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ABSTRACT

Many studies have employed automated procedures in well-log
interpretation to aid the identification of formation boundaries, and
perform cross-correlation between formations in different boreholes. These
investigations have demonstrated the use of only one well-log variable,
usually resistivity or Gamma Ray logs in the process. In conventional well-
log interpretation, different well-log variables or a group of variables are
used for different tasks. This project makes use of principal components and
spectral analysis as the basis for well-log interpretation, including automatic
formation boundary identification and cross-correlation using the first

principal component of well-log variables.

By transforming a set of well-log data using principal components
analysis a single new variable is extracted from the first principal
component scores which accounts for a significant amount of the variation
within the original data. A further improvement in the results is obtained

by passing the data through a moving filter to reduce noise.

Boundary identification is performed by generalized distance (D?)

method.

Cross-correlation between the filtered principal components of two
boreholes is then made by matching each formation of one borehole with a
part of another. Both the stretch factor which accounts for thickening or
thinning between sequences and the relative vertical di-placement of the

formation are calculated. This requires the calculation ol the power spectra,



derived form the fast Fourier transform of the principal component data,
with high pass filtering using the derivative filter to obtain the appropriate
resolution.

This new technique was applied on model and real well-log data from
five boreholes in the Attahaddy field, Libya. Although the Attahaddy field is
structurally complex, the method was found to be reliable at predicting both
the geological boundaries of the different formations, and the correlation of

formations between boreholes.

The distinctive value of this new approach is in its application of the
first principal component of the original well-log variables. Such application

has'many advantages over the previous studies.

PCAXCOR is a new computer program written in F77 to perform all
the necessary computation for boundary identification and well-to-well
correlation based on principal component analysis. Graphical output of the

results uses a number of new functions in the S language.



CHAPTER ONE

Introduction

An understanding of subsurface geology is gained from boreholes and
measurements of various parameters by well-logging tools.’ The
information obtained is used to identify boundaries and to establish
correlation of strata between different wells. Traditionally boundary
identification and well-to-well correlation are performed using only one log,
often a resistivity or gamma ray log and requires a thorough understanding
of these logs and their properties. In this way, a correlation of these logs is
conducted by identification of similar waveforms in the two logs and can be
performed either manually or automatically. For manual correlation, where
the success of correlation depends on the geologist's ability to recognize
similar patterns through visual comparison it is impractical to utilise all the
log data. However, using a computer and data reduction techniques like
Principal Component Analysis it is possible to make better use of the

available data.



1.1 Purpose and scope

This project describes a computer based technique for generating
cross-sections from well log data. Principal Component Analysis is used to
reduce the complexity of the multivariate well log data to a single new
variable combining all the characteristics of the digital data. This new
variable is then used to automatically identify important stratigraphic
boundaries within each borehole, before correlating pairs of well log data
using a combination of statistical cross-correlation which measures the
similarity between two signals as a function of time shift and Spectral

Analysis.

A computer program called PCAXCOR was developed to perform
these calculations and tested on various model data sets, before applying it

’

to some real data from the Attahaddy gas field in Libya.

1.2 Previous work

Geologists have repeatedly succumbed to the temptation to use cross-
correlation in subsurface geology, and there are many studies of automatic

segmentation and correlation of well-logs by computer.

Zonation is the process of dividing a sequence into relatively uniform

segments, each of which is distinctive from adjacent segments. Well logs

[Chapter One: Introduction |




may be subdivided into relatively uniform segments that represent zones of

constant lithology, corresponding to stratigraphic units.

There are basically two contrasting approaches to zonation. The
simplest procedure is local boundary hunting which searches for abrupt
changes in average values, or equivalently, for the steepest gradients in the
sequences (Davis, 1986). A " split-moving window" for defining boundaries
between soil zones along transect was developed by Webster (1973). A
sequence is examined by iteratively moving a short interval along the
sequence. The moving interval is called a window and is split into two
parts. A measure called the generalised distance D? is calculated for the
difference between the segment within the two halves of the window.
Webster noted that the performance of the procedure depends upon the
variability of the original sequence and the length of the moving window.
Webster (1980) has published a FORTRAN program that finds the zone

boundaries by this method.

The main objection to local boundary hunting procedures that they
are dependent on the size of the window used to identify the boundaries. A
long window will average across small zones and may miss short intervals,
however, a short window is more sensitive and will identify small zones

and may find an inordinate number of boundaries.
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Global zonation is a different approach, using procedures that break
the sequence into a specific number of segments which are as internally
homogeneous as possible and as distinct as possible from adjacent segments.
An iterative analysis of variance was first used by Gill (1970). First the
sequence is divided into two segments, a short initial segment, and the
remainder of the sequence. The partition between the two segments is
moved along the sequence to successive positions and at every position the
sum of squares within the segments and the sum of thé squares between the
segments are calculated. The maximum value of the ratio between the two
sums divided by the sum of the squares between the segments is considered
as the location of the first zonal boundary. Next, the two zones are
themselves partitioned by repeating the process to insert an additional
boundary which again minimizes the difference ratio. By repeating the
process, the entire sequence will be divided into the specific number of
zones. Hawkins and Merriam (1973, 1974) used Gill's iterative procedure,
but adopted a recursive method and took advantage of Bellman's principle
of optimality to ensure that the final set of zone boundaries is the best
possible of all set of partitions that might have been chosen. With the
nonrecusive procedure, it is always possible that the position selected as the
best boundary between two zones is no longer the best when another
boundary is inserted into one of the zones. Webster (1973) collected 27 soil
properties at 20m intervals. These multiple measurements were compressed
by Principal Component Analysis to identify boundaries between segments
such that the variance within segments on either side of boundary was
minimal. The computational cost of achieving this iterative optimality is

very high, and the method is not practical for very long log sequences.
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More recently Elek (1988) has used PCA on well-log data for boundary
identification and correlation, though the latter is not discussed in any
detail. Later Elek (1990) shows how an estimate of porosity can be made from

the first principal component of selected variables.

Correlation of subsurface data is the next step required to establish a
framework into which new data can be fitted and as an aid to understanding

the stratigraphy of the area of interest.

A time series is a set of values of a function sampled at equal
intervals. Well log data be considered as time series data and can therefore
be analysed using time series techniques though problems arise with the
variation in thickness and vertical offset of units between different
boreholes. Cross-correlation was first used by Weiner (1949) to determine
the displacement of two time series on each other in time domain. Jenkins
and Watts (1969) have discussed a method for analysing time series in both

the time and frequency domain.

Based on an existing computer program, Daskam (1964) described an
integrated computer process and emphasized the need for automation in
well log analysis. Matuszak (1972) used a normalised cross-correlation
function to measure the displacement of similar shaped segments in
dipmeter and resistivity curves. The purpose of correlating the curves was

to determine the displacement between them. In his investigation he did
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not address the problem of thickening and thinning and concluded that
more research was needed to refine existing methods or develop new
techniques. Haites (1963) described a graphical method based on the fact that
thickening (and thinning) of a stratigraphic sequence is common and this
creates a stretched (or compacted) log signal. His approach which he called
prospective correlation considered this effect by giving different degrees of
comparison of the depth scale until a correlation was found. No
mathematical or automatic processes were involved. Neidell (1969) was the
first one who considered this problem in the automated cross-correlation.
Neidell proceeded with the correlation after using an interpolated section to
compensate for the thinning of beds because cross-correlation can detect
only the shift between time series and can not detect the thinning or
thickening of the strata. Rudman and Lankeston (1973) attempted to solve
this problem by comparing the autocorrelation function and the cross-
correlation function of iteratively stretched intervals. An improved method
of normalized cross-correlation function and frequency domain ‘was used by
Rudman and Henderson (1975). Although both methods were successful,
iterative stretching and correlation require considerable computing time. If,
in addition, the geologist is unsure which log is to be stretched, the
procedure must be performed twice. Without relying on the iterative
operations, Kwon (1977) has successfully used a sophisticated algorithm for
correlation of well-log data. This procedure indicated the feasibility of
correlating well log data and our investigation owes much to his
development. He used cross-correlation of power spectra of the logs to
identify both the stretching factor and the relative displacement between
logs in one simplified operation. Computations were performed in the

frequency domain with the frequency intervals transfered to the logarithmic
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scale. Interpolation was required to obtain equally spaced power spectra.
Givlen the stretch, the displacement between two curves is computed rapidly
by cross-correlation method. Although the technique was successful,
however, it depends upon the input logs. Different logs from the same
borehole gave different displacements. A difference of 30 feet between the
program results and the stratigraphic displacement was considered to be

excellent, and a difference of 60 feet was considered to be fair.
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CHAPTER TWO

Geological Setting

2.1 Introduction

Libya is situated on the Mediterranean foreland of the African shield.
The Sirte basin is located in the central part of Libya and occupies an

onshore area of approximately 492,000 Km? (Fig. 2.1).

This area was largely peneplaned by a lengthy and intense erosional
phase during the Late Pre-Cambrian. During the Early Cambrian to Middle
Devonian, the Caledonian Orogeny created several northwest trending
str‘uctural elements. One such element was the Calanshio trough, which
was later to influence the formation of the Sirte basin (Cain, 1985), ( Fig. 2.2,
Fig. 2.3). Furthermore, the Sirte basin is a late Mesozoic-Tertiary cratonic rift
resulting from crustal extensions of the older basement and Paleozoic rocks.
The tectonic evolution of the Sirte basin controlled the sedimentation and
provenance of sedimentary material that built the stratigraphic section of

the area.
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2.2 Petroleum exploration history in the Sirte basin

Exploration has taken place in the Sirte basin for over thirty years.
From 1956 through to the end of 1977, 3,102 wells had been drilled in the
search for hydrocarbons, of which 984 are wildcat, 675 are outpost and 1,442
are development wells. There is estimated to be between 23 to 30 billion
barrels of oil and 634 billion cubic metres of gas. This is pooled in 121
reservoirs with 101 fields. Twenty of the major fields are "giant" with

reserves in excess of one billion barrels (El-talhi, 1990, Parson et al, 1980).

In 1988, the exploratory drilling in Libya was about 70,136 m and 71.7
rig-months. Most of the activity (93%) took place on the land with 83%

concentrated in the Sirte basin.

2.3 Area of study |

The Attahaddy field is located in the NW part of concession 6 on the
Zelten Platform of the Sirte basin in central Libya (Fig. 2.3). It covers

approximately 43,300 acres.

To date sixteen boreholes have been drilled (Appendix A). Two
boreholes were drilled by Esso Standard-Libya. FF1-6 was drilled in 1964, and
detected gas from a thin Bahi Formation section, and drilled 92 feet into the
Gargaf Formation (see Fig. 2.8 for stratigraphy), but this section was not

tested. The FF2-6 well was drilled 100 feet into the Gargaf Formation in 1967.
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It detected gas, but this test was not conclusive. Exploration
enthusiasm has increased following the establishment of the Sirte Oil
Company as a national entity in late 1981. A large scale program of modern
seismic activity was laid out, then in 1985 two deeper exploration holes FF3
and FF4 located on a structural closure, mapped on the Cambro-Ordovician
were drilled resulting in the discovery of gas. These wells were then
evaluated and after several outpost and exploration holes had been drilled, a
large amount of gas was estimated. The sole reservoir in the Attahaddy field
is in the (Cambro-Ordovician) Gargaf Formation, which is composed of

highly fractured, dense, massive quartzitic sandstone and quartzite.

2.4 Structure

Since Early Palaeozoic times Libya has been the site of deposition of
extensive sheets of continental clastic sediments and several .transgressions
and regressions by the sea with consequent accumulation of a wide variety
of marine sedimentary rocks. Five sedimentary basins were formed in Libya
by several tectonic cycles, these basins, (Ghadamis which is known as
Hamada, Murzuk, Kufra, Western Desert and Sirte basin) are separated by

intervening uplifts (Conant & Goudarzi, 1967), (fig 2.1).

During the Early Cambrian to Middle Devonian, the Caledonian
Orogeny formed several north west trending structural elements. Three
major axes of uplift are recognised. In the south-west the Tihembika uplift
occupies the border region between Libya and Algeria. Towards the north-

west, the Tripoli-Tebesti uplift and Haruj uplift define a small and narrow
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trough, the Dor-el-Gussa trough. Further to the north-east lies the Calanshio
uplift. This structural relief of the early Paleozoic Era is the result of regional
stretch in a NE-SW direction, Klitzsch (1971), (fig. 2.4). This epeirogenic
movement was accompanied by continental sedimentation during the
Cambro-Ordovician, a marine transgression marked the onset of the
Silurian and marine sediments were widely deposited through the Middle

Devonian.

The next phase was the Hercynian Orogeny, active from the Late
Devonian to the Early Triassic. These compressional stresses were resolved
as a series of northeast trending basins and uplifts, Klitzsch (1971), (fig 2.5).
These uplifts prevented any significant marine transgression by the Permian
and Early Mesozoic seas, across the Sahara platform. This became a period of
intense erosion and ultimately, only the Cambro-Ordovician clastics were
preserved over most of the Tebesti-Sirte uplifts. r

During the Triassic, only the northwestern and northeastern corners
of Libya (Nefusah uplift, Ghadamis Basin and northern Cyrenaica) were
covered by the sea. Terrigenous clastics, carbonates and evaporites were

deposited unconformably over the Paleozoic rocks.

During the Jurassic, marine areas did not change very much in the
north-west, whilst in northern Cyrenaica the sea extended farther to the
south. Shallow water carbonates and clastics were deposited to the south and

deeper marine sediments accumulated in the north.

{Chapter Two: Geological Setting |
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During the Early Cretaceous (Fig.2.6), an erosional phase was
accompanied by right lateral movement, which effects most of north Africa
producing a block faulting system. A regression took place in north western
Libya, where only continental sediments are recorded whilst northern

Cyrenaica was still covered by a shallow sea.

The beginning of the Late Cretaceous (Cenomanian) was characterised
by major tensional events, which created the Sirte Basin. Only the major

horsts in the Sirte Basin and the Cyrenaica platform remained emergent.

Throughout the Late Cretaceous, the sea continued to advance
southwards. By the end of Maastrichtian only a few scattered horst crests

remained above the sea as isolated islands (Duronio & Colombi, 1983).

The Tertiary deposits rest conformably on the upper Cretaceous, and
are composed entirely of marine sediments. Conditions appear to have
remained stable throughout the Tertiary, even with continued rejuvenation

of the horst/graben system in the Sirte Basin.

During the late Early Paleocene (Danian), or latest Maastrichtian, the
last of the extensive transgressions began, until in late Palaeocene time, the
sea stretched between the basins of north Africa and west Africa, Reyment

(1966).
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2.5 Stratigraphy

The sediment thickness in the Sirte basin is about 2.4 Km, with

sediments being mainly Cretaceous and Tertiary (Fig 2.7, Fig. 2.8)

Due to differences in local stratigraphic nomenclature used by
different Oil Companies, the nomenclature used here is based on the

current Sirte Oil Company's nomenclature.

The stratigraphy of the Attahaddy field (Fig. 2.7, Fig. 2.8) is as

F]

following :

2.5.1 Paleozoic

Reconstruction of the Pre-Sirte basin geological history indicates that
a moderately thick section of Cambrian to Middle Devonian clastics was
deposited, unconformably, on the African shield. However, this Paleozoic
section was considerably reduced by subsequent erosion, until only the
Cambro-Ordovician Gargaf Formation remained over Concession 6 (Klitsch,

1971).

Gargaf Formation (Cambro-Ordovician)

The Gargaf Formation is composed of very well indurated,

{Chapter Two: Geological Setting |




20

urseq 9315 ur snoavejar) raddn ayy jo UOLE[3II00 uonewIog £z *Suy

(Y
Ex 3t FU 2o a_ e
g vuo 3LINVYD LNVUD ..wm 5 w_. & mm 5| tpr0-0rqweay
o 3 -
39 nd WY | 3unvuo ?:mﬂw,ﬂwi. ANVUD [ wm x i (1039 ) §3 o o m:mOmeW<hmMo
8 K
m_m ¥4 Nviann z&%:z aHIUViY 3 ] = W4 Hyiann 5 w 1YO¥YD N-34d
el 1 2 0 e e e e s et 1t e B NAANA AN .)\u_\_,nwm(/ r?:))))\,\(/\r,\.\(l)w,\% 1\/\1\/\(()\/\\\(;W)\, )
m we
£ 1 k 5
2 Yo »
¥4 z
rivon 2
yid -
! rid r4 c
¥4 3313 14
133 3 1313 313 m 0
: by
{0
D — m
o} & b d =
» own
4 \m : ._.<E_mw<= ® oy m rd 1S e m ne |&] 82 (0| O
|+ % S g [tyriovey bvwiovy vyl Lvinovy Es vl ®
2 g 2 2 3 2 2lsE|{m|o
5 g S § |~ g gl || L I
3 /s |9 ) S S L% $ o m
13anova| & 3 y 5
o v [4341U0VL m <\ ) o o
Ks 3wis |9 S G Hs s Hs £
HS NS HS HS yg | 3tus ERAILS EFUITS » <
LS 3141 aLuis EFUN | La g o
| »MMmcUom uis z
|
$ 81 %1 -~ . 10a @
$7 $7 1vnvs S1 81 [3) g | =
HSYIYX HSY Hs e u3IorIn $1
WA IV ) . 6 YtV VIVIA P wewy NSYVIYA HSYWVR, | ummor |~| Hsvivx 3
SYIVX HSYIVR Hs T
$1 HSVIVA iva x 2
HISVO 31yIS Q314 v3uvy HISYQ 3ULIS vauy [eRkIF] [shEIF] [REIE} [¢REIF} {
Y] | yauy
i IviNY viony 3s HSYUVH \ZEL] YHYM nyYrve >uuwﬁw YUO. ' ;wEm Yuviva z_mdm.wksm 0w |lao|l @
v “vudon 5|89
Il H
213
uiseq 9MIS  @dejInsSqng =
3

Geological Settiny |

[Chapter Two




21

ERA |System| SERIES | STAGE | GROUP | Formation { MEMBER LITHOLOGY
MIOCENE]Burdigalian
i ilah
OLIGO- Chattian Gehenna Flur?]]w;ﬁon Anhy., Ls., ss. & shale.
G i
CENE | sannoision o E})ﬂnation shele- 1. grey, blocky, m hd.
- J‘] . .
MIDDLE Lutetian Tamet | Sheghega H',:H* 3 Limestone-white to 1. grey,
EQCENR Group Formation Prrrrry  nummulitic, chackly to soft.
& S
e o~ Usddsn | Domran ooz Limestone- micritic,l. grey
= a3 Z Grou Formation S _ _
M P L T T T T T
g 8 Trrrro tomediumgrey brown, tight.
Cl <23 s
)_l m O T I T
N p— Cuisian < ; -
Sparnacian a. O I
O| < < Limestone- A/A
o =
Z | - < Y
Z » o
m| m| m , .
O Landenian O O
© = O o~ g shale-dark grey to greenish-
[il'] < : grey, occasionally black
O | &<
O < m S calcareous and moderately
3 [a? Montian -
S e fissile to blocky
A o
= 23
Danian ]
e v Maas = Hamada | Zmem FM. Micritic L.S.
8 5 o trichtian = .
5 % % S Campanian GY‘OUF Socna FM.[ shale - grey to brownish grey
W urvalent :
= (<_§ - 4 Behi FIM. 3.3 & conglom. white
= ANAAAAAAAAAAAAAAAAAAAAAL
. o) N
8 o ff_\ o Ashgillian Gergef Gargsf 2 .
23|22 Group Formation -~ " Quartzites & Quartz S.S.
& ™ 6 % Acadian white, hard, dense,f. grained.

@ Unconformity o Us. [E23 sh. [0 ss. & Cong. ss. (MM anny. Qtzit.

‘ Fig. 2.8 Stratigraphic section in the Attahaddy field.

[Chapter Two: Geological Setting |




22

translucent, milky-white to very light grey, well sorted, fine grained, angular
to subangular quartzitic sandstone and quartzite. Quartz overgrowths are
common and have severely reduced the effective porosity of the Gargaf,
over much of the area. The Gargaf is considered to be a continental deposit,
and is interpreted as a series of fluvial sequences (Cain, 1985). The Gargaf
Formation has not been fully penetrated in the Attahaddy field. It is
therefore, difficult to comment on it's regional thickness. However, the

Gargaf is in excess of 2811 feet at well FF3-6, and 470 feet in FF6-6.

While the original porosity of the Gargaf was destroyed through
diagenetic processes, the Caledonian deformation caused the development
of high fracture porosity across the crest of these horsts. This phenomenon
is well developed in the Attahaddy field, and consequently, the Gargaf forms

an important reservoir in this field.

2.5.2 Mesozoic

The Upper Cretaceous sequence rests unconformably on the Paleozoic

and is composed of both continental and marine sediments.

Bahi Formation.

The Bahi Formation is composed of moderately well consolidated
sandstone and conglomerates. The sandstones are translucent to white, very

poorly sorted, with angular to subangular, very fine to coarse grains. The
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conglomerates are composed of Gargaf Formation derived pebbles and
cobbles. The Bahi Formation is barren of fossils and consequently its age is
uncertain (Barr and Weegar, 1972) The upper boundary of the Bahi
Formation is rather abrupt with the Socna Formation or other Upper
Cretaceous formations. The lower boundary is unconformable with the
Paleozoic rocks. In the type area, the Bahi Formation overlies quartzites of
Cambrian-Ordovician age. The Bahi Formation is considered as alluvial fan

deposits and is associated with the underlying structural highs of the Gargaf.

The Bahi Formation is distributed over some parts of the Attahaddy
field, and has an average thickness of 200 feet. In well FF12-6, it reaches a
maximum of over 325 feet, whilst to the south in well FF2-6 it is only 17 feet

thick.

Socna Formation (Upper Cretaceous)

The Socna Formation is a grey to brownish-grey, calcareous shale, and
is typical of a marine environment which took place in the Campanian-
Maastrichtian times. The Socna shale is considered to be the prime
hydrocarbons source in the Sirte basin. It achieves a regional thickness of
approximately 1800 feet in FF14-6, and a thickness of only 55 feet in FF2-6.

The average thickness of these shales varies from 500 to 1000 feet.
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Zmam Formation (Upper Cretaceous

The Zmam Formation is composed of micritic limestone, very light
grey to light brown, soft to medium hard, argillaceous in part, occasionally
fossiliferous. This is a deep water to basinal deposit of the Maastrichtian to
the Lower Palaeocene times. It is not normally a reservoir, but since it is
tight micritic, it makes a good seismic reflector which maps the top
Cretaceous deposits. The Zmam thickness varies from 680 feet in FF14-6 to
97 feet in FF3-6. In other parts of the field the thickness ranges from 300 to
400 feet.

»

2.5.3 Tertiary

The Tertiary section is predominantly shale and limestones.
Sedimentation through the section was controlled by slow tectonic
movement and gradual subsidence, thus the depositional environment was

deep marine that changed laterally to shallow marine in localized areas..

Heira Formation (Paleocene)

The Heira Formation is composed of a regional thick section of shale.
These shales are dark grey to greenish-grey, occasionally black, calcareous

and moderately fissile to blocky.

Heira shales are distributed over the study area and reach a thickness
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of 2700 feet in well FF14-6 and minimum thickness of 1690 feet in well FF8-
8. In general the average thickness of the Heira Formation all over the field

is 2000 feet.

Ruaga Formation (Paleocene-lower Eocene)

The Ruaga Formation is composed of limestone and cannot be easily
differentiated from the overlying Domran carbonates. The lower boundary
is conformable with the Heira shales. Both contacts are conspicuous on the
electric logs in the type section. In the southern central Sirte basin, the
Ruaga Formation is predominantly a limestone with very subordinate
amz)unts of shale and has been divided according to this distribution by Sirte
Oil Co. geologists into a number of members. These members are the Megil
shale, Zelten limestone and Cra carbonates. The Zelten member forms the
principal reservoir of the Zelten fields south of the Attahaddy Field,
however, the Zelten member in Attahaddy Field looses its typical identity as
shallow water limestone grades into open marine deposits. The Ruaga
Formation is the product of an open marine shelf environment, and this
interpretation is supported by the presence of the Zelten member developed,
at scattered locations, across some parts of Sirte basin (Cain, 1985). The Ruaga

Formation covers all the Attahaddy field and ranges in thickness between

160 to 200 feet.

Domran Formation (Lower Eocene)

The Domran Formation consists of limestones, micritic, light grey to
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medium grey-brown and tight and considered to be the product of an open
marine shelf to marginal shelf environment that existed during the
Tertiary. It reaches a thickness of 1280 feet in FF2-6, and 650 feet in FF7-6.

The average thickness of the Domran Formation is approximately 900 feet.

Sheghega Formation (Middle Eocene)

The Sheghega Formation is a thick carbonate unit, distributed across
the entire study area. It is composed of limestone, white to light grey,
nummulitic in parts to very nummulitic, chalky in part, soft to moderately
hard, with porosity varying from poor to good. The depositional
env)ironmént interpreted for the Sheghega Formation is an open marine

shelf to margin setting. These regional carbonates cover all the study area

and vary in thickness from 2150 feet to 1800 feet.

Etel Formation (Oligocene-U. Eocene)

The Etel Formation is composed of light grey to greenish-grey, blocky,
medium hard to hard, calcareous shale. These deep marine shales are

distributed across the entire study area.

Muailah Formation (Oligocene)

The Muailah Formation consists of thin interbeded carbonates, shale,
anhydrite and siltstone or very fine grained sandstones. The carbonates are

grey to brown with subordinate limestone, the shales contain pyrite in
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places and occasionally include very fine grained calcareous glauconitic
sandstone. The average thickness of Muailah Formation ranges from 400 -

500 feet.
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CHAPTER THREE

Theoretical Background

3.1 Introduction

* In this chapter the mathematical background to the treaﬁnent of well
log data is discussed. Each well-log is first subjected to a principal component
analysis to reduce the complexity of the originai data to a single new
variable or principal component that incorporates most of the variation
present in a number of individual well-log variables. The data are then
filtered or smoothed to further reduce the noise in the signal, before
processing to identify geological boundaries. Finally the processed log data
from pairs of wells are compared to establish the connection between
geological units, which includes making an allowance for variation in

thickness and depth of rock units in the different boreholes.

3.1.1 Basic Statistical Calculations

The following are some definitions of statistical terms used in

performing the Principal Component Analysis (PCA). Before calculating the
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principal component scores, the eigenvalues and the eigenvectors of the

symmetric correlation or variance-covariance matrix must be calculated.

The way to calculate all these entities is described below.

For a sequence of n values of x:

Mean : is defined as the sum of all the observations(x;) divided by the

number of observations(n). *

3.1

]

il
-

*
~

=

[N
[}
-

Sum of Squares : is the sum of the squared difference between the variable

and its mean.

SS= Y (x,—%)* (3.2)

i=1

Variance : is the average squared deviation of all observations from the

mean.
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s 2= 55 ; .(3.3)

Standard deviation : is the square root of the variance.

s =/s2 (3.4)

Covariance : calculating the covariance requires a quantity analogous to the

sum of squares called the corrected sum of products:

SP =Z(xi—ii)(xk—§k) : (3.5)

i=1

where X;; is the i-th measurement of variable j, x;; is the i-th measurement

of variable k, X; and X, are the mean of variable j and k respectively, and

SPy is the sum of products between variable j and k

then the covariance between variables j and k is

SP

e T (3.6)

cov
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Correlation :

The correlation between two variables x and y can be defined as the

covariance between two variables divided by their standard deviation :

LSOV Y G.7)
xy SxSy

Where COV is the covariance between the two variables and sy and Sy are

the standard deviation of x and y respectively.

2

The correlation function is used in order to estimate the degree of
interrelation between variables in a manner not influenced by
measurement units. Because the correlation function is the ratio of the
covariance of two variables to the product of their standard deviation, this
function is unitless. It ranges from +1 to -1. A correlation of +1 indicates a
perfect direct relationship between the variables,. whereas a correlation of -1
indicates that one variable changes inversely with relation to the other. Zero
correlation, however, indicates the lack of any sort of relationship at all

(Davis, 1986).
Eigenvalues and Eigenvectors :

This topic is regarded as the most difficult topic in matrix algebra. The
difficulty is not in their calculation, which is cumbersome but no more so

than many mathematical procedures. Rather, difficulties arise in developing
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a "feel" for the meaning of these quantities (Davis, 1986). The relationship
between a data matrix [A] and the vector of eigenvalues A and matrix of

eigenvectors [U] is the solution of the equation :

[A][U] =A[U] (3.8)

where [ A ] is the data set matrix,
[ U ]is the eigenvectors,

A is the eigenvalue.

In the simple case where [A] is a 2 x 2 matrix the eigenvectors yield
the orientation of the ellipse axes and the eigenvalues represent the
magnitude, or lengths, of the axes. The sum of the eigenvalues of the matrix
is always equal to the sum of the diagonal elements, or the trace, of the
original matrix. There will be as many eigenvectors as there are eigenvalues,
or as many as there are rows and columns in the matrix [A]. Table 3.1 shows
the variance-covariance matrix, eigenvectors and the percentage of each

eigenvalue to the total variance.

By solving the simultaneous equations, the eigenvalues and the
eigenvectors can be calculated. Although this technique is extendible to any
size matrix, finding the roots of a large polynomial can be an arduous task.
Usually, eigenvalues are not found by solution of polynomial and quadratic

equations as root-searching is usually a very poor computational method
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(Press, 1988), but rather by matrix manipulation methods that involve
refinement of a successive series of approximations to the eigenvalues
(Davis, 1986). These methods are practical because of the great

computational speed of digital computers.

The optimum strategy for finding eigenvalues and eigenvectors is,
first, to reduce the matrix to a simple form, only then beginning an iterative
procedure. For symmetric matrices, the preferred simple form is the

tridiagonal matrix (Press, 1986)(Table 3.2).

There are two ways to reduce a symmetric matrix to tridiagonal form.
The; Givens reduction is a modification of the Jacobi method. The Jacobi
method reduces the matrix to a diagonal form, whereas the Givens
reduction stops when the matrix is tridiagonal. This allows the procedure to
be carried out in a finite number of steps, unlike the Jacobi method which

requires iteration to achieve convergence (Press, 1986).

The Givens method is not generally used because the reduction
involves taking square roots when the computation is performed. The
Householder method is more efficient and more stable. It reduces an n x n
symmetric matrix to tridiagonal form by n-2 orthogonal transformation.
The Householder reduction method has been used in subroutines TQLI and
TRED2 for calculating the eigenvalues and the corresponding eigenvectors

of the variance-covariance or correlation matrix (see Appendix C).
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THE VARIANCE-COVARIANCE MATRIX IS

14.990
0.665
2.495
0.802
4.070
-7.147
1.840
EIGENVECTORS:
VARIABLE 1
SP -0.01065
GR 0.01716
ILs -0.06585
ILM -0.06543
ILb -0.09512
DT 0.9%044
CALI 0.03077
EIGENVALUES

729.72363 39.49113

0.665
39.397
-1.907
-1.831
-3.705
11.345

0.529

0.01880
0.99536
-0.03211
-0.03080
-0.07766
-0.02889
0.00726

-4

2.495
1.907
4.615
3.850
6.471
7.227

-1.594

-0
-0
-0
-0

=0

-0
-0

.92359
.01549
.16217
.06123
.32122
.05211
.10393

16.71196

0.802
-1.831
3.850
3.966
6.516
-46.962
-1.941

-0.30802
0.09047
0.22591
0.31628
0.79240
0.11716

-0.32289

6.32060

1

4.070
3.705

2.665

-67.801
-3.043

[elwNeoloNeNoNe]

.21578
.02294
.35051
.11950
.12822
.01302
.89396

0.81314

-7.147
11.345
-47.227
-46.962
-67.801
716.010
22.084

.00992
.00226
.87118
.05458
.39006
.03318
.29107

COCOO0OOO

0.71658

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE

91.91778

4.97440

2.10508

0.79615

0.10242

0.09026

1.840
0.529
~-1.594
~1.941
-3.043
22.084
2.243

-0.07060
0.00069
0.18841

-0.93474
0.29198

-0.02172

-0.00754

0.1102

0.01388

Table 3.1 showing the variance-covariance matrix, eigenvectors, eigenvalues
and the percentage of each eigenvalue to the total variance in Well FF13-6.
Seven variables are used, Spontaneous Potential(SP), Gamma Ray(GR), Shallow
resistivity (ILS), Medium resistivity(ILM), Deep resistivity(ILD), Sonic(DT)
and the caliper log(CALI).
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THE CORRELATION MATRIX IS

1.000 0.027 0.300 0.104 0.295 ~0.069 0.317
0.027 1.000 -0.141 -0.146 -0.166 0.068 0.056
0.300 -0.141 1.000 0.900 0.846 -0.822 -0.496
0.104 -0.146 0.900 1.000 0.919 -0.881 -0.651
0.295 -0.166 0.846 0.919 1.000 -0.712 ~0.571
-0.069 0.068 -0.822 -0.881 -0.712 1.000 0.551
0.317 0.056 -0.496 -0.651 -0.571 0.551 1.000

DIAGONAL ELEMENTS

0.047 0.111 0.935 0.353 1.388 3.165 1.000
OFFjPIAGONAL ELEMENTS

0.000 0.043 0.118 -0.166 -0.227 -1.011 1.184

TRI-DIAGONAL MATRIX IS

0.047 0.043 0.000 0.000 0.000 0.000 0.000
0.043 0.111 0.118 0.000 0.000 0.000 0.000
0.000 0.118 0.935 -0.166 0.000 0.000 0.000
0.000 0.000 -0.166 0.353 -0.227 0.000 0.000
0.000 0.000 0.000 -0.227 1.388 -1.011 0.000
0.000 0.000 0.000 0.000 -1.011 3.165 1.184
0.000 0.000 0.000 0.000 0.000 1.184 1.000

Table 3.2 Showing the diagonal, off-diagonal and the tri-diagonal elements

of correlation matrix of a data from WE1ll FF13-6
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3.2 Principal Component Analysis

Principal components are nothing more than the eigenvalues and the

eigenvectors of a variance-covariance or correlation matrix.

If 'm' variables are measured on a collection of objects, then the
variance-covariance [$2] or correlation matrix [R] will be a square matrix
with m rows and m columns. From either [52] or [R], m eigenvalues‘and m
eigenvectors can be extracted. Because the variances are located along the
diagonal of the variance-covariance matrix, the total variance is eqﬁivalent
to finding the trace of the matrix. The sum of the eigenvalues of the matrix

£l

is equal to the trace of the matrix.

Since these eigenvalues represent the lengths of the principal
semiaxes, the axes also represent the variance of the data set, and each
accounts for an amount of the total variance equal to the eigenvalue
divided by the trace. Usually the first two semiaxes contain most of the
variance, whereas the remaining axes represent only a small amount of the

variance.

By making a transformation of the form :
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where x1,x7 are the original data values for each variable and a1, a2, ...an

are the elements of the first eigenvector, a new data set is created which will
have a variance exactly equal to the first eigenvalue. A similar

transformation:

where f8's are the elements of the second eigenvector, will create a data set

with a variance equal to the second eigenvalue.

»

Using this transformation, the principal component scores are calculated, by
projecting the original data set onto their principal axes. This operation in

matrix form can be represented as:

[XTIUTS[P]  ecereecrscrecssensesesensessassosssasessnssssssssnses (3.11)

where [P] is the n x m matrix of principal component scores, [U] is a square
matrix of the eigenvectors and [X] is the n x m matrix of the original
observations. If all variables are expressed in the same or commensurate
units, the principal components will reflect the relative importance of the
different variables. Principal component analysis is sensitive to the

magnitude of the measurements.
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In well-logging, different units of measurements are expressed for
different variables. In this case if , for example, the transit time (DT) is
measured in hundred of microseconds per feet and spontaneous potential
(SP) is measured in units of tens of millivolts then transit time would have

exerted considerably more influence than spontaneous potential.

An obvious way around this difficulty is to standardize all variables
so they have a mean of 0.0 and variance of 1.0, then the elements of the
variance-covariance matrix will consist of correlation coefficients and the
principal components will be in dimensionless form. Subroutine
STANDARIZE (Appendix C) standardizes the original variables before
calculating the eigenvalues and the eigenvectors. Standardization tends to
inflate variables whose variance is small and reduce the influence of

variables whose variance is large.

The technique can be illustrated using data from well FF13-6 in the
Attahaddy field. Seven variables of electrical well logs are used and the
scores for the first principal component compared with one of the original
variables. In Figs 3.1, 3.2 and Table 3.1 the variance-covariance matrix is
used, measuring the magnitudes of the original variables. The first
component whose eigenvalue is 729.72(91.9%) has the most influence on
the variance, whereas the last component which has an eigenvalue of 0.11
(0.01%) has negligible influence. In Figs 3.3, 3.4, 3.5 and Table 3.3 the
correlation matrix is used. The first component accounts for 57% of the total

variance. It is clear from Fig 3.5 how the first principal component can
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Fig.3.1a Histogram of seven variables in FF13-6
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Fig. 3.1b Pie chart showing the percentage of each eigenvalue in Well FF13-6
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Fig. 3.2 Plot of the Principal Components in Well FF13-6.
(a) Component I, (b) Component II(c) Component III.
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THE CORRELATION MATRIX IS

1.000
0.027
0.300
0.104
0.295
-0.069
0.317
EIGENVECTORS :
VARIABLE 1
Sp -0.08154
GR 0.08654
ILs -0.46505
ILM -0.49005
iLD -0.46207
DT 0.44493
CALI 0.34348
EIGENVALUES:
4.01994

0.027
1.000
-0.141
-0.146
-0.166
0.068
0.056

-0.83434
~0.04033
-0.16861

0.02777
-0.13473
-0.04225
-0.50310

1.29402

42

0.300
-0.141
1.000
0.900
0.846
-0.822
-0.486

.02123
.98870
.00870
.02104
-0.02434
-0.10345
-0.10101

e NNl

0.98749

0.104 0.295
-0.146 -0.166
0.900 0.846
1.000 0.919
0.919 1.000
-0.881 -0.712
-0.651 -0.571
4 5

0.32521 0.40521
0.00334 -0.11289
-0.17254 -0.04157
-0.09365 -0.26055
0.32766 -0.56626
0.59817 -0.45683
-0.62492 -0.47339

0.37209 0.18903

0.069

-0.822
-0.881

0.

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE:

57.42784

18.48607

14.10700

!

5.31566 2.70053

0.551

.10562
.02421
.83962
.16626
.32262
.38414
.06320

11623

1.66048

0.317

-0.496
-0.651

1.000

0.12514
-0.00291
-0.13696

0.80891
-0.48544

0.27475
-0.00983

0.02116

0.3023

Table 3.3 showing the correlation matrix, eigenvectors, eigenvalues and
the percentage of each eigenvalue to the total variance in Well FF13-6.
Seven variables are used, Spontaneous Potential(SP), Gamma Ray(GR),
Shallow resistivity(ILS), Medium resistivity(ILM), Deep resistivity(ILD),
Sonic(DT) and the caliper log(CALI).
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Fig. 3.3b Pie chart showing the percentage of each eigenvalue in Well FF13-6
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Fig. 3.4 Plot of Principal Components in Well FF13-6.
(a) Component 1, (b) Component II,(c) Component III.
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original variable (GR) first principal component
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Fig. 3.5 Illustration showing the transformation of data by Principal component
Analysis (PCA). (a) original variables of Gamma Ray (GR). (b) is the first principal
component scores from data in Table 3.3. (c) is the lithology through well FF13-6 in the
Attahaddy field.
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represent the original data and reduce the noise signal in the data.

The choice between using the variance-covariance matrix or
correlation matrix is dependent on the nature of the problem. For well log
data, use of the correlation matrix is preferred as it allows each of the input
variables equal importance and influence on the resultant principal
components. With the objective of representing a complex sets of data with
a single new variable, the first principal component, it is clearly incorrect to
allow any one variable to have greater or lesser importance, as each of the
well-log variable measures different characteristics of the lithologies in the

borehole. It is the aggregate variation of all the variables that is required.

3.3 Smoothing

Field data of most well-logs are characterized by high amplitude low
frequency components that are a source of difficulty in the identification of
boundaries and in well to well correlation. One way to overcome this

problem is to filter the data.

Perhaps the most familiar types of filters used in geology are those
designed to reduce the variance in a time series. These are arbitrary filters
whose general action is to smooth a data sequence; the output from the filter
is a subdued approximation of the input. Most time series data consist of
two components, a long-term signal or true part, and superimposed random
noise. By its nature, such noise is a short-term component. As the signal

tends to be the same from point to point and the noise does not, an average
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of several adjacent points will tend to converge on the value of the signal

alone.

The simplest smoothing filter is a 'Moving average'. A moving
interval or a window is split into two parts, a portion from (i-h) on the
sequence to point i and equivalent portion from point i to point (i+h) on the
sequence. The window moves to successive positions, at which the average

of observations within the window is calculated.

i+h

Xy = Zh X!/ n . (3.12)

-

It is worthwhile noting that the shape of the resultant curve is
severely dependant on the size of the window. If the length of the window
is small (Fig. 3.6), the shape of the curve preserves the small edges which is
useful if one wants to keep the boundaries between small layers. If,
however, a big layers are of interest, big window size will truncate small

edges and keep the contact between big layers (Fig. 3.7 ).

3.4 Boundary identification techniques

The technique used in this study is that of 'local boundary hunting'
Webster (1973). An abrupt change in the average values in the sequence is

an identification of a change in the properties of the rock type. This simple
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approach is based on a window with two halves, a segment from point (i+h)
on the sequence to point i, and another segment from point i to point (i-h).
The generalized distance D2, which is the ratio formed by dividing the
squared differences between the average values of the two segments by the
pooled variance of the sequence in the segments, is calculated between the

two halves of the window.

= = 2
, (X;—X))

2 2
s5t 8%

2

where X,, 512 are the mean and the variance of the segment from x; to X;,},,

and X,, s2? are calculated from the segment x; to X;.p.

The results of this method depend on the length of the window; a
long window will miss small intervals whereas a short window creates an
irregular, uninterpretable number of boundaries. A sequence of 6500 feet
through borehole FF13-6 is examined to show the effect of the window size
on the boundary identification technique (Figs. 3.8, 3.9, 3.10). A plot of D2
with an inordinate number of boundaries is shown when the window size
is small (100 feet)(Fig. 3.8). In contrast, using a large window length (250
feet)(Fig. 3.9) misses some important boundaries. For example the Heira
Formation at depth 7742 feet has disappeared and the Domran Formation at
depth 6788 has moved up to a depth 6700 feet. In Figure 3.10 a window of 150
feet is used. This window length compromises between the long and short

lengths and the result is more satisfactory. The geological top of the

{Chapter Three: Theoretical Background |




51

‘9-€144 [[oMm ut | yuduodwod fedpund (q) *pasn st (3095 001)
Mmopum [[ewg (e) .ANDV anbruyosy uoneoynuapr L1epunoq (e) 3uimoys weidelp v g'¢ 314

|
00021~
1
000T1-

(@ (®)

£
3
=

=
M |
5 M
: —
: — R
e
- W —_—e— | W
————
- B .m B m
r T _ _ T T 1 , I T T _ T 1
z 0 4 v 9 8- 01 001 08 09 op (174 0

€14 ‘T ININOJNOD "TIH-NON 001=MOQNIM ‘AYVANNOEL NOILYINIOL

1334 NI HIdId

|Chapter Three: Theoritical Background




52

@

*9-C1dd [1OM Ul M.EocomEoQ tedound (q) ‘pasn st (3935 057)
azis mopuim 81q (e) .ANDV anbyuysay uoyeoynuapr Arepunoq (e) Summoys wesdeip v ¢ ‘314

(®

L4991 NI HLdIa

0
€144 ‘1

! [ [ I 1 I I T I T I 1 ]
T e 9 8 or- vl (A 0l 8 9 4 [4 0

ININOJWOD "TIA-NON 0ST=MOQNIM ‘AJVANNOT NOILYIWIOI

|
00021~
1

000Z1-

000T-

1394 NI H1d3d

[Chapter Three: Theoritical Background |




53

@

_ _ _ T T
0 - v % g-
€14 ‘T ININOJWOD "TId-NON

ol-

0008- 00001~ 00021~

0009-

000Z-

1994 NI H1d3d

"9-€ 14 [19Mm ul [ Juduodwod [edpunad (q) *pasn st (309
001) 921s MOpuIMm (&) .Ame anbruypay uoneoyuuapt L1epunog (e) Juimoys wesdeip v or-¢ “Sig

(®)

r
00z

| I
0s1 00t

| ]
0s 0

0ST=MOANIM ‘AAVANNOYT NOLLYIWIOA

00071-

0000t-

0009-

0002

19434 NI HLdad

[Chapter Three: Theoritical Background |




54

Sheghega Formation is at depth 4742 feet and the top of the formation using
this approach is at depth 4720 feet. Also, the geological top of Domran
Formation is at a depth of 6788 feet and program result is a depth of 6788
feet, and geological boundary of Heira Formation is 7742 feet and the

boundary identification boundary is 7742 feet.

Hunting for boundaries in long sequences using this method requires
a preliminary knowledge of the separation between geological boundaries.
From experience, a reasonable window size can be set equal to half the

average separation between the geological formations.

El

The alternative global zonation technique which is not applicable for
long series as described in chapter one is not used to identify the boundaries

in the Attahaddy Field which has long borehole sequences (about 8,000 feet).

3.5 Correlation of well-log sequences

Several techniques of time-series analysis are of importance when
considering the correlation of data from pairs of wells. These include

autocorrelation, cross-correlation and Fourier analysis.

- For well-log data the time component is replaced by depth or distance,

without any loss of the effectiveness of the methods.
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Autocorrelation: is a measure of the correlation of a time series with itself at

a later interval of time (depth).

PSS 21D T (14)

s%

Where r(v) is correlation at lag or offset v, yjis the time series data, and

Yi+v is the time series data with lag v.

The term cov(y;, yi4v) is known as the autocovariance.

Cross-correlation: The cross-correlation function of two time series x and y

can be defined as:

(v)= cov (x, y ) vse w..(3.15)

xy SxSy

T

The correlation will be large for some positive value of v if the first
series x is a close copy of the second series y but lags it in time or space by v,
i.e the first series is shifted to the right of the second. Likewise, the
correlation will be large for some negative value of v if the first series leads

the second, i.e, is shifted to the left of the second series. The relation that

holds when the two series are interchanged is: rxy(v)=rxy(-v) .

Two types of cross-correlation functions are considered. If the length
of the two series is the same (Fig. 3.11a). The length of the window to be

compared is maximum when the time origins of two signals line up with
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zero time shift, and then decreases with each time shift v. In this case the

cross-correlation function is computed as above by :

N-v
gl[x(n)—XO] [y(n+v)—

n=1  eeeessessesssess
Iy(v)= —

_ -2 v -
n§1[x(") = X ] n%][Y(n+ v~ Yv]

Where v=0,1,.....N-1, y, is the mean of the series y,, at time or shift v.

If the two series have different length (Fig. 3.11b) equation (3.16)is modified
to consider only a fixed window size equal to the length of the short series

(Rudman, Blakely and Henderson, 1975).

L1 o
ng X Yin+ v - LLX,yv
Iy(v)= — ...(3.17)
J(Z —le)(}:y2 -L1y,)?
= n=1 {n+v)
Where:
L1 L1
— 1 — 1
xozﬁ Z}x(n) and yv:ﬁ -IY(n+V)

and v=0,1,........ ,L2-L1 and , L1 is the length of the short series.

In this case, the correlation function is obtained by shifting the short
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series in one direction. Both processes are used in the cross-correlation of
power spectra to predict a stretch factor and cross-correlation of stretched

logs to measure a relative displacement between two signals.

3.6 Discrete Fourier Transform (DFT)

The Fourier transform is one of the most powerful tools in signal
processing and has long proved its effectiveness. Because this project
employs Fourier transforms and its operational properties, it is instructive

to review its basic theory.

Analysis process can be either described in the time domain by the
value of some quantity x as a function of time, e.g x(t), or else in the
frequency domain, where the process is specified by giving it's amplitude X
(generally complex) as a function of frequency w, that is X(w). The two
functions x(t) and X(w) are two different representation for the same
function. One goes back and forth between these two ~representation by

means of Fourier transform equations:

(3.18)

X(w) = J'm x (£) e-iwt g

..(3.19)

— __l__ = iwt
x(t) = 5 ] X(w) e dt
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Where X(w)is the discrete Fourier transform , x() is the time series, i is the
imaginary number /- 1, w is the frequency and t is time or depth. If x is a
function of position (in metres), X will be a function of inverse wavelength

(cycle per metre), (Press, 1986).

In the time domain, function x(t) may happen to have one or more
special symmetries. It might be real or imaginary or it might be even, x(t)=x(-
t), or odd, x(t)=-x(-t). In the frequency domain, these symmetries lead to
relationship between X(w) and X(-w). For example, if x(t) is real then X(-
w)=[X(w)]* and if x(t) is imaginary then X(-w)=-[X(w)]* and so forth (Press,
1989).

In general the function X(w)is a complex quantity and can be expressed in

terms of its real (Xg) and imaginary (X)) parts as:

X (W) = X (W) + IX[(W) coeerncinernescnsens (3.20)

or in terms of amplitude and phase as :

) 0T I ) 9 | [ LA —— (3.21)

Where |X(w)| is the amplitude of X(w) and is given by
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JXZR(W) + le(w) .- (3.22)

and 0 ,,, is the phase spectrum of the Fourier Transform and is given by :

0(w) = tan -1 [X(W)/ XR(W)] ...................... (3.23)

For automatic (computer) time series analysis and correlation,
discrete samples of a continuously recorded signal of finite length is
processed, therefore, it is necessary to adapt the analog type of Fourier

transform to a discrete sequence.

The Discrete Fourier Transform (DFT) of a sequence of N samples xtnT), 0

<n £N-1 is defined as :

N-1 :
X(kw)= 3 x(NT)e~ WIHK weerrrernersensussnes (3.24)
n=0
k=0,1,.....,N-1

Where T is the sampling interval in time or space domain and the

frequency increment w is given as 2/ NT
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The time series may be re-covered exactly from the inverse Discrete Fourier
Transform

N-1
x(nT) = § T X(kw) e Tk
k=0

..(3.25)
0<n<N-1

1/N is included as a scale factor.

In dealing with the Discrete Fourier Transform, there are a few operational
properties that are worthwhile mentioning :

() Linearity :

If two series x(nT) and y(nT) have periods NT, then the DFT of the sum of the

two series is equivalent to the sum of the transform of each series:

DFT[x (nT) + y(nT)] = DFT {x(nT)} + DFT {y(nT)}

= X(Wk) + Y(KW) coereee (3.26)

The transform of a constant times a function is that same constant
times the transform of the function :
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DFT {c[x(nT)]} = ¢ X (kw) (3.27)

where ¢ is a constant

(ii) Shift of time series :

If a periodic series x(nT) has Fourier coefficient X(kw), then the DFT of
the shifted displaced x(n+m)T) is expressed as a multiplication of X(kw) and an
exponential term which contributes to the phase change

r

N-1 .
DFT{X(R+ m)T}: Z x(nT) e—le(n+m)k

n=0

N-1
= Y [x(nT) e- iwTnk] g- iwTmk
n=20

= X (kW) e~ WIMK .crueucecermcaccsnsnsens (3.28)

(iii) Lengthening of a series

Suppose we have samples x(nT), 0 £ n < N-1, and we create a longer

series ynT), 0 < n £1N-1, where r is any integer number and where

y(ﬂT)= {x(:nT), 0 <n< N-1 (3.29)

otherwise  ®etteereeressssasccecee
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The increased length of y(nT) modifies the frequency increment w to w/r and

the form of equation 3.24 modifies as follows:

rIN-1

Y(K[w/r])= 3 y(nT) e WInk/ ... (3.30)
n=20
Thus, if k is divisible by r,
Y(k[w/ r])=X([k/ r]w) .(3.31)

(iv) Cross-correlation in the frequency domain

The cross-correlation of two time series in the time domain involves
iterative multiplications and summations, however it can be performed by
simple multiplication of their Fourier transforms. For a long series, this

process is more economic in use of computer time for correlation.

N-1
DFT[ 2 x(nT) y(n+ v)T]: X*(kw)Y(kw)---(3-37-)

n=20

where the asterisk denotes complex conjugate.
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This shows that multiplying the Fourier transform of one function by
complex conjugate of the Fourier transform of the other gives the Fourier

transform of their correlation (correlation theorem).

(v) Power Spectra

The stretch factor between two signals can be predicted by correlation
of the power spectra of the time series rather than correlating the signals
themselves. The power spectra of a given series is defined as the square of its

amplitude spectrum

r

P (kw) = [X(kw)|" = X"(kw) X(KW) wrevere (3.33)

From equation (3.32), this relationship is obtained by the correlation of a
series with itself. Thus the power spectrum of series x(T) is also defined as
the Fourier transform of its autocorrelation function. The unique feature of
the power spectrum is the loss of phase information; that is , the
displacement or offset between two similar sequences has been eliminated

as a pertinent factor (Kwon, 1978).

3.7 Derivative filtering of data (high-pass filter)

The stretch factor between two series as discussed above can be

predicted by a cross-correlation of power spectra obtained through the
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discrete Fourier transform. However, samples of finite length of well-logs
do not adequately represent the long period lithologic variation.
Consequently, principal component scores which reflect these changes show
poor resolution for the low frequency components. By taking the
derivatives of the data, these components are smoothed and filtered to
attenuate low frequency components and enhance higher frequency

components (Fig. 3.12).

The effect of the derivative filter on the frequency spectrum can be

observed by differentiating the inverse Fourier transform formula

»

O R DL T ———— (3.34)
.

differentiating x(t) gives

x'(t) = 5 [iwX (w)e ™ dw (3.35)
2x Y, )
FT[x'(t)] = iWFT [X(£)] ceerrerrerscrersescnsenensesnscseneas (3.36)

Taking the time derivative corresponds to high-pass filtering in the

frequency domain
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3.8 Fast Fourier Transform (FFT)

For a time series that is continuous and sampled at discrete, equally
spaced points, the continuous variance (or Power) spectrum may be
calculated by either of two methods, the older procedure, calculating the
continuous spectrum involves finding the Fourier transform of the
autocorrelation of a time series. Developed by Bartlett (1948), this approach
achieves the same result as the fast Fourier transform method and is still
widely used. However, this method is not‘applicable when the series is
extremely long. A somewhat newer and more widely used approach
involves calculating many values of the line spectrum by the fast Fourier
transform (FFT). The fast Fourier transform (FFT) is a computer algorithm
(FO{JRT subroutine, appendix C) first introduced by Colley and Turkey
(1965) to calculate the discrete Fourier transform faster, as its name implies,
than any other available algorithm. The Fourier series in the FFT is the
same as in the DFT, and it requires the Fourier relationship to be expressed

in complex form

N -1
X(k)= Y x(n)e-2mkn/N (3.37)

n=0

where i is the imaginary number V=1 And the original time series is
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Both T (time increment) and w (frequency increment) are omitted because
they serve as scale factors which become important only when plotting the

results.

The only differences between (3.37) and (3.38) are (i) changing the sign
in the exponential, and (ii) dividing (3.38) by N. This means that a routine
for calculating Fourier transform can also, with slight modification,

calculate the inverse transform.

3.9 Prediction of stretching and displacement with Power Spectra

Consider a time series x(n) of N samples as the short signal and a long
series y(m) of L samples (Fig. 3.13). A part of the long series is called b and is
equivalent to the short series x(n) with stretch factor (5=M/N) and

displacement D. The long series y(n) can be represented in the sum of two

series q(n), which represent the lengthened series bt and noise series ht).
The series x(n) with length L is used instead of x(n) for computational
reasons. The relationship between the two DFT's Qk) and B is
complicated by the additional zeros in b). These effectively change the

phase and modify the frequency scaling. However, phase change problem

can be avoided by computing the Power Spectra Pk and PQ(k from DFT's

Q) and Bk respectively

I B (3.39)
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Fig. 3.13Model data used for cross-correlation of a short series x(n) with a
long series y(n). The longer series y(n) is composed of two signals, signal
b(n) and noise h(n). Signal q(n) is equivalent to the short series x(n) with
a stretch factor S(=M/N) and displacement D. Lengthened series X(n) js

required for correlation process (modified after Kwon, 1977).
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Where S' is a scaling factor = L/M, L is the length of the long series and M is

the length of the stretched series.

A similar relationship is derived between px and PX

P (k) = P (K[ S") wovsrmresssesssssssssssssnssssssns (3.40)

Where S" is a scaling factor=L/N and N is the length of the short series.

»

From the factor S', the length of b(m) can be calculated and consequently the

stretch factor S between two series.

3.10 Logarithmic Scaling of frequencies

The unknown factor D (Displacement in time domain) is ignored
when computing the power spectra. Another problem is the scaling in the
frequency domain. The multiplication factor S' and S" in equation (3.39)
and (3.40) will be converted to additive factors if the power spectra are

transformed to a logarithmic scale

P (log k) = P(log k—1og S') weesrereeeren (3.41)
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P, (log k) = Py (log k—log S") ceruueeseeee: (3.42)

Logarithmic scaling of frequencies modifies the Power Spectra by a
frequency delay of log S'or log S" (Kwon, 1977). By cross-correlation

between Px(log k) and Pglog k) the factor S' and S" can be obtained to detect

such lag (delay) values.

Unfortunately, the values of power spectra a‘fter transforming to
logarithmic scale are not at evenly spaced intervals. Before cross-correlation
takes place these should be at equal intervals for computer correlation.
Kwon (1977) used Lagrange's interpolation method and in this investigation

the same method is applied for interpolation to obtain evenly spaced spectra

P '(i) and Py'(i).

The power spectra of the long series ym) is composed of signal q(m and

noise h(n). The Fourier transform of this series is

Y (K) = QK) + H(K) ceoreeerserrsansersssessesssssssassesssasens (3.43)

and the power spectra

P (k)= P00+ P, (K (3.44)
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Assuming zero lag when series are aligned and no noise in the signal,
the cross-correlation function between the two interpolated spectra is

written in two separate equations as follows :

N-1
rp', p',(-v)= ZP'x (i + V)P'y (D) reesrns (3.45)

i=1

: N-1
rp'y P (+ V)= D p'y (DP', (i+ V) errrnn (3.46)
i=1

where v is a positive integer and i is a dummy variable for the interpolated
spectrum. Correlation coefficient rp'y p'y with negative values of v are

obtained when Py '(i) is shifted to the left against a stationary series P'y/(i)

and long the series is assumed to be stretched (M>N). The maximum

coefficient can be found if :

v =2110gS " - 1 logS '= 1 log (£3) = | log (57) -...(3.47)

On the other hand, correlation coefficient rp'y p', with positive

values of v are obtained when P'(i) is shifted to the right against a

stationary signal P'y/(i) and the short series is assumed to stretched (N>M).

The maximum coefficient can be found if :
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Using equation 3.39 and 3.40 to transform equation 3.45 to logarithms:
N-v
rp'yp'y(-v)= 2 p'y (i-7logS ")p'y i- tlogs ")
i=1

E] N-v
i

= Z‘_.]p'x (i— ]TIOgS "y V)p'x (i- %logs ") ...(3.49)

where I is the interpolation interval.

Once the shift v is known for the maximum correlation coefficient, the

stretch factor S, either M/N or N/M can be deduced from

G = 107" serenemermerrsressesssssssrasesas (3.50)
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3.11 Interpolation (stretching) by inverse FFT

By modifying the DFT of the signal which is obtained using the FFT
algorithm, a simple and accurate stretching of time series can be achieved in
the frequency domain (Rudman, Blakely and Henderson, 1975). A band
limited series with N samples (no frequency component above the Nyquist
frequency) can be stretched to M points, M > N by inserting (M-N) zeros in
the middle of the DFT values . Because no new frequencies were added
above the Nyquist, the inverse transform gives the time series of length M.
For example, consider a time series of 8 points (Fig. 3.14). The heavy line
indicates the input signal and dashed line is a remainder that the DFT is
computed assuming that the signal is cyclically repeated in both directions.
The DFT for this signal is also given by 8 frequency components and shows
even symmetry about the Nyquist frequency. If we added 8 zeros in the
middle, the total number of frequency components increase to 16 points.
Twice as many samples of the original signal will be recovered when the
signal is transformed back to the time domain. This procedure interpolates 8
new data points into the original time signal which stretches the original

series by a factor of 2.

3.12 Determination of Displacement

Given the stretch S between two series, the series can be stretched or
resampled using the interpolation method. The displacement D between the
short series and the identical part of the long series will be determined from

the maximum value of the correlation function computed.
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3.13 Summary

Applying Principal Component Analysis (PCA) and correlation

technique to well-log data involves the following steps :

1. Calculate the variance-covariance or correlation matrix of the original

variables.

2. From variance-covariance or correlation matrix compute the eigenvalues

and the eigenvectors. '
3. Calculate principal component scores.
4. Extract and Smooth (optionally) the principal component scores.

5. Identify formation boundaries.

6. Take Fourier transform of the principal component scores and compute

power spectra.
7. Transform frequencies to logarithmic scale.

8. Obtain equally spaced (interpolated) power spectra using Lagrange's

interpolation method.
9. Cross-correlate between interpolated power spectra.

10. Either, stretch short series and cross-correlate to find the maximum

correlation coefficient,

OR stretch long series and cross-correlate to find the maximum correlation

coefficient.

11. Find the largest coefficient and determine the optimum stretch.
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12. Stretch the shorter series and perform cross-correlation to determine the

relative displacement of the two series.
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CHAPTER FOUR

Application to Attahaddy Field

4.1 introduction

» A Fortran program, PCAXCOR, has been written for applying
principal component analysis, boundary identification and correlation of
well-log data. The data were obtained from magnetic tapes for different wells
in the Attahaddy field (Fig. 4.1). Using model data, constructed from one of
the well-logs, the method is first tested using both the original variables of
electrical logs and their first principal components. Then complete

sequences, sampled at 5 feet intervals, from a number of wells are processed.

The first part of the program is applied to calculate the eigenvalues
and the eigenvectors of the correlation matrix of the original variables.
These variables are Gamma Ray (GR), Spontaneous potential (SP), Shallow
resistivity (ILS), Medium resistivity (ILM), Deep resistivity (ILD), Transit
time (DT) and the Calliper (CALI) (Appendix B). These variables are often
used in manual Formation boundary identification and well-to-well

correlation, and hence are chosen for automated boundary identification.
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and cross-correlation. The correlation matrix is used because the variables
are expressed in different units of measurements and it is necessary to
calculate the different principal components. Using these components, the
different boundaries for different Formation in different boreholes are
identified. Different well-log data (Neutron, density, ..., etc) and the
variance-covariance matrix can be used if all variables are expressed in the

same units.

The second part of the program is the determination of the cross-
correlation between different formations to examine the effectiveness of
using the spectral analysis of the first principal components of real data. In
contrast to the spectral analysis method for correlating well-logs developed
by Kwon (1977) which applies the spectral analysis to the original data, this
new approach makes use of the the first principal component of well-log
data as the basis for correlating different boreholes. An empirical measure of
successful correlation is determined by comparing the results to the known

geological correlations in the field.

Two cross-correlation functions are used. The first uses, cross-
correlation of power spectra of the first principal component to determine
the stretch factor (S), which in turn represents the variation in the thickness
between two formations, and the second uses, cross-correlation of the
stretched series to determine the relative displacement (D in Fig. 3.13). This
is preceded by the stretching process using the FFT algorithm. Kwon (1977)

notes that when applying the stretch method, the derivative filtering (high
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pass filtering) is necessary for most real data to obtain appropriate high
resolution for the cross-correlation of power spectra. In other words,
derivative data is used to obtain the stretch factor, but the original data
(principal components) to determine the displacement. He also points out
that when dealing with well-logs complicated by the presence of high
frequency signals, it is desirable to apply a smoothing filter, such as a
moving average, to the data before differentiation in order to obtain more

reliable correlation of power spectra.

In this study the filtered components (using moving average filter,
SMOQOTH subroutine Appendix C) are used before preceding with the cross-
correlation. Difficulties encountered in PCAXCOR are also common in
other mathematical correlation methods. Therefore several conclusions
drawn from the study of the real data are also applicable to the other

methods.

4.2 Analysis of model data
4.2.1 Using original variables

A 300 foot sequence of Gamma Ray log (GR), was digitised from
borehole FF13-6 in Attahaddy field [ depth 4000-4500 feet ], and correlated
with a short series of GR log (50 feet) from the same borehole and shifted
down 50 feet (Fig. 4.2a). The derivatives (high frequency components) of
these signals are taken to eliminate the noise affect (Fig. 4.2b). Power spectra

of these logs are then calculated using the fast Fourier transform and the
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components above the Nyquist are ignored (Fig. 4.2c). The length of the
short series in (Fig. 4.2c) has the same number of points as the long series (i.e
X in Fig. 3.13). If the spectra are transformed to logarithmic frequencies (Fig.
4.2d), then the transformation converts the scaling effect of Fig. 4.2¢ into a
shift between these spectra. Lagrange's interpolation method then is used to
obtain equi-spaced spectra (Fig. 4.2e). In general the ratio of thickening to
thinning is not very large and rarely exceeds a value of 2, therefore, the
maximum shift is set to.terminate at 30 which is derived from equation 3.50
with sampling interval of 0.01 (I=0.01). In the case of model data the
maximum correlation coefficient (1.0) is observed at 0 (no stretching) (Fig.
4.2f). The cross-correlation of stretched series is then performed to obtain the
displacement between the two logs. Figure 4.2g shows the maximum

correlation coefficient (1.0) at displacement of 51 feet.

4.2.2 Using Principal Component Scores

A short series (50 feet) of the first principal component obtained from
the same borehole (FF13) is compared with a long series (300 feet) with
displacement of 50 feet (Fig. 4.3a). The derivatives of the data of the principal
component scores are taken (Fig.4.3b) and power spectra are then calculated
(Fig. 4.3¢). This plot shows that there is a similarity in shape between the two
curves, but a prominent scaling effect of frequencies is observed. The
frequencies are then transformed to logarithmic scale (Fig. 4.3d) to obtain the
shift between the two signals. On a logarithmic scale (base 10), the number of
known components in each logarithmic cycle is different, e.g 10 in the first
cycle, 90 in the second and 900 in the third. Using the Lagrange interpolation

method, 100 samples are interpolated with sampling interval I1=0.01. The
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Fig. 4.2 Output plot using model data. (a) Gamma Ray logs of a short log (50
feet) and long log (300 feet). The short log is a part of the long log shifted
down 50 feet. (b) Derivative data of both series. (c) is power spectra, and (d)
is the power spectra with logarithmically spaced frequencies. (e) is the
interpolated power spectra. (f) is the cross-correlation coefficient of power
spectra (high peak at 0 which implies no stretching S=1.0) and (g) is the
cross-correlation coefficient for displacement(D=51).
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first cycle is ignored (Kwon, 1977) because it contains a few data points and it
is a waste of computer time to interpolate this component. To obtain equi-
spaced power spectra Lagrang's interpolation is used (Fig. 4.3e). The
resultant cross-correlation coefficient between the power spectra is shown in
Fig. 4.3f. The cross-correlation coefficient, like the original data (GR), shows
a high peak at shift zero which implies that no stretching is involved. A
maximum cross-correlation coefficient of 1.0 is observed at a lag of 50 feet
(Fig. 4.3g). Appendix E gives the printed output obtained using the principal

component scores.

»  Different thicknesses and different displacements (Fig. 4.4 & Fig.4.5)
were tried to test the reliability of this technique and all show promising
results. Figure 4.4 shows a test of the program using a thickness of 120 feet
for the short series and a thickness of 450 feet for the long series and
displacement of 50 feet. In Fig. 4.5, the thickness of the thin Formation is 50
feet and the thickness of the thick Formation is 220 and zero displacement.
The results (Fig.s 4.5f & 4.5g) show a maximum correlation coefficient of 1.0
at zero lag and a maximum correlation coefficient of 1.0 at displacement of 2

feet. (Appendix E)

Although the program results using model data of the original
variables of Gamma Ray and model data of the first principal component of
all the original variables in Well FF13 in the Attahaddy field are similar,
using the first principal component for correlation of well-log data is more

reliable. For example in Fig. 4.2 using the original variable of Gamma Ray
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(GR), the derivative data (Fig.4.2b) of both curves are unstable and noisy.
Furthermore, the interpolated power spectra (Fig.4.2e), from which the
correlation coefficients are calculated, are unstable too. This instability of the
original variables is overcome by using the first principal component which
gives clear, distinct filtered curves (Fig. 4.3b & 4.3e). The reliability and

stability of the first principal component promise fruitful results.

4.3 Interpretation of real data
4.3.1 Introduction

> In the previous section the application of PCAXCOR using the first
principal components was developed and tested on model data. Empirical
results of model data showed that the use of principal component analysis is
highly effective in well-to-well correlation. However, real data are
complicated by geological variations which do not preserve identical forms
nor constant thickness from well to well. This is true especially with
geologically complex long sequences and large distances between boreholes
such as the Attahaddy field (Fig. 4.6 & Table 4.1). As a result the value of the
maximum correlation function will be smaller compared to model data.
This is because mathematical correlation gives an entire average of
similarity between features of the entire section to be compared. Therefore,
the computer selection does not always agree with the geologic selection
which considers some other factors when the correlation is made between

two logs.

Program PCAXCOR is applied to five boreholes across the Attahaddy

field (Fig. 4.7, Appendix A) with variation in distances between successive

[Chapter Four: Application to Attahaddy Field |
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boreholes 2 to 10 kilometres. Five formations are used in studying the
boundary identification and cross-correlation. These are: the Etel, Sheghega,
Domran, Ruaga and the Hiera formations. The lower part of the sequence
comprised of the Zmam, Socna, Bahi and Gargaf formations. These are
characterized by very high resistivity values due to the presence of gas and

are discarded from the analysis.

4.3.2 Correlation between FF7 and FF13

As the first application of PCAXCOR with real data, two boreholes on
the Northern side of the Attahaddy field (Fig.4.7, Appendix A) are used. The
dis;ance between the two wells is approximately 3 Km. Well FF7 is a gas well
produces from the Gargaf Formation and well FF13 was suspended as a gas

well.

The principal components of well FF7 are calculated (Table 1
Appendix E) and the graphical display of its first principal component is
shown in Figure 4.8a. The boundaries of the different formations are shown
in Figure 4.8b and Table 4.2. The length of the sequence used is from depth
of 4460-10946 feet (sampled at 5 feet interval). The Domran Formation at a
depth of 6500 feet, the Heira Formation is identified at a depth of 7400 feet,

and the Zmam Formation is identified at a depth of 9500 feet.

The boundary identification technique is based on the selection of

formation boundaries where the average changes of the sequence values are

[Chapter Four: Application to Attahaddy Field |
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great. However, in the Attahaddy field some Formation boundaries, for
example Domran Formation, do not occur at such point, hence some
difference between the geological boundaries and the computer selection is

observed.

Table 4.2 The Geological Formation depths and the predicted

- Formation depths of FF7 using the boundary identification

technique.
Formation Geological depth Predicted depth
Domran 6690 6500
’ Ruaga 7553 -
Heira 7502 7400
Zmam 9718 9500

Figure 4.9a shows the first principal component for FF13 and its correlation
matrix, the eigenvalues, eigenvectors and the percentage of each eigenvalue

are shown in Table 4.2 Appendix E.

The formation boundaries of well FF13 are shown in Figure 4.9b and
Table 4.3 for the interval between 3500 to 10500 feet (sampled at 5 feet
interval). The Etel Formation is identified at depth 4050 feet, the Sheghega
Formation at depth 4762 feet, the Domran Formation at depth 6900 feet, the
Ruaga Formation at depth 7558 feet, the Hiera Formation at depth 7800, and

the Zmam Formation is identified at depth 9800 feet.

[Chapter Four: Application to Attahaddy Field |
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Table 4.3 The Geological formation depths and the predicted

formation depths of FF13 using the boundary identification

technique. )
Formation Geological depth Predicted depth "
Etel 4114 4050
Sheghega 4762 4762
Domran 6788 6900
Ruaga 7558 7558
Heira 7742 7800
‘ Zmam 10028 9800

After identification of formation boundaries for well FF7 and well

FF13, cross-correlation between the smoothed first principal components

(Fig. 4.10) of FF7 and that of FF13 is applied. The computer correlation of

these components is complicated by sudden change of the apparent

magnitude of the sequence values and facies variation which make the

visual correlation difficult. For example, some interbeds of limestone in the

upper part of the Hiera Formation. Also the variation in lithology from

highly calcareous shale and highly argillaceous limestone. Because the

thickness in the correlated sequence varies from one formation to another,

different window lengths for different formations are used (Fig.4.10).

|Chapter Four: Application to Attahaddy Ficld |




96

/44 J0 ysuodwod
redounad 3811y ayy s1 (q) €144 Jo wdouodwod redpuud jsiy ayj si (e) ‘pley Appeyeny
oy W (gldd-Zdd) soroysroq omy jo jusuodwod [edpund pataiy ay3 jo 301d 01'F "Sig

®

1
000zt
1
000CI-

T
00001-
T
00001~

I
0008~
1334 NI H1d3d
ok
-
0008-

T
0009~

000¥-

T
0001~

= |

I
000!
f
0002~

0
[£24] 1D

1 r I I |

v (2 -

N

0
[ETAA] I-Dd "I

L33 NI HLd3d



97

4.3.2 (a) Correlation of the Sheghega Formation

The power spectra of the filtered first principal component of the
Sheghega Formation in FF13 (indicated by number 1 in Fig. 4.10a) are
correlated with power spectra of filtered first component of well FF7 with
window length equal approximately double of that of the section in FF13
(Fig. 4.10b, marked by letter A). The derivative data for the short sequence
(FF13) and the long sequence (FF7) are calculated (Fig. 4.11b). Figure 4.11c-
Figure 4.11e show the power spectra, the transformation to logarithmic scale
of power spectra and the interpolated power spectra of both series
respectively. The cross-correlation function of these spectra is shown in
Figure 4.11f and Figure 4.12b. This functioﬁ yields a stretch factor of 1.12
(compared with geological stretch of 1.01) for the long sequence. The cross-
correlation function for the stretched sequence which has a maximum peak
is shown in Fig.4.11g. The relationship between the two series, the cross-
correlation function of power spectra and the cross-correlation function of
the stretched series is displayed in Figure 4.12. Maximum cross-correlation
coefficient for a stretch of 1.12 indicated by an arrow in Fig. 4.12b and a
maximum cross-correlation coefficient for displacement yields a maximum
peak (0.570) for displacement of 20 feet compared with geological
displacement of 59 feet. This result is reasonable for the Sheghega
Formation with average thickness of 2000 feet. The small deviation from
the geologic correlation is explained by the fact that the computer correlates

the average similarity through the selection assuming that the thickening of

beds is uniform.

|Chapter Four: Application to Attahaddy Field |
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An attempt to correlate the Sheghega Formation using the non-
filtered principal component of well FF7 and well FF13 (Fig. 4.13) failed both
in predicting the stretch factor and in obtaining the accurate displacement of
stretched series. The cross-correlation of power spectra yielded a stretch
factor of 1.51 (Fig. 4.13f) compared with geological stretch of 1.01 and cross-
correlation function of 0.62 at displacement of 265 feet compared with
geological displacement of 59 feet (Fig. 4.13g). This was not unexpected, as
the correlation usiﬁg non-filtered principal component is characterized by
noise component both in the time (Fig. 4.13a) and the derivative (Fig. 4.13b)

domains.

4.3.2 (b) Correlation of the Domran Formation

Difficulties are encountered in visually correlating the upper part of
the Domran Formation and in the computer identification of the upper
boundary of the Domran Formation (Fig. 4.9b). This is because the lower
part of the Sheghega limestone is similar in the log response to the upper
part of the Domraan Formation, consequently, the average change in the log
response occurs in the lower part of the Sheghegan Formation and not at

the contact between the two formations.

Computer correlation is attempted (Fig. 4.14). The cross-correlation
function of power spectra (Fig. 4.14b) yields a peak at +v=+9 which
corresponds to a stretch of 1.23 compared with 1.19 between FF7 and FF13.

The positive sign of v indicates that a portion of the long sequence is

[Chapter Four: Application to Attahaddy Field |
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stretched relative to the short sequence (series). This implies that the
direction of the thickening is from well FF13 towards FF7 which agrees with

the geological direction. The stretch factor is computed from equation 3.50 :
S=109X0.01 =123

which is expected for Domraan Formation which has an average thickness
of about 700 in the two boreholes. The cross-correlation function of the
stretched series has a maximum of 0.433. This reduction in the magnitude of
the cross-correlation function results from the fact that the noise signal h(n)
(Fig. 3.13) which is not overlapped with the correlative section in the time
domain, is transfered to an additive spectrum in the frequency domain.
Although the cross-correlation function is the most valid method to detect
the desired signal from background noise, the decrease of maximum

coefficient value is inevitable for such a case.

4.3.2 (¢) Correlation of the Ruaga Formation

Mathematical correlation (Fig. 4.15) agrees with the known
stratigraphic correlation for the Ruaga Formation. The maximum peak of
the correlation function of the power spectra yields an optimum stretch
factor, S=1.0 that is no stretch compared with geological thickening of 1.10
for long sequence (FF7) (Fig. 4.15b). The maximum correlation function
(0.760) for displacement of 200 feet (40 units) compared with 223 feet is also

easily identifiable (Fig. 4.15¢).

|Chapter Four: Application to Attahaddy Field |
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4.3.2 (d) Correlation of the Heira Formation

Cross-correlation of power spectra resulted in a correlation function
which has two peaks, at a lag of -v=-17, that is, a stretch factor $=1.48, and at a
lag of -v=-28, that is a stretch factor 5=1.90 (Fig. 4.16g and Fig. 4.17b). In
PCAXCOR, the correlation is based on two choices of maximum correlation
functions of power spectra. Although the computer selection of the second
peak, S=1.48 at a lag of 17 units at displacement of 586 units (2930 feet)(actual
displacement times the stretch factor, i.e 1980 x 1.48) does not agree with the
geological thickening (1.04) for the long sequence (i.e FF7, the correlation of
the derivative data yields a high value of correlation coefficient (0.748)

(Figi4.170).

By changing the window size (Fig. 4.18), a higher correlation
coefficient (0.867) and a better stretch factor (S=1.12) are obtained.
Furthermore, the displacement (275 feet) is very close to the geological

displacement (240) between FF13 and FF7.

This result demonstrates that the correlation of power spectra is
dependant on the selection of the optimum window size used for cross-
correlation to give the best stretching of strata and the displacement between
two series from the maximum correlation functions. Although the selection
of the optimum values from such functions are not always so obvious as
when model data is used, the choice by PCAXCOR based on the highest two

peaks generally represent a geologically reasonable stretch value and

[Chapter Four: Application_to Attahaddy Field |
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correlation function of power spectra. (g) the cross-correlation function of the stretched series.
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displacement as will be demonstrated in the following sections.

4.3.3 Correlation between FF13 and FF11

These two wells are about 3 Km distant and the sequence to be
analysed is between depth of 3500 and 10500 feet in each borehole. This
includes the top of the Etel Shale Formation through to the bottom of the

Hiera Shale Formation in which a total of 7000 feet is to be interpreted.

The eigenvalues, the eigenvectors and the percentage of the each
eigénvalue of the correlation matrix of the original variables (GR, SP, ILM,
ILS, ILM, DT and CALI) of well FF11 is listed in Table 4 Appendix E and its

graphical display of the first principal component is shown in Figure 4.19a.

The boundaries of different formations are identified using the
boundary identification technique and are shown in Figure 4.19b. The
Sheghega Formation is identified at depth of 4578 feet, the Domran
Formation at a depth of 6300 feet which was picked at the average change of
the curve response at the lower part of the Sheghega Formation and not at
the contact between the two formations (depth 6473 feet). The Ruaga
Formation is located at depth of 7350 feet. The Hiera Formation is identified
at depth of 7600 feet, and the Zmam Formation at depth 10000 feet. The

boundaries of well FF13 were identified in section 4.3.2 (Fig.9b)

[Chapter Four: Application to Attahaddy Ficld |




(199) QOZT=MOPUIM) UOCI EWLIO)J
JU213jj1p JO sauepunoq (q) "11dd [ea jo juduodiuued [edpurid pasdjjy-uou (v) ‘soulepunoq
SI1 pue [14d [[@m Jo (399) ¢ je pojdwes) sjusuodwod [edpund 1511y ay) Jo 101 ] 61'% ‘Sig

110

@ S (®)
S
Wi WVINZ - = L 3 W
WU s e ———a
M 2 g
Wd VIEIH --> —= | S m
Wi YOVNY > |
=
W NVINOQ ----> . m
=
[e]
R —
\:1 VOIHOFHS ---> —
— N
=3 =
|L._ (e
)
S
o
[ T T T 1 | | | I ] | 1
00T 0St 001 0S 0 14 V- 9- 8

LT 00Z=MOANIM ‘TIVNOS d

(4 0 A
(17134 TTEM I-Od

"TI4-NON

000t~ 0009~ 0008- 00001~ 000zZ1-

000z-

1393 NI H1Ld3d



111

Table 4.4 The Geological formation depths and the predicted

formation depths of FF11 using the boundary identification technique.

Formation Geological depth Predicted depth
Sheghega 4578 4578
Domran 6473 6300
Ruaga 7446 7350
Heira 7780 7600
Zmam 9790 10000

The first principal component of well FF11 is correlated against that of

FF13 with variable window size for different formations (Fig. 4.20).

4.3.3 (a) Correlation of the Etel Formation

The Etel Formation in well FF13 (indicated by number 1 in Fig. 4.20a)
is compared with a section from FF11 (indicated by the letter A in Fig. 4.20b ).
The derivatives of the data are used in calculating power spectra and for
final correlation between the stretched sequence (Fig. 4.21). The resultant
cross-correlation function of power spectra yields a distinct peak for a lag of
+2 which corresponds to a stretch factor of 5=1.05 (compared with geological
stretch of 1.13)(Fig. 4.22b) for long series (FF11) and agrees with known
geological thickening from FF13 towards FF11. The cross-correlation

function of the stretched series yields a maximum peak (0.808)(Fig. 4.22¢) for

[Chapter Four: Application to Attahaddy Field |
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PC-1, SHORT SEQ. (FF13) PC-I, LONG SEQ. (FF11) DERIVATIVE DATA DERIVATIVE DATA
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Fig. 4.21 plot of cross-correlation function of the Etel Formation using 'the derivative dz?ta of
FF13 and FF11. (a) the first principal components of the Etel formation in well FF13. (b) is the
derivative of the data. (c) is the power spectra of the derivative data. (d) is the power
spectra with logarithmic spaced frequencies. (e) the interpolated power spectra. (f) the cross-
correlation function of power spectra. (g) the cross-correlation function of the stretched series.
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displacement D=30 units (150 feet compared with 110 feet). A spurious peak
for the cross-correlation function of power spectra is obtained when the
non-filtered principal components are used (Fig. 4.23). The cross-correlation
function of power spectra yields a sharp peak at a lag -v=-10 (§=1.25) for short
series (sequence) (Fig. 4.23b), and a maximum peak for displacement D=210
feet (Fig. 4.23c). Furthermore, an attempt to correlate the original variables
(Gamma Ray) of well FF13 and FF11 failed (Figs. 4.24, 4.25) producing a very
high stretch factor (5=1.80) for long sequence and cross-correlation function

for displacement D=230 units (1150 feet).

»  The above results emphasize that the use of the smoothed principal
components has the advantage in more accurately predicting the stretch
factor over both the non-filtered components and the original variables of
well-logs. In addition, the correlation functions of power spectra of the
filtered principal component (Fig. 4.22b ) against that of the non-filtered (Fig.
4.23b ) and that of the original data (Fig. 4.24b), and the correlation functions
of the stretched series in Figure 4.22c against that of Figure 4.23c and that of

Figure 4.24c are more smooth and symmetric.

4.3.3 (b) Correlation of the Sheghega Formation

The computer successfully correlates the Sheghega Formation of well
FF13 (indicated by number 2 in Fig. 4.20a) with the section indicated by the
letter B in Figure 4.20b. The high peak of the cross-correlation function of
power spectra is shown in Figure 4.26f and Figure 4.27b at a lag of -v=-2

(5=1.05 compared with geological stretch of 1.05) for the long sequence

[Chapter Four: Application_to Attahaddy Ficld |
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Fig. 4.24 plot of cross-correlation using the original data (Gamma Ray) of the Etel Formation
in FF13 and FF11. (a) GR of FF13 and FF11. (b) is the derivative of the data. (g) the power
spectra. (d) is logarithmic spaced spectra. (e) is the interpolatf:d spectra. (f) is the cross-
correlation function of the power spectra. (g) is the cross-correlation function of the stretched

series.
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Fig. 4.26 plot of cross-correlation of the Sheghega Formation i.n FF13 apd I?Fﬂ using the
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(c) the power spectra. (d) is logarithmic spaced spectra. (¢) is the 1nterpo{ated spectra. ) i
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(series) (Fig. 4.27b), this implies that the direction of the thickening of the
strata is towards FF11. The high magnitude (0.799) of the cross-correlation
function of the stretched series (Fig. 4.26g and Fig. 4.27¢) is corresponding to
computer stretch of 39 units (195 feet) compared with the known geological

displacement 185 feet.

4.3.3 (¢) Correlation of the Domran Formation

Figure 4.28 shows the result of correlating of the Domran Formation
(window 3 in Fig. 4.20a) in well FF13 with a portion of long series of well
FF11 (window C in Fig. 4.20b). Like the correlation of the Sheghega
For;rlaﬁon, the computer selection of the two correlation functions (Fig.
4.28g and Fig. 4.28f) agrees with the known geological correlation. In Figure
4.29b the maximum correlation function has a peak for a stretch factor 1.23
compared with 1.26 at a lag +v=9, and a maximum peak (0.645) at

displacement of 59 units (295 feet compared with 310 feet) (Fig. 4.29¢).

4.3.3 (d) Correlation of the Ruaga Formation

The mathematical correlation of the Ruaga Formation of well FF13
(number 4 in Fig. 4.20a) against a section of well FF11 (letter D in Fig. 4.20b. is
displayed in Figure 4.30 and Fig. 4.31. Two comparable peaks of power
spectra are observed (Fig. 4.30g and Fig. 4.31b). The top peak corresponds to a
stretch of 1.44 at a lag -v=-16. The computer selection of the second peak at a
lag -v=-4 (S=1.10) is geologically reasonable compare to geological stretch of

1.20, and displacement of 125 feet compared with 112 feet. The negative sign

|Chapter Four: Application to Attahaddy Field |
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Fig. 4.28 plot of cross-corrclation of the Domran Formation in FF13 and FF11 using the
derivative data. (a) principal components of FF13 and FF11. (b) is the derivative of the data.
() the power spectra. (d) is logarithmic spaced spectra. (e) is the interpolated spectra. (1) is
the cross-corrclation function of the power spectra. (g) is the cross-correlation function of the
stretched series.
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he Ruaga Formation in FF13 and FF11 using the
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Fig. 4.30 plot of cross-correlation of t
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of v indicates that the short series (FF13) is a stretched version of the the

long series (FF11).

4.3.3 (e) Correlation of the Heira Formation

Figure 4.32 shows the cross-correlation between the Heira Formation
in well FF13 (number 5 in Fig. 4.20a) and a window of length E in Figure
4.20b. A high magnitude (0.730) of the cross-correlation function is obtained
(Fig. 4.32f and Fig. 4.33c) when correlating the thick sections of the Heira
Formation ( about 2200 feet). Although the maximum cross-correlation
function of the power spectra yields large value of stretch 1.26 compared
witJh 1.08 for tﬁe long series (FF11), the computer selection of both the
direction of thickening and displacement (Fig. 4.33b and Fig. 4.33c) is
satisfactory. An improvement in the stretch factor value (1.17) is obtained
when the non-filtered principal components are used in the analysis
(Fig.4.34), and the maximum function for correlating stretched series (0.417)
and stretch of 1.10 are obtained when the derivative data is used for
stretching (Fig. 4.35). However, the direction of the variation in thickness
was spurious one and does not agree with the known geological thickening

which is from well FF11 towards FF13.

4.3.4 Correlation between FF11 and FF12

Well F11 and well FF12 are located on the eastern flank of the
Attahaddy field (Fig. 4.7). The distance between the two boreholes is about 4
Km and a sequence of 7000 feet [3500-10500 feet] is used in the analysis." Well

[Chapter Four: Application to Attahaddy Field |
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Fig. 4.32 plot of cross-correlation of the Heira Formation in FF13 and FF11 using the
derivative data. (a) principal components of FF13 and FF11. (b) is the derivative of the data.
(c) the power spectra. (d) is logarithmic spaced spectra. (e) is the interpolated spectra. (f) is
the cross-correlation function of the power spectra. (g) is the cross-correlation function of the
stretched scries.
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Fig. 4.35 plot of cross-correlation of the Heira Formation in FF13 and FF11 using the
derivative data of the non-filtered principal components. (a) non-filtered principal
components of FF13 and FF11. (b) is the derivative of the data. (c) the power spectra. (d) is
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FF11 is a gas well producing from the Gargaf Formation and well FF12 lies
outside the gas-water contact of the eastern part of the Attahaddy field and is

a dry hole.

The eigenvalues, eigenvectors and the percentage of the eigenvalues
to the total variance of the correlation matrix of well FF12 are shown in
Table 4 Appendix E, and its first principal component is displayed (Fig.
4.36a). The first principal component of well FF11 is shown in Figure 4.19a,

and its eigenvalues and eigenvectors are shown in Table 3 Appendix E.

Different Formation boundaries of well FF12 are identified using the
boundary identification technique (Fig. 4.36b, Table 4.5). The Sheghega
Formation is identified at depth of 4738 feet, the Domran Formation at
depth of 6750 feet, the Ruaga Formation is at depth of 7450 feet, the Heira
Formation is identified at a depth of 7850 feet, and the Zmam Formation at
depth of 10020 feet. The cross-correlation between the two smoothed

principal component of well FF11 and FF12 (Fig. 4.37) are then performed.

lChaptcr Four: Application to Attahaddy Ficldl
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Table 4.5 The Geological Formation depths and the predicted

Formation depths of FF 12 using boundary identification technique.

|| Formation Geological depth Predicted depth J
Sheghega 4738 4738
Domran 6925 6750
Ruaga 7691 7450
Heira 7924 7850
Zmam 10199 10020

4.3.4 (a) Correlation of the Etel Formation

The Etel Formation of well FF12 (indicated by number 1 in Fig. 4.37a)
is compared with a section from well FF11 with a window indicated by the
letter A (Fig,4.37b). A maximum of cross-correlation function of power
spectra is observed at a lag v=0, no stretch compared with 1.10 for the long
sequence (FF11) (Fig. 4.38g and 4.39b). The computer correlation of the
stretched sequence, with a correlation maximum of 0.71 giving a
displacement of 75 feet (Fig. 4.38f and 4.39c) agrees with the known

geological correlation of the Etel Formation between well FF12 and FF11.

4.3.4 (b) Correlation of the Sheghega Formation

Cross-correlation of the Sheghega Formation is made between FF12

(number 2 in Fig. 4.37a) and a portion of the principal component of well

[Chapter Four: Application to Attahaddy Ficld |
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Fig. 4.38 plot of cross-correlation of the Etel Formation in FF12 and FF}] using the derivative
data. (a) principal components of FF12 and FF11. (b) is the derivative of the data. (F) the
power spectra. (d) is logarithmic spaced spectra. (e) is the interpolated spectra. (f) is the
cross-correlation function of the power spectra. (g) is the cross-correlation function of the

stretched series.
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FF11 with a window length marked by the letter B using the original data for
stretching (Fig. 4.37b). A successful cross-correlation is observed (Fig. 4.40).
The maximum value of the cross-correlation function of the power spectra
at a lag of 10 (Fig. 4.40b), gives a stretch factor of 1.26 compared with 1.16
which is geologically reasonable. The direction of the thickening of strata is
from well FF12 towards FF11 which agrees with the known thickening.
Furthermore, the selection of the maximum peak of the cross-correlation
function of the stretched series (0.577) (Fig. 4.40c) at displacement of 24 units
(140 feet) compared with 32 units (160 feet) confirms the reliability of the

correlation.

>

4.3.4 (c) Correlation of the Domran Formation

The Domran Formation in well FF12 (Fig.4.37a, number 3) is
compared with FF11 (Fig.4.37b, symbol C) using both the derivative data and
the original data (Fig. 4.41 & Fig. 4.43) respectively. In Figure 4.41g and 4.42b,
a stretch factor of 1.32 is predicted compared with 1.27 is observed for long
sequence and displacement of 440 feet compared with 452 feet is observed,
however, the direction of the thickening of the Domran Formation is
towards FF11. When the original principal components data are used for
stretching (Fig. 4.43), the direction of thickening of the two formations
agrees with the geological thickening but a bigger value of stretch factor

(1.38) is obtained (Fig. 4.43b).

[Chapter Four: Application to Attahaddy Field |
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Fig. 4.41 plot of cross-correlation of the Domran Formation in FF12 and FF11 using the
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4.3.4. (d) Correlation of the Ruaga Formation

The mathematical cross-correlation of the Ruaga Formation in these
boreholes is extremely accurate in predicting the stretch factor as well as the
displacement. This correlation is made between the Ruaga Formation in
well FF12 (Fig. 4.37a, number 4) and a section from well FF11 (Fig. 4.37b,
letter D). A stretch factor of 1.07 compared with 1.02 is obtained from
correlating the power spectra (Fig. 4.44f and 4.45b). The cross-correlation
function of the stretched series shows a maximum peak of 0.899 at
displacement of 250 feet (50 units) compared with geological displacement of

245 feet (Fig. 4.45¢).

s

4.3.4. (e) Correlation of the Heira Formation

Figure 4.46 shows the Heira Formation in FF12 (indicated by number
5 in Fig. 4.37a) when compared with a window length marked by letter E
(Fig. 4.37b). The cross-correlation function of power spectra (using the
principal components for stretching) yields a peak at a lag of -v=-3 which
gives a stretch factor of 1.07 which agrees with the expected value, 1.07
(Fig.4.46b). The negative sign indicates that the short series is stretched
relative to the long series. The maximum in the cross-correlation function
of the stretched series (0.941) is observed in Fig. 4.46¢ for displacement of 150

feet (30 units) compared with geological displacement of 180 feet.

[Chapter Four: Application to Attahaddy Field |
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spectra. (g) is the cross-correlation function of the
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4.3.5 Correlation between FF12 and FF10

As the last application of PCAXCOR on well-log data, boreholes FF12
and FF10 (Fig. 4.7) are subjected to the analysis. Well FF12 delineates the
eastern part of the Attahaddy field, and well FF10 was drilled to delineate
the southern part of the gas-water contact. The distance between the two

wells is about 10 Km, and a total of 7000 feet of each borehole is used.

As with the previous wells, the eigenvalues, eigenvectors and the
percentage of each eigenvalue of well FF10 are calculated (Table 5 Appendix
E). The first principal component of this borehole is shown in Figure 4.47a.:
The boundaries are then identified (Fig. 4.47b, Table 4.6). The Sheghega
Formation is picked at depth 4440 feet, the Domran Formation is at depth of
5750 feet, the Heira Formation at depth 7670 feet, and the Zmam Formation

is identified at depth 10000 feet.

Table 4.6 The Geological Formation depths and the predicted

Formation depths of FF10 using the boundary identification technique.

|| Formation Geological depth Predicted depth
Sheghega 4440 4440
Domran 6256 5750
Ruaga 7451 -
Heira 7780 7670
Zmam 10593 10000

|Chapter Four: Application to Attahaddy Field |
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Finally the mathematical cross-correlation between the two filtered
principal components is performed with different window lengths for

different formations (Fig. 4.48).

4.3.5 (a) Correlation of the Etel Formation

Cross-correlation of the Etel Formation in well FF10 (Fig. 4.48a,
number 1) is made against a section of the principal component of well FF12
(Fig. 4.48b, letter A). The resultant cross-correlation function of the power
spectra (Fig. 4.49g and Fig. 4.50b) indicates a stretch factor of 1.26 compared
with an expécted value of 1.3, for the short sequence. The cross-correlation
function of the stretched sequence yields an optimum maximum peak of

0.826 (Fig. 4.49g and 4.500).

4.3.5 (b) Correlation of the Sheghega Formation

The Sheghega Formation in well FF10 (Fig. 4.48a, number 2) is
compared with that of well FF12 (Fig. 4.48b, letter B). The cross-correlation
function of the power spectra indicates a stretch of 1.17 compared with 1.20,
for the long sequence (Fig. 4.51g and 4.52b), the cross-correlation function of
the stretched sequence has a maximum peak of 0.707 with a displacement of

39 feet (Fig.4.52c) compared with geological displacement of 59 feet.

[Chapter Four: Application to Attahaddy Field |
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Fig. 4.49 plot of cross-correlation of the Etel Formation in FF10 and FF12 using the derivative
data. (a) principal components of FF10 and FF12. (b) is the derivative of the data. (c) the
power spectra. (d) is logarithmic spaced spectra. (e} is the interpolated spectra. (f) is the
cross-correlation function of the power spectra. (g) is the cross-correlation function of the
stretched series.
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Fig. 4.51 Plot of cross-correlation of the Sheghega Formation in FF10 and FF12 using the
derivative data. (a) principal component of FF10 and FF12. (b) is the derivative of the data.
(c) the power spectra. (d) is logarithmic spaced spectra. (e) is the interpolated spectra. (f) is
the cross-correlation function of the power spectra. (g) is the cross-correlation function of the

stretched series.
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4.3.5 (¢) Correlation of the Domran Formation

Cross-correlation of the power spectra indicates a thickening of 1.20
when correlating the Domran Formation in FF10 against FF12 (Fig. 4.48a,
number 3 against Fig. 4.48b letter C). A maximum of 0.504 (Fig. 4.53g and Fig.
4.54c) is observed when the corrélation of the stretched data is made. A
stretch factor of 1.20 compared with geological stretch of 1.56 is obtained. The
computer selection of the displacement is 100 feet compared with the
known displacement of 134 feet. This deviation from the known geological
correlation of the stretch factor and small deviation of the displacement for
the Domran Formation (1.20 compared with 1.56) is explained by the fact
that. the computer selection of stretch factor is based on the heighest two |
peaks in the cross-correlation function of power spectra. In this case both
peaks (Fig. 4.52g and Fig.4.53c) were spurious. As mentioned in previous
sections, the value of the cross-correlation function is dependent on the
average similarity between two signals, however, the Domran Formation in
FF10 and FF12 shows no similarity between the two curves (Fig. 4.53a)

perhaps due to the long distance (10 Km) between the two boreholes.

4.3.5 (d) Correlation of the Ruaga Formation

In contrast with the Domran Formation and despite the long distance
between the correlated wells, the Ruaga Formation in the two boreholes
preserve an average similarity in shape of the two curves (Fig. 4.55a). The
Ruaga Formation in well FF10 (Fig. 4.48a, number 4) is compared with a
window (Fig. 4.48b, D) of the first principal component of well FF12. The

computer successfully correlated the two formations with excellent accuracy.

[Chapter Four: Application to Attahaddy Field |
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Fig. 4.53 Plot of cross-corrclation of the Sheghega Formation in FF10 and FF12 using the
derivative data. (a) principal component of FF10 and FF12. (b) is the derivative of the data.
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logarithmic spaced spectra. (e) is the interpolated spectra. (f) is the cross—co'rrelatlon function
of the power spectra. (g) is the cross-correlation function of the stretched scries.
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Figure 4.55g and Figure 4.56b shows the cross-correlation function of power
spectra which indicates a thickening of strata from well FF10 towards well
FF12. The stretch factor -v=-1.41, compared with expected value of 1.43.
Figure 4.55g and Figure 4.56¢ show a symmetric peak of the cross-correlation
function of the stretched series (0.953) and determines the displacement at

235 feet (compared with geological correlation position of 240 feet).

4.3.5 (e) Correlation of Heira Formation

The Heira Formation in well FF12 (Fig. 4.48a, number 5) is correlated
with the section in FF10 indicated by letter E (Fig. 4.48b). A stretch factor of
1.17" (compared with 1.19) for long series (FF12) is obtained when correlating
the power spectra (Fig. 4.57f and Fig. 4.58b). The cross-correlation function of
stretched series yields a maximum (0.739) (Fig. 4.57g and Fig. 4.58c) for a
displacement of 144 feet compared with 145 feet which agrees with the

known geological correlation between FF10 and FF12.

4.4 Correlation of lithologies within a Formation

A part of well FF13 consists of intercalations of small beds of shale
and limestone in the Sheghega Formation at depth of 6200-6500 feet (Fig.
4.9a and Fig. 4.10a). This rock unit is identified by the electrical logs as a zone
of high Gamma Ray (GR) and high transit time (DT). The correlation of this
small unit is made with the Sheghega Formation in FF11. The thickness of
the small unit in this well is about 375 feet. Figures 4.59 and Fig. 4.61 show

the computer plot of this rock unit in FF13 and the Sheghega Formation in

[Chapter Four: Application to Attahaddy Field |
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Fig. 4.57 plot of cross-correlation of the Heira Formation in FF10 and FF12. (a) principal
components of FF10 and FF12. (b) is the derivative of the data. (c) the power spectra. (d) is
logarithmic spaced spectra. (e) is the interpolated spectra. (f) is the cross-correlation function
of the power spectra. (g) is the cross-correlation function of the stretched series.



161

@

>

90 y'0 0 00
("1dSI1A) YOI-X

r

60

50 Lo 90 50
(HOLFILS) J0I-X

R

V0

009~

00Z- 00¢- 00y 005

001-

0¢

0T

ol

“1dSIA Y04 OV1

HOLAYLS 04 OV

Sown £1°1 paydjaus st dduanbas uof ayy usym sytun 97z jo juawadeldsip 105 (gg20)uonouny
.:ozﬁoto?mmob oW () *(£L1'1=5) endads 1omod jo uomduny uoye[PL10-s501> Yl (q)
¢ldd pue 0144 Jo sjuauodwod feduud (e) ‘uoneutiy BIIOH 9Yj JO UONE[I1I0D-SS0ID) 85°¥ “F1g

® -

; |
y |
=

1{ 1 T { I I L I 1 T T 1
1 0 I- T € 14 4 0 (Al v
‘*0dS ONOT ‘I-0d (011D "OdS LIOHS ‘T-0d

1
000Z1-

L1994 NI H1d3d

T
000t~

z
14

0001~ 0009- 0008- 00001~ 000Z1-

000Z-

L1994 NI HLJ9d



162

FF11. The derivative data are first used (Fig. 4.59) for stretching. The cross-
correlation function of the power spectra (Fig. 4.59d and Fig. 4.60b) shows a
high correlative peak at a lag -v=-5 (S=1.12 compared with 1.14) for the short
series (small bed) and a maximum peak of the cross-correlation function of
the stretched series (0.973) for displacement of 1350 feet (compared with
geological displacement of 1400 feet) is observed in Figure 4.59e and Figure
4.60c. More accurate results are obtained by using the filtered principal
components data (Fig. 4.61). The cross-correlation function of the power
spectra (Fig. 4.61b) has a high peak at a lag -v=-6 (5=1.15) for the short
sequence (small bed). The high magnitude of the cross-correlation function

(0.958) is identified (Fig. 4.61c) at a displacement of 1400 feet (280 units).

The above results demonstrate the accurate determination of both the
stretch factor (thickening and thinning) of beds and the relative
displacement between two rock units when the power spectra of the first

principal component are used.

4.5 Characterization of different rock type

In principal component analysis, the first principal component of a
certain set of variables reflects exactly the behaviour of each individual
variable and represents all these variables by one unique measure. The
magnitude of the first principél component scores can also be used to
characterise different lithologies, (Fig. 4.62b) for example, the Etel Shale
Formation (4414-4762 feet) is identified from the Gamma Ray (GR) and

transit time curves as shale, and has a mean of 1.70 and standard deviation

[Chﬂptcr Four: Application to Attahaddy Ficl:i]
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Fig. 4.59 Plot showing the cross-correlation of small bed within the Sheghega Formation in
well FF13 and the Sheghega Formation in FF11 using the derivative data. (a) small unit
[6200-6500 fect] in well FF13 and the Sheghega Formation in FF11. (b) is the derivative data.
(¢) the interpolated power spectra. (d) the cross-correlation function of power spectra. (e} the
cross-correlation function of the stretched series.
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value of 0.70 on the principal component, whereas, the Sheghega Formation
is identified as limestone unit by low radioactive material (GR) and low
transit time (DT), and has a mean of -0.89 and standard deviation of 0.45 on
the principal component curve. In addition, the first principal component
differentiates between different facies within the same rock unit, for
example, within the Hiera Formation. The Formation is highly calcareous at
the top part (7750-7950 feet) which has a mean on the principal component
equal to 0.04 and a standard deviation of 0.48, and the middle part of the
Formation (8550-9250) where the shale becomes less calcareous, the value is
shifted above the zero line to have a mean of 1.09 and stand’ard deviation of
0.133. The limestone bed at depth of 7950-8000 feet is identified by a principal
component mean and standard deviation corresponding to limestone
values (-0.19 and 0.04 respectively). The value of mean of the principal
component in the Sheghega Formation is about -0.89 and the value of the
standard deviation is about 0.45. In the Domran Formation, however, the
values of the mean and the standard deviation of the principal component
are shifted below the Sheghega Formation values because the Formation is
known to be less argillaceous and more hard than the overlying Sheghega
limestone. Both shale intervals occur in the Sheghega Formation between
5100-5250 feet and 6200-6500 feet as indicated by Gamma Ray log as highly
argillaceous limestone caused the values of the principal component scores
to be shifted towards the shale values (mean of 1.70 and standard deviation
of 0.70). In general, any value greater than zero mean is interpreted as shale
and any value below zero mean is considered to be limestone. This is
common in all the five principal components (Fig.4.62). This accurate
representation of different rock type and facies type within the same rock

unit may be useful in identifying rock and facies type from the principal

{Chapter Four: Application to Attahaddy Field |
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component of the entire sequence. A complete characterization of the
principal component scores to identifying different rock type is beyond the

scope of this study.

4.6 Discussion of results of real data

In the previous study by Kwon (1977), the mathematical cross-
correlation of was successful in using the spectral analysis of the original
data of well-logs. However, this success was limited. The correlation was
complicated by the presence of noise signals which are different for different
type of logs. Other problem arose because different type of logs record
different rock type properties, therefore, each well log is associated with a
specific set of frequencies. Kwon (1977) overcame these problems by
analysing different frequencies for different log types and modified the
program to use multi-log data for the correlation process to improve the
reliability of the results over that based on only one type of log. He
concluded that the use of the cross-correlation function is of limited use in
determining the reliability of computer results using different type of well-
logs, as for example, his program failed to correlate the Neutron and

Gamma Ray logs from the same borehole.

The noise problem in program PCAXCOR is controlled by filtering
the principal component before proceeding with the analysis. In addition,
the advanced process of using multi-log data developed by Kwon (1977) is
compensated by the impressive improvement of using the single first

principal component of all log data. The resultant cross-correlation function

lChapIcr Four: Application to Attahaddy Ficldl
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of power spectra of two principal components representing two formations
or boreholes is satisfactory in relating the stratigraphic thickening (or
thinning) between two wells (Fig. 4.63a against Fig. 4.63b & Fig.64). Table 4.7
shows the evaluation of the program PCAXCOR. A new development in
well-log interpretation is the correlation of different rock types within the
rock units using the cross-correlation function of the first principal

component (Fig. 4.61).

The displacement was determined by stretching (interpolation) the
series and cross-correlating such stretched series (sequences). In general, the
computer results of the displacement from these series agree with the
known geological correlation. There are some occasions where the
computer selection of both the stretch factor and the displacement differs
slightly, such difference is due to the fact that computer correlation is based
on Arecognising the average similarity between two sequences under
processing. However, some formations in different boreholes do not always
exhibit distinctive similarities, and hence some errors are observed when

correlating such sequences.

The accurate results shown in Figure 4.63 emphasises the value of

using the principal components as the basis of well-log analysis.

|Chapler Four: Application to Attahaddy Field |
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tEietzn'el. Formation | Fig. StCeol. PCAXCOR Geol. | PCAXCOR | Diff. in Agreement
ween retch Stretch Displ. Displ. Displ.
FF7-FF13 | Sheghega | 4.12 1.01 112 59 20(0.579) 39 Good
Domran | 4.14 1.19 123 188 265(0.433) 77 Fair
Ruaga 4.15 1.10 1.0 223 200(0.760) 23 Good
Heira 418 105 _L- 1.12 275(0.867) 35 Good

FF11-FF13 Etel 421 113 1.05 110 150(0.808) 40 Good

Sheghega | 427 | 1.05 1.05 185 | 195(0.799) 10 Excellent
Domran | 429 | 1.23 126 295 310(0.645) 15 Excellent
Ruaga |[431 | 120 1.10 112 125(0.893) 13 Excellent
Heira | 434 | 1.08 117 33 19(0417) 19 Excellent

. FF11-FF12 Etel 4.39 1.10 1.0 15 75(0.701) 60 Fair
2 Sheghega | 4.40 1.16 1.26 160 140(0.577) 20 Excellent
Domran 4.42 1.27 1.32 432 440(0.678) 12 Excellent
Ruaga 4.45 1.02 1.07 245 250(0.899) 5 Excellent
: Heira | 446 | 1.07 107 180 | 1500941) | 30 V.Good

t()Zcorrel.. Formation | Fig. Geol. | PCAXCOR G?él. I’CA}(COR Diff. in Agreement
tween Stretch Stretch Displ. Displ. Displ.
FF10-FF12 Etel 4.50 1.30 1.26 49 5(0.826) 44 Good
Sheghega 4.52 1.20 1.17 59 39%(0.707) 20 V.Good
Domran 4.54 1.56 1.20 134 103(0.50) 34 Good
Ruaga 4.56 1.43 1.41 240 235(0.953) 5 Excellent
Heira 4.58 1.19 1.17 145 144(0.739) 1 Excellent

1350(0.973) Good

Small bed

9 Smallbed | 461 | 1.14 115 1400 | 1400(0.958) 0 Excellent

Table 4.7 Comparison of PCAXCOR correlation of real data in the Attahaddy field to the
geologic selection. Both the stretch factor and the displacement values are compared to the
known geological stretch (thickening and thinning) and displacement in the study arca.Values
between brackets are the cross-correlation coefficients for displacements.
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4.7 Summary

The generalized aspects drawn from the study of the principal
components in boundary identification and cross-correlation can be

summarized as follows :

1- The eigenvalues, eigenvectors and the principal components of all log

data are to be determined.

2- The first principal component can be used to identify different rock

boundaries and for cross-correlation of different formations.

3- Use of smoothed principal component is recommended in order to obtain

reliable results.

4- Differentiation of principal components is necessary to determine a
stretch factor, but a more reliable value of displacement is obtained using

the original principal components.

5- General direction and degree of thickening between two boreholes can be

determined using the cross-correlation of power spectra.

6- The displacement (correlation position) is obtained using the cross-

correlation of stretched series.

7- An individual rock type can be identified within the rock unit from the
principal component values by characterizing different lithologies in the

borehole.

{Chapter Four: Application to Attahaddy Field |
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CHAPTER FIVE

Software

5.1 Introduction

» The program PCAXCOR is Written in FORTRAN 77 and was
developed and tested on a Sun3/260 workstation. Data from the Attahaddy
field which is written in LIS (Log International Standard) format was read
from magnetic tapes using LIS/A Version 1.19 software (Schlumberger,
1988) which was provided by Schlumberger Company. The magnetic tapes
were mounted on the VAX/VMS system run by Glasgow University
Computing Services. After reading different magnetic tapes, the data are
stored in different files, and then transfered to the Sun workstation run by
the Geology and Applied Geology Department. Each file contains a complete
set of well-log variables for different boreholes and is used by program

PCAXCOR (Fig. 5.1).

The main program PCAXCOR calculates the eigenvalues, the
eigenvectors and the variance-covariance or correlation matrix of different

well-log variables. This matrix is then used to calculate the principal
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VAX/VMS

Sun workstation

PCAXCOR

Fig. 5.1 Diagram illustrates procedures of reading well-log tapes using LIS/A software.

|Chapter Five: Software |




176

component scores from which, after being filtered, boundaries of different
formations are identified. Cross-correlation is then applied to moving
average filtered principal components to identify the stretch factor (thinning
and thickening) of strata, and the displacement between two principal

components of two different boreholes.

The subroutines in PCAXCOR program are divided into two groups:

The first group of subroutines (Appendix C) performs the principal
component analysis. This includes standardizing the original variables
(STANDARIZE subroutine), calculating the variance-covariance or
cor}elation matrix (MULTV?7 subroutine), calculating the eigensystem, and
calculating the principal component scores (TRED2 & TQLI subroutines).
The last two subroutines are those of Press (1988). Subroutine SMOOTH
filters the first principal component for later use in the boundary
identification and cross-correlations. The identification of different
formation boundaries is performed using subroutine BOUNDARY. Some
other utility subroutines are written to output the final results with
appropriate format. These are subroutine EIGENVALUE which is used to
calculate the percentage of the eigenvalue to the total variance, and
subroutine ORGANIZE which compiles the results output from the first

group of subroutines.

The second group of subroutines (Appendix C) performs the cross-
correlation between two principal components of two different boreholes.

All these subroutines are derived from Kwon (1977) and slightly modified to

[Chapter Five: Software |




177

suit the requirements of the this project. The main subroutine (XCOR) calls
the remaining subroutines which perform different tasks, including the
determination of the derivatives of the principal components, the
interpolation of the data, the calculation of the Fourier transforms, the
cross-correlation of power spectra and the stretched series, and scanning for

the best stretch factor among the cross-correlation coefficients.

The graphical routines are written using the sophisticated and
interactive S language. This is a very powerful and flexible tool for
manipulation, analysis and graphical display of data (Farrow, 1991). S also
provides a simple interface to the Unix system (Sun Workstatioﬁ) from
which different output files from PCAXCOR are read interactively to the S
system(Fig. 5.2). A number of routines or functions (Becker et al, 1988) are

written for different graphical outputs (Appendix D).

5.2 Program structure
5.2.1 Calculations programs

The main program PCAXCOR (Fig.5.3) utilizes call to all the

following subroutines :

STANDARIZE subroutine:

This subroutine is used to standardize the original data matrix (Y),

which contains well-log variables, to standard form so it will have a mean

|Chapter Five: Software |
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O 2

A

non-filtered ' . _ ' derivative

filtered
PC's 1-5

X-Cor. for
stretch

[placement

xsection mac bound smoothplot
function function function fu.nctxon funchon

Fig. 5.2 Distribution of files in the Sun workstation and the functions
(programs) in the S system.
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Read well-log data ~
Yes ,/\ No
€ tandardiz ¥
(STANDARIZE) ?
(MULTV?) | L (MULTV?)
Correlation Variance-covariance
matrix

matrix

~

(TRED2&TQLI)

~

-

.} Eigenvalues & |,
| eigenvectors

b

Principal component
scores

Yes

(SMOOTH)
Filter the data
(BOUNDARY)
~
[ 4 Formation boundaries
. (EIGENVALUE) | Percentage of eigenv-
(ORGANIZE) alues& print results

New data set ?

A 4

Fig. 5.3a Flow chart of the main program PCAXCOR.
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Take
Derivative

Calculate derivative of
principal components

Calculate Fourier transform

Transform frequencies

into logarithmic scale

Obtain equi-spaced
power spectra

Cross-correlate interp-
olated power spectra

Find maximum peak of
correlation function &
compute stretch factor
from lag (XLAGI)

(DERIVAT)

(FOURT)

(INTPOLS3)

(CROSS1)

(MAX)

Fig. 5.3b Flow chart of the mainprogram PCAXCOR.
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Find maximum peak &

stretch from lag XLAG2 (SCAN)

Sign of

(STXCO2)

Stretch long sequence &
cross-correlate and find
maximum coefficient

XLAG1

(STXCO1)

Stretch short sequence &
cross-correlate and find
maximum coefficient

Sign of

(STXCO2)

Stretch long sequence &

cross-correlate and find
maximum coefficient

XLAG2

O RSs

(STXCO1

Stretch short sequence &
cross-correlate and find
maximum coefficient

Find largest coefficient
and determine optimum
stretch and displacement

Print results
and store results
in files

ED

Fig. 5.3c Flow chart of the main program PCAXCOR.
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of 0.0 and variance of 1.0. Using the data matrix (Y), the subroutine returns
the standardized form (STANDZ) which contains the standardized well-log
variables of size a number of columns (NCOL) by a number of rows

(NROW). Any size of a matrix can be used.

MULTV7 subroutine

To calculate the Qariance-covariance or correlation matrix of the
original matrix. It uses the standardized data‘matrix (STANDZ) which has
been derived from subroutine STANDARIZE and returns the square
symmetric matrix of variance-covariance or correlation matrix (C), which

»

has as many columns and rows as there are columns in the STANDZ.

TRED2 subroutine

Calculates the tridiagonal matrix of the square matrix (C). From
TRED2 come two vectors (D) and (E) which are the diagonal and off-
diagonal elements of the input matrix (C). It returns the diagonal (D) and
off-diagonal (E) elements of the tri-diagonal matrix (TRI).

TQLI subroutine

D and E from TRED2 are replaced by the eigenvalues and the
corresponding eigenvectors respectively. It returns an n X n matrix (A)

which contains the eigenvectors of the square matrix.

{Chapter Five: Software |
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EIGENVALUE subroutine

To calculate the percentage each eigenvalue contributes to the total
variance. It returns a one-dimensional vector (PERC) which contains the

percentages.

ORGANIZE subroutine

To organize the final output and write it to a file. It tabulates the
eigenvalues, eigenvectors and the percentage of each eigenvalue, using the
matrix (A) containing the eigenvectors D, one dimensional vector of the
eigenvalues and PERC is one-dimensional vector containing the percentage

of each eigenvalue.

SMOOTH subroutine

This subroutine is to smooth the first principal component using a
moving average filter. It read a vector (PP) which contains the principal
component scores and outputs the filtered principal component vector

(SMOOTHD). Filtering is optional.

BOUNDARY subroutine

This subroutine is to identify the boundaries of different formations
using the Mahalanbis D? technique (Davis, 1986). It takes the filtered

principal components vector (SMOOTHD) and returns its D squared values.

{Chapter Five: Software |
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The maximum peaks of these values represent the positions of formation

boundaries.

XCOR subroutine

The subroutine XCOR controls the calculation of the cross-correlation
between two éequences. It utilizes two cross-correlation processes to
determine the stretch factor and the relative displacement. Cross-correlation
of power spectra of two sequences identifies the direction and amount of
stretch between two series. Cross-correlation of the stretched sequences
identifies the relative displacement between these sequences. Outputs
con;ist of a list of the input data, coefficients of the cross-correlation of
power spectra and the optimum stretch and displacement values (Appendix
E). Other output, for example, derivative data, interpolated power spectra,
etc are stored in different files for later graphical manipulation in the S
system. Subroutine XCOR and all subroutines it is calling are modified from

SPECOR program (Kwon, 1977). The following subroutines are called by
XCOR..

DERIVAT subroutine

To replace the principal components by their first derivatives. This is
an optional step before calculating the Fourier transforms. DERIVAT
subroutine takes the first principal component of the short sequence
(RLOG]1) and the first principal component of the long sequence (RLOG2)
and calculates their derivatives, RLOGI and RLOG2 respectively.

[Chapter Five: Software |
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FOURT subroutine

This subroutine calculates the Fourier transforms of the short and
long sequence. It takes either the original data (filtered ‘principal
components) or the derivative data form of the data and returned their
Fourier transform CLOG1 and CLOG2 which are used by subroutine XCOR

to calculate the power spectra of the two series.

INTPOL3 subroutine

This is to obtain equally spaced power spectra using Lagrange
interpolation method. It interpolates power spectra of the short series
(RLOGT1) and the power spectra of the long series (RLOG2) and returns their
interpolated values in Y1P1 and Y1P2 respectively.

CROSS1 subroutine

This is used to cross-correlate between the interpolated power spectra
to obtain the stretch factor. The interpolated power spectra of the short and
long sequences Y1P1 and Y1P2 from subroutine INTPOL3 are used by this
subroutine. The first call to CROSS1 by subroutine XCOR is to cross-correlate
between the interpolated short sequence (Y1P1) and the interpolated long
sequence (YIP2), and cross-correlation coefficients are stored in a vector
XCORL. The second call to CROSS1is to cross-correlate between the
interpolated long sequence (Y1P2) and the interpolated short sequence

(Y1P1). The resultant cross-correlation coefficients are stored in XCORS.

[Chapter Five: Software |
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Both vectors (XCORL & XCORS) are stored in the vector YIP1 with a length

set equals to the maximum expected stretch factor (S=2).

MAX subroutine

To find the maximum peak in the cross-correlation function of power
spectra and cofnpute the corresponding stretch factor. It takes the vector
containing the cross-correlation coefficients (Y1P1) and returns its

maximum value (PCMAX1).

SCAN subroutine

To find the second peak in the cross-correlation function of power
spectra and compute the corresponding stretch factor. The vector Y1P1
which contains the cross-correlation coefficients is input to subroutine
SCAN which returns the second maximum value of the cross-correlation

function of power spectra.

STXCO1 subroutine

This is used to stretch and correlate the first peak of the cross-
correlation function assuming that the long series is stretched. It makes calls
to STRETCH, CROSS2, and MAX subroutines. It passes the short sequence
(RLOG1) to subroutine STRETCH. RLOG1 after being stretched (CRLOG1) is
passed to subroutine CROSS2 for cross-correlation with the long sequence

(RLOG2), and the maximum value of the cross-correlation function is

|Chapter Five: Software |
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determined using subroutine MAX.

STXCO2 subroutine

This is used to stretch and correlate the first and the second peak of
the cross-correlation function assuming that the short series is stretched. It
makes calls to STRETCH, CROSS2, and MAX subroutines. It passes the long
sequence (RLOG2) to subroutine STRETCH. RLOGI1 after being stretched
(CRLOG?2) is passed to subroutine CROSS2 for cross-correlation with the
short sequence (RLOG1), and the maximum value of the cross-correlation

function is determined using subroutine MAX.

2

STRETCH subroutine

This subroutine is to interpolate a time series data with N values to a
series with M values in the frequency domain. It makes a call to FOURT
subroutine to invert the Fourier transforms. The short (RLOG1) and the
long (RLOG2) sequences are used by this subroutine, which returns the
stretched version of RLOG1 and RLOG2 in vectors CLOG1 and CRLOG2

respectively.

5.2.2 Graphical functions

The graphical functions (Appendix D) which are written in the S

language and are used to display the results are:

|Chapter Five: Software |
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xsection :

This is used to generate a cross-section in the Attahaddy field using

the geological formation tops.

macbound :

This plots the non-filtered first components on one side and the

boundaries of different formation on the other side of the diagram.

F

smoothplot
To plot the filtered first principal components of the used well-log

data along with their window sizes which are used for the cross-correlation

process.

pws :

This function is to draw the short and long sequences, the derivative
data, the power spectra, the equi-spaced power spectra, the interpolated
power spectra, the cross-correlation function of power spectra, and the cross-

correlation of the stretched series.

[Chapter Five: Software |
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xcfun

To plot the short and the long sequence along with the size of the
window used in the cross-correlation process, the cross-correlation function

of power spectra, and the cross-correlation function of the stretched series.

prinplot :

To plot different filtered principal components of the studied wells.

| Chapter Five: Software |
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CHAPTER SIX

Conclusions

The application of principal component analysis to well-log data was
established ' for better understanding of subsurface geology. By using
principal component scores formation boundaries can be identified and
well-to-well correlation performed. Because principal component scores
contain most of the variance of the original matrix, it is easier to handle

these scores than to use all the variables of the raw data matrix.

Conventional well-log variables (Spontaneous potential, Gamma
Ray, etc) are often used for boundary identification as well as cross-
correlation between different wells. The first principal component of these
variables is found to be appropriate for an automatic process to identify
formation boundaries, and cross-correlation between the chosen boreholes
in the Attahaddy field. Different well-log variables are expressed in different
units of measurement. For such a case, the correlation matrix is used for the
calculation of the principal component scores. This implies that all variables
are expressed in dimensionless form to reduce the affect of variables whose

mean is large and inflate variables whose mean is small. This is necessary if
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the units of measurement of different well-log variables are not the same. A
decrease in the amount of the percentage of the eigenvalues is inevitable for

this case.

Filtering the principal component using a moving average filter is
necessary before the identification of formation boundaries is obtained to
reduce the affect of thin beds. A window size equal to half the expected'
thickness of the formation is found to to suitable to identify formation
boundaries. Although the formation thickness in the Attahaddy field varies
from one borehole to another, an average window size of 150 feet gave
apprepriate results in the study area. If small beds are of interest a smaller
window size is appropriate to identify the formation boundaries of these

beds.

The filtered principal components are again used for well-to-well
correlation. Filtering these components is found to be necessary before
proceeding with any correlation. Non filtered scores are tested for
correlation and were not as good as the filtered scores. The cross-correlation
technique between a number of boreholes in the Attahaddy field is based on
spectral analysis of the filtered first principal component scores. Two cross-
correlation functions are used. The cross-correlation function of power
spectra which gives the degree and direction of stretch, and the cross-
correlation function of the stretched principal components which

determines the displacement between two formations
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Use of principal component scores in well-to-well correlation is a new
technique which has many advantages over the previous studies. An
important advantage of this approach is the elimination of the noise effect.
This is achieved by using moving average filtered scores in the time domain
for the cross-correlation function of scores to determine the displacement,
and the derivative filter in the frequency domain for the cross-correlation

function of power spectra to determine the stretch factor.

Good agreement from this method was obtained for the geological
formation boundaries and cross-correlation between boreholes in the study
area;. Although the geological stretch and displacement vary widely in the
Attahaddy field, both the stretch factor (thinning and thickening of strata),
and the displacement (correlation position) of the studied wells which were
obtained using program PCAXCOR coincide with the known geological
stretches and displacements (Fig. 4.63 and Table 4.7). Furthermore, the
program can be used to correlate different rock types within the same rock

unit and can also be used to identify the general lithological character of

formations in the boreholes.

Another advantage of using the first principal component is an
increase in the magnitude of the correlation coefficient in well-to-well
correlation over the previous studies. In his technique, Kwon (1977)
obtained an average value of the cross-correlation coefficients of 0.50 which
was considered to be excellent when the original variables of well-log data

were used. In this study, the average value of the coefficient is 0.85. This
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implies that a very distinctive linear relationship exists between each pair of
first principal components used in the correlation processes. The increase in
the correlation coefficient is the result of using the first principal
components which reduces the noise problems. Kwon (1977) concluded that
the reduction in the magnitude of the cross-correlation coefficient was due
to the presence of uncorrelatable noise signals in the variables to be
correlated. High noise variable gave spurious stretch factors and, hence,
wrong displacements. He concluded that care must be taken when dealing
with high noise components. In the PCAXCOR program, the noise effects
are controlled by using the filtered first principal components before
(moving average filter) and after (high-pass filter) the correlation is made

between two sequences.

In addition, this study demonstrates the advantage of employing the
filtered first principal components over the non-filtered first principal
component or the original well-log variables. This approach of using the
filtered first principal component in boundary identification and well-to-
well correlation is found to be precise, reliable, and gives accurate results
related to the geological boundaries and known correlation of the area of
study. There are a few occasions when the computer selection does not agree
with the manual geological selection. Such deviations occur because
PCAXCOR identifies the boundaries at the inflection point between two
formations by hunting for a boundary at the abrupt change in the average
values of the sequence. However, some of the formation boundaries in the
study area do not occur at such a point; for example, the top of the Domran

Formation. This illustrates one of the fundamental limitations of the
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automated identification of rock boundaries.

The deviation of computed correlation from the known geological
correlation in some cases, is explained by the fact that the mathematical
correlation by PCAXCOR is made assuming that there is an average
similarity between the sequences to be correlated. However, this is not
always true in the Attahaddy field, for example the correlation between the
Domran formations in well FF10 and well FF12. This is another limitation

of using this method.

Nevertheless, this new technique is a useful addition to the current
manual methods of boundary identification and well-to-well correlation.
The new complete framework of software opens a new era in well-log
interpretation and may be made more reliable by further refinement of this
method to include automatic identification of rock types from the first

principal components.
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APPENDIX A

Borehole information

The following is some information about the boreholes in the
Attahaddy field. This includes the location of the field (Fig. 1), the
longitude and latitude, the elevation to the Kelley bushing (KB), the

classification of each well ... etc.

WELL FF2-6

Location : 3.7 km SE of FF1-6

Coordinates : 29 33' 28" N : 19 38' 54" E

Elevation KB : 297

Classification: Exploration outpost .

Spudded : 6 Oct. 1967 Completed : 13 Nov. 1967
Completion status : Dry and abandoned .

Total depth : 10,035’ Plugged back T.D : to the surface .
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Fig. 1 Location map of the boreholcs in the Attahaddy field.
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WELL FF3-6

Location : 2.8 km S- SE of FF1-6

Coordinates : 29 32' 52.9" N : 19 37" 414"E

Elevation KB : 362

Classification : outpost .

Spudded : 24 Apr. 1985 Completed :30 Jul. 1985
Completion status : Gas well

Total depth : 12,104'

A total of 10 DST's and production test have been run and
have showed a flow rate of 20.2 MMCFG/D with bottom hole pressure
of 2995 psi .

WELL FF4-6

Location : SP 430 seismic line V6-27-84

Coordinates : 29 33' 01.059" N : 19 36' 12.946" E
Elevation KB : 362

Classification : outpost .

Spudded : 24 Oct. 1985 Completed : 12 Feb. 1986

Completion status : Gas well

| Appendix A: Borehole information |
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Total depth : 11,170’

This well was drilled with no major problems encountered
except lost circulation all the way down from the top of the Gargaf

Formation to T.D .

A total of 5 DST's run on the Gargaf Formation showed good reservoir
characteristics . A 24 hours flow test has been run , 3320 psi on 1/4"

choke pressure with flow rate of 4.58 MMCFG/D have been recorded .

WELL FF5-6

Location : Seismic line V25-84 , SP 230

Coordinates : 29 34' 29.039" N : 19 35' 24.290"E
Elevation KB : 350'

Classification : outpost .

Spudded : 20 Feb. 1986 Completed : 5 May 1986
Completion Status : Gas well .

Total depth : 11,214 Plugged back T.D : 10,800’

A total of 6 DST's have been run, 3 have failed, fresh water

was recovered (cl- 8600 ppm) in the last test .
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Maximum surface head pressure 597 psi , BHT : 322 degree F.
WELL FF6-6

Location : Seismic line 192-84 , sp 280

Coordinates : 29 30" 26.818" N : 19 40' 14.216"E

Elevation KB : 328'

Classification : exploration-outpost .

Completion status : Gas well .

»

Total depth : 12,065'

One DST has been run . It displayed a bottom hole pressure of
3392 psi . Three cores have been cut .

WELL FF7-6

Location : Seismic line 6V-27-84 , sp 300

Coordinates : 29 36' 21.310"N : 19 37' 38.574"E
Elevation KB : 137

Spudded : 23 Sep. 1986 Completed : 13 Jan. 1987

Classification : outpost .
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Completion status : Gas well .

Total depth : 12,594’ Plugged back TD : 12,400’

A total of 5 DST's were run, showing a flow rate of 32
MMCFG/D and surface pressure of 2500 psi has been recorded . Three

cores were cut.

WELL FF8-6

Location : Seismic line 6V-27-84 , sp 370

Coordinates : 29 34' 33.508"N : 19 36' 57.339"E
Elevation KB : 287"

Classification : development .

Spudded : 16 Jun. 1986 Completed : 2 Act 1986
Completion status : suspended gas well .

Total depth : 12,018'

Seven DST's accomplished, one core was cut. Average flow

rate 9 MMCFG/D.
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WELL FF9-6

Location: Seismic line 6V -32- 84 , sp 371

Coordinates : 29 30' 54.190"N : 19 41' 51.632"E

Elevation KB : 283"

Classification : outpost

Spudded : 09 Act. 1986 Completed : 21 Jan. 1987
Completion status : Suspended as non-commercial gas well .

£

Four DST's have been run, displaying no commercial
hydrocarbons . A 20 hours production test was run, indicating 50 psi

mean surface pressure on 3/4" choke, flow rate 820 MCFG/D .

WELL FF10-6

Location : Seismic line 6V 218 -E 85

Coordinates : 29 27' 23.954"N : 19 42' 50.183"E

Elevation KB : 376'

Classification : Exploration wildcat

Spudded : 23 Jan. 1987 Completed : 15 Apr. 1987

Completion status : Dry and Abandoned .
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Total depth : 12,630' Plugged back T.D : to surface .

Two DST's were run with no hydrocarbon show. Three cores

have been cut, indicating that the formation was tight and dense .

WELL FF11-6

Location : Seismic line

Coordinates : 29 34' 05.21'N : 19 39' 05.37"E 7

Elevation KB : 248'

Classification : outpost

Spudded : 22 Jun. 1987 Completed : 18 Jul. 1987

Completion status : Gas well

Total depth : 12,753

A total of 4 cores have been cut, 4 DST's were run with

average estimated of flow rate of 12-13 MMCFG/D .

WELL FF12-6

Location : Seismic line 6V 206- 85 X, sp 1810
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Coordinates : 29 33' 01.495'N : 19 42' 06.320E

Elevation KB : 239’

Classification : outpost exploration .

Spudded : 24 Jul. 1987 Completed : 03 Jan. 1987
Completion stah.13 : dry and abandoned .

Total depth : 12,607

Four cores were cut and two DST's were run, did not show

any reservoir characters .

WELL FF13-6

Location : Seismic line 6V 31 -83 , sp 340

Coordinates : 29 35' 15.815" N : 19 39' 26.993"E
Elevation KB : 190'

Spudded :15 Act. 1987 Completed : 30 Jan. 1988
Classification: outpost .

Completion status : Suspended as Gas well .

Total depth : 12,524 Pluggd back T.D : 12,225'
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A total of five DST's were run and production test was run to

confirm that there was no potential reservoir in that block .

WELL FF14-6

Location : Seismic line 6V-29-84 , sp 280

Coordinates : 29 31' 28.983"N : 19 37' 13.327"E
Elevation KB : 375'

Classification : Exploratory .

Spudded : 16 Dec. 1987 Completed : 12 Apr. 1988
Completion status : Dry and abandoned .

Total depth : 13,426 Plugged back TD : 814"

Two DST's were run showed no hydrocarbon accumulation

in the block . Three cores have been cut, showing a very tight formation.

WELL FF15-6
Location : Seismic line 6V-216-ext 85 , sp 955
Coordinates : 29 21' 42.44"N : 19 40' 59.98"E

Elevation KB : 328’
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Classification : outpost .
Spudded : 18 Apr. 1988 Completed : 22 Aug. 1988
Completion status : Suspended gas well .

Total depth : 12,638.5' Plugged back T.D : 11,270’

A total of 4 DST's were run , followed by a production test .

The estimated flow rate is 8 MMCFG/D .

s
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APPENDIX B

Well logging principles

The important variables used in downhole well-logging, and used in
in this project are described. There are different terms of well-log tools for
different companies. The names of the tools used through out this study, for

example, LDL, CNL, BHC ....etc are the Schlumberger company trade mark.

Spontaneous Potential (SP)

The Spontaneous Potential (SP) curve is a measure of the difference
between the potential of a movable electrode in the borehole (Fig.1a) and
the fixed potential of a surface electrode. The unit used is the millivolt.

Spontaneous potential is used to:

1- detect the permeable beds,

2- locate their boundaries and to permit correlation of such beds,
3- determine values of formation water resistivity RW (Fig.2),

4- gives qualitive indication of bed shaliness.
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Gamma Ray (GR)

The basic Gamma Ray log (GR) is a measure of the radioactivity of the
formations. Radioactivity arises from the decay of three elements present in
the rocks, Uranium U, Thorium Th, and Potassium K, which continuously
emit gamma rays, in the form of short bursts of high- energy radiation.
These gamma rays are cabable of penetrating a few inches of rocks. A
fraction of these emitted around the borehole, penetrate the drill mud, and
can be detected by a suitable gamma ray sensor. The detector gives a direct
pulse for each gamma ray detected. The parameter recorded is the number
of pulses per unit of time by the detector (Schlumberger, 1974). The. units
used are GAPI. The GR log is used to:

1- detect permeable beds,

2- detection and evaluation of radioactive minerals such as potash or

uranium ore,

3- delineates non-radioactive minerals,
4-aid correlation of cased hole,

5- perform well-to-well correlation,

6- evaluate shale content, Vsh.

Sonic Logs (BHC)

The BoreHole Compensated (BHC) sonic tool or as widely used DT, is

used to detect the travel time in the borehole.
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Any solid medium will propagate acoustic waves, the aim is to
measure the time of propagation of a sound wave through the formation,
over a fixed distance. Basically a transmitter and a receiver are placed some
distance away on the sonde (Fig.1b). The log readings are scaled not as a
velocity but rather as a transit time (DT). The units used are microsecond

per foot. The BHC is used to:
1- determine the formation porosity,

2-perform well-to-well correlation.

Resistivity Logs

In conventional resistivity (Schlumberger, 1985), currents are passed
through the formation via certain electrodes, and voltages are measured (in
ohms) between certain others. These measured voltages provide the‘
resistivity determinations. So that there will be a current path between
electrodes and formations, the sonde must be run in holes containing

electrically conductive mud or water.

There are three types of resistivity curves, shallow, medium and deep
depending on the spacing between the electrodes (Fig. 1c). The units used

are Ohm and resistivity tools are used to :
1- determine different formation resistivities e.g Rt, Rxo, Rmf. ect (Fig. 2),
2- perform well-to-well correlation,

3- determine hydrocarbon saturation.
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Formation Density Log (LDL)

A radioactive source, applied to the hole wall in a shielded skid,
emits medium-energy gamma rays into the formation. These gamma rays
may be thought of as high velocity particles which collide with the electrons
in the formation. At each collision a gamma ray loses some, but not all, of
its energy to the electron, and then continues with diminished energy. This
type of interaction is known as Compton Scattering. These scattered gamma
rays on reaching a detector, at a fixed distance from the source (Fig.1d), are
counted, to give an indication of formation density. The number of
Compton-scattering collision is related directly to the number of electrons in
the formation. Consequently, the response of the density tool is determined
essentially by the electron density (number of electrons per cubic centimetre)
of the formation. Electron density is related to the true bulk density, pb, in
gms/cc, which in turn depends on the density of the rock matrix material,

the formation porosity and the density of the fluids in the pores.

The LDL tool is used as porosity-logging tool. Other uses of density
measurement include identification of minerals in evaporite deposits,
detection of gas, determination of hydrocarbon density, and evaluation of

shaly sand and complex lithologies.
Neutron log

Neutrons are electrically neutral particles, each having a mass almost
identical to the mass of an hydrogen atom. High energy (fast) neutrons are

continuously emitted from a radioactive source which is mounted in the
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sonde. These neutrons collide with nuclei of the formation materials in
what may be thought as elastic "billiard-ball" type collision. The amount of
energy lost per collision depends on the relative mass of the nucleus which

the neutron collides.

The greafest energy loss occur when the neutron strikes a nucleus of
parti'cularly equal mass,-i.e, a hydrogen nucleus. Collision with heavy
nuclei do not slow the neutron down very much. Thus, the slowing-down
of neutrons depends largely on the amount of hydrogen in the formation.
When the hydrogen concentration of the material surrounding the neutron
source is large, most of the neutrons are slowed down and captured within a
short distance of the source. On the the hand, if the Hydrogen concentration
is small, the neutrons travel farther from the source before being captured.
Accordingly, the counting rate at the detector increases for decreased

hydrogen concentration and vice versa (Schlumberger, 1974).

Table 1 summarizes some of the well-logging tools, their

measurements, and their uses in well-to-well correlation.
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APPENDIX C

PROGRAM PCAXCOR

PROGRAM TO PERFORM PRINCIPAL COMPONENT ANALYSIS
OF WELL-LOG DATA, BOUNDARY IDENTIFICATION AND WELL
TOWELL CORRELATION.

1-MULTV?7 SUBROUTINE: TO CALCULATE THE CORRELATION

»  MATRIX OR THE VARIANCE-COVARIANCE MATRIX OF THE
ORIGINAL MATRIX. THIS SUBROU- ‘
TINE USES "Y" THE ORIGINAL MATRIX AND OUTPUTS THE
VAR-COV. OR THE
CORR. MATRIX "C" WHICH HAS AS MANY ROWS AS
COLUMNS.

2- TRED2 SUBROUTINE:
TRED2 CALCULATES THE TRIDIAGONAL MATRIX OF THE
SQUARE MATRIX.
FROM TRED2 COME TWO VECTORS D AND E WHICH ARE THE
DIA. AND OFF-DIA. ELEMENTS OF "A" . D,E ARE MADE
ARGUMENTS OF TQLI

3- TQLI SUBROUTINE:
D AND E FROM TRED2 ARE REPLACED BY THE EIGENVALUES
AND THE CORRESPONDING EIGENVECTORS RESPECTIVELY.

4- EIGENVALUE SUBROUTINE:
TO CALCULATE THE PERCENTAGE OF EACH EIGENVALUES
CONTRIBUTE TO THE TOTAL PERCENTAGE. IT RETURNS ONE-
DIM. VECTOR "PERC" WHICH CONTAIN THE PERCENTAGES.
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5- ORGANIZE SUBROUTINE:
THIS IS TO ORGANIZE THE FINAL OUTPUT AND WRITE IT TO A
IT LISTS THE EIGENVECTORS & EIGENVALUES AND THE
PERCENTAGE OF EACH
EIGENVALUE TO THE TOTAL VARIANCE."A" TWO-
DIMENSIONAL ARRAY
CONTAINS THE EIGENVECTORS & "D" IS ONE-DIMENSIONAL
VECTOR
CONTAINS THE CORRESPONDING EIGENVALUES AND "PERC"
IS ONE-
DIMENSIONAL VECTOR CONTAINS
THE PERCENTAGE OF EACH EIGENVALUE.

6- SMOOTH SUBROUTINE:
THIS IS TO FILTER THE DATA USING A MOVING AVERAGE
FILTER.

BOTH TRED2 & TQLI ARE OBTAINED FROM NUMERICAL
RECIPES BY :

WILLIAM H. PRESS AND BRIAN P. FLANNERY.

SOME MODIFICATIONS ON THESE SUBROUTINES HAVE BEEN
MADE.

THE MAIN PROGRAM COPIES MATRIX "C" INTO MATRIX "A".
"A" IS MADE AS
AN ARGUMENT TO "TRED2" AND "TQLI" SUBROUTINES.

Y . TWO-DIMENSIONAL ARRAY INPUT INTO MULTV7
SUBROUTINE.

........ AND CONTAINS THE ORIGINAL MATRIX. ....cccoiiiiiniiiininns
Cns TWO-DIMENSIONAL ARRAY INPUT INTO TRED2 & TQLI
SUBROUTINES.

........ IT CONTAINS THE VAR-COV. MATRIX OR CORRELATION
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A ... TWO-DIMENSIONAL ARRAY INPUT INTO TRED2

ORGANIZE SUBROUTINE...
THIS MATRIX IS COPIED FROM "C".ON INPUT IT CONTAINS
THE VAR-COV. MATRIX. ...coviiiiiiiciniiiniirentesesceestesteseesaesatsasessesnnens
D ... ONE-DIMENSIONAL VECTORS INPUT INTO TQLI &
EIGENVALUE AND ORGANIZE SUBROUTINES.

........ ON INPUT IT IS DIAGONAL ELEMENTS OF THE TRIDIAG
MATRIX.
E.... ONE-DIMENSIONAL VECTOR INPUT INTO TQLI
SUBROUTINE.
........ IS SUB-DIAGONAL ELEMENTS OF THE TRIDIAG. MATRIX.
P.... ONE-DIMENSIONAL VECTOR INPUT INTO SMOOTH
SUBROUTINE. :

.......... IT CONTAINS THE EIGENVECTORS TO BE SMOOTHED. .......

................................................................................................................................

COR ........ TWO-DIMENSIONAL ARRAY OUTPUTS BY MULTV7
SUBROUTINE.

........ IT CONTAINS THE CORRELATION OR THE

VAR COV.MATRIX .cooiiiiiiiiitiiiitesencecsaeeestestesesesesesessessessssssssaessesassssesesens

SUBROUTINE.

TRI ...... TWO-DIMENSIONAL ARRAY OUTPUTS BY TQLI
SUBROUTINE.

......... IT IS THE TRI-DIAGONAL MATRIX. ....ccooiiiriiiiiecnnienecinescnnnneas
F.... TWO-DIMENSIONAL ARRAY OUTPUTS BY TQLI
SUBROUTINE.

.......... IT CONTAINS THE PRINCIPAL COMPONENT SCORES

A ... TWO-DIMENSIONAL ARRAY OUTPUTS BY TQLI
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ORGANIZE
SUBROUTINE.ON OUTPUT IT CONTAINS THE EIGENVECTORS. .
PERC ..... ONE-DIMENSIONAL VECTOR OUTPUTS BY ORGANIZE
EIGENVALUE. '

..... IT CONTAINS THE PERCENTAGES OF EACH EIGENVALUE.
SMOOTHD .. TWO-DIMENSIONAL ARRAY OUTPUTS BY
SMOOTH

SUBROUTINES. IT CONTAINS THE SMOOTHED PRINCIPAL
COMPONENT SCORES......coouveeeemeeeseeeseesseesessesssseesesessssmssessessssassassessssssases
BOUNDARY...ONE-VECTOR OUTPUTS BY BOUNDARY
SUBROUTINE.

........... IT CONTAINS THE BOUNDARY OF DIFFERENT
FORMATION.

................................................................................................................................

PARAMETER(NMAX=8000,NCOL=10,TINY=1.0E-4,NI=4,N=7)
PARAMETER(INROW=8000)

DIMENSION A(NMAX,NCOL),D(INCOL),E(NCOL)
DIMENSION TRI(INMAX,NCOL),Y(INROW,NCOL)
DIMENSION STANDZ(INROW,NCOL)

CHARACTER*10 STANDZFILE,ANSYN

DIMENSION PERC(NCOL)

DIMENSION Y(NMAX,NCOL),C(NMAX,NCOL)
CHARACTER*55 PRINC,FILE2, FINALOUT
CHARACTER*35 MULFILEIN,MULFILOUT,FIRSTSC
CHARACTER*10 CHAR(10),YN,YN2

BOUNDLYIN FILE CONTAINS THE FIRST PRINCIPAL
COMPONENT COPIED. FROM"SMOOTHD".
SMOOTHD IS THE FILE CONTAINING THE SMOOTHED DATA
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OUTPUTS OF "SMOOTH".
REAL SMOOTHD(8000),P(8000,10),PP(8000)
DIMENSION DSQUARE(8000)

WRITE(6,1000)
FORMAT(//)

WRITE(6,1001)'INPUT NAME OF THE FILE CONTAINING THE
ORIGINAL VARIABLES'

FORMAT(/,A)

READ(5,1002)MULFILEIN

FORMAT(A10)

WRITE(6,1003)'INPUT THE NO. OF COLUMNS OF THE MATRIX'
FORMAT(/,A)

READ(5,1004)NCL

FORMAT(I12)

WRITE(6,1005) INPUT THE OUTPUT FILE CONTAINS THE VAR-
COV. OR CORRELATION MATRIX'

FORMAT(/,A)

READ(5,1006)MULFILOUT

FORMAT(A10)

WRITE(6,1007) ENTER THE FILE THAT WILL CONTAIN THE
PRINC. COMP. SCORES'

FORMAT(/,A)

READ(5,1008)PRINC

FORMAT(A10)

WRITE(6,1009)'ENTER THE FINAL OUTPUT FILE CONTAINING
THE FINAL OUTPUT

FORMAT(/,A)

READ(5,1010)FINALOUT

FORMAT(A10)

WRITE(6,1011)'INPUT THE FILE THAT WILL CONTAIN THE
PERCENTAGE'
FORMAT(/,A)
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READ(5,1012)FILE2
1012 FORMAT(A10)

WRITE(6,1126)' ENTER THE FILE WILL CONTAIN STANDARDISE
* DATA'
1126  FORMAT(/,A)
READ(5,1127)STANDZFILE
1127 FORMAT(10A)

WRITE(6,1016)
1016 FORMAT(/,A)
WRITE(6,1017)ENTER THE FILE CONTAIN THE PRINCIPAL
* COMPONENT SCORES'
1017 FORMAT(/,A)
., READ(5,1018)FIRSTSC
1018 FORMAT(A10)
WRITE(6,1020)'ENTER THE OUTPUT FILE CONTAINS THE
* BOUNDARIES'
1020 FORMAT(/,A)
READ(5,1021)BOUNDFILEQUT
1021 FORMAT(A10)

WRITE(6,1019)ENTER THE BOUNDARY WINDOW'
1019 FORMAT(A)
READ(5,")IBWIN
C
C FIRST OPEN THE FILE OF THE ORIGINAL MATRIX THAT HAS BEEN
C USED BY SUBROUTINE "MULTV7.F'."NAME THIS MATRIX AS "Y"
C AND USE IT TO CALCULATE THE PRINCIPAL COMPONENT SCORES
C OF THE ORIGINAL MATRIX BY MULTIPLYING. THIS MATRIX BY
C THE CORRESPONDING EIGENVECTORS.

C

C MULFILEIN: A FILE CONTAINS THE ORIGINAL MATRIX (ROW
C DATA)

C MULFILOUT " " " " VARIANCE-COVARIANCE

C MATRIX(MULTV?).

CFILE2: " " "  "EIGENVALUES PERCENTAGE(EIGENVAI UE
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C OUTPUT)

CPRINC: " " " "PRINCIPAL COMPONENT SCORES (PCAXCOR
C OUTPUT)

CFINALOUT: " " " " FINAL OUTPUT FILE CONTAINS FINAL

C RESULT.

CSMOOTHOUT " " " " SMOOTHED PRINCIPAL COMPONENT
C SCORES.

C BOUBDFILEOUT " " " BOUNDARY OF DIFFERENT

C FORMATIONS.

C

OPEN(4,FILE=MULFILEIN,STATUS="UNKNOWN")
OPEN(2,FILE=MULFILOUT,STATUS="UNKNOWN")
OPEN(10,FILE=PRINC,STATUS="UNKNOWN")
OPEN(12,FILE=FILE2,STATUS="UNKNOWN")
OPEN(13,FILE=FINALOUT,STATUS="UNKNOWN")
OPEN(17,FILE=BOUNDFILEOUT,STATUS="UNKNOWN")
OPEN(18,FILE=FIRSTSC,STATUS="UNKNOWN")
OPEN(20,FILE=STANDZFILE,STATUS="UNKNOWN")

C

C

C Y IS THE ORIGINAL MATRIX CONTAINS THE ORIGINAL

C VARIABLES. C IS THE MATRIX CONTAINS THE VARIANCE-
C COVARIANCE OR CORRELATION MATRIX.

C

C NOW READ THE ORIGINAL MATRIX Y

C

=0
DO 8 KI=1,INROW
READ(4,*, END=555)(Y(KL]I) JI=1,NCL)
I=II+1
8 CONTINUE
555 CONTINUE
NROW=II

C IF READING MORE THAN ONCE FROM THE SAME FILE,
C REWIND THE FILE '
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C AND CLOSE IT TO BE OPENED AGAIN.
REWIND(4)
CLOSE®4)
C
C WRITE THE VARIANCE-COVARIANCE OR THE CORRELATION
C MATRIX TO A FILE
C
C READ THE NAME OF THE VARIABLE FROM THE SCREEN.
C CHAR IS THE NAME OF THE CHARACTERS
C THIS SECTION IS FOR THE USER TO CHOOSE WHETHER TO
C STANDARDISE THE ROW DATA OR NOT AND WHICH, THE VAR-
CCOvV.
C MATRIX OR CORRELATION MATRIX IS TO BE USED.
C .
2111 WRITE($,1025)' DO YOU WANT TO STANDARDIZE DATA...
* [Y/NI
READ(,*)YN
TF(YN.EQ."Y".OR.YN.EQ."y")THEN

CALL STANDARIZE(Y NROW,NCL,STANDZ)

DO 1111 J=1,NROW

WRITE(20,'(7F11.3)' (STANDZ(J,1),1=1,NCL)
1111 CONTINUE

WRITE(6,1025)'STANDARDISE DATA AND CORRELATION
* MATRIX USED '

C
C
WRITE(2,*)'THE CORRELATION MATRIX IS
WRITE(13,*) THE CORRELATION MATRIX IS '
C
CALL MULTV7(STANDZ,C,NROW,NCL)
C

WRITE(6,1515)'STARTING CALCULATE CORRELATION MATRIX'
1515 FORMAT(/,A)

DO 3333 J=1,NCL

WRITE(2,'(1X,7F10.3)' (C(,]) I=1,NCL)
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WRITE(13,'(6X,7F10.3)')(C(1,]),1=1,NCL)

WRITE(6,1025)' ENTER NAME OF CHARACTER =====> ']
READ(5,FMT=666) CHAR(J) |
FORMAT(/A,I2)

KB=]
CONTINUE

C COPY MATRIX "C" INTO "A"
C "C" IS THE MATRIX CONTAINS THE CORRELATION MATRIX

C

11

12

5555

5151

5252

1027

DO 12 J=1,NCL
DO 11 I=1NCL
A(J,D=C(,D
CONTINUE
CONTINUE

ELSE

WRITE(6,5151)'NON-STANDARISED DATA AND VARIANCE-
COVARIANCE MATRIX '

FORMAT(/,A)

WRITE(2,*)' THE VARIANCE-COVARIANCE MATRIX IS '
WRITE(13,*)' THE VARIANCE-COVARIANCE MATRIX IS
WRITE(6,5252)'STARTING CALCULATE VARIANCE-
COVARIANCE'

FORMAT(/,A)

CALL MULTV7(Y,C,NROW,NCL)

DO 6666 I=1,NCL
WRITE(2,'(1x,7F10.3)')(C(L]),J]=1,NCL)
WRITE(13,'(6x,7F10.3))(C(L]),]=1,NCL)

WRITE(6,1027)' ENTER NAME OF CHARACTER =====> ']
READ(5,FMT=666) CHAR()

FORMAT(/A,12)
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KB=I
C
6666 CONTINUE
C

C COPY MATRIX "C" INTO "A"
C "C" IS THE MATRIX CONTAINS THE VAR-COV. MATRIX
C

DO 24 J=1,NCL

DO 23 I=1,NCL

A(JD=CQ,D
23  CONTINUE
24 CONTINUE
C  COPY MATRIX "Y" INTO "STANDZ" FOR LATER CALCULATION
C  OF THE SCORES.

. DO 2020 J=1,NROW

DO 2021 I=1,NCL

STANDZ(J,D=Y(J,1)
2021 CONTINUE
2020 CONTINUE

ENDIF

2211 FORMAT(A12)
2221 FORMAT(I4)
666 FORMAT(5A)
1029 FORMAT(A)

C
CALL TRED2(A,NMAX,NCL,D,E)
C
C TEST FORTHE EIGENVALUE.........coeneceteencennessnssensssssssssssssassesesens
C

WRITE(2,'(/1x,A)")'DIAGONAL ELEMENTS'
WRITE(2, (1x,7f11.3)')(D(D),I=1,ncl)
WRITE(2,'(/1x,A)")'OFF-DIAGONAL ELEMENTS'
WRITE(2,'(1x,7£11.3)')(E(D),I=1,ncl)

C  CHECK TRANSFORMATION MATRIX .
DO 6 J=1,NCL
DO 5 K=1,NCI
TRI(J,K)=0.0
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DO 41L=1NCL
DO 3 M=1,NCl
TRI(J,K)=TRI(J,K)+A(LJ)*C(L M)*A(M,K)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
HOW DOES IT LOOK ...
WRITE(2,'(/1x,A)") TRI-DIAGONAL MATRIX LOOKS'
DO 71=1,NCL ‘
WRITE(2,'(1X,7F11.3))(TRI(L]),J=1,NCL)
7  CONTINUE
CALL TQLI(D,E,;NMAX,NCL,A,N)
C  WRITE THE EIGENVALUES FOR THE REAL SYMMETRIC
C ., MATRIX.
C

o I

C MATRIX "STANDZ" BELOW IS THE STANDARDIZED ROW DATA
C WHEN THE ORIGINAL DATA WAS STANDARDIZED AND ALSO

C "STANDZ" IS THE ORIGINAL ROW DATA WHEN

C STANDARDIZATION HAS NOT TAKE PLACE.(i.e "STANDZ"HAS

C BEEN COPIED FROM ORIGINAL DATA MATRIX "Y").
C

WRITE(2,'(/1x,A)")EIGENVALUES FOR REAL SYMMETRIC

*  MATRIX'

DO 16 I=1,NCL

DO 14 J=1,NROW

P(,1)=0.0

DO 13 K=1,NCL

P(J,I) = P(,)+STANDZ(J,K)*A(K,I)
13  CONTINUE
14 CONTINUE

C
WRITE(2,'(/1X,A,13,A,F12.3)')EIGENVALUE'],'=",D(I)
WRITE(2,'(/1X,A)")EIGENVECTORS'

C

C WRITE THE EIGENVALUES TO A FILE

C
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C TEST FOR THE EIGENVALUE........ccoveeirereereerersessesessssssesssessosssssssssssmssnssasens
C
DO 15]=1,NCL
IF(ABS(A(J,1)).LT.TINY)THEN
WRITE(2,'(15X,F12.6,A12)")A(],I),'DIV. BY ZERO'
c WRITE(2,'(1X,2F12.6,A12))A(J,1)
ELSE
c WRITE(2,'(1X,2F12.6,E14.6)")A(,1),F(J,K),F(J,K)/ A(,1)
WRITE(2,'(15X,F12.6,))A(J,1)
ENDIF
15 CONTINUE
16 CONTINUE
C
C WRITE ALL THE PRINCIPAL COMPONENT SCORES TO A FILE AND
C CAST THEM IN A MATRIX(THE LAST COLUMN IS THE FIRST
C PRIC. COMP.)
C
DO 2010 J=1,NROW
WRITE(10,'(7F10.4)")(P(J,1),1=1,NCL)
2010 CONTINUE
C
C NOW WRITE EIGENVALUES PERCENTAGE OF THE TOTAL
C VARIANCE TO A FILE

C

CALL EIGENVALUE(D,PERC,NCL)
C

WRITE(13,'(/1X,A,3X,10(12,6X),/ /))’VARIABLE',(I,1=1 NCL)
C

C CHAR: IS THE NAME OF THE VARIABLES TO BE READ FROM THE
C SCREEN.

DO 321=1,NCL

WRITE(12,'(1X,F6.2)")PERC(I)

WRITE(13,'(3X,A3,1X,7F10.5)' )CHAR(),(A(,]) J=NCL,1,-1)
32 CONTINUE

CALL ORGANIZE(D,PERC,NCL)

CLOSE(10)
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OPEN(10, FILE=PRINC)
C
C CALL SUBROUTINE "SMOOTH" TO SMOOTH THE PRINCIPAL
C COMPONENT SCORES.
C
C KB REFEERENT TO WHICH COMPONENT TO BE USED(IN THIS
C CASE THE LAST IS USED).
C
C ASK FOR WHICH COMPONENT TO BE USED :
C

PRINT 2001
2001 FORMAT(//,** WHICH COMPONENTS TO BE USED 1,2 OR

*  LAST COMP[3].***,//)

READ(5,*)COMP
c .
C TO USE THE FIRST COMPONENT
C

IF(COMP.EQ.1)THEN

DO 2110 I=1,NROW

READ(10,%)(P(L]),J=1,NCL)

PP(I)=P(LKB)

WRITE(18,*)PP(I)
2110 CONTINUE
ENDIF
C
C TO USE THE SECOND COMPONENT
C
IF(COMP.EQ.2)THEN
DO 2112 I=1,NROW
READ(10,*)(P(L]),J=1,NCL)
PP(I)=P(I,KB-1)
WRITE(18,%)PP(I)
2112 CONTINUE
C
ENDIF
C CHECK THE LAST COMPONENT(THE SMALLEST)
IF(COMP.EQ.3)THEN
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DO 1112 I=1,NROW
READ(10,*)(P(L]),]=1,NCL)
PP(I)=P(IKB-KB+1)
WRITE(18,*)PP(I)
CONTINUE

ENDIF

C THIS SECTION IS TO DECIDE TO USE A FILTER TO SMOOTH THE
C ONE OF THE PRINCIPAL COMPONENT OR TO USE IT DIRECTLY
C WITHOUT SMOOTHING.

C
1114
1113

*

C

PRINT 1113
FORMAT(//,”****** DO YOU WANT TO FILTER THE DATA
e, [Y/NI,/ /)

READ(5,*)YN2

C THIS SECTION PROMPTS FOR THE DATA FOR "SMOOTH"
C SUBROUTINE.

C

C

1013

1014

1015

1121

IF(YN2.EQ."Y".OR.YN2.EQ."y")THEN

WRITE(6,1013)'USING SUBROUTINE TO FILTER THE OUTPUT
DATA ====>'

FORMAT(/,A)

WRITE(6,1014)'ENTER OUTPUT FILE FOR THE SMOOTHED
DATA.

FORMAT(/,A)

READ(5,1015)SMOOTHOUT

FORMAT(A10)

WRITE(6,1121)' ENTER THE LENGTH OF THE WINDOW OF THE
FILTER.'

FORMAT(/,A)

READ(5,*)LEN

OPEN(15,FILE=SMOOTHOUT,STATUS="UNKNOWN")

CALL SMOOTH(PP,SMOOTHD,NROW,LEN)
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DO 220 M=1,NROW
WRITE(15,'(F12.6)")SMOOTHD(M)
220 CONTINUE
C
C THIS "ENDIF" IS RELATED TO YN2 TO FILTER OR NOT THE DATA.
C
CLOSE(15)
OPEN(15,FILE=SMOOTHOUT)
DO 2122 I=1,NROW
READ(15,*)SMOOTHD(])
2122 CONTINUE
C
C IF YOU DO NOT WANT TO FILTER THE DATA THEN:
C THE VECTOR "SMOOTHD" IS THE NON-FILTERED PRINCIPAL
C COMP. SCORES OF THE CHOSEN COMPONENT.
C
ELSEIF(YN2.EQ."N".OR.YN2.EQ."n")THEN
PRINT 5222
5222 FORMAT(//,'NON-FILTERED PRINCIPAL COMPONENT WILL BE
* USED,//) |

C
C COPY VECTOR "PP" INTO "SMOOTHD".
C
REWIND(UNIT=18)
C

DO 2223 I=1, NROW

SMOOTHD(I)=PP(I)
2223 CONTINUE

ENDIF
C CALL THE BOUNDARY SUBROUTINE TO IDENTIFY THE
C BOUNDARIES.
C

CALL BOUNDARY(SMOOTHD,IBWIN,NROW,DSQUARE)
C

DO 1045 1=1, NROW

WRITE(17,*)DSQUARE(I)
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1045 CONTINUE

C

C IF TO BE CONTINUED TO WORK ON OTHER SET OF DATA

C
WRITE(6,*)' DO YOU WANT TO CONTINUE [ Y/N '
READ* ANSYN
IF(ANSYN.EQ.'"Y'.OR.ANSYN.EQ.'y")GO TO 0010
IF(ANSYN.NE.'"Y' OR.ANSYN.NE.'y')THEN

CONTINUE
ENDIF
C
C :
C CALL THE CORRELATION SUBROUTINE TO CORRELATE BETWEEN
C THE TWO LOGS.
c .
CALL XCOR(NROW)
C .
STOP
END
C
£ ettt et see s eesese st e se s e e e be st s ae s be s anbe s e s be s s b e eR e e b beesbe s be b ae s beem st sabesaes
C
C . SUBROUTINES.............
C
C e r et e b e e AR AR R A b s s s bR SRRt aa e saeaetees
C
C SUBROUTINE STANDARIZE
C

C THIS SUBROUTINE IS TO STANDARDIZE THE DATA(i.e THE DATA
C WILL HAVE A MEAN OF ZERO [0] AND VARIANCE OF ONE [1]

C USING THE EQUATION:

C

C
C XIJ=(XIJ-MEAN(]))/ VAR())
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C
C STANDARDIZE SUBROUTINE CALCULATES THE STANDARDIZED
C DATA FROM THE ORIGINAL VARIABLES( MATRIX "Y") AND
C RETURN THE OUTPUT DATA(STANDARZIED) IN MATRIX
C "STANDZ" WHICH WILL BE FED TO THE MAIN PROGRAM TO
C CALCULATE THE CORRELATION MATRIX, EIGENVALUES,
C EIGENVECTORS AND THE PRINCIPAL COMPONENT SCORES. NOTE
C THAT THESE SCORES ARE CALCULATED FROM THE
C STANDARDIZED DATA RATHER THAN THE ROW DATA.
C
SUBROUTINE STANDARIZE(Y,NROW,6NCL,STANDZ)
PARAMETER(ICL=10,MAXN=8000)
Y=THE ORIGINAL DATA MATRIX WHICH CONTAINS THE
ORIGINAL WELL-LOG
VARIABLES OF DIMENSION NROW BY NCL.
STANDZ=STANDARDIZED DATA MATRIX OF DIMENSION
NROW BY NCL.
MAXN=DIMENSION PARAMATER FOR THE NUMBER OF ROWS
OF THE MATRIX
ICL=DIMENSION VECTOR SET BIGGER THAN THE EXPECTED
NUMBER OF
COLUMNS. BOTH MAXN AND ICL CAN BE ADJUSTED TO ANY
NUMBER.
DIMENSIONSTANDZ(MAXN,ICL),DMEAN(MAXN),VAR(MAXN),
* STD(MAXN)
DIMENSION OS(MAXN,ICL),SUM(ICL),Y(MAXN,ICL)

oo NN NN NONONS!

C Yoo, IS THE ROW DATA MATRIX.
C STANDZ..... IS THE STANDARDIZED DATA MATRIX.
C
DO 25 M=1,NCL
SUM(M)=0.0
DO 15 J=1,NROW
SUM(M)=SUM(M)+Y(J,M)
15  CONTINUE
DMEAN(M)=SUM(M)/FLOAT(NROW)
25  CONTINUE
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DO 199 M=1,NCL
SUMM=0.0

DO 99 1=1,NROW
OS(IM)=Y(I,M)-DMEAN(M)
SOS=0S5(I,M)**2
SUMM=SUMM+50S
CONTINUE
VAR(M)=SUMM /FLOAT(NROW-1.0)
STD(M)=SQRT(VAR(M))
CONTINUE

FORMAT(F9.5)

DO 18 M=1,NCL

DO 19 I=1, NROW
STANDZ(I,M)=05(I,M)/STD(M)
CONTINUE

CONTINUE -~

RETURN
END

SUBROUTINE TRED2

C SUBROUTINE TRED2 TO CALCULATE THE TRI-DIAGONAL MATRIX
C OF VAR.-COV. MATRIX OR THE CORRELATION MATRIX.

C

OHONONONeNe!

SUBROUTINE TRED2(A,NMAX,NCL,D,E)

A=SQUARE MATRIX OF THE VARIANCE-COVERAINCE OR
CORRELATION MATRIX.

NMAX=PARAMETER TO SET THE DIMENSION OF THE NUMBER
OF ROWS OF DATA.

NCL=THE NUMBER OF COLOUMNS OF THE DATA MATRIX.
PARAMETER(NCOL=10)

DIMENSION A(NMAX,NCOL),D(INCOL),E(NCOL)

N=NCL

NCOL= A DIMENSIONAL VECTOR SET BIGGER THAN THE
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EXPECTED NUMBER
OF COLUMNS. NCL IS THE NUMBER OF COLUMNS OF THE
MATRIX.
IF (N .GT. 1)THEN
DO 18 1=N,2,-1
=I-1

H=0.0
SCALE=0.0

IF(L .GT. 1)THEN
DO 11K=1,L

SCALE=SCALE+ABS(A(LK))
CONTINUE

IF(SCALE .EQ. 0.0)THEN
E(D=A(,L)
ELSE

DO 12K=1,L

A K)=A(IK)/SCALE
H=H+A(LK)**2
CONTINUE
F=A(I,L)
G=+SIGN(SQRT(H),F)
E(I)=SCALE*G
H=H-F*G
A(L)=F-G
F=0.0
DO 15]=1,L
OMIT THE FOLLOWING IF FINDING ONLY EIGENVALUES
A(D=AQ))/H
G=0.0
DO 13K=1,]
G=G+A(J,K)*A(LK)
CONTINUE
IF(L.GT.J)THEN

DO 14 K=J+1,L

G=G+AK,])*A(IK)
CONTINUE

ENDIF
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E(Q)=G/H
F=F+E(])*A(L])
CONTINUE
HH=F/(H+H)
DO 17J=1L
F=A())
G=E())-HH*F
E()=G
DO 16 K=1,]
A(J,K)=A(J K)-F*E(K)-G*A(K)
CONTINUE
CONTINUE
ENDIF
ELSE
EMD=A(L)
ENDIF
DM=H
CONTINUE
ENDIF

OMIT THE FOLLOWING IF FINDING ONLY EIGENVALUES.

D(1)=0.0

BEGIN ACCUMULATION OF TRANSFORMATION MATRIX.

E(1)=0.0
DO 231I=1,N
DELETE LINE FROM HERE
L=I-1
IF (D) .NE. 0.0)THEN
DO21J=1L
G=0.0
DO 19K=1,L
G=G+A(K)*AK,])
CONTINUE

DO 20K=1,L
AK,)=AK,])-G*AK,D)
CONTINUE
CONTINUE
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ENDIF
C TO HERE WHEN FINDING ONLY EIGENVALUES....ccoocccoccveeessessererersissce
C
DD=AQ])
C ALSO DELETE LINES FROM HERE.
C
C RESET ROW AND COLUMNS OF 'A' TO IDENTIFY FOR NEXT
C ITERATION.

A(D=1.0

IF(L .GE. 1)THEN

DO 22]=1,L

A(]=0.0
A(],D=0.0
22 CONTINUE
> ENDIF

C
C TO HERE IF FINDING ONLY EIGENVALUES.
C
23 CONTINUE

RETURN

END
C
C
C SUBROUTINE TQLI
C

C SUBROUTINE TQLI TO CALCULATE THE EIGENVALUE AND THE

C EIGENVECTORS.

C

C THIS SUBROUTINE IS TO CALCULATE EIGENVALUES AND THE

C EIGENVECTORS "D" AND "A" RESPECTIVELY FROM THE TRI-DIAG.
C MATRIX "TRI".

C .
SUBROUTINE TQLI(D,E,;NMAX,NCL,A,N)
C
C N IS THE DIAGONAL ELEMENTS OF C.
C
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DIMENSION D(N),E(N),A(NMAX/N)
IF(N.GT.1)THEN
DO 111=2N
E(I-1)=EQ)
11 CONTINUE
ENDIF
E(N)=0.0
DO15L=1N
ITER=0.0
1 DO 12 M=1,N-1
C
C LOOK FOR A SINGLE SMALL SUBDIAGONAL ELEMENTS TO SPLIT
C THE MATRIX.
DD=ABS(D(M))+ABS(D(M+1))
»  IF(ABS(E(M))+DD.EQ.DD)GOTO 2
12 CONTINUE
M=N
2 IF(M.NE.L)THEN
IF(ITER.EQ.70)PAUSE' TOO MANY ITERATION'
ITER=ITER+1
G=(D(L+1)-D(L))/ (2.0*E(L))
R=SQRT(G**2+1.0)
G=D(M)+D(L)+E(L)/(G+SIGN(R,G))
C THIS WAS dm-ks
S=1.0
C=1.0
P=0.0
DO 141=M-1,L-1
F=S*E(I)
B=C*E(D)
IF(ABS(F).GE.ABS(G))THEN
C=G/F
R=SQRT(C**2+1.0)
EI+1)=F*R
S=1.0/R
C=C*s
ELSE
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S=F/G
R=SQRT(S**2+1.0)
E(I+1)=G*R
C=1.0/R
S=5*C
ENDIF
G=D(+1)-P
R=(D()-G)*S+2.0*C*B
P=S*R
D(I+1)=G+P
G=C*R-B
C
C OMIT LINES FROM HERE
C
> DO13K=1,N
F=AK,I+1)
AK,I+1)=S*A(K,I)+C*F
AK,D=C*A(K,)-S*F
13  CONTINUE

C
C TO HERE IN FINDING ONLY EIGENVALUES
C
14 CONTINUE
D(L)=D(L)-P
E(L)=G
EM)=0.0
GOTO1
ENDIF
15 CONTINUE
RETURN
END
C
Cc SUBROUTINE EIGENVALUE
C
C TO CALCULATE THE PERCENTAGE OF THE EIGENVALUE.
C

SUBROUTINE EIGENVALUE(D,PERC,NCL)
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D=EIGENVALUE.
PERC=PERCENTAGE OF EACH EIGENVALUE.
NCL=NUMBER OF COLOUMNS OF THE INPUT MATRIX.

NONOnNOO~N

PARAMETER(NCOL=10)
DIMENSION D(NCOL),SUM(NCOL),PERC(NCOL)
NCOL=A DIMENSIONA VECTOR SET BIGGER THAN THE
EXPECTED NUMBER OF
COLUMNS OF THE MATRIX. THIS CAN BE ADJUSTED TO ANY
NUMBER.
DO 201=1,NCl
SUM(I)=0.
DO 10 J=1,NCL
, SUMMD=SUM®+D())
10 CONTINUE
20 CONTINUE
DO 30 J=1,NCL
PERC(])=(D(J)/SUM(]))*100
30 CONTINUE

NOnN0nn

RETURN
END
C
C
C SUBROUTINE ORGANIZE
C !
C TO ORGANIZE THE FINAL OUTPUT OF THE PRINCIPA
C COMPONENT SECTION.
C
C
SUBROUTINE ORGANIZE(D,PERC,NCL)
DIMENSION D(NCOL),PERC(NCOL)
C
C D=EIGENVALUE.
C PERC=PERCENTAGE OF EACH EIGENVALUE.
C NCL=NUMBER OF COLOUMNS OF THE INPUT MATRTX.
C

NCOL=A DIMENSIONAL VECTOR BIGGER THAN T} {- EXPECTED
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NUMBER OF COLUMNS OF THE MATRIX. THIS IS ADJUSTABLE
VECTOR.

PERC=OUTPUT FILE WILL CONTAIN THE EIGENVAULES AND
THE PERCENTAGE

EACH EIGENVALUE TO THE TOTAL VARIANCE.
WRITE(13,'(/1X,A)")'EIGENVALUES'
WRITE(13,'(/,7(F10.3,1X))X(D({),I=NCL,1,-1)

WRITE(13,'(/ /1X,A))PERCENTAGE OF TOTAL VARIANCE
CONTRIBUTED BY EACH EIGENVALUE'
WRITE(13,'(/,7(F10.3,1X))")(PERC(I),I=NCL,1,-1)

RETURN

END

MULTV7.F SUBROUTINE

C CALCULATES THE VARIANCE-COVARIANCE OR CORRELATION
C MATRIX.

C
C

oo NN NN NS)

*

SUBROUTINE MULTV7(STANDZ,C,NROW,NCL)
PARAMETER (ICL=10,MAXN=8000)

STANDZ=DATA MATRIX WHICH CONTAINS THE
STADARDISED DATA.

C=DATA MATRIX WHICH WILL CONTAIN THE SQUARE
MATRIX.

MAXN=A DIMENSIONAL VECTOR BIGGER THAN THE
NUMBER OF ROWS. THIS

CAN BE ADJUSTED TO A NUMBER TO SUIT ANY
REQUIREMENT.

ICI= A DIMENSIONAL VECTOR BIGGER THAN THE NUMBER OF
COLUMNS AND

CAN BE ADJUSTED.

DIMENSIONDMEAN(MAXN), VAR(MAXN),STD(MAXN),SOS(ICL,
OS(ICL),SUMSP(MAXN,ICL)

DIMENSIONSP(ICL,ICL, MAXN),SUMM(ICL),SUM(ICL),
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* STANDZ(MAXN,ICL),C(MAXN,ICL)
C
C STANDZ............. IS THE STANDARDIZED DATA MATRIX
C Cevrrrrer IS THE MATRIX CONTAINS THE VARIANCE-COVARIANCE
C OR CORRELATION MATRIX.
C
DO 25 M=1,NCL
SUM(M)=0.0
do 15 j=1,NROW
SUM(M)=SUM(M)+STANDZ(j,M)
15 CONTINUE
DMEAN(M)=SUM(M)/NROW
25 CONTINUE
DO 199 M=1,NCL
SUMM(M)=0.0
DO 99 I=1,NROW
OS(M)=STANDZ(I,M)-DMEAN(M)
SOS(M)=0S(M)**2
SUMM(M)=SUMM(M)+SOS(M)
VAR(M)=SUMM(M)/(NROW-1.0)
STD(M)=SQRT(VAR(M))
99  CONTINUE
199 CONTINUE
DO 200 1=1,NCL
DO 100 K=1,NCL
SUMSP(i, k)=0.0
DO 150 L=1,NROW
SP(IK,L)=(STANDZ(L,})-DMEAN(D)*STANDZ(L,K)-DMEAN(K))
SUMSP(I,K)=SUMSP(I,K)+SP(IK,L)
150 CONTINUE
100 CONTINUE
200 CONTINUE

DO 18 I=1,NCL

DO 17 J=1,NCL
C "C" IS A TWO DIMENSIONAL ARRAY CONTAINS THE VARIANCE-
C COVARIANCE MATRIX.OR CORRELATION MATRIX.
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C(1])=SUMSP(I,J)/ (NROW-1.0)

17 CONTINUE

18 CONTINUE
RETURN
END

SUBROUTINE SMOOTH

0nn

C THIS IS SMOOTHING SUBROUTINE TO SMOOTH THE PRINCIPAL
C COMPONENT SCORES.
C
C ALL DIMENSIONAL ARRAYS CAN BE ADJUSTED TO ANY SIZE.
. SUBROUTINE SMOOTH(PP,SMOOTHD,NROW,LEN)
REAL SMOOTHD(8000),PP(8000)
INTEGER T
C PP=DATA VECTOR TO BE SMOOTHED
C SMOTHD=A VECTOR WHICH WILL CONTAIN THE OUTPUT
C SMOOTHED DATA.
C LEN IS SIZE OF THE WINDOW (NO OF SAMPLES)
C PP IS A VECTOR CONTAINING THE DATA TO BE SMOOTHED.
C SMOOTHD IS A VECTOR CONTAINING THE OUTPUT SMOOTHED
C DATA.
C NROW IS THE NUMBER OF DATA SMAPLES TO BE SMOOTHED.
C
M=(LEN-1)/2
DO 434 J=1+(LEN-1)/2,NROW(LEN-1)/2
SUM = 0.0
DO 433 T=-M,M
SUM = SUM + PP(J+T)
433 CONTINUE
SMOOTHD(J) = SUM
SMOOTHD(J)=SMOOTHD(J)/LEN
434 CONTINUE

RETURN
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END

N nNn

SUBROUTINE BOUNDARY

C

C SUBROUTINE BOUNDARY TO IDENTIFY THE FORMATION
C BOUNDARIES.

C THIS TECHNIQUE IS BASED ON:

C
C DSQUARE=(MEAN1-MEAN2)/(VAR1+VAR2)
C
C
C
SUBROUTINE BOUNDARY(SMOOTHD,IBWIN,NROW,DSQUARE)
C »
C ALL DIMENSIONAL ARRAYS CAB BE ADJUSTED TO ANY SIZE.
C

DIMENSION SMOOTHD(8000), RMEAN(8000), DSQUARE(8000)
DIMENSION SMEAN1(8000),051(8000),RVAR(8000),SMEAN2(8000),
*  VARI(8000),VAR2(8000),052(8000)
C
C SMOOTHD=DATA VECTOR FROM WHCIH BOUNDARIES WILL BE
C IDENTIFIED.
C DSQURE=A VECTOR WILL CONTAIN THE OUTPUT BOUNDARIES.
C A 'MOVING WINDOW' IS USED HERE
C SMOOTHED IS A VECTOR OF DATA SEQUNCE TO BE ANALYSED.
C IBWIN IS THE SIZE OF THE WINDOW TO BE USED.
C DSQUARE IS A VECTOR WHICH WILL CONTAIN THE OUTPUT D
C SQUARED VALUES (BOUNDARIES OF FORMATIONS)
C
M=(IBWIN/2)
DO 30 J=M+1,NROW-M
SUM1=0.0
SUM2=0.0
DO 40 K=J-M,J-1
SUM1=SUM1+SMOOTHD(K)
SUM2=SUM2+SMOOTHD(K+M-1)
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40 CONTINUE
SMEAN1(])=SUM1/M
SMEANZ2(])=SUM2/M

C
RMEAN(J)=(SMEANT1(J)-SMEAN2(]))**2
C
SUMOS1=0.0
SUMOS2=0.0

DO 50 K=J-M,J-1
0S1(K)=(SMOOTHD(K)-SMEANT1(]))**2
052(K)=(SMOOTHD(K+M-1)-SMEAN2(J))**2
SUMOS1=SUMOS1+0S1(K)
SUMOS2=SUMOS2+0S2(K)

50 CONTINUE
VARI(J)=SUMOS1/(M-1)
VAR2(J)=SUMOS2/ (M-1)

RVAR())=VAR1(J)+VAR2(J)

DSQUARE(J)=(RMEAN(])/RVAR(]))**2
30 CONTINUE

RETURN

END

nnn

SUBROUTINE XCOR

C

C THIS SUBROUTINE IS TO PERFORM THE CROSS-CORRELATION
C BETWEEN TWO SEQUENCES (SERIES) OR LOGS.

C

C PROCESSES TO DETERMINE THE STRETCH FACTOR AND

C RELATIVE DISPLACEMENT BETWEEN TWO SEQUENCES SERIES) OF
C WELL-LOGS. CROSS-CORRELATION (WITH VARIABLE WINDOW
C SIZE) OF THE POWER SPECTRA OF TWO SERIES

C IDENTIFIES THE DIRECTION AND AMOUNT OF STRETCH

C BETWEEN TWO SERIES. THE PROCESS INVOLVES THE

C COMPUTATIONS OF POWER SPECTRA IN THE
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C FREQUENCY DOMAIN WITH THE FREQUENCY INTERVALS

C TRASFORMED TO A LOGARITHMIC SCALE. LAGRANGE"S

C METHOD OF INTERPOLATION OBTAINS

C EQUALLY SPACED POWER SPECTRA FOR CORRELATION. USING
C TOP TWO PEAK VALUES OF THE CROSS-CORRELATION FUNCTION
C OF POWER SPECTRA, SERIES ARE THEN STRETCHED BY THE FFT
C (FAST FOURIER TRANSFORM) INTERPOLATION METHOD. THE
C LARGEST COEFFICIENT OBTAINED FROM CROSS-CORRELATION
C (WITH FIXED WINDOW SIZE) OF EACH SET OF SUCH STRETCHED
C SERIES DETERMINES THE OPTIMUM DISPLACEMENT AND

C STRETCH.

C OUTPUTS CONSIST OF A SCREEN LIST OF THE INPUT DATA,

C COEFFICIENTS OF THE CROSS-CORRELATION FUNCTION OF

C POWER SPECTRA AND THE OPTIMUM STRETCH AND

C DISPLACEMENT VALUES.

c

C NROW=NUMBER OF DATA SETS TO BE CORRELATED.

C LS = NUMBER OF DATA POINTS OF THE SHORT SERIES.

C LL = NUMBER OF DATA POINTS OF THE LONG SERIES.

C IDER =1 DERIVATIVE IS WANTED TO COMPUTE POWER SPECTRA
C =0 DERIVATIVE IS NOT WANTED.

C IORG =1 PRINCIPAL COMPONENTS ARE WANTED FOR

C STRETCHING AND FOLLOWING CORRELATION.

C =0 DERIVATIVE DATA IS WANTED FOR STRETCHING AND
C FOLLOWING CORRELATION.

C SMAX = MAXIMUM ANTICIPATED STRETCH VALUE. TYPICAL
CVALUE =2.0

C FMTOP1 = DEPTH OF THE SHORT SERIES.

C FMTOP2 = DEPTH OF THE LONG SERIES.

C

C THIS SUBROUTINE AND THE SUBROUTINES THAT IS CALLING
C ARE WRITTEN BY BYUNG-DOO KWON, GEOLOGY DEPARTMENT,
C INDIANA UNIVERSITY,

C BLOOMINGTON, INDIANA (USA).

C

C ALL DIMENSIONAL ARRAYS CAN BE ADJUSTED TO ANY SIZE.

C
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SUBROUTINE XCOR(NNROW)

DIMENSION RLOG1(12800),RLOG2(12800),YIP1(12800),YIP2(12800)
DIMENSION CLOG1(12800),CLOG2(12800), WORK(12600)
DIMENSION XCORL(12100),XCORS(12100), TITLE(10)

COMPLEX CLOG1,CLOG2

DATA LONG /5HLONG/

DATA SHORT /5HSHORT/

CHARACTER*10FILEIN1,FILEIN2,DERIVT,PWSPEC,XCORR,
TRANFRQ,PARAFILE, ORIGFILE, INTSPEC,CRSTRETCH

C READ THE NUMBER OF DATA SETS TO BE CORRELATED

C
C

>

WRITE(6,*)'ENTER THE INPUT FILE of THE SHORT LOG'

READ* FILEIN1

WRITE(6,*)'ENTER THE INPUT FILE of THE LONG LOG'

READ* FILEIN?2

WRITE(6,*)'ENTER THE INPUT FILE OF THE PARAMETERS'
READ* PARAFILE

WRITE(6,*)'ENTER THE OUTPUT FILE NO: 1 [ ORIGINAL DATA '
READ* ORIGFILE

WRITE(6,*)'ENTER OUTPUT FILE NO:2 [ DERIVATIVE DATA '
READ*DERIVT

WRITE(6,*)'ENTER OUTPUT FILE NO:3 [ POWER SPECTRA DATA
L

READ*,PWSPEC

WRITE(6,*)'ENTER OUTPUT FILE NO:4 INTERPOLATED POWER
SPECTRA DATA]'

READ*,INTSPEC

WRITE(6,*)'ENTER OUTPUT FILE NO:5 [ NORMALIZED CROSS-
CORRELATION DATA]'

READ* XCORR

WRITE(6,*)'ENTER OUTPUT FILE NO:6 [ FOR TRANSFORMED
FREQUENCY ['

READ* TRANFRQ
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C
C
OPEN(1, FILE=FILEIN1)
OPEN(2,FILE=ORIGFILE)
OPEN(3,FILE=DERIVT)
OPEN(4,FILE=PWSPEC)
OPEN(7, FILE=XCORR)
OPEN(8,FILE=TRANFRQ)
OPEN(9,FILE=FILEIN?)
OPEN(10,FILE=PARAFILE)
OPEN(11,FILE=INTSPEC)
C
C READ PARAMETERS AND INPUT DATA (TWO SHORT AND TWO
C LONG LOGS)
CcC -
C

READ(10,*)NSET
DO 290 IJ=1,NSET
C INITIALIZE ALL ARRAYS TO ZERO
C SET THE MAXIMUM DATA LENGTH TO 12800 (MAXIMUM DEPTH
C OF THE BOREHOLE).
C
DO 101=1,12800
RLOG1(I)=0.0
RLOG2(I)=0.0
YIP1(I)=0.0
YIP2(I)=0.0
WORK(D)=0.0
WORK(I+12800)=0.0
CLOG1(I)=CMPLX(0.0,0.0)
CLOG2(I)=CMPLX(0.0,0.0)
10 CONTINUE
DO 201=1,12800
XCORL(D=0.0
20 XCORS(1)=0.0
C
C READ AND WRITE PARAMETERS AND INPUT DATA
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C
READ(10,298) (TITLE(I),1=1,8)
READ(10,298) ITITLE
READ(10,IDER,IORG,SMAX,FMTOP1,FMTOP2
C
C

C READ THE INFORMATION ABOUT THE DEPTH AND THICKNESS
C FROM DATAFILE.
C [ MFTOP1 ] IS THE TOP OF FORMATION TO BE CORRELATED, AND
C [THICK1 ]IS IT'S THICKNESS. [FMTOP2 ]IS THE TOP OF THE
C FORMATION TO BE CORRELATED WITH [ LONG SERIES], AND [
C THICK2 ] IS IT'S THICKNESS.
C

READ(10,)THICK1,THICK2
C .
C THE ACTUAL DEPTH OF THE FORMATION [ FROM PCA ]IS
C EQUAL TO THE REAL DEPTH ON LOG MINUS THE DEPTH THAT
C THE WELL DATAFILE STARTES FROM. THIS DEPTH CORRECTION
C IS NECESSARY IN ORDER TO GET AN ACCURATE DEPTH FROM
C THE PRINCIPAL COMPONENT SCORES.

C
WRITE(6,*)’ENTER LENGTH OF FORMATION 1'
READ*,LS
WRITE(6,*)ENTER LENGTH OF FORMATION 2'
READ*LL

C

C

C TO READ THE DESIRED FORMATION TO BE CORRELATED THEN
C ADD THE THICKNESS OF THE FORMATION TO THE ACTUAL

C DEPTH
C
READ(1,302) (RLOG1(I),I=1,LS)
C
REWIND 1
C
I12=FMTOP1

DO 111 1=1,THICK1
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RLOG1(D=RLOG1(12)

12=12+1
111 CONTINUE
LS=THICK1
C
READ(9,302) (RLOG2(I),I=1,LL)
C
REWIND 9
C .
I3=FMTOP2
DO 112 1=1,THICK2
RLOG2(I)=RLOG2(I3)
13=I3+1
112 CONTINUE
, LL=THICK2
C

C KEEP THE ORIGINAL DATA IN A FILE FOR PLOT
C
WRITE(2,'(F10.3)) (RLOG1(I),1=1,LS)
WRITE(2,'(F10.3)") (RLOG2(I),I=1,LL)
WRITE(6,299) (TITLE(I),1=1,8)
WRITE(6,300) ITITLE
WRITE(6,303) LS,LL,IDER,IORG,SMAX,FMTOP1,FMTOP2
WRITE(6,304) ' ‘
DO 301=1,LS
30 WRITE(6,305) LRLOGI(I), RLOG2(I)
LS1=LS+1
DO 40 I=LS1,LL
40 WRITE(6,306) IL,RLOG2(I)
C
C CHECK WHETHER DERIVATIVE IS WANTED
C
IF(IDER.EQ.0) GO TO 80
CALL DERIVAT (RLOGI1,LS)
RLOG1(LS+1)=0.0
CALL DERIVAT (RLOG2,LL)
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WRITE(6,307)
DO501I=1,LS
50 WRITE(6,305) I,RLOGI(I), RLOG2(I)
LS1=LS+1
DO 60 I=LS1,LL
60 WRITE(6,306) L,RLOG2()
C
C
C KEEP THE DERIVATIVE DATA FOR PLOT
C
WRITE(3,'(F10.3)") (RLOGI(I),I=1,LL)
WRITE(3,'(F10.3)") (RLOG2(I),I=1,LL)
80 CONTINUE
C
C CONSTRUCT COMPLEX SERIES AND DO FOURIER TRANSFORM
C
DO901=1,LL
CLOG1(I)=CMPLX(RLOG1(I),0.0)
CLOG2(I)=CMPLX(RLOG2(I),0.0)
90 CONTINUE
CALL FOURT (CLOGI1,LL,1,-1,1,WORK)
CALL FOURT (CLOG2,LL,1,-1,1,WORK)
C
C COMPUTE POWER SPECTRA (THE SECOND HALF ABOVE NYQUIST
C FREQUENCY IS IGNORED)
C
NYQ=LL/2+1
DO 100 I=2,NYQ
RLOGI1(I-1)=(REAL(CLOG1(I))**2+
*  AIMAG(CLOG1(I))**2)/FLOAT(LL)
RLOG2(I-1)=(REAL(CLOG2{I))**2+
*  AIMAG(CLOG2(I))**2)/FLOAT(LL)
100 CONTINUE
NN=NYQ-1
WRITE(6,308)
DO 110 I=1,NN
110 WRITE(6,309) I,CLOG1(I+1), RLOG1(I),CLOG2(I+1),RLOG2(I)
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IF (PRALL.EQ.0.0) GO TO 120
120 CONTINUE
C
C KEEP THE POWER SPECTRA IN A FILE FOR PLOT
C
WRITE(4,'(F10.3)") (RLOG1(I),I=1,NN)
WRITE(4,'(F10.3)") (RLOG2(I),I1=1,NN)
C

C TRANSFORM THE FREQUENCIES INTO A LOGARITHMIC SCALE
C
DO 130 I=1,NN
130 WORK(D=ALOG10(FLOAT())
WRITE(S,'(F10.3)") (WORK(I),I=1,NN)
C
C OBTAIN EQUALLY SPACED POWER SPECTRA USING LAGRANGE'S
C INTERPOLATION METHOD
C
JLAST=NN-2
DELT=0.01
CALL INTPOL3 (WORK,RLOG1,RLOG2,YIP1,YIP2,10,JLAST,
* NLAST,DELT)
C
C KEEP INTERPOLATED SPECTRA IN A FILE FOR PLOT
C
WRITE(11,'(F10.3)") (YIP1(D),I=1,NLAST)
WRITE(11,'(F10.3)") (YIP2(I),I=1,NLAST)

WRITE(6,310)
DO 140 I=1,NLAST
140 WRITE(6,305) I,YIP1(I),YIP2(I)
C
C CROSS-CORRELATE INTERPOLATED POWER SPECTRA TO OBTAIN
C STRETCH VALUES.
C
LAGMAX=ALOG10(SMAX)/DELT+1.5
CALL CROSS1 (YIP1,YIP2, XCORL,NLAST,LAGMAX)
CALL CROSSI (YIP2,YIP1,XCORS,NLAST,LAGMAX)
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WRITE(6,313)
DO 160 I=1,LAGMAX
Kl=-I+1
K2=]-1
160 WRITE(6,312) K1,XCORL(I),K2,XCORS(I)
WRITE(6,311)
LAGTOT=2*LAGMAX-1
DO 170 I=1,LAGMAX
WORK(I)=FLOAT(-LAGMAX+I)
170  YIP1(I)=XCORL(LAGMAX-I+1)
DO 180 I=2,LAGMAX
WORK(LAGMAX+I-1)=FLOAT(I-1)
180 YIPI(LAGMAX+I-1)=XCORS(I)
C .
C KEEP THE CROSS-CORRELATION FUNCTION OF POWER SPECTRA
CIN A FILE FOR PLOT.
C :
WRITE(7,'(F10.3)") (WORK(),I=1,LAGTOT)
WRITE(7,'(F10.3)") (YIP1(I),I=1,LAGTOT)
C
C FIND THE MAXIMUM PEAK IN THE CORRELATION FUNCTION OF
C POWER SPECTRA AND COMPUTE CORRESPONDING STRETCH
C FACTOR.

C
CALL MAX (YIP1,1,LAGTOT,I1,PCMAX1)
XLAG1=WORK(I1)
DEL1=ABS(XLAG1)*DELT
ST1=10.**DEL1

C

C FIND SECOND PEAK IN THE CORRELATION FUNCTION OF POWER
C SPECTRA AND COMPUTE CORRESPONDING STRETCH FACTOR
C

CALL SCAN (YIP1,I1,LAGTOT)

CALL MAX (YIP1,1,LAGTOT 12, PCMAX2)

XLAG2=WORK(I2)

DEL2=ABS(XLAG2)*DELT

ST2=10.**DEL2
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C
C FROM TWO PEAK VALUES, FIND THE OPTIMUM DISPLACEMENT
C AND STRETCH
C
IF(XLAG1.GT.0.0) GO TO 190
C
C STRETCHING AND CORRELATING THE FIRST PEAK ASSUMES THE
C LONG SERIES (SEQUENCE) IS STRETCHED
C
WRITE(6,315) ST1
CALL STXCO1
* (RLOG1,RLOG2,CLOG1,WORK,YIP1,LS,LL,ST1, ML1,ID1,
* CMAXI1,IDER,IORG)
JF (XLAG2.GT.0.0) GO TO 210
GO TO 200
C
C STRETCHING AND CORRELATING THE FIRST PEAK ASSUMES THE
C SHORT SERIES (SEQUENCE) IS STRETCHED.
C
190 'WRITE(6,314) ST1
CALL STXCO2 (RLOG1,RLOG2,CLOG1,WORK,YIP1,LS,LL,ST1 ML]1,
* ID1,CMAXI1,IDER,IORG)
IF(XLAG2.GT.0.0) GO TO 210
C

C STRETCHING AND CORRELATING THE SECOND PEAK ASSUMES THE

LONG SERIES (SEQUENCE) IS STRETCHED.
C
200 WRITE(6,317) ST2
CALL STXCO1 (RLOG1,RLOG2,CLOG2,WORK,YIP2,1LS,LL,ST2,
*  ML2,ID2,CMAX2,IDER,JORG)
GO TO 220
C
C STRETCHING AND CORRELATING THE SECOND PEAK ASSUMES
C THE SHORT SERIES (SEQUENCE) IS STRETCHED.
C
210 WRITE(6,316) ST2
CALLSTXCO2 (RLOG1,RLOG2,CLOG2,WORK,YTP2,LS,LL,ST2,ML2,
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*  ID2,CMAX2,IDER,IORG)
C
C COMPARE THE COEFICIENTS OBTAINED FROM CORRELATIONS
C TWO SETS OF STRETCHED SERIES.
C
220 IF(CMAX1.LT.CMAX2) GO TO 230
CMAX=CMAX1
ST=ST1
ML=ML1
ID=ID1

WRITE(6,*)

WRITE(6,*)'CROSS-CORRELATION FUNCTION OF STRETCHED
* SERIES'

READ*,CRSTRETCH

OPEN(12,FILE=CRSTRETCH)

WRITE(12,'(F10.3)") (YIP1(I),I=1,ML)
IF(XLAG1.GT.0.0) GO TO 240
GO TO 260
230 CMAX=CMAX2
ST=ST2
ML=ML2
ID=ID2
WRITE(12,'(F10.3)") (YIP2(I),I=1,ML)
240 IF(XLAG2.GT.0.0) GO TO 250
GO TO 260
C
C THE FINAL RESULT SUGGESTS THAT THE SHORT SERIES IS
C STRETCHED.
C PLOT THE CORRELATION RESULT.
C
250 ID=FLOAT(ID)/ST+0.5
WRITE(6,318) ST,CMAX,ID
IDEND=FLOAT(ID)+(FLOAT(LS)/ST)

GO TO 280
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C

C THE FINAL RESULT SUGGESTS THAT THE LONG SERIES IS

C STRETCHED.

C

260 WRITE(6,319) ST,CMAX,ID
IDEND=FLOAT(ID)+(FLOAT(LS)*ST)

C

280 CONTINUE
REWIND 2
REWIND 3

290 CONTINUE

C

C FORMATS

C

298 FORMAT(8A10)
299 FORMAT(1H1,8A10,//)
300 FORMAT(3X,A10)
302 FORMAT(F10.3)
303 FORMAT(3X,LS="15,3X,'LL="15,3X,'TIDER=",12,3X,' TORG=",12,
*  3X,'SMAX='F5.1,/,3X,' DEPTH OF SHORT SERIES =/,
* Fe6.1, FEET',/3X,'DEPTH OF LONG SERIES =',F6.1,' FEET',/ /)
304 FORMAT(1HO,10X, INPUT DATA',//,10X,'SHORT SERIES LONG
*  SERIES',/)
305 FORMAT(I5,2F10.3)
306 FORMAT(I5,10X,F10.3)
307 FORMAT(//,8X,DERIVATIVED DATA',//,10X,'SHORT SERIES
* LONG SERIES',/)
308 FORMAT(//,30X,,FOURIER TRANSFORM',//,15X,'SERIES
*  1'35X,'SERIES 2',//,10X,REAL',3X,'IMAGINARY",2X, POWER
*  SPECTRUM',7X,'REAL',3X,IMAGINARY",2X, POWER
* SPECTRUM,/)
309 FORMAT(5,3F10.3,10X,3F10.3)
310 FORMAT(//, 10X, INTERPOLATED POWER SPECTRUM ( START
*  FROM 10TH OF ORIGINAL )',//,10X,'SHORT SERIES LONG
*  SERIES")
311 FORMAT(///' STRETCH FACTOR FOUND FROM CORREL AN T'TON
*  OF POWER SPECTRA")
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FORMAT(10X,15,F15.3,22X,15,F15.3)

FORMAT(//,20X, NORMALIZEDCORRELATION COEFFICIENTS',/,
10X,'( ASSUME LONG SERIES IS STRETCHED )',10X,

'( ASSUME SHORT SERIES IS STRETCHED )',//,8X,LAG
NUMBER', 5X,'VALUE OF COEFFICIENT',7X,'LAG NUMBER'5X,
'VALUE OF COEFFICIENT",/)

FORMAT(//,) FIRST CHOICE - SHORT SERIES I STRETCHED"',F6.2,
'TIMES")

FORMAT(//,” FIRST CHOICE - LONG SERIES IS STRETCHED',F6.2,
' TIMES')

FORMAT(/,’ SECOND CHOICE - SHORT SERIES IS

STRETCHED' F6.2,' TIMES')

FORMAT(/,” SECOND CHOICE - LONG SERIES IS

STRETCHED' F6.2,' TIMES')

FORMAT(///, FINAL RESULT SUGGESTS THAT SHORT SERIES
IS STRETCHED!', F5.2,' TIMES',//,, MAXIMUM CORRELATION
IS',F5.3," AT A LAG OF'I5)

FORMAT(///, FINAL RESULT SUGGEST THAT LONG SERIES IS
STRETCHED',F5.2,' TIMES',//,, MAXIMUM CORRELATION
IS',F5.3," AT A LAG OF'I3)

RETURN

END

SUBROUTINE MEAN

C TO CALCULATE THE MEAN

C

C

10

20

SUBROUTINE MEAN (A,N)

DIMENSION A(1)
TOT=0.0

DO 10I=1,N
TOT=TOT+A(I)
AMEAN=TOT/FLOAT(N)
DO 20I=1,N
AD)=A(I)-AMEAN
RETURN
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END

SUBROUTINE MAX

nn0naon

C TO FIND THE MAXIMUM CORRELATION COEFFICIENT OF THE
C CROSS-CORRELATION.
C
C
C
SUBROUTINE MAX (A,M,N,ID,AMAX)
C
C FIND THE MAXIMUM (AMAX) AND ITS POSITION (ID)
C
DIMENSION A(1)
AMAX=0.0
DO 1I=MN
IF(A(I).GT.AMAX) GO TO 2
GOTO1
2 AMAX=A(D)
ID=I
1 CONTINUE
RETURN
END

SUBROUTINE DERIVAT

TO REPLACE THE DATA BY THEIR FIRST DERIVATIVES.

nNnoOonNOnonOan

SUBROUTINE DERIVAT (AN)

@]

DIMENSION A(1)
N=N-1
DO 101=1,N

10 AD=AJ+1)-A(D)
RETURN
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END
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SUBROUTINE INTPOL3

SUBROUTINE INTPOL3 (X,RLOG1,RLOG2,YIP1,YIP2,JSTART,

JLAST NLAST,DELT)

INTEPOLATE EQUALLY SPACED SAMPLES USING LAGRANGE'

3RD DEGREE POLYNOMAL.

DIMENSION X(1),RLOG(1),RLOG2(1),YIP(1),YIP2(1),

NSEQ=1
DO 1 J=JSTART,JLAST

TXIP=FLOAT(NSEQ-1)*DELT+1
IF(X(J).LE.TXIP.AND.X(J+1).GE.TXIP) GOTO 3

GOTO 1
A1=X(J-1)-X(J)
A2=X(J-1)-X(J+1)
A3=X(J-1)-X(J+2)
Ad=-Al
A5=X(J)-X(J+1)
A6=X()-X(J+2)
A7=-A2

A8=-A5
A9=X(J+1)-X(J+2)
A10=-A3

All=-A6

Al12=-A9
C1=1.0/(A1*A2*A3)
C2=1.0/(A4*A5*A6)
C3=1.0/(A7*A8*A9)
C4=1.0/(A10*A11*A12)
B1=TXIP-X(J-1)
B2=TXIP-X(J)
B3=TXIP-X(J+1)
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B4=TXIP-X(J+2)
P1=B2*B3*B4
P2=B1*B3*B4
P3=B1*B2*B4
P4=B1*B2*B3
YIP1(NSEQ)=(C1*P1*RLOG1(J-1))+(C2*P2*RLOG1(]))+
*  (C3*P3*RLOG1(J+1))+(C4*P4*RLOG1(J+2))
YIP2(NSEQ)=(C1*P1*RLOG2(J-1))+(C2*P2*RLOG2(]))+
*  (C3*P3*RLOG2(J+1))+(C4*P4*RLOG2(J+2))
IF (YIP1(NSEQ).LT.0.) YIP1(NSEQ)=0.0
IF (YIP2(NSEQ).LT.0.) YIP2(NSEQ)=0.0
NSEQ=NSEQ+1
GO TO2
1 CONTINUE
» NLAST=NSEQ-1

RETURN

END
C
C SUBROUTINE CROSS1
C

C NORMALIZED CROSS-CORRELATION WITH A VARIABLE
C WINDOW SIZE.
C
C
SUBROUTINE CROSS1 (A,B,C,L,ML)
C
DIMENSION A(1),B(1),C(1)
ATOT=0.0
BTOT=0.0
ASQ=0.0
BSQ=0.0
DO1I=1L
ATOT=ATOT+A(I)
BTOT=BTOT+B(I)
ASQ=ASQ+A(I)**2
1 BSQ=BSQ+B(I)**2
DO 2J=1,ML
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AB=0.0
N=L-J+1
DO 3 K=1,N
3 AB=AB+(A(K+J-1)*B(K))
CNUM=AB-(ATOT*BTOT/FLOAT(N))
CDEN=SQRT((ASQ-(ATOT**2/FLOAT(N)))*
*  (BSQ-(BTOT**2/FLOAT(N))))
IF(CDEN.EQ.0.0) CDEN=100000000.
C(J)=CNUM/CDEN
ATOT=ATOT-A(])
BTOT=BTOT-B(L-J+1)
ASQ=ASQ-A(J)**2
BSQ=BSQ-B(L-J+1)**2
2 CONTINUE
, RETURN
END

SUBROUTINE CROSS2

NnoOnon

C NORMALIZED CROSS-CORRELATION WITH A FIXED WINDOW
C SIZE.

C
C
SUBROUTINE CROSS2 (A,B,C,L1,L2,ML)
C
C
DIMENSION A(1),B(1),C(1)
ATOT=0.0
BTOT=0.0
ASQ=0.0
BSQ=0.0
DO11I=1,L1

ATOT=ATOT+A()

BTOT=BTOT+B(I)

ASQ=ASQ+A(I)**2
1 BSQ=BSQ+B(I)**2
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ML=L2-L1+1
DO 2J=1ML
AB=0.0
DO 3K=1,L1

3 AB=AB+(A(K)*B(K+]J-1))
CNUM=AB-(ATOT*BTOT/FLOAT(L1))
CDEN=SQRT((ASQ-(ATOT**2/FLOAT(L1)))*

*  (BSQ-(BTOT**2/FLOAT(L1))))

IF(CDEN.EQ.0.0) CDEN=100000000.
C(J)=CNUM/CDEN
BTOT=BTOT-B(J)+B(L1+])
BSQ=BSQ-B(])**2+B(L1+])**2

2  CONTINUE
RETURN
END

SUBROUTINE SCAN

NOnNnnan

C SCAN CORRELATION COEFFICIENTS TO DETERMINE SECOND BEST
C STRETCH FACTOR.

C
C
SUBROUTINE SCAN (A,ID,LAGMAX)

C
C

DIMENSION A(1)

ID1=ID+1

LMAX=LAGMAX-1

IF (ID1.GE.LAGMAX) GO TO 3

DO 1 I=ID1,LMAX
IF ((AI+1)-A(D)).LT.0.0) GO TO 2
GO TO4
2A(D=-1.0
IF(I.LEQ.LMAX) A(LAGMAX)=-1.0
1 CONTINUE
3 A(ID1)=-1.0
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4  LAST=ID-2
IF (LAST.LT.1) GO TO 7
DO 5 J=1,LAST
K=ID-]
TF((A(K-1)-A(K)).LT.0.0) GO TO 6
GOTOS8

6  AK)=-1.0
IF (K.EQ.2) A(1)=-1.0

5  CONTINUE

7 A(ID-1)=-1.0
8 A(ID)=0.0
RETURN
END
C
C
C SUBROUTINE STXCO1
C

C STRETCH THE SHORT SERIES BY FFT INTERPOLATION METHOD
C AND CROSS-CORRELATE WITH THE LONG SERIES
C FIND THE MAXIMUM CORRELATION COEFFICIENT
C
C
SUBROUTINE STXCOI1
* (RLOG1,RLOG2,CLOG1,WORK,XCOR,LS,LL,ST ML1,
* ID1,CMAXI1,IDER,IORG)

DIMENSION RLOG1(1),RLOG2(1),CLOG1(1), WORK(1),XCOR(1)
COMPLEX CLOG1

REWIND 2

REWIND 3

UNITS 2 CONTIANS THE ORIGINAL DATA
UNIT 3 CONTAINS THE DERIVATIVE DATA

OHONONe

READ(2,302) (RLOG1(I),I1=1,LS)
READ(2,302) (RLOG2(I),I=1,LL)
IF IDER.EQ.0.OR.IORG.NE.0.) GOTO 1
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READ(3,302) (RLOG1(I),1=1,LS)
READ(3,302) (RLOG2(I),I=1,LL)
1 M=FLOAT(LS)*ST+0.5
CALL STRETCH (RLOG1,CLOG1,WORK,LS,M)
CALL CROSS2 (RLOGI1,RLOG2,XCOR,M,LL,ML1)
CALL MAX (XCOR,1,ML1,ID1,CMAX1)
302 FORMAT(F10.3)
RETURN
END

N nn

SUBROUTINE STXCO2

C

C STRETCH THE LONG SERIES BY FFT INTERPOLATION METHOD
C AND CROSS-CORRELATE WITH THE SHORT SERIES

C FIND THE MAXIMUM CORRELATION COEFFICIENT.

C
C
SUBROUTINE STXCO2
* (RLOGI1,RLOG2,CLOG2,WORK,XCOR,LS,LL,ST ML2,
* ID2,CMAX2,IDER,IORG)
C
C
DIMENSION RLOG1(1),RLOG2(1),CLOG2(1), WORK(1),XCOR(1)
COMPLEX CLOG2
REWIND 2
REWIND 3
C

C UNIT 2 CONTAINS THE ORIGINAL DATA
C UNIT 3 CONTAINS THE DERIVATIVE DATA.

C
READ(2,302) (RLOG1(I),I=1,LS)
READ(2,302) (RLOG2(I),I=1,LL)
IF IDER.EQ.0.OR.IORG.NE.0.) GOTO 1
C

READ(3,302) (RLOG1(I),I=1,LS)
READ(3,302) (RLOG2(I),I=1,LL)
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1 M=FLOAT(LL)*ST+0.5
CALL STRETCH (RLOG2,CLOG2,WORK,LL,M)
CALL CROSS2 (RLOG1,RLOG2,XCOR,LS,M,ML2)
CALL MAX (XCOR,1,ML2,ID2,CMAX?2)

302 FORMAT(F10.3)

RETURN
END
C
C
C SUBROUTINE STRETCH
C

C INTERPOLATE TIME SERIES DATA WITH N VALUES TO A SERIES
C WITH M VALUES IN THE FREQUENCY DOMAIN.

C
C
* SUBROUTINE STRETCH (RA,A,WORK,N,M)
C
C
DIMENSION WORK(1),RA(1),A(1)
COMPLEX A
DO 51=1,N

5 A(I)=CMPLX(RA(I),0.0)
CALL FOURT (A/N,1,-1,1, WORK)

IF(IN.EQ.M) GO TO 50
C
C SEARCH FOR THE NYQUIST
C
K=FLOAT(N)/2.+1.5
MN=M-N
KZ=K+MN-1
C
C TRANSFER THE CONJUGATE PARTS
C .
DO 10 I=K,N
10 AM-I+K)=A(N-I+K)
C

C CHECK IF INPUT DATA TOTAL IS EVEN OR ODD
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IF((N/2*2).EQ.N) GO TO 20
GO TO30
C
C DIVIDE THE AMPLITUDE OF NYQUIST FREQUENCY BY 2
C FOR THE CASE OF EVEN N.
C
20  AK)=ak)/2
A(K+MN)=a(k)/2
K=K+1
IFIM.EQ.(N+1)) GO TO 50
30 CONTINUE
C :
C ADD (M-N)ZEROS FOR ODD CASE ,(M-N-1) FOR EVEN CASE
c .

DO 40 I=K,KZ
40  A(D=00
C
C INVERSE E.T.
C
50 CALL FOURT (AM,1,1,1, WORK)
C

C NORMALIZATION - DIVIDE BY INPUT SIGNAL LENGTH (N)
C

DO 60 I=1M

AD=A()/FLOAT(N)

RA(D=REAL(A())
60 CONTINUE

RETURN

END

SUBROUTINE FOURT

OnNo0On0n

C
C THE COOLEY-TUKEY FAST FOURIER TRANSFORM IN FORTRAN IV

C TRANSFORM(K1,K2,...)=SUM(DATA(]1,]2,...)*EXP(ISIGN*2*PI*SQR(-
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C D*((J1-1)*(K1-1)/NN(1)+(J2-1)*(K2-1)/NN(2)+...))), SUMMED FOR ALL
C J1, K1 BETWEEN 1 AND NN(1), J2, K2 BETWEEN 1 AND NN(2), ETC.
C THERE IS NO LIMIT TO THE NUMBER OF SUBSCRIPTS. DATA IS A
C MULTIDIMENSIONAL COMPLEX ARRAY WHOSE REAL AND

C IMAGINARY PARTS ARE ADJACENT IN STORAGE, SUCH AS

C FORTRAN IV PLACES THEM IF ALL IMAGINARY PARTS ARE ZERO
C (DATA ARE DISGUISED REAL), SET IFORM TO ZERO TO CUT THE

C RUNNING TIME BY UP TO FORTY PERCENT. OTHERWISE, IFORM =
C +1. THE LENGTHS OF ALL DIMENSIONS ARE STORED IN ARRAY
C NN, OF LENGTH NDIM. THEY MAY BE ANY POSITIVE INTEGERS,
C THO THE PROGRAM RUNS FASTER ON COMPOSITE INTEGERS,

C AND ESPECIALLY FAST ON NUMBERS RICH IN FACTORS OF TWO
CISIGN IS +1 OR -1. IF A -1 TRANSFORM IS FOLLOWED BY A +1 ONE
C (OR A +1 BY A -1) THE ORIGINAL DATA REAPPEAR, MULTIPLIED BY
C NTOT (=NN(1)* NN(2)*...).

C TRANSFORM VALUES ARE ALWAYS COMPLEX, AND ARE

C RETURNED IN ARRAY DATA, REPLACING THE INPUT. IN

C ADDITION, IF ALL DIMENSIONS ARE NOT POWERS OF TWO,

C ARRAY WORK MUST BE SUPPLIED, COMPLEX OF LENGTH EQUAL
C TO THE LARGEST NON 2**K DIMENSION. OTHERWISE, REPLACE
C WORK BY ZERO IN THE CALLING SEQUENCE.

C NORMAL FORTRAN DATA ORDERING IS EXPECTED, FIRST

C SUBSCRIPT VARYING FASTEST. ALL SUBSCRIPTS BEGIN AT ONE.
C RUNNING TIME IS MUCH SHORTER THAN THE NAIVE NTOT**2,
C BEING GIVEN BY THE FOLLOWING FORMULA. DECOMPOSE NTOT
C INTO 2**K2 * 3**K3 * 5**K5 * .... LET SUM2 = 2*K2, SUMF = 3*K3 +

C 5*K5 + .. AND NF = K3 + K5 + ... THE TIME TAKEN BY A MULTI-

C NTOT*(T1+T2*SUM2+T3*SUMF+T4*NF). ON THE CDC (FLOATING
C POINT ADD TIME OF SIX MICROSECONDS), T = 3000

C +NTOT*(500+43*SUM2+68*SUMF+320*NF) MICROSECONDS ON

C COMPLEX DATA. IN ADDITION, THE ACCURACY IS GREATLY

C IMPROVED, AS THE RMS RELATIVE ERROR IS BOUNDED BY 3*2**(-
C B)*SUM(FACTOR())**1.5), WHERE B IS THE NUMBER OF BITS IN

C THE FLOATING POINT FRACTION AND FACTOR(]) ARE THE PRIME
C FACTORS OF NTOTC PROGRAM BY NORMAN BRENNER FROM

C THE BASIC PROGRAM BY CHARLES RADER. RALPH ALTER

C SUGGESTED THE IDEA FOR THE DIGIT REVERSAL. MIT LINCOLN
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C LABORATORY, AUGUST 1967. THIS IS THE FASTEST AND MOST
C VERSATILE VERSION OF THE FFT KNOWN TO THE AUTHOR
C SHORTER PROGRAMS FOUR1 AND FOUR2 RESTRICT DIMENSION
C LENGTHS TO POWERS OF TWO. SEE-- IEEE AUDIO TRANSACTIONS
C (JUNE 1967), SPECIAL ISSUE ON FFT.
C THE DISCRETE FOURIER TRANSFORM PLACES THREE
C RESTRICTIONS UPON THE DATA
C 1. THE NUMBER OF INPUT DATA AND THE NUMBER OF
C TRANSFORM VALUES MUST BE THE SAME.
C 2. BOTH THE INPUT DATA AND THE TRANSFORM VALUES MUST
C REPRESENT EQUISPACED POINTS IN THEIR RESPECTIVE DOMAINS
C FREQUENCY. CALLING THESE SPACINGS DELTAT AND DELTAF, IT
C MUST BE TRUE THAT DELTAF=2*PI/(NN(D)*DELTAT). OF COURSE
C, DELTAT NEED NOT BE THE SAME FOR EVERY DIMENSION.
C 3.,CONCEPTUALLY AT LEAST, THE INPUT DATA AND THE
C TRANSFORM OUTPUT REPRESENT SINGLE CYCLES OF PERIODIC
C FUNCTIONS.
C
SUBROUTINE FOURT(DATA,NN,NDIM,ISIGN,IFORM,WORK)
C
DIMENSION DATA(1),NN(1) IFACT(32), WORK(1)
TWOPI=6.283185307
IF(NDIM-1)920,1,1
1 NTOT=2
DO 2 IDIM=1,NDIM
IF(INN(IDIM))920,920,2
NTOT=NTOT*NN(IDIM)

MAIN LOOP FOR EACH DIMENSION

OnO0nNN

NP1=2
DO 910 IDIM=1,NDIM
N=NN(IDIM)
NP2=NPI1*N
IF(N-1)920,900,5

C

C FACTORN
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M=N
NTWO=NP1

IF=1

IDIV=2

IQUOT=M/IDIV
IREM=M-IDIV*IQUOT
IFIQUOT-IDIV)50,11,11
IF(IREM)20,12,20
NTWO=NTWO+NTWO
M=IQUOT

GO TO 10

IDIV=3

IQUOT=M/IDIV
IREM=M-IDIV*IQUOT
IF(IQUOT-IDIV)60,31,31
IFOREM)40,32,40
IFACT(IF)=IDIV

IF=IF+1

M=IQUOT

GO TO 30

IDIV=IDIV+2

GO TO 30
IF(IREM)60,51,60
NTWO=NTWO+NTWO
GO TO70

IFACT(IF)=M

SEPARATE FOUR CASES :

. COMPLEX TRANSFORM OR REAL TRANSFORM FOR THE 4TH,

S5TH,ETC.
DIMENSIONS:

. REAL TRANSFORM FOR THE 2ND OR 3RD DIMENSION

METHOD TRANSFORM HALF THE DATA, SUPPLYING THE BY
CONJUGATE SYMMETRY.

. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD.

METHOD TRANSFORM HALF THE DATA AT EACH STAGE,
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C CSUPPLYING THE OTHER HALF BY CONJUGATE SYMMETRY.
C 4. REAL TRANSFORM FOR THE 1ST DIMENSION, N EVEN.

C METHOD TRANSFORM A COMPLEX ARRAY OF LENGTH N/2
C WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL

C VALUES AND WHOSE IMAGINARY PARTS ARE THE ODD

C NUMBERED REAL VALUES. SEPARATE AND SUPPLY THE

C SECOND HALF BY CONJUGATE SYMMETRY.

C

70  NON2=NP1*(NP2/NTWO)
ICASE=1 ‘
IF(IDIM-4)71,90,90

71  IF(IFORM)72,72,90

72  ICASE=2
IF(IDIM-1)73,73,90

73 , ICASE=3
IF(INTWO-NP1)90,90,74

74  ICASE=4
NTWO=NTWO/2
N=N/2
NP2=NP2/2
NTOT=NTOT/2
I=3
DO 80 J=2,NTOT
DATA(J)=DATA(I)

80 I=I+2

90  I1RNG=NP1
IF(ICASE-2)100,95,100

95  I1RNG=NPO0*(1+NPREV/2)

C

C SHUFFLE ON THE FACTORS OF TWO IN N. AS THE SHUFFLING

C CAN BE DONE BY SIMPLE INTERCHANGE, NO WORKING ARRAY

C IS NEEDED.

C

100 IF(NTWO-NP1)600,600,110

110 NP2HF=NP2/2
J=1
DO 150 12=1,NP2,NON2
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IF(J-12)120,130,130
ITMAX=I2+NON2-2

DO 125 11=I2,IIMAX,2
DO 125 I3=I1, NTOT NP2
J3=]+I3-12
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(J3)
DATA(I3+1)=DATA(J3+1)
DATA(J3)=TEMPR
DATA(J3+1)=TEMPI
M=NP2HF
IF(J-M)150,150,145

J=J-M

M=M/2
IF(M-NON2)150,140,140
J=]+M

MAIN LOOP FOR FACTORS OF TWO. PERFORM FOURIER
TRANSFORMS OF LENGTH FOUR, WITH ONE OF LENGTH TWO
IF NEEDED. THE TWIDDLE FACTOR
W=EXP(ISIGN*2*PI*SQRT(-1)*M/ (4*MMAX))."CHECK FOR
W=ISIGN*SQRT(-1)

AND REPEAT FOR W=ISIGN*SQRT(-1)*CONJUGATE(W).

NON2T=NON2+NON2
IPAR=NTWO/NP1
IF(IPAR-2)350,330,320
IPAR=IPAR/4

GO TO 310

DO 340 I1=1,I1RNG,2

DO 340 J3=I1,NON2,NP1

DO 340 K1=J3 NTOT,NON2T
K2=K1+NON2
TEMPR=DATA(K2)
TEMPI=DATA(K2+1)
DATA(K2)=DATA(K1)-TEMPR
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DATA(K2+1)=DATA(K1+1)-TEMPI
DATA(K1)=DATA(K1)+TEMPR
340 DATA(K1+1)=DATA(K1+1)+TEMPI
350 MMAX=NON2
360 IF(MMAX-NP2HF)370,600,600
370 LMAX=MAXO(NON2TMMAX/2)
IF(MMAX-NON?2)405,380,380
380 THETA=-TWOPI*FLOAT(NON2)/FLOAT(A*MMAX)
IF(ISIGN)400,390,390
390 THETA=-THETA
400 WR=COS(THETA)
WI=SIN(THETA)
WSTPR=-2.*WI*WI
WSTPI=2.*WR*WI
405 . DO 570 L=NON2,LMAX,NON2T
M=L
IF(MMAX-NON2)420,420,410
410 W2R=WR*WR-WI*WI
W2I=2 *WR*WI
W3R=W2R*WR-W2I*WI
W3I=W2R*WI+W2I*WR
420 DO 530 I1=1,IIRNG,2
DO 530 J3=I1,NON2, NP1
KMIN=]3+IPAR*M
IF(MMAX-NON?2)430,430,440
430 KMIN=J3
440 KDIF=IPAR*MMAX
450 KSTEP=4*KDIF
DO 520 K1=KMIN,NTOT,KSTEP
K2=K1+KDIF
K3=K2+KDIF
K4=K3+KDIF
IF(MMAX-NON?2)460,460,480
460 UIR=DATA(K1)+DATA(K2)
UlI=DATA(K1+1)+DATA(K2+1)
U2R=DATA(K3)+DATA(K4)
U2I=DATA(K3+1)+DATA(K4+1)

{ Appendix C: Program PCAXCOR |




470

475

480

490

500

510

520

2717

U3R=DATA(K1)-DATA(K?2)
U3I=DATA(K1+1)-DATA(K2+1)
IF(ISIGN)470,475,475
U4R=DATA(K3+1)-DATA(K4+1)
U4I1=DATA(K4)-DATA(K3)

GO TO 510
U4R=DATA(K4+1)-DATA(K3+1)
U4I=DATA(K3)-DATA(K4)

GO TO 510
T2R=W2R*DATA(K2)-W2I*DATA(K2+1)
T2I=W2R*DATA(K2+1)+W2I*DATA(K?2)
T3R=WR*DATA(K3)-WI*DATA(K3+1)
T3I=WR*DATA(K3+1)+WI*DATA(K3)
T4R=W3R*DATA(K4)-W3I*DATA(K4+1)
T4I=W3R*DATA(K4+1)+W3I*DATA(K4)
UIR=DATA(K1)+T2R
UlI=DATA(K1+1)+T2I

U2R=T3R+T4R

U2I=T3I+T4I

U3R=DATA(K1)-T2R
U3I=DATA(K1+1)-T2I
IF(ISIGN)490,500,500

U4R=T3I-T4I

U4I=T4R-T3R

GO TO 510

U4R=T4I-T31

U4I=T3R-T4R

DATA(K1)=UIR+U2R
DATA(K1+1)=U1I1+U2I
DATA(K2)=U3R+U4R
DATA(K2+1)=U3I1+U4I
DATA(K3)=U1R-U2R
DATA(K3+1)=U1I-U21
DATA(K4)=U3R-U4R
DATA(K4+1)=U3I1-U4l
KMIN=4*(KMIN-J3)+]3

KDIF=KSTEP
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IF(KDIF-NP2)450,530,530
CONTINUE

M=MMAX-M

IF(ISIGN)540,550,550

TEMPR=WR

WR=-WI

WI=-TEMPR

GO TO 560

TEMPR=WR

WR=WI

WI=TEMPR
IF(M-LMAX)565,565,410
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR
WI=WI*WSTPR+TEMPR*WSTPI+WI

- IPAR=3-IPAR

MMAX=MMAX+MMAX
GO TO 360

MAIN LOOP FOR FACTORS NOT EQUAL TO TWO. APPLY THE
TWIDDLE FACTOR

W=EXPISIGN*2*PI*SQRT(-1)*(J2-1)*(J1-J2) /(NP2*IFP1)), THEN
PERFORM A FOURIER TRANSFORM OF LENGTH IFACT(IF),
MAKING USE OF CONJUGATE SYMMETRIES.

IF(NTWO-NP2)605,700,700
IFP1=NON?2

IF=1

NP1HF=NP1/2
IFP2=IFP1/IFACT(IF)
JIRNG=NP2
IF(ICASE-3)612,611,612
JIRNG=(NP2+IFP1)/2
J2STP=NP2/IFACT(F)
JIRG2=(J2STP+IFP2)/2
J2MIN=1+IFP2
IF(IFP1-NP2)615,640,640
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615 DO 635 J2=J2MIN IFP1,IFP2
THETA=-TWOPI*FLOAT(J2-1)/FLOAT(NP2)
IF(ISIGN)625,620,620

620 THETA=-THETA

625 SINTH=SIN(THETA/2.)
WSTPR=-2.*SINTH*SINTH
WSTPI=SIN(THETA)

WR=WSTPR+1.

WI=WSTPI

JIMIN=]2+IFP1

DO 635 J1=JIMIN JIRNG IFP1
IIMAX=]J1+I1RNG-2

DO 630 I1=]1,IIMAX,2

DO 630 I3=I1,NTOT,NP2
J3MAX=I3+IFP2-NP1

DO 630 J3=I3,J3MAX,NP1
TEMPR=DATA(J3)
DATA(J3)=DATA(J3)*WR-DATA(J3+1)*WI

630 DATA(J3+1)=TEMPR*WI+DATA(J3+1)*WR
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR

635 WI=TEMPR*WSTPI+WI*WSTPR+WI

640 THETA=-TWOPI/FLOAT(IFACT(IF))
IF(ISIGN)650,645,645

645 THETA=-THETA

650 SINTH=SIN(THETA/2.)
WSTPR=-2.*SINTH*SINTH
WSTPI=SIN(THETA)
KSTEP=2*N/IFACT(F)
KRANG=KSTEP*(IFACT(IF)/2)+1
DO 698 I1=1,JIRNG,2
DO 698 13=I1,NTOT,NP2
DO 690 KMIN=1 KRANG,KSTEP
JIMAX=I3+]1RNG-IFP1
DO 680 J1=I3,]JIMAX,IFP1
J3MAX=]1+IFP2-NP1
DO 680 J3=J1,J3MAX,NP1
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J2MAX=]3+IFP1-IFP2
K=KMIN+{J3-]1+(J1-13)/IFACT(F))/NP1HF
IF(KMIN-1)655,655,665

SUMR=0.

SUMI=0.

DO 660 J2=]3,J2MAX,IFP2
SUMR=SUMR+DATA(J2)
SUMI=SUMI+DATA(J2+1)
WORK(K)=SUMR

WORK(K+1)=SUMI

GO TO 680

KCONJ=K+2*(N-KMIN+1)

J2=]2MAX

SUMR=DATA(J2)

SUMI=DATA(J2+1)

OLDSR=0.

OLDSI=0.

J2=]2-IFP2

TEMPR=SUMR

TEMPI=SUMI
SUMR=TWOWR*SUMR-OLDSR+DATA(J2)
SUMI=TWOWR*SUMI-OLDSI+DATA(J2+1)
OLDSR=TEMPR

OLDSI=TEMPI

J2=]2-IFP2

IF(J2-]3)675,675,670
TEMPR=WR*SUMR-OLDSR+DATA(J2)
TEMPI=WI*SUMI
WORK(K)=TEMPR-TEMPI
WORK(KCONJ)=TEMPR+TEMPI
TEMPR=WR*SUMI-OLDSI+DATA(J2+1)
TEMPI=WI*SUMR
WORK(K+1)=TEMPR+TEMPI
WORK(KCONJ+1)=TEMPR-TEMPI
CONTINUE

IF(KMIN-1)685,685,686

WR=WSTPR+1.
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WI=WSTPI
GO TO 690

686 TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR
WI=TEMPR*WSTPI+WI*WSTPR+WI

690 TWOWR=WR+WR
IF(ICASE-3)692,691,692

691 IF(IFP1-NP2)695,692,692

692 K=1 ‘
I2MAX=I3+NP2-NP1
DO 693 12=I3 ]2MAX,NP1
DATA(I12)=WORK(K)
DATA(I2+1)=WORK(K+1)

693 =K+2
» GO TO 698
C
C COMPLETE A REAL TRANSFORM IN THE 1ST DIMENSION, N
C ODD, BY CONJUGATE SYMMETRIES AT EACH STAGE.
C

695 J3MAX=I3+IFP2-NP1
DO 697 J3=I3,]3MAX,NP1
J2MAX=]J3+NP2-J2STP
DO 697 J2=]3,]2MAX,J2STP
JIMAX=]2+J1RG2-IFP2
J1ICNJ=J3+]2MAX+]J2STP-J2
DO 697 J1=J2,JIMAX,IFP2
K=1+J1-I3
DATA(J1)=WORK(K)
DATA(J1+1)=WORK(K+1)
IF(J1-J2)697,697,696

696 DATA(1CN])=WORK(K)
DATA(J1CNJ+1)=-WORK(K+1)

697 JICNJ=J1CNJ-IFP2

698 CONTINUE
IF=IF+1
IFP1=IFP2
IF(IFP1-NP1)700,700,610
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COMPLETE A REAL TRANSFORM IN THE 1ST DIMENSION, N
EVEN, BY CONJUGATE SYMMETRIES.

000NN

700 GO TO (900,800,900,701),ICASE

701 NHALF=N
N=N+N
THETA=-TWOPI/FLOAT(N)
IF(ISIGN)703,702,702

702 THETA=-THETA

703 SINTH=SIN(THETA/2.)
WSTPR=-2.*SINTH*SINTH
WSTPI=SIN(THETA)
WR=WSTPR+1.
. WI=WSTPI
IMIN=3
JMIN=2*NHALF-1
GO TO 725

710  J=JMIN
DO 720 I=IMIN,NTOT,NP2
SUMR=(DATA()+DATA()))/2.
SUMI=(DATA(I+1)+DATA(+1))/2.
DIFR=(DATA(I)-DATA()))/2.
DIFI=(DATA(I+1)-DATA(J+1))/2.
TEMPR=WR*SUMI+WI*DIFR
TEMPI=WI*SUMI-WR*DIFR
DATA(I)=SUMR+TEMPR
DATA(I+1)=DIFI+TEMPI
DATA(J)=SUMR-TEMPR
DATA(J+1)=-DIFI+TEMPI

720  J=J+NP2
IMIN=IMIN+2
JMIN=JMIN-2
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR
WI=TEMPR*WSTPI+WI*WSTPR+WI

725  IF(IMIN-JMIN)710,730,740
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730  IF(ISIGN)731,740,740
731 DO 735 I=IMIN,NTOT,NP2
735 DATA(I+1)=-DATA(I+1)
740 NP2=NP2+NP2
NTOT=NTOT+NTOT
J=NTOT+1
IMAX=NTOT/2+1
745 IMIN=IMAX-2*NHALF
I=IMIN
GO TO 755
750 DATA())=DATA(I)
DATA(J+1)=-DATAI+1)
755 I=I+2
J=J-2 .
. IF(I-IMAX)750,760,760
760 DATA(J)=DATA(IMIN)-DATA(IMIN+1)
DATA(J+1)=0.
IF(I-])770,780,780
765 DATA(J)=DATA(I)
DATA(J+1)=DATAI+1)
770 I=I-2
J=J-2
IF(I-IMIN)775,775,765
775 DATA(J)=DATA(IMIN)+DATA(IMIN+1)
DATA(J+1)=0.
IMAX=IMIN
GO TO 745
780 DATA(1)=DATA(1)+DATA(2)
DATA(2)=0.
GO TO 900

COMPLETE A REAL TRANSFORM FOR THE 2ND OR 3RD
DIMENSION BY CONJUGATE SYMMETRIES.

nnonan

800 IF(IIRNG-NP1)805,900,900
805 DO 860 I3=1,NTOT,NP2
I2MAX=I3+NP2-NP1
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DO 860 12=13,12MAX,NP1
IMIN=I2+I1RNG
IMAX=I2+NP1-2
JMAX=2*13+NP1-IMIN
IF(12-13)820,820,810
JMAX=]JMAX+NP2
IF(IDIM-2)850,850,830
J=JMAX+NPO

DO 840 I=IMIN,IMAX,2
DATA(I)=DATA())
DATA(I+1)=-DATA(J+1)
J=J-2

J=IMAX

DO 860 I=IMIN,IMAX,NP0
DATA(D)=DATA())
DATA(I+1)=-DATA(J+1)
J=J-NP0O

C END OF LOOP ON EACH DIMENSION

C
900

910
920

NP0=NP1
NP1=NP2
NPREV=N
RETURN
END
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APPENDIXD

Plotting Functions

Introduction

»

The capabilities of the S system can be expanded by the user, by

writing functions in the S language as follows.
<- is the assignment operation in S.

line.plot<- function(file,label="Example of line.plot")

data<-scan(file)
plot(data,type=""

title(main=label)

This example reads a vector of data from a Unix file and draws the
plot with lines connecting each of the data points. The function may be used

by issuing the command:
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line.plot("test.data")
or

line.plot("well. FF10","Gamma Ray well FF10")

The following are some functions which are written in the S

language to plot the results of program PCAXCOR.

xsection

#PIot a cross-section given absolute formation depths.
xsection<-function(a = "xsec.in", d = "numoffms", e = 8)

#a=datafile containing the information about the boreholes used in the

#analysis.

#d=number of the formations of the sequence.

#e=number of columns of the datafile matrix.

#read the data from the datafile, into a matrix called data:
data <- matrix(scan(a, skip = 1), ncol = e, byrow = T)

#structure of matrix is as follows: first two columns are Longitude &
#Latitude, respectively. 3rd column is data for the first formation, 4th
#column, is second formation....etc. Last column is the height of the well-

#head above sea level (KB).

# So the number of formation is equal to length of one row minus three:
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nof <- len(data[1, ]) -3
#And number of wells is equal to the length of a column:
now <- len(datal, 1])
pal <- datal, 1] # This just sets up a vector of the correct lengths.
pal[ll <-0 # Set the first valﬁe to zero

#using Eythagorus theory to calculate positions a long the line of each of the

#wells:
’ fér(i in 2:now) {
xdist <- datali, 1] - datali- 1, 1]
ydist <- datafi, 2] - datali- 1, 2]
x <- (xdist) * (xdist)
y <- (ydist) * (ydist)
#re-assign each value in the pal vector, (position is cumulative)

palli] <- palli - 1] + sqrt(x +y)

par(mar = c(9, 4.1, 4.1, 4.1))
par(adj = .5)

plot(pal, -datal, d + 2], type = "b", xlim = (0, 5500), ylim = c(
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-14000, 500), xlab = " HORIZONTAL DISTANCE NOT TO SCALE",
ylab=

"DEPTH IN FEET", Ity = 1, axes = F)
box()

axis(2)

for(i in 3:(d + 1))

lines(pal, -datal, i], Ity =1, éol =1)

for(i in 1:now)

segments(pallil, -datali, 3], pallil, -datali, d + 2], Ity = 2)
text(5450, -4300, "Etel Fm", cex = .8)
text(5450, -5200, "Sheghega Fm", cex = .8)
text(5450, -6800, "Domran Fm", cex = .8)
text(5450, -7500, "Ruaga Fm", cex = .8)
text(5450, -9000, "Heira Fm", cex = .8)
text(5450, -10200, "Zmam Fm", cex = .8)
text(5450, -11300, "Socna Fm", cex = .8)
text(5450, -11750, "Bahi Fm", cex = .8)

text(5450, -12750, "Gargaf Fm", cex = .8)
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#Plot the names of the wells :
text(13, 300, "FF2 ", cex = .8)
text(414, 300, "FF5 ", cex = .8)
text(1045, 300, "FF6 ", cex = .8)
text(1705, 500, "FF7", cex = .8)
text(1906, 300, "FF8", cex = .8)
text(2551, 300, "FF9", cex = .8)
text(2881, 300, "FF10", cex = .8)
text(3656, 300, "FF11", cex = .8)
text(3957, 300, "FF12", cex = .8)
text(4330, 300, "FF13", cex = .8)
text(4760, 300, "FF14", cex = .8)

text(5148, 300, "FF15", cex = .8)

xsectioncor function

#Plot the result of the cross-correlation tops of the program PCAXCOR and

#draw a cross-section between the studied boreholes.

xsectioncor<-function(a = xsec.cor, d = numoffms, e = 8)
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#a=datafile containing the information about the boreholes used in the

#analysis.
#d=number of the formations of the sequence.

#e=number of columns of the datafile matrix.

#read the data from the datafile, into a matrix called data:
data <- matrix(scan(a, skip = 1), ncol = e, byrow = T)

#structure of matrix is as follows: first two columns are Longitude&
#Latitude respectively. 3rd coulmn is data for the first formation, 4th
#column, is second formation....etc. Last column is the height of the well-

#head above sea level (KB).

# So the number of formation is equal to length of one row minus three:
nof <- len(data[1, J) -3

#And number of wells is equal to the length of a column:
now <- len(data[, 1])
pal <- datal, 1] # This just sets up a vector of the correct lengths.
pall1] <-0 # Set the first value to zero

#using Pythagorus theory to calculate positions a long the line of each of the

#wells:

for(i in 2:now) {
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xdist <- datali, 1] - datali- 1, 1]
ydist <- datali, 2] - data[i- 1, 2]
x <- (xdist) * (xdist)
y <- (ydist) * (ydist)
#re-assign each value in the T.pal vector, (position is cumulative)
palli] <- palli - 1] + sqrt(x + y)
par(mar = ¢(9, 4.1, 4.1, 4.1))
par(adj = .5)
plot(pal, -datal, d + 2], type = "b", xlim = (0, 1400), ylim = ¢(

-10300, 700), xlab = " DISTANCE IN KM", ylab = "DEPTH IN
FEET"lty = 1, axes = F)

post <- c(seq(0, 1400, 200))

axis(1, at = post, labels = F)

txt <- c("0", "2", "4", "6", "8", "10", "12", "14")
mtext(txt, at = post, side = 1, line = 1)

axis(2)

box()

for@i in 3:(d + 1))
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lines(pal, -datal, i], Ity = 1, col = 1)

for(i in 1:now)

segments(pal[il, -datali, 3], pallil, -datali, d + 2], lty = 2)
text(1300, -4435, "Etel Fm", cex = .8)
text(1300, -5825, "Sheghega Fm", cex = .8)
text(1300, -7076, "Domran Fm", cex = .8) .
text(1300, -7762, "Ruaga Fm", cex = .8)
text(1300, -8900, "Heira Fm", cex = .8)
text(3, 550, "FF7", cex = .8)

text(215, 550, "FF13", cex = .8)

text(325, 550, "FF11", cex = .8)

text(644, 550, "FF12", cex = .8)

text(1244, 550, "FF10", cex = .8)

pws

#Plot the original first principal component, their derivatives, power
#spectra, the logarithmic scaled power spectra, the interpolated power
#spectra, the cross-correlation function for stretch and the cross-correlation

#function for displacement.
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pWS<-funCﬁ0n(a = "C].", b = nczul d = "C3", e = "C4:", f - "C5”, g - "C6", h

= "C7")

#a=datafile containing the first principal component of the formation to be
#correlated and the first principal component of the sequence to be

#correlated with.

#b=derivative data of the first formation and the long sequence.
#d=the power spectra of the data.

#e=logarithmic scaled power spectra of the data.

#f=t;1e interpolated power spectra.

#g=the cross-correlation function of power spectra for stretch.

#h=the cross-correlation function for displacement.

a <- readf(a, 1)
print(length(a))
In1 <- len(a)

b <- readf(b, 1)
d <-readf(d, 1)

e <-readf(e, 1)
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f <- readf(f, 1)

g <-readf(g, 1)

h <- readf(h, 1)

par(mar = c(5,4.1,4.1,4.1,4.1))
par(mfrow = c(3, 4))

#Plot the original data (non-filtered or filtered principal components or

#original’ well-log data)

* print("ENTER THICKNESS OF FORMATION 1", quote = F)
d1 <- read(length = 1, print = F)
print("ENTER THICKNESS OF FORMATION 2", quote = F)
d2 <-read(length = 1, print = F)
dd2<-(d2+d2)/2+1
print("ENTER DEPTH OF FORMATION 1")
dfl <- read(length = 1, print = F)
print("ENTER DEPTH OF FORMATION 2")
df2 <- read(length = 1, print = F)
ddl <-d1*2

dd1<-dd1/2+1
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plot(a[1:dd1], -df1:(-df1 - d1), type = "1", xlab = ", ylab =

"DEPTH IN FEET", axes =F, ylim = c(-df1 - dd2, -df1))
title(main = "PC-I, SHORT SEQ. (FF13)")

axis(2, col = 1)
axis(3, coi =1)
plot(a[d1:In1], -df2:(-df2 - d2), type = "I", xlab = ", ylab = "DEPTH IN
FEET", axes = F)
p title(main = "PC-I, LONG SEQ. (FF11)")

axis(2, col = 1)
axis(3, col =1)

#Plot the derivative data.
d3 <- len(b)
d3<-d3/2

plot(b[1:d3], -1:-d3, type = "1", xlab = **, ylab = "SHORT SERIES",axes =
F)

title(main = "DERIVATIVE DATA")
axis(2, col = 1)
axis(3, col = 1)

dd3<-d3*2
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ddd3 <-dd3/2 +1
plot(b[d3:dd3], -1:-ddd3, type ="1", xlab = "*, ylab = "LONG
SERIES",axes = F)
title(main_ = "DERIVATIVE DATA")
axis(2, col = 1)
axis(3, col = 1)
#Plot power spectra.
‘ d4 <- len(d)

d4 <-d4/2

plot(d[1:d4], -1:-d4, type = 1", xlab = ", ylab = "FREQ., SHORT
SERIES",

axes =F)

title(main = "POWER SP")
axis(2, col = 1)

axis(3, col = 1)
dd4<-d4*2

ddd4 <-dd4/2 +1

plot(d[d4:dd4], -1:-ddd4, type = "I, xlab = ™", ylab = "FREQ., LONG
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SERIES", axes = F)
title(main = "POWER SP")
axis(2, col = 1)
axis(3, col =1)
#Plot logarithmic frequencies.
d7 <- len(d)
d7 <-d7/2
xx <- min(g[1:d7])
yy <-max(g[1:d7]) -
yyl <-yy + (yy/5)
plot(d[1:d7], -g[1:d7], tsrpe ="1", xlab ="", ylab = "LOG10 FREQ., SHORT
SERIES", axes = F, ylim = c(-yy1, -xx))
title(main = "POWER SP")
axis(2, col = 1)
axis(3, col = 1)
dd7<-d7*2
ddd7 <-dd7/2+1

xx <- min(g[1:d7])
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yy <- max(g[1:d7])

yyl <-yy + (yy/5)

plot(d[ddd7:dd7], -g[1:d7], type = "1", xlab = "*, ylab = "LOG10 FREQ,,
LONG SERIES", axes = F, ylim = c(-yy1, -xx))

title(main = "POWER SP")
axis(2, col = 1)
axis(3, col = 1)
#plot the interpolated frequencies.
d5 <- len(e)
d5<-d5/2
plot(e[1:d5], -1:-d5, type = "1", xlab =™, ylab =
"INTERP. FREQ., SHORT SERIES", axes = F)
title(main = "INTERP.POWER SP")
axis(2, col = 1)
axis(3, col = 1)
dd5<-d5*2
ddd5<-dd5/2+1

plot(eld5:dd5], -1:-ddd5, type = "I, xlab = ", ylab = "INTERP. FREQ.,
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LONG SERIES", axes = F)
title(main = "INTERP.POWER SP")
axis(2, col =1)
axis(3, col = 1)
#Plot cross-correlation function for stretch.
dé6 <- len(f)
dé6 <-d6/2
ddé <-d6 *2
dddé<-dd6/2 +1
plot(f[dddé6:ddé], f[1:d6], type = "I", xlab = "", ylab =
"LAG FOR STRETCH", axes = F)
post <- c(seq(-30, 30, 10))
axis(2, at = post, labels = F)
txt <- c("-30", "-20", "-10", "0", "10", "20", "30™)
mtext(txt, at = post * -1, side = 2, line = 2)
title(main = "X-COR (STRETCH)")
axis(3, col = 1)

#Plot cross-correlation function for displacement.
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d8 <- len(h)

plot(h[1:d8], -1:-d8, type = "I", xlab = "", ylab = " LAG FOR
DISPLACEMENT", axes = F)

title(main = "X-COR (DISPL.)")

axis(2, col =1)

axis(3, col = i)

pwsl

#Plot the original principal component, the derivative data, the
#interpolated power spectra, the cross-correlation function for stretch, and

#the cross-correlation function of the displacement.
#

pWSl<-funCtion(a = "CI"’ b = "C2ll’ d = "C3", e - "C4", f = llC ll’ g = "C6", h
= "C7")

#a=datafile containing the first principal component of the formation to be
#correlated and the first principal component of the sequence to be

#correlated with.

#b=derivative data of the first formation and the long sequence.
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#d=the power spectra of the data.

#e=logarithmic scaled power spectra of the data.

#f=the interpolated power spectra.

#g=the cross-cor'relation function of power spectra for stretch.
#h=the cross-correlation function for displacement.

#

a <-readf(a, 1)
In1 <- len(a)
print(length(a))
b <-readf(b, 1)
d <-readf(d, 1)
e <-readf(e, 1)
f <- readf(f, 1)
g <-readf(g, 1)
h <- readf(h, 1)

par(mfrow = c(2, 4))
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#Plot the original data (non-filtered or filtered principal components or the

#original well-log variables).

print("ENTER THICKNESS OF FORMATION 1", quote = F)
d1 <- read(length = 1, print = F)
print("ENTER THICKNESS OF FORMATION 2", quote = F)
d2 <- read(length = 1, print = F)
dd2<-(d2+d2)/2+1

» print("ENTER DEPTH OF FORMATION 1")
dfl <- read(length = 1, print = F)
print("ENTER DEPTH OF FORMATION 2")
df2 <- read(length = 1, print = F)
ddl <-d1*2
ddl<-ddi/2+1
plot(a[1:dd1], -df1:(-df1 - d1), type = "1", xlab = ", ylab =

"DEPTH IN FEET", axes = F, ylim = c(-df1 - dd2, -df1))
title(main = "PC-I, SHORT SEQ. (FF13)")

axis(2, col = 1)
axis(3, col = 1)

plot(ald1:In1], -df2:(-df2 - d2), type = "1", xlab = "", ylab = "DEPTH IN
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FEET", axes = F)
title(main = "PC-I, LONG SEQ. (FF13)")
axis(2, col = 1)
axis(3, col = 1)
# Plot the derivative data.
d3 <- len(b)
d3<-d3/2

plot(b[1:d3], -1:-d3, type = "1", xlab = ™", ylab = "SHORT
SERIES",axes =F)

title(main = “DERIVATIVE DATA")
axis(2, col =1)

axis(3, col = 1)

dd3 <-d3*2

ddd3<-dd3/2 +1

plot(b[d3:dd3], -1:-ddd3, type = "1", xlab = ", ylab = "LONG
SERIES",axes =F)

title(main = "DERIVATIVE DATA")
axis(2, col = 1)

axis(3, col =1)
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#Plot the interpolated frequencies.
d5 <- len(e)
d5<-d5/2

plot(e[1:d5], -1:-d5, type = "I", xlab = ™, ylab = "INTERP. FREQ.,
SHORT SERIES", axes = F)

title(main = "INTERP.POWER SP")
axis(2, col = 1)
axis(3, col = 1)
dd5<-d5*2
ddd5<-dd5/2 +1
plot(e[d5:dd5], -1:-ddd5, type = "1", xlab = "*, ylab = "INTERP. FREQ.,
LONG SERIES", axes = F)
title(main = "INTERP.POWER SP")
axis(2, col =1)
axis(3, col = 1)
#Pldt the cross-correlation function for stretch.
dé <- len(f)

dé6 <-dé6/2
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ddé <-d6 *2
dddé <-ddé6/2 +1

plot(fl[dddé6:ddé], f[1:d6], type = "1", xlab = "", ylab = "LAG FOR
STRETCH", axes = F)

post <- c(seq(-30, 30, 10))
axis(2, at = post, labels = F)
txt <- ¢("-30", "-20", "-10", "0", "10", "20", "30")
> mitext(txt, at = post * -1, side = 2, line = 2)
- title(main = "X-COR (STRETCH)")
axis(3, col =1)
# Plot the cross-correlation function for displacement.
d8 <- len(h)

plot(h[1:d8], -1:-d8, type = "1", xlab = ", ylab = " LAG FOR
DISPLACEMENT", axes = F)

title(main = "X-COR (DISPL.)")
axis(2, col = 1)

axis(3, col =1)
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xcfun

#A function to plot the original variables or principal components (filtered
#or non- filtered), and the two cross-correlation function (for stretch & for

#displacement).

xcfun<-function(a = "118", b = "pp8", d = "c5", e = "c7")

#a=datafile containing the first principal component of borehole sequence.

#b=datafile containing the first principal component of another borehole

#sequence.
#d=datafile containing the cross-correlation for stretch.
#e=datafile containing the cross-correlation for displacement.

#

a <-readf(a, 1)
b <- readf(b, 1)
d <-readf(d, 1)
e <-readf(e, 1)
par(mar = c(5, 4.1, 4.1, 4.1))

par(fig = c(0, .36, 0, 1))
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plot(a, -dep, type = "1", xlab = ", ylab = "DEPTH IN FEET", axes =F,

ylim=

c(-12000, -2000), xlim = c(-4, 4))

title(main = "PC-I, SHORT SEQ. (FF13)")
axis(2)

axis(3)

print("ENTER X-AXIS FOR WINDOW")

xax <- read(length = 1, print = F)
print("ENTER Y-AXIS [TOP] FOR WINDOW™")
ytp <- read(length = 1, print = F)
print("ENTER Y-AXIS [BOTTOM] FOR WINDOW")
ybt <- read(length = 1, print = F)

text(xax, ytp, "-")

segments(xax, ytp, xax, ybt)

text(xax, ybt, "-")

par(fig = c(.35,.7, 0, 1))

plot(b, -dep, type = "1", xlab = "", ylab = "DEPTH IN FEET", axes
=F,ylim = c¢(-12000, -2000), xlim = c(-4, 4))

title(main = "PC-I, LONG SEQ. (FF11)")
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axis(2)
axis(3)
print("ENTER X-AXIS FOR WINDOW")
xax <- read(length = 1, print = F)
print("ENTER Y-AXIS [TOP] FOR WINDOW")
ytp <- read(length = 1, print = F)
print("ENTER Y-AXIS [BOTTOM] FOR WINDOW")
ybt <- read(length = 1, print = F)
text(xax, ytp, "-")
segments(xax, ytp, xax, ybt)
text(xax, ybt, "-")
# Plot cross-correlation function for displacement.
par(fig = c(.68, 1, 0, .6))
d8 <- len(e)
xx <- min(1:d8)
yy <- max(1:d8)

yyl <-yy + (yy/2)
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plot(e[1:d8], -1:-d8, type = "1", xlab = ", ylab = " LAG FOR DISPL.",axes
= Eylim = c(-yyl, -xx))

title(main = "X-COR (DISPL.)")
axis(2)
axis(3)
print("enter X-axis of X-COR function for displacement”, quote =F)
xax <- read(length = 1, print = F)

* print("enter Y-axis of X-COR function for displacement", quote=F)
yax <- read(length = 1, print = F)
text(xax, yax, "<-")

# Plot cross-correlation function for displacement.

par(fig = c(.68, 1, .5, 1))
plot(d[dddé:dd6], d[1:dé], type = "1", xlab = ", ylab = "LAG FOR
STRETCH", axes = F)
title(main = "X-COR (STRETCH)")
axis(3)
par(xpd =F)

post <- c(seq(-30, 30, 10))
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axis(2, at = post, labels = F)

txt <- <("-30", "-20", "-10", "0", "10", “20", "30")

mtext(txt, at = post * -1, side = 2, line = 2)

print("entgr X-axis of X-COR function for stretch”, quote = F)
xax <- read(length = 1, print = F)

print("enter Y-axis of X-COR function for stretch", quote = F)
yax <- read(length = 1, print = F)

text(xax, yax, "<-")

macbound

#Plot on one side the first principal components, and on the other side the

#boundaries of different formations.

macbound<-function(a = "ll6", b = "ff13.30", d = "dep.30", e =

"formfile")

#a=datafile containing the non-filtered first principal component of a

certain #borehole.

#b=datafile containing D? values (boundaries of the related borehole.
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#d=datafile containing the depth of the sequence.
#e=datafile containing formation tops.

#

a <-readf(a, 1)
b <- readf(b, 1)
d <- readf(d, 1)
par(fig = (0, .6, 0, 1))

plot(a, -dep, type = "1", xlab = "(a)", ylab = "DEPTH IN FEET", axes=F,
ylim = ¢(-12000, -2000))

axis(2, col = 1)

axis(3, col = 1)

title(main = "NON-FIL. PC-I (WELL FF13)")
par(fig = (.55, 1,0, 1))

plot(b, -dep.30, type = "1", ylab = "DEPTH IN FEET", xlab = "(b)",axes =
F, ylim = ¢(-12000, -2000))

axis(2, col =1)
axis(3, col = 1)

title(main = "D SQUARE")
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fdep <- readf(e, 2)

text(fdepll, 1], fdepl1, 2], "<---— Etel Fm", cex = .8)
text(fdep(2, 1], fdepl2, 2], "<----- Sheghega Fm", cex = .8)
text(fdepl3, 1], fdep(3, 2], "<-—- Domran Fm", cex =.8)
text(fdepl[4, 1], fdepl4, 2], "<-—-— Ruaga Fm", cex = .8)
text(fdepl5, 1], fdepl5, 2], "<---— Heira Fm", cex = .8)

text(fdepl6, 1], fdepl6, 2], "<-—- Zmam Fm", cex = .8)

smoothplot

#Plot the filtered first principal components of two different wells and

#different windows used in the cross-correlation process.

smoothplot<-function(a = "lI8", b = "pp8")

#a=datafile of the first principal component of a borehole.
#b=datafile of the first principal component of another borehole.

#
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a <-readf(a, 1)

b <-readf(b, 1)

par(mar = ;:(5, 41,4.1,4.1))
par(mfrow = c(1, 2))

plot(a, -dep, type = "I", xlab = "(A)", ylab = "DEPTH IN FEET", axes=F,
ylim = ¢(-12000, -2000), xlim = c(-4, 3))

title(main = "FIL. PC-I (FF13)")
- axis(2, ?:ol =1)
axis(3, col = 1)
#This routine read the text input files which contain:
#column 1 the upper range of y-axis of the window.
#column 2 the lower limit of y-axis of the window.
#column 3 the x-axis of the window.
#file "textfile" contains the data to plot windows on the first plot.
dat <- readf("textfilel", 3)
text(dat[1, 3], dat[1, 1], "-")
segments(dat(1, 3], (dat[1, 1] - 1), dat[1, 3], (dat[1, 2] - 1), lty = 1)

text(dat[1, 3], dat[1, 2], "-")
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devl <- (dat[1, 2] + dat[1, 1])/2

text(dat[1, 3] + .2, dev1, "1")

text(dat[2, 3], dat[2, 1], "-"

segments(dat{2, 3], dat[2, 1], dat[2, 3], dat[2, 2], Ity = 1)
text(dat[2, 3], dat[2, 2], "-")

dev2 <- (dat[2, 2] + dat[2, 1])/2

text(dat[2, 3] + .2, dev2, "2")

text(dat[3, 3], dat[3, 1], "-")

segments(dat(3, 3], dat[3, 1], dat[3, 3], dat{3, 2], Ity = 1)
text(dat(3, 3], dat[3, 2], "-")

dev3 <- (dat[3, 2] + dat[3, 1])/2

text(dat(3, 3] + .2, dev3, "3")

text(dat[4, 3], dat{4, 1], "-"

segments(dat[4, 3], dat[4, 1], dat[4, 3], dat{4, 2])
text(dat(4, 3], dat[4, 2], "-"

dev4 <- (dat[4, 2] + dat[4, 1])/2

text(dat[4, 3] + .2, dev4, "4")

text(dat[5, 3], dat[5, 1], "-"
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segments(dat[5, 3], dat[5, 1], dat[5, 3], dat([5, 2])
text(dat[5, 3], dat[5, 2}, "-"

dev5 <- (dat[5, 2] + dat(5, 1])/2

text(dat[5, 3] + .2, dev5, "5")

plot(b, -dep, type = "I", xlab = "(B)", ylab = "DEPTH IN FEET", axes=F,
ylim = ¢(-12000, -2000), xlim = c(-4, 4))

axis(2, col =1)

. axi}s(3, col=1)
title(main = "FIL. PC-I (FF11)")

#file "textfile2" contains data to plot windows on the second plot.

dat <- readf("textfile2", 3)
text(dat[1, 3], dat[1, 1], "-")
segments(dat(1, 3], dat[1, 1], dat[1, 3], dat[1, 2], Ity = 1)
text(dat[1, 3], dat[1, 2], "-"
devl <- (dat[1, 2] + dat[1, 1])/2
text(dat[1, 3] + .2, devl, "A")
text(dat(2, 3], dat(2, 1], "-") )

segments(dat(2, 3], dat[2, 1], dat[2, 3], dat[2, 2], Ity = 1)
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text(dat(2, 3], dat[2, 2], "-")

dev2 <- (dat[2, 2] + dat[2, 1])/2

text(dat[2, 3] + .2, dev2, "B")

text(dat[3, 3], dat[3, 1], "-")

segments(dat(3, 3], dat[3, 1], dat[3, 3], dat[3, 2], Ity = 1)
text(dat[3, 3], dat[3, 2], "-")

dev3 <- (dat[3, 2] + dat[3, 11)/2

text(dat{3, 3] + .2, dev3, "C")

text(dat(4, 3], dat[4, 1], "-")

segments(dat[4, 3], dat(4, 1], dat[4, 3], dat[4, 2], Ity = 1)
text(dat([4, 3], dat[4, 2], "-") |
dev4 <- (dat[4, 2] + dat[4, 11)/2

text(dat[4, 3] + .2, dev4, "D")

text(dat[5, 3], dat[5, 1], "-")

segments(dat[5, 3], dat[5, 1], dat[5, 31, dat[5, 2])
text(dat(5, 3], dat(5, 2], "-")

dev5 <- (dat[5, 2] + dat[5, 1])/2

text(dat[5, 3] + .2, dev5, "E")
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readf
#To read different input files to the S system from the Sun workstation.

readf<-function(a = m1, b = 3)

#a=datafile containing any matrix to be read to the S system from a Unix

#file.

#b=number of the columns of that matrix.

file <- matrix(scan(a), ncol = b, byrow = T)

post
#Set up the graphic mode for the Laser printer.

post<-function(b =9.5,d =6,e =8,f{ = 3)
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#b=the width of the plot.
#d=the lengthof the plot.
#e=point size to be used.

#f=the font type.

{

3 postscript(hor = T, width = b, height = d, pointsize = e, font = f)
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Appendix E

CROSS—-CORRELATION USING PRINCIPAL COMPONENTS OF MODEL DATA IN FF13-6

IS
LS= 50 LL= 300

IDER= 1

DEPTH OF SHORT SERIES =
DEPTH OF LONG SERIES =

INPUT DATA

50.0
1.0

SHORT SERIES LONG SERIES

1 -0.158 0.000
2 -0.240 -1.125
3 -0.444 -0.194
4 -0.404 . 0.062
) -0.187 0.131
50 -0.434 0.172
294 ‘ 0.246
295 .188
296 0.030
297 0.058
298 0.059
299 0.010
SERIES 1

REAL IMAGINARY

1 -109.803 23.
2 -5.417 31.
3 -4.885 14.
4 2.960 41
5 37.902 -63.
6 -3.412 -8
7 4.255 49.
8 24.855 -6.
9 -17.986 -0
10 24.068 9.
11 6.772 29
12 6.513 19.
13 -14.045 4
14 7.006 5.
15 -12.232 -0
16 -4.095 10.
17 27.974 37.
18 15.760 0.

19 -15.878 25.
.660
.117
.135
.278
.188
.906
.293
.139
.722
.410
.831
.375
.282
.221
.737
.679

20 -12.941 3
21 -6.876 3
22 -7.603 16
23 10.893 3
24 -1.807 2
25 6.352 3
26 ~15.958 9
27 -1.211 4
28 -2.470 8
29 -1.966 7
30 5.645 3
31 -6.250 -8
32 ~-4.204 11
33 1.297 0
34 -6.915 8
35 6.451 9

IORG=
FEET
FEET

1

SMAX= 2.0

FOURIER TRANSFORM

POWER SPECTRUM

329
510
159

.209

728

.095

166
670

.354

221

.046

100

.861

499

.220

651
122
332
803

42.
.419
.750
.709
.388
.258
.145
.215
.082
.222
.975
.362
.739
.265
.501
.436
.226
.831
.070
.605
.191
.064
.433
.027
.186
.141
.062
.275
.197
.156
.365
.485
.006
.415
.453

OO0 OO0 OOHOOOFFOOWONOOOORNNKHENDOOWUWMWOW

143

SERIES 2

REAL IMAGINARY POWER SPECTRUM

1.963 -2.245 0.030
1.428 -0.687 0.008
1.522 -1.624 0.017
-2.197 -1.540 0.024
6.629 3.411 0.186
1.095 0.070 0.004
-6.171 1.300 0.133
2.970 4.879 0.109
2.518 -4.160 0.079
-1.833 3.251 0.047
-7.986 0.086 0.213
-6.593 2.382 0.164
-1.136 -1.011 0.008
-0.416 4.614 0.072
2.757 -2.479% 0.046
-2.442 -1.782 0.031
-15.781 8.360 1.067
-2.760 9.121 0.304
-8.486 -2.755 0.266
2.903 -0.213 0.028
4.430 -0.202 0.066
-2.006 -4.821 0.091
-0.860 3.981 0.055
-0.925 -0.433 0.003
-2.747 5.641 0.132
-0.486 -5.741 0.111
1.694 1.355 0.016
-0.962 -2.320 0.021
-2.472 -2.829 0.047
-3.833 3.540 0.091
5.946 1.261 0.124
-4.440 -0.456 0.067
3.515 4.381 0.106
0.436 -5.530 0.103
-5.304 1.113 0.098



.428
.494
.146
.543
.029
.710
.753
.983
.092
.616
.171
.230
.169
.571
.223
.111
.444
.067
.297
.114
.637
.280
.178

.981
.390
.503
.128
.477
.617
.569
.316
.649
.728
.949
.321
.168
.216
.483
.422
.208
.508
.9490
.792
.694
.682
.682
.245
.092
.513
L7771
.874
.528
.924
.603
.584
.871
.463

!

COHWRNORNRHENRPORPRWANNRFFOHWWHOORENWNOKFFOOUANNOOWO®

[ LU !
HENFHOOOKRFONMNKFKFKENK

1t
N

-0

.721
L1717
.418
.395
.205
.683
.558
.199
.739
.120
.003
.541
.302
.220
.317
.044
.795
.137
.347
.052
.035
.666
.683
.085
.112
.748
.896
.269
.043
.031
.506
.001
.715
.259
.125
.046
.256
.278

.024
177
.880
.433
.756
.354
.751
.167
.255
.730
.014
.174
.445
.871
.925
.337
.172
.589
.382
.551
.811
.630
.217
.006
.866
.654
.158
.119
.746
.545
.142
.054
.396
.345
.253
.118
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.028
.029
.026
.017
.008
.002
.012
.020
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0.576
1.107
-2.804
-0.356
-0.046

-0.237
-0.822
-5.416
-0.503
-1.685
-1.539
-0.566
-2.674
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-2.460
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-0.717
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.236
.197
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.829
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.953
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2.927
-1.192
-3.227

3.672
-1.589
-0.658

3.7717

0.864
-0.805
.626
.088
.111
.416
.110
.335
.198
.291
.979
.677
.193
.659
.371
.571
.530
.269
.310
.833
.851
.094
.476
.893
.881
.192
.700
.408
.372

4.412
-0.027

1

ONHNOKRHOMKMREEREREENOFEREUNO®RON

|
o

1.419
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.179
.063

-1

1

2

1
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1.

0.526

0.576
-1.117
-0.845
-2.125

0.303

3.861

2.640

1.077
-0.395

0.050

3.081

0.269
-0.780
-1.051
-0.582
-0.321
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.262
.822
.813
.068
.273
.964
.193
.665
.299
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111 -2.105 1.745 0.025 0.559 0.188 0.001
112 -0.818 1.564 0.010 0.818 1.088 0.006
113 0.017 0.632 0.001 0.953 1.098 0.007
114 -0.413 -0.524 0.001 1.130 0.906 0.007
115 -1.685 ~0.706 0.011 1.203 0.566 0.006
116 -2.550 0.210 0.022 1.194 0.430 0.005
117 -2.013 1.385 0.020 0.836 0.528 0.003
118 -1.024 1.684 0.013 1.223 0.390 0.006
119 0.000 0.838 0.002 0.991 0.395 0.004
120 -0.259 -0.394 0.001 1.000 0.407 0.004
121 -1.437 -0.778 0.009 1.075 0.347 0.004
122 -2.417 0.023 0.020 1.264 0.206 0.005
123 -2.042 1.189 0.019 1.038 0.154 0.004
124 -0.731 1.222 0.007 0.859 0.731 0.004
125 0.165 0.293 0.000 0.855 0.834 0.005
126 -0.445 -0.855 0.003 1.435 0.456 0.008
127 ~-1.809 -0.869 0.013 1.525 -0.497 0.009
128 -2.622 -0.209 0.023 1.146 -0.294 0.005
129 -2.244 0.897 0.020 0.570 -0.017 0.001
130 -1.467 1.507 0.015 0.930 -0.313 0.003
131 -0.463 - 0.679 0.002 0.742 0.157 0.002
132 -1.038 -0.086 0.004 1.446 -0.513 0.008
133 -1.388 - -0.655 0.008 0.214 0.165 0.000
134 -2.742 -0.280 0.025 1.325 0.792 0.008
135 -2.407 0.705 0.021 1.203 1.265 0.010
136 -0.602 2.133 0.016 -0.266 -0.405 0.001
137 -0.057 0.933 0.003 0.931 0.378 0.003
138 0.755 0.704 0.004 -0.904 -1.493 0.010
139 -0.791 -1.540 0.010 0.497 1.490 0.008
140 -3.056 0.068 0.031 2.688 -0.932 0.027
141 -2.166 0.026 0.016 0.991 1.564 0.011
142 -0.908 0.946 0.006 0.252 1.031 0.004
1437 -0.786 1.430 0.009 1.847 -0.951 0.014
144 0.535 0.269 0.001 -0.504 -0.549 0.002
145 -1.138 -1.059 0.008 1.361 0.841 0.009
146 -1.989 -0.320 0.014 1.398 0.183 0.007
147 -2.054 0.053 0.014 1.605 1.270 0.014
148 -0.519 0.542 0.002 0.287 1.162 0.005
149 0.476 0.691 0.002 0.026 -0.298 0.000
NORMALIZED CORRELATION COEFFICIENTS
(ASSUME LONG SERIES IS STRETCHED) (ASSUME SHORT SERIES IS STRETCHED)
LAG NUMBER VALUE OF COEFFICIENT LAG NUMBER VALUE OF COEFFICIENT

0 0.900 0 0.900

-1 0.760 1 0.817

-2 0.507 2 0.586

-3 0.327 3 0.378

-4 0.290 4 0.272

=5 0.301 5 0.214

-6 0.253 6 0.144

-7 0.148 7 0.061

-8 0.057 8 0.003

-9 0.019 9 -0.010

-10 0.021 10 0.018

-11 0.035 11 0.063

-12 0.047 12 0.096

-13 0.055 13 0.105

-14 0.060 14 0.109

-15 0.076 15 0.143

-16 0.116 16 0.228

-17 0.178 17 0.333

-18 0.228 18 0.409

-19 0.226 19 0.443

-20 0.175 20 0.443

-21 0.115 21 0.428

-22 0.076 22 0.399

-23 0.064 23 0.381

-24 0.093 24 0.428

-25 0.154 25 0.530

-26 0.179 26 0.569

=27 0.160 27 0.510

-28 0.134 28 0.482
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-29 0.171 29
-30 0.262 30

STRETCH FACTOR FOUND FROM CORRELATION OF POWER SPECTRA

FIRST CHOICE - LONG SERIES IS STRETCHED 1.00 TIMES

SECOND CHOICE - SHORT SERIES IS STRETCHED 1.82 TIMES

FINAL RESULT SUGGEST THAT LONG SERIES IS STRETCHED 1.00

TIMES MAXIMUM CORRELATION IS 1.00 AT A LAG OF 51

_—

0.520
0.544



THE CORRELATION MATRIX IS

1.000 0.608
0.608 1.000
0.011 -0.023
0.033 -0.041
0.017 -0.053
0.290 0.697
-0.409 -0.210
EIGENVECTORS
VARIABLE 1 2
sp 0.06832 0.55669
GR 0.16567 0.61768
ILS -0.52919  0.12941
IIM -0.56791 0.14283
ILD -0.55401 0.13198
DT 0.23032 0.43718
CALI 0.07316 -0.25074
EIGENVALUES :
2517 2.101

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH

35.953% 30.014%
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0.011
-0.023
1.000
0.715
0.639
-0.140
-0.102

0.28581
-0.11185
-0.06416
-0.14455
-0.11367
-0.54055
-0.75874

1.275

18.217%

0.033
-0.041
0.715
1.000
0.816
-0.104
-0.038

0.64582
-0.27119
~-0.47191

0.16975

0.24428
-0.20085

0.39730

0.410

5.862%

0.017

0.290

-0.053 0.697
0.639 -0.140
0.816 -0.104
1.000 -0.113
-0.113 1.000
-0.073 0.251

5 6

-0.39462 0.09737
0.08338 -0.14309
-0.65090 0.22166
0.13434 -0.75801
0.49401 0.57941
0.18917 0.09989
-0.34027 0.02547

0.365 0.171

EIGENVALUE

5.207% 2.437%

~0.409
-0.210
-0.102
-0.038
-0.073

0.251

1.000

7

-0.14650
0.69105
-0.05995
-0.12145
0.15268
-0.61444
0.28603

0.162

2.309%

Table 1 The correlation matrix, the eigenvectors, the eigenvalues and the
percentage of each eigenvalue to the total variance of the original
data of well FF7.

Tippendis E]
[ppendix E]
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THE CORRELATION MATRIX IS :

1.000 0.482 -0.030 -0.025 0.162 0.181 0.236

0.482 1.000 -0.007 -0.004 -0.231 0.639 0.582

-0.030 -0.007 1.000 0.991 0.298 -0.088 -0.055

-0.025 -0.004 0.991 1.000 0.316 -0.084 -0.051

0.162 -0.231 0.298 0.316 1.000 -0.403 -0.292

0.181 0.639 ~0.088 -0.084 -0.403 1.000 0.558

0.236 0.582 -0.055 -0.051 -0.292 0.558 1.000

EIGENVECTORS

VARIABLE 1 2 3 4 5 6 7

sp 0.23331 -0.23696 0.72340 —0.38760 -0.27827 0.37207 0.00206

GR 0.47125 -0.32089 0.13568 -0.13796 0.17025 -0.78008 0.00028

ILS -0.28677 -0.59621 -0.21268 -0.11548 -0.07936 0.03787 -0.70427
IIM -0.28689 -0.59984 -0.20073 -0.09312 -0.06041 0.04206 0.70958
ILD -0.35202 -0.18014 0.55909 0.58154 0.43596 -0.04902 -0.02012

DT 0.48250 -0.19787 -0.22103 -0.01667 0.66746 0.48305 -0.00871
CALI 0.44969 -0.23238 -0.10639 0.68576 -0.49807 0.11877 -0.00418
EIGENRVALUES

2.628 2.020 1.141 0.504 0.426 0.272 0.009
PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE-

37.543% 28.857% 16.302% 7.201% 6.086% 3.883% 0.128%

Table 2 The correlation matrix, the eigenﬁectors, the eigenvalues and the
percentage of each eigenvalue to the total variance of the original
data in well FF13.

|
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THE CORRELATION MATRIX IS

1.000 0.613 -0.217 -0.027 v-0.029 0.754 0.789

0.613 1.000 -0.217 0.003 -0.041 0.593 0.270

-0.217 -0.217 1.000 0.125 0.491 -0.411 -0.200

-0.027 0.003 0.125 1.000 -0.009 -0.112 -0.046

-0.029 -0.041 0.491 -0.009 1.000 -0.182 -0.076

0.754 0.593 -0.411 -0.112 -0.182 1.000 0.737

0.789 0.270 -0.200 -0.046 -0.076 0.737 1.000

EIGENVECTORS

VARIABLE 1 ’ 2 3 4 5 6 7

SP 0.50901 -0.24541  0.03065 0.07228 -0.08097 -0.59884 -0.55620

GR 0.38905 -0.14309 0.11509 -0.78337 -0.19484 -0.04588 0.40148

ILS -0.27747 -0.61005 0.00786 0.10941 -0.70899 0.18012 -0.06082

ILM -0.06040 -0.13908 0.96629 0.07833 0.18264 0.05835 -0.01990

ILD -0.14195 -0.70302 -0.22359 -0.12892 0.64602 0.03702 0.01730

DT 0.52599 -0.02533 -0.03546 0.02660 0.04595 0.77393 -0.34591

CALI 0.46054 -0.18144 -0.02804 0.58795 -0.00248 -0.05570 0.63672
EIGENVALUES

3.0092 1.380 1.008 0.744 0.462 0.215 0.099

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE

44.170% 19.707% 14.402% 10.626% 6.600% 3.078% 1.417%

Table 3 The correlation matrix, the eigenvectors, the eigenvalues and the
percentage of each eigenvalue to the total variance of the original
data in FF11l.

IJ!
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THE CORRELATION MATRIX IS

1.000 0.760 -0.044 0.035 0.000 0.424 0.181

0.760 1.000 -0.250 -0.045 -0.026 0.655 0.291

-0.044 -0.250 1.000 0.102 0.017 -0.525 -0.281

0.035 -0.045 0.102 1.000 0.045 -0.073 -0.068

0.000 -0.026 0.017 0.045 1.000 -0.044 -0.025

0.424 0.655 -0.525 -0.073 -0.044 1.000 0.696

0.181 0.291 -0.281 -0.068 -0.025 0.696 1.000
EIGENVECTORS

VARIABLE 1 2 3 , 4 5 6 7

Sp 0.40677 0.56943 -0.14329  0.15366 =-0.04190 -0.63605 -0.24461

GR 0.50483 0.35806 -0.11692 = 0.13617 -0.14373  0.49483 0.56498

ILS -0.32103 0.47830 -0.17317 0.09317 0.72187 0.29392 -0.14835

IIM -0.06365 0.40162 0.38468 -0.82126 -0.10268 0.02996 0.02753

IID -0.03239 0.13881 0.86814 0.47388 0.03030 0.02268 -0.00575

DT 0.55431 -0.17159 0.08696 -0.10473 0.08600 0.41305 -0.68320

CALI  0.40530 -0.32979 0.16312 -0.19791 0.66154 -0.30358 0.36250
EIGENVALUES

2.732 1.232 1.011 0.938 0.719 0.238 0.129

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE

39.033% 17.607% 14.443% 13.400% 10.268% 3.404% 1.845%

Table 4 The correlation matrix, the eigenvectors, the eigenvalues and the-
percentage of each eigenvalue to the total variance of the orginal
data in well FF12.

IJI

|
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THE CORRELATION MATRIX IS

1.000 0.032 0.001 0.013 0.014 -0.291 -0.292

0.032 1.000 -0.158 -0.012 -0.010 0.775 0.584

0.001 -0.158 1.000 0.032 0.031 -0.335 -0.199

0.013 -0.012 0.032 1.000 1.000 -0.062 -0.037

0.014 -0.010 0.031 1.000 1.000 -0.060 -0.035

-0.291 0.775 -0.335 -0.062 -0.060 1.000 0.688

-0.292 0.584 -0.199 -0.037 -0.035 0.688 1.000
EIGENVECTORS

VARIABLE 1 2 . 3 4 5 6 7

sp -0.19841 0.03321 0.87026 0.27560 -0.25042 -0.25201 0.00081

GR 0.50718 -0.11669 0.28411 0.37636 0.37573 0.60466 0.00055

ILs -0.24783 0.02497 -0.37876 0.87653 0.01057 -0.16148 -0.00049

ILM -0.12679 -0.69518 -0.00169 -0.01912 -0.00130 -0.01495 0.70714

I1LD -0.12542 -0.69551 -0.00035 -0.01897 -0.00197 -0.01519 -0.70707

DT 0.58192 -0.09124 0.00877 0.03135 0.33237 -0.73588 0.00056

CALI 0.52110 -0.09656 -0.13560 0.11128 -0.82797 0.05321 0.00079
EIGENVALUES

2.560 1.983 1.052 0.894 0.373 0.138 0.000
PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE

36.567% 28.333% 15.034% 12.773% 5.327% 1.967% 0.000%

Table 5 The correlation matrix, the eigenvectors, the eigenvalues and the
percentage of each eigenvalue to the total variance of the original
data in well FF10.

IJI
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Fl-Abbreviations

BHC* BoreHole Comi)ensated log
CALI* calliper log

CNL* Compensated Neutron Log
DFET Discrete Fourier Transform
dp hole diameter

DST drill stem test

DT* transit time

FFT Fast Fourier Transform
GAPI Gamma American Petroleum Institute
GR Gamma Ray log

ILD* deep resistivity log
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ILM* medium resistivity log

ILS* shallow resistivity log

KB Kelley Pushing

LDL* ’ Lateral Density Log

LIS* Log International Standard
LIS/A* Log International Standard Access
MMCFG/D million cubic feet of gas per day
PCA Principal Component Analysis
Rine mud cake resistivity

| mud filtrate resistivity

Ry formation resistivity

Rt true resistivity

Ry formation water resistivity

SpP ‘ Spontaneous Potential log

Sw ‘ water saturation

Sxo flushed zone resistivity

T.D total depth

[Appendix F: Abbreviations |
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SP

SS

330

Description

original well-log varaibles matrix
constant

covariance

displacement

imaginary number

eigenvalues

principal component scores
correlation matrix

correlation of between two variables
variance-covariance matrix
standard deviation

variance

corrected sum of products

sum of squares

time

eigenvectors

{ Appendix F: Abbreviations |
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frequency
mean

* Schlumberger mark

{Appendix F: Abbreviations |




