VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A Method of Fast Data Transfer

from FASTBUS

by

Baya Oussena

Presented as a Thesis for the Degree of Master of Science

Department of Physics and Astronomy,

University of Glasgow,

December 1991.

ProQuest Number: 11011440

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 11011440

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Abstract

One major factor which affects the counting efficiency of a nuclear
physics experiment is the dead time of the detectors and the data acquisition
system. Experiments performed by Glasgow University photonuclear group typ-
ically involve the readout of ~ 1000 ADC’s and ~ 1000 scalers which contain
information on the products of a photo-disintegration event. These require fast
readout to minimise dead time and to this end a method of programming the
model 1821 FASTBUS Segment Management Interface (SMI) to increase data

throughput coming from FASTBUS has been developed.

The electronic hardware used is comprised of VME-bus, CAMAC, and
FASTBUS systems. The VME-based CPU is the heart of the data acquisition
system. FASTBUS is mainly used for ADC’s and TDC’s while CAMAC is mostly
used to control the experimental parameters such as detector thresholds, trig-
ger logic, high voltage etc. Each FASTBUS crate is controlled by a LeCroy 1821
Segment Manager Interface (SMI), and the interfacing to the VME CPU is ac-
complished either by using the VME fast memory module type HSM8170 or the
slower CAMAC interface type LeCroy 2891A. The HSM8170 is connected to the

SMI using the 32-bit LeCroy ECL bus.

The VME CPU runs the OS9 operating system, and the data acquisition
software has been written almost entirely in C. Software for the sequencer in

the 1821 SMI is written in machine code, although it is hoped in the future to

develop a simple assembler.

Two different SMI codes have been developed. These are called CODE1
and CODE2. The first attempt, .CODEl, uses the slow, CAMAC connection at
the front panel of the 1821 SMI for module initialisation and data readout. To
improve the data throughput, it was decided to develop CODE2 which uses
the rear panel ECL bus connection to a fast VME memory, and require no
intervention from the VME host CPU to initiate data readout. Associated C
routines written for the VME CPU handle downloading of the code to the SMI

and create FASTBUS module addressing SMI instruction words.

Finally, the performance of the two FASTBUS readout methods has been
compared on a test setup where more than 100 ADC channels are read for each
event. Under these conditions, the dead time for a CODE2 readout was found

to be approximately a factor of 8 less the dead time for CODEL.

il

DECLARATION

The original work in this thesis comprises the bulk of that de-
scribed in chapter 4. This involved the development of CODEI,
the creation and developement of CODE2 and its associated C
written subroutines and the test measurements made to com-
pare the speed of the two codes. This thesis has been composed

by myself.

Baya Oussena

il

Acknowlegements

My special thanks go to my supervisor Dr J.R.M.Annand for his end-
less guidance, advice and encouragement during this work and for his critical

comments and discussions during the composition of this thesis.

I am grateful to Professor R.O.Owens, the director of the Kelvin Lab-
oratory, for affording me the use of the Kelvin Laboratory facilities and for
providing me with financial assistance without which this work would not have

been possible.

I would like to thank Dr I.Anthony, Dr G.Miller and Dr P.D.Harty for

their comments concerning the writing up of the thesis.

I woulk like to express my thanks to Dr J.C.McGeorge, Mrs Eileen
Taylor, Mrs Gwen Miller and the students R.Crawford, G.Cross and S. Doran

for their general help.

All of the Kelvin Laboratory Staff deserve thanks for their enthusiasm

and humour all of which have provided a most enjoyable working environment.

I should not forget to thank my friend Fatima and her husband for their

kindness and the endless support they gave me to continue with this work.

Even far away from Algeria, my whole family did not stop sending me

their help and especially the moral support I needed. I am very grateful to them

iv

and through this acknowledgment I would like to express the best thoughts and

the best thanks I have for each of them.

i3

O o Nc's
Janliaidy

A OO >
PYAUTE T

SIHES o U 5 BT

X

c o

-_v‘@cr’-‘)‘d%)dlo;@&;_‘.‘.’.i.jolgi‘)«,- L35y

P Tt P .
v TS, 2 s s ses os
M EOR R e Y SRR

~
.
!
O

s

A
.’
L

SR SIS EE @t

S LB P R PR L4 e oo M
2030 6 S AL L8 0L

)

SRR N 1005 28
R LG IINLUNK L

. <

-:"..':'::.'-7: byt Tl ey viely iy KRty St sty vy ety o

Cadiadzallielier

To my parents who, with their love,

have helped my studies reach a successful conclusion.

Contents

1 INTRODUCTION 1

2 HARDWARE DESCRIPTION 7
2.1 VMEsystem vttt ennennnean. 8
2.1.1 Standard Hardware (Eltec E6/E5) _' 11

2.1.2 VME-VME connection (VIC8250) 12

2.1.3 VME-CAMAC connection (CBD8210) 12

2.1.4 VME-FASTBUS connection 14

2.2 CAMAC system v vt v v it vt i v e e e e 16
2.3 FASTBUSsystemc00uuiiuuee... 17
2.3.1 Imtroduction 17

2.3.2 FASTBUSmodules 18

vii

2.3.3 Addressingmodes, 21

2.3.4 FASTBUS operations v o v v v v v 21

3 SOFTWARE DESCRIPTION 23
3.1 Overview of Data Acquisition 24
3.2 0OS9 Operating System oo 26

3.2.1 0S9 Input/Output Structure 26
3.2.2 OS9Interrupts oo v v v i it 27
3.2.3 Multitasking and Intertask Communications 28
3.3 General Developments 29
3.3.1 Supervisor Task : vme-supervise 30
3.3.2 Subprocesse Tasks : acqu, hist, store, slave 33
3.3.3 Acquisition System Controlling Task “control” 39
3.3.4 Interrupt routine : CBD-IRQ 39

4 SMI PROGRAMMING 41

4.1 1821 SMI Hardware v v v v i v v v v v v o 42
4.1.1 Host I/Oregisters 43

viil

4.2

4.3

4.1.2 ECL Sequencer Control 52

4.1.3 Pedestal Subtractor 55
414 DataMemory 55
The 1821 SMI Instruction Word 56
421 Op-code e 56
4.2.2 Condition Code Multiplexer 56
423 BusDefinition 59
424 HSDATABus, 59
425 Strobes e 59
426 DataControl 61
4.2.7 FASTBUS Protocol 61
1821 SMI code Developments 61
4.3.1 Load/Exec function 64
4.3.2 Front-panel code: CODE1 65
4.3.3 Host-CODE1 Interaction function 73
434 Rear-panelcode: CODE2 74
4.3.5 Host-CODE2 Interaction function 83

ix

5 CONCLUSION

5.1 Data Acquisition Dead Time using CODE1

5.2 Data Acquisition Dead Time using CODE2

5.3 Interpretation,

5.4 Future Improvement

A SMI Code Download Function : LOAD()

B Function to Trigger SMI Execution : EXEC()

C FASTBUS parameter file

87

88

89

93

94

95

99

103

Chapter 1

INTRODUCTION

CHAPTER 1. INTRODUCTION 2

In general, a nuclear physics experiment aims to shed light on an aspect or
aspects of nuclear structure, typically by bombarding the nucleus of interest
with a chosen probe (photon, proton etc.) and measuring the energies and
momenta of the final state products of the reaction between the probe and
the nucleus. Through the measurement of the interaction of the probe and
nucleus, details of the nuclear structure may be inferred. For this purpose,
particle detectors and associated electronic apparatus are required. Detector
signals are processed by analogue and digital circuitry, with the latter often
making logical decisions to determine if a particular event in the detection
system is potentially interesting. If so, a logic signal is sent to trigger the data
acquisition system, which in modern facilities is invariably built around one or

more microcomputers.

A simple but not untypical experimental layout is sketched in figure
1.1. A beam of “probe” particles bombards a target containing the nuclei of
interest. The reaction products are detected by counters “Det;” and “Det,”
which generate pulses having amplitudes proportional to the kinetic energy of
the particles and may be capable of particle identification. If the analogue
signals are digitised by ADC’s to give the energies and particle types and the
directions of travel are known from the geometry of the set up then it is easy
to calculate the momenta.

Time pick-off of detector signals by voltage discriminators produces logic sig-

CHAPTER 1. INTRODUCTION

B
Beam of Probe
Particles

Target

TO

Delay

Det

)
—

Discr.

———

ADC Input 1

[Doy }—="PCS

Yy

Coincidence

Discr.

-

0

Det

Y
1

COMPUTER

Delay | 5

TDC Stop

Delay | QDC Input2
ADC Gates__ Tl
TDC Start + SET
- SHAPE ~ FLOP
Interrupts
o RESET *
T2

Figure 1.1: Hypothetical Nuclear Physics Experiment

CHAPTER 1. INTRODUCTION 4

nals and temporal coincidences between these can show that multiple particles
are produced in the one probe, nucleus collision. The coincidence output is used
to trigger charge and time to digital convertors and to provide an interrupt sig-

nal to cause the computer to initiate readout of data.

As their name implies, Analogue to Digital Convertors (ADC’s) mea-
sure quantities such as charge, voltage or time and output a number which
is proportional to the analogue quantity. Usually the ADC’s are housed in a
standard bussed hardware system (CAMAC or FASTBUS) from which the num-
bers produced by the ADC’s are transferred via suitable interfaces into the main
Random Access Memory (RAM) of the computer which controls the experiment.
The computer would initialise and monitor the ADC’s, oversee the transfer of
data and operate on the data once it is in RAM. Operations might involve
storage in some standard format on disk or magnetic tape, analysis and sorting
into spectra and possibly transfer to another computer. This could take over
storage, analysis and display tasks, reducing system overheads on the front-end
experimental control computer. Storage on tape allows the data from the exper-
iment to be replayed offline, when more complicated and sophisticated analysis

than is possible online, can be performed.

One major factor which affects the efficiency of an experiment is the
dead time of the detectors and the data acquisition system. This is the finite

time required to process an event. Suppose m is the true counting rate and the

CHAPTER 1. INTRODUCTION 5

detector registers k counts in a time 7. Since each detected count engenders a
dead time 7, a total dead time kr is accumulated during the counting period
T. During the dead period, a total of mkr counts is lost [1, 2]. Thus the
ratio of observed counts to true counts registered in any time can be given
by R=1-—m/T, where m’' = k/T is the observed counting rate. This ratio
approaches zero as the observed counting rate approaches the reciprocal dead

time.

The total dead time can be broken into two components, Ty and T.
T,, depending only on the detectors and the electronics used by the experiment,
could be quite short (~ 100 ns) so that except at exceptionally high counting
rates it would not affect the counting efficiency. However T,, the time for
the computer to read out and process the event’s data, would generally be
much larger, perhaps around 1 ms, so that it would have a non-negligible effect
(R =0.9) even at a modest counting rate of 100Hz. Thus to maximise the
counting efficiency, T, requires to be minimised. This might be performed by
increasing the CPU speed, reducing system overheads, improving bus interface

hardware and making the data readout software more efficient.

At the Kelvin Laboratory, the data acquisition system ACQU is based
on three linked bus sytems, VME-bus, CAMAC, and FASTBUS. Most of the sig-
nal digitising and data readout is performed through FASTBUS. Each FASTBUS

crate is controlled by a LeCroy 1821 Segment Manager Interface (SMI) and the

CHAPTER 1. INTRODUCTION 6

goal of this project has been to produce new software to run on the FASTBUS
SMI and VME-bus CPU which makes efficient use of new SMI to VME-bus in-

terface hardware.

A general description of the hardware and software of the Kelvin Lab-
oratory data acquisition system is presented in chapters 2 and 3, while details
of the SMI and the new software are given in chapter 4. Chapter 5 presents test
comparisons of the old and new SMI interface systems and assesses the success

of the project.

Chapter 2

HARDWARE DESCRIPTION

CHAPTER 2. HARDWARE DESCRIPTION 8

The electronic hardware used in an experimental set up at the Institut fiir Kern-
physik, the University of Mainz, shown schematically in figure 2.1, illustrates
the type of system which may be handled by the Kelvin Laboratory data ac-
quisition system. It is comprised of VME-bus, CAMAC, and FASTBUS systems.
The VME-based CPU is the heart of the data acquisition system. FASTBUS 1is
mainly used for ADC’s and TDC’s while CAMAC is mostly used to control the
experimental parameters such as detector thresholds, trigger logic, high voltage
etc. The test system used for the present work is shown in the photograph of
figure 2.2. Although not as extensive as the Mainz system it includes all of the

main elements, VME-bus, CAMAC and FASTBUS.

2.1 VME system

The VME crate used has twelve free slots (double height) and space for mount-
ing peripherals. The present system includes an Eltec E6/68030 microcomputer,
mass storage peripherals and more specialist modules such as the CBD8210
CAMAC Branch Driver, the VIC8250 VME to VME inter-crate communications

module and the HSM8170 high speed ECL ported memory.

CHAPTER 2. HARDWARE

r77»

Figure 2.1: General Configuration

CHAPTER 2. HARDWARE DESCRIPTION

10

CAMAC CAMAC
) A2 Controller A2 Controller
Tagger/Event Builder C : :
VME-bus P:;_.I:]?:l Programmable E,I(? L Logﬁc (giR s
E6 68030 CPU Branch Delays Sagger adder
Highway Tagger Ladder tepper Motor
+ 8 MByte RAM Drivers
Intelligent
Ethernet Driver
Solid State Disk FASTBUS FASTBUS
8Mb Non Vol Ram Tagger TDC's Tagger Scalers
Camac Br. Driver Phillins 10c6 Struck STR 200
CES 8210 p Tagger Coincidence
Struck STR136/D
Fastbus SMI 1821 SMI Gated Latch
1821
ECL Ported RAM 32 bit ECL bus :H
CES 8170
VME Link-Vicbus CAMAC CAMAC

CES VIC8250

180 Mbyte
Winchester

32 bit VIC bus

A2 Controller

High Voltage
Controller

Lecroy System 1440

Stepper Motor

A2 Controller

Prog. Discriminators
Lecroy 4413

Lecroy ECLine

Drivers Prog. Logic
Neutron/Proton Detector
VME-bus CAMAC CAMAC
E6 68030 CPU A2 Controller A2 Controller — |
amac
+ 8Mb RAM+Enet Parallel Programmable Programmable
Solid State Disk B.th Discriminators Logic
8Mb Non Vol RAM Highway Lecroy 4413 Lecroy ECLine
CAMAC Br Driver 16 bit SMI branch highway
CES 8210
FASTBUS FASTBUS FASTBUS
SMI Interface STR 200 Scalers STR 200 Scalers
ECL Ported RAM 10c2 ADC’s 10¢2 ADC’s
CES 8170 10c6 TDC'’s 10c6 TDC’s
L] VME Link 1821 SMI 1821 SM1
] CES VIC8250] 1
32 bit ECL bus
DAPHNE 4r Detector
VME System
Winchester
RISC (>
Ethernet DECstation
5000/120 | SCSI bus
EXABYTE

Figure 2.2: Kelvin Laboratory Test System

CHAPTER 2. HARDWARE DESCRIPTION 11

2.1.1 Standard Hardware (Eltec E6/E5)

The heart of the VME bus system is the MC68030 based Eltec E6 single board
computer [3]. The less powerful MC68020/E5 [4]. can also be used with identical
source code.
These machines have 32-bit address registers, 32-bit data registers and features
such as :

1) 7Mip (E6) or 3Mip (E5) integer performance,

2) 1 to 16 Mbytes RAM, 128 kbytes EPROM

3) Hardware floating point coprocessor,

5) Interface circuitry for the VME bus,

the auxiliary VSB bus and SCSI bus,

6) Interface circuitry for ethernet communications.

The EPROM contains boot programs for various operating systems and
simple debugging facilities. The peripherals used with the present Eltec are :
1) 150 Mbyte hard disk
2) 150 Mbyte streaming tape

3) floppy disks 5% inch or 3} inch.

Figure 2.1 shows the connections between the various buses on the

acquisition system which are implemented by more specialist VME hardware.

CHAPTER 2. HARDWARE DESCRIPTION 12

2.1.2 VME-VME connection (VIC8250)

The VIC8250 [5] is a transceiver for the so called VIC bus, or vertical bus, which
has been developed by the company CES to connect VME backplanes, and has
been adopted by CERN as a standard VME to VME connection. Up to 15 back-
planes may be connected by twisted pair cable of maximum length 100m, and
one VIC8250 must be programmed as the bus master with the others as slaves.
VIC bus allows a VME CPU to access any address in any connected VME sys-
tem, but this can result in VME-bus arbitration problems requiring specialist
software solutions. Instead the ACQU system uses the internal buffer memory of
the VIC8250 for inter-VME communications. Slave VME systems write data to
the buffer in their local VIC8250 and the master reads this buffer over the VIC
bus. Special mailbox locations in the VIC8250 buffer are used to synchronise

read /write operations.

2.1.3 VME-CAMAC connection (CBD8210)

The VME-bus is interfaced to CAMAC through the CES CBD8210 CAMAC
Branch Driver [6]. This module, based on a Saclay design, is a double height
VME card which maps a 24 bit VME address to a CAMAC CNAF and drives a

parallel branch of up to 7 CAMAC crates. The CBD8210 can drive one CAMAC

CHAPTER 2. HARDWARE DESCRIPTION 13

branch with the number of the branch to be driven selected by a front panel

switch.

The CBD8210 provides four internal registers to handle communica-
tions. The CSR (Control Status Register) addressed by C0 N29 A0 F0, con-
tains most of the status information necessary for correct functioning of the
CBD8210.

The IFR (Interrupt Flag Register) addressed by C0 N29 A0 Fj4 is write only
and provides the facilities to set or clear external interrupt flags by software.
This is potentially useful for test purposes.

The CAR (Crate Address Register) addressed by C0 N29 A0 F8 is used for
multiple addressing of crates on a CAMAC branch.

The BTB Register is addressed by C0 N29 A0 F9. When it is read, we get the
information regarding which crates in the branch are on line, and when written

to, a CAMAC branch initialisation is generated (BZ signal).

The CBD8210 maps any standard B,C,N,A ,F CAMAC address/command

to a unique 24 bit VME address as follows :

bits [23:22] = 1:0

bits [21:19] : B = Branch Address (0 to 7 Front Panel Switch)
bits [18:16] : C = Crate Number (1 to 7 Standard addressing)
bits [15:11] : N = CAMAC Station Number

bits [10:07] A = CAMAC Subaddress

bits [06:02] F = CAMAC Function

bits [1] : CAMAC Word Length : 0=24 bits, 1=16 bits
bits [0] 0.

I

CHAPTER 2. HARDWARE DESCRIPTION 14

In the C language the VME address for a BCNAF CAMAC command is
generated as follows :

benaf = b + (c < 16) + (n<K 11) + (a < 7) + (f< 2) + (I« 1)
where “<” means left shift. The three classes of CAMAC functions (read, write,

test) are implemented as follows:

read-value = x* benaf
* benaf = write-value
test = % bcnaf

The CBD8210 can generate external VME-bus interrupts (IRQ) to the
CPU at priority 2 or 4 when it receives an external logic signal at the front
panel. The interrupt vector number can be jumper set from 1 to 255 so that
conflicts with any other interrupting peripherals can be avoided.
The CPU response to interrupt requests is quite fast. The E6 hardware ac-
knowledges the IRQ within approximately one microsecond and generally the

IRQ service routine is initiated within 10 to 15 ps.

2.1.4 VME-FASTBUS connection

The interfacing to FASTBUS is more complicated than CAMAC [7]. Each FASTBUS
crate is controlled by a LeCroy 1821 Segment Manager Interface (SMI) and

the interfacing is accomplished either by using the VME fast memory module

HSMS8170 or the slower CAMAC interface type LeCroy 2891A.

The CAMAC based LeCroy 2891A [8] provides a bi-directional link be-

CHAPTER 2. HARDWARE DESCRIPTION 15

tween FASTBUS and the VME-bus. Due to its indirect nature, it is relatively
slow, but it is reliable nonetheless. The 8 main control registers in the SMI are
mapped to equivalent registers in the 2891A, via a ribbon cable connection, so
that the SMI can be programmed by issuing appropriate CNAF’s. For example
the CAMAC command F(0) A(0-7) will read the contents of the 1821 registers
0 to 7 and the command F(16)A(0-7) will write data into the 1821 registers 0
to 7. The model 2891A has the capability to address multiple 1821’s. To select
any 1821, the module select register is programmed. The module select register
is loaded with the desired SMI address by the command F(17)A(1) and read by

the command F(1)A(1).

To increase the speed of data transfer another module has been added
to connect the VME-bus to FASTBUS. This is the CES ECL ported memory
type HSM8170 (9], which allows fast data transfer from FASTBUS to VME buffer
memory at a maximum speed of 10 MHz. A FIFO (First In First Out) buffer
of 64 words of 32 bits allows the maximum data transfer rate into the main
memory without handshake between the 1821 SMI and the HSM8170.

Control of the HSM8170 is performed through 4 registers : The control register,
the interrupt and status/ID register, the address pointer register and the word
counter register. As in the present application the HSM8170 interrupts are not
used, the interrupt and control registers are programmed to disable the inter-

rupts. The usable HSM8170 memory size is fixed through the control register.

CHAPTER 2. HARDWARE DESCRIPTION 16

The address pointer register allows the selection of the starting address in mem-
ory where the data will be transferred and the word counter register is initiated

with the maximum number of words to be transferred into the memory.

The HSMS8170 is connected to the SMI using the 32-bit LeCroy ECL
bus. A small interface board, 1821/ECL [10, 11}, connected to the SMI via the
auxiliary backplane, converts internal SMI logic to differential ECL logic. The
1821 SMI cannot receive data through the 1821 ECL data ports, which is why

the slow connection via CAMAC is necessary.

2.2 CAMAC system

CAMAC [12]-[14] in the Kelvin Laboratory data acquisition project is primarily
used for programmable circuitry which allows the remote control of experimental
parameters such as signal thresholds, trigger logic conditions and detector high

voltages. However the readout of CAMAC ADC'’s is also supported.

The main piece of CAMAC hardware is the crate, which has 25 stations.
Stations 24 and 25, the rightmost stations, are reserved for the controller, while
stations 1 to 23 are normal stations used for CAMAC slave modules. Each
module connects to the CAMAC bus, known as the dataway , which constitutes
a series of bussed and individual lines to perform data read, data write, strobing

and addressing.

CHAPTER 2. HARDWARE DESCRIPTION 17

The crate controller is the heart of the CAMAC crate. The type A crate
controllers, used in our system, interface between the parallel branch and the
CAMAC dataway and have no particular dependence on the type of computer
involved.

The crate controller only responds to branch commands which correspond to
its own crate number (C), which is selected by a front panel switch. In response
to the NAF command, it sets the appropriate dataway lines and issues a strobe
signal to the slave module. In general a module will not support all possible
NAF permutations, but those which it does support must be part of the CAMAC
standard. In response to a valid command which it supports, the module will
generate a valid command accepted (X response) and act on the command. If

the command requires data transfer, the read or write lines will be used.

2.3 FASTBUS system

2.3.1 Introduction

FASTBUS [15]-][19], was originally conceived in the middle 1970’s in response to
the needs of high energy physicists for more powerful and sophisticated data
acquisition hardware. It was developed to provide high speed data acquisi-
tion for large detector systems, as encountered in particle physics experiments.

However the increased size and complexity of medium energy nuclear physics

CHAPTER 2. HARDWARE DESCRIPTION 18

experiments have made it increasingly useful in this field.

A typical system might consist of the bus itself (also known as the
segment), modules and a host computer. General categories of module include
processor interfaces, segment interconnects, ADC’s, memories, logic signal pro-
cessors and diagnostic modules. The segment is a 32-bit bus with multiplexed
address and data lines. It supports asynchronous transfers with handshake
protocol, several addressing and data transfer modes, arbitration with priority

levels and autonomous operation of individual segments.

At the Kelvin Laboratory we use the Struck type STR104F FASTBUS
crate which has an easily demountable CERN specification power supply of 3.5
kW DC capability. The FASTBUS crate is 19 inches wide and has 26 slots of
which none are privileged. The board dimensions are 366.7 mm high by 400

mm deep, about 4 times the size of a CAMAC board.

2.3.2 FASTBUS modules

There are two basic categories of FASTBUS modules, masters and slaves. The
slave modules, which are mainly ADCs, TDCs, scalers etc., cannot gain master-
ship of the segment but can only assert information on the segment in response
to a specific request by a master.

Compared to CAMAC modules, FASTBUS modules are more sophisticated and

CHAPTER 2. HARDWARE DESCRIPTION 19

more complicated to program. Théy provide 32-bit subaddress capabilities and
would normally support several addressing modes. The registers of FASTBUS
modules are divided into two distinct regions, Data Space (DSR) and Control
Status Space (CSR), which are separately accessible. The purpose and size of
the data space is defined by the‘designer, whereas some CSR registers have
standard functions. Each module contains in the 16 Read Only MSB (Most Sig-
nificant Byte) of its standard register CSR0, a module specific identifier code.
The full 32 bits (Write Only) of CSRO are used to control the functions of the

slave module.

A brief description is now given of some FASTBUS modules used at the

Kelvin Laboratory.
1- Phillips 10c2/10c6 ADCs

The Analogue to Digital Converter modules, Phillips 10c6 Time to Dig-
ital [20] and 10c2 Charge to Digital, have 32 channels [21]. Each channel can
be individually programmed with a pedestal correction and a lower and upper
level threshold. The data which satisfy the threshold conditions are transferred
from the ADC to a LIFO (Last In First Out) buffer, where they are stored two
ADC channels per 32-bit word, with a header word per event. Data can be
read a minimum of 8.5 us after receipt of a trigger signal and block readout
can typically occur at 10 MHz rate. For increased throughput when reading

out many modules, MULTIBlock readout is used. MULTIBlock mode potentially

CHAPTER 2. HARDWARE DESCRIPTION 20

allows a whole crate of 10c modules to look like one contiguous buffer to the

master, enabling readout of multiple modules as if they were one giant module.

2- Struck STR136 Gated Latch

This is an edge-triggered 64-input gated latch [22]. While a gate signal
is applied, any input will be latched and the latched inputs may be read over
FASTBUS as well as being available as outputs. The 64 latched bits are read

through a block transfer on DSR0 and DSR1.
3- Struck STR200 Scaler

This contains 32, 32-bit 100 MHz scalers [23]. They may be read

through registers DSR0O to DSR31 and block transfer is supported.
4- LeCroy 1821 SMI

The practical use of all these slave modules depends on having a suit-
able FASTBUS master to read them out. The LeCroy 1821 SMI (Segment Man-
ager Interface) is a programmable FASTBUS module which can act as a slave, a
master, a snoop, or a processor interface. In the present application the SMI is
always the segment manager, issuing the commands both to initialise slave mod-
ules and where applicable to read data from them. It also provides interfaces

between FASTBUS and the VME-bus. It is futher described in chapter 4.

CHAPTER 2. HARDWARE DESCRIPTION 21

2.3.3 Addressing modes

The basic mode of FASTBUS addressing is geographical, ie a module is accessed
by its physical slot number in the FASTBUS crate. This is known as the primary
address cycle. A secondary address cycle, which involves writing a 32-bit “reg-
ister offset” to the module, gives access to the internal registers of the module.
An alternative to geographical addressing is logical addressing, where the de-
vice is assigned a logical address of 32 bits consisting of the device address and
an internal address [24]. Each device capable of being logically addressed con-
tains a device address register, which is fully accessible by standard FASTBUS

operations and which must be initialised by the system startup procedure.

Where it is desired to program several slaves simultaneously, broadcast
addressing may be used. Unlike logical or broadcast addressing, all FASTBUS
slaves must support geographical addressing and this is the mode used in the

present acquisition system.

2.3.4 FASTBUS operations
There are basically four phases in a FASTBUS operation [25]. These are the
arbitration, addressing, data read/write and bus release cycles.

In the present case the 1821 SMI is always configured to be the master,

and arbitration is unnecessary. During the primary address cycle, the geograph-

CHAPTER 2. HARDWARE DESCRIPTION 22

ical address of the desired module is placed in the Address Data (AD) lines.
Once the slave recognises its address on the AD lines, it responds by asserting
the address acknowledge line. The address cycle results in the establishment
of a link between the master and the slave. After receiving the slave’s address
acknowledge, the master can clear the address from the AD lines and thus use
them for data transmission, such as the transmission of a secondary address

which is accomplished through a write data cycle.

After writing a secondary address a master will normally proceed to

transfer data. In the present application block mode is used for data transfer.

Chapter 3

SOFTWARE DESCRIPTION

23

CHAPTER 3. SOFTWARE DESCRIPTION 24

3.1 Overview of Data Acquisition

Kelvin Laboratory experiments typically involve the readout of ~ 1000 ADC’s
and ~ 1000 scalers which contain information on the species and momenta
of particles associated with a photo-disintegration event. These require fast
readout to minimise deadtime and the acquisition software should have the

flexibility to allow easy changing of the experimental hardware configuration.

A general aspect of a data acquisition system is shown in figure 3.1.
The main functions of the data acquisition software are :
1- Control of Data Transfer from ADC’s
2- Data Storage

3- Data Analysis - Sorting into spectra - Display of spectra

To carry out these processes efficiently, the functions named above
should be independent tasks, hence the need for a multitasking system. The
0S9 operating system written originally for MC68000 microcomputers offers
multitasking, good real time response and reasonable source level debugging

facilities [26], which become indispensable when the complexity of the code

increases.

For maximum efficiency, data readout and transfer from ADC’s should
be interrupt driven, and ideally the time slicing priorities of the various tasks

would be “tuned” to make best use of the CPU. However, care should be

CHAPTER 3. SOFTWARE DESCRIPTION

DETECTION

CONVERSION

TRANSFER

PROCESSING

DETECTORS

Analog Data

Digital Data

DATA TRANSFER

COMPUTER

Convert to Standard format

MASS STORAGE

STORAGE

VISUALISATION

ANALYSIS / SORTING

DISPLAY

Figure 3.1: General Aspect of the Acquisition

25

CHAPTER 3. SOFTWARE DESCRIPTION 26

exercised in performing the latter, especially where the progress of one task

depends on the progress of another.

3.2 OS9 Operating System

0859 [27, 28] is a multitasking, real time operating system for the 68000 family
of microprocessors, which is widely used in nuclear or high energy physics data
acquisition systems as well as a variety of scientific or industrial applications.
0S89 has two distinct states in which object code can be executed. These are
“user” state, where processes are time sliced with some restriction on access to
hardware addresses and “system” state, where processes are not time sliced and
have unlimited access to any address. OS9 system calls and interrupt service
routines run in system state. System state routines often deal with physical

hardware present on the system.

3.2.1 OS9 Input/Output Structure

0S9 input /output operations are handled by three programs usually written in

assembly language. They are respectively :

1. File Manager
This includes general purpose code to service a particular class of device eg. a

disk or tape. It handles the file structuring of a device and has very little device

CHAPTER 3. SOFTWARE DESCRIPTION 27

dependence. It is not of any use for CAMAC or FASTBUS operations, but we
have to use it to comply with the OS9 way. Four file managers are included in
our system. The one used in the present data acquisition is the SBF (Sequential
Block File Manager) which is normally used with sequential block structured

devices such as tape drives.

2. Device Driver
This module, in conjunction with the file manager, handles the actual operation
of a device, and in practice will be somewhat device dependent. We use it to
initialise VME slave modules, install interrupts etc. We could use it for data
readout, but this is not necessary. Its function is to contain the device’s interrupt
service routine and provide the means of loading it into the OS9 operating

system.

3. Device Descriptor
This is a data module read in by the device driver to specify addresses, interrupt
vectors etc. for a specific device. Each physical device has an associated de-

scriptor and one device driver can handle several descriptors and hence devices.

3.2.2 OS9 Interrupts

The OS9 operating system provides the user with 192 vectored interrupts (vec-

tors 64 to 255), allowing the system to handle many interrupting devices. Vec-

CHAPTER 3. SOFTWARE DESCRIPTION 28

tors 1 to 64 are reserved for the system. Interrupt service routines are executed
in system state at priorities ranging from 1 to 7, where 7 is the highest. Low
priority interrupts give way immediately to those of higher priority and only

resume after the higher priority interrupt has completed.

3.2.3 Multitasking and Intertask Communications

When the multiple tasks of the acquisition system are loaded and executed,
interprocess communication is necessary to synchronise processes and to pass
data between them. Synchronisation is handled by the use of signals and events,

while data are passed via shared memories.

1. Signals
The process expecting a signal must contain a signal intercept routine to catch
this signal, otherwise it will be killed by the first signal it receives.
Signals are not queued, so they may be lost if they are not serviced by the
intercept routine. The present application uses signals only at the end of the

data acquisition to cause an orderly shutdown of the system.

2. Events
Unlike signals, events are queued so that no event can be lost. A process “waits”
for an event to occur or “sends” an event to another process. Events are named

and can be assigned values. Thus checks can be made by a potential receiver

CHAPTER 3. SOFTWARE DESCRIPTION 29

in systems where several different events are used.

Events are used to handle the communication between four subprocess tasks
“acqu”, “hist”, “store”, “slave”. The three tasks “hist”, “store”, “slave” wait
for events from the task “acqu” which show it has accumulated a full buffer of

event mode data.

3. Shared Memories
Shared memories are created to pass data between the different subprocess
tasks “acqu”, “hist”, “store”, “slave”. Each subprocess must be linked to the
shared memory before it can perform any access to it. In the present application
two shared memories are created. One is used as a shared device ID memory,
containing tables of information on the system hardware, and the other is used

to define two swinging buffers used for transfer of data.

3.3 General Developments

In addition to the native assembly language [29], OS9 offers the high level
programming language C [30, 31] which, with its ability to manipulate real

hardware addresses, is highly suited to data acquisition programming.

Apart from a few lines of assembler, the data acquisition software
“ACQU” which initialises, monitors and performs data readout of hardware

in the VME-bus, FASTBUS and CAMAC standards has been written in the C

CHAPTER 3. SOFTWARE DESCRIPTION 30

language. A block diagram of the software modules and their interconnections
is given in figure 3.2. ACQU consists of six principal tasks :

1- Supervisor task (“vme-supervise”),

2- Data readout task (“acqu”),

3- Data storage task (“store”),

4- Histogramming task (“hist"),

5- Slave system control Start/Stop task (“slave”),

6- Master system control task (“control”).

3.3.1 Supervisor Task : vme-supervise

The program supervisor, “vme-supervise” performs four essential initialisation
functions before it goes to “sleep”. These are :

1- Hardware initialisation,

2- Shared memories initialisation,

3- Interprocess communications initialisation,

4- Start up of subprocesses (acqu, hist, store, slave).

The hardware initialisation is based on information read in from pa-
rameter files which are created using the standard editor. All files are liberally
commented (lines beginning with "*") to improve readability. Three main pa-

rameter files are used :

ENET

‘4\\—

VIC
e

CHAPTER 3. SOFTWARE DESCRIPTION 31
IRQ Enable/Disable
VME SUPERVISE
init modules IRQ
init memories Service
init events Routine
fork children
LOCAL
(P /L Readout
1 Y
SLAVE STORE
Remote HIST Perm | ENET ACQU |yic
Computer Sort Store Readout [
Control Spectra Data <« STORE Crates
L SORT |
DEVICE
SPECTRUM EVENT MODE TABLE
BUFFER DATA STATUS
MEMORY MEMORY MEMORY

T

PLOT

CONTROL
Start/Stop
New run/End Run
General Status

IRQ Enable/Disable

Figure 3.2: Block Diagram of Data Acquisition Software

CHAPTER 3. SOFTWARE DESCRIPTION 32

1. Master Parameter File

This defines the shared memories such as the hardware module table,
data buffers and spectrum buffers. Also defined are OS9 event names used for
the communication between semi-independent tasks, and output paths such as

ethernet or local mass storage.

2. CAMAC Parameter File

The CAMAC parameter file is rather simpler in structure than the
master parameter file. Each non-comment line relates to a single CAMAC
module. There are 4 parameters to a line, which are: crate number, station
number, module name, module specialist initialisation file. Table 3.1 contains
the names of the CAMAC modules currently recognised by the ACQU system

along with their function.
3. FASTBUS Parameter File

The FASTBUS parameter file is also relatively straightforward to un-
derstand. An exampleis given in appendix C. The FASTBUS master is assumed
to be a LeCroy 1821 SMI (Segment Manager Interface). Each FASTBUS crate
has a section consisting of one line pertaining to the SMI setup, followed by
“n" lines, where “n” is the number of slave modules (ADC’s, logic modules etc.)
which reside in that particular FASTBUS crate, i.e. one line per module. The

SMI line has 4 parameters which are : SMI number, RAM number, number of

CHAPTER 3. SOFTWARE DESCRIPTION 33

slaves and readout mode. A list of supported FASTBUS modules is given in

table 3.1.

After initialisation is complete, the supervisor may be re-awakened by
a signal from the control process to make an orderly shutdown of the acquisition
system. The supervisor and its child tasks execute in the background state, so
that the terminal is available to control the acquisition system by running the

control module “control”.

3.3.2 Subprocesse Tasks : acqu, hist, store, slave

The “acqu” subprocess must be run to give data readout, but other subprocesses

are optional depending on what is required of the acquisition system.

The four subprocess tasks “acqu”, “store”, “hist”, “slave”, run simul-
taneously. On receipt of an event from the interrupt routine, the “acqu” task
performs the readout of CAMAC and FASTBUS modules into a data buffer in
shared memory. Data transfer from CAMAC is accomplished by a simple read
address operation. However data transfer from FASTBUS is more complicated,
since this bus is inherently more complex than CAMAC, and the usual FASTBUS
master, the 1821 SMI, has itself to be programmed. Details of FASTBUS readout

programming are given in Chapter 4.

When a data buffer is full, “acqu” can optionally send an event signal

CHAPTER 3. SOFTWARE DESCRIPTION

CAMAC modules used
Name Module Function

A2CONTROL A2 Controller Parallel Branch
LRS2249A LeCroy 2249A Q ADC 10bit
LRS2249W LeCroy 2249W Q ADC 11bit
LRS22495G LeCroy 22495G Q ADC 10bit
LRS2259 LeCroy 2259 V ADC 11bit
LRS22284 LeCroy 2228A TDC 11bit
LRS4413 LeCroy 4413 l6chan. LED
LRS4418 LeCroy 4418 16chan.delay
LRS4508 LeCroy 4508 Dual PLU

LRS2551 LeCroy 2551 12ch.Scaler
LRS2891A LeCroy 2891A SMI interface
HYTEC310S Hytec 310s 4 chan scaler
SEN2PA2049 SEN 2049 Dual attenuator
SEN2PA2048 SEN 2048 Dual cable delay

FASTBUS modules used
Name Module Function

PHIL.10c6 Phillips 10c6 TDC 10bit
PHIL_10c2 Phillips 10c2 Q ADC 10bit

STRUCK_200 Struck 200 100 MHz Scaler
STRUCK.136D Struck 136/Diff 64bit Latch
STRUCK.136 Struck 136 64bit Latch

Table 3.1: Supported CAMAC and FASTBUS modules

34

CHAPTER 3. SOFTWARE DESCRIPTION 35

to the storage task “store” to write the data to mass storage or ethernet and/or
to the histogramming task “hist” to sort the data into spectra. Data transfer
is performed through two swinging data buffers. A flow chart depicting the

operation of “acqu” is given in figure 3.3.

Data storage may be on a local peripheral or on a remote device via
ethernet. The TCP protocol is used for ethernet communications between dis-
similar computers and operating systems. This high level protocol has been
tested between an Eltec E6 running OS9 and a variety of VAX’s running VMS,
where it has proved to be adequately fast and extremely reliable. When “store”
receives the signal from “acqu” it copies the data buffer to ethernet or local
device and makes it available to “acqu” for futher data. A flow chart of the

subprocess “store” is shown in figure 3.4.

The subprocess “hist” copies a data buffer over to a special histogram
buffer from which it does the sorting. When it has finished it flags that it
is ready to receive another. Apart from generally adding to system overheads,
“hist” does not hinder data buffer storage. A general flow chart of the subprocess

“hist”, is shown in figure 3.5.

The subprocess “slave” causes the VME system to run in slave mode.
The assumption is that there are several coupled VME systems and that one of

the remote systems is the master which controls start/stop etc.

CHAPTER 3. SOFTWARE DESCRIPTION 36

—
WAIT IRQ EVENT | — JRQ Event from
IRQ Service Routine

READ CAMAC

READ FASTBUS

SCALER READ DUE ? ;YES READ SCALERS
NO -
A | YES
VIC TRANSFER ? ~—————(WRITE VIC MEMORY
NO | -
BUFFER FULL ? >
NO
RE-ENABLE
IRQ YES Y

SWING BUFFERS

Event Signal to STORE task
SIGNAL BUFFER STORE |)

NO

HIST Ensble? -
/

YES |

: Event Signal to HIST task
Transfer HIST Buffer >
if HIST task is ready

- l <
- N

Figure 3.3: Flow Chart of Subprocess “acqu”

CHAPTER 3. SOFTWARE DESCRIPTION

Link to Shared Memories
Link to Shared Events

Check whether
ETHERNET or LOCAL
Required
Ethernet v Local
-¢ . o
Init IP Open new data file

Socket for Data Transfer

Wait signal from "acqu’ Wait signal from "acqu’

Write data to socket Write data into data file

S

Flag Buffer Stored

Figure 3.4: Flow Chart of Subprocess “store”

CHAPTER 3. SOFTWARE DESCRIPTION

Link to Shared Memories
Link to Shared Events

Event signal from “acqu’

Sort ADC’s to histograms

Accumulate SCALERS

Flag Buffer Sorted

Figure 3.5: Flow Chart of Subprocess “hist”

38

CHAPTER 3. SOFTWARE DESCRIPTION 39

3.3.3 Acquisition System Controlling Task “control”

To provide the interaction between the user and the data acquisition system, a
module, named “control” has been written. It allows the user to manipulate the
acquisition and also to retrieve status information. To start any acquisition, the
user should run “control” and issue the command which enables the interrupts.
It is only when the interrupts are enabled, that readout operations are started.
If the optional task “hist” has been started, the user can ask at any time for a

histogram or for a plot using the appropriate command.

3.3.4 Interrupt routine : CBD-IRQ

For fastest response to any trigger signal generated in an experiment, interrupt
driven readout of FASTBUS and CAMAC is used. Normal processes are time
sliced by OS9 but interrupt service routines override system time slicing and

run with minimal delay.

The interrupt routine CBD-IRQ is part of the Kelvin Laboratory written
device driver. The driver can potentially handle a variety of VME-bus modules,

but at present only interrupts from the CAMAC branch driver CBD8210 are

implemented.

The assembler written interrupt service routine is kept very short to

avoid upsetting the OS9 time slicing algorithm, and merely serves to trigger

CHAPTER 3. SOFTWARE DESCRIPTION 40

the otherwise dormant task “acqu” using an OS9 event. This triggering takes

place within ~ 150us of receipt of the external interrupt signal.

Chapter 4

SMI PROGRAMMING

41

CHAPTER 4. SMI PROGRAMMING 42

The model 1821 FASTBUS Segment Manager Interface (SMI) is a programmable
FASTBUS master [32, 33]. It was originally designed to readout and test the
LeCroy 1800 series of data acquisition modules [34]. As more FASTBUS expe-
rience was gained, the 1821 SMI’s programmability provided users with some
flexibility in designing and implementing FASTBUS data acquisition systems,

and it has subsequently been used to control a variety of modules.

The most important application of the SMI is as a segment master.
Once programs have been downloaded from a host computer, the SMI can handle
bus protocols, and is also capable of such tasks as the writing to or reading from

slave modules. It can also perform data compression and pedestal subtraction.

4.1 1821 SMI Hardware

The following description of the SMI is based on the contents of the LeCroy
manual [32]. The 1821 SMI is a double width FASTBUS module consisting of two
boards, the 1821-1 and the 1821-2. The 1821-1 provides the FASTBUS interface
and control. It consists of a high speed ECL sequencer capable of fetching
and executing approximately 32 million instructions per second. The sequencer
instruction word is 64 bits wide and its memory is 256 words deep. Currently
only 48 bits of the instruction word are used. These are divided into 7 fields,

each specifying particular operations which can be executed simultaneously.

CHAPTER 4. SMI PROGRAMMING 43

The different fields are listed in table 4.1. The sequencer instruction set consists
of 11 instructions, which are listed in table 4.2. Of the 11 instructions only 6
have been used in our SMI program development. These are : STRT, RETN,
NOP, JUMP and CIJMP. The use of the instructions NCAL and NRET would
have simplified the programming of the SMI, but their operation in practice did
not comply with the specification. Because of its high speed and the ability
to execute different operations simultaneously, the sequencer can potentially
execute over 100 million operations per second. A diagram of the sequencer is

given in figure 4.1.

The second board, the 1821-2, provides the host interface system. It
consists of 8 I/O registers, sequencer program memories (EPROM and RAM),
4K of 32-bit data memory, 8K of 10-bit pedestal memory and the pedestal
subtraction hardware.

Using the 8 I/O registers, the host communicates with all the subsystems of the

1821-2 interface card.

4.1.1 Host I/O registers

Eight 16-bit registers numbered R0 to R7 are employed to latch data passed
between the host and the SMI. They are shown in figure 4.2 along with their
interconnections. RO and R3 are configuration registers; R1, R2, R4, R5, and

R6 are input/output registers and register R7 is used to generate strobes and

CHAPTER 4. SMI PROGRAMMING

Field

OP-CODE
CONDITION CODE
MULTIPLEXER
BUS DEFINITION

HSDATA

STROBES

DATA CONTROL

FASTBUS PROTOCOL

Definition

Defines the instruction to be executed.
There are 11 instructions currently defined

Defines the Condition Code to be tested

Defines HSDATA and IAD Bus sources

8-bit data field that can be loaded
onto the HSDATA Bus

Defines the strobes that latch or
set different conditions within the
sequencer.

Defines the mode of the 32-bit register
(either BYTE or WORD), whether data is
piped to other subsystems.

Defines the FASTBUS lines to be SET/RESET,
and the mode (SLAVE or MASTER)

Table 4.1;: Instruction Field Definition

44

CHAPTER 4. SMI PROGRAMMING 45

Instructions
STRT
RETN

NEXT (NOP)

JUMP

CJMP

CALL

CCAL

NCAL
NRET
LSTR

CRET

Ch

Ah

Dh

Bh

9h

5h

1h

2h

Use
Fetch address on Initial Word Address lines (IWA)
Fetch address in Return Address Register (RAR)

Fetch address in Next Sequential Address
Register (NSAR)

Fetch address on HSDATA Bus

Fetch address on HSDATA Bus if CC bit is TRUE,
else fetch address in NSAR

Fetch address on HSDATA Bus and latch NSAR
address into RAR

Fetch address on HSDATA Bus if CC bit is TRUE,
else fetch address in NSAR

Fetch address in NSAR, and latch it into RAR
Fetch address in RAR, and latch NSAR into RAR
Fetch IWA address, and latch NSAR into RAR

Fetch address in RAR if CC bit is TRUE,
else fetch IWA address

Table 4.2: Instruction Set Definition

46

CHAPTER 4. SMI PROGRAMMING

FASTBUS

L PADDR q
| BUS _
SEQUENCER i . .
CONTROL STORE 5 be RETN | 1821-2
MEMORY =} Register A Sequencer
= Ay « « : DATA/| Interface
o
Instruction Word m NSA 16.8 Zcxﬁ BUS Subsystem
A Register «\V
! _ PDATA
< ARBITRATION Register
— b ARB LEV REG 4
FASTBUS
PROTOCOL » HSDATA BUS v
<—| Communication ﬁ
—»| High Speed I N-REG
Readout
T-POLL
Register ; TCNTR
4 32.8 MUX| E_vm
PIPELINE
1821-2
IAD BUS A4 1AD BUS Strobes [Pedestal
k ! Subtract
Subsystem
7T I N R
Register

Figure 4.1: 1821 Block Diagram of the Sequencer

CHAPTER 4. SMI PROGRAMMING 47

monitors status. A brief description of the registers is given in the following :
Register RO :

This register is used to control data paths for program download, up-
load, menu memories and sequencer program memory. Table 4.3 gives the

function of each bit.
Register R1 :

This is used to load a start address either for program transfer or for
sequencer subroutine execution. Readback of this register gives the address plus
two status bits, data available and sequencer (active/wait) status. Operation

depends on settings in register RO.
Register R2 :

This is used to download sequencer code or dynamically supply sub-
routine arguments. It can also be used to read back sequencer code in 8-bit
sections and an 8-bit status word containing FASTBUS SS or MS codes. Opera-

tion depends on the settings in register RO.
Register R3 :

This is used to control the flow of data from the sequencer and to
control the pedestal subtractor and the null data suppressor. The definition of

each bit is given in table 4.4.

48

AUXILIARY CONNECTOR

Sequencer Control

3

A

REG
0

REG
1

Data Memory

Pedestal Memory

A h

A

]

Strobes / Status

Data Memory

REG REG REG

3 4

5

REG
6

REG

CONTROL| DATA BUS

INTERFACE BUFFER

[

ADDRESS

DECODER

A

CONTROL

ADDRESS BUS

INTERFACE BUFFER

A 4

CHAPTER 4. SMI PROGRAMMING

Module Select Code

»
P

MODULE
SELECT

FRONT PANEL CONNECTOR

Module Select Code

Module Select

q

D

~~___ Module Address

Switch

Figure 4.2: Host I/O Registers

CHAPTER 4. SMI PROGRAMMING

Bits

15

14

13

12

11

10

09

08

07

06

05

04

03

02

01

00

Function

Source PADDR bit 0
Source PADDR bit 1
Destination PADDR bit 0

Destination PADDR bit 1

Source PDATA bit 0
Source PDATA bit 1
Destination PDATA bit 0

Destination PDATA bit 1

Sequencer Program Load Bit
Request Sequencer Attention
User Spare Bit

X

X

MMS2 Menu Memory Select Bits
MMS1

MMSO0

PADDR = Program Address Bus
PDATA = Program Data Bus

Src/Dest codes

0 0 - PMAR (Src); Menu(Dest)
0 1 - Sequencer

10 - Host 1/O register R1

11 - Not defined.

Src/Dest codes

0 0 - Menu Memory

0 1 - Sequencer

10 - Host I/O register R2
11 - Not defined.

Table 4.3: Register RO Definition Bits

49

CHAPTER 4. SMI PROGRAMMING 50

The RESET signal is the most important bit. At power-up, register R3 is cleared,

immobilising the SMI until a 1 is written to the RESET bit.
Register R4 :

This is mapped to the lower 16 bits of the internal address and data
bus. It is used to read from the FASTBUS A/D lines or from the data memory
and also to download the data memory for test purposes. Its operation depends

on settings in register R3.
Register R5 :

This is mapped to the upper 16 bits of the internal address and data

bus and otherwise operates as register R4 .
Register R6 :

The write register stores the starting address and operational mode of
the Data Memory Address Register (DMAR), which points to the current loca-
tion in SMI data memory. The DMAR has auto-increment and auto-decrement

modes of operation.

The read register operation provides access to the current value of the DMAR

and some data memory status bits.

Register R7 :

This register is used to generate strobes, which are listed in table 4.5.

CHAPTER 4. SMI PROGRAMMING 51

Bits Function

15 RESET
14 X
13 Pedestal data (1=9bit signed, 0=10 bit unsigned)

12 Suppress Zero Numbers

11 Suppress Negative Numbers

10 Enable Memory Write Strobe

09 Select Ped. Mem. as DMB Src/Dest.
08 Negate Data from Ped. Mem.

07 X

06 General Purpose Flags

05 Aux Connector Control

04 Internal Control

03 Source DMB Bit 0 Src/Dest Codes
02 Source DMB Bit 1 0 0 - Data Memory
0 1- AUX Connector
01 Destination DMB Bit 0 1 0 - Host 1/O register R4, R5

1 1 - Pedestal Memory Select.
00 Destination DMB Bit 1

DMB = Data Memory Bus

Table 4.4: I/O Register R3 Definition Bits

CHAPTER 4. SMI PROGRAMMING 52

The write register operation issues a strobe for each bit set, and multiple strobes
are possible.
The read register operation provides status and maintenance bits such as the

condition of the DC power.

Up to 16 SMI’s may be connected to the 2891A SMI interface. The
module select register (table 4.6) specifies which one is addressed and also which

port (front or rear panel) of the SMI is used.

4.1.2 ECL Sequencer Control

This subsytem enables the host to program the sequencer and communicate
data to and from an executing program. It includes the program data bus,
program address bus, menu memories and the program memory address register.
There are eight menu memories used to contain program data, which may be
downloaded into the sequencer control store memory.

The memory 0 is an EPROM which contains the standard LeCroy SMI code used
to initialise the FASTBUS sytem at startup. Memories 1 to 7 are RAM and used

to store user written code downloaded from the host.

CHAPTER 4. SMI PROGRAMMING

Bits Strobes

15 Ped. Data Mem. Write/ Host generate Abort
14 Ped. Data. MemAdr. Latch/ Host Generate RDOC
13 X

12 Ped. Data Comparator Write

11 Read-Out Word Count

10 Pgm. Mem. Write

09 PMAR increment

08 Pgm. Mem. Write

07 X

06 Data mem. Write

05 DMAR count

04 DMAR load

03 ROWC load

02 Initiate auto-download to pgm Mem.

01 zero download address register

00 Sequencer GO

Table 4.5: Output Register R7 Strobes

CHAPTER 4. SMI PROGRAMMING

CAMAC Write Operations

— Lines —
W1-W4 Address of peripheral (1821)
with which to communicate
W5 0 = Enable Front Panel of 1821
= Enable Rear Panel of 1821
W6 0 = Bypass

1 = Normal addressing

Table 4.6: Module Select Register Bit

54

CHAPTER 4. SMI PROGRAMMING 95

4.1.3 Pedestal Subtractor

The 1821-2 board comes equipped with pedestal subtraction and zero sup-
pression hardware. Both communicate with the data memory through the
sequencer’s data path. The subsystem was designed to operate with LeCroy
ADC’s which have no data compression capability. However the Phillips ADC’s
and TDC’s used at the Kelvin Laboratory perform zero suppression and pedestal
subtraction operations, so these facilities are not used, although the data still

pass through the compression pipeline.

4.1.4 Data Memory

The data memory is used by the host to store and retrieve 32-bit data words
read from the FASTBUS crate segment. The data compression pipeline can
supply data at rates up to 10 MWord/sec over the 32-bit wide data memory
bus, and data may be stored in the data memory or passed directly to the
auxiliary connector at these very high rates. Figure 4.3 shows the connections

to and from the data memory.

The data memory is 32 bits wide and 4096 words deep (16kbytes). Data
are passed to and from the data memory over the data memory bus (DMB) and
addressing is supplied by the data memory address register (DMAR).

The DMB is a 32-bit bi-directional bus connecting the data memory to the data

CHAPTER 4. SMI PROGRAMMING 56

compressor, registers R4 and R5 and the auxiliary connector.

The (DMAR) is a 32-bit preloaded up/down counter used to address the data
memory over an address range of 0-4095. Host input register R6 is used to read
the current DMAR value and operating mode. Host output register R6 provides

the DMAR with its initial value.

4.2 The 1821 SMI Instruction Word

Figure 4.4 shows in detail the seven fields of the instruction word, and the

definition of all 48 bits used.

4.2.1 Op-code

The op-code field (bit 0 to bit 3), is loaded with one of the instructions listed

in table 4.2 and specifies the basic operation.

4.2.2 Condition Code Multiplexer

Bits 4 to 11 define the Condition Code Multiplixer, through which the state
of over 100 hardware lines may be tested. These include FASTBUS master,
slave, bus management signals, internal timers, host interface lines and many

others. The appropriate test condition must be selected with the condition code

57

CHAPTER 4. SMI PROGRAMMING

INTERFACE

BUFFER

CONTROL DATA BUS

Register
7

DMB

Register

DMB

Register

S

Register

4

Register

3

.ﬁ

DMB

AUXILIARY CONNECTOR

Y ¥

STROBESY Y

DMAR

DATA
MEMORY

Readout
Word
Count

A 4

DMB
Select

PEDESTAL

SUBTRACTOR

Figure 4.3: SMI Data Memory

58

CHAPTER 4. SMI PROGRAMMING

CONDITION BUS DATA
OP-CODE CODES DEFINITION HS DATA STROBES CONTROL FASTBUS PROTOCOL
0123 4567891011 12131415 1617181920212223 242526272829303] 2333435 363738394041424344 454647
STRT-0 | bt 4 = CCBY bit 12 &bt 13 bitl6 = HS 7 bit 24 = search bit 32 = bit 36 = FBOUT
. define o e 0= byte
RETN=4 | bit § = NotCC HSDATA 7= He b 2 = ROT/SHIT 1-wod | bit37- 0 - RESET
— bit 6 = CCBS Source bit 18 = HS S bit 26 = TECT1 |_ . =1-§ET
MB=¢ bt 7 = CCH4 bit 19 = HS 4 bt 27 = TRCTO — bit 33 = pipe bit38 = 0 = SLAVE
bit 14 & bit 15 .) = 1= MASTER
CIMP =3 bt & = CCR3 define bit 20 = HS 3 bit 28 = TCNT bt % & .
cAL=g | Bt 9= CoR 1AD bit 19 = HS 2 bit 29 = TIMER RESET bit 35 - bit 39 - § - COMMUNIUCATION
) Source byle number =1=BUS
- bit 10 = CCR1 bit 20 = HS 1 bit 30 = PDREG 0= byled
CCAL=D) . 1= bytel bit 40 = fbp 7
NRET=5 | bit 11 = CCBO b2l = BSO bit 31 = B REG 2+ byte? bit 41 - fbp 6
3~ byle 3 bit 42 = fbp5 = RB, GK, AK, AS
LSTR=1 - i bit 43 = tbp 4 = BH, AGK, DK, DS
CRET=2 FonT bit 44 - fbp 3 = WT, RDOC, TP, RD
- bit 45 = fbp 2 = SR, EDEnb, SSZ, MS2

bit 46 = fbp 1 = Al EAL §51, MS1
bit 47 = fbp 0 = AG, EG, $50, MS0

Instruction Word

Figure 4.4

CHAPTER 4. SMI PROGRAMMING 59

multiplexer on the preceding instruction. For example, the user would use the
CIMP instruction to branch to an address specified on the HSDATA bus if the

condition code (CC) specified in the preceding instruction was true.

4.2.3 Bus Definition

Bits 12 to 15 constitute the Bus Definition field, which defines the IAD bus

source (ISRC) and the HSDATA bus source (HSRC), as shown in table 4.7.

4.2.4 HSDATA Bus

The High Speed Data bus (HSDATA) (bit 16 to bit 23) can be loaded from
internal 1821 registers, from the instruction word, or from FASTBUS depending
on the state of the bus definition field. The Internal Address bus (IAD) can
be driven by internal 1821 registers or FASTBUS. When the HSDATA bus is

driven by the instruction word, the data are derived from the HSDATA field

immediately following the bus definition field.

4.2.5 Strobes

The 8-bit strobe field, (bit 24 to bit 31), allows the user to control the function

of the TCNT and TPOLL registers, reset internal timers, load the PDREG and

load the 32-bit register.

CHAPTER 4. SMI PROGRAMMING

HSDATA Srec.

IAD Src.

ROT/SHF=0

ROT/SHF=1

ROT/SHF=0

ROT/SHF=1

0 = 16:8 data mux
4 = inst. word HSDATA
8 = 32:8 IAD mux
c = TCNT register

¢ = NREG register
0 = FASTBUS A/D
1 = 32-bit register

2 = 5 bit TCNT register
3 = 8 bit TCNT register

0 = IAD bus

bits 12-15 = bus definition
bits 25 = strobe (ROT/SHF)

Table 4.7: Bus Definition Bits

60

CHAPTER 4. SMI PROGRAMMING 61

4.2.6 Data Control

The data control field, (bit 32 to bit 35), allows selection of the operational

mode of the 32-bit register (either byte or word). Bits 34-35 define the byte

number (0,1,2,3).

4.2.7 FASTBUS Protocol

The FASTBUS protocol field, (bits 36 - 47), allows the user to set or clear various
FASTBUS control lines. Different lines are set or cleared depending on the mode
(master or slave), which is selected by bits 38-39. Figure 4.5 shows all the

different combinations.

4.3 1821 SMI code Developments

Ideally one would use an assembler to generate SMI op-code, and a LeCroy
product which runs on IBM PC’s [35] was examined with a view to conversion
for the present purposes. While in the long term this is a desirable goal, in the
short term it was quicker to program the SMI op-code by hand, a delicate task

requiring careful attention to detail.

The SMI code files were created using a text editor. Each line corre-

CHAPTER 4. SMI PROGRAMMING

Bus
Definition Protocol Definition Bits
Bits
bits 38 |39 | 42 |43 | 44 |45 |45 | 47
mode
slave communication 0 AK | DK | TP 882 |SSl |SsO
slave bus 0 RB BH | WT | SR | Al AG
master communication | 1 0 |AS DS |RD [MS2 [MS! | Mso
master slave 1 CK | AGK RDOC |[RDEnb| EAI | EG

Figure 4.5: Protocol Bits Definition

62

CHAPTER 4. SMI PROGRAMMING 63

sponds to an instruction word. The format used for a line follows the structure
of the instruction word. Comment lines can be included, which aid the under-
standing of the code file. These start with “comm:” and the instruction lines
start with "line:". The instruction line read from the code file includes the in-
struction number and spaces to separate the different fields. A load function

separates out the code and sends it to the sequencer control store memory.

Here is an example of a code file. Note that all numbers used within

the SMI code are given in hexadecimal.
comm: Sequencer Idle Loop comments
line: 00 8 42 4 00 00 0 2 00 Master Mode

line: 01 a 42 4 01 00 0 2 00 wait for host ignition
line: 02 0 00 4 00 00 0 O 00

The instruction words sent byte by byte to the sequencer control store
memory would be as follows :
842400000200
242401000200
000400000000
Once the SMI code is loaded into the sequencer control store memory, the se-
quencer automatically enters into an idle loop, located at address zero and
shown in the previous example. To perform any useful task, the host must

pass the start address of the relevant subroutine to the sequencer and request

execution.

Two different SMI codes have been developed at the Kelvin Laboratory.

These are called CODE1 and CODE2. In the first attempt, we have developed

CHAPTER 4. SMI PROGRAMMING 64

CODE1 which uses the slow connection at the front panel of the 1821 SMI for
module initialisation and data readout. CODE1 has been developed to be as
simple as possible and is actually being used in the first experiments performed
at Mainz.

To improve the data throughput, it was decided to develop CODE2 which uses
the rear panel auxiliary connection to a fast VME memory. CODE2 has improved
considerably the speed of data transfer to the host by virtually eliminating host
intervention in data readout and by using a considerably faster hardware link.

The following sub-sections, give details of both codes, CODE1 and CODE2.

4.3.1 Load/Exec function

After power-up the user must download a program to the sequencer control store
memory to enable the sequencer to perform useful functions at the request of the
host. Access to the sequencer control store memory is through the host registers
RO, R1, R2, and R7. Sequencer programs can be loaded either directly from
the host or from one of the eight local menu memories. The LOAD and EXEC

functions are described in appendices A and B.

CHAPTER 4. SMI PROGRAMMING 65

4.3.2 Front-panel code: CODE1

CODEL is structured as a main routine which performs calls to separate sub-

routines to perform specific tasks.

The 1821 manual includes some basic SMI routines which have been
adapted to develop a customised FASTBUS readout code. Readout of a FASTBUS

module involves 3 sequences :
1 - The Primary Address Sequence,
2 - The Secondary Address Sequence,

3 - The Block Read Sequence.
1- Primary Address Code

The addressing of the slave with which the master will communicate is
performed during the primary address cycle. Figure 4.6 gives the flow chart of
the primary address routine. Since primary addressing involves writing to the
addressed module, the RD lines are maintained at zero. The EG line is asserted
and the desired module address is placed on the AD lines.

When calling the primary address routine, the calling routine should have previ-
ously loaded the primary address into the TCNT register and set the appropriate

MS codes. Here MS=0 (see MS code table 4.8).

2- Secondary Address Routine

The secondary address operation, shown by the flow chart of figure 4.7,

CHAPTER 4. SMI PROGRAMMING

Subroutine called with : 1- Primary address in TCNT
2-MS =0

PDREG = 30 RD =0

IF AS = AK =0
RESET TIMER

‘ YES

IAD = TCNT , PAUSE

IF end TIMER >N g

NO

NO

ERROR return with
PDREG =30

66

,YES

GOOD retum with
PDREG =0 . EG =0

Figure 4.6: Primary Address Routine

CHAPTER 4. SMI PROGRAMMING

OO W= O

wn

MS code for Address Cycles

MS Address Type

0 —- Specific Device - Data Space
1 —- Specific Device - CSR Space
2 —- Broadcast - Data Space

0 —- Broadcast - CSR Space

4,5 —- Reserved - Specific Device
6,7 —- Reserved - Broadcast

MS code for Data Cycles
Interpretation
—- Random Data
—- Block Transfer - Handshake
—- Secondary address
Pipelined Transfer - (non-Handshake)
-6 —- Reserved - (Handshake)
—- Reserved - Pipeline

5

A W =O
|

SS codes
Interpretation
—- Command accepted, no problem
—- Module is currently digitising an event
~—- empty or full
—- Not used
—- Not used
—- R/W from a non-existent register
—- Secondary write to a non-existent register address

Table 4.8: FASTBUS MS and SS codes

67

CHAPTER 4. SMI PROGRAMMING 68

is executed in a write data cycle. The routine is called with the secondary
address in the 32-bit register, RD=0 , MS=2 (see MS code table 4.8) and the
PDREG register initialised with the value 28. The PDREG register is used for
error diagnostics. The routine asserts DS (Data Synch) and waits for the Data
Acknowledge signal DK set by the slave.

The operation is terminated by the host removing all its signals (including DS)

from the bus.
3- Block Read Routine

A flow chart of the block-read routine is shown in figure 4.8. The
routine first sets RD to initiate a read data operation and then ensures that DK
is reset. The PDREG register is loaded with the appropriate diagnostic code and
the appropriate MS code is asserted. Here MS=1 means select block-read (see
MS code table 4.8). The routine then asserts DS and waits for the acknowledge
DK. If DK is not received in time, the routine exits with a timeout error. After
DK is received, the data transfer occurs.

When all the module’s data are successfully transferred, the slave responds with
SS=2 (see SS codes in table 4.8). To facilitate debugging of the SMI code by
the host, the PDREG register is assigned different values depending on progress

through the address/read sequence.

The above three sequences are called by the CODE1 main routine listed

in the following, and outlined in the flow chart of figure 4.9.

CHAPTER 4. SMI PROGRAMMING

69

Subroutine called with 1- Secondary address in 32-bit register

2- MS =2
3-RD =0
4~ PDREG = 28

DS =1

, RESET TIMER

NO

IF end TIMER

IFDK =1

YES

GOOD
PDREG =0

Write

YES

=

e rerermererprrerre e] e

IFSS =0 > NO

ERROR
Call error subroutine

GOOD return
Clear Protocol bits

Figure 4.7: Secondary Address Routine

CHAPTER 4. SMI PROGRAMMING 70

MS1 = MS2 =0

IFDK =1

[w~o

PDREG = 50, MSO = DS = 1
Reset TIMER

IF end TIMER

NO
NO

NO
YES ’

PDREG = 0, Latch 32-bit register in word mode
READ DATA BLOCK

TIMEout

ERROR
NO ,_..__L__
S IFSS =1

'YES

DATA

PDREG =27 . DS =0

Aok ;

. Reset TIMER

* ¥ ¥

Figure 4.8: Block Read Routine

bt £ 3] kg

Yo No IF DK = 0
IF end TIMER ’YES
YES v
’ PDREG = 0
Latch 32-bit register in word mode
READ DATA BLOCK
TIME out
ERROR
IF SS =1
YES '
Y ~o
GOTO wor
—YE.s____< IF SS = 2
! | ro
GOOD Return Check SS Code
Return

Figure 4.8 : Block Read routine continued

CHAPTER 4. SMI PROGRAMMING 71

comm: CODE1 main routine comments

comm:

line: 85 d 00 4 fb 00 0 0 00 «callfb: init Fastbus Prot.
line: 86 8 00 4 00 00 0 2 3f

line: 87 8 00 0 00 08 1 2 3f get stationin TCNT
line: 88 d 00 4 eb 00 0 0 00 calleb: pri. adr.
line: 80 a 00 4 00 00 0 0 00 pause

line:8a 8 00 4 00 08 0 0 00 TOCNT =0

line:8 8 00 0 00 01 0 0 00 32-bit = sec. adr.
line: 8 8 00 4 28 02 0 2 1If

line:8d d 00 4 d9 00 0 6 02 call d9-Fb write
line: 8¢ d 00 4 bc 00 0 2 10 call bc: Block Read
line: 8f ¢ 00 4 00 00 0 O 00 go toidleloop

To read a FASTBUS module with CODE1, the host issues an EXEC to
address "85". Whereas standard LeCroy code needs three consecutive EXEC
calls for each block-read, CODE1 needs only one.

Before the host starts CODE1, it puts primary and secondary address parame-
ters into output register R2. Byte 0 contains the primary address and byte 1
contains the secondary address. This requires less host intervention than the
standard LeCroy code where the address parameters are passed in separate

operations.

The execution of CODE1 starts by performing the FASTBUS protocol
initialisation. The FASTBUS initialisation sub-routine located at the address

“fb" is taken from the standard LeCroy code. It clears the TCNT register,

32-bit register and the protocol bits.

Before calling the primary address sub-routine located at address "eb",

CHAPTER 4. SMI PROGRAMMING

OP-CODE = d - BUSDEFINITION = 4 - HSDATA = fb

OP-CODE = 8 -

bit32 = 1

-~ bit37 = bit39 =0

OP-CODE = 8 -

bit 34 -35

=01 - bit28 =1

OP-CODE

d - BUS DEFINITION = 4 - HSDATA = eb

PAUSE

OP-CODE

8 - BUS DEFINITION = 4 - bit 28 = 1

OP-CODE = 8 -~

bit 34 ~ 35

=00 - bit31 =0

OP-CODE=8 - BUSDEF=4 - HSDATA =28 - bit30=

OP-CODE = d - BUS DEFINITION 4 - HSDATA = d9

OP-CODE = d - BUS DEFINITION = 4 - HSDATA

"

be

OP-CODE = ¢ - BUS DEFINITION = 4 - HSDATA

i

Figure 4.9: CODE1 Main Routine

Call fb: Init
Fastbus

Reset Master
Communication

TCNT = R2
(Byte 1)

Call eb, Prim.
adr. cycle

TCNT =0

32-bitreg = R2
(byte0)

PDREG =28

Call d9 : Sec.
adr. cycle

Call be : Blk
read cycle

Go to idle loop
atadr. 00"

72

CHAPTER 4. SMI PROGRAMMING 73

the primary address is latched into the TCNT register from byte 1 of output
register R2 (inst "86-87"). Byte mode is enabled by setting bit 32 and byte 1
is selected with bits 34-35 = 01.

A pause instruction has been added to allow signals to settle down at the end
of the operation, and the TCNT register is cleared for future use.

The secondary address parameter contained in byte 0 of output register R2 is
latched into the 32-bit register. The 32-bit register is selected by setting bit 31,
and byte 0 is selected with bit 34-35 = 00. The write sub-routine located at
address "d9" is then called to perform the secondary addressing cycle.

Once the primary and secondary addressing cycles have been successfully ex-
cuted, the block-read sub-routine located at address "bc" is called. This trans-
fers digitised data into the 1821 SMI data memory. The data transferred are
either from one TDC/ADC, if the module is configured for normal block readout,

or from a group of TDC/ADC modules if configured for MULTIBlock readout.

At the end of a block readout, CODE1 goes back to the idle loop.

4.3.3 Host-CODE1 Interaction function

The host-CODE] interaction function, “R-block”, is written in C and is shown

in the flow chart of figure 4.10. It is called for each block-read required.

CHAPTER 4. SMI PROGRAMMING 74

“R-block” first performs 10 register configuration. It enables the auto
increment mode of the DMAR by setting output register R6 bits 12 and 13,
[R6=3000(hex)], and strobes a DMAR load by setting bit 4 of register R7. Out-
put register R3 is loaded with configuration data 840c(hex). This selects the
pedestal subtract pipeline as the source of the DMB, with the data memory
as the destination. Once configuration is completed, “R-block” calls the EXEC
function to execute the readout operation.

At the end of a block-read, “R-block” transfers the data from the data memory
to a VME buffer BUFF1, from where a decode function sorts it into a standard

format and stores it in another VME buffer BUFF2.

4.3.4 Rear-panel code: CODE2

As with CODE1, CODE2 is structured as a main routine which calls separate
subroutines to perform different tasks, but it does more than CODE1. Whereas
CODE1 needs host intervention to pass parameters, start the SMI code and
transfer data from the SMI data memory, CODE2 needs only one EXEC com-
mand before data taking starts. In fact, CODE2 contains the primary and
secondary addresses to pass to the appropriate sub-routines, whereas in CODE1
they are passed by the host. Address instructions "40" to "7¢" (60 addresses)
are reserved for this purpose. As each module needs two address instructions,

one for the primary address and the other for the secondary address, a full crate

CHAPTER 4. SMI PROGRAMMING 75

Register R6 = 3000 (hex) Enable DMAR auto-increment

Register R7 = 10 (hex) Strobe DMAR Load

1- Remove RESET

Register R3 840c (hex) 2- Enable Write Strobes

3 - Select ~ DMB Src. = Pedestal Subtractor
~DMB Dest. = Data Memory

Register R2 = Execution Start Address

Call EXEC Execute block read

1- PDATA bus Src = Sequencer

Register RO = 96
eglster RO = 9600 (hex) 2- PDATA bus Dest. = Register R2

status = register R2 bitQ to bit7 Select Status bits
if status = 0 Check status bits
NO
YES
ERROR
EETT T

Figure 4.10: R-block Function

EEEE L]

Nb = Register R6 bit 0 to bit 11 Get number of words read into
SMI Memory :
Register R3 = 8002 (hex) Select 1- DMB Src¢ = Data Memory

2- DMB Dest. = Registers4 & 5

Register R7 = 10 (hex) Strobe DMAR Load
i=0
et}
MSB = Register RS MSB = Most Significant Bits
LSB = Register R4 LSB = Least Significant Bits

Shift left MSB 16 bits

BUFF1[i] = LSB OR MSB

YES
IF i <= Nb -

NO

DONE

Figure 4.10: R-block function continued

CHAPTER 4. SMI PROGRAMMING 76

of 24 modules can be read out by CODE2.

Instructions 41" to "7c" are not included in the CODE2 data file when
it is created under the text editor, and from line "40” to line "7f", it looks as

follows :

comm: start of module slot and sub-adr

line: 40 4 00 4 00 00 0 O 00 return to calling routine
comm:

comm: end of module table
line: 7¢ 8 00 4 00 02 0 0 42 INP1=0,good return
line: 7f ¢ 00 4 30 00 0 3 08 jump to 30. read scan loop

Instead, at the FASTBUS initialisation stage the acquisition system gen-
erates the address lines from information read in from module specification pa-
rameter files. A flow chart of the C function “SMI-code-gen”, which generates
SMI code address lines is given in figure 4.11. The function uses 2 vectors,
“prim[0-7]" and “sec[0-7]", corresponding respectively to the primary and sec-
ondary address lines. A third vector “end[0-7]" is used to generate the last
instruction, which performs a branch (op-code = “JMP" = c) to the instruction
“Te". The HSDATA field of the instruction word, corresponding to byte 2 of the
vectors, contains the primary or secondary address. As the “prim” and “sec”
instructions are called from the main routine, the address instruction op-code
is “RETN” = 4, which performs a return to the calling routine.

The “SMI-code-gen” function returns one of two status flags as follows :
0 = OK, good return

W = W SMI write error during operation

CHAPTER 4. SMI PROGRAMMING T

An example of generated code is given in the following. Suppose we

have 3 ADC’s located at the stations 10, 15, 19, which are read via data register
DSR2.
The generated instruction "41" to "47" will look like this :

comm: start of module slot and sub-adr
line:40 4 00 4 00 00 0 O 00

comm:

line: 41 4 00 4 10 08 0 2 3f TCNT = 10 :fastbus slot 10
line: 42 4 00 4 02 01 0 0 00 32-bit = 02 : data reg. 2
line: 43 4 00 4 15 08 0 2 3f TCNT = 15: slot 15

line: 44 4 00 4 02 01 0 O 00 32-bit =02 : data reg. 2
line: 45 4 00 4 19 08 0 2 3f TCNT =19 : slot 19

line: 46 4 00 4 02 01 0 O 00 32-bit =02: data reg. 2
line: 47 ¢ 00 4 7e 00 0 O 00 brto 7e:end fst read
comm:

comm: end of module table

line:7¢ 8 00 4 00 02 0 0 42 |INP1=0,good return
line: 7f ¢ 00 4 30 00 0 7 08 set RDOC, jump to 30.

As with CODE1, CODE2 enters into the idle loop located at the address
"00" when it is loaded into the sequencer control store memory. When the
sequencer execution is called by the host, CODE2, instead of performing a read
operation as CODEL does, branches to a real-time loop located at the address
"30". In fact the data readout in CODE2 is initiated by the front panel signal
INP1 of the 1821 SMI. So when the host starts the execution of CODE2, it is

not involved any more, as at the end of readout the sequencer returns to the

real-time loop.

CHAPTER 4. SMI PROGRAMMING

Nb = read number of Interrupting modules
L_END = read end code line number
L_num = read start code line number

Prim [0-7] = 40, 04. 00, 08, 02, 3f, 00, 00
Sec [0-7] = 40, 04, 00. 01, 00, 00, 00, 00
End [0-7] = cO, 04, L_END, 00, 00, 00, 00, 00

78

Read module station (i)
Read module subaddress (i)

Prim [2] = Station (i)
Sec [2] = Subaddress (i)

Write Prim [0~ 7] into sequencer at address L_num
L_num = L.num + 1

Write Sec [0~ 7] into sequencer at address L_num
L_num = L_num + 1

i=it+l

NO

YES

Write End [0 - 7] into sequencer at address L_num

Figure 4.11: SMl-code-gen Function

CHAPTER 4. SMI PROGRAMMING 79

The SMI code for the real-time loop outlined in the flow chart of figure

4.12 is as follows :

comm: CODE2 real-time loop comments

line: 30 8 8 4 00 02 0 7 20 tst HOST bit

line:31 a 8 4 35 00 0 O 00 brto35if HOST
line:32 8 f0 4 00 00 0 O 00 tstnotl NP1

line: 33 a f0 4 30 00 0 0 00 loop back if not INP1
line:34 ¢ 00 4 84 00 0 O 42 clrINPL. brto 84: read
line:35 ¢ 00 4 00 08 0 O 00 brto idleloop

CODE2 checks if the host demands attention through the HOST bit (bit
5 of output register R0). This bit is set by the host when the user requests a
stop to the data readout and the SMI returns to the idle loop. The host must
call sequencer execution to activate CODE2 again. The branch to the main
FASTBUS readout routine depends on the INP1 signal state. When set, it is

cleared and a branch is made to readout.

The SMI code of the CODE2 main routine shown in the flow chart of

figure 4.13 is as follows :

CHAPTER 4. SMI PROGRAMMING

80

OP-CODE = 8 - CONDITION CODE = 8d

IF HOST bit set

Nno |

!

End Acquisition
Goto idle loop

OP-CODE = 8 - C

ONDITION CODE = f0 Test Not INP1

IF Not INP1

’NO

Protocol

bits = 042

Clear INP1

OP-CODE = c - BUS DEFINITION = 84 - HSDATA = 4 Branch to CODE2

main routine

Figure 4.12: CODE2 Real-Time Loop

CHAPTER 4. SMI PROGRAMMING 81

comm: CODE2 main routine comments

line: 84 8 00 4 40 02 3 5 80 NREG = 40
line:85 d 00 4 fb 00 0 0 00 callfb

line: 86 8 00 4 00 12 3 5 80 incr NREG

comm:
line: 87 d 00 ¢ 00 42 3 5 80 getprim. adr
line: 88 d 00 4 di 00 0 0 00 «calldl: exec. prim. adr

comm:

line: 89 a 00 4 00 00 0 0 00 npause
line:8a 8 00 4 00 12 3 5 80 incr NREG

comm:

line:8b d 00 c¢ 00 42 3 5 80 getsec. adr
line: 8¢ 8 00 4 28 02 0 2 1f
line: 8 d 00 4 d9 00 0 6 02 call d9: exec. sec. adr

comm:
line: 8¢ d 00 4 bc 00 0 2 10 call blk read be
line: 8f ¢ 00 4 8 00 0 O 00 brto 85 for next module

First, the module table start address ("40") is put into the NREG regis-
ter. After the FASTBUS protocol initialisation, the NREG register is incremented

to point to the first primary address instruction.

By performing a call to the address contained in NREG, CODE2 gets
the primary and secondary address parameters. NREG is incremented after each
call operation. As with CODE1, once primary and secondary address cycles are
performed, CODE2 executes the block-read routine located at the address "bc".
At the end of the block-read, unlike CODE1 which returns to the idle loop,

CODE2 loops again to read the next module.

The last instruction in the module address table performs a branch
to the instruction "7e". To allow the next readout operation, INP1 is cleared

(instruction “7e”) and the final operation is to set RDOC. This SMI front panel

CHAPTER 4. SMI PROGRAMMING

82

OP-CODE = 8 -~ BUS DEFINITION - HSDATA = 40
Protocol bits = 380 -~ bit26-67 = 00

NREG = 40

[

Call Fb

OP-CODE = 8 - bit 26-27 01 - Protocol bits = 580

OP-CODE = d -~ BUS DEFINITION = ¢ - bit25 =1
Protocol bits = 580

Increment NREG

OP-CODE = d - BUS DEFINITION = ¢ - bit25 = 1
Protocol bits = 580

Figure 4.13: CODE2 Main Routine

Init Fastbus

Increment NREG

Call Prim. Adr. Line
Line Adr. in NREG

JF Last Address Line — IDLE LOOP
YES
NO
Call dl Exec. Prim. Adr. Cycle
| PAUSE

Call Sec. Adr. Line
Line Adr. in NREG

Call d9 Exec. Sec. Adr. Cycle

Call be Call Block Read

CHAPTER 4. SMI PROGRAMMING 83

output can be connected to the INP1 input of a subsequent SMI, so that several

SMI’s can be “daisy chained” for readout purposes.

The data are transferred via the rear panel auxiliary SMI port and a
32-bit ECL bus to a high speed VME-based memory HSM8170, where it is read
by the host and decoded into BUFF2, as in the CODE1 sequence of operations.
At start-up, the acquisition system initialises the HSM8170 registers and RAM.
The flow chart of the HSM8170 initialisation function “HSM-init" is given in
figure 4.14. First, to avoid any disruption during the HSM8170 configuration,
the ECL bus port to RAM is disabled (control register bit 12 = 0). The address
pointer register is initialised to point to the RAM address 00000(hex) (Address
pointer register bits 0 - 18 = 0), and the RAM size is set to fffff(hex) (W-count
register bit 0 - 18 = 1). The ECL bus port is then enabled and the RAM is

initialised with zero values.

4.3.5 Host-CODE2 Interaction function

The host-CODE2 interaction requires only two operations, one to start CODE2
and the other to stop CODE2. For this purpose, two functions have been added
within the control function CONTROL. These are : “start-smi” and “stop-smi”.
A flow chart of the “start-smi” function is shown in figure 4.15. First, output
register R3 is loaded with the configuration 840d(hex). This removes the RESET

signal (bit 15 = 1) and enables memory write strobes from the sequencer pipeline

CHAPTER 4. SMI PROGRAMMING

Control register bit 12 = 0

Address Pointer register bit O to bit 18 = 0

Weount register bitQ to bit18 = 1

Control register bit 12 = 1

Status register bit8 to bit 10 = 0

A YES

RAMI[1] = 0

IF i <= 8000 (hex)

NO

DONE

84

disable FAST PORT Acquisition

Point RAM memory word O

Set RAM memory size to fffff

Enable FAST PORT Acquisition

Disable VME interrupts

initialise 32K of 32 word
RAM memory

Figure 4.14: HSM-init Function

CHAPTER 4. SMI PROGRAMMING 85

(bit 10 = 1). Loading the configuration bits 0 to 3 with the value d(hex) selects
the pedestal subtract subsystem output as the source of the DMB, with the
AUX connector as its destination. The “stop-smi” function sets HOST bit (bit

5 of register R0) and disables the interrupts.

The EXEC function is then called. This puts CODE2 into the real-time
loop. Two tests are implemented within the real-time loop. The first tests the
HOST bit (bit 5 of I/O register R0) and the second one tests the front panel
signal INP1.

The HOST bit is cleared by loading output register R2 with the configuration
9600 (hex). Also, this selects the sequencer as the PDATA bus source, with
output register R2 as its destination. Input register R2 is then read to get the

execution status.

CHAPTER 4. SMI PROGRAMMING

Register R3 = 840d (hex)

Call EXEC

Register R2 = 9600 (hex)

Read register R2

86

1- Remove RESET

2~ Enable Write Strobes

3- Select - DMB Src. = Pedestal Subtractor
~ DMB dest = AUX Connector

Start SMI CODE2 execution

1~ PDATA tbus Sre. = Sequencer
2~ PDATA bus Dest. = Register R2
3~ HOST bit = 0

status = register R2 bit0 to bit7

Select Status bits

if status = O

SMI CODE2 execution
in progress

Check status bits

ERROR

Figure 4.15: start-smi Function

Chapter 5

CONCLUSION

87

CHAPTER 5. CONCLUSION 88

Some measurements of the performance achieved with the old and new FASTBUS
to VME-bus interface configurations are given in this section, to allow the eval-
uation of the new hardware/software system. A test experiment involving the
readout of two FASTBUS crates was set up. In the first crate two modules were
read, a Phillips 10c2 (32 channels) and a STR136 (4 channels). However, due
to data compression hardware in the 10c2, a total of 6 channels were generally
read. In the second crate three STR200 modules with 32 scalers each, a total
of 96 channels, were read.

The VME software was modified so that at critical times during the event pro-
cessing, an output register, connected to a NIM logic output on the CBD8210
CAMAC branch driver, was toggled on and off so that time might be measured
on an oscilloscope. This toggling operation took about lus and had a small
effect on the overall dead times. Signals associated with the SMI readout were

accessible without special software modifications.

5.1 Data Acquisition Dead Time using CODE1

The software CODE1 (section 4.3.2) makes use of the SMI to CAMAC to VME-bus
link for data transfer. As shown in figure 5.1, three different times, T;, T, and
T. have been measured in the test experiment described above. T, constitutes
the total dead time engendered by one event and, T; represents the delay in the

0S9 system responding to an external interrupt. At Ty the IRQ signal is input,

CHAPTER 5. CONCLUSION 89

and after a time T;, the execution of the IRQ service routine starts. It sends a
wake-up signal to the “acqu” readout process, which is activated after a time T,.
Thus the data readout is started 132us after Tj,. The data readout from “acqu”
is finished after 6 ms, which represents the total dead time T, engendered by

one event.

In this case, after the data are digitised, they are stored in the SMI data
memory. The task “acqu” performs both the data transfer to a VME buffer via
CAMAQC and the data formatting, which takes around 5.9 ms, very much greater

than the time for CODE2 described in section 5.2. The cause of this difference

is discussed in section 5.3.

5.2 Data Acquisition Dead Time using CODE2

The software CODE2 (section 4.3.4) does not involve CAMAC. The data are
transferred from FASTBUS directly into the high speed VME memory HSM8170.

The data are then decoded from the HSM memory into a CPU RAM buffer.

Unlike CODE1, with CODE2 two sets of timing were measured : VME
CPU timing and FASTBUS SMI timing. Initially “acqu” is dormant, waiting for
the IRQ event to activate it, and the SMI is in a polling loop, waiting for the
INP1 signal (section 4.3.4) to start the FASTBUS readout.

At Ty, both the IRQ signal and the ADC trigger signal are input. During the

T

CHAPTER 5. CONCLUSION

0

VME CPU Timing

IRQ Starts

1

VN

o
v L

acqu Starts

132 Jy (v

| §
|4

T

acqu finishes

6 ms ;l

a

i

Figure 5.1: Dead Time Using CODE1

90

CHAPTER 5. CONCLUSION 91

time which the VME software takes to activate “acqu”, the FASTBUS readout
operation is in progress. Three different times T}, T, and T have been measured
from FASTBUS. The data digitising is finished after T;. At this time the INP1
signal is sent to the SMI. This makes CODE2 exit from the polling loop so
that data readout from all modules configured in the crate is performed. The
data are written into the HSM8170 memory. For each word-write cycle into the
HSM8170 memory a WSI signal is sent which enables the data write operation.
Around 2us separates two consecutive WSI signals, and around 2us separates
the readout of two consecutive modules. The first crate is read after time 7.
CODE2 then sends the RDOC, signal, which is fed into the next SMI. This starts
the readout of the second crate. CODE2 loaded in the second SMI performs the
same operations. When it finishes it sends RDOC,. In the present test only two

crates were used, so that the RDOC, signal was not used.

T:, T, and T, have also been measured in the same way as for CODEL.
As shown in figure 5.2, the data transfer from FASTBUS to the VME fast memory
HSMS8170 is achieved before “acqu” starts, and takes around 60us. Thus when
“acqu” starts, the data are already stored in the HSM8170 memory. The task
“acqu” performs only the data formatting which takes 0.6 ms. Thus the total

dead time T, for an event is around 0.7 ms.

CHAPTER 5. CONCLUSION

VME CPU Timing

TO
IRQ Starts
17 s |
—"
"y
acqu Starts
132 pra
\ »Y
" _
acqu finishes
0.7 ms l
4 >
" i
r

FASTBUS SMI Timing

INP1 Signal
11 l
—

N
[oN
o
h
‘__

Figure 5.2: Dead Time Using CODE2

92

CHAPTER 5. CONCLUSION 93

5.3 Interpretation

The improvement described above has been successful in reducing the dead time
for a test readout from 6 ms to 0.7 ms, which will allow the acquisition rate to
be greater by approximately a factor of 8.

The use of CODE2 in the SMI reduced the workload for the task “acqu” running
on the VME computer. Whereas with SMI CODE1, “acqu” performs both data

transfer and data formatting, with CODE2 it performs only data formatting.

As the data formatting function is performed in the same way for both
readout methods, and from figure 5.2 took approximatively 0.6 ms, the bulk of
the ~ 6 ms dead time associated with the CODE1 method comes from the data
transfer. This is due to the many read/write CAMAC operations performed to
execute a single transfer between FASTBUS and VME. For each block-read, at
least 48 read/write CAMAC operations are required to start SMI code CODE1
transferring the data into the SMI data memory, and 3 CAMAC read operations
are performed for each 16-bit word transferred from the SMI memory to VME.
Each CAMAC operation takes several microseconds, so that for transfer of large

amounts of data the CAMAC interface becomes unacceptably slow.

CHAPTER 5. CONCLUSION 94

5.4 Future Improvement

At present, the readout speed achieved with the new SMI to VME-bus data
transfer software is more than adequate to meet the requirements of current ex-
periments. However, if experiments become larger, requiring even more channels
to be read, further modifications may be required in the data acquisition system

in order to keep the dead time as small as possible.

As shown in figure 5.2, the SMI block-readout operation is in progress
while the system sends the event to start “acqu”. Thus, if the number of
channels to read become larger, “acqu” might start before the end of the block
read routine (T3 > T,). This could be resolved by delaying the IRQ signal
but in order to keep the dead time as small as possible, the SMI block-read
routine could be modified by using a LeCroy hardware block-read, which would
effectively halve the FASTBUS transfer time. Investigations of this block-read

mode with non-LeCroy modules will constitute the next phase of this project.

Appendix A

SMI Code Download Function :

LOAD()

The C code of the LOAD function is given in figure A.1, and is shown schemati-
cally in the flow chart of figure A.2. The parameter passed to the function, when
called, is the SMI RAM number (0 to 7). The LOAD function is initiated during
the data acquisition initialisation. Register R0 is loaded with 9980(hex) which
selects output register R1 as the source of the PADDR bus, with the sequencer
as the destination, and output register R2 as the PDATA bus source with the
sequencer as the destination. With this configuration, the host can address any
byte in the sequencer control store memory and write any data byte value into
it.

Once this configuration is set, the output register Rl is loaded with the byte

95

APPENDIX A. SMI CODE DOWNLOAD FUNCTION

-1
-2
3
-4

Complete without error
Disk file open error

Format error on input line
Bad line sequence

SMI write failure(s) detected

Table A.1: LOAD Function Flags

: LOAD() 96

address of the sequencer control store memory and output register R2 is loaded

with the instruction word, in the LSB. The instruction is then strobed into

memory by setting bit 8 of output register R7.

Five different flags, as shown in table A.1, can be returned by LOAD.

These are set at the end of the load operation.

APPENDIX A.

SMI CODE DOWNLOAD FUNCTION : LOAD() 97

*

Routine to download microcode trom Host to Sm1 Sequencer
Code assumed to reside on disk file sdd/ACQU/FB/DATA/smi X.d
where X=0,1.2,3,%,5,6,7 is the sm1 ROM/RAM to load

This is passed as a parameter.

Returns......,.) Completed vithout error

-1 Disk tile open error

-2 Format error on input line

-1 Bad line sequence (should increase monotonically)

-4 SHI vrite tailure(s) detectea

L T e ’

int LOAD(RAK)

Jnsigned snorc RAM:
(

ROM/RAM to i1caa </

char line{l133}; -# char array to noid input line =/
char comm{20}; /% char array for .abel "comm:" or "line:" */
char s_ram(2]; /% to convert RAM short to cnar */
char SHI file(30]; * string = name of cisk file #/
unsigned short i num; /+ line numper reag from input line #/
short 1 _curr; /% current line numoer =/
FILE *SHIcode tp: ‘+ ->position in gisk file #/
unsigned short V: ‘* SMI wvrite error count =/
unsigned short 1: /% code index */
unsigned short code({B8); /* A rode bvtes per iine .’
unsigned short vord{8]; /* B code oytes per iine .’
et the right tile v
sprintt(s_ram."%1d",RAM): * ronvert short to cnaracter =/
strepy(SHI_file."./DATA/smy X.d"):
SHI_file(ll] = s_ram(Uj;
Attempt to open the disk tile .
if((SHIcode tp = fopen(SHI tile,"r")) == MULL)
fprintf(stderr,” Failed to open s tor SMI microcodein”.
SMI_file);
return(-1);
)
Read file line by line and dovnload to $MI until EOF or err
Assume 132 chars max in line .
code|6] = code{?) = 0:
¥ = (*V SMI)(0,0x9980): * set up covnioad direct to sequencer */
L curr = -13 ‘« it line numoer */
while(tgets(line.132,5Mlcode 1p) ' - NULLYI
sscant{line," 2",
if(stremp¢comm, :
1f(sscant(line.” 155k hxhxinx2hxXhxihx",
omm,si num,evorale| | avorer il avoraf 3],
aworafa |, avoralsf bworoge).edoral i) T L)
axan",

tprintt(stderr.” “ormat error atter iine
L cure):
Jetnt -.).

else 1t(l ~utt - L aum

tprantt{=stderr. 2ad line seguence 4x Ix\n“,
L_currod nums
return(-;):

]

else{ * looks UK dovwnload line */

code|0] = {(vord{U]<<4) « (vora{l{>>4);

vord(1l] = vord{1] & Ox000f:
code(l] = vora(2] - iworafl]<<a):
code|2} - vord|3];

code|3} = vord[4];

code[4] = word(6] - iword(S5]<<a);
code|5] = vord|7];

7 .= ¥ _linetl num.code,0x100):
l_curr « | numi /v wpdate current line */

i

1

fprintf{stderr,” End ot direct Sequencer %d dovnload at line Xx\n".

RAM, 1 curr);

PE(V e O)
tprintf(stderr,” %d vrite errors during iocad\n".¥):
return(-4);

i
return(u);

Figure A.1: LOAD Function C Code

APPENDIX A. SMI CODE DOWNLOAD FUNCTION : LOAD() 98

OPEN DATA CODE FILE

L_num = start code address (first byte)

Read Instruction

Inst [0- 7] = Instruction

Register R1 = L_num

Register R2 = Inst[L]

“ NO

Register R7 = 100 (hex) * YES

L=L+1
L_num = L_num + 1

IFL < 8 —_—

| o

IF END of FILE — | DONE

Figure A.2: LOAD Function

Appendix B

Function to Trigger SMI

Execution : EXEC()

The C code for the EXEC function is given in figure B.1, and shown schemati-
cally in the flow chart of figure B.2. The parameter passed to the EXEC function,

when called, is the start code address "addr".

Output register R0 is configured to select output register R1 as the
source of the PADDR bus, with the sequencer as the destination, and output
register R2 as the PDATA bus source with the sequencer as the destination.
Once this configuration is done, the host clears bit 7 of output register R0, to
put the sequencer in execution mode, and writes the program start address to

output register R2. The execution is started when bit 0 of output register R7

99

APPENDIX B. FUNCTION TO TRIGGER SMI EXECUTION : EXEC() 100

EXEC (addr)
begin

X = (*R-SMI)(0 , &st); /* set up SMI registers */
st = st & 0x001f | 0x9900;

X += (*W-SMI)(0 , st | 0x0080);
X 4= (*W-SMI)(1 , 0);
X += (*W-SMI)(0 , st);

X += (*W-SMI)(1 , addr*8); /* load start address */

X += (*W-SMI)(7 , 0x0001); /* ignite sequencer */

i=0;

bel: /* loop to check end of execution */
X += (*R-SMI)(7 , &st);

I+

N = (st & 0x0010);
if (N # 0) & (i<=1000)
Goto bcl;

if (i > 1000);
pr" exec. incompleted "
return(1);

end;

return(X);
end;

Figure B.1: EXEC Function C Code

APPENDIX B. FUNCTION TO TRIGGER SMI EXECUTION : EXEC() 101

0 Complete without error
1 SMI macro not completed

n n = No of errors on (*W-SMI), (*R-SMI)

Table B.1: EXEC Function Flags

is set. This generates the sequencer control memory "GO" strobe.

Three different flags, shown in table B.1, can be returned by the EXEC

function.

APPENDIX B. FUNCTION TO TRIGGER SMI EXECUTION : EXEC() 102

DATA = Register RO Read current configuration
St = Register RO

1- Get only Memory Bits

St = St AND 001f Chex)
St = St OR 9900 (hex) 2 - Select PADDR & PDATA bus
to be the sequencer
Register RO = St AND 0080 (hex) Put Sequencer in Execute Mode
Register R1 = start address Load PADDR bus with address
Register R7 = 0001 (hex) Start Sequencer GO
Read Register R7 Read Status of Sequencer
NO
IF bit4 = 0 Check state of JARDY
Y YES
DONE

Figure B.2: EXEC Function

Appendix C

FASTBUS parameter file

* KELVIN LABORATORY, UNIVERSITY OF GLASGOW

* Master fastbus parameter file

*

* 1st line for SMI setup

* SMI RAM No.Slots Panel
1 1 3 rear

* Following 12 lines for modules in crate 1

* Module Slot Read Test Config. File

*
PHIL 10c6 25 b n ./data/phil 10c.d
PHIL 10c2 24 b n ./data/phil 10c.d
STRUCK 136 10 b n NULL

*

* Next Crate

* SMI RAM No.Slots Panel
2 1 3 rear

* Following 1 lines for modules in crate 10

* Module Slot Read Test Config.file
STRUCK 200 12 b n ./data/str_200_clr.d
STRUCK 200 13 b n ./data/str_200_clr.d
STRUCK 200 14 b n ./data/str_200_clr.d

103

References

[3]

Richard Fernow, “Introduction to Experimental Particle Physics”, Cam-

bridge University Press, 1986.

W.R.Leo, “Techniques for Nuclear and Particle Physics Experiments”,

Springer-Verlag.

Eltec Electronik Mainz, EUROCOM 6, Hardware Manual, 68030 CPU

board.

Elect-68K-System, Hardware Manual, EUROCOM 5.

“VMV bus one slot VIC8250 ”, CES User’s Manual, Ver. 2.0, July 1990.
“CAMAC Branch Driver CBD 8210”, CES User’s Manual”.

“Interconnects for the FASTBUS SMI Model 18217, LeCroy AN-28A, Feb.

1985.

“Model 2891A CAMAC FASTBUS Interface”, LeCroy Operator’s Manual,

Revised March 1989.

104

BIBLIOGRAPHY 105

[10]

[11]

[12]

[13]

[14]

[15]

17]

[18]

[19]

[20]

[21]

[22]

High Speed Memory with ECLine Interface HSM8170, CES User’s Manual,

July 1988.

“Manual 1821/ECL”, LeCroy Operator’s Manual, July 1985.
“Passing Data to VME via ECLine”, LeCroy AN-46.

“What is CAMAC”, CERN-NP CAMAC Note 45-00, Feb 73.

B.Zacharov, “CAMAC Systems : A pedestrian’s guide”, Daresbury Nucl.

Phy. Lab, 1972.

EUR 4100, Esone Committee, Italy, 1975.
R.S.Larsen, IEEE, NS-29 (74-78), No 1, Feb 82.
H.Verweij, IEEE, NS-31 (211-213), No 1, Feb 84.
“An Introduction to FASTBUS”, LeCroy AN-26.

D.Burckhart, “An Introduction to FASTBUS”, CERN, Data Handling Di-

vision, DD/84/8, July 1984.

“FASTBUS Software Workshop”, Data Handling Division, CERN 85-15, 4

Nov. 85, .
“Model 10c2 FASTBUS QDC”, Phillips Specification Manual.
“Model 10c6 FASTBUS TDC?”, Phillips Specification Manual.

“STR136/DIFF FASTBUS ECL I/O Latch”, STRUCK Technical Manual.

BIBLIOGRAPHY 106

[23]
[24]
[25]

[26]

[28]

29]

[30]

[31]
[32]
[33]

[34]

“STR200 FASTBUS Scalers”, STRUCK Technical Manual.
L. Costrell, IEEE NS-30, No. 4, Aug 83.
L.Paffratn et al, IEEE, NS-29 (90-93), No 1, Feb 84.

“0S59/68000 Source Level Debugger User Manual”, Microware Systems

Corporation, 1987.

“OS9 Operating System Manuals”, Ver. 2.2, Microware Systems Corpo-

ration.

Peter Dibble, “An advanced programmers guide to 0S-9/68000”, Walden

Miller, 1988.
“MC68020 User’s Manual”, Motorola Inc, 1984-1985

B.W. Kernighan and D.M. Ritchie, “C programming language”, Prentice-

Hall,INC, London, 1978.

“0S9 Language Manuals”, Ver. 2.2, Microware Systems Corporation.
“1821’s User’s Manual”, LeCroy, Revised March 1987.

“Using the Model 1821 Segment Manager/Interface”, AN-28C.
W.Farr et al, IEEE, NS-31(217-224), No 1, Feb 84.

“Interactive FASTBUS Software Toolkit (LIFT)”, Lecroy Operator’s Man-

ual, Ver. 2.60-2, April 1988

