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S u m m a r y .

The aim of this project was to further characterize the HSV-1 strain 

17+  deletion variant 1703. Initial characterization  after isolation 

(MacLean & Brown, 1987a) demonstrated that 1703 had a deletion of 

approximately 7500 base pairs (bp); (4 .9x 10^ mol. wt.) in the U l / I R l

region of the genome. By restriction enzyme analysis, the deletion was 

shown to affect genes UL55, UL56 and one copy each of IE1 and LAT. 

P o lypep tide  analysis dem onstra ted  that, a lthough  the deletion 

terminated an estimated 500 base pairs downstream of the 3' end of 

IE2, the IE2 gene product Vmw63 was apparently not produced during 

immediate-early times of infection.

Further characterization of 1703 was achieved by: 1 . The

dideoxynucleotide sequence analysis of 1703 DNA fragments in which 

IE2 and the end points of the deletion were located, 2 . The analysis of 

1703 IE2 gene products, 3 .  The in vivo characterization of 1703 and 4 .  

The construction of a 1703 wild-type recom binant. Following the 

suggestion by Dr John McLauchlan that IE2 mRNA synthesis in 1703 

infected cells may be controlled by the production of transcripts 

initiating from the promoter of the IR l  copy of IE1 which was antisense

to IE2 RNA, the project was extended to determine if this could be 

su b s tan tia ted .

Dideoxynucleotide sequence analysis of IE2 demonstrated that the 

promoter, promoter associated, terminator, terminator associated signals 

and most of the open reading frame were homologous to the published 

wild-type sequence (McGeoch et al., 1988a). Sequencing of the deletion 

end points has shown that it spans the region between np (nucleotide 

position) 123623 and npil5839, removing UL56 and 343 base pairs of the



3' end of UL55 thus leaving 555 base pairs between the 3' end of IE2 

and the deletion end point.

The methods of polypeptide analysis, Western blot analysis and SI 

nuclease mapping were used to detect IE2 gene products at both protein 

and RNA levels. These techniques demonstrated that IE2 mRNA and 

Vmw63 synthesis were reduced, but not totally absent, at immediate- 

early times of infection. Western blot analysis of 17+ im m ediate-early 

polypeptide extracts titrated in mock infected extracts compared to 

1703 immediate-early polypeptide extracts demonstrated that, at most, 

Vmw63 production in 1703 infected cells was 1/8 that produced by 17+. 

At early and late times of infection, Vmw63 synthesis by 1703 was 

equivalent to 17+.

The in vivo effect of the loss of UL55, UL56, one copy of IE1 and LAT 

and the reduction in synthesis of Vmw63 during immediate-early times 

of infection was examined. Inoculation of 3 week old mice with 1703 via 

the intracranial route demonstrated that 1703 was as virulent as the 

wild-type virus. The latency characteristics of 1703 were also shown to 

be equivalent to those of 17+ indicating that the products of the genes 

mentioned above are not required for intracranial virulence or for the 

establishment, maintenance or reactivation of latent genomes.

Construction of a wild-type recombinant of 1703 was achieved by 

recombination of the 1703 DNA fragment in which the end points of the 

deletion were located into 17+ DNA. The characterization of the resultant 

recom binant's IE2 gene products indicated equivalence to those 

produced by 1703 and hence that the deletion was responsible for the 

underproduction of Vmw63 during immediate-early times of infection.

To examine the possibility of antisense transcripts controlling the 

production of IE2 mRNA, a polyadenylation signal was cloned between 

the 3' end of IE2 and the 5' end of the IRl  copy of IE1 in the correct



orientation to terminate the synthesis of a potential antisense transcript 

before IE2 coding sequences. A HSV-2 strain HG52 polyadenylation 

signal was chosen for this and, since the surrounding sequences were 

heterologous to 1703 DNA, two 1703 fragments were cloned around the 

polyadenylation signal and the construct recombined into 1703 DNA. 

The resultant recombinant was called 1703PA and analysis of 1703PA 

IE2 gene products demonstrated that IE2 mRNA and Vmw63 synthesis 

had returned to wild-type levels. The detection of the novel transcript 

generated as a result of the insertion of the polyadenylation signal 

substantiated the conclusion that antisense transcripts initiating from 

the IRl  copy of IE1 had the potential to control the production of IE2

mRNA in 1703 infected cells.



C h a p t e r  1
1

INTRODUCTION

1.1  O BJEC TIVES.

This project has involved the characterization of an HSV-1 17+ 

deletion variant 1703 which underproduces the essential immediate- 

early polypeptide Vmw63 under immediate-early conditions despite the 

fact that the deletion does not extend into, nor is there an apparent 

de le tion /in sertion  in IE2, the gene w hich codes for Vmw63. 

Characterization of 1703 involved the analysis of IE2 mRNA and Vmw63 

protein synthesis, the dideoxynucleotide sequence analysis of IE2 and 

determination of the end points of the deletion and the construction of 

relevant recombinant viruses. The analyses have allowed the conclusion 

that the production of Vmw63 by 1703 is due to interference with IE2 

transcription mediated by RNA initiating from the IRl  IE1 promoter

under imm ediate-early conditions.

The aim of the introduction is to provide a general overview of herpes 

simplex virus (HSV) with emphasis on those topics relating to the 

project.

1 .2  C l a s s i f i c a t i o n  o f  h e r p e s v i r u s e s .

Membership of the Herpesviridae family is based on the structure of 

the virion (Fenner, 1976) which consists of a . a core made up of a 

fibrillar spool around which the double stranded DNA is wrapped, b. an 

icosahedral capsid consisting of 12 pentam eric and 150 hexameric 

c a p so m e re s , c . various am ounts o f an am orphous m aterial 

asym m etrically  arranged around the capsid and designated  the
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tegument and d . a membrane or envelope of 150-200nm surrounding 

the entire structure (Wildy et a l.,1960; Roizman & Furlong, 1974).

Herpesviruses cannot be distinguished from each other on the basis of 

morphology, however they are readily separable using criteria such as 

biological properties, immunological cross-reactivity, and the size, base 

composition and structure of their genomes. More than eighty different 

members of the family have been identified by these criteria (Nahmias, 

1972) and have been classified on the basis of their biological properties 

(Roizman et a / . ,1978; Matthews, 1982; Roizman, 1982) and genome 

structure (Roizman, 1982; Honess & Watson, 1977; Honess, 1984); these 

are outlined below.

1.2.a. C lassification  on the  basis of biological p ro p ertie s .

Herpesviruses have biological as well as structural properties in 

common, for example, they specify a large array of enzymes involved in 

nucleotide metabolism, synthesis of viral DNA and encapsidation occurs 

in the nucleus, the host cell is destroyed after productive infection and 

herpesviruses are able to remain latent in their natural host where only 

limited transcription occurs. Biological properties provide an empirical 

means of grouping herpesviruses according to features such as host cell 

range, cytotoxicity and type of cell in which the viral genome establishes 

latency. These features have enabled the classification of herpesviruses 

into 3 groups, alpha, beta and gamma.

Alphaherpesviruses are classified on the basis of variable host range, 

relatively short replication cycle, rapid spread in culture, efficient 

destruction of infected cells and capacity to establish latency in infected 

cells primarily in the sensory ganglia. This subfamily includes 3 human



herpes viruses, herpes simplex viruses type 1 and 2 (HSV-1 & 2) and 

varicella-zoster virus (VZV).

Betaherpesviruses are mainly characterized by having a restricted 

host range, long replicative cycle and an infection that progresses slowly 

in tissue culture. The infected cells frequently  become enlarged 

(cytomegalia) and carrier cultures are readily established. The virus can 

be m ain tained  in the la ten t form  in the secre to ry  glands, 

lymphoreticular cells, kidney and other tissues. Human cytomegalovirus 

(HCMV) is a member of this subfamily.

The in vivo experimental host range of Gammaherpesviruses is limited 

to the family or order to which the natural host belongs. In vitro , all 

members of this family replicate in lymphoblastoid cells, and some also 

cause lytic infections in some types of epithelial and fibroblastic cells.

Viruses in this group are specific for either T or B lymphocytes. In the 

lymphocyte, infection is at the pre-lytic or lytic stage, but without the 

p roduction  of in fec tious p rogeny. L aten t v irus is frequently  

demonstrated in the lymphoid tissues. Epstein-Barr virus (EBV) is a 

member of this subfamily.

1.2.b. Classification on the basis o f genome structure.

It is relatively simple to assign herpesviruses to groups on the basis of 

visible criteria such as characteristics of infection, host/cell range and 

cell type in which the virus is capable of becoming latent. It is more 

difficult to do this on the basis of genome structure which requires 

detailed analysis (Honess & W atson, 1977; Roizman, 1982; Honess,

1984). H erpesv iruses d iffer considerab ly  in the ir overall base 

composition (32-75% G+C), the size of their genomes (80-150xl()6m ol. 

wt.) and the arrangement of repeated elements. Classification on the



basis of genome structure is dependent on the latter property and is

outlined below and in figure 1.1.
G roup A

The DNA of members of this group is present as only one isomer and is

characterized by a single direct repeat at both termini. Channel catfish

virus (CCV) is a member of this group (Chousterman et al., 1979)
G roup B

The DNA of members of this group is present as only one isomer and is

characterized by containing multiple copies of a sequence present as a

direct repeat at both termini. The number of repeats in each genome is

roughly constant, although the number at each end varies extensively

(Stamminger et al., 1987). Herpes virus saimiri (HVS) is a member of this

group.
G roup C

Again the DNA of members of this group is present as only one isomer

(Raab-Traub et al., 1980) whose genomes contain multiple copies of a

sequence present as a direct repeat at both termini and internal tandem

reiterations of a second set of sequences. A member of this group is

Epstein-Barr virus (EBV).
G roup D

The DNA of members of this group exists as two isomers since there

are two unique regions (Ul  and U s) and the U s region is flanked by

inverted  repeats (IR l  and T R s ) which allow inversion of Us.

Pseudorabies virus (PRV) is a member of this group.

G roup E

This group has been further divided into two subgroups, E land E2. 

Subgroup E l consists of those viruses eg. VZV whose unique regions 

( U l  and U s) are flanked by inverted repeats (TR l/IR L» IR s/T R s)- U l  is 

flanked by small inverted repeats (88bp in the case of VZV) and inverts



Figure 1.1 Genome structures of the herpesviruses.

The structures of herpesvirus genomes are dem onstrated. Repeat

sequences are shown as open boxes. U s and Ul  indicate the short and

long unique sequences a, b and c indicate repeat sequences with a', b' 

and c' their complement. Arrows indicate the relative orientations of the 

unique segment. An exam ple of each group A-E2, is illustrated and the 

numbers of isomers indicated. In VZV, U s is in either orientation 50% of 

the time, while Ul  is in one orientation 95% of the time.

CCV is channel catfish virus, HVS is herpesvirus saim iri, EBV is

E pstein-B arr virus, PRV is pseudorabies virus, VZV is varicella-zoster 

virus and HSV is herpes simplex virus.

(Adapted from MacLean, 1988)
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inefficiently. The short unique region is flanked by longer repeats and 

inverts to give both orientations of U s in equimolar amounts. Hence U l  

is found predom inantly in one orientation and U s is found equally in 

both orientations leading to the presence of 2 m ajor and 2 minor 

isomers (Davison, 1984).

Viruses belonging to subgroup E2, eg HSV-1 and 2 have two unique 

segm ents (U l  and U s )  both of which are flanked by inverted repeats 

(T R l /IRL> IR S /T R s ) which share a short region of DNA directly repeated 

at the term ini and indirectly  repeated at the junction  between the 

internal inverted repeats. This allows equal isom erisation of both unique 

segm ents resu lting  in 4 isom ers w hich are equally  p resen t in a 

population of DNA molecules.

1 .3  H u m a n  h e r p e s v i r u s e s .

There are seven herpesviruses known to infect hum ans, herpes 

simplex virus types 1 and 2, (HSV-1&2) varicella-zoster virus (VZV), 

Epstein-Barr virus (EBV), cytomegalovirus (CMV) [these viruses are also 

known as human herpesviruses (HHV) 1-5 respectively], HHV-6 and 

HHV-7. Primary infection with HSV-1 occurs in early childhood and is 

often asymptomatic but may lead to a range of illnesses including fever, 

sore throat, ulcerative and vesicular lesions, oedema, localised general 

lym phadenopathy  and general m alaise  (W hite ly ,1985 ). Follow ing 

prim ary infection, a latent state is norm ally established (sec tion l.9 ) 

usually  in the trigem inal ganglia of the peripheral nervous system 

(Bastion et al., 1972). Reactivation of HSV-1 causes recurrent herpetic 

lesions (cold sores) localised to the dermatome supplied by the latently 

infected dorsal root ganglion (Wildy et al., 1982)
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HSV-2 has similar biological properties to HSV-1 and shows 50% DNA 

hom ology. However HSV-2 is prim arily a sexually transm itted disease 

and is associated with genital lesions (Dowdle et al., 1967; K essler,1977). 

The virus normally establishes latency in the sacral dorsal root ganglia 

and periodically reactivates (Baringer & Swoveland, 1973). HSV-2 can

also cause herpetic lesions on the mucocutaneous regions of the face, and 

HSV-1 can cause genital lesions. An association between HSV-2 and 

cervical carcinom a has been suggested (Naib et al., 1966; Eglin et al., 

1981; Park et al., 1983). A link between HSV-2, papillom a virus and 

cervical carcinoma has also been reported (zur Hausen, 1982).

Human cytom egalovirus infection in children and adults is mainly 

asymtomatic or associated with a mild fever. Infection of the foetus via 

their mothers is thought to be a major cause of intrauterine death and 

congenital defects (W eller, 1971; Rapp, 1980). Human CMV is also 

associated with the European form  of K aposi's sarcom a (G iraldo et

al., 1975) and HCMV pneum onia is common among AIDS patients and 

those undergoing im m unosuppressive therapy.

V aricella-zoster virus causes a prim ary childhood illness called 

chicken-pox (varicella). The virus becom es latent in the dorsal root 

ganglia (G ilden et al., 1978) and may reactivate mostly in older people to 

cause shingles (zoster). Reactivation may to some extent be dependent 

on the immunological status of the individual (Rifkind,1966; Gleb, 1985).

Epstein-Barr virus (EBV) infection in childhood is often asymtomatic 

but can cause a debilitating infection in adolescents and adults, called

glandular fever, when prim ary infection occurs at these times. EBV is 

also associated with Burkitts lymphoma and nasopharyngeal carcinoma 

in South East Asia.

Recently a novel herpes virus called HH V-6 (or human B-cell

lym photropic virus [HBLV]) was isolated from patients with AIDS and



Figure 1.2 Gross organisation of the HSV-1 genome.

A conventional representation of the HSV genome is shown, with 

unique sequences as solid lines (U s and Ul ) and the m ajor repeat 

elem ents as open boxes (TRl  and IRl , IR s  an^ TR §). The a, b and c 

sequences and the same sequences in the opposite orientation a', b' and 

c’ are indicated. Below the genome representation, the isom erisation of

the HSV-1 genome is illustrated. The four isomers are: P (prototype), I I

(L inverted with respect to P), Is  (S inverted with respect to P) and Is l

(S and L inverted with respect to P).
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other lym phpro lifera tive  d isorders (Salahuddin  et a l.,1986) and was 

later found to be the causative agent of exanthem  subitum which is a 

ch ildhood  illn ess  charac terized  by sp ik ing  fever and skin rash 

(Yamanishi et al., 1988).

A seventh herpesvirus called HHV-7 was isolated from activated CD4+ 

lym phocytes of a healthy indiv idual (Frenkel et al., 1990), and was 

shown to be unrelated to HHV-6 (Wyatt et al, 1991).

1 .4  T h e  h e r p e s  s i m p l e x  v i r u s  g e n o m e .

1.4.a. Structural features of the HSV genome.

The complete sequence of the HSV-1 genome has been established and 

shows that it has a total length of 152260 residues (M cGeoch e t  

a l. ,1988a) of base composition 68.3% G+C which is unevenly distributed 

throughout the genome. For example, the short repeat region has a base

com position of 79.5% G+C (M cGeoch et al., 1986) whereas the short

unique segment has 64.3% G+C (McGeoch et al., 1985).

The genome is made up of a long (L) segment and a short (S) segment 

which are covalently linked and comprise 82% and 18% of the total DNA 

respec tive ly  (R oizm an, 1979a,b). Each segm ent con tains a unique 

sequence flanked by a pair of inverted repeat sequences (figure 1.2a), 

the long repeat ( R l )  and short repeat (Rs) which are distinct from each 

other. The molecules also possess a terminal redundancy of between 250 

and 500 base pairs (b .p .), term ed the 'a ' sequence; one or more 

additional copies of this sequence are located internally  at the joint 

between the L and S segm ents in the opposite orientation to the 'a'

sequence (Sheldrick & Berthelot, 1974). The HSV-1 genome isomerises

to give equ im o lar am ounts of each o rien ta tio n  (figu re  1.2b).
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Isomerization is thought to be mediated by the ’a’ sequence (section 1.5). 

The four isomers are P (prototype), I I  (L inverted with respect to P), Is 

(S inverted with respect to P), ISL (S and L inverted with respect to P).

The num ber and size of 'a' sequences varies between and within 

strains of HSV-1 as does the num ber, size and location of tandem 

reiterations outwith the ’a* sequence (Rixon et al., 1984). Both of these 

factors contribute to the variability  in genome length found between 

strains. The length of the latter short reiterated sequences varies from 

10-100 b.p. (M cGeoch, 1989). The copy num ber of reiterations varies 

among virus isolates, serial passage of viral stocks, and upon recloning 

virus isolates (W atson et al., 1981a; M urchie & M cGeoch, 1982; Perry & 

M cGeoch, 1988). These short tandem  repeats may serve to promote 

exchange of genetic m aterial betw een HSV DNA m olecules thus 

m aintaining hom ology (Umene, 1987) or they could prom ote a high 

degree of recom bination , but the function of such reitera tions is 

basically  unknown.

1*4.b. Organisation of HSV genes.

The genome of HSV-1 strain 17+ has been sequenced and the genetic 

content analysed (McGeoch et al., 1985, 1986, 1988a; Perry & McGeoch, 

1988). The genome contains at least 75 genes which code for 72 distinct 

proteins, UL49.5 being the m ost recently  identified gene (Barker & 

Roizman, 1992). Figure 1.3 shows the orientations and locations of these 

genes. Three open reading frames (IE1, IE3 and the RL1 gene encoding 

ICP 34.5) are w ithin the repeats and are therefore diploid. The gene 

encoding ICP 34.5 was originally demonstrated in HSV strain F, as was 

the protein (Chou & Roizm an, 1986; Ackerm an et al., 1986; Chou & 

Roizman, 1990; Chou et al., 1990). The gene is positioned upstream of the



Figure 1.3 Layout of genes in the HSV-1 genome.

The HSV-1 genome is shown on four successive lines, with 40 kilo base 

pairs per line. Location of open reading frames are shown by arrows, 

with splicing within the coding regions indicated. In the top three lines, 

UL51 to UL56 are shown as 1-56, and in the bottom line, genes US1 to 

US 12 as 1-12. Two recently characterized additional genes are UL49.5 

(Barker & Roizman, 1992) and RL1 (Dolan et a l ., 1992)

(Adapted from McGeoch, 1989)
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5' end of IE1 in R l  in the same orientation as IE1. The assignment of a 

gene in this region has been confirmed in HSV-1 17+ (Dolan et al., 1992) 

and in HSV-2 strain HG52 (McGeoch et al., 1991).

The detection of the latency associated transcripts (LATs) in latently 

infected animal and human ganglia (Stevens et al., 1987; Krause et al., 

1988) has dem onstrated that, during latency, v iral transcrip tion  is 

lim ited to the part of the genome that expresses LAT. However these 

transcrip ts are not thought to be essential for the establishm ent or 

m aintenance of latency but may control the tem poral regulation of 

reactivation from latency (Steiner et al ., 1989).

The sequence of U l ,  and the functions of some of the genes contained 

therein, has been elucidated (M cGeoch et al., 1988a) and is outlined 

below .

The only im m ediate-early gene contained within the long unique 

segment is UL54 (or IE2) which codes for Vmw 63 (Watson et al., 1979). 

Many genes in U l  are known to have a role in the replication of viral 

DNA. There is a set of seven genes whose products are required to 

promote the amplification of a test plasmid encoding an HSV origin of 

replication (Challberg, 1986; Wu et al., 1988; M cGeoch et al., 1988b). 

These include the gene which encodes the viral DNA polymerase (UL30), 

the major DNA binding protein (UL29), the subunit of DNA polymerase 

(UL42) (Gottlieb et al .,1990), and an origin binding protein (UL9); (Weir 

et al., 1989; W eir & Stow, 1990), but little is known about the other three 

(UL5, UL8 and UL52), although there is evidence indicating that these 

three gene products form a primase/helicase complex (Crute et al., 1989). 

The UL5 amino acid sequence exhibits an ATP binding site consensus 

and is proposed to represent an ATP using enzym e such as helicase 

(McGeoch et al., 1988a).
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Other genes encoded in the U l  segment of the genome are known to 

specify proteins involved in DNA synthesis or nucleotide metabolism. 

T hese inc lude  UL1 (u rac il DNA g ly co sy la se ) U L 12 [alkaline  

deoxyribonuclease (W eller et al., 1990)], UL23 (thym idine kinase), UL39 

and U L40 (the subunits o f ribonucleo tide  reduc tase) and UL50 

[deoxyuridine triphosphatase (dUTPase)]. Gene UL26 is known to encode 

a virion structural protein which is involved in processing and packaging 

of progeny DNA (Preston  et a l . ,1983). Lui & R oizm an, (1991) 

dem onstrated that UL26 encodes a protease which cleaves the UL26

gene product to produce UL26a, which functions as a scaffolding protein.

Genes encoding virion structural proteins also lie within U l .  These 

include UL19 (the m ajor capsid protein), UL48 (the m ajor tegument 

protein); (Campbell et al, 1984), three surface glycoproteins (UL22 [gH], 

UL27 [gB] and UL44 [gC]) and three virion proteins (UL26, UL34 and 

UL36). The UL28 gene product is important for the formation of mature 

capsids (Addison et al., 1990) and UL41 codes for the virion host shut off 

protein (Fenwick & Everett, 1990).

Mutation in some Ul  genes can result in a syncitial plaque phenotype 

which may arise from  changes in structural proteins. One of these

corresponds to UL27 which specifies the virion glycoprotein gB (Bzik et

al., 1984), another to UL53 which is multiply hydrophobic (Debroy et al.,

1985) and one corresponds to UL1 (Little & Schaffer, 1981).

Several U l  genes are dispensable in tissue culture. These include UL2 

(M ullaney et al., 1989), UL10 (MacLean et al., 1991), UL41 (Fenwick & 

E verett, 1990), UL43 (M acLean et al., 1991), UL13 (M iss L. Coulter, 

personal comm unication), UL23 [thymidine kinase (Jamieson et al., 1974; 

Sanders et al., 1982), UL24 (unknown function), UL39 [large subunit of 

ribonucleotide reductase (Goldstein & W eller, 1988)], UL44 (gC) (Frink et
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a l . ,1983), UL50 (dUTPase) (Preston & F isch e r,1984), UL55 and 56 

[functions unknown (MacLean & Brown, 1987a,b].

Analysis of the short unique segment of the HSV-1 genome (McGeoch 

et a l ., 1985) has shown that it contains 12 genes m ost of which are 

arranged as 3' co-term inal fam ilies, that is, the genes have common 3' 

ends but distinct 5' term ini and prom oters. US1 and 12 both encode 

im m edia te-early  po lypep tides (M cG eoch et al., 1985; M arsden et al., 

1982), US4,6,7 and 8 encode glycoproteins gG, gD, gl and gE respectively. 

US5 is thought to encode a small glycoprotein (McGeoch et al., 1985). 

US 11 encodes a sequence specific RNA binding protein  (Roller & 

Roizman, 1990), US3 a protein kinase, US9 a tegum ent phosphoprotein 

(Frame et al., 1986) and US 10 encodes a virion protein (Rixon & McGeoch,

1984).

In the synthesis and processing of virus specific RNAs 

and eukaryotic RNA, host encoded RNA polymerase II is utilised

and transcrip tion occurs in the nuclei of infected cells (W agner & 

Roizman, 1969; Ben-Zeeve & Becker, 1977: Constanzo et al., 1977). Most 

HSV genes possess upstream  and downstream regulatory regions similar 

to those of host cell genes (McKnight, 1980). These include 5' promoter 

sequences such as a TATAA box, a CAAT box m otif and a 3' pre-mRNA 

polyadenylation signal AATAAA (Zarkower et al 1986). There is another 

m otif, YGTGTTYY, where Y represents C or T, and which is found 

downstream  from  the polyadenylation signal (M cLauchlan e t al

1985) and has been shown to be required for the efficient processing of 

the 3 ’ end of mRNA (McLauchlan et al., 1985). One aspect in which HSV 

differs from host is the degree of gene splicing. There are relatively few 

spliced genes: (IE1, UL15, IE4, IE5 and UL44) (Rixon & Clements, 1982; 

W atson et al.,1981b Perry et a l. ,1986; M cGeoch et al., 1988$ Frink e t
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a l . ,1983). RL1 (ICP 34.5) is predicted to be spliced in HSV-2 but not in 

HSV-1 (McGeoch et al.y 1991; Dolan et al., 1992).

1 .5  TH E HERPES SIMPLEX VIRUS 'A' SE Q U E N C E .

HSV-1 DNA possesses a direct terminal repeat of about 250-500 base 

pairs termed the 'a' sequence. The 'a1 sequence is also located in inverted 

orientation at the joint between L and S segments. In some molecules of 

an HSV DNA preparation, the L term inus and the jo in t may possess 

multiple copies of the 'a' sequence.

The HSV genome can be represented as:

ai an b-U L-b'a’m C '-U s-c as 

where aj and as are terminal sequences with unique properties, and an 

and am are term inal ’a’ sequences directly repeated 0-9 times (n) or 

present in 1-10 (m) copies (Davison & W ilkie, 1981; Roizman, 1979 a, b; 

W adsworth et al., 1975; W agner & Summers, 1978).

1.5.a. Structure of the V  sequence.

The structure of the 'a' sequence is highly conserved and consists of a 

variable number of repeat elements. In HSV-1 strain F, the sequence is 

made up of a 20 base pair direct repeat (DR1), a 64 base pair unique 

sequence (Ub), a 12 base pair direct repeat (DR2) present in 19-22 

copies per 'a' sequence, a 37 base pair direct repeat (DR4) present in 2-3 

copies, a 58 base pair unique sequence (Uc), and a final copy of DR1 

(M ocarski & Roizman, 1981, 1982). The size of the 'a' sequence varies 

between and within strains reflecting differing numbers of copies of DR2 

and DR4, The structure of the ’a' sequence can be represented as follows 

and in figure 1.4:

DR 1 -Ub-DR2n-DR4m-Uc-DR 1



Figure 1.4 Structure of the HSV-1 V sequence.

a. A HSV-1 genome in the prototype orientation, b . An expansion of 

the IRl /IR §  junction showing the structure of the 'a' sequence. The 'a'

sequence consists  o f unique and d irec tly  repeated  e lem ents (the 

inform ation given concerns the HSV-1 strain F 'a' sequence [Mocarski & 

Roizman, 1981, 1982])

Ub- a unique region located towards the b’ region of the genome.

Uc- a unique region located towards the c' region of the genome. 

DR1- A 20 base pair element present as a direct repeat at the edge of

the ’a’ sequence.

DR2- a directly repeated 12 base pair element present in 19-22 copies. 

DR4- a directly repeated 37 base pair sequence present in 2-3 copies.
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with adjacent ’a' sequences sharing the intervening DR1. Linear virion 

DNA contains asymmetric ends with the term inal 'a' sequence of the L 

com ponent (aL) ending with 18 base pairs and one 3' nucleotide 

extension, and the terminal 'a' sequence of the S component (aS) ending 

with a DR1 containing only 1 base pair and one 3' overhang (Mocarski & 

Roizm an,1982). Thus genome inversion leads to form ation of 1 DR1 

between aL and aS. V ariability of the copy num ber of DR elements 

accounts for m ost of the observed 'a ' sequence polym orphism  in 

different strains. For example, HSV-2 strain HG52 has only one copy of 

DR2 (Davison & W ilkie, 1981) while HSV-1 strain F has 19-22 copies 

(M ocarski & Roizm an,1982). Sim ilarly, HSV-1 strain 17+ and HSV-2 

strain HG52 contain one copy of DR4 homology, which is thus a part of 

Uc (Davison & W ilkie, 1981). Although there is variation in the copy 

number of the DR2 and DR4 elements, some regions of the 'a' sequence 

are highly conserved in different strains. These are within Ub and Uc 

and are represented by a short, well conserved sequence about 20bp in 

length located approxim ately 40bp and 35bp respectively from the end 

of the 'a' sequence (Davison & W ilkie, 1981; Deiss & Frenkel, 1986).

1.5.b. The V  sequence m ediates circularization.

Follow ing infection, the HSV genome rapidly circularizes: this is 

believed to be mediated by the 'a' sequence (Davison & W ilkie, 1983a; 

Poffenberger et a l ., 1983; Poffenberger & Roizman, 1985). It is likely 

that circularization takes place by ligation of the two termini aided by 

the com plem entary single base at the 3' end overhang (M ocarski & 

Roizman, 1982)
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1.5.c. V  sequence prom oter activity.

Chou & Roizman (1986) have mapped the promoter of the gene coding 

for the neurovirulence factor ICP 34.5 (Chou et al., 1990) to the Ub 

segment of the ’a’ sequence. The 5' end of the transcript and the coding 

region is in the long repeat region of the genome in the same orientation 

as IE1 (Ackerman et a/., 1986). Resequencing and confirm ation of the 

presence of ICP 34.5 in HSV-1 strain F but not in HSV-1 strain 17+ (Chou 

& Roizman, 1990) led to a more extensive analysis of this region of HSV- 

1 strain 17+ and to the conclusion that HSV-1 17+ does indeed encode a 

neurovirulence conferring gene in this region (Dolan et al., 1992).

1.5.d. Isomerization of the HSV genome.

HSV-1 DNA contains equimolar amounts of four isomers (section 1.4a). 

The existence of four isom ers was dem onstrated by restriction enzyme 

analysis (Hayward et al., 1975; ClementSer al., 1976). Studies of intertypic 

recom binants between HSV-1 and -2 demonstrated that inversion of the 

L and S segm ents was specifically dependent upon the ’a' sequence 

(Davison & W ilkie 1983b). Detailed analysis of the 'a' sequence (Chou & 

Roizman, 1985) has shown that deletion within the DR2 element resulted 

in a low frequency of inversion (Varamuza & Smiley, 1985), deletion of 

DR4 sequences resulted in com pletely abolishing inversion indicating 

that the presence of cis-acting signals for recom bination and inversion in 

the DR2 and DR4 sequences. Harland & Brown (1989) reported an 

approxim ately 13.5kb deletion in HSV-2 strain HG52 across the L-S 

junction with loss of the 'a' sequence and complete loss of I R l  and half 

of the IR s region, resulting in a fixed prototype orientation of the L 

segm ent. However, both IR s and T R s were present albeit in unequal 

proportions indicating that the 'a' sequence is not absolutely necessary
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for the isom erization of HSV. Longnecker & Roizman (1986) reported 

sim ilar findings.

(Section 1.6.d describes the cleavage packaging properties of the ’a' 

sequence and its protein binding properties).

1 .6 .  V IR A L  REPLICATION

Attachment of the virus to cell receptors is rapidly followed by fusion 

of the envelope with the plasma membrane. The de-enveloped capsid is 

then transported to the nuclear pores where the DNA is released into the 

nucleus. Transcription, replication of viral DNA and assem bly of new 

capsids takes place in the nucleus. Viral DNA is synthesized by a rolling 

circle mechanism to yield concatem ers that are cleaved into monomers 

and packaged in to  capsids. The virus then m atures and acquires 

in fec tiv ity  by budding through the inner lam ellae  of the nuclear 

m em brane. In fully perm issive tissue culture cells, the process takes 

approxim ately 18-20 hours.

1.6.a. Attachment and penetration o f  HSV to the cell.

Studies by W uDunn & Spear, (1989) indicate that the receptor 

m olecules recognized in one of the initial binding events are heparan 

sulphate proteoglycans and that either gB or gC is required for this step. 

Neom ycin and polylysine appear to block a sim ilar step in attachment 

(Langeland et al., 1987, 1988) and mapping data suggests that this step 

appears to involve gC. It has also been dem onstrated that gH may be 

required for an early step in viral replication (Buckm aster et al., 1984; 

Desai et al., 1988)

Penetration is also mediated by the HSV surface glycoproteins. An HSV 

ts m utant expressing an altered gB attaches to but does not penetrate
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into cells (M anservigi et  a / . , 1977) and gB" viruses attach but do not 

penetrate (Cai et al., 1988). In the same m anner, HSV-1 gD~ viruses 

attach but do not penetrate (Johnson & Ligas, 1988). Cells expressing 

HSV gD allow attachm ent and penetration of both HSV-1 and HSV-2, 

however fusion of viral and cellular membranes and penetration do not 

ensue (Campadelli-Fium e et al., 1988).

Hence, gB and gC recognize as well as attach to, cell receptors, gB and 

gD play an indispensable role in the fusion of the envelope with the 

p lasm a m em brane, and gD sequesters the cell m em brane proteins 

requ ired  for fusion of the v iral and ce llu la r m em branes. V irions 

attaching to the plasm a m em brane which cannot fuse are internalized 

and degraded in endocytotic vesicles.

Upon entry into the cell, the capsids are transported to the nuclear 

pores (Batterson et al., 1983; Tognon et al., 1981) where viral DNA is 

released into the nucleoplasm , a step which requires a viral function

(B atterson et al., 1983). Apart from DNA, other virion components are 

required for replication including a protein responsible for the shut off 

of host m acrom olecular synthesis (Fenw ick & E verett, 1990) and a 

tegum ent protein involved in the induction of im m ediate-early  gene

expression (Campbell et al., 1984).

1.6.b. Temporal control o f gene expression.

Transcription of viral genes takes place in the nucleus and mRNA is 

translated in the cytoplasm . The expression of HSV genes is tightly

controlled in that proteins form  several groups whose expression is 

ordered in a sequential fashion (Honess & Roizman, 1973, 1974, 1975). 

(An extensive discussion of the regulation of HSV genes is given in 

section 1.7)



1 7

I .6 .C . Synthesis o f viral DNA.

The nature of the replicative forms of HSV DNA is obscure. It is known 

that newly replicated DNA does not posses detectable term ini and is 

probably c ircular or in head to tail m onom ers (Jacob et al. ,1 9 7 9 ;

Jongeneel & Bachenheimer, 1981). Late in infection replicated DNA is in 

a very rapidly sedimentable form, thought to be extensive concatemers

(Jacob et al .,1979). It is therefore likely that replication is by a rolling

circle mechanism . Concatem eric DNA is further processed in the cell 

nucleus by packaging into nascent nucleocapsids, and by cleavage into 

unit genome lengths (Vlazny et al.y 1982)

I.6.C .I. Origins of DNA replication.

HSV DNA has three origins of replication, one in Ul  situated between

divergently transcribed genes encoding the m ajor DNA binding protein 

and the DNA polymerase. This origin is termed ori\^. The other origin is 

situated between the prom oter of IE4/5 and that of IE3 in Rg and is 

therefore diploid. This origin is called ori$.

o r i§ activity has been localized to a region of 90 base pairs within the 

R § sequence of HSV-1 (Stow & McM onagle,1983). The ori$  sequence 

contains an im perfect palindrom e, with each arm consisting of 21 

residues. A lthough essential sequences are known to lie outside the 

palindrom e (Stow & M cM onagle,1983) there is (A-T)g at its centre 

essential for ori$  function (Stow, 1985).

o n 's  has homologues in HSV-2 strain HG52 (W hitton & Clements, 1984) 

and VZV (Stow & Davison, 1986) both of whose sequences are known and 

are similar to that of HSV-1. There is a stretch of 11 base pairs identical
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in HSV-1 and VZV which in HSV-1 lies across the boundary of the 

palindrom e and in VZV lies ju st outside it. These 11 base pairs are 

included in an 18 base pair region which has been shown to bind a 

protein (Elias et al., 1986). This region has been further characterized by 

W eir & Stow, (1990) who demonstrated that the interaction of the UL9 

gene product with o r is  (Elias & Lehman, 1988; Koff & Tegtmeyer,1988;

Olivio et al., 1988; W eir et al., 1989) was at part of the 11 base pair 

conserved elem ent and that the binding of the UL9 gene product to 

another related site was also required for efficient regulation.

Q lilt'

DNA containing functional ori\^  could not be cloned intact into a 

standard bacterial vector system . Any recom binant clones obtained 

contained deletions of >100 base pairs (Spaete & Frenkel, 1982) which 

rendered the origin inactive.

Sequencing of ori\^ was eventually achieved by using non-cloned viral

DNA fragm ents as sequencing substrates (W eller et al., 1985; Quinn & 

M cGeoch,1985). M olecular cloning of the region in an undeleted form 

was reported using a yeast plasmid (W eller et al., 1985). It was found 

that the deleting region contained a long perfect palindrom e with arms 

each of 72 residues which shows striking similarity to that of o r i$ .  As 

with o r i s ,  the ori\^ region contains an A-T rich region at the centre of the

palindrom e. Alignment of the two ori  sequences dem onstrates that the 

whole of ori$  shows homology to on 'L  (M cGeoch, 1987). The sequence 

similarity extends beyond the o r is  palindrome on one side only which is 

within the mapped functional limits of o r is  (Stow & M cM onagle,1983) 

and contains part of the o ris  binding site (Elias et a l . ,1986).

Lockshon & Galloway,(1986) found that the HSV-2 ori\^ equivalent was 

an alm ost perfect palindrom e of total length 136 base pairs with high 

sequence homology to the HSV-1 palindrome. VZV does not appear to
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contain any homology to 0h'l  in the equivalent genome location (Stow & 

Davison, 1986).

ori$  and ori\^ structures and flanking sequences have several elements

in common: 1. a palindrome sequence. 2. a repeating AT arp.a 3 a r<*<non
# *(in oris  alone)

conserved between HSV and VZV known to be protein binding* and 4.

the origins are located close to transcrip tional regulatory  signals of

divergently transcribed genes. In the case of o r i s  these are IE4/5 and 

IE3, IE3 encodes an essential transcriptional regulator. ori\^ is located 

between two genes whose products are com ponents of the viral DNA 

replicating  m achinery.

A variant lacking ori\^ has been isolated which grows normally in vitro

and w hich estab lishes laten t infection  in vivo (P o lv ino-B odnar e t

a /., 1987). Viable variants of HSV types 1 and 2 lacking a single copy of 

o r i s  have been iso lated  (Longnecker & Roizm an, 1986; Brown &

H arland,1987). Failure to isolate viable HSV deletion variants lacking 

both copies of o r is  may not indicate that both are essential since there is 

evidence of a transcript spanning o r is  (Hubenthal-Voss et a l , 1987). If 

both copies of o r is  were deleted then both copies of the proposed gene 

would also be disrupted making it difficult to dissociate the two effects. 

Recent evidence links these transcripts to replication of viral DNA (Wong 

& Schaffer, 1991).

1.6.C.II. HSV-1 gene products required for DNA synthesis.

By transfecting cells with plasmids containing an HSV origin of DNA 

synthesis and various fragments of the HSV-1 genome, the identification 

of 7 genes encoding products required for viral origin dependent DNA 

synthesis has been achieved (Wu et al., 1988; M cGeoch et a l . ,  1988b). 

These are UL5, UL8, UL9, UL29, UL30, UL42 and UL52. UL30 encodes
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the viral DNA polymerase (Chartrand et al., 1980; Quinn & McGeoch,

1985), a single stranded DNA binding protein is specified by UL29 

(Conley et al., 1981; Quinn & McGeoch, 1985) a protein binding to the 

origins of viral DNA synthesis is encoded by UL9 (Elias et al., 1986), a 

double stranded DNA binding protein  encoded by UL42 and three 

additional proteins encoded by UL5, UL8 and UL52 are thought to be 

subunits of a primase-helicase complex (Crute et al., 1989).

Other HSV encoded enzymes also play a role in DNA synthesis. Two 

enzymes which catalyse reactions in the biosynthesis of DNA precursors 

are thym idine kinase and ribonucleotide reductase.

T h ym id ine  k inase  (TK) is not essential for virus growth in dividing 

tissue culture cells, but is required in resting cells (Jamieson et al., 1974). 

The pathogenicity of TK “ mutants in experim ental anim als is reduced 

(Field & W ildy, 1978). The enzyme functions to phosphorylate purine 

pentosides and a wide variety of nucleoside analogues that are not 

phosphorylated efficiently by cellular kinases.

R ib o n u c leo tid e  re d u c ta se  (RR) catalyses the reduction of nucleoside 

diphosphates to deoxynucleoside diphosphates (Cohen, 1972; Dutia,1983), 

and is composed of two substrates which are encoded by separate but 

contiguous genes. (Preston et al.,1984; Bacchetti et al., 1986; Frame e t  

al., 1985; McLauchlan & Clements, 1983&). The enzyme has been shown to 

be non-essential under in vitro conditions for viral DNA replication by 

the construction of a viable variant deleted w ithin the ribonucleotide 

reductase coding region (Goldstein & W eller,1988). Preston et a l.,(1988) 

have also described a m utant, t s \2 2 2 ,  which has a single base pair 

deletion at the 3' end of the small subunit of RR. This mutant does not 

induce detectable amounts of RR activity at either 31°C or 39.5°C. In 

dividing cells at 31°C there is no growth defect, but 39.5°C was non 

perm issive for growth of the mutant. This suggests that at 31°C growth
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of the mutant is supported by cellular RR whereas virally encoded RR is 

necessary for viral replication at the higher tem perature. RR has been 

dem onstrated to be a determ inant of pathogen ic ity  in m ice since 

mutants with lesions in either the large or small subunit were reduced 

in virulence by about lO ^-fold when com pared to the parental virus 

(Cameron et al., 1988).

1.6.d. Cleavage and packaging of HSV DNA.

Newly synthesized viral DNA is processed and packaged into empty 

capsids, a process involving am plification of the 'a1 sequence and 

cleavage of 'endless' DNA (ie. in the circular or concatemeric form). Stow 

et al.,(1983) dem onstrated that signals required for encapsidation of 

HSV-1 DNA are located within the 'a' sequence and it has since been 

proposed that cleavage of HSV-1 DNA after replication is coupled to 

encapsidation (Deiss & Frenkel, 1986). The net results of these processes 

are that the free S component terminus consists of one 'a' sequence with 

a term inal DR1 elem ent containing only a single base pair and one 3' 

nucleotide extension (Mocarski & Roizman, 1982). The free L component 

term inus consists of one to several directly repeated 'a' sequences and 

ending in a DR1 element containing 18 base pairs and one 3’ nucleotide 

extension. The 3' extensions are thought to mediate the circularization of 

the genome after infection (M ocarski & Roizm an, 1982). Two separate 

signals designated P a d  and Pac2, located in the Ub and Uc regions 

respectively of the 'a' sequence, were essential for cleavage/packaging 

of viral genomes (Varmuza & Smiley, 1985; Deiss et al., 1986). Nasseri & 

M ocarski, (1988) have shown that a 179 base pair fragm ent (containing 

U c-D Rl-U b) from the junction of two tandem 'a' sequences carries all the 

elem ents necessary for cleavage recognition and encapsidation.
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The analysis of the processes of cleavage and packaging was achieved 

by Deiss et al., (1986) using a series of amplicons. A summary of the 

cleavage packaging model resulting from  this analysis begins with a 

cleavage packaging protein attaching to the Uc elem ent of the ’a' 

sequence (see section 1.5 for a description of the 'a' sequence structure). 

A potential structure on the surface of the capsid complexes with a Uc 

protein sequence, loops the viral DNA and scans from the bound 'a' 

sequence across the L component toward the end of the S component 

until it detects the first U c-D R l-U b domain of an 'a' sequence in an 

identical orientation. The DR1 sequence of one 'a' is then cleaved and the 

gap is repaired. Cleavage of the DR1 elem ent shared by the two 'a' 

sequences then ensues.

Several proteins have been shown to bind the 'a' sequence. These 

include a small polypeptide attaching to the L-S junction of virus DNA 

(Wu et al., 1979). Late polypeptides encoded by the gene US11 (Rixon & 

M cGeoch, 1984; Johnston et al., 1986) have been shown to interact with 

the HSV-1 'a' sequence in vitro (Dalziel & Marsden, 1984) and are strong 

DNA binding proteins (MacLean et al., 1987). The function of the US 11 

gene products rem ain unclear since deletion m utants viable in tissue 

culture have been isolated (Umene,1986; Brown & Harland,1987). Two 

further proteins (>250KDa and 140KDa) which form complexes with p a d  

and the DR1 region of the 'a' sequence have been reported (Chou & 

R o izm an ,1989).

The model described by Deiss et al.,{ 1986) and above dem onstrates 

that the 'a' sequences at the joint between the L and S component were 

not involved in cleavage and packaging is supported by the isolation of 

an HSV-2 variant lacking the internal ’a' sequence which was packaged 

norm ally (Brown & Harland,1987).
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1.6.e. Envelopm ent and egress.

A notable feature of infected cells late in infection is the appearance of 

red u p lica ted  m em branes and th ick  concave or convex patches, 

particularly in nuclear membranes. Nuclear envelopm ent takes place at 

these patches. Because the enveloped virions do not contain detectable 

am ounts of host m em brane proteins, it is likely that these patches 

rep re se n t ag g rega tions of v ira l m em brane p ro te in s presum ably  

including  viral glycoproteins on the outside surface and tegum ent 

proteins on the inside surface.

Nuclear DNA-containing capsids attach to these patches of the nuclear 

m embrane and become enveloped in the process. It has been observed 

tha t only DNA con ta in ing  capsids are enveloped  (R oizm an & 

Furlong, 1974) and that the envelopment of empty capsids rarely occurs. 

Vlazny et al.,(1982) dem onstrated that capsids containing fragm ents of 

HSV DNA less than standard genome length are retained in the nucleus 

leading to the suggestion that a capsid protein  is m odified after 

encapsidation of DNA and only modified capsids are able to bind to the 

patches of nuclear membrane containing viral proteins. The production 

of light particles indicates that capsids are not required for budding of 

envelopes (S zilag i & C unninghan ,1991 ; R ixon et al., 1992) and the 

possibility of cytoplasmic sites for acquisition of tegum ent and envelope 

has been indicated (Nii et al., 1968). Roffm an et a /.,(1 9 9 0 ) detected  

structures called  tegusom es in w hich HHV-6 virions acquire their 

tegument indicating a non-nuclear location for this process.

1.7. Regulation of viral gene expression.

The replication of HSV-1 is coordinated by temporal control of gene 

expression. The classification of three groups of genes, imm ediate-early
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(IE), early (E) and late (L) (Clements et al., 1977) or alpha, beta or gamma 

(Honess & Roizman, 1974) is based on their kinetics and expression in 

the presence and absence of metabolic inhibitors of translation or DNA 

replication (Kozak & Roizman, 1974). The IE genes are the first to be 

transcribed and their expression does not require de novo  protein 

synthesis, whereas early and late gene expression is dependent on prior

synthesis of IE polypeptides (Honess & Roizman, 1974; Clements et al,

1977). IE genes are first expressed directly after release of DNA into the

nucleus and their expression is stim ulated by a com ponent of the

tegument (Post et al., 1981; Batterson & Roizman, 1983).

1.7.a. Regulatory elements o f  HSV-1 genes.

The transcription of HSV-1 genes begins with the five immediate-
*viral

early  genes w hich are expressed in the absence of prior* protein 

synthesis. The im m ediate-early proteins in turn, activate early genes 

which encode mostly the viral DNA replicative machinery. The leaky late

genes are induced soon after the early genes. They are first expressed

prior to the onset of viral DNA replication, and expression increases at 

later tim es in a replication dependent fashion. Finally, the true late 

genes are activated only after DNA replication has begun. The replication 

step appears to induce a c i s -acting  m od ifica tion  o f the tem plate

rendering it perm issive for late gene expression (M avrom ara-Nazos &

Roizm an, 1987). Each HSV gene bears its own prom oter-regulatory 

region summarized by figure 1.5 and prom oter transplant and nuclear

run-on experim ents indicate that tem poral regulation occurs largely at

the transcriptional level (Godowski & Knipe, 1986; Post et al., 1981;

Silver & Roizman, 1985).



Figure 1.5 Regulatory elements of HSV-1 genes.

A summary of the HSV-1 regulatory elements showing far-upstream, 

distal and proxim al prom oters of im m ediate-early, early and late genes. 

(Adapted from Everett, 1986)
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Coordinate activation of HSV im m ediate-early gene expression is 

mediated through a class specific consensus sequence TAATGARAT that 

is found in one or more copies in each of the imm ediate-early 5' control 

regions (Cordingly et al., 1983: Gaffney et al., 1985; MacKem & Roizman, 

1982a,b; Preston et a l ., 1984; Triezenberg et a l ., 1988). IE transcription 

is m ediated by an abundant tegum ent component of the virion Vmw65 

(also called VP16, aTIF and ICP25), that is delivered into cells upon 

infection (Batterson & Roizman, 1983; Campbell et al., 1984; Post et al.y 

1981). Vmw65 forms a complex with cellular factors, including OCT-1, 

and the resulting activator complex binds to the TAATGARAT sequence 

in part through the DNA binding domain of OCT-1 (McKnight et al., 1987; 

Preston et al.y 1988). Four out of five immediate-early proteins (IE1, IE2, 

IE3, and IE4) contribute to the activation of the viral early and late 

genes. E xtensive analysis o f the IE3 prom oter region (M acKem  & 

Roizm an, 1982b) has dem onstrated that it possesses a TATA box at 

position  -20 from  the cap site, several SP1 binding sites scattered 

throughout the prom oter region and two Vmw65 binding sites. The IE3 

prom oter also contains a site to which V m w l75, the IE3 gene product, 

binds to regulate its own expression. Each im m ediate-early prom oter 

region in general has one or more Vmw65 binding sites, GC rich areas 

and a TATA box however the number of each varies according to the 

gene concerned. Ace et al.,( 1989) dem onstrated that each im m ediate- 

early gene has a different requirem ent for stim ulation by Vmw65 since 

infection with the variant in 1814 which contains a small insertion in the 

gene encoding Vmw65 rendering the tranactivating  function of the 

protein inactive, resulted in the differential accum ulation of immediate- 

early mRNAs. IE1 and 2 mRNAs accumulate to a lesser extent than that 

of IE4 and the accumulation of IE3 mRNA is unaffected. Transfection of a 

plasm id encoding V m w llO  before infection with zn 1814 results in the
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accum ulation of im m ediate-early mRNA to a sim ilar quantity to wild- 

type indicating that the function of V m w llO  can substitute for that of 

V m w 6 5 .

Although the classical definition of imm ediate-early genes is that they 

can be transactivated by Vmw65 in absence of prior protein synthesis, 

E lsh iekh  et a l . ,(1991) have dem onstra ted  that only V m w llO  is 

m axim ally expressed in the absence of infected cell protein synthesis. 

Vm w68/12 and Vmw63 are m axim ally expressed after 1/2 hour of 

protein synthesis and V m w l75 after 1 hour.

The mechanisms of activation of early and late prom oters remains 

unclear. Early and late prom oters do not contain obviously conserved 

c lass-spec ific  sequences analogous to TAATGARAT, and extensive 

m utational analyses have not uncovered c is -acting sequences solely and 

specifically  required for activation by im m ediate-early  polypeptides. 

The early and late prom oter elements that are required for activation by 

im m ediate-early proteins are the same as those needed for basal level 

activity in uninfected cells (Everett, 1987; Me Knight & Tjian,1986). These 

data have been in terpreted  to suggest that im m ediate-early  proteins 

induce early and late gene expression by altering the activity of one or 

m ore com ponen ts of the tran sc rip tio n  ap p ara tu s (E v ere tt, 1987; 

M cK night & T jian,1986). C onsistent with this hypothesis, the HSV 

im m ediate-early  proteins d isplay re la tively  relaxed target specificity  

and are able to activate a variety of heterologous genes that have been 

newly introduced into cells by transfection or as part of an infecting 

viral genome (Everett, 1984 a,b,1985). Some evidence suggests that the 

TATA box factor TFIID serves as a critical target of the immediate-early 

polypeptides since changes in TATA box sequence can markedly affect 

the response of the simian virus 40 early prom oter to imm ediate-early 

po lypep tides (E v e re tt ,1988$. A dditional ev idence  fo r a functional
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in teraction  betw een im m ediate-early proteins and TFIID comes from 

studies showing that the pseudorabies virus im m ediate-early protein (a 

hom ologue of HSV-1 V m w l75) activates transcrip tion  in vitro by 

increasing the rate of binding of TFIID to the TATA sequence (Abmayr 

et al., 1988).

HSV late prom oters appear to have a sim pler structure than early 

prom oters, and some evidence suggests that this d ifference plays an 

im portant regulatory role during transfection (Homa et al., 1 9 8 6 ,1 9 8 8 ; 

Johnson & Everett, 1986). The early promoters so far examined consist 

of a near upstream  region com posed of binding sites for cellular 

transcrip tion  factors linked to a TATA box/cap site (E verett, 1984a; 

McKnight & Tijan,1986). In contrast, the promoters of late genes US11, 

glycoprotein C and UL38 lack elem ents upstream  of the TATA box 

(Flanagan et a l . ,1991; Homa et al .,1986,1988; Johnson & Everett, 1986). 

Several observations suggest that true late prom oters contain specialised 

c is -a c tin g  sequences that actively  con tribu te  to true late  control. 

Im balzano et al.,( 1991) found that a mutant TK gene lacking all known 

prom oter elem ents upstream  of the TATA box rem ained under early 

control, im plying that upstream  elem ents are not always required for 

expression . Hom a et al.,( 1988) found that the TK TATA sequence was 

unable to function when translated to the gC locus, leading to the 

hypothesis that true late prom oter activity requires a specific type of 

TATA box sequence. Mavromara-Nazos & Roizman, (1987) observed that 

sequences downstream  of the TATA box of the true late g42 gene can 

confer some aspects of late regulation on an early prom oter. Lastly, 

Kibler et al.,(1991) demonstrate that sequences downstream of the US11 

TATA box play an active role in specifying true late temporal regulation.
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h U i— Th£ im m ed ia te -early  po lyp ep tid es .

There are five immediate-early genes in HSV-1 called IE1, IE2, IE3, 

IE4 and IE5, encoding V m w llO , Vmw63, V m w l75, Vmw68 and Vm wl2 

respectively. The location of each im m ediate-early gene in the HSV-1 

genome is shown in figure 1.6.

V m w 6 3

Central to this project is the im m ediate-early polypeptide Vmw63 

since the subject of this thesis, the variant 1703, apparently fails to 

synthesize it under imm ediate-early conditions of infection (MacLean & 

Brown, 1987a) despite it being classed as an essential regulatory protein 

(Sacks et al., 1985; M cCarthy et al., 1989). Vmw63 is encoded by the gene 

IE2, which is also called UL54, reflecting its position near the right hand 

end of the prototype orientation of the HSV-1 genome. IE2 is the only 

im m ediate-early gene mapping entirely w ithin a unique region of the 

genome (McGeoch et al., 1988a). It contains no splice sites and its product 

has a size of 63 KDa by SDS-PAGE. The IE2 prom oter region has one 

TAATGARAT element situated 158 base pairs upstream  of the IE2 cap 

site, several GC rich areas and a TATA box (Mackem & Roizman, 1982). 

The gene exhibits a strong requirement for stimulation by Vmw65 (Ace 

et al., 1989).

Phenotypic analysis of set of HSV-1 m utants with tem perature 

sensitive (ts) lesions in IE2 (Sacks et al., 1985) demonstrated that, at the 

non-perm issive tem perature, the variants were unable to activate a 

subset of early and late genes and show enhanced expression of most 

im m ediate-early  polypeptides. T ransient expression assays have shown 

that Vmw63 expressed in transfected cells can alter the expression of



Figure 1.6 HSV-1 immediate-early genes.

A HSV-1 genome in the prototype orientation showing the locations of 

im m ediate-early  genes. The genes are shown w ithout introns, IE1 has 

two introns and IE4 and IE5 have one each.
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many co-transfected HSV-1 target genes. Several studies have shown 

that Vmw63 can induce expression of chim eric target genes driven by

specific early or late prom oters (E verett, 1986; Rice & Knipe,1988; 

Sekulovich et a l . ,1988; Su & Knipe.,1989). For some of these promoters, 

the e ffec t requires the expression  of the HSV-1 im m ediate-early

proteins V m w l75, V m w llO  or both. How ever expression of Vmw63 

alone is able to stimulate expression of the glycoprotein B promoter in 

transfected Vero cells (Rice & Knipe, 1988) indicating that at least part 

of the positive regulatory effect of Vmw63 is independent of other viral 

proteins. Vmw63 is also able to inhibit gene expression from another set 

of chim eric genes driven by early or late prom oters (Sekulovich e t 

a /., 1988; Su & Knipe, 1989). The negative regulatory effect of Vmw63 is 

com plex in that Vmw63 has little or no effect on the basal promoter 

activity of these genes but rather counteracts the stimulatory effects of 

the HSV-1 transactivating polypeptides V m w llO  and V m w l75.

Characterization of an HSV-1 IE2 null mutant (McCarthy et al., 1989) 

has shown that Vmw63 was required to repress early gene expression,

to induce w ild-type levels of delayed-early  gene expression and to 

induce true late gene expression. The phenotypic characterization of IE2 

dele tion  m utants lacking various parts of the IE2 coding region 

dem onstrated that the deletion of different parts of the gene affect the 

regulatory functions of the product in various ways.

Hardwicke et al., (1989) constructed a series of in frame insertion and 

deletion m utants which were used to map the repressor and activator 

functions of Vmw63. The repressor activ ity  m aps to the carboxy- 

term inal 78 amino acid residues, whereas the activator function maps to 

the carboxy-term inal half of the m olecule encom passing a region of 

abou t 250 am ino acids. E x ten siv e  ana ly sis  o f these  varian ts

dem onstrated that m utations in the activator dom ain can be t r a n s
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dom inant, that is, when the m utant plasm ids are co-transfected with a

w ild-type plasm id and one specify ing  V m w l75  or V m w llO , the

activation of a reporter gene is affected (Smith et al., 1991). H ow ever 

m utants in the repressor domain can not interfere with either repressor 

or activa to r functions of the w ild-type pro tein  indicating  that the 

repressor region is required for the binding of Vmw63 to its substrate. 

There is a putative zinc finger binding domain in this region (Hardwicke 

et al.y 1989) supporting the hypothesis that the region is DNA binding.

M cM ahon & Schaffer,(1990) pursued a sim ilar strategy  and 

dem onstrated that there were two repressor dom ains w ithin Vmw63, 

both lying in the activator dom ain, one of which was not absolutely 

required for the repressing activity of the protein. They also show that 

the enhancer function of Vmw63 involves a large portion of the 

carboxyterm inal half of the molecule. The conclusion of M cM ahon's & 

Schaffer's work is that Vmw63 perform s it regulatory activities over 

time and that these effects are mediated indirectly via interactions with 

and m odifications of V m w l75 and perhaps other viral and cellular 

p ro te in s .

It is interesting to note that there is extensive amino acid sequence 

conservation between this region of Vmw63 and the carboxyterm inal 

halves of the related VZV gene 4 product, the EBV BMLF1 and the 

im m ediate-early  52K gene product of HVS (D avison & Taylor, 1987; 

Gompels et al., 1988). Vmw63 has also been shown to be essential for the 

accum ulation of the cellular protein p40 during lytic virus infection 

(E s tr id g e  et al., 1989). This finding  is s ig n ifican t since p40 is

overexpressed in cells transform ed with HSV or other agents and in 

human cervical cancers. Other HSV regulatory gene products such as

V m w l75  have also been shown to up-regulate  the expression of 

particular cellular genes during infection.
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V m w l l O .

V m w llO  is an im m ediate-early polypeptide which has a size of

llO K D a by SDS-PAGE and is encoded by two copies of the gene IE1 

which is contained within Rl . IE1 possesses two spice sites which appear 

to be dispensable for virus growth in tissue culture (Everett, 1991). 

V m w llO  is not an essential im m ediate-early polypeptide. A deletion

variant which lacks 700bp of each IE1 gene is viable in tissue culture 

(Sacks & Schaffer, 1987). Stow & Stow, 1986 have shown that a HSV-1 

variant which does not express V m w llO  because of a 2kb deletion in

both copies of IE1 was able to replicate in BHK21 C l3 cells and the

resu lts suggest that the effect of the deletion is m anifest at low

m ultip lic ities of infection  but can be overcom e by increasing the

infecting virus dose since at high m ultiplicities of infection the variant 

expressed similar amounts of viral proteins and replicated DNA as wild- 

ty p e .

V m w llO  is able to stimulate expression from delayed early promoters 

and, in conjunction with V m w l75 this stimulation is increased (Everett, 

1986). M utations in different domains of V m w llO  can have different

effects on function in the presence and absence of V m w l75 (Everett,

1988& indeed the production of V m w llO  itself has been shown to be 

regulated by V m w l75 (Resnick et al., 1989).

V m  w 1 7 5 .

V m w l75 is an essential imm ediate-early polypeptide whose size on 

SDS-PAGE is 175KDa, is unspliced and encoded by IE3 which is 

com plete ly  con tained  w ithin R s and is therefore diploid (Rixon e t  

al., 1982). M ost ts mutants with lesions in IE3 only express immediate-
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early  po lypep tides at the non-perm issive tem pera tu re  (W atson & 

Clements, 1978). Even when early and late transcription has commenced 

at the perm issive  tem perature , sh ift up to the non perm issive 

tem p era tu re  re su lts  in the rev e rs io n  to the  im m ed ia te -ea rly  

transcrip tional phase (Preston, 1979a,b).

The synergistic roles of  V m w l75 .  V m w llO  and Vmw63.

Through using the bacterial chloramphenicol actyl transferase (CAT) 

assay , it has been show n that V m w llO  and V m w l75  together 

transactivate early genes to a much greater extent than either gene 

alone. However, this com bination did not significantly transactivate a 

late prom oter, but when a plasmid expressing Vmw63 was included in 

the transfection , transactivation  of the late prom oter was increased 

about 6-fold (Everett, 1986 ). This work indicates that together these 

polypeptides function to transactivate early and late genes. Although 

stim ulation of imm ediate-early genes is achieved by the combination of 

Vmw65 and cellular transcription factors, HSV-1 DNA is itself infectious. 

Cai & Schaffer (1989) have shown that V m w llO  plays a critical role in 

the de novo synthesis of infectious virus following transfection of virus 

DNA.

There are two other immediate-early polypeptides encoded by HSV-1 

whose function have not yet been fully elucidated.

V m w 6 8 .

Vmw68 is coded by the gene IE4 and has a size of 68KDa on SDS-PAGE. 

The RNAs of IE4 and IE5 map across the junction between U s and Rs 

and have common 5' portions located in IR s and TR s and the 3' portions 

extend into the opposite ends of U s and are unique. The DNA sequence
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encoding the common 5' end com prises a leader region and a single 

intron of variable size due to the variable copy num ber of a 22bp 

reiteration (Rixon & Clements, 1982).

The construction of a deletion m utant which removes the carboxy- 

term inus th ird  of IE4 has shown that the gene appeared to be 

dispensable since the variant grew norm ally in tissue culture (Post & 

R oizm an, 1981). L ater analysis using several d ifferen t cell lines 

indicated that in some circumstances the virus grew very poorly and the 

activ ity  of at least one true late prom oter was greatly  reduced 

suggesting a host range function (Sears et al., 1985). The variant was not 

neurovirulent but could establish latency in mice. Since a truncated form 

of Vmw68 was still produced, these studies do not show a clear role for 

V m w 6 8 .

Jaquem ont et al. (1984) com pared the p roduction  of HSV-1 

imm ediate-early polypeptides in the presence of cyclohexim ide in HEp-2 

cells which host a lytic HSV infection to that of XC cells which do not. 

There was an accumulation of all five im m ediate-early polypeptides in 

infected HEp-2 cells but infected XC cells Vmw68 could not be detected. 

Analysis of RNA from both cell types indicated that all five immediate- 

early RNAs were present. The conclusion from this work was that the XC 

cell environment was not conducive to the translation of IE4 mRNA. This 

suggests an essential role for Vmw68 in XC cells.

V m w l  2 .

V m w l2 is encoded by the gene IE5 and has a size of 12KDa on SDS- 

PAGE. The position of IE5 on the HSV-1 genome has already been 

described. V m w l2 is not essential and viable deletion m utants have
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been isolated that lack the whole IE5 gene which indicates that it does 

not play an essential role in tissue culture (Brown & Harland, 1987).

1.7.C. Early gene expression.

After the immediate-early genes, the next set of genes to be expressed 

are the early genes. They appear after functional im m ediate-early gene 

products reach their peak, about 4-6 hours after infection, after which 

they decline (Honess & Roizman, 1974). Some early polypeptides, for 

example gD, require DNA synthesis for maximal expression (Johnson & 

Spear ,1984). T ran sfec tio n  assays have show n tha t ind iv idua lly  

V m w llO  and V m w l75 transactivate early gene expression and that a 

com bination of these two imm ediate-early polypeptides resulted in very 

high levels of activation (Everett, 1986). Early genes can be divided into 

two groups depending on the time they are first expressed: 1. eg. the 

m ajor DNA binding protein  or the large subunit of ribonucleotide 

reductase, and 2. eg. thymidine kinase and DNA polymerase.

1.7 .d .  Late gene expression.

Late gene products are detected 3 hours post infection and reach their 

peak 10-16 hour post infection (Roizman, 1979b). In contrast to early 

gene expression  which is stim ulated by V m w llO , V m w l75  or a 

combination of both, late gene expression is controlled by a combination 

of the above two im m ediate-early  polypeptides and the IE2 gene 

product, Vmw63 (Everett, 1986b). There are two subclasses of late 

genes: 1. The leaky-late genes, eg. the major capsid protein encoded by 

U l 19 and gB specified by Ul 27. The leaky-late genes are induced soon 

after early genes: they are first expressed prior to the onset of viral 

rep lication , and expression increases at later tim es in a replication-
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dependent fashion 2. The true late genes, eg. gC encoded by U l4 4 . These 

genes are expressed only after DNA synthesis has begun (Holland e t

al., 1980) and are not expressed in the absence of Vmw63 (Rice & Knipe, 

1990).

1 .8 . PATHOGENICITY OF H S V .

HSV is a neurotropic human herpesvirus responsible for a variety of 

conditions ranging from  mild cutaneous lesions to a very rare fatal 

encephalitis. After acute infection at the surface of the body, the virus 

travels via axons at the sensory nerves to establish a latent infection in

the dorsal root ganglia of the peripheral nervous system  (Stevens &

Cook, 1971). Follow ing reactivation , virus m ainly travels via the 

p e r ip h e ra l n e rv o u s sy stem  to p e rip h e ra l tis su e  re su ltin g  in

m ucocutaneous lesions but transport to the central nervous system 

(CNS) can result in encephalitis. Acute necrotizing encephalitis is the 

most serious neurological disease caused by HSV (Finelli, 1975) and as a 

direct study in humans is impossible, animal model systems have been 

employed. Intracranial inoculation of mice with HSV produces lesions 

similar to those seen in humans.

The identification of HSV genes involved in viral pathogenicity and the 

elucidation of their precise functions is of fundam ental im portance to 

the understanding of the biology of herpes simplex virus. Many host 

factors have been shown to influence virulence including animal age 

(Kohl & Loo, 1980), route of inoculation (Caspary et al., 1980) and strain 

of experimental animal (Lopez, 1975). Virus strain (Dix et al., 1983) and 

the consequences of serial passage of virus in vivo (Kaemer et al., 1983) 

and in vitro, (Goodman & Stevens, 1986) have also been implicated.
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M utation in, or deletion of, the viral thymidine kinase gene (TK) has 

been shown to im pair virulence (Field & W ildy, 1978). Sequences 

between 0.25 and 0.53 m.u. have also been implicated (Thompson et al.y 

1986) as has the viral DNA polym erase (Field & Coen, 1986). The 

virulence phenotype may be determined by sequences between 0.7 and

0.83mu (map units) (Thompson & Stevens, 1983; Thompson et al.y 1985; 

Javier et a / . ,1986; Rosen et al .y 1986). Evidence indicating that the 

sequences in both copies of R l  between IE1 and the 'a' sequence are 

involved in neurovirulence has accum ulated. Taha et al.y (1989 a,b) 

reported a 1488bp spontaneous deletion upstream  of IE1 in a HSV-2 

varian t that abolished  neu rov iru lence. C orrec tion  of the deletion 

re s to re d  the  w ild -ty p e  p h e n o ty p e . A ck erm an n  et al. (1986) 

dem onstrated that an open reading frame reported by Chou & Roizman 

(1986) between the term inal 'a' sequence and IE1 in HSV-1 strain F 

specified a protein. Thompson et al.y (1989) m apped a neurovirulence 

locus to between 0.82 and 0.832mu. The protein designated ICP34.5 has 

been shown to be a neurovirulence factor and to be non-essential for 

growth in tissue culture (Chou et a/., 1990). R ecently M acLean et al. 

(1991b) reported the isolation of a spontaneous deletion HSV-1 17+ 

varian t w ith a non-neuroviru len t phenotype. The dele tion  rem oved 

759bp of sequences upstream  of IE1 and correction of the deletion 

resulted in restoration of neurovirulence.

1.9. HSV L A T E N C Y .

After infection with HSV, the viral genome is maintained in a latent 

state in neuronal cells. Periodically, in response to various stimuli, virus 

can be reactivated from latency, often resulting in the development of a 

lesion at the appropriate peripheral site (Roizm an & Sears, 1987;
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Stevens, 1989). During latency, viral transcription can only be detected 

from the long repeat region of the genome giving rise to products known 

as the latency associated transcripts (LATs) (Croen et a /.,1987; Rock et  

al. ,1987; Spivack & Fraser, 1987; Stevens et a /.,1987). Latent HSV DNA is 

maintained in a non-linear configuration, probably as a circular episome, 

and is assem bled into a chrom atin like structure (Rock & Fraser, 

1983,1985; Efstathiou et a/., 1986; Melerick & Fraser, 1987; Deshmane & 

F raser, 1989). Thus during latency, the transcrip tion  pattern  and 

physical organisation of the HSV-1 genome is very different from that 

found during productive infection.

In vivo and in vitro models for HSV latency have been developed. 

The pioneering work in the mouse model latency system was described 

by Stevens & Cook (1971) who inoculated the mouse footpad with HSV.

This was followed by centripetal m ovem ent of the virus through the

peripheral and central nervous system. After 3 weeks the virus could be

recovered from the dorsal root ganglia demonstrating that the virus was

in a latent state in the nervous tissue.

This pattern of establishm ent of latency is sim ilar in other animal 

models like the rabbit eye model (Stevens et a/., 1972), the mouse ear 

model (Hill et a l ,  1972).

In vitro models have also been used to investigate HSV latency. The 

systems with most obvious relevance to latency in animals and humans 

utilize foetal neurons from rats or primates (W igdahl et al.y 1983, 1984; 

W ilcox & Johnson, 1988; W ilcox et al.y 1990). However extensive use of 

this system  is lim ited by the quality of such neurons available. An 

alternative method is to use non-primary tissue culture cells eg. human 

foetal lung (HFL) cells (W igdahl et a l ,  1981,1982). Russell & Preston 

(1986) reported the development of an in vitro latency system in which 

HFL cells were infected with low m ultiplicities of HSV-2 and incubated
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at the supraoptim al tem perature of 42°C for 6 days. Cultures were 

subsequently downshifted to 37°C and maintained without production of 

virus indicating that the HSV-2 virus was latent.

Using a mouse eye model (Tenser & Dunstan, 1979) and various 

dele tion  variants of HSV-1, Leib et al. (1989a) reported that the 

products of IE genes 2 and 3 were required for the establishm ent of 

la tency  in vivo  and that the IE1 gene product was required to 

reactivate virus from the latent state. However, Clements & Stow, (1989) 

contradicted this result since the deletion variant d l l 4 0 3  reactivated  

norm ally. Harris & Preston (1991) used the in vitro latency system to 

dem onstra te  that a varian t possessing  an in sertion  m utation that 

abolished Vmw65 tranactivating ability could establish latency and that 

V m w llO  was required to reactivate virus.

The only transcription that occurs during latency is from the long 

repeat region of the genom e and has been designated the latency 

associated transcripts (LATs). These consist of three herpes specific 

RNAs which map within IRl  and TRl  and are transcribed in the opposite 

direction to IE1 (Spivack & Fraser, 1987). These transcripts are present 

in reduced amounts in acutely infected mice (Spivack & Fraser, 1988b) 

and infected tissue culture cells (Spivack & Fraser, 1987).

The 2 and 1.3 Kb LATs share their 3' and 5’ ends and are derived by 

alternative splicing (W echsler et al., 1988). These LATs partially overlap 

the 3' end of IE1 and are antisense (com plem entary) to IE1 mRNA 

(Stevens et al .,1987). Zw aagstra et al. (1989) have dem onstrated that 

the LAT prom oter is 660 nucleotides upstream of the mapped 5' end of 

the stable LAT and have proposed that the LATs are in fact splice 

products of an 8.3 Kb prim ary transcrip t (Zw aagstra et al. , 1 9 9 0 ); 

(fig u re l.7 ) and suggest that the 6.3Kb exon may be the biologically 

active LAT. That the 8.3Kb primary transcript exists is supported by



F ig u re  1.7 A diagram of the LAT. 

Diagram of the LAT as proposed by Zwaagstra et al.,(1990).
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reports of viral mutants which lack this promoter failing to produce LAT 

RNA during latent infection (Dobson et al., 1989; Leib et al., 1989b ; 

M itchell et al., 1990; Steiner et al., 1989). However this would imply that 

the 2.0 and 1.3 Kb LATs are stable introns. Farrel et al. (1991) have 

proposed that LAT is a stable intron which controls latency by an 

antisense m echanism .

The function of LAT is unclear but recent studies of LAT deletion 

variants suggest that LAT may play a role in reactivation of the virus 

from the latent state (Dobson et al., 1989; Leib et al., 1989b; Steiner et al., 

1989; Trousdale et al., 1991). However this is not supported by all LAT 

mutants (Block et al., 1990, Ho & Mocarski, 1989).

1 .1 0 . ANTISENSE NTJCLEIC ACIDS IN BIOLOGICAL SYSTEMS.

Gene expression in prokaryotes and eukaryotes is normally controlled 

by regulatory  polypeptides, for exam ple, the im m ediate early gene 

products of HSV-1 (section 1.7). The products of these genes are called 

activators or repressors. The isolation of naturally occuring regulatory 

genes which direct the synthesis of RNA antisense to target RNA has led 

to the discovery of a new category of repressors which are highly 

specific inhibitors of gene expression. Binding of the antisense RNA to 

the target RNA renders the target RNA unavailable for translation. The 

fate of the RNA:RNA complex is unclear.

1.10,a. Systems in which antisense RNA is naturally involved.

Natural, prokaryotic antisense systems have been studied extensively. 

Inouye, (1988) separated the m echanism s by which antisense RNAs 

affect gene expression into three groups. This section discusses these
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groupings and gives an example of each. This is followed by examples of 

eukaryotic systems in which antisense RNAs are thought to function.

Class 1 antisense RNAs inhibit translation of mRNA by binding to the 

transcriptional initiation region of target RNA and it is likely that control 

takes place by the inhibition of ribosome binding. Some class 1 antisense 

RNAs require RNA selll for inhibition (Krinke & W ulff, 1987). This form 

of control is involved in the lysis/lysogeny pathways of two temperate 

bacteriophage, P22 and X. Phage P22 encodes an antisense repressor,

Ant, which inhibits DNA binding by the principal repressors of many 

lam boid phages including P22 (Susskind & Y ouderian, 1983). It is 

advantageous for P22 to express Ant early in infection as resident 

lam boid prophages w ill be induced, increasing the opportunity  for 

recom bination. However, Ant repressor must be carefully controlled, too 

m uch A nt w ill p reven t the estab lishm ent of P22 lysogeny. Ant 

expression is controlled in part by a P22 specified antisense RNA, s a r , 

which binds to the translational activation region of the Ant message 

and prevents its activation (Wu et al., 1987).

Class 2 antisense RNAs also inhibit at the level of translation but at a 

region distant from translational start signals of the target transcript. An 

extensively studied example of this is the plasmid C olE l. ColEl and its 

relatives are small multicopy plasmids whose replication is initiated by 

the transcription of a prim er RNA termed RNAII (Tomizawa, 1987). To 

prime DNA synthesis, RNAII must hybridize to its DNA template strand 

and then be cleaved by RNAse H at a specific site approximately 500

nucleotides from  its 5’ end. The C olE l antisense RNA, RNAI, is an

approxim ately 110 nucleotide RNA species expressed from the primer 

region and complem entary to the 5’ end of RNAII. When RNAI binds 

R N A II, it triggers a conform ational change in RNA II preventing



4 1

productive hybridization to the tem plate DNA (M atsukata & Tomizawa, 

1986).

Class 3 antisense RNAs control target RNA at the level of transcription. 

This is not as well characterized a form of antisense RNA as class 1 and 

class 2, however, the Escheric ia  coli  CRP protein is thought to be 

regulated in this way. CRP mediates catabolic repression by modulating 

the activity of many bacterial prom oters (Gottesm an, 1984). For some 

time it has been known that the crp  gene is negatively autoregulated 

(Aiba, 1985). On the basis of in vitro experiments, Okamoto & Freundlich 

(1986) proposed that crp  autoregulation results from antisense control 

by an RNA called tic. The tic promoter, which is activated by CRP in the 

presence of cAMP, in itiates transcription a few nucleotides upstream 

and divergently from the crp  message. The tic RNA is partially antisense 

to the 5' end of the c rp  m essage and it is thought that this binding 

induces a conform ational change in the m essage resu lting  in the 

term ination of transcription. This is called transcrip tional attenuation 

and has been invoked as a possible control mechanism of the human and 

murine myc  gene families (Nepveu & Marcu, 1986; Krystal et al ., 1988).

Some examples of eukaryotic antisense RNA control mechanisms are 

the follow ing. Katsuki et al ., (1988) constructed an antisense myelin 

basic protein (MBP) gene and used it to generate a transgenic mouse 

strain in which the antisense MBP was expressed. The transgenic mouse 

strain was converted to the shiverer phenotype characteristic of myelin 

deficient mice dem onstrating that is was possible to control the MBP 

gene with antisense RNA.

A role for 'natural' antisense RNA in a eukaryotic system has been 

identified (Tosic et al., 1990). This group investigated the reasons why, 

although myelin deficient mice produced only about 2% of the wild-type 

concentration of myelin basic protein mRNA, the overall transcription
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rate of the myelin basic protein RNA is normal indicating a block during 

the processing or transport of the RNA. The group also found that, of the 

two genes which code for myelin basic protein in myelin deficient mice, 

one gene contains a large inversion of the 3' end resulting in the 

inversion  of the polyadenylation  signal and associated  term ination 

signals preventing processing of the RNA. The inverted region is also 

antisense (com plem entary) to the intact gene rem aining. Tosic et al. 

(1990) conclude that since the concentration of sense m yelin basic 

protein RNA in the nucleus is relatively high as is the concentration of 

nuclear antisense RNA and the concentration of myelin basic protein in 

the cytoplasm  is relatively low, post transcriptional regulation occurs 

through the formation of double stranded RNA molecules. The fate of the 

duplex RNA is uncertain and they do not assign the antisense RNA to 

any of the classes described above, but it is thought that it may 

eventually interfere with the processing or transport of mature RNA to 

the cytoplasm, that is, class 1 or class 2.

The antisense theory has also been implicated as a possible control 

m echanism  for the m aintenance of the HSV latent state (Stevens e t  

a l . ,1987; D eatly  et fl/.,1987). This group dem onstrated by in situ 

hybridization that during latency the only region of the genome that 

could be visualised corresponded to IE1. Later work has shown that 

there are at least two stable latency associated transcripts (LATs) and 

that part of these transcripts is com plem entary to IE1 (W echsler e t  

al., 1988). Zwaagstra et al. (1989, 1990) suggested that the primary LAT 

transcript is 8.3 Kb and is spliced into products including the stable 

LATS, which are possibly introns, and an unstable 6.3 Kb LAT which is 

possibly an exon involved in the maintenance of latency.

It has also been proposed that the introns them selves may control 

latency by an antisense m echanism  (Farrell et al., 1991). It has been
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dem onstra ted  that the stable LATs can inh ib it transactivation  by 

V m w llO  in transient transfection assays. The proposed m echanism by 

which this occurs is by the hybridization of the stable LAT to the 3’ end 

of IE1 RNA leading to the production of hybrid molecules (class 1 or 

class 2 antisense RNA). It has previously been shown that V m w llO  

which is encoded by IE1 is implicated in the de novo synthesis of HSV 

proteins (Cai & Schaffer, 1989). In co-transfection  experim ents with 

infectious DNA of an IE1 null mutant and a plasm id expressing wild- 

type V m w llO , titres of infectious virus were significantly  enhanced 

relative to transfection with mutant DNA alone, demonstrating a role for 

V m w llO  in de novo protein synthesis. These findings were consistent 

with the proposed role for V m w llO  in the reactivation from latency 

(Leib et al., 1989a), a process which is also thought to require de novo 

protein synthesis, and it is thought that by the hybrid arrest of IE1 RNA 

no V m w llO  is synthesized and HSV transcription is prevented.

The above theory is not supported by the isolation of an HSV-1 

deletion varian t (M acLean & Brown, 1981) which does not express 

detectable LATs during latency (Steiner et al., 1989). The variant is able 

to establish latency but is delayed with respect to reactivation compared 

to w ild-type virus.

l . lO .b .  Antisense  nucleic acids as control mechanisms.

W ith the developm ent of oligonucleotide technology, it has become 

possible to use antisense oligonucleotides to regulate gene expression. 

S m ith  et al. (1986) synthesized an oligo which was complem entary to 

the splice acceptor junction of HSV imm ediate-early polypeptides -4 and 

-5 and dem onstrated that this could negatively control viral growth. 

K aw am ura et al. (1991) used an oligo which was complementary to the



♦The locations of transcriptional termination signals in HSV-1 are not 

known, however termination of transcription by RNA polym erase II is 

ach ieved  by a com bination  of a p o ly ad e n y la tio n  signal and 

transcrip tional term ination regions in the m ouse B m a j globin gene

(Logan et al., 1987). The termination signals for that gene are located

600-1500 bp downstream  of the polyadenylation signal. This is in

agreem ent with results previously obtained by W hitelaw  and Proudfoot, 

(1986) who dem onstrated that transcriptional term ination  and 3' end

processing of mRNA are coupled^events for the mouse a 2  globin gene^_
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splice donor site of a Mareks disease virus (MDV) transform ed cell line 

to control its growth.

Sandri-G oldin et a l . ,1987 constructed  severa l ce ll lines which 

expressed d ifferent am ounts of antisense IE1 mRNA due to the cells 

harbouring variable copy num bers of a recom binant plasm id expressing 

a portion of the IE1 gene in an antisense m anner. D uring in vitro 

transfection assays and lytic HSV-1 infections, the quantity of V m w llO  

produced from these cell lines was lower than from wild-type, indicating 

that the antisense transcrip t was controlling V m w llO  production. The 

study also dem onstrated that the antisense transcript had to be present 

in a ten fold excess to obtain this effect.

1,11. AIMS OF PROJECT.

Initial characterization of the HSV-1 17+ deletion  varian t 1703 

demonstrated a 7 .5x l0^m ol. wt. deletion in Ul /IR l  which removed the 

3' end of UL55, all of UL56 and the 3' end of the IRl  copy of IE1 

(M acLean & B row n, 1 9 8 7 a).P o ly p ep tid e  an a ly sis  o f 1703 had 

demonstrated that Vmw63 was apparently not produced by 1703 under 

immediate-early conditions despite the fact that the deletion term inated 

about 500bp downstream of the 3' end of IE2.*

Vmw63

is an essen tia l im m ed ia te -ea rly  po lypep tide  (Sacks et a l ., 1985;

McCarthy et al., 1989) and the isolation of a variant which apparently did 

not express the protein  under im m ediate-early  conditions presented an 

anomaly for which M acLean & Brown gave three possible explanations: 

1* There was a sm all dele tion /po in t m utation in the prom oter, open 

reading frame or term ination signals of IE2, 2. Lack of the products of
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the deleted genes UL55 or UL56 led to incomplete transactivation of IE2 

under im m ediate-early conditions, or alternatively the deletion removed 

a downstream transactivator elem ent of IE2, 3. The reagents available 

for polypeptide analysis were not sensitive enough to detect low levels 

of Vmw63 produced by 1703.

The aim of this project was to find out why 1703 apparently failed to 

produce Vmw63 under im m ediate-early conditions. This was done by:

1. The dideoxynucleotide sequence analysis of IE2 .i.;and the end points 

of the deletion in 1703, 2. The detection of IE2 mRNA and protein, 3 .

The construction of a recom binant virus to dem onstrate that there was

no deletion or m utation in any other region of the 1703 genome which 

would result in the underproduction of Vmw63 under im m ediate-early

conditions, 4 . The in vivo characterization of 1703. The aim of this 

project was extended by a suggestion that Vmw63 production by 1703 

could be con tro lled  by the production  of an an tisense  transcrip t 

in itia ting  from  the IE1 p rom o ter (D r J. M cL auch lan  personal 

communication). The term ination signals of the I R l  copy of IE1 in 1703 

have been deleted thereby allow ing the possibility  that transcripts are 

not terminated until reaching the term ination signals of the next gene in 

the co rrect o rien ta tion , that is, U L51. T here w ere two ways of 

estab lish ing  th a t an tise n se  tra n sc r ip ts  w ere c o n tro llin g  Vmw63 

production: 1. The detection of the long antisense transcript, 2. The

insertion of a po lyadeny la tion  signal in the co rrect orien tation  to

term inate the long an tisense transcrip t before reaching  IE2 coding 

sequences. This study reports the characterization of an HSV-1 variant 

which controls Vmw63 production in infected cells under im m ediate- 

early conditions by the production of an antisense transcript.



♦genotype:  s u p E 44 h s d R l l  r e c A l  e n d A J  g y r A 46 thi  r e l A  1 l a c \  F1

[/?re>A£+ l a d  lacZ M13 TnlO (tetT)].
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M a t e r i a l s

g&lla

Unless otherwise stated, baby ham ster kidney 21 clone 13 (BHK21 

C l3) cells were used for this work (M acpherson and Stoker, 1962). 

Human foetal lung cells (HFL) were used when stated.

V i r u s

Herpes simplex virus type 1 Glasgow strain 17 syn+ (HSV-1 17+ ) was 

the w ild-type used throughout this study (Brown et al.y 1973). The 

deletion variant 1703 which is the subject of this pro ject has been 

partially characterized (MacLean and Brown, 1987a).

B a c t e r ia

The bacteria used for the growth of plasmids was E.coli strain XL-1* 

which were grown in L-broth or 2YT broth, am picillin being added 

(lO O pg/m l) where appropriate.

HSV-1 recom binant  plasmids

The fo llow ing recom binant plasm ids carry  restric tion  enzym e 

fragm ents of HSV-1 cloned into pAT153 (Twigg and Sherratt, 1980). 

They were supplied by Dr V.G. Preston.

Plasmid Restriction fragment Map Location

pGX51 S a i l  digested BamVLlb  1 1 4 5 1 7 -1 2 0 9 0 2

pGX55 S a i l  digested B a m U l z  143481-144677
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P lasm ids used  fo r c lon ing  1703 DNA fra g m e n ts

Commercially available pUC19 m pl8 and 19 and M13 mp8 (cut S m a l );

(Messing, 1983) were used throughout this study.

T issue  c u ltu re  m ed ia

BHK21 C13 cells were routinely cultured in Glasgow modified Eagles 

medium (Busby et al, 1964) supplied by Gibco-BRL. The medium was 

supplemented with 100 units/m l penicillin, 100|ig/m l streptom ycin, and 

0.002%  (w /v) phenol-red . To this was added 10% (v/v) tryptose 

phosphate broth and 10% newborn calf serum (ETC 10%). HFL cells were 

cultured in the same medium with the exception that the 10% newborn 

calf serum was replaced with 10% foetal calf serum (ETF 10%). Variants 

of the media were:

E m e t/5 C 2  : E ag les m edium  con ta in ing  o n e -fifth  the norm al

concentration of methionine and 2% newborn calf serum.

E m e t/5 F 2  : E agles m edium  con ta in ing  one fifth  the norm al

concentration of methionine and 2% foetal calf serum.

PIC  : Phosophate free Eagles medium containing 1% newborn calf serum. 

EMC 10% : Eagles medium containing 1.5% methyl cellulose and 10% 

newborn calf serum.

Stock solutions.

Phosphate buffered saline-A (PBS-A1: 170mM NaCl, 3.4mM KC1, ImM 

N a2H P 04 , 2mM KH2PO 4 ph7.2 (Dulbecco & Vogt, 1954)

Phosphate buffered saline (PBS1: PBS-A supplemented with 6.8mM CaCl 

and 4.9mM MgCl2-
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PB S/calf serum : PBS containing 5% newborn calf serum.

TBE : 90mM Tris base, 90mM Boric acid, 2.5 M EDTA pH8.3.

30% acrvlam ide: 29.25% (w/v) acrylamide, 0.75% (w/v) N -N ’-methylene 

b isac ry lam id e .

T ry p s in : 0.25% (w/v) Difco trypsin dissolved in Tris-saline (140mM NaCl, 

30mM KC1, 280mM N a 2 H P 0 4 , lm g/m l glucose, 0.0015% (w/v) phenol- 

red, 25m M  Tris. HC1 (pH 7.4), 100 unit/m l pen ic illin , lO O p g /m l

strep to m y c in .

V e r s e n e : 0.6 mM EDTA dissolved in PBS containing 0.002% (w/v) 

p h e n o l-re d .

T ry p s in -v e rse n e : One volume of trypsin plus four volumes of versene. 

Giem sa sta in : 1.5% suspension of Giemsa in glycerol heated at 56°C for 

1 . 5 - 2  hours and diluted with an equal volume of methanol.

L -b ro th : 170mM NaCl, 0.5% (w/v) yeast extract (Difco) 1% bactotryptone 

(Difco).

2 YT broth: 85mM NaCl, 1% (v/v) bactotryptone (Difco), 1% yeast extract. 

L-broth agar: L-broth containing 1.5 (w/v) agar (Difco).

Top agar: 1% (w/v) agar in water.

C h e m ic a ls

Most chemicals were supplied by BDH Chemicals UK or by the Sigma 

C hem ical C om pany and w ere of an a ly tica l g rade . A m m onium  

persulphate (APS) N ,N ,N \N ’-tetram ethylethylenediam ine (TEM ED) and 

colour developm ent reagent were supplied by B io-rad Laboratories, 

Boric acid was supplied by May and Baker, Nytran paper by Amersham, 

nitrocellulose by Schliecher and Schuell and unlabelled nucleotides by 

Pharm acia Ltd.



R a d i o c h e m i c a l s

Radiochemicals were obtained from Amersham International pic at the 

following specific activities:

5 ’ [<x-32p] dNTPs-3000 Ci/mmol 

[y_32p] dA TPq-5000 Ci/mmol 

[35 s] methionine > 1000 Ci/mmol 

[35s] dATP > 1000 Ci/mmol 

[32p] orthophosphate 3000 Ci/mmol 

[Me-3H] thymidine lm C i/m l

E n z v m e s

R estric tion  enzym es were obtained from  B ethseda Research 

Laboratories (BRL), New England Biolabs, or NBL enzymes Ltd. DNA 

polymerase 1, Klenow polymerase, T4 DNA ligase and T4 polynucleotide 

k inase  w ere supplied  by the B oehringer M annheim  C orporation. 

Lysozme and BSA were supplied by the Sigma Chemical Company.

Restr ic t ion  enzvme buffers

In general, the buffers used were as recommended by BRL or the 

Boehringer M annheim Corporation. These were supplied with enzymes 

as lOx stock solutions which were stored at -20°C. A buffer was made to 

digest HSV DNA with H p a  1 and is also suitable for X b a  1, Bglll ,  Hindll l  

and EcoKX digestions. The buffer consists of: 60mM Tris pH 7.4, 1M NaCl, 

60mM MgCl2, 0.01% (w/v) BSA.
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Chemicals used for the purification of DNA or RNA

P h e n o l : Phenol (BDH) was saturated before use by mixing 2:1 with 

phenol saturation buffer (lOmM Tris, HC1 pH 7.5, lOmM EDTA, lOOmM 

NaCl) and stored at either -20°C or 4°C for up to one month.

C h lo ro fo rm  : Chloroform was mixed 24:1 with isoamylalcohol to reduce 

foaming during extraction and to facilitate the separation of the organic 

and aqueous phases.

Phenol : Chloroform (1 :1 ) : This was a 1:1 mixture of saturated phenol 

and chloroform  isoamylalcohol (24:1).

A n i m a l s .

3 and 4 week old Balb/c mice were obtained from Bantin and 

K ingm an.

A n ti-n en t id e  serum .

Anti-peptide serum was supplied by Dr H Marsden and raised against 

the carboxy-terminus of Vmw63 (NATDIDMLI DLGLDLS).
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M e t h o d s

2.1 Growth of cells.

BHK21 C l3 cells were grown in 80oz roller bottles containing 100ml

ETC 10% at 37°C in a hum idified atm osphere of 95% air, 5% C 02-

C onfluent cells (approxim ately 3 x l0 ^ /ro lle r bottle) were harvested by 

w ashing the m onolayers twice with trypsin/versene, and the detached 

cells were resuspended in 20ml of ETC 10%. Cells from one roller bottle 

were sufficient to seed a further 10. For experiments cells were plated 

on 50mm or 30mm petri dishes or limbro trays at a density of 4x10^, 

2 x 106 or 2x10^ cells per plate respectively. HFL cells were grown in a 

sim ilar manner, except that ETF 10% was used and for routine passage 

800ml flasks were split 1 in 3.

2.2 Growth of  virus stocks.

Almost confluent BHK21 C13 cells in 80oz roller bottles were infected 

at a m ultiplicity of infection (moi) of 0.001 plaque forming units (pfu) 

per cell in ETC 10% at 31°C. The infection was allowed to proceed until 

the cytopathic effect (cpe) was complete (usually 3-4 days). The virus 

was then harvested by shaking the cells into the medium and pelleting 

by centrifugation at 2000 rpm for 10 m inutes at 4°C in a Beckman

benchtop cen trifuge. The cell pe lle t was resuspended in 5ml of 

supernatan t, son icated  in a bath son icato r (50W  at 4°C) until 

hom ogeneous and centrifuged as before. The supernatant was removed 

and stored on ice (supernatant 1). The pellet was resuspended in a

further 5ml of the original supernatant, sonicated and centrifuged as
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above to give supernatant 2. The cell pe lle t was discarded and

supernatants 1 and 2 combined to give cell associated virus stock.

The supernatant from the original 2000 rpm spin was centrifuged at 

12000 rpm for 2 hours at 4°C in a Sorval GSA rotor, and the virus 

con ta in ing  p e lle t resuspended  in 5-10m l of the supernatan t and

sonicated until hom ogeneous. This was term ed the supernatant virus 

stock.

Virus stocks were checked for sterility, titrated at 37°C and stored in 

lm l aliquots at -70°C.

2.3 Titration of  virus stocks.

Stocks to be titrated were serially diluted 10 fold in PBS/calf serum.

Aliquots of 0.1ml were added to BHK21 C13 cell monolayers which were

70% confluent from which the medium had been removed. Following 

incubation at 37°C for one hour, the plates were overlaid with 4ml EMC 

10% and incubated for 2 days at 37°C or 3 days at 31°C. Monolayers 

were fixed and stained with Giemsa at room tem perature for not less 

than one hour. After washing, plaques were counted using a dissection 

m icroscope.

2.4 Sterility checks on virus and cell stocks

Brain heart infusion agar (BHI) plates, and BHI plates containing 10% 

horse blood (BHI blood agar), were obtained from  the Cytology 

Department. Cell or virus stocks were checked for fungal contamination 

by streaking on BHI plates in duplicate. The plates were sealed with 

parafilm  and incubated at room tem perature for seven days. Similarly 

yeast or bacterial contamination was detected by streaking on BHI blood
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agar plates and incubating at 37°C for 7 days. If no contamination 

became apparent within that time the stocks were considered sterile.

2,5 Preparation of virion DNA.

This method is based on that described by W ilkie (1973) and Stow and 

W ilkie (1976). BHK21 C l3 cells in 80 oz roller bottles were infected and 

harvested as described previously (method 2.2). The cell supernatant 

was stored at 4°C. To extract cytoplasm ic virus the cell pellet was 

resuspended in RSB (lOmM KC1, 1.5mM MgCl2, 10mM Tris. HC1 pH 7.5 

containing 0.5 % [v/v] Nonidet P40) incubated on ice for ten minutes

and centrifuged at 2000 rpm in a Beckman benchtop centrifuge for 5 

minutes. The supernatant from this spin was added to the previous cell 

supernatant. The pellet was suspended in RSB/Nonidet P40, extracted as 

before, and the final supernatant added to the initial cell supernatant. 

The supernatant pool was centrifuged at 12000 rpm in a Sorval GSA 

rotor for 2 hours. The virus pellet was resuspended in 8ml NTE (lOmM 

Tris.HCL pH 7.5, lOmM NaCl, 1mM EDTA) by sonication and lysed by the 

addition of SDS and EDTA to a final concentration of 2% (v/v) and 0.8mM 

respectively. The released virus DNA was carefully extracted three times 

w ith an equal volum e of phenol and once w ith chloroform  and 

precipitated by the addition of 2 volumes of ethanol. The DNA was 

pe lle ted  by cen trifuga tion  at 2000 rpm  in a Beckm an benchtop 

centrifuge for 10 minutes, dried at 37°C for 1 hour, redissolved in water 

containing 50|ig/m l Rnase A and quantified by spectrophotometry.

1 0D unit260nm  = 50^ig/ml DNA.
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2.6 Transfection of virus DNA bv CaPO^ precip itation /D M SO  
b o o s t

To 50mm Petri dishes containing sem i-confluent BHK21 C l3 was 

added 400ml HEBS buffer pH 7.05 (130 mM NaCl, 1.6 mM Na2HPC>4, 5.5 

mM D-glucose, 21 mM HEPES) containing lOpg/ml calf thymus DNA at a 

5:10 molar ratio of plasmid:virus DNA and 110 mM CaCl2. Following 

incubation at 37°C for 40 minutes, the plates were overlaid with 4ml ETC 

10%, 4 hours later 1ml of HEBS containing 25% (v/v) dimethylsulphoxide 

(DMSO) was added, and the plates incubated at room temperature for 4 

minutes. The DMSO was removed and the plates were washed twice with 

ETC 10% and overlaid with EMC 10%.

2.7 Growth of plaques isolated from a transfection

EMC 10% was removed from the transfection plate and the monolayer 

was washed twice with PBS/calf serum. Separated plaques were picked 

using a 100ml Eppendorf pipette into linbro trays containing confluent 

BHK21 C l3 cells. The trays were then incubated at 37°C until cpe was 

com plete and the viral DNA was analysed by the method of Lonsdale 

(1979 ).

2,3 Preparation and isolation of 2-2.P labelled virion DNA

This method is a modification of that described by Lonsdale (1979). 

Monolayers of BHK21 C l3 cells were maintained in ETC 10% in linbro 

trays until confluent, and then infected with 50pl of virus from a plaque 

which had been isolated and grown from a transfection. After one hour 

at 37°C the medium was removed and the monolayer washed twice with 

PIC and overlaid with 450p.l PIC. After a further incubation at 37°C for 2 

hours, lp C i of 3 2 p _ orthophosphate was added and the incubation
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continued at 37°C for 48 hours. The cells were lysed by adding sodium 

dodecyl sulphate (SDS) to a final concentration of 2.5% (v/v) and 

incubating at 37°C for 5 minutes. The DNA was extracted once with an 

equal volume of phenol and precipitated by the addition of 2 volumes of 

ethanol. The DNA was dried at 37°C for 15-20 minutes (with the tubes in 

an inverted position) and redissolved in 150p.l of H2 O con ta in ing  

50pg/m l Rnase A. Usually 10% of each sample ( 15|al) was digested with 

the appropriate restriction enzym e and electrophoresed in an agarose 

gel (method 2.9) for 16-24 hours at 70-85 V. Gels were air dried and 

set up for autoradiography against Kodak X -O m at XS-1 film  and 

developed after 48 hours at room temperature.

2.9 Agarose gel e lectrophoresis

A garose gels [0 .5-1.5% (w /v)] were p repared  by boiling the 

appropriate quantity of agarose in 250ml of lxTBE until dissolved. Once 

cool, the solution was poured onto a glass plate (152cmx85cm) whose 

edges had been sealed with masking tape onto which had been placed a 

teflon coated well forming comb (26, 15 or 12 teeth). Once set, the gel 

was placed in a horizontal gel tank containing lxT B E . For non

radioactive samples, the gel contained 0 .5pg/m l ethidium  bromide. For 

plasm id DNA, gels were electrophoresed at either 20-50V overnight or 

80-120V for 3-6 hours. For HSV DNA, gels were electrophoresed at 60- 

80V overnight. As a rule, to resolve DNA fragments of high molecular 

weight, low percentage agarose gels were used, while for low molecular 

weight fragm ents, higher percentage agarose gels were used.
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2.10 Thym idine kinase assay.

The method used is a modification of that of Jamieson and Subak- 

Sharpe (1974). BHK21 C13 cells in 35mm petri dishes were infected at a 

moi of 20 pfu/cell. After adsorption at 37°C, cells were overlaid with 

2ml of ETC 10% and incubated for 6 hours at 37°C. Cells were washed 

tw ice with cold PBS, scraped into 1ml cold PBS and pelleted in a

microfuge for 2 minutes. The pellet was resuspended in 150jil ice cold 

lysis buffer (20mM Tris.HCl pH7.5,2mM MgCl2, 10mM NaCl, 0.5% (v/v) 

NP40, 6.5mM  2-m ercaptoethanol), m aintained on ice for 5 minutes, 

mixed briefly and placed on ice for a further 5 minutes. The samples 

were then centrifuged and the supernatant retained and stored at 

70°C. 5p l of extract was mixed with the reaction buffer in a total volume

of 50pl (Reaction buffer: 0.5M N a 2 P 0 4  pH6.0, 100 mM MgCl2, 2m M

dTTP, 100 mM ATP, 5p l aqueous [Me-^H] thym idine lm C i/m l). After 

incubation for 1 hour at 30°C, the reaction was stopped by the addition 

of EDTA and thymidine to a final concentration of 20mM and ImM, 

respectively . The sam ples were heated for 3 m inutes at 100°C and

placed  on ice for 3 m inutes. A fter cen trifugation , 40 |il of the

supernatant was spotted onto DE81 discs and washed three times (10 

m inutes each at 37°C) with 4mM ammonium formate pH6.0 containing 

IO jiM thym idine. After a further two washes with ethanol, the discs

were dried and radioactivity due to thymidine was determined using 

a scintillation counter.

2.11 Glvcerol stocks of bacteria

Bacterial stocks were prepared from 5ml shaking cultures grown

overnight in L-broth in the presence of the appropriate antibiotic at
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37°C. These stocks were stored at both -20°C and -70°C in 50% (v/v) 

g lycerol.

2.12 R estr iction  enzvme digestion

Viral and plasmid DNA was digested with the appropriate restriction 

enzymes (2.5 units/p g DNA), in the presence of lx  recommended buffer, 

in a final volume of 20-200pl and incubated at 37°C for 2-16 hours. The 

reaction was stopped by the addition of 20% restriction enzyme stop 

solution (RE stop- 5xTBE, 100 mM EDTA, 10% v/v Ficoll, 0.1% (w/v) 

brom ophenol blue) prior to electrphoresis (M aniatis et al> 1982), or by 

purifying the digested DNA once with chloroform , and precipitating in 

ethanol, washing with 70% ethanol, and vacuum drying prior to ligation 

(method 2.14), transfection (method 2.6) or end labelling (method 2.28).

2.13 Elution of DNA fragments from agarose gels

The DNA was digested with appropriate restriction enzymes and 

electrophoresed on agarose gels in the presence of 5pg /m l ethidium  

brom ide. The gel was v isualised  under long wave U.V. and the 

appropriate fragment cut out using a sharp scalpel. The isolated gel slice 

was placed in an electrophoresis chamber containing lxTBE. The DNA 

was electroeluted from the agarose gel onto the dialysis membrane of 

the electrophoresis cham ber (preboiled in lxTB E  for 10 m inutes) at 

200V  fo r 1 hour. The DNA was c o llec ted , ex trac ted  w ith 

phenolichloroform  (1:1) and precipitated at -20°C overnight with three 

volumes ethanol and 0.1 volume 3M sodium acetate. DNA was washed 

with 70% ethanol, vacuum dried and redissolved in water.
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2.14 Construction of recombinant p UC19 plasmids.

Plasm id vectors pUC19 and pUC18 were linearised with S m a l  and 

treated with calf intestinal phosphatase (both at concentrations of 5 

u n its /p g  of plasmid DNA). After incubation at 31°C for 1-3 hours, the 

DNA was extracted tw ice w ith phenolichloroform  (1:1), once with 

chloroform  and precip ita ted  with two volum es of e thanol in the 

presence of 0.1 volume 3M sodium acetate. The DNA pellet was washed 

with 70% ethanol, dried and resuspended in the appropriate amount of 

water to give 40ng/pl. A 3-4 molar excess of the purified HSV DNA

fragm ent relative to the phosphatase treated vector (40ng) was ligated

overnight at room tem perature in a 20 |il reaction containing 2 units of 

T4 ligase and lx  ligase buffer (10 mM Tris.HCl pH7.5, 10m M MgCl2, 10 

mM DTT, 1 mM ATP).

2.15 Transformation of bacterial cells with plasmid DNA.

E.coli strain XL-1 cells were made competent for transform ation with 

plasm id DNA by the method of Chung and M iller, (1988). 5 |il  of a 

glycerol stock of XL-1 cells was added to 10ml of L-broth and incubated 

with shaking at 37°C overnight. The cells were then diluted 1/100 in L- 

broth and incubated at 37°C with shaking until an OD600 of 0.3-0.6 was 

reached. The suspension was then pelleted at 2000 rpm for 10 minutes 

in a benchtop centrifuge and resuspended in a 1/10 of the original 

volume of ice cold transform ation and storage buffer (TSB: L-broth pH

6.1, 10% PEG Mw 3350, 5% DMSO, 20 mMMg+[10 mM MgCl2, 10 mM

M g S 0 4 ]).T h e  cells were then incubated on ice for 10 minutes. 5 |il of each

ligation  m ixture (m ethod 2.14) was added to lOOpl of com petent 

bacterial cells and incubated on ice for 10-30 minutes. 900pl of TSB 

containing 20mM glucose was then added and the cells were incubated
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at 37°C with shaking for 1 hour. IOOjj.1 of each sample was spread on L- 

broth agar p lates contain ing  100pg/m l am picillan  and incubated 

overnight at 37°C. Single bacterial colonies were picked from the plates 

and analysed, (method 2.16).

2.16 Small scale preparation of plasmid DNA bv alkaline lvsis

This method is essentially as described by Birnboim and Doly (1979). 

Colonies from an agar plate were inoculated into 5ml L-broth containing 

the appropriate antibiotic and shaken overnight at 37°C. 1.5ml of cells 

were added to an Eppendorf tube and pelleted by centrifugation in a 

Beckman microfuge for 30 seconds. The pellet was resuspended in lOOpl 

of solution 1: (50mM glucose, lOmM EDTA, 25mM Tris. HC1, pH8.0) 

containing 4mg/ml lysozyme, and incubated at room tem perature for 5 

m inutes, 200pl of solution 2: (0.2M NaOH, 1% SDS [w/v]) was added and 

incubation continued on ice for 5 minutes. 150p.l of ice cold solution 3 

(3M KAc, pH4.8) was added, and following incubation on ice for 5 

m inutes, the cell debris was pelleted by centrifugation in a Beckman 

m icrofuge for 5 minutes. DNA was extracted by mixing with an equal 

volume of phenolichloroform  (1:1), centrifuging for 2 minutes in a 

Beckman m icrofuge and rem oving the upper aqueous layer. This was 

added to 2 volum es of ethanol and the DNA precipitated  at room 

tem perature for 2 minutes, pelleted by centrifugation for 5 minutes in a 

Beckm an m icrofuge, washed in 70% ethanol, dried in a vacuum 

desiccator and redissolved in 50 |il water containing 50pg/m l RNase A. 

Usually 10(il of this was used per restriction digest.



60

2,17 Large scale preparation of plasmid DNA bv alkaline lvsis

This method is essentially that described by Birnboim  and Doly 

(1979), and modified by Maniatis et al.f (1982). Single colonies from an 

agar/L-broth or 25pl from a bacterial glycerol stock were inoculated 

into 5ml of L-broth containing the appropriate antibiotic and shaken at 

37°C overn ight. The culture was transferred  in to  500m l L-broth 

containing the appropriate antibiotic in a 2 litre flask and shaken at 37°C 

for 12-24 hours. The bacteria were pelleted by centrifugation at 8000 

rpm for 5 minutes in a Sorval GSA rotor, the pellet resuspended in 7ml 

solution 1 (method 2.16) containing 4mg/ml lysozyme and incubated at 

room  tem perature for 10 minutes. Freshly made solution 2 (14ml) was 

added and incubation continued for a further 10 minutes on ice. Ice cold 

solution 3 (10.5m l) was added, incubation continued for a further 10 

minutes on ice and the bacterial cell debris pelleted by centrifugation at 

12000 rpm for 30 minutes in a Sorval SS34 rotor. DNA was extracted 

twice with an equal volume of phenolichloroform (1:1) and once with an 

equal volum e of chloroform . The DNA was p recip ita ted  at room 

tem perature for 15 minutes by the addition of 2 volumes of ethanol, 

centrifuged at 12000 rpm for 30 minutes in a Sorval SS34 rotor at RT, 

washed in 70% ethanol, pelleted as before, and dried in a vacuum 

desiccator. The DNA pellet was dissolved in water containing 50pg /m l 

RNase A. The DNA was quantitfied by running a small sample on an 

agarose gel containing 0 .5 |ig /m l ethidium  bromide and com paring its 

intensity against that of a known standard under UV light.
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2*18 Synthesis and purification of a synthetic oligonucleotide.

A synthetic oligonucleotide was synthesized on a Biosearch 8600 DNA 

synthesizer. The DNA was eluted from the column by resuspending the 

beads in 1ml of ammonia and incubating at 55°C for 5 hours. The 

am m onia was rem oved by lyophilisation in the ‘speedivac* vacuum 

desiccator, and the dried sample purified by denaturing polyacrylamide 

gel electrophoresis. 75ml of 16% sequencing gel mix (16% acrylamide, 

containing 1 part in 30 n-n’-methylene bisacrylamide, and 8.3M urea in 

lxTB E  ), polym erised with 400pl of 10% ammonium persulphate and 

40 jil TEMED, was poured between two 20x22cm glass plates separated 

by 1.5mm spacers. W ells of approximately 1cm in width were formed 

using an 8-tooth teflon comb. The DNA samples were resuspended in 

5 0 | i l  of w ater by vortexing, then m icrofuged for 3 m inutes. The 

supernatant was transferred to 50 |il of sample buffer (28 |il lOxTBE, 

1 1 7 |i l  H2 O, 800pl deionised form am ide), boiled for 10 minutes then 

quenched on ice and loaded immediately. 2pl of formamide dye mix was 

loaded in a separate well to act as a molecular weight marker. The gels 

were electrophoresed slowly, at 3.5-4mA overnight in TBE.

To visualise the DNA the gel was removed, wrapped in cling film and 

viewed against a white chromatographic plate by angled long wave light. 

If the synthesis had been successful then a predom inant, strong band 

with possibly a few minor lower molecular weight bands was seen. The 

top band was cut out with a scalpel, mashed with a glass rod, and 

incubated at 42°C for 16 hours in 1ml elution buffer (0.5m ammonium 

acetate, Im M  EDTA, 0.5% SDS). This was filtered through glass wool to 

rem ove the acry lam ide, phenolich loroform  (1:1) ex tracted , ethanol 

precipitated, washed in 70% ethanol, dried and dissolved in water. To
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quantify the DNA, the OD2 6 O w as read. The conversion factor for

synthetic oligonucleotides is taken as 1 OD unit = 20pg/m l.

2.19 3 2 P-labelling o f  a synthetic  o ligonucleotide.

100-200ng of oligonucleotide was labelled in a buffer containing 

60mM Tris pH7.5,10mM MgCl2, lOmM DTT, 50pCi y32pdATP, and 1 unit 

T4 polynucleotide kinase made up to a final volume of 9 .5 |il. The 

m ixture was then incubated at 37°C for 30 m inutes after which an 

additional unit of T4 polynucleotide kinase was added and the mixture 

incubated at 37°C for a further 30 minutes. The labelled probe was then 

denatured by boiling for 10 minutes and used for Southern blotting 

(m ethod 2.21).

2.20 3 2 p .la b e ll in g  o f  non-svnthetic  DNA.

Purified virion, plasmid or infected cell DNA was 32p_iabelled using 

the method of random  priming. 10-100ng of DNA was boiled for 10 

m inutes before  labe lling  in a buffer w hich was m ade from  3

com ponen ts:

5x reaction mix for random priming.

Reaction mix was made up from solutions A, B and C at a ratio of 10: 25: 

15 respectively:

Solution A : 1ml solution q: 1.25M Tris.HCl pH7.8, 0.125M MgCl2- 

18pl 2-m ercaptoethanol 

5pl lOOmM dGTP 

5pl lOOmM dATP 

5pl lOOmM dTTP.

Solution B : 2M HEPES pH6.6.
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Solution C : Hexadeoxyribonucleotide (Pharm acia) evenly resuspended in 

TE at 90OD units/pl.

5 p l of this buffer is added to the boiled DNA together with lp l  of 1% 

BSA, 20|tiCi a 3 2 p  dCTP, lunit of Klenow polymerase and made up to 25pl 

with water. The mixture was incubated at room tem perature overnight, 

or at 37°C for 30 minutes, boiled and used for Southern blotting (method 

2 .21).

2,21 Southern blotting and hybridization to 3 2 P -labelled  DNA

This method is based on one described by Sambrook et al.y (1989). 

Purified virus, plasm id or infected cell DNA was digested with the 

appropriate restriction  enzyme and run on an agarose gel for 16-24 

hours at 60-80 V (method 2.9). The gel was visualised under short wave 

UV to confirm  digestion of the samples and to partially fragment large 

DNA molecules to aid their transfer. The gel was placed in 1 litre of gel 

soak 1: (200mM NaOH, 600mM NaCl) for 1 hour and transfered to 1 litre 

of gel soak 2: (1H Tris. HC1 pH8.0, 0.59M NaCl) for 1 hour. The gel was 

then transferred to 1 litre of 20xSSC (3MNaCl, 0.3M trisodium citrate) 

for 1 hour and blotted onto a nytran membrane (Amersham) in the 

following manner: one or two pieces of membrane, cut to the size of the 

gel, w as p laced  to g e th er w ith 3-6 p ieces of 3mm W hatm an 

chromatography paper, also cut down to gel size, in 20xSSC and allowed 

to soak. If a single blot only was required  two pieces of dry 

chrom atography paper were placed upon a stack of correctly sized “Hi- 

D ri” towels followed by 3 pieces of soaked chrom atography paper, the 

soaked nytran membrane, and the gel; ensuring that no bubbles were 

left between the gel and the membrane. A glass plate was then placed 

on top of the gel followed by a weight. This set-up acted as a wick to
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draw the SSC through the gel and onto the nytran membrane. If desired, 

the gel can be double blotted by placing another piece of soaked 

m em brane onto the gel instead of the glass plate and building up 

another wick on this side of the gel. The glass plate then goes on top of 

the final stack of “Hi-Dri” towels followed by the weight. After 12-24 

hours, the DNA is fixed to the membrane using a UV crosslinker 

(Stratagene) set at 12000 |ijou les/cm 2.

The nytran was hybridized to the 32p_ia5eu ed probe in hybridization 

buffer (7% SDS, 0,5M Na2HPC>4 pH7.4) at 42-65°C, 65°C for non-synthetic 

DNA, and 42-65°C for synthetic DNA depending on the size and G+C 

content of the oligonucleotide. Hybridization was allowed to proceed 

overnight after which the filter was washed twice with 2xSSC containing 

0.1% SDS for 1/2 hour each time. The filter was then sealed into another 

hybridization bag and set up for autoradiography against Kodak XS-1 

film  e ither w ithout a D upont im age in tensify ing  screen at room

tem perature or with one at -70°C.

2.22 Construction of M13 recombinant plasmids

The double stranded replicative form of M l3 mp8 was commercially 

obtained from  Am ersham  cut with the restriction enzyme Sma\ .  The 

fragm ents were purified once with phenol:chloroform  (1:1), ethanol 

precipitated , washed in 70% ethanol, dried and redissolved in water.

40ng of M13 vector DNA, 120-160ng of the DNA insert, 2 units of T4 

DNA ligase in ligase buffer (method 2.14) were mixed and incubated for 

24 hours at room temperature. (Sanger et al., 1977).



• 1 0  m i n s ,  1 3 0 0 0 r p m ,  r o o m  t e m p e r a t u r e  o n  a B e c k m a n  benchtop 

c e n t r i f u g e .
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2.23 Transfection of bacterial cells with M13

E.coli strain XL-1 was grown in 2xYT broth to an OD of 0.3 to 0.6 and 

made com petent as described (m ethod 2.15). 5 -20pl of ligation mix was 

added to lOOpl of com petent cells and incubated on ice for 10-30

minutes. 3ml of m elted top agar at 42°C containing 25 p i  of 2.5% 

isopropyl-pD -thiogalactoside (IPTG) in water and 25pl of 2% 5-chloro-4- 

brom o-3-indolyl-B-D -galactoside (BCIG or x-gal) in dim ethylform am ide 

was added to the sam ple and the m ixture poured onto 90mm L-broth 

agar plates and incubated at 37°C overnight.

2.24 Preparation o f  tem plate DNA.

A culture of XL-1 cells was grown to saturation in 2YT broth. 

Colourless plaques from the M13 transform ation were picked into 1.5ml 

of saturated XL-1 cells diluted 1/100 in 2YT broth and grown with 

vigorous shaking at 37°C for 4.5-6 hours. Samples were then transferred

to 1.5ml Sarsedt tubes and pelleted for 5 minutes (MSE microfuge). The

supernatant was then transferred  to another tube and the procedure

repeated  ensu ring  tha t the su p ern a tan t was free  from  bac teria l 

contamination. To precipitate the M l3, 150pl of a solution of 20% PEG, 

2.5M NaCl was added, the sample vortexed and left at room  temperature 

for 10 minutes. The M13 was pelleted by centrifugation* and repelleted 

to get rid of residual PEG. The M l3 was then resuspended in water by 

vigorous vortexing, lysed and purified  by the addition of an equal 

volume of saturated phenol, and precipitated in the presence of 100% 

ethanol. The purified M13 DNA was then washed with 70% ethanol, 

dried in a vacuum desiccator and dissolved in 20pl of water. 5p l of this 

was used for each sequencing reaction.
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2.25 Sequence analysis of recombinant M13 clones.

5pl of single stranded DNA tem plate (method 2.24) was annealed to 

3ng of com m ercial oligonucleotide prim er (Bio-rad) in 40mM Tris.HCl 

pH7.5, 25mM M gCl2, 50mM NaCl in a total volume of lOpl at 55-60°C 

for 10 minutes in a 1.5ml sarsted tube and left at room temperature for 

15-30 m inutes. The tem plates were then labelled and extended in a 

buffer containing 0.75pM  dCTP, 0.75pM dGTP, 0.75pM dTTP, lOmM DTT, 

lO pCi 3 5 s  dATP, and 2 units of klenow polymerase in a total volume of 

6 0 pi. This was added to each prim er annealed tem plate (6p l in each 

sam ple) and labelling  was carried  out at room  tem perature for 5 

minutes. The extended tem plates were then term inated by the addition 

of ddNTP termination mix (figure 2.1). The plate contents were mixed by 

centrifugation  in a Beckm an benchtop centrifuge and the reactions 

carried out at 37°C for 10-30 minutes. The reaction was stopped by the 

addition of 2 p l of form am ide dye mix to each well (95% formamide, 

20mM EDTA, 0.5% (w/v) bromophenol blue, 0.5% (w/v) xylene cyanol). 

The samples were then boiled for 1 minute and electrophoresed through 

a polyacrylam ide gel (method 2.26).

2.26 E lectrophoresis  and autoradiography o f  sequencing gels.

Electrophoresis was carried out through vertical gels 42x34x0.04 cm in 

size. Spacers and gel combs were obtained from Gibco-BRL. Both plates 

were treated  with repelcote enabling the gel to be transferred  to 

W hatm an 3m m  chrom atography  paper to be d ried  dow n after 

e lectrophoresis under vacuum. Dried gels were then exposed to XS-1 

film (35x43 cm) and developed using an X-omat processor.



Figure 2.1

a. The concentration of nucleotides used to make the termination mixes.

b. 2 .5pl of each termination mix is added to the correct well, that is; 

2 .5jal of termination mix A is added to A1-A10, 2.5pl of G to G1-G10, 

and so on. To this is added 3pl of each extended template, that is; 3pl of 

sample 1 to each of wells 1A-1T, 3pl of sample 2 to 2A-2T etc.



a.

Component Termination mix (ul)

dNTPs (10mM) A C G T

dTTp 12.5 12.5 12.5 1.25

dCTP 12.5 1.25 12.5 12.5

dGTP 12.5 12.5 1.25 12.5

dATP 1.25 12.5 12.5 12.5

ddNTPs (5mM) A c G T

ddTTP - - - 50

ddCTP - 10 - -

ddGTP - - 15 -

ddATP 30 - - -

H£> 431.5 451.25 446.25 411.25

b. 1 2 3 etc . 10
A

C

G

T
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2.27 The formation of gradient sequencing gels.

Electrophoresis was carried out through TBE gradient gels (Biggin et al, 

1983). In this system  a buffer gradient is produced in the gel with 

0.5xTBE in the top and 5xTBE in the bottom of the gel. This was achieved 

using two acrylam ide gel m ixes. The top mix was of 0.5xTBE, 6% 

acrylamide and 9M urea. The bottom mix was composed of 5xTBE, 6% 

acrylam ide, 9M urea, 5% sucrose (w/v) and 0.1% brom ophenol blue 

(w/v) to v isualise  the gradient. W hen preparing a 42x33x0.04 gel,

ammonium persulphate and TEMED were added to both the top (0.016% 

and 0.16% respectively) and bottom (0.02% and 0.2% respectively) gel 

mixes. 45ml of top mix was drawn into a 50ml syringe followed by 15ml 

of bottom  mix. A few bubbles were passed through to allow some 

mixing. The syringe contents were slowly expelled between plates to the 

bottom. The gel comb was inserted into the gel plain side down and the 

gel rested  in a near horizontal position  until polym erisation was

complete. The tape was removed from the bottom of the gel, and the

plates set up with lxTB E  in the gel kit. After removing the comb, the

space was filled with lxTBE, the comb was reversed to form wells and

the boiled DNA samples loaded. The gel was run at a constant speed of 

70W for 2 hours.

2.28 Filling in 5 f overhangs with klenow polvmerase.

Restriction enzyme digested DNA containing 5' single strand extensions 

was extracted once with phenol: choroform  (1:1), ethanol precipitated,

washed in 70% ethanol, dried and redissolved in water at l |ig /1 0 |i l .  l|xg

of DNA was incubated in the presence of lxN T buffer (50mM Tris. HC1

pH7.8, 5mM M gCl2, 10mM 2-m ercaptoethanol, lOpg/ml BSA) containing 

0.2mM of the cold nucleotide triphosphates required to fill the overhang,
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and 2 units of klenow polymerase at 37°C for 1 hour. The reaction was 

stopped by extraction with phenol:chloroform  (1:1). If labelled DNA was 

required, one of the cold nucleotide triphosphates was replaced by 20pCi 

of the corresponding a - 3 2 P labelled nucleotide. The labelled DNA was 

purified by agarose gel electrophoresis (methods 2.9 and 2.13).

2.29 Preparation of cytoplasmic and nuclear RNA.

Immediate early RNA was prepared as follows: BHK21 C13 monolayers 

were m aintained in ETC10% until confluent and treated with 100(rg/ml 

cyclohexim ide in ETC 10% both 15 m inutes prior to and continually 

throughout infection. Roller bottles were infected with 20 pfu/cell of 

virus, and allowed to adsorb at 37°C for 1 hour, The cells were then 

washed tw ice w ith ETC 10%/ cyclohexim ide and m aintained in that 

media for a further 7 hours.

Early and late RNA was made in BHK21 C l3 cells again in roller 

bottles. In both cases, 10 pfu/cell of virus was adsorbed at 37°C for 1 

hour. Early RNA was harvested 7 hours post-infection and late RNA was 

harvested 16 hours post-infection.

2.30 Purification and harvesting cytoplasm ic and nuclear RNA,

Im m ediate-early, early and late cytoplasmic and nuclear RNA were 

prepared from roller bottles by a modification of a method by Kumar 

and L indberg, (1972). Follow ing rem oval of the medium, cells were 

washed with 30ml of cold PBS and harvested into 10ml of cold PBS. Cells 

were recovered by centrifugation in the cold at 2000 rpm for 2 minutes. 

The pe lle t was then w ashed with a fu rther 10ml cold PBS and

centrifugation was repeated. Cells were carefully resuspended in 1.5ml

of cold isotonic lysis buffer (ILB-150mM  NaCl, 1.5mM MgCl2, lOmM
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Tris.HCl pH 7.8, 0.65% (v/v) NP40), left on ice for a further 5 minutes 

and cen trifuged at 3000 rpm  for 10 m inutes to pellet the nuclei. 

Following the addition of an equal volume of phenol extraction buffer 

(PEB-7.0M urea, 350mM NaCl, lOmM EDTA, lOmM Tris.HCl pH 7.9, 1% 

(w/v) SDS) to the cytoplasmic fraction and the addition of 3ml PEB to the 

nuclear frac tio n , both  frac tions w ere ex tracted  three tim es with 

phenol .chloroform  (1:1) and once with chloroform. Both RNA fractions 

were p recip itated  by the addition of 3 volumes of ethanol and left 

overnight at -20°C. RNA was recovered by centrifugation at 3000rpm for 

15 m inutes, dissolved in 200pl of water and re-ethanol precipitated by 

the addition of 20p l 5M N H 4A c, 700p l ethanol. The RNA was then 

pelleted, dried and dissolved in 30pl of water. The concentration was 

then determ ined by spectrophotom etry.

1 OD unit260= 40pg RNA/ml.

2.31 SI nuclease mapping.

This method is an adaptation of that used by W hitton et al, (1983). 

>300 counts per second of an end labelled probe (method 2.28) was 

added to 15pg of RNA (method 2.30) and vacuum dried. The samples 

were then resuspended  in 2 0 p l of hybridization buffer [90% (v/v) 

deionised form am ide, 0.4M  NaCl, 40mM PIPES, Im M  EDTA] and 

denatured by boiling for 3 minutes, quickly transferring to a water bath 

at 57°C and incubating for 16 hours to allow the formation of DNA/RNA 

hybrids. Prior to nuclease SI digestion, the samples were quenched on 

ice. 200pl o f a solution containing 0.25mM  NaCl, 30mM NaAc pH4.5, 

ImM Z n S 0 4  and 150 units of the enzyme SI nuclease was added, and SI 

nuclease digestion of regions of single stranded DNA and RNA was 

carried out at 30°C for 2 hours. The RNA/DNA duplexes were then
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purified once with phenol: chloroform  (1:1) and once with chloroform, 

precipitated in the presence of carrier tRNA and ethanol, washed with 

70% ethanol, vacuum  dried and resuspended in 5jxl of sequencing dye 

mix (m ethod 2 .25), denatured  and e lectrophoresed  through a top 

sequencing gel (method 2.26) until the xylene cyanol dye mix was about 

half way down the gel. The gel was dried in the same maner as a 

sequencing gel and exposed to XS-1 Kodak film.

2.32 Purification o f  im m ediate-earlv . early and late 
p o l y p e p t id e s .

Im m edia te-early  po lypep tides w ere prepared  in the following 

manner: Confluent HFL or BHK21 C13 were incubated in Emet/5F2 or

E m et/5C 2  (depending on which cell line was used) containing 100|ig/m l 

cyclohexim ide for 15 m inutes at 38.5°C. 50 pfu/cell of virus was 

adsorbed onto the cells for 1 hour at 38.5°C, then the monolayer was 

washed tw ice w ith the appropriate m edium  containing cycloheximide 

and m aintained in the same medium for a further 5 hours. 15 minutes 

prior to the end of the 5 hours, the m edia was replaced with the

appropriate m edia containing 2.5 p.g/ml actinom ycin D and maintained

at 38.5°C until the 5 hour time point was reached. The media was then 

removed and the m onolayer washed at 37°C 4 times, 1 minute each

wash with PBS containing 2 .5 |ig /m l actinom ycin D which had been 

prewarmed to 37°C. The monolayer was then incubated at 38.5°C in the 

presence of PBS containing 50jiCi/ml 35 s  methionine for 2 hours. Then 

the m onolayer was washed tw ice with PBS and harvested into 200- 

300p.l of boiling mix [1ml stacking gel buffer (method 2.33),lm l glycerol, 

0.5ml 6-m ercaptoethanol, 20p.l bromophenol blue, 0.8ml 25% SDS- the 

working solution is a 1/3 dilution of this].
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Early polypeptides were made in BHK21 C l3 cells. Confluent cells 

which have been grown in ETC 10% were adsorbed with 20pfu/cell virus 

and incubated at 37°C for 1 hour. The monolayer was washed twice with 

E m et/5C 2  and incubated in this medium for 1 hour at 37°C. The medium 

was then replaced with the same medium containing lOpCi/m l 35 s 

methionine. After a further 5 hours at 37°C, the monolayer was washed 

twice with PBS and harvested into 200-300pl of boiling mix.

Late polypeptides were made in BHK21 C13 cells. 20pfu/cell of virus 

was adsorbed onto the monolayer for 1 hour at 37°C in Emet/5C2. Next, 

the medium was replaced with the same medium containing lO pC i/m l 

3 ^ s  m ethionine and incubated for a further 12 hours at 37°C. The 

monolayer was then washed tw ice with PBS and harvested into 200- 

300pl of boiling mix.

2.33 Analysis o f  polypeptides bv SDS-PAGE.

This is the method of Marsden et aly (1978). Slab gels were cast 

vertically in a sandwich consisting of two glass plates separated by 1mm 

thick perspex spacers and sealed with teflon tape. Single concentration 

gels containing 7.5% acrylam ide cross-linked with 2.5% N,N*-methylene 

bisacrylamide in resolving gel buffer (375mM Tris.HCl pH8.9, 0.1% [w/v] 

SDS) and polym erised with ammonium persulphate (0.006% [w/v]) and 

0.004% TEMED were poured between the two glass plates and overlaid 

with b u tan -2 -o l in o rder to ensu re  a sm ooth su rface  after 

polym erisation. P rior to addition of stacking gel, the butan-2-ol was 

washed o ff w ith deion ised  w ater. The stacking gel contained 5% 

acrylam ide (c ro ss-lin k ed  w ith the sam e ra tio  of N ,N ’-m ethylene 

bisacrylamide used in the resolving gel) in stacking gel buffer (0.1 ImM 

Tris.HCl pH 6.7, 0.1% [w/v] SDS), and was polymerised with ammonium
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persulphate and TEMED as above. After the stacking gel was poured, a 

teflon coated com b was inserted  to form  the wells. Samples were 

prepared for analysis by boiling for 5 minutes and loading directly onto 

the gels which were electrophoresed in running gel buffer (52mM Tris 

base, 53mM glycine, 0.1% [w/v] SDS) at either 60mA for 3-4 hours or 

10-15mA for 16 hours (M arsden et a l , 1976, 1978). Follow ing

electrophoresis, the gels were fixed or stained for 1 hour in a solution of 

methanol: acetic acid: w ater 53:7:50, in the presence or absence of 

Coomassie brilliant blue, and destained for 3x30 minutes in methanol: 

acetic acid: w ater 5:7:88. The gels were then dried under vacuum and 

exposed for autoradiography at room  tem perature.

2,34 Analysis o f  proteins bv W estern blotting.

The W estern blotting technique is that used by Towbin et al ., (1979) 

with several m odifications. Cells were harvested into boiling mix at a 

concentration of lO ^cells/m l (method 2.32). Samples were boiled for 5 

m inutes and loaded  onto  a 7.5%  SDS- po lyacry lam ide  gel at 

approxim ately 10^ cell equivalents per well. Following electrophoretic 

separation at 10mA overn igh t, p ro teins were then transferred  to 

nitrocellulose using a Bio-rad transblot apparatus. Three foam pads and 

two sheets of W atman No 182 filter paper were presoaked in transfer 

buffer (192mM  glycine, 25mM Tris.HCl pH 8.3, 20% methanol) along 

with the nitrocellulose sheets to be used for the transfer. The gel was 

layered down on one sheet of the filter paper on top of two of the 

presoaked foam  pads and then covered w ith n itrocellu lose . This 

assemblage was rolled  with a glass rod to exclude air bubbles. The 

nitrocellulose was then covered with the other sheet of filter paper and 

a further foam  pad and the plastic folder was closed tightly over the
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sandwich. The sandwich was placed in the transfer tank with the gel 

towards the cathode and the nitrocellulose towards the anode. Proteins 

were transferred onto the nitrocellu lose electrophoretically  in transfer 

buffer at 250mA for a minimum of 3 hours.

Following electrophoretic transfer, nitrocellulose was removed from 

the sandwich and incubated for 2x30 minutes with shaking at 30°C in 

blocking buffer (20mM Tris.HCl, 500mM NaCl pH 7.5, 3% gelatin). Sheets 

were then washed 2x5 minutes in wash buffer (TBS: 20mM Tris, 500mM 

NaCl ph 7.5, 0.5% Tween 20). Antibody were made up to the desired 

concentrations in wash buffer containing 1% BSA and 0.01% sodium 

azide and added to the nitrocellulose in plastic dishes and incubated 

overnight at room  tem perature with shaking. A ntisera was removed 

with two washes in wash buffer. Bound antibody was visualised using 

the enzym e horseradish  peroxidase. Goat anti-rabbit conjugated horse 

radish peroxidase was diluted 1/1000 in wash buffer containing 1% 

gelatin and incubated with the nitrocellulose filter for 1 hour at room 

temperature with shaking. The membrane was washed twice with wash 

buffer and tw ice with wash buffer w ithout Tween, prior to colour 

reaction. The colour development solution was prepared from solution A 

and solution B. Solution A consists of 60mg HRP colour development 

reagent in 20ml ice cold high grade methanol. This should be protected 

from light and made fresh daily. Solution B was made immediately prior 

to use by adding 60pl of ice cold hydrogen peroxide (H2 O 2 ) to 100ml 

TBS at room temperature. Solution A and B are then mixed and added to 

the n itrocellu lose m em brane. The m em brane should not be in colour 

development solution for longer than 40 minutes. After developing, the 

colour developm ent solution was rem oved by washing the membrane 

with water.



7 4

2.35 Particle  counts.

5(0,1 sodium silicon tungstate, 5 |il of a known concentration of laytex 

beads and 5 |il of virus sample were mixed. 2-3 drops of the mixture 

were added to a support grid, left for 5 minutes and the excess liquid 

drained with blotting paper. Particles and laytex bead were visualised

by electron m icroscopy. C orresponding fields of vision were then 

counted. By comparing the number of particles to the number of laytex

beads, w hich are of a know n concentration, the num ber of virus

particles/m l can be estim ated.

2.36 V irus growth properties.

One step growth experiments were carried out essentially as described 

by D argan & Subak-Sharpe, (1985). C onfluent BHK21 C13 cells 

monolayers in 35mm petri dishes were infected at a moi of 5 pfu/cell

and virus adsorbed at 37°C for 1 hour. Following two washes with

PBS/calf serum, the cells were overlaid with 2mls ETC10% and incubated 

at 37°C. Samples were harvested at 0, 2, 4, 6, 8, 10, 12 and 24 hours post 

infection. V irus was released  by u ltrasonic disruption and titrated

(m ethod 2 .3) and the titre  expressed  as p fu /10^ cells. (This is 

equivalent to pfu/m l since 2x10^ cells were harvested into 2mls of

medium). Long term  virus growth experim ents involved infecting cells 

at a multiplicity of 0.001 pfu/cell. Virus was absorbed for 1 hour at 37°C. 

Following two washes with PBS/calf serum, the cells were overlaid with 

2ml ETC10% and incubated at 37°C. Samples were harvested at 0, 6, 12, 

24, 36, 48 and 72 hours post infection and treated as for one step 

growth experim ent.
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2.37 Procedure for LD50 in vivo v iru lence experim ents.

Three week old m ale Balb/C  mice (Bantin and Kingman) were

anaesthetized with ether and inoculated with 25pl of the appropriate 

virus, which had been diluted in PBS/calf serum, into the central region

of the left cerebral hemisphere. Groups of 4 mice were inoculated with a

single dilution of each virus stock (between 10^ and 10^ pfu/anim al). 

The virus stocks were retitrated  on BHK21 C l 3 cells on the day of 

inoculation to determ ine the precise quantity of virus inoculated. Mice 

were observed daily for 14 days post inoculation and their clinical states 

recorded. The 50% lethal dose LD50 was then calculated.

2.38 Procedure for in vivo latency studies.

Four week old m ale Balb/C  m ice (Bantin and Kingman) were

inoculated into the right rear footpad as described previously (Clements 

and Subak-Sharpe, 1983,1988). At the time of inoculation the virus was 

titrated on BHK21 C l3 cells to quantify the precise dose administered. A 

series of 10-fold dilutions of the virus were made up and inoculated into

the right rear footpad and mice were exam ined daily and scored for

clinical sym ptom s. M ice surviving 6 weeks were exam ined for the 

presence of latent virus. The mice were killed, dissected, and the two 

lower thoracic , six lum bar and the upper two sacral ganglia were 

removed from  the inocu lated  side, placed in culture medium and

screened for the re lease  of in fec tious virus every two days by

transferring the cu ltu re  m edium  to control BHK21 C13 cells. The 

inoculated BHK21 C l 3 cells were incubated at 37°C for 2 days before 

examining for the presence of virus plaques or cytopathic effect and

were then stained.



CHAPTER 3

RESULTS.

3.1. INITIAL CHARACTERIZATION OF 1703.

1703 was partially characterized after isolation (MacLean & Brown, 

1987a). A brief sum m ary o f this analysis is presented below (sections 

3.1.1 and 3.1.2).

3.1.1. The DNA profile o f  1703.

1703 DNA was labelled in vivo and prepared and analysed by the 

method of L onsdale, (1979). F igure 3.1 shows H p a  1 and B a m  H I  

restriction enzyme maps of the prototype orientation of HSV-1 17+ DNA. 

A Hpa  1 restriction enzyme analysis of 1703 DNA compared to 17+ DNA 

gave the follow ing inform ation (figure 3.2). Two new bands are present 

in the 1703 track, one (0.25M ) of 11x10^ mol. wt. running with b and 

one (0.5M) of approxim ately 1.7x10^ mol. wt. running below s . H p a lv  is

absent. This indicates that H p a  lm  has a 1.8x10^ mol. wt. deletion

located w ithin I R l  sequences which generates a novel 0.5M band of 

1 .7x10^ mol. wt. (designated m '), whereas H p a  lm  generated from T R l 

is unaltered and m igrates norm ally. Thus jo in t fragments containing m, 

usually 0.5M , w ill now consist of undeleted 0.25M  copies, a and d. a 

would run as the novel 0.25M  l lx lO 6 mol. wt. band comigrating with b , 

while the d'  band would run at about 7.2x10^ mol. wt. comigrating with 

g/h  and is therefore not detected. As H p a  l v  is absent and H p a  lm  is  

deleted, the H p a  l r  fragm ent is also expected to be absent. The 2M q!r

band is reduced in com parison to the 1703 2M  o / p  band and the



Figure 3.1 H p a \  and BamWX maps of HSV-1.

Hp a  1 and B a m H l  restriction enzyme maps of HSV-1 17+ DNA (Wilkie, 

1973; D av ison ,1981).
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Figure 3.2 Analysis of 17+ and 1703 DNA.

17+ and 1703 DNA was in v i v o 22 P labelled and digested with Hpa  1 or 

B a m  HI (0.8% gels). Missing or reduced bands are marked and novel 

bands are indicated with the letter of the band from which they are 

derived and a prime symbol (').



1703



•although a band runs in the Vmw63 position in the 1703 track. This 

appears to be a cellular band.
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corresponding band in 17+. On a Bam  HI digest (figure 3.2 ), the profile 

of 1703 again differed from  that of 17+. The B a m H l b  band (6.7x10^ 

mol. wt.) is absent and a b'  band now comigrates with si t  ( 1.9x 10^ mol. 

wt.) indicating a deletion  of about 4 .8x10^ m ol.wt. at the U l / I R l

junction. This data and the data from  other restric tion  enzym e digests 

and Southern blots (M acLean & B row n, 1987a; M acLean,1988) are 

consistent with a 4.9x10^ mol. wt. deletion in Ul /  IRL.

3.1.2. The polypeptide profile o f  1703.

The deletion described above results in the rem oval of the 3' end of 

the I R l  copies of IE1 and LAT, all of UL56, and the 3' end of UL55 

terminating about 500bp (base pairs) downstream  of the 3' end of IE2. 

The im m ediate-early polypeptide profile  of 1703 (figure 3.3) shows a 

reduction in the am ount of V m w llO  synthesized by 1703 due to the 

deletion of one copy of IE1. Vmw63 was apparently not produced by 

1703? This was confirm ed by Southern blot analysis of 17+ and 1703 

DNA using in vivo 32p  labelled 17+ RNA as a probe (MacLean & Brown, 

1987a). Dot blot assays dem onstrated that IE2 mRNA produced by 1703 

was at most 1/32 of that produced by w ild-type. Vmw63 is an essential

immediate-early polypeptide (Sacks et al ., 1985; M cCarthy et al., 1989)

and the isolation of a HSV-1 variant that apparently did not produce this 

protein presented an anom aly.

Thus the initial characterization of 1703 had shown that although the 

4.9x106 mol. wt. deletion in U l / I R L  did not affect IE2, the IE2 gene 

product Vmw63 was underproduced during im m ediate-early  conditions 

of infection. A num ber of possible explanations have been suggested by 

MacLean & Brown, (1987a) to rationalise  this anom alous data: 1 . A 

secondary m utation in the prom oter, open reading fram e or termination



Figure 3.3 Polypeptide profiles of 17+ and 1703.

Immediate-early  polypeptide extracts were labelled with 3 5§ 

methionine and run on 7.5% polyacrylamide gels. Molecular weights 

( x l 0 3 )  are indicated on the left and reduced bands are marked. A is 

actin.
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signals of IE2, 2 . The deletion removed a downstream  transactivator of 

IE2. UL55 and UL56 gene products are both absent as a result of the 

deletion and neither o f these genes has been assigned a function 

(McGeoch et al ., 1988a). There is also the possibility that the deletion 

removed a dow nstream  enhancer elem ent of IE2, although none has 

been demonstrated in the region deleted in 1703 and 3. The levels of 

Vmw63 synthesized by 1703 under im m ediate-early  conditions were 

undetectable with the reagents available.

The aims of this p ro jec t are outlined in section 1.11 of the 

introduction. The results section reports the experim ental work which 

led to the conclusion that antisense transcripts control the production of 

Vmw63 in 1703 infected cells.

3,2. C l o n i n g  a n d  s e q u e n c i n g  1703 DNA f r a g m e n t s : 1. i n  w h i c h

IH E DELETION END POINTS WERE LOCATED AND 2 . THE FRAGMENT  

CONTAINING I E 2 .

Analysis of 1703 began with the cloning and sequencing of H p a  Is in 

which IE2 is located, in order to detect any deletion/insertion in the 

promoter, open reading frame or term ination signals of the gene. Such a 

mutation was one of the possible reasons given for the defect in Vmw63 

synthesis at im m ed ia te -ea rly  tim es. A lthough  re s tr ic tio n  enzym e 

analysis of 1703 DNA had de-lim ited the end points of the deletion to 

about 500bp downstream  of the 3' end of IE2, it was necessary to find 

the exact end points in order to determ ine the genes affected. The 

deletion end points were located within H p a lm ' as shown by restriction 

enzyme analysis of 1703 3 2 p  v/v<9 labelled DNA (MacLean & Brown,

1987a; M acLean 1988). The cloning and d idoxynucleo tide  sequence 

analysis of both fragments are detailed in the next two sections.
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3.2.1 Sequencing the Vmw63 encoding gene IE2.

1703 DNA was digested w ith the restric tion  enzym e H p a  1 , 

electrophoresed through a 0.8% TBE agarose gel and the DNA fragment 

in which IE2 was located, H p a  Is excised and purified. / /p a ls  was then 

cloned into pUC19 ( S ma  1 d igested) and transform ed into com petent 

bacterial cells giving rise to recom binant colonies whose DNA was

analysed using  re s tr ic tio n  enzym es. O ne reco m b in an t p lasm id , 

pUC 19 / H p a  Is , thought to contain / / p a i s a s  an insert, was further 

analysed by Southern blotting. Figure 3.4 shows these results. The probe 

used for this experiment was a 70 base oligonucleotide corresponding to

a region of 1703 DNA at the 5' end of IE2 (n p ll3 7 1 4 -n p l 13784). In

lane 1, the probe detects the H p a  Is fragm ent which had been separated 

from its plasm id backbone using the restriction  enzym es E c o R1 and

HindlW (3251 base pairs). The fragment detected by the oligo in lane 2 

corresponds to linearised  p U C 1 9 // /p a ls  and is therefore larger than 

Hpa  Is alone (5941 base pairs). These results dem onstrate that H p a  I s  

has been cloned into pUC19.

In order to sequence IE2, H p a  Is was subcloned into M l3 m p8 which 

was supplied cleaved with S ma  1. p U C 1 9 ///p a ls  was also digested with 

Sma 1 and the resultant subfragments purified and random ly cloned into 

M l3 m p8. The DNA from  recom binant p laques was prepared and 

sequenced by the Sanger d ideoxynucleotide sequencing m ethod. The 

results from this experiment are outlined by figure 3.5.

The top of the figure 3.5 is a representation of the HSV-1 genome in 

the p ro to ty p e  o rien ta tio n  and the nex t lin e  is an expanded 

representation of H p a  Is  showing the positions of S m a  1 res tric tion  

enzyme sites within that fragm ent. Each subfragm ent was then given a



Figure 3.4 Southern blot analysis of pU C 19/ / /pa  1 s.

Autoradiograph of a Southern blot in which a 32p  /n vitro labelled 70 

base oligonucleotide, corresponding to a region of the 5' end of IE2 

(np l  13714-npl  13782), was hybridized to E c o R  1 / H i n d l l l  digested 

p U C  1 9 / / / p a  Is (lane 1) and E c o  R1 digested p U C 1 9 / / / p a l s  (lane 2). 

Numbers indicate the size of specific fragments in base pairs.



5941

3251



Figure 3.5 IE2 sequencing results.

Structure of the HSV-1 genome (a) showing U l  and U$ flanked by 

T R l / I R l  and I R s / T R s  respectively. Hpa  Is is expanded (b) and the Sma  1 

sites contained within (S ) are indicated as are the approximate locations 

of the promoter/regulatory regions of IE2. The S m a  I fragments are 

designated 1-9 from left to right. These fragments were subjected to 

dideoxynucleotide sequence analysis and the results of this analysis are 

given (c). 'No coding sequences'  means that there are no IE2 coding 

sequences in the subfragment , ' intact' means that the sequence is 

homologous to the published wild-type sequence (McGeoch et al., 

1988a).



TRTR L
US

polyA
TATATAATGARAT

Fragment no. Size Comment

12511

12896

13035

13403

13517

14192

14267

15128

15472

12896

385bp

13035

139bp

13403

368bp

13517

114bp

14192

675bp

14267

75bp

15128

861 bp

15472

344bp

15703

231 bp

no coding sequences, 

no coding sequences.

no coding sequences, 
intact.

promoter sequences, 
intact.

promoter associated sequences. 
13517-13690 intact.

intragenic region, 
intact.

intragenic region.
14267-14497 intact.

poly A signal, 
intact.

no coding sequences, 
intact.
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number 1-9 in a 5' to 3' direction and the sequencing status of each is 

detailed. Fragm ent 4, 5 and 8 contain the promoter, prom oter associated 

and term ination signals of IE2 respectively and sequencing has shown 

that each is homologous to the published wild-type sequence (McGeoch 

et a/., 1988a). The IE2 intragenic region has been partially sequenced and 

was shown to be free from  altera tion  com pared to the w ild-type 

sequence (fragments 5, 6 , 7 and 8). Fragments 2 and 9 are upstream and 

downstream of IE2 coding sequences respectively  and since both are 

intact, dem onstrate that any IE2 prom oter or term ination signals 139bp 

upstream  or 231 bp dow nstream  re sp e c tiv e ly  o f the  gene are 

homologous to the w ild-type sequence.

Thus the sequencing of IE2 and the surrounding DNA has conclusively 

dem onstrated tha t the prom oter, p rom oter assoc ia ted , term ination , 

termination associated sequences and most of the open reading frame 

are homologous to the w ild-type sequence, showing that the apparent 

lack of Vmw63 under im m ediate-early  conditions is not due to a 

secondary m utation within the IE2 gene.

12,2. Sequencing the end points o f the deletion in 1703.

The restriction  enzym e fragm ent in which the end points of the 

deletion in 1703 were located is H p a  lm \  1703 DNA was cleaved with 

the restric tion  enzym e H p a  1, the resu ltan t fragm ents separated by 

electrophoresis through a 0.8% agarose/TBE gel, the m'  subfragm ent 

excised, purified and ligated to pUC19 which had been cleaved at the 

Sma\  site. The ligation m ixture was then transform ed into com petent 

XL-1 cells, the plasm id DNA of recom binant colonies purified and the 

presence of m'  w ithin pUC19 detected by restriction  enzym e analysis 

and Southern blotting.
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Restriction enzyme analysis of a potential pU C 19///pa  lm ' recom binant 

with E c o K l  and H i n d  III gave two distinct bands, one corresponding to 

the plasm id backbone (2686 base pairs), and one which was slightly 

bigger, the H p a  lm ' insert (approximately 3000 base pairs). Figure 3.6 is 

an autoradiograph of the Southern blot analysis of 1703 DNA H p a  1 

digested and electrophoresed  through a 0.8% agarose/TB E gel. The 

probe, p U C ^ /Z /p a lm 1 had been 3 2 p  labelled in vitro and hybridized to 

Hpa  l m' ,  / /p a lm , the associated jo int fragm ent a , d , a'  and d'  and all of 

these fragm ents plus or minus extra 'a' sequences. The lanes on either 

side of the 1703 track are kilobase m arkers to aid the sizing of the 

fragments on the 1 7 0 3 ///p a l track.

Hpa  lm ' appeared to be a fragm ent of about 3000bp and, although the 

end points of the deletion were thought to be near one end of the 

fragment, it was decided that the fragm ent was too big to be directly 

cloned into M13 m p8. Thus a large scale stock of p U C 1 9 ///p a lm ' was 

grown, a portion of this was digested with S m a  1 and the resultant 

fragments random ly cloned into M l3 m p8 . The M l3 m p8 DNA from 

recom binant p laques was prepared  and sequenced by the Sanger 

dideoxynucleotide sequencing m ethod.

The sequencing profile of a clone in which the end points of the 

deletion are located is shown in figure 3.7. The sequence 'CGG' appears to 

be common to both deletion end points. Figure 3.8 demonstrates the end 

points of the deletion diagram m atically. The total length of the deletion 

is 7784bp, and the region deleted is between np (nucleotide position) 

123623 and np 115839 rem oving UL56, 343bp of the 3' end of UL55, 

leaving 555bp between the deletion end point and the 3' end of UL54 

(IE2). This dem onstrates that the genes affected by the deletion are 

UL55, UL56 and one copy of IE1 and correspondingly, one copy of LAT. 

Neither of the two UL genes has been assigned a function (McGeoch et



Figure 3.6 Southern blot analysis of pUC19///z?a 1 m ' .

Autoradiograph of a Southern blot in which random primed 3 2p  ;n 

vi t ro  labelled p U C 1 9 / / /p a  lm' was hybridized to H p a  1 digested 1703 

DNA (0.8% gel). The fragments detected are indicated as are the sizes of 

marker DNA (M) (xlO^ bp).





Figure 3.7 The DNA sequence of the 1703 deletion end points.

A portion of an autoradiograph of a sequencing gel showing the 

deletion in 1703. The deletion is between np23623 and npl5839.  The 

sequence 'egg' is common to both deletion end points.
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Figure 3.8 Exact map of the deletion in 1703.

Structure of the HSV-1 genome (a) showing U l  and U§ flanked by 

T R l / I R l  and IR $ /T R s  respectively. A portion of U l / I R l  *s expanded and 

the genes contained within are shown (b). B a m  HI (B ) and H p a  1 (H)  

restriction enzyme sites are indicated (c) as is the deletion (d). The 

resultant 1703 Hpa  1 (H)  and B a m H l  (B)  DNA fragments are shown (e).
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al.y 1988a) and only one copy of IE1 is required for the virus to grow as 

wild-type (Harland & Brown, 1985; M acLean & Brown 1987a,b). Since 

the deletion term inates 555bp downstream of the 3' end of IE2 leaving 

the 3' term ination signals intact, an explanation for the apparent lack of 

Vmw63 under im m ediate-early conditions had not yet been established. 

The data gained from sequencing the end points of the deletion is in 

agreement with the restric tion  enzym e analysis (M acLean & Brown, 

1987a) in that the H p a  \ restriction  enzym e fragm ents affected are v,r, 

and m and the partially deleted v and m fragm ents together become m \ 

The sequence analysis indicated that the deletion also removed a 

BamHl  site which had been previously shown to be present (MacLean & 

Brown, 1987a). This was confirmed by Southern blot analysis of pUC19/ 

Hpa  InT which had been rem oved from  its plasm id backbone (figure 

3.9), 1703 DNA Hpa  1 cleaved and 17+ DNA also H p a l  cleaved. The probe 

was an 30-base oligonucleotide which corresponded to a region between 

the sequenced end poin t of the deletion and the apparently  deleted 

B a m  H I site  (n p l2 3 4 9 5 -n p l2 3 5 2 4 ) . The 3 2 p  / n v i t r o  labelled  

oligonucleotide did not hybridize to the pUC19/ H p a  lm ' fragm ent, but 

did hybridize to the following 1703 DNA fragments: m \  m , a , b, a'  and b'  

and the m, a, and b fragments of 17+ indicating that the deletion in the 

pUC19////?tflnT plasmid was not identical to that in 1703. Since the small 

scale preparation of pU C 19////?alm ' was cleaved with B a m H l  in order to 

find its orientation in pUC19 (section 3.7.3) it is probable that the 

deletion was extended during the large scale preparation of plasmid 

DNA due to the instability of this region in E. col i  strain XL-1, the host 

bacteria for the plasmid.



Figure 3.9 Southern blot analysis of p HCl 9 I Hp a  1 m ' .

Autoradiograph of a Southern blot in which a 3 2p  jn vitro labelled 30 

base oligonucleotide (np l23695-np l23524) ,  corresponding to a region 

of 1703 DNA between the B a m H l  site deleted in p\JCl9/Hpa  lm' and the 

sequenced deletion end point of 1703 and hybridized to p\ JCl 9/ Hpa  1 m' 

E c o R l / H i n d l l l  digested, 1703 DNA H p a l  digested and 17+ DNA H p a l  

digested. 17 + and 1703 H p a l  fragments detected by the oligonucleotide 

are indicated, reduced bands indicated by the letter of the band from 

which they are derived plus a prime symbol, and missing bands marked.
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3.3 . W ESTER N BLOT ANALYSIS OF 1 7 ± ,  1 7 0 3  AND MOCK INFECTED  

POLYPEPTIDES.

HSV protein synthesis in infected cells falls into three categories: 1. 

Im m ediate-early polypeptides which are produced in the absence of 

prior pro tein  synthesis and are stim ulated by the virion tegum ent 

protein Vm w65 in the p resence  of ce llu la r tran scrip tio n  factors 

including oct-1. There are five HSV-1 im m ediate-early  proteins, IE1, 

IE2, IE3, IE4 and IE5, the first three of which function to transactivate 

both them selves and later classes of genes and the last two which are 

dispensable in tissue culture (for a detailed description of the function of 

im m ediate-early  po lypep tides see section 1.7). 2 .  Early genes eg.

thymidine kinase and 3 .  The late genes. This section of the results 

describes the detection  of the im m ediate-early  po lypep tide  Vmw63 

whose production is affected by the deletion in 1703. By comparing the 

amount of Vmw63 produced by 1703 to that produced by 17+ under 

immediate-early, early and late conditions it was possible to asses the

temporal regulation of the protein in 1703 infected cells.

To synthesize im m ediate-early polypeptides, BHK21 C l 3 or HFL 

monolayers w ere in fec ted  w ith 50pfu /ce ll of 17+ or 1703 in the

presence of cyclohexim ide and with 20pfu/ cell in the absence of any 

inhibitor fo r early  or late  po lypep tide  syn thesis. A fter 7 hours, 

immediate-early and early polypeptides were harvested into denaturing 

buffer. Before harvesting, im m ediate-early polypeptides were translated 

from the accum ulated im m ediate-early mRNA by washing the infected 

cell m onolayer with PBS containing actinom ycin D to rem ove the 

cycloheximide and incubating in the presence of actinom ycin D to 

prevent fu rther mRNA synthesis. L ate  po lypep tides w ere harvested 

after 16 hours. A m ock infected protein  preparation was used as a
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control. 3 5 S-m eth ionine was incorporated  in to  the po lypeptides to

facilitate analysis by SDS-PAGE. The antiserum  used throughout these 

experim ents was d irec ted  against the carboxy term inus of Vmw63 

(peptide NATDIDMLIDLGLDLS) and could also detect the HSV-2 Vmw63 

equivalent, Vmw65. This was supplied by Dr Howard Marsden.

P olypeptides were separated  by SD S-PA G E, transferred  to a 

nitrocellulose m em brane and incubated w ith antiserum . F igure 3.10a 

shows the resu lts  o f th is experim ent. W estern  b lo t analysis of 

im m ed ia te -ea rly  p re p a ra tio n s  o f 17+,  1703 and m ock infected

polypeptides dem onstrate that Vmw63 is produced by w ild-type but

that the amounts produced are relatively small. N either mock infected 

or 1703 lanes show a band that corresponds to Vmw63. Analysis of the 

early extract dem onstrates that Vmw63 was produced by 1703 but that

the am ounts w ere about half that of w ild-type. L ater results (figure

3.18) suggest tha t Vmw63 p roduction  under early  cond itions is 

equivalent to w ild-type. Late extracts show that Vmw63 production by 

1703 is equivalent to w ild-type. In both early and late mock infected 

tracks no band appears in the Vmw63 position indicating that the strong 

band appearing in the 17+ and 1703 lanes is indeed Vmw63.

The low amount of Vmw63 synthesized by 17+ at im m ediate-early 

times was unacceptable and it was therefore decided to use HFL cells to 

synthesize im m edia te-early  po lypep tides and to carry  out W estern 

blots. This was because HFL cells have previously been demonstrated to 

synthesize im m ediate-early  polypeptides m ore effic ien tly  than BHK21 

C13 cells (M acD onald, 1980). Figure 3.10b shows the resu lt of this 

experiment. Substantial amounts of Vmw63 are present in the wild-type 

lane and reduced amounts are dem onstrable in the 1703 track. In the 

mock infected lane there is no band at the Vmw63 position proving that 

the band in the 17+ and 1703 tracks are virus specific. Thus 1703



Figure 3.10 Western blot analysis of 17+ . 1703 and mock infected

polypeptide extracts.

a.  Immediate-early, early and late extracts of 17+, 1703 and mock 

infected BHK21 C13 cells, b. Immediate-early extracts of 17+, 1703 and 

mock infected HFL cells, c. Immediate-early extracts of 17+, serially 

diluted in mock infected extract as indicated, 1703 and mock infected 

HFL cells.

All polypeptides are run on a 7.5% polyacrylamide gel, blotted and 

hybridized to an antiserum which recognises the carboxyterminus of 

Vmw63 (peptide sequence NATDIDMLIDLGLDLS) and was supplied by 

Dr Howard Marsden. The position of Vmw63 is indicated and faint bands 

are marked.
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produces Vmw63 under im m ediate-early  conditions, albeit in reduced 

amounts com pared to w ild-type virus infections. This resu lt supports 

the suggestion by M acLean & Brown,( 1987a) that the reagents available 

at the time of initial characterization of 1703 were not sensitive enough 

to detect Vmw63 synthesized during im m ediate-early times of infection. 

Vmw63 production by 1703 was further analysed by titrating the 17+ 

polypeptide ex trac t in m ock in fec ted  ex trac t and com paring  the 

intensity of the bands obtained by W estern blotting to that produced by 

1703. Figure 3.10c is the result of this experim ent and dem onstrates 

that the amount of Vmw63 produced by 1703 is approxim ately 1/8 of 

that produced by 17+.

Hence W estern blot analysis has conclusively dem onstrated that 

Vmw63 is produced by 1703 under im m ediate-early conditions at 1/8 

the level o f th a t p roduced  by w ild -type  v iru s. E xposing  the 

nitrocellulose filter to an autoradiograph and ensuring that each lane 

demonstrated equivalent loading and band intensity acted as a control 

for this series of experiments (results not shown).

3.4. SI NUCLEASE MAPPING OF M R N A  PRODUCED BY 1703 U N D E R  

IMMEDIATE-E A R L Y . EARLY AND LATE CONDITIONS.

To determ ine w hether the im pairm ent of Vmw63 synthesis at 

immediate-early tim es was the result of interference w ith transcription, 

post-transcription or translation, the synthesis of mRNA by 1703 was 

analysed. Although originally used to map the 3' and 5' ends of genes, SI 

nuclease m apping was the m ethod of choice since it was sensitive 

enough to de tect low abundance transcrip ts o f w hich IE2 mRNA 

produced by 1703 under im m edia te-early  cond itions was typical. 

Synthesis and purification of im m ediate-early, early and late RNA was
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carried out as described in the m aterials and m ethods section. Two 

probes were used: pGX51 and pGX55, which detected IE2 (and IE1

mRNA) and IE5 mRNA respectively. The latter was a control for the 

experim en t.

p G X 5 1 :  is the S a l  1 fragm ent of B a m H lb  cloned in to  the plasm id 

pAT153. S a l  1 digestion gives two fragm ents, one of about 6000bp

corresponding to the HSV-1 fragment, and one of about 3000 bp which 

is the p lasm id  backbone. The fragm en ts are end lab e lled  by 

incorporating a 32p  labelled nucleotide. The Sal  1 fragment is purified by 

agarose gel electrophoresis, excised, and electroeluted from the gel. At 

this stage the probe can be used for SI nuclease mapping. pGX51 has 

been used previously to map the 3' end of IE2 mRNA (W hitton e t  

al ,  1983).

p G X 5 5 : is the S a l l f B a m H l  fragm ent of HSV-1 B a m H l z  cloned into 

pAT153. B a m  H I d igestion of pGX51 gives one fragm ent of about 

6000bp. The fragment is 32p  en(i labelled as described. pGX55 has been 

previously used to map the 3' end of IE5 (Rixon & Clements, 1982).

The derivation of both plasmids is outlined by figure 3.11. Figure 3.12 

demonstrates the m ethod of SI nuclease mapping which relies on the

fact that the enzyme SI nuclease digests areas of single stranded RNA

and DNA leaving double stranded molecules intact.

3A 1 . S I nuclease mapping o f  mRNA synthesized bv 1703 

under im m ed ia te -ea r lv  co n d it io n s .

The result of this experiment is given in figure 3.13. The RNA has been 

separated into cytoplasm ic and nuclear fractions dem onstrating that the 

amount of IE5 mRNA produced by 17+ and 1703 in both fractions is 

approximately equivalent, w ith a slight reduction of in tensity  in the



Figure 3.11 Map of pGX51 and pGX55.

Structure of the HSV-1 genome showing U l  and U$ flanked by 

T R l / IR l  anc  ̂ I ^ s / T R s  respectively. Portions of Ul / IR l  and U s /T R ^  are 

expanded to show the locations of the HSV-1 DNA fragments contained 

within pGX51 and pGX55.



pgx51: a Sail digest of BamHl b cloned 
into pATl 53.

pgx55: a Sail digest of 
BamHIz cloned into pAT153.



Figure 3.12 The method of SI nuclease mapping.

pGX51, 3 2 p  in v itro end labelled is used to illustrate the SI 

mapping procedure.

* represents the site of end labelling

nuclease



pGX51 Sail digested , 32P- 
labelled.

HSV-1 mRNA.

Production of RNA/DNA 
hybrids. (pGX51 hybridises 
to IE2 and IE1 mRNA).

Protected RNA/DNA 
hybrids.
(Single-stranded a reas  of 
DNA and RNA digested 
with S1 nuclease).

Hybrids denatured  and 
separa ted . (790bp for IE2, 
240bp for IE1).



Figure  3.13 SI nuclease map of 17+ and 1703 immediate-early

RNA.

Immediate-early preparations of 17+, 1703 and mock infected RNA 

(BHK21 C13 cells) subjected to SI nuclease mapping procedures. Lanes 

are labelled along the top of the gel and the size of the resultant 

fragments (base pairs) indicated. Bands reduced in intensity are marked.

n u c -n u c le a r  

cy t-cy top lasm ic  

IE2-fragments detected by pGX51 

IE5-fragments detected by pGX55 

Mi-mock infected
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1703 nuclear IE5 band. Similarly, the amount of IE1 mRNA produced by 

17+ and 1703 in the cytoplasm ic fraction is equivalent whereas IE2 

production by 1703 is much less than that produced by wild-type virus. 

This resu lt is consistent with the am ount of Vmw63 synthesized by 

1703 as shown in W estern blotting experim ents (section 3.3). However 

IE1 mRNA synthesis by 17+ and 1703 is not equivalent in the nuclear 

fraction. The IE2 mRNA band in the 1703 nuclear track is seen as a 

slight darkening of the area in which the band would be expected to run, 

and the IE1 mRNA band in the same track is correspondingly less 

intense than the 1703 IE1 mRNA band in the cytoplasm ic track. The 

band in the 1703 IE5 nuclear track is also less in tense, hence an 

explanation for the reduced amounts of IE1 mRNA in the 1703 nuclear 

track could be that the concentration of total RNA in the 1703 nuclear 

fraction is less than in the other RNA preparations. Thus it would appear 

that production of IE2 mRNA by 1703 under im m ediate-early conditions 

corresponds to the amount of Vmw63 produced by the virus implying 

that the block in Vmw 63 synthesis occurs at the transcriptional level. 

This is supported by the low amounts of IE2 mRNA in the 1703 nuclear 

fraction w hich im plies that only a sm all am ount of IE2 RNA is 

polyadenylated. The 1703 IE2 mRNA and protein bands run at the same 

position as the eq u iv a len t w ild -ty p e  bands in d ica tin g  tha t an 

uninterrupted mRNA molecule is synthesized excluding the possibility of 

a mutation within the IE2 coding region.

3.4.2. SI nuclease mapping o f  mRNA synthesized bv 1703 

under ea r lv and late conditions.

At early and late times, the amount of IE2 mRNA produced by 1703 

returns to norm al, in agreem ent with the W estern blot analysis data.
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Figure 3.14 is an SI map of early RNA. Although not as clear as the 

immediate-early map, the synthesis of IE1, IE2 and IE5 mRNA in the 

cytoplasm ic and nuc lear tracks of 17+ and 1703 appears to be 

equivalent. At late times it was obvious that the amount of IE2 mRNA 

synthesized by 1703 was directly comparable to wild-type (figure 3.15). 

In all SI nuclease mapping experim ents a m ock infected control was 

incorporated. This consisted of uninfected cells which had gone through 

an identical process to that of infected cells.

3.5. Th e  i n  v i v o  c h a r a c t e r i z a t i o n  o f  1703 .

Vmw63 is an essential imm ediate-early polypeptide both for in vitro 

virus grow th (Sacks et al . y 1985; M cC arthy  et  a / . ,1989) and the 

establishment of latency (Leib et al.y 198S&. It was therefore necessary to 

examine the neuroviru lence and latency charac teristics  of 1703 to 

determine if  the underproduction  of Vmw63 under im m ediate-early  

conditions affected these characteristics. As reported by M acLean & 

Brown, (1987a), 1703, then called X2D, did not express thym idine 

kinase. For this reason the fragm ent of X2D in which the deletion end

points were located was co-transfected with 17+ DNA to give a wild type

recombinant, 1703 (M acLean, 1988). In order that 1703 could be used 

in v iru lence experim ents, and as thym idine kinase is a virulence 

determinant (F ield  & W ildy, 1978), thym idine kinase production by 

1703 was determ ined.

3 J .1 .  T h y m id in e  k in a se  p ro d u ctio n  bv 1703.

Table 2.1 gives the results o f this experim ent. thym idine is 

incorporated into thym idine kinase and the resu lts are expressed in



Figure 3.14 SI nuclease mapping of 17+ and 1703 early RNA.

Early preparations of 17+, 1703 and mock infected RNA (BHK21 C13 

cells) subjected to SI nuclease mapping procedures. Lanes are labelled 

along the top and the resultant  protected fragments  (base pairs) 

indicated .

n u c -n u c lea r  

cy t-cy top lasm ic  

IE2-fragments protected by pGX51 

IE5-fragments protected by pGX55 

Mi-mock infected
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Figure 3.15 SI nuclease map of 17+ and 1703 late mRNA.

Late preparations of 17+, 1703 and mock infected cell RNA (BHK21 

C l 3) subjected to SI nuclease mapping procedures. Lanes are labelled 

along the top of the gel and fragment sizes (base pairs) are given.

n u c -n u c lea r  

cy t-cy top lasm ic  

IE2-fragments detected by pGX51 

IE5 fragments detected by pGX55 

Mi-mock infected
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Table 3.1. Thymidine kinase 
characteristics of 17* 1703, X2D and mock 
infected cells

Radioactivity (cpm)/5ul sam ple

Virus Experiment 2 Experiment 2
Mock 7350 5183
infected.
17 + 19511 24225

1703 29063 23091

X2D 4796 5030
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counts per minute due to thym idine. The thym idine kinase positive 

viruses, 17+ and 1703, had 2-3 times more counts per minute than the 

1703 parental virus X2D and mock infected cells indicating that 1703 

expressed thym idine kinase.

3.5.2. 1703__ n eu rov iru len ce .

Serial ten-fold dilutions of 1703 and 17+ were made in PBS/calf serum 

and inoculated into 3 week old male Balb/c mice via the intracranial 

route. Deaths were recorded and the LD50 found to be c l O ^ p f u / m o u s e  

(Table 2.2). The LD50 of 17+ in 3 week old Balb/c mice has recently 

been found to be <10pfu/m ouse (M acLean et al ., 1991b), but this was 

not known at the time of this experiment, hence, it is probable that 1703 

is as v iru len t as w ild -type although its v iru lence  has not been 

determined at clO pfu/m ouse.

3.5.3. 1703 latency.

Serial ten-fold dilutions of 1703 and 17+ were made in PBS/calf serum 

and inoculated into the right rear footpad of 4 week old male Balb/c 

mice. 17+ was the control for this experiment but the inoculum did not 

contain > 10^ pfu/ mouse due to the ability of 17+ to kill at higher 

dilutions via this route. 1703 was able to establish and reactivate from 

latency in the same manner as wild-type.

3,6. Transfer o f  the 1703 deletion to 17±- DNA.

The resu lts of the sequence analysis o f the 1703 IE2 gene 

demonstrated that the alteration of the tem poral regulation of Vmw63



Table 3.2. LD50 of 17 and 1703 following 
intracranial inoculation of 3 week old 
Balb/c mice.

Dose (pfu / animal)
LD50

Virus 1 0 2 10 3 10 4 1 0 5 pfu/animal

1703 4/4* 4/4 4/4 4/4 <10 2

17 + 4/4 4/4 ND ND <10 2

* number of animals dead/number of animals inoculated.
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in 1703 in fections was* not due to a secondary m utation in IE2. 

Confirmation that it was a direct result of the downstream  deletion has 

been achieved by transfer of a fragm ent spanning the deletion into a 

17+ genome. The 1703 B g l l l f  DNA fragment was used since H p a lm ', the 

fragment used to sequence the deletion end points was not large enough 

for efficient recom bination. The BglWT  fragm ent from 1703 DNA was 

obtained by separation  of B g l II c leaved  1703 DNA through an 

agarose/TBE gel and electroelution and co-transfected with 17+ DNA into 

BHK21 C l 3 cells. R esultant plaques were analysed by the method of 

Lonsdale, (1979). One recom binant plaque with the required DNA profile 

(outlined below) designated 1750 was isolated and plaque purified three 

times.

3.6.1. Analysis o f 1750 DNA.

32p in v iv0 labelled 17+, 1703 and 1750 DNA was digested with the 

enzymes B a m H l  and H p a  1. DNA profiles are shown in figure 3.16. 

Evidence that B g l l l f  had been recombined into 17+ DNA was provided 

by a reduction in intensity of bands H p a  lm  and H p a  la . The presence of 

Hpalvri  in the H p a  1 DNA profiles of both 1703 and 1750 is not clear as 

the band com igrates with a cellu lar band present in all four tracks, 

however the reduction in bands H p a  lm  and H p a  la  and the absence of 

Hpa  lv  and H p a  l r ,  characteristic  of the 1703 H p a \  DNA profile , 

demonstrates that the 1703 and 1750 DNA profiles are identical. The 

loss of B a m U l b  in the 1703 and 1750 DNA profiles compared to wild- 

type c o n c lu siv e ly  d em onstra ted  that 1750 w as a B g / I I f ' / 1 7  + 

recom binant. 1750 was fu rther charac terized  by the m ethods of 

Western blot analysis and SI nuclease mapping.



Figure 3.16 Analysis of 17+ .1703. 1750 and!703PA DNA.

17+, 1703, 1750 and 1703PA DNA was in vivo 3 2 p  labelled and 

digested with H p a  1 (a) or B a m W l  (b). Missing or reduced bands are 

marked and novel bands are indicated with the letter of the band from 

which they are derived and a prime symbol (').





91

3.6.2, Analysis of 1750 IE2 transcrip ts  and protein products.

SI nuclease mapping of 17+, 1703 and 1750 transcripts using the 

probes discussed in section 3.4 (figure 3.17) dem onstrated that IE5 

mRNA production by 1703 and 1750 was reduced in comparison to 17+ 

and indicated that the total RNA in the form er samples was less than 

the latter. IE1 mRNA production by all four viruses dem onstrated the 

same pattern, 1703 and 1750 reduced in comparison to 17+, IE2 mRNA 

production by both 1703 and 1750 under im m ediate-early  conditions 

was not apparent, that is, below the level of detection. W estern blot 

analysis of Vmw63 production by 17+, 1703 and 1750, synthesized 

under im m ed ia te -early  cond itions (figure  3 .18) dem onstra ted  that, 

compared to w ild-type, the production of Vmw63 by 1703 and 1750 

was reduced. The reduction in Vmw63 seen in the 1750 track appears to 

be less m arked than the same band in the 1703 track indicating that 

there m ay have been a loading  d iscrepancy  betw een the tracks. 

However the mock bands in all five lanes are identical in concentration 

implying that the difference in the intensity  of the 1703 and 1750 

Vmw63 bands reflected a genuine difference in the synthesis of the 

polypeptide by the two viruses. At early and late times of infection, the 

synthesis of Vmw63 by 1750 is directly com parable to that of wild- 

type. At all times of infection, a mock infected cell extract (uninfected 

cells) was analysed with the infected extracts to allow the elimination of 

cellular bands in the analysis of the blot.

This inform ation dem onstrates conclusively that the underproduction 

of Vmw63 under im m edia te-early  cond itions was not due to an 

mutation in a part of the 1703 genome distant from the deletion.



Figure 3.17 SI nuclease map of 17+ . 1703. 1750 and 1703PA

immediate-earlv mRNAs.

Immediate-early preparations of 17+, 1703, 1750, 1703PA and mock 

infected cell (BHK21 C l 3) cytoplasmic RNA was subjected to the SI 

nuclease mapping procedure. Bands reduced in intensity are marked 

and the sizes of resultant fragments in base pairs indicated.

IE2-fragments detected by pGX51 

IE5-fragments detected by pGX55



17031750 
1703 

Ml 
17* 

1703 
1750 

1703 
M

l



Figure  3.18 Western blot analysis of 17+ . 1703. 1750. and 1703PA 

immediate-earlv. early and late polypeptide extracts.

Immediate-early (a), early (b) and late (c) extracts of 17+ , 1703, 1750, 

1703PA and mock infected polypeptides run on a 7.5% polacrylamide 

gel, blotted and hybridized to an antiserum which recognised the 

carboxyterminus of Vmw63 and was supplied by Dr Howard Marsden. 

The position of Vmw63 is indicated.
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3.7. THE INTRODUCTION OF A POLYADENYLATION SIGNAL BETWEEN THE 

5' END OF IE1 AND THE 3* END OF TE2.

It becam e increasing ly  apparen t that the dow nregulation  of 

transcription of IE2 was due to the production of a transcript initiating 

from the IE1 prom oter and interfering with the synthesis of IE2 mRNA. 

Deletion of the normal IE1 polyadenylation signal and of UL56 (the only 

adjacent gene whose polyadenylation signal is in the same orientation as 

that of IE1) could result in the production of a long transcript (about 

15kb), part of which would be antisense to transcripts initiating from 

the IE2 promoter. Previous data (sections 3.3 and 3.4) has demonstrated 

that sm all am ounts of IE2 mRNA and protein are produced by 1703 

under im m ediate-early conditions implying that a small amount of IE2 

mRNA is processed. To confirm  that IE2 mRNA synthesis was being 

con tro lled  by an an tisen se  tran sc rip t, a p o ly ad en y la tio n  signal

was introduced between the 5' 

end of IE1 and the 3* end of IE2 in 1703 in the correct orientation to 

polyadenylate mRNA initiating from the IRl  copy of the IE1 promoter

before reaching IE2 coding sequences. This required the m anipulation of 

plasmids containing relevant 1703 DNA fragments.

3.7.1. T he p o lyad enylation signal.

A plasmid pSAU3 containing a polyadenylation signal which had been 

cloned into the B a m  H I  site of pGEM , was supplied by Dr John 

McLauchlan. As the polyadenylation signal was HSV-2 in origin it was 

anticipated that the construct could be used as a probe when detecting 

1703/polyadenylation signal recom binant viruses since its surrounding 

DNA should be heterologous to HSV-1 1703. However this proved not to
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be the case as the plasm id hybridized to other 1703 DNA fragments 

(figure 3.23).

There was about 150bp 5' to the polyadenylation 

signal which was used to transcript map the novel RNA synthesized as a 

result of the insertion of the signal into 1703 DNA. The structure of 

pSAU3 is shown in figure 3.19a.

The construct will be

referred to as the polyadenylation signal (PA). It could not be directly 

cloned into 1703 DNA as its surrounding sequences were not present in 

sufficient quantity, nor were they compatible with 1703 DNA. Thus, the 

1703 DNA fragm ents H p a  Is and H p a  lm ' were cloned around the signal 

in the orientation described below:

3.7.2. C loning Hpa  Is  into pSAU3.

Hp a  Is  was previously cloned into pUC19 in order to sequence the end 

points of the deletion in 1703 (section 3.2.1) since IE2 was located 

within this fragment. To find the orientation of H p a  Is within pUC19, the 

construct was cleaved with the restriction enzyme B a m H l  (figure 3.19b). 

A B a m  H I  site is located on the HSV-1 genome at n p l 13322 cleaving 

H p a  Is  in to  one 2441bp fragm ent and one 811bp fragm ent. Upon 

digestion of H p a  Is with B am  H I, one fragment of 2441bp (a portion of 

Hpa  Is), and one of about 3500bp (the remaining 811bp of H p a  Is plus 

the p lasm id ) w ere de tec ted  dem onstra ting  tha t H p a  Is had the 

orientation within pUC19 shown by figure 3.19b. To clone H p a  I s  in to  

pSAU3, p U C 1 9 // /p a ls  was cleaved with the restriction enzyme X b a l , 

blunt ended at that site and digested with E c o R1 resulting in a fragment 

of about 3251 bp (figure 3.19d). pSAU3 was linearised by cleaving at the 

S ma  1 and E c o R l  sites (figure 3.19c) resulting in both pSAU3 and



F ig u r e 3 .1 9  Cloning H v a Is into pSAU3.

a and b are pSAU3 and pUC19/ / /pa  Is respectively. The dotted lines 

indicate the plasmid backbone and the orientation of each fragment 

within  the plasmid is marked by an arrow. Restr ic t ion enzyme 

fragments are represented by the first one or two letters of the enzyme 

name (a key for this is given below), d and c demonstrate  the ends 

obtained by digestion and blunt ending of pU C 19 / / /pa Is  and pSAU3. The 

ligation of both gives a fragment whose structure is shown in e. The 

genes conta ined within the HSV-1 fragments are shown and the 

fragments resulting from a BamWX  ( e l )  and B a m H  1 / X b a  1 (e2 ) digest 

are indicated.

B E -Blunt ended S- Ss t l

B - B a m  HI S p - S p h  1

E- Ec o  R1 Sa-Sal  1

H n - H i n d l l l P - P s t l

H  c -Hi nc l l X - X b a  1

K - K p n  1 — plasmid backbone 

orientation of fragment
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p U C 1 9 / / /p a l s  having one blunt and one sticky end each and ensuring 

that the orientation of H p a  Is within pSAU3 was correct. Both fragments 

were purified by agarose gel electrophoresis and ligated together. As 

there was no colour selection available to identify recom binants, colonies 

arising from  the transform ation  were all picked and the resu ltan t 

plasm id DNA analysed  using re s tric tio n  enzym es (figu re  3.19e). 

Digestion of plasmid DNA with B a m H l  (figure 3 .19e l) resulted in two 

fragm ents, one of 2441bp (a portion of H p a  Is) and one of 3831bp 

(270bp of the polyadenylation signal, 2700bp of the plasm id backbone 

and 811bp of the rest of H p a  Is). Cleavage of pS A U 3////?a ls reco m b in an t 

plasmids with the enzymes B a m H l  and X b a  1 (figure 3.19e2) gave three 

fragments: one of 2441bp (a portion of H p a  I s  ), one of 270bp (the 

polyadenylation signal) and one of about 3500bp (the rest of H p a  I s  

together w ith the pGEM  backbone). Thus it was dem onstrated that 

H p a  Is  was cloned  in to  pSAU3 in the co rrec t o rien ta tion . The 

recombinant plasmid was called p S A U 3 ///p a ls .

17 .3 . Cloning Hpalm'  into p S A U 3 /J /p a ls .

The end points of the deletion w ithin 1703 were located within 

H p a lm ' and this fragment was already cloned into pUC19 (section 3.2.2). 

The orientation of H p a  lm ' in pUC19 was dem onstrated by B a m  H I  

restriction enzym e analysis of the construct (figure 3.20a). A BamHl 

restriction enzyme site is located within the HSV-1 genome at n p l23459 

and cleaves H palm ' into two distinct fragm ents, one of approxim ately 

500bp (a portion of H p a  lm ') and one of about 5000bp (the rest of 

H p a l m ' p lu s  the plasmid backbone). At this point, a large scale plasmid 

preparation of p U C 1 9 ////?0 lm ' was grown and the B a m H l  site within 

Hpa  lm ' was lost (section 3.2.2). The structure of pJJCl 9 / Hpa  lm ' is



F ig u r e 3 .2 0  Cloning H v a lm' into pSAU3///o<31 s.

a and c are p U C 1 9 ///p a  lm ' and p S A \ J 3 / H p a  Is respectively. Dotted 

lines indicate  the plasm id backbone and the orientation  of each 

fragment within the plasmid is marked by arrows. Restriction enzyme 

sites are represented by the first one or two letters of the enzyme name 

(a key for this is given below), b and d dem onstra te  the fragments 

obtained  by d igestion  and blunt ending to give H p a  lm ' and 

p S A U 3 / / /p a I s  with suitable ends for ligation, e is the result of ligation of 

both fragm ents and the genes within are indicated, e l  shows the 

fragments obtained by a B a m H l  digest, e2 is a K p n l  digest and e3 is a 

Ss t  1 digest.

B E -b lun t ended S - S s t l

B - B a m H l  S p - S p h  1

E- Ec o Rl  S a - S a l l

H c - H i n c  I I

H n - H i n d l l l P - P s t l

X - X b a l

K - K p n l --- plasmid backbone

► orientation of fragment.
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shown in figure 3.20 as are the m anipulations of pSA U 3////?a Is  and 

p U C l9/ H p a l m '  which resulted in the isolation of pSA U 3////?als////?tf lm '. 

These are summarized as follows:

pU C19////?a lm ’ was cleaved with the enzyme E c o R l ,  blunt ended at 

that site, purified and further digested with X b a  1 (figure 3.20b). This 

separated H p a  lm ' from its plasmid backbone and resulted in it having 

one b lunt end and one sticky end. The same ends were given to 

p S A U 3 /// /? 0 Is by first digesting with Hi nd l l l ,  blunt ending at that site, 

and cleaving with X b a l  (figure 3.20d). The fragments were ligated in the 

correct orientation. All colonies from the transform ation were picked, 

and the resultant DNA analysed using restriction enzymes (figure 3.20e). 

Cleavage of the construct with B a m H l  (figure 3 .20e l) gave one 2441 bp 

fragment (a portion of H p a  Is), one of 270bp (the polyadenylation 

signal), and one of 5500bp (the plasmid backbone, H p a  lm ', and the rest 

of H p a  Is). Digestion with K p n l  (figure 3.20e2) gave two fragments one 

of which is the H p a  ls /p o ly a d en y la tio n  signa l// / /?a lm ' whose size was 

about 6000bp, and one of 2770bp corresponding  to the plasm id 

backbone. Confirm ation of the orientation of the 1703 DNA fragments 

within pSAU3 was obtained by digestion with Sst  1 (figure 3.20e3) which 

gave the fo llow ing restric tion  enzym e cleavage pattern : a 3232bp 

frag m en t { H p a  Is ) , one of 1752bp (part o f H p a  lm ' and the 

polyadenylation signal), one of 1334bp (the rest of H p a l m ' )  and one of 

2770bp (made up of the plasmid backbone). Further confirm ation of the 

orientation of the fragm ents within pSAU3 was achieved by Southern 

blot analysis.
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3.7.4, Confirmation of the structure of p S A U 3 / / /p f l l s / / /p f l l  m 1 

bv Southern blot analysis.

Figure 3.21 is an autoradiograph of the Southern blot analysis of 

pS A U 3 / H p a  1 s / Hp a  lm ' and 1703 DNA hybridized to various probes. 

3.21a shows 1703 DNA cleaved with H p a  1 and electrophoresed through 

a 0 .8%  T B E /ac ry lam id e  gel. The p ro b e  is random  prim ed

pS A U 3 / / / p a  1 s / H p a  lm ', which hybridizes to the follow ing H p a  1 

fragments: m \  s, m , and the m ’ and m jo int fragments a , d , a \  and d'. The 

probe detects several bands other than those described above indicating 

that the polyadenylation signal hybridizes non-specifically to 1703 DNA. 

3.21b dem onstrates the hybridization of random  prim ed 3 2 p  /n v itro 

labelled 1703 DNA to B a m H l  digested pSA U 3////?a l s / H p a  lm ' which 

gives two fragm ents, one of 2441bp (a portion of H p a  Is) and a large 

fragment of about 7000bp (the rest of H p a  Is, the plasmid backbone, and 

Hpal m' ) .  The probe hybridizes to all fragm ents except that containing 

the polyadenylation signal. H ybridization of random  prim ed pSAU3 to 

the B a m H l  digested construct (3.21c) gave a signal corresponding to the 

polyadenylation signal and the fragm ent containing pGEM , the plasmid 

backbone. This data is consisten t w ith the plasm id construct first 

discussed in section 3.7 which was subsequently used to construct the 

1703 recom binant virus contain ing  a polyadenylation  signal in the 

correct orientation to p o ly a d e n y la te  the antisense transcript.

17 .5 . C onstruction and analysis o f  the 1703PA recom binant  

n c n o m e .

The plasmid construct described in section 3.7.4 was cleaved with the 

restriction enzym e K p n l  and the ///?**! s/po lyadeny la tion  signal////?** 1 m '



Figure 3.21 Southern blot analysis of p S AU3 / Hp a  1 s / Hp a  1 m*.

Autoradiograph of Southern blots in which: a. random primed 32p i n 

vi t ro  labelled p S A V 3 / H p a  1 s / Hp a  lm ' is hybridized to H p a  1 digested 

1703 DNA (0.8% agarose), b. random primed 32p  in vitro labelled 1703 

DNA is hybridized to B a m  H I digested p S A H 3 / H p a  1 s / H p a  lm ' (1% 

agarose: lane 1) c. random primed 3 2 p  ;n vitro labelled  pSAU3 is 

hybridized to B a m H l  digested p S A V 3 / H p a l s / H p a l m '  (1% agarose; lane 

2). Marker tracks are indicated (M) and the size of bands labelled (kbp). 

The size of fragments detected by the probes are indicated.
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fragment was purified by agarose gel electrophoresis. Co-transfection of 

the fragm ent with 1703 DNA and analysis of resultant progeny by the 

Lonsdale (1979) m ethod iden tified  a 1703 /po lyadeny la tion  signal 

recom binant called 1703PA whose restric tion  enzym e profile  is now 

described :

Figure 3.16 shows H p a  1 and B a m K l  profiles of 17+ , 1703, 1750 and 

1703PA 3 2 p  in v ivo labelled DNA. Sections 3.1.1 and 3.6.1 summarize 

the restriction enzyme profiles of 1703 and 1750 respectively, thus only 

the profile of 1703PA will be discussed here. The H p a  1 site between 

Hpa  Is and H p a  lm ' has been lost due to insertion of the polyadenylation 

signal at that site resulting in the loss of H p a  Is and H p a  lm '.  A novel 

0.5M band consisting of H p a  Is, the polyadenylation signal, and H p a l m '  

which has a m olecular w eight of 4 .1x10^, runs with H p a  lm  and is 

therefore not detected. Insertion of the construct also results in the 

Hp a  lm ' containing jo in t fragm ents H p a  la* and H p a  Id ' returning to 

almost the equivalen t size as w ild-type, that is 14.5x10^ m ol. wt. 

(Hpa la") and 11.1x 10^ mol. wt. (Hpa  ld M) respectively. Due to the intact 

copy of H p a l m  in T R l ,  the joint fragments a and d  are also present. The 

Bam  H I  profile of 1703PA is slightly more com plicated (figure 3.16b) 

since in sertion  of the po lyadeny la tion  signal also resu lts  in the 

introduction of two novel B a m  HI sites, one on either side of the signal. 

This results in a B a m H l  site at almost exactly the position of the H p a  1 

site deleted during the construction of p S A U 3 / / /p a ls / / /p a lm '.  Thus 

B a mHl b '  becom es Ba mHl b " ,  a 1M fragment of 1.63x 106 mol. wt. which 

migrates between m / v  and sit. B a m U l k  is also slightly altered due to the 

extension of the deletion in the H p a l m ' fragm ent used to construct 

pSA U 3 / / / p a l s / / / p 0 lm '. B a m H l k  becomes B a m H l k \  a 1M fragment of 

3 .9 0 x 1 06 mol. wt., only slightly sm aller than B a m  H lk . In B a m  H I
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digested 1703PA DNA, the polyadenylation signal is cleaved but runs off 

the gel because it is only 270bp in length.

The above analyses are shown diagram m atically by figure 3.22. The 

data is consistent with the insertion of the polyadenylation signal in the 

desired region of 1703 DNA. 1703PA DNA was further analysed by 

Southern blot analysis.

3.7.6. C o n firm a tio n  of the  p resence  of PA w ith in  1703.

Southern blot analysis of 1703PA DNA which had been digested with 

Hp a  1 and hybridized with 3 2 p  in vitro labelled pSAU3 (figure 3.23) 

shows that the polyadenylation signal is capable of hybridizing to a 

variety of fragm ents dem onstrating that it has sequences in common 

with HSV-1 17+ polyadenylation signals. However, the probe hybridizes 

to a band near the 6000bp marker band which is diffuse in appearance 

indicating that it is probably an end. The H p a  Is  fragm ent in which the 

polyadenylation signal was recombined is an end and is thought to have 

a size of approxim ately 6500bp (3251bp \ Hpa  Is], 3000bp [Hpalm' ]  and 

270bp [polyadenylation signal]). Restriction enzyme analysis of 1703PA 

DNA indicated that the polyadenylation signal lies within this fragment. 

R estriction enzym e analysis and Southern b lotting has dem onstrated 

that the polyadenylation signal has been recom bined into the correct 

fragment of 1703 DNA and careful cloning of H p a  Is and H p a  lm ' into 

pSAU3 has ensured that the polyadenylation signal is in the correct 

orientation w ithin 1703PA to term inate the antisense transcrip t before 

reaching IE2 coding sequences. Knowing these facts, it was now possible 

to proceed with the analysis of 1703PA IE2 products.



Figure 3.22 Map of 1703 showing inserted polyadenylation signal.

Structure of the HSV-1 genome (a) showing U l  and U§ flanked by 

T R l / I R l  and IR s /T R s  respectively. A portion of the U l / I R l  junction is 

expanded and the genes within are shown (b). BamYi l  (B ) and H p a  1 (H)  

restriction enzyme sites are indicated (c) as is the deletion (d), the 

resultant 1703 DNA fragments (e) and those obtained after insertion of 

the polyadenylation signal (e l) .





Figure 3.23 Southern blot analysis of !703PA.

Autoradiograph of Southern blot in which random primed 32p  ;n viiro 

labelled pSAU3 (the plasmid containing the polyadenylation signal) is 

hybridized to H pa  1 digested 1703PA DNA (0.8% gel). Marker fragments 

are labelled  (M xlO^ base pairs) and the 1703PA DNA fragments 

detected are indicated.
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3.8. A n a l y s i s  o f  1 7 0 3 P A  IE2 g e n e  p r o d u c t s .

The methods of SI nuclease mapping and W estern blot analysis have 

been described elsew here (sections 3.4 and 3.3 respectively), however 

an additional probe was used in the SI nuclease mapping experiments 

and is described in detail in section 3.8.2.

3.8.1. W estern blot analysis o f 1703PA polypeptides.

Figure 3.18 is a Western blot analysis of 17+, 1703, 1750 and 1703PA 

p o ly p e p tid e s  w h ich  d e m o n s tra te s  th a t u n d e r im m e d ia te -e a r ly  

conditions, the production of Vmw63 by 1703PA has returned to wild- 

type levels. In the lane before 17+, a low intensity band at the same 

molecular weight as Vmw63 in the other four track is present. This band 

is also present in the mock infected tract im plying that it is either a 

cellular band or is a result of overflow from the 17+ and 1703PA tracks. 

Repeating this experim ent dem onstrated that the band was a result of 

overflow (results not shown). Synthesis of Vmw63 by 1703PA is also 

comparable to w ild-type at times other than im m ediate-early. In section

3.3, it was indicated that production of Vmw63 by 1703 under early 

conditions was about half that produced by wild-type implying that the 

block in the synthesis of Vmw63 may not be fully overcome at early 

times. This blot dem onstrates that Vmw63 production by 1703 was 

equivalent to wild-type during early conditions of infection and that the 

slight underproduction dem onstrated in the other blot (figure 3.10a) 

may have been due to a loading artifact, or to variation from  one 

experiment to another.

Thus, W estern blot analysis of 1703PA has dem onstrated that the 

production of Vmw63 in 1703 infected cells is at the transcriptional



^ h e  1703PA IE2 mRNA fragment appears to be increased is size relative 

to the 17+ IE2 mRNA fragment. This may reflect a genuine increase in 

molecular weight of the fragment or may be due to unequal migration of 

the bands (ie. a gel artifact).
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level and is con tro lled  by the p roduction  of transcrip ts that are 

antisense to IE2 mRNA initiating from the IRl  copy of the IE1 promoter.

This was shown conclusively by SI nuclease mapping IE2 mRNA and by 

detection of the novel transcript resulting from the integration of the 

polyadenylation signal.

2i£JL SI nuclease m apping of 1703PA transcripts.

There were three d ifferen t probes used during this experim ent, 

pGX55, pGX51 (described in section 3.4) and pS A U 3///p tfls ////? tflm '. The 

last probe was prepared by cleaving the construct with B a m U l , filling in 

the 5’ overhang incorporating a 32p  labelled nucleotide and isolating the 

270bp fragm ent in which the polyadenylation signal was situated. This 

ensured that the novel transcrip t resulting from the insertion of the 

polyadenylation signal would be detected. Figure 3.24 dem onstrates the 

manner in which pSA U 3////?a 1 m ' / H p a  Is  was cleaved with restriction 

enzymes to give the DNA fragm ent used as a probe and the protected 

fragment obtained after SI nuclease m apping. Figure 3.17 shows the 

results of an SI nuclease map with the probes which detected IE2, and 

IE5 mRNA. The results agree with the W estern blot analysis since 

synthesis of IE2 mRNA by 1703PA has returned to w ild-type levels.* 

Because the pro tein  data had dem onstrated that the production of 

Vmw63 was equivalent to wild-type during early and late times, it was 

obvious that SI nuclease mapping of these mRNAs would give identical 

results. For this reason, these mRNAs were not mapped. Detection of the 

novel transcrip t using the polyadenylation signal as a probe (figure 

3.25) conclusively dem onstrated that a transcript antisense to the IE2 

mRNA initiated from the IE1 prom oter

This is the first example of a variant which



Figure 3.24 The probe used to detect the novel transcript.

Diagram of the probe used to detect the novel transcript created by 

insertion of the polyadenylation signal.
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Figure  3.25 SI nuclease map of 17+ . 1703. 1750 and 1703PA

immediate-early RNA.

SI nuclease map of 17+ , 1703, 1750 and 1703PA RNA subjected to SI 

nuclease mapping. The probe used is described in figure 3.24. Lanes are 

labelled along the top of the gel and fragments detected are indicated.
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has been shown to control the product of one of its genes by the

synthesis of an antisense transcript.

3,9 Growth properties of the three variants.

Growth characteristics of 1703, 1750 and 1703PA are similar to strain 

17 + . A one-step growth experim ent over 24 hours showed no marked 

difference in the growth characteristics of the three variants compared 

to 17+ (figure 3.26). The long term growth properties of 1703, 1750 and 

1703PA indicated that the three variants were slightly growth restricted 

compared to 17+ since 1703, 1750 and 1703PA all clustered around a 

final titre of about one log lower than 17+ > although the slope of all four 

curves was sim ilar indicating that their growth rates were the same. 

1703PA, the virus in which Vmw63 production has returned to wild-

type virus levels, showed a sim ilar curve to that of the other two

variants indicating that the defect in growth exhibited by the three 

variants was not due to reduced p roduction  o f Vmw63 during 

immediate-early conditions of infection. The particle/pfu ratios of 17+, 

1703, 1750 and 1703PA are 12:1, 57:1, 9:1 and 94:1 respectively and 

typical stock titres are 1x 10^ 0 , 8x 10^ , 6x 10^ and 2x 10^ pfu/m l 

respectively. These results show that long term  growth of the three 

variants is one log lower than 17+ but the stock titres and particle:pfu 

ratios are acceptable for wild-type virus. Long term growth experiments 

mimic the grow th of v irus stocks in that the in fec ting  dose 

(O.OOlpfu/cell) and the time allowed for growth (typically 72 hours) are 

the same. This im plies that the defect in virus growth seen in this 

experiment is the result of variation among BHK21 C l3 cells.



Figure 3.26 One-step growth characteristics of 17+ , 1703. 1750 and

1703PA .

One step growth curves of 17+ , 1703 , 1750 and 1703PA in BHK21 

C l 3 cells. Cells were infected at a multiplicity of infection of 5pfu/cell, 

the monolayers washed twice in PBS/calf serum, overlaid with ETC10% 

and incubated at 37°C. Plates were harvested at 0, 2, 4, 6, 8, 10, 12 and 

24 hours post infection and titrated as normal.
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Figure 3.27 Long term growth characteristics of 17+ . 1703. 1750 and

1703PA.

Long term growth curves of HSV-1 strain 17+ , 1703 , 1750 and 

1703PA in BHK21 C13 cells. Cells were infected at a multiplicity of 

0.001 pfu/cell, the monolayers washed twice in PBS/calf serum, overlaid 

with ETC10% and incubated at 37°C. Plates were harvested at 0, 6, 12, 

24, 36, 48, 60 and 72 hour post infection and titrated as normal.
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Chapter 4
1 0 2

D i s c u s s i o n .

The original aim of the project described in this thesis was to further 

characterize the HSV-1 deletion variant 1703 which, on initial analysis 

(M acLean & B row n,1987a; M acL ean ,1988), ap p aren tly  fa iled  to 

syn thesize  the e ssen tia l im m ed ia te -ea rly  p o ly p ep tid e  Vm w63 at 

imm ediate-early times of infection. In depth characterization as detailed 

in the results section was achieved by: 1 . The d id eo x y n u c leo tid e  

sequence analysis of the 1703 DNA fragm ents in which IE2 and the 

deletion end points were located. 2. The in vivo characterization of 1703. 

3. The analysis of 1703 IE2 gene products and 4. The production of a 

1703 w ild-type recom binant. The purpose of the investigation was to 

find a reason for the apparent lack of production of Vmw63 under 

immediate-early conditions and to examine its in vivo effect. The project 

was extended to investigate an idea proposed by Dr John M cLauchlan, 

that synthesis of Vmw63 in 1703 infected cells could be controlled by a 

transcript antisense to IE2 mRNA.

Vmw63 is an essential immediate-early polypeptide (Sacks et al., 1985; 

M cCarthy et a l . ,1989) which functions to transactivate later classes of 

genes, especially those which are not synthesized in the absence of viral 

DNA replication, that is, the true late genes. IE2 deletion variants are not 

viable in tissue culture (except in cell lines expressing Vmw63), they 

induce synthesis of greatly reduced levels of viral DNA and early-late 

polypeptides and overexpress early proteins. IE2 deletion variants are 

also unable to establish latency (Leib et al., 198£). 1703 exhibited no 

aberrant charac te ristics , grow ing alm ost norm ally  in tissue culture 

(MacLean & Brown, 1987a; this thesis). The growth characteristics of
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1703 as established by MacLean & Brown, (1987a) were similar to 17+. 

However, results obtained during this project indicate that 1703 and the 

two recom binants 1750 and 1703PA exhibited a reduction in growth of 

one log during a long term growth experiment. The shape of the curves 

obtained ind icated  that the rates of grow th w ere equ iva len t but 

eventual titres different. The stock titres of the three variants were 

within the acceptable range for HSV-1 indicating that perhaps the batch 

of BHK21 C13 cells used for the latter experim ent did not support the 

growth of the varian ts as w ell as those used in the form er, 

dem onstrating a possible requirem ent for the products of the genes 

deleted in the varian ts in som e batches o f BHK21 C13 cells. 

Alternatively, the difference in results obtained in this thesis and those 

obtained by M acLean & Brown, (1987a) may be due to variation 

between experim ents and would have to be repeated several times to 

establish the involvem ent of the products of genes deleted in 1703, 

1750 and 1703PA, in long term growth.

W estern blot analysis and SI nuclease mapping had established that 

Vmw63 production in 1703 infected cells was only affected during 

immediate-early conditions of infection and the block in synthesis was 

at the level of transcription. The synthesis of IE2 mRNA and Vmw63 

returned to levels equivalent to wild-type during early and late times of 

infection, and the small amount of polyadenylated IE2 mRNA present 

during a 1703 im m ediate-early  infection was reflected  in the small 

amount of Vmw63 synthesized, demonstrating that the block was not at 

the translational level. During im m ediate-early conditions of infection, 

IE2 mRNA was present in both the nuclear and cytoplasm ic RNA 

fractions ind ica ting  tha t a lim ited  quan tity  of IE2 m RNA was 

polyadenylated and therefore transported to the cytoplasm . To explain 

this, several ideas w ere proposed. These ranged from  a secondary
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mutation in the IE2 imm ediate-early specific promoter, TAATGARAT, to 

the possibility that the deleted genes in 1703 functioned to transactivate 

IE2, or that antisense transcripts initiating from the IRl  copy of the IE1

promoter controlled IE2 mRNA production. System atically, each of these 

possibilities was exam ined by: 1. DNA sequencing the IE2 prom oter 

region, 2. An extensive review of the literature examining the role of the 

1703 deleted genes UL55 and UL56, and 3 . The construction of a 

recom binant 1703 virus in which a polyadenylation signal had been 

inserted to term inate  synthesis of the an tisense  tran scrip t before 

reaching IE2 coding sequences.

A requirem ent for transactivation of IE2 by the Vm w 65/cellular 

factor com plex was dem onstrated by Ace et a l ., (1989). This group 

mutated the Vmw65 encoding gene in such a way as to abolish the 

transactivating function of the protein. Cells infected with the resultant 

recom binan t v irus ex p ressed  reduced  am ounts o f IE 2 mRNA 

demonstrating that the gene had a requirem ent, though not absolute, for 

functional Vmw65. 1703 expressed 1/8 of the w ild-type amount of 

Vmw63 during im m ediate-early  tim es of in fec tion  ind icating  that 

perhaps the IE2 im m ediate-early prom oter was not recognised by the 

V m w 65/cellu lar fac to r com plex , tha t is, a m uta tion  w ith in  the 

TAATGARAT im m ediate-early  consensus sequence. The products of 

immediate-early genes 3 and 4 were synthesized in amounts equivalent 

to wild type indicating that Vmw65 was able to transactivate normally. 

D ideoxynucleotide sequence analysis o f IE2 dem onstra ted  that its 

imm ediate-early prom oter was hom ologous to the published w ild-type 

sequence (M cGeoch et al ., 1988a). This demonstrated conclusively that a 

mutation in the prom oter region of 1703, IE2 was not responsible for 

the pattern of Vmw63 production during im m ediate-early times.
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Sequencing of the 1703 DNA fragment containing the end points of the 

deletion has shown that there are 555 base pairs rem aining between the 

3' end of IE2 and the deletion end point. The deletion removes 343 base 

pairs of the 3' end of UL55, leaving its prom oter elements and part of

the open reading frame intact. All of UL56 and the 3' end of the IRl

copy of IE1 are deleted as far as the first intron of IE1. It has already

been shown that UL55 and UL56 are dispensable in tissue culture and

that HSV-1 deletion variants lacking one complete copy of IE1 are viable 

in tissue culture (Brown et al., 1984; Harland & Brown, 1985; MacLean & 

Brown, 1987a,b). UL55 and UL56 have, how ever, been im plicated as 

possible HSV-1 gene regulators. Block et al.,( 1991) used several plasmid 

constructs in a transient expression assay to dem onstrate that UL55 and 

UL56, when co-transfected with plasmids encoding IE1, IE2 or IE3 and 

one encoding a region upstream of the 5' end of IE2 can together repress 

the activity of a Rous sarcoma virus-CAT hybrid and that when UL55 

contained a point mutation, or when UL55 and UL56 were not included 

in the assay, this effect was not seen. This indicates that either UL55 or 

UL56 gene products may act alone or together to repress HSV-1 

prom oter activ ity . 1703 infected  cells exh ib it reduced  synthesis of 

Vmw63 during im m ediate-early conditions of infection, the opposite of 

what would happen if UL55 and/or UL56 did indeed have the function 

described above.

Several variants have been isolated with deletions affecting UL55 

and/or UL56 (table 4.1; inform ation for this table was taken from the 

following sources; MacLean, 1988; MacLean & Brown, 1987 a, b; Junejo, 

1991: Junejo et al., 1991 and Rosen & Darai, 1985). Three variants, 1704, 

1705 and 1706 were isolated by M acLean & Brown, (1987b) whose 

deletions were w ithin the U l / I R l  region of the HSV-1 genome and

terminated 1232, 183, and 80 base pairs respectively  dow nstream  of
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the 3' end of IE2 (Junejo, 1991; Junejo et a l ., 1991). 1705 and 1706 

dem onstrate a two-fold reduction in Vmw63 synthesis (M acLean, 1988) 

probably reflecting the proxim ity of the deletion end point to the 3' 

term ination associated signals of IE2. 1704 does not dem onstrate any 

change in Vmw63 synthesis again reflecting the distance between the 

deletion endpoint and the 3' end of IE2. A YGTGTTYY (Y= pyrimidine, 

either C or G) m otif located downstream from the polyadenylation signal 

is required for efficient form ation of 3' end term ini (M cLauchlan e t  

a / . ,1985). This m otif is present 40 base pairs downstream of the 3* end 

of the IE2 gene in HSV-1. According to the sequence analysis of 1705 

and 1706, their deletion end points do not encompass this m otif but the 

proximity of the deletion to the YGTGTTYY sequence may

result in the slight inhibition of term ination and reduced levels of 

product. T here m ay be o ther, as yet und iscovered , term ination  

associated signals in the deleted region, the loss of which results in 

reduced levels of Vmw63, and the possibility of a secondary mutation in 

IE2 cannot be ruled out as the IE2 prom oter region of neither variant 

has been sequenced. It is interesting to note that in 1704, UL55 is intact 

and UL56 is deleted whereas 1705 and 1706 have both genes deleted 

possibly indicating a link between UL55 and the transactivation of IE2.

A deletion variant has been isolated in which UL55 remains, UL56 is 

deleted and Vmw63 is underproduced. This variant, HFEM , isolated by 

Rosen & Darai, (1985), has a 4.1kbp deletion in Ul / IR l  which affects

UL56, rem oving its prom oters. The data from  M acLean & Brown, 

(1987b), M acLean, (1988) and Junejo, (1991) indicate that UL55 may 

encode an IE2 transcriptional enhancer and that the deletion of this 

element could result in the reduced synthesis of Vmw63. This is not 

supported by the HFEM data which indicates that UL56 may encode a 

function which transactivates IE2, and that presence of UL55 has no
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bearing on Vmw63 synthesis. In addition, the data from Block et al .y 

(1991) im plicating UL55 and UL56 in the repression of HSV-1 genes 

com plicates m atters since it attributes no enhancing activity  to either 

gene product. The deletion of an as yet undiscovered enhancer element 

which is not encoded by either gene may be responsible for the pattern 

of Vmw63 production dem onstrated by the variants described above 

and cannot be discounted as a possible m echanism by which Vmw63 is 

underproduced by these variants.

The experim ental work has shown that the relevant regions of the 

1703 gene IE2 are hom ologous to the w ild-type sequence and the 

putative functions of UL55 and UL56 makes it im possible to conclude 

that either gene is a positive regulator of IE2.

In vivo characterization  of 1703 dem onstrated that the deletion of 

parts of UL55, one copy of LAT and IE1, the total deletion of UL56 and 

the reduced production of Vmw63 had no effect on the ability of 1703 

to grow in mouse brains, or to establish, m aintain and reactivate from 

latency.

These results correlate with those obtained for the variants HFEM, 

1704, 1705 and 1706. The deleted regions of these variants differ in

genes rem oved (table 4.1). V irulence of the four v iruses via the

intracranial route was, in all cases, com parable to that of wild-type, 

(Becker et al.y 1986; Junejo, 1991) indicating that w ild-type amounts of 

Vmw63, LAT, V m w llO , and the products of genes UL55 and UL56 are 

not required for virulence via this route. HFEM was characterized in

terms o f p a th o g en ic ity  by in o cu la tin g  v ia  the  in tra p e rito n ea l,

subcutaneous and in travenous rou tes w here it w as found to be 

avirulent, thereby implicating the product of either UL56 or LAT in the 

ability of this HSV-1 strain to replicate in the organs encountered during 

inoculation by these routes. Correction of the HFEM deletion by replacing
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it w ith the w ild-type fragm ent from  the iden tica l reg ion  restored 

pathogenicity in tree shrews but in mice only 19% of inoculated animals 

died, showing that the above two genes products may be necessary for 

the pattern of pathogenicity demonstrated by HFEM in tree shrews but 

not absolutely required for virulence in mice (Rosen et a/., 1986).

Wollert et al.,( 1991) implicate the region of the HSV-1 genome deleted 

in HFEM with its ability to grow in macrophages of mice and indicate 

that HFEM is unable to do so. This may be the reason that HFEM is 

unable to kill via routes other that intracranial, although intraperitoneal 

virulence appears to be dependent on the animal used. The use of tree 

shrews during the pathogenicity experiments by Rosen et a/.,( 1986) is of 

in terest since these anim als occupy a phy logenetic  niche between 

rodents and prim ates and therefore may mimic the responses of man to 

virus infection in a m anner which is more genuine than the mouse 

model.

1703 has not been characterised for virulence by any route other that 

intracranial and such an experim ent, incorporating perhaps, 1704, 1705 

and 1706 which differ with respect to the presence or absence of UL55, 

with UL56 being absent in all cases, may give inform ation concerning 

the roles that these genes play during pathogenicity. It is possible that, 

from the evidence presented by Rosen et al.y( 1986) and since none of 

the variants encode the UL56 gene product (like HFEM), they would be 

avirulent when inoculated  by routes o ther than in tracran ia l if  the 

UL55/UL56 effect is not lim ited to tree shrews, although results by 

Rosen et al ., (1986) indicate that it may be. It is worth remembering 

that m ost of these variants also underproduce Vmw63 and it would 

perhaps be difficult to dissociate the effects of that underproduction and 

the presence or absence of UL55 or UL56. There is a HSV-1 variant, 

constructed during the course of this project, called 1703PA in which
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Vmw63 production is equivalent to wild-type and genes UL55 and UL56 

are deleted. The use of this variant as a control for the experim ent 

described above would enable the effects of reduced production of

Vmw63 and the absence of the products of genes UL55 and UL56 to be 

dissociated. The HFEM revertant exhibits wild-type pathogenicity in tree 

shrews indicating that e ither production of Vmw63 has returned to 

norm al levels or that UL56 is responsib le  for HFEM s virulence

characteristics. Spivack & Fraser, (1988£ attribute the defect in Vmw63 

production in HFEM infected cells to a mutation in IE2 hence it is likely 

that the latter is the case.

The above authors also document the latency characteristics of HFEM 

which, like 1703, has only one copy of LAT and, also like 1703, 

establishes, m aintains and reactivates from  latency w ith a sim ilar 

frequency to wild-type. The information gained from the latency studies

of both HFEM and 1703 indicate that UL55 and UL56 are dispensable for

that function and that w ild-type amounts of Vmw63, V m w llO  and the 

LAT gene product are not required.

As well as supporting the restriction endonuclease data obtained by 

MacLean & Brown, (1987a) which concluded that the deletion in 1703 

affected genes UL55, UL56, IE1 and one copy of LAT, sequencing has 

demonstrated that a B a m  H I site, shown to be present during the initial 

analysis of 1703, was now missing. The deletion in H p a l m '  had been 

extended during the cloning and sequencing of H p a  lm ’, the 1703 DNA 

fragment in which the deletion end-points were located. Spontaneous 

deletion of HSV-1 DNA also took place during the cloning of the long 

origin of replication of HSV-1 into a bacterial vector system , where 

deletions of >100 base pairs were recorded (Spaete & Frenkel, 1982). 

The deleting region was found to consist of a long perfect palindrome 

with an AT rich region at its centre when it was subsequently cloned
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into a yeast vector system. The sequence arrangem ent between the end 

points of the deletion and the B a m H l  site is not particularly unusual for 

HSV-1 DNA and the extended region of the genome (between the B a m H l  

site and the sequenced deletion end points) does not affect the three

imperfect repeat elements located in the intron (Perry et al.y 1986). The 

deletion in the sequenced H p a  lm ' fragm ent was 7784 base pairs in 

length and it is thought that the deletion in 1703 is about 7500 base 

pairs, closer to that estimated by MacLean & Brown, (1987a).

As this fragm ent was used to construct the recom binant virus 

containing the polyadenylation signal, 1703PA, the net result of the 

extension of the deletion in H p a  lm ’ was relevant. On the UL55 side of 

the deletion , it is not known for certain  if  the deletion had been

extended since there were no m arkers available. M acLean & Brown 

(1987a) estim ated 500 base pairs between the deletion end points and 

the 3' term ination signals of IE2. Sequencing put this at 555 base pairs 

indicating that it is unlikely that the deletion has been extended. The 

deletion extends slightly more into the first intron of the IRl  copy of IE1

which is detectable since the B a m H l  site can be used as a marker. There 

is no apparent reason why the extension should have any effect on the 

properties of 1703.

A wild-type recom binant of 1703 was constructed by co-transfecting 

B g l l l f  from 1703 into 17+ DNA. The reason for not choosing the already 

cloned H p a  lm ’ fragm ent for this procedure was that there was only 

about 55 base pairs betw een the deletion end-point and one end of 

H p a  lm ’, w hich  w ould resu lt in in e ffic ien t reco m b in a tio n . The 

recom binant 1750, generated from  the B g H l f ' / l l  + c o -tra n sfec tio n  

experiment produced IE2 gene products in sim ilar am ounts to those

produced by 1703, being reduced during im m ediate-early  tim es of

infection and returning to wild-type levels during early and late times
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thereby de te rm in ing  tha t the d e le tion  was re sp o n sib le  fo r the 

underproduction of Vmw63. 1750 produced about twice the amount of 

Vmw63 at imm ediate-early times of infection compared to 1703 in the 

W estern blot analysis of two different preparations of 1750 and 1703 

polypeptides indicating that the production of slightly more Vmw63 by 

1750 was not a gel or loading artifact. It is known that there is plaque

variation among HSV isolates, for exam ple, the isolation of a HSV-2

strain HG52 plaque which had heightened neurovirulence (Taha et al ., 

1988) dem onstrated that individual plaque iso lates o f HSV-2 strain 

HG52 differed with respect to neurovirulence, but had identical genome 

structures. Viruses with divergent genome structures in a population of 

HSV-2 strain HG52 showing deletions in R l  have been isolated with

significant frequency (up to 24%); (Harland & Brown, 1985,1988; Brown 

& Harland, 1987). Although there is less variation among HSV-1 strain 

17+ isolates (MacLean & Brown, 1987a,b), it is possible that 1750 is a 

'health ier' iso la te  than 1703 w ith respec t to Vmw63 production. 

A lternatively, the increased amounts of Vmw63 synthesized by 1750 

may be due to experim ental variation. The analysis of 1750 had 

therefore dem onstrated that underproduction of Vmw63 by 1703 was 

not due to a mutation in a region of the genome outwith the deletion.

The suggestion that Vmw63 synthesis in 1703 infected cells was 

controlled by the production of a transcript in itiating from the intact 

promoter of the IRl  copy of IE1 was supported by the exclusion of any

other m echanism  for the pattern of production of Vmw63 as discussed 

above. M echanisms by which gene expression is controlled by antisense

nucleic acids are discussed in section 1.10.

The construction of 1703PA, which is composed of a 1703 DNA 

backbone with an HSV-2 polyadenylation signal placed in the correct 

orientation to term inate the synthesis of a potential antisense transcript
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before reaching IE2 coding sequences, and the characteriza tion  of 

1703PA IE2 gene products, has shown that the synthesis of IE2 mRNA 

and Vmw63 has returned to wild-type levels during all transcriptional

conditions. The production of transcripts from the deleted IRl  copy of
p o ly a d e n y la te d

IE1, whose prom oters rem ain in tact, was at the inserted

novel polyadenylation signal and could no longer affect the synthesis or

processing of IE2 mRNA. The detection nf the small, novel transcript
. . . r , Tt > 1 p o ly a d e n y la tin g  , . ,in itia ting  from  the IE1 prom oter ana   «t the inserted

polyadenylation signal has conclusively proven that the prom oter was

capable of initiating the synthesis of a transcript antisense to IE2 mRNA.

This inform ation dem onstrated that an antisense transcrip t controlled

the synthesis of IE2 gene products in 1703 infected cells, but did not

identify the m echanism  by which this takes place. It is possible to

classify  the an tisense transcrip t into any of the th ree  categories

identified by Inouye, (1988), (section 1.10) and further work is required

to establish which is the correct class.

The in itial view of the m echanism  of inhibition of IE2 mRNA

production by the antisense transcript was that the transcript initiating

from the IE1 prom oter was transcribed until a polyadenylation signal

was encountered whose orientation resulted in its term ination. UL51 is

the closest suitable polyadenylation signal and the resultant transcript

would be about 15kb in length, possibly unstable, and as well as being

antisense to IE2 mRNA, would be antisense to the RNA products of the

adjacent genes U L53, U L52 and UL51 w hich encode a possible

m embrane protein , part of the prim ase-helicase com plex required for

viral DNA synthesis and a protein of unknown function, respectively.

Under im m ediate-early conditions, the production of RNA/RNA hybrid

molecules (figure 4.1) would render the complexed RNA unavailable for

further processing, and the complexes may become the target of double



Figure 4.1 Antisense RNA.

a. The genes IE2, UL55 and IE1 and their structures in the IRl / U l  

region of the 1703 genome. The termination signals of both UL55 and 

IE1 have been deleted as have sequences between both points. These 

genes therefore form one stretch of DNA bounded by promoter 

sequences, b.  During immediate-early times of infection, the promoters 

of both IE1 and IE2 are stimulated resulting in transcripts being 

generated from both. IE1 RNA is complementary to IE2 RNA and the 

antisense theory depends on both hybridizing (class 1 and 2) or 

interfering (class3) resulting in IE2 RNA not being available for 

translation, c. At times other than immediate-early, RNA is synthesized 

from the UL55 promoter which then forms a RNA duplex with IE1 RNA 

resulting in IE2 mRNA being translated and the production of wild-type 

quantities of Vmw63 (d).
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stranded RNA degrading enzym es. This is an exam ple of class 1 

antisense RNA.

Class 2 antisense RNAs are characterized by hybridizing to a region of 

the transcript distant from the translation initiation signals of the target 

RNA, changing its conform ation and resulting in the mRNA not being 

translated. H ybridization of the antisense transcrip t synthesized from 

the IE1 prom oter to a region of the IE2 transcript outwith translational 

initiation sites may result in the absence of IE2 gene products during 

im m edia te -early  cond itions of in fec tion  due to an a ltera tion  in 

configuration of the IE2 mRNA m olecule resulting in it not being 

tra n s la te d .

T ranscrip t m apping of IE2 mRNA produced by 1703 during 

im m ediate-early times of infection dem onstrated that small amounts of 

IE2 mRNA present in the nucleus are transported to the cytoplasm , a 

process that depends of the polyadenylation o f the 3' end of the 

message. This indicates that, as discussed above, the block in Vmw63 

synthesis occurs at the tran scrip tiona l level. Thus, the antisense 

transcript can also be assigned to class 3, the only class of antisense 

RNAs which function at the level of transcription. An antisense RNA that 

functions at the level o f transcrip tion  is one w hich controls c r p  

production (Okamoto & Freundlich, 1986). This is thought to function by 

the creation of a RNA polym erase conform ational term inator (termed 

r h o )  resu lting  in the term ination  of tran scrip tion . An additional 

m echanism  w hereby class 3 antisense transcrip ts function to control 

transcription of the target gene is transcriptional interference.

An exam ple of transcriptional interference is the avian retrovirus 

which controls the synthesis of c-myc mRNA by transcriptional overlap 

interference. In tegration of the avian retrovirus, avian leucosis virus 

(ALV) into the host DNA results in the viral coding sequences being
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flanked by two long inverted repeats (LTR) containing signals for both 

in itia tion  and term ination of transcrip tion . F igure 4 .2a dem onstrates 

th is. The observa tion  that c-m yc tran sc rip ts  in av ian  induced 

lymphomas contained U5, the LTR prom oter elem ent, and that provirus 

integrated 5’ of the c-myc gene contained deletions including the 5' LTR 

led to the theory that transcription from  the 5 ’ LTR controlled the 

initiation of transcription from the 3’ LTR.

Cullen et a/.,( 1984) studied the m echanism by which this occurs and 

found that the 3' end of the normal viral transcript overlapped the 5' 

end of transcripts initiating from the 3' LTR (Figure 4.2a). The deletion 

of the 5’ LTR, or the insertion of a termination signal in the viral open 

reading fram e, resulted  in the 3' LTR in itia ting  transcrip tion  of a 

reporter gene (in this case the preproinsulin gene). This conclusively 

demonstrated that transcripts initiating from the 5' LTR interfered with 

those initiating from the 3' LTR resulting in it being unable to initiate 

transcrip tion, probably because RNA polym erase could not bind the 

promoter region of the 3' LTR. A similar situation exists in the HSV-1 

genome (figure 1.3) in which the term ination signals and open reading 

frame of many genes overlap, for example, UL4/UL5, and UL13/UL14. 

T ranscrip tional in terference  has not been estab lished  as a control 

mechanism for either of these sets of genes.

T ranscrip tional in terference resulting  in the underproduction of 

Vmw63 in 1703 infected cells would not be due to transcriptional 

in te rference  as described , but to the in te rfe ren ce  of two RNA 

polym erase m olecules transcribing mRNA from opposite DNA strands 

(figure 4.2b) resulting in the production of truncated and mainly non- 

polyadenylated IE2 RNA. T ranscrip t m apping of 1703 IE2 mRNA 

produced under im m ediate-early  conditions alw ays gave full length 

molecules indicating that truncated forms may be unstable. In any case,



Figure 4.2 Transcriptional interference.

a .  The avian leucosis virus (ALV) integrates into cellular DNA, 

sometimes upstream of the oncogene c-myc. This can result  in 

leukaemogenisis and in most cases of this, the 5' LTR is deleted. LTR is 

the long terminal repeat, U3 and U5 are termination and promoter 

signals respectively. ALV genes gag, pol and env are indicated. Dotted 

lines indicate cellular DNA. Normally transcripts generated from the 5’ 

LTR interfere with those initiating from the 3' LTR and c-myc is not 

transcribed, a phenomenum known as transcriptional interference. If 

however the 5’ LTR is deleted, RNA polymerase is free to initiate 

transcription from the 3' LTR and c-myc protein is produced, b .  

Transcriptional interference in 1703. During immediate-early times of 

infection, RNA initiating from the IE1 promoter interferes with that 

being synthesized from the IE2 promoter resulting in premature 

termination of IE2 mRNA. Transactivation of the UL55 promoter at other 

times of infection generates RNA which interferes with that initiating 

from the IE1 promoter resulting in restored production of Vmw63 at 

these times of infection.

a. ---------------------------------  cellular DNA

- —  ----------- -----------  RNA generated from ALV promoters.

b. ------------------------------- ►- IE2 DNA

....................................... UL55 DNA
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the probe only detects 790 base pairs of the 3' end of IE2 and RNA 

m olecules shorter than about 2600 base pairs (the IE2 transcript is 

about 3250 base pairs in length) would not be detectable by this 

m ethod. That the probe detected IE2 mRNA at all under imm ediate- 

early  conditions may be due to the form ation  of a quantity  of 

polyadenylated IE2 mRNA which is translated norm ally. This indicates 

that the position at which transcriptional in terference occurs may be 

variable along the length of the IE2 m olecule. Although transcriptional 

in terference as described by Cullen et a l ., (1984) does not involve 

antisense RNA, the principle of interference of two RNA polymerase 

m olecules is pertinent to describing the 1703 antisense transcrip t as 

class 3.

Vmw63 is synthesized  in reduced am ounts by 1703 during 

im m ediate-early conditions of infection as dem onstrated by SI nuclease 

m apping and W estern blot analysis, for which there are two possible 

explanations. The first relies on findings by Sandri-Golden et al ., (1987) 

which dem onstrates that the prom oter for the antisense transcript may 

have to be lOx stronger than that for the sense transcript for inhibition 

of the sense transcript to occur. The transactivator for IE2 and IE1 

during the im m ediate-early experim ents reported in the results section 

of this thesis in which cycloheximide was used as an inhibitor of protein 

synthesis was the Vm w65/cellular factor complex. Both genes have been 

shown to have an equivalent requirem ent for Vmw65 (Ace et a l .y 1989) 

dem onstrating that both may be transactivated  to the same extent. 

H ow ever in the case of 1703, the environm ent o f the antisense 

transcript is different from that in Sandri-Golden's experim ents in that 

the antisense transcript is synthesized from the same DNA template as 

the sense transcrip t and the coding regions of both are in close 

proximity. It is therefore possible that in an infected cell environment,



*It is also possible that at early and late times of infection increased 

levels of IE2 transactivators (eg. Vm wllO  and V m w l75)  generate 

higher levels of IE2 mRNA thereby overcoming the block imposed by 

the antisense transcript.
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the IE1 prom oter is capable of synthesizing enough antisense transcript 

to see this effect (class 1). The hybridization of the antisense transcript 

to a region of IE2 mRNA outwith the IE2 transcriptional start sites (class

2) may be inefficient resulting in the production of small quantities of

Vmw63 during im m ediate-early times of infection.

The production of IE2 gene products returns to w ild-type levels 

during conditions other than im m ediate-early which can be attributed to 

the transactivation of UL55 during early and late conditions of infection 

as follows; 1. The transcription of UL55 during early and late conditions

of infection leads to the production of UL55 m RN A /IEl mRNA duplex

m olecules (class 1), 2 . The same process results in the IE1 antisense 

transcript hybridizing to UL55 RNA changing its conform ation (class 2), 

and 3 . RNA polym erase transcribing UL55 in terferes w ith the RNA 

polym erase m olecule transcribing the IE1 gene (class 3). All of these 

allow wild-type quantities of IE2 mRNA to be produced by freeing IE2 

mRNA from constraints imposed by the antisense transcript.*

Future  prospects .

C riteria  for defining regulation  by natural antisense RNAs are 

threefold (Krystal, 1992). 1. The complementary RNA must be shown to 

coexist within the cell. This can be done by strand specific hybridization 

techniques, for exam ple, SI nuclease m apping using strand specific 

probes, 2. Evidence for the interaction of the two com plem entary RNAs 

should be provided, that is, the detection of the duplex molecules and 3. 

A function for the interaction of the complementary molecules should be 

dem onstrated. The com plem entary RNA strand was never detected in 

this stu dy , excep t a fte r te rm in a tio n  by the in se rtio n  o f the 

polyadenylation  signal, and the presence of RNA hybrids was not
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investigated. As m entioned in the in troduction, the detection of the 

antisense transcript was an aim of this project, however at that time it 

was thought that the transcript was about 15kb in length and the strand 

specific probe used corresponded to a region of HSV-1 DNA 5' to the IE2 

open reading fram e. No antisense transcripts were detected with this 

probe. In light of later evidence it became apparent that the transcript 

was probably not as long as 15kb, and further work could involve the 

use of m ore suitable strand specific probes to detect the antisense 

transcript. Duplex RNA molecules in the nucleus of 1703 infected cells 

could be detected by the use of single stranded RNA degrading enzymes 

to digest a preparation of 1703 im m ediate-early RNA, leaving double 

stranded RNA (the sense /an tisense  RNA duplex) in tac t, and the 

subsequent SI nuclease m apping or N orthern  b lo t analysis of the 

products. A function  for the com plem entary  m olecu les has been 

estab lished  and is the inh ib ition  of IE2 m RNA synthesis during 

im m ediate-early times of infection.

The role of LAT in HSV-1 latently infected cells is controversial and 

there is evidence that LAT may function to control latency in an 

antisense m anner. The use of the criteria described above to examine 

the in teraction of LAT and its possible target, IE1 mRNA, may give 

further inform ation concerning this possibility.
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