S t a r t  d a t a q r a m 7 7 1 0 3 0 4 1 6 2 7 2 1 6 2 1 7 1 6  .  1 6 6 6

2 5 G e t  n e x t  p a c k e t 110 8 1 1 8 0 3 1 0 7 1 2 9 1 0 8 . 2 1 1 0

2 6 S e n d  p a c k e t n o 1 8 1 1 8 1 3 1 0 7 1 2 9 1 0 8  . 2 1 1 0

2 7 R e c e i v e  p a c k e t 110 1 0 4 1 1 8 9 9 1 0 7 1 2 9 1 0 8  . 2 1 1 0

2 8 R e c e i v e _ r e p l y 110 1 1 4 1 1 9 0 9 1 0 7 1 2 9 1 0 8  . 2 1 1 0

2 9 S e n d _ A C K 110 1 1 4 1 1 9 0 9 1 0 7 1 2 9 1 0 8 . 2 1 1 0

3 0 T e r m i n a t e _ d a t a q r a m •"7 1 6 1 2 1 1 9 0 9 1 6 2 7 2 1 6 2 1 7 1 6  .  1 6 6 6

3 1 S t a r t  d e c o d e 7 1 6 1 3 1 1 9 1 0 1 6 2 7 2 1 6 2 1 7 1 6  .  1 6 6 6

3 2 S e n d  c o n f i r m 7 1 6 1 9 1 1 9 1 6 1 6 2 7 2 1 6  2 1 7 1 6  . 1 6 6 6
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