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PREFACE

In recent years the interest in polarization
modelling has grown . Many models have been produced,
for most of which the study of the scatterer density

distribution has been of central importance.

Previous work on the problem of the scatterer
density distribution involved the study of the effects
of: envelope shape; finite spherical star; scatterer
occultation by a finite spherical star; and the effect

of arbitrary scattering mechanisms.

In the above models a gross assumption was made by
taking the star as an isotropic point, or finite, source
of light. However, stars in general are not isotropic,
and in the present work the polarization produced by the
light from an anisotropic point source of 1light,
scattered by the Thomson or Rayleigh mechanisms in an

envelope of arbitrary shape will be discussed.

The idea for this research occurred when I was
analyzing the polarimetric data of Serkowski (1970) for
two RV Tauri stars, under the supervision of D. Clarke.
Serkowski suggested that the polarization variations in

these stars are due to non-radial oscillation. However,



the lack of a suitable model to be wused to fit

Serkowski's data prompted us to develop one.

The model of J. Simmons (1982) was the most useful
one for our problem, since all that we needed to do was
extend his technique to the anisotropy of the light as
well as the scatterer density distribution function (so
easy !!). However, dealing with the spherical harmonics,
which J. Simmons introduced in his model was difficult.
Many new and interesting problems were realised in the
process of improving this model. They caused the
research to shift totally to the present theoretical
modelling under the supervision of J. Brown who started
the generality in the envelope shape in the polarization
modelling (Brown and McLean 1977), and the supervision

of J. Simmons whose model this thesis generalizes.

Any non-english speaking student, will encounter two
major challenges in addition to that of the research
itself. These are the language and the gap between the
two education systems here and in his own country. I

hope this thesis will show some success on both sides.

An introduction and a brief review of previous works
and observations are presented in Chapter one. The
original work appears in Chapters two, three, and four.

Chapter two contains the calculations for an anisotropic



point 1light source within a spherical envelope, which
has been submitted as a paper to A&A. In Chapter three
we went one step further to include an arbitrary shape
envelope with an anisotropic point light source. The
non-uniform photosphere is discussed in Chapter four,
with a model for the variation of the areas of the spots
on rotating stars. These last two chapters are being
prepared to be published as two more papers. The
conclusion and suggestions for future work are given in
Chapter five. Four appendices are enclosed with this

work.

I deeply express my thanks to the staff and students
of the Astronomy and Astrophysics group in the
University of Glasgow, past and present, with my
apologies that I was too busy to share many of their
interests and activities. I would also like to thank the
many people whom I met in U.K. who made my time living
here acceptable. I must too mention the useful
discussions and help of Dr. Hassan Basurah and Dr.
Khalil Al-Refa'ay. Special thanks are due to Dr. David
Clarke who introduced me to the world of polarization,
and for his useful remarks on the observational data and
results used throughout this thesis. Great thanks are
due to Dr. John Simmons for his friendship, help, and
for his brilliant ideas. My thanks and deep gratitude

are due to Prof. John Brown, my main supervisor, for his



friendship, help, suggestions, and also for being so

patient with my horrible written English.

I would like to thank King Saud University in Riyadh
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SUMMARY

A theoretical description of the polarization of
light, generated by an anisotropic point 1light source
and scattered by an arbitrary shape envelope, is
developed in this work, the mechanism of scattering
being assumed to be either Thomson or Rayleigh
scattering. The description is a development of the
earlier work of J. F. L. Simmons' (1982) where he
expressed the scattering function and scatterer density
distribution function as a summation of multipole
contributions. Whereas Simmons analysis was based on an
isotropic point 1l1light source, the present analysis
permits a variable flux to represent the anisotropy of
the 1light source. Thomson or Rayleigh scattering is
assumed throughout, and in all cases the scattering
envelope is taken to be large compared to the 1light
source. This allows the anisotropy to be expressed in
terms of projected area. The model has applicability to
rotating, pulsating, binary, and active stars with hot

extended envelopes.

The thesis is divided into five chapters plus four
appendices. Following a review of previous work in
Chapter One, together with a discussion of the

motivation and interest of stellar polarimetry, in



Chapter Two the theoretical analysis is established for
scattering polarization with an anisotropic point light
source within a spherical envelope. This analysis is
then applied to an ellipsoidal black body star within a
spherical envelope, for which we get explicit integral
expressions for the Stokes' parameters and an analytical
solution for the special case of a star with a circular
equator. As examples of ellipsoidal stars the
polarization from a single distorted star (due to e.g.
the rotation) such as Be stars, X-ray binaries filling
its Roche lobe (e.g. Cygnus X-1 and Centaurus X-3), and
pulsating stars (pulsating as a series of ellipsoids) is
calculated. The latter show a very complicated pattern
of qu-loci, which, in principle, fit the polarization
behaviour of such types as RV Tau and Omicron Ceti. The
maximum polarization of about 20% of the total light is
expected from a disk 1like light source viewed edge on
(Galaxies would be good example, since they are very

distorted light sources).

In Chapter Three the anisotropic light source theory
is generalized to include an arbitrarily shaped
envelope. In the harmonic summation which results it is
found that approximation up to the second order terms is
quite acceptable, when both the light source and the
envelope are ellipsoidal. The maximum polarization is

enhanced (due to the envelope being ellipsoidal) to



about 35% when a disk of scatterers is perpendicular to
the disk like star observed edge on. In general whether
the polarization undergoes enhancement or cancellation
is dependent on the angle between the rotation axis of
the ellipsoidal star and the axis of symmetry of the
ellipsoidal envelope. The effects of rotation and

pulsation are also calculated.

In Chapter Four the analysis is applied to the case
of 1light source anisotropy arising from a non-uniform
photosphere (e.g. hot or cool spot). Calculation of the
projected area of the spot as it varies during stellar
rotation 1is done without any of the simplifying
assumptions usually made in stellar light curve
modelling. Again the approximation of the second order
terms of the harmonic summation is acceptable for spots
of likely physical size (e.g. of angular extent < 30°).
In general the polarization caused by stellar spots is
much smaller than that produced by nonsphericity of the
star. The analytic expressions for the projected area of
a spot simplifies the polarimetric calculations for a
fixed spot, for a spot with umbra and penumbra, for a
spot varying with time in its size, temperature, and
location, and for a star with more than one spot. The
results of this Chapter is applicable to solar type

stars, late type (giant) stars such as « Ori.



Chapter Five comprises an overview of our
conclusions with recommendations for future work. 1In
this chapter we discussed the importance of the
approximation of the second order terms of the harmonic
summation, the similarity between the ©polarization
produced by isotropic 1light sources within arbitrary
shaped envelopes and anisotropic 1light sources within
spherical envelopes, and results of the application of
the theory. This leads to further suggestions for more
applications and development of the model. Topics
covered by the appendices are :

A) Some analysis of Serkowski's (1970) observations
for U Mon, where the period of 1light wvariationsis
calculated directly from the polarimetric data.

B) The mathematical proof for the projected area of an
ellipsoid.

C) Some numerical values for the multipoles of the
flux f&m and the multipoles of the envelope K&,

D) Values of coefficients of the spherical harmonics,

rotation matrices and Clebsh-Gordon coefficients.
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81.1. INTRODUCTION :

Polarimetric studies of the 1light scattered off
circumstellar matter have produced considerable interest
in recent years. The first theoretical formulation of
stellar polarization was done by Chandrasekhar, using
radiative transfer theory for Thomson and Rayleigh
scattering, to calculate the 1linear and elliptical
polarization of the radiation field in the stellar
atmosphere (Chandrasekhar 1946a&b and 1947, c¢f. Schwarz
1984). Many observations confirmed this theoretical
work, but added new astrophysical discoveries and
questions. For example V. A. Dombrovskij discovery of
large polarization in the Crab Nebula in 1954 ( cf.
Gehrels 1974) - What is the cause ?; four years later
many observations showed a strong wavelength dependence
in the 1linear polarization of planets, stars, and
nebulae (e.g. Grigoryan 1958) - again Why?; in 1962 N.
M. Shakhovskoj observed variable polarization in the
early-type eclipsing binary B Lyr. (Shakhovskoj 1962):
K. Serkowski found strong intrinsic polarization for
Mira stars in 1966 (Serkowski 1966); and finally J. Kemp
discovered circular polarization on a white dwarf star
in the 1970's (see e.g. Kemp and Wolstencroft 1972). One
wonders if all stellar types produce polarization?. That

can be answered by further observations.
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However, we need theoretical models to explain the
cause of the polarization. There was little development
in theoretical models until the 1960's, when the results
of Chandrasekhar's work above were tabulated in
convenient form by Coulson, Dave and Sekera in 1960
(Coulson et al. 1960, c¢f. Gehrels 1974), and some more
detailed polarimetric models were presented (e.g.
Shakhovski 1965 and Collins 1970).Since then many
detailed models have been published. Before we discuss
any of these models in detail, it is a good idea to show
the advantages of polarimetric studies, by asking this

question :

§1.1.1. WHAT KIND OF INFORMATION DO WE GET FROM STELLAR

POLARIZATION 7

Stellar polarization is affected by the shapes of
the star and of any circumstellar envelope, by the
brightness distribution on the stellar surface, also by
dependence on the scattering particle distribution
function and by variation of the scattering mechanisms
within the envelope (e.g. Brown and McLean 1977; Simmons
1982; Friend and Cassinelli 1986; Clarke and McGale 1986
and Brown, Carlaw and Cassinelli 1989). Polarization
thus serves as a diagnostic of the geometry of

circumstellar matter, of the illuminating stars, and

15



also of their orientation in space.

In particular, by studying the time dependent
qu-loci the inclination and orientation of some binary
stellar systems can be determined. This result has been
shown in the work of Brown, McLean and Emslie (1978),
Rudy and Kemp (1978), Simmons (1983), and their
application like those by Aspin et al. (1981), Simmons
et al. (1982), and Dolan and Tapia (1989). Even in the
case of single stars, some information can be obtained
from the geometry dependence of the polarization (Brown

and McLean 1977, and Clarke and McGale 1987).

Moreover, stellar polarization often has a
wavelength (A) dependence. It has been proved by many
observations (e.g. Serkowski 1970, Shawl 1972, Shawl
1974, and Raveendran, Kameswara Rao, and Anandaram
1989), that the wavelength dependence differs from star
to star, but a common feature for late type stas is a
fast increase with decreasing wavelength (Gehrels 1974).
For Mie scattering models the theoretical wavelength
dependence of polarization has been shown to be nearly
independent of the envelope geometry in the case of an
optically thin envelope, uniform in particles’ density
distribution and with asymmetrical shape (Shawl 1975,
Simmons 1982). This wavelength dependence of the
observed polarization therefore imposes limitations on

physical conditions in the envelope rather than on its

16



geometry. For an example, if electron scattering was the
dominant source of opacity, then the intrinsic
polarization should not depend strongly on the
wavelength, while if hydrogen absorption dominates, the
intrinsic polarization will be very small (Shawl 1974).
Fig 1-1 shows the observed wavelength dependence of
polarization for early-type stars as presented by
Kruszewski (1974).

As a final example, note that from polarization we
can derive considerable physical information on magnetic
fields. One example is the study of the 1local solar
magnetic field through the polarization of microwaves
from flares (Zirin 1988). Secondly, information on solar
and stellar magnetic fields can be found through the
Zeeman effect which splits spectrum lines into several
polarized components. In the simplest case a 1line is
split into three components, the so called Lorentz
triplet. The central line is at the rest wavelength in
the original, while the other two are polarized and
displaced symmetrically to both sides. The size of this
displacement is dependent on the strength of the
magnetic field. The wusefulness of the polarization
arises when we observe stars with magnetic fields in
different directions. If we observe in a direction
parallel to the magnetic field lines, then only the two
displaced components will be seen having circular
polarization in opposite directions, while the central

line intensity decreases to 2zero - the so called

17
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Fig. 1-1. The wavelength (in 1/u) dependence of

polarization for a sample of early-type stars with

emission lines. The characteristic interstellar curve is

shown for comparison (from Kruszewski 1974).
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longitudinal Zeeman effect. If we were to observe in the
direction perpendicular to the magnetic field, we would
observe the so called transverse Zeeman effect, when all
three components would be seen, the central being twice
as strong as each of the displaced components, and all
of them linearly polarized. The two shifted components
are polarized in the direction perpendicular to the
magnetic field, while the central one is polarized
parallel to the magnetic field (BOhm-Vitense 1989, see

Fig. 1-2).

In the case of interstellar matter, the astronomers
now routinely |use the direction of interstellar
polarization as an indicator of the direction of the

interstellar magnetic field (Shu 1982).
Obviously, a polarimetric model should relate to as

much of those polarimetric informations as possible. Now

one may ask this question :

§1.2. How CAN WE GATHER THE INFORMATION FROM THE

POLARIZATION ?:

We will find part of the answer in the best book
ever written in this field " Planets, Stars and Nebulae
studied with Photopolarimetry"” edited by T. Gehrels,

where he said in his introduction (Gehrels 1974)

19
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Fig. 1-2. The splitting of a spectral line due to
the Zeeman effect is shown : (a) for the case when the
observer 1is 1in the direction perpendicular to the
magnetic field (i.e. the transverse Zeeman effect), (b)
for the case when the observer looks at the light source
in the direction parallel to the magnetic field (i.e.
the 1longitudinal Zeeman effect). The directions of
circular and 1linear polarization of the emitted 1light

are indicated by the arrows (Bohm-Vitense 1989).
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' Three basic methods are used to gather information

from the polarization and brightness measurements.

1) . The most fundamental is to make comparisons with
the scattering theories 1like the Rayleigh-Chandrasekhar
theory of multiple molecular scattering and Mie theory
of scattering by small particles. However, a decreasing
order of applicability is seen [We assume he means less
theoretical models in this field, which is not the case,
see (e.g.) Stamford and Watson (1980) and Lefévre
(1992)]. A rigorous solution may be made in the case of
multiple scattering in a clear molecular atmosphere
overlying a ground that reflects in a prescribed manner.
Separately, also the problem of single scattering on a
spherical particle of known size and refractive index
has a rigorous solution. The study of interstellar
grains is already further complicated because the size
and refractive indices have distributions, and there are
effects of aspect and particle shape to be considered. A
molecular atmosphere with aerosols and "ground" effects
is highly complex; the cases of the Venus and Jupiter
atmospheres may be the ultimate challenge in our work,
especially because of non-uniformities in the cloud deck

(Coffen and Hansen 1974).

2). A second method that is applicable even when one

cannot apply rigorous theory is to compare one observed

21



object with another. For instance, if it is true that
circular polarization observed on the planets has
limited usefulness in theoretical analysis (Kemp 1974),
there still will be great merit in comparing various

planets and observed hemispheres [of the planets].

3). Laboratory results on appropriate samples can
help in the understanding of phenomena observed at the
telescope. Examples of such work for the study of
surface of the moon and the asteroids are given by

Pieters (1974) and by Bowell and Zellner (1974).°

The first method is wused in the basis of most
stellar polarimetric modelling and calculations. In
addition to the basic theory of scattering, however,
modelling also includes distribution of scatterers over
type, size, and in space. It is mainly the last that we
consider in this thesis. Such models and calculations of
stellar polarization have so far fallen into two
limiting categories : that when the polarization is
produced by the stellar light scattering in rotationally
distorted atmospheres; and scattering in extended

envelopes (detached from the star).
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§1.2.1. SCATTERING BY ROTATIONALLY DISTORTED ATMOSPHERES

This was modelled in the Chandrasekhar (1946a&b;
1947) formulation of the problem using radiative
transfer techniques, the stér being treated as a
nonpoint source of 1light. Many results have been
calculated for illuminated gray and nongray stellar
atmospheres using Thomson and Rayleigh scattering such
as 1in Collins (1970); Collins and Buerger (1974);
Cassinelli and Haisch (1974) and Haisch and Cassinelli
(1976) . Collins' work found the polarization of the
light scattered in the photosphere of the star to be
much smaller than the polarization observed from early
type stars. Cassinelli and Haisch concluded that a
highly flattened extended envelope, beyond the normal
stellar atmosphere was required to explain the

observations (c¢f. Brown and McLean 1977).

Some calculations have been done in particular cases
of anisotropic light sources, e.g. Gnedin et al. (1976)
calculated the polarization for close X-ray binaries
using a two dimensional model of an ellipsoidal Roche
lobe with and without hot spot. Stamford and Watson
(1980) calculated the polarization of a hot nonradial
pulsator. They found, for an atmosphere applicable to B
type variables, a quite small polarization in the visual

range, as expected from the above work of Collins (1970)
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and Haisch and Cassinelli (197s6). Recently, Lefévre
(1992) used radiative transfer techniques to calculate
the polarization of a star which departed from the
spherically symmetric case, using as an example a star
with a photospheric hot spot surrounded by a spherical

shell.

§1.2.2. SCATTERING BY EXTENDED ENVELOPES °

Regarding the envelope as an extended tenuous ring-
(or disk-) 1like cloud detached from the star, was
suggested by Cassinelli and Haisch (1974) (see Sec.
1.2.1). In modelling this situation approximations are
usually made, such as treating the star as a point
source of light and taking the envelope to be optically

thin for scattering and sometimes also for absorption.

The first analysis of this technique was given by
Shakhovski (1965). He considered scattering in a thin
circular ring of electron (Thomson) scatterers lying in
the equatorial plane of the star but with arbitrary
inclination to the earth. Shakhovski concluded that the
polarization of the scattered light only ( without the
addition of the direct unpolarized starlight) from any
such plane ring would be of the form

P = sin%i / ( 2 + sin%i ) (1-1)

with the maximum value at 4=90° (when the star is

24



observed equator-on) of 1/3. He also deduced that the
same result must hold for any plane disk (by subdivision
into rings), and that the plane of the polarization
(maximum intensity) always lies in the projected polar
axis direction (i.e. perpendicular to the scattering

plane).

Several extended analyses of this problem followed
this one, for both Thomson and non-Thomson scattering
e.g. for particular case of i=90° (Capps et. al. 1973),
or for particular axisymmetric three-dimensional
geometries, such as an ellipsoidal shell (Zellner 1971),
or a circular sector rotated in the equatorial plane
(Rruszewski et al. 1968). An analysis of Mie scattering
polarization was carried out by Shawl (1975), for an
arbitrarily shaped envelope, concentrating on the
polarization wavelength dependence and the reddening of

the scattered light.

The first general analytic treatment for the
polarization of starlight from an unpolarized isotropic
point 1light source due to single scattering on the
electrons of an axisymmetric circumstellar cloud
(Thomson scattering), was given by Brown and McLean
(1977). In this paper the above Shakhovski polarization
relation of polarization to stellar inclination was
developed to include a general shape factor :

P=sini / [ 2 a + sin%i ] (1-2)

25



where o=(1+y)/(1-3y) and y is a shape factor, defined by
the ratio of two moments (integrals) of the density
distribution function in spherical coordinates, and
related to the oblateness (or prolateness) of the
envelope. The maximum residual polarization PR ({after
addition of the unpolarized direct starlight) is about
-20% for a polar line envelope (y=1), and about +10% for
a plane disk envelope (¥=0), for a mean scattering
optical depth 7T=0.1 (see Fig. 1-3). The residual
polarization is given by :

P,o=T (1-37 sin®i (1-3)
These results will be the same in case of Rayleigh
scattering, but with the same wavelength dependence of T

"4 . Brown & McLean

as the Rayleigh cross section (i.e. A
applied their results to hot (early type) shell stars

(e.g. Be stars).

For single cool stars, Simmons (1982) generalized
the work of Brown and McLean (1977) to arbitrary Mie
scattering in optically thin circumstellar shells of
arbitrary shape . He also assumed an isotropic point
source of 1light, approximating the scattered flux and
Stokes' parameters as sums of multipole contributions.
Each contribution takes the form of a product of two
factors, one arising purely from the density
distribution function of the scatterers, and the other
from the phase function of the scattering mechanism.

Simmons concluded quite generally that the form of the

26
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Fig. 1-3. The residual polarization PR (%) (i.e.
when the direct starlight is added to the polarized
radiation). the ratio Pr/T is shown as a function of ¥
‘ *_gwfor_vvanious_inclinations ;- Where T is-the mean scattering

optical depth (Brown and McLean 1977).
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polarization versus wavelength () dependence is
independent of the specific density distribution of the
scatterers in the envelope, and the position angle of
the polarization is independent of the specific

scattering mechanism.

Brown, McLean, and Emslie (1978), and Rudy, and Kemp
(1978) treated the case of multiple light sources in
arbitrary shaped envelopes and applied it to rotating
binary systems. A generalization to arbitrary Mie
scatterers for binary systems 1is given by Simmons

(1983).

Cassinelli, Nordsieck and Murison (1987) derived a
factor to correct the Brown & McLean (1977) Thomson and
Rayleigh scattering model for a finite size isotropic
star, using extended atmosphere radiative transfer
theory. This correction (so called depolarization)
factor reduced the magnitude of the predicted
polarization from a finite stellar disk to less than
half of that predicted for the point source for a typical
envelope distribution. Two years later, Brown, Carlaw
and Cassinelli (1989) rederived this depolarization
factor without radiative transfer, obtained the
corresponding correction factor for the scattered flux
and extended results to limb darkened stars. They also
concluded that for the case of non-Rayleigh scattering

more complicated correction factors were needed.
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Another correction is required for the case in which
some of the scattering particles of the envelope are
occulted by the star. A series of papers was published
on this correction by Milgrom (1979), Brown and Fox
(1989), Fox and Brown (1991) and Fox (1991) for Thomson
scattering. The general case shows a complicated
inclination dependence of the polarization, so any

expression of the form of Egqg. (1-3) no longer holds.

Most of the previous analytic described work above
has treated the light source as isotropic and
unpolarized. This not always the case, since stars are

in general anisotropic light sources.

§1.3. ANISOTROPIC LIGHT SOURCES :

Collins and Buerger (1974) concluded that a measured
polarization in excess of 1-2% for either single or
multiple star systems cannot arise by scattering in the
atmospheres of the stars, unless the star itself is
‘distorted', such as in supergiants where distortion
from sphericity can result either by rotation,
pulsation, or a large magnetic field. Such 'distortion'

of the light sources can mainly be due to two effects :

1- Non-spherical shape.
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2- Non-uniform photospheric brightness.

§1.3.1. ANISOTROPY DUE TO NON—SPHERICAL LIGHT SOURCES:

Non-spherical stellar shapes are produced to a
greater or lesser extent by rotation, by pulsation and

by a companion star (binary).

Rotating stars in general will be distorted from
sphericity. They may take either oblate or prolate
shapes, depending on the angular momentum and the
strength of the magnetic field. The oblateness c¢an be
expressed 1in terms of Maclaurin spheroids with the
circular equatorial cross section radius larger than the
polar cross section radius) and the prolateness in terms
of Jacobi ellipsoids (both the equator and the polar
cross section are ellipses) . For a negligible magnetic
field , the Maclaurin spheroids range from a sphere to a
flat disk according to the value of the angular
momentum. Jacobi ellipsoids range from an axially
symmetric configuration to a very long needle shape, but
it is found that they represent possible equilibrium
states only for angular momenta exceeding a critical
value. The dynamically stable shape, from a geometrical
point view, starts as a stable Maclaurin spheroid where
the equatorial cross section is circular with radius of

unity and the polar axis ranges from 1 down to 0.58 (as
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rotation increases). At the latter point, to maintain
stability the star becomes a Jacobi ellipsoid when the
polar axis and one of the equatorial axes shrinks to
about 0.1 of the longer axis of the equator. Beyond this
the star develops more complicated shapes (Tassoul 1978,

see Tables 1-1 and 1-2).

Other reasons for non-sphericity are non-radial
oscillations of the star (i.e. pulsator) and the
influence of a binary companion, such as the production
of a star which fills its Roche lobe (see Tassoul 1978,

Sec. 2.4.2.2, and Fig. 1-4aé&b).

§1.3.2. ANISOTROPY DUE TO NON-UNIFORM PHOTOSPHERE :

The second main reason for anisotropy of a stellar
light source is a non-uniform brightness distribution of
the radiating surface. This may be caused by a magnetic

field, by spots or by convection cells...etc.

We will discuss, as examples of this anisotropic
effect, convection cells and star spots which may be
thought of as bright and dark spots, respectively.
Bright photospheric spots (where Tspot > Tstar, e.g.
granules or supergranules) can have temperatures above

the stellar photosphere by up to 1000 K (Doherty 1986),
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TaBLE 1-1
PROPERTIES OF THE MACLAURIN SPHEROIDS

T 4 a, ay
0.00 0. 1.000000 1.000000
0.02 0.373909 1.025418 0.951039
0.04 0.511028 1.051737 0.904035
0.06 0.605447 1.079070 0.858817
0.08 0.676908 1.107544 0.815227
0.10 0.733413 1.137304 0.773121
0.12 0.779224 1.168520 0.732365
0.14 0.816962 1.201394 0.692834
Q.16 0.848380 1.236162 0.654409
0.18 0.874723 1.273107 0.616978
0.20 0.896912 1.312575 0.580433
0.22 0.915652 1.354987 0.544666
0.24 0.931495 1.400870 0.509571
0.26 0.944881 1.450890 0.475041
0.28 0.956167 1.505909 0.440963
0.30 0.965646 1.567062 0.407218
0.32 0.973562 1.635890 0.373673
0.34 0.980120 1.714542 0.340176
0.36 0.985492 1.806147 0.306545
0.38 0.989825 1.915476 0.272550
0.40 0.993246 2.050287 0.237887
0.42 0.995863 2.224338 0.202115
0.44 0.997770 2.465304 0.164535
0.46 0.999049 2.841411 0.123860
048 0.999772 3.604013 0.076988
0.50 1.000000 © 0.

Here T is the ratio of the rotational kinetic energy
K to the gravitational potential energy W (i.e.
T=K/IWl), with a,.a,, and a, the semi-axes of the

ellipsoid (for Maclaurin Spheroid a1=a2), and e is the

eccentricity (Tassoul 1978).
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TaBLE 1-2
PROPERTIES OF THE JacoBI ELLIPSOIDS

T a, a, a,
0.1375 1.197234 1.197234 6.976571(—1)
0.14 1.362619 1.058823 6.931102(- 1)
0.15 1.623843 9.128330(-1) 6.746283(~ 1)
0.16 1.829508 8.332346( 1) 6.559916(—1)
0.17 2.026971 7.742668(— 1) 6.371794(—-1)
0.18 2.228015 7.260630( 1) 6.181695(~1)
0.19 2.439037- 6.845402(—-1) 5.989390( - 1)
0.20 2.665006 6.475539(—1)  5.794633(-1)
0.21 2910679 6.138146(—1) 5.597169(—1)
0.22 3.181212 5.824744(-1) 5.396727(— 1)
023 3.482603 5.529374(—1) 5.193021(-1)
0.24 3.822142 5.247622(-1) 4.985752(—~1)
0.25 4.208964 4.976078(—1) 4.774606(—1)
0.26 4.654786 4.712008(—1) 4.559259(~1)
0.27 5.174943 4453148(—1) 4.339376(—-1)
0.28 5.789902 4.197578(—-1) 4.114622(—~1)
0.29 6.527538 3.943635(—1) 3.884668(—1)
0.30 7.426615 3.689867(—1) 3.649206(—1)
0.31 8.542318 3.435010(—-1) 3.407974(~1)
0.32 9.955242 3.177994( - 1) 3.160786( - 1)
0.33 1.178655(+1) 2917972(—-1) 2.907582(—-1)
0.34 1422451 + 1) 2.654381(-1) 2.648497(— 1)
0.36 2.234398( + 1) 2116265(—- 1 2.114801(—-1)
0.38 4.060607( + 1) 1.569406( — 1) 1.569183(—1)
0.40 9.348701(+ 1) 1.034255(—1) 1.034240( - 1)
045 1.387580( + 4 8.489281( - 3) 8.489281(-3)
0.50 x 0. 0.
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Fig. 1-4a. Distortion of a spherical star (dotted
lines) due to pulsation at the 1lowest spherical

harmonics Y% (cos®), with £=1,2,3,4 (Tassoul 1978p).

Fig. 1-4b. Level surfaces of Roche model in orbital

plane (M'/M=0.215, from Tassoul 1978).
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and sizes as large as 10% of the stellar surface
(Schwarzschild 1975). They can occur anywhere on the
star and tend to be long-lived in the case of giants.
Dark photospheric spots (where Tspot < Tstar, i.e. black
spots) can be cooler than the star by up to 2000 K (Vogt
1981), with sizes up to 15% of the stellar surface.
These occur within 60° north and south of the stellar
equator (Bopp and Evans 1973). Virtually any light curve
can be generated by a suitably complex distribution of
spots on a rotating star (Vogt 1981). So far their
polarization effects have not been studied in detail.
Some polarimetric modelling of a hot spot has been
presented by Gnedin et. al.(1976), Schwarz and Clarke
(1984) and Doherty (1986), but their analyses are
acceptable only for small spots (e.g. of angular extent

w<5°), as we will see in Chapter 4 of this thesis.

These two anisotropic effects will affect both the
light variation and the polarization, and may explain
(with or without counting the effect of arbitrary
envelope shape- see Chapter four) the high polarization
observed in the late-type variable stars of spectral
type K and M (e.g. giants, supergiants, dwarfs) due to
fast rotation, pulsation, and spots (see Collins and
Buerger 1974, Shawl 1975, and Schwarzschild 1975) . Some
early-type stars such as Be stars show polarimetric
variation. Polarization of these stars has Dbeen

explained by scattering in an axisymmetric envelope
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(Brown and McLean 1977 and Fox 1991), but without the
effect of an anisotropic 1light source. The time
dependence of polarization may be explained by such
anisotropy., especially for pulsators such as B Cep..
Some of these cases will be discussed in more detail in
the following chapters. Next we will present some of the

observational results for several stellar-types.

§1.4. POLARIMETRIC OBSERVATIONS :

Luminous stars of spectral type K and M show the
largest mean polarization and the biggest changes in
polarization (Kruszewski, Gehrels and Serkowski 1968,
and Shawl 1975). In a study of the distribution of
polarized and unpolarized K and M stars in the HR
diagram, Dyck and Jennings (1971) show that nearly all
of the supergiants observed show intrinsic polarization,
while no giant earlier than M2 was found to be polarized
(Fig. 1-5). In general, the hotter the star the greater
the luminosity must be for intrinsic polarization to be
present (Shawl 1974). So, many late-type stars produce
variable polarization, but there are some early-type
stars which already show this variability such as B Cep.
stars. The wavelength dependence of the polarization has
been discussed briefly above (in Sec. 1.1.1). Here we

will draw attention to pulsators and spotted stars.
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diagram (from Dyck and Jennings 1971).
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Pulsators show a variable polarization. The first
observations of this kind were reported by Serkowski
(1970) for RV Tauri stars U Mon. and R Sct., which are
late~type stars. Serkowski made of one of the best and
longest ©polarimetric observations for such stars,
finding for U Mon a polarization wvariation from 0% to
1.5%, with 1large and regular changes in the position
angle in the blue region. The position angle remains (in
the blue region) close to 0° around and before the deep
light minima and close to 105° about the shallow light
minima that occurs halfway between the deep minima. In
addition, both position angle changes occur at the phase
when the spectral lines are doubled (due to Doppler
effect). Fig. 1-6 (a,b,c, and d) show the U Mon. changes
with phase of 1light variation in (a) radial velocity
observed by Preston (1964); (b) U-V color index observed
by Preston et al.(1963) and Serkowski (13970); (c)
polarization difference in two colors (B-V & U-V) by
Serkowski (1970); and (d) the position angle 1in
different color also by Serkowski (1970). This figure
illustrates some of U Mon's properties we just mentioned
above. Fig. 1-7 presents the qu-plane loci (or the
polarization versus position angle) variation for both U

Mon. and R Sct. from Serkowski (1970).

Serkowski suggests that his observations may be
explained by non-spherical oscillation of a star that is

embedded in a circumstellar cloud. The presence of such
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Fig. 1-7. The qu-plane (or the polarization with the
position angle) for both U Mon. and R Sct. (from
Serkowski 1970). The vyellow observations are open

circles, and the ultraviolet are the tips of the arrows.
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a cloud is proved by the observation of Gehrz and Woolf
(1970) for U Mon. because of a large infrared excess
.Gehrz (1971) combined visual and infrared observations
for four RV Tauri stars and concluded that there must be
nonradial pulsation occurring, the strength of which is
given by studying the radial velocity curves in Fig.
1-6a, and relating them to the curves expected from
nonradial oscillators (see Unno et al. 1979, and Shawl

1974) .

Preston et al. (1963) calculated the mean period of
the light wvariation of U Mon. using their photometric
observations, to be 92.23 days, while Serkowski (1970)
obtained a period of 91.3 days using his photometric
observations. In the early stages of this thesis, the
author applied a second order power spectrum method to
the polarimetric data ( see Appendix A), and obtained
almost the same period from the polarimetric observation

as Serkowski (1970).

The changes 1in polarization of R Sct. are less
regular than those of U Mon. In addition , R Sct. shows
a different type of position angle variation (Serkowski
1970). Several observations have been made recently for
RV Tauri stars, e.g. the observations of Henson, Kemp,
and Kraus (1985) for AC Herculis in the B band, over one
cycle of 75.46~day period. They found a clear

correlation between the light and polarization changes,
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the variability in the polarization being similar to
that observed in U Mon. by Serkowski (1970). They
suggest the mechanism to be either nonradial pulsation
in the star or radial pulsations propagating into an

asymmetrical circumstellar medium.

A small number of polarimetric observations are
reported by Raveendran and Kameswara Rao (1988) and by
Raveendran, Kameswara, and Anandaram (1989), for the RV
Tauri star AR Puppis - in total about sixteen
observations, compared to about forty by Serkowski
(1970), and thirty by Henson, Kemp, and Kraus (1985).
They found a high polarization in one direction (about
14.6%) . The wavelength dependence becomes steeper toward
ultraviolet. However, in my opinion their polarimetric
observations are not sufficient to be useful, unlike the

photometric data.

Some polarimetric observations have been published
for luminous red variable stars (for a good review see
Shawl 1974). We are especially interested in Mira
variable stars, which show variable polarization and
wavelength dependence, and are known to be pulsating
stars (Becker 1987). Recently in a photographic image of
the pulsating Mira star O Ceti reported by Karovska,
Nisenson, and Papaliolios (1992) in Sky & Telescope,
they found one of Mira's atmospheric axes to be extended

up to 20% longer than the other, giving the star an oval
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shape. Similar results are reported in Wilson et al.
(1991).

Another kind of pulsator is the B Cep. stars. These
early-type stars have a very short period ( = 0?25),
which makes a spurious data modulation inevitable,
especially in observations of only a few nights (Clarke
1986). From five nights of observation of the B Cep.
star BW Vulpeculae, O0dell (1981) observed variable
polarization. He concluded that the variation in the
polarization is caused by the star's pulsation, and that
this pulsation cannot be radial or ellipsoidal, but
requires higher orders of oscillation to explain the

polarimetric variation.

Polarimetric measurements for three B Cep. stars, B
Cru, « Vir, and o Sco. are reported by Clarke (1986). He
concluded that the polarimetric periodicities are close
to the fundamental photometric period , but showed them
to be spurious results. This is because of the way in
- which the measurements were assembled from a few hours
observations per night on a small number of nights. But
he concluded that o Vir does display a real variable
polarization, possibly caused by stellar instability

(e.g. pulsation) or binary nature.

Star Spots are an alternative explanation for

variable polarization. The supergiant « Orionis shows a

complex behavior of polarization wavelength dependence,
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which can be explained by the combined effects of
Rayleigh scattering in the photosphere and scattering by
circumstellar dust (Serkowski 1971). But if the
photosphere is the location of the Rayleigh scattering,
then asymmetry is necessary there to produce a net and
observable polarization (Doherty 1986). This asymmetry
can be caused by convection cells as proposed by or - as
previously discussed - by nonradial pulsations (see
Schwarzschild 1975, and Schwarz and Clarke 1984) . From
the available observational data of « Orionis shown by
Tinbergen, Greenberg, and Jager (1971), and Schwarz and
Clarke (1984), we obtain a complex wavelength dependence
(Fig. 1-8), with systematic variations of the
polarization with the time (Fig. 1-9). UBV measurements
for the polarized dust shell around o Orionis done by
Borgne, Mauron, and Leroy (1986), show that the shell
has no significant departure from spherical symmetry.

They suggest non-spherical particles in the shell.

Now one asks, what can be added to the above

knowledge !.

§1.5. THE AIM OF THIS RESEARCH :

In any stellar system, there are internal forces
such as nuclear, gravity, magnetic field ... etc. which

govern (e.g.) the star's shape, photosphere brightness
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distribution , chemical distribution of the star and
also of the circumstellar matter, if the star ejects
material. These internal forces may govern the envelope
shape, the envelope separation from the stellar surface,
and the envelope aspect in the sky (i.e. the envelope
inclination). Moreover, there are external forces such
as the gravitational force of the Galaxy and of
companion stars, which may influence (e.g.) the stellar
orientation in the sky, the stellar rotational velocity,
and the stellar velocity in the universe. All these
influences of internal and external forces will affect
the polarized and unpolarized light produced by the

stellar system.

On the another hand, in the observer frame there
will be a spectropolarimeter to measure  stellar
polarized and unpolarized light. The observer will apply
theory to reduce the effect of the earth's atmosphere
and the interstellar polarization and ending with the
polarization of the star 1light normalized to the total
light received from the star, since the observer cannot

know the exact value of the total stellar light.

In this thesis we will try to present a model which
relates the stellar system to the observer's frame, by
parametrizing (but not <calculating) the physical
effects of internal and external forces on the stellar

system, to predict the normalized polarization in the
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Oobserver frame, neglecting any noise from the

interstellar matter and the earth's atmosphere.

For this we will use the extended envelope approach,
which was discussed above in Sec. (1.2.2), but with the
new factor of an anisotropic point light source being
introduced, applying Simmons' (1982) technique of
representing the scattered flux and Stokes' parameters
as sums of multipole contributions. But here each
contribution will take the form of a product of three
factors, the first one arising purely from the
anisotropic flux of the star, the second from the
density distribution of the scatterers, and the third
from the phase function of the scattering mechanism,
although Thomson and Rayleigh scattering are used as
scattering mechanisms throughout this thesis. Also we
will not discuss the wavelength dependence of the

polarization.

In the next Chapter, we will write our general
equations for the scattered flux and Stokes' parameters,
including arbitrary functions to describe the stellar
flux, the density distribution, and the scattering
mechanism. We will then solve the equations for the
special case of an anisotropic 1light source surrounded
by a spherical envelope of Thomson or Rayleigh
scatterers, using non-spherical stars to provide some

results to illustrate the technique. In Chapter Three we
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solve the general equations for anisotropic stars with
arbitrarily shaped envelopes, using the non-spherical
star and envelope as a special case to compare the
results with those of Chapter Two. In Chapter Four,
anisotropy due to a non-uniform photosphere is
considered, using spots as an example. Also in this
chapter, a model 1is developed for wvariation in the
projected area of a spot of arbitrary size while the
star rotates. The Fifth Chapter summarizes our
conclusions and discusses future work. Finally there are
four appendices, A) Some analysis of Serkowski's (1970)
observations for U Mon., B) The projected area of an
ellipsoid, C) Some numerical values of the expressions
used in the model, and C) Information about the

spherical harmonic and Clebsh-Gordon coefficients.

Each chapter starts with a brief introduction,
followed by the theoretical methodology and discussion
of the results, and ends with a short summary of the

chapter.
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CuarTER Two

2. NON-SPHERICAL STAR

CONTENTS :

2.1. Introduction

2.2. Theory
2.3. Ellipsoidal Black body star
2.3.1. Analytical expressions for the special
case a=b
2.4. Calculation of polarization and the scattered
flux
2.4.1 Oblate and Prolate stars
2.4.2 Non-spherical light source
2.4.2.1 Single star
2.4.2.2 Binaries
2.4.3 Non~radially Oscillating Stars
2.4.3.1 Stellar Oscillation in one axis only
2.4.3.2 Stellar Oscillation in two axes
2.4.3.3 Stellar Oscillation in three axes

Summary
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§2.1. INTRODUCTION :

In Section (1.2.2) we saw that most of the previous
work which calculated the polarization from extended
envelopes, has treated the light source as isotropic and
unpolarized. In this Chapter we consider the effects of
anisotropy of the stellar light source in the simplest
case, 1in order to illustrate its basic effect, by
assuming the envelope to be spherical as we will see

later.

§2.2. THEORY :

To illustrate the basic effect of source anisotropy,
we first consider the case of a Rayleigh or Thomson
scattering envelope that has spherical symmetry about
the star. For simplicity, it is assumed that the star is
small compared to the size of the envelope, thus
allowing each scattering particle to be considered as
being illuminated by radiation from a unique direction.
Thus scatterer occultation ( e.g. Brown & Fox 1991) and
finite star depolarization effects ( e.g. Cassinelli et.
al. 1987) are small, and treatment is simplified of the
geometry of the light source as seen from any scattering
point. The basic effect that we are describing is simply

that if the star radiates anisotropically, then the
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light scattered from even a spherical shell will have a
greater contribution of polarization directions from
those parts of the envelope that are more thoroughly
illuminated. In general, this will lead to
non-cancellation of contributions when integrated over
the volume and there will be a net polarization, though

the envelope itself is spherical.

To quantify this, we follow Simmons (1982,1983) in
using two cartesian coordinate systems centered on the
star. The star's frame (X,Y,Z) has spherical coordinates
(r,8,%) with 0Z the stellar rotation axis, while the
other frame (x,v,2) relates to the observer with
spherical coordinates (r,0,¢). The star is centered at O
with 0z toward the observer and the x-z plane containing
the Z-axis (see Fig. 2-1). The former system is rotated
relative to the latter through Euler angles («,B,7) (cf.
Messiah 1962). Consequently the scattering angle will be
6, and the polarization angle (direction) ¢, relative to
0z for any scattering point. In general the scatterer
density may be written as n(r,6,¢), and the flux of

unpolarized radiation from the star is F(r,6,¢). Then

following Simmons (1982) and with zero circular
polarization - assuming the light source is unpolarized
neglecting any magnetic field (Angel 1974) - the

(un-normalized) scattered flux and Stokes parameters

(Fec,Q,U) of the scattered radiation at the Earth
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x (defined by z and Z) - same plane
N

7. (Rotation axis)

To the earth

Y

Eig. 2-1. Definitions of the star and the observer
frames, O 1is the -emitting anisotropic star (point
source) and P is a general scattering point in the
envelope. O0OZ is the rotation axis, where 06 1is the
scattering angle, and ¢ is the polarization direction.
For the Euler angles a=0, B is the angle between Oz-axis

and OZ-axis and 7y is measured from X-axis in X-Y plane.

The scattering plane is P'OP.
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(distance D) are given by :

FSO 1 2
x }: —-——2—-—5 J\J’J\ n(r,9,¢) F(rreld)) r
Z 2k D

(i1+ iz)

x ' dr sin@ 46 d¢ (2-1)
(11— 12) exp(-2i¢)

where Z*=Q—iU with i=l-1 , k=2n/A is the wave number,

and 11 and i2 are the scattering functions as defined by

van de Hulst (1957) , where for Thomson (electron) or

Rayleigh scattering :

3 k? 2
i, + i, = = 0 (1 £ cos™0 ) (2—-2)

(see Brown & MclLean 1977) where the value of the cross
section factor ¢ is chosen according to whether Thomson
scattering ( ¢ will be independent of k) or Rayleigh

scattering ( o is a function of k') is being considered.

In relation to previous models we see that the basic
result of source anisotropy is to introduce the factor
F(r,06,¢) inside the integral. This complication of
allowing both F and n to be anisotropic immediately
suggests that the effects on Q and U will depend on
whether the two functions enhance or offset one another.
We defer the discussion of this general case to Chapters
Three and Four ' and concentrate here on the
simplification of considering a spherical envelope so as

to investigate the effect of anisotropy in the stellar
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radiation field. With this simplification, we write

n=n(r).

The function F(r,0,¢) in Eq. (2-1) describes the
radiative properties of the star in the observer's
frame, but it is more natural to describe the behavior
in terms of the flux F in the stellar coordinate system
(r,8,0). Providing that F varies smoothly, we may

express it in terms of spherical harmonics, viz

F(r,8,9) = E: }: th(r) Y{m(G,Q) (2-3a)
= £

Using the rotation matrices described by Messiah
(1962) ( e¢f. Simmons 1983) to convert from the star's

frame (6,%) to the observer's frame (0,¢)), we have:
n=4

_ (&)
e @0 = ) RID@BD ¥, (0,0) (2-3b)
n=-4

and by substituting this in equations (2-3a), we obtain

the flux as a function of 90 and ¢ :

F(r,0,0) Z Z Fp, () Z RS (@1 v, (0,00 (2-0)

£=0 m=-4%

Y{n(6’¢) are as defined by Jackson (1975) ( cf.

Simmons 1982), wviz:

Yp (6,4) = a(£,n) PZ(cosG) exp (in¢) (2-5)
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. _ (2£+1) (£-n)!
with o(£,n) = J an (F+n) ]
and
n
Ppix) = (-1)" (1-xH)"% S p,(x)
dx

where the Pz(x) are Legendre polynomials,

Rif)(a.B,Y) = exp(-i n «) r:f)(ﬁ) exp(-i m 7) (2-6)
and r:f)(ﬁ) are defined by Wigner formula :

£ T it 484! (i-n)! (L4m)! (£-m)!
Tom B = Z (1) Tann) T (Tm=t) T €7 (t=n+m) T

28+n-m-2¢t

x [cos (3 B)] [sin(3 17" """ (2-7)

In Eqg. (2~7) the summation extends over all integer
values of t for which the factorials have meaning ,i.e.
for which the arguments of the factorials are positive
or zero . The number of terms in this sum is 1+n , where
n is the smallest of the four numbers £4n and £tm ( cf.

Messiah, 1962).

We note that in expression (2-2), the scattering

function factors can be expressed as :

20 _ 4 [’“ . jg x _
l+cos 6 = 3 [ 4n Y00+ 5 Y20(6,¢)] (2-8)

and ,

. 2 . _ 2 n % _
sin“0 exp(-2i¢) = 4 J'I?‘ Y22(9,¢) (2-9)

so that, on substitution in the integrals contained in

Eq. (2-1), together with the other expressions above,
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and using the properties of spherical harmonics, Fsc and

x .
Z can be written as:

g (0)
Fsc = ~—— [44 n R («,B,7) T
4 x DZ 00 00
m=2
(2)
+ Eﬁ ZROm («.B.7) FZm:' (2-10)
m=-2
and
m=2
X 3 o (2)
z* = |2 n ZR («,8,7) T (2-11)
ax p? V15 Zm 2m
m=-~2
where ,
P£m= I n(r) Fzm(r) r2 dr (2-12a)
with
b
F, (r)= F(r,8,9) Y, (6,0) dr d® sin® d® (2-12b)
£Lm Lm

The above expressions are exact ana allow
calculation of the scattered flux and Stokes parameters
for any F(r,06,¢). That is due to the orthogonality of
the spherical harmonics of F(r,9,¢) with those of the
scattering function (in Egs, (2-8) and (2-9)), so all
harmonics of the order € or Iml higher than 2, are zerc
for the case of Thomson and Rayleigh scattering. It is
at once clear that Q and U will reduce to zero, and that
Fsec will only depend on the Foo term in Eq. (2-11), if
the star radiates isotropically while, in general, the
degree and direction of polarization will depend on the

properties of the coefficients Fzm describing the
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stellar anisotropy . These expressions are exact, hence
the conclusions concerning a particular star's flux can
easily and justifiably be generalized to any arbitrary
flux distribution function (e.g. non-spherical star due
to rotation, pulsation, magnetic effects or an X-ray
companion, star spots or any other anisotropic flux) .

To illustrate this we now consider a specific case.

§2.3. ELLIPSOIDAL BLACK BODY STAR :

Assuming the case of a black body star of uniform
surface temperature, the surface intensity is isotropic,
and seen from a distant point, F(r,8,0) can be expressed
in terms of the projected area Ap(8,0) of the star as
viewed from the scattering element direction (6,9).
Hence:

I* Ap(8,0)
F(r,8,0) =~ I* AQ = > (2-13)
r

where I* is the isotropic intensity of the stellar
surface and AQ is the so0lid angle subtended by the
scattering element. For an ellipsoidal star with axes

(a,b,c) along (X,Y,Z) ( see Fig. 2-2), Ap is given by :

Al

Ap = x (2-14)

J(b c X)2+(a c u)2+(a b v)2
where (A, u,v) = ( cos® sin® , sin® sin® , cos®) are the

(X,Y,Z2) direction cosines of the direction (6,9).

Inserting Egs. (2-13,2-14) in Eq. (2-12), we
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obtain :

where
[+ 1]
N =l n(r) dr . (2-16)
and
n X
f& = I I Ap(©,d) Y£ (8,0) Ad sin® dae (2-17)
m m

Note that f&m are now functions of the star's shape
and size only (i.e. of a,b,and c¢). From the numerical
integrations expressed by equation (2-17) we get :

£ =f21=0 , and the imaginary parts of f2

2, -1 and f2

2 , -2

are zero also , giving f22=f2’_2 . The terms f£m are
obviously real for £=m=0 but are also real for 4£=2 and
m=+2,0, and their values are of consequence to the
problem. Note that the f)‘,;m describing the stellar
anisotropy play the same role as the shape factor (y) of
Brown & McLean (1977) - the latter is related to the
oblateness or prolateness of the envelope, where the

former is related to the stellar shape (oblateness or

prolateness).

From the properties of Euler angles, we can choose «
as zero, P as the inclination (4is) of the 0Z-axis ( the
rotation axis of the star) to the 1line of sight
(Oz-axis), and y as the azimuth of the 0Z-axis from the

Ox-axis measured about the Oz-axis, which we denote as
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Fig. 2-2. The ellipsoidal star coordinate system,

where the c-axis is along the Z-axis (the rotation axis).

60



¢=. Thus ¢s measures the rotational position of the star
relative to the observer ( see Fig. 2-2). So the
un-normalized Stokes parameters and scattered flux will

be given by :

T I
Fsc = —2>2_ [ J4 14 f00 + JE { JE f22 sinzis cos2¢s +
5 2

£ (3 cosZis-1) }] (2-18)

INEE

20
x 3T I* [———ﬁ 1 2.
4n D 15

. . . |3 . 2,
21 cosis 51n2¢)s}+ r fzo sin Ls]
(2-19)

where, Rég)(a,ﬁ,v) = 1 (2-20)

and T is the envelope optical depth, equal to ¢ N

(Simmons 1982).

For most practical applications ( also in the
observational situation), one is interested in the
normalized scattered flux and Stokes parameters defined

where the total flux received F

by [FSC'Q’U]/Ftot ' tot

comprises the combination of the scattered flux Fsc plus
the direct flux from the star Fdir. This direct flux
component is given by I, Ap(&s,¢s)/Dz, where Ap here is
the projected area of the star seen from the Earth for 6
= 48 and ¢ = ¢s . So we can wWrite the normalization

factor Fnorm as :
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Frnorm = (I*/Dz) [ Ap(dis,ds) + (D2/£ ) Fsc] . (2-21)

Because foo'f ,and f22 are purely functions of a,b

20
and ¢ (i.e the star size, some of their values are
presented in Appendix C), we have the normalized Stokes
parameters and normalized scattered flux ( henceforth
called q, u and Fscn, respectively) as functions of

¢s,is,7,a,b and ¢ ( for Rayleigh scattering T will be a

function of k4 ).

We can write from egs. (2-18), (2-19) and (2-21) the

expression for normalized scattered flux as :

Fscn = —z___JEL—— {2 f00+I§ [Ié fzz Sinzis cos2¢s +

4% Fnorm

=

£,,(3 coszi,s—-l)] } - (2-22)

The normalized Stokes parameters can be written as :

q= 2> | 2 {%fzz(1+cosz4',s) cos2¢s +£g-f20 sinzis}
47 Fnorm 15

(2-23)
and,
3 T . .
u = — I 2 n f22 cosis sSin2¢s (2-24)
47 Fnorm 15
from which the degree of polarization p = qz4_ u?

. . . . . 1 -
and the polarization direction, given by ¢p=§tan 1(u/q),

can be determined.
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It is clear from Eqgs. (2-23) and (2-24), that the
degree of the polarization p will depend on sinzis, but
with more complicated form (mainly due to the variation
of the direct flux with the inclination) than that shown
in Eq. 1-2. The latter equation was derived by Brown and
McLean (1977) for a general isotropic point source
within a nonspherical extended atmosphere. The current
work proves that even when the star is considered as an
anisotropic light source, the polarization equation is

still found to be of a similar form.

Application of this general anisotropic source
model, also generalizes the work of Gnedin et. al.
(1976), which was a two dimensional model for

ellipsoidal effects in close X-ray binaries.

§2.3.1. ANALYTICAL EXPRESSIONS FOR THE SPECIAL CASE ..

For the special case of a=b, we can calculate

foo'fzo'and f22 from Eq. (2-17) as :
2% <% 5 -1 -1
f00 = [ ¥ cos(sin x) + sin x} (2-25a)
2 2
¢ - a
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2 2
f.0= JE z c 3 { 25 (3% sind(sin”’ x)+% sin™ ! x)
b3 2 2 X
¢’ - a
1 . _-1 1 . -1
3 X cos(sin x) 3 sin X }
(2-25b)
and,
fzz = 0 (2-25c)
where,
X = ll — a%/c? (2-254)
f22 reduced to zero, because when a=b, Ap will be
independent of ¢ (i.e. symmetric about the equator). So

the integration over ¢ will be zero, which is expected
for such symmetric star to have a polarization p only in
one direction (here q), therefore the polarization o)
will be in one direction (here q) which depends only on

£ with zero u.

20’

§2.4. CALCULATION OF POLARIZATION AND THE SCATTERED FLUX

Using the expressions (2-21 to 2-24) from the
previous section, and by solving the integrals
numerically, the polarization can be calculated for an
ellipsoidal star, for either Thomson or Rayleigh
scattering (depending on which value of the optical

depth t we use, noting that for Rayleigh scattering t
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will be a function of k4). Because we deal with a small
optical depth envelope, a working value of Tt = 0.1 will

be used here for illustration unless otherwise stated.

The un-normalized scattered flux (Fsc) is usually
smaller than the direct flux (Fdir), but for small a,b
or ¢, Fdir may decrease very rapidly compared with Fsc,
so the common assumption that Fdir>>Fsc ( i.e. the
normalization factor will be proportional to Ap(is,ods)
only) is not applicable here when the Stokes parameters
are normalized. If the wusual approximation (i.e.
Fdir>>Fsc) is made here, then the equations will give
non~physical values of p and Fscn, since in fact there
is no projected area seen by the observer for a disk

star viewed edge on.

The projected area Ap is the determining factor in
this application of the model, as it affects p, Fscn and

Frnorm (which are functions of f f and fzz)' We

00" 20

expect the maximum polarization to occur for maximum
scattered light and for minimum projected stellar area
(direct flux) along the line of sight, in the extreme
case the normalized scattered flux constituting the
total observed flux (Fscn is equal to the unity). For
minimum scattered light and projected stellar area, the

normalized scattered flux will be unity again, but the

polarization will be small due to there being less
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scattered (polarized) light. The minimum polarization is
expected to be zero on symmetry grounds for directions

in which the projected stellar area appears circular.

By considering an ellipsoidal star, the general
anisotropic source model can be used in cases such as a
single fast rotating star, as an approximation to a
Roche ellipsoid in binaries, and non~-radially
oscillating stars. Though the polarizing effects caused
by radiative transfer within a non-spherical photosphere
are usually small unless the distortion is very great
(Haisch & Cassinelli 1976, and Collins & Buerger 1974),
the effect of an anisotropic source with scattering by a
surrounding shell can produce high values of

polarization as will be shown below.

82.4.1 OBLATE AND PROLATE STARS :

In Sec 1.3.1. we discussed the effect of fast
rotation on stars, and found that the star can take
either oblate or prolate shapes, depending on the
ahgular momentum and the strength of the magnetic field.
Dynamically stable shapes are possible with ¢ and b

shrinking to about 0.1 of a.

From the above analysis, we calculate a maximum

polarization of about 20% for a flat disk star viewed
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edge on ( a=b=1 and c¢=0 with 4s=90° and $s=0°), when
zero projected stellar area will be observed ( no direct
light ), and only the scattered flux is seen. The value
of maximum polarization is the same for any optical
depth 1T, because the p and Fscn dependence on <
disappear, so0 Fnorm>Fscn (Figs. 2-3 (a and b) and 2-4 (a

and b)).

In general the polarization increases with
inclination is and with optical depth tv (Figs. 2-3 a and
b). Note that for Maclaurin spheroids the c-axis of the
star will shrink while a=b=1, which means the sizes of a
and b-axes increase compared to c¢c-axis. In the case of
Jacobi ellipsoids, c~axis will expand as a=b=1, so the
sizes of a and b-axes will decrease compared to c-axis.
Moreover, for a distortion oér (as a fraction of the
spherical radius of the star), the star will give more
polarization if ér is subtracted from (e.g.) the c-axis,
the star shrinking toward a Maclaurin spheroid, than if
r is added to (e.g.) the c-axis, distorting the star
toward a Jacobi ellipsoid, since the former will have
more surface area than the latter. This explains why the
maximum polarization from Jacobi ellipsoids is much less
than that from Maclaurin spheroids, and why in general
Maclaurin spheroid light sources (¢ ranging from 1 to 0,
with a=b=1, or a/¢=b/c¢ from 1 to ®) have larger

polarization increases as 4s increases than that for
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Jacobi ellipsoid sources (¢ ranging from 1 to 100, or

a/c=b/c from 1 to 0.01).

For the normalized scattered flux Fsen variation
with ¢ (Figs. 2-4 a and b), the strength also increases
as for the Maclaurin spheroids above, but is reduced for
Jacobi ellipsoids, because Fsen is the ratio of Fsc to
Fnorm, both of them approaching zero as c¢ approaches

infinity, so the ratio Fscn will go to unity.

82.4.2 NON-SPHERICAL LIGHT SOURCE :

A question now arises as to which values describing
the geometries above are realistic in terms of real
physical situations. An example of an oblate Maclaurin
spheroid source 1is a single fast rotating star. For
X-ray binaries the Roche lobe can be approximated to a
prolate Jacobi ellipsoid. A study of these two

configurations is as follows:

§2.4.2.1 SINGLE STAR :

Rotating stars can undergo considerable distortion.
For the most rapidly rotating models of main-sequence
stars, the expected distortion (fractional reduction in
polar radius) is about 0.01 for stars of about 60 Mo ,

and by about 0.15 for stars of 0.6 MO (Solar masses, see
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Fig. 2-3. The percentage normalized polarization p
for Maclaurin spheroids ( oblate shapes, ¢ from zero to
1), and Jacobi ellipsoids ( prolate shapes, ¢ from 1 to
100), at a=b=1 and ¢s=0" for different inclinations dis.

a. for ©=0.1. b. for ©=1.0 .
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Fig. 2-4. The normalized scattered flux Fscn for
Maclaurin spheroids ( oblate shapes, ¢ from zero to 1),
and Jacobi ellipsoids ( prolate shapes, ¢ from 1 to
100), at a=b=1 and ¢+=0° for different inclinations is.

a. for 1=0.1. b. for t=1.0 .
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Tassoul 1978 and Papaloizou & Whelan 1973). Ostriker and
Bodenheimer (1968) modelled rotating white dwarfs, and
showed that the ratio of equatorial to polar radius can
be up to 4.32, which would produce a polarization p of
about 2.6% for a spherical envelope with 1=0.1 (Fig.

2-3a).

As an example, for a star with a=b=1 and ¢=0.9 (for
t=0.1), the polarization p is expected to be about 0.1%
at 4ie=90° decreasing to zero at 4s=0° , and the
normalized scattered flux Fsecn is about 0.1 of the total

flux (see Figs. 2-3a and 2-4a).

The variations of the polarization p and the
scattered flux Fscn with rotation angle ¢s ( or with
time t) of this star are zero, due to there being no
changes in the projected area with rotation angle for

different inclinations.

82.4.2.2 BINARIES :

The shape of a star filling its Roche lobe can be
approximated by an ellipsoid ( Chandrasekhar 1963,
Gnedin et. al. 1976 and Bochkarev et. al. 1979). From
the _Chandrasekhar (1963) analysis we found that
ellipsoidal figures of equilibrium are expected when the

major axis becomes about double the size (up to seven
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times) of the two minor axes for any binary mass ratio,
where before the double sized or after the seven times
size, the Roche lobe will be a conical shape(see Tassoul
1978) . Furthermore X-ray binaries such as Cygnus X-1 and

Centaurus X-3 have only a single optical component.

As an example of such binaries, for a binary with
b=2 ( as major axis) and a=c=1 ( as minor axes), we
expect the maximum polarization p of 0.45% (Figs. 2-5).
The variation of g and u with the stellar rotation is
{as expected) a circle for 4s=0°,but becomes more
elliptical for larger is's, and eventually 1linear at
i8=90° ( Figs. 2-5). The locus is described here twice
in one rotational period, due to the symmetry in the
shape variation. For the normalized scattered flux Fscn
. the value is constant at about 0.08 for 4s=0°. As is
increases, the 1level of Fscn grows and develops an
oscillation with orbital phase, achieving a peak value

of 0.15 at 4s=90° and ¢s=90° or ®s=270° .

82.4.3 NoN-RADIALLY OSCILLATING STARS :

A non-radially oscillating star can be approximated
as distorting through a time series of ellipsoidal
shapes as the star axes (a,b and ¢) vary from unity.
Such possible orthogonality in the oscillations was

mentioned by (e.g) Serkowski (1970) in relation to his
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observation of two RV Tau stars. These stars show a
change in the brightness of about 5 magnitudes, which
may be due to large oscillation in the shape and
projected area of the star. Such variations will affect
the scattered flux Fscn as well as the direct flux Fdir,
and result in an interesting variation in the
polarization, both in value and direction. Many variable
stars have this kind of oscillation ( e.g. Omicron Ceti,
W Vir and RR Lyrae). The distortion from sphericity may
be up to 90% ( i.e. c/a or b/a =0.1, see Sect. 4.1).
Many assumptions are involved in the calculation and the
observation of these values, but assumption of at least
20% distortion will be quite acceptable here in order to
discuss the polarimetric characteristics of such stars
for oscillations in one, two or three axes of the star (
This was recently proved for one axis by the observation

of Karovska et al. 1992 for Omicron Ceti, see Sec. 1.4).

The Total flux is (as defined above in Sec. 2.3) a
combination of the scattered flux and the direct flux
Fdir, but the latter will be unity for isotropic stars.
So we can define the added flux as the flux due to
anisotropy only (neglecting the isotropic part) and to
the scattering flux, or :

Fadd = Ftot/Fnorm - 1 (2-26)
which give an indication about the 1light variation in

some of the following Figures.
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§2.4.3.1 STELLAR OSCILLATION IN ONE AXIS ONLY:

Before presenting any results, we note that the
spherical harmonic £ values used in our polarimetric
modeling have no direct relation to the 4£=2 values of

the second harmonic oscillation theory.

Consider a non-rotating star oscillating in b with
time t in the form:
b=1+36cos(wt+ A (2-27)
where & is the fractional distortion amplitude from
spherical , o = 2n/llp where lp is the pulsation period,
and A the phase, but with constant a and c¢. So for a
distortion (full amplitude) of order 0.2 (i.e 6=0.1) in
the b-axis with a=c=1,and A=0 , the maximum absolute
polarization p will be about 0.1% and Fsecn about 0.9.
Fig. 2-6 shows p and Fscn variation for this kind of
pulsation with time (t/[llp), when the star at ¢s=0° or =«
(the star is non-rotating so ¢s remains fixed). There is
no inclination dependence here since the pulsations are
along the b-axis and a=c=1, so the projected area (for
$s=0° or m) will be the same for any 4s .The
polarization angle switches through 90° each time p
passes through zero, i.e. as the star goes from oblate

to prolate.

Evidently the form of the variations of the Stokes'
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Fig. 2-6. The plot of p and Fscn with the time as
t/Mp, for a non-rotating star, having an oscillation in
the b-axis once per pulsation period Ilp, with &=0.1 and

A=0. See text for discussion.
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parameters will depend in this case (when the
oscillation in b-axis only) on both the rotation period
lIr and the pulsation period [lp. There are dynamical
reasons to expect these two periods to be related

(Becker 1987). We shall deal with three cases

I - For INlp=IIr (here we have wt=¢s), and again with A=0
(0=0.1 with a=c=1, Figs. 2-7 (a,b, and c¢)plot the
changes in the qu-plane as the star rotates, and (d)
plot the stellar parameters variation with ¢s. Here the
loci are described once per rotation period, and are
double lobed due to the changing shape of the pulsation
during rotation. These lobes shrink in u with increasing

is . Fsecn shows small variations, and has values about

0.09.
ITI - For Illp=nllr, where n is an integer number ( e.g.
n=2, so wt=2¢s), as expected the loci will be described

twice per Ilp due to the symmetry(Figs. 2-8 a,b,c and d).
This combined effect of rotation and pulsation may
explain the multiple modes observed in some pulsating
stars (e.g. B Cep., Becker 1986). The pattern gets more
complicated and shrinks as 4is increases. The values of
Fscn are (as 1in case I) about 0.09, with small

variations.

IIT - And for Ilp=vllr, where v is a rational number
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pulsation period is half of the rotation period). a. for

is=0%, b. for 4s=30°, ¢. for is=60° and d. for is=85°.
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rather than an integer, one Ir will not show all the
variation occurring in p, d. u and Fscn, instead we get
'commensurable’ rotation/pulsation periods on which q
and u patterns repeat. For example for =% (i.e.
wt=¢s/2) , then interval 2llp will include a complete
cycle of changes. Figs. 2-9 (a,b,c and d) show the
qu-loci for 2lp, the pattern being more complicated than
the last two cases . Fscn is as in cases I and II. If v
is an irrational number, then qu-locus will not close
—-i.e. there will be no commensurability and the observed

(q,u) may appear 'chaotic'.

So for observational polarimetric data, lobes in the
qu-loci may be explained as stellar oscillations (if
there is not any local concentration of scatterers, see
Clarke and McGale 1986). If a period analysis method
(see e.g. Cuypers 1987) is applied to such polarimetric
data, two main periods are expected to occur. The
dominating one will be the rotation period, and the
other the pulsation one, due to the latter having less

effect on polarization than the former.

82.4.3.2 STELLAR OSCILLATION IN TWO AXES :

The above analysis is weasily (generalized to
pulsations along several axes, as Serkowski suggests for

U Mon (Serkowski 1970). If a star oscillates in one of
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its (e.g.) equatorial axes, the star will (mostly)

react by oscillating in the opposite direction (e.g.)
polar axis. Astrophysically the latter distortion is
expected to be smaller than the former, due to other
forces ( e.g. rotational . effects). In order to
demonstrate the effect on the polarization, consider two

cases (1) where the star is pulsating but not rotating

and (2) when it is also rotating.

(o]

(1) Using Eq. (2-26) for b with 6=0.1, A4=0 and
w=2n/llp, and for ¢ with 6=0.05, A=n/2 and w=4n/llp (i.e.
the c-axis undergoes two pulsations per Ilp), with a=1,
Figs. 2-10 plot p and Fscn versus time (t/llp), for
different 4is and for ¢§=00. Because pulsation in the
c—axis will be in the line of sight at Ls=00, its effect
will be very small, so results for is=0° (Fig. 2-10a)
will be almost the same as for a one axis pulsator (Fig.
2-6). Thus the maximum absolute p is about 0.1% and Fscn
about 0.09. But as 4is increase the effect of the
pulsation in the c-axis gets larger, and the wvariation
of p with time gets more complicated. The maximum p also
shows a small increase as 4is increases. This is clearly

due to the changes in the projected area. But the

variation in Fscn is very small, with a wvalue about

0.09.

(2) The effects of rotation for a star of the same
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dimensions are shown on the qu-plane in Figs. 2-11
(a,b,c and d). The loci are double lobed with one of the
lobes shrinking as 4s increases, because at 4is=0° the
pulsation in c-axis direction is on the line of sight
which will show no effects on the polarization. As is
increases, the pulsation in c-axis will produce
polarization in the opposite direction of that produced
by the b-axis pulsation, which will decrease the

polarization in some directions.

§2.4.3.3 STELLAR OSCILLATION IN THREE AXES °

Finally we consider the case of stellar pulsation in
three directions. For a-axis pulsation with 6=0.05,
A=n/2 and w=2n/llp, b-axis pulsation with 6=0.1, A=0 and
w=2n/llp and c-axis pulsation with &=0.08, A=n/2 and
w=4n/llp. Fig. (2-12) shows plots of p and Fscn against
t/llp for such a non-rotating star. Figs. (2-13 a,b,c and
d) show the qu-plane loci for a rotating star of the
above values, but with wt=2¢s for a and c-axis pulsation
and owt=¢s for b-axis pulsation , are shown in Fig. 2-12
a,b,c and 4. In general the Figures get more complicated
as the number of oscillating axes increases, and the
value of the maximum p increases as well, but by a small

factor. Evidently, as the number of parameters

describing the variations of the stellar motions

increases, so does the complexity of the behavior of p,
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0.15 ¢
0.1}

0.05

—-0.05

Fig. 2-10. Plot of p% and Fsen with time as t/Ilp for
a non-rotating star, having oscillations in two axes,
b-axis with 6=0.1, A=0 and w=2n/llp, and c-axis with

8=0.05, A=n/2 and w=4n/Mp, for is=0°, 45°, and 90°.
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2-11 a-d. The qu-loci for a rotating star with

2-10 ~ see text for the

. 0 , )
discussion. a. for i$=0°, b. for 4e=30, c¢. for 4is=60

and 4. for Ls=85°.
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0.05

—-0.05

Fig. 2-12. Plot of p% and Fscn with time as t/Ilp for
a non-rotating star, having oscillations in three axes,
a—axis with 6=0.05, A=n/2 and w=an/llp, b-axis with
6=0.1, A=0 and w=2n/llp, and c-axis with 6&=0.08, A=n/z

0

and w=4n/Mlp, for 4is=0°, 45° , and 90°.
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Fig. 2-13 a-d. qu-loci for a rotating star with the

same values Figs. 2-12 - see text for the discussions.

a. for is=0°, b. for is=30°, c. for is=60° and d. for

is=85°,
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d, u and Fsen.

In general, the shrinking of one of the double lobed
of the qu-loci, can be explained by pulsation in more
than one stellar axes. More  accurate data and more
complicated analyses are needed to ascertain whether two
or three axes are pulsating, and to calculate the
pulsating period for each axis. The rotation period

however is expected to dominate in period analysis.

SUMMARY :

Expressions have been developed to describe the flux
and polarization of radiation scattered by a spherically
symmetric envelope for a central point stellar 1light
source radiating anisotropically. These are obtained in
terms of spherical harmonics of the light source
anisotropy function. Such anisotropy c¢an arise from
stellar spots, or from distortion of the stellar shape
by rotation, pulsation, or magnetic effects. In the most
extreme case of a flat disk-like star, the net
polarization can be as high as 20% when the system is
viewed edge on, all of the observed light then being

scattered light.

Explicit expressions for the Stokes parameters are

obtained for the case of a uniform ellipsoidal stellar
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light source, and used to illustrate the dependence of
the results on the stellar shape. It 1is shown that
observationally important polarizations can arise in
this way by the scattering of 1light from stars with
realistic degrees of distortion, even on spherical
envelopes. The time dependence of the polarization is
computed for rotating and for pulsating ellipsoidal
stars. When both rotation and pulsation occur, complex

loci in the (gq,u) plane result.
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CHAPTER THREE

3. ELLIPSOIDAL Li1GHT SOURCE AND FLLIPSOIDAL

CIRCUMSTELLAR ENVELOPE:

CONTENTS :

3.1. Introduction
3.2. General expression for Scattered Flux and
Polarization
3.3. Ellipsoidal Light Source and Ellipsoidal
Circumstellar Envelope
3.4. Discussions and calculations
3.4.1. Binaries
3.4.2. Pulsating stars

Summary
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§3.1. INTRODUCTION :

Since the 1linear polarization from many stars is
mainly produced by scattering on circumstellar matter
(Kruszewski et. al. 1968, Serkowski 1970, Dyck et. al.
1971 and Shawl 1975), it is important to represent the

circumstellar matter as an arbitrarily shaped envelope.

In this chapter the generalized results of Chapter
Two are presented, by allowing both the point 1light
source and the particle density distribution functions
to be arbitrarily anisotropic, but we still consider
only the case of optically thin envelopes and Thomson or

Rayleigh scattering.

§3.2. (ENERAL EXPRESSION FOR SCATTERED FLUX AND

POLARIZATION:

As in Sec. 2-2, we will neglect the effects of
finite star depolarization (e.g Cassinelli et. al.
1987), and of scatterer occultation (e.g. Brown and Fox
1991), by assuming the star to be small compared to the

size of the envelope.

We define three cartesian coordinate systems
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centered on the star, as follows (see Fig. 3-1)

I - The observer reference frame (x,v,2z) with
spherical coordinates (r,6,¢), the line of sight being
the Oz-axis. As in Sec. 2-2, 6 is then the scattering
angle, and ¢ the polarization angle (direction) .
relative to Oz for any scattering point.

IT - The star's frame (X,Y,2Z) with spherical
coordinates (r,®8,®), where 0Z is a convenient stellar
axis (such as rotation) 1lying in the x~z plane of the
observer's frame. This system is rotated relative to the
former one through Euler angles (o,B,7).

ITI - The envelope frame (X',Y',Z') with spherical

coordinates (r,8',0').

In general the scatterer density is n(r,0',¢'), and
the flux of the radiation (assumed unpolarized) from the
star is F(r,9,9). Then following Eq. 2-1 ( also see
Simmons 1982), the (un—ﬁormalized) scattered flux and
Stokes parameters (Fsc,Q,U) of the scattered radiation

at the Earth (distance D) are given now in this form

Fsc 1 2
o [ e s
z* 2 k2 p?

(i + i)
x { 12 dr sin®@ do d¢
(i1_ iz) exp({-21i¢) (3-1)
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To the earth

Q
v

Fig. 3-1. The three coordinate systeﬁs, where O is
the anisotropic 1light source, O0Z'-axis is the axis of
rotational symmetry of the envelope, which has an
inclination ie from the observer direction z. The angle
¢e is the azimuth of the envelope in the observer frame,

and defines the envelope rotation (see the text).
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with the same definitions of Eq. (2-1).

Providing that F varies smoothly, it may Dbe
expressed in terms of spherical harmonics in the

observer frame (0,¢) (see Egs. (2-3 to 2-7), viz :

W n=4
F(r.0,¢) Z z F{ (r) Z M")(ct B.7) Y£ (6, 9) (3-2)
£=0 m=-£

Generally we can expand the density distribution
scatterers - in the observer frame, then it will be

n{r,0,¢)— in terms of spherical harmonics, hence :

n(r.9.¢) = Z Z Il{,m,(r) Y{,m,(el¢) (3—3)

Evidently, if the envelope is uniformly rotating,
this density could be also be expressed by using
rotation matrices, but for present, we leave Eq. (3-3)
in its general form. The Y‘tm(e,tb) in Egs. (3-4 and 3-5)

are as defined in Sec. 2-2 {(cf. Jackson 1975) .

Using the properties of the product of two spherical

harmonics , we can express the multipoles of n(r,0,¢)

and F{(r,6,¢) as :
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n(rlel¢) F(rlel(b)

]

§ n{,m,(r) F£m(r) X

ZL mm’
Yorn: (8:0) ¥, (6,9) (3-4)

or as
nir. 0.8 F(r,000 = ) &% (a,p,) )

'C m n ,C) m?

LM
C&&’nm’ YLM(9'¢) (3-5)
LM

where C{t'mm' are Clebsh-Gordon coefficients , arising

from the products of two spherical harmonics. Only terms
satisfying the following two conditions contribute to

the sum in Eq. (3-4) :

(1) n+mn' =M (3-6)
and,
(2) |2 - 2] s L s 2+ (3-7)

and are given by :

LM _ M J(2£+1)(2£'+1)(2L+1)‘ AR AN ANEAV A L) _
Ceer nm-=("1) 4 = [o 0 o) (n me 1) (378

(cf. Messiah 1962, where values of the Clebsh-Gordon
coefficients and the rotation matrices are tabulated .,

e.g. see Rose (1957), see also appendix C)

The scattering function factors can be expressed as

in Sec. 2-2 :

2 _ 4 IE (3-9a)
l+cos 0 =3 [ J;; Y ot 1% Y20(9,¢)]

and ,
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. 2 : lz n
6 -2 =
sin exp (-21i¢) 4 e

so that, on substitution in the integrals contained in

Y, (0,9) (3-9b)

Eq. (3-1), together with the other expressions above,
and using the properties of spherical harmonics, Fsc¢ and

x .
7 can be written as:

g E £
Fsc = R (arBrY) X
4 n D° nm z :

'ﬁmn &rm:

00 F 20
[4 n C'f,{’nm’+ 5 C'(}C’nm' :] Sl}e.’mm’ (3-10)

and

x _ 3 o £ 22
2" = 2 J__z X E an‘“'ﬁ'”§ Cetrnm Seormme (3711)
4n D 15
£ m n £ m

where,

Spermm: = I Fp (r) np, ,(r) r° dr (3-12)

where,

i
th(r) I I F(r,0,¢) Yzm(6,¢) dcosf9 do¢ (3-13a)

and,

n ] ' ) ' ) 1
ng, ,(r) =I I n(r,6,9¢) Yz,m,(6,¢) dcos® d¢  (3-13b)

Eqs. (3-13) describe the effects of each function (F and

n) in the appropriate - stellar or envelope frame - (cf.

Simmons 1982).

Eqs. (3-5) and (3-8) show that the scattered flux
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and the Stokes parameters can be expressed as sums of
increasing order of multipole contribution . This helps
to separate the effects of anisotropy in the flux F and

in the density distribution function n, and to study how

they can cooperate together to produce polarization.

If the functions are smooth the summations will
converge rapidly, so the first few terms k& & £ < 2)
will give a reasonable approximation. Due to the
conditions of Egs. (3-6) and (3-7) the summation over <4,
£, m, and m’ in Egqs. (3-10) and (3-11) will be limited.
For functions, describing the stellar flux and the
circumstellar density distribution of the scattering
particles symmetrically about stellar and envelope polar

axis, respectively, S££'mm =0 for odd values of £ and

?

L.

For a spherical envelope (n(r,6,¢)=n(r)) and
anisotropic light source, Eqs. (3-10 and 3-11) reduce to
Egs. (2-10 and 2-11) of Sec. 2-2. On the other hand, for
an isotropic point 1light source within an arbitrary
shaped envelope, these Eqs. (3-10 and 3-11) reduce to
the results of Brown and McLean 1977 and Simmons 1982.
It is obvious that for a spherical star and envelope,

the scattered flux will equal the optical depth (if we
neglect attenuation) and that the polarization will be

Zero.
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§3.3. ELLIPSOIDAL LiGHT Sourck anp ELLIPSOIDAL

CIRCUMSTELLAR ENVELOPE:

As an illustration of the ébove general formulation,
we will take the case ,discussed in Sec.2~-3, of a black
body star of uniform surface temperature, but now with
this star within an ellipsoidal circumstellar envelope.
For such star of isotropic surface intensity (I*),
F(r,8,%) can be expressed (as seen from a distant
point), in terms of the projected area Ap(8,9) of the

star as seen from direction (8,®). Hence:

I Ap(8,0)
F(r,6,0) «~ I, 80 = > (3-14a)
r

where I* is the 1isotropic intensity of the stellar
surface and AN is the s0lid angle subtended by the
scattering element. For this star the axes (a,b,c) will

be along (X,Y,Z) ( see Fig. 3-2), Ap is given by :

A}

Ap = =x (3-14b)

J(b c M2+ (a c u)z+(a b v)?

where (A,u,v) = ( cos® sin® , sind sin® , cos®) are the
(X,Y,2) direction cosines of the direction (8,9) (see
appendix B). So we obtain :

noo2n
I

Fo (r) = r—; I \[Ap(e,tp) Y} (6,8) do sine de (3-15)

Let us take the circumstellar envelope to be the
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same as that of Simmons 1982, i.e. an ellipsoidal shell

of arbitrary thickness and uniform density . The density

distribution, which has an axis of rotational symmetry
0z', has an inclination angle 4ie with the line of sight.

We shall consider only the case of rotation of 0%Z' about

the line of sight, but not any other direction, with an
azimuthal angle ¢e in the observer frame (see Fig. 3-2).

We then have (Simmons 1982)
nz,m,(r) = 2N (R1“R2) ﬂo £ Yc,m,({e,¢e) (3-16)

where we define

n(r,e. o) = (3-17a)

n_ when rz(u)S r < r1(u)
0 otherwise

Here n, is the wuniform number density of particles

within the column bounded by r, and r, where
R1,z
r1'2(“) = J — (3-17b)

1 + (A% -1) uz

and u = cos({) (3-17¢)

R1 and R2 are the outer and inner equatorial axis length
, and Ar is the ratio of the length of the equatorial
axis to the polar axis ( see Fig. 3-2). The angle T is
the angle between the radius vector and the axis of

symmetry, which is related to our frames by the addition

theorem of spherical harmonics (This explains the

appearance of Yﬂ,m,(&h¢e) in Eq. (3-16) - see Simmons

1982 and Jackson 1975. Finally Kz,is given by
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YA 7
To the earth

Fig. 3-2. The ellipsoidal envelope, with a thickness

. s to
(R1-R2), and Ar is the ratio of the equatorial axis

the polar axis.
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P(, (u)
Koo = I | ' — du (3-18)
= J 1+ (af -1) 2

Inserting Eqs. (3-15) to (3-18) in Eq. (3-12), we

obtain :
Sglomm:™ Ta N Too Ko, Y, (de,de) (3-19)
where,
N= 2r (R-R)) ng (3-20)
and,
T 2%
Lo, = i l Ap(©,9) Yzm(9,¢) d® sin® de (3-21)

Note that the multipoles of the flux f{,'m are now
functions of the star's shape and size only (i.e. of
a,b,and c¢). Moreover, the multipoles of the envelope Kp,
are also functions of the envelopes shape and size only
(i.e. of Ar). This combination of K,,and fp will have a
great effect on both the polarization and the scattered
flux, depending on whether the two functions enhance or

offset one another.

If we describe the orientation of the star relative
to the observer frame in terms of the Euler angles, then
we can choose « as zero, B as the inclination (4is) of
the OZ-axis ( the rotation axis of the star) to the line
of sight (0Oz-axis), and 7y as the azimuth of the 0Z-axis
from the Ox-axis measured about the Oz-axis, which we

denote as ¢s. Thus ¢s measures the rotational position

103




of the star relative to the observer ( see Fig. 3-2).

As in Chapter one, we will consider the
observational situation, then the normalized scattered
flux and Stokes parameters as they are usually used.
They are given by'[Fsc,Q,U]/Ftot ., where the total flux
received Ftot comprises the combination of the scattered
flux Fsc plus the direct flux from the star. We can
define Fadd as the flux normalized by Ftot which is
added to the direct flux due to the scattered flux and
the stellar shape variation (assuming that the direct
flux is unity). This direct flux component is given by
I* Ap(Ls,¢s)/D2, where Ap here is the projected area of
the star seen from the Earth for 6 = 4s and ¢ = ¢s . So
we can write the normalization factor Fnorm as :

Fnorm = (I*/DZ) [Ap(ts,«ps) + (DZII*) Fsc] (3-22)

Then the g¢general expressions for the normalized
scattered flux and Stokes parameters (Fscn and Zﬁ,

respectively) are

r -
Fsons —mmm8—— Rfé‘o,ﬁs,d)s) f'Cm E K»C’ Yz,m’(ie,¢e)
4% Fnorm YA T o
o0 ITC 20
X [ 4 VA C{*C'nm’-‘- 'g Cu,nm, ] (3_23)

and,
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3 T

7% b é .
n —_— 2 n R™ (0,is,¢s) £
47 Fnorm 15 nm £m
£ mnn

x é Re, Vg, (ie be) C22 (3-24)
) m}

where T is the average envelope optical depth, equal to

o (Ri-Rz) n,6 - see Simmons (1982).

As before, the degree of polarization p = |Zn]| =

|zn|, and the polarization direction is given by ¢p
%arg Zn.

From Egs. (3-23) and (3-24), we can calculate the
polarization and the scattered flux, using the
properties of the two factors Kz,and f&m . which are
describing the envelope and stellar anisotropy. Due to
the symmetry of the functions chosen to deséribe the
stellar flux and the scatterer density distribution n,
Kz,and f‘{,,m are non~zero only for even 4£° and £ ,

respectively.

The multipoles of the envelope Kﬁ, can be related to
the shape factor 7y of Brown and MclLean (1979), since
both are independent of the inclination (both stellar 4is
and envelope 4ie), and are purely dependent on the

relative density distribution of the scattering

particles.
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§3.4. DISCUSSIONS AND CALCULATIONS :

As mentioned above the multipoles of the flux f&m
are non-zero only for even £, the spherical harmonics of
£ with higher even values (i.e £ 2 4) are important only
for great stellar distortion from sphericity. As an
example Fig. (3-3 a and b) show the variation of f£0 for
a star distorted in its c-axis. When ¢ « 1 the values of
f&o for 4£>2 became important (Fig. 3-3a), but may be
neglected, due to their being much smaller than fzo for
the same values of c. On the opposite side, for c>2 most
of f£0 are considerably larger than the case for c<1.
The values of f£0 for 4£>2 when c¢>2 is still less than

£ For m>0 the wvalues of ftm are expected to be

20°
smaller than that for m=0, but me still be larger than
f{m for £>2. In this thesis, we will neglect the effects

of f& for £>2.
m

Simmons (1982) also calculated the K,, for
ellipsoidal envelopes, and his results are in agreement
with the above discussion for f&m' For £'=2, a maximum
value is expected for an isotropic point source star,
between Ar=4 and Ar=5 (see also Fig. 3-4). For Ar>5 the
assumptions of the above modelling fail, because the
scatterers in the polar direction are much nearer to the
star than that in the equatorial direction. In other

words, the optical depth in the polar direction becomes
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much larger than the optical depth in the equatorial

direction. In addition the assumption of a point star

(much smaller than the envelope) fails. For simplicity,

we neglect these effects in the following discussion.

So we can write Fscn, and Stokes' parameters for £=£:=2

and,

m = 2
o / : : -
2 [ 4 { 322 e gg 2-2 +
4 D " )
m =-2
m = 2 m = 2
22 1-1 00 22 00 00
E S + +
m CZZ 1-1 Sm C22 00
m =-2 m =-2
m = 2 m = 2
22 -11 00 22 -22 00
g S + 5 +
m 22 -11 m C22 -22
m =-2 m =-2
00 00 00 02 00 20
s C + n 5 C +
8] 00 00 g 0 o2 00
m = 2 m = 2
22 2-2 20 22 1-1 20
E + S +
Sm CZZ 2-2 }::: m CZZ 1-1
m =-2 m =-2
m = 2 m = 2
22 00 20 22 ~-11 20
E + S +
Sm 22 00 }::: . m c22 -11
m =-2 m o=-2
m = 2 m = 2
22 -22 20 20 00 20
+ S
}::: Sm CZZ -22 E::: m CZO 00}]
m o =-2 m =-2

(3-25a)

Stokes' parameters :
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0 02 02
m o= 2 m = 2
§ 22 20 22 ; : 22 11 22
R
m sz 20 + Sm 22 11
m o =-2 m =-~2
m = 2 . m = 2
E Szz 02 sz +§ : Szo 20 22 }
m 22 02 m 20 20
m =-2 m =-2
(3-25b)
where,
LL°> nm: _ .2
Sm = RoplxBy) S mm: (3-25c¢)

The multipoles f&m and Kt’ are the determining
factors. We showed in Sec. 2.4. (for spherical envelope)
the effect of the projected area Ap (within the shape
factor f&m) on the scattered flux and the polarization,
showing that the polarization increases as the stellar
inclination 4s increases. With an ellipsoidal envelope
the ratio of the length of the equatorial axis to the
polar axis of the ellipsoidal envelope Ar (within the
shape factor K£') affects p and Fscn, even for a
spherical star (as expected). For Ar approaching
infinity of 1=0.1 (the envelope will be a plane disk of
scattering particles) and a spherical star, the
polarization p and Fscn increase as 4e increases. The
polarization for each value of 4is has a maximum between
Ar=4 and Ar=5, where the model has failed for Ar>5 (see
the discussion of Simmons (1982) calculations above),

and p is zero at 4s=0° (see Fig. 3-4a). Even although,
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the scattered flux is small for this case (Fig. 3-4b).

For non-spherical stars the situation will be more

complicated.

The maximum polarization (as expected in Sec 2.3.)
then is produced by a disk shaped star with =zero
thickness at 4s=90°. Here p was about 20% (of the total
light) for spherical envelope, this value increasing as
Ar increases to about 35% for £e=0°, due to the envelope
becaming a disk (instead of global) of scatterers
perpendicular to the stellar disk, so the scattering
angle will be 90° which enhances the polarization. The
polarization p decreases for 4e>30° to about -11% at
ie=90° (due to the scattering angles being smaller, or
the scattering particles seen by the observer being
fewer than that at i&=0°, see Fig. 3-5). These values
are independent of T as the case for spherical envelopes
(see Sec. 2.4). This maximum polarization of about 35%
of the total flux is within what expected from some
previous models (e.g. Brown and McLean 1977) with a disk

envelope illuminated by a spherical star.

In general we can apply the expressions in (3-24)
and (3-25) to the same cases in Sec. (2.4), to such
objects as a single fast rotating oblate star , a Roche
lobe filling star, or a non-radially oscillating star.

The results thus give almost the same 1loci in the
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0.2

0.0

Fig. 3-3a. The values of f, for £=0 and 2as ¢
increases, where a=b=1. For 4=0 the values start (at
c~0) at about six and increase with ¢, 4£=2 the values

start close to 3, decrease to zero at c¢=1 and continue

with a negative sign.
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Fig. 3-3b. The values of f&o for different 4£>2 as c

increase, where a=b=1. Its clear all 4£>2 are important

when c¢>2, and £=4 may be considered when c<0.5.

111




i 1 | I W T A S | ! | J_ 1 1 111

1 10 100

Fig. 3-4a. The polarization in % as Ar increase from
1 to 100 for a spherical star (i.e. a=b=c=1). The degree

of p% is increased as the inclination of the envelope

increases.
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Fig. 3-4b. The normalized scattered flux Fscn vs. Ar.

There is not much increase in Fscn as {e increases.
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Fig. 3-5. The polarization in % from a disk 1like
star viewed edge on (is= 0°), within an extended
envelope as Ar increases from 1 to 100, for de= 0°,

ie=30°, 4ie=60°, and 4ie=90°.
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qu-plane as in Sec. 2.4. but with smaller or larger
values of q and u, as the two function of F and n offset
or enhance each other. So here we will concentrate
mainly on the effect of the envelope shape on the
polarization for a fixed stellar shape. To show this we
will choose two examples from Sec. 2.4., the binaries

and pulsating stars.

§3.4.1 BINARIES :

For binary stars, assuming the same values of b=2
and a=c=1 (again with the star small compared to the
envelope, with magnetic field neglected), a large
envelope may be expected to be fixed, and its axis of
symmetry to be parallel to the rotation axis of the
binary (i.e. 4ie=is). We find for Ar=3 an enhancement for
the maximum polarization, from about .45% (of the total
light) for a spherical envelope (see Fig. 2-5) to about
1.1% for our ellipsoidal envelope when seen at 4s=90°

(see Fig. 3-6), but reduced at 4s=0° to about .32% .

If a star has a strong enough oblique magnetic
field, then the envelope's axis of symmetry may be
parallel to the magnetic field instead of to the
rotation axis of the star (in this case the binary).
Figs. (3-7, 3-8, and 3-9) show this effect for three

envelope inclinations (or magnetic field inclinations)
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Fig. 3-6. The polarization in % from a binary of b=2
a=c=1, with a fixed envelope of Ar=3, and de=is. (a) ds=

0°, (b) is=30°, (c) 4is=60°, and (d) 4s=90°.
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. o . [¢] .
ie=0", 4e=45", and 4e=90°, respectively, for the same

binary above, at different stellar inclinations (is=0°,
30°, 60°, and 90°). 1In general the inclination of the
star affects the degree of polarization more than the
inclination of the envelope. On the other hand,since the
star illuminates more in the direction of its smaller
axes (here a and c-axes), and the envelope has more
scatterers in the direction of its longer axes, so we

expect higher ©polarization for bigger inclination

difference (4is—ie).

This model allows us to calculate the polarization
produced by a rotating envelope for any inclination de,
due (e.g.) to strong magnetic field. Of course such
envelopes will not show any change in the polarization
if they co-~rotate with the star with inélination
relation of de=is, because of the symmetry of the
envelope as seen by the observer. But polarization
changes can be shown for a co-rotating envelope, which
has its axis of symmetry perpendicular to the stellar
rotation axis, then the rotation will be about one of
its equatorial axes. These envelopes will have different
observable shapes as it is rotating. Any other relation

between 4ie and 4is will not result in a co-rotating

system.

For the same binary as above but with 4{e=is+n/2 and
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Fig. 3-7. The polarization in % from a binary of b=2

a=c=1, with a fixed envelope of Ar=3, and 4e= 0°, and

different stellar inclinations 4s= 0°, 30°, 60°, and

(o]

90 .
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Fig. 3-8. The polarization in % from a binary of b=2

a=c=1, with a fixed envelope of Ar=3, and 4ie= 45°, and

different stellar inclinations 4is= 0°, 30°, 60°, and

o

90".
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Fig. 3-9. The polarization in % from a binary of b=2

a=c=1, with a fixed envelope of Ar=3, and 4ie= 90°, and

different stellar inclinations 4is= 0°, 30°, 60°, and

(]

90 .
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¢ps=¢e ( the star and the envelope are co-rotating), the
polarization seen at 4s=90° shows no variation other
than that for fixed envelopes, because the distortion
from sphericity for the envelope is in the direction of
the line of sight, which will not affect the
polarization during stellar rotation. The maximum
polarization is the same for fixed and rotating
envelopes, but different qu-loci occur for 4s<90° (see
e.g. Fig. 3-10). Also the locus is described twice per

period.

Envelope rotation may also be slower than the star,
due (e.g.) to the distance between them and the weakness
of the coupling gravitational force. In this case the
patterns of the qu-loci become more complicated. But for
a binary rotating four times faster than the envelope,
with the same values of the last case, at 4s=90° the
qu-loci will be the same as for a co-rotating system
case, because when 4s=90° (i.e. 4e=0°) the envelope will
be seen by the observer to have the same symmetric shape
during its rotation (since for is=90°, u is zero, in the
following figures the results for is=85° are shown
instead). The locus for i6=90° is described eight times
per envelope rotation because of the symmetry. For
48¢90° the results are (as expected) more complicated

(see Figs. 3-11 a,b,c and d).
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83.4.2 PULSATING STARS:

If a star bhas non-radial oscillations, such
oscillations may not affect the size and shape of the
large envelope. In order to show the effects for an
ellipsoidal envelope, we will assume the envelope size
remains the same during stellar oscillation, and that
the star has three oscillating axes (i.e. a,b and c¢),

described by the equation (see Eq. 2-26) :

X =14+ 6 cos{(w t + A) (3-26)
where x is an axis (a,b or c¢), & is the fractional
distortion amplitude from spherical , ® = 2n/llp where Ip

is the pulsation period, and A the phase. So as in Sec.
2.4.3.3, we assume the pulsation to be as follows : for
a-axis pulsation &=0.05, A=n/2 and ot=2nt/Illp; b-axis
pulsation 6=0.1, A=0 and wt=2xnt/llp; and c-axis pulsation
with 6=0.08, A=n/2 and wt=4nt/llp. For a rotating star
with pulsation period equal to the rotation period, and
having a co-rotating envelope, Figs (3-12 a,b,c and d)
show qu-loci for different 4s's at 4{e=is+n/2. As may be
expected, at 4is=90° there are no changes in the qu-plane
loci from those for a spherical envelope, but a great
enhancement for the polarization occurs for 4s<90°,

approaching five times that for is=90° for smaller is.

The envelope may, however, expand and contract as

the star oscillates because {e.g.) the star is emitting
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Fig. 3-10. The polarization in % from a binary of
b=2 with a=c=1, with a co-rotating envelope of Ar=3, and
ie= 4is+90°, and different stellar inclinations (a) ds=

]

0°, (b) 4s=30°, (c) is=60°, and (d) 4s=90°.
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Fig. 3-11. The polarization in % from a binary of
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star rotates four times faster than the envelope),
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and different stellar inclinations
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Fig. 3-12. The polarization in % from a star
pulsating in its three axes (see the text), with a
co-rotating envelope of Ar=3, and 4ie= 4s+90°, and
different stellar inclinations (a) 4s= 0°, (b) 4s=30°,

(c) is=60°, and (d) 4s=85°.
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Fig. 3-13. The polarization in % from a star
pulsating in its three axes, within an envelope which is
expanding and contracting (see the text), and ie=

o

is+90°, and different stellar inclinations (a) 4is= 0°,

(b) 4is=30°, (c) is=60°, and (d) is=85°.
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some material or through magnetic or radiation pressure
effects. The fractional distortion amplitude & from
spherical would have to be large enough to show its
effects on the polarization. We use Eq. (3-26) for Ar
i.e. Ar=3+2cos(2nt/llp) for a star with the same value
used for Figs. 12. A very small enhancement in the
polarization is occurring for large 4is with changes in
the qu~loci (see Figs. 3-13 a,b,c and d). At 4e=is the
results are expected to be similar to those for the

binaries discussed above.

The normalized scattered flux Fscn, in general is
less than 0.1 of the total flux, in all the cases
discussed so far. Where Fadd has a variation due to
stellar rotation in most cases of about 0.05 of the
total flux. In dgeneral, it will be difficult to tell
directly from the polarimetric observation whether or
not the envelope is spherical, however, more photometric
(and if possible photographic) data about the scattering
region will be needed, before applying this model to the

data.

SUMMARY :

The results of Chapter two, for circumstellar
polarization of scattered anisotropic starlight are

generalized to include an arbitrary (rather than
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spherical) envelope shape. Spherical harmonics are used
to'describe both the 1light source anisotropy and the
density distribution functions. The maximum polarization
from the extreme case of a flat disk-like star, viewed
edge on, is increased from 20% (for spherical envelopes)
to 35% for such stars within a disk-like envelope viewed
face on, when all the observed 1light will be the

scattered light.

Specific expressions for the Stokes parameters and
scattered flux are obtained for the case of a uniform
ellipsoidal stellar 1light source surrounded by an
ellipsoidal envelope at a large distance from the
source. These expressions are approximated to illustrate
the dependence of the polarization on the shape of the
star and the envelope. It is shown that observationally
important polarization <can arise in this way by
scattering of light from stars with realistic degrees of
distortion, both for non-spherical envelopes with a
spherical star and vice versa. The polarization is
computed for a rotating and a pulsating star with a
fixed envelope. More complex loci in the qu-plane occur

when both the star and the envelope are rotating.
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CHAPTER Four

4. Spors

CONTENTS :

4.1. The size of the spots

4.2. The general formulation

4.3. The projected area of a spot
4.4. Discussion

Summary
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54.1. THE SIZE OF THE SPOTS :

Starspot models are commonly used to describe the
light variation of giants ,supergiants, and late-type
dwarf stars (Bopp and Evans 1973, Vogt 1980, Fekel 1983
and Bopp 1987). These spots affect the isotropy of the
light source, and so can produce polarization, the
properties of which depends on the temperature, size and

location of the spot.

Bright photospheric spots (where Tspot > Tstar, e.g.
granules or supergranules) can have temperatures above
the stellar photosphere by up to 1000 K (Doherty 1986),
and sizes as 1large as 10% of the stellarA surface
(Schwarzschild 1975). They can occur anywhere on the
star and tend to be 1long-lived in the case of the
giants. Dark photospheric spots (where Tspot < Tstar,
i.e. black spots) can be cooler than the star by up to
2000 K (Vogt 1981), with size up to 15% of the stellar

surface, and occur within 60° north and south of the

stellar equator (Bopp and Evans 1973).

Wilson et al. (1991) reported changes on the surface
of o Ori. with the confirmation of hotspots. For three

observing sessions (Feb. 1989; Jan. 1991; and Sep.
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1991), Wilson et al. found in the first session a single
hotspot, contributing 10% of the total flux. By the
second session the star shows two spots, each
approximately as bright as the original hotspot. In the
last session, they again see a single hotspot, but this
time it was considerably brighter (20% of the total

flux).

Virtually any 1light curve can be generated by a
suitably complex distribution of spots on a rotating
star (Vogt 1981). So far, their polarization effects
have not been studied in detail. In photometric studies
it is common to consider projected spot area rotation
only in terms of the c¢osine variation in the spot
position angle. In this approximation the spot
disappears totally when its center arrives at the 1limb -
such as in the formulation of Bopp and Evans (1973) and
the calculation of Vogt (1981). This assumption of a
uniform hot spot with a cosine factor to describe the
spot area was also used for polarimetric modelling of a
hot spot presented by Gnedin et. al.(1976), Schwarz and
Clarke (1984) and Doherty (1986). The approximation is
acceptable for small spots (e.g. of angular extent
w<5°), but for larger spots we expect the projected spot
area at the 1limb to have a more complicated position
angle dependence as the spot crosses the limb, and also

to vary with non-uniform temperature distribution within
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the spot. This will affect both the light variation and

the polarization.

Basically, the stellar polarization due to spots, is
caused by scattering of light in a small solid angle
(not by 1light scattering by all scatterers, as
expected). To clarify this, we will take the case of a
spherical envelope around a star with its rotation axis
perpendicular to the line of sight, the star having an
equatorial spot of angular size y (at the star center).
When the spot is centered on the line of sight, there
will be no contribution to polarization, because of
polarization cancellation. But when the spot is on the
limb of the star, the observer will see half of the
spot, and because the spot is the source of anisotropy
{on an otherwise spherical star), we expect the
polarization will be due only to the light of the spot
scattering by the scatterers of the envelope. However,
only the scatterers on altitude 6alt between 90°+yp and
~(90°+w) - measured from the stellar equator - will be
illuminated by the spot (see Fig. 4-1). But the
polarization produced by the 1light scattered within
90°<0a1t<-90° (i.e scattering in a hemisphere so large,
with a small star) will be reduced to zero due to the
cancellations. But the polarization produced by
scattering in the solid angle within 90°<6a1t<90°+y

above and below the -equator, will have different
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position angles resulting in incomplete polarization
cancellations. Thus this solid angle of scatterers will

produce an observable polarization, whose degree clearly

depends on the size of the spot.

In this Chapter we will calculate the polarization
from a point source star with spots, by using the result
of the last two Chapters (two and three), which modelled
the effects of source anisotropy and of the scatterer

density distribution.

84 .2. THE GENERAL FORMULATION :

First we define four coordinate systems centered on
the star as in Sec. 3-2, see Fig. 4-2:
I- The observer's frame (x,y,z) with spherical
coordinates (r,0,¢), the line of sight being the Oz-axis
II- The star's frame (X,Y,.2) with spherical
coordinates (r,€,9), where 0OZ is a convenient stellar
axis (such as rotation) lying in the x-z plane of the
observer's frame with an inclination of 4is. This system
is rotated by the azimuth angle ®s in the stellar frame.
As in Sec. 2.2, 6 is then the scattering angle, and ¢
the polarization angle (direction) , relative to Oz for
any scattering point.
IIT- The spot's frame (xs,ys,zs) with spherical

coordinates (r,0s,¢s), where the spot is on Ozs-axis.
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This system is rotated relative to the observer one
through Euler angles («,B,y) (cf. Sec. 2.2 and Messiah
1961).

IV- The envelope frame (X',Y',2') with spherical
coordinates (r,®',0'). This frame can be rotated from

the observer frame by another set of Euler angles.

The center of any spot of angular radius Y is at
(8sp,Psp) in the stellar frame and (Bsp,dsp) in the
observer frame. By keeping the assumption of a small
point 1light source (compared to the size of the
envelope), the scattered flux will depend on the
projected area and brightness of both the star and the
spots seen from the scatterers. We assume the spot to be
circular in spherical stars as in most of the previous
work (see e.g. Schwarz and Clarke 1984). The projected
area of such a circular spot varies as the star rotates
(depending on the angle 6Osp between the normal to the
spot area and the line of sight) first as an ellipse by
projection then to more complicated shapes as the spot

crosses the limb of the star.

Using Eq. (2-1) of Sec. 2-2 for the general case of
on anisotropic point 1light source F'(r,6,9) and
arbitrary distribution particles density function

n(r,6,¢), we can write the (un—-normalized) scattered

flux and Stokes parameters (Fsc,Q,U) of the scattered
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This part will not illuminated by the spot The polarization cancellation occurs here

The star

The spot

-

The source of the polarization

*K\\WQD

Fig. 4-1. A spot of size p at the stellar 1limb is
illuminating only the scatterers in a solid angle of
Q=p, within an altitude ¢alt between 90°20a1t<90°+y

above and below the stellar equator.
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‘To the earth

\4

Fig. 4-2. The four coordinate systems, where
Ozs-axis is the normal to the spot's area, OZ-axis 1is
the rotation axis of the star, OZ'—-axis 1is the

rotational symmetric axis of the envelope, and Oz-axis

is the observer direction.
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radiation at the Earth (distance D) as

Fse 1
7* }= 2 k2% p? J” n(r,0,¢) F'(r,0,4) r

(i1+ iz)
. ) ) dr sin6 d6 d¢ (4-1)
(11— 12) exp (-21i¢)

with the same definitions as for Eq. (2-1).

For a star with spots F'(r,0,¢) describes the flux
of both the star and the spot, and can be given in the

form :

I
F'(r,0,¢) = —g + F(r,0,o) (4-2)
r

The function F(r,0,¢) in Eq. (4-2) describes the
radiative properties of the spot (compared to the star)
in the observer's frame, but we should naturally
describe F in the spot coordinate system (r,8s,¢s).
Providing that F is a smooth function, we may express it
in terms of spherical harmonics, viz :

® m=4

F(r,6s,¢s) = }; E: F&m(r) th(98,¢s) (4-3)
£=0 m=-'C ’

Using the rotation matrices described by Messiah
(1962) to convert from the spot's frame (Os,¢s) to the

observer's frame (0,¢)), we obtain the flux as a

function of 6 and ¢ :
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n=4{

F(r,0,¢) Z Z Fo, (r) Z RO (w80 v, (0,00 (a-a)

£=0 m=-4 n=-4£
For the particle density distribution n, we can in
general express n in the observer frame as

s} m'=£’

n(r,0,¢) = E: }: ne, ,(r) Yo, ,(6,0) (4-5)
L0 mr=-4

The th(9,¢) in Egs. (4-4 and 4-5) are the spherical
harmonics (see Sec. 2-2 and Sec. 3-2, see also Appendix

D).

We can express the scattering function factors as

SRR iy = _
1+cos”6 = [ an Y00+ 5 Y20(9,¢)] (4-6)
and ,

.2 sy oA 12T X _
sin“0 exp(-2i¢) = 4 J 15 Yzz(6,¢) (4-7)

By substituting the above expressions in the
integrals contained in Eq. (4-1), and wusing the

. bt
properties of spherical harmonics, Fsc and Z° can be

written as:

Fsc = ———(’-——-—2-{47IN +r20 E 'C(O(BY) E

4 D YAy
00 b4 20
X [ 4 n C&C'nm'-'- J—;C{&’nm’ ] Su’mm'} (4-8)

and
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7 * 3 o '2 n. N .
an p° 15 a2z
£ 22
}:::an(a,ﬁ,Y)E Colrnm SLLrmm } (4-9)

'C m n {’ m°’
h LM )
where C,,, ~, are Clebsh-Gordon coefficients |, arising
from the products of two spherical harmonics , with the

properties given in Sec. 3-2 (c¢f. Messiah 1962) .

S{{.mm,= I Fem(r) n&,m,(r) r? ar (4-10)
where,
n X
F£m(r) = -II F(r,6s, ¢s) Y‘Cm(es,d)s) dcosBs dos (4-11)
‘ n 1] 1] * | 1] ’ 1]
nt,m,(r) TI i n(r,0,¢) Y&»m»(9'¢) dcosf d¢o (4-12)
and,
Ne, , = I I ng, ,(r) dr (4-13)

Egs. (4-11 to 4-13) describe the effects of each
function (F and n) in the appropriate spot and envelope

frame ( c¢f. Simmons 1982).

Now we can study the effects of anisotropy in both
the flux F and the density distribution function n
separately, showing how their interplay produces

polarization. Next we will define F for the case of

spots.
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§4.3. THE PROJECTED AREA OF A SPOT:

The above expressions are general for any flux
function and density distribution function and so can
describe the case of a star with a spot. We can define F

in the spot frame as:

I
F(r,Bs,¢s) = — ¢ sp(6s,ps) (4-14)

r

where T is a ratio of the extra brightness due to the
presence of the spot to the total stellar flux, which

can approximated safely by :

T: -
c = — (4~15)
noT

with Tsp the spot temperature and T* is the photosphere
temperature. WUsp(Os,Ps) is the spot's projected area as
seen in the direction (Os,¢s) of the scatterer. This
area depends on the angle 6s between the normal to the
spot surface and the scattering particle only (i.e.
independent of ¢s), this angle 6s is also a latitude of
a scattering particle. For simplicity we will express
NMsp for two cases (see Fig 4-3a&b), the first when the
whole spot is observable in the direction (8s,¢s) (i.e.

18s1< m/2-yp, where w is the spot angular reduce). Then

the projected area will be :

Asp1(Bs,p) = = ri sinzw cos 0Os (4-16a)

140



where rsp =r, sin p (4-16Db)

The second case is when the spot starts to disappear
at the stellar limb (n/2-yp <18sl< w/2+p) . To calculate
the projected area of the spot, we have to calculate
three areas, (1) the total projected area of the spot at
that position, (2) the area of the spot (cross hatched
in Figs. 4-3a&b) which is hidden behind the star 1?hid,
this area to be subtracted from the previous area, (3)
the area of the sector of the stellar limb which is seen
by the observer as a part of the disappearing spot
(shaded in Figs. 4-3a&b). This area Mimb clearly should
be added to the total area of the projected spot. First
we will calculate the projected area of the hidden

segment of the spot, which has an angle at the spot

center 6sg given by

Osg = cos” '(cot 6s cot W) (4-17a)
with 6sg in radians The projected area of the hidden
segment of the spot is:

ﬂhid=ri sinzw cos Os (B8sg — sin Osg cos 0Osg) (4-17b)

The contribution of the limb of the star is given by a

segment seen by the observer to have an angle at the

star center of Osgx given by:

= cos (2B Y 4-17c
Begx = cos Sin Os ) ( )
(again 6sgx in radian). Next we can calculate the
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To the observer

zZ

The star

Fig. 4-3a. The star as seen from OX~-direction, where
the observer in the 0Z-direction (for simplicity). We
see the spot cross section, as comprising three areas,
1) the part of the spot which will hide behind the star
(cross hatched), 2) the projection of the rest of the
spot's area (white), and 3) the segment of the limb of
the star which will observed by the observer as a part

from the spot with the same properties of the spot

(shaded) .
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/]/ \[\The hidden area of the spot
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e

\-— The star
The spot

AN

Fig. 4-3b. The spot face on with its three areas,

and the angle 0sg.
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segment of the stellar 1limb observed as part of the

disappearing spot as:

sin Bsgx

2
Mmb = (Bsgx -
* cos Bagx

(4-174)

So the projected area of the spot when it has started to
disappear until it is totally hidden (i.e. mwnr2-p <I8sl<

n/2+yP) will be:
Nep2(Os,y) = T ri sin?p cos 6s — Unid + Uimb (4-17e)

Thus the spot projected area will be

Usp1(Os,P) 0 <19sls ms2-p
NAsp(Os,P) = Usp2(Bs,P) n/2-p L16sl< w/2+y (4-18)
0 16slz m/2+y

Since there is no dependence of ¢s, the spherical
harmonics in Eqs. (4-11) will have m=0. So we can
rewrite Eq. (4-11) as

K/2-P  AK .
F&O(r) = T ( I I Nsp1(Os, V) Y£0(93,¢ts) +

I

_*

2

r
/2ty 2 .

T I Nep2(Os,P) Y£0(65,¢s)) sinfs dO6s do¢s
w/2—Y

(4-19)

Here we will again use the ellipsoidal circumstellar
envelope model of Simmons 1982 (see Sec. 3-3), with an
inclination angle e between the axis of symmetry
7'-axis of the envelope ( the polar axis) and the line

of sight, and an azimuthal angle ¢e (see Fig. 4-2). We

then have :

144



npg,. ,(r) =2n (R -R)) n Ky, Y,, ,(ie, de) (4-20)

where we define :

v n when r (s r <r (p)
_ 0 2
n(r,8,0) = { 0 otherwise ' (4-21a)

Here no is the number of particles within the column

bounded by r, and T, where :

R
1,2

— (4-21b)

rl'z(“) = J 2

1 + (A? -1) u

and U = cos(l) {(4-21c)

R1 and Rz are the outer and inner equatorial axis length
, and Ar is the ratio of the length of the equatorial
axis to the polar axis. The angle U is the angle between
the radius vector and the axis of symmetry, which is
related to our frames by the addition theorem of
spherical harmonics (this explains the appearance of

Yz,m,(ie,¢e) in Eg. (4-20), see Simmons 1982, Sec. 3-3,

and Jackson 1975). Finally Ka,is given by:

Pﬂ,(u)
K'C' = I J ‘ d;l (4-22)

1 + (A -1) p?

Inserting Eqgs. (4-19 to 4-22) in Eq. (4-10), we
obtain :
Seeromr = 2" Lk (R,7R,) ny £pq Kp, Yo, p» (derte) (4-23a)

where,
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n/2-yp  an
f£0 = ( I I Nsp1(Os, W) Yzo(esld’s) +

/24P 2n
j I Nsp2(6s,yp) Yzo(es,(bs)) sinBs d6s dos

n/2-
Y (4-23Db)

Now the factors f£0 are fuﬁctions of the spot's size
and position only (i.e. of ® and 6s). Moreover, the
factors K,, are (as in Sec. 3-3) functions of the
envelope shape and size only (i.e. of Ar). The
dependence of the polarization on these two factors is
affected by whether the two functions enhance or offset

one another.

From the properties of Euler angles, we can choose «
as ¢s, which measures the rotational position of the
star relative to the observer ( see Fig. 4-2), B as the
latitude of the spot 6sp in the observer frame (the
angle between the normal to the spot area and the line
of sight Oz-axis). This angle is given by :
cos Osp = cos 4is cos Osp+sin 4s sin 8sp cos ®s (4-24)
where 4is 1is the inclination of the star, @sp the
latitude of the spot in the stellar frame and ®s the
rotation angle of the star in the stellar frame (i.e. of

the spot, since we deal with spherical stars), and

finally we choose y = O.

To normalize the scattered flux and Stokes

parameters, we have to divide them by the total flux

146



received Ftot, which comprises the combination of the
scattered flux Fsc plus the direct flux from the star
and spot. This latter component is a combination of the
flux of the star and of the temperature difference due

to the spot ( Fdirx+Fdirsp) which is given by I*/Dz

(1
+ T Usp(Bsp,p)], where Usp here is the projected area of
the spot seen from the Earth for ©0s = 0sp, with the
dependence on ¢s through 6sp. The angular size of the
spot ¥ is independent of the frame. So we have to divide

by F which is given by I*/D2 Fnorm, and the latter

tot’

is the normalization factor :
Frorm = 1+ C Usp(is,¢s)+ (D°/I_ ) Fec (4-25)

Then the general expressions for the normalized
scattered flux and Stokes parameters (Fscn and Zﬁ,

respectively) are :

Feon = —0— { 4 KOYOO(Le,¢e)+EKz Y, (i, de) +
4% Fnorm
+ Rz (ds,06 0) £ K Y {({e,0¢)
no ' PerVEPy £o L “L'm? '
£ n £ m°
! 00 ¥/ 20
X [’/4 T C,{}C’nm’-{- flg Cu'nm’ ] } (4-26)

and
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% 3 T
Z —_— lZ k4 K. Y__(4ie,Be) +
47 Fnorm 15 2 2z
E (¢s Bsp,0) f£ E C&'nm' £ Y'C,m'(i,e,ibe)}
, m'

£
(4-27)

where T is the average envelope optical depth, equal to
(0 2=x (R1_R2) n ), see Simmons (1982). However, the
summation in Eqgs. (4-26) and (4-27) will be similar to

the summation in Eqs. (3-14a) and (3-14b), respectively.

The degree of polarization p = |[Zn| = |Zn|, and the

N =

polarization direction is given by ¢p = arg Z.

Due to the symmetry of feoand KC" they are non—zero
only for 4 and 4£° even. The convergence of Kp, is
discussed in Sec. 3-4 (see also Simmons 1982), which
shows that summation up to 4£'=2 only is an acceptable
approximation. In the case of fto all the harmonics of
£>2 for f&o are important for v45° (see Fig. 4-4). So
for a physical spot size (i.e ¥ = 30°) an approximation
to £=2 is acceptable. So for 4£=£'=2, Fscn, and Stokes'

parameters will be given as
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T
Fscn = ——0— /4TIKY ' +’£' .
4% Fnorm l: 0 oo(te,q’e) 3 KZ Yzo('terd)e) +
Y4 «w { g22 2-2 oo N
Y 22 2-2
2z 1-1 22 00 00
S
° © 1-1" SO sz oo T
2z -11 22 -22 .00
S
0 ¢ —11” So C,o _,ot
00 00 00 02 00 .20
N P T
2z 2-2 22 1-1 .20
So c 2_2+ So czz -
g22 00 c + g22 -11 20 N
° 0o 0 22 -11
22 -22 20 00 20
So C _22+ SD Czo 00}}
(4-28)
and
Z* = St IZ [} Kz Yzz(‘l‘ae,ee) " ng 02 czz .
47 Fnorm 15
22 20 22 22 11 .22
SO C22 20 0 C2z2 11
22 02 22 20 20 22
S0 C22 o2 0 €20 20 }
(4-29)
where,
£L nm: _ £ o
Sm=0 = Rn0(¢3,93P:0) flco Kc’ Y&'m’(te' e)
(4-30)
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84.4. DiscussSION:

In general the polarization increases as the spot (
e.g. hot spot) size (y) increases, reaching a maximum at
w=45°, the polarization variation with 9 is similar to
f20 variation with ¢ in Fig. 4-4. For larger spots f{o

of £>2 have to be considered (see Fig. 4-4).

In the following discussion we will consider spot
sizes up to ¥=30°, which allows the approximation of <4
and £° < 2. Next we will discuss the effect of the
temperature difference AT and the spot location 8sp on
the polarization, then calculate the qu-loci for fixed
envelopes (spherical and non-spherical with different
ie's), rotating envelopes (with different speeds), and
finally for time variable spots and for stars with more

than one spot.

The polarization from hot spots has the opposite
sign to that from cool spots. Also the polarization from
the former is larger for the same |AT|I because the
fractional change in brightness is greater. Fig. 4-5
shows the polarization variation with AT for light
scattering by a spherical envelope from a fixed star
with an equatorial spot of size ¥=15° located on the
1imb of star (i.e. 0ep=0° and ¢s=90°). To show some

. . I (o]
examples of polarization variations, we choose is=45
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214

Fig. 4-4. The values of f,, for different spherical

harmonics as the spot's size P increases.
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(the case of 4s=0° will be discussed later). The total
added flux Fadd, is here a combination of the scattered
flux and the direct flux of the spot due to the AT (Fadd
= Ftot-1 ) increasing up to about 25% of Ftot as as AT
increases,while the normalized scattered flux Fscn is

constant with a value of about 0.9% of Ftot.

For the same values as above, but with fixed AT of
-1000 K (cool spot), Fig. 4-6 shows the variation of
polarization p with 6sp, which takes its maximum value,
when the spot is at the equator, of -0.02%. The Fadd has
a variation like the variation of p with a maximum of
15.5% of Ftot, but Fscn is constant at about 0.9% of

Ftot.

Of course, when 4s=0° and $s=90°, the polarization
will have the same value as 9sp varies, the only changes
will occur in the polarization position angle. On the
another hand, when 4s=0° and ¢s=0° (the spot on the line
of sight) there will be no polarization at all, due to
polarization cancellations. Such polarization variation
is equivalent to that expected from a cloud of electrons
(or general cloud of scatterers) rotating about the
stellar equator, as in the results of Brown et al.

(1978) (see also Clarke & McGale 1986).

In the following we will study the qu~loci for
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Fig. 4-5. The polarization p%, Fscn, and Fadd as

function of AT ( the temperature different between the

star and the spot).
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Fig. 4-6. The polarization p%, Fscn, and Fadd as

function of ©sp ( the location of the spot on the star)
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different rotating stellar systems, concentrating on hot
spots for illustration ( Almost the same results will
arise for cool spots but with a negative sign). First,
to show the polarization expected due to the spot only,
we assume a fixed spherical envelope with a rotating
star having a spot of y=15° and AT=1000 K at &sp= 30°,
for various stellar inclinations 4is (see Fig. 4-7). The
polarizations are smaller than .04% and the qu-loci show

double loops.

A non-spherical envelope is expected to affect the
polarization value by enhancing or offsetting the effect
of the spot, depending on the shape of the projected
envelope as seen by the observer. Such envelopes can
have different axial inclinations 4ie from that of the
star 4is, due to (e.g.) the magnetic pole is different
that the stellar rotation pole. To show this effect we
will calculate qu-loci for different fixed envelopes of
Ar=3 and inclinations 4ie. For 4ie=0° results will be the
same as those for a spherical envelope, because the
observer will see a circular projection of this
envelope. For ie=45° the polarization value increases in
the g direction to about -.35%, keeping almost the same
pattern as in Fig. 4-7 (see Fig. 4-8). For ie=90° the
polarization increases to double that of the ie=45° case

for q only, affecting the qu-locus as shown in Fig. 4-9.
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Envelope rotation reduces the complicated qu-loci to
circles 1in the case of a co-rotating envelope of
ie=is+90° (see Fig. 4-10). Here the polarization 1is
constant and has a value of about 0.6% for 4s=0° and
ie=90° and a value of about 0.03% at 4s=90° and 4e=0°,
but the position angle changes as the star rotates. In
such stellar systems the envelope may rotate slower than
the star. This effect increases the polarization by a
small amount as shown in Fig. 4-11, for a system with
the above values of ®=15° and AT=1000 K at 8sp= 30° and

Ar=3 , but with the star rotating four times faster than

the envelope.

§4.4.1. NoNUNIFORM SPOTS:

The model also allows us to describe a dark spot
with umbra and penumbra (or a bright spot with inner
area hotter than the outer). To illustrate this we will
take the case of a nonuniform dark spot, which has two
areas. The inner area has size w=10o and AT =~500 K, the
outer area has a size y=15° and AT =-1500 K, and both
are at ©sp=30°. With scattering on a co-rotating
envelope of Ar=3 and ie=is+90° , resulting polarization
will increase as the stellar inclination increases,
producing a circular qu-loci with radius degree of
polarization 0.66% for dis= 0°, 0.5% for is=30°, 0.18%

for 4is=60°, and 0.02% for is=90° (Fig. 4-12). The

156



qu-loci produced by this nonuniform spot look similar to
those produced by a uniform spot because the nonuniform
spot should be much 1larger with higher AT (i.e

nonphysical spot, see Sec 4.1) to differ from a uniform

spot.

The model also allows us to describe spots with time
varying size, location, and AT (such as solar spots
have). In the <case of the sun the variation in
polarization will be small, because the spots are small
compared to the star. To show this effect we will assume
a star with a spot growing from w=5° to w=15°, rising
and falling between 8:p=0° and ©sp=30°, and getting
hotter and cooler from AT=500 K to AT=1500 K, with a
variation period of one fifth of the stellar rotation
period. None of the above variations will increase the
mean degree of polarization, but they affect the shape

of the qu-loci as seen in Fig. 4-13.

Finally, we can use this model to calculate the
polarization from more than one spot and for any shape
of spot by representing it by a sum of circles, and also
any variation of size; location; and AT. Fig. 4-14 plots
the qu-loci for a rotating envelope of Ar=3 and

ie=is+90°, with a star of five spots with the following

characteristics:
(o]

spot no. 1- has p=15°, @sp=30°, AT=1000 k, and ®sp=0".
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Fig.
fixed spherical envelope,
p=15° and AT=1000 K at ®sp=
is= 0°, (b)

inclinations 4s. (a)

(d) 4e=90°.
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Fig. 4-8. The qu-plane for a rotating star within an

ellipsoidal envelope of Ar=3 and 4e=45°. The star has a

spot of y=15° and AT=1000 K at 8sp= 30°, for wvarious

stellar inclinations 4s.

is=60°, and (d) 4s=90°.
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Fig. 4-9. The qu-plane for a rotating star within an
ellipsoidal envelope of Ar=3 and ie=90°. The star has a
spot of p=15° and AT=1000 K at ©sp= 30°, for various
stellar inclinations ds. (a) 4e= 0°, (D) is=30°, (c)

is=60°, and (d) 4s=90°.
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Fig. 4-10. The gqu-plane for a rotating star within a
co-rotating ellipsoidal envelope of Ar=3 and ie=is+90°,
the star having a spot of y=15° and AT=1000 K at Osp=

30°, for various stellar inclinations 4s 0°%,30°%,90°
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Fig. 4-11. The gqu-plane for a rotating star within a
slowly rotating envelope (completing a quarter rotation

for each stellar rotation) of Ar=3 and ie=is+90°. The

(o]

star has a spot of w=15° and AT=1000 K at ©sp= 30, for

(] o

various stellar inclinations is 0°2,30°,90
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Fig. 4-12. The qu-plane for a rotating star within
an envelope of Ar=3 and ie=is+90°, the star having a
dark spot with umbra and penumbra. The umbra has a size
of y=10° and AT =-500 K, while the penumbra has a size
of y=15° and AT =-1500 K, both being at ©sp=30°. For

various stellar inclinations 4is 0°,30°,60°, and 90°
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Fig. 4-13. The qu-plane for a rotating star within
an envelope of Ar=3 and ie=is+90°. The star has a spot
growing from w=5° to w=15°, rising and falling between
8sp=0° and @sp=30°, and getting hotter and cooler from
AT=500 K to AT=1500 K, with a variation period of one
fifth of the stellar rotation period. Various stellar

inclinations is 0°,30°,60°, and 90° are shown.
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Fig. 4-14. The qu-plane for a rotating star within
an envelope of Ar=3 and ie=is+90°. The star has five
spots as described in the text. Various stellar

inclinations is 0°,30°,60°, and 90° are shown.
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spot no. 2- has y=15°, @sp=10°, AT=-1200 k, and ®ep=90°.
spot no. 3- has oscillation between ¥=5° and y=15° ten
times per rotation period IIr (for a stellar rotation
period Ilr of one day, the oscillation velocity is about
20 km/sec. This is much slower than Alfvén velocity of
220 km/sec for stars of solar corona and magnetic field
of one gauss, Zirin 1988), ©sp=0°, AT=-800 k, and
Psp=90°.

spot no. 4-has oscillation between v=5° and p=10° every
2lr (so the oscillation velocity is about 2km/sec), and
@sp varies from 0° to 60° every 20r (the velocity of ©sp
variation is about 20 km/sec), AT=500 k, and ®ep=120°.
spot no. 5- has  varying between 0° and 5° every 1/3 Iir
(then the velocity is about 0.3 km/sec), and 8sp varying

° three times per IIr (with a velocity of

from 0° to 5
about 0.3 km/sec), AT=1000 k, and ®sp=—45°.

Although one might expect a resulting complicated
qu-locus, this is not the case because summation of all
these spots results in some cancellation and smoothing,

so that almost circular qu-loci result for small 4is, and

p decreases as 4s increase and qu-loci have some

complication.

Generally, spots needed to be large to show an
observable polarization, high resolution observations
should be used to detect nonuniform spots specially if

the spots are not bright enough. The main aspect of the
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qu-loci produced by a spot is the lobes (see Figs. 4-7
to 4-9) which occur for fixed envelope, and are reduced
for rotating envelopes (Figs. 4-10 to 4-13). For high
quality and long observations, such lobes are expected
for stars with spots, then this model can be used as a
source function indicator in the data inversion problem

(see e.g. Craig and Brown 1986).

SUMMARY :

Using our general model of an anisotropic point
light source surrounded by an arbitrary shape envelope
, we calculate the polarization due to photospheric
non-uniformity in the form of spots. Expressions are
derived for the variation in projected area of a spot as
it rotates with the star, including spot disappearance

over the stellar limb.

The results show that, for a physical spot of
angular extent up to 30°, a description up to the second
spherical harmonic is an acceptable approximation. In
general the polarization from this kind of anisotropy is

much smaller than the polarization from that due to

non-sphericity of stars.

Evidently, there is a relation between the

polarization produced by an anisotropic star due to a
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spot surrounded by isotropic envelope, and the

polarization of 1light from an isotropic star scattered

by a cloud.

This model enables calculation of the polarization
arising from multiple spots, hot and cool spots, cool
spots with umbra and penumbra, or for hot spots with
non-uniform temperature. Complicated spots which vary in
size, temperature, and location with time, and
generally, spots of any shape can be represented by a
sum of circles. Such complicated shapes can be mapped by
the spectroscopic technique as done for the spot of HR

1099 (Fig. 4-15, cf. Bopp 1987).

As expected the effect of hot spots on the Stokes'
parameters are found to have the opposite sign from
those of cool spots, so that a combination of hot and
cool spots could explain the zero polarization for some
spotted stars. The presence of many spots c¢an also
reduce the degree of the polarization by cancellation,

depending on the temperature of the spots, their size,

and location.
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Fig. 4-15. Doppler map of HR 1099 derived from the

Doppler Imaged absorption 1line profiles (from Bopp

1987) .
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CHAPTER F1vE

5. CoNcLusIONS AND FUTURE WORK

CONTENTS :

5.1. Conclusions
5.1.1. Application to ellipsoidal stars only
5.1.2. Application to ellipsoidal stars within an
ellipsoidal envelope
5.1.3. Application to stars with spots within an
ellipsoidal envelope
5.2 Future work
5.2.1. Applications

5.2.2. Development of the model
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85.1. CoNCLUSIONS:

In this work a model for anisotropic point 1light
source within an arbitrary shape envelope was presented,

by assuming either Thomson or Rayleigh scattering.

The mathematical analysis made full use of the
properties of the spherical harmonics, and can be easily
generalized to more complicated cases than those-

discussed here.

Using the first few spherical harmonics, used in
this model, an acceptable approximation is shown. The
results of the model indicated that the properties of
the polarization are independent of specific assumptions
for the source and form of anisotropy of the star or of
the origin and form of the envelope shape. That is, the
anisotropy of the star and envelope properties can be
reduced to the products of multipole contributions.
Consequently whether the anisotropy is specifically due
to an ellipsoidal star or to a star with spots is not
the intrinsically important factor. Because the first
few terms of the spherical harmonics for any function
(whether complicated or simple) will reduce to the same
product of multipole components, one will obtain similar

polarization properties. This can be particularly
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important for the envelope, since the multipoles of the
envelope Kt' depends only on 4, so a wider choice of
the particles' distribution function will be available,
where for the anisotropy of the star, of the multipoles
f&m' the dependance on both £ and m, limited the stellar

anisotropic functions choice.

A similarity between the polarization produced by an
anisotropic star surrounded by an isotropic envelope
only, and that of scattered light of an isotropic star
surrounded by arbitrary shape (anisotropic) envelope
only has been discovered. Chapter Two showed that there
is a similarity between the polarization from a
non-spherical star within a spherical envelope (present
work), and the polarization from an arbitrarily shaped
envelope illuminated by a spherical point source star
(Brown and McLean 1977). Chapter Four showed a
similarity between the polarization from a star with a
spot within a spherical envelope, and the polarization
from a spherical point source star with a localised

cloud of scatterers (Brown et al. 1978) .

The model was applied to three special cases :
1 - Ellipsoidal star within spherical envelope.
2 - Ellipsoidal star within ellipsoidal envelope.

3 - Star with spots within ellipsoidal envelope.
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§5.1.1. APPLICATION TO ELLIPSOIDAL STARS ONLY:

Application of the model to an ellipsoidal star (in
Sec. 2.3 and 2.4) showed that a maximum polarization of
20% with a total observed flux equal to the scattered
flux, can be expected for any optical depth t. This
extreme occurs for a disk like star with zero thickness
viewed edge on. The maximum of the polarization for a
needle shape star depends on T, but it is much smaller
than that of the disk shape, although the normalized
scattered flux is approaching unity. The calculations
for rotating non-spherical stars showed that qu-plane
loci are represented by elliptical patterns, which
agrees with observational results for RV Tauri Stars
(see Serkowski 1970). The multi-mode character of
non-radially oscillating stars, can be explained by an
oscillation in one or more of the star's axis with w#l.
The degrees of polarization expected by the anisotropic
radiation model are within the range of observational

results (see Sec. 1.3).

§5.1.2. APPLICATION TO ELLIPSOIDAL STARS WITHIN

ELLIPSOIDAL ENVELOPES:

The application of the general model to an

ellipsoidal star within an ellipsoidal envelope (Sec.
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3.3 and 3.4) showed that the maximum polarization can be
up to 35% of the total 1light, occurring for disk 1like
stars with zero thickness viewed edge on (i.e.
perpendicular to the line of sight) and surrounded by a
disk of particles perpendicular to the disk of the star,
so the direct 1light will be the 1light of the stellar
disk edge, where the scattered light is coming from the
surface of the stellar disk (see Fig. 5-1a). When the
disk like envelope became parallel to the disk like star
a reduction in the polarization to -11% of the total
light would occur, here both the direct light and the
scattered light is produced by the edge of the disk like
star, which will reduce the polarization. The negative
sign is due to the polarization being at 90° from that
of a perpendicular disk like envelope (see Fig. 5-1b).
The scattered flux in both cases approaches unity. These

values are independent of the optical depth T.

For any non-spherical star, the maximum polarization
would be expected when the largest axis of the star is
perpendicular to the equatorial plane of the envelope,
since the geometrically oblate star is prolate in
photometry (see e.g. for the extreme case Figs. 5-1, and
the theoretical polarimetric results in Sec. 3.4). In
general the polarization is dependent on the angle
between 4is and e, combined with the effect of the

projected areas of the star and of the envelope toward
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The disk like envelope

The scattered light
The surface of
- the stellar disk,

which radiates

most of the

radiation

/

The direct light =0 To the Earth

The edge of the

stellar disk, almost no radiation
is produced by such edges.

The polarization direction

Fig. 5-1 a. The extreme case of disk like star (of

zero thickness) viewed edge on and surrounded by a

perpendicular disk of particles.
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The surface of ihe stellar disk,

there is no direct light seen from it,
and no scattered light either.

The disk like envelope

The direct
light from the
edge of the disk

The scattered light,
Ve

which scattered from like star, is = 0.

the edge of the stellar
disk.

The polarization direction To the Earth

Fig. 5-1 b. The extreme case of disk like star (of

zero thickness) viewed edge on and surrounded by a

parallel disk of particles.
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the observer. The qu-plane loci are still ellipses for
fixed envelopes with a rotating star, Dbut are

complicated for a rotating envelope and rotating star.

The normalized scattered flux is not affected much
by assuming an ellipsoidal envelope instead of a
spherical one. This is expected since the scattered flux
depends more on the mechanism which produces the
scattering ( e.g. Mie scattering) rather than on the
detailed distribution function of the particles (see

Sec. 1.1.1).

§5.1.3. APPLICATION TO STARS WITH SPOTS WITHIN

AN ELLIPSOIDAL ENVELOPE:

In Egs. (4-18) the first expressions have been
derived to calculate the variation of the projected area
of a spot as a star rotates, and the shape of the spot
as it disappears at the 1limb. These expressions show
that a considerable area of the spot still has an effect
even when the center of the spot is on the limb (where
previous workers assumed that the spot is totally
hidden) . Using these expressions in our general
formulation for an anisotropic star within an
arbitrarily shaped envelope, developed in chapters TwO

and Three, we calculated the polarization produced by

spots.
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By assuming t=0.1, we find the polarization from a
spherical envelope and a star with one spot of size
p=15° is very small (0.03%) compared to the polarization
produced by a star having quite small distortions from
sphericity. That is because any phenomena on the stellar
surface has to be very big and bright, to show an
observable degree of polarization from the whole star,
while small distortions from sphericity (i.e. = 0.05)
are big enough to produce observable polarization

effects.

This spot model can also describe more than one
spot, of any shape, with umbra and penumbra, and with
the spot properties varying. Some of the these
possibilities are used above to calculate the
polarization. Relatively complicated qu-loci resulting
from such spot variations have been found. Though the
variations are small due to their effects being
integrated over the rotating envelope, they still

contribute to the observed polarization variations.

Some solar type stars are expected to have spots,
but they show no polarizatioﬁ. This c¢an be explained in
terms of our model by having two (or more) comparable
hot and cool spots with similar |ATI. It can also arise

for two hot or two cool spots with same 8sp and AT but
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having A®sp=n/2, since in these positions the spots

produce polarizations of opposite signs.

Of course, although this work goes quite far beyond
previous work, the model still has limitations, which

should be covered by future work.

85.2 FUTURE WORK :

This is science:- whenever you think that you have
answered a question, many other questions appear!. Our
model is no exception and suggests future work mainly in
two fields :

1 - Application to observational data.

2 - Development of the model.

§5.2.1. APPLICATIONS :

It is interesting to apply our model to pulsating
stars such as RV Tauri, B Cep., to binaries such as

Cygnus X-1, and to stars with spot such as « Ori.

An expression can be derived from Egs. (3-26), and
(3-27a&b) to determine the inclination of a stellar
system like those developed for binaries by Brown et al.
(1978), Rudy and Kemp (1978) and Simmons (1983). Also,

we think the model will be useful in fitting data from
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some X-ray binaries such as Cygnus X-1. But there will
be two difficulties: 1- In our model there are two
inclinations one for the rotation axis of the star, and
the second for the axis of the symmetry of the envelope.
2 - The effect of tidal deformation polarization, where
there is no straightforward method to remove it from the

observation (Dolan 1992).

The application of the star with spots can be used
to explain almost anything in the way of polarization
variation by proper choice of spots' 1life time, size,
temperature, and location on a rotating star, as is the
case in photometry (Vogt 1981), e.g. by choosing short
life time for a spot compared to the stellar rotation
period, a sudden polarization will occur, so a number of
such spots will show a very complicated qu-loci. The
effects of limb darkening and wavelength dependency can
be included to study their effects on stars such as «

Oori.

Galaxies also show a very high polarization (p . 10%
to 30% , Coleman and Shields 1990 and Draper et al.
1991) .Since the galaxies are very distorted 1light

sources, they would be good candidates for treatment as
disk 1like sources of light, especially as they produce

observed degrees of polarization within our model's

expectations.
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Although our model is a polarimetric model, it also
predicts the direct flux and the scattered flux, which

can be useful in photometric studies.

85.2.2. DEVELOPMENT OF THE MODEL

In the above section improvements to our model have

been suggested for observational data fitting.

As far as the model is concerned, it will be
important to calculate the effects of the finite size of
an anisotropic star, in another words, the
depolarization factor of our model (see Cassinelli et
al. 1987, and Brown et al. 1989). Also calculation of
the effects of scatterer occultation by finite stars

should be done (see Milgrom 1979, Brown and Fox 1989,

and Fox 1991).

The model as it is can be applied to multi
anisotropic 1light sources, non-spherical stars with

spots, and to more complicated envelope shapes, or all

the above together.

Moreover, there will be an interesting statistical
modelling, for the probability of having a polarization

degree and a position angle (or q and u), due to a spot
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of independent parameters of life time, size w, AT, and

location (8ep,¢s), for given stellar and envelope

inclinations.

Finally, it is interesting to have a model for the
most general case of the polarization from an arbitrary
scattering mechanism for the light of an anisotropic
light source scattered by an arbitrary shape envelope,
which will be a combination of the work of Simmons

(1982) and shawl (1975), and our model.
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AprpPENDIX A

THE ANALYSIS oF SERkowsk1’s DaTA oF U Mon

Serkowski made his observétions of U Mon in the UBV
spectral region, using the 24-inch rotatable telescope
of siding Spring Observatory (Sserkowski 1970).
Integrations of 20 sec. were made in yellow and blue; 40
sec. integrations were made in the wultraviolet, as
listed in Table A.l. The observations for which the mean
error of percentage polarization is larger than 0.08%
in the yellow or blue or larger than 20.15% in the

ultraviolet are denoted in Table A.1l by colons.

Most of the photometric observation of U Mon since
1873 until the observations by Preston et al.(1963)
indicated a mean period of light variations of 92.26
days. The minima reported by Serkowski (1970) deviate,
however, quite considerably from these elements, which
show that the period between the time of observation by

Preston et al. (1963) and Serkowski's observation was

91.3 days (Serkowski 1970).

In our analysis of Serkowski's data, first we
calculated the q and u values for the polarimetric data
of U Mon reported by Serkowski (see Table A.1l). Then we

referred them to their center by subtracting from each
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TaBLE A.1.

PoLARIMETRIC OBSERVATIONS OF U MoN.

Percentage Polarization

Position Angle

Jo Phase v B-V u-B

24... pY pB pY oV B Ay
U Monocerotis (HD 59693) 11T = 2262, pIl & 440

39822 oPos 5.97 0.90 0.66 2.38 2.57 2.58 692 422 39s
39834, .18 5.55 0.97 0.73 1.59 1.54 1.20 0.1 178.5 176.4 -
39878 .66 5.58 0.94 0.70 1.92 1.84 1.78 7.1 5.8 3.0
39880 .68 5.58 1.00 0.83 1.89 2.03 1.711 7.4 6.4 10.9
39884 .73 5.63 1.09 1.01 1.93 2.16 2.3 7.8 9.5 12.3
39886 .75 5,72 1.13 1.08 1.93 2.13 2.38 8.9 10.2 12.0
39890 .79 5.84 2.08 2.23 2.58 8.2 10.6 16.6
39906 .97 6.93 1.00 0.74 2.91 3.01: 3.03 3.3 3.3: 6.8
39909 .00 6.9: 0.90 0.70 3.04: 3.19: 2,.98: 5.1t 4.9: 2.4
39912 .03 6.63 0.88 0.71 2.83 2.90 3.26 7.1 7.9 7.7
39919 .11 . .. . 2.30 .. 9.8 ..
39925 .17 .. 1.80 .. 12.1 ..
39926 .18 1.83 1.85 10.8 12.2 ..
39934 .27 5.60 1.03 0.96 1.70 1.60 1.50 11.2 9.7 8.0
39939 .33 5.B4 1.05 0.97 1.78 1.75 1.25 9.2 5.5 8.8
39948 .42 1.73 1.54: 1.44 8.3 9.9: 1.0
39950 .45 6.14 1.15 0.92 1.52 1.55 1.47 9.4 6.9 3.5
39952 .47 6.14 1.12 0.87 1.49 1.44 1.30 10.4 8.3 10.0
39954 .49 6.19 1.06 0.82 1.56 1.46 1.21 11.6 9.6 4.7
39967 .63 1.55: 1.48 1.58 12.9; 13.3 8.2
39968 .64 5.61 0.86 0.60 1.60 1.47 1.38 14.7 14.2 11.6
39983 .80 5.75 1.24 1.31 1.82. 1.93 1.66 11.3 9.7 15.5
39997 .96 2.41: .. . 9.21 ..
40011 .11 6.11 0.90 3.10 2.81 14.9 14.1
40012 .12 5.95 0.95 0.57: 2.61 2.66 . 14.1 9.9
40014 .14 5.76 6.96 0.66 2.36 2.34 2.05: 13.9 13.0 12.5:
40016 .16 5.61: 1.02: 2.14 12.9 .
40110 .19 5.53 0.94 1.27 15.9
40115 .24 5.37 0.88 0.73: 1.27 1.06 0.62 13.2 16.4 23.3
40124 .34 5.64 1.02 0.88: 1.17 0.96 0.64 10.5 10.3 7.0
40137 .48 6.15 1.08 0.78:  0.99 0.82 0.56 9.8 12.1 31.6
40140 .51 6.15 1.01 0.71 1.11 0.94 0.51 12.9 16.4 36.2
40142 .53 6.14 0.95 0.56: 1.27 1.12 0.73 12.1 15.1 21.8
40150 .62 . . 1.24: 9.7:
40158 .7 . . 1.35 .. 15.0 ..
40163 .76 5.8: . 1.51 14.2 ..
40200 .16 5.87 1.04 0.81 1.76 1.81 1.96 11.8 13.9 19.4
40202 .18 5.76 1.10 0.87 1.66° 1.61 1.76 12.7 14.3 21.8
40209 .26 .. 1.55 1.42 14.0 15.3
40238 .58 .- .. 1.12 1.13 1.21 10,3 14.4 23.9
40264 .86 6.03 1.21 1.31 2.23 2.60 2.82 6.3 5.8 6.2
40268 .90 6.03 1.21 1.21 2.43 2.58 2.60 5.4 5.5 8.7
40277 .00 6.66 1.19 0,96 2.29: 2.29 2.27: 3.4: 5.1 £.6:
40280 .03 6.76 1.15 0.96 1.92: 2.03 2.15: 4.2: 5.6 8.2:
40283 .07 6.52 1.06 0.83 1.58 1.58 1.91: 6.1 9.7 5.8:
40300 .25 5.64 1.03 0.84 1.73 1.86 1.74 4.1 2.4 1.9
40303 .28 5.72 1.08 0.97 1.71 1.85 1.65: 2.8 2.5 3.1:
40330 .58 vee 1.22 1.23 24.3 24.2
40348 .77 5.87 1.11 . 2.02 178.9
40375 .07 5.9: . 1.484 . 13.9 ..
40390 0.23 5.7: .. . 1.36: 1.28 . 8.0: 4.9
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value their average). By neglecting the high error
observations we were left with 34 values in the U band,

45 values in the B band, and 33 values in the V band.

Applying Fourier analysis described by Cuypers
(1987) to q and u, with frequencies (v's) started from
as low as 0.002 per day (i.e. of (1/v) 500 days), with
an increment of 5.9x10°° per day, up to a frequency of
0.036 per day (i.e. down to about 28 days period), we
did not find any indication of period of about 92 days
in the u direction. This may be because the values of u
were small compared to g and so the relative noise was
high in this direction. In the q direction the results
were interesting - we found a different period for each
band. For the U band we obtained two comparable periods,
of 97.13 days, and of 93.04 (see Fig. A-1l). There was no
indication for the photometric periods (92.26 days or
91.3) occuring in the U band Fourier analysis. In the B
band there are again two comparable periods , of 96.92
days, and of 91.75 days (see Fig. A-2).The latter period
is between the two above photometric periods. We
obtained clearly one period of 92.23 days in the V band
(see Fig. A-3), which is almost the period of Preston et
al. (1963) -not of Serkowski as expected. This period
diference may be due to errors caused by the noise of

the data, or the fewer number of polarimetric data

compared to the photometric data.
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The changes of U Mon in polarimetry and photometry
with the phase of the light variation are shown in Fig.
1-6.A quick application of Fourier analysis to the
polarizations (p) data of U Mon without referring p to
their center, shows almost the same results as for g
above. This indicates that the polarization is affected
by the rotation so we can obtain the stellar rotation
period direct from the polarimetric data in the V band.
However, more analysis of Serkowski's data is needed to
find whether there is a pulsating period different from
the rotation period, especially if the pulsation are
strong in U or B bands. On the other hand, more
polarimetric and photometric observations are needed to
define the envelope shape and the pulsation size of RV
Tauri stars. Preston et al. (1963) show a difference in
phase shift between the 1light curves in VvV and in B-V
band, which may explain why we did not find the same

period in B and U regions.
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ApPENDIX B

Mathematical proof for the projected area

of an ellipsoid

The projection of an ellipsoid along any line of
sight, will have an elliptical cross section of true
area R, but the observer will see only the projection of
that cross section (denoted by Rp), which we want to
calculate. To simplify the problem we will define two
frames (see Fig. B-la&b). In 'real' frame one the

ellipsoid equation will be

2 yZ ZZ
+ ....-2- + = =1 (B~-1la)
b c

Transformation from frame one to frame two is defined

leN

x=ax' ,y=by' , 2 =¢cz' (B-1b)
so the ellipsoid in frame one will be a sphere in frame

two, given by :

x'2+ y'z+ z’2= 1 (B-1c)

In frame two, R' will be the cross section (and
since we deal here with sphere due to the
transformation, the line of sight will be normal to R',

and R' a circle of area n), i.e. the normal to area Rp

will make an angle E with the line of sight, so Rp given

by :
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Fig. B-1. a) Frame one which contains the ellipsoid and
where L is the direction of the line of the sight. M is
the normal to the cross section R. b) Frame two, which

is the transformation of frame one.
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Rp = R' sec € = n sec & (B-2)
The line of sight in frame two has direction cosines

such that, since the normal to R' is given :

Lx'+my' +nz' =0 _ (B-3a)

so the direction cosines will be :

(A1, H1,01) = {B-3b)

where £, m, and m are unit vectors in the directions Xx,
y. and 2z, respectively. The plane Rp which has the
normal :

Lx+my+nz=20 ; (B-4a)
and transforms to R; which has the normal :
Lax'+mby'+ncz' =20 (B-4b)

with corresponding direction cosines :

(€£a, mb, nc)

(A2, uz2,v2) = (B-5)
[52 a + n? b2 + n? c2]1/2

so the angle £ will given as :

cos £ = | (a1, p1,01) @ (rz,pz,v2) | (B-6a)

so that R; in frame two will be :

m2 2 1/2
—_— +
2

&2
R; =X [ (8% a® + m? b2 + n? [ -+
a b

%I°

(B-6b)

To transform this back to frame one, it is easier to
go via a plane in which the area transformation is
known, e.g. the z'=0 and 2z=0 planes, noting that normal

projected area of Rp onto z'=0 transforms into normal
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projected area of Rp onto z=0.

t L}
The projected area Rp onto Ox'y' (Rp(Z)) will be :
'(z)

Rp = Rp [ (Az2,p2,v2) o (0,0,1) 1] (B=17)
or
1 2 2 2 4172
Rp'?) =ncn [ £L,.n 0 ] (B-8a)
2 2 2
a b c

)

So we can obtain Rp(z easily as :

(z) '(z)
p

Rp = R x ab (B—-8b)

but Rp is given as
Rp = Rs*’ / [(£,m,n) © (0,0,1)] (B-9a)
So the projected area of an ellipsoidal seen from any

direction will be :

2 2 2 q1/2
Rp = abe [§—+m_+ﬂ—] (b-9b)
2 2 2
a b fo]
or
R = 7 I Ikb c £)%(a c m%(ab n)? (B-10)
where (£,m,n) = ( cos® sin® , sin® sin® , cos®) are the

direction cosines of the line of sight.
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AprpEnDIX C

NUMERICAL VALUES OF THE EXPRESSIONS USED IN THE MODEL

Here we will present values of the integral f&m for
ellipsoids of different wvalues of their a, b, and
c-axis, in four tables as :

1- For c-axis varying from 0 to 100, with a=b=1

2—- For c-axis varying from 0 to 1, with b=c and a=1l

3- For b-axis varying from 0 to 1, with a=c=1

4- For b-axis varying from 0 to 1, with a=b and c=1

and one table taken from Simmons (1982) for the values
of the integral Ke for different Ar (the ratio of

equatorial to polar axes).
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The c—axis variation of ft with a=b=1
m

TaBLE C.1.

c fOO f20 fzz
0.00 5.56651 3.11483 0.00000
0.01 5.57074 3.11056 0.00000
0.02 5.57843 3.10336 0.00000
0.03 5.58934 3.09349 0.00000
0.04 5.60321 3.08123 0.00000
0.05 5.61974 3.06691 0.00000
0.06 5.63873 3.05074 0.00000
0.07 5.65999 3.03292 0.00000
0.08 5.68335 3.01364 0.00000
0.09 5.70868 2.99304 0.00000
0.10 5.73584 2.97125 0.00000
0.11 5.76474 2.94837 0.00000
0.12 5.79527 2.92450 0.00000
0.13 5.82735 2.89973 0.00000
0.14 5.86090 2.87413 0.00000
0.15 5.89585 2.84776 0.00000
0.20 6.08946 2.70649 0.00000
0.30 6.55273 2.39234 0.00000
0.40 7.09139 2.05606 0.00000
0.50 7.68526 1.71069 0.00000
0.60 8.32117 1.36300 0.00000
0.70 8.99005 1.01659 0.00000
0.80 9.68531 0.67340 0.00000
0.90 10.40209 0.33439 0.00000
1.00 11.13666 0.00000 0.00000
2.00 19.03477 -3.11279 0.00000
3.00 27.37885 -5.95018 0.00000
4.00 35.88998 -8.64780 0.00000
5.00 44.48195 -11.26805 0.00000
6.00 53.11923 -13.84146 0.00000
7.00 61.78444 -16.38450 0.00000
8.00 70.46810 -18.90673 0.00000
9.00 79.16457 -21.41413 0.00000
10.0 87.87031 -23.91057 0.00000
20.0 175.14396 -48.60955 0.00000
30.0 262.54305 -73.14852 0.00000
40.0 349.97543 -97.64342 0.00000
50.0 437.42147 -122.11998 0.00000
60.0 524.87442 -146.58717 0.00000
70.0 612.33137 -171.04892 0.00000
80.0 699.79083 -195.50724 0.00000
90.0 787.25196 -219.96326 0.00000
100. 874.71428 —244.41765 0.00000
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TaBLE C.2.

The c-axis variation of f{;m with b=c¢ and a=1l

¢ fOO fZO f22
0.000 0.000 0.000 0.000
0.010 0.088 0.012 -0.015
0.020 0.175 0.024 -0.030
0.030 0.263 0.037 -0.045
0.040 0.350 0.049 -0.060

0.050 0.438 0.061 -0.074
0.060 0.526 0.073 -0.089
0.070 0.614 0.085 -0.104

0.080 0.702 0.096 ~-0.118
0.090 0.790 0.108 -0.132
0.100 0.879 0.120 -0.146

0.150 1.325 0.175 -0.215
0.200 1.779 0.225 -0.276
0.300 2.718 0.309 -0.378
0.400 3.708 0.364 -0.446
0.500 4.759 0.389 -0.477
0.600 5.877 0.381 -0.466
0.700 7.070 0.338 -0.414
0.800 8.341 0.261 -0.320
0.900 9.696 0.148 -0.182
1.000 11.137 0.000 0.000
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TasLE C.3.

The b-axis variation of ftm with a=c=1

b fOO fZO fZZ
0.000 5.567 ~1.555 -1.904
0.010 5.574 -1.555 -1.904
0.020 5.580 ~-1.553 -1.900
0.030 5.591 -1.547 -1.894
0.040 5.604 -1.541 -1.887
0.050 5.621 -1.534 -1.878

0.060 5.639 -1.526 -1.868
0.070 5.660 -1.517 -1.857

0.080 5.684 -1.507 -1.846
0.090 5.709 -1.497 -1.833
0.100 5.736 -1.486 -1.820
0.150 5.896 -1.424 -1.744

0.200 6.089 -1.353 -1.657
0.300 6.553 -1.196 -1.465
0.400 7.091 -1.028 -1.259
0.500 7.685 -0.855 -1.048

0.600 8.321 -0.681 -0.835
0.700 8.990 -0.508 -0.623
0.800 9.685 -0.337 -0.412
0.900 10.402 -0.167 -0.205

1.000 11.137 0.000 0.000
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TaBLE C.4.

The b-axis variation of f£m with a=b and c=1

b fOO fZO f22
0.000 0.000 0.000 0.000
0.010 0.088 ~-0.024 0.000
0.020 0.175 -0.049 0.000
0.030 0.263 ~0.073 0.000
0.040 0.350 -0.097 0.000
0.050 0.438 -0.122 0.000
0.060 0.526 ~-0.146 0.000
0.070 0.614 -0.169 0.000
0.080 0.702 -0.193 0.000
0.090 0.790 -0.216 0.000
0.100 0.879 -0.239 0.000
0.150 1.325 -0.350 0.000
0.200 1.779 -0.451 0.000
0.300 2.718 ~0.617 0.000
0.400 3.708 -0.729 0.000
0.500 4.759 -0.778 0.000
0.600 5.877 -0.762 0.000
0.700 7.070 -0.677 0.000
0.800 8.341 -0.522 0.000

0.900 9.696 ~0.296 0.000
1.000 11.137 0.000 0.000
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TaBLE C.5.

The integral K£ for different Ar (from Simmons 1982)

£ 2 4 6 8 10
Ar
1 0 0 0 0 0
2 0.054 0.0077 0.0016 0.0004 0.0001
3 0.069 0.015 0.0046 0.0016 0.0006
4 0.072 0.019 0.0069 0.003 0.0014
5 0.071 0.021 0.0086 0.0041 0.0021
6 0.069 0.022 0.0097 0.005 0.0027
7 0.067 0.022 0.07 0.0056 0.0032
8 0.064 0.022 0.011 0.006 0.0036
9 0.062 0.022 0.011 0.0064 0.0039
10 0.059 0.021 . 0.011 0.0066 0.0042
20 0.043 0.017 0.01 0.0067 0.0047
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ApPENDIX D

Spherical harmonics, rotation matrices,

and Clebsh-Gordon coefficients

D.1. The spherical harmonics we used thoughout this

thesis are generally given in this form (as in Sec.

2.2) :

an(9,¢) = a{f,n) Pz(cose) exp (in¢) (D-1a)
. _ (2£4+1) (£-n)! ‘

with o(f,n) = ] in (Zin) ! (D-1b)

and

n/2 a"

ax"

Pp(x) = (-1)" (1-x7) P o (x) (D-1c)

where the Pz(x) are Legendre polynomials. The explicit
expressions for the spherical harmonics used in this

thesis are (c¢f. Jackson 1975) :

Y (el¢) = (D—Za)
00 4 x
5 2 _
Y20(6.¢) = (3 cos® 6 - 1) (D-2b)
16 =«
and,
Y. (8,¢) = 15 sin? 6  exp(2i ¢) (D-2¢)
2z 2 n
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D,2_ The rotational matrices are given as (see Sec.

2.2) :

Zh) L)

an (¢,B,7) = exp(-in o) r (B) exp(-i m 7y) (D~3a)

£

and rnm)(B) are defined by the Wigner formula :

L) _ 1yt 4(£+n)! (i-n)! (L+m)! (ﬁ—m)!‘
Tom (B = Z (1) Fm—6) T (Tm=6) T €7 (t-n+m) ]

B)]Zfﬁn-m-zt

x [COS(% B)]Zt-n+m

[sin (3 (D-3b)

where t is an integer value for which the factorials
have meaning ,i.e. for which the arguments of the
factorials are positive or zero . The number of terms in

this sum is 1+ , where 1 is the smallest of the four

numbers £+n and 4£im ( cf. Messiah, 1961).

The element rfm(ﬂ) of the rotation matrices Rfm has

the following symmetry properties :

L=t -t (D-3c)
nm mn -Nn ~-m
Then the wvalues of rfm(B) which are used in the model
are :
2 =1 2 - -
rOO(B) = 2 ( 3 cos™ B -1 (D-4a)
2 2 _ .2 _ .2 - 3 .2
r (B =1x, (B) =x  (B) = r_ (B /—;— sin® B
(C—-4b)
2 2 _ 1 2 _
r, (B =r”, (B =g (cos” B+ 2 cos f+ 1) (D-4c)
and,
2 = r? =1 p - D-4d
ri B =xr, , (B ; (cos™ B - 2 cos B+ 1) ( )
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D.3. The Clebsh~Gordon coefficients sz, arise from
mm’
the products of two spherical harmonics (see Sec. 3.2),

and are given by (cf. Messiah 1962) :

4 =n 00 O

ey J(zc+1)(z£'+1)(zL+1f (& 2 L)(a oL
nm nm' M

-5

where,

ab ~-b~
(a 8 3) = (-1)37P77 lA(abc)

X J(a+a)! (a-a) ! (b+B)! (b-B)! (c+y)! (c—?);

X Z (-1)t [ t! (c~b+t+a) ! (c—a+t-B)!

x (a+b-c-t)! (a~t-a)! (b~t-B)! ] }

(D-6)
this expression called the Racah formula, which is

non-zero under the following two conditions :

(1) o«+B+7=0 ~ (D-7a)
and, ’

(2) l]a -b] scs<sa+b (D-7b)
and with,

A(abc) = (a+b-c)! (b+c-a)! (c+a-b)!
(a+b+c+l) !

(D-7¢)

The number t in Racah formula has the same
interpretation as in Appendix D.2, but with n the
smallest of the nine numbers atx, bxB8, ctxy, at+b-c,

b+c-a, and c+a-b ( ¢f. Messiah, 1961).

Special cases of the Racah formula occur when o=B=y=0.

It 1is then zero for odd (at+b+c), while for even
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(at+b+c)=2p, the Racah formula is given by

abec p!
(a 8 7) = (-1)° |A(abc) (D-8)

(p-a)! (p-b)! (p-c)!

Then we can show the Clebsh-Gordon coefficients,

that were used in the model for £&£’s2 and L=M=0; L=2

and M=0; and L=M=2 as :

.

TasLE D.1.

00
The values of Cﬁt’mm" empty boxes are zero

for cases not satisfying the conditions in (D-7 a and b)

..,,mf'b 2,2 1,1 o,0
2 ,-2 e

1 -1 | e =

o 0| Jax | fm | [m
-1, 1 o =

-2, 2 e
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TaBLE D.2.

20
The values of Ceermm,+ EMPLY boxes are zero

for cases not satisfying the conditions in (D-7 a and b)

L. L
o 2,002,121} 2,201,111, 20,2
- -1 121¢
2 .-2 an 7 5
_ —1 12rz| .1 4
1.1 0 arn 7 Is 41 45 0
1 1l 2 1
0.0} I'ix 0 an 7 V2| [a% {5 0 an
- 1 1211 4
1.1 0 4n7’{5 in {5 0
—1 12 [=
-2 , 2 Iﬁ.—i—v{s
and,
TaBLE D.3.

22
The values of C,,,6 = , empty boxes are zero

for cases not satisfying the conditions in (D~7 a and b)

,,,,,,f’bz,oz,1 2,211,111, 2]0,2
2, 0 %_ﬁ OI;_}rE'__g_—'

1,1 0 IZ%JZ—‘%-‘E}? 0
0 @ i o | =
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