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SUMMARY



An estimation of the average value of pharmacokinetic parameters in a
group of animals provides limited information if there is no good measure of the
variability of each of the parameters. The traditional approach used in the analysis
of animal pharmacokinetic data obtained from studies involving the use of small
laboratory animals (rats or mice) in which each animal supplies only one concen-
tration - time point does not provide this, nor can it assess the influence of physi-
ology (or pathology) on pharmacokinetics. The consideration of variability within
the same species during interspecies scaling has been advocated (Vocci & Farber,
1988). Thus, provision should be made for the estimation of variability inherent
in an animal population in analysing data obtained by "destructive sampling". The
NONMEM approach does, however, provide estimates of both average values of
pharmacokinetic parameters and their statistical distribution within the popula-
tion. In this thesis data were generated by simalation (assuming no covariance),
and analysed using the NONMEM program. The efficiency of this approach is
the focus of this thesis.

Experimental error, number of samples taken, and the arrangement of
samples in time are factors which must be taken into account in designing
experiments for efficient parameter estimation. In addition, appropriate methods
of data analysis must be used to extract the required information from the data.
Simulated data sets were used to investigate the effect of various design features
on the efficiency of parameter estimation using the one observation per animal
design. In addition, the efficiency with which parameters could be estimated
given a range of parameter values and variability was investigated.

Several methods were used to determine the efficiency of parameter
estimation. Prediction error (bias and precision) was useful in assessing the
efficiency with which individual parameters were estimated. In addition, the 99%

individual and joint confidence intervals containing the true parameter 95% of the



time for all parameters were introduced as aids to judging the efficiency of
estimation of individual and all parameters of a model, considered as a set.
Confidence interval tables were constructed to reveal the influence of bias and
standard error on parameter estimation,

Also, the design number, a new statistic which combines the contributions
of bias and precision in judging the efficiency of parameter estimation, was
introduced to complement bias and precision, and confidence intervals methods
of analysis. The design number also allowed the efficiency with which all param-
eters of a model were estimated as a set to be judged. The incidence of high pair-
wise correlations of parameter estimates was also taken into account in assessing
the acceptability of estimates and the adequacy of model parameterization.

Assuming IV bolus injection with the monoexponential pharmacokinetic
model, simulation studies were carried out to investigate the influence of inter-
animal variability on the estimation of population pharmacokinetic parameters
and their variances. The range of variability investigated was similar to that
expected in real studies, and sampling was done at set times. The efficiency of
estimation of the structural model parameters (Cl and V) was good, on average,
irrespective of the variability in Cl and V. However, the estimation of these
parameters was associated with negative bias which was attributed to the nature
of the NONMEM program (i.e. estimation error since negative bias was also
observed in subsequent studies in which o_ was set to 0%). The variance
parameters were mostly inefficiently estimated in this study and all other studies
using the one observation per animal design. This was attributable to the lack of
information in the data set about o .

When the effect of the arrangement of concentrations in time on
parameter estimation was studied with the two sample point design, efficient

parameter estimates were obtained when the first sample was obtained as early as



possible (5 min.) and the second sample was located at = 1.4 times the simulated
12 (84 min.) of the drug. When three or four sample points were used the exact
location of the third or fourth sample was not critical to efficient parameter
estimation.

The efficiency of parameter estimation was investigated given a range of
parameter values, concentration measurement error, and sampling schedules with
the two compartment model parameterized as A, o, B, B and assuming IV bolus
injection with animals sampled at set times. The parameters, considered as a set,
were efficiently estimated when o was in the range of 2.0 to 4.0 h'l, and the A:B
ratio in the range of 2.5 to 30.0. These results were attributed to the distribution
of data points between the distribution and elimination phases of the plasma
concentration - time profile. Concentration measurement error greater than 10%
yielded variance parameter estimates with a greater degree of bias and
imprecision. The inter-animal variability in parameters estimated was a composite
of inter- and intra-animal variability. Some sampling schedules gave rise to more
efficient parameter estimates than others. High correlation between some
parameters led to instability in the estimates, and reparameterization of the model
in terms of Cl, V{, k{, and k; led to more stable estimates.

The need for keeping the number of animals used in any study to a
minimum, and the necessity for efficient parameter estimation led to the
investigation of the effect of sample size on parameter estimation. With the
monoexponential model (assuming IV bolus injection with one observation per
animal) and sampling at ten time points, it was found that parameters of the
model were estimated with equal efficiency when 6 to 15 animals were sampled
per time. Since there was no loss in efficiency when 6 animals are sampled per
time (i.e., a sample size of 60), the cost involved in such studies could be greatly
reduced. However, similar results could be obtained with at least 30 animals

sampled twice with the same traditional sampling strategy. Sampling an animal at



least twice allows the partitioning of inter- and intra-animal variability, almost
eliminating bias in the estimation of the variance parameters.

Using the two compartment model, efficient parameter estimates were
obtained when 15 observations were made at each of 10 time points (i.e., a
sample size of 150), but there was no loss in efficiency when 10 animals were
used at each time point. The use of the numbers of animals with the design
specifications considered in this thesis would strike a good balance between cost
and good science.

Given the results of the simulation studies, NONMEM was used to
analyse data with the one observation per animal design for a drug under
development. NONMEM permitted some explanation of variability in terms of
sex, but efficient partitioning between inter- and intra-animal variability would
have required an increase in the number of samples per animal.

Thus, inefficient estimates of inter-animal variability were obtained with
the one observation per animal design, but sampling an animal at least twice
significantly improved the efficiency of parameter estimation. The structural
model parameters, on the other hand, were efficiently estimated. The individual
and joint confidence intervals for parameter estimates, design number, incidence
of high pair-wise correlations in addition to bias and precision were useful in

judging the efficiency of parameter estimation.



CHAPTER1

INTRODUCTION



1.1 SUMMARY

This chapter contains an overview of pharmacokinetics in drug research
and development in the preclinical setting. The importance of pharmacokinetics
in toxicity testing and drug safety evaluation is discussed , and the various
methods used in the estimation of population pharmacokinetic parameters in the
preclinical animal setting are examined. Variability has been reported to occur,
even in homogeneous strains of animals, and the need to account for this in the
estimation of population pharmacokinetic parameters is stressed. The need for the
appropriate design of pharmacokinetic experiments for the efficient estimation of

population pharmacokinetic parameters is highlighted.

1.2 INTRODUCTION

Preclinical testing of new xenobiotics in animals to predict their safety and
efficacy in man is a very large industry. It has reached its present level of activity
because of the growth in the number of compounds which have to be tested, the
expansion of testing requirements which has occurred over the past few years,
and the increase in data required from any one study. The fact that thousands of
animals are used can only be justified if it ensures that life is made safer for
humans who are subsequently exposed to these xenobiotics. However, if the
testing explosion is to be controlled and the effort worthwhile, then urgent
attention must be given to increase its scientific content.

The main purpose for conducting extensive animal studies is to help in

predicting what will happen when xenobiotics are given to humans. These studies



encompass toxicity, efficacy, metabolism, pharmacokinetics and
biopharmaceutics, and are done to accumulate information in the preclinical
phase of drug development.

The 1964 Helsinki Declaration which was revised in 1975 states that
sufficient well conducted and controlled animal studies should be performed prior
to undertaking human studies, and that positive data are essential before
subjecting humans to a drug (or procedure). In accordance with this, international
regulatory authorities demand a dossier containing considerable amounts of data
from animals before they will authorise the administration of new xenobiotics to
man.

Many of the techniques and procedures used in conventional animal
toxicity testing are empirically based. For example, the proper relationship
between the duration of toxicity tests and the length of permitted treatment is a
matter of opinion. Similarly, the selection of dose levels in toxicity tests often
appears to be arbitrary. On the other hand, there are disquietening voices which
even question the validity of animal testing to predict safety for man (Rowan &
Andrutis, 1990).

Given the Helsinki Declaration, however, there is no doubt that new
xenobiotics cannot be administered to man until sufficient evidence has been
collected to indicate that there is no obvious risk. For example, understanding the
pharmacodynamics of a new drug is very important, particularly from the point of
view of anticipating the effects of overdosage. In the particular case of a new
opiate analgesic, it would be vital to know whether or not any potential
respiratory depressant effect could be reversed by an opiate antagonist such as
naloxone. The development of new medicines and the use of animals in

preclinical drug evaluation is therefore inextricably linked.



1.3 PHARMACOKINETICS IN DRUG RESEARCH AND
DEVELOPMENT

Pharmacokinetics is an applied scientific discipline that achieves its
greatest potential when considered during the early stages of drug development. It
encompasses the relationships between the physicochemical properties of a drug
and both its physiological disposition by the organism and its pharmacological
response (Kaplan & Jack, 1980). The value of pharmacokinetic studies during
early stages of drug research and development is to enable critical decisions to be
made as to which form of active compound should be recommended for the time
- consuming and costly animal toxicology, formulation design, and clinical

studies.

1.3.1 Structure - Pharmacokinetic Relationship and Drug Design

The search for new drug molecules basically involves two steps: the
setting up of a working hypothesis and the screening of molecules resulting from
application of the hypothesis. A working hypothesis may be formulated in
different ways (Balant, Roseboom, & Gundert-Remy, 1990):

(a) It may be postulated that the systematic synthesis of compounds

differing progressively in their chemical structure and physicochemical

properties will eventually lead to the discovery of novel and useful drugs.

(b) One may also start from known drugs and optimise their

pharmacological properties by relying on receptor - binding studies.

(c) A more basic approach consists in the study of physiological



mechanisms and structure - activity analysis of specific enzyme activators

or inhibitors.

Inherent in all of these hypotheses is the application of quantitative structure -
pharmacokinetics relationships. Many an ir vivo quantitative structure - activity
relationship (QSAR) study of a series of compounds has related the dose required
to produce a defined response, such as the dose required to produce 50% of
maximal response (EDg()) at some predetermined time, to molecular
modification. But these dose - effect relationships encompass not only the
structure - effect relationship but also that between the dose administered and the
unbound concentration of compound at the receptor sites which produces the
pharmacologic response. Thus, pharmacokinetic events (the processes of and
kinetics of absorption, distribution and elimination) determine the concentration
of drug at receptor sites. Any movement from an empirical to a more rational
design of drug molecules intended to be used in vivo, therefore, requires the
application of pharmacokinetic principles (Tozer, 1981; Rowland, 1983).

The knowledge of pharmacokinetic parameters is essential for the
calculation of effective doses, dosing intervals, estimation of bioavailability and
correlation to pharmacodynamic effects. Pharmacokinetic parameters are,
however, also an extremely valuable tool with which to derive quantitative
structure - pharmacokinetic relationships. Variation in different pharmacokinetic
parameters is explained mainly by lipophilicity, ionisation (pKa) and in some
cases also by steric influences of substituents within various classes of drugs
(Seydel, 1983). At least five pharmacokinetic consequences can be expected as a
result of structural changes. These are: rate and order of absorption, volume of
distribution, rate and type of metabolism, affinity constant for binding to serum
proteins and other "unspecific" biopolymeric binding sites, and rate and type of
elimination (clearance) (Seydel, 1983). Many examples of QSAR analysis used to

describe variation in rate of absorption have been published (Seydel & Schaper,
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1979; Lien, 1981; Schaper, 1982) showing in most cases nonlinear dependence on
lipophilicity and on pKa.

Protein binding per se generally does influence many pharmacokinetic
characteristics of a drug. This influence may be a positive or negative one,
depending on the drug class and upon the pharmacokinetic process under
investigation. For example the blood compartment (if one considers the body to
be made of compartments and blood as one of them) is responsible for drug
transport and distribution. Although serum protein binding increases the capacity
of the blood compartment, at the same time it decreases the free unbound fraction
which can diffuse to receptor sites. Protein binding and also partitioning in red
blood cells can therefore influence the therapeutic dose, volume of distribution,
rate and type of metabolism, rate and type of excretion (only unbound drug is
glomerularly filtered), and serum protein binding of other drugs administered
simultaneously (capacity limitation, competition). Therefore, knowledge about
quantitative relationships between structure and "non-specific" binding is impor-
tant in drug design. It is essential not only for understanding, but also for plan-
ning changes in pharmacokinetics. This is because of the restrictive influence of
protein binding on capillary transport, glomerular filtration and membrane trans-
port (Seydel, 1983).

Volume of distribution has been shown to be dependent on lipophilicity,
degree of ionisation of drug molecules, and the degree of binding to serum and
tissue constituents in a series of B - blockers (Ritschel, 1980). Elimination rate
constant and clearance are not only very important pharmacokinetic parameters
but, as they can be accurately and precisely determined are very valuable for
QSAR analysis and drug design. The predictive power of such analysis is
considerable. This has been demonstrated with a series of sulphapyridines (highly

protein bound drugs) given to rats intravenously (Seydel ez al., 1980). A high
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correlation between clearance and protein - binding constant (i.e. B ) was

max
demonstrated.

Another aspect of QSAR analysis in pharmacokinetics is interspecies
scaling. This would be useful for a better transformation of results from
experimental animal species to humans and for appropriate selection of animal
species for screening. In comparing QSARs for clearance of sulphonamides in
rats, goats and humans it was found that the regression coefficients from models
relating elimination rate constant to high performance liquid chromatography
(HPLC) retention index (a function of the structure of a compound) were surpris-
ingly similar, only the intercepts were different, indicating differences in the
capacity of the clearing organ, but no significant differences in dependence on

lipophilicity (Seydel et al., 1980). Thus QSAR analysis coupled with well

designed pharmacokinetic studies can be used for a more rational drug design.

1.3.2 Pharmacokinetics in Toxicity Testing

Over the years a great deal of work has been performed on the kinetics of
drug absorption, metabolism, and excretion. These studies have led to the
development of a number of general pharmacokinetic principles and to an
appreciation of the central role played by kinetic relationships in pharmacological
responses (Levy, 1964; Levy & Nelson, 1965; Levy, 1966; Wagner, 1968;
Gibaldi & Perrier, 1975). The application of these principles in the assessment of
pharmacological activity in animals in the drug development process , and in the
optimisation of therapy in man is becoming increasingly common. In contrast,
much less use seems to have been made of pharmacokinetic principles in the
design and interpretation of toxicological tests (Jollow et al., 1982).

Preclinical animal pharmacokinetic and metabolic studies are essential to

a better understanding of the subsequent clinical pharmacology and toxicology of
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new drugs. Acute and sub-chronic animal studies are designed to determine the
safety of a new drug compound by characterising its disposition and
physiological effects, both therapeutic and toxic. Specifically of interest are the
dose range over which the pharmacologically desired effect occurs, the dose level
at which toxic effects are induced, the scope of toxic effects from gross physical
changes (dehydration, lassitude) to biochemical and physiological effects (renal
damage, enzyme changes), and the effect of a multiple dose regimen
(accumulation, enzyme induction). Correct design and interpretation of animal
toxicity experiments is necessary to ensure that human trials will be safely
conducted. Determination of pharmacokinetic parameters, such as rates of
absorption and elimination, bioavailability, maximal blood concentration (Cmax),
time to C, .y (t44), area under the concentration - time curve (AUC), renal,
metabolic and / or total body clearance, provides a quantitative description of a
drug’s disposition profile and can be used to compare profiles across species.
Pharmacokinetic data from single exposures can be used to help determine
appropriate dosing regimens for sub-chronic and chronic studies. Correlating
observed toxicity with appropriate pharmacokinetic parameters may allow the
investigator to interpret toxicity test data more accurately and even predict at
what dose toxicity should occur and help in the understanding of the mechanism
responsible for the effect (Scheuplein, Shoaf, & Brown, 1990).

The complicated and widely varying pharmacokinetics of a drug (in
animal) may seriously impinge on the very promising properties of a new
derivative. If there is a choice between different compounds, selection for further
development is based on both the pharmacokinetic profile (bioavailability,
half-life, clearance, volume of distribution), and the metabolic profile. Indeed, the
role of metabolism in the evaluation of safety of new drugs is of great impor-

tance. Understanding the metabolic profile of a new drug in several animal
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species can be of predictive value to the clinical pharmacologist, helping him to
understand the potential pharmacological effects of a xenobiotic in man. Compar-
ative metabolic and kinetic studies in different species may provide an insight
into mechanisms of toxicity perhaps due to over-exposure within a particular
species or because of the formation of toxic or reactive products. This provides a
basis for a species dependent metabolic effect, and its relevance for the human
situation can then be assessed more readily. Accurate and precise determination
of pharmacokinetic parameters and better characterisation of drug disposition
may allow the investigator to design safer human studies. In Phase I studies,
results from animal studies may be used to adjust the intervals between dose
levels in dose escalation studies (Collins, 1987). For example, if the ratio between
pharmacologically active and toxic doses is small or there is an abrupt increase in
the dose response curve in animals, then the initial dose escalation studies in
humans should use smaller increases between doses. Tracer pharmacokinetic
studies in a number of animal species yield information about the tissue distribu-
tion of the drug, and this is of predictive value in Phase I clinical studies (Colburn

& Matthews,1979; Hammer & Bozler, 1977).

1.3.3 Commonly Used Animals in Preclinical Drug Evaluation

It would be desirable if animals used for toxicity testing were selected so
that they were similar to humans in both their intrinsic sensitivity and
pharmacokinetic handling of the test compound. However, more often than not,
the selection of an animal model is based on considerations of cost, size and
availability of the animal, housing requirements and lifespan. In the absence of
pharmacokinetic and metabolism data, animal selection has tended toward the use

of animal test species that are most sensitive and / or for which there is an
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availability of historical controls (Hill, 1987; Huff ez al., 1988).

Only four animal species are commonly used and accepted for
pharmacokinetic, metabolic, and long - term toxicological studies, namely mouse,
rat, dog, and monkey. From a review of the literature it has been observed that rat
and mouse are the animal species most commonly used in toxicological studies
with the dog a distant second while the monkey is used least. This is a reverse of
the order of metabolic similarities of these animals to man (Smith & Caldwell,
1977). Pharmacokinetics is a tool that can be used to further our understanding of

the biology of laboratory animals and improve our interpretation of toxicity data.

1.3.4 Role of Metabolic and Pharmacokinetic Studies in Preclinical Drug

Evaluation

Metabolic and pharmacokinetic studies are essential for gaining an insight
into the behaviour of a new drug and as an adjunct to preclinical (and clinical)
safety studies. The main objectives of such studies are (Annex 1V,1983;
Chasseaud, 1988; Smith, 1988; Tse, 1988):

(a) the assessment of drug and metabolite(s) concentrations and kinetics in

blood, body fluids and organs;

(b) the gathering of information on the relationship between target organ

toxicity and blood, or body fluids or organ concentrations;

(c) the assessment of possible enzyme induction and drug accumulation

upon repeated administration;

(d) the choice, when feasible, of the animal species to be used in

toxicological studies on the basis of their similarity to man in the handling

of the drug. This determines, in part, the human relevance of these studies.
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(e) the development of appropriate dosage schemes to be used in Phase I

clinical studies.

(f) determination of the relationship between the age and sex of the

animal and the kinetics of the test drug;

(g) support for the pharmacology of the drug;

(h) screening of new dosage forms and formulations.

A major objective of animal metabolic studies - bearing in mind human metabolic
studies - is the assessment of the validity of the animal model in qualitative,
quantitative and kinetic terms. Ideally, the qualitative pattern of metabolism of the
test drug in animal species should resemble that occurring in man so that both
species are broadly exposed to a similar array of metabolites.

The prediction of species differences in the qualitative pattern of
metabolism of drugs is far from being an exact science, and the best that can be
achieved at present is described as a "forecast”. Indeed, by taking into account
chemical structure, metabolic pathways, species patterns and deficiencies it is
often possible to arrive at a quite reasonable forecast as to what would be
anticipated in terms of metabolic pattern in humans (Smith, 1988).

Most helpful in this predictive context is the knowledge that has been
acquired concerning species defects with respect to particular metabolic pathways
and certain substrates. Also of value is the recognition that, occasionally, species
may exhibit uncommon reactions, particularly unusual conjugation reactions.
Their occurrence is relatively unpredictable and arises from a particular
combination of species and substrates.

Potential confounding factors such as dose and duration of exposure
which may alter metabolic patterns have to be taken into account in the
interpretation of animal metabolic studies. Dose size is particularly important as it
is now known that high dose exposure may saturate detoxification pathways and

result in an alternative pathway of metabolism or "metabolic switching". This can
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result in the formation of a different array of metabolites, or at least in a change in
the relative proportions of metabolites compared with that seen in low dose
exposure conditions (Zangouras et al., 1981; Sangster et al., 1983; Sutton et al.,
1985).

Moreover, the interpretation of long - term toxicity studies is hampered by
lack of pharmacokinetic data. The need for detailed pharmacokinetic studies to
aid in the design and interpretation of toxicity tests has been emphasised (Mellet,
1969; Clark & Smith, 1984; Jollow er al., 1982). Pharmacokinetic data should
usually be developed in correlation with acute and sub-chronic testing of a xeno-
biotic before the initiation of chronic studies. Evidence of possible absorption
problems, unusual toxic dose relationships, or notable species differences in the
early toxicity studies suggest that additional pharmacokinetic experiments are
useful in developing protocols for further short - or long - term toxicity studies
(Glocklin, 1982). Questions which arise from effects observed from a particular
xenobiotic during sub-chronic or chronic toxicity studies may warrant additional
pharmacokinetic studies and / or retrospective reassessment of
pharmacokinetic/toxicology correlates. This might, for example, include compre-
hensive characterisation of metabolite identity and reactivity (Glocklin, 1982;
Levy, Galinsky, & Lin, 1982). Hottendorf et al (1976) have pointed out the
inadequacy of safety extrapolations based upon the daily dose and suggested that
comparative peak blood levels, AUCs, duration of dosing, clearance, were of
equal or greater importance. Pharmacokinetic and metabolic data are therefore
important in virtually every aspect of drug safety evaluation.

Most toxicological studies are conducted according to standard guidelines,
and no effort is made to optimise experimental protocols on the basis of sound
pharmacokinetic and metabolic knowledge (Zbinden, 1984). Some pitfalls of

traditional toxicity testing methods (Rentsch, 1974) are as follows:
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(a) The methods are qualitative and empirical.

(b) Complete absorption is assumed in data interpretation.

(¢) Animals are assumed to handle high and low doses of drug similarly.

(d) Dosing conditions are different from those intended to be used

clinically.

(e) Differences among species are usually ignored.

(f) A test compound is usually abandoned when an unusual toxicity is

observed, without attempts to understand the fundamental reasons for

toxicity.
One has to assume complete absorption of a drug in the interpretation of safety
data when pharmacokinetic information is not available. Similarly,
pharmacokinetic linearity between doses being evaluated must be assumed.
Unless tested, these assumptions are groundless because the kinetics of
absorption, distribution, and elimination of large doses of a drug as given in
toxicity (safety evaluation) studies can be completely different from the kinetics
of smaller doses for therapeutic purposes. A serious disadvantage of traditional
toxicity testing is that when an unusual toxicity is observed, further development
of the compound is generally stopped with no attempts made to understand the
mechanism of its toxicity. In many cases, the toxicity is simply due to selection of
a very high dose or the formation of a toxic metabolite that may be specific to the
test species, with no relation to human beings at all (Batra & Yacobi, 1989). A
knowledge of the concentrations of the parent compound and metabolites in
plasma and tissue, allied to the accumulation of the drug on further dosing or the
rate of elimination after cessation of administration, allows the opportunity to
rationalise both the species of animal most appropriate for the testing of a
compound and the extrapolation of any toxicity observed in animals to the likely
risk for man (Anderson, Hoel, & Kaplan, 1980; Batra & Yacobi, 1989).

Observance of nonlinear pharmacokinetics of absorption, elimination, or
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both is very common in toxicity studies because of the very high doses (relative
to therapeutic doses) used in such studies. This has become a rule rather than an
exception (Batra & Yacobi, 1989). Pharmacokinetics incorporated in dose rang-
ing studies would help establish a dose range in which linear relationship between
blood concentration and dosage exists. This relationship would introduce a quan-
titative measure in the study relating response to an accurate estimate of the
amount of drug absorbed rather than the dose administered. The knowledge
gained could be useful in correlating toxicity with blood concentrations and
elucidating whether toxicity observed at any point during the short - or long -
term toxicity studies was drug related.

It is well established that drug metabolising capacity generally diminishes
with age (Yacobi, Kamath, & Lai, 1982). Whereas age - dependent metabolism is
unlikely to be of consequence in shorter - term toxicity studies, it may be of
importance in lifespan studies in rodents, particularly as the dose levels for such
studies are often chosen on the basis of data obtained from younger animals in
shorter - term studies. An obvious consequence of such age - dependent
metabolisms is that the impact of a selected dose alters as the study progresses:
what was a suitable dose at the start of the study may become less appropriate
towards its conclusion. Consequently, doses should be selected for lifespan
studies by making allowances for age - dependent metabolism. Whether this
actually occurs can be evaluated by determining the kinetics of the test compound
at appropriate intervals during the course of the study (e.g. at 3 and 6 months, 1
year and 2 years (Chasseaud, 1988)). During maturation, for instance, the
developmental profiles of different drug metabolising enzymes are dissimilar
(Gibson & Skett, 1986), and it is not unreasonable to suppose that there are
differences in senescence. The amount of the important endogenous protective

agent, glutathione, in the heart, liver and kidneys of mice has been shown to
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diminish gradually by some 20 - 30% with increasing age (Hazelton & Lang,
1980). This would be of importance for compounds detoxified by reaction with
glutathione. Since age - or sex - dependent alterations in drug disposition is
important in humans (Schmucker, 1985) because of the variable manner in which
individuals metabolise xenobiotics, these factors must be considered as pharma-
cokinetics’ input in the design and interpretation of toxicity studies.

It has been a long recognised fact that the intensity and duration of the
pharmacological effect of a systemically acting drug are functions not only of its
intrinsic activity but also of its pharmacokinetic characteristics. Thus,
pharmacokinetic data obtained from the pharmacological test species are often
useful in the interpretation of drug effects. A typical example is a drug that is
active following intravenous administration but is considerably less active after
comparable oral dose. Possession of the appropriate pharmacokinetic data could
reveal whether the drug is poorly absorbed to yield subtherapeutic circulating
levels or is subject to presystemic biotransformation to an inactive metabolite.
Such information would be invaluable in subsequent decisions, for example to
improve drug absorption by altering the salt form or formulation, to investigate
the possibility of making prodrugs, or to abandon the oral route of administration.

For many drugs there is a direct correlation between drug concentration at
site of action and pharmacological effect. For instance, present knowledge
suggests that the bactericidal action of antibiotics is directly related to drug levels
at the site of infection, and the bactericidal effect is lost when antibiotic levels fall
below the minimum inhibitory concentration for the invading micro-organisms.
Also, the time course of drug - induced hypothermia in cold - room acclimatised
rats parallel plasma bromocriptine concentrations but not total radioactivity levels
following an intravenous dose of 140 labelled bromocriptine (Schran, Tse, &

Bhuta, 1985).

Knowledge of the effective blood or plasma concentration in animals can
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be used as a guide for later studies in humans as the drug trial progresses into the
clinical phase. A drug should not be considered as inefficacious unless circulating
levels approaching the effective concentrations in the pharmacological test
species are achieved in man (Tse, 1988). Consequently, potentially valuable
therapeutic agents will not fall into unwarranted disrepute because of
underdosing.

There is sometimes a more complicated relationship in the time course of
plasma levels and the pharmacological effect for drugs with an extravascular site
of pharmacodynamic action. Simultaneous modelling of the pharmacokinetics
and pharmacodynamics of such drugs is relatively complex, and numerous
integrated models have been have been introduced (Dahlstrom et al., 1978;
Colburn, 1981; Holford & Sheiner, 1981). Although there is a greater
accessibility of tissue drug concentration data in small laboratory animals which
should render them attractive models for testing the applicability of this
modelling approach, this type of elaborate analysis is usually not attempted
during the preclinical phase of drug development.

In the process of developing a final drug product, the formulation scientist
develops one or more formulations that demonstrate desirable disintegration and
dissolution characteristics in vitro. The in vivo release pattern of the drug based
on the resulting blood level curves in humans is studied, and the dosage form is
accepted if an adequate blood level profile is obtained. With some sophisticated
formulation designs, such as those used in controlled release drug delivery sys-
tems, repeated trial and error may be needed before an acceptable product is
identified. Such a development pattern is not only costly but also time consuming,
since a typical human bioavailability study requires the coordination of personnel
from the various units involved in drug research and development (Tse, 1988).

A more direct and simpler approach is to perform in vivo screening tests
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in animals. As a result, formulations with a desirable release pattern in vitro are

submitted for definitive bioavailability or bioequivalence testing in humans only

after yielding a favourable blood level profile in an animal model.

A proper model is the key to the successful use of animal data in this

manner. The beagle dog has proven to be a useful indicator of potential human

absorption and formulation problems when the animal studies are conducted

under appropriate conditions for the following reasons (Smyth er al., 1983; Tse,

1988):

(a) Generally, oral dosage forms intended for man can be administered
intact to dogs.

(b) It is relatively easy to handle and maintain the beagle dog. Its body
weight is sufficiently stable over time to allow repeated studies using the
crossover study design. The normal physiology of a 10 kg beagle dog is
not affected by the withdrawal of approximately 100 ml of blood weekly
for 6 weeks.

(c) Although interspecies differences in metabolism (Mellet, 1969),
protein binding (Vallner, 1977), and drug clearance (Boxenbaum, 1980)
preclude absolute correlation of dog and human pharmacokinetics,
similarities in anatomy and physiology (Hamilton, 1957; Anderson, 1970;
Wilson, 1962) provide a basis for the use of the dog in relative
bioavailability studies. Formulation - related absorption problems in the
dog usually also exist in the human (Crouthamel & Bekersky, 1983).

The need to apply the knowledge of pharmacokinetics and

biopharmaceutics in the design and interpretation of toxicological studies cannot

be overemphasised. The advantages are as follows (Smyth & Hottendorf, 1980;

Hawkins & Chasseaud, 1985; Bolt & Filser, 1987):

(a) Effect of changing formulations on bioavailability by different routes

can be established.
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(b) Data on the extent of absorption, achieved plasma concentrations and

rates of elimination over the range of doses selected for toxicity studies

become available.

(c) Any likelihood of accumulation of the parent compound and or its

metabolites is identified prior to commencing chronic toxicity studies.

(d) The relative and / or actual exposure to test compound can be

determined (i.e. a bioavailability of 1.0 is not assumed).
Proper characterisation of kinetic behaviour is a prerequisite for the selection of
appropriate dosages in long - term studies, and is also useful for interpretation of
dose - response relationships, especially when toxicity is mediated by metabolites
rather than the parent compound. It is therefore appropriate to investigate the
pharmacokinetic behaviour of xenobiotics over the range of dosages used for
animal toxicity tests as well as at dosages approximating "in use" exposure for
humans. Pharmacokinetic data are essential if there is to be better and more
rational interpretation of information obtained from toxicity studies. In fact,
without pharmacokinetic data, the actual or relative dose levels to which animals
are exposed systemically during toxicity studies cannot be determined, and the
assessment of safety margins based on administered doses alone becomes pure
guess work. Thus, adequate and proper characterisation of the pharmacokinetics

of a drug is important for prediction from one animal species to another, and most

importantly man.
1.4 Parameter Estimation in Preclinical Pharmacokinetic Studies

Small laboratory animals (rats and mice) have been the animals of choice
for pharmacokinetic and toxicological studies because of economic

considerations and ease of handling. The collection of samples (blood or tissues)
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from these animals usually involves "destructive" sampling at specified times.

The most commonly used method of analysing pharmacokinetic data
obtained from small laboratory animals is the Naive Pooled Data (NPD)
approach. This is best illustrated by example. Suppose that 10 animals are
sacrificed at each of 10 time points and the concentration measured (i.e. 100
animals), the data at each time point are averaged to give 10 (averaged)
concentration - time points. These are then used for the estimation of model
parameters (Fig. 1.1).

However, the averaging procedure, in general, may mask the most
appropriate model, and allow a different model to be justified. No estimate of
intra- or inter-animal variability is possible. Estimates of parameter errors bear no
relationship to the variability of these parameters within the population of animal
under test. In fact, variability (physiological, anatomical, and biochemiéal) within
the study population can be considerable, and when considered in terms of
clearance and volume of distribution can be expressed as coefficients of variation
of the order of 50% (Lindstrom & Birkes, 1984). The NPD approach cannot,
therefore, be recommended as a reliable method of kinetic data analysis, either for
modelling or parameter estimation.

There are instances where animal pharmacokinetic data are obtained from
large animals (such as dogs) by serial sampling in each animal, and these are
analysed by the Standard Two Stage (STS) method. This method is, in a sense ,
the opposite of the NPD approach. It involves estimating individual animal
parameters in the first stage with simple nonlinear regression, and combining
these estimates in the second. Estimates of average parameters are then computed
as means and their variances.

The STS method provides reasonable estimates of average population
parameters, but the standard deviation of these parameter estimates will, in

general, overestimate variability (Sheiner & Beal, 1980a; 1981; Sheiner, 1984).
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Fig. 1.1 An example of concentration - time plot from a typical animal
pharmacokinetic study in which one observation is taken per animal. The
parameters of the model are obtained by averaging concentrations at each time
point and fitting a model to the averaged data (the NPD approach). The
continuous line is the model fitted line.
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This is because each parameter is estimated from the original drug level - time
profile, which itself contains some measurement error and possibly model
misspecification. This error adds variability to the parameter estimates that is not
of biological origin. Hence random inter - animal variability will be over
estimated.

Not only are the estimates of variability obtained with the STS method
biased, but the use of this method is also not possible when the data from study
animals are too few to permit the calculation of individual animal parameter
estimates. Because of these reasons, the STS method, like the NPD method,
cannot be regarded as ideal for population pharmacokinetic parameter estimation

Where data are not analysed by either the NPD or STS approaches,
parameter estimates are obtained by the use of statistical moments analysis.
Again, the estimates of AUCs obtained are devoid of estimates of error, and no
information on variability is provided. Accuracy and precision at this stage of
drug development is crucial, and these objectives are jeopardised by inefficient
data analytical techniques.

There is a great need to incorporate in the analysis of data obtained from
pharmacokinetic studies involving "destructive sampling" the fact that the data
came from a population with more variability than the traditional experimental
error. Once this provision is made the data should be analysed with a method
which takes into account the inherent variability in the population sample. The

precision of the parameter estimates is then a function of the underlying structural

model and the sampling strategy (Balant ez al., 1990).

1.4.1 Variability

Comparison of pharmacokinetic data obtained from different animals
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given the same dose of drug will indicate the degree of population variability in
drug disposition; it may also indicate the source of variability. For example,
comparison of the total amount of drug excreted unchanged into the urine can
indicate whether metabolism or excretion is extremely variable. If the total
amount of drug excreted is very different then this would indicate that the amount
of drug metabolised was variable. If the total amount of drug excreted unchanged
was the same but the rate at which it was excreted was different, then this would
indicate variability in the excretion process. Brodie (1962) pointed out that
different inbred strains of rats oxidise antipyrine at widely different rates (as
much as a factor of 3). Vocci and Farber (1988) have advocated the consideration
of pharmacokinetic differences within the same species in interspecies scaling. If
population variability for a drug is high in laboratory animals, usually
homogeneous and inbred populations, then even larger variations in response
would be expected for humans (Scheuplein et al., 1990). A large degree of
unexplained inter-animal variability may suggest that other factors, as yet
undetermined, may be affecting the pharmacokinetics of the drug.

Inter - animal variation in pharmacokinetics can be attributed to various
factors. Some of these involve easily measurable animal characteristics (for
example, weight, sex, age, protein binding). On the other hand, intra - animal
pharmacokinetic variability involves the change in response of animal to drug
treatment with time. Examples include inhibition or induction of metabolic elimi-
nation (changes in clearance), variable absorption due to intestinal flora or gut
wall metabolism, and diurnal variation due to circadian rhythms. It is highly
pertinent to accurate and precise pharmacokinetic parameter estimation that these
variabilities be accounted for.

In contrast to the NPD, STS and statistical moments analysis approaches it

is necessary to use the nonlinear mixed effects regression model approach (Beal
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& Sheiner, 1979 - 1989) in estimating population mean parameters and their varia-
bility from data obtained from animal pharmacokinetic studies. This data analysis
approach is usually carried out with the exportable software program NONMEM
(Nonlinear Mixed Effects Model, Beal & Sheiner, 1979 - 1989). The statistical
model used in NONMEM is based on the premise that individual (animal)
pharmacokinetic parameters of a study (animal) population arise from a distribu-
tion which can be described by the population mean and inter-individual (animal)
variance. Thus, each individual’s (animal’s) pharmacokinetic parameter can be
expressed as a population mean and a deviation from the population mean, typical
of that individual (animal). NONMEM is designed to handle relatively sparse
data, in that it permits the use of unsystematically sampled plasma concentrations
and few measurements per subject (animal), to determine population parameters
and their variability. The strength of this approach, therefore, is the fact that a
data set can be analysed at once to yield average values of pharmacokinetic
parameters and their variances.

The NONMEM approach has proved itself in the human clinical setting
(Vozeh et al., 1982; Grasela et al., 1983; Grasela & Sheiner, 1984; Grasela &
Donn, 1985; Grasela et al., 1986; Thomson & Whiting, 1987; Grevel, Thomas, &
Whiting, 1989), and there is a need for the application of the NONMEM

approach in the animal preclinical setting (Rahamani et al, 1988; Balant et al,

1990).

1.5 Experimental Design for the Estimation of Population Pharmacokinetic

Parameters

The design of experiments is crucial in the analysis of a system under

investigation. The design of pharmacokinetic experiments is usually based on
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the immediate objective of the investigation, i.e., model discrimination or
parameter estimation. Determining the correct structural model among
alternatives (e.g., single versus multicompartmental) yields valuable insights into
pharmacokinetic mechanisms, and estimating model parameters is the key to
quantifying population variability. Pharmacokinetic analysis of data is
informative only if the data themselves are informative, and that informative data
could best be assured by appropriately designing the experiments from which the
data are collected.

Animal pharmacokinetic experiments typically consist of administration
of a test compound and measurement of the changing drug concentration in timed
blood samples from either individual animals or groups of animals. It is
established (Box, 1970; Landaw, 1985) that design decisions in human
pharmacokinetic experiments can be at several levels:

1. the route of drug administration

2. the dose to be used (e.g., tracer versus large, single versus multiple, IV

bolus versus continuous infusion)

3. sites, metabolites, or "pools" to be sampled

4, the number of samples to be collected

5. the spacing of sampling times
These decisions also apply to animal pharmacokinetic studies. Although "input"
design can be quite important (Endrenyi, 1981; Mannervik, 1981), the route and
dose of drug are often determined by the biopharmaceutical properties of the drug
(Smyth & Hottendorf, 1980). Likewise the number of samples to collect may be
limited to a large extent by the sample size in "destructive" animal
pharmacokinetic studies in which one animal supplies only one observation. In
situations which allow for serial sampling the total amount of blood that can be

withdrawn is limited. The balance, particularly in small animals, between
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providing realistic pharmaco.kinetic data and increasing the sample size to
unmanageable proportions is narrow. Although items 4 and 5 are the most easily
controlled aspects of animal pharmacokinetic studies examples abound in the
literature of poor sampling strategy in animal pharmacokinetic studies designed
for parameter estimation (Zbinden, 1984; Smith, Humphrey, & Charuel, 1990).

The information that can be derived from experimental data of
pharmacokinetic studies is determined by three factors (Suverkrup, 1982):

(1) accuracy, specificity and sensitivity of the assay, (2) number of samples taken,
and (3) arrangement of samples in time.

The observations made in a pharmacokinetic study are subject to two
types of error - errors due to analysis and errors due to biological variation during
the course of the experiment. Both will contribute to the error of the parameters
being estimated. The number of sample points taken and their timing will affect
the errors in parameter estimation, hence it is important that sufficient samples are
taken.

As with statistical estimations the larger the sample size, the better are the
parameter estimates in the sense that the variances will be smaller. However, in
animal and most pharmacokinetic studies the sample size is usually fixed so that
the arrangement of samples in time should be given adequate consideration.

Generally, sampling times can be manipulated to improve the information
content of the available concentration - time data. The benefits of attempting to
obtain measurements at certain key time points which will contain the maximum
pharmacokinetic information about model parameters have been highlighted by a
number of authors (D’ Argenio, 1981; DiStefano, 1981; Endrenyi, 1981; Endrenyi &
Dingle, 1982; Landaw, 1985; Suvekrup, 1982). Theory suggests that two
sampling times are needed for the efficient estimation of model parameters,
clearance and volume of distribution, of the one compartment model (Box &

Lucas, 1959). Using Monte Carlo simulation, D’ Argenio (1981) found that a
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repeating p point design led to a reduction in the parameter estimate variability
when data were collected at optimal sequential sampling times from a group of 10
subjects. Using this simulation technique in population pharmacokinetic studies
involving multiple sampling of subjects, Al-Banna, Kelman, and Whiting (1990)
examined the impact of two sampling times (an early and a late sampling time)
and three sampling times (where the first and the last samples were obtained at
early and late times and the third time varied between the two) on parameter
estimation. They concluded that variability was better estimated with the three
point sampling strategy, and the exact location of the middle (third) sampling
time was not critical. In animal pharmacokinetic studies involving the one
observation per animal study design the situation is not so clear.

Even when sample size and the arrangement of samples in time are
adequate, the parameterization of the model of choice may be crucial to efficient
parameter estimation. Using the two compartment model with oral administration,
Westlake (1971) pointed out that parameter estimates can be unreliable when the
constants in the exponential terms (e.g., o and [3) are nearly equal. He also noted
that even when the parameter estimates are satisfactory for limited prediction
purposes, they can be quite unreliable. Boxenbaum, Riegelman, and Elashoff
(1974) noted the instability of regression parameter estimates and related this to
high correlation between the estimates. In this type of model, reparameterization
has been suggested to reduce correlation between parameter estimates, leading to
more stable estimation (Boxenbaum et al., 1974; Metzler, 1981; Laskerzewski,
Weiner, & Ott, 1982). Reparameterization results in a transformation of the
parameter space.

The philosophy behind this approach has been stated quite succinctly by
Box (1980): *Known facts (data) suggest a tentative model, implicit or explicit,

which in turn suggests a particular analysis of data / or the need to acquire further
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data; analysis may then suggest a modified model that may require further
practical illumination and so on.” This is also the philosophy behind data driven

linear regression transformations of the target variable (Box and Cox, 1964).

1.6 STUDY OBJECTIVES

The aim of the work described in this thesis is to investigate the efficiency
with which NONMEM can estimate population pharmacokinetic parameters and
their variances, using experimental design normally applicable to small laboratory
animals. The effects of parameter variability, arrangement of samples in time,

sample size, experimental error, and a range of parameter values are investigated.

1.7 OUTLINE OF THESIS

The chapters that follow have the following features:-

Chapter 2: methods of data acquisition and analysis;

Chapter 3: influence of inter-animal variability on parameter estimation;
Chapter 4: effect of sampling designs on parameter estimation;

Chapter 5: efficiency of parameter estimation given a range of parameter
values of the 2 compartment model with an intravenous bolus
administration, sample size, concentration measurement error, and
sampling schedules;

Chapter 6: effect of reparameterization of the model used in Chapter 5 on
parameter estimation;

Chapter 7: application of NONMEM to the analysis of real data from
animal pharmacokinetic study;

Chapter 8: effect of sample size, error in concentration measurement,
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sampling an animal twice on the efficiency of estimation of

population pharmacokinetic estimates; and

Chapter 9: general discussion and conclusion.
With the exceptions of Chapters 5 to 7, all other experimental chapters deal with
the one compartment model with intravenous bolus dose administration. All, but

one, of the experimental chapters (Chapter 7) deal with simulated data sets.
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CHAPTER 2

METHODS
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2.1 SUMMARY

Pharmacokinetic principles, methods of estimation of pharmacokinetic
parameters, population pharmacokinetic methods and data analysis methods used
in this thesis are discussed in this chapter. The efficiency of parameter estimation
is examined in terms of accuracy and precision (mean and SD of percent
prediction error) and design number (a new statistic introduced). While the
percent prediction error can be used to judge the efficiency with which an
individual parameter is estimated, it cannot be used to determine the efficiency
with which all parameters are estimated when different designs within a study are
compared. The design number, on the other hand, not only measures the
efficiency with which individual parameters are estimated but may measure that
for all model parameters estimated as a set.

Since NONMEM, which is used throughout the course of this thesis,
produces standard error estimates, individual and joint confidence intervals for
parameter estimates were computed as measures of efficiency of parameter
estimation. Also, incidence of pair-wise correlations were computed as an aid to

judging the adequacy of the parameterization of a model.

2.2 INTRODUCTION

2.2.1 Parmacokinetics

Pharmacokinetics is concerned with the study and characterisation of the
time course of drug absorption, distribution, metabolism and excretion, and the
relationship of these processes to the intensity and time course of therapeutic and

adverse effects of drugs. It involves the application of mathematical and
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biochemical techniques in a physiological context (Gibaldi & Levy, 1976). In the
preclinical setting the appropriate pharmacokinetic characterisation of a new
xenobiotic is indispensable in the drug development process.

The pharmacokinetic behaviour of a drug is readily summarised with
parameters which relate concentration to dose and time, and the two most useful
parameters are clearance (Cl) and volume of distribution. Cl is defined as the
volume of blood , plasma or serum (containing drug) which is cleared of drug per
unit of time. In this thesis it is measured in units of millilitres per minute
(ml/min).

The volume of distribution (V) of a drug corresponds generally to an
apparent space, which may be defined as the volume it would occupy at a
concentration equal to that at the site of measurement, often peripheral plasma
(Gillete, 1973). In this thesis it is measured in millilitres (ml). Knowledge of
volume enables calculation of the concentration of drug immediately after an
intravenous bolus dose.

The elimination rate constant (K,) is the fractional rate of removal of drug
and is defined as the ratio of Cl to V (Eq. (2.1)).

K. =Cl/V 2.1

€

It is measured in units of either per minute or hour (min'1 or h'l).

2.2.2 Compartment Models

Generally, a compartment has no physiological or anatomical counterpart.

Occasionally it does, such as circulating plasma, extravascular fluid space and
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total body water space. A compartment may also correspond to a perfusion
volume of tissue (Bischoff ez al., 1971). It can be defined as an ideal volume in
which each molecule or particle of a substance (drug) has equal probability of
leaving (Segre, 1986). Implied in this definition is the fact that the concentration
of the material present in a compartment is uniform and that the rate of mixing
within the compartment is rapid compared with transfer into or out of it (Segre,
1986). This definition emphasises the statement of Wagner (1971), that a
compartmentalised system is an approximation of a biological system, being an
"average" rather than an exact state.

Many biological systems can be modelled as a collection of homogeneous
compartments, with material moving according to specified rate laws. In
pharmacokinetics, an attempt is made to quantify the kinetics of absorption,
distribution, metabolism and excretion of a drug. Quantification calls for a
mathematical model, and "compartment models" have been extensively used in
pharmaceutical and clinical pharmacology research. By modelling the body as a
set of separate compartments and measuring the amount of drug in one or more of
these over time, the parameters governing the movement of drug in the system
can be estimated. The concentration of drug is assumed to be the same throughout
all compartments at equilibrium, and the rates of transfer of drug between
compartments are assumed to obey first order kinetics. The mathematical
formulation of compartment models is a set of differential equations with
constant coefficients.

The one compartment model is the simplest model which depicts the body
as a single, kinetically homogeneous unit from which drug elimination is first
order. This is a particularly useful model for the pharmacokinetic analysis of

drugs that distribute relatively rapidly throughout the body. The schematic

representation of this model is shown in Fig. 2.1.

37



IV|D

ke

Fig. 2.1 A diagrammatic representatiop qf one compartment model assuming
instantaneous IV input with first order elimination
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Assuming instantaneous input (IV bolus injection) the mathematical
description of drug disposition with this model is given by the following

differential equation:

dA/dt = -K A 2.2)

where A is the amount of drug in the body at time t after injection. K is the
apparent first - order elimination rate constant for the drug. Eq. (2.2) can be

solved by Laplace transformation (Gibaldi & Perrier, 1975) to give Eq. (2.3).

A= Ao.exp(-Ke.t) 2.3)

Assuming that the relative binding of a drug to components of tissues and fluids
is essentially independent of drug concentration, then the ratio of drug
concentrations in various tissues and fluids is constant. Thus, there will exist a
constant relationship between drug concentration in (for example) plasma, C, and

the amount of drug in the body:

A=VC 2.4
Thus, Eq. (2.3) can be expressed as

C = Co.exp(-K.1) (2.5)
where Co is the drug concentration in plasma immediately after injection, and C
is the drug concentration in the plasma at time t.

The two compartment model (Metzler, 1971) for drug kinetics is depicted

39



in Fig. 2.2. Compartment one is called the "central compartment" and
incorporates circulating plasma from which the drug distributes into a second
compartment which is sometimes referred to as the "tissue" or peripheral
compartment. For a drug exhibiting two compartment kinetics the concentration -
time profile shows an initial rapid decline in concentration which represents both
distribution and elimination followed by a second slower decline.

Assuming all exchanges between compartments are first order processes,
the mathematical description of this model is given by the following set of

differential equations:

where A and A, are the amounts of drug in compartments 1 and 2, respectively.
The rate constants k(, k15, and ko represent the rate of elimination from the
central compartment, the rate of transfer from the central compartment to the
peripheral compartment, and the rate of transfer from the peripheral to central
compartment, respectively. These equations can also be solved by Laplace

transformation to give:
C = [Dose/V (o - B)][(et - ky1)EA + (ko - B)EB] (2.8)

where EA= exp(-ait), EB = exp(-Bt)
o, and P are hybrid rate constants describing distribution and elimination, and V{

is the volume of the central compartment.
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Fig. 2.2 A diagrammatic representation of the two compartment open model
assuming instantaneous IV input with first order transfer and elimination
processes.

41



2.2.3 Nonlinear Regression

Nonlinear regression methods are used in the analysis of data generated
during the course of a pharmacokinetic study to estimate the parameters of the
model. There is no unique solution for the model parameters. Initial parameter
estimates are progressively altered until the best set of parameters is obtained
corresponding to the minimisation of the sum of squared deviations between the
observed and model predicted values.

For example, at each time t;, i = 1, N, the expected drug concentration C*i

will be given by an equation
c*=f®,1) 2.9)

where O represents the structural model pharmacokinetic parameters (e.g., Cl and
V) for the individual (or animal). The observed concentration, C; may be

represented by
C;=C'i+¢ (2.10)

where the = is a small random error. The distribution of the €; has zero mean

and variance .
The probability density function of observing C; at t; is given by the

. ep s . * )
normal distribution with a mean of C i and variance, Vis

ie. p(Cy) = (K2TIv;) exp. <(C; -C*p? 12v; .11
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The joint probability density function (pdf) that all of the observations (C) occur,
is given by p(C), where
p(C) = p(C1)-p(Cy).........p(Cp) (2.12)

and each p(C) is as given above. Eq. (2.12) represents the probability function
for obtaining the values of C, given the values of the parameters ©.
The probability function can also be used to define the "likelihood" (LY

function for the parameters, O, given the observations of C, so that
L/©®)ap(C) or L/(®) =k.p(C) = k.L(O)

where k is a constant, but L(©) is not a probability density function. L(®) can be
used to obtain the most likely estimates (MLE) or estimators of ©. These will be
the set of parameter values which maximises L(©®). Thus, by substituting for

p(C), the problem reduces to maximising the product

L(©) = [(IA2TTvJexp -(C; - C*)/2v{] [(1A2TTv )exp (Cy - C* )% 2v,)...
....... (2.13)

The logarithm of both sides gives

In(L(®)) = -((C; - C*)?/2v; + 1/2In2T1vy)} - {((Cp-C )% /2v4 + 1/2In(2TTvy))
(2.14)

Thus maximising In(L(®)) is equivalent to maximising L(®), or minimising

-In(L(®)), i.e.

In(L(O)) = E(C; - C*p22v; + 12InQIy)  (2.15)

43



where -In(L(®)) is called the negative log likelihood. Multiplying Eq. 2.15 by 2,
and also removing the 2I1 term reduces to minimising Eq. 2.15 to obtain the MLE

of the parameters.
ie. Objective function = £(C; - C*)%v; + In(vy) (2.16)

This objective function is called the Extended Least Squares (ELS) objective
function.

The interest in the ELS regression method is due to the fact that the
variance or weighting scheme can be included as part of the model for the data,
and the parameters of the variance model may be estimated simultaneously.
Consequently, a variance model or weighting scheme need not be chosen
explicitly before the data are fitted. However, the form of the model used to
describe the variance must be selected.

The most frequently used variance model is

v; o C°0 2.17)

i
where the value of ¢ is estimated along with other model parameters. Eq. (2.17)
gives the general variance model in which various weighting schemes can be
incorporated. When ¢ = 0, Eq. (2.17) yields the constant variance model and the
objective function in Eq. (2.16) reduces to the Ordinary Least Squares (OLS)

objective function which is given by
* 2
OLSopy =2(C;-C) (2.18)

The assumption of a constant variance may be unjustifiable in cases in which

concentration is measured over a large range of values (e.g. 0.01 to 100 pg/mil).
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As the variance of each point is rarely known, there are several weighting
schemes which are commonly used. Examples of these occur in the radioactive
decay and dilution processes. In the former, W;aV;a C" and in the latter W; o
V;a c*2, Thus, ¢ = 1 and 2 for the respective processes (i.e. W; o C*i or C*iz,
respectively) and the objective function in Eq. (2.16) reduces to the Weighted

Least Squares (WLS) objective function. Thus,
*\2

The contribution of each point to the WLSqp j is weighted by a function which
reflects the certainty of the observation. More weight is placed on the data points

about which there is the greatest confidence and vice versa.

2.3 POPULATION PHARMACOKINETICS

All drugs exhibit pharmacokinetic variability. Population
pharmacokinetics describes this variability in terms of fixed and random effects.
"The fixed effects are the population average values of pharmacokinetic
parameters which may in turn be a function of various patient characteristics such
as: (a) age, weight, height and sex; (b) underlying pathology such as renal or
hepatic impairment; and (c) other influences on drug disposition such as
concomitant drug therapy, smoking habits and alcohol intake. The random effects
quantify the amount of pharmacokinetic variability which is not explained by the
fixed effects, i.e., inter- and intrasubject variability" (Whiting, Kelman, & Grevel,
1986). In animals fixed effects are similarly a function of those characteristics

listed for humans.
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Thus inter-animal random effect parameters measure the magnitude of the
random individual animal variability in relation to the fixed effects. Intra-animal
variation includes measurement errors involved in quantifying drug concentration
or response and random changes in an animal’s parameter values over time. It
also includes model misspecification errors which arise because all mathematical

calculations of parameter values are simplifications of reality.

2.3.1 Population Methods

There are two standard approaches to estimating population
pharmacokinetic parameters : the NPD and the STS approaches (Sheiner & Beal,
1980a). These approaches have been traditionally used in the estimation of
population pharmacokinetic parameters from animal data. The NPD approach
tends to ignore individual animal pharmacokinetic differences. The usual
approach when an animal (e.g., rat or mouse) can be measured only once is to
sample more than one animal at each of several time points and to treat the
sample means as a time series of measurements from a "typical" animal. This
procedure only gives estimates of population parameter means and ignores inter-
animal variability in the parameters.

When animals are sampled serially all data are pooled at each time point
to yield an arithmetic mean plasma concentration curve (Eq. 2.20) of all
individual animal curves and a pharmacokinetic model fitted to the mean data as

if it came from a "super" animal.

p{C®)} = 1/n ZC;(t) (2.20)

Thus the NPD approach has several drawbacks:

(1) It totally ignores individual animal pharmacokinetic characteristics
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and, by doing so, obscures important information on how xenobiotic

substances are handled.

(2) The average concentration curve derived by the NPD approach, does

not necessarily follow the individual model function. A wrong model may

be obtained (Martin et al., 1984). Undefined statistical uncertainties and
large "unknown" animal variations might smooth the average response
curve in an unpredictable manner.

The STS method is, in a sense, the exact opposite of the NPD method. At
first it regards each animal as completely distinct from all others and estimates
each animal’s pharmacokinetic parameters from its data alone. In the second
stage, the individual animal pharmacokinetic parameter estimates are often
pooled to obtain population parameter estimates. If Cl, for instance, is to be
related to physiology, linear regression is used. This, however, has only been
used in human studies although it could be applied to animal studies. For inter-
animal random effect parameters, the standard deviations of the individual animal
parameters about the regression line ( or the mean value) are used. When the
residual error random effect parameter is estimated (which is rare) the square root
of the sum of the pooled, squared residuals of the initial, nonlinear fits divided by
the (pooled) residual degrees of freedom is usually used (Sheiner & Beal, 1980a).

When standard errors of the fixed effect parameter estimates are obtained
with the STS approach they are usually taken to be the standard deviations of
each animal’s parameter estimates divided by the square root of the number of
sampled animals. The standard errors of the inter-animal random effect parameter
estimates are not computed.

The manner in which the random inter-animal effect parameters is
estimated is a fundamental problem associated with the STS approach. They tend

to be upward biased because each parameter is estimated from the original drug
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concentration - time data with some error, and this error adds variability to the
parameter estimates that is not of biological origin (Sheiner, 1984; Martin et al.,
1984). Accurate variance estimates can be achieved only through well designed
and performed pharmacokinetic studies. In addition, this method cannot be used
when data from some animals are too few to permit individual animal parameter
estimates.

The statistical problems of pharmacokinetic data analysis are now being
appreciated more often than formerly and alternative population - based methods
of estimating population pharmacokinetic parameters have been elaborated. These
methods focus on central tendency in response across a study population and the
variability in response between individual members of the population studied.
This difference in point of view requires a dramatically different approach to
modelling and parameter estimation. A variety of approaches have been proposed
(Steimer et al., 1984), but the nonlinear mixed effects model has been studied in
detail, and it is applied throughout the course of this thesis. Traditional
compartmental pharmacokinetic models invariably assume that error or
unexplained deviation from expected response is simply added to the predicted
response. Such an error structure can be satisfactorily dealt with using simple
least squares nonlinear regression. Population based methods assume a more
complex error structure and are generally expressed as mixed effect models,
indicating that complex interactions and effects are responsible for an observed
response (Beal & Sheiner, 1984).

Expression of a population model in a form that lends itself to extended
least squares analysis allows explicit estimation of components of variance as
well as estimation of central tendencies. At the heart of population
pharmacokinetic analysis is the explicit estimation of inter- and intra-individual
(inter- and intra-animal) variability and the exploration of factors that account for

this variability (Sheiner, Rosenberg, & Marathe, 1977; 1980a & b; 1981; 1983;
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Beal & Sheiner, 1982, 1984).

2.3.2 Population Data Analysis Using NONMEM

The formal expression of a population based model for parameter
estimation is accomplished through application of the basic principles of analysis
of variance. The similarities between traditional analysis of variance (ANOVA)
or, more accurately, analysis of covariance (ANCOVA) and nonlinear mixed
effects modelling underscores the importance of variance in population modelling
(Colburn & Olson, 1988).

In common with simple nonlinear regression models (OLS and WLS),
mixed effects nonlinear regression models estimate a central tendency for
parameters that predict average response. The principal difference between
simple nonlinear regression and mixed effects nonlinear regression is the level of
complexity allowed in the subsequent expression of variability. Simple nonlinear
regression allows a single component of random error about the predicted
response. This error is added to the predicted response to account for deviations
from prediction and may or may not arise from a distribution of a constant
variance. A more complex expression of variance models based on principles
firmly established for traditional ANOVA is accomplished with mixed effects
nonlinear regression (Beal & Sheiner, 1982).

Nonlinear mixed effects regression recognises two sources of deviation
from a predicted response. Assuming that the central tendency in a population
model represents the response of an average animal, any particular animal
response will be different for the simple reason that the particular animal is not
average. This is the source of inter-animal variability. The second source of

variability (residual error) arises from deviations from predicted response after
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accounting for inter-animal variability. The residual error is the same as that
estimated in simple nonlinear regression. This analysis approach allows a
generally correlated error structure, with varying error magnitude as a function of
observable data (e.g., sex, weight, time of sample after dose, etc) and the fixed
effect parameters.

Fewer samples are needed from each animal because the individual
animal is no longer of central interest; this procedure should lend itself to the
sparse data obtained with the one observation per animal study design.
Observations are pooled to characterise a central tendency for the population
rather than the individual animal. The characterisation of inter-animal variability
preserves the fact that individual animal response is different from the population
mean response. Each animal’s contribution to the characterisation of this variance
is adequately defined with fewer samples than are required for the
characterisation of each animal’s parameters.

The NONMEM program (Beal & Sheiner, 1979 - 1989) uses the ELS
method to estimate population pharmacokinetic parameters and is designed to
handle relatively sparse data from a large number of subjects. This feature makes
it applicable in the analysis of data collected during animal pharmacokinetic
studies in which as few as one observation is obtained per animal. It
simultaneously analyses data from all animals in a study, provides estimates of
average population parameters and partitions all sources of error into that arising
from inter-animal variability and that arising from residual error. When
analysing experimental data the ability to state a general parametric model for the
error structure frees the analyst from the task of specifying weights for the data
analysis. NONMEM provides estimates of standard errors for all parameters
estimated and these can be used to construct confidence intervals for true

parameter values, thereby allowing hypothesis tests for these. Under the
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assumption of normality for the distributions of the random variables, NONMEM
provides yet another possibly preferable method of testing hypotheses, the
likelihood ratio test (Rao, 1965) which is used in comparing models.

Three input files are required to run NONMEM. These are: (1) the data
file which contains the concentration - time data, (2) the "PRED" file, a
FORTRAN subroutine which defines the structural and variance models, and (3)
the control file which details information on the organisation of data in the data
file, initial estimates of parameters with upper and lower limits, and instruction
for presentation of results, tables and graphs. The PRED files used in this thesis
are shown in Appendix L.

The parameters of the structural model, (@ki) for any animal are
represented by the population mean, (@k), plus the deviation from the mean
which is relevant to the particular animal lel (where lei represents inter-animal

variability), i.e.

O, =6, M (2.21)

llki values are often assumed to be normally distributed with zero mean and
variance °2k- The inter-animal variability expressed in this form is additive to the
population mean, and G, approximates the inter-animal standard deviation for
associated parameters. Alternatively, the inter-animal variability can be assumed

to be proportional to the value of Oy, i.c.

In(®,;) = In(@y) N (2.22)

The statistical model given in Eq. (2.21) is used throughout this thesis.
The residual error quantifies deviations of the plasma concentration

measured in each animal, Cj, from the ovex:all predicted concentration, C*j. The
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predicted concentration is a function of structural model parameters (O
*
C" =£(®; D, 1) (2.23)

*
ande—f(G)ki,D,t)+ej= Cj+ej (2.24)
The error is assumed to be normally distributed with zero mean and variance 2.
This corresponds to a "constant or additive error" model. The "proportional error"
(error proportional to concentration), a realistic assumption in pharmacokinetics,
is an alternative model which can be obtained by assuming a log normal

distribution of concentration, i.e.
ln(Cj) =In f(@ki, Dt)+€ j (2.25)

Fig. 2.3 is an example of the PRED (for a drug which is administered by
intravenous (IV) bolus dose injection and exhibits one compartment kinetics)
used in the 1985 version of NONMEM (Beal & Sheiner, 1979 - 1989). It requires
the provision of both the structural (pharmacokinetic) model (F) and the
derivatives of the function with respect to each 11(G array) by the user. The
statistical nature of the inter-animal variability is defined by the G functions. The
"H" function defines the statistical nature of the concentration error model.
Appendix I contains examples of other PRED’s and control files used in

NONMEM analysis during the course of this thesis.
2.3.3 Model Comparison
NONMEM models are compared on the basis of the objective function

52



SUBROUTINE PRED(ICALL,NEWIND,THETA,DATREC,INDXS,F,G,H)

1 COMP1V, 1ST DOSE, CL, V

olololelele!

DIMENSION THETA(2),DATREC(3),H(1),G(2),INDXS(1)
DOUBLE PRECISION THETA F,G,H.T,DOSE,CL,V EKT,XKE,EXPWCH
CL=THETA(1)

V=THETA(2)
XKE=CL/V
T=DATREC(2)
DOSE=3000.
EKT=EXPWCH(-XKE*T)
F=DOSE*EKT/V
G(1)=-T*E/V
G(2)=(F/V)*(XKE*T-1)

C H(1)=F
RETURN
END
DOUBLE PRECISION FUNCTION EXPWCH(XX)
DOUBLE PRECISION XX
IF(XX.LE.-50.) XX=-50.

IF(XX.GE.50.) XX=50.
EXPWCH=DEXP(XX)
RETURN

END

Fig. 2.3 The PRED subroutine used for parameter estimation with the one
compartment model (IV bolus injection). Note that when more th'an one
observation is obtained per animal "H" is included in the subroutine.
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(twice negative log likelihood function). Hierarchical models can be compared
using a chi- squared test with degrees of freedom equal to difference in the
number of parameters (Sheiner, Rosenberg, & Marathe, 1977). Non-hierarchical
models (where all models have the same number of parameters, see chapter 7) are
compared by an examination of the objective function, the variances associated

with each parameter, and the weighted residuals plot.

2.4 SIMULATION

Monte Carlo simulation is a numerical technique for conducting
experiments with certain types of mathematical models describing the behaviour
of the system under study (Naylor, Burdick, & Sasser, 1966). In a
pharmacokinetic simulation study, it is assumed that both the form of the
deterministic and the stochastic components (structural model parameters and
error structures, respectively) of the pharmacokinetic model are known, and the

sampling strategy specified.

Thus, simulation was carried out as described by Bard (1974). For studies
involving the use of the one compartment model with IV bolus injection
(Chapters 3, 4, and 8) population parameters of a drug having the characteristics
of avicin, a cytotoxic agent (McGovern et al., 1988) were used for the simulation.
The parameter values were Cl = 1.3 ml/min; V = 162.5 ml, Ocy Oy» and o were
set to give coefficients of variation of 15%.

The half-life (t; /2) of the simulated drug (using CI and V) was 84 min.,
and ten sampling times were specified between 5 and 240 min. (i.e. 5, 15, 30, 60,
90, 120, 150, 180, 210, and 240 min.). The first two time points were fixed in all

cases while the other time points were sampled uniformly from a range of 15
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min. about the stated times. This was considered to mimic a real study, and in
parameter estimation with NONMEM the exact times were used. One observation
was made on each animal. Variations of this sampling design are specified in
chapters 4 and 8.

Individual CI values (Clj’s) were obtained by sampling from the
population distribution (CI, OZCI) using a random number generator. Vj’s were
similarly generated. Using the appropriate sampling time (tj) sampled from the
uniform distribution (tj t 7.5 min.), apart from the first two points, the expected
concentration C*j was computed. A random error, proportional to C*. was then

J
added to C*; to give the final observation. This was repeated for each animal

J
comprising a data set.

For each study design, 30 such sets of data were generated and analysed
assuming zero covariance between any two parameters. A similar procedure was
used to simulate data for the two compartment open model with IV bolus injec-
tion using the parameters and variances specified in Chapters 5 and 6.

Simulation was carried out using the ICL main frame (ICL 3980). Appen-

dix II contains the simulation programs used in this thesis. The data thus simulat-

ed were analysed with the NONMEM program.
2.5 DATA ANALYSIS

2.5.1 Prediction Error

Given that the "true" parameter values were known, the efficiency with
. *
which each model parameter is estimated could be judged. Let © represent the

"true" value of the parameter ©. Intuitively an estimate is "better” the closer it is

to the "true" value.
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This notion was formalised by defining the error (bias) of an estimate © as
© - ©". In order to express the accuracy and precision for all parameters on the
same scale, percentage errors were computed. For each run and for each parame-
ter, the difference between the "true" value and the "estimated" value was ex-
pressed as a percentage of the "true" value (i.e., percent prediction error, %PE).

Thus,
%PE = (6, - ©;"/0;") * 100 (2.26)

The mean of %PE for each of 30 replicates of data was used as a measure of the
accuracy with which each parameter was estimated.

An estimate of the precision with which each parameter was estimated
was obtained from the standard deviation of %PE, denoted SD of %PE. Bias and
precision are illustrated in Fig. 2.4. The first estimate (I) of the parameter © is
unbiased and precise, the second estimate (II) is unbiased and imprecise, the third
estimate (III) is positively biased but precise, and the fourth estimate (IV) is posi-
tively biased and imprecise. In deciding on the acceptability of precision of
estimates, an SD of %PE of 25% was used as the cut off. Statistical significance
of nonzero %PE’s was tested using the two - tailed t test.

In some studies reported in the course of this thesis some data sets gave
rise to totally implausible estimates. Since these would be rejected from further
analysis, criteria had to be adopted with which to judge acceptability. Thus, any
parameter estimate which was smaller than 1/100th of the "true” value or larger
than 10 times the "true" value was rejected. Also, if the estimated standard error
of a parameter was greater than 10 times the "true" value, the result was rejected.
This is similar to the criteria used by White ez al (1991) in a simulation study with

a drug exhibiting one compartment open model kinetics. These criteria were

applied in Chapters 3, 5, and 8.
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Fig. 2.4 Bias and precision expressed as %PE (mean + standard deviation,
respectively) for a parameter, ©. The first estimate (I) of © is unbiased and
precise, the second estimate (II) is unbiased and imprecise, the third estimate (IIT)
is positively biased but precise, and the fourth estimate (IV) is positively biased
and imprecise.
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2.5.2 Confidence Intervals

The reliability of estimates is important in parameter estimation. The usual
way to approach this statistical problem is through the construction of a "confi-
dence interval" for the parameter estimate. Briefly a 95% confidence interval is a
region in the parameter space that is so constructed that in repeated trials the true
parameter will lie in the confidence region (interval) in 95% of the cases.

The standard errors (SE) of parameter estimates (©;) produced by
NONMEM can be used for the construction of confidence intervals (Sheiner &
Beal, 1980a). The approximate 95% confidence interval is given by ©; +
1.96(SE) for ©. Efficient parameter estimation requires low standard errors for
parameters. From preliminary experiments it was found that for any given
amount of data, the variance parameters were estimated with considerably less
precision than were the structural model parameters. Thus, a cut off rule was
established as an aid to determining the impact of SE on confidence interval
coverage for a parameter estimate, hence the efficiency with which such a
parameter was estimated. For efficient estimation of Cl and V the "coefficient of
variation" (i.e. SE(@i)/G)i) associated with any estimate of any of these
parameters for any given run had to be < 20% while that for the variance
parameters had to be < 50%. Confidence intervals were calculated to determine
the runs in a simulated data set which covered the "true" values. In addition, the
99% univariate confidence interval was used as suggested by Sheiner & Beal
(1987) as a reasonable approximation for confidence interval estimates to contain
95% of the estimates produced using the ELS estimation procedure.

Bias in estimates production, and standard error of estimates are some of
the factors that affect confidence interval coverage. Thus, there are three sections
in confidence interval tables presented throughout the course of this thesis (e.g.,

Table 2.1). Section I, indicated by the ratio "success / total", shows confidence
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intervals coverage for parameter estimates when the cut off rule is not applied.
Section II, denoted by the ratio "success - excluded / total - excluded”, shows
interval estimates when the cut off rule is applied to both the numerator and
denominator during confidence interval coverage computation. The estimates not
used for the construction of these confidence intervals are herein referred to as
"catastrophic” estimates. Thus, this section gives an indication of how good the
coverage is if catastrophic estimates were deleted from the results. The last
section of the table (Section III) shows the coverage when the catastrophic
estimates are included in the denominator but discounted in the numerator for the
computation of confidence interval coverage. With Section III the acceptability of
an estimate can be judged in combination with the accuracy with which such an
estimate is produced. From Fig. 2.5, for instance, the estimate of ocl obtained
with sampling time specification at 240 min. in a study in which the effect of the
arrangement of sampling times on parameter estimation was studied, is almost
unbiased. However, an examination of the confidence interval coverage (Table
2.1, Section III) which was computed from the results of the experiment present-
ed in Fig. 2.5 shows that 70 NONMEM runs yielded catastrophic estimates of this
parameter. Thus, Section III is helpful in determining the reliability of an esti-
mate.

Parameters of a model are not estimated individually, and consideration
should be given to this in results interpretation. Thus, the "joint confidence
interval" for all parameter estimates was computed as an aid to the interpretation
of the efficiency with which all parameters were estimated. The approximate 99%
joint confidence interval for all parameter estimates was computed from the
number of runs containing true parameter values for all parameters of the model.

99% individual and joint confidence intervals coverage for parameter estimates is

used throughout the course of this thesis.

60




%PE100, Cci
80 .
60 - *
40 .
20 J *
o 0 N S DN, AU N
-20 .
-40 .
-60 -
-80 -

T L}

60 90 120 150 180 210 240 Time (min)

Fig. 2.5 Bias and precision expressed as %PE (mean 1 standard deviation,
respectively) for ¢y The horizontal axis represents the different sampling times
for the two samplinig times design. The first sampling time was fixed at 5 min.
while the second time was varied. Each vertical bar expresses the bias and
precision of the population parameter estimate for each design. Significant (p <
0.05) biases are indicated by asterisks.
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The chi - squared test (p < 0.01) was used to determine whether the indi-
vidual or joint confidence intervals coverage for parameter estimates was signifi-
cantly different from the expected values (e.g., 0.95 and 0.81 (4 parameters only),
for individual and joint confidence intervals coverage, respectively, for the

parameters of the one compartment model with IV bolus injection).

2.5.3 Design Number

Most pharmacokinetic studies are carried out to obtain estimates of
parameters which define an assumed pharmacokinetic model. Parameter estima-
tion procedures (such as NONMEM which is used throughout the course of this
thesis) produce sets of interrelated estimates. However, in the interpretation of the
results, relationships between parameters are usually ignored. Thus, in the com-
parison of study designs used in parameter estimation, there is a need for an
examination of the efficiency with which all model parameters are estimated
singly and jointly from a design.

In Section 2.5.1 of this chapter the usual approach to judging accuracy
and precision was presented. However, this method of analysis allows the
investigator to judge the efficiency of estimation of only one parameter at a time.
In the previous section the joint confidence interval was introduced as an aid to
judging the efficiency with which all population pharmacokinetic parameters
were estimated. Sometimes it may be difficult to choose the best sampling design,
for instance, from a series of designs for the estimation of a parameter of interest.
In addition, it was pointed out in the previous section that the reliability of a
parameter estimate had to be judged with its SE taken into account. The %PE

approach ignores the fact that NONMEM produces parameter estimates with

SE’s.
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To this end, a new statistic was proposed with which the efficiency of
parameter estimation from a study design could be measured. In it the elements of
accuracy and precision in parameter estimation are combined. The statistic, a

"design number", ®; for each parameter was defined:
* *
@; = ((0;- 0, /0;")? * SE©/0;" (2.27)

®; has two desirable properties which are useful for determining the most
efficient parameter estimate. It should be recalled that ©; - @i* measures the bias
in the estimation of a parameter. SE, of course measures precision. The two terms
on the right hand side of Eq. (2.27) are normalised to allow the comparison of
different estimates of a parameter from different designs within a study.

Since accuracy is improved as ©; approaches G)i*, the first term on the
right hand side of Eq. (2.27) will approach 0 as this happens. This term is squared
so that all computed values of @; remain positive. As the parameter estimate
becomes more precise, SE(@i) becomes smaller. As the two right hand terms in
Eq. (2.27) tend towards 0, @; approaches 0 indicating greater efficiency with
which the parameter is estimated. If a reasonably symmetrical distribution for ©;
is assumed, then the distribution of <I>i is skewed right. 95% confidence intervals
can be calculated for different designs within a study.

From Eq. (2.27), ®; defines a design number for each parameter viewed
independently. As earlier discussed, model parameters are estimated as a set, and
an investigator may be interested in choosing a study design which produces the
most efficient parameter estimates. This can be done by combining all design

numbers to give the "overall design number". Thus,
® = Z{[(®; - ©;")/8;"? * SE©/6;"} /n (2.28)
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where n is the number of estimated parameters. The power and efficiency of D;
and @ are outside the scope of this thesis.

A preliminary study was carried out in order to apply @; (®) in determin-
ing the efficiency with which parameters were estimated with different sampling
schedules using the two sampling times design.

Parameters of the drug, avicin (Section 2.4) were used to simulate data
with the first sampling time fixed at 5 min. and the second sampling time speci-
fied at either 90, 150, 210, or 240 min. With the one observation per animal study
design a sample size of 48 was used for each sampling strategy. 180 replicates of
data were generated for each of the sampling schedules. Table 2.2 is a summary
of the 95% confidence intervals for @; and @ for the different sampling schedules
of this two sampling times design. It can be seen that @; values for the variance
parameters had more influence in ® computed.

To give equal weighting to all parameters, ®@; was rescaled as follows:

@, = ((©; - ©,")/0;" )2 * SE(©,)/0;" / Max [{(©; - ©;")/0;"}? * SE©y)/6;"]

(2.29)
Therefore, the overall design number was computed as follows:
@, = 1/n Z{(®;- ©,")/0;")? * SE(©,)/0;" / Max [{(©; - 0" ve;"y2 *
SE(©p/0;"] (2.30)

o.

i @, calculated using Eq. (2.29) and (2.30) were then used to compare the

efficiency of parameter estimation from the different sampling schedules.

64




- (S1£°0°691°0) (9011 1€5°0) (€80°0°9¥0°0) (80000°0 *S0000°0) (LO000'0 *S0000°0)
weo  SLLO . $90°0 900000 900000 74
(VLT0 ‘9¥T0) (8V8°0 E1¥0) (L90'0°Z0°0) (L0000"0 *S0000°0) (S0000°0 “£0000°0)
S61°0 $8S°0 €500 900000 #0000'0 01¢
00 *€ST0) (200°1 *$8S°0) GZE0TULT0) (LO00O™0 *S0000°0) (9000070 *€0000°0)
0ZE0 €8L0 0£T0 900000 #0000'0 oSt
W0T1 'S780) - (HOT1 *S6€0) (V'€ '050D) (90000°0 *+0000°0) (81000°0 ‘60000°0)
L660 S0 0£9°C S0000°0 €1000°0 06
TRI9AO J1%) Do A D sunp
3undureg puz
(feAINU] UIPYUOD) %S6)
. URIPO
. (@ @) quny udisaq

u3saqy soun [, 3urjdureg om |, :uonewnsH JAIurered Jo AQUALYSY 7T JqEL

65



Table 2.3 summarises the 95% confidence intervals for ;. and @, obtained with
the different sampling schedules for comparison with Table 2.2. The rescaling
resulted in changes in @, and @, therefore, giving equal weighting to all
parameters. The Kruskal Wallis test (p < 0.05) with multiple comparisons was
used to compare the efficiency with which parameters were estimated with the
different sampling schedules. Thus, the most efficient parameter estimate(s) is
obtained with the study design yielding the lowest average rank of D, (D).

The results of the multiple comparisons in this example are summarised in
Fig. 2.6. The design numbers for the sampling times are ranked in increasing
order from left to right, and this format is used in the presentation of results
obtained using @;;. () throughout the course of this thesis. The design yielding
the least efficient parameter estimate has the highest rank order. Where two
sampling times in the Fig.2.6, for instance, are connected with a line it indicates
that there was no significant difference in the efficiency with which a parameter
was estimated with the designs considered. When two sampling times are not
connected with each other by a line, it indicates that there was a significant
difference in the efficiencies with which the parameters considered were
estimated using the different sampling designs.

Thus, from Fig.2.6a Cl was most efficiently estimated with the specifica-
tion of the second sampling time at 150 min., but this was not significantly
different from the estimate obtained with the second sampling time specified at
210 min. However, the efficiency of Cl estimation with this two sampling times
schedule was significantly better than the efficiency with which it was estimated
when the second sample was at 90 or 240 min. The results obtained with the
second sample at 90 min. yielded the most inefficient estimate of Cl. Although V
was most efficiently estimated with the second sample at 90 min. (Fig.2.6b), this

was not significantly better than results obtained with the other sampling
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(a) Estimation of Cl

Sampling Times (min)

Sampling Times (min)

Sampling Times (min)

Sampling Times (min)

150 210 240 90
(b) Estimation of V
90 210 240 150
(c) Estimation of a1
240 210 150 90
(d) Estimation of Gy
90 210 240 150
(e) Overall Design Efficiency
210 150 240 90

Sampling Times (min)

Fig. 2.6 *Summary of significant differences in the efficiency* with which
parameters were estimated using the two sampling times design.

a - Rank order of design numbers increasing from left to right.

* . Efficiency measured with design number.
The connecting of sampling times with a line indicates a lack of significant
difference between the designs.
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schedules.

Ocy Was "best estimated" with the second sample at 240 min, (Fig.2.6¢),
but this was not significantly better than when the second sample was at 210 min.
These two sampling schedules produced more efficient estimates of this
parameter than the design with the second sample at 90 min.

As with V, the efficiency with which Gy was estimated was similar for all
the study designs although the design with the lowest average rank of ;. was the
one with the second sampling time specified at 90 min. (Fig.2.6d).

Fig.2.6e gives the overall efficiency with which parameters were
estimated. The parameters were estimated with a similar efficiency when the
second sample was at 150, 210, or 240 min. More efficient parameter estimates
were obtained with these sampling schedules than with the design having the
second sample at 90min. Specifying the second sample at 210 min. yielded the
most efficient parameter estimates. ®;, and @, were applied in the analysis of

data in Chapters 4, 5, 6, and 8 of this thesis.

2.5.3 Correlation Analysis

Model parameters are not estimated independently but as an interrelated
set giving rise to the generation of a correlation matrix for parameters. The
interpretation of this should be considered in the overall interpretation of the
results of a study. In the course of this thesis, the incidence of "high" correlation
between parameter estimates is used to examine the reliability of parameter
estimates. Two parameters are judged to be highly correlated if the pair-wise
correlation coefficient is = 0.75. otherwise, it is termed low. Thus, the study
reported in Section 5.3 yielded 0% incidence of high pair-wise correlations for

the different parameter combinations (Table 2.4). When the incidence of high
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pair-wise correlations between most parameters is high it is an indication of a
"poor" fit of the model to the data since the data in the studies reported in this
thesis were generated with the assumption that all model parameters were inde-

pendent.
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CHAPTER 3

INFLUENCE OF INTER-ANIMAL VARIABILITY ON THE

ESTIMATION OF POPULATION PHARMACOKINETIC PARAMETERS
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3.1 SUMMARY

Simulation studies were carried out to investigate the influence of inter-
animal variability on the estimation of population fixed and random effects
parameters. Data were simulated according to a monoexponential model with the
one observation per animal study design and a range of inter-animal variability in
Cland V.

The efficiency with which the fixed effect parameters were estimated was
good, on average, irrespective of the inter-animal variability in Cl and V. The
estimates of the random effect parameters were sometimes imprecise and often

inaccurate.

3.2 INTRODUCTION

Variability in pharmacokinetic parameters among homogeneous strains of
small laboratory animals has been claimed to be between 30 and 50% in some
cases (Lindstrom & Birkes, 1984; McArthur,1988). There is need to investigate
the effect of this wide range of variability on the estimation of population
pharmacokinetic parameters in a setting where each animal supplies only one
concentration time point as is often the case in preclinical studies involving the
use of small laboratory animals. The goal of this simulation - based study was to
evaluate the influence of inter-animal variability on the estimation of population
pharmacokinetic parameters using the one observation per animal study design.
Specifically, the accuracy and precision with which these parameters were
estimated, the "normality" of their sampling distributions, single and joint
confidence intervals coverage of parameters estimates, and the incidence of high

correlation between pairs of parameter estimates were examined.
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3.3 METHODS

Parallel simulations were performed for two different studies. In the first
study, three observations were obtained from 3 different animals at each time
point. In the second study, 5 observations were obtained from 5 animals at each
time point. In both studies only one observation was taken per animal. An
intravenous bolus dose and sampling design previously described in Chapter 2
(Section 2.4) was used in these studies. Cl and V for the jth animal were sampled
as previously described in Chapter 2 (Section 2.4), and the respective variances
were selected to yield coefficients of variation of 15, 30, 45, and 60%. There
were 4 * 4 combinations of variability in Cl and V (Table 3.1). These
combinations of variability were chosen to cover the range of inter-animal varia-
bility likely to be encountered in real life (Lindstrom & Birkes, 1984; McArthur
1988). A 15% error was added to concentration measurements as previously
described (Chapter 2, Section 4.1). 30 data sets were generated for each combina-
tion of ol and Oy for each study. Thus, 480 data sets were generated for each

study, and 960 data sets in all.

The chi - squared test (p < 0.05) was used to determine the normality of
the distribution of the estimates obtained for the fixed and random effects
parameters. When the assumption of normality was rejected further testing
showed that the distributions were significantly positively skewed (p < 0.05), but

tests of kurtosis were not appropriate since the test is only valid on sample sizes

of greater than 50.
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3.4 RESULTS

3.4.1 Acceptable NONMEM Runs

Using the outlier criteria stipulated in Chapter 2 (Section 2.5.1) the
number of times over 30 replications in each simulation that NONMEM produced
acceptable estimates and corresponding standard errors was determined. All Cl
and V estimates were acceptable (Chapter 2, Section 2.5.1). Estimates of ) and
oy were acceptable (90 to 100%) in most of the combinations of inter-animal
variability except for the 45% * 60% and 60% * 60% combinations of Gy and oy
where the acceptable estimates dropped to 86.7% (Table 3.3). Runs with
unacceptable estimates were deleted, and the results presented are based on runs

with acceptable estimates.

3.4.2 Bias and Precision

Three dimensional plots are used to summarise the relationships between
the various combinations of 6] and oy and the mean %PE while two
dimensional plots are used to show both bias and precision for various values of
qry at a specified value of oy;. Thus, in the presentation that follows the bias and
precision in parameter estimation are considered for each level of Gy and at
various levels of apy for each study. With three observations per time point, and
setting Gy; at 15% while qpy was varied between 15 and 60%, all estimates of Cl
were negatively biased. The most biased estimate was obtained when gp was

specified at 60% while the least biased estimate was obtained with Gy specified
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Fig. 3.1 Bias and precision expressed as %PE (mean % standard deviation,
respectively) for estimated parameters. The horizontal axis represents the

different values of

with a specified value of

(15%). Each vertical bar

expresses the bias and precision of the population parameter estimate. 3
observations were made at each time point, and only one observation was made
on each animal. Significant (p < 0.05) biases are indicated by asterisks.
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Fig. 3.2 Bias and precision expressed as %PE (mean % standard deviation,
respectively) for estimated parameters. The horizontal axis represents the

different values of a1 with

set at 15% . Each vertical bar expresses the bias

and precision of the population parameter estimate. 5 observations were made at
each time point, and only one observation was made on each animal. Significant
(p < 0.05) biases are indicated by asterisks.
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at 15%. The bias ranged from -0.5% (o (o) = 15%) to -18.7% (0] = 60%, oy
= 15%) (Fig. 3.1a). All estimates of Cl were precise for all combinations of a1
and oy (Fig. 3.1a). The SD of %PE ranged from 4.2% (o) Oy = 15%) 10 9.6%
(o¢y and 6y = 60 and 15%, respectively).

The bias in Cl estimates obtained when 5 observations were made at each
time point ranged from -1.2% (GCI, Gy = 15%) t0 -13.9% (GCI =60%, Gy = 15%)
(Fig. 3.2a), and all the estimates were more precise than those obtained when
three observations were made per time point. The SD of %PE ranged from 2.7%
(aqy (oy) = 15%) t0 8.9% (ap = 60%, oy = 15%).

When 6y was 15% and o) varied between 15 and 60% relatively
unbiased and precise estimates of V were obtained (Fig. 3.1b) when 3
observations were made per time point. The %PE ranged from -0.2 £ 5.4% (o
(cv) =15%) 10 1.4 £9.0% (q:l = 60%, Oy = 15%). Similar results were obtained
when 5 observations were made per time point. All estimates of V were relatively
unbiased and precise (Fig. 3.2b). The SD of %PE ranged from 5.2% (qy (Gy) =
15%) t0 6.6% (o = 60%, &y = 15%).

Varying o¢j from 15 to 60% and fixing oy at 15% yielded estimates of
q( at the different combinations of variability which were positively biased with
3 observations made per time point. As with Cl estimates there was a trend in the
degree of bias associated with g estimates. While Cl estimates showed a trend
of bias from ¢ and 6y combination of 15% * 15% yielding the least biased
estimate to the 60% * 15% combination yielding the most biased estimate (Fig.
3.1a), the reverse was the case for estimates of qq (Fig. 3.1c). The 15% * 15%
combination of inter-animal variability yielded the most biased and least precise
estimate of Gy while the 60% * 15% combination yielded the least biased and
most precise estimate of this parameter (Fig. 3.1c). The %PE ranged from 2.44
16.4% for the 60% * 15% combination to 24.4 + 39.2% for the 15% * 15%

combination. A similar trend was observed in the bias associated with the
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estimation of ¢~ when 5 observations were made per time point. The least biased
estimate was observed with ¢ and Gy set at 60 and 15%, respectively, and the
most biased was obtained with oy and oy fixed at 15% (Fig. 3.2c). There was no
clear cut pattern in the precision of the estimates (Fig. 3.2c). The SD of %PE
ranged from 16.0% (qp = 60%, oy = 15%) to 28.9% (o = 30%, oy = 15%).

Estimates of o obtained by varying ¢ from 15 to 60% while setting Gy
at 15% were relatively stable across the different values of oc) when 3 obser-
vations were made per time point. All the estimates were significantly positively
biased and imprecise (Fig. 3.1d). Also, when 5 observations were made per time
point all 6y estimates were significantly positively biased and imprecise (Fig.
3.2d).

When oy, was set at 30% and gy varied from 15 to 60% estimates of Cl
which were biased with a positive to negative trend were obtained; positive at
15% and negative at qr) of 60% when 3 observations were made per time point.
The most biased estimate of Cl was obtained when o was specified at 60% (Fig.
3.3a). All Cl estimates were precise (Fig. 3.3a). The SD of %PE ranged from
4.9% (o = 15%, Oy = 30%) to 10.9% (qc = 60%, Gy = 30%). Similarly, the
most biased estimate of Cl was obtained in the 5 observations per time point
study with qry and o specified at 60 and 30%, respectively (Fig. 3.4a). The bias
ranged from 1.7% (o) = 15%, oy = 30%) to -12.7% (GCI = 60%, Oy = 30%).
These estimates were precise with the SD of %PE ranging from 4.0% (g =
15%, 6y = 30%) to 10.0% (ac = 45%, 60%; Gy = 30%).

All estimates of V were significantly negatively biased, relatively stable,
but precise at all levels of 6y when oy, was 30% and 3 observations were made
at each time point (Fig. 3.3b). The least precise estimate was obtained when gy
and oy were 60 and 30%, respectively. In addition, similar results were obtained

for V estimates when 5 observations were made at each time point.
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Fig. 3.3 Bias and precision expressed as %PE (mean % standard deviation,
respectively) for estimated parameters. The horizontal axis represents the

different values of

with a specified value of

(30%). Each vertical bar

expresses the bias and precision of the population parameter estimate. 3
observations were made at each time point, and only one observation was made
on each animal. Significant (p < 0.05) biases are indicated by asterisks.
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each time point, and only one observation was made on each animal. Significant

(p < 0.05) biases are indicated by asterisks.
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All estimates of this parameter were significantly negatively biased and precise
(Fig. 3.3b). Setting oy and Oy at 15 and 30%, respectively, produced the least
biased estimate of V while the 60% * 30% combination produced the least precise
estimate of this parameter.

All qp estimates were positively biased irrespective of the value of 1
used in combination with 6y of 30% when 3 observations were made per time
point. When Q1 and oy were fixed at 15 and 30%, respectively, Ocj estimate was
significantly biased and imprecise (%PE = 23.2 £ 53.0%; Fig. 3.3c). The least
biased estimate (%PE = 2.7 £ 22.1%) was obtained with ocy and oy set at 60 and
30%, respectively. At the latter combination of inter-animal variability the
estimate was acceptably precise (Chapter 2, Section 5.1). All other estimates of
0c) were imprecise (Fig. 3.3c). Similar, results were obtained when 5
observations were made per time point. A 15% (o¢p) * 30% (oy) combination
yielded the most biased estimate and 60% (o)) * 30% (oy) combination
produced the least biased estimate (Fig. 3.4c). Only the 60% * 30% inter-animal
variability combination produced an acceptably precise estimate (SD of %PE =
25.2%; Fig. 3.4c) since the SD of %PE is only 0.2% greater then 25%.

Significantly positively biased and imprecise estimates of oy were
obtained at all levels of oy when Gy was 30% and 3 observations were made per
time point (Fig. 3.3d). The mean of %PE ranged from 15.8% (qp) = 15%, oy =
30%) to 25.6% (ap) = 60%, oy = 30%) while the SD of %PE ranged from 32.1%
(o) = 15%, oy = 30%) to 46.4% (o) = 45%, oy = 30%). Taking 5 observations
per time point yielded similarly biased and imprecise estimates of oy (Fig. 3.4d).

When Gy, was 45% and ¢y was in the range of 15 to 60% the estimates
of Cl obtained in the 3 observations per time point study were biased but precise.
The estimates were significantly positively biased when g was set at 15%,

almost unbiased at 30%, and significantly negatively biased at 45 and 60% (Fig.

3.5a). The most biased estimate was obtained with the 60% * 45% combination of qg
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| with a specified value of

(45%). Each vertical bar

expresses the bias and precision of the population parameter estimate. 3
observations were made at each time point, and only one observation was made
on each animal. Significant (p < 0.05) biases are indicated by asterisks.
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and Gy The SD of %PE ranged from 8.5% to 15.0%. For the 5 observations per
time point study there was a trend in the bias from positive to the negative
direction as G was varied from 15 to 60%. The most biased estimate was
obtained when qy and oy, were specified at 60 and 45%, respectively (Fig. 3.6a).
The SD of %PE ranged from 4.5% (oqy = 15%, oy = 45%) to 10.6% (o = 60%,
oy = 45%).

V estimates obtained when 3 observations were made at each time point
were significantly negatively biased at all levels of ocy With oy fixed at 45%
(Fig. 3.5b). The estimates were precise for each of the combinations of inter-
animal variability with the SD of %PE ranging from 13.3 to 17.4% (Fig. 3.5b).
When 5 observations were made per time point V estimates were significantly
negatively biased and precise (Fig. 3.6b). The least biased estimate was obtained
with the 15% (o) * 45% (Gy) combination.

With oy set at 45% the estimates of o) were positively biased when 3
observations were made at each time point. The most biased estimate was
obtained when g was specified at 15% and the least biased estimate when gy
was fixed at 60% (Fig. 3.5¢c). All estimates of this parameter were imprecise (Fig.
3.5¢c). At this 45% level of Gy all estimates of 6y were significantly positively
biased and imprecise (Fig. 3.5d). In addition, the estimates of gy when 5
observations were made per time point were imprecise and significantly positive-
ly biased (Fig. 3.6¢c). The estimates of oy obtained for this 5 observations per
time point study at the different levels of o with oy fixed at 45% were
significantly positively biased and imprecise (Fig. 3.6d).

When 6y was 60% and oy varied, estimates of Cl were positively biased
when ¢y was set at either 15 or 30% and negatively biased when gy was set at
either 45 or 60% with 3 observations made at each time point. The most biased
and least precise estimate of this parameter was obtained with qry fixed at 60%

(Fig. 3. 7a). All estimates of Cl were precise with SD of %PE ranging from
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6.0% (o¢) = 15%, Oy =60%) to 17.1% (o0 (o) = 60%; Fig. 3.7a). All estimates
of V were significantly biased and precise at these specified values of oy and oy
(Fig. 3.7b). The SD of %PE ranged from 13.0 to 21.3%. The most biased and
least precise estimate of this parameter was obtained when qcy and Gy were set
at 60%.

Making 5 observations at each time point when Gy was 60% and qry
varied between 15 and 60% yielded some estimates of Cl which were positively
biased but precise (Fig. 3.8a). The %PE ranged from -2.4 + 14.1% (ocp> Oy =
60%) t0 9.6 £ 5.9% (901 = 15%, oy = 60%). Most of the estimates of V obtained
with the various settings of G- when Gy was fixed at 60% were significantly
negatively biased (Fig. 3.8b). The mean of %PE ranged from -3.3% (g = 15%,
oy = 60%) to -13.6% (01 (oy) = 60%). All the estimates were acceptably precise
with the SD of %PE ranging from 13.1 t0 22.1%.

Most of the gy estimates obtained when 3 observations were made at
each time point with oy at 60% and ¢ varied between 15 and 60% were
significantly positively biased with poor precision (Fig. 3.7c). Similar findings
were obtained when 5 observations were made per time point (Fig. 3.8c). The
estimates of Oy at these combinations of inter-animal variability were
significantly positively biased and imprecise (Fig. 3.8d) when 5 observations
were made per time point, but only positively biased and imprecise when 3
observations were made at each time point (Fig. 3.7d).

Overall, as the values of o) and oy were increased the bias in the
estimation of Cl increased in both studies (Fig. 3.9a (3 observations per time
point); Fig. 3.10a (5 observations per time point)). However, the bias in the
estimates of V were relatively stable irrespective of the study considered (Fig.
3.9b (3 observations per time point); Fig. 3.10b (5 observations per time point)).

In contrast to the results obtained with the estimation of Cl, the bias in the
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were made per time point.
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Fig. 3.9b Bias (expressed as mean %PE) in V estimation: three dimensional plot
of the influence of varying o and oy on the estimation of V. 3 observations
were made per time point.
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Fig. 3.9c Bias (expressed as mean %PE) in the estimation c?l: three dimensional
plot of the effect of varying ) and Gy on the estimation of ¢ry. 3 observations
were made per time point.

93




(z),\\

Fig. 3.9d Three dimensional plot of bias (expressed as mean %PE) in
estimation as affected by varying inter-animal variability in Cl and V

observations were made per time point.
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of the influence of varying G and Gy on the estimation of Cl. 5 observations

were made per time point.
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Fig. 3.!0b Bias (expressgd as mean %PE) in V estimation: three dimensional plot
of the influence of varying qcy and oy on the estimation of V. 5 observations
were made per time point.
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dimensional plot of the effect of varying Q1 and Gy on the estimation of qoy- 5
observations were made per time point.
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estimation of Ay decreased as the values of q) and oy were increased (Fig. 3.9¢
(3 observations per time point); Fig. 3.10c (5 observations per time point)). As
with the estimation of V, oy; were relatively stable and positively biased (Fig.

3.9d (3 observations per time point) ; Fig. 3.10d (5 observations per time point)).

3.4.3 Distribution of Estimates
The validity of the confidence interval coverage of parameter estimates is based

on the assumption that parameter estimates follow a normal distribution. This
assumption was validated for each of the estimates using the chi - squared test (p
< 0.05). Accordingly, estimates of Cl and V for the 3 observations per time point
study were normally distributed (Tables 3.4). 18.8 and 6.3% estimates of CI and
V, respectively, for the 5 observations per time point study were not normally
distributed. Also, 12.5% (3 observations per time point) and 25.0% (5
observations per time point) of g estimates were not normally distributed. 37.5
and 43.8% of oy, estimates obtained in the 3 and 5 observations per time point
studies, respectively, were not normally distributed. These estimates were

significantly positively skewed (Tables 3.4 & 3.5).

3.4.4 Individual and Joint Confidence Intervals Coverage for Parameter Estimates

Individual and joint coverage for 99% interval estimates containing the
true parameter value 95% of the time for all parameters are presented in Tables
3.6 to 3.9 for the 3 observations per time point study and Tables 3.10 to 3.13 for
the 5 observations per time point study. The coverage for Cl and V was good for
all combinations of ory and oy irrespective of the manner in which the coverage
was computed and the study considered (Tables 3.6 - 3.9 & 3.10 - 13). For these

two parameters the biases in the estimates were generally low (<19%) and the
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“coefficient of variation" was generally less than 20%.

When catastrophic estimates were either included or excluded in the
computation of coverage for all data sets good coverage was obtained for ocy and
Oy (Tables 3.6 - 3.9 & 3.10 - 3.13, Section I & II). However, when catastrophic
estimates were excluded from the numerator during the computation of coverage
for all data sets, a reasonable coverage was obtained for Oy but significantly
reduced coverage (less than the expected value of 0.95) was obtained for oy
when 0| was varied between 15 and 45% and oy set at 60% for the 5
observations per time point study (Table 3.13, Section III). This also occurred
when either oc) was 60% and Oy, 45% or o¢y (Gy) was 60% for the 3
observations per time point study (Tables 3.8 & 3.9, Section III).

The influence of bias in the estimation of confidence interval coverage
was not marked for either gy or 6. Standard errors appeared to be the primary
determinants of interval coverage for these parameters. As the values of the
combinations of gy and G became larger the coverage for these parameters was
reduced irrespective of the sample size (Tables 3.6 - 3.9 & 3.10 - 3.13, Section
III).

When catastrophic estimates were considered in the numerator in
computing coverage for all data sets the joint coverage was reduced as the values
for qrp * oy combinations became larger (Tables 3.6 - 3.9 & 3.10 - 3.13, Section
III). The setting of oy at 45 and 60% for the 3 observations per time point study
and oy at 60% for the 5 observations per time point study led to the production of
joint confidence intervals coverage for all parameter estimates which were

significantly lower than the expected value of 0.81.

3.4.5 Incidence of High Correlation between Parameter Estimates

The incidence of high correlation between parameter estimates was
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relatively low when oy, was 15% and ¢y varied between 15 and 60% for either
study. The incidence of high correlation ranged from O to 20% when 3
observations were made per time point (Table 3.14), with the upper limit of this
range being for the correlation between oy and V. On the contrary, incidence of
high correlation when 5 observations were made per time point ranged from 0 to
10% (Table 3.15). The highest incidence occurred with the correlation between
Oy and V.

When g was varied between 15 and 60% and oy was specified at 30%
the incidence of high correlation ranged from 0 to 26.7% for the 3 observations
per time point study (Table 3.16), and 0 to 16.7% for the 5 observations per time
point study (Table 3.17).

With oy, at 45%, varying o resulted in incidence of high correlation
ranging from 0 to 27.6% when 3 observations were made per time point (Table
3.18), and 0 to 22.2% when 5 observations were made per time point (Table
3.19). In both cases the upper limit of the ranges was for the correlation between
oyand V.

When 3 observations were made per time point with Gy at 60% and oy
varied between 15 and 60% the highest incidence (34.5%) of high correlation was
obtained with the & versus V pair (Table 3.20). Similarly, the highest incidence
(46.7%) of high correlation was obtained for this pair when 5 observations were

made at each time point (Table 3.21).
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3.5 Discussion

The ranges of inter-animal variability used in these studies were based on
their occurrence in preclinical situations (Lindstrom & Birkes, 1984; McArthur;
1988). Most Cl estimates were negatively biased irrespective of the values of Q]
and oy used to generate the data. This may be either due to estimation error or the
nature of the NONMEM program because the fixed effect parameters enter the
regression model nonlinearly and the random effect parameters linearly. This
negative bias has been noted in the simulation studies reported in the literature
which involved the use of a monoexponential pharmacokinetic model with
multiple sampling (Sheiner & Beal, 1983; Al-Banna, Kelman & Whiting, 1990;
White et al., 1991) with no explanation. There was a tendency for the bias in Cl
to increase as the value of oy was increased, irrespective of the values of oy,.
The relatively larger negative bias at higher values of ¢y compared with those
obtained at smaller values of -y for any given value of 6y, was indicative of the
fact that Cl was underestimated as G was increased. This underestimation of Cl
was coupled with the estimation of g with either positive, minimally positive,
or negligible bias in some cases. It is possible that the estimation error associated
with Cl was partitioned to ¢}, hence the negative bias in Cl estimation and the
positive bias associated with ¢ estimation. This may also be a consequence of
the one observation per animal study design since this opposite trend in biases
associated with the fixed and random effects parameters has not been reported
with multiple sampling involving different combinations of variability using the
monoexponential pharmacokinetic model (White ez al., 1991). Although most
estimates of gy were minimally biased, they were mostly imprecise. This was
possibly a consequence of the number of animals used in each study. Estimates of
variability associated with structural model parameters are considerably less

precise, given a fixed number of experimental units, than are estimates of their
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means (Chapter 2, Section 5.3; Sheiner & Beal, 1981: Grasela et al., 1986).

The negatively biased estimates of V were counterbalanced with
positively biased estimates of oy. Most of the runs deleted were due to
NONMEM yielding spurious estimates of oy and the associated standard error.
The reasons for NONMEM producing negatively biased estimates of V and
positively biased estimates of o; are probably the same as those advanced for the
estimation of ClI and ocj- It is pertinent to note that residual error was not
estimated since there was no information in the data sets about error in
concentration measurements. Thus, NONMEM was estimating composite inter-
animal variability with error in concentration measurements incorporated since it
had no information on o .

Confidence interval estimates are a function of three factors: bias,
standard error estimates, and the distribution of parameter estimates. Good
confidence interval coverage was obtained for Cl and V because of the small
biases and high precision associated with the estimation of these parameters.
There were no catastrophic estimates with these parameters even though the cut
off criterion for the "coefficient of variation" was 20% as opposed to 50% for the
for the variance parameters. For the variance parameters, the interplay of the three
factors produced confidence intervals which, on average, were not different from
the expected value of 0.95 when the cut off rule was not applied. With Gy, for
example, although there were large biases present with large standard errors, the
nonnormality of some of the distributions brought in the confidence coverage
back to the expected value of 0.95. A small increase is to be expected for a
variable with a right-skew distribution. The import of large standard errors in the
production of good confidence interval coverage could be observed when the
exclusion criterion for NONMEM runs with large "coefficient of variation" was

applied. The coverage was reduced when compared with the coverage obtained
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with confidence intervals computed without the application of the exclusion
criterion. Some of these confidence intervals were significantly different from the
expected value of 0.95 (Tables 3.8 - 3.9 & 3.13, Section III). The standard error
factor was also the major determinant in the joint coverage for all parameter
estimates. However, it is difficult to anticipate what the results of the interplay
between these three factors will be in any given data set.

The generally low incidence of high correlation between parameter
estimates was an indication of the adequacy of the parameterization of the model.
The relatively high correlation between oy, and V at some combinations of oy
and oy; possibly contributed to the poor estimates of G obtained.

In using NONMEM to analyse data in a realistic preclinical animal
pharmacokinetic setting simulated in these studies no attempt was made to
optimise conditions in regard to either experimental design. These results suggest
that when magnitudes of inter-animal variability are in the range specified in
these data sets, NONMEM produces estimates of fixed effect parameters which
were relatively accurate and precise given the one observation per animal design.
It often produced relatively accurate but imprecise estimates of Gpp, and mostly
inaccurate and imprecise estimates of ;. It is worthy to note that when biases in
o] and oy were large, they were positive and would require a more conservative
approach to data interpretation. In addition, the usual confidence intervals
computed may give an erroneous impression of the precision with which the

random effect parameters were estimated because of the large standard errors

associated with these parameters.
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CHAPTER 4

EFFICIENT PARAMETER ESTIMATION: COMPARISON OF SAMPLING
DESIGNS WITHIN A STUDY
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4.1 SUMMARY

Simulation studies were carried out to evaluate the influence of sampling
design on the efficiency of population pharmacokinetic parameter estimation
when only one observation was obtained per animal. A finite number of
observations and number of animals, as is always the case in practice, was used in
the generation of data sets using the one compartment model with IV bolus
administration.

The effect of arrangement of observations in time on the efficiency of
parameter estimation was investigated using three different designs: the two
sample point design, three sample point design, and four sample point design.
The efficiency of parameter estimation obtained with the different sampling
schedules within each design was compared to determine the "best" strategy.

The exact location of the third or fourth sample was not critical to the
overall efficiency with which model parameters were estimated using either the
three or four sample designs. However, in studies using the two sample design,
the location of the second sampling time at approximately 1.4 times the
elimination half-life of the drug or greater resulted in efficient estimation of

population pharmacokinetic parameters.

4.2 INTRODUCTION

An optimal sampling strategy for monoexponential pharmacokinetic
model with instantaneous IV input would require taking the first sample as early

as possible after the dose (t.;,) and the other (t,,4) as late as possible (Edrenyi,

1981). The maximal feasible response is associated with t ., while the minimal
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feasible response is associated with tend:

In this chapter, simulated data sets were used to investigate the effect of
arrangement of observations (drug concentrations) in time on parameter
estimation. Data were generated assuming one compartment open model kinetics
and IV bolus administration. Different sampling designs within a study were
compared to identify the "best" sampling design for efficient parameter

estimation involving the use of one observation per animal.

4.3 SAMPLING DESIGN

In this study, the optimal sampling strategy was applied in an ad hoc
manner, and the drug was assumed to be administered by IV bolus injection. 15%
error was added in the concentration measurements (see Chapter 2, Section 2.4).
Sampling time ranged from as early as possible after the beginning of the
experiment (t,:, = 5 min.) to some value (t,,4 = 240 min.), the latest time that
could be contemplated in actual experiment, taking into consideration the

"average" ty of the drug. 48 observations corresponding to 48 animals were

used in each design.

4.4 The Two Sample Point Design

In a series of experiments the first sampling time was fixed at 5 min.
while the second was allowed to vary at 30 min. intervals from 90 to 240 min.

after dose. The second sampling time was sampled uniformly within a range of
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Fig. 4.1 Bias and precision expressed as %PE (mean + standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different samples for the two sample point design. Each vertical bar expresses the
bias and precision of the population parameter estimate for each design.

Significant (p < 0.05) biases are indicated by asterisks.
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15 minutes centred on the stated time. This was considered to mimic a real study,
and in the analysis the exact times were used. The six sampling schedules for this

design specification are shown in Table 4.1.
4.4.1 Results
4.4.1a Bias and Precision

All designs yielded estimates of Cl which were precise. The SD of %PE
ranged from 3.3% (180 min.) to 5.9% (90 min.). The bias ranged from
approximately 0.0% (90 min.) to -2.3% (240 min.). Some of the sampling designs
yielded estimates of Cl which were negatively biased (Fig. 4.1a).

All V estimates were relatively stable, negatively biased, but precise (Fig.
4.1b). The least biased estimate was obtained with the sampling design in which
the second sample time was at 90 min. (mean of %PE = -1.2%) and the most
biased estimate with the second sample at 180 min. (mean of %PE = -3.1%). The
SD of %PE ranged from 3.5 to 4.4%.

q() estimates were highly positively biased when the second sample was
at early times. As the second time point was specified at late times the bias was
reduced, and tended to level off at 210 min. giving an almost unbiased estimate
(Fig. 4.1c). However, the biases associated with most Vol estimates were
significant. The bias in the estimation of gpy ranged from -2.3% (210 min.) to
56.4% (90 min.) although the precision was acceptable with the different designs.
On the contrary, all estimates of oy; were significantly positively biased,

relatively stable, and acceptably precise (Fig. 4.1d).
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(a) Estimation of Cl

180 150 210 240 120 90 Sampling Times (min)
(b) Estimation of V
90 150 180 240 210 120 Sampling Times (min)
(c) Estimation of Q1
240 210 180 150 120 90 Sampling Times (min)
(d) Estimation of oy
240 210 180 90 150

120 Sampling Times (min)

(e) Overall Design Efficiency

150 240 180 210° 120 90 Sampling Times (min)

Fig. 4.2 8Summary of significant differences in the efﬁcicncy* with which
parameters were estimated using the two sample point design.
a - Rank order of design numbers increasing from left to right.
* . Efficiency measured with design number. '
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4.4.1b Design Number

The design with the second sample at 180 min. produced the most
efficient estimate of Cl (Fig. 4.2a). However, the efficiency with which Cl was
estimated with this design was not significantly better than those with the second
sample at 120, 150, 210, or 240 min. Also, the efficiency with which Cl was
estimated with these designs was significantly better than that obtained when the
second sample was at 90 min. The latter design produced the least efficient
estimate of CL

V was estimated to a similar degree of efficiency with all sampling
schedules although the design with the lowest rank order (on average) of @, was
the one with the second sample at 90 min. (Fig. 4.2b).

Oc1 Was most efficiently estimated when the second sample was at 240
min, (Fig. 4.2c). The efficiency with which this parameter was estimated with this
design was not significantly better than that obtained when the second sample
was at either 150, 180, or 210 min. These designs yielded significantly better
estimates of o) than designs having the second time point at either 90 or 120
min. The least efficient estimate of o) was obtained with the second sample at 90
min.

oy was poorly estimated with all sampling designs (Fig. 4.2d), and all
produced similar results.

Overall, the most efficient estimates of fixed and random effects
parameters were obtained with the specification of the second sample at 150 min.
(Fig. 4.2e). The efficiency of parameter estimation with this design was not
significantly better than when the parameters were estimated with designs having
the second sample at 120, 180, 210, or 240 min. These designs ( except when the
second sample was at 120 min.) produced parameter estimates with a

significantly better efficiency than the design with second time point at 90 min.
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The least efficient estimates of model parameters and their variances were
obtained with the second sample at 90 min.

Thus, C1 was best estimated with the second sample at 180 min. although
this was not significantly better than estimates of this parameter obtained when
the second sample was at 120, 150, 210, and 240 min., respectively. On the other
hand, V was best estimated when the second sample was at 90 min., and this was
not significantly better than the results obtained with the other designs. o) was
best estimated with the second sample at 240 min. although not significantly
better than when the second sample was at 150, 180, or 210 min. 6y, was poorly
estimated at all specifications of the second time point.

The design with the second sample at 150 min. yielded the most efficient
estimates of all parameters of the model, but this was not significantly better than

when the second time point was at 120, 180, 210, or 240 min.
4.4.1c Individual and Joint Confidence Intervals for Parameter Estimates

Individual and joint confidence intervals for parameter estimates are
summarised in Table 4.2. All designs produced good coverage for individual and
joint confidence intervals for parameter estimates whether or not NONMEM runs
with catastrophic estimates were included. The coverage for individual and joint
parameter estimates were not significantly different from the expected values of
0.95 and 0.81, respectively. When NONMEM runs with catastrophic estimates
were discounted in the numerator during confidence interval coverage
computation a slightly reduced coverage, though not significantly different frpm
the expected value, was obtained for qy and joint parameter estimates when the

second sampling time was specified at 240 min. (Table 4.2, Section III).
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4.4.1d Incidence of High Correlation between Parameter Estimates

Generally, 0% incidence of high correlation between parameter estimates
was produced, except the design with the second sample at 90 min., this having

an incidence of 3.3% for the correlation between Gy and V (Table 4.3).

4.4.2 Discussion

The accuracy and precision with which fixed effect parameters were
estimated were good with the bias in Cl and V not exceeding 3%, and the SD of
%PE not exceeding 6%. However, most of the estimates of these parameters were
negatively biased. This bias may be due to estimation error as discussed in
Chapter 3. The best estimates of Cl and V in terms of bias and precision were
obtained when the second sample was at 180 and 90 min., respectively.

The tendency for improvement in accuracy and precision in the estimation
of gy as the second sampling time was specified at late times (150 to 240 min.)
was due to the fact that information about this parameter was best obtained when
the second sample was approximately two to three times the ty /5 of the drug.
Thus, an efficient estimate of Gy could be obtained at either 180, 210, or 240
min.

oy was inefficiently estimated with all designs. Thus, all estimates of this
parameter were biased but acceptably precise to the same extent. The positive
bias associated with the estimation of Gy, with all designs and G for some
designs, could have been due to the lack of information in the data sets about
concentration measurement error, since NONMEM was estimating composite
inter-animal variability and concentration measurement eIror.

A comparison of d’ir’s obtained from the different sampling designs
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showed that Cl was best estimated when the second sample was at 180 min.
although this was not significantly better than when the second sample was at
120, 150, 210, or 240 min., respectively. Thus, specifying the second sampling
time between 1.4 and 3 times the t1/ of the drug would produce efficient
estimates of this parameter since information on drug elimination is contained in
the late phase of the plasma concentration - time profile. This also explains why
O] Was better estimated at the late sampling times.

V was efficiently estimated when the second sample was at 90 min.
However, this was not significantly different from the results obtained with the
other designs. The lack of difference was due to the associated bias and precision
with which this parameter was estimated with the different designs.

As with the estimation of V, all designs produced estimates of Gy which
were not different from one another. The reasons for this are as previously stated
for V.

The design which yielded the most efficient estimates of all parameters
was that with the second sample at 150 min. However, this was not significantly
different from those obtained with the second time point at 120, 180, 210, or 240
min. The design with the second time point at 90 min. was significantly worse
than others, except the one with the second time point at 120 min., due to the bias
associated with the estimation of oy

Bias and precision are some of the factors which determine the properties
of interval estimates. The interplay of these factors produce confidence intervals
for fixed effect parameter estimates which had coverage near the expected value
of 0.95. The good coverage for the random effect parameters was essentially due
to the good precision associated with these estimates. Also, the good coverage
obtained for the joint confidence intervals coverage was due to all designs

producing precise parameter estimates. The reduced coverage, though not
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significant, obtained when the second sample was at 240 min., was due to 12
NONMEM runs producing estimates of Oy with "coefficient of variation”
> 50%. Moreover, the good coverage obtained for individual and joint confidence
intervals for parameter estimates was associated with negligible incidence of high
correlation.

Given the design specifications considered here, the "best" design for the
efficient estimation of parameters was the one with the second sample at 150 min.
However, this sampling time could be either 180, 210, or 240 min. to obtain

parameters estimated with similar efficiency.

4.5 The Three Sample Point Design

The impact of introducing a third sample on parameter estimation was
investigated. In this design t;» and t. 4 were fixed at 5 min. and 240 (+ 7.5)
min., respectively, and the third sampling time was at 30, 60, 90......, or 210 (all *
7.5) min. after dose, yielding the 7 schedules shown in Table 4.1.

4.5.1 Results

4.5.1a Bias and Precision

The estimates of C1 were mostly negatively biased with the mean of %PE
ranging from -0.3% to -3.1% (30 min.). These estimates were precise with the SD
of %PE ranging from 3.0% (150 min.) to 4.0% (60 min.) (Fig. 4.3a).

V estimates were precise and mostly negatively biased (Fig. 4.3b). The
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Fig. 4.3 Bias and precision expressed as %PE (mean £ standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different samples for the three sample point design. Each vertical bar expresses
the bias and precision of the population parameter estimate for each design.
Significant (p < 0.05) biases are indicated by asterisks.
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(a) Estimation of Cl

150 120 180 60 90 210 30 Sampling Times (min)
(b) Estimation of V
60 30 150 180 90

120 210 Sampling Times (min)

(c) Estimation of o)
180 210 150 30 120 60 . 90 Sampling Times (min)

(d) Estimation of o

120 180 210 150 90 30 60 Sampling Times (min)
(e) Overall Design Efficiency

60 30 150 180 90 120 210 Sampling Times (min)

. R .
Fig. 4.4 8ummary of significant differences in the efficiency ~ with which
pa%amcters were estimated using the three sample point design.

a - Rank order of design numbers increasing from left to right.

* _ Efficiency measured with design number.
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least biased estimate occurred with the third sample at 60 min. (mean of %PE =
0.3%) and the most biased estimate with the third sample at 120 min. (mean of
%PE = -2.7%). The most precise estimate was obtained with the third sample at
60 min. (SD of %PE = 3.5%) while the least precise was at 210 min. (SD of %PE
= 6.4%).

Except for the specification of the third sample at 30 or 60 min. there was
a general trend for the bias in the estimation of gy to decrease as the third sample
was shifted towards 240 min. (Fig. 4.3c). Estimates of O] were acceptably
precise when the third sample was at = 120 min., while the most imprecise
estimate was obtained with the third sample at 60 min. (SD of %PE = 49.4%).
The best estimate of this parameter was obtained with the third sample at 180
min. followed by sampling at 210 min. |

As with the two sample design, Gy, estimates were significantly positively
biased and imprecise (Fig. 4.3d). Specification of the third sample at 30 min.
yielded acceptably precise estimates Gy;. The least biased estimate was obtained at

120 min. (mean of %PE = 33.8%) and the most biased estimate was obtained at

60 min. (mean of %PE = 67.2%).

4.5.1b Design Number

There was no significant difference when the efficiency with which Cl
was estimated was compared for all sampling designs. This not withstanding, the
design with the lowest rank order (on average) of ®;, was that with the third
sample at 150 min. (Fig. 4.4a).

V was most efficiently estimated with the third sample at 60 min. (Fig.
4.4b), but this was not significantly better than when this sample was at 30, 90,

150, and 180 min. However, it was significantly better than the efficiency with
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which estimates of V were produced with the third sample at 210 min.

The most efficient estimate of Oc] Was obtained with the third sample at
180 min. (Fig. 4.4c). This, however, was not significantly better than when the
third sample was at 30, 60, 120, 150, or 210 min., but was significantly better
than results obtained with this sample at 90 min. Setting the third sampling time
at 90 min. yielded the least efficient estimates of ocy- However, when the
efficiency with which qry was estimated with this design was compared with that
obtained at either 60 or 120 min., there were no significant differences.

Gy was estimated with similar efficiency at 30, 90, 120, 150, 180, and 210
min. (Fig. 4.4d). The design with the lowest rank order (on average) of ®@;. was
that with the third sample at 120 min. The efficiency of o, estimation at this time
was significantly better than when the third sample was at 60 min.

Overall, the parameters were estimated with similar efficiency at all
values of the third sample (Fig. 4.4¢). There was no significant difference when
the @_’s of all sampling designs were compared.

Consequently, Cl was efficiently estimated with all designs. However, the
design with the third sample at 150 min. resulted in the lowest rank order of ®;,
(i.e., least biased and most precise). Although V was efficiently estimated with
the third sample at 30, 60, 90, 120, 150, or 180 min., the most efficient design
was obtained when the third sample was at 60 min. ¢¢] was most efficiently
estimated with the third sample at 180 min. The efficiency of the estimation of
this parameter with this design was not significantly better than the results
obtained with other designs, except the one with the third sample at 90 min. 6y
was badly estimated with all designs. Overall, the exact location of the third

sample was not critical for the efficient estimation of the parameters.
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4.5.1c Individual and Joint Confidence Intervals for Parameter Estimates

When NONMEM runs with catastrophic estimates were included in the
computation of confidence intervals, good coverage was obtained for all designs
(Table 4.4, Section I). When catastrophic estimates were excluded in the
numerator and denominator during the computation of confidence intervals
coverage (see Chapter 2, Section 2.5.2) no significant effect was observed on the
coverage (Table 4.4, Section II). However, when catastrophic estimates were
discounted in the numerator during the computation of confidence intervals , the
coverage for g was reduced for the design with the third sample at 60 min. and
significantly so with this sample at 30 min. (Table 4.4, Section III). Equally
reduced coverage was observed for the joint confidence intervals for parameter
estimates with these two designs compared to other designs. The coverage for qry
and joint confidence intervals obtained for the design in which the third sample
was at 30 min. was significantly different from the expected values of 0.95 and
0.81, respectively. All other designs yielded estimates with individual and joint
confidence intervals coverage not significantly different from the expected value

of 0.95 and 0.81, respectively.
4.5.1d Incidence of High Correlation between Parameter Estimates

The pair-wise correlations between V and Cl, qr and Cl, and 6y and V
for some designs yielded incidence of high correlation greater than 0% (Table
4.5). The incidence of high correlation between V and Cl was 3.3% for the design
with the third sample at 210 min., but 0% for other designs. The incidence of high
correlation for oy with Cl, and ¢ with V was 6.7% and 3.3% for the designs
with the third sample at 90 and 210 min., respectively, but 0% for other designs.

In the correlation between Gy and V, the designs with the third sample at 30, 120,
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or 210 min. produced an incidence of high correlation of 0%, while 6.7% was
obtained with designs which had the third sample at 60 and 90 min. An incidence
of 16.7% and 3.3% was obtained for designs with the third sample at 150 and 180

min., respectively.

4.5.2 Discussion

The estimation of Cl and V was associated with low bias and high
precision for all designs. More precise estimates of Cl and V were obtained with
the third sample at late and early times, respectively, where more information was
available for the estimation of these parameters. The negative bias associated with
the estimation of these parameters might be due to estimation error.

Although the estimates of oy obtained with the third sample at 30 and 60
min., respectively, were relatively unbiased, these estimates were associated with
large "coefficient of variation". The improvement in precision when the third
sample was obtained late was due to the increased amount of information (data
points) available for gy (Cl) estimation. The most precise estimate of Gy was
obtained with the design having the third sample at 30 min. This was due to
having more data points in the early times. The positive biases associated with the
estimation of gy and 6 were due to the lack of information in the data sets on
o as earlier discussed for the two sample design.

The efficiency of Cl estimation was similar for all designs, although the
lowest rank order (on average) of ®;. was obtained with the third sample at 150
min. The design with the highest rank order of ®;. was the one with the third

sample at 30 min. However, the exact location of the third sample was not critical

to the estimation of Cl.
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On the contrary, the location of the third sample at early times (30 to 60
min.) led to a more efficient estimation of V, with the most efficient estimate
obtained when the third sample was at 60 min., about two-thirds the drug t12 (or
as early as possible).

Oc] Was most efficiently estimated with the third sample at 180 min.,
although the location of this sample at any time greater than 1.4 times the ty/p of
the drug led to efficient estimation of this parameter. The best estimate of Gy
obtained with the third time at 120 min., was associated with the least bias. The
poor estimates of Gy, obtained with all designs could be a characteristic of the one
observation per animal design.

The similar efficiency of estimation of all parameters with all the three
sample designs indicated that the exact location of the third sample was not
critical (Fig. 4.4e). The results obtained with the design number approach were in
good agreement with those obtained using the bias and precision analysis.

The reduced confidence interval coverage obtained for the estimation of
oy with the design with the third sample at 30 min. was due to the associated
bias. On the other hand, the significantly reduced coverage obtained for oy
estimates with designs having the third sample at 30 or 60 min., when NONMEM
runs with catastrophic estimates were discounted in the numerator during
confidence intervals computation (to reveal the influence of standard error on
confidence intervals coverage), indicated that the estimates obtained for this
parameter were not very reliable. However, the good coverage obtained for opy
irrespective of the manner in which the confidence intervals were computed using
the other designs indicated that those estimates were reliable. Apart from the
design with the third sample at 30 min., the joint confidence intervals coverage
for parameter estimates was good. The low incidence of high correlation between

parameters was an indication of the adequacy of the parameterization of the

model.
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With the designs considered here, the exact location of the third sample
was not critical to the efficiency with which the set of population pharmacokinetic

parameters could be estimated.

4.6 The Four Sample Point Design

In this situation, t . and t, 4 were fixed as in the previous case at 5 min.
and 240 min., respectively. The second time point was fixed at 30 (£ 7.5) min.
and the fourth time point was varied between 60 and 210 (all £ 7.5) min. in steps
of 30 min. (Table 4.1). The aim was to determine the efficiency with which fixed

and random effects parameters could be estimated with this strategy.

4.6.1 Results

4.6.1a Bias and Precision

The estimate of Cl was least biased and most precise when the fourth
sample was at 210 min. (Fig. 4.5a). All estimates of Cl were negatively biased
ranging from approximately -0.2% to 3.1%, with the SD of %PE from 2.9% (210
min.) to 4.2% (60 min.).

On the contrary, the least biased and most precise estimate of V was
obtained with the design in which the fourth sample was at 60 min. (Fig. 4.5b).
All estimates of this parameter were also negatively biased with the mean of %PE
ranging from -0.2% (60 min.) to 2.0% (120 min.) The SD of %PE ranged from
3.5% (60 min.) to 5.2% (180 min.).
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(a) Estimation of Cl

210 180 90 150 120 60  Sampling Times (min)
(b) Estimation of V
60 150 210 120 9% 180  Sampling Times (min)
(c) Estimation of aQy
180 210 150 120 60 90 Sampling Times (min)
(d) Estimation of oy
180 120 150 210 90 60 Sampling Times (min)
(e) Overall _Desigil Efficiency
210 150 180 90 60 120 Sampling Times (min)

Fig. 4.6 8Summary of significant differences in the efﬁcicncy* with which
parameters were estimated using the four sample point design.

a - Rank order of design numbers increasing from left to right.

* . Efficiency measured with design number.
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The estimates of Q) were almost unbiased when the fourth sample was at
60 and 210 min. (Fig. 4.5c). As was the case with the two and three sample
designs, there was a general trend of decrease in bias in the estimation of acy as
the fourth sample occurred at later times. The estimates of Oc] were imprecise,
except for the design with the fourth sample at 180 min. The most imprecise
estimate was obtained when the fourth sample was at 60 min.

The estimation of oy, was associated with a significant positive bias for all
designs (Fig. 4.5d). The only acceptably precise estimate was obtained with the

third sample at 210 min.
4.6.1b Design Number

The most efficient estimate of Cl was obtained with the fourth sample at
210 min. Cl was significantly better estimated with this design than the other
designs. The least efficient estimate of Cl was obtained when the fourth sample

was at 60 min. (Fig. 4.6a).

Although the design with the lowest average rank order of @;. for the
estimation of V was that with the fourth sample specified at 60 min., there was no -
significant difference when the @; s for all designs were compared (Fig. 3.6b).

oc; Was most efficiently estimated with the fourth sample at 180 min.
However, this was not significantly better than when this sample was at 60, 120,
150, and 210 min. (Fig. 4.6¢c). The design with the fourth sample at 90 min.
produced the least efficient estimate of ¢y, and this was significantly worse than
the results obtained with designs having the fourth sample at 180 min and 210
min., but not significantly worse than when this sample was at 60, 120 or 150
min.

oy was estimated with similar efficiency by all designs (Fig. 4.6d). The

design with the lowest rank order of (Dir (on average) was the one with the fourth

149




sample at 180 min.

Similarly, there was no difference in the overall efficiency with which the
population pharmacokinetic parameters were estimated (Fig. 4.6¢).

Thus, Cl was most efficiently estimated when the fourth sample was at
210 min. V was efficiently estimated with all designs since there was no
significant difference in the efficiency with which it was estimated when the
d>ir’s were compared. However, the most efficient (least biased and most precise)
estimate of this parameter was obtained with the fourth sample at 60 min. On the
other hand, ) was most efficiently estimated when the fourth sample was at 180
min. The efficiency with which this parameter was estimated with this design was
not significantly better than that with which it was estimated when the fourth
sample was at 60, 120, 150, and 210 min., respectively. The efficiency of Gy
estimation obtained with the different designs was indistinguishable.

Equally, there was no significant difference in the overall efficiency with
which all the parameters were estimated. Again, the results obtained using bias

and precision were in agreement with those obtained using ®@;’s.

4.6.1c Individual and Joint Confidence Intervals Coverage for Parameter

Estimates

The coverage for individual and joint confidence intervals for parameter
estimates was good for all designs when the influence of bias alone was
considered (Table 4.6, Section I &II). When the runs with catastrophic estimates
were discounted in the numerator to examine the influence of standard errors on
confidence intervals coverage (Table 4.6, Section III) the design with the fourth

sample at 60 min. was found to yield estimates of - with a confidence interval
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coverage significantly less than the expected value of 0.95. This design yielded
23 runs with catastrophic estimates of ocy- On the other hand, the design with the
fourth sample at 210 min. also produced estimates with reduced coverage, but
this was not significantly different from the expected value of 0.95. In this case
11 NONMEM runs had catastrophic estimates of this parameter. Apart from the
design with the fourth sample at 60 min. the other designs produced estimates of
parameters whose joint coverage was not significantly different from the expected

value of 0.81.

4.6.1d Incidence of High Pair-Wise Correlations

The incidence of high correlation between Gy and V did not exceed 10%
for any of the study designs (Table 4.7). With the exception of the correlation of
oy and V all designs produced parameter estimates which were not highly

correlated with one another.

4.6.2 Discussion

The production of the least biased and most precise estimates of Cl and V
with the designs having the fourth sample at 210 and 60 min., respectively, was
due to the fact that more information was contained in the data sets for the
estimation of these parameters at late and early samples, respectively. The
negative biases associated with the estimation of these fixed effect parameters
were due to estimation error as earlier discussed.

Also, the production of efficient estimates of gy with late samples (180

min. (%PE = -3.6 £ 27.4%), and 210 min. (%PE = 11.3 + 25.1%)) was due to the
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same cause. The estimate of g obtained with the fourth sample at 60 min.,
although almost unbiased, was associated with very poor precision (%PE = 2.5
46.2%).

Using the design number approach, Cl was found to be most efficiently
estimated when the fourth sample was at 210 min. The reason for this was
previously stated when the result was discussed for bias and precision. The lack
of difference in the estimation of V was due to the estimates being similarly
biased and precise. No design produced estimates of V with "coefficient of
variation"” > 20% (Table 4.6).

qc; Was more efficiently estimated with the fourth sample at 2 1.4 times
t12 of the drug, since this provided more information on this parameter. The
efficiency of estimation with the fourth sample at 60 min., although not
significantly different from the results with the fourth sample at 120, 150, 180,
and 210 min., was not acceptable. This was due to this design having 23 runs
with the "coefficients of variation" > 50%. The similar poor efficiency with
which all designs estimated oy, could have been a consequence of the one
observation per animal study design.

The exact location of the fourth sample was not critical in the overall
estimation of parameters. The specification of two samples at not greater than one
third the elimination t{ ) of the drug (Table 4.1) and the fourth sample close to or
greater than the t; s, of the drug, with the last sample at 240 min., might have
contributed to this observation.

The influence of bias on confidence interval coverage was negligible. All
designs produced good coverage for individual and joint parameter estimates
when NONMEM runs with catastrophic estimates were included in the numerator
during confidence intervals computation. The predominant factor governing

confidence intervals coverage in the studies considered here, was standard errors.
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Excluding NONMEM runs with estimates which had "coefficients of variation”

> 50% in the numerator during confidence intervals computation led to reduced
coverage for gy for most designs, and oy for two designs.The reduction in the
coverage for gy was significant only for the design in which the fourth sample
was at 60 min. With this design also, estimates of the joint confidence intervals
coverage for parameter estimates was significantly different from the expected
value because of the significantly reduced coverage for o estimates. Setting the
fourth sample at 210 min. was also associated with reduced coverage when
NONMEM runs with catastrophic estimates were discounted in the numerator for
confidence intervals computation. However, this was not significantly different
from the expected value.

In addition, the estimation of parameters with this design was associated
with low incidence of high correlation between parameter estimates. This might
have contributed to the lack of significant difference in the overall efficiency with
which model parameters were estimated.

Thus, the overall efficiency of parameter estimation obtained with all the
four sample designs was similar. Although the exact location of this sample was
not critical, the specification of the fourth sample at = 2.5 times the elimination

t12 of the drug would result in more efficient parameter estimation.
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CHAPTER 5

THE TWO COMPARTMENT POPULATION PHARMACOKINETIC
MODEL: PARAMETER ESTIMATION WITH ONE
OBSERVATION PER ANIMAL
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5.1 SUMMARY

A simulation study was carried out using the two compartment model
with IV bolus injection of a test drug. The efficiency with which model parame-
ters and their variances were estimated was investigated given a set of parameter
values, concentration measurement error with different sample sizes and sampling
schedules. Data were simulated using one observation per animal.

Efficient parameter estimation was obtained when 15 observations were
made per time point. Concentration measurement error greater than 10% yielded
variance parameter estimates with greater degree of bias and imprecision. The
inter-animal variability in parameters estimated was a composite of inter- and
intra-animal variability.

1 and the A:B ratio between 2.5

When o was in the range of 2.0 and 4.0 h™
and 40.0 efficient estimates of parameters were obtained. Some sampling
schedules gave more efficient estimates of some parameters than others. High

correlation between some parameters led to instability in the estimates.

5.2 INTRODUCTION

Equation (5.1) is the general equation for the disposition of a drug exhibit-

ing two compartment open model kinetics and administered by IV bolus inj'ec-

tion.

C = A.exp(-a.t) + B.exp(-B.t) 5.1
where A and B are regression coefficients; o and B are hybrid rate constants of

distribution and elimination, respectively. Using the model expressed in Eq. (5.1)
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the efficiency with which model parameters and their variances could be
estimated was investigated given a set of parameter values, concentration

measurement error with different sample sizes and sampling schedules.

5.3 METHODS
5.3.1 SAMPLING DESIGN

The individual values of A and B were randomly selected from normal
distributions with means of 10000.0 and 500.0 IU/ml, respectively. The values of
o and P, were similarly selected from distributions with means of 2.0 and 0.2 -l
respectively. The respective variances were chosen to yield a coefficient of
variation of 15% for all parameters. A 15% error was added in concentration
measurements as previously described (see Chapter 2, Section 2.4), except in (b)
below.

An intravenous bolus dose of 200,000 IU was specified and data were
sampled at ten time points, viz. 0.083, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, and
6.0 h. The first point was fixed while the others were sampled from a uniform
range of 0.25 h centred on the stated time. The simulation was carried out as
previously described in Chapter 2 (Section 2.4) with 30 replicates of data for each
simulation run.

(@  The effect of varying the number of observations at each time (i.e.,
number of animals used per time point) on the efficiency with which parameters

were estimated was investigated using either 6, 10, or 15 observations per time

point, yielding sample sizes of 60, 100, and 150, respectively.
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(b) The influence of error in concentration measurements on parameter esti-
mation was investigated by specifying Oc tobe0, 1,5, 10, and 15%. A sample
size of 150 was used in this study. The values A, o, B, and p were as previously

stated.

(c) The efficiency with which model parameters were estimated with o in the
range of 1.5 to 8.0 hl (i.e. 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, and 8.0 h'l) was

investigated. As with (b) a sample size of 150 was used in this study.

(d)  The efficiency with which the parameters were estimated was investigated
given a range of A:B ratios: 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 30.0, and 40.0. The A:B
ratios were obtained by keeping B at a constant mean value of 500.0 IU/ml while

the mean value of A was varied.

(e) From (a) and (b) above (o = 2.0 h'l, B=0.2 h'l, and A:B ratio =20.0) it
was observed that the change over from the o to the  phase occurred after 2.0 h.
Taking this demarcation of the o and 3 phases into consideration, the influence of
varying sampling times in either the o or f phase of the plasma concentration
time curve was examined in two separate studies:-

Study I:

12 sampling times were specified in the o phase. In this case the first time
was fixed while the others were varied within a range of 0.033 h on the selected
time (Table 5.1). The number was then reduced to 7, 5, and 3 (Table 5.1) with the
total number of sampling times being 15, 10, 8, and 6, respectively. Consequent-

ly, the sample sizes were 150, 150, 152, and 150, respectively.
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Study II:

The number of sampling times in the B phase was increased from 3 to 6,
and to 8 (Table 5.1), with a resultant total number of sampling times of 10, 13,
and 15, respectively (i.e., 7 times in the o phase). The corresponding sample sizes
were 150, 143, and 150, respectively. In each study, sample sizes were kept as
close as possible to 150 to allow comparison of the results. o and the A:B ratio

1

were set at 2.0 h™ and 20.0, respectively.

5.4 RESULTS

NONMEM runs with estimates of parameters and / or their standard errors
which did not satisfy the outlier criteria outlined in Chapter 2 (Section 2.5.1) were

deleted. The results presented were based on runs with acceptable estimates.

5.4.1 Effect of Sample Size

The 60, 100, and 150 sample sizes had 27, 27, and 29 successful
NONMEM runs, respectively. Most estimates of o were infinitesimal and
removing this parameter from the model did not alter the results. Model parame-
ters were associated with minimal bias for the various sample sizes (Fig. 5.1(a -
d)). Although the biases in the estimates of A and o were significant for the
sample size of 150, these were less than 5% (Fig. 5.1(a & b)). The estimates of f§
were unbiased irrespective of the sample size (Fig. 5.1d). The estimates of A and
o obtained with the different sample sizes were precise (SD of %PE < 9%), while
the estimates of B (Fig.5.1c) and B (Fig. 5.1d) obtained with the 60 and 100
sample sizes were imprecise. Only the estimates of these parameters obtained

with the 150 sample size were precise (SD of %PE < 13%). The estimates of Gy,
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Fig. 5.1(a - d) Bias and precision expressed as %PE (mean * standard deviation,
respectively) for estimated parameters. The horizontal axis represents the number
of animals used for observations at each time point. Each vertical bar expresses
the bias and precision of the population parameter estimate. Significant (p < 0.05)

biases indicated by asterisks.
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(a) Estimation of A

150 100 60 Sample size
(b) Estimation of o
150 60 100 Sample size
(c) Estimation of B
150 60 100 Sample size
(d) Estimation of 8
150 60 100 Sample size
(e) Estimation of CA
150 100 60 Sample size

Fig.5.2(a-e) 8Summary of significant differences in the efﬁciency* with which
parameters were estimated: effect of varying sample size.

a - Rank order of design numbers increasing from left to right.
* Efficiency measured with design number
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(f) Estimation of Gy

150 - 100 60 Sample size
(g) Estimation of og
150 100 60 Sample size

(h) Overall Design Efficiency

150 100 60 Sample size

Fig. 5.2(f - h) 4Summary of significant differences in the efﬁciency* with which

parameters were estimated: effect of varying sample size.
a - Rank order of design numbers increasing from left to right.
* Efficiency measured with design number
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Gy and o were significantly positively biased (Fig. 5.1(e - g)). These estimates
were associated with poor precision for the 60 and 100 sample sizes. Using the
150 sample size, acceptably precise estimates were obtained for O and o, while
an imprecise estimate was obtained for Cg-

The ®;,’s were compared using the Kruskal Wallis test with multiple
comparisons. The estimate of A produced with a sample size of 150 was signifi-
cantly better than estimates produced with the sample size of 60 but not 100 (Fig.
5.2a). The most efficient estimate of A was obtained using a sample size of 150
while the least efficient estimate was obtained with a sample size of 60. Also, the
most efficient estimate of o was obtained with the sample size of 150 while the
least efficient estimate was obtained with a sample size of 100 (Fig. 5.2b).
However, the efficiency with which o was estimated using the 100 sample size
was not worse than that with the sample size of 60.

The best estimate of B was obtained using the 150 sample size. This was
significantly better than the results obtained with the other two sample sizes
which were not significantly different to each other (Fig. 5.2c). B was most effi-
ciently estimated when the sample size was 150. This was significantly better
than when the sample size was 100. Although the least efficient estimate of B was
obtained with the latter sample size it was similar to that obtained with the 60
sample size.

oy, (Fig. 5.2¢) and g, (Fig. 5.2f) were most efficiently estimated with the
150 sample size, and these were significantly better than when the sample size
was 60. The estimates obtained with a sample size of 100 had efficiencies similar
to the other sample sizes. og was estimated with similar efficiency using the three
sample sizes (Fig. 5.2g).

Overall, parameters were most efficiently estimated when the 150 sample
size was used. As expected, the sample size of 60 yielded the least efficient

estimates of parameters when considered as a set. The results obtained with the
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Table 5.2 Effect of Sample Size on Individual and Joint Confidence Intervals Coverage

for Parameter Estimates
Section I
Total
Sample Parameter
Size A o B B o5 q ©og Joint

60 27727 27727 2727 27727 2527  21/27 2721  25/27
100 27727 2727 2727  27/27 26/27 27/21 2127 @ 26/27
150 29/29 29/29 2929  29/29 25/29 29/29 29/29  25/29
Section II
(Success - Excluded)

—— - —— —— —

(Total - Excluded)

60 2127 2127 2127 26126 20”22 99 /1 0/0
100 2727 27127 2626 23723 26727 16/16  1/1 0/0
150 2929 29729 2929 29729 25729 28728  0/0 0/0

Section ITI

(Success - Excluded)

Total
60 2721 2727 2127 2627 2027 9pTt 121t optt
. .

100 2727 2727 2627 2327 2627 16/27 1727 0727
150 29/29 29/29 29729 2929 25729 2829  0/29 0729

*.p<0.01
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sample size of 150 were significantly better than the results obtained with either
100 or 60 sample sizes.

When catastrophic estimates were included in the computation of individ-
ual and joint confidence intervals coverage for all parameters, good coverage was
obtained (Table 5.2, Section I). However, when the catastrophic estimates were
excluded in the computation of coverage, good coverage was obtained for A, a,
B, B, and o for all the sample sizes studied. Although good coverage was ob-
tained for g, with 150 observations, the coverage obtained with 100 observations
was reduced but not significantly lower than the expected value of 0.95, and poor
coverage was obtained with 60 observations (Table 5.2, Section II & III). When
the catastrophic estimates were excluded, very poor coverage was obtained for og
irrespective of the sample size (Table 5.2, Section III). Similar results were ob-
tained for the joint coverage of all parameter estimates.

The incidence of high correlation was 100% for the correlation between 3
and B, but there was generally low incidence (< 30%) of high correlation between
other parameter estimates (Table 5.3).

Overall, the use of 150 observations (15 animals per sampling time)

yielded parameter estimates which were acceptably precise and least biased as

expected.

5.4.2 Varying the Error in Concentration Measurements

With o, specified at 0, 1, 5, 10, and 15% there were 29, 28, 28, 29, and
29, respectively, successful NONMEM runs. As in the previous section Gy was
removed from the model. Although the estimates of A and o were significantly
negatively biased for all values of ¢, the magnitude of the bias was very small.

The mean %PE ranged from -1.3 to -4.0% (Fig. 5.3( a & b). These estimates were
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Fig. 5.3(a - d) Bias and precision expressed as %PE (mean + standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different values of o used in the study. Each vertical bar expresses the bias and
precision of the population parameter estimate. Significant (p < 0.05) biases

indicated by asterisks.

170




%PE (@) g

50 - . 0 o

100 - (@ g

Fig. 5.3(c - g) Bias and precision expressed as %PE (mean 1 standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different values of g used in the study. Each vertical bar expresses the bias and
precision of the population parameter estimate. Significant (p < 0.05) biases

indicated by asterisks.
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Overall Design Efficiency

0.0 1.0 5.0 10.0 15.0 o. (%)

Fig. 5.4 #Summary of significant differences in the efficiency” with which all
parameters were estimated: effect of error in concentration measurements.

a - Rank order of design numbers increasing from left to right..

* Efficiency measured with design number.
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Table 5.4 Effect of Error in Concentration Measurements on Individual and Joint

Confidence Intervals Coverage for Parameter Estimates

Section I

Success

Total
O Parameter
(%) A o B B Cp Gy ) Joint
0.0 2929 2929 2929 29/29 27729 29/29 29/29  27/29
10 28/28 28/28 2828  28/28 27/28  28/28  28/28 27/28
50 2828 28/28 28/28  28/28 2828  28/28  28/28 28/28
10,0 2929 29/29 29729 29729 29729  29/29 29/29 29/29
15.0 29729 29/29 29/29  29/29 25/29  29/29  29/29 25/29

Section I

%%cgf%;%’:l%%d 2 JAs2
00 29/29 29129 29129  29/29 2729  29/29 5/5 5/5
1.0 2828 28/28 28/28  28/28 27/28  28/28 2/2 2/2
50 2828 28/28 28/28  28/28 28/28  27/27 1/1 0/0
10,0 29/29 29/29 29129  29/29 29/29  28/29 1/1 0/0
150 29/29 29/29 29129  29/29 25729  28/29 0/0 0/0

Section I

LSgcc_es%(;tglxs}l&eQ
0.0 29729 29729 29/29 29/29 27129 27/29 5129* 5/29*
1.0 2828 2828 28/28  28/28 27/28  28/28 2/28 2/28"
50 2828 2828 28/28  28/28 2828  27/28 1/28 or28*
100 29/29 2929 29/29 29729 29/29 28129 1728 or28*
150 29729 29729 2929 2929 2529 2829 0r29° 09"
*.p<001
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very precise (SD of %PE < 4.5%). All estimates of B were precise but positively
biased (Fig. 5.3c). B estimation was associated with minimal bias and relatively
good precision (Fig. 5.3d). The highest degree of bias was obtained for OA» T
and og when O was specified at 15% (Fig. 5.3(e - g)).

Parameter estimation was least efficient when oc was set at 15% (Fig.
5.4) since @, was significantly higher than when o was specified at 0, 1, 5, or
10%. As expected the best parameter estimates were obtained with o set as 0%,
but the results obtained were not significantly better than the results obtained with
o specified at 1, §, and 10%.

Good individual and joint confidence intervals coverage was obtained for
all levels of o used in this study (Table 5.4, Section I). However, discounting
estimates, with "coefficient of variation" greater than 50% in the numerator for
the computation of confidence intervals coverage, gave poor coverage for og and
joint parameter estimates (Table 5.4, Section III).

Thus, as the error in concentration measurements increased the efficiency

with which parameters were estimated decreased as expected.

5.4.3 Varying the Distribution Rate Constant

The distribution rate constant () was varied between 1.5 and 8.0 hl (.e.
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, and 8.0 h'l) and the number of successful
NONMEM runs were 27, 29, 29, 29, 30, 30, 29, and 28, respectively. As in the
previous studies Gy was removed from the model. The results show that A and o
were associated with good precision and negative bias, irrespective of the value
of o (Fig. 5.5 (a & b)). Except when o was 1.5 h™!, B and B were unbiased and
precise (Fig. 5.5 (c & d)). All estimates of 6, G, and og were significantly posi-

tively biased (Fig. 5.5 (e - g)). Poor precision was obtained in the estimation of
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Fig. 5.5(a - d) Bias and precision expressed as %PE (mean * standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different values of o used in the study. Each vertical bar expresses the bias and

recision of the population parameter estimate. Significant (p < 0.05) biases

indicated by asterisks.
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Fig. 5.5(¢ - g) Bias and precision expressed as %PE (mean * standard deviation,
rgspectlvely) for estimated parameters. The horizontal axis represents the
different values of a used in the study. Each vertical bar expresses the bias and
precision of the population parameter estimate. Significant (p < 0.05) biases

indicated by asterisks.
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(a) Estimation of A

15 20 25 30 35 40 60

8.0 o)

(b) Estimation of o

35 25 40 20 30 15 60

80 o)

(c) Estimation of B

60 80 35 40 30 20 25

1.5 atl

(d) Estimation of B

80 60 35 40 30 20 25

15 a@)
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Fig. 5.6(a-d) 8Summary of significant differences in the efﬁciency* with which
parameters were estimated: effect of different o values
a - Average rank of design number increasing from left to right.
* Efficiency measured with design number




(e) Estimation of CA

20 25 40 15 80 35 30 60 o®))

(f) Estimation of Oy,

40 80 60 30 25 20 15 35 oa®m)

(g) Estimation of og

80 60 40 35 30 25 20 15 o@D

(h) Overall Design Efficiency

20 25 40 35 30 60 80 15 a®ml

Fig. 5.6(c - h) @8Summary of significant differences in the efﬁcicncy* with which
parameters were estimated: effect of different o values

a - Average rank of design number increasing from left to right.

* Efficiency measured with design number
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Oa (SD of %PE ranged from 26.8 to 32.2%) when o was varied between 3.5 and
8.0 h™1. The estimates of Oq, Were generally precise while those of og were
mostly imprecise, the most imprecise estimate being when o was 1.5 nl.

Using the @, ’s, the best estimate of A was obtained with o of 1.5 h-1
(Fig. 5.6a). However, this was not significantly better than the efficiency with
which A was estimated for o between 2.0 and 4.0 h™L. The efficiency with which
A was estimated with o of 1.5 and 2.0 h™! was significantly better than when o
was 6.0 or 8.0 h™L. The least efficient estimate of A was obtained when o was 8.0
h™l. & was estimated with similar efficiency over the range investigated (Fig.
5.6b).

B was most efficiently estimated when o was 6.0 h'l, but this was not
significantly better than the results obtained when o was 3.5, 4.0, and 8.0 h'1
(Fig. 5.6¢c). However, the B estimates obtained with o of 6.0 and 8.0 h~! were
significantly better than those obtained when o varied between 1.5 and 3.0 nl,
Also, B was most efficiently estimated when o was 8.0 h1 (Fig. 5.6d). The
efficiency of P estimation when o equalled 8.0 h™1 was not significantly better
than that when o varied between 3.0 and 6.0 hl. However, P estimates obtained
when o was 6.0 and 8.0 h'! were significantly better than those obtained when o
varied between 1.5 and 2.0 h™L.

oy (Fig. 5.6e) and o, (Fig. 5.6f) were estimated with similar efficiency
for all values of a.. However, the lowest rank order (on average) of ®@;,’s was
obtained when o was 2.0 h~1 for o and o equalled 4.0 h~1 for Oy On the other
hand, og was best estimated when o, was 8.0 h™! and the worst estimate was
obtained when o was 1.5 hl (Fig. 5.6g). The efficiency of og estimation with o
of 8.0 h"l was not significantly better than that when o varied between 2.5 and
6.0 h'l, but was significantly better than that obtained with o of 1.5 and 2.0 'l

Overall, the parameters were best estimated when a0 was 2.0 hl
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Table 5.5 Effect of Different Values of o on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates

&)
1.5
2.0
25
3.0
3.5
4.0
6.0
8.0

1.5
2.0
25
3.0
3.5
4.0
6.0
8.0

A
27/27
29/29
29/29
29/29
30/30
30/30
29/29
28/28

27/27
29/29
29/29
29/29
30/30
30/30
29/29
28/28

04
27/27
29/29
29/29
29/29
30/30
30/30
29/29
28/28

2727

29/29
29/29
29/29
30/30
30/30
29/29
28/28

B
27/27
29/29
29/29
29/29
30/30
30/30
29/29
28/28

27/27
29/29
29/29
29/29
30730
30730
29/29
28/28

Section I
Success

Total
Parameter

%A
2721 21/27
2929 25/29
2929 27/29
29/29  28/29
30/30  29/30
30/30  28/30
29129 21/29
28/28  28/28

Section I

%
2727

29/29
29/29
29/29
30/30
30730
29/29
28/28

(Total - Excluded)

25125 21727
29/29  25/29
29129 27729
29/29  28/29
30/30 2829
30/30 2729
29/29 21721
28/28 13/13

21/21
28/28
25/25
27/27
23/23
23/23
21/21
19/19

%
21727

29/29
29/29
29/29
30/30
30/30
29/29
28/28

0/0

0/0

5/5
15/15
26/26
27127
29/29
28/28

Joint
21/27
25/29
27/29
28/29
29/30
28/30
21/29
28/28

0/0
0/0
4/4
13/13
20/23
19/19
16/16
8/8
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Table 5.5 Effect of Different Values of o on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates

Section ITI
(Success - Excluded)

Total
o Parameter
@) A o B B oy q o Joint

%* *

1.5 2727 27727 27/271  25/27 2127 @ 21/27 0/27 0727
20 29/29 2929 29729 29729 25129 @ 28/29 029% 0729
25 29/29 29729 29/29 2929 27/29  25/29 5129 429"
3.0 29/29 29/29 29/29  29/29 28/29  27/29  15/29 13/29
35 30/30 30/30 30/30 30/30 28/30 23/30 26/30  20/30
40 30/30 30/30 30/30 30/30 27/30 23/30  27/30 19/30
6.0 2929 2929 29029 29729 21029 21729  29/29 16/30

%

8.0 28/28 28/28 28/28  28/28 1328 19/28  28/28 8728

*.p<001
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(Fig. 5.6h). However, the parameters were estimated with similar efficiency
when o was varied between 2.0 and 4.0 h™!. The efficiency of parameters
estimation with & of 2.0 h™! was significantly better than the efficiency of
parameters estimation when o was either 1.5 h™! or between 6.0 and 8.0 h™1.

Thus, A was efficiently estimated when o was in the range of 1.5 and 4.0
h'l, with the most efficient estimate obtained when o was 1.5 h'l. o, was estimat-
ed with similar efficiency with the range of o considered in this study. B and J
were best estimated with o in the range of 3.5 and 8.0 hl although the most
efficient estimates of these parameters were obtained with o of 6.0 and 8.0 h'l,
respectively. While 05 and g, were estimated with similar efficiency irrespective
of the value of a, og was more efficiently estimated when & was within the range
of 2.5 to 8.0 h™1. The best estimate of og was obtained when o was 8.0 nl An
barameters were more efficiently estimated when o was between 2.0 and 4.0 h‘l,
but the most efficient parameter estimates were obtained when o was 2.0 hl,

In addition, the estimation of all parameters was associated with good
individual and joint parameters confidence intervals coverage when catastrophic
estimates were included (Table 5.5, Section I). However, when runs with "coeffi-
cients of variation" > 50% were excluded, poor coverage was obtained for og
when & was between 1.5 and 2.5 h™1 (Table 5.5, Sections II & III). The joint
confidence intervals coverage obtained was significantly lower than the expected
value of 0.70 for o between 1.5 and 2.5 h'l, and for o of 8.0 hl (Table 5.5,
Section III).

The incidence of high correlation obtained for the correlation between B
and o, B and @, and B and B when o was 1.5 h'! was high. For all values of o

high incidence of high pair-wise correlations was obtained between B and B, and

for o and A when o was 6.0 hl (Table 5.6).
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Fig. 5.7(a - d) Bias and precision expressed as %PE (mean standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different values of A:B ratio used in the study. Each vertical bar expresses the
bias and precision of the population parameter estimate. Significant (p < 0.05)

biases indicated by asterisks.
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Fig. 5.7(e - g) Bias and precision expressed as %PE (mean + standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different values of A:B ratio used in the study. Each vertical bar expresses the
bias and precision of the population parameter estimate. Significant (p < 0.05)

biases indicated by asterisks.
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5.4.4 Varying A:B Ratio

When the ratio of A:B was varied between 1.0 and 40.0 (i.e. 1.0, 2.5, 5.0,
1.5, 10.0, 30.0, and 40.0) and o was 2.0 h'l, the number of successful NONMEM
runs were 27, 29, 30, 30, 29, 29, 29, and 27. As in the previous experiments, R
was excluded in the model and Fig. 5.7 shows the results as the A:B ratio varied.

All the estimates of A were minimally biased but relatively precise (Fig.
5.7a). The most biased and least precise estimate was obtained for the A:B ratio
of 1.0. Most estimates of o were negatively biased. Apart from the estimate of
this parameter obtained when the A:B ratio was 1.0 (SD of %PE = 26.2%) all
other estimates were precise (Fig. 5.7b). All estimates of B and 3 were acceptably
precise (Fig. 5.7 (¢ & d)). The estimates of B were significantly positively biased
when the A:B ratio was 30.0 or 40.0. Also, greater bias was associated with
estimates of B when the A:B ratio was 30.0 or 40.0. All estimates of Op» Oy and
op were significantly positively biased (Fig. 5.7 (e - g)). With the exceptions of
estimates of 05 obtained for A:B ratios of 1.0 and 2.5, other estimates of this
parameter were acceptably precise. The estimates of ¢, were acceptably precise
for A:B ratios of 20.0, 30.0, and 40.0, but all og estimates were imprecise. The
greater the A:B ratio the greater the precision in the estimation of 05 and G,

A was efficiently estimated when the A:B ratio was 30.0 (Fig. 5.8a), but
this was not significantly better than that obtained with A:B ratio of 40 and be-
tween 2.5 and 20. However, this parameter was estimated with a significantly
better efficiency with A:B ratio in the range of 2.5 and 40.0 than with A:B ratio
of 1.0.

As with A, the most efficient estimate of o was obtained when the A:B
ratio was 30.0, and the least efficient estimate when the A:B ratio was 1.0 (Fig.
5.8b). Estimates of a obtained with A:B ratio of 30.0 were significantly better

than that with A:B ratio of 1.0, 2.5, 7.5, or 10.0. o was equally efficiently
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(a) Estimation of A

300 400 200 100 50 75 25 10 A:Bratio

(b) Estimation of o

300 400 200 50 75 100 25 1.0 A:Bratio

(c) Estimation of B

10 25 50 200 75 100 300 400 A:Bratio

(d) Estimation of

25 10 100 200 50 75 300 400 A:Bratio

Fig. 5.8(a - d) ®8ummary of significant differences in the efficiency* with which
parameters were estimated: effect of different A:B ratios

a - Rank order of design numbers increasing from left to right.

* Efficiency measured with design number
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(e) Estimation of CA

200 400 300 100 75 S50 25 1.0 A:Brmto

(f) Estimation of qy A:Bratio

400 200 300 100 75 50 25 10 A:Bratio

(g) Estimation of og

10 25 50 75 200 100 400 300 A:Bratio

(h) Overall Design Efficiency

200 100 50 75 25 300 400 1.0 A:Bratio

Fig. 5.8(¢ - h) #Summary of significant differences in the efficiency™ with which
parameters were estimated: effect of different A:B ratios.

a - Rank order of design numbers increasing from left to right.

* Efficiency measured with design number

188




estimated with A:B ratios of 5.0, 20.0, 30.0, and 40.0, or 5.0, 7.5, 10.0, and 20.0,
or between 2.5 and 10.0.

Unlike A and o, B was most efficiently estimated when the A:B ratio was
1.0 (Fig. 5.8¢) and this was significantly better than when the A:B ratio was 30.0
or 40.0. The least efficient estimate of this parameter was obtained when the A:B
ratio was 40.0.

B was best estimated when the A:B ratio was 2.5, and this was significant-
ly better than the estimates obtained when the ratio was 40.0 (Fig. 5.8d) which
resulted in the least efficient estimate of this parameter.

O and g, were best estimated when the A:B ratio was 20.0 (Fig. 5.8¢)
and 40.0 (Fig. 5.8f), respectively. These estimates were significantly better than
when the A:B ratio was between 1.0 and 5.0. The least efficient estimates were
obtained when the A:B ratio was 1.0. On the contrary, og was best estimated
when the A:B ratio was 1.0 (Fig. 5.8g) and this was significantly better than when
the A:B ratio was 30.0 and 40.0. The least efficient estimate of this parameter was
obtained when the A:B ratio was 30.0.

All parameters were estimated with similar efficiency when the A:B ratio
was in the range of 2.5 and 40.0 (Fig. 5.8h) and these were significantly better
than when the A:B ratio was 1.0. The least efficient estimates of parameters
overall were obtained when the A:B ratio was 1.0.

Consequently, A was efficiently estimated when the A:B ratio was in the
range of 2.5 and 40.0, with the most efficient estimate when the A:B ratio was
30.0. Similarly, o was most efficiently estimated when the A:B ratio was 30.0.
However, the efficiency of o estimation with this A:B ratio was similar to those
obtained with A:B ratios of 5.0, 20.0, and 40.0. B was well estimated with A:B
ratio in the range of 1.0 and 20.0. The most efficient estimate of this parameter
was obtained when the A:B ratio was 1.0. B was efficiently estimated when the

A:B ratio was between 1.0 and 30.0 with the most efficient estimate being when
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Table 5.7 Effect of Different A:B Ratios on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates

AB

Ratio A o B
1.0 2727 27727 27/27
25 2929 29/29 29729
50 30/30 30/30 30/30
7.5 30/30 30/30 30/30
100 29129 2929  29/29
200 29729 29/29 29/29
300 29/29 29/29 29/29
40.0 27127 27/27 27/27

1.0 26/26 24/24 26/26
25  29/29 29729  29/29
50 30/30 30/30 30/30
7.5 30/30 30/30 30/30
10.0 29/29 29729 29/29
20.0 2929 2929  29/29
30.0 29/29 2929  28/28
400 2727 2121 21/27

Section I

Success.

Total

Parameter

B oy %

2721 2121 21/27
29129 29/29  29/29
30/30 30/30  30/30
30/30 30/30  30/30
29/29 26/29  29/29
29/29 25/29  29/29
2929 20/29 29729
27721 22/27  27/27

Section II
26126 11/11 6/6
29129 24/24 17
30/30 30/30 10/10
30/30 29/29 1717
29/29 26/29  19/19
2929 25/29  28/28
29129 2029  28/28
2626 22/27  26/26

%
27127

29/29
30/30
30/30
29/29
29/29
29/29
27/27

14/14
26/26
14/14
16/16
mn
0/0
171
n

Joint
27/27
29/29
30730
30730
26/29
25/29
20/29
27/27

0/0
0/0
33
8/8
4/4
0/0
171
17
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Table 5.7 Effect of Different A:B Ratios on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates

A:B

Ratio A a B
1.0 26/27 24/27 26/27
25 2929  29/29 29/29
50 30/30 30/30 30/30
7.5 30/30 30/30 30/30
100 29/29 29/29  29/29
20.0 29129 29/29 29/29
30.0 29129 29/29  28/29
40.0 27727 27/27 271/27

Section III
(Success - Excluded)

Total

Parameter

B
26/27

29/29
30/30
30/30
29/29
29/29
29/29
26/27

Y\
121"
24/29
30/30
29/30
26/29
25/29
20729
22/27

G

%

6/27

1729
10/30™
17/30
19/29
28/29
28/29

26/27

%B
14127
26/29

*

14/30
16/30

*

7/29
0/29
129"

*

1727

*

Joint

027
0/29"
330"
8/30*
4129
0/29*
1/29
1127

*.p<001
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A:B ratio equalled 2.5. oy, and g, were well estimated when the A:B ratio was in
the range of 7.5 and 40.0. The best estimates of oy and o, were obtained when
the A:B ratio was 20.0 and 40.0, respectively. On the other hand, Og was well
estimated when the A:B ratio was between 1.0 and 10.0, with the best estimate
obtained when the A:B ratio was 1.0. The parameters when considered as a set
were well estimated when the A:B ratio was between 2.5 and 40.0, with the best
estimate obtained when the A:B ratio was 20.0.

Good individual and joint confidence intervals coverage was obtained
with all A:B ratios when catastrophic runs were included (Table 5.7, Section I).
When catastrophic runs were excluded to reveal the influence of standard errors
on confidence intervals, poor coverage was obtained for of G, when the A:B ratio
was between 1.0 and 5.0. However, good coverage was obtained for og at A:B
ratios of 1.5, and 2.5. The confidence interval coverage for og when the A:B ratio
equalled 5.0 was significantly lower than the expected value of 0.95. On the other
hand, good coverage was obtained for the estimation of ¢, when the A:B ratio
was in the range of 7.5 and 40.0. The reverse was true for the coverage of og in
this range of A:B ratios. All values of the A:B ratio produced joint confidence
intervals coverage which were significantly lower than the expected value of 0.70
(Table 5.7, Section III).

A high incidence of high correlation was obtained between B and o with
A:B ratios of 2.5, 5.0, 7.5, and 10.0, and for B and o with an A:B ratio of 1.0.
100% incidence of high correlation was obtained for § and B for all A:B ratios
(Table 5.8). A lower incidence of high correlation between parameters was ob-

tained when the A:B ratio was either 20.0 or 40.0.
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Fig. 5.9(a - d) Bias and precision expressed as %PE (mean standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different number of sampling times in the a phase of the plasma concentration -
time curve and the total number of sampling times. Each vertical bar expresses
the bias and precision of the population parameter estimate. Significant (p < 0.05)
biases indicated by asterisks.

194



%PE
150 4

100-1
50 -

L N

-100 J

150 4
100 4
50 4

0d---—--
-50 4

-100 J

150 4
100 4
50 4

04-----

-100

(0

L

No. of sampling
12 times in the a-phase

~ ' Total number of
sampling times

Fig. 5.9(¢ - g) Bias and precision expressed as %PE (mean sgandard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different number of sampling times in the o phase of the plasn_la concentration -
time curve and the total number of sampling times. Each vertical bar expresses
the bias and precision of the population parameter estimate. Significant (p < 0.05)

biases indicated by

asterisks.

195



(a) Estimation of A

7 12 5 3 No. of sampling times in
o phase
(b) Estimation of o
5 3 7 12 No. of sampling times in
o phase
(c) Estimation of B
7 5 3 12 No. of sampling times in
' o phase
(d) Estimation of B
5 7 3 12 No. of sampling times in
o phase

Fig. 5.10(a - d) #Summary of significant differences in the cfficiency* with which
parameters were estimated: effect of varying sampling times in the o phase.

a - Rank order of design numbers increasing from left to right

* Efficiency measured with design number

196



(e) Estimation of Cp

7 5 12 3 No. of sampling times in
o, phase
() Estimation of ¢,
12 7 5 3 No. of sampling times in
o phase
(g) Estimation of o
3 5 7 12 No. of sampling times in
o phase
(h) Overall Design Efficiency
5 3 12 No. of sampling times in
o phase

Fig. 5.10(c - h) #Summary of significant differences in the efﬁciency* with which
parameters were estimated: effect of varying sampling times in the o phase.

a - Rank order of design numbers increasing from left to right

* Efficiency measured with design number
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5.4.5 Varying the Number of Samples in the o Phase

Setting 3, 5, 7, and 12 sampling times in the o phase of the plasma con-
centration - time curve, the number of successful NONMEM runs were 28, 28,
29, and 25, respectively. As in the previous studies o was removed from the
model. A and o were associated with negative bias and good precision irrespec-
tive of the number of sampling times in the o phase. The bias in A ranged from
-0.2% (3 sampling times in the o phase) to -2.3% (5 times in the o phase) while
the bias in o ranged from -2.6% (3 times in the o phase) to 4.0% (5 times in the o
phase) (Fig. 5.9 (a & b)). Biased (mean %PE < 15%) but precise estimates of B
and P were obtained with all schedules (Fig. 5.9 (¢ & d)). All estimates of CA
and g, were significantly positively biased but precise (Fig. 5.9(e & f)). G5
estimates were acceptably precise. 0, estimates were precise for most of the
schedules, except in the case where 3 time points were in the o phase (SD of
%PE = 25.9%). og was associated with a significant positive bias when 3, 5, and
7 sampling times were specified in the o phase and all estimates were imprecise
(Fig. 5.9 g).

A was estimated with equal efficiency for all sampling schedules,
although the schedule with 7 time points in the o phase had the lowest rank order
(on average) of ®; s (Fig. 5.10a). o was most efficiently estimated with 5 time
points in the a phase, but this was not significantly better than when 3 and 7
sampling times were in the o phase. However, it was significantly better than the
design with 12 time points in specified in the o phase (Fig. 5.10D).

B was best estimated with 7 time points in the o phase (Fig. 5.10c) and
this was significantly better than when 12 sampling times were in the o phase.
was best estimated with 5 time points in the o phase of the plasma concentration -

time curve (Fig. 5.10d), and this was significantly better than when 12 time points
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were in the o phase. The least efficient estimates of B and B were obtained with
the latter sampling schedule.

Op Was best estimated with 7 time points in the o phase (Fig. 5.10e) and
the estimates of this parameter with this design were significantly better than
when 3 or 12 times were set in the o phase. Oy, and og were estimated with
similar efficiency using the different designs (Fig. 5.10 f & g). However, the
schedules with the lowest rank order (on average) of ®;.’s were the ones with 12
and 3 sampling times in the o phase for ¢, and o, respectively.

Overall, all parameters were best estimated with the sampling schedule in
which 7 sampling times were specified in the o phase (Fig. 5.10h), but designs
with 3 and 5 time points in the o phase yielded similar results. The designs with 7
and 5 times in the o phase were significantly better than that with 12 time points.

All designs produced good individual parameters and joint confidence
intervals coverage (Table 5.9, Section I). Also, examination of the impact of
standard errors on confidence intervals coverage showed that all designs yielded
coverage for og and joint coverage for parameter estimates which were signifi-
cantly lower than the expected values of 0.95 and 0.70, respectively (Table 5.9,
Section III).

In addition, the incidence of high correlation between B and o when 3
(39.3%) and 12 (25.0%) time points were in the o phase was higher than the
incidence for 5 (0%) and 7 (13.8%) sampling times in the o phase (Table 5.10).
Also, the design with 12 time points in the o phase had an incidence of high
correlation between a and A of 32.1%. As in all the other studies previously
described for this pharmacokinetic model, a high incidence (100%) of high corre-

lation between P and B was observed for all schedules.

199



Table 5.9 Effect of Varying the Number of Sampling Times in the ¢ Phase on Individual

and Joint Confidence Intervals Coverage for Parameter Estimates

Section 1
Success
Total
Number ofSampling Parameter
Times
o phase Total
A o B B Cp Gy B Joint
3 6 28/28 28/28 28/28  28/28 23/28  28/28 28/28 23/28
5 8 28/28 28/28 28/28  28/28 26/28 28/28  28/28 26/28
7 10 29/29 29/29 2929  29/29 2529 29/29 29/29 25/29
12 15 25/25 2525 25/25 25/25 20/25 25/25 25/25 20/25
Section I
(Success - Excluded)
(Total - Excluded)
3 6 28/28 28/28 28/28 28128 2328  27/27 9/9 8/9
5 8 28/28 28/28 28/28  28/28 26/28 24/24 8/8 6/6
7 10 29/29 2929 29/29  29/29 25/29  28/28 0/0 0/0
12 15 25/25 25/25 25125 24/25 20/25 18/18 1/1 1/1
Section III
(Success - Excluded)
Total
3 6 2828 28/28 28/28 2828 23/28  27/28 9/28* 8/28*
5 8 2828 2828 28/28 2828 26/28 24728  828° 628"
7 10 2929 29/29 29/29 29729 25129  28/29 0/29* 0/29*
% %

12 15 25725 25725 2525 2425 20725 18/25  1/25 1/25

*_p<0.01
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Fig. 5.11(a - d) Bias and precision expressed as %PE (mean * standard deviation,
respectively) for estimated parameters. The horizontal axis represents the
different number of sampling times in the B phase of the plasma concentration -
time curve and the total number of sampling times. Each vertical bar expresses
the bias and precision of the population parameter estimate. Significant (p < 0.05)

biases indicated by asterisks.
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the bias and precision of the population parameter estimate. Significant (p < 0.05)
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(a) Estimation of A

6 3 8 No. of sampling times in
B phase
(b) Estimation of o
8 6 3 No. of sampling times in
B phase
(c) Estimation of B
8 3 6 No. of sampling times in
B phase
(d) Estimation of B
8 6 ’ 3 No. of sampling times in
B phase

Fig.5.12(a-d) 8Summary of significant differences in the efficienc ¥ with which
parameters were estimated: effect of varying sampling times in the [ phase.

a - Rank order of design numbers increasing from left to right

* Efficiency measured with design number
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(e) Estimation of CA

3 6 8 No. of sampling times in
B phase
(f) Estimation of Gy,
8 _ 6 3 No.of sampling times in
B phase
(g) Estimation of S
8 6 3 No. of sampling times in
B phase
(h) Estimation of %R
8 : 6 3 No. of sampling times in
B phase-

(i) Overall Design Efficiency

8 6 3 No. of sampling times in
B phase

Fig. 5.12(e - i) 2Summary of significant differences in the efﬁcicncy* with which
parameters were estimated: effect of varying sampling times in the § phase.

a - Rank order of design numbers increasing from left to right

* Efficiency measured with design number
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5.4.6 Varying the Number of Sampling Times in the  Phase

The schedules with 3, 6, and 8 sampling times in the B phase had 29, 28,
and 25 successful NONMEM runs, respectively, when the sampling times in the B
phase were varied. The estimates of A and o were mostly significantly negatively
biased but precise with the SD of %PE ranging from 3.8 to 5.8% (Fig. 5.11 (a &
b)). B and B, on the other hand, were minimally biased and relatively precise (SD
of %PE = 5.7 to 15.1%) (Fig. 5.11 (¢ & d)). Op and g, estimates were signi-
ficantly positively biased, but acceptably precise (Fig. 5.11 (e & f)). Op was esti-
mated with a significant positive bias and poor precision (Fig. 5.11g). o was
negatively biased and imprecise (Fig. 5.11h). The design with 3 time points in the
B phase yielded the most biased estimate (mean %PE = 25.3%) and this was
significant.

No sampling schedule was significantly better than any other for the effi-
ciency with which A and o was estimated (Fig. 5.12 (a & b)). However, the
lowest rank orders (on average) of ®;’s were obtained with schedules having 6
and 8 time points in the B phase for A and o, respectively.

B (Fig. 5.12b) and B (Fig. 5.12c) were most efficiently estimated with 8
sampling times in the P phase. These estimates were significantly better than
those obtained with other sampling schedules.

Op» Gy and og were estimated with similar efficiency with all designs
(Fig. 5.12 (e - g)). While the best estimate of 0, was obtained with 3 time points
in the B phase, the best estimates of o, and og were obtained with 8 sampling
times in the P phase. The most efficient estimate of Oy was obtained with 8 time
points in the P phase (Fig. 5.12h), but this was only significantly better than when
3 sampling times were in the [ phase.

Overall, all sampling schedules did not differ in the efficiency in which
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Table 5.11 Effect of Varying the Number of Sampling Times in the B Phase on Individual

and Joint Confidence Intervals Coverage for Parameter Estimates

Section I
Success
Total
Number of Sampling Parameter
Times
B phase Total
A o B B Oy, O B R Joint
3 10 29/29 29/29  29/29 29/29 25/29 29/29 29/29 29/29 25/29
6 13 28/28 28/28  28/28 28/28 28/28 28/28 28/28 28/28 28/28
8 15 25/25 25/25  25/25 25/25 24/25 25/25 25/25 24/25 24/25
Section II
(Success - Excluded)
(Total - Excluded)
3 10 29/29 29129 29/29 29/29 25129 2828 0/0 0/0 0/
6 13 28/28 28/28  28/28 28/28 26/26 23/23 11/11 5/5 8/8
8 15 25/25 25/25 25/25 25/25 2324 19/19 99 11/11  6/6
Section III
@ugcgs%t%xgluged_)

3 10 2929 29729 29729 29/29 25/29 28/29 0/29% 0/29% 0729"
6 13 28728 28128 28128 28/28 26/28 2328 11/28" 5/28% 0/28"
8 15 2525 25725 25/25 25725 23/25 19/25 9/25* 11725 025"

*_p<0.01
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parameters were estimated (Fig. 5.12i). The schedule with 8 time points in the
phase yielded estimates with the lowest rank order of ®_’s, and the design with 3
sampling times in the P phase yielded estimates with the highest rank order of
®_’s, on average.

Consequently, all sampling schedules produced similarly efficient esti-
mates of A and o, and B and B were most efficiently estimated when 8 time
points were in the B phase. While 6, G, and og were estimated with similar
efficiency with the three sampling schedules studied, Gy was better estimated with
6 or preferably 8 time points in the B phase. All designs produced parameter
estimates with similar efficiency and not much could be gained by increasing the
duration of sampling.

As with the other studies previously described, all sampling designs yield-
ed good confidence intervals coverage for individual and joint parameter esti-
mates when NONMEM runs with catastrophic estimates were included (Table
5.11, Section I). When runs with catastrophic estimates were excluded to reveal
the impact of standard errors on confidence intervals coverage, poor coverage
was obtained for o, R and joint parameter estimates (Table 5.11, Section III).
However, the coverage for Gy was slightly better when 8 time points were in the
phase compared to the designs with 6 and 3 sampling times in this phase of the
concentration time curve (Table 5.11, Section III).

The schedule with 8 sampling times in the [ phase had 80.8%incidence of
high correlation between a and A, while incidences of 6.9% and 7.1% were
obtained for the correlation between these parameters when 3 and 6 time points,
respectively, were in the B phase (Table 5.12). Although the incidence of high
correlation between P and a was 13.8% (3 sampling times in the B phase) and
3.6% (6 sampling times in the B phase) it was 0% when 8 time points were in the

B phase. In addition, 100% incidence of high correlation between 3 and B was
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observed for all sampling schedules. Incidence of correlation of less than 11%
was obtained for the correlation between B and «, o and B for the designs
having 3 and 6 sampling times in the B phase, but not the design with 8 time
points in the B phase. The latter yielded 0% incidence for these pair-wise
correlations. Also an incidence of 3.6% was obtained for the correlation between

op and A when 6 sampling times were specified in the 3 phase.

5.5 DISCUSSION

In the investigation of the effect of sample size on parameter estimation,
the parameter values (A = 10000.0 IU/ml, o = 2.0 h'l, B =500 IU/ml, and B =
0.2 h'l) and sampling strategy were chosen to mimic a real study which is report-
ed in detail in Chapter 7. With this sampling strategy, 70% of the data points were
in the o phase. This yielded precise estimates of A and a, irrespective of the
sample size, as would be expected with the partitioning. The effect of the
partitioning was observed in the estimation of B and 3. Only the use of a sample
size of 150 (15 animals per time point) gave estimates of these parameters which
were precise. With this sample size, 45 data points were located in the B phase of
the concentration - time curve compared with 30 and 18 for the 100 and 60
sample sizes, respectively. The accuracy with which these parameters were
estimated was not affected by sample size. Increase in the sample size led to an
increase in the precision with which the variance parameters were estimated, as
expected. In addition, the positive bias in the estimation of the variance param-
eters was probably a feature of the one observation per animal study design.

The estimation of the variance parameters (especially og) was associated
with large standard errors which led to poor individual and joint confidence

intervals coverage when the runs with catastrophic estimates were excluded. The
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contribution of bias to this poor coverage was negligible since good coverage was
obtained when the runs with catastrophic estimates were included. Given the
pharmacokinetic model and design specifications considered, the appropriate
sample size necessary for efficient estimation of population pharmacokinetic
parameters is 150 (i.e. 15 observations per time point) or more. This was
associated with a lower incidence of high correlation between parameters.
Although parameters were better estimated with 150 observations than 100
observations (i.e. 10 animals at each time point), the loss in estimation efficiency
with the latter sample size was not very dramatic as seen in the individual and
joint confidence intervals coverage when catastrophic runs were excluded (Table
5.2, Section IIT). Model parameters were least efficiently estimated with a sample
size of 60 and with this sample size, more parameters were highly correlated with
each other (Table 5.4).

NONMEM estimation of A, o, B, and B was often associated with nega-
tive bias. This could be due to either the study design, or a feature of the program
(i.e. estimation error since negative bias in the estimation of these parameters was
also observed when o was specified as 0%). Error in concentration measure-
ments had negligible influence on the estimation of model parameters. However,
it did have an influence on the estimation of the variance parameters. When o
was greater than 10%, large biases were associated with the variance parameters.
These were due to there being no information to allow the estimation of ¢, . Thus,
the inter-animal variability estimated was a composite of inter- and intra- animal
variability. Setting o2 equal to 15% yielded the least efficient estimates of
parameters. This specification of error in concentration measurements is the
upper limit of error in concentration measurements generally acceptable in prac-
tice, and the need to minimise error in concentration measurements, especially

with the one observation per animal study design cannot be over emphasised.
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The negative bias associated with A and o observed in the study in which
the efficiency of parameter éstimation with a range of o values was determined,
is a feature of the NONMEM program as previously discussed. The almost un-
biased estimate of these parameters obtained when o was 1.5 h™! was due to the
fact that the slope of the o phase of the concentration - time curve was less steep,
hence more data points were located in the o phase. Steeper slopes of the o phase
of the concentration - time curve, a consequence of higher o values, yielded
mostly efficient (unbiased and precise) estimates of B and B because more data
points were partitioned into the  phase of the concentration - time curve (Fig.
5.13). Similar conclusions were arrived at using the design numbers.

Thus, A was more efficiently estimated when o was in the range of 1.5
and 4.0 h'l, with the most efficient estimate obtained when o was 1.5 h™1. Al-
though a was estimated with similar efficiency irrespective of the value of o
used, the best estimate was obtained when o was 3.5 h"l, B and B were well

1 Although the efficiency of

estimated when a was in the range of 3.5 and 8.0 h™
Op and G estimation was similar for o values, the best estimates were obtained
for o5 and 6, when o was 2.0 h'! and 4.0 h'l, respectively. og was better

1. The relatively inefficient

estimated when o was in the range of 2.5 and 8.0 h™
estimation of the variance parameters was due to the fact that there was no
information in the data set on o .

With the range of A:B ratios considered and o of 2.0 h'l, efficient estima-
tion of A and o was obtained with the higher A:B ratios. The greater the A:B
ratio the more precise were the estimates of these parameters. Given that the slope
of the o phase of the concentration time curve remained constant irrespective of
the A:B ratio, more data points were partitioned into the o phase of the

concentration time curve with higher A:B ratios (Fig. 5.14). Thus, A and o were

most efficiently estimated when the A:B ratio was 30.0. However, A was
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estimated with similar efficiency irrespective of the value of the A:B ratio. o, on
the other hand, was better estimated when the A:B ratio was between 20.0 and
40.0.

B and B, however, were better estimated when the A:B ratio was low. B
was best estimated when the A:B ratio was between 1.0 and 20.0 while B was
best estimated when the A:B ratio was between 1.0 and 30.0. The most efficient
estimates of these parameters were obtained when the A:B ratio was 1.0 and 2.5,
respectively.

Good estimates of G, and 0, were obtained when the A:B ratio was in the
range of 7.5 and 40.0 for the same reason advanced for the estimation of A and o.
og was well estimated when the A:B ratio was in the range of 1.0 and 20.0, and
the best estimate when the A:B ratio was lowest (1.0). Interpreting the results
using bias and precision, and the design number approach led to the same conclu-
sions. All parameters were well estimated when the A:B ratio was in the range of
2.5 to 40.0 with the best estimates obtained when the A:B ratio was 20.0. It is
worthy of note that fewer pair-wise high correlations were obtained when the A:B
ratio was 20.0.

The poor confidence interval coverage observed for og when the A:B
ratios were high was due to large standard errors. There was no contribution of
bias to this observation as seen in Table 5.11 (Section I & II). Similarly, the poor
coverage observed for joint confidence intervals was due to large standard errors.

Although all schedules with the different specifications of sampling times
in the o phase produced estimates of A and o that were negatively biased, some
of which were significant, the mean %PE did not exceed 4%. All schedules
produced precise estimates of A and o with the SD of %PE ranging from 4.0 to
5.9%. The difference in the efficiency with which these parameters were
estimated lay in the contribution of the "standard error term" in the calculation of

the design number. Thus, A was most efficiently estimated with 7 time points in
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the o phase, while the design with 3 sampling times in the o phase produced the
least efficient estimate. As in the case of bias and precision where the %PE
values were very close for all schedules, there were no significant differences
when the design numbers for the different sampling schedules were compared.
That the sampling schedule with 5 time points in the o phase gave the most effi-
cient estimate of o, while the sampling schedule with 12 time points in the o
phase gave the most inefficient estimate, was also due to the effect of the "stand-
ard error term". The design with 7 sampling times in the o phase produced the
least biased and most precise estimate of B, while the one with 5 time points
produced the least biased estimate of B. The difference in the precision with
which B and B were estimated with 5 and 7 time points in the o phase was only
1%. Thus, the most efficient estimates of B and P obtained with 7 and 5 sampling
times in the o phase, respectively, were due to the influence of bias. Although all
designs produced estimates of B and J that were precise and not significantly
biased, the efficiency with which these parameters were estimated with the
schedule having 12 time points in the & phase was significantly poorer than the
rest. This was probably due to the fewer number of data points in the B phase
which resulted in an estimate with a large standard error.

The positively biased estimates of variance parameters was a consequence
of the one observation per animal study design. The least efficient estimates of Gy
and g, were obtained when 3 time points were in the o, phase. This design was
associated with estimates which were the least precise and the most biased. On
the other hand, the most efficient estimates of 0, and ¢, were obtained when 7
and 12 time points, respectively, were in the o phase. These schedules produced
parameter estimates which were the most precise and least biased. Also, the
"standard error term" in @, for these parameters generated with these designs

was the lowest when compared with the other designs. og was least efficiently
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estimated when 12 sampling times were in the o phase, and this design produced
the most imprecise estimate. Although this sampling schedule produced the least
biased estimate of 0. the inefficiency was due to the imprecision of the estimate
of this parameter. The efficient estimation of og with 3 time points in the o phase
was due to the location of a greater number of data points in the B phase. Overall,
model parameters and their variances were most efficiently estimated when 7
time points were in the o phase.

The schedule with 12 time points in the o phase produced the least effi-
cient parameter estimates. This could be attributed to the greatest incidence of
high correlation between parameters (Table 5.10). This inefficiency in parameter
estimation was also associated with large "coefficient of variation". However,
large "coefficient of variation" was responsible for poor confidence interval
coverage for og and joint parameter estimates for all sampling designs when
catastrophic runs were excluded in the calculation of confidence intervals.

In the study in which the effect of altering the number of time points in
the B phase on parameter estimation was investigated, the bias and precision
obtained in the estimation of A and o were similar for all sampling schedules;
hence the lack of significant difference in the efficiency with which these parame-
ters were estimated. All schedules produced negatively biased estimates of these
parameters. The design with 8 time points in the B phase produced the most
precise estimates of B and . Thus, the production of the most efficient estimates
of B and P with this sampling strategy was due to the estimates being the most
precise. The lack of significant differences in the efficiency with which Gy, G,
and og were estimated by the different designs was due to estimates being biased
and precise to a similar extent. On the other hand, the estimate of Gy was the least
biased and imprecise when 8 time points were in the B phase. The bias produced
in the estimation of this parameter with this schedule was less than one third of

that when 3 sampling times were in the B phase. Thus, the most efficient estimate
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of Gy was obtained when 8 time points were in the B phase.

Although the sampling schedule with 8 time points in the B phase gave the
most efficient parameter estimates when the overall design efficiency was consid-
ered, this was not significantly better than the other schedules. This may have
been due to the pair-wise correlations between parameter estimates. Whereas the
incidence of high correlation between o and A was 6.9% for the design with 3
sampling times in the B phase, and 7.1% for the design with 6 time points in the
phase, it was 80.8% when 8 time points were in the P phase. Alternatively, the
incidence of high correlation between B and «, B and ¢, Op and A, og and o, o
and B, og and B was less than 14% for the design with 6 sampling times in the B
phase. A similar incidence was obtained for the sampling design with 3 sampling
times in the  phase, but the incidence of high correlation for o vs. A, and G Vs.
B was zero. Except for the correlation of 8 and B, in which the incidence of high
correlation was 100% for all sampling designs, the incidence of high correlation
for other parameter pairs not previously discussed for the design with 8 time
points in the P phase was zero. The instability in the estimates due to the pair-
wise correlations was reflected in the poor coverage observed with the joint
confidence intervals for parameter estimates.

In all studies described, a high incidence (100%) of high correlation
occurred between P and B. There were some occasions of high incidence of high
correlation between o and A, B and o, and o and B . These must have contribut-
ed to inefficient parameter estimation in some study designs. This was reflected
in wide confidence intervals such that, when estimates with "coefficient of varia-
tion" greater than 50% were excluded in the computation of confidence intervals,
poor coverage was obtained for og and joint parameter estimates. The large
"coefficients of variation" could be inherent to the model or to the relative magni-

tudes of the parameters used. A high correlation reduces the desirability of obtain-
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ing parameter estimates (Boxenbaum ez al., 1974) and requires a reparameteriza-

tion of the model.
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CHAPTER 6

REPARAMETERIZATION OF THE TWO COMPARTMENT MODEL
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6.1 SUMMARY

A simulation study was carried out using the one observation per animal
design to examine the impact of reparameterization of the two compartment
model (IV bolus dose injection) on the efficiency with which model parameters
were estimated. The parameters of the model were Cl, V1, kj, and ky; instead
of A, a, B, and P. The efficiency of parameter estimation was determined by
examining accuracy and precision, design number, single and joint confidence
intervals for parameter estimates, and the correlation between parameter esti-
mates. Reparameterization led to the generation of more stable parameter esti-

mates, and relatively lower incidence of high correlation between parameters.

6.2 INTRODUCTION

The results of the studies reported in Chapter 5 showed that the estimation
of parameters of the two compartment model described by Eq. (6.1) below can be

problematic.

C(t) = A.exp(-o.t) + B.exp(-B.t) 6.1)
(Model I)

The instability in the estimation of some of the parameters was reflected in wide
confidence intervals, and high correlation between parameter estimates. Conse-

quently, the model in Eq. (6.1) (Model I) was reparameterized in terms of Cl, V,
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k17, and ky1 and had the following structural form:

C*j = DYV~ B~ kypexp(-an) + (kg - Bexp(B)]l - (62)
(Model II)

*
= Clj/V 1j C j
the dose, volume of the central compartment and clearance in the jth animal,

is the true drug concentration in the jth animal , D, Vi i Clj are

respectively, and tj the corresponding sampling time. However, in the simulation

o and B were parameterized in terms of the microscopic rate constants kip and
k21.

The goal of this simulation study was to evaluate the impact of reparame-
terization of the two compartment open model with intravenous bolus dose
administration on the estimation of population pharmacokinetic parameters using
the one observation per animal design. Specifically, the efficiency with which
these parameters were estimated was determined by examining the accuracy and
precision, design number, single and joint confidence intervals for parameter

estimates, and the incidence of high correlation between parameter estimates .

6.3 METHODS
6.3.1 SAMPLING DESIGN AND ANALYSIS

Using the following values of o: 2.0, 4.0, 6.0, and 8.0 h"1; B, A and B
values of 0.2 h'l, 10000.0 and 500.0 IU/ml, respectively, used in Chapter 5,

values of Cl, Vy, k12 and k21 were computed and used in the simulation
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Table 6.1 Starting Values for Simulation on Reparameterization: Different o Values

@l
2.0
4.0
6.0
8.0

Cl
(I/h)
0.025
0.040
0.050
0.055

Parameter
Vi

)
0.020
0.020
0.020
0.020

kqp

@l
0.50
0.30
3.00
5.00

ka1

@l
0.30
0.40
0.50
0.60

Table 6.2 Starting Values for Simulation on Reparameterization: Different A:B Ratios

AB

1.0
10.0
20.0
300
40.0

Cl
(I/h)
0.070
0.040
0.025
0.020
0.016

Parameter
Vi

()
0.200
0.035
0.020
0.012
0.010

kia

)
0.75
0.70
0.50
0.40
0.30

ka1

@b
1.00
0.35
0.30
0.25
0.20
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(Table 6.1). The respective variances were selected to yield a coefficient of
variation of 15% for all parameters. A 15% error was added in concentration
measurements as previously described (see Chapter 2, Section 2.4).

An intravenous bolus dose of 200,000 IU was used, and animals were
sampled over ten time points with 15 observations being made at each time point
giving a sample size of 150. The sampling times used were 0.083, 0.25, 0.50,
0.75, 1.0, 1.5, 2.0, 3.0, 4.0, and 6.0 h. As in Chapter 5 the first time point was
fixed while others were sampled from a uniform range of 0.25 h. The simulation
was carried out as previously described in Chapter 2 (Section 4) and 30 replicate
data sets were generated for each experiment.

o was then kept constant at 2.0 ! and with B unchanged at 0.2 h~1, the
efficiency of parameter estimation with a range of A:B ratios was investigated.
The A:B ratios used were 1.0, 10.0, 20.0, 30.0, and 40.0 (Table 6.2).

The chi-squared test was used to compare joint confidence intervals
coverage for parameter estimates obtained using the reparameterized model

(Model II) with those obtained with Model I in Chapter 5.

6.4 RESULTS
6.4.1 REPARAMETERIZATION WITH VARIATION IN o
6.4.1a Bias and Precision
In the results presented below G 15 and G5 are not included since the

estimates of these parameters were infinitesimal and their removal did not alter

the NONMEM objective function or other parameters estimated. Fig. 6.1a shows
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%PE
40 (a) Ci

20 1

-20 -

-40
80 - (b) V,

40

40
80
40 - (Ch Kz

20

-20

-40 J L L} T |
2 4 6 sty
Fig. 6.1(a - d) Bias and precision in expressed as %PE (mean + standard
deviation, respectively) for (a) Cl, (b) Vy, (¢) k{9, and (d) ky;. The horizontal
axis represents the different values of . Each vertical bar expresses the bias and
precision of the population parameter estimate.
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400 - (e) oy

Fig. 6.1(e - ) Bias and precision in expressed as %PE (mean + standard
deviation, respectively) for (¢) oy, and (f) Gy1- The horizontal axis represents
the different values of a.. Each vertical bar expresses the bias and precision of the

population parameter estimate.
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(a) Estimation of Cl

6.0 2.0 4.0 80 a@l
(b) Estimation of A4
2.0 40 6.0 80 aml)
(c) Estimation of k{5
6.0 40 2.0 80 ol
(d) Estimation of ko
6.0 4.0 8.0 20 o)

Fig. 6.2(a - d) #Summary of significant differences in the efﬁciency* with which
parameters were estimated on reparameterization: effect of different values of .
a - Rank order of design numbers increasing from left to right.

* Efficiency measured with design number
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(e) Estimation of Q1

4.0 20 6.0 80 a@ml
(f) Estimation of °V1b
20 40 6.0 80 a@ml
(g) Overall Design Efficiency
4.0 6.0 20 80 ol

Fig. 6.2(e - g) #Summary of significant differences in the efﬁciency* with which
parameters were estimated on reparameterization: effect of different values of .
a - Rank order of design numbers increasing from left to right.

b - All significantly different each other

* Efficiency measured with design number
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that the estimates of Cl produced were very precise. The bias in the estimation of
this parameter ranged from 0.19% (6.0 h™1) to 15.08% (8.0 h™1), with the most
biased estimate obtained when o was 8.0 h™!. The estimates of V1 were unbiased
and precise when o was in the range of 2.0 and 6.0 h™l. When o was as 8.0 h'l,
the estimate of V| was biased and imprecise (Fig. 6.1b). The estimates of k{,
were precise and not significantly biased (Fig. 6.1c). ko estimates were precise
except when o was 8.0 h-1 (Fig. 6.1d). In addition, the biases in the estimation
o) and 6y were significant. The greater the value of o, the greater the bias (Fig.
6.1(e & f)). Imprecise estimates of ) were only obtained when o was 8.0 hl,

Except when o was 2.0 h'l, all estimates of Gy7q were imprecise.

6.4.1b Design Number

With reparameterization, efficient estimates of Cl were obtained when o
was in the range of 2.0 and 6.0 h1 (Fig. 6.2a) and these were significantly better
than when o was 8.0 h™L. The most efficient estimate of Cl was obtained when o
was 6.0 h~1 while the least efficient estimate was when o was 8.0 h™l.

V was efficiently estimated when o was in the range of 2.0 and 4.0 bl
with the best estimate obtained when a was 2.0 hl (Fig. 6.2b). Estimates ob-
tained when & was 2.0 h™! were significantly better than those when o was in the
range of 6.0 to 8.0 'l

k, was more efficiently estimated when o was between 2.0 and 6.0 h'l,
and results obtained when a was in this range was significantly better than those
obtained when o was 8.0 h-l (Fig. 6.2c). The most efficient estimates of this
parameter were obtained when o was 6.0 'l

More efficient estimates of k,; were obtained when o was in the range of

4.0 10 6.0 h™! than when it was 2.0 h'l(Fig. 6.2d). The most efficient estimates
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were when a was 6.0 h'l, and these were significantly better than when o was
either 2.0 or 8.0 b1,

Estimates of Gy obtained when o was either 2.0 or 4.0 h'! were signifi-
cantly better than when o was in the range of 6.0 to 8.0 h™! (Fig. 6.2¢). The best
estimate gy was obtained when o was 4.0 h™1 and the least efficient estimate
when o was 8.0 h~1, Gy1 Was best estimated when o was 2.0 hl (Fig. 6.2f) and
this was significantly better than when o was in the range of 4.0 to 8.0 h™L. The
least efficient estimate of Gy;{was obtained when o was 8.0 nl,

When the efficiency of estimation of all parameters was considered, effi-
cient estimates were obtained with o in the range of 2.0 to 6.0 h-l (Fig. 6.2g).
These estimates were significantly better than when o was 8.0 h~l. The most

1 and the least efficient when o was

efficient estimates were when o was 4.0 h~
8.0 h™L. It should be noted that efficient estimates were obtained for parameters of
Model I (see Chapter 5, Section 5.3.3) when o was 2.0 h™! and not greater than
401hL,

Thus, Cl was best estimated when o was in the range of 2.0 to 6.0 h'l,
and V{ when o was between 2.0 to 4.0 h™L. The most efficient estimates of Cl
and Vl were obtained when o was 6.0 and 2.0 h'l, respectively. k12 and k21
were well estimated when o was in the range of 2.0 to 6.0 h’l, and 4.0 t0 6.0 h'l,
respectively. These micro transfer rate constants were best estimated when o was
60nL, qcy and 6y were most efficiently estimated when o was 4.0 and 2.0 h'l,
respectively. However, 0 was estimated with a similar efficiency when o was
either 4.0 or 2.0 h-l. Considered as a set, all parameters were estimated with

1

similar efficiency when o was in the range of 2.0 and 6.0 h™" although the most

efficient estimates were obtained when o was 4.0 h‘l.
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Table 6.3 Effect of Reparameterization on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates: Variation in ¢

...................................... cemm- ceces

Section I

Success
Total

a Parameter
a Vi Kk kg oy Joim

20 30/30 30/30 30/30 30/30  30/30 30730 30/30

40 30/30 3030  30/30 30/30  30/30 30730 30/30

6.0 30/30 30/30 30/30 30/30  30/30 30730 30/30

80 30/30 30/30  30/30  30/30  30/30  30/30 30/30
Section II

Success - Excluded
Total - Excluded

a Parameter .
a vy kp ko q oy Joint

20 3030 30030 30730 30030 29729 3030  29/29

40 3080 3080 3030 3030 3030 30130 30/30

60 3030 3030 3030 3030 2828 30530 28/28

80 30/30 30030 30730 3030 16/16 3030 16/16
Section III

Success - Excluded
Total -

o Parameter )
a Vi kp  ky q %y Joint

20 30730 30/30 30/30 30/30  29/30  30/30 29/30
40 3030 30/30 30/30 30/30  30/30  30/30 30/30
60 30/30 30/30 30/30 30/30  28/30  30/30 28/30
8.0 30/30 30/30  30/30 30/30  16/30  30/30 16/30
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Table 6.4 Comparison of Joint Confidence Intervals Obtained with Models I and II:
Effect of Different o Values

Total
a @l Model I Model II
2.0 0129 29/30 p <0.001
4.0 19/30 30/30 p <0.001
6.0 16/30 28/30 p <0.001
8.0 8/28 16/30 p <0.05
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6.4.1c Individual and Joint Confidence Interval Estimates

After reparameterization, good confidence intervals coverage was ob-
tained for individual and joint parameter estimates with or without excluding
NONMEM runs with "coefficient of variation" > 50% for o of 2.0, 4.0, and 6.0
h'l (Table 6.3, Section I - III). Unlike the 96% coverage (on average) for ocy and
joint parameter estimates obtained with « in the range of 2.0 to 6.0 h'l, a value of
53% was obtained when o was 8.0 hl (Table 6.3, Section III). However, this
was not significantly different from the expected values of 0.95 and 0.74, respec-

tively.

6.4.1d Comparison of Joint Confidence Intervals Coverage for Parameter

Estimates Obtained with Models I and II

Table 6.4 gives the joint confidence intervals coverage for parameter
estimates obtained using the two models. Reparameterization led to a significant
improvement in the joint confidence intervals coverage for parameter estimates

irrespective of the o values.
6.4.1e Correlation between Parameter Estimates

A notable incidence of high correlation of 40.0%, 66.7%, and 30.0% was
obtained for the correlation between k5 and Cl with o equal to 2.0, 4.0 and 6.0
nl, respectively. A 23.3% and 53.3% incidence of high correlation was obtained
for the correlation between ky; and ky , and gy and Vy, respectively, when a.

was 8.0 h71 (Table 6.5).
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%PE 4
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40 A:Bratio

Fig. 6.3(a - d) Bias and precision in expressed as %PE (mean t standard

deviation, respectively) for (a) Cl, (b) V1, (c) kl%’ and (d) k
axis represents the different values of A:B ratios. Ea

bias and preci

sion of the population parameter estimate.
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Fig. 6.3(e - ) Bias and precision in expressed as %PE (mean * standard
deviation,respectively) for (e) (l‘:: and (f) . The horizontal axis represents the
different values of A:B ratios. Each verncal ar expresses the bias and precision
of the population parameter estimate.
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(a) Estimation of Cl

300 200 100 400 1.0 A:Bratio

(b) Estimation of A4

200 300 100 400 1.0 A:Bratio

(c) Estimation of k{5

100 200 300 400 1.0 A:Bratio

(d) Estimation of ko ¢
100 200 300 400 1.0 A:Bratio

Fig. 6.4(a - d) Summary of significant differences in the efﬁciency* with which
parameters were estimated on reparameterization: effect of varying A:B ratio.

a - Rank order of design numbers increasing from left to right.

* Efficiency measured with design number
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(e) Estimation of aQCl

300 400 200 100 10 A:Bratio

(f) Estimation of oy{

1.0 100 200 300 400 A:Bratio

(g) Overall Design Efficiency

100 200 300 400 10 A:Bratio

Fig. 6.4(¢e - g)? Summary of significant differences in the efﬁciency* with which
parameters were estimated on reparameterization: effect of varying A:B ratio.

a - Rank order of design numbers increasing from left to right.

* Efficiency measured with design number
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6.4.2 REPARAMETERIZATION WITH VARIATION IN A:B RATIO

6.4.2a Bias and Precision

The estimation of Cl was associated with a significant negative bias irre-
spective of the A:B ratio (Fig. 6.3a). However, the least biased estimate was
obtained when the A:B ratio was 20.0 ( mean %PE = 1.7%), and the most biased
estimate when the A:B ratio was 1.0 (mean of %PE = 17.4%). The estimates of
V1 were mostly unbiased (Fig. 6.3b) and all estimates of Cl and V were accept-
ably precise. k, and ko estimates were biased and mostly imprecise, but the
estimates obtained when the A:B ratio was 10 or 20 were precise (Fig. 6.3(c &
d)). Fig. 6.3(e & f) shows the estimates of o) and Gy to be significantly biased.
Gy1 Was associated with acceptable precision, while gy was acceptably precise
for most A:B ratios, except when the A:B ratio was 1.0. In this case the estimate

of gy was greatly biased and imprecise (Fig. 6.3f).

6.4.2b Design Number

Cl was efficiently estimated when the A:B ratio was between 10.0 and
40.0, and these were significantly better than when the A:B ratio was 1.0 (Fig.
6.4a). The most efficient estimate of Cl was obtained when the A:B ratio was
30.0.

The most efficient estimate of V{ was obtained when the A:B ratio was
20.0, and this was significantly better than estimates for other A:B ratios (Fig.
6.4b).

Good estimates of kq and ky were obtained when the A:B ratio was in

the range of 10.0 to 30.0, with the most efficient estimate when the A:B ratio was
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10.0. These estimates were significantly better than those obtained when the A:B
ratio was either 1.0 or 40.0. (Fig. 6.4 (c & d)).

When the A:B ratio was in the range of 20.0 to 40.0, better estimates of
Q) Were obtained than when the A:B ratio was in the range of 1.0 and 10.0 (Fig.
6.4e). The best estimates of oc) were when the A:B ratio was 30.0. Estimates
obtained when the A:B ratio was between 30.0 and 40.0 were significantly better
than estimates obtained when the A:B ratio was in the range of 1.0 to 10.0.

Significantly better estimates of oy;; were obtained when the A:B ratio
was in the range of 1.0 to 20.0 than when the ratio was 30.0 to 40.0 (Fig. 6.4f)

Parameters were well estimated when the A:B ratio was in the range of
10.0 to 30.0, but the estimates when the A:B ratio was between 10.0 and 20.0
were significantly better than those for the A:B ratio of 1.0 or 40.0. The most
efficient parameter estimates were obtained when the A:B ratio was 10.0. It
should be recalled that the best parameter estimates using Model I (Chapter 5)
were obtained when the A:B ratio was 20.0, but this result was not significantly
better than when the A:B ratio was 2.5, 5.0, 7.5, 10.0, 30.0, and 40.0.

Thus, Cl was efficiently estimated when the A:B ratio was in the range of
10.0 to 40.0, with the most efficient obtained when the A:B ratio was 30.0. Vi
was most efficiently estimated when the A:B ratio was 20.0. Efficient estimates
of k1, and ky were obtained when the A:B ratio was in the range of 10.0 to
30.0, with the most efficient estimates of these parameters when the A:B ratio
was 10.0. o] was most efficiently estimated when the A:B ratio was 30.0 al-
though these estimates were not significantly better than the estimates obtained
when the A:B ratio was either 20.0 or 40.0. On the other hand, Gy;; was better
estimated when the A:B ratio was in the range of 1.0 to 20.0 than 30.0 to 40.0,
with the best when the A:B ratio was 1.0. All parameters were well estimated
when the A:B ratio was between 10.0 and 30.0 although the lowest rank order of

&, (on average) was obtained when the A:B ratio was 10.0.
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Table 6.6 Effect of Reparameterization on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates: Variation in A:B Ratio

B T O A e e e e L T T PP

AB Parameter .
a Vi kg kg oy Joint

1.0 30/30 30/30 30/30 30730 30730  30/30 30730
10.0 30/30  30/30 30/30  30/30 30/30  30/30 30/30
20.0 30/30 30/30 30/30  30/30 30/30  30/30 30730
300 30/30 30730 30730 30730 30/30  30/30 30/30
400 30/30 30/30 30/30  30/30 30/30 30730 30730

| Section II
Success - Excluded

Total - Excluded
A:B Parameter

a vi  ky ko a9y Joint
1.0 30/30 30/30 22722 20720 27/27  30/30 20/20
10.0 30/30  30/30 30/30  30/30 30/30  30/30 30730
200 30/30 30730 30730  30/30 29/29  30/30 29/29
300 29729 30/30 30/30  30/30 30730  30/30 29/29
40.0 30/30 30/3;0 30730 21721 2929  30/30 20120
Section ITI
Success - Excluded

Total T
AB Parameter

a Vi ky kg oy Joint
10 30530 3030 2230 20830 2730 30530 20730
100 3030 3030 3030 3030 3030 3030 30730
200 30730 300 3030 30530 29430 3030 29730
300 29530 30530 3080 30530 3030 30530 29730
400 3080 3070 3030 2130 29430 3030 20730
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Table 6.7 Comparison of Joint Confidence Intervals Obtained with Models I and II:
Effect of Different A:B Ratios

Success - Excluded

Total
A:B Ratio Model 1 Model II
1.0 0/27 20/30 p <0.001
10.0 4129 30/30 p <0.001
20.0 0/29 29/30 p <0.001
30.0 1/29 29/30 p <0.001
40.0 1727 20/30 p <0.001
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6.4.2c Confidence Intervals for Individual and Joint Parameter Estimates

With reparameterization, good coverage was obtained for individual and
joint confidence intervals for parameter estimates (Table 6.6, Section I). When
runs with "coefficient of variation" greater than 50% were excluded, the
coverage for k15 and k1 was reduced when the A:B ratio was 1.0 and 40.0,
respectively. With these A:B ratios, the joint coverage for parameter estimates
was similarly reduced (Table 6.6, Section (II & III)). However, the coverage
obtained with these A:B ratios was not significantly lower than the expected

values of 0.95 and 0.74 for individual and joint parameter estimates, respectively.

6.4.2d Comparison of Joint Confidence Intervals Coverage for Parameter

Estimates Obtained with Models I and II

Reparameterization led to a statistically significant improvement in the
joint coverage of parameter estimates irrespective of the value of the A:B ratio
(Table 6.7). 62 to 93% improvement in coverage was observed as Model I was

reparameterized to give Model II.
6.4.2¢ Correlation between Parameter Estimates

Incidence of high correlation was highest (93.3%) for ky; and Cl when
the A:B ratio was 1.0, and was 90.0% when the A:B ratio was 40.0. Comparative-
ly lower values were obtained when the A:B ratio was 10.0 (56.7%), 20.0

(40.0%), and 30.0 (33.3%). In addition, incidence of high correlation of 46.7%,
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83.3%, and 23.3% for the pair-wise correlations of k12 and Cl, k21 and k12, and
o1 and Vy, respectively, were obtained when the A:B ratio was 1.0 (Téble 6.8).
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6.5 DISCUSSION

The highly precise nature with which Cl was estimated when o 2 4.0 hl
was due to the greater number of data points available in the elimination phase of
the concentration - time curve. The greater the value of @, the steeper the slope of
the distribution phase of the curve resulting in a fewer number of data points in
this phase of the disposition curve (Fig. 6.5). However, the best estimate of Cl
was obtained when o, was 6.0 h™! and not 8 h™! because of the bias with which
this parameter was estimated when o was 8.0 hl. V1 was estimated with least
bias and greatest precision when o was 2.0 h™1 because more data points were
located in the distribution phase of the plasma concentration - time curve. k{5
and ko were most efficiently estimated when o was 6.0 h™L. The biases associat-
ed with the estimates of the variance parameters were due to the fact that the data
contained no information on .. When o was 4.0 h! the best estimate of oy Was
obtained. This estimate was associated with the highest precision. Gy;; was most
efficiently estimated when o was 2.0 h! for the same reason as V7. As a whole,
the best parameter estimates were obtained when o was in the range of 2.0 to 6.0
h™! with the most efficient estimates obtained when o was 4.0 h™l. This was
probably a consequence of the even distribution of data points between the distri-
bution and elimination phases of the concentration - time curve.

The inefficiency with which parameters were estimated when o was
8.0 h"1 could be attributed to the correlation between parameter estimates since
there were more cases of high correlation between parameters with this value of c,
and this was reflected in the confidence intervals coverage. There were 14
NONMEM runs with catastrophic estimates of gy which led to a reduced joint
confidence intervals coverage for all parameter estimates, and this was signifi-

cantly different from all others.

247




However, when the joint confidence intervals coverages obtained after
reparameterization (Model II) were compared with those obtained with Model I,
significant improvements were obtained for all a values. The incidence of high
pair-wise correlations on reparameterization did not exceed 67% compared with
100% obtained with Model I (Chapter 5, Section 5.4.3) for the same o values.
Thus, reparameterization led to a reduced incidence of high pair-wise correlations
and stability in the estimates as reflected in the significant improvement in joint
confidence intervals coverage for all parameter estimates. This improvement was
associated with "coefficients of variation" < 50% for most parameter estimates.

When the A:B ratio was 20.0 or 30.0, efficient estimates of Cl were ob-
tained. The best estimate of Cl1 was when the A:B ratio was 30.0, due to the
estimates being the least biased. The estimates obtained when the A:B ratio was
20.0 or 30.0 were equally precise. The most efficient (and most precise) estimate
of V| was obtained when the A:B ratio was 20.0. The most efficient (least biased
and most precise) estimates of the micro transfer rate constants were obtained
when the A:B ratio was 10.0. The significant biases associated with the variance
parameters were due to the lack of information about o, in the data sets. The best
estimates of parameters as a whole, were obtained when the A:B ratio was 10.0,
although these were not significantly better than when the A:B ratio was 20.0 or
30.0. Inefficient parameter estimates were obtained when the A:B ratio was 1.0,
and 40.0 with the most inefficient estimates obtained when the A:B ratio was 1.0.

The inefficiency of parameter estimation associated with the A:B ratios of
1.0 or 40.0 was associated with high pair-wise correlations. When the A:B ratio
was 1.0, an incidence of high correlation of 93.3% and 83.3% was obtained for
kyq and Cl, k5 and ky, respectively. Also, parameter estimation when the A:B
ratio was 40.0 was associated with a 90.0% incidence of high correlation between

k21 and Cl. With these A:B ratios there were 10 NONMEM runs each with catas-
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trophic estimates unlike the one NONMEM run each with catastrophic estimates
obtained when the A:B ratio was 20.0 or 30.0, and none when the A:B ratio was
10.0.

However, reparameterization with these A:B ratios led to significant
improvements in joint confidence intervals for parameter estimates when com-
pared with results obtained with similar A:B ratios using Model I (Table 6.5).
This improved coverage was due to the generation of parameter estimates with
"coefficients of variation" mostly < 50%. Unlike the results obtained with Model
I (Chapter 5) in which a 100% incidence of high correlation was obtained B and B
irrespective of the A:B ratio, no such incidence was obtained with Model II.
Thus, Model I reparameterized into Model II, resulted in a lower incidence of
high pair-wise correlation between parameter estimates and more efficient estima-
tion.

Given that parameters were efficiently estimated when o was in the range
of 2.0 and 6.0 h™1 and the A:B ratio was 20.0, and when the A:B ratio was be-
tween 10.0 to 30.0 when o was 2.0 h'l, it is reasonable to suggest that parameters
would be efficiently estimated when the A:B ratio was in the range of 10.0 to

30.0 and o between 2.0 t0 6.0 h™1,
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CHAPTER 7

PRECLINICAL PHARMACOKINETICS: AN APPLICATION OF
THE POPULATION APPROACH
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7.1 SUMMARY

Serum concentrations of a drug under development were obtained from an
animal pharmacokinetic study using the one sample per animal design and
analysed using the population data analysis program, NONMEM. A two com-
partment open model with IV administration was used as the basis of the analysis.
Although sex and weight were not determinants of clearance (Cl), sex helped to
explain the variability in the volume of the central compartment (V {). The aver-
age values of Cl and V| were: Cl(ml/min) = 0.40, Vi(ml/g)pa1e = 0.11, and
V1(mV/g)femate = Vimale * 0-80. The variability in Cl and V{ were 23.5 and
23.2%, respectively.

7.2 INTRODUCTION

An estimation of the average value of pharmacokinetic parameters in a
group of animals provides limited information if there is no good measure of the
variability of each of the parameters. The traditional naive pooled data (NPD)
approach used in the analysis of animal pharmacokinetic data does not provide
this, nor can it assess the influence of physiology ( or pathology) on pharmacoki-
netics.The nonlinear mixed effects model (NONMEM) approach (Sheiner &
Beal, 1979 - 1989) does, however, provide estimates of both the average values
of pharmacokinetic parameters and their statistical distribution within a popula-
tion. Given the results of the simulation study described in Chapter 6, NONMEM

was used to analyse data obtained during a preclinical pharmacokinetic study.
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Fig. 7.1 Weight distribution for rats: (a) female, (b) male
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Data were supplied by Ares Serono (ltaly): serum concentrations of a drug under

development were measured in rats after single intravenous bolus injections.

7.3 METHODS

7.3.1 Animals

60 serum concentrations were obtained from 60 rats. Demographic data
included weight and sex: the distribution of weight according to sex is shown in
Fig. 7.1(a &b). Weight ranged from 139.0 to 192.0 g. The weight of female rats
ranged from 139.0 to 171.0 g. and that of male rats, from 172.0 to 192.0 g.

7.3.2 Pharmacostatistical Models

A visual inspection of the data indicated that the disposition of the drug
could, on average, be described by a two compartment open model (Fig. 7.2).
The chi-squared test (p < 0.005) was used to examine the difference between the
log likelihood values obtained from fitting the full (2 compartment) or reduced (1
compartment) models (Sheiner et al., 1977). The model had the following

structural form given in Eq. (7.1):

C*j = [Dy/V (e - Bl - kyexp(-auty) + (kay - Bexp(-Bt;)] (7.1)

= Clj/V 1j C*j is the true drug concentration in the jth animal , D;, Vlj’ Clj are
the dose, volume of the central compartment and clearance in the jth animal,

respectively, and Y the corresponding sampling time. In the analysis o and 3 were
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parameterized in terms of the microscopic rate constants k1, and ky;. A bolus
dose of 1.0M IU/kg was administered to each animal. The statistical model (see
Chapter 2, Section 2.3.2) accounted for combined inter- and intra-animal

variability.

7.3.3 Data Analysis

The data were analysed using the NPD approach and with NONMEM. For
the NPD approach, the WLS estimation procedure (weight proportional to c* '2)
was used to estimate the mean pharmacokinetic parameters from the average
concentration - time data.

Using NONMEM, the influence of demographic factors (fixed
effects(FE)) was tested by relating them to the pharmacokinetic parameters (P)

using linear models of the type:

P = O(FE) (7.2)

where P is the expected value of pharmacokinetic parameter (e.g., Cl or V1) in
any animal, FE is an identifiable animal factor (e.g., weight), and O is a regres-
sion coefficient. When quantifying the influence of a discontinuous variable such
as sex, the model was of the type:

P = O(FE) if male (7.3a)

P = O(FE). Og, if female (7.3b)

where Og, effectively allows different slopes for males and females.
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Table 7.1 List of Models Tested and Log Likelihood Differences

Model No. cf. OBJ LLD df P
(i) Clearance Models

1.Cl=0, 774.04

2.C1=01 *Wt 1 77404 O NA NA
3.C1=0 * O g 1 772.60 144 1 NS
4.Cl=0; *Wt* 0 gy 1 772.60 144 1 NS
(ii) Volume Models

5.V =6, 774.04

6.V =0, *Wt _ 5 765.88 0 NA NA
7.V =07 * Ogey 5 76284 11.20 1 <0.005
8.V =0y * Wt * Og.y 5 762.66 1138 1 <0.005

c.f. - compared with model number
OBJ - Objective function

LLD - Log Likelihood Difference
df - degree of freedom

NA - Not Appropriate

NS - Not Significant

GSex = 1.0 if male and is estimated for females
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In the analysis, models that related weight and / or sex to Cl and Vl were
tested (Table 7.1). These models were embedded in the two compartment phar-
macokinetic model. NONMEM estimated the values of © (equations (7.2) and
(7.3)) and / or other kinetic parameters ( if these were not specified as functions
of demographic factors) simultaneously. Thus, the influence of these fixed effects
was evaluated.

Theoretically, a data set could be analysed an infinite number of times
with different regression models. Therefore, criteria were necessary to identify a
useful analysis. One criterion was the value of the objective function which is
normally calculated for each NONMEM run and is equal to -2 log likelihood. A
difference in the objective function (log likelihood difference, LLD) between two
NONMEM runs involving the use of two regression models (one of which was a
restriction of the other; e.g., (a) a model which incorporated either Cl and Vl as a
function of sex, and (b) a model which incorporated CI or V| without any
explanatory factor) of more than 8 indicated a significant improvement (p <
0.005, assuming chi - square distribution) when the restricted model had one
regression parameter less than the full model (Sheiner et al., 1977). Other criteria
were: (1) a minimum correlation between parameters; (b) small standard errors of
parameter estimates; (c) weighted residuals which were randomly scattered
around zero when plotted against predicted concentration; and (d) decrease in the
estimate of the inter-animal variances (see Chapter 2, Section 2.3.3). For non-
hierarchical models, where all models had the same number of parameters, model
comparison was based on the objective function, and other criteria enumerated
above. An LLD greater than zero indicated an improvement and the one with the
smaller OBJ described the data better. A summary of the models tested is
presented in Table 7.1.

Estimates were obtained for (1) population means for Cl, Vy, k{9, k91

and / or regression coefficients (® in equations (4) and (5)), (2) the variance
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terms, (3) standard error of estimates, and (4) correlation matrix of the estimates.

7.4 RESULTS

An initial examination of NONMEM runs showed that the two compart-
ment model was superior to the one compartment model. The population pharma-
cokinetic parameter values obtained with the NPD approach were similar to the
population parameter values obtained with NONMEM when no covariates were
modelled (Table 7.2). However, with NONMEM, estimates of inter-animal
variability in Cl and V| were obtained in addition to the average population
parameters.

Modelling V; without regard to animal size with an additive model for
variability, the effects of modelling basic drug clearance with demographic
factors were examined. The first regression model (Model 1, Table 7.1) simply
defined Cl in ml/min. without an effect of animal size. To this was added an
influence of weight (g) as in Model 2 (Table 7.1). Model 2 did not give any
improvement in the estimation of Cl as seen from the objective function (Table
7.1). Thus, weight was not incorporated into the basic model for Cl.

Also, the inclusion of either sex (Model 3, Table 7.1), or sex and weight
(Model 4, Table 7.1) in various regression models for clearance did not improve
the value of the objective function (Table 7.1).

Using the basic Cl model, an additive model for variability, V{ for the
drug was initially modelled without regard to animal size (Model 5, Table 7.1),
where ©, equalled the volume of the central compartment in ml. To this was then
added the influence of weight (g) (Model 6, Table 7.1). This was a significant

improvement over V without regard to animal weight (Table 7.1).
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Table 7.2 Parameter Estimates (S.E)

NPD Approach
Structural Model Parameters
c Vi kio ka1
(mYmin)  (ml) min'l)  (@in’))
0.42 16.68 0.01 0.006
(0.15) (5.20) (0.003) (0.005)
NONMEM Approach
0.41 15.80 0.01 0.005
(0.10) (3.30) (0.003) (0.004)
NONMEM Variance Estimates
Cl mYmin)2 V(l)?
0.54 21.70
(0.60) (16.6)
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Table 7.3 Parameter Estimates (S.E.)

(i) Structural Model Parameters
Male Female
Cl (ml/min) 'V, (ml/g) Cl (mYmin) Vy (ml/g)

0.40 0.1 0.40 0.11*0.80
(0.03) (0.01) (0.03) (0.08)
ky, (minl) ko (min"1)

0.01 0.005

(0.002) (0.002)

(ii) Variance Estimates

C1 (mY/min)? V) mg)?
0.40 0.20
(0.22) (0.56)
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Fig. 7.3a Scatterplot of weighted residuals (upper axis) versus animal weight in
grams (left axis) with volume of central compartment modelled as Model 5

(without regard to animal size).
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(based on animal weight).

262



A method of assessing the "goodness of fit" is to the examine the
scatterplots of weighted residuals generated by NONMEM. Predicted concen-
trations more closely equal observed concentrations as accuracy improves and the
weighted residuals approach zero. Fig. 7.3a is the scatterplot of weighted
residuals vs. animal weight, with volume modelled as Model 5 (Table 7.1), i.e.
not including to animal weight. The pattern of the weighted residuals when
volume was modelled with regard to weight (Model 6 (Table 7.1), Fig. 7.3b) was
not different from that with Model 5 although the former model yielded a lower
objective function.

Including either sex (Model 7, Table 7.1), or weight and sex (Model 8 ,
Table 7.1) as factors to explain the variability in V{ led to a significant
improvement in the objective function (p < 0.005) with a small reduction in
variability (from 29.4% for the simple model (Model 5, Table 7.1) to 23.2% for
the full model (Model 8, Table 7.1). The variability in Cl was 23.5%. The final
model which best described the data is that specified in Model 8, with V1 ex-
pressed as a function of weight and sex.

The variances for k{; and k1 could not be estimated: removal of these
variance terms from the model resulted in no change in the objective function or

parameter estimates. Table 7.3 gives a summary of the parameter estimates.

7.5 DISCUSSION

The similarity in the estimates of model parameters obtained using the
NPD and NONMEM approaches was not surprising since the NONMEM
approach, like the NPD approach, is focussed on the estimation of average
(population) pharmacokinetic parameters. However, NONMEM gave additional

information about the distribution of these population parameters by providing
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estimates of variability.

Estimates of V| were improved by considering the demographic factors.
Thus, weight and sex contributed significantly to the explanation of variability in
volume of the central compartment. It should be noted, however, that all female
rats weighed less than their male counterparts (Fig. 7.1). When estimating V for
this drug, animal sex alone appears to allow some reasonable estimation.

In practice the development of most drugs is abandoned when large
variability is observed in the population pharmacokinetics of the drug, without
any effort to explain the variability. With the NONMEM program, the
relationship between physiology and pharmacokinetics has been determined as an
aid to explain the inter-animal variability observed in Cl and V ;. The introduction
of weight and sex in V led to a reduction of the inter-animal variability in this
parameter by approximately 6%. Other factors, as yet undetermined, may be
affecting the pharmacokinetics of this drug. Vocci and Farber (1988) advocated
the consideration of pharmacokinetic differences within species in interspecies
scaling. With the inter-animal variability observed in a homogeneous population
of rats, larger variations in response may be expected to occur in humans. The
possibility of gender related drug response should be anticipated in man.

In conclusion, the NONMEM program has been used to obtain estimates
of population pharmacokinetic parameters and their distributions for a drug under
development in a group of rats. This analysis has taken into account the fact that
samples came from a population with more variability than could be explained by
simple experimental error. NONMEM has permitted some explanation of this
variability in terms of sex, efficient partitioning between inter- and intra-animal

variability would require an increase in the number of samples per animal.
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CHAPTER 8

PARAMETER ESTIMATION IN PHARMACOKINETIC STUDIES

INVOLVING THE USE OF SMALL LABORATORY ANIMALS
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8.1 SUMMARY

A simulation study was carried out to determine the impact of various
design factors on the efficiency with which population pharmacokinetic
parameters could be estimated in an animal pharmacokinetic study. A drug which
exhibits monoexponential disposition characteristics when administered by an
intravenous bolus injection was used for the study. The factors investigated were:
(1) number of animals sampled at specified time points with one observation
taken per animal, (2) error in observed concentration measurements, and (3)
doubling the number of observations per animal with varying number of animals.
Increasing the error in the concentration measurement led to a significant
worsening of the efficiency with which variability was estimated. The one point
per animal design yielded biased and imprecise estimates of inter-animal
variability. The limitation of this design is discussed and the importance of
sampling an animal at least twice for unbiased and precise parameter estimation is

highlighted.

8.2 INTRODUCTION

In earlier chapters (Chapters 3 & 4) the effect of inter-animal variability
and sampling designs on parameter estimation with the one compartment model
were examined. In Chapters 5 to 7 parameter estimation with the two
compartment open model was examined. In this chapter the one compartment
open model with IV bolus administration is reconsidered.

The results of simulation studies carried out to determine the impact of a
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number of design features on the efficiency with which population
pharmacokinetic parameters could be estimated in pharmacokinetic study
involving the use of small laboratory animals are presented. The effects of the
following design features: (a) number of animals sampled at specified time points
with one observation taken per animal, (b) changing the error in observed
concentration measurements, and (c) varying the total number of samples (i.e.
doubling the number of samples per animal with or without halving the number
of animals) on the estimation of population pharmacokinetic parameters were

investigated.

8.3 METHODS

8.3.1 Sampling Design

The sampling design described in Chapter 2 (Section 2.4) was used in
these studies. Briefly, there were ten sampling times (i.e. 5, 15, 30, 60, 90, 120,
150, 180, 210, 240 minutes). The first two times were fixed , but the other points
were sampled uniformly from a range of 15 minutes centred on the stated time.

In the simulation, the parameter values were as given in Chapter 2
(Section 2.4). qry and Gy were sequentially set to give coefficients of variation of

15%, 30%, 45%, and 60%, and o_ was set to 15% (except in section (b) below).
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8.3.1a Varying the Number of Animals per Time Point

Each of j animals supplied one observation, and a different number of
animals was used at each time point for different experiments. This design is
denoted as the j * 1 design. Let the total number of animals used in each
experiment be denoted by N 4, and the total number of observations, Ng. In the
first set of experiments the effect of increasing the number of animals per time
point (i.e increasing total sample size, Ng) on the efficiency with which
parameters were estimated was investigated. There were nine sample sizes (20,
30, 40, 50, 60, 70, 80, 100, and 150) which involved the use of 2, 3, 4, 5, 6, 7, 8,
10 and 15 animals, respectively, at each time point, and this yielded nine j * 1

study designs.

8.3.1b Varying the Error in Concentration Measurements

The influence of specified intra - animal variability (or error in
concentration measurement) on parameter estimation was studied for three cases:
o = 0, 15 and 30% with three j * 1 designs of NS and Nj = 30, 50, and 70.
Inter- animal variability was set to 30%, i.e. Q1= 30%:; Oy = 30%.

8.3.1c Keeping the Total Number of Observations Constant and Halving the
Total Number of Animals

The effect of keeping Ng constant while halving N, on parameter
estimation was investigated by sampling each animal twice. The sampling
regimen for this series of simulations involved dividing the ten sampling times

into two independent blocks: the first five times (t{ to t5), and the later five times
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Table 8.1 NONMEM Runs With Acceptable Estimates

Number of
Animals Per Inter-Animal Variability(%)
Time -Point 15 30 45 60
2 29 26 27 23
3 29 30 28 29
4 29 30 27 27
5 30 30 27 27
6 30 30 29 28
7 30 29 29 29
8 30 30 29 30
10 30 30 29 30
15 30 30 29 30
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(tg to t1g). Thus, each animal was sampled at, for example, the first times in each
block (i.e. t] and tg) or the second times in each block, etc. The study design in
which each animal was sampled twice is denoted as j * 2. 15, 25, and 35 animals
were used yielding three j * 2 designs with corresponding NS of 30, 50, and 70,

respectively. This allowed comparison with the j * 1 designs.

8.3.1d Doubling the Total Number of Observations without Changing the Total
Number of Animals

The effect of keeping N constant while doubling Ng was investigated
using N, =30, 50, and 70 animals. Each animal supplied two observations with
resultant corresponding sample sizes of 60, 100, and 140 observations,

respectively. Sampling was as described in the previous section.

8.4 RESULTS

8.4.1 Effect of Increasing the Number of Animals per Time Point

The outlier criteria outlined in Chapter 2 (Section 2.5.1) were applied to
the data sets obtained. Table 8.1 is a summary of successful NONMEM runs used
in the results presented below.

8.4.1a Bias and Precision

Fig. 8.1(a - d) summarises the results when ¢ and oy were 15%. As

number of animals per time point increased, the precision of the estimates
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Fig. 8.1 Bias and precision expressed as %PE (mean  standard deviation,
respectively) for parameters. The horizontal axis represents the number of
animals used at each time point. Each vertical expresses the bias and precision of
the population parameter estimate. Only one observation was made on each
animal. The inter-animal variability was set at 15%, and the error in concentration
measurements was set at 15%. Significant (p < 0.05) biases are indicated by

asterisks.

271




Table 8.2 Mean of %PE (SD) and Nonzero Significance of the Parameters Estimates
from Simulated Data Sets for Different Study Designs (j * 1 Designs) at A
CV of 30% in Inter-Animal Variability

Number of
Animals Per Parameter
Time Point Cl A" Q1 Oy
2 670°  -2.65 15.86" 21.6
9.37) (11.69)  (4422)  (51.8)
3 -1.10 616" 1377 23.99*
(1.57) (8.80) 4127)  (42.88)
4 -0.09 773" 1776 17.17"
(6.57) (8.36) 4290)  (46.41)
5 -1.91 505°  20.66" 27.47"
(6.95) (7.95) 4455  (39.96)
6 -2.65" 4.51% 14.14" 27.04*
(3.49) (8.06) (2665  (3321)
7 287" -451* 14.44* 24.20"
(5.28) (7.32) 22.17)  (27.93)
8 322" 441" 15.52" 22.78"
(4.64) (7.63) (19.08)  (27.73)
10 -1.98* -5.54" 1638%  2278"
(3.41) (5.40) (17.18)  (24.59)
15 377" 542" 19.17%  31.20"
(3.45) (4.66) 1730)  (22.18)
*p <0.05

272



Table 8.3 Mean of %PE (SD) and Nonzero Significance of the Parameters Estimates
from Simulated Data Sets for Different Study Designs (j * 1 Designs) at A CV
of 45% in Inter-Animal Variability

Number of
Animals Per Parameter
Time Point Cl \" a1 Oy
2 -6.55 -6.84 12.60 21.1
(1674)  (2199)  (63.60)  (83.5)
3 -5.07" 1013 955 32.00™
(10.88)  (17.41)  (5132)  (60.30)
4 -2.04 -14.25" 15.81 23.0
(7.89) (13.88)  (4478)  (65.10)
5 -4.16" 1206 15.09" 34.20"
(6.99) 11.19)  (36.11)  (59.90)
6 -6.65" 751%  2398" 15.69*
(10.56)  (10.51)  (22.54)  (34.00)
7 -5.74" -6.84" 25.75" 17.31%
(7.00) (9.10) 2759  (31.07)
8 -7.46" -5.51% 22.07" 23.27"
(7.84) (9.89) (2244)  (35.60)
10 -7.64* -5.90* 24.94* 18.21%
(5.27) (8.70) 21.62)  (24.53)
15 611" 766 26.71" 13.64"
(5.69) 1.77) 2179)  (2141)
*p <0.05
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Table 8.4 Mean of %PE (SD) and Nonzero Significance of the Parameters Estimates
from Simulated Data Sets for Different Study Designs (j * 1 Designs)
at A CV of 60% in Inter-Animal Variability

Number of
Animals Per Parameter
Time Point Cl \" a1 Gy
2 12728 374 22.00" 17.7
(26.15)  (2491)  (5008)  (92.3)
3 -3.16 -13.81%  29.90* 6.91
(17.13) (2129  (69.0) 46.77)
4 0.13 -12.99* 15.59 18.14*
(11.93) (1901)  (4607)  (39.74)
5 -2.44 -13.58 23.60" 34.30"
(14.14)  (22.12)  (4483)  (66.20)
6 -5.22" 11.17Y 2653F 1.98
(11.07)  (10.68)  (42.84)  (27.41)
7 -1.56" -8.11" 22.43" 13.22
(1000)  (1001)  (2875)  (40.97)
8 901" -6.58" 19.77° 18.18"
(9.18) (8.17) 23.82)  (37.75)
10 -8.62" -6.07" 29.79* 14.48"
(7.68) (1099)  (2007)  (36.72)
15 1147 7617 3495% 905"
(6.02) (7.51) (2259)  (2133)
*p<0.05
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(indicated by the reduction in the error bars) also increased. However, the
estimates of Cl and V were negatively biased, irrespective of the number animals
used. It was also of some interest to consider the magnitude of the SD of %PE for
the various parameters. j * 1 designs yielded relatively precise estimates for the
fixed effect parameters. Estimates of g were acceptably precise when the
number of animals at each time point was 5 or greater, but the estimates of oy
were acceptably precise only when the number of animals used at each time was
10 or greater. The estimates of inter-animal variability were, however,
consistently positively biased and were relatively unaffected by increasing the
number of animals.

When 6 and oy were set at 30% the estimates of the fixed effect
parameters were negatively biased, but precise (Table 8.2). As with the 15%
inter-animal variability study, all estimates of o and o were positively biased
and mostly imprecise. Estimates of gy with acceptable precision were obtained
when the number of animals used at each time point was 7 or greater while Gy
estimates were acceptably precise when 10 animals or more were used at each
time. As expected, the precision with which parameters were estimated increased
as the number of animals per time point increased (i.e. precision increased with
increased Ng).

With gy and oy equal to 45%, negatively biased, but precise estimates
were obtained for Cl and V (Table 8.3). The estimates of o1 and Oy were
positively biased and mostly imprecise as in the previous cases. Acceptably
precise estimates of all parameters were obtained when > 10 animals were used at
each time point.

When ol and Oy were set to 60%, the estimates of Cl and V were
negatively biased, but mostly precise (Table 8.4) as in the previous cases
considered. Imprecise estimates of Cl were obtained with the 2 observations per

time point design. Again, the estimates of -y and Gy were positively biased and
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Fig. 8.2a Bias (expressed as mean of %PE) in the estimation of Cl: three
dimensional plot of the influence of varying the number of animals sampled at
each time point and inter-animal variability on Cl estimation.
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Fig. 8.2b Bias (expressed as mean of %PE) in the estimation of V: three
dimensional plot of the influence of varying the number of animals sampled at
each time point and inter-animal variability on V estimation.
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Fig. 8.2c Bias (expressed as mean of %PE) in the estimation of ocr three
dimensional plot of the influence of varying the number of animals sampled at
each time point and inter-animal variability on Gy estimation.
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Fig. 8.2d Bias (expressed as mean of %PE) in the estimation of oy three
dimensional plot of the influence of varying the number of animals sampled at
each time point and inter-animal variability on Gy estimation.
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mostly imprecise. Acceptably precise estimates of all parameters were obtained
only when 15 animals were used at each time point.

These results are summarised in Fig. 8.2(a - d). The estimates of Cl
obtained for each value of inter-animal variability were relatively stable. The
mean of %PE ranged from -1.2 to -0.9% for o} and o, equal to 15%, -6.7 to
-0.1% for Q1 and Gy set to 30%, -7.5 to -2.0% for a1 and Oy equal to 45%, and
-12.7 10 0.1% for aQl and Gy set to 60% (Fig. 8.2a). Similarly the estimates of V
were relatively stable with mean of %PE ranging from -1.6 to 0.2%, -14.3 to
-5.5%, -7.7 to -2.7%, and -13.8 to -3.7% for inter-animal variabilities of 15, 30,
45, and 60 %, respectively (Fig. 8.2b). Also, qr estimates were relatively stable
with the difference between the most and least biased estimates for each level of
variability not exceeding 12% (Fig. 8.2c). oy, estimates were less stable with the
difference between the most and least biased estimates ranging from 8% for an
inter-animal variability of 60% to 25% for an inter-animal variability of 15%
(Fig. 8.2d). There was a tendency for the bias in the estimation of the fixed effect
parameters to increase with the increase in the inter-animal variability as would

be expected.

8.4.1b Design Number

When qr and oy were set to 15%, Cl was efficiently estimated when the
number of animals used per time were between 3 and 15. However, Cl estimates
obtained when the number of animals per time point were between 4 and 15 were
significantly better than the estimates obtained when 2 animals were used per
time point (Fig. 8.3a). As expected, the most efficient estimates were obtained
when 15 animals were used per time point. V was significantly better estimated
when 4 to 15 animals were used than 2 animals per time point (Fig. 8.3b). Again,

the most efficient estimates were obtained with 15 animals per time point, and the
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(a) Estimation Cl
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(b) Estimation of V
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(d) Estimation of Gy
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Fig. 8.3 #Summary of significant differences in the efficiency* with which
parameters were estimated by varying the number of animals sampled at each
time point with inter-animal variability set at 15%.

a - Rank order of design numbers increasing from left to right.

* . Efficiency measured with design number.
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(a) Estimation C1
10 7 6 15 5 8 4 3 2 Animals per

time point

(b) Estimation of V
15 10 7 8 5 6 3 4 2 Animals per

time point

(c) Estimation of
5 « 4
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time point

(d) Estimation of
15 v 6
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(e) Overall Design Efficiency
6
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Fig. 8.4 8ummary of significant differences in the efﬁciency* with which
parameters were estimated by varying the number of animals sampled at each
time point with inter-animal variability set at 30%.

a - Rank order of design numbers-increasing from left to right.

* _ Efficiency measured with design number.
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least efficient estimates with 2 animals.

At the 15% level of inter-animal variability, q (Fig. 8.3c) and oy (Fig.
8.3d) were inefficiently estimated with all j * 1 designs.

Overall, parameters were well estimated when the number of animals used
at each time point was between 6 and 15 animals per time point (Fig. 8.3¢e). The
use of between 5 to 8 animals per time yielded parameter estimates with similar
efficiency. Parameter estimates obtained with 10 and 15 animals per time point
were significantly better than those with 2 to 5 animals per time point. The best
estimates of parameters was obtained with the 15 animals per time point design.

When qr; and oy were set to 30%, Cl was more efficiently estimated with
4 to 15 animals used at each time point than 2 animals (Fig. 8.4a). V was well
efficiently estimated using either 3, or 5 to 15 animals per time (Fig. 8.4b). V
estimates with 3 animals per time were only marginally better than those with 4
animals. The difference lay in the bias term of ®;,, the estimates with 4 animals
per time being more biased than those with 3 animals per time (Table 8.2).
However, the results obtained using between 2 to 8 animals per time point were
similar. Designs with 10 to 15 animals per time point yielded significantly better
V estimates than those obtained with the design using 2 animals per time point.
As with the 15% level of inter-animal variability, 6o and Gy were poorly
estimated with all designs (Fig. 8.4c & d). All parameters were well estimated
when 6 to 15 animals were used per time point, and the estimates with 10 and 15
animals per time point were significantly better than those with 2 to 5 animals per
time (Fig. 8.4e). As expected, the least efficient estimates were obtained with the
2 animals per time point design.

Cl was efficiently estimated with the use of 3 to 15 animals per time point
when the inter-animal variability was 45% (Fig. 8.5a). V was well estimated with
designs having 6 to 15 animals per time (Fig. 8.5b). Estimates obtained with

designs having 8 to 15 animals per time point were significantly better than those
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(a) Estimation Cl
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(b) Estimation of V
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(d) Estimation of Gy
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(e) Overall Design Efficiency
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Fig. 8.5 #Summary of significant differences in the efficiency* with which
parameters were estimated by varying the number of animals sampled at each
time point with inter-animal variability set at 45%.

a - Rank order of design numbers increasing from left to right.

* - Efficiency measured with design number.
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(a) Estimation Cl
8 10 4 6 7 5 15 3 2 Animals per

time point

(b) Estimation of V
8 15 10 7 6 4 5 2 3 Animals per
time point
(c) Estimation of ay
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time point
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Fig. 8.6 Summary of significant differences in the efﬁciency* with which
parameters were estimated by varying the number of animals sampled at each
time point with inter-animal variability set at 60%.

a - Rank order of design numbers increasing from left to right.

* _ Efficiency measured with design number.
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obtained with 2 to 5 animals per time point. p; and Gy estimates were poorly
estimated with all designs (Fig. 8.5c & d). Overall, parameters were better
estimated with the use of 6 to 15 animals per time point (Fig. 8.5¢). Estimates of
similar efficiency were obtained with designs having 5 to 10 animals per time
point. The most efficient estimates were obtained with the use of 15 animals at
each time point. These estimates were significantly better than the estimates
obtained with 2 to 5 animals per time point. Since the use of 6 to 15 animals at
each time point produced parameter estimates with similar efficiency the use of 6
animals per time in this type of study does not result in any significant loss in
efficiency.

With o and oy equal to 60%, C1 was estimated with an equal efficiency
with all the j * 1 designs (Fig. 8.6a). The designs with 6 to 15 animals per time
point yielded more efficient estimates of V (Fig. 8.6b) than when 2 observations
were used per time point. As with the previous results, gop and oy were
inefficiently estimated with all designs (Fig. 8.6 ¢ & d). When considered as a set,
all parameters were most efficiently estimated with 6 to 15 animals used at each
time point (Fig 8.6¢). Estimates obtained with 8 to 15 animals per time point were
significantly better than those using 2 to 4 animals. Again, the use of 6 animals

per time yielded equally efficient parameter estimates as 15.

8.4.1c Individual and Joint Confidence Intervals for Parameter Estimates

At the 15% level of inter-animal variability, good coverage was obtained
for individual and joint parameter estimates when NONMEM runs with
catastrophic estimates were included (Table 8.5, Section I). However, reduced
coverage for joint parameter estimates was obtained with the use of 15 animals at
each time point due to the bias associated with the estimation of the variance

parameters. The influence of standard errors on confidence intervals coverage
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was only significant when 2 animals were used at each time point (Table 8.5,
Section III).

Similarly, significantly reduced coverage for joint confidence intervals
was obtained w1th the 2 observation per time point study design when the inter-
animal variability was set at 30% (Table 8.6, Section III). However, the joint
coverage for parameter estimates was reduced (though not significantly lower
than the expected value of 0.81) for designs with 3 to 5 animals per time point.
When runs with catastrophic estimates were excluded in both the numerator and
denominator during confidence intervals calculation, relatively good coverage
was obtained for all study designs (Table 8.6, Section II), and the influence of
bias was minimal (Table 8.6, Section I).

When the inter-animal variability was 45%, good coverage was obtained
for individual and joint parameter estimates when catastrophic runs were included
in the computation of confidence intervals coverage (Table 8.7, Section I).
However, the coverage for the variance parameters and the joint coverage for
parameter estimates were reduced when catastrophic runs were excluded in the
numerator during the calculation of confidence intervals (Table 8.7, Section III).
The reduced coverage obtained for ¢y and oy using the 2 animals per time point
design was significantly lower than the expected value of 0.95. Designs in which
2 to 5 animals were used at each time point had joint coverage lower than the
expected value of 0.81, due mostly to large standard errors.

Setting the inter-animal variability at 60% led to estimates whose
confidence intervals coverage was good when NONMEM runs with "coefficient
of variation" > 50% were included in the computation of the coverage (Table 8.8,
Section I). However, reduced coverage was obtained for the variance parameters
and the joint confidence intervals for parameter estimates when these NONMEM
runs were excluded in the numerator during confidence intervals calculation

(Table 8.8, Section II). The coverage obtained for qy (2 animals per time point)
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and Gy (2 and 3 animals per time point) and the joint confidence intervals for
parameter estimates (2 to 5 animals per time point designs) was significantly
lower than the expected value of 0.95 and 0.81, respectively (Table 8.8, Section
I1I).

Thus, as the inter-animal variability was increased, the coverage of
interval estimates for the variance parameters and joint parameter estimates was
reduced. At all levels of inter-animal variability, the joint coverage for parameter
estimates was significantly lower than the expected value when 2 animals were
used at each time point. On the other hand, significantly reduced coverage was
only obtained for the joint confidence intervals at 45 and 60% level of inter-

animal variability with study designs having 3 to 5 animals per time point.

8.4.1d Incidence of High Pair-Wise Correlations

Greater than 0% incidence of high pair-wise correlation occurred between
oy and V, 6y and ¢ for most of the designs when the inter-animal variability
was 15% (Table 8.9). The greatest incidence of 24.1% was obtained for the
correlation between Gy and V with the 2 animals per time point design, and the
incidence of high correlation between acl and Cl, and ol and V was 3.5 and
10.3%, respectively, for the same design.

At the 30% level of inter-animal variability the incidence of high
correlation between Gy and V ranged from 3.3 (15 animals per time point) to
21.4% (2 animals per time point) (Table 8.10). The incidence (> 0%) for the
correlation between Gy and V ranged from 3.3 (7 animals per time point) to 14.3
(2 animals per time point). Also, the 2 animals per time point design yielded the
highest incidence of correlation between V and Cl (3.6%), qry vs. Cl (3.6%), and
oy with oy (15.4%) (Table 8.10).
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When the inter-animal variability was 45%, the highest incidence of high
pair-wise correlations was obtained when 2 observations were made at each time
point (Table 8.11). A greater incidence of high correlation was obtained for the
correlation between oy, and V for most study designs.

Similarly, a greater incidence of high pair-wise correlation was obtained
for the correlation between Gy and V irrespective of the study design when the
inter-animal variability was set at 60% (Table 8.12). More parameters were
highly correlated with each other using the 2 animals per time point design than
other designs.

Irrespective of the study design and the inter-animal variability, a greater
incidence of high pair-wise correlation was obtained for 6i; and V than any other

parameter pair.

8.4.2 Effect of Varying the Error in Concentration Measurements

When 3 animals were used at each time point, there were 28, 29, and 27
successful NONMEM runs with o of 0, 15, and 30%, respectively. 30, 30, and
28 successful runs were obtained for o of 0, 15, and 30%, respectively when 5
animals were measured at each time point, and with the 7 animals per time point
design, 30, 29, and 28 successful NONMEM runs were obtained for o of 0, 15,
and 30%, respectively. The accuracy and precision of the fixed effect parameters
were relatively unaffected by varying the error in concentration measurements.
When ¢ was 15%, the estimates of inter-animal variability were less precise, as
expected, and biased, and this trend was maintained for o, of 30%. Moreover,
the estimates were significantly positively biased (Fig. 8.7 (a - d)). The bias in the

estimation of inter-animal variability was unaffected by Ng.
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Fig. 8.7(a & b) Bias and precision expressed as %PE (mean + standard deviation,
respectively) for parameters. The horizontal panels show data obtained using G,
=0, 15, and 30%. Only one observation was made on each animal. Each vertic
expresses the bias and precision of the population parameter estimate. The inter-
animal variability used was 30% (see methods). Significant (p < 0.05) biases are
indicated by asterisks.
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Fig. 8.7(c & d) Bias and precision expressed as %PE (mean * standard deviation,
respectively) for parameters. The horizontal panels show data obtained using G,

=0, 15, and 30%. Only one observation was made on each animal. Each vertic

expresses the bias and precision of the population parameter estimate. The inter-
animal variability used was 30% (see methods). Significant (p < 0.05) biases are
indicated by asterisks.
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Fig. 8.8(a - c) Bias and precision expressed as %PE (mean * standard deviation,
respectively) for parameters. The horizontal panels in each figure show results
from different study designs. The first panel for each figure shows results with j *
1 designs which is used as a reference for comparing results obtained with the j *
2 designs (second panel, see methods). The j * 2 designs yielded total number of
data points per data set equivalent to that obtained with the j * 1 designs but with
the total number of animals halved. N 5 represents the total number of animals
used for each study design and Ng, the sample size for each study design. o was
set at 15%. Significant (p < 0.05) biases are indicated by asterisks.
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Fig. 8.8(d - f) Bias and precision expressed as %PE (mean * standard deviation,
respectively) for parameters. The horizontal panels in each figure show results
from different study designs. The first panel for each figure shows results with j *
1 designs which is used as a reference for comparing results obtained with the j *
2 designs (second panel, see methods). The j * 2 designs yielded total number of
data points per data set equivalent to that obtained with the j * 1 designs but with
the total number of animals halved. N 4 represents the total number of animals
used for each study design and Ng, the sample size for each study design. o was
set at 15%. Significant (p < 0.05) %iases are indicated by asterisks.
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8.4.3 Effect of Keeping Ng Constant while Halving N p

8.4.3a Bias and Precision

Ng was kept constant while the N, was reduced by a factor of 2 so that
each animal supplied two concentration - time points (i.e., j * 2 designs) and N ,
equalled 15, 25, and 35, preserving the total number of data points (Ng). There
were 14, 18, and 24 successful NONMEM runs for NA of 15, 25, and 35,
respectively, compared to 29, 30, and 30 for the corresponding j * 1 designs.
Most of the excluded NONMEM runs had spurious estimates of o . The results
for the j* 2 designs are shown in Fig. 8.8 (a - f) with the j * 1 designs included
for reference. The estimation of the fixed effect parameters were relatively
unaffected (Fig. 8.8a & b). The bias in the estimation of o) and oy was
significantly reduced (Fig. 8.8(d - f)) irrespective of Ng. but the precision of the
estimates remained relatively unchanged. The relatively poorer precision for oy,
obtained with N 5 of 35 (Ng = 70) as compared to 25 (Ng = 50) was due to the
some estimates being at the ceiling of the cut off point for outliers. The bias in the
estimation of O ranged from -2.9% (N A= 35)t0-13.7% (N A = 15), and the SD
of %PE from 19.5% (N5 = 15) t0 35.9% (N 4 = 35).

8.4.3b Incidence of High Pair-wise Correlations

A 100% incidence of high correlation was observed between o and Cl
irrespective of N (Table 8.13). In addition, 13.3, 21.1, and 5.2% incidence of
high correlation between Q] and Gy was obtained for N A of 15, 25, and 35,
respectively, while 40, 47.4, and 9.1% incidence was obtained with N 4 equal to
15, 25, and 35, respectively, for the correlation between o and Oy. Parameter

estimates were more highly correlated with each other when N, was 15 than 25

or 35.
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Fig. 8.9(a - c) Bias and precision expressed as %PE (mean & standard deviation,
respectively). The horizontal panels in each figure show results from different
study designs. The first panel for each figure shows results with j * 1 designs
which is used as a reference for comparing results obtained with the j * 2 designs
(second panel, see methods). The j * 2 designs yielded total number of data points
per data set twice that obtained with the j * 1 designs but with the total number of
animals unchanged. N , represents the total number of animals used for each
study design and N¢, the sample size for each design. o was set at 15%.
Significant (p < 0.05) biases are indicated by asterisks.
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Fig. 8.9(d - f) Bias and precision expressed as %PE (mean £ standard deviation,
respectively). The horizontal panels in each figure show results from different
study designs. The first panel for each figure shows results with j * 1 designs
which is used as a reference for comparing results obtained with the j * 2 designs
(second panel, see methods). The j * 2 designs yielded total number of data points
per data set twice that obtained with the j * 1 designs but with the total number of
animals unchanged. N , represents the total number of animals used for each
study design and N, the sample size for each design. o was set at 15%.
Significant (p < 0.05) biases are indicated by asterisks.
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8.4.4 Doubling Ng without Changing N 5
8.4.4a Bias and Precision

Again, each animal supplied 2 concentration - time points but N 4
equalled 30, 50, and 70 to keep the number of animals constant to allow
comparison with the j * 1 designs. 16, 23, and 28 successful NONMEM runs
were obtained with N, of 30, 50, and 70, respectively, compared to 30 (N5 =
30), 30 (N A= 50) and 30 (N5 = 70) for j * 1 designs. The results presented
herein are based on the successful runs. As in the previous study the accuracy
with which the fixed effect parameters were estimated was relatively unaffected,
but the precision was improved as expected (Fig. 8.9(a - c). The bias in the
estimates of ) and Gy was almost completely eliminated and the precision
greatly improved (Fig. 8.9(d - f)). However, acceptably precise estimates of oy
and oy were only obtained with N, =50 and 70 (i.e. Ng = 100 and 140,
respectively).

In all the j * 2 designs the estimates of 6. were minimally biased, but
acceptably precise. The mean of %PE ranged from -0.2% (N4 =70) to 6.0% (N 5
= 50), and the SD of %PE from 17.7% (N =70) to 24.6% (N = 50). Spurious

values of . were responsible for the exclusion of most NONMEM runs.

8.4.4b Incidence of High Pair-wise Correlations

100% incidence of high correlation was obtained for the pair-wise
correlation of o and Cl irrespective of N5 (Table 8.13). Except for the
correlation between q. and Gy in which the incidence of high correlation ranged

from 6.3% (N = 30) t0 14.3% (N p = 70), and the correlation between Gy and V

306




where the incidence was 6.3% for N 5 equal to 30, the incidence of all other pair-

wise correlations was less than 5.0%.

8.5 DISCUSSION

The fixed effect parameters were well estimated irrespective of the inter-
animal variability for most j * 1 designs. Inefficient estimates of Cl were obtained
at the 60% level of inter-animal variability with the 2 animals per time point
design. The accuracy of these estimates was relatively unaffected by increasing
the number of animals sampled at each time. All inter-animal variability estimates
were positively biased, and this highlights the difficulty when there is no
information on one of the components of variability (in this case, o ),
emphasising the limitation of the one point per animal design. Estimates of
variability associated with structural model parameters are considerably less
precise, given a fixed number of experimental units, than are estimates of their
means (Chapter 2, Section 2.5.3; Sheiner & Beal, 1981; Grasela et al., 1986).
Some significant biases, associated with parameter estimates obtained with
designs having a greater number of animals compared to the ones with fewer
animals at each time point, were due to sample sizes being large enough to detect
bias.

Since estimates were considered acceptably precise when the SD of %PE
< 25%, the minimum number of animals required for reasonable estimation of
population pharmacokinetic parameters with the one observation per animal

design was 10 per time point if the inter-animal variability was between 15 and

307




45%, and 15 when the inter-animal variability was 60%.

However, when the results were analysed using the design number
approach in which the combined contributions of bias and precision are taken into
account in determining the efficiency of parameter estimation, all parameters
were estimated with similar efficiency when 6 to 15 animals were used per time
point for all settings of o and Gy;. Using this sampling strategy and the j * 1
design, studies could be performed with at least 6 animals per time with no loss in
the efficiency with which population parameters are estimated. This would result
in savings in terms of the number of animals used and the time spent on such
studies.

When the inter-animal variability was between 15 and 30%, Cl and V
were efficiently estimated when 4 to 15 animals were used at each time point.
Thus, as few as 4 animals per time could be used for the estimation of the fixed
effect parameters with these settings of inter-animal variability. ¢y and oy were
inefficiently estimated with all j * 1 designs due to a lack of information about
Oc-

When the inter-animal variability was 45% and the estimation of
individual parameters were considered, Cl was well estimated using 3 to 15
animals per time point while V was efficiently estimated with designs having 6 to
15 animals per time point. As with previous levels of inter-animal variability
considered, 0y and o, were inefficiently estimated.

With ory (o) being 60%, the efficiency of Cl estimation was similar for
all designs since the contributions of the bias and standard error terms in @;
counter balanced each other, such that a comparison of the designs revealed
nonsignificant differences. However, V was better estimated with designs in
which 6 to 15 animals were used per time point. Thus, efficient estimation of V
would require more animals at each time point than Cl when the inter-animal

variability is greater than 30%. Again, ¢y and oy, were inefficiently estimated
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irrespective of the j * 1 design. The inefficiency with which the variance
parameters were estimated was due to lack of information in the data sets on O
as previously discussed.

Thus, the use of 6 to 15 animals at each time point in the estimation of
population pharmacokinetic parameters would result in the production of
reasonable estimates when the inter-animal variability is between 15 and 60%.
Inefficient estimates were obtained with the 2 animals per time point design for
all levels of inter-animal variability due to poor precision as seen, in the
confidence intervals coverage for the variance parameters and joint parameter
estimates when catastrophic runs were excluded. Poor precision was also
responsible for significantly reduced coverage for joint confidence intervals when
3 to 5 animals were measured at each time point with inter-animal variability set
at 30 to 60%. The contribution of bias to the poor coverage (hence inefficient
estimates) was minimal. However, bias was the major contributing factor to the
reduced coverage obtained for Gy, and joint confidence intervals for parameter
estimates when 15 animals were used at each time point with the inter-animal
variability set at 15%. Poorer estimation of the variance parameters could be due
to higher incidence of pair-wise correlation involving these parameters.

When o was varied to examine its effect on the estimation of g and
Oy the magnitude of the bias in Q] and Gy increased with the magnitude of O
as expected, indicating that a substantial fraction of this bias was due to an error,
i.e., the intra-animal error, which could not be partitioned. This finding confirms
earlier observation by Graves et al. (1989). Using Monte Carlo simulation
techniques, these authors generated data sets with error in concentration
measurements without introducing inter-subject variability, and concluded that
error in concentration measurements contributes significantly to large standard

deviations associated with structural model parameters which could be interpreted
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as inter-individual variability in a real study situation.

Most NONMEM fixed effect parameter estimates derived from all studies
with the j * 1 design showed a consistent significant negative bias. This was due
to estimation error as negative biases in the estimation of these parameters were
obtained even when g was set at 0%.

A trade - off between sample size and total number of animals (i.e.,
doubling the total number of observations (sampling an animal twice) while
reducing the total number of animals sampled by half, produced a dramatic
improvement in the estimation of inter-animal variability with a considerable
reduction in bias. Accuracy was stable over the different population samples. The
second sample practically eliminated bias and facilitated the partitioning of inter-
animal variability and residual error, by introducing information about o .
However, the estimates of 0 were unstable probably because of the correlation
of o with Cl and oy,. The correlation between o_ and 6y was worse for N 5
equal to 15 and 25.

Keeping N 5 constant as in the j * 1 designs while doubling Ng (j * 2
designs) resulted in a significant improvement in the precision with which inter-
animal variability was estimated. This had no effect on the accuracy and precision
of fixed effect parameters. The estimates of 0. were more stable with significant
high correlations occurring only between ¢ and Cl.

Doubling of the number of observations per animal results in savings in
terms of the number of animals that are needed in this type of study. The j * 2
design with N 5 equal to 30 animals yielded acceptably precise estimates of inter-
animal variability with no loss of efficiency. The use of this minimal number of
animals with the j * 2 design and sampling strategy considered here would result
in savings not only in animal number, but also in time and labour cost without
sacrificing efficiency of parameter estimation.

The estimation of a set of population pharmacokinetic parameters
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provides limited information if there is no measure of the variability of each of
the parameter estimates. Given the design specifications considered here,
accuracy and precision in the estimation of inter-animal variability is significantly
improved when the data set is enhanced by taking 2 observations per animal. In
recent years, experimental methods have become available which permit serial
blood sampling in small laboratory animals (Migdalof, 1976) . These sampling
methods combined with modern approaches to population data analysis should

lead to much more informative pharmacokinetic studies in small animals.
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CHAPTER 9

GENERAL DISCUSSION AND CONCLUSION
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In pharmacokinetics, the rationale behind study design is the accurate and
precise estimation of pharmacokinetic parameters. However, the overall objective
of such studies is not only to learn about the average disposition of the drug in the
study population, but also the interindividual variability. Indeed, the purpose of
most animal pharmacokinetic studies is to estimate population parameters as a
key step to quantifying individual animal response and population variability.

The traditional approaches (NPD and STS) to estimating population
pharmacokinetic parameters in laboratory animals have been discussed in
Chapters 1 and 2, and their limitations highlighted. The NPD approach provides
no estimate of population variability, while the STS approach provides estimates
of variability that are positively biased and requires a full concentration - time
profile for each animal. On the other hand, NONMEM provides estimates of
population parameters, their variances, and estimated standard errors of
parameters (Sheiner & Beal, 1981; 1983). The efficiency of this approach is the
focus of this thesis.

In studies involving the use of inbred strains of small laboratory animals
(e.g., rats or mice), in which each concentration - time point usually represents
one animal, the NPD approach is the most common method of analysis (Loscher
& Esenwein, 1978; Roberts & Renwick, 1989; Pritchard, Holmes, & Kirschman,
1976). No estimate can be made of variability, although this may be up to 50%
for some parameters (Lindstrom & Birkes, 1984; McArthur, 1988). Variability in
the rate of oxidative metabolism of antipyrine by different inbred strains of rats
has been reported, and Vocci and Farber (1988) advocated the consideration of
variability within the same species in interspecies scaling. Thus, provision should
be made for the estimation of variability inherent in the population sample in
analysing data obtained by "destructive sampling". The NONMEM program was
used in analysing data generated in the course of this thesis, and the majority of

the data were simulated with the one observation per animal design.
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Pharmacokinetic data analysis is informative only if the data themselves
are informative, and this can best be assured by appropriate experimental design.
In designing experiments for efficient parameter estimation the following factors
are taken into account: experimental error, number of samples taken, and the
spacing of samples (Suverkrup, 1982).

In this thesis simulated data sets were used to investigate the effect of the
various design features on the efficiency of parameter estimation using the one
observation per animal design. Several methods were used to determine the
efficiency of parameter estimation. The 99% individual and joint confidence
intervals containing the true parameter 95% of the time for all parameters were
introduced as aids to judging the efficiency with which individual and all
parameters as a whole were estimated. The confidence intervals tables were
constructed to reveal the influence of bias and standard error on parameter
estimation.

In addition, the design number, a new statistic which combines the
contributions of bias and precision in judging the efficiency of parameter
estimation, was introduced to complement bias and precision, and the confidence
intervals methods of analysis. The design number also allowed the efficiency with
which all parameters of a model were estimated as a set to be judged. The
incidence of high pair-wise correlations of parameter estimates was also taken
into account in assessing the acceptability of estimates and the adequacy of model
parameterization. Data were simulated using population parameters of a drug
having the characteristics of avicin, a cytotoxic drug (McGovemn et al., 1988),
and assuming no covariance.

Using the one observation per animal design and assuming IV bolus
injection with the monoexponential pharmacokinetic model, simulated data sets

of different sample sizes ( 30 and 50) were employed to determine the influence of
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inter-animal variability on parameter estimation (Chapter 3). The range of
variability investigated was similar to that expected in real studies, and the
traditional sampling strategy involving sampling animals at fixed times was used.
Ten sampling times were specified between 5 and 240 min. using a simulated
half-life (84 min.) of the drug (i.e., Cl and V of 1.3 ml/min. and 162.5 ml,
respectively). It was observed that the fixed effect parameters (i.e., Cl and V)
were precisely estimated at all combinations of inter-animal variability studied,
but bias increased with increase in variability. These estimates were moétly
negatively biased, and this was coupled with the overestimation of the variance
parameters. The negative bias associated with the estimation of the fixed effect
parameters was attributed to the nature of the NONMEM program (i.e. estimation
error since negative bias was also observed in subsequent studies when o was
set at 0%). The overestimation of the variance parameters was attributed to the
one observation per animal design since there was no information in the data set
about o .

The estimates of the fixed effect parameters were normally distributed
while some of the variance parameters were nonnormal with right skewed
distributions at large values of oy and oy (e.g., 60% * 60% combination). This
right skewness was responsible for the good coverage of g and Gy when the
influence of standard errors was not considered. When the influence of standard
errors was considered, poor coverage was obtained at high variability irrespective
of sample size.

In studying the effect on parameter estimation of the spacing of sampling
times with a fixed sample size (Chapter 4) using the two sample point design
(one compartment model with IV bolus injection), efficient parameter estimation
was obtained when the second sample was located at 2 1.4 times the t; ) of the
drug with the first sample obtained as early as possible (5 min.). When three or

four samples were used, the exact location of the third or fourth sample was not
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critical to efficient parameter estimation. The fixed effect parameters were
efficiently estimated with all designs. Irrespective of the design considered (i.e.,
two, three, or four sample points design), o was efficiently estimated when the
second, third, or fourth sample were located at 2 1.4t /2 of the drug. oy, was
poorly estimated with all sampling designs and this was attributable to lack of
information about o, in the simulated data sets. Metzler (1987) showed that
NONMEM yielded poor estimates of volume, and although he did not estimate
the variance parameters in his study, the poor estimates of 6y found in this work
may be a feature of the NONMEM program.

Using the two compartment model (assuming IV bolus injection and
sampling animals at set times), the efficiency of parameter estimation was
examined over a range of parameter values with the model parameterized in terms
of A, a, B, and B (Chapter 5). A and o were efficiently estimated when o was
between 1.5 and 4.0 h'l, while B and P were efficiently estimated when o was in
the range 6.0 to 8.0 h'l. A and o, B and B were efficiently estimated at the higher
(i.e. 20 to 40.0) and lower (i.e. 1.0 to 20.0) A:B ratios, respectively. The variance
parameters were inefficiently estimated due to lack of information about o . The
parameters, considered as a set, were efficiently estimated when o was in the
range of 2.0 to 4.0 h'l, and the A:B ratio in the range 2.5 to 30.0. These results
were attributed to the distribution of the data points between the distribution and
elimination phases of the plasma concentration - time curve.

Also, A and a were efficiently estimated when 3 to 12 and 3 to 7 times,
respectively, were in the a phase. However, o was estimated with similar
efficiency with designs having 3, 7, and 12 times in the o phase. Inefficient
estimates of B, and  were obtained when 12 times were in the o phase because
there were fewer samples in the [ phase. Overall, designs with 5 to 7 times in the

o phase yielded efficient parameter estimates. However, the variance parameters
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were poorly estimated as a consequence of the one observation per animal design.
The design with 12 times in the o phase had greater incidences of high pair-wise
correlations than other designs and, overall, yielded the least efficient estimates of
parameters.

When the number of sampling times in the [ phase was increased and the
duration of sampling extended without altering the total number of samples,
parameters were estimated with equal efficiency when the overall performance of
the different sampling schedules (3, 6, and 8 times in the B phase) was examined.
There was no loss in efficiency when the duration of sampling was reduced from
10 h (8 times in B phase) to 6 h (3 times in the B phase). The schedule with 8
times in the B phase was only significantly better than others in the estimation B
and B.

However, most parameter estimates of the A, o, B, and B parameterization
of the two compartment model were unstable due to greater incidences of high
pair-wise correlations. Reparameterization of the ﬁlodel (Chapter 6) in terms of
Cl, V, kq, and ko1 resulted in more stable parameter estimates.

Observations made in a pharmacokinetic study are subject to two types of
variability - biological variation (considered earlier) and errors in the analysis of
samples. The influence of the latter on parameter estimation was also studied.
Using both the one and two compartment open models with IV bolus injection, it
was observed how the error in concentration measurements was added to the
estimated inter-animal variability due to lack of knowledge about intra-animal
variability. Thus, large inter-animal variability estimated in real studies involving
the one observation per animal design could be misleading since it is actually a
composite of inter- and intra-animal variability. Minimising experimental error is
critical to efficient parameter estimation.

The 1986 Act on the protection of animals stipulates that use of animals

for experimentation must be kept to the barest minimum, and, where possible,
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alternatives should be found. In the preclinical pharmacokinetic setting, the use of
animals for accurate and precise estimation of population pharmacokinetic
parameters is inescapable. However, a balance must be struck between minimal
use of animals and efficient parameter estimation since the parameters so
determined are used for extrapolation from one species to another, and more
importantly man. Thus, the effect of sample size on parameter estimation was
investigated with both one and two compartment open models. It was found that
with the design specifications considered, the parameters of the one compartment
model were estimated with equal efficiency when 6 to 15 animals were sampled
destructively at each of ten time points (Chapter 8). Since there was no loss in
efficiency when 6 animals are sampled per time (i.e., a sample size of 60), the
costs involved in such studies could be greatly reduced. However, with serial
micro-sampling of small laboratory animals, similar results could be obtained
with at least 30 animals sampled twice with the same traditional sampling
strategy. Sampling an animal at least twice allows the partitioning of inter- and
intra-animal variability, almost eliminating bias in the estimation of the variance
parameters. Using the two compartment model, 15 animals were required at each
of ten time points for efficient parameter estimation. However, the loss in
estimation efficiency with 10 animals sampled at each time point for ten time
points was not dramatic with this model. The use of these numbers of animals
with the design specifications considered in this thesis would strike a good
balance between cost and good science.

In all studies reported in this thesis, most estimates of fixed effect
parameters were associated with negative bias. This was due to estimation error
since negative bias in these parameters was also observed in studies in which o
was set to 0%.

The design number was applied throughout the course of the thesis with
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the assumption that it was efficient although the determination of the power and
efficiency of this statistic was outside the scope of this thesis. The rescaling of
design numbers could, perhaps, be better done using the median, and this needs to
be explored further.

The results of the simulation studies led to the application of NONMEM
in the analysis of data obtained with the one observation per animal design for a
drug under development (Chapter 7). The NONMEM analysis took into account
that the samples came from a population with more variability than could be
explained with experimental error. Parameter estimation without estimates of
variability is of little value. NONMEM permitted the explanation of inter-animal
variability in V in terms of sex: efficient partitioning between inter- and intra-
animal variability would have required an increase in the number of samples per
animal.

Thus, the influence of various design features on the efficiency of
parameter estimation using the one observation per animal design has been
investigated. Inefficient estimates of inter-animal variability are obtained with
this design, but sampling an animal at least twice significantly improved the
efficiency of parameter estimation. The fixed effect parameters, on the other
hand, were efficiently estimated. The design number, individual and joint
confidence intervals for parameter estimates, incidence of high pair-wise
correlations in addition to bias and precision were found useful in judging the

efficiency with which parameters were estimated individually or as a set.
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APPENDIX 1A

PRED Subroutine for the 2 Compartment Model

SUBROUTINE PRED(ICALL,NEWIND,THETA ,DATREC,INDXS,F,G,H)

2 COMP 1V, ISTDOSE, A, AL, B, BE

ololololele]

DIMENSION THETA(4),DATREC(3),H(1),G(4),INDXS(1)
DOUBLE PRECISION THETA F,G H,T,EKT,XKE,EXPWCH,
+A,AL,B,BE,EALT,EBET
T=DATREC(2)
A=THETA(1)
AL=THETA(Q2)
B=THETA(3)
BE=THETA(4)
EALT=EXPWCH(-AL*T)
EBET=EXPWCH(-BE*T)
F=(A*EALT)+(B*EBET)
G(1)=EALT
G(2)=-A*T*EALT
G(3)=EBET
G(4)=-B*T*EBET
H(1)=F
RETURN
END
DOUBLE PRECISION FUNCTION EXPWCH(XX)
DOUBLE PRECISION XX
IF(XX.LE.-50.) XX=-50.
IF(XX.GE.50.) XX=50.
EXPWCH=DEXP(XX)
RETURN
END

Qo

Note that G(4) was included in the subroutine when the effect of the number of
sampling times in the B phase on parameter estimation was investigated.
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APPENDIX IB

PRED Subroutine for the Reparameterized 2 Compartment Model

o SUBROUTINE PRED(ICALL,NEWIND,THETA ,DATREC,INDXS,F,G,H)
g 2COMP, 1V, CL, V1,K12, K21

DIMENSION THETA(4),DATREC(3),INDXS(1),G(4),H(1)

DOUBLE PRECISION THETA,G,H,F,CL,V1,K12,K21,

+DOSE,T,T21,Q,C1,R,BE,AL,P,PP,C2,C3,C4,C5,C6,

+C7,C8,A,B,DBE2,DBE1,DBE3,DBE4,DP1,DP2,DP3,DP4,

+DALI1,DAL2,DAL3,DA1A4,DA1,DA2,DA3,DA4,DB1,DB2,DB3,

+DB4,EA EB . EALT.EBET,AT,BT

CL=THETA(1)

V1=THETA(2)

K12=THETA(3)

K21=THETA(4)

T=DATREC(2)

DOSE=200000.

T21=CL/V1

Q=K12+K21+T21

C1=T21*K21

R=DSQRT(Q*Q-4.*C1)

BE=0.5*(Q-R)

AL=C1/BE

P=1/(CL*K21-V1*BE**2)

PP=P*P

C2=(K21-BE)*BE

C3=2.0*V1*BE

C4=AL/BE

C5=(C1-K21*BE)*DOSE

C6=K21*P*DOSE

C7=C2*DOSE

C8=(K21-2.*BE)*P*DOSE

A=DOSE*(C1-BE*K21)*P

B=DOSE*C2*P

DBE2=0.5*%(1.0-(Q-2.*K21)/R)/V1

DBE1=-T21*DBE2

DBE3=-BE/R

DBE4=DBE3-0.5*T21/R

DP1=PP*(BE**2-C3*DBE1)

DP2=PP*(C3*DBE2-K21)

DP3=PP*C3*DBE3

DP4=PP*(C3*DBE4-CL)

DAL1=-C1*BE/V1-C1*DBEI

DAL2=AL/CL-C4*DBE2

DAL3=-C4*DBE3

DAL4=AL/K21-C4*DBE4
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QN0

DA1=C5*DP1-C1*P*DOSE/V1-C6*DBE1
DA2=C5*DP2+C6/V1-C6*DBE2
DA3=C5*DP3-C6*DBE3
DA4=C5*DP4-C6*DBE4+P*(T21-BE)*DOSE
DB1=C7*DP1+C8*DBE1
DB2=C7*DP2+C8*DBE2
DB3=C7*DP3+C8*DBE3
DB4=C7*DP4+C8*DBE4+DOSE*P*BE
EA=AL*T

EB=BE*T

IF(EA.GE.50.) EA=50.

IF(EB.GE.50.) EB=50.

IF(EA.LE.-50.) EA=-50.

IF(EB.LE.-50.) EB=-50.

EALT=EXP(-EA)

EBET=EXP(-EB)

AT=A*T

BT=B*T

F=A*EALT+B*EBET

G(1)=EALT*(DA1-AT*DAL1)+EBET*(DB1-BT*DBE1)
G(2)=EALT*(DA2-AT*DAL2)+EBET*(DB2-BT*DBE2)
G(3)=EALT*(DA3-AT*DAL3)+EBET*(DB3-BT*DBE3)
G(4)=EALT*(DA4-AT*DAL4)+EBET*(DB4-BT*DBE4)

H(1)=F
RETURN
END
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APPENDIX IC

2 Compartment Model: PRED Subroutine for Modelling the

Influence of Weight on V4

C
C
C

SUBROUTINE PRED(ICALL,NEWIND,THETA,DATREC,INDXS,F,G,H)

2COMP. 1V, CL,V1K12,K21

DIMENSION THETA(4),DATREC(4),INDXS(1),G(4),H(1)
DOUBLE PRECISION THETA,G,H,F,CL,V1,K12,K21,WT,
+DOSE,T,T21,Q,C1,R,BE,AL,P,PP,C2,C3,C4,C5,C6,
+C7,C8,A,B,DBE2,.DBE1,DBE3,DBE4,DP1,DP2,DP3,DP4,
+DAL1,DAL2DAL3,DAL4,DA1,DA2,DA3,DA4,DB1,DB2,DB3,

+DB4,EA EB.EALT,EBET,AT BT
CL=THETA(1)
K12=THETAQ3)
K21=THETA(4)
T=DATREC(2)
WT=DATREC(4)
DOSE=WT*1000.
V1=WT*THETA(2)
T21=CL/V1
Q=K12+K21+T21
Cl=T21*K21
R=DSQRT(Q*Q-4.*Cl1)
BE=0.5*(Q-R)

AL=CI1/BE
P=1./(CL*K21-V1*BE**2)
PP=P*P
C2=(K21-BE)*BE
C3=2.0*V1*BE
C4=AL/BE
C5=(C1-K21*BE)*DOSE
C6=K21*P*DOSE
C7=C2*DOSE
C8=(K21-2.*BE)*P*DOSE
A=DOSE*(C1-BE*K21)*P
B=DOSE*C2*P
DBE2=0.5%(1.0-(Q-2.*K21)/R)/V1
DBE1=-T21*DBE2
DBE3=-BE/R
DBE4=DBE3-0.5*T21/R
DP1=PP*(BE**2-C3*DBE1)
DP2=PP*(C3*DBE2-K21)
DP3=PP*C3*DBE3
DP4=PP*(C3*DBE4-CL)
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olole]

DAL1=-C1*BE/V1-C1*DBE1

DAL2=AL/CL-C4*DBE2

DAL3=-C4*DBE3

DALA4=AL/K21-C4*DBE4
DA1=C5*DP1-C1*P*DOSE/V1-C6*DBEI1
DA2=C5*DP2+C6/V1-C6*DBE2
DA3=C5*DP3-C6*DBE3
DA4=C5*DP4-C6*DBE4+P*(T21-BE)*DOSE
DB1=C7*DP1+C8*DBE1

DB2=C7*DP2+C8*DBE2

DB3=C7*DP3+C8*DBE3
DB4=C7*DP4+C8*DBE4+DOSE*P*BE

EA=AL*T

EB=BE*T

IF(EA.GE.50.) EA=50.

IF(EB.GE.50.) EB=50.

IF(EA LE.-50.) EA=-50.

IF(EB.LE.-50.) EB=-50.

EALT=EXP(-EA)

EBET=EXP(-EB)

AT=A*T

BT=B*T

F=A*EALT+B*EBET
G(1)=EALT*(DA1-AT*DAL1)+EBET*(DB1-BT*DBE1)
G(2)=EALT*(DA2-AT*DAL2)+EBET*(DB2-BT*DBE2)
G(3)=EALT*(DA3-AT*DAL3)+EBET*(DB3-BT*DBE3)
G(4)=EALT*(DA4-AT*DAL4)+EBET*(DB4-BT*DBEA4)
H(1)=F

RETURN

END
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APPENDIX ID

2 Compartment Model: PRED Subroutine for Modelling the Influence
of Sex and Weight on V,

SUBROUTINE PRED(ICALL,NEWIND,THETA,DATREC,INDXS,F,G,H)
C

C 2COMP.1V,CL,V1K12,K21
C
DIMENSION THETA(S),DATREC(S),INDXS(1),G(2),H(1)
DOUBLE PRECISION THETA,G,H,F,CL,V1,K12,K21,WT,
+DOSE,T,T21,Q,C1,R,BE,AL,P,PP,C2,C3,C4,C5,C6,
+C7,C8,A,B,DBE2,.DBE1,DBE3,DBE4,DP1,DP2,DP3,DP4,
+DAL1,DAL2,DAL3,DAIL4,DA1,DA2,DA3,DA4,DB1,DB2,DB3,
+DB4,EA EB,EALT.EBET,AT,BT,SEX
CL=THETA(1)
V1=THETA(2)
K12=THETA(3)
K21=THETA(4)
T=DATREC(2)
WT=DATREC(4)
SEX=DATREC(5)
DOSE=WT*1000.
V1=WT*THETA(2)
IF(SEX.GT.1.0)V1=V1*THETA(5)
T21=CL/V1
Q=K12+K21+T21
C1=T21*K21
R=DSQRT(Q*Q-4.*C1)
BE=0.5*(Q-R)
AL=C1/BE
P=1./(CL*K21-V1*BE**2)
PP=P*P
C2=(K21-BE)*BE
C3=2.0¥V1*BE
C4=AL/BE
C5=(C1-K21*BE)*DOSE
C6=K21*P*DOSE
C7=C2*DOSE
C8=(K21-2.*BE)*P*DOSE
A=DOSE*(C1-BE*K21)*P
B=DOSE*C2*P
DBE2=0.5*(1.0-(Q-2.*K21)/R)/V1
DBE1=-T21*DBE2
DBE3=-BE/R
DBE4=DBE3-0.5*T21/R
DP1=PP*(BE**2-C3*DBE1)
DP2=PP*(C3*DBE2-K21)
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anan

DP3=PP*C3*DBE3
DP4=PP*(C3*DBE4-CL)
DAL1=-C1*BE/V1-C1*DBE1
DAL2=AL/CL-C4*DBE2
DAL3=-C4*DBE3
DAL4=AL/K21-C4*DBE4
DA1=C5*DP1-C1*P*DOSE/V1-C6*DBE1
DA2=C5*DP2+C6/V1-C6*DBE2
DA3=C5*DP3-C6*DBE3
DA4=C5*DP4-C6*DBE4+P*(T21-BE)*DOSE
DB1=C7*DP1+C8*DBE1
DB2=C7*DP2+C8*DBE2
DB3=C7*DP3+C8*DBE3
DB4=C7*DP4+C8*DBE4+DOSE*P*BE
EA=AL*T

EB=BE*T

IF(EA.GE.50.) EA=50.

IF(EB.GE.50.) EB=50.

IF(EA.LE.-50.) EA=-50.

IF(EB.LE.-50.) EB=-50.
EALT=EXP(-EA)

EBET=EXP(-EB)

AT=A*T

BT=B*T

F=A*EALT+B*EBET

G(1)=EALT*(DA1-AT*DAL1)+EBET*(DB1-BT*DBE1)
G(2)=EALT*(DA2-AT*DAL2)+EBET*(DB2-BT*DBE2)
G(3)=EALT*(DA3-AT*DAL3)+EBET*(DB3-BT*DBE3)
G(4)=EALT*(DA4-AT*DALA)+EBET*(DB4-BT*DBE4)

H(1)=F
RETURN
END
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APPENDIX IIA

Simulation Program Used to Investigate the Effect of Sample
Size and Inter-animal Variability on Parameter Estimation with
the 1 Compartment Model

C 1ST TWO TIMES FIXED, REST RANDOMLY WITHIN 30 MINS
Cc SAMPLING AT SET TIMES
C
PROGRAM DATAZ2
Cc
Cc CHAN 20 - INITIAL STARTING VALUES
Cc CHAN 30 - NONMEM DATA FILE
Cc CHAN 40 - MINITAB DATA FILE
Cc
INTEGER RAN, GEN,BASE
COMMON /MIRNG/RAN(10),GEN(10),NWRD, BASE,MMOD, FBASE, FMOD
DIMENSION T (20)
C
C CLBAR = POPN CL VBAR = POPN VD
o SDCL = POPN SD CL SDV = POPN SD VD
C SDC = PROP ERROR IN CONC DOSE = DOSE
C NT = NO OF TIMES NR = NO OF RATS/TIME
C NSTART = RANDOM SEEDS
c

READ (20, *) NSTART
RMAX=2.0**15-1.0
MAXINT=RMAX
CALL RANSET (MAXINT, NSTART)
READ (20, *) CLBAR, SDCL,VBAR, SDV, SDC,DOSE, NT,NR
READ (20, *) (T(I),I=1,NT)
DO 500 I=1,NT
DO 100 J=1,NR

5 CALL NGAUSS (CL,RN,CLBAR, SDCL)
IF (CL.LE.0.0) GOTO 5

10 CALL NGAUSS (V,RN,VBAR, SDV)
IF (V.LE.0.0) GOTO 10
KE=CL/V
DV=DOSE/V
CALL URAND (T1)
IF(I.EQ.1.0R.I.EQ.2) GO TO 30
RE=15
RM=-7.5
GO TO 35

30 RE=0
RM=0

35 Tl= T1*RE + T(I) + RM
EKET=EXPWCH (-KE*T1)
C1=DV*EKET

328




SDC1=SDC*C1
CALL NGAUSS (CC,RN,C1l,SDC1)
Cl=CcC
IF(C1.LT.0.1.0R.C1.GT.50.0) GO TO 5
NN= ((I-1)*NR) +J
RI=FLOAT (NN)
WRITE (30,20) RI,T1,C1
WRITE (40,25) RI,CL,V,T1,C1
100 CONTINUE
500 CONTINUE
20 FORMAT (3F8.2)
25 FORMAT (5F8.2)
STOP
END
FUNCTION EXPWCH (XX)
IF (XX.LE.-50.) XX=-50.
IF (XX.GE.50.) XX=50.
EXPWCH=EXP (XX)
RETURN
END
SUBROUTINE RANSET (MAXINT,NSTRT)
COMMON /MIRNG/NRAN (10),NGEN(10),NWRD,NBASE,MMOD, FNBASE, FMOD
MAXI=MAXINT/4
IB=0
NBASE=1
99 IF(NBASE.GT.MAXI)GO TO 100
NBASE=NBASE*4
IB=IB+1
GO TO 99
100 NBASE=2**IB
FNBASE=NBASE
NWRD=47/1IB+1
NREM=47-IB* (NWRD-1)
MMOD=2 * *"NREM
FMOD=MMOD
DO 101 N=1,10
NRAN (N) =0
101 NGEN(N)=0
NGEN (1) =5
DO 200 I=1,14
NCARRY=0
DO 190 N=1,NWRD
NGEN (N) =NGEN (N) *5+NCARRY
NCARRY=0
IF (NGEN (N) .LT.NBASE)GO TO 190
NCARRY=NGEN (N) /NBASE
NGEN (N) =NGEN (N) ~-NBASE*NCARRY
190 CONTINUE
200 CONTINUE
NSTART=NSTRT
IF (NSTART.LE.QO) NSTART=2001
NSTART=2* (NSTART/2) +1
DO 300 N=1,NWRD
NTEMP=NSTART/NBASE
NRAN (N) =NSTART-NTEMP *NBASE
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300 NSTART=NTEMP
RETURN
END
SUBROUTINE URAND (FRAN)
COMMON /MIRNG/NRAN (10),NGEN (10) ,NWRD,NBASE, MMOD, FNBASE, FMOD
DIMENSION NSUM(10)
DO 30 IS=1,NWRD
30 NSUM(IS)=0
DO 1 IG=1,NWRD
N2=NWRD-IG+1
DO 1 IR=1,N2
IS=IR+IG-1
NPROD=NRAN (IR) *NGEN (IG)
NHPROD=NPROD /NBASE .
LPROD=NPROD-NHPROD*NBASE
NSUM (IS)=NSUM(IS)+LPROD _
IF (IS.LT.NWRD)NSUM (IS+1)=NSUM(IS+1)+NHPROD
1 CONTINUE
N2=NWRD-1
DO 5 IS=1,N2
NCARRY=NSUM (IS) /NBASE
NSUM (IS)=NSUM (IS)-NCARRY*NBASE
NSUM (IS+1) =NSUM (IS+1) +NCARRY
5 CONTINUE
NSUM (NWRD) =NSUM (NWRD) —MMOD* (NSUM (NWRD) /MMOD)
DO 20 IS=1,NWRD
20 NRAN (IS)=NSUM(IS)
FRAN=NSUM (1)
DO 10 IS=2,NWRD
10 FRAN=FRAN/FNBASE+NSUM(IS)
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE NGAUSS (X, RN, AM, SD)
COMMON /MIRNG/NRAN (10),NGEN (10) , NWRD, NBASE, MMOD, FNBASE, FMOD
IF (SD.NE.0.0)GO TO 30
X=AM
RETURN
30 SUM=0.0
DO 20 I1I=1,100
CALL URAND (R)
20 SUM=SUM+R
RN= (SUM-50.) /SQRT (25./3.)
X=RN*SD+AM
RETURN
END
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APPENDIX IIB

Simulation Program for Investigating the Effect of Arrangement

of Concentrations in Time

c
Cc ONLY TIME 1 IS FIXED
c
PROGRAM DATAl
Cc
C CHAN 20 - INITIAL STARTING VALUES
Cc CHAN 30 - NONMEM DATA FILE
C CHAN 40 - MINITAB DATA FILE
c
INTEGER RAN, GEN,BASE
COMMON /MIRNG/RAN(10),GEN(10),NWRD,BASE,MMOD,FBASE,FMOD
DIMENSION T (20)
C
o CLBAR = POPN CL VBAR = POPN VD
c SDCL = POPN SD CL SDV = POPN SD VD
c SDC = PROP ERROR IN CONC DOSE = DOSE
Cc NT = NO OF TIMES NR = NO OF RATS/TIME
Cc NSTART = RANDOM SEEDS
Cc

READ (20, *) NSTART
RMAX=2,0**15-1.0
MAXINT=RMAX
CALL RANSET (MAXINT,NSTART)
READ (20, *) CLBAR, SDCL, VBAR, SDV, SDC,DOSE, NT, NR
READ (20, *) (T(I),I=1,NT)
DO 500 I=1,NT
DO 100 J=1,NR

5 CALL NGAUSS (CL,RN,CLBAR, SDCL)
IF (CL.LE.0.0) GOTO 5

10 CALL NGAUSS (V,RN,VBAR, SDV)
IF (V.LE.0.0) GOTO 10
KE=CL/V
DV=DOSE/V
CALL URAND (T1)
IF(I.EQ.1) GO TO 30
RE=15
RM=-7.5
GO TO 35

30 RE=0
RM=0

35 Tl= T1*RE + T(I) + RM
EKET=EXPWCH (-KE*T1)
C1=DV*EKET
SDC1=SDC*C1
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CALL NGAUSS (CC,RN,C1,SDC1)

Cl=CC
IF(C1.LT.0.1.0R.C1.GT.50.0) GOTO 5
NN= ((I-1)*NR) +J

RI=FLOAT (NN)
WRITE (30,20) RI,T1,Cl
WRITE (40,25) RI,CL,V,T1,Cl
100 CONTINUE
500 CONTINUE
20 FORMAT (3F8.2)
25 FORMAT (5F8.2)
STOP
END
FUNCTION EXPWCH (XX)
IF (XX.LE.-50.) XX=-50.
IF (XX.GE.50.) XX=50.
EXPWCH=EXP (XX)
RETURN
END
SUBROUTINE RANSET (MAXINT,NSTRT)
COMMON /MIRNG/NRAN (10),NGEN(10),NWRD, NBASE, MMOD, FNBASE, FMOD
MAXI=MAXINT/4
IB=0
NBASE=1
99 IF (NBASE.GT.MAXI)GO TO 100
NBASE=NBASE*4
IB=IB+1
GO TO 99
100 NBASE=2**IB
FNBASE=NBASE
NWRD=47/IB+1
NREM=47-IB* (NWRD-1)
MMOD=2 * *NREM
FMOD=MMOD
DO 101 N=1,10
NRAN (N) =0
101 NGEN(N)=0
NGEN (1) =5
DO 200 I=1,14
NCARRY=0
DO 190 N=1,NWRD
NGEN (N) =NGEN (N) *5+NCARRY
NCARRY=0
IF (NGEN (N) .LT.NBASE)GO TO 190
NCARRY=NGEN (N) /NBASE
NGEN (N) =NGEN (N) —-NBASE*NCARRY
190 CONTINUE
200 CONTINUE
NSTART=NSTRT
IF (NSTART.LE.O)NSTART=2001
NSTART=2* (NSTART/2) +1
DO 300 N=1,NWRD
NTEMP=NSTART/NBASE
NRAN (N) =NSTART-NTEMP *NBASE
300 NSTART=NTEMP
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RETURN
END
SUBROUTINE URAND (FRAN)

COMMON /MIRNG/NRAN(10),NGEN(10),NWRD, NBASE,MMOD,FNBASE, FMOD

DIMENSION NSUM(10)

DO 30 IS=1,NWRD

NSUM (IS)=0

DO 1 IG=1,NWRD

N2=NWRD-IG+1

DO 1 IR=1,N2

IS=IR+IG-1
NPROD=NRAN (IR) *NGEN (IG)
NHPROD=NPROD /NBASE
LPROD=NPROD-NHPROD*NBASE

NSUM (IS)=NSUM (IS)+LPROD

IF (IS.LT.NWRD)NSUM (IS+1)=NSUM(IS+1)+NHPROD
CONTINUE

N2=NWRD-1

DO 5 IS=1,N2
NCARRY=NSUM (IS) /NBASE

NSUM (IS)=NSUM (IS) -NCARRY*NBASE
NSUM (IS+1)=NSUM (IS+1) +NCARRY
CONTINUE

NSUM (NWRD) =NSUM (NWRD) ~MMOD* (NSUM (NWRD) /MMOD)
DO 20 IS=1,NWRD

NRAN (IS) =NSUM(IS)

FRAN=NSUM (1)

DO 10 IS=2,NWRD
FRAN=FRAN/FNBASE+NSUM (IS)
FRAN=FRAN/FMOD

RETURN

END

SUBROUTINE NGAUSS (X, RN,AM, SD)

COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE, MMOD FNBASE, FMOD

IF(SD.NE.0.0)GO TO 30
X=AM

RETURN

SUM=0.0

DO 20 I=1,100

CALL URAND (R)
SUM=SUM+R

RN= (SUM-50.) /SQRT (25./3.)
X=RN*SD+AM

RETURN

END
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APPENDIX IIC

Simulation Program Used to Investigate the Effect of Sampling

An Animal Twice on Parameter Estimation

C THIS ASSUMES 10 TIMES
C 1ST TWO FIXED, REST RANDOMLY WITHIN 30MINS
C
Cc THE VALUE PREVIOUSLY THE NO OF ANIMALS/TIME
C IS NOW THE NO OF ANIMALS/BLOCK
C EACH BLOCK HAS CONC TAKEN AT A DIFFERENT
C PAIR OF TIMES
C I.E.1 &6, 2&7, 3 &8, 4&29, 5%&10
C
C
PROGRAM DATA3
C
C CHAN 20 - INITIAL STARTING VALUES
C CHAN 30 - NONMEM DATA FILE
c CHAN 40 - MINITAB DATA FILE
c
INTEGER RAN, GEN, BASE :
COMMON /MIRNG/RAN(10),GEN(10),NWRD,BASE, MMOD,FBASE, FMOD
DIMENSION T (20)
Cc
C CLBAR = POPN CL VBAR = POPN VD
Cc SDCL = POPN SD CL SDV = POPN SD VD
C SDC = PROP ERROR IN CONC DOSE = DOSE
Cc NT = NO OF TIMES NR = NO OF RATS/TIME
C NSTART = RANDOM SEEDS
C

READ (20, *) NSTART
RMAX=2.0**15-1.0
MAXINT=RMAX
CALL RANSET (MAXINT,NSTART)
READ (20, *) CLBAR, SDCL, VBAR, SDV, SDC, DOSE, NT, NR
READ (20, *) (T(I),I=1,NT)
NBL=NT/2
DO 500 I=1,NBL
DO 100 J=1,NR
5 CALL NGAUSS (CL,RN,CLBAR, SDCL)
IF (CL.LE.0.0) GOTO 5
10 CALL NGAUSS (V,RN,VBAR, SDV)
IF (V.LE.0.0) GOTO 10
KE=CL/V
DV=DOSE/V
CALL URAND (T1)
IF(I.EQ.1.0R.I.EQ.2) GO TO 30
RE=15
RM=-7.5
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GO TO 35
30 RE=0
RM=0
35 Tl= T1*RE + T(I) + RM
EKET=EXPWCH (-KE*T1)
C1=DV*EKET
SDC1=SDC*C1
CALL NGAUSS (CC,RN,C1,SDC1)
Cl=CC
IF(C1.LT.0.1.0R.C1.GT.50.0) GO TO 5
II=I+5
CALL URAND (T2)
IF(II.EQ.1.0R.II.EQ.2) GO TO 300
RE=15
RM=-7.5
GO TO 305
300 RE=0
RM=0
305 T2= T2*RE + T(II) + RM
EKET=EXPWCH (-KE*T2)
C2=DV*EKET
SDC2=SDC*C2
CALL NGAUSS (CC,RN,C2,SDC2)
C2=CC
IF(C2.LT.0.1.0R.C2.GT.50.0) GO TO 5
NN=( (I-1) *NBL) +J
RI=FLOAT (NN)
WRITE (30,20) RI,T1,C1,RI,T2,C2
WRITE (40,25) RI,CL,V,T1,C1l,T2,C2
100 CONTINUE
500 CONTINUE
20 FORMAT (3F8.2,/,3F8.2)
25 FORMAT (7F8.2)
STOP
END
FUNCTION EXPWCH (XX)
IF (XX.LE.-50.) XX=-50.
IF (XX.GE.50.) XX=50.
EXPWCH=EXP (XX)
RETURN
END
SUBROUTINE RANSET (MAXINT,NSTRT)
COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE, MMOD, FNBASE, FMOD
MAXI=MAXINT/4
IB=0
NBASE=1
99 IF (NBASE.GT.MAXI)GO TO 100
NBASE=NBASE*4
IB=IB+1
GO TO 99
100 NBASE=2**IB
FNBASE=NBASE
NWRD=47/IB+1
NREM=47-IB* (NWRD-1)
MMOD=2 * *NREM
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FMOD=MMOD
DO 101 N=1,10
NRAN (N) =0
101 NGEN (N)=0
NGEN (1) =5
DO 200 I=1,14
NCARRY=0
DO 190 N=1,NWRD
NGEN (N) =NGEN (N) *5+NCARRY
NCARRY=0
IF (NGEN (N) .LT.NBASE)GO TO 190
NCARRY=NGEN (N) /NBASE
NGEN (N) =NGEN (N) -NBASE*NCARRY
190 CONTINUE
200 CONTINUE
NSTART=NSTRT
IF (NSTART.LE.O0)NSTART=2001
NSTART=2* (NSTART/2) +1
DO 300 N=1,NWRD
NTEMP=NSTART/NBASE
NRAN (N) =NSTART-NTEMP *NBASE
300 NSTART=NTEMP
RETURN
END
SUBROUTINE URAND (FRAN)
COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE,MMOD, FNBASE, FMOD
DIMENSION NSUM(10)
DO 30 IS=1,NWRD
30 NSUM(IS)=0
DO 1 IG=1,NWRD
N2=NWRD-IG+1
DO 1 IR=1,N2
IS=IR+IG-1
NPROD=NRAN (IR) *NGEN (IG)
NHPROD=NPROD/NBASE
LPROD=NPROD-NHPROD *NBASE
NSUM (IS)=NSUM(IS)+LPROD
IF(IS.LT.NWRD)NSUM(IS+1)=NSUM(IS+1)+NHPROD
1 CONTINUE
N2=NWRD-1
DO 5 IS=1,N2
NCARRY=NSUM (IS) /NBASE
NSUM (IS)=NSUM(IS)-NCARRY*NBASE
NSUM(IS+1)=NSUM(IS+1) +NCARRY
5 CONTINUE
NSUM (NWRD) =NSUM (NWRD) ~MMOD * (NSUM (NWRD) /MMOD)
DO 20 IS=1,NWRD
20 NRAN (IS)=NSUM(IS)
FRAN=NSUM (1)
DO 10 IS=2,NWRD
10 FRAN=FRAN/FNBASE+NSUM(IS)
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE NGAUSS (X,RN,AM, SD)
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COMMON /MIRNG/NRAN(10),NGEN(10), NWRD,NBASE,MMOD, FNBASE, FMOD

IF(SD.NE.0.0)GO TO 30
X=AM

RETURN

SUM=0.0

DO 20 I=1,100

CALL URAND (R)
SUM=SUM+R
RN=(SUM-50.) /SQRT (25./3.)
X=RN*SD+AM

RETURN

END
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APPENDIX IID

S8imulation Program for the 2 Compartment Model

c SAMPLING AT SET TIMES
c
PROGRAM DATA4
C
c CHAN 20 - INITIAL STARTING VALUES
c CHAN 30 - NONMEM DATA FILE
o CHAN 40 - MINITAB DATA FILE
C
INTEGER RAN, GEN,BASE
COMMON /MIRNG/RAN (10),GEN(10),NWRD,BASE,MMOD, FBASE, FMOD
DIMENSION T (20)
o
Cc ABAR=POPN A BBAR=POPN B ALBAR=POPN AL
C SDA=POFN SD A SDB=POPN SD B SDAL=POPN SD AL
C BEBAR=POPN BE SDBE=POPN SD BE
c SDC = PROP ERROR IN CONC DOSE = DOSE
Cc NT = NO OF TIMES NR = NO OF RATS/TIME
o NSTART = RANDOM SEEDS
Cc

READ (20, *) NSTART
RMAX=2.0%**15-1.0
MAXINT=RMAX
CALL RANSET (MAXINT,NSTART) |
READ (20, *) ABAR, SDA,ALBAR, SDAL, BBAR, SDB, BEBAR, SDBE, SDC,
+DOSE, NT, NR
READ (20, *) (T(I),I=1,NT)
DO 500 I=1,NT
DO 100 J=1,NR
5 CALL NGAUSS (A,RN,ABAR, SDA)
IF (A.LE.0.0) GO TO 5
10 CALL NGAUSS (AL,RN,ALBAR, SDAL)
IF (AL.LE.0.0) GO TO 10
15 CALL NGAUSS (B,RN,BBAR, SDB)
IF (B.LE.0.0) GO TO 15
30 CALL NGAUSS (BE,RN, BEBAR, SDBE)
IF (BE.LE.0.0) GO TO 30
CALL URAND (T1)
IF(I.EQ.1.0R.I.EQ.2) GO TO 35
RE=0.25
RM=-0.125
GO TO 40
35 RE=0
RM=0
40 Tl= T1*RE + T(I) + RM
EALT=EXPWCH (-AL*T1)
EBET=EXPWCH (-BE*T1)
Cl=A*EALT+B*EBET
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SDC1=SDC*C1l
CALL NGAUSS (CC,RN,C1,SDC1)

Cl=CC
IF(C1.LT.10.0.0R.C1.GT.20000.0) GO TO 5
NN= ((I-1)*NR) +J

RI=FLOAT (NN)
WRITE (30,20) RI,T1,Cl
WRITE (40,25) RI,A,AL,B,BE,T1,Cl
100 CONTINUE
500 CONTINUE
20 FORMAT (3F10.2)
25 FORMAT (7F10.2)
STOP
END
FUNCTION EXPWCH (XX)
IF (XX.LE.-50.) XX=-50.
IF (XX.GE.50.) XX=50.
EXPWCH=EXP (XX)
RETURN
END
SUBROUTINE RANSET (MAXINT,NSTRT)
COMMON /MIRNG/NRAN (10),NGEN (10) ,NWRD, NBASE, MMOD, FNBASE, FMOD
MAXI=MAXINT/4
IB=0
NBASE=1
99 IF (NBASE.GT.MAXI)GO TO 100
NBASE=NBASE*4
IB=IB+1
GO TO 99
100 NBASE=2**IB
FNBASE=NBASE
NWRD=47/1B+1
NREM=47-IB* (NWRD-1)
MMOD=2* *NREM
FMOD=MMOD
DO 101 N=1,10
NRAN (N) =0
101 NGEN (N)=0
NGEN (1) =5
DO 200 I=1,14
NCARRY=0
DO 190 N=1,NWRD
NGEN (N) =NGEN (N) *5+NCARRY
NCARRY=0
IF (NGEN (N) .LT.NBASE)GO TO 190
NCARRY=NGEN (N) /NBASE
NGEN (N) =NGEN (N) ~NBASE*NCARRY
190 CONTINUE
200 CONTINUE
NSTART=NSTRT
IF (NSTART.LE.0) NSTART=2001
NSTART=2* (NSTART/2) +1
DO 300 N=1,NWRD
NTEMP=NSTART/NBASE
NRAN (N) =NSTART-NTEMP *NBASE
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300 NSTART=NTEMP
RETURN
END
SUBROUTINE URAND (FRAN)
COMMON /MIRNG/NRAN (10),NGEN(10) ,NWRD,NBASE, MMOD, FNBASE, FMOD
DIMENSION NSUM(10)
DO 30 IS=1,NWRD

30 NSUM(IS)=0
DO 1 IG=1,NWRD
N2=NWRD-IG+1
DO 1 IR=1,N2
IS=IR+IG-1
NPROD=NRAN (IR) *NGEN (IG)
NHPROD=NPROD/NBASE
LPROD=NPROD-NHPROD*NBASE
NSUM (IS)=NSUM(IS)+LPROD
IF(IS.LT.NWRD)NSUM (IS+1)=NSUM(IS+1)+NHPROD

1 CONTINUE
N2=NWRD-1
DO 5 IS=1,N2
NCARRY=NSUM (IS) /NBASE
NSUM(IS)=NSUM(IS)~-NCARRY*NBASE
NSUM(IS+1)=NSUM(IS+1) +NCARRY
5 CONTINUE

NSUM (NWRD) =NSUM (NWRD) -MMOD* (NSUM (NWRD) /MMOD)
DO 20 IS=1,NWRD

20 NRAN(IS)=NSUM(IS)
FRAN=NSUM (1)
DO 10 IS=2,NWRD

10 FRAN=FRAN/FNBASE+NSUM(IS)
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE NGAUSS (X,RN,AM, SD)
COMMON /MIRNG/NRAN(10),NGEN (10) ,NWRD,NBASE, MMOD, FNBASE, FMOD
IF(SD.NE.0.0)GO TO 30
X=AM
RETURN

30 SUM=0.0
DO 20 I=1,100
CALL URAND (R)

20 SUM=SUM+R
RN= (SUM-50.) /SQRT (25./3.)
X=RN*SD+AM
RETURN
END
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APPENDIX IIE

Simulation Program for the Reparametérizod 2 Compartment Model

QOO0 o

oNeNoNoXoNoXoNe!

10
15
30

35
40

SAMPLING AT SET TIMES
PROGRAM DATA9

CHAN 20 - INITIAL STARTING VALUES
CHAN 30 - NONMEM DATA FILE
CHAN 40 - MINITAB DATA FILE

INTEGER RAN, GEN, BASE
COMMON /MIRNG/RAN(10),GEN(10),NWRD,BASE,MMOD, FBASE, FMOD
DIMENSION T (20)

CLBAR=POPN CL V1BAR=POPN V1 P12BAR=POPN P12
SDCL=POPN SD CL SDV1=POPN SD V1 SDP12=POPN SD P12
P21BAR=POPN P21 SDP21=POPN SD P21

SDC = PROP ERROR IN CONC DOSE = DOSE

NT = NO OF TIMES NR = NO OF RATS/TIME

NSTART = RANDOM SEEDS

READ (20, *) NSTART

RMAX=2.0**15-1.0

MAXINT=RMAX

CALL RANSET (MAXINT,NSTART)

READ (20, *) CLBAR, SDCL,V1BAR, SDV1,P12BAR,SDP12,P21BAR, SDP21,

+SDC, DOSE, NT, NR

READ (20, *) (T(I),I=1,NT)

DO 500 I=1,NT

DO 100 J=1,NR

CALL NGAUSS (CL,RN,CLBAR, SDCL)
IF (CL.LE.0.0) GO TO 5

CALL NGAUSS (V1,RN,V1BAR, SDV1)
IF (V1.LE.0.0) GO TO 10

CALL NGAUSS (P12,RN,P12BAR,SDP12)
IF (P12.LE.0.0) GO TO 15

CALL NGAUSS (P21,RN,P21BAR, SDP21)
IF (P21.1LE.0.0) GO TO 30

CALL URAND(T1)
IF(I.EQ.1.0R.I.EQ.2) GO TO 35
RE=0.25

RM=-0.125

GO TO 40

RE=0

RM=0

Tl= T1*RE + T(I) + RM
P=P12+P21+CL/V1

Q=SQRT (P**2-4 ,*P21*CL/V1)
A=(DOSE/V1) *(0.5* (P/Q+1)-P21/Q)
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B=(DOSE/V1) * (P21/Q-0.5*(P/Q-1.0))
EALT=EXPWCH (-0.5* (P+Q) *T1)
EBET=EXPWCH (-0.5* (P-Q) *T1)
F=A*EALT+B*EBET

Cl=A*EALT+B*EBET

SDC1=SDC*C1l

CALL NGAUSS (CC,RN,C1,SDC1)

Cl=CC .
IF(C1.LT.10.0.0R.C1.GT.20000.0) GO TO 5
NN= ((I-1)*NR) +J

RI=FLOAT (NN)
WRITE (30,20) RI,T1,Cl
WRITE (40,25) RI,CL,V1,P12,P21,T1,Cl
100 CONTINUE
500 CONTINUE
20 FORMAT (3F10.2)
25 FORMAT (7F10.2)
STOP
END
FUNCTION EXPWCH (XX)
IF (XX.LE.-50.) XX=-50.
IF (XX.GE.50.) XX=50.
EXPWCH=EXP (XX)
RETURN
END
SUBROUTINE RANSET (MAXINT,NSTRT)
COMMON /MIRNG/NRAN (10),NGEN (10) , NWRD, NBASE, MMOD, FNBASE, FMOD
MAXI=MAXINT/4
IB=0
NBASE=1
99 IF (NBASE.GT.MAXI)GO TO 100
NBASE=NBASE*4
IB=IB+1
GO TO 99
100 NBASE=2**IB
FNBASE=NBASE
NWRD=47/IB+1
NREM=47-IB* (NWRD-1)
MMOD=2 * *NREM
FMOD=MMOD
DO 101 N=1,10
NRAN (N) =0
101 NGEN (N) =0
NGEN (1) =5
DO 200 I=1,14
NCARRY=0
DO 190 N=1,NWRD
NGEN (N) =NGEN (N) *5+NCARRY
NCARRY=0
IF (NGEN (N) .LT.NBASE)GO TO 190
NCARRY=NGEN (N) /NBASE
NGEN (N) =NGEN (N) ~-NBASE*NCARRY
190 CONTINUE
200 CONTINUE
NSTART=NSTRT
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IF (NSTART.LE.O0) NSTART=2001
NSTART=2* (NSTART/2) +1
DO 300 N=1,NWRD
NTEMP=NSTART/NBASE
NRAN (N) =NSTART-NTEMP *NBASE
300 NSTART=NTEMP
RETURN
END
SUBROUTINE URAND (FRAN)
COMMON /MIRNG/NRAN (10),NGEN (10),NWRD, NBASE, MMOD, FNBASE, FMOD
DIMENSION NSUM(10)
DO 30 IS=1,NWRD
30 NSUM(IS)=0
DO 1 IG=1,NWRD
N2=NWRD-IG+1
DO 1 IR=1,N2
IS=IR+IG-1
NPROD=NRAN (IR) *NGEN (IG)
NHPROD=NPROD /NBASE
LPROD=NPROD-NHPROD*NBASE
NSUM (IS)=NSUM (IS)+LPROD
IF (IS.LT.NWRD)NSUM(IS+1)=NSUM(IS+1)+NHPROD
1 CONTINUE
N2=NWRD-1
DO 5 IS=1,N2
NCARRY=NSUM (IS) /NBASE
NSUM (IS)=NSUM(IS)-NCARRY*NBASE
NSUM (IS+1)=NSUM (IS+1) +NCARRY
5 CONTINUE
NSUM (NWRD) =NSUM (NWRD) ~MMOD* (NSUM (NWRD) /MMOD)
DO 20 IS=1,NWRD ’
20 NRAN (IS)=NSUM(IS)
FRAN=NSUM (1)
DO 10 IS=2,NWRD
10 FRAN=FRAN/FNBASE+NSUM(IS)
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE NGAUSS (X, RN, 2M, SD)
COMMON /MIRNG/NRAN (10),NGEN (10) , NWRD, NBASE, MMOD, FNBASE, FMOD
IF(SD.NE.0.0)GO TO 30
X=AM
RETURN
30 SUM=0.0
DO 20 I=1,100
CALL URAND (R)
20 SUM=SUM+R
RN= (SUM-50.) /SQRT (25./3.)
X=RN*SD+AM
RETURN
END
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