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Abstract

We explore some applications of the Standard Model (SM) Effective

Field Theory (EFT) as a tool with which to describe generic non-

resonant new physics (NP) at hadron colliders. A global fit of the

dimension-six Wilson Coefficients relevant to top quark production is

presented, utilizing diverse experimental datasets from both the Large

Hadron Collider (LHC) Runs I and II and the TeVatron, with current

results in good agreement with the SM. Machinery is developed to sys-

tematically treat redundancies between higher-dimensional operators in

the automated model-building and phenomenology toolkit FeynRules,

and a general SMEFT model implementation for event generators de-

tailed. We then investigate the importance of high momentum transfer

final states in tt̄ production to the EFT fit, taking advantage of boosted

reconstruction techniques. We find sensitivity is typically driven by fully

resolved analyses in several benchmark scenarios for total integrated lu-

minosity and experimental systematic uncertainties.
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Chapter 1

Introduction

The Standard Model of particle physics is the crowning contrivance with which we

are entrapped in an abusive relationship built on equal-parts respect and resentment.

Frustratingly impressive, with an immense empirical vindication - while also sporting

glaring inadequacies - with one hand it bats away the experimental tests we thrust at

it in the hope of glimpsing one of our more fanciful constructions beneath its surface,

and with the other peels back layers of itself which challenge us into humility. The

industry of continuous war against our creation has driven our own betterment, and a

history of bogus discovery claims and premature excitement has taught us repeatedly to

always first suspect our current understanding. Despite its tremendous successes both

in the discovery of the Higgs [4], extraordinary machine performance [5], and theoretical

arguments suggesting the existence of physics beyond the Standard Model (BSM), the

Large Hadron Collider (LHC) at CERN, the current frontline on the high-energy frontier,

is yet to produce any definitive experimental evidence for New Physics (NP) at the TeV

scale.

Constructing testable ultraviolet (UV) completions which address both the SM’s

theoretical afflictions and the experimentally observed phenomena on which it remains

silent is a primary responsibility of the high-energy theoretical community. While the

combined action of ‘top-down’ BSM model-building with continuous experimental test-

ing is our bread-and-butter machinery for confronting conjecture with reality, by itself

this system relies on having clever ideas in the first place. Being able to make quantita-

tive statements independent of guesses at the structure of new physics requires that we

complement our swathe of competing hypotheses with a UV-agnostic theoretical frame-

work built for maximal breadth of descriptive power. Effective Field Theory (EFT) is

the name given to a natural language for expressing this problem (among others) which

1



2 Introduction

arises whenever a Quantum Field Theory (QFT) - like the SM - contains well-separated

mass scales.

With its modern roots in Fermi’s phenomenological description of weak decays in

1933, EFT flowered with advances in our understanding of how the behaviour of a

given QFT changes for measurements at different distance scales. The central principle

- that in a given physical process, the details of the dynamics of degrees of freedom

acting at disparately shorter or longer distances are not important - has seen widespread

application.

Appealing only to power-counting and symmetry arguments, it has a successful track

record of enabling the construction of power series which exploit ratios of length scales as

useful expansion parameters, rendering previously intractable computations attackable.

Since coming into its own right in the 1970s, the power and simplicity of this approach

has led to its adoption as a ubiquitous tool across particle physics.

EFT has long found successful application in facilitating calculations in which a

hierarchy is present in the dimensionful parameters (in QFT, usually particle masses)

associated with known degrees of freedom. For example, in flavour physics, the QCD

corrections to weak decays (for a review, see e.g. [6]) at low energies were first calcu-

lated by exploiting the comparatively large W boson mass mW relative to those of the

light quarks. In nonperturbative QCD, Chiral Perturbation Theory (ChPT) [7] utilizes

the hierarchy between the pion masses and the scale of chiral symmetry breaking to

perform limited analytic calculations in the strongly interacting regime. The methods

of Soft Collinear Effective Theory (SCET) [8] ease the description of soft and collinear

radiation by factorizing scattering amplitudes into regimes which exploit the disparity

between the relevant momentum transfer and the QCD scale parameter ΛQCD. Heavy

Quark Effective Theory (HQET) [9] similarly facilitates calculations of hadronic flavour

changing transitions by appealing to the small ratio of heavy flavoured quarks’ typical

momentum within a hadron to their masses.

The second use of EFT - that which will be the subject of this thesis - is as a

parametrization of the possible physical effects originating from processes whose char-

acter is unknown, but which are known to arise from the action of degrees of freedom

sufficiently heavier than those of which we are aware. We can then appeal to the same

power-counting and symmetry arguments to construct a family of generic new contri-

butions, higher-dimensional operators, in this case with an unknown NP scale to be

inferred from experimental measurement. This family of operators form a dictionary of
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the possible residual influences of UV physics at each order in the expansion in mass

scales, and thus represent a ‘bottom-up’ approach to describing the phenomenology of

BSM physics intrinsically free from the presence of particular new particle species.

The Standard Model Effective Field Theory (SMEFT) is the generalization of the

Standard Model to an EFT that follows from the assertion that NP is present at some

energy scale above that which current experiments probe. The immediate consequence

of this - the presence of operators which mediate novel interactions amongst the SM

particle species - provides a structure in which to interpret any experimental measure-

ments which conflict with the SM hypothesis while falling short of inferring the presence

of new resonant states. Besides providing a theoretical framework in which to model

non-resonant BSM effects, the common language of the SMEFT also facilitates the un-

ambiguous comparison of model-independent experimental constraints and the mapping

thereof to the predictions of UV models made possible by matching calculations.

Given the lack of evidence for new resonant states, it is well-motivated to examine

the phenomenology of the SM particles at the Electroweak scale through the lens of

the SMEFT, taking advantage of the abundant statistics provided by the LHC. The

top quark - the heaviest SM fermion whose O(1) Yukawa coupling ties its properties

intimately to those of the Higgs - stands out immediately as such a candidate, being

both extremely well measured and providing opportunities for measurements unique

among the quarks. We will focus our attention on its interactions, and describe steps

in the development of a framework to extract constraints on the Wilson Coefficients

governing its novel behaviour in the SMEFT.

The layout of this work is as follows: Chapter 2 provides a short background of the SM

as a relativistic QFT, summarizing its particle content and interactions. The foundations

of EFT are then outlined and related to the the renormalizability and scaling behaviour

of QFTs. We conclude with an illustrative historical example of an EFT calculation to

provide context for subsequent chapters.

In Chapter 3 the SMEFT is described in some detail, along the way describing

its implementation as a general input model file for event generators using the Feyn-

Rules [10] package and UFO format [11]. We explore in particular the treatment of

the effects of dimension-six operators on the definitions of measured ‘SM’ parameters,

and detail subtleties related to redundancies between operators in the SMEFT which

demand care be taken in its use. The prevalence of these redundancies in higher-order
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perturbative calculations sets the stage for discussing a continuing project to automate

the procedure of operator basis reduction.

Chapter 4 is devoted to the construction of the TopFitter [2,3] framework, wherein

collected LHC and TeVatron datasets were used in a global fit to place constraints on

the SMEFT Wilson Coefficients contributing to the top pair, single top and tt̄Z/tt̄γ

associated production channels.

Chapter 5 describes phenomenological analyses aiming to improve and expand upon

the EFT fit. Boosted reconstruction techniques are employed to identify top quarks

produced at large momentum transfers, and the sensitivity gain of targeting this phase

space region investigated in comparison with a resolved analysis.

Chapter 6 concludes with a summary of this thesis.



Chapter 2

Foundations

2.1 The Standard Model of Particle Physics

2.1.1 Overview

The Standard Model of particle physics is the relativistic Quantum Field Theory (see

e.g. [12] for a pedagogical introduction) which successfully describes the behaviour of

three of the four fundamental forces of nature within a unified framework. Representing

the fruit of theoretical efforts spanning several decades, it is astonishingly accurate at

every distance scale at which it has been experimentally tested. This is particularly

staggering considering its full predictive power can - in the right hands - be extracted

from an expression spanning two lines. The Lagrangian at its core is:

L(4)
SM = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)
† (Dµϕ) + µ2ϕ†ϕ− λ

(
ϕ†ϕ

)2

+ i
(
l̄ 6Dl + ē6De+ q̄ 6Dq + ū 6Du+ d̄ 6Dd

)
−
(
l̄ Yeeϕ + q̄ Yuuϕ̃+ q̄ Yddϕ+ h.c.

)
(2.1.1)

The objects from which it is constructed are local quantum fields, operator valued func-

tions of spacetime which act on the vaccuum to create states which we associate with

particles. These are deliberately arranged to be consistent with (special) relativity, so

that physical predictions are independent of the frame of reference of a given observer.

L(4)
SM is said to be manifestly Lorentz invariant, or invariant under the action of the

(proper, orthochronous) Lorentz group SO(1, 3).

We have distinguished four distinct sectors. Highlighted in red is the gauge sector,

the gauge bosons of which mediate the strong and electroweak interactions. Each of

5



6 Foundations

these corresponds to the realization in nature of a local gauge symmetry. We say that

the Lagrangian is locally invariant under the action of the Standard Model gauge group,

which is the unitary product group GSM ≡ SU(3)C⊗SU(2)L⊗U(1)Y . The former estab-

lishes the structure of the theory of Quantum Chromodynamics (QCD), with which we

associate colour charge, while the associated gauge boson is named the gluon. The latter

two collectively give rise to the theory of the weak interaction and the quantum theory

of electromagnetism, Quantum Electrodynamics (QED). These dictate the dynamics of

the W and Z bosons and the photon.

Next is the Higgs sector, depicted in blue. The Higgs field interacts directly with

the electroweak gauge bosons, and not with gluons. We say that the Higgs is charged

under the electroweak gauge group. This is required for Electroweak Symmetry Break-

ing (EWSB), the phenomenon through which fundamental particles will acquire mass.

The associated physical state is the Higgs boson, which is unique in being the only

fundamental scalar particle observed in nature.

The section in purple encodes the dynamics of the fundamental fermions which we

associate with matter. These are the quarks and leptons, which are distinguished by the

fact that only the former carry colour charge, while both participate in the electroweak

interaction. The matter sector is furthermore formulated in terms of chiral fermions

which are distinguished as being either left- or right-handed. Loosely speaking, this refers

to their possessing opposite orientations of their intrinsic angular momenta. Because the

left- and right- chiral fermions carry different charges under the Electroweak gauge group,

it is said to be a chiral theory, or that the discrete symmetry Parity (P) is violated.

Lastly is the Yukawa sector, which described the interaction of the fermions with the

Higgs field. When the latter triggers electroweak symmetry breaking, these interactions

will cause the quarks and leptons to acquire mass. It is also the only structure∗ which

permits violation of CP-symmetry, through which the preferential production of fermions

over antifermions can arise.

2.1.2 Structure of the Lagrangian

The statement of Lorentz invariance is made precise by examining the irreducible repre-

sentations of the Lorentz group SO(1, 3). These are typically categorized by first noting

that the Lie algebra of SO(1, 3) exhibits an isomorphism SO(1, 3) ≃ SU(2) ⊗ SU(2),
∗The strong CP problem [13] aside.
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such that it can be decomposed into a direct product of two SU(2) subalgebras which

are exchanged by hermitian conjugation. Objects with definite transformation proper-

aties in Minkowski spacetime can then be enumerated by specifying two integers (m,n)

corresponding to the dimensions of their embeddings in each inequivalent SU(2).

The first of these is the singlet (or one-dimensional) representation. This transforms

trivially, and we denote it as (1, 1). This means that it carries no indices to accommodate

how its form changes under Lorentz transformations. An object with these properties is

identified with a scalar field. In LSM , the Higgs field ϕ alone has this property.

From standard quantum mechanics we know a basis for the fundamental represen-

tation, which we denote by 2. These were two-component complex vectors which we

indexed by their σz eigenvalues j = ± 1
2
. When we used this in the context of the an-

gular momentum operator, we identified this eigenvalue with the spin, and called these

spinors. Since we have two copies of SU(2), we call the (2, 1) and (1, 2) representations

left-chiral and right-chiral spinor fields respectively. The Standard Model contains two

left-chiral spinors which are denoted q and l, and three right-chiral spinors which are de-

noted u, d and e. These are normally allocated dotted and undotted indices to represent

their two components respectively.

We also at some point constructed the remaining finite dimensional represenations -

for a given half-integer spin j, these were (2j +1) dimensional vectors, with eigenvalues

j, j − 1, . . . ,−j. The representation (2, 2) recovers the familiar four component vector

field. In the Standard Model, the gauge bosons which are denoted G, W and B have

this form.

Each of the fundamental fields belongs to one of these four categories. The Lorentz

invariance of the Lagrangian can then be ensured by writing down only those terms which

correspond to a direct product representation of these four objects which transforms as

an overall singlet. Any number of scalar fields satisfy this requirement, as (1, 1)⊗(1, 1)⊗
. . . = (1, 1).

Two spinors can be arranged in a Lorentz scalar since, in SU(2) we have the decom-

position 2⊗2 = 1⊕3. We can then form a singlet from left-chiral spinor and right-chiral

antispinor as (2, 1)⊗ (2, 1) = (1, 1)⊕ (3, 1), or vice versa.

The combination of two Lorentz vectors into a scalar follows from the same decom-

position; (2, 2)⊗ (2, 2) = (1, 1)⊕ (1, 3)⊕ (3, 1)⊕ (3, 3).
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Since the Lagrangian appears as an ingredient in the action functional S =
∫
d4xL,

we can use this information to determine the dimension carried by the fields. This

imposes the requirement that [L] = −[d4x], thus in natural units where [h̄] = [c] = 1 we

have [x] = [E−1] = [M−1], so that each term in L must carry mass dimension four.

From the scalar field kinetic term we can extract∗ 2[ϕ] + 2 = 4, so that [ϕ] = 1.

Gauge bosons are constructed to transform in the same representation as ∂µ, so these

each have [G] = [W ] = [B] = 1. The additional constraint that each operator respect

gauge symmetry means the Lorentz scalar formed by two chiral fermions can only appear

together with ϕ. The first such possible arrangement is embodied by the Yukawa sector,

which gives us [ψ̄]L[ψ]R = [ψ̄]R[ψ]L = 4− 1, so that each chiral spinor has [ψ] = 3
2
.

We can now check that - with the exception of the quadratic term µ2ϕ†ϕ in the Higgs

sector - each term in L(4)
SM carries four powers of mass associated with its field content

alone. There is in principle nothing forbidding the inclusion of higher-dimensional op-

erators satisfying [O] = d, which carry coefficients with dimensions [C] = 4 − d < 0.

The operators appearing in the Standard Model Lagrangian are then the subset of those

possible which carry four or fewer powers of mass, hence the superscript (4). In general,

a generic operator O is distinguished by its mass dimension by being classified as either:

• Relevant: [O] = d < 4 ⇐⇒ [µ4−d] > 0.

• Marginal: [O] = d = 4 ⇐⇒ [λ] = 0.

• Irrelevant: [O] = d > 4 ⇐⇒ [C4−d] < 0. Not to be taken literally.

where µ, λ and C are the associated coefficients. Using this terminology, the Standard

Model contains only relevant and marginal operators. This is an additional restriction

baked into its construction, and is a necessary condition for the renormalizability of

the theory. Since possible higher-dimensional operators carry powers of inverse mass -

C ∝ Λ−n, where Λ is some mass scale - writing down the renormalizable Lagrangian

L(4)
SM alone amounts to making the implicit assumption Λ→∞ ⇐⇒ C→ 0. The

Standard Model is then a special case of an Effective Field Theory in which Λ is finite,

and higher-dimensional operators appear.

With this requirement, the explicit form of L(4)
SM is fully fixed by specifying the gauge

symmetry group and the representations of the field content therein. In an analogous

fashion to enumerating objects with distinct behaviours under Lorentz transformations,

each field is understood as belonging to a finite dimensional irreducible representation

∗Since ([∂µ] ≡ −[x])
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of the Lie groups SU(3)C , SU(2)L and U(1)Y simultaneously. These can be categorized

systematically from the commutation relations of the respective Lie algebras. When

written in an explicit form, indices are allocated to each field which span the dimension

of the representation to which it belongs. In Table 2.1 we collect this information for the

Standard Model. The operators which appear are then an exhaustive list of those which

are invariant under the collective action of a local (i.e. spacetime dependent) unitary

rotation acting on each of the constituent fields.

Class Object Rep(GSM) Rep(GLorentz) [D] B L

GA
µν (8, 1, 0)

(3, 1)⊕ (1, 3)

Antisymmetric Tensor
2 0 0X W I

µν (1, 3, 0)

Bµν (1, 1, 0)

ϕ ϕj (1, 2, 1/2)
(1, 1)

Lorentz Scalar
1 0 0

L

ψ

R

qαjLp (3, 2, 1/6) (2, 1)

Left-Handed Spinor

3/2

1/3 0

ljLp (1, 2,−1/2) 0 1

uαRp (3, 1, 2/3)
(1, 2)

Right-Handed Spinor

1/3 0
dαRp (3, 1,−1/3)

eRp (1, 1,−1) 0 1

D Dµ (1, 1, 0)
(2, 2)

Lorentz Vector
1 0 0

Table 2.1: The Standard Model field content and the embeddings thereof as representations
of the gauge and spacetime symmetry groups GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y
and GLorentz ≡ SO(1, 3) ≃ SU(2)⊗ SU(2) respectively. We introduce the classifi-
cations {X, ϕ, L, R, D} as defined in [14] to establish general building blocks with
fixed mass dimension and transformation properties under the Lorentz group. [D],
B, L denote mass dimension, baryon and lepton numbers respectively.

Gauge Bosons

The existence of the gauge fields follows from the generalization that each symmetry

is preserved under spacetime dependent unitary transformations. This distinguishes

a gauge symmetry from a global symmetry (such as Lorentz invariance). In order to
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respect local gauge symmetry, the partial derivative is generalized to the gauge-covariant

derivative, in which the vector gauge bosons arise to accommodate for the infinitesimal

difference in the rotations acting on the matter fields between points in spacetime. In

the Standard Model, this takes the form:

(Dµq)
αj =

(
∂µ + igsT

A
αβG

A
µ + ig2τ

I
jkW

I
µ + ig1YqBµ

)
qβk. (2.1.2)

Where we have used the example of the left-chiral q doublet which is charged under

each of the gauge groups. Here, TA = 1
2
λA and τ I = 1

2
σI denote the generators of

the fundamental representation of SU(3)C and SU(2)L respectively, and the greek and

latin indices carried by q represent the corresponding colour and weak isospin degrees

of freedom on which they act respectively. A and I index the adjoint representations to

which the G and W bosons respectively belong. gs, g2 and g1 are the gauge coupling

constants which are free parameters of the theory. Fermion- (and Higgs) gauge boson

interactions are then understood as a consequence of local gauge invariance.

Much of the richness in phenomenology in the SM follows from the non-Abelian

structure of the colour and weak isospin gauge groups, whose Lie algebras are defined

respectively by the commutation relations:

[TA, TB] = ifABCTC (2.1.3)

[τ I , τJ ] = iǫIJKτC , (2.1.4)

Where fABC and ǫIJK are the totally antisymmetric structure constants of SU(3) and

SU(2). The U(1)Y Hypercharge group is Abelian, since it describes multiplication by

a complex phase factor, and its single generator is just a (commuting, obviously) real

number Y . Written in explicit index notation, the gauge field strength tensors and their

covariant derivatives then read:

GA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν , (DρGµν)

A = ∂ρG
A
µν − gsfABCGB

ρ G
C
µν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ − g2εIJKW J
µW

K
ν , (DρWµν)

I = ∂ρW
I
µν − g2εIJKW J

ρW
K
µν ,

Bµν = ∂µBν − ∂νBµ, DρBµν = ∂ρBµν , (2.1.5)

Where terms quadratic in the non-Abelian gauge fields bestow them with self interactions.

These fundamentally change the behaviour of the strong and weak forces relative to the

familiar Abelian behaviour exhibited by QED. This is most notably responsible for



Foundations 11

confinement, whereby the effective QCD coupling constant experienced by the coloured

quarks becomes larger at lower energies, leading to their becoming strongly coupled.

This heralds a fundamental change in the degrees of freedom of the theory, from coloured

quarks to colour-neutral hadrons.

The gauge bosons are endowed with a transverse structure which can be observed

directly from the antisymmetry of the gauge Lagrangian∗. This causes problems when

quantizing the theory in that - most intuitively seen in the path integral formulation

- we sum the probability amplitudes for all possible field configurations, including the

redundant longitudinal modes which do not contribute to the action. This problem

is typically accounted for using the Faddeev-Popov method [15], whereby a term is

introduced at the Lagrangian level Lg.f. to ‘fix the gauge’, removing the integration over

the redundant modes for each gauge field Aµ.

Lg.f. = −
1

2ξ
(∂µAAµ )

2 (2.1.6)

Here the gauge-fixing parameter ξ is arbitrary, and guaranteed to cancel in the sum

over all contributions of the gauge field in the calculation of a given correlation function.

For the non-Abelian gauge fields the staging of this argument is complicated by their

self-interactions, and a solution necessitates the inclusion of an additional set of anticom-

muting complex scalar fields to guarantee the transverse polarization of physical gauge

boson states. These are the so-called Faddeev-Popov ghosts, embedded in the adjoint

representations of the non-Abelian SU(N) gauge groups, introduced as:

Lghost = ∂µc̄
A∂µcA + gfABC(∂µc̄A)ABµ c

C , (2.1.7)

Where it is understood that g, A and fABC represent the coupling constants, gauge

bosons and structure constants associated with each SU(N). These then interact with

the respective gauge bosons to cancel the net contributions of their longitudinal degrees

of freedom to a given observable by construction.

∗For each gauge group X , these are defined by −igXFA
µνT

A ≡ [Dµ, Dν ].
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Electroweak Symmetry Breaking

The Brout-Englert-Higgs mechanism [16,17] is the simplest means through which gauge

bosons can acquire mass while preserving the gauge symmetry of the Lagrangian∗. In

the SM, this is resolved by introducing a scalar field charged under SU(2)L ⊗ U(1)Y

which acquires a vacuum expectation value†. This follows from observing that there

exist two minima of the quartic Higgs potential:

V (ϕ) ≡ µ2ϕ†ϕ+ λ
(
ϕ†ϕ

)2
(2.1.8)

corresponding to the scenarios µ2 < 0, µ2 > 0. The vacuum solution 〈ϕ0〉 6= 0 for the

(complex) two component Higgs field (in the (2̄, 1
2
) representation of SU(2)L ⊗ U(1)Y ),

then does not respect a transformation under the Electroweak gauge group, and the

Electroweak symmetry is said to be spontaneously broken. By selecting a basis for the

generators of SU(2)L such that the (real) vacuum expectation value v ≃ 246GeV is

aligned along one direction of the Higgs doublet we can parametrize this as:

〈ϕ0〉 =
1√
2
(0, v)T v =

√
−µ2

λ
, (2.1.9)

and observe that there is a manifestly unbroken Abelian subgroup corresponding to the

linear combination of the generators Q ≡ τ 3 + 1
2
Y I‡. The would-be massless Goldstone

bosons associated with the three broken symmetry directions [18] become the longitudi-

nal degrees of freedom of linear combinations of the four original gauge bosons (W I
µ , Bµ)

given by:

Zµ =
1√

g21 + g22
(g2W

3
µ − g1Bµ) (2.1.10)

W ±
µ =

1

2
(W 1

µ ∓W 2
µ) (2.1.11)

Aµ =
1√

g21 + g22
(g1W

3
µ + g2Bµ) (2.1.12)

Which have corresponding masses:

m2
W =

1

4
v2g22 , m2

Z =
1

2
v2
√
g22 + g21 , m2

A = 0 (2.1.13)

∗SU(N) gauge bosons transform in the adjoint representation as AA
µ →AA

µ +∂µα
A+gXf

ABCAB
µ α

C ,

so that explicit terms of the form m2
AA

A
µA

Aµ are not invariant under a gauge transformation.
†A scalar is the only possibility which doesn’t violate Lorentz invariance.
‡This is just diag(1, 0).
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The massless vector boson Aµ is identified with the photon of QED, which respects a

residual U(1)EM gauge symmetry with the Abelian generator Q = T 3 + 1
2
Y , which is

identified with the electric charge. The remaining scalar degree of freedom is identified

with the Higgs bosonH , i.e. the excitations of the Higgs field about the vacuum direction;

ϕ = 1√
2
(0, v + H). The two components of the left handed quark and lepton doublets

q and l respectively are then distinguished as the left-handed and right-handed (uL, dL)

and (νL, eL) fields which carry distinct charges under U(1)EM.

u
Mass: 2.3 MeV
Q: 2/3
Spin: 1/2

c
Mass: 1.275 GeV
Q: 2/3
Spin: 1/2

t
Mass: 173.07 GeV
Q: 2/3
Spin: 1/2

g
Mass: 0
Q: 0
Spin: 1

H
Mass: 126 GeV
Q: 0
Spin: 0

d
Mass: 4.8 MeV
Q: −1/3
Spin: 1/2

s
Mass: 95 MeV
Q: −1/3
Spin: 1/2

b
Mass: 4.18 GeV
Q: −1/3
Spin: 1/2

γ
Mass: 0
Q: 0
Spin: 1

e
Mass: 0.511 MeV
Q: −1
Spin: 1/2

µ
Mass: 105.7 MeV
Q: −1
Spin: 1/2

τ
Mass: 1.777 GeV
Q: −1
Spin: 1/2

Z
Mass: 91.2 GeV/c2

Q: 0
Spin: 1

νe
Mass: < 2.2 eV
Q: 0
Spin: 1/2

νµ
Mass: 0.17 MeV
Q: 0
Spin: 1/2

ντ
Mass: 15.5 MeV
Q: 0
Spin: 1/2

W
Mass: 80.4 GeV/c2

Q: ±1
Spin: 1

Figure 2.1: Elementary particles of The Standard Model in their mass eigenstates, with matter
generations distinguished by column.

Fermion Masses

In the Yukawa sector, the left- and right- handed chiral fermions’ couplings to the Higgs

field then include a constant contribution proportional to its vacuum expectation value.
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The associated couplings Yψ are unfixed by the gauge structure of the theory, and are

thus parametrized generally by 3× 3 complex matrices acting between fermions in the

three observed states of flavour, which carry the same gauge quantum numbers. These

matrices can be simplified by choosing an appropriate orientation of the left- and right-

handed fermion fields in flavour space to select a diagonal form for each Yu,d,e
∗. The

fermion mass terms are identified as those which mix the left- and right-handed chiral

spinors as:

Lmass =
v√
2
dL,p Y

d
pr dR,r +

v√
2
uLr Y

u
pr uR,s +

v√
2
eL,p Y

e
pr eR,s + h.c. (2.1.14)

Y d = diag(yd, ys, yb), Y
u = diag(yu, yc, yt), Y

e = diag(ye, yµ, yτ) , (2.1.15)

So that each fermion acquires a mass term proportional to its coupling to the Higgs field;

mψ ≡ v√
2
yψ.

Since there are five chiral fermion fields {q, l, u, d, e} and three complex matrices, a

residual unitary matrix of free parameters VCKM ≡ L†
uLd remains, which is customarily

chosen to define a rotation of the down quark mass eigenstates in the Yukawa sector

with respect to those appearing in the fermion gauge-covariant derivative. This is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix [19]:

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




(2.1.16)

This is typically parametrized by three angles and one complex phase, which is the only

source of CP-violation in the SM. The left handed quark doublet to which the W -boson

couples is then:

q =




u

d′



L

, d′ = Vudd+ Vuss+ Vubb (2.1.17)

∗A complex matrix can be written using a singular value decomposition; C = LDR†, where L
and R are unitary matrices, and D is a real, diagonal matrix. One can then perform an appropriate
unitary rotation on each fermion flavour vector separately, e.g. qp→Lprqr , dp→Rprdr which leaves
LSM invariant. p and r are flavour indices.
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Where the unprimed quarks are mass eigenstates, and we’ve used the example of the

charged current to the up quark. Massive quark fields are typically accommodated

by arranging the corresponding left- and right-chiral fermions into the familiar, four

component Dirac spinors by defining:

Ψ ≡




ψL

ψR


 , γµ ≡




0 σµ

σ̄µ 0


 (2.1.18)

Where ψL and ψR are two component left- and right- chiral Weyl spinors respectively, and

σµ ≡ (I, σI) , σ̄µ ≡ (I,−σI). Chiral spinors can then be recovered using the projection

operators PL/R = 1
2
(I± γ5), with γ5 ≡ i

4!
ǫµναβγ

µγνγαγβ.

2.1.3 Quantization and Scale Dependence

In the so-called ‘second quantization’, the fields in the Lagrangian are interpreted as

operators which act on the vacuum to create particle states. While this ‘canonical’

formulation of QFT offers an immediate interpretation of the notion of particles in this

sense, ease-of-use and a manifest realization of symmetries mean that in practice it is

typically formulated in the Feynman path integral formalism (see e.g. [20]), which can

be considered a generalization of the classical principle of least action. Herein particle

trajectories are assigned probability amplitudes weighted by the action S =
∫
d4xL in

a functional integral over all possible field configurations. n-point correlation functions

are then obtained by taking n functional derivatives of a partition function with respect

to a source term J for each field:

Z(J) = exp(iW (J)) =

∫
DϕDψDψ̄DA exp

(
i

∫
d4xLSM

)
(2.1.19)

Where ϕ, ψ, ψ̄ and A schematically represent the scalar, fermion, antifermion and gauge

fields respectively. This lends itself neatly to the formulation of the perturbative expan-

sion in the coupling constants, from which the classical behaviour of the theory (i.e. the

particle trajectories which minimize the action δS = 0) is recovered in the leading order

approximation. In the perturbative regime for which the coupling constants g < 1, W (J)

is then given an intuitive interpretation as the sum of connected Feynman diagrams.

From the generating functional for LSM a set of Feynman rules can be extracted

straightforwardly [12]. n-point correlation functions can be systematically constructed
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by connecting propagators, determined for each field by the corresponding quadratic

terms in the free action with vertices, whose structure is dictated by the interaction terms.

Physical scattering amplitudes then follow from the S-matrix, evaluating correlation

functions between ‘asymptotic’ on-shell initial and final particle states identified with

those in the free theory, as enshrined by the Lehmann-Symanzik-Zimmermann (LSZ)

reduction formula [12]. Some sample Feynman rules for the Standard Model are provided

for illustration. The momentum space gluon, ghost, electroweak boson and fermion

propagators respectively take the forms:

gaµ(k) gbν(k)

✲

=
−igµνδab

k2
, (2.1.20)

uag(k) ubg(k)

✲

=
iδab
k2

, (2.1.21)

Vµ(k) Vν(k)

✲

=
−i

k2 −m2
V + imV ΓV

(
gµν −

kµkν
m2
V − imV ΓV

)
, (2.1.22)

fi(k) fj(k)

✲

=
iδijkµγ

µ

k2
=
iδij/k

k2
, (2.1.23)

Where the raised arrows distinguish the direction of the flow of momentum from the

flow of electric charge. The width ΓV accommodates the finite lifetime of the massive

weak bosons. The Feynman Gauge ξ = 1 is chosen for QCD, and each δ symbol in

the fermion propagator collectively represents each quantum number carried by the

particular fermion species f .

The form of the fermions’ couplings to the gauge bosons follows from the structure

of the covariant derivative, for SU(3)C these are:

gaµ

q̄i

qj

= igsT
A
ij γ

µ ,

where TA are the generators of SU(3), and i and j index the colour indices of the quarks.

The SU(N) gauge bosons’ non-Abelian nature manifests in self interactions, exemplified
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here by the gluon trilinear coupling;

gAµ (k1)

gBν (k2)

gCρ (k3)

= gsf
ABC

[
gµν(k1 − k2)ρ + gνρ(k2 − k3)µ

+gρµ(k3 − k1)ν
]
,

while the chiral interactions of quarks and leptons with the massive weak gauge bosons

inherits a more complex pattern as a consequence of Electroweak symmetry breaking:

γ, Z,W

f̄j

fi

= ieγµ (CLPL + CRPR)

γf̄ifj Zf̄ifj W+ūidj W−d̄iuj W+ν̄iℓj W−ℓ̄iνj

CL −Qf δij g−f δij
1√
2sw

Vij
1√
2sw

(Vij)
† 1√

2sw
δij

1√
2sw

δij

CR −Qf δij g+f δij 0 0 0 0

Table 2.2: Couplings of the electroweak gauge bosons to the fermions. i and j represent
flavour indices.

where the electric charges of each fermion Qf appears are assembled in Fig. 2.2, CL

and CR are defined in Table. 2.2, sw = sin θw ≡ g1
g2
1
+g2

2

defines the sine of the weak mixing

angle, and we have introduced

g+f = −tan θwQf , g−f =
T 3
f − sin2 θw Qf

sin θw cos θw
, (2.1.24a)

and T 3
f = σ3/2 is the weak isospin of the fermions. The genuinely quantum behaviour of

the theory arises from the inclusion of higher-order terms in the expansion, corresponding

to Feynman diagrams with closed loops of virtual particle states. These qualitatively

change the behaviour relative to the classical theory, and their dynamical generation

of scales is responsible for the most striking features exhibited by QCD of asymptotic
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freedom and confinement. For QCD where the coupling constant αs(mZ)∼ 0.1185 is

large enough to render the leading order approximation insufficient in comparison with

the experimental accuracy, the inclusion thereof is essential.

Renormalization and Scale Dependence

In evaluating loop diagrams we encounter Ultraviolet (UV) divergences associated with

integrations over virtual states with arbitrarily high momenta. While long thought

to render QFT mathematically inconsistent, these are now naturally understood by

distinguishing the fundamental parameters written down in the Lagrangian from those

determined by experiment. The latter are associated with measurements conducted with

reference to a particular distance scale, or equivalently, momentum transfer, while the

former (in the classical Lagrangian) are fixed constants defining the theory. The journey

toward a physically sound reasoning to justify the removal of ultraviolet divergences is

closely related to the concept of an Effective Field Theory, and with the mass dimension

of the operators appearing in the Lagrangian.

The condition that divergences can be removed at all orders in perturbation the-

ory by adjusting the definitions of a finite number of parameters distinguishes a theory

as renormalizable. It is thus an essential requirement for the predictivity of the the-

ory. These are typically brought under control by introducing a regularization scheme

whereby they are extracted as the limits of well-defined quantities. Although the most

immediately intuitive picture associates these with the limit of infinite loop momentum,

these are usually pinned down in a more abstract way to preserve gauge invariance.

This is achieved using Dimensional Regularization (DR) where it is recognized that the

infinities are also unique to four spacetime dimensions. The infinite contributions to

matrix elements can then be extracted by working instead in d = 4−2ǫ dimensions, and

obtaining isolated poles 1
ǫ

in the limit ǫ → 0. Schematically, a divergent amplitude for

a one-loop scattering amplitude in QCD would take the form:

M1-loop
div = g2s

∫
d4l

(2π)4
f(l2,∆) → g2sµ

4−d
∫

ddl

(2π)d
f(l2,∆) ∝ g2sµ

2ǫ Γ(ǫ)

(4π)2−ǫ

(
1

∆

)ǫ
× (. . .)

Where f(l2,∆) represents a generic integrand corresponding to a combination of propaga-

tor and numerator factors specified by the particular divergent Feynman graph. Ellipses

represent finite terms. Scales associated with external momenta and masses are denoted

by ∆. µ is an arbitrary dimensionful mass scale introduced to keep the coupling gs
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dimensionless in d spacetime dimensions. The divergent result is then identified by the

form of Γ(ǫ) = 1
ǫ
+ . . . as ǫ→ 0. The prediction of an infinite result for the quantum

corrections is clearly contradicted by experiment. To agree with measurement, these

then must be accounted for in some way.

The recovery of finite physical predictions then follows the procedure of renormaliza-

tion. The fields and coupling constants in the Lagrangian are first redefined, factoring

out a rescaling Z associtated with each, as:

GA 0
µ = Z

1

2

GG
A
µ , ψ0 = Z

1

2

ψψ , g0s→Z1Z
−1
ψ Z

− 1

2

G gsµ
ǫ ≡ Zgsgs (2.1.25)

Where ψ represents a generic coloured fermion field, and superscripts (0) denote the

quantities in the original ‘bare’ Lagrangian. The separate renormalization factors ZG,

Zψ and Z1 are required to treat the distinct infinities associated with the gluon and quark

two point functions and the qqg vertex function respectively. The quantities GA
µ , ψ and

gs are then the renormalized fields and coupling respectively. An explicit calculation

of each correlation function at one-loop accuracy will then distinguish three divergent

integrals with which each of these factors will be chosen to accommodate. In order to

distinguish the physical consequences for the strong coupling constant gs, the particular

form of all three divergences must then be found. In each case, an expansion of the

divergent amplitudes about the limit ǫ→ 0 recovers a quantity like:

M1-loop
div ∝ g2s

(
1

ǫ
+ log

µ2

∆2
+ (finite)

)
(2.1.26)

with the particular coefficients determined by each correlation function. The factors Z

are selected to cancel the respective poles at a given order in αs ≡ g2s
4π

, corresponding to

the MS renormalization scheme.

Zi = 1 +

∞∑

n=1

ai(gs)

ǫk
≡ 1 + δZi (gs) +O(g2s) (2.1.27)

Where δZi is a counterterm. Thus at 1-loop, these factors are linear in the strong coupling

constant. On a purely mathematical level, there is nothing to prevent making this choice

of normalization in the Lagrangian. This was historically a source of discomfort - doing

so restored the predictivity of perturbation theory beyond the leading order, and this

was vindicated by the dramatically accurate predictions of QED [21]. Moreover, an

arbitrary mass scale µ was introduced as an artefact of the regularization procedure used

to isolate the divergences. Fixing its value is directly analogous to fixing a momentum
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scale at which the high momentum modes propagating in the loop are cut off [12]. In

either regularization scheme, the predictions of the theory should be independent of it.

However, it appears (together with the coupling constant) as a logarithmic enhancement

of the physical scattering amplitude if we choose it to be much larger (or smaller) than

the physical factor ∆ associated with the fixed process kinematics. Therefore fixing it

effectively modifies the strength of the perturbative expansion parameter αs. It’s then

desirable for the accuracy of the perturbative expansion if it can be chosen to match the

scale ∆ associated with the process kinematics.

The condition that the parameter of the original Lagrangian be independent of this

choice can then be stated in the form a differential equation:

0 =
d

d logµ
log g0s = 0 =⇒ d

d logµ
log(Z1ZψZ

1

2

Ggsµ
ǫ) = 0 (2.1.28)

This is a specific case of the Callan-Symanzik equation [22]. To first order we have:

g0s = (1 + δ1 − δψ − 1
2
δA)gs , (2.1.29)

giving the condition:

dgs
d logµ

= −ǫgs + β(gs) , (2.1.30)

with:

β(gs) ≡ gs
d

d logµ
(δ1 − δψ − 1

2
δA) (2.1.31)

which, with the one-loop counterterms takes the form of a renormalization group equa-

tion:

β(gs) = −
g3s

16π2

(
11CA
3
− 4nfTr

3

)
≡ − g3s

16π2
β0 (2.1.32)

Where CA = 3 and Tr =
1
2

are the quadratic Casimir invariants associated with the ad-

joint and fundamental representations of SU(3), and nf the number of coloured fermions.

This is the celebrated Beta function for QCD [23, 24], which explicitly absorbs the log-

arithmic dependence on the scale µ into the renormalized, running coupling constant

gs(µ) in such a way that the ‘bare’, unobservable coupling g0s which includes the effects

of propagating fields with arbitrarily high momenta remains fixed. This then relates
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the value of the effective coupling constant (that which appears as the coefficient of a

scattering amplitude which explicitly incorporates the quantum fluctuations of fields up

to a momentum scale ∼µ) at different (but arbitrary) choices of µ. This is referred

to as the ‘resummation of logarithms’. Recalling that µ plays the role of an ultraviolet

cutoff, different choices of this parameter then correspond to different choices of factor-

ization of the quantum fluctuations into those explicitly included in the (finite) matrix

elements (with p . µ), and those averaged over and absorbed into the definition of the

renormalized coupling (with with p & µ).

Figure 2.2: Experimental measurements of the effective value of the strong coupling constant
αs as a function of momentum transfer Q [25].
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This argument should then also extend to heavy particle states with masses mH ≫ µ,

in addition to the high momentum fluctuations of the fields of which we are aware. Their

dynamics should contribute only an overall rescaling of the coupling constant. This is

guaranteed explicitly by the Appelquist-Carrazone decoupling theorem [26]. As a result,

massive modes can be explicitly removed as dynamical degrees of freedom from the

theory when calculating matrix elements to compare with experiment at momentum

transfers Q2 ≪ mheavy. For example, the inclusion of virtual top quark loops (with

mt ≃ 173GeV) in low energy matrix elements is not necessary, and they are said to be

decoupled, or are ‘integrated out’.

The solution to the beta function gives an explicit form for the running coupling

αs(µ) from which the unique features of QCD emerge:

αs(Q
2) =

4παs(µ)

4π + αs(µ)β0 log(
Q2

µ2
)

(2.1.33)

The point at which the denominator becomes zero and the coupling constant diverges

defines a unique scale ΛQCD;

ΛQCD = µ exp

(
− 2π

β0αs(µ)

)
(2.1.34)

This implies a unique confinement scale, i.e. an energy scale at which the theory is no

longer perturbative and becomes strongly coupled. This relies only on the coefficients

of the beta function β0, and a measurement αs(Q
2). This is an example of dimensional

transmutation [27], whereby the quantum behaviour of the theory dynamically generates

a mass scale absent from its classical analogue. One can then use this relation to rewrite:

αs(Q
2) =

4π

β0 log(Q2/Λ2
QCD)

(2.1.35)

Where all reference to the renormalization scale µ is gone. From here, the property

of asymptotic freedom is manifest; the effective value of the strong coupling constant

αs(Q
2)→ 0 as Q2/Λ2

QCD→∞. Collected experimental measurements which verify this

behaviour are presented in Fig. 2.2.
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The Role of Operator Mass Dimension

The connection between renormalizability and the relevant, marginal and irrelevant op-

erators present in a Lagrangian can be illustrated by applying dimensional analysis to

a simple model. Considering the action for scalar field theory with one operator falling

into each category:

S(φ) =
∫
ddx

[
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 − C

6!
φ6 + . . .

]
(2.1.36)

For S to be dimensionless, the field φ and the parameters in the Lagrangian must

carry mass dimensions [φ] = 1
2
(d− 2), [ddx] = d, [m2] = 2, [λ] = 4− d and [C] = 6− 2d.

Consider one generic n-point correlation function for the scalar particles φ following from

S:

〈φ(x1) . . . φ(xn)〉S (2.1.37)

and the same process in which φ interact over a shorter distance scale (or equivalently,

at higher momentum transfer):

〈φ(x′1) . . . φ(x′n)〉S (2.1.38)

For fixed x′, the co-ordinates x are related by some appropriate rescaling factor xµ→ sx′µ.

In S, this changes the normalization of the kinetic term; i.e. ∂µ→ 1
s
∂′µ. To renormalize

the kinetic term φ must be rescaled appropriately as:

φ′(x′) = s
1
2
(d−2)φ(x) (2.1.39)

which is associated with a new action in which the relevant, marginal and irrelevant

operators themselves carry different dependencies on s:

S ′(φ′) =

∫
ddx′

[
1

2
∂′µφ∂

µ ′φ− 1

2
m2s2φ′ 2 − λ

4!
s4−dφ′ 4 − C

6!
s6−2dφ′ 6 + . . .

]

The n-point correlation functions in terms of the original and rescaled fields are:

〈φ(sx1) . . . φ(sxn)〉S = s
1

2
n(2−d) 〈φ′(x1) . . . φ

′(xn)〉S′ (2.1.40)
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Specifying to four spacetime dimensions, in the rescaled action S ′ the mass operator

carries a quadratic dependence on s which causes the two point function to grow with

s2. Meanwhile the coupling for marginal operator φ4 is independent of the distance

scale∗, while the effective coefficient of the φ6 operator falls. If we identify the long-

distance correlation functions as those appropriate to describing currently observable

energy scales q2, and the short distance analogues as associated with a mass scale Λ2

corresponding to new physics, in momentum space this means:

m2∼Λ2 , λ∼ 1 , C ∼Λ−2 , (2.1.41)

i.e. the mass parameter at low energies is directly proportional to the heavy scale, while

the coefficient of the higher-dimensional operator is suppressed by it. This is a general

problem for scalar field theories †, and in the Standard Model leads to the so-called

Hierarchy problem, whereby the Higgs boson mass is directly sensitive to the influence

of virtual states at arbitrarily high energies. This is manifest in a momentum cut-off

regularization scheme, where the one-loop Higgs mass parameter acquires contributions

as:

m2
H = (m0

H)
2 +

(
−3y2t
8π2

)
Λ2
t +

(
9

64π2
g2
)
Λ2
vec +

(
λ2

64π2

)
Λ2
H (2.1.42)

where subscripts distinguish the contributions from virtual top quark, vector boson and

Higgs pairs. Accommodating the observed value mH ∼ 125GeV on the proviso that the

SM should be valid up to arbitrarily high energies demands that the bare Higgs mass

parameter m0
H then assume a remarkably precise value to cancel the contributions from

the states running in the loop. More optimistically, this is interpreted as a signal that

Λ is not too far away from presently accessible energy scales.

In the contrasting scenario, higher-dimensional operators are expected to carry Wil-

son coefficients which are accordingly suppressed; the assumption that one can write

down a Lagrangian from dimension-four operators alone is valid in the scenario q2 ≪ Λ2.

A requirement for a renormalizable, predictive theory is then that it permits finitely

many marginal operators, which, in the case of the Standard Model, is dictated by the

symmetry requirements placed on the Lagrangian. An experimental measurement of a

non-zero Wilson coefficient then heralds the proximity of the scale Λ, at which heavy

states will be resolved.

∗This is adjusted, as in QCD, by quantum corrections which break scale invariance by introducing
a perturbative anomalous dimension.

†Fermion mass terms are protected by chiral symmetry.
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Fermi Theory

To motivate the Standard Model Effective Field Theory (SMEFT) and its use as a tool

with which to search for new physics, we’ll look at the historical example of Fermi’s

theory of beta decay to establish the physical context for higher-dimensional operators.

After Electroweak symmetry breaking, the weak interaction experienced by the quarks

is described by the Lagrangian:

LW =
g2√
2
Vij q̄iγ

µPLqjW
±
µ (2.1.43)

where PL is the left-handed projection operator, and Vij elements of the CKM matrix.

In Fig. 2.3 we depict a tree-level ∆S = 1 transition u s→ d u mediated by the W -boson.

The Standard Model matrix element is given by:

M = (
ig2√
2
)2VusV

∗
ud(ūγ

µPLs)(d̄γ
νPLu)×

−igµν
q2 −m2

W

(2.1.44)

Where we adopt the Feynman gauge ξ = 1, and q is the t-channel momentum transfer.

Standard Model

u

s

d

u

(d̄LγµuL)

(ūLγ
µsL)

W q
↑ →

q2 ≪ m2
W

Fermi Theory

u

s

d

u

(d̄LγµuL)

(ūLγ
µsL)

Figure 2.3: Tree-level Feynman diagram representation of the flavour transition us→ du in
the full SM and in Fermi’s theory. The leading behaviour of the W -boson in m−1

W

is encapsulated by a dimension-six operator possessing the same charged-current
structure.

It is non-local, as implied by the momentum dependence q2 in the virtual W -boson

propagator. However, in the limit q2 ≪ m2
W the matrix element permits a Taylor
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expansion:

1

q2 −m2
W

=
1

m2
W

(
1 +

q2

m2
W

+ . . .

)
(2.1.45)

so that we can write:

M =
i

m2
W

(
ig2√
2

)2

VusV
∗
ud(ūγ

µPLs)(d̄γµPLu) +O
(

1

m4
W

)
(2.1.46)

This is the same matrix element one would get if we used the dimension-six effective

Lagrangian∗:

LD6 = −
4GF√

2
VusV

∗
ud(ūγ

µPLs)(d̄γ
νPLu) (2.1.47)

GF is called the Fermi constant, the value of which is fixed by applying the matching

condition:

GF√
2
=

g22
8m2

W

(2.1.48)

such that the effective description reproduces the behaviour of the Standard Model

matrix element at O(m−2
W ). The higher-order terms in the expansion in m−1

W can be

reintroduced order-by-order and associated with operators of higher mass dimension.

The next term is:

M =
iq2

m4
W

(
ig2√
2

)2

VusV
∗
ud(ūγ

µPLs)(d̄γ
νPLu) +O

(
1

m4
W

)
(2.1.49)

The presence of q2 signals that the corresponding effective Lagrangian must contain a

derivative. This can be accommodated by assembling the possible arrangements which

could produce this:

LD8 = C1(ūγ
µPLDνD

νs)(d̄γµPLu)

+ C2(ūγ
µPLs)(d̄γµPLDνD

νu)

+ C3(ūγ
µPLD

νs)(d̄γνPLDνu)

where Dµ is the gauge covariant derivative for SU(3)C ⊗ U(1)EM. By comparing the

matrix elements order by order in m−1
W of these with the Standard Model result, the

∗More formally, this can be extracted directly from the generating functional Z(J) in the path
integral formalism, see e.g. [6]
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appropriate values of the Wilson coefficients C(D) ∝ m4−D
w can be determined in terms

of the underlying weak coupling constant g2 and appropriate numerical factors. As the

momentum transfer of the quarks q→mW , the convergence of the Taylor expansion in

the propagator becomes poorer and poorer such that higher mass dimension operators

must be included. However, since the production of an on-shell W -boson is kinematically

forbidden until the threshold q2 = m2
W is reached, the correlation functions of the

effective and Standard Model descriptions remain the same. Thus until this point, the

behaviour of the underlying theory can be fully described by including sufficiently many

higher dimensional operators.

Crucially, the argument that a set of gauge-invariant operators can be constructed

to represent the leading behaviour of massive states does not depend on their exact

nature. From a position of ignorance, as in the original construction of Fermi theory,

the W -boson represents an unknown degree of freedom, with its mass mW playing the

role of a new physics scale Λ. The interpretation of Wilson coefficients C however is

then inherently ambiguous, as these are related in a non-trivial way by the structure

possessed by the underlying theory. Nonetheless, the construction of a fully general EFT

expansion in an unknown Λ−1 permits the description of the low-energy behaviour of a

wide category of the possible agents of new physics.

In Section 3.4.1 we will detail the procedure of calculating QCD radiative corrections

to Fermi Theory, after introducing operator identities pertinent to the calculation. The

reader may however choose instead to explore this topic following the current discussion,

as the novel aspects are minimal and are reiterated for clarity.
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Chapter 3

The Standard Model Effective Field

Theory

The construction of the Standard Model Effective Field Theory proceeds in accordance

with a set of assumptions motivated by the predictive successes of the SM as a renormal-

izable gauge field theory. Following the procedure outlined in Chapter 2, by appealing

to gauge and Lorentz invariance we can construct the leading set of higher-dimensional

operators that could arise from integrating out physics at the as-yet undetermined high

scale, Λ.

The minimal set of guiding principles adopted are as follows. Firstly, motivated by

the lack of experimental evidence for light species not described by but interacting with

the SM, it is assumed that any coupling of BSM states with m < v ∼ 246GeV to SM

fields must be mediated by physics at or above Λ.

Secondly, we require that new physics respect the SM’s SU(3)C ×SU(2)L×U(1)Y gauge

symmetry, either by the UV theory sharing it, or possessing an enlarged symmetry of

which it is preserved as an unbroken subgroup.

Finally, the observed Higgs boson is assumed to be embedded in a complex scalar

doublet transforming in the representation 21/2 of SU(2)L×U(1)Y , i.e. it is identified

with the Standard Model Higgs. This last requirement distinguishes the SMEFT from

so-called Higgs Effective Field Theory (HEFT), a nonlinear sigma model in which the

Goldstone bosons transform amongst themselves under the Electroweak symmetry under

which the Higgs boson is a singlet. This is in contrast with the SM Higgs sector, in which

29
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the Goldstone modes and observed scalar Higgs belong to a multiplet transforming

linearly under the enlarged global ‘Custodial’ symmetry O(4)∼SU(2)L×SU(2)R.∗.

Nonlinear realizations of Electroweak symmetry breaking are typical of models in

which the observed scalar is a composite particle arising from the dynamics of a strongly

interacting sector resolved at some scale ΛStrong ≫ v (for a pedagogical review, see

e.g. [29]). While HEFT does generalize the SMEFT to permit a larger class of operators

by allowing a more arbitrary pattern of couplings between the Goldstone bosons, the

composite Higgs models most consistent with experimental constraints generate opera-

tors at low energies contained within the SMEFT [30, 31]. Furthermore, since the dis-

tinction between symmetry breaking realizations determines the details of the structure

of Goldstone-Higgs interactions, the phenomenological consequences will be manifest in

Higgs and longitudinally polarized gauge boson scattering observables, while we will be

primarily concerned with t-quark physics.

With these grounding assumptions, along with the requirement that Leff be hermi-

tian, we expect decoupled heavy states with masses m ≥ Λ to exert their influence

through higher dimensional operators transforming as Lorentz scalars and singlets un-

der GSM ≡ SU(3)C ×SU(2)L×U(1)Y . With the renormalizable SM Lagrangian L(4)
SM

in the unbroken Electroweak phase as a starting point:

L(4)
SM = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)
† (Dµϕ) + µ2ϕ†ϕ− 1

2
λ
(
ϕ†ϕ

)2

+ i
(
l̄ 6Dl + ē 6De+ q̄ 6Dq + ū 6Du+ d̄ 6Dd

)
−
(
l̄ Yeeϕ+ q̄ Yuuϕ̃+ q̄ Yddϕ+ h.c.

)
, (3.0.1)

we anticipate the SMEFT Lagrangian to take the form:

LSM = L(4)
SM +

∑

k

C
(5)
k Q

(5)
k +

∑

k

C
(6)
k Q

(6)
k +O

(
1

Λ3

)
, (3.0.2)

with:

Qi = Qi(G
a
µ,W

I
µ , Bµ, ϕ, qL, uR, dR, lL, eR). (3.0.3)

Here Q
(n)
k denotes operators of mass dimension n, and C

(n)
k are Wilson Coefficients carry-

ing mass dimension 4−n. As has been described, these are the leftover parameters aris-

ing from integrating out the BSM degrees of freedom which mediate the short-distance

∗A geometrical interpretation of the distinction between the SMEFT and HEFT was recently for-
mulated in terms of the properties of a curved scalar field manifold in [28].
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physics above Λ∗. These should be implicitly understood as being defined at the high

scale Λ, and as such run and mix under the renormalization group. In the bottom-up

approach, they are coupling constants to be determined by experiment, and any mea-

surements thereof used in turn to inform guesses about the structure of the UV theory.

Here and in what follows, we will adopt the notation employed in [14]†, wherein the

authors approached the task of constructing a minimal set of operators systematically.

The SM field content was presented for reference in Tab. 2.1 in a form conducive

to constructing higher-dimensional operators. In addition to the definitions already

established, isospin, colour, and flavour indices are denoted explicitly by j = 1, 2, α =

1, 2, 3, and p = 1, 2, 3, respectively. Dual tensors are to be defined by X̃µν =
1
2
εµνρσX

ρσ (ε0123 = +1), where X stands for GA, W I or B.

3.1 Operator Lagrangians

From our understanding that irrelevant operators Qi with [Q] = n will contribute to

observables at O(sn/Λn), we expect operators at dimensions five and six to provide the

leading contributions to matrix elements. It is known in the SM that interactions me-

diated by operators of odd mass dimension necessarily violate conservation of B or L.

That is, for an operator with Baryon number ∆B and Lepton number ∆L, its mass

dimension is even (odd) if (∆B − ∆L)/2 is even (odd) [32]. There is in fact only one

L-violating dimension-five operator consistent with the SM gauge symmetry [33],

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr). (3.1.4)

where C is the charge conjugation matrix. In the broken Electroweak phase, Qνν gener-

ates neutrino masses and mixings, and constraints on these infer the dynamics respon-

sible to exist at Λ > 1013TeV. The first family of operators which could be generated

by TeV scale physics are then those with mass dimension six, to which we now turn our

attention. To construct the set of operators arising at O(Λ−2), the building blocks in 2.1

must be arranged in gauge and Lorentz invariant combinations which have total mass

dimension [Q] = 6. There is in general no unique prescription for populating the set

∗One can equivalently choose to write these in the form C(n)/Λn, whereby an explicit scale carries
the mass dimension and the Wilson Coefficients C become dimensionless.

†The one exception to this is that we use the convention τI = 1/2σI , such that the Lie algebra
generators τI and TA have the same normalizations with respect to the Pauli and Gell-Mann matrices
σ
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Bosonic Mixed Fermionic Empty

X3

X2ϕ2

X2D2

Xϕ2D2

ϕ6

XD4

ϕ4D2

ϕ2D4

ψ2XD

ψ2ϕ3

ψ2ϕ2D

ψ2ϕD2

ψ2D3

ψ2Xϕ

ψ4

≡
L̄LL̄L

R̄RR̄R

L̄LR̄R

L̄RL̄R

L̄RR̄L

X2ϕD

Xϕ4

Xϕ3D

XϕD3

ϕ5D

ϕ3D3

ϕD5

D6

Table 3.1: Classifications of dimension-six operators by field content, obtained by generating
combinations of {ψ,X,ϕ,D} subject to the constraint 3/2Nψ+Nϕ+2NX+ND = 6,
where Nx denotes the number of species x. The rightmost column may be discarded
by inspection, lacking either sufficient Lorentz indices to form scalars, or an even
number of Higgs doublets to form SU(2)L singlets. The remaining classification in
red XD4 is equivalent to X2D2 by the antisymmetry of X and the definition of the
field strength tensors [Dµ,Dν ]∼Xµν .

of allowed operators at each order subject to these constraints simultaneously. A prag-

matic system for approaching this problem was proposed in [14], whereby operators are

first separated according to the general classifications defined in the left column of 2.1.

We review and elaborate on this formalism here, the automation and generalization of

which we will go on to describe in the context of an extension of the Mathematica

package FeynRules [10, 34].

The possible combinations of the generic objects {X,ϕ, ψ,D} satisfying the con-

straint [Q] = 6 are given in 3.1. Having catalogued these, the next task is to replace each

of the proxies {ψ, X, ϕ} with the corresponding fields {qL, uR, dR, lL, eR, Ga
µ,W

I
µ , Bµ, ϕ}

to form all possible combinations which respect gauge invariance. It is possible (at least

at dimension six) to approach this problem ‘by eye’. That is, for a given classification,

choose a set of fields whose total Hypercharge Y = 0, identify which of these also con-

stitute compatible multiplets of SU(2)L and SU(3)C , and ensure that all Lorentz and

spinor indices can be contracted to form an overall scalar ∗.

∗In fact, it was very recently [32] noted that the constraint that operators are U(1)Y singlets
can actually be formulated in such a way that it contains the analogous SU(3)C ×SU(2)L invariance
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For an example, say we want to populate the classification ψ2ϕD2. Firstly we can

appeal to Lorentz invariance. The fermion billinear must either be a tensor current

ψ̄σµνψ if it contracts with covariant derivatives carrying two different Lorentz indices

Dµ and Dν , or a Lorentz scalar ψ̄ψ if the covariant derivatives carry the same Lorentz

index. Furthermore, because the fermions are chiral, nonzero scalar and tensor currents

must contain one left- and one right-handed field.

Now appealing to gauge invariance, the fermions must together form a colour singlet:

since the Higgs is itself a singlet, the only possibility comes from the 1 in the decompo-

sition 3̄⊗3 = 1⊕8. Similarly the left-handed fermion must form a SU(2)L singlet with

the Higgs, as the possibilities are 2⊗ 2 = 1⊕ 3. Letting the left-chiral fermions appear

as the barred spinors within the billinear, the Y = 0 Hypercharge combinations for the

possible choices of ψ̄L, ψR, ϕ can be enumerated from 2.1. Then the classification can

then be filled by exhausting all arrangements of the covariant derivatives. If we let D
(3)
(µν)

denote the set of all arrangements of the pair {Dµ, Dν} acting on an operator comprised

of three fields, then schematically:

ψ2ϕD2 = D
(3)
(µν)

(
(q̄σµνu)ϕ̃+ (q̄σµνd)ϕ+ (l̄σµνe)ϕ

)
+ h.c. (3.1.5)

+D
(3)
(µµ)

(
(q̄u)ϕ̃+ (q̄d)ϕ+ (l̄e)ϕ

)
+ h.c. (3.1.6)

= (Dµq̄σ
µνDνu)ϕ̃+ (Dµq̄σ

µνu)Dνϕ̃+ (q̄σµνDµu)Dνϕ̃

+ · · ·+ h.c. (3.1.7)

+ (Dµq̄ D
µu)ϕ̃+ (Dµq̄ u)D

µϕ̃+ (q̄ Dµu)D
µϕ̃

+ (DµDµq̄ u)ϕ̃+ (q̄ DµDµu)ϕ̃+ (q̄ u)DµD
µϕ̃+ h.c. (3.1.8)

Here, the ellipsis represent the remaining terms making up the 3! 2! = 12 distinct ways of

distributing two unique derivatives Dµ andDν over the three fields present in each tensor

current operator. The 3! 2! /2 = 6 ways of distributing the two identical derivatives

Dµ andDµ over the three fields in their scalar current counterparts are shown explicitly.

Individual operators are shown explicitly for the first of the three possible choices of

field content in 3.1.6 and 3.1.8, with the other two following trivially.

Next, considering the tensor current operators, we notice that the presence of σµν

renders these antisymmetric in the indices µ, ν. Thus, only half of the 12 operators

arising for each case are unique. Then for each choice of field content there are six opera-

constraints. This enhances the prospect of automating the generation of gauge-invariant operators at
a given order in Λ−1 significantly.



34 The Standard Model Effective Field Theory

tors; those three written explicitly in 3.1.7, and another three in which both derivatives

act together on one of the fields. By the antisymmetry of σµν , each DµDνψ is pro-

jected onto its antisymmetric part, [Dµ, Dν ], where here ψ stands in for any of the fields

{u, q, d, e, ϕ}. Through the identity [Dµ, Dν ] = −igXTAXA
µν , where the right hand side

is an implicit sum over each of the gauge field strength tensors for the groups under

which ψ is charged, these operators are actually a linear combination of those in the

ψ2Xϕ classification. In total then, for each choice of field content, there are the three

unique tensor current operators given by 3.1.7, and the six scalar currents given by 3.1.8.

Finally, we must allocate Wilson Coefficients appropriately. As was implied by the

addition of h.c., the ψ2ϕD class operators are not self-hermitian, so we must add their

hermitian conjugates to them to keep the action real. Each of the independent terms in

3.1.7 and 3.1.8 carries two flavour indices, one on each of the fermion fields, which were

not written explicitly. Then each operator is actually a 3× 3 matrix in flavour space,

each entry of which may carry a distinct Wilson Coefficient Cpr, where p, r = 1, 2, 3

are flavour indices. In general each Cpr may be complex, but must be real for self-

hermitian operators to preserve the condition L = L†. For each of the three choices

of field content, the ψ2ϕD2 class then contains nine unique operators which possess

3× 3 complex Wilson Coefficients and their hermitian conjugates, for a total of 486 real

parameters. The remaining operator classifications can be filled by following by the

same recipe.

Clearly the number of couplings required to fully parametrize all possible gauge-

invariant interactions at dimension six will quickly become intractable if no further

limitations are enforced in constructing the Lagrangian. Fortunately, strong experimen-

tal constraints on processes violating the global symmetries of the SM, and identities

which interrelate seemingly distinct operators will permit us to make some systematic

simplifications.

3.1.1 Accommodating Global Symmetries

It is possible to place further restrictions on the operators which may appear in the

SMEFT Lagrangian, most prominently to accommodate the SM’s (exact and approx-

imate) global symmetries. These are baryon and lepton numbers B and L, flavour

symmetry, the custodial SU(2) symmetry of the Higgs sector, and the discrete symme-

try of the Lorentz group CP . Although they play no direct role in the construction

of the Lagrangian, one can distinguish higher dimensional operators by which global
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symmetries they respect or break. Physics associated with the breaking of a given sym-

metry tends to have a corresponding distinct phenomenological signature (for example,

the B-violating decay of the proton), which makes it more vulnerable to experimental

detection. Bounds obtained from indirect searches targeting processes signifying the

breaking of a global symmetry can then be interpreted in terms of the magnitude of the

Wilson coefficients of these operators. Table 3.2 shows a summary of some experimental

constraints [35–38] on Λ obtained from parametrizing the symmetry breaking by the

corresponding, lowest-order operators in the SMEFT.

Broken Global Symmetry Operators Λ

B, L (qqql)/Λ2 1013 TeV

Flavour (1,2nd family), CP (d̄sd̄s)/Λ2 1000 TeV

Flavour (2,3rd family) mb(s̄σµνF
µνb)/Λ2 50 TeV

Custodial SU(2) (ϕ†Dµϕ)
2/Λ2 5 TeV

Table 3.2: Lower bounds [39] on the scale Λ associated with some select global symmetry
violating higher-dimensional operators of the Standard Model.

The stringent bounds in Tab. 3.2 suggest particularly that the symmetries B, L and

flavour symmetry among the light quarks are conserved by physics well into the multi-

TeV scale. This fact constrains the anatomy of models of NP accessible at LHC energies.

For example, the theoretical assertion that we should reasonably expect to see NP in

a window around O(TeV) to resolve the Hierarchy Problem should be accompanied

by the understanding that this physics must respect these symmetries. This can be

accommodated in the EFT language by imposing conditions on the Wilson Coefficients

of any operators we construct which explicitly break them. It is by this rationale, for

example, that B-violating operators would be ignored (their coefficients being fixed to

zero) when considering qq scattering at the LHC, where the centre-of-mass energy is 13

orders of magnitude lower than Λ.

To accommodate flavour violation constraints, one commonly adopted hypothesis is

that of Minimal Flavour Violation (MFV) [37]. This is the assertion that TeV scale

physics’ breaking of flavour symmetry should follow the same pattern as exists in the

SM Yukawa sector. In the SM, LSM − Lyuk is invariant under five U(3) symmetries
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corresponding to unitary rotations of the flavour multiplets Uprψr, where U is a unitary

matrix carrying flavour indices p, r and ψr = {qr, lr, ur, dr, er}. We observe (as in 3.2)

that this symmetry, with its breaking described by the Yukawa sector, is an excellent

description of all flavour-changing processes up to at leastO( 50TeV). One can then bake

the requirement into a given BSM model that flavour violation remains the prerogative

of the SM parameters VCKM and Yu,d,e.

Taking the example of flavour multiplets of the chiral quark fields {q, u, d}, each

of these can be considered as vectors in the fundamental representation of appropriate

copies of an SU(3) flavour symmetry:

Gflav ≡ SU(3)q ×SU(3)u×SU(3)d
q ∈ (3, 1, 1), u ∈ (1, 3, 1), d ∈ (1, 1, 3). (3.1.9)

where the barred counterparts are similarly in the corresponding 3̄ representations. We

wish to widen the definition of the flavour symmetry of the SM to denote both terms

which are invariant under unitary rotations of the quark flavours, and those which violate

this symmetry through the explicit flavour space matrices Yu,d,e. To do this, Yu,d,e are

promoted to non-propagating, constant ‘auxiliary’ fields which are each taken to trans-

form with the quark multiplets in an appropriate representation of the SU(3) flavour

symmetry groups [37]:

Yu∼ (3, 3̄, 1) , Yd∼ (3, 1, 3̄). (3.1.10)

The quark Yukawa Lagrangian now transforms as:

Lyuk = − q̄p [Yd]pr drϕ+ qp [Yu]pr urϕ̃+ h.c.

→ − q̄p
[
(U †

q )pr(Uq)rs(Yd)st(U
†
d)tv(Ud)vw

]
dwϕ

+ qp
[
(U †

q )pr(Uq)rs(Yu)st(U
†
u)tv(Uu)vw

]
uwϕ̃+ h.c.

= Lyuk , (3.1.11)

Where U{q,u,d} are the unitary SU(3) matrices acting separately on the q, u, d flavour

multiplets, and Latin subscripts denote flavour indices. Lyuk now satisfies the extended

definition of flavour symmetry in the SM by construction.

With these definitions in place, requiring that all higher-dimensional operators belong

to representations of Gflav built from 3.1.9 and 3.1.10 enforces the condition that flavour
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transitions arise from from Yu,d,e alone. As with in the SM, by fixing the five unitary

flavour rotations into the definitions of the fermion fields, one can choose the basis:

Yd = Γd, Yl = Γl, Yu = V †Γu, (3.1.12)

where V is the CKM matrix, and Γu,d,l the usual diagonal matrices of fermion Yukawa

couplings Γu = diag(yu, yc, yt), . . . The permissible flavour-changing invariants are then:

q̄p (YuY
†
u )pr qr, d̄p (Y

†
d YuY

†
u )pr qr, d̄p (Y

†
d YuY

†
uYd)pr dr, (3.1.13)

which, neglecting the ratio of the light quark Yukawas over that of the top identifies:

q̄ λFC q & d̄ λdλ
FCq, λFC ≡ (YuY

†
u ) ≃ y2t V

∗
3pV3r p 6= r (3.1.14)

as the allowed flavour non-diagonal billinears in L. A ψ4 class operator such as:

Q ≡ Cprst(q̄pγ
µqr)(q̄sγµqt), (3.1.15)

which carries n4
f = 81 Wilson Coefficients Cprst permitting arbitrary transitions between

quark flavours may now only have the structure:

Q
MFV→ C2(q̄pγ

µλFCpr qr)(q̄sγµλ
FC
st qt) + C1(q̄pγ

µλFCpr qr)(q̄sγµqs) + C0(q̄pγ
µqp)(q̄rγµqr).

(3.1.16)

By adopting the MFV ansatz, the number of nonzero coefficients required to describe

the effective coupling have been reduced from 81 to 3, as there are only three possible

structures invariant under the extended flavour symmetry group. This is a formidable

simplification over the general SMEFT, for which the authors of [40] identified 2499

independent Wilson Coefficients when no such simplifications are made.

3.2 Operator Redundancies

Once an exhaustive set of candidates has been identified in each classification, there

remains the task of accounting for identities which relate linear combinations of opera-

tors to each other. Operator redundancy in the SMEFT was for a long time a source

of confusion in the literature, with the initial, highly cited work proposing a basis at

dimension six [41] arriving at a set now known to be overcomplete by 21 terms. The
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consequences of failing to conclusively identify and eliminate these interdependencies

amount to the implicit over- or under-representation of distinct physical effects, and the

artificial enlargement of the parameter set used to describe the contributions to observ-

ables arising at this order in Λ−1. We will find that there exist a set of mappings between

the valid (black) classifications summarized in 3.1, and as such, operators therein will

not be independent. This follows as a consequence of the classical equations of motion

for the SM fields, the Fierz identities for spin, colour and isospin, and the vanishing of

total derivatives of gauge invariant objects from the action. Together these necessitate

the adoption of a procedure by which these relations should be used to reduce operators

to an independent basis.

3.2.1 Fierz Identities

Fierz identities [42]∗ are relationships which may be derived whenever a general set of

orthogonal N ×N real (complex) matrices {M} span the vector space on which they

are defined, RN (CN). Practically, they exploit the completeness of {M} over the space

to re-order matrix products as:

(φT1MAφ2) (φ
T
3MAφ4) = (φT1MCφ4) (φ

T
3MDφ2) (3.2.17)

where φ (φT ) are generic 1×N (N × 1) column (row) vectors, and the matrices MX are

some linear combinations of the orthogonal set {M}. For a pedagogical review of their

derivation and applications, see e.g. [43,44], some of whose main results are summarized

here.

In the SM, the objects used to form gauge and Lorentz invariant products of fields

are the generators {τ I} and {TA} of SU(2)L and SU(3)C , and the set of 4× 4 matrices

{ΓA} which form the Dirac basis for the Lorentz group. The generators of SU(2) and

SU(3) are equipped with an inner product through the trace billinear:

Tr[τIτJ ] = C δIJ (I, J = 1, 2, 3)

Tr[TATB] = CδAB (A,B = 1, . . . , 8) (3.2.18)

where the SU(2) and SU(3) generators are denoted in terms of the Pauli and Gell-Mann

matrices σI and λA by τI = 1/2σI and TA = 1/2λA. The conventional normalization for

∗Originally, these referred to one specific set of relations for the Dirac algebra which allowed one to
re-order spinors in products of fermion billinears.
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the fundamental representation has C = 1/2. Since there are N2−1 traceless, orthogonal

generators for the fundamental representation of SU(N), together with the respective

identity matrices I2 and I3 these span the space of complex N ×N matrices M2(C) and

M3(C). That is, each is a set of N2 independent basis vectors onto which a general

N ×N complex matrix X may be decomposed. For the fundamental representations of

SU(2) and SU(3):

X = X0I+XIτ
I and X = X0I+XAT

A, (3.2.19)

where X are general, complex 2× 2 and 3× 3 matrices respectively, and where the

subscripted X are the coefficients of each of the basis matrices { I2, τI } and { I3, TA }
respectively. Using the orthogonality relations 3.2.18, these can be projected out by

taking the trace of the product of X with each of the basis matrices:

X0 =
1

2
Tr[X ], XI = 2Tr[XτI ],

X0 =
1

3
Tr[X ], XA = 2Tr[XTA]. (3.2.20)

Inserting the coefficients 3.2.20 into 3.2.19 and writing indices explicitly gives, for N ×N
complex matrices X(N):

(δil δkj)(X
(2))lk = (

1

2
δij δkl + 2 (τI)kl (τI)ij) (X

(2))lk

(δil δkj)(X
(3))lk = (

1

3
δij δkl + 2 (TA)kl (TA)ij) (X

(3))lk, (3.2.21)

from which the SU(2) and SU(3) Fierz identities can be read off:

τ Iij τ
I
kl =

1

2
δil δkj −

1

4
δij δkl (3.2.22)

TAij T
A
kl =

1

2
δil δkj −

1

6
δij δkl (3.2.23)

These are completeness relations which map products of matrices in the fundamental rep-

resentation of SU(N) to linear combinations of themselves with their indices rearranged.

In practice, this allows one to reshuffle the ordering of the SU(N) vectors on which

these act to form gauge-invariant quantities. These can be used in the SM to rewrite

the colour (or isospin) factors in matrix elements, and are typically given a Feynman

diagrammatic interpretation as depicted in 3.1.
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Figure 3.1: Diagrammatic interpretation of the SU(3) Fierz identity 3.2.23, with N = Nc = 3
in QCD. Matrix elements for the exchange of a colour-octet gluon in qq̄ scatter-
ing can be expressed as a linear combination of contributions in which different
combinations of the quarks form colour singlets.

Since L(6) contains the classification ψ4 - that is: the set of local operators comprised

of four fermion fields - pairs of SU(N) matrices will arise in each operator which is a

product of two fermion billinears carrying indices in the fundamental representations

of SU(2)L or SU(3)C . In the case of the Higgs field ϕ which carries mass dimension 1

and an index in the fundamental representation of SU(2)L, operators containing up to

three SU(2)L matrices will occur in the classification ϕ6. The Fierz identities 3.2.22 &

3.2.23 will then relate any such operators to a linear combinations of others for which

the colour or isospin matrices TA and τ I contract the fields in a different order. To

illustrate this, let’s apply the Fierz identities to a dimension six operator we write down

that is a product of two (1, 3, 0) Lorentz vectors:

O = (ϕ† i τ Iij Dµϕ
j)(ϕ† k τ IklD

µϕl)

(3.2.22)
=

1

2
(ϕ† i δilD

µϕl)(ϕ† k δkjDµϕ
j)− 1

4
(ϕ† i δij Dµϕ

j)(ϕ† k δklD
µϕl)

O =
1

4
(ϕ† i δij Dµϕ

j)(ϕ† k δklD
µϕl) ≡ 1

4
O′, (3.2.24)

where weak isospin indices are denoted by i, j, k, l. In the last equality we have relabeled

the indices and combined the terms, since the Higgs doublets ϕ are identical. We see

that O and O′ are actually the same operator up to a factor of 1/4, which may not have

been obvious had we not been aware of 3.2.22.

The benefit of these Fierz identities to constructing operator bases is that one need

not consider all the distinct contractions of each of the colour and weak isospin matrices

with the fields in a given operator. In particular, since products of fields which are colour

octets or isospin triplets can be written as a linear combination of respective singlets,

one can aim to form an independent set with as few of the matrices TA and τ I as is

possible. This choice can lead to, for example, the simplification of matrix elements

involving colour factors.
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The same reasoning as before can be used to derive Fierz identities for the Dirac

algebra, for which a set of matrices {ΓA} form a basis in which fermion billinears ψ̄ Γψ

have definite transformation properties under the Lorentz group. We adopt some sim-

plifying notation introduced by Takahashi [45], whereby the order in which indices are

contracted is encoded by the parentheses ( ) and [ ]. In this notation, the SU(2) Fierz

identity 3.2.22 is represented by:

(τI)[τI ] =
1

2
( ][ ) − 1

4
( )[ ], (3.2.25)

with the position of the indices i, j, k, l inferred by the style of parentheses, and the

identity δij denoted by the empty brackets ().

The usual set of 4× 4 matrices which form the Dirac representation of the Lorentz

group are:

{ΓA} ≡ {I, γ5, γµ, γµγ5, σµν}, (3.2.26)

where A = (1, . . . , 16) indexes each of the distinct matrices. These obey an orthogonality

relation analogous to 3.2.18 which can be verified by appealing to the usual properties

of the gamma matrices:

Tr[ΓAΓ
B] = 4 δBA . (3.2.27)

Orthogonality as expressed through the trace billinear 3.2.27 requires that the product

contain one covariant and one contravariant index. This can be conveniently accounted

for, following the convention in [44], by absorbing this requirement into the definition of

a dual basis where spacetime indices appear lowered:

{ΓA} ≡ {I, γ5, γµ,−γµγ5,
1

2
σµν}. (3.2.28)

Here, the factor of 1/2 corrects for overcounting redundant permutations of Lorentz

indices following from the antisymmetry of σµν , and the additional minus sign accounts

for the anticommutivity property {γµ, γ5} = 0. Then it is understood in 3.2.27 that

the matrix product is defined for one element from the dual basis ΓA and one from the

original basis ΓB.
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The 16 matrices {ΓA} span the space of 4× 4 complex matrices M4(C), so any X ∈
M4(C) may be decomposed as:

X = XAΓ
A, XA =

1

4
Tr[XΓA]. (3.2.29)

The Fierz identities then follow from an identical procedure as used for the generators

of the SU(N) algebras. In this case however, the basis matrices aren’t enumerated by a

common index in the adjoint representation, but by the five (sets of) matrices making up

the scalar, pseudoscalar, vector, pseudovector and tensor representations of the Lorentz

group. Writing:

X =
1

4
(Tr[X ]I+ Tr[Xγ5]γ5 + Tr[Xγµ]γ

µ − Tr[Xγµγ5]γ
µγ5 +

1

2
Tr[Xσµν ]σ

µν), (3.2.30)

and representing indices using the notation of 3.2.25 yields the completeness relation:

( )[ ] =
1

4
(ΓA][Γ

A) =
1

4
(ΓA][ΓA). (3.2.31)

The Fierz identities follow immediately from appropriately multiplying the identity ma-

trices ( ) and [ ] in 3.2.31 by each possible pairing of the basis matrices (ΓA, ΓB):

(ΓA)[ΓB] = (−) 1
42
Tr[ΓAΓCΓBΓD](Γ

D][ΓC). (3.2.32)

This is a 5× 5 matrix mapping each pairing of the form (ΓA)[ΓB] onto a linear combina-

tion with rearranged indices (ΓD][ΓC), with coefficients given by gamma matrix traces.

The minus sign in parentheses is to be understood as present whenever these sit between

anticommuting spinor fields. We will be interested in operators comprised of fermion

billinears of the form (ψ̄1 Γ
A ψ2)(ψ̄3 ΓA ψ4) which are Lorentz scalars, so only the five

diagonal entries are important. These are:

( ) [ ] =
1

4

[
(γ5] [γ5) + (γµ] [γµ) + ( ] [ ) +

1

2
(σµν ] [σµν)− (γµγ5] [γµγ5)

]

(γµ) [γµ] =

[
−(γ5] [γ5)− 1

2
(γµ] [γµ) + ( ] [ )− 1

2
(γµγ5] [γµγ5)

]

(σµν) [σµν ] =

[
3(γ5] [γ5) + 3( ] [ )− 1

2
(σµν ] [σµν)

]
(3.2.33)

(γµγ5) [γµγ5] =

[
(γ5] [γ5)− 1

2
(γµ] [γµ)− ( ] [ )− 1

2
(γµγ5] [γµγ5)

]
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(γ5) [γ5] =
1

4

[
(γ5] [γ5)− (γµ] [γµ) + ( ] [ ) +

1

2
(σµν ] [σµν) + (γµγ5] [γµγ5)

]
,

with an additional overall minus sign present when applied to rearranging anticommuting

spinors.

LSM contains only massless left- and right-handed chiral fermion fields in the unbro-

ken electroweak phase, which are eigenvectors of γ5 with eigenvalue −1 and +1 respec-

tively. Hence, for the field content of the SMEFT, only the first three identities of 3.2.33

are relevant. Furthermore, the class ψ4 is the only place in which two fermion billinears

can appear at O(Λ−2), and it can be subdivided according to the chiralities L and R of

the fermions appearing in a given operator. Then for the operators therein which are

products of two Y = 0 billinears - that is, the subclassifications (L̄L)(L̄L), (R̄R)(R̄R),

and (L̄L)(R̄R) - the identical chiralities of the fermion fields within each billinear means

that only vector currents like (ψ̄LγµψL) will be nonzero. For these operators, only the

second identity is relevant.

In the cases (L̄L)(L̄L) and (R̄R)(R̄R), both of the L and R fermions have the same γ5

eigenvalue. Then the axial vector term (γµγ5] [γµγ5) is just (± 1)2(γµ] [γµ) = (γµ] [γµ),

while the pseudoscalar (γ5] [γ5) likewise becomes (± 1)2( ] [ ) = ( ] [ ). In the re-

maining such case (L̄L)(R̄R), the product of γ5 eigenvalues is always (+1)× (−1), so

(γµγ5] [γµγ5) = −(γµ] [γµ) and (γ5] [γ5) = −( ] [ ). This second identity then implies

three particularly simple relations between products of chiral currents:

(ψ̄LγµψL)(χ̄Lγ
µχL) = (ψ̄LγµχL)(χ̄Lγ

µψL) (3.2.34)

(ψ̄RγµψR)(χ̄Rγ
µχR) = (ψ̄RγµχR)(χ̄Rγ

µψR) (3.2.35)

(ψ̄LγµψL)(χ̄Rγ
µχR) = −2(ψ̄LχR)(χ̄RψL). (3.2.36)

The identities 3.2.33, together with the weak isospin and colour identities 3.2.22 and

3.2.23 respectively, are together responsible for generating redundancies between four-

fermion operators. For example, suppose we write down three operators in the (L̄L)(L̄L)

class:

Q(1) prst
qq ≡ (q̄pγ

µqr)(q̄sγµqt) (3.2.37)

Q(3) prst
qq ≡ (q̄pγ

µτ Iqr)(q̄sγµτ
Iqt) (3.2.38)

Q(8) prst
qq ≡ (q̄pγ

µTAqr)(q̄sγµT
Aqt), (3.2.39)
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where p, t, s, r are generation indices, and the superscripts (1), (3), and (8) reflect that

the quark currents are SU(2)L and SU(3)C singlets, SU(2)L triplets and SU(3)C octets

respectively. These are not independent, and we can choose to eliminate one by applying

the Fierz identities accordingly:

(q̄pγ
µTAqr)(q̄sγµT

Aqt)
(3.2.23)
=

1

2
(q̄apγ

µqbr)(q̄
c
sγµq

d
t )δadδcb −

1

6
(q̄pγ

µqr)(q̄sγµqt)

(3.2.34)
=

1

2
(q̄ipγ

µqlt)(q̄
k
sγµq

j
r)δijδkl −

1

6
(q̄pγ

µqr)(q̄sγµqt)

(3.2.22)
=

1

2
(q̄ipγ

µqlt)(q̄
k
sγµq

j
r)(2τ

I
ilτ

I
kj +

1

2
δilδkj))−

1

6
Q(1) prst
qq

=⇒ Q(8) prst
qq = Q(3) ptsr

qq +
1

4
Q(1) ptsr
qq − 1

6
Q(1) prst
qq . (3.2.40)

Therefore the effect of including a contact interaction between two colour octet, (8, 1, 0)

left-handed quark currents is already present as a particular linear combination of prod-

ucts of colour singlet, isospin singlet and triplet currents (1, 1, 0) and (1, 3, 0) respec-

tively.

In reordering the fields to have colour, isospin and spinor indices contracted in the

same order between the fermions in each billinear, we also have permuted generation

indices. To be fully general and parametrize interactions with generic flavour con-

figurations, Qprst should be considered as a set of independent operators indexed by

p, r, s, t = {1, 2, 3}. In this picture, each of these operators has Wilson coefficient Cprst,

an element of a 3× 3× 3× 3 matrix in flavour space. Allowing for different arrangements

of flavour indices in a given operator is thus essential to encoding relationships such as

3.2.40. A full discussion of the flavour representations of the ψ4 class operators and the

corresponding parameter counting can be found in [40].

3.2.2 Euler-Lagrange Equations

The classical Equations of Motion (EoM) for the SM are the set of 9 Euler-Lagrange

equations obtained by minimizing the action functional S =
∫
d4x LSM with respect

to each of the fields {Ga
µ,W

I
µ , Bµ, ϕ, q, u, d, l, e}. For the renormalizable, dimension-four

Lagrangian LSM, these are:

i6Dl − Γeeϕ = 0 (3.2.41)

i6De− Γ†
eϕ

†l = 0 (3.2.42)
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i6Dq − Γuuϕ̃+ Γddϕ = 0 (3.2.43)

i6Du− Γ†
uϕ̃

†q = 0 (3.2.44)

i6Dd− Γ†
dϕ

†q = 0 (3.2.45)

(DµDµϕ)
j −m2ϕj + λ

(
ϕ†ϕ

)
ϕj + ēΓ†

e l
j − εjkq̄

k Γuu + d̄Γ†
dq

j = 0 (3.2.46)

(DρGρµ)
A − gs

(
q̄γµT

Aq + ūγµT
Au + d̄γµT

Ad
)
= 0 (3.2.47)

(DρWρµ)
I − g

2

(
ϕ†i
↔

D I
µ ϕ + l̄γµτ

I l + q̄γµτ
Iq
)
= 0 (3.2.48)

∂ρBρµ − g′Yϕ ϕ†i
↔

Dµ ϕ− g′
∑

ψ∈{l,e,q,u,d}
Yψ ψ̄γµψ = 0, (3.2.49)

each of which is of the form:

δ

δΦA(x)

(∫
d4x′ LSM

)
=
∂LSM

∂ΦA
− ∂µ

(
∂LSM

∂(∂µΦA)

)
= 0, (3.2.50)

where ΦA represents any field in LSM carrying generic indices A.

Despite describing the evolution of classical fields (i.e. those following the classical

trajectories that minimize the action), it is a well-known result in Quantum Field The-

ory [12, 46] that at the quantum level, matrix elements of the (linear combinations of)

operators on the left hand sides of 3.2.41 - 3.2.49 vanish between on-shell states. These

linear combinations, which we will denote by E, are obtained from varying the gauge-

invariant Lagrangian with respect to a field in some representation of GSM , so each of

the terms carries the same quantum numbers.

The appropriate generalization of the classical Euler-Lagrange equations are the

Schwinger-Dyson equations, which for the special case of S-matrix elements take the

form:

Si→f ≡
〈
f

∣∣∣∣
δ

δΦA(x)

(∫
d4x′ LSM

)
ΦB ΦC . . .

∣∣∣∣ i
〉

= 0

This holds for a general correlation function between f and i, any on-shell final and

initial states respectively, whenever generic field operators Φ appear with one of the

combinations of operators obtained from minimizing the action. 3.2.41 - 3.2.49 play this

role in the SM, and since they don’t contribute to scattering observables, the classical

equations can be taken literally.

In the full dimension-six Lagrangian L(6), operators of interest carry coefficients pro-

portional to Λ−2. The Euler-Lagrange equations for L(6) will then be those of LSM, plus
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the additional terms arising from taking functional derivatives of the higher-dimensional

operators unique to L(6). However, if we aim to use these EoM to replace products of

fields in operators that are suppressed through their coefficients by the scale Λ−2, the

resulting terms will be O(Λ−4), and can be neglected when working to O(Λ−2). Then

those EoM obtained from LSM alone will suffice as the relations which make linear com-

binations of operators redundant at dimension six.

As an example of how the EoM can be used to identify redundant linear combinations,

we can write down a dimension six operator:

Q ≡ CQ (DµGµν)
A (ūγνTAu),

and take note that, according to 3.2.47:

[
DρGA

ρµ − gs(q̄γµTAq) − gs(ūγµT
Au) − gs(d̄γµT

Ad)
]
(ūγµTAu) = O(Λ−4)

We can use this constraint to eliminate Q in favour of a linear combination of three

four-fermion operators as:

Q = CQ (DµGµν)
A (ūγνTAu) (3.2.51)

= gsCQ
(
(q̄γµT

Aq)(ūγµTAu) + (ūγµT
Au)(ūγµTAu) + (d̄γµT

Ad)(ūγµTAu)
)
+O(Λ−4).

Generally, whenever a gauge-invariant operator contains any of the terms in 3.2.41 -

3.2.49 (the products of fields which arise as the conserved currents or partial derivatives

of L associated with minimizing S with respect to a field), one can use the EoM to

substitute this operator for a related linear combination.

This approach has been traditionally used as a tool to reduce the number of covariant

derivatives present in a given set of operators as far as possible [47]. This is an agnostic

convention through which one unique prescription for eliminating terms using the EoM

is decided upon. Appealing again to the language introduced in [14], this corresponds,

in the example given by 3.2.51, to a mapping between operator classifications which can

be denoted as:

ψ2XD → ψ4 + E (3.2.52)

where E represents any linear combination of operators (in this case, that of 3.2.47)

which vanishes by the EoM. It is customary to say that - for a fixed mass dimension
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- an operator possessing fewer covariant derivatives than another belongs to a ‘lower’

classification. Applying the EoM identities in this way then corresponds to a reduction

of this operator to some sum of others belonging to lower classifications.

The opportunity afforded by the EoM identities to express the same physics using

different choices of operators can be taken advantage of by tailoring the set used towards

a particular phenomenological application. The so-called SILH Lagrangian [48, 49], one

of the commonly used dimension six operator bases for the SMEFT, is one such example.

Motivated by BSM models of strongly interacting Higgs sectors, one can use the freedom

of EoM redefinitions to instead maximally represent the Higgs field ϕ, the Electroweak

gauge bosons Wµν and Bµν , and their derivatives. By integrating out the heavy states

in the hypothetical strongly interacting sector, one will obtain a particular set of higher-

dimensional operators which - while equivalent to linear combinations of others by the

EoM - will have a more direct interpretation in terms of the new physics model. For

example, integrating out a heavy SU(2)L scalar doublet with mass mρ produces the

ϕ2D4 class dimension-six operator [48]:

Q ≡ CQ
m2
ρ

(DµD
µϕ†)(DνD

νϕ), (3.2.53)

Where the scale Λ is explicitly identified with the mass of the heavy state mρ. If we

were to use a basis of operators in which the EoM were used to minimize the number of

covariant derivatives, Q would be expressed as:

Q
3.2.46→ CQ

m2
ρ

(DµD
µϕ†)

(
µ2ϕ− λ(ϕ†ϕ)ϕ− ēΓ†

e l + εjkq̄
k Γuu− d̄Γ†

dq
)
+O(Λ−4)

3.2.46→ CQ
m2
ρ

(
µ2ϕ† − λ(ϕ†ϕ)ϕ† − l̄ Γee− εjkūΓ†

uq
k − q̄ Γdd

)

×
(
µ2ϕ− λ(ϕ†ϕ)ϕ− ēΓ†

e l + εjkq̄
k Γuu− d̄Γ†

dq
)
+O(Λ−4). (3.2.54)

Through the EoM, the physical contributions of the operator 3.2.53 to S-matrix elements

are identical to those of 3.2.54 - one particular linear combination of dimension-six op-

erators belonging to the classifications ϕ6 , ϕ3ψ2 , L̄RL̄R and L̄RR̄L . Suppose

that this heavy scalar existed, but to remain indifferent towards the probability of one

BSM model being realized over another, we used a basis containing the latter operators,

allocating each of them an independent Wilson Coefficient. Despite the physical effects

being identical in both descriptions, measurements targeting the set of lower classifica-
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tion operators would have to establish that only the single linear combination controlled

by
CQ

m2
ρ

in 3.2.54 was realized.

Without knowledge of the BSM physics, clearly it isn’t possible to make a choice

of basis which directly corresponds to operators generated by integrating out the heavy

fields. However, if we had evidence to suggest the realization of one particular model or

class thereof in nature, a prudent choice of basis could be made in which measurements of

Wilson Coefficients would have a more immediate interpretation in terms of the masses

and couplings of new states.

In re-expressing Q in this basis, the linear combination 3.2.54 also contained operators

of the form:

Q ⊃ µ2λCQ
m2
ρ

(ϕ†ϕ)2 ,
µ2CQ
m2
ρ

ϕ†ēΓ†
e l ,

µ4λCQ
m2
ρ

(ϕ†ϕ) . . .

Since the quadratic coefficient in the Higgs potential µ is itself dimensionful, using the

EoM in this case has produced dimension two and four terms proportional to operators

already present in LSM. These rescale the coefficients of the renormalizable SM operators

by terms of O( µ4
m2

ρ
) and O( µ2

m2
ρ
) respectively. In this case, a global redefinition of the

parameters λ, Ye and µ should be made to restore the canonical normalization of LSM.

This will be detailed in the next section.

The EoM also play an important role in perturbative calculations beyond the leading

order which include higher-dimensional operators. It is a general feature that operators

with mass dimension greater than four are mixed by radiative corrections. That is,

their correlation functions can produce UV poles which must be absorbed in the coun-

terterms of other operators. This ‘additive renormalization’ is in contrast to the solely

‘multiplicative’ renormalization characteristic of Lagrangians containing operators up to

dimension four. In dimensional regularization, the general relationship between bare

and renormalized d > 4 operators would be written as:

Qi
0 = Zij(µ)Q

j(µ), (3.2.55)

where {Q} is a set of N operators indexed by i and renormalized at the scale µ, with

ultraviolet divergences contained in Zij , an N ×N , non-diagonal matrix.

In the context of the SM, this was first encountered when calculating the QCD

corrections to the effective Fermi description of the weak interaction obtained in the
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limit s ≪ m2
W

∗. In the SMEFT, QCD and Electroweak corrections can in this way

generate operators belonging to the EoM vanishing combinations 3.2.41 - 3.2.49, which

are redundant in the chosen basis. The EoM must then be used to reorganize the

UV poles back into the coefficients of the original operator set. This procedure was

detailed and applied to the ‘Warsaw’ operator basis for the SMEFT [14] by the authors

of Refs. [40,50,51]. Hereby the one-loop counterterms for the dimension-six SMEFT are

now known, provided one always expresses effective operators in this basis.

3.2.3 Integration-by-Parts Identities

Because the action functional S is an integral of the Lagrange density over all spacetime,

we are free to add to L a term proportional to a total divergence:

S ≡
∫
d4xL =

∫
d4xL+ ∂µJ µ,

where in this notation J µ represents any local operator carrying one free Lorentz index

(not to be confused, for example, with a specific Noether current). In the Lagrangian of

a gauge theory, J µ must then itself be gauge-invariant, so we can identify ∂µ ↔ Dµ.

By construction, the covariant derivative DµO of any object O embedded in a repre-

sentation of GSM transforms in the same representation as O. Then, a gauge-invariant

operator possessing one or more covariant derivatives leaves behind another gauge (but

clearly no longer Lorentz) invariant piece when stripped of these. The total derivative

of this leftover operator is then precisely of the form DµJ µ, and thus doesn’t contribute

to scattering observables. However, through the Leibniz rule, this is equal to the sum

of operators obtained from acting with Dµ on each field individually. This linear combi-

nation of operators is then redundant, as integrating any individual term by parts will

produce the remaining terms occurring when expanding out DµJ µ, plus a surface term

which integrates to zero.

Consider the following operator, the presence of which introduces additional g(gg)q̄q

couplings. This is generated (for the third generation quarks) by models in which the

top quark is a composite object [52,53], with the top radius playing the role of the scale

∗For a review of the original development of methods for calculating radiative corrections to effective
operators in flavour physics, see e.g. [6].
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Λ:

LQ ≡ CprQpr + h.c. = Cpr(q̄p γ
µ TADνqr)G

A
µν + C∗

pr(D
ν q̄r γ

µ TA qp)G
A
µν . (3.2.56)

Here, flavour indices p and r, and the hermitian conjugate Q† (which we had to add

since Q† 6= Q) are written explicitly to illustrate a few points. In general, upon conjuga-

tion, flavour indices in a fermion billinear are transposed. This impacts the parameter

counting - that is, the allocation of real or complex Wilson Coefficients - in a way that

depends on the symmetries of the operator in question. Here, we allocated the most

general 3× 3 matrix of complex coefficients Cpr (possessing 18 independent parameters),

as was required by hermiticity.

If instead we had been interested in the operator:

L′
Q ≡ C ′

prQ
′
pr + h.c. = C ′

pr(q̄p γ
µ TA qr)D

νGA
µν + C ′∗

pr(q̄r γ
µ TA qp)D

νGA
µν

= C ′
prQ

′
pr + C ′∗

prQ
′
rp

=⇒ C ′∗
pr = C ′

rp. (3.2.57)

we’d find that, since the left-handed quark doublets are distinguished only by their gen-

eration indices and GA
µν is hermitian, hermiticity is ensured simply by summing over the

flavour indices p and r. Cpr is then hermitian in flavour space, with 1/2nf(nf + 1) = 6

real and 1/2nf (nf − 1) = 3 imaginary entries, the latter of which represent CP-odd

couplings. Put otherwise, since hermitian conjugation and flavour-transposition are

equivalent, there can only be as many unique parameters as there are permutations of

flavour indices. The same considerations apply generally: any symmetries associated

with interchanging fields or indices can relate Wilson Coefficients associated with differ-

ent flavour arrangements of the same operator. Care must then be taken to avoid over

or undercounting ∗.

Returning to 3.2.56, the (q̄ ↔ q) ≡ (p ↔ r) interchange symmetry is no longer

present due to the covariant derivative Dν , Cpr is unrestricted, and the flavour-diagonal

arrangements of Q may carry imaginary Wilson Coefficients which give rise to CP-

violation. For a given choice p ≤ r, the redundant linear combination arising from the

total divergence is:

DνJν = Dν((q̄p γ
µ TA qr)G

A
µν + h.c.) = 0

∗This issue was tackled systematically for one choice of basis in [40].
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=⇒ ((q̄p γ
µ TADνqr)G

A
µν + (Dν q̄r γ

µ TA qp)G
A
µν)

+ ((q̄r γ
µ TADνqp)G

A
µν + (Dν q̄p γ

µ TA qr)G
A
µν)

+ ((q̄p γ
µ TA qr)D

νGA
µν + (q̄r γ

µ TA qp)D
νGA

µν) = 0, (3.2.58)

where the individual hermitian (physical) combinations are collected in parentheses. Sup-

pose that the new physics generated flavour-violating interactions related to the top’s

substructure, and Λ corresponded to the confinement scale of the composite dynam-

ics. In 3.2.56, the preferential action of Dν on one particular quark flavour would arise

naturally from integrating out any dynamics which distinguished between the heavy

(composite) and light quarks. Through 3.2.58, gauge symmetry then dictates that the

dimension-six operators corresponding to effects with physically distinct origins are re-

lated, as both the configurations Dνqp and Dνqr appear in the total derivative. Any two

of the three hermitian operators may then be taken as an independent pair.

To see one physical consequence of operators being related through total divergences,

consider the flavour-diagonal arrangements p = r in 3.2.56:

LppQ = Rp((q̄p γ
µ TADνqp)G

A
µν + (Dν q̄p γ

µ TA qp)G
A
µν)

+ iIp((q̄p γ
µ TADνqp)G

A
µν − (Dν q̄p γ

µ TA qp)G
A
µν) (3.2.59)

where the complex Wilson Coefficients Cpp are written explicitly as the sum of their real

and imaginary parts Rp+ iIp, and the terms arranged into orthogonal CP-even and odd

combinations respectively. The flavour-diagonal constraint in equation 3.2.58 implies

the relationship:

((q̄p γ
µ TADνqp)G

A
µν + (Dν q̄p γ

µ TA qp)G
A
µν)

= −((q̄p γµ TA qp)DνGA
µν +O(Λ−4) ≡ −QE +O(Λ−4).

We see that the CP-even combination is redundant with the operator QE , while the

CP-odd counterpart is unconstrained. Through the equation of motion for the gluons

3.2.47, DνGA
µν is proportional to the Noether currents associated with the SU(3)C gauge

symmetry, which are the colour-octet quark billinears. By making this replacement,

we are free to move to a basis in which QE is represented by a linear combination

of four-quark operators. Then, despite the the CP-even effective Lagrangian in 3.2.56

describing a gluon-top interaction, its contribution to S-matrix elements with external

gluons vanishes, such as in gg → tt̄ scattering.
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Equivalently, QCD amplitudes obey Ward identities resulting from the conservation

of colour current. IfM is the momentum space amplitude for a scattering process with

external gluons, kµMµ = 0, where kµ is the four-momentum vector of any external

gluon, andMµ the amplitude with the external gluon leg removed. Since the covariant

derivative Dν and the gluon tensor Gµν share a Lorentz index, insertions of this operator

will give rise to terms proportional to kν , which must then cancel.

G

G

t

t
G

G

t

tG

G

G

t

t

t

Figure 3.2: Tree-level topologies for gg → t̄t in the SMEFT. Insertions of the CP-even oper-
ator 3.2.59 at each (g)gt̄t vertex (represented by shaded circles) cancel due to the
Ward identity.

By examining the structure of the redundancies affecting 3.2.56, we have revealed

some properties that may not have been obvious from the outset. The presence of the

additional coupling of the top to gluons is only felt in the scattering of quarks, as required

by gauge symmetry. However, the CP-odd part of the Lagrangian is not subject to this

restriction, and will leave a physical footprint in suitable observables in gluon-gluon

scattering.

3.3 Working with an Operator Basis in the

Electroweak Broken Phase

Having explored the construction of dimension-six operators, the mechanisms by which

they can become related, and some simplifying symmetry-based assumptions which can

reduce the total number of terms, we should examine the complete Lagrangian at this

order. We aim to implement a complete set of operators as a model which we can

use, particularly to understand and search for possible footprints of non-resonant new

physics in top quark production. We adopt the standard ‘Warsaw’ basis described in

[54], wherein the independent operators are chosen to belong to the lowest possible clas-

sifications. L(6) henceforth refers to this basis unless stated otherwise, which will be

summarized here for completeness. The content of the following discussion is reflected
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in a fully general FeynRules [10,34] model for the SMEFT which was implemented in

parallel. This is a Mathematica package allowing the implementation of user-defined

Lagrangians for general quantum field theory models, and extracting from these corre-

sponding input files for event generators containing the relevant coupling and parameter

information. This will underpin our phenomenological applications in the subsequent

chapters.

L(6) supplements the LSM with 59 (2499) additional B-conserving terms ∗ for one

(three) generation(s) of fermions. The operators organized according to their classifica-

tions are shown in tables 3.3 and 3.4. This basis makes use of the definitions:

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσ
µνer)τ

IϕW I
µν Q

(1)
ϕl (ϕ†i

↔

Dµ ϕ)(l̄pγ
µlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσ
µνer)ϕBµν Q

(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσ
µνTAur)ϕ̃G

A
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγ
µer)

QϕW̃ ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσ
µνur)τ

I ϕ̃W I
µν Q

(1)
ϕq (ϕ†i

↔

Dµ ϕ)(q̄pγ
µqr)

QϕB ϕ†ϕBµνB
µν QuB (q̄pσ

µνur)ϕ̃ Bµν Q
(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνB
µν QdG (q̄pσ

µνTAdr)ϕG
A
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγ
µur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσ
µνdr)τ

IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγ
µdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσ
µνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγ

µdr)

Table 3.3: Non four fermion dimension-six operators in the Warsaw basis.

∗There are five more B-violating operators.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγ
µlt) Qee (ēpγµer)(ēsγ

µet) Qle (l̄pγµlr)(ēsγ
µet)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [

(qγjs )TClkt
]

Q
(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs)

TCet
]

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt) Q
(1)
qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q
(1)
lequ (l̄jper)εjk(q̄

k
sut) Q

(3)
qqq εαβγ(τ Iε)jk(τ

Iε)mn
[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q
(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )

TCuβr
] [

(uγs )
TCet

]

Table 3.4: Four-fermion operators.

ϕ†i
↔

Dµ ϕ ≡ iϕ†
(
Dµ −

←

Dµ

)
ϕ and ϕ†i

↔

D I
µ ϕ ≡ iϕ†

(
τ IDµ −

←

Dµτ
I
)
ϕ, (3.3.60)

where ϕ†←Dµϕ ≡ (Dµϕ)
†ϕ. This implicitly includes the hermitian conjugates in the defi-

nitions of non self-hermitian operators in which ϕ appears. After Electroweak symmetry

breaking, and working in the unitary gauge where ϕ = 1√
2
(0, H + v)T , each higher-

dimensional operator involving the Higgs doublet acquires separate contributions from

the dynamical Higgs boson H and the static vacuum expectation value of the Higgs

field, v. This leads in L(6) to the appearance of terms of the form v2CiQ
(4)
i in the broken

Electroweak phase, where Q
(4)
i is a dimension-four operator. The presence of such terms

mixes the renormalizable operators in LSM with dimension-six operators by terms of

O(v2/Λ2), destroying the canonical normalization and diagonality of the kinetic and mass
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terms and rescaling each coupling. This necessitates a further redefinition of the param-

eters of LSM to absorb these contributions, which can be thought of as a tree-level finite

renormalization of LSM . In an analogous fashion to conventional UV renormalization,

this results in a dependence in the parameters of the theory such as the gauge couplings

on the values of these Wilson Coefficients.

Since we work to O(Λ−2), we aim for a set of parameters consistent also to this order.

This means in particular that field rescalings may be treated as a higher-order effect

in the dimension-six sector and neglected∗. The following relationships were verified

explicitly in FeynRules.

3.3.1 The Higgs Sector

Potential

The operator Qϕ changes the shape of the scalar doublet potential at order v2/Λ2 to:

V (ϕ) = λ

(
ϕ†ϕ− 1

2
v2
)2

− Cϕ
(
ϕ†ϕ

)3
, (3.3.61)

With the implicit definition µ2 = −v2λ. Minimizing this potential:

∂V

∂|ϕ| = −2|ϕ|(3Cϕ|ϕ|
4 − 2λ|ϕ|2 + λv2) = 0, (3.3.62)

One defines the new vacuum expectation value in the usual way with 〈ϕ†ϕ〉 := 1
2
v2T , and

chooses the solution to the quadratic equation which reproduces the SM vev at C = 0.

1

2
vT

2 :=
1

3Cϕ

(
λ− λ

√(
1− 3Cϕv2

λ

))
(3.3.63)

Expanding this expression to second order in C in a binomial series to obtain vT :

〈ϕ†ϕ〉 := 1

2
vT

2 =
1

3Cϕ
(λ− λ(1− 3Cϕv

2

2λ
− 9Cϕ

2v4

8λ2
))

v2T =
v2

2

(
1 +

3Cϕv
2

4λ

)
(3.3.64)

∗A similar procedure had been detailed previously in Higgs physics, for example for the SILH
operators [49]. At the time of implementing this for the Warsaw basis, [40] published the analagous
set of redefinitions for L(6), with which these results agree up to minor differences in convention.
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The shift in the vev is then proportional to Cϕv
2, which is of order v2/Λ2.

Kinetic Normalization

The kinetic Lagrangian is modified by the presence of the ϕ4D2 operators and becomes:

L = (Dµϕ
†)(Dµϕ) + Cϕ�

(
ϕ†ϕ

)
�
(
ϕ†ϕ

)
+ CϕD

(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
, (3.3.65)

Leaving the Higgs-Gauge Boson interaction terms for later, and transferring one deriva-

tive on Qϕ� to the other doublet product and ignoring the implicit surface term, we first

write the scalar field as:

ϕ =




−i [1 + c± ]G+

1√
2
(vT + [1 + cH ] h+ i [1 + c0]G0)


 , (3.3.66)

Where cH , c0 and c± are order C terms included in each of the renormalization factors

inserted whose values we may choose to restore the canonical scalar field kinetic normal-

ization.

Expanding the kinetic pieces of the Lagrangian which is now:

L = (∂µϕ
†)(∂µϕ)− Cϕ�∂µ

(
ϕ†ϕ

)
∂µ
(
ϕ†ϕ

)
+ CϕD

(
ϕ†∂µϕ

)∗ (
ϕ†∂µϕ

)
, (3.3.67)

The coefficient of h in Eq. (3.3.66) is no longer unity, in order for the Higgs boson

kinetic term to be properly normalized when the dimension-six operators are included.

Collecting each of the kinetic terms one obtains:

LH,kin =
1

2
(1 + cH)

2

(
1 + 2v2

(
CϕD
4
− Cϕ�

))
∂µh∂

µh,

LG0,kin =
1

2
(1 + cG0)

2

(
1 + 2v2

CϕD
4

)
∂µG0∂

µG0,

LG± ,kin =
1

2
(1 + cG± )2∂µG+∂

µG− (3.3.68)

Expanding the renormalization factors to first order in c and demanding that each of

the prefactors then be equal to unity yields the necessary values:

cH = v2
(
Cϕ� −

CϕD
4

)
,
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cG0 = −v2
CϕD
4
,

cG± = 0 (3.3.69)

In the unitary gauge, collecting the kinetic and potential parts of the Higgs Lagrangian

one obtains:

L =
1

2
(∂µh)

2 − cH
v2T

[
h2(∂µh)

2 + 2vh(∂µh)
2
]
− λv2T

(
1− 3Cϕv

2

2λ
+ 2cH,kin

)
h2

− λvT
(
1− 5Cϕv

2

2λ
+ 3cH,kin

)
h3 − 1

4
λ

(
1− 15Cϕv

2

2λ
+ 4cH,kin

)
h4 +

3

4
Cϕvh

5 +
1

8
Cϕh

6,

(3.3.70)

for pure Higgs terms. The Higgs boson mass is modified to:

m2
H = 2λv2T

(
1− 3Cϕv

2

2λ
+ 2cH,kin

)
. (3.3.71)

3.3.2 Gauge Sector

The definition of the gauge fields and the gauge couplings are affected by the dimension-

six terms. The relevant dimension-six Lagrangian terms are:

L(6)
Gauge = CϕG (ϕ†ϕ)GA

µνG
Aµν + CϕW (ϕ†ϕ)W I

µνW
Iµν + CϕB (ϕ†ϕ)BµνB

µν

+ CϕWB (ϕ†τ Iϕ)W I
µνB

µν + CG f
ABC GAν

µ GBρ
ν GCµ

ρ + CW ǫIJKW Iν
µ W Jρ

ν WKµ
ρ .

In the broken theory, the X2ϕ2 operators contribute to the gauge kinetic terms,

LSM + L(6) = −1
2
W+
µνW

µν
− −

1

4
W 3
µνW

µν
3 −

1

4
Bµν B

µν − 1

4
Gµν G

µν +
1

2
v2T CϕGG

A
µν G

Aµν ,

+
1

2
v2T CϕWW

I
µνW

Iµν +
1

2
v2T CϕBBµνB

µν − 1

2
v2T CϕWBW

3
µνB

µν . (3.3.72)

so the gauge fields in the Lagrangian are not canonically normalized, and the last term

in Eq. (3.3.73) leads to kinetic mixing between W 3 and B.

Gluons

The Gluon field can be renormalized in a similar fashion to the Higgs Boson, but with

the caveat that one must also redefine the gauge coupling constant to absorb one factor
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of field renormalization in the gluon self-interaction term. Collecting Gluon terms, and

schematically writing the normalized field as Gµ satisfying Gµ = (1+ cG)
1

2Gµ, the kinetic

Lagrangian is now:

LGluons = −
1

4
(1− 2v2T CϕG)GµνG

µν .

= −1
4
(1− 2v2T CϕG) (1 + cG)

−1 Gµν Gµν ,

= −1
4
GµνGµν . (3.3.73)

Again demanding canonical normalization by choosing a value for cG to make this equal

to one, and expanding to first order in C, one identifies the necessary gluon rescaling as:

GA
µ = GAµ

(
1 + CϕGv

2
)
, (3.3.74)

With the D6 contribution to the Gluon normalizations as,

cG = −2v2CϕG, (3.3.75)

provided one makes the simultaneous redefinition of gs:

gs = gs
(
1 + CϕG v

2
)
, (3.3.76)

so that the products g3G
A
µ = gsGAµ , etc. are unchanged.

Electroweak Bosons

The normalization of the Electroweak terms proceeds identically to that of the Gluon

terms, and yields the field redefinitions:

W I
µ =WI

µ

(
1 + CϕW v

2
)
, (3.3.77)

Bµ = Bµ
(
1 + CϕBv

2
)
. (3.3.78)

With the dimension six contributions being;

cW = −2v2CϕW ,
cB = −2v2CϕB , (3.3.79)
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and coupling rescalings:

g2 = g2
(
1 + CϕW v2

)
, (3.3.80)

g1 = g1
(
1 + CϕB v

2
)
. (3.3.81)

The Electroweak kinetic terms are now,

L = −1
2
W+

µνWµν
− −

1

4
W3

µνWµν
3 −

1

4
Bµν Bµν −

1

2

(
v2TCϕWB

)
W3

µνBµν . (3.3.82)

The kinetic terms of the W3 and B bosons are now described by the quadratic form,

LKin = −
1

4



W3

µν

Bµν




T 


1 v2T CϕWB

v2T CϕWB 1






Wµν

3

Bµν


 (3.3.83)

which must be rewritten so as to absorb the off-diagonal, O(C) terms into redefinitions

of the W3 and B fields. We can choose a matrix decomposition K = T TT where T

is an upper triangular matrix which we interpret as a transformation on the vector of

field strength tensors F =
(
W3

µν ,Bµν
)
. Then F TKF = (TF )T I(TF ) where we identify

the new vector of field strength tensors which yields diagonal kinetic terms as TF . We

perform this decomposition and find to order C:

K = T TT = −1
4




1 0

v2CϕWB 1







1 v2CϕWB

0 1


 (3.3.84)

We can immediately then redefine the basis of field strength tensors to absorb these

transformation matrices. T can be taken as a second and final transformation on the

vector of
(
W3

µ,Bµ
)

fields directly, so that:




W3
µ

Bµ


 =




1 v2T CϕWB

0 1






W3

µ

Bµ


 (3.3.85)

The kinetic Lagrangian is now simply:

LKin = −1
4
WI

µνW
µν
I −

1

4
BµνB

µν = −1
2
W+

µνW
µν
− −

1

4
W3

µνW
µν
3 −

1

4
BµνB

µν . (3.3.86)
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where W1,2
µ ≡ W1,2

µ . The mass terms for the gauge bosons from LSM and the ϕ4D2

operators of L(6) are:

L =
1

4
g22v

2
TW

+
µ W

−µ +
1

8
v2T (g2W

3
µ − g1Bµ)

2 +
1

16
v4TCϕD(g2W

3
µ − g1Bµ)

2 (3.3.87)

Rewriting this using the set of identities for each vector boson g2W
I
µ = g2WI

µ and so on,

and transforming to the basis of
(
WI

µ, Bµ

)
we can calculate the new mass matrices and

coupling definitions. From the starting point:

Lmass =
1

4
g2

2v2TW+
µW−µ +

1

8
v2T (g2W3

µ − g1Bµ)2 +
1

16
v4TCϕD(g2W3

µ − g1Bµ)2. (3.3.88)

The W± mass term can be read off as:

M2
W ± =

1

4
g2

2v2T . (3.3.89)

The W3 and B terms can be rewritten:

Lmass =
1

2

(
1

4
v2T

(
1 +

1

2
v2TCϕD

))


W3

µ

Bµ




T 


g2
2 −g1g2

−g1g2 g1
2






Wµ

3

Bµ


 .

Absorbing the matrices T of 3.3.85 into the mass matrix which we call MZA gives:

MZA =

(
1

8
v2T

(
1 +

1

2
v2TCϕD

))



g2
2 −g2(g1 + v2Tg2CϕWB)

−g2(g1 + v2T g2CϕWB) (g1 + v2Tg2CϕWB)
2


 .

This can be diagonalized in the usual way using eigendecomposition to obtain:

MZA =

(
1

8
v2T

(
1 +

1

2
v2CϕD

))


g1

2 + g2
2 + 2g1g2v

2CϕWB 0

0 0


 (3.3.90)

Where the matrix of eigenvectors which rotates the fields W3 and B onto mass eigen-

states A and Z is written as usual as:




Zµ

Aµ


 =




cos θ − sin θ

sin θ cos θ







W
µ
3

Bµ


 ,
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With entries:

sin θ =
g1√

g1
2 + g2

2

[
1 + v2

g2
g1

g2
2

g2
2 + g1

2CϕWB

]
,

cos θ =
g2√

g1
2 + g2

2

[
1− v2 g2

g1

g1
2

g2
2 + g1

2CϕWB

]
. (3.3.91)

These satisfy sin2 θ + cos2 θ = 1 +O(C2). The Z mass is:

M2
Z =

v2T
4
(g1

2 + g2
2) +

1

8
v4CHD(g1

2 + g2
2) +

1

2
v4g1g2CϕWB. (3.3.92)

Inserting the new definitions for the Photon and Z into the covariant derivative gives the

modifications to the electromagnetic and Z coupling constants. The covariant derivative

(for SU(2)L×U(1)Y ) is now:

Dµ = ∂µ + i
g2√
2

[
W+

µ T
+ +W−

µ T
−]+ ig2T

3
[
W3

µ − v2TCϕWBBµ

]
+ i g1 Y Bµ,

= ∂µ + i
g2√
2

[
W+

µ T
+ +W−

µ T
−]+ i

[
g2T3(cos θ + v2TCϕWB sin θ)− g1Y sin θ

]
Zµ

+ i
[
g2(sin θ − v2TCϕWB cos θ) T 3 + g1 cos θ Y

]
Aµ,

= ∂µ + i
g2√
2

[
W+

µ T
+ +W−

µ T
−]+ i gZ

[
T 3 − (s2 + κ)Q

]
Zµ + i eQAµ (3.3.93)

where the electric charge is Q = T3 + Y , and the effective couplings are now given by:

e =
g1g2√
g2

2 + g1
2

[
1− g1g2

g2
2 + g1

2 v
2CϕWB

]
= g2 sin θ − 1

2
cos θ g2 v

2CϕWB,

gZ =
√
g2

2 + g1
2 +

g1g2√
g2

2 + g1
2
v2CϕWB =

e

sin θ cos θ

[
1 +

g1
2 + g2

2

2g1g2
v2CϕWB

]
,

s2 + κ = sin2 θ + κ =
g1

2

g2
2 + g1

2 +
g1g2(g2

2 − g12)
(g1

2 + g2
2)2

v2CϕWB. (3.3.94)

This differs slightly to the conventions in [40], where the authors define more symmetric

sin θ and cos θ parameters, in order to retain the SM Z coupling structure of (T 3−sin2 θ Q)

at the price of having the renormalized W3 and B bosons no longer related to the Z
and A by a pure rotation matrix. This affects only the definitions of the mixing angles,

either containing the complete information relating the W3 and B to the Z and A or

being supplemented by an additional linear transformation related to the kinetic mixing

matrix. The Lagrangian and hence physical predictions are unaffected.
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3.3.3 Yukawa Sector

Fermion Mass Matrices

The inclusion of the ψ2ϕ3 class operators modifies the fermions’ couplings to the Higgs

field, necessitating a redefinition of both their mass matrices and Yukawa couplings in

order to recover mass eigenstates. Furthermore, these O(v2/Λ2) terms break the simple

proportionality relationship between the mass and Yukawa matrices that exists in the

SM.

The relevant Lagrangian terms in the unbroken theory are:

L = −
[
qr [Yd]rs dsϕ+ qr [Yu]rs us ϕ̃+ lr [Ye]rs es ϕ+ h.c.

]

+
[
Cdϕ
rs

(
ϕ†ϕ

)
ϕ†qrds + Cuϕ

rs

(
ϕ†ϕ

)
ϕ̃†qrus + Ceϕ

rs

(
ϕ†ϕ

)
ϕ†lres + h.c.

]
, (3.3.95)

Rediagonalizing the mass matrices is necessary to eliminate the tree-level quark mixing

two point functions induced whenever any of the Wilson Coefficients Cψϕ
rs

are non-zero

for r 6= s.

Collecting together the relevant terms, and demanding a real, diagonal mass matrix

proceeds analagously to constructing the SM mass terms. Expanding the Higgs fields

about their minimum, we write the fermion mass terms in the usual manner as:

Lmass = −
[
dL,r [Md]rs dR,s + uLr [Mu]rs uR,s + eL,r [Me]rs eR,s + h.c.

]
(3.3.96)

Where the mass matrices are now identified as:

[Mψ]rs =
vT√
2

(
[Yψ]rs −

1

2
v2Cψϕ

rs

)
, ψ = u, d, e (3.3.97)

Using a singular value decomposition of these matrices for each fermion generation, Mψ

may be rewritten as Mψ = UDV †, where U and V are unitary matrices and D is a real,

positive-definite diagonal matrix. As in the SM, we can then exploit the freedom to

make a global unitary rotation of the left- and right-handed fermion flavours to absorb

the matrices U and V , then interpreting D as the matrix of the mass eigenstates in the

EFT.

Each U and V should reduce to the identity matrix in the limit that all Wilson

Coefficients are zero, such that D is equal to the SM mass matrix. Then by writing each



The Standard Model Effective Field Theory 63

of the matrices U , V and D as a power series in Λ:

U = U0 + Λ−2 U1 +O(Λ−2) . . .

we can separate the zeroth order SM pieces from those dependent on the Wilson Coef-

ficients. Working as usual at O(Λ−2), we can distinguish the diagonal SM mass matrix

for each fermion species M0 ≡ D0 from the EFT contributions by writing M =M0+M1

and identifying the O(Λ−2) coefficients:

M1 = U1D0 +D0 V
†
1 +D1.

The unitarity of U and V , together with the requirement that D must be real and

diagonal, yield three further conditions which, when solved simultaneously, specify each

U , V and D to first order in the Wilson Coefficients.

U1 = −U †
1 , V1 = −V †

1 , D1 = D∗
1

Taking the example of the left-handed up-type quarks, the mass eigenstates are now

Uu
rs u

s
L, where:

Uu =




1 + v2T
iℑm(C11

uϕ)

4yu
v2T

(yuC
12
uϕ + ycC

21∗
uϕ )

2(y2u − y2c )
v2T

(yuC
13
uϕ + ytC

31∗
uϕ )

2(y2u − y2t )

v2T
(ycC

21
uϕ + yuC

12∗
uϕ )

2(y2c − y2u)
1 + v2T

iℑm(C22
uϕ)

4yc
v2T

(ytC
23
uϕ + ycC

32∗
uϕ )

2(y2c − y2t )

v2T
(ytC

31
uϕ + yu C

13∗
uϕ )

2(y2t − y2u)
v2T

(ytC
32
uϕ + ycC

23∗
uϕ )

2(y2t − y2c )
1 + v2T

iℑm(C33
uϕ)

4yt



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with flavour indices r and s. Meanwhile, the right-handed up-type quark mass eigen-

states are V u
rs u

s
R, with:

V u =




1− v2T
iℑm(C11

uϕ)

4yu
v2T

(ycC
12
uϕ + yuC

21∗
uϕ )

2(y2u − y2c )
v2T

(ytC
13
uϕ + yuC

31∗
uϕ )

2(y2u − y2t )

v2T
(yuC

21
uϕ + ycC

12∗
uϕ )

2(y2c − y2u)
1− v2T

iℑm(C22
uϕ)

4yc
v2T

(ycC
23
uϕ + ytC

32∗
uϕ )

2(y2c − y2t )

v2T
(yuC

31
uϕ + ytC

13∗
uϕ )

2(y2t − y2u)
v2T

(ycC
32
uϕ + ytC

23∗
uϕ )

2(y2t − y2c )
1− v2T

iℑm(C33
uϕ)

4yt




While the mass matrix Mu is modified accordingly to:

Du =
vT√
2




yu − 1
2
v2Tℜe (C11

uϕ) 0 0

0 yc − 1
2
v2Tℜe (C22

uϕ) 0

0 0 yt − 1
2
v2Tℜe (C33

uϕ)




(3.3.98)

Identical expressions hold for the down-type quarks and leptons, with the SM Yukawa

couplings replaced by their equivalent counterparts, and the analogous Wilson Coeffi-

cients Cdϕ , Ceϕ.

As in the SM, this global redefinition will cancel by virtue of the unitarity of U and

V everywhere in the Lagrangian (up to terms of order Λ−4, which are truncated) except

for in the fermion weak-gauge boson couplings, where they will augment the definition

of the CKM matrix.

The CKM Matrix

After diagonalization, and adopting the usual convention of letting the down-quarks

assume the necessarily misaligned flavour and mass eigenstates, their mass term looks

like:

Ldmass = − dL,r [Dd]rs dR,s + h.c. , (3.3.99)
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But with mass eigenstates d related to the electroweak eigenstates d′ by a unitary rota-

tion:

d = (Ud† Uu V †
CKMd

′) ≡ V
′ †
CKMd

′. (3.3.100)

Here, VCKM is the SM CKM matrix, into which we can absorb the matrices Ud and Uu

to define an effective CKM matrix, V ′
CKM . Writing V ′

CKM = VCKM + V1 + O(Λ−4) =

VCKM(I+ (Ud
1 − Uu

1 )) +O(Λ−4), the explicit O(Λ−2) contribution is:

V1 = VCKM(Ud
1 − Uu

1 ) ≡ VCKMU
du, (3.3.101)

where Udu = −Udu † has entries:

Udu
11 =

1

2
v2T
i ydℑm

(
C11
uϕ

)
− yuℑm

(
C11
dϕ

)

2 yu yd

Udu
22 =

1

2
v2T
i ysℑm

(
C22
uϕ

)
− ycℑm

(
C22
dϕ

)

2 ys yc

Udu
33 =

1

2
v2T
i ybℑm

(
C33
uϕ

)
− ytℑm

(
C33
dϕ

)

2 yb yt

Udu
12 = −Udu∗

21 =
1

2
v2T

(
ysC

12
dϕ + ydC

21∗
dϕ

y2d − y2s
− ycC

12
uϕ + yuC

21∗
uϕ

y2u − y2c

)

Udu
13 = −Udu∗

31 =
1

2
v2T

(
ybC

13
dϕ + ydC

31∗
dϕ

y2d − y2b
− ytC

13
uϕ + yuC

31∗
uϕ

y2u − y2t

)

Udu
23 = −Udu∗

32 =
1

2
v2T

(
ybC

23
dϕ + ysC

32∗
dϕ

y2s − y2b
− ytC

23
uϕ + ycC

32∗
uϕ

y2c − y2t

)

Which mix the SM CKM elements by terms of O(v2/Λ2). V ′
CKM is now unitary up to

terms of O(Λ−4).

Yukawa Couplings

The final task is then to rewrite the Yukawa couplings in terms of the new mass eigen-

states defined by U and V .

After the field redefinitions, the dimension-four fermion-higgs couplings look like:

L = −
[
dL,r [Yd]rs dR,s h+ uL,r [Yu]rs uR,s h+ eL,r [Ye]rs eR,s h+ h.c.

]
(3.3.102)
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With the coupling matrices now given by:

[Yψ]rs =
1√
2

(
[Yψ]rs (1 + cH)−

3

2
v2Cψϕ

rs

)
, ψ = u, d, e (3.3.103)

Separating this into a part proportional to the expression 3.3.97 for which we chose the

rotation matrices Uψ and Vψ to diagonalize into 3.3.98 gives:

[Yψ]rs =
1 + cH
vT

[Mψ]rs +
v2√
2
Cψϕ
rs

+ h.c. +O(Λ−4) (3.3.104)

The first term is proportional to the mass matrixM rescaled by the Higgs’ kinetic normal-

ization, while the second is an additional contribution from the ψ2ϕ3 Wilson Coefficients.

Since we chose the unitary rotations U and V acting on q, u and d to diagonalize M ,

the mass eigenstates no longer necessarily have diagonal Yukawa couplings. However,

since the flavour off-diagonal term is entirely O(Λ−2), this expression is accurate for the

rotated fields up to terms of O(Λ−4) (i.e. we can replace Mrs ↔ Drs above). As pointed

out in Ref. [40], the loss of flavour-diagonal Higgs couplings is further exacerbated by

the fact that the fermion mass and coupling parameters now also have different RGEs.

3.3.4 Input Parameter Redefinitions

The extraction of the values of the fundamental parameters in the Lagrangian from a

set of measurable physical quantities is affected by the new dependence of these on the

Wilson Coefficients. The set of measurable parameters {αEM , Gf , αs, mZ , mH ,Mψ} are

are sufficient to determine the underlying masses, couplings and mixing angles. The tree

level relationships determining these correspondences then must be inverted to propagate

this information back into L. In particular, now:

Gf = −
√
2

4

(
− 2

v2T
+ (C ll

2112
+ C ll

1221
)− 2(C

(3)
ϕl
11

+ C
(3)
ϕl
22

)

)
,

αEM =
1

4π

g1
2g2

2

g1
2 + g2

2

(
1− 2v2TCϕWB

g1g2
g1

2 + g2
2

)
,

m2
H = 2v2T

(
1− 3Cϕ

v2T
2λ

+ 2cH

)
,

m2
Z =

1

4
v2T (g1

2 + g2
2) +

1

8
v4TCϕD(g1

2 + g2
2) +

1

2
v4Tg1g2CϕWB.
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The equations for Gf and mH may be solved simultaneously for vT and λ. The resulting

parameter relations are, to O(Λ−2):

λ =

3
√
2Cϕ + (−2C(3)

ϕl
11

− 2C
(3)
ϕl
22

+ C ll
1221

+ C ll
2112

)Gf m
2
H + 2

√
2G2

f m
2
H (1− 2 cH)

4Gf

vT =
1

21/4
√
Gf

+

C
(3)
ϕl
11

+ C
(3)
ϕl
22

2 23/4G
3/2
f

−
C ll

1221

4 23/4G
3/2
f

−
C ll

2112

4 23/4G
3/2
f

Those for αEM and mZ likewise yield the couplings g1 and g2:

g1 = g1 +
v2T (4CϕWBg2 + CϕDg1)(−4m2

Z + v2T (g
2
2 − g21 + 16παEM))

32(m2
Z − 4πv2TαEM)

g2 = g2 −
v2T (2(CϕDg2 + 4CϕWBg1)m

2
Z(4m

4
Z +m2

Zv
2
T )

((m2
Z − 4πv2TαEM))

×
[
(g22 − g21 − 20παEM) + πv4TαEM(−3g22 + 3g21 + 16παEM)))

(4m2
Z + (g22 − g21)v2T )2

]

Where the g1 and g2 are the SM couplings:

g1 =

√
2

vT

(√
m2
Z −

√
m4
Z − 4m2

Zπv
2
TαEM

)

g2 =

√
2

vT

(√
m2
Z +

√
m4
Z − 4m2

Zπv
2
TαEM

)

With these specified, all other related parameters are calculated according to the rela-

tionships established previously.

It should be noted that the renormalization of the dimension-two and four parameters

of L(4)
SM in the presence of higher-dimensional operators follows the same procedure as

in the renormalizable SM. That is, choosing a renormalization scheme to define the

masses and couplings is itself not complicated by the presence of effective operators

in correlation functions - their role is to supply additional divergences which are then

cancelled by the appropriate counterterms as usual.

We have now reorganized the parameters of the Standard Model Lagrangian to accom-

modate for the presence of dimension-six operators, and incorporated this information

into a model with which we can explore phenomenological applications.
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3.4 Manipulating Effective Lagrangians in FeynRules

We have seen that - without imposing model-dependent restrictions (such as the MFV

hypothesis) - the number of free parameters for the most general set of dimension-

six operators is O(2000). While in practice we do (and should) focus attention on

phenomenologically relevant subsets of operators to keep EFT relevant and manageable,

even then it is true in general that the complexity of any calculation beyond the lowest

order in both the perturbative and EFT expansions becomes formidable. In the former

case, this is simply combinatorics - a jump in the number of couplings in L(6) relative

to the renormalizable LSM permits a dramatically higher number of Feynman diagrams

at a given loop order. In the latter, the number of valid gauge-invariant structures also

rises substantially with the larger set of possible permutations of fields applicable to

operators with higher mass dimensions.

While the value of performing higher order computations in the SMEFT is presently

limited by the empirical successes of LSM alone, it is prudent to develop tools which will

facilitate tackling them in general. Mounting datasets, improvements in experimental

systematic uncertainties and even prospects for a next-generation collider may - in the

absence of discovery - necessitate the general availability of matrix elements at next-to-

leading order, particularly if one or more non-resonant effects in tension with the SM

does appear.

Knowledge of the effective operators arising at dimension-seven and beyond may

also be useful, as the leading low-energy effects of a given model need not appear at

dimension-six. This can in some cases be inferred directly from the gauge-invariance of

the effective Lagrangian. For example, L(6) does not parametrize triple neutral gauge

boson couplings of the form (ZZZ, ZZγ . . .). UV completions which induce these in-

teractions must then do so via dimension-eight operators [55]. Conversely, structural

features of BSM scenarios can imply this directly. In models of warped extra dimen-

sions, Kaluza-Klein gravitons and radion fields couple to the energy-momentum tensor

which has mass dimension four, such that the tree-level interactions with SM fields gen-

erate operators of mass dimension eight [56]. The convergence of the expansion in Λ

also depends directly on the strength of the coupling of new states to those of the SM.

The effective operators generated by massive modes carrying a large coupling to SM

fields will reflect this in a smaller hierarchy between the sizes of the Wilson Coefficients

appearing at each order in Λ−1∗, rendering D > 6 operators numerically important.

∗This will be discussed in the context of interpreting constraints on Ci in section 5.4.1.
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In working with models characterized by large Lagrangians and extensive independent

couplings such as the SMEFT, the availability of automated tools from which predictions

can easily be extracted is a necessity. The FeynRules [10, 34] package is the predomi-

nant framework which fulfils this role, and is successful in part due to having a flexible

range of interfaces to both event generators (particularly the generator-independent

UFO (Universal FeynRules Output) format [11]) and further symbolic/analytic tools

for manipulating scattering amplitudes such as FeynArts [57], FormCalc [58] and

FeynCalc [59]. Given the scope of its applicability, and the degree of accessibility

achieved by requiring only a consistent QFT Lagrangian as input, it is then an ideal

candidate in which to implement EFT-specific functionality to streamline future calcu-

lations in the SMEFT.

While general-purpose Monte Carlo event generators now typically incorporate Stan-

dard Model matrix elements at NLO accuracy in QCD, the inclusion of higher-dimensional

operators (even at tree-level) is a relatively recent development. The additional complex-

ity involved in achieving the same degree of automation at this accuracy arises in part

from the involved renormalization of effective operators and the role played by their as-

sociated redundancies, which - even when calculating matrix elements using a complete

operator basis - reappear at loop-level∗.

3.4.1 Operator Mixing in Fermi Theory

To motivate the desire for a systematic way of taking operator redundancies into ac-

count, let’s pause to look at a historical example of operator mixing, whereby radiative

corrections to effective interactions can introduce operator structures distinct from those

in the tree-level Lagrangian.

Recalling (from Chapter 2) the example of Fermi Theory, the effective theory of

weak interaction as experienced by light quarks with typical momenta p2 ≪ m2
W . In

this kinematic regime, the t-channel, tree-level W -boson exchange mediating the flavour

transition us→ du was approximated by a four quark operator with the Lagrangian:

Lus→ bd = C1(ūLγ
µsL)(d̄LγµuL) ≡ C1Q1,

∗This was discussed in some detail by the authors of Refs. [40,50,51] in their derivation of the RGEs
for the Warsaw SMEFT.
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Figure 3.3: Feynman diagrams for the quark flavour transition us→ du at one loop order in
QCD, and working in Fermi theory with

√
s≪ mW . The shaded circles represent

insertions of the dimension-six ψ4 operator Q1, while crosses reflect the arrange-
ment of the quarks into a product of two weak currents. In the diagrams in the
second row, the gluons linking the fermion lines ‘mix’ the colour indices of quarks
contracted in opposite currents.

where ψL ≡ PLψ. Here, the arrangement of quark billinears is structured intuitively as

a product of the left-handed charged currents to which the W -boson couples. From the

perspective of the Standard Model with the W -boson included, the explicit form of the

Wilson coefficient is dictated by the matching condition C1 = 4GF√
2
cosθc sinθc, with GF

carrying the scale m−2
W implicitly.

For the purposes of the present discussion, let’s now forget about the W -boson and

just work with the operator Q1. We want to calculate the one-loop QCD corrections to

us→ du as described by the effective interaction Q1 which carries an associated coupling

C1. In Fig. 3.3 the Feyman diagrams for this processs are shown, consisting of all possible

arrangements of virtual gluons between the participating quarks. In the diagrams in the

second row, the exchanged gluons link quark lines which belong to opposite bilinears

in Q1. We will be interested in how this impacts the UV-divergent piece of the loop

diagram, as we anticipate that we will have to renormalize our coupling C1. To extract

this contribution, we denote the (divergent) amplitude corresponding to the first of

these diagrams by MQ1 (0)
1 , and aim to evaluate it in the limit of massless quarks, in

the Feynman gauge (ξ = 1), and using dimensional regularization with d = 4 − 2ǫ.

Leaving the quark fields explicit throughout to ease a final interpretation in terms of

operator counterterms (rather than e.g. replacing these with on-shell external spinors à

la us(p) . . .), and separating colour matrices from the numerator and propagator factors,
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this is:

MQ1 (0)
1 = g2s(T

A
kiT

A
lj )

∫
ddl

(2π)d
1

l2(l + pd)2(l − pu)2
(
d̄Lγ

ν(/l + /pd)γ
µuL
) (
ūLγν(/l − /pu)γµsL

)

= g2s(T
A
kiT

A
lj )

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddl

(2π)d
1

((l + (xpd − ypu))2 + 2xy pd.pu)3
N ,

where we’ve done the usual business of combining propagators by introducing integrals

over the Feynman parameters x and y, and completing the square in the loop momentum

l. The numerator is abbreviated by N . Going on to make the customary change of

variable for the loop momentum l→ l′ ≡ l + (xpd − ypu), we get:

MQ1 (0)
1 = g2s(T

A
kiT

A
lj )

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddl

(2π)d
1

(l′ 2 − 2xy pd.pu)3
N ,

and we can now rewrite N in terms of l′, discarding terms linear in the l′ which will

integrate to zero between positive and negative infinity:

N = (l′ + (1− x)pd − ypu))λ (l′ − xpd − (1 + y)pu)
σ (
d̄Lγ

νγλγ
µuL
)
(ūLγνγσγµsL)

= (l′λl′σ − x(1− x)pλdpσd − (1− x)(1 + y)pλdp
σ
u + xypλup

σ
d + y(1 + y)pλup

σ
u)

×
(
d̄Lγ

νγλγ
µuL
)
(ūLγνγσγµsL) .

The UV-divergent contribution from large loop momenta l′ then comes from:

MQ1 (0)
1 = g2s(T

A
kiT

A
lj )

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddl′

(2π)d
l′λl′σ

(l′ 2 − 2xy pd.pu)3
(
d̄Lγ

νγλγ
µuL
)
(ūLγνγσγµsL)

Using the standard one-loop master integral:

∫
ddl′

(2π)d
l′ λl′σ

(l′ 2 −∆)n
=
i(−1)n−1

(4π)d/2
gλσ

2

Γ(n− d/2− 1)

Γ(n)

(
1

∆

)n−d/2−1

,

introducing the scale µ with g2s→ g2sµ
2ǫ in d = 4 − 2ǫ dimensions, and noting that

pd.pu = −1
2
t, the integration over l′ gives:

MQ1 (0)
1 = − ig2s

4(4π)2
(TAkiT

A
lj )

∫ 1

0

dx

∫ 1−x

0

dy

(
4πµ2

xyt

)ǫ
Γ(ǫ) (d̄Lγ

νγλγµuL)(ūLγνγλγµsL) .
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Finally, expanding Γ(ǫ) about the limit ǫ→ 0, performing the integral over x and y,

retaining the ǫ pole and the logarithmic corrections of the form αs log(. . .), we get:

MQ1 (0)
1 = − iαs

16π
(TAki T

A
lj ) (

1

ǭ
+ log(

µ2

t
) + . . .)

〈
(d̄Lγ

νγλγµuL)(ūLγνγλγµsL)
〉
,

where 1
ǭ
≡ 1

ǫ
− γE + log(4π), and angled brackets have been inserted explicitly to clarify

that this is the matrix element of the operator shown.

In contrast to the full SM amplitude (depicted in the left pane of Fig. 3.4), the QCD

corrections to the effective vertex approximating the W -boson exchange as a pointlike

interaction contain an ultraviolet divergence 1/ǭ. This what we should expect for a

nonrenormalizable operator. Integrating out the W -boson and re-introducing its leading

contribution to matrix elements in an expansion in m−1
W as a dimension-six operator

amounts to making the approximation:

1

q2 −m2
W

=
−1
m2
W

(
1 +O

(
q2

m2
W

))
,

with q is the momentum flowing in the W -boson propagator. This expansion is only

justified for q2 ≪ m2
W . In the one-loop matrix element in our effective description we

Standard Model

u, i

s, j

d, k

u, l

(d̄LγµuL)

(ūLγ
µsL)

W q
↑

G →
q2 ≪ m2

W

Fermi Theory

u, i

s, j

d, k

u, l

(d̄LγµuL)

(ūLγ
µsL)

G

Figure 3.4: Feynman diagram representation of O(αs) corrections to the flavour transition
us→ du in the full SM and in Fermi’s theory. Integrating out the W -boson pro-
duces the local operator Q1 in which the weak left-handed fermion currents are
contracted within the same vertex. Here, i, j, k, l represent colour indices of the
quarks.
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then integrate over values of the loop momentum l up to infinity, implicitly leaving

the range of validity of the EFT. The ultraviolet divergences are a consequence of our

assuming that we are free to do this, which can be equated with taking the limitmW →∞.

In the full matrix element in the Standard Model, the virtual W propagator is explicitly

sensitive to the loop momentum, providing an additional suppression by a factor of l−2

which makes this integral converge again for q > m2
W .

In the effective theory, we can aim to absorb this divergence into the coefficient C1.

However, the divergent amplitude is of the form:

MQ1 (0)
1 ∝ −(TAki TAlj )

〈
(d̄kLγ

νγλγµuiL)(ū
l
Lγνγλγµs

j
L)
〉
≡ 〈Q′〉 ,

where the quark colour indices have been made explicit. Clearly Q′ 6= Q1. While the

field content remains the same, the exchange of the virtual gluon between the outgoing

fermions has modified the colour and Dirac algebra structure of the amplitude relative

to the leading order result. This is again not surprising, as the gluon itself couples to

the colours of both quarks as well as their spins, such that the O(αs) corrections to

the amplitude reflect an exchange of information between fermions absent in the Born

approximation. While the apperance of terms with different colour and spin structures

is par for the course in higher-order loop amplitudes in the renormalizable SM, the

distinction here is that these appear as the coefficients of ultraviolet divergences, and

thus local operators with these structures must appear at the Lagrangian level to absorb

them.

The colour and Dirac algebra factors can be simplified by applying the SU(3) Fierz

identity 3.2.23 and by using equation 3.2.30 to re-express the spin matrices in the basis

3.2.26. Then:

Q′ = −4 (1
2
δjk δil −

1

6
δki δlj) (d̄

k
Lγ

µuiL)(ū
l
Lγµs

j
L)

= −2(d̄iLγµujL)(ūjLγµsiL) +
2

3
(d̄iLγ

µuiL)(ū
j
Lγµs

j
L)

The second term has the structure of the original operator Q1. In the first, quarks in

separate billinears form colour singlets together. The (spin) Fierz identities 3.2.33 can

then be used to re-order the quarks therein such that each billinear is a colour singlet,

giving:

Q′ =
2

3
(d̄Lγ

µuL)(ūLγµsL)− 2(d̄Lγ
µsL)(ūLγµuL) ≡

2

3
Q1 − 2Q2 ,
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where the colour indices are again suppressed. We have recovered our original operator,

but accompanied by a new structure Q2. This is ‘new’ in the sense that we never

wrote it down in our Lagrangian. But we did this based on an implicit assumption that

the effective interaction was always described by the structure of a tree-level W -boson

interaction, in other words by the product of two colour singlet charged currents as in

Q1. From the perspective of the effective field theory, we don’t know anything about the

charges that underlying state carries. Without advance knowledge of a colourless W , we

would have had no bias against the configuration of the colour indices which appears in

Q2. In this case we would have writtenQ2 down as a viable operator which can contribute

to this process in the first place. Put otherwise, we started out by setting C2 = 0 by hand

as a matching condition to reflect that this colour structure does not appear in the SM

at tree level, rather than this being forbidden by a structural requirement imposed on

our effective field theory. Thus once we include the O(αs) corrections from the exchange

of virtual gluons, it can appear again.

Pressing on, including the contributions from the rest of the diagrams [6] in Fig. 3.3,

we would find that these supplied analogous colour factors arising from each contrac-

tion of the virtual gluon between quarks. For transparency, where the quarks carry a

common off-shell momentum p (the possible kinematic invariants s, t, u appearing in the

QCD logarithms are then all just −p2, and we avoid infrared divergences as p2→ 0) the

ultraviolet divergent portion of the overall amplitude has the structure:



The Standard Model Effective Field Theory 75

〈Q1〉(0)1-loop =

(
1 +

8

3

αs
4π

(
1

ǭ
+ log

(
µ2

−p2
)))

〈Q1〉(0)tree (3.4.105)

+
αs
4π

(
1

ǭ
+ log

(
µ2

−p2
))
〈Q1〉(0)tree − 3

αs
4π

(
1

ǭ
+ log

(
µ2

−p2
))
〈Q2〉(0)tree

Where the divergence on the first line is associated with diagrams in which virtual gluons

are emitted and re-absorbed along the same fermion line (these are then associated with

the renormalization of the quark wavefunctions, rather than our operator coefficients).

The analogous QCD corrections to Q2 are identical up to the arrangement of colour

indices to which we apply our Fierz identity, leading to an expression with the same

structure with 〈Q1〉 ↔ 〈Q2〉. This is an explicit example of operator mixing, whereby

radiative corrections to the matrix elements of a given operator introduce local terms

with the structure of other operators.

In general then, we have to renormalize both of these operators together. We can do

this by following the same prescription as we would in the dimension four Lagrangian,

with the caveat that our counterterms will take the form of a matrix. Our bare operator

Lagrangian for our two structures is just:

Lus→ bd = C
(0)
1 Q

(0)
1 + C

(0)
2 Q

(0)
2 = δijC

(0)
i Q

(0)
j

Where it is understood thatQ
(0)
i denotes an operator written in terms of bare quark fields

q(0). Dipping into the usual renormalization bag of tricks, we can re-express these and

the bare Wilson coefficients C
(0)
i as q(0)→Z

1/2
q q and C

(0)
i →ZC

ijCj , where we will choose

to factorize the UV divergences associated with the correlation functions of the bare

operators Q
(0)
i into the rescaling factors Z = 1+O (αs/ǭ). We anticipate the matrix form

ZC
ij for the rescaling of the Wilson coefficients since our bare matrix element 〈Q1〉(0)1-loop

contained poles associated with Q1 and Q2, and distinguish this additive renormalization

from that performed on the individual quark fields to cancel the divergences in their two-

point functions by Z
1/2
q . In this form, our bare operator Lagrangian is then:

Lus→ bd = δijC
(0)
i Q

(0)
j ≡ Z2

qZ
C
ijCjQi = CiQi + (Z2

qZij − δij)CjQi , (3.4.106)

where we have rearranged the Lagrangian as usual into a piece with the same form and

normalization as the original, written in terms of Qi (containing the renormalized the

quark fields qi) and renormalized Wilson coefficients Ci. Ultraviolet divergences are now
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however contained within the (2× 2 matrix of) counterterms ∆ij ≡ (Z2
qZij − δij), which

we fix to cancel the O(αs) poles (in MS).

Meanwhile, the divergent part of our explicit one-loop amplitude 3.4.105 had the

structure:

〈Qi〉(0)1-loop = Zij 〈Qj〉(0)tree (3.4.107)

where Zij carries the 1/ǭ poles. Comparing this structure with that of matrix elements

calculated using the renormalized Lagrangian 3.4.106, we can identify the choices of the

parameters Zq and ZC which absorb these into the definitions of the rescaled Ci and q

exactly as:

C
(0)
i 〈Qi〉(0)1-loop = Z2

qZ
C
ijCj 〈Qi〉1-loop = Z2

qZ
C
ijCjZik 〈Qk〉tree = Cj 〈Qj〉

=⇒ Z2
qZ

C
ijZik = δjk

=⇒ ZC = (Z̄T )−1 ,

where we have factorized out the multiplicative divergences (which we associate with

the quark wavefunction renormalization) and the additive ones (which we treat in the

coefficient renormalization matrix ZC) appropriately by writing Zik ≡ Z−2
q Z̄ik. The

structure of Z̄ij can be read from the second line of 3.4.105 as:

Z̄ij = 1 +
αs
4πǭ


 1 −3
−3 1




Where the values 1 and −3 echo the relative factors in the SU(3) Fierz identity 3.2.23

which we used to express the operator structure falling out of our one-loop calculation

in a basis of colour-singlet quark currents.

With the ultraviolet divergences removed, we can use the renormalization group to

resum the leading logarithmic corrections αs× log
(

µ2

−p2

)
into the definition of running

Wilson coefficients Ci(µ). Following the usual arguments, we demand that the bare

Lagrangian and its parameters be independent of the renormalization scale µ. For our

bare Wilson coefficient, we get the condition:

d

d(logµ)
(C

(0)
i ) =

d

d(logµ)
(ZC

ijCj) = 0.

=⇒ ZC
ij

d

d(log µ)
(Cj) + (

d

d(log µ)
ZC
ij )Cj = 0
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=⇒ d

d(log µ)
(Cj) = −(ZC)−1

ki

(
d

d(logµ)
ZC
ij

)
(Cj) ≡ γkjCj

Where γij is called the anomalous dimension matrix. We can read this from our matrix

Z̄ = (ZT
C )

−1. At O(αs) this is:

γij =
αs
4π


 −2 6

6 −2


 (3.4.108)

Where we have used d
d log µ

αs = −2ǫαs +O(α2). The differential equation governing the

running of the Wilson coefficients C1 and C2 is now parametrized by a matrix. We say

then that C1 and C2 mix under the renormalization group. The solution to this equation

then takes the form:

Ci(µ) = Uij(µ, µ
′)Cj(µ

′) , (3.4.109)

such that the effective Wilson coefficient Ci seen at the scale µ corresponds to a linear

combination of each of the Cj into which Ci mixes at another scale µ′. Suppose that we

fix a matching condition, by equating matrix elements in the full and effective theories

such as C1(µ = mW ) = 1, C2(µ = mW ) = 0. We would now like to use our effective

field theory to describe a lower energy process with, say, a typical energy scale around

the bottom quark mass, so we’d like to use matrix elements for which µ′ = O(mb). The

renormalization group tells us that we can do this for free by using the couplings C1(mb)

and C2(mb). However, this is really a linear combination Ci(mb) = Uij(mb, mW )Cj(mW ),

such that even if we fix C2 = 0 at the high scale, it will acquire a finite value when we

use calculations appropriate to the energy scale we’re interested in.

When we are unaware of what the high energy theory is (particularly the mass M at

which we can integrate out the heavy state), this means that the values we ascribe to

Wilson coefficients from low-energy measurements correspond to some mixture of those

which actually reproduce the behaviour of this state when we calculate matrix elements

appropriate to an experiment at
√
s = M . Given γij, and some initial conditions by

which we fix Ci(M), we can determine the appropriate linear combination of coefficients

Ci(
√
sLHC) that we would see at our collider.

In our example in Fermi theory (constructed to describe the weak interactions of

light fermions), we chose to use Fierz identities to express the operator structure ap-

pearing in our one-loop matrix element as a linear combination of the two four-fermion
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operators Q1 and Q2. In the SMEFT, we explicitly construct a set operators using the

full set of Standard Model degrees of freedom. We have seen that a basis of 59 operators

can parametrize each possible effective interaction these can experience at dimension six.

Thus, in this case γij is (in a given basis) a 59× 59 matrix. We have also encountered

the correspondingly large number of interrelations between operators which follow, for

example, from the nine equations of motion. As such, the number of degenerate struc-

tures which might appear at loop level is far more considerable. Consequently, even

with explicit knowledge of its one-loop anomalous dimension matrix (now known in the

Warsaw basis [40, 50, 51]), it is non-trivial to translate this information over to another

pragmatic or physically motivated choice of operator basis.

Hopefully by this point we have established that calculations in effective field theories

are plagued with extensive subtleties. For this reason, they have so far resisted the same

level of automation enjoyed by renormalizable models. Central to this has been the

degree of arbitrariness in how a set of independent operators can be chosen. In principle

however, the identities which give rise to these redundancies are well-understood.

3.4.2 General Improvements to the Symbolic Manipulation of

Operators

We will now describe ongoing work towards supplementing FeynRules with an auto-

mated framework for performing conversions between sets of operators in the SMEFT.

This will be presented in a future publication, and takes the form of a modular extension

to the main package. The main functionality we aim to add will be:

• Given any operator Q, determine its classification, mass dimension, gauge invari-

ance and hermiticity. If it carries flavour indices Q ≡ Q{pi}, determine the correct

structure for its matrix of Wilson coefficients automatically (as in the example

3.2.57).

• Through application of Fierz, integration-by-parts, and equation of motion identi-

ties, calculate the possible ways of expressing any Q in terms of linear combinations

of other operators; Q = C ′
iQ

′
i = C ′′

jQ
′′
j . . .

• Given a reference basis of linearly independent dimension-six operators {QB
i }, de-

termine the decomposition of any other (set of) operator(s) onto this, i.e. L =

CiQi→CB
j Q

B
j .
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• Given an input Lagrangian L({Qi}), determine whether the set {Qi} is linearly

independent, and if not, identify the redundant linear combinations.

We will again use the Warsaw set [14] as a reference point at dimension six, while noting

that - with the exception of the absent O(Λ−2) terms in the equations of motion 3.2.41-

3.2.49 - much of the relevant machinery extends to operators of higher mass dimension.

Since FeynRules manipulates expressions directly at the level of the Lagrangian,

the discussion can be framed through direct analogy with analytic expressions written

in terms of operators. Each of features described henceforth is new, and presented here

are only those which are functional and at a stage of approximate completion.

FeynRules is perhaps unsurprisingly designed with the extraction of Feynman rules

from a Lagrangian as a priority. While this is useful for the calculation of matrix elements,

this means that the its machinery predominantly manipulates objects written directly

in terms of fields, rather than gauge invariant operators. Consequently, expressions

representing Lagrangian level objects such as covariant derivatives and field strength

tensors are interpreted immediately in terms of their explicit definitions in this form,

i.e.:

(Dµq)
αj →

(
∂µ + igsT

A
αβG

A
µ + ig2τ

I
jkW

I
µ + ig1YqBµ

)
qβk,

GA
µν → ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν ,

For this reason, expressions built from the symbolic objects representing the fundamental

quantities are not directly aware of all of their own properties. Requirements such

as hermiticity are not imposed, while gauge invariance is confirmed by checking the

conservation of quantum numbers at the level of the extracted vertices, rather than

being identified through a structural understanding of the Lagrangian. Hence operators

built from these which, for example, carry a symmetry in their indices do not reflect this

as expressions.

In order to unambiguously perform algebraic operations which map effective opera-

tors onto related linear combinations while ensuring that the resulting expressions pos-

sess the correct properties, an extra layer of structure at the Lagrangian level must be

established. We also have to fix a convention for expressing individual operators in a

unique way. The baseline functionality implemented to accomplish this can be summa-

rized as:
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• Operators built from objects which possess a symmetry in (any of) their indices

reflect this. For example, Q ≡ εIJK(ϕ
†τ Iϕ)(ϕ†τJϕ)(ϕ†τKϕ) = 0 by the antisym-

metry of εIJK and because each of the SU(2) triplets are identical. Likewise, the

order in which indices appear within symmetric and antisymmetric tensors is al-

ways fixed to a canonical choice, accompanied by the appropriate signature, i.e.

fACB ≡ −fABC . Two operators are considered the same if their field content and

relative index structure is identical.

• When encountering a situation in which a symmetry in an operator’s indices means

that it is in disguise and actually belongs to another classification, this is rec-

ognized and corrected for automatically. For example, in writing down Q′ ≡
(q̄σµνd)(DµDνϕ) which naively belongs to the ψ2ϕD2 classification, the antisymme-

try of the Lorentz indices in σµν projects out the antisymmetric part of the covariant

derivatives; (DµDν)ϕ→ 1
2
[Dµ, Dν ]ϕ ≡ −i12Yϕg1Bµνϕ− 1

2
g2W

I
µντ

Iϕ. Thus this oper-

ator doesn’t, for example, generate vertices sensitive to the momentum of the Higgs,

and it is expressed as: Q′ = C1Q1 + C2Q2 =⊂ ψ2Xϕ = −i1
2
Yϕg1(q̄σ

µνd)ϕBµν +
1
2
g2(q̄σ

µντ Id)ϕW I
µν .

• Gauge invariance is ensured symbolically by requiring that the fields constituting

each operator carry indices which are contracted to form an overall singlet under

the SM gauge group GSM .

• Hermiticity is ensured symbolically by comparing each operator to its hermitian

conjugate. For any L containing an operator Q 6= Q†, the presence of Q† is always

ensured by adding it if it were not present.

• Wilson coefficients Ci are allocated with properties appropriate to the operator

they accompany. These are equipped with mass dimensions, real and imaginary

parts and number of flavour indices inferred directly from the properties of Qi.

• Dirac matrix structures are decomposed automatically onto the basis 3.2.26 wher-

ever applicable, with the appropriate coefficients calculated using gamma matrix

trace identities according to 3.2.30. For example, the current-current operator en-

countered in the one-loop QCD corrections to the Fermi interaction carrying the

vertex structure (γνγλγµ)ψ̄1ψ2
⊗(γνγλγµ)ψ̄3ψ4

is automatically converted to the form

16 (γµ)ψ̄1ψ2
⊗ (γµ)ψ̄3ψ4

.

With these conventions in place, a given operator Lagrangian is written unambiguously,

and the prerequisites of gauge invariance and hermiticity are enforced.
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3.4.3 Applying Operator Identities

To distinguish the roles of each of the identities discussed in establishing redundant

linear combinations, we can factorize a given operator Q schematically as:

Q({Φ}) ≡ [SU(2)]× [SU(3)]× [Γ]× ({D} • {Φ}) ,

Where the factors [SU(N)] stand in for the colour and weak isospin matrices with

indices in the configuration in which they appear, while [Γ] contains the analogous Dirac

matrices appearing in any fermion billinears. Any covariant derivatives are contained

within {D}, which is implicitly understood to associate each of these (if any) with the

field on which it acts, hence the suggestive writing as a dot product. The field content

alone is represented by {Φ}.

Written in this way, applying the Fierz identities for weak isospin (3.2.22), colour (3.2.23),

or spin (3.2.33) amounts to rewriting the corresponding matrices within the factors

[SU(2)], [SU(3)] or [Γ] respectively, while leaving the remaining factors intact. Simi-

larly, using the integration-by-parts relations exchanges the arrangement of covariant

derivatives specified by {D} in favour of a linear combination of the other arrangements

which occur in the total derivative, as described in section . Rewriting an operator in

terms of those related to it through the equations of motion (3.2.41-3.2.49) will in gen-

eral modify each of these factors, as these identities relate operators with different field

contents to each other.

To illustrate this decomposition explicitly, we can write a few dimension-six operators

in this form, leaving flavour indices suppressed:

Quϕ ≡ (ϕ†ϕ)(q̄uϕ̃) → [δijδkl]SU(2)× [δab]SU(3)× [δs1s2]spin×{ϕ†
i , ϕj, q̄

k a
s1
, ubs2, ϕ̃l}

Q2 ≡ (l̄σµνDµe)Dνϕ → [δij ]SU(2)× [δs1s2]spin× [σµνs1s2]spin×
(
{1, Dµ, Dν} • {l̄is1 , es2, ϕj}

)

Q
(8)
qd ≡ (q̄γµT

Aq)(d̄γµTAd) → [δij]SU(2)× [TabTcd]SU(3)× [γs1s2γs3s4]spin×{q̄i as1 , qj bs2 , d̄cs3, dds4}

Here, the individual factors which may be re-expressed to generate redundant linear

combinations using Fierz and integration-by-parts identities are highlighted in red and

blue. By factorizing operators internally this way, the possible transformations which

can be applied to each is determined automatically, enabling these to be carried out in

accordance with any algorithm which specifies the operator content of a basis. In this

example, Quϕ and Q
(8)
qd are operators belong to the Warsaw set 3.3. The operator content
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of a target basis B can be specified, such that when applying a transformation to an

operator Q /∈ B produces a linear combination which includes one element QB ∈ B, i.e.

Q→C ′Q′+CBQB, QB meets the criteria for being in the desired form, and Q′ does not.

Given one complete basis of operators and a general implementation of each of the

operator identities discussed, we can in principle transform any dimension-six Lagrangian

by applying these repeatedly until every Q is written in the form CB
i Q

B
i

∗.

We now summarize the implementation of each operator identity in turn. These

are applied directly to operator expressions, and return the associated redundant linear

combinations.

Fierz Identities

The application of the Fierz identities (3.2.22), (3.2.23), and (3.2.33) is the simplest

transformation we can perform, the practical applications of which we have already en-

countered. For an operator which qualifies - i.e. one with an arrangement in which fields

are contracted between two SU(N) or Dirac matrices, these can be applied individually

or in combination to redirect the indices carried by the fields as desired. Using the

example of Q
(8)
qd above, we could sequentially transform this as:

Q
(8)
qd = [δij ]SU(2)× [TabTcd]SU(3)× [γs1s2γs3s4]spin×{q̄i as1 , qj bs2 , d̄cs3, dds4}

(3.2.23)→ [δij ]SU(2)× [
1

2
δad δcb −

1

6
δab δcd]SU(3)× [γs1s2γs3s4]spin×{q̄i as1 , qj bs2 , d̄cs3, dds4}

(3.2.36)→ [δij ]SU(2)× [
1

2
δad δcb −

1

6
δab δcd]SU(3)× [−2 δs1s4δs3s2]spin×{q̄i as1 , qj bs2 , d̄cs3, dds4}

Where the colour indices are suppressed in the first operator since the billinears are each

colour singlets. In doing this, we have re-expressed Q
(8)
qd in a different basis of operators,

as:

Q
(8)
qd = C ′

1Q
′
1 + C ′

2Q
′
2 = −(q̄d)(d̄q) +

1

3
(q̄adb)(d̄bqa).

The generalization to the case of more than two SU(N) or Dirac matrices is included,

although this is only relevant to mapping out the redundancies of operators of mass

dimension eight and higher. The maximum number of distinct SU(N) matrices which

can arise at dimension-eight is four, corresponding to eight ϕ fields carrying indices in

∗The full automation of this process - i.e. setting up conditions such that the appropriate identities
are selected and applied recursively until this is satisfied - is a feature still under development.
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the fundamental representation of SU(2). In this case, when an operator possesses a

structure such as:

QD8 = [τijτklτmnτop]SU(2)× (. . .)

The Fierz identities can be used to re-express the desired pairwise combination(s) of the

matrices τ .

Integration-by-Parts Identities

Using the above example of the operator Q2, integration-by-parts identities are imple-

mented by replacing the configuration of covariant derivative factors appropriately. We

had:

Q2 = (l̄σµνDµe)Dνϕ = [δij ]SU(2)× [δs1s2]spin× [σµνs1s2]spin×
(
{1, Dµ, Dν} • {l̄is1 , es2, ϕj}

)

Since there are two covariant derivatives, there are two redundant linear combinations

which are identified. There associated with DµOµ = 0 and DνOν = 0 respectively,

where Oµi represents the operator with Dµi removed, as discussed in section 3.4.3. These

translate into our schematic language in each case as:

DµOµ = Dµ

(
(l̄σµνe)Dνϕ

)
= 0

=⇒ [. . .]× ({Dµ, 1, Dν}+ {1, Dµ, Dν}+ {1, 1, DµDν}) • {l̄is1, es2, ϕj} = 0,

And:

DνOν = Dν

(
(l̄σµνDµe)ϕ

)
= 0

=⇒ [. . .]× ({Dν , Dµ, 1}+ {1, DνDµ, 1}+ {1, Dµ, Dν}) • {l̄is1, es2, ϕj} = 0.

Where the matrices contracting field indices are understood to sit in the factors [. . .]∗.

Identifying the related linear combinations can then be accomplished by making the

replacements:

{1, Dµ, Dν}→ − ({Dµ, 1, Dν}+ {1, 1, DµDν})
{1, Dµ, Dν}→ − ({Dν , Dµ, 1}+ {1, DνDµ, 1}) ,

∗This is just a convoluted way of expressing the Leibniz rule; d
dx
(fgh) = df

dx
gh+ f dg

dx
h+ fg dh

dx
.
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So that we can re-express Q2 in two ways:

Q2 = −(Dµ l̄σ
µνe)Dνϕ− (l̄σµνe)DµDνϕ

= −(Dν l̄σ
µνDµe)ϕ− (l̄σµνDνDµe)ϕ

Note that in each case, the redundant linear combinations contain the structures σµνDµDνϕ

and σµνDµDνe respectively. As was mentioned, these are further simplified automatically

by the antisymmetry of the Lorentz indices. This dictates (DµDν)ϕ→ 1
2
[Dµ, Dν ] ∝ Xµν .

These are replaced by the appropriate field strength tensors based on the hypercharges

and gauge indices carried by ϕ and e. In the language of [14], this moves these operators

to lower classification, in both cases:

ψ2ϕD2 → ψ2ϕD2 + ψ2Xϕ

The implementation of integration-by-parts identities in this way extends automatically

to operators of higher mass dimension.

Equation of Motion Identities

Using the Standard Model Euler-Lagrange equations 3.2.41-3.2.49 to identify related

operators is - from an implementation standpoint - the most complex case. For our

example we’ll need the equation of motion for the gluon, which is repeated here for

convenience:

(DρGρµ)
A − gs

(
q̄γµT

Aq + ūγµT
Au + d̄γµT

Ad
)
= 0

We will once again take Q
(8)
qd as our demonstration operator∗, which we re-express with

two choices of highlighting:

Q
(8)
qd ≡ (q̄γµT

Aq)(d̄γµTAd) → [δij]SU(2)× [TabTcd]SU(3)× [γs1s2γs3s4]spin×{q̄i as1 , qj bs2 , d̄cs3, dds4}
≡ [δij]SU(2)× [TabTcd]SU(3)× [γs1s2γs3s4]spin×{q̄i as1 , qj bs2 , d̄cs3, dds4}

Where the pieces highlighted in purple collectively coincide with terms in the gluon

equation of motion. This is identified by testing the operator for the specific structures

which occur therein, in this case for each of the colour-octet, flavour-diagonal quark

currents. Since there are two currents which satisfy this, Q
(8)
qd can be re-expressed in two

∗Here it is understood that each quark billinear is diagonal in flavour.
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ways. Only the highlighted components are then replaced, according to the appropriate

rearrangements:

d̄γµT
Ad→ 1

gs
DρGA

ρµ − q̄γµTAq − ūγµTAu ,

q̄γµT
Aq→ 1

gs
DρGA

ρµ − ūγµTAu− d̄γµTAd

The linear combinations are then just:

Q
(8)
qd =

1

gs
(q̄γµT

Aq)DρGA
ρµ − (q̄γµT

Aq)(q̄γµT
Aq)− (q̄γµT

Aq)(ūγµT
Au)

=
1

gs
(d̄γµTAd)DρGA

ρµ − (d̄γµTAd)(ūγµT
Au)− (d̄γµTAd)(d̄γµT

Ad)

In this case, the operator contained two fermion currents which appeared in the Euler-

Lagrange equation for the gluon. Generally, a given operator is tested for the presence

of any structures coinciding with those in any one of the nine equations of motion. We

started with the Warsaw operator Q
(8)
qd ∈ ψ4 , and a central ingredient in establishing

this basis was the requirement that the operators therein belong to the lowest possible

classifications. This was achieved by using the equations of motion to rewrite operators

in terms of those containing fewer covariant derivatives. This amounts to making the

replacement (DρGρµ)
A → (colour currents) whenever possible and never the converse,

with a directly analogous statement holding for the remaining eight equations. By using

them as in the way we have in this example, we can reverse the ‘reduction’ procedure,

and generate operators in higher classifications if they suit our purposes.

Testing operators for the presence of structures which appear in the equations of

motion is usually fairly transparent, as in the above example. The exception to this is

operators which contain covariant derivatives within fermion billinears. Recall that, as

part of our conventions, any spinor product with a complicated Dirac structure (such as

σµνσρκ, or - as in our one-loop example - γµγνγρ) was automatically decomposed onto a

linear combination of billinears expressed in the usual basis ΓA ≡ {I, γ5, γµ, γµγ5, σµν}.
Since the fermion equations of motion (3.2.41)-(3.2.45) permit replacements of the form

i /Dψ ≡ γµDµψ→ (. . .), if we aspire to automatically identify and determine redundant

structures we must be able to robustly test whether the Dirac matrix structure can be

re-expressed in this form.

To this end, we automate and generalize the prescription established in Section 6 of

Ref. [14]. We can look first at a simple example. For a general fermion current making
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up one part of a gauge-invariant operator Q, we could encounter something like:

Q ≡ (ψ̄1σ
µνDνψ2)Oµ ,

Where Oµ denotes the rest of the operator. Because we are concerned with the space-

time degrees of freedom alone, structure reflecting the representations of the fields in

the gauge groups is suppressed. In this simple example, we need to identify that Dνψ2

appears without the associated γν necessary to render this redundant with other opera-

tors through the equations of motion. Once this condition has been established, we can

re-express the tensor current σµν ∈ {ΓA} back into a product of gamma matrices using

the identity σµν = i(γµγν − gµνI). We then have a linear combination:

Q = i(ψ̄1γ
µ /Dψ2)Oµ − i(ψ̄1D

µψ2)Oµ ,

Where the equation of motion for ψ2 can be used directly on the first operator.

In more complicated cases we would like to be able to determine exactly how we

should apply identities to establish definitively whether or not we can reproduce some-

thing which occurs in the equations of motion. To do this automatically we need a

robust procedure based only on the structure of the operator presented to us. This is

accomplished generally by identifying the arrangement of Dirac matrices which occur

in an operator with the same field content and arrangement of gauge indices which is

reducible using the EoM. The spin matrices of this can then be decomposed onto the

basis {ΓA}, and if this decomposition contains the structure present in our original oper-

ator, we can re-express it accordingly to get our EoM reducible linear combination. For

example, consider something like:

Q ≡ (Dµψ̄1γρDνψ̄2)Oµνρ = (Dµψ̄1γ
ρDνψ̄2)g

µαgνβOαβρ ,

Again, O is everything outwith our fermion billinear. We’ve highlighted in purple the

structures carrying Lorentz indices which we want to check can be written in a form

which gives us /Dψ. Meanwhile, the redundant linear combinations arising from applying

the equations of motion for ψ1 and ψ2 respectively come from the structures:

(Dµψ̄1γ
µσραDνψ̄2)g

νβOαβρ and (Dµψ̄1σ
ρβγνDνψ̄2)g

µαOαβρ .
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We calculate the decomposition of the desirable form onto {ΓA}, as:

γµσρα = −iγρgµα + iγαgµρ − ǫαµρκγκγ5
σρβγν = iγρgνβ − iγβgνρ − ǫβνρκγκγ5 ,

where it is confirmed that we can indeed massage our fermion billinear into a form which

contains a redundancy through the equations of motion. This is then performed in each

of the two possible ways, giving us our pair of linear combinations:

Q = i( /Dψ̄1σ
ραDνψ̄2)Oανρ − (Dµψ̄1γαDνψ̄2)Oανµ + i(Dµψ̄1γκγ5Dνψ̄2)ǫ

αµρκOανρ
= −i(Dµψ̄1σρβ /Dψ̄2)Oµβρ + (Dµψ̄1γβDνψ̄2)Oµβν − i(Dµψ̄1γκγ5Dνψ̄2)ǫ

βνρκOµβρ

In this way, we have a concrete prescription for establishing the linear combinations

through which fermionic current operators can be related to those in different classifica-

tions, and the gamma matrix algebra is performed automatically. This procedure is also

not restricted to dimension six.

Functionality in Development

We have demonstrated thus far that the application of operator identities in the SMEFT

(at least at dimension-six) can be incorporated into the FeynRules framework. Deter-

mining which of these can be used in a given context is a task which is automated by

subjecting operators to pattern recognition. The application of each of the permissible

transformations to a given operator is achieved by making the appropriate structural

replacements in accordance with clearly defined rules. We also outlined functionality to

decompose and re-express tensor structures in a purposeful way without manual input.

The current task is now automating the directed application of the operator identities

in such a way that any given set is decomposed onto a specified basis. This amounts

to constructing a recursive algorithm which selects and applies operator identities in-

telligently, using the equations of motion to move between classifications. To facilitate

doing this in general, we can first aim to emulate the decision-making procedure used to

derive the Warsaw basis, which enshrined the requirement that classifications be lowered

wherever possible. Work in this direction is currently underway.
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3.5 Outlook

In this chapter we have described and explored the SMEFT Lagrangian, with an em-

phasis on dimension-six operators. We have established how operators are individually

structured and how they can be related to each other, and given some examples of

simplifying assumptions which reduce the number of these which need to be considered.

We saw that the inclusion of the Warsaw basis of higher-dimensional operators ne-

cessitated sweeping parameter redefinitions throughout the Standard Model Lagrangian,

and that these can be accounted for in a FeynRules model which we can interface to

event generators.

In our example of operator mixing, we saw how radiative corrections to higher dimen-

sional operators can, in general, induce local terms associated with other operators. As a

consequence of this, the evolution of Wilson coefficients under the renormalization group

is encoded by a matrix, such that a fixed coefficient Ci(µ) at the scale µ corresponds

to a linear combination of several coefficients at a different scale µ′. In this context,

the radiatively generated operators which appear do not respect our choice of operator

basis, and we must reduce them back into a desired form using operator identities on a

case-by-case basis∗.

It was shown that identifying these redundancies and applying operator identities is

achievable at the Lagrangian level within FeynRules, and that the necessary machinery

to identify redundant linear combinations can be automated. A natural next step is to

extend this framework into something which can translate between generic bases by

systematically transforming operators symbolically. This would alleviate the inherently

labour-intensive procedure of doing this by hand on a case-by-case basis, and serve as

an important ingredient in the automation of higher order calculations.

∗No pun intended.



Chapter 4

Constraining Dimension Six Operators

in Top Quark Production

Resonance searches during runs I and II of the LHC have so far failed to shed light

on the physics responsible for Electroweak symmetry breaking, a description of which

is imperative for the theoretical consistency of the SM. The prediction of new states

around the TeV scale is a generic feature of models aiming to address this mystery, and

continually higher experimental limits set on their masses cast doubts on the explana-

tions so far conceived. While a significant mass gap between the Electroweak scale and

that of new physics is disconcerting - for both our immediate discovery prospects and

hopes to resolve the hierarchy problem, such a scenario - where ΛNP ≫ v - is ideal for

applying EFT methods.

The ascension of the SMEFT in recent years - plausibly a natural response to this

lack of discoveries - has seen the fragmented, ad-hoc model-independent approaches of

old replaced by a universal language. This paradigm shift away from ambiguous con-

structions - such as the parametrisation of deviations in cross section measurements with

simple ‘signal strength’ ratios, or in general differential observables with ‘anomalous cou-

plings’ - is a welcome development arguably following from our failure to observe new

states. From a phenomenological perspective, the ability to match higher-dimensional

operators to UV completions in a well-defined way, their natural contribution to differ-

ential observables, and their consistency with higher-order perturbative calculations has

made EFT the model-independent tool of choice.

Next to studying the scalar boson itself, our most promising windows into the physics

behind EWSB are the SM degrees of freedom which couple most strongly to the Higgs

field. The top quark, with its O(1) Yukawa coupling and central role in establishing

89
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the hierarchy problem, is then a natural candidate for close scrutiny. The top thus

plays an important part in most prominent UV-complete models. In supersymmetric

extensions to the SM, the quantum corrections of the stop quark to the Higgs mass

parameter cancel those of the top, the dominant factor toward eliminating the need

for fine-tuning (see, e.g. [60, 61]). In composite Higgs theories [62, 63], the size of yt

is indicative of the strength of its interaction with new states in the strongly coupled

sector. Likewise in models with warped extra dimensions [64, 65], the top preferentially

couples to Kaluza-Klein modes propagating in the 5D bulk.

The modifications to Higgs boson phenomenology predicted by BSM scenarios have

inspired widespread application of EFT methods to constraining NP in the Higgs sec-

tor [66–83]. However, these investigations are currently hindered by the relatively small

statistics collected in the observed Higgs production channels.

In contrast to this, the direct production of tops by the QCD interaction and the

relative manageability of the associated final states have led to an abundance of data

from the LHC and TeVatron. Model-independent studies into the possibility of detect-

ing new physics in the top sector have thus been a complementary agenda in which the

SMEFT has featured prominently [84–93]. While these have produced constraints on

dimension-six Wilson Coefficients, so far only limited subsets of all possible operators

which modify top phenomenology have been considered at a given time. Such an ap-

proach is justified whenever the physics application is specialized to processes sensitive

only to particular coupling structures, such as in parametrizing FCNCs [87, 88] or in

investigating contributions of the top to precision electroweak observables [86, 94].

The wealth of measurements of the main top quark production modes motivates

the desire for a tool with which plentiful statistics can confront the most general set of

dimension-six operators in the SMEFT simultaneously. This was realized in [2], where

we performed the first global fit of all relevant Wilson Coefficients to the full available

set of suitable differential and inclusive measurements of top pair and single top quark

production. In [3], this was expanded upon to incorporate both new datasets from the

8 and 13 TeV LHC and additional observables.
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4.1 Top Quark Observables in the SMEFT

The leading modifications of dimension-six operators to SM phenomenology at O(Λ−2)

arise through the interference of Feynman diagrams containing a single dimension-six

operator insertion from L(6) with those originating from L(4)
SM. In an expansion of the

matrix element M in the dimension-six couplings C this takes the form:

|Mtot|2 = |MSM|2 + 2ℜe {MSMM∗
D6}+ |MD6|2 +O(Λ−4),

where the third term, representing the squared contribution of the set of dimension-six

diagrams, is itself formally O(Λ−4). As these terms enter at the same order in Λ−1 as

the interference with the SM of operators belonging to L(8)∗, they are usually discarded.

Provided a given Wilson Coefficient C is small, such a truncation is typically valid and

the squared dimension-six terms are numerically subleading.

However, in cases where the interference of a dimension-six operator with the SM

is zero (e.g. when it possesses an orthogonal colour structure to the SM QCD process)

or suppressed (e.g. by light fermion masses which appear when operator vertices con-

taining right-handed fields intefere with left-handed weak interaction) this is no longer

strictly true. In such a scenario, the dominant contributions to the observable of interest

come from both |MD6|2 and MSMM∗
D8, the latter of which is unknown in general. In

the absence of explicit structural arguments for why interfering dimension-eight terms

must be subdominant to |MD6|2†, a fixed-order approach should abandon such operators

in the analysis. In general, it is also not possible to exclude the possibility of anoma-

lously large dimension-eight coefficients without making model-dependent assumptions.

A comprehensive discussion exploring how these scenarios can arise from UV-complete

models was given in [56].

We generally expect the contributions of higher-dimensional operators to a given

observable to vary over the phase space of the final state particles. The contribution to

the total cross section σ from the interference terms in a 2 → n reaction will take the

usual form:

dσ2→n =
(2π)4

2
√
λ(s,m2

1, m
2
2)
×M2

int× dΠn, (4.1.1)

∗That is - those that belong to the explicitly neglected terms O(Λ−4). A complete operator basis
at mass dimension eight is yet to be determined, however recent efforts (see, e.g. [95]) have mapped out
the schematic field content and number of Wilson Coefficients of each classification.

†We will encounter one example of this in gg→ tt̄ production.
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where M2
int ≡ 2ℜe (M∗

SMMD6) is the O(Λ−2) part of the squared probability ampli-

tude averaged appropriately over spin/polarization and gauge degrees of freedom. M2
int

is dimensionless through its dependence on the kinematic invariants and the (fixed) scale

Λ−2 carried by the Wilson Coefficients. Then, the cross section for a final state f de-

scribed by any dimensionful kinematic invariant k2f (e.g. the transverse momentum p2T ,

or invariant mass m2
f) scales as dσ ∝ k2f/Λ

2. Consequently, deviations from the Standard

Model will be most pronounced in harder reactions. Of course, this scaling behaviour

is only physical within the range of EFT’s validity
√
s ≪ Λ, and at larger momentum

transfers higher order terms in the EFT expansion become more important.

Recently a lot of progress has been made in extending the dimension six-extended SM

to higher perturbative orders in the SM couplings [40,50,51,96–106]. As with radiative

corrections in the renormalizable SM, the one-loop effects of dimension-six operators are

formally suppressed by O(g2SM/16π2). Generally then, these will be subleading when

compared with the tree-level dimension-six contributions. It is well known, however,

that NLO QCD corrections to particular SM processes (such as in top pair production,

with an overall k-factor of ≈ 50%) can be O(1). Although there is no reason to assume

that similarly large k-factors might apply to the SMEFT, the calculation of these is

less essential than in the SM, where radiative corrections are essential to obtain an ac-

curate description of a physical process within the experimental uncertainties. Current

consistency of the renormalizable SM alone with experimental data makes precise signal

modelling less pressing until we observe some non-resonant effect with statistical signif-

icance. QCD corrections to four fermion operators included via renormalization group

equations are typically of the order of 15%, depending on the resolved phase space [102].

Hereon we suppress the argument µ when referring to Wilson Coefficients Ci(µ), noting

that these should be understood as being evaluated at the scale µ∼mt, and as such

correspond to a linear combination of the same coefficients evaluated at the high scale

Ci(Λ).

As pointed out in Ref. [107], NLO effects can also become important in electroweak

precision data fits. Similarly, four-fermion operators entering at the one-loop level to

the Higgs decays h→ bb̄ and h→ τ+τ− can be effectively constrained by measurements

of these processes, as recently pointed out in [106].
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In top physics, we encounter the following subset of effective operators at leading

order, expressed in the ‘Warsaw basis’ [54]:∗

Q(1)
qq = (q̄γµq)(q̄γ

µq) QuW = (q̄σµντ Iu)ϕ̃W I
µν Q(3)

ϕq = i(ϕ†←→D I
µϕ)(q̄γ

µτ Iq)

Q(3)
qq = (q̄γµτ

Iq)(q̄γµτ Iq) QuG = (q̄σµνTAu)ϕ̃GA
µν Q(1)

ϕq = i(ϕ†←→D µϕ)(q̄γ
µq)

Quu = (ūγµu)(ūγ
µu) QG = fABCG

Aν
µ GBλ

ν GCµ
λ QuB = (q̄σµνu)ϕ̃Bµν

Q(8)
qu = (q̄γµT

Aq)(ūγµTAu) QG̃ = fABCG̃
Aν
µ GBλ

ν GCµ
λ Qϕu = (ϕ†i

←→
D µϕ)(ūγ

µu)

Q
(8)
qd = (q̄γµT

Aq)(d̄γµTAd) QϕG = (ϕ†ϕ)GA
µνG

Aµν QϕG̃ = (ϕ†ϕ)G̃A
µνG

Aµν

Q
(8)
ud = (ūγµT

Au)(d̄γµTAd) . (4.1.2)

To demonstrate the wide applicability of the EFT approach, we can observe that these

contain the low-energy effects of several BSM scenarios. For example, Q
(3)
ϕq is generated

by integrating out sfermions in the MSSM [111], Q
(8)
xx appear in models with heavy

axigluons [112], while QuG appears in composite top scenarios [52].

The non self-hermitian operators OuW , OuG and OuB may have complex coefficients

which, along with OG̃ and OϕG̃, lead to CP-violating effects. These do not contribute to

Standard Model spin-averaged cross-sections, though they are in principle sensitive to

polarimetric observables such as spin correlations [113]†, and should therefore be treated

as independent operators. However, currently available measurements that would be

sensitive to these effects have been extracted by making model-specific assumptions that

preclude their usage in our fit, e.g. by assuming that the tops are produced with either

SM-like spin correlation or no spin correlation at all, as in Refs. [119, 120]. Currently

there is no evidence for CP-violation in the top sector beyond the minimal flavor violation

assumption.

With these caveats, a total of 14 constrainable CP-even dimension-six operators

contribute to top quark production and decay at leading order in the SMEFT.

Parton-level theory predictions were first obtained for each process by interfacing

the FeynRules [34] model file for the SMEFT via UFO [11] to MadGraph/MadE-

vent [11, 121]. Herein, the minimal set of global parameter and field redefinitions

necessary to restore canonical normalisation and mass-diagonal states to the Lagrangian

were included as discussed in section 3.3. In the case of strong top pair production the

∗Given the simplicity of how it captures modifications to SM fermion couplings, this basis is well-
suited to top EFT. For basis choices of interest in Higgs physics, see e.g. Refs. [48, 49, 108–110]

†For recent analyses focusing on the tWb vertex, for instance, see Refs. [114–118]
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resulting rescalings of e.g. the strong gauge coupling:

gs→ gs
(
1 + v2CϕG

)
≡ ḡs, (4.1.3)

have no physical consequences for our analysis∗.

As MadGraph generates the full squared matrix elements (i.e. including theO(Λ−4)

terms from |MD6|2), the validity of the assumption that interference terms represent the

leading effect can be checked on a process-by-process basis. To this end, the dependence

on the dimension-six Wilson Coefficients was verified explicitly by calculating the interfer-

ence terms using the FeynArts [57] and FormCalc [58] interface, and cross-checking

these with previous explicit calculations [91] in the obsolete operator basis of Ref. [47].

To verify the model implementation produces the expected event shapes, illustrative

differential cross section distributions for each of the considered partonic subprocesses in

top pair and single top production were produced by implementing simple parton-level

analyses in ROOT [122]. To check the relative numerical importance of |Mint|2 and

|MD6|2 in each channel, reference events were generated where each Wilson Coefficient

carried the (unphysically low) scale Λ′ = 1
a
Λ (such that, for the chosen value a = 100,

the cross section is entirely dominated by |MD6|2). These were then used to subtract

the |MD6|2 contributions from each bin of the dσ/d(cosθ) distributions†.

|MD6|2 terms are kept in the final MadGraph samples that were used in the fit.

Along with representing the numerically leading SMEFT contribution at the squared

matrix element level in some special cases, retaining these prevents the appearance of

spurious negative cross sections in regions of phase space where |MSM |2 is small and

|Mint|2 < 0. Furthermore, it has been shown that retaining contributions from |MD6|2
is necessary when fitting to data to ensure that the χ2 has a local minimum [56,81].

4.1.1 Top Pair Production

By far the most abundant source of data in top physics is from the production of top

pairs. The CP-even dimension-six operators that interfere with the Standard Model

∗i.e. these shifts affect the definition of couplings in L(6) relative to in the renormalizable LSM, and
produce no measurable effect. Given an independent knowledge of the value of CϕG, one could however
make some statement about the magnitude of the unshifted gs.

†Schematically, with σfull = σSM+a2Λ−2σint+a
4Λ−4σsq, we can plot σa=1−σSM = Λ−2σint+Λ−4σsq

and (σa=1 − 1004σa=100)− σSM ≃ Λ−2σint.



Constraining Dimension Six Operators in Top Quark Production 95

amplitude are:

LD6 ⊃ CuG(q̄σ
µνTAu)ϕ̃GA

µν + CGfABCG
Aν
µ GBλ

ν GCµ
λ + CϕG(ϕ

†ϕ)GA
µνG

Aµν

+ C(1)
qq (q̄γµq)(q̄γ

µq) + C(3)
qq (q̄γµτ

Iq)(q̄γµτ Iq) + Cuu(ūγµu)(ūγ
µu)

+ C(8)
qu (q̄γµT

Aq)(ūγµTAu) + C
(8)
qd (q̄γµT

Aq)(d̄γµTAd) + C
(8)
ud (ūγµT

Au)(d̄γµTAd) .

The 2→ 2 production of top antitop pairs tt̄ proceeds in QCD through the two distinct

partonic channels: quark-antiquark annihilation qq̄ → tt̄, and gluon fusion gg → tt̄.

q̄q → t̄t Production

Quark-antiquark annihilation is the smaller of the two tt̄ production modes at the LHC,

owing to the relative dominance of the gluon at small x over the valence u and d quarks

in the proton PDFs. With only one s-channel diagram comprising the leading order

QCD mechanism in the SM, the interfering operators in the SMEFT for dd̄, uū→ tt̄ are

flavour-diagonal modifications to the qqg vertex, and four-fermion contact interactions.

The relevant operators are then QuG and {Q(1)
qq , Q

(3)
qq , Quu, Q

(8)
qu , Q

(8)
qd , Q

(8)
ud } respectively.

We can safely neglect the contribution of the first generation flavour arrangement Q11
uG ,

d, u

d, u

t

tG

d, u

d, u

t

tG

d, u

d, u

t

t

Figure 4.1: Feynman diagrams for q̄q → tt̄ production. The shaded circles represent qqg and
qqqq vertices arising from dimension-six operator insertions.

as this operator is a direct mixing of the left- and right- chiral u quark fields, and so

contributes terms proportional to the up-quark mass mu. The spin and colour averaged

interference terms are:

M2
int (uū→ tt̄) = ℜeCuG

33

32ḡ3svTmt

9
√
2

+
(
C

(1)
qq
1331

+ Cuu
1331

+ C
(3)
qq
1331

) ḡ2s
18s

(3m4
t −m2

t (t + 3u) + u2)

+
(
C

(8)
qu
1133

+ C
(8)
qu
3311

) ḡ2s
36s

(3m4
t −m2

t (3t+ u) + t2)

M2
int (dd̄→ tt̄) = ℜeCuG

33

32ḡ3svTmt

9
√
2

+

(
C

(3)
qq
1331

+ 1
4
C

(8)
ud
3311

)
ḡ2s
9s

(3m4
t −m2

t (t+ 3u) + u2)
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+

(
C

(8)
qu
1133

+ C
(8)
qd
3311

)
ḡ2s
36s

(3m4
t −m2

t (3t+ u) + t2)

Since QCD treats L and R chiralities on equal footing, the six four-quark operators

interfere with the SM amplitude to produce terms dependent only on two linear combi-

nations of four-fermion Wilson Coefficients. For each of the uū and dd̄ initial states, these

arise from operators in which identical (L̄LL̄L, R̄RR̄R) and opposite (L̄LR̄R, R̄RL̄L)

arrangements of the chiral d and u-quark field currents appear respectively. In the spirit

of the notation of Ref. [91], which first characterised these dimension-six contributions

in the overcomplete basis of [47], we denote these:

C1
u = C

(1)
qq
1331

+ Cuu
1331

+ C
(3)
qq
1331

C2
u = C

(8)
qu
1133

+ C
(8)
qu
3311

C1
d = C

(3)
qq
1331

+ 1
4
C

(8)
ud
3311

C2
d = C

(8)
qu
1133

+ C
(8)
qd
3311

.

It is these four that are constrainable in a dimension-six analysis. In Fig. 4.2, we can

see that even for a large s/Λ2 = (4mt)
2/TeV ≃ 0.5, the interference term is the domi-

nant contribution from the EFT. The analagous Cd distributions are identical, as their

interference carries the same kinematic dependence.

The real part of QuG
33

, the ‘chromomagnetic dipole moment operator’, enters in both

the qq̄ and gg channels through the gtt vertex. We can note that the single s-channel

topology restricts this operator to the production vertex for the final state tt̄ pair.

Since QuG
33

directly couples left and right-chiral top quark fields, while QCD is chirality-

diagonal, the interference of the two diagrams carries no dependence on the tt̄ kinematics.

We expect the same dependency for the squared contribution of this operator so that

the interference is dominant, since no dependency on the top kinematics can arise. In

Fig. 4.3, we can again confirm this: for s/Λ2 = (4mt)
2/TeV ≃ 0.5, truncating at the

interference term is a very good approximation. The analagous dd̄ distributions are

identical, as the operator insertion modifies the gtt vertex∗.

∗Here, and in the case of QG, the analytic curves are visibly enhanced by a small rescaling factor
above the MadGraph events. The analytic differential cross sections were superimposed using the
value of αs at the Z boson mass, whereas MadGraph uses a dynamic scale choice based on the mT of
the final states [123]. Hence for t-quark production in general, αs(mZ) > αs(m

t
T ).
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 uū→ tt̄ Cu
2 = 1/(1 TeV)2

√
s = 4mt GeV

dσ
dcosθ

(pb)

θ π

Figure 4.2: Example parton level dσ/dcosθ distributions for the two independent linear com-
binations of operators controlled by C1

u and C2
u for

√
s = 400GeV (left) and√

s = 4mt ≃ 692GeV (right). Histograms show MadGraph events correspond-
ing to |MSM |2, |Mint|2, |Mint|2 + |MD6|2 and |Mtot|2, while the solid lines are
analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

gg → t̄t Channel

Gluon fusion is the dominant tt̄ production channel at the LHC, (accounting for over 90%

of the cross section at 14 TeV) since the low-x gluon luminosity dwarfs that of the valence

quarks. While the SM production contains more topologies than qq̄, the interfering

dimension-six operators can only modify the ggg and (g)gtt vertices, or couple these to

an s-channel colour singlet. Fewer gauge-invariant operators then arise, and these are

{QG, Q
33
uG, QϕG}. The spin and colour averaged interference terms are:

M2
int (gg → tt̄) = ℜeCuG

33

ḡ3svTmt(4s
2 − 9tu− 9m2

t s+ 9m4
t )

3
√
2(m2

t − t)(m2
t − u)

+ CG
9 ḡ3sm

2
t (t− u)2

8 (m2
t − t)(m2

t − u)

−CϕG
ḡ2s m

2
t s

2(s− 4m2
t )

8(s−m2
h)(t−m2

t )(u−m2
t )
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Figure 4.3: Example parton level dσ/dcosθ distributions for ℜeQ33
uG for

√
s = 400GeV (left)

and
√
s = 4mt ≃ 692GeV (right). Histograms show MadGraph events corre-

sponding to |MSM |2, |Mint|2, |Mint|2+ |MD6|2 and |Mtot|2, while the solid lines
are analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

The operator OϕG cannot be bounded by top pair production alone, since the branching

G

G

t

tG

G

G

t

t
t

G

G

t

tt G

G

t

tG

G

G

t

t
t

G

G

t

tt G

G

t

t
G

G

t

tH

Figure 4.4: Feynman diagrams for gg → tt̄ production. Shaded circles represent each possible
operator insertion at the ggg, ggH and gtt vertices (for a maximum of one per
diagram) of QG, QϕG and Q33

uG respectively.

ratio to a tt̄ pair for a 125 GeV Higgs is practically zero ∗, therefore we do not consider it

here. For a recent constraint from Higgs physics see e.g. Ref. [76,78,82,83]. In Fig. 4.5,

we confirm this assertion numerically.

The purely gluonic operator QG (which, in contrast to ‘top-philic’ operators con-

tributes to any QCD process dependent on the gluon-self coupling) is known to con-

∗i.e. the presence of an s-channel Higgs propagator (s − m2
h)

−1 heavily suppresses this channel,
given the distance between mh and the tt̄ threshold.
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Figure 4.5: Example parton level dσ/dcosθ distributions for QϕG for
√
s = 400GeV (left) and√

s = 4mt ≃ 692GeV (right). Histograms show MadGraph events correspond-
ing to |MSM |2, 2ℜeMSMM∗

D6, |MD6|2 and |Mtot|2, while the solid lines are
analytic checks for |MSM |2, 2ℜeMSMM∗

D6, and |MSM+int|2.

tribute mainly though its square term, rather than its interference with the SM. The

interference of gluonic amplitudes featuring ggg vertices from a QG insertion with the

corresponding SM QCD amplitudes was shown to be zero by merit of their orthogonal

helicity structures [124]. We can verify this by noticing the net interference of the single

QG diagram with the SM channels carries an overall proportionality factor of m2
t .

Since this contribution would be zero for massless quarks, QG’s O(Λ−2) effect must

originate from the massive top propagator which couples to both gluon helicities. This

mass suppression clearly will not apply to the coherent O(Λ−4) product of s-channel QG

topologies with themselves. It was verified in an explicit calculation [125] that, taking

advantage of the fact that pure gauge-boson operators are relatively simple to construct

explicitly at a given mass dimension, |MD6|2 indeed carries a quadratic dependence on

ŝ, t̂ and û which dominates the linear scaling experienced by all interfering dimension-

eight operators. Then although both of these are O(Λ−4), the former is numerically

dominant. In Fig. 4.6 we verify that |MD6|2 is the leading effect even for small values

of CG such that s/Λ2 = (400GeV)2/(1TeV)2 = 0.16.

Fig. 4.7 exhibits QuG
33

in the gg channel. In contrast to the qq̄ channel, the additional

Feynman topologies permit operator insertions coupling the final states to virtual t and

u-channel tops and the scattering gluons. This lifts the restriction that the interference

be directly proportional to the part of the matrix element contracting the tt̄ pair of op-

posite chiralities, and we see that this process resultantly scales with the top kinematics.

Consequently, the squared term need not conform to the same behaviour as was argued
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Figure 4.6: Example parton level dσ/dcosθ distributions for QG for
√
s = 400GeV (left) and√

s = 4mt ≃ 692GeV (right). Histograms show MadGraph events correspond-
ing to |MSM |2, |Mint|2, |Mint|2 + |MD6|2 and |Mtot|2, while the solid lines are
analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

in the qq̄ production channel. We verify this in Fig. 4.7, where we see |MD6|2 begin to

become a significant contribution to the cross section for s/Λ2 ≃ 0.5.
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Figure 4.7: Example parton level dσ/dcosθ distributions for ℜeQ33
uG for

√
s = 400GeV (left)

and
√
s = 4mt ≃ 692GeV (right). Histograms show MadGraph events corre-

sponding to |MSM |2, |Mint|2, |Mint|2+ |MD6|2 and |Mtot|2, while the solid lines
are analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

4.1.2 Single Top Quark Production

The next most abundant source of top quark data is from single top production. In

our fit we will consider production in the t and s channels, and omit Wt-associated
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production. Though measurements of the latter process have been published, they are

not suitable for inclusion in a fit involving parton level theory predictions. As is well-

known, Wt production interferes with top pair production at NLO and beyond in a

five-flavour scheme [126–128], or at LO in a four-flavour one. Its separation from top

pair production is then a delicate issue, discussed in detail in Refs. [129–132]. We thus

choose to postpone the inclusion of Wt production to a future study, going beyond

parton level. The interfering dimension-six operators are:

LD6 ⊃ CuW (q̄σµντ Iu) ϕ̃W I
µν + C(3)

ϕq i(ϕ
†←→D I

µϕ)(q̄γ
µτ Iq)

+ Cϕud(ϕ
†←→D µϕ)(ūγ

µd) + CdW (q̄σµντ Id) ϕ̃W I
µν

+ C(3)
qq (q̄γµτ

Iq)(q̄γµτ Iq) + C(1)
qq (q̄γµq)(q̄γ

µq) + C(1)
qu (q̄γµq)(ūγ

µu) .

As in top pair production there are several simplifications which reduce this operator

set. The right-chiral down quark fields appearing in QdW and Qϕud cause these operators’

interference with the left-chiral SM weak interaction to be proportional to the relevant

down-type quark mass. For example, an operator insertion of Q33
ϕud will always contract

with the SM Wtb -vertex to form a term of order mbmtC
33
ϕud/Λ

2. Since mb is much

less than both ŝ and the other dimensionful parameters that appear, v and mt, we

may choose to neglect these operators. By the same rationale we neglect Q
(1)
qu as its

contribution to observables is O(mu).

s-Channel ud̄ → tb̄ Production

ud̄ → tb̄ production of single top quarks proceeds in the SM through the s-channel

exchange of a virtual W -boson. The interference with dimension-six operators takes

u

d

t

bW

u

d

t

bW

u

d

t

b

Figure 4.8: Feynman diagrams for s-channel single top quark production. Shaded circles rep-

resent operator insertions of Q
(3)
ϕq or ℜeQuW at the Wtb vertex, and one of the

operators Q
(3)1133
qq , Q

(1)1331
qq or Q

(3)1331
qq for the four-fermion contact interactions.
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the form:

M2
int (ud̄→ tb̄) = C

(3)
ϕq
33

ḡ32Vtb|Vud|2v2Tu(u−m2
t )

4(s−m2
W )2

−ℜeCuW
33

√
2ḡ22Vtb|Vud|2mtmW su

(s−m2
W )2

+
(
C(3)1133
qq + 1

6
(C(1)1331

qq − C(3)1331
qq )

)
VtbVud

9ḡ22u(u−m2
t )

8(s−m2
W )

Interference with the exclusively left-chiral weak interaction leads to just one contribut-

ing linear combination of four-fermion Wilson Coefficients:

Ct = C
(3)
qq
1133

+ 1
6
(C

(1)
qq
1331

− C(3)
qq
1331

)

Single top production is thus sensitive to the three independent Wilson Coefficients

CuW , C
(3)
ϕq
33

and Ct. After EWSB, the term proportional to v2T in the operator Q
(3)
ϕq
33

is

structurally identical to the SM fermion weak interaction term. As was noted in Ref. [91],

this amounts in single top production to a pure rescaling of the SM Wtb vertex by a

factor (1 + v2TC
(3)
ϕq
33

), with no effect on event shapes. In Fig. 4.9, we confirm that the

contribution of this operator is a net rescaling of the SM distribution, and |MD6|2 terms

are negligible.
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Figure 4.9: Example parton level dσ/dcosθ distributions for Q
(3)
ϕq for

√
s = 400GeV (left) and√

s = 4mt ≃ 692GeV (right). Histograms show MadGraph events correspond-
ing to |MSM |2, |Mint|2, |Mint|2 + |MD6|2 and |Mtot|2, while the solid lines are
analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

Suppression by the W -boson virtuality (s − m2
W ) in s-channel production - along

with contributing to the small contribution of this channel to SM single top production

at the LHC - drastically increases sensitivity to four-fermion operators. Since these are

contact interactions without no dependence on a W -propagator, for highly off-shell W s
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(i.e. when s≫ m2
W ) their matrix elements are relatively enhanced. The absence of one

(both) of these factors causes the interference (squared contribution) to dominate the

SM production mechanism even for small values of Ct, and likewise the contribution

from |MD6|2 to overwhelm that of the interference. In Fig. 4.10 we see this behaviour

directly∗, and truncating at O(Λ−2) is a poor approximation of four-fermion operators’

signatures in this channel. However, O(Λ−4) contributions arising from interference

of dimension-eight operators with the SM must again carry a suppression by the W -

virtuality. In the absence of a hierarchy in the BSM theory producing a scenario where

CD8 ≫ CD6, |MD6|2 should then be the most numerically significant effect.
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Figure 4.10: Example parton level dσ/dcosθ distributions for the linear combinations of op-
erators four-fermion operators controlled by Ct for

√
s = 400GeV (left) and√

s = 4mt ≃ 692GeV (right). Histograms show MadGraph events correspond-
ing to |MSM |2, |Mint|2, |Mint|2+ |MD6|2 and |Mtot|2, while the solid lines are
analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

Finally in this channel we have the operator ℜeQ33
uW , an electroweak analogue to

the chromomagnetic operator ℜeQ33
uG. In contrast to the behaviour of its gluonic cousin

in gg→ tt̄ production, the longitudinal component of the massive W -boson propagator

allows the interference term of this operator to scale with the momentum flowing through

the s-channel diagram†, producing a stronger kinematic scaling than in the pure SM

contribution. We see the result in Fig. 4.11, where the dimension-six contribution is

already of the same order as the SM for the lower illustrative centre of mass energy

chosen s/Λ2 = (400GeV)2/(1TeV)2 = 0.16. For s/Λ2 ≃ 0.5, we can see |MD6|2 then

∗Note that the green histograms and curves correspond to the full squared matrix elements including
quadratic terms, and the SM plus interference respectively. Thus a mismatch between these corresponds
to a large squared contribution.

†Q33
uW produces a vertex carrying a factor of (k1 + k2)

µ (from the W -boson field strength tensor
∂µWν − (µ↔ ν)), where k1 and k2 are the four momenta of the scattering quarks.
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becomes larger than the interference, as its squared contribution can carry two powers

of s from the modified Wtb vertex∗.
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Figure 4.11: Example parton level dσ/dcosθ distributions for ℜeQ33
uW for

√
s = 400GeV

(left) and
√
s = 4mt ≃ 692GeV (right). Histograms show MadGraph events

corresponding to |MSM |2, |Mint|2, |Mint|2+|MD6|2 and |Mtot|2, while the solid
lines are analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

t-Channel qb → q′t Production

Production of single top quarks in the t-channel is possible through the partonic sub-

processes ud̄ → tb̄ and ub→ dt in the SM. The contributing operators are the same as

those in s-channel production. The interference terms take the form:

M2
int (ub→ dt) = C

(3)
ϕq
33

ḡ32Vtb|Vud|2v2T s(s−m2
t )

4(t−m2
W )2

−ℜeCuW
33

√
2ḡ22Vtb|Vud|2mtmW st

(t−m2
W )2

+
(
C(3)1133
qq + 1

6
(C(1)1331

qq − C(3)1331
qq )

)
VtbVud

9ḡ22s(s−m2
t )

8(t−m2
W )

M2
int (d̄b→ ūt) = C

(3)
ϕq
33

ḡ32Vtb|Vud|2v2Tu(u−m2
t )

4(t−m2
W )2

−ℜeCuW
33

√
2ḡ22Vtb|Vud|2mtmWut

(t−m2
W )2

+
(
C(3)1133
qq + 1

6
(C(1)1331

qq − C(3)1331
qq )

)
VtbVud

9ḡ22u(u−m2
t )

8(t−m2
W )

.

As with in s-channel production, Q
(3)
ϕq
33

contributes only through a rescaling of the SM

cross section, and truncating |MD6|2 is well-justified. This is illustrated in Fig. 4.13.

∗However, the cross section for production of a single top quark in the s-channel mechanism is (at
the matrix element level) heavily suppressed by the W virtuality at LHC energies, while ℜeQ33

uW also
contributes both t-channel production, and to top quark decay.
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The analagous distributions for the process d̄b → ūt obtained by interchanging the u

and d quarks behave similarly.

u, d̄

b

d, ū

t

W
u, d̄

b

d, ū

t

W u, d̄

b

d, ū

t

Figure 4.12: Feynman diagrams for t-channel single top quark production. Shaded circles

represent operator insertions of Q
(3)
ϕq or ℜeQuW at the Wtb vertex, and one of the

operators Q
(3)1133
qq , Q

(1)1331
qq or Q

(3)1331
qq for the four-fermion contact interactions.
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Figure 4.13: Example parton level dσ/dcosθ distributions for Q
(3)
ϕq for

√
s = 400GeV (left)

and
√
s = 4mt ≃ 692GeV (right). Histograms show MadGraph events cor-

responding to |MSM |2, |Mint|2, |Mint|2 + |MD6|2 and |Mtot|2, while the solid
lines are analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

With the presence of the W -boson now in the t-channel, the suppression of the cross

section by factors of 1/(s − m2
W ) is no longer present, and consequently four-fermion

contact interactions no longer dominate the SM production mechanism. In Fig. 4.14,

we can confirm this - these operators’ leading contribution comes from their interference

with the SM t-channel mode diagram.

For ℜeQ33
uW , the interference with the SM is now proportional to the momentum in

the t-channel W -boson propagator, while this contribution to the cross section peaks for

t = m2
W . In Fig. 4.15, we can see the result - the enhancement to the cross section is neg-

ligible compared to the SM production mechanism which doesn’t carry this dependence.
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Figure 4.14: Example parton level dσ/dcosθ distributions for the linear combinations of op-
erators four-fermion operators controlled by Ct for

√
s = 400GeV (left) and√

s = 4mt ≃ 692GeV (right). Histograms show MadGraph events correspond-
ing to |MSM |2, |Mint|2, |Mint|2+ |MD6|2 and |Mtot|2, while the solid lines are
analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.
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Figure 4.15: Example parton level dσ/dcosθ distributions for ℜeQ33
uW for

√
s = 400GeV

(left) and
√
s = 4mt ≃ 692GeV (right). Histograms show MadGraph events

corresponding to |MSM |2, |Mint|2, |Mint|2+|MD6|2 and |Mtot|2, while the solid
lines are analytic checks for |MSM |2, |Mint|2, and |MSM |2 + |Mint|2.

4.1.3 qq̄, gg → tt̄Z/γ Associated Production

Alongside top pair and single top production, first measurements have been reported [133–

135] of top pair production in association with a photon and with a Z boson (tt̄γ and

tt̄Z)∗. In contrast to the tbW vertex which is accessible through both single top produc-

∗Early measurements of top pair production in association with a W has also been reported by
ATLAS and CMS, but the experimental errors are too large to say anything meaningful about new
physics therein; the measured cross-sections are still consistent with zero.
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tion and top quark decay, the neutral ttZ and ttγ couplings have been far less thoroughly

explored experimentally. Through a combination of factors including high production

thesholds (for the massive gauge bosons) and small branching fractions, the cross-section

for these processes are considerably smaller, and statistical uncertainties currently dom-

inate the quoted measurements.

Still, they are of interest because they are sensitive to a new set of operators not pre-

viously accessible, corresponding to enhanced top-gauge couplings (which are common

characteristics of simple W ′ and Z models), and which allow contact to be made with

electroweak observables. The operator set for tt̄Z, for instance, contains the 6 top pair

operators, plus the following:

LD6 ⊃ CuW (q̄σµντ Iu) ϕ̃W I
µν + CuB(q̄σ

µνu) ϕ̃Bµν + C(3)
ϕq i(ϕ

†←→D I
µϕ)(q̄γ

µτ Iq)

+ C(1)
ϕq i(ϕ

†←→D µϕ)(q̄γ
µq) + Cϕu(ϕ

†i
←→
D µϕ)(ūγ

µu) ,
(4.1.4)

where the operators Q33
uW and Q

(3)
ϕq
33

occur also in single top production.

The comparatively low number of individual tt̄V measurements and their relatively

large uncertainties leads to these having little impact on a simultaneous global fit with

top pair and single top production. For this reason, individual constraints will be pre-

sented on these operators for the moment, keeping in mind that the significantly in-

creased production cross sections and corresponding differential measurements expected

in LHC Run II will improve prospects in these channels. Prospects for isolating and con-

straining the ttV vertex operators using 13 TeV data and ratios of tt̄V/tt̄ observables

were recently discussed in [136].

4.1.4 Decay observables

Interfering dimension-six operators also contribute to top quark decay observables. Since

Vtb ≃ 1, tops decay nearly 100% of the time to a W -boson and b quark. The fraction of

these events which decay to W -bosons with a given helicity: left-handed, right-handed

or longitudinal helicity, can be expressed in terms of helicity fractions, which for leading
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Figure 4.16: Example Feynman diagrams for gg → tt̄(Z/γ) production. In addition to the
operators present in gg → tt̄, the shaded ttV vertices allow emissions of a Z/γ

from insertions of the dimension-six operators Q33
uB, Q

33
uW , Qϕu, Q

(1)
ϕq and Q

(3)
ϕq .

order with a finite b-quark mass are:

F0 =
(1− y2)2 − x2(1 + y2)

(1− y2)2 + x2(1− 2x2 + y2)

FL =
x2(1− x2 + y2) +

√
λ

(1− y2)2 + x2(1− 2x2 + y2)

FR =
x2(1− x2 + y2)−

√
λ

(1− y2)2 + x2(1− 2x2 + y2)

(4.1.5)
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for the SM with x = MW/mt, y = mb/mt and λ = 1 + x4 + y4 − 2x2y2 − 2x2 − 2y2.

As noted in Ref. [91], measurements of these fractions can be translated into bounds

on the operator ℜeQ33
uW . The desirable feature of these quantities is that they are

relatively stable against higher order corrections, so the associated scale uncertain-

ties are small. The Standard Model NNLO estimates for these are: {F0, FL, FR} =

{0.687± 0.005, 0.311±0.005, 0.0017±0.0001} [137], i.e. the uncertainties are at the per

mille level.

4.1.5 Charge Asymmetries

Asymmetries in the production of top quark pairs have received a lot of attention in

recent years, particularly due to an apparent discrepancy between the Standard Model

prediction for the so-called ‘forward-backward’ asymmetry AFB in top pair production:

AFB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
(4.1.6)

where ∆y = yt − yt̄, as measured at the TeVatron [138]. This discrepancy was most

pronounced in the high invariant mass region, pointing to potential TeV-scale physics at

play. However, recent work has cast doubts on its significance for two reasons: Firstly,

an updated analysis with higher statistics [139] has slightly lowered the excess. Sec-

ondly, a full NNLO QCD calculation [140] of AFB showed that, along with NLO QCD

+ electroweak calculations [141–143] the radiative corrections to AFB are large. The cur-

rent measurements are now consistent with the Standard Model within 2σ. Moreover,

the D/0 experiment reports [144] a high-invariant mass measurement lower than the SM

prediction. From a new physics perspective, it is difficult to accommodate all of this

information in a simple, uncontrived model without tension.

Still, in an effective field theory approach, deviations from the Standard Model pre-

diction of AFB take a very simple form. A non-zero asymmetry arises from the difference

of four-quark operators:

AFB = ((2C1
u − C2

u) + (4C1
d − C2

d))
3ŝβ

64g2sΛ
2(3− β2)

, (4.1.7)
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where β =
√

1− s/4m2
t is the velocity of the tt̄ system∗. Combining this inclusive

measurement with differential measurements such as dAFB/dMtt̄ allows simultaneous

bounds to be extracted on all four of these operators.

Though the charge symmetric initial state of the LHC does not define a ‘forward-

backward’ direction, a related charge asymmetry can be defined as:

AC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
(4.1.8)

making use of the fact that tops tend to be produced at larger rapidities than antitops.

At the 13 TeV LHC and beyond, the predominance of the gg→ tt̄ production channel

(for which AC = 0) will dilute AC, which arises from four-quark operators probed in

qq̄ → tt̄ scattering.

4.1.6 NLO k-factors

The implementation of general NLO matrix elements for higher-dimensional operators

into event generators is currently a work in progress. Recent advances in expanding the

UFO format [148] to incorporate the necessary operator counterterms has led to the

availability of models for limited processes, such as top FCNCs [149]†. As was discussed

in Chapter 2, the ability to translate between different operator bases is essential for a

general automated solution to this problem.

Consequently, we model NLO QCD corrections by including Standard Model K-

factors (bin-by-bin for differential observables), where the NLO observables are calcu-

lated using MCFM [151], cross-checked with MC@NLO [152,153]. These K-factors are

used for arbitrary values of the Wilson coefficients, thus modelling NLO effects in the

pure-SM contribution only. More specifically, this amounts to performing a simultane-

ous expansion of each observable in the strong coupling αs and the (inverse) new physics

scale Λ−1, and neglecting terms ∼O(αSΛ−2). In the case of top pair total inclusive

cross-sections, we use global K-factors from next-to-next-to leading order QCD with

soft gluons resummed to next-to-next-to-leading logarithmic accuracy [154–158].

∗Contributions to AFB also arise from the normalisation of AFB and the dimension-six squared
term [145–147], which we keep, as discussed in sections 3.3 and 4.

†Currently, a general treatment of ‘evanescent’ four-fermion operators (for an introduction, see
e.g. [150]) which arise in dimensional regularization must be automated to be able to obtain the finite
parts of the matrix elements. Broadly speaking, the associated difficulties stem from the incompleteness
of a given operator basis in d dimensions.
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4.2 Fitting Framework

Our fitting procedure utilizes novel techniques developed in the context of Monte Carlo

event generator tuning, as implemented in the Professor [159] framework. The first

step is to construct an N -dimensional hypercube in the space of dimension six Wilson

Coefficients, compute the K-factor reweighted observables at each point in the space,

and then to fit an interpolating function f(C) that parametrises the theory prediction

as a function of the Wilson coefficients C = {Ci}. The values of the operator coefficients

are sampled logarithmically about the SM point {Ci} = 0 to avoid oversampling regions

in which these are large. This can then be used to rapidly generate theory observables

for arbitrary values of the coefficients. Motivated by the dependence of the total cross-

section with a Wilson coefficient:

σ∼σSM + CiσD6 + C2
i σD62 , (4.2.9)

the fitting function is chosen to be a second-order or higher polynomial:

fb({Ci}) = αb0 +
∑

i

βbiCi +
∑

i≤j
γbi,jCiCj + . . . . (4.2.10)

In the absence of systematic uncertainties, each observable would exactly follow a

second-order polynomial in the coefficients, and higher-order terms capture bin uncer-

tainties which modify this. Observables such as asymmetries, or distributions normalised

to the total cross section also invalidate this simple relation. The polynomial also serves

as a useful check that the dimension-six approximation is valid. By comparing eq. (4.2.9)

with eq. (4.2.10), we see that the terms quadratic in Ci are small provided that the coef-

ficients in the interpolating function γi,j are small. This is a more robust way to ensure

validity of the dimension-six approximation than to assume a linear fit from the start.

In practice, to minimise the interpolation uncertainty, we use up to a 4th order

polynomial in eq. (4.2.10), depending on the observable of interest. The performance of

the interpolation method is shown in Figure 4.17, which depicts the fractional deviation

of the polynomial fit from the explicit MC points used to constrain it. The central values

and the sizes of the modelling uncertainties may both be parameterised with extremely

similar performance, with 4th order performing best for both. The width of this residual

mismodeling distribution being ∼ 3% for each of the value and error components is the

motivation for a total 5% interpolation uncertainty to be included in the goodness of fit
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Figure 4.17: Residuals distributions for interpolated observable values (left) and uncertain-
ties (right), evaluated over all input MC runs and all observables. The 4th order
polynomial parameterisation gives the best performance and the vast majority of
entries are within 5% of the explicit MC value. The poor performance of a con-
stant uncertainty assumption based on the median input uncertainty is evident –
since all three lines have the same normalisation, the majority of residual mis-
modellings for the median approach are (far) outside the displayed 10% interval.

of the interpolated MC polynomial f(C) to the experimentally measured value E:

χ2(C) =
∑

O

∑

i,j

(fi(C)− Ei)ρi,j(fj(C)− Ej)
σiσj

, (4.2.11)

where we sum over all observables O and all bins in that observable i. We include the

correlation matrix ρi,j where this is provided by the experiments, otherwise ρi,j = δij .

The uncertainty on each bin is given by σi =
√
σ2
th,i + σ2

exp,i, i.e. we treat theory and

experimental errors as uncorrelated. The parameterisation of the theory uncertainties is

restricted to not become larger than in the training set, to ensure that polynomial blow-

up of the uncertainty at the edges of the sampling range cannot produce a spuriously

low χ2 and disrupt the fit.

We hence have constructed a fast parameterisation of model goodness-of-fit as a

function of the EFT operator coefficients. This may be used to produce χ2 maps in

slices or marginalised projections of the operator space, which are then transformed to

confidence intervals on the coefficients Ci, defined by the regions for which

1− CL ≥
∫ ∞

χ2(Ci)

fk(x)dx , (4.2.12)
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where typically CL ∈ {0.68, 0.95, 0.99} and fk(x) is the χ2 distribution for k degrees of

freedom, which we define as k = Nmeasurements −Ncoefficients.

4.2.1 Treatment of uncertainties

The uncertainties entering our fit can be classed into three categories:

Experimental uncertainties: We generally have no control over these. In cases where

statistical and systematic (and luminosity) errors are recorded separately, we add them

in quadrature. Correlations between measurements are also an issue: the unfolding of

measured distributions to parton-level introduces some correlation between neighbour-

ing bins. If estimates of these effects have been provided in the experimental analysis,

we use this information in the fit, if they are not, we assume zero correlation. However,

we have checked that bin correlations have little effect on our numerical results.

There will also be correlations between apparently separate measurements. The mul-

titude of different top pair production cross-section measurements will clearly be cor-

related due to overlapping event selection criteria and detector effects, etc. Without a

full study of the correlations between different decay channels measured by the same

experiment, these effects cannot be completely taken into account, but based on the

negligible effects of the bin-by-bin correlations on our numerical results we can expect

these effects to be small as well.

Theoretical uncertainties: These stem from the choice of parton distribution func-

tions (PDFs), as well as neglected higher-order perturbative corrections. As is con-

ventional, we model the latter by varying the renormalisation and factorisation scales

independently in the range µ0/2 ≤ µR,F ≤ 2µ0, where we use µ0 = mt as the default

scale, and take the envelope as our uncertainty. For the PDF uncertainty, we follow the

PDF4LHC recommendation [160] of using CT10 [161], MSTW [162] & NNPDF [163]

NLO fits, each with associated scale uncertainties, then taking the full width of the

scale+PDF envelope as our uncertainty estimate – i.e. we conservatively assume that

scales and parton densities are 100% correlated. Unless otherwise stated, we take the

top quark mass to be mt = 173.2± 1.0 GeV. We do not consider electroweak correc-

tions. We also re-iterate that since the Wilson coefficients are evaluated at this scale

µ∼mt, an interpretation of these in the context of a given BSM model at µ∼Λ should

include their running and mixing under the renormalization group.
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Interpolation error: The small error relating to the Monte Carlo interpolation (de-

picted in 4.17) is conservatively estimated to be 5%, as outlined in the previous section.

This is subleading compared to the previous two categories.

Constraints are obtained in two ways, for ease of comparison with existing literature.

Firstly, single operator coefficients are allowed to vary, with all others set to zero (the

SM value). The χ2 is then minimised using PyMinuit [164], and used to set confidence

limits on the operator value. A second approach is to marginalise over the remaining

operators, namely to construct the confidence limit for a given operator coefficient whilst

allowing all other coefficients to vary.

4.2.2 Experimental Datasets

The experimental measurements used in the fit [133–135,139,144,165–197] are included

in Table 4.1. All these measurements are quoted in terms of ‘parton-level’ quantities;

that is, top quarks and their direct decay products. Whilst it is possible to include

particle-level observables, available measurements for these are far less abundant and

they are beyond the scope of the present study.

The importance of including kinematic distributions is manifest here. For top pair

production, for instance, we have a total of 195 measurements, 174 of which come from

differential observables. This size of fit is unprecedented in top physics, which underlines

the need for a systematic fitting approach, as provided by Professor. Indeed top pair

production cross-sections make up the bulk of measurements that are used in the fit.

Single top production cross-sections comprise the next dominant contribution. We also

make use of data from charge asymmetries in top pair production, as well as inclusive

measurements of top pair production in association with a photon or a Z (tt̄γ and tt̄Z).

Measurements of the top width Γtop and W -boson helicity fractions constrain operators

impacting the top decay.

4.3 Results

We explore each category of these measurement in turn, discussing the constraints ob-

tained on the applicable operators from the datasets. We will restore the explicit factor

of Λ−2 carried by each Wilson Coefficient (i.e. writing C → C/Λ2 so that the quantity C
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Dataset
√
s (TeV) Measurements arXiv ref. Dataset

√
s (TeV) Measurements arXiv ref.

Top pair production

Total cross-sections: Differential cross-sections:

ATLAS 7 lepton+jets 1406.5375 ATLAS 7 pT (t),Mtt̄, |ytt̄| 1407.0371

ATLAS 7 dilepton 1202.4892 CDF 1.96 Mtt̄ 0903.2850

ATLAS 7 lepton+tau 1205.3067 CMS 7 pT (t),Mtt̄, yt, ytt̄ 1211.2220

ATLAS 7 lepton w/o b jets 1201.1889 CMS 8 pT (t),Mtt̄, yt, ytt̄ 1505.04480

ATLAS 7 lepton w/ b jets 1406.5375 D/0 1.96 Mtt̄, pT (t), |yt| 1401.5785

ATLAS 7 tau+jets 1211.7205

ATLAS 7 tt̄, Zγ,WW 1407.0573 Charge asymmetries:

ATLAS 8 dilepton 1202.4892 ATLAS 7 AC (inclusive+Mtt̄, ytt̄) 1311.6742

CMS 7 all hadronic 1302.0508 CMS 7 AC (inclusive+Mtt̄, ytt̄) 1402.3803

CMS 7 dilepton 1208.2761 CDF 1.96 AFB (inclusive+Mtt̄, ytt̄) 1211.1003

CMS 7 lepton+jets 1212.6682 D/0 1.96 AFB (inclusive+Mtt̄, ytt̄) 1405.0421

CMS 7 lepton+tau 1203.6810

CMS 7 tau+jets 1301.5755 Top widths:

CMS 8 dilepton 1312.7582 D/0 1.96 Γtop 1308.4050

CDF + D/0 1.96 Combined world average 1309.7570 CDF 1.96 Γtop 1201.4156

Single top production W-boson helicity fractions:

ATLAS 7 t-channel (differential) 1406.7844 ATLAS 7 1205.2484

CDF 1.96 s-channel (total) 1402.0484 CDF 1.96 1211.4523

CMS 7 t-channel (total) 1406.7844 CMS 7 1308.3879

CMS 8 t-channel (total) 1406.7844 D/0 1.96 1011.6549

D/0 1.96 s-channel (total) 0907.4259

D/0 1.96 t-channel (total) 1105.2788

Associated production Run II data

ATLAS 7 tt̄γ 1502.00586 CMS 13 tt̄ (dilepton) 1510.05302

ATLAS 8 tt̄Z 1509.05276

CMS 8 tt̄Z 1406.7830

Table 4.1: The measurements entering our fit. Details of each are described in the text.

is dimensionless), and express bounds on these in terms of the dimensionless quantities

C ≡ C v2/Λ2.

The importance of including measurements of the tt̄ and single top quark differential

distributions is illustrated in Fig 4.18, where we plot our NLO SM estimate for two top

pair distributions with and without the dimension-six four-quark contribution from C2
u.

Both are consistent with the data in the threshold region, which dominates the

cross-section, but clear discrimination between SM and dimension-six effects is visible in

the high mtt̄ / p
t
T regions, which simply originates from the scaling of the dimension-six

effects with s/Λ2∗.

∗One may worry that the inclusion of the final ‘overflow’ bin in the invariant mass distributions
may invalidate the EFT approach. We have performed the global fit without these data points, and
found that they have little effect on our constraints. This is due to the large experimental uncertainties
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Figure 4.18: Parton level differential distributions in top pair production, considering SM only
(red) and the effects of the four-quark operator O2

u, showing the enhancement in
the tails of the distributions. Data taken from Ref. [185].

The (individual and marginalized) 95% confidence limits obtained on the nine inde-

pendent Wilson Coefficients affecting top pair and single top production are shown in

Fig 4.19.

Given the lack of reported deviations in top quark measurements, it is unsurprising

to see that all Wilson coefficients are consistent with zero within the 95% confidence

intervals, and that the SM hypothesis is an excellent description of the data. As one

would expect, marginalization over the nine-dimensional space of coefficients leads to

weaker bounds on each C than the individual constraints obtained by presuming all

others to be zero.

The bounds on operators contributing only to top pair production are typically

stronger, consistent with the higher collected statistics in this channel. Constraints

obtained on the four-fermion couplings C
1/2
u/d are looser than their counterparts CG and

C33
uG , in line with the expectation that tt̄ events are predominantly gluon-fusion induced

at the LHC. The coefficient of the so-called chromomagnetic moment operator QuG is

the most tightly constrained in tt̄ production, owing to its appearance in both the qq̄ and

gg channels, i.e. it benefits from both the qq̄ dominated TeVatron and the gg dominated

LHC measurements. As was discussed, the cross section enhancements from the opera-

tor QG are driven by the squared dimension six terms. Nonetheless, in the interests of

in this region, and the fact that these bins comprise less than 5% of the total degrees of freedom in our
fit, so have little statistical pull.
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Figure 4.19: Left: Individual (red) and marginalised (blue) 95% confidence intervals on
dimension-six operators from top pair production and single top production (bot-
tom three). Right: Marginalised 95 % bounds considering all data from LHC and
Tevatron (green) vs Tevatron only (purple).

generality, we choose to include this operator in our fit at this stage, noting that bounds

on its Wilson coefficient should be interpreted with caution.∗

For the four-quark operators, the stronger bounds are typically on the C1
i -type. This

originates simply from the choice of normalization of these linear combinations (as visible

in their contribution to the squared matrix element in Section 4.1.1).

With the exception of Ct, which strongly modifies the single top production cross-

section, the individual bounds on the operator coefficients from single top production are

typically weaker. This originates from the larger experimental uncertainties on single top

production, that stem from the multitude of different backgrounds that contaminate this

process, particularly top pair production. For the TeVatron datasets this is particularly

telling: the few measurements that have been made, with no differential distributions,

combined with the large error bars on the available data, mean that two of the three

operators are not constrained at dimension-six†. Still, as before, excellent agreement

with the SM is observed.

∗We have observed that excluding this operator actually tightens the bounds on the remaining ones,
so choosing to keep it is the more conservative option.

†Our bounds on these two operators are of the same order, but wider, than a pre-LHC phenomeno-
logical study [89], owing to larger experimental errors than estimated there.
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Figure 4.20: 68%, 95% and 99% confidence intervals for selected combinations of operators
contributing to top pair production, with all remaining operators set to zero. The
star marks the best fit point, indicating good agreement with the Standard Model.
Here C̄i = Civ

2/Λ2.

In addition to single-top production, QuW may be constrained by measurements of

the distributions of the top quark’s decay products. The matrix element for hadronic

top quark decay t→Wb→ bqq′, for instance, is equivalent to that for t-channel single

top production via crossing symmetry, so decay observables provide complementary

information on this operator.

Along with examining the marginalized and individual bounds obtained on each op-

erator, we can also examine the correlation of constraints between pairs of operators.

In Figure 4.20 we plot the allowed 68%, 95% and 99% confidence intervals for various

pairs of operators, with all others set to zero, showing correlations between some coeffi-

cients. Most of these operators appear uncorrelated, though there is a strong correlation

between C1
u and C1

d , as their contribution to the squared matrix elements has the same

form. In Figure 4.21, the stronger joint constraints on CG vs C1
u obtained from including

differential measurements make manifest the importance of utilizing all available cross-
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Figure 4.21: Left: 68%, 95% and 99% confidence intervals on the operators CG vs. C1
u ,

considering differential and total cross-sections (contours, red star), and total
cross-sections only (lines, white star). Right: Limits on C33

uG vs. C1
u, considering

both Tevatron and LHC data (contours) and Tevatron data only (lines).

section information. It is also interesting to note the relative pull of measurements

from the LHC and Tevatron, as illustrated in Figure 4.21. It is interesting to see that

although Tevatron data are naively more sensitive to four-quark operators, after the

LHC Run I and early into Run II, the LHC data size and probed energy transfers lead

to comparably stronger constraints. In our fit this is highlighted by the simple fact

that LHC data comprise more than 80% of the bins in our fit, so have a much larger

pull. This stresses the importance of collecting large statistics as well as using sensitive

discriminating observables.

Constraints on operators contributing to the associated production processes tt̄γ and

tt̄Z as listed in eq. (4.1.4) are displayed in Figure 4.22. As was mentioned, these processes

are also sensitive to the set of top pair operators. The bounds obtained on these operators

from measurements of tt̄γ and tt̄Z production are thus much weaker than those obtained

from top pair production due to much more abundant data available for tt̄ production,

so are not shown here. It is interesting to note that the individual constraints obtained

on the operators shared with single top production are comparable from these channels,

despite the relative paucity of measurements of associated production.
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Figure 4.22: Individual 95% confidence intervals for the operators of 4.1.4 from tt̄γ and tt̄Z
production (green) and in the two cases where there is overlap, from single top
measurements (blue).

It is interesting to ask how the bound obtained on Q33
uW from measurements of the

W -boson helicity fractions Fi from the decay of top quarks compares with that obtained

from single top production cross-section measurements. In Figure 4.23 we show the

constraints obtained in each way. Although they are in excellent agreement with each

other, cross-section information gives a slightly stronger bound, mainly due to the larger

amount of data available, but also due to the large experimental uncertainties on Fi.

Still, these measurements provide complementary information on the operator Q33
uW ,

and combining both results in a stronger constraint than either alone, in line with

expectations.
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C̄i = Civ
2/Λ2

Cross-sections
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Combined
C̄33

uW

Figure 4.23: 95% bounds on the operator Q33
uW obtained from data on top quark helicity frac-

tions (blue) vs. single top production cross-sections (red), and both sets of mea-
surements combined (purple).

By taking advantage of both inclusive and differential measurements of the tt̄ asym-

metries AFB and AC from the TeVatron and LHC respectively, bounds can be obtained

on the four linear combinations of four-quark operators C
1/2
u/d complementary to those ex-
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Figure 4.24: Results of a 1000 point parameter space scan over -10 TeV −2 < C1,2
u,d/Λ

2 < 10

TeV −2 overlaid with the most up to date measurements of AFB and AC, showing
clearly the correlation between them.

tracted from cross section measurements.∗. Again it’s possible to (indirectly) investigate

the complementarity between Tevatron and LHC constraints.

The most up-to-date SM prediction is AC = 0.0123±0.005 [143] for
√
s = 7 TeV.

The experimental status of these measurements is illustrated in Figure 4.24. The in-

clusive measurements of AFB are consistent with the SM expectation, as are those of

AC. The latter, owing to large statistical errors, are also consistent with zero, however,

so this result is not particularly conclusive. Since these are different measurements, it

is also possible to modify one without significantly impacting the other. Clearly they

are correlated, as evidenced in Figure 4.24, where the most up to date measurements of

AFB and AC are shown along with the results of a 1000 point parameter space scan over

the four-quark operators. This highlights the correlation between the two observables:

non-resonant new physics which causes a large AFB will also cause a large AC, provided

it generates a dimension-six operator at low energies.

We have used both inclusive measurements of the charge asymmetries AC and AFB,

and measurements as a function of the top pair invariant massMtt̄ and rapidity difference

|ytt̄|. In addition, ATLAS has published measurements of AC with a longitudinal boost

of the tt̄ system: β = (|pzt + pzt̄ )|/(Et +Et̄) > 0.6, which may enhance sensitivity to new

physics contributions to AC, depending on the model [198].

∗Contributions to AFB also arise from the normalisation of AFB and the dimension-six squared
term [145–147], which are included in the MadGraph matrix elements.
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Since AFB = 0 at leading-order in the SM, it is not possible to define a K-factor in

the usual sense. Instead we take higher-order QCD effects into account by adding the

NNLO QCD prediction to the dimension-six terms. In the case of AC, we normalise the

small (but non-zero) LO QCD piece, to the NLO prediction, which has been calculated

with a Monte Carlo and cross-checked with a dedicated NLO calculation [143].

The above asymmetries have been included in the global fit results presented in

Figure 5.5. However, it is also interesting to see what constraints are obtained on the

operators from asymmetry data alone. To this end, the 95% confidence intervals on

the coefficients of the operators O1,2
u,d from purely charge asymmetry data are shown in

Figure 4.25. Unsurprisingly, the bounds are much weaker than for cross-section measure-

ments, with the O2
i -type operators unconstrained by LHC data alone. Despite the small

discrepancy between the measured AFB and its SM value, this does not translate into a

non-zero Wilson coefficient; as before, all operators are zero within the 95% confidence

intervals.
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Figure 4.25: Marginalised 95% confidence intervals on top pair four quark operators from
charge asymmetries at the LHC and Tevatron.

It’s also possible to examine the quality of fit for different datasets. We quantify this

by calculating the χ2 per bin between the data and the global best fit point, as shown

in Figure 4.27.
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Figure 4.26: 95% confidence intervals for the dimension-six operators that we consider here,
with all remaining operators set to zero (red) and marginalised over (blue). In
cases where there are constraints on the same operator from different classes
of measurement, the strongest limits are shown here. The lack of marginalised
constraints for the final three operators is discussed in Section 4.1.3.

Overall, excellent agreement is seen across the board, with no measurement in obvious

tension with any other. The largest single contributors to the χ2 come from the rapidity

distributions in top pair production. It has been known for some time that these are quite

poorly modelled with Monte Carlo generators, especially in the boosted regime. It is

quite likely that this discrepancy stems from the QCD modelling of the event kinematics,

rather than potential new physics. Moreover, in a fit with this many measurements,

discrepancies of this magnitude are to be expected on purely statistical grounds.

At the level of total cross-sections, the vanishingly small contributions to the χ2

stem from two factors: the O(10%) measurement uncertainties, which are even larger in

hadronic channels, and the large scale uncertainties from the large kinematic range that

is integrated over to obtain the total rate. Single top production measurements are also

in good agreement with the SM. The associated production processes ttγ and ttZ, along
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with the charge asymmetry measurements from the LHC, have a very small impact on

the fit, owing to the large statistical uncertainties on the current measurements. For the

former, this situation will improve in Run II, while the predominance of the gluon fusion

channel in tt̄ production will hinder prospects for measuring AC . The forward-backward

asymmetry measurements from CDF remain the most discrepant dataset used in the fit.

4.4 Matching to UV Models

As an illustration of the wide-ranging applicability of EFT techniques, we conclude

by conducting some simple matching calculations in order to interpret our low-energy

effective operator constraints in terms of some specific UV models, and estimate how

these compare with corresponding direct searches.

4.4.1 Axigluon searches

Considering top pair production, one can imagine the four-fermion operators appearing

in top pair production as being generated by integrating out a heavy s-channel resonance

which interferes with the QCD qq̄→ tt̄ amplitude.

One particle that could generate such an interference is the so-called colouron, one

postulated BSM state offering an explanation for the tt̄ forward-backward asymmetry

AFB. These are massive colour-octet vector bosons arising in ‘chiral colour’ models with

an extended strong sector, where the gauge group SU(3)c1×SU(3)c2 is spontaneously

broken by a non-linear sigma field to the diagonal subgroup SU(3)c of QCD (for an

overview, see e.g. Ref [199]). Analagously to the photon and Z-boson after EWSB,

the resulting spectrum includes the massless gluons, and massive colourons which may

possess chiral couplings to the quarks. The QCD Lagrangian is replaced by:

L = −1
4
G1µνG

µν
1 −

1

4
G2µνG

µν
2 +

f 2

4
TrDµΣD

µΣ† + Lquark + Lg.f. .

Σ is the nonlinear sigma field transforming in the bi-fundamental representation of

SU(3)1c×SU(3)2c which triggers the breaking to SU(3)c,

Σ = exp

(
2iπata

f

)
, a = 1, . . . , 8 ,
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where πa are the Nambu-Goldstone bosons “eaten” by the coloron, f is the corresponding

“decay-constant", and ta are the usual Gell-Mann matrices. The physical gluon and

massive colouron fields Ga
µ and Ca

µ are related to Ga
1µ and Ga

2µ by a rotation through

an angle θc, and the quark covariant derivative is supplemented by additional L and R

chiral couplings to the colouron:

LCquarks = q̄i
[
/C
a
ta (gLPL + gRPR)

]
qi , where gL, gR ∈ gs {− tan θc, cot θc} .

The axigluon is the name given to Ca
µ in the special case θ = π/4, i.e. gL = −gR = gs.

In the limit s≪ M2
A, where MA is the axigluon mass, the leading-order interference

of an s-channel axigluon with the SM qq̄→ tt̄ process identifies the Wilson Coefficients:

C1
u

Λ2
=

g2s
M2

A

,
C1
d

Λ2
=

5g2s
4M2

A

,
C2
u

Λ2
=
C2
d

Λ2
=

2g2s
M2

A

Substituting the marginalised constraints on the 4-quark operators, we find this trans-

lates into a lower bound on an axigluon mass. MA & 1.4 TeV at the 95% confidence

level. Since this mass range coincides with the overflow bin of figure 4.18, this bound

creates some tension with the validity of the EFT approach in the presence of resonances

in the tt̄ spectrum (for a general discussion see Ref. [102, 200, 201]); at this stage in the

LHC programme indirect searches are not sensitive enough to compete with dedicated

searches.

4.4.2 W ′ searches

Turning our attention to single top production, we consider the example of the operator

O
(3)
qq being generated by a heavy charged vector resonance (W ′) which interferes with

the SM amplitude for s-channel single top production: ud̄→W → tb̄. The generic La-

grangian for such a particle, allowing for both left- and right-handed chiral couplings

(see e.g. Ref. [202].), is:

L =
1

2
√
2
VijgW ′ q̄iγµ(f

R
ij (1 + γ5) + fLij(1− γ5))W µqj + h.c. (4.4.13)

We consider the scenario where the W ′ coupling has the same magnitude as that of

the W , gW ′ = g2. The leading contribution from interference with the SM must share
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the same (V − A) structure as the weak interaction, so fR = O(Λ−4) can be neglected.

The tree-level interference term for between the W and W ′ diagrams for ud̄→ tb̄ in the

limit s≪M ′2
W then identifies:

C
(3)
qq
1133

Λ2
=

g2

4M2
W ′

(4.4.14)

which, using our global constraint on Ct, translates into a bound MW ′ & 1.2 TeV.

These bounds are consistent with, but much weaker than, constraints from direct

searches for dijet resonances from ATLAS [203,204] and CMS [205], which report lower

bounds of {MA,MW ′} > {2.72, 3.32} TeV and {MA,MW ′} > {2.2, 3.6} TeV respectively.

It is unsurprising that these dedicated analyses obtain stronger limits, given the general-

ity of this fit. Again this energy range is resolved in our fit, in principle invalidating the

use of the dimension-six EFT approach to obtain constraints on this model. Nonetheless,

these bounds provide an interesting comparison of our numerical results, whilst empha-

sising that for model-specific examples, direct searches for high-mass resonances provide

stronger limits than general global fits.

4.5 Outlook

Despite the absence of any indication of non-resonant new physics so far, the level of

agreement with the SM in such a large global fit is itself a testament to the consistency

of different top quark measurements. While we await new data from Run II of the LHC,

there are a number of possibilities to expand upon and improve the scope and accuracy

of the TopFitter framework.

With the prospect of automated, fully NLO in QCD matrix elements for higher-

dimensional operators on the horizon, we will be able to confront mounting datasets

and narrowing experimental uncertainties expected over the lifetime of the LHC with

more accurate signal modelling. Incorporating operator RGE running and mixing effects

will be an essential ingredient in attempting to offer an interpretation of any promising

deviations in terms of UV-complete models.

With the appearance in Run II of differential measurements of the tt̄(Z/γ) produc-

tion channels with higher statistics, the number of Wilson Coefficients which can be

simultaneously constrained in a global fit will increase. Coupled with our becoming
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sensitive to additional operators which enter via loops at O(αs), this will necessitate the

development of methods by which such a fit can be optimized to accommodate a larger

parameter space.

The release of particle level top quark measurements from ATLAS and CMS will also

bring new challenges and opportunities. Relaxing the SM-biased assumptions implicit in

the ‘unfolding’ of the detector level final states back to partonic tops opens up sensitivity

to probing operators entering into the top decay. While offering potential sensitivity to

these effects across all production channels, the computationally intensive inclusion of

parton showering and hadronization in the theoretical modelling must be met for this

to be taken advantage of. The task of expanding the complexity and number of the

accompanying analyses to include the reconstruction of the tops in each of the possible

decay channels must then also be overcome.

Particle level datasets also open up the door to exploring more sophisticated observ-

ables. Angular asymmetries in the top decay products in particular are sensitive to CP
violating effects of BSM origin, and measurements thereof allow constraints to be placed

on the imaginary parts of dimension-six Wilson Coefficients which cannot be seen in

cross section measurements.

Work in these directions is currently underway, and hopefully the top sector may

surprise us yet.
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Chapter 5

Improving the Top EFT Fit with

Boosted Reconstruction Techniques

Unfortunately, the constraints on non-standard behaviour in top quark physics extracted

from the small integrated luminosity available from Run I of the LHC are rather weak.

For limits set on effective operator coefficients to be useful, they must remain informative

(i.e. accurately capture the leading low energy effects) when given a physical interpre-

tation in a matching calculation to a given UV-complete model. Exclusion limits from

tt̄ resonance searches currently still permit (for some typical perturbative scenarios such

as Z ′, W ′, or Kaluza-Klein gluon resonances [206–208]) the existence of states in the

MNP ≃ O(1 TeV) region.

This is problematic for EFT, as interpreting a quoted constraint on a Wilson coeffi-

cient C/Λ2 as a model specific statement about an underlying coupling g∗ can imply a

corresponding mass scale M∗ that is resolved by measurements used in the fit [3,56,102].

To be compatible with corresponding resonance searches, we must then abandon any

attempt to connect this model to the effective description, since our initial assumption

Λ = M∗ ≫
√
s is no longer valid. The prospects for interpreting EFT constraints in a

manner consistent with an inherently limited range of validity will be discussed in more

detail in Section 5.4.1.

The increased luminosity in Run II, as well as the ‘high luminosity’ (HL) phase of

the LHC (and in the long term, a potential proposed 100 TeV collider) will lead to a

significant improvement of these currently loose constraints. The degree of improvement

will depend on the relative importance of particular top channels and the impact of their

associated experimental systematic uncertainties on the limit setting. Although we ex-

pect deviations from the SM to be most pronounced in scattering at large momentum

129
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transfers where higher-dimensional operators’ effects will be most apparent, the theoret-

ical modelling as well as the experimental measurements tend to be less reliable in this

regime than at low momentum transfers. With an aim to strengthening our ability to

extract information on new physics manifesting in the production of top quarks with

large transverse momenta, we conduct a study into the impact of employing dedicated

analysis methods geared toward this kinematic regime.

5.1 The Impact of High pT Final States

The reconstruction of high pT top quarks demands the use of qualitatively different

methods than their softer counterparts. Broadly speaking, the traditional approach

to reconstructing top quarks from their decay products proceeds by first identifying

separated jets and leptons in an event, then utilizing knowledge of their individual four-

momenta to assemble these according to the combinations whose invariant masses most

closely match that of the mother W -boson and t-quark. The extraction of jet masses

relies on clustering algorithms, which combine together the packed energy deposits left

by the jet constituents according to a distance metric in η − φ space in order to invert

the successive QCD splitting of individual hard partons. In the presence of boosted final

states where the top decay products are closely collimated, the interwoven jet profiles

arising from the overlapping b-quark and (hadronic) W -boson decays render attempting

to extract a naïve distinction in terms of individual partonic jets insufficient.

Figure 5.1: Illustration of overlapping ‘fat’jets containing concentrated information from the
hadronic decay of a boosted top quark. Figure from [209].

The identification of such tops and the determination of their kinematics falls to

jet substructure algorithms (see e.g. [210]) which necessarily abandon attempting to

reconstruct the individual top decay products in isolation. Rather, these are tailored

specifically toward identifying small scale discriminating features within geometrically
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large ‘fat’ jets comprised of concentrated information from intermingled splittings of

partons known to originate from a hadronic top quark decay. Thus by design, they

outperform a ‘resolved’ approach which, while providing good coverage of the low pT re-

gion, suffer from poor statistical and systematic uncertainties in the tails of distributions

where isolation criteria begin to fail. Tagging algorithms based on substructure are thus

by nature subject to qualitatively different limitations which eliminate this disadvan-

tage. This is pertinent for the future prospects of the global fit, where the incorporated

differential measurements - predominantly from Run I - have so far relied on resolved

analyses strategies. Furthermore, the availability of efficient tools for these phase space

regions has the potential to mitigate the inherent limitation posed to NP searches by

correspondingly small production cross sections.

While the available experimental measurements included in the global fit were quoted

at the level of partonic tops, a phenomenological study utilizing jet substructure tech-

niques requires, by definition, a hadron-level analysis.

The ‘unfolded’ measurements released by the experimental collaborations are typi-

cally presented at one of two levels. In both cases, datasets are corrected internally for

detector effects and extrapolated from the measured ‘fiducial’ cross section to the full

phase space. These distributions are then suitable for comparison with those obtained

by reconstructing hadron-level final states simulated in a Monte Carlo event generator.

However, as with the majority of measurements available to TopFitter, quantities at

this level are often further simplified by incorporating an in-house reconstruction of the

hard partons - in our case the tt̄ pair. This precludes the possibility of a study employing

jet substructure algorithms, since the reconstruction has already been performed on the

experimental side.

In a global fit, these substantially ease the workflow by allowing like-for-like compar-

ison of partonic quantities without the need for showering, hadronisation and detector

simulation at each point in the parameter space. On the contrary, bypassing the in-

herent assumptions associated with unfolded distributions comes with the advantage of

circumventing inherent biases towards SM-like shapes which arise from implicit input

from Monte Carlo simulations. This procedure also introduces additional correlations

between neighbouring bins, leading to a broadening of the χ2 obtained from a fit of

theory to data.

Despite the relative lack of suitable hadron-level datasets on which to operate, we

can nonetheless account for these factors and utilize boosted top-tagging by working
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with hadron-level pseudodata generated by a Monte Carlo simulation. The benefits of

targeting final state objects with large transverse momenta are then twofold. Firstly,

by making use of sophisticated reconstruction techniques for boosted objects, we isolate

the region of phase space where the effects of heavy new degrees of freedom will be most

pronounced, as illustrated in Fig. 5.2, and secondly, in doing so we necessarily avoid

the model-dependence that fitting parton-level distributions to unfolded measurements

suffers from.

It then warrants investigation how the combined effect of these factors influences

the potential improvement of a global fit targeting the effective operators arising in top

physics. We will again set our sights on tt̄ production, which, with a cross section of

around 900 pb [158,211–213] at 13 TeV, is the most abundant source of hard tops. By

filtering events according to criteria to distinguish boosted and resolved tt̄ final states,
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Coefficient C
i

Operator O
i

CG fABCG
Aν
µ GBλ

ν GCµ
λ

CuG (q̄σµνTAu)ϕ̃GA
µν

C1
qq (q̄γµq)(q̄γ

µq)

C3
qq (q̄γµτ

Iq)(q̄γµτ Iq)

Cuu (ūγµu)(ūγ
µu)

C8
qu (q̄γµT

Aq)(ūγµTAu)

C8
qd (q̄γµT

Aq)(d̄γµTAd)

C8
ud (ūγµT

Au)(d̄γµTAd)

Table 5.1: Dimension-six operators affecting tt̄ production. The lower six (ψ4 class) operators
contribute via the partonic subprocess qq̄→ tt̄ and interfere with the SM through the
four linear combinations C1,2

u,d listed in section 4.1.1.

the impact of performing a dedicated analysis on high pT tops on our sensitivity to

non-resonant new physics can be quantified.

The prospective gains from this selection will however be fundamentally limited by

the associated low production rates, while boosted top tagging methods innately require

the composite jets formed by final states in this phase space region to offer a performance

advantage. We choose ptT ≥ 200 GeV as a cutoff point for employing the boosted

reconstruction, as the top tagging below this threshold suffers from large mistag rates

and small efficiencies [210,214–219]. At 13 TeV and with this threshold in place, we find,

for example, that 90% of the cross section comes from the resolved region ptT < 200 GeV.

In light of these competing effects, we thus aim to quantify at what stage in the LHC

programme, if at all, the increased sensitivity in this region can compensate for the

relatively poor statistics.

5.2 Setup

As a starting point, we once again choose the ‘Warsaw’ Basis [54] of the SMEFT as our

model-independent language and utilize the FeynRules [10] model implementation de-

scribed in Chapter 3. This was interfaced via the UFO [11] format to MadEvent [220].

The operators relevant to top quark pair production at leading order in the dimension-six

SMEFT are re-summarised for convenience in Tab. 5.1.
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The generation of theory predictions proceeds as in TopFitter. Events are gener-

ated from the (LO in the SMEFT) matrix elements in MadEvent which sample the

space of Wilson coefficients. Higher-order QCD corrections are included by re-weighting

our distributions by the SM NLO QCD prediction with K-factors, as obtained from

Mcfm [151] and cross-checked with Mc@Nlo [220]. Recently, full NNLO results for

top quark pair production have become available in [158, 213, 221], we will comment on

their potential for improving our results in Sec. 5.4.

We estimate scale uncertainties in the usual way: For the central value of the dis-

tributions we choose renormalisation and factorisation scales equal to the top quark

mass µR = µF = mt. Then we vary the scales independently over the range mt/2 <

µR,F < 2mt. PDF uncertainties are estimated by generating events with Ct14 [222],

Mmht14 [223] and Nnpdf3.0 [224] as per the recommendations of the Pdf4Lhc work-

ing group for LHC run 2 [160], and we take the full scale+PDF envelope as our theory

band. This defines an uncertainty on the differential K-factor which we propagate into

each bin in our observable of interest, the hadronic top quark pT spectrum. We treat

theory uncertainties as uncorrelated with experimental systematics and take them to be

fixed as a function of luminosity unless stated otherwise.

An interpolation-based parametrising function, as detailed in section 4.2, is invoked

to supply theory predictions for each observable for arbitrary values of Ci. This takes

the form of a fourth order polynomial in the coefficients {Ci} for each bin b:

fb({Ci}) = αb0 +
∑

i

βbiCi +
∑

i≤j
γbi,jCi,j + . . .

Once fb is constructed, all that remains is to define a goodness of fit function between

theory and (pseudo-)data, and minimise it to obtain exclusion contours for {Ci}.

To benchmark the expected exclusion limits for each operator coefficient, we generate

pseudodata for the SM hypothesis by showering a {Ci = 0} sample in Herwig++ [225,

226] which, along with incorporating the decay of the tt̄ pair, models initial and final

state radiation, as well as hadronisation and the underlying event.

The reconstructed hadronic top pT spectrum was obtained from a large MC event

sample, which was reweighted to correspond to the relevant LHC integrated luminosity

scenarios L and experimental statistical uncertainties (see Section 5.4). The statistical

uncertainties associated with each bin for a given scenario were imposed by extracting

the equivalent luminosity L0 of the pseudodata set generated with a known number of
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events, and applying the Poisson counting error 1/
√
NL corresponding to the appropriate

fraction of this. Systematics are then inserted by defining a flat percentage interval

associated with each bin.

5.3 Analysis Strategy

We will restrict ourselves to the semileptonic top pair decay channel (as illustrated in

Fig. 5.3) in which we can take advantage of boosted top-tagging methods on the hadronic

top quark, while benefitting from a cleaner environment and comparable cross section

relative to the all-hadronic decay mode.

Our analysis setup, as implemented in Rivet [227], is as follows:

We first require a single charged lepton with pT > 30 GeV∗, and find the Emiss
T

vector which we require to have a magnitude > 30 GeV. The leptonic W -boson is then

reconstructed from these by requiring transverse momentum conservation and imposing

that mlν is equal to the on-shell W mass.

∗We do not consider τ decays here to avoid the more involved reconstruction.

d, u

d, u

t

t

G

b

b

W+

W−

u

d

νµ

µ

Figure 5.3: Example Feynman diagram for q̄q → tt̄ production in the semileptonic decay chan-
nel with t → bud̄, t̄ → b̄µν̄µ in the SM. Operator insertions in the production of
the tt̄ pair are as in Fig. 4.1.
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Leptons pT > 30 GeV

|η| < 4.2

Missing energy Emiss
T > 30 GeV

Small jets anti-kT R = 0.4

pT > 30 GeV , |η| < 2

Fat jets anti-kT R = 1.2

pT > 200 GeV , |η| < 2

Resolved ≥ 4 small jets w/≥ 2 b-tags

Boosted ≥ 1 fat jet, ≥ 1 small jet w/ b-tag

Table 5.2: Summary of the physics object definitions and event selection criteria in our
hadron-level analysis.

Jets are then clustered using the anti-kT algorithm [228] using FastJet [229] in

two separate groups with R ≡ (
√
δη2 + δφ2) = (0.4, 1.2) requiring pT > (30, 200) GeV

respectively, and jets which overlap with the charged lepton are removed. The R = 1.2∗

fat jets are required to be within |η| < 2, and the R = 0.4 small jets are b-tagged within

the same η range with an efficiency of 70% and fake rate of 1% [230].

If at least one fat jet and one b-tagged small jet which does not overlap with the

leading fat jet exists, we perform a boosted top-tag of the leading fat jet using HEP-

TopTagger [214, 215, 231]. This iteratively inverts the original clustering of a fat jet

j step-by-step into its constituents (i.e. j→ j1, j2 j1→ j3, j4, . . .), identifying hard sub-

structure according to a ‘mass drop’ requirement [232] max(m1, m2) < µfracmj (we use

µ = 0.8, the recommended tuning for this parameter). If this criterion is not satisfied in

a given splitting, the lighter of j1, j2 is discarded, otherwise both are kept, and the pro-

cedure repeated on the surviving jet components. This preferentially retains splittings

following from the decay of massive particles, rather than from soft QCD-mediated emis-

sions. The declustering procedure terminates when a minimum subjet mass mi < 30GeV

is reached, ensuring further iteration will not reveal substructure from decaying heavy

states.

From each possible triplet of the Ni ‘substructure objects’ ji identified by this stage,

a scale Rfilter can then be inferred, corresponding to the angular separation between

∗The angular separation between the decay products of a particle with mass m carrying transverse
momentum pT scales as ∆R ≃ 2m/pT , which together with parity with typical experimental criteria
motivates this choice.
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Figure 5.4: Schematic diagram of the HEPTopTagger procedure. The mass-drop stage
identifies heavy splittings and their associated angular separations, while discard-
ing soft radiation. This is used to define a ‘filtering’ radius Rfilter, with which
the fat jet can be resolved at a smaller angular scale relevant to massive decays.
Hard subjets are then clustered within Rfilter in the potentially interesting areas of
the fat jet, mitigating the impact of QCD contamination. These are required to
have total invariant mass consistent with mt, before being recombined into three
jets whose kinematics most closely resemble those of a hadronic top decay. Image
credit [233].

the decay products of heavy states within the original jet. This is defined as Rfilter =

min(0.3, Rij), where Rij is the minimum smallest angular distance between two sub-

structures ji and jj in this triplet. The constituents of this choice of three ji are then

re-clustered into a number of subjets Nsub using the standard Cambridge-Aachen (C/A)

algorithm [234] with this smaller radius parameter, resolving only promising areas of the

original jet at this higher resolution. Hereby, most of the large area within the fat jet is

discarded, minimizing the influence of unrelated QCD radiation on the top mass recon-

struction. The hardest of these Nsub subjets (up to five, each satisfying pT > 30GeV)

must have a total invariant mass around that of the top, m = mt± 25GeV. Once the

top candidate subjets are chosen, these are re-clustered into three final jets correspond-

ing to the d, u and b partons, and their invariant masses are finally required to fulfil

criteria corresponding to the t→ bW+→ bud̄ decay kinematics [210]. If this is satisfied,

this triplet of the ji is a potential top quark candidate, and if several triplets must be

considered (i.e. Ni > 3), that which has mass closest to mt is selected.

The leptonic top candidate is then reconstructed using the leading, non-overlapping

b-tagged small jet and the reconstructed leptonic W .
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If no fat jet fulfilling all the criteria exists, we instead require at least 2 b-tagged small

jets and 2 light small jets. If these exist we perform a resolved analysis by reconstructing

the hadronic W -boson by finding the light small jet pair that best reconstructs the W

mass, and reconstruct the top candidates by similarly finding the pairs of reconstructed

W -boson and b-tagged small jet that best reconstruct the top mass.

Finally, regardless of the approach used, we require both top candidates to have

|mcand −mtop| < 40 GeV. If this requirement is fulfilled the event passes the analysis.

5.4 Results

Impact of experimental precision

We choose the three integrated luminosities L = {30 fb−1, 300 fb−1, 3 ab−1} and flat

systematic uncertainties εsyst = {10%, 20%} as our experimental points of reference for

both selections, motivated by typical estimates from existing analyses by ATLAS [235]

and CMS [236].

All the bounds presented here are ‘one-at-a-time’, i.e. we do not marginalise over

the full operator set. Our purpose here is to ascertain the relative improvements to

the individual Wilson coefficient confidence intervals, rather than to present a global

operator analysis.

In Fig. 5.5, we present 1-dimensional 95% confidence intervals on the operators con-

sidered for both selections using L = 30 fb−1 and εsyst = 20% as a first benchmark.

As a general rule, the increased sensitivity to the Wilson coefficients offered by the

boosted selection is overpowered by the large statistical uncertainties in this region,

and the combined limits are dominated by the resolved top quarks. The exception to

this rule is the coefficient CG from the operator QG = fABCG
µ,A
ν Gν,B

λ Gλ,C
µ . As noted

in section 4.1.1, the squared contribution from this operator’s lone s-channel diagram∗

scales quadratically with all partonic mandelstam variables and carries a large prefac-

tor [125]. High pT final states thus give stronger bounds on this coefficient, even with

comparatively fewer events.

∗This has been shown to be the leading gluonic effect in the SMEFT, outshining all contributions
from interfering dimension-eight operators [124].
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Figure 5.5: Individual 95% bounds on the operators considered here, from the boosted analysis
and the resolved fat jet analysis, and the combined constraint from both, assuming
20% systematics and 30 fb−1 of data. We also show existing constraints from un-
folded 8 TeV pT distributions published in [188] and [237], showing a considerable
improvement even for a modest luminosity gain.

With these constraints as a baseline, we can quantify by how much they can be

improved upon given an enhancement to the experimental precision. The constraints are

presented in Fig. 5.6 for different combinations of systematic and statistical uncertainties.

We take the width of the 95% confidence interval in Fig. 5.5 as our normalisation (the

green bars), and express the fractional improvements on the limits that can be achieved

relative to this baseline, for each operator. The right bars (green, purple, blue) represent

20% systematic uncertainties with, respectively 30, 300 and 3 ab−1 of data. The left bars

(yellow, orange, red) represent the same respective data sample sizes with a reduction

to 10% systematic uncertainties.

Beginning with the resolved selection, we find that the limits on the coefficient CG

can be improved by 40% by going from 30 fb−1 to 300 fb−1, and by a further 20% when

the full LHC projected data sample is collected. Systematic uncertainties have a more

modest effect on this operator: at 3 ab−1 the limit on CG is only marginally improved by

a 10% reduction in systematic uncertainty. This merely reflects that CG mostly impacts
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the high pT tail, so it can only be improved upon in the threshold region by collecting

enough data to overcome the lack of sensitivity.

For the chromomagnetic dipole operator Q33
uG, improving the experimental system-

atics plays much more of role. A 10% improvement in systematics, coupled with an

increase in statistics from 30 fb−1 to 300 fb−1 leads to stronger limits that maintaining

current systematics and collecting a full 3 ab−1 of data. Similar conclusions apply for

the four-quark operators, to varying degrees, i.e. reducing systematic uncertainties can

provide comparable improvements to collecting much larger data samples.

For the boosted selection, the situation is quite different. For all the operators

we consider, improving systematic uncertainties by 10% has virtually no effect on the

improvement in the limits. This simply indicates that statistical uncertainties dominate

the boosted region at 30 fb−1. For CG, at 300 fb−1 some improvement can be made if

systematics are reduced, however we then see that systematic uncertainties saturate the

sensitivity to CG, i.e. there is no improvement to be made by collecting more data. For

C33
uG, a modest improvement can also be made both by reducing systematics by 10% and

by increasing the dataset to 300 fb−1. However, going beyond this, the improvement
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Figure 5.6: Fractional improvement on the 95% confidence intervals for the operators consid-
ered here, with various combinations of luminosity and experimental systematics
considered. We take the width of the 95% confidence limit obtained from 20 % sys-
tematic uncertainty and 30 fb−1 of data as a baseline (green bar), and normalise
to this, i.e. we express constraints as a fractional improvement on this bench-
mark. The purple and blue bars represent respectively, 300 fb−1 and 3 ab−1 of
data, also at 20% systematics, while the yellow, orange and red are the analogous
data sample sizes for 10% systematics.
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is minute. The four-quark operators again follow this trend, although C2
u shows much

more of an improvement when going from 300 fb−1 to 3 ab−1.

The impact of theoretical uncertainties

The other key factor in the strength of our constraints is the uncertainties that arise

from theoretical modelling. The scale and PDF variation procedure typically leads to

uncertainties in the 10-15% range. Recently, fully differential K-factors for top pair

production at NNLO QCD (i.e. to order O(α4
s)) have become available, which have

substantially reduced the scale uncertainties. The numbers quoted in Refs. [213, 238]

are presently limited to the low to intermediate ptT range (ptT < 400 GeV) applicable to

the TeVatron and 8 TeV LHC, as the phase space integration for boosted tops poses a

numerical challenge. However, if similar theoretical precision can be achieved for the 13

TeV calculation and used in the boosted regime, it is worthwhile to ask what impact

such an improvement could have on the constraints.

We put this question on a firm footing by showing in Fig. 5.7 the 2D exclusion

contours for the coefficients CG and C33
uG, as obtained from combining the boosted and

resolved limits, at fixed luminosity and experimental systematics, first using our NLO
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Figure 5.7: Left: 68%, 95% and 99% confidence intervals for CG and C33
uG, the lines are

obtained using experimental (20% systematics and 30 fb−1 of data) uncertainties
along with theoretical uncertainties, the filled contours using only experimental
uncertainties. Right: the same plot, but using 10% systematics and 3 ab−1 of data,
showing the much stronger impact of theory uncertainties in these circumstances.
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theory uncertainty, and also using no theory uncertainty at all. For 30 fb−1 the im-

provement is limited, indicating that at this stage in the LHC programme the main goal

should be to first improve experimental reconstruction of the top quark pair final state.

However, at 3 ab−1 the improvement is substantial, indicating that it will also become

necessary to improve the theoretical modelling of this process if the LHC is to extend

its kinematic reach for non-resonant new physics.

In addition to SM theoretical uncertainties, there are uncertainties relating to missing

higher-order terms in the EFT expansion. Uncertainties due to to loop corrections and

renormalisation-group flow of the operators Qi are important for measurements at LEP-

level precision [81,239] where electroweak effects are also resolved. However, at the LHC

we find them to be numerically insignificant compared to the sources of uncertainty that

we study in detail here. In addition, there is also a possibility of significant effects due

to interfering dimension-8 operators, for example due to the presence of the structures

in Table. 5.1 carrying additional covariant derivatives. A proper consideration of these

effects is left as a future direction of study.

5.4.1 Interpreting constraints

Utilizing EFT to catalogue and set limits on the permissible low-energy footprints of

unspecified physics, while a self-consistent procedure, inherently stops short of offering

unambiguous information on new states. To serve as a true bridge between the Stan-

dard Model and heavy degrees of freedom, one must at some point ascribe to Wilson

coefficients an interpretation with a degree of model specificity.

In between stating raw constraints on C/Λ2 and interpreting them explicitly in terms

of UV-complete model parameters, one can gain some insight by viewing these through

the lens of varying general assumptions about the underlying physics. In this sense,

definitive statements about the mass spectrum of specific states and their couplings

obtained by explicit matching - e.g. those sketched for axigluon and W ′ scenarios in

section 4.4 - can be abstractified into relationships between the sizes of generic NP

couplings g∗ and potential resonance masses M∗. Relatively speaking, any intuition

acquired from this exercise is low-hanging fruit, as by construction no dedicated BSM

calculation need be invoked.

Consider, for example, the simple case where perturbative UV physics is characterised

by a single coupling g∗ and a unique mass scale M∗. Such a scenario could arise from
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integrating out a heavy, narrow resonance. The leading contribution to the dimension-

six Wilson coefficient then comes from the simple tree-level matching condition (as

exemplified in Fermi’s interaction) i.e.:

Ci
Λ2

=
g2∗
M2

∗
(5.4.1)

Constraints on the quantity Ci/Λ
2 then correspond to allowed regions in the g∗-M∗ plane,
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Figure 5.8: Areas in the new coupling-BSM mass scale plane (see also [102]), resulting from
our fit coverage. Coloured areas are constrained in perturbative UV completions
at a scale M∗, subject to the boundary condition Eq. (5.4.1). The shaded grey
area corresponds to mass scales M∗ < mmax

tt̄ probed by the pseudo-data of our fit.

with each particular value tracing a line of constant g∗/M∗. In Fig. 5.8 we sketch these

regions on a logarithmic scale for illustrative choices of Ci, representing a continuum of

possible such BSM scenarios.

In order for the EFT description of a given mass region to be valid, we must not

resolve it in our measurement. Fortunately, a natural boundary which enshrines this

condition emerges from the data in the form of the maximum tt̄ invariant mass probed.

Imposing the requirement M∗ > mmax
tt̄ ensures that we avoid ascribing an interpretation
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to Ci/Λ
2 in the region of the g∗-M∗ plane below the production threshold of the heavy

state. Therefore we impose a hard cut at mtt̄ = 2 TeV, obtained from the maximum tt̄

invariant mass probed in our SM pseudodata.

By a similarly general argument, one natural partitioning of the coupling g∗ into two

distinct regions can be imposed by knowledge of the behaviour of perturbation theory.

At a given mass scale in the region of EFT’s validity M∗ > mmax
tt̄ , a weaker constraint on

Ci/Λ
2 informs us on the limited region of the g∗-M∗ plane corresponding to a larger NP

coupling g∗. Here, the convergence of the EFT expansion is slower, since loop diagrams

in the BSM theory which produce factors of g2∗/(4π)
2 will be more important. Including

these diagrams in matching to an EFT will then generate operators of dimension-eight

and beyond carrying larger Wilson coefficients, rendering a description in terms of an

operator series truncated at O(Λ−2) less reliable. The limiting case is represented by

the perturbativity bound g∗ ≃ 4π in 5.8, beyond which the low-energy Wilson coefficients

are no longer calculable in a perturbative expansion in g∗, as the BSM theory is strongly

coupled.

We see that for large Wilson coefficients C̄i & 0.5 only a very small window of

parameter space may be constrained, but the weak limits push the underlying coupling

to such large values that loop corrections are likely to invalidate the simple relation

of Eq. (5.4.1), making it hard to trust these limits. However, at 3 ab−1, our projected

constraints are typically C̄i . 0.01, therefore, even for moderate values of the coupling g∗,

our constraints are able to indirectly probe mass scales much higher than the kinematic

reach of the LHC.

5.5 Conclusions

A crucial question that remains after the first results from LHC Run I is how far a global

fit from direct search results will improve with higher statistics and larger kinematic cov-

erage. For representative experimental scenarios and carrying out a dedicated analysis

at values of momentum transfer ptT ≥ 200 GeV where top-tagging becomes relevant, we

can arrive at the following conclusions:

By making use of jet-substructure algorithms to reconstruct boosted top quarks

arising from tt̄ production, we see that these are a sensitive probe of new interactions

which induce a modified trilinear gluon coupling through QG. The resulting stronger
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combined limits support the assertion that differential distributions are key in breaking

degenerate directions in a global fit, by capturing sensitivity in the phenomenologically

pertinent phase space regions for particular operators. The remaining operators’ (of

Table 5.1) weaker scaling with pT leads to relatively looser bounds than are obtained

from the resolved analysis, and the combined limits yield little significant improvement.

The boosted selection is generally saturated by large statistical uncertainties for the

typical expected integrated luminosity of Run II. This renders improvements in the asso-

ciated systematic uncertainties less important relative to the resolved selection, where a

similar improvement in experimental precision produces more stringent constraints. Sim-

ilar observations have been made for boosted Higgs final states [240] and are supported

by the fact that the overflow bins in run 1 analyses provide little statistical pull [3]. Thus

while boosted analyses are highly efficient tools in searches for resonant new degrees of

freedom [206–208,241], we observe that similar conclusions do not hold for non-resonant

signatures where the states responsible fall outside the kinematic coverage of the boosted

selection.

In contrast, for a fully resolved analysis targeting tops with pT . 200GeV, the

sensitivity to new physics-induced deviations is more of a trade-off between weaker dis-

tinguishability from the SM and more plentiful data, and collecting more statistics or

improving systematics offers comparable benefits.

Theoretical uncertainties that are inherent to our approach are not the limiting fac-

tors of the described analysis in the forseeable future, but will become relevant when

statistical uncertainties become negligible at very large integrated luminosity.

Under these circumstances, medium pT range configurations which maximise new

physics deviation relative to statistical and experimental as well as theoretical uncer-

tainty are the driving force in setting limits on operators whose effects are dominated by

interference with the SM amplitude in the top sector. Given the relative dominance of

statistical uncertainties in the boosted region, we can infer that abandoning the boosted

analysis for the resolved one beyond ptT ≥ 200 GeV will not affect our results signifi-

cantly. The most informative phase space region is already accessed with fully resolved

techniques, and improved systematic uncertainties in this regime would lead to a signif-

icant strengthening of constraints.
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Chapter 6

Conclusions

In this thesis we have discussed aspects of Effective Field Theory and its application to

searches for physics beyond the Standard Model on the current frontier of high energy

physics. We introduced the Standard Model of particle physics as a gauge theory with

spontaneously broken symmetry, and described aspects of perturbative Quantum Field

Theory, the fundamental forces and the origin of mass. In doing so we explored the role

and generation of scales in QFTs using the example of QCD, and made a connection

between mass scales and operator dimension. Following on from this we demonstrated

the physical context in which Effective Field Theory emerges as a tool with which to

parametrize generic non-resonant new physics, and motivated the application of this

to the Standard Model in the scenario in which a large separation exists between the

Electroweak scale and the masses of new states. In exploring the current paradigm of

the SMEFT (with an emphasis on the dimension-six operators), we identified and dis-

cussed solutions to the problem of operator redundancies, and the subtleties arising in

interpreting the Lagrangian in the Electroweak broken phase. We demonstrated that

the task of treating an extensive set of generic higher-dimensional operators was well-

suited to applying modern model-building applications based on symbolic manipulation,

for which we utilized the FeynRules package. Work to extend this framework was

detailed to facilitate conversions between bases of dimension-six operators, and applica-

tions were motivated in the context of facilitating higher order perturbative calculations

in the future. In the process we explored an example of calculating radiative corrections

to effective field theories, and encountered the novel behaviour of operator mixing, dis-

cussing its ramifications on interpreting measurements of Wilson coefficients. Through

this, we saw that a correct interpretation of any promising constraints on the parameters

of the SMEFT will also depend crucially on an understanding of quantum corrections

to effective operators.
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In summarizing applications in top quark phenomenology at the LHC, we discussed

the role of dimension-six operators in top pair and single top production, verifying our

model implementation by exploring the features of simulated observables and interpret-

ing the origins of these in light of the structure of the effective operators present. We de-

scribed the TopFitter framework, in which we performed a global fit of the dimension-

six Wilson coefficients to differential top quark measurements from the LHC and TeVa-

tron, finding good agreement with the SM hypothesis so far from datasets collected from

Run I of the LHC. While the datasets included herein failed to offer compelling evidence

for non-resonant new physics in the top sector, the self-consistency of the constraints

obtained vindicated our proof-of-principle that large-scale EFT fits to diverse experi-

mental measurements is a promising avenue to pursue to search for model-independent

discrepancies from the SM. After interpreting the constraints obtained and supplying

some example matching calculations to compare with direct resonance searches, we dis-

cussed some future directions of work through which current limits could be improved,

particularly the inclusion of higher-order corrections, of measurements of associated pro-

duction channels in Run II, and the use of particle-level datasets to probe BSM physics

modifying the decay of the top.

Using the example of a phenomenological study into prospects for improving current

limits on Wilson coefficients, we also investigated the projected change to constraints

over time in a Run II environment, in which a higher proportion of boosted top quarks

offers an opportunity to examine a particularly sensitive region of phase space. Herein

we saw that the characteristic scaling behaviour with energy exhibited by theories with

nonrenormalizable interactions competed with lower statistics and larger theoretical un-

certainties in this regime. We demonstrated that the drawbacks of traditional top re-

construction methods can be overcome by employing jet substructure algorithms to

reconstruct top quarks produced with large transverse momenta, and understood the

spectrum of relative improvements seen using pseudodata to the behaviour of individual

operators and to the proton PDFs at the LHC. Looking to the future, we quantified

the connection between the strength of experimental bounds and the validity range of

EFT when utilized in matching calculations, establishing that the utility of the effec-

tive description will increase such that a broader spectrum of UV completions will be

consistently constrained once larger datasets are accumulated. We identified a crossover

point in which theoretical uncertainties will become important, reinforcing the need for

greater precision in future EFT calculations and providing further motivation for the

development of automated frameworks for higher-order calculations in the SMEFT.
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Colophon

This thesis was made in LATEX2ε using the “hepthesis” class [242].
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