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NOTATION

A, B, C --- matrices of state space form
aj --- coefficients of numerator of G(s)
bj --- coefficients of denominator of G(s)
D(jw) --- denominator of G(s)
dl, d2 --- radii concentric circles defined in complex plane
E(jw) --- frequency response error
G(s) --- transfer function
G(jw) --- transfer function
H --- Hankel matrix
H(jw) ~-- function coinciding with measured data
h; --- element of eigenvalue A
i, j --- integer
Ijg(wk) --- Imaginaty parts of measured function Hj(jw)
J; --- cost function for SISO case
J,E --- cost function for SIMO case
L --- iteration number
m --- number of output
M --- eigenvectors of matrix A
n --- number of points in frequency range considered
N --- form for n transfer function models
N(jw) --- numerator of G(s)
nl --- weighting factor
p --- pole of transfer function
Qj --- input scaling
Qp --- output scaling
Rik(wk) --- real parts of measured function H; (jw)
S --- observability grammian
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Laplace operetor
transpose of matrix
trance

matrix of control
cotrollability grammian
matrix of state space
output of system

zeros of transfer function

eigenvalue of matrix A
element of eigenvalue A
maximum singular value of (-)
element of Hankel singular values 4

frequency range
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ABSTRACT

Techniques of model reduction are important not only because a reduced order
model may be needed for control system design or for model validation from
measured response data, but also because in many applications accurate
information about the plant dynamics may only be available, or required, for a
restricted range of frequencies. In the content of aircraft flight mechanics models
reduced order descriptions are also of considerable importance for handling
qualities studies.

In this document, various model reduction techniques are reviewed. An
‘equivalent system approximation' approach has been selected and applied to the
reduction of a helicopter flight dynamics model. The adequacy and degree of
accuracy of this ‘equivalent system approximation' reduced order model was
verified through comparison with a high order model using the Puma helicopter
as an example. Excellent agreement between the results from the reduced order
model and the original high order system model were obtained over selected
range of frequency. Another approximate method — extended Levy's
complex— curve fitting method using a modified least—squares approach has been
extended to the multi—input multi— output and has also applied to the reduction
of the helicopter flight dynamics model for a Puma helicopter. Very good
agreement between the results from the reduced order models and the original
system model were again obtained. Comparison of Levy's method with the
‘equivalent system' approach showed that in the latter physical insight can be
used in the reduction process whereas Levy's method is purely a curve fitting
technique. Both techniques can, however, provide useful reduced— order
descriptions for given frequency ranges. The extended Levy approach and the
'‘equivalent systems' approach have both been implemented using the MATLAB

software package.




Chapter 1
The Model Development Process
1.1 Introduction.

The development of dynamic models of complex nonlinear systems is often
attempted using a combination of theoretical modelling, based on physical principles,
and empirical tuning of model parameters guided by comparisons of model responses
with measured response data from the real system. However, such comparisons of
system response variables with the corresponding quantities predicted by a theoretical
model are not usually sufficient to provide the model developer with real insight
concerning the source of any deficiency in the model.

There are two fundamental ways in which a mathematical model may be deficient:
it may have an inappropriate structure or it may have inappropriate parameter
values. In most cases both types of deficiency are likely to be present in the initial
formulation of a model.

Assessment of the adequacy, or otherwise, of a mathematical model must take into
account the purpose of the model and the way in which the model is to be used.
For most applications empirical model adjustments can lead to unrealistic values of
parameters which, although possibly providing an adequate fit between the model and
the measured system responses for one particular experiment or rest record, have no
physical basis. The larger the number of parameters available for adjustment in this
way the more likely it is that some combination can be found which provides a good
match of a model response to the corresponding measured quaritity. This apparent
good fit for one particular case may, however, mask major deficiencies in the model
structure and the model may well prove to have no general predictive value.

Modelling from measured response data has now developed into a major activity in
a wide range of scientific and engineering disciplines.  This is generally termed
'system identification' and can be defined as 'the determination on the basis of inputs

and outputs of a system within a specified class of systems to which the system




under test is equivalent'.[ﬂ

Identification and similar inverse problems have a long history and can be traced
to the work of Gauss on modelling of planetary motion from astronomical
observations. A wide range of identification techniques are now available some of
which lead to non— parametric descriptions, such as a frequency response, while
others involve parametric models and can be linked directly with the development of
models from physical principles.

Although system identification techniques allow complex nonlinear models to be
developed and validated with the aid of measured response data, there is also a need
for reduced— order linear models for many applications. This is important in control
system design where many of the available techniques depend upon the use of a
linear description for the plant. In many applications accurate information about the
plant dynamics may only be available or required for a restricted range of frequencies
and models of reduced order may therefore also be appropriate. Examples of
reduced— order models are often encountered as submodels within a larger model of a
complex system. Reduced— order models are also of value in real— time simulations
of a system where some modelling accuracy, particularly in the high frequency range,
has been traded for computational speed.

Since the system identification approach can lead directly to linearised descriptions
and involves the use of techniques for the selection of model order there is a close
theoretical link between models obtained using system identification methods and
reduced— order models obtained by linearisation and subsequent reduction from a
more complex nonlinear model.

1.2 Block Diagrams of the Model Development Process.

Figure 1.1 is a block diagram which brings together all the main features of the
modelling process. The structure of the diagram emphasises both the iterative nature
of mathematical modelling and the relevance of system identification methods within

this process. For any given application it must be emphasised that the precise route




followed within the diagram will depend on the nature of the system Dbeing
considered, the amount of prior information available and the purpose of the model.

Comparison of model behaviour with that of the real system is a central feature of
this block diagram. In some cases disagreement between the model and system
responses may be a symptom of the need for fundamental structural changes in the
model which may require the design of new experiments and tests. If, however, an
adequate level of agreement is found between the model and the system for a chosen
test case and further tests also show a satisfactory level of model performance then
some cautious, assessment of the model beyond the range of available experimental
results may be attemped. Since models are never unique it is often useful to
consider a number of models at this stage in the process since extrapolation beyond
the range of experimental results may highlight situations in which the available
models disagree. This may also allow new experiments to be defined which may
provide a better basis for discriminating between competing candidate models.

No model can ever be fully validated, but a model which has been tested
comprehensively may provide a form of 'working hypothesis' which can be applied
when direct experimental investigation of the real system is impossible or
inappropriate. Such a model may be used until evidence is obtained from the real
system which, in some way, invalidates the model and points to further stages of
model refinement.

It is important to note that, even at an early stage of development, a model
which is incomplete or inaccurate may still be of considerable practical value in
providing a means of designing new tests or experiments to be performed on the real
system. The results of these new experiments may well provide new insight
concerning the system as well as additional test records for subsequent comparison
with model outputs. The process shown in Figure 1.1 can be applied not only to
the development of a complex nonlinear model but also in a slightly modified way to

the evaluation of a reduced— order linear model. In this case the process becomes
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one of calibration rather than model validation and the objective is to establish the
range of validity of the reduced model in terms of both amplitude and frequency.
Testing can be carried out with real experimental data and also with simulated
response data generated from the high order model.  Assessment is likely to be
based on residuals both in terms of frequency responses and time histories of output
variables. A modified version of the block diagram is shown in Figure 1.2 for the
case of reduced— order model development. This process would normally follow the
establishment of a more complex nonlinear model using the steps shown in Figure
1.1.

It is important to note that the two block diagrams have many common features.
Both involve careful testing of the resulting model and are iterative processes. Both
involve databases of experimental or simulated response data and both necessitate
careful evaluation of modelling objectives at the outset.

1.3 System Identification Techniques.

. In relation to helicopters, there is a very real need for the use of system
identification methods. As outlined above system identification techniques have a role
to play in the validation and improvement of existing theoretical flight— mechanics
models, as well as for flight testing.

System identification techniques can be separated broadly into two types
time— domain methods and frequency— domain methods. In the literature,
identification results from both these methods are reported for helicopter system
identification[ 2,3,4,5,6].  In the Reference [2] it is pointed out that the frequency
domain offers some attractive possibilities for helicopter system identification, most
notably that it is possible to restrict the frequency range used in the identification,
and for which the model is valid, thus enabling models associated with the relatively
slow rigid— body dynamics to be obtained which exclude higher— order rotor effects
from their description. The measured response and input data is, in this case,

effectively transformed into the frequency domain using the Fourier transform; the
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identification is based on minimising the difference between measured and predicted
Fourier transforms rather than measured and predicted time responses. Mathematical
details of the problem formulation in terms of the model and cost function minimised
are given in the Reference [2]. The models identified are state—space models
representing a linearised form of a non— linear helicopter mathematical model for a
given flight conditions. The parameters identified include stability and control
derivatives.  Direct comparisons between estimated values and theoretical values are
made.  Other identification results using the frequency domain, but based on a
spectral— analysis approach are also reported in the literaturel 7], where fits between
measured and predicted transfer functions are obtained. This kind of approach is
called non— parametric and does not result in a full set of stability and control
parameters.

Leaving aside the question of whether the frequency domain (Fourier domain) or
time domain is used in performing the identification, there are three distinct types of
optimization methods wused for system identification. These are : equation— error,
output—error and maximum— likelihood. In fact, the equation—error and
output— error methods can be regarded as particular cases of the maximum-— likelihood
method, and involve simplifying or relaxing the assumptions made about the noise or
uncertainty associated with both the measured responses and the model. In the
results presented in the literature for helicopter system identification, the
equation— error and output— error methods are used(2,8,8].  Because of its simplicity,
the equation— error (or regression) approach is often seen as a means of obtaining
quickly estimates to be used as initial guesses for the more advanced output— error
method. Estimates obtained using the output—error method will be unbiased, even in
the presence of measurement noise on the responses used in the identification,
whereas the equation—error (or regression) estimates will be biased with respect to
the ‘'true' parameter values. Success with the full maximum likelihood method, which

tries to account not only for measurement noise, but also for process noise (i.e.




model uncertainty) has been limited in the context of helicopter system identification

because of its complexity.

1.4 Model Reduction Methods.

The modern trend in engineering systems is toward greater complexity, due mainly
to the requirements imposed by complex performance specifications and tasks and
good accuracy. Complex systems may have multiple inputs and multiple outputs and
may be time— varying. Modern control theory, which is a new relatively approach to
the analysis and design of complex control systems, has been developed since around
1960. This approach is based on the concept of state. @A modern complex system
may have many inputs and many outputs, and these may be interrelated in a
complicated manner. To analyze such a system, it is essential to reduce the
complexity of the mathematical expressions, as well as to resort to computers for
most of the tedious computations necessary in the analysis. The state— space
approach to system analysis is well suvited from this viewpoint. Consider a linear,
time— invariant (LTI) system of nth— order; it may been expressed as a set of first
order differential equations, which can been futher written as a vector— matrix
differential equation. This vector— matrix differential equation is called the state— space

representation and has the following form,

x = Ax+ Bu
And the output equation becomes
¥ = Cx
where x € RM ( RM js a Cartesian m—space), u € RI! and A, B and C are
constant matrices of appropriate dimensions.

For many multi— input— multi— output (MIMO) systems, the state— space
respresentation is in fact the only model convenient to work with. But in many
cases the equations the order of the matrix A may be quite large, say 5050,
100x100 or even 500x500. It is difficult to work with these large matrices and a

means of approximating the system matrix by one of lower order is needed.
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Therefore, it is very important to reduce the order of such large matrices for control
system analysis and design, which can allow, for example, more efficient simulation
of dynamic behaviour or may reduce computational demands in on— line applications
such as adaptive control. The reduction in the order of matrices or the number of
equations is usually called order reduction, or model reduction. This is the main
focus of the present work.

A brief survey of the model reduction literature will be presented here. Model
reduction research is at present limited mainly to linear systems because order is a
measure of complexity only for such systems. But many practical examples, including
large space structures, do lead to linear models and linear models are central to most
present— day control system analysis and design techniques. The literature pertaining
to order reduction of linear systems is vast, as can be seen from the lengthy
reference list. Between all the surveys one can obtain an appreciation of the field.
However, most of these reviews are not recent, but both Skelton's ideas on cost
decornposition[1 0,11,12] or Moore's "balanced coordinates"[13,14] had important new
contributions.  Another interesting and quite recent development is Hyland's optimal
projection approach to model and controller reductionl 15518,1 7],

Skeltonl 1 1] suggests three categories of model reduction; polynomial approximations,
component truncations, and parameter optimization methods. Most polynomial
approximation methods are usually based on matching moments of the reduced— order
transfer function to those of the original transfer function. Related to moment
matching is the fundamental polynomial approximation method wusing a Pade
approximation method. This method investigates basic convergence issues pertinent to
all polynomial approximation and has received a good deal of
attentionl 18,19,20,21,22] The method can be extended directly to multi— input
multi— output (MIMO) systems[1 8], One problem with all polynomial approximations,
shared by the Pade approximations, is that preservation of stability of the original

model is not guaranteed in the reduced modell 18,1¢,21],




The parameter optimization approach usually employs a numerical iteration scheme
for synthesizing the elements of the reduced model that minimizes an error function
of the difference between high— and reduced— order model outputs[23’24’25].

The component truncations methods usually apply to models expressed in
state— space form and obtain the reduced— order model by retaining a subset of the
original system. Therefore the reduced— model coefficients are more constrained than
in the parameter optimization case, where they can be freely synthesized. As such,
the reduced models obtained from component truncations may only give "suboptimal"
results, but many of these approaches are simple in concept and can be applied to
very high— order systems. In addition to discarding rows and columns of the system
matrices, various criteria are used to guide these component truncations, and many
methods use coordinate transformations to perform the truncation in "more
favourable" spaces[37s38,39]. One nice feature of these approaches as compared to
the polynomial approximations is that the reduced models produced here always
preserve the stability of the high— order models, since their eigenvalues are similar.
On other hand, the steady— state response of the reduced model is usually different
from that of the high— order model, especially in the simpler approaches. Davison's
model simplification technique[zs], Marshall's model reduction technique[”] and
Moore's "Balanced" approach[1 3,14] are well known.

In this thesis, the use of a low— order approximations, or equivalent systems, in
evaluating aircraft handling qualities is reviewed[ 28], This problem is identified as a
special case of the more general problem of model reduction in closed— loop systems.
In the traditional equivalent system approach, a numerical search algorithm is
employed to find the reduced— order model, of 'classical’ aircraft form, such that the
frequency response of the high— order system (aircraft) is well approximated over a
specified frequency range[”]. However questions arise, especially when a good
approximation is not obtained with the method. These questions relate to the

following: 1) the nonuniqueness of solutions, 2) the interpretation of the matching
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cost, 3) the 'good— ness of fit' required, etc..

Because of these general and fundamental difficulties, associated with model
reduction, the reduced— order modeling objective of approximating the aircraft's
frequency response is being re— examined, in the current work and the question of
when and how to match multiple frequency responses is being reviewed. A
alternative state— space model— reduction approach developed by Bacon and
Schmidt 20] is also being considered. In this method the original transfer function
(matrix) G(s) of dynamic order n is reduced via a state—space transformation T.
The construction of T involves no numerical search algorithm. In terms of the three
classes of problem identified above this method is therefore essentially a form of
component truncation method. In addition, the resulting model Gr obtained by this
method is unique for the selected dynamic order r and the least effective dynamic
order is determined a priori by evaluating a set of frequency— domain matching error
bounds. These error bounds, furthermore, are applicable to each i—j element of
[G(s)— Gr(s)]g= jo over all w. One important feature of the approach is that it is
applicable to multi— input/multi— output systems and is therefore well suited for

aircraft applications.
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Chapter 2
Helicopter Flight Mechanics Models
2.1 Introduction.

In mathematical terms, the helicopter represents a complex arrangement of in
teracting sub— systems that can be viewed from a component (Fig. 2.1) or dynamics
prespective. In the former case the subsystems are chosen based on a break down
into physical parts, eg. main rotor, fuselage etc., while in the latter case the choice
is based on a partitioning into physical or mathematical sub—systems arranged and

Models of

their frequency and amplitude content.

interconnected according to
rotorcraft can also be partitioned into three distinct levelsl 311, differentiated largely

by the form of rotor modelling, as summarised in Table 2.1.

Table 2.1 Levels of Helicopter Theoretical Model 2]

Level 1

Level 2

Level 3

Aerodynamics Linear 2D
Dynamic inflow/local
momentum theory
Analytically integrated loads

Dynamics (i) Rigid blades

6 d.o.f. quasi-steady rotor

9 d.o.f.-rotor flapping

12 d.o.f.-flap+lag

15 d.o.f.-flap+lag+pitch

Applicauon Parametric trends for flying qualities
performance studies

Within operational flight envelope

Low bandwidth control

Nonlinear (limited 3-D)

Dynamic inflow/local
momenwm theory

Local effects of blade/vortex
interacuon

Unsteady 2-D

Compressibility

Numencally integrated loads

(i) Rigid blades
Opuons as in Level |

(ti) Limited number of blade elasuc

modes

Parametric trends for flying qualities

performance studies

Beyond operational flight envelope
Medium bandwidth appropiate to

high gain actuive flight control

Nonlinear (3-D)
Full wake analysis

({ree or prescribed)
Unsteady 2-D
Compressibility
Numencally integrated loads

(i) Elasuc modes (detailed
structural) representation

Rotor design

Rotor load prediction across a
High bandwidth

Beyond operauonal flight
envelope




Level 1 modelling includes the ‘'rigid body', six degree of freedom linear or
non— linear formulation with quasi— steady rotor dynamics and extends to the inclusion
of rotor blade dynamics in multi— blade coordinate forms with analytically integrated
blade loadings, actuators etc.. Such models are useful for flying qualities and
performance studies within the normal flight envelope where integrated rotor loads are
not significantly affected by rotor stall, compressibility effects and the attendant rotor
blade dynamic couplings. Level 3 modelling, at the other extreme, represents the
most comprehensive rotor/fuselage modelling necessary to predict, not only integrated,
but also vibratory loadings across a wide frequency bandwidth. This is, in general,
unnecessarily complex to be appropriate to flight mechanics work. Between these
extremes Level 2 models provide a means of exploring the design implications for
high gain active control systems in a piloted simulation environment. The need for
increased exploitable primary flight control bandwidth, and accurate modelling of
flight in conditions where aerodynamic nonlinearities and rotor couplings prevail,
require model enhancements beyond Level 1 but do not necessitate the refinements of
Level 3 models. Level 2 model development is still an area of research and Table
2.1 suggests possible elements, under the Level 2 heading.

Although much current research is concerned with the problems of Level 2 and
~ Level 3 models there is a need for Level 1 models which are sufficiently simple to
allow computations/simulations in a time scale well suited to:

a) Real time simulation for control system evaluation in piloted ground— based
simulators and for handling qualities studies.

b) Control system design calculations performed interactively. Control systems
designed initially using a Level 1 model could be tested within a Level 2 simulation
or Level 3 using batch mode of processing at a later stage to provide information
about rotor loads and the effects of high frequency modes associated with the rotor

and fuselage.

2.2 Axis Systems.
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In order to analyse a rotorcraft in flight it is necessary to first define a set of
axes which will act as a reference frame around which the relevant equations of
motion may be developed. Since the rotorcraft is a free body in space, its position
and flight path may be defined with respect to a set of earth— fixed axes, which
remain fixed relative to the earth. These earth axes assume a flat, non— rotating
earth and arbitrary origin, with the x— axis pointing Northward, y— axis Eastward and
the z— axis pointing down to the centre of the earth.

However, this axis system is inconvenient for some analysis and therefore a set of
axes which remain fixed relative to the airframe can be used. This axis set is called
the body— fixed axis and the origin is located at the aircraft's centre of gravity with
the x— axis pointing forward, y—axis to starboard and z— axis downwards. It is
conventional to define the nomenclature associated with the body— fixed axis system
in a standard form and this is summarised in Table 2.2 and Fig. 2.2.

2.3 Equations of Motion.

The helicopter equations of motion of the single rotor helicopter are derived by
summing the force and moment contributions of various structural components of the
helicopter system. The most important of these components are the fuselage, the
main rotor, the tail rotor, engine and transmission system, as illustrated in Fig. 2.1
which is taken from the report [s4] by R. Bradley & G. Padfield etc..

The coordinate system used to describe the single rotor helicopter system will be
the body fixed axis mentioned in section 2.2. Fig. 2.2 shows the x, y and z axes
of this axis system along with the X, Y and Z components of total force and the L,
M and N components of the total moment. The derivation of force and moments is
given by Padfieldl 3 2] along with the nonlinear equations of motion of the fuselage at

the centre of gravity.
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Fig. 2.1 Components of a Helicopter

(taken from report by R. Bradley & G. Padfield etc.[“])

Fig. 2.2 Body Axes System
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Table 2.2 Body Axes Definitions

AXIS 0x oY 0z
NAME LONGITUDINAL LATERAL NORMAL
LINEAR .

DISPLACEMENT (m) Y “
STEADY STATE

VELOCITY (ms~') U v v
INCREMENTAL . N
VELOCITY (ms~') M

FORCE COMPONENT (N) X Y z
ROLLING VELOCITY ROLL PITCH YAW
COMPONENT (rads s~') P q r
ANGULAR ,

DISPLACEMENT (rads) i v
ROLLING MOMENT (Nm) L M N

Let u, v, w and p, q, r be the vehicle translational and rotational velocity
components along and about the X, Y and Z axes respectively; ¢, 6, ¢ the Euler
angle in the transformation from earth to body axes; M the vehicle mass and g the
gravitational constant. The equations of transtational motion can then be written in
standard form. (see Ref.[32]).

U= - (wg - vr) + XM - g sin ¢

v = - (ur - wp) + Y/M + g cos 6 sin ¢ f (2.1)

W= - (vp -uq) + Z/M+ g cos 0 cos ¢

]

Let 1 I,, be the moments of inertia about the X, Y and Z axes

XX Iyy,
respectively and Iy, the product of inertia about the X and Z axes. Assuming the

axes are chosen so that Ixy and Iyz are negligible, then the equations of rotational
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motion can be written in standard form:
Iyxp = (Iyy - Izz) aqr + Iy, (F + pq) + L
Iyyq = (Iz5 - Iyy) tp + Iy, (r?2 - p2) + M (2.2)

Izt = (Igx - Iyy) pq + Iyxz (P - qr) + N

The Euler angles from the gravitational components of equation (2.1) can be
determined from the differential equations relating them to the body angular velocity

components. Hence,

¢ =p+ qsinp tan 8 + r cos ¢ tan §

[
I

q cos p - r sin ¢ (2.3)

14

q sin ¢ sec 8§ + r cos p sec §

The importance of the above Euler equations, which are d-erived from a
consideration of Newton's second law of motion, is that they allow the body
velocities and accelerations to be defined in terms of the forces and moments acting
on the aircraft. In Equ. 2.1, 2.2, 2.3 we only consider the case representing a six
degrees of freedom rigid— body (quasi— static model). A more general representing of
the helicopter, will also include equations with states representing the behaviour of
the rotor, and its coupling with the rigid—body motion of the helicopter. If we just
consider the theoretical model of the single main rotor helicopter, it has options for
a range of different degrees of freedom in the model: 9 degrees of freedom (with
first order modelling of main rotor flap), 12 degrees of freedom (with second order
modelling of rotor flap). In these two cases, we obtain 12 equations of motion and
15 equations of motion, respectively.

2.4 External Forces and Moments.

If we neglect the weight of the air, the external forces acting on a helicopter are

the gravity and the aerodynamic action. The aerodynamic action can be expressed as
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a total force acting on the centre of gravity and a moment around it. For the
convenience of using them in our control system model equations, they can be
further decomposed into three components which are along three axes of the body
fixed coordinate system, separately and three component moments around these axes,
namely the pitching moment the yawing moment and the rolling moment as shown in
Fig. 2.1. If a rotor is added the rotor is rotating all the time and can change its
effective orientation through changes of blade pitch. The resulted aerodynamics will
be more complicated, but at any time instant, they can still be expressed by
components within the coordinate system used. In this chapter, a theoretical model
of the single main rotor helicopter has been derived for flight mechanics studies.
The forces and moments from the rotor itself are discussed in detail and the reasons
are presented for the choice of a rigid blade and centre spring model to represent
flapping with all types of rotor. To solve the differential equations (2.1, 2.2, 2.3, it
is necessary to first determine the external forces (X, Y, Z) and moments (L, M,
N). The external forces and moments from the defferent elements can be written in

component form as:

X = XR + X1 + Xtp + XpN + XF

Y = YR + YT + YTP + YFN + YF ) (2.4)

N
I

N
~

+ Zt + ZTp + ZpN t+ Zp

lan

I

on
7

+ Lt + Ltp + Lpn + Lg

M = Mg + Mp + Myp + Mpy + Mp (2.5)

where, the suffices, from left to right, refer to main rotor, tail rotor, tailplane, fin
and fuselage respectively.

2.5 Levels_of Model.
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Modelling the ensuing loads in the rotor system and their transmission to the fuselage
is commonly described as an aero— servo— elastic problem and can conveniently be
formulated at one of the three levels shown in Table 2.1. As already described, the
level of complexity relates to the application area. Currently, most organisations
work with Level 1 models for the prediction of flying qualities and low bandwidth
control up to 1 HZ. At the other extreme of complexity, Level 3 models are
generally required for the prediction of rotor loads over a high bandwidth, up to 100
HZ, for vibration analysis and rotor design. Adequate modelling for high bandwidth
flight control and the prediction of dynamic characteristics at the flight envelope
boundaries are still areas of research. The principal distinguishing features of this,
Level 2 model are likely to be non— linear, unsteady aerodynamics integrated along
curved elastric model shapes.

2.6 Mathematical Representation of Level 1 Models.

The mathematical representation of Level 1 models can be simplified if we neglect
the yaw angle  and defining the rigid— body states to be xpg, and the rotor states to

be xRp, we can then write the following linear constant coefficient equations:
XF = AFF XF + ApR XR + Bp u (2.6)

XR = ARF XF + ARR XR + Bp U (2.7)
where the matrices App and ARp represent the uncoupled systems for the fuselage
and rotor. The matrices Apr and ARp represent the coupling between the fuselage
and the rotor; B and Bgr are the fuselage and rotor control dispersion matrices
relating the rates of change of state variables to the inputs u.

2.7 Linearisation of a Level 1 Model.

In this section we present a linearization technique that is applicable to many
nonlinear systems. The process of linearizing nonlinear systems is important, for by
linearizing nonlinear equations, it is possible to apply numerous linear analysis

methods that will produce information on the behavior of the underlying nonlinear
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systems. The linearization procedure presented here is based on the expansion of
the nonlinear function into a Taylor series about the operating point and the
retention of only the linear terms. Because we neglect higher— order terms of the
Taylor series expansion, these neglected terms must be small so that the variables
deviate only slightly from the operating condition.

For flight control systems design it is a common and useful practice to use
linearized equations of motion to describe the vehicle's dynamics near a prescribed
operating point in the flight envelope. The method of linearizing the equations of
motion is through the use of stability and control derivativesl 23], Consider a
nonlinear system whose input is u and output is y. Thus the relationship between y
and u may be written

y = f(u) (2.8)

If the normal operating condition corresponds to a point (y,,y,), then y = f(u)

can be expanded into a Taylor series about this point as follows

y = f(u) = f(u,) + df/du(u-u,) + 1/2! d?2/du? (u-u,;)?2 + .... (2.9)
where the derivatives df/du, d2f/du2?, .... are evaluated at the operating point, x =
u,, vy = vy,. If the variation u—u, is small, we can neglect the higher— order

terms in u—u,. Noting that y, = f(u,), Equ. (2.9) can be written

y -y, =a(u-u) (2.10)
where a = df/duly=y;,y=y1.

Equation (2.10 ) indicates that y — y, is proportional to u — u,. It is a linear
mathematical model for the nonlinear system given by Equ. (2.8) near the operating
point u = u,, y = y,.

The nonlinear force and moment equations are described as a Taylor series
expansion about the desired operating point in terms of the degrees of freedom of
the aircraft. By truncating each series to first order terms, a linear model of the
system is derived. The stability and control derivatives are the coefficients of the

linear terms of this Taylor series expansion. The truncated series of linear
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representation can be arranged into state space canonical form.

x= Ax+ Bu
y=Cx
The stability and control derivatives are used to derive the elements of the system
matrix, A, and the input distribution matrix, B, respectively. The C matrix is the
output matrix for the general system. For Level 1 of models, we consider only a 6
degrees of freedom model which does not include rotor dynamics. The model is
therefore an eighth order system.

The state vector, x(t) of the six degrees of freedom model is made up of the

eight rigid body states of the fuselage,

[ u ]
w
q
x(t) = 6 (2.11)
v
P
%)
t r
where u --- longitudinal velocity (feet/s)
w --- Z - axis velocity (feet/s)
q --- pitch rate (rad/s)
§ --- pitch angle (rad)
v --- lateral velocity : (feet/s)
p --- roll rate (rad/s)
¢ =--- roll angle (rad)
r --- yaw rate (rad/s)

Following standard practice, the yaw angle is not included as a state
variable because the heading on which an aircraft is flying does not e
ffect its stability or control. This can be deduced from the nonlinear
equations of motion in which heading or yaw angle, ¢, does not appear

in the equations for the other states.
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Chapter 3
Review of Model Reduction Methods

3.1.The Necessity and Possibility of Model Reduction.

The mathematical meodelling of physical systems or processes often leads to very
large models involving a high— order set of equations and reduced order modelling is
considered very important for some aspects of control system design and analysis.
Usually, it is possible to represent a physical system by a number of simultaneous

linear differential equations with constant coefficients,

X = Ax+ Bu
but for many processes (e.g., chemical plants, nuclear reactors), the order of the
matrix A may be quite large, say 50 x 50, 100 x 100, or even 500 x 500. In the
case of helicopters, the mathematical models obtained have a high order when
compared to fixed— wing aircraft. Not only is there appreciable coupling between the
longitudinal and lateral rigid— body dynamics — which can often be assumed to be
decoupled for some fixed— wing aircraft responses leading to reduced— order models,
but there are also the dynamics of the main rotor which can be modelled to varying
degrees of complexity and which are also coupled to the rigid— body dynamics.
Helicopter models range in order and complexity from a rigid— body,
six— degree— of freedom linear or nonlinear formulation with quasi—steady  rotor
dynamics (including situations where the longitudinal and lateral body dynamics
themselves are considered separately), to those incorporating rotor— blade dynamics in
multi— blade coordinate forms with analytically integrated blade loadings, together with
a range of additional dynamic elements, e.g. engine/rotorspeed, actuators, etc.
Usually, the equations of motion of the single rotor helicopter are derived by
summing the force and moment contribution of various structural components of the
helicopter system. The most important of these components are the main rotor, the
tail rotor, and the fuselage.

The difficulties encountered in attempting to model helicopters arise in two areas.
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Firstly, the dynamics of the main rotor are complex, particularly during transient
manoeuvres, and in addition, aerodynamic coupling is considerably more pronounced
for helicopters than for fixed wing aircraft. G. D. Padfieldl22] has derived general
equations for a single main rotor helicopter using a body fixed axis system. The
derivation of forces and moments is given by Padfield[ 2 2] along with the nonlinear
equations of motion of the fuselage at the centre of gravity. There are nine
equations of motion for the rigid— body dynamics. Following standard practice, the
yaw angle is not included as a state variable in this model because the heading on
which an aircraft is flying does not affect its stability or control. This can be
deduced from the nonlinear equations of motion in which heading or yaw angle, y,
does not appear in the equations for the other states. If we consider the rotor
dynamics we have to include more equations depending on the complexity of the
rotor model. For example, if we have a second— order flap model this will, in fact,
introduce a further six equations into the overall model.  This means there are
fourteen equations of motion for the design and analysis of the helicopter plant. It
may be judged that such a large model, with the potential for there being significant
uncertainties both in the known values of the model parameters and the
measurements of the model states, is too impracticable for the design and
implementation of a helicopter control system. In this context, there is also a need
to take into consideration the size, cost, and capability of the onboard computer
system required for control, as well as the availability of appropriate measurement
devices to provide the required measured responses. Of course, future technological
developments, may in time overcome these problems.

Model reduction or simplification resulting in explicit representation of rotor
dynamics in the plant model is the most immediate requirement to make the
helicopter model more manageable. The quasi— steady reduction leading to this, is
discussed in general terms in section 2.2. It is the large separation in the

characteristic frequency ranges between the rigid—body and rotor— state dynamics
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which provides the justification for this approach to reduction in the model order for
helicopters.  The introduction of bearingless rotors in modern designs of helicopter
makes this approach more difficult to apply since the frequency separation may then
be much smaller.

In mathematical terms, the difficulty of working with large matrices means that
some way of approximating the system matrix by one of lower order is needed. In
other words, if the system matrix could be reduced by some method, the control
system will become simpler and it will be better for design and analysis purposes.
When input— output behaviour is considered, then very probably a much simpler
model with only a few differential equations would describe the same physical process
for many purposes. For many practical purposes including control system design the
input— output behaviour is often most important and simple input— output approaches
to model reduction are often possible. On the other hand, the practical application
of such modern concepts as state estimation, optimal state feedback and even
numerical simulation depend upon the availability of intermediate variables, but may
also be limited by the capacity of the available digital computer thus requiring a
more general approach to reduction which is not limited to input— output
considerations.

3.2 The Model Reduction Methods.

3.2.1 Development of the Model Reduction Methods.

A number of techniques have been proposed for the reduction of systems. Much
research has been done during the last 23 years concerning the derivation of
low— order models from high— order systems, as is evident from the comprehensive
bibliography prepared by Genesio and Milanese (1976).  Although many different
approaches have been published, these may be divided broadly into three main
groups. A brief survey of the techniques will be presented here.

3.2.1.1 Dominant Eigenvalues Approach.

In the first group of methods attempts are made to retain the dominant
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eigenvalues of the original system and then to obtain the parameters of a low— order
model such that its response to given inputs approximates closely that of the original
high— order system. This class of method includes those proposed by Davisonl 2¢]
(1966), Marshaill 27] (1966), Mitral2s] (1967) and Aokil38] (1968). Preservation of
dominant eigenvalues (Davison[2‘5’37] 1966, 1968, Davison and Chadha 1972,
Chidambaral 28] 1969) is an important feature of these techniques although individual
methods differ in other respects. For example, Marshalll 27] (1966) developed a
reduced order model in which the discrepancy in d.c. gain between the model and
the original higher order system was eliminated and dominant eigenvalues were
retained. For better matching of all phases of the response (initial, intermediate and
steady state), a combination of three reduced models has been proposed (A.
Kuppurajulu and Elangovan[39] 1970). Mitral 44] (1969) explicity recognized model
truncation as a projection, thus anticipating Hyland[40] (1984), and Mitra also
suggested retaining the components with the highest entry in a diagonalized
controllability matrix, thus preceding Moore's 'balanced' approach[1 3] (1981). It has
been shown (Hickinl41] 1978) that the methods proposed by Davison, Marshall and
Mitra may be regarded as special cases of the aggregation method proposed by
Aokil 361, Another approach which preserves the dominant eigenvalues is the method
of singular perturbations (Sanuti and Kokotovicl 42] 1968), which has certain special
properties.

3.2.1.2 The Matching of Impulse— or Step— Responses (or Frequency Response).

The second group of methods involves finding a model of a specified order such
that its impulse— or step— response (or, alternatively, its frequency response) provides
an optimum match to that of the original system, without restriction on eigenvalue
location. Anderson[ 23] has proposed an optimal projection method using a
discretized version of the continuous system (1967). This method used a geometric
approach, based on orthogonal projection to obtain a low— order model minimizing

the integral square error in the time— domain. Similar optimal projection methods
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can be applied to models expressed in transfer function instead of state— space form
(e.g. Sinhal 5] 1971). Sinha and Pillel 4 ¢] (1971) have proposed utilizing the matrix
pseudoinverse for a least—squares fit. Chen and Shieh[47] (1968) and Liaw, Pan and
Chenl48] (1986) showed that if a continued— fraction expansion of a transfer function
was truncated, it led to a low— order model the step— response of which matched that
of the original system closely. The main attraction of this approach was its
computational simplicity, as compared with the methods described in the first two
categories. The method usually employs a numerical iteration scheme for synthesizing
the elements of the reduced model that minimizes some appropnate function of the
difference between full and reduced order outputs. This method can also be
extended to multi—input multi—output cases (e.g. C.F. Chenl 4 9] 1974). Other
methods for obtaining optimum low— order models have been proposed in the
frequency domain (e.g. Langholz and BistritzZl 50] 1978, Elliott and Wolovichl51]
1980).

3.2.1.3 The Matching of Some Other Properties of the Responses.

One popular method is based on matching time moments of the reduced order
transfer function to those of the original transfer function. (Gibilaro, Leesl 52] 1969,
Leesl 53] 1971, Kropholler[54] 1970, Zakianl 55] 1973). The time moment matching
method leads to quick convergence of the steady— state response. Convergence of the
transient response is improved by also matching the first few Markov parameters
(Rossen[ 58] 1972, Shamash(s 7] 1975). One other approach which is closely related
to moment matching is the fundamental polynomial approximation method using Pade
approximants. (Appiah[58] 1979, Shamash[s57] 1975, Daly and Colebournl 0] 1979)
Although initially these methods were developed for single—input single— output
systems only, it has been shown by Hickin and Sinhal 6] (1976) that one may also
match the time moments and obtain low— order models for multi— input multi— output
systems using partial realization with the generalized Markov parameters. An

important drawback of the methods using Pade approximation is that the low— order
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models obtained may sometimes turn out to be unstable even though the original
system is stable.  This has led to the development of the Routh approximation
method (Hutton and Friedland[62] 1975). In order to ensure simplicity in the
procedure and to maintain stability of the model, some mixed methods have also
been introduced (Shieh and Weil s3] 1975, 1976, Chenl 84] 1980, Therapos and
Diamessisl 6566} 1983, 1984).

3.2.2 A Comparison of Selected Model Reduction Methods.

Model reduction research is at present limited to linear systems and it is
convenient to classify the model reduction literature according to the main divisions
outlined above and to focus on some representative papers. Three classical model
reduction methods have been selected for initial review. The first approximate
method is that of S. A. Marshalll27] in 1966 and involves models in state— space
form. The second approximate method considered in was the stability— equation
method and the continued fraction method of T. C. Chenl64] in 1980. The third
reduction method considered in this section was proposed by C. M. Liawl 48] in 1986
using dispersion analysis and continued— fraction techniques.

3.2.2.1 Marshall's Methodl27].

In 1966, an approximate method in which dominant eigenvalues are presented was
proposed by S.A. Marshall. In this method, the high— order system is represented by

the vector— differential equation or state—space form

X = Ax + Bu (3.1)
where x is the n — state vector of the system, A and B are respectively n X n and
n X r constant coefficient matrices and u is r — input vector. For convenience, we

partition equ.(3.1) so that the m variables to be retained in the reduced model are

the first m variables of the state vector x, then equ. (3.1) becomes

X4 B,
——] + | ====] u (3.2)
X, B

2
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Consider now the transformation
x = Uz (3.3)

where U is the modal matrix of A and apply it to equ. (3.1), giving

Z(t)

U-'AUz(t) + U~1Bu(t)

i.e. z(t) Az(t) + U~'Bu(t) (3.4)

where A is the n X n diagonal matrix whose elements are the eigenvalues of A.

Equ. (3.4) in partitioned form becomes
Z, A, O z,
- —— = | _————— —_— — +
z 0 A, z,

Now, the first m eigenvalues are contained in the submatrix A, and the remaining

V1 V2 B'l
_______ N S (3.5)
Vi Vu _Bz

n—m eigenvalues in A,.
Mathematically, the approximation involved in the development of the

reduced— order model is equivalent to putting

2, =0

equ.(3.5) then becomes

+ (V,B, + V,B)) u

z, = Mz,

and 0= Az

22, + (VB + V,B,) u
Now from (3.3)

z =U"Tx = Vx

or [ z, ] vV, V, [ X, ]
z, V, V, X,
giving =z, = Vyx, + V,x, = -A,7" (V,B, + V,B,) u
X, = = V,7Wox, = V,7TA,7Y (VB + V,By) u (3.6)

Substituting equ.(3.6) into (3.2) and using the relationships between the U; and V;,

one obtains
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X, = U AU 7%, + [By-A,V,7TA," 1 (V,B,+V, B,) ]u (3.7)
This set of equations approximates to the original set of n equations and is called
the reduced system. One important aspect is that the steady— state values of the
reduced system are identical to the steady— state values of the original system. This
is not so with the techniques presented by Davisonl 26].
To illustrate the procedures a very simple example for Marshall's method is
considered. The original system is represented by
-l -
————| = | _——] + | --- (Example 1)
X, 0 -10 X, 2
and it is to be reduced to a system of order 1 by neglecting the dynamic effects

associated with the large (in modulus) eigenvalue. The eigenvalues are —1 and —10,

and modal matrix is

Substituting the required values in to equ.(3.7) yields

X, = —1x, + 6/5u and x, = 1/Su

The responses of the 2 X 2 system and the reduced 1 X 1 system are shown in
Fig.(3.1).

3.2.2.2 Stability— Equation Method and Continued— Fraction Methodl 6 4].

T. C. Chen, C. Y. Chang and K. W. Han[64] have developed a combined method
for model reduction based upon the stability— equation method and the
continued— fraction method. The procedure, as explained below, consists of three
steps: 1. to reduce the denominator of a transfer function by the stability— equation
method, 2. to obtain partial quotients by the algorithm of the continued— fraction

method, and 3. to discard the undesired partial quotients and to reconstruct the
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reduced model of which the denominator is obtained from step 1. These three
steps, of course, are fully computer— oriented.

Step 1. A transfer function of a high— order system (HOS) can be expressed as:

a,, + a,,st .... + az’nsn‘1 Fn(s)
F(s) = = (3.8)
ajq tag,st oL+ a, py,sh Fp(s)

where Fp(s) and Fp(s) are the denominator and numerator of F(s), respectively.
For a stable system, the stability equations of Fpy(s) (i.e., the even part and the odd

part of Fp(s)) can be factored as (Han and Thaler 1966, Chen and Han 1979)

1,
Fpe(s) = a,, m( 1+ s2 / z;2?)
i=1
1,
Fpo(s) = a,, s m (1 + s?2 /p;?)
i=1

where 1, and 1, are the integer part of n/2 and (n—1)/2, respectively,

and 2,2 < p,2 < z,2< p,2< z,2< py2< ...

Since the p;? and z;? are in sequence, discarding the factor with larger magnitudes
of p;2 or z;2 is an approach for reducing the order of stability equations, so that
the order of the original system can be reduced. The reduced stability equations

with desirable order k are written as

m,
Fpe (s) = a,, m (1 + s2 / z;2)
i=1
1 m2
Fpo (s) = a,, s m (1 4+ s?/ pi?)
i=1

where m, and m, are the integer part of k/2 and (k—1)/2, respectively. Then the
reduced denominator is constructed as
ko,

Fpr(s) = Fpe' (s) + Fpg () = L a, j4; s
Jj=0

Step 2. To find the partial quotients by the algorithm of continued— fraction, the

following Routh array of the coefficients of the original function is used.
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h, =a,;, a,;”!
h, =a;; 25,7’
hy = a,, a; ™’
(3.9)
hj = aj, aj4, 77 i=1,2,...,2J for any J where Jgn !
where ajj is obtained from equ.(3.8) for i=1,2 with j=1,2,3,...
and ajj = @j-21j41 - hj_, ajq, j+1 for i=3,4,... with j=1,2,3,...

Step 3. To construct the reduced model with order k, one can retain the first hy
values and replace the new values of the first row of equ.(3.9) by the coefficients of
the reduced denominator obtained from step 1. The new values of azj' can be

evaluated by the following algorithm

ajtqy,, = hj7lag , i=1,2,3,...,k and k ¢ n
! - ! ! . .. 3.10
ai+1,j+1 = hi ‘(ai,j+1-ai+2’j) 1=1,2,3,...,k—J J=1,2,...,k—1 ( )
and then the reduced model is
a,; +a,, st ... +a, g sk=1
Fr(s) = - - - (3.11)
a;, +a,, st ...+ a, gy, sk
In equ.(3.9) if ai’1"‘ (i=2,3,4,...) do not exist, (i.e., aj , = 0,) then aj4 1,

and h;” ' in equ.(3.9) and in equ.(3.10) are infinite. In order to remedy this
situation, one can replace the aj , which are equal to zero by an arbitrary small
positive number ¢ and then proceed to find the remainder of the Routh array.
After applying equ.(3.10) and letting ¢ equal to zero, the new values of az’j' can be
evaluated.

The reduced model is guaranteed to be stable if the original system is stable, but
it is noted that, if the zeros of the original system are located in the right
half— plane, the stability— equation method proposed by Chen and Han cannot be

applied directly for model reduction.
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As a example (Example 2), we consider a system with closed—loop transfer
function (Han[‘”] 1978) for the stability— equation method and continued— fraction
method:

$4+ 3553+ 29152+ 1093s+ 1700

F(s) =
$9+ 958+ 66 7+ 29456+ 102955+ 254159+ 468453+ 58565 2+ 46295+ 1700

The pole— zero configuration is shown in Fig.(3.2). Because all the poles have the
same real parts, this is a difficult problem for those techniques based upon the
dominant— root principle.

Then, the stability equations of the denomination are

Fpe (s) = 1700.f (1 + s2/2?)

Fpo (s) = 4629 si§1(1 + s2/p2)

where z,2 = 20.3321 p,2 = 45.6652
z,2 = 8.9119 p,2 = 13.4228
2,2 = 3.0847 p,2 = 5.5542
2,2 = 0.3379 p,2 = 1.3597

Discarding the factors with p,2, p,?, p;2 and z,?, z,2 the reduced
denominator is
4 .
Fpk (s) =j§031,j+1 sd
where a, 4+, = [ 1.000 2.0873 3.4219 2.8382 1.0423 |
From equ.(3.9) the first five partial quotients by the algorithm of
continued— fraction are
h, =1, h, = 0.4808, h, = —2.2345, h, = —1.2961, h, = —1.8895
This means that the reduced order k = 4. Now we can construct the reduced
model with order k=4. The first hy values will be retained and be replaced the

new values of the first row of equ.(3.9) by the coefficients of the reduced

denominator obtained from step 1. The reduced numerator is:
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num = [ —0.4123 0.0097 0.6702 1.0423 ]
Therefore the reduced model is

— 0.4123s3+ 0.0097s2+ 0.6702s+ 1.0423

Fu(s) =
s4+ 2.0873s3+ 3.4219s2+ 2.8382s+ 1.0423

The unit— step responses are shown in Fig.(3.3)

3.2.2.3 Dispersion Analysis and Continued— Fraction Methodl48].

In 1986, a new method of model reduction based on dispersion analysis and the
continued— fraction method was presented by C. M. Liaw, C. T. Pan & Y. C.
Chenl48]l.  From the view point of the energy contribution to the system output,
dynamic modes with dominant energy contributions ( instead of these with dominant
eigenvalues ) are preserved by using dispersion analysis. Having determined the
denominator of the the reduced model, the parameters of the numerator are
calculated by using the continued— fraction method. The reduction procedure is
simple, and the reduced model is guaranteed to be stable if the original system is

stable. The nth— order transfer function G(s) of the original system is repeated as

follows
A,(s) a,, + a,,5+ a,;s? + ... + az’nsn"
G(s) = =
A, (s) a,;, + a,,5+ a;,82 + ... + a, py,s”
n hj
-7 (3.12)
i=1 s - py
The unit-step response can be found as
Logsy = X 4 Fee (3.13)
s s
with n hj; n hi/p; n £
K= - —, F(s) =Y —m =%
i=1 wi i=1 s - p; i=1 8 - py

where k the steady— state value, and F(s) is the transient part of the unit— step
response. In order to give a reduced model, putting equal emphasis on its
approximation to the transient as well as the steady—state responses, the dispersion

analyses of G(s) and F(s) are performed. According to those results, the dynamic
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modes with dominant energy contributions either in G(s) or in F(s) will be retained.
Now suppose that the retained dynamic modes are p,, @, ..., MKy, then the

reduced model can be written as

B,(s) b,; + by,s+ ... + bz’msm‘1
R(s) = = (3.14)
B, (s) b,; + by,s+ ... + b1,m+1sn
where b,,, b,,, ..., b; 4+ , can be obtained as outlined below:

The unit impulse response, is obtained from (3.12):
n
G(t) = L hj exp(pjt) (3.15)
i=1
The analogous continuous white noise, denoted by z(t), is defined by the following
property
E{z(t)z(t— 1)} = 05,2 &(7)
where 6(7) is the Dirac delta function.
In order to give each dynamic mode even weighting, white noise input is assumed

and the response of a system with unit impulse response G(t) is

y(t) = J G(t-7) z(v) dv (3.16)

The autocovariance function of output y(t) is defined by
y(r) = E{Y(t)Y(t-7)) (3.17)

Substituting (3.15) into (3.16)

]

y(7) E{ J;Go(t—u’)z(v‘)du' J G(t+r-»)z(v)dy }

Jt Jt+é(t—v‘)G(t+T—V)E{z(v')z(v)}dvdv'

-0

052 J G(t-»')G(t+7-»"') dv gives (3.18)
Substituting (3.14) into (3.17) and simplifying, one can obtain

Y(7) = 052 Jt [ghi exp (pj(t-»")) ] [; hj exp {p.j(t+r-v')} ] dr!
i=1

—® T =1
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n n hi hj
=0,2 L exp(ujf) [ £ — ] (3.19)
j=1 i=1 -(pitej)
n hi hj
Let dj =042 Y ——m8M— (3.20)
I=1 -(pj+pjy)
n
then «(7) =X dj exp(p.jr) (3.21)
Jj=1

where dj is called the coefficient of the autocovariance function. In fact, when the
input is white noise , then the energy contribution (corresponding to the dynamic
mode  y; ) to the total variance of output Y(t) is exactly equal to dj.

From equ.(3.21) we can see

n
v(0) =X dj=d, +d, + ... +dy
j=1
v(0) d, +d, + ... +d,
= -the total for all modes.
052 052
dj n hj hj
Thus the =X for each dynamic mode, (;Lj)
02?2  i=1 =(pitej)

By discarding dynamic modes with small dispersions, the denominator of the

reduced model can be found.

i.e., by, +b, s+, . .+b, p, s = ? (s-pi')
i=1
where m is the reduced order, and pi' are the remaining elements of p after
discarding the dynamic modes. Then, the numerator of the transfer function of the
reduced order model can be found by matching a number of time— moments or a
combination of Markov parameters and time— moments of the original system.
The transfer function G(s) of the original system as in (3.12) can be expanded

into a Cauer— type continued fraction about s=0 of the form:

G(s) = G, + G,s+ G,s2 + ...
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where G, = a,, / a,,

k
Gk = a [ az, k41 = L 3y j4g Ck-j 1 K0

with a,;x =0 for k > n-1
and the parameters G; are proportional to the time— moments of the system. Let
the first m coefficients of the continued fraction corresponding to the reduced model

R(s) and those of G(s) be identical, i.e.

b, +b,,s+. . . +b,,sM!
R(s) = = Gy+G,s+G,s2+. . . +Gy_,sM 1+, .,
b, +b, s+...+b, [y,s™

Then the parameters b,; are determined as

b,; = by, Gy
(3.22)

bom = bim Gy + by, m-1Gy + ... + by, Gy,
Now, the numerator of the transfer function of the reduced model can be solved
from equation (3.22).
Now we consider a fourth— order transfer function given by
13.2s5%+84.852+167.25+96.8

G(s) = (Example 3)
s9+10s3+3552+50s+24

Using the residue function of equ.(3.13) the unit—step response is found. The

parameters of (3.12) and (3.13) are listed as follows

p,= -1 h, =02 f = —02
w,= —2  h, =20 f,= —1

u,= =3 h,= 1.0 f, = —0.3333

p,= —4 ha= 100 f, = —2.5 k = 4.0333

The dispersion analyses of G(s) and F(s) for output y(t) by the dynamic modes p;
are performed and listed in Table 3.1. By discarding the dynamic modes

corresponding to u1 and p,, the denominator of the reduced model is obtained and

is expressed as
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B,(s) = [ 1.0 6.0 8.0 ]

If the continued— fraction of G(s) is performed about s=0, one can find
G(s) = 4.0333 — 1.43611s + 0.64329s2...

Then the parameters b,, and b,, are calculated from Equ.(3.22) as

b,, = 8 x (—1.43611) + (6 x 4.0333) = 12.7111

21
b,, = 4.0333 x 8 = 32.26664
Finally, the reduced model is obtained as

12.7111s + 32.26664
Ry(s) =

s2 + 6s + 8
The unit— step responses and the frequency response of this model and the original

system are compared in Fig. (3.4) and Fig. (3.5).
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Fig. 3.2 Pole— zero Configuration of Example 2
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Table 3.1 Energy dispersion analyses for output y(t)

I . | G(s) I F(s) I
I Dynamic ] i |
| modes l T(0)/0,? | T(0) /0,2 |
: ® : 0.6033  (2.3962%) : 0.2033 (7.6976%) |
|
: n2 : 4.8667 (19.3300%) : 0.7999 (30.2866%) |
]
[ 13 : 2.0452 (8.1232%) : 0.2209 (8.3640%) |
| |
| pa : 17.6619 (70.1507%) : 1.4170 (53.6519%) |
l I
I Total : 25.1771  (100%) : 2.6411 (100%) :
I
- for HOS, * for reduced model

1.2

**‘t##t‘*‘ ‘.‘l‘.ttttt#tttt*ttg‘ -
- >

L™ e

* i
tnu,...*."'"*”“g.‘*

time(sec)

Fig. 3.3 The Unit— Step Response of Example 2
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Fig. 3.4 The Unit— Step Response of Example 3
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Fig. 3.5 The Frequency Response of Example 3
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Chapter 4
Model Reduction Using a Modified Complex

Curve — Fitting Technique in the Frequency Domain

4.1 Introduction.

The mathematical analysis of linear dynamic systems, based on experimental test
results, often requires that the frequency response of the system be fitted by an
algebraic expression. The form in which this expression is usually desired is that of
a ratio of two frequency— dependent polynomials. This transfer function identification
technique has been applied to the problem of model reduction. This method is
based upon the minimization of the weighted sum of the squares of differences
between the frequency response of the known high order system and the
approximating reduced order system. It thus provides a means for the evaluation of
the optimum set of polynomial coefficients of the approximating transfer function of
the reduced order system.

The method was originally developed by Levy[SS] for the single— input case and
has been extended on the present work to cover multi— output cases. A state— space
model representation can be obtained from the reduced transfer— function models
using appropriate transformations.

A computer program based on MATLAB has been written to find the coefficients
of the numerator and denominator of the transfer function of the low order system
equivalent to a given high order description. Computational results are provided for
an example which has been used by Bacon and Schmidt 20] to illustrate their
approach to model reduction based on equivalent systems. This example relates to a
mathematical model of an advanced fighter aircraft.

4.2 Theory.

4.2.1 A Review of Levy's Complex— Curve Fitting Technique.
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A complex curve fitting technique for evaluation of the polynomial coefficients was
presented by E. C. Levy[se] in 1959. It uses a modified least—squares approach to
fit the frequency response curve of a system. The method is based on the
minimization of the weighted sum of the squares of the errors between the absolute
magnitude of the original frequency response data and the polynomial ratio, taken at
various values of frequency.

Levy's method is designed for computer implementation and in its original form
was intended to be used for system identification. It uses a modified least— squares

approach to fit the frequency response curve of a system to the linear expression

gl
b, +i§1bls

G(s) = , r (4.1)

\'2
0

T -
1 +.% ajs!
i=1

Replacing the operator s by jw and separating into real and imaginary parts gives

a + jof _ N(jw)

GGy = o+ jor D(jw)

(4.2)

It is assumed that a function H(jw) exists which coincides exactly with the measured
data; H(jw) will then also have real and imaginary parts:
H(jw) = R(w) + jI(w) (4.3)

At any particular value of the frequency, wy, the error in fitting becomes

(o) = M) - CCjar) = H(ja) - Fodok (4.4)

The problem, then, is to minimize this error at each sampling point on the curve.
The minimization could be done quite simply by summing the magnitude of the error
squared, X|e(wy) |2, and setting the partial derivatives with respect to each of the
coefficients equal to zero. This corresponds to a least—squares fit, resulting in a set
of linear, simultaneous algebraic equations which, in principle, could be solved for
the desired coefficients of G(jw). However, this approach can result in the optimum
approximation of the transfer function having non— minimum phase poles or zeros.

Levy modified Equation (4.4) by multiplying throughout by D(jwy), to give
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D(jwk) e(wr) = H(jor)D(jop) - N(jwg) (4.5)
This modification is valid provided D(jwy) is a non—zero function. This means that
the denominator of the overall process transfer function cannot contain any pure
integrating elements. At a later date, some authors[69>70,71] have further modified
the method in order to obtain better results for high— frequency data. The effect of

all these modifications may be embodied in an equation of the form:

eop) DCjopdy  _ HGjog) Djep)p - N(jop)p (4.6)

() = D Fa L, T IDCjep) - I

where e(wy) - error, as defined in equ.(4.4)

€' (wy) - modified error, defined by equ.(4.6)
H(jwg) - function coinciding with measured data
D(jwy) - denominator of the transfer function of the linear
dynamic system in equ.(4.2)
N(jwg) - numerator of transfer function of the linear dynamic
in equ.(4.2)
L - Lth iteration
ni - weighting factor
The case where ni1 = 0 corresponds to Levy's[“] original, unmodified expression.
Sanathanam and Koernerl 70] proposed using ni = 1, whilst 't Mannetje[”]

developed the general form given above in equ.(4.6).

Levy's method is usually presented as a means of identifing systems from measured
frequency response data. It can however provide a basis for fitting a lower order
description to a high order model. This is, in some ways, a simpler application than
system identification in that the frequency response cuves of the high order model to
which a lower order model is to be fitted are free from measurement noise. This
appears to provide a very simple basis for model reduction.

4.2.2 Extension of Levy's Technique from the SISO Case to the SIMO Case.

The contribution of E. C. Levy involved using a least—squares approach to fit the
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frequency response curve of a system to a linear transfer function. Sanathanan and
Koernerl 70], 't Mannetjel 711 further modified this approach to give better results by
minimization of the "weighted" sum of the squares of the errors in magnitude. All
of these approach are only for the single—input and single— output case.

Many practical problems involve multi—input and multi— output descriptions rather
than the single—input and single— output type of model to which Levy's method can
be applied. To make this approach of any value for model reduction in the case of
highly coupled system such as the helicopter it is essential to extend Levy's approach
to the SIMO case. This is essentially the same as the single—input single— output
approach but involves extending the theory to ensure that the resulting transfer
function descriptions all have the same characteristic equation.

The main different between the SISO and SIMO cases lies in the cost function.

The cost function for the SISO case can be expressed as :

n
J= > 1 elex)l?
k=1
where n is the number of points in the frequency range considered. An appropriate

cost function for the multivariable case is

n
S 1 ewl? .7

where m is the number of outputs and n is the number of points in the frequency
range considered.
We could express the error e(wy) in terms of real and imaginary parts as e(wp) =
Ale) + j Blag). So,

le(ax)| = / A? + B? (4.8)

Now let
E=1J1 = gn{[ A,2(ey) + Bi2(u) ] + [ Ay2(wk) + B,2(wp)] +...} (4.9)
=1

where A;j2(wg) = (ogRix — ox7klik — i) 2 D on4(K)

BiAwp) = (ox7iRixk + 0oilik = @kBik)? Don,(k)
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Il

ok = bjg — bjup? + bjept —

Bik = bj, — bjzex? + bjgup? —

ok = 1 = aju? + age? —
Tk = a; T aup? +oagey? -
The partial derivatives of Equation (4.10) with respect to each of the unknown

coefficients a; and b; must be set to zero, therefore

gE -0 i=1,2, 3 ...«

aj

dE . . (4.10)
”=O i=1,2,3, ..., m; j=0,1,2, ..., 9g

3bj ;

Each of the equations in (4.9) will contain terms which are functions of the
unknown coefficients, and terms which are known. To condense the notation before

expanding the above equations, the following relationships are defined :
$ wh
Fh = 3 b Don, (1)

n
Sih = 2 ok Rik(@k) Dy (k)

i=1,2, ..., m (4.11)

[=n
1l
(@]
—

n
Tin =2 w1y () Dypy (K)

=1

n
Uih =2 ek [T1k? (i) + Rig? (@0 ] Do,y (K|

where m is the number of outputs.

Here Ij(wg) and Rjp(cwy) represent the real and imaginary parts of the measured
function Hj(jw), respectively. Substituting these relationships into equ.(4.10) and
separating the coefficients, we obtain a set of equations. Then the problem can be
formulated as the solution of a set of linear simutaneous algebraic equations of the
form

+ [P][X]=1[Y] (4.12)
where the matrices [ P ], [ X ] and [ Y ] which are for m = 2 (two outputs), r =

5 and q = 5 case (see equ.(4.7) and (4.10)) are written below respectively :
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[ Y] =1 510 “T11 "S12 T1a S14 "T15 szo "T21 ‘Szz Tza Sz4 "Tzs

0 'U12'U22 0 U14+U240 I

[ X ] = [ b10 b11 b12 b13 b14 b15 bZD b21 b22 b2‘3 b24 b25 a‘1 a‘2
a, a, a.]"'

The numerical values of the unknowns a,, a b

20 -+-3  byg, by, ... may now be

determined once the coefficients (4.11) of equation (4.12) have been evaluated. For
any single— input, multi— output case we will obtain the transfer function models:

X1

=T (s) = ——12—1(8); Ni(s) = k11 s P77 + ki2 s 2 + . + kin
X2 _ N2, . _ n— n—
- (s) = —x (s); N2(s) = kz1 sB7 1 + ka2 sB7 2 + . + kon
% (s) = %1(5); Nn(s) = kni sB~ ' + knz s~ 2 + ... + knn
where A(s) = charcteristic polynominal for all of the transfer functions
= ¢ + d1sn—1 + d1sn—2 4+ e 4 dn

A computer program has been implemented using the MATLAB package on the
VAX computer for this single— input and multi— output case. This implementation is
described in Appendix 1. The size of problem (in terms of the number of poles
and zeros of the system) which can be accommodated is limited only by the available
computer memory.

4.2.3 The Application of Chen's Nonlinear Inverse Formula.

R. T. N. Chen's nonlinear inverse formulal72] provides an exact and unique
state— space model representation from the transfer function models. This inversion
is unique because the relationship between the model states and outputs is known.
For the presents purpose, let

u = [u1] = control input
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X [x1, x2, ..., xn]T = state vector

¥ X = output vector (simplified case)

and the transfer function models have the form from section 4.2.2

Ky Ky - Kip
K,, K22 ... K,p

N = . . . _ (4.13)
Kni Knz --- Kpn

where Kij is jth coefficient of the numerator of ith transfer function.
Fo = | === (4.14)

where d; is the coefficient of the denominator of the transfer function.

The unique inverse of the transfer function of whole SIMO system is

X=F x+ G u

¥=X
where F = NF.N™'

(4.15)
G, = [ K,y Kpy ... Kp,1T

So, now we have got a low order system which is in state—space form. If we
derive a low order description for a high— order system, just using Levy's approach
for the SIMO as presented in the section 4.2.2 then R.T.N.Chen's technique as
presented above; allows the low— order system based on a set of transfer functions to
be translated to state— space form.

4.3 Application of the Extended levy's Technique & Chen's Method.

A computer programme has been written to find the coefficients aj and bjj of the
denominator and numerator respectively for the transfer function of the reduced order
model. The program also obtains the reduced order system in state—space form
using Chen's method.

An example which is a used to illustrate the application of the method is taken

from Bacon and Schmidt'sl30] paper and relates to an advanced fighter aircraft.

- 48 -




Details of the high order system description are given in Table 4.1.

Table 4.1 Example HOS aircraft

Advanced fighter without prefilter

q 5.26s(s+0.0103) (s+0.773) (s+0.5) (s+1.887) (s+13.986) [ 1 ]

b (s+0.418) (s+1.34) (s2+0.00264s+0.006724) (s243.3916s+7.7284)
(s2+33.0576s+290.3611)

S

Nyor  1.34s(s+0.00066) (s+49.99)(s+0.5) (s+1.887)(s+13.986) ‘ g ]

8 A rad

In order to understand the strengths and limitations of the method a number of
cases were investigated involving application of the extended Levy's technique and
Chen's method. The frequency response of the reduced model agree with the high
order system well over the range of frequencies considered if the weighting factor nl
and the number of points used in calculation are chosen in an appropriate way.

4.3.1 The Effect of the Weighting Factor.

According to Levy and to those who introduced modifications to the method, the
introduction of the weighting factor nl in Equ.(4.6) allows better results to be
obtained for high frequency data. However in practical applications the magnitude in
the high frequency range may be very small, and it is therefore very difficult to use
the resulting error to judge the quality of fit. Fig. 4.1 to Fig. 4.11 and Table 4.2
present the results ffom a series of tests to investigate the effect of using different
values of the weighting factor nl for the example above for a frequency range of 0.1
rad/sec. to 100 rad/sec.. From these figures and Table 4.2 it can be seen clearly
that to obtain a good fit in the high frequency range from 10 rad/sec to 100 rad/sec.
it is necessary to use a small value of the weighting factor nl. In some cases
negative values of nl were found to give good results. For this example, when nl

is greater than 0.2, the results in the higher frequency range start to get worse.
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When the value of the weighting factor nl is further increased to over 1.0, the
results in all parts of the frequency range get worse.

From Fig. 4.4 and Fig. 4.8, it can be seen that the frequency response of the

transfer function for case nl1 = 0.2 is much better than the case for n1 = 1. But
from Table 4.2 we also find that the error for the case of n1 = 1 is smaller than
for the case of nl = 0.2. That is because for the case of nl = 1 the effect of

the weighting factor nl in the high frequency range is bigger than in the case of nl
= 0.2. Although the error for the case of nl = 1 is smaller than for the case of
nl = 0.2 the graphical fit looks worse in the high frequency range. This is due to
the fact that the frequency response magnitude information is presented in graphical
form on a logarithmic scale (decibels). The error is not however based upon a
logarithmic measure.  Careful consideration must therefore be given in interpreting
the results of the optimisation to the intended use of the reduced order model and
the frequency range of importance for that application. In the example being
considered, to obtain good results in terms of magnitude (dB) and phase plots as well
as satisfying the error criterion it is necessary to use a value of the weighting factor
nl between —1.0 and 0.2.

4,3.2 The Effects of Number of Points Used in the Calculation.

Fig.4.12 — Fig.4.14 and Fig.4.4 show the effects of the number of points taken in
the calculation. It is clear from these figures that the number of points taken in the
calculation will generally not affect the trend of the solution, although it is also clear
that the more points we take, the more smooth the solution is. It is also clear
from these results that if the number of points taken exceeds a certain value, such
as 200 points for this example, the results start to become worse. There is clearly
an optimum number of points and care must be taken in selecting an appropriate

number for each application.
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Table 4.2 The Error for the Different Value of nl

|[Weighting Factor | Error [
o nl | Iterationl | lteration?2 | Iteration3 |
o > 1 102771 | 1.7973 1 1.6678 |
o 1.5 1 102771 | 1.8799 |  2.5220 |
o 1.2 | 102771 | 2.0253 | 2.093%9 |
o 1.0 | 102771 | 2.6121 |  2.0035 |
o 0.8 1 102771 1 4.6889 | 2.9673 |
o 0.4 1 102771 1 107372 1 10.6364 |
o 0.2 1 102771 1 10,9150 |  10.89%4 |
| 02 1 102771 1 9.84l0 | 9.8393 |
| Sos 1 10.2771 1 9.98s5 | 9.9855 |
| o 1 102771 1 1Ll g 105211 |
| 20 1 102771 1 103747 1 10.3747 |

4.3.2 The Effects of Number of Points Used in the Calculation.

Fig.4.12 — Fig.4.14 and Fig.4.4 show the effects of the number of points taken in
the calculation. It is clear from these figures that the number of points taken in the
calculation will generally not affect the trend of the solution, although it is also clear
that the more points we take, the more smooth the solution is. It is also clear
from these results that if the number of points taken exceeds a certain value, such
as 200 points for this example, the results start to become worse. There is clearly
an optimum number of points and care must be taken in selecting an appropriate
number for each application.

4.3.3 Convergence and Iteration Number.

It has been observed that Levy's method converges very rapidly. Usually, after
three to six iterations there are no further significant changes to be found in the

solution.
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4.4 Extension of Levy's Technique from the SIMO Case to the MIMO Case.

From section 4.2.2, it is very clear that the different between the SISO case and
SIMO case lies in cost function. From this concept it is not very difficult to extend
the problem of model reduction to the MIMO case. The cost function for the

SIMO case can be expressed as equ.(4.7):

n
S 1 ew? .7

n
S 1 el (4.16)

where 1 is the number of inputs, m is the number of outputs and n is the number
of points in the frequency range considered.
We could express the error e(wy) in term of real and maginary parts as
e(w) = Alog) + j Blwg) so,
| elex) | = / A2 + B?

let E=J=J, + J,+ =+ Jng

_mxl TZI [ Aj2(or) + Bj2(wy)] (4.17)

i=1 gg,
where Aj%(w) = (0)Rjk = ex7ilik = oK) * Donq(k)
Bi%(wp) = (ex7kRik + olik = @kBil) ? Dony(k)
ok = big — bjup? + bjup?
Bik = biy — bigu? + bigur? —
o = 1 = agu? + oaget -
Tk = &, T aze? + oagep? —
The partial derivatives of equ.(4.10) with respect to each of the unknown coefficients
aj and b; must be set to zero, therefore

JoE

°E _ o i=1,2,3, ..., ml; j=0,1,2, ..., q | “1®
35,
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To condense the notation before expanding the above equations the relationships in
equation (4.11) only can still be used the difference being that
i=1, 2, -+, mx

where m is the number of outputs

1 is the number of inputs.
Here Ijp(wk) and Rjp(wy) respresent the real and imaginary parts of the measured
function Hj(jw), respectively. Substituting these relationships into equ.(4.18) and
separating the coefficients, we obtain a set of equations. The problem can then be
formulated as the solution of a set of linear simultaneous algebraic equations (4.12).
The matrices [P], [X] and [Y] which are for 1 = 2 (two inputs), m = 2 (two
outputs), r = 5 and q = 5 (see equ.(4.7) and (4.18)) are written below respectively:
[ P] (see Table 4.3)
S -T

[ Y] =1 Si9 “Tyy =S;, Ty5 844, 15 S0 Ty =S5, Ty S,4 -Tyg Sy

]

'T31 'saz Tae S34 'T°5 540 'T41 'S42 T43 s44 'T45 0
(U, ,+U, 40, ,+U,,) O (U, ;+U, +U,,+U,,) O ]'
[ X ] = [ b10 b11 b12 b13 b14 b15 b20 b21 b22 b23 b24 b25 b30 b31 b32
by byy byg bag bay by, bay byy byg 2, 2, a5 2, a5 J!
The matrices [P], [ X] and [Y] have the same structure as the matrices [P], [X]
and [Y] for the SIMO case. The numerical values of the unknowns a,, a,, -
b

b may be determined once the coefficients (4.11) of equation (4.12) have

100 P29 777

been evaluated. @ A computer program has been implemented using the MATLAB
package on the VAX computer for this Multi—input and Multi— output case. This
program has been implemented for an example with two— inputs and two— ouputs for
lateral motion of a very large four engined passenger jet aircraftl#5].  This example

is considered in state— space form :

X = Ax + Bu
with x = [ r B p ¢]' as

where r is the yaw rate
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B is the sideslip angle
p is the roll rate
and ¢ is the roll angle.

The control input vector is

[z

where &g is the rudder deflection
6p is the aileron deflection.

For this model the A and B matrices involve the following stability and control

derivations.
[ N Ng' Np' O
A= -1 Y, 0" g/U,
L' Lg' Ly 0
0 0 1p 0
[ Nop' Néu'
_ R* A*
B = | YoR' Yép
1 Logp  Lép
) 0

The order of the HOS of this example is four. Abtompts have been mode to
find a ROS of first, second and third order. The behaviour of the ROS for
different reduced order depends on the frequency range used. The frequency
responses of the third order reduced order system are shown in Fig.4.15 for the
frequency range (0.01 — 1.0 rad/sec.). It can be seen that the frequency response
of the ROS agrees very well with the HOS in the frequency range used.

4.5 Discussion and Conclusion.

As has been described in above section, the extended Levy's complex— curve fitting
technique and Chen's method can provide an effective method for model reduction.
The resulting computer program is suitable for handling single—input and
multi— output systems and has been applied to an example system relating to an
advanced fighter aircraft and to a large passenger transport aircraft. It was found

that in order to obtain better results for whole frequency range of interest, the
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choice of some parameters must be very carefully made:

Y

2)

3)

the weighting factor nl.

For different inputs and outputs the optimal choice of the nl is
fifferent. There is a range of the value nl which is suitable. If
the value of nl is outside this range the solution is very
sensitive and the error of the frequency response between the high
order system and reduced order system can become very large.

the number of points used in the calculation for the frequency range
of interest.

In general, the number of points used in the calculation will not
affect the trend of the solution. However, if the number of points
used exceeds a certain value, the results start to become worse.
convergence.

This technique converges very fast. After only 3 iterations there
are no further significant changes 1in the solution in many cases.
Also after three iterations the error of the frequency response and
in the time response between the high order system and reduced model

show no further obvious changes.
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Table 4.3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T,, S, -T,, -S,a T,

0 6o o0 0 O 0 0 0 0 0 0 0 o o o0 0 0 S, T,, -S, 4 T, S,e
o o o o © 0 0 0 0 0 0 0 o o o 0 0 Ty, S, 4 T, Syq -T,,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sia T,s Si¢ -T,, Sie
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Tys Sy6 -T,, -S,s T,

0 0 0 0 0 0 0 0 0 0 q 0 0 0 0 0 0 S,e -T,, -S, s T,, Siie
o -r, o r, O 0 0 0 0 0 0 0 o o o o0 0 T,, S,y -T,, -S,4 T,

-r, 0 r, o 0 0 0 0 0 0 O 0 0 0 0 0 0 S,, T,, S,a T,s S,

0 r, o -r, O 0 0 0 0 0 ¢ 0 o o0 o o0 0 -1,, S, T, S,e T,,

r, 0 -re 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -S,4 T, S,s -T,, -S.,

0 -Te o0 r, © 0 0 0 0 0 < 0 0 0 0 0 0 T, S,s -T,, =S, T,,

T, o} r{, o 0 0 0 0 0 0 ¢ 0 0 0 0 0 0 Sss T,, ~S,8 T,q S.1s

0 0 0 0 0 ry, 0 -r, 0 r, o 0 0 0 0 0 0 T,, S, -Ty, -S4 T,s
0 o o o O o --r, o0 r, o -y 0 o 0o o0 o0 0 Sas T,, Sas T, Sae
0 0 0 0 0 -, 0 r, 0 -T ¢ 0 0 0 0 0 0 -T,, -S,a4 T,ys S, -T,,

0 0 0 0 0 0 r, 0 -r, 0 I's 0 0 0 0 0 0 -S,, T,s S, -T,, -S.,

0 0 0 o O r, 0 -T 0 Ty C 0 0 o o O 0 T, Sis -T,, -S.g T,,

0 o -0 0 0 0 -Te 0 LS 0 Tig O 0 0 0 0 0 S3e -Ts, -S3s Tss Sii
0 0 0 o O 0 0 0 0 0 ¢ r, o -r, o T, 0 Tay Sas = P “Saa Tas
0 o o o0 © 0 0 0 0 0 4 0 -r, o r, 0 -Ts S42 Tas ~Saa T, Sas

0 0 0 o O 0 0 0 0 0 0 -r, 0 r, o -Ig 0 -T,, -S.4 Tas Sac T.,

0 0 0 0 0 0 0 0 0 0 0 0 r, o -rg © Ty -Saa Tas Sas T,, San

0 0 0 0o 0 0 0 0 0 0 0 r, 0 -y 0 Ty Y Tas Sac -T,, -S4e T.,

0 0 0 0 0 0 0 0 0 0 0 0 -r, O r{ 0 -T'yy Sae -T,, -S4 Tas Sars
=S,, -T,3 S,a Tzs =Sz Tay =Ssp -Tsy  Ssq Tas -S36 Tay -Sa “Tas Saa Tas ~Sss (U, #+U,,+U,,+U,,) 0 —(U, g+U, +U, +UL L) 0 (U, ¢+U, g+U, +U, o)
-T,3  Su4 Tas ~Sas -T,, =S.,, -T,; Saa Ty =Sss Ty, -S,; -Tay Saa Tas -S4 T4y 0 ~(U, g+U, 4 +U, +U, ) 0 (U, g+U, o +U, +U ¢y 0

Sza  Tas ~Sag -T2y S;s -Taz  S;a Tas =Sss Tay Sz -Tas Saa Tas =Sag "Taz  Sas _(U‘4+U24+U34+U44) 0 (Uy +Uz6+Us6+0as) 0 ~(UygtUzg+Us g+ Usg)

T;s -S25 T,, S; T2 534 Tys -S35 -Ty, S3s Tss Saa Tas ~Sas “Tas 545 T49 0 (Uts"'Uzs"'Uas"'U«ts) 0 -(U, 3+U25+U38+U48) 0

S26 'T27 sza ng '5210 T35 -Sas -Tss S3g Tig "5310 Tas =S4 “Tay sda Tas '5410 (U15+U25+U35+U45) 0 -(U, 8+U28+U38+U4S) 0 (UI1O+U210+U310+U41
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Chapter 5
Equivalent Systems Approach to the Reduction
of Multi— Input Multi— Output Systems
5.1 Introduction.

Reduced order modelling can be very important for the purposes of control
system design where the designer must attempt to satisfy criteria such as: 1) steady
state specifications; and 2) dynamic and transient specifications (e.g. rise time,
overshoot, bandwidth etc.) These place emphasise on the low and middle range
frequencies. Reduced order models for piloted simulation/handling qualities studies,
however, may not be concerned so much with steady state behaviour but may
concentrate instead on pilot induced oscillations and other aspects of the overall
transient behaviour, with more emphasis often placed on the high and middle
frequency ranges.

The development of techniques for model reduction in aircraft applications of this
kind has taken place separately from the development of the methods outlined in
Chapter 3. Different terminology has therefore arisen and reduced order models
developed for use in aircraft handling qualities studies and for applications involving
real— time piloted simulation are generally referred to as "equivalent system" models.

The modern trend in aircraft systems is inevitably towards greater complexity, due
mainly to requirements imposed by complex performance specifications and tasks and
to the need for accuracy. A modern complex system may have many inputs and
many outputs, and these may be interrelated in a complicated manner. To analyze
such a system, it is essential to reduce the complexity of the mathematical
expressions, as well as to resort to computers for most of the tedious computations
necessary in the analysis. The state— space approach to system analysis is well suited
from this viewpoint. A linear, time— invariant (LTI) system of nth— order, may been

expressed as a set of first order differential equations, which can be futher written as
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a vector— matrix differential equation. This vector— matrix differential equation is

called the state— space representation and has the following form,

X = Axt+ Bu
And the output equation becomes
¥ =0Cx

where x € RM ( RM js 3 Cartesian m—space), u € R™ and A, B and C are
constant matrices of appropriate dimensions.

In this chapter, the use of a low— order approximations, or equivalent systems, in
state— space form is considered. Such a formulation is well suited to the treatment
of multi— input, multi— output systems and is appropriate for the development of
models for aircraft handling qualities assessment. This problem is identified as a
special case of the more general problem of model reduction in closed— loop systems.

In the traditional equivalent system approach used in aircraft handling qualities
studiesl 28], a numerical search algorithm is employed to find a reduced— order model,
of ‘classical' aircraft form, such that the frequency response of the high— order
system (the aircraft) is well approximated over a specified frequency range.
However, especially when a good approximation is not obtained, there are difficulties
in the use of these traditional equivalent systems methods. Non— uniqueness of
solutions, the treatment of multi— input multi— output cases and the goodness of fit
necessary are factors which present particular problems.

Because of these general and fundamental difficulties, associated with model
reduction, the reduced—order modeling objective of approximating the aircraft's
frequency response is re— examined in the current work and the question of when
and how to match multiple frequency responses is reviewed. An alternative
state— space model— reduction approach developed by Bacon and Schmidd 301 is
considered both in the content of handling qualities research and for control system
design. In this method the original transfer function (matrix) G(s) of dynamic order

n is reduced via a state—space transformation T which can be determined without
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the use of any numerical search algorithm. In terms of the three classes of problem
identified in Chapter 3 this method is therefore essentially a form of component
truncation method. In addition, the resulting model Gr obtained by this method is
unique for the selected dynamic order r and the least effective dynamic order is
determined a priori by evaluating a set of frequency— domain matching error bounds.
These error bounds apply to each i—j element of the difference matrix
[G(s)— Gr(s)ls:jw over all . One important feature of the approach which
distinguishes it from the methods outlined in Chapter 3 is that it is applicable to
multi— input/multi— output systems and is therefore well suited for aircraft applications.

5.2 The Theory of the Bacon's Method.

The state— space model— reduction approach of Bacon and Schmidt is composed of
three stages. The first stage is the modal decomposition. The second stage is the
application of an internally balanced approach to model reduction. The third stage is
the combination of separate subsystems to form the completed reduced— order
approximation.

5.2.1 Modal Decomposition[30]

Consider the state— space model:

I

X = Ax + Bu (5.1)

¥y =C (5.2)
The transfer function G(s) from input u to output y is given by

G(s) = C(sI-A)"'B (5.3)

In the modal decomposition process the given system G(s) is split into three

subsystems Gig(s), Gpid(s) and Ghigh(s), involving the low—, mid— and
high— frequency components of the system separately. This involves four steps:

1) Determination of the eigenvalues and eigenvectors of the matrix A of the

state— space equations and thus the diagonal matrix of eigenvalues A and the

corresponding matrix of eigenvectors M (modal matrix).

2) Determination of radii d1 and d2 which define three frequency regions of the
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complex plane.
3) Calculation of the matrices of eigenvectors (modal matrices) Mg, Mpiq, Mhijgh
and MIO_T, Mmid_T’ Mhigh_T where the '—T' operation is defined as the
transpose of the inverse or the inverse of the transpose which are equivalent
operations.
4) Calculation of the three subsystem transfer functions Gj(s) where i=lo, mid and
hi.

The details of these four steps are described as below.

5.2.1.1 Determination of the Matrices A and M Corresponding to the Matrix A of

the State— Space Equations.

The matrix A can be modally decomposed to obtain A and M, where A is the
block diagonal, real Jordan form and M is the corresponding (real) modal matrix.
Each column of M is, of couse, an eigenvector of A and from standard matrix

theory it follows thatl 71]

A=MAM (5.4)
where
A --- is a diagonal matrix involving the eigenvalues of the matrix A
M --- is a matrix whose columns are the eigenvectors of the matrix A

Conversely it follows that
A = M"1AM (5.5)

5.2.1.2 Determination of Radii dl and d2 Which Define Three Frequency Regions of

the Complex Plane.

Because modal decomposition is used, it is important to examine the implications in
terms of the frequency response of the system. The transfer function G(s) describing

the input/output behavior of the linear system is:

m
Q(s)  v;0(s-zj)

G(s) = = ~
P(S) ig(S’Pi)
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It is these parameters the poles and zeros, that influence the frequency response and
the effective order of the system.

The magnitude and phase on the Bode diagram of G(jw) are related to the directed
line segments in the s—plane as shown in Fig. 5.1. As «w moves along the
imaginary axis, these directed segments, rotate and change magnitude. The effect of
constraining the frequency w to lie within a range (w,, w,) is of particular interest
for reduced— order modelling. In Fig. 5.1 two concentric circles of radii w, and w,
are shown and these circles separate the s— plane into low—, mid— and high—
frequency regions.

The columns of M are now ordered according to the natural frequency,
wpj = (072 + «2)"/2 of the corresponding modes as defined by the positions of the
eigenvalues X\; in the complex plane. Thus, if radii dl and d2 define concentric
circles in the complex plane, and M can be divided as Mjs, Mpjq and Mpjgp as
shown in Table 5.1, the complex s— plane is divided into three regions by the

parameters d1 and d2.

Hi

Figure 5.1 Pole/Zero Definition of Frequency Response
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Table 5.1

Regions Column groupings
Low frequency (lo): 0 < wpi < dl Mio
Middle frequency (mid): dlg wyj < d2 Mpia
High frequency (high): d2g wni Mhigh

5.2.1.3 Calculation of My, M.:4. Mh;gh and Mo~ T, M.~ T, M},;gh"T.
From Table 5.1, we can see that M is separated into three column groups Mj,,
Mpiq and Mpjop. That is
Moo= Mhigh Mpid Mio | (5.6)
and from the definition of the superscript '— T' given in Section 5.2.1 we have

M-T = ( Zhigh Znid Z1o 1 (3.7)

where Zpiop and Zj, are the separate columns of the M~ T matrix

5.2.1.4 Calculation of the three subsystem transfer functions Gi(s).

We can find the transfer functions Gj(s) of the three subsystems directly from

Gi(s) = Ci(SI—Ai)_1Bi (5.8)
where i = lo, mid and hi. In this equation
A; = Z;TaM; B; = Z;TB and C; = CM;j
i i i i i i i

The HOS (high— order system) transfer function may then be rewritten as

[mp o 1 [mmip | [mu1
n (s-zj) mn (s-zj) m (s-zji)
i=1 i=1 i=1
G(s) = ¥ (5.9)
nLO nMID nHI
n (s-zj) m (s-zj) n (s-zj)
Li=1 Li=1 L i=1

or in the form

G(s) = Gyo(s) + Gpid(s) + Ghigh(s) (5.10)
R Rs
where Gy (s) = |E —1— k = lo, mid, high.
' i=1 s-pijdk
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In equation (5.9) the factor +4 represents the gain constant of the orginal high
order system expressed in transfer function form as

m
n (s-zj)
i=1

G(s) = ¥
n
T (S-Zi)
i=1

5.2.2. Application of the Internally Balanced Amoroach[1 3,34]

The second stage in the reduction process is to use an internally balanced approach
to reduce the order of the Gpjop and Gpyjq which have been obtained by stage 1.
After that an effective system will be obtained. For illustration, this stage is
separated into several steps as given below:

1) Determination of the controllability grammian X and the observability grammian S
and calculation of the eigenvalues and eigenvectors of XS in order to obtain the
Hankel singular values which provide a measure of the effective order of a system..
2) Determination of the effective order of each subsystem Gj, i = high, mid.
3) Determination of lower— order system approximations of every subsystem G(s).
5.2.2.1 Determination of the Controllability Grammian X and the Observability
Grammian S.

Before investigating further the order reduction of a system, it is necessary to
consider the concepts of controllability and observability.

A system described by Equ.(5.1) is said to be state controllable at t, if it is
possible to construct an unconstrained control signal which will transfer an initial state
to any final state in a finite time interval t; g t g t,. If every state is
controllable, then the system is said to be completely state controllable.  Similarly
the system is said to be completely observable if every initial state x(0) can be
determined from the observation of y(t) over a finite time interval. The degree of

the controllability of a system can be determined by a matrix, called the
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Controllability Grammianl 7¢l, which is defined by the following integral
o
we2 = | &(t)BBT &(t)Tat (5.11)
0
where &(t) is the state— transion matrix. For a system described by Equ. (5.1),
we have ®(t) = eAt (see Ref.s1).
Similarly, the degree of observability can be found from the Observability
Grammianl 70], which is defined by
o
W2 = | @(t)T cTc a(t)de (5.12)
0
In order to calculate W .2 and W2, it is not necessary to integrate Egs.(5.11) and
(512). If X = W.2 and S = W2, it can been proved[13] that X and S are
respectively the solutions of the following equations (5.13) and (5.14)[77], if the
eigenvalues of A have negative real parts.

xAT + ax + BBT

0 (5.13)

sa + ATs + cTc =0 (5.14)

These two equations are known as the Lyapunov equation.
5.2.2.2 Hankel Singular Values.

In order to obtain the effective order of the reduced order model we introduce the
concepts of the Hankel matrix and the Hankel singular values. The details of the
definition and the calculation of the Hankel matrix and Hankel singular values can be
found from APPENDIX 2 (A2.3 & A2.6). From APPENDIX 2 (A2.6 & A2.7) we
can obtain the Hankel singular values and obtain a relation between the product XS
and HTH,

XS = HTH
This means the matrix XS is a symmetric matrix. Since HTH is a symmetric

matrix, the singular values o; of H are equal to the square roots of the eigenvalues
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of HTH, namely, equal to the square roots of the eigenvalues of the product of
xsl78].  Thus, the singular values S1 of the matrix H are

S1 = SVD(H) or H= U[Sst]uUT
where S1 is a n X n diagonal matrix and where the columns of U are called the
left singlar vectors.
o
\'{72

S1

for which o, 20, = ++- } 0 = 0

L on

5.2.2.3 Calculation of the Eigenvalues Al and Eigenvectors Ml of the Product XS.

From the internally balanced approach method we are able to find an optimal
rth— order model from the eigenvalues Al and eigenvectors M1 of the product XS by
following the procedures given below,

XS = (M1) (A1) (M1)~?
[, ?
h,?

Al

] hp2]
hj = Nj1/2(XS)

We have seen that

hj =c¢jand h, > h, > ... > he > hey; = ... 5 hy 0.
5.2.2.4 Determination of the Effective Order of the Subsystems Gys), (i = high,
mid).
Because h, > h, » ... » hy > 0, if a large separation exists between hj and hj, ,

it follows that h; / hjy , >> 1, and hence this i may be taken as the effective

order r. The eigenvectors of the product XS, M1, and the inverse of the transpose
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of M1, (Ml)"T, can be expressed as

ML = [(M1)p, (M1)p_,] ML -T = (U, Uyl
and
r,2 0
Al =
0 Z:1'1—1‘2

where ¥, = diag (hy), i = 1,r; &, = diag (hy), i = r+1n.

This r is effective order of the subsystem Gs(s).

5.2.2.5 Determination of ILower— Order System Approximations of Every Subsystem
Gy(s).

From 5.2.2.4 we have obtained the effective order rpjgh, I'mjq of the subsystems
Ghigh(s), Gmid(s). Therefore we can find the approximate lower— order subsystems
Gyi(s), (i = high, mid).

Gr(s) = Cp (sI-A.)" "By
where A, B, and C, are defined by
A, = U.TaT,., B, =U.TB, ¢, =cT,

5.2.3 The Complete Reduced— order Approximation

Now we have found Ay high Cr high 21d Ar mid> Br,mid Cr,mid- A first order
approximation is sought for Ghigh: whereas an approximation of the desired 'classical’
order is sought for Gpjq. The complete reduced— order approximation is the sum of
these two subsystem approximations.

The state — space model for a subsystem can be written as

Xj = Ajxj + Bju

vi = Cixj

So, for the mid subsystem we have

Xmid = AmidXmid * Bmid4

Ymid = CmidXmid
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and for hi subsystem

Xhigh= AhighXhight Bhight
Yhigh= ChighXhigh
The complete the reduced order system (LOS) of the high order system (HOS) is the

sum of the two subsystems, namely

X = Xnid + Zhigh

Y = Ymid * Yhigh
The transfer function of the complete reduced— order system (LOS) cab be found
from

Clos(8) = Cpe (SI-Apc)™'Bre

where

Bye = Cre = [Cr,high Cr,mid]
0 Ar,mid Br,mid
5.2.4 The Measure of Error Bounds.

5.2.4.1 The Scaling Matrices Q; and Q.

The need for scaling arises because the internally balanced approach is more

sensitive to the responses with higher magnitudes. Different magnitudes can simply
arise from different units in the input or output channels, or different force gradients
in manipulators. To obtain a uniform match between the truly dominant response of
the system, scaling must be included. Q;j and Qg are the input scaling matrix and
the output scaling matrix and are square diagonal matrices containing the
non— negative scaling factors Qi and doj- By using scaling, one can also bias the
resulting low— order system to better approximate a certain response. If the scaling
(Q; and Q) has been chosen such that elements of the matrix G(jw) are weighted
equally (their scaled magnitudes roughly equal), the Bode error bound will be

applicable for each element of the frequency response. In Chapter 7 the results
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from an example of the advanced fighter[f"O] with scaling and without scaling are
presented to illustrate the effect of the scaling.

5.2.4.2 The Determine of Error Bound.

The measure of how well the reduced order model approximates the high order
system is reflected in the frequency response error bound of the model. In
multi— input and multi— output closed— loop systems, which include pilot/vehicle
systems, a "good" approximation implies that Gy(jw) must approximate the G(jw)
element over the multivariable crossover frequency range.

The frequency response error is defined by

E(jo) = [ Ejj(iw)] = G(jo) — Gyljo)
each i—j element in E(jw) describes the frequency response error associated with the
corresponding element in G(jw).

A matrix norm, defined by the maximum singular value of the matrix E(jw),
provides a measure of "smallness" for E(jw), and also bounds [Eij(jw)l. The
maximun singular value of E is defined as :

o(E) = \'/2(EEY)

- *EE*v)1/ 2
N (VEETY
where X(.) is the maximun eigenvalue of (.), and Ivil = (v*v)1/ 2. The largest

value of o[E(jw)] over all frequencies (0 ¢ w < « ) defines the "o norm"

HE(jw) lle = suBo{E(jw)] (5.15)
If for some w IE(jw) e << IGij(jw)l, then Grij(jco) closely approximates Gij(jco).
The fact that the model reduction procedure to be presented exploits another
reduction technique, i.e., Moore's internally balanced approach[1 3], means that there
is another method available for obtaining this norm. Ennsl24] has shown that a
model obtained from Moore's technique satisfies

IE(jo) o < Boo

where the value of B, may be determined before the reduction is performed. The
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procedure to be presented also has such a bound.

Another result involving the internally balanced algorithm was proved by Ennsl 34],
who showed that the frequency response error of the rth order model is bounded for
all w by

d{Qu[G(jw) — G(jwlQi} < 2Tr(Iz—y)
where o(:) is the maximun singular value of (), and X, = diag(hj), where j =
r+1,n. The bound is defined by the truncated Hankel singular values of the scaled

system QuG(s)Qj, which like G(s) are invariant to state transformation.
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Chapter 6
Implementation of Bacon and Schmidt's Method in MATLAB

6.1 Introduction to MATLAB Software.

The name MATLAB means "Matrix Laboratory” and it was developed by a group
of software professionals under the leadship of Cleve Moler. MATLAB is a very
powerful software tool that can be of considerable use for scientific and engineering
numerical calculations. It is an easy— to— use interactive system for matrix algebra
whose basic data element is a matrix that does not require dimensioning. This
allows many numerical problems to be solved in a fraction of the time it would take
to write a program in a language like Fortran, Basic, or C. It has a rich collection
of functions that are immediately useful to the control engineer or system theorist.
Complex arithmetic, eigenvalues, root— finding, matrix inversion etc. are some of the
facilities available. = More generally, MATLAB's linear algebra, matrix computation,
and numerical analysis capabilities provide a reliable foundation for control system
engineering as well as many other disciplines. The algorithms used by MATLAB are
derived from extensive research and represent the state of the art. This, combined
with a two— and three— dimensional graphics capability, provides a very useful
environment for the application of linear algebra. Also the MATLAB software is
designed to run on various machines including MS—DOS compatible personal
computers, Apple Macintosh, Sun Workstations, and VAX computers.

MATLAB has evolved over more than half a decade, with input from many users.
In university environments it has become the standard instructional tool used in
introductory courses in applied linear algebra, as well as for research and in
advanced courses in other areas.

6.2 The Outline of the MATLAB Program for the Bacon and Schmidt's Method.

This chapter is concerned with describing the procedure for implementation of
Bacon and Schmidt's method in MATLAB. The program was written in MATLAB

and was used on a DEC MicroVAX 3600 computer (VMS2) at the Glasgow
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University Computer Centre. The MATLAB program can be described in terms of
the folloeing seven steps.

6.2.1 Conversion to State— Space Form from Transfer Function Form.

The given high order system is defined through transfer functions rather than in
state— space form. Therefore, we have to convert these transfer functions to
state— space form from the original form using an appropriate MATLAB function
such as the function TF2SS. The system transfer function is

G(s) = C(sI— A)Y ' B (6.1)
and the application of TF2SS for given a high—order system results in a system
matrix A, control matrix B and output matrix C.

6.2.2 Calculation of the Eigenvalues and Eigenvectors of the Matrix A.

In order to decompose a model, it is necessary to obtain the eigenvalues A and
eigenvectors M of the matrix A. According to the frequency range of interest and
the eigenvalues A it is possible to establish the radii dl and d2 which define the
concentric circles in the complex plane. These divisions provide the basis on which
columns of M are separated into three groups Mj,, Mpiq and Mhigh- Also the
columns of M~ T can be separated into another three groups Ziy, Zpiq and Zhigh
very easily in MATLAB.

6.2.3 Grouping of the Three Subsystem Transfer Functions Gi(s).

Using the formula for transfer function Gj(s), of the form of equation (6.1), we
can get the matrices A;, Bj and Cj of the three subsystems directly from equ. (5.8.1)
using MATLAB. The subsystems

Gi(s) = Cy(sI — A;)~ ' Bj, where i = lo, mid, high
are now

A = zTaM;, B; = zIB, C;j= CM; (6.2)

6.2.4 Solution of the Controllability Grammian X and the Observability Grammian S.

In order to obtain the effective order of the Low order system, we need firstly to

find the effective order for both of the high— and mid— subsystems. From equ.
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(5.11, 5.12), we can get the controllability grammian X and the observability
grammian S by using MATLAB to calculate

X; = gram (A, By

S; = gram (A, C)
where i = high, mid.

The X; and Sj should satisfy the Lyapunov equations (5.13) and (5.14).

6.2.5 Calculation of the Hankel Singular Values.
By the definition of singular values, a rectangular matrix A can be expressed in
the following form:

A = Uyvl
where U is the matrix of left singular vectors, V is the matrix of right singular
vectors, and the Y is the matrix of the singular values of A. We can use the
MATLAB function SVD to find the singular values of X and S. As mentioned in
APPENDIX 2, the singular values of X and S can be expressed by X.2 and X2,
their corresponding left sigular vectors are V. & V, and the right singular vectors
are VcT and VOT separately. Based on the definition of the Hankel matrix we
could easily get Hankel matrices Hpjop and Hpyjg of the high— and mid—
subsystems.  Similarly we could also get the Hankel singular values Sy and Sy,
directly.

However, it is possible to obtain the Hankel singular values in another way whih is
also described here to provide a check on the reliability of the method outlined
above. Since we know the relation between the product XS and HTH already the
Hankel singular values Sy; could be found from the product of X and S directly as
given in APPENDIX 2. Using MATLAB we can find the eigenvalues dpjop and
dmig of the product (XS)pjgp and (XS)mijg> and using the SQRT function of
MATLAB we can obtain the Hankel singular values Syn = SQRT (dpjgn) and Syp

= SQRT (dpjq):
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Svi =
on
where i = high— and mid—. The application of this approach gives the same
numerical results as those obtained directly from the Hankel matrices as outlined
above.

6.2.6 Determination of the Reduced Order.

Having found the singular values both for the high— and mid— subsystems,
according to the theory of Bacon and Schmidt's method we could start to decide the
effective order of the high— and mid subsystems. We compare the Hankel singular
values o; of the high— subsystem first. If there is a large separation between h;
and hj4 ,, a ratio hyhj, ,>> 1, indicates that the effective order of the high—
subsystem is i. We could get the effective order j of the mid— subsystem using
same way. Therefore, the reduced order of the system is i+ j.

6.2.7 Determination of the Complete Reduced Order Approximation.

The complete reduced order approximation is the sum of the high— and mid

subsystem approximations. The matrices A;, B, and C, of the transfer function of

the reduced— order system are then

Avh 0
A, =
0 Arm
- Byh
B, =
Brm
Cr = [ Ch Crm !

6.3 Implementation of Bacon and Shmidt's Method in MATLAB Program — an
Example of a Fixed Wing Aircraft.
6.3.1 Determination of the Matrices A, B and C of State Space Form.

To illustrate the mathod using an example, we still consider the longitudinal
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responses: pitch rate, and normal acceleration to elevator stick force, for a
high— order system of an advanced fighter aircraft, presented in table 4.1.

This example is taken from Bacon and Schmidt's paper "Fundamental Approach to
Equivalent Systems Analysis"[3°]. In Table (4.1) g/ is the transfer function of a
high— order system of an advanced fighter aircraft. i.e. the q is the output variable
and the § is the input variable.

The matrices A, B and C of the state—space form corresponding to the transfer
function of Table 4.1 are shown in Appendix 3.

6.3.2 Model Decomposition.

Firstly, we use the ‘eig' function of MATLAB to get the eigenvalues A and
eigenvectors M. The eigenvalues A and eigenvectors M for the example are shown
in Appendix 3.

According to the frequency range of interest (w, = 0.1, w, = 10.0 rad/s) in this
example, the prefilter mode (3.36 rad/s) lies within the range being considered. The
radii d1 and d2 define concentric circles in the complex plane. The columns of M

are now separated into three groups Mg, Mpiq, Mpjgh using a MATLAB function

Mhigh=M (:, 1:2) (6.3)
Mpia =M (:, 3:6) (6.4)
Mg - M (:, 7:8) (6.5)

where in equ. (6.3), (6.4), (6.5) the sign (:) means that all rows of the matrix M
are the same as the rows of matrix Mhigh- The notation (1:2) implies that all
columns from the 1st to the 2nd of the M matrix are columns of the Mpjgy matrix.
We are also able to get very easily

MT = [ Zhigh Znid Zio |
where the Zhigh’ Znig and Zj, are shown in Appendix 3.

According to formula for Gj(s) of the form of equation (6.1), we can easily get
the matrices Aj, Bj, Cj of the three subsystems directly from equ.(5.8.1) using

MATLAB. We have therefore obtained the three description for the high— mid—
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and lo— subsystems.
The high— and mid— subsystems for this example are shown in Appendix 3.

6.3.3 To Find the Effective Order of both high— and mid— Subsystems.

The controllability grammiam X and the observability grammian S for the high—

and mid— subsystems can be obtained by using MATLAB.

X; gram ( A;, Bj)

S§

gram ( Aj, Cj) where i = high, mid.
The X; and S; should satisfy the Lyapunov equations (3.13) and (3.14).
They are shown in Appendix 3.

Based on the definition of the Hankel matrix we could easily get Hankel matrices
Hpjgh and Hpyjg of the high— and mid— subsystems. The Hankel matrices Hpjgp
and Hp,iq of the high and mid subsystems are shown in Appendix 3. We could also
get the Hankel singular values Sy, and Sy, directly. As outlined in section 6.2.5,
since there is a relation between the product XS and HTH, we could also get the
Hankel singular values Sy; from the product of X and S directly as given in
APPENDIX 3.

In the example being considered the Hankel singular values S} or o,

and o, of the high- subsystem are

Syh = 0.0062 or o, = 0.6005

0.0007

0.0007 7,

and the Hankel singular values S, or o, - o, of the mid-subsystem are

Sym = 0.6005 or g, = 0.6005
0.3617 g, = 0.3617
0.0588 o, = 0.0588
0.0060 os = 0.0060

6.3.4 Determination of the Complete Reduced— Order Approximation.

From the Internaly Balanced Technique, the low order approximation of the high—

subsystem is defined by
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-23.4804 + 0.0000i

0.2535 - 3.16061

-0.0071 - 0.08901i

low order approximation of the of mid- subsystem is defined by

-2.0662 + 0.00001 -1.3872 - 1.2170i

1.4735 -~ 1.2926i -1.1548 - 0.0000i

0.0125 - 0.0052i

-0.0022 + 0.00451

16.4064 + 6.78871 -3.8249 - 7.75231i

The complete reduced— order approximation is the sum of high— and mid—

subsystem approximations.

The matrices A;, B;, C, of the transfer function of the reduced— order system are

Ar

[ Avh 0
0 Arm
-23.4804 + 0.00001 0 0
0 -3.2210 - 0.0000i -6.0030 - 0.00001
0 1.0000 0
Brh ]
Brm
1
0
[ ¢vh Crm ]
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-0.2832 + 0.0000i 0.2838 - 0.00001 0.3001 + 0.0000i
Thus we have got a complete reduced— order system, in which the order of the
original system is reduced to r = 3 from r = 8.

6.3.5 The Frequency Responses for both the Reduced Order Model and the High

Order System.

The frequency response of the reduced order model and the high order system in
the frequency range between 0.1 — 100 rad/sec. is shown in Fig. 6.1. From Fig.
6.1 we can see that the matching between the high order system and the reduced
order model is excellent except in the low frequency range between 0.1 — 0.3

rad/sec..
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Chapter 7
Applications to Helicopter Models
Bacon and Schmidt's approach and the extended Levy's technique have been
applied to the Level 1 helicopter model as described in Chapter 2. The particular
case considered is a Puma helicopter for which a substantial quantity of flight test
data exists. Puma flight test data provided by the Royal Aerospace Establishment has
been used at Glasgow University for system identification research.

7.1 Model Reduction for the Puma Helicopter.

For the purposes of flight control system design and handling qualities studies the
use of a high order helicopter model is both tedious and costly. It is often desirable
to replace a high—order system description by a model of lower order which
incorporates the essential characterstics of the vehicle. This is particularly important
for real time simulation studies and for the initial stages of design for a flight
control system where a number of design methods may be applied. @ The more
complex forms of model can be cumbersome at the preliminaly design stage.

In this chapter we apply Bacon and Schmidt's method and the extended Levy's
method respectively to model reduction for a linearised helicopter model in which
some eigenvalues may be in the right half plane. Three 14th order state space
models, Puma60, Puma80 and PumalO0, are considered in the present work. These
represent the linearised dynamics of the Puma helicopter for trimmed flight conditions
involving 60, 80 and 100 knots level forward flight. In the original model, the
matrices A and B in the state—space equations are a 14X14 square matrix and a
14x4 matrix respectively. The C matrix is an identity matrix with dimension 14x14.
The A,, B, and C, matrices of the Puma60 helicopter control system; the A,, B,

and C, matrices of the Puma80 helicopter control system and the A,, B, and C,

3
matrices of the PumalO0 helicopter control system are shown in APPENDIX 3.
The transfer functions are

Gij (s) = % / uj i=1, -, 14;,j=1, -, 4)
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The computer work was carried on a DEC MicroVAX 3600 at the Glasgow
University Computer Centre. The two model reduuction programs are written in
MATLAB and have the general form outlined in Chapter 6 . The program listings
are shown in APPENDIX 4.

7.2 Inputs and Outputs.

In the present work only the longitudinal responses have been considered and each
case is presented in terms of a single— output. For single main rotor helicopters, the
control input vector u is made up of the blade pitch angles for the main and tail

rotor as follows :

Boe --- main rotor collective blade pitch angle

©1c --- longitudinal cyclic blade pitch angle
v= ©lc --- lateral cyclic blade pitch angle

©pt --- tail rotor colletive blade pitch angle

The main rotor collective and longitudinal cyclic inputs directly affect the
magnitude and direction of the main rotor thrust vector, the lateral cyclic input
affects the thrust vector to produce lateral motion while the tail rotor thrust is
controlled in magnitude by the tail rotor collective input. Lateral cyclic and tail
rotor collective inputs thus influence the lateral/directional dynamics of the vehicle.
Cross— coupling, which is very strong for certain flight conditions, introduces
significant complications and means that the simple separation of dynamics for the
longitudinal and lateral axes (as used for most fixed— wing aircraft) is not possible in
the case of the helicopter. The complete transfer function matrix is normally needed
for flight control system design to allow for these coupling effects.

7.3 Helicopter Model Reduction Applications Using Levy's Method.

As the metioned in section 6.1 the MATLAB software package has been used to
obtain 8th order reduced models for Puma60, Puma80 and Pumal0O0 representations.

7.3.1 Frequency Responses.

Some results are shown in Fig.7.1 to Fig.7.17. In some cases excellent agreement

has been obtained between the frequency responses of the 14th order system and the
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8th order reduced model for most of the frequency range considered. However the
choice of weighting factor nl was found to be of critical importance. From Fig.7.1
to Fig.7.3 we can see that for the case of Puma 80 the frequency response of the
reduced model agrees with the high order system very well over the most of range
of frequency (0.1 — 10 rad/sec.) if the weighting factor nl is taken 0.6 for all

output x;, (i = 1 — 8), and input u But from Fig.7.10 — Fig.7.13 we can find

.
that if the weighting factor nl is taken 1.2 the frequency response of the reduced
model agrees with the high order system for all outputs x; and all inputs u, — u,
over the whole frequency range of interest for Pumal00. Also from Fig.7.3 to
Fig.7.5 we find that if different values of weighting factor are taken such as 0.2, 0.6
and 1.5 for the same input and output for Puma80 the results can show significant
differences. ~For Puma60 cases for n1 = 0.4, 0.6 and 1.2 again produced results
that are very sensitive.(see Fig.7.7 to Fig.7.9) The errors of the frequency response
of all the tests tried are shown in Table 7.1.

Fig.7.14 to Fig.7.17 show the effects of the number of points taken in the
calculation. From these figures it can be seen that the number of points taken in
calculation does not affect the accuracy of fit and only affects the smoothness and

resolution of the solution.

7.3.2 Time Responses.

The time responses for different reduced order models have been obtained. From
output curves Fig.7.18 to Fig.7.21 we can see from the step response curves that the
matching between the high order system and reduced order system is very good in
some cases within the period of 0 — 10 seconds for both Puma60 and PumaQ80.
Also Fig.7.22 and Fig.7.23 show the matching within the period of 0 — 10 seconds
and 0 — 1 second for both Puma60 and Puma80 helicopter control systems. Cases
where the time domain fit is poor (such as Fig.7.18 and 7.21) correspond to
frequency domain fits which were also poor (such as Fig.7.5 and Fig.7.8). Cases

where the time domain fit is especially good (e.g. Fig.7.19 and Fig.7.20) relate to
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reduced order models for which particularly good frequency domain fits were found
(e.g. Fig.7.6 and Fig.7.7). Units and variables in the time domain responses are as
specified in APPENDIX 3.

7.4 Application of Bacon and Schmidt's Method to Helicopter Model Reduction.

7.4.1 Procedure for Order Reduction.

As the mentioned in Chapter 6 we use MATLAB software to get the eigenvalues
d; and eigenvectors M; of the original systems matrices A; (i = 1, 2; 1 for Puma60
and 2 for Puma80). They are shown in APPENDIX 4.

The system is then divided into three groups of subsystems: high, mid and low
(see Chapter 5 and Appendix 4) according to the natural frequency wyj, which is
defined by the positions of the eigenvalues \; in the complex plane. The radii dl
and d2 define concentric circles in the complex plane. So, the matrices Mp,igi,
Mhighi and (Mpiai)~ T (Mhighi)_T can be obtained from the following MATLAB
expressions:

Mpid, = M,(:,1:6)
Mpigh, = M, (:,7:14)
Mpid, = M,(:,1:6)
Mhigh, = M,(:,7:14)

(Mpid )™ T = inv(Mp;id,)?) .

(Mpigh,)~ T = 8 ((Mpzep )1
(Mmig )~ T = inv(Mmid,)")
(Mpigh,)~ T = inv(Mpjgn,)"

This process gives the matrices Aj, Bj, C; of the subsystems Gjy(s). After that, the
Internally Balanced Technique is applied to reduce the order of the Ghigh and Gpid
systems. Firstly we solve for the controllability grammian X and observability
grammian S, which are the unique solution of the Lyapunov equations(5.13, 5.14).
The rank of the product XS equals the number of modes that are both controllable

and observable, i.e., the minimal order. It has been shown that this product is
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always diagonalizable and its eigenvalues are real and non— negative. = Consequently,
the rank of the product XS equals n minus the number of zero Hankel singular
values. The product XS should be written as

XS = TAT™?

where A

1]
p—
o ™M

=
]
™
= IV
| o
-
| S

T=1[Tg, Tuhorl

T-T = [ U, Up_p]

™M
-
1

diag(hj) i=1,r;
Y-y = diag(hy) i = r+l, n;
and h;, > h, > -+ > hy > hey, & -2 hy > 0.

The ratio hy/h., , where h; are ordered such that h; » hj, , could be used to
infer the effective order. The Hankel singular values of high and mid subsystems for
the Puma60 and Puma80 models are shown in Table 7.2.

From the Table 7.2 we can see, for example the ratio h /h, = 1.638 for Puma60
and for Puma80 the h,/h, = 1.112 and h,,/h,, = 8.000. The effective orders of
the Gy,iq and Ghigh for Puma60 and Puma80 are shown in Table 7.3.

Table 7.3 Effective Orders for high and mid Subsystems

| | Puma60 Puma80
I HOS r =6 r =6
Ghigh| -------------------------------------------------
LOS r =3 r =1
l HOS r =8 r = 8
Cmidl ---------------------------------------------
LOS r =8 r =7
HOS r =14 r = 14
LOS r =11 r = 8

7.4.2 Results of the Reduction Model.

For Puma60 the effective order r is taken as 11, and for Puma80 the effective
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order r is 8. The results of the computation are divided into two parts: the results
in terms of the frequency response and the results in term of the time response.
7.4.3 Time Response.

For the results in terms of the time response, we can see from the step response
curves that the matching between the high order system and the reduced order
system is very good for each case within the period of 0 — 100 and 0 — 1 seconds
for both Puma60 and Puma 80. (see Fig.7.24 and Fig.7.25) Fig.7.26 and Fig.7.27
show the matching within the period of 0 — 10 seconds and 0 — 1 second for both
Puma60 and Puma80 HELISTAB helicopter control systems.

7.4.4 Frequency Response.

For the results in term of the frequency response, the agreement between the two
systems will depend very much on the order taken in the reduced— order system.
For Puma60, we found that when the reduced order r is 11, a very good agreement
can be obtained in the whole frequency range in some examples.(see Fig.7.28) For
Puma80, when the reduced order r is 8, it can be seen that the matching between
the high order system and the reduced order system is excellent in the whole
frequency range.(see Fig.7.29) It may be significant that the 60 knots case for which
a poorer fit was obtained involves right half plane eigenvalues both in the original
system and in the reduced order model. Thus, we choose a effective order of the
system, r = 11, for Puma60, and r = 8 for Puma80.

7.4.5 Eigenvalues of the High Order System and the Reduced Order System.

The idea of retaining dominant eigenvalues to simplify reduction of a high— order
system to a low— order plant was discussed in detail for the first time by Davisonl 26]
in 1966. This concept has since been further developed and is now widely used in
control system design. For a state—space form of model expressed as Equ. (3.1),

the matrix A is of high order. The reduced model can be expressed as

X = Apx+ Bru

where the matrix A, is of lower order but has the same dominant eigenvalues and
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eigenvectors. Comparisions of the eigenvalues of the matrices A and A, for

Puma60 and Puma80 are shown in Table 7.4 and Table 7.5 respectively. From
Table 7.4 and Table 7.5, we can see that the most of eigenvalues of matrix A, for
the reduced order system (11th order) are equal to the eigenvalues of matrix A for
the high order system (14th order) for both Puma60 and Puma80. It means that we

obtained a low—order model with the dominant eigenvalue concept which gave a

satisfactory dynamic response as well as correct steady— state response.

Table 7.2 Hankel Singular Values for x, ,u,
""""""""""""" Pumaé0 | pumaso |
i hj hi/hjsq hj hi/hiyy
________ 1l 131208 | 1.086 | 15.3023 | 1.2
2| 12,0796 | 2.402 | 13.8622 | 2.166
high | 3| 5.0292 | 1.638 | 6.3008 | 1.697
| 30699 | 2158 | 37661 | 2.004
slo1a227 | osseo | 18797 | sm1
6l oo2sa || 03257 |
"""""" 7l 1ase2 | 1.oas | 1.6235 | 1.087
8l 1.a2ss | 12134 | 1.4035 | 13365
mia | ol 01175 | 1ass | o101 | 1504
1.0e+4x|10] 0.0991 | 1.745 | o0.0732 | s.e74
1] o.0s6s | 6.863 | o0.0120 | 1.985
12| 0.0083 | 1.694 | o0.0065 | 1.354
13| o0.00e9 | 12.250 | o0.0048 | 8.000
1] 00006 || 0.0006 |
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Table 7.1 The Error for Different Cases

Puma 80 |
nl | G | L=1 | L=2 | L=3 | L=24 | L=25 :
0.6: x1/u3 :4.2837x108:5.9258x107:1.7340x106:9.2011x105:8.9247x105:
0.6: x2/u3 :1.9675x107:6.0596x108=1.6886x10811.3986x108:1.3502x105:
0.6: x3/u3 :1.4480X104: 148.2084 : 243.5019 : 53.9635 : 44 2414 :
0.6: x4 /u3 :1.5327X104:2.6314X103: 530.6563 : 301.5158 : 295.2345 :
0.6: x7/u3 : 0.0027 : 0.0013 i 0.0011 : 0.0011 : 0.0011 :
0.6: x8/u3 :3.223Ox103: 232.1079 : 35.0603 : 13.0811 : 11.2997 :
1.5: x7/u3 : 0.0027 : 0.0011 : 0.0067 : 0.0112 : 0.0112 :
1.5: x8/u3 :3.223OX103: 18.1810 : 0.0172 : 0.0205 : 0.0209 :
0.2: x7/u3 : 0.0027 : 0.0026 : 0.0028 : 0.0027 : 0.0026 :
0.2: x8/u3 :3.2230X103: 876.9742 :1.1387X103: 806.5150 : 694.0652 :

|
I

Puma 60 |
1.0] x1/ul |1.1801x108] 1.5012 | 0.2899 | 0.2899 | 0.2899 :
1.0: x2/ul :1.97&1X107: 1.3127 : 0.4344 : 0.4331 : 0.4331 :
1.2: x5/u3 :1.2974x109:3.5235X104: 68.6969 : 69.1881 : 69.1876 :
1.2: x6/u3 :9.6736X105: 710.2610 : 29.3468 : 29.7379 : 29.7382 :
1.0: x5/u3 {1.2974x109:5.8388X105:2.3786x103: 54.1328 : 54.1633 1
1.0: x6/u3 :9.6736X105:1.5794X103: 150.9394 : 24 .4558 : 24.4679 :
0.6: x5/u3 :1.2974x109:3.3465x108}1.3455x105:1.2058x105:1.2004x106:
0.6: x6/u3 :9.6736x105:3.1359X104:6.8084X103:5.9686x103:6.0149X103:
0.4: x5/u3 :1.2974X109:3.6298X107:1.8560x107:1.6329X107:1.5974X107:
0.4: x6/u3 :9.6736x105:2.3797X105:1.9818x105:1.8360X105:1.8152x105:
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Fig. 7.22 Time Response for Puma80 (x1/ul, Levy's Method)
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Chapter 8
Discussion and Conclusion
8.1 Comparison of the Results from Different Methods.

In Chapter 3 and Chapter 4 several different methods for model reduction were
introduced. They are Marshall's 27] method, Chen'sl84] method, Liaw'sl48] method
and Levy's[GB] method which has been further developed by the author to suit the
single— input multi— output case Bacon and Schmidt's approach[”] has also been
described in Chapter 5. In order to compare these approaches each method has
been applied to a model of a Puma helicopter for a condition involving 80 knots
forward speed in level flight, as described in Chapter 7. However, R.T.N.Chen's
method for obtainning a state space description from a transfer function is not
suitable for this application because some zeros of the helicopter flight mechanics
models are located in the right half— plane. Since the method cannot be applied to
non— minimum phase systems it cannot therefore be applied directly for model
reduction of helicopter flight mechanics models. In addition a nonlinear helicopter
flight mechanics model HELISTAB[ 72, 74], implemented in terms of the software
package developed at the Royal Aerospace Establishment, Bedford can be used to
provide theoretical quasi—static parameter values for linearised models of various
orders. Only the results from Levy's method, Marshall's method, Liaw's method,
Bacon and Schmidt's method and the theoretical model using the HELISTAB package
are available for comparison. This includes the comparing of eigenvalues resulting
from different methods and a comparison of frequency response and time— domain
responses for high and low order models by each method.

8.1.1 Comparison of Eigenvalues of the High— Order System and Reduced Order
Systems.

The values of the eigenvalues of the system matrix A are considered to be of vital

importance for assessing the quality of approximation of the reduced model. In

general, the closer the dominant eigenvalues of the reduced model matrix are to

- 133 -



those of the high order model, the better is the approximation of the model to the
real system. The eigenvalues of the high—order system (14th order) and the
reduced— order system (8th order) obtained from the five methods are listed in Table
8.1. and Table 8.2, separately. It can readily be seen that Bacon and Schmidt's
method and Levy's method produce the eigenvalues which approximate most closely
the dominant eigenvalues of the high order system. In general, the eigenvalues from
Bacon and Schmidt's method or Levy's method are both in very good agreement with
the eigenvalues of the high order system in the low frequency and middle frequency
ranges. However in the high frequency range Bacon and Schmidt's method can
produce better results than Levy's method.

8.1.2 Comparison of Frequency Responses.

The frequency responses resulting from the different methods of model reduction
are shown in Fig.8.1 and Fig.8.2 together with those of the high order system. It
can be seen clearly that the frequency response obtained by wusing Bacon and
Schmidt's method gives excellent agreement both in magnitude and phase with the
high— order system model over the whole frequency region of interest. From Fig.8.3
and Fig.8.4 it may be seen that the frequency response obtained by using the
HELISTAB package for generation of an 8th order linearised model generally agrees
well with the high order system model over the frequency region of interest except
in the high frequency region. In the high frequency region big differences in phase
between the HELISTAB model and original system model can be found. The
frequency response produced by Marshall's method and Liaw's method only give
agreement in a very small part of the frequency range between 0.01 — 0.25
(rad/sec).  Generally Liaw's method gives the poorest results for this application.
Again, It is clear from Fig.8.3 and Fig.8.4 that both Bacon and Schmidt's method
and Levy's method can produce perfect results in the low and middle frequency
range.

One particularly interesting finding which is illustrated clearly in the results of
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Figure 8.3 is that by using either Levy's method or the Bacon and Schmidt's
approach it is possible to obtain a reduced order model which fits the original 14th
order model much more closely than the HELISTAB 8th order model. This is
considerable interest for flight control system design where much use is made of
linearised 8th order descriptions obtained directly from nonlinear flight mechanics
models by considering only the state variables associated with rigid body motion.
The results of Fig.8.3 suggest that a better low order description may be obtained if
the linearisation is carried out using the full set of state variables in the nonlinear
model with approprate model reduction techniques then being applied as a second
and separate stage of the process. The measure of how well the reduced model
approximates the original system is reflected in the model's frequency response error
bound. Ennsl24] has proved that the frequency response error of the rth order
model is bounded for all w by
0{Qo[G(jw) - Gp(jw)]Qj} < 2T (Zp_p) (8.1)

where o(-) is the maximum singular value of (-), and Z,_, = diag(hj) where j =
r+1, n. Here, Q;j is an input scaling matrix, Q; = diag(qjp), (1 ¢ k ¢ m); Qg is
an output scaling matrix, Qo = diag(qer), (1 < k g p), where m is number of
inputs u of Equ.(5.1) and p is the number of outputs y of Equ.(5.1). The bound is
defined by the truncated Hankel singular values of the scaled system Q,G(s)Qj, which

like G(s) are invariant to state transformation. Also since

[G(jw)-Gp(jw) ]=[Gmid(jw)—Gmid,r(Jw)]+[Ghigh(jw)-0high,r(jw) 1+G1o(jw)

(8.2)
then

0[E(jw) ]<0[Epid(jw) 40 [Enjgh(jw) 140 [E1o(jo) ] (8.3)
If the Gyo(s) contribution to the frequency response in the region w, < & < w, is
negligible, the frequency response error of the reduced— order model described above

is bounded by

sup 01QE(J®)Q1] < 2[Tr(Tmid,n-r) *+ Tr(Chigh,nr)] (8.4)
0, <B<W,
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If Q = diag(qij) and Q4 = diag(qoj), it can be shown that
|E1J(J0~))| < Bwij (0.)1 < w < 0.)2) (8.5)
where Bwij = 2ATr(Emid,n—1r) + Tr(zhigh,n— r)]/(qijqoj)'

8.2 Further Comparison between Bacon and Schmidt's Method and Levy's Method.

From previous discussion, it has been already seen that among the five model
reduction methods considered, only Bacon and Schmidt's method and Levy's method
can produce very good results. In this section, we try to further compare these two
methods.

Fig. 8.5, Fig. 8.6 and Fig. 8.7 show the flow chart of Bacon and Schmidt's
method, Levy's method and Chen's method separately. @ The Bacon and Schmidt
method is based on an Internally Balanced Technique in which we only need to find
and to analyse the Hankel Singular Values. @ The method provides more physical
insight than Levy's method so that the resulting reduced order system has a more
direct physical connection with the high order system. Levy's method uses the
least— square approach which is a pure mathmatical curve fitting technique. This
method requires solution of a set of linear equations, and is more complicated to
implement and needs more computer CPU time than Bacon and Schmidt's method.
However, the application of Bacon and Schmidt's method needs some experience to
establish appropriate subsystems whereas the application of Levy's method requires
little physical understanding of the system or previous experience.

8.3 The Unique Solution of Bacon and Schmidt's Method.

The resulting reduced system model in Bacon and Schmidt's method is uniquely
determined by a small number of parameters: 1)dl, d2; the radii of the concentric
circles which define Gpjq and Ghpigh; 2) rpid, Thigh; the order of subsystems Gpy;g,
Ghigh; 3) Qj, Qqp; the input/output scaling. It is apparent that different choices of
dl and d2 will produce different subsystems and therefore different results will be
obtained. On the other hand, if the radii dl, d2 have been decided, then a

different choice of order (rpid, rhigh) of subsystems Gp,;q and Ghigh will produce
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different results as well. Also the scaling matrices Q, and Qj chosen may influence
the resulting model.

8.3.1 The Effect of the Choice of Radii d1 and d2.

Two concentric circles of radii dl and d2 are chosen according to the location of
the poles in the s—plane. These circle will separate the s— plane into a low—,
mid— and high— frequency regions and thus can be used to separate the pole/zero
constellation into three sets. The choice of different subsystem will give different
results.

Fig 8.8 and Fig 8.9 show two different results from two different choices of radii
dl and d2 for the Puma at the 80 knots flight condition. One of them is for radii
dl = 0.001, d2 = 15. The other one is for radii d1 = 0.22 , d2 = 15. Fig.
8.10 and Fig 8.11 also give two results by choosing radii d1 and d2 for an advanced
fighter[3°]. In this example, it should be noticed that even if we take the same
effective order of the subsystems Ggjq and Ghign big differences between the two
results can be found due to the different choices of dl and d2.

8.3.2 The Effect of the Choice of the Effective Order of the Subsystems Gmigq and

Shigh-

Using the Puma at 80 knots as an example different effective orders of the
subsystems Gpjq and Gpjgp were chosen. One was chosen as rpjq = 7 and Thigh
= 1; another one was chosen as rpyjg = 6 and Thigh = 2. The total effective

order of the system is equal to 8 in both cases. From Fig. 8.8 and Fig. 8.12 we
can see that very different results are found in these two satuations the difference
resulting from the different effective order of subsystems is significant though the
effective order of the overall system is the same (r = 8).

Similarly, in the another example — the advanced fighter without prefilter, the
results given in Fig.8.10 and Fig.8.13, show that although the final reduced order is
same the results still show big differences if the effective order of the subsystems

Gpmiq and Ghigh is different.
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8.3.3 The Effect of the Scaling Factors.

As mentioned in Chapter 5, to obtain a uniform match between the truly dominant
responses of the system, scaling must be included. In order to discuss the
importance of the scaling , the example of the advanced fighter without prefilter is
again used as an example. In Fig.8.10 and Fig 8.14 the results from using scaling
and without scaling are presented respectively. The difference appears only in the
high frequency region.

8.3.4 The Equivalent delay in Low Frequency Range.

The use of an equivalent delay parameter is a widely used method in the
reduction of complex systems, especially in terms of approximating the dynamics in
the high frequency range. The equivalent delay for the Puma helicopter at 80 knots
flight condition and a advanced fighter without prefilter are shown in Fig. 8.15 and
Fig. 8.16. From Fig. 8.15 and Fig. 8.16 we can see that the reduced order systems
with equivalent delay are given. For the Puma at 80 knots the delay time 7 is
0.04535 sec., and in the low frequency range between 0.1 — 3 rad/sec. the reduced
order system with delay agrees with the high order system very well. However, in
the middle and high frequency ranges the reduced order system with delay does not
fit the high order system. For the advanced fighter without prefilter the delay time
7 is 0.03216 and as with the Puma, the reduced order system with delay only agrees
with the high order system in the low frequency range.

8.4 Conclusion.

The equivalent system approximation technique presented by B.J.Bacon and
D.K.Schmidt has for the first time been used in the analysis of a helicopter flight
mechanics model. The Puma helicopter for flight conditions of 60 and 80 knots has
been used to demonstrate the technique. Reduced order system models have been
obtained, which give excellent comparisons with the original system model.
Comparing with other methods for obtaining reduced order system, Bacon and

Schmidt's method showed superior agreement in terms both of time and frequency
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responses. For a given frequency response error each system has an effective order
which is determined by a small number of parameters. Therefore, the equivalent
system approach technique is easy to apply. In addition, the software package
MATLAB provides an easier implementation than other software packages so far
considered. The computer CPU time taken using MATLAB is of the order of a
few minutes for the SISO case considered using a DEC MicroVAX 3600 (VMS2).

8.5 Future Work.

As described in previous chapters, the equivalent system approach offers a very
good representation of a high order system, although the studies involving the Puma
helicopter showed that there is still room to further improve the performance in the
higher frequency range. Model reduction for use in flight control system design
involves requirements that are considerably different from those encountered in other
applications such as piloted simulation and wind tunnel validation. Reduced models
for use in simulation and wind tunnel validation must be generally accurate over a
wide spectrum of frequencies from trim (zero frequency) and phugoid (low frequency)
to the dominant transient responses of the longitudinal short— period and
roll- subsidence modes (mid/high frequency) . Practical flight control system design
requires reduced models that are 1) highly accurate in the crossover frequency range
— to exploit the maximum achievable performance from the helicopter —and 2)
robust in the crossover range with respect to flight condition and input form and size
— to ensure that cloose— loop stability/performance is maintained. Control system
design can be made robust to compensate for poor model robustness, but only at the
expense of performance. These requirements are especially difficult for advanced
high — bandwidth control systems where the crossover range occurs at frequencies
near the limit of current model reduction capabilities; the model order must be high
enough to capture the important dynamic characteristics. In the frequency domain,
this means a sufficient number of states to achieve a "good fit" of the nonparametric

response. However, if the model order is excessive model parameters will exhibit
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large variability to small changes in flight condition, input form and input size, which
will compromise robustness.

The modern trend in aircraft control systems is inevitably towards greater
complexity, due mainly to requirements imposed by complex performance
specifications and tasks and to the need for accuracy. A modern complex system
may have many inputs and many outputs. Therefore Levy's method of model
reduction may still have some room to develop. In the present work, a further
extension of Levy's method to multi—input multi— output cases has been developed,
although more investigation about its application may still be necessary.

It should be possible to use this simpler low order description in applications such
as flight control system design and real— time simulation for handling qualities studies.
Reduced order models of this kind can also be used in the wvalidation of more
complex nonlinear models using system identification methods. Frequency— domain
identification of rotorcraft dynamics are of particular importance in this context.
Comparisons could be made between the experimental frequency responses and the
frequency responses obtained from the reduced order model, either to confirm the
validity of the reduced order model or to provide information to further improve the
theoretical model from which the reduced model was derived. A spectral analysis
approach to the identification and validation of helicopter models could be integrated

with the frequency domain methods of model reduction.
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Table 8.2 THE EIGENVALUES OF MATRIX [ A |
FOR ROS (8TH ORDER) AND HOS (14TH ORDER) ( PUMAS8(O )

USING BACON & SCHMIDT'S AND LEVY’S METHOD

| H.0.S | R.0.S. (8TH ORDER) 5
r\  Bacon | vy |
| - 0.0092 + 0.2098i | - 0.0092 + 0.2098i | —0.0092 + 0.2098i |
| - 0.0092 - 0.2098i | - 0.0092 - 0.2098i | -0.0092 - 0.2098i |
| - o0.0000 | -o0.0001 | -0.2900 + 0.93541 |
| - 0.2900 + 0.9357i | - 0.2900 + 0.9357i | -0.2900 - 0.93541 |
| - 0.2900 - 0.9357i | - 0.2900 - 0.9357i | -1.0842 + 1.16061i |
| - 1.0836 + 1.1670i | - 1.0827 + 1.1664i | -1.0842 - 1.1606i |
| - 1.0836 - 1.1670i | - 1.0827 - 1.1664i | —-1.2495 |
| - 1.2647 | - 17.3163 | -21.s338 |
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- 1ks -



mag db

- Helistab 8th model, 0 HOS model
107 T T T 771117 T T TTTITTT ﬁfllllrﬁ 5w T T T 1117117 T T 1T T TTIIr T T T TTTTT
04 400
l 2 h =11}
g T f 3
cgo i% 300
10! &
200
10-2 1 Al 1 1111l 1 L2 L1l litl il I EEET m 1 Lol L 1ALl 1 L 1 1214l L 11 3 14111
10-! 100 10! 102 10-! 100 10! 102
w(rad/sec) w(rad/sec)
- Levy’s reduced model, * HOS model
107 T AEREREBEARL T RELE LA T T ‘Ill'lﬁ m T T T TTTHI T LERELLARARE T LR SR RA
g g
2 Q
< a2
& 10! &
10.2 oL A 1 J 21l L JE B SN ¥ — L L L 1Ll 50 L J4 trriey Il Ll 1 113111 L Lt 1 Lll
10-! 10° 10! 102 10-1 100 10! 102
w(rad/sec.) w(rad/sec.)
- Bacon & Schmidt's reduced model, 0 HOS model
107 T T T TT0TIr LS T T TTTTT T LELLELILAE = 400 T T rrrrie T T T iriar i rrrrrn
104 oy ‘v...
101
10-2 Ll 1t ill L1 )i agail 1L 111ty 50 L1 41l Ll il N W
10-1 100 10! 102 10-1 100 10! 102
wi(rad/sec) w(rad/sec)

Fig. 8.4 Frequency Responses for Three Models (Pumaé0)

- 146 -



BACON AND SCHMIDT'S METHOD

High Order System

x = Ax + Bu
y=Cx
Model decomposition
Mid Subsystem High Subsystem

Low Subsystem

Internally Balanced Technique

mid

Thigh

Sum of Two Reduced Subsystems

r=r __+r
mid high

'

Complete Reduced
Order Approximation

X=Arx + Bru
y=Crx

Fig. 8.5 Flow chart for Bacon and Schmidt's method
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X =AXx +
y =Cx

High-order model

Bu

frequency responce form &
separated into real & imaginary

parts

H(j @) = R(@) + jI(o)

assuming the order of the
reduced model, r

bo
G(s) =
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9 .
+ 3 bs'
1=1

1=}
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least-square method

JE
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using a modified
least-square method

JE

, — =0
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calculating the matrix P and
vector Y of the resulted linear
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Px

Y

+ solving the equations

a, coefficients of Denominator
b; coefficients of Numerator
| obtain the transfer function of
+ the reduced order model
q . the transfer function of
) bo + -f\:, bi () repeat above SIMO
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Fig. 8.6 Flow chart for Levy's method
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Chen's Method

the wranster function of
SIMO

Na (5)

G, (s) = A

.b;nj

Reduced order model

Fig. 8.7 Flow Chart for Chen's Method
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APPENDIX 1

Implementation of the Extended Levy's SIMO Technique in MATILAB.

Al.1 The Outline of the MATLAB Program for Modified Levy's SIMO Technique.
The MATLAB package has been discribed in Chapter 6.

This section is concerned with describing the procedure for implementation of
modified Levy's SIMO method in the MATLAB. The program was written using
MATLAB for DEC Micro VAX 3600 computer (VMS2) at Glasgow University
Computer Centre. The MATLAB program can be described in terms of the
following three steps.

Al.1.1 Generation of the Original Data Files.

Because the original model given is of high— order and in state—space form, the
frequency response of system can be found using the "Nyquist" function in MATLAB.
The numerator and denominator order expected or required for the lower order
system must be specified by the user.

Al.1.2 Calculation of the Matrix P and Matrix v.

At first we calculate the values of equations (4.11) for each output uj and
determine the elements the matrix P and the matrix y. In order to to obtain better
results we may increase the number of iteration i and modify the weights D, ().

Al.1.3 To Get the Coefficients of the Numerator a; & Denominator b;j of the

Transfer Response.

From section Al.1.1 and Al.1.2 we have obtained the P matrix and y matrix of
each output. The numerical value of the unknown coefficients a; and bjj may thus
be obtained from equ.(4.12) once the matrices P, X and Y have been evaluated.
Here a and b can be obtained using the "inverse" function of MATLAB.

Al.2 Implementation of Chen's Method in the MATLAB.
From section 4.3 we have obtained the results for the SIMO case in the form of

a transfer function only.
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Al.2.1 Orgnization of the Matrix N and Matrix Fc.

We can use the MATLAB package to implement Chen's method. According to

equ.(4.13) and (4.14) we very easily obtain the matrices N and Fc from the section

4.3.

Al.2.2 Calculation of the Matrix F and G1.

From Chen's method we know that it is necessary to calculate matrix F and G1
based on equ.(4.14). Using the inverse function of the MATLAB we can obtain
N™ ' easily. Then from equ.(4.14) we could obtain the F matrix and the G-
matrix.  Thus Chen's method is implemented and we obtain the reduced order

system in state space form.
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APPENDIX 2

Mathematics Associated with the use of Hankel Singular Values

A2.1 The Definition of the Controllability Grammian and the Observability

Grammianl[ 82].

In the n— dimensional linear time— invariant state equation

X Ax + Bu

I

Cx (A2-1)

y

where A, B and C are nxn, nxp and qXn constant matrices; time interval of interest
is from the present time to infinity; that is [0,0). The controllability grammian W2
is defined by
o
we? = eTABB'e7A' 47 (A2-2)
0
The observability grammian W2 is defined by
o
Wo2 = | eTAc'ceTA'dr (A2-3)
0

A2.2 Irreducible Realizationl 8 2]

Consider the following scalar proper transfer function:

b,sN"'+b,sM"2+ .. .. +b,  N(s)

g(s) = sMa s+ . +a,_,s+a, D(s) (A2-4)
Let u and y be the input and output of g(s) in (A2—4). Then we have
D(s)y(s) = N(s)u(s) (A2-5)

or, in the time domain,

D(p)y(t) = N(p)u(t)
Consider the nth—order differential equation (A2—5). Taking the Laplace

transform of (A2—5) and regrouping the terms associated with the same power of s,
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we finally obtain:

y(s) = [N(s)/D(s)Ju(s) + [1/D(s)](y(0)sn="+[y(1)(0)+a,y(0)-b,u(0)]
sN=24 . 4[y(n=1)(0)+a,y(N-2) (0)-b1ulN-2) (0)+a,y(n=3) (0)
-b,u(n=3) (0)+- - -+an,_,y(0)-b,_,u(0)]} (A2-6)

The right—hand side of (A2—6) gives the response due to the input u(s),
therefore, if all the coefficients associated with s~ 1, s0— 2 ... g0 jn (A2—6) are
known, then for any u a unique y can be determined.

The foregoing equations can be arranged in matrix form as the observable
canonical formls2]. Similaly, the controllable canonical form[82] can be obtain by
same way.

A2.3 Realization of the Hankel Matrix.

Consider the proper rational function (A2—4) again. We expand it into an
infinite power series of descending power of s as

g(s) = h(0) + h(1)s™"' + h(2)s™2 + ---

the parameters, h(i), i = 0, 1, 2, -+, can be obtained recusively from a; and b; as

h(0) = b,

h(1l) = -a,h(0) +b,

h(n) = -a,h(n-1) -a,h(n-2) - ... -aph(0) +b,

h(n+i) = -a ,h(n+i-1) -a,h(n+i-2) - ... -aph(i) i=1, 2, 3,

We form the oxB matrix:

[ h(1) h(2) h(3) ... h(B) 1
H(e, B) = | h(2) h(3) h(4) h(B+1) (A2-7)
[ h(a) h(o+l) h(a+2) ... h(a+B-1) |
It is called a Hankel matrix of order (wx{B). Usually, we consider « = n+1, § =

n.

A2.4 The Application of the Hankel Matrix in Obtaining Irreducible Realizations.
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Now we use the Hankel matrix to obtain the irreducible realization. Consider the
Hankel Matrix (A2—8) and apply the row— searching algorithm[aa] to search the
linearly independent rows of H(n+ 1,n) in (A2—7) in order from top to bottom. We
can readily show that the rank of H(n+1,n) is . Hence an irreducible realization
of g(s) has dimension . The row searching algorithm will also yield {aj;, i=1,2,...,}
such that

fa, a, - ag 1 0 :-- 0] H(ntl,n) =0 (A2-8)
This equation expresses the primary linearly dependent row as a unique linear
combination of its previous rows. The element 1 corresponds to the primary

dependent row. We claim that the ¢— dimension dynamical equation

%X = Ax + Bu y = Cx (A2-9)
with

0 1 o --- 0 0 ] [ h(1) |

o o 1 --- 0 0 h(2)
A= ...... B =

0 0 oO 0 1 h(o-1)

L -a1 -a2 _a, ‘- -ag_, -agl L h(o)

cC=[ 10 0----0 0]

is a controllable and observable realization of g(s).
The controllability matrix of (A2—9) is
[ B AB -+ A0CT 'B ] = H(o,0)
the Hankel matrix H(o,0) has rank o, hence {A,B} in (A2—9) is controllable. The

observability matrix of (A2—9) is

e ] 1 0 o --- 0 ]
CA 01 0 -+ 0
CA?2 =/0 01 -+ 0
| cAO-1] o 0 0 -+ 1]

- 169 -



Clearly {A,C} is observable. Hence (A2—9) is an irreducible realization of g(s).

A2.5 Internally Balanced Realization.

A realization whose controllability and observability matrices have the property
v*v = uu*
is called an internally balanced realization. Here, V is the ngxn observability matrix,
U is the nX(np) controllability matrix and U= U, V= v,

A2.6 The Calculation of the Hankel Matrix and Hankel Singular Values.

If A is a real m X n matrix, then there exist orthogonal matrices U of size m X
m and V of size n X n such that

A = UV

where Y is an m X n diagonal matrix. The matrix Y satisfies

Y = diag (y,, Y55 o0 yp)

for p = min m,n} and y, >y, > .... & Yp > 0
The proof of this involves the eigenvalues of the symmetric matrix A'A which can
be shown to be non—negative. The quantities y; are the square roots of these
eigenvalues and are called the singular values of A. The columns of U are called
the left singular vectors and the columns of V are called the right singular vectors.

A quadratic form Xy ajx X; Xg is said to be a Hankel form, if the general
coefficient depends only on the sum of the indices : aj, = f(i+k) (ik = 1, ,

n); likewise, the coefficient matrix of a Hankel form is called a Hankel matrix[ 7¢] as

well. It is written in the form as below:

Sg Sy ..... Sn-1
S, Sy c..... Sn

Sh =i
Sn-1 Sp - .- Son- ol

This provides the necessary background to consider the application of principal

component analysis to responses of the model

X = Ax + Bu
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y=0«C
In analyzing responses of (A,B,C) over an interval [0,T], it is necessary to be able
to extended controllability and observability matrices Q. and Qg corresponding to

(A,B,C) for time tg such that

Qc(tg) = [B AB ....ANB] }

C

CA (A2-10)
Qo(ts) = CA?

caN

By the definition of the Hankel matrix, we have the extended controllability and
observability matrices Q;, and Qg defined by Equ.(A2—10). With T fixed, the
corresponding Hankel matrix

Mg = Qo Qc

o
CA
= CA2| [ BAB ..... ANB]

caN

[ CB CAB CA2B ..... CANB
CAB CA?B ........... CAN+1B
— | CA2BCA®B ................ (A2-11)

..........................

It is clear that the matrix My corresponds to the Hankel form and My is called a
Hankel matrix.

The algorithm (SVD) developed by Golub and Reinschl 75] can be used to compute
the singular values of X and S, (i.e. W2 and Wy2). The singular values of X and
S are XY.2 and X,? separately and their corresponding left singular vectors are Ve,
Vo and right singular vectors are VT, vV Tl7¢]

Then it follows that
We?2 = VoEc2v T (A2-12)

Wo2 = VoIg2VoT (A2-13)
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Because the controllable subspace eAtB and the observable subspace eA'tC depend
upon the internal coordinate system, we make a coordinate transformation x(t) = P

z(t). The system model (A2—9) becomes

z = Ayz(t) + Byu (A2-14)
Yz = CzZ(t)
where AZ = PTAP, BZ = P71B, Cz = CP.

It is important to observe that
eAztB, = P 1eAlB, C,efzt = CeAtp.

The following notation will be adopted:

w o
We2(P) = P~' (| etABB'etA'dt) P-T = | eAztBB,'efAz'tdt
0 0
. w
Wo2(P) = PT (| eA'tcrceAtdt) P = | eAz'tc,'Cuefztdt
o o]

For the case where P = I (original coordinate system) and
from W.2 = Vchzch we have
W.2(P) = P~ 1w 2p~T

P~V I 2V Tp-T

1l

Since the Y, matrix is diagonal it follows that
We2(P) = PV I Tv Tp-T
Intuitively, by selecting P so that W .2(P) = I

VoIo2V."T, it is clear that this can be achieved by

3 2
Since W,

sitting P = V.I.. Also we have

Wy2(P) = PTw,2p

(VCZC)T V0202V0T VCZC

Z:CTVCTVOZ:OT ZOVOTVCZC

= HTH. (A2-15)
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where
H = IV, Tv I (A2-16)
ul = I v Tv e T (A2-17)
The singular values of matrix H will be represented by 0,2 » 0,2 » ...> op? >
0 and will be referred to as second— order models of the system.
From Equ. (A2—10) we can see:
My = Qu(tg) Qcl(ts)
Uo (1970 Tt Vo (9 Ve (1) T (1) Ue ™ T (t9)

Uo*(ts) ZoTVoTchcUc*T(ts)

Uo " (t)(ZoVo T VeI U T (ty)

Let oi*(ts), 1gign be the ordered singular values of My(t). Then for 1ign,

lim (ri*(ts) = 0j°
tg->0

where 032 is the singular value of the ith second— order mode of the H matrix.

A2.7 A Proof of XS = HTH

From Equs. (5.11 — 5.14) we have

X = W2 = Vo5.2v,T  and

S = W2 = VozozvoT

Thus XS = V52V TV 5,2V, T

We know the fact that the cotrollable subspace eAB and the observable subspace
eA'tc depend upon the internal coordinate system. From section A2.6 mationed
given a coordinate transformation z(t) = P x(t) and selecting P = V. X. we have
L.¥P) = 1. Since W 2 = VCZCZVCT and from Eq.(A2—15) we have

Wo2(P) = I TV TV Z TE VTV T,

XS = W.2(P) Wy2(P)

= T IV TV I TE v TV I, (A2-18)

and also from (A2-15) we have

HTH = (2. IV IV ET) (ZoVoTVeIe) (A2-19)
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To compare (A2-18) and (A2-19) can easyly see

XS = HTH
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APPENDIX 3

Helicopter Puma80 Model

The matrices A, B and C of the state-space form are

A=
1.0e+03 X
Columns 1 through 8

-0.0382 -0.4750 -1.9833 -4.6626 -4.6652 -1.3004 -0.0345 -0.0085

0.0010 0 0 0 0 0 0 0
0 0.0010 0 0 0 0 0 0
0 0 0.0010 0 0 0 0 0
0 0 0 0.0010 0 0 0 0
0 0 0 0 0.0010 0 0 0
0 0 0 0 0 0.0010 0 0
0 0 0 0 0 0 0.0010 0
B =
1
0
0
0
0
0
0
0
C =

Columns 1 through 8
0 5.2600 90.2421 248.0669 211.5327 55.8064 0.5526 O

The eigenvalues A and the eigenvectors for the example system are

M=
Columns 1 through 4
1.0000+0.00001 1.0000-0.00001 1.0000 1.0000
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-0.0569-0.01431 -0.0569+0.01431 -0.2194-0.2850i ~0.2194+0.28501
0.0030+0.00161 0.0030-0.00161 -0.0331+0.12511 -0.0331-0.12511
-0.0001-0.00011 -0.0001+0.00011 0.0429-0.01801 0.0429+0.01801
0.0000+0.00001 0.0000-0.00001 -0.0146-0.00831 -0.0146+0.00831
0.0000-0.00001 0.0000+0.00001 0.0008+0.00601i 0.0008-0.00601
0.0000+0.00001 0.0000-0.00001 0.0015-0.00151 0.0015+0.00151
0.0000-0.00001 0.0000+0.00001 -0.0008-0.00011 -0.0008+0.00011

Columns 5 through 8

1.0000 -0.0022 0.0000 - 0.00001 0.0000 + 0.00001

-0.7463 0.0053 0.0000 - 0.00001 0.0000 + 0.00001
0.5569 -0.0128 0.0000 + 0.00001 0.0000 - 0.00001
-0.4156 0.0305 0.0000 + 0.0000i 0.0000 - 0.00001
0.3102 -0.0730 0.0000 - 0.00061 0.0000 + 0.00061
-0.2315 0.1747 -0.0067 - 0.0002i -0.0067 + 0.0002i
0.1727 -0.4180 -0.0013 + 0.08201 -0.0013 - 0.08201
-0.1289 1.0000 1.0000 - 0.0000i 1.0000 + 0.00001
A=

-16.5288 + 4.1425i
-16.5288 - 4.1425i

- 1.6958 + 2.2029i
- 1.6958 -~ 2.2029i
- 1.3400
- 0.4180
- 0.0013 + 0.0820i
- 0.0013 - 0.0820i

The columns of the matrix M~T can be splited three groups, Zhigh’ Zni

d and Zp,.

Zhigh =
Columns 1 through 2
0.0048 - 0.0270i  0.0048 + 0.02701
-0.0080 - 0.6056i -0.0080 + 0.60561
-0.1000 - 2.78861i -0.1000 + 2.78861
-0.3918 - 7.0765i -0.3918 + 7.07651i
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-0.4870
-0.1454
-0.0036
-0.0010

Zpid =

7.37711
2.08571
0.05471
0.0136i

-0.4870 + 7.3771i
-0.1454 + 2.08571i
-0.0036 + 0.0547i
-0.0010 + 0.01361i

Columns 1 through 4

o O O O O O o o©

Z1o =
Columns
0.0000
-0.0005
-0.0066
-0.0263
-0.0585
-0.0483
-0.0005
0.0047

.0002+0.
.0073+0.
.0919+0.
.3651+40.,
.4347-0.
.1274-0.
.0032-0.
.0008-0.

o+ o+ o+ o+ o+ o+ o+ e

The high- and mid-

Ahigh =

-16.5288 + 4.1425i
0.0000 + 0.0000i

Bhigh =

00021 0.0002-0.00021 0.000040.
00691 0.0073-0.00691i 0.0014+40.
0678i 0.0919-0.06781i 0.0161-0.
0818i 0.3651-0.08181i 0.0536-0.
00431 0.4347+0.00431 0.1049-0.
0111i 0.1274+0.01111i 0.0362-0.
00011 0.0032+4+0.00011 0.0008-0.
00011 0.0008+0.00011 0.0002-0.
through 2
0.00001 0.0000 - 0.0000i
0.0017i -0.0005 - 0.0017i
0.0217i -0.0066 - 0.0217i
0.0910i -0.0263 - 0.0910i
0.2147i -0.0585 - 0.2147i
0.2173i -0.0483 - 0.2173i
0.0630i -0.0005 - 0.0630i
0.00151 0.0047 - 0.0015i
subsystems are shown as
0.0000 - 0.0000i
-16.5288 - 4.1425i

0.4794 + 2.7016i
0.4794 - 2.7016i

Chigh =
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00001
0000i
0000i
00001
00001
00001
00001
00001

o O O O O o o ©

.0000+0.
.0013-0.
.0154-0.
.0600-0.
.1312-0.
.1015-0.
.0011-0.
.0007-0.

00001
00001
00001
00001
00001
00001
00001
00001



-0.0611 + 0.0399i

Amid =

-1.6958+2.2029i
0.0000-0.00001
0.0000-0.00001

0.0000-0.00001

Bnid =
0.0187

0.0000-0.00001

-1.6958-2.2029i

0.0000-0.00001
0.0000-0.00001

0.02011

0.0187 + 0.02011

0.0038

0.00001

0.0034 - 0.00001

Cnid =

3.4745 + 3.90091

The controllability grammian X and the observability grammian S for

3.4745 - 3.90091

-0.0611 - 0.0399i

0.0000-0.0000i
0.0000+0.00001i
-1.3400-0.00001
0.0000+0.00001

-3.9803

high- and mid- subsystems are shown below:

Xhigh =
0.2277

-0.2197 - 0.0233i

Shigh =
1.0e-03 X

0.2060 - 0.0000i
0.1388 - 0.1300i

Xmid =
1.0e-03 X

0.2230-0.0000i
0.1016+0.09051
0.0273+4+0.00531
0.0302+0.00051i

Smid =

-0.2197 + 0.0233i

0.1016-0.09051i
0.2230+0.00001i
0.0273-0.00531
0.0302-0.00051
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0.2277 - 0.0000i

0.1388 + 0.1300i
0.2060 + 0.00001

0.0273-0.00531
0.0273+0.00531
0.0054+0.00001
0.0072+0.0000i

0.0000+0.00001
0.0000-0.00001
0.0000+0.00001
-0.4180-0.00001

0.5201

0.0302-0.00051
0.0302+0.00051
0.0072-0.00001
0.0134-0.00001



1.0e+03 X
1.0195+0.00001
-0.3779+0.12871
0.5131-0.8249i
0.154440.04411

-0.3779-0.
1.0195-0.
0.5131+0.
0.1544-0.

The Hankel singular values

Hhigh =

0.0023 - 0.0050i
-0.0022 - 0.0010i
Hpid =

0.0234+0.20401

-0.3948+0.33421

0.1781+0.12441

-0.0098-0.03231

-0.0014

0.0001

-0.2989+0.

0.121840.

-0.0341+0.

0.0482-0.

12871
00001
82491
04411

0.51314+0.8249i
0.5131-0.82491
3.4567+0.00001
0.8263-0.00001

0.1544-0.04411
0.154440.04411
0.8263-0.00001
0.4614+0.00001

of the high- and mid- subsystems are

- 0.00061
- 0.00011
0431i -0.0483-0.0268i
13581 0.0028-0.03431
05201 0.0325-0.01151
0162i 0.0109+0.00371
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0.0097+0.0189i

-0.0001+0.00031

-0.0003-0.00011i

0.0014+0.00181



APPENDIX 4

EXAMPLES

A EXAMPLE FOR USE PROGRAM - 1
(BACON AND SCHMIDT’S METHOD)

kkkkkkkkkkkkx*x FILE AND PARAMETERS TAKEN ***kkkkkkhkkkikkk

* *
* LOAD DATA FILE ~————— AB80.MAT *
* ORDER OF HOS (n) ———— 14 *
* INPUT (2) ————— 1 *
* OUTPUT (y) — 1 *
* PRINT PARAMETER (PT) ———— 0 *
* HIGH SUBSYSTEM (nn) —————— 6 *
* MIDDLE SUBSYSTEM (nm) ——— 14 *
* ORDER OF HSS (rh) ——— 1 *
* ORDER OF MSS (rm) ——— 7 *
* CHOICE OF GRAPHIC (tx) ————— 1 *
* FREQUENCY RANGE (wl,wl) ———— -1, 2 *
* *

kkkkkkkkkkkkk *kk khkkkkhkhkkhkhkkkk * k% khkkkkkkkhkkkhkkkkk

( TO ENTER MATLAB PACKAGE )

VMS $ (MATLAB)

<PRO-MATLAB?>
(c) Copyright The MathWorks, Inc. 1984 - 1988
All Rights Reserved
Version 3.34 18-Mar-88

HELP, DEMO, INFO, and TERMINAL are available

( TO CHOOSE AVAILABLE TERMINAL TYPE )

>> (TERMINAL)

—~——— GRAPHICS TERMINAL TYPES ———

1)
2)
3)
4)
5)
6)

TEKTRONIX 4010,4014
TEKTRONIX 4100 SERIES
VT100 WITH RETROGRAPHICS
VT100 WITH SELANAR 100
VT100 WITH SELANAR 200
vT240

vT241 COLOR

HUMAN DESIGNED SYSTEMS
HP 2647

ERGO

GRAPHON

XTERM

MORE SELECTICNS ——-—
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SELECT A MENU NUMBER : (2)

( TO LOAD DATA FILE AND SET THE POSITION OF GRAPHICS )

>> (LOAD AB80)
>> (XX = 0.35)
>> (YY = 0.98)
XX =

0.2000

yy::
0.9800

( TYPE THE PROGRAM’S NAME OF WHICH YOU WILL RUN )
>> (GENERAL)
( TO INPUT VALUES OF PARBMETERS )
he size of the A matrix is n=
n=
14
Which column of the b matrix will you take ? z=

z =

which tf do you want to get 2 (y=1 - n) y=
y=

Do you want to type the A & B matrices ? (1 - yes, 0 - no) pt=
pt =

( DISPLAY THE EIGENVALUES OF MATRIX A OF HOS )

dl =
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-15.4634 +49.11811
-15.4634 -49.11811
-15.7960 +22.2181i
-15.7960 -22.21811

-15.1429 + 5.7814i
-15.1429 - 5.7814i
-1.0836 + 1.1670i
-1.0836 - 1.16701
-1.2647

-0.2900 + 0.93571
-0.2900 - 0.9357i
-0.0092 + 0.2098i
-0.0092 - 0.2098i
-0.0001

( TO INPUT VALUES OF PARAMETERS )

n;Il'he high subsystem is the columns from first to nh=

The mid subsystem is the columns from nh+l to nm=
nm =

14

( DISPLAY THE HANKEL SINGULAR VALUES FOR MID- AND HIGH- SUBSYSTEMS )

svh =

15.3923
13.8422
6.3908
3.7661
1.8797
0.3257

svm =
1.0e+04 *

1.6235
1.4935
0.1101
0.0732
0.0129
0.0068
0.0048
0.0006

( TO DECIDE REDUCED ORDER FOR EACH SUBSYSTEM )
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How many order do you try to reduce for high subsystem ? rh=

rh =

How many order do you try to reduce for mid subsystem ? rm=

m =

( DIPLAY THE MATRICES ac, bc, cc AND dc

ac =

Columns 1 through 4
-17.3163 + 0.

OO OCOOOO

Columns 5 through 8

0
~-0.0018 + 0
~0.0012 + O
-0.0273 -1
~0.2306 + O
0.1320 + O
0.0468 + O
-0.0445 - 0
bc =
1.0e+02 *
1.2721 +
-1.0587 -
1.4534 +
1.7602 +
-0.8532 +
0.9973 +
0.3005 +
-0.5123 -
cc =

Columns 1 through 4

1.
1.
1.
1.
1.
0.
0.
0.

00001

.00591
.00721
.05291
.00001
.20771
.07371
.14871

46721
2192i
29081
05551
34271
00001
00001
1449i

0
-0.0070
0.2077
0.0165
0.0040
0.0057
0.0017
-0.0039

-0.0016
-0.0030
0.1990
0.1332
-0.5224
-0.3201
0.7101

.00001
.0271i
.0054i
.0134i
.00651
.0020i
.00251

+
QO OOOOO

.00181
.00261
.11931
.20971
.00001
.00001
.20081

+ 0+ 4+
OO OOCOOO
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OF THE REDUCED SYSTEM )

-0
-0
-0
-0
-0
-0

0

-0
-0

o

-0

-1
-0

0
.2079
.0110
.0239
.0028
.0084
.0025
.0054

.0006
.0016
.0419
.0264
.2201
.9659
.6540

b+ 4+ 1+ +

P+ 0+ + )

0.0271i
0.00001
0.0045i
0.0176i
0.00751
0.0023i
0.00261

0.00071
0.00141
0.0251i
0.04151
0.0000i
0.0000i
0.1849i

0.0074
0.0172
-0.2116
0.0235
-0.1954
-0.0532
0.1028

-0.0074
-0.0136
0.2379
0.0107
-1.2577
1.2884
-1.0807

P+ 0+ 0

0.0024i
0.0032i
0.00001
0.9082i
0.1171i
0.0319i
0.02791

0.0048i
0.0066i
0.06451
0.0359i
0.35561
0.3643i
0.0000i



0.0412 - 0.0475i 0.8589 - 0.9891i 1.1166 - 0.9916i
Columns 5 through 8
0.0631 + 0.0992i -0.1689 - 0.0000i 0.0019 + 0.0000i

dc

it

( DISPLAY THE MATRIX ac IN CONTROLLER CANONICAL FORM )
aba =
1.0e+02 *
Columns 1 through 4
-0.2135 + 0.0000i -0.7811 + 0.0000i -1.5431 + 0.0000i

0.0100 0 0
0 0.0100 0
0 0 0.0100
0 0 0
0 0 0
0 0 0
0 0 0

Columns 5 through 8
-1.3276 + 0.0000i -0.6312 + 0.0000i -0.0640 + 0.0000i

( TO GRAPHIC AND SET TIME AND FREQUENCY RANGE )
tx =

0 for time response, 1 for frequency response, 2 for both

which ploting do you want ? tx=
tx =

The lower limit of frequency range is log(wl)=
wl =
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-0.1031 + 0.0618i

0.3667 - 0.1037i

-1.7861 + 0.0000i

-0.0235 + 0.00001

OCOO0OOOO O



-1

The upper limit of frequency range is log(w2)=
w2 =

( THE GRAPHICS WILL SHOW ON SCREEN )
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A EXAMPLE FOR USE PROGRAM - 2
(EXTENDED LEVY'’S & T.C. CHEN'S METHOD)

kkkkkkkkkkkkkxkkkx DATA FILES AND PARAMETERS TAKEN *%kkkkkkkkkkkkkkk

* *
* *
* DATA FILES ———— FWRIF1 — FWRIF8 *
* FLY801 - FLY808 *
* ORDER OF DENOMINATOR m ~———— 8 *
* ORDER OF NUMERATOR nn ——— 7 *
* TOTAL NUMBER OF G(s) ml ——— 8 *
* POWER OF WEIGHTED FACTOR cn ————— 1.2 *
* NUMBER OF FREQUENCY POINTS nw ——— 20 *
* TOTAL TIMES OF ITERATION nr ———— 3 *
* CHOICE OF GRAPHIC gs ———— 12 ( FOR xl,ul and x2/ul ) *
* *
* *

% e e Fe K K e ok Kk Kk Kk ok Kk dkeokok ok *k k% *hkkkkkkkhkkkhkkkkk *hkk khkhhkkkhkhkhkkkhkhkkkkk

( TO ENTER MATLAB PACKAGE )

VMS $ (MATLAB)

<PRO-MATLAB>
{c) Copyright The MathWorks, Inc. 1984 - 1988
All Rights Reserved
Version 3.34 18~-Mar-88
HELP, DEMO, INFO, and TERMINAL are available
( TO CHOOSE AVAILABLE TERMINAL TYPE )

>> (TERMINAL)

————— Graphics Terminal Types

1) Tektronix 4010,/4014

2) Tektronix 4100 series
3) vTl00 with Retrographics
4) vrl00 with Selanar 100
5) vT100 with Selanar 200
6) vr-240

7) vT-241 Color

8) Human Designed Systems
9) HP 2647

10) Ergo

11) Graphon

12) xterm

13) More selections - - -

Select a menu number: (2)
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-

( TO LOAD DATA FILES )

>> (LOAD FWRIF1)
>> (LOAD FWRIF2)
>> (LOAD FWRIF3)
>> (LOAD FWRIF4)
>> (LOAD FWRIFS)
>> (LOAD FWRIF6)
>> (LOAD FWRIF7)
>> (LOAD FWRIF8)

( TYPE THE PROGRAM'S NAME OF WHICH YOU WILL RUN )
>> (MLEVY)
( TO CHECK DATA FILES HAVE BEEN LOADED OR NOT )

Have you loaded the data files? (1 for yes, CTRL Y for no)
x =

{( TO INPUT THE VALUES OF PARAMETERS )

INPUT ORDER OF DENOMINATOR
m=

INPUT ORDER OF NUMERATOR
nn =

Im NUMBER OF G(s)
nl =

PLEASE GIVE THE VALUE OF WEIGHTED FACTOR
cn =

1.2000
THE NUMBER OF FREQUENCY POINTS
nw =

20

HOW MANY TIMES OF ITERATION DO YOU WANT ?
nr =
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THE NUMBER OF ITERATION ?
X =

( SHOW THE VECTOR OF TRANSFER FUNCTION COEF. AFTER 1ST ITERATION )

THE NUMBER OF ITERATION ?
X =

( SHOW THE TOTAL ERRORS AFTER FIRST ITERATION )
abd2 =

2.0200e+10
( SHOW THE VECTOR OF TRANSFER FUNCTION COEF. AFTER 2ND ITERATION )

THE NUMBER OF ITERATION ?
X =
3

( SHOW THE TOTAL ERRORS AFTER 2ND ITERATION )
abd2 =

1.2627e+10
( SHOW THE VECTOR OF TRANSFER FUNCTION COEF. AFTER 3RD ITERATION )

Do you want to print the transfer function coefficients?
zZ =

a for the coef. of numerator, b for coef. of denominator
zl =
1
( DISPLAY THE COEF. OF NUMERATOR AND DENOMINATOR OF TRANSFER FUNCTION )

a =
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1.0e+04 *

Columns 1 through 7

-0.2387
-0.3637
-0.3358
-0.2509
-0.0469
-0.0152
-0.0011

0.0005

Column 8

-0.0001
-0.0014
-0.0028
-0.0134

-0.0289
-0.0185

-0.0054
-0.0004

1.0000
2.7356
26.9108
56.8247
76.8654
66.7577
34.3388
9.6205
0.6209

-0.0289
-0.0419

0.1570
-0.8012
-0.7671
-0.8405
-0.3215
-0.0227

0.0000
0.0001
0.0076
0.0108
0.0093
0.0065
0.0008
0.0000

.0001 0.1635
.0076 0.2242
.0112 1.3779

.0069 2.3636

0
0
0
0.0100 3.5724
0
0

.0009 0.7092
0.0000 0.0435
0.0000 0.0008

( DISPLAY THE MATRICES fc + £ AND gl )

fc =

Columns 1 through 7

~15.4956
1.0000
0

[>NeoReNoN o

Column 8

-1.6107

-55.3090 -107.5254 -123.8057 -9
0

0 0
1.0000 0 0
0 1.0000 0
0 0 1.0000
0 0 0
0 0 0
0 0 0
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-0.0017 0.0000
-0.0020 0.0000
-0.0242 0.0000
-0.0372 0.0000
~-0.0262 0.0000
-0.0050 -0.0001
-0.0042 0.0000

0.0006 0.0000

1.5266 -43.3448 -4.4062
0

0 C
0 0 C
0 0 C
0 0 C
1.0000 0 C
0 1.0000 0
0 0 1.0000



f=

Columns 1 through 7

-0.
-0.
0.
0.
-0.
-0.
0.
0.

OCOOOO

0285
0380
0027
0000
0144
0102
0002
0030

Column 8

3.
-4.
-0.
-0

-128

4
-0
-0

gl =

7.
-364.
-0
-0.
12.
9.
-0.
-6.

0912
8449
5188

.0504
.2098
.7562
.1031
.7831

3456
9653

.6759

0882
2946
6606
3436
0894

0
-0
-0
-0
-0
-0
-0

0

.0209
.8112
.0095
.0001
.0019
.0060
.0002
.0093

.7361
.3729
.4503
.9554
.3897
.8388
.1759
.4237

( TO GRAPHIC x1,/ul AND x2,/ul )

.9526
.4419
.0371
.0024
.4744
.3481
.0096
.0123

WHICH G(s) WOULD YOU LIKE TO GRAPHIC ?

gs =

12

( THE GRAPHICS WILL SHOW ON THE SCREEN )
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.0493
.0321
.0087
.0003
.0609
.0350
.0013
.0060

.3202
.8149
.1068
.0425
.2416
.5235
.1669
.3151

480
-853
-78
-4
967
693
-17
-26

.3429
.1000
.1489
.4773
.7565
.3933
.8826
L1371



amid,
bmid,
cmid,
dmid,
smid,
hkm,
svm,
hdz,
ar2,
br2,

cr2,

AC OO O O O° O OO OC AC AN A OO O O G O AP OC AN O A AC AP ANC A O A A A A O\ O° O A O° GO O I AP IO OO O° A\ A B GO O\° AP O A\° O A o IO I°

dr2,

APPENDIX 5

PROGRAM - 1
(BACON & SCHMIDT'S METHOD)

THIS MATLAB PROGRAM CAN BE USED TO FIND A REDUCED
ORDER MODEL FROM A HIGH ORDER SYSTEM USING BACON AND
SCHMIDT'S METHOD. THE DYNAMICAL SYSTEM IS WRITTEN

AS THE FOLLOWING STATE-SPACE FORM:

X = AX + Bu

y:

Cx

AND THE OUTPUT EQUATION BECOMES

THIS PROGRAM HAS BEEN DEVELOPED ON THE VMS2 OF
CENTRAL VAX OF GLASGOW UNIVERSITY.

BY MINGRUI GONG, DEPT. OF ELECTRONICS AND ELECTRICAL
ENGINEERING OF GLASGOW UNIVERSITY. AUGUST 1989.

kxkkkkkx [ JST OF THE SYMBOLS ***kkkk%

NAME OF FILE (.MAT) INVOLVING A,B MATRIX
A MATRIX

B MATRIX

C MATRIX

D MATRIX

NUMBER OF COLUMN OF B MATRIX

A MATRIX OF mid, hi SUBSYSTEM

B MATRIX OF mid, hi SUBSYSTEM

C MATRIX OF mid, hi SUBSYSTEM

D MATRIX OF mid, hi SUBSYSTEM

CONTROLLABILITY GRAMMIAN FOR mid, hi SUBSYSTEM

OBSERVABILITY GRAMMIAN FOR mid, hi SUBSYSTEM
HANKEL MATRIX FOR mid, hi SUBSYSTEM
HANKEL SINGULAR VALUES FOR mid, hi SUBSYSTEM

SQUARE ROOTS OF EIGENVALUES OF XS FOR mid, hi

SUBSYSTEM
A MATRIX OF REDUCED ORDER MODEL FOR mid, hi
SUBSYSTEM
B MATRIX OF REDUCED ORDER MODEL FOR mid, hi
SUBSYSTEM
C MATRIX OF REDUCED ORDER MODEL FOR mid, hi
SUBSYSTEM
D MATRIX OF REDUCED ORDER MODEL FOR mid, hi
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dhi=0;
amid=(vmid) ' *a*mmid;
bmid=(vmid)’*bl;

for i=1:n,
cmid(i,:)=c(i,:)*mmid;
end
dmid=0;
%
%
% *** DETERMINATION OF THE CONTROLLABILITY GRAMMIAN & OBSERVABILITY GRAMMIAN **%
% **kkkkx* CALCULATION OF THE EIGENVALUES AND EIGENVECTORS OF THE PRODUCT XS **%*
% **kkkkxkx CHECK HANKEL SINGULAR VALUES ARE EQUAL TO THE SQUARE ROOTS OF THE
% EIGENVALUES OF THE PRODUCT XS *¥%*Xkkk%

xhi=gram(ahi,bhi);
shi=gram((ahi)’,(chi)’};
xsh=xhi*shi;
xmid=gram(amid,bmid) ;
smid=gram((amid)’,(cmid)’};
xsm=xmid*smid;
[ml,d3]=eig(xsh);
[m2,d2]=eig(xsm);
[vch,sch,uch]=svd(xhi);
{voh,soh,uoch)=svd(shi);
schr=sqrt(sch);
sohr=sqrt(soh);
hkh=sohr*(voh)’*vch*schr;
[vem, sem,ucm}=svd(xmid) ;
{vom, som,uom]=svd(smid);
scmr=sqrt(scm);
somr=sqrt(som);
hkm=somr* (vom) ’ *vcm*scmr ;
svh=svd(hkh)

svm=svd(hkm)
hdl=sqrt(d3);
hd2=sqrt(d2);

**%k*%*x*x%x DETERMINATION OF REDUCED ORDER OF THE hi & mid SUBSYSTEMS *%kkkkkx

o\% o\ o\@ o\

rh=input(’'order for high subsystem rh= ')
rm=input(’order for mid subsystem rm= ')
trl=ml(:,1:rh);
tr2=m2(:,1l:rm);
tl=inv((ml)’);
t2=inv((m2)’');
url=tl(:,1l:rh);
ur2=t2(:,l:rm);
arl=(url)’*ahi*trl;
brl=(url)’*bhi;
for i=1:n,
crl(i,:)=chi(i,:)*trl;
end
drl=0;
ar2=(ur2)’*amid*tr2;
br2=(ur2)’*bmid;
for i=1l:n,
cr2(i,:)=cmid(i,:)*tr2;

°
Q
)
% kkkk**%x* DETERMINATION OF TRANSFER FUNCTIONS OF hi & mid SUBSYSTEMS *%%xwxx

[nhl,dhl]=ss2tf(arl,brl,crl(y,:),drl, l);
[nml,dml]=ss2tf(ar2,br2,cr2(y,:),dr2,1);
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SUBSYSTEM *

ac ———— A MATRIX OF COMPLETED REDUCED ORDER MODEL *
bc ———— B MATRIX OF COMPLETED REDUCED ORDER MODEL *
cc ———— C MATRIX OF COMPLETED REDUCED ORDER MODEL *
dc ———- D MATRIX OF COMPLETED REDUCED ORDER MODEL *
*

*

AREAA KA AR KRA KRR AR A AR AR AR K AAR AR A RAKR AR A A AR AR AR A AR kA kA ARk kA hkkAhkkhhhk

k*xk*kx** INPUT A, B AND C MATRICES ***k#k*%
PLEASE LOAD DATA FILE (AB80.mat...) AND INPUT XX=0.35, YY=0.98 FOR GRAPHICS.

oC o° OO o\® o o\° A A% A? A\° o\@ o o

clc
%load ab80
n=input(’The size of the A matrix is n= ')
z=input(‘Which column of the b matrix will you take ? z= ’)
y=input(’which tf do you want to get ? (y= 1-n) y= ')
bl=b(:,z);
for i=1:n,
for j=1:n,
if i==j,
c(i,j)=1;
else
c(i,3)=0;
end
end

Sa

~e

**k*kk*** TYPE THE A & B MATRICES AND DETERMINATION OF TF OF HOS ¥k

o0 o o° d° Q. (D

pt=input(’Do you want to type the A & B matrices ? (1 - yes) pt= ')
if pt==1,
a,b,c
else
end
[numl,denl]=ss2tf(a,bl,c(y,:),d,1);

N

O O A0 o\ o o\° o

*kkkkkkk DETERMINATION OF RADII D1 AND D2 *%kkkkkx

**#kkkkxkx THE COLUMNS OF M MATRIX ARE SEPARATED THREE COLUMN GROUPS:
Mlo, Mmid and Mhi by the D1 AND D2 *#k#k%xx

(m,d12]=eig(a);

dl2=eig(a)

v=inv((m)’);

nh=input(’The high subsystem involves the columns from first to nh= ')
nm=input(’The mid subsystem involves the columns from nh+l to nm= ')
mlo=m(:,(nm+l):n);

mmid=m(:, (nh+l):nm);

mhi=m(:,1l:nh);
vio=v(:,(nm+l):
vmid=v(:,(nh+l)
vhi=v(:,1:nh);

n);
:nm) ;

%k kk*%%% DETERMINATION OF TRANSFER FUNCTIONS OF hi & mid SUBSYSTEM %k

o0 20 o\ o

ahi=(vhi)’*a*mhi;

bhi=(vhi)’*bl;

for i=l:n,
chi(i,:)=c(i,:)*mhi;
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*%kkk*k** To COMBINE THE COMPLETED MATRICES OF REDUCED ORDER MODEL k%%

*%kkk¥*% THE REDUCED ORDER r = (rh+rm) *%kikiksk

0 d° A% o\ o\ g°

r=rh+rm;
ac=zeros(r);
for i=1:rh,
for j=1l:rh,
ac(i,j)=arl(i,j);
end
end
for i=l:rm,
for j=l:rm,
ac(i+rh,j+rh)=ar2(i,j);
end
end
ac
be=[brl(:,1)
br2(:,1)]
ce=[crl(y,:),cr2(y,:)]
dc=0
[nuc,decl=ss2tf(ac,bc,cc,dc,l);
{zc,pc,kc]=tf2zp(nuc,dec);
faba,bba,cba,dba}=tf2ss(nuc,dec);
aba

**%**%%x% MATCHING WITH TIME RESPONSE AND FREQUENCY RESPONSE * sk

A0 o\@ o o o o°

tx='0 for time response, 1 for frequency response, 2 for both’
tx=input(’which do you want ? tx= ')
%
if tx==0,
tb=input(’The lower limit of time is tb= ')
delt=input(’The increment of time is delt= ')
te=input(’'The upper limit of time is te= ')
t=tb:delt:te;
yl=step(ac,bc,cc,dc,1,t);
y2=step(a,bl,c(y,:),d,1,t);
plot(t,yl,’'-',t,y2,’0")
text(xx,yy, - for reduced model, o for HOS model’,’sc’)
xlabel(’time sec.’)
ylabel('y’)

*%%k*kk*k* TO PLOT THE FREQUENCY RESPONSE ##*#* %k

o o° o\® o0 oP

elseif tx==1,
wl=input(’The lower limit of frequency range is log(wl)=
w2=input(’The upper limit of frequency range is log(w2)=
w=logspace(wl,w2);
[magl,phasel ]=bode(ac,bc,cc,dc,l,w);
[mal,phal]=bode(a,bl,c(y,:),d,1,w);
subplot(211),

loglog(w,magl,’'-’,w,mal,’o’)
ylabel('mag db’),xlabel(’w(rad/sec)’)
text(xx,yy,’— for reduced model, o for HOS model’,’sc’)

subplot(212),
semilogx(w,phasel,’'-',w,phal,’o’)
ylabel(’phase deg’),xlabel(’'w(rad/sec)’)
else
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o0&

% ***k*k*xkx*x TO PLOT THE TIME AND FREQUENCY RESPONSE **%%%*%%

oo

tb=input(’The lower limit of time is tb= ')
delt=input(’The increment of time is delt= ')
te=input(’The upper limit of time is te= ')
t=tb:delt:te;
yl=step(ac,bc,cc,dc,1,t);
y2=step(a,bl,c(y,:),d,1,t);
wl=input(’'The lower limit of frequency range is log(wl)=
w2=input(’'The upper limit of frequency range is log(w2)=
w=1logspace(wl,w2);
(magl,phasel }=bode(ac,bc,cc,dc,1,w);
[mal,phal]=bode(a,bl,c(y,:),d,1,w);
subplot(221),

loglog(w,magl,’'-',w,mal,’o’)

ylabel(’mag db’),xlabel(’w(rad/sec)’)

text(xx,yy,’— for reduced model, o for HOS model’,’sc’)
subplot(222),

semilogx(w,phasel,’~',w,phal,’o’)

ylabel(’'phase deg’),xlabel(’'w(rad/sec)’)
subplot(223),plot(t,yl,’'-',t,y2,'0")

xlabel(’time sec.’)

ylabel(’y’)
end

")
")
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PROGRAM - 2
(EXTENDED LEVY'S & T.C. CHEN'S METHODS)

AAAKKKAKRAAKRKAAAKRKRKRAKRARARA A AA A kA Ak Ak hkhkhhkhkhkhkhhkhhkhhkhkhhkhkhkhhkhhkhkhkhkhhhkkkhkhk

THIS MATLAB PROGRAM CAN BE USED TO FIND A REDUCED
ORDER MODEL FROM A HIGH ORDER SYSTEM USING THE
EXTENDED LEVY’'S METHOD AND T.C.CHEN'’S METHOD.

THIS PROGRAM HAS BEEN DEVELOPED ON THE VMS2 OF
CENTRAL VAX OF GLASGOW UNIVERSITY.

BY MINGRUI GONG, DEPT. OF ELECTRONICS & ELECTRICAL
ENGINEERING OF GLASGOW UNIVERSITY. MAY 1991

¥ ok % Ok % X F % % W X X H X *

*******************************************************************

hhkhkhkhhkkhhhhhkhkhkhkhhkhkhhkhhhhkhhkhkhhhhhkhhkhhhkhkhkhkkkhkhkkhkrhhkhhkrhkhhkhkhkkhkhkhkkkk

*

*

*

*kkkkxk* [ JST OF THE SYMBOLS ***xkkkk* *

*

fwrifl - fwrif8 —-——- DATA FILES *
fly801 - f1y808 ———— DATA FILES *
m ——— ORDER OF DENOMINATOR *

nn ——— ORDER OF NUMERATOR *

ml ——- TOTAL NUMBER OF G(s) *

cn ——— POWER of WEIGHTING FACTOR *

nk ——— ITERATION NUMBER *

nw ——— NUMBER OF FREQUENCY POINTS *

nr ——— TOTAL TIMES OF ITERATION *
d2(s) ——— WEIGHTING FACTOR *
abd2 -———- TOTAL ERRORS *
a, ahl ———— COEF. OF NUMERATOR OF TRANSFER FUNCTION *
b, bhl ——— COEF. OF DENOMINATOR OF TRANSFER FUNCTION *
ab ———- VECTOR OF TRANSFER FUNCTION COEF. *
abhl ———— RESULTS FILE *

*

*

*

% e ok % % Fe K %k %k e K %k Kk %k Kk K K Kk K Kk %k ok ok Kk Kok sk ok ke ok ke ok ok ke sk vk ok ok ok ok ok ok sk ok K vk ok Sk sk ok ok ok ok ok ok ok ok ok ok ok e ok ke ok ok

TO CHECK LQOAD DATA FILES
=input(’Have you loaded the data files? (1 for yes, CTRL Y for no)’)

O @ K O A o\ A O A A\C O A\ AN A A A A\ G0 O A\ A\ O I A\ O\? A A\ OO N O A O\ O O O O\ O AP IC A A\ IO O O AN O o\° I\ o\

SPECIFY THE NUMERATOR AND DENOMINATOR ORDER.
m=input(’input order of denominator’)
nn=input(’input order of numerator’)
ml=input(’input number of G(s)’)
cn=input(’please give the value of weighting factor’)
n=nn+l;
MN=IN;
for i=1:(ml*n+m),
for j=1:(ml*n+m),

p(ilj)=0;
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end
cp(i)=0;
end
nw=input(’THE NUMBER OF FREQUENCY POINTS’)
for i=l:nw,
d2(i)=1;
end
for jj=1l:mi,
for i=l:nw,
if jj== ’
fwl(i,jj)=£1(1,1i);
fri(i,jj)=£2(1,1i);
£fil(i,3jj)=£3(1,1i);
else
if jj==2,
fwl(i,33)=£4(1,1);
fri(i,jj)=£5(1,i);
£fil(i,jj)=f6(1,i);
else
if jj==3,
fwl(i,jj)=£7(1,1i)
fri(i,jj)=£8(1,1)
£il(i,j3)=£9(1,1)
else
if jj==4,
fwl(i,33)=£10(1,1);
£ri(i,33)=£11(1,1);
£i1(i,33)=£12(1,1);
else
if jj==5,
fwl(i,jj)=£13(1,1);
frl(i,jj)=£14(1,i);
£i1(i,j3)=£15(1,1);
else
if §j==6,
fwl(i,jj)=£16(1,i);
fri(i,33)=£17(1,1i);
£il(i,3jj)=£18(1,i);
else
if ji==7,
fwl(i,jj)=£19(1,1);
fri(i,jj)=£20(1,1i);
£il(i,jj)=£21(1,1i);
else
fwl(i,j3)=£22(1,1);
fri(i,jj)=£23(1,i);
£il(i,jj)=£24(1,i);
end
end
end
end
end
end
end
end
end
%
% FOR ITERATION
nr=input(’HOW MANY ITERATIONS DO YOU WANT ?’)
for r=1:nr,
x=input(’THE NUMBER OF ITERATION ?')
if =1,
abd2=0;
for jj=1:ml,
for j=l:nw,

.
’
.
’

.
’
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w=fwl(3,3]);
re=frl(j,33);
im=£fil(3,33);
sr=0;
si=w;
dr=1;
di=0;
for i=(ml*n+1):(ml*n+m),
dr=dr+ab(i)*sr;
di=di+ab(i)*si;
hs=sr;
sSr=—si*w;
si=hs*w;
end
d2(j)=1/(dr*dr+di*di};
d2(j)=d2(j) "cn;
sr=0;
si=w;
drl=ab(l);
dil=0;
for i=((jj-1)*n+1):(jj*n),
drl=drl+ab(i+l)*sr;
dil=dil+ab(i+l)*si;
hs=sr;
sSr=—Ssi*w;
si=hs*w;
end
% TO GET BATE & TOU
di=di/w;
dil=dil /w;
aad(j)=((dr*re—w*di*im-drl)*(dr*re-w*di*im-drl))*d2(j);
bbd(j)=((wrdi*re+dr*im-w*dil)*(w*dr*re+dr*im-w*dil))*d2(j);
abd(j)=aad(j)+bbd(]);
end
abdl=0;
for j=l:nw,
abdl=abdl+abd(j);
end
abd2=abd2+abdl;
end
abd2
for i=1:(ml*n+m),
for j=1l:(ml*n+m),
p(i,3)=0;
end
cp(i)=0;
end
end
% CALCULATE THE MATRIX p AND CP FOR SISO.
for nk=1:mil,
nk;
for i=1:mn,
for j=1l:mn,

pl(i,j)=0;
end
cpl(i)=0;

end
INPUT THE NUMBER OF FREQUENCY POINTS .

INPUT EACH FREQUENCY POINT

LOAD FWRI.M (F1 — FREQUENCY, F2 - REAL PART, F3 - IMAGINARY PART)
or i=l:nw,

fw(i)=ftwl(i,nk);

fr(i)=£frl(i,nk);

£i(i)=£il(i,nk);

Hh 0@ o o o oe
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end

%

% SET THE ARRAY SIZES AND CONSTANTS
np=2*nn+1;

nl=n+l1;

n2=n+2;

n3=n+3;

mp=mn+nn;

mg=mn+m-1;

zm=mn-1;

THIS IS THE MAIN LOOP SETTING THE SKELETON P MATRIX, CP IS THE VECTOR Y
ASSOCIATED WITH Px, AND ab IS THE VECTOR OF TRANSFER FUNCTION COEFFICIENTS x.
% TO GET P1 AND CP1 FOR SISO.
for ki=1l:nw,
fh=fw(ki)*fw(ki);
pl(1,1)=pl(1,1)+d2(ki);
cpl(l)=cpl(l)+fr(ki)*d2(ki);
if n7=1,
sh=d2(ki);
for i=3:2:np,
if i<=n,
sh=-sh*fh;
pl(1,i)=pl(1,i)+sh;
else
ii=i-n+1;
sh=sh*fh;
pl(ii,n)=pl(ii,n)+sh;
end
end
end
tl=d2(ki)*fw(ki)*£i(ki);
pl(1l,nl)=pl(1l,nl)+tl;
if m"=1,
s2=-d2(ki)*fr(ki);
for j=n2:2:mp,
if j<=mn,
s2=-s2*fh;
pL(1,3)=pl(1,3)+s2;
Ji=j+1;
if jj<=mn,
tl=—tl*fh;
pl(1,33)=pl(1,33)+tl;
else
i=jj+1l-mn;
if i<=n,
tl=tl*fh;
pl(i,mn)=pl(i,mn)+tl;
end
end
else
i=j-mn+l1;
s2=s52*fh;
J3=3+1;
if i<=n,
pl(i,mn)=pl(i,mn)+s2;
i=jj+l-mn;
if i<=n,
tl=tl*fh;
pl(i,mn)=pl(i,mn)+tl;
end
end
end
end
end
fx=(fi(ki)*£i(ki)+£fr(ki)*fr(ki))*d2(ki)*th;
- ]99 -—
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pl(nl,nl)=pl(nl,nl)+£x;
if m™=1,
for i=n3:2:mq,
if i<=mn,
fx=-fx*fh;
pl(nl,i)=pl(nl,i)+fx;
else
fx=£fx*fh;
j=i-mn+l+n;
pl(j,mn)=pl(j,mn)+£x;
end
end
end
end

B

% THIS SECTION OF THE PROGRAM FILLS IN THE P MATRIX
if n>=3,
mh=-1;
h=1;
for j=2:n,
h=h*mh;
jl=3-1;
for 1=1:nn,
k=1+1;
p1(j,1)=pl(jl,k)*h;
end
end
end
if n7=1,
mh=-1;
h=1;
for j=2:n,
h=h*mh;
ji=j-1;
for l=nl:zm,
k=1+1;
pl(j,1)=pl(jl,k)*h;
end
end
end
if m>=3,
h=1;
for j=n2:mn,
h=h*mh;
j1=3-1;
for l=nl:zm,
k=1+41;
p1(3,1)=pl(jl,k)*h;
end
end
end
x1l=1;
X2=-1;
ii=0;
for i=1l:n,
ii=ii+l;
if ii>=3,
ii=1;
x1=x1*x2;
end
33=0;
yl=1;
for j=nl:mn,
J'gﬂlﬁ*l?
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Ji=1;
yl=yl#*x2;
end
pl(j,1)=pl(i,j)*x1*yl;
end
end

ii=i+1;
cpl(ii)=pl(i,nl)*x1;
x1l=-x1;
end
end
if m™=1,
for i=n2:2:mn,
j=i-1;
cpl(i)=pl(j,nl);
end
end

%

% TO MOVE THE MATRIX FOR SISO Pl & CP1 TO MATRIX P & CP FOR MIMO.

)
)

for i=1l:n,
for j=1:n,
p(((nk-1)*n+j),((nk-1)*n+i))=pl(j,i);
end
end

for i=1:m,
for j=1:n,
p(((nk-1)*n+j), (ml*n+i))=pl(j,(n+i));
end
end

)
K

for i=1l:n,
for j=1:m,
p((ml*n+3j),((nk-1)*n+i))=pl((n+j),i);
end
end

)

for i=l:m,
for j=1:m,
p((ml*n+j), (ml*n+i) )=p((ml*n+j), (ml*n+i))+pl((n+j),(n+i));
end

end

%

for i=l:n,
cp((nk-1)#*n+i)=cpl(i);

end

for i=l:m,
cp(ml*n+i)=cp(ml*n+i)+cpl(n+i);

end

end

o\© o oP

FIND TRANSFER FUNCTION COEFFICIENTS AB
ab=p\(cp)’;

ab

end

[2)

)

% PRINT OUT THE TRANSFER FUNCTION COEFFICIENTS

z=input(’Do you want to print the transfer function coefficients?’)

zl=input(’a for the coef. of numerator, b for coef. of denominator’)
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for i=l:ml,
a(l:n,i)=ab(((i-1)*n+l):(i*n),1);
end
% EVERY COLUMN OF A IS THE COEF. OF NUMERATOR OF EVERY G(s).

a
b(1,1)=1;
b(2:(m+l),l)=ab({(ml*n+1):(ml*n+m),1);
b
% THE ORDER OF THE COEF. FROM HIGHER TO LOWER.
for i=l:mi,

ahl(l:n,i)=a(n:-1:1,1i);
end

bhl(l:(m+l),1)=b((m+l):-1:1,1);
% SAVE A AND B TO FILE FOR GRAPHIC.
save abhl ahl bhl

% USE CHEN'’S METHOD TO GET STATE-SPACE FORM
ahlc=ahl bhl(1,1);

nc=(ahlc)’

bhlc=bhl /bhl(1,1);

bhlc=-(bhlc)’

bhlc=bhlc(1,2:(ml+1))

fc(1, :)=bhlc;
fc(2:ml,1:(ml-1))=eye((mi-1), (ml-1));
fc(2:ml,ml)=zeros((mi-1),1);

fc

f=nc*fc*inv(nc)

gl=nc(:,1)

o
% gs=12 for xl,ul and x2/ul, gs=34 for x3,/ul and x4,ul.
% gs=56 for x5/ul and x6,/ul, gs=78 for x7,/ul and x8/ul.
gs=input('WHICH G(s) WOULD YOU LIKE TO PLOT ?')
bhl=(bhl)’;
if gs==12,
load £1y801
load £1y802
ahll=(ahl(1l:n,1))’;
ahl2=(ahl(1:n,2))’;
else
if gs==34,
load £1y803
load £1y804
ahll=(ahl(1l:n,3)
ahl2=(ahl(1:n,4)
else
if gs==56,
load £fly805
load £f1y806
ahll=(ahl(1l:n,5))’;
ahl2=(ahl(1l:n,6))’;
else
load £1y807
load £1y808
ahll=(ahl(1l:n,7))
ahl2=(ahl(1:n,8))
end
end
end
% THE LCW ORDER MODEL
[arl,brl,crl,drl]=tf2ss(ahll,bhl);
far2,br2,cr2,dr2]=tf2ss(ahl2,bhl);
eigrl=eig(arl)
eigr2=eig(ar2)
% HIGH ORDER SYSTEM
atl=ahl;

r

.
L4
r .
’

14
’
I .
’
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btl=bhl;

ctl=chl;

dtl=dhl;

at2=ah2;

bt2=bh2;

ct2=ch2;

dt2=dh2;

eighl=eig(ahl)

eigh2=eig(ah2)

% PLOT FREQUENSE RESPONSES OF THE G(s).
w=logspace(-2,2);
[mag,phase]=bode(atl,btl,ctl,dtl,l,w
[magl,phasel]=bode(arl,brl,crl,drl,1
[mag2,phase2 j=bode(at2,bt2,ct2,dt2,1
[mag3,phase3]=bode(ar2,br2,cr2,dr2,1
subplot(221)
loglog(w,mag, -’ ,w,magl,’*’)

xlabel (’'w(rad/sec.)’),ylabel('mag db’)

subplot(222)

semilogx(w,phase,’-’,w,phasel,’'*’)
xlabel(’w(rad/sec.)’), ylabel(’phase deg’)
text(xx,yy,’— for HOS model, * for ROS model’,’sc’)
subplot(223)

loglog(w,mag2,’-',w,mag3,"*")
xlabel('w(rad/sec.)’),ylabel(’'mag db’)

subplot(224)

semilogx(w,phase2, '-',w,phase3,'*')
xlabel(’'w(rad/sec.)’),ylabel(’phase deg’)

);

W)
W)
W)
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PROGRAM - 3
(TO GENERATE DATA FILES)

THIS PROGRAM IS TO GENERATE TWO DATA FILES (FLY80* . MAT AND FWRIF*,MAT)
FOR PUMA8(0 OR PUMA60.

THE DATA FILES IS TO FIND 8*8 (1+7) REDUCED MODEL.

LOAD AB80.M OR AB60.M.

load ab60

z=input(’the b matrix is’)

wl=input(’The lower limit of frequency range is log(wl)= )
w2=input(’The upper limit of frequency range is log(w2)= ')
b=b(:,z);

for i=1:14,

for j=1:14,
if i==j,
c(i,j)=1;
else
c(i,j)=0;
end
end
end
d=0;
for y=1:8,
ahl=a;
bhl=b;
chl=c(y,:);
dhl=d;
if y==1,

save fly801 ahl bhl chl dhl
fl=logspace(wl,w2);
[re,im]=nyquist(ahl,bhl,chl,dhl,l,fl);
f2=(re)’;
£3=(im)’;
save fwrifl f1 f2 £3
else
if y==3,
save fly803 ahl bhl chl dhl
f7=1ogspace(wl,w2);
[re,im]=nyquist(ahl,bhl,chl,dhl,1,£7);
f8=(re)’;
£9=(im)’;
save fwrif3 £f7 £8 £9
else
if y==5,
save fly805 ahl bhl chl dhl
f13=logspace(wl,w2);
[re,im]=nyquist(ahl,bhl,chl,dhl,1,£13);
fl4=(re)’;
f15=(im)’;
save fwrif5 f13 f14 f15
else
if y==7,
save fly807 ahl bhl chl dhl
f19=logspace(wl,w2);
[re,im]=nyquist(ahl,bhl,chl,dhl,1,£19);
£20=(re)’;
f21=(im)’;
save fwrif7 £f19 £20 £21
else
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ah2=a;
bh2=b;
ch2=c(y,:);
dh2=d;
if y==2,
save fly802 ah2 bh2 ch2 dh2
f4=logspace(wl,w2);
[re,im)=nyquist(ah2,bh2,ch2,dh2,1,£4);
f5=(re)’;
£6=(im)’;
save fwrif2 f4 f5 f6
else
if y==4,
save fly804 ah2 bh2 ch2 dh2
f10=logspace(wl,w2);
[re,im])=nyquist(ah2,bh2,ch2,dh2,1,£10);
fll=(re)’;
f12=(im)";
save fwrif4 £f10 f11 f12
else
if y==6,
save fly806 ah2 bh2 ch2 dh2
flé6=logspace(wl,w2);
[re,im]=nyquist(ah2,bh2,ch2,dh2,1,£16);
£f17=(re)’;
£18=(im)’;
save fwrif6 fl6 f17 f18
else
save f£ly808 ah2 bh2 ch2 dh2
f22=logspace(wl,w2);
[re,im}=nyquist(ah2,bh2,ch2,dh2,1,£22);
£23=(re)’;
f24=(im)';
save fwrif8 f£22 £23 £24
end
end
end
end
end
end
end
end
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APPENDIX 6

USER'S GUIDE 1_TO THE MODEL REDUCTION SOFTWARE

(PROGRAM FOR IMPLEMENTATION

OF BACON & SCHMIDT'S METHOD)

A6.1.1 INTRODUCTION

Bacon and Schmidt's method has been coded in MATLAB for a VAX 3000
computer. This Guide gives a brief description of this program. The program can
be used to find an equivalent system, with reduced order of a multi—input
multi— output high— order system. The high—order system is written as a
state— space form, and the low— order approximation, or equivalent system, can be
expressed as a state—space form, a pole—zero— gain form, or a transfer function
form.

A6.1.2. DETERMINATION OF TRANSFER FUNCTION OF THREE SUBSYSTEMS

The choice of transfer function of the three subsystems, (high—, middle— and
low—), very much depends on determination of the radii d1 and d2. The value of
radii d1 and d2 are based on the location of poles of the system in the s— place.
Physical knowledge of the system and experience are very important for determining
dl and d2. In this program, the value of poles (eigenvalues ) are calculated first
and displayed on screen; then based on these value we can group them into three
subsystem and obtain the range of the high frequency subsystem and the middle
frequency subsystem. In Bacon and Schmidt's method the contribution of the low
frequency subsystem is considered unimportant for flight control design and handling
qualities studies and is ignored.

A6.1.3. THE DETERMINATION OF THE REDUCED ORDER

The order of the reduced system is the sum of the order of the reduced
subsystems, ry and ry. The order of the reduced subsystems, ry and ry,, is initially

decided from the Hankel singular values by throwing away the parts which correspond
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to the smaller values. The final determination should be from the comparison of the
frequency response between the HOS and the resulting ROS and from the errors

produced by the ROS.
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USER'S GUIDE 2 TO THE MODEL REDUCTION SOFTWARE

(PROGRAM FOR IMPLEMENTATION OF THE EXTENDED LEVY'S

METHOD)

A6.2.1. INTRODUCTION

This program finds a transfer function for a multi— variable system from frequency
response data using a complex curve fitting technique which has been developed
recently by M. R. Gong based on Levy's method. The modifications proposed by
Sanathanan and Koernerl 70] for removing high frequency bias have been included.
The method will not be able to deal with poles at the origin of the s— plane. The
program was written in MATLAB for use on a DEC MICROVAX 3600 computer.
This program is available for single—input and multi—output cases. The original
data for the high order system are expressed in state—space form and are converted
to required frequency response format by "Nyquist" function of MATLAB.

A6.2.2. THE HIGH ORDER SYSTEM

The high— order system, namely the dynamical system to be represented in reduced
order form is given as the frequency response data which must be input in the form
of forcing frequency, together with the resulting response in term of a real and
imaginary part.

A6.2.3. THE REDUCED ORDER MODEL

The resulted low— order model is first expressed as a transfer function form by
using Levy's method, (part one of the program). Then, the reduced order model
will further be described as a state—space form by part two of the program using
Chen's method.

A6.2.4. GENERATION OF THE DATA FILES

Before runing this program some input data files must be generated. The number
of the required input files is equal to the order of the reduced system, ml. These

data files are written in "Nyquist" function format which means that every file
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includes corresponding frequency part, real value part and imaginary part.  The
frequency part is at the position (f1, f4, f7, ... f(m1*3—2)) separately, the real part
is at (f2, f5, f8, ... f(ml1*3—1)) separately and imaginary part at (f3, f6, f9,
f(m1#*3).(See APPENDIX 5 Program 3)

A6.2.5. CHOICE OF THE COEFFICIENTS IN THE PROGRAM

In this program, a few coefficients must be given by the user before the program
is run. The right choice of the values very much depends on the particular cases
and previous experience of the user. The choice of the values and the definition of

some coefficients may be described as follows:

m ——— the order of denominator of transfer function G(s)
nn ——— the order of numerator of transfer function G(s)
ml ——— the number of transfer function G(s) given

nw ——— the number of the frequency points

nr ——— the total times of iterations

cn ——— the power of weighted factor

The numerator nn must be equal to or less than denominator m. In this program
the maximum ml can be taken as 8. In general, more data points may improve
the accuracy, but more data points will increase the cost in terms of computing
time. Fifty points is thought to be suitable for obtaining satisfactory results in most
cases. This program only needs 3 — 6 iterations to be able to achieve
convergence. It is very difficult to say how the value of the constant cn can be
determined. From the examples which we tried, cn in the range 0.6 — 1.5 will
give satisfactory results. However different cases should take different value of cn
and sometimes different value of cn are needed in different frequency ranges within

one calculation.
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