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A bstract

One of the principal characterising features of a programming language is its type 
system. Many recent functional programming languages adopt a Hindley-Milner 
style type system facilitating parametric polymorphism.

One of the forms of polymorphism found most commonly in programming languages 
is overloading. Whereas one may consider the Hindley-Milner system an off-the- 
shelf package for parametric polymorphism, there is no similar uniformity in the 
approaches taken to overloading.

This thesis extends the standard Hindley-Milner system. A type system incorpo­
rating parametric polymorphism and overloading is presented both formally and 
informally, and it is shown to satisfy a principal type theorem. The Hindley-Milner 
type inference algorithm is extended for the new system. This algorithm is shown 
to be sound and complete.

The characteristic feature of parametric polymorphism is that the same code can be 
used at many different types. The corresponding characterisation rule for overload­
ing is that different code is used at different types. As such, meaning is assigned 
to terms on the basis of their typing.

The semantics of the form of overloading described herein is assigned by means of 
a derivation to derivation translation scheme. This scheme is shown to be sound 
and, under certain well-defined conditions, coherent.

This approach to overloading is closely related to the lazy functional programming 
language Haskell’s type class mechanism. Some discussion of matters related to the 
current system, and arising through that project, is given.



Preface and overview

Approaches to ad-hoc polymorphism, or overloading, are many and varied; what 
can one deduce from this alone? Since many, or possibly most, languages include 
overloading to some extent, it seems reasonable to assert that overloading of some 
form is regarded as a desirable programming language feature—not many language 
designers fail to include an overloaded equality operator in their language.

But what of the variety of approaches? Languages differ greatly in the power and 
extensibility of the overloading mechanisms they provide: Can users define their 
own overloaded operators? Can definitions be extended to operate over user defined 
types? If it is not possible to identify which meaning of an operator is intended, 
can overloading be propagated, or is it defaulted or erroneous? In summary, from 
“many and varied,” it appears reasonable to conclude “desirable but frequently 
ad-hoc.”

This thesis presents an approach to overloading within one increasingly popular 
type system. The type system is that discovered originally by Roger Hindley, 
developed independently by Robin Milner for ML, and studied subsequently by 
Luis Damas in his thesis. The Damas-Milner type system, as it is referred to 
throughout, is now extensively used within functional programming languages: it 
is the basis of languages such as Miranda, Orwell, LML, and most recently, Haskell.

The Damas-Milner type system utilises a type inference algorithm based on unifica­
tion. The approach to ad-hoc polymorphism in this thesis is to embed overloading 
within the Damas-Milner type system. Thus the system is polymorphic; uses uni­
fication to drive the selection of the appropriate version of an overloaded operator; 
and allows user defined identifiers to be simultaneously, and largely orthogonally, 
polymorphic in both the parametric and ad-hoc senses. Further, an implementation 
strategy is given for the approach.

Chapter 2  presents the language informally along with the type system, and the 
type inference algorithm. A translation scheme is introduced suggesting an imple­
mentation strategy. The system is referred to as the OL system.

Chaper 3 describes the OL language and type system formally. In addition, the 
chapter presents the type inference algorithm and a formal translation into the 
Damas-Milner system.

Chapter 4 establishes some admissable rules. These follow directly from the formal 
rules and are conveniently abstracted here for subsequent use in proving more 
substantial results.



Chapter 5 shows the inference algorithm to be sound and complete. As such, the 
OL system satisfies a principal type theorem. Further, the translation semantics is 
shown to be sound with respect to the Damas-Milner system.

For technical reasons, the informal inference algorithm described in Chapter 2 and 
the formal algorithm described in Chapter 3 are different. Chapter 6  motivates 
this dichotomy and provides an analysis of when and how the two approaches can 
be unified.

The following Chapter, Chapter 7, describes a canonicalisation process for typing 
derivations. Apart from being useful in subsequent proofs, this process suggests a 
simplified version of the type system.

Since semantics is assigned to typed terms via a derivation to derivation translation 
scheme, it is necessary to ensure this translation scheme is coherent. Under cer­
tain conditions, the translation scheme is coherent and Chapter 8  motivates these 
conditions and presents the coherence result.

Chapter 9 presents the design of type classes in Haskell, a realisation of the ap­
proach. This implementation raises several problems and, naturally, solutions. 
Chapter 1 0  re-examines the approach to ad-hoc polymorphism with respect to the 
initial discussion set out in the survey, technical issues raised, and the experience 
gained with Haskell.
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Chapter 1 

Type system s— a selective survey

The type system associated with a language design trades-off expressiveness with 
reliability. A rigid type discipline ensures a certain large class of programming 
errors may be detected at compile time. On the other hand, a language with a 
loose type system, or no type system at all, may be considerably more expressive. 
A goal of modern type system research is to increase the expressive power of a 
language while maintaining the security associated with a strict type discipline.

This survey chapter reviews type systems associated mainly with extended lambda 
calculi examining the trade-offs that are made with the choice of type discipline. 
The early parts deal with well-understood branches of the lambda calculus and 
the latter systems represent more recent programming language research. Since 
this thesis presents a type system for overloading, particular emphasis is placed on 
systems addressing issues associated with ad-hoc polymorphism.

W hy  ty p es?  The type system adopted by a programming language influences 
greatly the character of that language: programmers are required to be aware of 
the types of the objects in their programs, and they will be confronted by problems 
which cannot be solved simply because the demands of the type system are too 
great. Further, compilers are required to enforce the type discipline, thus compli­
cating the compilation process and, if the compiler is to be useful, requiring simple 
meaningful error messages to be generated from possibly subtle programming er­
rors.

Many modern programming languages, however, adopt increasingly sophisticated 
type systems. The principal reasons for this are as follows.

R eliab ility . Type systems are adopted by programming languages to increase 
reliability. A common class of programming error can be detected at compile­
time allowing more time and effort to be devoted to fixing real bugs, and more 
faith to be placed in the robustness of a final product.

D iscipline. Type systems provide an implicit and unavoidable form of documen­
tation. Programmers, or groups of programmers, employed on a task are
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required to ensure that the interface between components of the entire sys­
tem are type correct. This requires an awareness of the types of objects both 
in the small and in the large.

M odelling . Many type systems facilitate a higher-level style of programming. 
For example, C+-f- incorporates classes encouraging programmers to impose 
a particular object-oriented structure in their program designs.

On the other hand, the following disadvantage of type systems leads to their being 
inappropriate for certain programming tasks, typically systems-oriented applica­
tions.

E xpressiveness. Type systems approximate the dynamic semantics of a program­
ming language, they can be viewed as a form of abstract interpretation. In 
order for a well-typed program to be robust it is necessary that this approxi­
mation be conservative: type-correct programs may not result in a type error 
at runtime, whereas type-incorrect programs may possibly evaluate perfectly 
acceptably. This approximation can be too restrictive for certain program­
ming tasks.

It should be noted that the adoption of programming languages with sophisticated 
type systems by the computing community in general is a slow process. The ex­
istence of a large programming base—programmers and programs—in languages 
such as Fortran and Cobol makes the adoption of new systems committing both 
financially and logistically. Over time, however, it appears that language features 
which have in the past been prevalent only in the academic community are being 
adopted more generally.

The rest of this chapter is organised as follows. Sections 1.1 through 1.3 present 
the untyped, simply typed, and polymorphically typed lambda calculi respectively. 
Section 1.4 discusses the Damas-Milner type system—this system is fundamental 
to subsequent chapters. Some significant theoretical properties of type systems 
are discussed in general in Section 1.5 providing some background to the technical 
results of Chapters 5 and 8 .

Section 1 .6  presents a brief categorisation of four significant forms of polymorphism. 
One of these, overloading, is then discussed in a more detailed and pragmatic 
way in Section 1.7 where a critique is given of the approaches taken by several 
programming languages.

1.1 T h e u n typed  lam bda calcu lus

Alonzo Church developed the lambda calculus [Chu41*, Bar81*, HS8 6 ] to express 
functions as terms—as opposed to the more traditional model based on sets of 
argument and result pairs. Terms, including function terms, can thus be argued 
about at a single level and computed upon by a simple set of rewrite rules.
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The lambda calculus (and the closely related combinatory logic) is in fact a collec­
tion of formal systems constructed in different ways for different applications: some 
include constants, some have type restrictions, etc. This section gives an outline 
of the basic untyped lambda calculus, the abstract syntax and semantics of which 
will recur throughout this chapter.

1.1.1 Terms, variables and substitutions

Terms of the pure untyped lambda calculus are constructed from the context-free 
grammar

e ::= x | (Ax.e) | {ex e2)

where x is drawn from some finite set of variable names, (Ax.e) denotes a function 
abstraction, and (ei e2) denotes an application. Brackets may be omitted from 
terms under the usual convention that application binds more tightly than A and 
associates to the left.

A variable x is referred to as bound in a lambda term if it appears within the e 
part of a sub-term of the form Ax.e; a variable is referred to as free in a term if 
it appears in a non-bound position. Bound variables may be renamed. The set of 
free variables in a term is denoted by fv(e). Notice that a variable may have both 
free and bound occurrences within a given term: for example, the first occurrence 
of x in ( /  x (Ax. x)) is free, and the other occurrences bound. The x immediately 
succeeding the lambda does not constitute a free or a bound occurrence.

Substitutions are functions mapping variables to terms, they are denoted by lists 
of term/variable pairs, e.g. [ei/xi; • • •; en/x n]. When a substitution is applied to a 
term, each free variable of the term appearing in the domain of the substitution is 
replaced simultaneously in the term by the result of applying the substitution to 
that variable. For example, if the substitution [y/x; g/ f ]  is applied to the term 
above, then the result is (g y (Ax. x)); notice that only the free occurrences of 
variables are substituted.

1.1.2 R eduction rules

Computation in the lambda calculus is defined by a set of rewrite or reduction rules. 
Each rule allows a sub-term matching a particular pattern to be replaced with a 
term defined by the applicable rule and the term at hand. The most significant 
reduction rule is the /2-reduction rule representing function application.

A /2-redex is any sub-term of the form (Ax.ei) e2, that is, the application of an 
explicit function abstraction to a specific argument. A /2-reduction is the action of 
replacing a /2-redex with a term representing the result of the application. Thus 
the /2-reduction rule is

(Ax.ei) e2 =̂ => [e2 /x]ei
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where the substitution [e2 /x]ei replaces each free occurrence of x in e\ with e2 .

Other common rewrite rules include the 77- and a-reduction rules. The 77 rule allows 
the reduction of redundant function abstraction and application,

Ax. (e x)

where it is required that x is not free in e; and the a  rule allows the renaming of a 
bound variable,

Ax.e Ay. [y/x]e

where it is required that y is not free in e.

Sequences of reductions using the /?-, 77- and a-reduction rules are labelled through­
out with the general = >  notation: that is, is the transitive closure of ==>•, ==$■ 
and Although the term reduction is used, no decrease in the lexical size of the 
term need be implied. Indeed, the term may grow considerably.

A term in normal form  is one for which no reduction rule is applicable; it may be 
thought of as the result of a computation. Arbitrary terms do not necessarily have 
normal forms, that is, there need not be a reduction sequence from an arbitrary 
term to a term in normal form. Such terms correspond to non-terminating compu­
tations. Further, there cannot be an algorithm to detect such and only such terms: 
if there were, it would solve the halting problem.

Detailed presentation and discussions of the pure lambda calculus may be found 
in Barendregt’s [Bar81*] and Hindley and Seldin’s [HS8 6 ].

1.1.3 The Church-Rosser and Standardisation theorem s

The Church-Rosser and Standardisation theorems are the main technical results 
rendering the lambda calculus an appropriate model of computation. The definition 
of reduction given thus far is non-deterministic: given an arbitrary term there may 
be many reduction rules applicable. The Church-Rosser theorem states, in effect, 
that this does not matter.

C hurch-R osser T heo rem . Given a term e, if e = >  e\ and e => e2

then there exists a term e' such that ex = >  e' and e2 =>  e'.

That is, there always exists a term which unites any two reduction sequences. Since 
termination is not guaranteed, this result does not suffice in itself.

A normal order reduction sequence is one in which the redex chosen for reduction 
is always the leftmost outermost redex. The Standardisation theorem is as follows.
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S tan d a rd isa tio n  T heorem . Given e, if there exists a term e' such 
that e =£• e' and e' is in normal form, then there exists a normal 
order reduction sequence from e to e'.

That is, if there exists a reduction sequence from a term to a term in normal form, 
then a normal order reduction sequence will reach the term in normal form. Specif­
ically, normal order reductions guarantee termination if termination is possible. 1

Proofs of the theorems above are given in [HS8 6 ].

1.2 T h e sim p ly  ty p ed  lam bda calcu lus

Adding simple types to the lambda calculus represents a considerable reduction 
in expressiveness: it is required that every term be statically and uniquely typed. 
Simple types are defined by the grammar

r  ::= x  I t r '

representing atomic types and function types respectively. All the types that can be 
expressed are monotypes, there is no polymorphism. Further, the syntax of lambda 
abstractions is augmented with a type annotation. That is, lambda abstractions 
are of the form XxT.e indicating that the abstracted variable x  is of type r.

An assumption set, denoted A, is a set of bindings of types to identifiers:

*^1 • "̂li • • • i

It is required that the identifiers bound in an assumption set be distinct. In gen­
eral, free variables are assigned types by assumption sets and bound variables are 
assigned types by the lambda term binding them. The notation A x denotes the 
assumption set A with any binding of x removed.

S im ple ty p in g  ru les. A typing judgement is a formal statement of the form

A h e : r

asserting that: “Under the assumptions in A, the term e has type r ” . There are 
three rules in the calculus of types for deriving such judgements. The rules are 
given in Figure 1.1.

These, or similar, rules appear in many type systems and embody the typing of 
variables, and function abstraction and application. The T au t rule asserts that

1S tric t languages, such as LISP [McC78*] and ML [IIMM86], em ploy rightm ost innerm ost, or 
applicative order, reduction since th is is considered more efficient in general. However, exam ples 
which te rm inate  under norm al order reduction may loop under applicative order reduction.
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T au t
A; x : t h x : t

Abs
Ax; x : t ' h e : r

A  h (AxT/.e) : r '  —► r

C om b
A  h e\ : t '  —► r  A\~ e2  : r'

A  h (ei e2) : r

Figure 1 .1 : Simple typing rules

under the assumption x : r ,  the variable x has type r; the A bs rule augments the 
environment with a binding of the identifier to the given type, types the body of 
the abstraction, and constructs a function type for the term; and the C om b rule 
ensures the type of the argument matches that in the function type and yields a 
typing at the result type.

This language is not as expressive as its untyped counterpart: no terms have been 
added, many have been removed. One significant term which has been disallowed 
is the fixed point combinator. In the untyped language, the fixed point combinator 
fix represents recursion2.

fix = Xx.(Xy.x (y y)) (Ay.x (y y)) 

fix f  = f  (fix f )
= / ( / ( /  ■■' ( f ( f i xf ) )  •■•))

However, the definition above is disallowed in the simply typed calculus: types 
cannot be assigned to the identifiers in such a way as to construct a well typed 
term.

A system is strongly normalisable if every term has a normal form, and any reduc­
tion sequence converges on that normal form.

S tro n g  norm alisab ility  th eo rem . The simply typed lambda calculus 
is strongly normalisable.

2 fix here denotes C u rry ’s fixed point com binator. There are o ther term s w ith essentially 
the sam e property, for exam ple T uring’s com binator Z Z  where Z  = Xz.Xx.x  (z  z x) ,  all of which 
em body self application, the  essence of recursion. As one m ight expect, no fixed point com binator 
can be defined in the sim ply typed calculus.
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a  £  fv(A)G en
A h Aa.e : Va.r

Spec
A  h e\Tr air

Figure 1.2: Polymorphic typing rules

That is, all programs terminate regardless of evaluation order. The proof of this, 
again, is given in [HS8 6 ].

Checking the type correctness of terms in the simply typed calculus is trivial: the 
type of every term can be generated from the types of the variables it contains.

1.3 T he p olym orph ic lam bda calcu lus

The polymorphic—or second order—lambda calculus is due independently to Jean- 
Yves Girard and John Reynolds [Gir72*, Rey74, Rey85]. It regains much of the 
expressibility lost with the introduction of types to the simply typed calculus while 
retaining strong normalisability. The key step is to allow variables and quantifica­
tion in types.

T ype  variab les. Type variables are placeholders for types in the same way pro­
gram variables are placeholders for terms. The definition of types is extended 
as follows. Lower case Greek letters from the start of the alphabet denote type 
variables.

r ::= a  | \  I T ~ 1y T> I Va.r

That is, type variables are types, and type variables may be universally quantified 
over in types to create new types. The quantifier V does for type variables what 
the quantifier A does for program variables.

A type containing universal quantification is a polymorphic type and terms with 
polymorphic types are polymorphic. For example, the polymorphic identity func­
tion has type Va.a  —* a.

Free and bound occurrences of type variables are defined in the same way as they 
were for program variables, further, the same notation is used for substitutions of 
types for type variables; for example, [ r ' / a ] T .
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T erm  syn tax . Following the previous section, lambda terms retain the annota­
tion of their variables with their type: this type may now, however, include type 
variables and quantification. Two new forms of term are added: introduction and 
elimination terms for polymorphism.

e ::= x \ (XxT.e) | (ei e2) | Aa.e | e[r]

Terms of the form Aa.e introduce polymorphism by abstracting over a type vari­
able, and terms of the form e[r] instantiate a polymorphic variable at type r. For 
example, the polymorphic identity function is defined by the term

Aa.Xxa. x : V a.a —> a;

whereas Xxa. x defines the monomorphic identity function at type a. The polymor­
phic identity function may only be applied to a specific value, say the free variable 
3 of type Int, after type specialisation.

(Aa.Axa . x)[Int] 3 : Int

The rewrite rule for type variable abstraction and application is

(Aa.e)[r] =$■ [r/a]e

illustrating the similarity between A and A abstraction.

P o lym orph ic  ty p in g  rules. The type rules for the polymorphic lambda calculus 
are the same as for the simply typed calculus with the addition of an introduc­
tion and an elimination rule for A abstractions. The two new rules are given in 
Figure 1.2. G en, for generalisation, introduces A abstractions; and Spec, for 
specialisation, is the application rule for A abstractions.

The G en rule requires a side condition asserting that a  is not free in the type 
context. This ensures the semantic soundness of the system. For example, without 
this condition one can change the type of an object.

3 : Int b (Aa.A/?.Ax : a. (Aa.x)[(3])[Int\[Bool\ 3 : Bool

The typing of the annotated A abstraction is invalid because a  is free in the type 
context.

D iscussion. The polymorphic lambda calculus is strongly normalisable: terms 
such as the fix-point combinator cannot be assigned valid types. However, the 
polymorphic system admits many terms that are invalid in the simply typed cal­
culus.
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The polymorphic lambda calculus has proved an excellent tool for research into 
both modern type systems and programming languages. Luca Cardelli and Peter 
Wegner use it as the basis of the language Fun [CW85] which combines many 
modern type features in a single language.

As with the simply typed calculus it is relatively easy to ensure a raw term of 
the polymorphic calculus is well formed. However, it is not known whether type 
inference is decidable or not.

H ig h er-o rd er po lym orph ic  p rogram m ing . The polymorphic lambda calculus 
admits a rather unusual style of programming. The approach taken is to represent 
traditional data values with function terms [Rey85].

Data types are modelled with polymorphic function types, and values with func­
tions of that type. For example, the Boolean type is modelled by the following 
polymorphic type.

Bool =f Va.o —► a  —► a  

Boolean values are then modelled by selector functions.

true =f Aoc.\xa.\y Q. x 
false =f Aa.Axa .Aya . y

Jon Fairbairn [Fai85] uses the polymorphic lambda calculus as the basis for Ponder 
making extensive use of this polymorphic programming style.

1.4 T he D am as-M ilner ty p e  sy stem

The Damas-Milner type system is due independently to Roger Hindley [Hin69] 
originally, and later to Robin Milner [Mil78]. It eliminates the need to express 
all quantification and type specialisation explicitly, indeed, it eliminates the need 
to incorporate type information in terms at all. Hindley’s work- is on the lambda 
calculus and combinatory logic, while Milner’s system was designed for the pro­
gramming language ML. It is Milner’s system, therefore, which is considered in 
this section. More specifically, Milner’s system was studied in detail by Luis Damas 
[DaMi82, Dam85] and it is their system which is presented here. Hence, the system 
is referred to throughout as the Damas-Milner system and a full description can 
be found in Chapter 2 of Damas’ thesis [Dam85].

The type information incorporated in terms of the polymorphic lambda calculus is 
undesirably detailed and unwieldy; some system whereby it can be omitted would 
be desirable for a practical programming language. The Damas-Milner system 
provides this at some cost in terms of expressibility. In particular, under a restric­
tion on the form of terms, no type information need be included in a program. 
A type inference algorithm, utilising Robinson’s unification algorithm [Rob65*], 
reconstructs type information if possible.
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1.4.1 A restriction on polym orphism

Polymorphism is restricted to appear only at specific syntactic positions. These 
positions are represented by the polymorphic le t .

Firstly, all references to types are removed from the terms: that is, type annota­
tions are removed from lambda abstractions; and the constructs for explicit type 
abstraction and application are removed. Secondly, types are partitioned into two 
syntactic classes: simple types and type schemes.

t ’•= | r '  -► r  | a
a ::= Va.er | r

Notice that only type schemes, denoted by cr, may be polymorphic. Type construc­
tors are also parametrised to allow more interesting types, such as List(Int), to be 
discussed. Assumption sets now bind identifiers to type schemes (which may be 
types by projection).

The key difference is that now all quantifiers are at the top level of type schemes 
and simple types cannot be polymorphic.

1.4.2 T he polym orphic l e t

The final syntactic change is to introduce a new form of expression term, the 
polymorphic l e t .  The only bound variables which may be assigned polymorphic 
types are those introduced by l e t  declarations. The new grammar for terms is 
therefore as follows.

e ::= x \ e\ e-i | Xx.e | l e t  x = e\ in  e2

Notice that type annotation is now omitted from lambda abstractions.

The meaning of a l e t  term is defined by the following reduction rule

l e t  x = t\  in  € 2  ==£• [ei/x]e2

where each occurrence of x in e2 is replaced with e\.

1.4.3 The D am as-M ilner typing rules

Though the Damas-Milner typing rules repeat much of what is given in previous 
sections, they are included here in full since they are particularly significant for 
later chapters. The typing rules are given in Figure 1.3. The first five rules are 
similar to those presented previously with the following qualifications: the T au t 
rule is applicable to both types and type schemes; the Spec and G en rules are
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T aut
A\ x : a h x : a

Spec
A h e :  Va.cr

A  h e :  [r/a]<7

G en
A  h e : a

ry ^  fv(A)
A h e : Va.cr

Comb
A h e : r '  —» r  A h e' : r '

A h e e' : r

Abs
A*; x : r '  h e : r '

A h Ax. e : r / —► t

Let
A h e : cr Ax; x : <7h e ' : r

A h l e t  x =  e in e' : T

Figure 1.3: The Damas-Milner typing rules
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W((r; * : ft, x) =

W ( r ,  (Cl e2)) =

W(r„ (Ax. e)) =

W(rx, ( l e t  x = ei in  e2))

If <7 =  Vai. • • • .Van.r, and ft? is the substitution 
[ft/a? , • • •, ftnA*m] where f t ,  • • •, f t  are fresh, 
then the typing is (/d, ft?r).

Make the recursive calls

(ft,n)= W(r,ej)
( f t , r 2)= W ( f t l \ e 2)

and set f t  to be { /(ftr?, t 2 —► f t  where /? is 
fresh. The typing is then ( f t f t f t ,  f t f t .

Make the recursive call

(ft,Ti) = W((r; x : ft, e)

where 3 is fresh. The typing is then
( f t ,  f t / ?  —* 7 i ) .

Make the recursive calls

(5 ,,r ,)=  VV(r,e.)
(52, t2)= W((5,r; i : 5ir(ri)), e,)

and return the typing ( f t f t ,  r2).

Figure 1.4: The Damas-Milner type inference algorithm
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implicit (not driven by the form of the term at hand); and the Comb and Abs 
rules are applicable only to types.

Finally, the Let rule allows the typing of le t  terms. The variable bound by a le t  
term may be bound to a type or a type scheme and thus may be polymorphic. 
Notice that this is not the case for A-bound variables. It is this distinction that 
characterises the Damas-Milner system.

1.4.4 The D am as-M ilner type inference algorithm

As mentioned above, with Damas-Milner type system, type information can be 
reconstructed by an inference algorithm. The algorithm, referred to as algorithm 
W, is based on Robinson’s unification algorithm U [Rob65*], and is presented in 
full in Damas’ thesis [Dam85].

The algorithm takes an assumption set A  and an expression e as arguments, and 
produces a substitution S  and type r  as results. If

(5 ,r )  =  W (A,e)

then

SA  h e : t .

Figure 1.4 presents the algorithm. Therein, the notation A (t)  denotes 

Vc*i. • • • .Van.r

where are the type variables free in r  but not free in A. All type
variables named ft are fresh, that is, do not appear free in A and are not generated 
as fresh elsewhere.

The first clause of the algorithm types identifiers on the basis of a binding in 
the assumption set A. A substitution S' is constructed to rename all the generic 
variables to fresh variables. The substitution returned is the identity and the typing 
is the type bound in the environment after renaming by S'.

The second clause types lambda terms. A fresh type variable ft is assumed for the 
bound variable. The resultant substitution of the recursive call then provides the 
actual type of the parameter.

The third clause types application terms making two recursive calls to type the 
sub-terms. Unification of the function type with the type of a function mapping 
the actual argument type to a fresh type variable ft then produces a unifying 
substitution S '. Applying S' to ft produces the result type.
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The final clause types l e t  terms by first making a recursive call for the type of the 
defining expression. This type is generalised, A(t ), and bound to x for the typing 
of the body. The type of the body is the resulting type for the l e t  term.

W fails under two circumstances: if no binding is found in the environment when 
typing an identifier, or if unification fails at an application term. If the typing of 
any sub-term of a term fails then the typing of the entire term fails.

D iscussion. The main restriction in expressiveness that the Damas-Milner system 
suffers with respect to the polymorphic calculus is that lambda bound variables 
may not be polymorphic. For example, it is not possible to pass a polymorphic 
function (such as Ax.i) as an argument to a function and use it polymorphically 
in the body. This limitation, however, is in general more than offset by the ability 
to do type inference.

Damas’ thesis presents the main technical results with respect to the calculus3. 
In particular, the system is shown to be semantically sound with respect to a 
simple denotational semantics; the algorithm is shown to be syntactically sound 
and complete with respect to the type calculus; and, as such, the algorithm is 
shown to compute principal types.

As mentioned above, Milner’s type system was originally developed for ML; it 
has subsequently been used as the basic type system for many modern functional 
programming languages such as Miranda4, Orwell, and most recently, Haskell.

In [Car84a] and [Han87], Luca Cardelli and Peter Hancock, respectively, discuss 
the implementation of a Damas-Milner style type checker. Reynolds discusses the 
system in [Rey85] relating it to the polymorphic calculus.

An alternative four-rule version of the system is given in [Cle8 6 ]. Therein, the choice 
of rule at any point in a typing is driven by the form of the term at hand. This 
represents a more appropriate scheme for implementation in a logic programming 
language such as Prolog. Further, since the structure of the typing derivation is 
derived from the structure of the term, this system provides more intuition as to 
the form of typings under the system.

Unfortunately, and perhaps surprisingly, the Damas-Milner type system does not 
extend trivially to languages with an assignment operator5. The difficulty comes 
with references to polymorphic objects such as [], the empty list. If a polymorphic 
object is created in store, then one must ensure that no two different monomorphic 
types are subsequently assigned to the object. Chapter 3 of Damas’ thesis [Dam85] 
proposes a solution. It has since been shown to be slightly erroneous6 and Mads 
Tofte [Tof8 8 ] has more recently presented a solution. Tofte’s paper proposes two 
classes of type variables, one of which may not be quantified over. The types

3Some of these results were originally established by Milner [Mi178].
4M iranda is a tradem ark  of Research Software Ltd.
5T his is ironic since the type system  was developed in association with ML— a language with 

an assignm ent operator!
6T he au thor does not know the details of the problem with D am as’ solution.
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of objects in store may not contain polymorphic type variables, that is, all type 
variables they contain are of the class which may not be quantified over.

1.5 P rop erties o f ty p e  system s

This section surveys some formal properties one may wish to establish of a type 
system. As subsequent chapters extend the Damas-Milner type system, wherever 
possible results with respect to the Damas-Milner system are illustrated.

The systems discussed in the preceding sections are purely syntactic: they consist of 
a syntax for terms, a syntax for types, a set of type calculus rules for deriving typing 
judgements, and in some cases a type checking or inference algorithm. Throughout, 
and particularly in examples, some notion of meaning, or semantics, is implicit. 
Since informal semantics are notoriously hard to reason about safely, it is traditional 
to also present a formal semantics for programming languages and their associated 
type disciplines.

Thus, in the case of the Damas-Milner system, there are three formal systems 
of interest: the type calculus rules, the formal semantics, and the type inference 
algorithm. The first group of properties discussed below are semantic and syntactic 
soundness and completeness results: “semantic” results relate the type system to 
the formal semantics; “syntactic” results relate the type inference algorithm to the 
type systems.

1.5.1 Sem antic soundness

Damas adopts a denotational semantics for terms and types [Dam85]: the semantic 
functions T  and E  assign meaning to types and expressions respectively. The 
collection of all possible values forms a domain. Following MacQueen, Plotkin and 
Sethi [MPS84], types are modelled by ideals, or downward-closed partially ordered 
sets, within that domain.

Take 77 and p to be environments mapping expression and type variables to values 
and ideals respectively. Then E(e)rj is the value denoted by e under environment 
77; and T{a)p  is the ideal denoted by a under environment p.

A typing of the form T h e : r  asserts that e has type r. Semantic soundness is the 
property the system satisfies whereby the assertion also ensures that the valuation 
E(e)rj is a member of T(r)p, the set of values in the type r.

Definition of sem antic soundness. If Vj* : r '  6  T. tj(x) 6  T (t')p  
and T h e : r  then E(e)r) 6  T(r)p.

Typically, there exists a special element in the domain of values, denoted {.} and 
referred to as wrong, which represents the result of evaluating an erroneous pro­
gram. Further, wrong is not an element of any of the ideals assigned to types.
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The semantic soundness property is often given as follows: “Well-typed programs 
cannot go wrong11. More formally, if T h e : r ,  then E(e)rj ^  wrong.

This result was established by Milner in [Mil78] and is given in full by Damas in 
[Dam85].

The corresponding semantic completeness result is not ordinarily required of a type 
system. A semantic completeness result would be of the form:

D efinition of sem an tic  com pleteness. If Vx : r '  € I \  rj(x) £ T(r')p  
and E(e)r) £ T(r)p  then T h e : r.

To see why most type systems do not have this property, consider the ill-typed 
expression

if true then 3 else 'a'

which clearly evaluates to 3. In this case semantic completeness may appear to be 
a desirable property. However, the condition term, the literal true here, may be an 
arbitrarily complicated Bool valued term in general. As such, to allow the typing 
of such terms corresponds to a requirement that the the type checking or inference 
process compute the value of the condition. This is an impractical proposition and 
generally outwith the scope of a type system.

1.5.2 Syntactic soundness

Syntactic soundness is a property relating the type inference algorithm to the type 
calculus. In general terms, the result asserts the following: “If the type inference 
algorithm computes a typing, then that typing is provable within the type calculus”. 
In the case of the Damas-Milner calculus, the result is stated formally as follows:

D efinition  of sy n tac tic  soundness. If W(A,e) =  (S', t ) terminates, 
then SA  h e : r .

This result is given by Milner in [Mil78] and by Damas in [Dam85].

1.5.3 Syntactic com pleteness

The syntactic completeness result for the Damas-Milner system also relates the 
type inference algorithm to the type calculus. In this case, however, the assertion 
is inverted: “Given a typing of a term under a type context, then the inference algo­
rithm will compute a typing. Further, computed typing relates to the given typing 
in a particular way.” Taking “> ” to be an “is more general than” relationship 
between types, the result is as follows.
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Definition of syntactic com pleteness. Given a type context A and 
some instance A' thereof, if A' h e : r '  then

• W(A, e) succeeds with (.S', r) ,
• A ' is an instance of S A ,
• and t > r '.

That is, the inference algorithm computes a most general typing. The proof of this 
result is given in [Dam85].

1.5.4 Principal types

The principal type property is a property of the type calculus alone.

Principal types. If A  b e : r  then there exists a type a such that 
A h e : <7 ; and for any other typing A  h e : r ', it is the case that 
a > r \

In general, the existence of principal types follows as a simple corollary to the 
syntactic completeness result. This is the case in [Dam85].

1.5.5 Coherence

Coherence is a property of any derivation based semantics: that is, where the 
semantics is defined as a function of a typing derivation, as opposed to a term 
or typing judgement. As such, this result is not applicable to the Damas-Milner 
system. It is appropriate, however, for the system described in the body of this 
thesis. The result is described here in general terms.

The coherence property is of interest when the system at hand exhibits the following 
two properties: meaning is assigtled as a functions of typing derivations; and it is 
possible to have two different derivations of the same typing judgement.

Using A to denote a derivation, the property may be defined as follows.

Definition o f coherence. A type system is coherent if given any 
two derivations A \ and A 2 of the same typing judgement, then the 
meanings assigned to each are provably equal.

That is the form of the derivation of a typing judgement does not effect the meaning 
assigned to the term at the given typing. The meaning of the term “provably equal”, 
of course, depends on the system under discussion.

The importance of coherence with respect to an extended polymorphic lambda 
calculus similar to Fun is discussed in [BCGS8 8 ]. The principal extension is the
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addition of an inclusion relation between types. This relation > is assigned meaning 
by coercion functions; these are introduced by a derivation to derivation translation. 
Coherence is required to ensure the meaning of a term is defined by its typing 
judgement, as opposed to the form of the derivation at hand.

John Reynolds in [Rey80] discusses an essentially equivalent property with respect 
to coercions. Therein, category theory is used to define when a system of coercions 
is coherent, i.e., when all ways of applying coercions within a term to yield a 
particular typing are equivalent.

1.6 U n iversa l and ad-hoc p o lym orph ism

In the polymorphic calculus and the Damas-Milner calculus only one form of poly­
morphism is considered, parametric polymorphism. Though parametric polymor­
phism may be considered the purest form of polymorphism, several other forms have 
been identified and prove useful in programming languages. Christopher Stratchey 
[Str67*] was the first to identify different forms of polymorphism and an exten­
sive classification can be found in [CW85]. Following [CW85], four principal forms 
are discussed in detail here as they relate closely to the system discussed in sub­
sequent chapters. These four forms can be grouped into two classes: universal 
polymorphism and ad-hoc polymorphism.

1.6.1 U niversal polym orphism

As the name implies, universal polymorphism can be characterised by the fact that 
the same code can be used universally on objects of different types—that the code 
generated makes no, or limited, assumptions about the types of the objects it op­
erates upon. Universal polymorphism may be further sub-divided into parametric 
and inclusion polymorphism.

P a ra m e tric  po lym orph ism . This is the form of polymorphism employed by the 
polymorphic and Damas-Milner calculi, it is characterised by unrestricted universal 
quantification. The instantiation rule, such as Spec in Figure 1.2 or Figure 1.3, 
allows any type to be instantiated for a bound type variable.

Inclusion  po lym orph ism . Inclusion polymorphism, which is closely related to 
parametric polymorphism and is frequently referred to as “bounded quantification”, 
is characterised by universal quantification in the context of an inclusion relation 
and a restriction on the instantiating type. The instantiating type is required to 
be an instance of the given type.

A h e :  Va < t .<t

Spec ----------------------
A b e :  [r'/a]cr

t '  <  r



CHAPTER 1. TYPE SYSTEMS— A SELECTIVE SURVEY 19

In the rule above, the binding of the type variable a  includes a requirement that 
a  be instantiated only to types t ' which are instances of r .

Inclusion polymorphism is common in type systems characterising object-oriented 
programming systems, for example, [Mit84], [Car84b, Car88], and [JM88]. In par­
ticular, objects may be modelled by records and the inclusion relation < may state 
that some record type is an instance of some other record type if the fields of the 
latter form a subset of the fields of the former. Inclusion polymorphism models 
inheritance.

1.6.2 Ad-hoc polym orphism

In contrast to universal polymorphism, ad-hoc polymorphism can be characterised 
by implementations which vary with the type under consideration. Again, there 
are two main forms of ad-hoc polymorphism.

Overloading. An overloaded operator assumes different values depending on the 
type at which it is used. For example, numeric operators, such as (+) and (*), 
typically apply to both integer and floating point values. When (+) is applied to 
an integer, one implementation is used; when (+) is applied to a floating point 
value, another implementation is used. Different object code is inserted for the 
operator at different types.

In a type system, this is typically represented by several bindings of the same 
operator at different types. For example, an appropriate assumption set may be

A  =  • • •; (+) : Int —► Int —*■ Int\ (+) : Float —► Float —» Float; • • •

allowing typings A  h (+) : Int —► Int —> Int and A b (+) : Float —► Float —♦ Float; 
that is, two essentially independent typings of the same identifier. The choice of 
binding used to type the identifier is significant, it typically corresponds to the 
intended implementation.

Since discussion of a specific type system for overloading is the principal aim of 
this thesis, several type systems designed to handle overloading are discussed in 
more detail in Section 1.7.

Coercion. Coercion is the process of taking a value of one type and converting it 
to a value of another type. For example, if an integer were given as an argument to 
a function expecting a floating point number, it may be possible to apply a coercion 
function to the integer value constructing a floating point value as required. If a 
term is typed at type Int but the required typing is at type Float, then code to 
implement the coercion at run-time must be inserted at compile time. The rules 
for allowable coercions in programming language arc typically complicated and ad 
hoc—see C + +  [Str86] for a modern example.



CHAPTER 1. TYPE SYSTEMS—A SELECTIVE SURVEY 20

Coercions are frequently used in conjunction with overloading to achieve the full 
range of operator typings a programmer may desire. This is the case in many 
traditional programming languages such as Pascal and C.

1.7 A pproaches to  overloading

Many and varied approaches have been taken to the problem of typing and imple­
menting overloading within programming languages; this section examines several 
existing approaches. Particular attention is paid to the most commonly overloaded 
operators—the numeric and equality operators.

How, or whether, a system propagates overloading is an issue which is handled 
differently by different systems. Frequently, definitions may not provide enough 
type information to allow a single instance of an overloaded operator to be selected: 
for example, the definition of double below.

double x — x +  x

Some systems may default double to apply to integers only, others may declare 
it erroneous. One may prefer that the identifier double itself become implicitly 
overloaded at each type at which there is an instance of (+).

Programmers may wish to declare new overloaded operators or extend the def­
initions of existing ones to apply to user defined abstract types. Two systems 
providing this functionality are described in Sections 1.7.2 and 1.7.3.

1.7.1 M iranda and ML

Miranda [Tur85] and ML [HMM86] are commonly used functional programming 
languages incorporating the Damas-Milner type system. Miranda employs normal 
order reduction, and ML employs applicative order reduction. Both adopt relatively 
ad hoc approaches to overloading. Neither language allows user-defined overloaded 
operators.

N u m eric  o p e ra to rs . Miranda has a single numeric type num containing both 
integer and floating point values. This side-steps the problem of overloading arith­
metic operators. Though integer and floating point values may be mixed, this 
approach is insufficiently expressive to meet many of the demands of programmers 
wishing to perform serious numerical computation.

ML, on the other hand, has distinct numeric types and overloaded arithmetic oper­
ators. Integer and floating point values may not be mixed arbitrarily in arithmetic 
expressions. Definitions such as that of double above are erroneous—overloading 
implicit in the definition of an identifier is not propagated. Further, it is not pos­
sible to extend the overloading of arithmetic operators to user defined types, for 
example, a type representing complex numbers.
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T h e  eq u a lity  o p e ra to r. The equality operator is also treated differently in both 
ML and Miranda. An early version of ML [Mil84*] defined equality on all mono­
types that admit equality, that is, do not contain abstract or function types. Fur­
ther, it was required that the type be resolved locally. Thus, functions such as 
member

member [] y = false
member (x : x s ) y = (x =— y) or (member xs y)

could not be defined and equality could not be applied to user-defined abstract 
types.

Miranda, on the other hand, considers equality to be a fully parametric polymorphic 
function for the purpose of type checking. Only at run-time is an error generated 
if equality is applied to a function type or a constructed type containing a function 
type. Further, if equality is applied to a user defined abstract data type, then the 
representation is tested for equality contravening data abstraction.

A more sophisticated approach is taken in Standard ML [HMM86]. Equality is 
made polymorphic in a limited way. In particular, the equality operator is given 
the typing

(= = ) : "a -» "a Bool

where "a is a special type variable that may only be instantiated to types that admit 
equality. Such type variables allow overloadings in definitions such as member above 
to be propagated.

member : List^'a) —► "a —► Bool

The definition of the equality operator may not be extended to apply to user defined 
abstract types. That is, the function member above may not be used to test for 
membership of a list of objects of some abstract type.

In summary, both Miranda and ML use a collection of ad hoc techniques to provide 
some of the facilities a programmer requires. Different approaches are taken even 
within the same language and no attempt is made to allow the user to define 
overloaded operators or extend the definitions of existing operators. ML’s equality 
type variables provide some structure to the use of overloading, though only for a 
single predefined operator.

1.7.2 K aes’ system

Stefan Kaes generalises ML’s equality type variable approach [Kae88]. Kaes1 system 
allows overloaded identifiers and instances thereof to be declared by the program­
mer, indeed such declarations may be arbitrarily nested. Each overloaded operator
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has associated with it a signature, or a pattern, into which each instance typing 
must fit. For example, the following declares the equality operator over integer and 
list types. The definition at list types admits equality only when the type of the 
elements admit equality. (The notation < .. .> denotes some appropriate, though 
omitted, implementation.)

le to p  (= = ) : $ —> $ —► Bool in  
extend (= = ) : Int =  < .. .> in  
extend (= = ) : List(a==) = < .. .> in

Firstly, the le to p  declaration declares (= = ) to be an overloaded operator. The 
special symbol $ can be thought of as a universally quantified type variable. The 
signature $ —> $ —► Bool is the pattern into which all instances must fit; that is, all 
instances must be functions mapping two values of the same type to a Bool. Notice 
that the $ notation in effect restricts Kaes’ overloaded operators to be polymorphic 
only in a single variable.

The first extend declares equality to have an instance at type Int. Type variables 
subscripted with overloaded operators may only be instantiated to types admitting 
those operators. Thus, the instance of (= = ) at type List(a==) declares equality 
applicable to any list of equality types; for example,

List(Int) —► List(Int) —> Bool; and 
List(List(Int)) —> List(List(Int)) —► Bool

but not

List(Int —► Bool) —► List(Int —► Bool) —> Bool 

as a == cannot be instantiated to type Int —► Bool.

As a further example, if (+) is an overloaded operator with signature $ —►$—►$, 
then the member and double functions declared previously have typings

member : List(a==) —► a--B oo l 
double : a+ —> a +

where a+ is a type variable instantiable only to types admitting addition.

Type variables are in fact annotated with sets of overloaded operators—the empty 
set denotes no annotation. Thus, assuming an appropriate definition of map and 
the definition

memdbl I e — member (map double I) e, 

memdbl has type

List(a==t+) —► ot— ,+ —► Bool.
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That is, memdbl is applicable only to lists whose elements admit both equality and 
addition.

Kaos’ defines two forms of semantics for the system: one static and one dynamic. 
The static form views propagated overloading as an abbreviation: each use of an 
implicitly overloaded identifier at a known type is macro expanded at compile 
time. This process is potentially exponential both in terms of the efficiency of the 
compiler and the amount of object code generated.

The second dynamic approach delays the choice of actual overloaded operator un­
til run-time. Every potentially overloaded value is tagged with its type which is 
matched at run-time to select the appropriate implementation of the overloaded 
operator. This, naturally, results in a run-time overhead.

Though Kaes claims a principal type theorem, the current author believes this is 
erroneous for his system in its full generality. In particular, nested overloading and 
instance declarations appear to contravene the principal type property. The two 
examples below illustrate the problem.

Expression terms containing overloading declarations do not satisfy a principal type 
theorem. For example, under some suitable environment, the term

le to p  x : $ —► $ in  
extend x  : Int =  Ax. 1 in  
extend x : Char =  Ax.'a' in
x

has types Int —► Int and Char —► Char but the more general type Vax.ax —► ax is 
disallowed (since x has no meaning outside the scope of its class declaration).

A similar problem with respect to principal types occurs when one allows extend 
expressions to appear in arbitrary positions. Assume the initial context contains 
the assumptions and structure generated by the le to p  declaration

le to p  x : $ —► $ in

and instances of x at Int and Float. Then the term

extend x : Char =  Ax.'a' in
x

has types Char —» Char and Vax.ax —► ax which are not related by the instance 
relation. Further, there is no typing more general than either.

The type system described in Chapter 3 avoids the problems with respect to prin­
cipal types by ensuring that all overloading and instance declarations are at the 
top level.
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1.7.3 Nipkow and Snelting’s system

Another, though more recent, system addressing a similar problem is that devel­
oped by Nipkow and Snelting [NS91]. The Nipkow-Snelting system extends the 
Damas-Milner system with an order-sorted algebraic description of overloaded op­
erators. Order-sorted unification then replaces Robinson’s unification algorithm 
for type inference.

Following [WaB189], operators are grouped into named classes: for example,

c la s s  Num where
(“I") • y&Nxm'&Num * &N%m *
( * )  I VoiN%m-<XN%m —1► &Num ~ ► &Num

declares (+) and (*) to be in the class Num. Type variables are annotated with 
class names, as opposed to operator names. Again following [WaB189], classes may 
be structured to form a hierarchy. The declarations

c la s s  7 i where <• • •> in  
c la s s  7 2  < 7 1  where <• • •>

ensure that no instance may be declared at type r  in class 7 2  unless an instance at 
type r  has been declared in class 7 1 . Such class hierarchies are transitive and may 
be directed acyclic graphs: one class may be a sub-class of another in more than one 
way, though no class may be a sub-class of itself. Class declarations syntactically 
require the types of the operators of the class to be polymorphic only in a single 
variable.

Instances of classes are declared with in s t  declarations. For example, 

in s t  x : (7 1  > • • • > 7n)7 where x x =  d , . . . ,  x m =  em

declares an instance of class 7  at type x with its appropriate implementations. 
Classes 71  to 7 m represent class requirements on the constituent types of f°r 
example, they may be used to specify that equality on lists is applicable only when 
the elements of the list admit equality.

Class signatures ( 7  < 7 1 , • • - 7n) and instance restrictions (x : (7 1 ,. • • ,7n)7) define 
an order-sorted algebra. Where Robinson’s unification algorithm is used in the 
Damas-Milner algorithm W, Nipkow and Snelting’s system utilises an order-sorted 
unification algorithm. Thus, the order-sorted algebraic signature generated by the 
declarations is respected by unification.

The semantics of Nipkow and Snelting’s system is based on a derivation to deriva­
tion translation. This follows [WaB189] in using parametrisation to implement 
propagated overloading.



Chapter 2 

A language for overloading

This Chapter presents OL, a simple language with parametric polymorphism and 
overloading. Robin Milner and Luis Damas [Mil78, DaMi82, Dam85] used a small 
language, the lambda calculus with l e t ,  to illustrate their type system for para­
metric polymorphism; OL extends that system. OL is perhaps a rather uninspired 
name, it stands for Overloading Language.

The presentation in this chapter is informal, subsequent chapters provide a more 
rigorous definition of OL. To facilitate the discussion, several assumptions and 
abbreviations are made: for example, predefined definitions of operations such as 
eqlnt, eqList, pluslnt and plusFloat are assumed representing equality and addition 
on base types. Literals such as 3, 3.0 and (3,3.0), are used with types /n£, Float 
and Pair(Int, Float) respectively.

The term operator is used to refer to overloaded names, and the term identifier is 
used to refer to lambda- and let-bound names. These are not distinguished in the 
syntax of OL. Symbols, such as (= = ), are usually chosen to represent overloaded 
operators.

2.1 Term s and T yp es

This section presents the syntax of terms and types and introduces the typing rules 
by example. OL subsumes the Damas-Milner system: anything which is expressible 
and typable in the Damas-Milner system is expressible and typable in OL.

Raw terms are generated by the context-free grammar in Figure 2.1. Variables and 
terms are represented by x and e respectively, with a , T> * and a represent­
ing type variables, type constructors, types, predicated types and type schemes 
respectively. Type schemes are of the general form

Notx • • • Varn.( x i  : tx). • • • . ( x m : rm).T

where predicates (such as Xj : Tj) act as a form of bounded quantification. In the 
absence of predicates, type schemes reduce to Damas-Milner type schemes.

25
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Identifiers X
Type Variables a
Type Constructors X
Types r  ::= oc | r -+• t '  |
Predicated types x  ::= (x  : r).7r | r
Type schemes <7 := Va.tr | 7r
Terms e := x | eo e\ | Ax. e | l e t  x =  eo in  e\
Declarations d := over x : <r; d | 

in s t  x : a — e; d \

Programs P := (d,e)
Sets of type variables 6

Figure 2.1: Raw terms and types

Similarly, terms are the same as Damas-Milner expressions; however declarations, 
which allow overloadings to be declared, extend the Damas-Milner system. Dec­
larations form a list—over declaring overloaded operators, and in s t  declaring 
instances thereof. The empty declaration list is denoted by t  or simply omitted.

Programs are composed of a declaration part and an expression term. The approach 
adopted by Kaes [Kae88] is to allow declarations to appear arbitrarily within terms. 
For technical reasons, however, it is better to partition programs into two parts.1

2.1.1 Declaring overloaded operators

Overloaded operators are declared with over terms in the declaration part of a 
program. The over declaration

over x : a\

declares x to be an overloaded operator with signature a. The signature of an over­
loaded operator is a type scheme which characterises all the instance types. Such 
signatures may not contain predicates. This contrast with the system presented in 
[WaB189]; the change simplifies technical considerations.

Consider the equality operator (= = ). In general this takes two objects of the same 
type, compares them for equality, and returns a Bool. As such, the type scheme 
Va.a —► a —* Bool characterises all instances of (= = ), therefore the following dec­
laration is appropriate.

over (= = ) : Va.a —► a  —♦ Bool’, 

lrThe m otivation for th is dichotom y is given in Section 10.1.1.
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over (+) : Va.a —► a —► a;
over (*) : Va.a —> a  —* a;
over (= = ) : Va.a —► a  —» Boo/;
in s t  (+) : Int —► Int —► Int = pluslnt;
in s t (+) : Float —> F/oaZ —> Float = plus Float;
in s t  (*) : Int —► Int —► Int = timeslnt;
in s t  (*) : Float —* Float —► Float = timesFloat;
in s t  (= = ) : Int —> Int —► Bool = eqlnt;
in s t (= = ) : B/ofl/ —► B/oa/ —+ Boo/ =  eqFloat;
in s t (= = ) : Char —> Char —► Bool =  eqChar;

Figure 2.2: Example over and in s t  declarations

In the context of such a declaration, (= = ) is an overloaded operator for which 
instances may be declared at the types on the left below, but not at the types on 
the right.

Int —► Int —*■ Bool Int —> Int —* Int
Char —> Char —► Bool Char —► Int —► Bool

By a similar argument, overloaded addition accepts two arguments of the same 
type and returns a result, the sum, which is also of the same type. The declaration

over (+) : Va.a —► a  —► a;

reflects this.

Figure 2.2 contains an example declaration d, in this case d declares three over­
loaded operators: (+), (*) and (==).

For simplicity, it is convenient to restrict lambda and l e t  bound variables such 
that they may not redeclare (or hide) overloaded identifiers.

2.1.2 Declaring instances o f overloaded operators

An in s t  declaration declares an instance of an overloaded operator. Since the 
characterisation of ad-hoc polymorphism entails that different implementations are 
used at different types, in s t  declarations give a new type for an overloaded operator 
and the implementation at that type. The general in s t  declaration

in s t  x : a = e;
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declares a new instance of overloaded operator x at type a with implementation e.

Following the equality and addition examples from the previous section (and as­
suming the appropriate definition for pluslnt etc.) instances

in s t  (+) : Int —► Int —+ Int = pluslnt; 
in s t  (+) : Float —> Float —► Float = plus Float;

declare addition on integers and floating point numbers, respectively. Wherever 
addition is required on integers, the implementation pluslnt is appropriate; and 
wherever addition is required on floating point numbers, the implementation plus- 
Float is appropriate.

Further examples of in s t  declarations are given in Figure 2.2. There are three 
overloaded operators: (+) and (*), with instances at Int and Float; and (= = ) with 
instances at Int, Float and Char. The overloadings defined in Figure 2.2 are used 
as the context for the rest of this chapter.

2.1.3 U sing overloaded operators

This section describes how overloaded operators, as defined in the previous two 
sections, may be used in expression terms. In particular, how predicates model the 
propagation of overloading from one l e t  declaration to another.

Sim ple typings. Overloaded operators may be applied to values and expressions 
in the ordinary way: the difference lies in the typing and semantics. Types, in 
general, are of the form

Va! •••Van.(x1 : 7i).--*.(xm : rm).T

where (x, : r t) are predicates. Predicates represent a form of bounded quantifica­
tion, a requirement that overloaded operator x, has an instance at type t,. They 
record the typing information required of overloaded operators. A predicate is 
associated with each instance at which an overloaded operator is used within an 
expression. For example, consider the expressions (3 + 4) using integer addition. 
The type of this expression is Int, with the requirement that (-|-) have an instance 
at type (Int —► Int —► Int). The following typing expresses this.

3-1-4 : ((+) : Int —► Int —* Int).Int

Since there is an integer instance of (-!-) over integers in scope—see Figure 2.2—the 
predicate is satisfied and may be discharged. The final typing is, therefore, Int.

3 + 4 : Int
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The type inference algorithm first computes the typing containing the predicate; 
then, observing that an instance in the environment satisfies the predicate, the 
predicate is discharged. Another example of a simple typing is given below.

Ax. x = =  V  : ((= = ) : Ghar —► Char —» Bool).Char —► Bool 
: Char —► Bool

The function (Ax. x = =  V ) requires an instance of equality at type Char. There 
is such an instance in scope allowing the predicate to be discharged.

T erm s w hich fail to  ty p e . Simple typings fail when an overloaded operator is 
used at a type which fails to satisfy its signature. For example, (2 * 3.142) fails to 
type since it requires multiplication to accept arguments of differing types.

Sometimes the type variables in predicates are instantiated but no appropriate 
instance is in scope.

'a + 'b' :((-)-): Char —► Char —> Char).Char

This requirement is noted as a predicate in the typing as before—it is not considered 
erroneous—and the term receives a sensible semantics. This approach is unusual, 
most systems deem such terms untypable or erroneous. The main justification is 
technical: the substitution rule2 is not valid if such typings are disallowed since a 
predicate on a type variable could be mapped to a predicate on an arbitrary type.

Im p lic itly  overloaded declara tions. It is not always possible to eliminate pred­
icates from a typing—the type information implicit in the term may be insufficient 
to establish that there is an instance in scope at the given type. This is the case 
for the following three terms.

(= = ) : V<*.((==) : a  —► a  —► Bool).a —► a —► Bool
Xx. Ay. x = =  y : V a.((==) : a  —> ot —» Bool).a —> a  —> Bool 
Xx. x +  i  : Va.((+) : a  —♦ a  —► a ).a  —► a

The first is the unapplied equality operator; the second, a lambda reconstruction 
of the equality operator; and the third, a lambda term to double a numeric value. 
These terms inherit a form of implicit overloading from the overloaded operators 
they contain.

As with parametric polymorphism, identifiers which are not explicitly overloaded by 
over declarations may only be overloaded if they are bound by a l e t  declaration. 
When implicitly overloaded terms appear in l e t  definitions, the identifier being 
defined is itself implicitly overloaded. For example, given the definition of double,

l e t  double = Xx. x +  x in  e,

2Given as R u le j  in C hapter 4.
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in which the defining term is implicitly overloaded at type

\ x .  x  +  x : Va.((-f) : a  —► a  -► a ).a  —► a,

the identifier double itself becomes implicitly overloaded.

double : V a.((-f): a —► a  —► a ).a  —► a

The identifier double may then appear in terms just as could an explicitly overloaded 
operators. Since double's type contains a predicate, this predicate reappears in the 
typing of any use of double.

double 3 : ((-|-) : Int —► Int —► Int).Int 
: Int

In this case, an instance in scope satisfies the predicate so it may be discharged. 
Elsewhere, double may be applied to a floating point value.

double 3.4 : ((+) : Float —* Float —► Float).Float 
: Float

Notice that double is now effectively overloaded itself; no instances can be declared 
for it, but all instances of (+) imply types at which double is applicable.

It is convenient to adopt some abbreviations for predicates.

PlT abbreviates ((+) : r  —> r  —► r)
Tir abbreviates ((*) : r  —> r  —► r)
Eqr abbreviates ((= = ) : t  —> r  —► Bool)

These abbreviations allow more complicated types to be expressed concisely. For 
example, double's type is written

Va.(PlQ).a —> a.

A term ’s type may contain more than one predicate. The term

Aar. Ay. (x +  y )  = =  (x * y)

contains three different overloaded operators and as such has a typing with three 
predicates.

Va.(PlQ).(T ia).(Eqa).a -* a  -► Bool

It is the use of predicates which characterises the way in which overloading is 
handled in OL. Predicates record the use of overloaded operators and the types at 
which instances are required. Each predicate is propagated and replicated until a 
specific application provides enough type information to discharge it.
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2.2 Som e further uses o f pred icates

So far, predicates have only appeared in the types of expressions and the types of 
l e t  bound identifiers. Significant expressive power is gained by allowing predicates 
to appear in over and in s t  declarations. In the case of over expressions, this 
facility is not included in the current work. Section 10.3 describes how it can be 
added.

In stan ces  over co n stru c ted  types. Operators such as equality should be appli­
cable to constructed types, such as List and Pair, as well as simple types. For 
instance, equality should be applicable to the following types

Pair (Int, Float)
List(Pair(Int, Float))

but not to a pair or list with a component not of an equality types—such as

Pair((Int —>• Int), Int).

Consider a definition of equality on pairs. Two pairs are equal if their respective 
components are equal. The term

Api. Xp2 . ((fst pi) = =  (fst p2)) and ((snd pi) = =  (snd p2))

reflects this with the typing

Va.V(3.(EqQ).(Eqp).Pair(a,(3) —► Pair(a,(3) —► Bool.

Therefore, taking <eqPair> and <eqPairType> to abbreviate the term and type 
above respectively, an in s t  declaration of the form

in s t  (= = ) : <eqPairType> =  <eqPair> ;

makes P a i r ( r \ , T 2 ) an instance of equality whenever both Tj and r2 are instances of 
equality.

A similar technique may be used to define equality over lists. Two lists are equal if 
they are of the same length and their corresponding elements are equal. Hence, their 
elements must be of the same type. Assuming <eqList> stands for an appropriate 
term, the following declaration achieves this.

in s t  (= = ) : Va.(Eqa).List(a) —► List(a) —> Bool = <eqList>\
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The equality operator is now applicable to an infinite number of types:

List(Int)
List(List(Bool))
List (Pair (Float, List(Float)))

In typing such uses of overloaded operators, when an instance is used to discharge 
a predicate, all predicates in the instance type are introduced into the typing. Two 
examples of such typings are as follows.

[1,2,3] = = [2 ,6 ,4 ] :(E qLi.t{hl)).Bool
■ ( E q , n , ) B o o l
: Bool

Xp. Xx. p == (x, 4.6) : (EqPair{a<Float)).Pair(a, Float) -► a  -4 Bool
: (E<la)-(E(lFloat)-P a ir(a > Float) -*<*-+ Bool 
: (Eqa).Pair(a, Float) —► a  —► Bool

The first contains enough typing information to discharge all the predicates; ini­
tially with the instance at type List(Int) and then with the instance at type Int. 
For the second, discharging the predicate at type Pair(a, Int) introduces two pred­
icates; only one of these, at In t, can be subsequently discharged.

A h ierarchy  of overloaded o p era to rs . Predicates in the type signature of an 
overloaded operator induce a subclass relation on overloaded operators3. An over 
declaration of the form

over x : Vai • • • Van.(xi : n ) . • • • .(xm : rm).r;

requires statically that, for each instance of x, there be appropriate instances of xt- in 
scope. For example, it may be the case that the less-than-or-equal-to operator (< = ) 
only has instances at types at which (= = ) has instances. The over declaration

over (< = ) : Va.(EqQ).a —► a —* Bool;

declares this to be the case. It is now possible to declare instances of (< = ) at types 
Int, Char and Pair (Int, Float), but not at types (Int —► Int) or List(Int —> Int) 
for which equality is not defined.

An extension of the current work including relationships of this sort between over­
loaded operators is discussed in Section 10.3.

3A s m entioned previously, this feature was included in [WaBI89) bu t is not included in the 
scope of the current work. The feature is included in Haskell and is outlined here for com pleteness.
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G roup ing  o p e ra to rs  to g e th e r. Often a particular group of overloaded operators 
are related and have instances at the same types. This relationship may be modelled 
in OL by grouping overloaded operators together into tuples.

For example, the numeric functions (+) and (*) are closely related. Rather than 
declare them individually, as was done previously, they may be declared together, 
as follows.

over plusTimes 
in s t  plusTimes

in s t  plusTimes

l e t  (+) 
l e t  (*)

: Va.Pair (a —> a —+ a ,a  —> a -  
: (Int —> Int —► In t, Int —+ Int — 
=  (pluslnt, timeslnt)',
: (Float —► Float —► Float, Float 
= (plusFloat, timesFloat);

=  fst plusTimes in  
= snd plusTimes in

a);
Int)

Float —* Float)

Operators, under such a scheme, become selector functions over overloaded tuples: 
(+) and (*) are, thus, implicitly overloaded.

(+) : Va.(plusTimes : Pair (c t—* a —* a , a —* a —+ a )) .a  —> a —» a  
(*) : Va.(plusTimes : Pair ( a —► a  —* a, a —> a —> a )).a  —► a  —► a

2.3 A ssocia tin g  M ean ing w ith  T yp ed  Term s

Meaning is assigned to OL terms by a translation process eliminating overloading 
from terms. Each well-typed OL term is translated into a well-typed term con­
taining no overloading. The translation is based on the type assigned to the term. 
Implicit overloading is modelled by explicit parametrisation.

• Each predicate introduced during typing yields a new parameter in the trans­
lation. This parameter denotes the implementation of the overloaded opera­
tor associated with the predicate.

• Each predicate discharged during typing yields an application in the trans­
lation. The translation of an implicitly overloaded term is applied to the 
implementation associated with the instance that discharges the predicate.

2.3.1 Translation o f declarations

The translation eliminates all over declaration terms. Each in s t  declaration trans­
lates to a l e t  expression.

in s t  x : a = e; becomes l e t  dax =  e in  • • •



CHAPTER 2. A LANGUAGE FOR OVERLOADING 34

l e t  dlnt(+) =  pluslnt in  
l e t  dFloat(+) =  plusFloat in  
l e t  dlnt(m) =  timeslnt in  
l e t  dFloat(*) =  timesFloat in  
l e t  dlnt( ~ ) =  eqlnt in  
l e t  dFloat(==) — eqFloat in  
l e t  dChar^--} =  eqChar in

Figure 2.3: Example over and in s t  translations

A new and unique name is associated with each instance, in the case dax; this is 
referred to as the instance’s implementation identifier. The l e t  term binds the 
implementation identifier to the translation of the the implementation term. As 
an example, the in s t  expression

in s t  (+) : Int —► Int —► Int =  pluslnt; • • •

translates to the l e t  expression

l e t  dlnt(+) =  pluslnt in  • • •

The translation of an identifier whose type contains no predicates is simply the 
identifier itself. So, the translation of pluslnt is pluslnt. The identifier dlnt(+) 
now denotes the instance of (-{-) over integers. The prefix notation d stands for 
dictionary, and derives from object-oriented programming systems.

The translation of the over and in s t  declarations from Figure 2.2 are given in 
Figure 2.3.

2.3 .2  Translation o f overloaded expressions

This section presents the translation of overloaded and implicitly overloaded iden­
tifiers within expressions. Firstly, the resolution of overloaded operators in situ is 
considered, then a more general scheme for the propagation of implicit overloading
is discussed.

S im ple overloading reso lu tion . Consider first the situation where the type of an 
expression is sufficient to resolve the overloading in situ. In this case, the identifier
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associated with the appropriate instance replaces the overloaded operator. For 
example, given the typing

3 +  4 : ((+) : Int —► Int —► Int).Int
: Int

the integer instance of (+) is used to discharge the predicate, therefore, in the trans­
lation the implementation identifier associated with the integer instance, d/n£(+), 
is inserted for the overloaded operator. The translation—including a change from 
infix operator to prefix identifier—is as below.

dlnt(+) 3 4

This method of overloading resolution is only applicable when the appropriate 
instance binding for an occurrence of an overloaded operator is known directly.

R esolution for im plicitly overloaded identifiers. Consider the term,

l e t  double =  Xx. x +  x in

where the defining expression is implicitly overloaded. The first step is to assume 
some implementation identifier, say dfl(+), to implement addition at the appropriate 
type. This identifier is then inserted in place of the overloaded (+), and the as­
sumed implementation identifier is lambda-abstracted over yielding a parametrised 
translation.

l e t  double =  Ada^+y Xx. da(+) x x  in

This extra parameter corresponds to the implementation of (+) which will be 
used in each instantiation of double. When double is applied to an Int, it will 
first be applied to the implementation identifier for addition over integers; when 
it is applied to a Float, it will first be applied to the implementation identifier for 
addition over floating points.

The translation of instances with predicated types is done in the same way. The 
translation of the instance of equality over pairs is given below.

l e t  dPair(==) =  Ada(-=). Xdb(==). Xp\. Xp?.
(da{==) (fst pi) (fst P2 )) and (db{==) (snd pi) (snd p2)) in

Two new parameters are added, one for each predicate in the type. The imple­
mentation identifier da(-~) represents equality between the left components, and 

represents equality between the right components.
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The OL type of a term and its translated type are closely related. Where the OL 
type of double is

V a.((-f) : a  —> a  —► a ).a  —► a,

the translation’s type is

Va.( a —> a —* a) —> a — ► a .

This reflects the relationship between predicates in the type and parametrisation
in the translation. The general rule is that if an OL term has the type

Vc*i • • • VoLn.(xx : Ti). • • • \ x m : rm).r

then its translation has the type

Vai • • • Van.ri -►------ > rm -> r.

Discharging predicates. Lambda abstractions are used in the translation to 
model predicates on implicitly overloaded identifiers. The discharge of predicates 
is, therefore, modelled by application to the appropriate implementation identifier.

For example, an application of double to a specific value, double 3, is modelled by 
first applying double to a specific instances implementation identifier.

(double dlnt(+j) 3

This achieves the required instantiation of the occurrence of (+) in the defining 
term for double.

The same rule applies to instances with predicates in their types. The term

(3, true) = =  (4, false) : Bool

translates to

(dPair(==) dlnt(==) dBool(==)) (3, true) (4,/a/se)

where dPair(==) is first applied to appropriate implementation identifiers achieving 
the required instantiation.
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A type system  for overloading

This chapter presents the formal type system and semantics the language OL. The 
OL type system extends the Damas-Milner system [DaMi82, Dam85] described in 
Section 1.4. There follows an overview of the main concepts introduced in this
chapter. Terms and types are as previously defined in Figure 2.1.

A type context, denoted T, binds identifiers and operators to type schemes. A 
restriction is required on type contexts to ensure they represent valid overloadings. 
This restriction is denoted by valid type context judgements of the form t> T.

An ordering relation, relating type schemes in a given type context, is introduced. 
The instance judgement

T [> <r > < r '

is read: “In context T, the type scheme a has an instance at type <r,n. In the 
absence of overloading, this degenerates to the Damas-Milner ordering. The two 
forms of judgement above form a well-founded mutual recursion.

The type system is a set of rules for deriving typing judgements, or typings for
short. A typing judgement

r t > e :<7

is read: “Under type context T, the term e has type scheme cr”. There are nine 
rules for the construction of such judgements: the six rules of the Damas-Milner 
calculus, one rule for typing instances of overloaded operators, and two rules for 
predicates (introduction and elimination).

Two other forms of judgement are required. A judgement of the form T >  d ^  r '  
is an extraction judgement. It is read: “In context T, the declaration d yields the 
type context T'” . Finally, programs are typed by program typing judgements of the 
form T O (d, e) : a which denote the typing of an entire program.

A type inference algorithm O infers typings for the calculus of OL; it corresponds 
to Damas-Milner’s algorithm W. It is sound and complete with respect to the type

37
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calculus. As such, it computes principal typings, tha t is, typings which characterise 
all other typings of the term at hand under the given type context. These results 
are given in full in Chapter 5.

Finally, the semantics of typed OL is given. As in Chapter 2, this is done by 
a translation into the Damas-Milner system. Derivations in the OL calculus are 
translated into derivations in the Damas-Milner calculus.

3.1 S y n ta x

This section introduces the rest of the notation tha t is required to present the 
type calculus. It is in two main parts: Section 3.1.1 introduces type contexts, 
substitutions and the instance relation; and Section 3.1.2 presents a notion of 
validity for type contexts ensuring overloadings make sense.

3.1.1 T h e raw n otation

Terms and types are as defined in Figure 2.1 of Chapter 2. The notation /v(cr) 
denotes the set of free variables in a; and the notation fv(F) denotes the set of 
type variables which are free in T.

Identifiers and operators are not syntactically distinct. For simplicity in presenta­
tion and in proofs, no identifiers or operators may be redeclared within terms. This 
poses no real restriction as a-conversion can be used to re-name bound variables.

S u b stitu tion s. A substitution is a function mapping type variables to types. Sub­
stitutions may be applied to types, type schemes and type contexts under the nat­
ural extensions. S  denotes a substitution in general, and Id denotes the identity 
substitution. The notation dom(S) and fv (S )  denote the domain of S  and the type 
variables contained in the range of S  respectively. All substitutions are considered 
to be the identity on type variables for which they are not otherwise defined. The 
domain refers to all type variables for which the substitution is not the identity, so 
dom(Ict) =  {}.

Composition of substitutions is denoted S 1 S 2 —that is S 1 S 2 T =  S \( S 2 t ) .  If the 
domains of S 1 and S 2  do not overlap then, (S 1 4- S 2 ) denotes the substitution 
which applies S \  to type variables in dom(S  1 ) and S 2  to those in dom (S 2 ). Given 
a substitution S , the notation S \s  denotes the substitution identical to S  on all 
type variables except tha t it is the identity on type variables in S.

Robinson’s unification algorithm U [Rob65*] is used to find the most general substi­
tution tha t unifies two types, if such a substitution exists. That is, given T\ and r2, 
the call S  =  £/(ri, r2) produces S  such that Sr\ =  S t2. If no such substitution exists 
then U fails. Algorithm U computes the minimal most general unifying solution; 
that is, if S' is some other unifying substitution, then there exists a substitution 
S 0 such tha t S ' = S 0S.
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T y p e  co n tex ts . Type contexts bind identifiers and operators to types. Type 
contexts are the same, in the case of lambda- and le t-bound  identifiers as Damas- 
Milner assumption sets: each such identifier is bound exactly once to a type scheme. 
Overloaded operators, however, require more information: they are bound once to 
their signature, and further bindings record each type at which there is an instance. 
Hence, there are three forms of binding in a type context:

•  x : cr for lambda- and le t-b o u n d  identifiers;

• x  :0 cr for the signature of an overloaded operator; and

• x  :, a  for the instances of overloaded operators.

Type contexts are w ritten T. Entries in type contexts are separated by semi-colons, 
and two type contexts can be joined by a semi-colon. Type contexts are unordered. 
The empty type context is denoted by e, or frequently simply om itted.

Frequently, a section of a type context is required which contains only instance 
bindings of the form x  :, r .  These sections are denoted by n  since they are closely 
related to predicates.

The notation r \ T / denotes the type context derived from T by removing all bindings 
which also appear in T7.

A type context T7 is said to be an instance of another type context T if there exists 
a substitution S  and a section n  such that

ST; n = T7.

That is, some substitution can be applied to T, and some instance bindings added, 
yielding T7. The pair (S, n) is referred to as a witness to T7 being an instance of T. 
In comparing type contexts, the order of the bindings is not significant.

The type context tha t is generated by the declarations in Figure 2.2 is given in 
Figure 3.1.

Note that, where the Damas-Milner system uses assumption sets, the system for 
OL uses bags or multisets. When the translation is discussed, type contexts are 
translated correctly into assumption sets.

In s ta n c e  re la tio n  on ty p e  schem es. Instance judgements, of the form 

r  D> a > cr7,

denote when one type scheme, <7, is more general than another, a', under a give type 
context. The set of rules for deriving instance judgements are given in Figure 3.2.

In the absence of predicates, instance judgements are equivalent to Damas-Milner’s 
generic instances—the three rules T au t, G en  and S pec embody this. The P re d
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T o=  (+ ) o V a.a —► a  —► a;
(*) o V a.a —► a  —> a;
(= = ) o V a.a —► a  —> Bool;
(+ )

t£T

(+ ) i Float —> Float —► Float;
(*) i Int —y Int —> Int;
(*) i Float —► Float —*■ Float;
(= = ) i Int —* Int —► Bool;
(= = ) i Float —► Float —» Bool;
(= = ) i Char —► Char —>■ Bool

Figure 3.1: Example type context—r 0

and R el rules are the introduction and elimination rules for predicates. P re d  
allows an instance of an overloaded operator to be assumed. This assumption is 
reflected with a predicate in the instance type scheme. R e l allows a predicate to 
be discharged. Given an instance judgement with a predicate on the right-hand 
side, the predicate can be removed if, and only if, there is an instance binding of 
the appropriate operator in the environment whose type is more general than the 
type of the predicate.

Though the rule based definition of the instance relation is used throughout, the 
definition may also be given in the style of Damas. Assuming the typing judgement 
form T >  e : a  (which is defined below), the judgement

T >  Vax • • • Va„.(xi : Ti). • • • .(xm : rm).r
>  V/?! • • • V$,.(x', : Tj'). • • • .(x ' :

holds if

• There exists a substitution S  of types for a* through a n such tha t S t =  t ' ,

• for each i in 1 to m  the judgement

r ,  I,- TjJ • • • , Xq Ty t> X{ . S t{

holds, and

• /?,, for i in 1 to p, are not free in I \

There is a subtle difference between the approach taken here and Damas’ approach: 
in the last clause, Damas restricts /?» to be not free in

Vax • ••VQn.( i i  : T i ) .  • • • .(xm : Tm ) .r .
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T a u t

Spec

r  t> a  >  cr

r  t> <7 >  </
G en    ol £  fv (T )

T  >  cr >  Y a .a '

r > < 7 > Va.cr*

T t> cr >  [ r / a ] c r '

T; x :t- r  t> cr >  7r
P re d  _________________________  D> T; x :t- r

T D> cr > (x : r ) .7 T

r  t> cr > (x : t ).7t T C> o '  >  r
R el _________________________  x :t cr' G T

r  t> cr > 7T

Figure 3.2: Instance judgement rules

This change is consistent with the approach taken to predicates and renders the 
judgement form to be a preorder as oppossed to a partial order.

Two types schemes are said to be trivial variants of each other if each is an instance 
of the other. That is, type schemes <r and a' are trivial variants under a particular 
type context T if T D> cr >  c r' and T t> cr' >  cr.

Figure 3.3 shows the derivation for the instance judgement below.

r 0 O V a.((+) : a —> a —> a ).a  —► a  > Int —► Int

The type on the left is the type assigned to double in Section 2.1.3. This instance 
judgement indicates that double can be used at type Int —> Int.

3.1 .2  T he valid ity cond ition

In order for a typing judgement or an instance judgement to make sense, it is 
required that the type context involved be valid. A valid type context satisfies the 
following:

• Each overloading binding is of the correct form—it contains no predicates or 
free type variables.
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Taut ___________________________________________
r 0 >  Va.(Pla).a  —► a  > Va.(Pla).a  —► a

S pec ___________________________________________
r 0 I> V a.(P/a ).a  —► a  > (Pljni).Int —» Int (1)

R el ___________________________________________
r 0 I> V a.(P/a ).a  —+ a  > Int —> Int

where (1) stands for the proof tree:

(+ ) U Int —> Int —> Int G T0
Taut ___________________________________________

r 0 >  Int —► Int —> Int > Int —> Int —> Int

Figure 3.3: Example instance judgement derivation

• For each instance binding, there is a corresponding overloaded operator bind­
ing characterising the type scheme bound for the instance.

• For every predicate which appears in a type scheme in the context there must 
be a corresponding overloaded operator whose signature matches the type in 
the predicate.

Validity judgements, of the form t> T, embody these requirements. The rules for 
deriving validity judgements are given in Figure 3.4. Therein, there are two forms 
of judgement: the first four rules are for type contexts and the last rule is for type 
schemes.

The first rule states, simply, tha t the empty context is valid. The O v er rule asserts 
that, if x  is not bound in T, and the given type scheme is of the appropriate shape— 
that is, contains no predicates or free type variables—then an overloading binding 
can be placed in the environment. The In s t  rule ensures tha t every instance of an 
overloaded operator satisfies its signature.

The B in d  rule, for lambda- and le t-bound  identifiers, asserts th a t the identifier 
must not previously be bound in V. Further, there is a requirement tha t the type 
scheme bound be valid. There is only one rule for judgements of the form T D> <7 , 
this is the Sig rule. Judgements of this form are required only for bindings of the 
form a: : a  as types bound in :0-bindings contain no predicates; and the required 
condition is subsumed by T >  a > a' in the case of :,-bindings.

Instance and typing judgements can only be made under valid type contexts. This 
can be considered to be a side condition of each instance and typing judgement
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Em p _________________________
t> e
>  r  fv (r )  C  { a j ,  <*n } 

Over _________________________
t> r ; x :0 Vo!i.- • • Va„.r

> T; x :0 cr T >  a  >  o' 
In s t  _________________________

> T; x \0 a\ x :, o'

t> r T t> <7 
B in d  _________________________

D> r ; x : a

> •* "̂lj 5 *t
Sig -------------------------------------------------------

r >  V ai • • • V an.(a:i : j i ) .  • • • . ( x m : rm).r

Figure 3.4: Validity judgement rules

x £  dom(T)

x £  dom(T)
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Taut
T; x  : a  O x  : a

Spec
T o e :  Va.cr

T O e : [r/a]cr

Gen
r > e : < 7

a < £ f v ( T )
T o e :  Va.tf

Comb
r  O e : t ' —* r T O e' : r'

T >  e e ' : r

A bs
T; x  : t * O e : r'

T O \ x .  e : t * —> t

Let
T > e : a  T; x  : <t > e*: t

T O l e t  x  = e in  e' : r

Figure 3.5: The first group of rules (the Damas-Milner rules)

rule. Since the definition of validity judgements depends on instance judgements, 
a recursion is formed. This recursion is well-founded: tha t is, there are no infinite 
chains of dependency between the two groups of rules.

3.2  T y p in g  J u d g em en ts

The type rules for OL are based on the Damas-Milner rules [DaMi82, Dam85] which 
are presented in Section 1.4.

There are three groups of rules. The first group (Figure 3.5) are the Damas-Milner 
rules the difference lies only in the underlying syntax of expressions, types, and 
type contexts. The second group (Figure 3.6) contains a tautology rule for instances 
of overloaded operators, and introduction and elimination rules for predicates. Fi­
nally, the third group (Figure 3.7) give rules for declarations and programs. All 
the rules apply only to valid type contexts.
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T a u t,  ________________________
T; x o >  x : o

T; x  r t> e : 7r
P r e d   ________________________

r  t> e : (x : t ).tc

T >  e : (r : t ) . t t  Y  D> x  : r  

R el  ________________________
T O e : 7r

Figure 3.6: The second group of rules (handling overloading)

E m p
Y \ > e ^ e

O ver
T; x :Q a  D> d T*

T >  over x  : a\ d x :0 a; T

In s t
T D> e : a T; x u a  > d r'

_ fv[cr) =  {}
T t> i n s t  x : a = e; d x :, <7; r '

P rog
r0 t> r To; r t> e : a

_ Vx.Vo-’.ix  :Q a ' 4  T0)
To >  (d, e) : a

Figure 3.7: The third group of rules (declarations and programs)
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T a u t

C om b

C om b

A bs

P re d

G en

r0; (+) u a -+ a —* a; X: a t> (+) : a —► a —> a (1)

r0; (+) :» a -*• a —► a; X: a > (+) x : a —► a (1)

r0; (+) :, a a a; X: a > (x + x) : a

To ; (+) :, a -* a —► a > Ax. x + x : a —> a

r0> Ax.. X + X■ ((+) :a —> a —> a).a —> a

r 0 t> Ax. x +  x : V a.((-f) : a  —> a  —► a).a  —► a  

where (1) denotes the derivation:

T a u t __________________________________________
To; (+ ) :» ol —► a —> a; x : a >  x : a

Figure 3.8: Example derivation—body of double 

The Damas-Milner rules require no further explanation.

The second group of rules handle overloading. The Taut,- rule types overloaded 
operators on the basis of an instance binding in the environment. The P r e d  rule 
allows an instance of an overloaded operator to be assumed, this assumption is then 
reflected with a predicate in the conclusion. The R el rule discharges predicates. 
Given a derivation with a predicate in the type and a proof tha t the typing of the 
predicate is derivable, the predicate can be discharged.

The third group of rules handle declarations and programs. Extraction judge­
ments are novel: they extract the overloading information from the declarations 
deterministically. Further, they ensure that the implementations given for instance 
declarations are at the correct type.

Two examples of type derivations in the OL calculus are given in Figures 3.8 
and 3.9. The former shows the typing of the body of the double function from 
Section 2.1.3.

r 0 t> Ax. x  -f x  : V a.((+) : a  —> a  —> a ) .a  —> a

Notice, particularly, how the P re d  rule is used to assume an instance of (+ ) at the 
appropriate type. Figure 3.9 shows an application of double to an integer. Take
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Taut

Spec

Rel

C o m b

Taut

Taut,

I \  = r 0; double : V a .( (+ ) : a  
3 : In t ; • • •

—*• a  —>• or).a —> a;

r i  t> double : V a.((+) : a  —* a —» a ) .a  —>■ a

lb  >  double : ((+) : Int —> Int —> Int). Int —»• Int (2]

r x >  double : Int —► Int (1)

>  double 3 : Int

where (1) and (2) denote respectively the sub-proofs: 

3 : Int £ I \
--------------------------------------------------------------------------------  ( i )
rx D> 3 : Int

(+ ) Int —► Int —► Int € Ti
  (2)

t> (+ ) : Int —► Int —> Int

Figure 3.9: Example typing judgement derivation—application of double



CHAPTER 3. A  T Y P E  SY S T E M  FOR OVERLOADING 48

Ti to be To with a binding for double at the type derived above, and bindings for 
integer literals. The derivation of the judgement

r i  t> double 3 : Int

is given in the figure; it illustrates the use of the Rel rule to discharge a predicate. 
It is possible to combine these two proofs with the Let typing rule as follows.

To t> Ax. x +  x : V a .( (+ ) : a  —> a  —> a ) .a  —> a  
Ti >  double 3 : Int

________________________________________________ Let
r 0 >  l e t  double =  Ax. x +  x in  double 3 : Int

3.3  T h e  ty p e  in feren ce  a lg o r ith m

This section presents the type inference algorithm for OL, algorithm O. It corre­
sponds to algorithm W of the Damas-Milner system. Note tha t algorithm O  infers 
typings for expressions, not for programs.

Given a valid type context and a term , algorithm O  infers a typing for the term  
under the context—if a typing exists. The typing is represented by three results:

• 5 , a substitution restricting the type context;

• II, the instance bindings assumed in typing the term; and

• r ,  the type of the term.

That is, if O  is applied to a valid type context and an expression 0 ( T , e), then the 
result is of the form (S, II, r) . The typing thus inferred is

ST ; II t> e : r

which is the characterisation rule for O. Algorithm O  differs from W  only with 
respect to predicates.

Some further notation is required to present 0 ,  in particular, the notion of a 
generalisation of a typing. Given a section II and a type r ,  the notation II.r 
denotes the predicated type containing a predicate for each instance binding in II. 
That is,

n . r  =f (xi : Ti). • • • .(xm : Tm).T

where II =  Xi • • •; xm rm.
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Given a type context T, a section II and a type r ,  the notation r(IL r) denotes 
the generalisation of a typing: that is, the type scheme based on r  tha t contains a 
predicate for each instance binding in II, and a quantified type variable for every 
type variable free in II or r  but not free in T. The definitions is as follows

r([x i :, 7i; • • •; x m :t rm].r) =f V<*i • • • Van.(a:i : n ) .  • • • .(xm : rm).r  

where {0 4 , • • • , a n} are / v ( t , 7 i , • • • , r m) without fv(T).

Algorithm O  is given in Figure 3.10; it extends VV to handle predicates and type 
overloaded identifiers.

Algorithm O  fails under the following three conditions: if a call of U fails to 
find a unifying substitution; if a variable is not bound in the type context when 
required; or if an invalid type context is constructed. On encountering one of these 
conditions, the entire activation fails and no typing exists.

O does not implement identically the algorithm outlined in Chapter 2. Predicates 
are treated  passively by 0 ,  they are merely propagated. There is no a ttem pt to 
discharge predicates as was done previously. Under this simplification, 0  computes 
principal typings—as is discussed in Section 5.3. An extension, modelling the 
algorithm outlined in Chapter 2, is given in Chapter 6 along with some discussion 
of the need for this dichotomy.

3 .4  A  tr a n s la tio n  sem a n tics

This section presents the semantics of OL. This is given by means of a trans­
lation into the Damas-Milner calculus [DaMi82, Dam85]. The translation maps 
typing derivations in the calculus of OL into typing derivations in the Damas- 
Milner calculus. The version of the Damas-Milner calculus appearing in Chapter 
II of Damas’ thesis [Dam85] is used; this is the version discussed informally in 
Section 1.4. Damas-Milner type schemes and assumption sets are denoted by a 
and A  respectively; and expressions are denoted by e as before. The Damas-Milner 
typing judgement form is denoted by A  b e : a.

A m a p p in g  to  th e  D a m as-M iln e r sy stem . As a preliminary, it is necessary to 
define a mapping for type schemes and type contexts from the OL calculus to 
those of the Damas-Milner system. This mapping, denoted [<rj and [ r j ,  maps 
type schemes to Damas-Milner type schemes, and type contexts to Damas-Milner 
assumption sets, respectively. The mapping for type schemes is defined as follows:

[V ai • • • V a n. ( x i  : Ti). • • • .(* ,„  : Tm).rJ = f Vc*i • • • V a n.r1 -► --------► r m -► r

that is, each predicate in the type scheme adds a function type in the Damas-Milner 
system.
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0 ((T; x : <j), x) =

0 ((T; x :Q <j), x)  =

0 (I\ (ci c2)) =

0 (I\ (Xx.  c)) =

0 (r , ( le t  rc =  ei in  e2))

If (7 =  Vc*i • • • Va„.(xi : T i).--- .(x m : rm).r , and 
S'/? is the substitution [ft/ari, • • • , ftn/<*m] where 
f t »* * ‘ »Ai are fresh, then the typing is
( / { / ,  [ x j  f t j T j ,  | I,' ftjT Y n], SpT^.

If a  = Vai.- • • Van.r, and 5/? is the substitution 
[ft/<*i, * • •, /W<*m] where f t ,  • • •, f t  are fresh, 
then the typing is (/d, [a: f tjr], -S'/jt).

Make the recursive calls

(5,1, n 1,T-1)=  o ( r , e i)
(5'2, n 2, r 2)=  (9(ftr,e2)

and set S u to be f /(5 2ri, r2 —> /?) where f$ is 
fresh. The typing is then
(S US 2S U (S un 2; 5’„5,2n 1), f t f t .

Make the recursive call

(51 , n 1 ,r1) = 0 ( ( r ; *:/?), e)

where (3 is fresh. The typing is then
(S u  TIu S 1p ^ r 1).

Make the recursive calls

(5’1, n 1,T-1)=  o ( r ,  d )
(5 2, n 2, r 2)=  O d S iT ;  X : S 1T(U1.rl )), e2) 

and return the typing (5 25 1 , II2, r2).

Figure 3.10: Algorithm O
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It is slightly more complicated to describe the mapping of type contexts. It is 
required tha t there exist an injective function assigning an identifier to each 
binding appearing in the derivation at hand. Call this function [.J: tha t is, [x crj 
denotes some unique variable to be used as the name of the given instance. Further, 
the identifiers in the range of [-J may not appear elsewhere in the derivation at 
hand. Two instance bindings of the same type to the same operator are considered 
to be different if they were created separately. That is, it is not the case tha t

x  r ;  x  r  =  x  r; 

and [.J distinguishes such bindings.

As an example, if the type context at hand were To of Figure 3.1, then [.J could 
be defined by the partial function

(+ ) :t Int —*• Int —► Int i— ► (+ /)
(+ ) Float —► Float —► Float i— ► (+ f )
(*) Int —► Int —>• Int \— > (*/)
(*) Float —► Float —► Float \— ► (*/r)
(= = ) Int —+ Int —> Bool i— > (= = /)
(= = ) :t- Float —► F/oai —> Float i—  ̂ (= = f )
(= = ) CTiar —> C/iar —* Char i— > (= = c)

assuming identifiers (+ /)  etc. appear nowhere else in the derivation at hand. It is 
assumed throughout tha t an appropriate [.J is defined.

The mapping for valid type contexts then maps :-bindings to :-bindings, removes 
:0-bindings, and replaces :t-bindings with :-bindings of the appropriate identifier. 
It is defined inductively as follows.

L(x : a; T)J =f x  : [<rj; |TJ
L(* <t; r)J  ^  Lrj
[(s <r; T)J =f x  : [<rj; [ r j  where x — [x <rj

T h e  tra n s la t io n  ru le s . The translation rules are given in Figure 3.11. Therein, 
each application of a rule on the left in a derivation is replaced with an application 
of the corresponding rule on the right. Expressions denoted e are the synthesised 
translations of the term  at hand. Given a derivation T > e : a, if the translation 
is A  b e : [crj, then the translation e denotes the meaning of e under the given 
derivation; e may now be interpreted by some other appropriate technique, for 
example, a denotational semantics.

The translation is straight-forward in all rules except P re d  and R el. As is seen in 
the informal translation in Chapter 2 and in the mapping of type schemes defined 
above, predicates in a typing correspond to parametrisation in the translation.
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Taut

Spec

Gen

Comb

Abs

Let

T; x : cr > x : cr i r j ;  x : [o-J 1- I  : [<rj

T o e :  Va. cr |TJ h e : Va. |a j

T O e : [r/a](j Lr J 1- e : [r /a ]  |a j

T O e : cr 
a ^ / r ( r )

[ r j  H e :  |a j  
a  £ /t> (|TJ)

T O e : Vo. cr [ r j  h e : Va. [aj

T O e : ( r ' —> r )
r > e ' : r '

Lrj 1- e : ( r ' -  r )  
[ r j  1- e' : t '

T >  (e e') : r Lr J 1- (e e') : r

T; x : t '  O e : r [ r j ; x : t ’ h e : r

T O (Ax. e) : ( r ' —> r) [ r j  h (Ax.e) : ( r ' —> r)

T O e : cr
T; x : cr O e ' : r

Lrj h e : [c]
[ r J ; x : [cr J h e ' : r

T O ( le t  x =  e in  e') : r [ f j h ( le t  x =  e in e ')  : r

Taut, ________________
T; x a  O x : a

T; x  t  t>  e : 7r

Pred ________________
T t> e : (x : r ) . 7r

T t> e : (x : r ) .  7r 
T [> a: : t

Rel ________________
T t> e : 7r

___________________________
|T; x <rj h [a; a j  : [o-J

|T; x r j h e : |x j
x =  [x rj

 _________________________
[r j  h Ax. e : (r  —► |_7rJ)

(TJ H e : r - >  |_7rJ 
[ r j  h e ' r r

___________________________
[ f j  h e e' : [7rJ

Figure 3.11: Translation rules
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Thus each application of the P re d  rule is translated to an application of the Damas- 
Milner A bs rule.

Similarly, discharge of a predicate in Chapter 2 is modelled by an application to  an 
appropriate dictionary. Applications of the R el rule in a derivation are replaced 
by applications of the C om b rule in the translation. The derivation of the typing 
of the instance corresponds to the dictionary or implementation of the overloaded 
operator.

The type inference algorithm O  can be extended to yield a term  representing the 
translation of the derivation it computes.

E x tra c t in g  th e  m e an in g  fro m  a  d e riv a tio n . It is convenient to  define a short­
hand notation for the process of extracting the meaning from a given derivation.

If A is some derivation of T >  e : cr, then [AJ denotes e* where e* is extracted 
from the judgement

|TJ h e ' : L<r|,

the translation of A in the Damas-Milner calculus.



C hapter 4 

A dm issable rules

Hindley and Seldin define the concept of admissable rules on page 70 of [HS86]. 
Several admissable rules are implied by the m aterial of the previous chapter. Before 
continuing, it is convenient to present some of these. These rules add nothing new 
to the system but are conveniently collected together for subsequent use in proofs.

Since the proofs of the rules are trivial, they are omitted. Some indication of the 
appropriate proof method is given in each case.

A d m issab le  R u le i — If a substitution is applied to the type context and type 
part of a derivable typing judgement, then the resulting judgement is derivable.

R u le i T D> e : a

ST t> e : Scr

The proof is by induction on the typing rules. The only subtlety is to ensure, by 
renaming, tha t no generic variables appear in S.

A d m issab le  R u le 2 — The second substitution rule is similar to the first though 
applicable to instance, rather than typing, judgements.

R u le 2 T > a > a'

ST  t> Scr > S(T‘

The proof is very similar to the proof of the previous substitution rule.

A d m issab le  R u le 3 -  Non-structural typing derivations and instance judgements 
are equivalent. Notice tha t e is unchanged in the conclusion.

R u le 3 T t> e : <j
_______________________r  o  <7 > o '

r  O  e  : <j '

54
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This rule embodies the similarity between the non-structural typing and the in­
stance judgement rules. There are two other useful forms of this rule:

T >  e : a 
R u le 3/ __________

r  t> e : <r'

T >  <r > cr'

That is: if the upper derivation holds, then the lower judgement holds. 

R u le 3» T >  e : <T/ T c> cr> c r/

T t> e : a 

T t> e : a'

That is: if the upper judgements hold, then the lower derivation holds.

The proof in each case is by induction, and hinges on the similarity between the 
non-structural typing rules and the instance judgement rules.

A dm issable R ule4 — The instance judgement relation is transitive.

~ , r  D> <j  >  a '
R u le - r  >  ✓ > a"

T > a >  a"

The proof is by induction on the structure of the derivation of T >  a > <r'.

A d m issab le  R u les ~ This rule parallels for predicates the behaviour of the sub­
stitution rule for type variables. This and the following rule are forms of weakening.

R u le 5 T t> e : a

T; r r >  e : a

That is, the type context of a typing judgement, may be augmented with an ar­
bitrary type context yielding a valid typing judgement. Note tha t, as ever, the 
composition (T; T') is required to be a valid type context. The proof is by induc­
tion, though trivial.

A d m issab le  R u le 6 -  The type context for an instance judgement may also be 
augmented with an arbitrary type context.

R u le fi T t> o

r ; r 7 O (7 >  a '
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A d m issab le  R u le 7 — The generalisation process is sound for typing judgements. 

R u le 7 T; II >  e : r

r > e: r(n.r)
The proof is by construction: so many applications of P re d  followed by so many 
applications of G en . The reverse of this rule also holds.

A d m issab le  R u les ~ The generalisation process is sound for instance judge­
ments.

R u les T; II t> cr > r

r  d> a > r ( n . r )

The reverse of this rule also holds.

A d m issab le  R u le 9 — Under specific circumstances, a section which can be dis­
charged in one context can also be discharged in another.

lM n ) \  ( M t ) C fv{T))) n f v ( tt) =  {}

If II contains X{ r, for i = 1 , . . . , n ,  then from the T t> II .r  >  r  it follows 
T > x { : Sri for some S  mapping only type variables not free in r  or T. If those 
type variables do not appear in 7r, then T D> II.tt >  7r giving the required conclusion 
by transitivity.

A d m issab le  R uleio ~ Predicates may be dropped from the left-hand side of an 
instance judgement.

R uleio  T t> (x : t ).t  > a1

T  t> t t  >  a '

The proof is by construction of T >  7r >  (x : r).7r and transitivity.

This rule also holds in the reverse direction under the side condition tha t x  is an 
overloaded operator and T t> x : r .

A d m issab le  R u le i i ~  This rule makes an assertion about the form of instance 
judgements. Specifically, if

r  t> Vai • • • Va„.(a;i : n ) .  • • • .(xm : rm).r >  r '

then there exists a substitution S  of types for { a i , . . .  , a n) such that:

Rulec
T >  7T >  <7
r  t> n . r  >  r

r  t> n.7r >  a
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•  S t  = r ';  and

• T D> X{ : S ^  for each i £ m}.

As a corollary, T > (xi : S ti). • • • (x m : STm).ST > r # also holds since each of the 
predicates may be discharged and S t =  r #.

The proof of this result relies on the existence of canonical derivations. This form 
is given in Chapter 7. Specifically, any instance judgement of the given form can 
be constructed using only the T au t,, S pec and R el rules.

A dm issable R ulei2 — If a derivation holds under a particular context, then a 
binding can be replaced with a binding of the same identifier to a more general 
type and the derivations still holds.

, T; x : o' t> e : cr"
R ulei2  r  . /1 D> cr >  cr

T; x : a t> e : cr"

This follows from the relationship between non-structural typing rules and instance 
judgement rules (R ules).



C hapter 5

Soundness, com pleteness and  
principal types

This Chapter presents the main technical results and proofs thereof. In particular, 
algorithm O  is shown to be syntactically sound and complete; as such it computes 
principal typings; finally, the translation semantics are shown to be syntactically 
sound. The main results are as follows

S y n ta c tic  so u n d n ess  th e o re m . O  is syntactically sound. That is, given a type 
environment and an expression (T ,e), if O computes a typing (S', II, r )  then 
a derivation of ST  >  e : r  is provable in the calculus.

S y n ta c tic  c o m p le ten e ss  th e o re m . O  is syntactically complete. That is, given 
a type environment and expression (r, e), if any typing (S", II', r ')  exists, then 
O  will compute a typing. Further, the computed typing is more general, with 
respect to the instance relation, than the given typing.

P r in c ip a l ty p e  th e o re m . The type calculus satisfies a principal type theorem, 
further, O  computes principal types.

T ra n s la tio n  so u n d n ess  th e o re m . Given an arbitrary derivation in the OL cal­
culus, the translation of that derivation into the Damas-Milner calculus yields 
a valid derivation.

5.1 O  is sy n ta c t ic a lly  sou n d

O is sound: if O  computes a typing then a derivation of the typing exists within 
the type calculus. Specifically:

T h e o re m  1 S y n ta c tic  so u n d n ess. Given a valid type context T and an ex­
pression e, i f  the evaluation of G(T,e) succeeds with (5,11,7-), then the judgement 
ST;H \> e : r  is derivable.

58
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P r o o f

The proof is by structural induction on the term  e requiring two base cases and 
three inductive cases. In each case, the typing derivation corresponding to the 
result of the application of O  at hand is construct. The names of the outer-most 
invocation of O, see Figure 3.10, are used throughout.

Id e n tif ie r  te rm s . There are two mutually exclusive cases: firstly lambda- and 
le t-b o u n d  identifiers, and secondly overloaded operators. If O  succeeds, then 
there is an appropriate binding in the environment. In the lambda- and le t-b o u n d  
case the following derivation holds.

x : Vai • • • Van.(xi :-Ti). • • • .(:rm : rm).r € T
------------------ — -__________________________________  T a u t

r ; n >  X : Vai • • • Van.(a:i : T i ) . - - - . ( a : m : rm).r
— .— - ___________________________________________  S pec

r ; n t> x  : [/?i/ai]Va2.-• • Va„.(a;i : ri).---.(a;m : rm).r

: Spec [ft/a,-]
_______________________________________________  for i =  2, . . . ,  n
r;II > x : S p ( x  1 : n : Tm).r
_______________________________________________  R el x i  :, SpTi 6 fl
r; n l> X : S p ( x 2 : r2). • • • (xm : rm).r

: R el Xi :, SpTt G II
__________________________________________________  for i = 2, . . . ,  m

T; II t> x : Spr
__________________________________________________  5  =  Id

S T ; II >  x : Spr

For the second case, overloaded operators, the derivation is simpler.

£ :t Spr  G II
________________________________  Taut,

T; II t> x : Spr
_________________________________  S  = Id

S T ; II t> x : Spr

Lambda term s. Starting from the inductive hypothesis, the following derivation 
holds.

5 i(T ; x : p)\ ITi O e : rj

S i T; x : S i/9; IIi D> e : tj
_______________________   A bs

T; Eb O Xx. e : S\(3 —> T\
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This typing is as required by the assignment to S, IT and r  of S u  III and S i (3 -> r x 
respectively, as O  does.

A p p lic a tio n  te rm s . For application terms, there are two inductive hypotheses. 
For each, a short derivation achieves the correct form for an application of the 
C o m b  rule to construct the required typing. Below are the two sub-derivations 
from the two inductive hypotheses followed by an application of the C o m b  rule.

.SiT; IIi t> ei : Ti
.Rulex S US 2

S uS 2S i Y- S uS 2Hi >  ex : S uS 2ti

S uS 2S i Y- S uS 2Ui > ei : S ut2 -► S u(3

S uS 2S i Y; S US 2n x; SUII2 >  ex : S ut2 —► S ufi
(1)

S 2S i Y; n ;2 t> c2 : t2

SuS2Sxr ; S UII2 t> e2 : S ut2

S uS 2S!Y; S UII2; SuS2n x >  e2 : Sur2
(2)

(1) (2)

S uS 2t\ =  S ut2 —► S u(3 

R u le 5 S*II2

R u le i S u 

R u le 5 S uS 2Iii

S uS 2SiT- S uIL2; S uS 2Ui >  ei e2 : S u(3
C om b

This final typing being as required by the assignment to S', II and r  of S uS 2S i , 
SuS2n x; SuII2, and S u(3 respectively, as O  does.

Let term s. As with the previous case, the two inductive hypotheses lead to two 
sub-derivations. The first is again named (1) and combined with the second by an 
application of the structural rule for l e t  terms.

SiT; IIi t> ei : r x
 __________ _________________________________  R u le 7

5 i r >  ei : ^ T ( n i . r i )
_ ____________ _________________________________ R u le i S 2

S 2S i Y t > e i : S 2~SiT(Ui.Ti) 
_____________________________________________ :_____ R u le 5 II2

s 2s xr ; n 2 > e x : S 2s j x n i .T X)
a )

(1) S 2SiT; x : S,25 'iF (IIi- T i ) ;  II2 t> e2 : r2 
___________________________________________________ L e t

S 2S iT  t> le t  x = ei in  e2 : r2
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This final typing being as required by the assignment to S , II and r  of S 2 S 1 , II2 , 
and r2 respectively, as O  does.

It remains, finally, to show that all the type contexts constructed in such a deriva­
tion are valid. To see this, observing that T is valid and tha t all the alterations. to  
T preserve its validity. It is necessary to examine every way in which T is altered.

•  Substitutions are applied to the type context. Since all type variables in 
overloaded operator signatures are generic, validity before implies validity 
after.

•  Lambda bound identifiers are added to the context, since these cannot contain 
predicates, validity is trivially maintained.

• Instance bindings are added to the environment. These are from two sources: 
the predicate part of a binding in the environment, or a specialisation of an 
overloaded operator’s signature. The latter is trivially valid and the validity of 
the former derives from the validity of the predicates within the type scheme 
from which they originate.

•  Let bindings are added to the environment. Since the predicates in such type 
schemes are generated from instance bindings in a valid type context, the 
resulting type context is also valid.

□

5.2 O  is sy n ta c tic a lly  co m p le te

Recall tha t one type context T7 is an instance of another type context T if, and 
only if, there exists a substitution S  and a section II such tha t T7 =  ST; II. The 
pair (S, II) is referred to as a witness to the instance relation.

T h e o re m  2 S y n ta c tic  co m p le ten ess . Given a valid type context T and an ex­
pression e, if  there exists a type context T7, an instance o f T , and a type scheme cr1 
such that r 7 >  e : a' then:

1. 0 ( Y ,e )  =  (S, II, r )  succeeds;

2. T7 is an instance of ST  with witness (S7,II7); and

3. taking <7 =  S F (II.t) , it is the case that T7 t> S'cr > .
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P r o o f

The proof is by structural induction on the derivation of T' t> e : cr'. This is 
taken in two parts: firstly, establish the results if the last rule applied were one 
of Gen, Spec, Pred or Rel (in these cases termination comes trivially from the 
inductive hypotheses); and secondly, establish the results when the structural rule 
corresponding to the form of the expression has been used. The base cases Taut 
and Taut, are considered in the second half of the proof.

As before, the names of the results and the variables of the outermost call of O  are 
used.

The Gen rule. If the last step of the derivation is an application of the Gen rule 
then it must be of the form

r  >  e : a"
--------------------------------------------------------  a #  MT*)

T' >  e : cr'

where cr' =  Va.cr". T hat T7 is an instance of T follows trivially from the inductive 
hypotheses. Further, the inductive hypotheses give tha t T7 O S'cr >  a 77. Since
this application of the Gen rule is applicable, it must be the case tha t a  t  fv(T').
Therefore, the Gen instance rule is also applicable

T  >  S 'a  > a"
________________________________  Gen

r  > S 'a  > Va.a"
  Va.cr" =  cr7

T7 >  S'a  > cr'

giving the required instance judgement.

The Spec rule. If the last step of the derivation is an application of the Spec 
rule then it must be of the form

T7 > e : Va.cr"

r 7 [> e : <j 7

where cr' =  [r/ojcr". That T7 is an instance of T follows trivially from the inductive 
hypotheses. Further, the inductive hypotheses give that T7 t> S 'a  > Vq.<j7'. A 
single application of the S pec instance rule gives T7 O S'a  > a 7, the required 
instance judgement.
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T h e  P re d  ru le . If the last step of the derivation is an application of the P re d  
rule then it must be of the form

r ';  x  r  >  e : x

r  t> e : (/

where cr' = (x : r).7r. The inductive hypotheses give tha t T7; x  r  is an instance 
of S r  so S 'S T ; II7 =  T7; x  r .  Further, the statem ent of the theorem gives th a t T7 
is an instance of I \  For both these to be the case requires x  r  G II7. Therefore, 
T7 is an instance of ST  as witnessed by (S', II7 \  x  r) .

The instance relation T7; x  r  I> a  >  7r also follows from the inductive hypotheses. 
A single application of the P re d  instance rule then yields T7 >  a  >  (x : t).7t, the 
required judgement.

T h e  R e l ru le . If the last step of the derivation is an application of the R e l rule 
then it must be of the form

r 7 > e : ( x :  r).7r T1 O x : r

T7 t> e : <77

where cr* — n. That T7 is an instance of ST follows directly from the inductive 
hypotheses. Further, the inductive hypotheses give T7 O a  >  (x : r).7r. An 
application of the R e l instance rule yields T7 O a  >  7r, the required judgement if, 
and only if, T7 t> a" >  r  for some a" such tha t x on G T7. Since T7 t> x  : r ,  it 
must be the case tha t there is a derivation of the form

x  a"  e  r7
F o x :  a"

T 7 C> x : t

giving, by R u le 3 /, the judgement T71> a" > r  as required.

L am b d a - an d  le t - b o u n d  id en tifie rs . In this case the derivation is an instance 
of the T a u t rule.

x  : <t7 € T7

T ' t > x :  a'

W ith x  : cr £ T the evaluation of 0 ( Y , x) proceeds to produce a derivation ST; II >  
x  : r  such tha t S  is the identity substitution and ST(n.r) is a —or a trivial variant
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thereof. Therefore, O  succeeds. Further, since r 7 is an instance of T and S  is the 
identity substitution, T' is trivially an instance of ST.

It is only left to show T7 C> S'cr >  <r'; this also is trivial. Since S 'S T ; IT =  T' it 
must be the case that S'Scr =  cr7. Since S  is the identity substitution, S'cr =  a 7 
implying T7 >  S 'a  >  o' trivially by the T au t instance rule.

O v e rlo ad ed  o p e ra to rs . In this case the derivation must be an instance of the 
T au t; rule.

x u <r' € r7

r  >  x : a'

By a similar argument as was used in the previous case, it can be seen here tha t 
if x  :c Voti.* • • .Van.r  6 T then S  =  Id and a — Voi.* • • M an.(x : t ) . t —or, again, a 
trivial variant thereof. Again O  succeeds and T/ is seen to be an instance of ST 
since it is an instance of T.

It remains only to establish the judgement T' >  S'a  >  cr' given x  :t o* € T;. Since T 
is valid, S'cr =  o  since overloaded operator signatures contain no free type variables. 
Since x a ’ 6 T; and T7 is valid, it must be the case tha t T71> Vai.* • • .Van.r  >  cr'. 
That is, if a' is of the form

V/?i • • • V/Jp.(®] : T]'). • • • ,(x ' :

then there exists a substitution S c> (of types for {<*!, . . . , o n}) such tha t S a>T =  r 7. 
Further, take 11̂ / to be {zj :t- t [ \  • • •; x'q r?7}. The following derivation holds.

T7; > a > Vai.- • • .Van.(x : r ) . r
----------- ______________________________________  n applications of Spec

T7; Hai t> cr > (x : S a'T).Sa'T
---------------------------------------------------------------------  S a'T =  T7

T7; I I t >  cr >  (a: : t 7) . t 7 
____________________________________________  Rel r7; II,* D> a ' > r7

r7; nai >  <r> t '
____________________________________ _________  q applications of Pred

r  t> a  >  (*; : t[). ■ ■ ■ ,(x ' :
_______________________________________ ______p applications of Gen

r '  O S ’a  > V0, • • • VA-(i', : t{). ■ ■ ■

The substitution S' is introduced in the final line since S'cr = cr.

It remains to verify that Rel and Gen are indeed applicable above. Firstly, for 
the Rel case, it is required to show that T7; 11^ O o' > r 7. The following proof
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establishes this.

r ';  Ha, X T ' > VA •.. V/?p.(*i : r/)- • • • .(*i :
------------------------------------- -----------------------------Spec [MPi]

r ';  11^ >  <x7 >  (s ' : Tj). • • • .(z7 : r j j . r 7 for i =  1, . . . ,  p
--------------------------- --------------------------------------- Rel, x'j i( Tj €

T7; 11*, > < t ’ >  t ' and T7; H ^  >  rj >  rj

Secondly, the applications of Gen are valid trivially since one can ensure Pj / v ( r 7) 
by renaming of bound type variables.

Lambda term s. In this case the Abs rule must have been applied 

T7; x  : r 7 >  e : r 7/

T7 t> \ x .  e : r 7 —> r 77

with cr7 =  r 7 —> r 77. The application of 0  makes the recursive call ( 5 i , I I i , t i )  =  
0 ( T ; x : P,e)  yielding the inductive hypotheses:

• th a t the recursive call succeeds;

• th a t T7; x  : r 7 is an instance of ^ ( T ;  x : P) (witness ( i S 77, II7'), say); and

• th a t T7; x  : r 7 D> S " S 1(T', x : P)(Ui.Tl) > r ”.

O  fails for lam bda terms in general if the recursive call fails, or the variable con­
cerned already appears in the type context. In the case at hand, the inductive 
hypotheses give tha t the recursive call succeeds. It is required only to show th a t x 
cannot be bound in T. Since T7; x : r 7 is valid, T7 cannot contain x. Since T7 is an 
instance of T it follows tha t T cannot contain x. Thus the call at hand succeeds.

T7 is shown to be an instance of ST  by the following argument.

S 77S 1( r ; x : p); II77 =  r 7; x : r 7

S ' ^ r ;  x : S"Sifi;  II77 =  T7; x : r 7
_________________________________  remove x : S"S iP  = r 7 bindings

S^SrT; H" = T'
________________________________  S  = S 1

S ”S T ; n 77 =  r 7

Thus the witness to T7 being an instance of 5T is (S ' , II7) where II7 is II77, and S '  is 
the same as S"  on all variables except those free in f v (S \p )  \ f v ( S \ T )  on which it 
is the identity. It remains only to show that T71> S 'a  > cr', or more specifically,
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Starting from the inductive hypothesis, the following derivation holds. The num­
bered steps are justified subsequently.

T  >  S " S 1(T- x : P X U i.n )  > t"

T' > S ^ S iT ;  x : S ^ X Ib .n ) > r"----- _____------------- (i)
r' > 5"(51r; X  : 5ij8)(n,.Si^ -* r,) > r' -> r"

 — (2)
r  t> 5"37r(n1.5-,/? - » n) > r' -* r"

------------------------------------------------------------------ (3)
r  t> s'37r(n1.51/3 -> t,) > t' -> r"

______________________________________________ def. of .S', II, and r
T# t> S rSV(U.T) >  r '  -► t ”

1. The free type variables of S\ft  all appear in the environment; as such they 
cannot be polymorphic. Thus S n is applicable directly. As was noted above, 
S "S \ f i  =  r '  so the change to the structure is symmetric.

2. The effect of removing S \fi  from the environment is to decrease the number 
type variables free in the environment. Therefore, more type variables become 
polymorphic. Specifically, those type variables in fv (S i f t )  \ f v ( S i T )  become 
polymorphic. Call this set 8 and S"  restricted to this set S s • Since 8 are 
now polymorphic they are not effected by S". Polymorphic variables may 
be assigned any type by the Spec instance rule; specifically, they may be 
assigned types in accordance with S s . Thus the instance judgem ent is still 
derivable.

3. The set 8 contains those type variables which were previously free in the type 
context but are no longer. Thus, none of 8 are free in the type scheme. As 
such, none of the mappings defined in S"  for 8 can be applicable. This is 
the same restriction as was made in the definition of S ' above. It therefore 
suffices to replace S " with S'.

A pplication term s. In this case the Comb rule must have been applied 

r 7 D> d  : r '  -> t "  r  D> e2 : r ‘ 

r7 t> ei e2 : t "  

with o' — t " .  The two recursive calls of O  are

($,,1̂ ,71) = o (  r,ei)
(5’2, n 2, r 2) = o ( S l r , e 2)

which yield the following inductive hypothesis: that both recursive calls succeed;
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• tha t r  is an instance of S iT  (witness say);

• tha t T' O 5 /15 ^ r ( n 1.r1) >  r '  r";

•  th a t r  is an instance of S 2S\P  (witness (,S2,I I2), say); and

• th a t r '  >  5 ,25 25 i r ( n 2.Ti) >  r '.

The inductive hypotheses hold for the second recursive call since T' is an an instance 
of 5 iT  by the inductive hypotheses of the first recursive call.

From S l S t f ;  U[ =  T  =  S ' ^ ^ T ;  II'2 it follows tha t n'j =  U'2 and S\ = S'2S 2 for
H S i  r ) .

To show that the call of O  at hand succeeds it is necessary to show th a t S u =  
U (S 2T i , t2 —> (3) succeeds. Let £i be the generic variables of iS'iF(IIi.Ti) and S2 be 
the generic variables of 5'25 'ir(I I2.Ti). Now and S2 are unmoved by S[ and S 2 
since the la tter are minimal. Since T; >  S \ S i T(TIi .t i ) >  r '  —► r"  there must exist 
a substitution of types for 8\ such that (S^ +  Ss^Ti = r '  —> r".

Similarly, from V  t> 5 25 25 'i r ( n 2.Ti) >  r '  there must exist a substitution Ss2 of
types for S2 such tha t (S2 +  S s2)t2 = r '.  The substitution

So =  S 2 +  S&! +  Ss2 +  W ifi]

is shown to be a unifying substitution. To do this, it is required to show tha t 

S o(S 2ti) =  t '  —► r"  =  S 0{t2 -» f3)

The following two derivations show this.

S o(t2 (3)
= (S ot2) —> (S q(3)
=  (S 0r2) -+ t"
= ((5'2 +  S Sl +  S h  +  [t " ! P ] ) t2)
=  ((S'2 + S 62)t2) ^ t "
=

S o(S 2t i)
=  ( S ,2 +  S Si + S 62 +  [t "/ /3 } )S2t1 
= (5 /2 +  551)5 2t 1
= (S,;s,2 + S*)r1
=  (^ i +  S $, )ri
  _ / /=  T —► T

Thus, is a unifying substitution. If any unifying substitution exists, S u =  
U ( S 2tu t2 —► /?) succeeds, and the call of O  at hand succeeds in turn.

SoP =  r"
t "

(Si U { /3} ) D f v ( T 2) =  { }  

def. of Ss2

(<$2 u { /? } )n  f v ( s 2rl ) = {} 
dom(S2) 0 ^  =  {}
S 2S 2 = S[
def. of Ssi
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T' is shown to be an instance of S uS 2S i T by the following argument. Since both So 
and S u are unifying substitution and S u is the most general unifying substitution, 
it must be the case for some S' that S7SU =  So- Taking IT to be II2 gives

s ,s us 2s 1T; n 7 =  S o S ^ r ;  n 7
=  S ^ S j T ;  n ' f v ( S 2S iT )  n  (Si u s 2 u  {p}) = {}
=  T inductive hypothesis

That is, the pair (S'7, II7) bears witness to r 7 being an instance of S uS 2SiP.

It remains only to  show tha t V' >  S/S ^ S ^ r ( S u(S 2IIi; II2).Su/9) >  r" . This fol­
lows from the initial two judgements of the following derivation. The two premises
are proved subsequently.

r 7 >  s ,s us 2n 1. s ' s up > r"
r  >  s ' s u h 2 .t ' >  p

-----------------------  —________________________________  R ule9
r 7 t> s ' s us 2n i; s 'S u n 2. s ' s up > r"

v  >  s \ s us 2n i; s ui i2. s up) >  r n

r '  > s % ^ s i r ( s us 2n i; s uu 2. s up )  >  r ”

The section elimination (Rule9) step is applicable since those free variables of 
S ' S uU2 which are not in T or r 7 must be generic. Such variables, if they are to 
be in S ' S uS 2H i .S 'SUP, then they must also be in r 7 due to unification. As stated 
above, however, they are not in r '.

Only the two premises above remain undischarged, the first is proved by the fol­
lowing derivation.

T7 1> S [ S ^ T ( U ^ n )  > t '  -> t "  
________________________________________________ R ulen

r 7> ( 5 ;  +  s 6l)(ni.T1) > T f -+T"
_______________________________________________________ 5 ;  =  S ’2S 2 on fv (S iT )

r ' > ( s 7s 2 +  s '* j ( n 1.T1) > r ' - > T 7'
---------------------------------------------------------------- 8\ ^ s 2

r 7 >  ( s 2 + S s ^ s . i u . S r t )  > t ' - *  t "

T7 > (S'7 + S Sl + S* + [r7^])(S2n 1.S’2r1) > r ' -  t "

r 7 >  S o(s 2h x.s 2tx) > t ‘ -  t"
___________________________________________________________________________$0 =  s*su
r 7 >  S7S uS 2n 1.S7SuS 2r 1 > r '  -> r"
—— ------- ----------------------------------------------------------------S uS 2t\ =  S u(t2 —► p )
r  >  S 'S uS 2U1.S 'Su( t2 -> P) > r 7 r "  
_____________________________________________ R ule9
r 7 >  s ,s us 2n 1. s ‘s up > r 77
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And finally, T' t> S 'S uII2.t ' > r '  is proved as follows.

r  >  5 ,25 2s ,1r ( n 2.r2) >  r 7
_________________________________________________ as above

T' t> (S0)II2.t2 >  r '

r 7 >  5 7s'tin 2.s ,7s ,ur2 >  r 7
__________________________________________________S 'S UT2 =  r 7

r 7 >  s',s 'un 2.r 7 >  r 7

Let term s. In this case the Let rule must have been applied

T7 >  ci : cr" T7; x : a 77 >  e2 : r 7

T7 > l e t  x = t \  in  e2 : r7

with <r7 =  r 7. The two recursive calls of O  are

(S i,I I i ,7 i)  =  <9(T,ei); and 
(S 2,I I2, t 2) =  0 ( S 1T; x : ^ ( I L - T i ) ,  e2)

yielding the following inductive hypotheses:

• th a t the first recursive call succeeds;

• th a t T7 is an instance of S iT  (witness (S ^ II j) ,  say); and

• th a t T71> > <r".

From T7; x : o' t> e2 : r 7 and T7 >  S 71S'ir(IIi.T1) >  cr" it follows by R u le i2 tha t

T7; x : S'jSJXn.-T!) O e2 : r7.

Since

r 7; x : S [ S ^ ( I h . n )  = s ’̂ S i r ; x i W W i -ti )); n ;

the conditions for the applicability of the theorem in the second recursive call are 
satisfied and the following inductive hypotheses hold:

• the second recursive call succeeds;

• th a t T7; x : S’i f r(IIi.ri) is an instance of S 2( S iT ; x : S’i r ( I I 1.T1)), witness 
(5 2, n 2), say; and
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• tha t r #; x : ^ ( I I l T i )  >  5,/25 25’i ( r ; a: : 51r(n1.r1))(n2.r2) > r7.

Typings for l e t  terms fail if, and only if, either recursive call fails or the identifier 
concerned is already bound in the type context. Neither recursive call fails, and 
since r ';  x : o" is valid, x  is not bound in T'. Further, since T' is an instance of T, 
x  cannot be bound in T. Therefore, the call of O  at hand succeeds.

Next, it is required to show that T' is an instance of S 2S\T .  This follows from the 
inductive hypothesis.

S"26'2(S'1r ; X : S J X n i .n ) ) ;n '2 =  T'; x : SiT(TU.n)
s'2 s ^ T ) ^  = r

Therefore, T' is an (*S'/, II7) instance of S 2 S 1 T where S' is S'2 and II' is IT2 -

Finally, it is required to show that T' >  S /S2S iF (II2.r2) >  r 7. This follows from 
the inductive hypotheses as shown below.

r ';  X : S i r ^ . n )  >  S'2S 2S i (r ; X : S . T i n ^ ) ) ^ ^ )  > Tf

r  >  S ’̂ S t i T ;  x : S 1r ( n 1.r1)) (n 2.r2) >  r '  

r r t> s ,2~s 7s Tt (u 2.t2) > T'
_______________________________________________________  S ' =  S'2
r '  >  s 's ^ s l r ( n 2.r2) >  r '

□

5 .3  O  c o m p u te s  p rin cip a l ty p e s

The specification and proof of the completeness result above is messy and largely 
opaque. It is convenient to conclude the discussion with two simple corollaries.

A type scheme cr is the principal type scheme of e under T if, and only if,

• T >  e : <7 ; and

• if, for some cr', T t> e : cr7, then V t> cr > a '.

The following two corollaries are consequences of the syntactic soundness and com­
pleteness results.

C o ro lla ry  3 O  c o m p u te s  p rin c ip a l ty p e s . //£>(r,e) succeeds with (5 ',I I , t )  
then 5 T (n .r )  is a principal type scheme for  e under 5T.
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One need no longer be concerned with the completeness result when considering 
principal types^ If a typing T >  e : a' exists then take (5 ',I I , t )  to be G(F,e)  and 
it follows tha t r(II.T ) is the principal type of e under T. Notice th a t S  must be Id.

C o ro lla ry  4 P r in c ip a l ty p e s . I f  it is possible to derive a type scheme for  e under 
r  then there is a principal type scheme for e under T.

Notice tha t this corollary makes no mention of O. Specifically, the existence of 
principal types is a property, not of the type inference algorithm, but of the type 
system alone.

5 .4  T h e  tra n s la tio n  is sy n ta c tic a lly  so u n d

The translation assigning meaning to type derivations is syntactically sound: that 
is, given a derivation in the OL calculus, the translated derivation in the Damas- 
Milner system is a valid derivation. The formal statem ent of the theorem is as 
follows.

T h e o re m  5 S y n ta c tic  so u n d n ess  o f t ra n s la t io n . Given a derivation T >  e : 
a , then the translation of that derivation, [TJ b e : is a valid derivation in the
Damas-Milner calculus.

It follows trivially from the syntactic soundness and the semantic soundness of the 
Damas-Milner system, tha t this translation is semantically sound.

P ro o f

The proof is by structural induction on the derivation of T t> e : a. It establishes 
tha t the translation of each rule in the OL calculus is valid in the Damas-Milner 
calculus. Once again, the base cases are the T a u t and T a u t, rules.

Firstly however, it is required to show that if T is a valid type context, then [ r j  is 
a sensible Damas-Milner assumption set. A simple examination of the rules for [r j 
establishes this. It is clear that all type schemes [<rj are valid Damas-Milner type 
schemes. There are bindings in [TJ for all the :-bound identifiers in T, there are 
also bindings for all the :,-bound operators. All these identifiers are distinct—by 
the definition of valid type contexts and [*J—an<  ̂ such, the assumption set is
sensible.

T h e  T a u t ru le . From x : a € T if follows x : [a\ €  [ r j-  Therefore, the typing is 
trivially true in the Damas-Milner system.
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The Taut, rule. From x <r 6 T it follows x  : |_crj (E [ r j  where x  =  [x :, <jJ. 
Again, the typing is trivially true by the Damas-Milner translation of the Taut,- 
rule.

The Gen rule. The inductive hypothesis is [ r j  h e :  J_crJ. It is easy to see that 
M L r J )  Q / u( r ) ,  therefore, from a  0  fv(T) it follows a  ^  /v(|_ rj). As such Gen is 
applicable in the Damas-Milner system. Therefore [TJ h e :  [Vo.crJ is shown, as 
required.

The Spec rule. The inductive hypothesis gives [ r j  h e : [Va.aJ. From the 
definition of [Va.crJ, it follows tha t a  is also the outermost bound variable of 
[Va.crJ. Further [tJ is r .  As such Spec is indeed applicable in the Damas-Milner 
system giving [ r j  b e :  L([t*/o?]ct)J.

The A bs rule. The inductive hypothesis is [(T; x  : r)J b e :  [ r7J. T hat is, for 
A — [TJ, the judgement A ; x : t  b e : t 7 is valid. Clearly the Damas-Milner rule 
A bs is applicable giving |_TJ b Ax. e : [r —i► r 7J as required.

The C om b rule. In this case there are two inductive hypotheses: [TJ b e :  
[ t 7 —► r j  and [TJ b e 7 : [ r7J. Now [( r7 —» r)J and [ r7J are r 7 —► r  and r 7 respec­
tively so C om b is applicable in the Damas-Milner system giving [ r j  b (e e7) : [r j 
as required.

The Let rule. Again there are two inductive hypotheses:

[TJ b e : [crj and [(T; x : cr)J b e ' : [ r j .

It is obvious tha t the Damas-Milner Let rule is applicable giving 

[TJ b l e t  x =  e in  e' : [rj 

as required.

The Pred rule. In this case the inductive hypothesis is [(r; x :, r)J b e :  [xj. 
Taking A  to be [ r j  that is A; x : r  b e : [7rJ (where x is name*(x :,- r) ) . As 
such, the Damas-Milner Abs rule is applicable giving A  b Ax. e : r  —> [7rJ. By an 
obvious property of the mapping, r  —► [7rJ =  [((x : r).7r)J which gives the required 
result.

The Rel r u l e .  The final case yields the inductive hypotheses [TJ b e  : [((x : r).7r)J 
and [ r j  b e7 : [ r j .  The former of these is [ r j  b e :  [r —> 7rJ which makes the 
Damas-Milner Com b rule applicable yielding [TJ b (e e7) : [7rJ as required. □
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D ischarging predicates

As is noted in Chapter 3, the algorithm presented informally in Chapter 2 is not 
modelled exactly by algorithm O. This Chapter addresses the differences and 
presents an appropriate extension to O.

6.1 T h e  d ifferen ce b e tw een  th e  form al an d  in for­
m al a lg o r ith m s

The informal algorithm and algorithm O  differ only in their handling of predicates, 
tha t part inherited from the Damas-Milner algorithm is unchanged. W hen the 
informal algorithm establishes tha t a predicate is satisfied by a instance binding in 
the type context, tha t predicate is discharged; when it discovers tha t two predicates 
are the same, one or other is discharged—algorithm 0 , on the other hand, makes 
no a ttem pt to discharge predicates.

The motivation for this dichotomy is technical: 0  computes principal types whereas 
the informal algorithm does not. To see this, it is best to consider an example. If 
[] is used as shorthand for the empty list, and equality is overloaded on lists as it 
is in Chapter 2 , tha t is,

(==) :t Vo'.((==) : a  —> a  —> Bool).List(a) —> List(a) —► Bool £ T

then the term  (Az. (x  = =  [])) is assigned different types by the two algorithms—the 
first below by 0 , and the second by the informal algorithm.

T > (Az. (x = =  [])) : Va.((==) : List(a) —► List(a) —> Bool).a —> Bool 
T C> (Xx. (s  = =  [])) : V a.((= = ) : a  -» a  -> Bool).a —► Bool

That is, the typing of the term generated a predicate on equality over List (a) as 
seen on the O  version. The informal algorithm discharges this predicate with the 
instance of equality over lists in the type context and introduces the predicate on

73
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7£(r, II) =  If there are bindings

x  r '  6  II
x  :t- V a i  • • :  T i ) . - - - . ( x m : r m).r  € T

such that there is a substitution S  of types for 
a n} with

S r  = r ',

then return

^ ( r ,  j r j  S ti; •••; x m :t S rm; II \  x  :t- r ')

otherwise return II.

Figure 6.1: Algorithm TZ: discharging predicates (II)

equality at type a  as required by the instance. It is asserted above th a t the typing 
computed by O  is the principal typing. To see this, observe th a t, taking EqT to 
abbreviate r  —> t  —> Bool,

r >  V a .( (= = ) : EqList{a))-oi —> Bool >  V a .((= = ) : Eqa).a  —► Bool

is a valid judgement, as one would expect since (9 computes principal types. The 
reverse, however, is not the case: the following is not a valid instance judgement.

T >  V a.((= = ) : Eqa).a  -> Bool > V a.((= = ) : E q ^ t ^ . a  —> Bool

Thus, the typing computed by the informal algorithm is not principal. This chapter 
presents an algorithm 1Z unifying the two approaches. After TZ is discussed below, 
Section 6 . 7  returns to this question illustrating the sense in which it is sensible to 
use 1Z despite the observation above.

6.2  A lg o r ith m  H : d isch a rg in g  p red ic a te s

This section defines an algorithm 1Z which implements predicate discharge, formal­
ising the method presented in Chapter 2. The section begins by defining 1Z and 
outlining its operation. There then follows a brief discussion on how to integrate 1Z 
with O  to achieve the same effect as that of the informal algorithm. The subsequent 
sections describe when it is safe to apply 7 and show that 1Z is sound.
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6 .2 .1  A lgorith m  7Z

If under a given type context T a section II is generated by O, then 71 discharges 
those predicates in II that are satisfied by instance bindings in I \  As with the 
informal algorithm, if an instance binding is itself predicated, then 71 introduces 
the required predicates into the section. This procedure is then iterated until no 
further predicates can be discharged. Specifically, calls to 71 are of the form

f l  = 7Z(T,H)

where II is the predicate set after all predicates in II which are satisfied by T are 
discharged. Algorithm 71 is given in Figure 6 .1 .

As an example of the application of 71, if T is

r  = { (+ ) :0V a.a --*■ a -> a;

(= = ) :QV a .a  --> a —> Bool
(+ ) '.{Int —►Int —> Int;
(= = ) :;Va.((===)■■ a —» a Bool). List (a) —> List(a )  —> Bool;

and II is the set of predicates

II =  { (+ ) Int —► Int —► Int;
(= = ) List(7 ) —> List(7 ) —> Bool; }

generated during an application of O, then II =  7Z(T, II) is as follows.

fl =  { (= = ) 7  -> 7  -► Bool; }

The instance of (+ ) over integers is used to discharge the first predicate, and the 
instance of (= = ) over List(a) is used to discharge the second predicate. A predicate 
requiring (= = ) at type a  is introduced to allow the latter discharge above.

6 .2 .2  T h e use o f  7Z w ith  O

As noted above, 71 unifies the two approaches to type inference taken by O  and the 
informal algorithm. W hat remains to be answered, however, is how O  and TZ may 
be combined to achieve the action of the informal algorithm. This section looks 
briefly at the choices available.

Two approaches are outlined below: these are motivated by practical and technical 
considerations respectively. Under the first approach, 7Z is called immediately prior 
to any generalisation of a typing—specifically, at l e t  terms.
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If a typing for the defining term of a l e t  declaration is of the form 1 

S'lT; III t> ei : ri

then O  binds x  to 5 'ir(IIi.r i) . To incorporate R  with 0 ,  the variable x is bound 
to

S',r(7e(S'1r ,n 1).T,)

th a t is, R  is called to discharge predicates in IIi immediately prior to the gener­
alisation of the typing in a l e t  term. Under this approach, R  should further be 
applied after the entire activation of O.

The second approach, which is simpler to discuss, is simply to compose O  and R . 
That is, apply O  as before yielding some typing ST; II >  e : t ;  then apply R  to 
achieve the final typing.

ST; R ( S T , U ) > e : r

This approach allows O  and R  to be discussed independently and will be assumed 
throughout the rest of this document. The two approaches are essentially equiv­
alent: the proof observes that, for each clause of 0 , the two approaches yield the 
same result.

A final point should be made about duplicate predicates: the informal algorithm 
ensures duplicate predicates do not arise; 0  and R  make no effort to eliminate 
duplicate predicates. Though one would ensure in practice tha t no duplicate pred­
icates arose, for current purposes it is not necessary to discharge them. For ex­
ample, taking P lT to abbreviate r  —> r  —* r ,  consider the following two instance 
judgements.

r >  V a.((+) : Pla).<* ^ < X >  V a.((+) : P /a ).((+ ) : PZ«).a -> a
T t> V a .( (+ ) : P la H (A )  : />/«).<* -► a  >  V a.((+) : P la).a  a

The number of occurrences of a predicate in a typing is no more than a trivial 
variance in the same sense that the renaming of bound type variables is a trivial 
variance. R  is easily extended to eliminate duplicate predicates if required.

6 .3  W h e n  is it  sen sib le  to  u se  TVt

This section examines two cases in which it is not sensible to apply R: when it may
not have a unique result, and when it may fail to term inate. R  is safe to use under

^ h e  variab le  nam es used here are consisten t w ith  those used in the  l e t  clause o f th e  defin ition  
o f C?(see F igure 3.10).
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the conditions outlined in the following two sections. Both these restrictions are 
adhered to in the Haskell implementation of type classes described in Chapter 9; 
and both are assumed throughout the rest of this chapter.

At a more technical level, the two restrictions outlined below ensure decidability. 
The omission of these restrictions in [WaB189] led to a degree of controvercy over 
the decidability of the system [Lil91]. It is im portant to note tha t the system 
satisfies a principal type theorem without the restrictions, but, for any practical 
purpose, predicates must be discharged. At this stage, these restrictions ensure 
tha t 71 term inates and has a unique result (up to trivial variance).

6 .3 .1  E nsuring 7Z has a unique result

On examination of the definition of 71, it is clear tha t if the type context T contains 
two instance bindings which may discharge the same predicate, then the result of 
a call to 71 is not uniquely defined2. For example, if T contains

(= = ) V a.(= = : a  —> a —> Bool).List(a) —► List(a) —> Bool and 
(= = )  :t- Va.L ist(a) —► List(a) —> Bool,

then the result of

7l(T, [(= = ) List(7 ) —> List(7 ) —► Bool])

could be either

[(= = ) Bool],

if the first instance is chosen, or empty. For 71 to be appropriate, therefore, it is 
essential to ensure tha t no two instance bindings in the type context overlap.

D efin ition  6.1 N on-overlapping typ e con texts. A type context n  is described 
as non-overlapping i f  for no pair o f instance bindings x G\ and x < 72 in n  does 
there exist a type r  and predicate set n , such that both

T; n  \> <7i >  t  and T; H > a 2 > r.

That is, two instance bindings in a non-overlapping type context cannot have the 
same type as an instance.

To ensure % behaves in a sensible manner it should only be applied to non­
overlapping type contexts. This restriction does not imply tha t all type contexts 
appearing within a derivation must be non-overlapping, merely tha t the top-level 
type context must be non-overlapping.

2T h e  m ean ing  of uniquely defined  here is in tended to  be up to  tr iv ia l variance: th a t  is, renam ing
o f bou n d  ty p e  variables, reorganisation  o f th e  order in which p red icates ap p ear, and  possible
d u p lica te  p red icates.
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6 .3 .2  Ensuring 1Z term inates

Since R  is recursive, it is necessary to ensure that all calls of 11 term inate. A 
further restriction on type contexts is required, tha t they be strictly decreasing.

Throughout the examples in Chapter 2 , all instance bindings satisfy a particular 
property—if they are used to discharge a predicate, then any predicates they in­
troduce are smaller, in some sense, than those which they discharge. The instance 
binding for equality on lists is given in Section 2.2 as follows.

i n s t  (= = ) : Wa.(Eqa).L ist(a) —> List(a) —> Bool =  eqList;

The types involved in the predicate are “smaller” than the types in the instance 
itself. If this instance is used to discharge a predicate on List (a), then the predicate 
introduced is on a.

This property, in the case of the informal algorithm, is essential to guarantee ter­
mination. In Haskell, the equivalent condition is imposed syntactically. Below, the 
definition of strictly decreasing type contexts captures this property.

Firstly, it is necessary to abstract some information from instance bindings. Given 
a binding x :Q Vft.* • • V/?p.r 7 every instance binding of the form

x u Vai • • • Vo;n.(xi : Ti). • • • .(xm : rm).T

defines two sets: its primary and secondary sets. Since the type context involved 
is valid, there must exists a substitution of types for type variables such th a t

T = K /A ;  •••; rp /A lr '

for some types t[ to r£. The set {r^, . . . ,  r£} is the instance binding’s primary set.

In the same way, each predicate X{ : r, for i in 1 to m must be a substitution 
instance of its signatures in the type context. The secondary set associated with 
this instance is the union of these sets of substituted types.

In the equality-over-lists instance above, the primary set is {L is t(a )} , and the 
secondary set is {a}. The primary set contains the list type substituted for the 
single type variable; and the secondary set contains the type substituted to validate 
the predicate. In more general examples the sets involved need not be so small.

D efin ition  6.2 S tric tly  decreasing instance bindings. An instance binding 
is strictly decreasing i f  every type in its secondary set is a proper subterm o f a type 
in its primary set.

A type r '  is a proper subterm of a type r  if, and only if: r  is of the form x ( r i , . . . ,  rn) 
and r 7 is either equal to, or a proper subterm of r, for some i £ {1 , . . . ,  m}; or r  is 
of the form T\ —► r 2 and r 7 is either equal to, or a proper subterm  of, one of T\ or 
r2. Finally, the required definition can be given for type contexts.

D efin ition  6.3 S tric tly  decreasing typ e con texts . A type context is strictly 
decreasing if  all the instance bindings it contains are strictly decreasing.
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6 .4  1Z te rm in a te s

All the restrictions have now been presented to allow a result to be given with 
respect to the termination of 1Z.

T h eorem  6 T erm ination o f 1Z. Given a call 1Z(T, II) with all sets and types 
involved finite and T strictly decreasing, then the call terminates.

P ro o f

The proof is informal, the recursion is shown to be well-founded by giving a par­
tial ordering between the recursive calls. This partial ordering has no infinitely 
descending chains.

Reviewing the definition of strictly decreasing type contexts, each instance binding 
defines a prim ary and a secondary set. Every element of the secondary set is a 
subterm  of an element of the primary set.

Now take T  to be the union of the primary sets associated with the instance 
bindings in II. Then take % to be the union of the prim ary sets in II on the ith  
recursive call of V,. Then 7^+i is computed from % by replacing some instance of 
the prim ary set of some instance binding in T with an instance of the corresponding 
secondary set. The types in the secondary set are required to be proper subterms 
of the types in the primary set. As such, each iteration of 1Z results in smaller 
types in the T  sets. Since all the sets and types involved are of finite size, this 
process must term inate. □

6.5  TZ is d e te r m in istic

The dynamic behaviour of 1Z is non-deterministic. It is necessary to ensure tha t 
the choice of predicate to discharge at any stage is not significant, and the result 
of an application is deterministic up to trivial variance. An informal proof is given 
below.

Take II to be {zi • • •; x n rn} and 11, to be fc(T , [z, r,]) for each i in
{ 1 , . . . ,  n}. Then

f t (I \II )  =  IIi; •••; rfn

This equivalence follows from the observation that, there are no dependencies be­
tween predicates in the action of 1Z. Each clause it, is deterministic in its first step. 
By an inductive argument, 7l(r,II) is deterministic as required.
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6 .6  7Z is sou n d

This section provides a proof that 7Z is sound: that is, a typing specialised by 1Z is 
indeed a derivable typing. This can be stated formally by the following theorem.

T h e o re m  7 S oundness o f 11. / / T; II >  e : r ,  and ft =  7£(T,II), then

T; ft t> e : r.

That is, predicates are discharged by TZ in accordance with the type rules.

P ro o f

The proof is by induction on the number of recursive calls. Since 7Z term inates, 
this must be finite.

B ase  case. If the number of calls is zero, then the result follows trivially since
n = ft.

In d u c tiv e  case. In the inductive case, it suffices to show that an arbitrary appli­
cation of the body is sound. That is, if the there exists a predicate and instance 
binding as required, then

T; II >  e : r

T, 2^1 . iS*Tj, , x m . S II \  x . t  ^  e : t

The following derivation establishes this.

T; II t> e : r
------------------------------------------------------------------  R ule5

T; II; x l : S n ;  • • •; x m : S rm >  e : r
------------------------------------------------------------------  Pred

T; x i : .S'ri; • • •; x m : 5 rm; II \  x  : t ' t> e : (x : t ').t 
T; x i : S t i; • • •; x m : 5 rm; II \  x : t ' t> x : r '

____________________________________________ Rel
T; xi : S ti; • • •; x m : S rm\ II \  x : t ' t> e : r

The Rel case is applicable since the required instances are specifically added to 
the type context involved. □

As a simple corollary to this result, 7Z is also sound with respect to the instance 
relation.

T; II t> a  >  o'
______________________________  ft = 7fc(r,II)

T; ft [> a  >  a'
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This follows from the relationship between typing and instance judgements, that 
is, R u le 3 in Chapter 4 .

6 .7  7Z p reserves in sta n ce  ju d g e m e n ts

Having shown the differences between O  and the informal algorithm, and a sound 
algorithm 71 unifying the two approaches, it is now necessary to establish a theoret­
ical basis justifying the use of an algorithm which appears not to compute principal 
types. This section describes the sense in which the informal algorithm, or more 
specifically O  with 71, represents a sensible choice of algorithm.

The approach is to show that 71 preserves instance judgements: if a type scheme 
<r is related to another a ' by an instance judgement, then the corresponding types 
after the application of 71 are also related.

If T t> e : <7 then there exists n  and r  such tha t the following all hold.

T o e :  T(n.r)
r > r(n.r) > a  
r t> cr > r(n.r)

In particular, any typing at cr has a trivial variant r (n .T ). It suffices to establish 
a result between type schemes of the latter form since 71 is applicable to sections, 
as opposed to type schemes.

Theorem  8  71 preserves instance judgem ents.

r > r(n.r) > r(n'.T')
________________________________  ii = 7 i( r ,u ) ,  n' = ft(r,n')

r > r(n.r) > r(n'.T')

That is, given two types of the form shown related by an instance judgement, if 
71 is applied to both the sections used in their construction, then the instance 
judgem ent is preserved.

As an im portant corollary, this result provides a sense in which 71 preserves prin­
cipal types. Since any term  one would consider evaluating would be at a ground 
type (containing no predicates), this result asserts tha t the ground typing will be 
an instance of both the principal typing and 71 applied to the principal typing.

Proof

The proof is in two stages: first a general derivation is made connecting the premise 
to the conclusion. This derivation assumes a step (*) which is subsequently shown 
to be valid.
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From the premise, the following derivation holds.

r > r(n.r) > r(n'.r')
----------------—    R u le 5, S pec  and R el

r ; ir  > r(n.r) > p
--------------------------- ----------------------- Soundness of 71

r ; n' > r(iLr) > p

  — Z- T-----------------------------  ^
T; n t> r(n.r) > p

--------------------------------------------------  R ules
r > r(ft.r) > r(n'.T')

It remains only tQ show that the step marked (*) holds. Again, this is split into a 
simple and a hard part: the derivation (*) above can be made in the following way

T; n > r(n.r) > p
_________________________________  S 't =  P  and R u le n

r ; n' > s 'n .s v  > p
  (**)

r ; ft' > S 'tl .S 'r  > P
______________________________  domes') n /u(r) = {}

r ; ft' > r(n.r) > p

assuming the step (**) is valid. The substitution S ' is some substitution of types 
for the generic variables of r ( II .r ) .

Finally it is possible to consider (**) which represents the crux of the problem. 
This is shown by induction on the number of calls of 71 in the com putation of II.

For some A:, IT is the result of k applications of the body of 7R. Take 11, to be 
the result of i applications of the body of 71. The required result, therefore, is the 
following:

T; ft' > S'lLSV  > P
 (**)

r ; n > s'lbk.sv > p

with Iljfc =  n .

B ase  case. The base case is trivial. Since n 0 is II, the required result is simply 
the premise.

In d u c tiv e  case. For the inductive case, establishing the result for Ilfc+i when 
Iljt is known, one can conclude from that action of 71 tha t there is some binding 
x  .. 5V 0 e  Iljt and a binding x :, o' e  V. If o' is of the form

o' — Voi.- • • Von.(3:i • Ti). • • • (x m : rm).T0
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then there is some substitution S  of types for {c*i,. . .  , a n} such tha t Stq  =  S'to.

Now, from the premise, there must be some instance binding in T; fl discharging 
the predicate x S ’tq from 11*. This instance binding cannot be in II since, as such, 
it would be discharged during the computation of I I . Since V is non-overlapping, 
the only applicable instance is the one discussed above. Therefore,

T; f t >  cr' >  5"r0,

and more importantly,

3 ( x j  (j j) 6  T; fl s.t. T; ft t> a j  > S r j

for j  6  { l , . . . ,m } .  Therefore, from the premise and the above discussion, the 
following derivation holds.

T; ft' >  STlfc.S'r > r7
_____________________________________ R uleio

T; f t '  C> 5 " n *  \  x S 't0.S 't  > t '
_________________________________  R uleio m  times in reverse

T; ft' >  S 'H k+ i-S 'r  >  r ’

This is the required result. □
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C anonical derivations

This chapter presents a normalisation process on typing judgement derivations. 
The process transforms an arbitrary derivation A deriving T t> e : a  to a new 
derivation A* deriving T >  e* : <7 , where the form of e* is determined by the 
form of e. The resulting derivation is referred to as a canonical derivation. Such 
derivations satisfy several useful properties which are discussed below.

As well as being interesting in their own right, canonical derivations allow a trans­
lation completeness theorem to be established. This is useful for the subsequent 
discussion of coherence in Chapter 8.

Finally, the form of canonical derivations suggests a specialised version of the typing 
rules given previously. Specifically, a new reduced version of the type system is 
presented. The equivalence between this and the original system is illustrated.

7.1 E q u a lity  o f  tra n sla tio n s

To begin with, it is necessary to define provably equal within the Damas-Milner 
system; as a consequence, provably equal is implied for derivations in the OL 
calculus.

Equality is defined by two re-write rules: the /?- and le t-reduction  rules. Figure 7.1 
contains the rules, they are as previously discussed in Chapter 1.

The first rule, ^-reduction, specifies how to apply a lambda term: specifically, each 
occurrence of the formal parameter is replaced in the body by the actual argument. 
The second rule, le t-reduction , performs a similar operation for l e t  terms: each 
occurrence of the bound identifier in the body is replaced by the defining term . The 
transformation ==> maintains type correctness withing the Damas-Milner system.

Two terms, e\ and e2, are defined to be equal if there exists a term  e such that 
€l — e aIKJ e2 = ^ m e where ==>* denotes the transitive closure of = > .

84
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(Az. e‘) e 
l e t  x  =  e in  e'

[e/a;]e'
[e/x]e'

Figure 7.1: Provably equal terms in the Damas-Milner calculus

7.2  C a n o n ica l OL d eriva tion s

This section presents a re-write system translating any derivation in the OL calculus 
into a canonical form. The system takes the form of three rules: these are applied 
repeatedly—in any order—until no rule is applicable.

The rules m utate a derivation tree. In the process, the terms involved change, as 
may the type contexts (with the exception of the top level type context). The types 
involved, however, remain the same. The three rules are presented below in turn.

Chapter 3 requires tha t no program variable be redeclared. In addition it is conve­
nient to assume that no type variables are redeclared. That is, all derivations are 
a-converted prior to canonicalisation.

T h e  L e t e lim in a tio n  ru le . The first rule can be used to eliminate all uses of the 
L e t typing rule. A use of the L e t rule contains a derivation, say A, of a typing 
of the defining term  and introduces a binding into the type context recording this 
information. Whenever an instance of the T a u t rule uses this binding, th a t instance 
of the T a u t rule is replaced with the entire derivation of the defining term —that 
is, it is replaced with A. This is repeated for all uses of the binding in question.

The rule is given in Figure 7.2. Notice that all such uses of the T a u t rule are 
replaced by A. The binding in question, x : cr, is also removed from all the type 
contexts involved.

Notice tha t the term  in the new derivation is [e\/x\e2 which is determined by 
the form of the term  in the given derivation. Thus, the particular form of the 
given derivation does not effect the resulting term. Further, this is the only rule 
affecting the form of the term. Hence, the statem ent above applies equally to the 
canonicalisation process as a whole.

T h e  G e n /S p e c  e lim in a tio n  ru le . Figure 7.3 contains the second rule for con­
structing derivations in canonical form. This rule is used to remove all uses of the 
G en  rule which are followed immediately by an application of the S pec  rule.

The notation [r /a ]A  denotes the derivation A with every free occurrence of the 
variable a  replaced, simultaneously, with r .

This rule is used to remove all consecutive uses of G en  and Spec. As such, a 
canonical derivation contains uses of these rules only at the leaves and root of the
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Any derivation of the form:

r 7; x : a >  x : a  T a u t

A ;

T D> e i  : cr T; x : a  t> e 2 : r
L et

T t> l e t  x  =  e i  in  e 2 : r

is replaced by a derivation of the form:

A

r  >  e i  : <7

T  t> [ e i / a : ] e 2  : r

Figure 7.2: (1) Rules for canonical forms
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Any derivation of the form: 

A

T t> e : a
-----------------------  G en

r  t> e : VcL.a
_______________  Spec

r  O e : [ t / oi\<j

is replaced by a derivation of the form:

[t / o \ A

T >  e : [r/a]<j

Figure 7.3: (2) Rules for canonical forms

derivation: specifically, Spec is used at the leaves and G en  is used at the root. 
Any other occurrences of either of these rules must be adjacent to  an application 
of the other and, as such, can be eliminated.

T h e  P r e d /R e l  e lim in a tio n  ru le . The third rule, in Figure 7.4, performs a sim­
ilar function as the second rule but for consecutive applications of the P re d  and 
R e l rules. In this case, however, the entire derivation of the judgement allowing 
the predicate to be discharged is replaced for every use of the instance binding at 
hand.

By this method, all such applications of these rules can be removed. Specifically, if 
a derivation is in canonical form, then all the uses of the R el rule are at the leaves, 
and all the uses of the P re d  rule are at the root.

M o v in g  d e riv a tio n s  w ith in  a  p roof. In the rules above, sub-derivations and 
types from one part of a proof tree are replicated in other parts of the tree. It is 
required tha t these sub-derivations and types m aintain their meaning.

The assumption that terms and types are a-converted ensures tha t no binding 
on which the sub-derivation or type at hands depends is removed from the type 
context. In addition, if a derivation holds given a particular type context, then 
the derivation holds under any extension of tha t type context. This is a form of 
weakening. Together these properties ensure the relocated derivations and types 
are valid.
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Any derivation of the form: 

r ;; x  r  t> x : r  T au t,

T; x  r  >  e : 7r A 
PreH

T D> e : ( i : r).7r T t> a: : t

T >  e : 7r

is replaced by a derivation of the form:

A

T7 C> x  : r

r  O e : 7r

Figure 7.4: (3) Rules for canonical forms
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7 .3  D isc u ss io n  o f  C an on ica l d er iv a tio n s

Canonical derivations have several interesting and useful properties. Some of these 
are discussed below.

T e rm in a tio n  an d  convergence. There is an injection encoding derivations in the 
OL calculus in the polymorphic lambda calculus. For most judgement forms the 
translation is obvious. For L e t judgements the translation is to directly applied A- 
abstractions; for P re d  and R el judgements the translation is to A-abstractions and 
applications; and for A bs and C om b judgements an apply operator is introduced 
contriving tha t the real /9-reductions are not possible.

Under such a scheme, applications of the canonicalisation rules are in one-to-one 
correspondence with /9-reductions in the polymorphic calculus.

• The L e t elimination rule coresponds to /9-reduction;

• the G e n /S p e c  elimination rule corresponds to /9-reduction for type abstrac­
tion and application; and

• the P r e d /R e l  elimination rule also corresponds to /9 reduction.

Since the polymorphic lambda calculus is strongly normalisable and confluent, it 
follows th a t the canonicalisation process terminates and converges.

M a in ta in in g  ty p in g s . Each rule for transformation to a canonical derivation 
maintains the judgement that the derivation as a whole yields: th a t is, if A derives 
T E> e : cr, and A* is the corresponding derivation in canonical form, then A* 
derives T D> e* : a. Further, as one would expect, A* is a valid typing judgement 
derivation.

E q u a lity  o f m ean in g . Notice that each of the rules for transforming a derivation 
m aintains the meaning of the derivation as a whole. This is clearly true for the 
elimination of G e n /S p e c  pairs since the applications of such rules do not effect 
the translation of the term.

The elimination of P re d /R e l  pairs maintains meaning since the resulting deriva­
tion is simply the /9-reduction of the meaning of the initial derivation.

Finally, the L e t elimination rule obviously satisfies the le t-reduction  rule required 
of the semantics.

T h e  fo rm  of canon ica l d e riv a tio n s . If A is a derivation of the judgement T [> 
e : a , and A reduces to the derivation A* by the above process, then the following 
statem ents are true of A*.

• Derivation A* contains no l e t  terms.
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• Derivation A* contains no uses of the G en or Pred rules apart from at the 
root, tha t is, they must be the very last rules applied. Any other occurrences 
of these rules must be adjacent to their corresponding elimination rules and 
as such will be eliminated in the final canonical form.

•  All uses of the Spec and R el rules are at the leaves. This is the case for the 
same reason given immediately above.

• If a  is a type with no quantification or predicates, then there are no uses of 
the G en or Pred rules. In particular, since there are no uses of the Pred  
rule, the instance bindings in scope throughout the derivation cannot change.

7 .4  R e s tr ic te d  tra n s la tio n  c o m p le te n e ss

This section presents a completeness result with respect to the translations associ­
ated with typing derivations. In particular, the meaning assigned to a derivation of 
the principal typing is related to the meaning assigned to derivations of instances 
thereof.

7.4 .1  C anonical derivations and principal ty p es

Any application of O  defines a typing judgement derivation A: tha t is, if

o(r,e) = (5,n,r)

then a derivation A is defined deriving ST; II >  e : r .  The proof of the soundness 
of O , in Chapter 5, constructs a derivation tree. That tree is taken to be the 
derivation tree defined by the application of O  at hand.

If 0 ( T, e) =  (S', II, t )  defining A, and A* is the corresponding canonical derivation 
deriving ST; II >  e* : r ,  then

C>(r,e*) =  (S',  IT, t ‘ ) defining A '

such th a t Sr(II.r) is a trivial variant of S"r(II/.T/). Further, all the derivations 
involved have equal meaning.

|A J =  [A*J =  [A'*J =  |A 'J

The proof of both these assertions follows from observing the effect of each canon­
icalisation rule on the action of O. In particular, the L e t elimination rule is the 
only one which can effect the action of O. The action of O, both in terms of type 
and meaning assigned, is unchanged by canonicalisation.
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7 .4 .2  T ranslation  com p leten ess for canon ical derivations

It is now possible to present a translation completeness result: from the derivation 
computed by 0 ,  any possible meaning can be derived. The result comes in two 
parts: this section presents a limited result with respect to canonical derivations, 
Section 7.5 generalises this to arbitrary typings.

T h e o re m  9 T ra n s la tio n  co m p le ten ess  for can o n ica l d e riv a tio n s . I f  T > e :
r ' is a derivation by A ' in canonical form, and 0(r,e) =  (S', II, r )  defines A with

II { ^ l  *t 7"l? • • • ? *£n •» Tn }

then fo r  some substitution S ' o f types for the generic variables o f r ( IL r )  with 
S 't = t ' , there are derivations

Ai A n

T O x\ : S 't\ T t> x n : S 'rn

such that [[A iJ/L^i :, TiJ; •••; [AnJ/[a:n ii rnJ][AJ is equal to [ ^ J -  

P ro o f

From the syntactic completeness result, it follows that 5T is a trivial renameing 
of T. It can be safely assumed that S  is the identity substitution. Also from the
proof of the syntactic completeness result and R u le n , it follows tha t derivations
A i to A n exist. It is required to show that the final equality holds.

The proof is by induction of the structure of e. Since A ' is in canonical form, there 
can be no uses of the G en  or P re d  rules, all uses of the S pec  and R el rules must 
be at the leaves, and the only other rules used must be A bs, C o m b  and the two 
T a u t rules.

Id e n tif ie rs . If e is x and

x : Vai • • • Van.(:ri : Ti). • • • .{xm : rm).r € T

then, by examination of the action of O,

T — T

II — {:El *i 7*15 ' * ' 5 *^n •*' 7"n}
[AJ =  x [xj TiJ • • • •*
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or a trivial variant thereof. Taking S"  such that S"t =  t' and to derive V >  
X{ : S " t{, for i £ { 1 , . . . ,  n}, The derivation A ' must be of the form:

T >  x  : Vai • • • Van.(xx : t J .  • • • .(xm : rm).r

S pec

T >  x : (xi : S ”ri). ■ • • (xn : 5 " rn).5 " r

R el A '

r  >  x : S"r

The translation of A ', therefore, is x l a ; j  ••• l a ' j .

Taking S ' to be S"  and A, to be A'- gives

LA 'J =  *  L A ' J  • • • [ A J
=  x  [AiJ • • • [AnJ

[ L A l J / L * l  •» Tl J j j L A nJ /  \p^n •» ^"nJ](*E L* l̂ ** * * " lA'n *t ^"nj )
=  [[A iJ /fx i T i J ;  •••; [AnJ/[a;n rnJ][AJ

as required.

O verloaded identifiers. The case for overloaded identifiers is similar to tha t 
above. For T to be valid it must contain a binding of the form x :Q Vc*i.- • • Vom.r. 
Again by examination of (9, A is a derivation of the form

T; x  r  t> x : r

or a trivial variant thereof. In particular, (AJ is [a; :t r j .  There must be a binding

x V(3i • • • y(3p.{x\ : r[). • • • .(xq : r').r" £ T

such tha t the derivation A ' is of the form

r  > x : V/?i • • • V/3p.(zi : r j .  • • • .(x'q : r').r"

•*

T t> x  : (x\ : S'"t1'). • • •(* „ : S //r , ') .S V '

S p ec  S  t" = r '

R el A'

T > x :  S"r
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where AJ derive V [> x { : S ht[, for i £ {1 , . . . ,  q}.

Since T is valid, there must be some substitution So such tha t S qt =  t " and 
S "S 0t =  t ' .  Take S ' to be S "S 0-

Now, taking Ai to be A ', which proves the required judgement, gives

LA'J =  [AjJ
= [LAiJ/l* tJ]([x :j rj)
=  ILAtJ/L* :< t J ] L a j

as required.

A b s tra c t io n  te rm s . The case for abstraction terms (and application terms) is 
slightly more complicated. The final step of the derivation A ' must be of the form

A"

T; x  : T,f O e : r '"
______________  A bs
Tt> Xx . e :  r #/ -► r" '

where r '  =  r #/ —► r m. Since T; x : t" t> e : r" ', it must be the case tha t

0 ( r ; x : t ", e) =  (S°, FI0, r°)

succeeds by derivation A 0 yielding the inductive hypothesis tha t

[ [ A j j / L x ,  t? J ;  • • •; [ A ° J / [ x n r„°J]LA°J =  LA"j

for some [AJJ to [A°J with substitution S'0 of types for the generic variables of
T; x  : T"(n°.r0).

Since 0 (T ; x  : r" , e) =  (*9°, II0, -r0) succeeds, it follows tha t C(T; x : (3, e) = 
(S'1 , n 1 , r 1) succeeds by derivation A 1. Further, since the meaning of a derivation 
computed by O does not depend on the types associated with A-bound identifiers, 
it follows that:

L A 'J =  LA°J.

Now, since both [AJ and [A'J are constructed from [A 1] and [A"J, respectively, 
by applications of the A bs rule, the following are the case:

[AJ is \ x .  [AJJ and [A'J is Xx. [A"J.
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Take II to be of the form

ff ' {*P l *i Di  i X n  *i t i } .

From the syntactic completeness result, S' exists such th a t S't =  r ',  and S't  ̂ =  
and T >  x,-: SV, for i € {1, ■.. ,n } . Now, since S 't1 =  S ^ r f ,  taking A, to be 

A® yield derivations of the required judgements. The following equalities hold:

LA'J =  Ax. LA"J
=  Ax. [L A JJ /L x j tj r f j ;  . • . ;  [A « J /L x n r n° j]L A °J
=  [[A jj/L xj r°J;
=  ;i Ti°J;
=  11A?J/Lxi r “J;
= [LAiJ/Lxi rij;

LA“ J /L x „  r„°J]Ax. LA°J
L A S J /L * .  =< Tn J l ^ x .  L A 'J
L A «J/L xn r»J]L A J 
LAnJ/LXn M X„J]LAJ

as required.

A p p lic a tio n  te rm s . Finally, the derivation A ' must be of the form

a ; al

r >  ei : r j -► r '  r > e2 : t [

r  >  ei e2 : r '

where r 2 =  r #. Similarly, the proof A constructed by 0 ( Y , e) =  (S , II, r )  is of the 
form

A? A°

r I> Cl : Ti —> r2 r t> e 2 : Ti

T  O  e i  e 2 : r 2

where many of the substitutions have been om itted as they represent essentially 
the same argument tha t is made in the syntactic completeness proof of Chapter 5 .

From the left-hand recursive call the inductive hypothesis yields the existence of 
A i to A m_i such tha t

[ | A i J / | z i  ‘ * ' 5  :t- r m _ i j ] [ A j J  =  [ A j J

Similarly, the right recursive call yields A m to A n such that

[[A mJ/[a:m 'i TmJi * * ‘ 5 [AnJ /[ x n rnJ][A 2J =  [A2J
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Since every instance binding in II is used in one or other, but not both, of the
derivations |_AjJ and [A^J, it follows that

[ L A j J / L * ,  T iJ ; • • • ;  [ A . . J / L * .  :< rnj]LA°j =  [A J

[L A .J/lx , n j ;  •••; LA„J/L*„ r nj]|_A£| =  [ A j

as the extra substitutions are irrelevant in each case. The translation of A is the 
application term  ( [AJJ [A^J) giving

LA'J =  LA'J [ A J
=  [LA1J/Lx 1 :i r 1J; L A . J / L c ,  r . J ] ( L A ? J  LA»J)

=  [[A J/L x i r j ;  •••; [A„ J /  jc„ t„J j [AJ

as required.

L e t a b s tra c tio n s . Since the derivation under consideration is in canonical form, 
no l e t  terms can occur. □

7.5  T ra n sla tio n  co m p le te n e ss

It is now possible to present a more general semantic completeness result. In 
particular, the restriction to canonical derivations can be removed.

T h e o re m  1 0  T ran s la tio n  co m p le ten ess . I f  T t> e : r '  by a derivation A ' and 
(9 (r, e) =  (S', II, t ) defines A with

II  — • • • » *t n }

then fo r some substitution S ' o f types for the generic variables o f r ( IL r)  with 
S ’t = t ' , there are derivations

Ai A n

T >  xi : S 'ti T >  x n : S"rn

such that [[A iJ/L^i :* n j ;  l A J / b n  U ^ J ] L^J is e(lual to |A 'J-

This is the same as the previous result except for the omission of the requirement 
tha t A ' be in canonical form.
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P ro o f

Take A'* to be the canonical form of A7. As discussed previously, =  L^J
and A'* derives T t> e* : r .

Now, if <3(r,e*) =  (Sh\ i r , r * )  by A * ,  then S T ( H . t ) and S T (IT .t* )  are trivial 
variants, and the meaning of canonical form of A is the same as A*. Further, by 
the previous lemma, appropriate A,- exists such tha t

(IAjJ/L*, t,J; r„J]|_A*J = |A"J.

The following equivalences hold

LA'J = LA'-j 
= [LAiJ/Lxi :j TiJ; •••; LAiJ/[x, nJ][A*J 
=  [LA i J / L * i  -in); • • • ;  L A i J / b i  =»

giving the required result. □

7 .6  A n  eq u iv a len t red u ced  ty p e  sy s te m

Finally, the canonicalisation process suggests an equivalent reduced type system 
for OL. The reduced system is strongly related to the four-rule version of the 
Damas-Milner system presented in [Cle8 6 ].

Consider, for the tim e being, the canonicalisation process without the L e t elimi­
nation rule: only the G e n /S p e c  and P r e d /R e l  elimination rules are applicable.

Any derivation in the OL type calculus can be mapped to a derivation in this 
lim ited canonical form. All derivations in the reduced calculus have this limited 
canonical structure.

The reduced version of the system is given in Figure 7.5. Notice that the G en , 
P re d , S pec  and R el rules are omitted. The functionality of G en  and P re d  is 
now captured by the P a ra  rule, for parametrisation; and the functionality of the 
S pec  and R el rules is now captured by instantiation within the T a u t rules.

The new rule, P a ra , allows for the generalisation of a typing. It corresponds to a 
sequence of applications of the P re d  rule followed by a sequence of applications of 
the G en  rule.

Observing the form of canonical derivations, the system could further be restricted 
such tha t the instance derivations in the two T a u t rules need never use the G en  
or P re d  rules.

The full and the reduced versions of the OL system are equivalent. A typing in the 
full version of the system implies a typing in the reduced version, and vice versa. 
In one direction the equivalence is

P [> e : a  = >  T t>r e : o '  where T t> o'  >  a
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T a u t r ; T. : cr \> rr >  r
T; x : cr [>r x : t

T au t, F; x rr r> a  >  t
T; x  cr Or x : r

P a ra
r ; n t>r e : T

r  > r e : r ( IL r)

Com b
r > r e : r ' - 4 r  T > r e ' : r '

T > r e e ' : r

A bs
T; x  : r ' t>r e : r '

T >r Az. 6 : t ' —> t

L et
T t>r e : cr T; x : a  > r e ' : r

T t>r l e t  x = e in  e' : r

Figure 7.5: The reduced type system for OL
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whereas in the other direction it is

T > r e : a  = >  T t> e : a

The existence of canonical derivation, without the Let elimination rule, implies 
these equivalences.



C hapter 8 

A m bigu ity  and coherence

Ambiguity and coherence are two im portant technical considerations with practical 
significance: ambiguity is a syntactic property of a typing; and coherence is a 
semantic property of translation based semantics. They are closely related and, 
as such, m erit being discussed in the same chapter. This Chapter defines both 
ambiguity and coherence with respect to OL; shows how they are related; and 
proposes an approach to the problems exposed.

8.1  A m b ig u ity

Ambiguity is a syntactic property of a typing, and an undesirable property. If the 
principal typing of a term  is ambiguous, then the term  does not contain enough 
type information to define the instances appropriate to discharge the predicates 
in its typing. In particular, since unification is used during type inference, if O 
computes an ambiguous typing at any point, then it is clear tha t unification is 
not able to determine the type at which a particular occurrence of an overloaded 
operator should be used.

Fortunately a simple syntactic test identifies ambiguous typings.

D efin ition  8.1 A m biguity. A typing T t> e : a  where 

a  =  Vai • • • Wan.(x1 : t i ).  • • • . (xm : rm).T 

is ambiguous if there exists a type variable a  such that

•  a  € / v(t{) fo r  some i 6  {1 , . . . ,  m};

• a  (£ fv(r) ;  and

• either a  € {ai, •. •, «n}, or a  ^  fv{V).

99
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T hat is, a typing is ambiguous if there is a type variable a  appearing in the predicate 
part but not in the type part, and a  is either generic or not free in the type context. 
In either of these cases the type variable could not possibly be disambiguated by 
unification.

By extension to ambiguity, an i-unambiguous type context is one containing no 
ambiguous instance bindings.

D e fin itio n  8.2 A n z-unam biguous ty p e  c o n te x t. A type context T is said to 
be i-unambiguous i f  fo r  all bindings x cr 6 T, the judgement

T > x : a

is unambiguous.

8 .1 .1  E xam ples o f  am biguous typ in gs

This section gives some examples of the situations in which ambiguities arise; it is 
not exhaustive. As a general rule, ambiguities arise whenever overloaded data  is 
used in expressions but does not appear in the final results.

R e d u n d a n t  d a ta . The most obvious example of ambiguity is when data  is ab­
stracted from a structure; this may be viewed as the rest of the structure being 
discarded. For example, the expression

snd(square, true)

clearly evaluates to an object of type Bool. The principal type of the application
is, however,

Va.((*) : a  —► a  —► a) .Bool

which is ambiguous since a  is a generic variable appearing in the predicate part 
but not in the type part. Extracting a part of the tuple structure amounts to 
discarding the rest; in the case above, that part which is overloaded is discarded. 
The overloading, represented by the predicate (*) : a  —► a  —► a , still appears 
in the principal typing of the term  as a whole. This ambiguity is semantically 
unim portant.

A m b ig u ity  in  te s ts . A common example of data which does not appear in the 
result of evaluating an expression is the condition part of an ‘if’ or ‘case’ expression. 
In this case, the value not appearing in, but determining, the result is clearly 
semantically im portant.
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As an example of this form of ambiguity, consider the case where the literals zero 
and unit are overloaded to represent the zero and unit values of various numeric 
types. T hat is, they have the signatures

zero :Q Y a .a  
unit :Q Vo.a

and appropriate instances at all numeric types. Then

(zero  = =  unit) : Va.(zero : a).(unit : <*).((==) : a  —► a  —► Bool).Bool

is an ambiguous typing. Further, the ambiguity is semantically significant. Though 
in practice one would always expect this term  to evaluate to false, this is not 
imposed by the language. For some some contrived numeric type, one may wish 
the unit and zero values to be identified.

A m biguous in term ediate  values. Function composition creates interm ediate 
values; the types of these values, however, need not appear in the type of the 
term  as a whole. If such a value is overloaded then it may cause a semantically 
significant ambiguity.

For example, given the overloaded input/output functions

read :Q Ya.L ist(C har) —* a  
write :Q V a.a —» List(Char)

the composition Xx. write (read x) is a function with an overloaded interm ediate 
value and a resulting ambiguous type. If L C abbreviates List(Char), then its type 
is as follows.

Vo .(write : a  —> LC).(read  : LC  —► a).L C  —* LC

To see th a t this is semantically significant, consider the lengths of the results of 
the above function specialised to both Int and Char when applied to the string 
“345” . One would expect the results to be of lengths 3 and 1 respectively—clearly 
not provably equal.

D iscu ssion . In the examples above, it is implied that there are two classes of 
ambiguities—those which are, and those which are not, semantically significant. 
Unfortunately, there does not appear to be a simple test distinguishing the two. 
As such, all ambiguities are treated as undesirable.

It is tem pting to declare all ambiguities illegal. Experience with Haskell, however, 
has shown tha t such cases are rather too common to be eliminated—an alternative 
is required. Haskell adopts a default mechanism to define how ambiguous predicates 
are discharged; the default system is discussed briefly in Chapter 9.

The remainder of this Chapter deals primarily with unambiguous typings.
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8 .2  C o h eren ce

Coherence is a property of a translation semantics [BCGS88] (as opposed to the 
translation of a particular typing). A translation semantics is coherent if the m ean­
ing assigned to all possible derivations of a particular typing judgement are the 
same. Specifically, it is the property whereby one may know from a typing judge­
ment alone—without its derivation—the meaning of the term . T hat is not to say 
the semantics are not based on the derivation, merely tha t all derivations of a given 
typing yield the same meaning.

Taking the definition of “provably equal” from Figure 7.1, the definition of coher­
ence is as follows.

D e fin itio n  8.3 D efin itio n  o f coheren ce . The translation semantics o f OL is 
coherent if, and only if, for any two derivations A i and A 2 o f a typing judgement 
r  t> e : <t , i f  |A ,J  is the meaning assigned to A i, and [A 2J is the meaning assigned 
to A 2 , then |A iJ and [A 2J are provably equal.

That is, if OL is coherent, then given two derivations of the same typing their 
associated meanings will be provably equal.

8.2 .1  E xam p les o f  incoherence

OL is coherent only when certain restrictions are satisfied. There are two princi­
pal sources of incoherence which are explained below. A further minor source of 
incoherence is also discussed, though this arises primarily for technical reasons.

O v e rla p p in g  in s ta n c e  b in d in g s. It is easy to see tha t two instance bindings 
at the same type result in incoherent typings. For example, if a typing context 
contains two instance bindings for equality over integers

=='.i Int —> Int —+ Bool 
= = :, Int —> Int —» Bool

then the term  (3 = =  4) has two simple derivations to type Bool—one for each 
instance. Since the translation rules demand that distinct instance bindings are 
implemented by distinct implementation identifiers, these two derivations lead to 
unequal translations.

The restriction of type contexts to be non-overlapping has already been used in 
Chapter 6. Non-overlapping type contexts are required to ensure coherence.

A m b ig u ity  a n d  co h eren ce . The second cause of incoherence is ambiguity. Am­
biguity, a syntactic condition, reflects overloaded intermediate values in a compu­
tation which may be semantically significant. Semantically significant ambiguities 
lead directly to incoherence.
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For example, following on the example in Section 8.1.1, it is easy to see th a t there 
are a t least two derivations of a typing

(zero = =  unit) : Bool;

using instances at types Int and Float respectively. These need not be equal1.

Frivolous use o f  Pred. A third, though less worrying, source of ambiguity is the 
frivolous use of the Pred rule. This is most easily observed in the typing of a term  
consisting only of an overloaded identifier. For example, the term  zero has, among 
others, the following typing

T t> zero : Va.(zero : a).(zero : a ) .a

with a t least two possible derivations leading to the following

\d a \. Xda2 . da\ or Xda\. Xda2 . da2

The implementation identifier corresponding to either of the 
used as the actual implementation. These two terms are not, 
equal.

8 ,3  O L, a m b ig u ity  an d  co h eren ce

As discussed above, one of the principal sources of incoherence with OL is ambi­
guity. An appealing approach may be, therefore, to impose some restriction on 
the system prohibiting ambiguity. Several alterations to the system have been 
considered aiming to achieve this goal.

An early approach was to restrict overloaded operators signatures to be of the form 

V Q i . ‘ • ' VoJn.(^ri I Tl)* (*^m • * ' ‘ ‘ *

where an “example” of each type parameter is required in each instance. Ambi­
guity is still possible under this approach, recursion can be used to construct an 
ambiguous (and incoherent) typing.

The counter examples in the cases above rely upon recursion to achieve ambiguity. 
The next approach was to require that each instance be strict in the “example” 
arguments. However, it is possible to construct counter examples in this case too.

H t is possib le to  argue th a t  one would expect the  resu lts  o f th e  expressions to  be equal. T here  
a re  tw o reasons why th is  a rgum en t is n o t considered here: firstly, it requires a  sem an tic  check (as 
opposed  to  sy n tac tic )  on a  p roperty  o f all instances o f all th e  overloaded identifiers involved; and  
secondly because w h a t appears like a  reasonable sem antic  restric tion  in one num eric ty p e  m ay 
n o t be so in an o th er. As such, sem an tic  argum en ts o f th is  form  are o m itted  from  th e  cu rren t 
discussion.

translations.

predicates could be 
in general, provably
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In both the cases above, counter examples are constructed by utilising functions of 
the form

fix  : Vat.a: —► a  —> a  
bottom : Va.a  
coerce : V aN fi.a  —> fi

tha t is, types for which no term  exists in the pure lam bda calculus. Further, 
these types need not be assigned to overloaded operators in order to facilitate the 
construction of examples of ambiguity. Though it represents a significant reduction 
in expressiveness, the restriction of all bindings in a type context to be “lambda 
definable” may eliminate ambiguity.

8 .4  T h e  co h eren ce  o f  ty p in g s  o f  o v er lo a d ed  id en ­
tifiers

This section presents a preliminary coherence result for the typing of overloaded 
identifiers. This result is then used in the proof of the coherence theorem. Under 
certain restrictions, two derivations of a typing of an overloaded identifier at a 
particular type, have the same translations.

A further restriction is required on type contexts. In particular, for coherence the 
type context concerned must be i-unambiguous as defined previously. T hat is, all 
the instance bindings it contains must be unambiguous.

The coherence lemma is stated formally as follows:

L e m m a  11 C o h eren ce  o f ty p in g s  o f o v erlo ad ed  id en tifie rs . I f  T is non­
overlapping and i-unambiguous, and T t> x  : t '  for somem overloaded identifier x by 
two derivations A i and A 2 , then the translations associated with the two derivations 
are equal.

P ro o f

The proof observes tha t the meaning of the derivations are determined by the 
type context and type involved. It suffices to consider derivations using only the 
T a u t,, S p ec  and R el rules since all derivations have associated canonical forms 
with meaning equal to the given derivations. Given the form of the typing, the 
rules the canonical forms utilise are determined.

Since T is non-overlapping, there can be only one instance applicable, say the 
following.

x Vc*i • • • Y<yn-{x i • D )• * ‘ '(x m • Tm)-T £ F
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Now, since each instance must be unambiguous, there must exist only one substi­
tution S  of types for {c*i,. . . ,  a n} such that

T > x : Vai • • • Van.(a:i : rx). • • • .(xm : rm).r
______________________________________________  Spec

T > x : ( x i :  S ti). • • • (xm : 5rTO).5r  
______________________________________________  R el

T t> x : S t

with S t = t '. S  is unique since all instance bindings are unambiguous.

Now, the instance discharging the predicate and S  are uniquely determined. The 
lemma may now be used inductively on each predicate (#,- : S t\) in turn  yielding 
the required result. The inductive argument terminates since the two derivations 
Ai and A2 have been given.

Since the form of the canonical derivations are determined, the meaning in the 
associated translation is determined. The given derivations, Ai and A 2, have 
meaning equal to the meaning of their associated canonical derivations, and these 
have a uniquely determined meaning. This is as required. □

8.5  T h e  co h eren ce  th eo rem

This section presents a limited coherence result: tha t is, under a specific set of 
restrictions motivated by the preceding discussion, the system is coherent. To 
reiterate, the restrictions are as follows.

O verlapping instance bindings: the coherence result is predicated upon non­
overlapping type contexts.

A m biguities: the coherence result applies only when the principal typing is un­
ambiguous.

Frivolous use o f Pred: to prohibit the overuse of the Pred rule, the coherence 
result applies to the coherence of typing judgements at types, as opposed to 
typing judgements at more general type schemes.

T y p e  con tex ts  m ust be i-unam biguous: the system is coherent only when the 
type context concerned is i-unambiguous. This allows the preceding lemma 
on the coherence of typings of overloaded identifiers to be applied at leaf 
nodes.

The proof of the coherence theorem makes use of the translation completeness 
result presented in the previous chapter.

T heorem  12 C oherence. I fT  is a non-overlapping, i-unambiguous type context, 
T >  e : r0 by two derivations Ai and A 2 with translations |A iJ and [A2J respec­
tively, and the principal type of e under V is unambiguous, then |A iJ is equal to
I.A2J •
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P ro o f

The proof is by showing that meanings of Ai and A 2 can both be constructed 
from the meaning of the derivation of the principal type computed by O , and then 
showing there is only one meaning, at the correct type, that can be extracted from 
this principal typing.

Take 0 (F , e) =  (5 , II, r )  to define A. Notice that ST =  I \  Now, by the translation
completeness result, if II is of the form

II — {*£l *t T~1 j j •*

then there exists a substitution S[ of types for the generic variable of r(II.T ) giving 

AJ A 1“ 1 n

r  >  * 1  : SjTi r  >  x n : S|Tn

and S [t = r0 such tha t

[ |A lJ / |x i  TiJ; • • •; L A iJ / [ a : B t„ J ] [ A J  =  [AjJ.

Similarly, there exists a substitution S'2 of types for the generic variable of T ( I I . t ) 
giving

A ?  A*

T t> x i : S'2Ti T t> x n : S'2rn

and S 2t = To such tha t

[ l A J J / b i r iJ; • • • ;  LA n J / b n  u ^ J ] Laj =  | a 2j .

Now since the principal type of e under T is unambiguous, there can be only one 
substitution S ' such tha t SV =  To- That is, S ' = S[ = S 2.

By the lemma for the coherence of typings of overloaded identifiers, for which 
the conditions are satisfied, since S^Ti =  S 2T{ it follows tha t [AJJ =  |_A Ĵ for 
i € { 1 , . . . ,  n}. Therefore,

LAiJ
=  [ LA U  /  l x i Ti J ; • ■ • ;  l A » J  /  Lx » T" J  1 LA J
=  [ LA ?J /  b i  n J ; • • • ;  [ a j ]  /  [x „  r„J  J [AJ
=  [A2J

as required. ^
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T ype classes in Haskell

Haskell is a recent functional programming language designed primarily for two 
purposes: to act as a unified basis for future research; and to be suitable for a 
wider range of programming applications than existing lazy functional program­
ming languages. That is, Haskell is intended to be both a research-tool, and a 
“working” programming language.

In the main, Haskell adopts established programming features: such as the Hindley- 
Milner type systems, list comprehensions, and pattern  matching— [HuWa90]. How­
ever, since a principal Haskell design goal was to produce a working programming 
language, some mechanism facilitating overloading was essential. No generally ac­
cepted solution, however, was available. The solution adopted by Haskell is that 
of type classes.

The OL type system was developed in parallel with the type class system: OL is 
small and appropriate for theoretical analysis; and type classes is its realisation 
in a full scale programming language. This chapter describes type classes with 
reference to OL illustrating the differences and providing some background to the 
design decisions adopted by Haskell. Some of the syntax used, for example tha t of 
types, is a hybrid between that of Haskell and tha t of OL.

A first significant difference between Haskell and OL is tha t whereas OL allows 
only declarations for use in a given term,

l e t  id = Xx.x in  e

in Haskell, modules consist of a list of declarations. Further, the syntax of lambda 
abstractions is less verbose.

id  x = x

This largely superficial difference can be viewed as similar to the difference be­
tween the Damas-Milner system and ML, the language for which tha t system was 
developed. Most such features of Haskell, which are independent of type classes, 
are glossed over throughout this chapter; the notation should, in the main, be 
self-explanatory.

107
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9.1 D ec la r in g  ty p e  c la sses an d  in sta n c e s  th e r e o f

A principal difference between the two approaches is that, whereas OL focuses 
on the overloading of individual operators, type classes group related operators 
together into a single c la ss . For example, the numeric operators +, * and negate 
may be grouped in the class Num by the following declaration1.

c la s s  Num a
+ : : a -> a -> a
* :: a -> a -> a
negate  :: a -> a -> a

Type variables are denoted by small letters from the start of the Roman alphabet.
The identifier Num is the name of the class and +, * and negate  are the operators 
of the class. The type variable a is implicitly universally quantified over the entire 
class declaration. The term  Num a is referred to as a predicate: it represents the 
same property as the binding predicates of Chapter 2 (for example, (+ ) : Wa.a —» 
a  —► a).

Instances of type classes are declared with in s ta n c e  declarations. For example, 
In t  and F lo a t are declared to be members of the numeric class Num by the following 
two in s ta n c e  declarations (identifiers are assumed here, as they were in Chapter 2, 
to represent the implementation expression).

in s ta n c e  Num In t  where 
+ = add ln t
* = M ultInt
negate  = add ln t

in s ta n c e  Num In tF lo a t where 
+ = addFloat
* -  M ultFloat
negate  = addFloat

The first declaration declares In t  to be a member of the class Num, tha t is, the 
predicate Num In t  is true. Further, the implementations of Num’s operators at type 
In t are given to be addln t, mult In t  and neg ln t. The second in s ta n c e  declara­
tions declares F lo a t to be an instance of the numeric class giving the appropriate 
instances of the overloaded operators for floating point values.

R elated operators are grouped together. Operators are grouped together in 
Haskell for two main reasons. Firstly, this allows groups of operators to be referred 
to by a single class name; programmers need not consider the individual overloaded 
operators but may focus on the abstract concept of a type being, or not being, a

1T h is  is a  sim plifica tion  o f the  ac tua l num eric class defined in th e  Haskell repo rt.
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member of a particular class. Secondly, grouping operators in this way frequently 
reduces the number of dictionary parameters introduced during the translation 
process.

The distinction between individual and grouped overloaded identifiers, however, is 
not as significant as one might think. Either approach can easily be implemented in 
the other. For example, classes can trivially model the single overloaded identifier 
approach by having only a single overloaded identifier in each class. The operators 
of the class Num above could equally have been separated as is shown below.

c la s s  NumPlus a where 
+ ::  a -> a -> a 

c la s s  NumMult a where 
* ::  a -> a -> a 

c la s s  NumNeg a where
negate  :: a -> a -> a

Equally, operators can be grouped together in OL by declaring a single overloaded 
identifier to  contain the values of a group of overloaded identifiers. Again, the Num
class above could be declared as follows

( over Nums : Va. (a  —> a  —> a , > a , a  —> a);
l e t  (-f) =  fs t Nums in  
l e t  (*) =  snd Nums in  
l e t  negate = thrd Nums in

)

in OL.

C lasses are polym orphic in a single typ e  variable. Type classes may be poly­
morphic only in a single type variable. For example, whereas it is possible in OL 
to declare an operator

over coerce : Va.V/La —»/?;

type classes in Haskell are syntactically restricted to refer to only a single polymor­
phic type variable. Hence, the coercion example above is not possible.

Haskell’s instance declarations are further restricted to apply only to a single data 
type constructor. Thus, if the operator == is a member of the class Eq, then the 
declaration

in s tan ce  Eq a => Eq [a] where 
(==) = eqL ist
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is allowed (meaning [a] is an equality type whenever a is an equality type), but 
the declaration

in s ta n c e  Eq [In t]  where 
(==) = e q L is tin t

is illegal. Each instance declaration may declare an instance for only, and exactly, 
a single data  constructor. This restriction is enforced by Haskell’s concrete syntax. 
By this restriction, Haskell ensures that no two declared instances overlap. As such, 
the system avoids certain incoherence problems (see Chapter 8). In the context of 
OL, it is convenient to factor out the issue of overlapping instances to m aintain 
certain technical properties2.

9 .2  T y p e  in feren ce  for H ask ell ty p e  c la sses

Haskell’s basic type inference algorithm is essentially the same as the informal 
algorithm presented in Chapter 2; it is discussed in detail in [HaB189].

In OL, if an overloaded operator appears in a term , then a predicate is generated 
in the type. This predicate may be discharged if, and only if, there is an instance 
binding in the environment which satisfies it. If predicates are generated on the 
right-hand side of a definition and the predicates may not be discharged, then the 
definition itself becomes implicitly overloaded. When typing uses of the implic­
itly overloaded identifier, all associated predicates are introduced and the process 
continues.

Haskell’s type classes adopt essentially the same approach. At each use of an over­
loaded operator from a class, a predicate is introduced into the typing. Predicates, 
in the Haskell context, are a class name applied to a type. For example, a use of 
the operator (-f) receives the typing below.

+ ::  Num a => a -> a -> a

The part before the => is a list of predicates, in Haskell terminology a context; the
part after the => is the type.

If + is applied to a specific values, say the integers 3 and 4, then the typing is as 
follows.

3 + 4  :: Num In t => In t

At this point it is possible to discharge the predicate, as is the case with OL, since 
In t  is a member of the class Num—as given by the previous in s tan ce  declaration3.

2N o tab ly  th e  su b stitu tio n  rule o f C h ap te r 4.
3In H askell, it is no t possible to  refer to  a  ty p e  o f th e  form  Num I n t ,  such p red icates are

restric ted  to  be applicab le only to  type variables.
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3 + 4 :: In t

The final typing is thus In t.

Implicitly overloaded identifiers are also handled in a similar way to tha t in which 
they are handled in OL. The overloading in the definition of an identifier is carried 
over into its type. For example, the definition of square below

square x = x * x 
square :: Num a => a -> a

where the type variable a is implicitly universally quantified. Such predicates are 
inserted in the typing at instances of implicitly overloaded identifiers and discharged 
if possible, or propagated.

squares x y z = (square x, square y, square z) 
squares :: Num a, Numb, Num c => a -> b -> c -> ( a ,b ,c )

This approach to typing is essentially the same as the O  with H  approach for OL 
described in Chapter 6.

9 .3  T ra n sla tio n  o f  H a sk e ll ty p e  c la sses

As one might expect, Haskell’s type classes are implemented by an optimised ver­
sion of essentially the same translation mechanism that is described in Chapter 2 
for OL4. A translation is applied to a typing derivation to yield a typing derivation 
in a Hindley/M ilner based language; in the process, all type classes and overloading 
is replaced with explicit parametrisation.

There is however one slight difference resulting from the choice to group related 
operators together in classes. Whereas in OL it suffices to insert the the imple­
m entation identifier directly, in Haskell a selection operator is required to extract 
the correct operator from the class.

Every instance declaration translates to the construction of a dictionary. A dictio­
nary is a tuple containing an implementation of each of the operations in the class. 
For example, the instance declarations at types In t  and F lo a t in the example 
above translate to the following dictionary definitions.

NumDInt = (a d d ln t ,m u ltIn t,n e g ln t)
NumDFloat = (ad d F lo a t,m u ltF lo a t,n eg F lo a t)

4T h is  is the  case for th e  cu rren t G lasgow  im p lem en ta tio n . How type classes are im plem ented  
is n o t defined in th e  language defin ition . O th er, or subsequen t, im p lem en ta tio n s m ay ad o p t 
different approaches.
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When an operator, such as * is applied to an argument of a known type a selector 
function must be used to extract the appropriate operator definition from the 
dictionary. Thus, the translation of 3*4 is

(snd NumDInt) 3 4

where NumDInt is the dictionary of numeric operators at the type In t ,  and snd 
selects the second element, that is, the multiplication operator. For implicitly 
overloaded identifiers the situation is similar. An identifier is chosen to represent 
the as yet unknown dictionary and parametrised upon. Thus, the definition of 
sq u are  above translates as follows.

sq u are  NumDa x = (snd NumDa) x x

9 .4  S u p er -c la sses  in  H a sk ell

Chapter 2 mentioned, in passing, the possibility of allowing predicates to appear in 
the signature of overloaded operators; the equivalent feature is included in Haskell.

A c la s s  declaration may be of the form

c la s s  Cl a , . . . ,  Cn a => C a where

indicating the static requirement that, for a type to be declared a member of class 
C, it must be the case tha t the type is already a member of classes Cl through Cn.

This facility is used extensively in the definition of the predefined classes in Haskell: 
there are several numeric classes in Haskell, these are organised into a hierarchy 
of sub- and super-classes. The relational operators, such as - -  and <=, are also 
related in this way.

9 .5  B u t! H a sk ell is a  w ork in g  p rogram m in g  lan ­
g u a g e

The impression given thus far is that the differences between Haskell and OL are 
merely syntactic sugar. A principal design goal for Haskell, however, is tha t it 
should be a real programming language: it should be applicable to large appli­
cations which may be maintained over a significant period of time. Thus, many 
issues have arisen in the design of Haskell which must be addressed in order to make 
type classes as unobtrusive as possible. This section discusses these problems and 
presents Haskell’s solutions.



CHAPTER 9. T Y P E  CLASSES IN HASKELL 113

W h a t  to  do w ith  am b ig u o u s ty p in g s . As one might expect following the dis­
cussion of ambiguity in Section 8, ambiguity poses a significant problem in Haskell.
To recap, an ambiguous typing is one of the form

e ::  . . . , ClassName a , . . . => t

where the type variable a does not appear in the type t  or in the type environment. 
As such, unification cannot resolve the overloading.

Ambiguous typings can arise in several ways, principally when overloaded data is 
discarded. The sources of ambiguity in Haskell are essentially the same as those in 
OL.

If ambiguity were not of semantic importance the solution would be trivial: one 
could merely discharge the offending predicates with arbitrary instance. As seen 
in Chapter 8, however, this is not the case. An obvious alternative is to declare 
ambiguous typings illegal. As well as contravening the principal type theorem, 
this possibility was deemed impracticable on the grounds that, particularly in the 
context of overloaded numeric literals, there are too many instances of ambiguity 
in most programs.

Haskell adopts a relatively ad hoc but deterministic solution to the problem. Default 
declarations are used to specify the instance which should be used to discharge 
predicates in ambiguous typings5. A default declaration takes the form

d e f a u l t  ( t l ,  . . . ,  tn )

and only one such declaration may appear in each module. W hen the compiler 
encounters definitions which are ambiguous in a numeric class, the offending predi­
cates are discharged at the first type t  such that all the the classes of the offending 
variable have instances at type t .  This guarantees that, for “reasonable” instances 
of the Num class, changing default will not change the answer (modulo overflow and 
round off).

As mentioned above, this approach is clearly ad hoc though it at least provides 
a deterministic and usable solution to the problem. It is hoped tha t the second 
version of Haskell will incorporate a better solution.

E ffic iency  p ro b lem s. One feature of the presentation of type classes in both 
OL and in Haskell is the implementation technique: typing derivations are trans­
lated, during this process implicitly overloaded definitions are replaced by explicitly 
parametrised definitions. At each use of an implicitly overloaded identifier, an ac­
tual dictionary containing the required overloaded operator definitions is passed as 
an argument.

5N otice th a t  th is  so lu tion  does no t contravene th e  principal type theo rem . T h is , however, is 
m is-lead ing  since defau lts  render am bigu ities incoherent,  though  in a  de te rm in is tic  way.
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One must pay a run-tim e penalty for this parametrisation. This cost can be sig­
nificant: early Haskell implementations were slowed down by a factor of ten due 
to translator introduced parametrisation. The most recent version of the compiler 
is slowed down by a factor of four to eight in general. This issue is discussed more 
fully in [HaB189].

T h e  m o n o m o rp h ism  re s tr ic tio n . There is, however, a rather more subtle and 
potentially dangerous loss of efficiency associated with type classes. Consider the 
following examples as they are treated by a language with a Hindley-Milner type 
discipline and no type classes.

globalV alue = <expensive_to_compute> 
f  x y = (a ,b )  where

tempValue = g x y 
a = h tempValue x 
b = h tempValue y

In the first case, g lo b a lV alu e  is expensive to compute; graph re-writing, however, 
ensures it is computed at most once. In the second case, tempValue is used to factor 
out a potentially expensive common subexpression; as such, it is also computed at 
most once. Specifically, since both the identifiers represent values, as opposed to 
functions, we can ensure they are evaluated at most once.

The param etrisation introduced by type classes potentially causes globalV alue 
and tempValue to be computed many times. If both globalV alue and tempValue 
are implicitly overloaded, then their translations become parametrised and they 
no longer represent values; they become functions which may be computed many 
times at the same argument.

globalV alue Da = <expensive_to_compute> 
f  Da x y = (a ,b )  where

tempValue Da = g Da x y 
a = h (tempValue Da) x
b = h (tempValue Da) y

Type classes offer extra power in this case (values may be overloaded), but only at 
the expense of the efficiency of a program being highly unpredictable in practice. 
This was considered unacceptable for Haksell.

The solution adopted by Haskell is to disallow polymorphism in certain places which 
would potentially suffer from this efficiency problem6. In particular, only identifiers 
bound directly to lambda expression may be polymorphic. Since globalV alue and
tempValue are not bound directly to a lambda term they may not be polymorphic.
As such they are monomorphic and may be instantiated only to a single type. Being

6An a lte rn a tiv e  w ould be to  regain m uch of th e  lost efficiency by th e  use o f m em o functions. 
T h is, how ever, requires soph is tica ted  com piler technology to  achieve an tic ip a ted  efficiency levels.
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instantiated to at most one type implies they are evaluated at most once. Notice 
tha t this does not imply that the function /  above is monomorphic. It is bound 
directly to a lambda term  and so may be polymorphic. The variable tempValue is 
restricted to be monomorphic only within each instantiation of f .

D erived  instances. One of the most frequently used overloaded operators is, un­
surprisingly, the equality operator ==. For current purposes, it suffices to assume 
== is declared by a class declaration of the form below.

c la s s  Eq a where
== ::  a -> a -> a Bool

Functions such as member, the membership function on lists, are implicitly over­
loaded at type Eq a => [a] -> a -> Bool. When new abstract data types are 
declared, a new instance of Eq must be given to render == and member applicable 
to the new type. This process can be tedious for two reasons: firstly, there are 
several classes in addition to Eq of which the type will almost certainly have to 
be an instance; and secondly, because the structure of the instance declarations 
frequently follows the same pattern based on the structure of the type.

Haskell provides a mechanism for constructing derived instances of particular pre­
lude classes, thus avoiding the need for the programmer to write the instance 
declarations required. Naturally, the programmer may specify for which classes, if 
any, instances are to be included. For example, given the data type declaration

d a ta  T ree a = Leaf a | Node (T ree a) (T ree a) d e r iv in g  Eq

an instance declaration for type T ree and class Eq is included based on the structure 
of the type Tree. That instance declaration is of the form below.

in s ta n c e  Eq a => Eq (T ree a) where 
Leaf m == Leaf n = (m == n)
Tree ml n l  == Tree m2 n3 = (ml == m2) kk (n l == n2)

== = F a lse

The programmer could alternatively provide a non-structural definition of equality; 
this may be required to maintain data abstraction.
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R eview

The OL language and type system represent an approach to overloading within a 
Damas-Milner style programming language. This chapter reviews OL outlining the 
advantages and weaknesses of the system.

Though closely related, the OL system and Haskell’s type class mechanism were 
developed for different purposes. This thesis presents a minimal formal language, 
type system and inference algorithm with particular emphasis on technical consid­
erations. The design of type classes, however, is motivated by the need to produce a 
general purpose, unobtrusive and usable overloading mechanism for Haskell. Hence 
OL and Haskell solve different aspects of the same question.

The Haskell type class mechanism has been commented upon and discussed at 
length in papers and over electronic mail. There is little need to add anything 
here. Some discussion is due, however, of the OL system.

10.1 T h e  OL la n g u a g e

OL is a small and remarkably unwieldy language! It is not intended for program­
ming real applications. In addition to the lambda calculus with l e t ,  OL allows 
overloaded operators and instances thereof to be declared and used. Several simple 
OL programming examples are given in Chapter 2.

10.1 .1  D eclarations and expressions

The dichotomy between declarations and expression terms ensures the existence of 
principal types. Consider a program (d, e) in which d declares the overloading of 
(+ ) and two instances thereof, say Int and Float. Consider also e to be implicitly 
overloaded, say the body of the double function discussed in Chapter 2. Now the 
principal type of e under the type context generated by d is

V a.((-|-) : a —> a  —> a ) . a  —> a

116
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which has instances at type Int —> Int —> Int and Float —► Float —> Float (since 
there are instance bindings at those types). If this typing were to propagate outwith 
the scope of the corresponding over declaration, then the two instance typings 
would be valid but the principal typing would no longer hold.

The example above concerns over declarations, a similar problem arises for in s t  
declarations. If a typing is allowed to propagate such that an instance binding 
is no longer in scope, then a typings exists utilising that instance binding, and a 
principal typing as computed exists, but the principal typing is not related to the 
specific typing.

In Haskell, which is discussed in Section 9, this issue is accommodated by an un­
usual scoping condition which ensures that all classes and instances thereof are 
exported in such a way tha t predicates may not leave the scope of their corre­
sponding overloading bindings.

10 .1 .2  C oercions

OL is presented throughout as an approach to overloading, it may also be used 
to describe coercions. Every overloaded operator must be bound to a signature. 
 ̂This signature, however, serves only to limit the types of instances of the identifier 
in question. For example, the overloaded operator (+ ) is assigned the signature 
(+ ) -o Vot.a —* a  —*■ a  restricting instances to map two objects of a given type to 
another object of the same type. Thus, (-f) may be defined at types

Int —y Int —► Int and
Float —> Float —» Float,

but not at type

Int —> Float —► Float

which does not m atch the given signature. Many languages facilitate such typings 
with the use of coercions.

Below, two approaches are given illustrating how such typings may be achieved 
in OL. Since both are simply different ways of approaching the same problem, it 
should come as little surprise tha t each exhibits the same disadvantages. Specifi­
cally, both approaches generate a large number of ambiguous typings.

G eneralise ty p e  signatures. One approach is to assign (+ ) a more general sig­
nature; both the following seem reasonable:

( + )  :0 Va.V72.V7.a  —► /? —> 7  or 
( + ) :0 Va.a.
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The former maintains the restriction that (-f) is a binary operation; and the lat­
ter, more radically, asserts nothing about the form of the instance types1. Both 
these signatures allow the declaration of the more interesting instances of (-f). 
Specifically, instances such as

(+ ) Int —» Float —► Float

are now valid. Terms such as (10 -f 3.14) may now be typed and evaluated giving 
13.14, as one expects.

Under this approach, however, too many terms would be overloaded and a number 
of these may also be ambiguous. For example, the principal type of the term  above 
would be

(10 -f 3.14) : V7 . ( ( + ) : Int —> Float —> 7 ) . 7

which is overloaded. Some mechanism, perhaps similar to Haskell’s default mech­
anism, would be required.

O verloaded coercions. The second approach is, in some ways, more elegant. 
The first step is to declare an overloaded low level addition operation (+ ') and an 
overloaded coercion function.

(+ 0  :<> V o.a —> a  —► a
coerce :0 Va.Vfl.a  —> (I

Instances of (+ ') may declared as previously at types Int and Float; and the coerce 
operator may receive the following instances.

coerce Va.a  —> a  
coerce Int —> Float

Notice that these instances do not overlap.

Now, if the real addition operator (+ ), that which intended to be used by a pro­
grammer, is declared by the following implicitly overloaded declaration,

l e t  (-f) =  Xx. Xy. (corce x ) + ' (corce y) in

then the principal typing of (-f) is

(+ ) : Va.V/?.V7 -(coerce : a  —> 7 ).
(coerce : (3 —> 7 ).
((+ ') : 7  —> 7  —» 7 ).a  -> P -► 7

1A  system  in which all overloaded op era to rs  had  the  fully general s ig n a tu re  V o .a  m ay be 
in te resting  in its  own righ t. In such a  system , p red icates record all, and no m ore th a n , th e  typ ing  
in fo rm atio n  im plicit in the  term .



C H APT ER 10. R E V IE W 119

which has instances at all the general types required of (+).

Now consider the term  (6 -f 4 +  3.14). There is a choice in the typing of such a 
term . Should the 6 and 4 be added as integers then coerced to be added to the 
3.14; or should the 6 and the 4 be coerced immediately to floating point values and 
all addition be done between floating point numbers?

Reynolds, in [Rey80], addresses this issue suggesting a coherence property should 
be required. Specifically, Reynolds suggests the coercions should be constructed 
such tha t the choice of where to apply coercions is irrelevant—all choices lead to 
the same result.

Under the type context above, the term  (6 +  4 +  3.14) has an ambiguous principal 
typing: hence the coherence result of Chapter 8 is not applicable. Further, as 
with the previous implementation of coercions, the above approach leads to an 
unacceptable number of unexpected overloadings and ambiguities.

10.2  T h e  OL ty p e  sy ste m

The principal motivation for the current thesis is the examination of technical 
aspects of the OL type system. This section reviews some of the issues raised by 
the presentation.

T he need for both  O  and 11

Chapter 2 presents an informal type inference algorithm for OL extending the 
Damas-Milner inference algorithm. The current Glasgow Haskell compiler employs 
a similar algorithm. This informal algorithm, however, does not compute princi­
pal types. The formal inference algorithm (9, on the other hand, does compute 
principal types and algorithm 1Z is required to unify the two approaches.

This dichotomy is unfortunate and inelegant. The current author, however, is not 
aware of a better approach.

Volpano and Smith [VoSm91] have, more recently, investigated the complexity of 
the original [WaBl89] system. They identify and solve the same problems addressed 
and solved by Chapter 6 herein. Where the OL system restricts type contexts to 
be strictly decreasing, the [VoSm91] system requires that they be parametrically 
recursive. These properties are similar.

C oherence

The other principal inelegance in the system is that restrictions are required to 
render it coherent; an implicitly coherent system would be more satisfactory.

Chapter 8 discusses the relationship between ambiguity and coherence: An am­
biguous typing may, in general, indicate the possibility of incoherence. Short of
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outlawing ambiguities explicitly (an expensive restriction in terms of expressibility), 
the current author is not aware of a way of avoiding this problem.

The two systems most closely related to OL are tha t of Kaes [Kae88] and Nipkow 
and Snelting [NS91]. Though neither of these papers address the issue directly, both 
these systems exhibit the same behaviour with respect to ambiguity and coherence.

T h e translation  based im p lem en tation  strategy

Meaning is assigned to OL terms, or more specifically OL typing derivations, by 
means of a derivation to derivation translation scheme. Predicates in typings are 
m apped to parametrisation in the translation. Used naively, this approach is im­
plicitly inefficient. Related systems have used other semantic approaches.

A rule based static semantics of Haskell is given in [PJWa90]. Dictionary param ­
eters are used to propagate overloading. Haskell’s super-class relationships are 
modelled explicitly within the implementation: specifically, the dictionary for a 
super-class is incorporated as part of the dictionary for the sub-class. As such, less 
dictionary parameters are required.

A categorical semantics of Haskell’s type classes is given by Hilken and Rydeheard 
in [HiRy91]. Therein, type classes are related to categorical schemata.

T h e separation  o f declarations and program s

Declarations of overloaded operators and instances thereof are separated syntacti­
cally from the terms in which they are used. This separation ensures the system 
satisfies a principal type theorem. Section 10.1.1 motivates this distinction and 
Nipkow and Snelting [NS91] adopt a similar approach.

10 .3  O p era to r  h ierarch ies in  OL

A feature of early versions of the OL system [WaB189] and Haskell’s type classes 
are super-class hierarchies. Other related work, for example [PJWa90] and [NS91] 
incorporate this feature. For technical simplicity, however, the current system 
syntactically excludes such relationships.

Sub-classes serve two purposes in Haskell: they provide a way of specifying static 
restrictions on admissable instance judgements, and they facilitate a more efficient 
implementation technique. The OL system may be extended relatively simply to 
incorporate static super-class requirements. It is inappropriate to consider the 
efficiency issue here as tha t is an implementation question.

Consider firstly the meaning of a declaration of the form

o v e r  x  : Vai • • • Von.(r i  : Ti). • • • . ( r m : rm).r;
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Whenever an instance is declared at some specific type, each predicate in the 
operators signature imposes a condition on instances that a particular operator 
have a particular instance in scope. Notice two things: firstly, that this is an 
entirely static requirement; and secondly, for any instance declaration of x at type 
cr', this requirement is implied by the relationship

T >  Vai • ” Van.(x i : Ti). • • • .(zm : rm).r  >  a

which, in turn, is required by the validity condition on type contexts. Thus, sim­
ply allowing predicates to appear in overloaded operator’s signatures imposes the
required relationship between instances declarations.

A problem arises, however, when one considers applications of the P re d  typing 
rule. Inconvenient dependencies arise between instance bindings and predicates. 
Given the type context T

x :Q Va.a; 
y :0 Va.(x  : a ) .a ;

the term  y has principal type Va.(x : a).(y  : a ) .a . Further, the ordering of the 
predicates is significant. This is an implication of the requirement that all the type 
contexts in a derivation are valid.

However, it is reasonable to consider the sup- and super-class relationships be­
tween overloaded operators to be an entirely static requirement. The following 
changes augment the OL language and type system to handle super-classes while 
m aintaining all the results presented in this thesis.

• Define <Vc*i • • • Van.(a:i : Ti). • • • .(xm : Tm).r>  to be Vai • • • Van.r.

•  Define <r> to be T with all bindings of the form x :0 a  replaced with bindings 
of the form x :0<cr>.

• Allow types of the form Vai • • • Van.(xi : : rm).T to appear in
over declarations.

• Replace the typing rule for instance declarations in Figure 3.7 with the fol­
lowing.

< r »  e : a T; x <7 t> d T'
In s t  -----------------------------------------------—  fv{cr) =  { }

T [> in s t  x : a  =  e; d x a\ T'

• Replace the typing rule for programs in Figure 3.7 with the following.

r0 > d r r0; <r>o e: o
P ro g  _____________________________    Vx.\/cr'.(x :0 a' r0)

r 0 >  (d, e) : cr

That is, all typing judgements are made from typing contexts without super-class 
information. The validity requirement on type contexts at the top level, however, 
enforces the appropriate relationships statically.
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