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fo r  Uncle George



"God Measuring the Universe"

13th C e n tu ry  M a n u s c r ip t A u s tr ia n  National L ib ra ry  -  Vienr

(U n fo r tu n a te ly  these re s u lts  remain unpub l ished .)

■



"So numerous and so powerful are the causes which 

serve to  g ive a fa ls e  b ias to  the judgement th a t  

we on many occasions see wise men on the wrong 

as w e ll as on the r ig h t  side o f  questions o f  the 

f i r s t  magnitude. The circumstance, i f  du ly  

attended to ,  would fu rn is h  a lesson o f  moderation 

to  those who are ever so much persuaded o f  t h e i r  

being in  the r ig h t  on any con trove rsy ."

Alexander Hamilton (The F e d e ra l is t  Papers)
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PREFACE

The work o f th is  thesis concerns the estimation of galaxy 

d istances using methods which are independent of redsh if t .  Such 

observational techn iques  have t ra d it io n a l ly  been used in s tud ies o f the 

ve loc ity  f ie ld , to  tes t the l in e a r i ty  of the Hubble Law and detect 

possible an iso trop ies in the Hubble flow. A source o f considerable 

debate in the l i te ra tu re  ove r the past decade has been the impact of 

observational selection e ffec ts  on studies o f the Hubble flow. The 

presence of a magnitude c u to f f  in one’s galaxy sample will in general 

in troduce  Malmquist bias. This bias arises because, as we sample the 

galaxy d is t r ib u t io n  at g rea ter distances, on ly  in tr in s ic a l ly  more 

luminous galaxies can s t i l l  be observed -  which leads to  a distance 

dependence in the  mean lum inosity  of observable galaxies. A fa i lu re  to 

account fo r  th is  e f fec t would resu lt  in one systematically 

underestim ating  the  distances to remote galaxies, and Malmquist bias 

has been cited by many au thors  as responsible fo r  the con trove rsy  

over the global value of H q  and the detection of la rge-sca le streaming 

motions.

In the past few years the s tudy  of the pecu liar ve loc ity  f ie ld  

has taken on -  qu ite  l i te ra l ly  -  a whole new dimension. Sophisticated 

techn iques have been developed to recover in a se lf-cons is ten t manner 

the fu l l  3-dimensional ve loc ity  and density  f ie lds. One method in 

p a r t ic u la r  requ ires  re d sh if t - in d e p e n d e n t  distance estimates to galaxies, 

and will c lea r ly  y ie ld a more e ffec t ive  recovery  i f  those distance 

estimates are made more reliable. I t  is th is  task which we set ou t to 

achieve in th is  thesis, by s tu d y in g  the p rope rt ies  of d i f fe re n t  methods
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used to in fe r  galaxy distances and examining how each is affected by 

Malmquist biasing. Our aim is to id e n t i fy  methods of removing th is  

bias, and thus  determining an ’optim al’ choice of distance estimator.

This work was carried ou t while the author was a research 

s tu d e n t  in the Department of Physics and Astronomy, U n ive rs ity  of 

Glasgow, while in possession of a Carnegie research scholarship. I 

would like to thank the Carnegie T ru s t  fo r  th e ir  generous support 

d u r in g  th is  time -  both in the p rov is ion  o f a stipend and in the award 

o f severa l traVel g ran ts  which allowed part ic ipa t ion  in cosmology 

conferences, both at home and overseas. I would l ike  to  sincere ly 

th a n k  my superv isor, Dr. J.F.L. Simmons, fo r  a constant supp ly  of 

va luab le  advice and f r ie n d ly  su p p o r t  th ro ugho u t th is  time -  and fo r  

not o b jec t ing  too much when I f in ished  his sentences o f f  fo r  him! A 

special word of thanks also to Daphne fo r  solv ing many sudden 

log is t ica l crises, while never compromising the punc tua li ty  o f  tea and 

coffee, p a r t ic u la r ly  d u r in g  my ’t r a n s i t o r y ’ phase over the last few 

months. I th in k  i t ’s safe to remove my name from Rm 412 a t last. A 

general thank  you is extended to everyone in the Department -  time 

does not perm it me (qu ite  l i te ra l ly ! )  to part icu la r ise ; I hope tha t 

eve ryone  realises how much I have enjoyed my time w o rk ing  at 

Glasgow, and the con tr ibu t ion  which you have all made to tha t 

en joym ent. I th in k  i t  is safe to  say tha t ,  even in an in f in i te  and open 

u n iv e rs e  -  as appears to be somewhat favoured by c u r re n t  

obse rva tions  -  the s tuden ts  and s ta f f  o f the Glasgow astronomy 

departm ent are ce rta in ly  unique.
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Thank you to  all my fam ily  and f r ie n d s  fo r  t h e i r  g rea t

persona l s u p p o r t  o v e r  the  past th re e  years: f i r s t l y  to  my Mum and

Dad f o r  making all th is  possib le and, to g e th e r  w ith  my s is te r ,  Anne, 

p ro v id in g  a source  o f  g rea t  encouragem ent and s u p p o r t  -  and show ing 

adm irab le  to le rance  o f  my eccen tr ic  w o rk in g  hab its  and somewhat 

nomadic existence. A big th a n k  you also to  the  re s t  o f  my fam ily ,  

b ro th e rs  and s is te rs ,  nieces and nephews, and f r ie n d s  in East

K i lb r id e ,  Glasgow and across th e  globe who have all helped in v a r io u s  

ways to  keep me In touch  w ith  th e  real world ; I  hope t h e y ’ ve

succeeded.

Martin Hendry
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SUMMARY

In th is  thes is  we s tudy  the e ffec ts  of observational selection 

bias on the estimation o f galaxy d istances in cosmology. A lthough the 

presence of systematic bias in m agnitude-lim ited s u rve ys  has long 

been recognised the re  remains disagreement in the l i te ra tu re  as to  

p rec ise ly  how best to reduce o r  eliminate its  e ffec ts  from 

re d sh if t - in d e p e n d e n t  distance estimates. The aim of th is  thes is  is to 

develop a s ta t is t ica l ly  r igo rous  fo rm u la tion  of the problem of d is tance 

estimation, so as to  resolve some o f the issues which have clouded 

past discussion and allow one to determine stra teg ies fo r  ob ta in ing  

optimal distance estimators.

Redsh ift- independent d is tance estimates, when combined w ith  

the  measured redsh if t ,  p rov ide  an estimate of a galaxy’s pecu lia r  

ve loc ity .  The s tudy o f the la rge-sca le  pecu liar ve locity f ie ld  has been 

a v e ry  active and contentious sub jec t  in recent years, fo l low ing  a 

num ber o f independent repo r ts  o f coherent s t ru c tu re  and ve loc ity  

f low s on ve ry  large scales which pose serious problems fo r  popu la r  

theo r ies  of s t ru c tu re  formation. In chap te r (1) we p resen t a b r ie f  

ove rv iew  of ou r c u r re n t  p ic tu re  of the local un iverse and summarise 

the  basic features o f theoretica l models fo r  the formation and evo lu t ion  

o f s t ru c tu re .  We compare in detail two d i f fe re n t  analytical techn iques  

which have been developed to recover the fu ll pecu liar ve loc ity  and 

dens ity  f ie lds  from re d s h if t  su rveys :  the POTENT method (B e r tsch in g e r  

and Dekel, 1989) and the ’ IRAS’ method (Strauss e t a l, 1990). The 

fo rm er method requ ires  re d sh if t - in d e p e n d e n t  distance estimates and we 

cons ider the effects o f sparse and noisy sampling on the recovered 

den s ity  and ve loc ity  f ie lds, dem onstra ting  the advantages fo r  POTENT
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of removing the e ffec ts  of selection bias from distance estimates.

Chapter (2) presents  a detailed descr ip tion  of distance 

ind ica to rs  c u r re n t ly  used in cosmology. We review prev ious analyses of 

d istance estimation and biasing problems and discuss the lim ita tions of 

the  ’ Minimum Bias Subset’ , an early  method proposed to remove them. 

We examine the d i f fe re n t  linear regression techniques used to ca lib ra te  

ind ica to rs  such as the  T u l ly -F is h e r  relation and address the question 

o f which method is ’ best ’ . In pa r t icu la r ,  we consider a scheme, 

proposed by Schechter (1980), fo r  ob ta in ing  unbiased distance 

estimates provided th a t  one’s sample is sub jec t on ly to luminosity 

selection. This scheme has not been un ive rsa lly  endorsed in the 

l i te ra tu re  and many au tho rs  p re fe r  o ther ca lib ra tion methods. This 

disagreement is one o f the  main issues which we aim to c la r i fy  and 

resolve in th is  thesis.

In chap te r (3) we in troduce  a formulation fo r  de f in ing  and 

inves tiga t ing  the p rope rt ie s  o f d istance estimators in a s ta t is t ica l ly  

r igo rous  fashion. We f i r s t l y  cons ider the case where distances are 

estimated using on ly  measurements of apparent magnitude. Assuming a 

Gaussian lum inosity  fu n c t io n  we de r ive  expressions fo r  the conditional 

d is t r ib u t io n  of observab le  galaxies at a given (though in general 

unknown) t ru e  d istance and use th is  d is tr ib u t io n  to define a number 

of d i f fe re n t  distance estimators and compare th e ir  d is t r ib u t io n s ,  bias 

and mean squared e r ro r  o r  r is k  as a func t ion  of t ru e  distance. This 

simple case is used to i l lu s tra te  useful c r i te r ia  by which we can 

id e n t i fy  which estim ator is ’ best’ . In th is  chap ter we also describe a 

p rocedure  fo r  c o n s tru c t in g  confidence in te rva ls  fo r  the t ru e  distance 

o f a galaxy.

In chap te r  (4) we extend ou r  analysis to  the case where



( V i )

distance estimates are made from measurements of two o r  more 

observables, accounting fo r  the e ffects  of selection bias. We show tha t 

the d i f fe re n t  methods o f regression used to ca l ib ra te  these re lations 

correspond to simple distance estimators which arise n a tu ra l ly  from 

ou r  r igo rous  formulation. We also define a ’maximum like l ihood ’ distance 

estimator and, fo llow ing the method in troduced in chap te r  (3), we 

compute the d is tr ib u t io n ,  bias and r isk  of all o f these estimators as a 

func t ion  of t ru e  distance. These resu lts  allow us to  tes t the  v a l id i ty  of 

the ’Schechter’ scheme and id e n t i fy  s itua t ions  where the 

correspond ing  estimator is a poor choice. F ina lly , we extend our 

p rocedure  fo r  cons truc t ing  confidence in te rv a ls  to th is  tw o-observab le  

case.

In chapter (5) we consider d istance estimators cons truc ted  

from a linear combination of th ree  observables -  again in c lu d in g  the 

e ffec ts  of selection. By computing the d is tr ib u t io n ,  bias and r isk  of 

these estimators we determine, in pa r t icu la r ,  whether one may s t i l l  

define unbiased distance estimates in th is  case by adap ting  the 

’Schech te r ’ scheme. Furtherm ore , we examine q u a n t i ta t ive ly  the  extent 

to which the add it ion o f a given th i rd  observable im proves distance 

estimates obtained from measurements of only two. We cons ider the 

importance of these resu lts  fo r  e.g. the Dn -o  re la tion, fo r  which 

po ten t ia l ly  useful th i r d  observab les exist.

In  chapter (6) we summarise the main q u a lt i ta t iv e  resu lts  of 

th is  thes is  and explore a number of possible avenues fo r  f u tu r e  work; 

in p a r t ic u la r  a s tudy  o f the consequences of ou r  re su lts  fo r  the 

ana lys is o f re d sh i f t  su rveys ,  by recons truc t ion  methods such as 

POTENT.
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1- NEW METHODS FOR THE ANALYSIS OF REDSHIFT SURVEYS

1.1 In tro d u c tio n : SettinQ  the  Scene

In recent years a s ta r t l in g  new p ic tu re  o f how m atter is 

d is tr ib u te d  in the un ive rse  has begun to emerge. The h igh degree of 

smoothness of the  microwave background radiation -  as repeated ly 

detected in p rog ress ive ly  more accurate experiments -  p rov ides  

s t ro n g e r  than ever evidence o f the iso tropy and homogeneity o f the 

cosmos on the ve ry  la rges t scales. On scales of a few tens of Mpc, on 

the o the r  hand, the  un ive rse  which we su rvey  today appears fa r  from 

uniform . Observations ind ica te  a r ich and varied degree o f s t ru c tu re  

on these scales: dense c lu s te rs  and supe rc lus te rs  o f galaxies embedded 

in a complex ne tw ork  o f in te rsec t ing  filaments and sheets, enclosing 

vast underdense regions, o r  ’ vo ids ’ which appear to  conta in almost no 

luminous material and may be as much as 100Mpc in diameter. These 

observa tions have trans fo rm ed ou r  ear l ie r view o f a smooth, 

homogeneous galaxy d is t r ib u t io n  and the existence o f such large-sca le  

s t ru c tu re  has presented serious d i f f ic u l t ie s  fo r  theor ies  o f s t ru c tu re  

formation.

A major fa c to r  in allowing th is  dramatic new p ic tu re  to 

emerge has been the in troduc tion  to  cosmology o f powerfu l new 

observational techn iques and ins trum enta tion . For example, the 

automatic scanning, measurement and cata loguing o f pho tog raph ic  

piates has s ig n if ic a n t ly  improved ex is it ing  data on the  d is t r ib u t io n  o f 

galaxies and c lus te rs  p ro jec ted  on the sky. A p ro je c t  in it ia ted  with 

the Cambridge Automatic Plate Measuring Machine has produced the
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APM galaxy su rvey  (Maddox et al, 1990) which consists o f a catalogue 

o f over two million galaxies -  w ith measured apparen t magnitudes, 

diameters and o r ien ta t ions  -  b r ig h te r  than a lim it ing  magnitude of 

-20.5. This catalogue is more than double the size o f the ea r l ie r  Lick 

catalogue (Shane and Wirtanen, 1967) and probes to  an e ffec t ive  depth 

which is more than tw ice th a t  o f the L ick catalogue. Moreover, the 

APM su rvey  is also rendered somewhat ’c leaner’ than its  ear l ie r  

co u n te rp a r t  by a series o f a lgor ithm s designed to  automatically 

d is t in g u ish  fo reg round  s ta rs  from galaxies and to co rrec t fo r  

p la te - to -p la te  va r ia t ions  in s e n s i t iv i ty ,  s ky  background and o the r  

contam inating fac to rs . F igure  (1.1) shows a pro jec ted  map of the 

d is t r ib u t io n  o f galaxies in the APM s u rv e y  w ith  apparen t magnitudes 

between 17 and 20.5. The impression o f complex s t ru c tu re  -  r ich  

c lus te rs ,  f i laments and vo ids -  is qu ite  clear from a p u re ly  visual 

inspection, w ithou t the  need to app ly any q u a n t i ta t iv e  s ta tis tica l 

ana lys is to the catalogue.

Perhaps an even more s ig n if ic a n t  observa tiona l advance fo r  

o u r  prospects o f unde rs tand ing  cosmic s t ru c tu re ,  however, has been 

the advent of fas t quantum electron ic  de tectors  which make i t  possible 

to  measure the re d s h if ts  o f large numbers o f galaxies -  and thus  in fe r  

a f i r s t  estimate o f th e ir  d istance -  in a rea lis t ic  period o f time.

In the f i r s t  systematic su rvey  o f galaxy radia l ve loc it ies by 

Hubble (1929) -  from the resu lts  o f which Hubble proposed a linear 

ve loc ity  distance law and in te rp re ted  th is  as a general expansion of 

the un iverse  -  the measurement of a s ing le  re d s h i f t  would ty p ic a l ly  

re q u ire  an en t ire  n ig h t  o f  obse rv ing  time, us ing the  best pho tg raph ic
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materials available. By contrast, presen t-day observa tions  using CCDs 

can record the re d s h if ts  of typ ica l galaxies in less than half an hour. 

Of course, th is  is s t i l l  a considerable length o f time fo r  practical 

purposes, and the number of galaxy re d sh if ts  measured c u r re n t ly  

s tands at on ly  a few tens of thousands; a ve ry  much smaller total 

than the number o f ob jects  in the APM su rve y ,  fo r  example. 

Nevertheless, the  e ff ic iency  of re d s h i f t  measurements can be g rea tly  

improved by using m ult i-channel f ib re  optics  to  record simultaneously 

the  re d sh if ts  o f many galaxies in the same f ie ld ; such techn iques are 

expected to  become rou tine  in the near fu tu re ,  and the re d s h if t  

database will grow ra p id ly  in size. Indeed, g roups  in Princeton and 

Chicago have a lready begun a 10-year long program to obtain a 

re d s h i f t  su rvey  o f 1 million no rthe rn  sky galaxies.

In fact, the ex is ting re d sh if t  database is a lready s u f f ic ie n t  in 

number to  give a s tron g  impression of how galaxies are d is tr ib u te d  in 

the  line o f s ig h t  d irec t ion , and observa tions s u p p o r t  the existence of 

the  s t ru c tu re  detected in pro jected surveys. The la rgest s ing le 

re d s h i f t  su rvey  ca rr ied  out to date is the Center fo r  As trophys ics  

(CfA) Harvard su rve y  which contains around 9000 ob jects . The ’CfA 

Slices’ obtained from th is  su rvey  and presented in de Lapparent e t al 

(1988) have been v e ry  in f luentia l in promoting the  p ic tu re  of a local 

un ive rse  rich  in s t ru c tu re  and prov ide  s tron g  evidence fo r  a 

b u b b le - l ike  galaxy d is tr ib u t io n  in th ree  dimensions. F igu re  (1.2) shows 

an example of recent work (de Lapparent e t al, 1991) extend ing the 

o r ig ina l CfA slices to s l ig h t ly  h igher redsh ift .

As a re su lt  o f these technological developments, the re fo re ,
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cosmologists f ind  themselves fo r  the f i r s t  time able to form a p ic tu re  

o f the 3-dimensional d is t r ib u t io n  of galaxies and, consequently , 

re d s h i f t  su rveys  have been the sub jec t o f a great deal o f  detailed 

research in the past few years.

A s trong fu r t h e r  motivation fo r  th is  c u r re n t  in te re s t  has 

been a desire to b e t te r  unders tand the dynamical p rope rt ie s  of the 

galaxy d is tr ib u t io n .  Indeed, one source of concern in cons ider ing  

re d s h if t  data has always been th a t  i f  the measured radial ve loc it ies of 

galaxies d isplay a s ig n if ic a n t  deviation from th e ir  p red ic ted  Hubble 

ve loc ity  due to random o r  systematic ’ pecu lia r ’ motions then the 

d is tr ib u t io n  of galaxies in re d s h if t  space (or, equ iva len t ly ,  ve loc ity  

space) may be apprec iab ly  d is to r ted  from the t ru e  spatia l d is t r ib u t io n .  

This would tend to elongate and exaggerate s t ru c tu re  along the line of 

s ig h t  in the CfA slice shown above, and has been termed the  ’ F inger 

o f God’ effect. Over the  past f i f teen  years a number o f s tud ies  (deta ils  

o f which we will s h o r t ly  cons ider) have suggested th a t  such large

’ non-Hubble ’ velocit ies are indeed present, ind ica ting  th a t  not on ly  is

the re  coherent s t ru c tu re  on scales in excess of 50Mpc, bu t  the re  is 

also coherent ve loc ity  s treaming on such scales.

In i t ia l ly  such claims were ce r ta in ly  regarded w ith  suspicion, 

not least because of the  t ro u b le  which they spell fo r  theories  of

s t ru c tu re  formation, and a focus of the con trove rsy  was the  poss ib i l i ty  

th a t  the detected streaming motions could be an a r te fac t  of 

uncorrec ted  s ta tis tica l biases in the data. At any rate, i t  was ce r ta in ly  

acknowledged tha t  -  whatever the s ta tus  o f the streaming motions -  a 

b e t te r  unders tand ing  o f the dynamical p rope rt ies  o f the galaxy
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d is tr ib u t io n  was c ruc ia l ly  im portant i f  the mysteries of how the 

observed s t ru c tu re  formed were to  be unravelled.

To th is  end, there fo re , sophisticated new analytical 

techn iques have recently  been developed In o rd e r  to  recons tru c t  from 

re d s h i f t  data an estimate of both the spatial density  d is t r ib u t io n  and  

the galaxy pecu liar ve loc ity  f ie ld . In th is  chap ter we will describe 

these methods and discuss some o f the assumptions and lim ita tions to 

which each Is sub ject.

One o f the techn iques in pa r t icu la r ,  the  POTENT method 

in troduced in Bertsch inger and Dekel (1989, he rea fte r  BD), requ ires  

galaxy distance estimates which are independent o f re d s h i f t ,  and 

consequently  most o f  the resu lts  of th is  thes is  concern ing the optimal 

estimation o f d istances are o f p a r t ic u la r  relevance to POTENT.

1.2 M odelling Large-Scale S tru c tu re

Before we consider the analysis o f re d s h i f t  s u rve ys  in more 

detail, we will b r ie f ly  sketch the standard mathematical descr ip t ion  

with which the evolution of s t ru c tu re  is modelled. We presen t here no 

more than a sho r t  synopsis o f the key fea tu res which are re levan t to 

unde rs tand ing  recent techn iques developed to analyse re d s h if t  

su rveys . The modelling of s t ru c tu re  formation and evo lu tion is 

discussed in considerable detail in a large number of textbooks, review 

a r t ic les  and papers ( fo r  a tho rough  trea tm ent see, fo r  example, 

Zel’dovich (1970), Weinberg (1972), Peebles (1980) and Kolb and T u rn e r
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(1990), and references there in ). Also o f p a r t ic u la r  relevance are Jones 

and van de Weygaert (1990) and Jones (1991), which give a concise 

and clear discussion of the top ic  in the presen t context of re d sh i f t  

su rveys .

Models fo r  the evolution o f cosmic s t ru c tu re  are developed 

w ith in  the  framework of the s tandard Friedmann Robertson Walker 

(FRW) model, which is more o r less the  cornerstone o f theoretical 

cosmology. In the FRW model the un ive rse  is considered as an 

expanding perfec t f lu id  which is spa tia l ly  homogeneous and iso tropic. 

The m atte r density  in the FRW un iverse  is the re fo re  a constant, Pb(t) 

say, at each epoch, t. The amount o f expansion at any given epoch is 

determ ined by the scale factor, a(t), which is usually defined as the 

measured length of some chosen ’ y a rd s t ic k ’ at time, t, d iv ided by its  

length  measured at the present time, tq . The f irm est evidence fo r  the 

v a l id i ty  o f the FRW model comes from the  observed iso tropy o f the 

m icrowave background, as re fe rred  to  p rev ious ly . Temperature 

f lu c tu a t io n s  in the background rad ia tion ove r  a range of angu la r 

scales from 1’ to 180’ are of the o rd e r  o f 1 0 -4  0 r less, and th is  f ig u re  

g ives a d ire c t  measure of the correspond ing  f luc tua t ions  in the 

g rav ita t io na l potentia l due to deviations from  uniform density.

The basic assumption of most form ation scenarios is tha t  the

s t ru c tu re  which we observe today in i t ia l ly  formed from the growth of

sm all-am plitude density  f luc tua t ions  in a FRW universe, under the 

mechanism o f g rav ita t iona l in s tab il i ty .  The evo lu t ionary  behaviour o f 

s t ru c tu re  can the re fo re  be studied by cons ider ing  a weakly pe r tu rbed

FRW so lu tion to  the Einstein f ie ld  equations. The analysis is f u r t h e r
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s im plif ied  by the fac t that, fo r  pe r tu rb a t ions  o f scale leng th  smaller 

than the horizon size, a simple Newtonian trea tm ent o f the expanding 

f lu id  is an adequate approximation.

The evolution o f the  dens ity  f ie ld , p(x,t), pecu lia r ve loc ity

f ie ld ,  v (x ,t) ,  and grav ita t iona l potentia l, <t>(x,t), are determined to  f i r s t

o rd e r  by the fo llow ing equations (assuming zero p ressu re ) :-

| £  + 3Hp + - ^ - V . ( p v )  = 0 (1 .1 )

I ?  + hv = -  - 4 -  v *  (1 .2 )o t a

v2<t> = 4TTGa2 (p  -  pfc) ( 1 . 3 )

These are respective ly  the c o n t in u i ty  equation, Poisson equation and 

Newtonian Euler equation o f motion fo r  the expanding f lu id  expressed 

in comoving coord inates (i.e. comoving with the uniform  backg round).  

Here H = a/a is the expansion func t ion  which measures the  expansion 

rate o f the background model and whose present value we know as 

the Hubble constant, Hq.

Fluctuations in the  dens ity  f ie ld  are usually measured in 

term s of the dimensionless dens ity  contrast, S, defined as the 

frac t iona l d iffe rence  between the  actual density  and the dens ity  o f  the 

un ifo rm  background model, v iz : -

S(x,t)  = <p(x,t) -  pfc,(t)) /  Pb(t) (1.4)

I t  is also genera lly  assumed th a t  the  density  f lu c tu a t io n  f ie ld  was
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in i t ia l ly  Gaussian, i.e. completely specified by its  power spectrum, and 

the form o f the power spectrum  is given by theoretical cons iderations 

based on, e.g., the assumption of an in f la t iona ry  phase in the  ve ry  

early  un iverse and on the adopted nature of cosmological da rk  matter. 

A number o f d i f fe re n t  da rk  m atter candidates have been proposed: e.g. 

baryon ic  and non-baryon ic ; "ho t"  o r  "cold" -  each of which ca rr ies  a 

cha rac te r is t ic  s igna tu re  fo r  the timescale and spatial con f ig u ra t ion  o f 

s t ru c tu re  formation which may be compared with observa tions. The 

cold dark matter (CDM) model in pa r t icu la r  has d i f f ic u l t ie s  in 

expla in ing the large-sca le coherent s t ru c tu re  and ve loc ity  f lows which 

appear to have been observed.

In the linear regime the pecu liar ve loc ity  f ie ld ,  v, generated 

by the density  con tras t f ie ld ,  s, is p roport iona l to  the  g rav ita t iona l 

acceleration, g, defined b y : -

v<t>
a (t)

Thus we f in d : -

(1 .5 )

where ft is the dens ity  o f  the  background model in u n i ts  of the 

c r i t ica l density  pc fo r  a f la t  un iverse. The func t ion  f(ft)  can be well 

approximated by (c.f. Peebles, 1980):-

f ( f t )  = ft0 - 6 (1 .7 )

Solving the  Poisson equation (1.2), we can express v ( th is
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time in physical coord inates) in terms o f the dens ity  con tras t,  S, v iz : -

v = |  G .a (t).P b (t)
(x ’ -  x)S(x’ ,t )d 3x’ 

lx ’ -  x l3
( 1 . 8 )

Conversely we can w r ite  down an expression fo r  the  dens ity  

con tras t in term s o f the pecu liar ve loc ity  f ie ld . In the l inear regime 

th is  takes the  simple fo rm :-

The evolu tion o f the dens ity  and ve loc ity  f ie ld s  in the 

non - l inea r  regime can be followed by numerical s imulations. A 

reasonable approximate so lution fo r  quas i- l inea r  p e r tu rb a t io n s  may also 

be obtained by app ly ing  Zel’ dov ich ’s formalism (Zel’dovich, 1970) to 

describe the displacement of part ic les  from the positions which they  

would  have had in a homogeneous un iverse  (see section 1.4.2 fo r  more 

details).

1-3 De tec tions o f  Large-Scale Stream ing Motions

In a p ioneering s tu d y ,  Rubin e t at (1973, 1976) used a sample 

of d is tan t sp ira l galaxies -  w ith recessional ve loc it ies in the  range 

3500 to eSOOkms- "1 -  as a means of tes t ing  the iso tropy  of the  Hubble 

Flow. The observed apparen t magnitude o f each galaxy was used to 

estimate its  distance, which could then be compared with the  in fe r re d  

re d s h i f t  d is tance to  obtain a measure o f the  galaxy’s pecu lia r ve loc ity  

with respect to  the Local Group. The au tho rs  detected a systematic



12

va r ia t ion  in the apparent magnitude o f  the  sampled galaxies w ith 

position on the sky, which they  in te rp re te d  as being due to  a Local 

Group ve loc ity  of 450 ± 125kms“ 1 tow ards  / = 163*, b = -11*, w ith 

respect to  the sample o f sp ira l galaxies. This ve locity  was much la rge r  

than expected; ear l ie r s tud ies (c.f. Sandage and Tammann, 1975a,b) had 

genera lly  indicated a basically smooth and quiet Hubble Flow, and, 

moreover, la ter stud ies using o the r  galaxy samples (Hart and Davies, 

1982; de Vaucouleurs and Peters, 1984) fa iled to confirm  the Rubin 

resu lt .  More recently  Collins e t a/ (1986) and Peterson and Baumgart 

(1986) have re-evaluated the Rubin data set using a be tte r  ca l ib ra t ion  

o f the  galaxy distances, and again in fe r re d  a large Local Group 

ve loc ity ,  a lthough in a la te r paper Collins e t al (1991) have shown th a t  

i t  is possible to  w rong ly  in fe r  stream ing motions as a resu lt  o f  

appa ren t magnitude selection e ffec ts  p resen t in the Rubin data set, as 

had been suggested by several au tho rs  some years before (c.f. Fall

and Jones, 1976; see also chap te r (2) fo r  f u r t h e r  discussion).

F u r th e r  evidence fo r  the existence o f large pecu lia r ve loc it ies 

was found from analysis o f the microwave background radia tion.

Measurements indicate a dipole an iso tropy  in the tem pera tu re  

d is t r ib u t io n  of the radia tion on the sky  which is cons is ten t w ith a 

Local Group Motion towards / = 269*, b -  28' w ith respect to  the  

backg round  radiation (Lub in  e t al, 1983; Fixsten et al, 1983). Recent 

re s u lts  from the COBE sate ll ite  re p o r t  the  magnitude o f the  dipole to  

be 550kms_1 (Smoot e t al, 1991). S ig n i f ic a n t ly  the magnitude and 

d irec t io n  o f th is  ve loc ity  are d i f fe re n t  from  those in fe r re d  from the 

Rubin galaxies. Hence, given th a t  the s tream ing detected by Rubin Is a 

real e ffec t,  one s t i l l  requ ires  a more complex model o f the  ve loc ity
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f ie ld  to  adequately explain the Local Group pecu liar ve loc ity  in fe r red  

from the CMBR dipole. The inc lus ion of an " in faH" ve loc ity  of = 

300kms~1 towards the V irgo  c lu s te r ,  fo r  example (Aaronson e t al, 1982), 

is in s u f f ic ie n t  to  resolve the  overa ll d iscrepancy. The Local Group 

ve loc ity  po ints not tow ards V irgo  bu t ra th e r  in the d irec t ion  o f the 

H yd ra -C en tau rus  su p e rc lu s te r  (c.f. Tammann and Sandage, 1985; L i l je  

e t al, 1986; S taveley-Sm ith and Davies, 1987) and the V irgo  " in fa l l "  

represen ts  on ly  a part ia l c o n t r ib u t io n  towards the CMBR dipole. Recent 

s tud ies  have indicated the  existence o f a s ig n if ica n t  enhancement in 

the  dens ity  f ie ld  in the  d irec t io n  o f Centaurus (c.f. da Costa e t al, 

1986) and suggest the p o ss ib i l i ty  o f  a bu lk  motion on the scale o f the 

e n t ire  Local Group and the  V irgo  c lu s te r  towards th is  region. Perhaps 

the most notable o f these s tud ies  has been the work o f Lynden-Be ll e t 

al (1988), which comprises a s u rv e y  o f more than 400 e l l ip t ica l galaxies 

ou t  to  a re d s h i f t  o f * 8000kms-1 fo r  which photometric data were also 

available. R edsh ift - independen t d is tance estimates were obtained to  the 

galaxies v ia  the Dn-o  re la tion (Ter lev ich  e t al, 1981) -  an empirical 

re la t ionsh ip  between the diameter and centra l ve loc ity  d ispers ion  of 

e l l ip t ica ls  which is essen tia lly  a refinement o f the  ear l ie r  

Faber-Jackson relation (Faber and Jackson, 1976) between lum inosity  

and ve loc ity  d ispersion. The basic p r inc ip le  behind the  use o f th is  

re la tion is to in fe r  an estimate o f the in t r in s ic  diameter o f  a galaxy 

from its  measured ve loc ity  d ispers ion  and then combine th is  w ith its  

observed angu la r diameter to  in fe r  its  distance. Together w ith  the 

T u l ly -F is h e r  re lation (Tu lly  and F isher, 1977), which de r ives  distances 

in an analogous manner from  the  re la t ionsh ip  between the  in t r in s ic  

lum inosity  of sp ira l galaxies and the  w id th  of th e ir  21cm line pro f iles , 

the  Dn“ °  re la tion rep resen ts  a powerfu l tool fo r  ob ta in ing
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re d sh i f t - in d e p e n d e n t distance estimates to  galaxies and c lusters . The 

e ffec ts  of selection bias on these re la tions have been a source of 

considerable co n trove rsy  in the l i te ra tu re :  i t  Is a c la r i f ica t ion  of some 

im portan t aspects o f th is  debate which form s the centra l theme o f th is  

thesis. We will leave fu r th e r  discussion of the  s ta tis t ica l issues 

invo lved un t i l  chap te r (2).

To analyse th e ir  data Lynden-Bell e t al cons truc ted  a specific  

dynamical model fo r  the ve loc ity  f ie ld  and then by combining th e ir  

measured re d s h if ts  and Dn-c  d is tances they  obtained 

maximum-likeli hood estimates fo r  the parameters o f th e i r  model. They 

obtained the fo llow ing resu lts : the pecu lia r motions o f the galaxies 

were ’ b e s t - f i t te d ’ by a ve loc ity  inflow model tow ards a "Great 

A t t ra c to r "  centred on I = 307’ , b -  9 ’ in the  d irec t ion  o f Centaurus at

a d istance o f 4300 ± 350kms-1 in the Hubble Flow -  in good agreement

with the observa tions  by da Costa e t al. The excess mass of th is  

concentra t ion  was calculated to  be o f the o rd e r  o f  5 x 1016 solar

masses -  comparable to  the la rgest supe rc lus te rs  -  in o rd e r  to 

generate the in fe r re d  streaming motion of 570 ± 60kms“ 1 at the Local 

Group.

The deta ils  o f  the Lynden-Bell e t al resu lts  are dependent on 

the param etric  form o f the model chosen fo r  the ve loc ity  flow in the 

v ic in i ty  o f the mass concentra tion. The model described above gave a 

b e t te r  f i t  to  the  data than a ear l ie r ,  s impler, model o f  a uniform

streaming motion o ve r  and above the cosmological expansion (Dressier 

et a/, 1987) which was in tu rn  a be t te r  f i t  than u n p e r tu rb e d  Hubble 

Flow, bu t c learly  a wide v a r ie ty  o f d i f fe re n t  param etr ic  models



15

(several "a t t ra c to rs "  at d iscre te  locations, fo r  example) are possible. In 

o rd e r  to  make much fu r th e r  p rogress in unders tand ing  the "Great 

A t t ra c to r "  region one requ ires  methods which are not t ied to  specif ic  

param etric  models o f the density  and ve loc ity  f ie lds. We will now 

discuss two such methods which set ou t  -  a lbeit with ra th e r  d i f fe re n t  

approaches -  to recons tru c t  the fu l l  dens ity  and pecu liar ve loc ity

f ie lds  in a se lf-cons is ten t manner.

1.4 R econstruc ting  the D ensity  and Velocity F ie lds

1.4.1 ’ IRAS’ Based Studies.

The f i r s t  o f these recons truc t ion  methods has been adopted 

in the analysis of two re d s h i f t  su rv e y s  of galaxies in the IRAS

catalogue, and is app rop ria te  when one does not have 

re d sh if t - in d e p e n d e n t  d istance estimates. The two su rveys  are of 

s im ilar size bu t are sub jec t  to ra th e r  d i f fe re n t  selection c r i te r ia :

S trauss e t al (1990) have measured re d s h if ts  o f all non -s te l la r  ob jec ts  

in the IRAS catalogue w ith 60um f lux  g rea te r than 1.9 Jansky. This 

gives a s u rv e y  of ove r  2500 ob jec ts  with redsh if ts  less than =

3000kms“ 1. E fstath iou e t al (1990) -  known as the ’QDOT’ su rvey  -  

probe ra th e r  deeper, down to a f lu x  l im it o f 0.6Jy, bu t sample 

randomly on ly  one galaxy in six, y ie ld ing  a su rvey  of around 2000 

galaxies ou t to  a re d s h if t  o f = yOOOkms- "'.

The p r inc ip le  of th is  method is to  use the measured redsh if ts  

o f the sampled galaxies to give a f i r s t  ind ica tion  o f th e ir  d istance (i.e.
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assuming a ’ q u ie t ’ Hubble flow) and th u s  obtain an in it ia l estimate of 

the dens ity  contras t,  S(x,t), from smoothing the in fe r re d  3-d 

d is t r ib u t io n  of IRAS galaxies. The pecu lia r ve loc ity  f ie ld  is then 

calculated by assuming linear p e r tu rb a t io n  theory , so th a t  equation 

(1.8) will hold, v iz : -

|  G.a(t).pb(t )
(x* -  x)s(x’ , t )d3x’ 

|x* -  x |3
( 1 . 10)

The in fe r re d  pecu lia r velocit ies can then be used to co r re c t  fo r  the 

non-H ubb le  component in the measured re d s h if t  o f each galaxy, and 

hence to obtain a be tte r  distance estimate. One can now repeat th is  

p rocedure  i te ra t iv e ly ;  i.e. compute a new estimate of the dens ity  f ie ld , 

use th is  to  redeterm ine the  pecu liar ve loc ity  f ie ld , modify distance 

estimates again, and so on.

Recent resu lts  from the QDOT su rvey  are reported in Kaiser 

et al (1991), in which the recovered dens ity  f ie ld is presented in the 

form o f isodensity  con tours  o f S. Examples of these resu lts  are shown 

in f ig u re  (1.3) taken d ire c t ly  from Kaiser e t al. The "Great A t t ra c to r "  

dens ity  enhancement in H yd ra -C en tau rus  is c learly detected, and is 

the  dominant fea tu re  at the S = 1.0 level (Kaiser et al use the  notation 

A instead of S to  denote the density  con tras t) .  Other notable fea tu res  

are the  V irgo  and Fornax c lus te rs , at S = 2.0, and the Perseus-Pisces 

s u p e rc lu s te r  at S = 0.7.

There are several im portan t po in ts  about the IRAS analysis. 

F i r s t ly ,  the in teg ra l expression of equation (1.10) fo r  the pecu liar
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Figure (1 .3 )
Isodensity contour maps of the density contrast, A, recovered from 

analysis of the IRAS galaxies 1n the QDOT survey (from Kaiser et ah
1991). Prominent features are identified  in the text above.
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velocity should be taken over all space, but In practise is obviously 

limited to the volume sampled by the redshift survey. Furthermore, 

the sampling of galaxies will be increasingly sparse -  and increasingly 

subject to systematic errors  -  close to the edge of the survey volume. 

This will serve to undermine the accuracy of the recovered velocity 

field.

Another, perhaps more serious, problem arises from the fact 

that one does not directly observe the density contrast, s, but only 

the distribution of luminous matter (and, moreover, not the component 

of the light distribution due to ellipticals and ea rly -typ e  galaxies 

because of the in fra -red  nature of the IRAS survey). To resolve this  

problem one must make some assumption about how light traces mass. 

The standard approach -  and that adopted In both IRAS surveys -  has 

been to introduce a constant bias parameter, b, which relates the  

observed deviations in the galaxy number density to the underlying  

mass density contrast. Thus b is defined by:-

This parameter is used to modify the density contrast In equation 

(1.10). Instead of assuming an a priori value for b, it can be 

determined self-consistently (or, more precisely, the product b /f(0 )  

may be determined) as part of the iteration procedure. Latest results 

obtained from the QDOT survey (Kaiser e t a/, 1991) report a value of 

b/f(G ) 2 1.16 ± 0.21, in general agreement with earlier results obtained 

from analysis of the Local Group Motion (Rowan-Roblnson et ait 1991)
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It  would obviously be useful to avoid the assumption of a 

constant bias parameter -  or at least to have some means of testing  

the validity of such an assumption. The POTENT method offers such a 

possibility.

1.4.2. The POTENT Method

A basic limitation in recovering the full peculiar velocity field 

is the fact that -  even with reliable redshift-lndependent distance 

estimates -  one can, In general, In fer from the measured redshift of a 

galaxy only the radial component of each galaxy’s peculiar velocity. 

The second reconstruction method which we now consider, labelled 

POTENT in BD, offers a neat resolution of this problem by making the  

fundamental assumption that the galaxy peculiar velocity field, v, has 

zero vortic ity  and can therefore be expressed as the gradient of a 

scalar velocity potential, 4>, i.e.:-

v = -TO (1.12)

I t  follows immediately from this assumption that the potential, 

4>, at any point, r, will be given in terms of a line integral of v from 

the observer to r  -  and that the value of th is integral will be 

independent of the path taken to r. In particular, therefore, we can 

evaluate $ by computing the integral along a radial path to r, thus 

requiring knowledge only of the radial component of v. By 

differentiating <& in the transverse directions we may then recover the 

other two components.
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The assumption that the velocity field is irrotatlonal -  while 

not directly testable using POTENT alone -  would appear to be 

reasonable. I f  the growth of density perturbations is indeed due to 

gravitational instability then it may be shown (see e.g. Peebles, 1980) 

that in the linear regime the only growing mode in the primordial 

peculiar velocity field is Irrotatlonal, while the rotational component 

decays as 1 /a (t) as a consequence of angular momentum conservation. 

Certainly by the end of the linear regime, therefore, the growing mode 

would dominate and the velocity field would be a potential flow, with 

the velocity potential proportional to the gravitational potential. 

Kelvin’s circulation theorem then ensures that the velocity field would 

remain irrotatlonal a fte r density perturbations become non-linear 

provided that the fluid trajectories do not cross. Even when such 

orb it mixing does occur, BD show that a suitably smoothed velocity 

field will remain irrotational to a good approximation well into the  

non-linear regime.

The main obstacles to the practical implementation of POTENT 

lie not with the validity of the fundamental assumptions, therefore, but 

with the limitations of the available data. In  order to reconstruct the  

complete velocity potential one requires to know the radial component 

of the peculiar velocity field at every point; in practice one can 

estimate this only at the locations of a sparse sample of galaxies -  

and, moreover, the individual distance estimates to each galaxy have 

root mean square errors of typically 15 to 20%.

Given the radial velocities of a sparse and noisy sample, 

therefore, POTENT firs t smooths and interpolates the data onto a
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spherical grid using a tensor window function to produce a smoothed 

radial velocity field, v * r (r) . The velocity potential at each point is 

then calculated from the integral:-

$ (r) v *r ( r ’ , e , * ) d r ’ (1 .1 3 )

from which the reconstructed smoothed peculiar velocity field, v, is 

then recovered by differentiation, applying (1.12).

In the linear regime v can then be used to in fer the density 

contrast via the simple relation given by equation (1.9), v lz :-

In  order to allow an effective recovery of S into the non-linear regime 

POTENT uses the Zel’dovich formalism (Zel’dovich, 1970) which gives a 

good approximation to the evolution of mildly non-linear perturbations. 

As a result the actual application of POTENT -  from inputted redshifts  

and distances through to the recovered density field -  is rendered  

somewhat more complex than the fa irly  simple scheme outlined thus  

far.

The Zel’dovich formalism determines approximately the final 

(Eulerian) comoving position, x, at time, t, of a particle moving in the  

flu id  perturbed by the density contrast, S, by describing the  

displacement of x from the initial (Lagrangian) comoving position, q, 

which the particle would have had (and still would have!) in the  

absence of any density perturbations. The relationship between x and



22

q is assumed to take the form:-

x (q ,t )  = q + D ( tW q )  (1 .15 )

The nature of the approximation lies In the assumption that the 

displacement can be written in separable form as the product of a 

purely spatial perturbation function, t (q ) ,  and a purely 

time-dependent growth factor, D(t). Beginning from th is equation, 

similar relations can be determined between the Lagrangian and 

Eulerian peculiar velocity and density contrast, subject to the 

Zel’dovich approximation, and one can define^ an inverse mapping 

(again a fte r smoothing, if necessary, to overcome o rb it mixing) relating  

the Euierian values of these fields to th e ir  initial Lagrangian values.

In short, therefore, POTENT assumes that the Lagrangian 

peculiar velocity field is irrotational, so that $ and v can be recovered 

using equation (1.12) and (1.13) expressed in Lagrangian coordinates. 

The Zel’dovich approximation is used to move from the observed, 

Eulerian, radial velocities to their Lagrangian counterparts and then -  

after reconstruction of the velocity and density fields -  back to 

Eulerian coordinates.

The accuracy of the Zel’dovich approximation has been tested 

against the tru e  density contrast in the quasl-linear regime evaluated 

numerically for a series of CDM N-body simulations (Dekel et a/, 1990, 

hereafter DBF; Dekel, 1991). The rms percentage e rro r in 6 was found 

to be less than 10% over the range -0 .8  i  s < 4.5, so that the  

usefulness of the approximation would seem to be clear. The Zel’dovlch 

formalism can also be applied to make non-linear corrections to the
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density field estimated by the IRAS method, thus improving the 

prediction of the peculiar velocity field by that method (Dekel et al,

1992)

The results obtained by POTENT are strik ing. Figure (1.4) 

shows the recovered density field in the supergalactic plane 

constructed from a sample of 973 objects; 544 ellipticals and 429 

spirals (Bertschinger et al, 1990). The dominant recovered feature is 

the extended ’hump’ on the left of this diagram, in the  

Hydra-Centaurus region, which broadly confirms the “Great Attractor"  

detection of Lynden-Bell et al (1988). The peak density contrast in 

th is region is given by S = 1.2 ± 0.4 with a Gaussian smoothing 

window of radius * 1400kms~1 -  consistent with the QDOT results. 

(This result is for 0 = 1 and scales approximately with cfl/4). Both the  

Virgo cluster and Local Group are found to be falling toward the  

bottom of the Great Attractor potential well with peculiar velocities 

exceeding 500kms_1. Several large regions of below average mass 

density are also recovered which match known voids in the galaxy 

distribution.

One of the most encouraging aspects of these results is the  

fact that the same broad-based features are recovered as those 

derived from the IRAS, and earlier, surveys -  but th is time without 

the need for an a priori assumption about how mass traces light. In  

POTENT galaxies are used as tracers of the large-scale velocity field  

and not the density field. Consequently, in the long term POTENT 

offers a means of d irectly determining the relationship between the  

distribution of luminous ’tra ce r’ galaxies and the underlying mass
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Figure (1 .4 )

Density contrast recovered by POTENT in the supergalactlc plane 

from a sample of 973 galaxies (taken from Bertschinger et a l , 1990)
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density field, so as to test the valid ity of a universal linear bias 

parameter. Preliminary estimates of b from a comparison of POTENT 

results with optical data seem to favour a value of o rder unity (Dekel, 

1991) consistent with the QDOT results, although no firm  conclusions 

have yet been reached.

Another notable feature of POTENT compared with the IRAS 

studies Is the fact that the recovery within a given volume is not so 

adversely affected by sparse and noisy sampling outside of that 

volume: for POTENT the effects of poor sampling are essentially local 

so that the better the data coverage is within a given region, the 

better will be the reconstruction in that region. A good example of 

this is the Perseus-Pisces supercluster which, although clearly

identified in the QDOT results, is practically invisible in the density

recovery presented in DBF. This region is very sparsely sampled,

however, In the data set of 973 galaxies used in DBF. Dekel (1991)

reports that the addition of a new sample of spirals covering the 

Pisces region results in a reconstructed density contrast of s “ 1.0 *

0.4 in that region, although the recovery in the as yet poorly sampled 

Perseus region remains dominated by noise.

In DBF great care is taken over the treatm ent of sampling 

errors. The authors recognise that th e ir smoothing procedure can 

result In a "sampling gradient bias", in which the sampled velocity 

field from regions of high density pollutes low density regions within 

the same smoothing volume and thus artific ia lly  enhances the density 

in those regions. They set out to minimise this effect by adopting a 

system of volume weighting and adjustable smoothing radii which takes
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account of the local density in defining the smoothing window.

The sparseness of the sample, combined with significant 

errors on individual distance estimates are still regarded as the major 

sources of error, however. Dekel (1991) summarises the status of 

errors  in the recovered density and velocity fields -  as assessed from 

Monte-Carlo simulations. The distance errors were modelled as normally 

distributed with standard deviation of order 15%, which is the typical 

size of Tu lly-F isher and Dn-o  errors. In the well sampled regions of 

the POTENT data set the rms errors  are less than 250kms“1 In the  

recovered velocity field and less than 0.2 In the density contrast; In 

more poorly sampled regions these errors exceed 1000kms“1 and 1.0 

respectively. This clearly Indicates the penalties of sparse and noisy 

sampling.

In providing a brief overview of our current p icture of the 

local universe it is no accident that we have described in some detail 

the POTENT method for reconstructing the density and velocity fields. 

POTENT has given a new relevance to determining redshift 

independent distance estimates to galaxies; moreover the opportunity  

to improve the quality of the early POTENT results provides a strong  

motivation for finding ways to improve those distance estimates and 

remove or reduce systematic errors. I t  is precisely such an 

improvement which is the goal of th is thesis.
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2. DISTANCE INDICATORS AND SELECTION BIAS

2.1 Introduction

In this chapter we will discuss various galaxy distance 

indicators which have been used in the literature and examine the  

attempts which have been made to understand and remove the  

systematic bias in these indicators introduced by observational 

selection effects.

Methods of measuring the distance to a galaxy which do not 

make use of the observed redshift have traditionally been classified 

into 2 groups, denoted as primary and secondary distance indicators. 

Primary indicators are methods which can be calibrated from purely  

theoretical considerations or from distance measurements made within 

our own galaxy; to calibrate secondary indicators requires f irs t  

determining the distances to a representative sample of nearby 

galaxies by some other means (e.g. using primary indicators). An 

overview of the historical development of d ifferent indicators, and the  

astrophysical principles on which they are based, is given in, e.g., 

Rowan-Robinson, (1985). Examples of primary indicators are Cepheid 

variables (c.f. Martin et al> 1979) and supernovae (c.f. Kirschner and 

Kwan, 1974). Secondary indicators include the Tully -F isher and Dn-o  

relations introduced in chapter (1), galaxy H II regions (c.f. Sandage 

and Tammann, 1974) and various colour-luminosity relations (c.f. Tully 

et at, 1982; Michard, 1979).

The super novae method has the greatest potential of the
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primary indicators because supernovae are in principle observable to 

enormous distances (= 1000Mpc), although in practice there are still 

considerable difficulties in the theoretical understanding of their

characteristics (c.f. Rees and Stoneham, 1982). With the exception of 

supernovae, however, as the distance scale has expanded in recent 

years we have come to rely more and more on secondary indicators as 

the ’f irs t  line of attack* in determining galaxy distances; moreover, of 

such indicators the Tully-Fisher and Dn-o  relations have proved the 

most commonly used, as is evidenced by the POTENT data set 

discussed in chapter (1). The prevalence of secondary indicators is 

unlikely to change in the near fu ture . The observable limit for

Cepheids, for example, is only about 5Mpc from ground based

instruments; hence this primary indicator -  despite being probably the 

most securely calibrated -  cannot be used on larger scales. I t  is 

hoped that the Hubble Space Telescope will push back this limit to 

around 20Mpc, but estimates for more distant galaxies will still require  

secondary methods. (Cepheid observations with HST should, 

nevertheless, susbstantially improve the calibration of secondary 

indicators.)

Another useful means by which to discriminate between

d iffe ren t indicators is the number of observable properties of a galaxy 

on which each depends. To explain what we mean by this consider, for 

example, the Tully-F isher relation. As we remarked in chapter (1), one 

uses this relation to infer an estimate of the absolute magnitude, M, of 

a spiral galaxy from its measured 21cm line width, which has been 

found to be well-correlated with M. One then combines this estimate 

with the measured apparent magnitude, m, to obtain a distance
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estimate by simply inverting the usual magnitude-distance relation, 

v iz:-

m = M + 51ogr + 25 (2 .1 )

where the distance, r, is measured in Mpc. In fact it is more common 

in the literature to determine an estimate of the distance modulus, 

m-M, which we can see from equation (2.1) is essentially an estimate of 

logr. Moreover, previous discussions of the statistical properties of 

distance indicators have also dealt predominantly with estimates of the 

distance modulus. In  th is thesis it will frequently be unnecessary to

discriminate between the two terms and, at such times, we will use

them interchangeably. As we will see in chapters (3) and (4), however, 

there are situations when a distinction becomes important, and when 

this is the case we will we clearly indicate whether re ferring  to 

distances or distance moduli.

Thus, a distance estimate constructed from the Tully -F isher  

relation is a function of two observables; line width and apparent 

magnitude. Similarly distances derived from the Dn-o  relation are a 

function of observed velocity dispersion and apparent angular 

diameter.

As an aside one should note that in equation (2.1) we assume

no absorption either within our own galaxy or In ternally , within the

observed galaxy. Such an assumption is often unreasonable so that to 

arrive  at equation (2.1) one must f irs t make careful corrections to 

both m and M. Indicators which are less badly affected by obscuration 

have clear advantages; indeed it was precisely to avoid such extinction



30

corrections that prompted Aaronson et al (1980) to propose that the 

Tully-F isher relation should be calibrated using in fra -red  magnitudes. 

Not only does this v irtua lly  eliminate extinction from the measurements 

for each galaxy, but it also allows greater sky coverage for galaxy 

surveys since one can still make useful IR observations at low galactic 

latitudes.

Later in th is chapter we will return to the Tully-F isher and 

Dn-o relations and examine the importance of observational selection 

effects for their calibration and use, as previously discussed in the  

literature. As a prelim inary to this, however, it is useful f irs t to 

consider the effects of selection bias on indicators which are functions 

of only one observable: more specifically, distance estimates obtained 

from only the observed apparent magnitude of a galaxy, having 

adopted a priori a fiducial value for its absolute magnitude.

Such indicators assume the existence of ’standard candles’ -

i.e. a class of galaxies all of which have identical intrinsic luminosity -  

and th e ir use was the approach generally adopted in early studies of 

galaxies and the Hubble flow in the 1970s (c.f. Rubin et aU 1976; 

Sandage and Tammann, 1975a,b). While the standard candle assumption 

is obviously an idealisation, a number of specific galaxy types have 

been proposed as good candidates for standard candles because of the 

small scatter in th e ir intrinsic luminosity; these include Scl galaxies 

(Sandage and Tammann, 1975b) and firs t ranked cluster ellipticals 

(Sandage and Hardy, 1973). We will comment fu rth e r on the properties 

of these specific galaxy types in due course.
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2.2 Standard Candles and Malmauist Bias

In obtaining distance estimates -  from whichever indicator -  

the cosmologist would ideally wish to use a volume limited galaxy 

sample; i.e. one in which every object within a given volume Is 

observed. In practice, however, galaxy samples are more generally  

magnitude limited; I.e. one observes only those galaxies with apparent 

magnitude brighter than some limiting magnitude, m|_. I t  has long been 

recognised that any spread in the luminosity of standard candles 

would introduce Malmquist bias In a magnitude limited sample, this bias 

arises because galaxies of d ifferent intrinsic luminosities are sampled 

within d ifferent volumes: at greater distances only progressively more 

luminous galaxies are observable as fa in ter objects ’fade out’. 

Consequently the mean luminosity of observable galaxies increases with 

distance, and a failure to account for this effect results in galaxy 

distances being systematically underestimated. Eddington (1914) was 

one of the firs t authors to study the statistical biases which arise  

when objects are selected using a distance dependent observable such 

as apparent magnitude. Indeed the effect described above bears his 

name, the Eddington correction, in some references (c.f. Feast, 1987). 

Malmquist (1920) gave a classical discussion of the effect in a stellar 

context and the bias is most commonly referred to by his name.

Malmquist showed that if the luminosity distribution of 

standard candle galaxies were a gaussian, with mean Mq and dispersion 

o, then the mean absolute magnitude, M*, of observable galaxies, 

assuming a constant spatial number density, in a magnitude limited 

sample is:-
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M* = M0 -  1.38o2 (2 .2 )

Many later authors have rederived this result and extended 

the analysis of Malmquist in a cosmological context. One analysis of 

note is in Teerikorpi (1975), in which the author showed that -  

subject to the same assumptions -  the mean absolute magnitude of 

galaxies in a shell at distance, r, is given by:-

exp(-fc(mL“ 51ogr-Mo-25/o)2)
M (r) = M0 -    (2 .3 )

✓2tt <*>(m|_-51ogr-Mo“ 25/o )

where $ denotes the cumulative normal distribution of mean zero and 

unit variance. Figure (2.1) shows a graph of M (r) fo r various values 

of a and assuming Mq = -20. We can see from these graphs that the  

Malmquist bias is negligible at very small distances but increases 

steadily with increasing r beyond a certain distance. The slope of the 

bias curves is similar for each value of o; however, we see that as o 

increases the distance beyond which the bias is non-negligible  

becomes progressively smaller. Consequently the bias at any given 

distance more severe for larger values of o. For example, for r =

100Mpc and o = 1 the mean magnitude is more than 1.2 magnitudes 

b rig h ter than Mq, while the bias is less 0.4 mag when o = 0.3.

2.2.1 The Hubble Diagram and the Minimum Bias Subset

A useful way to illustrate how Malmquist bias arises is via  

the Hubble diagram -  a plot of log(redshift) versus the apparent 

magnitude of a survey of galaxies -  which has traditionally been used
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Mean absolute magnitude, M (r), at distance,r, fo r observable galaxies 

in a sample ’ cu t-o ff* by an apparent magnitude lim it , mL, shown 

fo r d iffe ren t values of o. (M q  = -2 0 ).
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to estimate Hubble’s constant and test for Isotropy in the Hubble flow. 

In principle the Hubble diagram may also be used to determine the

deceleration parameter, qQ, although such attempts have generally

proved unsuccessful (c.f. Kristian et a/, 1978).

Figure (2.2) shows a schematic example of a Hubble diagram 

for a sample with a sharp upper magnitude limit. I f  one assumes that 

the Hubble Flow is uniform, then the observed recessional velocity and 

apparent magnitude of each galaxy in the sample will be related by 

the following equation (neglecting absorption):-

logV = 0.2m + 1ogH0 -  0.2M* -  5 (2 .4 )

In th is ideal case, therefore, a galaxy of a given absolute magnitude,

M* say, will lie on the straight line of gradient 0.2 which intercepts  

the logV axis at logV = logH0 -  0.2M* -  5. I f  the luminosity function of 

the galaxies is a gaussian, with mean Mq and dispersion o, then one 

would expect that 99X of galaxies would lie between the two bold 

diagonal lines in figu re  (2.1), which correspond to absolute magnitudes 

of M q -3 o  and Mq+3o  respectively. Observable galaxies sampled at a 

given distance (i.e. at a given recessional velocity) would therefore lie 

along a horizontal line in the Hubble diagram, between the bold 

diagonals and to the left of the apparent magnitude limit, mi_.

We can easily see from figure  (2.2) that at larger recessional velocities 

it will not be possible to observe all galaxies with absolute magnitudes 

down to M q + 3 o , as a progressively larger part of the luminosity 

function will lie in the ’unobservable* region. Consequently, the mean 

observed magnitude of galaxies in the region denoted ’biased’ will not
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equal the mean, Mq, of the luminosity function, but will decrease 

monotonically in this region with increasing distance -  the precise 

distance dependence being given by equation (2.3).

BIASED

m=»n.

apparent magnitude

Figure (2 .2 )

Schematic Hubble diagram for a galaxy sample with a sharp upper 
apparent magnitude lim it , m|_, demonstrating the presence of 
Malmquist bias and the existence of an unbiased region -  the 

’Minimum Bias Subset’ .
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In a study of the local velocity field using nearby spiral 

galaxies, Sandage and Tammann (1975b) illustrate clearly a simple 

method for dealing with Malmquist bias, by identifying the region of 

the Hubble diagram where it Is not significant and restric ting  the ir  

sample to only those galaxies lying in this region; thus constructing  

what has been termed in the literature as a ’minimum bias subset’ 

(MBS) or ’bias free subset’.

We can see from figu re  (2.2) that there will be a critical 

distance rcr, (corresponding to the bold horizontal line at logVc r ) at 

which a galaxy of absolute magnitude Mq+3o would be observed at the  

magnitude limit, m|_. One would expect to be able to observe 99% of all 

galaxies which lie at distances less than rc r , and so the shaded 

’unbiased’ region of the Hubble diagram will be 99% complete. I t  

represents the region in which the Malmquist Bias is negligible; i.e. 

the ’minimum bias subset’. In  practice, even without knowledge of the  

mean absolute magnitude or variance, one may still construct an 

estimate of the MBS geometrically by drawing lines of gradient 0.2 

through each galaxy’s position on the Hubble diagram and finding the 

minimum value of logV at which these lines intersect the line of the  

magnitude limit, m=rri|_. Expressing this algebraically we have:-

logVcr = min { logV-j + 0.2(mj_ -  m-j)} (2 .5 )

where the minimum is taken over all the galaxies In the sample. Having 

thus constructed an MBS one may then reasonably assign the mean 

absolute magnitude, Mq, to all the galaxies in the MBS. I t  then follows 

that mj -  Mq will be an unbiased estimate of the distance modulus of 

the ith galaxy in the MBS. The approach adopted by Sandage and
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Tammann (1975b) is now to define an estimate of logHQ as follows:-

logH0 = E(logV-j -  0.2m^) + 0.2H0 + 5 (2 .6 )

from which an estimate of Hq is then obtained in the obvious way. The 

summation is over all the galaxies in the MBS. Sandage and Tammann

point out that equation (2.6) defines an unbiased estimate of logHQ,

and observe that consequently the corresponding estimate of Hq will, 

in fact, be biased -  although they regard this bias as a small effect.

2.2.2 The MBS With a Narrow Magnitude Window

It  is frequently the case that galaxy samples are selected not 

just by an upper but also a lower magnitude limit. For example, the 

data set of Scl galaxies used by Rubin et al (1973, 1976) was selected 

from the Zwicky catalogues (Zwicky et al, 1961-68) to have apparent 

magnitudes between 14 and 15. Recall from chapter (1) that a Local 

Group peculiar velocity of 450kms~1 was claimed with respect to this 

sample.

The effect of Malmquist bias on a Hubble diagram constructed 

with both an upper and lower magnitude limit is somewhat d ifferent

from that of an upper limit only: specifically one cannot define a

complete unbiased sample out to some limiting distance since there is a 

positive Malmquist bias (i.e. the mean absolute magnitude is fa in ter  

than Mq) at small distances due to the exclusion of over luminous 

galaxies. In such a case one can still identify a range of redshifts
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(again assuming ’quiet’ Hubble flow) within which the luminosity 

function is best sampled; in this way Rubin et al defined an MBS for 

th e ir data in the redshift range 3500kms“1 to 6500kms"1, and inferred  

the Local group motion by ’bes t-fittin g ’ a dipole to the 96 galaxies in 

th e ir sample with redshifts between these limits.

Several authors (c.f. Fall and Jones, 1976; Sandage and 

Tammann, 1975b; Collins et al, 1991) have discussed specific problems 

which arise when the magnitude selection window is narrow, such as is 

the case for the Rubin data. In particular, Collins et al have shown 

via a Monte-Carlo analysis that a narrow selection window will result 

in the mean absolute magnitude of observable galaxies being strongly  

dependent on redshift; we can see this qualitatively from the

schematic Hubble diagram shown in figure  (2.3), which has a narrow  

magnitude selection window between m-j and m2 - The shaded region 

represents an MBS for the sample in the sense that, within this

velocity range -  V-j to V2  as shown -  the magnitude window samples 

galaxies with absolute magnitudes close to Mq. Note, however, that the  

mean absolute magnitude of observable galaxies at logV-| Is 

substantially d ifferen t from that at logV2 .

Consequently if the redshift distribution of the sampled 

galaxies were strongly correlated with direction -  due to clustering in 

one or more regions of the sky, fo r example -  then there would be a 

corresponding systematic correlation between the absolute magnitude 

and direction of the sampled galaxies. This may lead to an apparent

systematic anisotropy in the inferred peculiar velocity distribution

which would be suggestive of a streaming motion of our galaxy with
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Schematic Hubble diagram for a galaxy sample with a narrow apparent 
magnitude selection window, demonstrating the correlation between 

mean absolute magnitude and redshift -  even within the MBS.
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respect to the sample, but which would be entire ly due to the 

selection procedure. Thus, there seemed good reason to believe that 

the MBS used by Rubin was not free from selection bias, and hence 

the evidence for a Local Group motion was not conclusive. In  order to 

avoid this problem Collins et al stress the importance of using wide 

apparent magnitude selection criteria  in obtaining samples, in which 

case it is at least possible to define a subset of galaxies which is 

complete to some limiting redshift, although the sample will be affected 

by Malmquist bias beyond this limit.

Nevertheless a more fundamental drawback In the use of the 

MBS will still exist even in this case: the assumption inherent In its 

definition of ’quiet’ Hubble flow. Deviations from uniform Hubble Flow 

will distort the linear form of the magnitude -  logV relationship on the 

Hubble diagram and will cause more distant galaxies to be misplaced 

into the ’unbiased’ region and vice versa, so that the tru e  unbiased 

nature of the MBS will be compromised. Even if one were to accept 

that such peculiar motions will be less significant at higher redshifts  

as the Hubble Flow becomes more uniform, these more distant galaxies 

would be excluded from the MBS because the ir redshift places them in 

the ’biased’ region of the Hubble diagram. These limitations in the use 

of the MBS are of particular concern since it precisely to identify  

systematic peculiar motions that the MBS has often been used.

A more promising approach to dealing with the Malmquist bias 

of distance estimates derived from magnitudes alone would be to adopt 

a corrected fiducial value for the absolute magnitude: th is  would at 

least attempt to address the variation of mean absolute magnitude with
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distance, as described by equation (2.3), and would allow more distant 

galaxies -  which would be excluded from the MBS -  to be used 

effectively. We will explore this approach in chapter (3), as a means of 

introducing our statistical formulation for studying the properties of 

distance estimators.

2.3 Distances Derived From Two Observables

In the past fifteen years a considerable observational and 

theoretical effort has led to the identification of a number of 

relationships between d ifferent intrinsic physical characteristics of 

galaxies which have proved extremely valuable for the determination of 

galaxy distances. To provide some background on this work we now 

list the most closely studied of these relations, with appropriate  

references which describe them in more detail.

2.3.1 Correlations Useful as Distance Indicators

(1) Tully-Fisher Relation

This is a correlation discovered by Tully and Fisher (1977) between 

the absolute magnitude of spiral galaxies and the width of th e ir radio 

emission line at 21cm due to neutral atomic hydrogen, a quantity  

readily observable in external galaxies using large radio telescopes. 

The correlation found by Tully and Fisher took the form :-

Hpg = Alog(W0/ s i n i )  + B (2 .7 )
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where Mpg is the absolute photgraphic magnitude corrected for 

inclination and extinction effects, Wq is the 21cm line width expressed 

in krns”1, i is the inclination angle between the normal to the plane of 

the galaxy and the line of sight, and A and B are constants.

As we have already remarked, Aaronson et al, (1980) have 

examined this correlation using infrared magnitudes measured at 1.6um 

and find the same linear form. Several authors (c.f. Roberts, 1978; 

Rubin, 1983) have suggested that the slope of the relation derived 

from photographic magnitudes is quite sensitive to the spiral galaxy 

type. Aaronson et a! on the other hand claim that the in fra -red  form 

shows no such dependence, although this has been challenged in 

Burstein (1982).

(2) Colour-Luminosity Relation

This correlation was firs t proposed by Baum (1959), who observed that 

more luminous early -typ e  systems appeared redder. A more precise 

treatm ent was carried out by Sandage (1972) which established a 

linear relation between absolute V magnitude and U-B colour for 

early -typ e  systems in the Virgo and Coma clusters, v iz:-

U-B = AV + B (2.8)

where A and B are constants (though, of course d ifferent from those 

of equation 2.7). Visvanathan and Sandage (1977) extended the analysis 

to other colors and found similar linear relationships.
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(3) Faber-Jackson Relation

This correlation, firs t identified in Faber and Jackson (1976), takes the  

form of a power law between the luminosity and velocity dispersion, 

determined from the doppler broadening of optical line profiles, of 

elliptical galaxies which, when expressed in terms of magnitudes is 

again linear in form:-

M - Alogo + B (2 .9 )

where o is the velocity dispersion in kms-1 . de Vaucouleurs and Olsen 

(1982) have also derived a linear relation between M and o for 

lenticular galaxies.

(4) Dn-o  Relation

Terlevlch et al, (1981) deduced from a sample of 24 ellipticals this  

correlation between the apparent angular diameter and the central 

velocity dispersion. The form derived was again a power law, as for 

Faber-Jackson, but represented a considerable improvement over the 

latter, with a factor of two less scatter. The derived relation may be 

written as:-

logDn = Alogo + B -  logr (2 .10 )

where Dn is the angular diameter, defined precisely and objectively to 

the same isophote for galaxies at all distances a fte r applying  

absorption and redshift K corrections, and r is the distance of the 

galaxy. Note that equation (2.10) essentially expresses a power law 

relation between o and the intrinsic physical diameter, d, since we 

have Dn = d /r .  Recent evidence (c.f. Giuricln et al, 1989) comparing
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clusters at d ifferent distances Indicates that the power law constant of 

proportionality, B, is Indeed a universal constant to within the limits 

testable by current data.

(5) Diameter-Luminoslty Relation

Holmberg (1969) determined the correlation between the Intrinsic  

physical diameter, d, and absolute photographic magnitude, M, of 

d ifferent classes of galaxies. A linear relation was again found, v iz:-

logd = AH + B (2 .11 )

This relation was refined by later analysis (c.f. Paturel, 1979) 

employing careful corrections to those diameters which had been 

determined according to d ifferen t Isophotal measurement systems.

(6) H II Regions

Sandage and Tammann (1974) describe a correlation between the 

absolute photographic magnitude of late-type spirals and irregulars  

and the size of the ir H II regions, they derived the following specific 

relation:-

log(DH,Dc) = AM + B (2 .1 2 )

where <D|_j,Dq ) is the average of the core and halo diameters of the 

three brightest H II regions in each galaxy. The procedure adopted by 

Sandage and Tammann involved a rather subjective method for 

measuring the diameters on a photographic plate; Kennicutt (1979) has 

repeated the analysis using objective isophotal diameters.
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2.3.2 Calibration by Linear Regression: Malmquist Bias

Determining the constants, A and B, in each of the above 

relations has been the subject of intense study -  and considerable 

debate -  in the literature. The straight line is generally ’best-fitted* 

by performing a linear regression on a calibrating sample of galaxies 

(e.g. a nearby cluster) whose distances -  and hence absolute 

magnitudes or diameters -  can be determined by some other method. A 

key issue in discussions has been the question of which linear 

regression is most appropriate for determining A and B.

Consider for example the Tully-F lsher relation of equation

(2.7). In their original presentation of this indicator Tully and Fisher 

(1977) derived a bes t-fit straight line by regressing absolute 

magnitudes on line widths, i.e. assuming line width to be e rro r-free . 

(In  fact Tully and Fisher achieved this f it  purely by ’eyeballing’ the 

data and adjusting th e ir line to minimise visually the magnitude 

residuals; of course this line may be found less subjectively using 

formulae given in any elementary statistics textbook.)

This regression line determines the mean absolute magnitude 

at a given line width, Wq, as a linear function of logWg (a fter  

inclination corrections) v iz :-

E(MIW0 ) = AlogW0 + B ( 2 . 1 3 )

The important issue is that the slope, A, and zero point, B, derived  

from other regression lines are d ifferent from those determined by 

this regression. Consequently the distances inferred by each indicator
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depend on one’s choice of regression line.

The question of which regression line is ’best’ is non-triv ia l, 

particularly when one must take account of observational selection 

effects. When these are present, in general a Malmquist bias Is 

introduced, analogous to the Malmquist bias already discussed for  

standard candles, which results In systematic errors in distances 

estimated from each indicator. I t  is important to note that this bias is 

distinct from other systematic effects to which the calibration process 

may be prone: in particular zero-point errors introduced when the  

distances of the calibrating galaxies are inaccurately determined (c.f. 

Tammann, 1987). The existence of Malmquist bias means that even for a 

perfect calibrating sample, distances estimated to more remote galaxies 

may still be systematically in e rro r if one uses an inappropriate  

regression on the calibrators.

Four d ifferent regression lines have been considered in the  

literature: these are (defined as for the Tully -F isher relation, with the  

obvious corresponding definitions for other indicators):-

(1) Regression of magnitudes on line widths.

(2) Regression of line widths on magnitude; i.e. treating magnitude as

an e rro r-fre e  variable (c.f. Schechter, 1980)

(3) Orthogonal regression, accounting for errors on both observables

(c.f. Giraud, 1987)
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(4) ’Bisector’ regression; i.e. the line which bisects regression lines (1) 

and (2) (c.f. Pierce and Tully, 1988)

As a typical example, figure (2.4) shows the Tully-F isher 

relation illustrated for a combined sample of spirals from the Virgo 

and Ursa Major clusters (Tuily, 1988). The dashed line denotes the 

regression of luminosity on line width, I.e. (1) above, while the steeper 

solid line denotes regression (2), line width on luminosity. The 

orthogonal and bisector regression lines, if drawn, would lie between 

these two. Although we can see that the difference in the slope of 

these lines is fa irly  small fo r these data, which are quite well 

correlated with correlation coefficient, p = -0.8, the difference in slope 

increases sharply as the intrinsic scatter in the relation increases. 

(Note that p is negative since an increase in luminosity corresponds to 

a decrease in absolute magnitude.)

We can illustrate this Malmquist bias -  again using the 

Tully -F isher relation as an example -  in a manner similar to the 

Hubble diagram representation described in section (2.2). This 

schematic picture is similar to the treatment given in e.g. Tully, 1988 

and Lynden-Bell et al, 1988).

Figure (2.5a) shows a schematic plot of absolute magnitude 

versus log line width (assumed corrected for inclination). The shaded 

area indicates the set of possible values of M and Wq, given the 

in trinsic scatter of the Tully -F isher relation. (More precisely, the 

shaded area indicates the region within which 99%, say, of galaxies 

would be expected to fall -  analogous to the diagonal lines which
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bounded a 99% confidence region of the Hubble diagram in the  

previous section.)

-24

-2 2

-18

-16

2.0 2.2 2.41.8 2.6 2.8 3.0

log WRl

Figure (2.41

Example of the T u lly -F ish er re la tio n  derived fo r  a sample o f sp ira ls  

from the Virgo and Ursa Major c lusters . The dashed lin e  1s obtained by 

regressing lum inosities on lin e  widths; the so lid  lin e  by regressing 

lin e  widths on lum inosities. C orrelation co e ffic ie n t fo r  the data,

P = -0 .8
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2.5a
Regression line of 
m agniudesonline widths

Tfl

True /  >
regression curve 
for this sample

M
absolute magnitude

Figure (2.5)

Schematic Tully-Fisher diagrams demonstrating the effects of Malmquist 

bias on the calibration of the relation by linear regression. The 

diagrams are explained in the text.
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In other words, this region represents the range of values of 

M and W q  which one could expect to observe in, fo r example, a 

completely sampled nearby cluster as could be used to calibrate the  

relation. Thus, the straight line shown in figure (2.5a) is the  

regression line, E(M|Wq), obtained by regressing magnitudes on line 

widths which may then be used to estimate the luminosity of a more 

distant galaxy by reading off the point of intersection with the

regression line, as shown.

In figure (2.5b), on the other hand, we introduce an apparent 

magnitude limit, mj_, and demonstrate its effect on the Tully -F isher  

relation. In this figure  the shaded region Indicates the range of 

observable values of M and W q  for galaxies at some given distance, r, 

after accounting for the magnitude limit. ( I t  is convenient to consider 

galaxies at the same distance since the apparent magnitude limit then 

translates directly to a limiting absolute magnitude, M|_ = mj_-5logr-25.)

At this point it is important to note that we can regard the  

shaded region of figure (2.5b) in two d ifferent -  but entire ly  

equivalent -  ways: either as representing the actual spread in

observed values of M and W q  assumed by an idealised group of

galaxies in, e.g., a cluster at distance, r, or equivalently as 

representing the underlying distribution of values of M and W q  at 

distance, r, from which the values taken by each individual galaxy are  

drawn. This means that we make no distinction between the effects of 

selection bias on groups of galaxies in a cluster and on isolated field  

galaxies. This Is contrary to e.g. Lynden-Bell et al, (1988) or

Teerikorpi (1984, 1987) in which selection effects on field and cluster
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galaxies are treated separately. I t  seems to us, however, that no such 

distinction is necessary.

Now it is clear from figu re  (2.5b) that for lower values of 

logWQ one cannot sample M completely since less luminous galaxies are 

’cu t-o ff’ by the magnitude limit. This means that the regression curve, 

E(M|W0), in this second case is no longer given by the s tra igh t line of 

figure (2.5a) -  also shown in figu re  (2.5b) for comparison -  but 

deviates from this line fo r small W q  and is described rather by the 

dotted curve, as shown. Consequently, if one derives the Tully -F isher 

constants by regressing magnitude on line width in a complete 

calibrating sample, and then uses this regression line to estimate the 

luminosity of a more remote galaxy from its measured line width, W q ,  

then the inferred absolute magnitude will not equal the mean value, 

E ( M | W q ) ,  at that line width for observable galaxies at the greater 

distance. As we can see from the deviation of the dotted curve, the 

value of M estimated from the stra ight line will be greater than the 

true mean value; i.e. the luminosity will be systematically 

underestimated, leading to a negative Malmquist bias in the inferred  

distance of the galaxy.

This same effect will occur when this regression line is used 

to calibrate other indicators which involve luminosity. Moreover, 

diameter selection effects (i.e. the exclusion of galaxies with angular 

diameter less than some limiting value) will affect the Dn-o  relation in 

an analogous fashion.

The Malmquist bias inherent in the use of this regression has
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been recognised by a large number of authors; furtherm ore, It has 

been shown that Malmquist bias will also arise when one calibrates 

using the orthogonal or bisector regression lines (c.f. Giraud, 1987; 

Bottinelli et a/, 1986). Several authors have studied the bias In

quantitative detail: in particular Teerikorpi (1984) has assumed a 

bivarlate normal fo r the distribution of M and logWQ and has

determined that, in th is case, the Malmquist bias, E(M|Wq) -  Mq, of the  

absolute magnitude at given line width has the same distance

dependence as the bias for standard candles -  as given by equation 

(2.3). The amplitude of the bias at a given distance is smaller than for 

standard candles, however, just as the bias amplitude was reduced for 

smaller values of o in figu re  (2.1). This means that -  at least from the  

point of view of Malmquist bias -  using the Tully -F isher relation with 

this regression is equivalent to using a ’better’ standard candle; i.e. 

one of smaller intrinsic spread in luminosity. In tu itive ly  this would 

seem to make sense: we can think of the measured line width of a 

galaxy as providing additional information which ’narrows down’ the

range of probable values for its luminosity.

I t  is the fact that the amplitude of the Malmquist bias

depends on the actual distance of a galaxy, just as was the case for 

estimates derived from apparent magnitude alone, which makes its 

removal non-triv ial. Any exact correction would require the true

galaxy distance to be known -  which would render somewhat

redundant any attempts to estimate it!
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2.3.3 Schechter’s Scheme for Defining Bias-Free Distances

An important contribution to the debate over how best to 

calibrate relations of the Tully-F isher type was provided In Schechter 

(1980). This paper was addressed primarily to the Faber-Jackson 

relation, although the author recognised its wider ramifications. 

Schechter observed that the mean log velocity dispersion, E(logo|M), 

at given absolute magnitude, M, is no d ifferent in a magnitude limited 

sample than in a volume limited sample. Thus, the slope of the line 

obtained by regressing logo on M is unchanged in a sample subject to 

magnitude selection; in other words this regression Is unaffected by 

Malmquist bias. We can see that Schechter’s observations are correct 

from figure (2.5b), fo r the Tully-F isher case. For observable galaxies 

(i.e. M < Ml ) we can still sample the full range of line widths at a 

given magnitude, even for magnitudes very close to the limit. Hence 

the mean log line width at given magnitude, M < M|_, is precisely equal 

to the mean value at the same magnitude in the completely sampled 

case of figure  (2.5a). This means that we obtain the same regression 

line of logWQ on M in both cases. Specifically that regression line 

takes the form:-

E(logW0 |H) = aM + b (2 .14)

where a and b are constants. We can use this equation to estimate M 

from the measured line width of a galaxy by determining the value of 

M fo r which the observed log(line width) is equal to its expected value 

at that magnitude.

Schechter also pointed out that the immunity of this
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regression line to Malmquist bias holds regardless of the form of the  

magnitude selection effects (e.g. a narrow magnitude window or a 

’fu zzy ’ cu t-o ff limit). The only condition required is that the selection 

effects depend on apparent magnitude alone; i.e. that the line widths 

are select!on-free. Similar remarks obviously apply to other indicators. 

Hence for the Dn-o relation we require that the observed galaxies are 

selected by apparent diameter alone. Lynden-Bell (1991) discusses this  

assumption and recognises that It holds tru e  -  to a good approximation 

-  in the data set of ellipticals studied in Dressier et al, (1987) and 

Lynden-Bell et al, (1988). Indeed, Lynden-Bell points out that selection 

by diameter alone is consistent with good observational procedure: 

measurements of velocity dispersions require relatively long exposure 

times and large telescopes and are, therefore, costly. By contrast, 

measurements of galaxy diameters can be made from already existing 

photographic surveys. Thus, it is quite common to select galaxies for 

observation on the basis of the ir angular diameter alone while the 

velocity dispersion are measured later fo r the selected objects. Tully  

(1988) makes a similar point with respect to the Tully-F isher relation.

The assumption of a selection-free observable is, 

nevertheless, clearly crucial to the unbiasedness of the Schechter 

regression line. I f  there is selection on line width then this regression 

line will exhibit Malmquist bias in precisely the same way as the 

regression of M on logWQ since the regression curve E(logWolM) for 

observable galaxies in an incomplete sample will now deviate from the  

stra ight line obtained for a complete sample. A number of authors (c.f. 

Aaronson et al, 1982; Teerikorpi, 1984; Kraan-Korteweg et al, 1986; 

Tully, 1988) have re-affirm ed the results of Schechter and have thus
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advocated calibration of the Tully -F isher relation by regressing line

widths on magnitudes so as to obtain bias-free distance estimates.

2.4 Summary and Concluding Remarks

In this chapter we have seen how galaxy distance estimates 

will in general be affected by Malmquist bias when one’s galaxy sample 

is subject to observational selection effects. We have considered firs tly  

how this bias affect distances inferred using only the apparent

magnitude of a galaxy, and have reviewed the Minimum Bias Subset 

method for dealing with the bias, as proposed in early papers. We 

have discussed the limitations of the MBS: the fact that its use with a 

narrow magnitude selection window may lead to the detection of 

spurious streaming motions, and the more fundamental limitation that 

the MBS rejects those galaxies at higher redshifts for which the  

assumption of a ’quiet’ Hubble flow -  inherent in defining the MBS -  

might be considered more reasonable.

We have gone on to consider how Malmquist bias also affects  

distance indicators which depend on two observables, such as the  

Tully -F isher relation; in particular how the bias may arise when this  

relation is derived by regressing magnitudes on line widths. By 

contrast we have considered the scheme proposed by Schechter (1980), 

whereby one prefers to regress line widths on magnitudes thus  

obtaining a straight line which is unaffected by Mamlqulst bias,

provided only that the selection effects are confined to the apparent 

magnitude alone.
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The adoption of this scheme has not been universally  

endorsed and a number of authors (Sandage and Tammann, 1990; 

Bottinelli et al, 1986; Lynden-Bell et al, 1988) continue to favour a 

regression of magnitude on line width (or its equivalent fo r other 

indicators).

Of course the fact that the Schechter regression line is 

unbiased does not automatically qualify that line as the ’best’ choice. 

In the firs t instance we must c larify precisely what we mean by ’best’; 

I.e. based on what crite ria  do we make our choice. I t  seems to us that 

this basic question has not been adequately addressed in the  

literature -  a fact which obviously does nothing to help resolve the  

disagreements over which method is tru ly  ’best’. Clearly the absence 

of Malmquist bias is a desireable property and if one adopts this as 

the only criterion then the Schechter scheme would indeed represent 

the best method of calibration. I t  is, however, straightforw ard to 

envisage a situation where the Schechter regression line is wholly 

inappropriate: the case where M and W q  are completely uncorrelated. 

In this pathological case the mean value of logWQ at given M is a 

constant, independent of M, i.e. E(logWolM) *  E(logWo). Consequently, 

we obtain no information at all about M from measuring the line width 

of a galaxy and so the method of using the Schechter line to in fer the  

magnitude, and hence the distance, breaks down completely 

notwithstanding the fact that the line is still free from Malmquist bias!

In the next chapter we will introduce a rigorous statistical 

formulation, based on the analytical techniques of risk theory (c.f. 

Hogg and Craig, 1978; Mood and Graybill, 1974), which will allow us to



57

tackle more effectively the question of which method of distance 

estimation is tru ly  ’best’. Later in the thesis we will return  to the 

Schechter scheme so as to verify its validity within our statistical 

framework -  but more importantly to Identify under what 

circumstances the method is a poor choice, as was clearly the case in 

the pathological example considered above. In chapter (3), however, we 

will firs t of all restric t ourselves to the simpler case of estimates 

which depend only on apparent magnitude.
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3. ESTIMATION OF DISTANCE USING APPARENT MAGNITUDE

3.1 Introduction

In the preceding chapters we have seen that the luminosity 

selection effects introduced in a magnitude limited sample of galaxies 

may lead to systematic errors In the estimation of the distances to 

those galaxies. In order to understand more precisely the form of 

these systematic effects, and to explore methods of reducing or 

eliminating them, we require to formulate the problem of distance 

estimation in a statistically rigorous manner. Following the standard 

statistical methods of risk theory, we will introduce a technique for 

defining d ifferent distance estimators and comparing the ir  

distributions and properties, so as to identify the estimator most 

appropriate to a given problem.

We will consider in this chapter the case where distances are  

estimated using only measurements of apparent magnitude -  the most 

readily understood distance indicator. This simple approach will 

illustrate clearly the statistical principles involved and provide a 

framework for subsequent, more detailed, analysis. In particular, the  

extension of our analysis to include other distance indicators -  such 

as apparent diameter or secondary Indicators derived from e.g. the  

Tully -F isher relation -  is relatively straightforw ard. We will consider 

such an extension to estimates derived from two and three observables 

in the chapters which follow.

The analysis which we adopt here is similar to Simmons and
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Stewart (1985) in their discussion of polarimetric estimators. Hereafter 

we shall denote an estimator of a parameter by a caret -  e.g. an 

estimator of distance, r, will be written f .  Furthermore we adopt the  

usual statistical convention, wherever possible, of denoting random 

variables by bold type characters.

We will derive expressions for the apparent magnitude 

distribution of observable galaxies at given (though in general 

unknown) true distance, taking into account the effects of luminosity 

selection, and use this distribution to define various estimators of that 

distance. Of course in certain astrophysical problems it may be 

expedient to estimate not the distance, r, but rather some function of 

r such as logr or r"1 (c.f. Feast, 1987). Indeed, we have already seen 

in chapter (2) that cosmologists make frequent use of the distance 

modulus, which is essentially an estimator of logr. I t  does not follow 

that a good estimator of logr, fo r example, will necessarily be a good 

estimator of r or vice versa, and we will discuss some of the  

implications of this in due course. Our analysis may easily be adapted 

to the estimation of functions of r, as we will see later, but it is 

instructive to consider firs tly  only estimates of r itself.

3.2 The Observed Distribution of Apparent MaQnitude

Let the absolute magnitude, M, and position, r, of a galaxy be 

random variables with some intrinsic Joint distribution function. Let 

N(M,r)dMdV denote the number of galaxies in volume dV at position r  

that have absolute magnitudes In the range H to M+dM. Further, let
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n (r) denote the number density of galaxies (of all magnitudes) at 

position £. Suppose now that H and r  are uncorrelated so that we may 

w rite:-

N(M,r)dVdM = 'KM)n(r)dVdM (3.1)

i.e. we assume the existence of a luminosity function (hereafter LF), 

<KM), which describes the magnitude distribution of galaxies, 

independent of their position. The LF has frequently been defined as 

a number density of galaxies per unit range of absolute magnitude 

(c.f. Felten, 1986); clearly such a description cannot be independent of 

position since there will be an immediate dichotomy between field and 

cluster samples. In equation (3.1), therefore, we prefer to define the  

LF as a probability density -  a definition which has found increasing 

favour in recent years and which is identical to that used in stellar 

statistics (c.f. Kirshner et al, 1979; Mihalas and Binney, 1981). By 

defining t(M ) in this way one need make no assumptions about the  

uniformity of n(x). Even with this definition, however, the LF of 

galaxies of all Hubble types (usually referred to as the general or 

universal LF) will not be independent of position, since the relative  

frequencies of the d ifferent morphological types depend strongly on 

the local density (c.f. Dressier, 1980; Postman and Geller, 1984). I t  has 

also been demonstrated (c.f. Hamilton, 1988; Einasto, 1990) that the  

brightest galaxies tend to lie preferentially in groups and clusters, 

probably as a result of dynamical evolution. Apart from these galaxies, 

however, recent reviews (c.f. Binggelli et al, 1988) report no evidence 

that the LF for a specific Hubble type depends on the local density. I t  

seems, therefore, that the separability of *KM) and n(_r) assumed in 

equation (3.1) is a valid approximation for any single Hubble type.
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Consider now the jo int distribution, p(M ,r), of position and 

absolute magnitude for observable galaxies In a sample subject to 

luminosity selection effects, as described by a selection function, 

S(M ,r). This function measures the probability that a galaxy of 

magnitude M and at position r  will be observable. Thus, it follows 

th a t:-

* ( M ) n ( £ ) S ( M , £ ) d M d V
P(N,£) = Yc-----------------------------------  <3*2)

JJ t(M)n(£)S(M,£)dMdV

Note that the selection function, S(M,£), does not determine 

the probability that a galaxy would actually be observed; clearly this  

would depend on the local number density, n (x), which will In general 

be unknown. The definition of S (M ,r) which we adopt here will be 

independent of n(£) and, moreover, will be independent of direction 

provided one may correct for the directional dependence of galactic 

absorption. A number of standard observational methods exist for 

carrying out these corrections, (c.f. Sandage and Tammann, 1981; 

Burstein and Heiles, 1982)

We now consider the conditional d istribution, S(M |ro), of 

absolute magnitude at a given distance, tq, for observable galaxies. 

Substituting from equation (3.2), this is given by:-

'k(H)S(H, r0)
S(M|r0) = t-------------------------  (3 .3)

J *(M)S(M,r0)dM

Note that this conditional distribution is independent of the 

galaxy number density, n(£). In other words, the shape of the  

observed magnitude distribution at distance r will not change with the
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density of the local environment. This fact proves very useful In

considering the effects of bias on distance estimation, but It seems to 

us that it has not always been fully appreciated In the literature.

Finally, we change variables in equation (3.3) to obtain the 

conditional distribution, <;(m|ro) of apparent magnitude, m, at distance, 

rQ, for observable galaxies. Formally, m Is a function of the random 

variable, M, and so is itself a random variable, m and M are related In 

the usual way. v iz :-

m = M + 5logr0 + 25 (3.4)

where the parameter tq, the true distance of the galaxy, Is measured 

in Mpc and we have assumed that the effects of absorption in both 

our own galaxy and in the observed galaxy have been removed or 

neglected. I t  follows that C(m|rQ) is given by:-

t(«-51ogr0-25)S(B)
C ( « | r 0 ) = f------------------------------------------  ( 3 . 5 )

I t(«-51ogr0-25)S(«)d»

To proceed fu rth e r we must specify the form of the LF, <KM), 

and the selection function, S(m). In this chapter, we will choose S(m) 

to be a Heaviside step function at some magnitude limit, mL. i.e.:-

S(«) =
1 i f  ■ < ni|_

0 i f  ■ >, mL
(3.6)

We will also consider the case where the LF, +(M), is normally 

distributed with mean Mq and variance o2. Our primary reason for
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these choices is mathematical expediency, since the algebraic 

expressions for the estimators and the ir distributions are greatly 

simplified. Nevertheless, the Gaussian model seems to be a reasonable 

one fo r certain specific Hubble types. Various studies of firs t-ran ked  

cluster E galaxies (c.f. Sandage and Hardy, 1973; Schneider et al, 1983) 

have indicated that their LF is near Gaussian with a dispersion of o = 

0.3 mag. Sandage et al (1985) have modelled the LF of all spirals in 

the Virgo cluster by a Gaussian of mean absolute magnitude -18.4 and 

dispersion o = 1 .5  mag, and the dispersion decreases if one considers 

only certain sub-classes of spirals. In particular, the LF of Scl spirals 

has been modelled by a Gaussian of dispersion o = 0.7 mag (Sandage 

and Tammann, 1975).

Substituting for t(M ) and S(m) we find that equation (3.5) 

reduces to :-

C (» |r0 ) =

exp (-1^ 2o2Ot-51ogr0-25-M o)2) ■ < mL

V 2tt o <J>(mL-51ogro-25-M()/o) (3 .7 )

0 ■ > mL

<J> denotes the cumulative standard normal distribution, of mean zero 

and unit variance.

Figure (3.1) shows examples of C(m|rQ) for various d ifferent 

tru e  distances and for typical parameter values of o = 1 , Mq = -20 and 

m[_ = 15. I t  can be seen that at distances greater than 50 MPc the 

observed distribution quickly becomes highly non-Gausslan in shape.
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E
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apparent magnitude, m

Figure (3.1)

Probability density function, C(m|rQ), for observable galaxies at true  

distance tq = 25MPc, 50MPc, 100MPc and 200MPc 

(o = 1,  M q  = -20, m|_ = 15)
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We will now use this distribution to define d ifferent 

estimators of the distance, rp, and investigate their properties.

3.3 Definitions of Distance Estimators

There are a number of estimators which present themselves 

as obvious candidates for estimating distance. One may define a set of 

simple estimators by solving for tq in equation (3.4), setting m equal 

to the observed apparent magnitude, m, and assuming a particular 

value for the absolute magnitude, M* say, to obtain in generali

t y  10 0 ,2 (" " M* " 25) (3.8)

Choosing an appropriate value for M* is clearly important in order to 

define a good estimator of distance and reduce the biasing effects of

selection. In  chapter (6) we will address in some detail the question of

how one might choose the ’best’ value of M* for a given sample of

galaxies. For the present, however, we will consider three estimators

of this type which correspond to specific elementary choices of M*. 

The definitions of these estimators now follow.

3.3.1 'Naive* :

For this estimator we simply choose M* = M0, the mean absolute 

magnitude of the intrinsic LF. Thus, we take no account of the bias 

due to selection or the dispersion of the luminosity function and the  

estimator is simply given by:-

f *  = 10 ° - 2 (*  *  M°  '  25) (3.9)
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3.3.2 ’Malmquist’ : ^ A L

Equation (3.8) may be rewritten as

f. _ 1 0  0.2m R (i8 a )

where R = 10"°*2(M + 25)

Let <R> be the mean value of R for observable galaxies in a magnitude 

limited sample, assuming a uniform spatial distribution, viz (Malmquist, 

1920):-

<R> = 1 < f°-2(M0 “ 1-61° 2 + 25> (3 .10 )

We thus define the ’Malmquist* estimator as ^mAL = 10 0,2m which 

Is equivalent to adopting M* = Mq -  1.61o2 in equation (3.8). Note that, 

as we have seen in chapter (2), the mean absolute magnitude of 

observable galaxies in a magnitude limited sample (again assuming a 

uniform density) is given by Mq -  1 .3 8 c2 (Malmquist, 1920). One could 

therefore define a second ’Malmquist’ estimator by setting M* equal to 

th is value. Various authors have considered this point (c.f. Feast, 

1987) and conclude that a distance estimator derived from the mean 

distance of galaxies is a better choice than one derived from the mean 

magnitude. The fact that these estimators are not equivalent is a 

consequence of the non-linear relationship between magnitude and 

distance.

3.3.3 ’Proximal* : Pp

In  th is case we adopt M = Mq + ko2, where the constant, k, is chosen 

so that the percentage bias of fp tends to zero as the tru e  distance
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tends to zero. The required value of k = 0.23 may be determined from 

equation (3.29) as we will see later. This estimator should be most 

accurate for nearby galaxies, hence the name ’proximal*.

All of the above estimators might be considered worthy of the

title  ’naive* since the ’proximal* and ’Malmquist’ estimators d iffe r from 

the former only by a constant correction term. In tu itive ly  it seems 

clear that such a simple correction will not be adequate to completely 

remove the effects of selection. Furthermore these estimators make 

little  or no use in their definitions of the observed magnitude 

distribution. We now consider four fu rth e r estimators, which are  

derived directly from the distribution function, C(m|rQ).

3.3.4 ’Mode’ :

We define this estimator as the value of tq for which the observed

apparent magnitude is the modal value of C(m|rQ) -  i.e. the value for

which m0 bS maximises C(m|ro) with respect to m. Hence satisfies:-

__3 £(■! r0=fM) I = 0 (3 .11 )
I • =mobs

3.3.5 ’Median* : f̂ MED

This estimator is defined as the value of r0 for which the observed 

apparent magnitude is the median of C(m|r0 ). Substituting from 

equation (3.7) it follows that ?>|ED is the so|utlon of:"

<*>(^0bs“51o9^HED~25-Mo/°^
--------------------------—--------------------- = 0 .5  (3 .1 2 )

<t( m -̂ 61 ogf’jjEQ-2 5-H q/ o )
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3.3.6 ’Mean ’ : 'ME

This is defined as the value of tq for which the observed apparent 

magnitude, m ^ s , is equal to the mean of C(m|ro). Thus

satisfles:-

J m C(m|r=f^g)dm = m0bS (3 .13 )

Substituting from equation (3.7) and carrying out the integration we 

find that the equation defining 'ME

mobs = ^0+ ^5 + ” oexP ( “ 1 /9r.2(mL“^ °9 ? ‘ME“25_M0)2)
■   (3 .14 )

V 2n $(mL“51o9f'HlE“ 25”MQ/o)

3.3.7 ’Maximum Likelihood’ : fjj|_

This estimator is defined as the value of fq which maximises the 

probability, with respect to r0, of obtaining the observed apparent 

magnitude. Therefore ^ML satisfies:-

_3 C(«=mO5 S| r 0 ) | = 0 (3 .1 5 )
3r0 I rOr ĤL

Upon substitution for C(m|rQ) from equation (3.7) we find  

that ' ml satisfies equation (3.14); ' ml and rME are, therefore, 

identical for a Gaussian LF and we will no longer d ifferentiate  between 

them. Both are also equal to the ’Teerikorpi estimator’ (Teerikorpi, 

1975) which is defined by firs t computing the mean absolute magnitude 

of observable galaxies at distance, r0; (c.f. equation 2.3) -  a definition  

which is clearly equivalent to ' me-
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We also found that and are Identical for a Gaussian LF.

That several of our estimators should be equivalent is not too

surprising since it may easily be shown that, In the absence of

selection effects, the ’naive’, ’mean’, ’median’, ’mode’ and ’maximum 

likelihood’ estimators are all identical for a Gaussian LF (c.f. Graybill, 

1961).

At this point we introduce a convenient unit of distance

which we will re fer to as the limiting distance, ri_, defined by:-

Thus, in these scaled units, a galaxy of absolute magnitude Mq and at

unit distance would be observed to have the limiting apparent

magnitude, mj_. By scaling distances in this way we may investigate

the properties of our estimators without specifying an explicit value of 

Mq and nr^. Throughout the remainder of this -  and subsequent -  

chapters we will, therefore, use the notation x = r/rj_  and St = f/r i_ , to 

denote true distances and estimated distances respectively. A typical 

value for rj_, corresponding to Mq = -20 and mj_ = 16, would be 100 

Mpc. In  these scaled units, and for a Gaussian LF, the conditional

distribution C may be written as:-

5logrj_ = m|_ -  Mq -  25 (3.16)

exp ( " 1/2o2("  " mL " 51°9x0>2)
m < it il

S (» |x0) =
✓ 2 n o  $(-51ogxQA7) (3 .1 7 )

0 ■ >, mL

I t  is useful to represent the estimators in terms of the
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following implicit equatlons:-

51ogft||

Ŝ Od̂ MAL ~ 1 - 61o2 
n»L = 51og*p + 0.23o2 (3 .18 )

51ogJ^L -  o exp ( -1 /2 c 2(51og5^L) 2)

✓2it $(-51og$HL/o)

The solutions of these equations are shown in figures (3.2) 

and (3.3), for o = 0.5 and o = 1 respectively. Thus, in geometrical 

terms, the distances inferred by each of the estimators may be 

determined from the graphs by drawing a vertical line from the  

observed value of m̂ _ -  m and finding the points of intersection with 

the appropriate estimator curve. In the interests of c larity  we have 

not plotted the curve of the ’median’ estimator, *MED' Although not 

identically equal to *ML> calculations show that the median estimator 

differs from the former by no more than a few percent over the 

domain shown. For the purposes of this study, therefore, we will 

regard &m e d  and as equivalent.

I t  can be seen from figures (3.2) and (3.3) that all of the  

estimators have similar asymptotic behaviour for m «  m̂ _; the ir  

behaviour close to the limiting magnitude is, however, markedly 

divergent. Each of the firs t three estimators, 2^, *MAL anc  ̂ *P> tends 

to a fin ite  limit as m tends to nr .̂ Hence there will be an upper limit 

to the distances which may be inferred by each of these estimators. 

Indeed it follows that any estimator of the type shown in equation

(3.8) will be defined only to some upper limit, r * , given by:-

(3 .1 9 )



es
ti
ma
te
d 

di
st
an
ce
 

(s
ca

le
d 

u
n

it
s)

71

Z D

1.  6 -  -

0. B--

0. 6 - -

0.0

2.5 3.5I. 5 2.0 4.0as t.Oao

mL

Figure (3.2)

Distance estimator curves for * ML, *N> *MAL and *P  (o = °*5)
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Figure (3.3)

Distance estimator curves for *ML- *N- *MAL and *P
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or, in scaled units, to x* given by:-

y ~ in “0.2(M* -  M0) ,
x* - 10 0 (3 .19a)

Hence if the true distance of an observed galaxy is greater then x*

then, regardless of the galaxy’s apparent magnitude, its distance will 

be systematically underestimated.

In both figures (3.2) and (3.3) we see that the estimator 

curve for *ML- on the other hand, does not intercept the vertical axis. 

In fact, it follows from equations (3.14) that *ML can take a rb itra r ily  

large values and *ML *  « as m mj_. In tu itive ly , therefore, it would 

seem that *ML should be the more reliable estimator for very distant 

galaxies. Before fu rth er comment is possible, however, we must f irs t  

consider the distribution of each estimator.

3.4 Distributions of Distance Estimators

To derive the probability density function of any estimator *  

we note that *  is a function of the random variable, m: i.e. x = *(m ). 

The distribution function of it may then be written down in terms of 

the distribution of m, C(m|x0 ), and so will also depend on the  

parameter, x q , the true distance. Thus the distribution, X ( £ | > ^ q ) ,  of an 

estimator, k, for galaxies sampled at true distance, xq is given by:-

X (* |x 0) = ?(■(») |X0 ) |d" / dJ(| (3 - 2° )

For each estimator X ( * |xq) may, therefore, be computed from
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equations (3.17) and (3.18). As an example, figures (3.4) and (3.5) show 

graphs of the distribution functions of 2^ and *ML respectively, for  

d ifferent true distances and for o = 1.

5.0

o
X 4 . 5 - -
z

<xw

3 . 5 - -

2 . 5 - -

2. 0 - -

I. 5 - -

1.0--

0. 5 - -

0.0

t .2 1.4 1 .61.0 1. 60.0 2.00.80.2 0.4

**

Figure (3.4)

P ro b a b ility  d e n s ity  fu n c t io n ,  X ( ^ | x q ), o f  th e  e s t im a to r  3 ^  t r u e  

d is ta n c e  x0 = 0.2, 0.5, 1.0 a n d  1.5 (o = 1)
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5 .0

4 . 5 - -

4. 0 - -

3. 0 - -

2 . 5 - -

2. 0 - -

1. 5 - -

1 . 0 - -

0.0
4.54.03.02.52.00.0 0l 5

Figure (3 .5)

P r o b a b ility  d e n s ity  fu n c t io n ,  X ( * M L |x 0 ), th e  e s t im a to r  * M L a t  t r u e  

d is ta n c e  x0  = 0.2, 0.5, 1.0 a n d  1.5 (a = 1)
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There are a number of d ifferent statistical descriptors which 

may be used in order to compare these distributions. For example, in 

figure  (3.6) we plot the modal value, xmocje , of and X ^ l as a 

function of tru e  distance, x q , and for o = 1. For both estimators we 

see that xmocje < *0* f ° r x0̂  i,e* the mode of both distributions is 

negatively biased. At large distances the bias becomes particularly  

severe for since this estimator is defined only for *N < 1, so That 

we must necessarily have xmo(j e 4 1» even for xq »  1. Similar 

behaviour is found for *maL and *P-

4 .0

3? 15

3.0

2 . 5 - -

20--

t .  5 - -

1.0--

0 . 5 - -

0.0

0.0 as 2.0 2 .51 . 0 1.5 3.0

X0
Figure (3.6)

Modal v a lu e , xm o d e , o f  5^| and  XM L as a  fu n c tio n  o f t r u e  d is ta n c e , x 0  

(0 = 1 )
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Another common descriptor is the median value, x ^ , defined implicitly 

by:-

x . 5 r
X (z |x 0 ) dz = 0.5 (3 .2 1 )

0J

Clearly X 5  will be a function of the true distance, x q . For any x q  we 

may compute the median percentage bias, PB(xq), of an estimator given 

by:-

PB(x0 ) = x -5 ~ x0 .100% (3 .2 2 )
x0

I t  is useful to consider the percentage bias, and not jus t the

bias, of an estimator since the former provides a measure of the

systematic e rro r which may be directly compared at d iffe ren t true  

distances. F igure (3.7) shows the median percentage bias of *N and 

*ML- as a function of tru e  distance, x q , and fo r o = 1 . I t  can be seen 

that X 5  is severely biased at large distances fo r both estimators,

although, unlike the mode, the median bias is positive for *ML-

In most estimation problems it is generally the moments, 

however -  and in particu lar the expected value and variance -  of an 

estimator which are most frequently used to describe its properties. 

To be consistent with our previous notation we will denote the

expected value of an estimator, Z, at true distance, x q , by E(S |^q). I t  

follows that E (X |xq) is given by:-

E(X |x0 ) = f X X(X |x0 )d* (3 .2 3 )

We thus define the mean bias, B(ft,xo)> of an estimator, * ,  at tru e
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Figure (3 .7 )

Percentage median bias, PB(xq), of and x^ l  as a function of tru e  

distance, xq (o = 1)
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distance, xq, by:-

B (*,X (j) = E (* |x 0 ) -  x0 (3 .24 )

I .e .

B (* ,x 0 ) = J ( *  -  X q )  X(X|x0 )d* (3 .24a)

Although the bias of the median and mode are recognised as possible

indicators of the * good ness’ of an estimator, it is the mean bias as

defined in equation (3.24) which is most often considered in the  

statistics litera ture . Henceforth we will adopt th is la tter definition of 

bias.

We also define here the mean square e rro r (hereafter MSE), 

e(5c,X0), of an estimator as follows:-

e (X ,x 0 ) = J (X -  x0 ) 2 X(X |x0 )dX (3 .2 5 )

Compare this with the definition of variance, v iz :-

V (X ,x0 ) = { (X -  E(XIxq) ) 2 X(X |x0 )dX (3 .2 6 )

For an unbiased estimator MSE and variance are equivalent; when one 

is considering biased estimators MSE is the more relevant quantity.

The bracketed quantity ( *  -  x0 )2 in equation (3.25) is an 

example of what is referred  to in risk theory as the loss or penalty 

function (c.f. Hogg and Craig, 1978). This is defined as a non-negative  

number, L(*,>^), which measures the ’loss’ involved in adopting as the
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true distance the value taken by the estimator, * ,  when that tru e  

distance is actually equal to x q . Another natural choice fo r the loss 

function is L(£,>^) = | *  -  x q I ,  i.e. the absolute difference between S 

and x q . For any general loss function, L(^,)^), we may define the risk 

function R ( * , x q )  by:-

i.e. the risk function is just the expected value of the loss function, 

and may be used as a criterion for determining whether £ is a good 

estimator of distance. Furthermore, an estimator for which the risk  

function is a minimum might be considered in some sense to be ’best*. 

The most appropriate loss function to use will ultimately depend on 

the context of the problem. For example, if large estimation erro rs  

were considered especially problematic then L(*,^>) = (2  -  x q ) 2  would 

be more suitable than L(X,xq) = Ift -  xq|.

in the statistics lite ra tu re  and is often assumed when not stated 

explicitly. In the interests of keeping our terminology as simple as 

possible we will follow this convention and, for the most part, will 

adopt the term risk to re fer exclusively to the risk function computed 

with L(x,xq) = ( *  -  x q ) 2 , as in equation (3.25). Thus, unless we 

specifically make a distinction, we will use the term risk , R(5c,xq), 

synonymously with the MSE, €(X,xq)

R (* ,x 0) = J L (* ,x 0 ) X (* |x 0 )dX (3 .2 7 )

The loss function L(5c,x0 ) = ( *  -  x0 )2 appears very frequently

The computation of bias and risk is straightforw ard fo r  

*p  and * m a l - Indeed, one may readily establish an expression fo r the
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nth moment of an estimator, fc, of the form:-

*  = 10 ° - 2(B -  mL -  (3.28)

for any constant, A. v lz :-

E(&n|xo> = xq° <!>(-51ogx0-Ano2/o )  exp(*no2(A -  >iKn))

*(-51ogx0/o )  {3 ' 29)

where k = 0.2//710 = 0.46

It  follows from equation (3.29) that E (* |x q ) -» xq as xq *♦ 0, if A = Hk. 

This is the condition which defines the ’proximal’ estimator, * P, for  

which A = 0.23.

Figures (3.8) to (3.11) show graphs of the percentage bias 

and risk of fy , * mAL and *P  calculated as a function of tru e  distance,

and for o = 0.5 and o = 1.

Note that both the bias and risk of each estimator are highly

sensitive to the tru e  distance, xq -  which is unknown. All of the

estimators are negatively biased at large xq; this is d irectly due to

the effects of luminosity selection and would result in the fam iliar

systematic underestimation of distance. For example, if the tru e  

distance were equal to 1.5 then the expected values of *MAL

and * p would be 1.05, 0.68, 1.35 and 0.6 respectively (o = 1).
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Figure (3 .8 )

Percentage bias of x^, Xm a L snd £p as a function of tru e  distance, xq 

(o = 0.5)
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Percentage risk of x^, Xm a l  anc  ̂ *P as a ^unc^i°n true distance, xq 

(o = 0.5)
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Figure (3.10)

Percentage bias of x^, XmAL and *P as a function of tru e  distance, xq 

(o = 1 )
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Percentage risk of *MAL and *P as a ^unction of tru e  distance, xq 
(0 = 1)
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On the other hand, the positive percentage bias of the ’naive’ 

estimator at small xq is not due to selection but rather to the  

non-linear relationship between distance and magnitude. This positive 

bias as x q  tends to zero disappears if we consider estimates not of 

distance, but of log distance (i.e. the distance modulus). Thus, a 

’naive’ estimator of logxQ, defined in the obvious way, is unbiased as 

xq -» 0; see section (4.5.1). This will no longer hold, however, if there  

is luminosity selection at small xq (c.f. section 4.5.1).

We can see, nonetheless, that the percentage bias of *P  does 

tend to zero as xq tends to zero, as expected, and remains essentially 

zero for all Xq < 0.2 (a = 1) or for all xq < 0.4 (o = 0.5). Note also, 

however, that *P  has the worst percentage bias and risk at large  

distances.

The calculations of bias and risk for the maximum likelihood 

estimator introduce a significant problem. The integral expression for 

the expected value of *ML> as given in equation (3.23), does not 

converge for any value of x q . E(*mi_|X()) therefore, in fin ite  for all 

true distances, so that this estimator necessarily has in fin ite  

percentage bias and risk. Thus, although *ML is well-defined fo r all m 

< mj_, the form of its distribution function close to the magnitude limit 

renders bias and risk meaningless as a method of comparison with 

other estimators. This is not an uncommon problem in statistics where 

many distributions, such as the Cauchy distribution fo r example, have 

theoretical moments which are all infin ite (c.f. Hoei, 1962). Indeed, 

Cauchy-type d istributions are often used in astrophysical modelling of 

e.g. the profiles of emission lines in stellar atmospheres (c.f. Rybicki
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and Lightman, 1979).

I t  is possible to modify the definition of the maximum 

likelihood estimator so that its moments are defined and take on fin ite  

values. There are several ways to achieve this; fo r example, one can 

define a new estimator, * m l * .  with fin ite bias and risk as follows:-

*HL
*  _ Xml fo r x«l < «

(3 .3 0 )
a for  ̂ a

Thus whenever m^ -  m is less than some prescribed value, e say, the 

distance in ferred by »s simply put equal to some fixed constant,

a, which is the distance inferred by the unmodified maximum likelihood 

estimator when mj_ -  m is equal to e.

The value of a chosen will determine how closely to the  

magnitude limit observations are allowed to be taken before the  

modified form of the estimator is used. One would therefore expect the  

bias and risk of *M L * to be dependent on a. Figures (3.12) and (3.13) 

show the percentage bias and risk of * m l*  ôr d iffe ren t values of a  

and for o = 1. i t  is clear from these figures that the choice of a will 

greatly affect the range of true distances for which the percentage 

bias and risk of th is  estimator are small. In particular, we can see 

that the percentage risk takes its minimum value at xq = a but 

increases sharply at smaller distances. Similarly, the percentage bias 

is small only within a narrow range of distances around xq = 0.8a. i t  

would seem, therefore , that at least some order of magnitude 

knowledge of the tru e  distance is very important before an 

appropriate choice of a  can be made, since a poor choice may result in
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a large systematic error.
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Figure (3 .12 )

Percentage bias as a function of tru e  distance, x q , of the maximum 

likelihood estimator, *ML*> modified by an upper limit, a, shown for  

values of a = 1.0, 1.5, 2.0 and 4.0 (o = 1)
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Figure (3.13)

Percentage risk as a function of true distance, x0 , of the maximum 

likelihood estimator, * m L *  modified by an upper limit, oc, shown for  

values of a  = 1.0, 1.5, 2.0 and 4.0 (o = 1)
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Another method of modifying *ML- and indeed any estimator, 

is to reject galaxies whose magnitudes lie close to mj_ (w ithin Am of 

m|_, say). The conditional d istribution, C(m|xo), would then be 

redefined as non-zero only on the interval (-«>, mL -  Am), with the  

appropriate renormalisation. This will, of course, change the expected 

value of each estimator, and In the case of *ML will yield a fin ite  

result. Figures (3.14) to (3.17) compare the percentage bias and risk  

of all estimators for d ifferent values of o, after rejecting observations  

closer than 0.5 magnitudes to mj_.

A number of points are clear from these graphs. Note th a t 

the choice of estimator with least percentage bias or risk is strongly  

dependent on the unknown tru e  distance. Generally speaking, the bias 

and risk of *P  are least at small distances but greatest at large  

distances, while the opposite is tru e  for *maL' Furthermore, at any 

given distance the least-biased estimator may not have the smallest 

risk. For example, at xq * 0.7 the bias of *s smallest but *N has 

the least percentage risk. Another interesting feature is the fact that 

the minimum bias and minimum risk of any estimator do not, in 

general, occur at the same distance. Moreover, the range of distances 

for which each estimator has small bias and risk depends on the value 

of o, and also indirectly on m|_ and M q  since these define the unit of 

distance.

Clearly, therefore, it is not easy to identify which of these 

estimators is the most appropriate to use, since this will depend very  

much on the tru e  distance of the observed galaxy. One might select 

the ’best’ estimator by assuming the tru e  distance to lie within a
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Figure (3 .14)

Percentage bias of |_, **|, *MAL and *P  as a functlon of t r ue 
distance, x q , afte r rejecting observations within 0.5 mag of m|_ 

(o = 0.5)
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Percentage risk of *MAL and *P  as a function of tru e
distance, xq, a fte r rejecting observations within 0.5 mag of mL 

(o = 0.5)
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particular range. For example, If we assume that x0 < 1.2 then *MAL 

appears to be the best choice of estimator. I f ,  however, the tru e  

distance were considerably less than unity, then using * m AL w°u ld  

result in a large systematic error.

3.5 Confidence Intervals for Distance Estimates

I f  we are to use our estimators in a practical setting , fo r  

the analysis of real data, then it Is important that we are able to 

assign some erro r to the estimates which we obtain. Thus fa r  we have 

considered only point estimators, for which the risk provides some 

Indication of the ir precision. One could, therefore, use the risk to  

assign a distance erro r to an observation were it not for the fact th a t 

the risk is a function of the true distance, and so is not known 

precisely. One possible solution to th is problem is to assign an e rro r  

by computing the risk at the estimated distance. However, th is  may 

lead to spurious results if the risk changes rapidly with tru e  

distance, as is frequently the case with the estimators which we have 

studied.

A more rigorous approach is to directly obtain an interval 

estimate for the true distance. We will now describe a procedure for 

constructing a (1-a)100% confidence interval for the distance. The 

formal definition of such an interval states that the probability  of the  

interval containing the true distance, x q , is precisely (1-oc) no matter 

what that true distance is.
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Consider a random variable, z, whose distribution, X, is a 

function only of the unknown parameter, x q . Clearly any of the point 

estimators which we have studied are suitable choices for z. One 

simple way in which a confidence interval can be constructed (c.f. 

Mood and Gray bill, 1974; Simmons and Stewart, 1985) is to find z-j and 

Z£ for each xq such th a t:-

Z1J X (z |x 0 )dz = x
0

and

z 2J X (z |x 0 )dz = (1-oc) + >

0

where > c CO,a) but is otherwise a rb itra ry .

We assume that both z  ̂ and Z2  are monotonic functions of xq; 

an example of th is  is shown in figure (3.18), where we plot z-j and Z2  

as functions of x q .

For any value of z = z*, we may draw a line parallel to the

xq axis and find x2 = z2~1(z *) and x1 = z i" 1(z *) , the x0 coordinates of

the points of intersection with the curves Z2  and z-j respectively, as 

shown in fig u re  (3.18). Now, whatever the tru e  distance, x0, may be it

follows from the construction of z-j and Z2  that

(3 .3 1 )

(3 .32 )

Pr( z-|(x0 ) < z < Z2 (xq) ) = (1 -« ) (3 .3 3 )
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However, z<j(x0 ) < z < z2(xq) jf and only if x2(z) < x0 < x ^ z ), for any 

possible value of the random variable, z. Thus, the interval (x2,x-j) will 

form a (1-oc)100X confidence interval for the distance xq.

Z

z= z *

Figure (3.18)

Example of typical upper and lower confidence interval curves, z -j ( x q )  

and z 2 ( x q ) ,  as a function of tru e  distance, x q
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As an illustration we now demonstrate how these ideas may 

be applied using as our random variable the ’naive’ estimator, 2^, the 

distribution of which depends only on the tru e  distance, x q ,  fo r a 

given o. Figure (3.19) shows graphs of z^Xq) and z2(x0 ) at the 68% 

( 1 o ) ,  95% (2o) and 99% (3o) level, for o = 1 .  The value of > used in 

each case was Jto, so that the two tails of the distribution were of 

equal area. For any estimate, 3^ = x*, of distance, one may read o ff a 

confidence interval fo r the distance from the points of intersection of 

the appropriate curves with the line *N = x*. For example, suppose 

that the apparent magnitude of a galaxy is measured to be 13.6, and 

that the limiting magnitude is 15. From figu re  (1a) *N = 0.5, so that a 

68% confidence interval for the true distance is given by figu re  (10) 

to be C0.3, 0 .91

I t  is easily seen from figure (3.19) that fo r observations close 

to the limiting magnitude the confidence intervals will quickly become 

extremely large. Furtherm ore, the estimated distance will not lie within 

the confidence interval for xq; this is consistent with the large  

negative bias of the point estimator, *N> at large distances.

Clearly, however, the confidence intervals constructed using 

xN are in no way unique. Any of the estimators defined in this  

chapter (or, indeed, any suitable random variable, whether a distance 

estimator or not!) could have been used in place of according to 

the prescription which we have described. In the next chapter we will 

see fu rth e r  examples of confidence intervals constructed from more 

reliable distance estimators.
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Figure (3 .19)

Confidence interval curves for the true distance, x q , at the 68% (1o), 

95% (2o) and 99% (3o) levels, computed from the distribution function  

of the estimator (o = 1)
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3.6 Summary and Conclusions

In th is chapter we have presented a statistically rigorous  

method for defining point and Interval estimators of distance, and for  

studying th e ir distributions and properties. We have Illustrated the  

application of this method to a simple case: where distances are  

estimated using only measurements of apparent magnitude, and fo r a 

Gaussian LF and Heaviside selection function. Our analysis may easily 

be adapted to derive estimates of other functions of distance, or to 

incorporate a d ifferen t LF or selection function -  e.g. a Schechter LF 

(c .f. Schechter, 1976) or a sigmoid-type selection function (c.f. 

Teerikorpi, 1975).

We have compared the distributions of a number of d iffe ren t 

estimators and, in particular, have calculated the percentage bias and 

risk of each estimator as a function of tru e  distance. Our results  

demonstrate that the problem of choosing an ’optimal’ distance 

estimator has no straightforw ard solution. The fundamental d ifficu lty  is 

that the properties of an estimator will, in general, depend on the  

tru e  distance, which is unknown. The estimator which we select as 

’best* -  by whichever criterion we choose to adopt (e.g. minimum bias, 

minimum risk or any other appropriate statistical measure) -  may be a 

poor choice if the tru e  distance of the observed galaxy does not lie 

within a preferred  range.

Using precisely the same statistical methods as we have 

introduced in th is chapter, we will now extend our analysis to the  

estimation of distance from two observables.
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4. ESTIMATION OF DISTANCE USING TWO OBSERVABLES

4.1 Introduction

The aim of th is chapter is to extend the analysis introduced 

in chapter (3) to the case where one defines distance estimators which 

are functions of two observables: e.g. by combining with the apparent 

magnitude measurements of another observable quantity such as the 

apparent diameter or 21cm line width of a galaxy. Following closely the  

statistical formulation presented in the preceding chapter we will 

derive expressions fo r the distribution of two observables at a given 

true distance, taking Into account luminosity selection effects, and use 

this distribution to define and investigate a number of estimators of 

that distance.

In tu itive ly  there would seem good reason to suppose that 

these estimators might be more reliable than those considered in 

chapter (3) since one is utilising more information about the galaxies 

which one is observing. We have seen in chapter (2), however, that 

opinion is divided over precisely how best to combine measurements of 

several observables. Recall in particular that there has been some 

disagreement over the choice of linear regression most appropriate for 

deriving distances from e.g. the Tully -F isher or Dn-o  relations (c.f. 

Tully, 1988; Dressier et al, 1987). We will show that the d ifferent 

methods of regression used in the literature each correspond to 

distance estimators which arise naturally from our rigorous 

formulation. Thus, by computing the distribution, bias and risk of 

these -  and other -  estimators we will be able to assess critically  the
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relative merits of each and clarify  the question of how best to 

estimate distances from measurements of several observables.

4.2 The Observed Distribution of m and P

Let the absolute magnitude, M, and position, r, of a galaxy be 

random variables. Introduce a th ird  random variable, P, which denotes 

some intrinsic physical characteristic of the galaxy such th a t the  

measured value of P provides information on the value of M; i.e. M and 

P are correlated. This notation is used by Teerikorpi (1984). Suppose, 

however, that neither M nor P is correlated with r  so that we may 

introduce ^(M,?), the intrinsic jo in t distribution of M and P, which is 

independent of position. Let N(M,P,r)dMdPdV denote the actual number 

of galaxies in volume dV at position r  with absolute magnitudes in the  

range M to M+dM and P values in the range P to P+dP. Clearly we may 

w rite:-

N(M,P,r)dMdPdV = ^(H,P)n(r)dHdPdV ( 4 .1 )

where n (r )  is the number density of galaxies at position r.

Consider now the jo in t d istribution, p(M ,P,r), of M, P and r  

fo r observable galaxies in a sample subject to selection effects -  as 

described by a selection function, S(M ,P,r), defined in a similar manner 

to the function, S (M ,r), of chapter (3). Note that S (M ,P ,r) is 

independent of direction; i.e. we may write S(M ,P ,r) = S (M ,P ,|r |) .  

Substituting from equation (4.1), it follows that p(M,P,r) is given by:-
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^ (N ,P )n (r)S (H ,P , I r l )
P (M ,P ,r) = 7 7 7 -----------------------------------------------— (4 .2 )

j j j  m P )n (£ )S (M ,P ,lr l)d M d P d V

It  now follows from equation (4.2) that the conditional 

distribution, S(M,P|rQ), of absolute magnitude, H, and P at a given 

distance, tq, fo r observable galaxies is given by:-

V (H ,P )S (H ,P ,r0 )
e (M ,P |r0 ) = 7 7 -----------------------------------  (4 .3 )

JJ ¥(M ,P)S(M ,P ,r0)dMdP

Note that, as for the magnitude-only case, this distribution is 

independent of the local density, n (r).

Finally, we change variables in equation (4.3) to apparent 

magnitude, m, and P. In general one may be unable to measure P 

directly: fo r example, if P were equal to the absolute diameter of the  

galaxy then one would observe instead the apparent angular diameter 

-  so that both P and M would require a change of variable in o rder to 

express equation (4.3) in terms of measurable quantities. We will 

generalise to this case later; for the moment, however, suppose th a t P 

is measurable directly -  as would be the case with, for example, the  

21cm line width. Thus, the conditional distribution, C(m,P|rQ), of m and 

P at tru e  distance, tq, is given by:-

¥(«-51ogr0-2 5 ,P )S (« fP)
^ (m ,P |r0 ) = 7 7 ------------------------------------------------  (4 .4 )

JJ V(*-51ogrQ-25,P)S(B»,P)dindP

We will assume that ^(MjP) has a bivariate normal 

distribution, following e.g. Teerikorpi (1984), v iz :-
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^(M,P) = (2rroMo p / ( i - p 2 ) ) - i  expC-Q(H,P)/2(1-p2) :  (4 .5 )

where the quadratic form, Q(M,P), in the variables M and P is given 

by:-

Q(M,P) = (N-M0) 2/ om2 + (P-P0) 2/o p2 -  2p(M-M0 )(P -P 0) /o MOp.

Here Mq and Pq are respectively the mean values of M and P, oM2 anc| 

op2 are the variances of M and P, and p is the correlation coefficient 

for M and P, which lies in the range C-1,13.

We will consider here the case where the selection function  

depends only on the apparent magnitude; i.e. there is no selection on 

P and one may sample P completely at any apparent magnitude. This is 

the key assumption in the ’b ias-free’ recipe of Schechter (1980) and 

later authors, and also leads to an algebraically simpler analysis. 

Furthermore we will f irs tly  assume that the magnitude selection effects  

are described by a Heaviside function at some magnitude limit, mL, as 

in equation (3.6). Thus, we may w rite:-

S (»,P ) =
1 i f  ■ < m|_

otherwise
(4 .6 )

Substituting for V and S, it may easily be seen that equation 

(4.4) reduces to :-

expC-Q(«-5logr0-2 5 ,P ) /2 (1 -p 2)I] m < mL

C(m ,P|r0 ) = ✓27t( 1 - p 2 ) o mo p 4»(mL-51ogr0-25-M0/o M) ( 4 . 7 )

0 otherwise
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Where O is as defined fo r equation (4.5).

Note that, because there is no selection on P, the argument 

of the cumulative normal distribution, 4>, in equation (4 .7 ) is the same 

as for the m agnitude-only case In equation (3.7); i.e. the normalisation 

of the conditional d istribution, G, is the same for both cases.

We can fu rth e r  simplify equation (4.7) by re-expressing the  

distribution using the scaled distance unit, r ^  introduced in chapter 

(3). Upon substitution from equation (3.16) we find th a t the conditional 

distribution of observable galaxies at scaled true distance, x q , may be 

written as:-

G («,P |x0) =

expC-Q (»,P)/2(1-p2)U m < mL

^ W l - p ^ o n O p  4>(-51ogx0/ o M) ( 4 . 7 )

0 otherwise

where Q is now given by:-

Q(»,P) = (»-mL-51ogx0 ) 2/o M2 + (P-P0 ) 2A>p2 -  2p(«-mL-51ogx0 )(P -P 0 ) /o Mop

Note that if we integrate out equation (4.7) over P, to determine the  

marginal d istribution of m at a given true distance, xq, we obtain 

precisely the conditional distribution C(m|xo) of equation (3.17), as 

derived for the m agnitude-only case.

Figures (4.1) to (4.4) show plots of the jo in t conditional 

distribution, G(m,P|x0 ), fo r d ifferen t values of the scaled tru e
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distance, x q . The magnitude limit shown is mj_ = 15 and the value of p  

is taken to be - 0 .8 ; th is is a typical value of the correlation  

coefficient measured for e.g. the Tully-Fisher relation (c.f. Tully, 1988 

and figu re  2.4 of section 2.3). The surfaces are shown in isometric 

projection and have been normalised to the same peak height by the  

graphics routine. The P axis scale is in units of op.

Note that in figu re  (4.1), for xq = 0.25, the jo in t conditional 

distribution is still to a good approximation bivariate normal, since 

there is no appreciable Malmquist Bias at this distance. I t  is clear 

from the other figures, however, that at larger true distances the  

effects of selection cause considerable distortion to the shape of 

C(m,P|xQ) -  although it should be noted that this distortion occurs 

only in the m dimension, and the conditional distribution of P at any 

given value of m (which corresponds pictorially to a vertical section 

through the surface parallel to the P axis) is still a normal 

distribution -  even at large tru e  distances -  as may be easily verified  

analytically.
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Figure (4 .1 )

Probability density function, C(m,P|x0), of observable galaxies at
(scaled) true distance xq = 0.25 (oM = 1, op = 0.1, p = -0.8, mj_ = 15)
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Figure (4 .2 )

Probability density function, Q(m,P|xo), of observable galaxies at
(scaled) true distance Xq = 0.5 (oM = 1, op = 0.1, p = -0.8, mj_ = 15)
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x0 = 1.0

Figure (4 .3 )

Probability density function, Q(m,P|xo), of observable galaxies at
(scaled) true distance xq = 1.0 (oM = 1, op = 0.1, p = -0.8, mL = 15)

13
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Figure (4 .4 )

Probability density function, C ( m , P | x Q ) ,  of observable galaxies at
(scaled) true distance xq = 2.0 (o^ = 1, op = 0.1, p = -0.8, mi_ = 15)



111

4.3 Definitions of Distance Estimators

In th is section we will introduce a number of d ifferent 

estimators of distance -  or, more precisely, estimators of log distance, 

y, although clearly from any estimator of u, U say, one may immediately 

define an an equivalent distance estimator, v iz :-

f  = 10 U (4 .8 )

The distinction between f  and d becomes non triv ia l only when one 

considers the distribution of the estimators: in particular, an unbiased 

estimator of log distance will not, in general, correspond in an 

unbiased estimator of distance. The resulting bias is usually regarded  

as a small effect, however, (c.f. Sandage and Tammann, 1975) and -  as 

we have already commented -  almost all previous discussions in the 

literature  have defined distances to galaxies and discussed the bias of 

estimators in terms of log distance. We will, therefore, adopt this  

convention, although remaining aware of the potential source of 

systematic e rro r which it introduces.

I t  is convenient to describe log distances using the same

scaled distance units which we introduced in chapter (3). Consider a

galaxy at tru e  distance, r MPc -  i.e. at tru e  distance, x, in scaled

units, where x = r / r L. Let w denote the tru e  log distance of the

galaxy in scaled units. Then it follows th a t:-

w s logx -  u -  logr|_ (4.9)
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Similarly, we introduce the notation 0  = d -  logr[_ to indicate an

estimator of the log distance in scaled units.

4*3.1 ’General Linear Estimator’ : Gql

We may define an estimator of u simply by taking a linear combination 

of the observables m and P. Thus we introduce a set of estimators of 

the formi

c a  = A(m -  mL) + BP + C (4.10)

where A, B and C are constants. This is a natural choice for an

estimator of u if one assumes a linear regression relationship between

M and P (e.g. if one assumes that E(M|P) = aP + b, for constants a

and b). More specifically, suppose one derives (v ia  linear regression 

or otherwise) the stra ight line relation M -  M q  = A(P -  P q ) ,  where M q  

and P q  are as defined above and the slope, A, is a constant. We have 

seen in chapter (2 ) the standard procedure used to in fer distances

from such a relation (i.e. estimate M from the observed value of P and

then combine with the observed apparent magnitude); it follows from 

equations (3.8) and (4.8) that this procedure is equivalent to defining  

an estimator of u given by:-

O = 0.2(m -  mL) -  0.2A(P -  P0 ) (4.11)

which fits  the general form of equation (4.10).

Recall from chapter (2) the four types of linear regression
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which have appeared in the literature in connection with the  

calibration of Tu lly -F isher type relations: these are (in the notation of 

th is chapter) regression of M on P; regression of P on M; ’orthogonal’ 

regression and ’bisector’ regression (see section 2 . 3  fo r more details). 

By substituting in equation (4.11) the appropriate value of A, the slope 

of the regression line, we may thus write down the estimator which 

corresponds to calibration by each particular type of linear 

regression. Feigelson et al (1990) provide algebraic expressions fo r A 

determined for the four regression lines listed above, as well as a 

f ifth  -  the ’ reduced major axis’ regression, known more commonly to 

astronomers as Stromberg’s ’‘impartial" line (Stromberg, 1940; Kermack 

and Haldane, 1950). Using the results of Feigelson et al we define in 

table (4.1) five general linear estimators, corresponding to the five  

d iffe ren t regression lines. The firs t  of the these, derived from a 

regression of M on P, we will denote as the ’T u lly -F ish er’ estimator, 

&TF’ since this regression was used (albeit purely on the basis of an 

’eyeball’ f it )  to calibrate the Tu lly -F isher relation in the original paper 

which introduced the method (Tully and Fisher, 1977). The second 

estimator, which is derived from the P on M regression, we will denote 

as the ’Schechter’ estimator, Gg, since a regression of P on M is the  

central idea of the ’b ias-free ’ recipe f irs t proposed by Schechter 

(1980).

Several points are clear from table (4.1). Note th a t if p = ±1  

(i.e. no scatter in the relation) then A = ±o^/op for each regression  

line, so that all five  estimators are identically equal in th is  case. As 

the correlation between the variables decreases the values of A fo r the  

five  regression lines will d iverge and the estimators will, in general,
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in fer d ifferen t distances from the same observed values of m and P. 

One is then, of course, faced with a choice of which estimator to use.

Estimator Type of 
Regression Value of A

°TF N on P °M P
O p

P on H °M
O p  p

Bisector p
1 -  p2

°M2 - °P2 °P2 , , °M2 l |
--------— --------  + ----- + p2 + ---  + -----

M P • °M2 P2 op2 .
% J

% Orthogonal 1
2POMOP aM2 - Op2 + (̂oM2 - Op2)2 + 4p2ô 2op2j 2 |

° I
Reduced 

Major Axis 
( Im p a rtia l)

±oM
O p

Table (4 .1 )

General lin e a r  estimators of log distance, u, corresponding 

to  c a lib ra tio n  of the H -  P re la tio n  by d iffe re n t regression lin e s . 

Each estim ator is  o f the form Q = 0 .2 Cm -  m|_) -  0.2A(P -  Pq) ,  where A 

is  the slope o f the appropriate regression lin e .
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One might perhaps reject immediately the ’impartial’ estimator if there  

is appreciable scatter in the relation, since the slope of the ’im partial’ 

regression line is not sensitive to the value of p. Indeed, fo r this  

reason Feigelson et al (1989) warn against use of the ’im partial’ 

regression line to calibrate linear relationships. To assess rigorously  

the relative merits of the other estimators we must compute the ir  

distribution -  as was the case for the simple distance estimators of 

chapter (3). Before we do this, however, it is instructive to look at 

the estimators “in action" by considering some specific numerical 

examples.

Figures (4.5) to (4.7) show graphs of the distances inferred  

from our d ifferen t general linear estimators for the particu lar case of 

the Tu lly -F isher relation. We plot the estimated distance as a function  

of observed 21cm line width, for different values of the correlation  

coefficient, p. The distances were calculated from the estimated log 

distance, G, in the obvious way -  after firs t converting from scaled 

distance units by assuming the values of Mq = -20 and mj_ = 15. 

(These give the convenient scaled distance unit of 100 MPc.) The mean 

log(line w idth), P0 , was taken to be 2.5 and the dispersions oM and op 

to be 1.0 and 0.1 respectively. The observed value of m substituted  

into equation (4.11) was taken to be 15 in all cases; i.e. the galaxy was 

assumed to be observed at the magnitude limit. In fact, the choice of 

value of m is not important for comparative purposes since it follows 

from equation (4.11) that any change in m would simply rescale each 

of the distance estimates by the same constant.
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Distances in ferred  from d iffe re n t general lin e ar estim ators of w 
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Distances In fe rred  from d iffe re n t general lin e ar estimators of u, as a 

function of observed lo g d in e  w id th ), P, and fo r p = -0 .7  

(M0 = -2 0 , ■ = mL = 15, oM = 1, op = 0 .1 , P0 = 2 .5 )
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A number of properties of the estimators can be seen from  

these graphs. F irstly , note that when the observed logdine width) lies 

close to the mean value, P0 = 2.5, there is little  difference in the  

distance inferred by each of the estimators. At other observed line 

widths, on the other hand, there is considerable spread in the  

distance estimates -  particularly when P > P0. (Note, however, that the  

estimates given by the ’orthogonal’ estimator, cb. are almost 

indistinguishable from those of the ’Schechter’ estimator, This is 

not the case in general but in our present example is a consequence 

of the fact that the dispersion of P is very much smaller than that of

M. In  fact it may easily be shown that as o p /o M -> 0, Cyj -> Gg.)

Suppose, for example, that the observed logdine width) were 

equal to 2.7 (i.e. Pq +2op ). From figu re  (4.5) we see that, fo r p = -0.9 , 

th is would give the following distance estimates (converting back to 

MPc): 229MPC ( f TF); 278MPc ( f s ); 278MPC ( f Q); 249MPC ( f B) and 251 MPc 

( t y .  This spread increases fu rth e r as the scatter in the M-P relation 

increases. I f  p = -0.7, for example, then we obtain the following 

distance estimates from figure (4.7): 190MPc ( f jF ^  373MPc (fg ); 370MPc 

(?q ); 237MPc (?b ) and 251 MPc ( f i ) .  Note that in both cases the largest 

estimate is obtained from and the smallest from 'T F . as one would 

expect from the slopes of the various regression lines.

I t  is clear from figures (4.5) to (4.7), therefore, that as the  

observed line width increases beyond the mean value, P q , the  

discrepancy between the d ifferen t estimators will increase and the  

choice of which is most appropriate becomes non -triv ia l. We can look

at th is another way: although we have assumed that there is no
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selection in P (i.e. that any line width is observable) we know that 

because of magnitude selection we can expect the more distant galaxies 

which we observe to be intrinsically more luminous. I t  then follows 

from the correlation between M and P that the expected line width of 

more distant observed galaxies will be large. We can express th is idea 

more rigorously by determining the expected logdine width), E (P |xq ), 

at given (scaled) true distance, xq, . This is easily obtained by 

in tegrating equation (4.7) and is given by:-

E(P|xq) = P0 -  o p p e x p C -1 /2 o m2 (5 1 o g x o )23
 ---   (4 .1 2 )

✓2TT # (-5 l0g X ()/O |y |)

The form of the right hand side is familiar from equation (3.14), which 

gives the mean observed apparent magnitude at tru e  distance, x q ,  in 

the magnitude-only case. Substitution of the parameter values used in 

the above examples confirms that E (P |xq) increases with tru e  distance, 

xq. We can, therefore, expect the discrepancy between the distance 

estimators to become more pronounced as the tru e  distance of an 

observed galaxy increases, so that the choice of which estimator is 

’best’ becomes particularly important for more distant objects.

I t  s h o u ld  be m e n tio n e d  in  p a s s in g  th a t  o n e  m ig h t c o n s id e r  

u s in g  e q u a tio n  (4 .1 2 )  as a  m eans o f d e f in in g  an e s t im a to r  o f  d is ta n c e :  

i.e . o n e  d e f in e s  th e  d is ta n c e  e s tim a te  to  be e q u a l to  th e  v a lu e  o f  xq 

f o r  w h ic h  th e  o b s e rv e d  lo g d in e  w id th ) ,  P0 bS, is  e q u a l to  th e  m ean  

v a lu e  a t  th a t  d is ta n c e , E ( P |x 0 ) .  T h is  is p re c is e ly  th e  sam e Id e a  as  

u sed  to  d e f in e  th e  ’m ean ’ e s t im a to r  o f  c h a p te r  (3 ) .  T h e  p ro b le m  h e r e  is  

t h a t  o n e  o b s e rv e s  b o th  m an d  P, so t h a t  th e  v a lu e  o f  xq w h ic h  

s a t is f ie s  E ( P |x 0 ) = PQbs wMI in 9 e n e ra l be  d i f f e r e n t  fro m  th e  v a lu e
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which satisfies E ( m | x Q )  = mobs; i.e. one cannot give a consistent 

definition of the estimator. A similar problem arises if one tries  to 

define a ’mode’ or ’median’ estimator using two or more observables. 

One may still define a ’maximum likelihood’ estimator, on the other 

hand, as we will now show.

4.3.2 ’Maximum Likelihood Estimator’: 0M|_

This estimator is defined as the value of wq which maximises the

probability, with respect to wq, of obtaining the observed values of m 

and P. Therefore G^l satisfies:-

_§ C(«=mobs,P=Pobs|x0) | = o (4 .1 3 )
9w0 I w0=^4L

w h e r e  = logxQ.

I t  should be stressed that, because of selection, the ’maximum

likelihood’ estimator will not, in general, be expressible as a linear 

function of m and P. Indeed, substituting from equation (4.7) we find  

that 0|y||_ satisifes:-

rrt-mL -  poM(P-P0 ) = 5Ĉ j_ -  (1 -p 2 )oMexpC-1/2om2(5C^,L)23
   (4<14)

°P /27T ^(-5C^L/oM)

which clearly shows the non-linearity of °ML- Moreover, it is not even 

possible to express G ^  in closed form as an explicit function of m

and P; the value of the estimator must be determined implicitly from

the above equation. Comparing with equation (4.11) it is clear that 

when p = ±1, OjyjL is identically equal to each of the general linear
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estimators, as the second term on the right hand side vanishes. Since 

this term is always negative for p # ±1, it follows that > <*tf» for

all observed values of m and P.

Figure (4.8) compares distances inferred from with those

from °S  and °M P’ fo r the particular case of the Tu lly -F isher relation 

using the same parameter values as figure  (4.6). Note that distance 

estimates obtained from 0 ML are greater than those from the general 

linear estimators -  as was the case in chapter (3). One might therefore  

suspect that <tyn_ would be more reliable for very distant galaxies; we 

will investigate this fu rth e r by studying the distribution of each of 

the above estimators.
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Distances inferred from C^l > Oj-p and Gs as a function of observed
lo g (line  width), P, and for p = -0 .8
(M0 = -20, m = mL = 15, oM = 1, op = 0.1, Pq = 2.5)
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4.4 Estimator Distributions

We may derive the probability density function of any of the  

above estimators by a very similar method to that of section (3.4). 

First observe that each 0  is a function of the random variables m 

and P; i.e. O = 0(m ,P). Now define a transformation, t ,  which maps 

(m,P) to (G,P). The jo in t distribution of 0  and P may then be w ritten  

down in terms of the observed distribution of m and P at tru e  

distance, xq -  as given by equation (4.7) -  and will therefore depend 

on the tru e  log distance, uq. v iz :-

n(O,P|w0 ) = C (*(G ,P ) ,P |x 0 ) 3(« ,P )

a (0 ,P )

(4 .1 5 )

The jacobian of the transformation is defined in the usual way and 

may be computed from equation (4.11) for the ’general linear’ 

estimators or from equation (4.14) for the ’maximum likelihood’ 

estimator.

Finally, the distribution of 0 is obtained by integrating  

equation (4.15) over P. Thus we have:-

G(O|u0 ) = f r\(O ,P|u0 )dP (4 .1 6 )

For the ’maximum likelihood’ estimator this integral must be 

carried out numerically, but it is possible to determine the distribution  

of °G L = A(m -  mL) + BP + C analytically, expressed in terms of the  

constants A, B and C and the parameters of the bivariate distribution  

of M and P. A fter some rather messy algebraic manipulation we obtain



125

the following:-

G(QgiJ w0) = expC-H(T-u2/4^ )] <^C (̂Cl^L-C)/B+\i/20D
(4 .1 7 )

JlrrAOnOp/^CVp7) ^(-Swq/Om)

t , \) and ♦  appear here simply as a shorthand to make 

equation (4.17) more compact. The expressions which they stand for 

are:-

d> =
1

1-p2
a2° m2

2pB

AoM°P

1
Op4

X ) -
- 2

1 -P 2

B(CyjL“C-5AWo) BpPg + P(Q£l“C-5Awq) P q  
  +   + —

a2° m2 Aoh° p Op*.

T =
1

1-p2

( Q g L “ C “ 5A w q )2 2 p P q ( ^ q |_-C-5Aw q ) P q 4 
  +   +  —

A2^ 2 AoM°P O p 4

Figures (4.9) to (4.11) show examples of the distribution  

functions of Gg, OyF and respectively, at d ifferen t tru e

distances.

A number of basic properties of the estimators are illustrated  

by these graphs. F irstly , we can see that when xq = 0.5 (or 50MPc, 

taking our usual conversion from scaled units) each estimator is to a 

good approximation normally distributed, with modal value coincident 

with the tru e  log distance, u>q (indicated by the dotted line) so that 

there is no significant bias in the expected value of any of the  

estimators at this distance. This must be the case since, if there is no 

magnitude selection at th is distance, then the jo int distribution of m 

and P fo r observable galaxies will be bivariate normal, and hence any
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l inear combinat ion o f  m and P will also be normal ly d is t r ibu ted .

10

1. 5 - -

10
-U0

° T F

Figure (4 .9 )

Probability density function, of the ’ T u l l y - F i s h e r ’

es t imator at true distance, xg = 0.5,  1.0 and 2.0
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Figure (4.10)

Probability density function, GCC Îuq) ,  of the ’Schechter’ estimator

at true distance, Xq = 0.5, 1.0 and 2.0
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Figure (4 .11)

Probability density function, G(C^|Jwq), of the ’maximum like lihood’ 
estimator at true distance, xq = 0.5,  1.0 and 2.0
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From figure  (4.9), however, we can see that at larger true  

distances this is no longer the case for although the distribution  

of Oyp remains close to normal for large x q , it is no longer 

symmetrical about Hq but is displaced progressively leftw ards of u|q. 

The ’Tu lly -F isher’ estimator is , therefore, negatively biased at large

true distances and its use will result in the systematic underestimation

of galaxy distances.

Consider, on the other hand, the ’Schechter’ estimator: it is 

apparent from figure  (4.10) that the distribution of Gq does not

change in shape as the true distance increases. In  fact, upon

substitution of the appropriate values of A, B and C In equation (4.17),

we may show that the distribution of reduces precisely to a normal 

distribution, with mean value uq and variance given by

0.040M2(i_p2)/p2 j at all tru e  distances. This is entire ly consistent with 

the fact that measurements of P are free from selection effects, and 

confirms that the ’Schechter’ recipe will indeed give unbiased

estimates of the tru e  log distance, w0, for all wq.

Finally we can see from figure  (4.11) that the distribution of 

the ’maximum likelihood’ estimator is also basically gaussian in form at 

various tru e  distances; moreover the modal value of appears to be 

approximately coincident with wq, s o  that this estimator does not 

display significant bias, even at x0 = 2.0. Furtherm ore, on closer 

comparison with figure  (4.10) it may be noted that the spread in the  

distribution of Gq is at least as large as that of Ĝ L at the same

distance -  and indeed is somewhat larger for x q  = 0.5 and x q  = 1.0;

1.e. the variance (or, equivalently for unbiased estimators, the risk ) of
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Oĵ |_ is less than or equal to the variance of 0§. I f  we recall the

definition of risk from equation (3.26), this means that the expected

root mean square e rro r on a distance estimate obtained from any 

single observation will be smaller for than for titj. I t  may also be 

seen from figure  (4.9) that, at each true distance shown, the variance 

of Q jf  is smaller than that of both G|m_ anc* %  ” although the latter 

estimators may in general have smaller risk since it follows from the 

definitions of risk and variance that the risk of a biased estimator is 

always stric tly  greater than its variance.

The examples of estimator distributions considered above give 

some indication of the relative merits of these estimators; in particular  

the unbiasedness of the ’Schechter’ estimator is clearly a desirable 

property, and when one wishes to estimate distances from a large  

number of observations °S  would seem to be the most appropriate  

choice. However, these graphs also demonstrate that the dual role of 

both bias and risk in determining a ’best’ estimator cannot be 

overlooked. In particu lar the risk of ft} is found to be given by 

0.04oM2 (i-p 2 )/p 2 t which may be very large if M and P are poorly

correlated. If ,  fo r example, p were as low as -0.5 then the risk would

be equal to 0.12, which corresponds to a root mean square percentage 

distance erro r of 35%. Thus, although would still be unbiased in 

this case -  so that one would not expect a large number of estimates 

of w0 to display a systematic erro r -  the expected distance e rro rs  on 

a small number of observations would be considerably larger than 

those found by using O-pp or °ML-

In the following section we will compute the bias and risk of
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each estimator as a function of true distance, in order to provide a 

more quantitative assessment of which estimator is ’best*.

4.5 Bias and Risk of Estimators

The equations introduced in chapter (3) to define the bias 

and risk of a distance estimator, X, have obvious counterparts fo r an 

estimator of log distance. Thus we may define the bias, B(0,u^), and 

risk, R(O,w0 ), of an estimator, 0, at tru e  log distance, wq, v iz :-

B(O,w0) = J (0 -  w0) a(O|u0)dO (4 .1 8 )

R(G,u0) = J (0  -  w0)2a(O|u0 )dG (4 .1 9 )

The computation of the bias and risk of the ’maximum 

likelihood’ estimator must be carried out numerically; an analytical 

treatment is possible, however, fo r the ’general linear’ estimators.

4.5.1 Bias and Risk of Gq l

The derivation of expressions for the bias and risk of the  

’general linear’ estimator is relatively straightforw ard but algebraically  

tedious. Using equation (4.17) one can, of course, substitute fo r the  

distribution, G(Gg l |u0 ), in the above equations and then in tegrate  

directly. The analysis is made somewhat more tractable, however, by 

re-expressing 0GL and G(Gg l |w0 ) in terms of functions of m and P,
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using equation (4.10), (4.15) and (4.16). The expressions for both the

bias and risk are then reduced to a linear combination of integrals

over m and P, each of the form:-

= JJ (■ " Pv C (»,P |x0 )daKlP (4 .20 )

where the exponents u and v lie between zero and two. In this

notation the bias, B(Oqj_,wq), is therefore given by:-

B(QgL»wo) = A- I 1,0 + B- I 0,1 + C -  w0 (4 .21 )

The expression for the risk is somewhat lengthier. This approach is 

similar to the use of moment generating functions fo r calculating the  

bias and variance, which may often result in a simpler analysis of 

statistical problems (c.f. Hoel, 1962).

Upon performing the necessary integrations and after some 

fu rth e r regrouping of the terms we find the following expressions for 

the bias and risk :-

= (5A-1)w0 -  (AoH+pBop) exp[>>*(5u0/o M)2;] + BPq + C

✓2tt $ (—5u0/o^)

(4 .2 2 )

= W q 2 ( 5 A - 1 ) 2  + ( A o ^ + p B O p ) 2  Q C 1 . 5 ,H(5W q /o ĵ)23

2 4>(-5u0/ om)

-  2(AoM+pBop)(w0(5A-1) + BPq+C) e x p [ - f c ( 5 u 0 / o M ) 2 ; ]

✓277 <K-5Wo/ ° h )

+ 2w0(5A-1)(BP0+C) + (BP0+C)2 + B2op2(1-p2)

(4 .2 3 )
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Here Q(a,x) denotes the incomplete gamma function, defined as 

follows (c.f. Abramowitz and Stegun, 1968):-

Q(a,x) = T ^ a )  ]  ta' V tdt (4 -24)

We can see that each of these expressions involves highly 

non-linear functions of the tru e  log distance, so th a t in general 

the bias and risk of 0^|_ will be strongly dependent on the true

distance. The precise behaviour will clearly depend on the values of A,

B and C, however, and may be considerably simplified by suitable 

choice of these constants. In particular, recall equation (4.11) which 

defines the general linear estimator corresponding to a regression line 

of slope, A; for this special case we found that A = 0.2, B = -0.2A and 

C = 0 .2 A P q . Upon substitution of these values-into equations (4.22) and

(4.23) we see that most of the terms vanish, regardless of the value of 

A, and the bias and risk are both independent of Pq. In  fact, fo r all 

of the general linear estimators considered in section (4.3) we may 

re-express the bias and risk in the simpler form:-

B(O^L,w0) = -  0 .2 (o M-Apop) expC-^(5w0/o M)2 ] (4 .2 5 )

✓2tt <*>(-5^0/0^

R(°ftL.w o) = 0 . 0 4 ( o M - A p O p ) 2 Q C l . 5 f)4(5w0/ o M )23
-------------------------------------------  + 0 . 0 4 A 2 o p 2 ( i - p 2 )

2  4 > ( - 5 w 0 / o m )

(4 .2 6 )

I t  is now clear from equation (4.25) that by choosing A to 

equal oM/pop, the bias of vanishes for all values of Wq since the  

constant term on the numerator is identically zero. This is precisely
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the value of A which defines the ’Schechter’ estimator and confirms 

that the ’Schechter’ scheme will give bias-free estimates of log 

distance, uq, for all values of ujq. Similarly the non-linear term in the 

expression for the risk vanishes from equation (4.26), leaving only the 

constant term which is equal to 0 .0 4 o^ 2 (i_p 2 ) /p 2 > as was previously  

established in section (4.4). The risk of is, therefore, constant and 

independent of the true log distance, which means that the percentage 

risk of distances estimated using will be constant.

At this point we should note that the values of A, B and C 

which define °S  (and thus make O ql unbiased) are unique: the  

’Schechter’ estimator is, therefore, the only estimator of th is form 

which is unbiased for all true log distances. Certainly the ’general 

linear’ estimators corresponding to the other regression lines will all, 

in general, be biased. Figures (4.12) and (4.13) show the bias and risk  

of the f irs t four ’general linear’ estimators of Table (4.1) -  we have 

omitted the ’impartial’ estimator, Oj, which we have already seen in 

insensitive to the value of p -  together with a fifth , which we denote 

as the ’naive’ estimator, defined by:-

= 0 .2 (b -  m|_) (4 .2 7 )

Thus, °N  is a function only of apparent magnitude and is, in fact, the  

estimator of log distance corresponding directly to the ’naive’ 

estimator of distance, defined in equation (3.18). We can compute

the bias and risk of simply by putting A=0.2, B=0 and C=0 in

equations (4.22) and (4.23).
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Figure (4 .1 2 )

Bias of d if fe re n t  ’ general l in e a r ’ estimators of distance 

modulus as a function of true distance, xq 

(°M = 1, op = 0 .1 , p = -0 .8 )
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Risk of d iffe re n t ’ general l in e a r ’ estimators of distance 

modulus as a function of true distance, xq 

(oM = 1 ,  Op = 0 .1 , p = -0 .8 )
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Note that all of the estimators are unbiased when the tru e  

distance is very small -  including, 0^, as was remarked in section 

(3.4). Note also that the bias of the ’orthogonal’ estimator, Qq, is 

negligible even at large tru e  distances, and indeed both the bias and 

risk of Oq  are almost indistiguishable from those of the 'Schechter* 

estimator, this follows from the fact that the dispersion of P is 

very much smaller than that of M, as we remarked previously in 

section (4.3.1) in the context of the actual values in ferred  by these 

two estimators.

Observe that, fo r x q  > 2.3, Qq has the smallest risk of all of 

these estimators -  and is, of course, unbiased. I t  seems clear, then, 

that at very large tru e  distances Os is the ’best’ of the ’general 

linear’ estimators which we have considered. The picture is not quite  

so simple at smaller tru e  distances, however; we see that, although 

C>t f  is the most biased of the four estimators which are functions of m  

and P, it has the smallest risk for xq ^ 1.2 and consequently might be 

regarded as the most suitable estimator in this tru e  distance range -  

particularly if one observes only a small number of galaxies. Against 

this, of course, one must balance the fact that both the bias and risk  

of Oyp increase sharply fo r x q  > 1.2; if one wrongly assumes that the  

true distance is less than 1.2 when it is, in fact, considerably greater 

than unity then the use of tfyp would result in a large systematic 

error. Nevertheless, it is at least evident that both the bias and risk 

of are considerably worse than those of demonstrating the

advantage which may be gained by making use of other observable  

quantities besides apparent magnitude to estimate distances. The 

precise behaviour of the bias and risk of all of these estimators will
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depend on the value of the correlation coefficient, but the general 

trends shown by figures (4.12) and (4.13) change little  for d ifferen t 

values of p.

4.5.2 Bias and Risk of G|y||_

Calculation of the integral expressions for the bias and risk  

of the ’maximum likelihood’ estimator cannot be performed analytically, 

but may easily be carried out using standard numerical packages. 

Figures (4.14) and (4.15) show the bias and risk of t^u_ as a function  

of the tru e  distance, xq, and for oM = 1, op = 0.1 and p = -0.8. Also 

shown, as a comparison, are the bias and risk of Gg and ^TF-

We can see from these graphs that the bias of a|though

non-zero, is very small -  even at large tru e  distances. ( I t  is also 

interesting to note that the bias of is, in fact, positive.)

Furthermore, the risk of °ML is less than that of fo r all xq < 4. 

Similar results are found for other values of p, although the bias of 

°ML does become increasingly significant fo r |p| < 0.4. On the basis of 

these criteria , therefore, there would seem to be little  to choose 

between °M L and °S  as the ’best’ estimator of log distance. Again, the  

final choice may come down to the number of observed galaxies. I f  one 

wishes to estimate the distance of only a few galaxies then the s lightly  

smaller risk of 0^|_ is a desirable property. I f ,  on the other hand, one 

has a large sample of galaxies then the removal of a systematic bias -  

however small -  in the distance estimates would be better achieved by 

the use of °S* This would certainly be an important advantage in
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obtaining distance estimates for analysis of the velocity field -  either 

by sophisticated techniques such as POTENT, or indeed via simpler, 

classical, methods such as the Hubble diagram. We will comment fu rth e r  

on these points in chapter (6).
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Figure (4.14)

Bias of ^ML» ^TF and °S as a function of true distance, xq

(oM = i ,  ap = 0.1, p = -0 .8 )
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Risk of Ĝ |_, C^p and as a function of true distance, xq 
(Oh  = 1, O p  = 0.1, p = - 0 . 8 )
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4.5.3 Bias of Distance Estimators

At the beginning of section (4.3) we drew attention to the  

fact th a t the distance estimator, St -  defined according to equation 

(4.8) from an unbiased estimator, G, of log distance -  will not, in 

general, be unbiased. Although the resulting bias of St has usually 

been regarded as very small, it is worthwhile verify ing this. Suppose 

we define *q|_, a ’general linear’ estimator of distance corresponding  

to GqL, as follows:-

JtQL = 10A(- - mL) + BP + C (4.28)

By a similar analysis to that of the previous section, we can determine 

the d istribution of th is estimator, and hence its bias and risk, as 

function of tru e  distance, x q , and fo r general constants A, B and C. 

This again involves some rather tedious algebra, however, and in the  

case of the ’Schechter’ estimator, there is a much simpler route to 

the same result. We know that the distribution of %  is normal with 

mean value w0 and variance equal to 0.04oM2(1-p2)/p2. Using th is fact, 

it is stra ightforw ard  to derive an expression fo r the expected value of 

the equivalent estimator of distance, *S> viz:"

E ( * s l x 0 >  8  E O O ^ I x q )  =  x 0e x p l l 0 . 02K 2o M 2 ( i - p 2 ) / p 23 ( 4 . 2 9 )

where k  = In 1 0  = 2.3. The bias of * S  is then given by:-

B ( * s , X ( ) )  = X o ( e x p C 0 . 0 2 / < 2 o M 2 ( i - p 2 ) / p 2 ]  “  D  ( 4 . 3 0 )

Thus, the unbiased ’Schechter’ estimator of log distance will 

derive estimates of distance which are positively biased at all tru e
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distances. The effect is fa irly  small: substituting = 1 and p = -0 .8  

in equation (4.29), we find that the percentage bias of Sg is less than 

6%. The bias increases sharply, however, if there is poorer correlation  

between M and P.

There would, therefore, seem to be reasonable justification  

for studying estimators of log distance in order to establish ’best* 

estimators of distance; the distance bias which is introduced is not too 

large and the algebra is often simpler. Nevertheless, it follows from 

equation (4.29) that simply by dividing the value of xg by the  

constant factor expC0 .0 2 /<2 aM2 ( 1 -p2 ) /p 2 3 > we can define distance 

estimates which are completely unbiased at all tru e  distances. (Of 

course, if the correlation between M and P is high then this constant 

is very close to unity and the bias correction is not important.)

4.6 Confidence Intervals

We have already seen in section (4.4) that the estimators 

discussed so fa r in this chapter all have a distribution which is a 

function only of the true log distance, w0; each may, therefore, be 

used to construct confidence intervals fo r that log distance following 

the method developed in section (3.5).

Specifically, in order to determine a (1-<x)100% confidence 

interval for wq, using an estimator O with distribution G(C>|ûq), we 

require to find w-j and such th a t:-
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W1

|  ft(G|u0 )dG = X (4 .3 1 )
0

and

l>2

J G(G|w0)dG = ( 1-<x) + X (4 .3 2 )

0

where x c CO,a)

By plotting w-j and u2 as a function of tru e  log distance, uq, a 

confidence interval fo r may then be found by the simple graphical 

procedure described in section (3.5). As an illustration of this, figure  

(4.16) shows graphs of w-j(wq) and for ’equal ta li’ (i.e. with X =

Jto) 68% confidence intervals, computed from th e  distributions of °TF> 

°S  and 0|y||_ and assuming = 1, op = 0.1 and p = -0.8.

We can see from figu re  (4.16) that the 68% confidence interval 

curves for °S  are, in fact, parallel lines. The same result is found for 

any other confidence interval constructed from Oq; th is  is because the 

distribution of Gg is normal with constant risk at all tru e  distances. 

Consequently, the width of confidence intervals constructed using °S  

will be Independent of the ’observed’ value of the estimator (i.e. the 

value of °S  determined from the observed values of m and P). This is 

not the case with G jF and C^L : we can see from fig u re  (4.16) that 

when the observed value of these estimators is small, both give 

confidence intervals which are marginally narrow er than those 

obtained from but the intervals become slightly wider as the value 

of the estimators increases. This is not a large effect, however,
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Figure (4 .16)

’ Equal T a i l ’ ( i . e .  w i th  X = y&) 68% confidence in te r v a l  curves f o r  

the t ru e  d is tance  modulus, wg, computed from the d i s t r i b u t i o n  

func t ions  o f  Gj-p, Gg and G ^  (oM = 1, op = 0 .1 , p = -0 .8 )
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and there is basically little  difference in the width of the intervals  

constructed from each of the three estimators. The other immediately 

noticeable feature of figu re  (4.16) is the changing slope of the 

confidence curves for °TF» and their divergence from those of the 

other two estimators at large values of ^TF* Consequently, one might 

suspect that the confidence intervals constructed from ^TF will tend 

to be shifted towards larger values of wq compared with those 

constructed from the other estimators. This is not necessarily the 

case, however: for given observed values of m and P, **TF tends to 

take smaller values than tig, because of the negative bias of tipp at 

large distances, and this will sh ift the tipp confidence interval to the  

left, and closer to the interval constructed from °S  at the same 

observed values of m and P.

To fix these ideas consider a specific numerical example, for 

the particu lar case of the Tu lly -F isher relation, as was met previously 

in section (4.3.1). Let the mean logdine width), P0 = 2.5, the mean 

absolute magnitude, M0 = -20 and the limiting magnitude, mL = 15. 

Suppose that we observe a galaxy with a logdine w idth) of 2.6 and an 

apparent magnitude of 13.9. I t  then follows from equations (4.11) and 

(4.14) that tiyp, tig and t i ^  are approximately equal to -0.06, 0.03 and 

0.0 respectively. We then obtain the following 68% confidence Intervals  

for Wq from figu re  (4.16): [-0.16,0.12] ( ^ j f ) ;  [-0.12,0.18] (tig) and 

[-0.15,0.14] ( t i i^ ) .  We see, then, that each of the estimators gives a 

fa irly  similar confidence interval for wq. I f  we take the narrowest 

Interval, that obtained from tipp, and translate the upper and lower 

limits into distances we find a 68% confidence interval of approximately 

70MPc < r0 < 130MPc fo r the tru e  distance, r0.
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I t  is useful to compare the confidence intervals which we 

have determined from these estimators with those obtained from the  

’naive’ estimator, G^, of log distance, introduced in section (4.6), which 

is a function only of the observed apparent magnitude. Figure (4.17) 

shows the upper and lower confidence curves constructed from the  

distributions of and ^TF- (For c larity  we have omitted the °S  and 

° M L  curves). I f  we consider again the same numerical example as 

above, we saw that the values of m ^ g  = 13.9 and P0 bS = 2.6 led to a 

68* confidence interval for u0 of [-0.16,0.12] from G yp If, on the other 

hand, we use only the measured apparent magnitude of the galaxy to 

estimate its distance (so that takes the value -0.22) then we see 

from figu re  (4.17) that the 68* confidence interval for constructed  

from °N  is [-0.39,0.15]. This is almost twice as large as the interval 

obtained from a t f - Translating both confidence intervals into distance 

ranges we find the following: from 40MPc < rg < 140MPc as

opposed to 70MPc < Tq < 130MPc from Gyp.

The narrower confidence interval obtained from G y p  as 

compared with ° N  is consistent with the lower bias and risk of th is  

estimator, and may be regarded as a consequence of having more 

complete information about the tru e  distance. In  other words, by 

observing the line width of a galaxy we obtain useful information 

about its absolute magnitude, which allows the likely true distance to 

be ’narrowed down* more effectively than may be done purely on the  

basis of the observed apparent magnitude. The precise amount by 

which the width of the confidence interval is reduced depends on the  

value of p; as the scatter in the M - P  relation increases, the width of 

the interval found from G y p  increases. Indeed, in the limiting case
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Figure (4 .17)

’ Equal T a i l ’ ( i . e .  w i th  X = >fcx) 68% confidence in te rv a l  curves fo r  

the t ru e  log d is tan ce , w0 , computed from the d i s t r ib u t io n  

fu n c t io n s  o f  O jp, Oty (o^ = 1, Op = 0 .1 , P = -0 .8 )
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where M and P are uncorrelated, ^TF must give precisely the same 

confidence intervals as since as p  ■» 0 , O j p  -♦

The value of the correlation coefficient will also affect the  

width of confidence Intervals constructed from the o ther estimators. 

We can easily see this for °S  in the above example: since tfg is 

normally distributed with variance 0 . 0 4 o M 2 ( i _ p 2 ) / p 2  at  all tru e  

distances, it follows immediately that the width of the 68% confidence 

interval found from th is estimator in figure (4.16) is simply twice the  

dispersion of Gg, i.e. 0 . 4 o M v ' ( 1 - p 2 ) / | p j ; the same p-dependence is found 

for confidence intervals of other percentage levels. Thus we see that 

the Intervals found from Og can be very narrow if M and P are  

sufficiently well correlated, but that if |p| is small then the intervals  

will become very large; wider, indeed, than those obtained from ^TF* 

This is again consistent with a comparison of the risk of these two 

estimators.

Provided that the intrinsic variables, M and P, are suitably  

correlated, therefore, these results would seem to provide a fu rth e r  

indication that the combination of a second observable with apparent 

magnitude allows one to estimate the true distance of a galaxy 

significantly more reliably than by using apparent magnitude alone.
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4.7 Extension to More General Cases

In concluding this chapter we now consider the fact that the  

precise form of the expressions obtained in section (4.5) for the bias 

and risk of ^GL -  or indeed any estimator -  will certainly depend on 

the particu lar assumptions which we have made. For example, we have 

assumed that P is measurable directly and that the jo in t d istribution  

of M and P is a bivariate normal, independent of position; we have 

described the selection effects by a Heaviside step function of m, as 

given by equation (4.6), so that measurements of P are assumed to be 

selection-free: it is important to determine the extent to which the  

properties of these estimators are dependent on any, or all, of the  

above assumptions. We will therefore now examine some specific 

examples of ways in which our treatm ent may be extended to consider 

more general cases.

4.7.1 P Not Directly Measurable

Suppose that the distance independent quantity, P, is not 

measurable directly but rather that one may observe some other 

quantity, p, which is related to P via the tru e  distance, r0 -  

analogous to absolute and apparent magnitude. (We will re fer to M and 

P as intrinsic random variables, and to m and p as extrinsic random 

variables.) Consider, for example, the apparent angular diameter and 

absolute physical diameter of a galaxy, the latter of which we have 

seen is well correlated with the in trinsic  luminosity for a number of 

d ifferen t morphological types (c.f. Holmberg, 1969; Paturel, 1979).
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Suppose fu rth e r, for the sake of argument, that measurements of the

angular diameter are selection-free. I f  we identify P with the log of

absolute diameter and p with the log of apparent angular diameter 

then neglecting, or correcting for, cosmological effects we have:-

P = p + logrQ ■ p + w0 + logrL (4 .3 3 )

This fits  the more general relatlon:-

P = ap + /3Uq + y (4 .34 )

where and y are constants. I f  we again assume a bivariate normal 

for the in trinsic  distribution of M and P and adopt the selection

function of equation (4.6), so that we assume the measurements of p to

be selection-free, we can determine the jo in t distribution of the  

extrinsic variables, m and p, for observable'galaxies and use this to 

compute the distribution, bias and risk of the estimator, ^GL» defined 

by:-

Q|0l_ = A(«-mj_) + Bp + C (4 .3 5 )

We obtain the following expressions for the bias and risk respectively  

of C ^ : -

B(Gfc|_’wo) = (5A-B£/oc-1 ) w0 -  (AoM+popB0/oc) exp[-H(5u0/o M)2;]

✓277 <K-5cj0/ om)

+ B(Pg- >')/a + C (4 .36 )
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R(QGL’ wo) = w02 ( 5 A - B / 3 /a - i ) 2  + (AoM+popB£/oc)2 QC1. 5 ,M (5 w 0/ o M) 2 ]

2 4>(-5w0/ om)

-  2 ( AoM+pOpB£/a) (u>0 ( 5A-B/3/a-1) + B(P0-y)/a+C>expC-«(5w0/o H) 23

✓2i ^(-Swq/ o^)

+ 2w0 (5 A -*B /S /a - l ) (B (P 0- y ) /a + C >  + (B (P 0- y ) / a + C ) 2 + (B/oc)2op2 (  1 - P2 )

( 4 . 3 7 )

For the apparent diameter case, given by equation (4.33), the  

constants of the p-P  relation take the values « = 1 , £ = 1 and y = 

logri_, which simplifies the expressions for the bias and risk a little . 

Upon substitution we see that in order to define an unbiased estimator 

we require to solve the following equations fo r the constants A, B and 

C:-

5A -  B -  1 = 0

AO|y| + BpOp = 0 ( 4 . 3 8 )

B(Pq -  logr|_) + C = 0 

We find the following solutlon:-

A =

B =

C =

pop 

+ 5pOp

C|y| + 5pOp 

+ 5pOp

(4 .3 9 )

(P0 -  lo g rL)

Thus, the estimator defined by:-
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^GL* = (oM + 5pop)-1<pap(»-mL) " ° mP + °H (p0"lo 9r L ^  (4 .4 0 )

is unbiased at all tru e  distances. Moreover, we can see from equation

(4.37) that the risk of this estimator is given by B2op2(1-p2), which is 

constant, independent of the true distance and is identically equal to 

the risk of the ’Schechter’ estimator.

As in the case where P is measurable d irectly, the values of 

A, B and C which make unbiased are unique, so that there  is

only one general linear estimator which is unbiased and of constant 

risk. By suitable combination of A, B and C, however, it is possible to 

construct estimators which -  although biased -  have a smaller risk  

than <3q l *  within a particular range of tru e  distances. One may also 

define a ’maximum likelihood* estimator from the jo int d istribution of 

the extrinsic variables m and p; th is estimator is found to have a very  

small bias and a somewhat smaller risk than «GL* over a large range  

of tru e  distances. (This bias is, of course, dependent on p, however, 

and becomes large if the correlation between M and P is poor.) Thus, 

the behaviour of the estimators which one may define in the case 

where P is not directly measurable shows no qualitative differences  

from the results of our earlier analysis.

4.7.2 A rb itra ry  Selection Function, S(m)

One of the most important points made in Schechter (1980) is 

the fact that if one has a sample of galaxies fo r which the  

measurements of P are selection-free, then one may obtain unbiased 

estimates of log distance regardless of how the apparent magnitudes of
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the sample are selected. In other words, provided the selection

function, S, depends only on the apparent magnitude, m, then the

’Schechter’ estimator, will be unbiased at all tru e  distances

irrespective of the form of S(m). I t  is instructive to confirm th is  

result by computing the bias and risk of Qq\_ fo r a more general 

selection function.

I t  is certainly the case that the Heaviside function which we 

have thus fa r  assumed will not always be a reasonable approximation 

to the selection function. For example, the cu t-o ff at fa in t magnitudes 

may not be sharp, but instead ’smeared out’ close to mi_. A more 

appropriate form for S(m) would then be a sigm oid-type function

which changes smoothly from 0 to 1 across the magnitude limit (c.f.

Teerikorpi, 1975). Rather than consider a specific alternative selection 

function such as this, however, we will assume that S(m) is a 

completely a rb itra ry  function of the apparent magnitude. Thus, the  

jo int distribution, C(m,P|xQ), of m and P for observable galaxies at 

tru e  distance, xq (assuming for simplicity th a t P is directly  

measurable) takes the form:-

expC-Q («,P)/2(1-p2)D S(»)
C(«,P|Xq) =       (4 .41 )

✓277(1 —p2 )oMop E(x0 )

where Q is given by:-

Q(»,P) = (« -m L-5 1 o g x 0 ) 2/ o M2 + (p_p0)2 /o p2 -  2p(«-mL-51ogx0)(P -P 0) /o MOp

and the normalisation factor, E(x0 ), ensures that /K (m ,P |xo )dm dP  = 1. 

Of course, E(xq) will, in general, be d ifferent from the normalisation,



154

♦(-SlogxQ/OM), of equation (4.7).

I f  we now calculate the bias and risk of we obtain the 

following expressions:-

B(Qgl»w0) = (5A-1)U0 -  (AoM+pBop)G(x0 ;1) + BP0 + C (4 .42 )

/27? E(x0 )

R ( ^ L ’ w0> = w0 2 ( 5 A - 1 ) 2 + (Ao m+p Bo p ) 2 g ( x 0 ;2 )

^2tt E (x0 )

-  2(AoM+pBop)(u 0(5A-1) + BP0+C)G(x0 ; 1)

✓2rr E (x0)

+ 2u0(5A-1)(BP0+C) + (BP0+C)2 + B 2 o p 2 ( i - p 2 )

(4 .43 )

where the function G(xQ;n) is defined as:-

G(xo;n) = J t nexp(-H t2)S(oMt+mL+51ogx0 )d t (4 .4 4 )

Comparing the above equations with equations (4.22) and

(4.23) we note that they d iffe r from the la tter pair only in the 

presence of the functions G(xg;n) and E(xq); the terms involving the  

constants A, B and C are unchanged. (Of course when S(m) is given 

by a Heaviside function both G(xQ’,n) and E(xq) reduce to th e ir  earlier 

counterparts.) I t  follows immediately, therefore, that the ’Schechter’ 

estimator is unbiased and has constant risk at all tru e  distances, 

regardless of the form of the magnitude selection effects.

The properties of any other estimator, however, will depend
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on the precise behaviour of S(m). Suppose, fo r example, that the  

selection function takes the form of a magnitude window of width s, 

v iz :-

1 idl -  s < a < niL
S(a) = ( 4 . 4 5 )  

0 otherwise

(i.e. b righ t galaxies are rejected from the sample In addition to the  

denial of very fa in t galaxies.) Assuming this selection function, G(xq;1) 

is then found to be given by:-

G(x0 ;1) = expC-fc((S+5w0)/o M)2 ] -  expC-«(5w0/o M)2 ]  (4 .4 6 )

and th e  normalisation fac to r ,  E(xq) Is g iven b y : -

E(x0 ) = $ ( - 5^0 / 0 ^  -  ^(-(S+5w0 )/o^,) (4 .4 7 )

Substituting into equation (4.40) we find that the bias of the  

’T u lly -F ish e r’ estimator, *TF» is therefore given by:-

B(C>t f »wo) = 0.2oM(1-p2)<expC-^((S+5w0) /o M)2 ]  -  expC-^(5w0/o M)2]>

✓2T7 ( ^ ( - S wq^ )  -  ^ ( - ( S + S w q ) / ^ ) )

(4 .4 8 )

Figure (4.18) shows the bias of *^TF as a function of tru e  

distance, x q , for a magnitude selection ’window’ of width s  = 5 mag. We 

can see from this graph that Oyj: has a significant positive bias for  

small xq . I f  we use equation (4.48) to examine the limiting behaviour of

B(&7f *wo)> we find that the bias of *^TF does not tend t0 zero as the

tru e  distance tends to zero, as was the case with only a fa in t

magnitude limit; a similar increase is found in the risk at small x q .

This is simply a consequence of the fact that the mean absolute
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m agnitude o f observable galaxies is no longer equal to M q  at small 

t r u e  distances, but is in fac t fa in te r  than Mq ( re s u lt in g  in the  

system atic  over-estimation o f d is tances) because the selection e ffec ts  

remove b r ig h te r  galaxies from the  sample at small t ru e  distances.

00 0.30

0 .1 5 --

0.00

0.0 0l2 0.4 0.4 0.0 1.0 1.2 1.4 1.4 1.0 2.0 Z 2  2.4 2.4 2.0 3.0

Figure (4.18)

Bias o f  the ’ T u l ly  F is h e r ’ e s t im a to r  as a fu n c t io n  o f  t ru e  

d is tance, x q , assuming a m agnitude selection func t ion  g iven by a 

’ w indow ’ o f w id th , S = 5 mag. = 1, op = 0.1, p = -0.8)
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A particular problem introduced by a narrow magnitude 

selection function is the fact that there will be only a narrow range of 

distances within which the bias of the ’Tu lly -F isher’ estimator is close 

to zero, whereas we can see from figu re  (4.13) that with only a fa in t 

magnitude limit the bias of O jp  is very small fo r all x0 < 0.7; the same 

problem afflicts to an even greater extent the ’naive’ estimator 

defined in equation (4.27). As we have seen in section (2.2) this effect 

places severe limitations on the usefulness of the Minimum bias Subset 

for removing selection bias.

4.7.3. Estimators Derived from the Dn-o  Relation

The analysis which we have presented thus fa r  has 

concerned the estimation of distance from the combination of apparent 

magnitude with a second observable. I t  is straightforw ard to adapt 

this analysis to deal with the case of the Dn-o relation, where one 

estimates distances by combining the central velocity dispersion of a 

galaxy with its measured apparent angular diameter. To th is end, 

therefore, suppose that the log of absolute diameter and the log of 

velocity dispersion of a galaxy are random variables -  denoted by D 

and P respectively -  whose intrinsic jo in t distribution is a bivariate  

normal. (We use P instead of o to denote the log of velocity dispersion 

so as to avoid confusion with the dispersions of the bivariate normal 

distribution, oD and op, which characterise the intrinsic scatter in the  

Dn-o  relation.) Denote by d the log of apparent angular diameter 

which is related to D, after cosmological corrections (c.f. Burstein and 

Heiles, 1982) by:-
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d = D -  U0 (4 .4 9 )

where uq is the tru e  log distance. Suppose now that we observe a 

sample of galaxies and measure d and P for each object. Suppose, 

fu rth e r, that the measurements of diameter are subject to selection 

effects described by a selection function, S(d), but th a t the  velocity 

dispersion measurements are selection-free; this is approximately the  

case for the selection effects of the Lynden-Bell et a/, (1988) data set 

(c.f. section 2.3.3).

We can then derive the joint d istribution of d and P, 

G(d,Pluo)> at given tru e  log distance, Pq, taking into account the  

sample selection effects; th is jo in t distribution may be used to define 

estimators of Pq. Consider for example the ’general linear* estimator, 

^GL» defined by:-

Uq i = Ad + BP + C (4 .5 0 )

To derive expressions for the bias and risk of PGL we merely require  

to follow an essentially equivalent analysis to that of section (4.7.2), 

with the apparent diameter now replacing apparent magnitude as the 

observable which is subject to selection effects. We obtain the  

following results:-

B ( ^ l »^)) = “ (A+1) ^  + (Aod+PBop )G(/j0 ;1) + AD0 +BP0 + C

✓2rr Z(Pq) (4 .51 )
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RCAgL ’ ^ o ) = Ko2 (A + 1 )2 + (A oD+p8op )2 G(Uq ;2 )

/2i Z ( U q )

+ 2<AoD+pBop ) (A D 0+BP0+C -  W o U + D W ^ - . l )

✓2w Z ( U q )

+ (ADq+BPq+ C )2 -2 P q(A +1) (ADq+BPq+C) + B2<3p2(1-p2)

(4 .5 2 )

where G(jUQ;n) is defined as:-

G(^o;n) = J t nexp(-fct2)S(o0t+D0-Wo)dt (4 .5 3 )

and E(Wq) normalises S(d,P|WQ).

Note the similarity between these expressions and those of 

equations (4.42) and (4.43): note in particular that it is possible to 

define an unbiased estimator of by choosing the constants A = -1 , 

B = oD/pop and C = Dq -  Po° d /P°P* '*e* the estimator, Aq l* ,  defined  

by:-

JfeL* -  ° d/P °P P “  d + D0 "  p0 ° d/P °P  ( 4 .5 4 )

is an unbiased estimator of the tru e  log distance, for all values of 

Wq. This is precisely the same estimator as the ’Schechter’ estimator, 

As> which one may construct from the Dn-o  relation; i.e. the estimator 

which corresponds to calibration of the Dn-o relation by a regression 

of velocity dispersions on apparent diameters. The risk of As is found 

to be constant, independent of the tru e  distance, and equal to  

°D2( 1“P2 )/P2> which again corresponds exactly to our previous result 

for Og. Moreover, we can see from equations (4.49) and (4.50) th a t the  

constants which define As as unbiased are unique: estimators
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constructed from any other regression line -  or indeed any other 

a rb itra ry  values of A, B and C -  will certain ly be biased. Thus, 

provided that the selection effects may be adequately described by a 

function only of the apparent diameter, we see that the ’Schechter* 

scheme for identifying unbiased distances applies equally well to the  

Dn-o  relation.

4.8 Summary and Concluding Remarks

In  th is chapter we have investigated the properties of 

distance estimators which are functions of two observables, as is the  

case for distances derived from e.g. the Tu lly -F isher or Dn-o  

relations. Assuming that the intrinsic scatter in each relation is 

described by a bivariate normal distribution, we have derived  

expressions fo r the bias and risk of a ’general linear’ estimator (i.e. a 

linear combination of the two observables) of log distance. We have 

shown that, provided the measurements of one of the observables are 

free from selection effects, then it possible to define a ’general linear’ 

estimator which is unbiased at all tru e  distances. This unbiased 

estimator corresponds exactly to the scheme proposed by Schechter 

(1980), whereby one calibrates the Tu lly -F isher or Dn-o  relation by 

minimising the residuals on the selection-free variable (in the case of 

Tu lly -F isher, fo r example, one regresses line widths on magnitudes).

Moreover, we have shown that the risk of th is ’Schechter’ 

estimator, &S* is a constant independent of the tru e  distance, so that 

the percentage risk of distance estimates obtained from Gg will be
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constant. Similarly, confidence intervals for the tru e  log distance 

constructed using tig, following the method introduced in section (3.5), 

will be of constant width. We have also shown that even if both 

observables are extrinsic varaiables (as is the case for e.g. apparent 

magnitude and apparent angular diameter) then one may still define an 

estimator which has zero bias and constant risk at all tru e  distances -  

again dependent only on one of the observables being selection-free.

In each of the cases which we have considered the  

’Schechter’ estimator is given uniquely in terms of the parameters of 

the relevant intrinsic jo in t distribution: e.g. fo r the Tu lly -F isher  

relation is defined in terms of p, oM and op. i t  is, therefore, very  

important to use accurate values for these parameters; clearly a 

fa ilure to do so will result in a biased estimator, and the bias and 

risk may quickly become non-negligible due to the non-linear form of 

the expressions which we have obtained. One possible source of e rro r  

in the estimates of p, oM and op is the use of a poor calibrating  

sample; e.g. one that carries a significant zero-point e rro r, or is 

incomplete in M or P, or contaminated by foreground galaxies which 

are not correctly identified. Problems of this kind which arise in the  

use of Tu lly -F isher type relations have been discussed in some detail 

by several authors (c.f. Teerikorpi, 1989; Tammann, 1987).

Even if these distribution parameters are well-determined, the  

properties of the ’Schechter’ estimator will still depend crucially on 

the assumption that one observable is free from selection; if th is is 

not the case then it will no longer be possible to define an unbiased 

estimator at all tru e  distances. Nevertheless, for any given selection
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function, one may still compute the bias and risk of a ’general linear* 

estimator at any tru e  distance -  although this may no longer be 

possible analytically. One strategy for Identifying a ’best’ estimator 

would then be to find the coefficients A, B and C which minimise the  

bias or risk (or some chosen combination of both) over a relevant 

range of tru e  distances. We will comment fu rth e r on the application of 

this stra tegy in chapter (6 ).
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5. ESTIMATION OF DISTANCE USING THREE OBSERVABLES

5.1 Introduction

In this chapter, as a natural extension of the results of 

chapters (3) and (4), we will consider the properties of distance 

estimators which are a function of the measured apparent magnitude 

and of two other observable quantities. We will derive expressions for 

the jo in t distribution of three observables at a given tru e  distance, 

taking into account sample selection effects, and use this distribution  

to compute the bias and risk of a ’general linear’ estimator of the tru e  

log distance. We will then show that, in th is extended case, it is again 

possible to derive unbiased distance estimators analogous to the  

’Schechter’ estimators of the preceding chapter. Moreover we will 

demonstrate that, as one might expect, it is possible to construct 

unbiased estimators which have smaller risk than the ir counterparts in 

chapter (4).

5.2 The Observed Distribution of m. P and D

Our analysis will follow precisely the same formulation as 

section (4 .2 ), d iffering only in the inclusion of an additional 

observable. Let the absolute magnitude, M, and position, r, of a galaxy 

be random variables. Further, suppose that P and D are random 

variables which denote intrinsic physical characteristics of the galaxy 

such th a t M, P and D are correlated. (An example of three such 

variables -  which is suggested by our choice of notation, following
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that of the previous chapter -  is the absolute magnitude, absolute 

diameter and velocity dispersion.) Suppose, however, that each of M, P 

and D is uncorrelated with r so that we may introduce ^(M,P,D), the  

in trinsic jo int d istribution of M, P and D, which is independent of 

position. Consider now the jo int distribution, p(M,P,D,r), of M, P, D and 

r  for observable galaxies in a sample subject to selection effects -  as 

described by a selection function, S(M,P,D,I r | ), defined in the same 

way as before. I t  follows that p(M,P,D,r) is given by:-

¥(M ,P,D)n(r)S (M ,P ,D , I r l )
P(M,P,D, r) = 7TT7-----------------------------------------------------  (5*1)

JJJJ <i'(H ,P ,D )n(r)S (H ,P ,D , I r l  )dMdPdDdV

where n (r )  is the number density of galaxies (of all values of M, P 

and D) at position £• Using this equation we find that the conditional 

distribution, S(M,P,D|ro), of the intrinsic variables, H, P and D at a 

given distance, rg, fo r observable galaxies is given by:-

¥(M ,P,D)S(M ,P ,D ,r0 )
S(M ,P ,D |r0 ) = 7 7 7 ------------------------------------------  (5 .2 )

Jll ^(H ,P ,D )S (H ,P ,r0 )dMdPdD

Note that, as before, th is distribution is independent of the local 

density, n (r).

We can re-express equation (5.2) in terms of extrinsic random 

variables to allow for the fact that P or D may not be measurable 

directly , as we have already noted in the case of e.g. the absolute 

diameter of a galaxy. Hence, in addition to the apparent magnitude, m, 

we introduce the extrinsic random variables p and d, related to P and 

D as follows (c.f. equation 4.34):-
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P = <x.,p + ^ w 0  + y1

(5 .3 )

D = a 2d + + y2

where ocj, £j and y-t are constants and wq is the tru e  log distance in

scaled units. ( I f  e ither P or D is directly measurable then we will

simply have the special case of ocj = 1, jSj = o, y\ = 0 . )  Thus, by

changing variables in equation (5.2) to m, p and d, we may determine

the jo in t distribution of the extrinsic variables for observable galaxies 

at tru e  log distance, u0, given an a rb itra ry  selection function, 

S(m,p,d), and for an a rb itra ry  jo int distribution, ^ (M ^ D ) , of the  

intrinsic variables (provided only that such a distribution exists!). In  

the present treatment, however, we will consider only two specific 

cases.

5.3 Case 1: Selection Only on Apparent Magnitude

Suppose, firs tly , that the selection function, S, is a function  

only of the apparent magnitude, i.e. S = S(m). Thus we assume that 

the measurements of p and d are free from selection effects. Suppose, 

fu rth e r, that the intrinsic jo int distribution 4>(M,P,D) is given by a 

tr iv a ria te  normal distribution. Hence V takes the form :-

^(H ,P,D) = (2tt)“ 3 /2 |V |-1 /2  e xp C -W  (5 .4 )

where Q is a quadratic form in M, P and D which also involves the  

elements of the covariance matrix, V, of the intrinsic variables. In the 

tr iv a ria te  case the covariance matrix may be completely specified by

six parameters: the dispersions of M, P and D -  denoted o^ , op and op
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respectively -  and the three correlation coefficients, denoted Pm p » Pmd 

and ppQ, which measure the correlation between each pair of the  

variables. In  this notation, V is given by:-

V =

°M2 °H°PPHP °M°DPHD

°H°pPMP °P2  OpOpppD

aH°DPHD °P°Df>PD °D2

(5 .5 )

The precise form of the triva ria te  normal may be w ritten  

down as a special case of the general m ultivariate normal distribution, 

which is studied in detail in many standard textbooks on statistics and 

probability (c.f. Graybill, 1961; Kendall and Stuart, 1963). For any 

tr iv a r ia te  distribution function, however, the following relation will 

always hold:-

V(H,P,D) = ^ (H ^ C P .D IM )  (5.6)

i.e. we may always express V as the product of the marginal 

d istribution , ^ (M ) ,  of M multiplied by the conditional d istribution,

^ (P ^ D IM ), of the other two variables at a given value of M. Given the

form which we have assumed for the selection effects, it is useful to 

w rite I 1 as a product in th is  way, since we can make use of the result

that when is m ultivariate normal, then so too will be ^  and ^2 * A

proof of th is  property may be found in Graybill (1961), which also 

derives expressions for the means and covariance matrices of the two 

distributions, ^  and V2. Applying the results of Graybill, we find that 

V may be w ritten as:-
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expC~ 1 / 2om2 (M-M0 ) 2 3 exp [ ]

(27r)^oM 277
(5 .7 )

where Q-| is a quadratic form in M, P  and D, and V-j is the covariance 

matrix of the conditional distribution, given by:-

The main advantage of splitting the triv a ria te  distribution in this way 

is that the quadratic form, Q-j, may now be compactly expressed in 

terms of the equations for the regression lines of P  on M  and D  on M, 

which of course we have already seen in the preceding chapter play a 

crucial role in the definition of an unbiased ’Schechter’ estimator. Q-j 

takes the following form:-

i.e. E p  = 0 and E p  = 0 define the ’P  on M ’ and ’D  on M ’ regression 

lines respectively.

°P 2 ( 1"PMP2) °P°D(PPD'PMPPMD)
V (5 .8 )

^D^PD^M PPM D) 0 D2 ( 1“PmD2)

Qi  = IV1 I" 1• (°D2( 1“pMD2)Kp2 " 20P0D(pPD“PHPpMD)EPED

+ Op2( 1-P|^p^)Eq2 )

and E p  and are shorthand for the following:-

(5 .9 )

(5 .10 )

E q  = 0  -  D0  -  PmD°d/°m(M -  M0 ) (5 .1 1 )

I f  we now substitute in Q-) fo r P  and D  in terms of the  

extrinsic variables, p and d, as given by equations (5.3), and also fo r
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the absolute magnitude, M, in terms of m using equation (3.12), then 

we obtain the following expression for the jo in t d istribution, 

G(m,p,d|w q ), of the extrinsic variables for observable galaxies at true  

log distance, uq:-

expC-1/2oM2(B-mL-5 Wo)2 -  1 / ^ (m,p,d)D S(«)
G(«,p,d|w0) =  — ------------------------------------  ( 5 . 1 2 )

a 1a2 (2TT))^ M 2tt|V1 £(w0 )

where E(uq) normalises C at each tru e  log distance, and oc•( and 

are introduced by the transformation from (P,D) to (p ,d ), as in 

equation (5.3).

5.3.1 Bias and Risk of

We define a ’general linear’ estimator of as follows:-

Ĉq|_ = A(« -  m|_) + B-jp + B2d + C (5 .1 3 )

where A, B«j, B2  and C are constants and the observables p and d are  

related to the intrinsic variables P and D via equations (5.3). Following 

the same approach as for the bivariate case, we can use the  

distribution of equation (5.12) to determine the bias and risk of 

fo r a rb itra ry  constants A, B-j, B2  and C. We obtain the follow ing:-

B(Qgl,Wq) = (5A-B i ^ i / oc-|-B2^2/ oc2-1 )Wq

(Aojy|+B-jP|i(|pOp/a1 +B2 pMQOD/a 2 ) G(xq; 1)
+    — ----------------------------------------------

✓2 TT E(x0 )

+ B-j (P0 “ y 1 ) / a 1 + B2 (D0 -y 2 )/oc2 + C (5 .1 4 )
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R(^GL’w0 ) = w0 2 ^5 A“B1^ l / a 1_B2 ^2 / a2 " 1 ^2

(AoM+B1pMpa p /a 1+B2pHDoD/0c2 ) 2  G(x0 l 2)

^ 2 i  E (x0)

+ 2(AoM+B1pMpO p/a1+B2pMD°o/a 2^{ wo (5A" B1 ^ l /a 1"B2 ^ 2 /a 2” 1 ^

, G(x0 ; 1)
+ B 1 ( p0“y 1 ) / ° c1+ B2^B0~y2^/o:2 + c f “ T Z --------------

J VZn E (x0 )

+ 2w0 (5A-Bi^1/ a 1 -B2^2/°c2“ 1 )(B l ( p0">' l ) / (X1+B2 (D0~>'2 ) /a 2'fC)

+ (B-j (PQ-y-j )/oc-j + B2(D0 -y 2 ) /a 2 + c ) 2

+ (B-j/oc^ ) 2 a p 2 ( i - p ^ p 2 )  + ( B 2 / a 2 ) ^ a D2 ( 1 “ PMD2 )

+ 2(B -j/a -j ) (B 2 /« 2 )a Pa D (f>PD“ PMpPMD^ ( 5 . 1 5 )

where G(xo;n) is as defined in equation (4.44)

We can see immediately that these expressions, although 

somewhat lengthier in form, are very similar to those obtained for the 

bivariate case. In particular the functions G(xo;n) and E ( x q ) -  which 

determine the dependence of the bias and risk on the tru e  distance -  

appear identically in both cases: the additional contribution of B2 <i to 

the estimate of u>q changes only the coefficients of the  

distance-dependent terms. I t  follows immediately, therefore, that if we 

use only the measured values of m and p to estimate wq (i.e. setting  

B2  equal to zero) then the above expressions reduce exactly to those 

of the bivariate case -  as one would expect.

This correspondence with our earlier results certainly  

indicates that, by suitable choice of the constants A, B-j, B2  and C, 

one can define an estimator which is unbiased at all tru e  distances;
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the triv ia l choice of B2  = 0  would reduce the problem simply to that of 

defining A, B-j and C for the appropriate bivariate ’Schechter* 

estimator. In tu itive ly , however, one would hope that by making use of 

an additional observable, one would be able to improve upon the 

’Schechter’ estimators of chapter (4): In other words to find unbiased 

estimators with lower risk than °5-

We can see from equation (5.14) that the constants which 

define an unbiased estimator must satisfy the following three  

equations:-

Bi#i B2 # 2
5A -  ——  -  — -  - 1  = 0

« 1  oc2

BiPMpOp B2 PhD°D 

a 1 + «2

Bi (Pq " y 1 > B2 (Dq _ ^2 )

a°m + *  — 5^ —  z 0  ( 5- 16>

«1 a 2
+ C

Furthermore, provided these equations hold then it follows 

that all but the final three terms of equation (5.15) will also vanish -  

i.e the risk of wil* be independent of the tru e  distance and given 

b y .-

R(Gqi_’ wo) = ( B i / « i ) 2° p 2( 1“ PMP^) +

+ 2 (B-|/oc*| )(B 2 /a 2 )<^p^D(PpD“PHPpHD) (5 .1 7 )

I f  we consider again equations (5.16) the potential value of 

utilising a th ird  observable becomes apparent: to obtain an unbiased 

estimator we now must satisfy three equations in the four unknowns
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A, Bf, B2  and C. The unbiased solution for is, therefore, no longer 

unique; in particular we may solve for the values of A, B-j, B2  and C 

which give an unbiased estimator and at the same time which minimise 

the risk of 0 QL, as given by equation (5.15).

The method of Lagrange multipliers is amenable to finding

such a solution. We will not present here a treatment of the general

equations (5.14) and (5.15), but rather we will consider the specific

example where the intrinsic variables P and D are both directly  

measurable (i.e. p = P and d = D, so that = 1 , jSj = 0  and y\ = 0). 

Thus, we find that we now require to minimise the risk, R, given by:-

R = B>j2op2( 1-p|„|p2) + E ^^ d^O-Pmd̂ ) + 2B-jB2Op0,q(Ppq-PmpPmq)

(5 .1 8 )

subject to the constraint equations:-

AOjyj + B-jOpp|y|p + BgOpPMD = 0

5A -  1 = 0 (5 .1 9 )

B-jPq + B2 Dq + c = 0

This is equivalent to minimising the unconstrained expression, R*f 

given by:-

R* = R + X(0.2om + B-jOpp̂ p + B2̂ DPMD) (5 .2 0 )

where *  is a Lagrange m ultiplier. Note that A = 0.2 follows immediately 

from the second constraint equation. Moreover, we need not include 

the th ird  of the constraint equations since this has no bearing on the  

minimisation of the risk and can always be satisfied for any values of
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B1 and B2  by taking C = -B-|P0  -  B2 D0.

Taking partial derivatives of equation (5.20) with respect to 

B-|, B2  and *  we obtain three equations which, when set equal to zero,

define the values of B-j and B2  fo r the unbiased minimum-risk

estimator. These are:-

2B1op2 ( i-p Mp2) + 2B2 opoD(ppD-pMppMD) + ^Op^p = 0

2B2° D^( 1~PmD2) + 2B1opoD(ppD-pMppMD) + = 0

0 . 2 0 m + B-jOppMp + B2 o d Pm d  = 0 (5 .2 1 )

Solving these equations we find that the unbiased minimum 

risk triv a ria te  estimator, Oj-, is therefore defined by the following 

constants:-

A = 0.2

“°* 2°M (PMP " PMDPPD)
B1 =----  . -----------------------------------------------

Op (pM P2 -  2pMpPMDPpD + PmD2>

(5 .2 2 )

- 0 . 2 o m (PMD “ PMPPPD>
B2 =----- . -----------------------------------------------

°D <PHP2 ” 2PHPPHDPPD + PHD2)

0 . 2 o m <Oq (P Mp  “  PMDPPD)p0 + 0 D ^ M D  ”  PHPPp d ) d o )
0  =   .

a Dap(PMP2 " 2PHPPMDPPD + PHD2)

This solution is only defined if Pmp2  ” 2 PmpPmdPpd + PMD2  *  °* ** can 

be shown, however, that this expression will always be s tric tly  

positive provided p^p * 0  or p^p * 0 , and ppp * ±1 .
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There are a number of interesting features about th is

solution. F irstly , note that the expressions for B-j and B2  are identical

in form and d iffer only in the labels of the correlation coefficients and

dispersions; this must be the case since both P and D were treated

equivalently in deriving the minimum risk solution. I t  follows th a t if 

PMD = PMP anc* °P = °D = b 2  = -0.2oM/2oppMP, independent of

the value of ppp; this is precisely half the value of the coefficient of 

P in the ’Schechter’ estimator, °S-

In general, the values of the correlation coefficients and 

dispersions will determine the relative size of B-j and B2 , and hence 

the relative contribution of P and D respectively to °T- Note th a t op 

and o D appear on the denominator of B1 and B2 ; this means that if the  

in trinsic  dispersion of P or D is large, then that observable will make 

a proportionately smaller contribution to the distance estimate. Note 

also that if we have p^d = ppp = 0 , then the solution reduces 

precisely to This is exactly as one would expect: if we measure a 

th ird  observable which is uncorrelated with both M and P, then the  

minimum risk unbiased estimator formed from all three observables will 

be no better than the ’Schechter’ estimator defined from m and P 

alone.

I t  is instructive to examine how the values of B-j and B2  

change as a function of the correlation coefficients upon the addition  

of a th ird  observable. We can assume that th ird  observable to be D, 

without loss of generality, and from equations (5.22) calculate B-j and 

B2  as a function of p^p anc* PpD> ôr a f 'xed value of Pmp- A useful 

measure of the relative contribution of B-j and B2  is then given by the
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ratio B2 /B 1 . From equations (5.22) we have:-

°p(PMD ” PMPPPD>
8 2 / 8-1 =   (5 .23 )

°D<PMP " pmdPpd^

Consider now some numerical examples. Suppose that op = oD, 

and that pMp = -0.8. Figure (5.1) shows an isometric surface plot of 

the ratio, B2 /B 1 , as a function of p^p and ppp. (The shaded regions of 

the Pmd~Ppd Plane a*“e disallowed owing to the fact that the covariance 

matrix, V, of the triva ria te  distribution must be positive definite.)

I t  follows from equation (5.23) that the intersection of this  

surface with the Ppo~PMD Plane 's the stra ight line p^p = PmpPpdI '-e* 

fo r all points on th is line -  including, of course, the point (PmD’Ppd) 

= (0,0) -  we find that B2  is equal to zero. Hence Oj- again reduces 

precisely to and D makes no contribution to the distance estimate. 

This means, in other words, that using the measured value of D would 

not improve upon the ’Schechter’ distance estimate obtained from m 

and P alone. We will re fer to this line as the ’Schechter’ line, for 

obvious reasons, and we will explore in more detail some interesting -  

and potentially very important -  consequences of its existence a little  

later.

We can see from figure  (5.1) that as pMp increases in 

modulus then so also does the value of B2 /B 1 . In  other words as the  

correlation between magnitude and the th ird  observable, D, increases 

then so does the relative contribution of B2 D to the distance estimate.

Suppose, fo r example, that ppp were equal to 0.5. We then
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Figure (5 .1 )

R a tio ,  B2 /B 1 , o f  the c o e f f i c ie n ts ,  B-j and B2 , o f  the observab les 

P and D re s p e c t iv e ly  in  the unbiased minimum-risk s o lu t io n  as a 

fu n c t io n  o f  the c o r re la t io n  c o e e f ic ie n ts  p^q and ppQ and assuming

PMP = “ ° * 8  and °D = °P.
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find that when pMD = -0.5, B2 /B-| = 0.18, so that the coeeficient of P 

makes the dominant contribution to °T- By contrast, when Pmd = -0.7  

then B2 /B i increases to 0.67. Moreover, it follows from our earlier 

remarks that when PmD = -0.8 = pMP, then B-j = B2 ; i.e. the

coefficients make an equal contribution to Gy. Indeed, we find that if 

Pmd *s G reater in modulus than pj^p then In general |B2 /B -|| > 1. 

Similar trends in the behaviour of |B2 /B -j| as a function of Pmd are  

observed for other values of p^p and pPq.

Consider now the risk, R3 , of Gy. Substituting the optimal 

values given by equations (5.22) into equation (5.18) we find that R3  

reduces to the following expression:-

R3 = 0.04O|*|2
( 1~PpD^)

(Pmp2  ■ 2pmpPmdPpd + pmd2)
(5 .2 4 )

Since the risk of any estimator is, by definition, positive, the above 

equation makes sense only if Pmp2  “ 2 PMPPMDPPD + Pmd2   ̂ 1 “ ^PD2» 

however, this is precisely the inequality which we obtain as the  

condition for the covariance matrix, V, of the triv a ria te  distribution to 

be positive definite (c.f. Graybill, 1961). I t  follows, therefore, that the  

above expression for the risk is well-defined fo r all physically  

meaningful values of the correlation coefficients. Note that R3  does not 

depend explicitly on op or op.

We can compare R3  with the risk, R2, of Gg, v iz :-
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f*2  = 0 .0 4 ^ 2
Pmp'

(5 .25 )

The difference between R2  and R3  may be w ritten as:-

r 2 “ R3 = 0.04O|y|2
(PpD -  Phd/PMP^ 2

(5 .2 6 )
pmp2 -  2 phpPhdPpd + pmd2

which is always greater than or equal to zero. In other words this  

confirms that the risk of the optimal triv a ria te  estimator is always less 

than or equal to the risk of the ’Schechter’ estimator formed from m 

and P alone.

The precise factor by which the addition of a th ird  

observable, D, reduces the ’Schechter’ risk will depend on the values 

of the correlation coefficients. We have already noted, for example, 

th a t when D is uncorrelated with both m and P then cSy offers no 

improvement over °S- As a fu rth e r illustration, figu re  (5.2) shows an 

isometric surface plot of the ratio, R3 /R 2 * as a function of p^d and 

PpD, and again assuming that p^p = -0.8. Note that the locus of points 

fo r which R3 /R 2  = 1» when projected down onto the Ppd_Pmd Plane, 

gives the ’Schechter’ line p^p = PmpPpd* 'n agreement with our 

previous result.

In  figure (5.2) the shaded region of the Pp d _Pmd  P*ane marks 

the exterior of the region, C, within which the correlation coefficients  

are constrained to lie in order that the covariance matrix, V, be 

positive definite. As we referred to previously, the condition which 

defines th is  region reduces to the following inequality:-
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F igure (5 .2 )

R atio , R3 /R 2 , o f the r isk  of the optimal t r iv a r ia te  estim ator, O j, and 

the b iv a r ia te  ’ Schechter’ estim ator, as a function o f the 

co rre la tio n  c o e ffic ie n ts  p^q and PpQ, and fo r  p^p = - 0 . 8 #
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*  = ( ppd , phd) c  c <=>

S = 1 -  (PMP  ̂ + PMD̂  + PpD^ + ^PhpPmD̂ PD * 0 (5 .2 7 )

The boundary, 9C, of th is region is defined by S = 0.

We can see from figure (5.2) that as x -* 3C, then the ratio, 

^3 / ^ 2 ’ falls off sharply to zero; i.e. the risk of O j tends to zero as we 

approach the boundary curve. Now, of course, such a zero -risk  

estimator could never be defined in pracice since, fo r physically  

meaningful values of the correlation coefficients, s must be s tric tly  

positive. Nevertheless the fact that R3  -» 0 as we approach 3C means 

that if we can identify a th ird  observable, D, which is correlated with 

H and P such that S is very close to zero, (so that x will, therefore, 

lie close to 3C) then the risk of Cyr  may be considerably smaller than  

th a t of Gg.

We can develop this idea more quantitatively -  and, in 

particu lar, c larify  precisely what we mean by ’close* and ’considerably  

smaller’ in the above remarks. Figures (5.3) to (5.6) show contour 

plots of the ratio, R3 /R 2 > as a function of p^p and ppp and fo r  

d iffe ren t, fixed, values of p^p. The contours of R3 /R 2  are, in fact, 

nested ellipses in the Ppd"Pmd P,ane: the zero-level contour is the  

boundary curve, 3C, and the major axis of this ellipse lies along the  

s tra ig h t line p^q = “Ppo- higher values of R3 /R 2  the contour 

ellipses become increasingly eccentric and are progressively rotated  

anti-clockwise. The 1.0 contour (i.e. when R3  = R2 ) is the degenerate  

ellipse given by the ’Schechter’ line p^q = Pmp^PD- To keeP the plots 

as uncluttered as possible we show only four contours: at the 0 .0 , 0 . 1 ,
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Figure (5.3)

Contour plot of R3 /R2 as a function of the correlation  

coeffic ients and PpQ, and for pj p̂ = -0 .5
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P|v)p = -0.7

0.4

ao

1.0
a*ao ao uo

Figure (5 .4 )

Contour p lo t of R3 /R 2 as a function of the co rre la tio n  

c o e ffic ie n ts  and PpQ, and fo r p^p = ”0*7
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i.o

Pmp = ~o.8

v

< 1.0

flit- 1.0 1.0

PPD

Figure (5.5)

Contour plot of R3 /R2 as a function of the correlation  

coeffic ients p^d and ppp, and for p^p = -0 .8
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Pmp  = “0.9

0.2

ao

- 0.2

-0.4

- 1.0
0.0 0.4 1.0

Figure (5.6)

Contour plot of R3 /R2 as a function of the correlation 

coefficients p^q and pp^, and for p|̂ p = -0 .9
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A number of qualitative features are clear when we compare 

the four contour maps. F irstly we see that as IPm p I increases then so 

does the eccentricity of each contour, and in particular the area of 

the region, C, enclosed by the 0.0 contour decreases. In  other words, 

the higher the correlation between H and P then the more stringent is 

the restriction on the allowable values of Pmd and ppp. Consequently, 

as I Pm pi increases, the contours become more densely packed: in 

particu lar the area exterior to the 0.1 and 0.5 contours becomes 

smaller (clearly the same is true for any other contour level). This 

means that as IPm p I increases there will be a progressively smaller 

area of the Ppp-PMD Plane f ° r which the risk of Oy will be 

significantly smaller than that of Og. Another way of expressing this is 

to note that the higher the correlation between M and P (and hence 

the smaller the risk of <3g) then the more d ifficu lt it becomes to 

identify another observable, D, for which Oy will represent a 

significant improvement over °S-

Clearly we can use these contour maps to provide a direct 

measure of the extent to which the use of a given th ird  observable 

will reduce the risk of we find ’ for examPJe» that D is correlated

with M and P such that x = (P pp^D ^ ,ies outside of the 0.1 contour 

for the appropriate value of Pm p , then we can Immediately conclude 

that the risk of formed using D is at least a factor of ten smaller 

than th a t of °S*

We can now consider some specific numerical examples and at 

the same time highlight a very interesting -  and somewhat surprising  

-  featu re  of the contour maps: that increasing the correlation between
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the intrinsic variables does not always lead to a greater reduction in 

the risk of Oy. a simple way to illustrate this is as follows.

Suppose that, for a given value of p^p, we also fix the value 

of Pmd = pMD*> say. We can then determine the dependence of R3  on 

the remaining correlation coefficient, ppp, simply by drawing a 

horizontal straight line through Pmd* on the appropriate contour map 

and observing where this line crosses each contour. (Similarly for any 

fixed value of ppp = ppp* we can examine the dependence of R3  on 

Pmp by drawing a vertical line through ppp*.)

Suppose, therefore, that Pmp = -0.8, the value which we have 

frequently  taken as appropriate for considering e.g. the Tully -F isher  

relation. Figure (5.7) again shows a contour map of R3 /R 2  fo r this  

value of Pmp- Consider now a th ird  observable, D, such that Pmp = 

-0.6; th is is the bold line shown in figure  (5.7). We see that this line 

crosses the 0.0 contour at ppp = 0.0 and ppp = 0.95, i.e. ppp is 

constrained to lie between these two values. I t  is the lower point of 

intersection which is most interesting: from it we see that the risk of 

C>y tends to zero as the correlation bewteen P and D tends to zero. 

Furtherm ore, when ppp is close to zero then an increase in ppp will, 

in fact, increase R3 .

More specifically, observe that the line Pmp = -0 .6  crosses 

the 0 . 1  contour at ppp -  0.06, so that an increase of ppp to this value 

or higher would increase R3  to at least 10% of the ’Schechter’ risk. 

Similarly if ppp increases to 0.3 then R3  = ^ 2 , and if ppp = 0.75, so 

that (Ppp,Pmd) lies on the ’Schechter’ line, then R3  = R2.
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PpD

Figure (5 .7 )

Contour p lo t  o f  R3 /R 2 as a fu n c t io n  o f  the c o r re la t io n  

c o e f f i c ie n ts  p )^  and ppo, and f o r  = - 0 . 8 , d is p la y in g  

the dependence o f  R3 on ppp, f o r  f ix e d  va lues o f  p^q.
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Only for ppp > 0.75 in this case will a fu rth e r increase In 

Ppp now result in a reduction of R3 . In fact, we see that R3  now falls  

off rapidly with increasing ppp and tends to zero as ppp tends to

0.95.

Similar behaviour is observed at other fixed values of p^p. 

Suppose, fo r example, that p^p were also equal to -0.8, which is a 

resonable value for the observed correlation between absolute 

magnitude and absolute diameter (c.f. Holmberg, 1979 and section 2.5); 

th is  case is shown as the dashed line In figu re  (5.7). We now find that 

Ppp is constrained to lie in the range (0.3,1.0). Furthermore, we see 

th a t R3  -» R2  as ppp -> 1 , from which it follows that R3  increases 

monotonically with ppp. Hence, in th is case, using a th ird  observable  

which is less well correlated with P would always result in a lower 

tr iv a r ia te  risk.

This second illustration is an example of the special case 

where p^p = p^p, for which we can easily show that R3  simplifies to :-

R3 = 0 .040^2
1 + PpD 

2 PHP2

(5 .2 8 )

I t  is clear from this expression that in the limit as ppp -> 1, 

R3  -» R2 , while for smaller values of ppp, R3  will be considerably  

smaller than R2, and will in fact tend to zero as ppp -» 2 p m p 2 -  1 .
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To summarise, then, we have found that upon the addition of

a th ird  observable, D, the risk of thus formed will always be less

than or equal to that of as one would expect. However, the extent 

to which D reduces the risk depends strongly on the three correlation 

coefficients. I f  these take values such that the expression s given in 

equation (5.27) is very small then R3  will be significantly smaller than 

F?2 . I f ,  on the other hand, the correlation coefficients satisfy the

relation p^p = Pm pPpd (which, for a given value of p^p, we refer to

as the ’Schechter’line in the Ppq-Pmd P*ane) then we find that R3  = R2

and, in fact °T  and °S  are identical in this case. Thus, if the

correlation coefficients lie on or near to the ’Schechter’ line then the

measurement of D adds little  or nothing to the ’Schechter’ estimator 

formed from m and P alone. Furthermore, it will frequently be the case 

that another observable, D* say, which is less well correlated with P -  

so that (ppp*,PMD*) *’es fu rth e r from the ’Schechter’ line -  would 

result in a considerably larger reduction in the risk of Hence if 

such an observable could be identified then its use would clearly be 

preferable to that of D.

Another way of understanding the existence of the

’Schechter’ line is by considering ^(M IP.D), the conditional distribution  

of M given the values of P and D for observable galaxies. This 

distribution is closely related to that of Oy since, in essence, we use 

the measured values of P and D to in fer an estimate of M and then 

combine th is with the observed apparent magnitude to obtain a 

distance estimate.

Upon determining this distribution for a rb itra ry  values of
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the correlation coefficients, and then substituting the equation of the 

’Schechter’ line pMD = Pm p ^PD we find that *(M |P ,D ) is identically  

equal to ^(M |P), the conditional distribution of M given only P. Hence, 

fo r th is unique combintaion of the correlation coefficients ^(M |P,D) is 

independent of the value of D. This confirms that D will provide no 

more information about M -  and hence the true distance -  than is 

given by P alone, and it follows that the risk of <&r will equal the risk  

of Og in this case.

I t  is also worth noting that when s, as given by equation 

(5.27), tends to zero then so too does the variance of M in the  

conditional distribution ^(M lPjD). In this limit, in other words, M is 

determined exactly by the measured values of P and D; th is  is simply 

another way of saying that the risk of O j tends to zero as s -> 0 .

5.4 Case 2: Selection on m and d

We will now briefly  consider a second case where the  

selection function is a function of both m and d, i.e. S = S(m,d), but 

where measurements of P are free from selection effects. This case is 

appropriate for considering an extension of the Dn-o  relation to also 

take account of the observed apparent magnitude of a galaxy. We can, 

therefore, identify d, D and P as in section (4.5.3); i.e. log of apparent 

diameter, log of absolute diameter and log of central velocity  

dispersion respectively. In section (4.5.3) we saw th at when 

measurements of the velocity dispersion were selection-free, it was 

possible to define a ’Schechter’ estimator of log distance which is
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unbiased and of constant risk at all true distances. The curren t 

treatm ent extends this analysis to the case where the galaxy sample 

may be magnitude-selected as well as diameter-selected, and we will 

determine if an unbiased estimator may still be defined in this case.

Suppose that the intrinsic jo in t d istribution, ^(M,P,D), is 

again a trivaria te  normal. In the same way as for Case 1, we will write 

V as the product of two distributions, v iz :-

V(M,P,D) = ^ (M .D ^ C P IH .D ) (5 .2 9 )

i.e. the marginal distribution of M and P multiplied by the conditional 

distribution of P given M and D. Both ^  and ^ 2  are normally

distributed: is the standard bivariate normal in M and D, the form

of which is given by equation (4.5), while the distribution of V2  's

univariate normal with mean P*(M,D) and variance, Aap2, v iz :-

V2(P|M,D) = — -—  exp(-1/2AQp2(P ~ P *)2) (5 .3 0 )
✓2TTA0p

P* and the constant, A, are found to be (see Graybill, 1961):-

op(PmP-PMD^PD) °P (PPD"PHPPHD >
P, = P0 + ------------------------ (M -  M0) + --------------------------  (0  -  D0 )

oM(1 -  Pmd2) ° d( 1 " pMD2)

(5 .3 1 )

o r, w ritin g  th is  more compactly by introducing constants km and kq :-  

P t  = pQ + * M(H -  M0) + kd(D -  D0 ) (5 .31a)

and
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1 -  (Pmp2 + PmD2 + PPD2) + 2PMP̂ MDpPD 
A  = — --------------------------------------------------------------------------  ( 5 . 3 2 )

1 " PMD2

Note that the numerator of the righ t hand side of this equation is 

precisely S of equation (5.27). Hence it again follows, from the positive 

definiteness of V, that A > o.

Substituting 'P-j and V2 into equation (5.12) and changing 

variables from (M,D) to (m,d) using equations (3.4) and (4.47), we can 

derive the jo int distribution, C(m,P,d\Pq), of the extrinsic variables m, 

P and d fo r observable galaxies at tru e  log distance, Pq. We obtain:-

( « - 5 A i Q - 2 5 , d - A * g ) S ( i n , d )  e x p ( - 1 / 2 A o p 2 ( p  -  P , ) 2 )  
C ( B , P , d | U o )  =  — --------------------------------------------------------  ( 5 . 3 3 )

/27TAOp L(p0)

where E(Uq) normalises G at each tru e  log distance, P q , and P* is now 

re-expressed in terms of m and d .

5.4.1. Bias and Risk of &GI_

We define a ’general linear’ estimator of Pq as follows (c.f. 

equation 4.48):-

Uq i = Ad + B-jP + B2» + C (5 .3 4 )

fo r constants A, B-j, B2 and C. Using the distribution of equation

(5.31), we can determine an expression fo r the bias, B(Aql»^o)» of PqL 

fo r a rb itra ry  values of the constants, v iz :-
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B(JfeL^o) = ( 5B2 ' A  -  1)ju0

+ + 8 2 )Gi (/Jq) + (A + B-jXq)G2(/jO^

+ B -)(P q  -  k^Mq -  K q D q ) + 25B2 + C ( 5 . 3 5 )

w h e r e  G - | ( ^ )  and  G2(P q )  a r e  d e f in e d  as fo l lo w s  ( c . f  e q u a t io n  4 .4 4 ) : -

G1 (/Jq) = J |  H ^ 1 (H,D)S(H+5/L/0+ 2 5 ,D fU 0 )dHdD ( 5 . 3 6 )

g2 (/^>) = JJ D ^ 1 (H,D)S(H+5jU0+25,D+U0 )dMdD ( 5 . 3 7 )

Note t h a t  i f  t h e r e  is no se le c t io n  in m o r  in d th e n  G^aiq) o r

G2 (^ o )  r e s p e c t iv e ly  will be id e n t ic a l ly  z e ro  f o r  all Uq . A ss u m in g  f o r  t h e

m om ent t h a t  t h is  is not th e  case, th e n  i t  fo l lo w s  f ro m  e q u a t io n  (5 .3 5 )  

t h a t  in o r d e r  to  d e f in e  an u n b ia s e d  ’ g e n e ra l  l i n e a r ’ e s t im a to r ,  f l y ,  a t  

all Uq  we now r e q u i r e  to  s a t is fy  f o u r  e q u a t io n s  in t h e  u n k n o w n s  A, B-|, 

B2  a n d  C v i z : -

5B2 -  A -  1 = 0

B-ĵ m + B2 = 0
( 5 . 3 8 )

A + B-jKq -  0

B i(P o  "  kM^0 “ + 25B2 + C = 0

A f t e r  some m a n ip u la t io n  we f in d  t h a t  t h e r e  e x is ts  t h e  

fo l lo w in g ,  u n iq u e ,  s o lu t io n  w h ich  d e f in e s  f t y : -
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°M ^PD " PHPPHD)
A =  — -----------------------------------------------------------------

<°m(ppd _ pmpPmd) " 5od(pmp " pmdPpd)>

°M°D < 1 " PMD2)
B1 = -----------------------------------------------------------------------

°p<°m<ppd ■ phpPhd) “ 5od(php " pmdPpd)>
(5 .3 9 )

°D ^HP ” PMDPPD>
b2 = -------------------------------------------------------------

<Om(PPD -  PMPPMD) ■ 5od(^MP ■ PMDPPD>>

C - -25B2 -  B-j (Pq -  ” *0^0 )

There are several interesting features about th is  solution. 

Note f irs tly  that if M is uncorreiated with both P and D  then we 

obtain for flu precisely the ’Schechter’ estimator, As, of section (4.7.3), 

v iz :-

= °D/PPDapP “ A + Dq -  Po° d/PPD°P (5.40)

This not surprising since in this case any selection of apparent 

magnitudes has no bearing on the jo in t distribution of d and P for  

observable galaxies; hence, we would expect the results of section 

(4.7.3) still to apply.

If ,  on the other hand, M is correlated with D  and P then  

will, in general, be d ifferent from the ’Schechter’ estimator. Moreover, 

will now be biased at all tru e  distances. Again, this should not be 

too surprising since magnitude selection would now affect the jo in t 

distribution  of d and P for observable galaxies so that the form of 

th is distribution used in section (4.7.3) to derive expressions fo r the  

bias and risk of Uq will no longer be valid.
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It  is also important to note that the solution of equations

(5.39) will generally demand that B2 , the coefficient of m, is non-zero. 

In other words, this means that when a sample is subject to both 

magnitude and diameter selection one cannot in general define an 

unbiased distance estimate using only the measured values of d and P 

(nor indeed using only m and P or m and d!); only by using the  

measured values of all three observables can one define an unbiased 

estimator, »u-

There are two interesting exceptions to this, however, which 

arise in a similar manner to the ’Schechter’ line discussed fo r case 

(1). F irstly , if the correlation coefficients satisfy the equation:-

P M P  = P M D ^ P D  ( 5 . 4 1 )

then it follows from equations (5.39) that B2 , the coefficient of m, is 

equal to zero and flu again reduces precisely to the ’Schechter’ 

estimator formed from d and P.

Secondly, if the correlation coefficients satisfy:-

P P D  = P M P ^ M D  ( 5 . 4 2 )

then we find that A, the coefficient of d, is zero. U\j now reduces to :-

t \ j = 0 . 2 ( m  - ° m / P m p ° p ( P  “ p 0) ~ M q  ~ 25) ( 5 . 4 3 )

On comparison with equation (4.11) we see that in th is case /iy  is 

essentially equal to the bivariate ’Schechter’ estimator, Og, formed 

from m and P. The above expression d iffers from only by a
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constant, which is entirely due to the fact that we have defined A y  in 

units of MPc and not the scaled distance units used fo r °S-

Thus we have shown that if the correlation coefficients 

satisfy either of equations (5.41) and (5.42) -  which we can th ink of 

as defining two ’Schechter’ lines in the Pmp'Ppd P̂ ane» a manner 

similar to case ( 1 ) -  then we can still define an unbiased estimator 

using only two observables: d and P or m and P respectively. 

Otherwise can only be defined for all Wq by combining the  

measured values of m, P and d.

We now calculate the risk, R ( A y , A ^ ) ,  of A y  at tru e  log 

distance, Uq. We obtain the following expression:-

= B-|2^op2 (5 .4 4 )

where the constant, A, is defined in equation (5.32). Thus, the risk of 

the unbiased tr iv a ria te  estimator is again a constant, R3 , independent 

of the tru e  distance, just as we found for the ’Schechter’ estimators 

of the previous chapter and the unbiased estimators of case ( 1 ).

Substituting for B-j from equations (5.39) we find that R3  is

given by:-

aM^°D^^ " PMD2) ( 1 " (PMP2 + RMD2 + PPD2) + 2PMPpMDpPD̂r 3  ------------------------------------------------------------------------------------------ ------

<°m(PPD “ PMPPMD) ■ 5oD^pMP ■ PhD^PD^ 2

(5 .4 5 )

Note that R3  is a function of both oM and oD, i.e. the dispersions of 

both observables which are subject to selection effects. Contrast th is
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with the risk of the optimal trivaria te  estimator of case ( 1 ) -  for 

which we considered selection only on apparent magnitudes. 

Correspondingly, we see from equation (5.23) that R3  depends only on

Note also the appearance of the expression for s on the 

numerator of the above equation, from which it follows that 

R3  -> 0 as s -» 0. In practical terms, therefore, we see that -  as for 

case ( 1 ) -  if the intrinsic variables are suitably correlated so that s is 

very small, then the risk of t*u may also be small. (Note, however, the  

question of precisely how small s must be in order to obtain a given 

value of R3  will, of course, also depend on the size of the denominator 

in the above expression; if this too is very small then R3  may still be 

large.)

Clearly, then, we can use equation (5.45) to compare the risk 

of the unbiased estimator formed from d ifferent sets of observables -  

so as to identify  those which give the lowest risk, and hence the most 

reliable distance estimates.

Finally, it is worth noting that we can regard case (1) 

essentially as a corollary of case (2). Suppose, fo r example, that 

measurements of d are free from selection. I t  then follows that G2 (n^), 

as defined in equation (5.37), is identically zero for all u0. This would 

effectively remove the th ird  of the constraint equations (5.38) and, 

hence, we would now require to satisfy only three equations in the 

four unknowns, A, B-j, B2  and C, in order to identify an unbiased 

estimator. This is, of course, precisely the situation dealt with in case
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(1). Similar remarks apply when there is no magnitude selection.

5.5 Summary of Conclusions

We now summarise the main results of th is chapter and make 

some fu rth e r comments on th e ir significance. We have considered the  

set of ’general linear’ estimators of log distance; i.e. estimators formed 

by taking a linear combination of three mutually correlated  

observables -  denoted m, p and d -  corresponding to the in trinsic  

variables M, P and D whose intrinsic jo in t distribution we assume to 

be triva ria te  normal. We have compared the properties of these 

estimators with those of the previous chapter -  formed from a linear 

combination of only two observables (m and p, say), one of which we 

assumed to be free from selection effects so that one could define a 

’Schechter’ estimator which is unbiased and of constant risk at all 

tru e  distances. In particular, we have considered whether by adding a 

th ird  observable, d, to our analysis it is still possible to define  

’Schechter’-typ e  estimators of log distance.

In all cases we find that the answer is yes! Two important 

points emerge, however. I f  the th ird  observable, d, is subject to 

selection effects, then the unbiased estimator can, in general, only be 

defined by using all three observables, m, p and d. Moreover, th is  

means that the ’Schechter’ estimator defined in terms of m and p alone 

will no longer be unbiased, since the selection on d affects the jo in t 

distribution of m and p. Two exceptions to this, however, are the  

’Schechter’ lines p^p = PpD^MD and pPD = pMPpMD: ^  the correlation
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coefficients satisfy either of these equations then one can still define 

an unbiased estimator using only d and P or m and P respectively, 

and in each case the general unbiased trivaria te  estimator reduces 

exactly to the appropriate bivariate ’Schechter’ estimator.

If ,  on the other hand, d is free from selection effects then 

one can still define an unbiased estimator using only m and p alone. 

In other words the ’Schechter’ result of chapter (4) will still be valid  

in th is  case. By using all three observables, however, we have 

suffic ient freedom to define an unbiased trivaria te  estimator, O f, of 

minimum risk -  and we have shown that the risk, R3 , of this optimal 

estimator is always less than or equal to the risk, R2 , of the  

’Schechter’ estimator formed from m and p alone. There exists another 

’Schechter’ line p^d = Ppo^MP for th 's case> however: if the

correlation coefficients satisfy this equation then reduces precisely 

to so that using the measured value of d does not improve the  

’Schechter’ estimate of log distance.

These results will clearly have an Important bearing on the  

use of, e.g., the Dn-o  relation. Assuming a triva ria te  normal fo r the  

jo in t in trins ic  distribution of absolute magnitude, absolute diameter 

and velocity dispersion, then it certainly follows that the ’Schechter’ 

estimator defined from the Dn-o  relation (i.e. using only the measured 

apparent diameter and velocity dispersion of a galaxy -  as discussed 

in section 4 .7 .3 ) will still be unbiased provided that one’s sample of 

galaxies is complete in apparent magnitude. Of course in this case it 

would also follow that by using the observed apparent magnitude in 

addition to the diameter and velocity dispersion, one could define an
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optimal unbiased estimator of lower risk than the bivariate ’Schechter’ 

estimator; indeed the risk of the triva ria te  estimator may be 

considerably smaller for suitably correlated observables, and we have 

demonstrated how one may easily determine when this is the case.

In short, then, utilising the measurements of a th ird  

observable can certainly offer a means of significantly reducing the 

risk of unbiased estimators, and thus obtaining more reliable distance 

estimates. When such an observable is available, therefore, its use 

would seem to be strongly advised.

It  seems clear that one may extend this analysis fu rth e r to 

consider distance estimates obtained from four or more observables, 

with results very much analogous to those which we have obtained in 

th is chapter. We will not attempt such an extension here.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Qualitative Overview of Main Results

In  th is thesis we have developed a statistical framework 

within which to assess rigorously the properties o f d iffe ren t distance 

estimators by computing the ir distribution, bias and risk as a function  

of tru e  distance, a fte r accounting for luminosity selection effects. We 

have applied th is formulation firs tly  to a number of d ifferent 

estimators which are a function only of apparent magnitude, assuming 

a gaussian luminosity function and a Heaviside selection function. This 

simple case illustrates a fundamental problem in removing or reducing 

selection effects: the question of which estimator is ’best’ has, in 

general, no clear cut answer since both the bias and risk are  

complicated non-linear functions of the tru e  distance of a galaxy -  

which is, of course, unknown! The best estimator (in the usual 

statistical sense of minimum bias or minimum risk o r some combination 

of both) if the galaxy is very remote may be a poor choice if  the  

galaxy is, in fact, nearby.

We have next analysed the properties of distance estimators 

derived from combining measurements of two observables. These 

results are relevant to understanding the effects of bias on, e.g., the  

Tu lly -F isher and Dn-o  relations. We have shown that the d ifferen t 

linear regressions used in the literature  to calibrate such relations 

each correspond to estimators of log distance defined as d ifferen t 

linear combinations of the two observables. Modelling the jo in t 

distribution of the intrinsic variables by a b ivariate  normal, we have
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determined the distribution, bias and risk of a linear estimator for 

general coefficients -  into which expressions the values corresponding 

to each regression line may be substituted -  and also of a maximum 

likelihood estimator of log distance. We find that the estimators have 

widely d ifferent properties. In particular, if there is no selection in 

(fo r the Tully -F isher case) line widths then the estimator 

corresponding to a regression of line widths on magnitudes is 

unbiased and has constant risk for all tru e  distances; th is confirms 

the unbiasedness of th is regression line, as claimed by Schechter 

(1980). The ’Tu lly -F isher’ estimator which corresponds to a regression 

of magnitudes on line widths, on the other hand, is Increasingly 

biased at large distances, but has a smaller risk than the ’Schechter* 

estimator for true distances less than, typically , several hundred Mpc, 

although the risk of the ’Tu lly -F isher’ estimator increases sharply at 

greater tru e  distances. The ’Schechter’ risk will, in fact, be very  

large if  the magnitude and line width are poorly correlated and 

becomes infin ite for p = 0. This is consistent with the pathological 

example which we considered in section (2.4), fo r which we saw that 

when line width and magnitude are uncorrelated, the measured line 

width yields no information about the magnitude of a galaxy, so that 

the ’Schechter’ regression line cannot be used to in fe r the galaxy 

distance. The maximum likelihood estimator is found to have very small 

(though non-zero) bias and smaller risk than the ’Schechter’ estimator 

over a larger range of tru e  distances, although again this result 

depends on p.

These results indicate that some care must be taken before 

choosing the most appropriate estimator: for example, although the
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’Schechter’ estimator has the desirable property of unbiasedness fo r  

any value of p, Its large risk for p small means that for any single 

observation there will be a higher probability of a large systematic 

e rro r than with e.g. the ’maximum likelihood’ estimator, so that the  

la tte r may be more appropriate fo r a small sample of galaxies. Provided 

the observables are fa irly  well correlated, however, (typ ically  |p| >

0.6) we recommend the use of the ’Schechter’ estimator, whenever it 

may be defined. Our strongest reason for th is  is the fact that, 

regardless of the form of the luminosity selection effects, the  

’Schechter’ estimator is normally d istributed, with mean equal to logxQ 

and constant variance, at all tru e  distances, xq . The ’Schechter* 

estimator is unique in this regard: fo r no other linear combination of 

the observables, nor indeed fo r the maximum likelihood estimator, is 

the shape of the estimator distribution preserved at all tru e  distances. 

Not only does the zero bias and constant risk follow immediately from  

th is  but consequently, as we have shown, confidence intervals  

constructed from the ’Schechter’ estimator are of constant width. 

Moreover, because the ’Schechter’ estimator is normally d istributed, it 

follows that the joint distribution of the distance estimates obtained 

fo r a number of galaxies at d iffe ren t distances will be a m ultivariate  

normal. This allows the statistical properties of a large sample of 

galaxies to be derived very easily.

We have also considered estimators formed from a linear 

combination of three observables, which may or may not be 

distance-dependent, and have addressed the question of whether 

unbiased ’Schechter’ estimators may still be defined in this case. 

Modelling the jo int distribution of the intrinsic variables by a
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triv a ria te  normal distribution we have determined the bias and risk of 

a ’general linear’ estimator as a function of tru e  distance fo r two 

separate cases; in the f irs t  instance where two of the three  

observables are free from selection effects and secondly where only 

one of the observables is selection-free. We have found that in both 

cases the definition of an unbiased estimator is indeed still possible. 

Two important points emerge, however: firs tly , in the former case of 

two selection-free observables the unbiased estimator is no longer 

unique. We have, therefore, obtained expressions for the unbiased 

estimator of minimum risk. We have found that, as one might expect, 

the risk of this optimal triva ria te  estimator is always less than or 

equal to that of the ’Schechter’ estimator formed from only two 

observables; it is Interesting to note, however, that there are  

situations, for particular values of the correlation coefficients, when 

the addition of a th ird  observable does not improve the bivariate  

’Schechter’ estimate of log distance. For the latter case of only one 

selection-free observable, we have found that an unbiased estimator 

can in general only be defined by using all three observables; 

estimators formed from combinations of only one or two will be biased. 

There are again exceptions to this, however, fo r particular values of 

the correlation coefficients where the triva ria te  estimator again 

reduces precisely to the unbiased bivariate ’Schechter’ estimator.

6.2 Applications of Multivariate Estimators

The main conclusion which we reach from our analysis of 

tr iv a ria te  distance estimators is that, where additional observables are
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available for indicators such as the Tully -F isher or Dn-o  relations, 

then there use in defining unbiased distance estimators would seem to 

be well-advised. A number of potentially useful observables exist for 

such relations. As we have already remarked in chapter (5 ), one can 

use the apparent magnitude in addition to the angular diameter and 

velocity dispersion of ellipticals to extend the Dn-o  relation to three  

observables. (Indeed, we should remark that if our galaxy sample is 

diameter limited and magnitude limited then the inclusion of 

magnitudes will, in general, be essential in order to define an 

unbiased estimator.) Dressier et at (1987) also consider a line strength  

indicator, f irs t  introduced in Terlevich et al (1981), which shows a 

weak but signifcant correlation with Dn. Clearly th is  observable could 

also be included in deriving our unbiased estimator; It  would be 

interesting in the fu tu re  to attempt this extension to four observables 

and apply the results to a comparison with the distance estimates 

obtained by previous authors. Similarly for spiral galaxies we could 

consider the combination of, e.g., apparent diameter and /o r colour with 

apparent magnitude and line width to explore an extension of the  

Tu lly -F isher indicator; we have seen in chapter (2) that correlations  

with luminosity have been measured for both of these observables.

Another Interesting application of our analysis of triv a ria te  

estimators would be to the calibration of the period-lum inosity-colour 

relation which is well-established for Cepheid variables (c .f. Sandage, 

1958). This relation takes the form:-

logP = aMy + b(B-V) + c (6 .1 )

where P is the period, My is the absolute photographic magnitude, B-V
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denotes the B-V colour and a, b and c are constants.

Clearly equation (6.1) is equivalent to a triv a ria te  linear 

estimator of log distance which is a function of P, B-V and apparent 

magnitude, m. I t  would be particu larly  interesting to apply our 

analysis to this distance indicator since, as we have remarked, it is 

probably the most securely calibrated -  from both theoretical 

considerations and detailed observations in our galaxy and the Large 

Magellanic Cloud -  so that zero-point errors are less significant 

(M artin et a/, 1979). As the Hubble Telescope expands by a factor of 

four or five  the limiting distance to which Cepheid observations will 

be possible, it will certainly become more important to ensure th a t the  

distances inferred are not adversely affected by selection bias. We 

would hope to study the question of obtaining optimal distance 

estimates from the Cepheid relation in fu tu re  work.

6.3 Other Methods for Reducing Bias and Risk

One important area fo r fu tu re  study is to consider those 

situations where the Schechter scheme cannot be successfully applied; 

i.e. when one does not have available one or more observables the  

measurements of which are free from selection effects. As we have 

commented previously, this would be the case if, fo r example, galaxies 

are selected for the Tu lly -F isher relation by line width as well as by 

magnitude. A more straightforw ard example, however, is simply th a t of 

estimators which depend on apparent magnitude alone -  of the type  

studied in chapter (3). In that chapter we saw that it was possible, in
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general, to define such an estimator which Is unbiased for all true  

distances. Nevertheless, we have seen that our statistical formulation 

allows us, for any given selection function, to oompute and bias and 

risk of any estimator as a function of true distance. This suggests a 

possible scheme fo r reducing the bias and risk.

Suppose we have some estimator, it, of the tru e  distance, xq,

of a galaxy and suppose that we have computed the bias, B(*,>^)), of it

for any x q . We note that B(X,xq) may be given as:-

E (* |x 0 ) s x 0 + B (*,x 0) (6 .2 )

(c.f. equation 3.24)

We can now define a new estimator, Jbj, given by:-

*1 = St -  B (* ,x 0=*) (6 .3 )

i.e. from each value of our firs t estimator, it, we subtract the bias of k 

not at the tru e  (bu t unknown) distance, xq, but at the estimated 

distance, k; in other words we assume this f irs t estimate to be equal 

to the actual distance of the galaxy.

We can now compute the bias and risk of as a function of

xq and one would hope that this bias would be less than that of it.

Moreover, this process may be repeated iteratively , defining next = 

ftf -  B (*1fx0= * i)  and so on, although In general there  is no guarantee 

that the Iteration will converge.

In Appendix (1) we decrlbe this iteration scheme in a little
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more detail and demonstrate its application to the naive estimator, 0^ 

of log distance (clearly *  above can also be a function of distance) as 

defined by equation (4.27). The results are very Interesting: we find  

that the iteration procedure does indeed significantly reduce the bias 

and risk of °N  at large true distances; this Is, however, achieved only 

at the expense of a severe increase in both the bias and risk of the 

iterated estimators fo r large x q .  This means, therefore, that the range 

of tru e  distances in which the iteration scheme is most effective is 

strongly dependent on the number of iterations which we perform.

The fa ilu re  of our scheme to converge to an unbiased 

estimator for all tru e  distances would seem to us to be due largely to 

the severe non-linear nature of the distribution of °N  at large true  

distances, caused by the magnitude selection effects. I t  would be 

instructive, therefore, to investigate whether the scheme is more 

successful when the selection effects are less severe. (Indeed we 

already have a partial answer to this question in that we see in 

appendix (1) that the convergence is more extensive fo r smaller values 

of oM, as one would expect.) Since it is straightforw ard to extend the 

scheme to deal with estimators which are functions of several 

observables, it would be interesting to apply it to the general linear 

estimators studied in chapters (4) and (5), but in the case where no 

observable is selection-free so that unbiased Schechter estimators 

cannot be defined. One would hope, for example, that the addition of a 

second (albeit incompletely sampled) observable, P, would reduce the  

non-linearity suffic iently to make the iteration scheme converge to an 

unbiased estimator over a wider range of tru e  distances. As a f irs t  

step we have already applied the scheme to the ’T u lly -F ish er’
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estimator, Opp, in the case where P is select!on-free. I t  is encouraging  

to find that Opp does indeed appear to converge to the Schechter 

estimator, Gq (which, of course, is unbiased for ail xq in th is  case.) A 

useful fu tu re  exercise, then, would be to determine how robust th is  

convergence is to selection on P; i.e. how completely sampled must P 

be in order that one may still obtain an approximately unbiased 

estimator after several iterations.

We can envisage another simple strategy by which to reduce 

the bias and risk of an estimator within a given range of tru e  

distances. Again this is most easily illustrated using apparent 

magnitude-based estimators. Suppose we define the following ’general 

linear’ estimator of logxQ, analogous to those of chapters (4) and (5 ):-

QqL = 0 .2 (b -  m|_) + C (6 .4 )

In  other words 0fci_ is just the naive estimator, plus some constant 

correction, C. This is equivalent to the general linear distance 

estimator defined in equation (3.8) from which the ’Malmquist’ and 

’Proximal’ estimators were derived.

For any given luminosity and selection function we can 

derive  expressions for the bias and risk of as a function of tru e  

log distance, and for an a rb itra ry  value of C. We may then ask the  

question what value of C should be chosen in order that be a

reliable estimator within some desired range of tru e  distances.

Our idea is to choose the value of C which minimises the bias 

or risk , or some appropriate combination of both, over th a t tru e
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distance range. Suppose, for example, we adopt minimum risk as our 

criterion and determine the optimal value of C for the distance 

Interval (x-j,x2). I f  we deflne:-

*2
R(^5L»w0 ^ x0 (6 *5 )

*1

Then our optimal value of C satisfies 3F/3C = 0.

F(C) =

Consider the familiar case of a gaussian luminosity function  

and a Heaviside selection function at magnitude limit, For th is  case 

we find that C is given by:-

C =
x2“x 1

x2
0. 2oMexp( -fc( 5 ^ 0 ^ )  2)

----------------------------------------- dx0 (6 .6 )
^ (”5w0/ ° m)

X1

Figures (6.1) and (6.2) show the bias and risk of Oq \_ with 

values of C determined from th is equation chosen to minimise the risk  

within the true distance in tervals (1.0,1.5), (1.5,2.0) and (2.0,2.5) 

respectively, and for oM = 1.0.

We can see from figure  (6.1) that the bias of each passes 

through zero at approximately the midpoint of the appropriate in terval. 

The slope of the bias curves does not change with d iffe ren t C, 

however, as must be the case since the estimators d iffe r only by a 

constant. This results in each estimator being positively biased at 

small tru e  distances: the more remote the Interval in which Oql  is 

optimised, then the more positively biased is OqL for small xq.
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Figure (6 .1 )

Bias of optimal linear estimators of log distance, defined by 

minimising the risk integrated in the true distance range 

(1 .0 ,1 .5 ) ,  (1 .5 ,2 .0 ) , (2 .0 ,2 .5 ) respectively (o = 1)
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Figure (6 .2 )

Risk of optimal lin e a r estimators of log distance, defined by 

minimising the r isk  integrated in the true distance range 

( 1 .0 ,1 .5 ) ,  (1 .5 ,2 .0 ) ,  (2 .0 ,2 .5 )  respective ly  (a  = 1)
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Moreover, another consequence of the constant slope is th a t there is a 

non-negligible positive and negative bias at each end of the chosen 

distance Interval. Clearly if we take progressively wider intervals in 

which to optimise the estimator then this effect will be steadily 

magnified, although the bias will still change sign close to the  

midpoint of the interval. Compare this with our iteration scheme which 

tends to flatten the slope of the bias curves and thus yields a large 

range of true distances fo r which the bias is close to zero.

The results fo r the risk are in some respects more 

encouraging -  which is perhaps not surprising since it was with 

respect to risk that we optimised °GL- We see th a t in each of the  

three cases the risk is significantly reduced over the full range of 

the relevant distace interval -  although again this is at the expense of 

a prohibitive increase outside of that interval, jus t as was found with 

our iteration scheme.

I t  would be interesting to explore this optimisation method in 

more detail to study, for example, how wide the optimisation range may 

be in order to achieve a significant risk reduction over the whole 

in terval. Furthermore it would also be very instructive to apply this  

technique to m ulti-observable estimators. As for the iteration scheme, 

one could reasonably expect that the reduction of bias and risk would 

be more effective in this case, particu larly since one would then be 

able to optimise with respect to more than one constant coefficient of 

the estimator.

One should remark that provided one is confident that an
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observed galaxy does lie within, or close to, the optimised distance 

range then it is clear from figu re  (6.2) that would indeed be a 

good choice of distance estimator, since its increased risk outside this  

range would then be largely irrelevant. Expressing th is  more 

precisely, our point Is that in defining an optimal distance estimator 

one should ideally take account of the true relative number density of 

galaxies as a function of distance in order that the estimator be most 

effective at distance where galaxies are most likely to be observed.

Suppose that n(xo) denotes the relative number density of 

galaxies at true distance, x q .  (Note that we can still define n(xg) fo r  

an anisotropic galaxy distribution by simply averaging over all 

directions -  or over some solid angle of interest -  at each tru e  

distance.) Incorporating n(xQ) as a weighting factor in equation (6.5), 

v iz :-

F*(C) =
*2

n(xo)R(^Q|_,WQ)dxo (6 .7 )

X 1

we can define a modified optimal value of C by solving 3 F * / 3 C  = o.

Now of course the basic problem which we face with th is is 

the same d ifficulty as we have faced in earlier chapters: the fact that 

the tru e  galaxy distance distribution, n(xo), is unknown. I t  seems to 

us, however, that it may be possible to overcome th is problem by 

applying the following scheme. Suppose one adopts some initial choice 

(p rio r distribution) for n(x0 ) -  e.g. one might consider as a neutral 

choice the case of n(xo) = constant. With this d istribution  one 

determines from equation (6.7) an optimal distance estimator which one
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can then use to in fer the distances of a sample of a galaxies. These 

distance estimates can next be used to form a new and improved

estimate of n(xQ), which may then be plugged into equation (6.7) to 

obtain a new optimal distance estimator, and so on.

This scheme is closely based on techniques used in Bayesian 

analysis (c.f. Mood and Graybill, 1974) and Indeed is very much In

s p ir it of not only our previous iteration scheme but also the IRAS

reconstruction algorithm discussed In chapter (1). Although Its 

convergence properties are not obvious, it seems to us that this

scheme could o ffe r a very useful means of improving distance 

estimators in a manner which is, in some sense, consistent with the  

tru e  galaxy distribution -  we mean by th is  th a t if the scheme 

converges then the estimator thus constructed would be ’best’ 

precisely when n(xg) is equal to the tru e  galaxy d istribution.

I t  would again be particu larly  interesting to study this  

procedure applied to estimators derived from two or more observables. 

Moreover, the introduction of additional observables might allow one to 

define itera tive ly  optimal estimators which are consistent not only with 

the galaxy number density distribution, but also with the luminosity 

function or selection function. I f  th is were possible then it would 

provide an important method for verify ing  our assumed analytic form  

fo r these functions -  and, more fundamentally, fo r testing the validity  

of assuming a universal luminosity function, independent of position, 

fo r galaxies of the same morphological type. These ideas are still 

ra th er speculative at this stage, but in our opinion certainly deserve 

fu r th e r  detailed study.
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6.4 Applications to Velocity Field Analysis

The results which we have obtained concerning the removal of 

Malmquist bias by the definition, where possible, of Schechter distance 

estimators will be of considerable value in studying the properties of 

the velocity and density field -  e ither via simple, classical, treatments  

such as the Hubble diagram, or by sophisticated reconstruction  

techniques such as POTENT. The POTENT e rro r analysis presented in 

DBF models log distance errors which are normally distributed with 

constant variance, o2 -  precisely as we have shown to be the case fo r  

the ’Schechter’ estimators. Using a mixture of analytic and Monte-Carlo 

methods, the authors find that the bias and variance of th e ir  

estimated radial peculiar velocity -  interpolated and smoothed a fte r  

accounting for distance measurement errors and sampling biases -  is, 

to f irs t  order, proportional to o2 (See DBF, equations A24 and A25). I t  

follows, therefore, that methods which reduce the risk of our distance 

estimators would improve the estimate of the smoothed peculiar 

velocity field which is used by POTENT.

I t  would be useful, nevertheless, to extend th is analysis to 

consider a general distance estimator, 0  say, of a rb itra ry  d istribution, 

and determine the precise relationship between the distribution of U as 

a function of tru e  distance and the distribution of errors  in the 

density and velocity fields finally recovered by POTENT. In principle  

one could adopt an approach very similar to our analysis of distance 

estimators: in other words set out to derive the d istribution , bias and
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risk of the POTENT estimates of the recovered velocity and density  

fields as a function of position, given their true values. Such a 

general treatm ent seems rather ambitious, however; a more reasonable 

f irs t  line of attack might be to consider a specific velocity field model 

-  expanded in terms of spherical harmonics, fo r example -  and 

determine how the distribution, bias and risk of our distance estimator 

affect the distribution, bias and risk of estimates of Hq and multi pole 

components of the velocity field obtained from such a model.

Even for this case it seems likely (although not certain!) that 

little  progress would be possible analytically; however the project 

would certainly be amenable to Monte-Carlo studies. We have already  

considered one special case -  the estimation of Hubble’s constant from 

’quiet* Hubble flow -  for which an analytic treatm ent is possible. We 

will now briefly  outline this analysis to demonstrate the basic 

principles of the method.

6.4.1 Optimal Estimation Of Hq

Consider the estimation of Hq from a given sample of galaxies. 

Let the position, r, of the sample galaxies be a random variable and 

let n (r) denote the probability density function of the tru e  distance, r, 

of a galaxy, where r  = I r I .

Suppose that U is our chosen estimator of log distance, as 

constructed from some given set of observables (e.g. apparent 

magnitude, diameter etc) and let M(fc|r0 ) denote the distribution of U at
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a given true distance, rg , as may be determined by the methods 

described in detail in the previous chapters.

Suppose now that we measure the redshift -  and hence the  

radial recessional velocity, V| -  of each galaxy in the sample and then  

combine these measurements with the estimated log distance, /)), to 

obtain an estimator, H, of Hg defined as follows:-

H = 10T (6 .8 )

where r  is given by:-

1 n
t  = —  E logv^ -  U - \  (6 .9 )

n 1 = 1

and n is the number of galaxies in the sample. Note that th is estimator 

is of the same form as the standard estimate of Hg which one would 

obtain from, e.g., the MBS identified from the Hubble diagram of a

sample (c.f. Sandage and Tammann, 1975b; see also equation 2.6)

although the estimator, U, in the above case is a rb itra ry .

Thus we see that our estimate of Hg will depend on the  

measured redshifts of the sampled galaxies and also on the properties  

of our chosen (log) distance estimator. To proceed fu rth e r  we now

introduce a number of simplifying assumptions.

Suppose, f irs tly , the case of ’qu iet’ Hubble Flow; i.e. where 

the radial velocity of the ith galaxy is simply proportional to its tru e
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distance, v iz :-

v i = HqH  (6 .10 )

In this case we may now write equation (6.9) as:-

1 nt  = —  E logHo + M«| -  £ 4  (6 .1 1 )
n 1 = 1

writing uj = logrj. Substituting Into equation (6.8), therefore, we find  

th a t we can write H as follows:-

I T  z "1  -  **1
H = H0 . 10 n (6 .1 2 )

Writing H in this way is of no immediate practical value, since on the  

rig h t hand side both Hq and the tru e  log distance of each galaxy are, 

of course, unknown. The advantage of introducing Hq as a parameter 

become clear, however, when we consider the bias and risk of H.

We can see from equation (6.12) that H is a function of the 

random variables A j , . a n d  uj , . -  or, equivalently, ^ ,. . . . ,A n 

and r-j,....,rn. Hence, we can determine the expected value of H, given 

the true value Hq , by integrating equation (6.12) over the sampling 

distribution, F, of the U\ and the rj. Thus we obtain:-

E(HIHq) = H0 

where dF is given by:-

t  Hj -  d |
10 " dF (6 .13 )
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dF = F (fr jf  *V»>ri,----- , r n)d & j.. .d f^ d r^ .. .d rn (6 .1 4 )

Similarly, the kth moment of H, E(Hk |Ho)> is given by:-

E(H*|H0) = H0k .
“S" E - »i 

10 n dF (6 .1 5 )

I t  is now a straightforw ard matter to calculate the bias, 

B(H,Hq), and risk, R(H,Hq), of H from its f irs t and second moments 

using the standard definitions:-

B(H,H0) = E(H|H0) -  H0 (6 .1 6 )

and

R(H,H0) = E(h2|H0) -  2HqE(H|Hq) + Hq* (6 .1 7 )

We now make the fu rth e r assumption that the galaxies are  

sampled independently; more specifically that the random vector (A |,r|) 

is independently and identically distributed for each galaxy in the  

sample. This would not seem unreasonable if the galaxies are sampled 

at well-separated positions on the sky, given that recent measurements 

of two point angular correlation function for galaxies indicate an 

amplitude of less than 0.01 on angular scales in excess of 10* (Maddox 

et a/, 1990). This simplifies the sampling distribution, F, considerably, 

v iz :-

n

f  = n  f ( ^ 1 , r i ) (6 .1 8 )
i = 1

where it is also useful to w rite the bivariate distribution function, f, 

as follows:-



220

f  (fc ,r) = M (W r)n (r) ( 6 . 1 9 )

Finally, we approximate the Integrand of equation (6.15) by expanding 

and truncating a fte r terms of second order. Thus we obtain:-

10
1 X2k2, 

rv
(6 . 20)

where X = ln{ 10) = 2.3

Substituting equations (6.20) and (6.18) into equation (6.15), and using 

the Independence of the P\ and r), we obtain the following simple 

expression for the kth moment of Hq:-

E(H*c|H0 ) * Hok . 1 +

X£k2
2n

xk | ( i i  -  ft)M (ft|r)n (r)d rd ft

J(ii -  U)2M(U\r) r \ ( r)6r6U (6 . 21)

Moreover we can simplify this expression fu rth e r  by observing that 

both integrands may be expressed in terms of the bias and risk of 

at tru e  log distance u, v iz :-

E(Hk |H0) « H0k . 1 -  Xk jB (£ ,j i )n (r )d r

X2k2
2n jR (ft,M )n (r)d r (6 . 22)

The bias and risk of H can now be found by substituting th is  

expression into equations (6.16) and (6.17).
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Several Important points emerge from the form of equation 

(6.22). F irstly  observe that the integral over the risk of 0 is 

multiplied by a factor of 1 /n , but the term involving the integral over 

bias has no dependence on n. This means that the contribution of the 

risk of d to the bias and risk of our estimate of H q  can be effectively  

reduced simply by taking a larger sample of galaxies; this will not be 

the case, however, for the bias of Q which will make the same 

contribution to the bias and risk of H regardless of the sample size.

This analysis provides a clear reason for favouring the  

Schechter distance estimator in th is context. The reasons for th is are 

threefo ld :-

F irstly  the bias term in equation (6.22) will vanish leaving 

only the integral over the risk, which can be made progressively less 

significant by taking a larger sample of galaxies. Hence, even if the  

risk of our ’Schechter’ estimator is significantly larger than that of 

some other, biased, estimator such as, e.g., the ’Tu lly -F isher’ estimator 

at small tru e  distances (see section 4.5.1), we can reduce the size of 

the ’Schechter’ risk term in equation (6.22) by observing a larger 

sample so that, fo r sufficiently large n, this term can always be made 

smaller than the bias term for the ’T u lly -F ish er’ estimator.

Secondly, in the absence of distance bias the bias of H q  will 

be proportional to 1 /n , so that fo r any given sample this residual bias 

can be fu rth e r  reduced by applying resampling techniques such as 

the bootstrap or jackkn ife  (c .f. Efron, 1982) which are amenable to
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bias problems with this approximate n-dependence. This would again 

not be possible in the case of a biased estimator.

Thirdly, the fact that the risk of the ’Schechter* estimator is 

constant means that the bias and risk of H will not depend on the  

tru e  distance distribution of the sampled galaxies; fo r example whether 

the sampled galaxies are drawn from the field or from clusters. 

Environment effects on the determination of Hubble’s constant have 

been regarded as important In the literature  (c.f. Tammann, 1987; 

Giraud, 1987) and indeed for an estimator whose bias and risk are a 

function of true distance then we see from equation (6.22) that the  

bias and risk of H will Indeed depend on n (r); we have demonstrated 

here, however, that the properties of the ’Schechter’ estimators allow 

us to circumvent this problem.

6.5 Final Remarks

The aim of this thesis has been to compare quantitatively  and 

rigorously the properties of d ifferen t distance estimators, so as to 

provide an objective means of identifying a ’best’ estimator. I f  we 

were to pick out one single conclusion which we have reached through  

th is  analysis, it would be the fact that the question of which estimator 

is ’best’ has no straightforw ard answer. We have seen th a t there  are 

many factors to be considered in making this choice, including the  

number of galaxies sampled, the number and type of available 

observables, and the nature of the correlation between those 

observables. The situation is somewhat more c lear-cu t when it is
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possible to define ’Schechter* estimators, since we have established 

th e ir  zero bias and constant risk at all tru e  distances. Based on these 

properties we would strongly advocate the use of ’Schechter’ 

estimators -  and, moreover, the Inclusion of additional correlated  

observables when these are available -  fo r the analysis of redsh lft 

surveys; we have noted, nevertheless, that when the observables are  

poorly correlated then the ’Schechter’ estimators, although still 

unbiased, will have a larger risk than other, biased, estimators.

Ultimately the choice of ’best’ estimator must also take  

account of the context in which distances are being used. The

cosmologist is less interested In obtaining optimal galaxy distances 

than in obtaining optimal estimates of the cosmological parameters 

derived from those distance estimates, and it does not follow

immediately that the former will lead directly to the latter. The simple 

example outlined above, of estimating H q  from ’quiet’ Hubble flow,

illustrates this point: we have shown that the an unbiased ’Schechter’ 

estimator is to be preferred to a biased estimator of lower risk -  even 

though the latter could be regarded as more ’accurate’.

In  this concluding chapter we have indicated how one may -  

at least in principle -  tackle this problem rigorously by using the  

same techniques of risk theory which we have presented here to 

determine the distribution of estimators of cosmological parameters as 

a function of their true values and of the distributions of the  

observables from which they are derived. Such a formulation would

o ffe r a more complete and rigorous determination of the optimal 

strategies for estimating cosmological parameters, and would be a
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logical extension o f the  ana lys is  presented in th is  thes is .
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APPENDIX (1): ITERATIVE REDUCTION OF BIAS AND RISK 

A1.1 Introduction

We have seen In chapters (4) and (5) that the definition of 

unbiased ’Schechter’-typ e  estimators of log distance, ufc, depends on 

one being able to sample completely at least one observable; if this  

condition is not met -  as for example In the case of the distance

estimators studied in chapter (3) -  then one cannot In general define 

an unbiased estimator of 4 -) for all uq. In  such a case it would be 

useful to identify methods of reducing the bias and risk of distance

estimators so as to at least partially remove the effects of selection. In

th is  appendix we will outline one such method: a simple iterative  

scheme designed to reduce progressively the bias of a given estimator. 

We will apply th is scheme to the ’naive’ estimator, as defined In 

equation (4.27), and assuming the selection function, S(m), and galaxy 

luminosity function, 'k(M), used in chapter (3). Thus, we will show that 

one may substantially reduce the bias of 0^ at large tru e  distances. 

Although the application of the iteration algorithm is made somewhat 

easier in th is simple case, its formulation for estimators which are

functions of two or more observables, and for other functions S and 

nonetheless follows immediately.

A 1.2 Definition of the Iteration Algorithm

The algorithm which form the basis of the iteration scheme 

can be stated quite simply.
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STEP 1: Define an initial estimator, O-j say, of log distance; in our case 

we consider G| = 0^ = 0.2(m -  mi_), which is thus a function only of 

the apparent magnitude.

STEP 2: Calculate the bias, B(G|,Wq), of as a function of wq.

STEP 3: Define a new estimator. as follows. Subtract from &|(m) the  

bias of Oj not at the tru e  (but unknown) log distance, but at the  

estimated log distance as given by Gj. In  other words, assume that 

th is  initial estimate for w0 is , in fact, the tru e  log distance and thus  

correct the bias in Gj at that distance. Performing this correction for 

all values of m, we construct:-

GgCii) = 0<|(b ) -  BCG^uqsGj Cm)) (A. 1)

with the obvious generalisation to the case where Gj is a function of 

two or more observables.

Clearly we can now repeat steps 2 and 3 iteratively: i.e. we 

can compute the bias, B(G2,uq)> of Gg as a function of w0 and thence 

define another estimator, v iz :-

G3(b ) = GgCa) -  B(G2,u0=C>2(»)) (A.2)

and so fo rth  for etc.

One would hope that each iteration would produce an 

estimator progressively less biased than its predecessor. In practice  

the effectiveness of the algorithm will depend on a number of factors  

-  the severity  of the selection effects, the form of the intrinsic



227

luminosity function and the ’goodness’ of one’s initial estimator, G| -  

and, in general, there is no guarantee that the scheme will always

converge to give an unbiased estimator.

To demonstrate th is point, It is instructive to consider f irs t  

the scheme applied in a much simpler setting. Let w be a random

variable normally distributed with mean, wq, and unit variance. Now 

suppose we measure the value of u and use th is to estimate ŵ ). Of 

course, it follows immediately from the normality of «  th a t it is an

unbiased estimate of 4 3 ; I.e. in our standard notation, the estimator

& l(u) = w is unbiased fo r all uq-

Suppose, however, that we adopt Gj = A-jW as our estimate of 

uq> where A-j is a constant. Clearly the bias of G| is now given by:-

B(0-|,wq) = (A-j -  (A .3)

Now of courses!nee A-j is independent of this bias can be removed 

immediately simply by rescaling. Suppose, instead, we apply our

iteration scheme to Gj. Thus, we define:-

G2(w) = A-jW -  (A-j-DA-jW *  A2u (A .4)

where A2  = A1(2-A 1). Generalising to the ith iteration, we obtain:-

G l+ l(u ) = Ai + i«  (A .5)

and

B(Gi+i,w 0) = (A-j+i -  1)wq (A .6 )
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where Aj+1 = Aj(2 - Aj).

I t  is easy to show, by induction or otherwise, that the  

sequence <Aj) converges to the limit 1 if 0 < A-j < 2  but diverges if 

A-j lies outside this range. In  other words our iteration scheme will 

converge to an unbiased estimator for all wq provided th a t A-j is 

chosen to lie between 0 and 2. Of course this also means that the  

scheme will fail if our initial estimator is inadequate (i.e. if A-j  ̂ 2). 

Thus, even in th is simple example -  in which we have assumed that no 

selection effects are present -  convergence is not guaranteed. We can 

expect that the non-linear effects introduced by selection will impose 

fu r th e r  restrictions on the convergence of the scheme. With these 

notes of caution in mind consider now the iterated estimators which we 

obtain from °N-

A1.3 Application to ’Naive’ Estimator

I t  is easy to calculate analytically the bias of -  indeed we 

have already done this for fig u re  (4.12) -  and thence the form of 

C^tm). Subsequent iterations cannot be treated analytically but are  

amenable to numerical calculation. Figures (A.1) and (A.2) show the  

estimator curves obtained for Oj -  °N  and for the f irs t  four iterated  

estimators (dg to <0 5 ) as a function of mj_ -  m and for oM = 0.5 and 1.0 

respectively.

The f irs t  feature which is clear from both figures is that the  

estimators appear to d iffe r only close to the limiting magnitude; at
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Estimator curves obtained fo r O-j = and fo r  the f i r s t  four ite ra te d  

estim ators (02 to 0 5 ) as a function of m|_ -  m, fo r  oM = 0 .5
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F ig u re  ( A . 2 )

E s t im a to r  c u rv e s  o b ta in e d  f o r  Q-j = °H  and f o r  th e  f i r s t  f o u r  i t e r a t e d  

e s t im a t o r s  ( 0 2 t o  C>5 ) as a f u n c t i o n  o f  mL -  m, f o r  o M = 1 .0
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brighter magnitudes the iteration scheme does not appreciably change 

the linear form of Gj. Close to mj_, however, each subsequent Iteration  

gives a progressively greater estimate of the distance. Note that the  

increase in the estimator values is greater for = 1 ; th is is not 

surprising since the negative bias of Gj at large tru e  distances 

increases with oM, resulting in a greater positive correction to Gj 

when oM = 1 .0 . In particular, the maximum distance (i.e. when m = mj_) 

which can be in ferred by each estimator increases with the order of 

the iteration. Thus, while the maximum distance which can be inferred  

by Gj is 1 .0  -  so that if the tru e  distance of a galaxy is greater than 

unity then, no m atter what its apparent magnitude, its distance will be 

systematically underestimated by G-j -  in the case of £4 , fo r example, 

th is  maximum estimable distance is pushed up to 1.8, for = 0.5, and 

to 3.4, for oM = 1 .0 . From this behaviour close to m|_, therefore, one 

would expect the iterated estimators to be progressively less biased at 

larger tru e  distances.

Figures (A.3) to (A.6 ) show the bias, B(G|,w0 ), and risk, 

r ( O j,w q ) ,  of G| = ft, to Cfcj as a function of tru e  distance, fo r oM = 0.5 

and 1 .0  respectively.

These figures show that the bias and risk of G| is indeed

progressively reduced at large tru e  distances by successive iterations.

Significantly, however, both the bias and risk are not reduced at all 

tru e  distances. Consider BCG^uq) for °M = 1-°» fo r examP|e- We can see 

from figu re  ( 7 .4 ) that Gg has a small positive bias in the range of tru e

distances xq 2  0 .1  to xq 2 0 .6 , and moreover the bias of 0% is greater

in modulus than that of &| for part of th is range. This positive ’hump’
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as a function o f the true distance, x0 , fo r oM = 1.0



236

in the bias curve becomes more pronounced fo r higher iterations so 

that, although the bias at large true distances is fu rth e r  reduced, the 

bias is progressively increased at smaller tru e  distances. I f  we 

continue iterating beyond we find that th is effect does not 

disappear ; we conclude, therefore, that -  as a result of the  

non-linear form of the bias of O-j -  the iteration scheme does not 

converge for all tru e  distances.

A similar ’hump’ is seen in the risk curves, so that again the 

effect of successive iterations is, in fact, to increase the risk at small 

tru e  distances. Indeed the effect on the risk Is more severe, In that it 

is increased over a larger range of tru e  distances. For example, we 

find that fo r oM = 1.0 the risk of Og is greater than that of for all 

tru e  distances in the range xq = 0.0 to xq s 0.9. This means that, 

while a f irs t application of the iteration scheme does reduce the bias 

of Of at almost all tru e  distances, there is a substantial range within 

which this is only achieved at the expense of an increase in the risk.

This trend continues, and indeed worsens, as we proceed to 

higher iterations: we can see that the risk curves tend to flatten out, 

but at a considerably higher value than the risk of 0«| fo r small xq. 

Thus, for example, we find that the risk of is more than 50% 

greater than that of 04 for most of the range 0.1 < Xq < 3.5 (oM = 

1.0). The same qualitative effects are evident fo r oM = 0.5, although 

less severe, and the precise range in which the bias and risk are 

increased a fte r each iteration is also dependent on o^.

The fact that the bias is not reduced at all distances and the
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damaging ’trad e -o ff’ between reduction of bias and increase of the  

risk both cause the choice of which of the iterated estimators is ’best* 

to be rendered d ifficult. Indeed, we are faced with the classic problem 

that the ’best’ choice depends not only on value of oM -  which one 

can at least assume is known -  but also on the distribution of true 

distances -  which will most certainly be unknown! I f  the galaxies in 

the sample are very distant ( x q  > 2 .0 , say) then O4  or %  would be a 

good choice. On the other hand, if a number of the galaxies are much 

nearer ( x q  < 1 .0 ) then using G5  would give very poor distance 

estimates for these galaxies, resulting not only in a greater bias than  

arises from using the original estimator, Of, but also incurring  as 

much as a threefold increase in the risk.

Similar results are obtained if we take as our initial choice 

one of the other estimators studied in chapter (3) (or more precisely 

the estimator of log distance corresponding to one of the distance 

estimators studied in that chapter.) Moreover, it is easy to show that 

if our initial estimator d iffers from only by a constant -  as is the  

case if we use the ’Malmquist’ or ’Proximal’ distance estimator -  than  

a fte r the f irs t iteration all subsequent estimators (<̂ 3 , O4 , etc) are  

identically equal to found obtained if we s tart the scheme with

In summary, therefore, the iteration scheme clearly does o ffe r  

a means of reducing the bias and risk of distance estimators at very  

large true distances, but its use is limited by the fact that a fte r only 

a few iterations this is achieved only at the cost of a significant 

increase in the risk at smaller tru e  distances. Hence, if one’s sample 

contains a number of relatively nearby galaxies (typ ically at x q  < 1.0 )
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then performing more than one or two iterations will, in fact, be 

counter productive and will result in poorer distance estimates.
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