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ABSTRACT

Techniques of model reduction are important not only because a reduced order 

model may be needed for control system design or for model validation from 

measured response data, but also because in many applications accurate 

information about the plant dynamics may only be available, or required, for a 

restricted range of frequencies. In the content of aircraft flight mechanics models 

reduced order descriptions are also of considerable importance for handling 

qualities studies.

In this document, various model reduction techniques are reviewed. An 

'equivalent system approximation' approach has been selected and applied to the 

reduction of a helicopter flight dynamics model. The adequacy and degree of 

accuracy of this 'equivalent system approximation' reduced order model was

verified through comparison with a high order model using the Puma helicopter 

as an example. Excellent agreement between the results from the reduced order 

model and the original high order system model were obtained over selected 

range of frequency. Another approximate method — extended Levy's 

complex— curve fitting method using a modified least— squares approach has been 

extended to the multi— input multi— output and has also applied to the reduction 

of the helicopter flight dynamics model for a Puma helicopter. Very good 

agreement between the results from the reduced order models and the original

system model were again obtained. Comparison of Levy's method with the 

'equivalent system' approach showed that in the latter physical insight can be

used in the reduction process whereas Levy's method is purely a curve fitting 

technique. Both techniques can, however, provide useful reduced— order

descriptions for given frequency ranges. The extended Levy approach and the 

'equivalent systems' approach have both been implemented using the MATLAB 

software package.



Chapter 1 

The Model Development Process

1.1 Introduction.

The development of dynamic models of complex nonlinear systems is often 

attempted using a combination of theoretical modelling, based on physical principles, 

and empirical tuning of model parameters guided by comparisons of model responses 

with measured response data from the real system. However, such comparisons of 

system response variables with the corresponding quantities predicted by a theoretical 

model are not usually sufficient to provide the model developer with real insight 

concerning the source of any deficiency in the model.

There are two fundamental ways in which a mathematical model may be deficient: 

it may have an inappropriate structure or it may have inappropriate parameter 

values. In most cases both types of deficiency are likely to be present in the initial 

formulation of a model.

Assessment of the adequacy, or otherwise, of a mathematical model must take into 

account the purpose of the model and the way in which the model is to be used. 

For most applications empirical model adjustments can lead to unrealistic values of 

parameters which, although possibly providing an adequate fit between the model and 

the measured system responses for one particular experiment or rest record, have no 

physical basis. The larger the number of parameters available for adjustment in this 

way the more likely it is that some combination can be found which provides a good 

match of a model response to the corresponding measured quantity. This apparent

good fit for one particular case may, however, mask major deficiencies in the model 

structure and the model may well prove to have no general predictive value.

Modelling from measured response data has now developed into a major activity in 

a wide range of scientific and engineering disciplines. This is generally termed 

'system identification1 and can be defined as 'the determination on the basis of inputs 

and outputs of a system within a specified class of systems to which the system
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under test is equivalent'.[ 11

Identification and similar inverse problems have a long history and can be traced 

to the work of Gauss on modelling of planetary motion from astronomical 

observations. A wide range of identification techniques are now available some of 

which lead to non— parametric descriptions, such as a frequency response, while 

others involve parametric models and can be linked directly with the development of 

models from physical principles.

Although system identification techniques allow complex nonlinear models to be 

developed and validated with the aid of measured response data, there is also a need 

for reduced— order linear models for many applications. This is important in control 

system design where many of the available techniques depend upon the use of a 

linear description for the plant. In many applications accurate information about the 

plant dynamics may only be available or required for a restricted range of frequencies 

and models of reduced order may therefore also be appropriate. Examples of 

reduced— order models are often encountered as submodels within a larger model of a 

complex system. Reduced— order models are also of value in real— time simulations

of a system where some modelling accuracy, particularly in the high frequency range, 

has been traded for computational speed.

Since the system identification approach can lead directly to linearised descriptions 

and involves the use of techniques for the selection of model order there is a close 

theoretical link between models obtained using system identification methods and 

reduced— order models obtained by linearisation and subsequent reduction from a 

more complex nonlinear model.

1.2 Block Diagrams of the Model Development Process.

Figure 1.1 is a block diagram which brings together all the main features of the

modelling process. The structure of the diagram emphasises both the iterative nature

of mathematical modelling and the relevance of system identification methods within

this process. For any given application it must be emphasised that the precise route
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followed within the diagram will depend on the nature of the system being 

considered, the amount of prior information available and the purpose of the model.

Comparison of model behaviour with that of the real system is a central feature of 

this block diagram. In some cases disagreement between the model and system 

responses may be a symptom of the need for fundamental structural changes in the 

model which may require the design of new experiments and tests. If, however, an 

adequate level of agreement is found between the model and the system for a chosen 

test case and further tests also show a satisfactory level of model performance then 

some cautious, assessment of the model beyond the range of available experimental 

results may be attemped. Since models are never unique it is often useful to 

consider a number of models at this stage in the process since extrapolation beyond 

the range of experimental results may highlight situations in which the available 

models disagree. This may also allow new experiments to be defined which may 

provide a better basis for discriminating between competing candidate models.

No model can ever be fully validated, but a model which has been tested 

comprehensively may provide a form of 'working hypothesis' which can be applied 

when direct experimental investigation of the real system is impossible or 

inappropriate. Such a model may be used until evidence is obtained from the real 

system which, in some way, invalidates the model and points to further stages of 

model refinement.

It is important to note that, even at an early stage of development, a model 

which is incomplete or inaccurate may still be of considerable practical value in 

providing a means of designing new tests or experiments to be performed on the real 

system. The results of these new experiments may well provide new insight 

concerning the system as well as additional test records for subsequent comparison 

with model outputs. The process shown in Figure 1.1 can be applied not only to 

the development of a complex nonlinear model but also in a slightly modified way to 

the evaluation of a reduced— order linear model. In this case the process becomes
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one of calibration rather than model validation and the objective is to establish the

range of validity of the reduced model in terms of both amplitude and frequency.

Testing can be carried out with real experimental data and also with simulated

response data generated from the high order model. Assessment is likely to be

based on residuals both in terms of frequency responses and time histories of output 

variables. A modified version of the block diagram is shown in Figure 1.2 for the 

case of reduced— order model development. This process would normally follow the 

establishment of a more complex nonlinear model using the steps shown in Figure 

1 .1 .

It is important to note that the two block diagrams have many common features.

Both involve careful testing of the resulting model and are iterative processes. Both

involve databases of experimental or simulated response data and both necessitate 

careful evaluation of modelling objectives at the outset.

1.3 System Identification Techniques.

. In relation to helicopters, there is a very real need for the use of system

identification methods. As outlined above system identification techniques have a role 

to play in the validation and improvement of existing theoretical flight— mechanics 

models, as well as for flight testing.

System identification techniques can be separated broadly into two types : 

time— domain methods and frequency— domain methods. In the literature,

identification results from both these methods are reported for helicopter system 

identification2»3»4* 5> 61. In the Reference [ 2] it is pointed out that the frequency 

domain offers some attractive possibilities for helicopter system identification, most 

notably that it is possible to restrict the frequency range used in the identification, 

and for which the model is valid, thus enabling models associated with the relatively 

slow rigid— body dynamics to be obtained which exclude higher— order rotor effects 

from their description. The measured response and input data is, in this case, 

effectively transformed into the frequency domain using the Fourier transform; the
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identification is based on minimising the difference between measured and predicted 

Fourier transforms rather than measured and predicted time responses. Mathematical 

details of the problem formulation in terms of the model and cost function minimised 

are given in the Reference [ 2]. The models identified are state—space models 

representing a linearised form of a non— linear helicopter mathematical model for a 

given flight conditions. The parameters identified include stability and control 

derivatives. Direct comparisons between estimated values and theoretical values are

made. Other identification results using the frequency domain, but based on a 

spectral— analysis approach are also reported in the literaturet 71, where fits between 

measured and predicted transfer functions are obtained. This kind of approach is 

called non— parametric and does not result in a full set of stability and control 

parameters.

Leaving aside the question of whether the frequency domain (Fourier domain) or 

time domain is used in performing the identification, there are three distinct types of 

optimization methods used for system identification. These are : equation— error,

output— error and maximum— likelihood. In fact, the equation— error and 

output— error methods can be regarded as particular cases of the maximum— likelihood 

method, and involve simplifying or relaxing the assumptions made about the noise or 

uncertainty associated with both the measured responses and the model. In the

results presented in the literature for helicopter system identification, the 

equation—error and output—error methods are usedt2’8’9!. Because of its simplicity, 

the equation— error (or regression) approach is often seen as a means of obtaining 

quickly estimates to be used as initial guesses for the more advanced output— error 

method. Estimates obtained using the output— error method will be unbiased, even in 

the presence of measurement noise on the responses used in the identification, 

whereas the equation— error (or regression) estimates will be biased with respect to

the 'true' parameter values. Success with the full maximum likelihood method, which 

tries to account not only for measurement noise, but also for process noise (i.e.
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model uncertainty) has been limited in the context of helicopter system identification 

because of its complexity.

1.4 Model Reduction Methods.

The modern trend in engineering systems is toward greater complexity, due mainly 

to the requirements imposed by complex performance specifications and tasks and 

good accuracy. Complex systems may have multiple inputs and multiple outputs and 

may be time— varying. Modern control theory, which is a new relatively approach to 

the analysis and design of complex control systems, has been developed since around 

1960. This approach is based on the concept of state. A modern complex system 

may have many inputs and many outputs, and these may be interrelated in a 

complicated manner. To analyze such a system, it is essential to reduce the 

complexity of the mathematical expressions, as well as to resort to computers for 

most of the tedious computations necessary in the analysis. The state— space 

approach to system analysis is well suited from this viewpoint. Consider a linear, 

time— invariant (LTI) system of nth— order; it may been expressed as a set of first 

order differential equations, which can been futher written as a vector— matrix 

differential equation. This vector— matrix differential equation is called the state— space 

representation and has the following form,

x = Ax+ Bu 

And t h e  o u t p u t  e q u a t i o n  becomes 

X  = Cx

where x e rhi ( rhi is a Cartesian m— space), u e Rn and A, B and C are 

constant matrices of appropriate dimensions.

For many multi— input— multi— output (MIMO) systems, the state— space 

respresentation is in fact the only model convenient to work with. But in many 

cases the equations the order of the matrix A may be quite large, say 50x50, 

100X100 or even 500x500. It is difficult to work with these large matrices and a 

means of approximating the system matrix by one of lower order is needed.



Therefore, it is very important to reduce the order of such large matrices for control 

system analysis and design, which can allow, for example, more efficient simulation 

of dynamic behaviour or may reduce computational demands in on— line applications 

such as adaptive control. The reduction in the order of matrices or the number of 

equations is usually called order reduction, or model reduction. This is the main 

focus of the present work.

A brief survey of the model reduction literature will be presented here. Model 

reduction research is at present limited mainly to linear systems because order is a 

measure of complexity only for such systems. But many practical examples, including 

large space structures, do lead to linear models and linear models are central to most 

present— day control system analysis and design techniques. The literature pertaining 

to order reduction of linear systems is vast, as can be seen from the lengthy 

reference list. Between all the surveys one can obtain an appreciation of the field. 

However, most of these reviews are not recent, but both Skelton's ideas on cost 

decom position1 0>1 1 >1 2] or Moore's "balanced coordinates"[1 3»1 4] had important new 

contributions. Another interesting and quite recent development is Hyland's optimal 

projection approach to model and controller reductiont1 5 >1 6 >1 A .

Skeltont11] suggests three categories of model reduction; polynomial approximations, 

component truncations, and parameter optimization methods. Most polynomial 

approximation methods are usually based on matching moments of the reduced— order 

transfer function to those of the original transfer function. Related to moment 

matching is the fundamental polynomial approximation method using a Pade 

approximation method. This method investigates basic convergence issues pertinent to 

all polynomial approximation and has received a good deal of 

attentiont1 8»1 9>2°>21»22]. The method can be extended directly to multi—input 

multi—output (MIMO) systemst18]. One problem with all polynomial approximations, 

shared by the Pade approximations, is that preservation of stability of the original 

model is not guaranteed in the reduced modelt1 8>1 9>21J.
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The parameter optimization approach usually employs a numerical iteration scheme 

for synthesizing the elements of the reduced model that minimizes an error function 

o f  the difference between high— and reduced—order model outputs!2 3> 24»2 s3.

The component truncations methods usually apply to models expressed in 

state— space form and obtain the reduced— order model by retaining a subset of the 

original system. Therefore the reduced— model coefficients are more constrained than 

in the parameter optimization case, where they can be freely synthesized. As such, 

the reduced models obtained from component truncations may only give "suboptimal" 

results, but many of these approaches are simple in concept and can be applied to 

very high— order systems. In addition to discarding rows and columns of the system 

matrices, various criteria are used to guide these component truncations, and many 

methods use coordinate transformations to perform the truncation in "more 

favourable" spaces!3 7>3 8>3 9L One nice feature of these approaches as compared to 

the polynomial approximations is that the reduced models produced here always 

preserve the stability of the high— order models, since their eigenvalues are similar. 

On other hand, the steady— state response of the reduced model is usually different 

from that of the high— order model, especially in the simpler approaches. Davison's 

model simplification technique!26], Marshall's model reduction technique!27] and 

Moore's "Balanced" approach!1 3>1 4] are well known.

In this thesis, the use of a low— order approximations, or equivalent systems, in 

evaluating aircraft handling qualities is reviewed!28]. This problem is identified as a 

special case of the more general problem of model reduction in closed— loop systems. 

In the traditional equivalent system approach, a numerical search algorithm is 

employed to find the reduced—order model, of 'classical' aircraft form, such that the 

frequency response of the high— order system (aircraft) is well approximated over a 

specified frequency range!29]. However questions arise, especially when a good 

approximation is not obtained with the method. These questions relate to the 

following: 1) the nonuniqueness of solutions, 2) the interpretation of the matching
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cost, 3) the 'good—ness of fit' required, etc..

Because of these general and fundamental difficulties, associated with model 

reduction, the reduced— order modeling objective of approximating the aircraft's 

frequency response is being re— examined, in the current work and the question of 

when and how to match multiple frequency responses is being reviewed. A

alternative state— space model— reduction approach developed by Bacon and 

Schmidt!3 °] is also being considered. In this method the original transfer function 

(matrix) G(s) of dynamic order n is reduced via a state—space transformation T. 

The construction of T involves no numerical search algorithm. In terms of the three 

classes of problem identified above this method is therefore essentially a form of

component truncation method. In addition, the resulting model Gr obtained by this 

method is unique for the selected dynamic order r and the least effective dynamic 

order is determined a priori by evaluating a set of frequency— domain matching error 

bounds. These error bounds, furthermore, are applicable to each i— j element of

[G(s)— Gr(s)]s== over all w. One important feature of the approach is that it is

applicable to multi— input/multi— output systems and is therefore well suited for 

aircraft applications.
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Chapter 2 

Helicopter Flight Mechanics Models

2.1 Introduction.

In mathematical terms, the helicopter represents a complex arrangement of in 

teracting sub—systems that can be viewed from a component (Fig. 2.1) or dynamics 

prespective. In the former case the subsystems are chosen based on a break down 

into physical parts, eg. main rotor, fuselage etc., while in the latter case the choice 

is based on a partitioning into physical or mathematical sub— systems arranged and 

interconnected according to their frequency and amplitude content. Models of 

rotorcraft can also be partitioned into three distinct levelst31!, differentiated largely 

by the form of rotor modelling, as summarised in Table 2.1.

Table 2.1 Levels of Helicopter Theoretical M odel311

Level 1 Level 2 Level 3

Aerodynamics Linear 2D
Dynamic inflow/local 

momentum theory 
Analytically integrated loads

Nonlinear (limited 3-D) 
Dynamic inflow/local 

momentum theory 
Local effects of blade/vortex 

interaction 
Unsteady 2-D 
Compressibility 
Numerically integrated loads

Nonlinear (3-D)
Full wake analysis 

(free or prescribed) 
Unsteady 2-D 
Compressibility 
Numerically integrated loads

Dynamics (i) Rigid blades 
6 d.o.f. quasi-steady rotor 
9 d.o.f.-rotor flapping 
12 d.o.f.-flap+lag 
15 d.o.f.-flap+lag+pitch

(i) Rigid blades
Opuons as in Level 1 

<Li) Limited number of blade elasuc 
modes

(i) Elasuc modes (detailed 
structural) representation

Application Parametric trends for flying qualities 
performance studies 

Within operational flight envelope 
Low bandwidth control

Parametric trends for flying qualities 
performance studies 
Beyond operational flight envelope 
Medium bandwidth appropiate to 
high gain active flight control

Rotor design
Rotor load prediction across a 
High bandwidth 
Beyond operauonal flight 
envelope
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Level 1 modelling includes the 'rigid body', six degree of freedom linear or 

non— linear formulation with quasi— steady rotor dynamics and extends to the inclusion 

of rotor blade dynamics in multi— blade coordinate forms with analytically integrated 

blade loadings, actuators etc.. Such models are useful for flying qualities and 

performance studies within the normal flight envelope where integrated rotor loads are 

not significantly affected by rotor stall, compressibility effects and the attendant rotor 

blade dynamic couplings. Level 3 modelling, at the other extreme, represents the 

most comprehensive rotor/fuselage modelling necessary to predict, not only integrated, 

but also vibratory loadings across a wide frequency bandwidth. This is, in general, 

unnecessarily complex to be appropriate to flight mechanics work. Between these 

extremes Level 2 models provide a means of exploring the design implications for 

high gain active control systems in a piloted simulation environment. The need for

increased exploitable primary flight control bandwidth, and accurate modelling of

flight in conditions where aerodynamic nonlinearities and rotor couplings prevail, 

require model enhancements beyond Level 1 but do not necessitate the refinements of 

Level 3 models. Level 2 model development is still an area of research and Table

2.1 suggests possible elements, under the Level 2 heading.

Although much current research is concerned with the problems of Level 2 and 

Level 3 models there is a need for Level 1 models which are sufficiently simple to

allow computations/simulations in a time scale well suited to:

a) Real time simulation for control system evaluation in piloted ground— based 

simulators and for handling qualities studies.

b) Control system design calculations performed interactively. Control systems 

designed initially using a Level 1 model could be tested within a Level 2 simulation 

or Level 3 using batch mode of processing at a later stage to provide information 

about rotor loads and the effects of high frequency modes associated with the rotor 

and fuselage.

2.2 Axis Systems.
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In order to analyse a rotorcraft in flight it is necessary to first define a set of 

axes which will act as a reference frame around which the relevant equations of 

motion may be developed. Since the rotorcraft is a free body in space, its position 

and flight path may be defined with respect to a set of earth— fixed axes, which 

remain fixed relative to the earth. These earth axes assume a flat, non— rotating 

earth and arbitrary origin, with the x— axis pointing Northward, y— axis Eastward and 

the z— axis pointing down to the centre of the earth.

However, this axis system is inconvenient for some analysis and therefore a set of

axes which remain fixed relative to the airframe can be used. This axis set is called

the body— fixed axis and the origin is located at the aircraft's centre of gravity with 

the x— axis pointing forward, y— axis to starboard and z— axis downwards. It is 

conventional to define the nomenclature associated with the body— fixed axis system 

in a standard form and this is summarised in Table 2.2 and Fig. 2.2.

2.3 Equations of Motion.

The helicopter equations of motion of the single rotor helicopter are derived by 

summing the force and moment contributions of various structural components of the 

helicopter system. The most important of these components are the fuselage, the 

main rotor, the tail rotor, engine and transmission system, as illustrated in Fig. 2.1

which is taken from the report [ 3 4 ] by R. Bradley & G. Padfield etc..

The coordinate system used to describe the single rotor helicopter system will be

the body fixed axis mentioned in section 2.2. Fig. 2.2 shows the x, y and z axes

of this axis system along with the X, Y and Z components of total force and the L,

M and N components of the total moment. The derivation of force and moments is

given by Padfieldt3 2] along with the nonlinear equations of motion of the fuselage at 

the centre of gravity.

- 14 -



/Vfod<zl
C o m  p o n  <2.r\~hs

M om/ftT K

>— y  A ^ 4 / A / < g e f 7 - Q < g

y-fSrcc.

~~"A.IU gOn-Q̂

f^ -h -k in a  ' V (\̂  
Momenr ^  7T\»ust~

M orvrenf

£  M P £ A £-

F?~fdxtru3A ,
AN /vjo>*e.nr

j

J .
y*ujhr\ei

M o > * e n t~

Fig. 2.1 Components of a Helicopter 

(taken from report by R. Bradley & G. Padfield etc.t84])

Fig. 2.2 Body Axes System 

(taken from report by R. Bradley & G. Padfield etc.t84])



Table 2.2 Body Axes Definitions

AXIS OX OY OZ

NAME LONGITUDINAL LATERAL NORMAL

LINEAR
DISPLACEMENT (m) X y z

STEADY STATE 
VELOCITY ( m s ’ ’ )

U V W

INCREMENTAL 
VFLOCITY ( m s - ’ )

u V w

FORCE COMPONENT (N) X Y Z

ROLLING VELOCITY 
COMPONENT ( r a d s  s _ 1 )

ROLL
P

PITCH
q

YAW
r

ANGULAR
DISPLACEMENT ( r a d s ) V 6 V

ROLLING MOMENT (Nm) L M N

Let u, v, w and p, q, r be the vehicle translational and rotational velocity 

components along and about the X, Y and Z axes respectively; i/-, 6 ,  <p the Euler 

angle in the transformation from earth to body axes; M the vehicle mass and g the 

gravitational constant. The equations of transtational motion can then be written in 

standard form, (see Ref.[3 2 ]).

u = - ( w g - v r ) +  X/M -  g s i n

v = -  ( u r  -  wp) + Y/M + g co s  6 s i n  <p

w = -  (vp -  uq) + Z/M + g co s  6 co s  <p

( 2 . 1 )

Let Ixx, l y y ^  Izz be the moments of inertia about the X, Y and Z axes 

respectively and Ixz the product of inertia about the X and Z axes. Assuming the

axes are chosen so that IXy and IyZ are negligible, then the equations of rotational
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motion can be written in standard form:

^xxP O y y  -  ^zz)  q 1* ^xz (*" **" Pq) ^

!yyq  ( ^ z z  ^xx) r P ^xz ( r2  P 2) + M ( 2 . 2 )

^zz*" (  ̂xx “ !yy)  Pq "** ^xz (P q 1") ^

The Euler angles from the gravitational components of equation (2.1) can be 

determined from the differential equations relating them to the body angular velocity 

components. Hence,

The importance of the above Euler equations, which are derived from a 

consideration of Newton's second law of motion, is that they allow the body 

velocities and accelerations to be defined in terms of the forces and moments acting 

on the aircraft. In Equ. 2.1, 2.2, 2.3 we only consider the case representing a six 

degrees of freedom rigid—body (quasi—static model). A more general representing of 

the helicopter, will also include equations with states representing the behaviour of 

the rotor, and its coupling with the rigid— body motion of the helicopter. If we just 

consider the theoretical model of the single main rotor helicopter, it has options for 

a range of different degrees of freedom in the model: 9 degrees of freedom (with 

first order modelling of main rotor flap), 1 2  degrees of freedom (with second order 

modelling of rotor flap). In these two cases, we obtain 12 equations of motion and 

15 equations of motion, respectively.

2.4 External Forces and Moments.

If we neglect the weight of the air, the external forces acting on a helicopter are 

the gravity and the aerodynamic action. The aerodynamic action can be expressed as

£> = p + q s i n ^ > t a n 0  + r  cos  <p t a n  0

6 = q cos  <p -  r  s i n  <p (2 .3 )

$ = q s i n  <p s e c  6 + r  cos  <p s e c  6
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a total force acting on the centre of gravity and a moment around it. For the 

convenience of using them in our control system model equations, they can be 

further decomposed into three components which are along three axes of the body 

fixed coordinate system, separately and three component moments around these axes, 

namely the pitching moment the yawing moment and the rolling moment as shown in 

Fig. 2.1. If a rotor is added the rotor is rotating all the time and can change its 

effective orientation through changes of blade pitch. The resulted aerodynamics will 

be more complicated, but at any time instant, they can still be expressed by 

components within the coordinate system used. In this chapter, a theoretical model 

of the single main rotor helicopter has been derived for flight mechanics studies. 

The forces and moments from the rotor itself are discussed in detail and the reasons 

are presented for the choice of a rigid blade and centre spring model to represent 

flapping with all types of rotor. To solve the differential equations (2.1, 2.2, 2.3, it 

is necessary to first determine the external forces (X, Y, Z) and moments (L, M, 

N). The external forces and moments from the defferent elements can be written in 

component form as:

X  =  X p  +  X p  +  X p p  +  X pj\j +  X p

Y  =  Y p  +  Y p  +  Y p p  +  Y p j j  +  Y p

Z  =  Z p  +  Z p  +  Z p p  +  Zpj^j +  Z p

(2 .4 )

L  =  L p  +  L p  +  L p p  +  L f N L p

M =  M p +  M p +  M p p  +  Mpjyj +  M p

N  =  N p  +  N p  +  N p p  +  Nf N +  N p

(2 .5 )

where, the suffices, from left to right, refer to main rotor, tail rotor, tailplane, fin 

and fuselage respectively.

2.5 Levels of Model.
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Modelling the ensuing loads in the rotor system and their transmission to the fuselage 

is commonly described as an aero— servo— elastic problem and can conveniently be 

formulated at one of the three levels shown in Table 2.1. As already described, the 

level of complexity relates to the application area. Currently, most organisations 

work with Level 1 models for the prediction of flying qualities and low bandwidth 

control up to 1 HZ. At the other extreme of complexity, Level 3 models are

generally required for the prediction of rotor loads over a high bandwidth, up to 1 0 0

HZ, for vibration analysis and rotor design. Adequate modelling for high bandwidth 

flight control and the prediction of dynamic characteristics at the flight envelope 

boundaries are still areas of research. The principal distinguishing features of this,

Level 2 model are likely to be non— linear, unsteady aerodynamics integrated along

curved elastric model shapes.

2.6 Mathematical Representation of Level 1 Models.

The mathematical representation of Level 1 models can be simplified if we neglect 

the yaw angle ^ and defining the rigid— body states to be x f> anc* the rotor states to 

be xp, we can then write the following linear constant coefficient equations:

Xp = App Xf  + AFR Xr + Bp u (2 .6 )

^R = a RF ^F + a RR *R + b r  u  (2 .7 )

where the matrices App and A pp  represent the uncoupled systems for the fuselage

and rotor. The matrices A pp and App represent the coupling between the fuselage 

and the rotor; Bp and Bp are the fuselage and rotor control dispersion matrices

relating the rates of change of state variables to the inputs u.

2.7 Linearisation of a Level 1 Model.

In this section we present a linearization technique that is applicable to many 

nonlinear systems. The process of linearizing nonlinear systems is important, for by 

linearizing nonlinear equations, it is possible to apply numerous linear analysis 

methods that will produce information on the behavior of the underlying nonlinear
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systems. The linearization procedure presented here is based on the expansion of

the nonlinear function into a Taylor series about the operating point and the 

retention of only the linear terms. Because we neglect higher— order terms of the 

Taylor series expansion, these neglected terms must be small so that the variables

deviate only slightly from the operating condition.

For flight control systems design it is a common and useful practice to use 

linearized equations of motion to describe the vehicle's dynamics near a prescribed

operating point in the flight envelope. The method of linearizing the equations of

motion is through the use of stability and control derivativest3 31. Consider a 

nonlinear system whose input is u and output is y. Thus the relationship between y 

and u may be written

y = f (u )  ( 2 . 8 )

If the normal operating condition corresponds to a point (u 1 ,y 1 ), then y = f(u)

can be expanded into a Taylor series about this point as follows

y = f (u )  = f ( u ^  + d f /d u ( u - u 1) + 1 /2 ! d 2 / d u 2 ( u - u , ) 2 + . . . .  (2 .9 )

where the derivatives df/du, d 2 f/du 2 ........  are evaluated at the operating point, x =

u i> y = y r  If the variation u—u 1 is small, we can neglect the higher—order

terms in u—u v  Noting that y 1 =  fCuJ, Equ. (2.9) can be written

y _ y 1 = a ( u - u 1) ( 2 . 1 0 )

where a = df/du | u= u 1 ?y— y 1

Equation (2.10 ) indicates that y — y 1 is proportional to u — u r  It is a linear

mathematical model for the nonlinear system given by Equ. (2.8) near the operating

point u = u i , y — y v

The nonlinear force and moment equations are described as a Taylor series 

expansion about the desired operating point in terms of the degrees of freedom of 

the aircraft. By truncating each series to first order terms, a linear model of the 

system is derived. The stability and control derivatives are the coefficients of the 

linear terms of this Taylor series expansion. The truncated series of linear
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representation can be arranged into state space canonical form.

x = A x + B u

y =  C x

The stability and control derivatives are used to derive the elements of the system

matrix, A, and the input distribution matrix, B, respectively. The C matrix is the

output matrix for the general system. For Level 1 of models, we consider only a 6  

degrees of freedom model which does not include rotor dynamics. The model is 

therefore an eighth order system.

The state vector, x(t) of the six degrees of freedom model is made up of the 

eight rigid body states of the fuselage,

u 
w
q

x ( t )  =
V

p
<p 
r

where u ----  lo n g i tu d in a l  v e lo c i ty  ( f e e t / s )

w ----  Z -  a x is  v e lo c i ty  ( f e e t / s )

q ----  p i t c h  r a t e  ( r a d / s )

6  ----  p i t c h  a n g le  ( ra d )

v ----  l a t e r a l  v e lo c i ty  ( f e e t / s )

p ----  r o l l  r a t e  ( r a d / s )

< p  r o l l  a n g le  ( ra d )

r  ----  yaw r a t e  ( r a d / s )

Following standard practice, the yaw angle is not included as a state 

variable because the heading on which an aircraft is flying does not e 

ffect its stability or control. This can be deduced from the nonlinear 

equations of motion in which heading or yaw angle, does not appear 

in the equations for the other states.

( 2 . 11)
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C hap ter 3 

Review o f  Model R e d u c tio n  Methods

3.1 .The Necessity and Possibility of Model Reduction.

The mathematical modelling of physical systems or processes often leads to very 

large models involving a high— order set of equations and reduced order modelling is 

considered very important for some aspects of control system design and analysis. 

Usually, it is possible to represent a physical system by a number of simultaneous 

linear differential equations with constant coefficients,

x = Ax+ Bu

but for many processes (e.g., chemical plants, nuclear reactors), the order of the 

matrix A may be quite large, say 50 x 50, 100 x 100, or even 500 x  500. In the 

case of helicopters, the mathematical models obtained have a high order when 

compared to fixed— wing aircraft. Not only is there appreciable coupling between the 

longitudinal and lateral rigid— body dynamics — which can often be assumed to be 

decoupled for some fixed— wing aircraft responses leading to reduced— order models, 

but there are also the dynamics of the main rotor which can be modelled to varying 

degrees of complexity and which are also coupled to the rigid— body dynamics.

Helicopter models range in order and complexity from a rigid— body, 

six— degree— of freedom linear or nonlinear formulation with quasi— steady rotor 

dynamics (including situations where the longitudinal and lateral body dynamics 

themselves are considered separately), to those incorporating rotor— blade dynamics in 

multi— blade coordinate forms with analytically integrated blade loadings, together with 

a range of additional dynamic elements, e.g. engine/rotorspeed, actuators, etc. 

Usually, the equations of motion of the single rotor helicopter are derived by 

summing the force and moment contribution of various structural components of the 

helicopter system. The most important of these components are the main rotor, the 

tail rotor, and the fuselage.

The difficulties encountered in attempting to model helicopters arise in two areas.
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Firstly, the dynamics of the main rotor are complex, particularly during transient 

manoeuvres, and in addition, aerodynamic coupling is considerably more pronounced 

for helicopters than for fixed wing aircraft. G. D. Padfieldt32! has derived general 

equations for a single main rotor helicopter using a body fixed axis system. The 

derivation of forces and moments is given by Padfieldt3 21 along with the nonlinear 

equations of motion of the fuselage at the centre of gravity. There are nine 

equations of motion for the rigid— body dynamics. Following standard practice, the

yaw angle is not included as a state variable in this model because the heading on

which an aircraft is flying does not affect its stability or control. This can be

deduced from the nonlinear equations of motion in which heading or yaw angle, \p,

does not appear in the equations for the other states. If we consider the rotor 

dynamics we have to include more equations depending on the complexity of the 

rotor model. For example, if we have a second— order flap model this will, in fact,

introduce a further six equations into the overall model. This means there are 

fourteen equations of motion for the design and analysis of the helicopter plant. It 

may be judged that such a large model, with the potential for there being significant 

uncertainties both in the known values of the model parameters and the

measurements of the model states, is too impracticable for the design and

implementation of a helicopter control system. In this context, there is also a need

to take into consideration the size, cost, and capability of the onboard computer 

system required for control, as well as the availability of appropriate measurement

devices to provide the required measured responses. Of course, future technological

developments, may in time overcome these problems.

Model reduction or simplification resulting in explicit representation of rotor

dynamics in the plant model is the most immediate requirement to make the 

helicopter model more manageable. The quasi— steady reduction leading to this, is 

discussed in general terms in section 2.2. It is the large separation in the

characteristic frequency ranges between the rigid— body and rotor— state dynamics
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which provides the justification for this approach to reduction in the model order for 

helicopters. The introduction of bearingless rotors in modern designs of helicopter 

makes this approach more difficult to apply since the frequency separation may then 

be much smaller.

In mathematical terms, the difficulty of working with large matrices means that 

some way of approximating the system matrix by one of lower order is needed. In 

other words, if the system matrix could be reduced by some method, the control 

system will become simpler and it will be better for design and analysis purposes. 

When input— output behaviour is considered, then very probably a much simpler 

model with only a few differential equations would describe the same physical process 

for many purposes. For many practical purposes including control system design the 

input— output behaviour is often most important and simple input— output approaches 

to model reduction are often possible. On the other hand, the practical application 

of such modern concepts as state estimation, optimal state feedback and even 

numerical simulation depend upon the availability of intermediate variables, but may 

also be limited by the capacity of the available digital computer thus requiring a 

more general approach to reduction which is not limited to input— output

considerations.

3.2 The Model Reduction Methods.

3.2.1 Development of the Model Reduction Methods.

A number of techniques have been proposed for the reduction of systems. Much

research has been done during the last 23 years concerning the derivation of

low— order models from high— order systems, as is evident from the comprehensive 

bibliography prepared by Genesio and Milanese (1976). Although many different 

approaches have been published, these may be divided broadly into three main 

groups. A brief survey of the techniques will be presented here.

3.2.1.1 Dominant Eigenvalues Approach.

In the first group of methods attempts are made to retain the dominant
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eigenvalues of the original system and then to obtain the parameters of a low— order 

model such that its response to given inputs approximates closely that of the original 

high— order system. This class of method includes those proposed by Davison! 2 61 

(1966), Marshall!27] (1966), Mitra! 3 51 (1967) and Aoki!36] (1968). Preservation of 

dominant eigenvalues (Davison! 2 6 » 3 71 1966, 1968, Davison and Chadha 1972,

Chidambara! 3 81 1969) is an important feature of these techniques although individual 

methods differ in other respects. For example, Marshall!27] (1966) developed a 

reduced order model in which the discrepancy in d.c. gain between the model and 

the original higher order system was eliminated and dominant eigenvalues were 

retained. For better matching of all phases of the response (initial, intermediate and 

steady state), a combination of three reduced models has been proposed (A. 

Kuppurajulu and Elangovan! 3 9] 1970). Mitra!44] (1969) explicity recognized model 

truncation as a projection, thus anticipating Hyland!40] (1984), and Mitra also 

suggested retaining the components with the highest entry in a diagonalized 

controllability matrix, thus preceding Moore's 'balanced' approach!13] (1981). It has 

been shown (Hickin!41] 1978) that the methods proposed by Davison, Marshall and 

Mitra may be regarded as special cases of the aggregation method proposed by 

Aoki!36]. Another approach which preserves the dominant eigenvalues is the method 

of singular perturbations (Sanuti and Kokotovic! 4  2] 1968), which has certain special 

properties.

3.2.1.2 The Matching of Impulse— or Step—Responses (or Frequency Response).

The second group of methods involves finding a model of a specified order such 

that its impulse— or step— response (or, alternatively, its frequency response) provides 

an optimum match to that of the original system, without restriction on eigenvalue 

location. Anderson!43] has proposed an optimal projection method using a 

discretized version of the continuous system (1967). This method used a geometric 

approach, based on orthogonal projection to obtain a low— order model minimizing 

the integral square error in the time— domain. Similar optimal projection methods
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can be applied to models expressed in transfer function instead of state— space form 

(e.g. Sinha!45] 1971). Sinha and Pille!46] (1971) have proposed utilizing the matrix 

pseudoinverse for a least—squares fit. Chen and Shieh!47] (1968) and Liaw, Pan and 

Chen!48] (1986) showed that if a continued—fraction expansion of a transfer function 

was truncated, it led to a low— order model the step— response of which matched that 

of the original system closely. The main attraction of this approach was its

computational simplicity, as compared with the methods described in the first two

categories. The method usually employs a numerical iteration scheme for synthesizing 

the elements of the reduced model that minimizes some appropnate function of the 

difference between full and reduced order outputs. This method can also be

extended to multi—input multi—output cases (e.g. C.F. Chen!49] 1974). Other 

methods for obtaining optimum low— order models have been proposed in the 

frequency domain (e.g. Langholz and Bistritz!50] 1978, Elliott and Wolovich!51]

1980).

3.2.1.3 The Matching of Some Other Properties of the Responses.

One popular method is based on matching time moments of the reduced order 

transfer function to those of the original transfer function. (Gibilaro, Lees!52] 1969, 

Lees!53] 1971, Kropholler!54] 1970, Zakian!55] 1973). The time moment matching 

method leads to quick convergence of the steady— state response. Convergence of the 

transient response is improved by also matching the first few Markov parameters 

(Rossen!56] 1972, Shamash! 5 7] 1975). One other approach which is closely related 

to moment matching is the fundamental polynomial approximation method using Pade 

approximants. (Appiah!58! 1979, Shamash!57] 1975, Daly and Colebourn!6°] 1979) 

Although initially these methods were developed for single— input single— output 

systems only, it has been shown by Hickin and Sinha!61] (1976) that one may also 

match the time moments and obtain low— order models for multi— input multi— output 

systems using partial realization with the generalized Markov parameters. An 

important drawback of the methods using Pade approximation is that the low— order
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models obtained may sometimes turn out to be unstable even though the original

system is stable. This has led to the development of the Routh approximation 

method (Hutton and Friedlandt6 2] 1975). In order to ensure simplicity in the

procedure and to maintain stability of the model, some mixed methods have also 

been introduced (Shieh and W eit63] 1975, 1976, Chent64] 1980, Therapos and 

Diamessist 6 5 , 6 6 ] \  9 3 3  ? \  9 3 4 )

3.2.2 A Comparison of Selected Model Reduction Methods.

Model reduction research is at present limited to linear systems and it is 

convenient to classify the model reduction literature according to the main divisions 

outlined above and to focus on some representative papers. Three classical model 

reduction methods have been selected for initial review. The first approximate 

method is that of S. A. Marshallt27] in 1966 and involves models in state—space 

form. The second approximate method considered in was the stability— equation 

method and the continued fraction method of T. C. Ghent6 4] in 1980. The third

reduction method considered in this section was proposed by C. M. Liawt48] in 1986

using dispersion analysis and continued— fraction techniques.

3.2.2.1 Marshall's M ethodt2 7\ .

In 1966, an approximate method in which dominant eigenvalues are presented was 

proposed by S.A. Marshall. In this method, the high—order system is represented by 

the vector— differential equation or state— space form

x = Ax + Bu (3.1)

where x is the n — state vector of the system, A and B are respectively n x  n and 

n x  r constant coefficient matrices and u is r — input vector. For convenience, we 

partition equ.(3.1) so that the m variables to be retained in the reduced model are 

the first m variables of the state vector x, then equ. (3.1) becomes

'  * 1 [ A 1
A2 X 1 B ,  '

• * 2  '

1 
to 

1 
<

1 1
> 

1 1 1 1
X 

l 
10 

1 1 +
b 2 .
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C o n s i d e r  now t h e  t r a n s f o r m a t i o n

x = Uz ( 3 . 3 )

where  U i s  t h e  modal  m a t r i x  o f  A and  a p p l y  i t  t o  equ .  ( 3 . 1 ) ,  g i v i n g

z ( t )  = U- 1 AUz( t ) + U“ 1 B u ( t)

i . e .  z ( t )  = A z (t)  + U- 1 B u (t)  (3 .4 )

where A is the n x n diagonal matrix whose elements are the eigenvalues of A. 

Equ. (3.4) in partitioned form becomes

Z 1

O<r z i
+

V  Vv 1 v 2 B, '

. Z  2 . 0  A2 . ■ Z 2 ■ V  Vv g v 4 . b 2 .
u (3 .5 )

where  V = U-1

Now, the first m eigenvalues are contained in the submatrix A, and the remaining 

n— m eigenvalues in A 2.

Mathematically, the approximation involved in the development of the 

reduced— order model is equivalent to putting

z 2 =  0

equ.(3.5) then becomes

z i = Ai Z! + v 2b 2) U

and o II > 2 Z 2 +  (V 3 B, + v «b 2) u

Now from (3.3)

z = U'- 1X == Vx

or Z 1 V, v 2 ' Xl

• Z 2 ' V3 v 4 J . x 2 .

g iv in g Z 2 " + V4 x 2 = -A, " 1 (VaB, + V4B2) u

= -  V4“ 1VgXl -  V4- 1 A2-1 (VgB, + V4B2) u ( 3 . 6 )

Substituting equ.(3.6 ) into (3.2) and using the relationships between the Uj and Vj, 

one obtains
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k i = Ui Ai Ur 1xi + [B1 -A 2 V4 - 1 A2 - 1 (V3 B1 +V4 B2) ] u  (3 .7 )

This set of equations approximates to the original set of n equations and is called 

the reduced system. One important aspect is that the steady— state values of the 

reduced system are identical to the steady— state values of the original system. This 

is not so with the techniques presented by Davisont2 6].

To illustrate the procedures a very simple example for Marshall's method is 

considered. The original system is represented by

(Example 1)

and it is to be reduced to a system of order 1 by neglecting the dynamic effects 

associated with the large (in modulus) eigenvalue. The eigenvalues are —1 and —10, 

and modal matrix is

' * 1 ' - 1 1 ' ’ X 1 1

■ * 2  ■

1 
O

1 
i—

1
1 

I 
11 

O
 

1

■ X 2 '

+

. 2  .

U =
1  1  

0 -9

i r 1 = v  =
1 1 / 9

0 - 1 / 9

Substituting the required values in to equ.(3.7) yields

x 1 =  — l x 1 ■+■ 6/5 u and x 2 =  1/5 u

The responses of the 2 x 2  system and the reduced l x l  system are shown in 

Fig.(3.1).

3.2.2.2 Stability—Equation Method and Continued—Fraction Methodt64].

T. C. Chen, C. Y. Chang and K. W. H ant64] have developed a combined method 

for model reduction based upon the stability— equation method and the 

continued— fraction method. The procedure, as explained below, consists of three 

steps: 1 . to reduce the denominator of a transfer function by the stability—equation 

method, 2 . to obtain partial quotients by the algorithm of the continued—fraction 

method, and 3 . to discard the undesired partial quotients and to reconstruct the
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reduced model of which the denominator is obtained from step 1. These three 

steps, of course, are fully computer— oriented.

Step 1. A transfer function of a high—order system (HOS) can be expressed as:

3-2 1 ^ 2  2 ^^ • • • • + 3 j  ̂ F^j(s)
F (s )   ------------------------------------------------------   (3 .8 )

a i 1 + 3 1 2 S+ . . . .  + 3 2 jn + 1 Sn F j)(s)

where Fj)(s) and Fjsj(s) are the denominator and numerator of F(s), respectively. 

For a stable system, the stability equations of Fj)(s) (i.e., the even part and the odd 

part of Fp)(s)) can be factored as (Han and Thaler 1966, Chen and Han 1979) 

l i
FDe(s )  = 3 , 1  TT ( 1 + S 2 /  Z j 2 ) 

i = i

1 2

f Do(s ) = a i 2 s n (1 + s 2 / P i 2) 
i= i

where 1 1 and 1 2 are the integer part of n/ 2  and (n—1 )/2 , respectively,

and z 1 2 <  p i 2 <  z 2 2 <  p 2 2 <  z 3 2 <  p 3 2 <  .......

Since the p^ 2 and Z j 2 are in sequence, discarding the factor with larger magnitudes

of p j 2 or z \ 2 is an approach for reducing the order of stability equations, so that 

the order of the original system can be reduced. The reduced stability equations 

with desirable order k are written as

mi
FDe (s )  = a n  n ( 1  + s 2 /  z { 2) 

i = i

m2

f D o '( s ) = a 1 2  s n (]. + s 2 /  p ^ )  
i = i

where m 1 and m 2 are the integer part of k/2 and (k—1)/2, respectively. Then the 

reduced denominator is constructed as

k 'FDk ( s )  = FDe' ( s ) + FDo ' ( s ) = I  a i j + 1  sJ
j=o

Step 2. To find the partial quotients by the algorithm of continued—fraction, the 

following Routh array of the coefficients of the original function is used.
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hi  = a 11 a 21 1 

^2 = a 21 a 31 1

^ 3  ~  a  31  a 4 1  1

hi  = a i 1 a i + i , 1
- 1 i = l , 2 , . . . , 2 J  f o r  any  J  where  J<n

( 3 . 9 )

where  a j j  i s  o b t a i n e d  f rom e q u . ( 3 . 8 )  f o r  i = l , 2  w i t h  j = l , 2 , 3 , . . .

and  a j j  -  a i _ 2 , j +1 -  h i _ 2 a i _ , j +1 f o r  i = 3 , 4 , . . .  w i t h  j —1 , 2 , 3 , . . .

Step 3. To construct the reduced model with order k, one can retain the first h^ 

values and replace the new values of the first row of equ.(3.9) by the coefficients of 

the reduced denominator obtained from step 1. The new values of a 2 j ' can be 

evaluated by the following algorithm

a i + i , i  = h i 1 i , 1
i = l , 2 , 3 , . . . , k  and  k  < n

a i + i , j + i  h i  1 ( a i , j + i  a i + 2 , j )  i 1 ) 2 , 3  

and  t h e n  t h e  r e d u c e d  model  i s

, k - j  j - 1 , 2 , . . . , k - l ( 3 . 1 0 )

+ a „ „ s+
Fk (s )  =

• + a  2 , k , k - i
( 3 . 1 1 )

• + a i , k + i

In equ.(3.9) if aj 1 (i= 2,3,4,...) do not exist, (i.e., a ^ , = 0,) then aj+ 1 j  

and hj— 1 in equ.(3.9) and in equ.(3.10) are infinite. In order to remedy this 

situation, one can replace the a^ 1 which are equal to zero by an arbitrary small 

positive number e  and then proceed to find the remainder of the Routh array. 

After applying equ.(3.10) and letting e equal to zero, the new values of a 2 j '  can be 

evaluated.

The reduced model is guaranteed to be stable if the original system is stable, but 

it is noted that, if the zeros of the original system are located in the right 

half—plane, the stability—equation method proposed by Chen and Han cannot be 

applied directly for model reduction.
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As a example (Example 2), we consider a system with closed—loop transfer 

function (H ant67] 1978) for the stability—equation method and continued—fraction 

method:

s4+ 35s 3+ 291s 2+ 1093s+ 1700
F(s) =  ---------------------------------------------------------------------------------------------------

S9 + 9 S 8 + 6 6 s 7 +  294s 6+ 1029s5+ 2541 s4+ 4684s 3+ 5856s 2+  4629s+1700

The pole—zero configuration is shown in Fig.(3.2). Because all the poles have the 

same real parts, this is a difficult problem for those techniques based upon the 

dominant— root principle.

Then, the stability equations of the denomination are

FDe ( s ) = 1 7 0 0 .n (1 + 
1 = 1 s 2 / z 2)

0PUh ( s ) = 4629 s.TT (1 
1 = 1 + s 2 / p 2)

where Z  2 = 20.3321 P i 2 = 45.6652

Z   ̂2 = 8.9119 P 2 2 = 13.4228

7  2
3 = 3.0847 P 3 2

= 5.5542

Z   ̂4 = 0.3379 P 4 2 = 1.3597

D is c a rd in g  th e  f a c to r s  w ith  p .,2 , P 22> P 3 2 and z i 2 > z 2 2 t *ie  red u ced

d enom ina to r i s

4  1

FDk ( s ) = jS 0 a i , j + 1 sJ

where a / j ^  1 =  [ 1.000 2.0873 3.4219 2.8382 1.0423 ]

From equ. (3.9) the first five partial quotients by the algorithm of

continued— fraction are

h 1 =  1 , h 2 =  0.4808, h 3 =  -2 .2345 , h 4  =  -1 .2961 , h 5 =  -1 .8895

This means that the reduced order k =  4. Now we can construct the reduced 

model with order k= 4. The first h^ values will be retained and be replaced the

new values of the first row of equ.(3.9) by the coefficients of the reduced

denominator obtained from step 1. The reduced numerator is:
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num = [ -0 .4123  0.0097 0.6702 1.0423 ]

Therefore the reduced model is

-  0.4123s3+ 0.0097s2+ 0.6702s+ 1.0423
F 4 (s) = ---------------------------------------------------------------

s4+ 2.0873s3+ 3.4219s 2+ 2.8382s+ 1.0423

The unit—step responses are shown in Fig.(3.3)

3.2.2.3 Dispersion Analysis and Continued—Fraction Methodt48!.

In 1986, a new method of model reduction based on dispersion analysis and the

continued— fraction method was presented by C. M. Liaw, C. T. Pan & Y. C.

Client48!. From the view point of the energy contribution to the system output,

dynamic modes with dominant energy contributions ( instead of these with dominant

eigenvalues ) are preserved by using dispersion analysis. Having determined the

denominator of the the reduced model, the parameters of the numerator are

calculated by using the continued— fraction method. The reduction procedure is

simple, and the reduced model is guaranteed to be stable if the original system is

stable. The nth—order transfer function G(s) of the original system is repeated as

follows

A2 ( s )  a 2 1  + a 2 2 s+ a 2 3 s 2 + . . .  + a 2 n s n - 1

G (s) = ----------- - ---------------------------------------------------------------------
A ^ s )  a n  + a 12s+ a 13s 2 + . . .  + a 1>n+l s n

n h j
= I  --------------  (3 .1 2 )

i = i s  -  f i i

The u n i t - s t e p  re sp o n se  can be found as

J .  G (s) -  + F (s )  (3 .1 3 )s s

w * t ^1 n h i  n hj / /xj  n f j
K = I  , F ( s )  = I  ------------  = I  --------------

i = i m  i = i s -  m  i = i s -  ( i i

where k the steady— state value, and F(s) is the transient part of the unit— step

response. In order to give a reduced model, putting equal emphasis on its

approximation to the transient as well as the steady— state responses, the dispersion

analyses of G(s) and F(s) are performed. According to those results, the dynamic
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modes with dominant energy contributions either in G(s) or in F(s) will be retained.

Now suppose that the retained dynamic modes are n ^ ,  n 2 , ..., then the

reduced model can be written as

B2( s ) b 21 + b 22s+ . . .  + b 2 nr,m-i
R( s )  = ----------  = -----------------------------------------------  (3 .1 4 )

B-i ( s )  b , , + b 1 2 s+ . . .  + b i m + 1 s n

where b 11? b 12, ..., b , )m+ 1 can be obtained as outlined below:

The unit impulse response, is obtained from (3.12):

n
G( t )  = I  hj  exp(^t j t )  (3 .1 5 )

i = i

The analogous continuous white noise, denoted by z(t), is defined by the following 

property

E{z(t)z(t—t)} =  <j z 2 8 ( t )  

where 6(r) is the Dirac delta function.

In order to give each dynamic mode even weighting, white noise input is assumed 

and the response of a system with unit impulse response G(t) is

y ( t )  = J  G ( t - r )  z ( p )  dv (3 . 16)

The a u to c o v a r ia n c e  f u n c t i o n  o f  o u tp u t y ( t )  i s  d e f in e d  by 

7 ( t )  = E { Y ( t ) Y ( t - r ) } (3 . 17)

S u b s t i t u t i n g  ( 3 . 15)  i n t o  (3 .16)

7 ( r )  = E j  J t G( t - ^  1 ) z ( p  1 )dr  1 J  G ( t + r - p ) z ( p ) d p  |

= r  | t + 6 ( t - v ' ) G ( t + T - p ) E [ z ( p ' ) z ( p ) ) d p d v '
J -CO~* -CO

= (rz 2 J  G( t -p  1 ) G( t + r - v  ' ) dv g iv e s  (3 . 18)

S u b s t i t u t i n g  ( 3 . 14 )  i n t o  ( 3 . 17)  and s i m p l i f y i n g ,  one can  o b t a i n

7  ( r )  = <rz 2 f *  f  I  hj  exp { ^ ( t - ? 1)} 1 [  I  hj  exp { f i t  ( t + T - p 1 )} 1 d p ' 

- ° ° i = i  1 = 1
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n n h j  hi
= a z 2 I  e x p ( f i y )  [ I  ---------------  ] ( 3 . 19)

j=i  i = i -(/Xj+^j)

n hj  h;
Let  d j  =  ( T f 2 I ----------------  (3 . 20)

i = i - ( f i i +f i j )

n
t h e n  y ( r )  = I  dj  e x p ( f i j T )  ( 3 . 21)

j=i

where dj is called the coefficient of the autocovariance function. In fact, when the

input is white noise , then the energy contribution (corresponding to the dynamic

mode f i j  ) to the total variance of output Y(t) is exactly equal to dj.

From equ.(3.21) we can see 

n
7 ( 0 )  = Y. d j = d 1 + d 2 + . . .  + dj-j

j = 1

7 ( 0 ) d 1 + d 2 + . . .  + dn
  =   th e  t o t a l  f o r  a l l  modes.

a , 2 (T 2z °z
d j n h j h j

Thus th e  ------- = Z -------------- f o r  each  dynamic mode, (/*j)
(7Z 2 i - i  - ( / i i+/ t j )

By discarding dynamic modes with small dispersions, the denominator of the 

reduced model can be found.

m
i . e . ,  b 11+ b 12s + . . .+b,  m+1s m = I  ( s ~ m ' )

i = i

where m is the reduced order, and jq' are the remaining elements of f i  after 

discarding the dynamic modes. Then, the numerator of the transfer function of the 

reduced order model can be found by matching a number of time— moments or a 

combination of Markov parameters and time— moments of the original system.

The transfer function G(s) of the original system as in (3.12) can be expanded 

into a Cauer—type continued fraction about s= 0 of the form:

G(s)  = G0 + G,s+ G2 s 2 + . . .
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where G0 = a 21 /  a , 1

1  k
Gk ~ a t a 2 ,k+i ^ a i , j + i  ^k-j  ]

i 1 j =1

w i t h  a 2^ = 0 f o r  k > n-1

and the parameters Gj are proportional to the time— moments of the system. Let

the first m coefficients of the continued fraction corresponding to the reduced model

R(s) and those of G(s) be identical, i.e.

b +b S+ +b s m" ^2 1 2 2 ‘ ‘ ,rU 2 mb
R ( s )  =   = G0+G1s +G2s 2+.  . .+Gm_ 1s m" 1 + . . .

b n + b i 2 s + - - - +b i , m + i sm

Then th e  parameters  b 2j are  determ ined  as

b 2 1  = b 1 1  G 0

b 2 m b im Go + b i ,m-iGi + . . .  +
(3 .22)

Now, the numerator of the transfer function of the reduced model can be solved 

from equation (3.22).

Now we consider a fourth— order transfer function given by

13 . 2 s  3+ 8 4 . 8 s 2+167 . 2s+96 .8
G(s)  = -------------------------------------------- (Example 3)

s 4 +10s 3 +35s 2+50s+24

Using the residue function of equ.(3.13) the unit—step response is found. The 

parameters of (3.12) and (3.13) are listed as follows 

H 1 =  - 1  h 1 = 0 . 2  f 1 = - 0 . 2

/ i  2 =  - 2  h 2 = 2 . 0  f 2 = - 1

f i  3 = - 3  h 3 =  1.0 f 3 =  -0 .3333

=  - 4  h 4  =  10.0 f 4  =  - 2 . 5  k =  4.0333

The dispersion analyses of G(s) and F(s) for output y(t) by the dynamic modes f i [  

are performed and listed in Table 3.1. By discarding the dynamic modes 

corresponding to jn and f i 3 , the denominator of the reduced model is obtained and 

is expressed as
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B^s)  =  [ 1.0 6.0 8.0 ]

If the continued—fraction of G(s) is performed about s=0,  one can find 

G(s) =  4.0333 -  1.43611s + 0.64329s2...

Then the parameters b 2 1  and b 2 2  are calculated from Equ.(3.22) as

b 2 i =  8  X (-1-43611) +  ( 6  x 4.0333) = 12.7111

b 2 2  =  4.0333 x  8  =  32.26664 

Finally, the reduced model is obtained as 

12.7111s + 32.26664
R,(s) =  -----------------------------------

s 2 +  6 s + 8

The unit— step responses and the frequency response of this model and the original

system are compared in Fig. (3.4) and Fig. (3.5).
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Table 3.1 Energy dispersion analyses for output y(t)

1

1 Dynamic
1 G(s)  I 
| |

F( s )

1 modes 1 T( 0 )/crz 2 |
■ i

T(0 )/(Tz 2 |

1 /u I 0.6033 
1 
1

---- T

(2.3962%) I 
1

0.2033 (7.6976%) 1

1 H 2 1 4.8667 
1

(19.3300%) 1 
1

0. 7999 (30.2866%) 1

1 fl 3 1 2.0452 
1

1 -J' " 1
(8.1232%) 1 

1

0.2209 (8.3640%) 1

1 f X4

I

1 17.6619 
1

1

(70.1507%) 1 
1

1.4170 (53.6519%) i

1 To t a l
1

1 25.1771 
1

•J—

. .  |

( 1 0 0 %) 1 
1

_ L .

2.6411 ( 1 0 0 %) I 

------1
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Fig. 3.3 The U nit-Step Response of Example 2
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Chapter 4

Model Reduction Using a Modified Complex 

Curve — Fitting Technique in the Frequency Domain

4.1 Introduction.

The mathematical analysis of linear dynamic systems, based on experimental test 

results, often requires that the frequency response of the system be fitted by an 

algebraic expression. The form in which this expression is usually desired is that of 

a ratio of two frequency— dependent polynomials. This transfer function identification 

technique has been applied to the problem of model reduction. This method is 

based upon the minimization of the weighted sum of the squares of differences 

between the frequency response of the known high order system and the 

approximating reduced order system. It thus provides a means for the evaluation of 

the optimum set of polynomial coefficients of the approximating transfer function of 

the reduced order system.

The method was originally developed by Levy[ 6 ®] for the single— input case and 

has been extended on the present work to cover multi— output cases. A state— space 

model representation can be obtained from the reduced transfer— function models 

using appropriate transformations.

A computer program based on MATLAB has been written to find the coefficients 

of the numerator and denominator of the transfer function of the low order system 

equivalent to a given high order description. Computational results are provided for 

an example which has been used by Bacon and Schmidtt3 °] to illustrate their 

approach to model reduction based on equivalent systems. This example relates to a 

mathematical model of an advanced fighter aircraft.

4.2 Theory.

4.2.1 A Review of Lew 's Complex—Curve Fitting Technique.
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A complex curve fitting technique for evaluation of the polynomial coefficients was 

presented by E. C. Levyt68] in 1959. It uses a modified least—squares approach to 

fit the frequency response curve of a system. The method is based on the

minimization of the weighted sum of the squares of the errors between the absolute 

magnitude of the original frequency response data and the polynomial ratio, taken at 

various values of frequency.

Levy's method is designed for computer implementation and in its original form 

was intended to be used for system identification. It uses a modified least— squares 

approach to fit the frequency response curve of a system to the linear expression

b 0 + , bjS^
G(s )  = --------- ^ , r  ^ q ( 4 . 1 )

1  +.  E a ,• s *i = i 1

Replacing the operator s by jo; and separating into real and imaginary parts gives

G( j « )  -  2 L ± J “ £ = ( 4 . 2 )
(7 + J U)T D(JOJ)

It is assumed that a function H(jo;) exists which coincides exactly with the measured 

data; H(jco) will then also have real and imaginary parts:

H(joj) = R(w) + j  I (oo) ( 4 . 3 )

At any particular value of the frequency, o^, the error in fitting becomes

e ( u k ) -  HUufc) -  C(jo)k ) -  H(jUk)  -  ( 4 . 4 )

The problem, then, is to minimize this error at each sampling point on the curve. 

The minimization could be done quite simply by summing the magnitude of the error 

squared, S | eCoû ) | 2, and setting the partial derivatives with respect to each of the 

coefficients equal to zero. This corresponds to a least— squares fit, resulting in a set 

of linear, simultaneous algebraic equations which, in principle, could be solved for 

the desired coefficients of G(jo;). However, this approach can result in the optimum 

approximation of the transfer function having non— minimum phase poles or zeros. 

Levy modified Equation (4.4) by multiplying throughout by D(jc%), to give
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D(ja>k )e(a)k ) = H(jcok )D(jcok ) -  N(jwk ) ( 4 . 5 )

This modification is valid provided D(jcok) is a non— zero function. This means that

the denominator of the overall process transfer function cannot contain any pure

integrating elements. At a later date, some authorst6 9» 70>71] have further modified 

the method in order to obtain better results for high— frequency data. The effect of 

all these modifications may be embodied in an equation of the form:

c . ( m )  -  { (“ k) P( jMk)L _ Hqofc)  P ( j a k ) L -  N( j q lk) L

where eCcoĵ ) — e r r o r ,  as  d e f i n e d  i n  equ.  ( 4 . 4 )

e' (o)k) -  mod i f i e d  e r r o r ,  d e f i n e d  by equ.  (4 . 6 )

-  f u n c t i o n  c o i n c i d i n g  wi t h  m easured d a t a  

D(jo<)k ) -  denomina tor  o f  t he  t r a n s f e r  f u n c t i o n  o f  t he  l i n e a r  

dynamic sys tem i n  e q u . (4 . 2 )

N(jcok ) -  numera to r  o f  t r a n s f e r  f u n c t i o n  o f  t he  l i n e a r  dynamic

in  e q u . ( 4 . 2 )

L -  Lth  i t e r a t i o n

m  -  we i gh t i ng  f a c t o r

The case where m  = 0 corresponds to Levy'st68] original, unmodified expression. 

Sanathanam and Koernert70! proposed using m  = 1, whilst 't M annetjet71 ]

developed the general form given above in equ.(4.6 ).

Levy's method is usually presented as a means of identifing systems from measured 

frequency response data. It can however provide a basis for fitting a lower order 

description to a high order model. This is, in some ways, a simpler application than 

system identification in that the frequency response cuves of the high order model to 

which a lower order model is to be fitted are free from measurement noise. This 

appears to provide a very simple basis for model reduction.

4.2.2 Extension of Lew 's Technique from the SISO Case to the SIMO Case.

The contribution of E. C. Levy involved using a least-squares approach to fit the
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frequency response curve of a system to a linear transfer function. Sanathanan and

minimization of the "weighted" sum of the squares of the errors in magnitude. All 

of these approach are only for the single-input and single-output case.

Many practical problems involve multi— input and multi— output descriptions rather

than the single— input and single— output type of model to which Levy's method can 

be applied. To make this approach of any value for model reduction in the case of 

highly coupled system such as the helicopter it is essential to extend Levy's approach 

to the SIMO case. This is essentially the same as the single— input single— output 

approach but involves extending the theory to ensure that the resulting transfer 

function descriptions all have the same characteristic equation.

The main different between the SISO and SIMO cases lies in the cost function.

The cost function for the SISO case can be expressed as :

k= 1

where n is the number of points in the frequency range considered. An appropriate 

cost function for the multivariable case is

where m is the number of outputs and n is the number of points in the frequency 

range considered.

We could express the error €(<%) in terms of real and imaginary parts as €(<%) =

A(<%) + j So.

Koernert7 °], 't Mannetje[ 71 ] further modified this approach to give better results by

n
J i = I  I *(<**) I 2

( 4 . 7 )

(4.8)

Now let

E = J = '[  A1 2 (oo]s_) + B1 2 (cO]<l)]  + [ A2 2 (coj<.) + B2 2 ( o^) ]  + . . . }  ( 4 . 9 )

where A^Cofc) = (<rkRjk -  0^ 7 ^  “  «ik) 2 D 2m (k)

B i 2(<%) =  (ofeTkR ik +  ^ i k  ~  wk fr k )2 D 2n i ( k)
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«ik =  bio ~~ bi 2C0k 2 + bi 4 wk 4 “  ••• 

frk = bh  ~  bi 3% 2 + bi 5̂ k4 -  ... 

crk =  1 -  a 2a)k2 + a 4o)k4 -  . . .

Tk =  a i ~  a 3% ' •s^k'

The partial derivatives of Equation (4.10) with respect to each of the unknown 

coefficients aj and bj must be set to zero, therefore 

dE
3 a j

3E 
db i |

0

= 0

i = 1, 2,  3,  . . .  , r

(4 .1 0 )

Each of the equations in (4.9) will contain terms which are functions of the 

unknown coefficients, and terms which are known. To condense the notation before 

expanding the above equations, the following relationships are defined :

Hi =. 2 ®2ni (k) k=i

n
^ ih  , 2  ^k*1 ^ ik ^ ^ k ) ^2m  k=i

i = 1, 2, . . . ,  m (4 .1 1 )  

h = 0, 1 , . . . .
Tth = 2 wkh M k ^ )  D2 m ( k )k=i

b ih =. 2 wk^ [ ^ i k 2^wk) + ^ i k ^ ^ k ) ]  ^2ni  k=i

where m is the number of outputs.

Here Ijk( cok) anb Rik( °°k) represent the real and imaginary parts of the measured 

function Hj(joi), respectively. Substituting these relationships into equ.(4.10) and 

separating the coefficients, we obtain a set of equations. Then the problem can be 

formulated as the solution of a set of linear simutaneous algebraic equations of the 

form

+ [ P ] [ X ] = [ Y ] (4 . 12)

where the matrices [ P ], [ X ] and [ Y ] which are for m =  2 (two outputs), r = 

5 and q = 5 case (see equ.(4.7) and (4.10)) are written below respectively :

-  45 -



-  hb -



[ Y ] [ S 10 - T 11 - S 12 T .,3 S 14 - T 15 S 20 - T 21 - S 22 T 23 S 24 T 25

0 - u 12- u 22 o u 14+u 2 4 0 ] ’

[ X ] = [ b 10 b 11 b 12 b 13 b 14 b 15 b 20 b 21 b 22 b 23 b 24 b 25 a 1 a 2

a 3 a 4 a 5] '

The numerical values of the unknowns a 1? a 2, b 10, b 21, ... may now be

determined once the coefficients (4.11) of equation (4.12) have been evaluated. For 

any single—input, multi—output case we will obtain the transfer function models:

(s) =  —̂ -1 (s); Ni(s) = ki 1 s n— 1 + ki 2 sn— 2 +  . . .  +  k i n

■ - 2 (s) =  —̂ -2 (s); N 2 (s) = k 2 i sn_ 1 -+- k 2 2 sn— 2 + ... +  k 2 nui w  A J J

(s) =  Nn(s) = km sn— 1 + k n 2 s11- 2 + ... +  knn

where A(s) = charcteristic polynominal for all of the transfer functions 

=  sn +  d ^ 11- 1 + d ^ s n ~  2 +  ••• + dn 

A computer program has been implemented using the MATLAB package on the 

VAX computer for this single— input and multi— output case. This implementation is 

described in Appendix 1. The size of problem (in terms of the number of poles

and zeros of the system) which can be accommodated is limited only by the available

computer memory.

4.2.3 The Application of Chen's Nonlinear Inverse Formula.

R. T. N. Chen's nonlinear inverse formulat72! provides an exact and unique 

state— space model representation from the transfer function models. This inversion 

is unique because the relationship between the model states and outputs is known. 

For the presents purpose, let 

u = [ui] = control input
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x = [x i , x 2 .........  xn]T = state vector

y =  x = output vector (simplified case) 

and the transfer function models have the form from section 4.2.2

K,

N =

K i, K12 ■in
K21 K2 2 . . .  K2n

Knn

(4.13)

where Kjj is jth coefficient of the numerator of ith transfer function.

Fc =
-d i - d 2 . . .  -d n

n - 1 0
(4 .14)

where dj is the coefficient of the denominator of the transfer function.

The unique inverse of the transfer function of whole SIMO system is

x = F x + Gi u 

y  = x 

where F = NFCN-1

(4 .15)
G, -  [ K, ,  K21 . . .  Kn i ]T

So, now we have got a low order system which is in state— space form.' If we 

derive a low order description for a high— order system, just using Levy's approach 

for the SIMO as presented in the section 4.2.2 then R.T.N.Chen's technique as 

presented above; allows the low— order system based on a set of transfer functions to 

be translated to state— space form.

4.3 Application of the Extended Levy's Technique & Chen's Method.

A computer programme has been written to find the coefficients and bjj of the 

denominator and numerator respectively for the transfer function of the reduced order 

model. The program also obtains the reduced order system in state— space form 

using Chen's method.

An example which is a used to illustrate the application of the method is taken 

from Bacon and Schmidt'st3 °] paper and relates to an advanced fighter aircraft.
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Details of the high order system description are given in Table 4.1.

T a b l e  4 . 1  Example HOS a i r c r a f t

Advanced f i g h t e r  w i t h o u t  p r e f i l t e r

q 5 . 2 6 s ( s + 0 . 0 1 0 3 ) ( s + 0 . 7 7 3 ) ( s + 0 . 5 ) ( s + 1 . 8 8 7 ) ( s + 1 3 .986)

5 ( s + 0 . 4 1 8 ) ( s + 1 . 3 4 ) ( s 2+ 0 . 0 0 2 6 4 s + 0 . 0 0 6 7 2 4 ) ( s 2+ 3 . 3 9 1 6 s + 7 .7284)
(s  2+ 3 3 . 0 5 7 6 s + 2 9 0 .3611)

s

‘z c r 1 . 3 4 s ( s + 0 . 0 0 0 6 6 ) ( s + 4 9 . 9 9 ) ( s + 0 . 5 ) ( s + 1 . 8 8 7 ) ( s + 1 3 . 986) g

r a d

In order to understand the strengths and limitations of the method a number of

cases were investigated involving application of the extended Levy's technique and

Chen's method. The frequency response of the reduced model agree with the high 

order system well over the range of frequencies considered if the weighting factor nl 

and the number of points used in calculation are chosen in an appropriate way.

4.3.1 The Effect of the Weighting Factor.

According to Levy and to those who introduced modifications to the method, the 

introduction of the weighting factor nl in Equ.(4.6) allows better results to be

obtained for high frequency data. However in practical applications the magnitude in 

the high frequency range may be very small, and it is therefore very difficult to use 

the resulting error to judge the quality of fit. Fig. 4.1 to Fig. 4.11 and Table 4.2 

present the results from a series of tests to investigate the effect of using different

values of the weighting factor nl for the example above for a frequency range of 0.1 

rad/sec. to 100 rad/sec.. From these figures and Table 4.2 it can be seen clearly 

that to obtain a good fit in the high frequency range from 10 rad/sec to 100 rad/sec. 

it is necessary to use a small value of the weighting factor n l . In some cases 

negative values of nl were found to give good results. For this example, when nl

is greater than 0.2, the results in the higher frequency range start to get worse.
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When the value of the weighting factor nl is further increased to over 1.0, the 

results in all parts of the frequency range get worse.

From Fig. 4.4 and Fig. 4.8, it can be seen that the frequency response of the

transfer function for case nl = 0.2 is much better than the case for nl =  1. But

from Table 4.2 we also find that the error for the case of nl = 1 is smaller than 

for the case of nl = 0.2. That is because for the case of nl =  1 the effect of 

the weighting factor nl in the high frequency range is bigger than in the case of nl 

= 0.2. Although the error for the case of nl = 1 is smaller than for the case of

nl =  0.2 the graphical fit looks worse in the high frequency range. This is due to

the fact that the frequency response magnitude information is presented in graphical 

form on a logarithmic scale (decibels). The error is not however based upon a 

logarithmic measure. Careful consideration must therefore be given in interpreting 

the results of the optimisation to the intended use of the reduced order model and 

the frequency range of importance for that application. In the example being 

considered, to obtain good results in terms of magnitude (dB) and phase plots as well 

as satisfying the error criterion it is necessary to use a value of the weighting factor 

nl between —1.0 and 0.2.

4.3.2 The Effects of Number of Points Used in the Calculation.

Fig.4.12 — Fig.4.14 and Fig.4.4 show the effects of the number of points taken in 

the calculation. It is clear from these figures that the number of points taken in the 

calculation will generally not affect the trend of the solution, although it is also clear 

that the more points we take, the more smooth the solution is. It is also clear 

from these results that if the number of points taken exceeds a certain value, such 

as 200 points for this example, the results start to become worse. There is clearly 

an optimum number of points and care must be taken in selecting an appropriate 

number for each application.
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T a b l e  4 . 2  The E r r o r  f o r  t h e  D i f f e r e n t  V a lu e  o f  n l

IW e i g h t in g  F a c t o r 1 E r r o r 1

1 n l | I t e r a t  i o n  1 | I t e r a t i o n  2 | I t e r a t i o n  3 |

1 2 I 10 .27 71 I 1 .7 9 7 3  | 1 . 6 6 7 8  |

| 1 . 5 I 10 .27 71 I 1 .8 7 9 9  | 2 . 5 2 2 0  |

| 1 . 2 I 10 .27 71 | 2 .0 2 5 3  | 2 .0 9 3 9  |

| 1 . 0 I 10 .27 71 I 2 .6121  | 2 .0 0 3 5  |

| 0 . 8 I 10 .27 71 | 4 . 6 8 8 9  | 2 .9 6 7 3  |

| 0 . 4 I 10 .27 71 I 1 0 .7372  | 1 0 .6 3 6 4  |

I 0 . 2 I 10 .2771 I 1 0 .9 1 5 0  | 1 0 .8 9 4 4  |

CMO1 I 10 .27 71 I 9 .8 4 1 0  | 9 .8 3 9 3  |

I - 0 . 5 I 10 .277 1 | 9 .9 8 5 5  | 9 .9 8 5 5  |

oi—i i | 10 .2771 | 11 .1 1 2 9  | 1 0 .5 2 1 1  |

oCM1 | 10 .27 71 | 1 0 .3747  | 1 0 .3 7 4 7  |

4.3.2 The Effects of Number of Points Used in the Calculation.

Fig.4.12 — Fig.4.14 and Fig.4.4 show the effects of the number of points taken in 

the calculation. It is clear from these figures that the number of points taken in the 

calculation will generally not affect the trend of the solution, although it is also clear 

that the more points we take, the more smooth the solution is. It is also clear

from these results that if the number of points taken exceeds a certain value, such

as 200 points for this example, the results start to become worse. There is clearly 

an optimum number of points and care must be taken in selecting an appropriate 

number for each application.

4.3.3 Convergence and Iteration Number.

It has been observed that Levy's method converges very rapidly. Usually, after

three to six iterations there are no further significant changes to be found in the

solution.
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4.4 Extension of Lew 's Technique from the SIMO Case to the MIMO Case.

From section 4.2.2, it is very clear that the different between the SISO case and 

SIMO case lies in cost function. From this concept it is not very difficult to extend 

the problem of model reduction to the MIMO case. The cost function for the 

SIMO case can be expressed as equ.(4.7): 

m m n
= . 2  J i =  . 2  , 2  I e(cok ) I 2 ( 4 . 7 )

J 1 = 1  1 = 1  k=i

An appropriate cost function for the multiinput and multioutput case is 

1 1 m n
J = 2 J i = ^ 2 S i  ‘ <«k>i2 (4 -16>

j = i  j = i  i = i  k = i

where 1 is the number of inputs, m is the number of outputs and n is the number 

of points in the frequency range considered.

We could express the error e(c%) in term of real and maginary parts as 

etafc) = A(<uk) + j B(ok) so,

| e(ok) | =  J  A 2 + B 2

Let E =  J  =  J 1 +  J 2 ■+■ ••• + Jmxl

“”? !  2 [ A i2 (“k> + B j ^ ) ]  (4 .17 )
1 1 k = i

where A ^ c ^ )  =  (0kRik -  okrkIik -  a ik) 2 D 2ni(k)

^ i^ ^ c )  = (cokTk^ik + ^k- îk — ^k^ik) 2 ^ 2m( k )

a ik =  ^io — ’̂i2£% 2 + ,̂i4CJk 4 ~  •••

f t k  = ^ii ~  ^ is 6̂ 2 + — ...

=  1 “  a 2wk 2 + a 4cok4 ~  •••

T k  =  a i ~  a 3c% 2 + a s°4c4 “  •••

The partial derivatives of equ.(4.10) with respect to each of the unknown coefficients

aj and bj must be set to zero, therefore

3E
da^ = 0 i = 1,  2,  3,  .

aE -  0 i -  1, 2, 3 .............mxl; j -  0, 1. 2,dbi
( 4 . 1 8 )
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To condense the notation before expanding the above equations the relationships in 

equation (4.11) only can still be used the difference being that 

i =  1, 2, mxl

where m is the number of outputs 

1 is the number of inputs.

Here Iiic( °°k) anc* Rjk( <%) respresent the real and imaginary parts of the measured

function Hj(joo), respectively. Substituting these relationships into equ.(4.18) and 

separating the coefficients, we obtain a set of equations. The problem can then be 

formulated as the solution of a set of linear simultaneous algebraic equations (4.12).

The matrices [P], [X] and [Y] which are for 1 = 2 (two inputs), m = 2 (two

outputs), r =  5 and q = 5 (see equ.(4.7) and (4.18)) are written below respectively:

[ P ] (see Table 4.3)

[ Y ] = [ S 10 - T 11 - S 12 T13 S 14 - T 15 S 20 - T 21 - S 22 T23 S 24 - T 25 S 30

_T  T - T  - T  T - T  D
3  1 3  2  3  3  3  4  1 3 5  ° 4 0  1 4  1 a 4 2  * 4 3  ° 4 4  * 4 5  w

- ( U 12+U22+U32+U42) o (U14+U24+U34+U44) 0 ] '

[ X ] = [ b 10 b 11 b 12 b 13 b. ,4 b 15 b 20 b 21 b 22 b 23 b 24 b 25 b 30 b 31 b 32

k  3  3  ^ 3 4  ^ 3 5  ^ 4 0  ^ 4 1  ^ 4 2  ^ 4 3  ^ 4 4  ^ 4 5  & 1 & 2  a 3  a 4  a 5  -I

The matrices [P], [ X] and [Y] have the same structure as the matrices [P], [X]

and [Y] for the SIMO case. The numerical values of the unknowns a.,, a 2, •••; 

b 10, b 21, ••• may be determined once the coefficients (4.11) of equation (4.12) have 

been evaluated. A computer program has been implemented using the MATLAB 

package on the VAX computer for this Multi— input and Multi— output case. This 

program has been implemented for an example with two— inputs and two— ouputs for 

lateral motion of a very large four engined passenger jet aircraftt8 5] . This example 

is considered in state— space form :

x = Ax + Bu 

wi t h  x = [ r  (3 p <p] ' as  :

where r  i s  t he  yaw r a t e

-  53 -



(3 i s  t h e  s i d e s l i p  a n g l e

p i s  t h e  r o l l  r a t e

and <p i s  t h e  r o l l  a n g l e .

The c o n t r o l  i n p u t  v e c t o r  i s

6R

8a

where  i s  t h e  r u d d e r  d e f l e c t i o n  

5A i s  t h e  a i l e r o n  d e f l e c t i o n .

For this model the A and B matrices involve the following stability and control 

derivations.

u =

A =

B =

Nr  Nq  Np 0
" I ,  V  0 ,S / U0 
Lr Lp 0
0 0 1 0

N5r N5a  
Y5r *
L 5R L 5A 
0 0

The order of the HOS of this example is four. Abtompts have been mode to 

find a ROS of first, second and third order. The behaviour of the ROS for

different reduced order depends on the frequency range used. The frequency 

responses of the third order reduced order system are shown in Fig.4.15 for the

frequency range (0.01 — 1.0 rad/sec.). It can be seen that the frequency response

of the ROS agrees very well with the HOS in the frequency range used.

4.5 Discussion and Conclusion.

As has been described in above section, the extended Levy's complex— curve fitting

technique and Chen's method can provide an effective method for model reduction.

The resulting computer program is suitable for handling single— input and

multi— output systems and has been applied to an example system relating to an 

advanced fighter aircraft and to a large passenger transport aircraft. It was found

that in order to obtain better results for whole frequency range of interest, the
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choice of some parameters must be very carefully made:

1) t h e  w e i g h t i n g  f a c t o r  n l .

Fo r  d i f f e r e n t  i n p u t s  and o u t p u t s  t h e  o p t i m a l  c h o i c e  o f  t h e  n l  i s

f i f f e r e n t .  T h e r e  i s  a r a n g e  o f  t h e  v a l u e  n l  w h ich  i s  s u i t a b l e .  I f

t h e  v a l u e  o f  n l  i s  o u t s i d e  t h i s  r a n g e  t h e  s o l u t i o n  i s  v e r y

s e n s i t i v e  and t h e  e r r o r  o f  t h e  f r e q u e n c y  r e s p o n s e  b e t w e e n  t h e  h i g h

o r d e r  s y s t e m  and  r e d u c e d  o r d e r  s y s t e m  c a n  become v e r y  l a r g e .

2) t h e  number  o f  p o i n t s  u s e d  i n  t h e  c a l c u l a t i o n  f o r  t h e  f r e q u e n c y  r a n g e  

o f  i n t e r e s t .

I n  g e n e r a l ,  t h e  number o f  p o i n t s  u s e d  i n  t h e  c a l c u l a t i o n  w i l l  no t  

a f f e c t  t h e  t r e n d  o f  t h e  s o l u t i o n .  However,  i f  t h e  number o f  p o i n t s  

u s e d  e x c e e d s  a  c e r t a i n  v a l u e ,  t h e  r e s u l t s  s t a r t  t o  become w o r s e .

3) c o n v e r g e n c e .

T h i s  t e c h n i q u e  c o n v e r g e s  v e r y  f a s t .  A f t e r  o n l y  3 i t e r a t i o n s  t h e r e  

a r e  no f u r t h e r  s i g n i f i c a n t  ch a n g e s  i n  t h e  s o l u t i o n  i n  many c a s e s .  

A l s o  a f t e r  t h r e e  i t e r a t i o n s  t h e  e r r o r  o f  t h e  f r e q u e n c y  r e s p o n s e  and 

i n  t h e  t i m e  r e s p o n s e  b e tw e en  t h e  h i g h  o r d e r  s y s t e m  an d  r e d u c e d  model 

show no f u r t h e r  o b v i o u s  c h a n g e s .
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Table 4.3

[ P 1 -

r o 0 - r 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 " r 2 0 0 r s 0 0 0 0 0 0 0 0 0 0 0 0

- r 2 0 r 4 0 - r 6 0 0 0 0 0 0
0 0 0 0 0 0 Cl

0 0 ‘ r 6 0 r 8 0 0 0 0 0 0 0 0 0 0 0 Cl

r 4 0 - r 6 0 r 8 0 0 0 0 0 0 0 0 0 0 0 0 0

0 - r 6
0 r 8 0 - r , o 0 0 0 0 0 0 0 0 0 0 0 Cl

0 0 0 0 0 0 r 0 0 - r 2 0 r 4
0 0 0 0 0 0 0

0 0 0 0 0 0 0 - r 2 0 r 4 0 0 0 0 0 0 0 Cl

0 0 0 0 0 0 - r 2 0 r 4 0 " r 6
0 0 0 0 0 0 0

0 0 0 0 0 0 0 r 4 0 " r 6 0 0 0 0 0 0 0 0

0 0 0 0 0 0 r 4 0 - r s 0 r 8
0 0 0 0 0 0 0

0 0 0 0 0 0 0 - r s 0 r 8 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 r 0 0 - r 2 0 r 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 - r 2 0 r 4 0 - 1  G

0 0 0 0 0 0 0 0 0 0 0 0 - r 2 0 0 - r , c.

0 0 0 0 0 0 0 0 0 0 0 0 0 r 4 0 " r 6 0 r ' 8

0 0 0 0 0 0 0 0 0 0 0 0 r 4 0 - r s 0 r 8 c-

0 0 0 0 0 0 0 0 0 0 0 0 0 - r £ 0 r s 0 - r .  3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 _  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T , n - S , 2 “ T n  3 s 1 4 T 1 S - s i e T 2 1 - S  2 2 - T 2 3 S  24 t 2 5 - S  2 6 T 3  n - S 3 2 - T 3 3 S  3 4 T 3 5 - S  3 6

- s n " T n 3 S  n 4 T ,  5 - S  n 6 - t 1 7 - S  2 2 - t 2 3 S  2 4 T 2 5 - s 2 6 - T 2 7 - S 3 2 - T 3 3 S 3 4 T 3  5 - S  3 6 - T 3  7

" T , 3 s n 4 t 1 5 - s 1 6 - t 1 7 S n e - T 2 3 S  2 4 T ” - S  2 6 - T 2  7 S  2 8 - T 3 3 S 3 4 T 3 5 “ S  3 e - T 3 7 S  3 8

S , 4 T n 5 - s 1 6 - t 1 7 s 1 8 T 1 9 S  24 T 2 5 - S  2 6 - t 2 7 S  2 8
T1 2 g S 3 4 T 3  5 — S  3 6 - T 3  7 S  3 8 T 3 9

- S , 6 - T , 7 s 1 0 t 1 9 - S , 1 0 T 2 5 - S  2 6 - t 2 7 S  2 8 t 2 9
_ s

3  2 1 0 T 3  5 “ S  3 $ - t 2 7 S  3 8 T 3 9 - S  3 1
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0 0 0 0 0 0 T n , S  n 2 - t 1 3 “ S  n 4 T 1 5

0 0 0 0 0 0
S  n 2 “ T 1 3 “ S  n 4 T , s S  1 a

0 0 0 0 0 0 “ T n  3 —S  n 4 T n s s  1 a - T , 7

0 0 0 0 0 0 - S  n 4 T ,  5 S  n a - t , 7 _ s0  1 8

0 0 0 0 0 0
T n  5 S , 6 - t 1 7 - S  n 8 T1 1 9

0 0 0 0 0 0 S n  6 - t 1 7 “ S  n 8 T n  9 S  1 1 0

0 0 0 0 0 0
T 2 , S 2 2 - T 2  3 — S  2 4 T  2 5

0 0 0 0 0 0
S 2 2 - t 2 3 —S  2  4 ^ 2  5 S  2 a

0 0 0 0 0 0
- t 2 3 — S  2  4 t 2 5 S  2  6 - t J 7

0 0 0 0 0 0 — S  2  4 t 2 5 S 2 a - t 2 7 — S  2 8

0 0 0 0 0 0
t 2 5 s 2 S - T 2 7 - S  2  8

T1 2 9

0 0 0 0 0 0
S  2  6 - t 2 7 - S 2 0 t 2 9 S  2 1 0

0 0 0 0 0 0
T 3 , S  3 2 - T 3 3 - S 3 4 T 3 5

0 0 0 0 0 0
S 3 2 - T 3 3 - S 3 4 t 3 5 s  3  a

0 0 0 0 0 0 - T 3  3 - S 3 4 T 3 5 s 3 6 - t 3 7

0 0 0 0 0 0
- S 3 4 T 3  5 S  3  a - t 3 7 - s 3 e

0 0 0 0 0 0
T 3 S s 3 S - t 3 7 - S  3  8 t 3 9

0 0 0 0 0 0 S 3 6 - t 3 7
- s . .0  0 T .  -j  a S  3 1 u

r 0
0 " r  2 0 0 T 4 , S 4  2 - T 4 3 - S 4 4 T 4  5

0 - r 2 0 0 - r . S 4 2 - T 4 3 - S 4 4 T 4 5 S  4  a

- r 2 0 0 - f s 0
- T 4 3 - S 4 4 T 4 S S  4  a - t 4 7

0 r 4 0 - r s
0 r 8 - S 4 4 T 4 5 S  4  6 - t 4 7 - S  4  8

0 - r 6 0 r 8 0
T 4 5 S 4 8 - t 4 7 —S  4  8 T 4  9

0 " r 6
0 r 8

0 " r i 0 S  4  a - T1 4  7 - S 4 8 T  4  9 S  4  1 0

T 4 , - S 4 2 - T 4 3 S 4 4 T 4 5 - S 4  a C U 1l 2 + u 2 2 + u 3 2 + u 4 2 ) 0  - ( U , 4 + u 2 4 + u 3 4 + u 4 4 ) 0 ( U , s + U 2 6 + U 3 e + U 4 S )

- S  4  2 - T 4 3 S 4 4 T 4  5 —S  4  a - t 4 7 0 - ( U , 4 + U 2 4 + U 3 4 + U 4 4 ) 0  < U 3 e + ^ 2  s + ^ 3 a + U 4 S )  0

- T 4  3 S 4 4 t 4 5 —S  4  a - t 4 7 S 4 8 - ( U , 4 + U 2 4 + U 3 4 + U 4 4 ) 0  < u .
6 + U 2 6 + U 3 6 + U 4 B ) 0 - ( ^ 1 e + ^ 2 8 + ^ 3 8 + ^ 4 8 ^

S 4 4 t 4 5 — S  4  6 - t 4 7 S 4 8 T1 4  9 0  ( U 1 6 + U 2 6 + U 3 6 + U 4 6 ) 0 - ( U t a + U 2 8 + U 3 8 + U 4 8 )  0

T 4 5 - S 4 S - t 4 7 S 4 8 T 4  9 _ s
i 5 4 1  0 ( U n e + u 2 6 + u 3 S + u 4 6 ) 0  - < U 3 e + u 2 8 + u 3 8 + u 4 8 ) 0 1 0 + ^ 2 1 0 + ^ 3 1 0+ ^ 4 1
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Chapter 5

Equivalent Systems Approach to the Reduction 

of Multi— Input Multi— Output Systems

5.1 Introduction.

Reduced order modelling can be very important for the purposes of control 

system design where the designer must attempt to satisfy criteria such as: 1) steady 

state specifications; and 2) dynamic and transient specifications (e.g. rise time, 

overshoot, bandwidth etc.) These place emphasise on the low and middle range 

frequencies. Reduced order models for piloted simulation/handling qualities studies, 

however, may not be concerned so much with steady state behaviour but may 

concentrate instead on pilot induced oscillations and other aspects of the overall 

transient behaviour, with more emphasis often placed on the high and middle 

frequency ranges.

The development of techniques for model reduction in aircraft applications of this 

kind has taken place separately from the development of the methods outlined in 

Chapter 3. Different terminology has therefore arisen and reduced order models 

developed for use in aircraft handling qualities studies and for applications involving 

real— time piloted simulation are generally referred to as "equivalent system" models.

The modern trend in aircraft systems is inevitably towards greater complexity, due 

mainly to requirements imposed by complex performance specifications and tasks and 

to the need for accuracy. A modern complex system may have many inputs and 

many outputs, and these may be interrelated in a complicated manner. To analyze 

such a system, it is essential to reduce the complexity of the mathematical 

expressions, as well as to resort to computers for most of the tedious computations 

necessary in the analysis. The state— space approach to system analysis is well suited 

from this viewpoint. A linear, time— invariant (LTI) system of nth— order, may been 

expressed as a set of first order differential equations, which can be futher written as
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a vector— matrix differential equation. This vector— matrix differential equation is 

called the state— space representation and has the following form,

x = Ax+ Bu 

And th e  o u tp u t e q u a tio n  becomes 

X  = Cx

where x <= Rm ( Rm \ s  a Cartesian m— space), u c Rn and A, B and C are

constant matrices of appropriate dimensions.

In this chapter, the use of a low— order approximations, or equivalent systems, in 

state— space form is considered. Such a formulation is well suited to the treatment 

of multi— input, multi— output systems and is appropriate for the development of 

models for aircraft handling qualities assessment. This problem is identified as a

special case of the more general problem of model reduction in closed— loop systems.

In the traditional equivalent system approach used in aircraft handling qualities 

studies[28], a numerical search algorithm is employed to find a reduced—order model, 

of 'classical' aircraft form, such that the frequency response of the high—order 

system (the aircraft) is well approximated over a specified frequency range. 

However, especially when a good approximation is not obtained, there are difficulties 

in the use of these traditional equivalent systems methods. Non— uniqueness of 

solutions, the treatment of multi— input multi— output cases and the goodness of fit 

necessary are factors which present particular problems.

Because of these general and fundamental difficulties, associated with model 

reduction, the reduced— order modeling objective of approximating the aircraft's 

frequency response is re— examined in the current work and the question of when

and how to match multiple frequency responses is reviewed. An alternative

state— space model— reduction approach developed by Bacon and Schmidt! 3 °1 is 

considered both in the content of handling qualities research and for control system 

design. In this method the original transfer function (matrix) G(s) of dynamic order 

n is reduced via a state— space transformation T which can be determined without
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the use of any numerical search algorithm. In terms of the three classes of problem 

identified in Chapter 3 this method is therefore essentially a form of component 

truncation method. In addition, the resulting model Gr obtained by this method is 

unique for the selected dynamic order r and the least effective dynamic order is 

determined a priori by evaluating a set of frequency— domain matching error bounds. 

These error bounds apply to each i— j element of the difference matrix 

[G(s)— Gr(s)]s= ^  over all a). One important feature of the approach which 

distinguishes it from the methods outlined in Chapter 3 is that it is applicable to 

multi— input/multi— output systems and is therefore well suited for aircraft applications.

5.2 The Theory of the Bacon's Method.

The state— space model— reduction approach of Bacon and Schmidt is composed of 

three stages. The first stage is the modal decomposition. The second stage is the 

application of an internally balanced approach to model reduction. The third stage is 

the combination of separate subsystems to form the completed reduced— order

approximation.

5.2.1 Modal Decomposition!3 °1

Consider the state—space model:

x = Ax + Bu (5 .1 )

y  = Cx (5 .2 )

The t r a n s f e r  fu n c t io n  G (s) from in p u t u to  o u tp u t y  i s  g iv e n  by

C (s) = C (s I-A )-1 B (5 .3 )

In the modal decomposition process the given system G(s) is split into three 

subsystems Gj0 (s), Gmj^(s) and G^jg^Cs), involving the low— , mid— and

high-frequency components of the system separately. This involves four steps:

1) Determination of the eigenvalues and eigenvectors of the matrix A of the 

state— space equations and thus the diagonal matrix of eigenvalues A and the

corresponding matrix of eigenvectors M (modal matrix).

2) Determination of radii dl and d2 which define three frequency regions of the
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complex plane.

3) Calculation of the matrices of eigenvectors (modal matrices) Mjq, M^ig^

transpose of the inverse or the inverse of the transpose which are equivalent

operations.

4) Calculation of the three subsystem transfer functions G^s) where i= lo, mid and

hi.

The details of these four steps are described as below.

5.2.1.1 Determination of the Matrices A and M Corresponding to the Matrix A of 

the State— Space Equations.

The matrix A can be modally decomposed to obtain A and M, where A is the 

block diagonal, real Jordan form and M is the corresponding (real) modal matrix.

Each column of M is, of couse, an eigenvector of A and from standard matrix

theory it follows thatt 7 1 ]

A ----  i s  a d iag o n a l m a tr ix  in v o lv in g  th e  e ig e n v a lu e s  o f  th e  m a tr ix  A

M ----  i s  a m a tr ix  whose columns a re  th e  e ig e n v e c to r s  o f  th e  m a tr ix  A

C o n v e rse ly  i t  fo llo w s  th a t

5.2.1.2 Determination of Radii dl and d2 Which Define Three Frequency Regions of 

the Complex Plane.

Because modal decomposition is used, it is important to examine the implications in 

terms of the frequency response of the system. The transfer function G(s) describing 

the input/output behavior of the linear system is:

and Mjq ^ T  # T where the T ' operation is defined as the

A = M A M" 1 ( 5 . 4 )

where

A = M~1AM ( 5 . 5 )

m

G (s) =
Q (s)
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It is these parameters the poles and zeros, that influence the frequency response and

the effective order of the system.

The magnitude and phase on the Bode diagram of G(jco) are related to the directed 

line segments in the s—plane as shown in Fig. 5.1. As 03 moves along the

imaginary axis, these directed segments, rotate and change magnitude. The effect of 

constraining the frequency 00 to lie within a range (co1, o)2) is of particular interest 

for reduced—order modelling. In Fig. 5.1 two concentric circles of radii u , and w2

are shown and these circles separate the s— plane into low— , mid— and high-

frequency regions.

The columns of M are now ordered according to the natural frequency,

^ni =  (crj2 c o jT 7 2  of the corresponding modes as defined by the positions of the

eigenvalues \j in the complex plane. Thus, if radii dl and d2 define concentric

circles in the complex plane, and M can be divided as Mi0, and M^igh as

shown in Table 5.1, the complex s— plane is divided into three regions by the 

parameters dl and d2 .

UJ,

UJ

z;

Figure 5.1 Pole/Zero Definition of Frequency Response
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Table 5.1

R egions Column g ro u p in g s

Low fre q u e n c y  ( lo ) :  0 < oon i < d l Ml0

M iddle f re q u e n c y  (m id ): d l<  con j < d2 ^mid
High fre q u e n c y  (h ig h ) :  d2< wni Mh ig h

5.2.1.3 Calculation of M^q , Mmid< ^h igh  ^ _^m id____^high_—•

From Table 5.1, we can see that M is separated into three column groups Mj0 , 

Mmid anc* Mhigh- That is

M = [ ^ h ig h  Mmi(i Mj0  ] (5 .6 )

and from the definition of the superscript T ' given in Section 5.2.1 we have

M T = [ Zj-jigh Zmj cj Z \ Q ] ( 5 . 7 )

where Z^igh and Z \ Q are the separate columns of the M— T matrix

5.2.1.4 Calculation of the three subsystem transfer functions Gj(s).

We can find the transfer functions Gj(s) of the three subsystems directly from

C i( s )  = Ci ( s I -A i ) " 1 Bi (5 .8 )

where i =  lo, mid and hi. In this equation

Aj = Z jTAMj Bj = Zj TB and Cj = CMj

The HOS (high— order system) transfer function may then be rewritten as

G (s) = 7

mLO mMiD mHI
n ( s - z j ) n ( s - z j ) n ( s - z j )

i = i i = i i= i

nLO nMID nHI
n ( s - z j ) n ( s - Z j ) n ( s - z j )

. i = i . i = i .i= i

(5 .9 )

o r in  th e  form 

G (s) = Gl o (s )  + Gm| ci ( s )  + Gj1 jgj1 ( s )

R<

(5.10)

where Gĵ  ( s )  =
1 = 1  s - p i

k = lo , mid, h ig h .
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In equation (5.9) the factor y  represents the gain constant of the orginal high 

order system expressed in transfer function form as 

m
n ( s - z j )  

i= i
G (s) = 7  ---------------

n
rr ( s - z j )  

i= i

5.2.2. Application of the Internally Balanced Approacht1 3>34]

The second stage in the reduction process is to use an internally balanced approach 

to reduce the order of the and which have been obtained by stage 1 .

After that an effective system will be obtained. For illustration, this stage is 

separated into several steps as given below:

1) Determination of the controllability grammian X and the observability grammian S 

and calculation of the eigenvalues and eigenvectors of XS in order to obtain the 

Hankel singular values which provide a measure of the effective order of a system..

2) Determination of the effective order of each subsystem Gj, i =  high, mid.

3) Determination of lower—order system approximations of every subsystem Gr(s).

5.2.2.1 Determination of the Controllability Grammian X and the Observability 

Grammian S.

Before investigating further the order reduction of a system, it is necessary to

consider the concepts of controllability and observability.

A system described by Equ.(5.1) is said to be state controllable at t Q if it is 

possible to construct an unconstrained control signal which will transfer an initial state 

to any final state in a finite time interval 1 0 < t < t n. If every state is

controllable, then the system is said to be completely state controllable. Similarly 

the system is said to be completely observable if every initial state x(0 ) can be

determined from the observation of y(t) over a finite time interval. The degree of 

the controllability of a system can be determined by a matrix, called the
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Controllability Grammiant7 9] , which is defined by the following integral 

4>(t)BBt  4>(t)TdtWc 2 = (5.11)

where $(t) is the state—transion matrix. For a system described by Equ. (5.1), 

we have $(t) = e ^ t (see R ef.si).

Similarly, the degree of observability can be found from the Observability 

Grammiant1 °1, which is defined by

WQ 2 = <t>(t)T CTC <3?(t)dt (5 .1 2 )

In order to calculate Wc 2 and WQ2, it is not necessary to integrate Eqs.(5.11) and 

(5.12). If X =  Wc 2 and S = WQ2, it can been provedt13] that X and S are

respectively the solutions of the following equations (5.13) and (5.14)[771, if the

eigenvalues of A have negative real parts.

XAt + AX + BBt = 0 (5 .1 3 )

SA + At S + CTC = 0 (5 .1 4 )

These two equations are known as the Lyapunov equation.

5.2.2.2 Hankel Singular Values.

In order to obtain the effective order of the reduced order model we introduce the 

concepts of the Hankel matrix and the Hankel singular values. The details of the 

definition and the calculation of the Hankel matrix and Hankel singular values can be 

found from APPENDIX 2 (A2.3 & A2.6). From APPENDIX 2 (A2.6 & A2.7) we 

can obtain the Hankel singular values and obtain a relation between the product XS 

and Ht H,

XS = Ht H

This means the matrix XS is a symmetric matrix. Since H ^H  is a symmetric 

matrix, the singular values of H are equal to the square roots of the eigenvalues
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of H ^H , namely, equal to the square roots of the eigenvalues of the product of 

XSt78]. Thus, the singular values SI of the matrix H are 

SI =  SVD(H) or H = U [ SI ] UT . 

where SI is a n x  n diagonal matrix and where the columns of U are called the 

left singlar vectors.

SI = fo r  which c 1 ^ a 2 ^ ••• > a n  > 0

5.2.2.3 Calculation of the Eigenvalues A1 and Eigenvectors Ml of the Product XS.

From the internally balanced approach method we are able to find an optimal 

rth— order model from the eigenvalues A1 and eigenvectors Ml of the product XS by 

following the procedures given below,

XS = (M l)(A l)(M l ) " 1

A1 =

h 2 2

V

h i  =  X i 1/ 2 (XS)

We have se en  th a t  

h i — (7 i and h^ ^ h 2 ^ . . .  ^ hj* ̂  hj*-!--] ^ . . .  ^ h^ ^ 0  •

5.2.2.4 Determination of the Effective Order of the Subsystems Gj(s). ( i  =  high,

mid).

Because h., ^  h 2 ^  > hn > 0, if a large separation exists between hj and hi+ 1

it follows that ^  / h i + 1  > >  1 , and hence this i may be taken as the effective

order r. The eigenvectors of the product XS, M l, and the inverse of the transpose
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of M l, (M l) can be expressed as

Ml -  [ (M l)r , (Ml)n . r ] (Ml)-T _  [ur , un_r ]

and

0

A 1 =

I  2 r

O S  2 u An - r

where Ej. =  diag (hj), i =  l , r ;  Sn—r = diag (hj), i =  r+ l ,n .

This r is effective order of the subsystem G}(s).

5.2.2.5 Determination of Lower— Order System Approximations of Every Subsystem 

G r ( s ) .

From 5.2.2.4 we have obtained the effective order r^g^ , r m^  of the subsystems 

Ghigh(s)» C}m^(s). Therefore we can find the approximate lower—order subsystems 

G r j ( s ) ,  (i =  high, mid).

Gr ( s )  = Cr  (s I -A r ) - 1 Br  

where Ar , Br  and Cr a re  d e f in e d  by 

Ar  = Ur TATr , Br  = Ur TB, Cr = CTr

5.2.3 The Complete Reduced— order Approximation

Now we have found Ar>high Cr>high and Ar>mid, Brm id , Cr>mid. A first order

approximation is sought for G^igh, whereas an approximation of the desired 'classical'

order is sought for G m j d . The complete reduced— order approximation is the sum of 

these two subsystem approximations.

The state — space model for a subsystem can be written as

x j = A jxj + B ju

y i = c i* i  

So, f o r  th e  mid subsystem  we have

^mid = ^mid^mid + ®mi du 

ymid = ^mid^mid
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and f o r  hi  subsys te m

^ h i g h  ^ h i g h —h i g h +  Bh i g h H  

y h i g h =  i g h ^ h  i gh

The complete the reduced order system (LOS) of the high order system (HOS) is the 

sum of the two subsystems, namely

^  “  ^m id + ^ h ig h  

y = ymid + yh igh

The transfer function of the complete reduced— order system (LOS) cab be found 

from

^ T o s(s ) = ^ rc  (s i" A r c) 1®rc 

w h e r e

Cr c  _  t ^ r , h i g h  ^ r , m i d ]

5.2.4 The Measure of Error Bounds.

5.2.4.1 The Scaling Matrices Qj and Q0 .

The need for scaling arises because the internally balanced approach is more 

sensitive to the responses with higher magnitudes. Different magnitudes can simply 

arise from different units in the input or output channels, or different force gradients 

in manipulators. To obtain a uniform match between the truly dominant response of 

the system, scaling must be included. Qj and Q 0  are the input scaling matrix and 

the output scaling matrix and are square diagonal matrices containing the 

non—negative scaling factors qjj and qGj. By using scaling, one can also bias the 

resulting low— order system to better approximate a certain response. If the scaling 

(Qj and Q0) has been chosen such that elements of the matrix G(jco) are weighted 

equally (their scaled magnitudes roughly equal), the Bode error bound will be 

applicable for each element of the frequency response. In Chapter 7 the results

A r , h i g h  B Br , h i g h

A r c ® r c  ~

■ 0  Ar  mid- l-Br , m i d
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from an example of the advanced fightert3 °] with scaling and without scaling are 

presented to illustrate the effect of the scaling.

5.2.4.2 The Determine of Error Bound.

The measure of how well the reduced order model approximates the high order 

system is reflected in the frequency response error bound of the model. In 

multi— input and multi— output closed— loop systems, which include pilot/vehicle 

systems, a "good" approximation implies that G^joo) must approximate the G(joo) 

element over the multivariable crossover frequency range.

The frequency response error is defined by 

E(jco) = [ Ei:j(ja;)] =  G(jw) -  Gr(jw) 

each i— j element in E(jco) describes the frequency response error associated with the 

corresponding element in G(jw).

A matrix norm, defined by the maximum singular value of the matrix E(ja)),

provides a measure of "smallness" for E(joj), and also bounds |Ejj(jco)|. The

maximun singular value of E is defined as : 

a(E) =  \ l / 2 (EE*)

=  Max (v*EE*v) 1 / 2
IIV IF  1V '

where X(.) is the maximun eigenvalue of (.), and llvil =  ( v v ) 1/2. The largest

value of o[E(jcj)] over all frequencies (0 < co < <» ) defines the "» norm"

llE(jco) llco = sugo[E(jw)] (5.15)

If for some w llE(jo)) 11̂  << 1 Gjj(jcu) ], then Grjj(ja>) closely approximates Gjj(joo).

The fact that the model reduction procedure to be presented exploits another

reduction technique, i.e., Moore's internally balanced approacht1 3] , means that there

is another method available for obtaining this norm. Ennst3 4] has shown that a

model obtained from Moore's technique satisfies

lE(jw)lloo < Boo

where the value of may be determined before the reduction is performed. The
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procedure to be presented also has such a bound.

Another result involving the internally balanced algorithm was proved by Ennst3 , 

who showed that the frequency response error of the rth order model is bounded for 

all co by

cr{Q0 [G(jco) -  Gr(jco)]Qi} < 2T r(In_ r) 

where <r(-) is the maximun singular value of (•), and I n_  r = diag(hj), where j = 

r + 1 ,n. The bound is defined by the truncated Hankel singular values of the scaled 

system Q0 G(s)Qj, which like G(s) are invariant to state transformation.
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Chapter 6

Implementation of Bacon and Schmidt's Method in MATLAB

6.1 Introduction to MATLAB Software.

The name MATLAB means "Matrix Laboratory" and it was developed by a group 

of software professionals under the leadship of Cleve Moler. MATLAB is a very 

powerful software tool that can be of considerable use for scientific and engineering 

numerical calculations. It is an easy— to— use interactive system for matrix algebra 

whose basic data element is a matrix that does not require dimensioning. This 

allows many numerical problems to be solved in a fraction of the time it would take 

to write a program in a language like Fortran, Basic, or C. It has a rich collection 

of functions that are immediately useful to the control engineer or system theorist. 

Complex arithmetic, eigenvalues, root— finding, matrix inversion etc. are some of the 

facilities available. More generally, MATLAB's linear algebra, matrix computation, 

and numerical analysis capabilities provide a reliable foundation for control system 

engineering as well as many other disciplines. The algorithms used by MATLAB are 

derived from extensive research and represent the state of the art. This, combined 

with a two— and three— dimensional graphics capability, provides a very useful 

environment for the application of linear algebra. Also the MATLAB software is 

designed to run on various machines including MS— DOS compatible personal 

computers, Apple Macintosh, Sun Workstations, and VAX computers.

MATLAB has evolved over more than half a decade, with input from many users. 

In university environments it has become the standard instructional tool used in 

introductory courses in applied linear algebra, as well as for research and in 

advanced courses in other areas.

6.2 The Outline of the MATLAB Program for the Bacon and Schmidt's Method.

This chapter is concerned with describing the procedure for implementation of

Bacon and Schmidt's method in MATLAB. The program was written in MATLAB 

and was used on a DEC MicroVAX 3600 computer (VMS2) at the Glasgow
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University Computer Centre. The MATLAB program can be described in terms of 

the folloeing seven steps.

6.2.1 Conversion to State— Space Form from Transfer Function Form.

The given high order system is defined through transfer functions rather than in 

state— space form. Therefore, we have to convert these transfer functions to 

state— space form from the original form using an appropriate MATLAB function 

such as the function TF2SS. The system transfer function is

G(s) = C ( si -  A )~ 1 B (6.1)

and the application of TF2SS for given a high— order system results in a system 

matrix A, control matrix B and output matrix C.

6.2.2 Calculation of the Eigenvalues and Eigenvectors of the Matrix A.

In order to decompose a model, it is necessary to obtain the eigenvalues A and

eigenvectors M of the matrix A. According to the frequency range of interest and 

the eigenvalues A it is possible to establish the radii dl and d2 which define the 

concentric circles in the complex plane. These divisions provide the basis on which 

columns of M are separated into three groups Mj0, Mm^  and M^jg^. Also the 

columns of M— T can be separated into another three groups Z \ 0 , and Z^igh

very easily in MATLAB.

6.2.3 Grouping of the Three Subsystem Transfer Functions GjfsL

Using the formula for transfer function Gj(s), of the form of equation (6.1), we 

can get the matrices Aj, Bj and Cj of the three subsystems directly from equ. (5.8.1) 

using MATLAB. The subsystems

Gj(s) =  Cj(sl -  Aj)-  1 Bj, where i = lo, mid, high 

are now

Aj =  ZjTAMj, Bj =  ZjTB, q  =  CMj. (6.2)

6.2.4 Solution of the Controllability Grammian X and the Observability Grammian S.

In order to obtain the effective order of the Low order system, we need firstly to

find the effective order for both of the high— and mid— subsystems. From equ.
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(5.11, 5.12), we can get the controllability grammian X and the observability

grammian S by using MATLAB to calculate 

Xj = gram (Aj, Bj)

Sj = gram (Aj, Cj) 

where i =  high, mid.

The Xj and Sj should satisfy the Lyapunov equations (5.13) and (5.14).

6.2.5 Calculation of the Hankel Singular Values.

By the definition of singular values, a rectangular matrix A can be expressed in 

the following form:

A =  UYVt

where U is the matrix of left singular vectors, V is the matrix of right singular

vectors, and the Y is the matrix of the singular values of A. We can use the

MATLAB function SVD to find the singular values of X and S. As mentioned in

APPENDIX 2, the singular values of X and S can be expressed by Lc 2 and X0 2,

their corresponding left sigular vectors are Vc & V0  and the right singular vectors 

are Vc^  and VQ̂  separately. Based on the definition of the Hankel matrix we 

could easily get Hankel matrices H^jgjj and H ^ ^  of the high— and m id-

subsystems. Similarly we could also get the Hankel singular values Sy^ and Sym

directly.

However, it is possible to obtain the Hankel singular values in another way whih is 

also described here to provide a check on the reliability of the method outlined 

above. Since we know the relation between the product XS and H^H  already the 

Hankel singular values Syj could be found from the product of X and S directly as

given in APPENDIX 2. Using MATLAB we can find the eigenvalues dj1jgj1 and

dmid of the product (XS^jg^ and (X S)^^, and using the SQRT function of 

MATLAB we can obtain the Hankel singular values Sy^ = SQRT (d^jgjj) and S v m  

=  SQRT (dmjd):
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Svi "

where i =  high— and mid— . The application of this approach gives the same

numerical results as those obtained directly from the Hankel matrices as outlined 

above.

6.2.6 Determination of the Reduced Order.

Having found the singular values both for the high— and mid— subsystems,

according to the theory of Bacon and Schmidt's method we could start to decide the 

effective order of the high— and mid subsystems. We compare the Hankel singular 

values (7|  of the high— subsystem first. If there is a large separation between hj

and hi+ i. a ratio hj/hj+ 1  >> 1 , indicates that the effective order of the high—

subsystem is i. We could get the effective order j of the mid— subsystem using 

same way. Therefore, the reduced order of the system is i+ j .

6.2.7 Determination of the Complete Reduced Order Approximation.

The complete reduced order approximation is the sum of the high— and mid 

subsystem approximations. The matrices Ar , Br and Cr of the transfer function of 

the reduced— order system are then 

Ar h 0

A r  -
0 ‘rm

B r  =
Brh

Brm

C r  -  [ C j - h  C r m  ]

6.3 Implementation of Bacon and Shmidt's Method in MATLAB Program — an 

Example of a Fixed Wing Aircraft.

6.3.1 Determination of the Matrices A. B and C of State Space Form.

To illustrate the mathod using an example, we still consider the longitudinal
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responses: pitch rate, and normal acceleration to elevator stick force, for a

high—order system of an advanced fighter aircraft, presented in table 4.1.

This example is taken from Bacon and Schmidt's paper "Fundamental Approach to 

Equivalent Systems Analysis'^30]. In Table (4.1) q/ 5  is the transfer function of a 

high— order system of an advanced fighter aircraft, i.e. the q is the output variable 

and the 8 is the input variable.

The matrices A, B and C of the state— space form corresponding to the transfer 

function of Table 4.1 are shown in Appendix 3.

6.3.2 Model Decomposition.

Firstly, we use the 'eig' function of MATLAB to get the eigenvalues A and

eigenvectors M. The eigenvalues A and eigenvectors M for the example are shown 

in Appendix 3.

According to the frequency range of interest (co1 =  0.1, co2 =  10.0 rad/s) in this

example, the prefilter mode (3.36 rad/s) lies within the range being considered. The

radii dl and d2 define concentric circles in the complex plane. The columns of M 

are now separated into three groups Mj0 , Mm^ , M^igh using a MATLAB function 

Mh ig h  -  M ( : ,  1 :2 )  (6 .3 )

Mmid = M ( : ,  3 :6)  (6 .4 )

Mlo = M ( : ,  7 :8 )  (6 .5 )

where in equ. (6.3), (6.4), (6.5) the sign (:) means that all rows of the matrix M

are the same as the rows of matrix M ^ h -  The notation (1:2) implies that all

columns from the 1st to the 2nd of the M matrix are columns of the M ^g^ matrix. 

We a re  a l s o  a b l e  to  get  v e ry  e a s i l y

M T = [ ^ h ig h  zmid z lo  ] 

where th e  Z h i g h ’ Z m i d  and Z \ Q a r e  shown in  Appendix 3.

According to formula for Gj(s) of the form of equation (6.1), we can easily get 

the matrices A -v  Bj, C [  of the three subsystems directly from equ.(5.8.1) using 

MATLAB. We have therefore obtained the three description for the high— mid—
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and lo— subsystems.

The high— and mid— subsystems for this example are shown in Appendix 3.

6.3.3 To Find the Effective Order of both high— and mid— Subsystems.

The controllability grammiam X and the observability grammian S for the high— 

and mid— subsystems can be obtained by using MATLAB.

Xi = gram ( Aj , B j)

Sj = gram ( Aj , Cj)  where  i = h i g h ,  mid.

The Xj and  Sj s h o u l d  s a t i s f y  t h e  Lyapunov e q u a t i o n s  (3.13) and  (3 .14 ) .

They a r e  shown i n  App en dix  3.

Based on the definition of the Hankel matrix we could easily get Hankel matrices 

Hhigh an£* Hmid of the high— and mid— subsystems. The Hankel matrices H^igh 

and of the high and mid subsystems are shown in Appendix 3. We could also

get the Hankel singular values Sy^ and Svm directly. As outlined in section 6.2.5, 

since there is a relation between the product XS and H^H , we could also get the 

Hankel singular values Syj from the product of X and S directly as given in 

APPENDIX 3.

In  t h e  example  b e i n g  c o n s i d e r e d  t h e  Hankel  s i n g u l a r  v a l u e s  Sv ^ o r  cr1 

and  <j2  o f  t h e  h i g h -  s u b s y s t e m  a r e

s vh = 0-0062 or cr 1 = 0.6005

0.0007 cr 2  = 0.0007

and th e  Hankel s in g u la r  v a lu e s  Svm or a 3 -  <r6 o f  th e  m id -su bsystem  are  

Svm = 0.6005 or a 3 = 0.6005

0.3617 o-4 = 0.3617

0.0588 (J5 = 0.0588

0.0060 CTg = 0.0060

6.3.4 Determination of the Complete Reduced—Order Approximation.

From the Internaly Balanced Technique, the low order approximation of the high- 

subsystem is defined by
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Ar h  = - 2 3 . 4 8 0 4  + O.OOOOi 

Br h  = 0 . 2 5 3 5  -  3 . 1 6 0 6 i 

c r h  = - 0 . 0 0 7 1  -  0 . 0890i

The low o r d e r  a p p r o x i m a t i o n  o f  t h e  o f  m id -  s u b s y s t e m  i s  d e f i n e d  by 

Arm =

- 2 . 0 6 6 2  + O.OOOOi - 1 . 3 8 7 2  -  1 .21701 

1 .4 7 3 5  -  1 . 2 9 2 6 i - 1 . 1 5 4 8  -  O.OOOOi

Brm =

0 . 0 1 2 5  -  0 . 0052i  

- 0 . 0 0 2 2  + 0 . 0 0 4 5 i 

^rm =

1 6 . 4 0 6 4  + 6 . 7 8 8 7 i - 3 . 8 2 4 9  -  7 . 7 5 2 3 i

The complete reduced— order approximation is the sum of high— and m id- 

subsystem approximations.

The matrices Ar , Br , Cr of the transfer function of the reduced— order system are 

Ar h 0

Ar  =
0 Arm

B*. =

- 2 3 . 4 8 0 4  + O.OOOOi 0 0

0 - 3 . 2 2 1 0  -  O.OOOOi - 6 . 0 0 3 0  -  O.OOOOi

0  1 . 0 0 0 0  0

Br h

'rm

Cr  -  [ Cj-h Crm ]
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-0 .2 8 3 2  + O.OOOOi 0.2838  -  O.OOOOi 0.3001 + O.OOOOi 

Thus we have got a complete reduced— order system, in which the order of the 

original system is reduced to r =  3 from r =  8 .

6.3.5 The Frequency Responses for both the Reduced Order Model and the High 

Order System.

The frequency response of the reduced order model and the high order system in 

the frequency range between 0.1 — 100 rad/sec. is shown in Fig. 6.1. From Fig.

6 . 1  we can see that the matching between the high order system and the reduced 

order model is excellent except in the low frequency range between 0 . 1  — 0 . 3

rad/sec..
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Chapter 7 

Applications to Helicopter Models

Bacon and Schmidt's approach and the extended Levy's technique have been

applied to the Level 1 helicopter model as described in Chapter 2. The particular

case considered is a Puma helicopter for which a substantial quantity of flight test 

data exists. Puma flight test data provided by the Royal Aerospace Establishment has 

been used at Glasgow University for system identification research.

7.1 Model Reduction for the Puma Helicopter.

For the purposes of flight control system design and handling qualities studies the 

use of a high order helicopter model is both tedious and costly. It is often desirable 

to replace a high— order system description by a model of lower order which 

incorporates the essential characterstics of the vehicle. This is particularly important 

for real time simulation studies and for the initial stages of design for a flight 

control system where a number of design methods may be applied. The more

complex forms of model can be cumbersome at the preliminaly design stage.

In this chapter we apply Bacon and Schmidt's method and the extended Levy's 

method respectively to model reduction for a linearised helicopter model in which

some eigenvalues may be in the right half plane. Three 14th order state space

models, Puma60, Puma80 and PumalOO, are considered in the present work. These

represent the linearised dynamics of the Puma helicopter for trimmed flight conditions 

involving 60, 80 and 100 knots level forward flight. In the original model, the

matrices A and B in the state—space equations are a 14x14 square matrix and a

14x4 matrix respectively. The C matrix is an identity matrix with dimension 14X14. 

The A 1# B , and C 1 matrices of the Puma60 helicopter control system; the A 2, B 2 

and C 2 matrices of the Puma80 helicopter control system and the A 3, B 3 and C 3 

matrices of the PumalOO helicopter control system are shown in APPENDIX 3.

The transfer functions are

Gjj (s) =  Xi / uj (i =  1, ••••, 14; j = 1, ••••, 4)
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The computer work was carried on a DEC MicroVAX 3600 at the Glasgow 

University Computer Centre. The two model reduuction programs are written in 

MATLAB and have the general form outlined in Chapter 6  . The program listings 

are shown in APPENDIX 4.

7.2 Inputs and Outputs.

In the present work only the longitudinal responses have been considered and each

case is presented in terms of a single— output. For single main rotor helicopters, the

control input vector u is made up of the blade pitch angles for the main and tail

rotor as follows :

9 oe ----  main r o t o r  c o l l e c t i v e  b l a d e  p i t c h  a n g le

9 ] c ----  l o n g i t u d i n a l  c y c l i c  b l a d e  p i t c h  a n g le

U 91c   l a t e r a l  c y c l i c  b l a d e  p i t c h  a n g le

9 ot    t a i l  r o t o r  c o l l e t i v e  b l a d e  p i t c h  a n g le

The main rotor collective and longitudinal cyclic inputs directly affect the 

magnitude and direction of the main rotor thrust vector, the lateral cyclic input 

affects the thrust vector to produce lateral motion while the tail rotor thrust is 

controlled in magnitude by the tail rotor collective input. Lateral cyclic and tail 

rotor collective inputs thus influence the lateral/directional dynamics of the vehicle. 

Cross— coupling, which is very strong for certain flight conditions, introduces 

significant complications and means that the simple separation of dynamics for the 

longitudinal and lateral axes (as used for most fixed— wing aircraft) is not possible in 

the case of the helicopter. The complete transfer function matrix is normally needed 

for flight control system design to allow for these coupling effects.

7.3 Helicopter Model Reduction Applications Using Levy's Method.

As the metioned in section 6.1 the MATLAB software package has been used to 

obtain 8 th order reduced models for Puma60, Puma80 and PumalOO representations.

7.3.1 Frequency Responses.

Some results are shown in Fig.7.1 to Fig.7.17. In some cases excellent agreement 

has been obtained between the frequency responses of the 14th order system and the
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8 th order reduced model for most of the frequency range considered. However the

choice of weighting factor nl was found to be of critical importance. From Fig.7.1

to Fig.7.3 we can see that for the case of Puma 80 the frequency response of the 

reduced model agrees with the high order system very well over the most of range 

of frequency (0 . 1  — 1 0  rad/sec.) if the weighting factor nl is taken 0 . 6  for all

output xj, (i =  1 — 8 ), and input u 3. But from Fig.7.10 — Fig.7.13 we can find 

that if the weighting factor nl is taken 1 . 2  the frequency response of the reduced 

model agrees with the high order system for all outputs x̂  and all inputs u 1 — u 4  

over the whole frequency range of interest for PumalOO. Also from Fig.7.3 to 

Fig.7.5 we find that if different values of weighting factor are taken such as 0.2, 0.6 

and 1.5 for the same input and output for Puma80 the results can show significant 

differences. For Puma60 cases for nl =  0.4, 0.6 and 1.2 again produced results 

that are very sensitive.(see Fig.7.7 to Fig.7.9) The errors of the frequency response 

of all the tests tried are shown in Table 7.1.

Fig.7.14 to Fig.7.17 show the effects of the number of points taken in the 

calculation. From these figures it can be seen that the number of points taken in 

calculation does not affect the accuracy of fit and only affects the smoothness and 

resolution of the solution.

7.3.2 Time Responses.

The time responses for different reduced order models have been obtained. From 

output curves Fig.7.18 to Fig.7.21 we can see from the step response curves that the 

matching between the high order system and reduced order system is very good in 

some cases within the period of 0 — 10 seconds for both Puma60 and Puma80.

Also Fig.7.22 and Fig.7.23 show the matching within the period of 0 — 10 seconds 

and 0 — 1 second for both Puma60 and Puma80 helicopter control systems. Cases 

where the time domain fit is poor (such as Fig.7.18 and 7.21) correspond to 

frequency domain fits which were also poor (such as Fig.7.5 and Fig.7.8 ). Cases 

where the time domain fit is especially good (e.g. Fig.7.19 and Fig.7.20) relate to
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reduced order models for which particularly good frequency domain fits were found 

(e.g. Fig.7 . 6  and Fig.7.7). Units and variables in the time domain responses are as 

specified in APPENDIX 3.

7.4 Application of Bacon and Schmidt's Method to Helicopter Model Reduction.

7.4.1 Procedure for Order Reduction.

As the mentioned in Chapter 6  we use MATLAB software to get the eigenvalues 

dj and eigenvectors M  ̂ of the original systems matrices Aj (i =  1, 2; 1 for Puma60 

and 2 for Puma80). They are shown in APPENDIX 4.

The system is then divided into three groups of subsystems: high, mid and low 

(see Chapter 5 and Appendix 4) according to the natural frequency oĵ ,  which is 

defined by the positions of the eigenvalues \ j  in the complex plane. The radii dl 

and d2 define concentric circles in the complex plane. So, the matrices Mm^ ,  

Mhighi and (Mm^ j) — T , (M^jg^j)-  T can be obtained from the following MATLAB 

expressions:

Mmidi =  ^ 0 ,1 :6 )

Mhighi =  !*,(:,7:14)

Mmid 2 =  M 2( : , 1 ;6 )

Mhigh2 =  M 2(:,7:14)

(Mmidi)  ̂ = inv((Mmidi)')

(M h ig h i ) " T =  inv((Mhighi)')

(Mmid 2) ^  =  inv((Mmid 2 )')

(Mhigh2)  ̂ = n̂v((Mhigh2)')
This process gives the matrices Aj, Bj, Cj of the subsystems G /s). After that, the 

Internally Balanced Technique is applied to reduce the order of the Ghigh and Gjnhj 

systems. Firstly we solve for the controllability grammian X and observability 

grammian S, which are the unique solution of the Lyapunov equations(5.13, 5.14). 

The rank of the product XS equals the number of modes that are both controllable 

and observable, i.e., the minimal order. It has been shown that this product is

- 97 -



always diagonalizable and its eigenvalues are real and non— negative. Consequently, 

the rank of the product XS equals n minus the number of zero Hankel singular 

values. The product XS should be written as 

XS = TAT" 1

0

where A =
T. 2

0 I 2- n - r

T -  [ Tr . Tn_r ] 

t - t  -  [ u r , Un _r ]

I r  = d i a g ( h | ) i = l , r ;

Tn - r  = d i a g ( h j )  i = r + 1 , n ;

an d  h., ^ h 2 ^ . . . .  ^ h r  ^ h r+1 ^ • • • • >  h n ^ 0.

The ratio hr/hr4. 1 where hj are ordered such that lq ^ hj+  1 could be used to 

infer the effective order. The Hankel singular values of high and mid subsystems for 

the Puma60 and Puma80 models are shown in Table 7.2.

From the Table 7.2 we can see, for example the ratio h 3 /h 4  =  1.638 for Puma60 

and for Puma80 the h 1 / h 2 =  1.112 and h 1 3 / h 1 4  =  8.000. The effective orders of 

the and Gqjgq for Puma60 and Puma80 are shown in Table 7.3.

T a b l e  7 . 3  E f f e c t i v e  O r d e r s  f o r  h i g h  an d  mid S u b s y s t e m s

1 Puma60 Puma80 |

Gh i g h
HOS r  = 6 r  = 6

LOS r  = 3 r  = 1

Gmid
HOS r  = 8 r  = 8

LOS r = 8 r  = 7 |

HOS r  = 14 r  = 14

LOS r  = 11 r  = 8

7.4.2 Results of the Reduction Model.

For Puma60 the effective order r is taken as 11, and for Puma80 the effective
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order r is 8 . The results of the computation are divided into two parts: the results 

in terms of the frequency response and the results in term of the time response.

7.4.3 Time Response.

For the results in terms of the time response, we can see from the step response 

curves that the matching between the high order system and the reduced order

system is very good for each case within the period of 0  — 1 0 0  and 0 — 1 seconds 

for both Puma60 and Puma 80. (see Fig.7.24 and Fig.7.25) Fig.7.26 and Fig.7.27 

show the matching within the period of 0  — 1 0  seconds and 0 — 1 second for both 

Puma60 and Puma80 HELISTAB helicopter control systems.

7.4.4 Frequency Response.

For the results in term of the frequency response, the agreement between the two 

systems will depend very much on the order taken in the reduced— order system. 

For Puma60, we found that when the reduced order r is 11, a very good agreement

can be obtained in the whole frequency range in some examples.(see Fig.7.28) For

Puma80, when the reduced order r is 8 , it can be seen that the matching between 

the high order system and the reduced order system is excellent in the whole

frequency range.(see Fig.7.29) It may be significant that the 60 knots case for which 

a poorer fit was obtained involves right half plane eigenvalues both in the original 

system and in the reduced order model. Thus, we choose a effective order of the 

system, r =  11, for Puma60, and r = 8  for Puma80.

7.4.5 Eigenvalues of the High Order System and the Reduced Order System.

The idea of retaining dominant eigenvalues to simplify reduction of a high— order 

system to a low— order plant was discussed in detail for the first time by Davisont2 61 

in 1966. This concept has since been further developed and is now widely used in 

control system design. For a state—space form of model expressed as Equ. (3.1), 

the matrix A is of high order. The reduced model can be expressed as

x = Ar x+ Br u

where the matrix Ar is of lower order but has the same dominant eigenvalues and
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eigenvectors. Comparisions of the eigenvalues of the matrices A and Ar for 

Puma60 and Puma80 are shown in Table 7.4 and Table 7.5 respectively. From 

Table 7.4 and Table 7.5, we can see that the most of eigenvalues of matrix Ar for 

the reduced order system (11th order) are equal to the eigenvalues of matrix A for 

the high order system (14th order) for both Puma60 and Puma80. It means that we 

obtained a low— order model with the dominant eigenvalue concept which gave a 

satisfactory dynamic response as well as correct steady— state response.

Tab le  7 .2  Hankel S i n g u l a r  Va lues  f o r  x 1 // u 1

1 Puma60 Puma80 |

i h i h i / h i+ l h i h i / h i + l

1 13.1203 1.086 15.3923 1 . 1 1 2

2 12.0796 2.402 13 .842  2 2 .166

h ig h 3 5.0292 1.638 6.3908 1 .697

4 3.0699 2.158 3.7661 2 .004

5 1.4227 5.599 1 .8797 5.771

6 0.2541 0.3257

7 1.4962 1.049 1 .6235 1 .087

8 1.4258 12.134 1.4935 13.565

mid 9 0.1175 1.186 0 . 1 1 0 1 1 .5 04

1 .0 e + 4X 1 0 0.0991 1.745 0.0732 5 .674

1 1 1 0 .0568 6.843 0.0129 1 .985  |

1 2 0.0083 1 .694 0 .0065 1 .3 5 4  |

13 0.0049 12 .250 0.0048 8 . 0 0 0

i -------------
14
—

0.0004
------------------- -------------

0 .0006
---------------------- ------------- ,
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Table 7.1 The Error for Different Cases

Puma 80

1 n l  |
i i

G 1 L = 1
I

L = 2 L = 3 L = 4 L = 5 |
1 1 
1 0 . 6 |  
i i

x l / u 3
I
| 4.2837x10®
I

5.9258x10 7 1 .7340x10 6 9 .2 0 1 1 x 1 0 s 8 .9 2 4 7 x 1 0 s |
1 l 
1 0 . 6 |  
I i

x2 /u3
I
|1 .9675X 107
I

6.0596x10 6 1.6886x10 6 1 .3 9 8 6 x 1 0 s 1 .3502x10s |
1 I 
1 0 . 6 |  
i i

x3 /u3
I
| 1 . 4480X104
I

148.2084 243.5019 53.9635 44 .2414  |
1 l 
1 0 . 6 |  
i i

x4 /u3
I
|1 .5327X 104
i

2 .6314X103 530.6563 301.5158 295.2345 |
1 l 
1 0 . 6 | 
i i

x7 /u3
i
| 0 .0027 
1

0 .0013 0 .0011 0.0011 0 .0011  |
I i 
1 0 . 6 |  
I i

x8 /u3
I
| 3 .2230x10 3
I

232.1079 35.0603 13.0811 11.2997 |

1 1 . 5 |
I i

x7 /u3
i
| 0 .0027 
1

0.0011 0 .0067 0.0112 0 .0112  |

1 1 . 5 |
I |

x8 /u3 |3 .2 2 3 0 x l 0 3
1

18.1810 0.0172 0.0205 0 .0209  |

1 0 . 2 | x7 /u3
i
| 0 .0027
I

0.0026 0.0028 0.0027 0 .0026  |

1 0. 2 | x8 /u3
I
|3 .2 2 3 0 x l 0 3 876.9742 1.1387X103 806.5150 694.0652 |

Puma 60

1 1 .0 | x l / u l |1 .1 8 0 1 x l0 8 1.5012 0.2899 0.2899 0.2899 |

1 1 .0 | x2 /u l |1.9741X107 1.3127 0.4344 0.4331 0.4331 |

1 1 .2 | x5/u3 |1 .2 9 7 4 x l0 9 3.5235X104 68.6969 69.1881 69.1876 |

1 1 .2 | x6/u3 |9 .6736x10s 710.2610 29.3468 29.7379 29.7382 |

1 1 .0 | x5/u3 |1 .2974x10s 5.8388x10s 2.3786x103 54.1328 54.1633 |

1 1 .0 | x6/u3 | 9 . 6736x10s 1.5794X103 150.9394 24.4558 24.4679 |

1 0 .6 | x5/u3 |1 .2 9 7 4 x l0 9 3.3465x10s 1.3455x10s 1.2058x10s 1.2004x10s |

1 0 . 6 | x6/u3 |9 .6736x10s 3.1359X104 6.8084X103 5.9686X103 6.0149X103 |

1 0 .4 | x5/u3 I1.2974X109 3.6298x10 7 1 .8560x107 1.6329x107 1.5974x107|

1 0 .4 | x6/u3 |9 .6736x10s 2.3797x10s 1.9818x10s 1.8360x10s 1 . 8152x10s |
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Levy s model, * HOS model

-500

-1000

-1500-

-2000

-2500

-3000

-3500

time (sec.)

-10

-12
0.50.3 0.4 0.6 0.70.2 0.80.1 0.9

time (sec.)

Fig. 7.22 Time Response for Puma80 (x l/u l, Levy's Method)
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Levy s model, * HOS model
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- for reduced model, o for HOS model
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Fig. 7.24 Time Response for Puma80 (x l/u l, Bacon & Schmidt's Method)
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- for reduced model, o for HOS model
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Fig. 7.25 Time Response for Puma60 (x l/u l, Bacon & Schmidt's Method)
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- HELISTAB model, * HOS model
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HELISTAB model, * HOS model
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Chapter 8 

Discussion and Conclusion

8.1 Comparison of the Results from Different Methods.

In Chapter 3 and Chapter 4 several different methods for model reduction were 

introduced. They are M arshall'st2 71 method, C hen 'st64] method, Liaw 'st48] method 

and Levy'st6 8] method which has been further developed by the author to suit the 

single— input multi—output case Bacon and Schmidt's approacht30] has also been 

described in Chapter 5. In order to compare these approaches each method has 

been applied to a model of a Puma helicopter for a condition involving 80 knots 

forward speed in level flight, as described in Chapter 7. However, R.T.N.Chen's 

method for obtainning a state space description from a transfer function is not 

suitable for this application because some zeros of the helicopter flight mechanics 

models are located in the right half—plane. Since the method cannot be applied to 

non— minimum phase systems it cannot therefore be applied directly for model 

reduction of helicopter flight mechanics models. In addition a nonlinear helicopter 

flight mechanics model HELISTABt7 3»7 4], implemented in terms of the software 

package developed at the Royal Aerospace Establishment, Bedford can be used to 

provide theoretical quasi— static parameter values for linearised models of various 

orders. Only the results from Levy's method, Marshall's method, Liaw's method, 

Bacon and Schmidt's method and the theoretical model using the HELISTAB package 

are available for comparison. This includes the comparing of eigenvalues resulting 

from different methods and a comparison of frequency response and time— domain 

responses for high and low order models by each method.

8.1.1 Comparison of Eigenvalues of the High— Order System and Reduced Order 

Systems.

The values of the eigenvalues of the system matrix A are considered to be of vital 

importance for assessing the quality of approximation of the reduced model. In 

general, the closer the dominant eigenvalues of the reduced model matrix are to
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those of the high order model, the better is the approximation of the model to the 

real system. The eigenvalues of the high—order system (14th order) and the 

reduced—order system (8th order) obtained from the five methods are listed in Table 

8.1. and Table 8.2, separately. It can readily be seen that Bacon and Schmidt's 

method and Levy's method produce the eigenvalues which approximate most closely 

the dominant eigenvalues of the high order system. In general, the eigenvalues from 

Bacon and Schmidt's method or Levy's method are both in very good agreement with 

the eigenvalues of the high order system in the low frequency and middle frequency 

ranges. However in the high frequency range Bacon and Schmidt's method can

produce better results than Levy's method.

8.1.2 Comparison of Frequency Responses.

The frequency responses resulting from the different methods of model reduction 

are shown in Fig.8.1 and Fig.8.2 together with those of the high order system. It

can be seen clearly that the frequency response obtained by using Bacon and

Schmidt's method gives excellent agreement both in magnitude and phase with the 

high— order system model over the whole frequency region of interest. From Fig.8.3 

and Fig.8.4 it may be seen that the frequency response obtained by using the 

HELISTAB package for generation of an 8th order linearised model generally agrees 

well with the high order system model over the frequency region of interest except 

in the high frequency region. In the high frequency region big differences in phase 

between the HELISTAB model and original system model can be found. The 

frequency response produced by Marshall's method and Liaw's method only give 

agreement in a very small part of the frequency range between 0.01 — 0.25

(rad/sec). Generally Liaw's method gives the poorest results for this application. 

Again, It is clear from Fig.8.3 and Fig.8.4 that both Bacon and Schmidt's method 

and Levy's method can produce perfect results in the low and middle frequency 

range.

One particularly interesting finding which is illustrated clearly in the results of
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Figure 8.3 is that by using either Levy's method or the Bacon and Schmidt's

approach it is possible to obtain a reduced order model which fits the original 14th 

order model much more closely than the HELISTAB 8th order model. This is 

considerable interest for flight control system design where much use is made of 

linearised 8th order descriptions obtained directly from nonlinear flight mechanics

models by considering only the state variables associated with rigid body motion. 

The results of Fig.8.3 suggest that a better low order description may be obtained if 

the linearisation is carried out using the full set of state variables in the nonlinear 

model with approprate model reduction techniques then being applied as a second

and separate stage of the process. The measure of how well the reduced model 

approximates the original system is reflected in the model's frequency response error 

bound. Ennst3 4] has proved that the frequency response error of the rth order

model is bounded for all co by

o-{Qo [G( jco) -  Gr  ( jco) ] Qj } < 2Tr ( I n _r ) (8 .1 )

where cj(-) is the maximum singular value of (•), and Ln_  r =  diag(hj) where j =  

r+ 1 , n. Here, Qj is an input scaling matrix, Qj =  diag(qjij), (1 < k < m); Q 0 is 

an output scaling matrix, Q0 =  diag(q0jc), (1 < k < p), where m is number of

inputs u of Equ.(5.1) and p is the number of outputs y of Equ.(5.1). The bound is 

defined by the truncated Hankel singular values of the scaled system Q 0G(s)Qi, which 

like G(s) are invariant to state transformation. Also since

[ G( jco) -Gr (jco) ] = [ Gm j d ( jco) -Gm j d , r (jco) ] + [ G  ̂j gj^( jco) -G^ j r ( jco) ] +Gj0 ( jco)
( 8 . 2 )

t h e n

<r[E( jo>) ] <cr[Em id( jco) ]+cr[Eh ig h ( jco) ] +cr[E1 Q( jco) ] ( 8 .3 )

If the Gi0(s) contribution to the frequency response in the region co1 < co < co2 is

negligible, the frequency response error of the reduced-order model described above 

is bounded by

sup cr[Q0E( jco)Qj ] < 2 [Tr(Lm| d n̂_r ) + n _r ) ] ( 8 . 4 )
co, <co<co2
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If Qj = diag(q,j) and Q0 = diag(q0j), it can be shown that

I Ei j  ( ja>) | < Bcoij (co, < co < co2) (8 .5 )

where B ^ j =  2[Tr(Lm|d n_  r) +  r)]/(qyq0j).

8.2 Further Comparison between Bacon and Schmidt's Method and L ew 's Method.

From previous discussion, it has been already seen that among the five model

reduction methods considered, only Bacon and Schmidt's method and Levy's method 

can produce very good results. In this section, we try to further compare these two 

methods.

Fig. 8.5, Fig. 8.6 and Fig. 8.7 show the flow chart of Bacon and Schmidt's

method, Levy's method and Chen's method separately. The Bacon and Schmidt

method is based on an Internally Balanced Technique in which we only need to find

and to analyse the Hankel Singular Values. The method provides more physical

insight than Levy's method so that the resulting reduced order system has a more 

direct physical connection with the high order system. Levy's method uses the

least— square approach which is a pure mathmatical curve fitting technique. This

method requires solution of a set of linear equations, and is more complicated to 

implement and needs more computer CPU time than Bacon and Schmidt's method. 

However, the application of Bacon and Schmidt's method needs some experience to 

establish appropriate subsystems whereas the application of Levy's method requires 

little physical understanding of the system or previous experience.

8.3 The Unique Solution of Bacon and Schmidt's Method.

The resulting reduced system model in Bacon and Schmidt's method is uniquely 

determined by a small number of parameters: l )d l ,  d2; the radii of the concentric 

circles which define Gmid and G ^g^; 2) rmjd, r^jg^; the order of subsystems G mjd, 

^high» 3) Qj, Q0 ; the input/output scaling. It is apparent that different choices of 

dl and d2 will produce different subsystems and therefore different results will be 

obtained. On the other hand, if the radii d l, d2 have been decided, then a 

different choice of order (rmjd , r^jgh) of subsystems G m,d and Gj^gh will produce
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different results as well. Also the scaling matrices Q 0 and chosen may influence 

the resulting model.

8.3.1 The Effect of the Choice of Radii dl and d2.

Two concentric circles of radii dl and d2 are chosen according to the location of 

the poles in the s— plane. These circle will separate the s— plane into a low—, 

mid— and high— frequency regions and thus can be used to separate the pole/zero 

constellation into three sets. The choice of different subsystem will give different 

results.

Fig 8.8 and Fig 8.9 show two different results from two different choices of radii 

dl and d2 for the Puma at the 80 knots flight condition. One of them is for radii 

dl =  0.001, d2 = 15. The other one is for radii dl =  0.22 , d2 =  15. Fig.

8.10 and Fig 8.11 also give two results by choosing radii dl and d2 for an advanced 

fighter!30]. In this example, it should be noticed that even if we take the same

effective order of the subsystems Gm,d and G^jgh big differences between the two 

results can be found due to the different choices of dl and d2.

8.3.2 The Effect of the Choice of the Effective Order of the Subsystems G ^ ^  and

Shigh-

Using the Puma at 80 knots as an example different effective orders of the 

subsystems Gm}d and G^igh were chosen. One was chosen as rmjd =  7 and r^ g ^  

= 1; another one was chosen as rmjd = 6 and r^igh =  2. The total effective 

order of the system is equal to 8 in both cases. From Fig. 8.8 and Fig. 8.12 we 

can see that very different results are found in these two satuations the difference 

resulting from the different effective order of subsystems is significant though the 

effective order of the overall system is the same (r = 8).

Similarly, in the another example — the advanced fighter without prefilter, the

results given in Fig.8.10 and Fig.8.13, show that although the final reduced order is 

same the results still show big differences if the effective order of the subsystems 

^m id and ^high is different.
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8.3.3 The Effect of the Scaling Factors.

As mentioned in Chapter 5, to obtain a uniform match between the truly dominant 

responses of the system, scaling must be included. In order to discuss the 

importance of the scaling , the example of the advanced fighter without prefilter is 

again used as an example. In Fig.8.10 and Fig 8.14 the results from using scaling 

and without scaling are presented respectively. The difference appears only in the

high frequency region.

8.3.4 The Equivalent delay in Low Frequency Range.

The use of an equivalent delay parameter is a widely used method in the 

reduction of complex systems, especially in terms of approximating the dynamics in 

the high frequency range. The equivalent delay for the Puma helicopter at 80 knots 

flight condition and a advanced fighter without prefilter are shown in Fig. 8.15 and 

Fig. 8.16. From Fig. 8.15 and Fig. 8.16 we can see that the reduced order systems 

with equivalent delay are given. For the Puma at 80 knots the delay time r is

0.04535 sec., and in the low frequency range between 0.1 — 3 rad/sec. the reduced 

order system with delay agrees with the high order system very well. However, in 

the middle and high frequency ranges the reduced order system with delay does not 

fit the high order system. For the advanced fighter without prefilter the delay time 

r is 0.03216 and as with the Puma, the reduced order system with delay only agrees

with the high order system in the low frequency range.

8.4 Conclusion.

The equivalent system approximation technique presented by B.J.Bacon and

D.K.Schmidt has for the first time been used in the analysis of a helicopter flight

mechanics model. The Puma helicopter for flight conditions of 60 and 80 knots has

been used to demonstrate the technique. Reduced order system models have been 

obtained, which give excellent comparisons with the original system model.

Comparing with other methods for obtaining reduced order system, Bacon and 

Schmidt's method showed superior agreement in terms both of time and frequency
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responses. For a given frequency response error each system has an effective order 

which is determined by a small number of parameters. Therefore, the equivalent 

system approach technique is easy to apply. In addition, the software package 

MATLAB provides an easier implementation than other software packages so far 

considered. The computer CPU time taken using MATLAB is of the order of a 

few minutes for the SISO case considered using a DEC MicroVAX 3600 (VMS2).

8.5 Future Work.

As described in previous chapters, the equivalent system approach offers a very 

good representation of a high order system, although the studies involving the Puma 

helicopter showed that there is still room to further improve the performance in the 

higher frequency range. Model reduction for use in flight control system design 

involves requirements that are considerably different from those encountered in other 

applications such as piloted simulation and wind tunnel validation. Reduced models 

for use in simulation and wind tunnel validation must be generally accurate over a 

wide spectrum of frequencies from trim (zero frequency) and phugoid (low frequency) 

to the dominant transient responses of the longitudinal short— period and 

roll— subsidence modes (mid/high frequency) . Practical flight control system design 

requires reduced models that are 1) highly accurate in the crossover frequency range

— to exploit the maximum achievable performance from the helicopter — and 2) 

robust in the crossover range with respect to flight condition and input form and size

— to ensure that cloose— loop stability/performance is maintained. Control system 

design can be made robust to compensate for poor model robustness, but only at the 

expense of performance. These requirements are especially difficult for advanced 

high — bandwidth control systems where the crossover range occurs at frequencies 

near the limit of current model reduction capabilities; the model order must be high 

enough to capture the important dynamic characteristics. In the frequency domain, 

this means a sufficient number of states to achieve a "good fit" of the nonparametric 

response. However, if the model order is excessive model parameters will exhibit
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large variability to small changes in flight condition, input form and input size, which 

will compromise robustness.

The modern trend in aircraft control systems is inevitably towards greater 

complexity, due mainly to requirements imposed by complex performance 

specifications and tasks and to the need for accuracy. A modern complex system 

may have many inputs and many outputs. Therefore Levy's method of model 

reduction may still have some room to develop. In the present work, a further 

extension of Levy's method to multi— input multi— output cases has been developed, 

although more investigation about its application may still be necessary.

It should be possible to use this simpler low order description in applications such 

as flight control system design and real— time simulation for handling qualities studies. 

Reduced order models of this kind can also be used in the validation of more 

complex nonlinear models using system identification methods. Frequency— domain 

identification of rotorcraft dynamics are of particular importance in this context. 

Comparisons could be made between the experimental frequency responses and the 

frequency responses obtained from the reduced order model, either to confirm the 

validity of the reduced order model or to provide information to further improve the 

theoretical model from which the reduced model was derived. A spectral analysis 

approach to the identification and validation of helicopter models could be integrated 

with the frequency domain methods of model reduction.
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T a b le  8 .2  THE EIGENVALUES OF MATRIX [ A ]
FOR ROS ( 8TH ORDER) AND HOS (14TH ORDER) ( PUMA80 )

USING BACON & SCHMIDT' S AND LEVY'S METHOD

| H.O .S 1 R . O . S . 8TH ORDER) ]

I 1 BACON | LEVY |

| -  0 . 0 0 9 2 + 0 . 2 0 9 8 i  | -  0 . 0 0 9 2  + 0 . 2 0 9 8 i 1 - 0 . 0 0 9 2 + 0 . 2 0 9 8 i  I

| -  0 . 0 0 9 2 - 0 . 2 0 9 8  i  | -  0 . 0 0 9 2  - 0 . 2 0 9 8  i | - 0 . 0 0 9 2 -  0 . 2 0 9 8 i  |

| -  0 . 0 0 0 1 1 -  0 . 0 0 0 1 | - 0 . 2 9 0 0 + 0 . 9 3  54 i  1

| -  0 . 2 9 0 0 + 0 . 9 3 5 7 i  | -  0 . 2 9 0 0  + 0 . 9 3 5 7 i | - 0 . 2 9 0 0 -  0 . 9 3 5 4 i  |

| -  0 . 2 9 0 0 - 0 . 9 3 5 7  i  | -  0 . 2 9 0 0  - 0 . 9  3 57 i | - 1 . 0 8 4 2 + 1 . 1 6 0 6 i  |

| -  1 . 0 8 3 6 + 1 . 1 6 7 0 i  | -  1 . 0 8 2 7  + 1 . 1 6 6  4 i | - 1 . 0 8 4 2 -  1 . 1 6 0 6 i  |

I -  1 . 0 8 3 6 - 1 . 1 6 7 0 i  1 -  1 . 0 8 2 7  - 1 . 1 6 6 4  i 1 - 1 . 2 4 9 5 1

| -  1 . 2 6 4 7 1 -  1 7 . 3 1 6 3 1 - 2 1 . 8 3 3 8 1

| - 1 5 . 1 4 2 9 + 5 . 7 8 1 4 i  | 1 1

| - 1 5 . 1 4 2 9 - 5 . 7 8 1 4 i  | 1 1

| - 1 5 . 4 6 3 4 + 49 . 1 1 8 1 i  | 1 1

| - 1 5 . 4 6 3 4 - 49 .1 1 8 1 i  | 1 1

| - 1 5 . 7 9 6 0 + 2 2 . 2 1 8 1 i | 1 1

| - 1 5 . 7 9 6 0 - 22 . 2 1 8 1 i  | 1 1
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BACON AND SCHMIDT’S METHOD

Model decomposition

Internally Balanced Technique

Sum of Two Reduced Subsystems

highmid

High SubsystemMid SubsystemLow Subsystem

mid high

High Order System 
x = Ax + Bu 
y = Cx

Complete Reduced 
Order Approximation

Fig. 8.5 Flow chart for Bacon and Schmidt's method
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frequency responce form & 
separated into real & imaginary 
parts

assuming the order of the 
reduced model, r

using a modified 
least-square method

calculating the matrix P and 
vector Y of the resulted linear 
equations

solving the equations

obtain the transfer function of 
the reduced order model

repeat above
steps

Px = Y

H(j co) = R(co) +jI(co)

x = Ax + Bu 
y = Cx

High-order model

a . coefficients of Denominator 
bi coefficients of Numerator

the transfer function of 
SIMO

r  ™ -  N"(s)On (s) “  *

Gfs) =

—  = 0

using a modified 
least-square method

Fig. 8.6 Flow chart for Levy's method
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Chen's Method

the transfer function of
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 ▼________

Reduced order model

x = Fx + GjU 
y = x

Fig. 8.7 Flow Chart for Chen's Method
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APPENDIX 1

Implementation of the Extended Levy's SIMO Technique in MATLAB.

Al .1 The Outline of the MATLAB Program for Modified Levy's SIMO Technique.

The MATLAB package has been discribed in Chapter 6.

This section is concerned with describing the procedure for implementation of 

modified Levy's SIMO method in the MATLAB. The program was written using 

MATLAB for DEC Micro VAX 3600 computer (VMS2) at Glasgow University 

Computer Centre. The MATLAB program can be described in terms of the

following three steps.

Al.1.1 Generation of the Original Data Files.

Because the original model given is of high— order and in state— space form, the

frequency response of system can be found using the "Nyquist" function in MATLAB.

The numerator and denominator order expected or required for the lower order 

system must be specified by the user.

A l.1 .2  Calculation of the Matrix P and Matrix v.

At first we calculate the values of equations (4.11) for each output uj, and 

determine the elements the matrix P and the matrix y. In order to to obtain better

results we may increase the number of iteration i and modify the weights 

Al .1.3 To Get the Coefficients of the Numerator aj & Denominator bjj of the

Transfer Response.

From section Al .1.1 and Al .1.2 we have obtained the P matrix and y matrix of 

each output. The numerical value of the unknown coefficients aj and bjj may thus 

be obtained from equ.(4.12) once the matrices P, X and Y have been evaluated. 

Here a and b can be obtained using the "inverse" function of MATLAB.

A1.2 Implementation of Chen's Method in the MATLAB.

From section 4.3 we have obtained the results for the SIMO case in the form of

a transfer function only.
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Al.2.1 Orgnization of the Matrix N and Matrix Fc.

We can use the MATLAB package to implement Chen's method. According to 

equ.(4.13) and (4.14) we very easily obtain the matrices N and Fc from the section 

4.3.

A l.2 .2  Calculation of the Matrix F and G i .

From Chen's method we know that it is necessary to calculate matrix F and Gi 

based on equ.(4.14). Using the inverse function of the MATLAB we can obtain 

N— 1 easily. Then from equ.(4.14) we could obtain the F matrix and the Gi 

matrix. Thus Chen's method is implemented and we obtain the reduced order 

system in state space form.
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APPENDIX 2

Mathematics Associated with the use of Hankel Singular Values

A2.1 The Definition of the Controllability Grammian and the Observability 

GrammianI8 2] .

In the n— dimensional linear time— invariant state equation

(A2-1)

x = Ax + Bu 

y = Cx

where A, B and C are nxn, nxp and qxn constant matrices; time interval of interest 

is from the present time to infinity; that is [0,<»). The controllability grammian Wc 2 

is defined by

Wc 2 _ e TAB B 'eTA'dT (A2-2)

The observability grammian W0 2 is defined by

WQ2 - e TAC’CeTA' dr (A2-3)

0

A2.2 Irreducible Realizationt8 2]

Consider the following scalar proper transfer function:

g ( s )  = s n ~1+ b ?s n ~2+ . . . .  -fbn _ N (s) (A2-4)s ^ + a ^ 11 ’+ . . . .  +an _ 1s+ an D ( s )

Let u and y be the input and output of g(s) in (A2—4). Then we have

D (s )y ( s )  = N (s )u ( s )  (A2-5)

or, in the time domain,

D ( p ) y ( t )  = N ( p ) u ( t )

Consider the nth—order differential equation (A2—5). Taking the Laplace 

transform of (A2—5) and regrouping the terms associated with the same power of s,
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we finally obtain:

y ( s )  = [ N ( s ) /D ( s ) ] u ( s )  + [ 1 /D ( s ) ] { y (0 )s n_1+ [ y ( 1) (0 )+ a 1y ( 0 ) - b 1u ( 0 ) ] 

s n “ 2+ •••  + [y ( n_1 ) (0 )+ a 1y ( n_2> ( 0 ) - b iu ( n - 2 ) ( 0 ) + a 2y ( n “ 3) (0) 

- b 2u < n - 3 ) ( 0 ) + . • •+an _ 1y ( 0 ) - b n _ 1u ( 0 ) ]} (A2-6)

The righ t-hand  side of (A2— 6) gives the response due to the input u(s),

therefore, if all the coefficients associated with sn— 1, sn— 2, s° in (A2— 6) are

known, then for any u a unique y can be determined.

The foregoing equations can be arranged in matrix form as the observable

canonical form !82]. Similaly, the controllable canonical form t82] can be obtain by

same way.

A2.3 Realization of the Hankel Matrix.

Consider the proper rational function (A2— 4) again. We expand it into an

infinite power series of descending power of s as 

g ( s ) -  h ( 0 )  + h ( l ) s " 1 + h ( 2 ) s " 2 + •••

the parameters, h(i), i =  0, 1, 2, •••, can be obtained recusively from aj and bj as

h (0 )  = b 0 

h ( l )  = - a 1h (0 )  + b1

h (n )  — - a ^ C n - l )  - a 2h (n -2 )  -  . . .  - a nh (0 )  +bn 

h (n + i)  = - a ^ C n + i - i )  - a 2h (n + i-2 )  -  . . .  - a nh ( i )  

We form the a x ( 3  matrix:

h ( l )  h (2 )  h (3 )  . . .  h (0 )

H (a, 0 )  = h (2 )  h (3 )  h (4 )  . . .  h (|8+ l)

i = 1 ,  2 ,  3,

(A2-7)

h(c0 h (a + l)  h (o+2) . . . h(cH-/3-l)

It is called a Hankel matrix of order (o:X(3). Usually, we consider a. =  n + 1 , 0  =  

n.

A2.4 The Application of the Hankel Matrix in Obtaining Irreducible Realizations.
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Now we use the Hankel matrix to obtain the irreducible realization. Consider the 

Hankel Matrix (A2—8) and apply the row—searching algorithm t8 3] to search the

linearly independent rows of H (n + 1 ,n) in (A2— 7) in order from top to bottom. We

can readily show that the rank of H (n + l,n )  is a .  Hence an irreducible realization 

of g(s) has dimension a .  The row searching algorithm will also yield {aj, i= l ,2 ,.. . ,}  

such that

[ a 1 a 2 •••  a a  1 0 •••  0] H (n + l,n )  = 0 (A2-8)

This equation expresses the primary linearly dependent row as a unique linear 

combination of its previous rows. The element 1 corresponds to the primary

dependent row. We claim that the cr— dimension dynamical equation

w i t h

X = Ax + Bu y = Cx

0 1 0 . . .  o 0 h ( l )

0 0 1 . . .  o 0 h ( 2 )

A = B =

0 0 0 0 1 h ( o - - l )

. - a i - a  2 - a 3 “ a <T-1 - a (T . h(cr) .

c = 1 0 0 • 0 0 ]

(A2-9)

is a controllable and observable realization of g(s).

The controllability matrix of (A2— 9) is 

[ B AB •••• A^-  1B ] =  H(ct,<t)

the Hankel matrix H(cr,cr) has rank a ,  hence {A,B} in (A2—9) is controllable. The 

observability matrix of (A2— 9) is

C 1 0 0 • • 0

CA 0 1 0 • • 0

CA2 = 0 0 1 • • 0

. CA^- 1. . 0 0 0 • • 1 .
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Clearly {A,C} is observable. Hence (A2—9) is an irreducible realization of g(s).

A2.5 Internally Balanced Realization.

A realization whose controllability and observability matrices have the property

v*v = uu*
is called an internally balanced realization. Here, V is the nqxn observability matrix,

U is the nx(np) controllability matrix and U* = U— 1, V* = V-  1.

A2.6 The Calculation of the Hankel Matrix and Hankel Singular Values.

If A is a real m x  n matrix, then there exist orthogonal matrices U of size m x 

m and V of size n x  n such that 

A =  UYV'

where Y is an m x  n diagonal matrix. The matrix Y satisfies 

Y =  diag (y 15 y 2, ...., yp) 

for p =  min {m,n} and y, >  y 2 >  .... ^ yp >  0

The proof of this involves the eigenvalues of the symmetric matrix A 'A  which can

be shown to be non— negative. The quantities yj are the square roots of these 

eigenvalues and are called the singular values of A. The columns of U are called

the left singular vectors and the columns of V are called the right singular vectors.

A quadratic form Iq ^ a ^  Xj x^ is said to be a Hankel form, if the general 

coefficient depends only on the sum of the indices : a ^  =  f(i+ k) (i,k =  1, ... , 

n); likewise, the coefficient matrix of a Hankel form is called a Hankel m atrix t76] as 

well. It is written in the form as below:

s o Sl . . • • s n - 1

S 1 S 2 ■ • . . . s n

■Sn - 1 s n •• • • s 2 n -

This provides the necessary background to consider the application of principal 

component analysis to responses of the model

x -  Ax + Bu
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y  = cx

In analyzing responses of (A,B,C) over an interval [0,T], it is necessary to be able 

to extended controllability and observability matrices Qc and Q 0 corresponding to 

(A,B,C) for time ts such that 

Qc ( t s ) = [B AB  AnB]

Q o ( 1 s )

C
CA
CA2

can

(A2-10)

By the definition of the Hankel matrix, we have the extended controllability and 

observability matrices Qc and Q0 defined by Equ.(A2—10). With T fixed, the 

corresponding Hankel matrix 

mH =  Qo O c

C
CA
CA2

can

[ B AB  AnB]

CB CAB CA2B ..........  CAnB
CAB CA2B .......................... CAN+1B
CA2B CA3B ...................................... (A2-11)

CAn B ......................................... CA2NB

It is clear that the matrix Mjj  corresponds to the Hankel form and M j j  is called a 

Hankel matrix.

The algorithm (SVD) developed by Golub and Reinscht75] can be used to compute 

the singular values of X and S, (i.e. Wc 2 and WG2). The singular values of X and 

S are I ^ 2 and Y.0 2 separately and their corresponding left singular vectors are Vc 

V0 and right singular vectors are Vc^ ( VQT[ ? s]

Then it follows that

(A2-12)  

(A2-13)

Wc2 -  vc£c 2vcT

Wo2 V T. 2V ^  vo^o vo
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Because the controllable subspace eAtB and the observable subspace eA,tC ' depend 

upon the internal coordinate system, we make a coordinate transformation x(t) = P 

z(t). The system model (A2—9) becomes

z = Az z ( t )  + Bz u 

X z  =  CZZ ( t ) 

w here Az = P_1AP, Bz = P " 1B, Cz = CP. 

It is important to observe that

e ^ ^  =  P _  1eAtB, =  CeAtP.

The following notation will be adopted:

(A2-14)

W 2(P) = P - i ( e tAB B 'etA 'd t )  P "T = e Az l BZBZ ' eAz ' * d t

W0 2(P) = pT ( eA'tC 'C e A td t ) P = eAz ' t  Cz  1 Cz e Az t  d t

For the case where P =  I (original coordinate system) and 

from Wc 2 =  VCV V CT we have 

WC2(P) = P - 1WC2P"T

-  P - 'V CI C2VCTP-T

S in ce  th e  I c m a tr ix  i s  d ia g o n a l i t  fo llo w s  th a t  

wc 2(P) -  p - ' vcz:ci ct vcTp - t

I n t u i t i v e l y ,  by s e l e c t i n g  P so t h a t  WC2(P) = I

S in ce  Wc 2 = VCI C2VC- ^ , i t  i s  c l e a r  t h a t  t h i s  can  be a c h ie v e d  by 

s i t t i n g  P = VCI C. A lso  we have 

W0 2(P) -  PTW0 2P

-  (VCI C) T v 0 i 0 2v 0 t  v c e c

T T v  T v  r  T r  v  T v  r  ^c vc vOz" 0  ^ o vo vc^c

HtH. (A2-15)
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where

H -  I oV0Tvc I c (A2-16)

hT -  I CTVCTV0I 0T (A 2-17)

The singular values of matrix H will be represented by a , 2 > a 2 2 >  . . . >  crn 2 >

0 and will be referred to as second— order models of the system.

From Equ. (A2—10) we can see:

=  Qo(ts) Qc^s)

=  U0*(ts)I^*T(ts)v 0*T(^)Vc*(ts)It.*(ts)Uc* T (y

= U0*(ts) I0TV0TVcI cUc*T(ts)

= u0*(y(i<)v0Tvcic)uc*T(y

Let O i*^), l<i<n be the ordered singular values of M jj(ts). Then for l<i<n,

lim q * (ts) =  a - 2 

ts^O

where cq2 is the singular value of the ith second—order mode of the H matrix. 

A2.7 A Proof of XS = HTH

From Equs. (5.11 — 5.14) we have 

X =  Wc 2 =  VcI c 2Vct  and 

s  =  W0 2 =  VoI o 2V0 r  

Thus XS = VĈ C2VCTV0I 0 2V0T

We know the fact that the cotrollable subspace eAtB and the observable subspace 

e A 't c  depend upon the internal coordinate system. From section A2.6 mationed 

given a coordinate transformation z(t) =  P x(t) and selecting P =  VCXC we have 

I C2(P) =  I. Since Wc 2 =  VCI ^ 2VĈ  and from Eq.(A2—15) we have 

w0 2(P) -  ectvctv0 i 0t i 0v0t vci c 

XS -  WC2(P) W0 2(P)

-  I cTVct V0I 0TE0V0TvcEc (A2-18)

an d  a l s o  f rom (A2-15)  we have

hTh -  ( I cTvcTv0E0T) ( I 0V0TvcI c ) (A2-19)

-  173 -



To compare  (A2-18)  an d  (A2-19)  c a n  e a s y l y  

XS = ht h

s e e
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APPENDIX 3 

H e l ic o p te r  Puma80 Model

The m a tr ic e s  A, B and C o f  th e  s t a t e - s p a c e  form  a re

A =

1 .0e+ 03  X

Columns 1 th ro u g h  8

0 .0382 -0 .4 7 5 0 -1 .9 8 3 3 -4 .6 6 2 6 -4 .6 6 5 2 -1 .3 0 0 4 -0 .0 3 4 5

0 .0 0 1 0 0 0 0 0 0 0

0 0 .0010 0 0 0 0 0

0 0 0 .0010 0 0 0 0

0 0 0 0 .0010 0 0 0

0 0 0 0 0 .0010 0 0

0 0 0 0 0 0 .0 0 1 0 0
0 0 0 0 0 0 0 .0010

-0 .0 0 8 5

0

0

0

0

0

0

0

B =

C -

Columns 1 th ro u g h  8 

0 5 .2600  90 .2421 248.0669 211 .5327 55 .8064  0 .5 5 2 6  0

The eigenvalues A and the eigenvectors for the example system are 

M =

Columns 1 th ro u g h  4

1 .0 0 0 0 + 0 .0 0 0 0 i 1 .0 0 0 0 - 0 .OOOOi 1 .0000  1 .0000
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0 .0 5 6 9 -0 .0 1 4 3  i 

0 .0 0 3 0 + 0 .0016i 

0 .0 0 0 1 - 0 .OOOli 

0 .0 0 0 0 + 0 .OOOOi 

0 .0 0 0 0 - 0 .OOOOi 

0 .0 0 0 0 + 0 .OOOOi 

0 .0 0 0 0 - 0 .OOOOi

-0 .0 5 6 9 + 0 .0143i 

0 .0 0 3 0 - 0 .0016i 

-0 .0 0 0 1 + 0 .OOOli 

0 .0 0 0 0 - 0 .OOOOi 

0 .0 0 0 0 + 0 .OOOOi 

0 .0 0 0 0 - 0 .OOOOi 

0 .0 0 0 0 + 0 .OOOOi

- 0 .2 1 9 4 - 0 .2850i 

-0 .0 3 3 1 + 0 .1 2 5 1 i 

0 .0 4 2 9 - 0 .0180i 

- 0 .0 1 4 6 - 0 .0083i 

0 .0 0 0 8 + 0 .0060i 

0 .0 0 1 5 - 0 .0015i 

- 0 .0 0 0 8 - 0 .OOOli

-0 .2 1 9 4 + 0 .2850i 

-0 .0 3 3 1 -0 .1 2 5 1 i 

0 .0 4 2 9 + 0 .0180i 

- 0 .0 1 4 6 + 0 .0083i 

0 .0 0 0 8 - 0 .0060i 

0 .0 0 1 5 + 0 .0015i 

-0 .0 0 0 8 + 0 .OOOli

Columns 5 th ro u g h  8

1 .0000 -0 .0 0 2 2 0 .0000 - 0 . OOOOi 0 .0 000 + 0 . OOOOi

-0 .7 4 6 3 0 .0053 0.0000 - 0 . OOOOi 0 .0000 + 0 . OOOOi

0 .5569 -0 .0 1 2 8 0 .0000 + 0 . OOOOi 0 .0000 - 0 . OOOOi

-0 .4 1 5 6 0 .0305 0 .0000 + 0 . OOOOi 0 .0 000 - 0 . OOOOi

0 .3102 -0 .0 7 3 0 0 .0000 - 0 . 0006i 0 .0 000 + o o o o CT\

-0 .2 3 1 5 0.1747 -0 .0 0 6 7 - 0 . 0002i -0 .0 0 6 7 +

CMoooo

0 .1727 -0 .4 1 8 0 -0 .0 0 1 3 +

oCMoooo

- 0 .0 0 1 3 - 0 . 0820i

-0 .1 2 8 9 1.0000 1.0000 _ 0 . OOOOi 1 .0000 + 0 . OOOOi

-1 6 .5 2 8 8  + 4 . 1425i 

-1 6 .5 2 8 8  -  4 . 1425i

-  1 .6958  + 2 . 2029i

-  1 .6958  -  2 .2029  i

-  1 .3400

- 0 .4180

- 0 .0013  + 0 . 0820i

-  0 .0013  -  0 . 0820i

The colum ns o f  th e  m a tr ix  M ^ can  be s p l i t e d  th r e e  g ro u p s , Zhigh> ^ m i

d and z lo :

z h ig h  =
Columns 1 th ro u g h  2

0 .0048  -  0 . 0270i 0 .0048  + 0 .0 2 7 0 i

-0 .0 0 8 0  -  0 . 6056i -0 .0 0 8 0  + 0 .6 0 5 6 i

-0 .1 0 0 0  -  2 .7 8 8 6 i -0 .1 0 0 0  + 2 .7 8 8 6 i

-0 .3 9 1 8  -  7 . 0765i -0 .3 9 1 8  + 7 .0 7 6 5 i

-  176 -



0 .4 8 7 0  -  7 . 3771i 

0 .1 4 5 4  -  2 .0 8 5 7 i 

0 .0036  -  0 .0 5 4 7 i 

■0.0010 -  0 .0 1 3 6 i

-0 .4 8 7 0  + 7 .3 7 7 1 i 

-0 .1 4 5 4  + 2 .0857  i 

-0 .0 0 3 6  + 0 .0547  i 

-0 .0 0 1 0  + 0 .0136  i

^m id ~
Columns 1 th ro u g h  4

0 . 0 0 0 2 + 0 . 0 0 0 2 i 

0 .0 0 7 3 + 0 .0069i 

0 .0 9 1 9 + 0 .0678i 

0 .3651+ 0 .08181  

0 .4 3 4 7 -0 .0 0 4 3 1  

0 .1 2 7 4 -0 .0 1 1 1 1  

0 .0 0 3 2 - 0 .OOOli 

0 .0 0 0 8 - 0 .OOOli

0 .0 0 0 2 - 0 .0002i 

0 .0 0 7 3 - 0 .0069i 

0 .0 9 1 9 - 0 .0678i 

0 .3 6 5 1 - 0 .0818i 

0 .4 3 4 7 + 0 .0 0 4 3 i 

0 .1 2 7 4 + 0 .O l l l i  

0 .0 0 3 2 + 0 .OOOli 

0 .0 0 0 8 + 0 .OOOli

0 .0 0 0 0 + 0 .OOOOi 

0 .0 0 1 4 + 0 .OOOOi 

0 .0 1 6 1 - 0 .OOOOi 

0 .0 5 3 6 - 0 .OOOOi 

0 .1 0 4 9 - 0 .OOOOi 

0 .0 3 6 2 - 0 .OOOOi 

0 .0 0 0 8 - 0 .OOOOi 

0 .0 0 0 2 - 0 .OOOOi

Z lo  =
Co1umns 1 th ro u g h 2

0 .0000 + 0 . OOOOi 0 .0000 -  0 . OOOOi

-0 .0 0 0 5 + 0 .0017  i -0 .0 0 0 5 -  0 . 0017i

-0 .0 0 6 6 + 0 .0217  i -0 .0 0 6 6 - 0 .0217  i

-0 .0 2 6 3 + 0 . 0910i -0 .0 2 6 3 -  0 . 0910i

-0 .0 5 8 5 + 0 .2147  i -0 .0 5 8 5 - 0 .2147  i

-0 .0 4 8 3 + 0 .2173  i -0 .0 4 8 3 -  0 .2173  i

-0 .0 0 0 5 + 0 . 0630i -0 .0 0 0 5 -  0 . 0630i

0 .0047 + 0 .0015  i 0 .0047 -  0 . 0015i

The h ig h -  and m id- su b sy stem s a re  shown as 

^ h ig h  5=5
-1 6 .5 2 8 8  + 4 .1 4 2 5 i 0 .0000  -  0 . OOOOi

0 .0000  + 0 . OOOOi -1 6 .5 2 8 8  -  4 .1 4 2 5 i

Bh ig h  "
0 .4 7 9 4  + 2 .7016  i

0 .4 7 9 4  -  2 .7 0 1 6 i

^ h ig h  “

0 .0 0 0 0 + 0 .OOOOi 

0 .0 0 1 3 - 0 .OOOOi 

0 .0 1 5 4 - 0 .OOOOi 

0 .0 6 0 0 - 0 .OOOOi 

0 .1 3 1 2 - 0 .OOOOi 

0 .1 0 1 5 - 0 .OOOOi 

0 .0 0 1 1 - 0 .OOOOi 

0 .0 0 0 7 - 0 .OOOOi
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-0 .0 6 1 1  + 0 .0399  i -0 .0 6 1 1 -  0 .0 3 9 9 i

^mid
- 1 . 6 9 5 8 + 2 . 2 0 2 9 1  

0 . 0 0 0 0 - 0 . OOOOi 

0 . 0 0 0 0 - 0 . OOOOi 

0 . 0 0 0 0 - 0 . OOOOi

0 . 0 0 0 0 - 0 . OOOOi 

- 1 . 6 9 5 8 - 2 . 2029 i  

0 . 0 0 0 0 - 0 . OOOOi 

0 . 0 0 0 0 - 0 . OOOOi

0 . 0 0 0 0 - 0 . OOOOi 0 

0 . 0 0 0 0 + 0 . OOOOi 0 

• 1 . 3 4 0 0 - 0 . OOOOi 0 

0 . 0 0 0 0 + 0 . OOOOi -0

mlid
0 . 0 1 8 7  -  0 . 0 2 0 1 i 

0 . 0 1 8 7  + 0 . 0 2 0 1 i 

0 . 0 0 3 8  -  0 . OOOOi 

0 . 0 0 3 4  -  0 . OOOOi

'-'mid
3 .4 7 4 5  + 3 . 9 0 0 9 i 3 . 4 7 4 5  -  3 . 9 0 0 9 i  - 3 . 9 8 0 3

The c o n t r o l l a b i l i t y  grammian  X an d  t h e  o b s e r v a b i l i t y  

h i g h -  an d  m i d -  s u b s y s t e m s  a r e  shown be lo w :

x h i g h  =

0 . 2 2 7 7  - 0 . 2 1 9 7  + 0 . 0 2 3 3 i

- 0 . 2 1 9 7  -  0 . 0 2 3 3 i 0 .2 2 7 7  -  0 . OOOOi

s h i g h  =
1 .0 e -0 3  x

0 . 2 0 6 0  -  0 . OOOOi 

0 . 1 3 8 8  -  0 . 1300 i

0 .1 3 8 8  + 0 . 130 0i  

0 . 2 0 6 0  + 0 . OOOOi

*mid
1 . 0 e - 0 3  X 

0 . 2 2 3 0 - 0 . OOOOi 

0 . 1 0 1 6 + 0 . 0905 i  

0 . 0 2 7 3 + 0 . 005 3i  

0 . 0 3 0 2 + 0 . 000 5i

0 . 1 0 1 6 - 0 . 0905 i  

0 . 2 2 3 0 + 0 . OOOOi 

0 . 0 2 7 3 - 0 . 005 3i  

0 . 0 3 0 2 - 0 . 000 5i

0 . 0 2 7 3 - 0 . 0 0 5 3 i  0

0 . 0 2 7 3 + 0 . 0 0 5 3 i  0,

0 . 0 0 5 4 + 0 . OOOOi 0, 

0 . 0 0 7 2 + 0 . OOOOi 0,

^mid
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0 0 0 0 + 0 . OOOOi 

0 0 0 0 - 0 . OOOOi 

0 0 0 0 + 0 . OOOOi 

4 1 8 0 - 0 . OOOOi

0 . 5 2 0 1  

g rammian  S f o r

0 3 0 2 - 0 . 0005 i  

0 3 0 2 + 0 . 0005 i  

0 0 7 2 - 0 . OOOOi 

0 1 3 4 - 0 . OOOOi



1 .0e+ 03  X 
1 .0 1 9 5 + 0 .OOOOi

-0 .3 7 7 9 + 0 .1 2 8 7  i 

0 .5 1 3 1 -0 .8 2 4 9  i 

0 .1 5 4 4 + 0 .0 4 4 1 i

The H anke1

^h igh  “

0 .0023  -

- 0 . 0 0 2 2  -

^mid =

0 .0 2 3 4 + 0 .2040i

-0 .3 9 4 8 + 0 .3342i 

0 .1 7 8 1 + 0 .1244i

- 0 .0 0 9 8 - 0 .0323i

-0 .3 7 7 9 -0 .1 2 8 7 1  

1 .0 1 9 5 - 0 .OOOOi 

0 .5 1 3 1 + 0 .8249i 

0 .1 5 4 4 -0 .0 4 4 1 i

-0 .2 9 8 9 + 0 .0 4 3 1 i 

0 .1218+ 0 .1358  i 

-0 .0 3 4 1 + 0 .0520i 

0 .0 4 8 2 - 0 .0162i

0 .5 1 3 1 + 0 .8249i 

0 .5 1 3 1 -0 .8 2 4 9  i 

3 .4 5 6 7 + 0 .OOOOi 

0 .8 2 6 3 - 0 .OOOOi

- 0 .0 4 8 3 - 0 .0268i 

0 .0 0 2 8 - 0 .0343i 

0 .0 3 2 5 - 0 .0115i 

0 .0 1 0 9 + 0 .0 0 3 7 i

0 .1 5 4 4 -0 .0 4 4 1 i 

0 .1 5 4 4 + 0 .0 4 4 1 i 

0 .8 2 6 3 - 0 .OOOOi 

0 .4 6 1 4 + 0 .OOOOi

su b sy ste m s  a re

0 .0 0 9 7 + 0 .0189i 

-0 .0 0 0 1 + 0 .0 0 0 3 i 

- 0 .0 0 0 3 - 0 .OOOli 

0 .0 0 1 4 + 0 .0 0 1 8 i

s in g u la r  v a lu e s

0 . 0050i -0 .0 0 1 4

O.OOlOi 0 .0001

o f  th e  h ig h -  and m id-

- 0 .0006  i

-  0 . OOOli
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APPENDIX 4
EXAMPLES

A EXAMPLE FOR USE PROGRAM - 1 
(BACON AND SCHMIDT'S METHOD)

************** FILE AND PARAMETERS TAKEN ***************
*
* LOAD DATA FILE ------ AB80.MAT
* ORDER OF HOS (n) ------14
* INPUT (z) ----------1
* OUTPUT (y) ----------1
* PRINT PARAMETER (PT) 0
* HIGH SUBSYSTEM (nn) ------ 6
* MIDDLE SUBSYSTEM (nm) ------14
* ORDER OF HSS (rh) 1
* ORDER OF MSS (rm) 7
* CHOICE OF GRAPHIC (tx) ----------1
*
*

FREQUENCY RANGE (wl,wl) --------1, 2
* * * * * * * * * * * * *  * * *  * * * * * * * * * * * * * * *  * * *  * * * * * * * * * * * * * * * *

( TO ENTER MATLAB PACKAGE ) 

VMS $ (MATLAB)

< P R O - M A T L A B >
(c) Copyright The MathWorks, Inc. 1984 - 1988 

All Rights Reserved 
Version 3.34 18-Mar-88

HELP, DEMO, INFO, and TERMINAL are available
( TO CHOOSE AVAILABLE TERMINAL TYPE )

»  (TERMINAL)
  GRAPHICS TERMINAL TYPES -----
1) TEKTRONIX 4010/4014
2) TEKTRONIX 4100 SERIES
3) VT100 WITH RETROGRAPHICS
4) VT100 WITH SELANAR 100
5) VT100 WITH SELANAR 200
6) VT240
7) VT241 COLOR
8) HUMAN DESIGNED SYSTEMS
9) HP 2647

10) ERGO
11) GRAPHON
12) XTERM
13) MORE SELECTIONS --
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SELECT A MENU NUMBER : (2)
( TO LOAD DATA FILE AND SET THE POSITION OF GRAPHICS )

>> (LOAD AB80)
»  (XX = 0.35)
>> (YY = 0.98)
xx =

0.2000

YY -

0.9800

( TYPE THE PROGRAM'S NAME OF WHICH YOU WILL RUN ) 
»  (GENERAL)

( TO INPUT VALUES OF PARAMETERS )

he size of the A matrix is n= 
n =

14

Which column of the b matrix will you take ? z= 
z =

1

which tf do you want to get ? { y =  1 - n) y= 
Y =

1

Do you want to type the A & B matrices ? (1 - yes, 0 - no) pt= 
pt =

0

( DISPLAY THE EIGENVALUES OF MATRIX A OF HOS ) 

dl =
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-15.4634 +49.118H 
-15.4634 -49.118H 
-15.7960 +22.218H 
-15.7960 -22.218H 
-15.1429 + 5.7814i 
-15.1429 - 5.7814i 
-1.0836 + 1.1670i 
-1.0836 - 1.1670i 
-1.2647
-0.2900 + 0.9357i 
-0.2900 - 0.9357i 
-0.0092 + 0.2098i 
-0.0092 - 0.2098i 
- 0.0001

( TO INPUT VALUES OF PARAMETERS )
The high subsystem is the columns from first to nh= 

nh =

6

The mid subsystem is the columns from nh+1 to nm= 
nm =

14

( DISPLAY THE HANKEL SINGULAR VALUES FOR MID- AND HIGH- SUBSYSTEMS )
svh =

15.3923
13.8422
6.3908
3.7661
1.8797
0.3257

svm =
1.0e+04 *
1.6235
1.4935
0.1101
0.0732
0.0129
0.0068
0.0048
0.0006

( TO DECIDE REDUCED ORDER FOR EACH SUBSYSTEM )

-  182 -



How many order do you try to reduce for high subsystem ? rh= 
rh =

1

How many order do you try to reduce for mid subsystem ? rm= 
rm =

7

( DIPLAY THE MATRICES ac, be, CC AND dc 
ac =

Columns 1 through 4
17.3163 + 0.OOOOi 0

0 -0.0070 - 0.OOOOi
0 0.2077 - 0.0271i
0 0.0165 - 0.0054i
0 0.0040 + 0.0134i
0 0.0057 - 0.0065i
0 0.0017 - 0.0020i
0 -0.0039 + 0.0025i

Columns 5 through 8
0 0

-0.0018 + 0.0059i -0.0016 - 0.0018i
-0.0012 + 0.0072i -0.0030 - 0.0026i
-0.0273 - 1.0529i 0.1990 + 0.1193i
-0.2306 + 0.OOOOi 0.1332 - 0.2097i
0.1320 + 0.2077i -0.5224 + 0.OOOOi
0.0468 + 0.0737i -0.3201 - 0.OOOOi

-0.0445 - 0.1487i 0.7101 + 0.2008i

be =
1.0e+02 *
1.2721 + 1.4672i

-1.0587 - 1.2192i
1.4534 + 1.2908i
1.7602 + 1.0555i

-0.8532 + 1.3427i
0.9973 + 0.OOOOi
0.3005 + 0.OOOOi

-0.5123 - 0.1449i

cc =
Columns 1 through 4

OF THE REDUCED SYSTEM )

0 0
-0.2079 - 0.0271i 0.0074 + 0.0024i
-0.0110 + 0.OOOOi 0.0172 + 0.00321
-0.0239 + 0.0045i -0.2116 - 0.OOOOi
-0.0028 - 0.0176i 0.0235 - 0.9082i
-0.0084 + 0.0075i -0.1954 + 0.1171i
-0.0025 + 0.0023i -0.0532 + 0.0319i
0.0054 - 0.0026i 0.1028 — 0.0279i

0 0
-0.0006 - 0.0007i -0.0074 - 0.0048i
-0.0016 - 0.0014i -0.0136 - 0.0066i
0.0419 + 0.0251i 0.2379 + 0.0645i

-0.0264 + 0.0415i 0.0107 - 0.03591
0.2201 - 0.OOOOi -1.2577 + 0.3556i

-1.9659 + 0.OOOOi 1.2884 - 0.3643i
-0.6540 - 0.1849i -1.0807 - 0.OOOOi
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0.0412 - 0.0475i 0.8589 - 0.9891i 1.1166 - 0.9916i -0.1031 + 0.0618i
Columns 5 through 8 

0.0631 + 0.0992i -0.1689 - 0.OOOOi 0.0019 + 0.OOOOi 0.3667 - 0.1037i

dc =

( DISPLAY THE MATRIX ac IN CONTROLLER CANONICAL FORM ) 
aba =

1.0e+02 *

Columns 1 through 4

-0.2135 + 0.OOOOi -0.7811 + 0.OOOOi -1.5431 + 0.OOOOi -1.7861 + 0.OOOOi
0100 0 0 0

0 0.0100 0 0
0 0 0.0100 0
0 0 0 0.0100
0 0 0 0
0 0 0 0
0 0 0 0

Columns 5 through 8

-1.3276 + 0.OOOOi -0.6312 + 0.OOOOi -0.0640 + 0.OOOOi -0.0235 + 0.OOOOi
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0100 0 0 0
0 0.0100 0 0
0 0 0.0100 0

GRAPHIC AND SET TIME AND FREQUENCY RANGE )
tx =
0 for time response, 1 for frequency response, 2 for both

which ploting do you want ? tx= 
tx =

1

The lower limit of frequency range is log(wl)= 
wl =
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-1

The upper limit of frequency range is log(w2)= 
w2 =

1

( THE GRAPHICS WILL SHCW ON SCREEN )
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A EXAMPLE FOR USE PROGRAM -  2 
(EXTENDED LEVY'S & T .C . CHEN'S METHOD)

**************** DATA FILES AND PARAMETERS TAKEN *****************
*  *

*  *

* DATA-FILES---------  FWRIFl -  FWRIF8 *
* FLY801 - FLY808 *
* ORDER OF DENOMINATOR-m---------  8 *
* ORDER OF NUMERATOR n n ---------- 7 *
* TOTAL NUMBER OF G (s) m l  8 *
* POWER OF WEIGHTED FACTOR c n  1.2 *
* NUMBER OF FREQUENCY POINTS nw ---------  20 *
* TOTAL TIMES OF ITERATION n r  3 *
* CHOICE OF GRAPHIC g s  12 ( FOR xl/ul and x2/ul ) *
*  *

*  *

* * * * * * * * * * * * * * * * * *  * * * *  * * * * * * * * * * * * * * * *  * * * *  * * * * * * * * * * * * * * * * * *

( TO ENTER MATLAB PACKAGE )

VMS $ (MATLAB)

< P R O - M A T L A B >
(c) Copyright The MathWorks, Inc. 1984 - 1988 

All Rights Reserved 
Version 3.34 18-Mar-88

HELP, DEMO, INFO, and TERMINAL are available
( TO CHOOSE AVAILABLE TERMINAL TYPE )
>> (TERM IN A L)

  Graphics Terminal Types -----
1) Tektronix 4010/4014
2) Tektronix 4100 series
3) VT100 with Retrographics
4) VT100 with Selanar 100
5) VT100 with Selanar 200
6) VT-240
7) VT-241 Color
8) Human Designed Systems
9) HP 2647
10) Ergo
11) Graphon
12) xterm
13) More selections -----

Select a menu number: (2)
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( TO LOAD DATA FILES )

>> (LOAD FWRIFl)
» (LOAD FWRIF2)
>> (LOAD FWRIF3)
>> (LOAD FWRIF4)
» (LOAD FWRIF5)
» (LOAD FWRIF6)
» (LOAD FWRIF7)
>> (LOAD FWRIF8)
( TYPE THE PROGRAM'S NAME OF WHICH YOU WILL RUN )
»  (MLEVY)
( TO CHECK DATA FILES HAVE BEEN LOADED OR NOT )
Have you loaded the data files? (1 for yes, CTRL Y for no) 

x =
1

( TO INPUT THE VALUES OF PARAMETERS )
INPUT ORDER OF DENOMINATOR 

m =
8

INPUT ORDER OF NUMERATOR 
nn =

7

INPUT NUMBER OF G(s) 
ml =

8

PLEASE GIVE THE VALUE OF WEIGHTED FACTOR 
cn =

1.2000

THE NUMBER OF FREQUENCY POINTS 
nw =

20

HOW MANY TIMES OF ITERATION DO YOU WANT ? 
nr =
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3

THE NUMBER OF ITERATION ? 
x  =

1

( SHOW THE VECTOR OF TRANSFER FUNCTION COEF. AFTER 1ST ITERATION )

THE NUMBER OF ITERATION ? 
x  =

2

( SHOW THE TOTAL ERRORS AFTER FIRST ITERATION ) 

abd2 =
2.0200e+10

( SHOW THE VECTOR OF TRANSFER FUNCTION COEF. AFTER 2ND ITERATION )

THE NUMBER OF ITERATION ? 
x  =

3
( SHOW THE TOTAL ERRORS AFTER 2ND ITERATION ) 
abd2 =

1.2627e+10
( SHOW THE VECTOR OF TRANSFER FUNCTION COEF. AFTER 3RD ITERATION )

Do you want to print the transfer function coefficients? 
z  =

1

a for the coef. of numerator, b for coef. of denominator 
z l  =

1
( DISPLAY THE COEF. OF NUMERATOR AND DENOMINATOR OF TRANSFER FUNCTION ) 

a =
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1.0e+04 *
Columns 1 through 7
-0.2387 -0.0289 0.0000 0.0001 0.1635 -0.0017 0.0000
-0.3637 -0.0419 0.0001 0.0076 0.2242 -0.0020 0.0000
-0.3358 0.1570 0.0076 0.0112 1.3779 -0.0242 0.0000
-0.2509 -0.8012 0.0108 0.0100 3.5724 -0.0372 0.0000
-0.0469 -0.7671 0.0093 0.0069 2.3636 -0.0262 0.0000
-0.0152 -0.8405 0.0065 0.0009 0.7092 -0.0050 -0.0001-0.0011 -0.3215 0.0008 0.0000 0.0435 -0.0042 0.0000
0.0005 -0.0227 0.0000 0.0000 0.0008 0.0006 0.0000

Column 8

- 0.0001
-0.0014
-0.0028
-0.0134
-0.0289
-0.0185
-0.0054
-0.0004

1.0000
2.7356

26.9108
56.8247
76.8654
66.7577
34.3388
9.6205
0.6209

( DISPLAY 
f c =

Columns
-15.4956

1 . 0 0 0 0
0
0
0
0
0
0

Column 8
-1.6107

0
0
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THE MATRICES fc , f AND gl )

1 through 7

-55.3090 -107.5254 -123.8057
0

0000
0
0
0
0
0

0
0

1 . 0000
0
0
0
0

123.8057 -91.5266 -43.34480 0 00 0 00 0 01.0000 0 00 1.0000 00 0 1.00000 0 0

4.406

1 .0 0 0 0

o 
O 

O 
O 

O 
<-> 

K)



0
0
0
0
0

Columns 1 through 7
-0.0285 0.0209 6.7361 -31.9526 0.0493 6.3202 480.3429
-0.0380 -0.8112 126.3729 -0.4419 -0.0321 -5.8149 -853.1000
0.0027 -0.0095 -1.4503 -0.0371 -0.0087 -1.1068 -78.1489
0.0000 -0.0001 0.9554 -0.0024 -0.0003 -0.0425 -4.4773

-0.0144 -0.0019 10.3897 0.4744 -0.0609 7.2416 967.7565
-0.0102 -0.0060 7.8388 0.3481 0.0350 5.5235 693.3933
0.0002 -0.0002 -0.1759 -0.0096 -0.0013 -0.1669 -17.8826
0.0030

Column 8
3.0912

-4.8449
-0.5188
-0.0504

-128.2098
4.7562

-0.1031
-0.7831

0.0093 -0.4237 -0.0123 0.0060 -0.3151 -26.1371

gl =
7.3456

-364.9653
-0.6759
-0.0882
12.2946
9.6606

-0.3436
-6.0894

( TO GRAPHIC xl/ul AND x2/ul )
WHICH G( S )  WOULD YOU LIKE TO GRAPHIC ? 

gs =
12

( THE GRAPHICS WILL SHOW ON THE SCREEN )
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APPENDIX 5

PROGRAM - 1 
(BACON & SCHMIDT'S METHOD)

**********************************************************************
*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*

THIS MATLAB PROGRAM CAN BE USED TO FIND A REDUCED 
ORDER MODEL FROM A HIGH ORDER SYSTEM USING BACON AND 
SCHMIDT'S METHOD. THE DYNAMICAL SYSTEM IS WRITTEN 
AS THE FOLLOWING STATE-SPACE FORM:
x = Ax + Bu
AND THE OUTPUT EQUATION BECOMES 
y = Cx

*  

*  

*  

*  

*  

*  

*  

*  

*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

THIS PROGRAM HAS BEEN DEVELOPED ON THE VMS2 OF 
CENTRAL VAX OF GLASGOW UNIVERSITY.
BY MINGRUI GONG, DEPT. OF ELECTRONICS AND ELECTRICAL 
ENGINEERING OF GLASGOW UNIVERSITY. AUGUST 1989.

* * * * * * * * * * * * * * * * *

******** LIST OF THE SYMBOLS ********
a b  NAME OF FILE ( .MAT) INVOLVING A,B MATRIX
a  A MATRIX
b  B MATRIX
C  C MATRIX
d  D MATRIX

NUMBER OF COLUMN OFz ----
amid, ahi ----
braid, b h i ----
cmid, chi ----
dmid, dhi ----
xmid, xhi ----
smid, shi ----
hkm, hkh ----
svm, svh ----
hd2, hdl ----
ar2, arl ----

br2, brl ----
cr2, crl ----
dr2, drl ----

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*  

*

A MATRIX OF mid, hi 
B MATRIX OF mid, hi 
C MATRIX OF mid, hi 
D MATRIX OF mid, hi

B MATRIX 
SUBSYSTEM 
SUBSYSTEM 
SUBSYSTEM 
SUBSYSTEM

CONTROLLABILITY GRAMMIAN FOR mid, hi SUBSYSTEM 
OBSERVABILITY GRAMMIAN FOR mid, hi SUBSYSTEM 
HANKEL MATRIX FOR mid, hi SUBSYSTEM 
HANKEL SINGULAR VALUES FOR mid, hi SUBSYSTEM 
SQUARE ROOTS OF EIGENVALUES OF XS FOR mid, hi 
SUBSYSTEM
A MATRIX OF REDUCED ORDER MODEL FOR mid, hi 
SUBSYSTEM
B MATRIX OF REDUCED ORDER MODEL FOR mid, hi 
SUBSYSTEM
C MATRIX OF REDUCED ORDER MODEL FOR mid, hi 
SUBSYSTEM
D MATRIX OF REDUCED ORDER MODEL FOR mid, hi 
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dhi=0;
amid=( vmid) '*a*mmid; 
bmid=(vmid)'*bl; 
for i=l:n,

cmid( i,:)=c(i,:)*mmid;
end
dmid=0 ;
%
%
% * * *  DETERMINATION OF THE CONTROLLABILITY GRAMMIAN & OBSERVABILITY GRAMMIAN * * *  
% * * * * * * * *  CALCULATION OF THE EIGENVALUES AND EIGENVECTORS OF THE PRODUCT XS * * *  
% * * * * * * * *  CHECK HANKEL SINGULAR VALUES ARE EQUAL TO THE SQUARE ROOTS OF THE 
% EIGENVALUES OF THE PRODUCT XS * * * * * * * *
Q,'O
xhi=gram(ahi,bhi);
shi=gram((ahi)',(chi)');
xsh=xhi*shi;
xmid=gram(amid,bmid) ;
smid=gram( (amid)', (cmid)') ;
xsm=xmid* smid;
[ml,d3]=eig(xsh);
[m2,d2]=eig(xsm);
[vch,sch,uch]=svd(xhi);
[voh , soh , uoh]=svd(shi);
schr=sqrt(sch);
sohr=sqrt(soh);
hkh=sohr*(voh)'*vch*schr;
[vcm, scm,ucm]=svd(xmid);
[ vom, som, uom ] =svd (smid);
scmr=sqrt(scm);
somr=sqrt(som);
hkm=somr* (vom)' *vcm*scmr ;
svh=svd(hkh)
svm=svd(hkm)
hdl=sqrt(d3);
hd2=sqrt(d2);
%o,'O
% ******** DETERMINATION OF REDUCED ORDER OF THE hi & mid SUBSYSTEMS ********
o
'o

rh=input('order for high subsystem rh= ' )

rm=input('order for mid subsystem rm= ')
trl=ml(:,l:rh);
tr2=m2(:,l:rm);
tl=inv((ml)');
t2=inv((m2)');
url=tl(:,l:rh);
ur2=t2(:, l:rm);
ar1=(url)'*ahi *trl;
brl=(url)'*bhi;
for i=l:n,

crl(i,:)=chi(i,:)*trl;
end
drl=0;
ar2=(ur2)'*amid*tr2; 
br2=(ur2)'*bmid; 
for i=l:n,

cr2(i,:)=cmid(if:)*tr2;
end 
dr2=0;
o,
'o

%
% ******** DETERMINATION OF TRANSFER FUNCTIONS OF hi & mid SUBSYSTEMS ********
o,

[nhl,dhl]=ss2tf(arl,brl/crl(y,:),drl,l);
[nml,dml]=ss2tf(ar2fbr2,cr2(y,:),dr2,l);

-  192  -



% SUBSYSTEM *
% ac   A MATRIX OF COMPLETED REDUCED ORDER MODEL *
% be   B MATRIX OF COMPLETED REDUCED ORDER MODEL *
% cc   C MATRIX OF COMPLETED REDUCED ORDER MODEL *
% dc   D MATRIX OF COMPLETED REDUCED ORDER MODEL *

% **********************************************************************
%
o,
"o

% ******** in p u t  A, B AND C MATRICES ********
% PLEASE LOAD DATA FILE (AB80.mat...) AND INPUT XX=0.35, YY=0.98 FOR GRAPHICS.
%
clc
%load ab80
n=input('The size of the A matrix is n= ') 
z=input('Which column of the b matrix will you take ? z= ') 
y=input('which tf do you want to get ? (y= 1-n) y= ') 
bl=b(: ,z); 
for i=l:n, 

for j=l:n, 
if i— j, 

c ( i , j )=1; 
else

c(i,j)=0;
end

end
end
d=0;
%
o
'o

% ******** TYPE THE a  & B MATRICES AND DETERMINATION OF TF OF HOS ********
O.'D
pt=input('Do you want to type the A & B matrices ? (1 - yes) pt= ') 
if pt— 1, 

a,b,c 
else 
end
[numl,denl]=ss2tf(a,bl,c(y,:),d,l);
a
'o
o
*o

% ******** DETERMINATION OF RADII Dl AND D2 ********
a
'o

% ******** THE COLUMNS OF M MATRIX ARE SEPARATED THREE COLUMN GROUPS:
% Mlo, Mmid and Mhi by the Dl AND D2 ********
%
[m,dl2]=eig(a); 
dl2=eig(a) 
v=inv((m)');
nh=input('The high subsystem involves the columns from first to nh= ')
nm=input('The mid subsystem involves the columns from nh+1 to nm= ')
mlo=m ( : ,  (nm+1): n ) ;
mmid=m(:,(nh+1):nm);
mhi=m(:,l:nh);
vlo=v(:,(nm+1):n);
vmid=v(:,(nh+1):nm) ;
vhi=v(:,l:nh);
o*o
o.o
% ******** DETERMINATION OF TRANSFER FUNCTIONS OF hi & mid SUBSYSTEM ********
o*6
ahi=(vhi)'*a*mhi; 
bhi=(vhi)'*bl; 
for i=l:n,

chi(i,:)=c(i,:)*mhi;



% ******** To COMBINE THE COMPLETED MATRICES OF REDUCED ORDER MODEL ********
%
% ******** t h e  REDUCED ORDER r = (rh+rm) ********
%
r=rh+rm; 
ac=zeros(r); 
for i=l:rh,

for j=l:rh,
ac(i,j)=arl(i/ j);

end
end
for i=l:rm,

for j=l:rm,
ac(i+rh,j+rh)=ar2(i,j);

end
end
ac
bc=[brl(:,1) 

br2(:,1)] 
cc=[crl(y,:),cr2(y,:)] 
dc=0
[nuc,dec]=ss2tf(ac,be,cc,dc,1);
[zc,pc,kc]=tf2zp(nuc,dec);
[aba,bba,cba,dba]=tf2ss(nuc,dec); 
aba
a*o
%
% ******** MATCHING WITH TIME RESPONSE AND FREQUENCY RESPONSE ********
o
'O
o'o
a

tx=f0 for time response, 1 for frequency response, 2 for both' 
tx=input('which do you want ? tx= ')
%
if tx=0,

tb=input('The lower limit of time is tb= ')
delt=input('The increment of time is delt= ')
te=input('The upper limit of time is te= ')
t=tb:delt:te;
yl=step(ac,bc,cc,dc,l,t);
y2=step(a,bl,c(y,:),d,l,t);
plot(t,yl,'-',t,y2,'o')
text(xx,yy,for reduced model, o for HOS model','sc') 
xlabel('time sec.') 
ylabelj'y')

0 .

%
% ******** TO PLOT THE FREQUENCY RESPONSE ********
O
"o

elseif tx==l,
wl=input('The lower limit o f  frequency range is log(wl)= ') 
w2=input('The upper limit o f  frequency range is log(w2)= ') 
w=logspace(wl,w2);
[magi,phasel]=bode(ac,be,cc,dc,1,w ); 
[mal,phal]=bode(a,bl,c(y,:),d,l,w); 
subplot(211),

loglog(w,magl,,w,mal,'o') 
ylabel('mag db'),xlabel('w(rad/sec)') 
text(xx,yy,'- for reduced model, o for HOS model','sc') 
subplot(212),

semilogx(w,phasel, ,w,phal,'o') 
ylabel('phase deg'),xlabel('w(rad/sec)') 

else
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% ******** TO PLOT THE TIME AND FREQUENCY RESPONSE ********
%
tb=input('The lower limit of time is tb= ')
delt=input('The increment of time is delt= ')
te=input('The upper limit of time is te= ')
t=tb:delt:te;
yl=step(ac,bc,cc,dc,l,t);
y2=step(a,bl, c(y,:),d,l,t);
wl=input('The lower limit of frequency range is log(wl)= ')
w2=input('The upper limit of frequency range is log(w2)= ')
w=logspace(wl,w2);
[magi,phasel]=bode(ac,be,cc,dc,1,w ); 
[mal,phal]=bode(a,bl,c(y,:),d,lfw); 
subplot(221),

loglog(w,magl,'-',w,mal,'o') 
ylabel('mag db'),xlabel('w(rad/sec)') 
text(xx,yy,'- for reduced model, o for HOS model','sc') 

subplot(222),
semilogx(w,phasel,'-',w,phal,'o') 
ylabel('phase deg'),xlabel('w(rad/sec)') 

subplot(223),plot(t,yl,'-',t,y2,'o') 
xlabel('time sec.') 
ylabel('y')

end
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PROGRAM - 2 
(EXTENDED LEVY'S & T.C. CHEN'S METHODS)

% ******************************************************************* 
9  *■g "
9- *-g «
% *
% THIS MATLAB PROGRAM CAN BE USED TO FIND A REDUCED *
% ORDER MODEL FROM A HIGH ORDER SYSTEM USING THE *
% EXTENDED LEVY'S METHOD AND T.C.CHEN'S METHOD. *
% *
% THIS PROGRAM HAS BEEN DEVELOPED ON THE VMS2 OF *
% CENTRAL VAX OF GLASGOW UNIVERSITY. *
% *
% BY MINGRUI GONG, DEPT. OF ELECTRONICS & ELECTRICAL *
% ENGINEERING OF GLASGOW UNIVERSITY. MAY 1991 *
9- *x> "
9  *-g «
9  *-g «
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
o"6
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

9  *-g «
9  *-g «
9  *-g «
% ******** LIST of t h e  symbols * * * * * * * *  *

% *
% fwrifl - fwrif8 DATA FILES *
% fly801 - fly808  DATA FILES *
% m ---- ORDER OF DENOMINATOR *
% nn----- ORDER OF NUMERATOR *
% m l ---- TOTAL NUMBER OF G(s) *
% c n ----POWER O f WEIGHTING FACTOR *
% nk----- ITERATION NUMBER *
% nw----- NUMBER OF FREQUENCY POINTS *
% n r ----TOTAL TIMES OF ITERATION *
% d2(s) ---- WEIGHTING FACTOR *
% abd2----- TOTAL ERRORS *
% a, a h i ---- COEF. OF NUMERATOR OF TRANSFER FUNCTION *
% b, b h l ---- COEF. OF DENOMINATOR OF TRANSFER FUNCTION *
% ab----- VECTOR OF TRANSFER FUNCTION COEF. *
% abhl----- RESULTS FILE *
% *
% *
a, -tf-g *
9  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% TO CHECK LOAD DATA FILES
x=input('Have you loaded the data files? (1 for yes, CTRL Y for no)')
a
'o

% SPECIFY THE NUMERATOR AND DENOMINATOR ORDER. 
m=input('input order of denominator') 
nn=input('input order of numerator') 
ml=input('input number of G(s)')
cn=input('please give the value of weighting factor') 
n=nn+l; 
mn=m+n;
for i=l:(ml*n+m), 

for j=l:(ml*n+m), 
p(i,j)=0;
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end
cp(i)=0; 

end
nw=input('THE NUMBER OF FREQUENCY P O IN T S ') 
for i=l:nw, 

d2(i)=1;
end
o
'o

for jj=l:ml, 
for i=l:nw, 

if j j— 1,
fwl(i,jj)=fl(l,i) ; 
frl(i,jj)=f2(l,i); 
fil(i,jj)=f3(1,i); 

else
if jj==2,

fwl(i,jj)=f4(l,i);
frl(i,jj)=f5(l,i); 
fil(i,jj)=f6(l,i); 

else
if j j— 3, 

fwl(i,jj)=f7(l,i);
frl(i,jj)=f8(l,i); 
fil(i,jj)=f9(l,i); 

else
if jj=4,

fwl(i,jj)=fl0(l,i); 
frl(i/jj)=fll(l,i); 
fil(i,jj)=fl2(l,i); 

else
if j j— 5,

fwl(i,jj)=fl3(l,i); 
frl(i,jj)=fl4(l,i); 
fil(i,jj)=fl5(l/i); 

else
if jj=6,

fwl(i,jj)=fl6(1,i); 
frl(i,jj)=fl7(l,i); 
fil(i,jj)=fl8(l,i); 

else
if jj-=7,

fwl (i/j j)=fl9(l,i); 
frl(i,jj)«f20(l,i); 
fil(i,jj)=f21(l/i); 

else
fwl (i,j j)=f22(l,i); 
frl(i/j j)=f23(l,i); 
fil(i,jj)=f24(l,i);

end
end

end
end

end
end

end
end

end
%
% FOR ITERATION
nr=input( 'HOW MANY ITERATIONS DO YOU WANT ? '  ) 
for r=l:nr,
x=input('THE NUMBER OF ITERATION ?')
if r~=l,
abd2=0;
for jj=l:ml,
for j=l:nw,
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w = f w l ( j , j j ) ;
re=frl(j,jj);
im=fil(j/jj);
sr=0;
si=w;
dr=l ;
di=0;
for i=(ml*n+l):(ml*n+m), 
dr=dr+ab(i)*sr; 
di=di+ab(i)*si; 
hs=sr; 
sr=-si*w; 
si=hs*w; 

end
d2(j)=l/(dr*dr+di*di); 

d2(j)=d2(j)"cn; 
sr=0; 
si=w;
drl=ab(l); 
dil=0;
for i=((jj-l)*n+l):(jj*n), 
drl=drl+ab(i+1)*sr; 
dil=dil+ab(i+1)*si; 
hs=sr; 
sr=-si*w; 
si=hs*w; 

end
% TO GET BATE & TOU
di=di/w;
dil=dilA^;
aad( j )=( (dr*re-wilfdi*inv-drl)*(dr*re-w*di*im-drl) )*d2( j); 
bbd( j )=( (w*di*re+dr*inv-w*dil)*(w*dr*re+dr*im-w*dil) )*d2( j); 
abd(j)=aad(j)+bbd(j); 
end
abdl=0; 
for j=l:nw,

abdl=atxil+abd (j );
end
abd2=abd2+abdl;
end
abd2
for i=l:(ml*n+m), 

for j=l:(ml*n+m), 
p(ifj)=0;

end
cp(i)=0; 

end 
end
% CALCULATE THE MATRIX p  AND CP FOR S I SO.
for nk=l:ml,
nk;

for i=l:mn, 
for j=l:mn, 
pl(i,j)=0; 

end
cpl(i)=0; 

end
o
'o

% INPUT THE NUMBER OF FREQUENCY POINTS .
o*0
% INPUT EACH FREQUENCY POINT
% LOAD FWRI.M (F l  -  FREQUENCY, F2 -  REAL PART, F3 -  IMAGINARY PART) 
for i=l:nw,

fw( i)=fwl(i,nk); 
fr(i)=frl(i,nk); 
fi(i)=fil(i,nk);
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% SET THE ARRAY SIZES AND CONSTANTS
np=2*nn+l;
nl=n+l;
n2=n+2;
n3=n+3;
mp=mn+nn;
mq=mn+m-l;
zm=mn-l;
%
% THIS IS  THE MAIN LOOP SETTING THE SKELETON P MATRIX, CP IS  THE VECTOR y  
% ASSOCIATED WITH Px, AND ab  IS THE VECTOR OF TRANSFER FUNCTION COEFFICIENTS 
% TO GET P I AND CPI FOR SISO. 
for ki=l:nw,

fh=fw(ki)*fw(ki); 
pi(1,1)=pl(1,1)+d2(ki); 
cpl(l)=cpl(l)+fr(ki)*d2(ki); 

if n~=l, 
sh=d2(ki); 
for i=3:2:np, 

if i<=n, 
sh=-sh*fh; 
pi(1,i)=pl(1,i)+sh; 

else
ii=i-n+l;
sh=sh*fh;
pl(ii,n)=pl(ii,n)+sh;

end
end

end
tl=d2(ki)*fw( ki)*fi(ki); 
pl(l,nl)=pl(l,nl)+tl; 
if m~=l,

s2=-d2(ki)*fr(ki); 
for j=n2:2:inp, 

if j<=mn, 
s2=-s2*fh; 
pl(l,j)=pl(l,j)+s2; 
jj=j+l; 
if jj<=mn, 

tl=-tl*fh;
pl(l,jj)=pl(l,jj)+tl; 

else
i=jj+l-mn; 
if i<=n, 

tl=tl*fh;
pl(i,mn)=pl(i,mn)+tl;

end
end

else
i=j-mn+l;
s2=s2*fh;
jj-j+i;if i<=n, 
pl( i ,nin)=pl( i ,mn)+s2; 
i=jj+l-mn; 
if i<=n, 

t^tl^fh;
pl(i,mn)=pl(i,mn)+tl;

end
end

end
end

end
fx=(fi(ki)*fi(ki)+fr(ki)*fr(ki))*d2(ki)*fh;

-  199 -



pi(nl,nl)=pl(nl,nl)+fx; 
if m~=l,

for i=n3:2:mq, 
if i<=mn, 

fx=-fx*fh;
pi(nl,i)=pl(nl,i)+fx; 

else
fx=fx*fh; 
j=i-mn+l+n; 
pl(j,mn)=pl(j,mn)+fx; 

end 
end 

end 
end
o
*o

% T H IS  SECTION OF THE PROGRAM F IL L S  IN  THE P  MATRIX 
if n>=3, 

mh=-l; 
h=l;
for j=2:n, 

h=h*mh;
for 1=1:nn, 

k=l+l;
pl(j,l)=pl(jl,k)*h;

end
end

end
if n~=l, 

mh=-l; 
h=l;
for j=2:n, 

h=h*mh; 
jl-j-1; 
for l=nl:zm, 

k=l+l;
pl(j,1)=pl(jl,k)*h;

end
end

end
if m>=3, 

mh=-i; 
h-1;
for j=n2:mn, 

h=h*mh; 
jl-j-1? 
for l=nl:zm, 

k-1+1;
pl(j,l)=pl(jl,k)*h;

end
end

end 
xl=l; 
x2=-l; 
ii=0;
for i=l:n, 

ii=ii+l; 
if ii>=3, 

ii=l;
xl=xl*x2;

end
jj=0?
yl=l;
for j=nl:ran, 

jj-jj+l;
i f  i i>=3-



j j= i ;
y l= y l* x 2 ;

end
pl(j,i)=pl(i,j)*xl*yl; 

end
end

'o

% VECTOR CP IS  FOUND APPROPRIATE ELEMENTS WITHIN THE P MATRIX 
if n~=l, 

xl=l ;
for i=l:nn, 

ii=i+l;
cpl(i i)=pl(i,nl)*xl; 
xl=-xl;

end
end
if m~=l,

for i=n2:2:mn,
j=i-i;
cpl(i)=pl(j,nl);

end
end
o
'o

% TO MOVE THE MATRIX FOR SI SO P I  & C P I TO MATRIX P & CP FOR MIMO.
o
'o

for i=l:n,
for j=l:n,
p( ((nk-1)*n+j),((nk-1)*n+i))=pl(j, i); 

end 
end

o
'o

for i=l:m, 
for j=l:n,
p(((nk-l)*n+j),(ml*n+i))=pl(j,(n+i)); 

end 
end
o,
'o

for i=l:n, 
for j=l:m,
p((ml*n+j),((nk-l)*n+i))=pl((n+j),i); 

end 
end
o
'o

for i=l:m, 
for j=l:m,
p((ml*n+j),(ml*n+i))=p((ml*n+j),(ml*n+i))+pl((n+j),(n+i)); 

end 
end
%
for i=l:n,

cp((nk-1)*n+i)=cpl(i); 
end
for i=l:m,

cp(ml*n+i)=cp(ml*n+i)+cpl(n+i); 
end 
end
o,
'o
o,
'o

% FIND TRANSFER FUNCTION COEFFICIENTS AB 
ab=p\(cp)'; 
ab 
end
%
% PRINT OUT THE TRANSFER FUNCTION COEFFICIENTS
z=input('Do you want to print the transfer function coefficients?') 
zl=input('a for the coef. of numerator, b for coef. of denominator')

-  201 -



f o r  i = l : m l ,
a(l:n,i)=ab(((i-1)*n+l):(i*n),1); 

end
% EVERY COLUMN OF A IS THE COEF. OF NUMERATOR OF EVERY G(s).
a
b(1,1)=1;
b(2:(m+1),l)=ab((ml*n+l):(ml*n+m),1); 
b
o.
'o

% THE ORDER OF THE COEF. FROM HIGHER TO LOWER, 
for i=l:ml,

ahl(l:n,i)=a(n:-l:l,i) ;
end
bhl(l:(m+1),l)=b((m+1):-l:l,l);
% SAVE A AND B TO FILE FOR GRAPHIC, 
save abhl ahi bhl
Q."O
% USE CHEN'S METHOD TO GET STATE-SPACE FORM
ahlc=ahl/bhl(1,1);
nc=(ahlc)'
bhlc=bhl/bhl(1,1);
bhlc=-(bhlc)'
bhlc=bhlc(1,2:(ml+1))
fc(1,:)=bhlc;
fc(2:ml,l: (ml-1) )=eye( (ml-1), (ml-1)) ; 
fc(2:ml,ml)=zeros((ml-1),1) ; 
fc
f=nc*fc*inv(nc) 
gl=nc(:,1)
%
% gs=12 for xl/ul and x2/ul, gs=34 for x3/ul and x4/ul.
% gs=56 for x5/ul and x6/ul, gs=78 for x7/ul and x8/ul. 
gs=input('WHICH G(s) WOULD YOU LIKE TO PLOT ?') 
bhl=(bhl)'; 
if gs=12, 

load fly801 
load fly802 
ahll=(ahi(1:n ,1))'; 
ahl2=(ahl(l:n,2))'; 

else
if gs==34, 

load fly803 
load fly804 
ahll=(ahl(l:n,3))'; 
ahl2=(ahl(l:n,4))'; 

else
if gs=56, 

load fly805 
load fly806 
ahll=(ahi(1:n ,5))'; 
ahl2=(ahi(1:n ,6))';

e3"load fly807 
load fly808 
ahll=(ahi(1:n ,7))'; 
ahl2=(ahl(l:n,8))'; 

end 
end 

end
% THE LOW ORDER MODEL 
[arl,brl,crl,drl]=tf2ss(ahll,bhl); 
[ar2,br2,cr2,dr2]=tf2ss(ahl2,bhl); 
eigrl=eig(arl) 
eigr2=eig(ar2)
% HIGH ORDER SYSTEM 
atl=ahl;
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btl=bhl; 
ctl=chl; 
dtl=dhl; 
at2=ah2; 
bt2=bh2; 
ct2=ch2; 
dt2=dh2; 
eighl=eig(ahl) 
eigh2=eig(ah2)
% PLOT FREQUENSE RESPONSES OF THE G(s). 
w=logspace(-2,2);
[mag,phase]=bode(atl,bt1,ctl,dtl,1,w );
[magi,phasel]=bode(arl,brl,crl,drl,l,w);
[mag2,phase2]=bode(at2,bt2,ct2,dt2,1, w );
[mag3,phase3]=bode(ar2,br2, cr2,dr2,1,w); 
subplot(221)
loglog(w,mag,,w,magl,'*')
xlabel('w(rad/sec.)'),ylabel( ' m a g  db')
subplot(222)
semilogx(w,phase,,w,phasel,'*') 
xlabel('w(rad/sec.)'), ylabelj'phase deg') 
text(xx,yy,'- for HOS model, * for ROS model','sc') 
subplot!223)
loglog(w,mag2,'-',w,mag3,'*')
xlabel('w(rad/sec.)'),ylabel('mag db')
subplot(224)
semilogx(w,phase2,'-',w,phase3,'*') 
xlabel('w(rad/sec.)'),ylabel('phase deg')
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PROGRAM - 3 
(TO GENERATE DATA FILES)

% THIS PROGRAM IS TO GENERATE TWO DATA FILES (FLY80*.MAT AND FWRIF*.MAT) 
% FOR PUMA80 OR PUMA60.
O'O
% THE DATA FILES IS TO FIND 8*8 (1+7) REDUCED MODEL.
% LOAD AB80.M OR AB60.M. 
load ab60
z=input('the b matrix isf)
wl=input('The lower limit of frequency range is log(wl)= ') 
w2=input('The upper limit of frequency range is log(w2)= ') 
b=b(:,z); 
for i=l:14, 

for j=l:14, 
if i=j, 

c(i,j)=1; 
else

c(i,j)=0;
end

end
end 
d=0;
for y=l:8, 

ahl=a; 
bhl=b; 
chl=c(y,:); 
dhl=d;
if y==l,

save fly801 ahi bhl chi dhl 
fl=logspace(wl,w2);
[re,im]=nyquist(ahl,bhl,chl,dhl,l,fl); 
f2=(re)'; 
f3=(im)';
save fwrifl fl f2 f3 

else
if y=3,

save fly803 ahi bhl chi dhl 
f7=logspace(wl,w2);
[re,im]=nyquist(ahl,bhl,chl,dhl,l,f7); 
f8=(re)'; 
f9=(im)';
save fwrif3 f7 f8 f9 

else
if y=5,

save fly805 ahi bhl chi dhl 
fl3=logspace(wl,w2);
[re,im]=nyquist(ahl,bhl,chl,dhl,l,fl3); 
fl4=(re)' ; 
fl5=(im)';
save fwrif5 fl3 fl4 fl5 

else
if y==7 ,

save jEly807 ahi bhl chi dhl 
fl9=logspace(wl fw2);
[refim]=nyquist(ahi,bhl,chi,dhl,l,fl9); 
f20=(re)'; 
f21=(im)';
save fwrif7 fl9 f20 f21 

else
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a h 2 = a ; 
bh2=b; 
ch2=c(y,:); 
dh2=d; 
if y=2,

save fly802 ah2 bh2 ch2 dh2 
f4=logspace(wl,w2);
[re,im]=nyquist(ah2,bh2,ch2,dh2,l,f4); 
f5=(re)' ; 
f6=(im)';
save fwrif2 f4 f5 f6 

else
if y==4,

save fly804 ah2 bh2 ch2 dh2 
fl0=logspace(wl,w2);
[ re,im)=nyquist(ah2,bh2,ch2,^2,1^10); 
fll=(re)'; 
fl2=(im)';
save fwrif4 flO fll fl2 

else
if y=6,

save fly806 ah2 bh2 ch2 dh2 
fl6=logspace(wl,w2);
[re,im]=nyquist(ah2,bh2,ch2,dh2,l,fl6); 
f17=(re)f; 
fl8=(im)r;
save fwrif6 fl6 fl7 fl8 

else
save fly808 ah2 bh2 ch2 dh2 
f22=logspace(wl,w2);
[re,im]=nyquist(ah2,bh2,ch2,dh2,l,f22); 
f23=(re)'; 
f24=(im)';
save fwrif8 f22 f23 f24 

end 
end 

end 
end 

end 
end 

end 
end
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APPENDIX 6

USER'S GUIDE 1 TO THE MODEL REDUCTION SOFTWARE

(PROGRAM FOR IMPLEMENTATION 

OF BACON & SCHMIDT'S METHOD)

A6.1.1 INTRODUCTION

Bacon and Schmidt's method has been coded in MATLAB for a VAX 3000

computer. This Guide gives a brief description of this program. The program can

be used to find an equivalent system, with reduced order of a multi— input 

multi— output high— order system. The high— order system is written as a

state— space form, and the low— order approximation, or equivalent system, can be 

expressed as a state—space form, a pole—zero—gain form, or a transfer function

form.

A6.1.2. DETERMINATION OF TRANSFER FUNCTION OF THREE SUBSYSTEMS 

The choice of transfer function of the three subsystems, (high— , middle— and 

low—), very much depends on determination of the radii dl and d2. The value of 

radii dl and d2 are based on the location of poles of the system in the s—place.

Physical knowledge of the system and experience are very important for determining

dl and d2. In this program, the value of poles (eigenvalues ) are calculated first 

and displayed on screen; then based on these value we can group them into three 

subsystem and obtain the range of the high frequency subsystem and the middle

frequency subsystem. In Bacon and Schmidt's method the contribution of the low

frequency subsystem is considered unimportant for flight control design and handling 

qualities studies and is ignored.

A6.1.3. THE DETERMINATION OF THE REDUCED ORDER

The order of the reduced system is the sum of the order of the reduced 

subsystems, r^ and rm . The order of the reduced subsystems, r^  and rm, is initially 

decided from the Hankel singular values by throwing away the parts which correspond
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to the smaller values. The final determination should be from the comparison of the 

frequency response between the HOS and the resulting ROS and from the errors 

produced by the ROS.
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USER'S GUIDE 2 TO THE MODEL REDUCTION SOFTWARE

(PROGRAM FOR IMPLEMENTATION OF THE EXTENDED LEVY'S

METHOD)

A6.2.1. INTRODUCTION

This program finds a transfer function for a multi— variable system from frequency 

response data using a complex curve fitting technique which has been developed 

recently by M. R. Gong based on Levy's method. The modifications proposed by 

Sanathanan and K oernert70] for removing high frequency bias have been included. 

The method will not be able to deal with poles at the origin of the s— plane. The 

program was written in MATLAB for use on a DEC MICROVAX 3600 computer. 

This program is available for single— input and multi— output cases. The original 

data for the high order system are expressed in state— space form and are converted 

to required frequency response format by "Nyquist" function of MATLAB.

A6.2.2. THE HIGH ORDER SYSTEM

The high— order system, namely the dynamical system to be represented in reduced 

order form is given as the frequency response data which must be input in the form 

of forcing frequency, together with the resulting response in term of a real and 

imaginary part.

A6.2.3. THE REDUCED ORDER MODEL

The resulted low— order model is first expressed as a transfer function form by 

using Levy's method, (part one of the program). Then, the reduced order model 

will further be described as a state— space form by part two of the program using 

Chen's method.

A6.2.4. GENERATION OF THE DATA FILES

Before runing this program some input data files must be generated. The number 

of the required input files is equal to the order of the reduced system, m l. These 

data files are written in "Nyquist" function format which means that every file
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includes corresponding frequency part, real value part and imaginary part. The 

frequency part is at the position (fl, f4, f7, ... f(m l*3— 2)) separately, the real part 

is at (f2, f5, f8, ... f(m l*3— 1)) separately and imaginary part at (f3, f6, f9, 

f(m l*3).(See APPENDIX 5 Program 3)

A6.2.5. CHOICE OF THE COEFFICIENTS IN THE PROGRAM

In this program, a few coefficients must be given by the user before the program

is run. The right choice of the values very much depends on the particular cases

and previous experience of the user. The choice of the values and the definition of 

some coefficients may be described as follows:

m  the order of denominator of transfer function G(s)

n n  the order of numerator of transfer function G(s)

m l  the number of transfer function G(s) given

n w  the number of the frequency points

n r  the total times of iterations

c n  the power of weighted factor

The numerator nn must be equal to or less than denominator m. In this program 

the maximum ml can be taken as 8. In general, more data points may improve

the accuracy, but more data points will increase the cost in terms of computing

time. Fifty points is thought to be suitable for obtaining satisfactory results in most 

cases. This program only needs 3 — 6 iterations to be able to achieve 

convergence. It is very difficult to say how the value of the constant cn can be 

determined. From the examples which we tried, cn in the range 0.6 — 1.5 will 

give satisfactory results. However different cases should take different value of cn 

and sometimes different value of cn are needed in different frequency ranges within 

one calculation.

GLASGOW
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