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Abstract

We explore some applications of the Standard Model (SM) Effective
Field Theory (EFT) as a tool with which to describe generic non-
resonant new physics (NP) at hadron colliders. A global fit of the
dimension-six Wilson Coefficients relevant to top quark production is
presented, utilizing diverse experimental datasets from both the Large
Hadron Collider (LHC) Runs I and II and the TeVatron, with current
results in good agreement with the SM. Machinery is developed to sys-
tematically treat redundancies between higher-dimensional operators in
the automated model-building and phenomenology toolkit FEYNRULES,
and a general SMEFT model implementation for event generators de-
tailed. We then investigate the importance of high momentum transfer
final states in ¢¢ production to the EFT fit, taking advantage of boosted
reconstruction techniques. We find sensitivity is typically driven by fully
resolved analyses in several benchmark scenarios for total integrated lu-

minosity and experimental systematic uncertainties.
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Chapter 1

Introduction

The Standard Model of particle physics is the crowning contrivance with which we
are entrapped in an abusive relationship built on equal-parts respect and resentment.
Frustratingly impressive, with an immense empirical vindication - while also sporting
glaring inadequacies - with one hand it bats away the experimental tests we thrust at
it in the hope of glimpsing one of our more fanciful constructions beneath its surface,
and with the other peels back layers of itself which challenge us into humility. The
industry of continuous war against our creation has driven our own betterment, and a
history of bogus discovery claims and premature excitement has taught us repeatedly to
always first suspect our current understanding. Despite its tremendous successes both
in the discovery of the Higgs [4], extraordinary machine performance [5], and theoretical
arguments suggesting the existence of physics beyond the Standard Model (BSM), the
Large Hadron Collider (LHC) at CERN, the current frontline on the high-energy frontier,
is yet to produce any definitive experimental evidence for New Physics (NP) at the TeV

scale.

Constructing testable ultraviolet (UV) completions which address both the SM’s
theoretical afflictions and the experimentally observed phenomena on which it remains
silent is a primary responsibility of the high-energy theoretical community. While the
combined action of ‘top-down’ BSM model-building with continuous experimental test-
ing is our bread-and-butter machinery for confronting conjecture with reality, by itself
this system relies on having clever ideas in the first place. Being able to make quantita-
tive statements independent of guesses at the structure of new physics requires that we
complement our swathe of competing hypotheses with a UV-agnostic theoretical frame-
work built for maximal breadth of descriptive power. Effective Field Theory (EFT) is

the name given to a natural language for expressing this problem (among others) which
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arises whenever a Quantum Field Theory (QFT) - like the SM - contains well-separated

mass scales.

With its modern roots in Fermi’s phenomenological description of weak decays in
1933, EFT flowered with advances in our understanding of how the behaviour of a
given QFT changes for measurements at different distance scales. The central principle
- that in a given physical process, the details of the dynamics of degrees of freedom
acting at disparately shorter or longer distances are not important - has seen widespread

application.

Appealing only to power-counting and symmetry arguments, it has a successful track
record of enabling the construction of power series which exploit ratios of length scales as
useful expansion parameters, rendering previously intractable computations attackable.
Since coming into its own right in the 1970s, the power and simplicity of this approach

has led to its adoption as a ubiquitous tool across particle physics.

EFT has long found successful application in facilitating calculations in which a
hierarchy is present in the dimensionful parameters (in QFT, usually particle masses)
associated with known degrees of freedom. For example, in flavour physics, the QCD
corrections to weak decays (for a review, see e.g. [(]) at low energies were first calcu-
lated by exploiting the comparatively large W boson mass my, relative to those of the
light quarks. In nonperturbative QCD, Chiral Perturbation Theory (ChPT) [7] utilizes
the hierarchy between the pion masses and the scale of chiral symmetry breaking to
perform limited analytic calculations in the strongly interacting regime. The methods
of Soft Collinear Effective Theory (SCET) [3] ease the description of soft and collinear
radiation by factorizing scattering amplitudes into regimes which exploit the disparity
between the relevant momentum transfer and the QCD scale parameter Aqcp. Heavy
Quark Effective Theory (HQET) [9] similarly facilitates calculations of hadronic flavour
changing transitions by appealing to the small ratio of heavy flavoured quarks’ typical

momentum within a hadron to their masses.

The second use of EFT - that which will be the subject of this thesis - is as a
parametrization of the possible physical effects originating from processes whose char-
acter is unknown, but which are known to arise from the action of degrees of freedom
sufficiently heavier than those of which we are aware. We can then appeal to the same
power-counting and symmetry arguments to construct a family of generic new contri-
butions, higher-dimensional operators, in this case with an unknown NP scale to be

inferred from experimental measurement. This family of operators form a dictionary of
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the possible residual influences of UV physics at each order in the expansion in mass
scales, and thus represent a ‘bottom-up’ approach to describing the phenomenology of

BSM physics intrinsically free from the presence of particular new particle species.

The Standard Model Effective Field Theory (SMEFT) is the generalization of the
Standard Model to an EFT that follows from the assertion that NP is present at some
energy scale above that which current experiments probe. The immediate consequence
of this - the presence of operators which mediate novel interactions amongst the SM
particle species - provides a structure in which to interpret any experimental measure-
ments which conflict with the SM hypothesis while falling short of inferring the presence
of new resonant states. Besides providing a theoretical framework in which to model
non-resonant BSM effects, the common language of the SMEFT also facilitates the un-
ambiguous comparison of model-independent experimental constraints and the mapping

thereof to the predictions of UV models made possible by matching calculations.

Given the lack of evidence for new resonant states, it is well-motivated to examine
the phenomenology of the SM particles at the Electroweak scale through the lens of
the SMEFT, taking advantage of the abundant statistics provided by the LHC. The
top quark - the heaviest SM fermion whose O(1) Yukawa coupling ties its properties
intimately to those of the Higgs - stands out immediately as such a candidate, being
both extremely well measured and providing opportunities for measurements unique
among the quarks. We will focus our attention on its interactions, and describe steps
in the development of a framework to extract constraints on the Wilson Coefficients

governing its novel behaviour in the SMEFT.

The layout of this work is as follows: Chapter 2 provides a short background of the SM
as a relativistic QF T, summarizing its particle content and interactions. The foundations
of EFT are then outlined and related to the the renormalizability and scaling behaviour
of QFTs. We conclude with an illustrative historical example of an EFT calculation to

provide context for subsequent chapters.

In Chapter 3 the SMEFT is described in some detail, along the way describing
its implementation as a general input model file for event generators using the FEYN-
RULES [10] package and UFO format [I1]. We explore in particular the treatment of
the effects of dimension-six operators on the definitions of measured ‘SM’ parameters,
and detail subtleties related to redundancies between operators in the SMEFT which

demand care be taken in its use. The prevalence of these redundancies in higher-order
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perturbative calculations sets the stage for discussing a continuing project to automate

the procedure of operator basis reduction.

Chapter 4 is devoted to the construction of the TOPFITTER [2,3| framework, wherein
collected LHC and TeVatron datasets were used in a global fit to place constraints on
the SMEFT Wilson Coefficients contributing to the top pair, single top and ¢tZ7 /tty

associated production channels.

Chapter 5 describes phenomenological analyses aiming to improve and expand upon
the EFT fit. Boosted reconstruction techniques are employed to identify top quarks
produced at large momentum transfers, and the sensitivity gain of targeting this phase

space region investigated in comparison with a resolved analysis.

Chapter 6 concludes with a summary of this thesis.



Chapter 2

Foundations

2.1 The Standard Model of Particle Physics

2.1.1 Overview

The Standard Model of particle physics is the relativistic Quantum Field Theory (see
e.g. [12] for a pedagogical introduction) which successfully describes the behaviour of
three of the four fundamental forces of nature within a unified framework. Representing
the fruit of theoretical efforts spanning several decades, it is astonishingly accurate at
every distance scale at which it has been experimentally tested. This is particularly
staggering considering its full predictive power can - in the right hands - be extracted
from an expression spanning two lines. The Lagrangian at its core is:

1 , 1
—ZG;‘VGA“ ~ 1
+i (1Pl + ePe + @Pq + upu + dpd) — (I Yeep + qY,up + q Yadp +hoc.) (2.1.1)

v ]‘ v 2
Ly = W, W = 2B, B + (D) (Do) + 12T — X (p1p)

The objects from which it is constructed are local quantum fields, operator valued func-
tions of spacetime which act on the vaccuum to create states which we associate with
particles. These are deliberately arranged to be consistent with (special) relativity, so
that physical predictions are independent of the frame of reference of a given observer.
CS\)/[ is said to be manifestly Lorentz invariant, or invariant under the action of the

(proper, orthochronous) Lorentz group SO(1, 3).

We have distinguished four distinct sectors. Highlighted in red is the gauge sector,

the gauge bosons of which mediate the strong and electroweak interactions. Each of
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these corresponds to the realization in nature of a local gauge symmetry. We say that
the Lagrangian is locally invariant under the action of the Standard Model gauge group,
which is the unitary product group Ggy = SU(3)c®@SU(2), ®U(1)y. The former estab-
lishes the structure of the theory of Quantum Chromodynamics (QCD), with which we
associate colour charge, while the associated gauge boson is named the gluon. The latter
two collectively give rise to the theory of the weak interaction and the quantum theory
of electromagnetism, Quantum Electrodynamics (QED). These dictate the dynamics of
the W and Z bosons and the photon.

Next is the Higgs sector, depicted in blue. The Higgs field interacts directly with
the electroweak gauge bosons, and not with gluons. We say that the Higgs is charged
under the electroweak gauge group. This is required for Electroweak Symmetry Break-
ing (EWSB), the phenomenon through which fundamental particles will acquire mass.
The associated physical state is the Higgs boson, which is unique in being the only

fundamental scalar particle observed in nature.

The section in purple encodes the dynamics of the fundamental fermions which we
associate with matter. These are the quarks and leptons, which are distinguished by the
fact that only the former carry colour charge, while both participate in the electroweak
interaction. The matter sector is furthermore formulated in terms of chiral fermions
which are distinguished as being either left- or right-handed. Loosely speaking, this refers
to their possessing opposite orientations of their intrinsic angular momenta. Because the
left- and right- chiral fermions carry different charges under the Electroweak gauge group,

it is said to be a chiral theory, or that the discrete symmetry Parity (P) is violated.

Lastly is the Yukawa sector, which described the interaction of the fermions with the
Higgs field. When the latter triggers electroweak symmetry breaking, these interactions
will cause the quarks and leptons to acquire mass. It is also the only structure® which
permits violation of CP-symmetry, through which the preferential production of fermions

over antifermions can arise.

2.1.2 Structure of the Lagrangian

The statement of Lorentz invariance is made precise by examining the irreducible repre-
sentations of the Lorentz group SO(1,3). These are typically categorized by first noting
that the Lie algebra of SO(1,3) exhibits an isomorphism SO(1,3) ~ SU(2) ® SU(2),

*The strong CP problem [13] aside.
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such that it can be decomposed into a direct product of two SU(2) subalgebras which
are exchanged by hermitian conjugation. Objects with definite transformation proper-
aties in Minkowski spacetime can then be enumerated by specifying two integers (m, n)

corresponding to the dimensions of their embeddings in each inequivalent SU(2).

The first of these is the singlet (or one-dimensional) representation. This transforms
trivially, and we denote it as (1, 1). This means that it carries no indices to accommodate
how its form changes under Lorentz transformations. An object with these properties is

identified with a scalar field. In Lg,,, the Higgs field ¢ alone has this property.

From standard quantum mechanics we know a basis for the fundamental represen-
tation, which we denote by 2. These were two-component complex vectors which we
indexed by their o eigenvalues j = + % When we used this in the context of the an-
gular momentum operator, we identified this eigenvalue with the spin, and called these
spinors. Since we have two copies of SU(2), we call the (2,1) and (1, 2) representations
left-chiral and right-chiral spinor fields respectively. The Standard Model contains two
left-chiral spinors which are denoted ¢ and [, and three right-chiral spinors which are de-
noted u, d and e. These are normally allocated dotted and undotted indices to represent

their two components respectively.

We also at some point constructed the remaining finite dimensional represenations -
for a given half-integer spin j, these were (25 + 1) dimensional vectors, with eigenvalues
J,j —1,...,—7. The representation (2,2) recovers the familiar four component vector

field. In the Standard Model, the gauge bosons which are denoted G, W and B have

this form.

Each of the fundamental fields belongs to one of these four categories. The Lorentz
invariance of the Lagrangian can then be ensured by writing down only those terms which
correspond to a direct product representation of these four objects which transforms as
an overall singlet. Any number of scalar fields satisfy this requirement, as (1,1)®(1,1)®
.o=(1,1).

Two spinors can be arranged in a Lorentz scalar since, in SU(2) we have the decom-
position 2®2 = 1®3. We can then form a singlet from left-chiral spinor and right-chiral
antispinor as (2,1) ® (2,1) = (1,1) & (3, 1), or vice versa.

The combination of two Lorentz vectors into a scalar follows from the same decom-
position: (2,2) @ (2,2) = (1,1) & (1,3) & (3,1) & (3, 3).
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Since the Lagrangian appears as an ingredient in the action functional S = [ d*z L,

we can use this information to determine the dimension carried by the fields. This

imposes the requirement that [£] = —[d*z], thus in natural units where [h] = [c] = 1 we
have [z] = [E~!] = [M ], so that each term in £ must carry mass dimension four.
From the scalar field kinetic term we can extract™ 2[p] + 2 = 4, so that [¢] = 1.

Gauge bosons are constructed to transform in the same representation as 9, so these
each have [G] = [W] = [B] = 1. The additional constraint that each operator respect
gauge symmetry means the Lorentz scalar formed by two chiral fermions can only appear
together with . The first such possible arrangement is embodied by the Yukawa sector,
which gives us [¥].[t)]r = [¢]r[¢)], = 4 — 1, so that each chiral spinor has [¢)] = 2.

We can now check that - with the exception of the quadratic term p2pfp in the Higgs
sector - each term in LS\)/[ carries four powers of mass associated with its field content
alone. There is in principle nothing forbidding the inclusion of higher-dimensional op-
erators satisfying [O] = d, which carry coefficients with dimensions [C] = 4 — d < 0.
The operators appearing in the Standard Model Lagrangian are then the subset of those
possible which carry four or fewer powers of mass, hence the superscript (4). In general,

a generic operator O is distinguished by its mass dimension by being classified as either:
e Relevant: [O]=d <4 <= [p* 9] >0.
e Marginal: (O] =d=4 <<= [\ =0.
e Irrelevant: (O] =d >4 <= [C* 9 < 0. Not to be taken literally.

where p, A and C' are the associated coefficients. Using this terminology, the Standard
Model contains only relevant and marginal operators. This is an additional restriction
baked into its construction, and is a necessary condition for the renormalizability of
the theory. Since possible higher-dimensional operators carry powers of inverse mass -
C o« A7, where A is some mass scale - writing down the renormalizable Lagrangian
ES\Z alone amounts to making the implicit assumption A o0 <= C—0. The
Standard Model is then a special case of an Effective Field Theory in which A is finite,

and higher-dimensional operators appear.

With this requirement, the explicit form of LS\)/[ is fully fixed by specifying the gauge
symmetry group and the representations of the field content therein. In an analogous
fashion to enumerating objects with distinct behaviours under Lorentz transformations,

each field is understood as belonging to a finite dimensional irreducible representation

*Since ([0,] = —[x])
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of the Lie groups SU(3)¢, SU(2) and U(1)y simultaneously. These can be categorized
systematically from the commutation relations of the respective Lie algebras. When
written in an explicit form, indices are allocated to each field which span the dimension
of the representation to which it belongs. In Table 2.1 we collect this information for the
Standard Model. The operators which appear are then an exhaustive list of those which
are invariant under the collective action of a local (i.e. spacetime dependent) unitary

rotation acting on each of the constituent fields.

Class Object | Rep(Gsur) Rep(G Lorent) D] | B | L
G4 8.1,0
. : : (3,1)®(1,3)

X Wi, (1,3,0) 21070

Antisymmetric Tensor
B,, (1,1,0)

, 1,1

@ ¢’ (1,2,1/2) (1, 1) 11010
Lorentz Scalar
L L a2 (2.1) s |0
I, (1,2,—'/2) | Left-Handed Spinor 0 |1
. 3
v @ | 3.1 fo
5, | (3.1 - s o
R d%p (3a 1a 71/")’)
Right-Handed Spinor

ery | (1,1,-1) 0|1

2,2
D D, (1,1,0) (2,2) 1 0 |0

Lorentz Vector

Table 2.1: The Standard Model field content and the embeddings thereof as representations
of the gauge and spacetime symmetry groups Genr = SU(3)c @ SU(2)r, @ U(1)y
and Grorentz = SO(1,3) ~ SU(2) ® SU(2) respectively. We introduce the classifi-
cations {X, ¢, L, R, D} as defined in [1/] to establish general building blocks with
fixed mass dimension and transformation properties under the Lorentz group. [D],

B, L denote mass dimension, baryon and lepton numbers respectively.

Gauge Bosons

The existence of the gauge fields follows from the generalization that each symmetry
is preserved under spacetime dependent unitary transformations. This distinguishes

a gauge symmetry from a global symmetry (such as Lorentz invariance). In order to
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respect local gauge symmetry, the partial derivative is generalized to the gauge-covariant
derivative, in which the vector gauge bosons arise to accommodate for the infinitesimal
difference in the rotations acting on the matter fields between points in spacetime. In
the Standard Model, this takes the form:

(D)™ = (8, + igs TGt + iger W) +ig1Y,B,) ¢". (2.1.2)

Where we have used the example of the left-chiral ¢ doublet which is charged under

1
2

the fundamental representation of SU(3)¢ and SU(2), respectively, and the greek and

each of the gauge groups. Here, T4 = %)\A and 77 = 1o’ denote the generators of
latin indices carried by ¢ represent the corresponding colour and weak isospin degrees
of freedom on which they act respectively. A and I index the adjoint representations to
which the G and W bosons respectively belong. gs, go and g; are the gauge coupling
constants which are free parameters of the theory. Fermion- (and Higgs) gauge boson

interactions are then understood as a consequence of local gauge invariance.

Much of the richness in phenomenology in the SM follows from the non-Abelian
structure of the colour and weak isospin gauge groups, whose Lie algebras are defined

respectively by the commutation relations:

(T4, TP = i fAPCTC (2.1.3)

(7!, 77) =il 7K ¢ (2.1.4)

Where fAP¢ and ¢//K are the totally antisymmetric structure constants of SU(3) and

SU(2). The U(1)y Hypercharge group is Abelian, since it describes multiplication by

a complex phase factor, and its single generator is just a (commuting, obviously) real

number Y. Written in explicit index notation, the gauge field strength tensors and their
covariant derivatives then read:

Gl = 0,61 - 0,6l — g f*OGIGS,  (D,Gw)" = 9,Gh — g.fAPCGIGS

pv

Wi = Wl —,W! — g XWIWE,  (DW,,) = 9,W], — g KWIWE

pvo

B,, = 0,B,—d,B,, D,B,, = 0,B (2.1.5)

jnze

Where terms quadratic in the non-Abelian gauge fields bestow them with self interactions.
These fundamentally change the behaviour of the strong and weak forces relative to the

familiar Abelian behaviour exhibited by QED. This is most notably responsible for
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confinement, whereby the effective QCD coupling constant experienced by the coloured
quarks becomes larger at lower energies, leading to their becoming strongly coupled.
This heralds a fundamental change in the degrees of freedom of the theory, from coloured

quarks to colour-neutral hadrons.

The gauge bosons are endowed with a transverse structure which can be observed
directly from the antisymmetry of the gauge Lagrangian®. This causes problems when
quantizing the theory in that - most intuitively seen in the path integral formulation
- we sum the probability amplitudes for all possible field configurations, including the
redundant longitudinal modes which do not contribute to the action. This problem
is typically accounted for using the Faddeev-Popov method [15], whereby a term is
introduced at the Lagrangian level L, ¢ to ‘fix the gauge’, removing the integration over

the redundant modes for each gauge field A,,.

1

‘Cg.f. - 25,

(0" AL (2.1.6)
Here the gauge-fixing parameter ¢ is arbitrary, and guaranteed to cancel in the sum
over all contributions of the gauge field in the calculation of a given correlation function.
For the non-Abelian gauge fields the staging of this argument is complicated by their
self-interactions, and a solution necessitates the inclusion of an additional set of anticom-
muting complex scalar fields to guarantee the transverse polarization of physical gauge
boson states. These are the so-called Faddeev-Popov ghosts, embedded in the adjoint

representations of the non-Abelian SU(N) gauge groups, introduced as:
Lonost = 0,0 + g fAPC(0"e) Al (2.1.7)

Where it is understood that g, A and fAP¢ represent the coupling constants, gauge
bosons and structure constants associated with each SU(N). These then interact with
the respective gauge bosons to cancel the net contributions of their longitudinal degrees

of freedom to a given observable by construction.

*For each gauge group X, these are defined by —igXF,ﬁ,TA = [D,,D,].
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Electroweak Symmetry Breaking

The Brout-Englert-Higgs mechanism [16,17] is the simplest means through which gauge
bosons can acquire mass while preserving the gauge symmetry of the Lagrangian®. In
the SM, this is resolved by introducing a scalar field charged under SU(2), ® U(1)y
which acquires a vacuum expectation value’. This follows from observing that there

exist two minima of the quartic Higgs potential:

V() = 12elo + A (plp)’ (2.1.8)

corresponding to the scenarios u? < 0, u? > 0. The vacuum solution () # 0 for the
(complex) two component Higgs field (in the (2, 1) representation of SU(2), ® U(1)y),
then does not respect a transformation under the Electroweak gauge group, and the
Electroweak symmetry is said to be spontaneously broken. By selecting a basis for the
generators of SU(2);, such that the (real) vacuum expectation value v ~ 246GeV is

aligned along one direction of the Higgs doublet we can parametrize this as:

1
(po) = ﬁ

and observe that there is a manifestly unbroken Abelian subgroup corresponding to the

0,0)7 v=4/ L, (2.1.9)

linear combination of the generators Q = 72 + %Y I*. The would-be massless Goldstone
bosons associated with the three broken symmetry directions [18] become the longitudi-

nal degrees of freedom of linear combinations of the four original gauge bosons (Wlf .B,)

given by:
1
Zy = ——=——=(9:W,] — 1 B,)) (2.1.10)
YVE+g T '
1
W, = 5(W,} TW) (2.1.11)
1
Ay = ——— (:W3 + ¢2B,) (2.1.12)
CoVErg '

Which have corresponding masses:

1 1
miy = 7%, my=5v\/gi+gi, mi=0 (2.1.13)

*SU(N) gauge bosons transform in the adjoint representation as Aﬁ — Aﬁ + 0,04 +ngABCA5aC,
so that explicit terms of the form m%A;‘AA“ are not invariant under a gauge transformation.

tA scalar is the only possibility which doesn’t violate Lorentz invariance.
This is just diag(1,0).
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The massless vector boson A, is identified with the photon of QED, which respects a
residual U(1)gy gauge symmetry with the Abelian generator Q = T° + %Y, which is
identified with the electric charge. The remaining scalar degree of freedom is identified
with the Higgs boson H, i.e. the excitations of the Higgs field about the vacuum direction;
Y = %(0, v+ H). The two components of the left handed quark and lepton doublets
q and [ respectively are then distinguished as the left-handed and right-handed (uy, dy)

and (vp, e ) fields which carry distinct charges under U(1)gy.

U C t g H

Mass: 2.3 MeV. Mass: 1.275 GeV Mass: 173.07 GeV Mass: 0 Mass: 126 GeV
Q: 2/3 Q: 2/3 Q: 2/3 Q: 0 Q: 0
Spin: 1/2 Spin: 1/2 Spin: 1/2 Spin: 1 Spin: 0

d S b Y

Mass: 4.8 MeV/ Mass: 95 MeV Mass: 4.18 GeV Mass: 0
Q: —1/3 Q: —1/3 Q: —1/3 Q: 0
Spin: 1/2 Spin: 1/2 Spin: 1/2 Spin: 1

e L T yA

Mass: 0.511 MeV Mass: 105.7 MeV Mass: 1.777 GeV Mass: 91.2 GeV/c2
Q: —1 Q: —1 Q: —1 Q: 0
Spin: 1/2 Spin: 1/2 Spin: 1/2 Spin: 1

Ve VIJ, V’T W

Mass: < 2.2¢eV Mass: 0.17 MeV Mass: 15.5 MeV Mass: 80.4 GeV/c2
Q: 0 Q: 0 Q: 0 Q: +1
Spin: 1/2 Spin: 1/2 Spin: 1/2 Spin: 1

Figure 2.1: Elementary particles of The Standard Model in their mass eigenstates, with matter
generations distinguished by column.

Fermion Masses

In the Yukawa sector, the left- and right- handed chiral fermions’ couplings to the Higgs

field then include a constant contribution proportional to its vacuum expectation value.
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The associated couplings Yy, are unfixed by the gauge structure of the theory, and are
thus parametrized generally by 3 x 3 complex matrices acting between fermions in the
three observed states of flavour, which carry the same gauge quantum numbers. These
matrices can be simplified by choosing an appropriate orientation of the left- and right-
handed fermion fields in flavour space to select a diagonal form for each Y, 4.*. The

fermion mass terms are identified as those which mix the left- and right-handed chiral

spinors as:
v o= d v o_ " v o_ .
‘Cmass = EdL’p Y;)r dR,r -+ EULT Y;)r UR,s + ﬁel]’p }/;)r €R,s + h.c. (2114)
Y = diag(ya, ys, o), Y = diag(yu, Ye, ye), Y = diag(ye, yu, y-) (2.1.15)

So that each fermion acquires a mass term proportional to its coupling to the Higgs field;
my, = %yw

Since there are five chiral fermion fields {q¢, [, u,d, e} and three complex matrices, a
residual unitary matrix of free parameters Vo = LI Ly remains, which is customarily
chosen to define a rotation of the down quark mass eigenstates in the Yukawa sector
with respect to those appearing in the fermion gauge-covariant derivative. This is the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [19]:

Vud Vus Vub
Vekm = | Vi, Vi, Vi (2.1.16)
Via Vis Va

This is typically parametrized by three angles and one complex phase, which is the only
source of CP-violation in the SM. The left handed quark doublet to which the W-boson

couples is then:

q = s d/ = Vudd + Vuss + Vubb (2117)

*A complex matrix can be written using a singular value decomposition; ¢ = LDR', where L
and R are unitary matrices, and D is a real, diagonal matrix. One can then perform an appropriate
unitary rotation on each fermion flavour vector separately, e.g. ¢, = Lprqr ,dp — Rprd, which leaves
Lsm invariant. p and r are flavour indices.
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Where the unprimed quarks are mass eigenstates, and we’ve used the example of the
charged current to the up quark. Massive quark fields are typically accommodated
by arranging the corresponding left- and right-chiral fermions into the familiar, four

component Dirac spinors by defining:

0 o
g | Y —— (2.1.18)

VR a0

Where v, and 1 are two component left- and right- chiral Weyl spinors respectively, and
ot = (I,0!) 0 = (I, —c?!). Chiral spinors can then be recovered using the projection

Operators PL/R = %(H :l:fy5)7 with V5 = fgeuuaﬁfyuf}/yﬁ/a’yﬁ.

2.1.3 Quantization and Scale Dependence

In the so-called ‘second quantization’, the fields in the Lagrangian are interpreted as
operators which act on the vacuum to create particle states. While this ‘canonical’
formulation of QFT offers an immediate interpretation of the notion of particles in this
sense, ease-of-use and a manifest realization of symmetries mean that in practice it is
typically formulated in the Feynman path integral formalism (see e.g. [20]), which can
be considered a generalization of the classical principle of least action. Herein particle
trajectories are assigned probability amplitudes weighted by the action S = [d*z £ in
a functional integral over all possible field configurations. n-point correlation functions
are then obtained by taking n functional derivatives of a partition function with respect

to a source term J for each field:
Z(J) =exp(iW (J)) = /DalepDz/_zDAeXp <i/d4x ESM) (2.1.19)

Where ¢, 1), 1 and A schematically represent the scalar, fermion, antifermion and gauge
fields respectively. This lends itself neatly to the formulation of the perturbative expan-
sion in the coupling constants, from which the classical behaviour of the theory (i.e. the
particle trajectories which minimize the action 0§ = 0) is recovered in the leading order
approximation. In the perturbative regime for which the coupling constants g < 1, W (.J)

is then given an intuitive interpretation as the sum of connected Feynman diagrams.

From the generating functional for Lgy a set of Feynman rules can be extracted

straightforwardly [12|. n-point correlation functions can be systematically constructed
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by connecting propagators, determined for each field by the corresponding quadratic
terms in the free action with vertices, whose structure is dictated by the interaction terms.
Physical scattering amplitudes then follow from the S-matrix, evaluating correlation
functions between ‘asymptotic’ on-shell initial and final particle states identified with
those in the free theory, as enshrined by the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula [12]. Some sample Feynman rules for the Standard Model are provided
for illustration. The momentum space gluon, ghost, electroweak boson and fermion

propagators respectively take the forms:

_— . ab
I8 — Zg]:i;‘s, (2.1.20)
g5 (k) g,(k)
........ ,:ZZ_; (2.1.21)
ug (k) ug (k)

- —q kK, )

- , . T — 2.1.22

Viu(k) V,(k) K —my+imyly <g“ mi, —imyTy ( )

— 0k ok (2.1.23)

Lk k)R k2

Where the raised arrows distinguish the direction of the flow of momentum from the
flow of electric charge. The width I'y, accommodates the finite lifetime of the massive
weak bosons. The Feynman Gauge £ = 1 is chosen for QCD, and each 6 symbol in
the fermion propagator collectively represents each quantum number carried by the

particular fermion species f.

The form of the fermions’ couplings to the gauge bosons follows from the structure

of the covariant derivative, for SU(3)¢ these are:

qi

= ig, Tj7",

a ij
qj

Yu

where T4 are the generators of SU(3), and i and j index the colour indices of the quarks.

The SU(N) gauge bosons’ non-Abelian nature manifests in self interactions, exemplified
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here by the gluon trilinear coupling;

g7 (k2) s
= gsf [gw/(kl - k2)p + gup(k2 - k3)u

g;?(kl) +gp,u(k3 - kl)u} )

gpc(k??,)

while the chiral interactions of quarks and leptons with the massive weak gauge bosons

inherits a more complex pattern as a consequence of Electroweak symmetry breaking:

fi
= i€y, (CLPL + CrPR)

v, Z,W
fi

’yﬁf] Zﬁf] W+ﬂidj W_d_iu]‘ W+17i€j W_Zil/j

Cr | —Qsdi | 9505 | Vi | Vi)' | 50 | 50
CR _Qféij 9;52] 0 0 0 0

Table 2.2:  Couplings of the electroweak gauge bosons to the fermions. i and j represent
flavour indices.

where the electric charges of each fermion )y appears are assembled in Fig. 2.2, Cf,

and C'y are defined in Table. 2.2, s,, = sinf,, = ggilgg defines the sine of the weak mixing
1 2

angle, and we have introduced

T} —sin® 6, Qf

sin 8, cos 0,

g7 = —tanb, Qp, g5 = , (2.1.24a)
and T})’ = 03/2 is the weak isospin of the fermions. The genuinely quantum behaviour of
the theory arises from the inclusion of higher-order terms in the expansion, corresponding
to Feynman diagrams with closed loops of virtual particle states. These qualitatively
change the behaviour relative to the classical theory, and their dynamical generation

of scales is responsible for the most striking features exhibited by QCD of asymptotic



18 Foundations

freedom and confinement. For QCD where the coupling constant a,(mz)~0.1185 is
large enough to render the leading order approximation insufficient in comparison with

the experimental accuracy, the inclusion thereof is essential.

Renormalization and Scale Dependence

In evaluating loop diagrams we encounter Ultraviolet (UV) divergences associated with
integrations over virtual states with arbitrarily high momenta. While long thought
to render QFT mathematically inconsistent, these are now naturally understood by
distinguishing the fundamental parameters written down in the Lagrangian from those
determined by experiment. The latter are associated with measurements conducted with
reference to a particular distance scale, or equivalently, momentum transfer, while the
former (in the classical Lagrangian) are fixed constants defining the theory. The journey
toward a physically sound reasoning to justify the removal of ultraviolet divergences is
closely related to the concept of an Effective Field Theory, and with the mass dimension

of the operators appearing in the Lagrangian.

The condition that divergences can be removed at all orders in perturbation the-
ory by adjusting the definitions of a finite number of parameters distinguishes a theory
as renormalizable. It is thus an essential requirement for the predictivity of the the-
ory. These are typically brought under control by introducing a regularization scheme
whereby they are extracted as the limits of well-defined quantities. Although the most
immediately intuitive picture associates these with the limit of infinite loop momentum,
these are usually pinned down in a more abstract way to preserve gauge invariance.
This is achieved using Dimensional Regularization (DR) where it is recognized that the
infinities are also unique to four spacetime dimensions. The infinite contributions to
matrix elements can then be extracted by working instead in d = 4 — 2¢ dimensions, and
obtaining isolated poles % in the limit ¢ — 0. Schematically, a divergent amplitude for

a one-loop scattering amplitude in QCD would take the form:

d*l dl [(e) 1\°
1—.loop — 2 l2 A) — 2 4-d l2 A 2 2e s % (...
Mdlv gs/ (271')4 f( ) ) gsH / (27T)d f( ) ) X gl (47_()2_6 A ( )
Where f(I?, A) represents a generic integrand corresponding to a combination of propaga-
tor and numerator factors specified by the particular divergent Feynman graph. Ellipses
represent finite terms. Scales associated with external momenta and masses are denoted

by A. pu is an arbitrary dimensionful mass scale introduced to keep the coupling g,



Foundations 19

dimensionless in d spacetime dimensions. The divergent result is then identified by the
form of I'(e) = % + ... as e—=0. The prediction of an infinite result for the quantum
corrections is clearly contradicted by experiment. To agree with measurement, these

then must be accounted for in some way.

The recovery of finite physical predictions then follows the procedure of renormaliza-
tion. The fields and coupling constants in the Lagrangian are first redefined, factoring
out a rescaling Z associtated with each, as:

GAYZ Z2GA . W0 =220, g0 T2 ZG g = Zygs (2.1.25)
Where 1 represents a generic coloured fermion field, and superscripts (0) denote the
quantities in the original ‘bare’ Lagrangian. The separate renormalization factors Zg,
Zy and Z; are required to treat the distinct infinities associated with the gluon and quark
two point functions and the gqg vertex function respectively. The quantities G;‘, 1 and
gs are then the renormalized fields and coupling respectively. An explicit calculation
of each correlation function at one-loop accuracy will then distinguish three divergent
integrals with which each of these factors will be chosen to accommodate. In order to
distinguish the physical consequences for the strong coupling constant g,, the particular
form of all three divergences must then be found. In each case, an expansion of the

divergent amplitudes about the limit € — 0 recovers a quantity like:
1-loop 2 1 ,uz .
My gy | -+ log A2 + (finite) (2.1.26)
€

with the particular coefficients determined by each correlation function. The factors Z

are selected to cancel the respective poles at a given order in oy = %, corresponding to
the MS renormalization scheme.
. ai(QS) Z 2
Zi=1+ =1467(9s) + O 2.1.27
,;:1 . 7 (9s) + O(g5) ( )

Where 67 is a counterterm. Thus at 1-loop, these factors are linear in the strong coupling
constant. On a purely mathematical level, there is nothing to prevent making this choice
of normalization in the Lagrangian. This was historically a source of discomfort - doing
so restored the predictivity of perturbation theory beyond the leading order, and this
was vindicated by the dramatically accurate predictions of QED [21]. Moreover, an
arbitrary mass scale p was introduced as an artefact of the regularization procedure used

to isolate the divergences. Fixing its value is directly analogous to fixing a momentum
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scale at which the high momentum modes propagating in the loop are cut off [12|. In
either regularization scheme, the predictions of the theory should be independent of it.
However, it appears (together with the coupling constant) as a logarithmic enhancement
of the physical scattering amplitude if we choose it to be much larger (or smaller) than
the physical factor A associated with the fixed process kinematics. Therefore fixing it
effectively modifies the strength of the perturbative expansion parameter a,. It’s then
desirable for the accuracy of the perturbative expansion if it can be chosen to match the

scale A associated with the process kinematics.

The condition that the parameter of the original Lagrangian be independent of this

choice can then be stated in the form a differential equation:

1
log g2 = 0 = log(Z1Zy Z2gsp) = 0 (2.1.28)

:dlog,u dlog p

This is a specific case of the Callan-Symanzik equation [22]. To first order we have:

90 =(1+ 61— 6y — £64)9s, (2.1.29)
giving the condition:
dgs
== 2.1.
dlogp % + B(gs) , (2.1.30)
with:
B(gs) = go—t (61 — 6, — L6) (2.1.31)
gs _gsdlogu 1 P VA 1.

which, with the one-loop counterterms takes the form of a renormalization group equa-

tion:

Bo (2.1.32)

3 11C An T, 3
Blgs) = - ( S ) = J

1672\ 3 3 1672

Where Cy =3 and T, = % are the quadratic Casimir invariants associated with the ad-
joint and fundamental representations of SU(3), and n; the number of coloured fermions.
This is the celebrated Beta function for QCD [23,24], which explicitly absorbs the log-
arithmic dependence on the scale p into the renormalized, running coupling constant
gs(pt) in such a way that the ‘bare’, unobservable coupling ¢ which includes the effects

of propagating fields with arbitrarily high momenta remains fixed. This then relates
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the value of the effective coupling constant (that which appears as the coefficient of a
scattering amplitude which explicitly incorporates the quantum fluctuations of fields up
to a momentum scale ~ u) at different (but arbitrary) choices of p. This is referred
to as the ‘resummation of logarithms’. Recalling that u plays the role of an ultraviolet
cutoff, different choices of this parameter then correspond to different choices of factor-
ization of the quantum fluctuations into those explicitly included in the (finite) matrix
elements (with p < p), and those averaged over and absorbed into the definition of the

renormalized coupling (with with p 2 u).

0.5 A o T 