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Abstract

Unicellular bottom-heavy swimming microorganisms are usually denser than the fluid

in which they swim. In shallow suspensions, the bottom heaviness results in a gravi-

tational torque that orients the cells to swim vertically upwards in the absence of fluid

flow. Swimming cells thus accumulate at the upper surface to form a concentrated layer

of cells. When the cell concentration is high enough, the layer overturns to form biocon-

vection patterns. Thin concentrated plumes of cells descend rapidly and cells return to

the upper surface in wide, slowly moving upwelling plumes. When there is fluid flow, a

second viscous torque is exerted on the swimming cells. The balance between the local

shear flow viscous and the gravitational torques determines the cells’ swimming direc-

tion, (gyrotaxis). In this thesis, the wavelengths of bioconvection patterns are studied

experimentally as well as theoretically as follow;

First, in aquasystem it is rare to find one species lives individually and when they swim

they can form complex patterns. Thus, a protocol for controlled experiments to mix

two species of swimming algal cells of C. rienhardtii and C. augustae is systematically

described and images of bioconvection patterns are captured. A method for analysing

images using wavelets and extracting the local dominant wavelength in spatially varying

patterns is developed. The variation of the patterns as a function of the total concen-

tration and the relative concentration between two species is analysed.

Second, the linear stability theory of bioconvection for a suspension of two mixed species

is studied. The dispersion relationship is computed using Fourier modes in order to

calculate the neutral curves as a function of wavenumbers k and m. The neutral curves

are plotted to compare the instability onset of the suspension of the two mixed species

with the instability onset of each species individually. This study could help us to

understand which species contributes the most in the process of pattern formation.

Finally, predicting the most unstable wavelength was studied previously around a steady

state equilibrium situation. Since assuming steady state equilibrium contradicts with

reality, the pattern formation in a layer of finite depth of an evolving basic state is studied

using the nonnormal modes approach. The nonnormal modes procedure identifies the

optimal initial perturbation that can be obtained for a given time t as well as a given set

of parameters and wavenumber k. Then, we measure the size of the optimal perturbation

as it grows with time considering a range of wavenumbers for the same set of parameters

to be able to extract the most unstable wavelength.
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Chapter 1

Introduction

1.1 General background

Single-celled microorganisms are one of the oldest organisms on the planet Earth. Their

formation started approximately 3−4 billion years ago (Schopf [101]). Although they

constitute the vast majority of the Earth’s biomass, they can not be seen by naked eye

since their length scale is very small, typically of order 1 µm for bacteria and 10 µm

for algae (Koch and Subramanian [66]). Over millions of years, enormous and diverse

ranges of microorganisms have evolved, from the bacteria found in the stomachs of

human beings to algae found in rivers and oceans around the world (Falkowski et al.

[31], Ma et al. [77] and Finlay et al. [33]). Such microorganisms have a significant

impact on ecosystems. For example, the algae in the sea photosynthesize by using CO2

from the air as a source of carbon, and as consequence of this process they release O2

(Arnold and Murray [5]). So, any variation in their population can have a long term

affect on weather conditions. Moreover, it can cause an extinction of large species since

microorganisms are at the bottom of the food chain (Compant et al. [23] and Fuhrman

[35]).

Many microorganisms can be exploited in the industrial field. In the pharmaceutical

industry, for instance, bacteria are widely used in manufacturing antibiotics (Drautz et

al. [28]). They are also used to produce fertilizer (Popova et al. [92]) and in sewage

1
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treatment (Horan [54]). However, a rapidly developing application of these microbic

creatures is in the energy industry. Some species of microorganisms, such as Entromor-

pha intestinalis, can be used as a potential source of biofuel (Gnansounou and Roman

[40], Jeong and Park [60] and Mendoza et al. [80]) that could be a substitution to fossil

fuels.

Since 1675 when Anton van Leeuwenhoek first discovered them (Porter [93]), researchers

have investigated their swimming behaviour and this investigation still continuous (Jef-

fery [58], Kessler [62], Lavandowsky et al. [71], Kessler and Hill [65], Hill and Häder

[49], Silflow and Lefebvre [104], Berg and Anderson [15] and Lauga and Powers [70]).

Such studies can provide the means to explore how they feed, mate and die, control light

for photosynthesis, reproduce themselves to form colonies, and regulate their lives and

consequently the lives of the larger creatures that feed on them.

Studies of the swimming behaviour of microorganisms have advanced significantly over

the last 15 years. For example, E. Lauga [69] reviewed the biomechanics of bacterial

motility. He highlighted the impacts of fluid dynamics relevant to the swimming of bac-

teria in viscous environments. He focused on the mechanics of single−celled behaviour

with the aim of understanding the way the a single bacterium exploits the surround-

ing fluid together with the physical constraints the bacterium is subject to. One of his

results is that the low Reynolds number hydrodynamics is at the heart of the funda-

mental physics of bacteria swimming. Also, although surrounding fluids play important

roles in the life of bacteria, hydrodynamic forces on flagellar filaments and cell bodies

also have to be balanced with forces associated with bending and twisting elasticity.

DeLillo et al. [74] demonstrates that the fluid acceleration reorients gyrotactic plank-

ton, triggering small−scale clustering by studying the distribution of the phytoplankton

Chlamydomonas augustae within a rotating tank. Their results are that, when fluid

acceleration and gravitational acceleration are on the same order, distribution of gy-

rotactic swimmers becomes significantly more clustered. However, it is noted that the

turbulence in natural environments is too weak to reach the needed regime. Further-

more, it was highlighted that nonhomogeneous conditions, such as solid boundaries, may

drive fluid acceleration induced cell clustering in the bottom boundary layer as a result
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of the generation of intense vorticity at moderate Reynolds numbers. Son et al. [105]

studied and analysed the motility adaptations of microorganisms. They investigated

the motility strategies such as swimming in moving fluids, swimming in dense microbial

suspensions, the hydrodynamic signature of microorganisms using dynamic microbial

imaging. Also, they looked into the utilization of microfluids for the control of microbial

environments. They concluded that the ability of microfluids to combine the dynamic

imaging and environmental control has provided a tremendous way of capturing the

fundamental nature of various dynamic microbial processes. Furthermore, it is noted

that due to the temporally and spatially explicit understanding of microbial processes

provided by dynamic imaging and microfluids, a vast range of microbial processes will

benefit from the application of these approaches. All these studies and other similar

studies in the field of the physics of microfluids have set the basic rules as well as open

the gate to investigate other microbial natural phenomena such as bioconvection due to

swimming behaviour of the microorganisms in response to some stimuli. In this thesis,

to to study aspects of bioconvection, we shall take as the starting point, the assump-

tion that all cells swim with a constant speed and that their orientation is given by a

probability density function that satisfy a Fokker−Plank equation.

In a realistic aquasystem one usually finds two or more species living together. When at

least one non−mutually buoyant species swims in a biased directions and accumulates,

they can form intricate patterns, named bioconvection, that are influenced by many

factors such as the relative concentration of each species and the total concentration of

the suspension, light and suspension depth. One aim of this thesis is to illustrate the

patterns observed in mixed species suspensions of swimming microorganisms experimen-

tally, to demonstrate the effect of the relative and the total concentration in a layer of

finite depth, as well as theoretically, to investigate the onset of bioconvection in uniform

suspensions. This could help us to understand which species has the stronger impact

on the process of pattern formation. This is the first time there has been a quantitative

experimental study of mixed species rather than one species forming patterns, which this

is the biological reality in the wild. This is supported by the first theoretical studies.

Since earlier studies assumed that the system had reached the steady state before the

instability arose which is considered unrealistic situation, a further aim is to investigate
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the linear stability in a layer of a finite depth around a time−evolving basic state using

the nonnormal modes. This enables us to estimate the most unstable wavenumber of

bioconvection patterns. The non−normal analysis allows us to explore the mechanism

underlying the initial growth of patterns on an evolving concentration profile.

1.2 Orientation mechanisms and cell swimming behaviours

In this thesis, the focus will be on swimming single-celled microorganisms. In general,

microorganisms can be categorized into two major divisions: prokaryotic cells, such as

cynobacteria, which are characterized by the lack of a nucleus; and eukaryotic cells which

have a cell nucleus, such as the green algae. Microorganisms evolve with time according

to geological, geochemical and biological processes (Falkowski et al. [31] and Ma et al.

[77]). Recent genetic research has established a detailed phylogenetic tree. Hence, a

precise classification based on genetic evidence can be specified (Woese [117]).

Motile microorganisms generally swim in a particular direction as a response to stimuli

(Pedley and Kessler [87]). According to Henderson’s dictionary, these directed motions

are called taxes (Eleanor [30]). Many bacteria, such as Escherichia coli (Lauga and Pow-

ers [70]), swim towards regions of higher nutrient concentration to feed themselves. This

response to chemical gradient is called chemotaxis (Berg and Brown [16] and Kundra et

al. [67]). Some bacteria may respond to oxygen gradients by either swimming towards

the upper surface if they use oxygen to metabolise fats and sugars, such as Bacillus sub-

tilis (Czirók et al. [25]) or swimming down away from the upper surface if the oxygen

causes damage to the cell. The bacterium is classified in this case as aerotactic (Taylor

[108], Hong et al. [53] and Okon et al. [83]).

Some microorganisms respond to the light by either swimming towards light or away

from it, such as Euglena, Chlamydomonas and several other species (Wager [114] and

Kessler [64]). This is called phototaxis (Foster et al. [34], Forward [95] and Jékely et

al. [59]). Many motile green algae are phototactic. They photosynthesize by converting

light to energy and produce O2 as a byproduct. Some microorganisms, such as Chlamy-

domonas (Pedley and Kessler [87]), have an asymmetric mass distribution. In other
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words, the center−of −mass is displaced from the center−of−buoyancy. Hence, in the

absence of other effects, the cells swim vertically upwards on average as a negative re-

sponse to the acceleration due to gravity g. This mechanism is called gravitaxis (Häder

et al. [46], Lebert et al. [73] and Roberts and Deacon [98]). However, in the presence

of the fluid flow, a balance between the gravitational and the viscous torques biases the

cell swimming direction. This mechanism is called gyrotaxis.

Despite the fact that different species of microorganisms have different cell morphology

and swimming styles, they swim by waving, undulating and rotating their appendages

at low Reynolds number, Re � 1. This is due to the fact that the product of their

body length scale, L, together with their swimming velocity, V, is small compared to

the ambient kinematic fluid viscosity, ν = µ
ρ , where ρ and µ are the fluid density and

viscosity, respectively (Purcell [94]). The Reynolds number, Re = LVρ
µ , is a measure

of the ratio between the inertial forces and the viscous forces. So, when this number

is small, the viscous forces dominate. In this case, the dimensionless Navier−Stokes

equation will be

−∇p+∇2u = 0 . (1.1)

Equation (1.1) states that time has no effect and the reversible fluid flow prevents cells

from moving if a reciprocal swimming is used. Because they retrace their trajectory

when they reverse their motion. Hence, microorganisms have developed a range of non-

symmetric swimming strokes in order to move in a desired direction (Purcell [94]). For

example, the paramecium have an ellipsoidal cell body, of length 100− 200 µm, covered

by thousands of approximately 10 µm long cilia that are uniformly distributed over the

cell. These cilia beat at a frequency of 20 Hz to produce a sinusoidal wave of the cilia

tips that help the cells swim with a speed of up to 500 µms−1 (Lauga and Powers [70]

and Bary [9]; see Figure 1.1a) . In contrast, spiroplasma a bacterium, of width 150 nm

and length of a few µms, moves by deforming its body as they have no cilia or flagella

attached to their bodies to drive them in the surrounding fluid (Lauga and Powers [70]

and Shaevits et al. [102]; see Figure 1.1(c)).

E. coli exhibits another type of non-symmetric swimming motion. This type of bacteria
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(a) (b) 

(c) 

Figure 1.1: Diagram of some swimming microorganisms that exhibit different swim-
ming styles. (a) Paramecium with its cilia distributed uniformly around the cell with a
sinusoidal wave beating pattern to propel itself. (b) The bacterium E. coli, which has
flagella attached to the cell that rotate in order to swim. (c) Spiroplasma a bacterium

that moves in the surrounded fluid by deforming the cell body.

has 2 µm body and flagella that are hooked to a rotary motor embedded in the cell

wall. The flagella are of 10 µm length and have a rigid helical structure that rotate

to form a 3D helical motion causing the cells to swim with a typical speed of 25 − 35

µms−1 (Lauga and Powers [70], Purcell [94], Bary [9] and Stocker and Durham [107];

see Figure 1.1(b)). Other microorganisms, such as spermatozoa, possess a long flexible

flagellum that they undulate in a 2D whip−like motion to swim (Lauga and Powers

[70]).

Our subject of study are the unicellular biflagellated green algae Chlamydomonas au-

gustae (mistakenly referred to in earlier literature as Chlamydomonas nivalis Croze et

al. [24]) and Chlamydomonas reinhardtii. They both have spheroidal bodies of length

approximately 7 − 10 µm and two flagella attached to the anterior end. The center of

mass is displaced from the geometric center (Pedley and Kessler [87], Rüffer and Nultsch

[97]; see Figure 1.2). They swim with a non−reversible breaststroke like motion. During
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Figure 1.2: The cell structure of the green algae Chlamydomonas.

the effective stroke both flagella point vertically upwards, in the swimming direction.

Then, the straight flagella beat backwards towards the cell body and the cell moves for-

ward, while in the recovery stroke a bend passes from the base to the tip of the flagella

to reset them in their original position. However, there is a significant overlap between

the two strokes (Rüffer and Nultsch [97]; see Figure 1.3). C. augustae and C. reinhardtii

propel themselves with mean swimming speeds of 55− 63 µms−1 (Hill and Häder [49])

and 130 µms−1 (Guasto et al [44]), respectively.

1.3 Bioconvection

Some unicellular bottom−heavy swimming microorganisms are denser than the fluid in

which they swim. The green algae C. augustae, for example, are 5% denser than the

ambient fluid (Pedley and Kessler [87]). The bottom heaviness results in a gravitational

torque that orients the cells to swim vertically upwards (negative gravitaxis) on average

in the absence of the fluid flow. Hence, swimming cells accumulate at the upper surface

of a shallow suspension to form a concentrated layer of cells. When the cell concentration

at the upper surface is high enough, the layer overturns to form patterns. This process

is called the overturning instability and it is similar to the Rayleigh−Taylor instability

of thermal convection (Plesset and Winet [90]; see Figure 1.4).
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(a) Effective 

stroke 

(b) Recovery 

stroke 

Figure 1.3: The swimming stroke of the green algae Chlamydomonas. (a) Both flagella
point upwards then beat backwards to move the cell forward. (b) The bend passes from

the base to the tip to return the flagella to their original position.

 

X 
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Z 

Figure 1.4: A diagram that demonstrates the overturning instability when the swim-
ming cells aggregate at the upper surface of the fluid. When the concentration is

sufficiently high the layer overturns.



Introduction 9

 

Cell swimming 

direction 

Cell swimming 

direction 

cells 

Z 

X 

upwelling 

fluid region 

upwelling 

fluid region 

downwelling fluid region 

Figure 1.5: A diagram of the plumes that form from the gyrotatic instability when
the viscous torque is in balance with the gravitational torque. Cells swim towards the

downwelling fluid areas.

In the presence of fluid flow, a viscous torque also is exerted on the swimming cells.

The balance between the viscous and the gravitational torques determines the mean

swimming direction. This is called gyrotaxis (Kessler [62]). Cells, in this case, swim

away from upwelling fluid areas towards downwelling fluid areas to form concentrated

plumes of cells, that appears as dots when the fluid surface is viewed from above or

sometimes as falling sheets of cells; (see Figure 1.7). This is called a gyrotactic instability

(see Figure 1.5). The overturning and the gyrotactic instabilities give rise to complex

spatial patterns called “bioconvection” (see Figure 1.6).

The name bioconvection was coined by Platt in 1961 [88]. Bioconvection patterns have

been observed in species such as Tetrahymena pyriformis, bacteria and green algae, such

as Chlamydomonas, Dunaliella and Volvox. The nature and the size of the patterns

depend on the cell concentration C and the suspension depth H (Wager [114]) as well

as on several other parameters.
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Figure 1.6: Bioconvection patterns for a mixed species of C. augustae and C. rein-
hardtii. The total concentration is approximately 1.1×107 cells per cm3, with a relative

concentration of 50% (matching cell concentration rather than biomass).

 

Figure 1.7: The gyrotactic instability as it forms falling sheets. When viewed from
above one can see a roll structure. The suspension is of the green algae C. reinhardtii.
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Figure 1.8: The gyrotactic instability as it forms plumes. The suspension is of the
green algae C. augustae.

1.4 Bioconvection modelling

Although bioconvection patterns have been observed for a long time (Wager [114]), the

first model was in 1974 by Plesset (Plesset and Winet [90] and Plesset and Whipple

[89]). They modelled bioconvection as a Rayleigh−Taylor instability. The microorgan-

ism layer was simulated as a homogenous fluid layer of a small depth that is slightly

more dense than an underlying layer of uniform fluid. Their investigations resulted in a

most unstable disturbance wavelength that agreed with the experimental observations of

Tetrahymena pyriformis. In their model, diffusion between the two layers was neglected.

A year later, Childress et al. [20] presented the first self−consistent hydrodynamic model.

Unlike the study that was conducted by Plesset and Wint [90], negative gravitaxis was

considered. Explicitly one of the main assumptions was that the cells swim vertically

upward only. They assumed that they have a plane layer of a suspension of swimming

microorganisms that was bounded by two infinite horizontal boundaries at z = −H, 0,

which can be either stress−free or no−slip surfaces. The suspension was taken to be

diluted so there were no cell−to−cell interactions. The concentration distribution of

the cells was represented by a continuous function C (x, t). The swimming cells were

slightly more dense than the ambient fluid. Thus, the density variation in the suspension
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was very small. So, following the Boussinesq approximation, any changes in the fluid

density can be neglected except where it is multiplied by acceleration due to gravity g

(Kundu et al. [68]), and as the fluid was taken to be Newtonian, the first two governing

equations were

∇ ·U = 0, (1.2)

ρ
DU

Dt
+∇p− µ∇2U = −gρ (1 + αC) k, (1.3)

where U is the bulk fluid velocity, p is the pressure, ρ is the fluid density constant,

µ is the fluid viscosity constant, g is the acceleration due to gravity and C is the cell

concentration. The density fluctuation of the suspension is given by the term αCk in

equation (1.3), where 0 < α� 1. The final equation in this model was for the evolution

of C, given by

dC

dt
+∇ · J = 0, (1.4)

where J is the cell flux, defined as

J = CU (C, z) k−D · ∇C. (1.5)

Equation (1.5) imposes the negative gravitaxis property in the first term, CU (C, z) k,

in addition to randomness in cell motion, which was represented by an anisotropic dif-

fusivity tensor D

D =


DH (C, z) 0 0

0 DH (C, z) 0

0 0 DV (C, z)

 . (1.6)

In contrast with Plesset and Winet [90], the basic state was calculated as a solution

of the governing equations and the linear stability was investigated around it. Their

results were that the critical Rayleigh number Rc decreases as the depth increases, the



Introduction 13

 

   
 

   

p 

   

G -hp 

mg 

Figure 1.9: The torque balance on a bottom−heavy prolate spheroid cell. C0 is the
geometric center, G is the center−of−mass, −hp is the displacement vector between G

and C0 whereas Lv and Lg are the viscous and the gravitational torques.

critical wavenumber kc = 0 (i.e., infinite wavelength λc) and the wavenumber km that

corresponds to the maximum growth rate time γ is a positive number. Their prediction of

km to some extent agreed with experimental observations of suspensions of Tetrahymena

pyriformis. However, extremely large wavelengths were not seen experimentally when

the suspension depth is not above the critical value.

Gyrotaxis was modelled in 1987 by Pedley and Kessler [85]. They assumed a spheroidal

cell body of mass m and volume υ with cell major axis a and minor axis b. The major

axis was aligned with the unit vector p, which represents the cell’s swimming direction.

The cell was assumed to be bottom−heavy. Hence, its centre−of−mass G is displaced

from its geometric center C0 by a distance h, (see Figure 1.9). Since the cell swims

at a very small Reynolds number, inertia is absent. The cell’s swimming direction p

may be determined by a balance between viscous and gravitational torques, Lv and Lg,

respectively. In other words, the total torque LT must vanish:

LT = Lg + Lv = 0. (1.7)
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The gravitational torque Lg is

Lg = hmg (p× k) , (1.8)

where g is the gravitational constant and k is the unit vector in the vertical direction.

For a rigid prolate spheroid body with zero Reynolds number the viscous torque Lv can

be written in the vector form (Rallison [96] and Batchelor [10])

Lv = Y ·
[

1

2
ω −Ω + α0p× (E · p)

]
, (1.9)

where

Y = µv
[
α‖pp + α⊥ (I− pp)

]
. (1.10)

Here, α0, α‖ and α⊥ in equations (1.9)−(1.10) are dimensionless constants, v is the cell

volume and µ is the fluid viscousity. The cell eccentricity, α0 is given by

α0 =
a2 − b2

a2 + b2
. (1.11)

Also, α⊥ is the resistance coefficient for a rotation about an axis perpendicular to p and

α‖ is the resistance coefficient for rotation about an axis parallel to p. In equation (1.9)

E is the fluid rate−of−strain tensor, ω is the fluid vorticity and Ω is the cell’s angular

velocity, which can be written as (Pedley and Kessler [87])

Ω = Ω‖p + p× ṗ. (1.12)

Taking the vector product of p with the total torque gives

{
hmg (p× k) + Y ·

[
1

2
ω −Ω + α0p× (E · p)

]}
× p = 0. (1.13)
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The tensor E is symmetric. So, by using tensor identities equation (1.13) can be simpli-

fied to

hmg [k− (k · p) p] + µvα⊥

[
1

2
ω × p− ṗ + α0p ·E · (I− pp)

]
= 0. (1.14)

Hence,

ṗ =
1

2B
[k− (k · p) p] +

1

2
ω × p + α0p ·E · (I− pp) (1.15)

where

B =
µα⊥
2hρg

, (1.16)

is the gyrotaxis number measured in seconds (Pedley and Kessler [85]). Combining

expressions from Leal and Hinch [72] and Hinch and Leal [52] results in equation (1.15).

Gyrotactic bioconvection models were first investigated for a uniform suspension by

Pedley et al. [84] and for a layer of a finite depth by Hill et al. [50]. In their model the

governing equations were (1.2)− (1.4) as in Childress et al. [20] where the cell flux J

was defined as

J = nVsp−D · ∇n, (1.17)

where n (x, t) is the cell concentration, Vs is the constant cell swimming speed and p is

the cell swimming direction that is defined as

p = (sin θ cosφ, sin θ sinφ, cos θ) , (1.18)

where θ is the angle measured relative to the z−axis and φ is the cell orientation angle

in the horizontal plane measured relative to the x−axis. The cell diffusivity tensor D

was taken to be isotropic, or in other words DH = DV . This corresponds to assuming

that the randomness in the cell motion is strong compared to the gyrotactic effect on

the swimming direction, as gyrotaxis would lead to a diffusivity tensor with DH 6= DV .

In contrast with Childress et al. [20], gyrotactic bias results in a non−zero critical
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wavenumber in a deep layer suspension (Pedley et al. [84]). In a layer of finite depth

Hill et al. [50] predicted the most unstable wavelength of 2 to 3 cm which contradicts

with the experimental measurement that gives wavelengths of 0.5 to 1 cm. However, Hill

et al. [50] predicted an initial wavelength of 2.9 cm which agrees with the observations

of early pattern spacing.

In 1990, Pedley and Kessler [86] explored a new model for gyrotactic cells. The prob-

ability density function f (p), defined on a unit sphere was considered. In the absence

of all torques, cells swim generally in random directions with probability density func-

tion f = 1
4π . However, the present of the viscous and gravitational torques cause the

tendency for p to approach the intrinsic direction to bias the probability density func-

tion f (p) and this is completely independent of the instantaneous direction of the cell.

Therefore they assumed that f satisfies the Fokker−Planck equation

∂f

∂t
+∇ · (ṗf) = Dr∇2f, (1.19)

where ṗ is the rate of change of cell orientation and Dr is the rotational diffusivity.

The Fokker−Planck equation allows for a nondeterministic estimate for the mean cell

swimming velocity Vc and the cell diffusivity tensor D. By assuming the time scale for

the variation in the fluid flow is large compared with D−1
r , the first term in equation

(1.19) was neglected; f was considered a stationary function. ṗ in the second term was

calculated from the torque balance equation (1.15), then, substituted in equation (1.19)

which can be solved to give f (p).

In their model, they assume that cells swim with different speeds and directions. Also,

they assume that the cell swimming speed is stationary and independent of the direction

p. Hence, the mean cell swimming velocity Vc was defined as

Vc = Vs〈p〉, (1.20)
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where Vs is the mean cell swimming speed and 〈 〉 represents the ensemble average given

by

〈p〉 =

∫
S

∫
pf (p) d2p. (1.21)

Moreover, the diffusivity tensor D was defined as

D (t) =

∫ ∞
0
〈Vr (t) Vr

(
t− t′

)
〉dt′, (1.22)

In equation (1.22), Vr is the velocity of the cell relative to its mean velocity. They

assumed that Vs is constant and it takes a cell τ seconds to settle to a preferred direction.

Thus the tensor in equation (1.22) can be expressed as

D ≈
∫ τ

0
(Vc − 〈Vc〉) (Vc − 〈Vc〉)〉dt′. (1.23)

Leading to

D ≈ V 2
s τ〈(p− 〈p〉) (p− 〈p〉)〉. (1.24)

The constant τ is called the direction correlation time.

The Pedley and Kessler [86] model consists of the following equations

∇ ·U = 0, (1.25)

ρ

(
∂U

∂t
+ (U · ∇) U

)
= −∇pe + nv∆ρg +∇Σ, (1.26)

where U is the fluid velocity, pe is the excess pressure above hydrostatic, n (x, t) is the

local cell concentration, v is the mean cell volume, ρ is the fluid density, ∆ρ is the

difference between the cell density and the fluid density, g is the acceleration due to

gravity and Σ is the fluid stress tensor defined as

Σ = 2µE + Σd + Σs + Σp, (1.27)
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where E is the fluid rate−of−strain tensor and µ is the fluid viscosity. The term Σd

tensor represents the stress exerted on the particle due to its rotation caused by the

rotary diffusion of p, Σs is the stresslet stress tensor due to the cell locomotion, Σp is

the couplet stress tensor due to the difference in the deformation and rotation of the cell

from the fluid if the cells were not present (Batchelor [10], Brenner [19] and Hinch and

Leal [51]). The first term in (1.27) is for fluid in the absence of cells.

Finally, the cell concentration equation is given by

∂n

∂t
= −∇ · [nU + nVs〈p〉 −D · ∇n] . (1.28)

The first term in on the right hand side of equation (1.28) represents the advection of

cells by the fluid velocity while the second term gives the cell movement due to cell

swimming and the final term is the diffusion term. The vector 〈p〉 is the mean cell

swimming direction as defined in equation (1.21) and D is given in equation (1.24).

Pedley and Kessler [86] found that the suspension is always stable in the absence of the

gyrotactic bias in deep suspensions. Pedley and Kessler [86] calculated the critical value

kc to be

k2
c =

β (J1 + α0J4)

DH

[
1
R + χ1 (J2 + α0J5)

] , β =
n0vBg∆ρ

Vsρ
, R =

ρV 2
s B

µ
. (1.29)

whereas Pedley et al. [84] have calculated this value to be

k2
c =

Rβ (1− α0)

D∗
. (1.30)

Hence, for C. augustae with λ = 2.2 and α0 = 0.3, Pedley and Kessler [86] estimated

k2
c = 0.65 for the following values DH = 0.10, Vs = 63 µms−1, R−1 = 73 (cell Reynolds

number)and β = 13 while Pedley et al. [84] estimated this value to be k2
c = 0.17 for the

cell swimming seed Vs = 100 µms−1 and the dimensionless diffusion value D∗ = 0.74.

Moreover, Pedley and Kessler [86] estimated the most unstable wavelength to be 9 mm

at the time 0.017 s−1. while Pedley et al. [84] estimated this value to be 11 mm at the

time 0.029 s−1. However, observations of bioconvection patterns give smaller wavelength
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of 1 to 3 mm which disagrees with the predictions (Kessler [63]). This could be due to

the effect of the non linear factors that were not considered in the linear stability.

The new model of Pedley and Kessler 1990 [86] was used by Bees and Hill [12] to find

an equilibrium basic state and investigate its linear stability for a layer of a finite depth

with no slip boundaries. They predicted a pattern wavelength of length 1 mm, which

differs from the prediction of Hill et al. [50], 2−3 cm in a suspension of depth 1 cm

with mean cell concentrations slightly above the critical concentration vale n̄c = 5× 105

cell per cm3. However, the experimental results observed patterns with wavelengths of

4 mm to 7 mm.

Bees and Hill [13] have explored the non−linear structure of deep, stochastic gyrotactic

bioconvection as proposed by Pedley and Kessler [86] by employing the solutions ob-

tained by Bees et al. [14] from a spheroidal harmonic expansion of the Fokker−Planck

equation. A linear analysis considered by Pedley et al. [84] is performed to highlight

the scaling for the weak non−linear analysis. Their analysis reveals neutral curves asso-

ciated with a Hopf bifurcation. In contrast Ghorai et al. [38] investigated the nonlinear

numerical simulation of the gyrotactic bioconvection patterns. A fully three−dimension

computational model developed in this framework is used to investigate the dependence

of bioconvection patterns on the diffusivity of the cells, the mean cell concentration and

the depth of the chambers. Their results are that the increase in wavelength with time

associated with the formation of isolated nonlinear plumes, is much greater for high

values of the diffusivity than for low values. Also, in the numerical experiments, it is ob-

served that the variation in the wavelength with time is not monotonic for smaller values

of the cell diffusivity. The wavelength in the experiments also decreased slightly with

an increase in the depth of the chamber. Moreover, for small depth and high Rayleigh

number, plumes sometimes merge with nearby plumes leading to higher wavelengths.

Finally, the well−developed wavelength decreases slightly with increase the mean con-

centration. They have also observed bottom−standing plumes in deep chambers. In

this case, most of the cells are transported to the bottom of the chamber and many

plumes at the bottom do not extend to the top of the chamber. In an earlier numerical

study, Karimi and Paul [61] claimed that the use of a constant isotropic diffusivity lead
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to unrealistic results, but Ghorai et al. [38] showed that this was caused by their use

of too high value of the diffusivity. In this and other papers, Ghorai et al. [38] have

consistently demonstrated that the use of a constant isotropic diffusion may be regarded

as a good first approximation to the dispersion of the swimming cells in bioconvection

which provided a good agreement with the experiments.

In this thesis, since there is no previous work of extending the bioconvection model

to more than one species, we extend the linear stability analysis in [86] to two species

of swimming microorganisms mixed together without any kind of interactions between

each other. Unlike Pedley and Kessler [86], the fluid is taken to be Newtonian only

without taking into accounts the stress tensors Σd, Σs and Σp in equation (1.27). Also,

the species are assumed to have different parameters, which introduces an extra term

in equation (1.26) as well as an extra cell concentration equation for the second species.

Hence, there are two equations of the form of equation (1.28) giving four governing

equations rather than three (more details are given in Chapter 3).

Not only do we extend the linear stability analysis to two species, but also we employ

the nonnormal stability analysis to study the stability of the system presented by Pedley

et al. [84], in the case that the horizontally uniform concentration profile evolves with

time, which is new to bioconvection and active fluids (more details are given in Chapter

4).

Moreover, in terms of experiments a new analysis technics using wavelets were developed

to provide information about local wavelengths of bioconvection patterns, instead of the

global pattern wavelength invested by William and Bees [116]. In general, bioconvection

patterns are not spatially uniform and wavelet methods are able to give a measurement of

the local variation in the nature and spacing of the patterns. Experimental patterns are

to some extent dependent on the initial conditions, and wavelets provide a measure for

comparison of the patterns to answer the question “ are these two patterns qualitatively

similar?” (more details are given in Chapter 2).
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1.5 Thesis outline

This thesis consists of:

Chapter 2: we describe experiments on bioconvection of mixed species of C. augustae

and C. reinhardtii to obtain quantitative data on the pattern wavelength. Further-

more, we utilize wavelets to study how pattern wavelengths change as we vary the total

concentration and the relative concentration between the two mixed species.

Chapter 3: we generalize the continuum model presented by Pedley and Kessler [86] to

consist of two mixed species. Also, we compute the dispersion relationship using Fourier

modes and calculate the neutral curve equation as a function of the wavenumbers k and

m to compare the instability onset of the suspension of the two mixed species with the

instability onset of each species individually.

Chapter 4: we computed the time evolving basic state of the cell concentration. We used

the non−normal approach to estimate the energy over a range of wavenumbers. We find

the optimal initial perturbation that can be obtained for a given time t as well as a

given set of parameters and wavenumber k. Then, we measure the size of the optimal

perturbation as it grows with time considering a range of wavenumbers for the same set

of parameters to extract the most unstable wavelength in a layer of finite depth.



Chapter 2

A quantitative study of the

effects of relative concentration

and total concentration of two

species on pattern formation

In terms of experiments, the oldest qualitative study of bioconvection was by Wager

in 1911 [114]. Since then, many experiments has been conducted to observe biocon-

vection patterns by scientist such as Rothschild [99], Loefer and Mefferd [75, 76], Platt

[88] and recently Kessler [62]. However, the first quantitative systematic experiment

was in 1997 by Bees and Hill [11]. In their analysis, the dominant wavelength is pre-

sented as a function of cell concentration, suspension depth and time. A Fast Fourier

transform is used to analyse bioconvection patterns that are formed by the motile green

algae Chlamydomonas nivalis, and a non−normalized Gaussian distribution is used as

a fitting function to extract the dominant wavelength. Their results are that the ini-

tial wavelength increases with increasing the depth. However, when the concentration

increases it decreases slightly. For the long-term evolution, the increase of the concentra-

tion decreases the wavelength but there is no significant change with the depth. Czirók

et al. in 2000 [25] followed the same procedure as Bees and Hill [11] while choosing a

22
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Illumination Position Results

red or white light above or below the initial wavelength decreases
with increasing the concentration.

red light above or below equivalent to no light.
white light above the initial wavelength increases slightly

when 645lx≤ I < 1330lx and
decreases when 2020lx≤ I.

white light below the initial wavelength decreases linearly
as the intensity increases to 2020lx,
then increases as it reachs 2710lx

and remains constant when 2710lx≤ I.

Table 2.1: Summary of the main results of Williams and Bees [116].

different fitting function to analyse the patterns formed by the bacteria Bacillus subtilis

and their results were in contrast with Bees and Hill [11]. They found that the initial

wavelength decreases with increasing the depth and the concentration. This could be

due to the fact that the bacteria Bacillus subtilis is aerotaxis. In 2011, Williams and

Bees [116] analysed the patterns formed by the motile green algae Chlamydomonas au-

gustae to evaluate the wavelength as a function of cell concentration and illumination.

The results are shown in Table 2.1

In all these studies, patterns were analysed globally to extract the global dominant

wavenumber by using Fourier transform, since the wavenumber is one of the parame-

ters that can be used to characterize these patterns. However, in some cases, patterns

can consist of different patches. Even though patterns can look same, the dominant

wavenumber changes from one location to another. The purpose of this study is to

present a new analysis tool, wavelets, to investigate the local dominant wavenumber as

a function of the suspensions total concentration and the relative concentration between

the two species.

2.1 Material and Methods

In this framework, species of Chlamydomonas reinhardtii and Chlamydomonas augustae,

strain CCAP 11/32B and CCAP 11/51B, respectively, were used. As the experimental

study of bioconvection requires capturing images of clearly defined patterns, fresh and
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actively motile cultures of cells need to be bred. Among different types of media that

could be used to grow these cultures, such as TAP (Tri Acetate Phosphorous), 3N−BBM

was used. Since it does not increase the bacteria’s rate of growth, it can easy be prepared

in the standard laboratory conditions and it matches with the natural environmental

conditions. 3N−BBM medium is the usual BBM (Bold’s Basal Medium) (Bees and Hill

[11]), with triple the amount of sodium nitrate to enhance the cultures’ rate of growth

[24]. As in Williams and Bees [116], cultures were stored in 1000 ml and 500 ml flasks,

as the long neck is useful for the concentrating process and the light is allowed to pass

through the cultures. A cotton wool bung is inserted in the long neck to seal the flasks,

and two layers of an aluminium foil were used to cover it. Thus, the oxygen exchange is

allowed while avoiding contamination by bacteria or fungi.

Because these motile green algae are photosynthetic, cultures were illuminated from

above by lighting them using four florescent tubes with intensity of 1900 lux. The

lighting system was set to be 16 hours on to 8 hours off, to capture the cells swimming at

a reasonable time of the day. The laboratory temperature was controlled to be (21±2)◦C,

as the cultures are sensitive to the sudden change in the temperature. Moreover, the

laboratory equipments were washed with liquid soap, rinsed with distilled water and

sterilized (Williams and Bees [116]).

Following Williams and Bees [116], cultures were subcultured once per calender month to

allow cells to be concentrated enough. So that, healthy and motile cells are guaranteed

for every experiment. For this reason new media flasks were prepared and sterilized by

autoclaving them for 15 minutes at 121◦C. Once the new media have cooled enough,

one flask of the new media was mixed with an old flask of the cultures over a flame as

a part of the sterilization process.

A protocol for concentrating the cells is followed since having enough concentrated sus-

pension is very important to spot well−defined bioconvection patterns. To ensure that

the cells are healthy and actively motile, two week old cultures were used. Moreover, the

use of younger cells can lead to harvest insufficient amount of concentrated cells from

each flask. Because of both Chlamydomonas reinhardtii and Chlamydomonas augustae
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Figure 2.1: A diagram to illustrate the concentrating process. The cells swim upwards
on average through the cotton wool layer and aggregate on its surface.

are negative gravitactic, they swim upwards on average and accumulate on the fluid sur-

face. Thus, unlike Williams and Bees [116], one can concentrate cells using the following

procedure that was newly developed in the laboratory with Dr.Otti Croze to harvest

the maximum number of cells. Four thin metal wires are folded and joined together to

form a flower shape. Then they are taped onto the upper end of a pipette. The pipette

then was inserted inside the flask, which was filled by 800 ml of the culture suspension

(400 ml in case of 500 ml flask was used), and stabilized on the long neck using a tape

such that the flower shape metal wires was positioned on the upper surface of the fluid.

Fine layers of sterilized cotton wool were placed on the metal wires to form a mesh with

thickness between 0.5−1 cm. The flasks were then left for 2−3 days in the darkness to

concentrate; (see Figure 2.1). Leaving the flasks for long time, with cotton wool, could

cause cell dehydration. So,concentrated cells older than four days were not used. Then,

the cells extraction would take place. Pasteur pipette is used to gently harvest the cells

that accumulated on the surface of the cotton mesh. The harvested cells were placed in

a clean (washed and rinsed with distilled water) plastic container.
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Following Williams and Bees [116], controlling the concentration of the suspension dur-

ing the experiment is essential. Thus, an electronic spectrophotometer (WPA CO7500

colorimeter, Cambridge, UK, 590 nm), is used to calibrate the number of cells per cm3

by measuring the amount of light at a wavelength (590 nm) that passes through a sample

compared to a reference state. A 2 ml reference of 3N−BBM is placed in a cuvette and

measured using the spectrophotometer. Then, 0.5 ml of the concentrated suspension is

transferred to another cuvette and is topped by 1.5 ml of the 3N−BBm medium. Next,

the suspension is mixed with a pipette to make sure that cells are distributed uniformly.

Then, the absorption is measured also using the spectrophotometer. Finally, the ab-

sorption is converted to concentration using the following relationships between the cell

concentration and the absorption:

Ca = (4.935A+ 0.4349)× 106,

Cr = (7.183A+ 0.833)× 106,
(2.1)

where Ca, Cr and A are the cell concentration of the C. augustae, C. reinhardtii and the

absorption, respectively. Hence, the suspension concentration is four times the measured

concentration. Equations (2.1) are calibrated manually using a haemocytometer and

applying Beer’s law to find a linear relationship between the cell concentration and the

absorption; (see Figure 2.2). The R2 values in Figure 2.2 shows that the data are well

approximated by a straight line.

Equations (2.1) are applicable because the relationship between the absorption and the

cell concentration is linear when the absorption is less than 0.8. The absorption was

measured five times and averaged before it was converted to concentration. The cell

concentration was measured before the experiment as the patterns formation due to the

change in their relative concentration was demonstrated.

The protocol for investigating the pattern wavelength as a function of the relative con-

centration between the two species C. augustae and C. reinhardtii is as follow,

1. 11 petri dishes of diameter 5.2 cm are washed with soap and rinsed with distilled

water.
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Figure 2.2: Fitting of the data collected in the biofluid laboratory shows the linear
relationship between the cell concentration and the absorption for both species when

the absorption is less than 0.8.
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2. The 11 petri dishes are labelled by the ratio of the concentration of one species

with respect to the other. For example, when the petri dish is labelled by 1a9r,

the suspension consists of 10% C. augustae and 90% C. reinhardtii. In the case

that the suspension consists of one species it is labelled by either 10a or 10r, i.e

either 100% C. augustae or 100% C. reinhardtii.

3. A culture volume of 10 ml is placed in all these 11 petri dishes with a relative

concentration of a step size of 10%. Thus, pattern formation are recorded as one

shifts from 100% C. augustae to 100% C. reinhardtii.

4. Mixing the two species together takes place after measuring concentration to be

certain that they both have the same concentration.

To explore pattern wavelength as the total concentration changes, we use the following

protocol:

1. Every suspension in the petri dishes is 20% diluted by removing 2 ml of the sus-

pension and adding 2 ml of the 3N−BBM medium to complete the 10ml volume

in every dish.

2. Every suspension is diluted three times, so bioconvection patterns are recorded for

a suspension that is diluted up to a 60%.

Diluting the suspension more than 60% results in poor patterns as the concentration is

not high enough for these patterns to appear.

In every experiment, the petri dish is stabilized on a red light lid to illuminate the

patterns from below. Because the experiment takes place in darkness, a light source is

required. According to Williams and Bees [116], the cells are not affected by red light

illumination, so, the culture are illuminated without affecting their gyrotactic behavior.

The light source is positioned on an electrical automated vortex mixing device (Jencons

PLS VX100, West Sussex, UK), as illustrated in Figure 2.3, that rotates to create

a motion that mixes the culture in a consistent manner every time the experiment is

performed. This mixing protocol follows that of Williams and Bees [116], to avoid the



A quantitative study of the effects of relative concentration and total concentration of
two species on pattern formation 29

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

PC 

Vortex 

Device 

Light source  Petri dish 

Video camera 

Figure 2.3: An illustration of the equipment setting during performing the experi-
ments.

Process Mix Stop Mix Stop Mix Stop Record

Time 3 sec 2 sec 10 sec 3 sec 2 sec 15 sec 5 min

Table 2.2: The mixing protocol table.

variation in the initial wavelength due to the change in initial conditions of the same

suspension when mixing by hand as in Bees and Hill [11], and Czirók et al. [25]. As in

Williams and Bees [116], a reciprocal mixing and pausing regime for few seconds is used

to ensure that the culture is well mixed. This regime is followed by a long pause, of 15

seconds, to allow the residual fluid motion to vanish before the patterns starts to form;

see Table 2.2.

A Prosilica video camera (MODEL:GE680C), connected to a computer and controlled

via streampix software, is stabilized above the petri dish to record these patterns for five

minutes every time the experiment is run.
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2.2 Image Analysis

A sequence of 151 images is recorded for every experiment. In other words one image

per two seconds. Every image consists of 480×640 pixels of 256 gray scale. The images

are not square as this is the best resolution one could get from the camera that is used

during the experiment. ImageJ is employed to extract the image frames, to adjust their

brightness and contrast and finally to save them in tif format in order to analyse them.

The MATLAB software is employed in this analysis due to its ease of use and it has a

wavelet package that aid image processing and analysis.

Every image in the sequence contains unwanted information such as the inhomogeneous

light from the light source, the walls of the dish, the scratches on the dish and the

boundary of the image. A Matlab code is designed to subtract the first image that

is captured immediately after 15−25 seconds from ending the mixing regime, i.e. the

smooth image with no bioconvection patterns, from all the images in the sequence.

So, the inhomogeneous light effect from the light source, the wall of the dish and the

scratches at the bottom of the dish are eliminated. To avoid the image edge effect on

the analysis, a full size image is analysed, however, the information is extracted from

256×256 frame within the image, see Figure 2.4.

Applying wavelet transform to an image allows us to extract the most dominant wave-

length with its associated direction locally. Moreover, it is possible to extract the second

dominant one also with its associated direction locally leading to a systematic method

to describe the shape of these patterns.

2.2.1 Wavelet Analysis

As images are two−dimensional data, the analysis is presented and performed in two−

dimensional space. The notion of representing signals as a linear combination of certain

functions was initiated in 1807 (Boggess and Narcowich [18] and Graps [42]), by a

French mathematician, Joseph Fourier, who asserted that any 2π periodic function can

be expressed as a superposition of the basic sinusoidal functions sine and cosine of

different frequencies. This idea is the base of the Fourier transform that is employed in
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In put 

Full size image 

480 × 640 pixels 

Apply wavelet transform to the image 

Out put 

Coefficients that corresponds to every pixel 

in the image. 

Select a window of 256 × 256 from the middle of the image 

and extract the 1st and 2nd dominant wavelength together 

with its direction. 

Figure 2.4: Protocol for eliminating the image boundary effect on the analysis results.

many scientific fields such as physics and partial differential equations (James [57] and

Bahouri et al. [7]).

The basis functions in Fourier transform, sine and cosine, possess a global oscillatory

behaviour as they stretch to infinity, which results in a poor localization property in

the space domain. As a consequence, Fourier transforms fail, as a tool, for analysing

signals that have a very high frequency on short space scale and very low frequency on

a long space scale. Signals with these characteristics were a motivation for a French

geophysicist named Jean Morlet in 1980s (Sifuzzaman et al. [103]) to construct basis

functions that are well localized in space with support that varies as the space scale

varies. Even though the concept of the wavelet as an oscillation that decays quickly

was introduced by Morlet, the idea of wavelet basis functions was presented in 1909 by

Alfred Haar (Gao and Yan [36], Sifuzzaman et al. [103], Boggess and Narcowich [18]

and Jaffard et al. [56]). His idea arose based on a question he was trying to answer

(Haar [45] and [110]):

“Does there exist another orthonormal system ψ0, ψ1, · · · , ψn, · · · of functions on [0, 1),
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such that for any continuous function f(x) defined on [0, 1), the series

〈f, ψ0〉ψ0 + 〈f, ψ1〉ψ1 + · · ·+ 〈f, ψn〉ψn + · · · (2.2)

converges uniformly to f(x) on [0, 1).”

The aim was to find basis functions that have local characteristic that are different to

the Fourier functions sine and cosine. He succeeded and introduced Haar functions that

consist of a short positive pulse followed by a short negative pulse defined on the semi

closed interval [0, 1). This simple idea opened a wide gate to a new theory, named

wavelet theory, that is successfully utilized in many fields (Chui [21]). For example,

turbulence (Farge [32]), image and signal analysis and processing (Clonda et al. [22],

Merah et al. [81] and He et al.[47]), pattern characterization (Guana [43]).

A mathematical definition equivalent to the above concept in two−dimensional space,

due to Antoine et al. [3], is that a two−dimensional wavelet is a complex−valued function

ψ (x) ∈ L1
(
R2
)
∩ L2

(
R2
)
, where L2

(
R2
)

is the set of the square integrable functions

that satisfies
∫ ∫

R2 |ψ (x) |2dx <∞ and L1
(
R2
)

is the set of the integrable functions, i.

e.
∫ ∫

R2 |ψ (x) |dx <∞, that satisfies the following condition

Cψ = (2π)2
∫
R2

|ψ̂ (k) |2

|k|2
d2k <∞, (2.3)

where ψ̂ is the Fourier transform of the function ψ, i.e.

ψ̂ (k) =
1

2π

∫
R2

ψ (x) exp (−ik · x) dx (2.4)

and k = (kx, ky) ∈ R2 is the spatial frequency. This agrees with the one−dimensional

definition in Sifuzzaman et al. [103] and Daubechies [26]. The condition (2.3) is called

the admissibility condition and it indicates that the named function ψ oscillates on a

finitely supported area. To illustrate the admissibility condition (2.3), let us consider

the one−dimensional Mexican hat wavelet that is given by (Antoine et al. [3])

ψH (x) =
(
1− x2

)
exp

(
−1

2
x2

)
. (2.5)
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The Fourier transform of the above function, on applying the definition in equation

(2.4), is given by

ψ̂H (k) = k2 exp

(
−1

2
k2

)
. (2.6)

According to Antoine et al. [3], the admissibility condition in one−dimensional space is

Cψ = 2π

∫
R

|ψ̂ (k) |2

|k|
dk <∞. (2.7)

Hence, for the Mexican hat wavelet function in (2.5),

Cψ = 2π

∫
R

|k2 exp
(
−1

2k
2
)
|2

|k|
dk = 2π

∫
R
|k3| exp

(
−k2

)
dk. (2.8)

Integrating by parts results in Cψ = 2π, i. e. ψH (x) is admissible.

Wavelet basis functions are the sets of functions, ψa,b,θ (x), that are generated by dilation

a, translation b, and rotation θ of the the “mother wavelet” ψ as follows

ψa,b,θ (x) = a−ζψ
(
a−1r−θ (x− b)

)
, (2.9)

The dilation parameter a > 0 in definition (2.9), means either stretching the wavelet

function when a > 1 or compressing it when a < 1, whereas the translation vector

b ∈ R2 determines the location of the wavelet basis function. The rotation matrix,

r−θ =

 cos θ − sin θ

sin θ cos θ

 , (2.10)

enables us to rotate the wavelet function by an angle θ, where 0 ≤ θ < 2π. Finally, ζ

can have the values,

ζ =

 1, to preserve the L2 norm

2, to preserve the L1 norm
. (2.11)
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Accordingly, a two−dimensional continuous wavelet transform of two−dimensional sig-

nal (image), s (x) ∈ L1
(
R2
)
∩ L2

(
R2
)
, is

S (a,b, θ) = a−ζ
∫
R2

s (x)ψ (a−1r−θ (x− b))d2x, (2.12)

where ψ is the complex conjugate, or equivalently, in the frequency domain

S (a,b, θ) = a−ζ+2

∫
R2

ŝ (k) ψ̂ (ar−θ (k)) exp (ib · k) d2k. (2.13)

Unlike the Fourier transform, the wavelet transform has a wide range of different fam-

ilies (Misiti et al. [82]), each of which has its own mother wavelet function ψ that

possesses certain properties. For instance, some of these are orthogonal such as Haar

and Daubechies, continuous as Gaussian or have an explicit expression like the Mexican

hat. The decision of which wavelet family should be employed depends on the purpose of

the analysis. In this study, a wavelet function that has an oscillatory behavior similar to

the sinusoidal functions is required, in order to capture the wavenumber associated with

the images. Not only that but the ability to control the number of waves in that function

is also wanted. Thus, 2D complex Morlet was selected for this work. 2D complex Morlet

wavelet is simply a plane wave modulated by Gaussian envelope,

ψM (x) = exp (ikψ · x) exp

(
−1

2
|x|2

)
+ correction. (2.14)

The correction term in (2.14) is added to enforce ψM to satisfy the condition (2.3). kψ is

the wavenumber vector that determines the number of oscillations inside the Gaussian

envelope. The correction term can be neglected numerically O
(
10−4

)
if the |kψ| is large

enough. Furthermore, the 2D complex Morlet wavelet is sensitive to the direction which

enables us to perform the analysis in different directions, see Figure 2.5.

2.2.2 Pattern Characterization

Bioconvection patterns, even when they appear to be the same across the whole image,

can consist of different patches that have different shapes and sizes. However, one of
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Figure 2.5: 2D complex Morlet wavelet. The scale a = 20 and |kψ| = 6. (a)−(f) show
how the real and complex parts orientate with changing the direction θ. (g) and (h)

are the real and complex parts 3D plot, respectively.
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the measurements that can be used to scale these patterns is the wavenumber. In this

investigation, Matlab software was used in order to utilize the two−dimensional complex

Morlet wavelet, defined in (2.14), to investigate the pattern’s characterization. A code

was designed to extract the first and the second local dominant wavelengths associated

with their directions as follows (see Appendix A, complex wavelet transform package

yawtb is downloaded from the website http://www.fyma.ucl.ac.be/projects/yawtb and

used in the code; see Antoine et al. [3])

1. Images were converted into the frequency domain using two dimensional Fast

Fourier transform (FFT).

2. The two−dimensional continuous wavelet transform was proceeded for every fast

Fourier transformed image, using equation (2.13), according to different scales in

different directions. Equation (2.13) was selected since it is easier and faster to

perform the two dimensional wavelet transform in the frequency domain than in

the spacial domain.

3. As mentioned in Section 2.2.1, the two−dimensional complex Morlet family, (2.14)

was selected with |kψ| = 6 (Antoine et al. [3]), so that, the correction term can be

numerically neglected since the estimated error is ≤ O
(
10−4

)
.

4. For a window of 256× 256, the scale range of a in (2.13) [1, 128] pixels. Thus, the

wavelet basis function ψ is stretched to cover half of the window width.

5. The directions are picked to cover the the range [0, 2π] with an increment of ∆θ =

π
8 , so that one revolves a full cycle around each pixel which results in well defined

peaks; (see Figure 2.6).

6. Finally, the above transform is chosen to preserve the L1 norm, in other words,

ζ = 2 in (2.9), (2.12) and (2.13). The reason behind that, is when carefully

considering the amplitude spectrum

|ψ̂a,b,θ(k)| = a−ζ+2|ψ̂(ar−θk)|, (2.15)
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Figure 2.6: How the wavelet basis function is rotated at every pixel.

and the energy equation

Eψa,b,θ = a−2ζ+2Eψ, (2.16)

one can conclude that by preserving the L2 norm the total energy in (2.16) will be

preserved as one stretches or compresses the wavelet mother function. However,

according to equation (2.15) this can amplify the low frequency components (a is

large and the wavelet is stretched), and decay the high frequency components (a

is small and the wavelet is compressed). To overcome this problem, the L1 norm

is selected to give a stable method.

For every location (pixel) b = (r, c), the output of the wavelet transform is 128 × 17

complex wavelet coefficients Sa,b,θ. As the location is fixed, Sa,b,θ is a function of the

scale, a and the direction, θ. Hence, the modulus |Sa,b,θ| is a two−dimensional function

of a and θ. The wavelet analysis can not distinguish between the directions θ and θ+ π

as its unable to detect axial data (Mardia and Jupp [78]). Hence, to avoid the repetition,

the peaks of |Sa,b,θ| between the directions
[
π
2 ,

3π
2

)
were extracted. |Sa,b,θ| reaches its

maximum at say the scale, a1, and the direction, θ1. The scale, a1, is converted to a

wavelength, λ1, by

λ1 = 2π
a1

|kψ|
, (2.17)
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where |kψ| = 6 (Viswanathan and Krishna [113] and Addison [2] and [1]). Now, λ1 is

the most local dominant wavelength and θ1 is its associated direction at the location b.

The extraction of the second local dominant wavelength is as follow

• Extract the second maximum of |Sa,b,θ| that is not located in a close angular

neighborhood to the angle of the first maximum as it may be a secondary peak

inside the main peak. Also, any second maximum that was less than half of the

amplitude of the first peak was not be taken into account. Because these peaks

may appear due to some noise in the data.

• Take the corresponding scale, a2, and direction, θ2.

• The second local dominant wavelength λ2 can be calculated, using relation (2.17).

The analysis was performed on tested images as well as bioconvection images and the

results are presented in the following subsection.

2.2.3 Test of the main and second peak detection

The image in Figure 2.7 was constructed using MATLAB to have a constant wavelength

of 19.1 pixels at the directions π
4 and 3π

4 , so that λ1 = λ2 = 19.1, see Appendix A.

Applying the analysis explained in Section 2.2.2, the results were a constant first and

second dominant wavelength λ1 = λ2 = 18.85 pixels. The relative error is of order 10−2.

Figure 2.8 shows the peaks of |Sa,b,θ| at any location (pixel) in Figure 2.7. Clearly one

can identify two peaks, one of which is at the direction π
4 and the other one is at the

direction 3π
4 . This means that the image consists of two perpendicular waves both of

wavelength 18.85 pixels, which means the pattern has a dot shape. This agrees with the

theoretical results. Since the angle between the two directions is π
2 , the scalar product

of the first peak direction with the second peak direction is zero.

The image in Figure 2.9 was also constructed in MATLAB to consist of stripes tilted by

an angle π
4 with wavelength of 18.1 pixels, (see Appendix A). The location b = (122, 128),

marked with a green •, was selected to perform the analysis. The result was that the
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Figure 2.7: An image that was constructed using a MATLAB code to be analysed
using Wavelet transform. The wavelength λ1 = λ2 = 19.1 pixels in either the direction

π
4 or 3π

4
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Figure 2.8: (a) Contour plot of the modulus of the wavelet coefficients Sa,b,θ, the
bright area indicates the peaks. (b) 3D plot of the modulus of the wavelet coefficients

Sa,b,θ.

local dominant wavelength λ1 = 17.8 at the direction θ1 = π
4 . The contour plots in

Figure 2.10 show that there is only one peak in the direction θ1 = π
4 . This means

that that the pattern consists of one wave of wavelength 17.8 pixels at the direction π
4 ,

meaning that the pattern has rolls. The relative error between the theoretical wavelength

and the one extracted from the analysis is also of order 10−2.

The wavelet analysis was used to analyse an image of the nested circles that is displayed

in Figure 2.11. (The nested circle image was downloaded from
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Figure 2.9: An image that was constructed using a MATLAB code to be analysed
using Wavelet transform. The wavelength λ1 = 18.1 pixels in the direction π

4 .
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Figure 2.10: (a) Contour plot of the modulus of the wavelet coefficients Sa,b,θ, the
bright area indicates the peaks. (b) 3D plot of the modulus of the wavelet coefficients

Sa,b,θ. The peak apears at the direction π
4

https://upload.wikimedia.org/wikipedia/commons/1/17/Concentric circles isotropy.svg.).

Two locations were selected to show the wavelet spectrum. Figure 2.12(a) is a 2D contour

plot of the complex wavelet coefficients |Sa,b,θ| at the location b = (150, 160), marked

with a green •, whereas Figure 2.12(b) is their 3D plot. Both Figures 2.12(a) and 2.12(b)

show that there is one local dominant wavelength λ1 = 18.85 in the direction 3π
4 , see

Figure 2.11. Figures 2.12(c) and 2.12(d) are the 2D and 3D contour plots of |Sa,b,θ| at

the location b = (114, 113) at the centre of the pattern, marked by a red •. As expected
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Figure 2.11: A nested circles pattern that was analysed by wavelet transform to
extract the most local dominant wavelengths with two locations marked as green and

red •.
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Figure 2.12: Analysis results of the two locations marked in Figure 2.11. (a) and (b)
results for the green • whereas (c) and (d) are for the red •.
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Figure 2.13: A contour plot of the most dominant wavelength measured in pixels
associated with its direction and the second dominant direction of the nested circles in

Figure 2.11.

from the rotational symmetry of the pattern this location has only one dominant wave-

length with no preferred direction. The local dominant wavelength is λ1 = 12.57 and

it is the same in all directions from 0 to 2π. Figure 2.13 displays the contour plot of

the most local dominant wavelength λ1 together with its direction and the second local

dominant wavelength direction. The direction of the first local dominant wavelength

is always radial. Away from the edge of the image there is no second local dominant

wavelength because of the symmetry of the pattern. Near the edges of the pattern the

second local dominant wavelength is formed because of the edge effects.

2.3 Results

Bioconvection patterns of the bacteria Bacillus subtilis were also analysed, see Fig-

ure 2.14(a). The patterns consist of small circles that appear in the upper right of the

image and they become larger as we move diagonally to lower left of the image. The
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results of the most local dominant wavelength λ1 were displayed in the contour plot,

see figure 2.14(b). This plot shows that the patterns consists of patches of size up

to 10 pixels on the upper right then the size of the these patches grows as one moves

diagonally to the lower left to be 30 pixels.

Moreover, the code is used to analyse chemoconvection patterns in Figures 2.15(a) and

2.16(a). The results are shown in Figures 2.15(b) and 2.16(b). Figure 2.15(a), clearly

shows that the patterns structure changes from approximately dots to lines as one moves

cross the image from the top right to the bottom left with some variation in the spac-

ing between the patches. Figure 2.15(b) displays the analysis results of Figure 2.15(a).

The contour plot represents the most local dominant wavelength λ1 and the long lines

represents its associated direction whereas the small lines represents the the direction of

the second most local dominant wavelength. The contour plot shows that the patterns

distance from each others increase from around 15 pixels up to 35 pixels as one moves

across the image. While the first and the second most local dominant wavelength direc-

tions indicates that the structure of the patches changes from dots on the top right side

of the image to lines as one moves to the bottom left side of it.

Figure 2.16(a) shows patterns that are also formed by chemoconvection that consists of

dote and lines that seems to be distributed uniformly across the whole image. However,

the analysis results in Figure 2.16(b) indicates that there is variation of the spacing

between pattern’s patches as the wavelength λ1 changes between 20 to 30 pixels. Also,

the direction plot shows that the structure changes from dots to lines at some areas in

the image.

2.4 Experimental Results for two−species algal bioconvec-

tion

Determining the onset of bioconvection patterns by looking at the images is confusing.

So, following Pons et al. [91], the time evolution of the mean of the gray level ḡ,

its standard deviation σ and the standard deviation derivative with respect to time σ̇

were computed. In Pons et al. [91] the pattern appearance time was estimated by
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Figure 2.14: (a) Patterns formed by the bacteria Bacillus subtilis (M. A. Bees and A.
Cooper private communications, 2015). (b) Contour plot of the most local dominant
wavelength measured in pixels associated with its direction and the second dominant
direction. The direction of the λ1, presented by the long lines, and the direction of the

second local dominant wavelength, presented by the short lines.
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Figure 2.15: (a) Patterns formed by Chemoconvection (M. A. Bees and A. Cooper
private communications, 2015). (b) Contour plot of the most local dominant wavelength
measured in pixels associated with its direction and the second dominant direction. The
direction of the λ1, presented by the long lines, and the direction of the second local

dominant wavelength, presented by the short lines.
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Figure 2.16: (a) Patterns formed by Chemoconvection (M. A. Bees and A. Cooper
private communications, 2015). (b) Contour plot of the most local dominant wavelength
measured in pixels associated with its direction and the second dominant direction. The
direction of the λ1, presented by the long lines, and the direction of the second local

dominant wavelength, presented by the short lines.



A quantitative study of the effects of relative concentration and total concentration of
two species on pattern formation 47

picking the time that is associated with the increase in the mean ḡ and the standard

deviation σ. However, unlike their results, the mean ḡ and the standard deviation σ in

this investigation do not display a rapid change in their behavior. So, alternatively the

standard deviation time derivative σ̇ was utilized. The patterns appearance time, t1,

was selected as the time that corresponds to σ̇ = 20%, in order to ensure the existence

of a significant change in the cells distributions that might reflect on the patterns.

As mentioned in section 2.1, a suspension volume of 10 ml was placed in a petri dish of

diameter 5.2 cm. So, the depth in this case is approximately 0.47 cm. For instance, a cell

of C.reinhardtii that have a swimming speed of approximately 130 µm will take around

36 seconds to reach the upper surface which agrees to some extent to the estimated time

t1 = 35 seconds that coincides with σ̇ ≈ 20%, see Figure 2.19.

Since for every experiment a sequence of 151 images was recorded, it is difficult to

display the results of all of these images. Thus, after specifying the time of patterns

appearance (initial patterns), t1, the time when σ̇ reaches its maxima t3, t7 and minimum

t5 were estimated. Furthermore, the time t2, t4, and t6 were evaluated to be the half time

between [t1, t3], [t3, t5] and [t5, t7], respectively, i. e. t2 = t1+t3
2 , t4 = t3+t5

2 and t6 = t5+t7
2 .

Then, the corresponding images were analysed. The time t3 may be associated with the

end of the linear growth regime and the patterns then may be driven by the nonlinear

regime. The recorded images exhibit a rapid variation in the pattern structure then turns

into a slow gradual variation that can hardly be seen by eye. By comparing that to the

time evolution of σ̇; (see Figure 2.19(a)), one can conclude that the sudden change in

the pattern formation takes place as the time evolve between the times t1 and t5. Then,

the change becomes smooth between the times t5 and t7. Thus, the above selected times

were investigated, in order to cover different stages of patterns formations. Finally, when

σ̇ is steady, the patterns were noticed to be well−developed and a time t8 were selected

in order to analyse the corresponding patterns.

Clearly in the bioconvection images in Figure 2.17 and 2.22, the shape and size of

features varies as the total and relative concentration varies. To investigate that, the

analysis demonstrated in Section 2.2.1 was used. The results presents a range of wave-

lengths that has a minimum and a maximum value, see Table 2.3. Figures 2.20(c) and
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2.20(d) shows that the initial wavelength λI,max tends to become smaller as one moves

from 100% C. reinhardtii to 100% C. augustae. Also, it becomes slightly larger when

the total concentration is diluted as shown in Figures 2.21(a), 2.21(c) and 2.21(e). For

the long−term patterns, λ∞,min and λ∞,max are increasing as we dilute the total concen-

tration and decreasing as we change the relative concentration from 100% C. reinhardtii

to 100% C. augustae. However, the range [λ∞,min, λ∞,max] does not show any trend to

be wider or narrower, see Figures 2.20(a), 2.20(b), 2.21(b), 2.21(d) and 2.21(f). In

Figures 2.20(a) and 2.20(b), for the 100% C. augustae labelled as 1a, the λ∞,min is very

small. This might be because the spacing between the concentrated areas is very small.

The linear regression fittings show that the local dominant wavelengths depend linearly

on both the total and the relative concentration of the cells within the experimental ac-

curacy. The linear regression value R2 varies between the two values 0.7 and 0.9 which

means that the data are well approximated by straight lines.

The images of the experimental results in Figures 2.24, 2.26 and 2.28 are presented in

the arrangement, see Figure 2.23.

2.5 Discussion

In this chapter an experimental technique was developed to record bioconvection pat-

terns in shallow suspensions as a function of total concentration and relative concentra-

tion between two mixed species. Also, a protocol for measuring the cell concentration

was established together with a successful culture regime in order to have healthy and

motile cells. Moreover, a novel method that employs the wavelet basis functions was

developed to investigate the local spatial variation in these bioconvection patterns by

extracting the most local dominant wavelength and its direction. The maximum value

of the initial dominant wavelength λI,max and the range of the long term most local

dominant wavelengths [λ∞,min, λ∞,max] was extracted, as the minimum value λI,min of

the most initial dominant wavelength indicates that the patterns has not been formed

yet. It was found that the maximum value of the initial dominant wavelength increases

as the total concentration decreases and it decreases as the relative concentration shifts
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(a) 100% C.a (b) 90%C.a:10%C.r (c) 80%C.a:20%C.r

(d) 70%C.a:30%C.r (e) 60%C.a:40%C.r (f) 50%C.a:50%C.r

(g) 40%C.a:60%C.r (h) 30%C.a:70%C.r (i) 20%C.a:80%C.r

(j) 10%C.a:90%C.r (k) 100% C.r

Figure 2.17: A smooth transition in the patterns as the relative concentration changes
from 100% C. augustae in 2.17(a) to 100% C. reinhardtii in 2.17(k). The cell concen-

tration is 4.2× 106 cell per cm3.
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Figure 2.18: A contour plot that displays how the dominant wavelength changes lo-
cally within the pattern. Also, it displays that this local dominant wavelength decreases
as the relative concentration moves from 100% C. reinhardtii in 2.18(k) to 100% C.

augustae in 2.18(a).
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Exp name λI,mincm λI,maxcm λ∞,mincm λ∞,maxcm Relative conc Total conc cell
cm−3

10r1 0.06 1.45 1.14 1.75 100%C.r 1.1× 107

10r2 0.06 2.23 1.5 2.26 100%C.r 8.8× 106

10r3 0.06 2.65 1.73 2.65 100%C.r 6.6× 106

10r4 0.06 2.23 2.06 2.40 100%C.r 4.4× 106

9r1a1 0.06 1.64 1.39 1.84 90%C.r :10%C.a 107

9r1a2 0.06 1.67 1.48 2.28 90%C.r :10%C.a 8× 106

9r1a3 0.06 3.34 1.98 2.51 90%C.r :10%C.a 6× 106

9r1a4 0.08 2.42 1.42 2.40 90%C.r :10%C.a 4× 106

8r2a1 0.06 1.34 1.09 1.61 80%C.r :20%C.a 1.1× 107

8r2a2 0.06 1.73 1.03 2 80%C.r :20%C.a 8.8× 106

8r2a3 0.06 2.28 1.42 2.06 80%C.r :20%C.a 6.6× 106

8r2a4 0.06 1.95 1.53 2.17 80%C.r :20%C.a 4.4× 106

7r3a1 0.06 1.39 0.89 1.53 70%C.r :30%C.a 1.1× 107

7r3a2 0.06 1.36 0.97 1.87 70%C.r :30%C.a 8.8× 106

7r3a3 0.06 1.98 1.33 1.89 70%C.r :30%C.a 6.6× 106

7r3a4 0.06 2.03 1.23 2.17 70%C.r :30%C.a 4.4× 106

6r4a1 0.06 1.5 0.78 1.53 60%C.r :40%C.a 1.1× 107

6r4a2 0.06 1.45 0.89 1.61 60%C.r :40%C.a 8.8× 106

6r4a3 0.06 1.78 1.18 1.81 60%C.r :40%C.a 6.6× 106

6r4a4 0.06 2.06 1.03 2.23 60%C.r :40%C.a 4.4× 106

5r5a1 0.06 1.31 0.75 1.34 50%C.r :50%C.a 1.1× 107

5r5a2 0.06 1.45 0.72 1.42 50%C.r :50%C.a 8.8× 106

5r5a3 0.06 1.67 0.92 1.73 50%C.r :50%C.a 6.6× 106

5r5a4 0.06 1.78 1.03 2.03 50%C.r :50%C.a 4.4× 106

4r6a1 0.06 1.39 0.72 1.28 40%C.r :60%C.a 1.1× 107

4r6a2 0.06 1.28 0.86 1.45 40%C.r :60%C.a 8.8× 106

4r6a3 0.06 1.56 0.97 1.87 40%C.r :60%C.a 6.6× 106

4r6a4 0.06 1.81 1.31 1.67 40%C.r :60%C.a 4.4× 106

3r7a1 0.06 0.61 0.67 1.2 30%C.r :70%C.a 107

3r7a2 0.06 1.59 0.81 1.34 30%C.r :70%C.a 8× 106

3r7a3 0.06 1.42 0.72 1.48 30%C.r :70%C.a 6× 106

3r7a4 0.06 1.67 0.86 1.78 30%C.r :70%C.a 4× 106

2r8a1 0.06 1.11 0.64 1.03 20%C.r :80%C.a 1.1× 107

2r8a2 0.06 1.28 0.7 1.14 20%C.r :80%C.a 8.8× 106

2r8a3 0.06 1.20 0.75 1.53 20%C.r :80%C.a 6.6× 106

2r8a4 0.06 1.61 0.81 1.53 20%C.r :80%C.a 4.4× 106

1r9a1 0.06 0.95 0.67 0.95 10%C.r :90%C.a 107

1r9a2 0.06 1.31 0.72 1.22 10%C.r :90%C.a 8× 106

1r9a3 0.06 1.25 0.70 1.31 10%C.r :90%C.a 6× 106

1r9a4 0.06 1.42 0.78 1.64 10%C.r :90%C.a 4× 106

10a1 0.06 1 0.11 1.17 100%C.a 6.5× 106

10a2 0.06 1.18 0.67 1.18 100%C.a 5.2× 106

10a3 0.06 1.56 0.08 1.28 100%C.a 3.9× 106

Table 2.3: The Experimental results after performing wavelet analysis. λI is the
initial wavelength at t1 and λ∞ is the long term wavelength at t8. Since the analysis
was performed at every location (pixel), the results were a range of wavelengths that

have minimum and maximum values.
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ḡ

50

σ

0 52 104 156 208 260
−500

0

500

Time in seconds

σ̇
∗
1
0
0

t1
t2

t3

t4
t5

t6 t7 t8

(a) (b)

Figure 2.19: (a) The time evolution of the mean of the gray level ḡ of the image, the
gray level standard deviation σ and σ̇. (b) The pattern at the onset time t1, where

σ̇ (t1) ≈ 20%, of the 100% C. reinhardtii.

from 100% C. reinhardtii to 100% C. augustae. It was also found that the range of the

long−time local dominant wavelength increases with decreasing total concentration and

decreases when shifting the relative concentration from 100% C. reinhardtii to 100% C.

augustae. However, the range [λ∞,min, λ∞,max] does not display any tendency to decrease

or increase when changing either the total concentration or the relative concentration.

Figure 2.17 displays a sequence of bioconvection images that were recorded during the

experiments. Starting from Figure 2.17(a) to Figure 2.17(k), the relative concentration

varies from 100% C. augustae to 100% C. reinhardtii with a step size of 10% the total

concentration is 4.2× 106 cells per cm3. The images show diversity between the shapes

and sizes of the these patterns. In the case of 100% C. augustae Figure 2.17(a), the

shapes of the concentrated patches diverge between lines, X and Y shape and the spacing

between them is very small. On the other hand, Figure 2.17(k) shows that the patches

of the 100% C. reinhardtii are dots with large spacing between them. Moreover, the

existence of the C. reinhardtii influences the patterns shape when it occupies 50% of

the total concentration while the C. augustae effect starts to disappear when it consists

30% of the total concentration. This may be because the C. augustae cell is larger

in volume than the C. reinhardtii cell. Figure 2.18 displays the change in the most
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(a) The total cell concentration= 4× 106
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(b) The total cell concentration= 6× 106
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(c) The total cell concentration= 4× 106
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(d) The total cell concentration= 6× 106

Figure 2.20: (a) and (b) are bar plots for the range of the most dominant wavelength
for the developed patterns [λ∞,min, λ∞,max] versus the relative concentration. The ver-
tical axis represents the wavelength measured in cm while the horizontal axis represents
the change in the relative concentration between 100% C. r (1r) to 100% C. a (1a). (c)
and (d) are the scatter plot of the most initial dominant wavelength versus the relative
concentration. The vertical axis represents the wavelength measured in cm while the
horizontal axis represents the change in the relative concentration between 100% C. r

(1r) to 100% C. a (1a).
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(a) 80% C. r : 20% C. a
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(b) 80% C. r : 20% C. a
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(c) 50% C. r : 50% C. a
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(d) 50% C. r : 50% C. a
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(e) 20% C. r : 80% C. a
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(f) 20% C. r : 80% C. a

Figure 2.21: (a), (c) and (e) are bar plots for the range of the most dominant wave-
length for the developed patterns [λ∞,min, λ∞,max] versus the total concentration. The
vertical axis represents the wavelength measured in cm while the horizontal axis repre-
sents the change in the total concentration. (b), (d) and (f) are the scatter plot of the
most initial dominant wavelength versus the total concentration. The vertical axis rep-
resents the wavelength measured in cm while the horizontal axis represents the change

in the total concentration.
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(a) 100% C. r of CT = 1.1× 107 (b) 50% C. r : 50% C. a of CT =
1.1× 107

(c) 10% C. r : 90% C. a of CT =
107

(d) 100% C. r of CT = 8.8× 106 (e) 50% C. r : 50% C. a of CT =
8.8× 106

(f) 10% C. r : 90% C. a of CT =
8× 106

(g) 100% C. r of CT = 6.6× 106 (h) 50% C. r : 50% C. a of CT =
6.6× 106

(i) 10% C. r : 90% C. a of CT =
6× 106

(j) 100% C. r of CT = 4.4× 106 (k) 50% C. r : 50% C. a of CT =
4.4× 106

(l) 10% C. r : 90% C. a of CT =
4× 106

Figure 2.22: The transition in the pattern formation as the total concentration
changes. (a), (g), (d) and (i) are patterns formed by 100% C. r starting with total
concentration 1.1 × 107. (b), (e), (h) and (k) are patterns formed by 50% C. r and
50% C. a starting with total concentration 1.1 × 107. Finally, (c), (f), (i) and (l) are

patterns formed by 10% C. r and 90% C. a starting with total concentration 107.
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Figure 2.23: Image arrangement.

dominant wavelength locally within the pattern. Also, the colourmap bar demonstrates

that generally the long term range of the most local dominant wavelength increases as

one shifts from 100% C. augustae to 100% C. reinhardtii.

Figure 2.24, 2.26 and 2.28 are bioconvection images that shows pattern evolution with

time of the suspensions that consist of 100% C. reinhardtii with total concentration

1.1× 107, 100% C. augustae with total concentration 6.5× 106 and 50% C. reinhardtii

and 50% C. augustae, respectively. The analysis results of these images are contour

plotted in the Figures 2.25, 2.27 and 2.29, respectively. The colourmap bar represents

the most dominant local wavelength of these patterns. These figures shows that, the

patterns start to form in small areas within the dish then it grows to cover the whole

dish. Also, the colourmap bar indicates that the most dominant initial wavelength

grows up to a certain time then it falls as the patterns are fully developed. In the

case of 100% C. augustae with total concentration 6.5 × 106, Figure 2.27 shows that

initially the most dominant wavelength is approximately [0.06, 1] cm then it increases to
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Figure 2.24: Experiment 10r1 of 100% C. r with total concentration of 1.1× 107 cell
per cm3. These image show how patterns evolve with time.
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Figure 2.25: Contour plot of the experiment 10r1 images of 100% C. r.
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Figure 2.26: Experiment 10a1 of 100% C. a with total concentration of 6.5× 106 cell
per cm3. These image show how patterns evolve with time.
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Figure 2.27: Contour plot of the experiment 10a1 images of 100% C. a.
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Figure 2.28: Experiment 5r5a1 of 50% C. r and 50% C. a with total concentration
of 1.1× 107 cell per cm3. These image show how patterns evolve with time.
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Figure 2.29: Contour plot of the experiment 5r5a1 images of 50% C. r and 50% C.
a.
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(a)

 

(b)

 

(c)

Figure 2.30: (a) Patterns formed by 100% C. r with total concentration of 6.6× 106.
(b) Contour plot of the the most local dominant wavelength superimposed with its
direction and the direction of the second dominant wavelength. (c) The areas in the
boxes are enlarged, the contour on the left side and the bioconvection image on the
right side. The first and the second directions are perpendicular to each others which

indicated that the patterns have square structure.
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(a)

 

(b)

 

(c)

Figure 2.31: (a) Patterns formed by 50% C. r and 50% C. a with total concentration
of 1.1×107. (b) Contour plot of the the most local dominant wavelength superimposed
with its direction and the direction of the second dominant wavelength. (c) The areas
in the boxes are enlarged, the contour on the left side and the bioconvection image on
the right side. There is only one direction in this area which conclude that the patterns

tend to have roll structure.
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approximately[0.8, 1.6] cm. By the time patterns are fully developed the most dominant

wavelength will be [0.8, 1.1] cm with a mean value of 0.92 cm.

Figure 2.30(a) is the bioconvection patterns formed by 100% C. r with total concentra-

tion 6.6×106. Figure 2.30(b) is the contour plot of the most dominant local wavelength

in the range of [1.73, 2.65] cm superimposed by its associated direction and the direction

of the second dominant local wavelength. The area in the box in Figure 2.30(a) corre-

sponds to the result in the box in Figure 2.30(b). These areas are enlarged in Figure

2.30(c). The first and the second directions are perpendicular to each other which indi-

cates that the patterns are square and have the square structure. However, the selected

area in Figure 2.31(a) with its results presented in Figure 2.31(c) indicates that the

patterns in this location tend to have roll structure as there is only one direction.

To sum up, we used wavelet analysis to discuss the variation of pattern wavelength as

a function of total concentration and relative concentration between two mixed species

C. reinhardtii and C. augustae. We found that both the initial and the long term

wavelength decrease as we shift from 100% C. reinhardtii to 100% C. augustae. Also,

we found that both the initial and the long term wavelength increase as we decrease

the total concentration of the suspension. This result agrees with the results found

by Bees and Hill [11] and Williams and Bees [116]. Using wavelets to analyse images

is time consuming compared to Fourier. Both analysis wavelet and Fourier succeeded

in finding the general trends of the patterns, e.g. investigating the wavelength as a

function of cell concentration (Bees and Hill [11] and Williams and Bees [116]). However,

the outcome results of wavelet analysis are more realistic than the outcome results

of Fourier analysis as wavelet analysis outcome results describe wavelengths at every

location in the pattern with the ability to vary the scale (window) around every location.

Even when one considers a narrower window to perform Fourier analysis on a small

area within the image, the outcome results might not agree with the ones produced by

the wavelets. Since the two−dimensional Fourier analysis is performed usually in the

x−direction (horizontal) and the y−direction (vertical) (see Czirók [25], Bees and Hill

[11] and William and Bees [116]), while more options of directions can be considered for

the scale that corresponds to the size of the selected window. Moreover, changing the
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small area within the image requires changing the selected window, which makes Fourier

analysis inefficient compared to wavelets.

2.6 Conclusion

Even though wavelet have found applications in many fields (Chui [21], Farge [32], He

et al.[47], Guana [43], Barclay et al. [8], Verma and Goel [112] and Huang and Hsien

[55]), in this chapter, we developed a new method that utilizes wavelets to analyse

images. Experiments were performed to explore how the initial and the long−time

most dominant local wavelength varies as a function of the total concentration and

relative concentration. The method shows significant results when the patterns consists

of different patches with different shapes and sizes. This method might be useful to

investigate other stimuli that cause pattern formation such as chemotaxis as local image

analysis is required. The code has also been used to analyse some chemoconvection

images.



Chapter 3

Linear instability for a suspension

of two species

The aim of this theory is to generalize the continuum model of Pedley and Kessler [86]

to consist of two species and investigate instability of a uniform suspension of the two

mixed species. Unlike Pedley and Kessler [86], we assume a suspension of two different

mixed species of swimming microorganisms with no interactions between each other,

either biological or chemical. These species have different values of parameters, such as

the gyrotactic orientation parameter, the mean cell concentration, the mean cell velocity,

etc. Also, the fluid is assumed to be Newtonian only without considering the relation

by small stress tensors that are exerted by the cell on the fluid due to its rotation,

locomotion and the difference in the deformation of the fluid if the cell were not there.

However, assuming that the suspension consists of two different types of swimming

microorganisms leads to a cubic dispersion relation, that describes the growth rate of

small instability, instead of a quadratic equation as in Pedley and Kessler [86]. The

cubic equation results from the terms in the momentum equation where the two species

are coupled.

67
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3.1 Mathematical Model

In this model, one assumes a monodisperse cell population. The suspension is assumed

to consist of two different types of micro-organisms, each of which has the density ρi,

i = 1, 2. If each type has the concentration, ni, and mean cell volume vi, where i = 1, 2,

then the density of the suspension per unit volume will be (1 + α1n1v1 + α2n2v2)ρ,

where αi = ∆ρi
ρ and, ρ, is the density constant of the media in which they swim. Also,

the suspension is assumed to be diluted when n1v1 + n2v2 � 1 per unit volume, so,

the cell−to−cell interactions can be neglected. Finally, the species are assumed not to

interact with each other or produce any chemicals that are harmful to each others.

Following the continuum model of Pedley and Kessler in 1990 [86], the suspension is

incompressible, so

∇ ·U = 0 , (3.1)

where U(x, t) is the suspension velocity. Assuming Boussinesq approximation that states

that any changes in the density of the fluid can be neglected except where the density

is multiplied by g, in a unit volume of the suspension the buoyancy force is equal to

(∆ρ1n1v1 + ∆ρ2n2v2)g, and the change in density in the inertia term will be neglected.

Also, by considering the fluid to be Newtonian and unlike Pedley and Kessler [86] the

stress tensors that are exerted on the cell due to its rotation, locomotion and the differ-

ence in the deformation and the rotation of the cell by the fluid if the cell was not there

are neglected, the momentum equation in this model is

ρ
DU

Dt
= −∇Pe − (∆ρ1n1v1 + ∆ρ2n2v2)gk + µ∇2U , (3.2)

where ni is the cell concentration and vi is the mean volume of the cells of each type, µ is

the fluid viscosity constant and Pe is the excess pressure above the hydrostatic. Finally,

since the total number of cells is conserved, the final governing equation is

∂ni
∂t

= −∇ · [ni(U + Vic)−Di · ∇ni] , i = 1, 2 , (3.3)
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where Vic is the mean cell swimming velocity and Di(x, t) is the cell diffusivity tensor

for each species i, where i = 1, 2.

As there is randomness in the cell swimming velocity, because different cells swim in

different directions with different swimming speeds, one defines Vis to be the mean of

the cell swimming speed, and

pi = (sin θi cosφi , sin θi sinφi , cos θi) , (3.4)

to be the unit vector in the direction of the cell axis of symmetry as it is the cell swimming

direction. In definition (3.4), θi is the angle between the cell axis of symmetry and the

z−axis and it represents the swimming direction whereas φi is the angle between the

projection of the cell axis of symmetry on the xy−plane and the x−axis and it represents

the cell rotation around the vertical axis, where i = 1, 2, see Figure 4.1.

So, the mean swimming velocity Vic in equation (3.3) is defined as

Vic = Vis〈pi〉 , (3.5)

where 〈 〉 is the ensemble average defined as

〈pi〉 =

∫
S

∫
pifi(pi) d

2pi , (3.6)

and fi(pi) is the probability density function defined on a unit sphere.

The tendency to change the swimming direction randomly is assumed to be independent

from the instantaneous direction (Hill and Häder [49]). Thus, the probability density

function fi(pi) is assumed to satisfy the Fokker-Plank equation

∂fi
∂t

+∇ · (ṗifi) = Dir∇2fi , i = 1, 2 , (3.7)

where Dir is the rotational diffusivity that represents the randomness in the cells swim-

ming behaviour and ṗi is the rate change of the reorientation defined as (Bees and Hill
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[13])

ṗi =
1

2Bi
[k− (k · pi)pi] +

1

2
ω × pi + α0ipi ·E · (I− pipi) , i = 1, 2 . (3.8)

Here, ω is the ambient vorticity, Bi = µα⊥i
2hiρg

is the gyrotactic orientation parameter, α⊥i

is the dimensionless resistance coefficient for rotation about an axis perpendicular to pi,

hi is the centre−of−mass offset. Finally, α0i =
ax2i−bx2i
ax2i+bx

2
i
, where axi and bxi are the major

and the minor axes of the cell of each type, respectively. Equation (3.8), means that the

rate of change in the cell swimming direction is a linear combination of the effect of the

rate−of−strain of the fluid on the cell swimming direction, the effect of the vorticity on

that direction and the drift in the direction from being vertical because of the gyrotactic

orientation. The Fokker−Plank equation allows a nondeterministic estimation of Vic

and Di.

The diffusion tensor Di in equation (3.3) is given by

Di(t) =

∫ ∞
0
〈Vir (t) Vir

(
t− t′

)
〉dt′ , i = 1, 2 , (3.9)

where Vir is the velocity of the cell relative to the mean cell velocity, i.e.,

Vir = Vic − 〈Vic〉. The definition of Di in (3.9) is difficult to be calculated as one has

to know all the cells swimming velocities. Thus, an approximation is made by assuming

as in Pedley and Kessler [86] that Vis is constant for both species as well as the cell

settles to a new preferred direction during a constant cell direction correlation time τi,

the diffusion Di can be approximated by

Di ≈ V 2
isτi〈(pi − 〈pi〉)2〉 , i = 1, 2 , (3.10)

Definition (3.10) of the diffusivity tensor was also used by Pedley and Kessler [87], Bees

and Hill [12] and Hill and Bees [48].
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Parameter Value Unit

Fluid density, ρ 1 gm cm−3

Difference between cell and fluid density, ∆ρ 0.05 gm cm−3

Cell volume, v 5×10−10 cm3

Acceleration due to gravity, g 103 cm s−2

Viscosity, µ 10−2 gm cm−1 s−1

Mean cell swimming speed, Vs 63 µm s−1

Cell diffusion, D 5×10−5−5×10−4 cm2 s−1

Gyrotactic parameter, B 3.4 s
Correlation time, τ 1.3 s
Cell rotational diffusivity, Dr 0.067 s−1

Cell eccentricity, α0 0.2−0.31
Center−of−mass displacement, h 0−0.5 µm
Deterministic−stochastic parameter, λ 2.2

Table 3.1: Parameters estimated values for the green algae Chlamydomonas augustae
from Williams and Bees [115]

3.2 Fokker−Plank Equation

To solve the Fokker−Plank equation, we follow Pedley and Kessler [86]. One assumes

that the time scale of the variation in the flow is large compared to D−1
ir which is the

same assumption followed by Pedley and Kessler [87], Bees and Hill [12] and Hill and

Bees [48]. Thus, the term ∂fi
∂t can be omitted from the Fokker−Plank equation (3.7),

i.e. steady state, to be written as

Dir∇2fi =
1

2Bi
[k · ∇fi − 2 (k · pi) fi] +

1

2
ω · (pi ×∇fi)

+α0i [pi ·E · ∇fi − 3fipi ·E · pi] . (3.11)

In the above equation ω and E are dimensional constants. Now, one nondimensionlizes

the local vorticity and the rate−of−strain tensors by putting

ω =
1

B
Ω, E =

1

B
e, (3.12)

where B = max (B1, B2) is the gyrotactic orientation parameter (In this section we

nondimesionlized the Fokker−plank equation only. However, the nondimensionlization

of the governing equations will be given in detail in Section 3.3). Then, equation (3.11)
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becomes

λ−1
i ∇

2fi = k · ∇fi − 2 (k · pi) fi +
1

2
ηiΩ · (pi ×∇fi)

+α0iηi [pi · e · ∇fi − 3fipi · e · pi] , (3.13)

where λi = 1
2BiDir

, ηi = Bi
B , Ω and e are the dimensionless fluid local vorticity and

rate−of−strain tensors.

3.2.1 No flow solution

Consider the zero flow equilibrium state in which U∗ = Ω = e = 0 and fi = f
(0)
i . Also,

pi is defined in equation (3.4) and k = (0, 0, 1). Using the definitions of the gradient

vector and the Laplace operator given in equations (B.1)−(B.5) (Spurk and Aksel [106],

see Appendix B.1) and since pi is the unit vector in the cell swimming direction, the

Fokker−Plank equation (3.13) is

1

sin θi

∂

∂θi

(
sin θi

∂f
(0)
i

∂θi

)
+

1

sin2 θi

∂2f (0)

∂φ2
i

= −λi

(
sin θi

∂f
(0)
i

∂θi
+ 2 cos θif

(0)
i

)
. (3.14)

For zero flow, one can assume that f
(0)
i is independent of φi, hence, f

(0)
i is a function of

θi only. So, using the substitution xi = cos θi in equation (3.14), leads to

(
1− x2

i

) ∂2f
(0)
i

∂xi2
+
(
−2xi − λi

(
1− x2

i

)) ∂f (0)
i

∂xi
+ 2λixif

(0)
i = 0. (3.15)

Integrating with respect to xi gives

(
1− x2

i

)(∂f (0)
i

∂xi
− λif (0)

i

)
= C, (3.16)

where C is a constant. Since f
(0)
i and its derivative with respect to xi are both finite,

taking θi = 0 leads to C = 0. Hence,

f
(0)
i = $λi exp (λi cos θi) . (3.17)
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Using the normalization condition imposed on f
(0)
i ,

$λi =
λi

4π sinhλi
. (3.18)

Using the definition of 〈pi〉 in (3.6), one can find that

〈pi〉(0) =


0

0

Ki1

 , (3.19)

where

Ki1 = cothλi −
1

λi
. (3.20)

Also, the zero−order diffusion is computed from the relation

D
(0)
i = V 2

isτi

(
〈pipi〉(0) − 〈pi〉(0)〈pi〉(0)

)
, (3.21)

to be

D
(0)
i = V 2

isτi


Ki1
λi

0 0

0 Ki1
λi

0

0 0 Ki2

 , (3.22)

where

Ki2 = 1− coth2 λi +
1

λ2
i

. (3.23)

3.2.2 Weak ambient flow for spherical cells

One adds a small perturbation to the equilibrium state in Subsection 3.2.1,

U∗ = εU′, Ω = εΩ(1), e = εe(1), f = f
(0)
i + εf

(1)
i , (3.24)
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where 0 < ε � 1. Then, for a spherical cell, i.e., α0i = 0, fi (pi) is independent of

the fluid rate−of−strain. Substitute (3.24) in Fokker−Plank equation (3.13), the O (ε)

equation is

1

sin θi

∂

∂θi

(
sin θi

∂f
(1)
i

∂θi

)
+

1

sin2 θi

∂2f
(1)
i

∂φi
2 +

λi
sin θi

∂

∂θi

(
sin2 θif

(1)
i

)
=

λiηi

(
Ω

(1)
2 cosφi − Ω

(1)
1 sinφi

) ∂f (0)
i

∂θi
. (3.25)

As in the previous subsection, one uses the substitution xi = cos θi. The right hand side

suggests that

f
(1)
i (θi, φi) = $λiλiηi

(
Ω

(1)
2 cosφi − Ω

(1)
1 sinφi

)
zi1 (xi) . (3.26)

Then, equation (3.25) becomes

d

dxi

((
1− x2

i

) dzi1

dxi

)
− zi1

1− x2
i

− λi
d

dxi

((
1− x2

i

)
zi1

)
=

−λi
(
1− x2

i

) 1
2 exp (λixi) . (3.27)

Expand the functions exp (λixi) and zi1 as a power series of λi to be

exp (λixi) =

∞∑
n=1

(λixi)
(n−1)

(n− 1)!
, (3.28)

zi1 (xi) =
∞∑
n=1

λni Υin (xi) . (3.29)

Substituting equations (3.28) and (3.29) into equation (3.27) leads to

d

dxi

((
1− x2

i

) dΥin

dxi

)
− Υin

1− x2
i

=
d

dxi

((
1− x2

i

)
Υi(n−1)

)
−
(
1− x2

i

) 1
2
x

(n−1)
i

(n− 1)!
. (3.30)

The left hand side of equation (3.30) suggests that one uses the associated Legendre

equation (B.6)(Arfken et al. [4]; see Appendix B.2). Hence, equation (3.30) can be
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written as

n (n+ 1) Υin − 2xiΥi(n−1) +
(
1− x2

i

) dΥi(n−1)

dxi
=
(
1− x2

i

) 1
2
x

(n−1)
i

(n− 1)!
. (3.31)

The solution of this equation can be expressed as a linear combination of the associated

Legendre polynomials as follows, let

Υin (xi) =
n∑
l=1

ςin,lP
1
l (xi) . (3.32)

Substitute (3.32) into (3.31)

n∑
l=1

ςin,l l (l + 1)P 1
l (xi) +

n−1∑
l=1

ςi(n−1),l

[
−2xiP

1
l (xi) +

(
1− x2

i

) dP 1
l (xi)

dxi

]
=

(
1− x2

i

) 1
2
x

(n−1)
i

(n− 1)!
. (3.33)

Putting m = 1, equations (B.10) and (B.14) in Appendix B.2, become

(2l + 1)xiP
1
l = (l + 1)P 1

l−1 + lP 1
l+1, (3.34)

and

(
1− x2

i

) dP 1
l

dx
=
l (l + 1)

2l + 1

[
P 1
l−1 − P 1

l+1

]
+ xiP

1
l . (3.35)

Substituting equations (3.34) and (3.35) into equation (3.33) gives

n∑
l=1

ςin,l l (l + 1)P 1
l (xi) =

n−1∑
l=1

ςi(n−1),l

[
l + 1

2l + 1
P 1
l−1 +

l

2l + 1
P 1
l+1−

l (l + 1)

2l + 1

(
P 1
l+1 − P 1

l−1

)]
+
(
1− x2

i

) 1
2
x

(n−1)
i

(n− 1)!
. (3.36)

Multiplying equation (3.36) by P 1
q and integrating it with respect to xi over the conver-

gence interval (−1, 1), using equation (B.15) from Appendix B.2 gives

ςin,l = − (l + 2)

(l + 1) (2l + 3)
ςi(n−1),l+1 +

(l − 1)

l (2l − 1)
ςi(n−1),l−1 +

bin,l
l (l + 1)

, (3.37)
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where

bin,l =
2l + 1

2 (n− 1)!l (l + 1)

∫ 1

−1

(
1− x2

i

) 1
2 x

(n−1)
i P 1

l (xi) . (3.38)

Thus, Gradshteyn and Ryzhik [41] give the formula of the integration (3.38) to be

bi(n+1),l =


0, n+ l is even

(2l+1)Γ(n+1
2 )Γ(n+2

2 )
4Γ(n+1)Γ(n−l+3

2 )Γ(n+l+4
2 )

, n+ l is odd.

(3.39)

where n + 1 ≥ l. ςin,l are independent of i, since they are defined using the Γ function

as a function of n. Hence, ςin,l can be written as ςn,l. Pedley and Kessler [86] evaluated

these coefficients to be ςn+1,l = 0 if n+ l is even and the non−zero coeffecients are

ς1,1 =
1

2
, ς2,2 =

5

36
, ς3,1 =

1

120
, ς3,3 =

13

540
, · · · (3.40)

Now, the first order correction to the mean swimming direction 〈pi〉 can be computed

as

〈pi〉(1) =

∫
S

∫
pif

(1)
i (pi)d

2pi,

= $λiλiηi

∫ 2π

0

∫ π

0

(
Ω

(1)
2 cosφi − Ω

(1)
1 sinφi

)( ∞∑
n=1

λni

n∑
l=1

ςn,lP
1
l (cos θi)

)


sin θi cosφi

sin θi sinφi

cosφi

 sin θi dθi dφi. (3.41)

〈pi〉(1) is calculated by Pedley and Kessler [86] and Bees and Hill [12] to be

〈pi〉(1) =
(

Ω
(1)
2 ,−Ω

(1)
1 , 0

)
ηiJi1, (3.42)

where

Ji1 =
4

3
π$λiλi

∞∑
l=0

λ2l+1
i ς2l+1,1. (3.43)
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3.2.3 Weak ambient flow for spheroidal cells

When the cells are spheroidal, α0i 6= 0. Thus, the Fokker− Plank equation (3.13) can

be written as [86]

1

sin θi

∂

∂θi

(
sin θi

∂f
(1)
i

∂θi

)
+

1

sin2 θi

∂2f
(1)
i

∂φi
2 +

λi
sin θi

∂

∂θi

(
sin2 θif

(1)
i

)
= (3.44)

λiηi

(
Ω

(1)
2 cosφi − Ω

(1)
1 sinφi

) ∂f (0)
i

∂θi
+ α0iλiηi

(
Φ1 (θi, φi)

df (0)

dθi
− 3Φ2 (θi, φi) f

(0)

)
,

where

Φ1 (θi, φi) = −3

4
e

(1)
33 sin 2θi +

1

4

(
e

(1)
11 − e

(1)
22

)
sin 2θi cos 2φi +

1

2
e

(1)
12 sin 2θi sin 2φi

+e
(1)
13 cos 2θi cosφi + e

(1)
23 cos 2θi sinφi, (3.45)

and

Φ2 (θi, φi) =
1

2
e

(1)
33

(
3 cos2 θi − 1

)
+

1

2

(
e

(1)
11 − e

(1)
22

)
sin2 θi cos 2φi + e

(1)
12 sin2 θi sin 2φi

+e
(1)
13 sin 2θi cosφi + e

(1)
23 sin 2θi sinφi.(3.46)

Following similar procedure to the one presented in Subsection 3.2.2, Pedley and Kessler

[86] and Bees and Hill [12] calculated the contribution of the eccentricity to 〈pi〉(1) to be

−2α0iηi

(
e

(1)
13 Ji4, e

(1)
23 Ji4,

3

2
e

(1)
33 Ki4

)T
, (3.47)

where

Ji4 =
4

3
π$λiλi

∞∑
l=0

λ2l+1
i ς̃2l+1,1, (3.48)

and

Ki4 = 1− coth2 λi −
2Ki1

λi
, (3.49)
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λi Ki1 Ki2 Ki4 Ji1 Ji4

0.3 0.099 0.33 -0.0039 0.015 -4.6×10−3

1.0 0.31 0.28 -0.037 0.14 -0.064
2.2 0.57 0.16 -0.10 0.45 -0.23
3.0 0.67 0.10 -0.12 0.60 -0.41

Table 3.2: The values of Ks and Js for different values of λ, from Pedley and Kessler
[86], the corrected values of Ki4 and Ji4 when λi = 0.3, from Bees and Hill [12] and a

corrected value of Ji4 when λi = 2.2 from Williams and Bees [115]

where the recurrence relation for ς̃n,1 is equation (3.37) with

b̃(n+1),l = −
(2l + 1) Γ

(
n+1

2

)
Γ
(
n+2

2

) (
n2 + 5n+ 4 + l + l2

)
16Γ (n+ 1) Γ

(
n+5−l

2

)
Γ
(
n+6+l

2

) . (3.50)

They calculated the values of the coefficients ς̃n,1 to zero when n+ l is odd and

ς̃0,2 = −1

3
, ς̃1,1 = −1

5
, ς̃1,3 = − 2

15
, · · · (3.51)

3.3 Linear instability

The governing equations (3.1) − (3.3) are nondimensionlized using the time scale B =

max(B1, B2), the velocity scale Vs = max(V1s, V2s), BVs as a length scale, ρV 2
s as a

pressure scale and finally, the concentration is scaled by ni0. So,

t = Bt∗, U = VsU
∗, x = BVsx

∗, Pe = ρV 2
s P
∗
e , ni = ni0n

∗
i . (3.52)

Substituting these values in equations (3.1) − (3.3) gives the following nondimensionized

governing equations

∇∗ ·U∗ = 0; (3.53)

DU∗

Dt∗
= −∇∗P ∗e − β (%1ζ1γ1n

∗
1 + %2ζ2γ2n

∗
2) +

1

Re

(
∇∗2U∗

)
, (3.54)

∂n∗i
∂t∗

= −∇∗ · [n∗i (U∗ + ai〈pi〉)−D∗i · ∇∗n∗i ] , i = 1, 2, (3.55)
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In equations (3.54) and (3.55) Re = ρBV 2
s

µ is considered the cell Reynolds number and

β = Bn0vg4ρ
ρVs

where

4ρ = max(4ρ1,4ρ2), v = max(v1, v2), n0 = max(n10, n20), Vs = max(V1s, V2s),(3.56)

%i =
4ρi
4ρ

, ζi =
vi
v
, γi =

ni0
n0
, ai =

Vis
Vs
, D∗i =

Di

BV 2
s

. (3.57)

The basic equilibrium situation in this model is when there is no flow, the algae cells

of each type are uniformly distributed in the suspension and the swimming direction

is vertically upwards. A small perturbation, 0 < ε � 1 is applied to the equilibrium

situation so that

U∗ = εU′, P ∗e = Pe0 + εP ′e, n
∗
i = 1 + εn′i, 〈pi〉 = 〈pi〉(0) + ε〈pi〉(1). (3.58)

Thus, the linearized governing equations are

∇∗ ·U′ = 0, (3.59)

∂U′

∂t∗
= −∇∗P ′e − β

(
%1ζ1γ1n

′
1 + %2ζ2γ2n

′
2

)
k +

1

Re
∇∗2U′, (3.60)

∂n′i
∂t∗

= −∇∗ ·
[
ai〈Pi〉(1) + ai〈Pi〉(0)n′i −D

∗(0)
i · ∇∗n′i

]
, i = 1, 2, (3.61)

Now, 〈Pi〉(0), 〈Pi〉(1) and D
∗(0)
i in equation (3.61) are defined as follows, (see Section 3.2)

〈pi〉(0) =


0

0

Ki1

 , Ki1 = cothλi −
1

λi
. (3.62)

〈Pi〉(1) =


Ω

(1)
2 ηiJi1 − 2α0iηie

(1)
13 Ji4

−Ω
(1)
1 ηiJi1 − 2α0iηie

(1)
23 Ji4

3α0iηie
(1)
33 Ki4

 , Ki4 = 1− coth2 λi −
2Ki1

λi
(3.63)
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The dimensionless version of D
(0)
i is:

D
∗(0)
i =


D
∗(0)
iH 0 0

0 D
∗(0)
iH 0

0 0 D
∗(0)
iV

 , (3.64)

D
∗(0)
iH = a2

i

τiKi1

Bλi
, D

∗(0)
iV = a2

i

τiKi2

B
,Ki2 = 1− coth2 λi +

1

λ2
i

. (3.65)

Substitute from equations (3.62), (3.63) and (3.64) into equation (3.61)

∂n′i
∂t∗

= −∇∗ ·
[
aiηi

(
Ω

(1)
2 Ji1 − 2α0ie

(1)
13 Ji4,−Ω

(1)
1 Ji1 − 2α0ie

(1)
23 Ji4,−3α0ie

(1)
33 Ki4

)
+ai (0, 0,Ki1)n′i − Λi

]
, (3.66)

where

Λi =


D
∗(0)
iH 0 0

0 D
∗(0)
iH 0

0 0 D
∗(0)
iV

 ·
(
∂n′i
∂x∗

,
∂n′i
∂y∗

,
∂n′i
∂z∗

)
, i = 1, 2. (3.67)

So, the dimensionless linear governing equations can be simplified as:

∇∗ ·U′ = 0, (3.68)

∂U′

∂t∗
= −∇∗P ′e − β

(
%1ζ1γ1n

′
1 + %2ζ2γ2n

′
2

)
k +

1

Re
∇∗2U′, (3.69)

∂n′i
∂t∗

= aiJi1ηi

(
∂Ω

(1)
1

∂y∗
− ∂Ω

(1)
2

∂x∗

)
+ 2α0iJi4aiηi

(
∂e

(1)
13

∂x∗
+
∂e

(1)
23

∂y∗

)
+ 3aiα0iηiKi4

e
(1)
33

∂z∗
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+D
∗(0)
iH

(
∂2n′i
∂x∗2

+
∂2n′i
∂y∗2

)
+D

∗(0)
iV

∂2n′i
∂z∗2

− aiKi1
∂n′i
∂z∗

, i = 1, 2, (3.70)

Using individual Fourier modes to examine the instability:

n′i (x∗, y∗, z∗, t∗) = Ni exp (σt∗ + i (kx∗ + ly∗ +mz∗)) , (3.71)

U′ (x∗, y∗, z∗, t∗) = (U ′1, U
′
2, U

′
3)

= (U1, U2, U3) exp (σt∗ + i (kx∗ + ly∗ +mz∗))
, (3.72)

P ′e (x∗, y∗, z∗, t∗) = P exp (σt∗ + i (kx∗ + ly∗ +mz∗)) , (3.73)

where i =
√
−1. Without loss of generality, one can put l = 0 as there is no preferable

direction for the cell to diffuse in the horizontal plane. Hence, (3.71) − (3.73) can be

written as:

n′i (x∗, z∗, t∗) = Ni exp (σt∗ + i (kx∗ +mz∗)) , (3.74)

U′ (x∗, z∗, t∗) = (U ′1, 0, U
′
3)

= (U1, 0, U3) exp (σt∗ + i (kx∗ +mz∗))
, (3.75)

P ′e (x∗, z∗, t∗) = P exp (σt∗ + i (kx∗ +mz∗)) , (3.76)

Substituting equations (3.74), (3.75), (3.76), (B.23), (B.25), (B.27), (B.29) and (B.31)

into equations (3.68) − (3.70) gives the incompressibility equation

U1k + U3m = 0, (3.77)

while the conservation law of momentum in the x∗− direction is

U1

(
σ +

1

Re

(
k2 +m2

))
= −iPk, (3.78)

and in the z∗− direction is

U3

(
σ +

1

Re

(
k2 +m2

))
= −iPm− β

(
2∑
i=1

%iζiγiNi

)
, (3.79)
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and the conservation law for the number of cells is

Ni

(
σ + iaiKi1m+D

∗(0)
iH k2 +D

∗(0)
iV m2

)
= U1aiηi (Ji1 − α0iJi4)mk

−U3aiηi
(
Ji1k

2 + α0iJi4k
2 + 3aiα0iKi4m

2
)
, i = 1, 2. (3.80)

Equation (3.78) gives

U1

(
σ +

1

Re

(
k2 +m2

))
/k = −iP, (3.81)

Substitute from (3.81) into equation (3.79) leads to

U3

(
σ +

1

Re

(
k2 +m2

))
= U1

(
σ +

1

Re

(
k2 +m2

)) m

k
− β

(
2∑
i=1

%iζiγiNi

)
, (3.82)

One can get the relationship between U1 and U3 from equation (3.77) as follows

U1 = −U3

(m
k

)
, (3.83)

Substitute (3.83) into equation (3.82)

U3

(
σ +

1

Re

(
k2 +m2

))
= −U3

(m
k

)2
(
σ +

1

Re

(
k2 +m2

))
− β

(
2∑
i=1

%iζiγiNi

)
,

(3.84)

From equation (3.80) Ni can be written as a function of U3 so that

Ni = −
aiηi (Ji1 − α0iJi4)m2 + aiηi

(
Ji1k

2 + α0iJi4k
2 + 3α0iKi4m

2
)

σ + iaiKi1m+D
∗(0)
iH k2 +D

∗(0)
iV m2

U3. (3.85)

Substitute the value of Ni in equation (3.85) into equation (3.84) gives

(
σ +

1

Re

(
k2 +m2

))
+
(m
k

)2
(
σ +

1

Re

(
k2 +m2

))
=

β

(
2∑
i=1

%iζiγi
aiηi (Ji1 − α0iJi4)m2 + aiηi

(
Ji1k

2 + α0iJi4k
2 + 3α0iKi4m

2
)

σ + iaiKi1m+D
∗(0)
iH k2 +D

∗(0)
iV m2

)
, (3.86)
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Hence, the dispersion relation is

(
σ +

(
k2 +m2

Re

))
=

(
k2

k2 +m2

)
β

(
2∑
i=1

%iηiζiγiai×[
(Ji1 + α0iJi4) k2 + (Ji1 − α0iJi4 + 3α0iKi4)m2

]
σ + iaiKi1m+D

∗(0)
iH k2 +D

∗(0)
iV m2

)
. (3.87)

To simplify the above equation, one sets the following parameters to be

A1 =
k2 +m2

Re
, (3.88)

A2 =

(
k2

k2 +m2

)
β, (3.89)

Bi1 = Si
(
S1ik

2 + S2im
2
)
, i = 1, 2, (3.90)

Bi2 = iaiKi1m+D
∗(0)
iH k2 +D

∗(0)
iV m2, i = 1, 2, (3.91)

where

Si = %iηiζiγiai, i = 1, 2, (3.92)

S1i = Ji1 + α0iJi4, i = 1, 2, (3.93)

S2i = Ji1 − α0iJi4 + 3α0iKi4, i = 1, 2, (3.94)

The dispersion relationship (3.87) is

σ +A1 = A2

[
B11

σ +B12
+

B21

σ +B22

]
, (3.95)

which simplifies to

σ3 + F1σ
2 + F2σ + F3 = 0, (3.96)

where F1, F2, F3 ∈ C and

F1 = F1R + iF1I = A1 +B12 +B22, (3.97)

F1 =

(
1

Re
+D

∗(0)
1H +D

∗(0)
2H

)
k2 +

(
1

Re
+D

∗(0)
1V +D

∗(0)
2V

)
m2 + i (a1K11 + a2K21)m,

(3.98)
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F2 = F2R + iF2I ,

= A1 (B12 +B22)−A2 (B11 +B21) +B12B22,
(3.99)

=
(
k2+m2

Re

) [(
D
∗(0)
1H +D

∗(0)
2H

)
k2 +

(
D
∗(0)
1V +D

∗(0)
2V

)
m2
]

−
(

k2

k2+m2

)
β
[
(S1S11 + S2S12) k2 + (S1S21 + S2S22)m2

]

+
(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
− a1a2K11K21m

2

+i

[(
k2+m2

Re

)
(a1K11 + a2K21)m+ a1K11m

(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)

+a2K21m
(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)]
,

(3.100)

F3 = F3R + iF3I ,

= A1B12B22 −A2 (B11B22 +B21B12) ,
(3.101)

=
(
k2+m2

Re

) [(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
− a1a2K11K21m

2
]

−
(

k2

k2+m2

)
β

[
S1

(
S11k

2 + S21m
2
) (
D
∗(0)
2H k2 +D

∗(0)
2V m2

)

+S2

(
S12k

2 + S22m
2
) (
D
∗(0)
1H k2 +D

∗(0)
1V m2

)]

+i

[(
k2+m2

Re

) [
a1K11m

(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
+ a2K21m

(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)]

−
(

k2

k2+m2

)
β
[
a2K21S1m

(
S11k

2 + S21m
2
)

+ a1K11S2m
(
S12k

2 + S22m
2
)] ]

.

(3.102)
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The dispersion relationship in equation (3.96) is a cubic equation. Let σ = σR + iσI ,

then, the dispersion relation (3.96) yields

(σR + iσI)
3 + (F1R + iF1I) (σR + iσI)

2 + (F2R + iF2I) (σR + iσI) + F3R + iF3I = 0,

(3.103)

So, when σR = 0 equation (3.103) gives:

(iσI)
3 + (F1R + iF1I) (iσI)

2 + (F2R + iF2I) (iσI) + F3R + iF3I = 0, (3.104)

⇐⇒
(
−F1Rσ

2
I − F2IσI + F3R

)
+ i
(
−σ3

I − F1Iσ
2
I + F2RσI + F3I

)
= 0, (3.105)

The real part of the dispersion equation is

− F1Rσ
2
I − F2IσI + F3R = 0, (3.106)

and the imaginary part is

− σ3
I − F1Iσ

2
I + F2RσI + F3I = 0, (3.107)

Equation (3.106), gives the key parameter Reβ as a function of σI and the other param-

eters as follows:

F3R = F1Rσ
2
I + F2IσI , (3.108)

Using equation (3.102) leads to

(
k2+m2

Re

) [(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
− a1a2K11K21m

2
]

−
(

k2

k2+m2

)
β

[
S1

(
S11k

2 + S21m
2
) (
D
∗(0)
2H k2 +D

∗(0)
2V m2

)

+S2

(
S12k

2 + S22m
2
) (
D
∗(0)
1H k2 +D

∗(0)
1V m2

)]
= F1Rσ

2
I + F2IσI ,

(3.109)
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Multiplying equation (3.109) by Re yields

Reβ =
−E1σ

2
I − E2σI + E3

E4
, (3.110)

where

E1 = Re
[(

1
Re +D

∗(0)
1H +D

∗(0)
2H

)
k2 +

(
1
Re +D

∗(0)
1V +D

∗(0)
2V

)
m2
]
, (3.111)

E2 = Re

[(
k2+m2

Re

)
(a1K11 + a2K21)m+ a1K11m

(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
+ a2K21m

(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)]
,

(3.112)

E3 =
(
k2 +m2

) [(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
− a1a2K11K21m

2
]
,

(3.113)

E4 =
(

k2

k2+m2

)[
S1

(
S11k

2 + S21m
2
) (
D
∗(0)
2H k2 +D

∗(0)
2V m2

)

+S2

(
S12k

2 + S22m
2
) (
D
∗(0)
1H k2 +D

∗(0)
1V m2

)]
,

(3.114)

Equation (3.110) gives the neutral curve as a function of the wavenumbers k and m.

The neutral curves are the curves where σR = 0.

Substituting the expression of F2R and F3I given in equations (3.100) and (3.102) into

equation (3.107) and multiplying it by Re leads to

Reσ3
I +ReF1Iσ

2
I − [E6 −ReβE7 + E8]σI − [E9 −ReβE10] = 0, (3.115)

Substituting from (3.110) into (3.115) gives

Reσ3
I +ReF1Iσ

2
I −

[
E6 −

(
−E1σ2

I−E2σI+E3

E4

)
E7 + E8

]
σI

−
[
E9 −

(
−E1σ2

I−E2σI+E3

E4

)
E10

]
= 0,

(3.116)
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Equation (3.116) can be reorganized as

σ3
I +G1σ

2
I +G2σI +G3 = 0, (3.117)

where

G1 =
E5E4 − E2E7 − E1E10

ReE4 − E1E7
, (3.118)

G2 =
E3E7 − E2E10 − E6E4 − E8E4

ReE4 − E1E7
, (3.119)

G3 =
E3E10 − E9E4

ReE4 − E1E7
, (3.120)

and E1, E2, E3 and E4 are given in equations (3.111)−(3.114) and E5, E6, E7, E8, E9,

E10 and the expressions of G1, G2 and G3 are given in Appendix B.5.

By calculating the real root of the imaginary part of the dispersion equation (3.117) and

substitute it into the equation (3.110), one can plot the neutral curves and extracted

the critical values Reβc and kc that gives the instability onset.

3.4 Results

3.4.1 No vertical variation

When there is no vertical variation in the disturbance, i.e. m = 0, the coefficients G1,

G2 and G3 in relations (3.118)−(3.120) become

G1 = 0, G3 = 0, (3.121)

G2 =
k4
{(
S1S11D

∗(0)2
2H + S2S12D

∗(0)2
1H

)
+Re

(
S1S11D

∗(0)
2H + S2S12D

∗(0)
1H

)(
D
∗(0)
1H D

∗(0)
2H

)}
Re
[(

S1S11+S2S12
Re

)
+ S1S11D

∗(0)
1H + S2S12D

∗(0)
2H

] .

(3.122)

Hence, equation (3.117) takes the form

σ3
I +G2σI = 0, (3.123)
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Since G2 is positive, the above equation (3.123) has only one real root

σI = 0, (3.124)

Substituting (3.124) into the relation (3.110) gives

Reβ =
D
∗(0)
1H D

∗(0)
2H

S1S11D
∗(0)
2H + S2S12D

∗(0)
1H

k2. (3.125)

The above relation (3.125) shows that there is a linear relationship between the Reβ

and k2 for the neutral curves that reaches its minimum at kc = k = 0.

3.4.2 Non−zero vertical variation

In case of m 6= 0, a Matlab program is used to solve the imaginary part of the dispersion

relation given by equation (3.117). Since this equation is cubic, it has three roots, with

at least one real root and two complex conjugates. Then, one substitutes the real root

into equation (3.110) to calculate and plot the neutral curves (the Matlab codes are

given in the Appendix B.6). The coefficients G1, G2 and G3 in equation (3.117) and the

neutral curves equation (3.110) depend on the following parameters; the horizontal and

vertical diffusion of each species D
∗(0)
iH and D

∗(0)
iV that are given by equations (3.64) and

(3.65), the value of Ki1 that represents the magnitude of 〈Pi〉(0) in the vertical direction,

the values of S1i and S2i that are given in equations (3.93) and (3.94), the values of Si

that are given by equation (3.92) and finally the value of Re. Typical values of the

parameters used in this investigation are summarized in Tables 3.3 and 3.4, taking into

account that the total mean concentration of the mixed suspension should be 6.5× 106

cells cm−3.

The results are presented in Figure 3.1, that displays the neutral curve when m = 1 and

m = 0, and Figure 3.2 that shows the neutral curves of each species individually as well as

the neutral curve that results from the mixing for the value of m = 1. Figure 3.2 displays

the difference between the neutral curves that are plotted for every species individually

and the one when mixing them together. Mixing them may results in neutral curve that
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Figure 3.1: The neutral curves for the set of parameters given in Tables 3.3 and 3.4.
The case of m = 0 is plotted as the solid line, the growth rate on this line is zero. The
case of m = 1 is plotted as a dashed line and σR = 0 along that dashed line. The
mean cell swimming speed of the green algae Chlamydomonas reinhardtii is assumed
to be 40% less than the mean cell swimming speed of the green algae Chlamydomonas

augustae, i.e.V2s = 0.6V1s.

has a bump in the area between the wavenumbers k2 = 0.5 and k2 = 1.25 while on the

other hand considering one species results in a Hopf bifurcation neutral curve.

Given that the maximum value of the gyrotactic orientation parameter is B = 3.4

s and the maximum mean cell swimming speed is Vs = 9 × 10−3 cm s−1, the value

m = 1 corresponds to a suspension depth of 0.19 cm. For these values to be realistic

we take a small value of m, for example m = 10−2, corresponding to a suspension of

depth of 19 cm which can be considered a sufficiently deep suspension that the effect

of the top and bottom boundaries does not need to be taken into account. The neutral

curve in this case for the values of parameters given in Tables 3.3 and 3.4 is plotted

in Figure 3.3. Figure 3.3 shows that when m = 10−2, the neutral curves arise from

Hopf bifurcation whether they are mixed or not. Moreover, the neutral curve of the

two species mixed together lies above the neutral curve of C. augustae, the one with

the minimum mean cell swimming speed, and slightly above the neutral curve of C.

reinhardtii, the one with the maximum mean cell swimming speed. The instability of C.



Linear instability for a suspension of two species 90

0 0.5 1 1.5 2 2.5 3
k2

R
eβ

 

 

Mixed C. augusta and C. reinhardtii
C. augustae
C. reinhardtii

Stable

Unstable

Figure 3.2: The neutral curves for the set of parameters given in Tables 3.3 and 3.4
when m = 1. The solid line represents the mixed species, the dashed line represents
species 1 and the dotted line represents species 2. σR = 0 along these lines.The mean cell
swimming speed of the green algae Chlamydomonas reinhardtii is assumed to be 40%
less than the mean cell swimming speed of the green algae Chlamydomonas augustae,

i.e.V2s = 0.6V1s.

Parameter Value Reference

τ1 1.3 s [115]
λ1 2.2 [115]
B1 3.4 s [115]
K11 0.57 [86]
K12 0.16 [86]
α01 0.2 [115]
∆ρ1 0.05 gm cm−3 [115]
J11 0.45 [86]
J14 -0.23 [115]
K14 -0.10 [86]
v1 5× 10−10 cm3 [115]
V1s 6.3× 10−3 cm s−1 [115]
n10 6.5× 106

Re 5.2× 10−5 [13]
S11 0.404 calculated
S21 0.436 calculated
S1 1 calculated

Table 3.3: Estimated values of
the parameters for the green algae

Chlamydomonas augustae.

Parameter Value Reference

τ2 2 s assumed
λ2 1 [86]
B2 3.4 s
K21 0.31 [86]
K22 0.28 [86]
α02 0.3 assumed
∆ρ2 0.05 gm cm−3 assumed
J21 0.14 [86]
J24 -0.064 [86]
K24 -0.037 [86]
v2 5× 10−10 cm3 assumed
V2s 9× 10−3 cm s−1 [79]
n20 6.5× 106

S12 0.1208 calculated
S22 0.1259 calculated
S2 0.6 calculated

Table 3.4: Estimated values of
the parameters assumed for the
green algae Chlamydomonas rein-

hardtii.
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Figure 3.3: The neutral curves when the mean swimming speed of C. augustae, V1s,
is 40% less than the mean swimming speed of the C. reinhardtii, i.e.V1s = 0.6V2s, for
two species of the same mean cell concentration with a total concentration of 6.5×106.
The case of m = 10−2 is plotted as the solid line for the mixed species. The growth

rate σR = 0 on these lines.

augustae, the one with the minimum mean cell swimming speed (see Table 3.3), starts at

Reβc = 2.065× 10−4 at a critical wavenumber of kc = 0.0059. The instability of the C.

reinhardtii, with 40% increase in the mean cell swimming speed (see Table 3.4), occurs

at Reβc = 5.63× 10−4 at kc = 0.0096. However, the instability onset when mixing them

together is at Reβc = 5.85× 10−4 at kc = 0.0167.

Neutral curves do not depend only on the relative mean cell swimming speed but also

depend on the ratio of the mean cell concentrations, the mean cell volume, the difference

in density and the gyrotactic orientation parameters between the two species. Assuming

that both species have the same gyrotactic orientation parameter, the same mean cell

volume and the same density difference ∆ρi, we will discuss the changing of mean cell

concentration of one species with respect to the other. So, instead of the species have

different mean swimming speed, one assumes that V1s = V2s = 6.3 × 10−3 cm s−1 in

Tables 3.3 and 3.4 and that n20 = 3.9 × 106 cells cm−3, i.e. n20 = 0.6n10. The neutral

curves in this case are plotted in Figure 3.4 for m = 10−2. Figure 3.4 shows that when

the suspension consists of two species mixed together with different concentration, the

neutral curve is located above the neutral curves of C. augustae and C. reinhardtii with

Reβc = 9.4 × 10−3 and kc = 0.0069, since decreasing the concentration of one species

causes the suspension to be diluted. Reβc in this case is larger than Reβc for both C.
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Figure 3.4: The neutral curves when the mean cell concentration of C. reinhardtii,
n20, is 60% of the the mean cell concentration of C. augustae, n10, i.e.n20 = 0.6n10, for
two species with same mean swimming speed V1s = V2s = 6.3× 10−3 cm s−1. The case
m = 10−2 is plotted as the solid line for the mixed species. The growth rate σR = 0 on

these lines.

Reβc kc Notes

C. augustae 2.065× 10−4 0.0058
C. reinhardtii 5.63× 10−4 0.0096

C. augustae and C. reinhardtii 2.25× 10−4 0.0096 V2s = 0.4V1s same concentration
C. augustae and C. reinhardtii 3.37× 10−4 0.0096 V2s = 0.6V1s same concentration
C. augustae and C. reinhardtii 4.5× 10−4 0.0096 V2s = 0.8V1s same concentration
C. augustae and C. reinhardtii 5.63× 10−4 0.0096 V2s = V1s same concentration
C. augustae and C. reinhardtii 9.92× 10−4 0.027 n20 = 0.4n10 same swimming speed
C. augustae and C. reinhardtii 9.4× 10−4 0.0096 n20 = 0.6n10 same swimming speed
C. augustae and C. reinhardtii 7.04× 10−4 0.0096 n20 = 0.8n10 same swimming speed

Table 3.5: The critical values Reβc and kc that results from this analysis when using
the parameters in Tabes 3.3 and 3.4, for the maximum speed V1s = V2s = 6.3× 10−3.

augustae and C. reinhardtii, however, the critical wavenumber kc equals to the critical

wavenumber of C. reinhardtii, i.e. kc = 0.0096.

Moreover, Figures 3.5 and 3.6 show the effect of the relative mean cell concentration

and mean cell swimming speed on the instability, respectively. Clearly one can see in

Figure 3.5 that when we decrease the mean cell concentration of the green algae C.

reinhardtii, n20, the neutral curves are raised and the instability occurs for larger values

of Reβc because the suspension is becoming diluted. The critical value Reβc as the mean

cell concentration, n20 decreases, see Figures 3.7(b), however, the value of kc is 0.0096
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Figure 3.5: Neutral curves for m = 10−2. The mean cell swimming speed is taken to
be the same for both species, i.e. V1s = V2s = 6.3 × 10−3, whereas the concentration
of the C. reinhardtii, n20 is taken to be less than the concentration of C. augustae n10

with different ratios.
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Figure 3.6: Neutral curves for m = 10−2. The mean cell concentration is taken to be
the same for both species, i.e. n10 = n20 = 6.5× 106, whereas the mean cell swimming
speed of the C. reinhardtii, V2s is taken to be less than the swimming speed of C.

augustae V1s with different ratios.

and it becomes 0.027, three times larger, when the cell concentration n20 is 60% less than

n10 because the suspension is becoming very diluted. While decreasing the mean cell

swimming speed of species 2, C. reinhardtii, V2s, the neutral curves are lowered and the

instability occurs for smaller values of Reβc. The critical value Reβc decreases linearly

as the mean cell swimming speed V2s decreases with the value kc = 0.0096 at all cases,

see Figures 3.7(a). Decreasing the cell volume of the second species C. reinhardtii, v2,

gives similar results to the one we get from decreasing the cell concentration, since the

smaller cell volume leads to the less biomass, Figures 3.7(c).
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Figure 3.7: The critical value Reβc of the mixed species of C. augustae(species1)
and C.reinhardtii(species2) versus (a) the relative mean cell swimming speed for the
same cell volume and total cell concentration, Rv stands for the relative speed, (b) the
relative concentration for the same cell volume and swimming speed, Rn stands for the
relative concentration and (c) the relative cell volume for the same swimming speed

and cell concentration, Rν stands for the relative cell volume.
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3.5 Discussion

In this chapter, we investigated the instability of a uniform suspension that consists of

two species mixed together. Moreover, a comparison of the instability onset between

the suspension that consists of the two mixed species and the suspension that consists

of each species individually is performed. As a results of this analysis, a finite critical

wavenumber kc is predicted when m 6= 0 and kc = 0 when m = 0.

When m = 1, using the parameters in Tables 3.3 and 3.4, produces a neutral curve

for the suspension of the two mixed species that has a local maximum between the

wavenumbers k2 = 0.5 and 1.25, (see Figure 3.2). This bump appears to be as a result

of a competition between two instabilities. Figure 3.6 shows this competition clearly

when m is chosen to be 10−2 because the situation is more realistic with the suspension

depth 19 cm in that case. One can see that the instability onset of the suspension of the

mixed species together lies between the instability onset of species 1 and 2. The reason

is that species have different stochastic parameters λ1 6= λ2 as well as different mean cell

swimming velocities V1s > V2s. These values contribute in defining the diffusivity tensor,

hence D
∗(0)
1H 6= D

∗(0)
2H and D

∗(0)
1V 6= D

∗(0)
2V . The diffusivity tensor of each species affects the

mean of the cell swimming direction 〈pi〉 of the other species, via the expressions of E4

in equations (3.114) which causes the neutral curves to lie between the individual neutral

curves. However, decreasing the mean cell swimming speed of the second species V2s,

causes the instability onset to be closer to the instability onset of species 1, the one with

the maximum speed, since the diffusion effect on 〈p1〉 is becoming less. Moreover, the

effect of the relative concentration is found to be that decreasing the cell concentration of

species 2 n20, causes the the critical value Reβc to increase as the suspension is becoming

less concentrated.

The assumption that the suspension consists of two different species appeared in the

buoyancy term of the momentum equation (3.69). Hence, the dispersion relation in

equation (3.95) has an extra term, B21
σ+B22

that raises its degree to the third power (cubic

equation). This is a major difference between this model and the continuum model

presented by Pedley and Kessler [86]. However, when considering one species only, the
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dispersion relationship in equation (3.95) reduces to the following quadratic equation

σ2 + (A1 +B12)σ +A1B12 −A2B11 = 0. (3.126)

The neutral curve equation in this case is given by

Reβ =

(
k2 +m2

)2 (
D
∗(0)
1H k2 +D

∗(0)
1V m2

)
B11k2

1 +
K2

11m
2(

k2+m2

Re +D
∗(0)
1H k2 +D

∗(0)
1V m2

)2

 .(3.127)

When m = 0

Reβ =
D
∗(0)
1H

J11 + α01J14
k2. (3.128)

The difference between this equation and the one derived by Pedley and Kessler [86]

is the extra term χ1 (J2 + α2J5) that results from the terms Σ(d) + Σ(s) + Σ(p) that

are considered in the conservation of momentum equation. Using the parameter values

estimated for C. augustae given in Table 3.3 for the value of λ1 = 2.2, α01 and β = 13,

we calculate that D
∗(0)
1H = 0.09, J11 + α01J14 = 0.404. Hence, using equation (3.128),

k2
c = 3.303×10−3. This value disagrees with the values predicted by Pedley and Kessler

[86], k2
c = 0.67, and Pedley et al. [84], k2

c = 0.17. This difference is due to the following;

the value of D
∗(0)
1H is estimated to be 0.09 in our analysis while Pedley and Kessler [86]

estimated this value to be 0.10 and Pedley et al. [84] evaluated D∗ to be 0.74 (Pedley

et al. [84] took the diffusion to be 10−4 cm s−1 and the mean cell swimming speed to

be 10−2 cm s−1). So, our evaluation of the diffusion is less than theirs. Furthermore,

the value of α01 = 0.2 in our investigation makes J11 + α01J14 = 0.404, whereas Pedley

and Kessler [86] selected this value to be 0.31 giving J11 + α01J14 = 0.37. Moreover,

the value J11 + α01J14 was replaced by 1− α01 in Pedley et al. [84] leading to the value

0.69 when α01 = 0.31. Finally, Pedley and Kessler [86] found k2
c = β(J11+α01J14)

DH [ 1
Re

+χ1(J12+α01J15)]

with estimating J12 + α01J15 = 0.12 and χ1Re = 0.11 , and Pedley et al. [84] evaluated

k2
c to be k2

c = Reβ(1−α0)
D∗ .

To compare our predictions with the experiments, we assume that we have a suspension

of two mixed species of the green algae C. augustae and C. reinhardtii with relative
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mean cell concentration 50% C. augustae to 50% C. reinhardtii, i.e. both have the same

mean cell concentration, and the total cell concentration to be 1.3× 107 cell cm−3. The

green algae C. augustae has the estimated parameters given in Table 3.3. However, we

assumed that the deterministic−stochastic parameter of the C. reinhardtii is λ2 = 1,

α02 = 0.3, τ2 = 2 s and the mean cell swimming speed is measured to be 90 µm s−1

(Guasto et al [44]). Also, we assume that B1 = B2 = 3.4 s. Using the above analysis, we

predicted an initial critical wavenumber kc = 0.0167, i.e. λdc = 2πBVs
kc
≈ 0.66 cm, which

does not agree with the experimental results given in Chapter 2, as for this ratio the

initial wavelength is estimated to be 1.31 cm. This disagreement could be due to many

reasons. One of them is that the experiment is performed for a suspension in a layer

of finite depth of 0.47 cm with considering boundary conditions, the no−slip boundary

condition at the rigid boundary together with the stress−free boundary condition at the

free surface, whereas this analysis is conducted for a deep suspension where the layer is

deep enough to neglect the boundary conditions. Another reason is that there is some

nonlinear effect on the bioconvection pattern formation that was not considered in this

investigation. The final reason is the lack of the accurate parameter estimation for the

C. reinhardtii. The above reasons combined together results in uncertain estimation of

the initial critical wavenumber kc.



Chapter 4

Time evolving bioconvection

patterns in a layer of finite depth:

non−normal stability analysis

The most unstable wavelength was predicted in a layer of a finite depth by Hill et al.

[50] and Bees and Hill [12]. In their analysis, the concentration profile in the equilibrium

solution was assumed to reach its steady state at the time t = 0; before the instability

started, and this does not change as the time grows but this contradicts the experiments.

It was observed that the cells are uniformly distributed across the whole suspension at

the time t = 0, and as the time evolves, the cell concentration profile changes, due to

the cells upswimming behaviour, to form an exponential profile as a function of the

suspension depth z. For example, in a suspension of 0.5 cm depth of the green algae

C. augustae that swim with a speed of 63 µms−1, the instability may start at the time

t = 30 s and the steady basic state will be reached at the time t = 80 s. Hence, the

investigation can be more realistic by considering a time evolving basic state for the

concentration profile in the equilibrium solution instead of the steady state.

In this chapter, we follow the non−normal stability analysis that was presented by

Doumenc et al. [27] for the unsteady Bénard−Marangoni problem. To start with, we

consider an equilibrium solution that has a time dependent concentration profile n∗bs

98



Time evolving bioconvection patterns in a layer of finite depth: non−normal stability
analysis 99

as a basic state. Unlike the linear stability analysis presented by Hill et al. [50] and

Bees and Hill [12], the time evolving basic state changes the size of initial perturbation,

ς (z∗, t∗), at every time step. Next, we measure the size of the initial perturbation

ς (z∗, t∗1) at a given time t1 for a given set of parameters over a range of wavenumbers k by

evaluating E (ς (t∗1)) =
∫ b
a ς (z∗, t∗1) ς̄ (z∗, t∗1) dz∗, where ¯ is the complex conjugate. Then,

we extract the most unstable wavelength of the bioconvection patterns by specifying

the wavenumber that corresponds to the maximum energy amplified over a range of

wavenumbers.

4.1 Mathematical Model

In this analysis and for the sake of simplicity we follow the model presented by Hill et

al. [50]. A monoculture of swimming microorganisms is considered. All of the cells are

assumed to have the same body volume, v, with cell density, ρ + ∆ρ, where ρ is the

density constant of the ambient fluid and ∆ρ � ρ. In a unit volume, that is centered

at the location x at the time t, the cell concentration is n (x, t). The suspension is also

assumed to be diluted so that nv � 1 per unit volume. Since the suspension is diluted,

the distance between the cells is large enough, compared to the cell size, to neglect the

cell−to−cell interaction.

The suspension is assumed to be incompressible

∇ ·U = 0, (4.1)

where U (x, t) is the suspension velocity at location x and time t.

Since the swimming cells increase the density of the fluid slightly, according to the

Boussinesq approximation, any changes in the fluid density can be neglected except

where it is multiplied by the acceleration due to gravity g (Kundu and Dowling [68]). In

a unit volume of the suspension, the buoyancy force equals to nvg∆ρ. Following Hill et

al. [50], U is assumed to be governed by Navier−Stokes equation with added buoyancy
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term, such that

ρ
DU

Dt
= −∇Pe + nvg∆ρ+ µ∇2U, (4.2)

where µ is the dynamic constant viscosity of the fluid, Pe (x, t) is the excess pressure

above the hydrostatic and D
Dt = ∂

∂t + U · ∇ is the material derivative.

Conservation of the number of cells gives the final governing equation, which is

∂n

∂t
= −∇ · [nU + nVsp−D∇n] . (4.3)

The randomness in the cell swimming velocity is presented by the term D∇n in equation

(4.3). The cells diffuse from regions of high cell concentration to regions of low cell

concentration. For simplicity, cell diffusion is assumed to be isotropic, and the diffusivity

D is constant, and independent of all the other parameters in this analysis.

The term nVsp in (4.3) represents the cell flux due to directed swimming. The quantity

Vsp is the average swimming velocity relative to the fluid, where Vs is the cell swimming

speed, assumed to be constant and the same for all swimming cells. The unit vector

p (x, t) is the direction in which the cells swim. Consider,

p = (sin θ cosφ, sin θ sinφ, cos θ) , (4.4)

where θ is the angle between the cell’s axis of symmetry that is aligned with p, the

swimming direction, since the cell is spheroidal, and the z−axis, while φ is the angle

between the projection of p on the xy−plane and the x−axis, as illustrated in Figure 4.1.

Gyrotaxis is the dominant mechanism. As a consequence, the orientation p (x, t) can be

determined by balancing the viscous torque, which is exerted by the fluid on the cell,

and the gravitational torque due to gravity. Pedley and Kessler [85] calculated θ and

φ using equation (1.14). They multiplied equation (1.14) by 2, divided it by µvα⊥ and

defining ṗ = Ω× p to obtain the following equation

2hmg

µvα⊥
[k− (k · p) p] + 2

[
1

2
ω × p−Ω× p + α0p · e · (I− pp)

]
= L̃ = 0. (4.5)
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Figure 4.1: The angles θ and φ that determines the cell’s swimming direction in
equations (4.11)−(4.12) visualized in the cartesian coordinates xyz.

Then, they calculated the scalar product of the resultant equation (4.5) with the vectors

p that is given by equation (4.4), q and r that are given by

q = (cos θ cosφ, cos θ sinφ,− sin θ) , (4.6)

and

r = (− sinφ, cosφ, 0) , (4.7)

where p, q and r are a set of right handed unit vectors to obtain the following equations

L̃ · p =

(
α‖

α⊥

)(
ώ · p− 2Ώ

)
= 0, (4.8)

L̃ · q = ώ · q−B−1r3 − 2α0pjrkejk = 0, (4.9)
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and

L̃ · r = ώ · r +B−1q3 + 2α0pjqkejk = 0, (4.10)

where ώ = ω − 2Ωc, Ω−Ωc = Ώp and Ωc represents the local equilibrium cell angular

velocity. Hence, substituting the above definitions of p, q and r in equations (4.9) and

(4.10) as well as, for the sake of simplicity, considering a two−dimensional flow in the

vertical plane that contains the unit vectors p and q so that Ωc = 0, θ and φ are given

by the equations

B−1 sin θ = ω2 cosφ− ω1 sinφ+ α0

{
sin 2θ

(
e11 cos2 φ+ 2e12 sinφ cosφ

+e22 sin2 φ− e33

)
+ 2 cos 2θ (e13 cosφ+ e23 sinφ)

}
, (4.11)

and

0 = −ω1 cos θ cosφ− ω2 cos θ sinφ+ ω3 sin θ + α0 {sin θ (−e11 sin 2φ

+2e12 cos 2φ+ e22 sin 2φ) + 2 cos θ (−e13 sinφ+ e23 cosφ)} , (4.12)

where

α0 =
a2 − b2

a2 + b2
, (4.13)

in equations (4.11) and (4.12) is called the cell eccentricity, a is the major axis and b is

the minor axis of the spheroidal cell. The gyrotactic orientation parameter B in (4.11) is

defined as B = µα⊥
2hρg , where α⊥ is the dimensionless resistance coefficient for the rotation

about an axis perpendicular to p, h is the center−of−mass offset, ω is the fluid vorticity

and e is the rate−of−strain tensor.

The fluid layer is assumed to be of depth H with boundaries at z = −H and z = 0,

(see Figure 4.2). Thus, the governing equations are complemented by the boundary

conditions

U · k = 0, at z = −H, 0. (4.14)



Time evolving bioconvection patterns in a layer of finite depth: non−normal stability
analysis 103

i.e. the vertical component of the velocity vanishes at the boundary, and

[Un+ nVsp−D∇n] · k = 0, at z = −H, 0. (4.15)

i.e. no cell flux at the boundaries. Since the boundaries could be no−slip or stress−free,

two types of boundary conditions are investigated. The no−slip boundary condition

requires

U× k = 0 at z = −H, (4.16)

whereas the stress−free boundary condition is

∂U

∂z
= 0 at z = 0. (4.17)

Each theoretical situation is assumed to start from a uniform well−mixed state. Hence,

the initial condition

n (z, 0) = n0, −H ≤ z ≤ 0, (4.18)

is imposed.

Equations (4.1)−(4.3), (4.11), (4.12) and (4.14)−(4.18) are non−dimensionlized as in

Table 4.1.

The nondimensionlized governing equations are

∇∗ ·U∗ = 0. (4.19)

S−1
c

DU∗

Dt∗
= −∇∗P ∗e −Ra n∗k +∇∗2U∗, (4.20)

where Sc = ν
D is the Schmidt number and Ra = H3n0vg∆ρ

Dρν is the Rayleigh number, and

∂n∗

∂t∗
= −∇∗ · [n∗U∗ + κn∗p−∇∗n∗] , (4.21)
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Figure 4.2: Visualization of the suspension in layer that lies between two horizontal
boundaries at z = 0 and z = −H. (a) The suspension is distributed uniformly to start
with at the time t = 0. (b) The cells distribution after a time t = t1, the dark area

indicates a higher cell concentration.

Variables Non−dimensionlization

Length x = Hx∗

Time t = H2

D t∗

Bulk velocity U = D
HU∗

Pressure excess Pe = Dρν
H2 P

∗
e

Concentration n = n0n
∗

Vorticity ω = D
H2ω

∗

Rate−of−strain e = D
H2 e∗

Table 4.1: The new non−dimensional variables x∗, t∗,U∗, P ∗e , n∗, ω∗ and e∗, and
their relation to the dimensional variables.
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where κ = VsH
D . The equations for the swimming direction become

G−1 sin θ = ω∗2 cosφ− ω∗1 sinφ+ α0

{
sin 2θ

(
e∗11 cos2 φ+ 2e∗12 sinφ cosφ

+e∗22 sin2 φ− e∗33

)
+ 2 cos 2θ (e∗13 cosφ+ e∗23 sinφ)

}
, (4.22)

and

0 = −ω∗1 cos θ cosφ− ω∗2 cos θ sinφ+ ω∗3 sin θ + α0 {sin θ (−e∗11 sin 2φ

+2e∗12 cos 2φ+ e∗22 sin 2φ) + 2 cos θ (−e∗13 sinφ+ e∗23 cosφ)} , (4.23)

where G = BD
H2 is the dimensionless gyrotactic reorientation parameter. The boundary

conditions are

U∗ · k = 0, at z∗ = −1, 0, (4.24)

and

[U∗n∗ + κn∗p−∇∗n∗] · k = 0, at z∗ = −1, 0, (4.25)

and either the no−slip boundary condition

U∗ × k = 0, (4.26)

or the stress−free boundary condition

∂U∗

∂z∗
= 0. (4.27)

applied at z∗ = 0,−1 Finally, the initial condition is

n∗ (z∗, 0) = 1, −1 ≤ z∗ ≤ 0. (4.28)
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Parameter Value Reference

Cell volume v 5×10−10 cm3 [115]

Cell density ratio ∆ρ
ρ 5×10−2 [115]

Cell diffusivity D 5×10−4 cm2s−1 [50]
Gyrotactic number G 0.5

κ2
[50]

Cell eccentricity α0 0.2 [115]
Swimming speed Vs 6.3× 10−3 cm s−1 [115]

Mean cell concentration n 6.5× 106 cm−3

Schmidt number Sc 20 [50]

Table 4.2: Typical parameters values for a suspension of the green algae Chlamy-
domonas augustae

4.2 The concentration as it evolves with time

In the absence of fluid flow (i.e., when U∗ = 0), the vorticity vector ω∗ and the

rate−of−strain tensor e∗ vanish. Hence, the swimming direction equation (4.22) will be

sin θ = 0, (4.29)

which indicates that the swimming direction is vertically upwards (i.e., p = k). Hence,

equation (4.21) can be written as

∂n∗

∂t∗
= −κ∂n

∗

∂z∗
+
∂2n∗

∂z∗2
. (4.30)

Equation (4.30) is solved by using the method of separation of variables (Articolo [6]).

Consider

n∗ (z∗, t∗) = n∗s (z∗) +H∗ (z∗, t∗) . (4.31)

The solution n∗ (z∗, t∗) satisfies the boundary conditions

[κn∗k−∇∗n∗] · k = 0, at z∗ = −1, 0, (4.32)

and the initial condition

n∗ (z∗, 0) = 1. (4.33)
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4.2.1 The steady state solution

The steady state solution is obtained by solving the equation

−κ∂n
∗

∂z∗
+
∂2n∗

∂z∗2
= 0, (4.34)

subject to the conditions (4.32) and (4.33). The general solution is

n∗s (z∗) = Aeκz
∗

+B. (4.35)

Applying the boundary condition at z∗ = 0 gives B = 0. Also,
∫ 0
−1 n

∗
s dz

∗ = 1 implies

that

A =
κ

1− e−κ
. (4.36)

where κ = VsH
D .

4.2.2 Time−dependent solution

Consider solution of the form F ∗ (t∗)G∗ (z∗). Substituting into (4.30) yields

F ∗′ (t∗)G∗ (z∗) = −κF ∗ (t∗)G∗′ (z∗) + F ∗ (t∗)G∗′′ (z∗) . (4.37)

Divide by F ∗ (t∗)G∗ (z∗) to give

F
′∗ (t∗)

F ∗ (t∗)
= −κG

′∗ (z∗)

G∗ (z∗)
+
G
′′∗ (z∗)

G∗ (z∗)
= σ, (4.38)

where σ is a non−zero constant. Hence,

F ∗ (t∗) = eσt
∗
, (4.39)

and

G∗ (z∗) = C1e
m+z∗ + C2e

m−z∗ , (4.40)
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where

m± =
κ±
√
κ2 + 4σ

2
, (4.41)

and C1 and C2 are functions of σ. Applying the boundary condition

[κn∗k−∇∗n∗] · k = 0, at z = −1, 0, (4.42)

yields

(κ−m+)C1 = − (κ−m−)C2, (4.43)

and

(κ−m+)C1e
−m+ + (κ−m−)C2e

−m− = 0. (4.44)

These relationships between C1 and C2 imply that

(κ−m−)C2

[
e−m− − e−m+

]
= 0. (4.45)

As σ 6= 0, when κ 6= m−. Therefore, for a non−trivial solution

e−m− − e−m+ = 0 =⇒ em+−m− = 1. (4.46)

This implies

m+ −m− = 2kπi, k = 0, 1, 2, . . . (4.47)

Hence, from equation (4.41) the growth rate σ is a function of k given by

σ = σk = −1

4

(
4k2π2 + κ2

)
, k = 0, 1, 2, . . . (4.48)
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As a consequence, m+ and m− are functions of k such that

m± = m±k =
κ± 2kπi

2
, k = 0, 1, 2, . . . (4.49)

Also, equation (4.44) with C1 = C1k and C2 = C2k can be written as

C1k = −
(
κ−m−k
κ−m+k

)
C2k, k = 0, 1, 2, . . . (4.50)

Thus,

H∗ (z∗, t∗) =
∞∑
k=0

e−
1
4(4k2π2+κ2)t∗

[
−
(
κ−m−k
κ−m+k

)
C2ke

(κ+2kπi
2

z∗) + C2ke
(κ−2kπi

2
z∗)
]
,(4.51)

since equation (4.30) is linear, its solution is a linear combination of linearly independent

solutions. Equation (4.51) can be simplified as

H∗ (z∗, t∗) = e
κ
2
z∗
∞∑
k=0

e−
1
4(4k2π2+κ2)t∗

(
C2k

m−k

)[
−m+ke

kπz∗i +m−ke
−kπz∗i

]
. (4.52)

So that

H∗ (z∗, t∗) = −e
κ
2
z∗
∞∑
k=0

e−
1
4(4k2π2+κ2)t∗

(
4C2ki

κ− 2kπi

)[κ
2

sin (kπz∗) + kπ cos (kπz∗)
]
.(4.53)

The coefficients 4C2k
κ−2kπi in (4.53) must be purely imaginary to ensure that H∗ (z∗, t∗) is

a real function. Hence,

4C2k

κ− 2kπi
= iXk, where Xk ∈ R and C2k = ak + bki. (4.54)

Equation (4.54) leads to a system of two linear equations

κak − 2πkbk = 0,

2kπak + κbk =
(
κ2+4k2π2

4

)
Xk.

(4.55)

The solution to the above system is

ak =
kπ

2
Xk, bk =

κ

4
Xk. (4.56)
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Now,

H∗ (z∗, t∗) = e
κ
2
z∗
∞∑
k=0

e−
1
4(4k2π2+κ2)t∗ [ηk cos (kπz∗) + ξk sin (kπz∗)] , (4.57)

where ηk = kπXk and ξ = κ
2Xk.

The values of the coefficients ηk and ξk are calculated be imposing the initial condition

on the function H∗ (z∗, t∗), such that

e
κ
2
z∗
∞∑
k=0

[ηk cos (kπz∗) + ξk sin (kπz∗)] = 1− n∗s (z∗) , (4.58)

and

n∗s (z∗) =

(
κ

1− e−κ

)
eκz
∗
. (4.59)

∞∑
k=0

[ηk cos (kπz∗) + ξk sin (kπz∗)] = e−
κ
2
z∗ −

(
κ

1− e−κ

)
e
κ
2
z∗ . (4.60)

Here, η0, ηk and ξk are defined as, (see Appendix C.1),

η0 =
1

2

∫ 0

−1

[
e−

κ
2
z∗ −

(
κ

1− e−κ

)
e
κ
2
z∗
]
dz∗, (4.61)

ηk =

∫ 0

−1

[
e−

κ
2
z∗ −

(
κ

1− e−κ

)
e
κ
2
z∗
]

cos (kπz∗) dz∗, (4.62)

and

ξk =

∫ 0

−1

[
e−

κ
2
z∗ −

(
κ

1− e−κ

)
e
κ
2
z∗
]

sin (kπz∗) dz∗. (4.63)

Using the integrals in Appendix C.2, η0, ηk and ξk are calculated to be

η0 = −1

κ

[(
1− e

κ
2

)
+

(
κ

1− e−κ

)(
1− e−

κ
2

)]
, (4.64)
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ηk = −

 κ

2
(
κ2

4 + k2π2
)
[(1− (−1)k e

κ
2

)
+

(
κ

1− e−κ

)(
1− (−1)k e−

κ
2

)]
, (4.65)

ξk = −

 kπ

2
(
κ2

4 + k2π2
)
[(1− (−1)k e

κ
2

)
−
(

κ

1− e−κ

)(
1− (−1)k e−

κ
2

)]
. (4.66)

Finally, the concentration as a function of time and depth is

n∗bs (z∗, t∗) =
κeκz

∗

1− e−κ
+ e

κ
2
z∗
∞∑
k=0

e−
1
4(4k2π2+κ2)t∗ [ηk cos (kπz∗) + ξk sin (kπz∗)] , (4.67)

where the subscript bs stands for the basic state. The function n∗bs states that if initially

the suspension is well mixed and the cell distribution is uniform,then, the concentration

evolves to reach a top−heavy exponential profile due to the upswimming behavior of

the cells (see Figure 4.2).

Figure 4.3 displays the basic state profile of the cell concentration as a function of time

t∗ and depth z∗. Figure 4.3(a) shows a three−dimensional plot of the concentration

profile that results from solving equation (4.30) numerically for κ = 0.1, whereas Figure

4.3(b) shows the analytical concentration profile that is given by equation (4.67) for

the value of κ = 0.1 and k = 1000. The relative error between the analytical and

numerical solution is less than 2.5%. The relative error reaches its maximum value 2.5%

at time t∗ = 0 for the value of z∗ = −1 and 0 since the analytical solution requires

approximating the infinite summation over k in equation (4.67) by a finite one; in this

case k = 0, 1, · · · , 1000. Hence, the oscillatory behavior will affect the value of n∗bs

at the above values of t∗ and z∗ which makes the numerical solution more accurate.

Figures 4.3(c) and 4.3(d) present the numerical solution of the concentration profile at

t∗ = 0.01 and 0.05, respectively, for different values of κ, while Figure 4.3(e) presents

the steady state solution given by equation (4.59). The graphs in Figure 4.3 show that

cell concentration profile evolves with time to reach the steady state.
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Figure 4.3: The basic state concentration profile. (a) The numerical solution for the
value of κ = 0.1 (b) The analytical solution for the value of κ = 0.1 (c),(d) Concentration
profile as a function of depth z∗ at the times t∗ = 0.01 and 0.05 respectively, for different
values of κ = 0.1, 0.2.0.7 and 1 and (e) The steady state profile for κ = 0.1, 0.2, 0.7 and

1.
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4.3 Linearization

A small perturbation of order ε is added to the basic field and substituted in equations

(4.19)−(4.28), so that

U∗ (x∗, t∗) = εUp (x∗, t∗) , P ∗e (x∗, t∗) = P ∗ebs (x∗, t∗) + εPep (x∗, t∗) ,

n∗ (x∗, t∗) = n∗bs (z∗, t∗) + εnp (x∗, t∗) , p (x∗, t∗) = k + εpp (x∗, t∗) , (4.68)

where 0 ≤ ε� 1.

For the basic state, the swimming direction is vertically upwards. Hence, if the pertur-

bation plane is the zx−plane, (i.e., φ = 0), the swimming direction in (4.68) is

p = (sin εθp, cos εθp, 1)

= (εθp, 0, 1) +O
(
ε2
)
. (4.69)

with pp given by

pp = (θp, 0, 0) . (4.70)

Consequently, the linearized governing system is,

∇∗ ·Up = 0, (4.71)

S−1
c

∂Up

∂t∗
= −∇∗Pep −Ra npk +∇∗2Up, (4.72)

∂np
∂t∗

= −∇∗ · [n∗bsUp + κ (n∗bspp + npk)−∇∗np] , (4.73)

and

G−1θp − (1 + α0)
∂up
∂z∗
− (α0 − 1)

∂wp
∂x∗

= 0. (4.74)
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with the boundary conditions

Up · k = 0, at z∗ = −1, 0, (4.75)

[n∗bsUp + κ (n∗bspp + npk)−∇∗np] · k = 0, at z∗ = −1, 0, (4.76)

for the no−slip boundary

Up × k = 0, (4.77)

whereas at the stress−free boundary

∂Up

∂z∗
= 0, (4.78)

applied at z∗ = −1 and 0.

Without loss of generality consider Up = (up, 0, wp). The linearized equations (4.71)−(4.78)

can be written in the component form as

∂up
∂x∗

+
∂wp
∂z∗

= 0, (4.79)

S−1
c

∂up
∂t∗

+
∂Pep
∂x∗

−
(

∂2

∂x∗2
+

∂2

∂z∗2

)
up = 0, (4.80)

S−1
c

∂wp
∂t∗

+
∂Pep
∂z∗

+Ra np −
(

∂2

∂x∗2
+

∂2

∂z∗2

)
wp = 0, (4.81)

∂np
∂t∗

+
∂n∗bs
∂z∗

wp + κ

(
n∗bs

∂θp
∂x∗

+
∂np
∂z∗

)
−
(

∂2

∂x∗2
+

∂2

∂z∗2

)
np = 0, (4.82)

and

G−1θp − (1 + α0)
∂up
∂z∗
− (α0 − 1)

∂wp
∂x∗

= 0, (4.83)
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with the following set of boundary conditions:

wp (z∗, t∗) = 0, at z∗ = −1, 0, (4.84)

κnp (z∗, t∗)− ∂np
∂z∗

(z∗, t∗) = 0, at z∗ = −1, 0, (4.85)

up (z∗, t∗) = 0, at the no−slip boundary, (4.86)

∂up
∂z∗

(z∗, t∗) = 0, at the stress−free boundary, (4.87)

applied at z∗ = −1 and 0.

4.4 Non−normal analysis

To investigate the stability using non−normal modes, one may assume without loss of

generality, as in Doumenc et al. [27], that all the perturbed quantities in (4.79)−(4.87)

are independent of y∗ and are expressed as

Up (x∗, z∗, t∗) = (ũp (z∗, t∗) , 0, w̃p (z∗, t∗)) eikx
∗
,

np (x∗, z∗, t∗) = ñp (z∗, t∗) eikx
∗
,

θp (x∗, z∗, t∗) = θ̃p (z∗, t∗) eikx
∗
,

Pep (x∗, z∗, t∗) = P̃ep (z∗, t∗) eikx
∗
, (4.88)

where k is the dimensionless wavenumber in the x∗−direction. Hence, the governing

equations (4.79)−(4.87) become

ikũp +
∂w̃p
∂z∗

= 0, (4.89)

S−1
c

∂ũp
∂t∗

+ ikP̃ep −
(
∂2

∂z∗2
− k2

)
ũp = 0, (4.90)
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S−1
c

∂w̃p
∂t∗

+
∂P̃ep
∂z∗

+Ra ñp −
(
∂2

∂z∗2
− k2

)
w̃p = 0, (4.91)

∂ñp
∂t∗

+
∂n∗bs
∂z∗

w̃p + κ

(
ikn∗bsθ̃p +

∂ñp
∂z∗

)
−
(
∂2

∂z∗2
− k2

)
ñp = 0, (4.92)

and

G−1θ̃p − (1 + α0)
∂ũp
∂z∗
− (α0 − 1) ikw̃p = 0, (4.93)

with the boundary conditions

w̃p = 0, at z∗ = −1, 0, (4.94)

κñp −
∂ñp
∂z∗

= 0, at z∗ = −1, 0, (4.95)

ũp = 0, at the no−slip boundary, (4.96)

∂ũp
∂z∗

= 0, at the stress−free boundary, (4.97)

applied at z∗ = −1 and 0.

Assume that Q (z∗, t∗) is the vector field defined as

Q (z∗, t∗) =
(
ũp (z∗, t∗) , w̃p (z∗, t∗) , ñp (z∗, t∗) , P̃ep (z∗, t∗) , θ̃p (z∗, t∗)

)
. (4.98)

The perturbation energy at a given time t∗1 may be defined as (Doumenc et al. [27])

E (Q (t∗1)) =
3∑
j=1

ϑj

∫ 0

−1
Qj (z∗, t∗1) Q̄j (z∗, t∗1) dz∗, (4.99)

where the ( ¯ ) stands for the complex conjugates and ϑj , j = 1, 2, 3, are the weight

coefficients to put emphasis on the velocity or the concentration according to the case
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considered. In other words, when analyzing the initial perturbation in the velocity, the

kinetic energy norm EV is used and one takes ϑ1,2 = 1 and ϑ3 = 0. Whereas the

concentration norm EN is used to analyze the initial perturbation in the concentration

with ϑ1,2 = 0 and ϑ3 = 1. P̃ep and θ̃p are not considered in the definition of the energy

given by equation (4.99) because they will be eliminated later in this chapter.

The purpose of the non−normal analysis is to quantify (Doumenc et al. [27] and Schmid

and Henningson [100])

GE (t∗1; k∗, Sc, Ra, κ) = max

[
E (Q (t∗1))

E (Q (0))

]
, (4.100)

where GE stands for the gained energy at a given set of parameters and a given time

and it differs from the scalar G that gives the dimensionless gyrotactic number. GE

is the upper bound for the energy amplification that a disturbance with wavenumber k

can reach at time t∗1, restricted to the following constraints:

• The initial perturbation energy is normalized, i.e. E (Q (0)) = 1.

• The vector field components satisfy the governing equations (4.89)−(4.93) together

with boundary conditions (4.94)−(4.97).

The form of the optimization problem (4.100) suggests using Lagrange multipliers (Van-

derbei [111] and Doumenc et al. [27]). Hence, the Lagrange function L is given by

L (Q,λ, t∗1) = E (Q (t∗1))− s (E (Q (0))− 1)

(4.101)

−
5∑
j=1

∫ t∗1

0

∫ 0

−1
[Fj (Q (z∗, t∗))λj (z∗, t∗) + c.c.] dz∗dt∗.

where λ = (λ1 (z∗, t∗) , λ2 (z∗, t∗) , λ3 (z∗, t∗) , λ4 (z∗, t∗) , λ5 (z∗, t∗)) are Lagrange multi-

pliers, Fj (Q (z∗, t∗)) are the governing equations (4.89)−(4.93) and s is a normalization

scalar. The first term of equation (4.101) is the function that we want to maximize,

i. e. the numerator of equation (4.100), whereas the second term is a restriction that

is added to the denominator of equation (4.100) to normalize the energy of the initial
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perturbation for the sake of simplicity in computing the function GE. The final terms

in (4.101) are the governing equations that the field variables must satisfy integrated

across the suspension depth and time from 0 to t∗1.

Equation (4.101) can be written in terms of the inner product

L (Q,λ, t∗1) = E (Q (t∗1))− s (E (Q (0))− 1)

(4.102)

−
5∑
j=1

∫ t∗1

0

[
〈Fj (Q (z∗, t∗)) , λ̄j (z∗, t∗)〉+ c.c.

]
dt∗.

The method of Lagrange multipliers requires computing the variation δL of the function

L in (4.102) (Dym and Shames [29], see Appendix C.3). This variation equals

δL (Q,λ, t∗1) =

3∑
j=1

ϑj

∫ 0

−1
δQj (z∗, t∗1) Q̄j (z∗, t∗1) dz∗

−s
3∑
j=1

ϑj

∫ 0

−1
δQj (z∗, 0) Q̄j (z∗, 0) dz∗ −

5∑
j=1

∫ t∗1

0

[
〈δFj (Q (z∗, t∗)) , λ̄j (z∗, t∗)〉 (4.103)

+〈Fj (Q (z∗, t∗)) , δλ̄j (z∗, t∗)〉
]
dt∗ + c.c.

The expression 〈Fj (Q (z∗, t∗)) , δλ̄j (z∗, t∗)〉 in (4.103) equals zero when Fj (Q (z∗, t∗)) =

0 during the time interval [0, t∗1]. The main idea is to rewrite the quantity

〈δFj (Q (z∗, t∗)) , λ̄j (z∗, t∗)〉 to be of the form 〈δQj (z∗, t∗) , F̆j
(
λ̄j (z∗, t∗)

)
〉. So,

δL (Q,λ, t∗1) =


3∑
j=1

ϑj

∫ 0

−1
δQj (z∗, t∗1) Q̄j (z∗, t∗1) dz∗ − s

3∑
j=1

ϑj

∫ 0

−1
δQj (z∗, 0) Q̄j (z∗, 0) dz∗


(4.104)

−
∫ t∗1

0

∫ 0

−1





ik ∂
∂z∗ 0 0 0

AD 0 ik 0 0

0 AD
∂
∂z∗ Ra 0

0
∂n∗bs
∂z∗ 0 BD κikn∗bs

− (1 + α0) ∂
∂z∗ − (α0 − 1) ik 0 0 G−1





δũp

δw̃p

δP̃ep

δñp

δθ̃p




·



λ1

λ2

λ3

λ4

λ5


dz∗dt∗,
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where

AD = S−1
c

∂

∂t∗
−
(
∂2

∂z∗2
− k2

)
, (4.105)

BD =
∂

∂t∗
−
(
∂2

∂z∗2
− k2

)
+ κ

∂

∂z∗
. (4.106)

Integrating all the partial derivatives by parts leads to

δL (Q,λ, t∗1) =


3∑
j=1

ϑj

∫ 0

−1
δQj (z∗, t∗1) Q̄j (z∗, t∗1) dz∗ − s

3∑
j=1

ϑj

∫ 0

−1
δQj (z∗, 0) Q̄j (z∗, 0) dz∗



−
∫ t∗1

0

∫ 0

−1





ik AJ 0 0 (1 + α0) ∂
∂z∗

− ∂
∂z∗ 0 AJ

∂n∗bs
∂z∗ − (α0 − 1) ik

0 0 Ra BJ 0

0 ik − ∂
∂z∗ 0 0

0 0 0 κikn∗bs G−1





λ1

λ2

λ3

λ4

λ5




·



δũp

δw̃p

δP̃ep

δñp

δθ̃p


dz∗dt∗

−
∫ 0

−1

{
S−1
c [(δũp)λ2]

t∗1
0 + S−1

c [(δw̃p)λ3]
t∗1
0 + [(δñp)λ4]

t∗1
0

}
dz∗ (4.107)

−
∫ t∗1

0

{
[(δw̃p)λ1]0−1 +

[(
δP̃ep

)
λ3

]0

−1
+ κ [(δñp)λ4]0−1 − (1 + α0) [(δũp)λ5]0−1 −

[
∂ (δũp)

∂z∗
λ2

]0

−1

+

[
∂λ2

∂z∗
(δũp)

]0

−1

−
[
∂ (δw̃p)

∂z∗
λ3

]0

−1

+

[
∂λ3

∂z∗
(δw̃p)

]0

−1

−
[
∂ (δñp)

∂z∗
λ4

]0

−1

+

[
∂λ4

∂z∗
(δñp)

]0

−1

}
dt∗,

where

AJ = −S−1
c

∂

∂t∗
−
(
∂2

∂z∗2
− k2

)
, (4.108)

BJ = − ∂

∂t∗
−
(
∂2

∂z∗2
− k2

)
− κ ∂

∂z∗
. (4.109)

Following the definition of the adjoint differential operator in Gitman et al. [39], (see Ap-

pendix C.4), one concludes that the Lagrange multipliers are the adjoint field variables.
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Thus, equation (4.107) suggests renaming the variables as follow

λ̄1 = P̃ jep,

λ̄2 = ũjp,

λ̄3 = w̃jp,

λ̄4 = ñjp,

λ̄5 = θ̃jp.

(4.110)

Then, the second and forth terms in equation (4.107) give the following adjoint problem

ikũjp +
∂w̃jp
∂z∗

= 0, (4.111)

[
S−1
c

∂

∂τ∗
−
(
∂2

∂z∗2
− k2

)]
ũjp − ikP̃ jep + (1 + α0)

∂θ̃jp
∂z∗

= 0, (4.112)

[
S−1
c

∂

∂τ∗
−
(
∂2

∂z∗2
− k2

)]
w̃jp −

∂P̃ jep
∂z∗

+
∂n∗bs
∂z∗

ñjp + (α0 − 1) ikθ̃jp = 0, (4.113)

[
∂

∂τ∗
−
(
∂2

∂z∗2
− k2

)
− κ ∂

∂z∗

]
ñjp +Raw̃jp = 0, (4.114)

−κikn∗bsñjp +G−1θ̃jp = 0, (4.115)

where τ∗ = −t∗. The adjoint problem has the boundary conditions

w̃jp = 0, at z∗ = 0,−1, (4.116)

∂ñjp
∂z∗

= 0, at z∗ = 0,−1, (4.117)

− (1 + α0) θ̃jp +
∂ũjp
∂z∗

= 0, at the stress−free surface, (4.118)
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ũjp = 0, at the no−slip surface, (4.119)

applied at z∗ = −1 and 0.

Whereas the first and third terms in equation (4.107) suggests the conversion relationship

between the direct and the adjoint problem as follow: when one is considering the initial

perturbation in the velocity field only, the conversion from the direct to the adjoint

problem at t∗ = t∗1, for finite Schmidt number Sc, is

ũjp (z∗, t∗1) = Scũp (z∗, t∗1) , (4.120)

w̃jp (z∗, t∗1) = Scw̃p (z∗, t∗1) , (4.121)

and

ñjp (z∗, t∗1) = 0. (4.122)

Whereas from the adjoint to the direct problem at t∗ = 0

ũp (z∗, 0) = s−1S−1
c ũjp (z∗, 0) , (4.123)

w̃p (z∗, 0) = s−1S−1
c w̃jp (z∗, 0) , (4.124)

ñjp (z∗, 0) = 0, (4.125)

However, when the perturbation is considered to be in the concentration field, we get

the following relationships to convert the direct to the adjoint problem at t∗ = t∗1,

ñjp (z∗, t∗1) = ñp (z∗, t∗1) , (4.126)
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ũjp (z∗, t∗1) = w̃jp (z∗, t∗1) = 0, (4.127)

and from the adjoint to the direct at t∗ = 0

ñp (z∗, 0) = s−1ñjp (z∗, 0) , (4.128)

ũjp (z∗, 0) = w̃jp (z∗, 0) = 0. (4.129)

4.5 Numerical solution

The numerical solution algorithm works as follows, the maximum energy amplification is

gained at the optimal initial perturbation. The optimal initial perturbation is achieved

when δL = 0. This condition is obtained by solving the governing equations of the direct

problem (4.89)−(4.93) together with the boundary conditions (4.94)−(4.97) forward in

time for an imposed initial condition that satisfies the boundary conditions. Then, using

the relationships between the field variables Q (z∗, t∗) and the adjoint field variables

Qj (z∗, t∗) given in either equations (4.120)−(4.122) or (4.126)−(4.127), one gets the

initial conditions of the adjoint problem given by equations (4.111)−(4.115) with the

boundary conditions (4.116)−(4.119). The adjoint problem is then solved backward

in time and we use conversion relationships given by either equations (4.123)−(4.125)

or (4.128)−(4.129) to get the initial condition of the direct problem again. One can

perform a forward−backward scheme until the initial perturbation of the direct problem

does not change appreciably. Hence, once the convergence is reached, the optimal initial

perturbation will be obtained.

For the sake of simplicity in obtaining the numerical solution, one reduces the num-

ber of variables in the governing equations of the direct problem given by equations

(4.89)−(4.97) by eliminating the perturbed pressure, horizontal velocity and swimming
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direction by following the procedure in Bees & Hill [12]. Applying the divergence oper-

ator to equation (4.72) yields

−∇∗2Pep = Ra
∂np
∂z∗

. (4.130)

Also, applying the Laplacian operator to the third component of (4.72) leads to

S−1
c

∂fp
∂t∗

= Ra
∂2np

∂z∗2
−Ra∇∗2np +∇∗2fp, (4.131)

where

fp = ∇∗2wp, (4.132)

and wp is the third component of the velocity.

The direction equation (4.74) states

∂θp
∂x∗

= G

[
(1 + α0)

∂2up
∂x∗∂z∗

+ (α0 − 1)
∂2wp

∂x∗2

]
. (4.133)

where G = BD
H2 .

The incompressibility equation (4.71) results in

∂2up
∂x∗∂z∗

= −∂
2wp

∂z∗2
. (4.134)

Combining (4.133) and (4.134) together defines θp as a function of the vertical velocity

wp, such that

∂θp
∂x∗

= G

[
− (1 + α0)

∂2wp

∂z∗2
+ (α0 − 1)

∂2wp

∂x∗2

]
. (4.135)

Using (4.135), equation (4.73) can be written as

∂np
∂t∗

= −wp
∂n∗bs
∂z∗

− κ
[
−G (1 + α0)n∗bs

∂2wp

∂z∗2
+G (α0 − 1)n∗bs

∂2wp

∂x∗2
+
∂np
∂z∗

]
+
∂2np

∂x∗2
+
∂2np

∂z∗2
. (4.136)
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Eliminating the perturbed pressure Pep, horizontal velocity up and swimming direction

θp from equations (4.71)−(4.74) results in two governing equations with two variables:

the perturbed concentration np and the perturbed vertical velocity wp. Hence, the

perturbed governing system becomes

f̃p (z∗, t∗) =

[
∂2

∂z∗2
− k2

]
w̃p (z∗, t∗) , (4.137)

S−1
c

∂f̃p (z∗, t∗)

∂t∗
= Rak2ñp (z∗, t∗) +

[
∂2

∂z∗2
− k2

]
f̃p (z∗, t∗) , (4.138)

∂ñp (z∗, t∗)

∂t∗
= −w̃p (z∗, t∗)

∂n∗bs
∂z∗

+

{
β (1 + α0)n∗bs

∂2w̃p (z∗, t∗)

∂z∗2

+β (α0 − 1) k2n∗bsw̃p (z∗, t∗)− κ∂ñp (z∗, t∗)

∂z∗

}
+

[
∂2

∂z∗2
− k2

]
ñp (z∗, t∗) , (4.139)

where β = κG. The boundary conditions are

w̃p = 0, at z∗ = −1, 0, (4.140)

κñp −
∂ñp
∂z∗

= 0, at z∗ = −1, 0, (4.141)

with no−slip boundary condition

∂w̃p
∂z∗

= 0 (4.142)

or the stress−free boundary condition

∂2w̃p

∂z∗2
= 0, (4.143)

applied at z∗ = −1 and 0. Similarly, we eliminate the perturbed pressure, the horizontal

velocity and the swimming direction from the adjoint problem as follows, adding ik ∂
∂z∗
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multiplied by equation (4.112) to k2 multiplied by equation (4.113) gives

f̃ jp (z∗, t∗) =

(
∂2

∂z∗2
− k2

)
w̃jp (z∗, t∗) , (4.144)

[
S−1
c

∂

∂τ∗
−
(
∂2

∂z∗2
− k2

)]
f̃ jp (z∗, t∗) = k2

(
∂n∗bs
∂z∗

ñjp

)
(z∗, t∗)

−k4 (α0 − 1)β
(
n∗bsñ

j
p

)
(z∗, t∗)− k2 (α0 + 1)β

∂2
(
n∗bsñ

j
p

)
∂z∗2

(z∗, t∗) , (4.145)

[
∂

∂τ∗
−
(
∂2

∂z∗2
− k2

)
− κ ∂

∂z∗

]
ñjp (z∗, t∗) = −Raw̃jp (z∗, t∗) . (4.146)

The boundary conditions are

w̃jp (z∗, t∗) = 0, at z∗ = 0,−1, (4.147)

∂ñjp
∂z∗

(z∗, t∗) = 0, at z∗ = 0,−1, (4.148)

(1 + α0)βk2n∗bsñ
j
p (z∗, t∗)− ∂2w̃jp

∂z∗2
(z∗, t∗) = 0, at a stress−free surface (4.149)

∂w̃jp
∂z∗

(z∗, t∗) = 0, at a no−slip surface (4.150)

applied at z∗ = −1 and 0.

The time derivative is discretised using the backward Euler method (Gautschi [37]).

The terms with the basic profile are treated using the explicit Euler method. Hence, the

perturbed system (4.137)−(4.139) will be

[
d2

dz∗2
− κ d

dz∗
− k2 − 1

∆t∗

]
ñ(n+1)
p = − ñ

(n)
p

∆t∗
+ w̃(n)

p

dn∗
(n)

bs

dz∗

−βn∗(n)bs

{
− (1 + α0)

d2w̃
(n)
p

dz∗2
+ (α0 − 1) k2w̃(n)

p

}
, (4.151)
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[
d2

dz∗2
− k2 − S−1

c

1

∆t∗

]
f̃ (n+1)
p = −S−1

c

f̃
(n)
p

∆t∗
−Rak2ñ(n+1)

p , (4.152)

and

[
d2

dz∗2
− k2

]
w̃(n+1)
p = f̃ (n+1)

p , (4.153)

subject to the boundary conditions

w̃(n+1)
p = 0, at z∗ = −1, 0, (4.154)

κñ(n+1)
p − dñ

(n+1)
p

dz∗
= 0, at z∗ = −1, 0, (4.155)

dw̃
(n+1)
p

dz∗
= 0, no−slip boundary, (4.156)

d2w̃
(n+1)
p

dz∗2
= 0, stress−free boundary, (4.157)

applied at z∗ = −1 and 0, and the adjoint system (4.144)−(4.146) will be

[
d2

dz∗2
− k2 − S−1

c

1

∆τ∗

]
f̃ j(n+1)
p = −S−1

c

f̃
j(n)
p

∆τ∗
− k2∂n

∗(n)
bs

∂z∗
ñj(n)
p

+β

k4 (α0 − 1)n∗
(n)

bs ñj(n)
p + k2 (α0 + 1)

∂2
(
n∗

(n)

bs ñ
j(n)
p

)
∂z∗2

 , (4.158)

[
d2

dz∗2
− k2

]
w̃j(n+1)
p = f̃ j(n+1)

p , (4.159)

[
d2

dz∗2
+ κ

d

dz∗
− k2 − 1

∆τ∗

]
ñj(n+1)
p = − ñ

j(n)
p

∆τ∗
+Raw̃j(n+1)

p , (4.160)
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subject to the boundary conditions

w̃j(n+1)
p = 0, at z∗ = −1, 0, (4.161)

∂ñ
j(n+1)
p

∂z∗
= 0, at z∗ = −1, 0, (4.162)

∂w̃
j(n+1)
p

∂z∗
= 0, no−slip boundary, (4.163)

(1 + α0)βn∗
(n)

bs ñj(n)
p − ∂2w̃

(n+1)
p

∂z∗2
= 0, stress−free boundary, (4.164)

applied at z∗ = −1 and 0.

The boundary conditions for f̃p are given in terms of w̃p. To satisfy them at the no−slip

boundary, both f̃p and w̃p are represented by the linear combination

f̃ (n+1)
p = f̃P + λf̃1 + µf̃2, (4.165)

w̃(n+1)
p = w̃P + λw̃1 + µw̃2, (4.166)

where the subscript P is the particular solution of the f̃p in (4.152) with

f̃P = 0, at z∗ = −1, 0, (4.167)

The functions with the subscript 1 and 2 are the homogeneous solutions of (4.152) with

the two linearly independent boundary conditions,

f̃1 (−1) = f̃1 (0) = 1,

f̃2 (−1) = −f̃2 (0) = 1. (4.168)

The boundary conditions (4.156)−(4.157) determine the coefficients λ and µ in (4.165)
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and (4.166). The functions w̃P , w̃1 and w̃2 satisfy zero boundary conditions at z = −1, 0.

We use a similar procedure for the boundary conditions of f̃ jp .

4.6 Results

A solution to the optimization problem given in equations (4.100), (4.151)−(4.157) and

(4.158)−(4.164) is calculated using the Matlab boundary problem solver bvp4c that

solves an ordinary differential equation with a tolerance error of O
(
10−3

)
.

4.6.1 Algorithm

A Matlab program was written to calculate the maximum energy amplification gained

at a given time t∗1 for a given values of the parameters κ, β = κG, α0 and Ra over a

range of wavenumbers k, (see Appendix C.6), as follows:

1. The values of the following parameters t∗1, κ, β = κG, α0, Ra and k are inserted

in the code.

2. The code computes the basic state profile using equations (4.30), (4.32) and (4.33)

as follows: discretise the time derivative using the Euler backward method, (see

Appendix C.5), and solve an ordinary differential equation with respect to the

depth z∗ for every time step. Record the results to save time at later stages.

3. For every wavenumber, initial conditions are imposed. This initial condition

should satisfy the boundary conditions that are given for the direct problem

(4.154)−(4.157). The initial conditions used in the code are

ñ(0)
p =

1

||ñ(0)
p ||

sin2 (πz∗) , (4.169)

w̃(0)
p = 0, (4.170)

f̃ (0)
p = 0. (4.171)
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The initial condition in equation (4.169) is multiplied by 1

||ñ(0)
p ||

to ensure that the

initial energy is normalized, i. e. E (Q (0)) = 1.

4. The homogenous solutions f̃1, f̃2, w̃1 and w̃2 of the equations (4.152)−(4.153) are

solved as these equations are independent of time. Similarly, the adjoint equations

(4.158)−(4.159) are solved.

5. Next, for every time step, the direct problem is solved in the following order:

the concentration equation (4.151) subject to the boundary conditions (4.155);

the particular solutions of the functions f̃P and w̃P using equations (4.152) and

(4.153) subject the following boundary conditions

f̃P = 0, w̃P = 0 at z∗ = −1, 0. (4.172)

6. The boundary conditions at the no−slip and the stress−free boundaries (4.156)

and (4.157) are used to find the values of λ and µ.

7. The solutions f̃p and w̃p are computed using relations (4.165) and (4.166).

8. After solving the direct problem at every time step, the conversion relations either

equations (4.120)−(4.122) or (4.126)−(4.127) are used to impose initial conditions

on the adjoint problem.

9. The adjoint problem in equations (4.158)−(4.160) is then solved backward in time

in a similar way to the direct problem.

10. Either equations (4.123)−(4.125) or (4.128)−(4.129) are used to convert the initial

condition to the initial conditions of the direct problem again. The forward and

backward scheme is used until the optimal initial perturbation is obtained (when

the initial perturbation of the direct problem does not change appreciably from

one iteration to the next). The convergence condition is that the absolute error is

less than O
(
10−3

)
.

11. Finally, the maximum energy gained at the given time t∗1 for the given parameters

is computed using equation (4.99) and (4.100).
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4.6.2 Test and accuracy

The code is tested on the unsteady Bénard−Marangoni problem, as investigated by

Doumenc et al. [27], for the following set of the parameters: Ra = 0, Bi = 1, Ma = 300

and Pr =∞. The number of points in both time and space domains is 151. The results

agree very well with the results of Doumenc et al. [27], (see Figure 4.4(a)).

To reduce the computation time, one needs to determine the minimum number of points

in the time and the space domain that gives the solution within the set of tolerance.

Hence, the code was executed for the unsteady Bénard−Marangoni problem with the

parameters Ra = 0, Bi = 1, Ma = 300 and Pr = ∞, considering different time and

space resolutions over the time t∗ = 0.43. Figure 4.4(b) shows the energy gained with

time resolution fixed at 101 points and three different space resolutions, 101, 151 and 201

over the range of wavenumbers between 1 and 3, and Figure 4.4(d) shows the relative

error with respect to the solution that corresponds to the maximum space resolution

201. The two figures indicate that increasing the number of points in the space domain

does not have a large impact on the accuracy of the results. The energy gained at the

time t∗ = 0.43 is plotted in Figure 4.4(c) fixing the space resolution to be 101 points with

five different time resolutions, 101, 151, 201, 251 and 301. Figure 4.4(c) shows that there

are variations in the energy amplifications profile when we change the time resolution.

The relative error with respect to the solution that corresponds to the maximum time

resolution, 301, is plotted in Figure 4.4(e). Figures 4.4(d) and 4.4(e) show that increas-

ing the time resolution has more effect on the accuracy of the solution than increasing

the domain resolution. However, since the target is to extract the wavenumber that cor-

responds to the maximum energy amplification, kmax that corresponds to the maximum

energy amplification GE gained for every resolution is given in Table 4.3. The relative

error of these wavenumbers with respect to the most accurate wavenumber 2.2841 that

corresponds to the time resolution 301 is shown in Figure 4.4(f). The maximum value

of the relative error is 0.0057, i.e. approximately 0.6% when the time resolution is 101

points.

The code was executed for the bioconvection problem and the energy amplification

GE profile is plotted with considering the following values of the parameters β = 0.1,
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Figure 4.4: (a) The energy amplification GE profile plotted for the unsteady
Bénard−Marangoni problem with Ra = 0, Bi = 1, Ma = 300 and Pr = ∞ for
total times t∗ = 0.2, 0.43 and 1. (b) and (c) GE at t∗ = 0.43 for different domain
and time resolutions, respectively. (d) and (e) The relative error of the GE profile that
corresponds to the space and time resolution, respectively. (f) The relative error of the

wavenumber that gives the maximum energy gained at that time.
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Time resolution 101 201 251 301

Wavenumber kmax 2.2711 2.2813 2.2830 2.2841

Table 4.3: The wavenumber that corresponds to the maximum energy gained at the
time t∗ = 0.43 for the time resolutions 101, 201, 251 and 301.

Time resolution 101 201 251 301

Wavenumber kmax 3.8945 3.9090 3.9116 3.9132

Table 4.4: The wavenumber that corresponds to the maximum energy gained at the
time t∗ = 0.05 for the time resolutions 101, 201, 251 and 301 when testing the code on
the bioconvection for the following parameters β = 0.1, Ra = 725, κ = 0.1, Sc = 20

and α0 = 0.2.

Ra = 725, κ = 0.1, Sc = 20 and α0 = 0.2 at the time t∗ = 0.05 for three space resolutions

101, 151 and 201 over a range of wavenumbers between 3.5 and 4.3 (see Figure 4.5(a))

with fixing the time resolution to be 101. Figure 4.5(c) shows the relative error with

respect to the solution that corresponds to the maximum space resolution 201. The

results shows that increasing the number of points in the space domain does not have

a large impact on the accuracy of the results. On the other hand, the space resolution

is fixed to be 101 points and the time resolution is changed to take the values 101, 151,

201, 251 and 301 (see Figure 4.5(b)) for the same values of the parameters. The relative

error with respect to the solution that corresponds to the maximum time resolution, 301,

is plotted in Figure 4.5(d). As mentioned earlier, the aim is to extract the wavenumber,

kmax that correspond to the maximum energy gained over a range of wavenumbers at

a given time t∗, thus, kmax that corresponds to the maximum energy amplification GE

gained for every resolution is given in Table 4.4. The relative error of these wavenumbers

with respect to the most accurate wavenumber 3.9132 that corresponds to the time

resolution 301 is shown in Figure 4.5(e). The maximum value of the relative error is

0.0048, i.e. approximately less than 0.5% when the time resolution is 101 points. To

sum up, the resolution in the time and space domain is chosen to be 101 points with an

expected accuracy of 99.5%.



Time evolving bioconvection patterns in a layer of finite depth: non−normal stability
analysis 133

3.4 3.6 3.8 4 4.2 4.4
3

3.1

3.2

3.3

Wavenumbers k

E
n
e
n
r
g
y
 
a
m

p
l
i
f
i
c
a
t
i
o
n
 
G

E

 

 

z*=101

z*=151

z*=201

(a)

3.4 3.6 3.8 4 4.2 4.4
3

3.1

3.2

3.3

Wavenumbers k

E
n
e
n
r
g
y
 
a
m

p
l
i
f
i
c
a
t
i
o
n
 
G

E

 

 

t*=101

t*=151

t*=201

t*=251

t*=301

(b)

3.4 3.6 3.8 4 4.2 4.4
1

2

3

4

5x 10
−3

Wavenumbers k

T
h

e
 
r
e

la
t
iv

e
 
e

r
r
o

r

 

 

z*=101

z*=151

(c)

3.4 3.6 3.8 4 4.2 4.4
0

0.005

0.01

0.015

0.02

Wavenumbers k

T
h
e
 
r
e
l
a
t
i
v
e
 
e
r
r
o
r

 

 

t*=101

t*=151

t*=201

t*=251

(d)

100 150 200 250 300
0

1

2

3

4

5x 10
−3

Time resolution

W
a

v
e

n
u

m
b

e
r
s
 
r
e

la
t
iv

e
 
e

r
r
o

r

(e)

Figure 4.5: The energy amplification GE profile plotted for the bioconvection problem
with β = 0.1, Ra = 725, κ = 0.1, Sc = 20 and α0 = 0.2 for t∗ = 0.05 (a) and (b) GE
at t∗ = 0.05 for different domain and time resolutions, respectively. (c) and (d) The
relative error of the GE profile that corresponds to the space and time resolution,
respectively. (e) The relative error of the wavenumber that gives the maximum energy

gained at that time.
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4.6.3 Bioconvection results

The code is excuted for the bioconvection problem during the dimensionless time interval

t∗ = [0, 0.05] as it corresponds to the dimensional time [0, 100] seconds which is long

enough for these upswimming microorganisms to approach the steady state profile. If

we consider a uniform suspension of depth 0.5 cm to begin with and the cells swim with

a speed of 63 µms−1, the basic state will be reached at t = 80 s. Also, we consider

the Schmidt number to be the typical value estimated for the upswimming gyrotactic

microorganisms Chlamydomonas augustae, which is Sc = 20 as in Hill et al. [50]. An

earlier work from Williams and Bees [115] estimated Sc to be 19 for the C. augustae.

The cell eccentricity is taken to be α0 = 0.2 (Hill et al. [50]). Two values are selected

of the scaled depth κ and two values of the Rayleigh number Ra. These values are

• In the first set of the numerical parameters, a small value of κ is assumed, κ = 0.1.

The value ofRa is set to be 725, which is slightly above the critical value, Rac = 720

that was calculated for gyrotacic microorganisms in a layer of finite depth by Hill

et al. [50]. The gyrotactic number G is taken to be 1, hence, β = κG = 0.1. The

wavenumbers range is between [0.1, 6] with a stepsize of 0.2.

• In the second set of the numerical parameters, κ is assumed to be 1 and Ra is

taken to be 500 which is close to the critical value, (see Hill et al. [50]). G is taken

to be 0.5, so, β = κG = 0.5. The range of wavenumbers is [3, 9] with a stepsize of

0.2.

The results are as follows:

The initial conditions given in equations (4.169)−(4.171) are used for the two sets of

parameters. The optimal initial perturbation at the time t∗ = 0 for the first set of these

parameters is plotted for the following wavenumbers k = 4.0945 and 5.5 in Figure 4.6(a).

The optimal initial perturbation at the time t∗ = 0 for the second set of parameters for

the following wavenumbers k = 1.567, 3.5 and 6.254 is shown in Figure 4.6(b). Both

figures indicate that the optimal initial perturbations are independent of the imposed

initial condition, depending on all the parameters used in the problem but mainly on
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Figure 4.6: The optimal initial perturbation at the time t∗ = 0 for the two cases: (a)
κ = 0.1, G = 1, Ra = 725, Sc = 20 and α0 = 0.2 at the wavenumbers k = 4.0945 and
5.5; and (b) κ = 1, G = 0.5, Ra = 500, Sc = 20 and α0 = 0.2 at the wavenumbers

k = 1.567, 3.5 and 6.254.

the wavenumber. For example, Figure 4.6(b) displays a plot of these optimal initial

perturbations for the same set of parameters for different wavenumbers. One can see

clearly the difference between these curves.

The maximum energy amplification was calculated using equation (4.100) for the above

sets of parameters with the initial conditions (4.169)−(4.171). It was found that when

κ = 0.1, Ra = 725 and G = 1 the maximum energy gained is at the wavenumber

kmax = 3.8945 whereas when κ = 1, Ra = 500 and G = 1 the energy reaches its

maximum value at the wavenumber kmax = 8.0154 which is almost twice the wavenumber

when κ is 10 times larger.

The effect of the variation of the parameters κ, Ra, and G on the maximum energy

amplified at the specified time t∗ = 0.05 is also investigated and the results are shown in

Figures 4.7 and 4.8, and Tables 4.5, to 4.10. The results in these tables are plotted in

Figure 4.9 and show that kmax increases monotonically as the values of these parameters

increase. However, the increasing rates differ. For instance, Tables 4.9 and 4.10 show

that even there is an increase in the value of kmax as κ increases. This variation seems to

be small of O
(
10−4

)
compared to the variation due to the gyrotactic effect in Tables 4.5
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Figure 4.7: A logarithm plot of the energy amplification profile GE over the total
time t∗ = 0.05. Here, κ = 0.1, α0 = 0.2, Ra = 725 and G = 1. The plots of log (GE)
show the effect of the gyrotactic number G in (a) and (b), the Rayleigh number Ra in

(c) and (d) and, finally, the scaled layer depth κ in (e) and (f).
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Figure 4.8: A logarithm plot of the energy amplification profile GE over the total the
time t∗ = 0.05. Here, κ = 1, α0 = 0.2, Ra = 500 and G = 0.5. The plots of log (GE)
show the effect of the Rayleigh number Ra in (a), the gyrotactic number G in (b) and

(c) and, finally, the scaled layer depth κ in (d).

and 4.6. Table 4.5 shows that when G is small 0.2 and 0.4, kmax = 0.1. This suggests

that the suspension is stable.

4.7 Discussion

In this chapter, a time evolving basic state is calculated. The stability around that basic

state is investigated using non−normal modes in order to evaluate the maximum energy

gained at a given time over a range of wavenumbers by using Lagrange multipliers; the
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G kmax λmax

0.2 0.1 62.8319
0.4 0.1 62.8319
0.6 2.8393 2.2130
0.8 3.4709 1.8102
1 3.8945 1.6134

1.2 4.2268 1.4865
1.4 4.5069 1.3942
1.6 4.7509 1.3225
1.8 4.9696 1.2643

Table 4.5: The dimensionless
values of kmax and λmax that cor-
respond to the maximum energy
gained at the time t∗ = 0.05 when
κ = 0.1, α0 = 0.2 and Ra = 725

for different values of G.

G kmax λmax

0.3 5.2330 1.2007
0.5 6.2782 1.0008
0.6 6.6922 0.9389
0.7 7.0646 0.8894
0.8 7.4056 0.8484
0.9 7.7197 0.8139
1 8.0154 0.7839

1.1 8.2916 0.7578
1.3 8.8022 0.7138

Table 4.6: The dimensionless
values of kmax and λmax that cor-
respond to the maximum energy
gained at the time t∗ = 0.05 when
κ = 1, α0 = 0.2 and Ra = 500 for

different values of G.

Ra kmax λmax

720 3.8817 1.6187
750 3.9565 1.5880
775 4.0157 1.5656
800 4.0742 1.5422
850 4.1843 1.5016
900 4.2882 1.4652

Table 4.7: The dimensionless
values of kmax and λmax that cor-
respond to the maximum energy
gained at the time t∗ = 0.05 when
κ = 0.1, α0 = 0.2 and G = 1 for

different values of Ra.

Ra kmax λmax

350 5.5405 1.1341
400 5.8091 1.0816
450 6.0528 1.0381
550 6.4893 0.9682

Table 4.8: The dimensionless
values of kmax and λmax that cor-
respond to the maximum energy
gained at the time t∗ = 0.05 when
κ = 1, α0 = 0.2 and G = 0.5 for

different values of Ra.

κ kmax λmax

0.06 3.8939 1.6136
0.08 3.8942 1.6135
0.12 3.8947 1.6133
0.14 3.8950 1.6132
0.16 3.8952 1.6130
0.18 3.8955 1.6129
0.2 3.8958 1.6128

Table 4.9: The dimensionless
values of kmax and λmax that cor-
respond to the maximum energy
gained at the time t∗ = 0.05 when
Ra = 725, α0 = 0.2 and G = 1 for

different values of κ.

κ kmax λmax

0.8 6.2771 1.0010
0.9 6.2776 1.0009
1 6.2782 1.0008

1.1 6.2790 1.0007

Table 4.10: The dimensionless
values of kmax and λmax that cor-
respond to the maximum energy
gained at the time t∗ = 0.05 when
Ra = 500, α0 = 0.2 and G = 0.5

for different values of κ.
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Figure 4.9: The relationship between kmax and the Gyrotacyic number G (a) and (d),
the Rayleigh number Ra (b) and (e) and the layer depth scale κ (c) and (f).



Time evolving bioconvection patterns in a layer of finite depth: non−normal stability
analysis 140

Mean cell concentration (cells cm−3) λdmax (cm)

1.1× 105 0.97
105 1

8× 104 1.04
7× 104 1.13

Table 4.11: The mast unstable wavelength of a suspension of C. augustae for the
given concentrations. Sc = 20, D = 5× 10−4 and the suspension depth H = 1 cm.

variation of a Lagrange function was computed, and adjoint equations to the governing

equations were imposed. A Matlab code was designed to solve the problem forward and

backward in time to find the optimal initial perturbation and evaluate the energy. It

is found that, the optimal initial perturbation is independent from the imposed initial

conditions and depends on the layer depth scale κ, Ra, G, and significantly on k. Also,

it is found that kmax increases as we increase κ, Ra and G.

To compare these results with the experimental results in Chapter 2, we can consider a

suspension of the green algae Chlamydomonas augustae. The relationship between the

cell concentration and Ra is given by Ra = H3n0vg∆ρ
Dρν . Since the suspension depth in our

experiments is approximately 0.5 cm and for the values given in Table 4.2, the mean cell

concentration that corresponds to Ra = 550 is 8.8× 105. Experiment 10a3 in Table 2.3

gives the results of C. augustae of concentration 3.9 × 106 which is closest among the

experiments to the concentration 8.8 × 105. The mean value of the local dominant

wavelength in the experiment 10a3 is calculated to be λ = 0.9583 cm. The Table 4.8

gives the corresponding dimensional value of λdmax = 2π
kmax

H ≈ 0.5 cm which does not

seem to agree very well with the experimental results. Since the pattern displays spacing

between 0.8 to 1.1 cm.

Table 4.11 shows the predicted values of λdmax for a suspension of the green algae C.

augustae of depth 1 cm. These predicted values are smaller than the most unstable

wavelengths predicted by Hill et al. [50], 2 to 3 cm for mean cell concentrations that

are slightly larger than 5× 105. However, our predictions are closer their experimental

observation of C. augustae that shows patterns with spacing between 0.5 to 1 cm.
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Running the program to produce the results takes long time. However, it predicts typical

wavelengths of less than 1 cm when the suspension depth is 1 cm which agrees with the

typical experiment measurements that give wavelengths less than 1 cm in Bees and Hill

[12] and Hill et al. [50].



Chapter 5

Conclusions

Bioconvection usually arise due to the upswimming behaviour of micro−organisms that

are slightly more dense than the surrounding fluid. In this thesis, we have performed

controlled experiments on bioconvection of mixed species of algae C. reinhardtii and

C. augustae. Also, we have investigated the instability onset of bioconvection in a

uniform suspension of mixed species. Moreover, we have used the non−normal modes

to investigate the stability around a time evolving cell concentration basic state.

In Chapter 2, we described controlled experiments, measured the local dominant patterns

wavelength as a function of the relative concentration between two species of the green

algae C. reinhardtii and C. augustae and the total concentration. Wavelet analysis was

employed for the first time in the bioconvection to extract the local dominant wavelength

with its direction. Moreover, the second local dominant wavelength was extracted with

its direction to examine the patterns structure in a systematic way. We found the

following general results.

• The dominant wavelength varies from one location to another across the whole

pattern. Hence, the analysis provides a range of local dominant wavelengths for

every analysed pattern, unlike Fourier analysis (Bees & Hill [11] and Williams

& Bees [116]) that results in one global dominant wavelength across the whole

pattern.
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• The initial wavelength decreases as the relative concentration shifts from 100%

C. reinhardtii to 100% C. augustae and increases as the total cell concentration

decreases.

• The long−term wavelength range also decreases as the relative concentration shifts

from 100% C. reinhardtii to 100% C. augustae and increases as the total cell

concentration decreases. However, the range of the long−term wavelength does

not show tendency to be wider or narrower as the relative and total concentration

changes.

• The instability arose in the middle of the dish. Then, as the time evolves it

propagates to cover the whole dish.

• Calculating the first dominant local wavelength direction and the second local dom-

inant wavelength provides a quantitative measurements of the change in patterns

from rolls to squares and dots across the pattern.

Increasing the wavelength as the total concentration decrease agrees with the investiga-

tions performed be Bees and Hill [11] and Williams and Bees [116].

In Chapter 3, the continuum model by Pedley and Kessler [86] was generalized to consist

of two species. Also, we completed the linear stability analysis about a uniform basic

state in an infinite layer depth which gives the following results.

• A zero most unstable wavenumber is predicted for a disturbance with no vertical

variation as in Pedley & Kessler [86] and Pedley et al. [84].

• For a disturbance with a vertical variation, we found the following

– When both species have the same gyrotactic parameters, same mean cell

concentration and different mean cell swimming speed, the neutral curve (in-

stability onset) will be located in the middle, i.e. above the neutral curve of

the species with the maximum mean cell swimming speed and below the neu-

tral curve of the species with the minimum mean cell swimming speed, due to

the two compatible instability modes in the suspension that result from the
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difference in the cell swimming speed. The swimming speed of each species

affects its diffusion that has its influence on the mean cell swimming direction

of the other one which causes this competition between the instabilities. As

a consequence, decreasing the mean cell swimming speed of one species cause

the neutral curve of the mixed species to converge to the neutral curve of the

species with the maximum mean cell swimming speed since the influence of

the diffusion on the mean cell swimming direction will decrease. However,

when both species have the same mean cell swimming speed, the neutral

curve of the mixed species converges to the neutral curve of the species with

the smaller value of the deterministic−stochastic parameter.

– When both species have the same gyrotactic parameters and mean cell swim-

ming speed, decreasing the mean cell concentration of one species with respect

to the other makes the suspension of the mixed species to be diluted. Hence,

the neutral curve of the mixed species will be above the neutral of species 1

and 2.

– Considering a suspension of two mixed species of C. augustae and C. rein-

hardtii with total mean cell concentration of 1.3×107 cells cm−3, the analysis

predicted an initial wavelength of approximately 0.87 cm which disagree with

the experimental results. The experimental results give an initial wavelength

of 1.31 cm.

In Chapter 4, we completed the non−normal analysis for the gyrotactic bioconvection

model by Hill et al. [50] in a layer of finite depth. We found the general results below.

• The optimal initial disturbance is independent of the imposed initial disturbance

and it depends on all the parameters in the problem but significantly on wavenum-

ber.

• The most unstable wavelength decreases with increasing the gyrotactic and Rayleigh

number. However, it decreases slightly, O
(
10−4

)
, when increasing the value of κ.

• Considering a suspension of the green algae C. augustae with a total concentration

of 8.8×106 cells cm−3 and depth of 0.5 cm, the analysis predicted the most unstable
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wavelength to be 0.5 cm. The value does not agree with the experimental results

in chapter 2 as the experimental observation shows patterns with spacing between

0.8 to 1 cm for a suspension with a mean cell concentration 3.9× 106.

• Although our prediction does not agree very well with experimental observations,

we predicted most unstable wavelength of less than 1 cm for a suspension of depth

1 cm which gives better predictions than Hill et al. [50], 2 to 3 cm, and Bees &

Hill [12], 1 mm. These predictions are closer to their experimental observations

of a suspension of depth 1 cm as their experiments shows patterns of wavelengths

between 0.5 to 1 cm for a suspension of C. agustae of depth 1 cm.

5.1 Future developments and applications

• Wavelet techniques developed in the thesis can be applied to a wide range of

convection patterns. For example, it can be used to analyse chemoconvection

patterns to study the local variation of the wavelength as a function of the chemical

gradients or to provide quantitative measure of patterns structure.

• The experimental protocol and techniques developed in this thesis are first step

towards understanding bioconvection in communities of micro−organisms. Future

experiments could be performed on mixed suspension of two species swimmers and

non−swimmers to investigate how each one of them influences the other. Also,

it could be used to perform experiments on mixed suspension of two species that

interact with each others such as algae and bacteria to investigate how they affect

each others or to explore the effect of phototaxis.

• Investigating the linear stability of a uniform suspension of the two mixed species

theoretically can lead to better understanding to how one species can motivate the

other which can be utilized in the industrial field. For example, it could give ideas

to enhance the growth of algae used biofuel industry to increase the production.

• Non−normal analysis has been used to study the onset of bioconvection to bring

the theory closer to the initial conditions in experiments. An interesting challenge

will be to account for the residual bulk fluid motion that results from the mixing
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for the suspension at the start of experiments and this explain the observation of

the early onset of patterns.

• It would be instructive to compare the results of the non−normal analysis with

carefully chosen and controlled full numerical simulation of bioconvection to as-

certain how robust the non−normal analysis is in predicting initial growth of in-

stabilities and to validate numerical results.

• It will also be important to design quantitative experiments of the formation of

bioconvection patterns in deep layers to determine if the non−normal theory is

applicable to the real system and over what range of time scales.

• Finally, a future application of the non−normal method will be to investigate the

onset of bioconvection in deep layer of suspensions of more than one species to

better understanding competing effects and parametric dependence.
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Image_Subtraction.m

function Im1=Image_Subtraction;

% =========================================================================

% This programed is designed to subtract the first frame from the rest

% images in the series , after transforming the images into integers.

% =========================================================================

% """""""""""""""""""""""""""""""""""

% Calling the 1st sequence of images.

% """""""""""""""""""""""""""""""""""

MyFolder1=’F:\ Experiment\Image Analysis \10r\1’;

% MyFolder1=’C:\Reem\Experiment\Image Analysis \1A9R\full Conc\1’;

% MyFolder1=’C:\Reem\TEMP\NEW ’;

FilePattern1=fullfile(MyFolder1 ,’*.tif ’);

tifFiles1=dir(FilePattern1 );

% """"""""""""""""""""""

% Reading the 1st image.

% """"""""""""""""""""""

im11=imread(tifFiles1 (1). name);

% """""""""""""""""""""""""""""""""

% Specifying the size of the image.

% """""""""""""""""""""""""""""""""

[ROW1 ,COLUMN1 ]=size(im11);

% """""""""""""""""""""""""

% Building the output cell.

% """""""""""""""""""""""""

Im1=zeros(ROW1 ,COLUMN1 ,length(tifFiles1 ));

% """""""""""""""""""""""""""""""""""""""
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% Converting the 1st image into integers.

% """""""""""""""""""""""""""""""""""""""

A1=double(im11);

% """"""""""""""""""""""""

% The subtraction process.

% """"""""""""""""""""""""

for k=1: length(tifFiles1)

k

im21=imread(tifFiles1(k).name);

B1=double(im21);

C1=B1-A1;

Im1(:,:,k)=C1;

end

Pattern_appearance_New.m

% This program has been designed to compute the mean value , the standard

% deviation and the time derivative of the standard deviation of the gray

% level of an image ( seequence of images ). Also , plot them as a function

% of time , after subtracting the 1st frame using the program

% Image_Subtraction.m.

% =======================================================================

function [G,SD,SDD]= Pattern_appearance_New(IM1);

% """""""""""""""""""""""""""""""""""""

% Specifying the size of the 1st input.

% """""""""""""""""""""""""""""""""""""

[r1 ,c1,d1]=size(IM1);

% """""""""""""""""""""""""""""""""""""""""

% Specifying a 256*256 window in the image.

% """""""""""""""""""""""""""""""""""""""""

x1O=(c1/2) -128;

x1F=x1O +255;

y1O=(r1/2) -128;

y1F=y1O +255;

% ============================================

for k=1:d1

k

t(k)=2*k;

Im2=IM1(y1O:y1F ,x1O:x1F ,k);

A=reshape(Im2 ,1 ,65536);

g1(k)=mean(A);

sd1(k)=std(double(A),0);

end
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yy1 = smooth(transpose(sd1));

sdd1 = diff(yy1);

sdd1(k)=0;

G1=g1;

SD1=sd1;

SDD1=sdd1;

% ========================================================================

G=G1;

SD=SD1;

SDD=SDD1;

% =========================================================================

% Plotting the Mean of the gray values , the Standard deviation and the time

% derivative of the standad deviation versus the time.

% =========================================================================

% ==================

% Plotting the mean.

% ==================

subplot (3,1,1)

plot(t,G,’LineWidth ’,4,’color ’,’k’)

% =======================

% The title of the graph.

% =======================

% ===========================

set(gca ,’XTick ’ ,0:52:310)

set(gca ,’XTickLabel ’,{’’},’fontsize ’,30,’FontName ’,’Times New Roman ’)

ylabel(’$$\bar{g}$$’, ’interpreter ’, ’latex ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

% ================================

% Plotiing the standard deviation.

% ================================

subplot (3,1,2)

plot(t,SD,’LineWidth ’,4,’color ’,’k’)

set(gca ,’XTick ’ ,0:52:310)

set(gca ,’XTickLabel ’,{’’},’fontsize ’,30,’FontName ’,’Times New Roman ’)

ylabel(’$$\sigma$$ ’,’interpreter ’, ’latex ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)
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% ===============================================

% Plotting the standard deviation time derivativ.

% ===============================================

subplot (3,1,3)

plot(t,SDD*100,’LineWidth ’,4,’color ’,’k’)

set(gca ,’XTick ’ ,0:52:310)

set(gca ,’XTickLabel ’,{’0’,’52’,’104’,’156’,’208’,’260’,’302’},...

’fontsize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’Time in seconds ’,’fontsize ’,30)

ylabel(’$$\dot{\sigma} * 100$$’,’interpreter ’, ’latex ’,...

’fontsize ’,30,’FontName ’,’Times New Roman ’)

hold on

Peak_2nd.m

% This program is written to plot the amplitude at one location as a

% function of the natural logarithm of the wavenumber and the direction

% together with computing the 1st and the 2nd peak information.

% ======================================================================

function [WAVL1 ,WAVL2 ,DIR1 ,DIR2]= Peak_2nd(cir);

% *****************************************************

% *(I)- Setting the image up for the wavelet analysis .*

% *****************************************************

% ==================

% Reading the image.

% ==================

% cir=imread(’cconv3n.tif ’);

% cir=bioimage4;

% cir=IM3;

% ==============================

% Specify the size of the image.

% ==============================

[mrow ,mcolumn ]=size(cir);

% **********************************************************************

% * Choose a window of size 256*256 pixels inside the image. *

% * These values have been chosen to ensure that the window is centred *

% * within the petri dish and fare from the edge. *

% **********************************************************************

xO=( mcolumn /2) -128;

xF=xO +255;

yO=(mrow /2) -128;

yF=yO +255;
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% =========================================================================

% Taking FFT of the image since the definition of the wavelet transform has

% been used is the one that depends on FFT.

% =========================================================================

fimg=fft2(cir);

% ============================

% Setting up the scales (scl).

% ============================

scl =1:128;

ss=size(scl);

% ================================

% Setting up the directions (ang).

% ================================

inc=pi/8;

ang =0:inc:2*pi;

h=size(ang);

% ************************************

% *(II)- Performing Wavelet Analysis .*

% ************************************

% ================================================================

% Applying the Wavelet Transform (Computing the CWT coefficients ).

% ================================================================

out = cwt2d(fimg , ’morlet2d ’, scl , ang ,’export ’,’norm ’,’l1 ’);

% *************************************************************************

% *(III) Computing the 1st dominant wavelength , wavenumber , direction and *

% *the 2nd dominant wavelength , wavenumber , direction for each lacation. *

% *************************************************************************

t=tic;

for r=yO:yF

for c=xO:xF

r

c

locationCOEFFs (:,:)= out(r,c,:,:);

locationAMPs=abs(locationCOEFFs );

[zmax ,smax ,zmin ,smin]= extrema2(locationAMPs );

siz1=size(locationAMPs );

[I,J]= ind2sub(siz1 ,smax);
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IND =1;

for INDZ =1: length(zmax)

if (J(INDZ )>=5) && (J(INDZ )<13)

Lmax(IND)=zmax(INDZ);

Imax(IND)=I(INDZ);

Jmax(IND)=J(INDZ);

IND=IND +1;

end

end

% =========================

% (D) Extracting the peaks.

% =========================

% The peaks are at the scale I and the direction ang(J).

% =================

% (a) The 1st peak.

% =================

kpsi =6;

WAVL1(r,c)=2*pi*Imax (1)/ kpsi;

if (Jmax (1) >=9)

DIR1(r,c)=ang(Jmax (1) -8);

else

DIR1(r,c)=ang(Jmax (1));

end

Magnitude1(r,c)=Lmax (1);

% =================

% (B) The 2nd Peak.

% =================

if (abs(Jmax(1)-Jmax (2)) <=2)

z=3;

else

z=2;

end

if (Lmax(z) <=(5* Lmax (1)/10))

WAVL2(r,c)=NaN;

DIR2(r,c)=NaN;

Magnitude2(r,c)=Lmax(z);
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else

WAVL2(r,c)=2*pi*Imax(z)/kpsi;

if (Jmax(z)>=9)

DIR2(r,c)=ang(Jmax(z)-8);

else

DIR2(r,c)=ang(Jmax(z));

end

Magnitude2(r,c)=Lmax(z);

end

end

end

toc(t)

time=toc(t);

% =======================================

% plotting the location amplitude figure.

% =======================================

%IN=1;

%figure (IN)

%imshow(cir)

%imagesc(S1)

%colormap(gray)

% hold on;

% for rk=168 % yO+165

% for ck=146 % xO+50

% plot(ck,rk ,’*’,’color ’,’g’)

% hold on

% end

% end

%

% figure(IN+1)

% [A,S]= meshgrid(ang ,scl);

% contour(A,S,locationAMPs)

CONTOURDIRPLOT.m

%

% Contour plot of the the most local dominant wavelength superimposed by

% the 1st and the 2nd peaks directions.

% =========================================================================

x=1:256; %COLUMNS

y=1:256; %ROWS

% ====================================================

% Plotting the contour of the 1st dominant wavelength.

% ====================================================
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figure

[X,Y]= meshgrid(x,y);

contourf(X,Y,WAVL1);

colorbar

set(gca ,’Ydir ’,’reverse ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

title(’The Local Dominant Wavelength \lambda_{1}’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’COLUMN ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

ylabel(’ROW ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

hold on

% =====================================

% averaging the 1st and 2nd directions.

% =====================================

npix =8;

krow =256/ npix;

kcolumn =256/ npix;

for i=1: krow

for j=1: kcolumn

for s=i*npix -(npix -1):i*npix

for t=j*npix -(npix -1):j*npix

SubDF1(s-(i-1)*npix ,t-(j-1)* npix)=DIR1(s,t);

SubDF2(s-(i-1)*npix ,t-(j-1)* npix)=DIR2(s,t);

end

end

mode11=mode(SubDF1 ,2);

mode21=mode(SubDF2 ,2);

mode12=mode(mode11 );

mode22=mode(mode21 );

FinalD1(i,j)= mode12;

FinalD2(i,j)= mode22;

end

end

% =========================================

% plotting the 1st and 2nd peak directions.

% =========================================

npix =8;

krow =256/ npix;

kcolumn =256/ npix;

for j=1: krow

for l=1: kcolumn

arrow([l*npix -2 j*npix -2],[l*npix -2+(3.5)* cos(-FinalD1(j,l))...

j*npix -2+(3.5)* sin(-FinalD1(j,l))],’length ’,0,’tipangle ’,0)

if isnan(FinalD2(j,l))
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arrow([l*npix -2 j*npix -2],[l*npix -2 j*npix -2],’length ’,0,’tipangle ’,0)

else

arrow([l*npix -2 j*npix -2] ,...

[l*npix -2+(2)* cos(-FinalD2(j,l)) j*npix -2+(2)* sin(-FinalD2(j,l))],’length ’,0,’tipangle ’,0)

end

end

end

% ====================================================

% Plotting the contour of the 2nd dominant wavelength.

% ====================================================

figure

[X,Y]= meshgrid(x,y);

contourf(X,Y,WAVL2);

colorbar

set(gca ,’Ydir ’,’reverse ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

title(’The Local Dominant Wavelength \lambda_{2}’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’COLUMN ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

ylabel(’ROW ’,’fontsize ’,30,’FontName ’,’Times New Roman ’)

Image constructed in Figure 2.7

for i=1:500

for j=1:500

IM3(i,j)=2+ (1)* sin(2*pi*(i+j)/27) -(1)* cos(2*pi*(i-j)/27);

end

end

IM=imshow(IM3);

Image constructed in Figure 2.9

for i=1:500

for j=1:500

IM4(i,j)=1+(1)* sin (2*pi*(-i+j)/25.6);

end

end

IM=imshow(IM4);
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B.1

In the spherical coordinates, the gradient vector and the Laplace operator are given by

(Spurk and Aksel [106])

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

1

r sin (θ)

∂

∂φ
eφ, (B.1)

∇2 =
1

r2

∂

∂r

[
r2 ∂

∂r

]
+

1

r2 sin (θ)

∂

∂θ

[
sin (θ)

∂

∂θ

]
+

1

r2 sin2 (θ)

∂2

∂φ2
, (B.2)

where er, eθ and eφ are the unit vectors such that

er = sin (θ) cos (φ) i + sin (θ) sin (φ) j + cos (θ) k, (B.3)

eθ = cos (θ) cos (φ) i + cos (θ) sin (φ) j− sin (θ) k, (B.4)

eφ = − sin (φ) i + cos (φ) j, (B.5)

where i, j and k are the set of mutually orthogonal unit vectors in the cartesian coordi-

nates.
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B.2

The associated Legendre equation has the form (Arfken et. al. [4])

(
1− x2

)
Y ′′ (x)− 2xY ′ (x)− 1

(1− x2)
Y (x) + n (n+ 1)Y (x) = 0, (B.6)

where |x| < 1 and m ∈ Z. Associated Legendre equation has regular singular points at

x = −1, 1 and x =∞. Its solution takes the form

Y (x) =
∞∑
l=1

ςlP
m
l (x) , (B.7)

with

Pml (x) = (−1)m
(
1− x2

)m
2
dm

dxm
Pl (x) . (B.8)

Pml and Pl are the associated Legendre polynomial and Legendre polynomial, respec-

tively.

Rodrigues formula of Pml is

Pml (x) =
(−1)m

2ll!

(
1− x2

)m
2
dl+m

dxl+m
(
x2 − 1

)l
. (B.9)

The associated Legendre polynomials have the following recurrence relations:

(2l + 1)xPml = (l +m)Pml−1 + (l −m+ 1)Pml+1, (B.10)

Pm+1
l +

2mx

(1− x2)
1
2

Pml + (l +m) (l −m+ 1)Pm−1
l = 0, (B.11)

(
1− x2

) 1
2
dPml
dx

=
1

2
(l +m) (l −m+ 1)Pm−1

l − 1

2
Pm+1
l , (B.12)

(2l + 1)
(
1− x2

) 1
2 Pml = Pm+1

l−1 − P
m+1
l+1 , (B.13)
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Combining equations (B.11) to (B.13) together gives

(
1− x2

) dPml
dx

=
(l +m) (l −m+ 1)

2l + 1

[
Pml−1 − Pml+1

]
+mxPml . (B.14)

Pml are also orthogonal in the lower index

∫ 1

−1
Pml P

m
q = δql

1

q

(l +m)!

(l −m)!
, (B.15)

where 0 ≤ m ≤ l, q.

B.3

Gamma function is (Berg and McGregor [17])

Γ (κ) =

∫ ∞
0

exp (t) tκ−1dt, κ > 0. (B.16)

For integers

Γ (n) = n!. (B.17)

and

Γ

(
1

2

)
=
√
π. (B.18)

B.4

The vorticity components in equation (3.70) is defined as

Ω
(1)
1 =

∂U′3
∂y∗ −

∂U′2
∂z∗

Ω
(1)
2 =

∂U′1
∂z∗ −

∂U′3
∂x∗

, (B.19)
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Hence,
∂Ω

(1)
1

∂y∗ =
∂2U′3
∂y∗2 −

∂2U′2
∂y∗∂z∗

∂Ω
(1)
2

∂x∗ =
∂2U′1
∂x∗∂z∗ −

∂2U′3
∂x∗2

, (B.20)

The rate-of-strain in equation (3.70) is defined by:

e
(1)
13 = 1

2

[
∂U′1
∂z∗ +

∂U′3
∂x∗

]

e
(1)
23 = 1

2

[
∂U′2
∂z∗ +

∂U′3
∂y∗

]

e
(1)
33 =

∂U′3
∂z∗

, (B.21)

Hence,
∂e

(1)
13

∂x∗ = 1
2

[
∂2U′1
∂x∗∂z∗ +

∂2U′3
∂x∗2

]
∂e

(1)
23

∂y∗ = 1
2

[
∂2U′2
∂y∗∂z∗ +

∂2U′3
∂y∗2

]
e
(1)
33
∂z∗ =

∂2U′3
∂z∗2

, (B.22)

Using (3.75) to compute the space derivatives of the vorticity and the rate-of-strain

components as follows

∂Ω
(1)
1

∂y∗
=
∂2U ′3
∂y∗2

− ∂2U ′2
∂y∗∂z∗

= 0, (B.23)

∂Ω
(1)
2

∂x∗ =
∂2U ′1
∂x∗∂z∗ −

∂2U ′3
∂x∗2

= ∂
∂x∗ (U1 (im) exp (σt∗ + i (kx∗ +mz∗)))− ∂

∂x∗ (U3 (ik) exp (σt∗ + i (kx∗ +mz∗)))

= U1 (im) (ik) exp (σt∗ + i (kx∗ +mz∗))− U3 (ik)2 exp (σt∗ + i (kx∗ +mz∗))

,

(B.24)
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=⇒ ∂Ω
(1)
2

∂x∗
=
(
−U1mk + U3k

2
)

exp (σt∗ + i (kx∗ +mz∗)) , (B.25)
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∂x∗2

]

= 1
2

[
∂
∂x∗ (U1 (im) exp (σt∗ + i (kx∗ +mz∗)))− ∂

∂x∗ (U3 (ik) exp (σt∗ + i (kx∗ +mz∗)))
]

= 1
2

[
U1 (im) (ik) exp (σt∗ + i (kx∗ +mz∗))− U3 (ik)2 exp (σt∗ + i (kx∗ +mz∗))

]
,

(B.26)

=⇒ ∂e
(1)
13

∂x∗
= −1

2

(
U1mk + U3k

2
)

exp (σt∗ + i (kx∗ +mz∗)) , (B.27)

∂e
(1)
23

∂y∗
=

1

2

[
∂2U ′2
∂y∗∂z∗

− ∂2U ′3
∂y∗2

]
, (B.28)

=⇒ ∂e
(1)
23

∂y∗
= 0, (B.29)

∂e
(1)
33

∂z∗ =
∂2U ′3
∂z∗2

= ∂
∂z∗ (U3 (im) exp (σt∗ + i (kx∗ +mz∗)))

= U3 (im)2 exp (σt∗ + i (kx∗ +mz∗))

, (B.30)

=⇒ ∂e
(1)
33

∂z∗
= −U3m

2 exp (σt∗ + i (kx∗ +mz∗)) , (B.31)



Appendix B. 161

B.5

E5 = ReF1I ,

= Re (a1K11 + a2K21)m,

(B.32)

E6 =
(
k2 +m2

) [(
D
∗(0)
1H +D

∗(0)
2H

)
k2 +

(
D
∗(0)
1V +D

∗(0)
2V

)
m2
]
, (B.33)

E7 =

(
k2

k2 +m2

)[
(S1S11 + S2S12) k2 + (S1S21 + S2S22)m2

]
, (B.34)

E8 = Re
[(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
− a1a2K11K21m

2
]
, (B.35)

E9 =
(
k2 +m2

) [
a1K11m

(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
+ a2K21m

(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)]
,

(B.36)

E10 =

(
k2

k2 +m2

)[
a2K21S1m

(
S11k

2 + S21m
2
)

+ a1K11S2m
(
S12k

2 + S22m
2
)]
,

(B.37)

To solve equation (3.117) above the sign of the the coefficients need to be known. The

denominator of the coefficients G1, G2 and G3 is:

ReE4 − E1E7 = −Re
(

k2

k2+m2

){[ (
S1S11+S2S12

Re

)
+ S1S11D

∗(0)
1H + S2S12D

∗(0)
2H

]
k4

+

[ (
S1S21+S2S22

Re

)
+ S1S21D

∗(0)
1H + S2S22D

∗(0)
2H +

(
S1S11+S2S12

Re

)
+ S1S11D

∗(0)
1V

+ S2S12D
∗(0)
2V

]
m2k2 +

[ (
S1S21+S2S22

Re

)
+ S1S21D

∗(0)
1V + S2S22D

∗(0)
2V

]
m4

}
,

(B.38)
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Now, the numerator of G1 can be calculated as follow,

E4E5 − E2E7 − E1E10 = −Re
(

k2

k2+m2

){(
k2+m2

Re

)
(a1K11 + a2K21)m

[
(S1S11 + S2S12) k2

+ (S1S21 + S2S22)m2

]
+
(
a1K11S2S12mk

2
) (
D
∗(0)
2H k2 +D

∗(0)
2V m2

)

+
(
a1K11S2S22m

3
) (
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
+
(
a2K21S1S11mk

2
)

(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)
+
(
a2K21S1S21m

3
) (
D
∗(0)
1H k2 +D

∗(0)
1V m2

)

+
(
k2+m2

Re

)[
a2K21m

(
S1S11k

2 + S1S21m
2
)

+ a1K11m
(
S2S12k

2

+ S2S22m
2
)]

+
(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)[
a1K11m

(
S2S12k

2 + S2S22m
2
) ]

+
(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)[
a2K21m

(
S1S11k

2 + S1S21m
2
) ]}

,

(B.39)
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Next, the numerator of G2 can be calculated as follow,

E3E7 − E4E6 − E4E8 − E2E10 = −k2

{(
a1a2K11K21m

2
) [

(S1S11 + S2S12) k2

+ (S1S21 + S2S22)m2

]
+
(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)2

(
S1S11k

2 + S1S21m
2
)

+
(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)2

(
S2S12k

2 + S2S22m
2
)}
−Re

(
k2

k2+m2

){[
S1

(
S11k

2 + S21m
2
)

(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
+ S2

(
S12k

2 + S22m
2
)

(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)][(
D
∗(0)
1H k2 +D

∗(0)
1V m2

)

(
D
∗(0)
2H k2 +D

∗(0)
2V m2

)
− a1a2K11K21m

2

]

+

[(
k2+m2

Re

)
(a1K11 + a2K21)m+ a1K11m

(
D
∗(0)
2H k2 +D

∗(0)
2V

)

+ a2K21m
(
D
∗(0)
1H k2 +D

∗(0)
1V

)][
a2K21S1

(
S11k

2 + S21m
2
)
m

+ a1K11S2

(
S12k

2 + S22m
2
)
m

]}
,

(B.40)
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Finally, the numerator of G3 can be calculated as follows,

E3E10 − E4E9 = −k2

[
a1a

2
2K11K

2
21

(
S1S11m

3k2 + S1S21m
5
)

+ a2
1a2K11K21

(
S2S12m

3k2

+ S2S22m
5

)
+ a1K11S1S11

(
D
∗(0)2
2H mk2 + 2D

∗(0)
2H D

∗(0)
2V m3k4 +D

∗(0)2
2V m5k2

)

+ a1K11S1S21

(
D
∗(0)2
2H m3k4 + 2D

∗(0)
2V D

∗(0)
2H m5k2 +D

∗(0)2
2V m7

)

+ a2K21S2S12

(
D
∗(0)2
1H mk2 + 2D

∗(0)
1V D

∗(0)
1H m3k4 +D

∗(0)2
1V m5k2

)

+ a2K21S2S22

(
D
∗(0)2
1H m3k4 + 2D

∗(0)
1H D

∗(0)
1V m5k2 +D

∗(0)2
1V m7

)]
,

(B.41)

B.6

% This program has been designed to plot the key parameter vs k^2.

% ================================================================

function [Kc ,ReRic ,ReRI1 ,k,ReRI2 ,ReRI3 ]= KEY_PARAMETER_PLOT(m0)

%

for m=m0

[ReRI1 ,ReRI2 ,ReRI3 ,sigmaI1 ,sigmaI2 ,sigmaI3 ,k]= KEY_PARAMETER(m);

%

x=k.^2;

y=length(x);

[ReRic ,O]=min(ReRI1 );

Kc=x(O);

plot(x,ReRI1)

axis ([0 5 0 50])

hold on

end

%

xlabel(’k^2’,’fontsize ’,10)

ylabel(’Re\beta ’,’fontsize ’,10)

% This program is desgined to compute the real roots of the cubic equation

% in sigma_I.

% =========================================================================
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function [ReRI1 ,ReRI2 ,ReRI3 ,sigmaI1 ,sigmaI2 ,sigmaI3 ,k]= KEY_PARAMETER(m);

k=0.001:0.02:4;

%

% ===================

% The relative speed.

% ===================

% spd1 =0.0063; % cm s^(-1)

% spd2 =0.013; % cm s^(-1)

% spd=max(spd1 ,spd2);

a1=1; %spd1/spd; % non_dim

a2=1; %spd2/spd; % non_dim

%

% ============

% Ki1 and Ki2.

% ============

lambda1 =2.2;

lambda2 =1;

K11 =0.57;

K12 =0.31;

K41 = -0.10;

K42 = -0.037;

K21 =0.16;

K22 =0.28;

TUE =1.3;

%

% ==============

% The diffusion.

%===============

% B1 =3.4; % s

% B2 =3.4; % s

B= 3.4; %max(B1,B2);

eta1 =1;%B1/B;

eta2 =1;%B2/B;

D1Hn =((a1)^2* TUE*K11)/B*lambda1;

D2Hn =((a2)^2* TUE*K12)/B*lambda2;

D1Vn =((a1)^2* TUE*K21)/B;

D2Vn =((a2)^2* TUE*K22)/B; % non_dim

%

% ============================

% Set up the other parameters.

% ============================

alpha10 =0.2;

alpha20 =0.5;
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J11 =0.45;

J12 =0.14;

J41 = -0.23;

J42 = -0.064;

S11=J11+alpha10*J41;

S12=J12+alpha20*J42;

S21=J11 -alpha10*J41+3* alpha10*K41;

S22=J12 -alpha20*J42+3* alpha20*K42;

%

% ===========================

% The relative concentration.

% ===========================

% n1 =10^7; % cells cm^(-3)

% n2 =10^7; % cells cm^(-3)

% n=max(n1,n2);

gama1 =1; %n1/n; % non_dim

gama2 =1; %n2/n; % non_dim

% ====================

% The relative volume.

% ====================

% vol1 =5*10^( -10); % cm^3

% vol2 =3.5*10^( -10); % cm^3

% vol=max(vol1 ,vol2);

pitta1 =1; %vol1/vol; % non_dim

pitta2 =1; %vol2/vol; % non_dim

%

% ===================================

% The relative difference in density.

% ===================================

% rho=1; % g cm^(-3)

% cellrho1 =1.05; % g cm^(-3)

% cellrho2 =1.05; % g cm^(-3)

% delrho1=cellrho1 -rho;

% delrho2=cellrho2 -rho;

% delrho=max(delrho1 ,delrho2 );

delta1 =1; %delrho1/delrho; % non_dim

delta2 =1; %delrho2/delrho; % non_dim

%

% The relation.

S1=delta1*pitta1*a1*gama1*eta1;

S2=delta2*pitta2*a2*gama2*eta2;

%

Re=10^( -2);

% =====================
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% Solving the equation.

% =====================

for I=1: length(k)

E1(I)=Re*((Re^( -1)+ D1Hn+D2Hn)*k(I)^2+(Re^(-1)+ D1Vn+D2Vn)*m^2);

E2(I)=Re*(((k(I)^2+m^2)/Re)*(a1*K11+a2*K12)*m+a1*K11*(D2Hn*k(I)^2+ D2Vn*m^2)*m+...

a2*K12*(D1Hn*k(I)^2+ D1Vn*m^2)*m);

E3(I)=(k(I)^2+m^2)*(( D1Hn*k(I)^2+ D1Vn*m^2)*( D2Hn*k(I)^2+ D2Vn*m^2)-a1*a2*K11*K12*m^2);

E4(I)=(k(I)^2/(k(I)^2+m^2))*( S1*(S11*k(I)^2+ S21*m^2)*( D2Hn*k(I)^2+ D2Vn*m^2)+...

S2*(S12*k(I)^2+ S22*m^2)*( D1Hn*k(I)^2+ D1Vn*m^2));

E5(I)=Re*(a1*K11+a2*K12)*m;

E6(I)=(k(I)^2+m^2)*(( D1Hn+D2Hn)*k(I)^2+( D1Vn+D2Vn)*m^2);

E7(I)=(k(I)^2/(k(I)^2+m^2))*(( S1*S11+S2*S12)*k(I)^2+(S1*S21+S2*S22)*m^2);

E8(I)=Re*(( D1Hn*k(I)^2+ D1Vn*m^2)*( D2Hn*k(I)^2+ D2Vn*m^2)-a1*a2*K11*K12*m^2);

E9(I)=(k(I)^2+m^2)*(a1*K11*(D2Hn*k(I)^2+ D2Vn*m^2)*m+a2*K12*(D1Hn*k(I)^2+ D1Vn*m^2)*m);

E10(I)=(k(I)^2/(k(I)^2+m^2))*( a2*K12*S1*(S11*k(I)^2+ S21*m^2)*m+..

a1*K11*S2*(S12*k(I)^2+ S22*m^2)*m);

EE(I)=Re*E4(I)-E1(I)*E7(I);

EE1(I)=E4(I)*E5(I)-E2(I)*E7(I)-E1(I)*E10(I);

EE2(I)=E3(I)*E7(I)-E4(I)*E6(I)-E4(I)*E8(I)-E2(I)*E10(I);

EE3(I)=E3(I)*E10(I)-E4(I)*E9(I);

G1(I)=EE1(I)/EE(I);

G2(I)=EE2(I)/EE(I);

G3(I)=EE3(I)/EE(I);

d=1000;

digits(d)

syms X

solve(X^3+G1(I)*X^2+G2(I)*X+G3(I));

sigmaI1(I)= double(ans (1 ,1));

sigmaI2(I)= double(ans (2 ,1));

sigmaI3(I)= double(ans (3 ,1));

end

for J=1: length(k)

ReRI1(J)=(-E1(J)* sigmaI1(J)^2-E2(J)* sigmaI1(J)+E3(J))/E4(J);

ReRI2(J)=(-E1(J)* sigmaI2(J)^2-E2(J)* sigmaI2(J)+E3(J))/E4(J);

ReRI3(J)=(-E1(J)* sigmaI3(J)^2-E2(J)* sigmaI3(J)+E3(J))/E4(J);

end

% Plotting the neutral curves to investigate the linear instability of

% mixed species.

% =========================================================================

%

% ====================

% Loading the results.

% ====================
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load(’a1.mat ’)

load(’a02.mat ’)

load(’a04.mat ’)

load(’a06.mat ’)

load(’a08.mat ’)

load(’b02.mat ’)

load(’b04.mat ’)

load(’b06.mat ’)

load(’b08.mat ’)

load(’e03.mat ’)

load(’e04.mat ’)

load(’e05.mat ’)

load(’g02.mat ’)

load(’g04.mat ’)

load(’g06.mat ’)

load(’g08.mat ’)

load(’p04.mat ’)

load(’p06.mat ’)

load(’p08.mat ’)

%

% ====================

% Plotting the graphs.

% ====================

x=k.^2;

%

% ===================

% 1 - Relative speed.

% ===================

figure

plot(x,a1,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,a08 ,’--’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,a06 ,’-.’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,a04 ,’:’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,a02 ,’-*’,’LineWidth ’,4,’color ’,’k’);

axis ([0 4 0 3])

legend(’V_{2s}=V_{1s}’,’V_{2s}=0.8V_{1s}’,’V_{2s}=0.6V_{1s}’,...

’V_{2s}=0.4V_{1s}’,’V_{2s}=0.2V_{1s}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’k^{2}_{c}’,’FontSize ’,30)

ylabel(’Re\beta_{c}’,’FontSize ’,30)



Appendix B. 169

%

% ================================

% Critical values: Re\beta and Kc.

% ================================

AC=[a1c a08c a06c a04c a02c];

KAC1=[Ka1 Ka08 Ka06 Ka04 Ka02];

kac1=sqrt(KAC1);

figure

for i=1:5

x1=kac1(1,i);

y=AC(1,i);

plot(i,y,’.’,’color ’,’r’,’MarkerSize ’,20,’LineWidth ’,6)

hold on

plot(i,x1,’o’,’MarkerSize ’,5,’LineWidth ’,4)

hold on

axis ([0.5 5.5 0.2 2.4])

legend(’Re\beta_{c}’,’k_{c}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

[hx ,hy] = format_ticks(gca ,{’V_{2s}=V_{1s}’,’V_{2s}=0.8V_{1s}’,...

’V_{2s}=0.6V_{1s}’,’V_{2s}=0.4V_{1s}’,’V_{2s}=0.2V_{1s}’},[],[1,2,3,4,5]);

end

% ========================

% Small relative velocity.

% ========================

% figure

% plot(x,a01 ,’LineWidth ’,2,’color ’,’k’);

% hold on

% plot(x,a001 ,’--’,’LineWidth ’,2,’color ’,’k’);

% hold on

% plot(x,a0001 ,’-.’,’LineWidth ’,2,’color ’,’k’);

% axis ([0 4 0 0.5])

% legend(’V_{2s}=0.1V_{1s}’,’V_{2s}=0.0.01 V_{1s}’,’V_{2s}=0.001 V_{1s}’)

% xlabel(’k^{2}’,’FontSize ’,24)

% ylabel(’Re\beta ’,’FontSize ’,24)

%

% ================================

% 2 - Relative cell concentration.

% ================================

figure

plot(x,a1,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,g08 ,’--’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,g06 ,’-.’,’LineWidth ’,4,’color ’,’k’);
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hold on

plot(x,g04 ,’:’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,g02 ,’-*’,’LineWidth ’,4,’color ’,’k’);

axis ([0 4 1 3])

legend(’n_{2}=n_{1}’,’n_ {2}=0.8 n_{1}’,’n_ {2}=0.6 n_{1}’,...

’n_ {2}=0.4 n_{1}’,’n_ {2}=0.2 n_{1}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’k^{2}’,’FontSize ’,30)

ylabel(’Re\beta ’,’FontSize ’,30)

%

% ================================

% Critical values: Re\beta and Kc.

% ================================

GC=[a1c g08c g06c g04c g02c];

KGC1=[Ka1 Kg08 Kg06 Kg04 Kg02];

kgc1=sqrt(KGC1);

figure

for i=1:5

x1=kgc1(1,i);

y=GC(1,i);

plot(i,y,’.’,’color ’,’r’,’MarkerSize ’,20,’LineWidth ’,6)

hold on

plot(i,x1,’o’,’MarkerSize ’,5,’LineWidth ’,4)

hold on

axis ([0.5 5.5 0.2 2.4])

legend(’Re\beta_{c}’,’k_{c}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

[hx ,hy] = format_ticks(gca ,{’n_{2}=n_{1}’,’n_ {2}=0.8 n_{1}’,...

’n_ {2}=0.6 n_{1}’,’n_ {2}=0.4 n_{1}’,’n_ {2}=0.2 n_{1}’},[],[1,2,3,4,5]);

end

% =========================

% 3 - Relative cell volume.

% =========================

figure

plot(x,a1,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,p08 ,’--’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,p06 ,’-.’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,p04 ,’:’,’LineWidth ’,4,’color ’,’k’);

axis ([0 4 1 3])

legend(’v_{2}=v_{1}’,’v_ {2}=0.8 v_{1}’,’v_ {2}=0.6 v_{1}’,...
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’v_ {2}=0.4 v_{1}’,’v_ {2}=0.2 v_{1}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’k^{2}’,’FontSize ’,30)

ylabel(’Re\beta ’,’FontSize ’,30)

%

% ================================

% Critical values: Re\beta and Kc.

% ================================

PC=[a1c p08c p06c p04c];

KPC1=[Ka1 Kp08 Kp06 Kp04];

kpc1=sqrt(KPC1);

figure

for i=1:4

x1=kpc1(1,i);

y=PC(1,i);

plot(i,y,’.’,’color ’,’r’,’MarkerSize ’,20,’LineWidth ’,6)

hold on

plot(i,x1,’o’,’MarkerSize ’,5,’LineWidth ’,4)

hold on

axis ([0.5 4.5 0.2 2.4])

legend(’Re\beta_{c}’,’k_{c}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

[hx ,hy] = format_ticks(gca ,{’v_{2}=v_{1}’,’v_ {2}=0.8 v_{1}’,...

’v_ {2}=0.6 v_{1}’,’v_ {2}=0.4 v_{1}’,’v_ {2}=0.2 v_{1}’},[],[1,2,3,4]);

end

% ==============================================

% 4 - Relative gyrotactic orientation parameter.

% ==============================================

figure

plot(x,a1,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,b08 ,’--’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,b06 ,’-.’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,b04 ,’:’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,b02 ,’-*’,’LineWidth ’,4,’color ’,’k’);

axis ([0 4 1 3])

legend(’B_{2}=B_{1}’,’B_ {2}=0.8 B_{1}’,’B_ {2}=0.6 B_{1}’,...

’B_ {2}=0.4 B_{1}’,’B_ {2}=0.2 B_{1}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’k^{2}’,’FontSize ’,30)

ylabel(’Re\beta ’,’FontSize ’,30)
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%

% ================================

% Critical values: Re\beta and Kc.

% ================================

BC=[a1c b08c b06c b04c b02c];

KBC1=[Ka1 Kb08 Kb06 Kb04 Kb02];

kbc1=sqrt(KBC1);

figure

for i=1:5

x1=kbc1(1,i);

y=BC(1,i);

plot(i,y,’.’,’color ’,’r’,’MarkerSize ’,20,’LineWidth ’,6)

hold on

plot(i,x1,’o’,’MarkerSize ’,5,’LineWidth ’,4)

hold on

axis ([0.5 5.5 0.2 2.4])

legend(’Re\beta_{c}’,’k_{c}’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

[hx ,hy] = format_ticks(gca ,{’B_{2}=B_{1}’,’B_ {2}=0.8 B_{1}’,...

’B_ {2}=0.6 B_{1}’,’B_ {2}=0.4 B_{1}’,’B_ {2}=0.2 B_{1}’},[],[1,2,3,4,5]);

end

% =================

% 5 - Eccentricity.

% =================

figure

plot(x,a1,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,e03 ,’--’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,e04 ,’-.’,’LineWidth ’,4,’color ’,’k’);

hold on

plot(x,e05 ,’:’,’LineWidth ’,4,’color ’,’k’);

axis ([0 4 1 3])

legend(’\alpha_ {10}=\ alpha_ {20}=0.2’ ,’\ alpha_ {10}=0.2 ,\ alpha_ {20}=0.3 ’ ,...

’\alpha_ {10}=0.2 ,\ alpha_ {20}=0.4’ ,’\ alpha_ {10}=0.2 ,\ alpha_ {20}=0.5 ’)

set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’)

xlabel(’k^{2}’,’FontSize ’,30)

ylabel(’Re\beta ’,’FontSize ’,30)
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C.1

Fourier series for a function defined on an interval of length 2a (Boggess and Narcowich

[18]),

Theorem C.1. If f (x) = a0 +
∑∞

k=1

[
ak cos kπxa + bk sin kπx

a

]
on the interval −a ≤ x ≤

a, then

a0 =
1

2a

∫ a

−a
f (t) dt, (C.1)

an =
1

a

∫ a

−a
f (t) cos

kπt

a
dt, (C.2)

bn =
1

a

∫ a

−a
f (t) sin

kπt

a
dt. (C.3)

C.2

(Thomas and Finney [109])

∫
eax sin bx dx =

eax

a2 + b2
(a sin bx− b cos bx) + C. (C.4)

173
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∫
eax cos bx dx =

eax

a2 + b2
(a cos bx+ b sin bx) + C. (C.5)

C.3

Let I be (Dym and Shames [29])

I =

∫ b

a
F
(
x, y, y′

)
. (C.6)

Then, the variation of the function I is

δI =

∫ b

a

(
∂F

∂y
δy +

∂F

∂y′
δy′
)
dx. (C.7)

C.4

(Gitman et al. [39]) Let f be a linear differential operation given by

f = fn (x) dnx+ fn−1 (x) dn−1x+ · · ·+ f1 (x) d1x+ f0 (x) , (C.8)

where the functions fk (x), k = 0, 1, · · · , n, defined on (a, b), are called the coefficient

functions of f with fn (x) 6= 0. Also, assume that the function ψ is of class Cn. Let

φ, ψ, fψ ∈ L2 (a, b), then,

〈φ, fψ〉 =

∫ b

a
φ̄

(
n∑
k=0

fkψ
(k)

)
dx, (C.9)

where

ψ(k) = dkxψ. (C.10)

Integrating each term in relationship (C.9) by parts k times and letting the integrated

terms vanish at the boundaries, one obtains the following

〈φ, fψ〉 = 〈f̆φ, ψ〉, (C.11)
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where f̆ is called the adjoint differential operation.

C.5

(Gautschi [37]) In Euler backward method, the step is defined as

yn+1 − yn = hf (xn+1, yn+1) . (C.12)

C.6

function [WN ,TENERGY ]= Energy_amplification

% -------------------------------------------------------------------------

% Setting the parameters.

% The parameters used here are kappa -length scale , Sc -Schmidt number ,

% beta -Gyrotaxis number and Ra -Rayleigh number/kappa.

% These parameters are set by the M-files:

% kappa_number

% Schmidt_number

% beta_number

% Ra_number

% To avoid the intensive use of the global command. The parameters values

% are inserted in these files and will be called when they are needed.

global k rd rb Ld Nb N W F FP dNdz dNdz2 NJ WJ FJ FJP dNdzJ dNdzJ2 Tmax alpha0

global dNbdz delt

alpha0 =0.2; % Cell eccentricity.

WN =0.1:0.5:10;

kappa=kappa_number;

beta=beta_number;

Ra=Ra_number;

% -------------------------------------------------------------------------

% Setting the domain.

% Setting the initial values in z direction. In the M-file Domain.

[z,solinit ,t]= Domain;

tend=length(t);

zend=length(z);
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% -------------------------------------------------------------------------

% (I)- Solving the basic state.

Concentrationbasicstate_New(z,solinit ,t);

% -------------------------------------------------------------------------

% (II)- Solving the direct problem.

% -------------------------------------------------------------------------

% Assume the initial perturbation so that they satisfy the boundary

% conditions at each boundary. Also , they are normalized.To normalise the

% initial perturbation , we divide it by its norm

% ||f||=( int_{a}^{b} abs(f(z)*f^{+}(z))dz)^{1/2} , where + means complex

% conjugate.

% This step has been done to make sure that the first condition is satisfied

% in lagrange function. Equation (B2), page :16.

% TN, WN and FN are the norms of the initial perturbations T, W and F

% respectively.

% -------------------------------------------------------------------------

for i=1: length(WN)

i

K=WN(i);

k=K;

NY=(sin(pi*z)).^2;

NYS=NY.^2; % Square the function.

NYI=trapz(NYS); % Integrate the square using trapasoidal method.

NN=sqrt(NYI); % Taking the square root wich represents the the norm.

Nin =(1/NN)*NY; % The initial perturbation of the concentration is normalized.

Win=zeros(1,length(z));

Fin=zeros(1,length(z));

% *************************************************************************

% PS: The initial perturbation of the velocity is assigned to be zero , as

% the conversion between the direct and the adjoint field is not satisfied.

% *************************************************************************

% -------------------------------------------------------------------------

% Solving the homogeneous ODE of f1 and f2 at the beginning as they do

% not depend on the previous time step.

% See the M-files fhomogeneous1_New and fhomogeneous2_New.

f1=fhomogeneous1_New(z,solinit );
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f2=fhomogeneous2_New(z,solinit );

A21=f1(zend);

A22=f2(zend);

% -------------------------------------------------------------------------

% Solving the ODE equations of w1 and w2. These equations do not depend on

% the previous time step.

% See the M-files WH1_New and WH2_New.

[W1 ,DW1]= WH1_New(z,solinit );

[W2 ,DW2]= WH2_New(z,solinit );

A11=DW1 (1);

A12=DW2 (1);

A=[A11 A12; A21 A22];

Tmax =1;

for count =1:10

count

N=zeros(length(t),length(z));

W=zeros(length(t),length(z));

F=zeros(length(t),length(z));

N(1 ,:)=Nin;

W(1 ,:)=Win;

F(1 ,:)=Fin;

% -------------------------------------------------------------------------

% The particular solution of f.

FP(1,:)=F(1 ,:);

% -------------------------------------------------------------------------

% Solving the governing equations at every time step. The variable rd here

% is the time step , i.e, each row represents a time step.

% -------------------------------------------------------------------------

Ld=1;

for rd=2: length(t)

rb=rd;

% ---------------------------------------------------------------------

% Solving the concentration ODE.

% See the M-file NNode and NNbc.

% ---------------------------------------------------------------------

solN=bvp4c(@NNode ,@NNbc ,solinit );
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uN=deval(solN ,z);

N(rd ,:)=uN(1 ,:);

dNdz(rd ,:)=uN(2,:);

dNdz2(rd ,:)= kappa*dNdz(rd ,:)+((k^2)+(1/ delt ))*N(rd ,:) -...

(1/ delt)*N(rd -1 ,:)+W(rd -1 ,:).* dNbdz(rd -1,:)-...

beta*Nb(rd -1 ,:).*((1+ alpha0 )*F(rd -1 ,:)+2* alpha0 *(k^2)*W(rd -1 ,:));

Ld=Ld+1;

% ---------------------------------------------------------------------

% Solving the fp.

% See the M-files FPNode and FPNbc.

% ---------------------------------------------------------------------

solFP=bvp4c(@FPNode ,@FPNbc ,solinit );

uFP=deval(solFP ,z);

FP(rd ,:)= uFP(1,:);

C1=FP(rd,zend);

% ---------------------------------------------------------------------

% Solving the equation of wp.

% See M-files WPNode and WPNbc.

% ---------------------------------------------------------------------

solWP=bvp4c(@WPNode ,@WPNbc ,solinit );

uWP=deval(solWP ,z);

WPS=uWP (1 ,:);

WP(rd ,:)= WPS;

DWP(rd ,:)= uWP (2 ,:);

B1=-DWP(rd ,1);

B2=-C1;

B=[B1; B2];

% ---------------------------------------------------------------------

% Solving the linear system to find the vallues of lambda and mu that

% satisfy the boundary conditions.

% ---------------------------------------------------------------------

X = linsolve(A,B);

lambda=X(1);

mu=X(2);

W(rd ,:)=WP(rd ,:)+ lambda*W1+mu*W2;

F(rd ,:)=FP(rd ,:)+ lambda*f1+mu*f2;

end

if (Tmax <=2*10^( -3))

break

end

% -------------------------------------------------------------------------

% (II)- Adjoint problem.
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% -------------------------------------------------------------------------

% Temperature conversion to the adjoint problem Condition (B11), page :18.

% -------------------------------------------------------------------------

NJ=zeros(length(t),length(z));

WJ=zeros(length(t),length(z));

FJ=zeros(length(t),length(z));

NJ(1,:)=N(tend ,:);

dNdzJ (1,:)= dNdz(tend ,:);

dNdzJ2 (1,:)= dNdz2(tend ,:);

WJ(1 ,:)=0;

FJ(1 ,:)=0;

% -------------------------------------------------------------------------

% The particular solution of fj.

% -------------------------------------------------------------------------

FJP (1 ,:)=FJ(1,:);

Ld=1;

for rj=2: length(t)

% ---------------------------------------------------------------------

% Finding the particular solution of fjp.

% See M-files FJPNode and FJPNbc.

% ---------------------------------------------------------------------

solFJP=bvp4c(@FJPNode ,@FJPNbc ,solinit );

uFJP=deval(solFJP ,z);

FJP(rj ,:)= uFJP (1,:);

% ---------------------------------------------------------------------

% Finding the particular solution of wj.

% See M-files WJPNode and WJPNbc.

% ---------------------------------------------------------------------

solWJP=bvp4c(@WJPNode ,@WJPNbc ,solinit );

uWJP=deval(solWJP ,z);

WJP(rj ,:)= uWJP (1,:);

DWJP(rj ,:)= uWJP (2,:);

BJ1=-DWJP(rj ,1);

BJ2=-FJP(rj ,zend )+(1+ alpha0 )*beta*(k^2)*NJ(rj,zend)*Nb(rj ,zend);

BJ=[BJ1; BJ2];

% ---------------------------------------------------------------------

% Solving the linear system to find the vallues of lambdaj and muj that

% satisfy the boundary conditions.

% ---------------------------------------------------------------------

X = linsolve(A,BJ);

lambdaJ=X(1);
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muJ=X(2);

WJ(rj ,:)= WJP(rj ,:)+ lambdaJ*W1+muJ*W2;

FJ(rj ,:)= FJP(rj ,:)+ lambdaJ*f1+muJ*f2;

% ---------------------------------------------------------------------

% Solving the adjoint concentration equation.

% See M-files NJNode and NJNbc.

% ---------------------------------------------------------------------

solNJ=bvp4c(@NJNode ,@NJNbc ,solinit );

uNJ=deval(solNJ ,z);

NJ(rj ,:)= uNJ(1,:);

dNdzJ(rj ,:)= uNJ(2,:);

dNdzJ2(rj ,:)=- kappa*dNdzJ(rj ,:)+((k^2)+(1/ delt ))*NJ(rj ,:) -...

(1/ delt)*NJ(rj -1,:)+Ra*WJ(rj ,:);

Ld=Ld+1;

end

%

% -------------------------------------------------------------------------

% Testing the convergence by computing the relative error.

TYJ=NJ(tend ,:);

TYSJ=TYJ .^2;

TYIJ=trapz(TYSJ);

TNJ=sqrt(TYIJ);

CT=(1/ TNJ)*NJ(tend ,:);

Tdiff=abs(N(1,:)-CT);

Tmax=max(Tdiff);

Nin=CT;

Win=zeros(1,length(z));

Fin=zeros(1,length(z));

end

TY1=N(tend ,:);

TYS1=TY1 .^2;

TENERGY(i)=trapz(TYS1);

end

% M-file -setting the gyrotactic number.

function beta=beta_number

beta =0.5;

% M-file -setting the length scale.

function kappa=kappa_number

kappa =1;
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% M-file -setting the Ra number.

function Ra=Ra_number

Ra=500;

% M-file -Setting Schmidt number.

function Sc=Schmidt_number

Sc=20;

% M-file - The use of Schmidt number in the ODEs.

function con=Sc_times_delt

global delt

Sc=Schmidt_number;

if Sc==inf

con =0;

else

con =1/(Sc*delt);

end

% Setting the boundary conditions of the concentration basic state equation.

% The conditions of the concentration basic state equation are:

% kappa*Nb-d/dz(Nb)=0 at both boundaries z=-1,0.

% Since the substitution d/dz(Nb)^(n+1) = NBS(2),

% Nb^(n+1)= NBS(1) was used , the boundary condition are written

% as:

% kappa*NBS(1)-NBS (2) at z=-1,0.

% See the bvp4c M-file.

function NbcBS=BSNbc(NBSa ,NBSb)

kappa=kappa_number;

NbcBS=[ kappa*NBSa(1)-NBSa (2)

kappa*NBSb(1)-NBSb (2)];

% Setting the basic state ode that gives the values of Nb.

% The basic state equation is given by d/dt(Nb)=d^2/dz^2(Nb)-kappa*d/dz(Nb).

% The above PDE is discretized with respect to time , using Eular backward ,

% which results in the following ODE at each time step:

% d^2/dz^2(Nb)^(n+1) = kappa*d/dz(Nb)^(n+1) + (1/ delt)*Nb^(n+1) -

% (1/ delt)*Nb^(n).

% To solve it using bvp4c solver , the above ODE is rewritten as a system of

% ODEs as follow:

% d/dz(Nb)^(n+1) = NBS(2), Nb^(n+1)= NBS (1).

% d/dz(NBS (2))= kappa*NBS (2)+(1/ delt)*NBS (1) -(1/ delt)*Nbs(z).

% Where Nbs(z) is the interpolated concentration basic state at the previous



Appendix C. 182

% time step.

% See the M-file Nbs.

function dNdzbs=BSNode(z,NBS)

global delt

kappa=kappa_number;

dNdzbs =[NBS(2)

kappa*NBS (2)+(1/ delt)*NBS (1) -(1/ delt)*Nbs(z)];

% M-file to plot the 3D-graph of the concentration basic profile N_{b} for

% a value of kappa.

% The parameters here are for the bioconvection due to gyrotactic effect.

% See M-files BSNode and BSNbc.

% -------------------------------------------------------------------------

function Concentrationbasicstate_New(z,solinit ,t)

global rb Nb dNbdz dNbdz2 delt

% -------------------------------------------------------------------------

% Solve the basic state Nb. The rows are the time domain t, while the

% colunms are the space z.

Nb(1,:)= ones(1,length(z)); % As we start initially with a uniform suspension.

dNbdz (1,:)= zeros(1,length(z)); %(To be used in solving the governing equations)

dNbdz2 (1,:)= zeros(1,length(z)); %(To be used in solving the governing equations)

% -------------------------------------------------------------------------

% Solving the ODE for every time step.

kappa=kappa_number;

for rb=2: length(t)

sol0=bvp4c(@BSNode ,@BSNbc ,solinit );

BSN=deval(sol0 ,z);

Nb(rb ,:)= BSN(1,:);

dNbdz(rb ,:)= BSN(2,:);

dNbdz2(rb ,:)= kappa*dNbdz(rb ,:)+(1/ delt)*Nb(rb ,:) -(1/ delt)*Nb(rb -1,:);

end

% -------------------------------------------------------------------------

% 3D-plot of thet basic state profile.

% figure

% [T,Z]= meshgrid(z,t);

% surf(T,Z,Nb);

% set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’);

% xlabel(’Depth z^{*}’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

% ylabel(’Time t^{*}’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

% % zlim ([0.99 1.01])
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% zlabel(’N_{bs}’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

%

% figure

% [T,Z]= meshgrid(z,t);

% surf(T,Z,dNbdz );

% set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’);

% xlabel(’Depth z^{*}’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

% ylabel(’Time t^{*}’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

% % zlim ([0.99 1.01])

% zlabel(’N_{bs} 1st derivative ’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

%

% figure

% [T,Z]= meshgrid(z,t);

% surf(T,Z,dNbdz2 );

% set(gca ,’FontSize ’,30,’FontName ’,’Times New Roman ’);

% xlabel(’Depth z^{*}’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

% ylabel(’Time t^{*}’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

% % zlim ([0.99 1.01])

% zlabel(’N_{bs} 2st derivative ’,’fontsize ’,30,’FontName ’,’Times New Roman ’);

% Interpolating the function dNbdz2 in order to be used in setting the ODE

% of N.

% -------------------------------------------------------------------------

function value=dNbdz2I(zz)

z=Domain;

global dNbdz2 Ld

BS=dNbdz2(Ld ,:);

value=interp1(z,BS,zz);

% Interpolating the function dNbdz in order to be used in setting the ODE

% of N.

% -------------------------------------------------------------------------

function value=dNbdzI(zz)

z=Domain;

global dNbdz Ld

BS=dNbdz(Ld ,:);

value=interp1(z,BS,zz);

% Interpolating the function dNdzJ2 in order to be used in setting the ODE

% of N.

% -------------------------------------------------------------------------

function value=dNdzJ2I(zz)

z=Domain;

global dNdzJ2 Ld

BS=dNdzJ2(Ld ,:);
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value=interp1(z,BS,zz);

% Interpolating the function dNdzJ in order to be used in setting the ODE

% of N.

% -------------------------------------------------------------------------

function value=dNdzJI(zz)

z=Domain;

global dNdzJ Ld

BS=dNdzJ(Ld ,:);

value=interp1(z,BS,zz);

% M-file -setting the time and space domain.

% Also , setting the initial guesse in the z direction.

function [z,solinit ,t]= Domain

global delt

t0=0; t1 =0.05; npt =101;

z0=-1; z1=0; npz =101;

z=linspace(z0 ,z1,npz);

t=linspace(t0 ,t1,npt);

delt= (t1-t0)/(npt -1);

solinit=bvpinit(linspace(z0,z1 ,npz),[1 0]);

% Interpolating the function f1 in order to be used in setting the ODE

% of w1.

% See the M-file W1Node.

% -------------------------------------------------------------------------

function value=FH1I(zz)

[z,solinit ]= Domain;

f1=fhomogeneous1_New(z,solinit );

BS=f1(1,:);

value=interp1(z,BS,zz);

% Setting the boundary conditions for the function f1.

% The boundary conditions of f1 are:

% f1 = 1, at z=0,-1. So , when considering f1=FHV(1), the boundary

% conditions can be written as;

% FHVa (1)-1 = 0 at z = -1, the solid boundary.

% FHVb (1)-1 = 0 at z = 0, the free boundary.

% -------------------------------------------------------------------------
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function fh1c=Fh1Nbc(FHVa ,FHVb)

fh1c=[ FHVa (1)-1

FHVb (1) -1];

% Interpolating the function f2 in order to be used in setting the ODE

% of w2.

% See the M-file W2Node.

% -------------------------------------------------------------------------

function value=FH2I(zz)

[z,solinit ]= Domain;

f2=fhomogeneous2_New(z,solinit );

BS=f2(1,:);

value=interp1(z,BS,zz);

% Setting the boundary conditions for the function f2.

% The boundary conditions of f2 are:

% f2 = -1, at z=-1 and f2 = 1, at z=0. So, when considering f2=FHV(1),

% the boundary conditions can be written as;

% FHVa (1)+1 = 0 at z = -1, the solid boundary.

% FHVb (1)-1 = 0 at z = 0, the free boundary.

% -------------------------------------------------------------------------.

function fh2c=Fh2Nbc(FHVa ,FHVb)

fh2c=[ FHVa (1)+1

FHVb (1) -1];

% Setting the f homogeneous ode that gives the values of either f1 or f2.

% FHV stands for FH variable.

% The ODE is given by

% [d^2/dz^2 - k^2 -(1/Sc*delt)]f1/2 = 0.

% Take d/dz(f1 or f2)=FHV(2) and f1 or f2=FHV (1).

% The ODE can be witten as;

% d/dz[FHV (2)] = [k^2 + con] FHV(1),

% where con =1/(Sc*delt).

% -------------------------------------------------------------------------

function dFHdz=FhNode(z,FHV)

global k

con=Sc_times_delt;

dFHdz=[FHV(2)

((k^2)+ con)*FHV (1)];
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% M-file to find the 1st homogeneous solution f1 of the following ODE

% [d^2/dz^2 - k^2 -(1/Sc*delt)]f1 = 0, with the boundary conditions defined as

% f1 = 1, at z=0,-1.

% See the M-files Fhode and Fh1bc.

% -------------------------------------------------------------------------

function f1=fhomogeneous1_New(z,solinit)

solfh1=bvp4c(@FhNode ,@Fh1Nbc ,solinit );

uE=deval(solfh1 ,z);

f1(1,:)=uE(1,:);

% M-file to find the 2nd homogeneous solution f2 of the following ODE

% [d^2/dz^2 - k^2 -(1/Sc*delt)]f2 = 0, with the boundary conditions defined as

% f2 = -1, at z=-1 , the solid boundary.

% f2 = 1, at z=0 , the free boundary.

% See the M-files Fhode and Fh2bc.

% -------------------------------------------------------------------------

function f2=fhomogeneous2_New(z,solinit)

solfh2=bvp4c(@FhNode ,@Fh2Nbc ,solinit );

uE=deval(solfh2 ,z);

f2(1,:)=uE(1,:);

% Interpolating the function F in order to be used in setting the ODE

% of N.

% See the M-file NNode.

% -------------------------------------------------------------------------

function value=FI(zz)

z=Domain;

global F rd

L=rd -1;

BS=F(L,:);

value=interp1(z,BS,zz);

function value=FJI(zz)

z=Domain;

global FJ Ld

BS=FJ(Ld ,:);

value=interp1(z,BS,zz);

% Interpolating the function fjp in order to be used in setting the ODE

% of fjp.
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% See the M-file FJPode.

% -------------------------------------------------------------------------

function value=FJPI(zz)

z=Domain;

global FJP Ld

I=Ld+1;

BS=FJP(I,:);

value=interp1(z,BS,zz);

% Setting the boundary conditions of fjp.

% These conditions are:

% fjp = 0, at z=0,-1.

% Consider fjp = FJPV (1). Then , the boundary conditions are

% FJPVa (1) = 0 at z=-1.

% FJPVb (1) = 0 at z=0.

% -------------------------------------------------------------------------

function FJpc=FJPNbc(FJPVa ,FJPVb)

FJpc=[ FJPVa (1)

FJPVb (1)];

% Setting the fj particular ODE that gives the values of fjp.

% FJPV stands for FJ variable , FJI is fj interpolated and NJI is NJ

% interpolation.

% The particular fj equation is

% [d^2/dz^2 - k^2 - 1/Sc*delt] fjp^(n+1) = - (1/Sc*delt)*fjp^(n) +

% +NJI(z)*((k^4)*( alpha0 -1)* beta*NbsI(z)-(k^2)* dNbdzI(z))+...

% (k^2)*( alpha0 +1)* beta*( dNbdz2I(z)*NJI(z)+2* dNbdzI(z)* dNdzJI(z)+...

% NbsI(z)* dNdzJ2I(z)).

% Take d/dz(fjp) = FJPV(2), fjp = FJPV (1).

% The above equation can be written as:

% d/dz(FJPV (2))= ((k^2)+ con)*FJPV(1)-con*FJI(z)+NJI(z)*((k^4)*( alpha0 -1)* beta*NbsI(z)...

% -(k^2)* dNbdzI(z))+(k^2)*( alpha0 +1)* beta*( dNbdz2I(z)*NJI(z)+2* dNbdzI(z)* dNdzJI(z)+...

% NbsI(z)* dNdzJ2I(z)),

% where con =1/Sc*delt.

% -------------------------------------------------------------------------

function dFJpdz=FJPNode(z,FJPV)

global k alpha0

con=Sc_times_delt;

beta=beta_number;

dFJpdz =[FJPV (2)

((k^2)+ con)*FJPV(1)-con*FJI(z)+NJI(z)*((k^4)*( alpha0 -1)* beta*NbsI(z)-...

(k^2)* dNbdzI(z))+(k^2)*( alpha0 +1)* beta*( dNbdz2I(z)*NJI(z)+...
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2* dNbdzI(z)* dNdzJI(z)+NbsI(z)* dNdzJ2I(z))];

% Interpolating the function fP in order to be used in setting the ODE

% of wp.

% See the M-file WPNode.

% -------------------------------------------------------------------------

function value=FPI(zz)

z=Domain;

global FP rd

BS=FP(rd ,:);

value=interp1(z,BS,zz);

% Setting the boundary conditions of fp.

% These conditions are:

% fp = 0, at z=0,-1.

% Consider fp = FPV (1). Then , the boundary conditions are

% FPVa (1) = 0 at z=0.

% FPVb (1) = 0 at z=-1.

% -------------------------------------------------------------------------

function Fpc=FPNbc(FPVa ,FPVb)

Fpc=[ FPVa (1)

FPVb (1)];

% Setting the f particular ODE that gives the values of fp.

% FPV stands for F variable , FI is f interpolation and NI is N

% interpolation.

% The particular f equation is

% [d^2/dz^2 - k^2 - 1/Sc*delt] fp^(n+1) = - (1/Sc*delt)*f^(n) -

% Ra*k^2*N^(n+1).

% Take d/dz(fp) = FPV(2), fp = FPV (1).

% The above equation can be written as:

% d/dz(FPV (2))= (k^2 + con)*FPV(1)-con*FI(z)-Ra*(k^2)*NI(z),

% where con =1/Sc*delt.

% See the M-files NI and FI.

% -------------------------------------------------------------------------

function dFpdz=FPNode(z,FPV)

global k

con=Sc_times_delt;

Ra=Ra_number;

dFpdz=[FPV(2)

((k^2)+ con)*FPV(1)-con*FI(z)-Ra*(k^2)*NI(z)];
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% Interpolating the concentration basic state linearly Nb, at every time step

% using the interp1.m.

% This M-file is needed to set the concentration basic state ODE M_file.

% See the M_file BSNode.

function value=Nbs(zz)

z=Domain;

global rb Nb

L=rb -1;

BS=Nb(L,:);

value=interp1(z,BS,zz);

% Interpolating the concentration basic state linearly Nb, at every time step

% using the interp1.m.

% See the M_file NNode.

function value=NbsI(zz)

z=Domain;

global Ld Nb

BS=Nb(Ld ,:);

value=interp1(z,BS,zz);

% Interpolating the function N in order to be used in setting the ODE

% of N and Fp.

% See the M-file NNode.

% -------------------------------------------------------------------------

function value=NI(zz)

z=Domain;

global N Ld

BS=N(Ld ,:);

value=interp1(z,BS,zz);

% Interpolating the function NJ in order to be used in setting the ODE

% of fjp and NJ.

% -------------------------------------------------------------------------

function value=NJI(zz)

z=Domain;

global NJ Ld

BS=NJ(Ld ,:);

value=interp1(z,BS,zz);

% Setting the boundary conditions for the function NJ.
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function NJc=NJNbc(NJVa ,NJVb)

NJc=[NJVa (2)

NJVb (2)];

% Setting the concentration ode that gives the values of NJ.

% NJV stands for NJ variable , NJI stands for NJ intrpolated and WJI is WJ

% interpolated.

% The adjoint equation of the temperature profile is

% [d^2/dz^2 -kappa*d/dz - k^2 - 1/delt] nj^(n+1) = - (1/ delt)nj^(n) -

% Ra*wj^(n+1).

% Take d/dz(nj) = NJV(2), nj = NJV(1), the above equation is

% written as:

% d/dz(NJV (2)) = kappa*NJV (2)+((k^2)+(1/ delt ))* NJV (1) -(1/ delt)*NJI(z)+Ra*WJI(z).

% See M-files NJI and WJI.

% -------------------------------------------------------------------------

function dNJdz=NJNode(z,NJV)

global delt k

Ra=Ra_number;

kappa=kappa_number;

dNJdz=[NJV(2)

-kappa*NJV (2)+((k^2)+(1/ delt ))*NJV (1) -(1/ delt)*NJI(z)+Ra*WJI(z)];

% Setting the boundary conditions for the function N.

% The boundary conditions of N are:

% -d/dz (N) + kappa*N= 0, at z=0,-1..

% So, when considering N=NV(1) and d/dz(N)=NV(2) the boundary

% conditions can be written as;

% -NVb (2)+ kappa*NVb (1)= 0 at z = -1,0.

% -------------------------------------------------------------------------

function Nc=NNbc(NVa ,NVb)

kappa=kappa_number;

Nc=[ -NVa (2)+ kappa*NVa (1)

-NVb (2)+ kappa*NVb (1)];

% Setting the concentration ode that gives the values of N.

% NV stands for N variable , NI stands for N intrpolated , WI is W

% interpolated and dNbdzI the interpolation of the 1st derivative of the

% basic concentration prfile w.r.t z.

% The temperature ODE is given by:

% [ d^2/dz^2 - kappa*d/dz - k^2 - 1/delt](N^(n+1)) = - (1/ delt)(N^(n))

% + W^(n)*(d/dz)[NBS^(n)] + beta*NBS^(n)*[(1+ alpha_ {0})*F^(n) + 2* alpha_ {0}*k^2*W^(n)].

% Consider d/dz(N^(n+1))= NV(2) and N^(n+1)=NV(1), the above
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% equation is written as:

% d/dz[NV(2)] = kappa*NV(2)+ (k^2 + (1/ delt ))*NV(1) - (1/ delt)*NI(z)+WI(z)* dNbdzI(z)

% - beta*NbsI^(n)*[(1+ alpha_ {0})*FI^(n) + 2* alpha_ {0}*k^2*WI^(n)] .

% See the M-files NI , WI , FI, NbsI and dNbdzI.

% -------------------------------------------------------------------------

function dNdz=NNode(z,NV)

global delt k alpha0

kappa=kappa_number;

beta=beta_number;

dNdz=[NV(2)

kappa*NV (2)+((k^2)+(1/ delt ))*NV(1) -(1/ delt)*NI(z)+WI(z)* dNbdzI(z)-...

beta*NbsI(z)*((1+ alpha0 )*FI(z)+2* alpha0 *(k^2)*WI(z))];

% Setting the boundary conditions for the function w1.

% The boundary conditions of w1 are:

% w1 = 0, at z=0,-1. So , when considering w1=W1V(1), the boundary

% conditions can be written as;

% W1Va (1) = 0 at z = -1, the solid boundary.

% W1Vb (1) = 0 at z = 0, the free boundary.

% -------------------------------------------------------------------------

function WH1bc=W1Nbc(W1Va ,W1Vb)

WH1bc=[ W1Va (1)

W1Vb (1)];

% Setting the w1 ode that gives the values of w1.

% W1V stands for w1 variable and FH1I stands for interpolated f1.

% The ODE is given by

% [d^2/dz^2 - k^2]w1 = f1.

% Take d/dz(w1)=W1V(2) and w1=W1V (1).

% The ODE can be witten as;

% d/dz[W1V (2)] = (k^2)* W1V(1) + FH1I(z),

% See FH1I M-files.

% -------------------------------------------------------------------------

function dW1dz=W1Node(z,W1V)

global k

dW1dz=[W1V(2)

(k^2)* W1V (1)+ FH1I(z)];

% Setting the boundary conditions for the function w2.

% The boundary conditions of w2 are:

% w2 = 0, at z=0,-1. So , when considering w2=W2V(1), the boundary

% conditions can be written as;
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% W2Va (1) = 0 at z = -1, the solid boundary.

% W2Vb (1) = 0 at z = 0, the free boundary.

% -------------------------------------------------------------------------

function WH2bc=W2Nbc(W2Va ,W2Vb)

WH2bc=[ W2Va (1)

W2Vb (1)];

% Setting the w1 ode that gives the values of w2.

% W1V stands for w2 variable and FH2I stands for interpolated f2.

% The ODE is given by

% [d^2/dz^2 - k^2]w2 = f2.

% Take d/dz(w2)=W2V(2) and w2=W2V (1).

% The ODE can be witten as;

% d/dz[W2V (2)] = (k^2)* W2V(1) + FH2I(z),

% See FH2I M-files.

% -------------------------------------------------------------------------

function dW2dz=W2Node(z,W2V)

global k

dW2dz=[W2V(2)

(k^2)* W2V (1)+ FH2I(z)];

% M-file to find the solution w1 of the following ODE

% [d^2/dz^2 - k^2]w1 = f1, with the boundary conditions defined as

% w1 = 0, at z=0,-1.

% See the M-files W1Node and W1Nbc.

% -------------------------------------------------------------------------

function [W1 ,DW1]= WH1_New(z,solinit)

solW1=bvp4c(@W1Node ,@W1Nbc ,solinit );

uWH1=deval(solW1 ,z);

W1(1,:)= uWH1 (1,:);

DW1 (1 ,:)= uWH1 (2 ,:);

% M-file to find the solution w2 of the following ODE

% [d^2/dz^2 - k^2]w2 = f2, with the boundary conditions defined as

% w2 = 0, at z=0,-1.

% See the M-files W2Node and W2Nbc.

% -------------------------------------------------------------------------

function [W2 ,DW2]= WH2_New(z,solinit)

solW2=bvp4c(@W2Node ,@W2Nbc ,solinit );

uWH2=deval(solW2 ,z);

W2(1,:)= uWH2 (1,:);
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DW2 (1 ,:)= uWH2 (2 ,:);

% Interpolating the function W in order to be used in setting the ODE

% of N.

% See the M-file NNode.

% -------------------------------------------------------------------------

function value=WI(zz)

z=Domain;

global W Ld

BS=W(Ld ,:);

value=interp1(z,BS,zz);

% Interpolating the function WJ in order to be used in setting the ODE

% of NJ.

% See the M-file NJNode.

% -------------------------------------------------------------------------

function value=WJI(zz)

global WJ Ld

z=Domain;

F=Ld+1;

BS=WJ(F,:);

value=interp1(z,BS,zz);

% Setting the boundary conditions for the function wjp.

% The boundary conditions of wjp are:

% wjp = 0, at z=0,-1. So, when considering wjp=WJPV(1), the boundary

% conditions can be written as;

% WJPVa (1) = 0 at z = -1, the solid boundary.

% WJPVb (1) = 0 at z = 0, the free boundary.

% -------------------------------------------------------------------------

function WHJPbc=WJPNbc(WJPVa ,WJPVb)

WHJPbc =[ WJPVa (1)

WJPVb (1)];

% Setting the wj particular ODE that gives the values of wjp.

% WJPV stands for wj variable and FJPI is fjp interpolation.

% The particular wj equation is

% [d^2/dz^2 - k^2] wjp^(n+1) = fjp^(n+1).

% Take d/dz(wjp) = WJPV(2), wjp = WJPV (1).

% The above equation can be written as:

% d/dz(WJPV (2)) = (k^2)* WJPV (1)+ FJPI(z).

% See the M-file FJPI.
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% -------------------------------------------------------------------------

function dWJPdz=WJPNode(z,WJPV)

global k

dWJPdz =[WJPV (2)

(k^2)* WJPV (1)+ FJPI(z)];

% Setting the boundary conditions for the function wp.

% The boundary conditions of wp are:

% wp = 0, at z=0,-1. So , when considering wp=WPV(1), the boundary

% conditions can be written as;

% WPVa (1) = 0 at z = -1, the solid boundary.

% WPVb (1) = 0 at z = 0, the free boundary.

% -------------------------------------------------------------------------

function WHPbc=WPNbc(WPVa ,WPVb)

WHPbc=[ WPVa (1)

WPVb (1)];

% Setting the w particular ODE that gives the values of wp.

% WPV stands for w variable and FPI is fP interpolation.

% The particular w equation is

% [d^2/dz^2 - k^2] wp^(n+1) = fP^(n+1).

% Take d/dz(wp) = WPV(2), wp = WPV (1).

% The above equation can be written as:

% d/dz(WPV (2)) = (k^2)* WPV (1)+ FPI(z).

% See the M-file ETAPI.

% -------------------------------------------------------------------------

function dWPdz=WPNode(z,WPV)

global k

dWPdz=[WPV(2)

(k^2)* WPV (1)+ FPI(z)];

clear all; close all;

load(’beta002.mat ’)

load(’beta004.mat ’)

load(’beta006.mat ’)

load(’beta008.mat ’)

load(’beta01.mat ’)

load(’beta012.mat ’)

load(’beta014.mat ’)

load(’beta016.mat ’)
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load(’beta018.mat ’)

[M1 ,I1]=imax(beta002 );

[M2 ,I2]=imax(beta004 );

[M3 ,I3]=imax(beta006 );

[M4 ,I4]=imax(beta008 );

[M5 ,I5]=imax(beta01 );

[M6 ,I6]=imax(beta012 );

[M7 ,I7]=imax(beta014 );

[M8 ,I8]=imax(beta016 );

[M9 ,I9]=imax(beta018 );

k(1)=((I1 -1)/5)+0.1;

k(2)=((I2 -1)/5)+0.1;

k(3)=((I3 -1)/5)+0.1;

k(4)=((I4 -1)/5)+0.1;

k(5)=((I5 -1)/5)+0.1;

k(6)=((I6 -1)/5)+0.1;

k(7)=((I7 -1)/5)+0.1;

k(8)=((I8 -1)/5)+0.1;

k(9)=((I9 -1)/5)+0.1;

beta =[0.2; 0.4; 0.6; 0.8; 1; 1.2; 1.4; 1.6; 1.8];

figure

plot(WN ,log(beta002),’--’,’LineWidth ’,5,’color ’,’k’);

hold on

plot(WN ,log(beta004),’-.’,’LineWidth ’,5,’color ’,’k’);

hold on

plot(WN ,log(beta006),’:’,’LineWidth ’,5,’color ’,’k’);

hold on

plot(WN ,log(beta008),’LineWidth ’,5,’color ’,’k’);

set(gca ,’FontSize ’,34,’FontName ’,’Times New Roman ’)

xlabel(’Wavenumbers k’,’FontSize ’,34)

ylabel(’log(GE)’,’FontSize ’,34)

legend(’G=0.2’,’G=0.4’,’G=0.6’,’G=0.8’)

figure

plot(WN ,log(beta01),’--’,’LineWidth ’,5,’color ’,’k’);

hold on

plot(WN ,log(beta012),’-.’,’LineWidth ’,5,’color ’,’k’);

hold on

plot(WN ,log(beta014),’:’,’LineWidth ’,5,’color ’,’k’);
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hold on

plot(WN ,log(beta016),’--’,’LineWidth ’,5,’color ’,’k’);

hold on

plot(WN ,log(beta018),’LineWidth ’,5,’color ’,’k’);

set(gca ,’FontSize ’,34,’FontName ’,’Times New Roman ’)

xlabel(’Wavenumbers k’,’FontSize ’,34)

ylabel(’log(GE)’,’FontSize ’,34)

legend(’G=1’,’G=1.2’,’G=1.4’,’G=1.6’,’G=1.8’)

figure

scatter(beta ,k,’LineWidth ’,6);

set(gca ,’FontSize ’,34,’FontName ’,’Times New Roman ’)

xlabel(’The gyrotactic number G’,’FontSize ’,34)

ylabel(’Wavenumbers k’)
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[46] Häder, D.-P., Rosum, A., Schäfer, J., and Hemmersbach, R. Gravitaxis

in the flagellate Euglena gracilis is controlled by an active gravireceptor. J. Plant

Physiol. 146 (1995), 474–480.

[47] He, W., Miaob, Q., Azariana, M., and Pechta, M. Health monitoring

of cooling fan bearings based on wavelet filter. Mechanical Systems and Signal

Processing 64–65 (2015), 149–161.

[48] Hill, N. A., and Bees, M. A. Taylor dispersion of gyrotactic swimming micro-

organisms in a linear flow. Physics of Fluids 14, 8 (1998), 2598–2605.
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F., and Arendt, D. Mechanism of phototaxis in marine zooplankton. Nature

456 (2008), 395–399.

[60] Jeong, G.-T., and Park, D.-H. Optimization of lipid extraction from marine

green macro−algae as biofuel resources. Korean J. Chem. Eng. 32, 12, 2463–2467.

[61] Karimi, A., and Paul, M. R. Bioconvection in spatially extended domain.

Phys. Rev. E 87:053016 (2013).

[62] Kessler, J. O. Hydrodynamic focusing of motile algal cells. Nature 313 (1985),

218–220.

[63] Kessler, J. O. The external dynamics of swimming micro−organisms. Progress

in Phycological Res. 4 (1986), 257–307.

[64] Kessler, J. O. The external dynamics of swimming microorganisms. Progress

in Phycological Res. 4 (1986), 257–307.

[65] Kessler, J. O., and Hill, N. A. Complementary of physics, biology and

geometry in the dynamics of swimming micro−organisms. Springer−Verlag Berlin

Heidelberg 480 (1997), 325–340.

[66] Koch, D. L., and Subramanian, G. Collective hydrodynamics of swimming

microorganisms: Living fluids. Annu. Rev. Fluid Mech. 43 (2011), 637–659.

[67] Kundra, V., Escobedo, J. A., Kazlauskas, A., Kim, H. K., Rhee, S. G.,

Williams, L. T., and Zetter, B. R. Regulation of chemotaxis by the

platelet−derived growth factor receptor− β. Nature 367 (1994), 474–476.

[68] Kundu, P. K., and Dowling, I. M. C. D. R. Fluid Mechanics, 5 ed. Elsevier,

2012.



Bibliography 203

[69] Lauga, E. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48 (2016), 105–130.

[70] Lauga, E., and Powers, T. R. The hydrodynamics of swimming microorgan-

isms. Rep. Prog. Phys. 72 (2009), 1–36.

[71] Lavandowsky, M., Childress, W. S., Spiegel, E. A., and Hutner, S. H.

A mathematical model of pattern formation by swimming microorganisms. J.

Protozool. 22, 2, 296–306.

[72] Leal, L. G., and Hinch, E. J. The rheology of a suspension of nearly spherical

particles subject to Brownian rotations. J. Fluid Mech. 44, 4 (1972), 745–765.

[73] Lebert, M., Porst, M., Richter, P., and Häder, D.-P. Physical character-
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