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SUMMARY

1. The porphyrias are a group of disorders of haem metabolism, due to 

an enzymatic defect in the haem biosynthetic pathway. Two current 
hypotheses regarding the underlying causes of the neuropathy of the 

acute type of porphyria w ere exam ined. Firstly, are the haem  
precursors 5-am inolaevulinic acid (ALA) and porphobilinogen (PBG) 

neurotoxic? Secondly, is acute porphyric neuropathy a consequence of 
a reduction in essential haemoproteins?

2. The responses of a variety  of in vitro rabbit nerve/m uscle  
p re p a ra tio n s , w hose respo nses  are m ed ia ted  by d iffe ren t  

neurotransmitters, were unaffected by ALA in concentrations ranging 
from 1pM. to 10m M. In isolated nerve/muscle preparations taken from 

rats that had rece ived  porphyrinogenic drug treatm ent, which 
disrupted haem biosynthesis, 10nM. to 300juM. ALA did not alter the 

responses of the muscles to electrical field stimulation of their 

intrinsic nerves.

3. 30|uM. to 1mM. PBG did not significantly alter the response of the 

rat anococcygeus muscle to electrica l field stim ulation of the  

intrinsic inhibitory nerves.

4. The results of these experiments provide no evidence that ALA or 
PBG are neurotoxic.

5. In the second group of experim ents the porphyrinogenic drugs 

(succinylacetone; a lly lisopropylacetam ide; DDC and its 4 -e thy l 
analogue 4-ethyl DDC; phenobarbitone; lead) w ere em ployed, in 
various combinations, for periods ranging from 3 to 44 days, in an 

attem pt to produce a haem  deficiency neuropathy, in rats, by 

inhibiting haem synthesis.

6. A range of rat in vitro nerve/muscle preparations were examined, 
the responses of which are mediated by different neurotransmitters, 
one of which, the nitrergically-m ediated inhibitory response of the 

anococcygeus m uscle results from  activation of a cytosolic  

haemoprotein, guanylate cyclase.
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7. The results of this group of experiments provide no evidence that 
the porphyrinogenic compounds em ployed, in this study, reduce  
essential haemoproteins to levels where a neuropathy ensues.

8. The third group of experiments exam ined liver, blood and brain 

haemoproteins, following porphyrinogenic drug treatm ent for periods 

ranging betw een 14 and 44 days. Hepatic respiratory cytochrome 
levels and catalase activity, blood haemoglobin content and catalase  

activity and brain respiratory cytochromes were m easured. These  

tissues give a m easure of haemoproteins in the two major haem  

containing organs, the liver and blood and a measure of haemoproteins 

in neural tissue where a deficit, in these cytochromes, could lead to 
neuropathy.

9. Treatm ents which included the use of either 4-ethyl DDC or N- 
methyl protoporphyrin, both of which inhibit hepatic ferrochelatase, 
caused a significant reduction in hepatic haem oproteins, but were 

ineffective in reducing blood or brain levels. Lead treatm ent did 

cause a reduction in whole blood haemoglobin content and a rise in 

cata lase  activ ity , but was also incapable of reducing brain  

respiratory cytochrome levels.

10. The failure of these porphyrinogenic compounds to alter brain 

haemoproteins may be due to their inability to cross the blood brain 

barrie r.

11. The last group of experiments examined both hepatic and brain 

m itochondrial function following porphyrinogenic treatm ent, which 

was known, from the previous group of experim ents, to reduce 

hepatic respiratory cytochromes. Additionlly, to circumvent the blood 

brain barrier, the ferrochelatase inhibitor, N-m ethyl protoporphyrin  

was adm inistered directly into the ventricular system. Treatm ents  

which significantly reduced hepatic respiratory cytochrom es also 
caused a reduction in the Respiratory Control Ratio (RCR) in liver 

mitochondria, while all other respiratory param eters were unaltered.

v
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All brain mitochondrial function param eters were unaltered by these 

sys tem ic  tre a tm e n ts . C e n tra l a d m in is tra tio n  of N -m eth y l 
protoporphyrin, caused a reduction in brain mitochondrial RCRs, while 

all other respiratory param eters in this tissue rem ained unaltered. 
H epatic  m itochondria l function w as un a ffec ted  by cen tra lly - 
administered N-m ethyl protoporphyrin.

12. The results of these experiments show that some porphyrinogenic 

drugs are capable of altering some aspects of mitochondrial function, 
in this case the R espira tory  Control Ratio (R C R ). Although  

system ically-adm inistered com pounds were unable to alter brain 
m itochondria l fu n c tio n , w hile  doing so in Jive r , N -m ethyl 
protoporphyin did reduce RC R's in brain m itochondria when  
adm inistered centrally. This latter observation suggests that when 

porphyrinogenic drugs gain access to neural tissue they can exert 
sim ilar effects.

13. The failure, in this study, to produce a neuropharm acological 
model of acute porphyria is most probably due to the inability of the 

porphyrinogenic compounds employed to reduce neural respiratory  

cytochrom es to levels w here a functional deficit occurs. This 

problem may be overcome by a longer period of treatment. The results 

of the present set of experim ents indicate that succinylacetone is 

not a suitable compound for use in in vivo haemoprotein depletion. N- 
methyl protoporphyrin at larger concentrations than used in this 

study may be more effective in producing a model of a haem  

deficiency neuropathy.
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CHAPTER 1 GENERAL INTRODUCTION

The porphyrias are a group of heterogeneous disorders in which there 
is a defect in the metabolic pathway leading to the synthesis of 
haem. They are members of a group of diseases which occur due to an 
inborn error of metabolism (Garrod 1923). This error results in either 
the imperfect synthesis of enzymes, producing an aberrant structure, 
or in the decreased synthesis of a perfect compound. There is a type 
of porpyria associated with an enzymatic deficit at every level in the 

haem pathway, except the first step. The biochemical correlate of 
this group of diseases is an accumulation of the haem precursors 

prior to the site of defect and the clinical symptoms are indicative of 
an underlying central and peripheral neuropathy. The link between the 

biochemical defect and the clinical symptoms, however, remains 
obscure.

1.1 HAEM BIOSYNTHESIS.

The principle sites of haem synthesis are the haemopoietic and 
hepatic tissue (Berk et.a l. 1974) but haem synthesis is also 
maintained in other tissues including rat brain, heart, adrenal gland 
and testes and the mouse harderian gland ( De Matteis et. al. 1981a; 
De Matteis and Ray 1982; Percy and Shanley 1979; Briggs et.al. 1976; 
Condie et.al. 1976; Tofilon and Piper 1980; Margolis 1971).

The formation of the haem molecule requires eight molecules of 
glycine and eight molecules of succinic acid and is synthesized in a 
sequence of eight enzymatically catalysed steps either in the cytosol 
or the mitochondria (figure 1). The first evidence that protoporphyrin, 
the immediate precursor of haem, was synthesized from glycine and 
succinate came from the 1946 experiments of Shemin and Rittenberg. 
These experim ents dem onstrated that glycine provides all four 
nitrogen atoms, the methene bridge carbon atoms and the a-carbon in 

each pyrrole ring. The activated form of succinate, coenzyme A, takes 
part in this reaction and is the donor of 26 of the 34 carbon atoms of 
the protoporphyrin molecule. Glycine and succinate condense to form 
the five carbon amino ketone, 5-aminolaevulinic acid (ALA) (Shemin 

and Russel 1953). ALA is the precursor of the tetrapyrrole nucleus of 
the porphyrins (the iron chelate), the corrin ring of vitamin B12 (the 

cobalt chelate) and plant and bacterial chlorophyl (the magnesium

1
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chelate). The condensation of glycine and succinyl CoA is catalysed by 

the pyridoxal containing enzyme ALA synthase (ALAS) (Gibson et.al. 
1958). This enzyme is synthesized in the cytoplasm and transported 
into the mitochondria where it is free or bound loosely to the inner 
mitochondrial membrane (Patten and Beattie 1973). The biological 
half-life of ALAS is short. Tschudy et.al. 1965 reporting a half-life 
of 1 hr. in rat liver while shorter half-lives for both mitochondrial 
and cytoplasmic enzymes have been observed e.g. 35min. for the 
mitochondrial and 20min. for the cytoplasmic enzyme (Beale and 
Granick 1978; Kikuchi and Hyashi 1981). This difference probably 
reflects both cytosolic degradation of the enzyme and transport of 
the cytosolic enzyme into the mitochondria. In both mouse and chick 
embro liver the half-lives of both cytoplasmic and mitochondrial 
synthase is approximately 3hrs. (Gayathri et.al. 1973; Sassa and 
Granick 1970). Glycine forms a Schiff base with a pyridoxal-enzyme 
complex. A proton is then removed from the methylene carbon atom of 
the glycine and the succinyl group from the succinyl CoA is 
tra n s fe rre d  to form  a lp h a -a m in o -p -k e to a d ip ic  ac id . Th is  

intermediate is decarboxylated, a proton inserted and ALA is released 
(Zam an et.al. 1973; Akhtar et.al. 1976; Abboud et.al. 1974). The 
findings that the activity of the enzyme is normally very low, that 
increased ALAS activity is concomitant with increased porphyrin 
synthesis and that the activity of subsequent enzymes in the pathway 
is increased following increased ALAS activity implicate the enzyme 
as the rate limiting catalyst in the synthesis of haem (Gibson et.al. 
1958; Granick 1966; Granick and Sassa 1971).

ALA passes into the cytoplasm where two molecules condense to 
form the monopyrrole porphobilinogen (PBG) with the removal of two 

water molecules. This reaction is catalysed by the enzyme ALA 
dehydratase. A covalent bond is formed between the e-amino group of 

a lysine amino acid of the enzyme and the keto group of the ALA 

molecule. Condensation takes place with a second ALA molecule and 
following molecular rearrangem ent PBG is formed. This enzyme  

requires sulphydryl groups for its activity and its inhibition by 
chelators such as EDTA suggests that it is a metalloenzyme (Wilson 

et.al. 1972). The metal co-factor was identified as zinc and the
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enzyme requires this element in the proportion of 1 atom of zinc per
active site. ( Cheh and Neilands 1973; Tsukamoto et.al. 1979).

e

Under the concerted action of the next three enzymes in the pathway, 
PBG deaminase uroporphyrinogen 1 synthase and uroporphyrinogen 
III cosynthase, four m olecules of PBG condense to form  
uroporphyrinogen III, the first tetrapyrrole nucleus of the haem  

biosynthetic pathway. The complex of the two enzymes is known as 
porphobilinogenase and in the absence of uroporphyrinogen III 
cosynthase PBG is converted to the physiologically inactive isomer 
uroporphyrinogen I. PBG deaminase catalyses the assembly of the four 
PBG molecules into a linear tetrapyrrole, hydroxymethylbilane, and 
the cosynthase facilitates the ring closure (Battersby et.al. 1979). In 
normal cells the activity of the cosynthase exceeds that of the 
uroporphyrinogen I synthase. Therefore, under normal conditions, only 

the type III isomer is formed.

Uroporphyrinogen III is converted to coproporphyrin III by the 
catalytic  action of the cytoplasm ic enzym e uroporphyrinogen  

decarboxylase. Four carboxyl carbons, one from each of the four 
pyrrole rings, are removed and the side chains converted into methyl 
groups. These decarboxylations occur in a sequential manner with 
uroporphyrinogen III, starting with the D ring followed by the A, B and 

finally the C ring (Jackson e t.a l.1977) and although the type III 
isom er is the p re fe rred  su b stra te , all four isom ers of 
uroporphyrinogen can be decarboxylated (Kawanishi et.al. 1983; Smith 

and Francis 1979; 1981).

The conversion of coproporphyrinogen III to protoporphyrinogen is 

catalysed by a mitochondrial enzyme situated in the intermembrane 

space, coproporphyrinogen oxidase (Elder and Evans 1978; Yoshinaga 

and Sano 1980a; 1980b). During this reaction propionic acid side 
chains on rings A and B are oxidatively decarboxylated to vinyl 
groups.

The penultimate step in the modification of the tetrapyrrole nucleus 
is the oxidation of protoporphyrinogen to protoporphyrin, a reaction 

catalysed by the mitochondrial enzyme protoporphyrinogen oxidase, 
although this reaction can proceed uncatalysed. This reaction
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involves the removal of six hydrogen atoms from the porphyrinogen 
nucleus (Maines 1984).

Ferrochelatase, the last enzyme in the haem biosynthetic pathway is 
an inner m itochondrial m em brane protein which catalyses the 

insertion of a reduced Fe2+ ion into the centre of the tetrapyrrole 
ring. The enzyme is bound to the inner mitochondrial membrane and 

the conversion of Fe3+ to Fe2+ takes place in the inner membrane in 
the proximity of ferrochelatase (Barns et.al. 1972). The source of this 

iron is proposed to be from an innermitochondrial pool which is not 
associated with cytochromes or iron-sulphur proteins (Tangeras  
1980). The activity of the enzyme is inhibited by hemin and is 
sulphydryl group dependent since the presence of glutathione or 
dithiothreitol activates the purified enzyme. The action of these SH- 
compounds on ferrochelatase is not only to protect the SH groups of 
the enzyme but also to maintain the substrate, iron, in the reduced 
form (Porra and Jones 1963a; 1963b) and to protect against 
phospholipid peroxidation of the enzyme and the substrate (Peterson 
et.al. 1980; Dailey and Fleming 1986).

1.2 NOMENCLATURE OF THE PORPHYRINS.

The porphyrins are tetrapyrroles in which the four rings A,B,C and D 
are attached through four methene bridges. Uroporphyrin, the first 
cyclic tetrapyrrole formed during the process of haem biosynthesis, 
has four acetic acid and four propionate side chains, therefore, four 
isomers of this compound are possible depending on the arrangement 
of the chains around the tetrapyrrole nucleus. These are designated 
types I, II, III and IV. Sim ilarly, coproporphyrin, the second  
tetrapyrrole to be formed, has four methyl and four propionate side 

chains, producing four possible isomeric forms. Protoporphyrin has 

four m ethyl, two vinyl and two propionate side chains and 
subsequently has fifteen possible isomeric forms. However, only 
types I and III of the uroporphyrin and coproporphyrin and type IX 
isomer of protoporphyrin occur in nature (Maines 1984). Haem is the 

neutral divalent ferro-protoporphyrin 1X w hereas haemin is the 
positively charged ferri-protoporphyrin 1X. Haemin exists usually as 

the chloride salt. Both haem and haemin are poorly soluble at
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physiological pH. When the alkaline product of haemin, haematin, is 

titrated with acid it gives rise to the neutral precipitate.

1.3 REGULATION OF HAEM SYNTHESIS.

Evidence indicates that ALA synthase is the rate limiting enzyme of 
the haem biosynthetic pathway in liver (Granick and Urata 1963); the 

activity of this enzyme is very low compared to other enzymes in the 
pathway (Hutton and Gross 1970); the turn over rate is very rapid 
(Tschudy et.al. 1965; Sassa and Granick 1970; Gayathri et.al. 1973); 
the administration of ALA results in the induction of the haem  

degradative enzyme, haem oxygenase (Bissel and Hammaker 1976a); 
haem, the end-product of the pathway, represses ALAS (Bissel and 
Hammaker 1976b). PBG deaminase and ferrochelatase, two enzymes 
with low catalytic activity (Hutton and Gross 1970; Jones and Jones 
1969) , may also have minor roles to play in the regulation of the 

pathway.

Haem synthesis is controlled by the production and rate of activity of 
ALAS . The production and activity of this enzyme is in turn regulated 
by the end product of the pathway, haem. Haem exerts a negative- 
feedback inhibitory action on the enzyme at four levels, activity, 
transcription, translation and transfer from the cytosol into the 
mitochondria. The role of haem in the direct inhibition of ALAS 

activity is thought to be unphysiological. The concentration of haem  
required to inhibit enzym e activity was above 1 0 5M (Aoki et.al. 
1971; Granick and Kappas 1971 ) and Scholnick et.al. 1972 showed 

that the Ki of exogenous haemin was 2x10 5M. These values are much 
greater than the concentration required to inhibit the synthesis of 
the enzyme, 2x10 8M (Srivastava et.al. 1980). However, Whiting and 

Elliot in 1972 suggested that due to the close proximity, in the 

mitochondrial inner m em brane, of ferrochelatase and ALAS the 
concentration of haem may rise sufficiently for it to exert a 

repressive action on ALAS activity in vivo.

Granick in 1966 was the first to suggest that haem inhibits ALAS at 
the transcrip tiona l level. The d iffe ren tia l e ffects  of haem  
administered in vivo, where ALAS synthesis is inhibited and when 
added in vitro to liver homogenate supernatants, where synthesis is
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unaffected indicates that this substance inhibits ALAS RNA synthesis 
(Whiting 1976). The reduction of ALAS by haem follows the same 
kinetics as that of the m RNA synthesis inhibitor actinomycin D 
(Srivastava 1980; Yamamoto et.al 1982) and the ability of haemin- 
treated rat liver to direct ALAS synthesis in a cultured polysome 
system was significantly reduced when compared to that of control 
livers (Yam am oto 1982). The half-life of ALAS mRNA is also 

decreased by haem (Hamilton et.al. 1991).

Haem  inhibits ALAS production at the post-transcriptional level. 
Radioactive exogenous haem is detected on ribosomes but not on 
nuclear m embranes contiguous with a reduction in ALAS activity 

which Padmanaban et.al. 1973 suggests indicates that haem inhibits 
the production of the enzyme at the protein synthesis level. Haem  
reduces the synthesis of ALAS in actinom ycin-treated chick  
hepatocytes in a similar manner to that of the protein synthesis 
inhibitor cyclohexamide (Sassa and Granick 1970) and haem has a role 
to play in the inhibition of ALAS peptide chain synthesis (Yamomoto 

et.al. 1983).

ALAS, like many other mitochondrial proteins, is synthesized on 
cytosolic ribosomes and translocated into the mitochondrion (Ohashi 
and Sinohara 1978; Hayashi et.a l. 1983). Haem in inhibition of 
translocation of the cytosolic enzyme into the mitochondria has been 

reported in rat ( Hayashi et.al. 1980) and in chick embryo livers 
(Hayashi et.al. 1983; Srivastava et.al. 1983). Andrew et.al. (1990) 
suggest that haem inhibits translocation by binding to the cytosolic 
ALAS physically inhibiting translocation.

The idea of a regulatory HfreeH haem pool has been postulated by a 

number of researchers ( Granick et.a l 1975; Israels e t .a l.1975; 
Muller-Eberhard and Vincent 1985). It is suggested that this free 
haem pool consists of either recently synthesized haem which has not 
yet been bound to proteins or haem that has just been released from 
its binding protein or apoprotein. Utilising the ability of the rate 

limiting enzym e of the tyrosine degradative pathway, tryptophan  
pyrrolase, to maintain a dynamic equilibrium with free haem Badaway 

in 1978 estimated that the free haem pool concentration was in the 
region of 1 0 7M, very close to the haem concentration which inhibits
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ALAS synthesis (Granick et.a l.1975). Kappas et.al. (1989) suggest the 
possible existence of three different regulatory free haem pools in 
the m itochondria, the cytosol and the endoplasm ic reticulum  
reg u la tin g  the production  of m ito ch o n d ria lly  syn th e s ize d  
cytochromes, ALAS and haem oxygenase synthesis and haem  
oxygenase activity, respectively.

The inhibitory effects of haem on the overall activity of ALAS have 
been well documented in hepatic tissue and a similar inhibitory 
action occurs in the brain (De Matteis and Ray 1982) The regulatory 
action of this compound in other tissues is not so clear. In contrast 
with liver, haem increases ALAS activity in leukaemia cells (Hoffman 
et.al. 1980), stimulates haemoglobin formation in mouse bone marrow 
cultures (Porter et.al. 1979) and in 19 day old fetal rat liver, which 

is mostly erythroid tissue at this stage, haem has no effect on ALAS 
activity (Woods and Murthy 1975). This differential tissue effect of 
haem on its own synthesis may be indicative of the existence of more 
than one form of the ALAS enzyme (Bishop 1990).

Most of the haem synthesized is transported out of the mitochondria 
to the sites of haemoprotein synthesis. The bulk of the haem migrates 

to the microsomes (Israels e t.a l.1975). The majority of apoproteins, 
including mitochondrial apocytochrome c and a proportion of the 
cytochrome oxidase apoprotein are synthesized on cytoplasmic 
ribosomes and complex with their haem moiety there or in the 

cytoplasm. Catalase apoprotein complexes with haem mainly in the 
peroxisomes (Lazarow and DeDuve 1973a; 1973b).

Granick and Gilder in 1947 classified the haemoproteins into five 
groups: those which 1. transport oxygen - haemoglobin and myoglobin;
2. transport electrons - the mitochondrial cytochromes; 3. activate 
oxygen - cytochrome oxidase, tryptophan pyrrolase, cytochrome P- 
450; 4. activate hydrogen peroxide- peroxidases; 5. decompose 

hydrogen peroxide - catalase.

Except for haemoglobin, which is present only in erythrocytes and 
their precursors and myoglobin which is present only in muscle, the 

other haemoproteins exist in most mammalian cells.
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When the biological life of the haem has reached its end it is broken 
down in a series of enzymatic steps to bilirubin and excreted or 
enters the enterohepatic system. Haem oxygenase, a microsomal 
enzyme, catalyses the conversion of haem to biliverdin 1X and CO. 
Haem oxygenase is the rate limiting enzyme of haem degradation 
(Tenhunen 1972). Biliverdin is then converted, in mammals, to 

bilirubin by the enzyme biliverdin reductase.

Haem refers to the complex of a ferrous Fe atom linked to the four 
nitrogen atoms of the tetrapyrrole nucleus. However, there are 
several types of haem. The most common are the b type haems which 
constitute the prosthetic m oiety of haem oprote ins such as 
haemoglobin, myoglobin, catalase, peroxidase, the mitochondrial b 
cytochromes and the microsomal cytochromes, P-450 and bs. Haem  

types c and a form the prosthetic moieties of the other mitochondrial 
cytochromes, c, c1f a and a3 . The three types of haem differ in the 

nature of the substituent side chains of the m etalloporphyrin. 
(Lemberg and Barret 1973).

1.4 HAEMOPROTEINS.

1.4.1. Haemoglobin

Haemoglobin is the most abundant haemoprotein in the mammalian 
body. Berk et.a l. (1974 ) quote figures of around 500 -700g  of 
haemoglobin in the circulation of the 70kg. male. In mammals 
haemoglobin is contained within the erythrocytes. It is the oxygen 

carrier of blood and has an important role to play in the transport of 
C O 2 and in the regulation of blood pH. Oxygen molecules bind 
cooperatively to the haem moieties in the haemoglobin molecule, a 

process which is also pH and 2,3-bisphosphoglycerate-dependent 
(Stryer 1988). Oxygen, which is an essential component in the body's 
energy production by the process of oxidative phosphorylation, is 

transported to every cell in the body. Once synthesized, haemoglobin 
remains stable for the life of the erythrocyte, 120 days in man and 

60 days in the rat (Tait 1978). Haemoglobin is a haemoprotein made 
up of four globin chains each attached to a haem prosthetic group. 
This haemoprotein is produced primarily in the erythroblasts, in the 
bone m arrow, and in circulating reticulocytes, the im m ediate

8



CHAPTER 1 GENERAL INTRODUCTION

precursors of erythrocytes. By the time the reticulocytes have 
developed into mature erythrocytes they possess their quota of 
haemoglobin and have lost all of their mitochondria (Keele et.al. 
1984). In adults the major form of haemoglobin consists of 2a  and 2p 
globin chains although in 2% of adult haemoglobin 5 chains replace the 
0 chains . Fetal haemoglobin, which has a higher affinity for oxygen 
than the mother's, has C chains which are similar to a chains and sly 

chains which are like |3 chains. These fetal globin chains are replaced 

during maturation with the appropriate adult forms. The haem  

prosthetic groups in these different forms of haemoglobin are, 
however, always the same (type b) (Maines 1984). Globin production 

is regulated by haem availability as haem depletion activates an 
inhibitor of globin polypeptide chain initiation, the hemin-controlled  

repressor (HCR) (Bruns and London 1965; Freedman et.al. 1974). The 
iron free precursor Protoporphyrin 1X is incapable of maintaining 

globin synthesis and therefore haemoglobin production (Zucker and 
Schulman 1968) and, in turn, haem synthesis is reduced when globin 
synthesis is inhibited (Grayzel et.al. 1967). Haem deficiency states 
may be due to iron deficiency (Douglas and Adamson 1975), decreased 
haem synthesizing enzymes (e.g. Sideroblastic anaemia, Vogler and 
M ingioli 1968; Bottom ley 1990 ) or chem ica lly -indu ced  with 

substances like benzene (Forte et.al. 1976). The symptoms of long 
lasting anaem ias, such as pernicious anaem ia, include weakness, 
lassitude, shortness of breath, tingling in the hands and feet and 
sometimes diarrhoea. In severe cases peripheral neuropathy and 

demyelination of the nerve tracts in the spinal cord have led to 
degeneration affecting both afferent and efferent pathways. Severe  

mental disturbances may also occur (Keele et.al. 1984).

1.4.2. Catalase.

Catalase is a haemoprotein found in all mammalian and non­
m am m alian cells containing a respiratory cytochrom e system  

(Lemberg 1949). The enzyme is a protein which contains four haem  
groups (DeDuve and Baudhuin 1966). Catalase content is highest in 
liver and kidney and lowest in connective tissue. In the liver cell it is 

mainly localised in the peroxisomes (DeDuve and Baudhuin 1966) and 

mitochondria (Neubert et.a l. 1962). The peroxisomes were first 
observed by Rouiller and Benhard in 1956. These intracellular
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organelles contain a variety of enzymes which produce hydrogen 
peroxide as a product of their function. The peroxisomes contain 
uricase, D-amino acid oxidase and L-a-OH-acid oxidase in addition to 

high concentrations of catalase (De Duve and Baudhuin 1966). The 
mitochondrial respiratory chain also produces hydrogen peroxide  
during the process of respiration and this is in turn decomposed by 
ca ta lase  (B overis  and C hance 1 9 7 3 ). C a ta las e  represents  

approxim ately 11-16%  of the total peroxisomal protein (Leighton  
et.a l. 1969) and the biological half-life of rat liver catalase is 
approximately two days (Poole et.al. 1969). Employing radioactive 
labelling techniques Lazarow and DeDuve (1973a;1973b) studied the 
synthetic process of rat hepatic catalase. The catalase apoprotein is 
synthesized outside of the peroxisomes and is translocated into an 
extraperoxisomal pool which is rapidly taken up into the peroxisomes. 
The combination with haem takes place inside the peroxisome. Haem  

is transported from the mitochondria and into the peroxisome where 
it is attached to a monomeric intermediate which then aggregate to 

form the tetrameric active form of catalase. The catalytic breakdown 
of hydrogen peroxide by catalase is initiated by the combination of 
one molecule of catalase with one molecule of hydrogen peroxide to 
form COM PLEX I. This complex is formed by the reaction of the H2O2 

with the iron atom of the haem moiety (Chance 1949). The primary 
complex then reacts with a second molecule of H2O 2 , a reaction which 

achieves the catalytic destruction of the H2O 2 .

Reaction 1: P-Fe3+-OH +H2O2 = P-Fe3+-OOH + H2O

Reaction 2: P-Fe3+-OOH + H2O2 = P-Fe3+-OH +H2O + O2

This second reaction is the catalytic reaction unique to catalase. 
T h ere  are , how ever, two add ition a l routes ava ilab le  for 
decomposition of the primary complex: Its spontaneous decomposition 

and the peroxidative action of hydrogen donors such as alkyl 
peroxides.

Mature erythrocytes are also rich in catalase which is present in a 
free form within the blood cell (Aebi et.al. 1968). In the erythrocyte, 
catalase is only one of the enzyme systems capable of protecting 
haemoglobin against oxidation to methaemoglobin. In addition to
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catalase, glutathione peroxidase and m ethaem oglobin reductase  
prevent the accumulation of methaemoglobin either by preventing the 
oxidation of haem oglobin by peroxide or by reducing the 
methaemoglobin to haemoglobin as fast as it is formed. Since the 
mature erythrocyte has no cytochrome system and is metabolically 
not very active, Nichols (1965 ) suggests that H2O 2 within the 
erythrocyte is low and erythrocyte catalase is there merely to 

provide intermittent protection in situations where the red blood cell 
may be exposed to relatively high levels of external tissue peroxides. 
The contribution of cata lase  towards the protection of the 
erythrocyte is therefore thought to be minimal, the main protection 

being provided by glutathione peroxidase. In support of a minor role 
for erythrocyte catalase is the observation that people who are 
acatalaem ic, mostly Japanese, pursue a normal life with only 
occasional appearance of oral gangrene probably due to their inability 
to beak down bacterially generated hydrogen peroxide. This hydrogen 
peroxide may in turn oxidise the haemoglobin reaching the lesion 
causing necrosis in the infected area (Takahara 1968). On the other 
hand, Boveris and Chance in 1973 suggested that erythrocyte catalase 
may have a role to play in the decomposition of mitochondrially- 
produced hydrogen peroxide in tissues that do not contain  

peroxisomes, such as brain, lung and heart.

1.4.3. Mitochondrial cytochromes.

When the electrons of the energy rich molecules nicotinamide adenine 
dinucleotide (NADH) and flavin adenine dinucleotide (FADH2), formed 
during glycolysis, fatty acid oxidation and the citric acid cycle are 
donated to molecular oxygen the free energy released is used to 
generate adenosine-5'-triphosphate (ATP). Oxidative phosphorylation 

is the process by which ATP is formed as electrons are transfered 
from these energy rich sources to oxygen in a sequence of redox 

steps. The electrons are carried by a series of carriers known as the 
electron transport chain which is driven by the difference in 
electrode potential between the NADH or FADH2 relative to that of 
oxygen. As the electrons move down the chain protons are pumped into 
the intermitochondrial space producing a proton motive force across 

the inner membrane. When these protons flow back through a protein 

complex ATP synthase, they drive the synthesis of ATP (Mitchell
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1961 ;1979). The same complex can in fact pump protons using the 
energy from ATP hydrolysis. The respiratory cytochromes are 
haemoproteins that undergo oxidation-reduction changes in their 
haem prosthetic group. Three different types of haem are found in the 
respiratory chain, cytochromes a, b and c. These cytochromes along 
with the other components of the respiratory chain (electron transfer 
chain) are situated on the inner mitochondrial membrane. The main 

function of this inner membrane is energy transduction. This electron 
transfer chain has been broken down into four multicomponent 
com plexes designated Com plex I (NADH-ubiquinone reductase), 
Complex II (succinate-ubiquinone reductase), Complex III (ubiquinone 
cytochrome c oxidoreductase or bc^ complex) and Complex IV 

(cytochrome c oxidase or merely cytochrome oxidase) (Van Gelder 
1966). The other components of the electron transfer chain are 

ubiquinone and the soluble cytochrome c. Complex III contains 2 b 
haems (which do not have identical properties) and 1 Ci haem and 
Complex IV contains 2 a haems (a ,a3). The spatial relationship of the 
electron transfer chain components allows the electrons to pass 
along the chain down their electrode potential gradient.

The electrons are first passed to a hydrophobic quinone, ubiquinone. 
The bc1 complex catalyses the transfer of electrons from a reduced 

ubiquinone to cytochrome c. The c cytochromes, unlike the a and b- 
types are covalently linked to the protein by thioether bridges. 
Cytochrome oxidase catalyses the transfer of electrons from reduced 

cytochrome c to molecular oxygen.

Cytochrome c oxidase (cytochrome oxidase) is regarded as one of the 

most important enzymes in nature as it participates in the terminal 
oxidative step in energy metabolism (Capaldi et.al. 1983). Cytochrome 

oxidase is present in all aerobic organism s. It contains four 
prosthetic groups two a-type haems (a and a3) and two copper atoms 
(Cua and Cua3) (Malmstrom 1979). Van Gelder and Muijsers (1966) 
estim ated that the ratio of cytochrome a:a 3 is 1:1. Cytochrome 
oxidase catalyses a net addition of four electrons to molecular 

oxygen. Chance et. al. (1975) suggest that the overall equation for 
this reaction is:

a32+Cu+ + O2 +4H+ — ►a32+Cu+ + 2 H2O
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the reaction proceeding from a    a3 — -02. Although this sequence
of events has been disputed over the years, especially in favour of a 
concerted reaction rather than a sequential reaction (Okunuki 1966), 
an unequivocal mechanism has not, as yet, emerged.

An interesting feature of the mitochondria is that they possess 

bacterial-like ribosomes which are capable of maintaining limited 
p ro te in  s y n th e s is  (A tta rd i and O ja la  1 9 7 1 ) .  U tilis in g  

chloramphenicol, the bacterial protein synthesis inhibitor, and the 
cytosolic protein synthesis inhibitor cyclohexamide to differentiate  
between the site of protein synthesis, it was discovered that 
cytochrome b and part of the cytochrome oxidase molecule are 
synthesized on the m itochondrial ribosom es w hereas the c 
cytochromes are transported into the mitochondria from cytoplasmic 

ribosom es (S chatz  and M ason 1974; Tzagolo ff e t.a l. 1979). 
Apocytochrome c is synthesised on the cytosolic ribosomes and 
transported to the intermembrane space, via specific outer membrane 
receptors, w here it com bines with haem to form functional 
cytochrome c. Three subunits of cytochrome oxidase are synthesised 
in the mitochondria and inserted into the membrane while the other 

components are translocated into the mitochondria from the cytosol. 
A deficiency in mitochondrial cytochromes is one of the factors 
contributing to a group of disorders, the encephalomyopathies, where 

patients manifest neuropathic symptoms.

1.4.4. CYTOCHROME P-450

The microsomal metabolising enzymes cytochrome P -450 catalyse  
the oxidation of a large number of compounds including endogenous 

steroids, cholesterol and fatty acids in addition to a wide range of 
xenobiotics such as morphine, polycyclic hydrocarbons, insecticides 
and barbiturates. 32%  of rat hepatic haem is in the form of 
cytochrome P-450 ( Meyer and Marver 1971).

1.4.5. OTHER HAEMOPROTEINS

Haem is also an essential component in tryptophan pyrrolase the 
degradative enzym e of tryptophan, and a necessary cofactor in 

prostaglandin oxidation by endoperoxide synthase, the oxidation of
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indoleamine as indoleamine 2,3-dioxygenase and in the production of 
cyclic GMP as guanylate cyclase.

1.5. THE PORPHYRIAS.

The porphyrias are a group of inherited and acquired disorders of 
haem biosynthesis due to defects in the synthetic enzymes (figure 2). 
Porphyrins and their precursors are overproduced in all forms of the 
disease although each type manifests it own characteristic pattern 
of precursor accumulation. The first reported case of what is now 
thought to have been porphyria was that recorded by Stockvis just 
over a century ago (1889) who examined an elderly lady who passed a 
dark red urine which was found to contain a chemical which Stockvis 
named haematoporphyrin.

1.6 CLASSIFICATION OF THE PORPHYRIAS.

The diseases of porphyrin metabolism were first classified by Hans 
Gunther in 1911 and 1922. He observed 14 cases where acute 

symptoms arose spontaneously, which he termed "haematoporphyria 
acuta" . 56 cases he noted were associated with the ingestion of the 

sedative Sulphonal, Trional or Veronal and these he called " 
haematoporphyria acuta toxica". In addition, Gunther defined and named 
a condition where the predominating symtoms were due to skin 
photosensitivity and this- he called "haem atoporphyria congenita". 
G unther's  c lassification  included a group "haem atoporphyria  
chronica", which although showing a similarity to "haematoporphria 

congenita" the skin photosensitivity symptom did not occur until 
later in life. Gunther observed that the symptoms of what he called 

congenital porphyria persisted throughout the life of the patient and 
Garrod in 1923 credits Gunther with the first recognition that the 
disease was due to an inborn error of metabolism. Gunther noted that 
acute haematoporphyria may also be inherited and observed that 
p a tie n ts  liab le  to d e v e lo p  e ith e r  acu te  or co n g en ita l 
h a e m a to p o rp h y r ia  p o sses  c e rta in  p h y s ic a l and m enta l 
characteristics, such as dark hair, pigmented skin, insomnia and 

neurosis . In the study of the clin ical fea tu res  of acute  
haematoporphyria Gunther observed that a cluster of symptoms were
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commonly exhibited, nam ely, abdom inal pain, constipation and 
vomiting.

Following this initial classification of the porphyrias several groups 
have redefined the various types of the disease as knowledge 
regarding them accrued. Waldenstrom (1937) classified the porphyrias 

into three main groups; "porphyria congenita" which was equivalent to 

Gunther's 1911 "haem atoporphyria congenita"; "porphyria cutanea  
tarda" which encom passed Gunther's chronic haem atoporphyria  
patients and who manifest acute attacks of abdominal pain. This 
group he later revised to include both symptomatic ("porphyria 

c u tan e a  ta rd a  sym p to m atica"), e n v iro n m en ta lly -in d u c ed  by 
circum stances such as alcoholic cirrosis and hepatom a, and 
hereditary ("porphyria cutanea tarda hereditaria") forms of the 
disease (W aldensrom 1957). W aldenstrom ’s third group "porphyria 
acuta" he subdivided into abdominal, nervous, latent and classical 
form s.

Further classifications includes Schmid et.al.'s 1954 classification 
based on liver and bone marrow porphyrin content. These he named 

"porphyria hepatica" and "porphyria erythropoietica". These two major 
groups w ere further subdivided. The hepatic form into an 

intermittent acute, exhibiting abdominal and or nervous symptoms, a 
cutanea tarda type where skin photosensitisation occurred later in 
life and a mixed type which included patients who manifest 
symptoms which fell into both of the previous catagories.

Goldberg and Rimington (1962 ) extended Schmid et.a l.'s  1954  
classification to include drug induced porphyrias in addition to 
congenital erythropoeitic porphyria, showing skin photosensitisation, 
acute intermittent porphyria, with neurovisceral symptoms but no 
skin photosensitisation, and finally a cutaneous hepatic type which 

they subdivided into hereditary and acquired forms.

The gradual elucidation of the haem biosynthetic pathway and a more 
comprehensive examination of the widely variable symptoms of the 
porphyrias has led to a re-evaluation of the disorders and in addition 

to the tissue type classification (hepatic and erythropoetic) the 

porphyrias may be broadly divided into the non-acute and the acute
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porphyrias. The non-acute porphyrias are characterised by skin 
photosensitisation brought about by the action of light on the 
overproduced porphyrins which accumulate in the skin, while the 
acute porphyrias possess symptoms indicative of an underlying  
central, autonomic and somatic neuropathy.

There is a type of porphyria associated with each enzyme in the haem 

biosynthetic pathway except at the level of the rate limiting enzyme, 
ALAS (figure 2). The nonacute porphyrias are due to enzymatic 
defects  at the levels  of uroporphyrinogen decarb o xy lase , 
uroporphyrinogen cosynthase and ferrochelatase. The acute porphyrias 
are acute in term ittent porphyria (A IP ), va rieg a te  porphyria, 
hereditary ALA dehydratase deficiency and hereditary coproporphyria.

The most common form of acute porphyria is the acute intermittent 
type (Goldberg et.al. 1987) and is due to a deficiency in the enzyme 
PBG deaminase of about 50% (Strand et.al. 1970; Meyer et.al. 1972).

1.7 NEUROPATHY OF ACUTE INTERMITTENT PORPHYRIA.

The existance of a central neuropathy in AIP is indicated by both 

behavioural and histological evidence. Behavioural changes have been 
recorded in the majority of AIP cases. These include a study of 25 
patients by Ridley (1969) where 22 manifest psychiatric symptoms 
which included insom nia, confusion, hallucinations, delusions, 
depression and emotional disturbances. Baker and Watson (1945) 
described a patient as irritable and listless. Waldenstrom (1957) and 
Goldberg (1959) in studies of 321 and 50 cases of AIP respectively 
reported psychiatric symptoms in 55%  and 58%  of the patients 
studied and more recently Gorchein and W ebber (1987) observed 
neuropsychiatric disturbances in an AIP patient. Post mortem  

histological exam ination of fatal A IP cases provides supportive 
structural evidence for the existence of a central neuropathy. Baker 

and Watson (1945) found evidence of cerebral lesions, especially in 
the cranial nerves, the facial, hypoglossal and the dorsal nucleus of 
the vagus being most affected. The involvement of the latter is most 
likely the underlying cause of death in AIP due to respiratory 

insufficiency. Although there was no observed change in the cerebral 
grey matter Baker and Watson noted perivascular demyelination of
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the cerebral white matter. On a neuropathological study of five fatal 
cases of AIP Gibson and Goldberg in 1956 similarly found small foci 
of dem yelination in the cerebral white m atter in addition to 
chrom atolysis in cortical and basal nuclei cells. H istological 
evidence of foci of perivascular demyelination was also found on 
autopsy of an AIP case by Stozel et.al. in 1987. Neuronal loss, gliosis 
and vacuolisation have also been reported in the supraoptic and 

paraventricular nuclei of the hypothalam us (Stein et.a l. 1972; 
Perlroth et.al. 1966; Tschudy et.al. 1975). EEG abnormalities have 
been observed in AIP patients (Ridley 1969). Central neuropathy is 
therefore a hallmark of AIP. By the same token, the incidence of AIP 
is significantly higher in the psychiatric population than in the 
general population (Kaebling et.al. 1961; Tishler et.al. 1985; Goldberg 
et.al. 1987).

The symptoms of AIP also suggest the existence of an underlying 
autonomic neuropathy. Abdominal pain, either local or general, is the 
most common complaint of AIP sufferers (Berlin and Cotton 1950; 
Waldenstrom 1957; Goldberg 1959; Baker and Watson 1945; Goldberg 
and Rimington 1962; Stein and Tschudy 1970; Stolzel et.al. 1987). 
O ther g as tro in tes tin a l sym ptom s include nau sea, vom iting, 
constipation, diarrhoea and abdominal distension. The existence of an 
autonomic cardioneuropathy is manifest by the frequency of 
symptoms such as tachycardia and hypertension (Ridley et.al. 1968; 
Baker and Watson 1945; Stein and Tschudy 1970; Allen and Rees 
1980; Yeung Laiwah e t.a l.1985). In a series of objective autonomic 
cardiovascular function tests on AIP patients both in attack and in 

rem ission parasym pathetic  card io vascu lar re flexes  (va lsa lva  
manoeuvre, heart rate response on standing and heart rate variation 

during deep  b rea th in g ) w ere all abnorm al as was the  
sympathetically-mediated blood pressure response to sustained hand 
grip (Yeung Laiwah et. al. 1985). Although in several cases some of 
the cardiovascular abnormalities persisted in remission most were 
reversible analagous with that of the subjective abdominal and 
muscular pain. The universality of the autononic neuropathy is 

implied by other accompanying features of A IP attacks such as 
excessive sweating and urinary retention problems (Goldberg and 

Rimington 1962; Stein and Tschudy 1970).
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Motor neuropathy is extremely common in AIP and both functional and 

histopathological evidence exists. Muscle weakness and cramp-like 
pains have been reported in the majority of AIP cases (Goldberg 1959; 
Ridley 1969; Stein and Tschudy 1970; Anzil and Dozic 1978; Gorchein 
and W ebber 1987). This weakness although starting in the legs 
frequently involves all four limbs and may occur symmetrically, 
asymmetrically or focally (Baker and Watson 1945; Ridley 1969; 
Anzil and Dozic 1978; Poser and Edwards 1978). Histological 
examination of peripheral nerves from AIP patients have confirmed 

the exis tence of pathological conditions including oedem a, 
demyelination, thinned and irregular axons, axonal vacuolisation and 
chromatolysis in the anterior horn cells ( Denny-Brown and Sciarra 
1945; Gibson and Goldberg 1956; Baker and Watson 1945; Ridley 
1969). Cranial nerves V11, X11 and X show signs of degeneration 
(Baker and Watson 1945). Defective vision observed in some patients 
may be the result of optic nerve neuropathy (Ridley 1969).

Sensory neuropathy is frequently found in AIP patients (Goldberg  
1959; Baker and Watson 1945; Sorensen and With 1971) and may be 
exhibited as sensory loss, paresthesia and numbness.

The cause of the porphyrias are known. They are due to an enzymatic 
defect in the biosynthesis of haem. However, the underlying causes of 
the neurological dysfunction so w idely evident in the acute  
porphyrias remains obscure. The link between the known defect in 
haem synthesis and the observed neurogenic disorder continues to be 
a subject of controversy. A number of hypotheses have been suggested 

as the correlate between the biochemical disorder and the clinical 
symptoms of the acute porphyrias. These hypotheses include a 

depletion of pyridoxal phosphate (Cavanagh 1967; Cavanagh and 
Ridley 1967 ); depletion of glycine ( Piper et al. 1973), depletion of 
zinc (Peters et.al. 1974) or the accumulation of abnormal porphyrin 
products such as porphobilin (Feldman et.al. 1971). The two most 
compelling theories regarding the aetiology of acute porphyric 
neuropathy is that either the haem precursors ALA and /or PBG, which 

accumulate during acute porphyric attacks are neurotoxic or that a 
deficiency in the end product of the pathway, haem, in neural tissue
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results in a reduction of essential haemoproteins. The latter two 
hypotheses will be dealt with in more detail.

1.8 PHARMACOLOGY OF HAEM PRECURSORS.

ALA and PBG are over produced in all types of acute porphyria except 
hereditary ALA dehydratase deficiency and these precursors can be 
detected in the blood, urine and CSF (Moore et. al. 1979; Gorchein and 
W ebber 1987). In hereditary ALA dehydratase deficiency and 
hereditary tyrosinaem ia, where the enzym atic inhibition by the 
abnormal metabolite succinylacetone occurs at the level of ALAD, 
only ALA is over produced (Lindblad et.al 1977; Bird et.al. 1979; Doss 
et. al 1979). Yeung Laiwah and his colleagues in 1987 in a critical 
overview of the pathogenesis of acute porphyria suggest that acute 
porphyric neuropathy may be the result of neurotoxicity due to an 
accumulation of the porphyrin precursors ALA and or PBG. The 
cornerstone of this hypothesis is the observation that the onset of 
the symptoms of acute porphyria is nearly always accompanied by an 
increased excretion of ALA and PBG either together or alone (Becker 
and Kramer 1977). However, some patients have elevated ALA and PBG 
during remission and the excretion of these precursors do not 
correlate well with the clinical severity of the disease (Ackner et.al. 
1961; Gorchein and Webber 1987).

These haem intermediates may accumulate as a result of disordered 
haem biosynthesis either within the neural tissue itself or by the 
nervous systems uptake of extraneuronally produced precursors. Brain 

uptake of ALA occurrs in rodents (Becker et.al. 1974; McGillion 
et.a l.1974) and in chick cultured cerebral hemisphere and glial cells 
(Percy et.al. 1981). Both ALA and PBG have been found in the 

cerebrospinal fluid of AIP patients during periods of crises (Sweeney 
et.al. 1970; Percy and Shanley 1977; Gorchein and Webber 1987). The 

concept of a pharmacological role for the porphyrin precursors ALA 
and PBG has received much attention over the years. PBG possesses 
pharm acological effects in vitro , inhibiting the K+- stimulated  
release of Ach from the rat phrenic nerve diaphragm preparation
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(Feldman et.al. 1971). A neurotoxic role for PBG does not seem likely, 
however, on the basis that hereditary ALAD deficiency and hereditary 
tyrosinaemia patients manifest a syndrome congruent with the acute 
porphyrias yet PBG is not an overproduced precursor in these 
conditions. Shanley et.a l.(!975) reported only transient excitatory  

behaviour following central administration of PBG and Goldberg et.al. 
(1954) found no evidence of pharmacological activity from PBG when 

applied in vitro to isolated tissues or following intravenous  
administration to rabbits and cats. Controversy still exists, however, 
over the putative role of ALA in the development of porphyric 
neuropathy. There exists a considerable body of evidence indicating 

that ALA may be neurotoxic. Changes in the activity of mice occurred 
following administration of ALA systemically (McGillion e t.a l.1973; 
Cutler et.al. 1979) while central administration produced transient 
activity alterations (Shanley et.al. 1975; Pierach and Edwards 1978). 
However, ALA failed to produce any porphyric-like symptoms when 
administered orally to humans (Berlin et.al. 1956; Meyer et.al. 1972) 
or intraperitoneally to rats and cockerels (Berlin et.al. 1956) In vitro 
studies on the effects of ALA are numerous including the inhibitory 
effect on cray fish stretch receptor neuones, (Ditcher et.al. 1977); 
decreased motor nerve conduction velocity (Sima et.a l.1981); reduced 
muscle resting membrane potential (Becker et.al. 1975); postsynaptic 
inhibition of frog gastrocnem ius muscle (Cutler e t.a l. 1978); a 
decrease in Na+/K+ and Mg2+ ATPase activity in cultured chick and rat 
brain neuronal m em branes (Russel e t .a l.1983); a reduction in 
erythrocyte and brain A TPase activity (B ecker e t.a l. 1971); 
stabilisation of nerve and muscle excitable membranes (Feldman  

1968 ); a decrease in ventral root potentials in the hamster evoked by 
dorsal root stimulation (Jordan et.al. 1990). However, in a large 
proportion of these studies large concentrations of ALA in the mMolar 

range were required to elicit effects. Cutler and colleagues in a 
series of experiments on rat and rabbit intestinal preparations have 
im plicated ALA as the possible m ediator of acute porphyric  
neuropathy. The in vitro effects of ALA appear to be species specific. 
In rabbit gut preparations, ALA at high doses of 0.2m M  (Cutler 
et.a l.1982), 3 -4 .5mM (Cutler e t.a l.1990) and 3-6mM (Cutler and Arrol 
1987) exert an inhibitory action on the tone and the contraction 
amplitude of the inherent rythmic activity, with a subsequent
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prostag land in -m ed iated  rebound contracture . These inhibitory  

responses are attenuated by prazosin while unaffected by yohimbine 
and propranolol suggesting that ALA effects are mediated via a- 

receptors (Cutler et.al. 1985). The concentrations of ALA required, 
however, to elicit pharmacological events in rabbit intestine are 
much greater than those which would exist during acute porphyric 
attacks (9 -1 2 mM Gorchein and W ebber 1987). Sim ilar large 

concentrations of ALA (3-6mM, Cutler and Arrol 1987) were required 
to initiate an inhibition of contraction amplitude in human taeni coli. 
Rat small intestine appears to be more sensitive to the effects of 
ALA. At low doses (10nM -50nM  Cutler e t.a l.1991) ALA augments the 
contractile responses of the gut, an augmentation which is enhanced 
by the GABAa receptor antagonist, bicuculine, while the action of 
0.3x1 OmM ALA and above was reduced by bicuculine. The authors 

suggest that the effects of ALA at concentrations which could exist 
during acute porphyric attacks may be due to their action on GABA 
autoreceptors, a suggestion also proposed by Brennan and Cantrill 
(1979) to account for ALA's inhibition of GABA release from rat 
synaptosomal preparations. Therefore, disparity in the literature  
concerning a pharmacological role for ALA in the aetiology of acute 
porphyric neuropathy may be due to ALA's widely variable differential 
species and tissue action.

1.9. HAEM DEFICIENCY IN ACUTE PORPHYRIA.

The concept of a haem deficient state underlying the neuropathy of 
acute porphyria has been proposed by Shanley et.al. in 1977 and Yeung 
Laiwah et.al. in 1987.

The liver and erythropoietic tissues are the major sites of haem  
synthesis (Berk e t.a l..1974). The total liver content of haem in rats 

has been estimated at 70nm oles/g wet weight of which 43%  is 
present in the mitochondrial cytochromes, 32%  in cytochrome P-450, 
17% in cytochrome b5 and 7% in hepatic catalase (Meyer and Marver 
1971; Nichols and Elliot 1974). However, haem synthesizing enzymes 

are present in other tissues including rat brain, heart, adrenal gland 
and testes and the mouse harderian gland ( Percy and Shanley 1979;
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De Matteis et.al. 1981a; Briggs et.al. 1976; Condie et.al. 1976; Tofilon 
and Piper 1980; Margolis 1971). A state of haem deficiency in neural 
tissue could lead to the development of a neuropathy. De Matteis and 
his colleagues in 1981a and 1982 dem onstrated that rat brain 
synthesizes its own haem and the pathway is regulated by end- 
product inhibition by haem on the regulatory enzyme of the pathway 
ALAS, although the activity of this enzyme was much lower in the 

brain than liver (Maines 1980; De Matteis et.al. 1981a) The brain 
possesses mitochondrial cytochromes (Chepelinsky and Arnaiz 1970; 
Bull et.al. 1979) and cytochrome P-450 mediated function (Cohn et.al. 
1977; Nabeshima et.al. 1981). The enzymatic defect in PBG deaminase 
of AIP patients has been identified in the liver (Miyagi e t.a l.1971), 
erythrocytes (Strand et.al. 1972), lymphocytes (Sassa e t.a l.1978), 
fibroblasts and amniotic cells ( Sassa e t.a l.1975). There is no 
evidence to date, however, that the same enzymatic defect is present 
in neural tissue of such patients although it would not be 
unreasonable to assume that such a defect does exist. Assuming that 
PBG deaminase activity is depressed in the neurones of AIP sufferers, 
an additional precipitating factor could compromise the synthesis of 
haem to the extent that a reduction in neuronal haemoproteins is 
consequential to a reduction in the free haem pool. The existence of a 
regulatory free haem pool in rat brain has been supported by evidence 
from D e M atte is  and Ray (1 9 8 2 ) who dem on stra ted  that 
intraventricullary-adm inistered hematin inhibited the rise in ALAS 
activity caused by succinylacetone. Impaired hepatic haemoproteins 
have been observed in patients with AIP, particularly in the 
functioning of the haem containing metabolising enzymes cytochrome 

P-450. Salicylamide and antipyrine metabolism is reduced in some 
AIP patients (Song e t.a l.1974; Anderson e t.a l.1976). Evidence of 
depression in the activity of the m itochondrial haem oprotein  
cytochrome oxidase has also been observed (Goldberg et.a l.1985). A 
deficiency in neural mitochondrial cytochromes could well lead to the 
development of a clinical neuropathy (Labbe 1967).

The neurone is dependent on mitochondrially produced energy for 
functions such as ion pumping, repair, transmitter synthesis and 

axonal transport. The latter is dependent on adequate oxidative 
phosphorylation which in turn is reliant upon normally functioning
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mitochondria (Ochs and Hollingsworth 1971). Jakobsen et.al. 1986  
suggest that porphyric neuropathy may be classified as one of a 
group of diseases caused by a deficiency in axonal transport due to an 
insufficiency in the respiratory cytochrom es. A deficiency of 
mitochondrial cytochromes has a role to play in the clinical 
symptoms of the mitochondrial encephalom yopathies. The term  
"encephalomyopathy" was used to describe a multisystem disease 

asso c ia ted  with "s tructu ra lly  an d /o r fu n ctio n a lly  abnorm al 
mitochondria in the brain and/or muscle" the clinical symptoms of 
which include muscle weekness, dementia, ataxia, seizures and a 
sensory neuropathy (S hap ira  e t.a l. 1977; Petty e t.a l. 1986). 
Deficiencies in mitochondrial cytochrome b (Spiro et.a l. 1970; 
Morgan-Hughes et.al. 1982) and cytochrome oxidase (Willems et.al. 
1977; Petty et.a l. 1986) w ere seen in patients diagnosed as 
possessing this group of diseases. The clinical manifestations of AIP 

bear a close similarity to some of the symptoms of the diseases 
w hich are  c lass ified  under the rubric of m itochondria l 
encephalom yopathies and a deficit in mitochondrial cytochrome 
oxidase has been identified in muscle tissue of patients with 
confirmed AIP even during remission (Goldberg et.al. 1985). A 
malfunction in energy metabolism in the neurones would account for 
both the acute symptoms of the attacks and of the longer lasting 

structural changes.

The successful therapeutic use of exogenous haem in the form of 
haematin provides support for the thesis that porphyric neuropathy is 
a consequence of a haem deficient environm ent. Haemin can 
functionally reconstitute apocytochrom e P -4 5 0  from rat liver 

homogenates and hepatic tryptophan pyrrolase (Farrell and Correia 
1980; Bornheim et.al. 1985; Badaway and Evans 1975). Haematin has 
been employed therapeutically by several groups and although the 
treatment outcome is variable biochemical improvement is seen in 

most cases and clinical improvement results in almost 50%  of cases 
(McColl et al. 1981). Haematin treatment, however, is not without 
adverse side effects, particularly phlebitis, (McColl et. al. 1981; 
Pierach 1982; Tokola 1988) prolonged blood clotting times and 

platelet aggregation (Glueck et.al. 1983). Goetsch and Bissel in 1986 
observed that haem atin is unstable over a 24hr. period, this
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breakdown showing marked temperature dependency. Additionally, the 
metabolites of the haemin have no therapeutic value and it is these 
metabolites and not the haematin itself which are causing the 
coagulation effects . These problem s were a lleviated  by the 
development of a stable form of haematin, haem arginate (Tenhunen 
et.al. 1987). This compound is the reaction product of haemin and 
L-arginine in a mixture of propylene glycol, ethanol and water. Haem  

arginate proves just as therapeutica lly  successful as freshly  
prepared haematin in reducing both haem precursor levels and clinical 
symptoms but is without the side effects of haematin (Tokola 1988; 
Tokola et. al. 1986; Fontaine et.al. 1987; Mustajoki et.al. 1986;1989). 
Haem  arginate improves the abnorm al antipyrine clearance in 
porphyric patients indicating that exogenous haem can functionally 
restore cytochrome P-450 metabolising capacity (Tokola et. al 1988). 
The therapeutic value of haem arginate may, therefore, be due to its 
ability to reconstitue haem deficient haemoproteins. However, this 
compound could be exerting its effect by virtue of its ability to 
reduce porphyrin precursor levels which may be neurotoxic. 
Nevertheless, these two hypotheses concerning the aetiology of acute 
porphyric neuropathy may not be mutually exclusive and both 
precursor toxicity and haem deficiency together may constitute the 
link between the biochemical, clinical and neurological phenomena 

associated with acute porphyria.

1.10. HAEM SYNTHESIS BLOCKING AGENTS.

It has been recognised for over 100 years that some chemical agents 
have the ability to disrupt haem metabolism. Figure 3 shows the haem 

biosynthetic pathway and the level at which some chemicals can 

interfere with haem synthesis.

Stockvis (1889) recorded the first case of acute porphyria in an 
elderly lady who passed dark red urine, containing hematoporphyrin, 
following Sulphonal treatment. Since this report there has been a 
p le thora  of com pounds which have been attribu ted  with 

porphyrinogenic properties. Sedorm id (allylisopropylacetyl urea) 
produced a condition in both rabbits and rats which in many ways
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resembled the biochemical profile of acute intermittent porphyria 
(Schm id and S chw artz 1 9 5 2 ). An analogue of sedorm id , 
a lly lisopropy lacetam ide (A IA ) induced a sim ilar b iochem ical 
porphyrinogenesis in rabbits (Goldberg 1954a). An experim ental 
porphyria was observed in rabbits on adm inistration of the 
s u b s titu te d  d ih y d ro p y r id in e , 3 ,5 -d ie th o x y c a r b o n y l 1 ,4 -  
dihydrocollidine (DDC) (Soloman and Figge 1959). The cause of an 

outbreak of cutaneous porphyria in Turkey between 1955 and 1959  
was identified as being due to the contamination of seed grain with 
the fungicide hexochlorobenzene, an epidemic that affected over 
3 ,000  people with a mortality rate of 10%  (Cam  1963). The  
importance of barbiturates in relation to human acute porphyria was 
suspected fairly soon after the introduction of these drugs into 

clinical therapy. Dobrschansky in 1906 described a typical case of 
acute porphyria in a patient receiving treatment with 5 ,-5-diethyl 
barbituric acid. The toxic effects of lead were first recorded in the 
4th. century B.C. by Hippocrates who described an abnormal colic in a 
lead worker, and the Roman’s recognition of lead toxicity prompted 
the use of primitive protective m easures (see Hunter 1962). 
Succinylacetone (4-6 dioxoheptanoic acid) an abnormal metabolite 
produced in patients with hereditary tyrosinaem ia exerts an 
enzymatic block on the haem pathway at the level of ALAD.

1.10.1. 3,5-DIETHOXYCARBONYL 1-4, DIHYDRO 2,4,6- 
TRIMETHYL COLLIDINE (DDC)

The substituted dihydrocollidine, 3,5-diethoxycarbonyl 1-4, dihydro 

2 ,4 ,6  trimethyl collidine (D D C ) lowers ferrochelatase activity in 
rodents (Onisawa and Labbe 1963; Tephly et. al. 1979; De Matteis 
et.al. 1973), in 17 day old chick liver cells (Rifkind 1979) and in 

chick embryo hepatocytes (Cole et.a l. 1981). Analogues of DDC, 
d iffering  in the ir 4 -a lky l substituents , possess d iffe ren tia l 
inhibitory activity. Both the 4-m ethyl and its 4-ethyl analogue  

produce a marked inhibitory action on the hepatic chelatase enzyme 
whereas the 4-desmethyl analogue is completely inactive (Cole et.al.
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1980). In a more comprehensive examination of the porphyrinogenic 
action of DDC, and its analogues, in their ability to block 
ferrochelatase activity in cultured chick embryo hepatic cells Marks 
et. al. (1987) demonstrated that the 4-methyl, 4-ethyl and 4-propyl 
analogues were the most potent inhibitors, an action which decreased 
as the length of the 4-alkyl chain increased reaching total inactivity 
with the isobutyl analogue.

DDC does not directly inhibit ferrochelatase. It has a profound 
inhibitory action on the enzyme when administered in vivo to rats and 

mice but lacks this action when added to a homogenate or to an 
enzyme preparation (Onisawa and Labbe 1963) . The authors suggested 
that in vivo the DDC may be converted to a totally different 
compound, which in turn is inhibitory for ferrochelatase. In support 
of this suggestion is the observation that 2-diethylaminoethyl 3,3- 
diphenylpropylacetate (SKF 5 2 5 -A ), an inhibitor of the drug 
m etabolising enzym es, cytochrom e P -450  (Tephly e t.a l. 1980) 
prevents the decrease in ferrochelatase activity (De Matteis et. al. 
1973). Further evidence implicating cytochrome P -450  in the  
activation of DDC into a ferrochelatase inhibitor comes from the 

observation that DDC was not very effective at inhibiting the enzyme 
in newborn animals where hepatic cytochrome P-450 is low (see De 
Matteis e t.a l.1987) Additionally, DDC causes a rapid loss of hepatic 

cytochrome P-450 (W ada et. al.1968).

Evidence, therefore, indicates that DDC decreases ferrochelatase  
activity in vivo after being metabolised to an active compound with 
inhibitory capabilities. Cytochrome P -450  is a m ediator in this 
blocking of ferrochelatase as the quantity and activity of this enzyme 
declines at the same time as the occurrence of ferrochelatase  

inactiv ity and inhib itors of cytochrom e P -4 5 0  protect the  
ferrochelatase from inhibition.

A porphyrin was extracted from the livers of mice, treated with DDC, 
which could inhibit ferrochelatase activity (Tephly et. a l.1979). De 
Matteis et. al. (1980a; 1980b) demonstrated that this porphyrin, a 
green  p igm ent, ex trac ted  from  m urine livers produced a 

ferrochelatase enzym e block which once initiated could not be 
reversed by the addition of substrate and concluded that the
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inhibition was irreversible. Following DDC administration, a green  
pigment was extracted from rat liver by Ortiz de Montellano et. al. 
(1981a) and was fractionated into four components by high pressure 
liquid chromatography. Ortiz de Montellano et. al. (1981a; 1981b) 
identified these fractions as the four regioisomers of N-methyl 
protoporphyrin 1X all of which possessed hepatic ferrochelatase  
inhibitory activity in the rat. Utilising the discovery by Loev and 

Snader (1 9 6 5 ) that during the oxidative process leading to 
aromatisation, a number of dihydropyridines could loose their 4-alkyl 
group in a reactive form and transfer this to a suitable nucleophile, 
De Matteis et.a l. (1987) suggested that this could explain the
inability of DDC’s oxidised analogue 3,5 diethoxycarbonyl collidine to 
promote the formation of N-methyl protoporphyrin in vivo, explaining 
the drugs failure to block ferrochelatase. Further studies on N-
alkylated protoporphyrin, either isolated from livers from animals 
treated with DDC (M cClusky e t.a l. 1986) or with chem ically  
synthesised porphyrins (De Matteis et.al. 1980b) confirmed these 
compounds to be potent inhibitors of ferrochelatase.

The 4-ethyl DDC compound has received considerable attention 

regarding its ability to inhibit the ferrochelatase enzyme. As with 
DDC this analogue has been shown to cause the formation of a green 

pigment in the livers of mice and the chemical isolated from this 
tissue was found to be 4-ethyl protoporphyrin 1X (De Matteis et. al. 
1981b). Augusto (1982) established that the 4-ethyl group is lost as 
a radical as a result of the compound's oxidation by cytochrome P- 
450. The oxidation of the nitrogen in 4-ethyl DDC by cytochrome P- 
450 proceeds in a one-electron step releasing the ethyl radical into 
the cytosol where it can react with any of the nitrogen atoms on the 

tetrapyrrole moiety of the cytochrome P-450. This reaction causes
the ring on which the alkyl group attaches itself to be pulled out of
the plane of symmetry of the haem moiety (De Matteis et. al. 1982) 
resulting in the release of the alkylated protoporphyrin from the 
cytochrome P-450 apoprotein. In contrast to the situation with the 
products of DDC metabolism, where all the regioisomers have a 
similar degree of inhibitory action, the four regioisomers of 4-ethyl 
protoporphyrin 1X products are not equally potent in their ability to 
block ferrochelatase, the A and B regioisomers possessing a 300
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times greater inhibitory action than the C and D isomer. (Ortiz de 

Montellano et.al. 1980a; Ortiz de Montellano et. al. 1981c; De Matteis 
et. al. 1983). The various cytochrome P-450 isoenzymes can alter the 
proportion of regioisomers formed from 4-ethyl DDC, Phenobarbital- 
inducable isoenzymes increasing the proportion of the A ring isomer 
at the expense of the C and D ring isomers (De Matteis et. al. 1983).

Once these alkylated porphyrins are formed it is assumed that the 
porphyrin is taken up into the mitochondria where it binds to the 
ferrochelatase enzym e. N-methyl protoporphyrin is a high affinity, 
tight-binding inhibitor of the enzyme (Dailey and Fleming 1983).

DDC and its analogues, therefore, exert a dual assault on the haem  
biosynthetic pathway. Firstly, they destroy cytochrome P -450, a 
haem containing protein, creating a demand for increased haem  
production to replace this enzym atic moiety and secondly the 
pathway is compromised by the N-alkyl protoporphyrin metabolite's 
ability to inhibit the activity of the last enzym e in the haem  
biosynthetic pathway. Mackie and Marks (1989) argue that both 
cytochrome P-450 destruction and ferrochelatase inactivation have a 
role to play in the disruption of the haem pathway, demonstrating 
that N-ethyl DDC and 4-isobutyl DDC, an analogue lacking  
ferrochelatase inhibitory effects, cause a synergistic induction of 
ALAS.

1.10.2. ALLYLISOPROPYLACETAMIDE.

Following the first observation by Goldberg (1954b ) that the 
barbiturates containing ally I groups w ere the most potent in 
producing a rise in rabbit urinary porphyrins, it was found that the 
a lly l c o n ta in in g , n o n -h y p n o tic  a n a lo g u e  of s e d o rm id , 
allylisopropylacetamide also produced a biochemical porphyrinuria  
(Goldberg 1954a). An abnormal green pigment accumulated in rabbit 
livers following treatment with AIA (Schwartz and Ikeda 1955) and 
it was subsequently determined that the AIA molecule contributed in 
some way to the composition of this green pigment as the pigment
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acquires the 14C labelling in animals treated with 14C-labelled AIA  
(Ortiz de Montellano et. al. 1978). As is the case with DDC cytochrome 
P -450 is a vital component in the formation of the pigment in 
response to AIA adm inistration. An increase in hepatic ALA 
production was found in AIA treated mice concommitant with a 
reduction in hepatic haem, particularly in the microsomal fraction 

(W ada e t.a l.1968), a finding confirmed by De Matteis (1971). The 
destruction of cytochrome P -450 by AIA requires oxygen and is 
dependent on the presence of NADPH, the cofactor essential for the 
metabolism of drugs by the liver microsomal fraction, a process 
which is inhibited in vivo by the cytochrome P-450 inhibitor SKF- 
525A (Ortiz de Montallano et. al., 1979; De Matteis, 1971; Ortiz de 

Montellano and Mico, 1981). The latter authors suggest that the 
inactivation of cytochrom e P -450  by AIA is a "suicidal” or 

"mechanism-based" process.

Phenobarbitone-inducible isoenzymes appear to be the main target 
for AIA destruction (Waxman and Walsh 1982). In contrast to the 

phenobarbital-inducible cytochrome P -450 subspecies attacked by 
AIA the 3-m ethyl cholanthrene-inducible subspecies is relatively  
resistant to destruction by AIA. This inactivation of cytochrome P- 
450 by AIA involves prosthetic haem alkylation with the production 

of an N-alkylated protoporphyrin 1X, the green pigment observed in 
treated liver tissue and identified by NMR spectroscopy (Ortiz de 
Montellano et. al. 1978;1979). The formation of a drug-porphyrin 
adduct, as a result of cytochrome P -450 metabolism, strips the 
haemoprotein of its prosthetic haem moeity , in a similar manner to 
that of DDC metabolism, leaving the apoprotein intact (Ortiz de 

Montellano and Mico 1981; Ortiz de Montellano et. al. 1983) The 
cytochrome P -450 apoprotein left after the isoenzymes destruction 

by AIA remains intact as Farrell and Correia (1980) and Bornheim et. 
al. (1985) demonstrated that the cytochrome P-450 apoprotein can be 

functionally reconstituted by exogenous haem.

This production of a green pigment in the livers of animals treated  
with AIA is, therefore, very similar to the mechanism of pigment 
production resulting from the adm inistration of DDC and its 
analogues. Both groups of compounds are acted upon by cytochrome P- 
450 and in the process the haem moeity of the isoenzyme is alkylated
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and stripped away from its apoprotein leaving an alkylated  
protoporphyrin 1X, the intact apoprotein and the residual part of the 
drug. However, in contrast to the alkylated protoporphyrins formed by 

DDC and some of its analogues, the porphyrin formed by AlA's 
interaction with cytochrome P -450  has no inhibitory action on 

ferrochelatase (De Matteis and Gibbs 1980). The porphyrinogenic 
action of AIA occurs only as the result of this compounds ability to 

destroy the haemoprotein cytochrome P-450. It has been proposed 
that this drug mediated alkylation and loss of cytochrome P -450  
prosthetic haem permits the apocytochrome to utilise haem from the 
"free" or uncom mitted regulatory haem pool with which the  
apoprotein is in intimate contact thereby creating a demand for 
increased haem production (Correia et.al.1979; De Matteis 1978).

1.10.3. SU CC INYLACETO NE.

4,6-Dioxoheptanoic acid (succinylacetone) is a seven carbon keto acid 
(figure 4) discovered in the urine of patients suffering from  
hereditary tyrosinaemia as a result of an enzymetic deficiency in the 
tyrosine d eg radative  pathw ay at the level of the enzym e  
fumarylacetoacetase (Lindblad et. al. 1977). This enzyme normally 
has a multiple catalytic action in the conversion of fumaryl 
acetoacetic acid to fumaric acid and acetoacetic acid to succinic acid 
and acetoacetic acid A deficiency in this enzyme, however, diverts 
the conversion of fumaryl acetoacetic acid to succinyl acetoacetic 
acid which in turn is m etabolised via a different pathway to 
succinylacetone (Sassa and Kappas 1983). Patients with this disorder 

have low ALAD activity (Lindblad et. al. 1977) and Sassa and Kappas 
(1983) demonstrated that both urine from patients with tyrosinaemia 
and succinylacetone itself profoundly inhibits ALAD isolated from 
human erythrocytes, mouse and bovine liver. Subsequent to the 
inhibition of ALAD, succinylacetone decreases total cellular haem and 
the haemoprotein cytochrome P -450 in cultured chick hepatocytes 
(S assa and Kappas 1983) and inhibits 14C -labelled  glycine 
incorporation into haem by over 90%  in cultured rabbit reticulocytes. 
This block is overcome by the addition of porphobilinogen but not 
delta-aminolaevulinic acid, indicating that the site of inhibition was 
ALAD. 59Fe incorporation into haem is also profoundly inhibited 
although 59Fe uptake into the reticulocytes is increased (Ponka et.al.
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1982), this latter observation being consistant with other work 

which indicates that iron uptake by reticulocytes is feedback- 
inhibited by intracellular haem (Ponka and Neuwirt 1969; Ponka et.al. 
1974; Schulman et.al. 1974).

Succinylacetone irreversibly inhibits hepatic ALAD and evidence  
indicates that the inhibitor reacts with the catalytic site of the 

enzyme. Succinylacetone is a structural analogue of ALA in which the 
amino group of the latter is replaced by an acetyl group (figure 4) 
Increasing concentrations of ALA at levels which do not increase PBG 
formation in the uninhibited enzyme do increase PBG formation in the 
presence of a fixed concentration of inhibitor, indicating that the 
substrate is competing with the inhibitor for reaction with the 

enzymatically active site (Tschudy e t.a l.1981). Nandi and Shemin 
(1968) showed that labelled ALA reacts with ALAD to form a Schiff 
base and that the ALA could be irreversibly bound to the enzyme by 
sodium borohydride reduction of the Schiff base to a secondary amine. 
Utilising this method as an investigative tool Tschudy et.al. (1981) 
demonstrated that succinylacetone prevented the formation of the 
Schiff base between ALA and the active site of the enzyme and 
suggested that the succinylacetone itself com bines with the 

enzymatic site. The kinetics of inhibition of ALAD by succinylacetone 
is characteristic of an irreversible inhibitor in that inhibition 
increases progressively with time, either when succinylacetone and 
the ALA substrate are added simultaneously or when succinylacetone 
is added to the enzymatic medium prior to the substrate. Further 
supportive evidence for succinylacetone's irreversible inhibition of 
ALAD comes from the fact that the activity of the inhibited enzyme 
is not restored after dialysis against water or buffer containing the 

sulphydryl protecting agent dithiothreitol, which protects the SH 
groups necessary for enzymatic activity, a situation which was the 
same in both the presence or absence of Zinc (a necessary cofactor in 
the enzymatic activity of the enzyme) (Tschudy e t.a l.1981).

Barnard et.al. (1977) and Battle et.al. (1978) suggest that under 
normal circumstances two ALA molecules align themselves at two 

adjacent sites on the enzym e and when alignment is complete, 
aromatisation to PBG proceeds. Labelling experiments carried out by 

Tschudy et.al. (1981) indicate that only one site need combine with
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succinylacetone to inhibit formation of PBG. The ALAS induction 
observed following ALAD inhibition by succinylacetone is thought to 
occur when inhibition is sufficient to diminish haem synthesis to the 
extent that the negative-feedback repression of haem on ALAS is 
allev ia ted .

Succinylacetone has been identified as an inhibitor of ALAD in a 
variety of tissues. Ebert et.al. (1985) and Weinbach and Ebert (1985) 
demonstrated an inhibition of the growth of L1210 leukemia cells by 
succinylacetone which they proposed was due to a decrease in haem 
production. In these studies haematoporphyrin uptake into the cells 
was also increased indicating that a decrease in intracellular haem  
results in a lifting of the repressive action of haem in porphyrin 
uptake. The erythropoietic system of rabbits is similarly subject to 
inhibition by this compound at the level of ALAD. Haem synthesis is 
inhibited in both control and erythropoietin-stimulated bone marrow 

cells in a dose dependent fashion, a blockade which is partially 
overcome by porphobilinogen or protoporphyrin 1X (Beru et.al. 1983).

Patients with this disorder of the tyrosine degradative pathway 
excrete excessive amounts of delta-am inolaevulinic acid (ALA) in 
their urine (Gentz et.al. 1969; Kang 1970) and a clinical syndrome 
resembling that of acute intermittent porphyria is evident (Strife et. 
al. 1977).

1.10.4. LEAD.

In 1895, Stockvis found an increase in urinary porphyrins in lead 
poisoned rabbits and since then a wealth of studies have also shown 
that lead poisoning results in the increased excretion of porphyrins 
and their precursors (Goldberg 1968,1972). Lead causes a marked 
disruption in haem biosynthesis by inhibiting at least three enzymes 
in the pathway (Campbell et.al. 1977). Porphyrin precursors which 
have been shown to increase following exposure to lead include ALA 
(Haeger 1957; Haeger-Aronsen 1960); coproporphyrin (Duesberg 1931; 
Grotepass 1932); PBG (Gibson et. al. 1968); protoporphyrin 1X (Moore 

and Goldberg 1974; Lamola and Yamane 1974)
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ALAD and ferrochelatase are enzymes which are adversely affected 
by lead (Goldberg1968). Campbell et.al. in 1977 also found a marked 
inhibition of ALAD, ferrochelatase and coproporphyrinogen oxidase 
activity in patients suffering from lead poisoning, an inhibition 
which occurred concomitantly with an increased ALAS activity. 
Further evidence of lead's ALAD inhibitory action comes from Millar 
et.al. (1972) and Beattie et.al. (1972).

Although the precise mechanism by which lead inhibits ALAD is not 
as yet known, Moore et.al. (1987) suggest that lead binds to the 
sulphydryl groups, necessary for enzyme function (Wilson et.al. 1972) 
or that lead may replace the Zinc co-factor, the other prerequisite 
for ALAD activity (Cheh and Neilands 1973). In support of this latter 
hypothesis is the observation by Finelli et.al. in 1975 that ALAD 
inactivation in erythrocytes exposed to lead can be reversed by the 
addition of Zinc. Sulphydryl groups are also necessary for normal 
ferrochelatase activity and Porra and Jones (1963a;1963b) suggest 
that lead may interfere with these essential groups in a similar 
manner to that suggested for ALAD. The mechanism by which lead 
interferes with coproporphyrinogen oxidase still remains obscure.

In addition to the accumulation of haem precursors in the blood and 
urine upon lead poisoning there is also evidence of a resulting haem 
deficit. ALAS is increased, a phenomenon which is regarded as an 
indication of a reduction in the uncommitted haem pool and a 
subsequent release of ALAS from its repressive negative-feedback  
control by haem. The activity of the haemoprotein, cytochrome P-450  
is compromised in some patients as a consequence of lead exposure 
Meredith et.al. (1977) observing a decrease in cytochrome P -450  

activity, as measured by the isoenzyme's ability to metabolise the 
xenobiotic phenazone (antipyrine) while in lead-exposed rats an 
analagous im paired drug m etabolism  and depressed hepatic  
cytochrome P -450 level was evident (Alvares et.al. 1972; Scoppa 

et.al. 1973 and Goldberg et.al. 1978).

There is am ple evidence, therefore , that lead exposure has 

detrimental effects on the haem biosynthetic pathway and many of 
the clinical features of lead poisoning, such as neuropathy, abdominal
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pain and constipation are similar to those of the acute porphyrias, 
which are also caused by defects in the enzymes of the haem  
biosynthetic pathway.

1.10.5. PHENOBARBITONE

In 1954(b) Goldberg observed that a variety of barbiturate analogues 
were capable of raising porphyrin excretion in rabbits and DeVerneuil 
et. al. in (1983) showed that phenobarbital significantly reduces 
uroporphyrinogen decarboxylase activity in chick hepatic cells. It has 
been known for many years that phenobarbitone is a potent inducer of 
the microsomal metabolising enzymes, cytochrome P-450 (Rem m er 
1959; W axm an and W alsh 1982 ). It is this last action of 
phenobarbitone which exerts the greatest stress on the haem  
biosynthetic pathway and the barbiturates are a major class of drug 
reported to be unsafe for use in patients diagnosed as porphyric 
(Moore et.a l. 1987). Additionally, phenobarbitone increases the 
amount of alkylated protopophyrins formed, in the liver, from DDC and 
AIA (De Matteis et.al. 1982b).

The normal biosynthesis of haem can, therefore, be disturbed either 
genetically, as in porphyria, by an enzymatic defect or by chemical 
intervention at the synthetic enzyme level or by disturbance of the 
pathway's equilibrium.

1.11. Main aims of the thesis.

The biochemical profile of the porphyrias are explained by a genetic 
defect in haem synthetic enzymes. However, the aetiology of the 
symptoms of acute porphyria still defies elucidation. This study 
examines two hypotheses regarding the underlying causes of the 
clinical symptoms of the acute porphyrias. Firstly, the accumulating 

precursors may be neurotoxic. The effects of the haem precursors
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will be exam ined for evidence of toxicity. Secondly, porphyric 
neuropathy may be due to a state of neural haem deficiency. This
second hypothesis will be examined by the use of an animal model of
porphyria employing porphyrinogenic chemicals to inhibit haem  
synthesis. Evidence of a developing neuropathy will be sought
following treatm ent with these agents which are known to reduce
haem availability. As the control of haem may not be the same in 

different tissues a range of haemoproteins will be measured in the 
liver, blood and the brain. The liver and blood are the two main 
haemoprotein containing tissues and the brain is important as it is 
the manifestation of defects in neural tissue which causes acute 

porphyric neuropathy.
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The evidence already cited in the general introduction demonstrates 
the controversy that exists over the putative neurotoxic role of the 
haem precursors ALA and PBG. Only sparse evidence exists 
implicating PBG as a neurotoxic agent. On the other hand ALA does 
elicit pharmacological effects both at levels which could exist during 
acute porphyric attacks, (Russel et.al 1983 (lOpM); Cutler e t.a l.1978  
(3-38juM); Cutler et.al. 1991 (10-50nM); Jordan et.a l.1990 (5 0 j l iM ))  and 

at large unphysiological concentrations, (Becker et. al. 1971 (2mM); 
Ditcher et.al. 1977 (0.5-5m M); Cutler et.al. 1985 (0.23-7.6m M ); Cutler 
and Arrol 1987 (3-6mM); Cutler et.al. 1990 (3-4.5m M ); Russel et. al. 
1983 (1mM); Feldman et. al. 1968 (6mM)). There are also species and 
tissue differential effects of this compound. In rabbits and human 
intestinal preparations ALA induces a reduction in tone and 

contracture amplitude whereas in the rat the same agent causes an 
increase in intestinal tone, an effect also elicited in rabbit gastric 
fundus in large concentrations (0.1 -3mM) (Cutler et. al. 1990). In the 
Crayfish stretch receptor neurones 1-2mM of ALA are required before 

effects are seen (Ditcher et. al. 1977) whereas in hamster spinal cord 
neurones 50|uM of ALA inhibits transmission (Jordan et.al. 1990). ALA 

at 10pM reduces N a+/K + ATPase activity in cultured neurones  

whereas a larger concentration of 1mM is required to inhibit Mg2+ 
ATPase activity in the same tissue (Russel et.al. 1983).

Different types of nerves may, therefore, possess a differential 
sensitivity to the neurotoxic action of ALA. The present study 

examines the effects of ALA and to a lesser extent, PBG on a variety 
of in vitro nerve/ muscle preparations where not only are the nerves 
anatom ically distinct but the muscle response is m ediated by 
d iffe ren t n eu ro tran sm itte rs . The contraction  of m am m alian  

intestinal smooth muscle is m ediated by cholinergic muscarinic 
neurotransmission while inhibition of this tissue is sympathetically 
controlled by the transm itter noradrenaline. A range of smooth 
muscles elicit an inhibitory response which is mediated by an as yet 
unknown transm itter which is neither adrenergic nor cholinergic 
(NAN C). In the anococcygeus, this NANC inhibitory response is 

m ediated by nitric oxide acting post-synaptica lly  on the  
haemoprotein, guanylate cyclase. In the vas deferens, however, and 

possibly the taenia coli, the NANC motor and inhibitory responses
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appear to be mediated by the purine, adenosine triphosphate (ATP), 
acting, in the vas deferens and some vascular tissue, in concert with 
noradrenaline.

The effects of ALA were examined on six different rabbit tissues, 
the distal colon preparation, perfused ear artery, anococcygeus, 
taenia coli, jejunum and vas deferens. The haem precursor PBG was 

exam ined for pharm acological action on the N A N C -m ediated  
inhibitory response of the rat anococcygeus muscle. The possibility 
that ALA would show toxicity only in tissue already depleted of haem 

was exam ined in the anococcygeus and vas deferens from rats 
pretreated with porphyrinogenic agents. These treatments are dealt 
with in more detail in chapter 3 of this thesis.
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2.1.1. Physiological salt solution:

Krebs' solution with the following composition (mM) was used 
throughout the investigation:

NaCI, 118.4; N aH C 03, 25.0; NaH2P 0 4, 1.13; KCI, 4.7; CaCI2) 2.7; 
MgCI2> 1.3; glucose 11.0; pH 7.4. The solution was bubbled with a 

mixture of 95% 0 2: 5% C 0 2 obtained from Air Products, Scotland.

2.1.2. Chemicals:

5-Aminolaevulinic acid HCI (ALA); Porphobilinogen (PBG); Histamine 

acid phosphate; Carbamylcholine chloride; were obtained from Sigma 
Co.Ltd. and guanethidine monophosphate from Ciba Laboratories, 
England.

ALA was prepared daily as a stock solution dissolved in water and 
brought to a pH of 7.0 with 0.5M NaOH. Porphobilinogen was prepared 
as a stock solution and frozen in aliquots.

2.1.3. TISSUE PREPARATION.

In the first part of the present study the effect of haem precursors 
w ere exam ined on 8 d ifferen t isolated innervated  muscle 

preparations .

All tissues were set up in isolated organ baths containing Kreb's 

solution at 37°C and gassed with 95% 0 2/5%  C 0 2.

2.1.3.1 RABBIT TISSUE

Rabbits of either sex were killed by C 02 asphyxiation and 

exanguinated.

a) Distal colon:

This tissue was set up as reported by Garry and Gillespie (1954). The 
abdominal skin was incised by a midline cut. The muscle wall was 
opened, the symphysis pubis split with a sharp scalpal blade and the 
pelvic ring forcibly opened by dislocation of the sacro-ileac joints. 
The filaments of origin of the pelvic nerves, which convey the pre-

3 8



CHAPTER 2 METHODS

synaptic parasympathetic outflow from the 2nd., 3rd. and 4th. sacral 
nerve rootes were identified on either side of the colon. The two 
pelvic nerves were ligatured separately as close to their origin from 
the sacral roots as possible using fine thread. The lumbar colonic 
nerves, which convey the post-ganglionic sympathetic outflow from 
the inferior mesenteric ganglion to the colon, were ligatured at their 
origin from the ganglion, the ligature including the lumbar colonic 

vein. The colon itself was then cut through, the lower section about 
1cm. caudal to the pelvic nerves, the upper section 4-5cm. rostral to 
this. The upper cut was continued through the mesocolon above and 
parallel to the inferior mesenteric artery following it to its origin 
from the aorta. The inferior mesenteric artery was cut through and 
the preparation removed to a Petri dish containing oxygenated Kreb's 
solution. Faecal pellets were removed gently from the anal end. The 
preparation was suspended as a Magnus preparation in a 50ml. 
isolated organ bath. The caudal end of the colon was fixed by a loop of 
thread to a hook and the cranial end attached by a thread to an 
isotonic strain gauge. With the preparation suspended above the organ 
bath the ligatures attached to the nerves were threaded by means of a 
fine needle through the condom rubber diaphragm of the two fluid 
filled electrodes. These electrodes consisted of two Ag/AgCI ring 
electrodes (15mm. diameter) recessed in a Perspex shell. The two 
halves of the electrode fitted tightly into each other separated by a 
rubber diaphragm. The Kreb's solution of the bath had free access to 
the first chamber whereas the second was filled with Kreb's prior to 

sealing with a Perspex disc. Each set of electrodes was cleaned and 
chlorided in 0 .1M  HCI each morning prior to the start of the 
experiment. Both pelvic nerves were placed in the lower electrode 
and the lumbar colonic nerves in the upper electrodes. The nerves 

were pulled gently into place, the closed half cell of each electrode 
filled with Kreb's and sealed with the Perspex disc. The ligature 
attached to the nerves was caught between the Perspex shell of the 
electrode and this disc, thereby fixing the nerve in position across 

the electrodes. The whole assembly was racked down into the warmed 
Kreb's solution and 2gm. of initial tension placed on the tissue. The 
preparation was left for at least 30 min. to equilibrate before the 

start of the experiment.
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b) Anococcygeus muscle:

The rabbit anococcygei are a pair of well developed smooth muscles 
related to the terminal colon. (Langley and Anderson 1896). This 
muscle possesses a rather sparse motor adrenergic innervation and 
an NANC inhibitory innervation (Creed et. al. 1977). The muscles 

originate from the upper coccygeal vertebrae. They lie behind the 
terminal colon about 1cm. from the anal margin pass on either side of 
the colon with some fibres ending within the longitudinal external 
muscle of the colon. The muscles were identified lying on the lateral 
aspect of the distal colon, ligatured and dissected away from the 
distal colon for a few mm. The colon was cut through at a point 
approximately 6cm cranial to this point and the colon dissected 
away from the underlying mesocolon until the point of origin of the 

two anococcygei muscles was identified at the coccygeal vertebrae. 
The muscles were ligatured at their point of origin and dissected out 
of the animal. Each muscle was passed through a Ag/AgCI ring 
electrode and its lower end tied to a similar hook electrode which 
acted as the lower fixed attachment. A thread from the other end of 
the tissue was connected to an isometric strain gauge, the muscle 
placed under an initial tension of 1g. and left to equilibrate for 30 
min. prior to the start of the experiment.

c) Ear artery:

The central ear artery of the rabbit receives a noradrenergic  
innervation with ATP as a candidate for a cotransmitter in the 

pressor response of this tissue. (Kennedy et. al. 1986)

The ears were removed from the rabbit and shaved. The central ear 
artery was identified and a score made laterally on either side of the 
vessel with a scalpel blade. The skin above the artery was peeled 
away exposing the underlying vascular bed. The artery was dissected 
out of the ear and placed in a Petri dish containing Kreb’s solution. 
The vessel was cannulated with a plastic cannula whose diameter 
was sufficient not to contribute significantly to the total resistance 
of the system. 2-3cm. lengths of artery were threaded through a pair 
of Ag/AgCI ring electrodes, placed in a 25ml. organ bath containing
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Kreb's and perfused with warm Kreb's solution at a rate of 3ml./min. 
The perfusion pressure was measured by a Statham pressure 
transducer on a side arm.

d) Taenia coli:

The Taenia coli is a condensation of the longitudinal muscle of the 
caeum. The taenia caeci receives both exitatory parasympathetic  
nerves and a sparse inhibitory sympathetic innervation. In addition, 
like many other parts of the gastrointestinal tract, the taenia  
receives an inhibitory NANC innervation whose transmitter is as yet 
unknown.

Strips of this longitudinal muscle of the rabbit caecum were cleaned, 
the mucosa removed and the lateral portions trimmed away to leave a 
3mm. broad medial strip of muscle. 2cm. portions were drawn 
through a single Ag/AgCI ring electrode and attached to a lower hook 
electrode. A thread from the cranial end of the tissue was attached 
to an isometric strain gauge, the tissue placed under an initial 1g. of 
tension in a Kreb's filled 10ml. organ bath and left to equilibrate for 
30min. before the start of the experiment.

e) Vas deferens.

The rabbit vas deferens receives a dense noradrenergic innervation 
and responds to field stimulation like the rat vas deferens. Each vas 
deferens was ligatured close to the epidydimus and again near the 
junction with the prostate, cut and removed to a Petri dish containing 

Kreb's solution. The tissue was cleared of any residual connective 
tissue and blood vessels. A 2.5cm. portion of the epidydimal end of 
the tissue was attached to a hook electrode similar to that used for 
stimulation of the anococcygeus and taenia coli muscle and a thread 

connected the cranial end of the tissue to an isometric strain gauge. 
The tissue was placed under an initial tension of 1gm and left to 

equilibrate for 30min. before the start of the experiment.

e) Jejunum.

The abdomen was opened and the jejunum identified. The intestine 
was cut at a point 5 -10cm. below the stomach and a length of

4 1
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intestine taken from here caudally towards the caecum. 2-3cm . 
lengths were cut, freed from mesenteric attachments and cleaned by 
flushing the lumen with Kreb's solution. A thread was tied at each 

end, the lower one forming a loop which was secured to a hook at the 
bottom of a 25ml. organ bath. The upper thread was attached to an 

isometric strain gauge.

f) Rat anococcygeus and vas deferens.

These tissues were prepared as described in chapter 3 methods 
section.

2.1.4. Experimental procedure.

In the presence of 3x10 5M guanethidine, the tone of the rabbit 
anococcygeus and the taenia coli muscles were raised, with 3x10 6M 

histamine and 3x10 6M carbachol respectively.

In all tissues field stim ulation was by 2 0 -2 0 0  pulses at 
supramaximal voltage at frequencies between 0.1 and 64 HZ depending 

on the frequency sensitivity of the tissue.
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CHAPTER 2 RESULTS

2.2.1. The effects of ALA on the contractile responses of
the rabbit distal colon to pelvic nerve stimulation:

During the equilibration period the initial 2g. of resting tension 

decayed to approximately 1 -1 .5g. The tissue exhibits an inherent 
rhythmic activity. Field stimulation of the pelvic nerves, which 

innervate the distal colon, with 100 pulses (0 .5m s. duration, 
supramaximal voltage) at 1-32 Hz produced a frequency-dependent, 
cholinergically-mediated contraction of the rabbit distal colon. The 
effects of the haem precursor 5-aminolaevulinic acid (ALA) on the 

responses of this tissue were examined at concentrations of 1, 10, 
10OjuM and 1mM. As the effects of increasing concentrations of ALA 

were examined on the same tissues, following a control period for 
each concentration, a two way analysis of variance on the control 
responses alone was carried out (repeated trials as the variable). 
This statistical analysis revealed that there were no significant 
differences among control responses over the course of the 
exp erim ent. ALA, at all concentrations exam ined , did not 
significantly alter the responses of the distal colon to pelvic nerve 
stimulation (figures 5a, 6a). Each drug-exposed response group was 

statistically compared to its own control period (paired t-tests).

2.2.2. The effects of ALA on the inhibitory response of the 
rabbit distal colon to lumbar colonic nerve stimulation:

Stimulation of the lumbar colonic nerves innervating the rabbit distal 
colon (20s. stimulation period of 4, 8 and 16 Hz) produces an 
inhibitory effect on the rhythmic contractile activity of this tissue. 
ALA at concentrations ranging from 1pM-1mM had no effect on the 

inhibition produced by this sympathetically-mediated response on a 

limited number of preparations (figure 8b).
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F i g u r e  5 :  S h o w s  t h e  l a c k  o f  e f f e c t  o f  l i n i V I .  A L A  o n  t h e  r e s p o n s e s  o f  f o u r  
t i s s u e s  t o  n e r v e  s t i m u l a t i o n ,  a t  t h e  f r e q u e n c i e s  s h o w n ,  a )  t h e  r e s p o n s e  
o f  t h e  d i s t a l  c o l o n  t o  p e l v i c  n e r v e  s t i m u l a t i o n ;  b )  t h e  p r e s s o r  r e s p o n s e  
o f  t h e  p e r f u s e d  r a b b i t  c e n t r a l  e a r  a r t e r y  t o  i n t r a m u r a l  n e r v e  
s t i m u l a t i o n ;  c )  t h e  r e s p o n s e  o f  t h e  t a e n i a  c o l i  t o  i n t r i n s i c  i n h i b i t o r y
n e r v e  s t i m u l a t i o n ;  d )  t h e  r e s p o n s e  o f  t h e  a n o c o c c y g e u s  m u s c l e  t o  
i n t r i n s i c  i n h i b i t o r y  n e r v e  s t i m u l a t i o n .  T h e  t i m e  b a r s  a p p l y  d u r i n g  
s t i m u l a t i o n  p e r i o d s  o n l y ,  t h e  i n t e r s t i m u l u s  i n t e r v a l  i s  3  m i u t e s  f o r  e a c h
t i s s u e .  T h e  b l a c k  b a r  b e l o w  e a c h  t r a c e  i n d i c a t e s  t h e  p r e s e n c e  o f  I m M .
A L A .
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Figure 6: Shows the lack of effect of ALA on the responses of a) the 
rabbit distal colon to pelvic nerve stimulation and b) the perfused rabbit 
ear artery to field stimulation of the periarterial nerve. For clarity, the 
graphs show the mean values only and standard deviations for all points 
are tabulated below. There are no statistically significant differences.

Distal colon: CONTROL, 2.6, 3.14, 1.9, 0.6, 1.78, 2.46 
10-6M ALA, 6.5, 4.4, 5.4, 2.8, 4.8, 7.0

10-5M ALA, 8.5, 8.5, 4.9, 1.6, 4.6, 1.8
10-4M ALA, 5.2, 6.6, 4.5, 2.6, 5.7, 8.7

10-3M ALA, 5.7, 2.7, 10, 3.6, 6.4, 7.1

Ear artery: CONTROL, 5.7, 3.2, 2.1, 1.3, 0.53, 0.61 
10-6M ALA, 7.5, 2.6, 2.9, 2.6, 3.4, 0.57 

10-5M ALA, 6.7, 5.4, 4.6, 1.4, 1.8, 0.9 

10-4M ALA, 5.8, 7.4, 8.2, 3.8, 1.3, 2.8 

10-3M ALA, 8.0, 10, 10, 6.9, 0.63, 2.4
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2.2.3. The effect of ALA on the pressor responses of the
rabbit ear artery to intramural nerve stimulation:

Upon equilibration the perfusion pressure of this tissue settled down 

to a resting pressure of 20 +/- 4m m .Hg. Electrical field stimulation 

of the periarterial nerves (0 .5m s duration, supram axim al voltage, 
200  pu lses  at 2 -6 4 H z )  e lic ita te d  a fre q u e n c y -d e p e n d e n t  

vasoconstriction  (figu re  5b , 6b ). The  e ffe c ts  of in creas in g
concentrations of ALA were examined on these responses following a 

control frequency response period. A two-way analysis of variance on 

the repeated control response periods determined that there were no 

sgnificant differences in these responses with tim e. ALA at all 
con centra tions exam in ed  did not s ig n ifican tly  a lte r  p ressor  

responses of this tissue to e lectrica l field stim ulation of the  

intramural nerves.

2.2.4. The effects of ALA on the inhibitory response of the 
rabbit taenia coli to intramural nerve stimulation:

Carbachol (3x10"5 M) produces a contraction (approxim ately 70%  of 
maximum) of the isolated longitudinal muscle of the rabbit caecum . 
In the presence of 3x10"^M  guaneth id ine , which acts as a 

sym pathetic neurone blocker, e lectrica l field stim ulation of the  

in trinsic  nerves  supp ly ing  this tissue  ( 0 .5 m s . d u ra tio n ,
supramaximal voltage, 20 pulses at 1-16 Hz ) produces a frequency- 
dependent non-adrenergic non-cho4inergically-m ediated inhibition of 
the induced tone. The effects of ALA in increasing concentrations  
( Ip M -Im M ) were examined on these inhibitory responses. A two-way  

analysis of variance on repeated control periods determ ined that 
there were no significant difference in the control responses with 

time. ALA at all concentrations exam ined produced no significant 
alteration in the responses of this tissue to N A N C -m ed ia ted  
inhibition of induced tone (Figure 5c,7a).
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Figure 7: Shows the lack of effect of ALA on the responses of a) the 
rabbit taenia coli and b) the anococcygeus to intrinsic nerve stimulation. 
For clarity, the graphs show the mean values only and standard 
deviations for all points are tabulated below. There are no statistically 
significant differences.

Taenia coli:

Anococcygeus:

CONTROL, 3.6, 4, 3.4, 1.1, 1 
10-6M ALA, 6.4, 5.9, 6.6, 0.7, 3.5 

10-5M ALA, 8, 9.5, 8.3, 3.3, 0.62 
10-4M ALA, 8, 8.2, 8, 2.2, 1.6 

10-3M ALA, 5.8, 8.7, 7.1, 2.9, 5.7

CONTROL, 1.6, 2.5, 3.9, 3.4, 1.6,1.7 

10-6M ALA, 3.7, 4.7, 5.5, 2.7, 4.4,4.8 

10-5M ALA, 2.2, 5.4, 7.2, 4.8, 3.6,2.4 
10-4M ALA, 3.5, 4.4, 5.6, 3.6, 2.6,3.7 

10-3M ALA, 5.8, 4.3, 6.5, 6, 1.1,1.7
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2.2.5. The effects of ALA on the inhibitory response of the
rabbit anococcygeus muscle:

H istam in e  (3 x 1 0 " 5 M) induces tone in the iso la ted  rabbit 
anococcygeus muscle (approxim ately 70%  of m axim um ). In the 

presence of guanethidine (3x10"5M) field stimulation of the intrinsic 

nerves innervating this tissue (0 .5m s. duration, supram axim al 
voltage, 20 pulses at 0 .1 -4 H z ) produces an N A N C -m ed iated  

freq u en cy-d ep en d en t inhibition of the induced tone. ALA in 
concentrations ranging between 1|uM-1mM had no adverse effect on 

the responses of this muscle to NANC nerve stimulation when drug- 
exposed frequency responses were compared to drug-free control 
responses (Figure 5d, 7b). A two-way analysis of variance on 

repeated control periods determined that there were no significant 
difference in the control responses with time

2 .2 .6 . The e ffe c ts  of ALA on the  co n tra c tile  response of the  

rab b it is o la te d  vas  d e fe ren s  to  fie ld  s tim u la tio n :

E lectrical field stim ulation of the rabbit vas deferens (0 .5m s. 
duration ,100 pulses, 16Hz ) produces a biphasic response (figure 8a). 
The initial "fast" component is purinergically-m ediated and the 
"sustained" secondary component is noradrenergically-mediated. The 
effects of ALA at concentrations ranging from 1|uM-1mM w ere  

exam ined on a limited number of preparations. ALA produced no 

difference in either component of this response.

2 .2 .7 . T h e  e ffe c ts  of ALA  on the in trin s ic  rhy thm ic  a c tiv ity  

of th e  rab b it je ju num :

W hen 2g. of tension was placed on lengths of rabbit jejunum the 

tissue exhibited rhythmic activity. ALA at concentrations up to 1mM  

had no adverse effect on this rhythmic activity. 10mM of ALA in 9 out 
of 18 cases caused a small transitory reduction in the amplitude of 
contraction while the remaining 7 preparations showed a small 
increase and 2 tissues were unaffected by this large concentration
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RABBIT DISTAL COLON / SYMPATHETIC NERVE STIMULATION

Figure 8: The effects of ImM. ALA, in a single experiment, on the
responses of a) the rabbit vas deferens to field stimulation (100 pulses
at 16Hz) and b) the distal colon to extrinsic sympathetic nerve
stimulation (20s. stimulation at 4-16Hz). The dark line below each trace
indicates the presence of ImM. ALA.



CHAPTER 2 RESULTS

of ALA (figure 9). The mean change in contraction amplitude of the 

tissue was -1 .5% . Overall, ALA exerted no major effects on the 
inherent activity of this tissue.

2.2.8. The effects of ALA on tissues from rats treated with 
porphyrinogenic drugs:

a. Anococcygeus:

Treatm ent 8  , described in the methods section of chapter 3
consisting of 3 alternate days intraperitoneal administration of the 

porphyrinogenic drugs 4-ethyl DDC and succinylacetone, caused a 

significant increase, above control levels, in the urinary excretion of 
the haem precursor, 6-am inolaevulinic acid (figure 16). Electrical 

field stimulation of the intrinsic nerves of the isolated anococcygeus 

muscles from these rats (0.5m s. duration, supramaximal voltage, 50  

pulses at 0 .5 -3 2 H z )  (described  in ch ap ter 3) induces a 

noradrenergically-m ediated frequency dependent contraction of the 

muscle (figure 1 0 a ,12). These contractions in control tissues were 

indistinguishable from contractions in treated animals and ALA in 
concentrations of 10nM, 100nM , 1juM, 10juM and 300pM  had no 

significant effect on the responses of the tissue at stimulation
frequencies of 1 and 8Hz (figure 11a, 12 ).

b. Vas Deferens:

Field stimulation of the intrinsic nerves of the rat vas deferens
(0.5m s. duration, supramaximal voltage, 20s. train at frequencies of
1 -1 6H z) (described in chapter 3) induces a frequency-dependent 
biphasic motor response (figures 10b, 10c, 12). The initial "fast" 

component is purinergically-mediated and the secondary "sustained” 
component is noradrenergically mediated (Swedin 1971; Sneddon and 

W estfall 1984). The haem precursor ALA at concentrations ranging 
from 10nM to 300pM produced no significant effect on the responses 

of either component of these contractile responses at either 1 or 8 

Hz (figures 11b, 11c,12 ).
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F i g u r e  9 :  S h o w s  t h e  e f f e c t s  o f  l O m M .  A L A ,  i n  a  s e l e c t i o n  o f  e x p e r i m e n t s ,  
o n  t h e  r a b b i t  j e j u n a l  p r e p a r a t i o n s .  T h e  b l a c k  b a r  b e l o w  e a c h  t r a c e  
i n d i c a t e s  t h e  p r e s e n c e  o f  l O m M .  A L A .  T h e  r e s p o n s e  v a r i e s  f r o m  a  s l i g h t  
r e d u c t i o n ,  t h r o u g h  n o  e f f e c t  t o  a  s l i g h t  s t i m u l a t i o n  o f  t h e  s p o n t a n e o u s  
r h y t h m i c  a c t i v i t y  o f  t h e  i n t e s t i n a l  p r e p a r a t i o n s .
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F i g u r e  1 0 :  S h o w s  t h e  m e a n  + / -  S . E . M .  r e s p o n s e s  o f  t h e  r a t  a )
a n o c o c c y g e u s  m o t o r  r e s p o n s e ,  b )  t h e  v a s  d e f e r e n s  " f a s t "  c o m p o n e n t  a n d
c )  t h e  v a s  d e f e r e n s  " s u s t a i n e d "  c o m p o n e n t  ( n = 6 ,  a l l  c a s e s ) ,  i n  t i s s u e s
f r o m  a n i m a l s  t h a t  h a d  r e c e i v e d  3  a l t e r n a t e  d a y s  t r e a t m e n t  w i t h
3 0 0 m g . / k g .  4 - e t h y l  D D C  a n d  t w o  d o s e s  o f  4 0 m g . / k g .  s u c c i n y l a c e t o n e .
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F i g u r e  i i :  S h o w s  a  s u m m a r y  d i a g r a m  o f  t h e  e f f e c t s  o f  A L A  at  

c o n c e n t r a t i o n s  o f  i O n i V I ,  i O O m V I ,  l u M ,  i O p M  a n d  3 0 0 j u M  ( n = 6 ,  a l l
c o n c e n t r a t i o n s )  o n  t h e  % o f  m a x i m u m  r e s p o n s e  o f  a )  t h e  a n o c o c y g e u s
m o t o r  r e s p o n s e  a t  1 a n d  8 H z ,  b )  t h e  v a s  d e f e r e n s  " f a s t ” c o m p o n e n t
r e s p o n s e  a t  1 a n d  8 H z  a n d  c )  t h e  v a s  d e f e r e n s  " s u s t a i n e d "  c o m p o n e n t
r e s p o n s e  a t  1 a n d  8 H z .  T h e  r e s p o n s e  o f  c o n t r o l  t i s s u e s  a t  8 H z  w e r e  
t a k e n  a s  1 0 0 %  m a x i m u m  r e s p o n s e .  A L A  h a s  n o  e f f e c t  o n  a n y  o f  t he  
r e s p o n s e s .
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RAT ANOCOCCYGEUS MOTOR RESPONSE

1 Hz 8 H z  —
300pM. ALA

RAT VAS DEFERENS RESPONSE
10 s.

•  •  •
1Hz 8 H z

300|jM. ALA

Figure 12: The responses of a) a single anococcygeus muscle to
stimulation with 50 pulses at 1 and 8Hz and b) of a single vas deferens
to a 20s. train of pulses at 1 and 8Hz before and in the presence of
300pM. of ALA. The black bar indicates the presence of ALA. ALA had no
effect on the responses of these two preparations.



CHAPTER 2 RESULTS

2.2.9. The effects of porphobilinogen on rat iso la ted  
tissues:

Since the literature  contains little ev idence for toxicity by 
porphobilinogen, the experiments were confined to a single tissue, 
the anococcygus of the rat.

a) Anococcygeus:

As well as blocking adrenergic neurones, guanethidine (3x10 ‘ 5 M) 
induces tone in the rat anococcygeus muscle by releasing the 

preformed store of noradrenaline. Field stimulation of the intrinsic 

nerves of this tissue (0.5m s. duration, supramaximal voltage, 20  

pulses 0 .5-8H z), when the tone is raised, produces a NANC-mediated  

frequency-dependent relaxation of the induced tone (Gillespie 1972). 
Porphobilinogen in concentrations of 30 and 100|uM had no significant 

effect on the nerve-induced inhibition of this tissue (figure 13). PBG, 
at the highest concentration used in this study (1mM) caused a small 
transient drop in induced tone (9%  + 3 .3% ) which returned to its 

original level within the interstimulus interval period of 4min. This 

phenomenon ocurred in 2/3rds. of the preparations (figure 14).
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Figure 13: Shows a graph of the mean inhibitory response of the rat
anococcygeus muscle preparation. Porphobilinogen (PBG) at 
concentrations of 10-4M. (n=6) and 3xl0-5M (n=6) had no significant 
effect on the response of this muscle to field stimulation with 20 
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CHAPTER 2 DISCUSSION

The hypothesis that acute porphyric neuropathy is the result of the 

neurotoxic actions of the haem precursors which accumulate during 
acute attacks has received much consideration over the last few  

decades. There is, however, no unequivocal outcome regarding the role 

of these precursors in the aetiology of the symptoms of this disease. 
Although Sweeney et.al. (1970) have reported measuring plasma ALA 

levels in the region of0-1mM. in porphyric patients, other researchers 
have recorded much lower levels during acute porphyric attacks. 2juM- 
5juM. ALA were measured in the plasma of porphyries by Bonkowsky 
et.al. (1971) and levels of 120nM.-7juM. by Percy and Shanley (1977). 

The highest recorded plasma level measured by Gorchein and W ebber 
(1987) in porphyric patients was 12|nM. whereas the levels during a 
severe crisis were between 3 .6 mM. and 4.2|nM. Cerebrospinal fluid 

(CSF) levels of this precursor are much lower. Again, Sweeney et.al. 
(1970) have recorded the highest CSF ALA concentrations (2.1juM.) 

whereas lower levels have been reported by Bonkowsky (1971) of 
0 .29 mM and 0.2juM. by Gorchein and W ebber (1987). The last group of 

authors also reported that during the severest attack, in which the 

patient was comatose, the highest CSF ALA concentration measured 

was 192nM.

Som e in vitro tissue preparations are adversely affected by 
relatively low concentrations of the haem precursor ALA, (Russel 
1983 et. al. (1 0 mM .); Cutler et.a l. 1978 (3-38|uM.); Cutler et.a l. 
1991 (1 0 -5 0 n M .); Jordan e t.a l. 1990 (50|uM.)) w hereas in other 

preparations ALA has either no effect or is only effective at very 

high concentrations, which probably do not occurr even during the 

severest acute porphyric attack.

The aim of this first part of the study was to examine the effects of 
a range of concentrations of ALA on the responses of a variety of 
innervated muscle. These preparations included noradrenergically- 
m ediated responses (distal colon inhibitory response, vas differens 

secondary com ponent), cholinergically-m ediated responses (distal 
colon motor response), purinergically-m ediated responses (vas  

deferens initial response and part of the ear artery pressor response) 
and N A N C -m ediated responses (inhibitory response of the rabbit 
anococcygeus and taenia coli muscles). This range of innervated
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p rep ara tio n s  w hose responses w ere m ediated  by d ifferen t 
neurotransmitter systems was chosen to examine the possibility of a 
differential tissue sensitivity to the effects of ALA.

In this study, none of the ALA concentrations produced a significant 
effect on any of the preparations. Although McGillion (1974) found a 

slight hypotensive effect on intravenous adm inistration of 500- 
1000mg of ALA to anaesthetised rats, he also observed that ALA had 

no significant effects on the blood pressure of pithed rats nor on the 

noradrenergically and neuronally stimulated responses of the isolated 
perfused rabbit ear artery. The findings reported in the present study 

and those of Edwards et.al. in 1984 who failed to find cardiovascular 
effects of ALA in vivo in the rat, measuring the blood pressure and 

heart rate response to noradrenaline, acetylcholine and isoprenaline, 
argue against a cardiovascular role for ALA in the aetiology of acute 

porphyric neuropathy.

In those reports in the literature where low ALA concentrations, 
which could occur during porphyric attacks, did exert effects on in 

vitro preparations, the effects may be mediated by an interaction 
betw een ALA and the inhibitory transm itter, y-aminobutyric acid 

(GABA). Hyperpolarisation of frog motoneurones by 50-400mM. of ALA 

was blocked by the GABA antagonist, picrotoxin (Nicoll 1976), 
100juM. ALA inhibited GABA uptake into synaptosomes while at much 

lower levels of 1juM. it inhibited K+ stimulated release of GABA from 

synaptosomes (Brennan and Cantrill 1979). The latter authors suggest 
that the inhibition of GABA release is mediated via ALA's interaction 
with GABA autoreceptors. 50pM . of ALA inhibited polysynaptic  

transmission in the hamster spinal cord and Jordan et. al. (1990) 
suggested that GABA had a role to play in these effects. However, 
Becker et.al. (1980) reported only small inhibitory effects of ALA on 
GABA metabolism at concentrations ranging from lOOpM. to 1mM. and 

suggest that the role of ALA in acute porphyric attacks is not 
mediated via an effect on GABA synthesis and metabolism while 

Russel et.a l. (1983) ruled out a possible role for GABA-m ediated  

inhibitory effects of ALA on neuronal Na+ K+ ATPase activity. GABA 

was also implicated as a possible mediator of the effects of ALA in 

rat jejunual preparations reported by Cutler and her colleagues in 

1991. Although 1-3mM. of ALA was required to increase the tone and
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contracture am plitude of this tissue, the G ABA a antagonist, 

bicuculline enhanced the responsiveness of the preparation to 10- 
50nM . of ALA. This effect of ALA is, therefore, proposed to be 

m ediated via these postsynaptic GABA sites. Although ALA was 

reported to enhance the amplitude and degree of contraction of the 
rat je junum , it decreases these param eters in rabbit je junal 
preparations (Cutler et.a l. 1990). In the studies reported in the 

present thesis, the role of ALA at GABA sites was not examined but if 
GABA receptors are ubiquitous in the mammalian myenteric plexus, 
as Saffrey et. al. (1983) suggests ALA would be expected to exert 
qualitative if not quantitatively similar effects in these two tissues. 
However, possible species differences in receptor type and population 

m ake this finding not totally surprising. In the rabbit jejunal 
preparations studied in the present series of experiments, ALA at a 

concentration of 10mM. produced only minor and variable effects on 

the inherent rythmic activity of the muscle. Although inhibition was 

seen in rabbit jejunal preparations by Cutler et.al. (1990) at lower 

concentrations than reported here (1 .5 -6m M .) the levels of ALA 

required to elicit effects in this tissue were still in the mMolar 

range, concentrations which have never been recorded during even the 

severest porphyric attack. The observation by Cutler and Arrol (1987) 
that the effects of ALA (1.5-6m M .) on human taenia coli are similar 

to that of the haem precursor in rabbit tissue suggest that the 

responses of rabbit tissue to ALA may give a more valuble index of 
the role of ALA in human acute porphyric attacks. Although the 

results reported here provide no evidence for the thesis that ALA is 

neurotoxic they do not rule out the possibility that in some tissue 
ALA may alter function via interaction with GABA receptors. 
However, a definitive role for ALA in the GABAergic system has not, 

as yet, been elucidated.

In order to investigate the possibility that ALA exerts neurotoxic 

action in a haem deficient environment, the effects of the precursor 

w ere exam ined following treatm ent which is known to decrease  

haemoprotein content and which causes a rise in excreted ALA (figure 

16). This increased ALA excretion is thought to be evidence of 
depletion of the free haem pool. In this group of animals urinary 

excretion was increased by a factor of approxim ately 40 over
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excretion in control animals. Urinary excretion has been reported to 

be between 10 and 100 times greater than serum concentrations 

(Percy and Shanley 1977) therefore,-the serum levels of ALA in these 
animals would be roughly in the region of 5-50juM, comparable with 

the highest concentrations evidenced in human patients during an 

acute attack. In vitro examination of ALA on the motor responses of 
the anococcygeus and the vas deferens from these animals provided 

further evidence for a lack of ALA toxicity even in circumstances 
where haem synthesis has been disrupted.

The lack of effect of the haem precursor ALA reported in this study 

and the findings that ALA elicits little or no effect in vivo (Berlin 

et.al. 1956; M eyer et.al. 1972; Shanley et.al. 1975; Edwards et.al. 
1984) argue against a neurotoxic role for the haem precursor ALA in 

the aetiology of the neurological symptoms of acute porphyria.

The case for a neurotoxic role for the haem precursor porphobilinogen 

is not strong. Although PBG does elicit an effect on the K+-stimulated 

re lease of acetylcholine from the rat phrenic nerve-diaphragm  

preparation a neurotoxic role for PBG seems unlikely. In hereditary 

ALAD deficiency and hereditary tyrosinaemia, diseases which both 

elicit sym ptom s com m ensurate with the sym ptom s of acute  

porphyria, PBG is not an overproduced precursor. Serum PBG of
porphyric patients is generally higher than that of ALA (Percy and 
Shanley (1977), 0.2|uM.-20|nM.; Bonkowsky et.al. (1971), 15pM.) In vitro 

and in vivo studies by Goldberg et. al. in 1954 showed that PBG had 

no effect on a variety of physiological systems. The blood pressure, 
respiratory and cardiovascular responses to acetylcholine, nicotine, 
adrenaline, noradrenaline and vagal stimulation were unaltered by 

in travenous ly  adm in istered  PBG . Infusion of P B G -con ta in ing  

sterilised urine from patients in attack into anaesthetised cats and 

rabbits caused no changes in the same physiological parameters. PBG 

was similarly ineffective in altering the responses of a variety of 
isolated muscle preparations from rabbit or guinea-pig. In isolated 

rabbit jejunal preparations, 1.1 mM. PBG was ineffective in producing 
any alteration in the responses of this preparation (Arrol 1986). In
the experiments reported here, 30pM. and 100pM. PBG did not alter the

responses of the rat anococcygeus muscle to inhibitory nerve  

stimulation. At a concentrations of 1mM., although PBG caused a
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small and transient drop in the induced tone of the muscle, the 
responses to intrinsic nerve stim ulation w ere unaltered. The  

transient drop in tone caused by this high dose of PBG would probably 

not be a contributory factor in the neuropathy of AIP as this was an 

acute effect of drug addition and not a sustained phenomenon.

The results of this part of the study provide no evidence for a 

neurotoxic role for the haem precursors ALA or PBG in the symptoms 

of acute porphyric neuropathy.
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CHAPTER 3 INTRODUCTION

The use of chemical agents as experim ental tools to study the 

aetiology and treatm ent of disease states is a common practice in 
developing models of human disorders. Over a century ago Claude  

Bernard pointed out that "foreign chemicals can be employed as 

instruments to analyse the most delicate vital processes; much can 

be learned about the physiological processes them selves by the 

careful study of the mechanisms by which these are altered by 

chemicals." (cited by De Matteis and Aldridge 1978). A variety of 
chemicals may be used as experimental tools with which to study 

haem biosynthesis and the human disease states of porphyria (figure
3). Some of these compounds (lead, succinylacetone, N-m ethyl 
protoporphyrin  1X and phenobarb itone) directly inhibit haem  

biosynthetic enzymes at the same level as the genetic defects which 

are the basis of the disorders in humans (ALAD, ferrochelatase and 
uroporphyrinogen decarboxylase). Other chemicals such as DDC and its 

analogues, AIA and phenobarbitone are used, not to mimic a genetic 

defect, but to create an environment similar to that which may exist 
as a result of the genetic block in the pathway. The existence of a 

haem deficient state has been suggested as the underlying cause of 
acute porphyric neuropathy. All the agents mentioned above in some 

way contribute to the developm ent of such an environm ent by 

partially blocking the synthesis of haem (succinylacetone, lead, N- 
alkylated  protoporphyrin 1X), by destruction of haem already  

synthesized (AIA, DDC and 4-ethyl DDC) or by diverting newly 

synthesized haem  into the increased production of one particular 

haemoprotein (phenobarbitone). The last two manipulations disrupt 
the equilibrium of synthesis and when combined with a chemical 
block in the pathway provide a means of producing a model of a haem  

deficient state.

The aim of this part of the study was to produce an animal model of 
the proposed haem deficiency of porphyria. Following treatment with 

porphyrinogenic agents, e ither alone or in com binations, the 

functional capacity of tissues can be compared with biochemical 
correlates. Urinary ALA excretion provides an indication of a change 

in haem  availability whereas the responses of nerve and muscle 

tissue gives a measure of functional capacity. In this part of the 

study, following short, medium or long term treatment with these
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porphyrinogenic drugs, a range of nerve/muscle preparations were  

exam ined for evidence of a developing neuropthy. The tissues  

exam ined consisted of cholinergically-m ediated skeletal muscle 

contraction, noradrenerg ically-m ediated  motor responses, N A N C - 
m ed ia ted  in h ib ito ry  resp o n ses  and p u rin e rg ic a lly -m e d ia te d  

responses. The examination of a wide range of tissues covers the 

possibility of differential sensitivity of these systems to a state of 
haem deficiency. Since the intention was to deplete haem proteins in 

nerve and muscle, the duration of drug administration was linked to 

to the turnover time of haem proteins which varies from a few  

hours, in the case of tryptophan pyrrolase and cytochrome P -450 to 

60 days for rat haemoglobin. A range of treatment durations from 3 

days to 44 days was, therefore, included.
In this section the hypothesis that porphyric neuropathy is due to a 

deficiency in haemoproteins essential for normal nerve function was, 
therefore, assessed using a chemically produced animal model.
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CHAPTER 3 METHODS

3.2.1. DRUGS:

4,6 -D io xo h ep tan o ic  acid (succinylacetone); phenobarbitone (the  
powder was dissolved in 0.1 M NaOH and brought to pH 9. Dropping 

below this pH brought the compound out of solution); Ammonium  

hydroxide (BDH, Scotland); ethanol (BDH, Scotland); lead tetraacetate; 
Ethylacetoacetate; Prop ionaldehyde; Dimethyl sulfoxide (D M SO ); 
Glycerine trinitrate; sodium hydroxide. Unless stated otherwise all 
the above chemicals were obtained from Sigma Co. Ltd. England. 
D ie th o x y c a rb o n y l 2 ,4 ,6 -tr im e th y ld ih y d ro p y r id in e  (D D C ) and  

A lly lisopropylacetam ide w ere gifts from Anthony G ibbs, M RC  
Toxicology Unit, Carsholton. 4-ethyl DDC was synthesized as 

described below. A source of 4-ethyl DDC was also obtained from  

Professor G.S. Marks, University of Alberta, Canada.

3.2.2. SYNTHESIS OF 4-ETHYL DIETHOXYCARBONYL 2,6- 
DIMETHYL 4-ETHYL DIHYDROPYRIDINE (4-ETHYL DDC).

3.2.2.1. Reagents required to make 1 mole of 4-ethyl 
DDC:

1. Absolute ethanol 60ml.

2. Ethylacetoacetate (M.W. 130.14) (0.2 mole) 25.4ml.

3. Pro p ionaldehyde (M.W. 58.08) (0.1 mole) 7.2ml.

4. Ammonium hydroxide (M.W. 35.05) (0.1 mole) 6.74ml.

(28-30%  NH3 by weight)

3.2.2.2. Method:

The reagents were added in the order listed above to a round bottom 

flask in a fume cupboard and refluxed at a gentle boil for 3-4hrs. The
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resultant solution was poured into a 500ml. Erlenmeyer flask and 

250ml. of cold distilled water added. The reaction flask was rinsed 

with cold 95%  ethanol and added to the reaction mixture which was 

allowed to stand at 4°C for 3 days after scratching the bottom of the 

flask and seeding with a few crystals of 4-ethyl DDC. The crystals 

were harvested by filtration and washed with cold 40%  ethanol. They 

were allowed to air dry and then placed in an open Petri dish in a 

vacuum desiccator for a further 4 days. The 4-ethyl DDC crystals 

were then recrystalised from water and ethanol. 50m l. of 95%  

ethanol was added to the compound and heated to a gentle boil. 
Boiling distilled water was added dropwise. After each addition of 
water the cystals come out of solution temporarily and the water 

was added until the point of saturation is reached. A few drops of 
95%  ethanol was then added to clear the solution. The liquid was 

cooled on ice, the bottom of the vessel scratched and left to stand 

overnight at 4°C . The crystals formed were again harvested by 
filtration, washed with cold 40%  ethanol and air dried. Vacuum  

desiccating then took place in an open Petri dish overnight. This 

recrystalisation procedure was carried out once more before final 
harvesting of the 4-ethyl DDC crystals. The melting point of the 

crystals was determined (110°C ). Gas chromatographic analysis of 
the synthesized product was compared with that of a sample of 4- 
ethyl DDC from the external source.

3.2.3. Treatments:

Male wistar rats (bred in the Pharmacology Animal Unit of Glasgow  
University) ranging from 200-300gm . at the start of the experiments 

served as subjects in these experiments. All injections in this group 
of experim ents were administered intraperitoneally in a volume of 
1 ml/kg. except for the DDC, 4-ethyl DDC and the AIA which were 
adm inistered in DM SO  vehicle in a volume of 0 .5m l/kg . Nine 

combinations of drug and treatment duration were tested.

1) Animals were administered succinylacetone at a dose of

40m g./kg. twice daily for 3 days.
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2) A co m b in a tio n  of s u c c in y la c e to n e  (4 0 m g ./k g ) ,  
a lly liso p ro p y lac e tam id e  (2 0 0 m g ./k g ) and phen o b arb ito n e  
(80m g./kg.) were administered daily over a period of 9 days.

3) Animals received 30 days of succinylacetone (20m g./kg.) 
followed by 6 days of phenobarbitone (80m g./kg.) and a final 
dose of 300mg./kg. 4-ethyl DDC. Four days elapsed after the 4- 
ethyl DDC before the animals were sacrificed. Succinylacetone 

administration was continued throughout the treatment period .

4) This treatment was the same as 3) above except that DDC  
replaced 4-ethyl DDC.

5) A nim als in this group received 30 days of daily  

succinylacetone (20mg./kg.) followed by 10 days of 4-ethyl DDC  

at 25m g./kg., phenobarbitone ( 80m g./kg.) for 4 days with a 

final dose of 300m g./kg . of 4-ethyl DDC. Succinylacetone  

administration was continued throughout the treatment period.

6) This treatment regime was similar to that of 5) above except 
DDC replaced 4 ethyl-DDC.

7) Lead tetraacetate was administered at a dose of 50juMoles 

per day for 14 days.

8) Anim als w ere injected with DDC (200m g/kg) on three  

alternate  days. On these days succinylacetone was also 

administered twice daily at a concentration of 40 mg/kg.

Following the last injection in all the above groups the animals were 

placed in metabolic cages and their urine collected over the 24 hrs 

immediately prior to sacrifice. Urinary ALA levels were determined.

9) Three groups of mice weighing between 30-50gm . were  

treated for 6 days with succinylacetone at a concentration of 
40m g/kg. In addition, the animals received AIA (200m g/kg), 
DDC (25mg/kg) or 4-ethyl DDC (25mg/kg).
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3 .2 .4 . RAT T ISSU E:

Animal w ere stunned, bled and innervated muscle preparations  
removed in the following order.

a) Phrenic nerve/diaphragm:

The rat diaphragm receives a motor cholinergic innervation via the 
phrenic nerve and ATP is a putative co-transmitter in producing the 
contractile response of this preparation.

A midline incission was made over the sternum and the skin and 

pectoral muscles reflected to expose the ribs. The upper abdomen 

was opened and a pair of strong scissors inserted from there  

severing the ribs on either side of the sternum. The sternum was 

removed. The rib cage on either side was removed by cutting just 
above and parallel to the first rib and then through the ribs cranially 
near the vetebrae. The two lungs were removed from the thoracic 

cavity and the right and left phrenic nerves identified as they passed 

behind the heart. Each nerve was ligatured close to the heart and 

carefully freed down to their entry into the diaphragm. The whole 

diaphragm plus the phrenic nerves were removed to a Petri dish 

containing Kreb's and a mideline incission divided the diaphragm into 

two innervated preparations. The phrenic nerve was placed over a 

pair of Ag/AgCI ring electrodes recessed in a Perspex electrode  

assembly. The diaphragm was laid on top of the electrode assembly 

and the lower ribs, to which the diaphragm was connected, pressed 

onto securing pins. A ligature connected the apex of the 

hemidiaphragm to an isometric strain gauge. The whole preparation 

was transfered to a 50ml. isolated organ bath containing warm Kreb's 

solution and the muscle placed under an initial 4gm. of tension. The 

preparation was left to equilibrate for 30min. before the start of the 

experim ent.

b) Vas deferens:

The rat vas diferens receives a dense adrenergic innervation from 

sym pathetic nerves originating in the lumbar vertebrae L1-L4. 
(M cG rath 1978). Two transmitters are released from the nerves
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innervating this tissue and the response is mediated by the combined 

actions of noradrenaline (Swedin 1971; McGrath 1978; Sneddon and 
Westfall 1984) and ATP ( Sneddon and Westfall 1984; Meldrum and 
Burnstock 1983).

The abdomen was opened by a mid-line incision, the testicles pushed 

into the abdom inal cavity and the epididymi identified. The vas  

deferens were tied and cut at their junction with the epidydimus. The 
tissue was freed of connective tissue along its length to its junction 

with the prostate. This prostatic end was tied, cut and the two vas 

deferens removed to a Petri dish containing Kreb's solution. The 

epidydimal half of the vas deferens was used. The epididymal end of 
the tissue was secured to a hook electrode and the tissue passed 

through a single Ag/AgCI ring electrode in a 10ml. organ bath 
containing Kreb's solution at 37°C . A thread connected the other end
of the tissue to an isometric strain gauge. The tissue was placed
under an initial 1g. of tension and left to equilibrate for 30 min.

c) Anococcygeus:

The rat anococcygeus muscle possesses a dense noradrenergic motor 
innervation and an NANC inhibitory innervation ( Gillespie 1972).

The paired rat anococcygeus muscles originate from the first two 

coccygeal vertebrae in the mid-line of the pelvic cavity. They pass on 

either side of the colon, merge onto the ventral surface of the colon 

and join to form a longitudinal bar which passes into the skin of the
peritoneum. The muscles form a short transverse bar merging on the
ventral surface of the colon. The extrinsic nerves pass in a branch of 
the perineal nerve on either side to enter each muscle just short of 
the formation of the ventral bar.

The abdomen was opened, the symphysis pubis split and the pelvic 

arch forced apart. The anococcygeus muscles were identified behind 

the colon and the right and left muscles ligatured at the ventral bar. 
The two muscles were separated at this point, freed from the colon 

and cleaned up to their origin from the coccygeal vertebrae. This end 

was tied, cut and the muscles transfered to a Petri dish containing 

Kreb's solution. Two preparations approximately 2cm. long and 2- 
3mm. wide resulted. Each muscle was drawn through a Ag/AgCI ring
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electrode, one end of the muscle secured to a similar hook electrode 

and a thread attached the other end to an isometric strain gauge. The 
whole assembly was mounted in a 10ml. organ bath and 1gm. of 
initial tension placed on the tissue. The preparation was left to 
equilibrate for 30 min.

d) Tail artery:

The pressor response of the rat tail artery, like that of the rabbit 
central ear artery, is mediated by the co-transmitters noradrenaline 
and ATP (Sneddon and Burnstock 1984).

The tail was severed from the body and the skin peeled from the tail. 
The channel in which the tail artery lies was identified on the 

ventral surface of the tail. The artery was ligatured at the base of 
the tail, cleaned and removed from the channel in which it lies. The 

tissue was transfered to a Petri dish and the artery cannulated with 

a plastic cannulae whose diam eter was large enough not to 

contribute significantly to the total peripheral resistance of the 

system. 2cm. portions of the artery were drawn through a pair of 
Ag/AgCI ring electrodes. The cannula was attached to a Watson and 

Marlow Peristaltic Pump and the tissue perfused at 3ml./min. with 

warmed Kreb's soltution. The whole assembly was placed in a 25ml. 
organ bath containing Kreb's and the perfusion pressure measured by 

a Statham  pressure transducer attached to a side arm of the 

assembly.

3 .2 .5 . M ouse tissu e .

Mice were killed by a blow to the head and exanginated. The vas 

deferens were dissected out of the animal and prepared in a similar 

manner to that described for the rat vas deferens.

In all tissues in this section field stimulation was by 20-100 pulses 

at supramaximal voltage between 0.5 and 32 HZ depending on the 

frequency sensitivity of the tissue.

3 .2 .6 . U rin a ry  A LA  was determ ined by the method of 

Mauzerall and Granick (1956).
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Chapter 3 PORPHYRINOGENIC TREATMENTS.

All injections were made intraperitoneally. succinylacetone and lead  
tetra acetate injections were administered in a volume of 1 ml/kg. in 
distilled water vehicle. Phenobarbitone was dissolved in 0.1 M NaO H  
and brought to pH 9 with 0.1M HCI and was also administered in a 
volume of 1 ml/kg. AIA, DDC and 4-ethyl DDC were administered in a 
volume of 0.5ml/kg. in dimethyl sulfoxide (DM SO ).

T R E A TM E N T 1.1: Rats received succinylacetone at a dose of

40mg/kg. twice daily for 3 days.

TR E A T M E N T 1.2: 9 days adm inistration of a com bination of AIA  

(2 0 0 m g /k g .), p h e n o b arb ito n e  (8 0 m g /k g .) and su c c in y la c e to n e  

(40m g /kg ).

TR EA TM EN T 1.3: 30 days of succinylacetone (20m g/kg.) followed by 

6 days of phenobarbitone (80m g/kg.) then 1 injection of 300m g/kg. of 
4 -e th y l D D C . S u c c in y lace to n e  (2 0 m g /k g .)  w as a d m in is te re d  

throughout the treatm ent and the anim als were sacrificed 4 days  

after 4-ethyl DDC administration.

TR EA TM E N T 1.4: 30 days of succinylacetone (20m g/kg.) followed by 

6 days of phenobarbitone (80m g/kg.) then 1 injection of 300m g/kg. of 
DDC. Succinylacetone (20m g/kg.) was adm inistered throughout the  

treatm ent and the anim als w ere sacrificed 4 days afte r DDC  

ad m in is tra tio n .

TR EA TM EN T 1.5: 30 days of succinylacetone (20m g/kg.) followed by 

10 days administration of 4-ethyl DDC (25m g/kg.) then 4 days of 
phenobarbitone (80m g/kg.) with a further 300m g/kg of 4-ethyl DDC  
24 hours prior to killing.

TR EA TM E N T 1.6: 30 days of succinylacetone (20m g/kg.) followed by 

10 days adm in istration  of D D C  (2 5 m g /k g .) then 4 days of 
phenobarbitone (80m g/kg.) with a further 300m g/kg of DDC 24 hours 
prior to killing.

TR EA TM E N T 1.7: for 14 days rats received 50|umoles of lead tetra  

acetate.



TR E A T M E N T  1 .8: rats rece ived  200m g/kg . 4 -e thy l D D C on 3 

alternative days in addition to two injections of succinylacetone  

(40m g/kg .).

TR E A T M E N T  1 .9: Three groups of mice rece ived  6 days of 
in tra p e rito n e a lly -a d m in is te re d  s u c c in y la c e to n e  (4 0 m g ./k g .)  in 

addition to either, AIA (200m g./kg.), DDC (25m g./kg.) or 4-ethyl DDC  

(25m g./kg .)
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3.3.1. Synthesis of 4-ethyl DDC:

Gas chromatography and mass spectrography of the synthesized 4- 
ethyl DDC was identical to that of 4-ethyl DDC synthesized in the 

laboratory of Professor G. Marks, University of Alberta, Canada where 

this compound is produced on a regular basis (figure 15). The  

compound synthesized was, therefore, 4-ethyl DDC.

3.3.2. Urinary ALA levels:

Rats that rece ived  porphyrinogen ic  tre a tm e n ts  1 -8  exc re te d  

significantly increased concentrations of the urinary haem  

precursor ALA (figure 16). 3 Days treatm ent with succinylacetone  
was the most potent inducer of ALA excretion (1000|uM. ALA/24hr.) 

with tre a tm e n t 1 .2 , 9 days of s u c c in y la c e to n e , A IA  and
phenobarbitone the next most potent in inducing increased ALA  
excretion (5 7 2 mM. A L A /24h r.). The long term  com binations of 

porphyrinogenic drugs, although to a smaller extent, also caused a 

significant increase in ALA excre tio n . A lthough s ig n ifican tly  
increasing urinary ALA (62jnM./24hrs compared to normal rat values  

of 12|uM./24hrs), lead tetraacetate was least effective in its ability 

to increase urinary ALA excretion. These increases in urinary  

excretion of ALA were taken as an indication of the effectiveness of
the drugs in reducing free haem  pool which norm ally exerts a
negative feedback inhibition on ALA synthase.

3.3.3. Neurogenic mediation of the responses of the 
isolated innervated muscle preparations:

E lectrica l fie ld  s tim u latio n  of the in trins ic  nerves  of the  

anococcygeus muscle, the vas deferens and the tail artery induced a 

motor response. This contraction was inhibited by the neuronal 
blocking agent, tetrodotoxin (3x10 7M), confirming that the responses  

were neurogenically-m ediated (figure 17).
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s a m p l e s  a r e  i d e n t i c a l .
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that had received 8 different porphyrinogenic treatments.
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stimulation with 50 pulses at 8Hz, b) the rat vas deferens to a 20s. 
train of pulses at 8Hz and c) the perfused rat tail artery to stimulation 
with 100 pulses at 16Hz.



CHAPTER 3 RESULTS

3.3.4. The effects 3 days succinylacetone treatment (1.1) on 
the responses of a range of innervated muscle preparations:

3.3.4.1 The effects of agonists:

a) The effects of phenylephrine on the responses of the rat 

annococygeus muscle:

During the equ ilibration  period, follow ing the set up of the  

anococcygeus muscle, the initial 1g. tension placed on the muscle 

decayed to approximately 0 .5 -0 .75g . Phenylephrine in concentrations  

ranging from 3 x 1 0 7M to 3 x 1 0 5M caused  a d o s e -d ep en d en t  

contraction of the muscle which reached a maximum at 1 0 5M 

(figure18). The responses of tissues from animals treated for 3 days 

with succinylacetone (treatm ent 1 .1) did not d iffer significantly  

from the responses of tissues from control animals (figure 18).

b. The effect of phenylephrine on the rat vas deferens muscle:

3x10"5M phenylephrine induced a mean contraction of 1 .09+ / 0.1g. in 

tissues from treated anim als which does not differ significanlty  

from the responses of tissues from control animals 1 .30  + /- 0 .1g . 
(figure 19b).

c. The effects of sodium nitroprusside on the responses of the 

anococcygeus muscle:

When the tone of the anococcygeus muscle is raised with 3x10-5M 

guanethidine, 1 0 7M sodium nitroprusside causes a reduction in the 

induced tone of approximately 50% . This reduction in muscle tone is 

similarly propossed to be m ediated via activation of guanylate  

cyclase (Waldman and Murad 1987). This compound caused a reduction 

in the guanethidine-induced tone in tissues from treated  anim als  

which did not differ significantly from the effect produced in 
tissues from control animals (figure 20).
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Figure 18: Shows the mean +/- S.E.M. (gm. of tension) response of the rat 
anococcygeus muscle to concentrations of phenylephrine ranging from 
3xlO-8M. to 3xlO-5M., in tissues from control animals (n=6) and in 
tissues from animals that had received twice daily succinylacetone 
administration (40mg/kg) for 3 days (n=6). This treatment had no effect 
on the responses of the anococcygeus muscle to the agonist 
phenylephrine.
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Figure 19 : The top graph shows the mean +/- S.E.M. contraction, in gm.,
of the rat anococcygeus muscle to 3xlO~6M phenylephrine in tissues 
from animals in 6 treatment groups. The lower graph shows the mean 
+/- S.E.M. of the contraction elicited in the vas deferens by 3x10 5M  
phenylephrine in 7 treatment groups. None of the porphyrinogenic drug 
treatments altered the responses of either tissue to the noradrenergic 
agonist phenylephrine.
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Figure 20: The mean (+/- S.E.M.) % inhibition of guanethidine-induced 
tone of the rat anococcygeus muscle caused by 10~7M. sodium 
nitroprusside in tissues from animals of the 7 treatment groups. None of 
the porphyrinogenic drug treatments significantly altered the response 
of the anococcygeus to this activator of soluble guanylate cyclase.
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3.3.4.2. Electrical stimulation of the nerve/muscle preparations:

d. Anococcygeus Motor Response:

During the equ ilibration  period, fo llow ing the set up of the  

anococcygeus muscle, the initial tension of 1g. placed on the tissue 

decayed to approximately 0 .5  to 0 .75g. Electrical field stimulation of 
the intrinsic nerves of the anococcygeus muscle (0 .5m s. duration, 
supram axim al v o lta g e , 50  pu lses at 0 .5 -3 2 H z )  induced a 

noradrenergically-m ediated frequency-dependent contraction of the 

muscle (Gillespie 1972). Porphyrinogenic treatm ent 1.1 ( 3 days of 
twice daily succinylacetone at 40m g/kg.) had no significant effect on 

the responses of this tissue when compared to tissues from control 

animals (figures 21, 22a).

e. Anococcygeus Inhibitory Response:

When the tone of this tissue is raised by 3x10-5M guanethidine an 

NANC-mediated inhibitory response is revieled (Gillespie 1972). Upon 

field stim ulation of the intrinsic nerves of the tissue (0 .5m s. 
duration, supramaxim al voltage, 20 pulses 0 .5 -3 2 H z ) a frequency- 
dependent inhibition of the induced tone results. The porphyrinogenic 

treatm ent in this group did not significantly alter the inhibitory  

response of this tissue when compared to control tissues (figures 21, 
22b).

f. Vas Deferens motor response:

During the equilibration period the initial 1g. of induced tension  

decayed to 0 .5 -0 .7 5 g . Field stim ulation of the intrinsic nerves  

(0 .5m s. duration, supram axim al vo ltage, 20s. train of 1 -1 6 H z )  

produced a frequency-dependent byphasic response. This response  

consisted of an initial purinergically-m ediated "fast" com ponent and 

a secondary n o rad ren erg ica lly -m ed ia ted  "susta ined” com ponent 
(Swedin 1971; Sneddon and W estfa ll 1 9 8 4 ). N e ither of these  

com ponents w ere adverse ley  a ffec ted  by the porphyrinogenic  
treatment of this group when com pared to control tissue responses  
(figures 21, 23a, 23b ).

6 3



F i g u r e  2 1 :  T h e  e f f e c t s  o f  p o r p h y r i n o g e n i c  t r e a t m e n t  1 . 1  ( 3  d a y s  o f
t w i c e  d a i l y  s u c c i n y l a c e t o n e  4 0 m g / k g )  o n  t h e  f i v e  t i s s u e  r e s p o n s e s ,  i n  
i n d i v i d u a l  e x p e r i m e n t s  ( b o t t o m  t r a c e s ) ,  c o m p a r e d  t o  t h e  r e s p o n s e s  f r o m  
i n d i v i d u a l  c o n t r o l  t i s s u e  r e s p o n s e s  ( t o p  t r a c e s ) .  T h e  t i m e  b a r s  a p p l y  
d u r i n g  t h e  s t i m u l a t i o n  p e r i o d  o n l y  a n d  t h e  i n t e r s t i m u i u s  i n t e r v a l  i n  a i l  
c a s e s  w a s  3  m i n .  S t i m u l a t i o n  f r e q u e n c i e s  a r e  s h o w n  a b o v e  o r  b e l o w  
e a c h  r e s p o n s e .  F o r  c l a r i t y  o n l y  t h e  f r e q u e n c i e s  f o r  o n e  t i s s u e  a r e  s h o w n ,  
b u t  b o t h  c o n t r o l  a n d  t r e a t e d  t i s s u e s  r e c e i v e d  t h e  s a m e  s t i m u l a t i o n  
p a r a m e t e r s .  T h e  t o p  l e f t  h a n d  t r a c e s  s h o w  t h e  m o t o r  r e s p o n s e  o f  t h e  r a t  
a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  5 0  p u l s e s  a n d  t h e  t r a c e s  o n  
t h e  t o p  r i g h t  a r e  t h e  i n h i b i t o r y  r e s p o n s e  o f  t h e  a n o c o c c y g e u s  m u s c l e  to  
s t i m u l a t i o n  w i t h  2 0  p u l s e s .  T h e  m i d d l e  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  
r a t  v a s  d e f e r e n s  t o  f i e l d  s t i m u l a t i o n  w i t h  a  2 0 s .  t r a i n  o f  p u l s e s .  T h e  
b o t t o m  l e f t  h a n d  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  p e r f u s e d  r a t  t a i l  
a r t e r y  t o  f i e l d  s t i m u l a t i o n  w i t h  1 0 0  p u l s e s .  T h e  b o t t o m  r i g h t  h a n d  
t r a c e s  s h o w s  t h e  r e s p o n s e  o f  t h e  r a t  h e m i d i a p h r a g m  t o  p h r e n i c  n e r v e  
s t i m u l a t i o n  w i t h  5 0  p u l s e s .  T h i s  t r e a t m e n t  d i d  n o t  s i g n i f i c a n t l y  a l t e r  
t h e  r e s p o n s e s  o f  a n y  o f  t h e s e  t i s s u e s  t o  n e r v e  s t i m u l a t i o n .
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Figure 22: Graph a) shows the mean +/- S.E.M. of the motor response the
rat anococoocygeus muscle, in gm. tension, to stimulation with 50 
pulses at 0.5-32 Hz in tissues from control animals (n=14) and in 
tissues from animals that had received 3 days twice daily 
succinylacetone (40mg/kg.) treatment (n=14). Graph b) shows the 
inhibitory response of the anococcygeus muscle to intrinsic nerve 
stimulation with 20 pulses at 0.5-32 Hz in tissues from control animals 
(n= 14) and treated animals (n=10)
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Figure 23: Graph a) shows the mean +/- S.E.M. of the "fast" component
of the rat vas deferens motor response, in gm. tension, to stimulation 
for 20s. at 1-8 Hz in tissues from control animals (n=20) and in tissues 
from animals that had received 3 days of succinylacetone (40mg/kg.) 
twice daily (n=6). Graph b) shows the mean "sustained" component of the 
rat vas deferens response to intrinsic nerve stimulation with a 20s. 
train of pulses at 1-16 Hz in tissues from control animals (n=20) and 
treated animals (n=6).



CHAPTER 3 RESULTS

g. Tail artery pressor response:

During the equilibration period the rat tail artery settled down with a 

perfusion pressure of approxim ately  25m m . Hg. E lectrical field  

stimulation of the intrinsic nerves of this tissue (0 .5m s. duration, 
supramaximal voltage, 100 pulses at 1-64H z) produced a frequency- 
dependent m otor response, m ed iated  by the co -tran sm itte rs  

Adenosine triphosphate (ATP) and noradrenaline (NA) (Sneddon and 

Burnstock 1984). The porphyrinogenic treatm ent of this group of 
animals did not significantly alter the response of the isolated rat 
tail artery to field stimulation when compared to the responses from  

tissues from control animals (figures 21, 24a).

h. Phrenic nerve diaphragm:

Upon equ ilib ration , the initial tension of 4g. p laced  on the  

hemidiaphragm decayed to approxim ately 2g. Electrical stimulation  

of the phrenic nerve (0 .5m s. duration, supram axim al vo ltage, 50  

pulses at 2 -1 6H z) produced a frequency-dependent rapid contraction 

of the d iaphragm . In addition to the ch o lin erg ica lly -m ed ia ted  

contraction of the rat diaphragm  to phrenic nerve stimulation, ATP  

has been proposed as a putative co-transmitter at this neuromuscular 

junction (S ilinsky and H ubbard 1 9 7 3 ). The responses of the  

hem idiaphragm  p rep ara tio n s  from  an im als  that had rece ived  

porphyrinogenic treatm ent did not d iffer significantly  from  the  

responses of the tissue from control animals (figures 21, 24b).

3.3.5. The effects  of drug treatm ent 1.2 (9 days
succinylacetone, AIA and Phenobarbitone) on the responses 
of a range of innervated muscle preparations:

3.3.5.1. The effects of agonists:

a. The effect of phenylephrine on the rat anococcygeus muscle:

At a concentration of 3x10 6M, phenylephrine induces a contraction of 
the anococcygeus muscles, from treated anim als, of 3 .2 7 + /- 0 .3g .(  

about 70%  of the maximum possible response (figure 18) which does

6 4
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Figure 24: Graph a) shows the mean (+/'- S.E.M.) pressor response of the
perfused tail artery to intramural nerve stimulation with 100 pulses at 
1-64 Hz in tissues from control animals (n=6) and from animals that had 
been treated for 3 days with twice daily succinylacetone (40mg/kg.). 
Graph b) shows the mean (+/- S.E.M.) of the response of the rat 
hemidiaphragm to phrenic nerve stimulation as the % of the maximum 
response achieved at 16 Hz in control animal tissue (n=8) and in tissues 
from treated animals (n=6). The responses of these two tissue were not 
affected by this porphyrinogenic drug treatment.



CHAPTER 3 RESULTS

not differ significantly from the contraction of 3 .48  + /- 0 .3g . that 
this compound elicits in tissues from control animals (figure 19).

b. The effect of glycerine trin itrate  on the response of the  

anococcygeus muscle:

When the tone of the anococcygeus muscle is raised by 3x10 5M 

guanethidine, glycerine trinitrate (G TN ) in concentrations ranging  

from 10'9M to 1 0 6M produces a dose-dependent reduction in the 

induced tone. The action of this nitrovasodilator is m ediated via the 

formation of nitric oxide from the glycerine trinitrate which in turn 

activates the haemoprotein, guanylate cyclase causing a relaxation of 
the muscle (M arks 1987 ). The response of tissues from treated  

animals, to G TN, did not differ significantly from the responses in 

control animals (figure 25).

c. The effects of sodium nitroprusside on the responses of the 

anococcygeus muscle:

When the tone of the anococcygeus muscle is raised with 3 x1 0 '5M 

guanethidine, 1 0 7M sodium nitroprusside causes a reduction in the 

induced tone of approximately 50% . This reduction in muscle tone is 

similarly proposed to be due to activation of guanylate cyclase  

(Waldman and Murad 1987). This compound caused a reduction in the 

guanethidine-induced tone in tissues from treated animals which did 

not differ significantly from the effect produced in tissues from  
control animals (figure 20).

d. The effect of phenylephrine on the rat vas deferens muscle:

3x10-5M phenylephrine induced a mean contraction of 1 .21+ / 0.08g. in 

tissues from treated  anim als which does not differ significanlty  

from the responses of tissues from control animals 1 .30  + /- 0 .1g . 
(figure 19).

3.3.5.2. Electrical stimulation of the nerve/muscle preparations:

The stimulation param eters w ere the sam e as those specified for 

Treatment Group 1.1, 3 days of succinylacetone.

6 5
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Figure 25: The effect of increasing concentrations of glycerine
trinitrate (1 0 9M to 1 06M ) on the guanethidine-induced tone (3x 10 5M) 
in the rat anococcygeus muscle in a single experiment on a tissue from a 
control animal and a treated animal tissue. Treatment lasted 9 days ( 
treatment 1.2, succinylacetone, phenobarbitone, A IA). The bottom graph 
shows the mean (+/- S.E.M.) % inhibition of induced tone in both control 
tissues and in treated animal tissues (n=4, in both cases) caused by 
glycerine trinitrate. This porphyrinogenic drug treatment did not 
significantly alter the responses of tissues to glycerine trinitrate.
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e. Anococcygeus motor response:

Field stimulation of the intrinsic nerves of the anococcygeus muscle 

from treated anim als produced a frequency-dependent contraction  

which did not differ significantly from the responses of control 

tissues (figures 26, 27a).

f. Anococcygeus inhibitory response:

Following contraction with 3 x10 5M guanethid ine, field stim ulation  

of the intrinsic nerves of the anococcygeus muscle from treated  

animals produced a frequency-dependent inhibitory response which 

did not significantly differ from the responses elicited in control 
tissues (figures 26, 27b).

g. Vas deferens motor response:

Electrical stimulation of the intrinsic nerves of the rat vas deferens, 
from animals treated with this porphyrinogenic drug com bination, 
produced a frequency-dependent contraction of the tissue. Neither 

component of the biphasic response differed significantly from the 

responses elicited from control tissues (figures 26, 28a, 28b).

h. Tail artery pressor response:

Electrical field stimulation of the perfused rat tail artery isolated  

from treated  anim als produced a freq u en cy-d ep en d en t pressor 

response which did not significantly differ from the responses of 
tissues from control animals (figures 26, 29a).

i. Phrenic nerve diaphragm:

On stimulation of the phrenic nerve the diaphragm  contracts in a 

ferquency-dependent m anner. The response of tissues isolated from  

treated animals did not differ significantly from the responses of 
tissues isolated from control animals (figures 26, 29b).



F i g u r e  2 6 :  T h e  e f f e c t s  o f  p r o p h y r i n o g e n i c  t r e a t m e n t  1 . 2  ( 9  d a y s  o f
s u c c i n y i a c e t o n e ,  p h e n o b a r b i t o n e  a n d  A i A )  o n  t h e  f i v e  t i s s u e  r e s p o n s e s ,
i n  i n d i v i d u a l  e x p e r i m e n t s  ( b o t t o m  t r a c e s ) ,  c o m p a r e d  t o  t h e  r e s p o n s e s
f r o m  i n d i v i d u a l  c o n t r o l  t i s s u e  r e s p o n s e s  ( t o p  t r a c e s ) .  T h e  t i m e  b a r s  
a p p l y  d u r i n g  s t i m u l a t i o n  p e r i o d s  o n l y  a n d  t h e  i n t e r s t i m u l u s  i n t e r v a l  i n  
a l l  c a s e s  w a s  3  m i n .  S t i m u l a t i o n  f r e q u e n c i e s  a r e  s h o w n  a b o v e  o r  b e l o w
e a c h  r e s p o n s e .  F o r  c l a r i t y  o n l y  t h e  f r e q u e n c i e s  f o r  o n e  t i s s u e  a r e  s h o w n
b u t  b o t h  c o n t r o l  a n d  t r e a t e d  t i s s u e s  r e c e i v e d  t h e  s a m e  s t i m u l a t i o n
p a r a m e t e r s .  T h e  t o p  r i g h t  h a n d  t r a c e s  s h o w ’ t h e  m o t o r  r e s p o n s e  o f  t h e
r a t  a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  5 0  p u l s e s  a n d  t h e  t r a c e s
o n  t h e  t o p  r i g h t  a r e  t h e  i n h i b i t o r y  r e s p o n s e  o f  t h e  a n o c o c c y g e u s  m u s c l e  
t o  s t i m u l a t i o n  w i t h  2 0  p u l s e s .  T h e  m i d d l e  t r a c e s  s h o w  t h e  r e s p o n s e  o f
t h e  r a t  v a s  d e f e r e n s  t o  f i e l d  s t i m u l a t i o n  w i t h  a  2 0 s .  t r a i n  o f  p u l s e s .  T h e  
b o t t o m  l e f t  h a n d  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  p e r f u s e d  r a t  t a i l
a r t e r y  t o  f i e l d  s t i m u l a t i o n  w i t h  1 0 0  p u l s e s .  T h e  b o t t o m  r i g h t  h a n d  g r a p h
s h o w s  t h e  r e s p o n s e  o f  t h e  r a t  h e m i d i a p h r a g m  t o  p h r e n i c  n e r v e
s t i m u l a t i o n  w i t h  5 0  p u l s e s .  T h i s  t r e a t m e n t  d i d  n o t  s i g n i f i c a n t l y  a l t e r
t h e  r e s p o n s e s  o f  t h e s e  t i s s u e s  t o  n e r v e  s t i m u l a t i o n .
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Figure 27: Graph a) shows the mean +/- S.E.M. of the motor response of
the rat anococoocygeus muscle, in gm. tension, to stimulation with 50 
pulses at 0.5-32 Hz in tissues from control animals (n=14) and in 
tissues from animals that had received 9 days of treatment 1.2 
(succinylacetone, phenobarbitone, A IA ) (n=10). Grapfi b) shows the 
inhibitory response of the anococcygeus muscle to intrinsic nerve 
stimulation with 20 pulses at 0.5-32 Hz in tissues from control animals 
(n=14) and treated animals (n=10). There were no significant 
differences.
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Figure 28: The top graph a) shows the mean +/- S.E.M. of the "fast"
component of the rat vas deferens motor response, in gm. tension, to 
stimulation for 20s. at 1-8 Hz in tissues from control animals (n=20)
and in tissues from animals that had received treatment 1.2 for 9 days
(succinylacetone, phenobarbitone, A IA ) (n=10). Graph b) shows the
"sustained" component of the rat vas deferens response to intrinsic
nerve stimulation with a 20s. train of pulses at 1-16 Hz in tissues from
control animals (n=20) and treated animals (n=10). There were no
significant differences.
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Figure 29: The top graph shows the mean +/- S.E.M. pressor response of
the perfused rat tail artery to intramural nerve stimulation with 100 
pulses at 1-64 Hz in tissues from control animals (n=8) and from 
animals that had been treated for 9 days with treatment combination 1.2 
(succinylacetone, phenobarbitone, AIA) (n=6). The bottom trace shows 
the mean +/- S.E.M. of the response of the rat hemidiaphragm to phrenic 
nerve stimulation as the % of the maximum response achieved at 16 Hz 
in control animal tissue (n=8) and in tissues from treated animals 
(n=8). There were no significant differences.



CHAPTER 3 RESULTS

3.3.6. The effects of porphyrinogenic treatment 1.3 (30 days 
succinylacetone; 6 days phenobarbitone; 1 injection of 4- 
ethyl DDC) on the responses of a range of innervated muscle 
preparations:

3.3.6.1. The effects of agonists:

a. The effect of phenylephrine on the rat anococcygeus muscle:

At a concentration of 3x10 6M, phenylephrine induced a contraction of 
the anococcygeus, from treated anim als, of approxim ately 3 .7 7  + /- 
0.58g., which did not differ significantly from the contraction of 3 .48  

+/- 0.3g. that this compound elicited in tissues from control animals 

(figure 19).

b. The effects of sodium nitroprusside on the responses of the 

anococcygeus muscle:

When the tone of the anococcygeus muscle was raised with 3x10 5M 

guanethidine 10 '7M sodium nitroprusside caused a reduction in the 

induced tone of approximately 50% . The effects of this compound in 

tissues from treated anim als did not differ significantly from the  

effect produced in tissues from control animals (figure 20).

c. The effect of phenylephrine on the rat vas deferens muscle:

3x10‘5M phenylephrine induced a mean contraction of 1 .19+ /- 0 .1 4g. 
in tissues from treated  anim als which did not differ significantly  

from the responses of tissues from  control an im als  to this  

concentration of phenylephrine (1 .30  + /- 0.1 g) ( figure 19 ).

3.3.6.2. Electrical stimulation of nerve/muscle preparations:

d. Anococcygeus motor response:

Field stimulation of the intrinsic nerves of the anococcygeus muscle 

from treated anim als produced a frequency-dependent contraction  

which did not differ significantly from the responses of control 
tissues (figures 30, 31a).
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F i g u r e  3 0 :  T h e  e f f e c t s  o f  p o r p h y r i n o g e n i c  t r e a t m e n t  1 . 3  ( 3 0  d a y s
s u c i n y l a c e t o n e ,  6  d a y s  p h e n o b a r b i t o n e ,  1 d a y  4 - e t h y l  D D C )  o n  t h e  f i v e  
t i s s u e  r e s p o n s e s ,  i n  i n d i v i d u a l  e x p e r i m e n t s  ( b o t t o m  t r a c e s ) ,  c o m p a r e d  
t o  i n d i v i d u a l  c o n t r o l  t i s s u e  r e s p o n s e s  ( t o p  t r a c e s ) .  T h e  t i m e  b a r s  a p p l y  
d u r i n g  t h e  s t i m u l a t i o n  p e r i o d s  o n l y  a n d  t h e  i n t e r s t i m u l u s  i n t e r v a l  i n  a l l  
c a s e s  w a s  3  m i n .  S t i m u l a t i o n  f r e q u e n c i e s  a r e  s h o w n  a b o v e  o r  b e l o w  
e a c h  r e s p o n s e .  F o r  c l a r i t y  o n l y  t h e  f r e q u e n c i e s  f o r  o n e  t i s s u e  a r e  s h o w n  
b u t  b o t h  t i s s u e s  r e c e i v e d  t h e  s a m e  s t i m u l a t i o n  p a r a m e t e r s .  T h e  t o p  l e f t
h a n d  t r a c e s  s h o w  t h e  m o t o r  r e s p o n s e  o f  t h e  r a t  a n o c o c c y g e u s  m u s c l e  to 
s t i m u l a t i o n  w i t h  5 0  p u l s e s  a n d  t h e  t r a c e s  o n  t h e  t o p  r i g h t  a r e  t h e  
i n h i b i t o r y  r e s p o n s e  o f  t h e  a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  2 0  
p u l s e s .  T h e  m i d d l e  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  r a t  v a s  d e f e r e n s  to 
f i e l d  s t i m u l a t i o n  w i t h  a  2 0 s .  t r a i n  o f  p u l s e s .  T h e  b o t t o m  l e f t  h a n d
t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  p e r f u s e d  r a t  t a i l  a r t e r y  t o  f i e l d  
s t i m u l a t i o n  w i t h  1 0 0  p u l s e s .  T h e  b o t t o m  r i g h t  h a n d  t r a c e s  s h o w s  t h e
r e s p o n s e  o f  t h e  r a t  h e m i d i a p h r a g m  t o  p h r e n i c  n e r v e  s t i m u l a t i o n  w i t h  5 0  
p u l s e s .  T h i s  t r e a t m e n t  d i d  n o t  s i g n i f i c a n t l y  a l t e r  t h e  r e s p o n s e s  o f  t h e  
t i s s u e s  t o  n e r v e  s t i m u l a t i o n .
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Figure 31: The top graph a) shows the mean (+/'- S.E.M.) of the motor
response the rat anococcygeus muscle, in gm. tension, to stimulation 
with 50 pulses at 0.5-32 Hz in tissues from control animals (n=14) and 
in tissues from animals that had received treatment 1.3 
(succinylacetone, phenobarbitone, 4-ethyi DDC (n=6). Graph b) shows the 
inhibitory response of the anococcygeus muscle to intrinsic nerve 
stimulation with 20 pulses at 0.5-32 Hz in tissues from control animals 
(n= 14) and treated animals (n=5). There were no significant difference 
between control and treated tissue responses.



CHAPTER 3 RESULTS

e. Anococcygeus inhibitory response:

Following contraction with 3 x 1 0 5M guanethidine, field stimulation  

of the intrinsic nerves of the anococcygeus muscle from treated  

animals produced a frequency-dependent inhibitory response which 

did not significantly differ from the responses elicited in control 

tissues (figures 30, 31b).

f. Vas deferens motor response:

Electrical stimulation of the intrinsic nerves of the rat vas deferens, 
from animals treated with this porphyrinogenic drug com bination, 
produced a frequency-dependent contraction of the tissue. Neither 

component of the biphasic response differed significantly from the 

responses elicited from control tissues (figures 30, 32a, 32b).

g. Tail artery pressor reponse:

Electrical field stimulation of the perfused rat tail artery isolated  

from treated  anim als produced a freq u en cy-d ep en d en t pressor 

response which did not significantly differ from the responses of 
tissues from control animals (figure 30, 33a).

h. Phrenic nerve diaphragm:

On stimulation of the phrenic nerve the diaphragm  contracts in a 

frequency-dependent m anner. The response of tissues isolated from  

treated animals did not differ significantly from the responses of 
tissues isolated from control animals (figures 30, 33b).
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Figure 32: The top graph a) shows the mean (+/- S.E.M.) of the ’fast"
component of the rat vas deferens motor response, in gm. tension, to 
stimulation for 20s. at 1-8 Hz in tissues from control animals 
(n=20) and in tissues from animals that had received treatment 
1.3 (succinylacetone, phenobarbitone, 4-ethyl DDC) (n=6) . Graph b)
shows the "sustained" component of the rat vas deferens response to 
intrinsic nerve stimulation with a 20s. train of pulses at 1-16 Hz in 
tissues from control animals (n= 20) and treated animals (n=6). There 
were no significant differences between control and treated tissues.
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Figure 33: The top graph shows the mean (+/- S.E.M.) pressor response of
the perfused rat tail artery to intramural nerve stimulation with 100 
pulses at 1-64 Hz in tissues from control animals (n=8) and from 
animals that had received treatment 1.3 (succiny lacetone,
phenobarbitone 4hethyl DDC) (n=6). The bottom trace shows the mean 
(+/- S.E.M.) of the response of the rat hemidiapfrr&gm tP phrenic nerve 
stimulation as the % of the maximum response achieved at 16 Hz in 
control animal tissue (n=8) and in tissues from treated animals (n=4). 
There were no significant differences between control and treated 
tissues.



CHAPTER 3 RESULTS

3.3.7. The effects of porphyrinogenic treatment 1.4 (30 days
succinylacetone; 6 days phenobarbitone; 1 injection of DDC)
on the responses of a range of innervated  m uscle  
preparations:

3.3.7.1. The effects of agonists:

a. The effect of phenylephrine on the rat anococcygeus muscle:

At a concentration of 3x10 6M, phenylephrine induced a contraction of 
the anococcygeus muscle from treated animals of approxim ately 4.1 

+/- 0.35g., which did not differ significantly from the contraction of 
3.48 +/- 0 .3g that this compound elicits in tissues from control
animals (figure 19).

b. The effects of sodium nitroprusside on the responses of the

anococcygeus muscle:

When the tone of the anococcygeus muscle was raised with 3x10 5M 

guanethidine, 1 0 7M sodium nitroprusside caused a reduction in the 

induced tone of approximately 50% . The effects of this compound in 

tissues from treated anim als did not differ significantly from the  

effect produced in tissues from control animals (figure 20).

c. The effect of phenylephrine on the rat vas deferens muscle:

3x10 5M phenylephrine induces a mean contraction of 1 .19  +/- 0 .1 4g. 
in tissues from treated  anim als which did not differ significantly  

from the responses of tissues from control animals (1 .3 0  + /- 0 .1g) 
(figure 19).

3.3.7.1. Electrical stimulation of the nerve/muscle preparations:

d. Anococcygeus motor response:

Field stimulation of the intrinsic nerves of the anococcygeus muscle 

from treated anim als produced a frequency-dependent contraction  

which did not differ significantly from the responses of control 
tissues (figures 34, 35a).
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F i g u r e  3 4 :  T h e  e f f e c t s  o f  p o r p h y r i n o g e n i c  t r e a t m e n t  1 . 4  ( 3 0  d a y s
s u c i n y l a c e t o n e ,  6  d a y s  p h e n o b a r b i t o n e ,  1 d a y  D D C )  o n  t h e  f i v e  t i s s u e  
r e s p o n s e s ,  i n  i n d i v i d u a l  e x p e r i m e n t s  ( b o t t o m  t r a c e s ) ,  c o m p a r e d  t o  t h e  
r e s p o n s e s  f r o m  i n d i v i d u a l  c o n t r o l  t i s s u e  r e s p o n s e s  ( t o p  t r a c e s ) .  T h e  
t i m e  b a r s  a p p l y  d u r i n g  t h e  s t i m u l a t i o n  p e r i o d s  o n l y  a n d  t h e  
i n t e r s t i m u l u s  i n t e r v a l  i n  a l l  c a s e s  w a s  3  m i n .  S t i m u l a t i o n  f r e q u e n c i e s  
a r e  s h o w n  a b o v e  o r  b e l o w  e a c h  r e s p o n s e .  F o r  c l a r i t y  o n l y  t h e  f r e q u e n c i e s  
f o r  o n e  t i s s u e  a r e  s h o w n  b u t  b o t h  c o n t r o l  a n d  t r e a t e d  t i s s u e s  r e c e i v e d  
t h e  s a m e  s t i m u l a t i o n  p a r a m e t e r s .  T h e  t o p  l e f t  h a n d  t r a c e s  s h o w  t h e  
m o t o r  r e s p o n s e  o f  t h e  r a t  a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  5 0  
p u l s e s  a n d  t h e  t r a c e s  o n  t h e  t o p  r i g h t  a r e  t h e  i n h i b i t o r y  r e s p o n s e  o f  t h e  
a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  2 0  p u l s e s .  T h e  m i d d l e  t r a c e s  
s h o w  t h e  r e s p o n s e  o f  t h e  r a t  v a s  d e f e r e n s  t o  f i e l d  s t i m u l a t i o n  w i t h  a 
2 0 s .  t r a i n  o f  p u l s e s .  T h e  b o t t o m  l e f t  h a n d  t r a c e s  s h o w  t h e  r e s p o n s e  o f  
t h e  p e r f u s e d  r a t  t a i l  a r t e r y  t o  f i e l d  s t i m u l a t i o n  w i t h  1 0 0  p u l s e s .  T h e  
b o t t o m  r i g h t  h a n d  t r a c e s  s h o w s  t h e  r e s p o n s e  o f  t h e  r a t  h e m i d i a p h r a g m  

t o  p h r e n i c  n e r v e  s t i m u l a t i o n  w i t h  5 0  p u l s e s .  T h i s  t r e a t m e n t  d i d  n o t  
s i g n i f i c a n t l y  a l t e r  t h e  r e s p o n s e  o f  t h e  t i s s u e s  t o  n e r v e  s t i m u l a t i o n .
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Figure 35: The top graph a) shows the mean (+/- S.E.M.) of the motor
response the rat anococoocygeus muscle, in gm. tension, to stimulation 
with 50 pulses at 0.5-32 Hz in tissues from control animals (n=14) and 
in tissues from animals that had received treatment 1.4 
(succinylacetone, phenobarbitone, DDC) (n=8) . Graph b) shows the
inhibitory response of the anococcygeus muscle to intrinsic nerve 
stimulation with 20 pulses at 0.5-32 Hz in tissues from control animals 
(n= 14) and treated animals (n=8). There were no significant differences 
between control and treated responses.



CHAPTER 3 RESULTS

e. Anococcygeus inhibitory response:

Following contraction with 3 x 1 0 '5M guanethid ine, field stimulation  

of the intrinsic nerves of the anococcygeus muscle from treated  

animals produced a frequency-dependent inhibitory response which 

did not significantly differ from the responses elicited in control 

tissues (figures 34, 35b).

f. Vas deferens motor response:

Electrical stimulation of the intrinsic nerves of the rat vas deferens, 
from animals treated with this porphyrinogenic drug com bination, 
produced a frequency-dependent contraction of the tissue. Neither 

component of the biphasic response differed significantly from the 

responses elicited from control tissues (figures 34, 36a, 36b).

g. Tail artery pressor response:

Electrical field stimulation of the perfused rat tail artery isolated  

from treated  anim als produced a freq u en cy-d ep en d en t pressor 

response which did not significantly differ from the responses of 
tissues from control animals (figures 34, 37a).

h. Phrenic nerve diaphragm:

On stimulation of the phrenic nerve the diaphragm  contracts in a 

ferquency-dependent m anner. The response of tissues isolated from  

treated animals did not differ significantly from the responses of 
tissues isolated from control animals (figures 34, 37b).
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Figure 36: The top graph a) shows the mean (+/- S.E.M.) of the fast
component of the rat vas deferens motor response , in gm. tension, to 
stimulation for 20s. at 1-8 Hz in tissues from control animals (n=20) 
and in tissues from animals that had received treatment 1.4 (n=8). Graph 
b) shows the "sustained" component of the rat vas deferens response to 
intrinsic nerve stimulation with a 20s. train of pulses at 1-16 Hz in 
tissues from control animals (n= 20) and treated animals (n=8). There 
were no significant differences between control and treated tissue 
responses.



a )
3  300

E 200

100

LL

10001 0 1001 1
HZ

o  CONTROL
b)  100 TREATED

LU
if)z
o
£L
</)
LU
CC

Z>
2
X
<
2

o '

1 1 0 100
HZ

Figure 37: The top graph shows the mean (+/- S.E.M.) pressor response of
the perfused rat tail artery to intramural nerve stimulation with 100 
pulses at 1-64 Hz in tissues from control animals (n=8) and from 
animals that had received treatment 1.4 (succiny lacetone, 
phenobarbitone, DDC) (n=7). The bottom trace shows the mean (+/- S.E.M.) 
of the response of the rat hemidiaphragm to phrenic nerve stimulation 
as the % of the maximum response achieved at 16 Hz in control animal 
tissue (n=8) and in tissues from treated animals (n=2). This treatment 
did not alter the responses of the tissues to nerve stimulation.



CHAPTER 3 RESULTS

3.3.8. The effects of porphyrinogenic treatment 1.5 (30 days 
succinylacetone; 10 days of 4-ethyl DDC; 4 days 
phenobarbitone; 1 large dose of 4-ethyl DDC) on the 
responses of a range of innervated muscle preparations:

3.3.8.1. The effects of agonists:

a. The effect of phenylephrine on the rat anococcygeus muscle:

At a concentration of 3x10 6M, phenylephrine induced a contraction of 
the anococcygeus, from treated animals , of approxim ately 3 .17  +/- 
0.41g., which did not differ significantly from the contraction of 3 .48  

+/- 0.3g. that this compound elicits in tissues from control animals 

(figure 19).

b. The effects of sodium nitroprusside on the responses of the 

anococcygeus muscle:

When the tone of the anococcygeus muscle was raised with 3x10 5M 

guanethidine, 1 0 7M sodium nitroprusside caused a reduction in the 

induced tone of approximately 50% . The effects of this compound in 

tissues from treated anim als did not differ significantly from the  

effect produced in tissues from control animals (figure 20).

c. The effect of phenylephrine on the rat vas deferens muscle:

3 x 1 0 5M phenylephrine induced a mean contraction of 1.15 +/- 0 .15g. 
in tissues from treated  anim als which did not differ significanlty  

from the responses of tissues from control animals (1 .3 0  +/- 0.1 g.) 
(figure 19).

3.3.8.2. Electrical stimulation of the nerve/muscle preparations:

d. Anococcygeus motor response:

Field stimulation of the intrinsic nerves of the anococcygeus muscle 

from treated anim als produced a frequency-dependent contration  

which did not differ significantly from the responses of control 
tissues (figures 38, 39a).

7 1



F i g u r e  3 8 :  T h e  e f f e c t s  o f  p r o p h y r i n o g e n i c  t r e a t m e n t  1 . 5  ( 3 0  d a y s
s u c i n y l a c e t o n e ,  1 0  d a y s  4 - e t h y l  D D C ,  4  d a y s  p n e n o b a r b i t o n e ,  1 d a y  4 -  
e t h y l  D D C )  o n  t h e  f i v e  t i s s u e  r e s p o n s e s ,  i n  i n d i v i d u a l  e x p e r i m e n t s  
( b o t t o m  t r a c e s ) ,  c o m p a r e d  t o  t h e  r e s p o n s e s  f r o m  i n d i v i d u a l  c o n t r o l  
t i s s u e  r e s p o n s e s  ( t o p  t r a c e s ) .  T h e  t i m e  b a r s  a p p l y  d u r i n g  s t i m u l a t i o n  
p e r i o d s  o n l y  a n d  t h e  i n t e r s t i m u l u s  i n t e r v a l  i n  a i l  c a s e s  w a s  3  m i n .  
S t i m u l a t i o n  f r e q u e n c i e s  a r e  s h o w n  a b o v e  o r  b e l o w  e a c h  r e s p o n s e .  F o r  
c l a r i t y  o n l y  t h e  f r e q u e n c i e s  f o r  o n e  t i s s u e  a r e  s h o w n  b u t  b o t h  c o n t r o l
a n d  t r e a t e d  t i s s u e s  r e c e i v e d  t h e  s a m e  s t i m u l a t i o n  p a r a m e t e r s .  T h e  t o p  
l e f t  h a n d  t r a c e s  s h o w 7 t h e  m o t o r  r e s p o n s e  o f  t h e  r a t  a n o c o c c y g e u s  
m u s c l e  t o  s t i m u l a t i o n  w i t h  5 0  p u l s e s  a n d  t h e  t r a c e s  o n  t h e  t o p  r i g h t  a r e
t h e  i n h i b i t o r y  r e s p o n s e  o f  t h e  a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  
2 0  p u l s e s .  T h e  m i d d l e  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  r a t  v a s  d e f e r e n s  
t o  f i e l d  s t i m u l a t i o n  w ' i t h  a  2 0 s .  t r a i n  o f  p u l s e s .  T h e  b o t t o m  l e f t  h a n d  
t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  p e r f u s e d  r a t  t a i l  a r t e r y  t o  f i e l d
s t i m u l a t i o n  w i t h  1 0 0  p u l s e s .  T h e  b o t t o m  r i g h t  h a n d  t r a c e s  s h o w s  t h e  
r e s p o n s e  o f  t h e  r a t  h e m i d i a p n r a g m  t o  p h r e n i c  n e r v e  s t i m u l a t i o n  w i t h  5 0  
p u l s e s .  T h i s  t r e a t m e n t  d i d  n o t  s i g n i f i c a n t l y  a i t e r  t h e  r e s p o n s e s  o f  t h e
t i s s u e s  t o  n e r v e  s t i m u l a t i o n .
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Figure 39: The top graph a) shows the mean (+/- S.E.M.) of the motor
response the rat anococoocygeus muscle, in gm. tension, to stimulation 
with 50 puises at 0.5-32 Hz in tissues from control animals (n=14) and 
in tissues from animals that had received treatment 2.5 
(succinylacetone, 4-ethyl DDC, phenobarbitone, 4-ethyl DDC) (n=8). Graph 
b) shows the inhibitory response of the anococcygeus muscle to 
intrinsic nerve stimulation with 20 pulses at 0.5-32 Hz in tissues from 
control animals (n= 14) and treated animals (n=8). There were no 
significant differences between treated and control tissue responses.



CHAPTER 3 RESULTS

e. Anococcygeus inhibitory response:

Following contraction with 3x10*5M guanethidine, field stimulation  

of the intrinsic nerves of the anococcygeus muscle from treated  

animals produced a frequency-dependent inhibitory response which 

did not significantly differ from the responses elicited in control 

tissues (figures 38, 39b).

f. Vas deferens motor response:

Electrical stimulation of the intrinsic nerves of the rat vas deferens, 
from animals treated with this porphyrinogenic drug com bination, 
produced a frequency-dependent contraction of the tissue. Neither 

component of the biphasic response differed significantly from the  

responses elicited from control tissues (figure 38, 40a , 40b).

g. Tail artery pressor response:

Electrical field stimulation of the perfused rat tail artery isolated  

from treated  anim als produced a freq u en cy-d ep en d en t pressor 

response which did not significantly differ from the responses of 
tissues from control animals (figures 39a, 41a).

h. Phrenic nerve diaphragm:

On stimulation of the phrenic nerve the diaphragm  contracts in a 

ferquency-dependent m anner. The response of tissues isolated from  

treated animals did not differ significantly from the responses of 
tissues isolated from control animals (figures 39, 41b).

7 2
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Figure 40: The top graph a) shows the mean (+/- S.E.M.) of the Fast
component of the rat vas deferens motor response , in gm. tension, to 
stimulation for 20s. at 1-8 Hz in tissues from control animals (n=20) 
and in tissues from animals that had received treatment 1.5 
(succinylacetone, 4-ethyl DDC, phenobarbitone, 4-ethyl DDC) (n=8). 
Graph b) shows the "sustained" component of the rat vas deferens 
response to intrinsic nerve stimulation with a 20s. train of pulses at 
1-16 Hz in tissues from control animals (n= 20) and treated animals 
(n=8). There were no significant differences.



b )  120
TREATED

ULI
(/)  100 -
z
o

E2 8 0 -
cc

3  60 - 
2
X
<
2  40 1

1 1 0 100

Figure 41: The top graph shows the mean (+/- S.E.M.) pressor response of
the perfused rat tail artery to intramural nerve stimulation with 100 
pulses at 1-64 Hz in tissues from control animals (n=8) and from 
animals that had received treatment 1.5 (succinylacetone, 4-ethyl DDC, 
phenobarbitone, 4-ethyl DDC) (n=5). The bottom trace shows the mean 
(+/- S.E.M.) of the response of the rat hemidiaphragm to phrenic nerve 
stimulation as the % of the maximum response acheived at 16 Hz in 
cohtrol animal tissue (n=8) and in tissues from treated animals (n=6). 
There were no significant differences.



CHAPTER 3 RESULTS

3.3.9. The effects of porphyrinogenic treatment 1.6 (30 days 
succinylacetone; 10 days DDC; 4 days phenobarbitone; 1 
large dose of DDC) on the responses of a range of innervated 
muscle preparations:

3.3.9.1. The effects of agonists:

a. The effect of phenylephrine on the rat anococcygeus muscle:

At a concentration of 3x10*6M, phenylephrine induced a contraction of 
the anococcygeus, from treated anim als, of approxim ately 3 .16  +/- 
0.54g., which did not differ significantly from the contraction of 3 .48  

+/- 0.3g. that this compound elicits in tissues from control animals  

(figure 19).

b. The effects of sodium nitroprusside on the responses of the 

anococcygeus muscle:

When the tone of the anococcygeus muscle was raised with 3x10 5M 

guanethidine 10 '7M sodium nitroprusside caused a reduction in the 

induced tone of approximately 50% . The effects of this compound in 

tissues from treated anim als did not differ significantly from the  

effect produced in tissues from control animals (figure 20).

c. The effect of phenylephrine on the rat vas deferens muscle:

3 x 1 0 5M phenylephrine induced a mean contraction of 1.28 +/- 0 .17g. 
in tissues from treated  anim als which did not differ significanlty  

from the responses of tissues from control animals (figure 19).

3.3.9.2. Electrical stimulation of the nerve/muscle preparations:

d. Anococcygeus motor response:

Field stimulation of the intrinsic nerves of the anococcygeus muscle 

from treated anim als produced a frequency-dependent contraction  

which did not differ significantly from the responses of control 
tissues (figures 42, 43a).
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F i g u r e  4 2 :  T h e  e f f e c t s  o f  p o r p h y r i n o g e n i c  t r e a t m e n t  1 . 6  ( 3 0  d a y s
s u c i n y l a c e t o n e .  1 0  d a y s  D D C ,  4  d a y s  p h e n o b a r b i t o n e ,  1 d a y  D D C )  o n  the  
f i v e  t i s s u e  r e s p o n s e s ,  i n  i n d i v i d u a l  e x p e r i m e n t s  ( b o t t o m  t r a c e s ) ,  
c o m p a r e d  t o  t h e  r e s p o n s e s  f r o m  i n d i v i d u a l  c o n t r o l  t i s s u e  r e s p o n s e s  ( t o p  
t r a c e s ) .  T h e  t i m e  b a r s  a p p l y  t o  s t i m u l a t i o n  p e r i o d s  o n l y  a n d  t h e  
i n t e r s t i m u l u s  i n t e r v a l  i n  a i l  c a s e s  w a s  3  m i n .  S t i m u l a t i o n  f r e q u e n c i e s  
a r e  s h o w n  a b o v e  o r  b e l o w  e a c h  r e s p o n s e .  F o r  c l a r i t y  o n l y  t h e  f r e q u e n c i e s  
f o r  o n e  t i s s u e  a r e  s h o w n  b u t  b o t h  t i s s u e s  r e c e i v e d  t h e  s a m e  s t i m u l a t i o n  
p a r a m e t e r s .  T h e  t o p  l e f t  h a n d  t r a c e s  s h o w  t h e  m o t o r  r e s p o n s e  o f  t h e  ra t  
a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  5 0  p u l s e s  a n d  t h e  t r a c e s  o n  
t h e  t o p  r i g h t  a r e  t h e  i n h i b i t o r y  r e s p o n s e  o f  t h e  a n o c o c c y g e u s  m u s c l e  to 
s t i m u l a t i o n  w i t h  2 0  p u l s e s .  T h e  m i d d l e  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  
r a t  v a s  d e f e r e n s  t o  f i e l d  s t i m u l a t i o n  w i t h  a  2 0 s .  t r a i n  o f  p u l s e s .  T h e  
b o t t o m  l e f t  h a n d  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  p e r f u s e d  r a t  t a i l  
a r t e r y  t o  f i e l d  s t i m u l a t i o n  w i t h  1 0 0  p u l s e s .  T h e  b o t t o m  r i g h t  h a n d  
t r a c e s  s h o w s  t h e  r e s p o n s e  o f  t h e  r a t  h e m i d i a p h r a g m  t o  p h r e n i c  n e r v e  
s t i m u l a t i o n  w i t h  5 0  p u l s e s .  T h i s  t r e a t m e n t  d i d  n o t  s i g n i f i c a n t l y  a l t e r  
t h e  r e s p o n s e s  o l  t h e  t i s s u e s  t o  n e r v e  s t i m u l a t i o n .
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Figure 43: The top graph a) shows the mean (+/- S.E.M.) of the motor
response the rat anococoocygeus muscle, in gm. tension, to stimulation 
with 50 pulses at 0.5-32 Hz in tissues from control animals (n=14) and 
in tissues from animals that had received treatment 1.6 
(succinylacetone, DDC, phenobarbitone, DDC) (n=4) . Graph b) shows the
inhibitory response of the anococcygeus muscle to intrinsic nerve 
stimulation with 20 pulses at 0.5-32 Hz in tissues from control animals 
(n= 14) and treated animals (n=4). There were no significant differences 
between control and treated tissue responses to nerve stimulation.



CHAPTER 3 RESULTS

e. Anococcygeus inhibitory response:

Following contraction with 3 x 1 0 5M guanethidine, field stimulation  

of the intrinsic nerves of the anococcygeus muscle from treated  

animals produced a frequency-dependent inhibitory response which 

did not significantly differ from the responses elicited in control 

tissues (figures 42, 43b).

f. Vas deferens motor response:

Electrical stimulation of the intrinsic nerves of the rat vas deferens, 
from animals treated with this porphyrinogenic drug com bination, 
produced a frequency-dependent contraction of the tissue. Neither 

component of the biphasic response differed significantly from the 

responses elicited from control tissues (figures 42, 44a, 44b).

g. Tail artery pressor response:

Electrical field stimulation of the perfused rat tail artery isolated  

from treated anim als produced a freq u en cy-d ep en d en t pressor 

response which did not significantly differ from the responses of 
tissues from control animals (figures 42, 45a).

h. Phrenic nerve diaphragm:

On stimulation of the phrenic nerve the diaphragm  contracts in a 

frequency-dependent m anner. The response of tissues isolated from  

treated animals did not differ significantly from the responses of 
tissues isolated from control animals (figures 42, 45b).

7 4
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Figure 44: The top graph a) shows the mean (+/- S.E.M.) of the fast
component of the rat vas deferens motor response, in gm. tension, to 
stimulation for 20s. at 1-8 Hz in tissues from control animals
(n=20) and in tissues from animals that had received treatment
1.6 (succinylacetone, DDC, phenobarbitone, DDC) (n=4) . Graph b) shows 
the "sustained" component of the rat vas deferens response to intrinsic 
nerve stimulation with a 20s. train of pulses at 1-16 Hz in tissues from
control animals (n= 20) and treated animals (n=4). There were no
significant differences.
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Figure 45: The top graph shows the mean (+/- S.E.M.) pressor response of
the perfused rat tail artery to intramural nerve stimulation with 100 
pulses at 1-64 Hz in tissues from control animals (n=8) and from 
animals that had received treatment 1.6 (succinylacetone, DDC, 
phenobarbitone, DDC) (n=3). The bottom trace shows the mean (+/- S.E.M.) 
of the response of the rat hemidiaphragm to phrenic nerve stimulation 
as the % of the maximum response acheived at 16 Hz in control animal 
tissue (n=8) and in tissues from treated animals (n=3). There were no 
significant differences between control and treated tissue responses.



CHAPTER 3 RESULTS

3.3 .10 . T h e  e f fe c ts  of p o rp h y r in o g e n ic  tre a tm e n t 1 .7  (14
days of lead te tra a c e ta te )  on th e  re s p o n s e s  of a ran g e  of 
innervated  m u sc le  p re p a ra tio n s :

3.3.10.1. The effects of agonists:

a. The effect of phenylephrine on the rat anococcygeus muscle:

At a concentration of 3x10 6M, phenylephrine induced a contraction of 
the anococcygeus, from treated animals , of 3 .28  +/- 0 .32g ., which 

did not differ significantly from the contraction of 3 .48  + /- 0 .3g . 
that this compound elicited in tissues from control anim als (figure  

19).

A one way A N O V A  com pairing the effects  of this dose of 
phenylephrine in all treatm ents determ ined that there  w ere no 

significant differences amongst groups (p =0 .2793)

b. The effects of sodium nitroprusside on the responses of the 

anococcygeus muscle:

When the tone of the anococcygeus muscle was raised with 3x10-5M 

guanethidine 10-7M sodium nitroprusside caused a reduction in the  

induced tone of approximately 50% . The effects of this compound in 

tissues from treated anim als did not differ significantly from the  

effect produced in tissues from control animals (figure 20).

A one way A N O VA compairing the effects of this dose of sodium  

nitroprusside in all treatm ents  determ ined  that there  w ere no 

significant differences amongst groups (p=0 .6048)

c. The effect of phenylephrine on the rat vas deferens muscle:

3x10*5M phenylephrine induced a mean contraction of 1.35 +/- 0 .15g. 
in tissues from treated  anim als which did not differ significanlty  

from the responses of tissues from control animals ( 1 .30 + /- 0.1 g.) 
(figure 19).

7 5



CHAPTER 3 RESULTS

A one way A N O V A  com pairing the effects  of this dose of 
phenylephrine in all treatm ents  determ ined that there w ere no 

significant differences amongst groups (p =0 .4948)

d. Anococcygeus motor response:

Field stimulation of the intrinsic nerves of the anococcygeus muscle 

from treated anim als produced a frequency-dependent contraction  

which did not differ significantly from the responses of control 

tissues (figures 46, 47a).

3.3.10.2. Electrical stimulation of the nerve/muscle preparations:

e. Anococcygeus inhibitory response:

Following contraction with 3 x 1 0 5M guanethid ine, field stimulation  

of the intrinsic nerves of the anococcygeus muscle from treated  

animals produced a frequency-dependent inhibitory response which 

did not significantly differ from the responses elicited in control 
tissues (figures 46, 47b).

f. Vas deferens motor response:

Electrical stimulation of the intrinsic nerves of the rat vas deferens, 
from animals treated with this porphyrinogenic drug com bination, 
produced a frequency-dependent contraction of the tissue. The "fast" 

component of the biphasic response did not differ significantly from  

the responses elicited from control tissues (figures 46, 48a , 48b ). 
The "sustained” noradrenerg ically -m ediated  com ponent of treated  

tissues was significantly lower at the 4H z stim ulation frequency  

(p<0.05), w hereas the responses at all other frequenc ies w ere  
unaltered.

g. Tail artery pressor response:

Electrical field stimulation of the perfused rat tail artery isolated  

from treated  anim als produced a fre q u en c y-d ep en d en t pressor 

response which did not significantly differ from the responses of 
tissues from control animals (figures 46, 49a).

7 6



F i g u r e  4 6 :  T h e  e f f e c t s  o f  p o r p h y r i n o g e n i c  t r e a t m e n t  1 . 7  ( 1 4  d a y s  o f  l ea d
t e t r a a c e t a t e )  o n  t h e  f i v e  t i s s u e  r e s p o n s e s ,  i n  i n d i v i d u a l  e x p e r i m e n t s  
( b o t t o m  t r a c e s ) ,  c o m p a r e d  t o  t h e  r e s p o n s e s  f r o m  i n d i v i d u a l  c o n t r o l  
t i s s u e  r e s p o n s e s  ( t o p  t r a c e s ) .  T h e  t i m e  b a r s  a p p l y  d u r i n g  s t i m u l a t i o n  
p e r i o d s  o n l y  a n d  t h e  i n t e r s t i m u l u s  i n t e r v a l  i n  a l l  c a s e s  w a s  3 i n i n .  
S t i m u l a t i o n  f r e q u e n c i e s  a r e  s h o w n  a b o v e  o r  b e l o w  e a c h  r e s p o n s e .  F o r  
c l a r i t y  f r e q u e n c i e s  a r e  s h o w n  f o r  o n e  t i s s u e  o n l y  b u t  b o t h  c o n t r o l  a n d  
t r e a t e d  t i s s u e s  r e c e i v e d  t h e  s a m e  s t i m u l a t i o n  p a r a m e t e r s .  T h e  t o p  le f t  
h a n d  t r a c e s  s h o w  t h e  m o t o r  r e s p o n s e  o f  t h e  r a t  a n o c o c c y g e u s  m u s c l e  to 
s t i m u l a t i o n  w i t h  5 0  p u l s e s  a n d  t h e  t r a c e s  o n  t h e  t o p  r i g h t  a r e  the  
i n h i b i t o r y  r e s p o n s e  o f  t h e  a n o c o c c y g e u s  m u s c l e  t o  s t i m u l a t i o n  w i t h  2 0  
p u l s e s .  T h e  m i d d l e  t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  r a t  v a s  d e f e r e n s  to 
f i e l d  s t i m u l a t i o n  w i t h  a  2 0 s .  t r a i n  o f  p u l s e s .  T h e  b o t t o m  l e f t  h a n d  
t r a c e s  s h o w  t h e  r e s p o n s e  o f  t h e  p e r f u s e d  r a t  t a i l  a r t e r y  t o  f i e l d  
s t i m u l a t i o n  w i t h  1 0 0  p u l s e s .  T h e  b o t t o m  r i g h t  h a n d  t r a c e s  s h o w s  the  
r e s p o n s e  o f  t h e  r a t  h e m i d i a p h r a g m  t o  p h r e n i c  n e r v e  s t i m u l a t i o n  w i t h  5 0  
p u l s e s .  T h e r e  w a s  a  r e d u c t i o n  i n  t h e  n o r a d r e n e r g i c a l l y - m e d i a t e d  
c o m p o n e n t  o f  t h e  v a s  d e f e r e n s ,  a t  a  f r e q u e n c y o f  4  H z .  N o  o t h e r  
d i f f e r e n c e s  w e r e  o b s e r v e d  i n  t h e  r e s p o n s e s  o f  t h e  t i s s u e s  t o  n e r v e  
s t i m u l a t i o n .
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Figure 47: The top graph a) shows the mean (+/- S.E.M.) of the motor
response the rat anococoocygeus muscle, in gm. tension, to stimulation 
with 50 pulses at 0.5-32 Hz in tissues from control animals (n=14) and 
in tissues from animals that had received treatment 1.7 (lead 
tetraacetate 14 days 50pM./day) (n=8) . Graph b) shows the inhibitory
response of the anococcygeus muscle to intrinsic nerve stimulation with 
20 pulses at 0.5-32 Hz in tissues from control animals (n= 14) and 
treated animals (n=8). There were no significant differences between 
control and treated tissue responses to nerve stimulation.
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Figure 48: The top graph a) shows the mean (+/- S.E.M.) of the fast
component of the rat vas deferens motor response , in gm. tension, to 
stimulation for 20s. at 1-8 Hz in tissues from control animals (n=20) 
and in tissues from animals that had received treatment 1.7 (14 days 
lead tetraacetate 50juM.) (n=8). Graph b) shows the sustained
component of the rat vas deferens response to intrinsic nerve 
stimulation with a 20s. train of pulses at 1-16 Hz in tissues from 
control animals (n=20) and treated animals (n=8). At a stimulation 
frequency of 4 Hz treated tissue responses were significantly lower 
than control responses ( * p<0.05). There were no other significant 
differences.
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Figure 49: The top graph shows the mean (+/- S.E.M.) pressor response of
the perfused rat tail artery to intramural nerve stimulation with 100 
pulses at 1-64 Hz in tissues from control animals (n=8) and from 
animals that had been treated for 14 days with 50pMoles of lead acetate
(n=10). The bottom trace shows the mean +/- S.E.M. of the response of
the rat hemidiaphragm to phrenic nerve stimulation as the % of the
maximum response acheived at 16 Hz in control animal tissue ( n=8) and 
in tissues from treated animals (n=5). There were no significant
differences.



CHAPTER 3 RESULTS

8. Phrenic nerve diaphragm:

On stimulation of the phrenic nerve the diaphragm contracted in a 

frequency-dependent m anner. The response of tissues isolated from 

treated animals did not differ significantly from the responses of 
tissues isolated from control animals (figures 46, 49b).

3.3.11. The effects of porphyrinogenic treatment on the 
responses of the isolated mouse vas deferens.

The three treatm ents (succinylacetone + either AIA, 4-ethyl DDC or 
DDC) all caused a marked peritonitis and two animals from the AIA  

treated group died.

During the equilibration period, following the set up of the tissues, 
the initial tension of 0 .5g . p laced on the tisssue decayed to 

approximately 5 0 -7 0 %  of this initial va lue . Stim ulation of the  

intrinsic nerves of the tissue with a 20s. train of 1 -32H z, 0.5m s. 
duration, supramaximal voltage, induced a frequency-dependent motor 

response. The maximum contraction caused by field stimulation of 
the tissues from treated animals did not differ significantly from the 

responses of tissues from control mice (figure 50 ), except that of 
succinylacetone and 4-ethyl DDC treatm ent where the mean response 

of treated tissues at 4H z w ere significantly greater than that of 
control tissues.

Summary:

In this section the effects of various com binations of porphyric  

drugs, given for different periods of time, have been exam ined on a 

wide range of isolated nerve/m uscle preparations from two species. 
None of these combinations or treatm ent periods produced any overall 
change in the tissue responses, either to drug or nerve stimulation. 
There was, therefore, no experim ental evidence of a neuropathy or 

that an animal model of human porphyria had been produced, in spite 

of the significant rises in ALA urinary concentrations.
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F i g u r e  5 0 :  T h e  e f f e c i s  o f  6  d a y s  t r e a t m e n t  w i t h  a )  s u c c i n y l a c e t o n e  
( 4 0 m g / k g )  + D D C  ( 2 5 m g / k g )  ( n = 6 ) ;  b )  s u c c i n y i a c e t o n e ( 4 0 i n g / ' k g ) +  4-
e t h y l  D D C  ( 2 5 m g / k g )  ( n = 6 ) ;  c )  s u c c i n y l a c e t o n e  ( 4 0 m g / k g )  + A 1 A
( 2 0 0 m g / k g )  ( n = 4 )  o n  t h e  m e a n  +  / -  S . E . M .  c o n t r a c t i o n  o f  t h e  m o u s e  vas
d e f e r e n s  t o  f i e l d  s t i m u l a t i o n  i n  c o n t r o l  a n i m a l  t i s s u e  ( n = 6 )  a n d  in
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a n d  4 - e t h y l  D D C  w a s  s i g n i f i c a n t l y  g r e a t e r  t h a t  t h a t  o f  c o n t r o l  t i s s u e  
r e s p o n s e s  (  * p < 0 . 0 5 ) .
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CHAPTER 3

THE EFFECTS OF 
PORPHYRINOGENIC DRUGS ON 

NERVE AND MUSCLE.

DISCUSSION.



CHAPTER 3 DISCUSSION

The symptoms of acute porphyria are indicative of a cen tral, 
autonomic and somatic neuropathy (Goldberg 1959; Yeung Laiwah  

et.al. 1985; Mustajoki and Seppalainen 1975). The results of the  

previous group of experim ents (chapter 2) provide no evidence that 
the haem precursors ALA and PBG are neurotoxic when examined on a 

range of innervated muscle preparations. The experiments reported in 

the present chap ter exam ine the a lte rn a tive  thesis  that the  

neurological symptoms of acute porphyria are the consequence of a 

haem deficient environm ent. Several lines of evidence suggest that 
porphyric patients have a deficit in haem -dependent functions such 

as cytochrome P -450  m ediated drug metabolism (Song et.a l. 1974; 
Anderson e t.a l. 1976 ) and m uscle cytochrom e oxidase activity  

(Goldberg et.al. 1985). Additionally, exogenously adm inistered haem  

therapy a llev ia tes som e of the sym ptom s of acute porphyria  

(Tenhunen 1987) and haem arginate improves the abnormal antipyrine 

clearance in porphyric patients, suggesting a functional restoration  

of the haemoprotein, cytochrome P -450 (Tokola et.al. 1988). Although 

it may be argued that the therapeutic value of exogenous haem is due 

to its ability to reduce the levels of the haem precursors ALA and 

PBG, the lack of any convincing evidence that these haem precursors 

are neurotoxic would suggest that the beneficial actions of haem are  

mediated via reconstitution of haem oproteins essential for neural 
function.

The mitochondrial respiratory cytochromes are undoubtedly the most 
important haemoprotein for neural function as they are the mediators 

of energy production necessary for many cellular processes. Due to 

the unusually elongated morphology of neurones the function of these 

cells is dependent on the transport of newly synthesized m aterials  

from the cell body to the axon term inals and the transport of 
metabolites in the opposite direction. This axonal transport occurs at 
both fast and slow rates depending upon the materials that are being 

transported. Slow anterograde transport which occurs at a rate of 1- 
2mm/day transports structural proteins such as neurofilam ents and 

neurotubules. Transport of m itochondrial enzym es by a fast 
anterograde process occurs at a rate of 50m m ./day whereas vesicular 

transport of g lycoproteins, lipid, neuro transm itters  and N a + /K + 

ATPase proceeds at a rate of 400m m /day. M etabolites from the
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periphery of the cells are transported in vesicular bodies, secondary  

lysosomes, at a rate of 200m m ./day (Jakobsen et.al. 1986). Ochs and 

Hollingsworth (1971 ) dem onstrated that fast anterograde axonal 
transport of neurotransm itters and m aterials necessary for axonal 
repair is dependent on oxidative phosphorylation. W hen fast axonal 
transport was disrupted by induced hypoglycaem ia in rats (Sidenius  

and Jakobsen 1983) W allerian  degeneration  of axons resulted. 
Wallarian degeneration of neuronal tissue has been reported on post 
mortem histological exam ination of acute porphyric patients (Anzil 
and Dozic 1 9 7 8 ) If the en erg y  producing cap ac ity  of the  

mitochrondria was compromised by a cytochrome deficiency this type 

of transport may also lead to the development of a neuropathy. The 

main aim of this group of experim ents was by reducing haem  

production with porphyrinogenic com pounds, which disrupt haem  

synthesis to reduce respiratory cytochrome levels and hence energy  

production with an ensuing neuropathy development.

Decreased energy production is not the only way in which a reduction 

in haem may adversely affect the function of the neurom uscular 

preparations examined in this group of experiments. ATP produced as 

the high energy product of oxidative phosphorylation is a postulated  

co-transmitter in the neurogenically-m ediated responses of the rat 
vas deferens, tail artery and the diaphragm (Swedin 1971; Sneddon  

and Westfall 1984; Sneddon and Burnstock 1984; Silinsky and Hubbard 

1973) A reduction in oxidative phosphorylation resulting from haem  

deficiency would be manifest as a reduction in these partially ATP- 
mediated responses. This should have been especially easy to detect 
in the vas deferens where ATP alone is responsible for an easily  

defined component of the response.

The functioning of the haem oprotein guanylate cyclase is also of 
importance in this group of experim ents. The cytosolic isoenzyme of 
guanylate cyclase is a haem oprotein and is the putative "second  

messenger" that mediates the NANC inhibitory responses of the rat 
anococcygeus. G uanylate cyclase catalyses the conversion of the  

guanine nucleotide, guanosine triphosphate to cyclic guanosine  

monophosphate (cyclic G M P). Cyclic G M P then activates a protein 

kinase which mediates the phosphorylation of the myosin light chain 

kinase (MLCK) weakening its binding of calmodulin, the C a2+ receptor
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of the contractile protein. This impaired binding reduces the amount 
of myosin that can be phosphorylated and th ere fo re , induces  

relaxation (Drazin et. al. 1983 ;1986). Cyclic GMP also mediates C a2+ 

extrusion from the muscle cell contributing to muscle relaxation  

(Itoh e t .a l.1 98 5 ). The overa ll e ffect is, th ere fo re , a reduced  

intracellular C a2+ store and subsequent relaxation.

Nitric oxide (N O ) and substances which re lease NO , glycerine  

trinitrate, sodium nitroprusside, sodium azide, hydroxylam ine and  

intrinsic NA NC nerve stim ulation  ac tiva te  g u a n y la te  cyc lase  

(Waldman and Murad 1987). Porphyrins in their free form or as 

haemoproteins exert a profound effect on the regulation of guanylate  

cyclase. Activation of the purified enzym e by sodium azide or 

hydroxylamine requires either its haem moiety intact or an exogenous  

source of haem such as catalase or cytochrome c (Murad et.al. 1978a). 
Haem also inhibits the activation of guanylate cyclase by NO, by 

acting as a binding sink for NO (Murad et.al 1978b). The haem moiety 

of guanylate cyclase is important as it is the haem -NO complex which 

is thought to regulate the activity of guanylate cyclase. (C raven  

1978;1979) Sodium nitroprusside does not activate haem  deficient 
guanylate cyclase (G e rze r e t.a l. 1 9 8 1 a ;1 9 8 1 b ;1 9 8 2 ). The haem  

deficient enzym e can, how ever, be functionally reconstituted by 

exogenous haem. The iron deficient precursor of haem protoporphyrin 

1X also activates guanylate cyclase and this stimulation of enzym e  

activity is as potent as that induced by nitro com pounds in the  

presence of haem (Ignarro et. al. 1982). Wolin et.al. 1982 suggested  

that protoporphyrin 1X com petes with haem for the binding site on 

the guanylate cyclase molecule and suggests that when NO binds to 

the haem m oiety the F e2+ is pulled out of the plane of the  

tetrapyrrole nucleus producing a protoporphyrin 1X-type m olecule. 
These authors suggest that it is the formation of the protoporphyrin  

1X-type molecule that is important in guanylate cyclase activation.

There are three main ways, therefore, that haem depletion could alter 

the function of the neurom uscular preparations exam ined in this 
section of the study.

All treatments employed in the experim ents reported in this chapter, 
caused a significant increase in the urinary excretion of the haem
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precursor ALA (figure 16). This increased ALA excretion was taken as 

an indication of a reduction in the free haem pool, which regulates  

the synthesis and activity of the rate limiting enzyme of the pathway 

ALAS. The porphyrinogenic treatm ents em ployed can be broadly  

divided into short, medium and long term. The short term treatm ent 
consisted of 3 days succinylacetone administration and did not alter 

the responses of any of the preparations examined to either agonists 

or nerve stimulation (figures 18-24 ). Therefore, although there was 

evidence of reduced haem  ava ilab ility  in the an im als, as a 

consequence of the treatm ent, there was no functional deficit in any 

of the haem oproteins necessary for norm al nerve and muscle 

responses. This three day treatment period was probably too short to 

reduce the respiratory cytochromes, which have a half-life of 6 days, 
to a level where a compromise is exerted on neuronal activity either 

by a decreased energy production for enzyme synthesis and transport 
or for the production of A TP used as a transm itter. Sodium  

nitroprusside and n eu ro n a lly -m ed ia ted  activation  of gu an y la te  

cyclase were both unaltered by this short term treatm ent (figures  

20, 22b), indicating that haem synthesis was not reduced to levels at 
which guanylate cyclase became haem deficient.

Medium term treatm ent consisted of 9 days of a combination of 
succinylacetone, A IA and phenobarbitone and provided a g reater 

assault on the haem biosynthetic pathway. This period of treatm ent 
covered 1.5 half-lives of the resp iratory  cytochrom es. Again , 
however, there was no compromise in any of the responses of the 

tissues exam ined to agonist or nerve stimulation. The inability of 
this combination of porphyrinogenic drugs to elicit a neuropathy  

could be due to the failure of these drugs to alter haem synthesis in 

neural tissue. AIA exerts its effects as a result of its destruction of 
the haem protein  cytochrom e P -4 5 0  during m etabolism  by a 

mechanism-based process. Most of the body’s cytochrome P -450  is 

contained within the hepatocytes although cytochrom e P -4 5 0  is 

present in the other tissues including the brain. There is no evidence, 
to date, that peripheral neurones contain cytochrome P -450. AIA may, 
therefore, be incapable of exerting its porphyrinogenic action on the 

function of these neurom uscular preparations either due to its 

inability to enter neural tissue or to a lack, in neurones, of the
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haem oprotein n e c e s s a ry  for A IA  m etab o lis m . S y s te m ic a lly  

administered AIA does not alter brain ALAS w hereas it induces the 

hepatic enzym e (P a te rn itti e t.a l. 1 9 7 8 ). P h enobarb itone is a 

lipophylic compound and as such should be capable of crossing  

neuronal membranes, and indeed since its main therapeutic effect is 

on brain function it is clear that it can cross the blood brain barrier. 
Nevertheless, it is unable to alter the activity of haem synthesizing  

enzymes in the brain while doing so in hepatic tissue (De Matteis and 

Ray 1982). There is no conclusive evidence, therefore, that these two 

compounds can alter neuronal haem synthesis. Succinylacetone, on the 

other hand, does induce activity of the rate limiting enzym e, ALAS, in 

the brain when adm inistered intracerebroventricularly (D e M atteis  

and Ray 1982). The full porphyrinogenic impact of this combination of 
compounds may not be exerted on neuronal tissue and could account 
for their inability to induce a peripheral neuropathy.

The four long term treatm ent groups employed in this study w ere  

designed to produce a model of an acute porphyric crisis, where the 

genetic defect in haem synthesis produces a situation where although 

the patient's haem level has not reached a critical low it is hovering 

near this level. A further assault on haem availability, whether it be 

due to stress, hormones or drugs, is enough to place a further strain 

on an already compromised system and the body's haem content falls 

to a level where clinical symptoms of neuropathy are manifest. In the 

studies reported here, succinylacetone, although not inhibiting the 

pathway at the level of defect in acute intermittent porphyria, PBG  

deaminase, does causes an enzymatic lesion early in the pathway at 
the stage immediately prior to PBG deam inase. The initial treatm ent 
of 30 days succinylacetone produced an increase in urinary ALA  

excretion throughout the period of treatm ent (these results are  

discussed more fully in chapter 4) and therefore produces a prolonged 

period of haem synthesis disruption. The further assaults on haem  

synthesis by the 4 long term treatm ent groups w ere provided by 

phenobarbitone and either DDC, or its more potent porphyrinogenic  

analogue 4-ethyl DDC (Ortiz de Montellano et.al. 1981c). In addition to 

phenobarbitone's ability to increase synthesis of the haem oprotein  

cytochrome P -450  it also increases the quantity of ferrochelatase  

inhibitory m etabo lite , an N -a lky la ted  protoporphyrin , from  the
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metabolism of these dihydrocollidines. In the case of 4-ethyl DDC  

phenobarbitone also increases the proportion of the most active  

inhibitory isomer of the alkylated protoporphyrin, the N a isomer (De  

Matteis et. al. 1983). In the last two treatments the increased period 

of DDC and 4-ethyl DDC treatm ent, although using a sm aller 

concentration, provided inhibition at this last important step in the 

pathway for a further period of 14 days following succinylacetone  

treatment. This last impact on the haem pathway provided by the 

dihydrocollidine in the final two long term groups, therefore, spanned  

a period of more than two half-lives of the respiratory cytochromes. 
Even these long term treatm ents consisting of a com bination of 
powerful porphyrinogenic com pounds w ere unable to alter the  

functional capacity of the neurom uscular preparations exam ined  

(figures 30 -45 ). A more effective treatm ent would have been to 

precede the low doses of dihydrocollidine with the phenobarbitone  

augmenting the drugs’ effects for a longer period. The low doses of 
the dihydrocollidines w ere probably still susceptible to interaction  

with phenobarbitone as, on sacrifice of the animals, it was observed  

that the dihydrocollidine had precipitated out in the abdominal cavity 

and was therefore still available for uptake into the circulation for 

some time after injection. Both DDC and 4-ethyl DDC are known 

mediators of ferrochelatase inhibition and in doing so cause an 

accumulation of protoporphyrin 1X (Marks et. al. 1987). In a state of 
haem depletion and protoporphyrin 1X excess this latter compound  

could replace haem as the cofactor in the guanylate cyclase molecule. 
This would create increased basal activity of guanylate cyclase and 

could consequently antagonise the e lectrica lly -stim ulated  motor 

responses of the anococcygeus muscle and its response to agonists. 
This, however, was not the case, which indicates that in the  

peripheral nerves an environment did not exist which would promote 

protoporphyrin 1X activation of guanylate cyclase. It is possible that 
the porphyrinogenic dihydrocollidine compounds were not effective in 

inhibiting ferrochelatase in neural tissue and the evidence of reduced 

haem availability (increased ALA excretion) was a product of liver 
activity and not of nervous tissue.

Mice are more susceptible to the porphyrinogenic effects of the  

dihydrocollidines (Tephly et.al. 1979; De Matteis et.a l. 1973) although
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they are less sensitive than rats to the effects of AIA (De Matteis  

et.al. 1973). Three groups of mice were treated with succinylacetone 

for 6 days in addition to A IA(200m g/kg), DDC (25m g/kg) or 4-ethyl 
DDC (25mg/kg). All treatm ents caused the development of abdominal 
adhesions and 2 of the AIA group died before sacrifice. However, even 

in these ill anim als, the response of the vas deferens to field  

stimulation did not differ significantly from the responses of control 
animal tissue to nerve stim ulation. Porphyrinogenic treatm ent in 

mice similarly produced no evidence of porphyric neuropathy. Here  

again, mouse nervous tissue may be refractory to the porphyrinogenic 

effects of these compounds.

The porphyrinogenic drugs em ployed in this group of experim ents  

were, th e re fo re , in cap ab le  of reducing neu ro nal resp ira to ry  

cytochromes to a level where their deficiency would cause a neuronal 
malfunction. There is the possibility that some of these compounds 

are not effective in neural tissue as AIA, DDC and 4-ethyl DDC require 

to be metabolized by cytochrome P -450 before they can exert their 

porphyrinogenic action. All three compounds destroy cytochrome P- 
450 while the la tter two add itionally  produce an N -a lky la ted  

protoporphyrin 1X m etabolite that inhibits ferrochelatse. Even if 
these compounds are metabolized in the nervous tissue they may be 

incapable of blocking the haem enzym es in this tissue. Brain ALAS is 

refractory  to s y s te m ic a lly  a d m in is te re d  A IA , D D C  and  

phenobarbitone, compounds that cause an induction of the hepatic 

enzyme (De M atteis and Ray 1982; Paternitti et. a l.1 9 7 8 ). The  

existence of different isoenzym es of ALAS in erythropoietic and  

hepatic tissue (Bishop 1990) may be indicative of differential tissue 

control mechanisms and, therefore, drugs that exert porphyrinogenic 

activities in hepatic tissues may not do so in other tissues.

Kappas e t.a l. in 1989  suggested the possible ex istence of a 

mitochondrial, a cytosolic and a microsomal regulatory free haem  

pools. Due to the proximity, on the inner mitochondrial membrane, of 
the respiratory cytochromes and ferrochelatase, these haemoproteins  

may have priority to the limited amount of newly synthesized haem, 
following porphyrinogenic tre a tm e n t. The in crease  in urinary  

excretion of ALA is probably the reaction to a decrease in the
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cytosolic free haem pool whereas the mitochondrial haem availability 

may be uncompromised.

The effects of lead te traace ta te  (50|uM ./day for 14 days) w ere  

examined on the responses of a similar range of rat tissues. This 

concentration of lead is larger than the dose employed by Goldberg 
et.al. in 1985 (10|uM./kg) which resulted in a decreased ALAD, 

coproporphyrinogen oxidase and ferrochelatase activity in rats after 

14 days treatm ent. The authors also m easured a decrease in
microsomal cytochrome P -450  content and increased hepatic ALAS  

activity. A small but significant increase in urinary ALA excretion  

was also observed in this study (figure 16). Although at a stimulation 

frequency of 4 Hz there  w as a significant d ifference in the  

noradrenergically-m ediated response of the vas deferens from  

treated animals when compared to control animal tissue (figure 48b), 
the overall results did not provide convincing evidence of a
neuropathy.

Although Schmid et.al. 1955 reported evidence of a neuropathy in 

rabbits treated with AIA other researchers have failed to observe any 

sign of neurological malfunction following porphyrinogenic treatm ent 
with AIA (Goldberg 1953; Goldberg and Rimington 1955) or DDC  

(Haeger-Aronsen 1961). The function of nerve and muscle may have a 

large reserve cap ac ity  fo llow ing  a reduction  in resp ira to ry
cytochromes. M cA llis ter e t .a l. 1 99 0  observed  that dep le tin g
cytochrome oxidase content by 45%  using the mitochondrial protein 

inhibitor, chloramphenicol, does not compromise the extent to which 

skeletal muscle can contract. It may be necessary to deplete the 

respiratory cytochromes by more than 50%  of their normal value, 
with these porphyrinogenic com pounds, before a neuropathy is 
observed.

There was, therefore, no evidence, from the group of experim ents  

reported in this c h a p te r, that the various  com binations of 
porphyrinogenic drugs employed for different periods were capable of 
producing a peripheral neuropathy. This suggests that the drugs did 

not reduce neural respiratory cytochromes or at least below the level 
critical for the m aintenance of normal function.
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The next group of experiments will examine the extent to which the 

mitochondrial cytochrom es are reduced, following porphyrinogenic  

drug treatment in both hepatic and neural tissue.



CHAPTER 4

THE EFFECTS OF 
PORPHYRINOGENIC DRUGS ON 

HAEMOPROTEINS.

INTRODUCTION



CHAPTER 4 INTRODUCTION

The porphyrinogenic agents, used in chapter 3 of this study, have been 

shown to cause a reduction in haem oprotein content or function 

Succinylacetone reduces cytochrome P -450 content in cultured chick 

embryo hepatocytes (Sassa and Kappas 1983). In cultured rat bone 

marrow cells (Beru e t.a l. 1 9 8 3 ), human eryth ro leukem ia  cells  

(Bottomley et. al. 1985) and rabbit reticulocytes (Ponka et.al. 1982) 
succinylacetone decreases 59Fe incorporation into haem. AIA reduces 

rat liver cytochrom e P -4 5 0  content (Farre l and C o rre ia  1981 , 
Bornheim et.al. 1985; De Matteis 1971; Ortiz de Montellano and Mico 

1981; Ortiz de M ontellano e t.a l. 1 9 8 3 ). A loss of m icrosom al 
cytochrome P -450  was seen in rat liver and in chick em bryo  

hepatocytes follow ing tre a tm e n t with 4 -e th y l D D C  (O rtiz  de  

Montellano et. al. 1981b; M ackie and Marks 1989). 4-Ethyl DDC  

additionally decreased  cytochrom e P -450 -d e p en d e n t peroxidative  

function in h am ster o lfa c to ry  e p ith e liu m , a lth o u g h  d irec t 
measurement of the haemoprotein itself was not possible (Reed et.al. 
1988). Indirect evidence exists regarding N-m ethyl protoporphyrin's 

ability to decrease tissue haem content. De Matteis and Marks in 1983  

demonstrated that N-m ethyl protoporphyrin causes an increase in 

ALAS in cultured chick hepatocytes and suggest that this increase is 

a consequence of a reduction of haem synthesis by the alkylated  

porphyrin. Lead poisoning causes a reduction in cytochrome P -450  

dependent liver metabolism (M eredith et.a l. 1977). The experim ents  

reported in the previous chapter provide indirect evidence that these  

compounds reduce the regulatory free haem pool, by their ability to 

cause an increase in ALA production and excretion, a process brought 
about by the lifting of haem's negative feed-back on ALAS production 

and activity. There was no evidence, however, from this last group of 
experiments that this disturbance of haem  availability in any way  

depleted essential haem oprote ins to levels w here a deficit in 

nerve/muscle function developed. This poses the question as to where  

and to what extent a deficiency in haemoproteins occurred as a result 
of treatm ent with these chem icals. Sassa and G ranick (1 9 7 0 )  

proposed that apoproteins have either high or low affinity for their 

haem moiety. The low affinity haemoproteins such as cytochrome P- 
450 and tryptophan pyrrolase provide an indication of the size of the 

regulatory free haem pool. The haem content of these compounds can
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fluctuate w idely w ithout any obvious serious effect on bodily
function. The high a ffin ity  haem o pro te ins  such as c a ta lase , 
haemoglobin and the respiratory cytochrom es do not fluctuate in 

their haem content as readily as the low affinity haemopoteins and 

may be a more sensitive m easure of overall haem depletion. The  

mitochondrial cytochromes, in particular, are extrem ely important to 

neuronal function and a depletion in the haem content of these
proteins could lead to a compromise in energy production in the
neurones and subsequently in neuronal function.

The half-lives of the haem oproteins are an important factor to be 

considered when using b iosynthesis inhibition as a m eans of
depleting haem , as the tim e taken  to reduce the functional 
haemoprotein will be dependent on their life span. Catalase with a
half-life of 2 days will be depleted more readily than the respiratory
cytochromes, with a half-life 6 days or rat haemoglobin with a life
span of 60 days. This would only be the case, however, if other
factors such as relative affinity and local availability were identical. 
The time span of porphyrinogenic treatm ent would have to be related 

to the half-lives of the com pounds. In this study, therefore , 
treatment regimes have to take into account the d ifferential life 

span of the haemoproteins m easured and all treatm ents covered at 
least two half-lives of the respiratory cytochromes and at least 12 

of hepatic catalase. For practical reasons of time, treatm ents were  

not long enough to cover at least one half life of the erythrocyte.

Following treatm ents with porphyrinogenic agents the content or 
activity of specific haem o pro te ins  w as exam ined  in hepatic , 
erythrocytic and neural tissue for evidence of a differential haem  
deficiency.
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CHAPTER 4 METHODS

4.2 Haem oglobin, resp iratory  cytochrom es and ca ta lase  w ere  

measured in liver, erythrocytes and brain of rats follow ing  

porphyrinogenic drug treatment. In erythrocytes only haemoglobin and 

catalase are present and the brain contains no catalase.

4.2.1. Drugs:

Sodium dithionite (R iedel, Hannover); sucrose (M ay and Baker, 
England); N-methyl Protoporphyrin (Porphyrin products, Utah, U .S.A.); 
Heparin, Na salt; deoxycholic acid, Na salt; cholic acid, N a salt; 
[tris(hydroxym ethyl)am inom ethane h yd ro ch lo rid e ](T R IS -H C I); Triton  

X-R100; Lead acetate; propylene glycol; Lowry's Reagent; Folin and 

Ciocalteu's Reagent; Drabkin’s Reagent; bovine serum albumin. Unless 

stated, all chemicals w ere obtained from Sigm a Chem ical Co.Ltd., 
England.

Unless specified, male W istar rats of the same weight and strain as 

in chapter 3 above w ere used in this group of experim ents. All 
injections w ere  in tra p e r ito n e a l, u n less  s ta te d  o th e rw is e . 
Succinylacetone was adm inistered at 1 m l/kg., in distilled w ater, 
whereas 4-ethyl DDC and DM SO  was administered in a volume of 
0.5m l/kg.

4.2.2 Treatment: 

GROUPS:

2.1) Animals received 30 daily injection of succinylacetone at a 

dose of 20m g./kg. Two of these animals spent the first 25 days 

of treatment in metabolic cages and the urinary ALA and total 
porphyrin excretion were determ ined daily over this period.

2.2) Animals received 30 days of succinylacetone 20m g./kg. 
This was followed by 10 days of 4-ethyl DDC (25m g./kg) , 4 

days of phenobarb itone (8 0 m g ./k g .) and a final dose of 
300m g./kg. of 4 -ethyl D D C . Succinylacetone was continued  

throughout the treatm ent.
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2.3) 14 days of 4-ethyl DDC (100m l/kg.) was administered to 

animals in this group.

2.4) N-methyl protoporphyrin 800nm oles/day was injected in a 

volume of 0.1m l. into the tail vein, for 14 days. The compound 

was flushed through with 0.2m l. of saline.

2.5) Lead acetate (1 gm ./litre) was given in the drinking water 

of nursing rat mothers whose pups were 5 days old. Lead  

tre a tm e n t was started at this period of developm ent to inhibit 
haem synthesis enzym es at a critical stage in respiratory  

cytochrome synthesis. Lead administration, by this means, was 

continued after w eaning until the anim als w ere used at 
approximately 250gm . (6 -8  weeks old) Only male animals were  

used in the experiments

2.6)10 day old male rats were injected with a single dose of 4- 
ethyl DDC (100m g/kg in 0.1ml of propylene glycol). The animals 

were sacrificed at 20 days of age. Again, treatm ent at this
developm ental s tage w as aim ed at b locking the brain
respiratory cytochrome surge which occurs at this time.

Controls consisted of w ater fed controls for the lead group, saline 

injections, by the same route for the N-methyl protoporphyrin group; 
propylene glycol for the 4-ethyl DDC treatment in 10 day old animals; 
14 days DM SO  for 4-ethyl DDC and the long term treatm ent
combination.

Animals were killed by C O 2 asphyxiation.

4.2.3. WHOLE ANIMAL PERFUSION:

As the presence of haemoglobin would interfere with subsequent
spectral absorp tion  m e a s u re m e n ts  of o th er h a e m o p ro te in s , 
prelim inary exp erim en ts  w ere  carried  out to reduce tissue  

haemoglobin content. After killing by C O 2 asphyxiation rats were  

perfused with heparinised saline to clear haem oglobin from the  

tissue vasculature. The thoracic cavity was opened and the apex of 
the heart cut away. A large plastic cannula was inserted into the left
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ventricle, pushed gently up into the aortic arch and secured in place 

by a ligature. The animals were perfused with heparinised saline (90  

units/ml) at a rate of 85m ls /m in . The perfusate  leaving the  

circulation via the right ventricle quickly ran clear, free of blood and 

the liver was seen to change colour uniformly. A histological 
examination was carried out on liver and brain tissue sam ples  

following perfusion with either 1 or 2 litres of fluid for evidence of 
erythrocytes in the m icro c ircu la tion . A dd itional ev id en ce  of 
remaining haemoglobin was sought spectrophotometrically. Following 

homoginisation in 0 .44M  sucrose, a sample of a 600g supernatant was 

diluted 1:1 with Drabkin ’s reagent and assayed for haem oglobin  

content (H aem og lob in  assay described  la te r). The levels of 
haemoglobin in both tissues were less than the threshold sensitivity 

of the assay employed.

4.2.4. Dissection:

The animals were killed, a sample of blood taken directly from the 

heart by cardiac puncture, added to a tube containing lithium heparin 

coated pellets and placed on ice. The whole animal was then perfused 

with 1 litre of ice cold heparinised saline as described above. The  

liver and brain were removed, placed on ice and prepared for tissue 

haemoprotein m easurem ent.

4.2.5. HAEMOGLOBIN ASSAY.

a) Principle:

In the presence of potassium ferricyanide at alkaline pH, haemoglobin 

is oxidised to m ethaem oglobin. The latter reacts with potassium  

cyanide to form cyanm ethaem oglobin which possesses a maximum  

absorption at 540nm . The colour intensity, at this wavelength and at 
the standard concentrations used in the assay, is linear and is 

proportional to the total haemoglobin content (figures 51a, 52d).
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b) Assay procedure:

Reagents:

i) Drabkin's reagent contains 100 parts, sodium bicarbonate: 20 parts 

potassium ferricyanide: 5 parts potassium  cyanide in 1 litre of 
distilled w ater.

ii) Lyophylised human m ethaem oglobin standard containing 18gm. 
methaemoglobin/dl. was used in this assay.

iii) Standards were freshly prepared each day at the time of assay  

containing 0, 6, 12 and 18 gm. m ethaem oglobin Idl. in Drabkin's  
reagent. Samples were prepared by adding 20|ul. of whole blood to 

5ml. of Drabkin's reagent, washing the pipette 3 or 4 times with the 

solution. The standards and sample tubes were allowed to stand for 

at least 15 min. at room tem perature. The spectral absorption of the 

samples was determ ined at 540  nm. on a Shim adzu UV-visible  

recording Spectrophotom eter against the constructed standard curve 
(figure 51a).

4.2.6. TISSUE PREPARATION AND CATALASE ASSAY.

4.2.6.1. Tissue preparation.

a) Erythrocyte:

Erythrocyte lysates were prepared by the method of Aebi (1984). The 

sample of blood taken by cardiac puncture was centrifuged at 300g on 

an MSE "Minor" bench centrifuge and the plasm a and buffy coat 
removed by suction. The erythrocytes w ere washed three times in 

isotonic saline and lysed by adding four parts by volume of distilled 

water. The haemoglobin content of the lysate was determ ined from a 

sample by the Drabkin's method described above.

b) Liver:

Liver tissue was prepared for catalase measurement by the method of 
Cohen et. al. (1970).

Reagents: i. Isotonic buffer:
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stock: NaCI-180g; Na2HP04-27.3g; NaH2P04-4.86g
made up in 2 litres of distilled water, pH 7.4.

This stock solution was diluted 9ml. in 100m l. of distilled water 

to give an isotonic buffer solution.

ii. 10% Triton X-R 100 in isotonic buffer. Triton X-R 100 does 

not absorb in the UV wavelength and is therefore suitable for this 

assay.

iii. Absolute ethanol.

2g. of liver was homogenised in 10 volumes of isotonic buffer with 8 

strokes of a glass/Teflon homogeniser at 1000 r.p.m. The homogenate 

was centrifuged at 600g for 10min. and the supernatant decanted. An 

aliquot was incubated for 30 min. in an iced water bath with absolute 

alcohol at a final concentration of 0 .1 7M. Triton X -R  100 was then 
added from the 10% stock to give a final concentration of 1%. A 10Ojul 

aliquot of this supernatant w as frozen for subsequent protein  

determ ination.

4.2.6.2. ASSAY:

Catalase activity was m easured by the decomposition of hydrogen 

peroxide, whose reduction can be followed spectrophotometrically at 
240nm (Aebi 1 9 8 4 ). Q u artz  cuvettes  are necessary  at this  
wavelength.

Reagents: i. Phosphate Buffer:

solution (a) 6.81 g of K H 2P 04  in 11. of distilled water, 

solution (b) 8.9g of N a H P 0 4 .2 H 2 0  in 11. of distilled
w ater.

The assay buffer was m ade by mixing the two reagents in the 
proportion of a:b :: 1:1.5

ii. Hydrogen peroxide (30m M) in phosphate assay buffer.
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A 500 fold dilution of the erythrocyte lysate and a 100 fold dilution 

of the liver supernatant were made. Catalase activity was measured 

in these solutions.

Both sample and reference cuvettes contained 2ml. of the sample 

solution. 1ml. of buffer was added to the reference cuvette and a 

steady baseline obtained. 1ml. of hydrogen peroxide solution was  

added to the sample cuvette, stirred quickly and thoroughly with a 

plastic paddle and the decrease in absorbance followed for 1-2min. 
This reaction dem onstrates linear kinetics for the first 15s. (Aebi 
1984) and this was used to determ ine the activity of the catalase  

enzyme in both tissues (figures 52b, 52e).

4.2.7. RESPIRATORY CYTOCHROME MEASUREMENT.

4.2.7.1. TISSUE PREPARATION:

The brain was halved sagittaly and duplicate samples of both brain 

and liver (2g) were processed. Both liver and brain were homogenised 

in ice cold sucrose (0 .44M ). This denser homogenising medium was 

shown by Lovtrup and Zelander (1962 ) to be a better medium for 

isolation of brain mitochondria due to the high myelin content of this 

tissue. The tissues were placed in a cold glass homogenising tube 

and a 10% homogenate prepared by 8 passes of a Teflon pestle at 
1000 r.p.m. The hom ogenate was spun at 600g. on a Damon IEC  

centrifuge for 10min. The supernatant was decanted and the P1 pellet 
discarded. The supernatant was centrifuged at 10,000g. for 15min. on 

a Beckman Ultacentrifuge to produce a P2 mitochondrial pellet. The  

supernatant was discarded, the pellet resuspended by gentle hand 

homogenisation in ice cold sucrose solution and centrifuged again at 
6,500g for 15min. This last process was repeated twice to give the 

final washed m itochondrial pellet. This final m itochondrial pellet 
was resuspended in 3ml. of a 1:1 solution of 0.44 M sucrose and 0.1 M 
Tris HCI buffer pH 8 .0  A 100 jli I -  aliquot of the m itochondrial 

suspension was frozen for subsequent protein determination.
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The mitochondrial suspension was clarified by the addition of 20%  
sodium cholate and 10%  deoxycholate. 10Ojul. of each were added to 

the liver mitochondrial preparation w hereas 2 0 0 mI. were required for 

the more turbid brain mitochondrial sam ple. To obtain a clarified  

brain sample a short 5min. spin at 500g. on a MSE "Minor" bench 

centrifuge pelleted the heaver myelin contam inant leaving the  

solubilised m itochondria l m em brane in solution. The c larified  

mitochondrial m em brane sam ples were transfered into fresh sample 

tubes.

4.2.7.2. RESPIRATORY CYTOCHROME ASSAY:

a) Principle:

From the oxid ised-reduced difference spectra the d ifferences in 

absorbance at the following wavelength pairs can be determ ined:- 1. 
550-535 nm. (cytochrome c); 2. 554 -540nm . (cytochrome c.,); 3.

563-577nm. (cytochrom e b); 4. 605 -630n m . ( cytochrome a + a 3 or 

cytochrome oxidase (cox)). To calculate the concentration of each  

cytochrome 4 simultaneous equations with 4 unknowns were solved. 
The principle applied here is that the change in AA from one 

wavelength to another in the d ifference spectrum  (reduced - 
oxidised) of the m itochondria equals the sum of the products of 
appropriate extinction coefficients and the 4 (unknown) cytochrome 

concentrations. Applying this princip le  at the four pairs of 
wavelengths produces the 4 sim ultaneous equations with the 4 

unknowns. The extinction coefficients employed by Vanneste (1966) 
were taken from Van G elder and S later (1962 ) for cytochrome c, 
Williams (1964 ) for cytochrom e c.,, Zaugg and Rieske (1962 ) for

cytochrome b and Van Gelder and Slater (1963) for cytochromes a+a3.
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From these data a set of extinction coefficients of the cytochromes 

at the 4 wavelength pairs were produced.

Wavelength cytochromes (mM'.cm-1) symbol for

pairs (nm•) c c i b a+a3 change in A A

550-535 25.1 10.3 -6.22 0.69 a 15

554-540 7.78 18.8 5.08 1.03 a 25

563-577 -1.39 0.91 28.5 -0.36 a 35

605-630 -0.26 -0.59 0 13.1 a 45

The equations produced are, therefore

25.1 Cl + 10,.3 C2 - 6.22 C3 + 0.69 C4 = a l5

7.78 Cl + 18.8 C2 + 5.08 C3 + 1.03 C4 = a25

-1.39 Cl + 0.91 C2 + 28.5 C3 - 0.36 C4 = a35

-0.26 Cl - 0.59 C2 + 0 C3 + 13.1 C4 = oc45

Where C1= cytochrome c concentration.

C2 = cytochrome c-i concentration 

C3 = cytochrome b concentration 

C4 = cytochromes a+a3 concentration.
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By using matrix algebra these equations are simplified to a secondary 

set of equations

Cl + 0.41 C2 - 0.25 C3 + 0.0275 C4 = 315 

C2 + 0.45 C3 + 0.0523 C4 = 325 

C3 - 0.0144 C4 = 335 

C4 = 345
These set of equations can then be easily solved by substitution of 
the constants with their respective values

315 = ocl5/25.1

3 2 5  =  ( X 2 5 - 7 . 7 8  3 1 5 / 1 5 . 6

335 = <x35+ 1.39 315 - 1.48 325/27.5

345 = oc45 + 0.26 315 + 0.48 325 - 0.153 335/13.13

Therefore,

C4 = 345 = cytochrome a+a3 concentration in umoles

C3 = 335 + 0.0144 C4 = cytochrome b concentration.

C2 = 325 - 0.0523 C4 -0.45 C3 = cytochrome Ci concentration.

Cl = 315 - 0.0275 C4 = 0.25 C3 - 0.41 C2 = cytochrome c 
concentration.

b) Assay:

The clarified mitochondrial solution was aerated by vortexing. 1ml. 
samples were added to both a reference and sam ple cuvette. A 

baseline difference spectra was obtained on the scanning mode of 
the spectrophotom eter betw een 650  and 500nm . 5m g. of sodium  

dithionite was added to the sam ple cuvette and mixed thoroughly  

with a plastic paddle. The oxidised-reduced difference spectra was
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recorded 2min. later and the cytochrome content determined by the 

method of Vanneste (1966) (figures 52a, 52g).

4.2.8. PR O TEIN  A SSA Y:

a) Principle:

An alkaline cupric tartrate reagent (Lowry Reagent) complexes with 

the peptide bonds of proteins to form a purple-blue colour when  

reacted with the phenol reagent, Folin’s Ciocalteu's Reagent. This 

colour has a maximum absorption at 750nm. and is proportional to the 

protein content of the sample.

b) Assay:

Liver homogenate and mitochondrial protein was m easured by the 

method of Lowry (1951 ) using bovine serum albumin as standard. 
Standards were prepared in deionised water to a total volume of 1ml. 
at concentrations of 0, 50, 100, 200, 300, and 400pg./m l.

Samples were prepared by adding a small measured quantity of the 

homogenate or mitochondrial suspension to test tubes and made up to 

a total volume of 1ml. with deionised water. 1ml. of Lowry's reagent 
was added to each tube and vortexed immediately. The standards and 

samples were allowed to stand at room tem perature for 20m in. 
following which 0.5m l. of the Folin and Ciocalteu's Reagent was added 

to each tube with rapid and immediate mixing. The absorbance of the 

standards and sam ples  w ere  d eterm in ed  at 750n m . 30m in . 
afterwards. A calibration curve was constructed for each assay  

(figure 51b) and the sam ple protein concentration determ ined from  
this.

4 .2 .9  U rin ary  A LA  and T o ta l P o rp h yrin  (Uroporphyrin and  

Coproporpphyrin) were determined by the methods described by Moore 

1983. These w ere carried out at the W estern Infirmary, G lasgow, 
Scotland.
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F i g u r e  5 2 :  S h o w s  a )  a n  o x i d i s e d - r e d u c e d  d i f f e r e n c e  s p e c t r a  o f  l i v e r
m i t o c h o n d r i a l  c y t o c h r o m e s .  T h e  b a s e l i n e  i s  t h e  d i f f e r e n c e  s p e c t r a  
b e t w e e n  t h e  r e f e r e n c e  a n d  s a m p l e  c u v e t t e s  p r i o r  t o  t h e  r e d u c t i o n  o f  the 
c o n t e n t s  o f  t h e  s a m p l e  c u v e t t e  c o n t e n t s  w i t h  s o d i u n  d i t h i o n i t e .  G r a p h  b)  
s h o w s  t h e  r e d u c t i o n  i n  a b s o r p t i o n  o f  h y d r o g e n  p e r o x i d e ,  w i t h  t i m e  i n  the 
p r e s e n c e  o f  l i v e r  h o m o g e n a t e  c o n t a i n i n g  c a t a l a s e .  G r a p h  c )  d e m o n s t r a t e s  
t h e  i n h i b i t i o n  o f  c a t a l a s e ' s  h y d r o g e n  p e r o x i d e  d e c o m p o s i n g  c a p a c i t y  by 
ImM. s o d i u m  a z i d e .  G r a p h  d )  s h o w s  t h e  l i n e a r  r e l a t i o n s h i p  i n  a b s o r p t i o n  

o f  i n c r e a s i n g  c o n c e n t r a t i o n s  o f  h a e m o g l o b i n  a t  5 4 0 n m .  G r a p h  e )  s h o w s  
s h o w s  t h e  r e d u c t i o n  i n  a b s o r p t i o n  o f  h y d r o g e n  p e r o x i d e  i n  t h e  p r e s e n c e  
o f  a n  e r y t h r o c y t e  l y s a t e  c o n t a i n i n g  c a t a l a s e .  G r a p h  f )  d e m o n s t r a t e s  the 
i n h i b i t i o n  o f  c a t a l a s e ' s  h y d r o g e n  p e r o x i d e  d e c o m p o s i n g  c a p a c i t y  b y  I m M .  
s o d i u m  a z i d e .  G r a p h  g )  s h o w s  a n  o x i d i s e d - r e d u c e d  d i f f e r e n c e  s p e c t r a  o f  
b r a i n  m i t o c h o n d r i a l  c y t o c h r o m e s .  T h e  b a s e l i n e  i s  t h e  d i f f e r e n c e  s p e c t r a  
b e t w e e n  t h e  r e f e r e n c e  a n d  s a m p l e  c u v e t t e s  p r i o r  t o  t h e  r e d u c t i o n  o f  the 
c o n t e n t s  o f  t h e  s a m p l e  c u v e t t e  c o n t e n t s  w i t h  s o d i u m  d i t h i o n i t e .
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4 .2 .1 0 . F e rro c h e la ta s e  A s s a y , w as carried  out by the
method of Houston et.al. (1988) by Dr. T. Houston, Western Infirmary, 
Glasgow, Scotland.



CHAPTER 4

THE EFFECTS OF 
PORPHYRINOGENIC DRUGS ON 

HAEMOPROTEINS.

RESULTS.



CHAPTER 4 PORPHYRINOGENIC TREATMENTS.

Succinylacetone injections were administered in a volume of 1 ml/kg. 
in distilled water vehicle. Phenobarbitone was dissolved in 0.1 M NaOH  

and brought to pH 9 with 0 .1M H C I and was also administered in a 

volume of 1 ml/kg. 4-ethyl DDC was adm inistered in a volum e of 
0.5ml/kg. in DM SO . N-methyl protoporphyrin was dissolved in saline 

at pH 9.0 and brought back to a pH of 7.4 with 0 .1M  HCI. N-methyl 
protoporphyrin injections w ere adm inistered intravenously via the  

tail vein.

TREATMENT 2 .1: Rats received succinylacetone at a dose of
20mg/kg. daily for 30days.

TREATMENT 2.2: 30 days of succinylacetone (20m g/kg.) followed by 

10 days administration of 4-ethyl DDC (25m g/kg.) then 4 days of 
phenobarbitone (80m g/kg.) with a further 300m g/kg of 4-ethyl DDC  

24 hours prior to killing. Succinylacetone was continued throughout 
the treatment period.

TREATMENT 2.3: 14 days of 4-ethyl DDC (100m g/kg.).

TREATMENT 2.4: 14 days of N-methyl protoporphyrin (0 .8  juMole in

a volume of 0.1m l) administered via the tail vein.

TREATMENT 2 .5: Lead acetate w as adm inistered in the drinking  

water firstly to nursing mothers when the pups were 5 days old and 

then to the pups them selves after weaning at a concentration of 1g./ 
litre of drinking w ater. This treatm ent continued until the anim als  

were used at a weight of 200-300g .

TR EA TM EN T 2 .6 : 10 day old m ale rats rece ived  a s ingle
intraperitoneal injection of 4-ethyl DDC in propylene glycol in a 
volume of 0 .1m l. Control anim als received the sam e volum e of 
propylene glycol.
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Figure 52 shows typical spectrographic traces of the haemoproteins  

measured in the three tissues.

4.3.1. The effects of 30 days succinylacetone (treatment
2.1) on rat urinary ALA levels:

Two rats received daily intraperitoneal injections of succinylacetone  

(20mg/kg.). This treatm ent induced a marked increase in urinary ALA  

and total porphyrin excretion which was maintained for the first 25  

days of treatm ent (figure 53 ). These results confirm that long term  

treatment with su cc in y lace to n e , at this dose, is cap ab le  of 
sustaining a reduction in the haem biosynthetic pathway.

4.3.2. The effects of perfusing the whole animal with saline 
on the content of haemoglobin in the microcirculation:

Perfusion of the whole animal with 1 litre of heparinised saline was 

sufficient to clear the liver and brain of red cell haemoglobin, which 

could possibly confound respiratory cytochrom e m easurem ent, as 

measured both by the biochemical haemoglobin assay of a 1:1 dilution 

of the S1 supernatant following a 600g. spin (figure 54) and by 

histological exam ination of the tissues (plate 1). Erythrocytes could 

be detected by histological exam ination of non-perfused tissue  

(plate 1)andHbwas detected spectrophotometrically at a concentration  

of around 6g./dl. (figure 54). There may be some spectral interference 

of other cytochromes with the m easurem ent of haemoglobin. Although 

there was absorbance at 540nm  in the perfused liver sam ple, there  

was no peak sim ilar to that produced by cyanom ethaem oglobin, 
suggesting that the tissue was haem oglobin-free. Haemoblobin could 

not be detected in either perfused or non-perfused brain tissue, by 

this method (figure 54 ) although there was histological evidence of 
erythrocytes in the brain microcirculation (plate 1).
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'gure 53: Graph a) shows the mean urinary excretion of ALA
(pMoles/l/day), of two animals, on the first 25 days of daily 
succinylacetone administration (20mg/kg). Graph b) shows the urinary 
total porphyrin excretion (juMoles/l/day) of the same two animals on 
selected days over the same 25 day period.



F i g u r e  5 4 :  S h o w s  s p e c t r o g r a p h i c  t r a c e s  o f  l i v e r  a n d  b r a i n  t i s s u e s ,
e x a m i n e d  f o r  t h e  p r e s e n c e  o f  h a e m o g l o b i n  b y  t h e  D r a b k i n ’ s m e t h o d .  
H a e m o g l o b i n  c o u l d  b e  d e t e c t e d  i n  l i v e r  t i s s u e ,  a t  5 4 0 n m . ,  f r o m  a n i m a l s  
t h a t  h a d  n o t  b e e n  p e r f u s e d  w i t h  s a l i n e ,  w h e r e a s  n o  h a e m o g l o b i n  p e a k  
w a s  o b s e r v e d  i n  l i v e r  f r o m  a n  a n i m a l  w h i c h  h a d  b e e n  p e r f u s e d  w i t h  1 
i i t e r  o f  h e p a r i n i s e d  s a l i n e  s o l u t i o n .  H a e m o g l o b i n  c o u l d  n o t  b e  d e t e c t e d ,  
b y  t h i s  m e t h o d ,  i n  e i t h e r  p e r f u s e d  o r  n o n - p e r f u s e d  a n i m a l  t i s s u e .
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Plate 1: Shows histological sections (haematoxy lin and eosin
stained) (x 440 magnification) of a) liver from an animal perfused 
with 1 litre of heparinised saline. There is no evidence of 
erythrocytes in the tissue. b) In non-perfused animal liver 
erythrocytes (arrow ) can be clearly seen in a central vein, c) In a 
perfused animal brain there is no histological evidence of 
erythrocytes in the microcirculation. d) In non-perfused animal brain 
tissue erythrocytes (arrow) can be seen in the blood vessels.
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CHAPTER 4 RESULTS

4.3.3. The effects of 30 days succinylacetone treatment 
(treatment 2.1) on liver haemoprotein content:

4.3.3.1. Liver mitochondrial respiratory cytochrome content:

The respiratory cytochrome content of solubilised mitochondria from  

animals treated with succinylacetone for 30 days was measured from 

their oxid ised-reduced  d iffe ren ce  spectra  (figure 5 5 a ). N e ither  

cytochrome oxidase, cytochrome b, cytochrome c nor cytochrome Ci 
content from m itochondria isolated from the livers of trea ted  

animals differed significantly from the content of these cytochromes 

in control an im al h ep atic  m itochondria  (fig u re  5 5 a ). T h e se  

mitochondrial cytochrome levels were similar to those m easured by 

(Horrum et.al. 1985) by the same method.

4.3.3.2. Liver cataiase activity:

The UV absorption of hydrogen peroxide decreases rapidly in the 

presence of tissue hom ogenates which contain cata iase and is 

proportional to the activity of the enzym e over the first 15s. of 
reaction (figure 52b). Inactivation of cataiase by 1mM sodiun azide  

which reacts with the haem  moiety of the enzym e, dem onstrates  

that, in this assay, only hydrogen peroxide decomposition by cataiase  

was being m easured (figure 52c). The cataiase activity of liver 

homogenates from treated anim als did not differ significantly from  

the enzyme's activity in hom ogenates prepared from control animal 
livers (figure 55b).

4.3.4. The effects of 30 days of succinylacetone (treatment
2.1) on blood haemoprotein content:

4.3.4.1. Haemoglobin content:

The treatment employed in this group of animals did not significantly 

alter the whole blood haem oglobin content, as m easured by the 

Drabkin method, when compared to the haemoglobin content of blood 

taken from control animals (figure 56a).
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Figure 55 : Graph a) shows the mean +/- S.E.M. of liver mitochondrial 
cytochrome oxidase (cox), b, Ci and c from control tissues (n—6) an  ̂
from hepatic mitochondria isolated from animals that had receive 
porphyrinogenic treatment 2.1 (30 days of succinylacetone) (n—6). Grap 
b) shows the mean +/- S.E.M. of the cataiase activity of liver 
homogenate of control animals (n=6) and of livers of animals that had 
received treatment 2.1 (n=6). There were no significant differences.
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Figure 56: Graph a) shows the mean +/- S.E.M. of the whole blood
haemoglobin concentration from control animals (n=6) and from animals 
that had received porphyrinogenic treatment 2.1 (3 0  days
succinylacetone) (n=6). Graph b) shows the mean +/- S.E.M. of the 
cataiase activity in erythrocyte lysates from control animals (n—6) and 
in erythrocyte lysates from animals that had received treatment 2.1 
(n=6). There were no significant differences.



CHAPTER 4 RESULTS

4.3.4.2. Erythrocyte cataiase activity:

The activity of cataiase from lysed erythrocytes was measured by its 

capacity to decom pose hydrogen peroxide. C a ta iase  alone w as  

measured by this assay as 1mM sodium azide, which inhibits the 

activity of the haem moiety of the enzym e completely abolished the 

lysates ability to decom pose hydrogen peroxide (figure 52f). The  

cataiase activity of erythrocyte lysates prepared from the blood of 
treated anim als did not significantly differ from lysates prepared  

from control animal blood (figure 56b).

4.3.5. Brain mitochondrial respiratory cytochrome content:

Brain cytochrm es w ere m easured  from  their o x id ised -reduced  

difference spectra at the appropriate w avelengths. Although brain 

mitochondrial suspensions were more turbid than liver mitochondrial 
suspensions prominent difference spectra were always obtained by 

the method used in this study (figure 52g). The brain mitochondrial 
content of respiratory cytochromes oxidase, b, c and Ci of treated  

animals did not d iffer significantly from the content of these  

cytochromes in mitochondria prepared form brains of control animals  
(figure 57).

4.3.6. The effects of porphyrinogenic drug treatment 2.2 (30 
days succinylacetone;10 days 4-ethyl DDC, 10mg./kg.; 4
days phenobarbitone; 1 large dose of 4-ethyl DDC) on liver 
haemoprotein content:

The livers of these animals showed a dark green pigmentation which 

was also observed in the mitochondrial pellet. This green pigment has 

been widely reported by others, in the liver of treated  anim als  

(Tephly et.al. 1979; DeMatteis et.al. 1980a).
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Figure 57: The mean +/- S.E.M. of brain mitochondrial cytochrome
oxidase (cox or a+a3 ) and cytochromes b, c and ci from control tissues 
(n=6) and from brain mitochondria isolated from animals that had 
received porphyrinogenic treatment 2.1(30 days succinylacetone) (n=6). 
There were no significant differences.
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4.3.6.1. Liver mitochondrial respiratory cytochrome content:

This porphyrinogenic drug treatm ent caused a significant reduction in 

the content of hepatic respiratory cytochromes oxidase, b, c and ci 
(p<0.05 in all cases) when com pared with liver cytochromes from  

control animals (figure 58a).

4.3.6.2. Liver cataiase activity:

This treatm ent produced a m arked decrease in hepatic cataiase  

activity of liver hom ogenates when com pared to the activity in 

homogenates prepared from control animal livers (p < 0 .005 ) (figure  

58b). A reduction in hepatic cataiase activity was also recorded by 

Ginsberg e t.a l. (1963 ) and Haeger-A ronsen (1962 ) following DDC  

treatm ent.

4.3.7. The effects of porphyrinogenic drug treatment 2.2 ( 
30 days succinylacetone;10 days 4-ethyl DDC; 4 days 
phenobarbitone; one large dose of 4-ethyl DDC) on blood 
haemoprotein content:

4.3.7.1. Haemoglobin content:

Treatment of animals with porphyrinogenic drug combination did not 
significantly a lter the w hole blood haem oglobin content when  

compared with control animal blood (figure 59a).

4.3.7.2. Erythrocyte cataiase activity:

The erythrocyte cataiase activity of treated anim als did not differ 

significantly from the activity of this enzym e in control anim al 
erythrocytes (figure 59b ). Schmid et.a l. (1955 ) similarly found that 
porphyrinogenic drugs, which reduce liver cata iase  activity are  

ineffective in reducing the activity of the erythocytic enzym e.
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Figure 58: The effect of porphyrinogenic treatment 2.2
(succinylacetone, 4-ethyl DDC, phenobarbitone, 4-ethyl DDC) on the 
content and activity of hepatic haemoproteins:
Graph a) is the mean +/- S.E.M. of liver mitochondrial cytochrome 
oxidase (cox or a+a3 ) and cytochromes b, c and Ci from control tissues 
(n=8) and from hepatic mitochondria isolated from treated animals 
(n=5). Graph b) shows the mean +/- S.E.M. of the cataiase activity of 
liver homogenate from control animals (n=8) and from livers of treated 
animals (n=5). ( * p<0.05; ***p<0.001)
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Figure 59: The effects of porphyrinogenic treatment 2.2
(succinylacetone, 4-ethyl DDC, phenobarbitone, 4-ethyl DDC) on the 
content and activity of erythrocyte haemopoteins:
Graph a) is the mean +/- S.E.M. of the whole blood haemoglobin 
concentration from control animals (n=8) and from treated animals 
(n=5). Graph b) shows the mean +/- S.E.M. of the cataiase activity of 
erythrocyte lysates of control animals (n=8) and of erythrocyte lysates 
from treated animals (n=5). There were no significant differences.
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4.3.8. The effects of porphyrinogenic drug treatment 2.2 (30 
days su cc in y la ce to n e ;1 0  days 4 -e thy l DDC; 4 days 
phenobarbitone; one large dose of 4-ethyl DDC) on brain 
mitochondrial cytochrom e content:

The content of all brain mitochondrial respiratory cytochromes from 
treated animals were equivalent to those of control animals (figure 
60).

4.3.9. The effects of porphyrinogenic drug treatment 2.3 (14 
days 4-ethyl DDC ) on liver haemoprotein content:

This treatment was employed in an attempt to increase the 
haemoprotein reductions caused by the last group of porphyrinogenic 
drugs. As succinylacetone alone did not alter any haemoprotein 
measured, in any of the tissues examined whereas the addition of 4- 
ethyl DDC and phenobarbitone caused a reducton in hepatic 
haemoproteins, 4-ethyl DDC was considered the most likley candidate 
for mediation of these reductions.

The livers of these animals, like those of the previous treatment 
group, showed a dark green pigmentation which was also observed in 
the mitochondrial pellet. The livers and mitochondrial pellet from 
these animals were, however, much darker than in the previous group. 
Histological examination of hepatic tissue from animals from this 
group showed a wide spread fluorescence (plate 2), indicative of the 
presence of porphyrins (probably both the alkylated protoporphyrin, 
metabolite of 4-ethyl DDC and protoporphyrin 1X). Electron 
micrographs of mitochondrial pellets revealed the presence of a 
dark lysosomal-type material (plate 3). This is most probably iron 
accumulation in the lysosomes. These last two observations are 
congruent with the proposal that 4-ethyl DDC is converted into an 
alkylated protoporphyrin within the liver cells and accumulation of 
iron and protoporphyrin 1X, substrates of ferrochelatase, provides 
indirect evidence of inhibition of ferrochelatase. The absence of this 
darkly stained fraction in control liver (plate 3) and treated brain

1 0 4



□  CONTROL 
TREATED

o  0.1 -

o  0.0
a + a 3  c o x

Figure 60: The mean +/- S.E.M. of brain mitochondrial cytochrome
oxidase (cox or a+a3 ) and cytochromes b, ci and c from control tissues 
(n=7) and from brain mitochondria isolated from animals that had 
received porphyrinogenic treatment 2.2 (succinylacetone, 4-ethyl DDC, 
phenobarbitone, 4-ethyl DDC) (n=5). There were no significant 
differences.



Plate 2: Shows a fluorescence photograph of a histological section of 
liver from a control animal (x 110 magnification). b) shows a similar 
photograph of a liver section from an animal treated for 14 days with 4- 
ethyl DDC (lOOmg/kg.) (x 110 magnification). The autofluorescence seen 
in the treated animal tissue is most likely due to accumulating 
protoporphyrin and N-ethyl protoporphyrin (the 4-ethyl DDC metabolite). 
This fluorescence histological examination confirms that the effects of 
4-ethyl DDC are widespread in the liver, as all hepatocytes fluoresce.





Plate 3: a) An electron micrograph of a mitochondrial pellet isolated 
from a control animal liver. Intact mitochondria can be clearly seen, b) 
Is an electron micrograph of liver mitochondria isolated from an animal 
that had received 14 days administration of 4-ethyl DDC (100mg./kg.). 
Again, intact mitochondria can be clearly identified. Dark deposits can 
be seen in lysosomal-like bodies (arrows). These dark deposits are 
probably iron accumulating as a result of ferrochelatase inhibition. 
There is no evidence of these dark deposits in control liver 
mitochondrial pellets.
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mitochondrial pellets (plate 4) indicates that 4-ethyl DDC may not be 
effective in gaining access to the brain.

50% of the animals in this treatment group developed a red 
colouration around the tips of their ears which progressed to a 
degeneration of the tissue with encrustation (plate 5). There was no 
histological evidence of iron accumulation in the area of this damage. 
The lesions which developed on the ears of these animals bear a close 
resemblence to the skin lesions of patients suffering from porphyria 
cutanea tarda, and like this phenomena are most probably due to the 
action of light on overproduced porphyrins accumulating in the skin.

4.3.9.1. Liver mitochondrial respiratory cytochrome content:

This porphyrinogenic drug treatment caused a significant reduction in 
the content of hepatic respiratory cytochromes oxidase, b, c (p<0.05 ) 
when compared with liver cytochromes from control animals (figure 
61a). Cytochrome Ci content, although reduced, was not significantly 
altered by this treatment. In half of the liver mitochondrial samples 
the oxidised-reduced spectra showed an unusual dip between 650nm 
and 575nm (figure 62). This trough in the difference spectra of the 
hepatic respiratory cytochromes is probably due to the oxidised- 
reduced difference spectra of the alkylated protoporphyrin as N- 
methyl protoporphyrin itself, in tris buffer demonstrates a 
difference spectra which has a nadir between these same 
wavelengths (figure 62).

4.3.9.2. Liver cataiase activity:

This treatment, like the previous treatment, also produced a marked 
decrease in hepatic cataiase activity of liver homogenates when 
compared to the activity in homogenates prepared from control 
animal livers (p<0.001) (figure 61b).

4.3.10. The effects of porphyrinogenic drug treatment 2.3 
(14 days 4-ethyl DDC ) on blood haemoprotein content:

4.3.10.1. Haemoglobin content:

1 0 5



Plate 4: Electron micrographs of a) a control animal brain mitochondrial
pellet and b) a treated animal brain mitochondrial pellet. Mitochondria 
can be clearly seen in both tissues and there is no evidence of dark 
lysosomal bodies, in the treated animal mitochondria.
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Plate 5: Shows a) A red colouration which developed arround the tips of 
the ears of a rat treated for 14 days with 4-ethyl DDC. b) A later stage 
in ear damage following 4-ethyl DDC treatment, when the ear tissue 
begins to degenerate. c) A haematoxylin and eosin stained histological 
section (x 140 magnification) of a control animal ear and d) an 
haematoxylin and eosin stained histological section (x 35 mgnification) 
of an ear from a treated animal, showing subcutaneous accumulation of 
a substance which could be protoporphyrin (arrow).
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Figure 61: Shows the content and activity of hepatic haemoproteins:
Graph a) is the mean +/- S.E.M. of liver mitochondrial cytochrome 
content of cytochrome oxidase (cox or a+a3 ), b, c\ and c from control 
tissues (n=8) and from hepatic mitochondria isolated from animals that 
had received porphyrinogenic treatment 2.3 (14 days 4-ethyl DDC) (n=6). 
Cytochrome oxidase, cytochrome b and c were significantly reduced in 
treated liver mitochondria (* p<0.05). Graph b) shows the mean +/- 
S.E.M. of the catalase activity of liver homogenates of control animals 
(n=8) and of livers of animals that had received treatment 2.3 (n=6). 
This porpphyrinogenic drug treatment significantly reduced hepatic 
catalase activity (***p < 0 .0 01 ).



F i g u r e  6 2 :  T h e  e f f e c t ,  i n  a  s i n g l e  e x p e r i m e n t ,  o n  t h e  h e p a t i c  o x i d i s e d -
r e d u c e d  a b s o r b a n c e  s p e c t r a  o f  a )  a  m i t o c h o n d r i a l  s a m p i e  f r o m  a n  a n i m a l  
t r e a t e d  w i t h  1 4  d a y s  o f  i n t r a p e r i t o n e a l l y  a d m i n i s t e r e d  4 - e t n y i  D D C  a n d  
b )  1 4  d a y s  o f  i n t r a v e n o u s  a d m i n i s t r a t i o n  o f  N - m e t h y i  p r o t o p o r p y r i n .  c)  
t h e  e f f e c t s  o f  s o d i u m  d i t h i o n i t e  o n  a  s a m p i e  o f  N - m e t h y l  
p r o t o p o r p h y r i n ,  i n  T r i s  b u f f e r .  I n  b o t h  t i s s u e  c a s e s  t h e r e  i s  an  
u n c h a r a c t e r i s t i c  t r o u g h  i n  t h e  d i f f e r e n c e  s p e c t r a  a t  5 7 0 n m , w h i c h  is  n o t  
d e t e c t a b l e  i n  c o n t r o l  s p e c t r a  ( f i g u r e  5 2 a ) .  T h i s  t r o u g h  i s  h o w e v e r ,  
p r e s e n t  i n  a  d i t h i o n i t e  t r e a t e d  s a m p l e  o f  N - m e t h y l  p r o t o p o r p h y r i n  
( t r a c e  c ) .
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CHAPTER 4 RESULTS

Treatment of animals  with this porphyrinogenic drug combination did 
not significantly alter the w h o le  b lood h aem oglob in  content  w hen  
compared with control animal blood (figure 63a).

4.3.10.2. Erythrocyte catalase activity:

The erythrocyte catalase activity of treated animals did not differ 
significantly from the activity of this enzyme in control animal 
erythrocytes (figure 63b).

4.3.11. The e ffects  of porphyrinogenic drug treatm ent 2.3
(14 days 4-ethyl DDC ) on brain m itochondrial cytochrom e
content:

The content of all brain mitochondrial respiratory cytochromes from 
treated animals did not differ significantly from the cytochrome
content of brains from control animals (figure 64).

4.3.12. The e ffects  of porphyrinogenic drug treatm ent 2.4 
(14 days in travenous N-m ethyl p ro topo rphyrin ) on live r 
haemoprotein content:

Following the first four or five days of N-methyl protoporphyrin 
administration into the tail vein it became progressively more 
difficult due to both venous collapse and the alkylated protoporphyrin 
leaking into the perivascular tissue, to achieve successful 
intravenous administration on every injection. Although the livers of 
these animals did not appear to be excessively pigmented the 
mitochondrial pellet did show a high degree of green colouration. In 
50% of the liver mitochondrial samples in this treatment group, as 
was the case with the previous treatment group, a dip was observed 
in the difference spectra (figure 62) probably due to the spectral 
interference of N-methyl protoporphyrin.

4.3.12.1. Liver mitochondrial respiratory cytochrome content:
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Figure 63: Shows the content and activity of erythrocyte haemoproteins. 
graph a) is the mean +/- S.E.M. of the whole blood haemoglobin 
concentration from control animals (n=8) and from animals that had 
received porphyrinogenic treatment 2.3 (14 days 4-ethyl DDC) (n—6). 
Graph b) shows the mean +/- S.E.M. of the catalase activity of 
erythrocyte lysates of control animals (n=8) and of erythrocyte lysates
from animals that had received treatment 2.3 (n=6). There were no 
significant differences.
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Figure 64: The mean +/- S.E.M. of brain mitochondrial cytochrome
content of cytochrome oxidase (cox or a+a3 >, b, ci and c from control 
tissues (n=6) and from brain mitochondria isolated from animals that 
had received porphyrinogenic treatment 2.3 (14 days 4-ethyl DDC) (n=6). 
There were no significant differences.
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This porphyrinogenic drug treatment caused a significant reduction in 
the content of hepatic respiratory cytochromes oxidase only (p<0.05 ) 
when compared with liver cytochrome from control animals. All 
other respiratory cytochromes were unaltered by this treatment 
(figure 65a).

4.3.12.2. Liver catalase activity:

N-methyl protoporphyrin treatment produced a significant decrease 
in the catalase activity of liver homogenates when compared to the 
activity in homogenates prepared from control animal livers (p<0.05) 
(figure 65b).

4.3.13. The effects of porphyrinogenic drug treatment 2.4 
(14 days intravenous N-methyl protoporphyrin) on blood 
haemoprotein content:

4.3.13.1. Haemoglobin content:

Treatment of animals with porphyrinogenic drug combination did not 
significantly alter the whole blood haemoglobin content when 
compared with control animal blood (figure 66a).

4.3.13.2. Erythrocyte catalase activity:

The erythrocyte catalase activity of treated animals did not differ 
significantly from the activity of this enzyme in control animal 
erythrocytes (figure 66b).

4.3.14. The effects of porphyrinogenic drug treatment 2.4 
(14 days intravenous N-methyl protoporphyrin) on brain 
mitochondrial cytochrome content:

The content of all brain mitochondrial respiratory cytochromes from 
treated animals did not differ significantly from the cytochrome 
content of brains from control animals (figure 67).
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Figure 65: Shows the content and activity of hepatic haemoproteins:
graph a) is the mean +/- S.E.M. of liver mitochondrial cytochrome 
content of cytochrome oxidase (cox or a+a3 ), b, cj and c from control 
tissues (n=6) and from hepatic mitochondria isolated from animals that 
had received porphyrinogenic treatment 2.4 ( 14 days i.v. N-methyl 
protoporphyrin) (n=5). Cytochrome oxidase was the only respiratory 
component that was significantly reduced ( * p<0.05). Graph b) shows 
the mean +/- S.E.M. of the catalase activity of liver homogenates of 
control animals (n=6) and of livers of animals that had received 
treatment 2.4 (n=5). Hepatic catalase activity was significantly
reduced in treated animals ( * p<0.05).
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Figure 66: Shows the content and activity of erythrocyte haemoproteins:
graph a) is the mean +/- S.E.M. of the whole blood haemoglobin 
concentration from control animals (n=6) and from animals that had 
received porphyrinogenic treatment 2.4 (14 days i.v. N-methyl
protoporphyrin) (n=5). Graph b) shows the mean +/- S.E.M. of the 
catalase activity of erythrocyte lysates of control animals (n=6) and of 
erythrocyte lysates from animals that had received treatment 2.4 (n=5). 
There were no significant differences.
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Figure 67: The mean +/- S.E.M. of brain mitochondrial cytochrome
content of cytochrome oxidase (cox or a+a3 ), b, Ci and c from control 
tissues (n=6) and from brain mitochondria isolated from animals that 
had received porphyrinogenic treatment 2.4 (14 days i.v. N-methyl 
protoporphyrin) (n=5). There were no significant differences.
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4.3.15. The e ffects  of porphyrinogenic drug treatm ent 2.5 
( oral lead adm inistration) on liver haemoprotein content:

Following long term lead acetate treatment the animals did not 
demonstrate any obvious abnormalities.

4.3.15.1. Liver mitochondrial respiratory cytochrome content:

Oral lead administration failed to cause any changes in the hepatic 
respiratory cytochrome content when compared to control animals 
(figure 68a).

4.3.15.2. Liver catalase activity:

Hepatic catalase activity demonstrated a small but significant 
increase in liver homogenates from lead fed rats when compared to 
homogenates from control animals (figure 68b).

4.3.16. The e ffec ts  of porphyrinogenic drug treatm ent 2.5 
(oral lead adm inistration) on blood haemoprotein content:

4.3.16.1. Haemoglobin content:

Lead administration caused a significant decrease in the haemoglobin 
content of whole blood (p<0.05) (figure 69a).

4.3.16.2. Erythrocyte catalase activity:

The erythrocyte catalase activity per mg. of haemoglobin in lead 
treated animals did not differ significantly from the activity of this 
enzyme in control animal erythrocytes (figure 69b). If, however, 
haemoglobin concentration decreased as a result of a fall in red cell 
content the over all activity of catalase per volume of whole blood 
must also decrease.
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Figure 68: Shows the content and activity of hepatic haemoproteins:
graph a) is the mean +/- S.E.M. of liver mitochondrial cytochrome 
content of cytochrome oxidase (cox or a+a3 ), b, ci and c from control 
tissues (n=6) and from hepatic mitochondria isolated from animals that 
had received porphyrinogenic treatment 2.5 (lead acetate in their 
drinking water) (n=7). Graph b) shows the mean +/- S.E.M. of the
catalase activity of liver homogenates of control animals (n=6) and of 
livers of animals that had received treatment 2.5 (n=7). Lead treatment 
caused a significant increase in hepatic catalase activity ( * p<0.05).
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Figure 69: Shows the content and activity of erythrocyte haemoproteins:
Graph a) is the mean +/- S.E.M. of the whole blood haemoglobin 
concentration from control animals (n=6) and from animals that had 
received porphyrinogenic treatment 2.5 (lead acetate in drinking water) 
(n=10). Lead treatment caused a significant fall in whole blood 
haemoglobin content (*p<0.05). Graph b) shows the mean +/- S.E.M. of 
the catalase activity of erythrocyte lysates of control animals (n=6) 
and of erythrocyte lysates from animals that had received treatment 2.5 
(n=5). Catalase activity was unaltered by this treatment.
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4.3.17. The effects of porphyrinogenic drug treatment 2.5 
(oral lead a d m in is tra t io n ) on brain m itochondria l 
cytochrome content:

The content of all brain mitochondrial respiratory cytochromes from 
treated animals did not differ significantly from the cytochrome 
content of brains from control animals (figure 70).

4.3.18. The effects  of treatm ent 2.6 (4-ethyl DDC) 
administration on haemoprotein content of neonatal rats:

4.3.18.1. Hepatic respiratory cytochromes:

The hepatic mitochondrial respiratory cytochrome content in 20 day 
old animals was unaffected by either 4-ethyl DDC or propylene glycol 
vehicle when administered when 10 days old (figure 71a). The 
presence of a pigmented mitochondrial pellet and a dip in the liver 
respiratory cytochrome difference spectra (similar to that seen with 
4-ethyl DDC and N-methyl protoporphyrin treatment) demonstrates 
that 10-20 day old rats can metabolise the dihydropyridine to the 
alkylated protoporphyrin.

4.3.18.2. Brain respiratory cytochromes:

None of the brain respiratory cytochromes was significantly altered 
by either 4-ethyl DDC or propylene glycol vehicle when administered 
10 days prior to measurement (figure 71b).

4.3.19. The effects of treatment 2.7 ( 6 days of 4-ethyl 
DDC) on liver and brain ferrochelatase activity:

Animals were treated for 6 days with intraperitoneal 4-ethyl DDC at 
a daily concentration of 100mg/kg. The activity of hepatic 
ferrochelatase was measure in 2 treated and 2 control animals and 
the brain enzyme was measured in 1 treated animal and 1 control 
animal. 4-Ethyl DDC treatment profoundly inhibited hepatic
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Figure 70: The mean +/- S.E.M. of brain mitochondrial cytochrome
content of cytochrome oxidase (cox or a+a3 ), b, ci and c from control
tissues (n=6) and from brain mitochondria isolated from animals that
had received porphyrinogenic treatment 2.5 (lead acetate in drinking
water) (n=5). There were no significant differences.
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Figure 71: Graph a) shows the liver mitochondrial content of cytochrome 
oxidase (cox, a+a3), b, ci and c of 20 day old rats following 4-ethyl DDC 
(lOOmg/kg) at 10 days old,(n=6) ; propylene glycol vehicle (n=5) ;
untreated control animals (n=6). Graph b) shows the content of the 
respiratory cytochromes in the brains of the same animals. 4-Ethyl DDC 
did not significantly alter the mitochondrial cytochrome content of 
either tissue.
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ferrochelatase activity but was incapable of inhibiting the brain 
enzyme (figure 72).
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Figure 72: The activity of mitochondrial ferrochelatase in liver and
brain as measured by the amount of 59Fe haem synthesized by lgm. of 
tissue in 20min. In these limited number of samples, treatment with 4- 
ethy 1 DDC over a period of 6 days, caused a profound drop in the activity
of the hepatic enzyme whereas brain ferrochelatase activity was
unaltered by this treatment.
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CHAPTER 4 DISCUSSION

H aem oglob in  in the  m ic ro c irc u la tio n  in te rfe re s  w ith the  

measurement of m itochondrial respiratory cytochromes (Bull e t.a l. 
1979). The whole animal perfusion procedure, carried out in these  

experiments, com pletely clears the tissues of haemoglobin prior to 

m itochondria iso la tio n , p ro tec tin g  the m eas u rem en t of the  

respiratory cytochrom es against any confusing spectrograph ic  

interaction of haemoglobin. Despite brain tissue being less accessible 

to many compounds than peripheral neural tissue, the physiological 
processes of both of these tissues are similar and chemicals that 
alter central neural function should also alter peripheral neural 
function. As the quantity of peripheral neural tissue, in particular the 

sympathetic ganglia, yielded insufficient m aterial for m itochondrial 
biochemical study, the whole brain was used to evaluate the ability 

of porphyrinogenic agents to alter neural haemoprotein content.

The porphyrinogenic treatm ents employed in the previous section of 
this study (chapter 3) disrupt haem biosynthesis. This was manifest 
as an increase in the production and excretion of the haem precursor 

ALA (figure 16), presumably the consequence of an increase in the 

rate limiting enzym e of the pathway ALAS. Although these compounds 

exert their effects  at d ifferent levels in the haem  biosynthetic  

pathway, their ability to increase production of ALA is postulated to 

be due to a sim ilar m echanism . All are proposed to reduce the 

regulatory free haem pool and release the rate-limiting enzym e ALAS 

from end product inhibition. This derepression facilitates increased  

ALA synthase production and activity.

The results of the previous section indicate, indirectly, that although 

haem synthesis is d isrupted and haem  ava ilab ility  has been  

decreased, the function of haem oproteins, essential for normal 
peripheral neuronal function, has not been compromised. The present 
set of experim ents were designed to measure directly the effects of 
porphyrinogenic agents on tissue haemoprotein content and function. 
If the hypothesis that porphyric neuropathy is due to a state of haem  

deficiency, it is essentia l to produce a model in which haem  

production is decreased.
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The long term treatm ents employed in this study were designed to 

inhibit the haem pathway for a period long enough to cover as many 

half-lives of the m easured haem oproteins as practically possible 

(hepatic ca ta lase  2 days; resp iratory  cytochrom es 5 -6  days; 
haemoglobin 60 days.

Succinylacetone was chosen because it inhibits haem synthesis 

close to the site of the enzym atic defect of acute interm ittent 
porphyria and the level at which disruption occurs in hereditary  

tyrosinaem ia and h e re d ita ry  ALA D  d e fic ie n c y . A d d itio n a lly , 
succinylacetone inhibits ALAD activity and haem  production in a 

range of tissues; rat brain (De Matteis and Ray1982); rat bone marrow  

cells (Beru e t.a l.1983); rat haemoglobin (Tschudy et.al. 1982); rabbit 
reticulocytes (P o n k a  e t.a l. 1 98 2 ); av ian , m urine and bovine  

hepatocytes (Sassa and Kappas 1983); human erythrocytes (Sassa and 
Kappas 1983).

Over the course of 30  days treatm ent with 20m g ./kg . of 
succinylacetone, daily, urinary excretion of the haem precursor ALA  

was e levated  (figure 53) and although there was considerable  

variation in the level of ALA excreted this increase was maintained  

throughout the trea tm ent period. The level of total porphyrins  

excreted during this period of treatm ent was also increased, when 

compared to total porphyrin excretion by normal control anim als. 
Succinylacetone could be causing increased porphyrin synthesis as a 

result of enhanced substrate (ALA) availability. This could be due  

either to a build up of ALA as a direct consequence of ALAD  

inhibition, to derepression of ALAS by a reduced free haem pool or to 

direct induction of ALAS by succinylacetone. The later hypothesis 

would be incongruous with the reduction in haem production caused  

by succinylacetone (S assa  and Kappas 1983; Beru e t.a l. 1983; 
Bottomley et. al. 1985; Ponka et.al. 1982). Graham  (1991 ), however, 
reported that haem  arginate could not totally reverse the induction of 
ALAS caused by 3 days treatment with succinylacetone at 20m g/kg, a 

similar concentration to that employed in this study. Partial reversal 
only of succinylacetone's effects, by exogenous haem , was also  

reported by Ebert et.a l. 1979; 1981 and by Beaumont 1984. These  

observations imply that ALAS induction, by succinylacetone, is not
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due solely to the derepression of the enzyme by reduced haem but 
that there is another factor at play in succinylacetone-induced
increase in A LA S ac tiv ity . D irec t induction of A LA S  by 

succinylacetone would account for the increased porphyrin production 

and the lack of decreased in haemoproteins, observed in this study. 
Additionally, De M atteis and Ray (1982 ) calculated that even when 

ALAD activity is inhibited, by succinylacetone, by 90%  in the 

cerebellum there would still be enough enzym atic  capacity to
metabolize 200pm oles of ALA /m in/g. of cerebellum , which is in
excess of the normal capacity of cerebellar ALAS to produce ALA ( 
53pmoles of ALAS /m in/g. tissue). Similarly, in liver and erythroid  

tissue the activity of ALAS is only 2%  that of ALAD (Kappas et.al.
1989). Additionally, the activity of ALAD is in great excess of that of 
the next enzym e in the haem biosynthetic pathway, PBGD (0 .25% , 
Kappas e t.a l. 1 98 9 ), an enzym e with low enzym atic activity. A 

considerable inhibition of the former enzym e could, therefore , be 

tolerated before  a serious com prom ise was exerted  on haem  

synthesis c a p a b ility . T h e re  is no d o u b t, h o w e v e r, th a t
succinylacetone does disrupt haem metabolism by inhibiting at least 
one enzyme in the haem synthesis pathway, in many tissues, and as 

such is a useful experim ental tool with which to study experim ental 
porphyria. Therefore, consistent with the observation, in this study, 
that succinylacetone does not reduce total porphyrin production, none 

of the haemoproteins measured in liver, blood or brain were reduced 

(figures 5 5 ,5 6 ,5 7 ) .  The  rise in tota l porphyrins cau sed  by 

succinylacetone treatm ent in these animals may, on the other hand, 
be expected to result in an increase in tissue haemoprotein content. 
The observation that no increase is observed in tissue content of any 

haemoprotein is most probably due to haem  induction of its 

degradative enzym e haem  oxygenase (Tenhunen et.a l. 1970; Smith
1990), which would prevent increased haemoprotein production.

4-ethyl DDC induces an increase in ALAS, firstly, as a result of its 

capacity to destroy the haemoprotein cytochrome P -450. The residual 
cytochrome P -450  apoprotein utilises haem from the regulatory pool 
resulting in a shrinkage of this pool with a resultant derepression of 
the rate limiting enzym e ALAS. Secondly, the product of 4-ethyl 
DDC’s m etabolism , N -ethyl protoprophyrin, inhibits ferro chela tase .
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Phenobarbitone enhances both the quantity of alkyl protoporphyrin  

produced and the fraction of the most potent isomer, the Na isomer 

(Riddick et. al 1989; De Matteis et. al. 1983). Phenobarbitone itself 
induces production of the haemoprotein cytochrome P -450  (W axm an  

and Walsh 1982) creating an environm ent where increased haem  

synthesis is required to replenish haem consumed in cytochrome P- 
450 synthesis and to replace the haem oprotein destroyed by the 

dihydrocollidine. A dditionally , phenobarb itone inhibits the haem  

biosynthetic pathw ay at the level of uroporphyrinogen decarboxylase  

with a concom itant accum ulation of uroporphyrin, heptacarboxilic  

acid porphyrin and coproporphyrin (DeVerneiul et.a l. 1983 ; Marks  

et.a l.1987).

The second porphyrinogenic treatm ent was designed to cause a 

relatively long period of haem  synthesis inhibition, initially by 

blocking ALAD, followed by further assaults on the pathway both by 

4-ethyl DDC and phenobarbitone. It is perhaps not surprising that no 

neuropathy w as produced, by the treatm ents em ployed in the
experiments reported in chapter 3, as there was no decline in neural 
respiratory cytochrome content even after long term porphyrinogenic  

drug treatm ent, in spite of a significant reduction in hepatic levels. 
The explanation of this failure to act in the brain is unclear. It could 

be that the drugs are unable to gain access to the brain because of the 

blood brain barrier. Alternatively, the most effective of these drugs, 
4-ethyl DDC, is dependent upon cytochrome P -450 metabolism for its 

ferrochelatase inhibitory action and the levels of this haem oprotein
are low in the brain com pared to the liver. It would have been
interesting to have m easured the levels of respiratory cytochromes  

in peripheral nerve cells, where the blood brain barrier is deficient 
(e.g. hexam ethonium , a highly charged drug gains easy access to 

ganglia). An attempt to get such m easurem ents failed because the 

total weight of both complete sympathetic chains, in the rat, was too 

low. One tissue in which changes might have been expected was the 

anococcygeus muscle, in response to either nitrates or NANC nerve 

stimulation. G uanyla te  cyclase, a haem oprotein , is an essentia l
component in this response and there is no barrier to drug access and 

yet the response to NANC nerve stimulation was not reduced by this
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combination of drugs. Again, a deficiency of cytochrom e P -450 , 
within muscle cells, could explain this failure.

This second treatm ent regime caused a reduction in all the hepatic 

haemoproteins m easured. Liver catalase was m arkedly reduced in 

treated anim als when com pared to the enzym e activity in control 
animals. The catalase molecule has a short half-life of 2 days and 

contains 4 haem  m oieties. The activity of this haem oprote in , 
therefore, provides a fairly rapid index of haem depletion. The 4- 
methyl analogue of 4-ethyl DDC reduces hepatic catalase activity in 

rats and rabbits (Ginsberg et.al. 1963; Haeger-Aronsen 1962) and the 

porphyrinogenic agent, a lly lisopropylacetyl carbam ide (Sedorm id) 
was also potent in reducing hepatic catalase activity in rabbits and 

rats within 3 days of drug adm inistration (Schm id e t .a l.1 95 5 ). 
Sedormid was, however, ineffective in altering erythrocyte catalase  

activity even after prolonged drug administration of up to 42 days. 
The reduction in hepatic catalase activity, observed by Schmid and 

his colleagues, was due to inhibition of catalase synthesis as a 

reduction in the incorporation of radioactive glycine into catalase  

was concomitant with its decreased activity. It is unlikely that the 

reduction in hepatic catalase activity, observed in this study, is due 

to gross toxicity of the liver as other hepatic functions, in particular 

the mitochondrial ALAS activity, is in great excess of its normal 
function.

Similar to the effects of Sedorm id, erythrocyte catalase activity, in 

this study, rem ained unaltered by the combination of porphyrinogenic 

drugs. It is well docum ented that the half-life of hepatic catalase is 

2 days. T h ere  has been very  little study of the ha lf-life  of 
erythrocyte ca ta lase . Erythrocyte cata lase  content peaks during  

reticulocyte d e v e lo p m e n t (D en to n  e t .a l. 1 9 7 5 ). T h e  m ature  

erythrocyte does not contain mitochondria nor does it contain the full 
complement of haem  biosynthetic enzym es, including the inner 

membrane-bound mitochondrial enzym e ferrochelatase (Kappas et.a l. 
1989). The major haem oprotein of the erythrocyte, haemoglobin, is 

not synthesized de novo during the life time of the cell. As the  

mature erythrocyte is incapable of synthesizing haem it is unlikely 

that the half-life of erythrocytic catalase is 2 days. The half-life of 
blood catalase is most likely similar to that of haemoglobin in that it
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is linked to the life of the erythrocyte itself, 60 days in the rat. It is, 
therefore, probable that the effective period of haem  synthesis  

inhibition brought about by this treatm ent was not long enough to 

produce an appreciab le  reduction in either erythrocyte cata lase  

activity or whole blood haemoglobin content of animals receiving this 

treatm ent. The possibility that the decom position of hydrogen  

peroxide in erythrocyte lysates was due to the activity of glutathione 

peroxide and not catalase, and for this reason was unaltered by 

depletion of haem , was ruled out by the observation that azide  

abolished peroxidative activity. G lutathione peroxidase, a selenium  

containing enzym e, would be unaffected by the addition of sodium  

azide (Mills 1958).

The inability of the porphyrinogenic drugs, used in this study, to alter 

erythrocyte catalase activity, while at the sam e time reducing the 

activity of this enzym e in the liver, could also be due either to the 

in a b i l i t y  of the active  m etabo lite  of 4 -e th y l D D C , N -ethy l 
protoporphyrin, to leave the hepatocyte or that this ferrochelatase  

inhibitory agent does not enter reticulocytes.

This treatm ent, which is effective in reducing hepatic mitochondrial 
respiratory cytochrom es, is incapable of altering brain respiratory  

cytochromes. Several possibilities may account for this observation. 
Following metabolism in the hepatocytes, by cytochrome P -450 , the 

N-ethyl protoporphyrin may not leave the liver cells. There is a 

strong possibility that 4-ethyl DDC itself does not cross the blood 

brain barrier. If this substance does, however, gain access to the  

brain the low levels of cytochrome P -450 , about 3%  of that in the 

liver (Percy and Shanley 1979), may not produce enough of the active 

alkylated  p ro to p o rp h y rin  m e ta b o lite  to s ig n ific a n tly  im p air  

ferrochelatase activity, to the extent that haem  production is 

reduced. D D C m etabolism  does occur in other tissues with the 

destruction of cytochrome P -450 . Reed and his co-workers in 1988  

reported that ham ster o lfactory ep ithelia l cells are capab le  of 
m etabolizing D D C  and although the  d irect m easu rem en t of 
cytochrom e-P450 was not possible, due to the low levels of this 

compound in this tissue, cytochrom e P -450  dependent-processes  

were reduced by DDC administration. The isoenzyme type present in 

cells is extrem ely im portant in the ability of the cytochrom e to
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metabolize the dihydrocollidine. P-Naphthoflavone and phenobarbital- 

inducible isoenzymes are more potent than the 3 methylcholanthrene- 
inducible type in their ability to m etabolize 4-ethyl D D C , to the  

active ferrochelatase inhibitory substance (Riddick 1989; De M atteis  

et.al. 1983). A large proportion of brain cytochrome P -450  is an 

oestrogen-m etabolising isoenzym e (Paul et.al 1977), and may not 
readily oxidise 4-ethyl DDC. Local reductions in haem synthesis may 

be missed by the large scale measurement of whole brain respiratory 

cytochromes. The hypothalamus is an important site for many brain 

functions, p a rtic u la rly  horm onal sec re tio n s . N e u ro tran sm itte rs , 
impinging on the hypothalamus, control the secretion of releasing  

and inhibitory factors, into the median eminence blood vessels, which 

in turn regu la te  adenohyp ophyseal secretion . Acute porphyric  

episodes are associated with hormonal changes, especially during the 

oestrus cycle, at a time when there could be a strain put upon 

hypothalamic haem oproteins. The neurohypophysis may also be 

affected, during acute porphyric attacks, as there is ample evidence  

indicating inappropriate ADH secretion. Although regional differences  

have been found in the activity of the rate limiting enzym e, ALAS, in 

the brain, with the highest levels in the cerebellum, followed by the 

cortex and hypothalam us, the total porphyrin and haem  content of 
various brain regions do not differ greatly (Maines 1980).

From the evidence obtained from the first two groups of experiments, 
in this section , it ap p ears  that the 30 days trea tm en t with 

succinylacetone was not a major contributory factor to the reduction 

in the hepatic haemoproteins observed in the second experim ent. 4- 
ethyl DDC is thought to be the major cause of haem  synthesis  

inhibition. The next group of experim ents sought to exploit this 

finding and in an attempt to increase this haem depletory effect, the 

dose of 4-ethyl DDC was increased to 100mg/kg for 14 days, making 

the 4-ethyl DDC treatm ent period the sam e as that in the previous 

experiment. This treatm ent, with increased 4-ethyl DDC, produced a 

similar level of hepatic haem reduction as that seen with the lower 

doses of 4-ethyl DDC and phenobarbitone (figures 56a, 58a ). This 

could be because maximum inhibition of haem was already reached  

with the lower doses and only a time factor would alter the degree of 
reduction observed. It is likely that the phenobarbitone, in the second
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group of experim ents, played a role in the depletion of respiratory 

cytochromes and catalase activity. Phenobarbitone effects would be 

exerted for the last 6 days of treatm ent, 3 half-lives of the hepatic  

catalase enzym e and 1 half-life of the respiratory cytochrom es. 
Treatment with 4-ethyl DDC for 14 days, was also incapable of 
reducing either erythrocyte or brain haemoprotein content. The same  

arguments put forw ard for the inability of the long term  drug 

combination to reduce these levels, also holds for this treatm ent 
regime.

Measurement of liver and brain ferrochelatase activity, in a small 
number of animals treated for 6 days with 4-ethyl DDC, shows that 
although the hepatic  enzym e is profoundly inhib ited by this  

treatment, the brain enzym e rem ains unaltered. This observation  

explains the unaltered brain haemoprotein content in treated animals. 
Either the active metabolite of the 4-ethyl DDC is not entering the 

brain or brain ferrochelatase is refractory to inhibition by N-ethyl 
protoporphyrin. Brain ferrochelatase activity m easured in this study 

was equivalent to that in hepatic tissue. This is not in keeping with 

the m easurem ents of brain ferrochelatase activity in other studies  

where the activity of the brain enzym e has been shown to be very  

much lower than that in hepatic tissue (Percy and Shanley 1979; 
Barnes et. al. 1971). Ferrochelatase activity is expressed in a variety  

of units in different studies. However, when the results for hepatic 

enzyme activity obtained in the present experim ents were corrected  

for approximate activity per mg. of mitochondrial protein the results 

gives the sam e activity as that m easured in rat liver by Percy and 

Shanley (1979 ), and about 1/1 Oth. that measured by De Matteis et.al. 
1973 and Barnes et.al. 1971, using deuteroporphyrin or mesoporphyrin 

and Co2+ as substrates. The method used in this study (Houston et.al. 
1988 and in preparation) is a sensitive method using physiological 
substrates (which may account for the lower m easured levels of 
enzyme activity) and employing both HPLC separation of haem and 

rad iochem ical assay  for the  d e tec tio n  of ra d io a c tiv e  iron  

incorporation into haem. The method, therefore, provides a sensitive 

measurement of ferrochelatase activity in both liver and brain tissue.

To overcom e the possib ility  that the N -e th y l protoporphyrin  

m etabolite of 4 -e th y l D D C  w as not leaving the hep ato cy te ,
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com m ercially o b ta in ed  N -m eth y l pro toporphyrin  w as in jected  

directly into the system ic circulation for a period of 14 days. 
Although m u ltip le  in je c tio n  d iff ic u lt ie s  a ro s e , N -m e th y l 
protoporphyrin was gaining access, at least to hepatic tissue, as 

evidenced by p igm entation  of the m itochondrial fraction . This  

treatment, although less effective than the previous two treatm ent 
regimes, did a lter some hepatic haem oproteins. Only cytochrome  

oxidase (a + a 3) content and ca ta lase  activity w ere significantly  

reduced (figures 65a , 65b). The porphyrinogenic impact of the N- 
methyl protoporphyrin is not expected to be as profound as that of 4- 
ethyl DDC as the latter exerts a dual effect on haem availability, both 

destroying cytochrom e P -450  and inhibition of ferro chela tase . It 
could be argued that the reduction in hepatic catalase activity, by 4- 
ethyl DDC, is due to dihydrocollidine toxicity or to increased catalase  

utilisation and breakdow n during the decom position of hydrogen  

peroxide produced during cytochrome P-450's 1 electron metabolism  

of the 4-ethyl DDC. However, in this experiment, the observation that 
N-methyl protoporphyrin, adm inistered alone, significantly reduces  

hepatic haem oproteins indicates that its ferrochelatase inhibitory 

effect is the cause of at least some of the reductions in liver 

haemoproteins. Again, as with previous experiments in this group of 
studies, N-m ethyl protoporphyrin was incapable of reducing either 

blood or bra in  h ae m o p ro te in s . Even though the a lk y la te d  

protoporphyrin has direct access to the systemic circulation, blood 

haemoprotein are unaltered after 14 days exposure. Erythrocytes can 

accumulate protoporphyrin from an exogenously administered source 
(Nakao e t.a l. 1966) of 200ug /day  for 4 -6  days. It would not be 

unreasonable to assum e, therefore, that the concentration of the 

alkylated protoporphyrin , although structurally  slightly d ifferen t 
from protoporphyrin, used in this study (1 nmole/ day) should be able 

to gain access to ery throcytes . A dditionally, De M atte is  and  

Rimington (1963 ) found that systemically administered DDC caused a 

rise in erythrocyte protoporphyrin in mice, indicating that DDC either 

inhibits reticu locyte fe rro ch e la tase , causing a rise in red cell 
protoporphyrin, or that blood born protoporphyrin, of hepatic origin, 
can enter the red blood cell. This chemical's inability to alter blood 

haem oproteins is probably  due to the long ha lf-lives  of the  

erythrocytic constituents. The experim ental results also indicate
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that the alkylated metabolite of the dihydrocollidine DDC either does 

not enter the brain or does not inhibit brain ferrochelatase.

The livers of animals treated with 4-ethyl DDC were extrem ely dark 

and on homogenisation gritty. The mitochondrial pellet and the post 
mitochondrial supernatan t w ere also extrem ely dark. This last 
observation, is in keeping with the concept that the a lkylated  

porphyrin is produced on the hepatic microsomes and transported into 

the mitochondria, where it binds to the ferrochelatase enzyme on the 

inner mitochondrial m em brane. N-methyl protoporphyrin, on the other 

hand by-passes microsomal metabolism and, as would be expected, no 

appreciable pigm entation was observed in the post-m itochondrial 
supernatant. Fluorescence histological examination of a liver from an 

animal treated for 14 days with 100m g/kg. of 4-ethyl DDC shows a 

wide spread fluorescence, caused by accumulating protoporphyrin and 

N-methyl protoporphyrin which gives the dark pigm entation to the 

liver. Electron microscopy of liver mitochondrial pellets shows dark  

accumulations in lysosomal-like bodies (plate 3). This is, probably, 
accumulating iron, which is probably the cause of the gritty texture  

and appearance of the livers. Iron accumulation was also observed in 

the livers of porphyria cutanae tarda patients. Grossman et.al. (1979) 
observed siderosis in 80 % of the 40 patients they exam ined. 
Pigmentation of brain tissue was never observed in any of the  

systemically adm inistered treatm ent groups neither in the intact 
tissue nor in the mitochondrial pellet (plate 4). 4 out of 8 animals,
treated for 14 days with 4-ethyl DDC, developed red deposits around 

the periphery of the ear lobes which developed into scarring of the 

tissues (plate 5). This observation closely resembles the porphyrin 

deposition and subsequent skin lesioning seen in patients with 

porphyria cutanea tarda w here an enzym atic defect in the haem  

pathway, occurring at the level of uroporphyrinogen decarboxylase, 
causes accum ula tion  of porphyrins in the liver, blood and  

subcutaneous tissue. Fluorescence microscopy was not carried out on 

this tissue but would have determ ined whether the skin deposits may 

have been porphyrins. Iron staining in the tissue proved negative but 
this is not surprising as accumulating iron would be deposited in the 

liver and not in the skin.
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There is a neonatal surge in haem synthesizing enzym es, which 

coincides with an increase in brain mitochondrial cytochrome content 
(De M atteis e t.a l.1981 a ; Chepelinsky and Arnaiz 1970; Bull e t.a l. 
1979). A single injection of 4-ethyl DDC was given at the time of 
this surge, in an attempt to prevent this increase in haem synthesis. 
For practical reasons only one injection was administered to 10 days 

old neonates. By 20 days of age the brain mitochondrial cytochrome 

content has reached adult status. 4-Ethyl DDC failed to prevent the 

neonatal increase in either brain or liver mitochondrial cytochrome 

content. The drug was m etabolized in the neonate liver. Indirect 
evidence of this metabolism comes from the dark pigmentation of 
the hepatic m itochondrial pellet. At this stage, th ere fo re , the  

neonates have sufficient hepatic cytochrome P -450 to m etabolize the 

dihydrocollidine. 4 -e thy l D D C  treatm ent of these neonates was  

incapable of a lte rin g  e ith e r brain or h ep atic  m itochondria l 
respiratory cytochrom es. It is possible that in these anim als the  

initial rise in haem  syn th es is  had o ccurred  b e fo re  drug  

adm inistration. C ytochrom e content of both hepatic  and brain  

mitochondria w ere com parable to the levels m easured in adult 
tissues.

Lead possesses the porphyrinogenic properties of inhibiting haem  

biosynthetic enzym es. A reduction in cytochrome P -450 -dependent 
mechanisms have been widely observed (Alvares et.al. 1972; Meredith  

et. al. 1977; Goldberg et.al. 1978) suggesting that lead may reduce 

haemoprotein production. In the last group of experim ents in this 

study lead was administered to neonate rats via their dams drinking 

water. This early treatm ent (beginning at 5 days of age) was, also, 
designed to overlap with the early period of increased production of 
brain mitochondrial cytochromes. This long term lead poisoning did 

not inhibit hepatic or central respiratory cytochrome content. The  

morphology of m itochondria are altered by lead poisoning (Fow ler 

et.al. 1987). However, the results reported here indicate that even if 

m itochondrial m orphology is a lte re d  by lead tre a tm e n t the  

haem oprotein con ten t of m itochondria l is not red u ced . The  

measurements carried out, in the present study, give no indication of 
mitochondrial function processes , which would be a lte red  by 

morphological changes. The reduction in cytochrome oxidase activity
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in muscle biopsies from lead exposed subjects reported by Goldberg 

and his colleagues in 1985, may be due to mitochondrial structural 
changes, rather than an alteration in content. Brain mitochondrial 
function was altered by lead feeding in suckling rats (Holtzm an and 

Shen Hsu 1976). The time taken for these deficits to occur was, 
however, less than 2 days. This period was too short for the effects 

of lead to be m ediated via haem depletion, as the half-lives of the 

mitochondrial cytochrom es are approxim ately 6 days and these  

effects are more likely due to morphological changes. Consistent 
with the results of this study are those reported by Bull et.a l. in 

1979 who showed that although lead delayed cerebral respiratory  

cytochrome developm ent, in 10 -15  day old rats, this deficit was  

reversed by the time the animals were 30 days of age.

Erythrocyte catalase activity, expressed per mg. of haemoglobin was 

unaltered by lead exp o su re . The m ajor blood haem o pro te in , 
haemoglobin, was, however, significantly reduced, which could be 

taken as a reduction in erythrocyte catalase activity in a given 

volume of whole blood. The reduction in haemoglobin, seen following 

exposure to lead, was most probably due to a combination lead’s 

haemolytic effect, which would reduce the half-life of the red cell, 
and a reduced haem  synthesis due biosynthetic enzym e inhibition 

(Moore and Goldberg 1985). However, a lack of decreased haem
synthesis in the liver is supported by the observation that the  

activity of hepatic catalase, which has the shortest half-life of the 

haemoproteins measured was increased as a result of this treatm ent. 
If haem oprote in  dep letion  w as the cause of the d ec re ased  

haemoglobin content hepatic cata lase  activity would have been
compromised first. Toxic compounds, such as ethyl-chlorophenoxy- 
isobutyrate have been shown to cause hepatomegaly and as part of 
this process hepatic cata lase activity is increased (H ess et. al.
1965). This type of process may also account for the significant 
increase in hepatic  ca ta lase  activity m easured  follow ing lead
exposure in this study, although hepatomegaly has not been reported 

in either human lead poisoning or experimental lead toxicity.

In 50%  of both 14 days 4-ethyl DDC and N-m ethyl protoporphyrin  

treatment the dip in the oxidised-reduced difference spectra. This  

phenomenon is probably due to the effects of sodium dithionite on the

1 2 2



CHAPTER 4 DISCUSSION

alkylated protoporphyrin itself, as evidenced by the effects of this 

reducing agent on the spectra of N-methyl protoporphyrin alone. It is 

surprising, however, that this sam e alteration in difference spectra  

was not observed  with the long term  com bination with lower 

concentrations of 4-ethyl DDC and phenobarbitone, as the sam e  

degree of hepatic haemoprotein inhibition suggests a similar level of 
ferrochelatase inhibitory activity. It is possible that ferrochelatase  

inhibition by the alkylated porphyrin was not the prominent inhibitory 

effect and phenobarbitone has a more important role to play in haem  

inhibition. In this case, low levels of N-ethyl protoporphyrin would 

not greatly interfere with the cytochrome difference spectra. The  

distortion of the difference spectra, seen in these two groups, could 

confound the absolute m easurem ent of the respiratory cytochromes. 
If this were the case, an apparent decrease may be measured for 

cytochrome oxidase, but by the sam e token, an apparent increase  

would be observed with the other cytochromes. O verall, however, 
even with these distortions the reduction in at least cytochromes b, 
c and Ci are true and the reduction in the second treatment group are 

also valid.

In this study, dimethyl sulfoxide was chosen as the vehicle for the  

dihydocollidines and AIA. As multiple injections w ere carried out, 
this chemical was considered the best choice of vehicle. It is well 
known th at D M S O  induces haem  b iosyn the tic  en zy m e s  in 

erythropoietic tissue. ALAD, PBGD, protoporphyrinogen oxidase and 

ferrochelatase have all been shown to increase following D M SO  

addition to cultured erythropoietic cells (Sassa 1983). However, in 

hepatic cells DM SO  is a potent inducer of haem oxygenase, the rate 

limiting step of haem degradation. The volume of DM SO employed, in 

this study, w ould give a re la tive ly  low tissue con centra tion . 
Additionally, in this study 4-ethyl DDC caused a profound inhibition 

of hepatic ferrochelatase when DM SO was used as the vehicle. Other 

studies, where D M SO  was used as the vehicle for dihydrocollidine, 
similarly showed that this compound did not compromise the ability 

of DDC to inhibit ferro che la tase  or prevent the decrease  in 

haemoprotein content (D e M atteis et.a l. 1980a; Ortiz de M ontellano  

et.al. 1981a 1981b). Succinylacetone completely prevented the DM SO - 
mediated induction of PBGD observed by Beaumont et.al (1984) and,
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therefore, the presence of succinylacetone should also offset any 

stimulatory effects of DM SO  in this study.
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CHAPTER 5 INTRODUCTION

The results of the experim ents reported in chapter 4 dem onstrate  

that the porphyrinogenic chemicals em ployed in this study exert a 

differential e ffec t on tissue haem o prote ins . A lthough hepatic  

catalase activity is m arkedly reduced by some agents, erythrocyte  

catalase is una ltered . A sim ilar d ifferentia l effect is observed  

between hepatic and neural respiratory cytochromes, where hepatic 

mitochondrial cytochrom es w ere significantly decreased w hereas  

brain mitochondrial cytochromes w ere unaffected.

ATP is formed as a consequence of electron transfer from energy rich 

sources to oxygen in a sequence of redox steps. As the electrons move 

down an electrochem ical gradient protons are pum ped into the 

intramitochondrial space producing a proton motive force across the 

inner m em brane. W hen these protons flow back through a protein 

complex, ATP synthase, they drive the synthesis of ATP ( figure 73) 
(M itchell 1 9 6 1 ; 1 9 7 9 ). R educed  nicotine ad e n in e  d in u c leo tid e  

phosphate (N A D P H ) is the reducing equ iva len t produced from  

mitochondrial oxidative phosphorylation substrates g lutam ate and 

malate. Electrons from NADPH are transfered to an oxidised flavin 

mononucleotide (FM N ) of Complex 1 and in turn the electrons are  

passed to a non-haem  iron-sulphur compound of Complex 1. Protons 

are pumped across the m em brane at this site. The electron shuttle 

Ubiquinone (Q ) then accepts the electrons transfering them  to 

cytochrome b of Com plex 111 . V ia  another iron-sulphur centre, 
electrons are transfered to the cytochrome Ci of Com plex 111. The  

soluble cytochrome c shuttles electrons to Com plex 1V, cytochrome 

oxidase. Protons are pumped at both Complex 111 and Complex 1V. 
Cytochrome oxidase m ediates the reduction of molecular oxygen to 

water. Succinate can act as a substrate for mitochondrial oxidative  

phosphorylation, donating its electrons to an oxidised flavin adenine  

dinucleotide (FA D ), which are in turn transfered via an iron-sulphur 

centre to ubiquinone and then to the cytochrome b of complex 111. 
The protons, which have been pumped across the m itochondrial 
membrane into the interm itochondrial space, as a result of this 

respiratory process, are channelled back into the inner mitochondrial 
space via Complex V, ATP synthase. This flow back of protons through 

ATP synthase drive the production of ATP, from ADP and phosphate 

(figure 73). The function of the inner membrane is, therefore, energy
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transduction. A defect in any of the four complexes of the electron 

transport chain, Complex I (NADH-ubiquinone reductase), Complex II 
(succinate-ubiquinone reductase), Complex III (ubiquinone cytochrome 
c oxidoreductase or be-, com plex) or Com plex IV could lead to 

mitochondrial m alfunction.

The fourth group of experim ents exam ines the effect of cytochrome 

depletion on mitochondrial function. The porphyrinogenic drugs used 

in chapter 4 experim ents  did not reduce brain m itochondrial 
cytochromes while doing so in liver tissue. This could be due to a 

failure of these drugs to cross the blood brain barrier. If the  

practical problem of access could be overcom e, it is important to 

determine w hether a reduction in brain respiratory cytochrom es  

would lead to a compromise in mitochondrial function and subsequent 
energy production. Although the respiratory cytochromes will not be 

measureddirectly, a reduction in these should be manifest as a deficit 
in mitochondrial function.

Reduced m itochondrial cytochrome content exists in some of the 

mitochondrial encephalom yopathies and an animal model of this type 

should provide an insight into the aetiology of porphyric neuropathy  

which may also be the result of a m itochondrial cytochrom e  

deficiency.

Firstly, th is group of exp erim en ts  exam in es  the e ffe c ts  of 
compounds, which are known to reduce hepatic m itochondrial 
haem oprotein conten t (ch ap te r 4 ), on severa l p aram e ters  of 
mitochondrial function. The supposition that the inability of these  

compounds to cross the blood brain barrier was the cause of their 

failure to reduce brain respiratory cytochromes was exam ined by the 

study of b ra in  m ito c h o n d ria l fu n c tio n  fo llo w in g  c e n tra l  
administration of N-m ethyl protoporphyrin 1X. Additionally, as N- 
methyl protoporphyrin 1X may interfere with with the spectrographic  

m e a s u re m e n t of m ito c h o n d ria l re s p ira to ry  c y to c h ro m e s ,  
mitochondrial function exp erim ents  by-pass this difficulty and  

provide a further functional m easurem ent of haem depletion.
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The function of liver and brain mitochondria from anim als treated  

with porphyrinogenic was studied in this section.

5.2.1. Drugs:

Hypnovel (Roche); Hypnorm (Janssen Pharmaceuticals, England); D- 
mannitol; glutamic acid, monosodium salt; malic acid, disodium salt; 
(3-[N-morpholino]propane sulfonic acid) sodium salt (M O PS); ethylene  
glycol-bis p-am inoethyl ether, (E G TA ); adenosine 5 '-d iphosphate, 

sodium salt; bovine serum albumin (fatty acid free). All chem icals  

were obtained from Sigma Co.Ltd., unless stated otherwise.

Unless specified, male W istar rats of the same weight and strain as 

above were used in this group of experiments.

5.2.2. Construction of jugular catheter:

Catheters were made from a 10cm. length of Tygon polythene,internal 
diameter 0.5m m , external diam eter 1.25m m . (Norton Plastics, Ohio, 
U.S.A.) and a 3cm. length of Portex polythene tubing, internal diameter 

0.5mm., external diam eter 0.8m m . (Portex Ltd., Kent, England). One 

cm. at the end of the Tygon tubing was enlarged by stretching it over 

a No. 21 gauge hypodermic needle (the needle point was filed down) 
and heating it against a warm light bulb. The tubing was allowed to 

cool before removing the needle. The Portex polythene tubing was 

inserted into the w idened end of Tygon tubing, heated to form a 

shrink fit and cut straight across at the tip (a bevelled tip being more 

likely to either pierce the vein or to cause a blockage against the 

vessel wall). The tip of the polythene tubing was held against a hot 
light bulb to melt away any sharp edges. A 1cm. plug was made from 

stainless steel wire (0.7m m  diam eter) which was rounded at both 

ends to prevent dam age to the catheters.

Implantation of jugular vein catheter:

The catheter w as filled with heparin ised  saline solution (1 5 0  

In ternational u n its /m l.) and the end p lugged . The rat w as  

anaesthetised with a mixture of 1 part Hypnovel:! part water/1 part
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Hypnorm : 1 part w a te r. The  fina l m ixture  w as in je c te d
intaperitoneally in a volume of 3m l./kg. The animal was shaved at 
both the front and the back of the neck and a mid-line incision made 

on the ventral aspect of the neck. The jugular vein was identified and 

freed from surrounding connective tissue by blunt dissection. Two 

lengths of fine thread were passed beneath the vein. The thread most 
distal from the heart was tied and gentle traction exerted on this tie 

by artery forceps. The second thread was tied in a loose single knot. 
An small incision was made in the side of the vein between the 

thread and the tie. The catheter was inserted into the vein and pushed 

gently towards the heart. The thread was doubly knotted ensuring  

that the whole of the polythene tubing lay within the vessel. The  

strands of the second thread were tied around the catheter for 

supplem entary security . A further th read  w as sewn into the  

underlying muscle and tied securely around the catheter. A large 

hollow needle was inserted through the skin at the back of the neck 

at the right hand side and brought through the subcutaneous tissue 

emerging at the perim eter of the ventral cut. The catheter was  

passed to the back of the neck via this needle where it was secured  

by a double suture and cut to a length which made it impossible for 

the rat to chew . The ca theter was left fa irly  loose to avoid  

dislodgement. The ventral incision was sutured after liberal spraying 

with Polybacterin antibiotic.

5 .2 .3 . CENTRAL ADM IN ISTRATIO N OF N-METHYL  
PROTOPORPHYRIN.

5.2.3.1. Osmotic pumps:

Alzet osmotic pumps (A lza Corporation, Palo Alto, California, U .S .A .) 
were e m p lo y e d  fo r c e n tra l a d m in is tra tio n  of N -m e th y l 
protoporphyrin. The alkyl protoporphyrin was dissolved in saline pH 

9.0 (with 0 .1M  N aO H ) and brought to a pH 7.4 with 0.1 M HCI. The  
porphyrin was sterilised by passing it through a 0.2pm . pyrogen free  

filter. The A lzet osm otic pumps used in this procedure had a 
reservoir volume of 200pl., a diam eter of 0.7cm  and a length of 3cm. 
This pump delivers 0.5pl. of solution/hr. over a period of 14 days. The
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empty pump and its flow m oderator were weighed. A 1ml. syringe 

attached to a 25 gauge blunt-ended needle was filled with the  

solution, care being taken to ensure that the solution was free of air 

bubbles. With the flow moderator removed, the pump was held in an 

upright position and the filling needle inserted into the pump until it 
could go no further. The plunger of the syringe was the pushed slowly 

until the solution appeared at the outside of the pump. The syringe 

needle was rem oved, excess fluid wiped off the pump and the flow  

moderator inserted slowly into the pump. The filled pump was  

reweighed to determ ine that it is filled correctly and free of air.

One arm of an L-shaped cannula was attached to a 9cm. length of 
Tygon tubing (internal diam eter 0.5m m , external diam eter 1.25m m ) 
and filled with the porphyrin solution. The free arm of the L-shaped  

cannula was a stainless steel tube (0.43m m  x 0.3m m ). The other end 

of the Tygon tubing was attached to the end of the flow moderator. 
This procedure resulted in bubble-free filling of the pump, connecting 

tubing and L-shaped cannula assembly. The filled pump and cannula  

were placed into a sterile 50ml. capped tube containing sterile saline 

and incubated at 37°C  overnight to prime the pump.

5.2.3.2. Insertion of central cannula:

The rats w ere anaesthetised with the mixture already described. 
The animal was anaesthetised as described above, the ear bars 

inserted into the aural canals and the anim al placed in a rat 
stereotaxic frame (Tren Wells. Inc. U .S .A .). The fur over the head was 

shaved, washed with 70%  alcohol and a midline incision made through 

the scalp to the cranium. The skin was eased back from the skull and 

the bregma identified. A haemostat was used to make a subcutaneous 

pocket extending caudally about 6cm from the incision. The fluid- 
filled pump w as passed, round end first, into the pocket. The  

positioning of the cannula was then determined stereotaxically from a 

stereotaxic atlas of the rat brain (Pellegrino e t.a l.1981) using the 

bregma as the zero reference point. A small hole was drilled through 

the cranium over the target area and the cannula placed in position. 
Pilot studies injecting cresyl violet dye by this method confirmed the 

Injection site was correct for injection into the ventricular system  

(plate 6). The cannula length enabled it to reach the 3rd. ventricle
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Plate 6: A photograph (x 2.5 magnification) of a bisected brain,
preserved in formal saline, after injection of cresyl violet into the third 
ventricle. The dye is carried in the CSF away from the site of injection. 
This confirms that the injection co-ordinates employed for delivery of 
N-methyl protoporphyrin delivered the drug into the ventricular system.
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when placed in position. A small cranial screw ( 2mm x 0.8m m ) was 

inserted into but not through the skull close to the cannula. Both 

cannula and screw were secured with quick drying dental cement (De  

Trey). The dental cem ent consists of an acrylic resin powder and a 

methyl methacrylate monomer liquid. The most successful method for 

achieving a quick and secure fixture was to apply some polymer 

powder over the site followed by dropwise addition of the monomer 

liquid. This procedure was repeated several times until the whole 

site was adequately covered with cem ent. The screw secured the 

cannula and cement to the scull. The cement was left to dry to the 

touch, about 5min. before the skin was sutured enclosing the whole 

structure. The procedure took approxim ately 20m in. and the animal 
began to recover from  the an aesth etic  in about 30m in . N- 
m ethylprotoporphyrin from the osm otic pump w as adm inistered  

through the indwelling cannula for 14 days. The skin healed rapidly in 

this time. The animals were then killed and the brains removed for 

preparation of the mitochondria.

5.2.4. Porphyrinogenic Treatment:

Rats of the same age and weight as described above were employed in 

this part of the study. Four groups with different drug regimes were  
used.

GROUPS:

1) Anim als received  in traperitoneal injections of 20m g/kg  of 
succinylacetone for 30 days followed by 10 days of 25m g/kg of 4- 
ethyl DDC then 4 days of phenobarbitone (80m g/kg) and a final 
dose of 4 -e th y l D D C  (3 0 0 m g /k g ). S u c c in y la c e to n e  w as  

administered throughout the treatm ent period.

2) 4-Ethyl DDC at a concentration of 100m g/kg was administered  

intraperitoneally for 14 days.

3) N-m ethyl protoporphyrin was adm inistered via an indwelling 
jugular catheter at a daily dose of Ijumole for a period of 14 days.
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4) N -m ethyl protoporphyrin w as adm inistered into the third  

ventricle at a total daily concentration of 50nm oles, for a period 
of 14 days, at a rate of 0.5|nl/hr.

Animals were killed by a sharp blow to the head and bled except in 

the jugular and central cannulation group where the anim al were  

killed by C O 2 asphyxiation.

5.2.5. MITOCHONDRIAL FUNCTION:

1) Tissue preparation:

a) Mitochondrial isolation medium:

the medium used for mitochondrial isolation contained:-

0 .225M  mannitol 
0.07M  sucrose 
0.4mM EGTA  

2mM MOPS, pH 7.2

b) Mitochondrial preparation:

The animals w ere killed and the brains and livers rem oved. The  

tissues w ere w ashed three tim es in ice cold isolation m edium , 
minced finely with scissors, transfered to a glass homogenising tube 

and homogenised in 10 volumes of medium at 1000 r.p.m. with 8 

passes of a Teflon pestle. The homogenate was centrifuged at 600g. 
for lOmin to remove nuclei and cell debris. From here onwards the 

homogenising m edium , described above, contained 1% BSA. The  

supernatant was decanted and spun at 6,500g. for 15min. on an MSE  

centrifuge to produce the P2 mitochondrial pellet.. The pellet was  

washed twice more with 7min. spins at 6,500g . intervening. The final 
mitochondrial pellet was resuspended by mild hand homogenisation in 

2ml. of isolation medium.

2. ASSAYS:

a) Mitochondrial assay medium: 

13 1



CHAPTER 5 METHODS

Mitochondrial function assay medium contained:-

0 .22M  mannitol
0.05M  sucrose 
10mM NaH2P04 

20mM MOPS, pH 7.2

Other assay reagents:

i) 1M glutam ate/m alate ( sodium salts) dissolved in 0 .05M  Tris 

HCI and brought to pH 7.4.

ii) 100m M  adenosine diphosphate (ADP) dissolved in 0 .05M  Tris 

buffer and brought to pH 6.8

iii) 5mg./m l. Bovine serum albumin (BSA) (fatty acid free), 

b) e q u ip m e n t:

O xyg en  e le c tro d e :

The oxygen electrode measures changes in oxygen concentration in a 

solution. The principle is that if a potential difference (0 .6  volts) is 

applied from  an ex tern a l source across the p la tinum -A g /K C I 
electrode system such that the platinum electrode is negative with 

respect to the silver electrode, a current will flow only if oxygen is 

present in the surrounding medium. Under these circumstances oxygen 

is electrolytically reduced to w ater at the surface of the platinum  

electrode and the current which flows is directly proportional to the 

concentration of oxygen in the solution.

Calibration of oxygen electrode:

Distiled water at 2 5 °C  contains 260pM /litre of dissolved oxygen (see  

Slater 1967).

1- 3ml. of distiled water, left to equilibrated with air at 2 5 °C , was 

added to the reaction chamber of the oxygen electrode assembly and a 

few crystals of sodium dithionite added. The oxygen concentration in

1 3 2



CHAPTER 5 METHODS

the chamber quickly falls to zero and the output of the electrode falls 

to a position on the pen recorder chart which is set as zero oxygen 
concentration.

2. The electrode cham ber was washed several times with distiled  

water to remove all of the sodium dithionite.

3. A 3ml. sample of the air equilibrated distiled water was added to 

the reaction chamber and the level reached on the chart corresponds 
to 260|uM of oxygen. This calibration provides two known oxygen  

concentrations, 0 and 260|nM from which other concentrations can be 

determ ined.

c) Measurement of Respiratory control ratios (RCR) and Phosphate:oxygen

(P :0 ) ratios:

1. P :0  ra tio s  are a m easure the efficiency of the phosphorylation  

capacity of the mitochondria calculated as the quantity of phosphate  

esterified per atom of oxygen consumed.

These ratios w ere calcu lated  as the am ount of A TP produced  

(measured indirectly as the amount of ADP consumed) divided by the 

quantity of oxygen consumed.

The assay buffer was equilibrated with air at 25°C  before the start 
of the experiment. 3.3m l. of assay buffer and 0.2m l. of 5mg./ml. BSA  

were added to the reaction chamber. A measured volume of between  

0 .2 -0 .6ml. of m itochondrial suspension was added before inserting  

the lid to seal the assembly. Subsequent additions to the cham ber 

were m ade via the injection port using a Hamilton m icro-syringe. 
Respiration w as fo llow ed for approxim ately  2m in. to obtain a 
baseline. 30jul. of 1M glutam ate/m alate solution was added and again, 
respiration was followed for a further 2 min. 10jul. of ADP was then 

added, which stimulated oxygen consumption. The rate of fall of the 

oxygen content was followed until the ADP was consum ed and  

respiration returned to a low base rate. More ADP was added in 10

1 3 3
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and 30jul aliquots, respectively, until the system becam e anaerobic  

(figure 74).

2. R e s p ira to ry  co n tro l ra tio  is a m easure of the control the 

product of oxidative phosphorylation, ATP, has on its own synthesis 

and is an index of efficiency of function of the ATP production 

m achinery. W hen m itochondria l m em branes are dam aged  two  

phenomena occur to alter the respiratory control ratio: 1. hydrogen 

ions leak across the dam aged m em brane depleting the proton  

potential across the m em brane and thereby accelerating electron  

transfer to return the proton motive force; 2. Protons may be pumped 

from the matrix to the intra mitochondrial space by the hydrolysis of 
ATP. This last phenom enon is particularly important when dam aged  

membranes are present in the mitochondrial preparations, as a proton 

motive force is required to drive ATP synthesis and in the absence of 
this driving force ATP is hydrolysed to ADP and phosphate. This 

means that ATP is no longer controlling respiration as it is being 

hydrolysed as fast as it is being produced.

RCRs w ere calculated as the rate of oxygen consumption in the  

presence of su b stra tes , g lu ta m a te /m a la te  and A D P (s ta te  3 

respiration) divided by the rate of oxygen consumption when all of 
the ADP is converted to ATP, but glutam ate/m alate is still present 
(state 4 respiration).

ANALYSIS O F RESU LTS.

Where appropriate, results are expressed as the m ean+standard error 

of the mean (S .E .M .) of n (number of observations). Student's t-test or 
Mann W hitney U test w ere used to test for significance betw een  

means. A p value of <0.05 was taken as the level of significance.
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CHAPTER 5 PORPHYRINOGENIC TREATMENTS.

Succinylacetone injections were administered in a volume of 1 ml/kg. 
in distilled water vehicle. Phenobarbitone was dissolved in 0.1 M NaOH  
and brought to pH 9 with 0 .1M H C I and was also administered in a 
volume of 1 ml/kg. 4-ethyl DDC was adm inistered in a volum e of
0.5ml/kg. in DM SO . N-methyl protoporphyrin was dissolved in saline 
at pH 9.0  and brought back to a pH of 7.4 with 0 .1M  HCI. N-methyl 
protoporphyrin injections w ere adm inistered intravenously via the  
jugular vein or via an indwelling intaventricular cannula.

TR EATM ENT 3 .1: 30 days of succinylacetone (20m g/kg.) followed by 
10 days administration of 4-ethyl DDC (25m g/kg.) then 4 days of 
phenobarbitone (80m g/kg.) with a further 300m g/kg of 4-ethyl DDC  
24 hours prior to killing.

TREATM ENT 3.2: 14 days of 4-ethyl DDC (100m g/kg.).

TREATM ENT 3.3: 14 days of N-methyl protoporphyrin (IjaM ole) in a
volume of 0 .1m l) adm inistered via thejugular vein by m eans of an 
indwelling catheter.

T R E A T M E N T  3 .4 :  14 days  of N -m e th y l p ro to p o rp h y rin
(50nM oles/day) into the 3rd. ventricle via an indwelling cannula  
attached to an osmotic mini-pump.



CHAPTER 5 RESULTS

5.3.1. The effects of porphyrinogenic drug treatment 3.1 (30 
days succinylacetone; 10 days 4-ethyl DDC; 4 days 
phenobarbitone; 1 large dose of 4-ethyl DDC) on 
mitochondrial respiratory chain function:

1. Liver mitochondria:

Intact liver m itochondria  at a concentration  of approxim ate ly  

1.5mg/ml. (in the absence of g lutam ate/m alate and ADP) did not 
consume any appreciable am ount of oxygen (S tate 1 respiration) 
(figure 7 4 ). Nor on addition of 30jul of a 1M solution of 

glutam ate/m alate w as there any appreciab le increase in oxygen  

consum ption. The fu rth e r add ition  of 1 uM o le  of ad en o s in e  

diphosphate (A D P ), however, produced a m arked stimulation of 
mitochondrial oxygen utilisation (S tate  3 respiration). A fter som e  
time the increased rate of 0 2 consumption slowed, almost, to that 

which existed before the addition of of ADP, presum ably as a 

consequence of the consum ption of the added A D P (S ta te  4 
respiration). O ne further addition of Ip M o le  of ADP and one of 
3|nMoles were possible before anaerobia was reached (figure 74).

a) The P :0  ratio is measured from the amount of ADP consumed (in 
these experiments IpM o le) divided by the amount of oxygen consumed, 
in juatoms, from the time of ADP addition to the point where state 3 

respiration c e a s e s . In th ese  exp erim en ts  the P :0  ratio of 
mitochondria isolated from anim als that received porphyrinogenic  

drug treatm ent, 3 .1 , did not significantly differ from the P :0  ratios of 
mitochondria isolated from control animals (figure 75a).

b) The Respiratory Control Ratio (R C R ), (the ratio of state 3:state 4 

respiration) of mitochondria isolated from the livers of animals that 
received this porphyrinogenic drug treatm ent w ere significantly  

lower than the R C R ratios of hepatic m itochondria from control 
animals (p<0.05) (figure 75b). This was manifest as a steeper state 4 

respiration slope. A dditionally, the oxygen consum ption of the  

mitochondria prior to the addition of exogenous ADP was steeper than 

that of control mitochondria.
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Figure 7 4 : Shows a trace of the ADP-stimulated oxygen consumption of
isolated liver mitochondria with glutamate and malate as substrates, as 
measured by the Clarke electrode.



F i g u r e  7 5 :  S n o w s  5 l i v e r  m i t c h o n d r i a i  f u n c t i o n  p a r a m e t e r s :
G r a p h  a )  s h o w s  t h e  m e a n  ( + / -  S . E . M . )  P : Q  r a t i o s  ( p h o s p h a t e  e s t e r i f i e d  

/ ' o x y g e n  c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  
a n i m a i  l i v e r  ( n = 5 )  a n d  f r o m  l i v e r  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  
r e c e i v e d  p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 1  ( 3 0  d a y s  s u c c i n y  l a c e t o n e ,  4 -
e t h y l  D D C ,  p ’n e n o b a r b i t o n e ,  4 - e t h y l  D D C )  ( n = 6 ) .  G r a p h  b )  s h o w s  t h e  m e a n  
( +  / -  S . E . M . )  r e s p i r a t o r y  c o n t r o l  r a t i o  ( R C R ,  s t a t e  3  r e s p i r a t i o n / s t a t e  4  
r e s p i r a t i o n )  i n  m i t o c h o n d r i a  f r o m  c o n t r o l  a n i m a l  l i v e r  ( n = 5 )  a n d  f r o m  
m i t o c h o n d r i a  f r o m  t r e a t e d  a n i m a l  l i v e r  ( n = 6 ) .  G r a p h  c )  s h o w s  t h e  m e a n  
( + / -  S . E . M . )  o x y g e n  c o n s u m p t i o n  d u r i n g  A D P  s t i m u l a t i o n  o f  r e s p i r a t i o n  in  
c o n t r o l  l i v e r  m i t o c h o n d r i a  ( n = 5 )  a n d  i n  t r e a t e d  i i v e r  m i t o c h o n d r i a  ( n = 6 ) .  
R e s p i r a t o r y  C o n t r o l  R a t i o s  i n  t r e a t e d  a n i m a l s  w e r e  s i g n i f i c a n t l y  l o w e r  
i n  t r e a t e d  a n i m a l  l i v e r  m i t o c h o n d r i a l  t h a n  c o r r e s p o n d i n g  c o n t r o l  i i v e r  
m i t o c h o n d r i a  ( * p < 0 . 0 5 ) .
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CHAPTER 5 RESULTS

c) On addition of excess ADP, the oxygen consumption of hepatic 

mitochondria, of treated anim als, did not differ significantly from  

the oxygen consumption of ADP-stim ulated mitochondria from control 
animals (figure 75c).

2. Brain mitochondrial function:

The P :0  ratio of brain mitochondria were similar to those of liver 

mitochondria. The RCR of brain mitochondria w ere, however, lower 

than those of liver. This is probably due to the fact that mitochondria 

from both tissues were isolated by a method which is normally used 

to isolate liver m itochondria. As can be seen from the electron  

micrographs of m itochondrial pellets , brain m itochondrial pellets  

contained more m em brane contam inents than the corresponding  

hepatic m itochondria l pe lle t (p la tes  3, 4 ). Brain m itochondria  

isolated by the method of Lovtrup and Zelander (1962) contained less 

membrane contam ination (plate 7). For practical reasons, however, 
mitochondria from both liver and brain w ere isolated by the liver 

method. Additionally, in these experim ents the function of liver 

mitochondria was important as it was in these mitochondria that a 

cytochrome deficiency had been induced.

In brain m itochondria isolated from animals that had received this 

drug combination neither the P :0  ratio, the RCR nor the oxygen  

consumption of stim ulated m itochondria was significantly different 
form those of brain m itochondria isolated from control anim als  

(figure 76).

5.3.2. The effects of porphyrinogenic drug treatment 3.2 (14 
days 4-ethyl DDC (100mg/kg.)) on mitochondrial respiratory 
chain function:

1. Liver mitochondria:

a) The P :0  ratio of mitochondria isolated from animals that received  

porphyrinogenic drug treatm ent 3 .2  did not significantly differ from  

the P :0  ratios of m itochondria isolated from control animals (figure  

77a).
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Plate 7: Shows electron micrographs of a) brain mitochondria isolated 
by the method employed in chapter 5 of this thesis, for measurement of 
mitochondrial function and b) brain mitochondria isolated by the method 
of Lovtrup and Zelander (1962), employed in chapter 4 of this study. A 
comparison of mitochondria prepared by the two methods shows that the 
method of Lovtrup and Zelander produced more intact mitochondria than 
the method employed in chapter 5 of this thesis.





F i g u r e  7 6 :  S h o w s  3  b r a i n  m i t c h o n d r i a i  f u n c t i o n  p a r a m e t e r s :  G r a p h  a )  
s h o w s  t h e  m e a n  + / -  S . E . M .  P : 0  r a t i o s  ( p h o s p h a t e  e s t e r i f i e d  / ' o x y g e n  
c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  a n i m a l  b r a i n  
( n = 5 )  a n d  f r o m  b r a i n  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  r e c e i v e d  
p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 1  ( 3 0  d a y s  s u c c i n y l a c e t o n e ,  4 - e t h y l  D D C .
p h e n o b a r b i t o n e ,  4 - e t h y l  D D C )  ( n = 6 ) .  G r a p h  b )  s h o w s  t h e  m e a n  +  / -  S . E . M .  
r e s p i r a t o r y  c o n t r o l  r a t i o  ( R C R ,  s t a t e  3  r e s p i r a t i o n / s t a t e  4  r e s p i r a t i o n )  
i n  m i t o c h o n d r i a  f r o m  c o n t r o l  a n i m a l  b r a i n  ( n = 5 )  a n d  f r o m  m i t o c h o n d r i a  
f r o m  t r e a t e d  a n i m a l  b r a i n  ( n = 6 ) .  G r a p h  c )  s h o w s  t h e  m e a n  +  / -  S . E . M .  
o x y g e n  c o n s u m p t i o n  d u r i n g  A T P  s t i m u l a t i o n  o f  r e s p i r a t i o n  i n  c o n t r o l  
b r a i n  m i t o c h o n d r i a  ( n = 5 )  a n d  i n  t r e a t e d  b r a i n  m i t o c h o n d r i a  ( n = 6 ) .  T h e r e  
w e r e  n o  s i g n i f i c a n t  d i f f e r e n c e s  i n  t h e  f u n c t i o n  o f  m i t o c h o n d r i a  f r o m  
t r e a t e d  a n i m a l s  w h e n  c o m p a r e d  t o  c o n t r o l  b r a i n  m i t o c h o n d r i a .
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F i g u r e  7 7 :  S h o w s  3  i i v e r  m i t c n o n d r i a i  f u n c t i o n  p a r a m e t e r s :  G r a p h  a )  
s i i o w s  t h e  m e a n  ( + / ' -  S . E . M . )  P : 0  r a t i o s  ( p h o s p h a t e  e s t e r i f i e d  / o x y g e n
c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  a n i m a l  l i v e r  
( n = 6 )  a n d  f r o m  l i v e r  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  r e c e i v e d
p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 2  ( 1 4  d a y s  4 - e t h y l  D D C )  ( n = 6 ) .  G r a p h  b )  
s h o w s  t h e  m e a n  ( +  / ' - S . E . M . )  r e s p i r a t o r y  c o n t r o l  r a t i o  ( R C R ,  s t a t e  3
r e s p i r a t i o n / s t a t e  4  r e s p i r a t i o n )  i n  m i t o c h o n d r i a  f r o m  c o n t r o l  a n i m a l  
l i v e r  ( n - 6 )  a n d  f r o m  m i t o c h o n d r i a  f r o m  t r e a t e d  a n i m a l  l i v e r  ( n = 6 ) .  
G r a p h  c )  s h o w s  t h e  m e a n  ( + / -  S . E . M . )  o x y g e n  c o n s u m p t i o n  d u r i n g  A T P  
s t i m u l a t i o n  o f  r e s p i r a t i o n  i n  c o n t r o l  l i v e r  m i t o c h o n d r i a  ( n = 6 )  a n d  i n
t r e a t e d  l i v e r  m i t o c h o n d r i a  ( n = 6 ) .  R e s p i r a t o r y  C o n t r o l  R a t i o s  o f  t r e a t e d  
a n i m a l  h e p a t i c  m i t o c h o n d r i a  w e r e  s i g n i f i c a n t l y  l o w e r  t h a n  t h e  
c o r r e s p o n d i n g  c o n t r o l  a n i m a l  i i v e r  m i t o c h o n d r i a  ( * p < 0 . 0 5 ) .
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CHAPTER 5 RESULTS

b) The RCR ratios of hepatic mitochondria from treated animals were 

significantly lower than those of control animal liver m itochondria  

(p<0.05) (figure 77b). This was m anifest as a steeper state 4 

respiration slope. The oxygen consumption of the mitochondria prior 

to the addition of exogenous ADP was also steeper than that of 
control m itochondria.

c) The oxygen consumption of hepatic mitochondria, on addition of 
excess ADP, of treated animals did not differ significantly from the 

oxygen consum ption of A D P-stim ulated m itochondria from control 
animals (figure 77c).

2. Brain mitochondrial function:

In animals that had received this drug combination the P :0  ratio was 

not significantly different form those of brain mitochondria isolated  

from control anim als (figure 78a ). Although both the RCR and the  

oxygen consum ption of th ese  m itochondria  w ere reduced  in 

mitochondria from treated animals these did not differ significantly 

from control brain mitochondria (figures 78b, 78c).

5.3.3. The effects of porphyrinogenic drug treatment 3.3 (14 
days of N-methyl protoporphyrin, IpM/day) administered via 
the jugular vein) on mitochondrial respiratory chain  
function:

The indwelling jugular cannula in this group of treated  anim als  

remained patent for the duration of the experim ent and allowed  

intravenous adm inistration of the N-m ethyl protoporphyrin over the 

14 days of treatm ent. The livers from these animals w ere not as 

pigm ented as those rece iv ing  4 -e th y l D D C  tre a tm e n t. The  

mitochondrial pellet was, however, a very dark green colour, similar 

to that seen in the livers of animals treated with 4-ethyl DDC.

1. Liver mitochondria:

a) The P :0  ratio of mitochondria isolated from animals that received  

porphyrinogenic drug treatm ent 3 .3  did not significantly differ from

1 3 7



F i g u r e  7 8 :  S h o w s  3  b r a i n  m i t c h o n d r i a l  f u n c t i o n  p a r a m e t e r s :  G r a p h  a )
s h o w s  t h e  m e a n  ( + / ' -  S . E . M . )  P : 0  r a t i o s  ( p h o s p h a t e  e s t e r i f i e d  / o x y g e n  
c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  a n i m a l  b r a i n  
( n = 6 )  a n d  f r o m  b r a i n  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  r e c e i v e d  
p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 2  ( n = 6 ) .  G r a p h  b )  s h o w s  t h e  m e a n
( +  /'- S . E . M . )  r e s p i r a t o r y  c o n t r o l  r a t i o  ( R C R ,  s t a t e  3  r e s p i r a t i o n / s t a t e  4  
r e s p i r a t i o n )  i n  m i t o c h o n d r i a  f r o m  c o n t r o l  a n i m a l  b r a i n  ( n = 6 )  a n d  f r o m  
m i t o c h o n d r i a  f r o m  t r e a t e d  a n i m a l  b r a i n  ( n = 6 ) .  G r a p h  c )  s h o w s  t h e  m e a n  
( + / ' -  S . E . M . )  o x y g e n  c o n s u m p t i o n  d u r i n g  A T P  s t i m u l a t i o n  o f  r e s p i r a t i o n  i n  
c o n t r o l  b r a i n  m i t o c h o n d r i a  ( n = 6 )  a n d  i n  t r e a t e d  b r a i n  m i t o c h o n d r i a  ( n = 6 ) .  
T h e r e  w e r e  n o  s i g n i f i c a n t  c h a n g e s  i n  a n y  b r a i n  m i t o c h o n d r i a l  f u n c t i o n a l  

p a r a m e t e r s  a s  a  r e s u l t  o f  t h i s  p o r p h y r i n o g e n i c  d r u g  t r e a t m e n t .
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CHAPTER 5 RESULTS

the P :0  ratios of mitochondria isolated from control animals (figure 

79a).

b) Surprisingly, however, the RCR ratios of hepatic mitochondria from  

treated anim als w ere not significantly different from those of 
control anim al liver m itochondria (figure 79b). This outcome was, 
therefore, not in keeping with the actions of 4-ethyl DDC on the RCR  

of hepatic m itochondria, effects proposed to be m ediated via the  

actions of N -e th y l p ro toporphyrin , an an a lo g u e  of N -m ethy l 
protoporphyrin.

c) The oxygen consumption of hepatic mitochondria, on addition of 
excess A D P, of trea ted  anim als w as lower than the oxygen  

consumption of A D P-stim ulated m itochondria from control anim als  

(figure 79c). However, this did not reach significance.

2. Brain mitochondrial function:

In animals that had received this drug combination, neither the P :0  

ratio, the RCR nor the oxygen consumption of stimulated mitochondria 

from brain tissue was significantly different form these param eters  

in brain mitochondria isolated from control animals (figure 80).

5.3.4. The effects of central porphyrinogenic drug
treatment 3.4 (14 days N-methyl protoporphyrin (50nM/day) 
administered into the third ventricle) on mitochondrial 
respiratory chain function:

The anim als recovered from surgery within 30m in. of anaesthetic  

inducement with no adverse behavioural m anifestations except an 

aversion to being handled which was also the case with control 
animals. By the end of the treatm ent period the head wound had 

healed. Central administration of N-m ethyl protoporphyrin and saline
vehicle w as successful in all cases. Although som e N -m ethyl
protoporphyrin precipitated out in the ventricle, the compound was 

widely taken  up by the  brain as shown by flu o re scen c e
histochemistry. Protoporphyrin fluorescence can be identified in the 

paraventricular tissue (plate 8).
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F i g u r e  7 9 :  S h o w s  3 i i v e r  m i t o c h o n d r i a l  f u n c t i o n  p a r a m e t e r s :  G r a p h  a )  
s h o w s  t h e  m e a n  (  +  /'- S . E . M . )  P : 0  r a t i o s  ( p h o s p h a t e  e s t e r i f i e d  / ' o x y g e n  
c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  a n i m a l  i i v e r  
( i v - 5 )  a n d  f r o m  i i v e r  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  r e c e i v e d  
p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 3  ( 1 4  d a y s  i . v .  N - m e t h y l  p r o t o p o r p h y r i n )
( n = 5 ) .  G r a p h  b )  s h o w s  t h e  m e a n  + / ' -  S . E . M .  r e s p i r a t o r y  c o n t r o l  r a t i o  ( R C R .  
s t a t e  3  r e s p i r a t i o n / s t a t e  4  r e s p i r a t i o n )  i n  m i t o c h o n d r i a  f r o m  c o n t r o l  
a n i m a l  l i v e r  ( n = 5 )  a n d  f r o m  m i t o c h o n d r i a  f r o m  t r e a t e d  a n i m a l  l i v e r  
( n = o ) .  G r a p h  c )  s h o w s  t h e  m e a n  + / -  S . E . M .  o x y g e n  c o n s u m p t i o n  d u r i n g  A T P  
s t i m u l a t i o n  o f  r e s p i r a t i o n  i n  c o n t r o l  l i v e r  m i t o c h o n d r i a  ( n = 5 )  a n d  i n  
t r e a t e d  l i v e r  m i t o c h o n d r i a  ( n = 5 ) .  A l t h o u g h  t h e  o x y g e n  c o n s u m p t i o n  o f  
t r e a t e d  l e v e r  m i t o c h o n d r i a  w a s  r e d u c e d  w h e n  c o m p a r e d  t o  c o n t r o l  
v a l u e s  t h i s  d i d  n o t  r e a c h  s t a t i s t i c a l  s i g n i f i c a n c e .
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F i g u r e  8 0 :  S h o w s  3  b r a i n  m i i c h o n d r i a i  f u n c t i o n  p a r a m e t e r s :
G r a p h  a )  s h o w s  t h e  m e a n  ( + / ' -  S . E . M ) .  P : Q  r a t i o s  ( p h o s p h a t e  e s t e r i f i e c i  
/ o x y g e n  c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  
a n i m a l  b r a i n  ( n = 5 )  a n d  f r o m  b r a i n  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  
r e c e i v e d  p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 3  ( 1 4  d a y s  i . v .  N - m e t h y l
p r o t o p o r p h y r i n )  ( n = 5 ) .  G r a p h  b )  s h o w s  t h e  m e a n  ( +  / -  S . H . M . )  r e s p i r a t o r y  
c o n t r o l  r a t i o  ( R C R ,  s t a t e  3  r e s p i r a t i o n / s t a t e  4  r e s p i r a t i o n )  i n  
m i t o c h o n d r i a  f r o m  c o n t r o l  a n i m a l  b r a i n  ( n = 5 )  a n d  f r o m  m i t o c h o n d r i a  
f r o m  t r e a t e d  a n i m a l  b r a i n  ( n = 5 ) .  G r a p h  c )  s h o w s  t h e  m e a n  ( + / ' -  S . E . M . )  
o x y g e n  c o n s u m p t i o n  d u r i n g  A T P  s t i m u l a t i o n  o f  r e s p i r a t i o n  i n  c o n t r o l  
b r a i n  m i t o c h o n d r i a  ( n = 5 )  a n d  i n  t r e a t e d  b r a i n  m i t o c h o n d r i a  ( n - 5 ) .  T h e r e  
w e r e  n o  s i g n i f i c a n t  c h a n g e s  i n  a n y  b r a i n  m i t o c h o n d r i a l  f u n c t i o n  
p a r a m e t e r  m e a s u r e d .
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Plate 8: Fluorescence photographs of histological sections of a) a 
control brain (x 220 magnification) and b) a brain from a rat, following 
intraventricular infusion of N-m ethyl protoporphyrin (x440 
magnification). Although the alkylated protoporphyrin precipitated out 
in the ventricle, photograph b) shows that the alkylated porphyrin had 
penetrated into the neural tissue.





CHAPTER 5 RESULTS

1. Liver mitochondria:

a) Neither the P :0  ratio, RCR nor oxygen consumption of hepatic of 
mitochondria isolated from anim als that received porphyrinogenic  

drug treatm ent 3 .4  differed significantly from these param eters in 

mitochondria isolated from control animals (figure 81).

2. Brain mitochondrial function:

In animals that had received this drug combination neither the P :0  

ratio nor the oxygen consumption of stimulated mitochondria isolated 

from brain tissue was significantly different form those of brain  

mitochondria isolated from control anim als (figures 82a , 82c). The  

RCR of brain m itochondria from treated  anim als w ere, how ever, 
significantly lower than the RCR's of control brain m itochondria  

(figure 82b).
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F i g u r e  8 1 :  S h o w s  3  l i v e r  m i t c n o n d r i a l  f u n c t i o n  p a r a m e t e r s :
G r a p h  a )  s h o w s  t h e  m e a n  ( + / ' -  S . E . i Y l . )  P : 0  r a t i o s  ( p h o s p h a t e  e s t e r m e d  
/ ' o x y g e n  c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  
a n i m a l  l i v e r  ( n = 6 )  a n d  f r o m  l i v e r  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  
r e c e i v e d  p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 4  ( 1 4  d a y s  c e n t r a l l y - a d m i n i s t e r e d  
N - m e t h y l  p r o t o p o r p h y r i n )  ( n = 6 ) .  G r a p h  b )  s h o w s  t h e  m e a n  ( + / ' -  S . P . M . )
r e s p i r a t o r y  c o n t r o l  r a t i o  ( R C R ,  s t a t e  3  r e s p i r a t i o n / s t a t e  4  r e s p i r a t i o n )
i n  m i t o c h o n d r i a  f r o m  c o n t r o l  a n i m a l  l i v e r  ( n = 6 )  a n d  f r o m  m i t o c h o n d r i a
f r o m  t r e a t e d  a n i m a l  l i v e r  ( n = 6 ) .  G r a p h  c )  s h o w s  t h e  m e a n  + / ' -  S . F . i v l .  
o x y g e n  c o n s u m p t i o n  d u r i n g  A T P  s t i m u l a t i o n  o f  r e s p i r a t i o n  i n  c o n t r o l  
l i v e r  m i t o c h o n d r i a  ( n = 6 )  a n d  i n  t r e a t e d  l i v e r  m i t o c h o n d r i a  ( n = 6 ) .  T h i s
p o r p h y r i n o g e n i c  t r e a t m e n t  c a u s e d  n o  s i g n i f i c a n t  c h a n g e s  i n  h e p a t i c  
m i t o c h o n d r i a l  f u n c t i o n .
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F i j i  l i r e  8 2 :  S h o w s  3  b r a i n  m i t c h o n d r i a l  f u n c t i o n  p a r a m e t e r s :
G r a p h  a )  s h o w s  t h e  m e a n  ( + / ' -  S . E . M . )  P : 0  r a t i o s  ( p h o s p h a t e  e s t e r i f i e d  

/ ' o x y g e n  c o n s u m e d  r a t i o s )  f r o m  m i t o c h o n d r i a  i s o l a t e d  f r o m  c o n t r o l  
a n i m a l  b r a i n  ( n = 6 )  a n d  f r o m  b r a i n  m i t o c h o n d r i a  f r o m  a n i m a l s  t h a t  h a d  
r e c e i v e d  p o r p h y r i n o g e n i c  t r e a t m e n t  3 . 4  ( 1 4  d a y s  c e n t r a l l y - a d m i n i s t e r e d  
N - m e t h y l  p r o t o p o r p h y r i n  ( n = 6 ) .  G r a p h  b )  s h o w s  t h e  m e a n  (  +  / -  S . E . M . )  
r e s p i r a t o r y  c o n t r o l  r a t i o  ( R C R ,  s t a t e  3  r e s p i r a t i o n / s t a t e  4  r e s p i r a t i o n )  
i n  m i t o c h o n d r i a  f r o m  c o n t r o l  a n i m a l  b r a i n  ( n = 6 )  a n d  f r o m  m i t o c h o n d r i a  
f r o m  t r e a t e d  a n i m a l  b r a i n  ( n = 6 ) .  G r a p h  c )  s h o w s  t h e  m e a n  ( + / -  S . E . M . )  
o x y g e n  c o n s u m p t i o n  d u r i n g  A T P  s t i m u l a t i o n  o f  r e s p i r a t i o n  i n  c o n t r o l  
b r a i n  m i t o c h o n d r i a  ( n - - 6 )  a n d  i n  t r e a t e d  b r a i n  m i t o c h o n d r i a  ( n = 6 ) .  C e n t r a l  
a d m i n i s t r a t i o n  o f  N - m e t h y l  p r o t o p o r p h y r i n  c a u s e d  a  s i g n i f i c a n t  f a l l  i n  
t h e  R e s p i r a t o r y  C o n t r o l  R a t i o s  o f  b r a i n  m i t o c h o n d r i a  ( * p < 0 . 0 5 )
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CHAPTER 5

THE EFFECTS OF 
PORPHYRINOGENIC DRUGS ON 
MITOCHONDRIAL FUNCTION.

DISCUSSION.



CHAPTER 5 DISCUSSION

In the group of diseases classified under the rubric of mitochondrial 
encephalomyopathies, decreases in the electron transfer components, 
not surprisingly, lead to altered mitochondrial function with, as a 

result, m ajor clinical changes such as, neuropathy and muscle 

weakness. Oxidative phosphorylation is the most important function 

of mitochondria and probably one of the most vital bodily processes. 
O xidative phosphorylation is the process by which the chem ical 
energy en trapped  in food is transform ed into the high energy  

compound, ATP, which is then utilised in a myriad of energy requiring 

functions. The three main param eters used to assess mitochondrial 
function are Phosphate:O xygen ratio (P :0  ratio), the Respiratory  

Control Ratio (R C R ) and the rate of oxygen consumption during 

substrate stimulated respiration. The P :0  ratio is a m easure of the 

pho sphory la ting  e ffic ie n c y  of the m itoch ondria  and is the  

quantification of the amount of ATP produced per unit of oxygen  

consumed. Different substances enter the electron transfer chain at 
different sites and their oxidation leads to a different but, normally, 
constant phosphorylation ratio. Some compounds by-pass hydrogen  

pumping sites and, therefore, have a lower phosphorylating potential 
even when the oxygen required for their oxidation is the same as that 
for compounds which enter the process further downstream  (figure  

73). Normal P :0  ratios for glutam ate, malate and pyruvate are 3, for 

succinate 2 and for ascorbate in the presence of an electron shuttle
1. The respiratory control ratio is a measure of the efficiency of the 

mitochondria at conserving energy at periods when the dem and for 

ATP is low. This param eter is a m easure of the rate of oxygen  

consum ption during A D P stim ulated  oxidative phosphorylation , 
divided by the rate of oxygen consumption in the absence of 
ADP and therefore during the absence of ATP formation. When the RCR  

is low, mitochondria are said to be "uncoupled". Under this uncoupled 

situation the energy released by the oxidation of substrates in the 

electron transport chain is dissipated as heat. The rate of oxygen  

consumption of m itochondria during substrate stim ulation is a 

measure of electron transfer chain efficiency.

Defects have been found in Complex 1 , Complex 111 and Complex 1V 

in m ito c h o n d ria  of p a tie n ts  s u ffe rin g  from  m ito c h o n d ria l 
encephalom yopathies (Petty et. al. 1986). The degree of deficit in
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CHAPTER 5 DISCUSSION

these complexes vary as do the severity of symptoms. In a patient 
with the encephalom yopathy, M enke's disease, there was an almost 
total lack of spectrographically  m easured cytochrom e oxidase in 

brain, liver and muscle tissue. This severe form of cytochrom e  

deficiency results in early death. The site of defect in less severe  

cases can also be detected using mitochondrial function tests in 

conjunction with spectrographical evidence. H ayes e t.a l. in 1984  

exam ined the functional properties of mitochondria isolated from a 

muscle biopsy from a patient diagnosed as encephalom yopathic. The  

oxygen consum ption of g lu tam ate /m alate -s tim u la ted  m itochondrial 
respiration was 18%  of control values. By employing the artificial 
electron acceptor tetram ethyl-p-phenylene diam ine (TM P D ) to shunt 
reducing equivalents from Com plex 1 or Com plex 11, by-passing  

Complex 111, to Complex 1V it was shown that the level of defect lay 

at Com plex 111. O xid ised-reduced difference spectra confirm ed a 

lack of cytochromes ci and b, although some cytochrome b could be 

measured independently by actinimycin A reduction. A decrease of 
approximately 55%  in cytochrome b content caused a fall of 30%  in 

both state 3 and state 4 respiration, in glutam ate/m alate-stim ulated  

skeletal muscle m itochondria, from an encephalom yopathic patient 
examined by Morgan-Hughes and his colleagues in 1977. A reduction in 

respiratory cytochrom es in the electron transfer chain, therefore, 
results in a decrease in mitochondrial perform ance. A loss of tight 
respiratory control was also seen in the mitochondria of patients  

when stim ulated by glutam ate/m alate (Hayes et.a l. 1984; M organ- 
Hughes et.al. 1982). A dual detrim ental effect on energy metabolism  

is, therefore, at play in these circum stances. There is the initial 
defect in electron chain function due to the reduction in the  

respiratory cytochrom e content. A further inefficiency in energy  

conservation will result from the d issipation of the inherent 
substrate energy as heat rather than being channelled into ATP  

production. Uncoupling of muscle mitochondria was reported by Luft 
et.al. (1962) in a case of hypermetabolism. This patient had a history 

of tiredess, muscle weakness, high blood pressure and heart rate and 

excessive sw eating. M uscle m itochondria from the patient w ere  

almost to ta lly  uncoupled. There  are striking sim ilarities in the  

symptoms of this patient (increased  card iovascular param eters , 
tiredness, muscle w eakness, excessive sweating) to some of the
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CHAPTER 5 DISCUSSION

symptoms manifest by porphyric patients (increased cardiovascular 

param eters , tiredn ess , m uscle w eakn ess , excessive  sw eatin g ) 
(Goldberg et.al. 1959). The examination of mitochondrial function as a 

possible site of physio logical defect in the d iseases of acute  

porphyria w ould provide va lu ab le  inform ation re levan t to the  

aetiology of the clinical symptoms of the disorder.

The treatm ents employed in the experim ents, described in chapter 4 

of this thesis, reduced the respiratory cytochrom es in hepatic  

mitochondria. The present group of experim ents exam ined w hether 

this red u c tio n , in e lec tro n  tran sp o rt chain  com po nents , is 

accompanied by a defect in the function of these mitochondria. Brain 

m itochondria l cytochrom es w ere  u n a lte red  by all trea tm en ts  

regim es, w here drugs w ere adm inistered system ically, although  

these cytochromes were reduced in hepatic tissue (chapter 4). The  

experim ents in this chapter w ere directed at a som ewhat different 
question. W ere the cytochromes, whether reduced or not, continuing 

to function normally? If they were not, particularly if there were a 

deficit in brain m itochondrial function, this might provide the  

underlying basis for a neuropathy similar to that of the mitochondrial 
encephalom yopath ies . A particu larly  im portant subgroup in the  

present experim ents was group 4, in which the blood brain barrier 

was circum vented by delivery of N-m ethyl protoporphyrin directly  

into the 3rd. ventricle.

Neither in liver nor brain, with any of the treatment groups was there 

any significant change in either the rate of oxygen consumption or the 

P :0  ratios when treated  tissue w ere com pared to control tissue  

processed at the sam e tim e and this, in spite of the fact that 
treatments (3.1; 3.2; 3 .3) are capable of reducing the absolute levels 

of cytochromes in the liver if not the brain (chapter 4 results). The  

results of the experim ents carried out in this chapter suggest that 
the P :0  ratio is dependent on the ability of the remaining cytochromes 

to operate the proton pump and the gradient so created to drive ATP  

synthesis. The fall in cytochrome levels would reduce the rate at 
which ADP is consumed and also the rate of consumption of oxygen so 

that the P :0  ratio rem ains constant. Consistent with such an 

in te rp re ta tio n , a lthough  the leve ls  do not reach s ta tis tica l 
significance, is the depression of oxygen consumption in all groups,
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CHAPTER 5 DISCUSSION

except w here N-m ethyl protoporphyrin was adm inistered centrally. 
De Matteis et.a l. (1963) failed to show any reduction in hepatic ATP  

content, following DDC administration, indicating that DDC does not 
significantly alter the quantity of ATP formed. The one significant 
change, in the results reported here, is the decline in the RCR of liver 
m itochondria, fo llow ing treatm ents  which included 4 -e thy l DDC  

administration and in brain tissue following central adm inistration  

of N-methyl protoporphyrin. As there is no evidence of a malfunction 

in electron chain function, in the present studies (normal P :0  ratios), 
it is unlikely that the uncoupling of these mitochondria is related to 

the change in cytochrome content. Ferrochelatase is inhibited by 4- 
ethyl DDC and as a result the haem precursor protoporphyrin 1X  

accum ula tes  (M arks  e t .a l .1 9 8 7 ). The a lky la ted  protoporphyrin  

m etabolite of 4 -e thy l D D C also accum ulates in hepatic tissue  

following treatm ent. Protoporphyrin 1X has been implicated as the 

uncoupling agent in hepatic mitochondria isolated from griseofulvin  

(a compound with similar action to that of D D C ) treated  anim als  

(Sandberg and Romslo 1981). Porphyrins are lipophilic compounds and 

Smith (1990) suggests that, in high concentrations, these compounds 

can p e n e tra te  m em branes and could exp lain  the uncoupling  

phenom enon. In travenous ly -adm in is te red  N -m ethyl protoporphyrin  

however, did not result in this loss of RCR in hepatic mitochondria 

suggesting that N-methyl protoporphyrin and protoporphyrin were not 
the main cause of the uncoupling, observed in the first two 

treatm ents in this section. Although uncoupling was evident in 

skeletal muscle mitochondria of encephalom yopathic patients (Hayes  

et.al. 1984; M organ-H ughes et.a l. 1982), there is no evidence to 

suggest that this uncoupling has a direct causal link with cytochrome 

deficiency. In porphyric attacks and as a consequence of the  

porphyrinogenic trea tm en ts , em ployed  in this thes is , ALA is 

overproduced. Herm es-Lim a et.al. (1991 ) have shown that this haem  

precursor can also cause uncoupling of mitochondria. These authors 

suggest that reactive oxygen species, O 2", H2O 2 and or O H ., produced 

during autooxidation of ALA lead to disruption of the mitochondrial 
inner m em brane potential causing uncoupling. Support for this theory 

comes from their observation that this uncoupling effect of ALA was 

abolished by the addition of catalase and superoxide dism utase. If 
uncoupling of neuronal mitochondria is at least a contributory factor
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CHAPTER 5 DISCUSSION

in the aetio logy of acute porphyric neuropathy, A L A -m ediated  

uncoupling would be of greater im portance than protoporphyrin- 
m ediated uncoupling, as protoporphyrin is not an overproduced  

precursor in the acute porphyrias. Additionally, in the non-acute  

porphyrias the main sites of porphyrin accumulation is in the liver, 
erythrocytes and skin and there is possibly no excess porphyrin in 

neural tissue. However, if ALA has a toxic action on mitochondria, 

this effect is not m anifest as a functional deficit in in vitro  

nerve/m uscle prepara tions as the results of chapter 2 and 3 

experiments failed to show any ALA toxicity.

It is also possible that an alteration in m itochondrial morphology 

may be a consequence of a loss of inner mitochondrial m em brane  

com ponents (respiratory cytochrom es) and this in turn causes a 

change in respiratory control. Hepatic m itochondria from anim als  

receiving the first three drug treatm ents, in this chapter, although to 

different degrees, and none of which reached statistical significance 

showed reduced g lu tam ate /m alate-s tim ulated  oxygen consum ption, 
when com pared to that of control liver mitochondria and this taken  

together with the m easurem ent of reduced cytochromes (chapter 4 

results) could cause a morphological change in the mitochondria, with 

a resultant loss of the proton motive force required to drive ATP  

synthesis. If the hypothesis that loss of RCR is the result of loss of 
inner mitochondrial m em brane proteins is true, the observation that 
intravenously-adm inistered N-m ethyl protoporphyrin did not result in 

this loss of RCR in hepatic mitochondria may not be totally surprising 

as N-m ethyl protoporphyrin (chapter 4) reduced only cytochrom e  

oxidase, to a small, although significant extent.

Although the results of this thesis argue against ALA toxicity in 

nerve and m uscle, if ALA does have a role to play in hepatic  

mitochondrial function, this could explain the differential effects of 
porphyrinogenic drug treatm ent, on RCR, employed in this chapter. 
Although De M atteis and Marks (1983 ) dem onstrated that N-m ethyl 
protoporphyrin does cause a rise in chick hepatic ALAS activity, they  

also noted the difficulty in observing this induction. The authors  

m easured a rise in ALAS activity 5 hrs after adm inistration, an 

increase which had subsided by 12hrs. It is possible, therefore, that 
due to N-m ethyl protoporphyrin's inability to increase ALA production
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for long periods, this treatm ent did not result in a long term  
uncoupling of mitochondria.

The brain tissue m itochondria w ere generally  less coupled than  

hepatic tissue. The method used to isolate all the mitochondria in 

this section of the study was developed for hepatic tissue and for 

practical reasons the procedure was used for both brain and liver 

tissue. The electron micrographs of both liver and brain mitochondria 

pellets (p lates 3, 4) show that the brain m itochondrial fraction  

contains more m em brane contam inents than the corresponding liver 

fraction. Purer brain mitochondria can, however, be isolated by a 

different m ethod. Due to the high myelin content of brain tissue  

Lovtrup and Ze land er in 1962  suggested that a denser sucrose  

solution is better for isolation of these mitochondria. The electron  

micrograph of a brain mitochondrial pellet, prepared by the method of 
Lovtrup and Zelander, dem onstrates that this procedure does yield 

purer brain mitochondria (plate 7) and it would have been interesting, 
if time had permitted to pursue this method of preparation.

N-m ethyl protoporphyrin, injected directly into the third ventricle, 
did not produce the sam e effects in the brain as it did when  

administered intravenously. Mitochondria isolated from the brains of 
these an im als w ere significantly uncoupled and there  w as no 

evidence of a reduction in their rate of respiration. The histochemical 
examination of the brain tissue shows clearly that the porphyrin was 

able to penetrate into the brain tissue (plate 8), despite the fact that 
the porphyrin precipitated out in the ventricle. Although 50nM ./day  

was in jec ted  into the bra in , w h ereas  a 20  tim es g re a te r  
concentration (1 juM) was adm inistered intravenously, the amount of 

porphyrin getting into the brain tissue following i.c.v. administration  

could have been much greater than that reaching the hepatocytes, 
fo llow ing in travenous adm in is tra tion . In this case  the la rger  

concentration of porphyrin in brain cells could be causing the  

uncoupling. It is also possible that the N-m ethyl protoporphyrin  

which precipitated out in the ventricle was acting as an abrasive  

during initial homogenisation and could have a detrim ental affect on 

mitochondrial coupling. The sam e problem could also have affected  

the coupling of the liver m itochondria from anim als receiving the  

first two treatm ents  as the accum ulation of iron in the hepatic
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tissue, which felt gritty, could be acting as an abrasive agent. 
Although intravenously adm inistered N-m ethyl protoporphyrin was  

readily seen in the m itochondrial pellet, the liver was not as 

obviously altered as it was following 4-ethyl DDC treatm ent. This 

could account for the lack of uncoupling of m itochondria seen in 

hepatic  m itochondria  from  N -m ethy l protoporphyrin  tre a tm e n t  

w hereas 4-ethyl DDC adm inistration always caused uncoupling in 

hepatic m itochondria.

The possibility that abnorm ally acce lerated  state 4 respiration , 
observed in uncoupled mitochondria, in this chapter's results, may be 

masking a reduction in state 3 respiratory rate may be ruled out if 
Nicoll's 1982 suggestion that the ADP-stim ulated state 3 respiratory 

rate of m itochondria are m axim al and independent of state 4 

respiratory rate is true.

The combined results from the experiments reported in chapter 4 and 

chapter 5 dem onstrate that the significant changes in respiratory  

cytochrom es, observed in m itochondria following porphyrinogenic  

treatm ent, may not be large enough to elicit major alterations in 

mitochondrial function, although there were reductions in RCRs, in 

liver m itochondria from 4-ethyl DDC treated groups and in brain 

tissue of the centrally adm inistered N-m ethyl protoporphyrin group. 
The chem ical changes resulting from these treatm ents, particularly  

increases in protoporphyrin 1X and or ALA, may be the mediators of 
the loss of respiratory control seen in these mitochondria. In acute 

intermittent porphyria, the neurotoxic role of ALA may be m ediated  

via a m itochondrial uncoupling superim posed upon a cytochrom e  

deficient electron transport chain. The experim ents carried out in 

chapter 2 and 3 of this thesis, however, show that, if indeed ALA has 

a toxic action on mitochondrial function, this effect is not sufficient 
to offset the function of nerve and muscle.
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CHAPTER 6 GENERAL DISCUSSION

The porphyrias manifest an enzymatic lesion in the haem biosynthetic 

pathway and the symptoms of the acute form of the disorder are  

indicative of a central and peripheral neuropathy. The underlying  

cause of this neuropathy remains obscure. The aim of this thesis was 

to exam ine two major hypotheses regarding the basis of the clinical 
symptoms of acute porphyria. First a neurotoxic role for the haem  

precursors PBG and, in particular, ALA and second an intermittent 
state of haem  deficit starves the tissue of the m etabolic energy  

necessary for norm al function. This haem  defic iency causes a 

reduction in processes such as oxidative phosphorylation, which is 

dependent upon haemoprotein mediated functions.

Although som e researchers  have reported that ALA possesses  

neurotoxic actions in vivo and in vitro, the majority of these studies 

have employed large mMolar concentrations of ALA, quantities which 

would not norm ally occur in porphyric patients, even during the  

severest of attacks. There was no evidence from the experim ents  

carried out in this study, on a range of isolated rabbit neuromuscular 

preparations, that the haem  precursor ALA was neurotoxic. ALA  

similarly lacked neurom uscular toxicity when exam ined on isolated  

tissues from rats in which haem synthesis had been disrupted by 

porphyrinogenic agents. Exam ination of the effects of PBG on rat 
tissue, also failed to produce evidence of a neurotoxic action. Even in 

animals treated with porphyrinogenic drugs, in which the threshold  

for toxicity might have been lowered, no evidence of neuropathy was 

found.

In an attempt to produce a haem deficient animal model, rats were  

treated with a varie ty  of com pounds, all of which are known to 

disrupt haem  syn thes is  or ava ilab ility . All e igh t tre a tm e n ts  

employed, significantly increased the urinary excretion of ALA. This 

provided an indication of reduced haem availability, as the activity of 
the rate limiting enzym e of the pathw ay, ALAS, is subject to a 

negative feedback by the end product of the pathw ay, haem . A 

reduction in the free regulatory haem pool causes a derepression of 

the activity of this enzym e, and accounts for the increased  

production and excretion of ALA. Although the eight treatm ents  

produced evidence of a haem  deficiency, all w ere incapable of
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inducing a peripheral neuropathy on a range of in vitro innervated  

muscle preparations. The examination of these drugs on a different 
species (mouse) also failed to produce evidence of a haem deficient 
neuropathy.

The rise in urinary excretion of ALA, in the animals treated with 

porphyrinogenic agents, although providing indirect evidence of a 

reduced haem  availability did not furnish any information on the  

possible d ifferentia l effects of these com pounds on the various  

tissue haem oproteins. Two factors will affect the haem  content of 
the various haem oproteins following a blockade in haem synthesis, 
the affinity of the particular apoprotein for its haem moiety and the 

half-life of the particular haem oprotein. Apoproteins, with a high 

affinity for their haem  constituent, such as haemoglobin, myoglobin, 
cata lase  and the respiratory cytochrom es, will access newly  

synthesized haem  more readily than the low affinity haem oproteins  

like cytochrom e P -450 , tryptophan pyrrolase or guanylate cyclase. 
Additionally, the impact of reduced haem synthesis will be manifest 
in h aem o pro te ins  with short h a lf-lives  (tryp toph an  p yrro lase , 
cytochrome P -450  and catalase) before compromising haemoproteins  

with lo n g e r h a lf- liv e s  (th e  re s p ira to ry  c y to c h ro m e s  and  

haemoglobin).

Following porphyrinogenic treatm ent, haem oproteins w ere m easured  

in the liver, blood and brain. The treatment regimes were designed to 

cover as m any ha lf-lives  of the haem oprote ins as practica lly  

possible. Succinylacetone administration for 30 days failed to reduce 

any of the haemoproteins examined in the three tissues. In addition to 

succinylacetone's inhibitory action on ALAD, it is possible that the 

compound may also induce other enzym es of the haem biosynthetic 

pathway. Although succinylacetone inhibits an enzym e early on in the 

pathw ay it also produced an increase in the total porphyrin  

production, which indicates that an increased quantity of ALA is 

being converted into porphyrins. The enzymatic capacity of ALAD is 

in great excess of that of the next enzyme in the pathway, PBGD, and 

therefore even when ALAD is profoundly inhibited, enough PBG may 

still be produced to satisfy the requirements of PBGD. A rise in ALA 

excretion, concom itant with a rise in increased excretion of total 
porphyrins, is incongruent with the hypothesis that the increased ALA
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is the result of a reduction in haem availability. This would only be 

true if there was also a block in the pathway at a later stage. The  

observation of increased porphyrin synthesis, com bined with the  

finding that 30  days of succinylacetone treatm ent failed to reduce  

the level of any haemoprotein measured, indicates that this compound 

may directly increase ALAS activity, causing both a rise in ALA and 

porphyrin production. Succinylacetone may only be able to reduce 

haem synthesis at very high concentrations, when the ALAD inhibitory 

effect overcom es any ALAS inductive action. Hess e t.a l. (1 9 8 7 )  

showed that, after prolonged treatm ent with high concentrations of 
succinylacetone, haemoglobin concentration, in rats, fell by 20% . The  

concentration of succinylacetone used in the present studies may, 
therefore, have been causing an increased haem  availability rather 

than a decrease.

Animal treatm ent with 4-ethyl DDC for 14 days, produced a small but 
significant reduction in hepatic respiratory cytochrom es and a 

marked depression in the activity of hepatic catalase. The latter 

haemoprotein is a low affinity haemoprotein with a fairly rapid turn 

over (2 days) and would be expected to succumb to a reduction in 

haem availab ility , more readily than the high affinity respiratory  

haemoproteins with a half-life of 6 days. The reduction in hepatic 

catalase activity, following some of the porphyrinogenic treatm ents  

employed in the experim ents in this thesis, could account for the  

reduced mitochondrial RCR due to H2C>2-induced membrane dam age. 
However, as normal brain tissue contains little catalase, this may be 

indicative that brain mitochondria produce little H 2O 2 and therefore, 
H2O2 is not the mediator of the reduced RCR in brain mitochondria 

from  a n im a ls  re c e iv in g  c e n tr a l ly -a d m in is te r e d  N -m e th y l  

protoporphyrin. The success of 4-ethyl DDC in reducing haemoprotein 

content is due to the vital site of haem synthesis inhibition. Although 

the acute porphyria enzymatic lesion is early on in the pathway, in 

the xenobio tic  production of a haem  defic ient anim al m odel, 
ferrochelatase is an important site of inhibition, as it is independent 
of any additional enzymatic actions which the drug may be exerting. 
N-m ethyl protoporphyrin 1X  which directly inhibits ferrochelatase, 
while not as e ffec tive  as 4 -e thy l D D C , which both destroys  

cytochrome P -450  as well as inhibiting ferrochelatase, does show
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that inhibition of ferrochelatase alone is capable of reducing the 

production of, at least one of the final respiratory haem proteins and 

of cata lase . These treatm ents , which w ere effective in reducing  

hepatic haemoprotein content were incapable of reducing either blood 

or brain haemoproteins. The inability of these compounds to reduce  

blood haem oproteins, was either due to the long half-lives of the 

erythrocyte haem oproteins, relative to the treatm ent period, or to 

the inability of these com pound to a lter erythropo ietic  haem  

synthesis, which may have a different control mechanism to that of 
hepatic tissue. Brain tissue was studied as a representative of 
neuronal tissue. However, the problem of access of drugs to the brain 

could have been the cause of the inability of someofthese compounds, 
when adm in is tered  system ically , to a lte r brain haem oprote ins . 
Although respiratory cytochrome content was not m easured following 

cen tra lly -ad m in is tered  N -m ethyl protoporphyrin, the reduction in 

brain, RCR was similar to that seen in hepatic tissue caused by 

porphyrinogenic treatm ents which reduced respiratory cytochrom e  

levels.

As the mitochondrial respiratory cytochromes were reduced by some 

of these porphyrinogenic treatm ents , m itochondrial function was  

examined to determ ine whether this reduction was also manifest as a 

functional deficit. Although 4-ethyl DDC treatm ent caused uncoupling 

of the hepatic  m itochondria there  was no ev idence that this  

com pound, at the adm inistration param eters used in this study, 
caused a malfunction in respiratory chain function as both the P :0  

ratios and oxygen consumption of substrate-stim ulated mitochondria 

were normal. The reduction in cytochromes was probably too small to 

elicit a significant change in these later two mitochondrial function 

param eters. The significant uncoupling of hepatic mitochondria could 

be due to either ALA or protoporphyrin 1X or both. The finding that N- 
methyl protoporphyrin, when adm inistered intravenously, did not 
cause uncoupling indicates that 4-ethyl DDC m etabolism  has an 

additional role to play in the reduction of haem proteins and deficits 

in mitochondrial function, seen in chapter 4 and 5 experim ents. 4- 
Ethyl DDC has a dual porphyrinogenic action both in the destruction of 
a ready fo rm ed  haem o pro te in  and due to its inhib ition of 
fe rro c h e la ta s e . T h e  incongruous find ing th a t in tra v e n tric u la r
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administration of N-methyl protoporphyrin caused uncoupling in brain 

tissue whereas intravenous administration of the same compound did 

not uncouple hepatic  m itochondria may be due to the high 

concentration of this substance in the brain tissue compared with the 

am o u n t re a c h in g  liv e r m ito c h o n d ria  fo llo w in g  s y s te m ic  

adm inistration . ALA m ay also be an im portant can d id ate  for 

mediation of this uncoupling and w hereas ALAS induction is great 
following 4-ethyl DDC treatm ent, N-m ethyl protoporphyrin may not 
be as potent an inducer. The large amount of this latter compound 

reaching the brain following central adm inistration may be large  

enough to increase ALA production to the extent where it influences 

m itochondria l R C R . A lthough neither cytochrom e content nor 

nerve /m u sc le  function w as m easured  in this last group of 
experim ents earlier results reported, in this thesis, argue against a 

major toxic role for ALA in porphyric neuropathy.

A porphyric neuropathy was not produced by the experim ents  

described in this thesis and several factors may have contributed to 

this failure. The enzym atic lesion in Acute Interm ittent Porphyria  

lies at the level of PBGD. There is no chemical, as yet, that will 
inhibit this enzym e. In the present study succinylacetone w as  

employed to block the haem biosynthetic pathway at an early stage 

(ALAD), close to that of the defect in this form of acute porphyria. 
The early  treatm ent regim es in this study relied heavily on the  

inhibitory effects  of succinylacetone on ALAD. Later ev idence, 
however, indicated that, at the concentrations used, succinylacetone  

may actually  increase haem  synthesis . In these  exp erim ents  

ferrochelatase is the most susceptible to inhibition. Ferrochelatase  

is an enzym e with low enzymatic activity and as the last enzym e in 

the haem  biosynthetic pathw ay, inhibition at this level ensures  

decreased haem  synthesis. The treatm ent periods used w ere also 

relatively quite short, especially in view  of the finding that haem  

inh ib ition  w as p ro b a b ly  only ac h ie v e d  during  p erio d s  of 
ferrochelatase blockade. Longer and more profound periods of haem  

synthesis inhibition are required to reduce respiratory cytochrom e  

levels, where a neuropathy may be manifest. Biochemical findings, in 

patients suffering from mitochondrial encephalom yopathies, suggest 
that the respiratory cytochrome content of nerve and muscle would
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have to be decreased by more than 50% , before there would be a 

likelihood of producing a neuropathy. The problem of porphyrinogenic 

drug access to neural tissue will also have to be overcome. Although 

peripheral neuronal tissue does not possess the sam e barriers to 

xenob io tics  as b ra in , it has to be con firm ed th a t, firstly , 
porphyrinogenic drugs are taken up into nerves and secondly, that the 

drugs are inhibiting haem  synthesis in nervous tissue. Although  

succinylacetone has been shown to disrupt brain haem synthesis, 
there is no other evidence, either from this study or from the work of 
others, to suggest that the porphyrinogenic compounds used in this 

study reach or inhibit haem synthesis enzym es in neuronal tissue. 
T h ere  w as no ev id e n c e , from  brain m itochondria l function  

experim ents , that in tracerebroven tricu lar adm inistration  of N- 
methyl protoporphyrin 1X caused a significant decrease in respiratory 

cytochromes, although this treatm ent did alter brain mitochondrial 
coupling, similar to that found in hepatic tissue of animals treated  

with drug trea tm ents  that did m anifest reduced haem oprote in  

content. Th is la tte r ev iden ce suggests that neural tissue is 

responding in a sim ilar m anner to porphyrinogenic treatm ent, as 

liver. The experim ents carried out, in this study, showed that the  

levels of respiratory cytochrom es could be reduced by system ic  

porphyrinogenic treatm ent and, although these were not reduced in 

neuronal tissue nor w ere they reduced to an extent which elicited  

changes in m itochondrial respiration, a longer and more profound  

central administration treatm ent could overcome these problems.

From the two aetiological theories exam ined, in this thesis, there is 

little evidence to support the hypothesis that porphyric neuropathy is 

due to a direct action of the haem precursors ALA or PBG on nerve or 
muscle. ALA could, however, be a contributory factor exacerbating a 

deficit in mitochondrial function due to a lack of haem production.
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