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Abstract

This thesis describes a numerical study of the electron transport through a
quantum point contact in the ballistic limit. In the initial part of this study a time-
dependent model was developed. This provided a qualitative analysis of the transport and
highlighted the complex scattering processes at the contact-channel interface and the
modal nature of the transport in the channel region of the quantum point contact.

To study the transport in more detail a coupled-mode time-independent analysis
was developed and applied to various models of a quantum point contact with different
approximations to the confining potential. This included an analysis of the transport
through the disordered quantum point contact, which included the potential of the
randomly distributed ionized donors in the calculation of the confining potential. This
study shows that the random potential in a quantum point contact leads to rapid intermode
scattering. The adiabatic approximation fails badly, but conductance can still be quantized
through the less stringent conditions of ‘compensated’ scattering. This intermode
scattering was found to reduce the sensitivity of the quantum point contact to the channel-
contact coupling. The lack of adiabaticity in the transport can compensate for poor
interface coupling of the channel modes through a process of forward intermode
scattering. This non-adiabatic process can lead to the full occupancy of the lower
conducting modes even when their initial coupling is poor.

The forward intermode scattering length in the disordered quantum point contact
was found to be approximately 100 nm, which was in good agreement with the
analytical scattering length based on the Born Approximation. However, an efficient
three-stage indirect back-scattering process has been identified which cannot be described
within the usual Born Approximation. If this represents the dominant back-scattering
process in quasi-one-dimensional systems, then the mobilities calculated using the Born
Approximation will be overstated.

If electron devices analogous to those of electromagnetic waveguides are to be
produced, these scattering mechanisms must be eliminated. This represents a
considerable engineering challenge

v



Content of Thesis

Chapter One provides an introduction to the thesis. This chapter describes the current
state of conventional devices, introduces quantum device structures and in so doing
outlines the motivation for this work.

Chapter Two outlines the experimental systems in which the semiconductor quantum
point contacts are fabricated. It highlights the technological driving force behind the
development of the AlGaAs-GaAs heterostructure systems that form the basis of
semiconductor quantum point contacts.

Chapter Three describes various time-dependent approaches applied to the study of
electron transport in the ballistic limit. This chapter includes a qualitative study of the
transport through a quantum point contact.

Chapter Four details the development of a time-independent coupled-mode model of
the electron transport in an electron waveguide. Particular attention is drawn to the
problems of modal cut-off and the general numerical instability associated with the
numerical integration of evanescent modes.

Chapter Five applies the time-independent coupled-mode model to different
approximations of the quantum point contact. This coupled-mode approach allows a
detailed analysis of each modal contribution to the flux at all points throughout the
structure.

Chapter Six provides a detailed study of the electron transport through a realistic
quantum point contact. The confining potential is based on a potential that includes the
effects of the non-self-averaged randomly distributed ionized donors. The results of this
coupled mode analysis are also compared with an analytical study based on the Born
Approximation.

Chapter Seven briefly outlines the extension of the coupled-mode model to other
related ballistic transport problems and suggests directions for future work.

Chapter Eight summarises the content and results of this thesis and discusses the
conclusions in the context of potential device applications.
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Chapter One

Introduction

1.1 Background

The long-continued advance of the performance of information processing
technologies has been based on the miniaturization of components (Keyes 1988).

Undoubtedly, this observation by Keyes is a restatement of a truth that is as
important today as it was when humanity advanced from writing on cave walls to paper.
However, more recently, the progress in miniaturization has been more rapid.

The current period of miniaturization began with the large relay computers
developed in the 1940s. Inventions in the 1950s showed that electronic computation and
storage could be performed using semiconductor devices, and the quest for higher
operating speeds and lower power dissipation led to ever-smaller devices (Keyes 1988).
The advent of planar processing methods around 1960 provided a massive impetus in the
development of smaller devices. Currently, Very Large-Scale Integration (VLSI) circuits
can contain one million active elements over an area of just a few square centimetres of
semiconductor. The critical scale of the elements of these VLSI circuits are now shrinkin g
to below 0.5 pm.

The advent of planar processing also introduced the first practical approach to
reduce the dimensions available to the electrons in the semiconductor system. This was
achieved by exploiting the channel of a MOSFET structure to provide a two—dimensional
system. In 1986, Hartstein (Hartstein 1986) electrostatically confined the electron
channel of a n-channel MOSFET to study the physics of a quasi-one-dimensional system.
The recent developments in epitaxial growth techniques have enabled the production of
AlGaAs-GaAs heterostructures (Chapter 2), in which the conducting electrons are
confined to a two-dimensional Electron Gas (2DEG) through band gap engineering. This
heterostructure system has formed the basis for the study of the physics of semiconductor
Low Dimensional Systems (LDS). It is also being investigated as a basis of more
traditional devices, where the high mobility of the 2DEG at low temperatures is exploited.
This can be in excess of 1000 m2/Vs, which gives a transport mean free path

approaching 1mm (Foxon 1989).

The continued advances of technology have enabled lateral confinement of the
2DEG on the same scale as the Fermi wavelength of the electron. The basic scales of the

1



conducting electrons in an AlGaAs heterostructure at low temperatures are defined by the
Fermi wavelength, Af = 50 nm, and elastic mean free path, /;p; = 1 um. In order to
understand such structures, it is therefore necessary to take the wave nature of the
electrons into account 1. Such systems, in which the wave nature of the electron must be
employed to gain an understanding of their operation, have been termed Quantum
Devices. They cannot be described by semiclassical transport theory, which views
electrons as particles that obey Newton’s Laws. At low temperatures (< 4K) these
quantum devices are ballistic, since the mean free path for dissipative scatterin g is much
larger than the structural dimensions. In modelling these structures it is therefore
reasonable to assume that all inelastic scattering processes take place in the contacts, and
not in the actual active area of the device. Applying this assumption, the characteristics of
a quantum device are determined by the transmission matrix which relates the input flux to
the output.

1.2 The Quantum Point Contact (QPC)

The most basic building block of any quantum device is a short section in which
the electrons in the 2DEG are laterally confined. The lateral confinement is comparable
with the Fermi wavelength of the electrons. This leads to the creation of series of allowed
transverse states or ‘modes’ which, dependent on their energy, the electrons may occupy.
Such a system has analogies with electromagnetism and so has been termed an ‘electron
waveguide’.

In 1988, groups at both Delft-Philips (van Wees 1988) and Cambridge
(Wharam 1988) independently discovered that the conductance of a short section,
= 0.2um, of electron waveguide connected to two contacts in the unconfined layer of the
2DEG heterostructure was quantized. The system, including the contact regions, has been
termed a Quantum Point Contact (QPC). Both groups used the split-gate electrode method
to control the width of the channel (see Chapter 2).

Figure 1.1 shows the result of measurements by Timp et al (Timp 1989). This is
equivalent to the first reported measurement of quantized conductance in a QPC
performed by van Wees et al. The conductance is quantized in steps of 2¢2/h and is a
function of the width of the constriction, as controlled by the gate voltage. When the gate
voltage is made more negative, there is an increase in the depletion region under the split
gates. This squeezes the channel, thereby reducing its width.

1 In making this statement, it is already assumed that the quantum mechanical nature of the system has
already been invoked to provide the electronic band structure and effective mass.
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Figure 1.1 Measured conductance of a 0.2 um QPC with good quantization, after
Timp et al (Timp 1989)

The original analysis of this quantization (see Section 5.2) assumes both that each
mode in the channel is perfectly coupled to the 2DEG contacts and also that there is no
scattering in the modes inside the channel, the transport being assumed to be adiabatic
(Glazman 1988). This produces the quantized conductance in exact steps of 2e2/h.
However, this is inconsistent with a numerical model (Kirceznow 1989) that included the
interface between the contacts and the channel, which found that there was a resonant
structure in the conductance.
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Timp et al (Timp 1989)



Further inconsistencies with the initial analysis of the transport in the QPC were
uncovered when Timp er al (Timp 1989) observed the breakdown of quantized
conductance in a QPC of length 0.6 um (Figure 1.2), whilst other nominally identical
structures showed signs of quantization only at low values of conductance (Figure 1.3).
This was unexpected, as the channel length is still an order of magnitude less than the
scattering length in a 2DEG. Also, earlier theory (Sakaki 1980) had predicted that the
transport mean free path in a quasi-one-dimensional channel should be greater than that in
a 2DEG.

1.3 Summary

The trend in electronic semiconductor devices has been towards ever increased
miniaturization. As the line width of current devices is ~ 0.5 um, continued reduction in
size may soon lead to the observation of new quantum device effects as secondary
features in conventional devices. On this basis alone, quantum devices deserve
understanding (Landauer 1989), although they could also lead to an entirely new class of
devices based on the quantum mechanical properties of electrons.

Currently there are a number of inconsistencies. The loss of quantization in a QPC
of channel length 0.6 um and the role of the channel-contact interface brings into question
the basic assumptions underlying the transport in the well-quantized QPC of 0.2 pm
channel length. In the following chapters, these inconsistencies are examined throu gh the
use of numerical models to study the electron transport through the QPC.



Chapter Two

Experimental Systems

2.1 Introduction

In this chapter the experimental system used in the study of electron transport
through a QPC is discussed. The development of this area of semiconductor physics has
been technology driven. It is only as a result of relatively recent advances in the growth of
semiconductor materials using Molecular Beam Epitaxy (MBE) and fabrication of device
structures using Electron Beam (E-Beam) lithography that this area of semiconductor
physics has been opened up in LDS systems.

This chapter begins with a brief description of these two principal technologies
and then describes the experimental system in which the QPC is fabricated.

2.2 Molecular Beam Epitaxy (MBE)

The MBE system may be thought of as a sophisticated evaporation chamber. The
core of the system is an ultra-high vacuum growth chamber into which the substrate is
loaded. Connected to this growth chamber are several evaporation cells which can supply,
in a controlled manner, the various species in the form of a hot flux that may be required
to be deposited on the substrate. The flux can be initiated or terminated in less than a
second and the growth rate is of the order of 5A per second. Provided that the lattice
spacings of the various species evaporated onto the substrate are similar both to each other
and also to the substrate, it is possible to grow a system of multiple crystalline layers with
good lattice matching.

Another important technique more often associated with optoelectronic
applications is Metallo-Organic Chemical Vapour Deposition (MOCVD), in which the
substrate is exposed to a hot stream of gaseous compounds, such as (CH3)3Ga,
(CH3)3Al or AsH3. The chemical reaction of these compounds at the growth surface
leaves successive layers of the desired semiconductor.



2.2.1 The AlGaAs-GaAs system

A particularly important combination of materials used in the en gineering of MBE
layers, and that used in the fabrication of the QPC, is the AlGaAs-GaAs system. These
two semiconductors are closely matched in lattice spacings, but their band structures
differ. It has been shown (see Collins 1986 for a summary) that the difference in the band
structure can be approximated by an electrostatic potential, where the conduction band of
the AlxGaj.xAs is approximately x eV above that of the GaAs (for x<0.35).

Conduction Band

Energy (eV )‘
GaAs
Al,Ga ;1 4As - X =
GaAs
AlL,Ga,  As
GaAs

Figure 2.1 Conduction band profile of a AlGaAs-GaAs resonant tunnellin g barrier

Figure 2.1 shows a resonant tunnelling barrier formed from alternate layers of
AlGaAs and GaAs. If more potential barriers were added, the single resonant states of the
tunnelling barrier would expand to form mini-bands of resonant or ‘allowed’ energies.
This is analogous to the origins of the normal semiconductor bands, and can be
engineered to produce a desired band structure. Such structures are called superlattices
and have found widespread applications, particularly in the field of optoelectronics.

2.3 Electron Beam Lithography

The second technology important to the fabrication of semiconductor devices of
sufficiently small size is Electron Beam lithography. This is based around a sophisticated
electron gun, which can focus the electron beam down to a spot size of the order of 10A
in diameter. The electron beam moves around the surface of an electron-sensitive film or
resist on the substrate. It is directed by deflection coils, controlled by a computer which
has been programmed to produce the desired pattern.

The final stages of the fabrication follow those of normal photolithography, where
the pattern written by the E-beam into the resist can be transferred to the substrate, or

subsequent layers placed over the resist by a variety of techniques.



2.4 The Two-Dimensional Electron Gas (2DEG)

The first semiconductor two-dimensional electron gas (2DEG) was that of the
inversion layer of a silicon MOSFET. More recently, the advent of MBE and MOCVD
growth techniques have enabled the creation of a 2DEG in a AlGaAs-GaAs system.

=
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|
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1
I
S D L
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Figure 2.2 Conduction band of the heterostructure. The conduction band discontinuity
creates a 2DEG at the interface of the AlGaAs and GaAs (Davies 1 987).

Figure 2.2 shows the conduction band of a AlGaAs-GaAs system that forms a
2DEG at the boundary of an undoped GaAs layer and an undoped AlGaAs spacer layer.
The potential discontinuity at the surface results from the Schottky barrier potential
between the the AlGaAs and the metal. Even if there is no metal contact there still exists a
potential discontinuity at the surface as a result of the ‘pinning’ of the Fermi energy on the
surface of the AlGaAs.

When in equilibrium, a well designed AlGaAs-GaAs heterostructure will have a
roughly triangular well in the conduction band at the AlIGaAs-GaAs interface below the
Fermi energy of the system. Electrons from activated donors in the doped AlGaAs region
of the structure diffuse into the interface well. Here they become trapped in one of the
quantized subbands of the well, generally in a region within 10nm of the interface. In the
experimental structures, the heterostructure is designed so that only the lowest quantized
subband of the interface well is occupied. The donor electrons in the system are therefore
confined in the direction perpendicular to the plane of the AlGaAs-GaAs interface, but are
free to move in the plane of the interface, restricted only by the size of the system.



2.4.1 Properties of a 2DEG

The principal advantage of this heterostructure 2DEG over those formed in the
inversion layers of silicon MOSFETS is the separation in real space of the conducting
2DEG electrons and the ionized donor impurity atoms.

A
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Figure 2.3 Temperature dependence of principal scattering mechanisms in bulk GaAs
material (Jaros 1989)

The significance of this physical separation can be understood by reference to the
major processes that restrict the electron mobility in a semiconductor (Figure 2.3). At hi gh
temperatures, the principal restriction on electron mobility (L) is scattering with the lattice
vibrations (iph). The vibrational properties of semiconductor crystals do not vary greatly
from material to material (Jaros 1989). There is therefore very little that can be done to

improve electron mobility at high temperatures.

However, at low temperatures, the electron mobility is limited by the scattering of
electrons with the impurity atoms (u;). Unfortunately, the impurities are the very dopants
that provide the conducting electrons in the system, and they therefore cannot be removed
from the system. Ideally the impurity atoms and the conducting electrons should be
physically separated. This is achieved in a AlGaAs-GaAs heterostructure, where an
additional undoped AlGaAs spacer layer is introduced into the system. This is done in
order to increase further the distance between the 2DEG and the ionized donors, and
hence the mobility. However, if the spacer layer is made too wide, it can start to inhibit
charge transfer into the undoped GaAs. A balance must therefore be achieved between



either high mobility but low carrier concentration, or else low mobility and high carrier
concentration.

10|
& ] Ga 1. Al yAs - GaAs heterostructure
10T
§
&
(=]
g
g
g 4_{
= 10 Bulk n-type GaAs
10° | I | >
0 10 100 300
T (K)

Figure 2.4 Temperature dependence of mobility in n-type bulk and 2DEG GaAs (Jaros
1989)

2.5 The Confinement of a 2DEG into a QPC

After the heterostructure has confined the electrons into a 2DEG, there are a
variety of ways to further restrict the electron transport in the AlGaAs—GaAs system. The
transport can become quasi-one-dimensional when the confining width becomes
comparable with the Fermi wavelength of the 2DEG electrons. The various techniques of
further confining the 2DEG are shown in Figure 2.5.

Lateral confinement can be achieved by full or partial etching of the material on
either side of the required channel (Figure 2.5a). In the latter case, the reduction in the
distance between the 2DEG and the pinned Fermi energy at the surface is sufficient to
deplete the 2DEG of electrons. Ion bombardment (Figure 2.5b) can also be used to
confine the electrons by damaging selected areas of the material, which leads to
substantially reduced conductivity.

10



A further approach to confining the 2DEG is to use a patterned gate on the surface
of the sample to deplete carriers in selected regions. This technique was used in the
original discovery of the quantized conductance, and subsequently this approach has been
used in nearly all experiments associated with the QPC. The widespread use of this
approach, known as the ‘squeezed’ gate technique, stems from not having to damage the
sample in confining the 2DEG, and by being able to dynamically adjust the confinement
by changing the gate voltage.

a) Etching Depleted Regions

AlGaAs

——— GaAs

AY
Deep Etch Shallow Etch ~ 2PEG

b) Ion Beam Exposure

100eV

el
frr

Blanket Exposure Scanned Focussed Ion Beam

c¢) Gating Confinement

Gate Metal

Dielectric

Split Gate Split Gate + Dielectric

Figure 2.5 Techniques for the confinement of a 2DEG (Thornton 1989)
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Figure 2.6 shows a schematic of the 0.6 um QPC studied experimentally by
Timp et al. (Timp 1989). This structure was confined using the electrostatic ‘squeezed
gate’ technique, and forms the basis of the model used to study the electron transport in
realistic QPCs in Chapter 6. As can be seen from Figure 1.2, this structure has poor
quantized conductance.

300nm
.
i GaAs 6 nm
Undoped Al 0.3Ga 0728 24 nm
n-Aly,Ga As N2 4x10'° m™
Undoped Al 0202 0728 42 nm

/ GaAs

Quasi-one dimensional electron channel

(not to scale)

Figure 2.6 Schematic of the experimental structure modelled in Chapter Six
(Timp 1989)

2.6 Summary

This chapter has provided a brief description of the principal technologies used in
the preparation of LDS structures. The area of LDS has been seen to be technology driven
and it is the recent advances in this technology which have allowed the growth and
confinement of the 2DEG, formed at the band gap discontinuity of a semiconductor
heterostructure.

The enhanced mobility of the 2DEG system at low temperature provides an
excellent system in which to study semiconductor quantum ballistic transport in reduced
dimensions, and is the basis of the experimental QPCs modelled in this work.

12




Chapter Three

Time-Dependent Analysis

3.1 Introduction

This chapter begins with the application of a one-dimensional solution of the
Time-Dependent Schrodinger Equation (TDSE) to a qualitative study of scattering in one
dimension. This numerical technique is then adapted using the Alternating Direction
Implicit (ADI) method to solve the two-dimensional TDSE, which is then applied to the
study of transport in the QPC.

The last part of this chapter describes the development of a novel monoenergetic
quantum mechanical source, which can provide details in the study of time-dependent
processes and provide time-independent solutions in its steady state.

3.2 One-Dimensional Time-Dependent Schriodinger Equation

The time evolution of a single particle non-relativistic quantum mechanical system
is governed by the TDSE and the initial state of the system.

oy(r.t)
ot (3.1)

Hy(r,t)=1i

where y(r,t) is the wavefunction and H is the Hamiltonian of the system. For systems
evolving in a continuum space, the TDSE belongs to a class of linear parabolic partial
differential equations. The formal solution of this equation is

w(r,t)=CXP(-éHt)\lf(raO) 3.2)

In general, the explicit expression for the solution cannot be written down in
closed form, and it is necessary to resort to numerical techniques to solve this initial value
problem. Continuous space and time may be replaced by discretized approximations
separated by Ax and At respectively. As usual in the discretization of a continuous
problem, it is necessary to make a compromise between accuracy and computation effort,
although the overriding criterion must be that of numerical stability.

13




Following Goldberg et al (Goldberg 1969), the Crank-Nicholson scheme was
considered. This scheme develops a propagating procedure by considering forward and
backward propagation in time from the current position.

nH( ) o L n
v (r)—exp( hHAt)w(r) (3.3)
n1 _ _. n
s (r)—eXP(gHAt)W(r) (3.4)

where Y"(r) is the wavefunction at r at time nAt. Eliminating the term in y"(r) results in

the equation

exp(hiHAt)w“”(r)=exp(—hL.HAt)\l/nﬁl(r) (3.5)

Expanding the two exponentials to first order using the Taylor expansion results
in an approximation for the time evolution operator, known as the Cayley approximation

vo(s =[QM} or)

(1+i(av2)Em) (3.6)

Potter (Potter 1973) has investigated the stability of this time operator using the
Von Neumann stability criteria, which considers the growth of the Fourier modes
present on the mesh of grid points. For stability, the modulus of the growth factor must
always be less than or equal to unity. The growth factor G is defined as

n+l
G=U
U (3.7

where U is a Fourier amplitude at time nAt. Application of this stability analysis to the

Cayley operator produces (Finch 1989) a growth factor of

_[1-i(2a{1-cos(kAx )+2v;At])]

© _[1+i(2A(1—COS(kAX)+2VjAt})] (3.8)

The modulus of this growth factor is always unity, which implies that errors will
not grow exponentially, and therefore the time evolution operator is stable.

A second property of a time evolution operator is that it must be unitary. This is
necessary in order that the normalisation of the wavefunction is preserved, and therefore
that the wavefunction is neither created or destroyed. For the Cayley time evolution
operator to be unitary H H" = 1, where H* is the Hermitian conjugate. With reference to
Equation 3.6, this is clearly the case. The Cayley approximation is therefore a suitable
time evolution operator, in that it is both stable and unitary.
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The spatial discretization follows the well known finite difference method. The
one-dimensional single particle Hamiltonian has the form

2m ox? (3.9)

where m is the effective electron mass, which is an approximation which is used
throughout this work.

This is replaced by a finite difference form, where the continuous space has been
replaced by a series of points separated by a distance Ax,

oDV -2yi+yi
2m Ax?

+YiV;
(3.10)

where V7 is the wavefunction at position jAx at time nAt. Applying this discretization to
Equation 3.6 produces the Crank-Nicholson discretized TDSE of the form

yi +yp—oriBo2] 4y = —yh sy ariBe2] + v 3.11)

— 2V
wherca:&zxvjandl}=4m—Ax2.
h h At

Provided that the initial state of the system, including the boundary conditions,
are known, this equation can be rewritten as a tridiagonal matrix equation in the
unknowns Y}*'. Standard sparse matrix techniques can be used (Press 1987) to obtain
the wavefunction throughout the system at time step (n+1). The sparse nature of the
matrix means that it can be efficiently solved in the order of N computation steps, where
the matrix is of the size N xN. This new wavefunction is then used as the initial
conditions to determine the subsequent wavefunction. This numerical procedure is stable
provided the criteria for mesh size and time step, outlined by Goldberg, are used.

3.2.1 Results of the One-Dimensional Model

Figures 3.1 and 3.3b illustrate various snap shots of the interaction of a gaussian
wavepacket with a potential barrier, which represents a GaAs—AlGaAs—GaAs system. By
Figure 3.3b, the wavepacket has finished interacting with the barrier and has split into
two roughly equal packets, both of which are moving away from the barrier. The
splitting of the probability density of the wavepacket represents the possible outcomes of
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the interaction of the electron with the barrier. Either the electron tunnels through the
barrier and continues with its forward motion, or else the electron is reflected.

a) Gaussian wavepacket at 0.184 eV
Barrier: 0.23eV, 25A
Time = 0.8 ps

A A L

b) Gaussian wavepacket at 0.184 eV
Barrier: 0.23eV, 25A
Time = 1.8 ps

et

Figure 3.1 The interaction of a 0.184 eV gaussian wavepacket with a barrier. This barrier
represents a AlGaAs tunnelling barrier in a GaAs system.
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The probabilities of the electron being reflected or transmitted are determined by
the relative areas of the transmitted and reflected probability density of the wavepackets,
compared to the incident wavepacket. Since the evolution operator is unity, the total flux
remains conserved and the sum of the transmitted and reflected wavepackets equals the
incident wavepacket.

To confirm these results, a comparison was made between the numerical
approach and a stationary state analytical calculation. In order to perform the analytical
calculation, it is necessary to Fourier transform the initial wavepacket into k space using

N -
F (k) mf_w W (x) exp(ikx ) dx

(3.12)
where the gaussian wavepacket is given by
¥ (x) =|—L_| " exp(ikox ) exp|= )
[oi7) eptionexpiz (3 13)
2
This gives F(k—k@:[%n] " epr’ (k—ko) 2] (3.14)

The probability of transmission of each momentum (k) component was calculated
from the standard plane wave transmission through a rectangular barrier, derived in any
quantum mechanical text book (Eisberg 1961). After applying these transmission
coefficients to the k-space components, they were transformed back to real space in order
to obtain the analytical transmission probability of the transmission through a barrier. A
comparison of integrated wavepacket and analytical transmission probabilities is shown
in Figure 3.2, from which the numerical technique is found to be in good agreement with
the analytical results.

1.0 4 .
=
=
2 0.5
£ .
£
s
et
0 T T T T T T T T T —
0 01 02 03 04 05 06 07 08 09 1.0

Energy (eV)

Figure 3.2 Comparison of the analytical (line) and time-dependent (points) calculations of
the transmission probability of a gaussian wavepacket through a tunnelling barrier.
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In Figure 3.3, the result of a wavepacket scattering with one barrier is compared
with the same wavepacket interacting with two identical barriers.It is seen that more of
the wavepacket scattering off the double barrier in Figure 3.3a is transmitted than in the
single barrier case illustrated in Figure 3.3b. This increased transmission is due to the
resonant tunnelling of the wavepacket whose energy coincided with the resonant energy
of the double barrier system.

a ) Gaussian wavepacket at 0.184 eV
Barrier: 0.23 eV, 25A-25A-25A

3
3
N
=
N
3
®
N
%
3
2
Y
N
3
N
N
N
N
N

LB ELES PSP AL L L LSS L S LSS

b ) Gaussian wavepacket at 0.184 eV
Barrier: 0.23 eV, 25A

R e o b o A s

Figure 3.3 Comparison of 0.184 eV gaussian wavepacket passing through a single and
double resonant barrier system.
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3.3 Two-Dimensional Time-Dependent Schridinger Equation

Following Finch (Finch 1989), the one-dimensional Crank-Nicholson scheme is
extended to two dimensions using the Alternating Direction Implicit (ADI) technique.

The ADI scheme is an operator—splitting approach, in which the full two-
dimensional Hamiltonian Hyy is approximated by the sum

Applying the Cayley expansion yields the relation

nl _ (1-H ;=-H ;1)
v (1+Ht+H 1)

V", where T:%%L. (3.16)

This expression can be factorized so that it resembles the product of two one-
dimensional operators and, if an intermediate time position Y™ is introduced, the
calculation can be broken down into the two stages

n+1/2=(1"‘HyT) n
M (1+th)w (3.17)

n+1=(1_HxT) n+1/2
v (1+Hy't)w (3.18)

Finch has shown that at high magnetic field ( > 1T ) there is a loss of unitarity.
However, in this zero magnetic field expansion, the method is stable under the same
stability criteria as the purely one-dimensional system. The computation procedure is also
very similar to the one-dimensional problem, although it is necessary to solve two
tridiagonal matrices at each time step.

3.3.1 Results of the Two-Dimensional Model

The two-dimensional TDSE numerical technique detailed in Section 3.3 was used
to study the transport through a QPC. The QPC was approximated as a uniform channel
of zero energy in an otherwise impenetrable potential barrier (of several electron volts
energy) connecting two large but finite contact areas (Figure 3.4). The incident electron
was approximated as a gaussian wavepacket centred on the channel. It has only a forward
component of energy, defined by the chosen electron energy.
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0.112 um
1.6 um

(Not to scale)
Figure 3.4 Schematic of the system used in the computation of the 2D TDSE.

Table 3.1 gives the modal energies of the channel assuming the ‘particle in a box’
approximation. This is reasonable, as the walls of the confining potential are very much

larger than the electron energy.

Mode Modal energies of the Modal energies of the tapered
Number non-tapered channel channel at the widest point

(meV) (meV)
1 0.448 0.112
2 1.790 0.448
3 4.028 1.008
4 7.160 1.792
5 11.187 2.800

Table 3.1 Modal Energies of QPC channels used in the time-dependent study.

Table 3.1 shows quite clearly the significant effect of tapering the channel. At the
interface with the contacts all of the five lowest modes in the tapered channel have
energies below 3 meV. In comparison, only the first two modes of the non-tapered
channel are in this energy range. Figures 3.5 to 3.8 show snap shots of the various states
of an electron scattering through a QPC for both a uniform channel and a channel with
rounded corners. In all cases there is no potential inside the channel.
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d)

Figure 3.5 Various stages of the interaction of a 10 meV gaussian wavepacket with the
non-tapered QPC a)t=0,b)t=1ps,c)t=2ps,d) t =4 ps.
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\

Figure 3.6 Various stages of the interaction of a 5 meV gaussian wavepacket with the
tapered QPC a) t=0,b)t=2ps,c)t=4ps,d) t =5 ps.
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a) *
bg d) I
Figure 3.7 Various stages of the interaction of a 1 meV gaussian wavepacket with the
tapered QPC a) t=0,b) t=2ps,c)t=5ps,d) t =7 ps.
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b)

Figure 3.8 Comparison of the emerging 10 meV wavepacket from a tapered and non-
tapered QPC at t = 5 ps (Note the interference of the reflected wavepacket as it scatters off
the boundary of the calculated area).
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By Figure 3.5c the principal part of the forward-travelling wavepacket has
broadened. It shows signs of being scattered out of the lowest mode of the channel,
whilst the tail of the wavepacket has been scattered into the fifth mode. As this
electron begins to enter the right-hand contact, it has relaxed, with the main body in the
lowest mode and the tail in the third mode (Figure 3.5d). The reflected wavefunction has
scattered over a considerable angle and appears to have originated from the fifth mode of
the channel. This backscattering of the fifth mode probably results from the initial
interaction of the electron with the QPC when flux is scattered into this mode. This flux
in the fifth mode, which is evanescent for the part of the wavepacket with energy less
than 11.187 meV, is then reflected back into the left hand contact. A further plot of the
emerging electron is shown in Figure 3.8b. Ignoring the interference of the reflected flux
in the left hand contact, which will be discussed in Section 3.4, it can be seen that there
is flux in the fifth mode within the channel. This flux probably results from the scattering
of the wavepacket at the interface with the right hand contact. Figure 3.8a shows a
wavepacket of identical initial conditions to that in Figure 3.8b emerging from a QPC
with tapered interfaces to the contact regions. There is very little difference between
Figures 3.8a and 3.8b. The main wavepacket emerging from the tapered channel is
slightly more focussed than its equivalent in Figure 3.8b, although it has an additional
two side lobes not present in the wavepacket emerging from the uniform channel. Also,
the reflected flux from the tapered channel is scattered over a wider angle.

The forward energy component of the wavepacket has been reduced to 5 meV in
Figure 3.6. The scattering of the flux into the fifth mode and its subsequent reflection is
clearly shown, but in the narrowest region of the channel there is only evidence of
scattering into the third mode. The same QPC profile has been used in the simulation of
Figure 3.7 with a forward wavepacket energy of 1 meV. In this case the reflected
wavefunction has originated in the third mode, with only the lowest mode evident in the
narrowest region of the constriction.

3.4 Model Contacts

The interference of the reflected flux in Figure 3.8 results from artificial scattering
off the boundary of the calculated area. In reality the contact area is much larger, but for
calculation purposes it has been reduced. The time-independent boundary condition of
= ( is used in the time evolution calculation. This results in the complete reflection of all
flux that interacts with the boundary. Clearly this scattering is non-physical but, in order
to make the calculation tractable, the grid of the calculation must be kept to a relatively
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small size. Figure 3.8 illustrates this artificial reflection, which has not, however, made
any impact on the overall scattering of the electron with the QPC at this point in time.

To overcome this problem of non-physical reflections, complex potential
absorbers were placed at the boundaries. With a complex, wholly imaginary potential V;,
the quantum mechanical continuity equation becomes

aP(r t) 2VP(r,t)

+V.S@,t)=-
h (3.19)

where P(r,t) is the position probability density and S(r,t) is the probability current
density. Complex potentials have found similar applications in the fields of optics and
nuclear physics (Schiff 1968). The right hand side of Equation 3.19 acts as a source if V;
is negative, and as a sink if Vj is positive. Now, for positive Vi and VS = 0, the

wavefunction is seen to decay as

(—iE—Vi)t}

‘Pocexp[ B

(3.20)

As with real potentials, the imaginary potential does cause some backscattering of
the wavefunction. It is impossible to eliminate backscattering totally, but it can be reduced
to a minimum by allowing the complex potential to increase slowly in space. Complex
potentials with gaussian ‘tails’ were therefore positioned at the boundaries of the system
and, after some fine tuning of their shape and magnitude, they were found to function as
adequate absorbers of the wavefunction, absorbing the majority of the wavefunction
originally reflected from the system boundaries.

3.5 Quantum Mechanical Source

As already discussed, the usual boundary conditions consistent with the
Crank-Nicholson scheme and the cause of boundary scattering are

y(start, t) =y(end, t) =0 for all times t = 0. (3.21)

However, a closer examination of the finite difference equations shows that the
system can also be solved for a time-dependent boundary condition, provided that for all
future times the flux at the boundary is known in advance. The boundary is described by
some known external time-dependent function, for example a time-dependent plane wave
source. Then, provided that there is no wavefunction incident on the boundary which has
been reflected from the system, the wavefunction at the boundary is known for all future
times. In order to prevent any reflections from the system altering the boundary value of
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the known time-dependent function, the boundary is placed in a complex potential. This
absorbs any reflected wavefunction before it reaches the boundary, but it also absorbs the
flux transmitted into the system as it passes through this complex potential. It therefore
becomes necessary to amplify the time—dependent source, so that there is sufficient flux
entering the system after passage through the absorber. Figure 3.9 shows a schematic
diagram of the quantum mechanical source placed in a complex potential. The only flux at
the boundary is that transmitted into the system by the source. All reflected flux is
absorbed by the complex potential. This is depicted below the x-axis in Figure 3.9.

Source
exp (ikx)
+kx
—
texp (ikx)
-
X
rexp (-ikx)
-kx
-

Figure 3.9 Schematic of Quantum Mechanical source protected from reflected flux by a
complex potential.

Figure 3.10 shows the propagation of a monoenergetic plane wave source into the
system. Since there were no scattering sites in the system and the right hand boundary
was protected by an absorbing complex potential, there was no need to isolate the source
in a complex potential. The injecting boundary may be considered, after Moshinsky
(Moshinsky 1976), as a beam of particles of momentum +k incident on a completely
absorbing shutter given by the plane x=0. The wavefunction is then

[ exp(ikx) ifx <0

vix) =\ 0 ifx=0 (3.22)
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If at time t=0 the absorbing barrier is removed, the system evolves in accordance
with the TDSE. The initial wavefunction incident in the system is expected to diffract in
much the same way in which the wavepackets, on reaching the sharp edge potentials in
Figure 3.1, show strong diffraction effects.

For such a monoenergetic system, Moshinsky has derived the propagation function

. €
=1 —in i 1p2 B s 2
¥ (x,t) -ﬁexp( 7] )exp 1(kx+2k tm f_oo exp(lzu )duﬂ
(3.23)
' -12 )2 -1
where u =(x' - x)(mt) +k(;) and € = (wt)™”? (kt-x).
This is a Fresnel integral and the solution, after Moshinsky, is given by
= nht]'”2
Ax =0.85 [ m ] (3.24)

where Ax is the distance between the first points in which the probability density takes its
stationary value. This has been found to be in good agreement with the numerical
solution, an example of which is illustrated in Figure 3.10.

Probability density

+Vi

T T T T T T T T T 1
0 20 40 60 80 100 120 160 140 180 200
Displacement x (nm)

Figure 3.10 Evolution of a quantum mechanical source into a system at t=0.2 ps.
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3.5.1 Application to One-Dimensional Resonant Tunnelling

A one-dimensional resonant double barrier consists of alternate layers of materials
with differing energy bandgaps. The resulting conduction band profile (Figure 3.11) of
the device resembles that of a text book quantum mechanics problem.

Ec |

GaAs
AlGaAs

GaAs
AlGaAs

GaAs

Figure 3.11 Schematic of the conduction band profile of an AlGaAs / GaAs resonant
' barrier system

Figure 3.12 shows the transmission probability of a 50-50-50A AlGaAs-GaAs
barrier system calculated using the transmission matrix method (Thouless 1974). There is
a sharp resonance with unity transmission at 0.08eV, which is well below the barrier
height of ~0.23eV. At this resonance energy the incident electron flux couples to that of a
quasi-eigenstate of the potential well inside the double barrier system. Such a discrete
resonance of a double barrier system provides an ideal test environment for the quantum
mechanical source developed in Section 3.5.

LA

Transmission coefficient
|

_ i

I 1 I 1 1 I 1 ] 1 1
0 0.1 02 03 04 05 06 07 0.8 09 10
Energy (eV)

Figure 3.12 Transmission probability of a 50-50-50A AlGaAs-GaAs barrier system

29




Figures 3.13 and 3.14 show various stages in the interaction of a monoenergetic
source tuned to the resonant energy of a 50-50-50A AlGaAs-GaAs double barrier
system. In these figures the faint line represents the steady state of the source travelling
through the system when there is no barrier present.

Probability density

Displacement

Figure 3.13 “Snap shot’ of the build-up of resonance in a one-dimensional resonant
tunnelling-system. The faint line indicates the steady state of the system with no barrier
system.

Probability density

Displacement

Figure 3.14 ‘Snap shot’ of the build-up of resonance in a one-dimensional resonant
tunnelling system close to the steady state.
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The slight ripple on the steady state line indicates a small amount of back
scattering from the complex potential absorbers, which are shown at either end of the
system (not to scale). In Figure 3.13 the transmission from the double barrier has not
reached unity, as defined by the steady state source with no barrier present, and there is
considerable reflection from the barrier system. Figure 3.14 shows the same system at a
later time, when the system has almost reached steady state with almost unity
transmission through the double barrier and minimal reflected flux. Figure 3.15 shows
the integrated probability density inside this system as the steady state is reached. The
initial build up of flux inside the barrier is difficult to interpret due to the diffracted nature
of the initial incident flux, as illustrated in Figure 3.10. However, Figure 3.15 also
shows the decay of the flux out of the barrier system, which results after the source is
turned off and no more flux enters the system. The decay of the flux inside the barrier
system had an exponential time dependence. By standard theory, the decay is related to
the half width of the resonance profile AE through

Y o< exp ( —Ttt-) , where 7=-IL. (3.25)

AE

The decay of the flux inside the barrier has been fitted to an exponential time
constant of 0.56 picoseconds (Figure 3.15), which is consistent with the half width of

the system’s resonance profile.

-

Probability density

T — T T T o>
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Timé (ps)

Figure 3.15 Probability density builduﬁ and decay inside a barrier system.
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3.6 Summary

A one—dimensional solution to the time-dependent Schrddinger Equation has
provided a qualitative analysis of resonant tunnelling, in which the probability of the
electron tunnelling through the resonant barriers is increased. It has also formed the basis
of a two-dimensional time—dependent solution to the Schrodinger Equation.

This two-dimensional solution to the time—dependent Schrédinger Equation was
briefly used in the analysis of transport through a QPC. In this model, the contacts were
approximated by relatively large but finite regions of zero potential, and the QPC was
approximated as a uniform narrow channel of zero potential in an otherwise impenetrable
potential barrier.

The nature of the time-dependent calculation takes care of all scattering processes
once the initial conditions have been set up. This is a significant advantage in terms of the
calculation, but does not provide a full understanding of the scattering mechanisms. A
superficial analysis of the transport was performed based on the predominant modal
patterns evident in the wavepacket in the channel. Transmitted wavepackets were
compared from channels both with and without tapered interfaces with the contacts. This
might suggest that there was a small amount of wavepacket focusing in the former case,
but this was inconclusive. For a fuller analysis of the scattering processes it would have
been necessary to perform a Fourier analysis, in order to determine the time—dependent
modal occupancies in the guide as the wavepacket passed through. However, even if this
had been performed, it would still prove difficult to analyse the scattering mechanisms,
due to the complex time—dependent nature of this wavepacket approach.

In this two-dimensional model, only the wavepacket with net forward momentum
along the principal axis of the channel was considered. To model the full contact
interaction with the QPC, it would be necessary to consider wavepackets incident on the
channel from all possible angles, but this would have been prohibitive in the
computational time required. This necessary requirement to model the contacts accurately
draws a comparison with the work of Finch (Finch I 989), who made a study of the
Aharonov-Bohm (A-B) effect in semiconductor rings using a time—dependent wavepacket
approach. In Finch’s work, the time—dependent analysis only made a study of the
electron transport around the ring under varying magnetic fields, and made no attempt to
model the regions where the A-B ring made contact to the 2DEG contacts. This was
possible, since the variation in the magnetic field made changes to a background
resistance which always included the 2DEG-channel contact scattering. Therefore,
provided that it can be assumed that there is no change in the contact scattering with
changing magnetic fields, the 2DEG-channel interface can be ignored in the calculation.
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In the latter part of this chapter, a novel time—dependent quantum mechanical
source was developed with the use of complex potentials. A study was made of its initial
diffraction as it entered into the system and its interaction when set to a resonant energy
with a double barrier system. This provided evidence that the source did behave as a
quantum mechanical flux. This source could be expanded to two dimensions and could
prove useful in the study of time-dependent processes.

In conclusion, the time-dependent study of transport provided a qualitative
introduction to transport through a QPC. It highlighted the complex scattering processes
at the channel-contact interface and the modal nature of the transport inside the channel.
However, a time-dependent approach was not considered a suitable technique to analyse
these areas in detail. In addition, a quantum mechanical time—dependent source was
developed, which could have been used to develop time—independent solutions as the
steady state of the time—dependent solution. This approach would have had the advantage
of producing a solution without detailed consideration of the scattering process but,
unfortunately, would have required excessively large amounts of computer time. It was
therefore decided to move to a time—independent approach for the study of transport in a
QPC.
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Chapter Four
The Coupled Mode Model

4.1 Introduction

In the last chapter, a time-dependent technique was developed and applied to the
analysis of transport in mesoscopic systems. This study provided information on the
general properties of electron transport. However, it was not considered a practical
approach for a detailed analysis of the transport properties of a QPC, but instead indicated
that a time-independent technique was more suitable.

This chapter describes a time-independent coupled mode approach to the study of
electron transport in a QPC. The wavefunction in the channel is expanded in terms of the
local eigenstates of the system, and variations in the channel parameters induce scattering
between the various modes of the system. The latter part of the chapter is concerned with
the problems of numerical instability, which are inescapable in a structure in which some
modes are allowed to freely propagate, whilst others pass through cut-off and are
reflected.

4.2 Local Modal Representation of Wavefunctions

Drawing on the analogy with electromagnetic radiation, the narrow channel, along
which electrons travel in a QPC, can be thought of as an electron waveguide. Within this
waveguide, it is a natural progression to expand the wavefunction in terms of the local
eigenfunctions, or modes, of this confining potential. The local potential is very much
larger than the electron energy, so that it is not necessary to consider any leaky or
radiation modes. In this respect the electron waveguide differs from that of an

electromagnetic wave (Ansbro 1989).

The first self-consistent calculations of the potential seen by electrons in a
squeezed gate waveguide were performed by Kumar ez al (Kumar 1989). Their results
show that the confinement potential can be treated as a parabolic potential for low electron
densities, but that this becomes increasingly more flat-bottomed as the electron density

increases.
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For this initial phase of the time—-independent study, it was decided to use a
parabolic function to describe the potential. This is because such a potential offered a
reasonable approximation to the actual potential, and has known eigenfunctions that
would enable an analytical approach in the first instance.

Figure 4.1 shows a schematic representation of the initial waveguide considered.
Within the model there is freedom for the characteristics of the parabolic potential to vary
as well as the local axial potential, V(x).

V(x.y)=gmo{x)y?+V(x) (4.1)

a(x’)

Figure 4.1 Schematic of analytic electron waveguide

The full two-dimensional time-independent Schrodinger Equation of the

waveguide system is then given by

> [:E(iﬁ:

+ lmcoz(x)y2+V(X)} Ya(X) 0a(y) = Wa(x)$a(y)Eror
= | 2m|gx2 dy? 2

4.2)
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The local wavefunction ¥(x,y) has been expanded as

P®xy) = Y, Yul)daly)
m=1

where 0a(y) = 2*‘"(n')"m(m§z§X) ) m(x)y )H ('\/WZY )

This local transverse eigenfunction of the parabolic confining potential satisfies

—h2 9’
Ré;r_-i- 2m(oz(x)y }I) (¥) = €a Oa(y), with &, = ho(x)(n+),

The longitudinal component of the local mode Ya(x) is given by

Va(X) = Ya + Yo =ciexp (ikax) +crexp (—ikax)

and kn =+ 2m(€eror— V(x) —£:)/ k2.

Applying the results of Equation 4.3 to Equation 4.2 gives

>3 —hz ¢na Vo, Va0 90 30, (8_0))2+ 200
ox? dx 20 9x 0m?\9x om 0x2

+Yn§aV(X) + Yo Oul €En-€T0T) = 0

which is a system of n second order partial differential equations.

4.3)

4.4)

4.5)

(4.6)

4.7)

(4.8)

In the next stage of simplifying this equation, the known recursive properties of
the Hermite function (Arfken 1970) in Equation 4.4 are exploited to expand d¢y/0w and

02¢,/0m2. This leads to

a¢n (_l_
o ‘4o 2h

nm 1/2
¢" 2hm) O

30’ \160? 4ho 4R h 2R
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When these equations are substituted into Equation 4.8, the following equation
results:

o {%az""' e [ K

n 2m ox? Jx 0ox
a(o -—3 my2 m2y4) my3{ nm \i2 » m n
T (ax) 16co2_4hm+ 4R2 0= ORg 1Y m(n(n'l)) On2
2
+ a a_(’)“ 1 _my )¢ +y(m)m¢ 1] Yoot V) -Er01) = 0
2l\4w 2k 2ho - nPn{En TOT
o 4.11)

The next stage in obtaining the characteristic equation of a mode in the system is
to use the orthonormality of the local transverse modes of the system by multiplying
Equation 4.11 by

I ¢p(y) dy
oo (4.12)

and applying the known results of the various overlap integrals (Wilson 1955).

This overlap integral projects out the characteristic equation of the mode .
Having performed this integration and simplified the n-coupled equations, these reduce to
coupled mode equations of the form

Y00 of g foEsell. , [ Sl ool e

ox? x) 8o Loe fo o
a\vw IB(p- 1)]1/2( Hﬂw B::[(BH)‘EE:Z)] (3_2)2[(%14)1(2:2)]”2_

a;,iﬂ olffp-) }W(g_) [ llpt)pealpalpee]

|
|
s 2 sl Y-2)-5)

(4.13)

where k = z—hm[emr gp-V(x)].

Interestingly, a tapered parabolic confining potential results in scattering into
modes P22 and Bt4. This scattering is governed principally by the parity of the states.
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If the waveguide were homogeneous, then 0w/0x=0 and 92w/9x2=0. The
equation then reduces to the well-known uncoupled one-dimensional Schrodinger
Equation

2

0
a\l:ﬁ +kfyp=0

X (4.14)

and has the solution given by Equation 4.6.

Locally, even when the waveguide is not homogeneous, the wavefunction may be
expanded in terms of the local transverse eigenstates of the system

¥ (x,y) = 2, Wa(x) 0aly) (4.15)

where Va(x)=c3exp (ikax)+cyexp (—ikax).

Extending this idea, Equation 4.3 can be expanded in terms of these local forward
(c+) and (C») backward travelling states.

To convert Equation 4.3 to local forward and backward states, the Villars-
Fesbach transformation (Fesbach 1958) is used, that is

(4.16)

When applied to a(x)=ci exp (ikax)+ c;exp (-ikax), this produces either
the forward, Vs, or backward, Vs, travelling components. From Equation 4.16, the
following further identities can be determined:

oyn . .o
Yo ik, (yi+ys)
9x (4.17)
3" vk k

and 2 ik 42 “:ik,,(\y;-w;)+kL—i(wa—wg) . (4.18)
ox? Jx n gx
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Using these relationships (Equations 4.17 and 4.18), Equation 4.3 can be
rewritten as a system of coupled first order linear differential equations in terms of the
local forward and backward travelling components of each mode.

Vg .., o
%ﬂka\va + 2 Mgiy; + 2 M;iava
X n n (4.19)
ovs ..
%=—1kﬁ‘l’ﬂ +Y Mivi+ Y, Myivs
X n n (4.20)

where Mﬁi are the intermode coupling terms detailed in Appendix 1.

If we define «Mj § = M * +ikp and Mg s = Mj ™ —ikg, the coupled equations can
be rewritten as

i w; —[kM++ M+—] W;
M™ M

Jx | vi Vi
|23 \"23
| Wa_| Yn_|

4.21)

In order to find the general solution for the waveguide, it is necessary to integrate
these 2n coupled equations across the system. Since only the net current is of interest, it
is only necessary to consider the potential difference, 3V, between the contacts.
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This leads to a separation in the known boundary conditions of the system shown
in Figure 4.2. All input modes are assumed to be fully occupied at the entrance of the
waveguide and, because only net current is considered, all of the backward travelling
states at the end of the system are assumed to be empty.

/— \_/_\’_\/—»?

/_V — )
?— 4___/
? - -

Figure 4.2 All inputs of the electron waveguide are known

This type of problem is known as a two point boundary value problem (2BVP),
referring to the separation in the known boundary conditions between the two ends of the
system. To find a complete solution, it is necessary to find the unknown boundary
conditions at either end of the system. These must be consistent with the known
boundary conditions and the system equations.

As a consequence of this problem being common to many areas of applied
mathematics, physics and engineering, many approaches have been developed to solve
the 2BVP (Roberts 1972). The choice of approach and its development evolved as
various techniques were tried, and their limitations in the context of the electron
waveguide problem discovered. Of particular importance in this process were the
problems of modal cutoff and numerical stability. These were finally solved within the
framework of the method of complementary functions.

4.3 The Method of Complementary Functions (CF)

If a full set of boundary conditions were known at either boundary of the system,
the solution for the entire system could be obtained by integrating this known complete
boundary condition across the system. Unfortunately, a complete boundary condition is
not available. The known boundary conditions are separated between the two ends of the
system and so the missing boundary conditions must be found.
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Of the techniques used to solve this 2BVP, many are termed ‘shooting’ methods.
This refers to a multi-pass approach, in which the missing boundary conditions are
estimated and the system of equations integrated. The discrepancy between the known
boundary conditions at the end of the system and those calculated are then used to
improve the initial estimates of the unknown boundary conditions. This process is then
repeated until a satisfactory solution is obtained. Unfortunately, in the electron waveguide
system, small changes in the the initial conditions can, due to the exponential nature of
cut-off evanescent modes, lead to large changes in the solution. Such problems are
termed 'sensitive’ and prove very difficult to solve by techniques which attempt to
converge on a solution. Instead, the method of complementary functions (CF) was used,
since it determines the unknown boundary conditions in one pass through the system.

From the theory of linear differential equations it is known that, barring numerical
inaccuracy, solutions which are linearly independent at some initial point remain
orthogonal for all values of the independent variable for which a solution exists (Roberts
1972). This property forms the basis of the CF method, which expands the solution in
terms of orthogonal vectors. These vectors evolve through the system but their expansion
coefficients remain constant. Therefore, once a set of independent vectors of a system
have been determined, any boundary configuration may be solved by expanding the
required boundary condition in terms of these known orthogonal functions. This latter
point is very useful and leads to a considerable saving in computer time over other
methods, which must compute the entire solution for every configuration of known
boundary conditions.

Consider the 2n coupled equations, partitioned so that the boundary conditions of
the vector A are more easily assigned

A _ _
- MAR) (4.22)

where A(x) = 2n vector of components (AT (x)A}(x)...A} (x)AT(x)Az(x)...A:)",
Misa 2nx2n coupling matrix and the known boundary conditions are
Aj Kstarp) = IIstart; fori=1,2,..,n

A (Xend) =Ilendy  for m = n+1, n+2,..., 2n
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The general solution of this linear system may be represented as

A(x)= Y biAN(X)  Koun SX S Xet
k=1 (4.23)

where AK(x) is the k! independent vector with components (A¥(x) A%(x)...A%(x))
and bk are the expansion coefficients, which are related to the known boundary
conditions via

2n
b A¥(Xgar ) =Ilstart; i=1,n
K=1 (4.242)
and
2n
bxA%(Xews)=Tlendm m=n+1.2n
k=1 (4.24b)

This represents a system of 2n equations in the 2n unknown variables by. If the
independent vectors at the start of the system are defined by A}((xstan) =9 kj» then

bj = [Istart; fori=1,2,...,n and Equation 4.24 reduces to

2n n
z brAk(Xend)=ITendm— Z [IstartxAn(Xed) m=n+l,2n
k = n+l k=1 (4.25)

The system of equations has been halved and, providing that it is possible to
integrate the independent vectors, the determination of the boundary conditions is a
s&éiéhtforward process. Once the independent vectors have been propagated through the
system, any change of boundary conditions simply requires the recalculation of the
expansion coefficients, bk, in Equation 4.25. This results in a considerable saving of

computational time.

4.4 Integration of the Coupled Mode Equations

If the waveguide were straight and homogeneous, then all intermode coupling
would disappear, so that 0w/dw = 0 and 02w/0x2 = 0, and the system would revert back

to that of n uncoupled one—dimensional problems. Unfortunately, on the introduction of
intermode coupling, analytical solutions are difficult to find, and the system of 2n
coupled first order differential equations must be integrated numerically.
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4.4.1 Integration Through Cut-off

Unlike other waveguide systems, the electron waveguide does not support leaky
or radiation modes, since the confining potential is very much larger than the electron
energy. Consequently, it becomes necessary to integrate accurately through the modal
cutoff regions of the device. As mode B passes through cutoff, then kg = 0 and the
coupling matrix in \|I§ space (Appendix 1) becomes singular. This singularity at cut-off is
analogous to the turning point problem in the one—dimensional WKBJ problem, as the
modal field can no longer be adequately described in the W3 space.

Transforming from the \Uﬁ space to a new ‘¥, Qg space, where Qp = dyp/ox, as

shown in Appendix 2, removes the singularity at cut-off, at the expense of moving to a
less physical space. In the ¥, Qg space the coupled equations are transformed to

Y1 Y1
V2 Y2

d wnz[TW“rW] A

ox | Q; T T Q
Q, » Q,
| Q, | | Q. | (4.26)

where the coupling matrix T is represented by four n X n sub-matrices. TYV =0,
TYQ = I, the identity matrix, and the sub-matrices T®Y and T are given in
Appendix 2.

The success of this transformation can be understood by examining an uncoupled
system. In the space of g and Qg each modal equation becomes

_[0 1}
k3 0

2, .. . - .
which is well behaved through cutoff. When kB is linear in x, this is equivalent to

L 4
Qp

d

ox

Vs
Qp

(4.27)

Stokes’s equation

oy _
e~ Cxve=0 (4.28)
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The solutions of this equation (Eqn 4.28) are well documented, and are used to
determine the connecting formulas in the WKBJ approximation. For the system of 2n
coupled equations, it is neither practical nor necessary to employ these connecting

formulae, as the numerical integration follows the correct solution in the analytically
continuous g, {2 space.

4.4.2 Numerical Instability of Integration

Simple integration of the coupled equations, using Runge-Kutta or any other
integration procedure, can lead to a divergence of the solution. This divergence results
from the presence of two very different growth classes of solution and, when one or
more modes are cut off, it is not always possible to track the growing and decaying
factors in the finite word length range of a computer (Evans 1986). For example,
consider

y(x) = Cexp(-20x) + B exp(+20x) (4.29)

Often the physical solution is the decaying exponential but, unfortunately, any
rounding or truncation error is equivalent to the introduction of a small amount of the
unwanted solution

y(x) = D exp(-20x) + & exp(+20x) (4.30)

Eventually, even if 8 is very small, the increasing exponential will dominate the
solution, and will lead to a loss of orthogonality between the initially independent vectors
of the CF method. Such a problem has been termed an exponential dichotomy (Mattheij
1985).

It was shown in Section 4.2 that the equations of a straight, homogeneous
waveguide decouple into n one-dimensional independent systems. These
one-dimensional problems are well known in quantum mechanics (Schiff 1968). In such
systems it is often possible to avoid numerical problems, when flux tunnels through a
wide barrier, by integrating the two growth classes of the solution in their respective
decaying direction. This ensures that all terms are of the same magnitude. Unfortunately,
this is not possible with this system of equations, because the intermode coupling leads to

a dependence of each mode on both growth classes.
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4.4.3 A Stable Integration Procedure

The first stage in determining a stable integration procedure is to discretize the
problem by dividing the channel into sections of length Ax. Then it is necessary to
determine a wave propagator Qj for each section, j, of the channel. This wave propagator
is defined to propagate a known wavefunction from the start of section j-1 to the start of
section j. It therefore comprises of two distinct elements:

i) the propagation solution across the section j-1, defined by the operator P;

ii) the interface function, R;, that carries the solution across the interface into the start of
the next section, whilst maintaining the continuity of the wavefunction and its first
derivative.

The propagation element, Pj, is determined by numerically integrating, using
fourth order Runge-Kutta, a system of 2n independent solutions. This determines the
propagator for the section in an identical manner to the method of complementary
functions described in Section 4.3. Accuracy is maintained by ensuring that Ax is

sufficiently small to allow stable and accurate numerical integration.

A trivial example would be the propagator of a forward propagating plane wave
1 0
state in a uniform guide. Using the standard independent vectors [ 0 ] and[ 1 ] for the two
terms \ and dy/dx produces a propagation matrix

exp (ikAx ) 0 ]
0 exp (ikAx ) 4.31)
. o [T .
which would propagate the vector| Wit x| Across the the section j-1
W ) exp (ikAx) 0 W
oY 0 exp (ikAx) || 9¥ih
ox o (4.32)

where i1 and i is the wavefunction at the start and end of section j-1 respectively.

Obviously, where more than one mode is included in the calculation and where
there is intermode coupling, this propagator is more complex. It is, however, still
obtained in an identical manner, by numerically integrating 2n independent vectors across

the system.
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gives

The interface element of the propagator, R;, ensures that there is continuity of the
wavefunction and its first derivative over the boundary of connected sections. Expanding
the wavefunction and first derivative of the wavefunction on either side of the boundary

VI 01(Y) + W3(X) 03 (y) +..yEX) do(y) =
VI O1(y) + W) 03(y) +...y5x) da(y)

QIX)01(y) + Q3(x) 05(y) +..Qc(X) 05 (y) =

Q1) §1(y) + Q500 05(y) +...Q 2(x) d(y)

(4.33)

(4.34)

where the subscript for the section number has been dropped for clarity but (e) signifies
the end of a section and (s) signifies the start of the next section. The wavefunctions

and derivatives at the start of the section are obtained by applying the projection integrals

f x (y) dy

(4.35)

to the wavefunction at the end of the preceding section. This produces an interface

matching matrix of the form

T vt | [letle) o (esle) o
Qi o (osle) o (o:l0)
v (0i169 o (osl09 o
Q; o (oiley o (o310}
v (65100 o (osley o

L a. ] L o (eile) o (esley

(4.36)

In the case of a channel which can be described by an analytical function, there is
no discontinuity between the adjacent sections, and therefore this interface matrix reduces
to the identity matrix. In cases where there is a discontinuity between adjacent sections,
as described in Section 4.6, it is generally necessary to determine this overlap matrix

numerically.
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The full wave propagator Qj is therefore given by

Qi=R,P; 4.37)

andvj=Q,-vj_1 (438)

Equation (4.38) describes the propagation of a wavefunction represented by a
vector vj.] at the start of section j-1 to the start of section j. Unfortunately, the application
of this equation to propagate a wavefunction through the entire system would still result
in the numerical problems already discussed in Section 4.4.2.

However, Mattheij (Mattheij 1985) has developed a stable method of applying
this propagation operator in W+ and V- space. In order to use this method, it is therefore
necessary to transform Equation 4.38 to Y+ and Y- space. Again the transformation given
in Equation 4.17 is used, such that the matrix X; transforms from Y to Y+Y- space.
Then

B L2} ] V1
V2 Q,
Y2
a Q
A4 =X, 2
yi
3
Va
Lovi ] L Q] | (4.39)
Vi=X;V;
Then Vi=Q;Vi (4.40)

Equation 4.40 describes the propagation of a matrix V'j_l of 2n wavefunctions in
the y* and y~ space over the same section from the start of section j-1 to the start of

section j, where Q'j =X ;R;P;X 'jil.

Following Evans (Evans 1987), who has applied this approach to the study of
seismic waves, it is possible to integrate these equations in a stable manner. The main
idea is to replace Equation 4.40 with a triangular recursion, in which the two growth

classes of the solution are partially decoupled.
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First a transformation is defined as

Vi=T;W, (4.41)

where Ty is equal to the identity matrix and T; is found from the modified Gram-Schmidt
orthogonalization of the columns of Q'j T for j=1, ..., N+1, that is

Q,Tju=T;U; (4.42)

where Tj is unitary and Uj is upper triangular. Substituting Equations 4.41 and 4.42 into
Equation 4.40 produces a triangular recursion

W;=U;Wj, (4.43)

for the new unknown matrix Wj, Since Uj is upper triangular there is a partial decoupling
in the propagation of the elements of W.

This can be seen by partitioning U and W, so that

U,:[ A ]mw;[&jﬁj wel (4.44)
Therefore

Wis,j=B jWes j1+ C ;W (4.45)

Wer;=B jWer i+ CiWer (4.46)

Ww,=E W, (4.47)

W= E ;W j (4.48)

These new variables, W, are not physical, but provide an unusual representation
of Wgg propagating forward along the channel. The wavefunction in this space is only
reflected, once it has reached the end of the channel, through WgF propagating back
along the channel.
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Mattheij (Mattheij 1985) has proved that W is numerically stable for increasing
j» and that Wgp is numerically stable for decreasing j, as is Wgg. To obtain a general
solution for the entire system, the method of Complementary Functions is again used.
First, n independent vectors, defined by Wgp g =0 and Wgg =1, are propagated
forward through the system. Then a further n independent vectors, defined by
WBE,N+1 =0 and Wgp n4+1 = I, are propagated back up through the system,
completing the system of 2n independent vectors.

4.5 Numerical Results

The stable integration procedure described in Section 4.4.3 was applied to the
method of Complementary Functions and used to calculate solutions to the analytical
systems of coupled mode equations (Equation 4.8). The complete computational
procedure was as follows:

i) Define the analytical functions to represent the required structure.

ii) Divide the structure into suitably sized sections, Ax, and determine the wave

propagator in each section (by integrating in y, Q space and then transforming to y*, y~
space).

iii) Decouple the propagator matrices Q'j using the approach developed by Mattheij to
integrate the 2n independent vectors across the system.

iv) Calculate the expansion coefficients consistent with the known boundary conditions
and the 2n independent vectors to determine the wavefunction and flux throughout the

entire system.

The stability of the approach was tested on various structures, paying particular
attention to the current conservation. It was found that current conservation was
adequate, with an error of the order of 1 part in 105, when the wavefunction was

expanded in terms of ten local normal modes.

To illustrate the stability of this approach, the probability density of an electron in
the lowest mode passing through a parabolic tapered electron waveguide of length 0.3
pm is shown in Figure 4.3. The electron wavefunction passes through cut-off at 0.2 um
and, after tunnelling, is completely reflected. Ten modes were maintained throughout so
that, even in the region where the mode is propagating, the calculation is carrying nine
potentially unstable modes. The step in the plot represents the 8 meV contour of the
parabolic confining potential. The stepped nature of the taper is an artifact of the plotting

routine.
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Another example is illustrated in Figure 4.4. This shows the transmission
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Figure 4.3 Electron wavefunction (2 meV) in lowest mode passing through a tapered

section of waveguide. The channel taper is 0.3 pum long and the 2 meV wavefunction cuts
the guide. As can be seen from the transmission, the cavity passes through various

coefficient of an electron, incident in the lowest mode
resonances as the energy of the electron wavefunction is varied.

sion coefficient shown in Figure 4.4b. The
the parabolic confining potential.

the 30 meV contour of

4.4a Schematic of cavity with transmis

outline represents

Figure
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Figure 4.4b The calculated transmission coefficient of an electron input in the lowest
mode

4.6 Non-analytic Structures

In the previous section, results were shown for structures in which the potential
profile of the guide could be described by analytical functions. The intermode coupling
could therefore also be described by closed analytical functions.

However, in subsequent chapters it will not always be possible to describe the
potential profile by analytical functions. In such structures it will be necessary to
discretize the problem. In each small section the waveguide will, however, be assumed to
be homogeneous. At the interfaces, where the waveguide is discontinuous, the interface
matrix R;j will no longer be equivalent to the identity matrix, but must be determined
numerically. Figure 4.5 shows a schematic of such a discretization. The dashed lines
indicate interfaces where the overlap matrix will lead to intermode scattering.

Figure 4.5 Schematic of the approach used in the discretization of the non-analytic
electron waveguide potential
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4.7 Summary

This chapter began with the analytical development of a system of coupled
equations for an electron waveguide defined by a parabolic potential. This was made
possible by exploiting several of the known characteristics of the Hermite polynomial
eigenfunctions of the parabolic potential. The coupled mode equations explicitly showed
that any deviation from a homogeneous waveguide would result in scattering into modes
B £2 and B % 4. Unfortunately it was necessary to develop a numerical method to solve
this system of equations.

The numerical method applied to the solution of the coupled equations was based
on the method of Complementary Functions (CF). It was however necessary to extend
the basic CF method to take account of the problems of singularities at modal cut-off and
general numerical stability. By careful choice of the space in which the coupled equations
are integrated, and by adop‘tion of the decoupling transformation developed by Mattheij, a
numerically stable and efficient method to solve the coupled mode equations was
successfully developed.
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Chapter Five
The Ideal Quantum Point Contact

5.1 Introduction

The beauty of the quantum point contact is its apparent geometric simplicity. After
the sophisticated MBE process to produce a 2DEG, the QPC is formed by confining a
section of this two-dimensional system into a narrow constriction, usually by means of
the electrostatic squeezed gate technique (refer to Chapter 2). In this and all subsequent
chapters, the discussion will be restricted to squeezed gate samples. Since the width of
the constriction is comparable to the Fermi wavelength, the electrons in the channel enter
the transverse quantized states across the channel, whilst maintaining their freedom in the
axial direction.

In this chapter, the electron transport through this ballistic device is studied. The
basic geometry of the ideal QPC has a uniform channel and consequently no intermode
scattering. The system can therefore be modelled by applying the well-known methods of
one-dimensional quantum mechanics to each mode independently. However, as the
model becomes more realistic, a point is reached where the electrons begin to explore
beyond the confines of a purely one-dimensional system and therefore an alternative
technique must be used. In this work a modal analysis is employed based on the Coupled
Mode method developed in Chapter Four. As will become evident, such an approach is
very versatile and has provided a detailed study of the electron transport characteristics in
ballistic structures for the first time.
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5.2 The Original Experiments

In the original experiments of Wharam ez al (Wharam 1988) and van Wees et al
(van Wees 1988), the analysis of the quantized resistance was based on a system of
purely one-dimensional channels with no intermode coupling. The net current due to one
particular 1D transverse quantized sub-band or mode, I, assuming that it is fully
occupied, is given by

I=CXV(Ef)X%"n1d(Ef)XeV 5.1)
where v(E¢) is the electron velocity at the Fermi energy Ef, n 14 is the one-dimensional
density of states and V is the potential difference across the QPC. The factor of 1/2 is
necessary, since only the electrons which are propagating in the forward direction
contribute to the flux.

The one-dimensional density of states, including spin, is given by

= 2
B B 62

Substituting this into Equation 5.1 leads to a cancellation of the energy-dependent

velocity to give
eV
I nth (5.3
=1 (5.4)
and, as G v
=2e?
G=% (5.5)

If it is assumed that each of the conducting modes acts independently in the

constriction, then

m 2
_\2e
o= 21: h (5.6)

where m is the upper limit on the number of occupied modes, such that the transverse

energy of the mth mode must be less than the Fermi energy.
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With such an elegant analysis producing the desired result, it is perhaps surprising
to learn that very many samples do not produce quantized resistance. Even when samples
are made in an apparently identical manner, often alongside each other on the same
substrate, it is impossible to determine in advance which samples will produce a
quantized resistance (Williamson 1990).

5.3 The Uniform Model With 2DEG Contacts.

In the simplest model of a QPC, the channel seen by the electrons is assumed to
be identical to that of the gap between thel gate electrodes on the surface of the sample.
The assumptionr that the walls of the channel are smooth and parallel leads to a complete
decoupling between the different quantized transverse modes of the channel. Therefore, -
within the single particle approximation, each occupied mode of the system propagates
independently of electrons in all other modes in the channel. This is a considerable
simplification, which has already been shown in Section 5.2 to be able to be solved
analytically. This analysis produces perfect quantized resistance, with the implicit
assumption that the QPC is connected to the contacts by ideal leads.

So far, no attempt has been made to incorporate the 2DEG contact regions into the
model. It has so far been assumed that all the available modes in the channel are filled
with electrons from the 2DEG contacts. However, unlike many macroscopic systems in
which the exact nature of the electrical contact regions are unimportant, the contacts to the

electron channel form an integral part of the system (Landauer 1989b).

The contact region is much wider than the channel and is approximated as an
infinite 2DEG in which the electron wavefunction is yop(r) = exp(iK.r), where
|K|=~'x%+7v2 x is the component of the wavevector in the axial direction of the QPC
and Y is the perpendicular wavevector component. In the channel the wavefunction is
approximated by a composition of n modes. As in Chapter Four, these n modes are
separated into the forward and backward travelling components. The flux inside the
channel is expanded as

¥ (xy)= 3 | ciexp(ikex)+c exp(—ikix)}oa(y)

n

(5.7

where c is the amplitude of the electrons travelling forward (+) or backwards () in the

nth mode.
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The propagation constant is given by

where €got is the total energy and €y is the energy of the nth transverse eigenstate. The

propagation constant may be real or imaginary, corresponding to propagating or
evanescent modes.

Q\\\\\\\\\\\\\\ N
\ Confining potential
T

P =<

X

Figure 5.1 Schematic of the QPC connected to 2DEG contacts

In order to simplify the equations, the matrix E is defined. This matrix is made up
of 2n independent column vectors. Each column vector is formed from the forward and
backward components of the nmodes in the system. For a uniform QPC, the
independent vectors are represented by a simple plane wave component in each mode at
the start of the channel. By the end of the channel, at xe, these independent column
vectors will each have propagated independently, since there is no intermode coupling in
a uniform channel. If E at the start of the channel is represented by Exs, where
[ exp(ikiXs) 0 |

0 exp(-ikiXs) 0
0 explikaxs) .

Exs= o . 0
. exp(iknXs) 0
0  exp(-iknXs) | (5.9)
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Then the matrix has the form Ey. at the end of the channel, where

[ exp(ik; xe) 0 .
0 exp(-ik; xe) 0

E, .= 0 exp(ikaxe) .
0 . 0
. exp(iknxe) 0
i 0 exp(-iknxe) | (5.10)

However, for more complex systems in which the channel is not uniform and
where is inter-mode coupling, these independent vectors become more complex as they
progress through the channel. They must be found numerically throughout the system
using the method in Chapter Four.

The transverse components of these independent vectors are equal to the local
transverse eigenstates of the guide. These transverse components are defined by the
column vector ®xs(j), in which the first n elements are the first n transverse eigenstates of
the system 01(y), §1(y), d2(y), d2(y) etc. These are then repeated for the second part of
the vector, which corresponds to the backward travelling components in each mode.

The usual continuity conditions of the wavefunction and its first derivative at the
discontinuities are applied at the two interfaces of the channel with the 2DEG contacts for
each of the 2n modes in the channel. The necessary continuity of the wavefunction at this
interface implies that the sum of the incident and reflected wavefunction in the contact
must equal the transmitted wavefunction in the waveguide. Applying this continuity of
wavefunction to the interface between the left hand 2DEG contact and the start of

the channel leads to the equation

+00
V?l_f exp(iviy)exp(ixixs) + —IE,L, 1(y ) exp(iyry)exp(ik  xs) dy;

2n

ZC Ex ’J
1

- M:

(5.11)

For the case of a homogeneous channel, the terms c;_; and ¢ for j > 1
correspond respectively to the amplitude of the forward (c})and backward (cj) travelling
flux in each mode throughout the channel. The term r(Y; ) is equal to the amplitude of the
reflected flux of the plane wave, exp(iy:y)exp(iX.xs)A2n. This results from the
incidence of the plane wave exp(iY;y)exp(ikixs)/¥2n on the QPC from the contact. The

term X, is defined by

K,:*\/((stm/hz)-}'zr}.
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Using the orthogonality of the wavefunction at Xs, it is possible to simplify
Equation 5.11 by applying the projection operator

1 oo
7= 1 ew (v gy

The equation then becomes
2n 2n

Oyy.exp (iKixg) + r{yr)exp(-ik x,) = 2 z CiMys(-¥1.1) Exg(l,j)
i1 (5.12)

oo

where My (-y1,1) = #ﬂ exp (-iYry) o1(xy) dy.

Next, the first derivative of the wavefunction at Xgs is matched at the interface
between the left hand 2DEG contact and the QPC channel, this time using the projection
operator

f On(y) dy
This gives

Kiexp (iKiXs)st(Ki,n)—f 1(Y:) K Mxs(Yrone)exp (-iK 1 x5)dy; =

2n 2n

2. 2, cQm.P)Exs(p.j)
j P (5.13)

where the operator Q(n.,p) produces the derivative of the wavefunction via the

Villars-Fesbach transformation

a\lfﬁ(x) . + -
iy = k(Y300 - Wj(x)) (5.14)

The operator Q therefore has the form
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lkl —ikl
Q = iky -iko

ik —ik, (5.15)

Combining Equations 5.12 and 5.13 gives Equation 5.16, which is a series of n
equations in the 2n unknowns cj:

2% Mxs(Yi,n)exp (i%ixs)

2n 2

n < 2n
=j2 CJ ; EXS(l,j)I KIMXS(Yr,nC)st(_Yr,l)dYr+z Q(n,p)Exs(p,j)
- P

00

(5.16)

Applying a similar analysis to the right hand interface of the channel and 2DEG
contact, this time matching the flux in the channel with the transmitted flux in the 2DEG
contact, gives

2n 2n e 2n
z G Z Exe(l’j)f Kere('Yranc)Mxe(“'Yryl)d'Yr—z Q(n,l)Exe(l,j) =0
J 1 -0 1

(5.17)

which are a further n equations in the 2n unknown terms ¢j. Equations 5.16 and 5.17
represent a total of 2n equations in 2n unknowns, ¢j» and therefore are soluble.

5.3.1 The Conductance

In the experimental measurement of the conductance of a QPC, a very small bias,
3V, is applied across the device. This is done in order to minimise carrier heating and the
measurements are performed at very low temperatures, often less than one Kelvin. Under
such conditions it is reasonable to simplify the conductance calculation, approximating the
Fermi function as a Heaviside step function: f(E,u)=@(u—~E), where p= Fermi energy.
The electrons contributing to the current through the QPC are shown schematically in

Figure 5.2.
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Figure 5.2 Schematic of electrons contributing to the conductance

Only the electrons in the shell of width 3k at the Fermi wavevector, kg, produce a

net current flowing through the QPC from left to right.

Since E = LK, (5.18)
2m
-moE _medV
A%k h2ks (5.19)

The number of states N per unit area of real spéc'efin the small shaded region is

286k, 8k
4% , - (5:20)

Therefore the current density is

+

vy

23— a0k 8k (! T o)

oy
I
wl:] *

(5.21)

where (\lfel I \|Ie) is the current density through the QPC for an electron incident at

angle 0 from the 2DEG contact.
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The conductance can be written as

J em 1
=§_= .[ S We”"l’e)
(5.22)

Unfortunately this integral must be performed numerically.

5.3.2 Numerical Study

In this study of the uniform QPC approximation, the quasi-one-dimensional
channel is assumed to have a uniform parabolic potential cross section throughout and to
be connected at either end to 2DEG contact regions. The conductance is calculated as a
function of the Fermi energy without changing the potential of the channel. This is
different from the general experimental approach where the channel width is changed by
adjusting the gate bias. However, it should not qualitatively alter the results, having
already assumed a uniform channel connected to 2DEG contacts.
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Figure 5.3 Conductance of a uniform QPC, length 0.65um, temperature 0K

Figures 5.3 and 5.4 show the calculated conductance of two uniform QPCs. In
these conductance plots each 'plateau’ is separated by 1meV. This separation corresponds
to the equal energy spacing between the eigenstates, & = hw(n + 1/2), of a parabolic
potential. If tunnelling is assumed to be negligible, then each mode begins to contribute to
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the conductance as the Fermi energy increases above the minimum transverse energy €,
supported by that mode. A different transverse potential will produce different energy

spacings between the plateaux, which would mirror their transverse eigenstates' energy
spacings.

Conductance ( 2e2/ h)

L

0.0 1.0 2.0 3.0 4.0 5.0

Energy (meV)
Figure 5.4 Conductance of a uniform QPC, length 3.3um, temperature 0K

Each of the conductance plateaux contains a series of oscillations which were not
predicted by the calculation of Section 5.2. This resonance structure was first calculated
by Kirceznow (Kirceznow 1989). Implicit to the calculation of Section 5.2 was the
assumption that all modes become fully occupied when the Fermi energy is greater than
the transverse energy of the mode. The difficulty with this is that the electrons in the
quasi-one-dimensional system originate from the electrical contacts, which are
approximated by infinite 2DEG regions.

In order to accurately model the experimental system, it is necessary to include the
interface regions from which the electrons from the contacts enter the
quasi-one-dimensional system. By using ideal leads, in which all available modes are
fully occupied, one is assuming a physical system of an adiabatic horn. In the heart of the
2DEG contact there are an infinite number of quasi-one-dimensional channels which form
the two-dimensional density of states filled up to the Fermi energy. As electrons in the
positive ky half space travel down the adiabatic horn, modes pass through cut-off and
electrons are reflected. Eventually, only a small number of modes survive, which have
remained fully occupied on their passage from the heart of the reservoir in the 2DEG

contact region (see Section 6.6.1).
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The abrupt interface with the 2DEG contacts in this numerical calculation is very
different from the ideal leads assumed in the analysis of Section 5.2. It would appear that
this abrupt interface is the cause of the oscillatory structure of the numerically calculated
conductance. These oscillations are analogous to the 'over the top' resonances of a
one-dimensional potential barrier. A factor in the strength of these oscillations is the
one-dimensional nature of the uncoupled transport, in which each mode is treated

independently with its own zero-point energy and overlap matrix with the 2DEG contact
regions My,

Input | Output

Figure 5.5 One-dimensional equivalent of a uniform QPC

Clearly, this calculated conductance differs from the experimentally measured
conductance of Figure 1.1, in which no oscillatory structure has been observed. In an
attempt to improve the model of the QPC, the effects of the non-zero temperature of the
experimental structures can be modelled by transforming the zero temperature calculation

using

G(T.E) = f ) G(o,e)(_% e

0 (5.23)

where G(0,E) = zero temperature conductance and

) -1
f(€) = Fermi function = [exp(eld}? f) + 1] ’
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This transformation to finite temperature has been performed in Figure 5.6. The
inclusion of this temperature correction smooths out the resonance curves as a direct
consequence of the smearing of the Fermi surface,

4.00

w
o
o

Conductance ( 2e2/ h)

2.00

Energy (meV)

Figure 5.6 Calculated temperature dependence of conductance

At a temperature of 750 mK the resonance structure has been smoothed out but, in
averaging over the rapid fluctuations, the step profile in the conductance has been
destroyed. Experimentally, van Houten et al (van Houten 1990) have found that the most
accurately quantized conductance plateaux are observed at a temperature of 500 mK.

5.4 An Ideal QPC Connected to a 2DEG

So far, we have used a simple potential model which has produced qualitative
agreement with experimental observations. However, in order to understand, amongst
other things, the absence of plateau resonances in the experimental measurements, it is
necessary to move one step closer to the actual potential seen by the electrons in the QPC.

Kumar, Laux and Stern (Kumar 1990) were the first group to attempt to model
self-consistently the electrostatic confining potential below the surface of the sample.
They found that the high wave-vector components of the surface gate potential were
attenuated in the QPC, resulting in a rounding of the junction made with the 2DEG. This
result was confirmed by the work of Nixon and Davies, which is discussed in

Chapter Six.
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Figure 5.7 Schematic of the squeezed gate arrangement

Figure 5.8 illustrates a section of a self-consistent potential calculated by Nixon
and Davies, where the tapering of the channel is clearly visible.
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Figure 5.8 Self-consistent potential of a QPC. The vertical energy axis has been offset
so that zero represents the Fermi energy.
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To calculate the conductance of this non-uniform channel, the method first
developed in Chapter Four was employed to determine a set of independent vectors for
the channel up to, but not including, the interfaces with the 2DEG. This matrix of
independent vectors effectively replaces the matrices Eys and Ey¢ in Section 5.3. The
independent vectors were then coupled with the contacts using Equations 5.16 and 5.17
to model the entire system. A calculation of the available modes in the channel indicated
that there was a gradual increase as one moved out from the narrowest region of the
constriction but, after reaching ten available modes, the channel widened very rapidly.
Based on these findings, the conductance calculation assumed that, after the channel had
widened to the point at which ten modes were available, the system could be
approximated by a 2DEG.

Figure 5.9 shows the calculated conductance of this smooth self-consistent QPC
potential. It shows that, even for this OK calculation, the oscillatory structure in the
conductance of this device is negligible, and the quantized steps are very accurate. The
spacing between the potential steps has also changed from the even spacing of the
parabolic potential employed in the prior section, suggesting that the self-consistent
potential profile is non-parabolic.

This result provides further evidence that the conductance is very sensitive to the
interface between the channel and the contacts. The loss of the resonance structure
appears to result from the widening of the channel before the interface with the 2DEG
contact. This can be thought of as the introduction of a small section of ideal lead
described in Section 5.3.2. However, it is a little surprising to find that such a short
tapering section has such an impact on the calculated profile.
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Figure 5.9 Calculated conductance of a self-consistent QPC

5.5 Comparison of Uniform and Ideal QPCs

In order to obtain a more detailed understanding of the transport of a QPC it is
necessary to replace the 2DEG contacts with ideal leads connected to the sample. These
leads will be discussed in more detail in Section 6.6, but at this point it is necessary to
introduce the relationship between the transmission coefficient of the modes of the ideal

leads and the conductance.

5.5.1 Relationship between Transmission and Conductance

In 1957 Landauer (Landauer 1957) introduced the first expression that related the
conductance of a sample to its transmission. This was based on a one-dimensional (1D)
barrier connected with ideal 1D wires to some external source which drives a current
through the system. Under these circumstances Landauer determined that the conductance

of the barrier is given by

e2T

G=7Fxr. (5.24)

where the barrier is characterized by a transmission coefficient T and a reflection

coefficient R=T - 1.
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An alternative 1D formula (Imry 1986) that relates the conductance to the
transmission coefficient is given by
e2T

G=1Eh

(5.25)

Over recent years there has been considerable controversy over the applicability of
these two formulae (Landauer 1989). When the transmission is poor, R = 1. The two
formulae are then consistent with the basic understanding that the conductance is
proportional to the transmission through the sample. However, when the sample has
perfect transmission, Equation 5.24 gives an infinite conductance, whereas Equation 5.25
gives the finite conductance

- e?
G==5. (5.26)

In order to understand this difference it is useful to show the derivation of these
two conductance formulae.

Ha

M2

Figure 5.10 Schematic of the various chemical potentials of the system. |13 and [p are
the chemical potentials in the left and right ideal leads.

Following Biittiker (Biittiker 1985), the sample, including the scattering centre, is
connected to one-dimensional electron reservoirs by perfect one-dimensional conductors.
The reservoir (bath) on the left of Fig 5.10 injects carriers into the wire up to the
characteristic Fermi energy |1 and the reservoir to the right of the barrier injects carriers
up to the Fermi energy 2. The electron reservoirs are random baths similar to black body

radiators, and the outputs are correspondingly incoherent.

68




The net current flow between the two reservoirs is given by

I=T2ev§—g(ul —H2)
(5.27)

where v is the Fermi velocity, ON/JE is the density of states per spin with positive
velocity, T is the probability of transmission across the sample and R = T -1 is the
probability of reflection. In one dimension 90/9E = /5 k v, which leads to a cancellation
of the velocity term, so that

I=T2{ﬁ)(u1—uz) (5.28)

Inside the perfect one-dimensional wires the chemical potentials are defined such
that the number of occupied states above |, is equal to the number of empty states below
Ha. Therefore

T2 (i) =(2-T) 2 s pa)

oE (5.29)

The same reasoning is applied to the chemical potential py, to the right of the
sample to give

(14 R)ZE (11 -)=(1-R) I 1, a)

oE (5.30)

There are now two alternative definitions of the potential difference across the
system. If the potential difference is defined as that measured between the electron

reservoirs then

eV=i—-U> (5.31)

which, when substituted into Eqn 5.28, gives the alternate conductance formula
Eqn 5.25. Alternatively, if the potential difference across the system is defined as that in

the perfect leads, then

eV= .-l (5.32)

Substituting this into Equations 5.29 and 5.30 gives eV =R(W.— o) which,

when combined with Eqn 5.28, recovers the original Landauer conductance formula,

Eqn 5.24.
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These derivations show that the crucial difference between the two forms of the
conductance formula is the position at which the potential is measured. To obtain the
original formula of Landauer, the potential difference is measured in the perfect leads on
either side of the scattering object. The alternative formula (Eqn 5.25) is recovered by
measuring the potential difference between the electron reservoirs. These are characterized
by well-defined chemical potentials, which implies a large heat and particle reservoir.

Ha

Figure 5.11 A perfect one-dimensional conductor with chemical potential i,

Landauer (Landauer 1987) has shown that electron reservoirs which randomize
the phase of the incident electrons are a necessary component of a system that measures a
resistance. In 1D, however, these reservoirs can appear a little abstract. For example,
Figure 5.11 illustrates the situation where the transmission of the ideal lead is perfect. In
this situation all of the forward and backward travelling states in the reservoirs are filled
up to their respective Fermi energies and in the ideal lead there is only a net forward
current. Following Equations 5.29 to 5.30 with T =1 and Ua = p

(Bi—po)= pi-p (5.33)

N [—=

4e? (5.34)

This has been defined as the contact resistance (Imry 1986), which appears a little
unusual in a system in which all the components are one-dimensional. However, the
actual systems measured experimentally have contacts which are approximated by 2D
electron reservoirs. Therefore, the alternate Landauer formula (Eqn 5.25) has been used,
since it more closely resembles the system in which the conductance measured

experimentally.
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Fisher and Lee (Fisher 1981) have generalized this result to N channels,
obtaining the result

2
G= 2TeTr( t't)
(5.35)
where tis the N x N transmission matrix connecting the incident flux in various channels
on one side of the system to outgoing flux in the channels on the other side. |t;;|? is the

probability of flux input in the channel j emerging in channel i. This formula has had
considerable success in the study of mesoscopic systems (Stone 1988).

5.5.2 Numerical Results

A useful facility of the computation is the ability to use the intrinsic modal nature
of the calculations to determine the individual modal contributions to the conductance of a
QPC.

In the modal analysis, the wavefunction is expanded in terms of the
eigenfunctions ¢,(x,y) of the local transverse potential, with energies €,(x). The

wavefunction is partially separated throughout the length of the constriction into:

‘{J(x,y)zg‘ (cz(x)exp(iknx)+CE(X)CXP("iK1X)}¢“(Y) (5.36)

where c(x) is the amplitude of the electrons travelling forwards (+) or backwards (-) in

the nh transverse mode.

The results can be expressed in terms of ¢ and r matrices defined by

o= kkY)_ CI(X)
"7V ki(x=0) ci(x=0) (5.37)

and

_ k| X ci(x)
W= K(x=0) ¢5(x=0), (5.38)

2 eqe
where x = 0 is the left-hand edge of the system. Then |tkj(x)‘ is the probability that flux

2 .
input in mode j is travelling forward in mode & at x, and similarly |rkj(x)| is the

probability that flux input in mode j is travelling backward in mode £ at x.
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The dimensionless conductance (in units of 2e2 / h) is given in terms of the overall
t matrix G = Tr( t't). The t matrix reduces to the identity matrix in an adiabatic system
and there is perfect quantization with G = Nmin, Where nyi, is the total number of modes
which continue to propagate throughout the constriction at the Fermi energy.

To study the transport, we define
2 2
a,(x)= ) [t.(x L(x)= ‘
£ (%) ;h( |, @ glfk/(x)l. (5.39)

Then af(x) is the probability of occupancy of the forward (+) or backward (-)

mode k at x along the constriction, irrespective of the mode in which the electron entered
the system.

Figure 5.12a shows the net conductance of a uniform QPC, while Figures 5.12b
and 5.12c¢ respectively show the forward and backward contributions to this net
conductance as the Fermi energy of the electrons in the 2DEG is varied. Since this is a
uniform QPC, the modal contributions remain constant along the length of the QPC
channel.

From Figure 5.12b it can be seen that, as the QPC passes through resonance, the
forward modal contribution exceeds n2e2/h. This results in a build-up of flux in the
cavity of the QPC by repeated scattering between the two 2DEG interfaces. Despite the
excessive conductance contribution of some forward modes, each net modal current never

exceeds 2e2/h, as required by unitarity.

At other energies the conductance, and hence the modal occupancy, is less than
unity. The coupling of the channel to the 2DEG is poor and very different from the
perfect coupling of ideal leads. It is only when the Fermi energy is well above the

minimum propagation energy that the coupling efficiency is consistently good.

In contrast, Figure 5.13 shows the conductance calculation of the self-consistent
QPC on the G = 4 plateau and the modal contribution to the conductance throughout the
length of the channel. It shows that the four modes which propagate throughout the
structure are efficiently coupled to the contact, but the other modes that are available only

at the edges of the system are poorly coupled.
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Figure 5.12 Modal analysis of a uniform QPC contacted to a 2DEG
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Figure 5.13 Self-consistent QPC connected to 2DEG contacts
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Szafer and Stone (Szafer 1 989) have developed an analytical approximation for
the transmission coefficient of a mode passing from a narrow channel into a wider contact
region. Known as the Mean Field Approximation, this compares well with their exact
numerical calculation. It assumes that electrons in a mode in the narrow channel couple
evenly to a range of modes in the wider section. This range is bounded by the transverse
energies of the modes immediately above and below the one under consideration in the
narrow region. Yacoby ez al (Yacoby 1990) has shown that the interface transmission
coefficient for electrons in the sth mode, tg, can be approximated by

t=1- L[LJ ’ (5.40)

64 |n2—g2

This is valid for n, > np,y + 1, where n, is the total number of available modes at
the interface and npx is the number of modes occupied by electrons. This shows that, at
the interface, the electrons occupying modes well below the maximum available mode
will be only weakly scattered. An ideal scenario for transmission would therefore have
only the lowest of many available modes occupied at the interface. This could be obtained
by widening the channel at a sufficiently slow rate that the electrons propagate
adiabatically and do not scatter into the higher modes as they become available.

Although this approximation applies to a single interface, its attributes do carry
over qualitatively into the QPC system. This can be seen in the abrupt QPC, Figure 5.12,
where the improved coupling of the lower modes is witnessed by the reduction in the
reflected flux as the higher modes become available. In the self-consistent QPC, Figure
5.13, the non-unitary occupancy of modes that are cut off as the channel narrows
indicates that the interfaces are not transparent. The fifth forward mode exceeds unity as a
result of repeated scattering between the interface to the left and the point at which the
mode is cut off in the channel. However, the net modal contribution is zero, as is the net
conductance of all higher modes cut-off to the left of the narrowest section of the channel.
All conducting modes are efficiently coupled to the 2DEG contacts, and each provides an
integer contribution to the normalized conductance at the entry to the left of the channel.
After passing through the narrowest region of the channel, there is a small amount of
forward scattering out of the fourth mode into the sixth. At the exit, with n; =9 and npax
=6, tg is of the order of one for all the occupied modes. This is consistent with the
conductance calculation, which shows most of the flux passing out into the 2DEG with
only a tiny amount of backscattering. Overall, the smooth QPC appears adiabatic up to the
narrowest section of the channel, with each of the four conducting modes providing a unit

contribution to the conductance and with no intermode scattering.
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The nature of the conductance calculation of a channel connected to a 2DEG
contact means that it is only possible to obtain the overall occupancy of each mode in the
system. However, if the channel were to be connected to ideal leads, it would then

become possible to analyse the scattering further in terms of the mode in which the
electrons entered the sample. Define

bY(x) = ;lrk,ml", b0 =Yl (5.41)
k

so that bf(x) is the probability that flux input in mode j is travelling forward (+) or
backward (-) at x, irrespective of which mode it is in at x. Thus b¥(x) resolves the flux

into contributions from the inpur modes, whereas ai(x) (Equation 5.39) resolves the
flux into contributions from the local modes at x. This provides information as to the
origins of the flux in each mode throughout the structure, with the overall conductance
obtained by summing up the contributions of each fully occupied mode in the ideal lead at
the entrance to the device.

In Figure 5.14 the conductance of the self-consistent QPC has been calculated
using ideal leads. It is seen that the overall conductance of G = 4 is identical to the
structure connected to 2DEG contacts, but the use of ideal leads has enabled the flux to be
identified by the mode in which the flux entered the structure. The nature of the ideal
leads can be seen at the entrance to the device, where all available modes are fully
occupied. At the end of the device the ideal leads would have eliminated any interface
scattering present when connected to the 2DEG contacts.
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Figure 5.14 Self-consistent QPC connected to ideal leads
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The central region of Figure 5.14b is expanded in Figure 5.15. It can be seen that
in the narrowest region of the the device, where there are only four conducting modes,
there is a small contribution to the flux from electrons that entered the structure in modes
five and six. This indicates that, even in ideal structures that produce good quantized
conductance characteristics, the transport is not totally adiabatic.
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Figure 5.15 Detail of central region of Figure 5.14

The validity of the use of different boundary conditions and the subsequent
comparison of the results is discussed in more detail in Chapter Six. At this point, the
observation is made that in the current structure the change in boundary conditions will
have a negligible impact on the conductance. This is because all of the conducting modes
are well coupled to the contact and there is very little reflection from the conducting
modes at the right-hand interface with the 2DEG.

5.6 Summary

This chapter began with an analytical approximation of the quantized conductance.
When this was compared with a numerical calculation of the conductance of a uniform
QPC, the latter was found to have a significant oscillatory structure. This was not
predicted by the original analytical calculation, which had implicitly assumed that the QPC
was connected by ideal leads. A correction for non-zero temperature was applied to the
oscillatory conductance, but this was found to be insufficient to fully explain the lack of
any resonance structure observed experimentally. A detailed calculation of the modal
contributions to the conductance in the uniform QPC revealed an energy dependence in

the coupling efficiency to the available modes inside the constriction.
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A more realistic self-consistent model of the gate potential was found to possess a
tapered region connecting the narrowest section of the channel to the 2DEG contacts. The
conductance of this potential structure was calculated by combining the general formalism
of the independent vector propagation of Chapter Four with the 2DEG interface matching
of this chapter. The conductance calculations revealed that the tapers vastly improved the
coupling efficiency to the 2DEG contacts over a continuous energy range and led to the
virtual elimination of oscillations, even at 0 K. However, an investigation of the modal

origins of the flux in the central region of the device indicated that transport was not
totally adiabatic.

This chapter has shown how sensitive the conductance profile of a QPC is to the
shape of the confining potential. As the model of the QPC potential has become more
realistic, so has the profile of the calculated conductance. In Chapter Six the model of the
QPC is extended to include the potential contribution of the ionized donor atoms above
the plane of the 2DEG.
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Chapter Six

The Realistic Quantum Point Contact

6.1 Introduction

In Chapter Five, the characteristics of the conductance of a QPC were found to be
very sensitive to the potential profile of the channel. As a first stage towards modelling a
realistic QPC, a self-consistent potential which did not consider the ionized donor layer
was studied. The characteristic feature of this potential was the tapered section connecting
the narrowest region of the channel to the 2DEG contact. This curved interface was found
to have a significant influence on the conductance and led to the elimination of the
resonance structure observed in the abrupt QPC model.

In this chapter, the transport through realistic potential profiles is modelled. These
realistic self-consistent potentials include the non-self-averaged ionized donor atoms as
well as the 2DEG (Nixon 1988). The conductance of these structures is calculated for
both 2DEG contacts and ideal leads. By attaching ideal leads, the transport is studied in
terms of the modal origins of the flux. This enables a detailed analysis of electron
transport in realistic potentials to be carried out. Further insight into the transport is
provided by an analytical calculation of the scattering rates based on the Born

Approximation.

6.2 The Realistic Potential

The realistic QPC potentials studied in this chapter were calculated by Nixon and
Davies (Nixon 1990). The calculated potentials include the contributions from ionized
donors, the potential of the gate and also the self-consistent screening from the electrons
in the 2DEG. The donors are assumed to be randomly distributed, fully ionized and both
the donors and free electrons are assumed to occupy strictly two-dimensional planes.
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the vertical energy scale has been offset, so that zero represents the Fermi energy.
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Figure 6.2b Example of a contour plot of a 0.6 um QPC that includes the potential of
the ionized impurities (Nixon 1991). Contours start at zero and are 4.2x1014 m-2 apart,
corresponding to an energy spacing of 1.5 meV.

This model probably represents a worst case scenario. Efros ez al (Efros 1990)
have suggested that there is correlation in the position of donors, and this would reduce
the random nature of the potential. The electron screening was also assumed to be purely
semiclassical. However, the calculated conductance of this structure, illustrated in Figure
6.3 for various distributions of donors, is seen to be in qualitative agreement with the
experimental results of Figures 1.2 and 1.3. These results were calculated assuming that
ideal leads were attached to the QPC, and using the recursive Green’s function technique.
The parameters of the structure were taken from Timp ez al (Timp 1989) and a schematic
of the device structure is shown in Figure 2.6. The gates were 600 nm long with a
300 nm gap between them. Although the doping density of the actual device was
4.0x10'° m2, a fully ionized 2.5%10'® m 2 donors were incorporated into the model. This
reduction was necessary to take into account the fraction of unionized donors in the real
system (Nixon 1991). Despite showing qualitative agreement with the experimental
results, these calculations do not provide an insight into the nature of the transport in the

channel.
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after Nixon et al (Nixon 1991).

In Figure 6.4, the ten lowest eigenvalues of the transverse modes €n(x) are plotted
throughout the length of a realistic channel. This represents a departure from the ideal
QPCs modelled in Chapter Five, where a smooth variation of the number and energies of
modes was expected throughout the structure. With the exception of an energy offset
below the lowest eigenvalue, the lower transverse eigenstates’ separation remains
reasonably constant throughout the structure. This suggests that the potential profile
resembles the parabolic profile used in the ideal QPC. However, there is some increase in
the energy spacing of the higher modes, which suggests that the potential profile does
begin to rise more steeply than the parabola at high energies. Because the lowest
eigenvalue is the only mode to remain below the Fermi energy throughout the entire
length of the constriction, npjp =1, and one would then expect a normalised
conductance of G = 1. This is shown to be the case in Section 6.3, where the full modal
analysis of this potential is shown as a well-quantized QPC on the G = 1 plateau.
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Figure 6.4 Lowest ten transverse eigenvalues of a realistic QPC

6.3 The Conductance of a Well-Quantized QPC

In Figure 6.5 the calculated conductance, assuming 2DEG contacts, of a QPC in a
realistic potential is plotted. The realistic potential model employed identical parameters to
those used in the previous section. However, the conductance was calculated with 2DEG
contacts instead of ideal leads. The calculated conductance shown in Figure 6.5 is in very
good agreement with that of Figure 6.3a. This had been determined using the recursive
Green’s function technique over a potential that included a large but finite contact region.
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Figure 6.5 Calculated conductance of a 600 nm long realistic QPC attached to 2DEG
contacts.

As the conductance increases, the quantized nature of the conductance is seen to
deteriorate (Figure 6.5). The lowest plateau is the most accurate, with a 5% error. With
the exception of a gate voltage offset, this conductance calculation has very similar
characteristics to the experimental results of the 0.6 pm QPC measured by Timp et al
(Timp 1989) (Figure 1.3). Unfortunately, this must be considered merely fortuitous,
since theoretical work by Nixon et al (Nixon 1991 and Figure 6.3), experimental results
of Timp et al (Figure 1.2) and the current study show that a change in the random
distribution of the potential can radically alter the conductance characteristics.

Modal transport through the central region of this QPC is illustrated in Figure 6.6
for the QPC connected to ideal leads. As in Section 5.5, it is necessary to use ideal leads
as contacts in order to perform a detailed modal analysis of the transport. The
conductance of this device at this bias is well quantized on the first plateau, G = 1. This is
a slight increase on the conductance calculated when the QPC is connected to 2DEG
contacts (Figure 6.5), and this will be discussed in more detail in Section 6.5. The
electron density in Figure 6.6a shows fluctuations caused by the random potential. The
number of propagating modes, n,, at each point along the length of the channel is
superimposed on the modal contributions of Figure 6.6b. The minimum, n,;, = 1, is the
number of conducting modes throughout the constriction, and this is consistent with both
the findings of Section 6.2 (Figure 6.4) and also the conductance.
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Figure 6.6 Modal analysis of a well quantized QPC.
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To study the transport, we follow the analysis of Chapter Five, repeated here, and
define

@ =3, G =Y ef 6.1, 6.2)

Then a@(x) is the probability of occupancy of the forward (+) or backward () mode k at

x along the constriction, irrespective of the mode in which the electron entered the
system.

T8y

—>

Increasing longitudinal Kinetic Ene:
(Decrease in modal number)

Figure 6.7 Schematic diagram of adiabatic transport. At the entrance to the structure
(left) all forward propagating modes are fully occupied. As they pass through the
constriction, some modes pass through cut-off and are completely reflected. Those modes
that do not pass through cut-off remain fully occupied throughout the entire channel
length of the channel and do not scatter into any other modes.
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If transport were adiabatic, each a; (x) would remain unity until cut-off, at which

point it would be entirely reflected into a,(x), as shown in Figure 6.7.

At first sight, Figure 6.6b for the forward occupancy a,(x) appears to support
this, with each mode remaining approximately full until it is cut off. However, there is
resonance in the third mode at cut-off and there is scattering after the narrowest part of the
constriction as soon as higher modes become available. The absence of any flux on the
right-hand side of Figure 6.6¢ for backward occupancy indicates that this scattering to
the right of the narrowest region is purely forward in nature.

No conclusion can be drawn on scattering at the interface of the channel and the
leads, since interface transparency is a property of ideal leads. Any backward scattering to
the right of the narrowest region would have severely deteriorated the quantized
conductance. This is because it would have reduced the forward flux which, by this point
in the constriction, already represents a measurement of the minimum number of available
modes. In addition to the forward scattering, the occupancies of the backward-going
modes a,(x), shown in Figure 6.6c, are also inconsistent with the adiabatic
approximation. In particular there is a substantial occupation of the lowest mode. This
backward travelling mode should be empty, because the lowest forward mode propagates
throughout the structure. The forward mode remains fully occupied until it has passed
through the narrowest region of the channel, after which some of the electrons are
scattered into other modes. This scattering out of the lowest mode to the right of the
narrowest region has already been shown to be forward in nature, and therefore cannot be
the source of the flux in the lowest backward travelling mode. The actual source of this
backward travelling flux in the lowest mode is analysed below.

To study the scattering further, we have analysed the flux in terms of the modes in
which the electrons entered the sample. Again, following Chapter Five, we define

b= Yl > 6700 =Y |- (63, 6.4)
k k

Then bj?*( x) is the probability that flux input in mode j is travelling forward (+) or
backward (-) at x, irrespective of which mode it is in at x. Thus b(x) resolves the flux
into contributions from the input modes, whereas a,f(x) resolves the flux into
contributions from the local modes at x. There is no scattering in the adiabatic limit,
which implies that bf(x) = af(x). This is clearly not the case, as shown by

Figure 6.6d.
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In particular, the lowest mode b' makes a tiny (=2%) contribution to the
conductance. The origins of the flux in this mode, the only conducting mode in this
system, are shown in Figure 6.6f, where |t;;|2 is plotted. Most electrons that enter the
sample in this mode are rapidly scattered out, but they are replaced by electrons that
entered in higher modes, so that the total flux remains close to unity. In this process of
reciprocity, the flux scattering out of the lowest mode is balanced by flux scattering into
the same mode. This can only maintain the full occupancy of the lowest mode for as long
as the associated scattering modes remain fully occupied, thus maintaining the
equilibrium. At the beginning of the constriction, the electrons scatterin g out of the lowest
mode are replaced with electrons that were originally in the second mode. It is unlikely
that there would have been substantial scattering of electrons out of the second mode in
such a short distance. It is therefore reasonable to suggest, as shown by Figure 6.6f, that
the principal scattering process of electrons originally in the lowest mode at the beginning
of the constriction is forward scattering into the second mode.

The fractions contributed by the different incident modes remain constant only in
the narrowest region of the constriction, where np, = ny,. This is the sole region where
transport can be said to be adiabatic. Even this is not true in a wider constriction with np;,
> 1, where we have found scattering between the conducting modes in other
well-quantized samples.

The results in Figure 6.6 demonstrate that it is possible to have well quantized
conductance even when scattering is strong and the adiabatic approximation fails. Two
conditions must be met for quantization: the transmitted modes must be fully occupied
when they reach the narrowest part of the constriction, and they must not be back-
scattered after this point. These conditions are fulfilled in our system because forward
scattering is dominant. This in turn follows from the slowly-varying nature of the random
potential in space. Forward scattering allows a ‘compensating’ process to occur to the left
of the constriction. Figure 6.6b shows that all the forward-going modes are fully
occupied until they reach cut-off. Electrons that scatter out of one of the transmitted
modes into a higher mode can therefore be exactly balanced by electrons scattering via the
inverse process. This would not be true if back-scattering were important, because the
backward-going modes are not fully occupied and the two rates would not balance. This
process of compensation was suggested by Payne (Payne 1989), who studied a channel
whose width increased with time. Pure forward scattering is also analogous to a unitary
change in the basis, under which Tr(tTt) remains unchanged (Biirtiker 1990). It will be
demonstrated in Section 6.5 that, as a direct consequence of disorder in the system, it is
not always a precondition of quantized resistance to have all modes fully occupied at the
start of the constriction. The freeing of this constraint allows for the possibility of the
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observation of quantized resistance when there is poor interface coupling between the
channel and the contacts.

Figure 6.8 illustrates the scattering processes taking place in this well-quantized
QPC.

Figure 6.8 Schematic of the transport in a realistic structure showing a selection of the
scattering process of the electrons as they pass though the QPC

6.4 The Conductance of a Poorly Quantized QPC

A study of transport in devices whose conductance is poorly quantized has also
been made. The full conductance characteristic is shown in Figure 6.3b Figure 6.9 shows
the modal analysis of the transport through this QPC, which has identical device
parameters to that of Figure 6.6, except for a different random distribution of ionized

impurities.
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Figure 6.9 Modal analysis of a poorly quantized QPC
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A change in gate voltage from Vg =-0.724 V t0 —0.720 V leads to a decrease in
conductance from G=1.71 to G = 1.55, whereas an increase would have been
expected as the channel becomes wider and deeper. The electron density and available
modes 7,(x) in this QPC (Figures 6.9b and 6.9d) suggest that there is a resonant state in

a ‘bulge’ for 400 nm <x < 500 nm, to the right of the narrowest region of the device.
Only a very small fraction of flux passing through the constriction enters this resonance
when Vg =—0.724 V. Here, the term enters means that electrons scatter into the modes
that are only available as a result of the local widening of the channel. At the slightly
shifted gate voltage of ~0.720 V, a large flux appears in the bulge. Electrons are forward
scattered from one of the conducting modes into the extra mode that propagates only
within the bulge. They are reflected when this extra mode cuts off at the end of the bulge,
and some are ‘forward’ scattered into the backward-going conducting modes
(Figure 6.10). Flux that is not ‘forward’ scattered into the backward travelling
conducting mode is then reflected when the mode cuts off. This reflected flux may then
forward scatter to the forward travelling conducting mode or begin another circuit of the
local extra mode. The net result is a three-step indirect back-scattering process which
lowers the conductance.

The usual formula for mobility, based on the Born Approximation, gives very
high values for electrons in narrow wires (Sakaki 1980). This is because the slowly-
varying nature of the random potential means that the matrix element for direct back-
scattering is tiny. An important approximation in this formula is that successive scattering
events are assumed to be independent, with no interference between them. This means
that it cannot describe the three-step back-scattering process discussed above, and may
seriously over-estimate the mobility. It is known from field theory (Abrikosov 1976) that
the assumption of independent scattering events fails in one dimension, and we believe
that the indirect back-scattering process provides a clear physical demonstration of this.
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Figure 6.10 Schematic of three stage in-direct scattering process. 1) Electrons are
forward scattered into (out of) the localized state. 2) Electrons in the localized state pass
through cut-off and are reflected. 3) Electrons forward scatter out of the localized state
into the backward travelling extended state.

Such resonances may explain the similar reduction in conductance observed in
some experiments (Timp 1989) as the channel widens. It is important to distinguish this
type of in-channel resonance from the flux build-up seen in mode three of Figure 6.6,
which occurs when the mode is reflected at cut-off and is reminiscent of an Airy function
solution to a turning point problem. This does not affect the conducting states, since this

only represents a mode passing through cut-off and being reflected.

6.5 Analytical Scattering

Sakaki (Sakaki 1980) demonstrated that the scattering length of an electron
travelling along a one-dimensional electron waveguide was enhanced over the scattering
lengths in two- or three-dimensional systems, subject to the same scattering mechanisms.
In the numerical calculations Sakaki used a single ionized impurity and determined the
scattering rates from the Born Approximation. However, the basis of this enhancement

can be intuitively understood with reference to Figure 6.11.
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Figure 6.11a is a k-space representation of a purely one-dimensional electron
waveguide. The only available scattering mechanism available to the electrons travelling
forward, represented by vector Kf1, is to undergo total reflection to state k;1. This
reflection process requires a large change in momentum, Ak, which will not be allowed
when the scattering potential is slowly varying. Figure 6.11b shows a system where the
electron’s energy has freed it from the confines of a purely one-dimensional system.
Instead, the electron is in a quasi-one-dimensional system where it can scatter into other
modes rather than undergo complete reflection in the same mode. Of the additional
scattering mechanisms that are available to the electrons in this quasi-one-dimensional
space, scattering into kg would be favoured due to the small change in momentum, Ak.
However, the freedom of this forward, low angle, scattering is considerably restricted
from that of a purely two-dimensional system, where there would be no quantization of
allowed scattering angle. Therefore, one can expect that the scattering length in a quasi-
one-dimensional system is enhanced over that of a truly two-dimensional system.
Unfortunately, this picture is inconsistent with the results illustrated in Figure 6.9, where
there is a considerable amount of backscattering in a channel of length 0.6 pm, which is
less than the transport length of a 2DEG.
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Figure 6.11 Schematic of scattering processes available to electrons travelling in the
lowest forward mode as the Fermi energy is increased. a) The lowest mode is the only
propagating mode available and therefore direct backscattering is the only possible
scattering process. b) The increased Fermi energy has made the second mode available,
thus increasing the scattering processes.

To investigate further we consider a long uniform electron waveguide and

calculate the scattering caused by a weak random potential using perturbation theory. This
is the routine method used to calculate two- and three- dimensional mobilities and has
been more recently used by Glazman and Jonson ( Glazman 1991 ), also in the context of

the electron waveguide. The modes of the system are defined by ¢,, (y)exp(ii knx) where
s (y) represents the various transverse modes which can be travelling forward,

exp(+i kqx), or backward, exp(—i kqx) along the waveguide.
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The propagation constant, ky, is then defined as

k'l = zﬂ( Eu)t = En
V h? ) (6.5)

and & is the transverse energy of the mode. The scattering rate of each of the various
scattering processes was determined using Fermi’s Golden Rule

1 _2n 2
T h N(E7)Vzl (6.6)

where 1/t is the scattering rate for the transition from state i to state /- The scattering

process is considered to be elastic, so that the energy of the initial state i equals that of the
final state f, Ef=E;, and Vj; is the matrix element given by

Vi = (El;) f f dxdy [ of (y) exp(-i kfx)]V(x,Y)[q)i (y)exp(ikix)] 67)

N(Ey) is the density of final states, which in this case is equal to one quarter of the
usual one-dimensional density of states. This is because spin is preserved, and each
scattering process considers only those electrons travelling in a single direction in the final
state.

To produce an estimate of the screened potential seen by the electrons in the
constriction, it was necessary to average over the out-of-plane ionized donors. After
averaging over the ionized donors, the matrix element becomes (Davies 1991 )

Nimp ;1—7‘1|\_/(1<f—k,-,q)|2 f wdyeXP(iqy)¢;(y)¢z(Y)

s (6.8)

2

where Nimp is the areal density of impurities (m-2).

The Thomas-Fermi approximation produces screening of an out-of-plane ionized
donor by a 2DEG of

Vig) =€) 2T  oxn(_ ‘
V(q)'(4n££o)lq|+1zmexP( l2al) (6.9)

where z is the distance from the ionized donors to the plane of the electrons and qrg is

the Thomas-Fermi wavevector.
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It was shown in Section 6.3 that, apart for an energy offset, a parabola is a good
analytical approximation to the transverse potential in the electron waveguide. The
Hermite eigenfunctions have therefore been used in this analytical calculation. The energy
offset discussed in Section 6.3 will not have an impact, because all scattering processes
are dependent upon the current mode of occupancy and the relative energies of all other
modes.

Having determined the rates of all possible scattering processes using Equation
6.6, the total scattering rate was determined using Matthiessen's Rule, that is

1_-1,1,1,.
T Tn Ta Ta (6.8)

where ,g—l is the overall scattering rate out of forward travelling mode 1, having taken into

account all the scattering processes. This includes both back-scattering in the same mode,
and also forward- and back-scattering in all other modes that are available in terms of
energy. The inverse of this total scattering rate was then multiplied by the electron

velocity to give an estimate of the scattering length.

Figure 6.13 shows the analytical results of the scattering rates and associated
scattering lengths for an impurity density of 2.5x1016 m? and a parabolic mode spacing
of 1 meV. This impurity density is consistent with that used to determine the realistic
potential studied in Section 6.4. The energy spacing is also a reasonable approximation
for the first 100 nm of this well-quantized device, but is seen from Figure 6.4 to increase
to approximately 2 meV as the channel narrows. In calculating the scattering length, the
usual factor of (1-cos@), where 0 is measured relative to the forward direction and is used

to weight the effect of the scattering on the mobility, was not used.
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The discontinuities in Figure 6.13 correspond to the singularities in the density of
states as each mode becomes available. With the electrons originating in the lowest, only
conducting, mode, the scattering length is seen to increase from a low energy value of
~10 pm as the electron energy increases. This is because the only available scattering
process, as illustrated in Figure 6.11a, is reflection. As the Fermi energy increases, the
necessary change in wavevector increases, with a corresponding reduction in the
reflection scattering rate, S;1. Just before the second mode becomes available, the
scattering length is 100 um. With the increase of the Fermi energy, the second mode
becomes available and the scattering length falls drastically. This fall in scattering length
results from an increase in the number and efficiency of the scattering processes. Of these
scattering mechanisms, the forward scattering into mode two, Sty of Figure 6.13b,
dominates as a result of the reduced change in wavevector. The back-scattering rate into
mode 2, Sp9, is seen to be of much the same efficiency as that of mode 1, and both of
these back-scattering rates are several orders of magnitude down on the principal forward
scattering rate. However, it must be noted that it is not purely the change in wavevector
that determines the scattering rate. The backward scattering rate into mode two, Sp, is
lower than that of mode one, S,1, despite the fact that the scattering process into mode
two has a smaller wavevector change than that associated with mode one. This is because
the transverse component of the overlap matrix must also be included in the calculation of
the scattering rates. The predominance of forward scattering in this structure can be
gauged from a comparison of the scattering lengths. The scattering length associated with
all forward and backward scattering processes available is about 100 nm, whereas that
purely based on back-scattering rates reached 100 pum by the time the first forward
- scattering process became available. Following the continual fall of the backward
scattering rates in Figure 6.13c, this length of 100 um would increase significantly as the
energy was increased. This highlights the predominantly forward nature of the scattering
in a QPC. Roughly there are two distinguishable rates: (i) a lifetime rate which determines
the length of time spent in the original mode. This is dependent on all scattering
processes, but dominated by forward scattering and (ii) a rate analogous to the transport
rate, which is dependent on the back-scattering processes and strongly affects the

conductance.
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Figure 6.13 Analytical scattering rates with the input flux in mode one (N=2.5x1016 m2,
AE=1 meV)
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As the Fermi energy increases further, more propagating modes become available
but, with the exception of the singularity when the mode first becomes available, they

have little impact on the overall scattering length, which is dominated by the forward
scattering mechanism 1-2.

Overall, the scattering length for electrons incident in the lowest mode in this
calculation is of the order of 100 nm. This is broadly in line with the electron scattering
in the modal analysis of the realistic potential in Figure 6.6f, where it is seen that most of
the electrons originating in the lowest mode have been scattered out within 120 nm.
Furthermore, Figure 6.6f also shows that the initial and principal scattering process in the
modal calculation is forward scattering into the second mode. This is also in agreement
with the findings of this calculation.

In Figure 6.14, the results of the analytical calculation are shown for electrons
input in the second mode, all other parameters remaining constant. These results are
similar to those for electrons that enter in the first mode. The principal difference is that
for electrons input in the second mode, both modes one and three act in the same way as
mode two did for electrons input in the lowest mode. The scattering rates for electrons to
forward-scatter from mode two to modes one and three are therefore comparable to each
other. In both Figures 6.13 and 6.14 it is seen that the principal scattering mechanisms
are with modes which would be expected to be excluded on the grounds of parity.
However, Equation 6.8 shows that this problem with parity is accounted for by the
Fourier transform.

6.6 Contacts

In this and the previous chapters, the transport in a QPC has been studied using
both ideal leads and 2DEG contact regions. It has been left to this section to provide a
justification for the earlier claims that a change in the contacts does not significantly alter

the system under investigation.

6.6.1 ‘Ideal’ Lead Contacts

Ideal leads have become a useful mathematical tool in the study of mesoscopic
systems for several reasons. In this study they have allowed the identification of the
incoming flux and the subsequent detailed investigation of the transport that this
information enables. In other studies, the mathematical methods employed have

necessitated the use of ideal leads as approximations to 2DEG contacts.
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Figure 6.15 Schematic of a QPC connected to ideal leads
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Figure 6.15 illustrates the local scattering processes of the net flux through the
system. As described in Section 5.3.2, the ideal lead represents the final region of an
adiabatic horn attached to the 2DEG. As the infinite number of one-dimensional channels
travel down the adiabatic horn from the 2DEG, modes pass through cut-off and are
reflected. Eventually only a finite number of these forward travelling fully occupied
modes pass into the ideal lead. In applying ideal leads to a QPC system, the interface with
the 2DEG has therefore not been ignored. Instead the scattering has been assumed to take
place in a controlled manner that leaves all available modes fully occupied and each
backward travelling state matched to those in the channel.

6.5.2 2DEG Contacts

The 2DEG contact system is simpler than that of ideal leads. In the 2DEG system,
the full occupancy of each available mode at the start of the constriction is not guaranteed.
Instead, the occupancy of each mode for the entire system is found by globally matching
the 2DEG contacts to the QPC. This can produce poor matching and consequent low
occupancy of some of the available modes.

Channel
Hy )
Y
2DEG region j——; —> 2DEG region
‘_ @
<—

Figure 6.16 Schematic of a QPC connected to 2DEG contacts

In Chapter Five the additional scattering introduced by 2DEG contacts attached to
the end of the channel was studied. Provided that the channel had widened sufficiently

from its narrowest section, additional interface scattering was found to be negligible.

A more significant difference between ideal leads and 2DEG contacts is the initial
coupling of the flux into the constriction. Figure 6.17 shows the 2DEG contact modal
occupancy of the realistic QPC on the G = 1 plateau, as in Section 6.3. The occupancies
represent the total modal occupancies, irrespective of the origin of the flux.
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Figure 6.17 Transport through a realistic potential connected to 2DEG contacts

Where the occupancy of a mode at the start of a constriction is greater than unity,
it is not possible to obtain a measure of the coupling efficiency. This is because the
coupling has been obscured by resonances, as described in Section 5.5. However, poor
coupling is evident where the occupancy at the entrance to the constriction is less than
unity. This is the case for modes two to four in Figure 6.17. If transport were adiabatic in
this system, this poor coupling would not have an effect on the G=1 plateau. However it
has been shown in Section 6.3 that transport is far from adiabatic. In Figure 6.6f it can be
seen that the majority of the flux present in the lowest mode, as it passes through the
critical narrowest region of the channel, originated from modes three and four at the start
of the constriction. With these modes being less than perfectly coupled when 2DEG
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contacts are used, the calculated conductance is below that determined when ideal leads
are used. This small difference in the results of the two systems can be seen by
comparing the G=1 plateau in Figure 6.5 with the overall conductance in Figure 6.6.

The absence of adiabatic transport in the channel eliminates the requirement that
good quantization be dependent on the coupling of a specific mode. Instead intermode
scattering introduces a more general requirement of good overall mode coupling. Perfect
quantization may not result from this requirement. However, a dependence on overall
coupling rather than specific mode coupling introduces another element of robustness into
the processes that allows an experimental observation of quantized conductance.
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Figure 6.18 Modal analysis of a G=2 QPC connected to 2DEG contacts
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This robustness of quantized conductance to poor mode coupling is more clearly
illustrated in Figure 6.18, which shows the calculated conductance for another realistic

potential on the G=2 plateau. Despite less than perfect coupling of all incident modes, the
overall quantization is maintained.

In Figure 6.19 the lowest conducting mode of the QPC shown in Figure 6.18 is
analysed in more detail. Figure 6.19a shows the origins of the flux in this lowest mode
throughout the structure. The perfect coupling of this lowest mode to the contact at the
start of the constriction is a consequence of having to use ideal leads in this particular
calculation (Section 6.3). This ideal coupling is a considerable improvement over the
coupling of the lowest mode when connected to 2DEG contacts, shown in Figure 6.19c.
However, despite this poor coupling of the lowest mode at the start of the channel, at the
middle of the channel its occupancy has almost reached unity. In Figure 6.19b the
normally perfect coupling factors of the ideal contacts have been adjusted to the
magnitudes of the modal occupancies of the QPC connected to the 2DEG contacts at the
start of the constriction (Figure 6.18). Despite the crudeness of this approximation to the
coupling factors, the resulting analysis, shown in Figure 6.19b, closely resembles the
actual 2DEG contact calculation shown in Figure 6.19c. As a result of intermode
scattering, by the middle of the channel the occupancy of this lowest mode is made up of
varying amounts of flux from many channels. Therefore, the occupancy of the lowest
conducting modes is not simply dependent on the coupling of these modes to the
contacts. Instead, these occupancies are the result of both the coupling of all modes to the
2DEG contacts and also complex intermode scattering processes which will ordinarily not
be in equilibrium. However, forward scattering will in general be favoured, which will
tend to fill up the lower conducting modes, regardless of their initial occupancies.

106



S o
BENNEREEDO
BTN AW

0 200 400 600

Distance ( nm )

Figure 6.19 Lowest mode of a G=2 realistic QPC. a) shows the origins of the flux in
the lowest mode connected to ideal leads. b) is similar to a), but with the modal coupling
altered, in line with the coupling in Figure 6.18. c¢) shows the actual occupancy of the
lowest mode of the same channel with 2DEG contacts
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6.6 Summary

The chapter began with the introduction of the realistic potential model of Nixon ez
al (Nixon 1991). In this model the influence of the ionized donors was not approximated
by the usual average potential, but instead they were treated as individual potential sites.
This treatment was found to have a significant influence on the self-consistent potential
seen by the electrons in a 0.6 um constriction. However, despite the random contribution
of the ionized donors to the gate potential, the calculated conductance of a 0.6 um QPC
connected to 2DEG contacts was still found to contain plateaux, although these were seen
to deteriorate as the conductance increased.

Next, the modal calculation developed in Chapter Four was used to analyse the
transport on the G = 1 conductance plateau of the 0.6 um realistic potential QPC. It
showed that the adiabatic approximation fails badly, as the majority of electrons originally
in the lowest mode had been scattered out within 100 nm. However, it was still possible
to have well quantized conductance, subject to the less stringent condition of
‘compensated’ scattering.

In the modal analysis of a poorly quantized QPC, the primary cause of back-
scattering which led to the degradation of the quantization was found to stem from a
three-stage resonance scattering process. This mechanism provided, via a combination of
forward scattering and cut-off, an efficient back-scattering process in an environment that

strongly favoured forward scattering.

An analytical calculation, using the Born Approximation, was performed to
provide further analysis of transport in realistic potentials. This calculation produced an
unweighted scattering length of = 100nm, which was comparable with the ‘lifetime’ of
the electron flux originally in the lowest mode. This ‘lifetime’ was dominated by forward
scattering processes, whose scattering rates were several orders of magnitude greater than
those of the direct back-scattering processes. However, when back-scattering was
examined in isolation, it was seen that at low energies the scattering length was of the
order of 10 um and would increase for higher Fermi energies. Unfortunately, this
contradicts the physical observation and numerical investigation described in Section 6.4,
where poor quantization was observed in a 0.6 pm QPC. This is at least an order of
magnitude smaller than the direct back-scattering length determined by the Born
Approximation. In the poorly quantized structure studied in Section 6.4, the quantization
was degraded by a three-stage indirect back-scattering process. This cannot be accurately
described by the Born Approximation, which assumes that successive scattering events

are independent.
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Therefore, if resonances are the dominant mechanism for backscattering, the use
of the standard Born Approximation could severely overestimate the scattering length of
an electron waveguide. In principle, the potential caused by a complex of remote ionized
impurities in various configurations could be used in the Born Approximation to include
the effect of multiple scattering at short length scales (Baranger 1990).

Finally, a study was made of the influence of employing both ideal leads and
2DEG contacts in the conductance calculation. In the structures used for the comparison,
small differences were observed in the calculated conductance. However, the principal
finding was the tolerance to poor mode coupling brought about by the non-adiabatic
nature of the transport in the QPC. Therefore, even in quite poorly coupled channels, a
step structure may be observable in the conductance, although its accuracy may be poor.

109



Chapter Seven

Current and Future Work

7.1 Introduction

Up to this point, this thesis has described the techniques employed and the results
obtained in the study of electron transport in QPC devices, and stands as a self-contained
piece of work.

In this chapter, areas that represent a natural progression of the underlying
methods used in this work are detailed, and their application to the study of electron
transport in mesoscopic structures discussed along with preliminary findings.

7.2 Conformal Mapping

Drawing again an analogy with electromagnetic radiation, the technique of
conformal mapping can be carried over into the electron waveguide regime (Heiblum
1975). In the first instance, the Schrodinger Equation is written in the form of a standard
scalar wave equation,

2 2
YL+ Ly
n | \ox? dy?

where k*(x,y) = 2h_r£1( Eror - V( x,y }) and the wavefunction has been expanded in terms

AcWa(x)u(y) =0

(7.1)

of the local normal transverse eigenstates Wa( X ) of the electron channel.

The basis of conformal transformations is to map a problem from one space, Z,
onto another space, W, in which the problem is more easily solved. Solutions obtained in
the co-ordinate system u,v of W space are related to those in x,y of Z space through the

relationship,
W=u+iv=Ff(Z)=f(x+iy) (7.2)
where f is an analytical function. Following Heiblum, we transform Equation 7.1 from Z

) ., du_9v du_ ov
to W space with the aid of the Cauchy-Riemann relations, ox dy ’ay  ox
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Then

Anya(u)da(v)=0

aZ 2
2 l (* + 8_) + (g—v%,)Zkz(u,v)

\ 0Z\%* _(du)? (ov)?
el 2]

To illustrate this approach, we consider a curved section of waveguide in real, Z

(7.3)

space. By applying the conformal transformation W =R . In (RL) , the curved boundaries

of the waveguide in Z space are transformed to straight ones in W space (refer to Figure
7.1).

iy
Z Space W Space
RH=RIn (M)
c c
R,
R, R.expif
0 X = J

Figure 7.1 Conformal transformation of curved surface in Z space.

At the interface between a straight and curved section of guide in Z space, it is
necessary to transform the curved section to W space and then match the wavefunction
and its first derivative across the interface. Care must be taken in this matching process,
since one must match the Z space eigenstates transformed to W space with the W space

eigenstates of the transformed section of waveguide.

Preliminary results support those obtained by Sols (Sols 1990), who found that
the total transmission around a curved waveguide is practically unity, except very close to
threshold. To obtain their results, Sols et al had used polar coordinates to allow
separation of the variables for propagation around the curved section of the waveguide.
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Figure 7.2 Transmission coefficient of an electron wave travelling around a 45° bend

The use of conformal mapping in other areas for many years has resulted in a
wide range of transformations that may have potential for the electron waveguide
environment, and it is surprising that to date no published work in this field has made
mention of this type of approach.

7.3 Magnetic Fields

The use of magnetic fields in mesoscopic systems introduces many interesting
concepts and effects. In this section a magnetic field is incorporated into an otherwise
homogeneous waveguide to illustrate the application of magnetic fields into the coupled
mode model.

With the addition of a magnetic field the Hamiltonian becomes

=L (p-eA)P?+V
H =5 —(p-eA)+ V(xy) 7.4)

Generally, the magnetic field is applied perpendicularly to the plane of the
electrons. If the electrons are in the x-y cartesian plane, the magnetic field will therefore
be of the form B = B(0,0,1). There are many vector potentials, A, that will produce this
magnetic field via the relationship B = curl A. An example is A = B(0,x,0), which is

known as the Landau gauge.
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Using this form of the vector potential, the Hamiltonian becomes

A% 9’ 3
22 _h*9 lhBex

(Bex)2
——+ V(x,
2m ox2 2m dy? ay 2m (x.y)

(7.5)
In this instance we shall consider the effects of the magnetic field on a uniform
sectlon of electron waveguide. Furthermore, to demonstrate analytically the action of the

magnetic field on the local normal modes of the guide, we shall assume that the guide can
be approximated by a parabolic potential, as used in Chapter Four.

Following Chapter Four, the local transverse eigenstates of the parabolic potential
are the Hermite polynomials

1/4 —ma

0u(y) =27 (nl) (DL “exp DLyl /Ty

which satisfy the equation

(%%w(ﬂ 0a(y) = €a04(y)

(7.6)

Applying the Hamiltonian to the general wavefunction 2 Va(x)¢a(y) and
n

substituting Equation 7.6 produces

2
2 o a\vzn On( )+lhBex\Ifn() q;n(Y) (BCX) Ya(X)9a(y) — (ETor—En)Wa(X) §a(y) = 0
ox y

(1.7)

The next stage is to remove the summation and obtain the characteristic equation
of each of the local modes W .( x ). This is done by exploiting the orthogonality of each of

the transverse eigenstate of the system by integrating Equation 7.7 by

ff:%(ﬂdy

To perform this integration it is necessary to use some of the results obtained in
Chapter Four. Equation 7.8 is the result of this integration, and illustrates the intermode
coupling introduced by the magnetic field in an otherwise homogeneous system.
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However, this scattering only couples with the modes immediately above, B+1,
and below, B~1, the flux mode.

AR

2mm

m‘lfﬁ-l +(h(B+1 ) )m\lfﬁu }

. 2mo

- 2i&(%)m(2(l3+1))-m\11w+ ZH—T( €ror—€a)Wp =0 78

Equation 7.8 can be solved in an identical manner to that developed in Chapter
Four. Figure 7.3 shows the results of this calculation for a 2 meV wavefunction
travelling in a parabolic potential waveguide of length 500 nm characterized by
ho =3 meV. The magnetic field of 0.6 T is present only over the central region of the
system. The net flux at each point across the waveguide has been plotted at several points
along its length. At each cross-section the total net flux was found to be the same, but
there are clear differences in the spatial distribution of the flux throughout the waveguide.
At the beginning and end there is no magnetic field present, and hence the forward and
backward components of the flux are both evenly distributed about the centre of the
guide. The resulting net flux plotted is therefore also symmetric about the centre of the
waveguide. However, in the central regions in the presence of the magnetic field, there is
a spatial separation between flux travelling forwards and backwards. This is broadly in
line with general expectations of electron transport in magnetic fields, with electrons
scattering along the boundaries of the waveguide in the presence of the perturbative
magnetic field. If the electrons had been launched into an edge state of a wire under a
continuous magnetic field, then back-scattering would not have been expected. Instead,
the flux would have passed along one side of the waveguide and could have only back-
scattered if there were sufficient perturbation to couple it to the back-scattering state that
travels along the opposite side of the channel.

The application of magnetic fields is a rich area for future research. We have
briefly touched on edge state transport, but there are other areas, including the Quantum
Hall Effect in the weak coupled limit, in which the techniques developed here could be

employed.
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Figure 7.3 Net flux of an electron wavefunction confined in a parabolic waveguide
section passing through a magnetic field. (Note that the flux axes are not drawn to scale).
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7.4 Self-Consistent Potentials

Throughout this work no attempt has been made to include the effective potential
of the electrons travelling through the device, since this is not of particular importance in
the regimes of operation addressed in this work. However, in the limit where the realistic
QPC is virtually cut-off and consists of a few weakly coupled ‘puddles’ of electrons, the
self-consistent potential may prove significant. In this regime, the QPC is similar to a
coulomb blockade device, in which the capacitance of each electron puddle is so small
that a single electron can have a significant influence.

In standard one-dimensional calculations, the self-consistent potential is difficult
to determine, because it is not possible to normalise the wave function. However, within
the coupled mode approximation, it is possible to attach the QPC to 2DEG contacts.
Using these 2DEG contacts it is possible to normalise the wave functions.

The electron density is given by

Nap = 2[ dkyf dkx f kx,k Iw(x’y)|2

(7.9)
In the 2DEG, ¥ = 1 x exp(ik.r) , so that ]\ljlz =1 and
nm_zf f dkxf (Kx,ky)
- (7.10)
Approximating the Fermi function with the step function
f(kx,ky) = 0{ke- (k2 +k2)*) gives
2
nop = 2[ 21t4k dk _ k
0 4nt (7.11)
. . . - _h2%k?
The Fermi wavevector is related to the energy via E = T

This gives

which are consistent with the two-dimensional density of states.
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7.5 Electron Collimation

In December 1987, Roukes ef al (Roukes 1 987) reported the first observation of
the quenching of the low field Hall Effect in quasi-one-dimensional wires. Electron
collimation is one of several theories put forward to explain this quenching of the low
field Hall effect (Roukes 1989). This theory was originally proposed by Beenakker
(Beenakker 1989) and has also been successfully applied to the conductance of two QPCs
in series (van Houten 1990). However, the theory of collimation put forward by van
Houten is based on a semi-classical adiabatic analysis, and it is unclear how such a
picture can be reconciled to non-adiabatic electron transport in a QPC.

In this semi-classical analysis of electron collimation, the constriction channels the
momentum of the electrons into the axial direction. It achieves this by a reduction in the
transverse momentum and a corresponding increase in forward momentum as the
constriction widens, with the electron remaining in the same mode. This leads to a
collimation of the output beam, as 8 gets smaller, assuming no diffraction effects at the
interface with the 2DEG.

Figure 7.4 Schematic of adiabatic collimation of electrons emitted from a QPC.

As a first stage in obtaining a measure of the collimation, if any, from a non-
adiabatic QPC we consider the channel on the G=1 plateau studied in Section 6.3.
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The dependence of the conductance on the input angle can be obtained by
substituting Equation 5.20 into Equation 5.22 to give

n

_ 2
G= Zh—rglf_& dO ke (el J f o)
2 (7.12)

where all terms are defined in Section 5.3.1.

The 2DEG contacts are identical and symmetric, with the exception of the
potential difference. Therefore, by invoking reciprocity (Schiff 1968), it can be seen that
the dependence of the conductance on the input angle can also represent, with the
potential difference reversed, the angular distribution of electrons leaving the QPC.

0.2

0.1

Conductance Contribution
( Arb Units )

0.0 . . . : i l .
-90 -45 0 45 90

Angle 0 ( degrees )

Figure 7.5 Angular contributions to the conductance in a non-adiabatic QPC on the
G=1 plateau

The calculated angular contribution to the conductance of a realistic QPC on the
G=1 plateau is plotted in Figure 7.5. Clearly some element of the random nature of the

potential has been carried over into the asymmetry of the conductance as a function of
incident angle. If this is viewed as an output beam, then electron collimation may be
inferred, but this is not necessarily in the axial direction. However more work is required

to provide a fuller picture of electron collimation in the non-adiabatic limit.
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7.6 Summary

In this brief chapter, the basic method of modal analysis developed in the thesis
has been shown to form the basis of a study in areas related to the basic transport through

a QPC. The preliminary results obtained are encouraging and suggest that this could
prove a fruitful area of future research.
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Chapter Eight

Summary and Conclusions

In the first part of this thesis, the basic AlGaAs-GaAs heterostructure used to
create the 2DEG system was introduced. It was seen that this area of semiconductor LDS
has been dependent on recent developments in the areas of epitaxial growth and
patterning techniques. Not only have advances in technology led to advances in
conventional semiconductor devices but they have also made conceivable the possibility
of new devices based on fundamental quantum phenomena. If continued improvements
in conventional devices follow current trends, then we can expect to observe quantum
effects as a secondary influence on the operation of conventional device structures.
Therefore, a study of semiconductor LDS forms an integral part of the development of
both conventional devices and a potential new class of quantum devices, as well as
providing a test bed for semiconductor physics research.

The basic building block of any device is a section of connecting lead. When, in
1988, a short (0.2 pm) section of a 2DEG was confined to form a wire whose width
was comparable with the Fermi wavelength, its conductance was found to be quantized.
The system comprising the narrow channel and connecting contacts was termed a
Quantum Point Contact (QPC). This conductance quantization had not been predicted,
which is surprising when one considers the elegant simplicity of the processes
responsible. Although conjecture, we would like to propose the following reasons for not
predicting the quantization. It was not thought possible that :

i) the available modes in the channel would be exactly filled by electrons from the
contact.

ii) a channel could be fabricated which was sufficiently smooth, on an electron

wavelength scale, to allow adiabatic transport.

The original experimental observation and analysis appeared to support these
assumptions. However, these findings were inconsistent with those of both early
numerical models, which predicted that the quantization should have a resonant structure,
and also experimental measurements of longer, 0.6 pm, channels, where quantization

was found to be poor.

In Chapter Three, an initial time-dependent study of transport through a QPC was
carried out, based on a Alternating Direction Implicit (ADI) expansion of the 2D
Schrodinger Equation. This approach was not found to be suitable for a detailed study,
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but provided a qualitative appreciation of the transport. In particular, it highlighted the

complex nature of the scattering at the contact-channel interface and the modal nature of
the transport in the channel.

A time-independent approach more suitable to a detailed study of the electron
transport was developed in Chapter Four. Where the channel could be fully described
analytically, it was possible to develop a Coupled Mode description of the transport
inside the channel. It was necessary to solve this system of equations numerically.
However, it proved very difficult to develop a integration procedure that could integrate
stably through mode cut-off and carry evanescent modes in the calculation. After
considerable effort, a stable approach was found, which was then developed for systems
which could not be described analytically.

In Chapter Five, this Coupled Mode method was first applied to the uniform QPC
connected to 2DEG contacts. The calculated conductance was found to have a significant
oscillatory structure. These oscillations, first modelled by Kirczenow, were neither
predicted by the original analytical analysis nor observed experimentally. A correction for
non-zero temperature was applied to this oscillatory conductance, but this was found to
be insufficient to explain the lack of any resonant structure observed experimentally. A
modal analysis of this oscillatory conductance revealed an energy dependence in the
coupling efficiency to the available modes inside the channel.

A more realistic self-consistent model of the gate potential was found to possess a
tapered region connecting the narrowest section of the channel to the 2DEG contacts. The
conductance of this potential structure was calculated by combining the general formalism
of the independent vector propagation of Chapter Four with the 2DEG interface matching
of Chapter Five. The conductance calculations revealed that the tapers vastly improved
the coupling efficiency to the 2DEG contacts over a continuous energy range and led to
the virtual elimination of oscillations even at 0 K. This provided clear evidence for the
important role of the shape of the interface between the channel and the 2DEG contacts in
the observation of quantized conductance. However, an analysis of the origins of the flux
in the narrowest section of this well quantized QPC indicated that the transport was not

totally adiabatic.

Chapter Six began with the introduction of the realistic potential model of Nixon
et al (Nixon 1991). In this model the influence of the ionized donors was not
approximated by the usual average potential, but instead they were treated as individual,
randomly distributed potential sites. This treatment was found to have a significant
influence on the self-consistent potential seen by the electrons in a 0.6 pm constriction.

However, despite the random contribution of the ionized donors to the gate potential, the
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calculated conductance of a 0.6 pum QPC connected to 2DEG contacts was still found to

contain plateaux, although these were seen to deteriorate as the conductance increased.

A detailed modal study of the transport on the G =1 (in units of 2e%h)
conductance plateau of the 0.6 um realistic potential QPC was made. It showed that the
adiabatic approximation fails badly, as the majority of electrons originally in the lowest
mode had been scattered out within 100 nm. However, it was still possible to have well
quantized conductance, subject to the less stringent constraint of ‘compensated’ scattering
in which the flux that foward scatters out of a mode is exactly balanced by flux that
forward scatters into the same mode.

In the modal analysis of a poorly quantized QPC, the primary cause of back-
scattering which led to the degradation of the quantization was found to stem from a
three-stage indirect resonance scattering process. This mechanism provided, via a
combination of forward scattering and cut-off, an efficient back-scattering process in an
environment that strongly favoured forward scattering.

An analytical calculation, using the Born Approximation, was performed to
provide further analysis of transport in realistic potentials. This calculation produced an
unweighted scattering length of approximately 100 nm, which was comparable with the
‘lifetime’ of the electron flux originally in the lowest mode of the coupled mode
calculation. The Born Approximation scattering length was dominated by forward
scattering processes whose rates were several orders of magnitude greater than those of
the direct back-scattering processes. Therefore, when back-scattering was examined in
isolation, it was seen that at low energies the scattering length was of the order of
10 pm, and would increase further for higher Fermi energies. Unfortunately, this
contradicts the physical observation and coupled mode calculation of a realistic potential,
where poor quantization was observed in a 0.6 pm QPC. This is at least an order of
magnitude smaller than the direct back-scattering length determined by the Born

Approximation.

In the poorly quantized structure studied, the quantization was degraded by a
three-stage indirect back-scattering process. This cannot be accurately described by the
Born Approximation, which assumes that successive scattering events are independent.
Therefore, if resonances are the dominant mechanism for back-scattering, the use of the
standard Born Approximation could severely overestimate the scattering length of an
electron waveguide. In principle, the potential caused by a complex of remote ionized
impurities in various configurations could be used in the Born Approximation to include

the effect of multiple scattering at short length scales (Baranger 1990).
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A study was made of the influence of employing both ideal leads and 2DEG
contacts in the conductance calculation. In the structures used for the comparison, small
differences were observed in the calculated conductance. However, the principal finding
was the tolerance to poor mode coupling brought about by the non-adiabatic nature of the
transport in the QPC. Therefore, even in quite poorly coupled channels, a step structure
may be observable in the conductance, although its accuracy may be poor.

Finally, Chapter Seven gave a brief introduction to other areas of LDS in which
the Coupled Mode model developed in this thesis could be applied. Preliminary findings
indicate that this could prove a fruitful area of future research.

The principal findings of this thesis can therefore be summarized as:

i) The random potential in a QPC leads to rapid intermode scattering. The adiabatic
approximation fails badly, but conductance can still be quantized through the less
stringent conditions of ‘compensated’ scattering.

ii) The lack of adiabaticity in the transport can compensate for poor coupling of the
channel modes to the contact regions. Through a process of forward intermode
scattering, this non-adiabatic process can lead to the full occupancy of the lower
conducting modes. This makes the conductance profile of the QPC less sensitive to the
exact nature of the channel / interface geometry.

iii) An efficient resonant back-scattering process has been identified which cannot be
described within the usual Born Approximation. If this represents the dominant back-
scattering process in quasi-one-dimensional systems, then the mobilities calculated using
the Born Approximation will be overstated.

Interestingly, these findings show that the assumptions originally applied to
explain the observation of conductance are not required to obtain conductance

quantization.

These findings imply that, in currently available LDS, the only means to obtain
adiabatic transport is to have just one conducting mode available to the electrons
throughout the length of the channel. However, it will still be necessary to have a tapered
hom section to match the channel to the 2DEG contacts, in an effort to ensure the full

occupancy of the single conducting mode.

Unfortunately, the fabrication of a monomode system will be frustrated by the
potential of the ionized donor layer, which could either cut off the channel completely or
else provide small sections in which more than one mode is available. In both instances
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this could lead to back-scattering, which would degrade the transport and provide a
different ‘fingerprint’ to each device. Such unique device characteristics would make the
integration of several devices very difficult. Current research is in progress to attempt to
reduce this problem through delta doping.

Further restrictions are placed on the fabrication of the channel when the operating
temperature is considered. Current thinking suggests that it may be practical to operate
semiconductor equipment at liquid nitrogen temperatures (77K). At this temperature
kT ~ 7 meV. In order that the system remain monomode, the channel energy spacing
must be several times this energy. Applying the ‘particle in a box’ approximation
suggests that the channel width must be less than 50 nm.

In conclusion, there are significant engineering challenges to be overcome before
quantum device structures can become a reality. In the meantime, however, these
structures provide a fascinating basis for the study of semiconductor physics.
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Appendix 1

This appendix details the modal coupling parameters of an parabolic electron
waveguide described by an analytical function in ¥ W~ space (refer to Equation 4.20).
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Appendix 2

This appendix details the modal coupling parameters of an parabolic electron
waveguide described by an analytical function in ¥ Q space (refer to Equation 4.26).
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