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Summary.

Trypanosomiasis caused by the mechanically transmitted organism 

Trypanosoma evansi is the most widely distributed species of the genus Trypanosoma 

and affects a wide range of animal hosts. The control of the disease caused by 

this organism, surra, relies principally on chemotherapy since there is no 

effective control strategy against the biting flies which predominantly 

transmit the disease. The emergence of drug-resistant strains of T. evansi in the 

field is considered to be a major problem which could undermine the efficacy of the 

small number of trypanocidal drugs currently available. It was reported over 50 

years ago that drug-resistance was more likely to develop in immunosuppressed 

animals than in hosts with an intact immune system. This observation was 

re-evaluated in the present study using modem trypanocides to treat mice infected 

with T. evansi.

It was found that the efficacy of the trypanocidal drugs currendy 

available for the treatment of trypanosomiasis is substantially reduced in mice 

immunosuppressed by Co-60 irradiation compared to normal immunocompetent mice. 

Moreover, continuous passage of clones of T. evansi in immunosuppressed mice 

treated with gradually increasing doses of mel Cy, isometamidium and diminazene was 

found to rapidly lead to the development of high levels of drug resistance close 

to the maximum tolerated dose. Furthermore the drug-resistance developed in 

immunosuppressed mice was a genuine resistance and the clones maintained the same level 

of resistance when transferred into normal mice. On the other hand it was not 

possible to produce drug-resistant organisms in immunocompetent mice.

These findings highlight the need for further investigations on the role 

of the immune response in the development of drug resistance in the field as well 

the genetic basis of drug resistance in trypanosomiasis.



Chapter 1

GENERAL INTRODUCTION AND REVIEW
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Chapter 1

Section 1: General introduction.

Trvpanosomes.

Trypanosomes are the causative agents of major diseases of man 

and domestic animals. In the African continent south of the Sahara, human 

sleeping sickness occurs in many countries and nagana is a major factor hindering 

agricultural development in large areas (Peters, 1974), while in South and Central 

America Chagas disease is of considerable medical importance (Zeledon, 1974). 

Indeed the World Health Organisation placed trypanosomiasis of man and his 

domestic animals high on the list of ten major health problems facing mankind 

(Kershaw, 1970).

The most important group of trypanosomes are cyclically transmitted 

organisms, particularly in Africa where the tsetse vector is found. Approximately 

37% of the continent amounting to 10 million km2 are infested with tsetse flies 

(FAO/WHO/OIE, 1982) which are infected with one or more pathogenic 

trypanosome species (Morrison et. al., 1985). It is thought that 7 million km2 of 

this area would otherwise be suitable for livestock and mixed agriculture (Trail et 

al., 1985). Cattle are the most seriously affected and the disease nagana makes 

cattle raising either impossible or uneconomical over vast areas of tropical Africa 

(Desowitz, 1957). Other hosts, including small ruminants are also at risk.
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Outside the tsetse belt, the disease surra, caused by T. evansi is important 

in a wide geographical region including North Africa, Asia, Central and South 

America (Levine, 1973). Camels and horses are particularly susceptible, however 

other domestic animals are affected as well (Ng and Vaneslow, 1978; Verma and 

Gautam, 1979; Losos, 1980; Higgins, 1983).

It is believed that trypanosomes were first observed in the seventeenth 

century, however it was only in the last century that trypanosomes were brought 

into the limelight as important pathogenic organisms. In 1880, Evans discovered 

that surra of camels and horses was caused by trypanosomes and described their 

protozoan nature. The subsequent contribution by Bruce in 1897 that nagana of 

livestock in the Zululand was caused by trypanosomes transmitted by tsetse flies 

and that wild game acted as reservoir hosts (Hoare, 1972) focused a great deal of 

attention on this organism.

Trypanosomes are protozoan parasites which belong to the class 

Mastigophora, family Trypanosomatidae and genus Trypanosoma (Hoare, 1972; 

Lumsden, 1974; Stephen, 1986). The genus Trypanosoma is further sub-divided 

into two main groups. The stercorarian trypanosomes are generally 

non-pathogenic and develop in the posterior section of the gut of their insect 

vectors and as a result their transmission is contaminative. This group consists of a 

large assemblage of heterogeneous organisms which, apart from T. cruzi, an 

important parasite of man causing Chagas disease in South and Central America, 

are non-pathogenic and parasitise large numbers of mammalian and 

non-mammalian hosts. Examples of this group are: T. lewisi, T. theileri,

T. musculi, and others (Table 1.1). Although stercorarian trypanosomes have none 

or little veterinary importance their differentiation from pathogenic trypanosomes 

is important as they can be encountered in surveys and routine diagnostic exercises 

(Molyneux, 1975).

3
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The salivarian trypanosomes are by far the most significant group 

of the genus and contain a number of species of tremendous medical and 

veterinary importance. In the earlier part of this century most species of 

this group were recognised although confusion surrounded some aspects of the 

classification of the group (see Stephen, 1986). Hoare (1972) in his 

monograph subdivided the salivarian group into four subgenera according to 

their morphological and biological aspects. These are Duttonella, which has 

two species namely T.(D) vivax and T.(D) uniforme. Second Nannomonas, 

contains T.(N) congolense and T.(N) simiae. The third subgenus, Pycomonas, is 

represented by only one species T.(P) suis. The fourth, Trypanozoon, which 

contains the largest number of species remained a matter of controversy for a 

long period of time. This subgenus consists of species which are 

morphologically indistinguishable but differ greatly in biological 

features.

All species of this subgenus are of significant medical and 

veterinary importance. The accepted view is to divide this subgenus into five 

species, namely T.(T) brucei, T.(T) gambiense, T.(T) rhodesiense, T.(T) evansi and 

T.(T) equiperdum. The three species, T. gambiense, T. rhodesiense and T. brucei are 

parasites cyclically transmitted by species of Glossina and are confined 

to the African continent south of the Sahara. Moreover T. gambiense and 

T. rhodesiense are human parasites causing African sleeping sickness while 

T. brucei is a parasite of animals which together with T. vivax and 

T. congolense causes nagana of cattle and other domestic animals in Africa.

The remaining two species of the subgenus T. evansi and T. equiperdum have a 

wider distribution. It is now believed that these two species evolved from 

T. brucei and adapted themselves in the absence of the tsetse fly.
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Transmission of T. evansi is principally effected by biting flies 

and as a result it has gained more wider distribution spreading into many 

parts of the tropical and subtropical regions where it causes the disease 

known as surra. The agent of dourine, T. equiperdum, on the other hand has a 

cosmopolitan distribution and is the only pathogenic trypanosome that is 

normally transmitted directly from one vertebrate host to another of the 

same species in the absence of a vector. Transmission of dourine takes place 

through direct contact from the horse to the mare and vice versa during the act 

of mating. It has also been demonstrated that T. equiperdum can be transmitted 

mechanically by biting flies, however since the organisms are normally 

localised in the capillaries of the mucous membranes of the urogenital tract, 

this mode of transmission is considered very rare (Woo, 1977).

The difficulty in subdividing this subgenus is obvious for while they 

are morphologically similar they greatly differ in biological aspects.

Stark evidence of this phenomenon is T. gambiense and T. rhodesiense, both 

parasites of man hence their distinction is solely based on nosological 

features i.e the type of infection they produce (Hoare, 1967). It was 

later postulated that both T. gambiense and T. rhodesiense should be regarded a 

subspecies of T. brucei.

Trypanosomes affect a wide range of hosts where they cause 

different diseases according to the parasite involved as well as the 

particular strain, the susceptibility of the host and the local 

epizootiological conditions.

Tsetse-transmitted trypanosomiasis is widespread in Africa 

affecting a variety of host species. Cattle are highly susceptible and in 

this host the disease is collectively known as nagana. Trypanosomiasis 

transmitted by Glossina species occurs only in Africa, but groups of the
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subgenus Trypanozoon that became emancipated from tsetse fly transmission 

became widespread. T. evansi gained access into many countries outside 

Africa, where it is believed to have evolved from T. brucei.

Geographical distribution

Trypanosoma evansi was first recorded in the Punjab in India and this 

marked the recognition for the first time of the importance of 

trypanosomes as agents of disease. Evans discovered the presence of motile, 

spirillum-like organisms in the blood of camels and horses affected with the 

disease called surra, (surra is a Hindi word meaning rotten), and described 

their protozoan nature. Later in 1889 Balbiani encountered the same organism 

and named it Trypanosoma evansi (Hoare, 1972).

The distribution of surra and the historical background which led to 

its spread was reviewed by: Hoare, (1956, 1972), Shaw, (1977) and 

Stephen, (1986). T. evansi has a wide geographical range (Figure 1.1) and 

occurs in regions with hot and warm-temperate climates extending, in the Old 

World, in longitude from about 15° W to 125° E. In Africa, where the 

organism is believed to have originated evolving from T. brucei, the disease is 

found on the fringes of the tsetse belt and occurs in the north along the 

Atlantic ocean and the Mediterranean littorals affecting Morocco,

Algeria, Tunisia, Libya and Egypt. In West Africa it extends across the 

Sahara Desert and occurs north of the tsetse infested areas such as Senegal, 

Mali, Chad and parts of Nigeria. In the East the disease spreads 

southwards down to the Equator in northern Kenya and Somalia. Other 

areas affected include The Near and Middle Eastern countries, the Trans-Volga

6
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region of the Soviet Union, India, Malay peninsula, Indochina and 

southern China. Moreover the Indian Ocean islands of Mauritius, Indonesia 

and also the Philippines are affected.

The first suggestions that T. evansi originated from Africa came 

from Leese (1927) and was supported by others (see review by Hoare, 1972). 

It has been postulated that camels crossing into tsetse infested regions became 

infected with T. brucei and disseminated to parts of North and West Africa 

and from there to Asia. In the absence of tsetse flies mechanical inoculators 

represented by biting flies thereafter ensured transmission and the subsequent 

spread of the disease in the newly affected areas. This assumption rests 

on the fact that for centuries the camel was the principal transport animal 

in North Africa, the Middle East and western Asia and was extensively used 

for travel, commerce and military campaigns. Although most of Africa’s 

camel populations are found outside the tsetse infested parts significant 

evidence suggests that tsetse and camels often encroached on each other’s 

territories (Ruttledge, 1928; Godfrey and Killick-Kendrick, 1962;

Nash, 1969; Hoare, 1972) supporting the view that T. evansi had 

evolved from T. brucei.

One of the main obstacles in relating the origins of T. evansi to 

T. brucei was the pleomorphic characteristics of T. brucei, however Hoare 

(1972) provided evidence of occasional pleomorphism in T. evansi. 

Furthermore it has been shown that T. brucei when maintained exclusively by 

syringe passage through animal hosts loses its pleomorphism and develops 

into monomorphic form incapable of infecting its principal vector the 

tsetse fly, a fact also encountered in T. evansi. Finally the hosts
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affected by these two species and the clinical signs produced, as well as the 

response to chemotherapeutic agents strongly argue in favour of direct 

development of T. evansi from T. brucei.

Various names were given to the organism in the Old World such as 

T. soudanense, T. ninae kohl-yakimov, T. marocanum and others as well as 

various local names for the disease caused (surra, debab, salaf, su-auru etc.). 

However thorough statistical analysis of parasite morphology and size 

revealed these organisms to be variants of T. evansi (Hoare, 1972).

In the New World surra is believed to have been introduced by the 

Spanish conquistadors with their cavalry. Horses shipped from the 

Barbary Coast of Africa to Spain and later transferred to parts of the 

New World were claimed to have played a significant role in the spread of 

the disease. Elsewhere however, the view was expressed that cattle infected 

with T. brucei were perhaps more important in that respect. Horses form an 

important host of surra and are severely affected by the infection and the 

stress of a sea voyage in sailing ships would have curtailed still further 

their chances of surviving the journey and permitting the spread of the 

infection. T. brucei infections of cattle on the other hand are often 

characterised by mild clinical symptoms despite presence of parasites in the 

circulation. It is quite conceivable therefore that this parasite could 

persist in the blood of bovines during such a prolonged journey and upon 

arrival spread into the horse population through mechanical transmission 

by vampire bats and biting flies (Stephen, 1986). The West African 

origin of American surra is gaining support and is further strengthened 

by the similarity of the isoenzyme patterns of tsetse transmitted stocks of 

T. brucei from West Africa and T. evansi stocks from the New World (Gibson et 

al., 1980).
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The three conditions described and the organisms associated with them 

are mal de caderas (caused by T. equinum), murrina (caused by T. hippicum) and 

derrengadera (caused by T. venezuelensis). Murrina occurs in Mexico, Central 

America as well as Venezuela and Colombia while mal de caderas affects the 

greater part of South America especially Brazil with derrengadera 

occupying intermediate position (Hoare, 1972). After a closer scrutiny 

of morphology and other aspects, it was noted that T. hippicum was a 

variant or a serodeme of T. evansi and that the recognition of this 

organism as a separate species could not be justified. In contrast the 

complete absence of visible kinetoplast in T. equinum and the presence of high 

proportion of dyskinetoplastic forms in T. venezuelensis (Hoare and 

Bennett, 1937) occasioned the classification of these organisms as 

independent species. However dyskinetoplasty, the main criterion which the 

differentiation of T. equinum and T. venezuelensis from T. evansi is based, 

has been reported to be subject to fluctuation in the latter sometimes rising to 

100% (Hoare, 1956). Moreover spontaneous transformation of a 

laboratory strain of T. evansi into a dyskinetoplastic form was reported 

(Hoare and Bennett, 1937) as well as the occurrence of dyskinetoplastic 

forms under natural conditions or following trypanocidal drug treatment 

(Hoare, 1954; Killick-Kendrick, 1964). Elsewhere it was shown that a 

dyskinetoplastic strain, Sudanese akinotoplastic (S.A.K.), isolated from 

a camel in the Sudan and kept under observation for years remained totally 

dyskinetoplastic (Hoare, 1959). From these observations it was 

considered appropriate to assume that the strain of T. equinum introduced 

into the New World was a mutant strain possessing dyskinetoplastic feature 

and that the subsequent generations continued to display the same

9



characteristics, thus strengthening the conclusion that T. evansi is the only 

organism responsible for surra and surra-like diseases in all parts of the 

world (Hoare, 1972).

Morphology.

The morphology of T. evansi is typical of the Trypanozoon 

organisms and is similar to the slender and intermediate forms of T. brucei.

This parasite is almost always monomorphic with a mean length of 24 jim 

(Hoare, 1956, 1972). However, strains were reported showing 

pleomorphism with certain percentage of postero-nuclear stumpy forms 

(Godfrey and Killick-Kendrick, 1962). The slender forms possess a long 

free flagellum and a blunt posterior end. The kinetoplast, characteristic of 

the subgenus, is small in size and occupies subterminal or marginal position.

The kinetoplast is the portion of the single mitochondrion that 

contains the mitochondrial DNA (Simpson, 1972) known as the kinetoplast 

DNA and consists of a large network of circles held together by extensive 

catenation into a structural unit (Borst & Hoeijmakers, 1979) containing 

tens of maxi-circles and thousands of mini-circles (Stuart, 1983). During 

the multiplication within the tsetse vector the cyclically transmitted 

trypanosomes possess fully developed mitochondrion and the mitochondrial 

oxidative phosphorylation seems to be essential, however in the bloodstream 

stage the mitochondrial biogenesis is repressed and the organisms rely on 

glycolysis (Borst and Hoeijmakers, 1979).

Apart from T. evansi the members of the Trypanozoon subgenus have been 

reported to possess fully developed maxi-circles and the mini-circles to be more 

heterogeneous, while in T. evansi the maxi-circles are totally lacking and the 

mini-circles are homogeneous (Borst et al., 1987). Thus it is evident that
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fundamental differences exist between T. brucei and T. evansi which are in 

favour of the specific differentiation between these two species to be 

retained despite similarities in isoenzyme patterns (Gibson, 1988).

The complete absence of kinetoplast maxi-circles, which contain genes 

essential for mitochondrial function, therefore is sufficient to explain 

the inability of T. evansi to undergo cyclical transmission (Borst et al.,

1987; Gibson, 1988). In dyskinetoplastic forms such as T. equinum and 

S.A.K. Borst et al. (1987) were unable to confirm previous reports 

(Cuthbertson, 1981) that DNA is present as a small core, it is normal 

organisation having collapsed.

It was postulated that the mean length of T. evansi increases from the 

Morocco to the Philippines and this is supposed to be the underlying cause 

for the susceptibility of the equine species. In Somalia, Kenya and other 

African countries horses are refractory to the surra infection (Hoare and 

Bennet, 1939), while in Indochina horses are the most susceptible host 

species followed by bovines. T. evansi can be considered monomorphic since 

pleomorphism is quite inconsistent and stumpy forms occur only in small 

numbers (Woo, 1977).

Transmission

Trypanosomes are organisms with a remarkable potentiality to adapt 

themselves in an unfavourable environment and this is evident in T. evansi. 

The total loss of dependence on tsetse transmissibility enabled the organism 

to spread beyond the limits of the tsetse belt. Transmission of T. evansi is 

commonly effected by biting flies mainly Tabanus spp. but others such as 

Stomoxys, Lyperosia and Haematopota have also been implicated (Gatt Rutter, 

1967).
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The earliest experimental evidence of mechanical transmission by 

horse-flies (Tabanidae) was provided by Rogers (1901) who proved that 

T. evansi can be transmitted by interrupting the blood meal of the flies 

feeding on infected hosts. However, transmission was found to take place 

only if the flies were allowed to feed immediately on another animal. 

Subsequent studies showed that transmission was most efficient when infected 

flies feed within 15 minutes on a new host and the infectivity was found 

to disappear after 8 hours.

Most species of the genus Tabanus are capable of transmitting the 

infection particularly the females since the male population is known to 

feed on plant juices and hence is considered less important in the 

transmission of surra (Woo, 1977). Gruvel and Balis (1965) listed 11 

species of tabanid flies as vectors of camel trypanosomiasis in Chad. In 

northern Somalia camel surra is associated with members of Pangonia spp. 

Locally known as "dhuug" (Peck, 1936; Derie et al., 1989). However in the 

south the other more widely distributed tabanid species may be more important.

Investigations on whether T. evansi could be transmitted cyclically by 

arthropods including Glossina revealed that vectors of surra act strictly 

as mechanical inoculators depending on the survival of the organisms in the 

mouth parts. In an extensive survey Hoare (1940) fed a total 568 

Glossina morsitans flies on animals infected with T. evansi and examined their 

intestinal contents at intervals from 6 hours to 14 days. It was found 

that the trypanosomes were disintegrated and completely digested hours 

after ingestion and 14 days later no traces of the organisms were 

recognisable in the gut of the insects.
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The stable fly (Stomoxys) is an inefficient vector of the disease but 

in this genus both males and the females are involved in the transmission 

(Hoare, 1970). Other arthropods including mosquitoes and ticks have also 

been incriminated. Cross and Patel (1921) cited by Gatt Rutter (1967) 

succeeded in transmitting T. evansi from camel to rabbit by means of the soft 

tick Ornithodoros spp., however Leese (1927) dismissed the importance of 

this method of transmission in the field.

In Central and South America in addition to the biting flies, the 

vampire bat (Desmodus rotundus) is considered an important transmitter of 

surra (see Hoare, 1965). These haematophagous mammals are widespread from 

northern Mexico to southern Argentina and may consume from 16 to 50 ml of 

blood at a feed. Bats contract the disease from infected hosts and suffer 

from surra sometimes with fatal consequences. However they may survive and 

transmit the infection to other hosts for a relatively long period of time 

(Woo, 1977). The transmission of surra by the vampire bat is mechanical in 

nature since no developmental stages of the parasite in this host have been 

uncovered. These blood sucking mammals therefore play an important role in the 

propagation of the disease acting not only as a transmitter but as a host 

too. Finally dogs and other carnivores may be infected directly by 

consuming flesh from infected hosts through abrasions of the mucous lining 

of the alimentary canal.

Clinical features

Clinical features of surra have been reviewed by many authors (Leese, 

1927; Losos, 1980; Stephen, 1986 and others). The course of the disease 

depends on the strain involved, susceptibility of the host and local 

epizootiological conditions (Hoare, 1970).
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In areas where camels are present they are the principal host and the 

disease occurs throughout the normal range of Cctmelus dromedarius and Camelus 

bacterianus. After an incubation period of about 1 to 3 weeks, parasites 

invade the blood and can be detected by the routine parasitological techniques.

The development of parasitaemia is followed by fever. The acute form of 

camel surra is characterised by intermittent fever, edamatous swellings, 

staring coat, progressive anaemia, emaciation and other features such as 

ataxia and petechial haemorrhages which almost always end in death if 

treatment is not effected. The acute form of camel surra, although reported 

in some parts e.g northern Somalia (Derie et al., 1989) does not represent 

the classical course of T. evansi infections. Like other diseases due to 

trypanosome parasites surra is most commonly a chronic wasting disease.

Animals lose condition and become cachectic, pyrexia is associated with 

successive peaks of parasitaemia and there may be a generalised oedema. The 

general weakness of the host may lead to secondary complications affecting 

the respiratory system and other organs. If affected animals are not 

treated with the appropriate trypanocidal drugs the prognosis is usually 

unfavourable and death occurs within a few months or years. Occasionally 

animals may spontaneously recover from the infection (Hoare, 1972).

As well as the camel other hosts of T. evansi are horses, donkeys, 

dogs, cattle, buffaloes, the Asian elephant and others. In these hosts the 

horse is by far the most susceptible animal and here the infection runs a 

course of either weeks or months. In any case the outcome is usually fatal 

with signs of pyrexia, severe anaemia, locomotory disturbance and oedema of 

the ventral parts of the body. Donkeys and mules usually suffer from 

chronic forms of surra and may occasionally constitute a potential 

reservoir host (Bennett, 1933a). Donkeys are readily infected experimentally
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with symptoms of intermittent fever, dullness, emaciation, anaemia, 

persistent nasal discharge and lacrimation (Suryanaryana et al., 1986).

The dog is highly susceptible especially imported breeds. Pups usually succumb 

within a month but in older dogs the disease takes a chronic course and lasts 

for months. In experimental infection of dogs, deaths occurred between 

40-96 days post-infection and the symptoms encountered were recurrent 

fever, loss of weight and comeal opacity (Shien et al., 1977). Comeal 

opacity and partial blindness was also encountered in dogs experimentally 

infected with T. evansi (Galhorta et al., 1979).

In cattle and buffaloes in enzootic areas the disease is cryptic 

characterised by the rare appearance of parasites in the peripheral blood 

and the possibility that these species act as reservoir hosts has been 

speculated. None the less the disease occasionally flares up into acute or 

peracute forms with significant losses (Verma et al., 1973). Symptoms of 

bo vines and buffaloes suffering from surra include fever, anaemia, 

lacrimation, locomotory disturbance, oedema and abortion. In Thailand Lohr 

et al. (1986) and Lohr et al. (1988) investigated outbreaks of abortions 

which affected herds of buffalo cows and reported that surra is a frequent 

cause of abortion in buffaloes. Of 40 aborted cases examined 37 were positive 

by the complement fixation test with 25 cases harbouring T. evansi organisms 

in the circulation (Lohr et al., 1988). However spontaneous recovery from 

T. evansi infections is more common in cattle and buffaloes compared to other 

hosts.
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Surra of sheep and goats is hardly mentioned in the literature 

although they can be readily infected experimentally (Stephen, 1986). Low 

parasitaemia was observed in experimental infections of both goats and 

sheep. The packed cell volume of the sheep was not noticeably changed while in 

the goats there was slight drop.

Boid et al. (1981) failed to diagnose surra in sheep and goats in 

the Sudan by the thick smear and subinoculation into laboratory rodents, 

however 54% of the sheep and 58.6% of the goats were found to possess 

antibodies against T. evansi. Similarly serological survey of camels, 

cattle, goats and sheep in the central regions of Somalia outside the tsetse 

infested areas revealed 53.8% of the sheep and 45.7% of the goats having 

antibodies against T. evansi (Caille, 1989).

Pathology and pathogenesis.

The information on the pathology of the diseases caused by T. evansi 

in the various species affected seems to be patchy, however there are 

suggestions that it is comparable to those caused by T. brucei (Losos, 1980).

In cattle and buffaloes experimentally infected with a strain of 

T. evansi the gross pathological changes observed were emaciation and cachexia 

with associated features such as excess of fluid in the pericardial cavity, 

gelatinisation of the pelvis of the kidneys and base of the heart as well 

as enlargement of lymph nodes and congestion of the spleen and liver (Verma 

and Gautam, 1979). Histopathologic al examination revealed congestion and 

haemorrhages of the lymph nodes accompanied by loss of the normal 

architecture of the gland. Moreover the sinuses of the spleen were found to be 

dilated with an increase in the number of plasma cells. Examination of calves 

dying during the third week of infection revealed severe congestion and
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disorganisation of the spleen with excess deposit of haemosiderin 

indicative of haemolysis. Elsewhere splenomegaly, swelling of the lymph 

nodes as well as progressive emaciation and anaemia was reported in both 

natural and experimental infections of dogs with T. evansi (Shien, 1977).

Lymphoadenopathy and splenomegaly are some of the features 

consistently encountered in infection due to pathogenic trypanosomes 

(Ormerod, 1970; Fiennes, 1970). During the earlier stages of tsetse 

transmitted trypanosomiasis of cattle macroscopical changes include gross 

enlargement of the spleen and the lymph glands throughout the body (Fiennes, 

1970). However in the chronic stages the spleen was reported to be 

atrophic while the lymph nodes remain swollen. The microscopic changes are 

at first dominated by a lymphoproliferative response showing active 

germinal centres with subsequent invasion of the lymph nodes and spleen by 

plasma cells and macrophages (Henson and Noel, 1979). The most serious 

consequence of the changes in the immunological apparatus is the development 

of immunosuppression (Goodwin, 1970) which is more severe in laboratory 

rodents.

Another major factor contributing to the disease process in 

trypanosomiasis is the development of anaemia (Fiennes, 1970) which is 

significantly the cause of morbidity and mortality in most animals 

infected with salivarian trypanosomes (Murray et al., 1974a). Reduction 

of red blood cell counts and packed cell volume is characteristic in trypanosome 

infections. Indeed low PCVs in camels is considered to be indicative of 

T. evansi infections in endemic areas (Mahmoud and Gray, 1980).

In camels infected with T. evansi the anaemia has been reported to be 

macrocytic with the appearance of reticulocytes, normoblasts, macrocytes and 

spherocytes, accompanied by a hyperplastic bone marrow (Jatkar and
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Purohit, 1971). Increase of circulating reticulocytes during T. evansi 

infections of rats, horses and camels was also described by Assouku (1975),

Ng and Vaneslow (1978) and Raisinghani et al., (1981).

Shien (1977) reported that the anaemia in surra infections of dogs 

is normocytic and normochromic during the initial stages of the disease and 

subsequently becomes microcytic and hypochromic.

Other studies involving cattle and buffalo calves and donkeys 

experimentally infected with T. evansi (Singh and Misra, 1986;

Suryanarayana et al., 1986) have also reported marked falls in 

haematocrit value, haemoglobin and the total erythrocyte and leukocyte counts. 

Moreover a slight increase in osmotic fragility of erythrocytes as well as 

decreased mean corpuscular volume, mean corpuscular haemoglobin and mean 

corpuscular haemoglobin concentration were encountered in both the cattle and 

buffalo calves (Singh and Misra, 1986).

The causes of the anaemia in animal trypanosomiasis have been suggested 

to be haemolysis, haemodilution and dyshaemopoiesis acting singly or in 

concert (Mamo and Holmes, 1975; Suliman and Feldman, 1989). While it is 

becoming increasingly obvious that the aetiology of the anaemia in 

trypanosome infection is multifactorial, the major cause is considered to be 

attributable to red cell damage (Suliman and Feldman, 1989) and subsequent 

removal by the reticuloendothelial system. In sheep infected with 

T. congolense MacKenzie and Cruickshank (1973) provided evidence of large 

scale erythrocyte and leukocyte phagocytosis throughout the 

reticuloendothelial system and emphasised that the phenomenon substantially 

contributed to the development of the anaemia. Similarly in an experimental 

study using rats and mice infected with a strain of T. brucei Jennings et al.

(1974) have shown that the anaemia was due to extravascular haemolysis.
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Most of the work done to elucidate the mechanisms responsible for the 

development of the anaemia in trypanosomiasis concentrated on the cyclically 

transmitted trypanosome species of ruminants and laboratory rodents, and 

in general the techniques employed to study the pathological features of the 

other species does not seem to have been extended to T. evansi (Luckins, 1988). 

Richardson and Kendall (1963) singled out dyshaemopoiesis as the main cause 

behind the development of the anaemia in T. evansi infections. However 

Jatkar and Purohit (1971), in addition to a marked reduction in PCV, 

found considerable increase of erythrocyte fragility in camels infected 

with T. evansi which could lead to excessive destruction of red blood cells.

Using isotopic tracer techniques erythrokinetic studies in cattle 

experimentally infected with T. congolense, have shown an accelerated rate of 

loss of red blood cells compared to the uninfected controls (Mamo and Holmes, 

1975) as judged from reduced 51Cr-labelled red cell half-lives. Further 

studies on cattle and rabbits infected with T. congolense revealed the 

development of normochromic and normocytic anaemia and more rapid 

disappearance of radio-iron from the plasma in the infected animals 

compared to the controls, indicating that, at least in the early phases, 

erythropoiesis is not impaired in trypanosome infected animals but on the 

contrary is generally greatly accelerated (Holmes, 1976).

Various suggestions were put forward explaining the underlying 

mechanisms behind the destruction of red blood cells in trypanosome 

infections such as haemolytic factors produced by the trypanosome. Kaukha 

and Ramasamy (1981) found homogenates of T. evansi obtained by freezing 

and thawing to be haemolytic in both in vivo and in vitro for rat and mouse 

erythrocytes. Other factors such as direct trauma to the red cells, 

immunological mechanisms and disseminated intravascular coagulation among
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others have also been implicated (Suliman and Feldman, 1989). A frequent 

observation in acute trypanosome infections is the rapidity with which the 

anaemia disappears following trypanocidal drug treatment clearly 

indicating that the anaemia is associated with the circulating trypanosomes 

(Murray, 1974; Holmes and Jennings, 1976).

Unlike the congolense-vivax trypanosomes the members of the Trypanozoon 

subgenus are characterised by their ability to invade the host tissues.

Artificial infection of the Japanese field vole (Microtus montebelli) with 

T. evansi produced interstitial oedema and mononuclear cell infiltration in 

the subepicardial, myocardium and skeletal muscle (Umeda et al., 1988). The 

infiltration of plasma cells and lymphocytes as well as the degeneration 

and atrophy of muscle fibres were reported to be associated with the extra 

vascular localisation of trypanosomes and subsequent multiplication. Similar 

lesion were found, in some cases, around the pulmonary arteries, epididymis, 

pancreas salivary glands adipose tissues around the kidneys and uterus and 

the choroid plexus of the cerebral ventricles.

In small ruminants experimentally infected with T. brucei, lesions were 

described involving the eyes, heart, reproductive organs and the endocrine 

system (Ikede and Losos, 1972), and in horses naturally infected with 

T. evansi meningoencephalitis was encountered (Seiler et al., 1981) resembling 

the lesions in human African trypanosomiasis.

Diagnosis.

Diagnosis of T. evansi infections in endemic areas is initially 

based on clinical symptoms (Woo, 1977). Herdsmen in certain localities 

particularly in Somalia also diagnose camel surra by the characteristic 

pungent odour of the urine (Hunter, 1986). However since these features
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provide only broad indications specific diagnosis of all trypanosome 

infections must depend on the demonstration of trypanosomes by light 

microscopy (Murray et al., 1977).

Direct observations of the blood in either wet films or stained smears 

are the earliest methods introduced and still remain the techniques most commonly 

available to the field veterinarian. Together with animal inoculation these 

methods are termed the Standard Trypanosome Detection Methods (STDM) 

(Wilson, 1969). In these methods either motile trypanosomes are searched 

for in a wet film or parasites are looked for in slides stained with 

Giemsa’s stain. The thin smear is less sensitive than the thick smear, but is 

useful in the identification of the different species of trypanosomes 

without which diagnosis is only of limited value (Stephen, 1986). The 

benefit of the thick smear on the other hand lies in mass screening exercises, as 

more blood is scanned in this method (Fiennes, 1952), to identify cases 

which could then be examined in greater detail. Since thick films are not fixed 

but are simultaneously lysed and stained in Giemsa’s stain (Killick-Kendrick, 

1968), trypanosomes may appear distorted making their recognition 

somewhat difficult as a result of lysis. However this can be overcome by 

staining the slide with 0.5% aqueous methylene blue for 1 second prior to the 

Giemsa’s staining (Maclennan, 1957).

Subinoculation of susceptible animals is particularly valuable in cases 

where trypanosomes are scarce in the peripheral blood and extensive use of 

this technique has revealed a high incidence of T. evansi infections in 

Nigerian camels (Godfrey and Killick-Kendrick, 1962). Laboratory 

rodents particularly rats and mice are the most widely used animals (Molyneux, 

1975) due to advantages in cost and ease in transportation. Except for 

T. vivax and T. simiae which are poorly infective to rodents, animal
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inoculation is considered to be as sensitive as some of the concentration 

techniques particularly for the members of Trypanozoon subgenus including 

T. evansi (Kelly and Schillinger, 1983). On one occasion mouse inoculation 

was reported to have detected 51 positive cases out of 54 camels suspected of 

suffering from surra (Raisinghani and Lodha 1986).

Other than the STDM, trypanosome concentration techniques are widely 

used and are thought to be the most sensitive of the parasitological methods 

available. These include the haematocrit centrifugation technique (Woo,

1970), the dark ground/phase contrast buffy coat method (Murray et al.,

1977) and the anion-exchange/ centrifugation technique (Lanham and 

Godfrey, 1970). The darkground/phase contrast buffy coat method excelled 

other techniques in the detection of T. congolense and T. vivax infections of 

cattle and also provided the extra advantage of allowing species 

identification and an estimation of the level of parasitaemia (Murray et 

al., 1977) and at the same time giving a haematocrit reading for anaemia. 

However with T. brucei, mouse subinoculation proved to be the most sensitive 

followed by the haematocrit technique (Paris et a i, 1982). Elsewhere 

comparison of eight parasitological techniques revealed that the haematocrit 

centrifugation technique to be the most sensitive method in goats 

experimentally infected with strains of T.vivax and T. brucei detecting an 

average of 78.8% of the infections (Kalu et al., 1986).

Apart from the direct methods which aim to detect the infecting 

organisms there are other techniques based on host reactions to the infection. 

Non-specific tests such as the formol-gel and the mercuric chloride test which 

detect a rise in the globulin levels of the infected hosts have been extensively 

used in the past to detect T. evansi infections (Knowles, 1925; Bennett and 

Kenny, 1928). However it was found that the results obtained could not be
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satisfactorily correlated to active infection and raised IgM levels and

hence more recent tests are recommended for epidemiological surveys (Pegram and

Scott, 1976; Luckins etal. 1979). Currently more sensitive methods are

available to detect antibodies produced directly against the infection as

well as trypanosome antigen itself.

Serological diagnosis is usually undertaken to supplement 

parasitological examinations and to provide information on a herd basis 

since it has been found that antibodies may persist even after elimination 

of infection by chemotherapy (Losos, 1986). Several serological methods 

are used e.g. haemagglutination, indirect fluorescent antibody test (IFAT), 

enzyme-linked immunosorbent assay (ELISA), complement fixation test (CFT) 

and others for the diagnosis of trypanosomiasis including surra and 

dourine.

In non-cyclically transmitted trypanosomiasis caused by T. evansi 

and T. equiperdum serological methods are very useful and the sensitivity of 

the CFT enabled the eradication of dourine from many parts of the world 

(Losos, 1986). The ELISA test was reported to be particularly valuable and 

detected 96.2% of T. evansi infections in buffaloes while the indirect 

haemagglutination and CFT detected 78% and 82.38% respectively (Shen etal., 

1986). The ELISA test also proved to be as sensitive as the IF AT in 

detecting T. evansi infections of rabbits (Luckins et al., 1978).

Furthermore the ELISA was found not only suitable to detect host antibodies 

against the infection but could also be adapted to reveal trypanosomal 

antigens in the serum. Rae and Luckins (1984) reported that in rabbits 

infected with T. evansi trypanosome antigens could be detected in the serum by
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the double antibody sandwich immunoassay four to eight days after infection 

and that seven days following treatment with suramin the antigens were no 

longer detectable.

Recently antigen-detection enzyme immunoassays have been described using 

monoclonal antibodies capable of identifying different species of 

trypanosomes (Nantulya and Lindqvist, 1989) and this has given 

promising results.

Elsewhere Raina et al. (1985) compared the indirect haemagglutination 

and the capillary agglutination and found that antibodies could be detected 

by the IHA a week following experimental infection of buffalo calves with 

T. evansi and three weeks later by the capillary agglutination. Moreover 

both tests were specific with no cross-reactions with other protozoan 

infection such as theileriosis, anaplasmosis and babesiosis.

Immunology of trypanosomiasis

The ability of hosts infected with trypanosomiasis to control the 

initial stages of infection from a given serodeme clearly shows that 

effective host defence mechanisms are produced. This capability is however 

circumvented by the phenomenon of antigenic variation and 

trypanosome-induced immunosuppression (Molyneux and Ashcroft, 1983;

Bancroft and Askonas, 1985).

A large body of evidence is now available that the host immune response 

is mediated by the production of antibodies. According to Stephen (1986) 

the presence of protective antibodies were demonstrated in 

trypanosomiasis-infected hosts by Laveran and Mesnil (1912) and was 

later confirmed by others. Soltys (1957a) reported that infections of 

rabbits and inoculations of formalised organisms produce neutralising

24



antibodies to T. brucei, and also agglutinating antibodies in experimentally 

infected or hyperimmunised rabbits (Soltys, 1957b). Similarly experimental 

studies using normal and congenitally athymic nude mice have clearly 

demonstrated the production of antibodies against trypanosome infections 

(Campbell et al., 1978).

Holmes et al. (1979) described a technique in which trypanosomes were 

radiolabelled with [75Se]-methionine with the objective of following the 

clearance of the organisms from the circulation of the infected hosts and the 

immune mechanisms involved. In immunised mice the radiolabelled trypanosomes 

were found to rapidly disappear, while in the controls the organisms 

remained in circulation. Moreover the liver was found to be the principal 

site of phagocytosis removing 50% of the trypanosomes (Holmes et al.,

1979). Using the same method of trypanosome labelling MacAskill et al.

(1980) reported that clearance of trypanosomes in immunised mice was 

accomplished by antibody-mediated hepatic phagocytosis following 

opsonisation with the participation of complement.

Raised levels of immunoglobulins particularly IgM class are considered 

a consistent finding in trypanosome infections (Luckins, 1972; Clarkson 

and Penhale, 1973; Kobayashi and Tizard, 1976). The primary response 

to the infections was found to initially involve IgM and subsequently 

augmented by IgG (Urquhart and Holmes, 1987). In experimental infections 

of camels with T. evansi a substantial increase in IgM levels was observed 

approaching five times the preinfection level (Boid et al., 1980) while 

IgG levels were found to fluctuate. Significant increase of IgM levels were 

also encountered in camels naturally infected with surra.
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The host immune response is crucial in trypanosomiasis and exerts its 

influence in various ways. A major aspect of immunity is the supportive 

role in effective chemotherapy and chemoprophylaxis in trypanosome 

infections.

However, the introduction of a vaccine is yet to be realised, in spite of 

intense efforts due mainly to antigenic variation (Gray and Luckins,

1976; Murray and Urquhart, 1977).

Antigenic variation

The trypanosome organisms have the capacity to change their antigenic 

character and by this means they manage to avoid the host’s immune response.

Being extracellular parasites in their mammalian host, trypanosomes have 

devised a mechanism of frustrating the host defence mechanism (Hajduk and 

Vickerman, 1981) and avoid its lethal consequences.

Two types of antigens have been described in trypanosomes. The common 

antigens are usually related to organelles and protein substances such as 

enzymes (Weitz, 1970; Vickerman and Barry, 1982; Losos, 1986) and are 

considered stable since they can be consistently isolated during an infection 

of a mammalian host. These antigens are common to various stocks of the same 

species and even between species. The common antigens have low immunogenicity, 

but their presence indicates current or earlier contact between host and 

trypanosomes and can be useful in serodiagnosis (Losos, 1986).

The other type of antigen is variable and changes from one 

population to the next According to Gray and Luckins (1976) antigenic 

variation in trypanosomes was first observed by Franke (1905) who 

reported that trypanosomes are liable to change immunologically during an 

infection. Since then, this aspect of the trypanosome organisms has
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attracted a great deal of attention to the point that most of the recent 

immunological work on trypanosomiasis is concerned with it. This 

characteristic of trypanosomes to change their antigenic properties is 

widely believed to be the basis for certain features associated with the 

infection such as the levels of virulence and parasitaemia (Godfrey, 1961; 

MacNeilage and Herbert 1968; Barry et al., 1979). All salivarian 

trypanosomes undergo antigenic variation including the non-cyclically 

transmitted species of T. evansi and T. equiperdum. In contrast antigenic 

variation is not considered to have importance in stercorarian 

trypanosomes (Vickerman and Tetley, 1979). Gill (1971a) reported 

antigenically distinct trypanosome populations in T. evansi infections 

and currently it is accepted that this organism undergoes extensive antigenic 

variation (Jones and McKinnell, 1984).

The variable antigen is associated with the surface coat and covers the 

whole of the trypanosomal body. In T. brucei, the variable surface coat lies 

over the cytoplasmic membrane and measures 12-15 nm as visualised in 

electromicrograph sections (Vickerman, 1969). Surface labelling techniques 

have shown that the variable coat consists of a single glycoprotein with an 

apparent molecular weight of 65000 Daltons (Cross, 1975) and is 

generally known as "variable surface glycoprotein", (VSG). Less is known 

about VSG of T. evansi however Cross (1977) characterised the VSG of a 

dyskinetoplastic strain and suggested that it is comparable to the VSG of 

7. brucei.

In cyclical infections multiplication at the site of inoculation takes 

place with subsequent invasion of the blood stream until a parasitaemic peak 

is reached. This peak coincides with the appearance of variant specific 

antibodies followed by decline in the number of organisms as the immune system
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expresses its defensive action. However, some organisms with new antigenic 

properties survive and multiply to form the next variant antigen type (VAT) 

population (Gray and Luckins, 1976). A succession of parasitaemic peaks 

followed by relapses is characteristic in trypanosomiasis corresponding 

to host defence and antigenic variation until death of the infected host or 

recovery by means of trypanocidal drug treatment or self cure takes effect.

The number of variant antigen types from a population commonly known 

as the VAT repertoire, has been suggested to follow a certain orderly pattern 

with every population after each crisis consisting of organisms with the 

same VAT, (Gray, 1965). However, recent work using immunofluorescence and 

trypanolytic tests have shown that even unrelapsed clone populations 

contain major VATs and also minor heterotype variant antigen types 

(Vickerman and Barry, 1982). This heterotype population, therefore 

continues to multiply as the major VAT-expressing population declines as a 

result of the host immune response.

The number of VATs of a cloned population is yet to be determined but is 

considered to be inexhaustible (Gray, 1965) and is limited by the survival of 

the infected host In T. equiperdum Capbem et al., (1977) cited by Vickerman 

and Barry (1982) have observed more than one hundred VATs in a cloned 

isolate, while in T. brucei a VAT repertoire of more than a thousand have been 

estimated (Van der Ploeg, et al., 1982).

The interval between successive variant antigen types in an infection 

varies in relation to the mammalian host and the trypanosome species 

involved. In laboratory rodents and small ruminants infected with T. brucei 

intervals of 2-4 days have been reported (Gray, 1965) and in rabbits 

infected with T. evansi Gill (1971a) isolated antigenically different 

populations at weekly intervals. Dar (1972) reported that in infections
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of cattle with T. vivax the first VATs tended to appear between 18-24 days, 

while in sheep infected with T. congolense variant antigens were collected 

every week (Wilson and Cunningham, 1972).

The mechanisms behind antigenic variation was attributed to selection 

and mutation on the part of the trypanosomes in response to the hostile 

reactions of its host. However this hypothesis is undermined by the 

appearance of VATs in in vitro cultures in the absence of antibodies (Doyle et 

al., 1979). Recently the concensus seemed to have formed around a genetic 

basis for antigenic variation (Williams, 1979) with a separate gene for 

each VSG. There are hundreds of VSG genes in the trypanosome genome of 

which only one VSG gene is transcribed in each cell (see Aline et al.y 1989). 

Another antigenic switching mechanism has also been described which has been 

suggested to have the characteristics of gene conversion (Borst, 1986).

Apart from the blood stream VAT repertoire there is also a repertoire 

of metacyclic VATs (MVATs) in cyclically transmitted trypanosome species.

The VSG is reacquired during the metacyclic stage of development in most of the 

species after it is lost when ingested by the tsetse. However in T. vivax the 

metacyclic stages are apparently devoid of VSG. The metacyclic forms are 

heterogeneous in their antigenic characteristics and now an MVAT repertoire 

is recognised (Hajduk and Vickerman, 1981).

The major challenge of trypanosomiasis is antigenic variation. At 

each crisis the host is presented with a new population expressing 

different antigenic properties for which it has to produce specific 

antibodies in order to survive. A second salient feature of the immunology 

of trypanosomiasis is immunosuppression which predisposes the host to
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secondary infections (Goodwin, 1970; Goodwin et al., 1972) and also 

subverts its efforts to mount effective response to the infection (Sacks and 

Askonas, 1980).

Immunosuppression

Suppression of host immune response in trypanosome infections to 

other antigens was first reported by Goodwin (1970), and recent studies 

have also emphasised a marked depression in parasite-specific immune 

response (Sacks and Askonas, 1980). The outcome of this effect could be 

particularly severe in rendering the infected hosts susceptible to secondary 

infections, and reducing antibody titres following bacterial and viral 

vaccinations.

Ample evidence is now available confirming the depressed immune 

response to unrelated antigens in trypanosome infected hosts. Holmes, et 

al., (1974) demonstrated that cattle infected with T. congolense produce less 

antibodies to polyvalent clostridial vaccination compared to non-infected 

controls. In goats artificially infected with T. evansi Shien (1980) 

tested their ability to produce antibodies to Brucella abortus vaccine by the tube 

agglutination and also by the complement fixation test It was found that 

the production of antibodies was much suppressed compared to uninfected 

controls. The immunosuppression was reported to develop 25 days after 

infection and disappeared following suramin treatment with antibody levels 

coming back almost to the normal values. Recent studies also confirmed 

significant reduction of antibodies against equine erythrocytes in mice 

previously infected with T. evansi compared to non-infected controls or 

those infected but treated with suramin (Ye, 1989).
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Immunosuppression ensuing from trypanosomiasis has been encountered in 

a variety of hosts and is considered a major feature of the pathogenesis 

of the disease. The degree of immunosuppression is generally more pronounced 

in laboratory rodents compared to larger animals. In mice, vaccinated 

against louping-ill virus after experimental challenge with T. brucei and 

T. congolense, (Whitelaw et al., 1979), antibody response to the vaccine 

was completely suppressed compared to the uninfected mice or those treated 

with diminazene aceturate at the time of vaccination. In the same study 

non-infected vaccinated cattle were more efficient in attaining protective 

levels of immunity to louping-ill virus in comparison to those previously 

challenged with T. brucei, T. congolense or T. vivax. However the antibody 

response to louping-ill virus was not completely abolished as in the case of 

the murine host and titres equivalent to 10% of that reached by the uninfected 

cattle were recorded. Furthermore, groups treated with trypanocidal drugs 

at the time of vaccination performed better than the untreated ones as far as 

antibody production was concerned underlining the benefit of chemotherapy 

during vaccination campaigns in trypanosomiasis endemic areas.

Despite consistent indications confirming the existence of 

trypanosome mediated immunosuppression, the underlying mechanisms remained the 

subject of continuing debate and gained significant attention.

In mice infected with a sub-acute strain of T. brucei a consistent 

finding was expansion of the mononuclear phagocytic system including the 

lymph nodes, spleen, liver and the non-fixed macrophages with the 

reticuloendothelial system of the liver showing increased activity due to 

massive plasma cell hyperplasia (Murray et al., 1974b). However although 

the expanded MPS can possibly play a role in the development of 

immunosuppression in trypanosome infected hosts as a result of
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insufficient localisation of antigenic particulates, it is unlikely to be

the only cause and other components of the immunological system are certainly

involved.

Elsewhere trypanosome infections were reported to be characterised by 

the production of large quantities of immunoglobulins particularly of the 

IgM class part of which have been considered to be non-specific, heterophile 

antibodies and autoantibodies (Houba et al., 1969; Kobyakawa et al.,

1979).

In contrast Musoke et al. (1981) claim that experimental evidence for 

non-specific polyclonal activation comes largely from infected rodents and 

monkeys and that in cattle the situation is markedly different. All of the 

IgM and IgG produced during the first two weeks of infection of catde 

with T. brucei and 85% of that produced during the third week was found to be 

absorbable with trypanosomes (Musoke et al., 1981).

Other reports blamed antigenic competition as a major cause of 

trypanosome mediated immunosuppression (Terry, 1976). However complete in 

vitro suppression to sheep red blood cell response was observed when the 

antigen load in the animal was quite low (Eardley and Jayawardena,

1977). Moreover elimination of the infecting trypanosomes with 

pentamidine before culturing the infected spleen cells did not abolish the 

suppressive activity.

According to Murray et al., (1974c) a defect in the thymus-dependent 

lymphocytes may also play a role in the aetiology of immunosuppression 

given the far reaching changes occurring in the T-lymphocyte regions of the 

thymus, spleen and other areas of the lymphoid organ. Moreover cell
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mediated immune response, although effective after oxazalone sensitisation in 

the earlier periods of the infection, is severely impaired (Mansfield and 

Wallace, 1974) as the infection proceeds.

Alcina and Fresno (1985) reported that spleen cells from T. brucei 

infected B ALB/c mice were incapable of responding to the T-cell mitogen 

Concavalin A with reduced ability to produce detectable amounts of the growth 

factor required for T-cell proliferation, interleukin 2 (IL. 2) thus linking 

trypanosome mediated immunosuppression with defective production of IL 2 

or the inhibition of its action or both. Similarly, Sileghem et al.

(1986) incriminated the active inhibition of IL 2 production as the cause 

in the malfunction of the thymus-dependent lymphocytes in mice infected with 

T. brucei. Lymph node cells (LNC) derived from mice infected with T. brucei 

failed to produce IL 2 after stimulation with Concavalin A, however an 

exogenous supply of recombinant IL 2 restored proliferative response to the 

mitogen, with the conclusion that immunosuppression is due to suppressive cells 

which interfere at the level of IL 2 production.

The roles of other factors such as hypocomplementaemia and enhanced 

serum protein catabolism were also investigated and may contribute in the 

development of trypanosome-mediated immunosuppression (Jennings et al., 

1973; Nielson etal., 1978).

The striking feature of trypanosome induced immunosuppression is the 

rapidity with which the effect disappears after trypanocidal drug 

treatment (Murray etal., 1974c; Roelants etal., 1979), highlighting 

the close association of this effect with the presence of the trypanosomes 

rather than a pathological damage developing as a result of infection.

This consequently would explain the severity of the immunosuppression in 

laboratory rodents since these hosts develop high levels of parasitaemia.
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Section 2: Chemotherapy and Chemoprophylaxis-review.

Trypanocidal drugs.

The discovery of the protozoan nature of trypanosomes and the 

appreciation of the multitude of diseases caused by these organisms unleashed 

tremendous efforts directed towards the control of both human and animal 

trypanosomiasis. Indeed a widely held view is that modem chemotherapy 

against infective agents owes its origin to the preoccupation at the turn 

of the century of disease complex caused by pathogenic trypanosomes 

(Williamson, 1970; Leach and Roberts, 1981).

Over the years many chemical compounds were developed and tested both in 

the field and scientific laboratories. Of the host of chemical products 

that showed a degree of trypanocidal activity only few withstood the 

test of time and repeated field trials before they had to be abandoned due to 

shortcomings either in the form delayed toxicity or the development of drug 

resistant strains (Williamson, 1970). The area where much of the activity 

took place was in the field of human trypanosomiasis, but inevitably in 

many instances, compounds active against the human pathogen proved equally 

effective against animal trypanosomiasis.

Unlike human sleeping sickness animal trypanosomiasis is much less of a 

straightforward subject and is complicated by the variety of domestic 

animals affected and the number of trypanosome species involved (Williamson, 

1970).
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However the watershed in the early endeavours for the search of effective 

chemotherapy was undoubtedly the synthesis earlier this century of suramin, a 

product active against both human and animal trypanosomiasis caused by 

Trypanozoon subgenus.

The advantage of this compound in the control of the surra agent was 

quickly recognised. Knowles (1925) treated camels suffering from surra in 

the Sudan with "Bayer 205" (suramin) and obtained remarkable success, and in 

other species Edwards (1926) used "Bayer 205" and concluded that in the equine 

species it surpassed other trypanocidal agents included in his experiments.

The importance of chemotherapy and chemoprophylaxis lies in the 

difficulties involved in the eradication of vectors which transmit the 

various forms of trypanosomiasis either in the cyclical or mechanical 

forms. This coupled with the constant failure of introducing effective 

immunoprophylaxis makes chemical control of this important disease the method 

to be relied on in the foreseeable future. This method itself, however is not 

devoid of constraints for only a small number of drugs are available in the 

market (Table 1.2) and these have been bedevilled with development of resistant 

strains. No new trypanocidal drugs have been introduced into the market for 

more than 25 years (Holmes and Torr, 1988).

Arsenic

Of the earliest chemical compounds used in the treatment of 

trypanosomiasis a special place is reserved for the arsenical compounds.

Earlier trials against experimental forms of animal trypanosomiasis 

produced encouraging results and this led to a period of widespread use of a 

considerable number of arsenical compounds almost bewildering in their chemical 

structure and configurations (Edwards, 1926).
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According to Williamson (1970) the earlier efforts to introduce an 

effective systematic chemotherapy followed along two main lines i.e. 

synthetic dyes and related compounds on the one hand and arsenicals and 

antimonials on the other. The first effective trypanocidal end-products 

of these two lines of development were suramin and tryparsamide.

Tryparsamide was extensively used against all forms of human 

trypanosomiasis over a long period of time until its value was seriously 

compromised by the emergence of resistant strains (van Hoof, 1947) and 

severe toxic reactions which could lead to blindness.

Melarsoprol (mel B, ArsobalR) (Friedheim, 1949) was produced later 

for the treatment of the Gambian forms of sleeping sickness and to date it 

is the drug of choice because of its ability to cross the blood brain barrier.

Melarsoprol at 3.5 mg/kg was also found to be effective against 

T . evansi infections of camels (Claussen, 1987). However, because melarsoprol 

is administered by the intravenous route it is rarely used in animal 

trypanosomiasis.

Other arsenicals such as melarsonyl (mel W; TrimelarsanR) although 

still available for the treatment of Dicrofilaria immits in dogs, appears 

not to be used in animal trypanosomiasis.

Currently a trivalent arsenical, mel Cy, patented as CymelarsanR 

(Raynaud et al., 1989) is being evaluated for use against T. evansi 

infections (Zelleke et al., 1989). Initial trials carried out by 

Tager-Kagan et al. (1989) involving eight dromedaries artificially 

infected with T. evansi and treated with mel Cy at 0.625 mg/kg and 1.25 

mg/kg showed that both doses effected complete cure with no relapses during the 

60 day post-treatment observation period. However 3 of the treated camels
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had a necrotic muscle tissue of 2-3 cm adjacent to the injection site.

Significant tissue necrosis was also found in two uninfected cases injected 

with 3.75 mg/kg of mel Cy.

Antimonials

Potassium antimony tartarate (tartar emetic) and its sodium analogue 

were among the first chemical substances to show trypanocidal activity. 

Laboratory tests conducted by Plimmer & Thompson using laboratory rodents 

infected with T. evansi showed promising results (Leach and Roberts, 1981). 

These and other trials elsewhere led to widespread and prolonged use of this 

product against many species of pathogenic trypanosomes. However the 

results obtained with the use of this compound were varied, on some occasions 

resulting in the death of the treated cases immediately after injection.

Before the introduction of modem and less toxic trypanocides, tartar 

emetic held sway in the field despite high toxicity often resulting in 6% 

mortality. This was apparently preferable to the higher losses at times 

reaching 50% in untreated infections (Wilson, 1958). Despite this obvious 

handicap tartar emetic had the advantage of not readily giving rise to 

drug-resistant strains. This and its relatively low cost kept the product 

in the market for a considerable period of time until as recently as the 

earlier part of the fifties.

Suramin

Suramin (Bayer 205R; GermaninR; AntrypolR; MoranylR;

NaganolR) (hexa-sodium 3,3-ureylene-b/s [8-(3-benzamido-p- 

toluido)-1,3,5-naphthalene sulphonate]), a sulphonated naphthalamine 

synthesised as an offshoot of the dyestuffs was introduced into the
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field earlier this century for the treatment of human trypanosomiasis but it 

proved to be equally effective against experimental infections of 

T. equiperdum (Leach and Roberts, 1981). Trials against natural infections 

of T. evansi of camels, horses and cattle (Knowles, 1925; Edwards, 1926) 

also met with great success. The advantage of suramin over all other compounds 

in use at the time of its introduction became clearly obvious and was reported 

by many workers. Leese (1927) used "Bayer 205" (suramin) against camel surra 

and obtained superior results to tartar emetic. The following years saw ever 

increasing doses being administered in the field with a high degree of 

recovery.

A large dose of 10 g of suramin is recommended and regarded as the 

standard dose for camels suffering from surra. However Bennett (1933a) 

compared different doses and found that a dose of 4 g sufficient to 

eliminate T. evansi infections. Gad-El-Mawra and Fayad (1979) also 

found that a dose of 8 mg/kg of suramin or 2 doses of 4 g administered on 

two separate occasions with an interval of seven days adequate to effect 

cure in natural infections of camel surra. In horses a dose range of 10 mg/kg 

was shown not only to be therapeutic but protected horses for a period of 30 

days.

Although some therapeutic activity was reported against T. simiae 

(Stephen, 1966) suramin is known to be ineffective against 

tsetse-transmitted trypanosomiasis due to the same subgenus (Nanomonas)

T. congolense and also to (Duttonella) T. vivax.

Another advantage of suramin was its ability to combine with other 

trypanocides, due to its anionic properties, and form suraminates, a fact 

which was first noticed in human trypanosomiasis. Simultaneous 

administration of suramin and pentamidine in sleeping sickness patients
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resulted in the elimination of the toxic effects of the later (Williamson,

1957). In animal trypanosomiasis, suraminates were also described 

(Williamson and Desowitz, 1956) and were extensively applied in the field. 

Quinapyramine suraminate has prophylactic properties in equine surra (Gill 

and Malhorta, 1971) and was also found to afford cattle with minimum 

protection period of five and half months against experimental challenge 

with T. vivax. Moreover the complex was well tolerated even at a high dose of 

40.0 mg/kg, while quinapyramine alone at 10.0 mg/kg was observed to cause the 

death of the treated cases due to toxicity (Desowitz, 1957). Quinapyramine 

suraminate was also reported to protect pigs exposed to the risk of T. simiae 

trypanosomiasis (Noble, 1958).

Elsewhere Stephen (1958) protected Zebu cattle with ethidium-suramin 

complex for several months but intense local reaction, swelling and sloughing, 

ending in loss of prophylaxis was observed. Later Stephen and Williamson 

(1958) used a lyophilised preparation of suramin-ethidium complex to 

alleviate the side effects with some success.

Recendy a suspension of diminazene and suramin at 10 mg/kg was found 

to be therapeutic in mares infected with a field strain of T. evansi and 

moreover protected horses for a period of 72 days from infection 

(Sabanshiev, 1988).

Quinapyramine.

Quinapyramines, (AntrycideR, TrypacideR) is 4-amino-6- 

(2-amino-6-methylpyramid-4-ylamino)-2-methylquinoline-l,l dimetho (methyl 

sulphate or chloride dihydrate) were first introduced into the field as 

trypanocidal drugs in the early fifties in two forms: The methysulphate 

and the chloride. Both forms have identical trypanocidal action once they
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are in contact with trypanosomes but they have different pharmacological 

properties due to variation in solubility (Davey, 1950). The methyl 

sulphate is a readily soluble compound and achieves a maximum concentration in 

the plasma of 2700 jig/1 within 24 hours (Davey, 1950), while the chloride 

is a sparingly soluble to the extent of 0.12% in water and only reaches a 

maximum concentration in the plasma of 40 jig/124 hours following subcutaneous 

injection. The combination of the two salts was prepared as Antrycide 

ProsaltR and became the first true prophylactic drug against cattle 

trypanosomiasis (Williamson, 1962).

After a subcutaneous injection of Antrycide ProsaltR the soluble 

methyl sulphate quickly passes into the blood stream to clear current 

infections while the sparingly soluble chloride forms a depot from where 

small quantities are gradually released into the bloodstream to afford 

protection against new infections. The trypanocidal action of 

quinapyramine is not restricted to the congolense-vivax group of 

trypanosomes but also extends to the organisms of the Trypanozoon subgenus 

(Curd and Davey, 1950). This property was particularly appreciated in 

the treatment of surra infections and became a potential alternative in the 

event of established suramin resistance. In the Sudan quinapyramine was used 

when relapses occurred in AntrypolR (suramin) treated camels (Leach, 1961).

Quinapyramines were extensively used in the field particularly in 

tsetse-transmitted trypanosomiasis however because of occurrence of 

widespread drug resistance the drug was removed from the market in 1974 

(Schillinger and Rottcher, 1986). It was later reintroduced exclusively for 

the treatment of T. evansi infections.
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The recommended dose for camels, horses and cattle is 7.4 mg/kg 

consisting of a combination of the two salts (Finelle, 1983). However 

Gill (1972) found that 5 mg/kg of quinapyramine sufficient to cure ponies 

infected with T. evansi. In buffaloes suffering from surra quinapyramine 

Prosalt was also reported to clear the infection in 24 hours at 5 mg/kg 

(Razzaque and Mishra, 1977).

Diminazene

This compound was derived from the quinaldin nucleus Consagin which was 

found to possess trypanocidal activity. Diminazene (BerenilR), is 

N-l,3-diamidino-phenyltriazene diaceturate tetrahydrate, a yellow 

odourless powder moderately soluble in water, and the only diamidine to have 

been successful in practice after the development of pentamidine which is used 

against human sleeping sickness (Ruchel, 1975). The action of this drug is 

rapid on the parasite causing its death in a short time. Fussganger and 

Bauer (1960) reported that in in vitro low concentrations are enough to kill 

T. congolense within hours of exposure.

Shortly after injection, a high blood concentration is produced 

which tends to disappear in a relatively short time and is completely excreted 

after 24 hours. While this is the accepted view, evidence came to light 

suggesting that residual deposits can occur. Lumsden et al. (1965) reported 

that plasma of cattle treated with diminazene aceturate showed significant 

in vitro anti-trypanosomal activity for up to 3 weeks. Moreover mice 

treated with diminazene aceturate failed to become parasitaemic after repeated 

challenges with T. brucei until the 42nd day post-treatment (Van Hoeve and 

Cunningham, 1964). Nevertheless diminazene aceturate is considered to be a 

curative drug with sterilising effect and is less important in
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prophylaxis. This consequently is believed to reduce the possibility of 

trypanosomes developing resistance to the compound. Earlier trials to 

produce populations of T. congolense resistant to diminazene were not 

successful (Fussganger and Bauer, 1960). However Whiteside (1963) succeeded 

in producing a strain of T. congolense resistant to diminazene aceturate 

through repeated exposure in a single experimentally infected bovine.

Diminazene aceturate is highly effective against trypanosomes of 

the congolense-vivax species. In addition it is active against babesiosis, an 

added advantage in the field where the disease is also endemic. The recommended 

dose for cattle affected with T. congolense and T. vivax is 3.5 mg/kg 

bodyweight, while for T. brucei infections 5.0 mg/kg is recommended (Milne et 

al., 1955: Cunningham, 1968). A significant drawback of diminazene 

was its relative instability in aqueous solutions, however with the addition 

of antipyrine it was reported that the solution could remain stable for two 

weeks (Fairclough, 1963). In the treatment of T. evansi infections 

Hiregoudar and Ausahhi (1971) cited by Mahmoud and Gray (1980) succeeded 

in treating buffaloes suffering from surra with diminazene aceturate at a 

dose of 8.0 mg/kg. Gill (1973) compared a range of trypanocides against 

a single strain of T. evansi and found diminazene to be more active than 

other diamidines included in the experiment. Elsewhere Raisinghani and Lodha 

(1980) reported that diminazene at 1.25 mg/kg and 3.75 mg/kg cured camels 

infected with T. evansi and although two camels died 43 and 45 hours 

following treatment with 3.75 mg/kg drug toxicity was not suspected. In 

contrast Leach (1961) found that diminazene at 3.5 mg/kg to be ineffective 

and increasing the dose to 7.0 mg/kg led to severe toxic reactions. Moreover, 

Homeida et al., (1981) reported that a high dose of 10 mg/kg diminazene to 

be extremely toxic to camels with signs of hyperaesthesia, frequent urination
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and defecation, tremors, itching, convulsions and frothing at the mouth. 

Repetition of the same dose proved to be fatal in about a week. In the same 

study a dose of 40 mg/kg caused death in a matter of hours. Post-mortem 

findings were dominated by haemorrhages, congestion and oedema of the 

parenchymatous organs.

However studies carried out by Petrovsky and Khamiev (1977) and 

quoted by Boid et al. (1985) would suggest differences in tolerance to 

diminazene between the dromedary and the bactrian camel. In the Asian breed 

infected with T. ninae kohl-yakimov (T. evansi) 5 mg/kg was effective and 

cleared the infection without adverse effects. In horses diminazene could be 

recommended in the event of T. evansi strains breaking through prophylaxis 

with suramin, quinapyramine or quinapyramine suraminate (Gill, 1971c) 

since no evidence of cross-resistance has been observed.

Phenanthridium compounds

This class of trypanocidal drugs owes its origin to the later works 

of Ehrlich on the dystuffs based on the acridine nucleus (Ruchel, 1975). 

Further development and subsequent synthesis of phenanthridine in the 1930s 

led to the introduction of phenidium chloride (Williamson, 1970). Although 

phenidium chloride possessed some trypanocidal activity, it was marked by 

poor solubility in water and low therapeutic index. The more effective and 

water soluble dimidium bromide was later synthesised and used extensively in 

East Africa. However, despite these advantages delayed toxicity, 

photosensitisation and drug resistance which became unavoidable sequelae of 

this compound was deemed unacceptable and eventually led to its decline.
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Further research on the phenanthridine structure led to the introduction of 

homidium (Watkins and Woolfe, 1952) by substituting a methyl group with 

ethyl group at the quaternary N atom of dimidium.

Homidium (2,7-diamino-9-phenyl-10-ethylphenanthndinium) bromide 

or chloride (EthidiumR and NovidiumR respectively) proved to be more 

effective and less toxic than its forerunners (Leach and Roberts, 1981). 

Homidium bromide effected cures at a dose of 0.3 mg/kg in zebu cattle infected 

with T. congolense (Wilde and Robson, 1953) in contrast to dimidium where 

relapses frequently occurred at 1.0 mg/kg. Another recorded advantage of 

homidium bromide was its curative and prophylactic activity against both 

T. congolense and T. vivax (Wilson and Fairclough, 1953; Ford et al.,

1953; Leach et al., 1955). This reported prophylactic properties were 

later attributed to the stimulation of the host immune system following 

elimination of the infection by the drug (Gilbert and Newton, 1982).

While EthidiumR and NovidiumR (a compound equally effective 

therapeutically as Ethidium, but soluble in cold water) are established 

trypanocides against infections caused by congolense-vivax trypanosomes, 

information on its activity against T. evansi appears to be scarce (Mahmoud 

and Gray, 1980). However Srivastava and Ahluwahia (1973) found both 

homidium bromide (EthidiumR) and pyrithidium bromide (ProthidiumR) to be 

ineffective in dogs infected with T. evansi.

The recommended therapeutic dose of homidium is 1.0 mg/kg via the 

intramuscular route as the subcutaneous injection is likely to give rise to severe 

local reactions (Leach and Roberts, 1981).

Pynthidium bromide (ProthidiumR) and isometamidium chloride 

(SamorinR) were the last of the phenanthridine group to be introduced into 

the field. Both owe their origin to hybridisation of known trypanocidal
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compounds and marked the start of an era of feasible effective 

chemoprophylaxis in tsetse transmitted trypanosomiasis of cattle. At 1.0 

mg/kg isometamidium protected cattle against repeated experimental challenge 

for a period of 5 months (Whitelaw et a l., 1986). Isometamidium is 

effective against T. evansi infections, however because of toxicity to camels 

(Balis and Richard, 1977) it is rarely used in this species. Avasathi et 

al. (1979) treated fifty six donkeys naturally infected with surra with 

isometamidium at 0.325 mg/kg and reported that all were cured and no relapses 

were detected during the 30-day post-treatment observation period.

Both these compounds however have the disadvantage of causing severe 

local reactions at the injection site. Intramuscular injection of 

isometamidium is often followed by necrotic reactions of the neck region, a 

lesion frequently observed in areas where isometamidium is commonly used (Wilson 

et al., 1976). To counteract this side effect intravenous injection was 

proposed. A 0.5 mg/kg dose was reported to protect goats and cattle for 

a period of about 60 and 90 days respectively (Toure, 1973). However 

intravascular injection of 1.0 mg/kg was found to be extremely toxic with 

fatal consequences. Nevertheless isometamidium is widely used in the field for 

curative and prophylactic purposes.

Pyrithidium bromide is capable of protecting cattle at 4.0 mg/kg for 

a period of four months (Lyttle, 1960). However pyrithidium 

consistently gave rise to large swellings at the injection site as well as 

losses in weight of treated animals (Stephen, 1962) and frequent 

development of resistant strains.
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Chemoprophylaxis

The control of trypanosomiasis by chemoprophylactic means has been 

discussed on many occasions (Maclennan, 1970; Leach and Roberts, 1981).

The choice of this line of defence against the consequences of 

trypanosomiasis seems to warrant careful considerations of the logistical 

problems involved and in particular the management systems of the target 

herds. The slow elimination of prophylactic drugs, the mechanism by which 

they give protection, leads eventually to low concentrations in the tissues 

giving trypanosomes an opportunity to multiply in the presence of drugs.

When this situation arises, it has been suggested that trypanosomes can 

develop resistance towards the drug involved (Peters, 1974). This fact 

clearly recommends the repetition of the prophylactic trypanocide to be 

administered within the period of protection if satisfactory results are 

to be attained (Finnelle, 1983). In Africa nomadic and semi-nomadic stocks 

are inaccessible over periods of time, a fact to be taken into consideration 

in chemoprophylactic operations of herds under extensive management systems.

In tsetse-transmitted trypanosomiasis of cattle significant 

economic benefits can be obtained with chemoprophylaxis if all the conditions 

necessary can be satisfactorily fulfilled. A few of the trypanocidal 

drugs have been shown to possess prophylactic properties namely 

quinapyramine (Prosalt), pyrithidium and isometamidium. The dose ranges 

under which these compounds afford protection in relation to tsetse 

challenge and husbandry practices have been discussed by many authors 

(Whiteside, 1960; Ford and Blaser, 1971; Lewis and Thompson, 1974). 

Isometamidium chloride at 1-2 mg/kg can give a protection period of about 3 to 

4 months under conditions of heavy trypanosome risk (Kirkby, 1964). 

Elsewhere protection of Boran cattle with 1 mg/kg of isometamidium was
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obtained against a single or multiple challenge with trypanosome-infected 

tsetse for more than 5 months based on drug cover alone with no signs of 

priming of the host’s immune response (Whitelaw et al., 1986). However, in 

circumstances where the tsetse challenge is high protection by means of 

trypanocidal drugs is inadvisable due to the increased possibility of the 

emergence of resistant populations of trypanosomes. Quinapyramine 

Prosalt can afford a protection period of two months, however this 

compound was beset with the development of resistant strains which led to its 

temporary withdrawl from the market. Likewise pyrithidium consistently 

gave rise to drug-resistant strains, and severe local reactions which 

eventually prompted its removal from the market.

In West Africa where trekking of cattle from the countryside to 

markets in towns is a common practice contact between cattle and tsetse flies is 

sometimes unavoidable with a consequence of heavy economic losses. In such 

circumstances the appropriate dose of a preventive drug has been shown to 

produce tangible results in eliminating the risk (Na’Isa, 1969;

Jones-Davies, 1967).

In T. evansi infections Gill and Malhorta (1971) reported the 

possibility of protecting ponies from 6 months to about 23 months with 

quinapyramine suraminate. Treatment with either suramin or quinapyramine 

alone is known to afford a protection period of 1 to 2 months depending 

on the dose administered. Although the importance of the horse has declined 

in the transport service a significant role is still reserved for this 

species and where the risk is high chemoprophylaxis is a worthwhile measure.

Chemoprophylaxis against camel surra seems to have attracted less 

attention. Furthermore, poor tolerance to isometamidium (Balis and Richard, 

1977), reduced the significance of this compound in the control of camel
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trypanosomiasis. However, since the two drugs available for the treatment 

of this condition namely suramin and quinapyramine seem to confer a degree 

of protection, reliance is mainly placed on these for the chemotherapy of 

T. evansi infections of camels. In tsetse-transmitted trypanosomiasis of 

the camel the high costs incurred in prophylaxis could hardly be justified as 

this species seldom comes into close contact with heavily infested areas.

The porcine species is highly susceptible to infection with T. simiae 

(Stephen, 1970) which at times leads to the decimation of stocks. However 

control is only considered where intensive pig keeping is practised. 

Experimental studies (Stephen and Gray, 1960; Gray, 1961) suggested 

that quinapyramine suraminate at a high dose of 40 mg/kg could protect stocks 

at risk.

Drug-re si stance

The ability of trypanosomes to become refractory to the action of a 

trypanocidal compound which they were previously sensitive was observed as 

early as 1907 by Ehrlich (Gill, 1971b). Recent and more effective 

trypanocidal drugs are equally liable to give rise to resistant strains.

Indeed there is no drug currently in use against which resistant populations 

have not emerged. Moreover the lack of new trypanocides appearing into the 

market for more than two decades (Williamson, 1976; Losos, 1986), has 

exacerbated the situation in the control of this economically important 

disease.

The development of drug-resistance is attributed to the multiplication 

of trypanosome organisms in the presence of small amounts of drugs not 

sufficient to effect cure. Finelle (1983) discussed several ways in which 

resistant strains could emerge. First the application of insufficient
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dose of a trypanocide due to incorrect estimation of body weight or the 

formation of abscesses or cyst-forming reactions leading to partial 

rejection or prevention of the diffusion of the drug. Alternatively the 

erratic use of chemoprophylactic drugs or halting their use altogether while 

stocks are still at risk could afford the opportunity for trypanosomes to 

multiply in the presence of drugs and develop resistance.

The mechanism by which drug resistance develops is thought to be one of 

the following: 1) Altered drug uptake; 2) Altered metabolism; or 3)

Inactivation of the drug. Altered drug uptake is believed to be the most

likely explanation and could reflect changes at the cell surface and membranes or

enzymes responsible for the active transport of drugs or its efflux from

the cell (Zakerzewsky, 1973). Hawking (1937) observed that

tryparsamide-resistant strains following in vitro incubation in nutrient

media containing reduced tryparsamide did not remove the drug from the medium

while sensitive ones quickly absorbed the drug. The absorption of arsenic and

antimony compounds by a sensitive trypanosome is usually quick, however

damage to the organism was reported to occur only after a latent period of

several hours suggesting that damage is secondary to absorption (Yorke et a l.,

1931).

The observations that treatment of trypanosome infections often 

ended in relapse led to attempts aimed at influencing the process and gave the 

earliest hints of the existence of drug-resistance. Schnitzer and Grunberg 

(1957) reported that under experimental conditions drug resistance can be 

induced by repeated or continuous exposure of the trypanosome organisms to 

subcurative doses of chemotherapeutic agents in laboratory animals or passage 

in hosts with reduced immune response.
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In the field the level of resistance encountered is often around the 

normal curative doses, in contrast to the levels that can be induced under 

experimental conditions. However the importance of the field produced 

drug-resistance is considered to lie in the narrow margin between the curative 

and the maximum tolerated doses of many trypanocidal drugs (Hawking, 1963), 

and the possibility that an increase in dosage may lead to manifestations 

of toxicity symptoms (Stephen, 1986).

Drug-resistance is often expressed in relapse of infection in treated 

cases, and in situations excluding reinfection and underdosing, drug 

resistance is usually to blame. However Jennings et al. (1977) described 

another type of relapse related to the interval between treatment and 

infection in T. brucei. In their experiments diminazene aceturate and other 

trypanocidal drugs led to relapses when treatment was delayed. The relapsed 

population however was sensitive to the normal doses of the drugs involved 

if treatment was effected a week after infection. This kind of relapse is 

due to trypanosomes entering the brain, a tissue not accessible to the action 

of trypanocidal drugs, before treatment and subsequently emerging into the 

circulation (Jennings et al., 1979).

Once developed the resistance trait can be stable for a long period of 

time, even after transmission through tsetse flies (Yorke et al., 1933; Gray 

and Roberts, 1971) and the loss of resistance described in the field may be 

caused by the overgrowth of resistant strains by rapidly multiplying 

sensitive ones. Sones et al. (1989) found that superinfection of a 

drug-resistant strain did not establish infection in goats which had been 

previously infected with a isometamidium-sensitive strain, while 

superinfection with the sensitive resulted in temporary remission if the
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goats were formerly infected with the resistant. This would imply that 

resistant strains have a reduced growth potential compared to original 

sensitive strains.

In view of the fact that many trypanocidal drugs are the result of 

what is known as "hybrid synthesis" i.e. combination of different chemical 

substances with trypanocidal activity (Williamson, 1970; Peters, 1974) 

cross-resistance is frequently observed with compounds of similar structures 

(Table 1.3). However similarities in chemical structures although important 

does not account for all the cross-resistance links. Other factors such as 

anionic properties of the various drugs as well as the receptor sites for 

the drugs on the trypanosomes have also been proposed to explain the 

cross-resistance relationships (Williamson, 1962; 1970).

Gill (1971c) tested eleven strains of T. evansi breaking through 

chemoprophylaxis with quinapyramine suraminate and found that the strains 

had acquired resistance to both quinapyramine and suramin. The resistance to 

quinapyramine was more pronounced, however they were fully susceptible to 

diminazene. In the same study it was found that other strains resistant to 

suramin were sensitive to both diminazene and quinapyramine.

Further studies on the cross-resistance relationships have suggested 

that strains of T. evansi resistant to quinapyramine are also resistant to 

the drugs of the phenanthridine class but not always to diminazene (Gill, 

1971b). Moreover strains made stilbamidine fast were reported to be 

resistant to diminazene as well as the other diamidines and also to the 

melaminyl arsenicals.

In bovine trypanosomiasis of Africa Whiteside (1962a) advocated 

the use of "sanative pairs" i.e. alternation of any of the other 

trypanocides with diminazene to avoid the development of drug-resistance
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and cross-resistance. This was based on the fact that diminazene resistance 

was rarely encountered in the field and that strains resistant to 

quinapyramine and phenanthridines were fully susceptible to diminazene.

Finnelle (1983) proposed the use of isometamidium in cases were diminazene 

resistance is suspected and considered these two compounds as an effective 

sanative pair. However recently there has been reports of field strains 

of trypanosomes resistant to both diminazene and isometamidium. Ainanshe 

et al. (1989) isolated strains of T. congolense expressing high levels of 

resistance to both diminazene and isometamidium from southern Somalia. The 

authors described experimental studies where blood samples obtained from cattle 

infected with trypanosomiasis were inoculated into isolation calves and 

then treated with standard doses of either diminazene aceturate or 

isometamidium. When relapses occurred indicative of drug resistance the 

infection was transferred into groups of calves, goats and mice in order 

to assess the degree of drug resistance of the isolates. The sensitivity 

tests in the calves showed both isolates to be resistant to 2.0 mg/kg of 

isometamidium and 7.0 mg/kg of diminazene.

Immunity and chemotherapy

The value of the host immune response in the achievement of successful 

control of trypanosomiasis by means of chemical agents has been recognised 

since the earliest attempts of chemotherapy (Schnitzer et al., 1946). Some 

of the drugs currently in use against human and animal trypanosomiasis 

depend on competent host immune response for their trypanocidal activity 

without which their efficacy is significantly reduced.
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Earlier studies on the mode of action of suramin had revealed this 

naphthalamine compound unlike trivalent arsenicals to possess incomplete in 

vitro trypanocidal activity (Jancso and Jancso, 1934), with the 

conclusion that suramin had an opsonin-like effect sensitising the 

trypanosomes to phagocytosis by the reticuloendothelial system (Jancso and 

Jancso, 1934; Hawking, 1939). Intact host immune response had also been 

shown to be essential in the efficacy of quinapyramine sulphate in rats 

experimentally infected with T. evansi (Sen et al., 1955).

The recently introduced drug DL-cx-difluoromethylomithine (DFMO; 

EflomithineR; OmidylR), a selective inhibitor of ornithine 

decarboxylase which is a key enzyme for the synthesis of polyamines 

(Metcalfe et al., 1978) relies on antibodies against the surface antigen of 

trypanosomes to be effective. De Gee et al., (1983) have reported that 

antibody response to surface antigens is important for the rapid 

elimination of parasites after treatment with DFMO, confirming 

previous opinions (Bacchi et al., 1980) that DFMO is trypanostatic and 

not trypanocidal.

In human parasitic infections, praziquantel, the drug of choice 

currently used in the treatment of schistosomiasis (Harnett, 1988) was 

found to have its efficacy substantially reduced in immunosuppressed mice 

(Sabah et al., 1985). Further works demonstrated that the efficacy of 

praziquantel in vivo to depend on humoral immune response and that the 

effector antibodies act against the surface of the parasite immediately 

after exposure to the drug (Brindley and Sher, 1987). praziquantel which 

interacts with the lipid constituents of tegumental membranes causing membrane
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destabilisation (Andrews, 1985) is thought to expose antigens on the 

surface of the schistosome and that the interaction of antibody with these 

exposed molecules leads to parasite death.

Immunity and chemoprophylaxis

In tsetse infested parts of Africa, Bevan (1928) made the 

important observation that cattle treated after infection with antimony 

could be reintroduced into tsetse infested areas and withstand the harmful 

consequences of trypanosomiasis. Further studies had demonstrated that 

while such animals harboured small numbers of trypanosome organisms in their 

blood they nevertheless continued to thrive. From these and subsequent works 

(Bevan, 1936) the conclusion had emerged that cattle can acquire a state of 

"tolerance" or immunity to trypanosomiasis comparable to that produced in 

bovine babesiosis after treatment with trypan blue. Evidence of this form 

of immunity was further substantiated when infected blood from these animals 

inoculated into susceptible and untreated cattle developed fully pathogenic 

trypanosomiasis.

While non-sterile immunity or "tolerance" after chemotherapy was also 

mentioned by others (Bennet, 1933b), reports on sterile immunity are scanty. 

However Soltys (1955) suggested that prolonged use of chemoprophylaxis 

could lead to sterile immunity lasting more than a year. In his experiment 

cattle bimonthly treated with quinapyramine Prosalt for a period of 28 

months resisted both natural and artificial challenge for 18 months and 

serological studies revealed the development of only low titres of complement 

fixing antibodies. Furthermore another group treated with the 

prophylactic quinapyramine Prosalt and later transferred to a 

tsetse-free location for 10 months equally resisted challenge when
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reintroduced into enzootic areas. However Smith (1958) suggested that 

after successive administration of a prophylactic compound at two-monthly 

intervals there is sufficient residue to suppress the appearance of 

circulating organisms for about a year afterwards. As a result evidence of 

sterile immunity is at best considered inconclusive and its validity still 

awaits confirmation (Murray and Urquhart, 1977). In marked contrast 

non-sterile immunity or "tolerance" has been consistently reported and 

continues to be exploited in commercial situations in endemic areas although 

details seem to be scarce (Holmes, 1980).

After the earlier work on acquired immunity or "tolerance" (Bevan,

1928,1936) further evidence came to light lending support to this aspect 

of trypanosomiasis. Whiteside (1962b) introduced zebu cattle from tsetse 

free locations into tsetse infested parts of Kenya in the vicinity of 

lake Victoria. At the start of the experiment the cattle became parasitaemic 

after every four weeks and were treated with diminazene aceturate a 

trypanocidal drug with no prophylactic properties. After four 

successive treatments the interval between treatment and infection lengthened to 

eight weeks and this was ascribed to the development of immunity.

In a series of experiments in East Africa (Wilson et al., 1975;

Wilson et al., 1976) groups of Boran cattle were maintained under 

different trypanocidal drug regimes in an area of medium tsetse challenge 

with the aim of assessing the development of immunity in association with 

treatment. One group was treated with the curative drug diminazene aceturate 

on the development of clinical disease while two other groups were treated on 

a group basis either with diminazene or isometamidium when patent 

parasitaemia was detected in one animal. Development of immunity to 

trypanosomiasis was assessed on the basis of changes in trypanocidal drug
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requirement, ability to maintain normal blood values and response to challenge 

following withdrawl of drugs. In the group treated with diminazene on 

clinical grounds the interval between treatments began to lengthen and on 

withdrawl of drug administration the ability to maintain satisfactory 

body weights and normal haematological values was not adversely affected in 

any significant way, while the group treated with diminazene when one 

animal became parasitaemic did not develop immunity. However from these 

studies it was concluded that isometamidium administered on group basis was the 

most suitable for maintaining beef cattle in tsetse infested areas (Wilson et 

al., 1976). Similar works involving draught oxen in areas of high tsetse 

challenge provided further evidence that a state of tolerance can be exploited 

with the strategic use of drugs. However reasonable standards of 

veterinary supervision and management was found to be essential to achieve 

successful results in these situations (Bourn and Scott, 1978).

Whitelaw et al. (1986) carried out experimental studies with the 

objective of establishing the duration of drug-induced prophylaxis and the 

specific antibody responses in animals under chemoprophylactic cover. It 

was found that Boran cattle treated with isometamidium at 1.0 mg/kg resisted 

single and multiple challenges by infected tsetse flies for five months.

Moreover it was demonstrated that protection was solely associated with the 

prophylactic activity of isometamidium since there was no priming of the 

host’s immune response. Furthermore single intramuscular injection of 

isometamidium at 1.0 mg/kg was shown to afford protection against repeated 

challenge with infected tsetse flies or intradermal inoculation of in 

vitro-derived metacyclic trypanosomes for a period of five months 

(Peregrine et al., 1988). During the course of the study it became evident 

that protection was associated with drug cover alone since there were no
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signs of skin reaction at the site of inoculation. Similarly a 0.5 mg/kg 

dose isometamidium chloride was found to protect cattle against 

trypanosomiasis challenge for a period of 3-5 months.

While the mechanism behind non-sterile immunity or "tolerance" awaits 

further elucidation the suggestion has been put forward that it is due to a 

battery of immune responses developed by the host to a range of metacyclic 

antigens and variant antigen type repertoires in a certain locality, 

and/or the expansion and activation of the mononuclear phagocytic system 

(Murray et al., 1983).

Immunity and drug-resistance

In the earlier works on drug-resistance in trypanosomiasis the role 

of the host was not indisputably obvious (Yorke et al., 1931). However 

only when Jancso and Jancso (1934) devised a method of excluding the natural 

defence mechanism of the host did the full impact came to light of the crucial 

role played by the host immunity in the genesis of drug-resistance. This had 

been achieved by splenectomy combined with intravenous injection of 

electro-colloidal copper, allowing for the first time the study of the 

interaction between trypanosome organisms and trypanocidal agents without 

interference from the host immune system. The combination of splenectomy and 

electro-colloidal copper successfully eliminated antibody production and 

blocked the phagocytic activity of the reticuloendothelial system (Jancso and 

Jancso, 1934). Later Jancso and Jancso (1935) had produced in 

lmmunosuppressed laboratory rodents strains of T. brucei highly resistant 

to GermaninR (suramin) in a very short time by repeatedly treating with 

subcurative doses. In one strain a degree of resistance was produced in 

splenectomised and blocked mice of 250 times the normal in only 12 treatments.
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Another strain of T. brucei was found to have attained a resistance of seven 

times the normal in immunologically compromised rat after a single treatment, 

while in contrast production of suramin-fast strains in normal hosts had 

been shown to be slow and a tedious operation (Jancso and Jancso, 1935;

Hawking, 1939).

Further studies have recognised defective antibody responses as the 

major factor behind the the genesis of drug-resistance in immunologically 

compromised hosts (Schnitzer et al., 1946). In a strain of T. equiperdum a 

high level of resistance to p-rosaniline was produced in splenectomised rats 

using the short passage technique. The short passage, i.e. transfer of 

infection to a clean host hours after treatment, in combination with 

splenectomy avoided any contact between antibodies and trypanosome 

organisms and led to a rapid development of p-rosaniline resistance. In 

contrast, the development of drug-resistance to p-rosaniline in 

splenectomised mice was counteracted by passive immunisation clearly indicating 

that the rapid development of the drug-fastness was due to the elimination 

of the role played by the host antibodies (Schnitzer et al., 1946).

Reduced host immune response was also found to select drug-resistant 

populations of trypanosomes in experimental infections of mice after 

treatment with melarsoprol (Frommel, 1988). In this report two groups of 

mice immunosuppressed either with cyclophosphamide treatment or exposure to 

irradiation and a further group with an intact immune system were treated 

with different doses of melarsoprol after a syringe challenge with a 

strain of T. rhodesiense. Initially all groups were treated with 20 jig/kg 

of melarsoprol and this had been followed by relapses in all groups.

However in the immunocompetent group the relapses were significantly 

delayed. Increasing the dose to 50 ug/kg achieved complete cure in the normal
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mice while in the immunologically compromised groups almost all had relapsed 

and the trend was not reversed even when the dose was increased to 80 jig/kg. 

Relapsed populations inoculated into immunocompetent and irradiated mice 

resisted treatment at 50^ig/kg, a dose which in normal mice results in the 

elimination of infection indicating that the strain had acquired resistance 

(Frommel, 1988).

Selection of drug-resistant bacterial organisms in human patients 

with impaired immune responses has also been described (Follath, et al.,

1987) and is considered relatively frequent with serious clinical 

consequences.

The experiments described in the next chapter were designed to re-evaluate 

the role of immunosuppression in the possible development of drug resistance 

by clones of T. evansi to currently available drugs.
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Chapter 2

THE DEVELOPM ENT OF DRUG RESISTANCE BY CLONES 

OF T. EVANSI IN IM M UNOSUPPRESSED M ICE.
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C hapter 2

The development of drug resistance by clones of T. evansi in 

immunosuppressed mice.

Introduction.

Despite recent advances in tsetse control methods, particularly the 

development of olfactory attractants (Vale et al., 1985) which tremendously 

increase the efficacy of traps and targets used for tsetse control schemes, 

chemotherapy remains the most widely adopted control strategy against all 

forms of trypanosomiasis. Unfortunately chemotherapeutic control suffers 

from the drawback of relying on a small number of drugs (Newton, 1974) 

which have been in use for many years. Although a new arsenical compound, mel 

Cy, has recently been developed (Raynaud et al., 1989) specifically for 

the treatment of surra infections, no new trypanocides against the other 

African animal trypanosomiasis are known to be in the process of 

development and the situation has remained unchanged for more than 30 years.

In Africa the three most widely used drugs are homidium bromide, diminazene 

aceturate and isometamidium chloride. Homidium and diminazene are used solely 

for curative purposes while isometamidium has both therapeutic and 

prophylactic properties (Leach and Roberts, 1981). In addition suramin, 

quinapyramine and the recently introduced mel Cy are available for the 

treatment of T. evansi infections (Schillinger and Rottcher, 1986;

Zweygarth and Kaminsky, 1990).
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Although trypanocidal drugs can be very effective, the continuous use 

of a small number of established compounds could undermine their value and lead 

to a widespread drug resistance. Drug resistance is believed to develop when 

trypanosomes are exposed to levels of drugs not sufficient to result in their 

elimination; a condition which can arise in many circumstances in the field 

(Finnelle, 1983). Reduced host immune response was also considered to assist 

the development of resistant strains by Schnitzer and Grunberg (1957).

It was reported over 50 years ago that splenectomy and blockage of 

the host reticuloendothelial system could lead to the development of suramin 

resistance (Jancso and Jancso, 1934, 1935). The aim of the experiments 

described in this chapter was to establish whether immunosuppression by means 

of ̂ Co-irradiation would lead to the development of drug-resistance by 

T. evansi using the currently available trypanocidal drugs and if the 

resistance produced would remain stable in normal hosts.
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Materials and methods

Mice

The mice used in all experiments were a strain of Swiss white mice CD-I 

purchased from a commercial source (Charles River, England), of both sexes and 

weighing about 30 grams. The mice were kept in plastic /metal cages (North Kent 

Plastics, England), bedded with wood shavings at a room temperature of 

21°C and 50% relative humidity.

The animals were fed with pelleted concentrates (Special Diet Services, 

England) and fresh drinking water was provided ad libitum.

Trypanosomes.

Three clones of T. evansi were used in these experiments. Two clones of 

T. evansi, GRVPS 13/3 and GRVPS 18/2, cloned from GVR 74 were derived 

from TREU 1444 which was originally isolated from a camel naturally infected 

with surra in the Sudan and was suramin resistant. The other clone, T. evansi 

GRVPS 19/5 a derivative of TREU 1412, was also originally isolated 

from a camel in the Sudan and was suramin sensitive.

All stocks were kept as cryopreserved stabilates in liquid nitrogen. 

Preparation of stabilates.

Infected mice, at the first peak of parasitaemia, were bled by cardiac 

puncture while under terminal anaesthesia (TrileneR, ICI, England), using a 

heparinised syringe. Blood obtained was measured and glycerol added 

dropwise until a final overall concentration of 12.5% was attained. This
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blood/glycerol mixture was then drawn up into capillary tubes and one end 

sealed with CristasealR (Hawksley & Sons Ltd, England). All capillary 

tubes were placed in screw top plastic tubes, which had holes made to allow 

ingress of liquid nitrogen and were then suspended overnight in the vapour 

phase in the liquid nitrogen container. Later they were fully immersed in 

liquid nitrogen for storage.

Infection of mice.

The mice were infected with inocula prepared either directly from the 

frozen stabilates or from fresh infected blood. In both cases, the inocula 

were diluted with a solution of phosphate buffered saline glucose (pH 8.0) 

containing 10% foetal calf serum. Optimum concentration of 1 x 105 organisms 

per ml was obtained and 0.2ml of this suspension was injected 

intraperitoneally.

Measurement of parasitaemia.

Blood was checked for circulating parasites from the third day 

post-infection and every second day from there onwards. A drop of 

blood obtained by means of tail snip, was microscopically examined at x400 

magnification. The level of the parasitaemia was assessed by the matching 

technique of Herbert and Lumsden (1976). Twenty fields were examined before 

a sample was regarded as negative.

Immunosuppression of mice.

The mice were immunosuppressed by sublethal whole body irradiation (6.5 

grays) from a cobalt-60 source 24 hours prior to infection.

Trypanocidal drugs.

The trypanocidal drugs used were mel Cy (CymelarsanR) and suramin 

(MoranylR) (Rhone Merieux, Toulouse, France), isometamidium chloride 

(SamorinR) and quinapyramine sulphate (TrypacideR) (RMB, Daghenham,
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England) and diminazene aceturate (BerenilR, Hoechst AG, Frankfurt,

Germany). Dilutions of the various drugs were made so that the 

appropriate dose rates (mg/kg) could be administered at a rate of 0.05 ml 

per 5g bodyweight.

Determination of packed cell volume.

The PCV was determined by the method of haematocrit centrifugation 

technique (Woo, 1970) using battery operated minicentrifuge (Compur M 1100; 

Compur-Electronic, Germany). Mouse blood (9 jil) obtained by tail snip was 

drawn up into heparinised capillary tubes and centrifuged in the 

minicentrifuge. The PCV values expressed as percentages were read directly on 

the minicentrifuge disc.

Body Weights.

The mice were weighed by electronic balance (Oertling, England) before 

and after infection.
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Results

Section 1 A: Studies with mel Cy in normal and immunosuppressed mice

Experiment 1: The sensitivity of T. evansi GRYPS 13/3 and T. evansi GYR 

74/1 to mel Cv in normal and immunosuppressed mice.

Experimental Design.

It is necessary to determine the sensitivity of the original 

stabilates to mel Cy so that a realistic subcurative dose of mel Cy can be given 

when "drug pressure" is being applied. A test was carried out in normal and 

immunosuppressed mice with the objective of determining the sensitivity of T. 

evansi GRVPS 13/3 and T. evansi GVR 74/1 to mel Cy. To this effect 25 

immunocompetent mice were divided into 5 groups of 5 mice each and infected 

with an inocula prepared from a cryopreserved stabilate of T. evansi 

GRVPS 13/3. A further 6 groups of 3 normal mice for each group were 

infected with T. evansi GVR 74/1, (GVR 74/1 is a working stabilate of GVR 

74), the original stabilate from which GRVPS 13/3 had been cloned. A range 

of doses of mel Cy were injected in all mice excluding the controls after the 

first peak of parasitaemia. The doses administered were 0.125,0.25,

0.5,0.75 and 1.0 mg/kg. Monitoring resumed for detection of possible 

relapses of infection and continued for a period of 60 days post 

treatment.

66



The sensitivity of both GRVPS 13/3 and GVR 74/1 was also tested in 

immunosuppressed mice. Groups of three mice immunosuppressed by whole body 

irradiation were infected with either of the stabilates and treated 

following development of parasitaemia. The doses administered were similar 

to those used in the normal mice.

Results.

For the immunocompetent groups infected with T. evansi GRVPS 13/3 

the first parasites appeared in the circulation on the fifth day 

post-infection and continued to increase progressively. Treatment was 

effected on the ninth day after infection and coincided with the period 

of high parasitaemia. Initially all the doses injected cleared the 

trypanosomes from the circulation, however on the tenth day post-treatment 

relapses occurred in the groups treated at 0.125 and 0.25 mg/kg (Table 

2.1.1). More relapses followed until four weeks post treatment 3 out of the 

group treated at 0.125 mg/kg and all those injected at 0.25 mg/kg had 

relapsed (Table 2.1.1). No breakthroughs were observed in the other groups 

treated at 0.5 and 1.0 mg/kg mel Cy during the experimental period. The 

control group, infected on the same day as the treated groups remained 

parasitaemic and the animals in that group subsequently died as a result of 

the infection (Fig. 2.1).

On the other hand in the groups infected with T. evansi GVR 74/1 

relapse of infection was detected in all the three mice treated at 0.125 

mg/kg, two of those treated at 0.25 mg/kg and one mouse of the group treated 

at 0.5 mg/kg mel Cy whilst treatment at 0.75 and 1.0 mg/kg effected complete

cure (Table 2.1.1).
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In marked contrast all the doses failed to eliminate the infections in 

the immunosuppressed mice. There was no reduction of the parasitaemia in the 

groups irrespective of whether they were infected with GRVPS 13/3 or with 

GVR 74/1 despite treatment at 1.0 mg/kg (Table 2.1.2). These results 

highlight the importance of the host immune response in the chemotherapy of 

trypanosomiasis.

Experiment 2 : The development of mel Cv resistance bv T. evansi in 

immunosuppressed mice.

Experimental Design.

The objective of this experiment was to attempt to increase the 

resistance of T. evansi GRVPS 13/3 to mel Cy in immunosuppressed mice.

Groups of three mice were immunosuppressed by irradiation and subsequently 

infected. At the first peak of parasitaemia the mice were treated with a 

subcurative dose of mel Cy (0.5 mg/kg) determined in Experiment 1. Following 

relapse the trypanosomes were transferred to three new irradiated mice. At 

the first peak of parasitaemia one of the mice was treated at the same dose 

from which the infecting organisms had relapsed whilst the other two mice 

were treated at slightly higher doses. This process was repeated to 

determine whether increases in drug resistance could be generated and the level of 

drug resistance which could be obtained

Results.

The successive stages enacted to increase mel Cy resistance are shown in 

Fig. 2.2. Initially a group of three immunosuppressed mice were infected 

with GRVPS 13/3 and treated at 0.5 mg/kg on the third day post-infection
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Table 2.1.1. The sensitivity of T. evansi GRPVS 13/3 and T. evansi GVR 74/1 to mel Cy in
normal mice.

Mel Cy GRVPS 13/3 GVR 74/1
Group Dose

(mg/kg')
Relapsed/
Treated

Days to 
Relapse

Relapsed/
Treated

Days to 
Relapse

A 0.125 3/5 9; 7; 28 3/3 7; 7; 7

B 0.25 5/5 10; 14; 15; 
21; 21

2/3 23; 23

C 0.5 0/5 - 1/3 23

D 0.75 - - 0/3 -

E 1.0 0/5 . 0/2 -



Table 2.1.2. The sensitivity of T. evansi GRVPS 13/3 and T. evansi GVR 74/1 to mel Cy in
immunosuppressed mice.

Group
Mel Cy
Dose
(mg/kg)

GRVPS 13/3 
Relapsed/ Days to 
Treated Relapse

GVR 74/1 
Relapsed/ Days to 
Treated Relapse

A 0.125 *13 * *[3 *

B 0.25 */3 * *13 *

C 0.5 */3 * *13 *

D 0.75 - *13 *

E 1.0 *13 * *13 *

* All remained positive



following onset of parasitaemia. The relapse population was then 

transferred into a fresh group of three irradiated mice where one mouse was 

treated at 0.5 mg/kg and the other two at 0.75 mg/kg on the seventh day 

post-infection. Relapses occurred at 0.75 mg/kg on the second day 

post-treatment and the breakthrough from these mice was inoculated into a 

further group of immunologically compromised mice. This time one mouse was 

treated at 0.75 mg/kg and the other 2 at a slightly higher dose (1.0 mg/kg) 

on the sixth day post-infection. Treatment at 1.0 mg/kg did not affect the 

level of parasitaemia, and on the second day after treatment the 

trypanosomes were transferred into a fresh group of irradiated mice. This 

process was repeated several times. At each step 3 irradiated mice were 

subinoculated whereby one mouse was treated with the dose from which the 

infecting organisms had relapsed and the others with slightly higher 

doses. At each step an increase in drug resistance was detected. In 13 

passages within a period of about 5 months it was possible to markedly 

enhance the resistance of T. evansi GRVPS 13/3 to mel Cy in irradiated mice. 

However there is significant evidence to suggest that the process could have 

been speeded up by shortening the steps. At 0.5 mg/kg there was a temporary 

disappearance of parasites, however in the other steps the parasitaemia 

continued to increase despite treatment at a higher dose. During the process 

it was found that the infection from a mouse treated at 5.0 mg/kg and 

transferred into a fresh group of mice was equally resistant to 20.0 mg/kg.

Finally the trypanosomes breaking through 40 mg/kg mel Cy were passaged once 

in irradiated mice to a obtain a working stabilate designated T. evansi 

GRVPS 13/3R19. The findings of this experiment confirmed previous 

reports (Hawking, 1939) that reduced host immune response leads to the 

rapid development of drug resistance by trypanosome organisms.
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Figure 2.2. The development of mel Cy resistance by T. evansi GRVPS 13/3 
in immunosuppressed mice.



Experiment 3: A comparison of mel Cv sensitivity of resistant (GRVPS

13/3R19) and parent (GRVPS 13/3^ clones in normal mice.

Experimental Design.

The experiment described here was intended to establish whether mel Cy 

resistance developed in immunosuppressed mice by T. evansi GRVPS 13/3R19 

would retain this level of resistance in immunocompetent hosts. The parent 

clone T. evansi GRVPS 13/3 was included for comparison. For this purpose 

36 normal mice were divided into groups of 3 mice each and infected either with 

the mel Cy-resistant or with the parent clone. Altogether 12 groups were 

involved in which 6 groups were infected with either parent or mel 

Cy-resistant clone. Treatment was made following the onset of 

parasitaemia. The doses administered to the groups infected with the parent 

clone were 0.5,1.5,2.0, 3.0 and 5.0 mg/kg while for the resistant the 

doses were 5.0,10.0, 30.0 and 40.0 mg/kg. Tail blood was regularly examined 

for relapses and any deaths recorded.

Results.

All groups were treated on the third day post-infection following 

development of parasitaemia. At 0.5 mg/kg relapse of infection occurred in 

one mouse out of the three mice treated in the group infected with parent 

clone. All the other doses effected complete cure and no breakthroughs occurred 

during the course of the experiment (Table 2.2). On the other hand none of the 

groups infected with the resistant clone were cured and the trypanosomes 

continued to multiply in the circulation despite treatment At 40.0 mg/kg one
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of the mice treated died hours after treatment due to toxicity since 40 mg/kg is 

close to the maximum tolerated dose in mice. The rest continued to be parasitaemic 

until they died from the infection within 2 weeks.

These results confirm that mel Cy resistance developed in irradiated mice 

is a true resistance and persists in normal hosts.

Experiment 4 : The sensitivity of the mel Cv-resistant clone GRVPS 13/3R19 

to other trvpanocides in normal mice..

Experimental Design.

The response of the trypanosomes made highly resistant to mel Cy to 

some of the other trypanocidal drugs currently available was investigated in 

mice in order to study the cross-resistance pattern. The drugs tested were 

isometamidium, diminazene aceturate, pentamidine, quinapyramine and suramin. 

For each drug, 12 groups of 3 mice each were used. Six groups were infected 

with the mel Cy-resistant clone (T . evansi GRVPS 13/3R19) and the other 6 

groups with the parent clone (T . evansi GRVPS 13/3). A series of doses 

were selected for each compound and injected intraperitoneally. Regular checks 

for relapses were subsequently made.

Results.

It is of interest that GRVPS 13/3 was originally derived from a 

suramin-resistant stock. Therefore attempts were made to establish whether the 

mel Cy-resistant clone had retained the original suramin resistance. Various 

doses of suramin were selected and injected intraperitoneally in groups of 

mice infected either with the resistant or the parent clone. There was a 

slight decrease in the intensity of the parasitaemia in those infected with
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Table 2.2. A comparison of mel Cy sensitivity of the parent clone (GRVPS 13/3) and the
resistant clone (GRVPS 13/3R19) in normal mice.

Group
Mel Cy 

Dose 
(mg/kg)

GRVPS 13/3 
Relapsed/ Days to 
Treated Relapse

GRVPS 13/3R19 
Relapsed/ Days to 
Treated Relapse

A 0.5 1/3 11

B 1.0 0/3 - - -

C 1.5 0/3 - - -

D 2.0 0/3 - - -

E 3.0 0/3 - - -

F 10.0 - - */3 -

G 20.0 - - */3 -

H 30.0 - - */3 -

I 40.0 - - */2 (1) -

* All remained Positive

(1) One mouse died because of toxicity



the mel Cy-resistant clone irrespective of the doses administered, although 

there was no case in which the parasitaemia completely disappeared.

However, after the initial decrease the parasitaemia began to gain in 

intensity and subsequently all the groups developed a fulminating 

parasitaemia. On the other hand in those infected with the parent clone 

the parasitaemia continued to rise despite treatment. It is evident that 

these clones had remained highly resistant to suramin with a dose of 200.0 

mg/kg not effecting cure (Table 2.3.1). Thus GRVPS 13/3R19 had not only 

gained mel Cy resistance but had also maintained its original suramin 

resistance.

However there was a marked difference in sensitivity between the mel 

Cy-resistant and the parent clones to diminazene aceturate and pentamidine. 

The mel Cy-resistant was found to be also resistant to diminazene. There was 

a relapse at 40.0 mg/kg while treatment at 20.0 mg/kg caused only temporary 

disappearance of the parasites from the circulation with a subsequent 

relapse of all treated cases. In contrast a dose of 10.0 mg/kg diminazene 

was sufficient to result in permanent cure of those infected with the parent 

clone (Table 2.3.2). Similarly the mel Cy-resistant clone displayed a 

substantial degree of resistance to pentamidine with a dose of 100.0 mg/kg 

not effecting cure compared against the successful elimination of the 

infections ensuing from the parent clone by treatment with 20.0 mg/kg (Table 

2.3.3).

These results provide further evidence of the cross-resistance links between 

arsenicals and diamidines (Rollo and Williamson, 1951; Zweygarth and 

Kaminsky, 1990).
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On the other hand both the mel Cy-resistant and the parent clones 

exhibited unusually high levels of resistance to isometamidium chloride. However 

in the groups infected with the mel Cy-resistant clone only one mouse relapsed 

following treatment at 10.0 mg/kg while in those infected with parent clone 

all the three mice injected with 10.0 mg/kg had relapsed (Table 2.3.4).

Finally the sensitivity of the mel Cy-resistant and the parent 

clone to quinapyramine sulphate was tested in normal mice. No significant 

variation in sensitivity to quinapyramine could be discerned between the 

clones (Table 2.3.5). Despite relapses which occurred in the group infected 

with the resistant clone after treatment with 2.0 mg/kg quinapyramine, both 

were sensitive to 3.0 mg/kg.

The clone which developed mel Cy-resistance, at the same time as 

retaining its original sensitivity to isometamidium and quinapyramine, had 

retained its original resistance to suramin and had acquired a 

cross-resistance to both diminazene aceturate and pentamidine.
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Table 2.3.1. A comparison of suramin sensitivity of the resistant clone (GRVPS 13/3R19)
and the parent clone (GRVPS 13/3) in normal mice.

Group
Suramin
Dose
(mg/kg)

GRVPS
Relapsed/
Treated

13/3 
Days to 
Relapse

GRVPS 13/3R19 
Relapsed/ Days to 
Treated Relapse

A 10..0 *13 - *13 -

B 20.0 *13 - *13 -

C 40.0 */3 - */3 -

D 80.0 */3 - *13 -

E 160.0 *13 - *13 -

F 200.0 *13 - *13 -

* All remained positive



Table 2.3.2. A comparison of diminazene sensitivity of the resistant clone (GRVPS
13/3R19) and the parent clone (GRVPS 13/3) in normal mice.

Group
Diminazene
Dose
(mg/kg)

GRP VS 13/3 
Treated/ Days to 
Relapse Relapse

GRVPS 13/3R19 
Treated/ Days to 
Relapse Relapse

A 2.5 3/3 16;, 20, 28 */3 -

B 5.0 3/3 43; 20; 28 */3 -

C 10.0 0/3 - */3 -

D 20.0 0/3 - 3/3 6; 15; 20

E 40.0 0/3 - 1/3 20

F 80.0 0/2(1) - 0/3 -

(1) One mouse died because of toxicity 

* All remained positive



Table 2.3.3. A comparison of pentamidine sensitivity of the resistant clone (GRVPS
13/3R19) and the parent clone (GRVPS 13/3) in normal mice.

Group
Pentamidine
Dose
(mg/kg)

GRVPS 13/3 
Relapsed/ Days to 
Treated Relapse

GRVPS 13/3R19 
Relapsed/ Days to 
Treated Relapse

A 2.5 */3 - Nc/3 -

B 5.0 */3 - *13 -

C 10.0 3/3 14; 4; 14 */3 -

D 20.0 0/3 - *13 -

E 40.0 0/3 - *13 -

F 100.0 - - 3/3 9; 14; 23

* All remained positive



Table 2.3.4 A comparison of isometamidium sensitivity of the resistant clone (GRVPS 
13/3R19) and the parent clone (GRPVS 13/3) in normal mice.

Isometamidium GRVPS 13/3 GVR 13/3R19
Group Dose Relapsed/ Days to Relapsed/ Days to

(mg/kg) Treated Relapse Treated Relapse

A 0.5 3/3 *. *. g 3/3 *; 2; 2

B 1.0 3/3 8; 8; 12 3/3 4; 8; 2

C 2.0 3/3 18; 8; 30 3/3 6; 6; 16

D 4.0 3/3 18; 18; 32 2/3 7; 22

E 5.0 3/3 18; 8; 32 3/3 7; 7;23

F 10.0 3/3 18; 32; 18 1/3 37

‘Remained positive



Table 2.3.5 A comparison of quinapyramine sensitivity of the resistant clone (GRVPS
13/3R19) and the parent clone (GRVPS 13/3) in normal mice

Quinapyramine GRVPS 13/3 GRVPS 13/3R19
Group Dose Relapsed/ Days to Relapsed/ Days to

(mg/kg) Treated Relapse Treated Relapse

A 0.05 3/3 8; 24; 10 3/3 10; 24; 36

B 0.5 3/3 15; 24; 24 3/3 19; 36; 36

C 1.0 3/3 53; 45; 31 2/3 39; 52

D 2.0 0/3 - 2/3 44; 44

E 4.0 0/3 - 0/3 -

F 5.0 0/3 - 0/3



Section 1 B: Studies with mel Cy and diminazene in normal mice

Experiment 5: Attempts to develop mel Cv and diminazene resistance in normal 

mice.

Experimental Design.

Attempts were made to increase the resistance of T. evansi GRVPS 13/3 

to mel Cy and T. evansi GRVPS 19/5 to diminazene in normal mice. The 

protocol adopted was similar to that using irradiated mice. Infected mice 

were treated with subcurative doses of the drugs. Relapses were subsequently 

transferred into a fresh group of normal mice and treated.

Results.

In both cases it was not possible to achieve resistance exceeding 0.5 

mg/kg. At 0.5 mg/kg mel Cy the trypanosomes relapsed, but the parasitaemia 

was rather low and was therefore expanded in irradiated mice. However 

infection ensuing from this relapse later disappeared following treatment 

at 0.75 mg/kg mel Cy.

Similarly a relapse from 0.5 mg/kg diminazene failed to establish 

infection in a fresh group of normal mice on two separate occasions.

From these observations the view was taken that the development of mel 

Cy and diminazene resistance in normal mice would be difficult and time 

consuming.
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Section 1 C: Studies on the pathogenecity and antigenic relationship 

of drug resistant and drug sensitive clones of T. evansi in normal mice.

Experiment 6: To examine the pathogenicity of drug-resistant and drug 

sensitive clones of T. evansi in normal mice.

Experimental Design.

The objective of this experiment was to investigate whether 

drug-resistant trypanosomes are less pathogenic than normal sensitive ones. 

Twelve mice were divided into 2 groups of 6 mice each. One group was infected 

with the T. evansi GRVPS 13/3R19, made highly resistant to mel Cy while 

the remaining group was infected with the parent clone T. evansi GRVPS 

13/3. A further group of six mice which served as uninfected controls was 

also included. The packed cell volume (PCV) and the body weights of all groups 

was determined prior to infection and three times a week afterwards. The 

parasitaemia of the infected groups was also monitored on a daily basis.

Results.

The parasitaemia profile, PCV and body weight changes of the 

groups of mice are shown in Figs 2.3.1, 2.3.2 and 2.3.3. In both infected 

groups parasitaemia was first detected on the third day post-infection 

and increased progressively from then onwards. The highest level of 

parasitaemia in the group infected with the parent clone was recorded on the 

seventh day post-infection, while in the mice infected with the resistant 

clone peak parasitaemia developed on the ninth day post-infection. On the 

eighth day post-infection one of the mice infected with the sensitive clone
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died and further two mice in this group died twelve and thirteen days 

following infection. However in the remaining three mice a marked decrease 

of parasitaemia was observed although it started to rise again until on the 

sixteenth day post-infection when they all died as result of intense 

parasitaemia. In the group infected with the resistant trypanosomes all 

the mice remained highly parasitaemic until death from fulminating 

parasitaemia. One mouse of this group died on the tenth day after 

infection, three mice died by twelve days and in the remaining two one mouse 

died on the fourteenth day post-infection while the last one died on the 

sixteenth day following infection. The PC Vs in both infected groups were 

significantly lower than the controls. While the mice infected with the 

resistant clone showed steady decline of PCV until death, there was a sharp 

drop which coincided with the peak parasitaemia in the group infected with 

parent clone. However the PCV recovered in the three mice which controlled the 

initial rise of parasitaemia.

It is apparent from Fig. 2.3.3 that the group infected with the 

parent clone was more seriously affected by weight loss compared to the 

others. Nevertheless the results from the initial stage of the experiment 

show a drop in the body weights of the infected groups while the controls 

slightly gained w eight However the subsequent body weight increases of the 

infected groups appears to be related with the smaller number of mice sampled 

as a result of deaths from the infection.

The results presented show that pathogenecity was not significantly 

changed following the development of drug resistance. Both clones caused 

fulminating parasitaemias and eventually led to the death of all the 

infected animals.
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Experiment 7 : To examine the antigenic relationship of T. evansi GRVPS 

13/3R19 with its parent clone (GRVPS 13/3) in normal mice.

Experimental Design.

The aim of this experiment was to establish whether the clone of 

T. evansi which developed mel Cy resistance acquired different antigenic 

characteristics from its parent clone during the process of attaining drug 

resistance. A group of three normal mice was infected with the parent clone 

GRVPS 13/3 and treated with a dose of 10.0 mg/kg mel Cy on the sixth day 

post-infection following the development of high levels of parasitaemia. 

Previous studies had shown this clone to be sensitive to 1.0 mg/kg mel Cy (see 

Expt 1). Eight days after treatment the mice were infected with the 

resistant clone GRVPS 13/3R19. Tail blood was regularly examined during the 

following three weeks after the second infection. A further five groups 

of mice were also included in the experiment to serve as controls.

Results.

Table 2.4 summarises the results of the experiment. After treatment at 

10.0 mg/kg the mice infected with the parent clone became aparasitaemic and 

continued to be free of infection while the untreated controls developed a 

fulminating parasitaemia. The mice were challenged with the mel Cy resistant 

clone eight days after treatment and monitored for development of 

parasitaemia for three more weeks. All three mice reinfected with the 

drug-fast trypanosomes resisted establishment of infection during the whole 

period of observation. In contrast a group of mice infected with the mel 

Cy-resistant on the same day developed patent infection and subsequently
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died as result of intense parasitaemia. Moreover a group of three mice 

treated with 10.0 mg/kg mel Cy before infection and challenged eight days 

later with the mel Cy-resistant clone developed patent infection providing 

evidence that the failure of the establishment of the second infection in the 

first group was not caused by drug residue. Similarly a group o f mice 

infected with the resistant population and treated with mel Cy at 10.0 

mg/kg continued to be parasitaemic.

The results show that the mel Cy-resistant clone maintained a similar 

antigenic relationship with the parent clone despite frequent passage in 

immunosuppressed mice during the process of developing mel Cy resistance.
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Section 2: Studies with isom etam idium  chloride in norm al and 

immunosuppressed mice

Experiment 8: The sensitivity of T. evansi GRVPS 18/2 to isometamidium. mel 

Cv and diminazene in normal mice.

Experimental Design.

The drug susceptibility of a clone of T. evansi (T. evansi GRVPS 

18/2), isolated from the same stabilate as GRVPS 13/3 and known to be 

suramin resistant (Abebe et al., 1983) was investigated in normal mice. The 

drugs tested were isometamidium, diminazene and mel Cy. Infected mice were 

treated with different doses of either of the drugs and monitored for 

relapses.

Results.

The results are presented in Table 2.5. This clone was found to be 

relatively sensitive to all trypanocidal drugs tested. Treatment at 0.5 

mg/kg isometamidium resulted in the relapse of the treated cases. Two of the 

relapses occurred five days after treatment while the remaining mouse relapsed 

on day nineteen post-treatment. However at 1.0 mg/kg isometamidium the 

infection was cleared and no relapses were detected during the period of the 

experiment. Treatment at 0.5 mg/kg diminazene was also found not to effect 

cure in all the injected mice. One mouse o f the group treated at 0.5 mg/kg 

remained positive while the other two mice were cured. However at 1.0 mg/kg 

all three treated cases were cured with no relapses during the course of the 

experiment. On the other hand a dose of 0.5 mg/kg mel Cy was found adequate
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to attain a state of aparasitaemia during the post-treatment observation 

period. Thus although this clone was known to be suramin resistant it was not 

resistant to the other trypanocides tested.

Experiment 9 : Development of isometamidium resistance bv T. evansi in 

immunosuppressed mice.

Experimental Design.

The aim of this experiment was to increase the resistance of the clone 

(T. evansi GRVPS 18/2) to isometamidium chloride in immunosuppressed mice. 

The protocol adopted was similar to that used in the development of mel 

Cy-resistance and described in experiment 2.

Results.

Details of the steps taken to increase the drug resistance of the clone 

are shown in Fig. 2.4. At the beginning of this experiment a group of 3 

mice immunosuppressed by whole body irradiation were infected with T. evansi 

GRVPS 18/2 and treated with isometamidium. One mouse was given a dose of 

0.5 mg/kg while the other 2 were treated at 1.0 mg/kg. In contrast to the 

normal mice, treatment at 1.0 mg/kg isometamidium did not lead to the 

disappearance of trypanosomes from the circulation in irradiated mice, 

suggesting a decrease of the trypanocidal efficacy of this compound 

associated with the abolition of the host immune response. Subsequent 

subinoculations and treatments with gradually increasing doses of 

isometamidium consistently led to relapses until the clone attained a marked 

degree of resistance close to the maximum tolerated dose in the murine host. 

Trypanosome populations breaking through at 20.0 mg/kg were passaged once
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Table 2.5. Drug sensitivity of T. evansi GRVPS 18/2 to isometamidium, mel Cy and 
diminazene.

Trypanocide
Tested

Dose
(mg/kg)

GRVPS 18/2 
T. evansi Days to 
Relapsed/ Relapse 
Treated

0.5 3/3 5; 19; 5

Isometamidium 1.0 0/3 -

7.0 0/3 -

0.25 3/3 19; 19; 19

Mel Cy 0.5 0/3 -

5.0 0/3 -

0.5 1/3 *

Diminazene 1.0 0/3 -

5.0 0/3 -

* Remained positive



in irradiated mice without drug treatment to obtain a working stabilate 

T. evansi GRVPS 18/2R5. Thus within a period of three months and eleven 

passages in immunologically compromised hosts it was possible to 

significantly increase the resistance of this clone to isometamidium 

chloride.

Experiment 10: A comparison of isometamidium sensitivity of the resistant 

(GRVPS 18/2R5) and the parent (GRVPS 18/2i clones in normal mice..

Experimental Design.

In view of the high degree of isometamidium resistance developed in 

irradiated mice, the sensitivity of this drug-resistant clone in normal mice 

was investigated and compared against the parent clone. Groups of mice were 

either infected with the parent clone (T. evansi GRVPS 18/2) or with the 

resistant clone (T . evansi GRVPS 18/2R5) and treated with a range of 

doses of isometamidium chloride following the onset of parasitaemia. For 

each clone six groups of mice were used. The doses chosen for the groups 

infected with the parent clone were 0.25,0.5,1.0, 2.5, 5.0 and 10.0 

mg/kg. Those infected with the resistant, on the other hand, were treated at 

1.0,2.5, 5.0, 10.0, 15.0 and 20.0 mg/kg isometamidium chloride. All 

groups were monitored for breakthroughs during the following eight weeks and 

any relapsed mouse was removed from the experiment.
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Figure 2.4. The development of isometamidium resistance by T. evansi GRVPS 18/2 
in immunosuppressed mice.



Results.

Parasitaemia in all cases developed during the first week of 

infection at which time the mice were treated. In the groups infected with 

the parent clone relapses occurred in those treated with 0.25 and 0.5 mg/kg 

(Table 2.6), however at 1.0 mg/kg complete cure was achieved. In contrast 

relapses were detected in all the groups infected with the resistant clone 

(Table 2.6). At 20.0 mg/kg the three mice infected had all relapsed. Time to 

relapse was 10 and 21 days post-treatment. From these observations the 

conclusion can be drawn that isometamidium resistance developed in irradiated 

mice was retained when the clone was tested for drug sensitivity in normal 

immunocompetent mice.

82



Table 2.6. A comparison of isometamidium sensitivity of the parent clone (GRVPS 18/2) and
the resistant clone (GRVPS 18/2R5) in normal mice.

Group
Isometamidium

Dose
(mg/kg)

GRVPS 18.2 
Relapsed/ Days to 
Treated Relapse

GRVPS
Relapsed/
Treated

18/2R5 
Day to 
Relapse

A 0.25 */3 * .  * .  * .  
> * » - -

B 0.5 3/3 *. *. e
» » ° - -

C 1.0 0/3 - 3/3 * .  ^c. 4c9 *

D 2.5 0/3 - 3/3 8; 8; 8

E 5.0 0/3 - 3/3 8; 8; 11

F 10.0 0/3 - 3/3 19; 11; 8

G 15.0 - - 2/3 10; 10

H 20.0 - - 3/3 21; 10; 21

* Remained positive



Section 3: Studies with diminazene aceturate in normal and

immunosuppressed mice.

Experiment 11: The development of diminazene resistance bv T. evansi in 

immunosuppressed mice.

Experimental design.

A clone of T. evansi (T. evansi GRVPS 19/5), isolated from GVR 

72, was subjected to continuous passage in irradiated mice treated with 

gradually increasing doses of diminazene aceturate in order to enhance its 

resistance to the drug. This clone was sensitive to suramin (Abebe et al„

1983) and was not known to be resistant to any of the other trypanocidal 

drugs. The procedure followed was similar to that described in experiment 2 

and involved infecting irradiated mice with the clone and treating with 

gradually increasing doses of diminazene aceturate.

Results.

Fig. 2.5 outlines the sequence of steps undertaken. The entire process 

of increasing the resistance of the clone to the highest possible level of 

diminazene took a period of twelve weeks and eleven passages in 

immunosuppressed mice. At the beginning of the experiment 3 irradiated mice 

were infected with T. evansi GRVPS 19/5 where one mouse was treated with 

0.5 mg/kg while the remaining two were treated with 1.0 mg/kg of diminazene. 

Only a modest reduction of parasitaemia was recorded following treatment 

at 1.0 mg/kg, hence the infection was transferred into a fresh group of 

four immunosuppressed mice. In this group treatment was effected on the
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fifth day post-infection. The doses administered were 1.0 (1 mouse), 1.5 

(2 mice) and 2.0 (1 mouse) mg/kg. In all the animals the level of the 

parasitaemia remained high and the infection was then transferred into a 

new group and treated at a higher dose. This process continued until the 

trypanosomes developed a high level of diminazene resistance. The 

populations breaking through 80.0 mg/kg were stabilated and stored as a 

reserve stabilate. Subsequently a working stabilate designated T. evansi 

GRVPS 19/5BR6 was prepared in irradiated mice.

Experiment 12: A comparison of diminazene sensitivity of the resistant 

clone (GRVPS 19/5BR6) and the parent (GRVPS 19/51 clone in normal 

mice.

Experimental Design.

With the success encountered in increasing the drug-resistance of clone 

of T. evansi to diminazene in immunosuppressed mice further attempts were made 

to establish the stability of this resistance in immunocompetent hosts.

Previous experiments have confirmed that mel Cy and isometamidium resistance 

produced in irradiated mice persist in normal mice. This experiment was 

intended to determine the sensitivity of the clone subjected to continuous 

passage in irradiated mice and treated with increasing doses of diminazene 

aceturate and compare these results with those of the parent clone. To this 

effect 36 normal mice were divided into groups where 6 groups of 3 mice each 

were infected with the parent clone (T. evansi GRVPS 19/5). Further 6 

groups were inoculated with the clone rendered diminazene resistant (GRVPS 

19/5BR6). Treatment was made when examination of wet blood films revealed 

significant numbers of trypanosomes in the circulation. The doses
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administered were 0.5, 1.0, 2.5, 5.0, 10.0, and 20.0 mg/kg diminazene 

aceturate for the parent clone and 2.5, 5.0, 10.0, 20.0, 40.0 and 80.0 

mg/kg for the resistant clone.

Results.

Parasitaemia was quicker to develop in the groups infected with the 

parent clone compared to those infected with the resistant. The two clones 

showed a marked difference in their sensitivity to diminazene (Table 2.7).

In the groups infected with the parent clone, T. evansi GRVPS 19/5 a dose 

of 1.0 mg/kg cured all cases. On the other hand no cures were achieved at 80.0 

mg/kg in those infected with the resistant clone. This dose is close to the 

maximum tolerated dose in mice. Indeed one mouse died immediately after treatment 

because of toxicity.

The results provide further evidence that the drug resistance developed 

by T. evansi clones in immunosuppressed mice is a true resistance and is 

maintained in normal hosts.
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Table 2.7. A comparison of diminazene sensitivity of the parent clone (GRVPS 19/5) and
the resistant clone (GRVPS 19/5BR6) in normal mice.

Group
Diminazene
Dose
(mg/kg)

GRP VS 19/5 
Relapsed/ Days to 
Treated Relapse

GRVPS
Relapsed/
Treated

19/5BR6 
Days to 
Relapse

A 0.5 3/3 29; 23; 15 - -

B 1.0 0/3 - 3/3 *• *• 0

C 2.5 0/3 - 3/3 *. *• 9 * * **

D 5.0 0/3 - 3/3 *. *. 9

E 10.0 0/3 - 3/3 *; 2; 4

F 20.0 0/3 - 3/3 *; 2; 4

G 40.0 - - 3/3 10; 24; 24

H 80.0 - - 2/3(1) 24; 40

* Remained positive

(1) One mouse died because of toxicity



Discussion

The results presented here indicate that immunosuppression of the host 

considerably reduces the efficacy of the trypanocidal drugs currently 

available for the treatment of trypanosomiasis and can lead to the rapid 

development of high levels of drug resistance.

In the course of this study clones of Trypanosoma evansi resistant to 

many of the trypanocidal drugs currently in use against animal 

trypanosomiasis was rapidly achieved. Initial tests on the sensitivity 

of the clones GRVPS 13/3 and GRVPS 18/2 as well as GVR 74/1, the stock 

from which the two clones were derived and known to be suramin resistant as 

well as GRVPS 19/5 known to be suramin sensitive revealed that the clones 

were relatively sensitive to the other trypanocides. However following 

rapid passage in immunosuppressed hosts under increasing drug pressure clones 

of T. evansi were obtained which were highly resistant to each specific 

trypanocidal drug.

In all the three clones tested, significant differences were detected 

concerning efficacy of the treatment depending on the immunological status 

of the mice. The doses of trypanocidal drugs which achieved cure in normal 

mice were found incapable of clearing the infection if the hosts were 

previously immunocompromised.

Attempts to produce drug resistance in normal immunocompetent mice on the 

other hand failed to lead to the development of drug resistance.

In the present studies ionising radiation from Co-60 source was used to 

achieve immunosuppression. Although ionising radiations cause substantial 

damages to all living cells it has been reported that lymphocytes are more
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sensitive compared to other cells (Anderson and Warner, 1976). Following 

exposure to sublethal doses of radiation it was found that the more sensitive 

lymphocytes such as B-cells and some T-cell subpopulations die quickly and this 

type of cell death is known as the interphase death. The more 

radio-resistant lymphocytes on the other hand were reported to survive the 

initial effects of radiation, however death of these cells occurs when they 

begin to divide, the mitotic death, as a result of damages sustained by the 

cell chromosomes (Anderson and Warner, 1976). The sublethal dose used in the 

experiments was sufficient to impair the immune system for approximately one 

week followed by slow recovery of normal immune function.

When the irradiated mice were infected with T. evansi and the 

infection is treated with trypanocidal drugs the efficacy of the drugs 

was markedly impaired, indicating the desirability of having fully 

functional immune system for effective chemotherapy. The curative dose of mel 

Cy for both GRVPS 13/3 and GVR 74/1 was below 1.0 mg/kg in normal mice, 

however treatment at that dose was found to be insufficient to effect cure in 

the immunosuppressed mice. This finding is in agreement with the previous 

observations that the efficacy of melarsoprol is significantly lowered in 

mice immunosuppressed either by whole body irradiation or cyclophosphamide 

treatment (Frommel, 1988).

Having successfully developed both a mel Cy-resistant and 

isometamidium-resistant clones from an original suramin-resistant clone, and 

a diminazene-resistant clone from an initially suramin-sensitive clone of 

T. evansi respectively, further investigations on the nature of the 

resistance and particularly whether the resistance would be stable in normal 

immunocompetent hosts were made. In all the clones the high levels of drug 

resistance developed in immunosuppressed hosts was found to be stable and
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persisted when the clones were subsequently tested in normal immunocompetent mice. 

The results highlight in a dramatic manner the important role that the host 

immune system plays in the efficacy of trypanocidal drugs.

In the clone which gained mel Cy resistance it was observed that the mice 

which survived treatment at 40 mg/kg (maximum tolerated dose) the level of 

parasitaemia was not affected by the drug and continued to increase 

progressively thereafter. Indeed no difference could be discerned between them 

and the controls which received no treatment. On the other hand in the clones 

which attained isometamidium and diminazene resistance most of the doses 

administered temporarily cleared the infection, however they all subsequently 

relapsed usually within two to three weeks. This difference in response could 

be attributed to the degree of parasitaemia at the time of drug 

administration. In both isometamidium and diminazene resistant clones, 

parasitaemia was relatively slow to develop and reached only moderate 

levels.

Nevertheless the results unequivocally demonstrate that resistance generated in 

immunosuppressed mice is stable and subsequently continues to be expressed 

consistently irrespective of the immune status of the host.

The role of the host defence mechanism in the chemotherapy of 

trypanosomiasis was described by Ehrlich at the turn of this century who 

argued that the combined action between drugs and the host immune response was a 

prerequisite for the achievement of cure (Williamson, 1970; Doenhoff et. 

al. 1991). Furthermore this interdependence may have special bearing on 

the treatment of trypanosomiasis particularly T. evansi. It has been 

suggested that in the treatment of surra the two trypanocidal drugs currently
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used, namely suramin and quinapyramine, both depend on the participation 

of the host immune response to be effective (Jancso and Jancso, 1935; Sen et 

al., 1955).

Studies showing that suppression of the host immune response can lead 

to the development of drug resistance in trypanosomiasis were first 

reported in the 1930s. Jancso and Jancso (1934) devised a method which 

would exclude the immune response by splenectomy and inoculation of 

ellectro-colloidal copper. In their experiment it was found that in rodents 

immunocompromised in this manner chicken erythrocytes inoculated intravenously 

remained in the circulation for 24 to 36 hours while in intact animals the red 

blood cells disappeared within 2 to 3 hours. It was later reported that 

suramin-resistant strains of T. brucei could be produced in mice and rats 

immunosuppressed by splenectomy and blockage of the reticuloendothelial system 

(Jancso and Jancso, 1935). Further attempts made to establish the 

specific components of the immune response involved in the rapid development 

of resistance demonstrated the crucial role of antibodies in effective 

chemotherapy. Schnitzer et al. (1946) reported that splenectomy alone led 

to the development of p-rosalinine resistance by T. equiperdum while on the 

other hand the development of the resistance could be counteracted by passive 

transfer of immune serum.

The mechanism behind the rapid development of resistance in 

immunosuppressed hosts is not clear and merits further investigation.

Jancso and Jancso (1935) concluded that trypanosomes have the capacity to 

adapt themselves to trypanocidal drugs and by excluding the host immune 

response "free play" is given to the process of adaptation of the 

parasites. Recent studies on chloroquine-resistance by Plasmodium falciparum  

have shown that resistant organisms rid themselves of chloroquine 40-50
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fold faster than do sensitive parasites and that the rapid-efflux 

phenotype is linked to a single genetic locus on P. falciparum  chromosome 7 

(Wellems, 1991). Therefore it may be possible that small number of 

trypanosome organisms which develop resistance as a result of mutational 

changes have the opportunity to multiply thus passing the genes responsible 

for the resistance to their progenies. This opportunity would not be 

available in immunocompetent hosts since immune response would have ensured 

opsonisation and subsequent elimination of individuals which had survived 

drug treatment. Diesing et a l  (1986) reported that addition of variable 

antigen type populations of T. evansi to immune serum led to specific 

opsonisation o f trypanosomes resulting in an intense metabolic activation 

and chemiluminescence response of phagocytic cells.

Whether variation in drug sensitivity is associated with variable 

antigen types also requires further elucidation. However as part of these 

experiments normal immunocompetent mice infected with T. evansi GRVPS 13/3 and 

challenged with the mel Cy-resistant T. evansi GRVPS 13/3R19 a week later 

after the primary infection was eliminated by mel Cy treatment failed to 

become parasitaemic during the three week observation period. The failure of 

the challenge to establish infection could not be attributed to drug residue, 

since a control group treated with mel Cy and infected with the mel 

Cy-resistant clone developed a patent infection. Moreover it has been noted 

that mel Cy is rapidly excreted and the plasma trypanocidal activity was 

found to be less than 48 hours (Baltz et al., 1989). According to Jones and 

McKinnell (1985) passage in immunosuppressed rodents does not interfere 

with antigenic variation in T. evansi, however the rapidly multiplying 

VATs were found to predominate over the others in these circumstances.
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It has been reported that trypanosomes which attain drug resistance 

or break through chemoprophylaxis tend to multiply rather slowly and 

display diminished pathogenicity (Tobie and Von Brand, 1953; Sones et 

al., 1989). Cantrell (1956) argued that trypanosomes which develop 

drug-resistance are less well adapted to survival in the absence of the drug 

compared to their unmodified parents. Furthermore Silayo and Marandu 

(1989) reported that a strain of T. congolense which developed diminazene 

resistance through repeated exposure exhibited reduced pathogenecity with the 

infected mice surviving upto 120 days while the survival time following 

infection with two sensitive strains was 20 to 60 days. However in the 

present studies no variation in pathogenicity was detected between the clone 

rendered highly resistant to mel Cy and the parent clone. In both cases 

survival time did not exceed 16 days post infection.

It is also noteworthy that the clone of T. evansi which developed a 

high level of resistance to mel Cy was found to be also resistant to 

diminazene and pentamidine. This finding agrees with earlier reports which 

suggested cross-resistance links between arsenicals and diamidines (Williamson, 

1970; Zweygarth and Kaminsky, 1990).

A major area where the cross-resistance between diamidines and 

arsenicals coupled with the reduced efficacy of trypanocidal drugs in 

immunosuppressed hosts could be important is in the control of human 

trypanosomiasis in Africa. Both pentamidine, a diamidine, and 

melarsoprol which is a melaminyl arsenical are used against this condition 

(Williamson, 1970).

Whereas it is relatively easy to produce diminazene aceturate resistance 

using immunocompromised animals (this thesis) it is reputedly very difficult, 

either to find or produce under field conditions. In endemic areas of human
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trypanosomiasis the possibility exists that animals may be chronically 

affected with T. rhodesiense or T. gambiense. Repeated dosing with 

diminazene aceturate will not eliminate these CNS-trypanosomes and it is 

unknown what the effects of repeated dosing will have on the 

CNS-trypanosomes. If these are rendered diminazene-resistant, not only 

will they be resistant to diminazene but also to the two main drugs used in 

human medicine. They will be resistant to pentamidine, another diamidine and 

also they will be cross-resistant to melarsoprol, virtually the only 

compound capable of curing late-stage sleeping sickness. These resistant 

trypanosomes may spread and infect the human population.

There is also the possibility that patients with diseases which are 

known to impair the immune system, namely malaria, which is endemic in the same 

regions as trypanosomiasis, and especially those patients with AIDS may 

form a milieu for the generation of drug-resistant strains. Although, to 

our knowledge no AIDS patient has yet been reported to have been also 

infected with trypanosomes such patients may be routinely treated with 

trypanocidal drugs such as pentamidine, suramin and DFMO to control 

concomitant infections associated with AIDS. If trypanosomes were also 

present the generation of drug-resistance could occur.

The emergence of drug resistance in immunocompromised hosts could also 

have serious implications in animal trypanosomiasis since there are other 

protozoan infections which induce various degrees of immunosuppression in 

animals (Phillips and Wakelin, 1976) and which commonly occur in 

trypanosome endemic areas. There is a large body of evidence, supported with 

experimental confirmations, that such protozoan infections as babesiosis 

and toxoplasmosis are capable of inducing immunosuppression of the infected 

hosts (Callow and Stewart, 1978; Phillips and Wakelin, 1976;
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Strickland et. al., 1972). It has been reported that calves experimentally 

infected with Babesia bovis develop significantly less resistance to the 

one-host tick Boophilus microplus compared to non-infected controls (Callow 

and Stewart, 1978), as judged from the number of engorged females 

developed. Elsewhere Babesia microti has been shown to temporarily depress 

the immune response of mice to the nematode Trichuris muris thus delaying the 

expulsion of the adult worms from the intestine (Phillips and Wakelin,

1976).

Because of the difficulties and expenses involved in the introduction 

of new trypanocides further work on the causes and extent of 

immunosuppression in the field as well as the possible impact it might have 

on the development of trypanocide resistance would be warranted.

The relative ease by which drug-resistant lines of parent cloned 

stabilates can be produced means that various tests such as isoenzyme 

characterisation as well as chromosome karyotyping and investigations on 

kinetoplast DNA (kDNA) minicircles can be carried out, comparing each 

drug-resistant stabilate not only with its parent clone but also with other 

lines produced against unrelated trypanocides. Studies on these clones 

together with intermediate clones may give some indication if changes in drug 

resistance are a gradual process or a single event.

It should be possible to produce from a single parent clone a series of 

clones resistant to each of the trypanocidal drugs as well as clones with 

various combinations of multi-drug resistance. Analysis of these may give a 

clearer insight into the mechanisms of drug resistance per se as well as 

cross-resistance and possibly lead to the development of new tests for drug 

resistance and improved strategies for combating drug resistance.
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Such studies not only provide information of considerable scientific 

interest but may also assist in the future control of trypanosomiasis.
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