

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A Method of Fast Data Transfer

from FASTBUS

by

Baya Oussena

Presented as a Thesis for the Degree of Master of Science

Department of Physics and Astronomy,

University of Glasgow,

December 1991.

ProQuest Number: 11011440

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11011440

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A bstract

One major factor which affects the counting efficiency of a nuclear

physics experiment is the dead time of the detectors and the data acquisition

system. Experiments performed by Glasgow University photonuclear group typ­

ically involve the readout of ~ 1000 ADC’s and ~ 1000 scalers which contain

information on the products of a photo-disintegration event. These require fast

readout to minimise dead time and to this end a method of programming the

model 1821 FASTBUS Segment Management Interface (SMI) to increase data

throughput coming from FASTBUS has been developed.

The electronic hardware used is comprised of VMDE-bus, CAMAC, and

FASTBUS systems. The VME-based CPU is the heart of the data acquisition

system. FASTBUS is mainly used for ADC’s and TDC’s while CAMAC is mostly

used to control the experimental parameters such as detector thresholds, trig­

ger logic, high voltage etc. Each FASTBUS crate is controlled by a LeCroy 1821

Segment Manager Interface (SMI), and the interfacing to the VME CPU is ac­

complished either by using the VME fast memory module type HSM8170 or the

slower CAMAC interface type LeCroy 2891A. The HSM8170 is connected to the

SMI using the 32-bit LeCroy ECL bus.

The VME CPU runs the OS9 operating system, and the data acquisition

software has been written almost entirely in C. Software for the sequencer in

the 1821 SMI is written in machine code, although it is hoped in the future to

develop a simple assembler.

Two different SMI codes have been developed. These are called CODE1

and CODE2. The first attem pt, CODE1, uses the slow, CAMAC connection at

the front panel of the 1821 SMI for module initialisation and data readout. To

improve the data throughput, it was decided to develop CODE2 which uses

the rear panel ECL bus connection to a fast VME memory, and require no

intervention from the VME host CPU to initiate data readout. Associated C

routines written for the VME CPU handle downloading of the code to the SMI

and create FASTBUS module addressing SMI instruction words.

Finally, the performance of the two FASTBUS readout methods has been

compared on a test setup where more than 100 ADC channels are read for each

event. Under these conditions, the dead time for a CODE2 readout was found

to be approximately a factor of 8 less the dead time for CODE1.

D E C L A R A T I O N

The original work in this thesis comprises the bulk of that de­

scribed in chapter 4. This involved the development of CODE1,

the creation and developement of CODE2 and its associated C

written subroutines and the test measurements made to com­

pare the speed of the two codes. This thesis has been composed

by myself.

Baya Oussena

iii

A cknow legem ents

My special thanks go to my supervisor Dr J.R.M .Annand for his end­

less guidance, advice and encouragement during this work and for his critical

comments and discussions during the composition of this thesis.

I am grateful to Professor R.O.Owens, the director of the Kelvin Lab­

oratory, for affording me the use of the Kelvin Laboratory facilities and for

providing me with financial assistance without which this work would not have

been possible.

I would like to thank Dr I.Anthony, Dr G.Miller and Dr P.D.Harty for

their comments concerning the writing up of the thesis.

I woulk like to express my thanks to Dr J.C.McGeorge, Mrs Eileen

Taylor, Mrs Gwen Miller and the students R.Crawford, G.Cross and S. Doran

for their general help.

All of the Kelvin Laboratory Staff deserve thanks for their enthusiasm

and humour all of which have provided a most enjoyable working environment.

I should not forget to thank my friend Fatima and her husband for their

kindness and the endless support they gave me to continue with this work.

Even far away from Algeria, my whole family did not stop sending me

their help and especially the moral support I needed. I am very grateful to them

and through this acknowledgment I would like to express the best thoughts and

the best thanks I have for each of them.

v

i Sl>5̂ ̂ i
 , ' fe“.v

<*j j I — j ' T (fi *

y i^ yZ-oi^o O ^jv-j-0oi^i*-j^ £/.'•

^ || ><ijL> £ a lb ^ i i y S l l ^ t i i l * G I{H ill^ -)

m | |

To my parents who, with their love,

have helped my studies reach a successful conclusion.

vi

Contents

1 IN T R O D U C T IO N 1

2 H A R D W A R E D E SC R IP T IO N 7

2.1 VME system ... 8

2.1.1 Standard Hardware (Eltec E6/E5) 11

2.1.2 VME-VME connection (V IC 8250)... 12

2.1.3 VME-CAMAC connection (CBD8210)................................... 12

2.1.4 VME-FASTBUS connection ... 14

2.2 CAMAC s y s te m ... 16

2.3 FASTBUS system .. 17

2.3.1 In troduction .. 17

2.3.2 FASTBUS modules ... 18

vii

2.3.3 Addressing modes ... 21

2.3.4 FASTBUS operations 21

3 SO FTW AR E D E SC R IP T IO N 23

3.1 Overview of Data A c q u is itio n ... 24

3.2 OS9 Operating System .. 26

3.2.1 OS9 Input/O utput Structure ... 26

3.2.2 OS9 I n te r r u p ts ... 27

3.2.3 Multitasking and Intertask C om m unications..................... 28

3.3 General D evelopm en ts ... 29

3.3.1 Supervisor Task : vm e-supervise .. 30

3.3.2 Subprocesse Tasks : acqu, hist, store, s l a v e 33

3.3.3 Acquisition System Controlling Task ‘‘control” 39

3.3.4 Interrupt routine : CBD-IRQ ... 39

4 SMI PR O G R A M M IN G 41

4.1 1821 SMI Hardware ... 42

4.1.1 Host I/O registers ... 43

4.1.2 ECL Sequencer C o n tro l... 52

4.1.3 Pedestal S u b tr a c to r ... 55

4.1.4 Data Memory ... 55

4.2 The 1821 SMI Instruction W o r d ... 56

4.2.1 Op-code ... 56

4.2.2 Condition Code Multiplexer ... 56

4.2.3 Bus D e fin itio n ... 59

4.2.4 HSDATA Bus ... 59

4.2.5 S tr o b e s .. 59

4.2.6 Data Control ... 61

4.2.7 FASTBUS P ro to c o l... 61

4.3 1821 SMI code D evelopm ents .. 61

4.3.1 Load/Exec f u n c t io n .. 64

4.3.2 Front-panel code: C O D E 1.. 65

4.3.3 Host-CODEl Interaction function 73

4.3.4 Rear-panel code: C0DE2 .. 74

4.3.5 Host-C0DE2 Interaction function 83

5 C O N C LU SIO N 87

5.1 Data Acquisition Dead Time using C0DE1 88

5.2 Data Acquisition Dead Time using C0DE2 89

5.3 Interpretation ... 93

5.4 Future Improvement .. 94

A SMI C ode Download Function : LOAD() 95

B Function to Trigger SMI E xecution : EXEC() 99

C FA STB U S param eter file 103

Chapter 1

INTRODUCTION

CHAPTER 1. INTRODUCTION 2

In general, a nuclear physics experiment aims to shed light on an aspect or

aspects of nuclear structure, typically by bombarding the nucleus of interest

with a chosen probe (photon, proton etc.) and measuring the energies and

momenta of the final state products of the reaction between the probe and

the nucleus. Through the measurement of the interaction of the probe and

nucleus, details of the nuclear structure may be inferred. For this purpose,

particle detectors and associated electronic apparatus are required. Detector

signals are processed by analogue and digital circuitry, with the latter often

making logical decisions to determine if a particular event in the detection

system is potentially interesting. If so, a logic signal is sent to trigger the data

acquisition system, which in modern facilities is invariably built around one or

more microcomputers.

A simple but not untypical experimental layout is sketched in figure

1.1. A beam of “probe” particles bombards a target containing the nuclei of

interest. The reaction products are detected by counters “D eti” and “D et2”

which generate pulses having amplitudes proportional to the kinetic energy of

the particles and may be capable of particle identification. If the analogue

signals are digitised by ADC’s to give the energies and particle types and the

directions of travel are known from the geometry of the set up then it is easy

to calculate the momenta.

Time pick-off of detector signals by voltage discriminators produces logic sig-

CHAPTER 1. INTRODUCTION

O

Figure 1.1: H ypothetical Nuclear Physics Experiment

CHAPTER 1. INTRODUCTION 4

nals and temporal coincidences between these can show that multiple particles

are produced in the one probe, nucleus collision. The coincidence output is used

to trigger charge and time to digital convertors and to provide an interrupt sig­

nal to cause the computer to initiate readout of data.

As their name implies, Analogue to Digital Convertors (ADC’s) mea­

sure quantities such as charge, voltage or time and output a number which

is proportional to the analogue quantity. Usually the ADC’s are housed in a

standard bussed hardware system (CAMAC or FASTBUS) from which the num­

bers produced by the ADC’s are transferred via suitable interfaces into the main

Random Access Memory (RAM) of the computer which controls the experiment.

The computer would initialise and monitor the ADC’s, oversee the transfer of

data and operate on the data once it is in RAM. Operations might involve

storage in some standard format on disk or magnetic tape, analysis and sorting

into spectra and possibly transfer to another computer. This could take over

storage, analysis and display tasks, reducing system overheads on the front-end

experimental control computer. Storage on tape allows the data from the exper­

iment to be replayed offline, when more complicated and sophisticated analysis

than is possible online, can be performed.

One major factor which affects the efficiency of an experiment is the

dead time of the detectors and the data acquisition system. This is the finite

time required to process an event. Suppose m is the true counting rate and the

CHAPTER 1. INTRODUCTION 5

detector registers k counts in a time T. Since each detected count engenders a

dead time r , a total dead time kr is accumulated during the counting period

T. During the dead period, a total of m kr counts is lost [1, 2]. Thus the

ratio of observed counts to true counts registered in any time can be given

by R = 1 — m 'r, where m! = k /T is the observed counting rate. This ratio

approaches zero as the observed counting rate approaches the reciprocal dead

time.

The total dead time r can be broken into two components, T\ and T2.

Ti, depending only on the detectors and the electronics used by the experiment,

could be quite short (~ 100 ns) so that except at exceptionally high counting

rates it would not affect the counting efficiency. However T2, the time for

the computer to read out and process the event’s data, would generally be

much larger, perhaps around 1 ms, so that it would have a non-negligible effect

(R = 0.9) even at a modest counting rate of 100Hz. Thus to maximise the

counting efficiency, X2 requires to be minimised. This might be performed by

increasing the CPU speed, reducing system overheads, improving bus interface

hardware and making the data readout software more efficient.

At the Kelvin Laboratory, the data acquisition system ACQU is based

on three linked bus sytems, VME-bus, CAMAC, and FASTBUS. Most of the sig­

nal digitising and data readout is performed through FASTBUS. Each FASTBUS

crate is controlled by a LeCroy 1821 Segment Manager Interface (SMI) and the

CHAPTER 1. INTRODUCTION 6

goal of this project has been to produce new software to run on the FASTBUS

SMI and VME-bus CPU which makes efficient use of new SMI to VME-bus in­

terface hardware.

A general description of the hardware and software of the Kelvin Lab­

oratory data acquisition system is presented in chapters 2 and 3, while details

of the SMI and the new software are given in chapter 4. Chapter 5 presents test

comparisons of the old and new SMI interface systems and assesses the success

of the project.

Chapter 2

HARDWARE DESCRIPTION

CHAPTER 2. HARDWARE DESCRIPTION 8

The electronic hardware used in an experimental set up at the Institut fur Kern-

physik, the University of Mainz, shown schematically in figure 2.1, illustrates

the type of system which may be handled by the Kelvin Laboratory data ac­

quisition system. It is comprised of VME-bus, CAMAC, and FASTBUS systems.

The VME-based CPU is the heart of the data acquisition system. FASTBUS is

mainly used for ADC’s and TDC’s while CAMAC is mostly used to control the

experimental parameters such as detector thresholds, trigger logic, high voltage

etc. The test system used for the present work is shown in the photograph of

figure 2.2. Although not as extensive as the Mainz system it includes all of the

main elements, VME-bus, CAMAC and FASTBUS.

2.1 VME system

The VME crate used has twelve free slots (double height) and space for mount­

ing peripherals. The present system includes an Eltec E6/68030 microcomputer,

mass storage peripherals and more specialist modules such as the CBD8210

CAMAC Branch Driver, the VIC8250 VME to VME inter-crate communications

module and the HSM8170 high speed ECL ported memory.

CHAPTER 2. HARDWARE 9

rr77»

Figure 2.1: General Configuration

CHAPTER 2. HARDWARE DESCRIPTION 10

Tagger/Event Builder

VME-bus
E6 68030 CPU

+ 8 MByte RAM
Intelligent

Ethernet Driver

Solid State Disk
8Mb Non Vol Ram

Camac Br. Driver
CES 8210

Fastbus SMI
Interface

ECL Ported RAM
CES 8170

VME Link-Vicbus
CES VIC8250
180 Mbyte
Winchester

32 bit VIC bus

N eutron/Proton Detector

VME-bus
E6 68030 CPU

+ 8Mb RAM+Enet

Solid State Disk
8Mb Non Vol RAM

CAMAC Br Driver
CES 8210

FASTBUS
SMI Interface

ECL Ported RAM
CES 8170

VME Link
CES VIC8250

Camac
Parallel
Branch

Highway

CAMAC
H A2 Controller

CAMAC

Programmable
Delays

Tagger Ladder

ECL Logic OR’s
Tagger Ladder
Stepper Motor

Drivers

32 bit ECL bus

FASTBUS

Tagger TDC’s
Phillips 10c6

1821 SMI

CAMAC
A2 Controller

High Voltage
Controller

Lecroy System 1440
Stepper Motor

Drivers

Camac
Parallel
Branch

Highway

CAMAC
A2 Controller

Programmable
Discriminators

Lecroy 4413

FASTBUS
STR 200 Scalers

10c2 ADC’s
10c6 TDC’s
1821 SMI

Ethernet

DAPHNE 4tr Detector
VME System

RISC
DECstation

5000/120

32 bit ECL bus

Winchester

SCSI bus
EXABYTE

FASTBUS
Tagger Scalers

Struck STR 200
Tagger Coincidence
Struck STR136/D

Gated Latch
1821 SMI

CAMAC
A2 Controller

Prog. Discriminators
Lecroy 4413

Lecroy ECLine
Prog. Logic

CAMAC
A2 Controller

Programmable
Logic

Lecroy ECLine

FASTBUS
STR 200 Scalers

10c2 ADC’s
10c6 TDC’s
1821 SMI

Figure 2.2: Kelvin Laboratory Test System

CHAPTER 2. HARDWARE DESCRIPTION 11

2.1 .1 S tandard H ardw are (Eltec E6/E 5)

The heart of the VME bus system is the MC68030 based Eltec E6 single board

computer [3]. The less powerful MC68020/E5 [4]. can also be used with identical

source code.

These machines have 32-bit address registers, 32-bit data registers and features

such as :

1) 7Mip (E6) or 3Mip (E5) integer performance,

2) 1 to 16 Mbytes RAM, 128 kbytes EPROM

3) Hardware floating point coprocessor,

5) Interface circuitry for the VME bus,

the auxiliary VSB bus and SCSI bus,

6) Interface circuitry for ethernet communications.

The EPROM contains boot programs for various operating systems and

simple debugging facilities. The peripherals used with the present Eltec are :

1) 150 Mbyte hard disk

2) 150 Mbyte streaming tape

3) floppy disks 5^ inch or 3 | inch.

Figure 2.1 shows the connections between the various buses on the

acquisition system which are implemented by more specialist VME hardware.

CHAPTER 2. HARDWARE DESCRIPTION 12

2 .1 .2 VM E-VM E con n ection (VIC8250)

The VIC8250 [5] is a transceiver for the so called VIC bus, or vertical bus, which

has been developed by the company CES to connect VME backplanes, and has

been adopted by CERN as a standard VME to VME connection. Up to 15 back­

planes may be connected by twisted pair cable of maximum length 100m, and

one VIC8250 must be programmed as the bus master with the others as slaves.

VIC bus allows a VME CPU to access any address in any connected VME sys­

tem, but this can result in VME-bus arbitration problems requiring specialist

software solutions. Instead the ACQU system uses the internal buffer memory of

the VTC8250 for inter-VME communications. Slave VME systems write data to

the buffer in their local VIC8250 and the master reads this buffer over the VIC

bus. Special mailbox locations in the VIC8250 buffer are used to synchronise

read/w rite operations.

2.1 .3 VME-CAMAC con n ection (CBD8210)

The VME-bus is interfaced to CAMAC through the CES CBD8210 CAMAC

Branch Driver [6]. This module, based on a Saclay design, is a double height

VME card which maps a 24 bit VME address to a CAMAC CNAF and drives a

parallel branch of up to 7 CAMAC crates. The CBD8210 can drive one CAMAC

CHAPTER 2. HARDWARE DESCRIPTION 13

branch with the number of the branch to be driven selected by a front panel

switch.

The CBD8210 provides four internal registers to handle communica­

tions. The CSR (Control Status Register) addressed by CO N29 AO FO, con­

tains most of the status information necessary for correct functioning of the

CBD8210.

The IFR (Interrupt Flag Register) addressed by CO N29 AO F4 is write only

and provides the facilities to set or clear external interrupt flags by software.

This is potentially useful for test purposes.

The CAR (Crate Address Register) addressed by CO N29 AO F8 is used for

multiple addressing of crates on a CAMAC branch.

The BTB Register is addressed by CO N29 AO F9. When it is read, we get the

information regarding which crates in the branch are on line, and when written

to, a CAMAC branch initialisation is generated (BZ signal).

The CBD8210 maps any standard B ,C ,N ,A ,F CAMAC address/command

to a unique 24 bit VME address as follows :

bits [23:22] = 1:0
bits [21:19] : B = Branch Address (0 to 7 Front Panel Switch)
bits [18:16] : C = Crate Number (1 to 7 Standard addressing)
bits [15:11] : N = CAMAC Station Number
bits [10:07] : A = CAMAC Subaddress
bits [06:02] : F = CAMAC Function
bits [1] : CAMAC Word Length : 0=24 bits, 1=16 bits
bits [0] = 0 .

CHAPTER 2. HARDWARE DESCRIPTION 14

In the C language the VME address for a BCNAF CAMAC command is

generated as follows :

bcnaf = b + (c < 16) + (n < 11) + (a < 7) + (f <. 2) + (I <C 1)

where “<C” means left shift. The three classes of CAMAC functions (read, write,

test) are implemented as follows:

read-value = * bcnaf
* bcnaf = write-value
test = * bcnaf

The CBD8210 can generate external VME-bus interrupts (IRQ) to the

CPU at priority 2 or 4 when it receives an external logic signal at the front

panel. The interrupt vector number can be jumper set from 1 to 255 so that

conflicts with any other interrupting peripherals can be avoided.

The CPU response to interrupt requests is quite fast. The E6 hardware ac­

knowledges the IRQ within approximately one microsecond and generally the

IRQ service routine is initiated within 10 to 15 fis.

2.1 .4 VME-FASTBUS con n ection

The interfacing to FASTBUS is more complicated than CAMAC [7]. Each FASTBUS

crate is controlled by a LeCroy 1821 Segment Manager Interface (SMI) and

the interfacing is accomplished either by using the VME fast memory module

HSM8170 or the slower CAMAC interface type LeCroy 2891A.

The CAMAC based LeCroy 2891A [8] provides a bi-directional link be­

CHAPTER 2. HARDWARE DESCRIPTION 15

tween FASTBUS and the VME-bus. Due to its indirect nature, it is relatively

slow, but it is reliable nonetheless. The 8 main control registers in the SMI are

mapped to equivalent registers in the 2891A, via a ribbon cable connection, so

tha t the SMI can be programmed by issuing appropriate CNAF’s. For example

the CAMAC command F(0) A(0-7) will read the contents of the 1821 registers

0 to 7 and the command F(16)A(0-7) will write data into the 1821 registers 0

to 7. The model 2891A has the capability to address multiple 1821 ’s. To select

any 1821, the module select register is programmed. The module select register

is loaded with the desired SMI address by the command F(17)A(1) and read by

the command F(1)A(1).

To increase the speed of data transfer another module has been added

to connect the VME-bus to FASTBUS. This is the CES ECL ported memory

type HSM8170 [9], which allows fast data transfer from FASTBUS to VME buffer

memory at a maximum speed of 10 MHz. A FIFO (First In First Out) buffer

of 64 words of 32 bits allows the maximum data transfer rate into the main

memory without handshake between the 1821 SMI and the HSM8170.

Control of the HSM8170 is performed through 4 registers : The control register,

the interrupt and status/ID register, the address pointer register and the word

counter register. As in the present application the HSM8170 interrupts are not

used, the interrupt and control registers are programmed to disable the inter­

rupts. The usable HSM8170 memory size is fixed through the control register.

CHAPTER 2. HARDWARE DESCRIPTION 16

The address pointer register allows the selection of the starting address in mem­

ory where the data will be transferred and the word counter register is initiated

with the maximum number of words to be transferred into the memory.

The HSM8170 is connected to the SMI using the 32-bit LeCroy ECL

bus. A small interface board, 1821/ECL [10, 11], connected to the SMI via the

auxiliary backplane, converts internal SMI logic to differential ECL logic. The

1821 SMI cannot receive data through the 1821 ECL data ports, which is why

the slow connection via CAMAC is necessary.

2.2 CAMAC system

CAMAC [12]-[14] in the Kelvin Laboratory data acquisition project is primarily

used for programmable circuitry which allows the remote control of experimental

parameters such as signal thresholds, trigger logic conditions and detector high

voltages. However the readout of CAMAC ADC’s is also supported.

The main piece of CAMAC hardware is the crate, which has 25 stations.

Stations 24 and 25, the rightmost stations, are reserved for the controller, while

stations 1 to 23 are normal stations used for CAMAC slave modules. Each

module connects to the CAMAC bus, known as the dataway , which constitutes

a series of bussed and individual lines to perform data read, data write, strobing

and addressing.

CHAPTER 2. HARDWARE DESCRIPTION 17

The crate controller is the heart of the CAMAC crate. The type A crate

controllers, used in our system, interface between the parallel branch and the

CAMAC dataway and have no particular dependence on the type of computer

involved.

The crate controller only responds to branch commands which correspond to

its own crate number (C), which is selected by a front panel switch. In response

to the NAF command, it sets the appropriate dataway lines and issues a strobe

signal to the slave module. In general a module will not support all possible

NAF permutations, but those which it does support must be part of the CAMAC

standard. In response to a valid command which it supports, the module will

generate a valid command accepted (X response) and act on the command. If

the command requires data transfer, the read or write lines will be used.

2.3 F A ST B U S system

2.3 .1 In trod u ction

FASTBUS [15]-[19], was originally conceived in the middle 1970’s in response to

the needs of high energy physicists for more powerful and sophisticated data

acquisition hardware. It was developed to provide high speed data acquisi­

tion for large detector systems, as encountered in particle physics experiments.

However the increased size and complexity of medium energy nuclear physics

CHAPTER 2. HARDWARE DESCRIPTION 18

experiments have made it increasingly useful in this field.

A typical system might consist of the bus itself (also known as the

segment), modules and a host computer. General categories of module include

processor interfaces, segment interconnects, ADC’s, memories, logic signal pro­

cessors and diagnostic modules. The segment is a 32-bit bus with multiplexed

address and data lines. It supports asynchronous transfers with handshake

protocol, several addressing and data transfer modes, arbitration with priority

levels and autonomous operation of individual segments.

At the Kelvin Laboratory we use the Struck type STR104F FASTBUS

crate which has an easily demountable CERN specification power supply of 3.5

kW DC capability. The FASTBUS crate is 19 inches wide and has 26 slots of

which none are privileged. The board dimensions are 366.7 mm high by 400

mm deep, about 4 times the size of a CAMAC board.

2.3 .2 FASTBUS m odu les

There are two basic categories of FASTBUS modules, masters and slaves. The

slave modules, which are mainly ADCs, TDCs, scalers etc., cannot gain m aster­

ship of the segment but can only assert information on the segment in response

to a specific request by a master.

Compared to CAMAC modules, FASTBUS modules are more sophisticated and

CHAPTER 2. HARDWARE DESCRIPTION 19

more complicated to program. They provide 32-bit subaddress capabilities and

would normally support several addressing modes. The registers of FASTBUS

modules are divided into two distinct regions, Data Space (DSR) and Control

Status Space (CSR), which are separately accessible. The purpose and size of

the data space is defined by the designer, whereas some CSR registers have

standard functions. Each module contains in the 16 Read Only MSB (Most Sig­

nificant Byte) of its standard register CSRO, a module specific identifier code.

The full 32 bits (Write Only) of CSRO are used to control the functions of the

slave module.

A brief description is now given of some FASTBUS modules used at the

Kelvin Laboratory.

1- Phillips 10c2/10c6 ADCs

The Analogue to Digital Converter modules, Phillips 10c6 Time to Dig­

ital [20] and 10c2 Charge to Digital, have 32 channels [21]. Each channel can

be individually programmed with a pedestal correction and a lower and upper

level threshold. The data which satisfy the threshold conditions are transferred

from the ADC to a UFO (Last In First Out) buffer, where they are stored two

ADC channels per 32-bit word, with a header word per event. D ata can be

read a minimum of 8.5 ps after receipt of a trigger signal and block readout

can typically occur at 10 MHz rate. For increased throughput when reading

out many modules, MULTTBlock readout is used. MULTTBlock mode potentially

CHAPTER 2. HARDWARE DESCRIPTION 20

allows a whole crate of 10c modules to look like one contiguous buffer to the

master, enabling readout of multiple modules as if they were one giant module.

2- Struck STR136 Gated Latch

This is an edge-triggered 64-input gated latch [22]. While a gate signal

is applied, any input will be latched and the latched inputs may be read over

FASTBUS as well as being available as outputs. The 64 latched bits are read

through a block transfer on DSRO and DSR1.

3- Struck STR200 Scaler

This contains 32, 32-bit 100 MHz scalers [23]. They may be read

through registers DSRO to DSR31 and block transfer is supported.

4- LeCroy 1821 SMI

The practical use of all these slave modules depends on having a suit­

able FASTBUS master to read them out. The LeCroy 1821 SMI (Segment Man­

ager Interface) is a programmable FASTBUS module which can act as a slave, a

master, a snoop, or a processor interface. In the present application the SMI is

always the segment manager, issuing the commands both to initialise slave mod­

ules and where applicable to read data from them. It also provides interfaces

between FASTBUS and the VME-bus. It is futher described in chapter 4.

CHAPTER 2. HARDWARE DESCRIPTION 21

2.3 .3 A d d ressin g m odes

The basic mode of FASTBUS addressing is geographical, ie a module is accessed

by its physical slot number in the FASTBUS crate. This is known as the primary

address cycle. A secondary address cycle, which involves writing a 32-bit “reg­

ister offset” to the module, gives access to the internal registers of the module.

An alternative to geographical addressing is logical addressing, where the de­

vice is assigned a logical address of 32 bits consisting of the device address and

an internal address [24]. Each device capable of being logically addressed con­

tains a device address register, which is fully accessible by standard FASTBUS

operations and which must be initialised by the system startup procedure.

Where it is desired to program several slaves simultaneously, broadcast

addressing may be used. Unlike logical or broadcast addressing, all FASTBUS

slaves must support geographical addressing and this is the mode used in the

present acquisition system.

2 .3 .4 FASTBUS operations

There are basically four phases in a FASTBUS operation [25]. These are the

arbitration, addressing, data read/write and bus release cycles.

In the present case the 1821 SMI is always configured to be the master,

and arbitration is unnecessary. During the primary address cycle, the geograph­

CHAPTER 2. HARDWARE DESCRIPTION 22

ical address of the desired module is placed in the Address D ata (AD) lines.

Once the slave recognises its address on the AD lines, it responds by asserting

the address acknowledge line. The address cycle results in the establishment

of a link between the master and the slave. After receiving the slave’s address

acknowledge, the master can clear the address from the AD lines and thus use

them for data transmission, such as the transmission of a secondary address

which is accomplished through a write data cycle.

After writing a secondary address a master will normally proceed to

transfer data. In the present application block mode is used for data transfer.

Chapter 3

SOFTWARE DESCRIPTION

23

CHAPTER 3. SOFTWARE DESCRIPTION 24

3.1 O verview o f D ata A cquisition

Kelvin Laboratory experiments typically involve the readout of ~ 1000 ADC’s

and ~ 1000 scalers which contain information on the species and momenta

of particles associated with a photo-disintegration event. These require fast

readout to minimise deadtime and the acquisition software should have the

flexibility to allow easy changing of the experimental hardware configuration.

A general aspect of a data acquisition system is shown in figure 3.1.

The main functions of the data acquisition software are :

1- Control of Data Transfer from ADC’s

2- Data Storage

3- Data Analysis - Sorting into spectra - Display of spectra

To carry out these processes efficiently, the functions named above

should be independent tasks, hence the need for a multitasking system. The

OS9 operating system written originally for MC68000 microcomputers offers

multitasking, good real time response and reasonable source level debugging

facilities [26], which become indispensable when the complexity of the code

increases.

For maximum efficiency, data readout and transfer from ADC’s should

be interrupt driven, and ideally the time slicing priorities of the various tasks

would be “tuned” to make best use of the CPU. However, care should be

CHAPTER 3. SOFTWARE DESCRIPTION

DETECTION

CONVERSION

TRANSFER

PROCESSING

Analog Data

Digital Data

Convert to Standard format

MASS STORAGECOMPUTER

STORAGE

VISUALISATION

ADC’s

DETECTORS

DATA TRANSFER

ANALYSIS / SORTING
DISPLAY

Figure 3.1: General Aspect of the Acquisition

CHAPTER 3. SOFTWARE DESCRIPTION 26

exercised in performing the latter, especially where the progress of one task

depends on the progress of another.

3.2 OS9 O perating System

0S9 [27, 28] is a multitasking, real time operating system for the 68000 family

of microprocessors, which is widely used in nuclear or high energy physics data

acquisition systems as well as a variety of scientific or industrial applications.

OS9 has two distinct states in which object code can be executed. These are

“user” state, where processes are time sliced with some restriction on access to

hardware addresses and “system” state, where processes are not time sliced and

have unlimited access to any address. OS9 system calls and interrupt service

routines run in system state. System state routines often deal with physical

hardware present on the system.

3.2 .1 OS9 In p u t/O u tp u t S tructure

OS9 input/output operations are handled by three programs usually w ritten in

assembly language. They are respectively :

1. File M anager

This includes general purpose code to service a particular class of device eg. a

disk or tape. It handles the file structuring of a device and has very little device

CHAPTER 3. SOFTWARE DESCRIPTION 27

dependence. It is not of any use for CAMAC or FASTBUS operations, but we

have to use it to comply with the OS9 way. Four file managers are included in

our system. The one used in the present data acquisition is the SBF (Sequential

Block File Manager) which is normally used with sequential block structured

devices such as tape drives.

2. D evice Driver

This module, in conjunction with the file manager, handles the actual operation

of a device, and in practice will be somewhat device dependent. We use it to

initialise VME slave modules, install interrupts etc. We could use it for data

readout, but this is not necessary. Its function is to contain the device’s interrupt

service routine and provide the means of loading it into the OS9 operating

system.

3. D evice D escriptor

This is a data module read in by the device driver to specify addresses, interrupt

vectors etc. for a specific device. Each physical device has an associated de­

scriptor and one device driver can handle several descriptors and hence devices.

3.2 .2 OS9 In terrup ts

The 0S9 operating system provides the user with 192 vectored interrupts (vec­

tors 64 to 255), allowing the system to handle many interrupting devices. Vec­

CHAPTER 3. SOFTWARE DESCRIPTION 28

tors 1 to 64 are reserved for the system. Interrupt service routines are executed

in system state at priorities ranging from 1 to 7, where 7 is the highest. Low

priority interrupts give way immediately to those of higher priority and only

resume after the higher priority interrupt has completed.

3.2 .3 M u ltita sk in g and In tertask C om m u n ication s

When the multiple tasks of the acquisition system are loaded and executed,

interprocess communication is necessary to synchronise processes and to pass

data between them. Synchronisation is handled by the use of signals and events,

while data are passed via shared memories.

1. Signals

The process expecting a signal must contain a signal intercept routine to catch

this signal, otherwise it will be killed by the first signal it receives.

Signals are not queued, so they may be lost if they are not serviced by the

intercept routine. The present application uses signals only at the end of the

data acquisition to cause an orderly shutdown of the system.

2. Events

Unlike signals, events are queued so that no event can be lost. A process “waits"

for an event to occur or "sends" an event to another process. Events are named

and can be assigned values. Thus checks can be made by a potential receiver

CHAPTER 3. SOFTWARE DESCRIPTION 29

in systems where several different events are used.

Events are used to handle the communication between four subprocess tasks

“acqu", “hist", “store”, “slave". The three tasks “hist", “store", “slave" wait

for events from the task "acqu" which show it has accumulated a full buffer of

event mode data.

3. S h a red M em ories

Shared memories are created to pass data between the different subprocess

tasks “acqu”, “hist” , “store”, "slave” . Each subprocess must be linked to the

shared memory before it can perform any access to it. In the present application

two shared memories are created. One is used as a shared device ID memory,

containing tables of information on the system hardware, and the other is used

to define two swinging buffers used for transfer of data.

3.3 G eneral D evelopm ents

In addition to the native assembly language [29], 0S9 offers the high level

programming language C [30, 31] which, with its ability to manipulate real

hardware addresses, is highly suited to data acquisition programming.

Apart from a few lines of assembler, the data acquisition software

“ACQU” which initialises, monitors and performs data readout of hardware

in the VME-bus, FASTBUS and CAMAC standards has been written in the C

CHAPTER 3. SOFTWARE DESCRIPTION 30

language. A block diagram of the software modules and their interconnections

is given in figure 3.2. ACQU consists of six principal tasks :

1- Supervisor task ("vme-supervise”),

2- Data readout task (“acqu"),

3- Data storage task ("store”),

4- Histogramming task ("hist"),

5- Slave system control Start/Stop task ("slave”),

6- Master system control task (“control").

3 .3 .1 S up ervisor Task : vme-supervise

The program supervisor, "vme-supervise" performs four essential initialisation

functions before it goes to “sleep”. These are :

1- Hardware initialisation,

2- Shared memories initialisation,

3- Interprocess communications initialisation,

4- Start up of subprocesses (acqu, hist, store, slave).

The hardware initialisation is based on information read in from pa­

ram eter files which are created using the standard editor. All files are liberally

commented (lines beginning with " *") to improve readability. Three main pa­

ram eter files are used :

CHAPTER 3. SOFTWARE DESCRIPTION 31

IRQ Enable/Disable

LOCAL
Readout

ENET

ENET VIC
STOREVIC

SORT

IRQ Enable/Disable
PLOT

STORE
Perm
Store
Data

HIST
Sort

Spectra

ACQU
Readout
Crates

SLAVE
Remote

Computer
Control

IRQ
Service
Routine

EVENT MODE
DATA

MEMORY

DEVICE
TABLE
STATUS

MEMORY

SPECTRUM
BUFFER

MEMORY

VME SUPERVISE
init modules

init memories
init events

fork children

CONTROL
Start/Stop

New run/End Run
General Status

Figure 3.2: Block Diagram of Data Acquisition Software

CHAPTER 3. SOFTWARE DESCRIPTION 32

1. Master Parameter File

This defines the shared memories such as the hardware module table,

data buffers and spectrum buffers. Also defined are OS9 event names used for

the communication between semi-independent tasks, and output paths such as

ethernet or local mass storage.

2. CAMAC Parameter File

The CAMAC parameter file is rather simpler in structure than the

m aster parameter file. Each non-comment fine relates to a single CAMAC

module. There are 4 parameters to a line, which are: crate number, station

number, module name, module specialist initialisation file. Table 3.1 contains

the names of the CAMAC modules currently recognised by the ACQU system

along with their function.

3. FASTBUS Parameter File

The FASTBUS parameter file is also relatively straightforward to un­

derstand. An example is given in appendix C. The FASTBUS master is assumed

to be a LeCroy 1821 SMI (Segment Manager Interface). Each FASTBUS crate

has a section consisting of one line pertaining to the SMI setup, followed by

"n" lines, where “n” is the number of slave modules (ADC’s, logic modules etc.)

which reside in that particular FASTBUS crate, i.e. one line per module. The

SMI line has 4 parameters which are : SMI number, RAM number, number of

CHAPTER 3. SOFTWARE DESCRIPTION 33

slaves and readout mode. A list of supported FASTBUS modules is given in

table 3.1.

After initialisation is complete, the supervisor may be re-awakened by

a signal from the control process to make an orderly shutdown of the acquisition

system. The supervisor and its child tasks execute in the background state, so

tha t the terminal is available to control the acquisition system by running the

control module “control".

3 .3 .2 S ub p rocesse Tasks : acqu, hist, store, slave

The “acqu" subprocess must be run to give data readout, but other subprocesses

are optional depending on what is required of the acquisition system.

The four subprocess tasks “acqu", “store", “hist", “slave”, run simul­

taneously. On receipt of an event from the interrupt routine, the "acqu" task

performs the readout of CAMAC and FASTBUS modules into a data buffer in

shared memory. Data transfer from CAMAC is accomplished by a simple read

address operation. However data transfer from FASTBUS is more complicated,

since this bus is inherently more complex than CAMAC, and the usual FASTBUS

master, the 1821 SMI, has itself to be programmed. Details of FASTBUS readout

programming are given in Chapter 4.

When a data buffer is full, "acqu" can optionally send an event signal

CHAPTER 3. SOFTWARE DESCRIPTION

Name
A2C0NTR0L
LRS2249A
LRS2249W
LRS2249SG
LRS2259
LRS2228A
LRS4413
LRS4418
LRS4508
LRS2551
LRS2891A
HYTEC310S
SEN2PA2049
SEN2PA2048

Name
PHIL_10c6
PHIL_10c2
STRUCK-200
STRUCKJL36D
STRUCK-136

CAMAC m odules used
Module
A2 Controller
LeCroy 2249A
LeCroy 2249W
LeCroy 2249SG
LeCroy 2259
LeCroy 2228A
LeCroy 4413
LeCroy 4418
LeCroy 4508
LeCroy 2551
LeCroy 2891A
Hytec 310s
SEN 2049
SEN 2048

Function
Parallel Branch
Q ADC lObit
Q ADC lib it
Q ADC lObit
V ADC lib it
TDC lib it
16chan. LED
16chan. delay
Dual PLU
12ch.Scaler
SMI interface
4 chan scaler
Dual attenuator
Dual cable delay

FASTBUS m odules used
Module
Phillips 10c6
Phillips 10c2
Struck 200
Struck 136/DifF
Struck 136

Function
TDC lObit
Q ADC lObit
100 MHz Scaler
64bit Latch
64bit Latch

Table 3.1: Supported CAMAC and FASTBUS m odules

CHAPTER 3. SOFTWARE DESCRIPTION 35

to the storage task "store" to write the data to mass storage or ethernet and/or

to the histogramming task “hist” to sort the data into spectra. D ata transfer

is performed through two swinging data buffers. A flow chart depicting the

operation of "acqu" is given in figure 3.3.

D ata storage may be on a local peripheral or on a remote device via

ethernet. The TCP protocol is used for ethernet communications between dis­

similar computers and operating systems. This high level protocol has been

tested between an Eltec E6 running OS9 and a variety of VAX’s running VMS,

where it has proved to be adequately fast and extremely reliable. When "store"

receives the signal from “acqu” it copies the data buffer to ethernet or local

device and makes it available to “acqu" for futher data. A flow chart of the

subprocess "store" is shown in figure 3.4.

The subprocess “hist” copies a data buffer over to a special histogram

buffer from which it does the sorting. When it has finished it flags tha t it

is ready to receive another. Apart from generally adding to system overheads,

"hist” does not hinder data buffer storage. A general flow chart of the subprocess

"hist", is shown in figure 3.5.

The subprocess "slave" causes the VME system to run in slave mode.

The assumption is that there are several coupled VME systems and tha t one of

the remote systems is the master which controls start/stop etc.

CHAPTER 3. SOFTWARE DESCRIPTION

IRQ Event from
IRQ Service Routine

YESSCALER READ DUE ?

NO

YES

VIC TRANSFER ?

NO

BUFFER FULL ?
NO

YES

Event Signal to STORE task

NO
HIST Enable?

YES
Event Signal to HIST task

READ SCALERS

SWING BUFFERS

WRITE VIC MEMORY

READ FASTBUS

RE-ENABLE
IRQ

READ CAMAC

WAIT IRQ EVENT

SIGNAL BUFFER STORE

Transfer HIST Buffer
if HIST task is ready

Figure 3.3: Flow Chart of Subprocess “acqu"

CHAPTER 3. SOFTWARE DESCRIPTION

LocalEthernet

Open new data file

Write data to socket

Flag Buffer Stored

Write data into data file

Wait signal from "acqu"Wait signal from "acqif

Init IP

Socket for Data Transfer

Link to Shaved Memories
Link to Shared Events

Check whether
ETHERNET or LOCAL

Required

Figure 3.4: Flow Chart of Subprocess “store”

CHAPTER 3. SOFTWARE DESCRIPTION

Flag Buffer Sorted

Sort ADC’s to histograms

Event signal from " acqu"

Accumulate SCALERS

Link to Shared Memories
Link to Shared Events

Figure 3.5: Flow Chart of Subprocess

CHAPTER 3. SOFTWARE DESCRIPTION 39

3 .3 .3 A cq u isition S ystem C ontrolling Task “control"

To provide the interaction between the user and the data acquisition system, a

module, named “control" has been written. It allows the user to manipulate the

acquisition and also to retrieve status information. To start any acquisition, the

user should run "control" and issue the command which enables the interrupts.

It is only when the interrupts are enabled, that readout operations are started.

If the optional task “hist" has been started, the user can ask at any time for a

histogram or for a plot using the appropriate command.

3 .3 .4 In terrup t rou tine : CBD-IRQ

For fastest response to any trigger signal generated in an experiment, interrupt

driven readout of FASTBUS and CAMAC is used. Normal processes are time

sliced by 0S9 but interrupt service routines override system time slicing and

run with minimal delay.

The interrupt routine CBD-IRQ is part of the Kelvin Laboratory written

device driver. The driver can potentially handle a variety of VME-bus modules,

but at present only interrupts from the CAMAC branch driver CBD8210 are

implemented.

The assembler written interrupt service routine is kept very short to

avoid upsetting the 0S9 time slicing algorithm, and merely serves to trigger

CHAPTER 3. SOFTWARE DESCRIPTION 40

the otherwise dormant task “acqu" using an OS9 even t. This triggering takes

place within ~ 150/zs of receipt of the external interrupt signal.

Chapter 4

SME PROGRAMMING

41

CHAPTER 4. S M PROGRAMMING 42

The model 1821 FASTBUS Segment Manager Interface (SMI) is a programmable

FASTBUS master [32, 33]. It was originally designed to readout and test the

LeCroy 1800 series of data acquisition modules [34]. As more FASTBUS expe­

rience was gained, the 1821 SMI’s programmability provided users with some

flexibility in designing and implementing FASTBUS data acquisition systems,

and it has subsequently been used to control a variety of modules.

The most important application of the SMI is as a segment master.

Once programs have been downloaded from a host computer, the SMI can handle

bus protocols, and is also capable of such tasks as the writing to or reading from

slave modules. It can also perform data compression and pedestal subtraction.

4.1 1821 SMI H ardware

The following description of the SMI is based on the contents of the LeCroy

manual [32]. The 1821 SMI is a double width FASTBUS module consisting of two

boards, the 1821-1 and the 1821-2. The 1821-1 provides the FASTBUS interface

and control. It consists of a high speed ECL sequencer capable of fetching

and executing approximately 32 million instructions per second. The sequencer

instruction word is 64 bits wide and its memory is 256 words deep. Currently

only 48 bits of the instruction word are used. These are divided into 7 fields,

each specifying particular operations which can be executed simultaneously.

CHAPTER 4. SMI PROGRAMMING 43

The different fields are listed in table 4.1. The sequencer instruction set consists

of 11 instructions, which are listed in table 4.2. Of the 11 instructions only 6

have been used in our SMI program development. These are : STRT, RETN,

NOP, JUMP and CJMP. The use of the instructions NCAL and NRET would

have simplified the programming of the SMI, but their operation in practice did

not comply with the specification. Because of its high speed and the ability

to execute different operations simultaneously, the sequencer can potentially

execute over 100 million operations per second. A diagram of the sequencer is

given in figure 4.1.

The second board, the 1821-2, provides the host interface system. It

consists of 8 I/O registers, sequencer program memories (EPROM and RAM),

4K of 32-bit data memory, 8K of 10-bit pedestal memory and the pedestal

subtraction hardware.

Using the 8 1 /0 registers, the host communicates with all the subsystems of the

1821-2 interface card.

4.1 .1 H ost I /O registers

Eight 16-bit registers numbered RO to R7 are employed to latch data passed

between the host and the SMI. They are shown in figure 4.2 along with their

interconnections. RO and R3 are configuration registers; R l, R2, R4, R5, and

R6 are input/output registers and register R7 is used to generate strobes and

CHAPTER 4. SMI PROGRAMMING

Field

OP-CODE

CONDITION CODE
MULTIPLEXER

BUS DEFINITION

HSDATA

STROBES

DATA CONTROL

FASTBUS PROTOCOL

Definition

Defines the instruction to be executed.
There are 11 instructions currently defined

Defines the Condition Code to be tested

Defines HSDATA and IAD Bus sources

8-bit data field that can be loaded
onto the HSDATA Bus

Defines the strobes that latch or
set different conditions within the
sequencer.

Defines the mode of the 32-bit register
(either BYTE or WORD), whether data is
piped to other subsystems.

Defines the FASTBUS lines to be SET/RESET,
and the mode (SLAVE or MASTER)

Table 4.1: Instruction Field D efinition

CHAPTER 4. S M PROGRAMMING

Instructions

STRT

RETN

NEXT (NOP)

JUMP

CJMP

CALL

CCAL

NCAL

NRET

LSTR

CRET

Code Use

Oh Fetch address on Initial Word Address lines (IWA)

4h Fetch address in Return Address Register (RAR)

8h Fetch address in Next Sequential Address
Register (NSAR)

Ch Fetch address on HSDATA Bus

Ah Fetch address on HSDATA Bus if CC bit is TRUE,
else fetch address in NSAR

Dh Fetch address on HSDATA Bus and latch NSAR
address into RAR

Bh Fetch address on HSDATA Bus if CC bit is TRUE,
else fetch address in NSAR

9h Fetch address in NSAR, and latch it into RAR

5h Fetch address in RAR, and latch NSAR into RAR

lh Fetch IWA address, and latch NSAR into RAR

2h Fetch address in RAR if CC bit is TRUE,
else fetch IWA address

Table 4.2: Instruction Set D efinition

CHAPTER 4. S M PROGRAMMING

F A S T B U S

0 3
o £

O TJ

2 z53aO yb

ADDR M UX

00

» w

r» D <B.> SH q >
-4^-

00

Figure 4.1: 1821 Block Diagram of the Sequencer

CHAPTER 4. S M PROGRAMMING 47

monitors status. A brief description of the registers is given in the following :

R egister RO :

This register is used to control data paths for program download, up­

load, menu memories and sequencer program memory. Table 4.3 gives the

function of each bit.

R egister R1 :

This is used to load a start address either for program transfer or for

sequencer subroutine execution. Readback of this register gives the address plus

two status bits, data available and sequencer (active/wait) status. Operation

depends on settings in register RO.

R egister R2 :

This is used to download sequencer code or dynamically supply sub­

routine arguments. It can also be used to read back sequencer code in 8-bit

sections and an 8-bit status word containing FASTBUS SS or MS codes. Opera­

tion depends on the settings in register RO.

R egister R3 :

This is used to control the flow of data from the sequencer and to

control the pedestal subtractor and the null data suppressor. The definition of

each bit is given in table 4.4.

M
odule

A
ddress

Sw
itch

CHAPTER 4. SMI PROGRAMMING 48

00

o

INTERFACE BUFFER

INTERFACE BUFFER

AUXILIARY CONNECTOR

FRONT PANEL CONNECTOR

oo 2m o
E o

Figure 4.2: Host I/O Registers

CHAPTER 4. S M PROGRAMMING

Bits Function

Src/Dest codes

0 0 - PMAR (Src); M enu(Dest)
0 1 - Sequencer
1 0 - Host I/O register R1
1 1 - Not defined.

Src/Dest codes

0 0 - Menu Memory
0 1 - Sequencer
1 0 - Host I/O register R2
1 1 - Not defined.

07 Sequencer Program Load Bit

06 Request Sequencer Attention

05 User Spare Bit

04 X

03 X

02 MMS2 Menu Memory Select Bits

01 MMS1

00 MMS0

PADDR = Program Address Bus
PDATA = Program Data Bus

15 Source PADDR bit 0

14 Source PADDR bit 1

13 Destination PADDR bit 0

12 Destination PADDR bit 1

11 Source PDATA bit 0

10 Source PDATA bit 1

09 Destination PDATA bit 0

08 Destination PDATA bit 1

Table 4.3: Register RO Definition Bits

CHAPTER 4. S M PROGRAMMING 50

The RESET signal is the most important bit. At power-up, register R3 is cleared,

immobilising the SMI until a 1 is written to the RESET bit.

R egister R4 :

This is mapped to the lower 16 bits of the internal address and data

bus. It is used to read from the FASTBUS A/D lines or from the data memory

and also to download the data memory for test purposes. Its operation depends

on settings in register R3.

R egister R5 :

This is mapped to the upper 16 bits of the internal address and data

bus and otherwise operates as register R4 .

R egister R6 :

The write register stores the starting address and operational mode of

the D ata Memory Address Register (DMAR), which points to the current loca­

tion in SMI data memory. The DMAR has auto-increment and auto-decrement

modes of operation.

The read register operation provides access to the current value of the DMAR

and some data memory status bits.

R egister R7 :

This register is used to generate strobes, which are listed in table 4.5.

CHAPTER 4. S M PROGRAMMING 51

Bits Function

15 RESET

14 X

13 Pedestal data

12 Suppress Zero Numbers

11 Suppress Negative Numbers

10 Enable Memory Write Strobe

09 Select Ped. Mem. as DMB Src/Dest.

08 Negate Data from Ped. Mem.

07 X

06 General Purpose Flags

05 Aux Connector Control

04 Internal Control

03 Source DMB Bit 0

02 Source DMB Bit 1

01 Destination DMB Bit 0

00 Destination DMB Bit 1

DMB = Data Memory Bus

(l= 9 b it signed, 0= 10 bit unsigned)

Src/Dest Codes

0 0 - Data Memory
0 1 - AUX Connector
1 0 - Host I/O register R4, R5
1 1 - Pedestal Memory Select.

Table 4.4: I /O R egister R3 D efinition B its

CHAPTER 4. S M PROGRAMMING 52

The write register operation issues a strobe for each bit set, and multiple strobes

are possible.

The read register operation provides status and maintenance bits such as the

condition of the DC power.

Up to 16 SMI’s may be connected to the 2891A SMI interface. The

module select register (table 4.6) specifies which one is addressed and also which

port (front or rear panel) of the SMI is used.

4 .1 .2 ECL Sequencer C ontrol

This subsytem enables the host to program the sequencer and communicate

data to and from an executing program. It includes the program data bus,

program address bus, menu memories and the program memory address register.

There are eight menu memories used to contain program data, which may be

downloaded into the sequencer control store memory.

The memory 0 is an EPROM which contains the standard LeCroy SMI code used

to initialise the FASTBUS sytem at startup. Memories 1 to 7 are RAM and used

to store user written code downloaded from the host.

CHAPTER 4. S M PROGRAMMING

Bits Strobes

15 Ped. Data Mem. Write/ Host generate Abort

14 Ped. Data. MemAdr. Latch/ Host Generate RDOC

13 X

12 Ped. Data Comparator Write

11 Read-Out Word Count

10 Pgm. Mem. Write

09 PMAR increment

08 Pgm. Mem. Write

07 X

06 Data mem. Write

05 DMAR count

04 DMAR load

03 ROWC load

02 Initiate auto-download to pgm Mem.

01 zero download address register

00 Sequencer GO

Table 4.5: O utput R egister R7 Strobes

CHAPTER 4. S M PROGRAMMING

CAMAC Write
— Lines —

W1-W4

W5

W6

Operations

Address of peripheral (1821)
with which to communicate

0 = Enable Front Panel of 1821
1 = Enable Rear Panel of 1821

0 = Bypass
1 = Normal addressing

Table 4.6: M odule Select R egister B it

CHAPTER 4. S M PROGRAMMING 55

4 .1 .3 P ed esta l Subtractor

The 1821-2 board comes equipped with pedestal subtraction and zero sup­

pression hardware. Both communicate with the data memory through the

sequencer’s data path. The subsystem was designed to operate with LeCroy

ADC’s which have no data compression capability. However the Phillips ADC’s

and TDC’s used at the Kelvin Laboratory perform zero suppression and pedestal

subtraction operations, so these facilities are not used, although the data still

pass through the compression pipeline.

4 .1 .4 D a ta M em ory

The data memory is used by the host to store and retrieve 32-bit data words

read from the FASTBUS crate segment. The data compression pipeline can

supply data at rates up to 10 MWord/sec over the 32-bit wide data memory

bus, and data may be stored in the data memory or passed directly to the

auxiliary connector at these very high rates. Figure 4.3 shows the connections

to and from the data memory.

The data memory is 32 bits wide and 4096 words deep (16kbytes). D ata

are passed to and from the data memory over the data memory bus (DMB) and

addressing is supplied by the data memory address register (DMAR).

The DMB is a 32-bit bi-directional bus connecting the data memory to the data

CHAPTER 4. S M PROGRAMMING 56

compressor, registers R4 and R5 and the auxiliary connector.

The (DMAR) is a 32-bit preloaded up/down counter used to address the data

memory over an address range of 0-4095. Host input register R6 is used to read

the current DMAR value and operating mode. Host output register R6 provides

the DMAR with its initial value.

4.2 T he 1821 SMI Instruction W ord

Figure 4.4 shows in detail the seven fields of the instruction word, and the

definition of all 48 bits used.

4.2 .1 O p-code

The op-code field (bit 0 to bit 3), is loaded with one of the instructions listed

in table 4.2 and specifies the basic operation.

4 .2 .2 C ond ition C ode M u ltip lexer

Bits 4 to 11 define the Condition Code Multiplixer, through which the state

of over 100 hardware lines may be tested. These include FASTBUS master,

slave, bus management signals, internal timers, host interface lines and many

others. The appropriate test condition must be selected with the condition code

CHAPTER 4. S M PROGRAMMING

AUXILIARY CONNECTOR

E

1
a

R
egister

5

kk
ry

R
egister

4

00
s m[H Dm00
q
o i

STROBES'

D
M

B

na
-KB.

50
oqg.

“t

Figure 4.3: SMI Data M emory

CO
NTRO

L
DATA

B
U

S

CHAPTER 4. SMI PROGRAMMING

3O

R a B B £ St

o a o aCT s

s §
2* CO ft

* a — 1 <
? Ba>

A
f*

8 : ™ ft
a*

LA

a.
ctasZ oo
3oz

S- S- % s S- S- s- s s?
<lO <-o CO -J cr. •—J

II ti ii II II II II II CO

CO 5
tU
to

h
s : no CO to

to

to
to
to
CO

a
S

s - % %
M j o M
II ii

O §•—3
e=»

—3
g

T
co r-o ® gt

i i i i i £ ES' « S’ S’ £ ^
W N H* o 11

I 5 "a. « £
oo a z >
50 >■o

O' o’ tr cr o- cr§: =s sa: 5* =: »
A* A* Jk At A A A*

‘ — (J1 Jh CO N H O

CT CT CT CT1

> 5 0 ^ 2 5 > “ 7s ,-3 I w
J 5 S so 55 S
y , 3 O 5£5 52 o
* 5 ,=» *-* s

1 > H to > £' m o o .2 ^•T5 O ^CO *—3 yN
*° ^ o

a 9on £=i
2 2 a 3 c: o
>
o

> Con3 <
tom 2 ►—j m1 COrn

TJCOo

o
o

Figure 4.4: Instruction Word

CHAPTER 4. S M PROGRAMMING 59

multiplexer on the preceding instruction. For example, the user would use the

CJMP instruction to branch to an address specified on the HSDATA bus if the

condition code (CC) specified in the preceding instruction was true.

4 .2 .3 B us D efin ition

Bits 12 to 15 constitute the Bus Definition field, which defines the IAD bus

source (ISRC) and the HSDATA bus source (HSRC), as shown in table 4.7.

4 .2 .4 HSDATA Bus

The High Speed Data bus (HSDATA) (bit 16 to bit 23) can be loaded from

internal 1821 registers, from the instruction word, or from FASTBUS depending

on the state of the bus definition field. The Internal Address bus (IAD) can

be driven by internal 1821 registers or FASTBUS. When the HSDATA bus is

driven by the instruction word, the data are derived from the HSDATA field

immediately following the bus definition field.

4.2 .5 S trobes

The 8-bit strobe field, (bit 24 to bit 31), allows the user to control the function

of the TCNT and TPOLL registers, reset internal timers, load the PDREG and

load the 32-bit register.

CHAPTER 4. S M PROGRAMMING

HSDATA Src.
ROT/SHF=0

ROT/SHF=1

IAD Src.
ROT/SHF=0

R0T/SH F=1

0 = 16:8 data mux
4 = inst. word HSDATA
8 = 32:8 IAD mux
c = TCNT register

c = NREG register

0 = FASTBUS A/D
1 = 32-bit register
2 = 5 bit TCNT register
3 = 8 bit TCNT register

0 = IAD bus

bits 12-15 = bus definition
bits 25 = strobe (ROT/SHF)

Table 4.7: Bus Definition B its

CHAPTER 4. S M PROGRAMMING 61

4 .2 .6 D ata C ontrol

The data control field, (bit 32 to bit 35), allows selection of the operational

mode of the 32-bit register (either byte or word). Bits 34-35 define the byte

number (0,1,2,3).

4 .2 .7 FASTBUS P rotoco l

The FASTBUS protocol field, (bits 36 - 47), allows the user to set or clear various

FASTBUS control lines. Different lines are set or cleared depending on the mode

(master or slave), which is selected by bits 38-39. Figure 4.5 shows all the

different combinations.

4.3 1821 SMI code D evelopm ents

Ideally one would use an assembler to generate SMI op-code, and a LeCroy

product which runs on IBM PC’s [35] was examined with a view to conversion

for the present purposes. While in the long term this is a desirable goal, in the

short term it was quicker to program the SMI op-code by hand, a delicate task

requiring careful attention to detail.

The SMI code files were created using a text editor. Each line corre-

CHAPTER 4. S M PROGRAMMING

Bus
Definition

Bits
Protocol Definition Bits

" '— \ j 3 i t s
mode

38 39 42 43 44 45 46 47

slave communication 0 1 AK DK TP SS2 SSI SSO

slave bus 0 1 RB BH WT SR AI AG

master communication 1 0 AS DS RD MS2 MSI MSO

master slave 1 1 GK AGK RDOC RDEnb EAI EG

Figure 4.5: Protocol Bits Definition

CHAPTER 4. SM PROGRAMMING 63

sponds to an instruction word. The format used for a line follows the structure

of the instruction word. Comment lines can be included, which aid the under­

standing of the code file. These start with "comm:” and the instruction lines

start with line: . The instruction line read from the code file includes the in­

struction number and spaces to separate the different fields. A load function

separates out the code and sends it to the sequencer control store memory.

Here is an example of a code file. Note that all numbers used within

the SMI code are given in hexadecimal.

comm: Sequencer Idle Loop comments
line: 00 8 42 4 00 00 0 2 00 Master Mode
line: 01 a 42 4 01 00 0 2 00 wait for host ignition
line: 02 0 00 4 00 00 0 0 00

The instruction words sent byte by byte to the sequencer control store

memory would be as follows :

842400000200
a42401000200
000400000000

Once the SMI code is loaded into the sequencer control store memory, the se­

quencer automatically enters into an idle loop, located at address zero and

shown in the previous example. To perform any useful task, the host must

pass the start address of the relevant subroutine to the sequencer and request

execution.

Two different SMI codes have been developed at the Kelvin Laboratory.

These are called CODE1 and CODE2. In the first attempt, we have developed

CHAPTER 4. SMI PROGRAMMING 64

C0DE1 which uses the slow connection at the front panel of the 1821 SMI for

module initialisation and data readout. C0DE1 has been developed to be as

simple as possible and is actually being used in the first experiments performed

at Mainz.

To improve the data throughput, it was decided to develop CODE2 which uses

the rear panel auxiliary connection to a fast VME memory. C0DE2 has improved

considerably the speed of data transfer to the host by virtually eliminating host

intervention in data readout and by using a considerably faster hardware link.

The following sub-sections, give details of both codes, C0DE1 and CODE2.

4.3 .1 L oad /E xec function

After power-up the user must download a program to the sequencer control store

memory to enable the sequencer to perform useful functions at the request of the

host. Access to the sequencer control store memory is through the host registers

RO, R l, R2, and R7. Sequencer programs can be loaded either directly from

the host or from one of the eight local menu memories. The LOAD and EXEC

functions are described in appendices A and B.

CHAPTER 4. SM PROGRAMMING 65

4 .3 .2 Front-panel code: CODE1

C0DE1 is structured as a main routine which performs calls to separate sub­

routines to perform specific tasks.

The 1821 manual includes some basic SMI routines which have been

adapted to develop a customised FASTBUS readout code. Readout of a FASTBUS

module involves 3 sequences :

1 - The Primary Address Sequence,

2 - The Secondary Address Sequence,

3 - The Block Read Sequence.

1- Primary Address Code

The addressing of the slave with which the master will communicate is

performed during the primary address cycle. Figure 4.6 gives the flow chart of

the primary address routine. Since primary addressing involves writing to the

addressed module, the RD lines are maintained at zero. The EG line is asserted

and the desired module address is placed on the AD lines.

When calling the primary address routine, the calling routine should have previ­

ously loaded the primary address into the TCNT register and set the appropriate

MS codes. Here MS=0 (see MS code table 4.8).

2- Secondary Address Routine

The secondary address operation, shown by the flow chart of figure 4.7,

CHAPTER 4. SMI PROGRAMMING 66

NO

IF AS = AK =0
RESET TIMER

YES

YES
IF end TIMER

NO
NO

IF AK = 1

YES

EG = 1

AS = 1

I AD = TCNT , PAUSE

PDREG = 30 RD = 0

ERROR return with
PDREG - 30

GOOD return with

Subroutine called with : 1- Primary address in TCNT

Figure 4.6: Primary Address Routine

CHAPTER 4. SM PROGRAMMING

MS code for Address Cycles
M S Address Type
0 — Specific Device - Data Space
1 — Specific Device - CSR Space
2 — Broadcast - Data Space
0 — Broadcast - CSR Space
4 ,5 — Reserved - Specific Device
6 ,7 — Reserved - Broadcast

MS code for D ata Cycles
MS Interpretation
0 — Random Data
1 — Block Transfer - Handshake
2 — Secondary address
3 — Pipelined Transfer - (non-Handshake)
4_6 — Reserved - (Handshake)
7 — Reserved - Pipeline

SS codes
SS Interpretation
0 — Command accepted, no problem
1 — Module is currently digitising an event
2 — empty or full
3 — ----
4 — ■ Not used
5 — Not used
6 — R/W from a non-existent register
7 — Secondary write to a non-existent register address

Table 4.8: FASTBUS MS and SS codes

CHAPTER 4. S M PROGRAMMING 68

is executed in a write data cycle. The routine is called with the secondary

address in the 32-bit register, RD=0 , MS=2 (see MS code table 4.8) and the

PDREG register initialised with the value 28. The PDREG register is used for

error diagnostics. The routine asserts DS (Data Synch) and waits for the Data

Acknowledge signal DK set by the slave.

The operation is terminated by the host removing all its signals (including DS)

from the bus.

3- Block Read Routine

A flow chart of the block-read routine is shown in figure 4.8. The

routine first sets RD to initiate a read data operation and then ensures tha t DK

is reset. The PDREG register is loaded with the appropriate diagnostic code and

the appropriate MS code is asserted. Here MS=1 means select block-read (see

MS code table 4.8). The routine then asserts DS and waits for the acknowledge

DK. If DK is not received in time, the routine exits with a timeout error. After

DK is received, the data transfer occurs.

When all the module’s data are successfully transferred, the slave responds with

SS=2 (see SS codes in table 4.8). To facilitate debugging of the SMI code by

the host, the PDREG register is assigned different values depending on progress

through the address/read sequence.

The above three sequences are called by the C0DE1 main routine listed

in the following, and outlined in the flow chart of figure 4.9.

CHAPTER 4. SMI PROGRAMMING 69

Subroutine called with 1- Secondary address in 32-t>it register
2- MS * 2
3- RD = 0
4 - PDREG = 28

YES

NO

DS = 1 , RESET TIMER

IF end TIMER

NO

NO
YES

IF DK - 1

YES

GOOD Write
PDREG = 0

NOIF SS

YES ERROR
Call error subroutine

GOOD return
Clear Protocol bits

Figure 4.7: Secondary Address Routine

CHAPTER 4. SMI PROGRAMMING

RD = I

LOOP

MSI =* MS2 «* 0

IF DK = 1

YES

NO

NO

PDREG = 50 , MSO = DS = 1

Reset TIMER

IF end TIMER

NO

IF DK = 1

YES

YES

PDREG = 0 . Latch 32-bit register in word mode
READ DATA BLOCK

NO
IF SS = 1

IF SS = 0

NO

NO

TIMEout
ERROR

YES

YES

PIPE DATA

PDREG = 27 , DS = 0 . Reset TIMER

* * *

Figure 4.8: Block Read Routine

NO IF DK = 0NO

IF end TIMER YES

YES

YES

YES
IF SS = 2

NO

GOTO l o o p

GOOD Return

TIME out
ERROR

Check SS Code
Return

PDREG = 0
Latch 32-bit register in word mode

READ DATA BLOCK

Figure 4.8 : B lock R ead routine continued

CHAPTER 4. SMI PROGRAMMING 71

comm: C0DE1 main routine comments
comm:
line: 85 d 00 4 fb 00 0 0 00 call fb : init Fastbus Prot.
line: 86 8 00 4 00 00 0 2 3f
line: 87 8 00 0 00 08 1 2 3f get station in TCNT
line: 88 d 00 4 eb 00 0 0 00 call eb : pri. adr.
line: 89 a 00 4 00 00 0 0 00 pause
line: 8a 8 00 4 00 08 0 0 00 TCNT = 0
line: 8b 8 00 0 00 01 0 0 00 32-bit = sec. adr.
line: 8c 8 00 4 28 02 0 2 If
line: 8d d 00 4 d9 00 0 6 02 call d9-Fb write
line: 8e d 00 4 be 00 0 2 10 call be : Block Read
line: 8f c 00 4 00 00 0 0 00 go to idle loop

To read a FASTBUS module with CODE1, the host issues an EXEC to

address "85". Whereas standard LeCroy code needs three consecutive EXEC

calls for each block-read, C0DE1 needs only one.

Before the host starts C0DE1, it puts primary and secondary address parame­

ters into output register R2. Byte 0 contains the primary address and byte 1

contains the secondary address. This requires less host intervention than the

standard LeCroy code where the address parameters are passed in separate

operations.

The execution of C0DE1 starts by performing the FASTBUS protocol

initialisation. The FASTBUS initialisation sub-routine located at the address

“fb" is taken from the standard LeCroy code. It clears the TCNT register,

32-bit register and the protocol bits.

Before calling the primary address sub-routine located at address "eb” ,

CHAPTER 4. S W PROGRAMMING

PAUSE

OP-CODE = d - BUS DEFINITION = 4 - HSDATA = eb

OP-CODE = 8 - BUS DEFINITION - 4 - bit 28 - 1

OP-CODE = bit 34 - 35 = 00 - bit 31 = 0

OP-CODE = 8 - BUS DEF = 4 - HS DATA = 28 - bit 30 =

OP-CODE = bit 34 -35 = 01 bit 28

OP-CODE = d - BUS DEFINITION 4 - HSDATA = d9

OP-CODE bit 32 bit 37 ■= bit 39

OP-CODE = d - BUS DEFINITION = 4 - HSDATA = be

OP-CODE = c - BUS DEFINITION = 4 - HSDATA = 00

OP-CODE = d - BUS DEFINITION = 4 - HSDATA = fb
Call f b : Init

Fastbus

Reset Master
Communication

TCNT = R2
(Byte 1)

Call eb. Prim,
adr. cycle

TCNT = 0

32-bit reg = R2
(byte 0)

Call d 9 : Sec.
adr. cycle

Call be : Blk
read cycle

Go to idle loop
at adr. 00"

Figure 4.9: CODE1 Main Routine

CHAPTER 4. S M PROGRAMMING 73

the primary address is latched into the TCNT register from byte 1 of output

register R2 (inst "86-87"). Byte mode is enabled by setting bit 32 and byte 1

is selected with bits 34-35 = 01.

A pause instruction has been added to allow signals to settle down at the end

of the operation, and the TCNT register is cleared for future use.

The secondary address parameter contained in byte 0 of output register R2 is

latched into the 32-bit register. The 32-bit register is selected by setting bit 31,

and byte 0 is selected with bit 34-35 = 00. The write sub-routine located at

address ”d9" is then called to perform the secondary addressing cycle.

Once the primary and secondary addressing cycles have been successfully ex-

cuted, the block-read sub-routine located at address "be" is called. This trans­

fers digitised data into the 1821 SMI data memory. The data transferred are

either from one TDC/ADC, if the module is configured for normal block readout,

or from a group of TDC/ADC modules if configured for MULTTBlock readout.

At the end of a block readout, CODE1 goes back to the idle loop.

4 .3 .3 H ost-C O D E l In teraction function

The host-CODE 1 interaction function, "R-block” , is written in C and is shown

in the flow chart of figure 4.10. It is called for each block-read required.

CHAPTER 4. SMI PROGRAMMING 74

R-block first performs I/O register configuration. It enables the auto

increment mode of the DMAR by setting output register R6 bits 12 and 13,

[R6=3000(hex)], and strobes a DMAR load by setting bit 4 of register R7. Out­

put register R3 is loaded with configuration data 840c(hex). This selects the

pedestal subtract pipeline as the source of the DMB, with the data memory

as the destination. Once configuration is completed, “R-block" calls the EXEC

function to execute the readout operation.

At the end of a block-read, “R-block” transfers the data from the data memory

to a VME buffer BUFFI, from where a decode function sorts it into a standard

format and stores it in another VME buffer BUFF2.

4 .3 .4 R ear-panel code: CODE2

As with C0DE1, C0DE2 is structured as a main routine which calls separate

subroutines to perform different tasks, but it does more than CODE1. Whereas

CODE1 needs host intervention to pass parameters, start the SMI code and

transfer data from the SMI data memory, C0DE2 needs only one EXEC com­

mand before data taking starts. In fact, CODE2 contains the primary and

secondary addresses to pass to the appropriate sub-routines, whereas in CODE1

they are passed by the host. Address instructions 40 to 7c (60 addresses)

are reserved for this purpose. As each module needs two address instructions,

one for the primary address and the other for the secondary address, a full crate

CHAPTER 4. SMI PROGRAMMING 75

Enable DMAR auto-increment

Strobe DMAR Load

1- Remove RESET
2- Enable Write Strobes
3 - Select - DMB Src. = Pedestal Subtractor

-DMB Dest. = Data Memory

Execute block read

1- PDATA bus Src = Sequencer
2- PDATA bus Dest. = Register R2

Select Status bits

Check status bitsif status = 0
NO

YES
ERROR

Call EXEC

Register R7 = 10 (hex)

Register R3 840c (hex)

Register R0 = 9600 (hex)

Register R6 = 3000 (hex)

status = register R2 bitO to bit 7

Register R2 = Execution Start Address

Figure 4.10: R-block Function

Nb » Register R6 bit 0 to bit 11

Register R2 = 8002 (hex)

Register R7 = 10 (hex)

Get number of words read into
SMI Memory

Select J- DMB Src = Data Memory
2- DMB Dest. = Registers 4 &. 5

Strobe DMAR Load

i = 0

MSB =
LSB =

Register R5
Register R4

Shift left JVISB 16 bits

MSB * Most Significant Bits
LSB a Least Significant Bits

BUFFI f i J = LSB OR MSB

IF i <= Nb
YES

NO

DONE

Figure 4.10: R -b lo c k function continued

CHAPTER 4. SMI PROGRAMMING 76

of 24 modules can be read out by C0DE2.

Instructions 41” to ” 7c" are not included in the C0DE2 data file when

it is created under the text editor, and from line "40” to line ”7 f', it looks as

follows :

comm: start of module slot and sub-adr
line: 40 4 00 4 00 00 0 0 00 return to calling routine
comm:
comm: end of module table
line: 7e 8 00 4 00 02 0 0 42 INPl=0,good return
line: 7f c 00 4 30 00 0 3 08 jump to 30. read scan loop

Instead, at the FASTBUS initialisation stage the acquisition system gen­

erates the address lines from information read in from module specification pa­

rameter files. A flow chart of the C function “SMI-code-gen", which generates

SMI code address lines is given in figure 4.11. The function uses 2 vectors,

“prim[0-7]” and “sec[0-7]” , corresponding respectively to the primary and sec­

ondary address lines. A third vector “end[0-7]” is used to generate the last

instruction, which performs a branch (op-code = “JMP" = c) to the instruction

“7e” . The HSDATA field of the instruction word, corresponding to byte 2 of the

vectors, contains the primary or secondary address. As the “prim" and “sec”

instructions are called from the main routine, the address instruction op-code

is “RETN” = 4, which performs a return to the calling routine.

The “SMI-code-gen” function returns one of two status flags as follows :

0 = OK, good return

W = W SMI write error during operation

CHAPTER 4. SMI PROGRAMMING 77

An example of generated code is given in the following. Suppose we

have 3 ADC’s located at the stations 10, 15, 19, which are read via data register

DSR2.

The generated instruction "41" to "47” will look like this :

comm: start of module slot and sub-adr
line: 40 4 00 4 00 00 0 0 00
comm:
line: 41 4 00 4 10 08 0 2 3f TCNT = 10 :fastbus slot 10
line: 42 4 00 4 02 01 0 0 00 32-bit = 02 : data reg. 2
line: 43 4 00 4 15 08 0 2 3f TCNT = 15 : slot 15
line: 44 4 00 4 02 01 0 0 00 32-bit = 02 : data reg. 2
line: 45 4 00 4 19 08 0 2 3f TCNT = 19 : slot 19
line: 46 4 00 4 02 01 0 0 00 32-bit = 02 : data reg. 2
line: 47 c 00 4 7e 00 0 0 00 br to 7e:end fst read
comm:
comm: end of module table
line: 7e 8 00 4 00 02 0 0 42 INPl=0,good return
line: 7f c 00 4 30 00 0 7 08 set RDOC, jump to 30.

As with CODE1, CODE2 enters into the idle loop located at the address

"00” when it is loaded into the sequencer control store memory. When the

sequencer execution is called by the host, CODE2, instead of performing a read

operation as CODE1 does, branches to a real-time loop located at the address

”30” . In fact the data readout in CODE2 is initiated by the front panel signal

INP1 of the 1821 SMI. So when the host starts the execution of CODE2, it is

not involved any more, as at the end of readout the sequencer returns to the

real-time loop.

CHAPTER 4. SMI PROGRAMMING

IF i >= Nb

Prim (2 J * Station (i)
Sec [2 J * Subaddress (i)

Read moduie station (i)
Read module subaddress (i)

Nb » read number of interrupting modules
L_END = read end code line number
L_num = read start code line number

End (0 - 7] * cO, 0 4 , L_E N D , 00 , 00 , 00 , 00 , 00

Write Prim] 0 - 7 J into sequencer at address L_num
L_num * L-_num + 1

Write Sec f 0 - 7] into sequencer at address L_num
L_num * L^num + 1

YES

Write End [0 - 7] into sequencer at address L_num

Figure 4.11: SMI-code-gen Function

CHAPTER 4. SMI PROGRAMMING 79

The SMI code for the real-time loop outlined in the flow chart of figure

4.12 is as follows :

comm: CODE2 real-time loop comments
line: 30 8 8d 4 00 02 0 7 20 tst HOST bit
line: 31 a 8d 4 35 00 0 0 00 br to 35 if HOST
line: 32 8 fO 4 00 00 0 0 00 tst not IN PI
line: 33 a fO 4 30 00 0 0 00 loop back if not INP1
line: 34 c 00 4 84 00 0 0 42 clr INP1. br to 84: read
line: 35 c 00 4 00 08 0 0 00 br to idle loop

C0DE2 checks if the host demands attention through the HOST bit (bit

5 of output register RO). This bit is set by the host when the user requests a

stop to the data readout and the SMI returns to the idle loop. The host must

call sequencer execution to activate C0DE2 again. The branch to the main

FASTBUS readout routine depends on the INP1 signal state. When set, it is

cleared and a branch is made to readout.

The SMI code of the C0DE2 main routine shown in the flow chart of

figure 4.13 is as follows :

CHAPTER 4. SMI PROGRAMMING 80

IF HOST bit set

YES

NO

Test Not INP1

YES

IF Not INP1

NO

Clear INP1

Branch to CODE2
main routine

Protocol bits = 042

End Acquisition
G oto idle loop

OP-CODE - 8 - CONDITION CODE = fO

OP-CODE = 8 - CONDITION CODE = 8d

OP-CODE = c - BUS DEFINITION = 84 - HSDATA = 4

Figure 4.12: CODE2 Real-Time Loop

CHAPTER 4. SMI PROGRAMMING 81

comm:
line: 84 8

CODE2 main routine
00 4 40 02 3 5 80

comments
NREG = 40

line: 85 d 00 4 fb 00 0 0 00 call fb
line: 86 8 00 4 00 12 3 5 80 incr NREG
comm:
line: 87 d 00 c 00 42 3 5 80 get prim, adr
line: 88 d 00 4 dl 00 0 0 00 call d l : exec. prim, adr
comm:
line: 89 a 00 4 00 00 0 0 00 pause
line: 8a 8 00 4 00 12 3 5 80 incr NREG
comm:
line: 8b d 00 c 00 42 3 5 80 get sec. adr
line: 8c 8 00 4 28 02 0 2 If
line: 8d d 00 4 d9 00 0 6 02 call d9 : exec. sec. adr
comm:
line: 8e d 00 4 be 00 0 2 10 call blk read be
line: 8f c 00 4 85 00 0 0 00 br to 85 for next module

First, the module table start address ("40”) is put into the NREG regis­

ter. After the FASTBUS protocol initialisation, the NREG register is incremented

to point to the first primary address instruction.

By performing a call to the address contained in NREG, CODE2 gets

the primary and secondary address parameters. NREG is incremented after each

call operation. As with CODE1, once primary and secondary address cycles are

performed, CODE2 executes the block-read routine located at the address "be".

At the end of the block-read, unlike CODE1 which returns to the idle loop,

CODE2 loops again to read the next module.

The last instruction in the module address table performs a branch

to the instruction "7e". To allow the next readout operation, INP1 is cleared

(instruction “7e") and the final operation is to set RDOC. This SMI front panel

CHAPTER 4. SMI PROGRAMMING

OP*CODE = 8 - BUS DEFINITION - HSDATA = 40
Protocol bits = 380 - bit 26-67 = 00

Call Fb

OP-CODE = 8 - bit 26 -27 0 - Protocol bits = 580

OP-CODE = d - BUS DEFIN
Protocol bits =

ITION = c - bit 25 =1
580

IF Last Address Line

NREG - 40

Init Fastbus

Increment NREG

Call Prim. Adr. Line
Line Adr. in NREG

IDLE LOOP
YES

NO

Call dl

PAUSE

Increment NREG

Exec. Prim. Adr. Cycle

OP-CODE - d - BUS DEFINITION = c - bit 25 = 1
Protocol bits * 580

Call Sec. Adr. Line
Line Adr. in NREG

Cal d9

Call be

Exec. Sec. Adr. Cycle

Call Block Read

Figure 4.13: CODE2 Main Routine

CHAPTER 4. S M PROGRAMMING 83

output can be connected to the INP1 input of a subsequent SMI, so that several

SMI’s can be “daisy chained” for readout purposes.

The data are transferred via the rear panel auxiliary SMI port and a

32-bit ECL bus to a high speed VME-based memory HSM8170, where it is read

by the host and decoded into BUFF2, as in the C0DE1 sequence of operations.

At start-up, the acquisition system initialises the HSM8170 registers and RAM.

The flow chart of the HSM8170 initialisation function "HSM-init” is given in

figure 4.14. First, to avoid any disruption during the HSM8170 configuration,

the ECL bus port to RAM is disabled (control register bit 12 = 0). The address

pointer register is initialised to point to the RAM address (Address

pointer register bits 0 - 18 = 0), and the RAM size is set to fFfFf(hex) (W-count

register bit 0 - 18 = 1). The ECL bus port is then enabled and the RAM is

initialised with zero values.

4 .3 .5 H ost-CO DE2 In teraction function

The host-CODE2 interaction requires only two operations, one to start CODE2

and the other to stop CODE2. For this purpose, two functions have been added

within the control function CONTROL. These are : "start-smi” and “stop-smi” .

A flow chart of the "start-smi” function is shown in figure 4.15. First, output

register R3 is loaded with the configuration 840d(hex). This removes the RESET

signal (bit 15 = 1) and enables memory write strobes from the sequencer pipeline

9419

CHAPTER 4. SMI PROGRAMMING

Control register bit 12 = 0

Address Pointer r«-gister bit 0 to bit 18 = 0

Wcount register bitO to bit 18 = 1

Control register bit 12 = 1

Status register bit 8 to bit 10 = 0

1 = 0

YES

RAM [i] = 0

i = i + 1

IF i <= 8000 (hex)

NO

DONE

84

disable FAST PORT Acquisition

Point RAM memory word 0

Set RAM memory size to fffff

Enable FAST PORT Acquisition

Disable VME interrupts

initialise 32K of 32 word
RAM memory

Figure 4.14: HSM-init Function

CHAPTER 4. S M PROGRAMMING 85

(bit 10 = 1). Loading the configuration bits 0 to 3 with the value d(hex) selects

the pedestal subtract subsystem output as the source of the DMB, with the

AUX connector as its destination. The “stop-smi" function sets HOST bit (bit

5 of register R0) and disables the interrupts.

The EXEC function is then called. This puts CODE2 into the real-time

loop. Two tests are implemented within the real-time loop. The first tests the

HOST bit (bit 5 of I/O register R0) and the second one tests the front panel

signal UNP1.

The HOST bit is cleared by loading output register R2 with the configuration

9600 (hex). Also, this selects the sequencer as the PDATA bus source, with

output register R2 as its destination. Input register R2 is then read to get the

execution status.

CHAPTER 4. SMI PROGRAMMING 86

J-.Remove RESET
2 - Enable Write Strobes
3 - Select - DMB Src. = Pedestal Subtractor

' DMB dest * A U X Connector

Start SMI C0DE2 execution

1~ PDATA bus Src. * Sequencer
2~ PDATA bus Dest. * Register R2
3 - HOST bit = 0

Select Status bits

if status = 0
Check status bits

ERROR

Read register R2

Call EXEC

Register R2 = 9600 (hex)

Register R3 * 840d (hex)

status = register R2 bitO to bit 7

SMI CODE2 execution
in progress

Figure 4.15: start-smi Function

Chapter 5

CONCLUSION

87

CHAPTER 5. CONCLUSION 88

Some measurements of the performance achieved with the old and new FASTBUS

to VME-bus interface configurations are given in this section, to allow the eval­

uation of the new hardware/software system. A test experiment involving the

readout of two FASTBUS crates was set up. In the first crate two modules were

read, a Phillips 10c2 (32 channels) and a STR136 (4 channels). However, due

to data compression hardware in the 10c2, a total of 6 channels were generally

read. In the second crate three STR200 modules with 32 scalers each, a total

of 96 channels, were read.

The VME software was modified so that at critical times during the event pro­

cessing, an output register, connected to a NIM logic output on the CBD8210

CAMAC branch driver, was toggled on and off so that time might be measured

on an oscilloscope. This toggling operation took about lfis and had a small

effect on the overall dead times. Signals associated with the SMI readout were

accessible without special software modifications.

5.1 D ata A cquisition D ead T im e using CODE1

The software C0DE1 (section 4.3.2) makes use of the SMI to CAMAC to VME-bus

link for data transfer. As shown in figure 5.1, three different times, T-, Ta and

Tr have been measured in the test experiment described above. Tr constitutes

the total dead time engendered by one event and, T* represents the delay in the

0S9 system responding to an external interrupt. At T0 the IRQ signal is input,

CHAPTER 5. CONCLUSION 89

and after a time Tt , the execution of the IRQ service routine starts. It sends a

wake-up signal to the “acqu” readout process, which is activated after a time Ta.

Thus the data readout is started 132/xs after To* The data readout from “acqu”

is finished after 6 ms, which represents the total dead time Tr engendered by

one event.

In this case, after the data are digitised, they are stored in the SMI data

memory. The task “acqu” performs both the data transfer to a VME buffer via

CAMAC and the data formatting, which takes around 5.9 ms, very much greater

than the time for C0DE2 described in section 5.2. The cause of this difference

is discussed in section 5.3.

5.2 D ata A cquisition D ead T im e using CODE2

The software C0DE2 (section 4.3.4) does not involve CAMAC. The data are

transferred from FASTBUS directly into the high speed VME memory HSM8170.

The data are then decoded from the HSM memory into a CPU RAM buffer.

Unlike CODE1, with C0DE2 two sets of timing were measured : VME

CPU timing and FASTBUS SMI timing. Initially "acqu" is dormant, waiting for

the IRQ event to activate it, and the SMI is in a polling loop, waiting for the

INP1 signal (section 4.3.4) to start the FASTBUS readout.

At T0, both the IRQ signal and the ADC trigger signal are input. During the

CHAPTER 5. CONCLUSION

VME CPU Timing

17
< ■ ►

IRQ Starts

T,

132

acqu Starts

6 ms

acqu finishes

Figure 5.1: Dead Time Using CODE1

CHAPTER 5. CONCLUSION 91

time which the VME software takes to activate "acqu”, the FASTBUS readout

operation is in progress. Three different times 7\, T2 and T3 have been measured

from FASTBUS. The data digitising is finished after T\. At this time the INP1

signal is sent to the SMI. This makes C0DE2 exit from the polling loop so

that data readout from all modules configured in the crate is performed. The

data are written into the HSM8170 memory. For each word-write cycle into the

HSM8170 memory a WSI signal is sent which enables the data write operation.

Around 2/xs separates two consecutive WSI signals, and around 2/xs separates

the readout of two consecutive modules. The first crate is read after time T2.

CODE2 then sends the RDOCx signal, which is fed into the next SMI. This starts

the readout of the second crate. CODE2 loaded in the second SMI performs the

same operations. When it finishes it sends RDOC2. In the present test only two

crates were used, so that the RDOC2 signal was not used.

Tj, Ta and Tr have also been measured in the same way as for CODE1.

As shown in figure 5.2, the data transfer from FASTBUS to the VME fast memory

HSM8170 is achieved before "acqu” starts, and takes around 60/xs. Thus when

"acqu” starts, the data are already stored in the HSM8170 memory. The task

"acqu” performs only the data formatting which takes 0.6 ms. Thus the total

dead time Tr for an event is around 0.7 ms.

CHAPTER 5. CONCLUSION

VME CPU Timing

17 ujue>
<-------------

IRQ Starts

132 ^

acqu Starts

0.7 ms

FASTBUS SMI Timing

11JVO

1NP1 Signal

16
i - 1- *

RDOC

WSI’s

60

RDOC,

WSI’s

acqu finishes

Figure 5.2: Dead Time Using CODE2

CHAPTER 5. CONCLUSION 93

5.3 Interpretation

The improvement described above has been successful in reducing the dead time

for a test readout from 6 ms to 0.7 ms, which will allow the acquisition rate to

be greater by approximately a factor of 8.

The use of CODE2 in the SMI reduced the workload for the task “acqu" running

on the VME computer. Whereas with SMI CODE1, “acqu" performs both data

transfer and data formatting, with CODE2 it performs only data formatting.

As the data formatting function is performed in the same way for both

readout methods, and from figure 5.2 took approximatively 0.6 ms, the bulk of

the ~ 6 ms dead time associated with the CODE1 method comes from the data

transfer. This is due to the many read/write CAMAC operations performed to

execute a single transfer between FASTBUS and VME. For each block-read, at

least 48 read/write CAMAC operations are required to start SMI code CODE1

transferring the data into the SMI data memory, and 3 CAMAC read operations

are performed for each 16-bit word transferred from the SMI memory to VME.

Each CAMAC operation takes several microseconds, so that for transfer of large

amounts of data the CAMAC interface becomes unacceptably slow.

CHAPTER 5. CONCLUSION 94

5.4 Future Im provem ent

At present, the readout speed achieved with the new SMI to VME-bus data

transfer software is more than adequate to meet the requirements of current ex­

periments. However, if experiments become larger, requiring even more channels

to be read, further modifications may be required in the data acquisition system

in order to keep the dead time as small as possible.

As shown in figure 5.2, the SMI block-readout operation is in progress

while the system sends the event to start “acqu". Thus, if the number of

channels to read become larger, "acqu” might start before the end of the block

read routine (T3 > Ta). This could be resolved by delaying the IRQ signal

but in order to keep the dead time as small as possible, the SMI block-read

routine could be modified by using a LeCroy hardware block-read, which would

effectively halve the FASTBUS transfer time. Investigations of this block-read

mode with non-LeCroy modules will constitute the next phase of this project.

A ppendix A

SMI Code Download Function :

LOAD()

The C code of the LOAD function is given in figure A .l, and is shown schemati­

cally in the flow chart of figure A.2. The parameter passed to the function, when

called, is the SMI RAM number (0 to 7). The LOAD function is initiated during

the data acquisition initialisation. Register RO is loaded with 9980(hex) which

selects output register R1 as the source of the PADDR bus, with the sequencer

as the destination, and output register R2 as the PDATA bus source with the

sequencer as the destination. With this configuration, the host can address any

byte in the sequencer control store memory and write any data byte value into

it.

Once this configuration is set, the output register R1 is loaded with the byte

95

APPENDIX A. SMI CODE DOWNLOAD FUNCTION ; LOAD() 96

0 Complete without error
-1 Disk file open error
-2 Format error on input line
-3 Bad line sequence
-4 SMI write failure(s) detected

Table A.l: LOAD Function Flags

address of the sequencer control store memory and output register R2 is loaded

with the instruction word, in the LSB. The instruction is then strobed into

memory by setting bit 8 of output register R7.

Five different flags, as shown in table A .l, can be returned by LOAD.

These are set at the end of the load operation.

APPENDIX A. SMI CODE DOWNLOAD FUNCTION : LOADQ

R o u t i n e t o d o w n l o a d m i c r o c o d e from H o st to Smi S e q u e n c e r
Co de a s s u m e d t o r e s i d e o n d i s k t i l e /dd /ACQ U/F B/DA TA/s mi X .d
w h e r e X - 0 , 1 . 2 , 3 , 4 , 5 , 6 , 7 i s t h e smi ROM/RAM to l o a d
T h i s i s p a s s e d a s a p a r a m e t e r .
R e t u r n s J C o m p l e t e d v i t n o u t e r r o r
-1 D i s k t i l e o p e n e r r o r
- 2 Fo rm at e r r o r on i n p u t l i n e
- 1 Bad l i n e s e q u e n c e (s h o u l d i n c r e a s e o o n o t o n i c a l l y)
- » SMI w r i t e t a i l u r e (s) d e t e c t e d

i n t LOAD(RAM)
j n s i g n e d s n o r t RAM;

c h a r l i n e | 1 3 3 | ;
c h a r c o m m | 2 0) ;
c h a r s _ r a m | 2 | ;
c h a r SHI f i l e (3 0 1 ;
u n s i g n e d s h o r t i mini;
s h o r t 1 c u r r ;
FILE * S H I c o d e _ t p ;
u n s i g n e d s h o r t U;
u n s i g n e d s h o r t 1;

ROM/RAM to l o a o w '

c h a r a r r a y t o n o i d i n p u t l i n e * /
c h a r a r r a y t o r l a b e l "comm:" o r "
t o c o n v e r t RAM s h o r t t o c n a r * /
s t r i n g - name o f d i s k f i l e * /
l i n e numDer r e a d from i n p u t l i n e
c u r r e n t l i n e numoer * /
- i p o s i t i o n i n a i s x f i l e */
SMI w r i t e e r r o r c o u n t • /
c o d e i n d e x • /

u n s i g n e d s h o r t c o d e | 8 | ; / * 8 c o d e b y t e s pe r i i n e
u n s i g n e d s h o r t v o r d | 8 | ; / * 8 c o d e o y t e s per i i n e

'■onvert s n o r t to c h a r a c t e r
J e t t h e r i g h t t i l e
s p r i n t t (s _ r a m . " i l d " . R A M) ;

s t r c p y (S M I _ f i l e . " . , 'DATA/smi X.d"):
S H I f i l e (1 1 1 . s ram (U l ;

A t t e m p t t o o p e n t h e d i s x t i l e
i f ((S H I c o d e t p * fo p e n (S M I f i l e . ' r ")) = • .VuLL)|

f p r i n t f (s t d e r r ." F a i l e d to o p e n I s t o r SMI m i c r o c o d e l n " .
S M I f i l e) ;
r e t u r n (- l) ;)

R ea d f i l e l i n e by l i n e an d d o w n l o a d t o SMI u n t i l EOF o r e r r
A ss u m e 132 c h a r s max i n l i n e * '

code)6) - code)7) * 0:
V - (* V _ S M I) (0 , 0 x 9 9 8 0) : * s e t up d o w n lo a d d i r e c t t o s e q u e n c e r * '
1 c u r r » - 1 ; '* t n i t l i n e numoer * /
w h i l e l t g e t s l l i n e . 1 3 2 . SM Ico de t n i ’ • MILL)I

s s c a n t ! 1 m e . " '.c" . ;omm 1 ;
: t (s t r c m p t c o m m . " I i n « ; " > i

i f (s s c a n t (1 m e . ” ‘. s .).*•.:■: ;n . t . .h x . ;hx; ;hx , thxihx .Thx".
o m m .o i in im . a w n ia l ' - l . i I . s w n r c l 2 I . i v o r d l 1 1 .

• .woro | v | , i ' . o r o l : | . J . o i 0 | o | . i w o r a i I) '■ ' .0)1
: p r i n t t (s t d e r r ." 7o rm at e r r o r a l t e r i i n e 7.x'
I t u r r l ;

! p r i n t t (e l d e r r .
'. c u r r , i nun | ;
r e t u r n i - i i :

Sad l i n e s e q u e n c e

e l s e (l o o k s OK d o w n l o a d l i n e

c o d e | 0 | • (v o r d | o | < < a) * t w o r a l 1 1>> *>;

w o r d l l) • w o r d) 1 | & OxOOOf;
c o d e | l | ■ w o r d (2 | • c . o r o f 1 | < < 4) :
c o d e | 2) - v o r d | 3) ;
c o d e | 3 | • w o r d | 4) ;
c o d e (4 | ■ w o r d (6 | * i w o r d (5 | < d c);
c o d e j 5 j ■ w o r d | 7) ;

V U l i n e t l n u m . c o d e .O x 1 0 0) ;
1 c u r r . 1 nura: /■ ' i p d a t e c u r r e n t l i n e * /I

i
1
f p r i n t f (s t d e r r , " F.nd o f d i r e c t S e q u e n c e r 5d d o w n l o a d a t l i n e X x \ n " .
RAM. 1 c u r r) ;
i f (V I - 0) (

t p r i n t f (s t d e r r ," Td w r i t e e r r o r s d u r i n g l o a d i n ' ' , V) :
r e t u r n (- A) ;

r e t u r n (U) ;1

Figure A.l: LOAD Function C Code

APPENDIX A. S M CODE DOWNLOAD FUNCTION : LOAD() 98

NO

YES

IF L <

NO

YES
IF END of FILE DONE

Read Instruction

Register R1 = L_num

Register R2 = Inst [L]

Register R7 = 100 (hex)

Inst [0 -7] = Instruction

OPEN DATA CODE FILE

L_num = L_num + 1

L_num = start code address (first byte)

Figure A.2: LOAD Function

A ppendix B

Function to Trigger SMI

Execution : EXEC()

The C code for the EXEC function is given in figure B .l, and shown schemati­

cally in the flow chart of figure B.2. The parameter passed to the EXEC function,

when called, is the start code address "addr".

Output register RO is configured to select output register R1 as the

source of the PADDR bus, with the sequencer as the destination, and output

register R2 as the PDATA bus source with the sequencer as the destination.

Once this configuration is done, the host clears bit 7 of output register RO, to

put the sequencer in execution mode, and writes the program start address to

output register R2. The execution is started when bit 0 of output register R7

99

APPENDIX B. FUNCTION TO TRIGGER SMI EXECUTION: EXECQ 100

EXEC (addr)
begin

X = (*R-SMI)(0 , &st);
st = st & OxOOlf | 0x9900;

X + = (*W-SMI)(0 , st | 0x0080);
X + = (*W-SMI)(1 , 0);
X + = (*W-SMI)(0 , st);
X + = (*W-SMI)(1 , addr*8);
X + = (*W-SMI)(7 , 0x0001);

i = 0;

bcl:
X + = (*R-SMI)(7 , &st);
i+ + ;
N = (st & 0x0010);
if (N # 0) & (i< = 1000)
Goto bcl;

if (i > 1000);
pr " exec, incompleted "
return(l);
end;

return(X);
end;

/* set up SMI registers * /

/* load start address * /
/* ignite sequencer * /

/* loop to check end of execution * /

Figure B.l: EXEC Function C Code

APPENDIX B. FUNCTION TO TRIGGER SMI EXECUTION : EXEC() 101

0 Complete without error
1 SMI macro not completed
n n = No of errors on (*W-SMI), (*R-SMI)

Table B .l: EXEC F unction Flags

is set. This generates the sequencer control memory "GO” strobe.

Three different flags, shown in table B .l, can be returned by the EXEC

function.

APPENDIX B. FUNCTION TO TRIGGER SMI EXECUTION : EXEC() 102

DATA = Register RO
St = Register RO

St = St AND 0 0 If (hex)
St = St OR 9900 (h e x)

Register RO = St AN D 0080 (h ex)

Register R1 = start address

Register R7 = 0 0 0 1 (h e x)

Read Register R7

YES

"
DONE

Read current configuration

1- Get only Memory Bits
2 - Select PAD DR & PDATA bus

to be the sequencer

Put Sequencer in Execute Mode

Load PADDR bus with address

Start Sequencer GO

Read Status of Sequencer

Check state of IARDY

Figure B.2: EXEC Function

A ppendix C

FASTBUS parameter file

KELVIN LABORATORY, UNIVERSITY OF GLASGOW
Master fastbus parameter file

1st line for SMI setup
* SMI RAM No.Slots Panel

1 1 3 rear
★ Following 12 lines for modules in crate 1
*
k

Module Slot Read Test Config. File

PHIL 10c6 25 b n ./data/phil 10c.d
PHIL 10c2 24 b n ./data/phil 10c.d

k
STRUCK_136 10 b n NULL

k Next Crate
k SMI RAM No.Slots Panel

2 1 3 rear
k Following 1 lines for modules in crate 10
k Module Slot Read Test Config.file

STRUCK 200 12 b n ./data/str 200_clr
STRUCK 200 13 b n ./data/str 200_clr
STRUCK 200 14 b n ./data/str 200 clr

103

References

[1] Richard Fernow, “Introduction to Experimental Particle Physics” , Cam­

bridge University Press, 1986.

[2] W.R.Leo, “Techniques for Nuclear and Particle Physics Experiments”,

Springer-Verlag.

[3] Eltec Electronik Mainz, EUROCOM 6, Hardware Manual, 68030 CPU

board.

[4] Elect-68K-System, Hardware Manual, EUROCOM 5.

[5] “VMV bus one slot VIC8250 ” , CES User’s Manual, Ver. 2.0, July 1990.

[6] “CAMAC Branch Driver CBD 8210”, CES User’s Manual”.

[7] “Interconnects for the FASTBUS SMI Model 1821” , LeCroy AN-28 A, Feb.

1985.

[8] “Model 2891A CAMAC FASTBUS Interface” , LeCroy Operator’s Manual,

Revised March 1989.

104

BIBLIOGRAPHY 105

[9] High Speed Memory with ECLine Interface HSM8170, CES User’s Manual,

July 1988.

[10] “Manual 1821/ECL”, LeCroy Operator’s Manual, July 1985.

[11] “Passing Data to VME via ECLine” , LeCroy AN-46.

[12] “W hat is CAMAC”, CERN-NP CAMAC Note 45-00, Feb 73.

[13] B.Zacharov, “CAMAC Systems : A pedestrian’s guide” , Daresbury Nucl.

Phy. Lab, 1972.

[14] EUR 4100, Esone Committee, Italy, 1975.

[15] R.S.Larsen, IEEE, NS-29 (74-78), No 1, Feb 82.

[16] H.Verweij, IEEE, NS-31 (211-213), No 1, Feb 84.

[17] “An Introduction to FASTBUS”, LeCroy AN-26.

[18] D.Burckhart, “An Introduction to FASTBUS”, CERN, Data Handling Di­

vision, DD/84/8, July 1984.

[19] “FASTBUS Software Workshop”, Data Handling Division, CERN 85-15, 4

Nov. 85, .

[20] “Model 10c2 FASTBUS QDC”, Phillips Specification Manual.

[21] “Model 10c6 FASTBUS TDC”, Phillips Specification Manual.

[22] “STR136/DIFF FASTBUS ECL I/O Latch” , STRUCK Technical Manual.

B IB LIO G R A P H Y 106

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

“STR200 FASTBUS Scalers” , STRUCK Technical Manual.

L. Costrell, IEEE NS-30, No. 4, Aug 83.

L.Paffratn et al, IEEE, NS-29 (90-93), No 1, Feb 84.

“OS9/68000 Source Level Debugger User Manual” , Microware Systems

Corporation, 1987.

“OS9 Operating System Manuals” , Ver. 2.2, Microware Systems Corpo­

ration.

Peter Dibble, “An advanced programmers guide to OS-9/68000” , Walden

MiHer, 1988.

“MC68020 User’s Manual” , Motorola Inc, 1984-1985

B.W. Kernighan and D.M. Ritchie, “C programming language” , Prentice-

Hall,INC, London, 1978.

“OS9 Language Manuals”, Ver. 2.2, Microware Systems Corporation.

“1821’s User’s Manual” , LeCroy, Revised March 1987.

“Using the Model 1821 Segment M anager/Interface” , AN-28C.

W .Farr et al, IEEE, NS-31(217-224), No 1, Feb 84.

“Interactive FASTBUS Software Toolkit (LIFT)”, Lecroy Operator’s Man­

ual, Ver. 2.60-2, April 1988

