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ABSTRACT
of

ADJUSTMENT METHODS FOR FLANIMBTRIC OBSERVATIONS 
AND COORDINATES IN SURVEY NETWORKS

Correction and adjustment of observed angles and sides 
in geodetic networks are necessary for the purpose of the 
correct location of coordinated points. Correction equations 
are usually in the form of linear overdetermined (observation) 
or underdetermined (condition) equations which are solved by 
the least squares theorem.

The introduction of the electro-magnetic methods of 
linear measurement requires the adjustment of sides as well as 
the adjustment of angles necessary in classical triangulation 
nets.

For the simultaneous adjustment of angles and sides 
two new sets of conditions have been introduced - (i) the area 
misfit condition, where the area obtained from distances and 
angles has to satisfy a special condition, and (ii) that the 
sum of the projections of the three sides of a triangle on the 
coordinate axes have to satisfy a zero condition.

A special study has been made into the adjustment of the 
braced geodetic quadrilateral, as being one of the most favourable 
figures from the adjustment point of view. The different 
apices of this quadrilateral have been investigated to allow a 
choice to be made as to which of them shall be introduced in 
an angle misfit condition during adjustment. This gives rise 
to the conclusion that all apices will introduce the same 
corrections for all practical purposes. Since observed angles 
and sides are different physical quantities, the question of 
relative weighting has been given special attention and 
recommendations have been made in the light of various 
theoretical and practical investigations.

/Tie Systematic relaxation method for adjusting survey nets 
has been theoretically derived by Professors Southwell and
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Black based on the minimum strain-energy conserved in an elastic 
frame-work at the position of equilibrium. Using this theory 
mechanical analogues have been designed and constructed for the 
first time to carry out the adjustment of the triangulation net 
directly from field observations, without the necessity of 
forming and solving a set of linear equations. An analogue for 
the adjustment of angles was found to be excessively complicated 
mechanically and difficult to use in practice. Through the use 
of a direction adjustment method these limitations have been 
overcome. The final model constructed achieved comparable 
results to those obtained numerically by a least squares 
solution. Suggestions for a more highly developed version are 
made and the situations favourable to mechanical analogue 
computations are discussed.

The use of an electrical analogue as suggested by Su 
using a D.C. circuit has been thoroughly investigated from both 
the theoretical and practical points of view, which showed that 
such a solution will be simple only for certain limited cases.
As an alternative the possibilities of the more general purpose 
electronic analogue computer have been investigated via the 
solution of correction equations. Various examples have been 
solved on this computer which proved to have several advantages 
over other computation methods.

Finally equivalent problems have been solved numerically 
on a digital computer for a comparison of the relative merits 
of analogue and digital methods for the particular case of 
adjustment of geodetic networks. The relative merits of these 
solutions are discussed in the light of different problems and 
circumstances•

Surv. Rev., (1966), vol. 18, Nos. 14-0, 142; (1967) vol. 19 
No. 146.
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INTRODUCTION

With the advent of electro-magnetic distance measuring 
equipment, such as the G-eodimeter and Tellurorneter, completely 
new observation methods have been made available to the surveyor 
who can now accurately observe both angles and sides, or sides 
only as well as the classical angular observations to fix a 
framework of precisely positioned points. This has had its effect 
on the traditional methods of computing and adjusting triangulation 
nets, which had to be heavily modified to cope with the new form 
of observation data. These radical alterations have been made in 
contributions by G-ale [38], Lilly [63], Murphy [71], and Bainsford 
[79]* In particular, these made possible the simultaneous 
adjustment of observed sides and angles, but the formulae and 
procedures devised for this purpose were found to require a great 
increase in computational work, which led others such as Biesheuvel 
[7], and Thorntom-Smith [115], to prefer quite separate, -successive 
adjustment of the two different types of measured data.

In the first chapter of this thesis, further investigations 
were carried out to provide X  less complicated formulae, and 
procedures for simultaneous adjustments using new geometric 
conditions. Practical experience with these new formulae show 
that the corrections to the sides obtained from the simultaneous 
adjustment of sides and angles, are virtually identical to those 
obtained from the adjustment of sides of figures with pre-adjusted 
angles•

In the field of survey adjustment, numerical methods have 
been always preferred, especially for triangulation adjustments.

Southwell and Black [10], [12], introduced the way for 
solving these problems physically by utilising what were basically 
structural analogues, but no practical method of achieving this 
mechanically was devised, and so their investigations merely led to



yet another numerical method.
The possibilities of having a cheap and portable mechanical 

system of adjustment, capable of being operated by relatively 
untrained personnel is an attractive one and to this Jerie has 
devised a mechanical analogue system for trilateration only.
The investigation of mechanical analogue methods has been taken 
some stages further, which led to the construction of mechanical 
analogues for adjusting angular quantities, which after considerable 
modifications proved to give accurate results using quite simple 
operational procedures. These investigations are reported in 
chapter II.

Continuing the investigation into the physical represent
ation of survey problems led to consideration of the electrical 
analogues proposed by Su [103], [IO4], [105], [106], and Speart 
[96]. Chapter III reports the investigations made to bring these 
to the point where they could be used in a really practical way 
for the solution of survey problems. This was achieved using a 
powerful electronic analogue computer, which has been applied to 
the solution of survey problems for-the first time.

At a time where electronic digital computers are coming 
to be applied in all fields of human activity, it may be thought 
that physical methods of computation and adjustment are unworthy 
of consideration. However, fashions change and as technology 
advances, methods thought to be only of academic interest suddenly 
become important again. So it is quite necessary that a further 
study of physical analogue methods be made, if only to see the 
extent of their limitations.

The final chapter therefore includes some discussion of 
the many different methods of computation and adjustment of 
survey networks which are available.

It should be noted that, neither the theoretical 
justification of the least squares method, nor a discussion of 
the necessity and merits of a simultaneous adjustment have been 
made in this thesis, as they are widely known already.
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1.1 ADJUSTMENT OP TRIANGULATION NETS

1.1.1. The • Adjustment. frLTfre..fiigflrQus Least, Squares Method

The use of the rigorous least squares solution for the 
adjustment of geodetic triangulation nets has been known over 170 
years, having been devised by the French Mathematician Legendre 
in 1806, and further developed by the German Gauss some twenty 
years later. Since Gauss introduced his mechanical procedure most 
triangulation nets have been solved by this mechanical procedure 
using manual calculations with the aid of tables before even the 
advent of the desk calculators. The advantages of this mechanical 
method are the checks on the calculation work which make inevitable 
mistakes easily detectable,

1*1.2 r Least Squares in the Matrix Form

Although the Gauss mechanical procedure does not require 
the use of matrix algebra, it has been found that the use of this 
mathematical tool has the advantage of setting out the mathematical 
formulae in the most concise form. The least squares concept is 
applicable only when the normal law of error# distribution is 
accepted for the problem to be solved by this way; this is the 
case with independent observations made in the field.

The equation of probability is given by

P = k V [°2v2] .........(1.1)

[c^v^] is a positive quadratic which may be rewritten in the form
r 2 2i 2 2 2 2 2 2[c V ] = c_ *v. + 2.C-.C-.V .V + c .V +...+C .V ••.yl.2)1 1  1 2 1 2  2 2  n n

where c^ is the precision index, v being the error of observations.
On account of the correlation freedom, the products c^.C2, 

where c^ is different from Cg^will be zero.
The quadratic form will be in this case,

[e^v2] = o^.v^ + c|.v| + ..... + c^.v^ ..........(1.3)

Using p instead of c^ to represent the conventional weights
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knowing that p is inversely proportional to the standard error, 
which is inversely proportional to the precision index c, then 
we obtain:

[pv2] = P-Ljvf + p22v2 + ............  Pnnv2 ....(1.4)
Using the matrix notation,

[pv2] = V'pV  (1.5)
where p is a symmetrical positive matrix of p = p', and for all 
values of V V'pV ^ 0

1.1.3* The Formation and Solution of Normal Equations

1.1.3*1* Observation Equations

Observation equations are usually given in the following 
linear relations.

allxl + a12x2 + ................. + almxm + X1 = V1

a21xl + a22x2 + ................ + a2mxm + h  = V2 ...(1.6)
• ••••• •••#•»••••••••••• ••••• « • • • • •

anlxl + an2x2 +  + W m  + h i = Vn
Vj_.... Vn are the independent observed quantities,
a^*... an, l^**** ln are known quantities.
x^.... xn are the unknowns to be obtained from the solution.
Due to the fact that observed quantities could not be absolute 
quantities, the solution will be for the most probable values and 
not for the true values of x.

For any assumed set of values x's, let F-̂ .... Fn be 
the values of the left hand side of the equations (1.6). If
Vq̂  .... vn are the residuals,

- kl = a11x1 + a-j_2x2 + **•' etc.
then V1 II H 1 V1 ...... .

II•••••• Fn -
also kl II H H 1 V1 ...... ....... = - Vn
Substituting these values equation (1.6) will be:



allxl + a12x2  .............+ + kl = V1

a21xl + a22x2 + * * • *....... + a2mxm + k2 = v2 (1.7)

anlxl + an2x2 + .... •••••• + + ^  = vn
n is always bigger than m.
and in matrix notation [9]; we obtain:

A  A  = £  + A  ........ ^

The solution of the equation (1.8) is given by:

X = A-1 K + A*”1 Y  (1.9)ml mn nl mn nl
Substituting (1.9) into (1.8) we obtain:

K + V = A0 K + A0 V  (1.10)nl nl nn nl nn nl
where, A0 = A A-1 = A (A' A)_1A'  (l.ll)7 nn nm mn nm mn nm mn

A0 is thus an extraordinary unit matrix and it is always a 
singular matrix, I is the unit matrix or the identity matrix

I _ a”"*̂  A - ( A » A^”^A!mm = A A = (A1 A) A* Amn nm mn nm mn nm
Let A-1 V = Mmn nl ml
Equation (1.10) will be:

V = (A0 - I).K + A0 V  (1.12)nl nn nn nl nn nl
= (A° - I).K + A A-1 Ynn nn nl nmmn nl

= (A0 - I).K + A M  (1.13)nn nn nl nmml
As the solution required must satisfy the least squares concept 
(i.e. [v ] = minimum for the same precision of observations),
V 1 V = K'(A° - I).K + 2 M' A ' ( A ° - I ) I  + M f A M  ... (1.14) In nl In nn nn nl lm mn nn nn nl lm mmml

where M* A M ^ 0lm mm ml
and M» A'(A0 - I).K = 0  lm mn nn nn nl
for all real values of the elements.
Therefore V'V is minimum when M = 0, in which case the solution
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of equation (1.8) will be:

X = A-1.K  (1.15)ml mn nl
For n bigger than m A-1 = (A1 Aj^A*  *.(1.16)mn mn nm mn
The mechanical solution by Gauss when using manual desk calculators, 
starts by tho formation of the normal equations. The formation 
is simply obtained by forming A ’A for the coefficients of the 
unknownsand A'K for the absolute terms.

Thus A X - K = 0   (1.17)nm ml nl
and A* A X - A ’K = 0   *»i( 1.18)mn nm nil mnnL

which are the normal equations required for least squares solution 
of the observation equations. The formation will appear in the 
following mechanical way:

[a a n ]x_ + [a _a _]x_ +  .....+ [a _a ]x + [a _k_] = 0L cl clJ 1 cl c2J 2 cl cm m cl 1J
[a a _ lx. + [a a ^]x^ +    • + [a _a ]x + [a k 1 = 0c2 clJ 1 c2 c2J 2 c2 cmJ m c2 2J ,

...(1.19)

[a a ]x + [a a ]x + ••••••• + [a a ]x + [a k ] = 0cm cl 1 cm c2 2 cm cm m cm n
Solution of the above normal equation is given by:

X = (A' A)-1 A' K  .(1.20)ml mn nm mn nl
The mechanical solution which transferstho above equation is 
described in detail in Raisford [77].

1.1.3.2. Condition Equations

Following tho same notation for n and m, the condition 
equations have the following form, in which m is bigger than n.

allxl + a12x2  ........... + almxm + ql = 0

a21Xl + a22X2 +  + a2mXm + q2 = ° , . (1.21)
• •••• ••••• •••••••••*•• «#••• • • • lit

anlxl + an2x2  ............+ + In = 0
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from m observation equations as;

xi = ° i + vi
x2 = 02 + v2

xm = °m + vm

(1.22)

Substituting (1.22) into (1.21) we obtain:

allvl + a12v2 + ........... + almvm + kl = 0

a21vl + a22v2 +  + a2mvm + k2 = 0 (1.23)

anlvl + an2v2 + ........... + anmvm + kn = 0

which in matrix form according to [9], will be:

A V = K  (1.24)nm nl nl
As can be seen from the condition equations (1.23), the most 
probable values will be for the system of corrections having [v^] 
a minimum when the same precision is used for observations. 
Solution of the condition equations by the method of correlatives 
will be:

A 1 A  A  - A 1 A   (1.25)
According to (l.ll),

A° V = A-1 Kmm ml mn nl
However, since the extraordinary unit matrix is singular the
solution could not be obtained in the usual way. Solution of
equation (1.24) is usually given by:

V = A-1K + (A0 - I).M  (1.26)ml mn nl mm mm ml
M is any arbitrary column matrix with m elements.

therefore: V'Y = K'A' A_1K + M'(A0 - I)(A° - I).Mlmml lnnm mn nl lm mm mm mm mm ml
+ 2.K'A'~^(A° - I).M  (1.27)lnnm nun mm ml

where Jt1(A0 - I)(A0 - I).M * 0 im mm mm mm mm ml
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and K' A I_1(A° - I).M = 0In nm mm mm ml
for all real values of the elements.
Therefore the minimum value of V ’V is obtained when M = 0.
Hence the solution of the equation (1.24) is

V = A_1.Kml mn nl
To obtain the reciprocal of the rectangular matrix A"’*’ in the 
solut on the correlates are used:

V = A' 0 ....... (1.28)ml mn nl
where C = (A A' )-1K  (1.29)nl nmmn nl
from (1.28) and (1.29) we obtain:

V = A ' ( A A ' ) ~ XK ....... (1.30)ml mn nmmn nl

In a similar way to the mechanical solution used by Gauss,
the first step in forming the normal equation is to calculate
(A A*)» and then the absolute term K is used to obtain C without nmmn
the need to multiply by any coefficients. The unknowns V will be
obtained by substituting in equation (1.28) in the usual way.
The mechanical method of formation and solution of the normal 
equations which transfers the above equations is described in 
detail^ in Raisford [77].

I.I.4. Number of Condition Equations in Triangulation

The conditions required in the case of free nets, where
only two datum points are held fixed, fall under three different
categories:
1- Triangle conditions.
2- Centre conditions.
3- Side conditions.
These conditions are the figural conditions and are always used 
for the adjustment of any triangulation net. In order to avoid 
ill-conditioning the number of conditions is controlled by the
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following formulas:
For observed angles : = N - 2S + 3.
For observed directions: = D - 3S + Su + 4,
N is the total number of angles observed.
D .. ......  .. • • directions observed.
S .......... . ...... •• stations occupied or not.
Su .....  .....   «• unoccupied stations, at which no

observations have been taken.

In the case of n base-lines previously fixed, additional 
conditions equal to (n-l) are found necessary. The general formula 
which is to be used as check for the number of the condition 
equations is that ’’the number of conditions be equal to the 
number of variables minus the number of independent unknowns”.

1.2. ADJUSTMENT OF TRILATERATION NETS

In this technique sides are measured instead of observing 
angles in the classical way.

1.2.1. Methods of Ad.iustmcnt

Adjustment may be carried out on the spheroid, but in 
order to avoid unnecessary complications, adjustment is normally 
carried out on the projection plane, by applying a scale factor 
to lengths and an arc to chord correction to angles.

The analytical adjustment is traditionally carried out in 
in two different ways:
1- Adjustment by variation of coordinates,(observation equations).
2- Adjustment by satisfying a special condition,(condition equations)•

which may be:
a- Figural condition,
b- Bearing condition,
c- Position condition.

1.2.1.1. Adjustment by Variation of Coordinates

In this method approximate coordinates of new stations are 
obtained by calculation from the obs^ved sides, or from observedA
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directions. From these approximate coordinates which are rounded 
off to the nearest whole unit, preliminary bearings and lengths 
are computed. Differential changes give the required increaments 
to these approximate coordinates, using the principle that the 
sum of the squares of the residuals is minimum. Observation 
equations for the indirect observed quantities (coordinates) 
will be obtained for every line in the the following way:

A

Figure 1.1 Figure 1.2

Let PP. = D: figure 1.1i 3
= V (x - x )2 + (y - y )2j i j i

dD = Jk-[2(x. - x.)(dx. - dx.) + 2(y. - y. )(dy. - dy.)]2.D 3 1 3 1 3 1 3 1
= _ dXi) + Li ~-Zi(ay3 - dyi)

If dD = v±j, (x̂  - x±)/D = cosAi^, and (ŷ  - y±)/D = sinA^

the correction equation will have the final form of:

vij = d̂xj “ dxi).cosAi .̂ + (dy^ - dy^sin^ + DQ - Dc..(l.3l) 
where, Dc is the plane computed distance from the approximate 

coordinates.
Dq is the observed distance reduced to the projection plane.

A similar equation will be formed for every observed side of the 
trilateration net. The adjustment is obtained by solving these 
observation equations in the normal way. For fixed stations, dx 
and dy will be zero in the above equations.

1.2.1.2a. Adjustment by Figural Condition

Figural conditions are used for the adjustment of doubly 
braced quadrilateral and centered polygons, and these require 
that the angles of the figure be computed. These geometrical
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figures may be viewed as being composed of several individual 
triangles•

If a single triangle ABC, figure 1.2 is considered, then 
using the cosine formula:

= b^ + c^ - 2.b.c.cosA ............ (1.32)
and partially differentiating equation (1.32) we obtain:

a.da = b.db + c.dc - (b.dc + c.db)cosA + c.b.sinA.dA ..(1.33) 
and,
- b.c.sinA.dA = b.db + c.dc - (c.db + b.dc)cosA - a.da..(l.34)

= (c - b.cosA).dc + (b - c.cosA).db - a.da (1.35)
However,

(o - b.cosA) = o - <£■+..̂ --.a2= 2.o2,- c2.-.b2 + ft22.c 2.c
- a + a2"c ~ a.cosB .... (1.36)a

similarly; (b - c.cosA) = a.cosC ........(1.37)
Substituting (1.36) and (1.37) into (1.35) we obtain:

_ dA _ a . . dc + . c?s9 . db - a . -4^,aA “ BTc sinA uo ^ TO5 sTnS BTc sTnl
......... (1.38)

but, § = s p A  ^  a =  (1.39)b sin3f c sxnu
therefore,

dA = - ^S.cotB - ^L^.cotC + ^.cosecB........ (1.4-0)
The last term in equation (1.4-0) could be written as Sp.cosecC
instead of ^.cose-c '33.

The condition used for figural adjustment is found when
angle A occurs in a doubly braced quadrilateral, figure 1.3̂  in
which the component triangles are:

triangle ABC = (l), triangle BCD = (2),
triangle ODA = (3) and triangle DAB = (4).

The condition is obtained by requiring that:
Ai + A3 = A4.

In satisfying this condition, any discrepancy found will be
vdistributed by emploment of the Lagrange multiplier? to give
K

* i?lor an equation of the form a^x^ + a2X2+ . =k , 
the Lagrange multiplier is = it?*
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A

B

Figure 1.4

D

Figure 1.3

corrections necessary for the self consistency required. 
In the case of a centered polygon, figure 1.4 the

figural condition is given by dA = 2A - 360 , which will 
provide the absolute term for the condition equation 
which has to be solved.

The number of figural conditions required for the

where L is the number of lines, and S the number of the 
stations. Corrections obtained for sides by using equation 
(1.40), always come in special pattern. For the centered 
polygon, the coefficients of the adjustments to the 
peripheral lines are all of the same sign and positive, 
while those of tho radial lines from the centre-point 
are all of the same sign and negative, provided that 
none of B^, B^, and (B^ + Bjj) is greater than 180°.

1.2.1.2b. Adjustment by Bearing Condition
This condition [2] is used when the trilateration 

net is extended between two sides with known lengths and 
bearings. This is normally employed when tho figural.

0

adjustment of any net is given by: L - 2S + 3 (1.41)
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condition could not "be used.

B

O

Figure 1 5

In figure 1.5 only the two bearings OA and OEE 
are fixed* Tho trilateration net ABODE is extended be 
between these bearings. The relationship between angular 
and linear changes given in (1.40) is used to satisfy 
the condition of fixed bearings. If the angle between 
these two fixed bearings is given by |3, therefore the 
condition will be:

(0^ + 9 ^ +  ••«.) - (02 + 9^ + ••••) + 2d0 = (3 ....(I.42)
1.2.1.2c. Position Condition

This condition is used when the trilateration net 
is extended between two fixed stations. As^figural 
condition could not be used, where the net is not a closed 
one, this conditionis used.

A

Figure 1.6
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In figure 1.6 the trilateration net is extended between 
the two fixed positions A and E. The condition in this case is the 
sum of the projections on the coordinate system axes of all 
observed lines between the two fixed stations have to be equal 
to the difference between the corresponding coordinates of the 
two fixed stations.

Thus if Xg - Xa = AX, and Y-g - Y^ = AY

therefore s^.sina^ + s2.sina2 + .......   = AY
......... (1.43)

and s-^.cosa^ + s2.cosa2 +•••••• = AX

Differentiating with respect to both angles and sides we obtain 
the required corrections for the purpose of keeping the positions 
of the fixed points unchanged. In this case differentiation has 
to be made with respcot to angles and not to bearings to be able 
to use the relationship given by (1.40)* The relationships 
between bearings and angles axe as follows: 

cti = ©i + constant, 
a2 = 0]_ - 02 + constant etc..

therefore
da^ = dQ-j_,

da2 = d - d02, etc....
Differentiating equation (1*43) we have:

s^.cosa^.da^ + s2.cosa2.da2 + ...... + sina-^.ds^ +

+ sina2*ds2 + .... + 6Y = 0 ,
and,
-(s^.sina^.da^ + s^.sina^.da^ + .......) + (cosa^.ds^+

+ cosa .ds~ + ....) + 6X = 0.
 (1.44)

Substituting d0 for da equation (1.44) will be:

d0l^sl#cosal + s2*cosa2 + •■•••) “ d®2 ŝ2*cosa2 + s3*cosa3 +
....) + d05(s3*cosa^ + S/j.cosâ + + 6Y = 0

...... (1.45)
-d0l(s^.sinai + s2.sina2 + ...) + d02(s2.sina2 + s^.sina^ +

- d03(s3*sina3 + s4.sina4.4-..) 6X = 0
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1.2.2# Discussion

In the following pharagraphs, special consideration will 
be given to the following points:
1- Number, selection and accuracy of computed angles, for figural 

condition.
2- Characteristics of figural condition.
3- Adjustment by bearing and position conditions of pure tril

ateration.
4- Weights applicable to trilateration nets.

1.2.2.1. Commted Angles

In order to form the figural condition for adjusting the 
doubly braced quadrilateral, figure 1.3, a particular apex has 
to be chosen. Different points of view have been given^as to hqw 
this may be selected. Murphy and Thomton-Smith, [70], and [73] 
recommend the use of the apex of the triangle of the smallest 
area, while Tarczy-Homoch and L. Hovanyi [109] recommend the use 
of the apex of the triangle of the largest area. Thus using 
figure 1.3, the figural condition for the doubly braced quadri
lateral is either Cq + C3 = C2, according to Murphy and Thornton- 
Smith, or A^ + A^ = A^, according to Hornoch and Hovanyi.

Pour triangles of the doubly braced quadrilateral have to 
be solved so that this condition may be formed. Furthermore to 
obtain accurate corrections,angles should be accurately computed. 
This is because the absolute terms in the condition equations 
are linear functions of the computed angles.

Calculation of all angles to obtain this condition is a 
very laborious task. Therefore, if another figural condition can 
be found which will eliminate this calculation it will be of 
considerable advantage. In choosing another geometric. . 
condition it would also help if one could avoid having to decide 
which is the most favourable apex for the adjustment, e.g. either
that contained in the triangle of the small area or in the triangle
of the large area. Suggestions along these lines are discussed
in detail later in section 1.5*
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1.2.2.2. Characteristics of Figural Conditions

Figural conditions are associated with the adjustment of 
the doubly braced quadrilateral and the centered polygon.

In the doubly braced quadrilateral figure 1.3*the figural 
condition is obtained by measuring any arbitrary redundant. 
Stations A, B, C, and D are defined in the quadrilateral with one 
diagonal, but as soon as the other diagonal is measured, a figural 
condition will be established.

In the case of the centered polygon figure 1.4> stations 
A, B, C, D, E, F, and G- are defined without measuring OF, but with 
the measurement of this side, the figural condition will be 
established, exactly as in the quadrilateral. In both cases the 
figural condition will allow consistency to be achieved with the 
observed quantities. However it is worth mentioning a difference 
that exists between these two figural conditions.

In the doubly braced quadrilateral the condition is 
obtained by equating (A^ + A3), and A^(figure 1.3)- Both these 
quantities are obtained by computation from the observed quanti
ties. In the centered polygon, the condition is obtained by 
equating EA and 360°. EA is obtained by computation from the 
observed quantities, while 360° is a known geometrical fact.

In figure 1.7 a
■ A

centered polygon ABCO 
having the two figural 
conditions mentioned 
above. In this case:
(a) A^ + A3 = A^ ,
or (b) TO =360°. Figure 1.7

B

In (a) all three 
angles at A are obtained by computation from observed sides.
In (b) EO is obtained by computation from the sides, while 360° 
is the known geometrical condition.

To differentiate between these two characteristics
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the doubly braced quadrilateral, and any other figure, such as 
figure 1*7 will be called a self-checking figure.

1.2.2.3* Adjustment Using Bearing and Position Conditions

In order to derive bearing and position conditions,figures
1.5, and 1.6,it is necessary to observe all sides forming complete 
triangles. The number of triangles involved, depends on the 
length of the trilateration net between the two fixed bearings, 
or the two fixed positions, so that the number of unknowns will 
be equal to (2n + l), where n is the number of triangles in the 
net. For three triangles the number of unknowns will be equal to 
seven, for four triangles this number will be nine, etc..At .the saqe 
time, it should be noticed that, figural conditions can not be 
formed for such a net. Solution of one condition equation to 
obtain large number of unknowns especially when it requires that 
every side of triangles be observed, seems to be unwarranted.
The solution given for these two conditions, is a theoretical 
one, but practically, it will be a waste of efforts as the estimate 
for the coefficient of correlation will be of the order

- - -  ±   -* Vt2n+TT
The same could be said about figural condition for adjusting * 
a centered polygon.

As it will be shown in 1.3 the aim of simultaneous obser
vation of angles and sides is to greatly increase the consistency 
of adjusted nets, with little increase of effort# in the field.

1.2.2.4* Weights Applicable to Trilateration

Weights are applicable to the above mentioned methods of
adjustment where condition equations have been employed.

An essential requirement for adjusting any observations, 
is to have an idea of tho observation errors likely to be present, 
the effect of these observation errors being incorporating by 
applying weights for the relavant parts of the adjustment.

In trilateration the observation errors used for obtaining
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weights are normally related to the distance (L) observed.
However different systems of weighting have been reommended which 
are inversely proportional to:
1) L2 [71],
2) 1 [115],
3) The moan square error for every observed distance [8].
4) a2 + b2.L2 [20],

where a = 1 cm. in the Geodimeter, and 
= 1 in. in the Tellurometer. 

b - 1/200,000 = meteorological uncertainty.
5) Unity [68], [79].

In practice one finds it difficult to give preference 
to one system over anotherY For a relative weight proportional 
to l/L2 it is important to quote a statement made by Murphy [73] 
viz "The position is still not clear, but it is known that the 
probable error of an observed s:Lde is a function of the length 
of line and as an interim approximation for lines of a medium' 
distance, this may be taken as a direct proportion", in which 
case the weight being (l/p.e)2 will equal to l/L2. Furthermore, 
when tapes or x̂ ires were used to measure sides or bases, it was 
easier to evaluate the reliability of measurement, since most 
of the factors affecting this were known or could be established. 
In measuring sides by this way the relationship between the length 
of the measured side and its weight is' found to be proportional 
to l/L2. For sides measured by electronic measuring equipments, 
there will be considerable uncertainty as to the meteorological 
conditions between each pair of end stations m  this can have 
a vital effect on the precision obtained. Thus the probable 
error of the instrument used does not necessarily relate to the 
probable error of the measured line. The instrumental probable 
error is evaluated under standard conditions, which may or may 
not exist in the field. Uniformity of weather conditions along 
a long line is very rare, if not impossible, even when measuring 
over a desert or the sea* Such Uncertainty makes almost any
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assumption for weighting liable to objection* Even if meteor
ological stations can be used between the two ends for more 
accurate estimation (and this is not very practicable)^ 'fchis 
will not eliminate the effect of the as yet known internal 
electrical and mechanical errors in a very complicated instrument, 
such as a G-.eodimoter or Tellurometer.

All the above points should be kept in mind before using 
any relative weight proportional to the length. In this case, 
a short measured side may be less reliable than a longer side 
due to special meteorological conditions or defects in the 
particular instrument*

To obtain the mean square error of observation for every 
line is a very laborious job* Whan accuracy is required, the 
error of observation should be obtained for every instrument

-<!Las each will have^different systematic error. Also meteorological 
conditions affect our observations affecting the relative weights 
to be used. The result of all these considerations is that there 
is no specific evidence to give an estimation of observational 
error, in which case weights may be chosen according to the 
following criteria:
1- That they result in a minimal amount of additional 

computation*
2- That they correspond to the requirements of least squares 

theory.
3- That they give good results when compared with the results 

obtained by using other weights, when the latter are 
theoretically approved.
So, using the same weight (equal to unity) for all observed 

sides seems to be a reasonable suggestion, satisfying the three 
points given above*

As to whether the same reliability of observations of 
different lengths will be obtained in practice depends a great 
doal on the experience of the observing tean*, and on approximately 
similar meteorological conditions prevailing while observations
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are being taken. It should be mentioned here that the pattern 
of observations, and thus the mean square errors, may be misleading 
to those undertaking the computing. If the observations are made 
over a short period, they have the tendency to give uniform 
readings with a small value for the mean square error. On the 
other hand observations made over a long period and during different 
meteorologioal conditions will have the tendency to give readings 
of a greater spread with a larger value for the mean square error. 
The small value of the mean square error obtained in the first 
case does not necessarily indicate a high absolute precision, 
while the large value for the mean square error in the second 
case does not necessarily indicate a low absolute precision.
This sort of experience is in fact neglected by the computing 
people, when the mean square error is taken as a measure for the 
relaibility of observations*

In very special cases, i.e* under similar meteorological 
conditions, the use of the number of observations as a measure 
for the reliability of observations follows the assumption of a 
unit weight for each observation.
However; similar meteorological 
conditions can be reasonably 
assumed when sides of approxi
mately equal length are being 
measured over fairly uniform 
terrain conditions. In such
a case the number of observations
of each side can be used as a Figure 1. d

weight to be given to each
particular side during the adjustment of the net. For example 
the centered polygon figure 1.8, in which all sides are nearly 
equal, nay be given different weights depending on the number 
of measurements of each side.

It has to be stated here that the assumption of having 
similar weights for adjusting a trilateration net is chosen to
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facilitate the computation, depending on the considerations given 
above, and on-the conclusions made by Rainsford in [79]. This 
is sĉ  especially in the normal cases, when sides of a net fall 
under the particular class of being first, second, or tertiary 
order.
1.2.3. Comparison Between Triangulation and Trilateration Nets.

Consider a geodetic doubly braced quadrilateral in which 
8 angles are observed, and another similar quadrilateral of which 
the six sides are measured.

The adjustment of the first requires the solution of four 
condition equations, one of which is the side condition. The 
latter quadrilateral will be adjusted by using the side condition 
only. This means that a better agreement between corrections and 
real errors will be obtained from a least squares solution when 
adjusting the first jCbecap.se the estimate of the coefficient of 
correlation which is equal to Ync/n will be greater in this qase) 
than that obtained from the adjustment of the second quadrilateral.

On the other hand if accumulation of errors is being 
considered a comparison of the two is rather more favourable to 
trilateration. All errors in scale, azimuth and position increase 
with the length of the triangulation chain, while in the case of 
trilateration the scale error at the last line of the chain is the 
same as that of the first line, i.e. scale errors do not accumulate 
The other two errors do accumulate, but the position error is due 
to the swing in the azimuth. Thus a short trilateration chaip, 
or long one where Laplace azimuths are used, might give results 
as good as those obtained by the adjustment of triangulation net. 
However in general it is apparent that trilateration gives a 
weak shape, but has a better scale.

1.3. HIXBD FIGURES (HYBRID OBSERVATIONS)

These are geodetic figures in which both sides and 
angles. ape, ̂ observed •
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1.3*1* Bffect of Observations on the Nets

Before the advent of the electronic measuring equipment 
triangulation nets were formed between two base lines, or extended 
from one base line only. The change in the shape of the net due 
to the errors accumulated along this net is similar to the change 
of the shape of an elastic body subtended between two fixed points, 
or supported at one side only as a cantilever. In this case the 
elastic body will have a deformed shape different to its original 
shape, e.g. the straight line between two fixed ends will no 
longer be straight. Original shape can be re-obtained by 
introducing an infinite number of supports between the fixed ends. 
The same could be said about a not of triangulation, i.e. the 
effect of accumulated errors for scale will be reduced if the 
number of bases is increased.

A distinction mist be introduced between the old type of
base, which was very difficult to measure and so infrequent that
it usually was left unadjusted as an absolute quantity, and the
new measured side lengths, which can be introduced comparatively

beeasily, and frequently and can^ subjected to an adjustment, just 
as measured angles are.

1.3.2. Ad.iustmont of Both Shane and Size Simultaneously

Another way of increasing the consistency of adjusted net 
is to adjust both shape and size. This is the aim of the current 
technique of observing both angles and sides in a net, taking 
account of the fact that scale errors cannot accumulate to any 
thing like the same extent where more sides are measured. This 
means that the number of the redundants will be doubled or 
tripled, e.g. a triangle will be solved for three condition 
equations, rather than the simple angle condition used in normal 
triangulation. Also the doubly brae. d gejbetic quadrilateral 
requires nine condition equations instead of the well-known 
four conditions required in the adjustment of triangulation net.

Solution by this method requires a great deal of extra work
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Ifor a given figure or net, and should be used only in primary 

work or where high accuracy is all important. This is especially 
so when the net to be adjusted is a large one, for the solution 
by the least squares is known to be a quadratic function of the 
number of the equations to be solved.

The main problem to be considered for the simultaneous 
adjustment of both ̂ jsicles and angles is the selection of suitable 
relative weights for such adjustment,

1.3*2*1* Relative Weights for Angles and Sides

In the case of pure triangulation or pure trilateration, 
it is easy to use relative weights once one has decided to follow 
a particular rule. The observed quantities here are similar in 
that they have been obtained by using the same set of equipment 
and probably a standard technique* In mixed figures totally 
different principles are being used for the measurement of the 
different observed quantities, and this dissimilarity requires 
different weights to be given to both angles and sides when they 
are to bo adjusted as a single problem by the method of the least 
squares•

Various suggestions have been made by different contributors, 
e.g. Murphy, Lilly, Biesheuvel, and Rainsford,
1- Murphy [71], gives a unit weight to all angular observations 

while giving a different weight to each side according to 
its length. In this case he assumes that the mean square 
error of a linear measurement is proportional to the length 
of the side* This assumption is entirely based on convenience 
(as Murphy himself said [71]) and not necessarily upon the 
characteristics of the electronic distance measuring apparatus 
itself.
For this assumption (Aa) = —|-x206265

where, va is the linear correction and (Aa)" is the equivalent 
angular correction.

2 2 2 2 2 2 Minimising the expression [(Aa) +(Ab) +(Ac) +v +v + v ]A  15 O



where v^ is the correction to oho observed angles, means 
that angular corrections are all of the same weight, i.e. 
unity. The linear corrections which are presented in the 
form of angular corrections are obtained by having a 
weight inversely proportional to the square of the length 
of the side measured.
Lilly [63] suggests that the concept "Sum of the Squares of 
the Residuals" has to be replaced by the concept "Sum of 
the Squares of the Reduced Residuals", where the reduced 
residual is defined as the ratio of the residual to the 
probable error. This is equivalent to the weighted squares 
of the residuals, having regard to the fact that the weights 
here are dimensioned quantities instead of being pure 
numbers. Thus when the dimensional residuals are divided 
by the weights the least squares solution can be applied 
to dimensionless quantities. This explanation is given to 
justify the use of the least square concept to the problems
of residuals of different dimensions. In this case if v jl
is the residual, r is the probable error and i = 1, 2, ...n, J
therefore, ii

(v. )2 - (x - X-,)2 (x - X p )2 ' - (x - X )2 !
"2 = “2 + ~ r 2  +.....   12(rî  rl 2 n i

2 I
For d . v̂i^ _ n we have:

dx 2i !
SUj/r2 ) E(x±/kr2) E(pi.xjL)
E(l/r?) 2(l/r2) “ E(p?)

In this case k is an arbitrary constant. ;
ILilly's solution is completed by choosing suitable probable 

errors. He proposed that this equals 0.6" for all observed
angles, and 1 part in 200,000 for the observed linear j
measurements. Ii
Biesheuvel [7] prefers that the residual of linear i
measurement should be released from its dimension before 
it is combined with the angular residuals inithe solution.
For example when v is the linear residual,then the amount tube



obtained by the least sauares solution is v„ = vq where ss
is the side observed. The correction then will be v ,s = vs q
for the linear measurements, and vr = v^.s for chord measurement, 
(figure 1.9)• In this case both vs and v^ will be of the same 
angular dimension. This consideration is commonly used in 
adjusting traverses, but he recommends against the use of this 
method in a combined net unless the mean square error is known, 
or a reasonable estimate of it can be made, otherwise the 
combination will be futile.

Rainsford[79] carried out a 
comprehensive study using the 
information for the Ridgeway and Figure 1.9

Caithness bases, with d i f f e r e n t ---------- ----------
criteria being considered in turn.
These involved the adjustment of: 
a- Angles only - all of uniform weight, 
b- Lengths only - all of uniform weight.
c - Combined angles and lengths - weight of a side inversely 

proportional to the square of the length, 
d- Combined angles and lengths - weight of a side is inversely

proportional to the length,
e- Combined angles and lengths - Angles and sides are of uniform

weight•
After comparing the various results from a practical point 

of view comes to the following conclusions:
A- There is little (if any) evidence that the error in

Tellurometer observations varies with the length of line, 
unless the lines considered are longer than say 35 to 40 
miles. It would then be a matter of uncertainty in the 
meteorological conditions rather than systematic error in 
the Tellurometer observations.

B— The introduction of observed lengths (even quite a large
proportion) does not appear to distort the general adjustment
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appreciably, considered in relation to the adjustment of 
the angle observations only.

C- Good results will be obtained 'by weighting angle observations 
and Tellurometer observations uniformly in the same solution,
i.e. if the weight of an angle is unity the weight , of 
a Tellurometer length is also unity.

The suggestions of both Murphy and Biesheuvel are basically 
the same. In both cases the combination of the two dissimilar 
quantities is allowed by having the linear correction of a side 
divided by the length. The angle corrections are obtained directly 
from the correction equations. This division by the length of 
the side introduces in both cases a relative weight = l/L, which 
suffers from the shortage of a strong evidence of being so.

Lilly solves the problem of combination of the two dissimilar 
quantities by assuming a probable error for both angles and sides. 
The choice of 0.6” as a probable orror for an observed angle is 
obtained by special studies in the field. Gale [38] who did the 
same studies proposed 0.85”, which seems to be quite different 
from that of Lilly’s assumption. Both Lilly and Gale agree on 
having one part in 200,000 as a probable error for an observed 
side. However, although this solution seems to be a practical one 
but the uncertainty of the probable error to be given to angles 
together with the extra computational work necessary does not 
give this solution nudh priority.

RainsfordVconclusions seem to be more likely acceptable, 
as solution according to his suggestions requires less computeA.
ational work, beside giving good practical results.

1.3.3. Methods of Adjustment of Hybrid System

Contributors to the problem of adjustment of hybrid 
observations, e.g. Murphy [71], Tarczy-Homoch [110], Lilly [-63], 
Biesheuvel [8], and Thornton-Smith [115],[116], use different 
methods, but basically they can be classified under .’the following:
l) Simultaneous adjustment by formation of angle and side
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conditions assigning weights according to one of the systems 
suggested above, and using normal equations to obtain direct 
corrections to the observed quantities, e.g. the solution given 
by Murphy [71] for this problem is obtained from the following 
condition equations:
a) Angle condition

A + B + C + 0 = 180° + £ ........ (l# 4-6})
0 is the angular correction necessary to close the triangle 
ABC, and therefore 0 will be dispersed by applying corrections 
vA , vB, and Vq to the observed angles. It follows that:

VA t VB + VC = 9 ......(1-47)
b) Length conditions

When the application of the sine formula to the Legendre 
triangle ABC does not satisfy the rule exactly, then

  a t M X iLS s / l )  = i „ k ....... (1.48)
sin(A-e/3) b

= F(a,b,A,B)
where k is the small divergence produced by the errors in 
the observed quantities,
Differentiating the left hand side of equation (1*48), 
with respect to a, b, A, and B and choosing the linear 
corrections va, vB, vc, and the angular corrections vA , 
v-d, and vn so that they satisfy the sine rule, then

k _ 1. sin(B-e/3.) -ir - a ♦sln(B-e/3) .-.r 
b.sin(A-e/3) b2.sin(A-e/3)

= Za - v..cotA + Vp.cotB  (1*50)a D A B
Substituting (v^)n = v^/206265,
and (Aa)” = 206265*va/a
therefore, 206265 kx = (Aa)” -(v^V'cotA - (Ab)"

+ (vB)”cotB ......... (1.51)

also, 206265 * (vA )"cotA - (Ac)" + (vc)"cotC
 (1.52)
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Similar equations to (1.47), (l.5l) and (1.52) have to be 
obtained and solved for each triangle.

2) Thornton-Smith [115], [116] has two main considerations [(a) 
and (b) below] in his solution to the problem. Both of these 
disregard the question of a simultaneous combination at all, 
and give a solution for the case when both angles and sides 
are observed. Thornton-Smith says that to combine both angles 
and sides in one solution, i.e. to solve nine condition equations 
for the doubly braced quadrilateral "is a herfi.J!lean task", 
from the computational point of view. Furthermore, he feels 
that it would be futile to combine the two in the first order 
geodetic work unless the two kinds of measurements are each 
capable of the sane first order precision. So his opinion 
is that there is no need for such a combination. However, 
if both are observed in one figure one of two possibilities 
exists:
(a) The adjustment should be carried out for angles first, 

then using the adjusted angles, the sides are corrected 
which means in fact that the shape be adjusted first and 
then the size or scale.

(b) The most probable shape should be obtained from the 
adjustment of observed angles only by the least squares 
method. Next another value for the mcst probable shape 
is obtained by deriving the angles from a separate adjus
tment of the sides. In this case we have two shapes 
where the angles satisfy the geometric condition and two 
sets of residuals. The final adopted shape will be the 
weighted: mean of the two values of each individual angle
in the figure, where the weights are the sum of the squares 
of residuals in each case. In other words the required 
angles are obtained by distributing the difference between 
the two sets of residuals according to the assigned weights, 
to produce one final set of residuals. The angles obtained 
satisfy both the angle and sides conditions for each tringle.
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In these two ways Thornton-Smith avoids using relative 
weights at all, simply by going to the separate adjustment 
of each net,

1.3-4* Discussion

The number of conditions to be satisfied for a trilateration 
net is very small when compared with the number of conditions to 
be satisfied for the adjustment of the classical triangulation 
net(section 1,2.3-)* This will affect the value of the whole 
operation. The main aim of the current technique of observing 
sides and angles is to increase the consistency of results.
This means that observation, of both sides and angles will be more 
useful when the adjustment of both is carried out simultaneously. 
The idea of adjusting angles and sides separately requires much 
more investigation and research. It has been stated by Thornton- 
Smith [115] that the combination of angles and sides in one 
solution would be futile unless both observations are capable of 
giving the same precision. This statement can be discussed in 
two parts.
(a) First of all most investigations lead to the conclusion 

that the angular and linear accuracies are about equal, e.g. 
Rainsford's opinion [79] is that both types of observation are 
capable of giving the same precision for first order work. 
Therefore both sides and angles are given uniform weights 
irrespective of the length measured. Also after a series of 
practical investigations, Gale [38] proposed a probable error 
for an observed angles of 0.85”, and for sides one part in
200,000. If we consider that a probable error of 1” represents 
one part in 206,265, we can see that precision proposed for 
each is very similar.

However, precision can bo increased if special precautions 
are taken, e.g. the U.S. Coast and Geodetic Survey carried 
out a project for the U.S. Air Force in Florida in connection 
with the missile range [90]. In this project an accuracy of 
1:400,000 was required between Cape Kennedy and nine ballistic
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Camera sites. Such an accuracy has not been achieved before 
over a large net. However the project was carried out by 
measuring sides using Mk2 Geodimeter, and angles using Wild 
T3 Theodolite. Special procedures and precautions were followed. 
The simultaneous adjustment of sides and angles was carried 
out by the variation of coordinates method. The Gcodimeter 
lengths being introduced as observation equations with weights 
equal to those for the directions, i.e.^corrections of 1:206000 
(arc 1”) to a length was considered the same as the correction 
of one second to a direction. So for Ultra-high precision nets 
the weighting follows the same lines as with Rainsford and Gale.

Also for the connection between Britain and France across 
the English Channel 1963, satisfactory results wore obtained 
by using the Tellurometer MRA2 for the direct measurement of 
103 kms. between Dunnose and Bcachy Head. In this case the 
final mean value obtained from 12 measurements, each combrising 
36 sets of fine readings differed from the distance obtained 
by triangulation by one part in a million. Again this backs 
up the other example quoted.

Lilly [62] and Konecny [55] carried out complete investi
gations and comparisons for sides derived from existing 
triangulation nets and the length of the same sides measured 
directly by means of electro-magnetic waves. An explanation 
has been always given, whenever a discrepancy exists, e.g. due 
to the deformation Df the existing triangulation nets, some 
angular errors, etc...

The above investigations were mainly carried out for first 
order work. For second order work, an investigation has been 
made by Kelsey [51] for a net measured by the Ordnance Survey 
in South Scotland. In this investigation the Tellurometer 
distances were compared with the distances computed from 
existing coordinates derived by triangulation. The maximum 
discrepancy was 0.2 metre in a line of 17.7 kms, i.e. one 
part in 88,000. This check showed that the second order
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control can be supplied by Tellurometer traverses to an accuracy 
comparable with that of triangulation.

(b) However the assumption of quite different precision for the two 
types of observation, would not necessarily demand successive 
separate adjustment. The simultaneous adjustment will take 
much more computation, but it is not futile to undertake this, 
as Thornton-Smith has suggested, because of the increased 
consistency which results as has been shown by Konecny [20].

The current technique of measuring sides, is especially 
useful in cases when observations of angles are very difficult 
or impossible, e.g. in the case of fog, or conditions of poor 
visibility. In such cases, the observed net will be a mixed one,
i.e. some angles and somo sides are observed. However, for the 
adjustment of the general case, it is not necessary to have an 
angle condition, provided that a method such as Murphy’s (already 
discussed) is suitably modified. In this case the angle condition 
will be ommittcd.

In the rest of this chapter, further investigations into 
the possible use of the area covered by a net as a condition for 
mixed adjustment are reported. Also the author’s point of view 
about apices .of the doubly braced quadrilateral will be given. 
Furthermore, a new method of forming condition equations for the 
mixed adjustment will be derived and modified.

1.4. AREA COVERED BY A SURVEY NET

Survey nets consist of individual geometrical figures, 
e.g. a triangle, a quadrilateral, a centered polygon. The basic 
individual unit is the triangle. Each geometric figure has 
a geometric condition to satisfy, e.g. 180° for a triangle, 360° 
for a quadrilateral, etc.. When only sides are observed, such 
a geometric condition will not be found to be satisfied. For 
example, computed angles satisfy always this condition, and thus 
eliminate the possibility of using this condition for adjustment. 
Computed angles are commonly used by contributors, e.g. Murphy
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Tarczy-Hornoch, Thornton-Smith, etc... to satisfy the figural, 
bearing and position conditions for trilateration adjustment.
For observed sides, three sides will form a unique triangle, 
and with n observations of the same sides n triangles each slightly 
different to the other will be obtained. Whatever number of
observations are made the figures lack the condition to adjust 

Athem* A situation remedied as soon as any redundant is known.
In triangulation, the angle condition cannot be used for 

the adjustment of a triangle unless the three angles of the 
triangle are observed. It should be mentioned here that the 
adjustment of this triangle will not have any specific meaning 
without additional knowledge of the scale. In other words four 
parameters have to be known for the adjustment. This can more 
obviously be understood, when mechanical computers for adjusting 
these nets are to be put to work. It should also bo kept in mind
that the scale always exists whenever the adjustment of angles
only is being discussed, but the fourth parameter(the side) is 
left unadjusted. This does not affect the number of conditions 
mentioned in 1.1.4. and 1.2.1.2a.

However with one angle and three sides observed or with 
two angles and two sides observed, i.e. again with the minimum 
four measurements used for adjustment there is only one geometric 
condition that could be satisfied. This can be an angle or side
condition, but whatever is adopted it can be viewed in the general
case as having to satisfy an area condition. As this requires 
at least four out of the six elements of the triangle to be obs
erved, it follows that an area condition can only be used in 
a triangle in adjusting hybrid observations. However area 
conditions can also be used for adjustment of pure trilateration 
of larger figures with self-checking properties, e.g. a doubly 
braced quadrilateral or similar figure. The adjustment of the 
quadrilateral using an area condition also avoid difficulties 
of choosing the apex to be used for obtaining a figural condition 
(see 1.2.2.1). Furthermore, it is shown that adjustment by this
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condition avoids the necessity for any extra computation.

1.4.1. Coefficients of Corrections and Absolute Terms in
Condition Equations

The order of the absolute term in the condition equation 
is important- factor in obtaining accurate results. The absolute 
term normally used with an angular misfit condition is much 
increased when an area misfit condition is applied with consequent 
favourable effects on the accuracy of the solution.

Size of the figure may be defined as the area covered by 
the sides of this figure. Errors of observations appear in the 
area calculation as a multiple of those errors by other quantities. 
The same errors appear in the angle calculation in a totally ' 
different way, as follows:
l) Error in the calculated area

Consider figure 1.10, and let 
a0 = the observed side a 
A0 = the calculated area from observed 

sides aQ.
da = the error of observation of side a( 
dA = the error in the calculated area, 
a = the corrected side = (aQ + da) 
for a = b we have:

2dA + Aq = Tj.â  = ▼jC&Q + da + 2.aQ.da)
2neglecting da, therefore, 

dA + AQ = i(aq + 2•a0•da) 
but A — 1 «2
therefore
in the case when a ^ b

- 1 a*- £ o
dA = aQ.da

dA = i(a0.db + b0.da)

B

b

C

Figure 1.10

(1.53)

 (1.54)
 (1.55)
 (1.56)

(1.57)
2) Errors in the calculated angles

The errors in the calculated angles which result* from 
errors in the observed sides b and c in figure 1.10 can be 
given by:
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cosA = J2. Co
and cos(A + dA) = ^o + ^c0 + dc
for dA small, cosA - dA.sinA =

boSo

(1.58)
(1.59)

+

therefore dA.sinA = —2 Co
uo
C0

1 + co

db
T T W

db
Co

1 + °o
dcaS Co 1S Very small> 'therefore the denominator could be 

taken as unity, and
dA.sinA = 5° - 5° - db

co co co
for sinA = therefore equation (1.59) will be:

dA db co db - —  • ~db
c0 (1.60)a0

From, equation (1.60) it can be seen that the error in dA is 
a function of the linear error divided by the length, whereas 
the error in the area, as given by equation (1.56) is a function 
of the linear error multiplied by the length.

Since the problem of adjustment is to obtain corrections 
for the measured sides, it is more suitable to get these corrections 
by using the condition which has larger coefficients and absolute 
terms [71], i.e. the area misfit condition.

1.4*2 Area Covering Condition for Pure Trilateration

Deriviation of the condition equation is made for a doubly 
braced quadrilateral, where all sides are observed.

(3)
(4)

Cc

(a) Figure 1.11
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Consider quadrilateral ABCD, figure 1.3 in which a, b, 

c, d, e and f arc observed sides. The area covered by this 
quadrilateral may be obtained by either the sum of the areas 
of the two triangles ABC and ADC figure 1.11a, or by the sum 
of the areas of the tiro triangles ABD and BCD figure 1.11b.

In fact there will be a difference in the area when 
calculated from figure 1.11a or from figure 1.11b. Stations 
A, B, C and D are obtained by direct observation of sides a, 
c, e, f and either b or d. When both diagonals b and d are 
observed,the quadrilateral will be given further rigidity, but 
duo to accidental or observation errors adjustment of observed 
quantities is necessary to provide consistency to the calculated 
stations. This requires that figures 1.11a and 1.11b must 
coincide with each other exactly* Stations A, B, C and D 
must have the same values no matter how they are computed. In 
this case the area covered by both must be exactly the same, 
angle DAB in figure 1.11b will then be equal to the sum of the 
two angles CAD and CAB in .figure 1.11a, whether A is the apex 
of the triangle of the largest or smallest area* Discussion 

about which one is to be chosen does not apply here, as the area 
of the whole figure is considered.
1.4.2.1. Derivation of the Condition Equation in Pure 

Trilaterailon
For the quadrilateral given in figure 1.11, there will be 

only one condition due to the fact that there is only one surplus 
observation produced by the measurement of the extra diagonal.

Considering an individual triangle (l)in the dubly braced 
quadrilateral given in figure 1.3* the area jn this triangle with 
the three measured sides is given by:

■ ■■■ 11 ■ r •A = Vs(s-a)(s—c) 
where s = a + b + c, and A = the area if the triangle ABC.aDue to the large figures f o u n d  when calculating area, the use of 
logarithmic tables is inevitable*
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From equation (l.6l) we haves
21og.A = log.s + log.(s-a) + log.(s-b) + log.(s-c) ..... (1,62)

Differentiating equation (1.62) with respect to a, b, and c,
M  = i + dCs-a) 4. d(s-b) A d(s-ch 
A 2 s fs-a) Ts-b) T s^ c)

= 1 r£ da+db+dc + 2 db+dc-da 2 da+dc-db . 2 da+db-dcn
2 2 a+b+c 2 b+c-a + 2 “a+c-b + 2 ~+b-c

 (1.63)
where, (s-a) = 1(b+c-a), (s-b) = i( a+c-b), and (s-o) = i(a+b-c)
Rearranging terms;

= ^  ̂ a+b+c 1b+c-a + a+c-b + a+b-c^da 

+ ^a+b+c + a+D-c + b+c-a + aT+c-T) ̂ ̂

 ̂a+b+c + a+c-b + b+c-a + a+b-c^0! ••••(1*64)
let;

T &  = h> A  = ^2. and ^  * X3.:.(1.65)

Substituting (1.65) into (I.64) equation (I.64) will be;
dA = [ (\Q+A.2+ ĵ5“ 3̂_)d.a + (A.0+\^+\^—\2)db + (\0+A.q+\2“^3)d-c]

 (1.66)
Equation (1.66) gives the change in the area of a triangle due 
to the change in the observed sides. In other words, corrections 
are obtained by adjusting observed sides a, b, and c of the triangle 
ABC by using the change in the area of this triangle as given by 
equation (1.66). For the other three triangles of the quadrilateral 
similar three equations can be obtained.

The geometry of the adjusted figure requires that:
Aq + dAq + A2 + dA2 = A3 + dA^ + A4 + dA^ 

where, Aq, A2, Â , and A4 are the area of the triangles ABO, A-CD 
ABD, and BCD successively figure 1.11.
and (Aq + A2 - A3 - A4) + (dAq + dA2 - dA^ - dA4 ) = 0 ..(1.67) 
the absolute term in the equation k = (Aq + A2 - A3 - A4)

let A1, \2, \ ^ 9 an(i ^4 rofer to triangles (l), (2), (3), and (4) 
successively, figure 1.11, therefore
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X1 X2 X* :

^0
Aq/2

a+b+c
A2/2

b+e+f
As/2

c+d+e J d i  !a+d+f j

*1
Ax/2

b+c-a
A2/2
e+f-b

CM 
O 

\ 
1O 

< 
+<n

a4/2 j
d+f-a j

Xo &1/2 h2/  2 A^/2 . i
__ 4/2 :2 a+c-b b+f-e c+e-d a+f-d :

X3 A3/2 A2/2 y 2 i/S |
a+b-c b+e-f ,c+d-e a+d-f |

table 1.1

Using table 1.1 to form the condition equation for adjusting the 
quadrilateral figure 1.3 > therefore,

(Xl_Xi+Xl+Xl.x4+x4_x4_K4)Va + U X+xl_xl+xl+x2_x2+x2+x2)Vb 

+ (xJ+X ^ - \ ^ - x 5 _ x3+^ )Ve + (_X3_x3+x3_x3_x4_x4+x4_x4)vd

+ (X̂ +X̂ T-xjl+xil—X^-X?-\^+\^)vG + (X^+\^+xjr-X?-\^-\5-X~+X~ )v.p 0 1 2 3 0 1 2 3 ^  0 I 2 3 0 I 2 3
+ k = 0   (1.68)

Equation (1.68) is used to adjust the example given by Murphy [70],
figure 1.3# The results of this adjustment obtained by this
equation together with those obtained by using Mprphy^solution
are shown below,

table 1.2

rection Due to equation (1.68) Due to Murphy
Va - 0.093 - 0.096
V hb + 0.132 + 0.137

v c - 0.178 - 0.185
v r! + 0.1991 + 0.207

v e | - 0.153 - 0.159
Vf ; - 0.073 - 0.076 ’

The two solutions are practically identical. The maximum 
difference for any side (in this case d) amounts to 0.008, while 
the mi wimuTTi difference is = 0.003, with an avar^ge difference of
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0.005 for side b. '
It could bo said that "the amount! of work here is greater 

than that when solving by Murphys solution, but it should be noticed 
that most of the work is ordinary arithmetic addition and 
subtraction, which are applied to values obtained from logarithmic 
tables.
1.4-2.1 .1. Modification of Equation (1.64)

Equation (I.64) could be modified, to reduce the amount 
of work involved in the following way:
Consider the coefficient of da in equation (1.64),

The coefficients of db and dc can be obtained in the same way,

Although equations (l.7l) and (1.72) appear in more convenient 
form than equation (1.64) the amount of computation included 
does not differ much.

1.4.3. Use of the Area Condition for Ad.iuting Observed Sides
And Angles

The use of the area coverage condition above has been 
for adjusting sides only. It is however even more convenient

Z*-a+b+c “ b+c-a + a+c
= Ar - 4.ay + 4.bfa + 4.c.a ~i 

2 (a+b+c)(a+b-c)(a+c-b)(b+c-a)

But b + c - a = ^.d.c .cosa 
therefore equation (1.69) will be:

= a.b.c.cosA

(1-69)

(1-70)

coefficient of db also
1dc a.b.c.cosC

Substituting in equation (l.64)> we have:

dA = a Jj.. Cj. (c o s A. da + cosB.db + cosC.dc) . ...(l.7l)

but we have 2A = a.b.sinC,
therefore# dA = — —2— .(.cosA.da + cosB.db + cosC.dc) ...(1.72)2sinC
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and effective when both angles and sides are observed, or in 
other words when one redundant or more is availabe for the 
adjustment of each triangle.

Due to errors of observation, a different area will be 
obtained for the same triangle when using the different observed 
elements of this triangle, e.g. a triangle ABC (figure 1.2) of 
which a, b, c and A are observed gives the following geometric 
condition: A1 = A2  (1*73)
Due to errors of observations this condition will have the form:

A^ + dAj = + 3-̂ 2 ••••....(1.74)
where A-̂  = Y  s (s-a) (s-b) (s-c) , ........(1.75)

and &2 = ^.b.c.sinA ........(1.76)
Equation (1.74) can be solved by the same procedure followed in
solving equation (1.68), noting that angle A is to be adjusted.

1.4.3-1. Use of the Logarithmic Difference in the Formation of 
the Required Condition Equation

It has been found that the most suitable way to reduce 
the amount of computation in solving this equation, due to the 
large figures arising from the area consideration, is the following 
Using equation (1.75) in forming equation (1.74) > we have:

A1 + dAl=
= 1/- [da+db+dc^ p- a |db+dc-da) (D fc \ Aa+dc^db) (3 £ 1da+db-dcj ..(1,77)2 2 2 2
if 6 is the log. difference, therefore;
from equation (1*75) we have:

log.A^ = i[log.s + log.(s-a) + log.(s-b) + log.(s-c)]
........(1,78)

and from equation (1.77) we have:
log. Aq_+ S^dA! = ^[log.s + |6s(da+db+dc) + log. (s-a)

+ i6(s-a)(db+dc-da) + log.(s-b)
+ (da+dc-db) + log.(s-c)

+ |d(s-c)(da+db-dc)]  (1.79)

Subtracting (1.78) from (1.79) we have:
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6AidAi = i[6s(da+db+dc) + 6(s_a)(db+dc-da) + 6(g-b)(da+dc-db)

+ A(s_c) (da+db-dc) ]  (1.80)

Rearranging terms equation (1.80) will become:

6AldAl = 7 ^ 6s'6(s-a)+6(s-b)+6(s-c)^da 

+ (6s+6(s-a)-5(s-b)+6(s-c))db

+ (^s+^(s-a)'fd(s-b)"d(s-c)  (l.8l)
Following the same procedure, a similar equation can be obtained 
for A2 using the sides b, and c together with angle A.
Thus using equation (1.76) to form equation (1.74) we have:

A2 + dA2 = ^(b+db) (c+dc)sin(A+dA)  ..(1.82)
From equation (1.76) we have:

log.A2 = log.b + log.c + log.sinA - log.2 ..... (1.83)
also from equation (1.82) we have:

log(A2+dA2) = log.(b+db) + log.(c+dc) + log.sin(A+dA)
- log.2 ........(I.84)

Using the log. difference 6 we have:
log.A]_ + d^dAq = log.b + 6fcdb + log.c + dcdc + log.sinA

+ 6flndA - log.2 ......(1.85)

Subtracting equation (1.83) from equation (1.85) we have:

dA2dA2 = ^.db + 6c.dc + 6^in*dA  ....... (1.86)

Equation (1.74) satisfies the geometric condition for the triangle 
figure 1.2 and gives,

log. A*̂ + d^.dA^ = log. A2 + 6^2*dA2
and hence log.A^ - log.A2 = d ^ * ^ ^  - dAl#dAl ••(l?Q7)

Subtracting equation (1.86) from equation (l.8l) we have:

dAl*dAl " dA2*dA2 = 4^ ds“d(s-a)+d(s-b)+d(s-c)^da

+ ( V 6(s-a)“6(s-b)+6(s-c))db 
+ (ds+d(s_a)+d(s_i:))-d(s„.c))dc]

- d-ĵ .db - dc.dc - dj[̂ n .dA ......(1.88)
Substituting from equation (1.87) equation (1.88) will become:
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|£6s“5(s-a)+6(s-b)+<5(s-c))da + (5s+5 (s_a)-6 (s-b)+6 (s-c)"4.6b)db

+ (6s+5(s-a)+6(s-b)“6(s-c)“4*6c)dc - 5|ln.dA +
+ log. A-̂ - log.A2 = 0  (1.89)

Equation (1.89) gives a condition for the area coverage of a 
triangle with one redundant. For two redundants, there will be 
one more condition equation and one further if there is a third.

It can be seen that the use of this method is of great 
advantage as it reduces the amount of computational work 
considerably. The logarithmic difference required can be obtained 
easily from log. tables for the values required.
Example: a triangle of

a = 69 847.62 feet (observed)
b = 94 277.10 .... .......
c = 102 017.34 .... ...... .
A0= 75° 131 21560
Ac= 75 13 20.07 (computed)

Using the area condition equation (1*89) the following is obtained:

dA0 + I.48 da + 2.45 db - 3.28 dc + 1.50 = 0 ..(1.90)
For the sake of comparison an angle condition is used for
adjusting this triangle, in which case,

A0 + dA0 = Ac + dAc  (1.91)
gives the following equation,

dA0 + I.48 da + 2.47 db - 3.29 dc + 1.53 = 0 ...(1.92)

Comparison between equations (1.90) and (1.92) shows that they
are virtually identical.

The main advatage in using equation (1.89) is to use the 
difference (A^ - A2) in obtaining the absolute term, while all 
other coefficients of corrections are obtained from standard 
mathematical tables without any additional work. It has been 
found however that the same procedure would not produce the same 
advantages when applisd to the adjustment of sides of a doubly 
braced quadrilateral. In the case of the quadrilateral as in 
equation (1.67) the geometric condition is:
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Aq_ + dA]_ + A2 + dA2 » A3 4- dA^ + A4 + dÂ ., 
which requires that;

(Â _ + t±2) + d(A^ + A2) = (Â  4- Â ) + d(A^ + Â )

to he able to apply the log. difference, which would be:
log.(A^+Aj) + 5(Ai+A2)d (Al+i2̂  = log.(A3+A4) + 6 (434.44)6^ - ^ )  

However due to the fact that,

At +dAT =V(7i d.a+^+dc) (s_a+db+!j1o,-da) (s_bHda+do-db) (B_0+da+d|-do)

Ao+dA9=V( s 1 t) (s-b da+d.|ffd.'b) (s_e i db+ti g-rtft) (s-f i dbtdf-df)

The quantity[ log (A-L+A2) + 6 (A-L+A2)d^ l +A2 ^  ca în0't ^e obtained

without great effort as it requires using the log. difference of 
the sum of two quantities, which does not exist in mathematical 
tables* Hence the simplification intended by using equation 
(1.89) cannot be reached.

The alternative solution given by (1.68) can be obtained 
from the equation (A-j+Ag) - (A^+A^) = (dA^+dA^) - (dA^+d^)

This has the advantage of giving the corrections directly, without 
the necessity of going to tables to obtain the log. differences.

1.5. CHARACTERISTICS OF AN APBX

The question of selecting which apex should be used for 
the adjustment of the doubly braced quadrilateral raises some 
interesting points. From [73] and due to Murphy, the following 
is quoted:”In practice the condition equation having the largest 
coefficients should take priority of selection in the adjustment 
and so it follows that the condition equation should be formed 
with respect to the apex of the triangle of smallest area. This 
conclusion is exactly the opposite to the view expressed by Dr. 
TArczy—Homoch and the former recommendation made by Murphy and 
Thornton-Smith, while being correct for the majority of figures,
cannot now be adopted as a general rule”.

To find out which of these two consideration is acceptable 
a special study of the problem has been carried out in the following.
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1.5.1. riathomatical Considerations

Consider angle A, obtained by calculation from observed 
sides a, b, and c in the triangle ABC figure 1.2, in this case 
we have:

cosA b2 + c2 - a2
2.b.c

Differentiating with respect to a, b, and c we have

- sW t  = -

- sinA.AA = _Ji_.cosC3b b.c
- sinA.§A = -J=L_.cosBdc b.c

denoting M  + |A + g| =

Therefore from (1.94) and (1.95) we have:

dAP v n = -  £---(cosB + cosC - l)a>D>° 2.area

(1.94)

(1.95)

(1.96)

B

;

D

Figure 1. 12

Table 1.3 gives the change in the different angles of 
the doubly braced quadrilateral ABCD, figure 1.12, witji respect 
to the change of the sides a, b, c, d, e, and f. It also shows 
the area of each component triangle of the quadrilateral ABCD.
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triangle area
sq. units angle COS change in angle 

according to 
equation 1.96 (rad

Bl 0.959 607 + 0.2279
1 ABD 3 D2 0.000 0 00 - 0.2792

A 0.316 228 +
2= 0.0513

0.0000

b 2 0.894 428 + 0.2871
2 BOD 3 0 - 0.316 228 - 0.6015

D.
± 0.707 107 +

2=
0.3144
0.0000

B 0.707 107 + 0.1310
3 ABC 5 Cl 0.000 000 - 0.2620

A2 0.707 107 +
2=

0.1310
0.0000

c2 C.943 684 + 0.8127
4 : ACD 1 D - 0.707 107 - 1.8853

l

\

Al 0.894 428 +
2=

1.0726
0.0000

table 1,3

Table 1.4 gives the difference between the compound angle 
and the rum of its two individual component angles as computed 
from the known sides given in six figures. This table also gives 
the difference between the change in the compound angle and the 
sum of the changes in its two individual component angles, due 
to equation(1.96) • In both cases the difference at every apex is 
expressed as a percentage of the largest difference found at a 
particular apex, in this case apex D.

Anglg
0
(c

1 11
alculated)

Change in angle due 
to equation 1.96 (rads.)

Al 26 35 09.2 + 1.0726
A, 44 58 56.5 + 0.13102

(A 3+A 2) 71 34 05.7 + 1.2036
! A 71 77 51.1 - 0.0513t
Difference 00 00 14.6 + 1.1526
j Diff. as 0/oage 59.8 60 1
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Angle O t It

(calculated)
| Change in angle due to 

equation 1.96(rads.)

B1 18 26 08.5 + 0.2279
B2 26 33 19.4 + 0.2871

(B3+B2) 44 59 27.9 + 0.5150
B 4.4 59 22.8 - 0.1310

Difference 00 00 05.1 + 0.3840
Diff. as 0/oage 20.9 20

Cl 90 01 40.4 - 0.2620

° 2 18 27 05.9 + 0.8127La
(C1+C2) 108 28 '46.3 + 0.5507

c 108 28 31.7 + 0.6015
Difference 00 00 14.6 + 1.1522

Diff. as o/oage 59.8 60

Di 44 58 09.0 + 0.3144
Do 90 00 00.0 - 0.2792

(d x+d 2) 134 58 09.0 + 0.0352
i

D 134 57 44.6 + 1.8853
) Difference 00 00 24.4 + 1.9205
Diff. as o/oage ! 100 100 | 1

table 1.4
Inspection of the set of results in tables 1.5 and 1.4 

shows that:
(i) A special geometric condition is always satisfied, as shown 

by the zero sum of the effects of the three sides of the * 
triangle on the three angles of this triangle, as shown in 
table 1.3. This condition is explained in the following: 
Consider equation (1.96), where,

- dAo b c =   (cosC + cosB - l) .....  (I),
9 9 2.area

- dB -u = 10 (cosA + cosC - l) ......  .(II)a,b,c 2.area
- dC v " — — 2— .(cosA + cosB - l)   (Ill)a,b,c 2.area
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Adding (i), (II) and (ill), we have?

(dAa,b,c + dBa,b,c + dCa,b,c) = (a.cosB + a.cosG
<L • a r c d

+ a 4- b.cosA + b.cosG + b + c.cosA + c.cosB ■+• c)
= 1 r̂ (a2+b2-c2) j. ^(a2+c2-b2)2.area 2.jl. b 2.^.c a

+ #(b2+c2-a2) + #(b2+a2-c2) ,
2.J6.C T 2.j«.a "

^(e^+b^-ag). <<(c2H-a2-b2) _ -i
2^7b T 2.j?.a 0J

_ rb2+a2-c2+c2+a2-b 2-2a2 a2+b2-o2+c2+b2-a2-2b2- < • 5S + -------5T5------- +
ag±P2-b2+b2+o2-a2-2c2] = [o+o+o] = 0

(2) Comparing columns 2 and 3 in table 1.4? it may be noticed 
clearly that the relationship between the discrepancies at 
the different apices of the quadrilateral is the same, whether 
this discrepancy is due to computation of angles, or due to 
the change in the angle with respect to tho change in the sides 
of a triangle.

(3) The sum of the smallest and largest differences is equal to 
the sum of the other two values. In other words the sum of 
differences concerned at two opposite apices equals the sum 
of the diffcrane's at th other two opposite apices.

(4) largest area is associated with the smallest apex, and the 
smallest area with the largest apex (table 1.5)•

(5) Largest difference between the compound angle and its two 
individual components (and hence the 100 percent) is associated 
with the large angle, and the smallest with the small angle 
(table 1.5)

Triangle 1
.

2 3 4 ’

Area (unit)2 3 3 5 1
1 Apex A c B D

Anglo 71° 33* 51" 108° 28' 32” 44° 59f 23" 134° 57*45"
Diff. as !
o/oagc j 60 20 100 »

table 1.5



- 47 -

1*5«2. Effect oF the Shape of Different Figures

Figure 1.13 is 
obtained by calculation 
of sides from coordina
tes. Using equation 
(1.96), and the calcul
ated angles at the 
different apices,results 
are shown in table 1.6

oiolOo\oO rn
I CM

o

e = 1/325 00
D

Figure 7. 13

i
Angle

.. «—  »
(calculated)

1 dAq V. /■» e t c.. 
(radians)

j A of triangle with 
apex at angle... £

A1 58 17 12.16 + 0.0039
A 56 — 19 02.64 + 0.0233dL

94 36 14.80 + 0.0272 1 103.5 unit^
A 94 36 09.84 - 0.0428

I Difference 00 00 04.96 + 0.0700
Diff. as.• 81.60 80.10

.

El 39 43 58.00 + 0.0224
®2 47 .30 .51.42 + 0.0296

(Bl+B2) 87 14 49.42 + 0.0520 104 unit
B 87 ,11 ....43.34 - 0.0354

Difference 00 00 06.08 + 0.0874
Diff. as.. 100 100

Cl 56 26 13.28 + 0.0120
°2 46 12 18.04 + 0.0128 0

(c1+c 2) 102 38 31.32 + 0.0248 107 unit^
0 102 38 25.53 - 0.0605

Difference 00 00 05.74 + 0.0853
Diff. as., j 94.40 97.6

Di 29 50 42.40 + 0.0309
d 2 54 39 52.20 + 0.0204 0tL

(Dq+D2) 75 30 34.60 + 0.0513 133.5 unit
D 75 30 29.42 - 0.0167

Difference 00 00 05.18 + 0.0680
! Diff. as.. 85.20 j 77.80

* A is the area

table 1.6
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Some other remarks may he made here:
„!_) -ihe largest and smallest angles (apices) are not associated 

with the smallest and largest area repectively. It may he 
noted that this is quite experience opposite to (4) given in 
1.5.1

2) The largest difference between the compound angle and its two 
individual components is not associated with the largest angle, 
nor the smallest difference with the smallest angle, which is 
contrary to point (5) given 1.5*1.

5) There is still a constancy of the percentage difference between 
the sum of the individual angles and the compound angle in any 
figure, taken as a percent of the largest difference of the all 
angles of the figure.

1.5.3* Application to the Doubly Braced Geodetic Quadrilateral

Equation (l.96) has also been applied to the observed 
geodetic quadrilateral figure 1.3 used by Murphy and Thomton- 
Srnith, [70], in which all sides have been observed. In order to 
show the effect of the adjustment on the percentage ratios, the 
observed and adjusted sides have been used. Angles are obtained 
by calculation from both observed and adjusted sides, then 
comparison is made for both cases. Observed sides are used in 
equation (1.96) to give dAĝ  ^ c.
For the quadrilateral ABCD, figure 1.3 we have the following:

1 side observed adjusted |

a 69 847.62 69 847.52 i
b 83 587.77 83 587.91
c 44 679*24 44 679.06 i
d 102 017*34 102 017.55 !
e 65 824*23 65 824.07
f 94 277*10 94 277.02

table 1.7
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Calculation of the relationship between the misfits at each 
apex.

Angle (dAa,b,cetc*«) xlO°• radians
0 ,

calculat
observed

it
ed from 
sides

0 t «
calculated from 
adjusted sides

A + 6.708 32 18 19.65 32 13 18.87 !
A +"3.t.5?5 42 55 01.95 42 55 01.55

(A +A ) +10.103 75 13 21.60 75 13 20.42
A -3.179 75 13 _ 19.57 75 13 20.60

Difference +13.282 - 02.03 -00.18
Diff. as#. — 33.7 36

B +23.072 27 42 19.78 27 42 16.68
B - 0.068 63 19 26.50 63 19 co•CM

(B +B ) +23.004 91 01 46.38 91 01 42.55 |
L B -10.575 91 01 41.21 91 01 42.99
Difference +33.579 +05.17 -00.44
Diff. as.. 84 ' 85.8 88

C + 3.867 56 39 59.13 56 39 58.14
C - 4.122 77 14 02.85 77 14 0 r\> . 01 o

: (c +c ) - 0.255 133 54 01.98 133 54 00.64
0 -40.070 133 53 .55.96 133 54 01.14

Difference +39.815 +06.02 -00.50 |
! Diff. as••i 100 100 100

D +16.997 I 18 23 44.25 jl3 23 42.17
i D + 3.247 i 41 27 13*91 41 27 13.53
1 (D +D ) +20.244 ! 59 50 58.18 59 50 55.70 ;

D + 0.727 j 59 50 55.20 59 50 55.95
j Difference +19.517 +02.98 -00.25 :
i Diff. as.. 49 iI 49.5 \Ni 50 -------

table 1.8

It should be noted that area of the triangle with apex at 
A is the largest area, while that with the apex at C is the 
smallest area# Also the largest percentage is associated with 
the largest angle but the smallest is not associated with the 
smallest angle# As dAa b̂ ĉ is derived from the observed sides, 
the percentages resulting from observed tsides are very close to 
those obtained by dAa>b>c. Although the difference between the 
compound single and the sum of its two individual components 
obtained by adjusted sides arc negative (opposite to the signs
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of the corresponding differences in the case of observed sides) 
the percentages of this difference is still the same#

1.5*4 Triangles with Different Area and Shape 

Consider equation (1.96),

“ 2^?i5(oos3 + oosC "
In this equation, dA represents the rate of change in angle A 
with respect to the change in sides a, b, and c. For simplicity 
a, b, and c are considered to have the same change.

The maximum and minimum rate of change in angle A with 
respect to the changes in sides a, b, and c will be obtained at 
the following casess
(l) The rate of change will be maximum (infinity when the tangent 

to the curve is parallel to the dA axis) when the area of the 
triangle is infinitesimally small (infinity rate of change 
when the area of the triangle is equal to zero). A maximum 
value can also be obtained when any of the three angles of 
the triangle has its cosine = + 1, (i.e. the angle is 0° or 
180°), which means that the triangle will be a straight line, 
or in other words, when a = b + c. This can be proved by 
the following

Let A be the area of the triangle ABC figure 1.2. 
Differentiating equation (l.6l) with respect to a, b, and c 
pm A for the maximum and minimum areas equation (1.97) has to 
be satisfied.

- a^ - b^ - c-̂ + b?a + b?c + c?a + c?b + a?b + a?c = 0
i.e.

a2(b + c - a) + b^(a + c — b) + c^(a + b — c) = 0
 ........(1.97)

Equation (1.97) can only bo satisfied if a, b, and c are 
zero, which gives a minimum area, and the triangle in this 
is reduced to a point. Also equation (1.97) will be zero 
if oach quantity between brackest is zero, which can be 
achieved only if a = b = c = 0.
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Also if we consider equation (1.76), where the area is a 
function of b, c, and angle A, then differentiating with 
respect to b, c, and A, the area of the triang3.e can be 
maximum or minimum if,

b.sinA + c.sinA + b.c.cosA = 0  (1.98)
The left hand side of the equation can be zero if,

- cotA = fo- ,+ c   (1.99)b.c
It can be seen that equation (1.99) can only be valid if both 
sides are zero, i.e. b = c = 0.

In fact b, and c must always be positive or zero, and thus 
the quantity (b+c)/bc should be always positive and less than 
unity if neither of the two sides is unity, and zero if b and 
c are zero. Thus only a minimum area for any triangle can be 
obtained, and hence only the maximum rate of change in the 
angle A with respect to the changes in the sides a, b, and c 
can be considered through the area of this triangle.
However, zero and infinity areas for a triangle are not $ft 

practical considerations, especially if we have a real triangle 
with three known sides. The above discussion shows that the 
area of the triangle does not have much to do with the 
selection of the apex and hence with the condition equation 
for the adjustment of the doubly braced quadrilateral.
Besides, there are cases where the area remains constant and 
the effect on the quantity dA is only due to the quantity 
a(cosB + cosC - l), e.g. triangles having the same base and 
height, and different shapes.

(2) On the other hand the equation (1.96) will be zero (i.e. 
having the tangent to the curve parallel to the da axis) 
when the quantity (cosB + cosC - l) is zero. This will be 
obtained when A = B = C = 60°• In this case (cosB + cosC — l) 
will be equal to (0.5 + 0.5 - l) = 0. That is to say, a 
minimum rate of the change in the angle A with respect to 
the changes in the sides a, b, and c will be obtained for 
the equilateral triangle, or when the three angles of the
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triangle are about to be equal. The minimum rate of change 
does not depend only on equal angles but also on the sum of 
the cosines of the two angles B and C, or in other words, on 
the shape of the triangle.

For the angles B and 0 in the quantity (cosB + cosC - l)
let the following be considered;

B^cosB = !-■*• (1.100)
B is in radians, (expression 1.100 is due to Taylor's series), 
therefore:

2 2
cosB + cosO - l = l - § + l - § - l = 02 2

i.e. B2 + C2 = 2   (1.101)
Equation (1.101) can be satisfied by any point on the circle 
of radius figure 1.14* One of the solutions will be

B = C = Ir ^  60°. C
Also a maximum rate of change in 

angle A with respect to the change in 
the three sides of triangle ABO, can be 
obtained by considering the quantity 
(cosB + cosO - l). In this case cosB = 
cosC =0, i.e. B = C = 90°. Maximum 
rate of change can also be obtained if 
cosB = cosC =1, in this case B = C = Oj 
and the area will be minimum an .zero.

Therefore, the maximum and minimum rate of change in the 
angle A can be obtained by considering the quantity(cosB + cosC -l) 
rather than by considering the area of the triangle. For each 
triangle in the doubly braced quadrilateral dA is supposed tp be 
affected by the shape of this triangle. The quantity dA of a 
compound angle will be different to the sum of the two individual 
components of dA.

For the' different quadrilaterals considered it has been 
shown that the difference between the rate of change in the 
considered angle with respect to the change of the different sides 
of a compound angle and the sum of the differences of its two

Figure 1.14
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individual components havo special relationships for all apices 
of tno quadrilateral• These special percentages are found to be
the same when the misfit between every individual, compound angle 
and its two components arc treated in the same way, i.e. both 
sides of the selected condition equation have this special 
relationship. It follows from the previous discussion that 
variation in the differences of the rate of change will be expected 
from the same individual compound angle when it has two different 
individual components.

As for the selection of the condition equation to be used, 
according to Murphy and Thornton-Smith [70] angle 0,figure 1.3 
should be used. This does have a percentage of 100, and is 
associated with the triangle of the smallest area. Sometimes, 
however it is not, as shown in the different cases tested above. 
Tarczy-Hornoeh and Hovanyi [109], recommended angle A for the 
adjustment of the same figure. This has the smallest precentage 
(33) and is associated with the triangle of the largest area in 
this case.

However, it has been shown that the same compound angle 
associated with the special area may have different percentage 
according to the shape of its two components, i.e. the percentage 
obtained is affected by the shape (cos3 + cosC - l) in each 
triangle and not by the area of this triangle.

1.5«5 Hffect of the Misfit in the Different Apices on the
Adjusted Figures

Using the misfit in the angles of the different apices in 
the condition equation suggested by Murphy, the following results 
are obtained.

corrections misfit at
B D

final act
ual values

- vr
+ b 
“ vc
+ Vj
- V,
- Vf

0.09626
0.13668
10.18500
0.20701
10.15849
10.07555

0.09741
0.13831
0.18722

0.09760
0.13858
0.18758

0.20949 j 0.20989 
0.16039 i 0.16070 
0.07646 1 0.07660

0.09640
0.13690
0.18528
0.20732
0.15873
0.07338

0.10
0.14
0.19
0.21
0.16
0.08

table 1.9
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Results shown in table 1.9, hardly show any practical difference, 
even though the corrections are of the order 0.01. It should 
also be noticed that corrections for sides using apex C are the 
largest corrections, while corrections for sides using apex A are 
the smallest. If we consider Ev , the minimum value will be 
obtained from the corrections due to the misfit at apex A.

pHowever the value Ev^ obtained using the other apices is for all 
practical purposes identical.

1.6 HEW CONDITIONS FOR ADJUSTING- HYBRID OBSERVATIONS

A possible solution for this problem has been given in 
1 .4.5.. as a further application to the use of the area condition 
for adjusting trilateration problems. In this section, observed 
angles and sides will be adjusted simultaneously assuming the 
same accuracy of observations, in both.

1.6.1. Errors and Corrections

Before applying any geometric condition, the distinction 
between errors and corrections is stated to be:-
(1) Errors. or errors of observations, are quantities beyond

any investigation or adjustment’s reach. They occur 
even with the most accurate tools, following the best 
known methods of observations. So it is impossible 
to avoid them during observations, or to find them 
during calculation and adjustment.

(2) Corrections, these are quantities obtained by satisfying
a special geometric condition, which tend to disperse 
the misfit between figures formed by the observed 
quantities and requirements of these geometric 
conditions. These corrections have nothing to do with 
the real errors, but it could be said that, applying 
the least squares solution to these problems will 
produce corrections as near as possible to these 
errors [78].
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For adjusting a quadrilateral whose sides have been 

observed, the corrections obtained come out in a special 
pattern (the quadrilateral here is treated as a special case 
of the centered figure, and for this see sec. 1.2.1.2a ).
This special pattern of signs does not give much chance for 
the validity of the statement about the relationship between 
the corrections and the errors if the problem is solved by 
the least squares method. The least squares method in this 
case supposes a different sign for the two diagoneJLs, while 
no one can say that errors follow any rule except the rule of 
normal distribution. However,the sign convention here is only 
due- to vector# analysis. Besides, the adjustment of pure 
trilatoration is found to give weak solution from the

A

estimate of the coefficient of correlation point of view 
(see 1.2.3*)• For this, angles have to be included in accurate 
work#, rather than observing sides only.
1*6.2. Condition Equations for Ad .justing Hybrid Observations

Using equation (1.96) for obtaining the change in the 
three angles of a triangle with respect to the change in the 
three sides we have:

dA •> . + dB , dC , =a,b,c a,b,c a,b,c
1 [a(cosB + cosC - l) + b(cosA + cosC - l)

2.area + c(00gA + cosB _ i) ] _ o
Rearranging terms we have:

dA v + dB_ , + dC ■> _ =a,b,c, a,b,c a,b,c

•s-i  [a.cosB + b.cosA - c) + (a.cosC + c.cosA2.area u
-b) + (b.cosC + c.cosB -a)] = 0 ..(1.102)

Equation (1.102) has been proved in 1.5*1. In this equation 
it can be seen that each quantity within the inner brackets 
represents the geometric condition for a side, that the sum of 
the projections of the two sides of a triangle on the third 
side must be zero. Therefore for tho whole triangle the 
three quantities between the three inside brackets must be 
zero •
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Applying the geometric condition given in equation (1.102) 
means that we will be satisfying:-
(1) A direct geometric condition for each side, e.g.

a.cosB + b.cosA - c = 0, and
(2) A geometric condition that the sum of the changes in the 

three angles with respect to the change in the three sides • 
has to be zero. That is, the sum of the three angles of the 
triangle is always 180°. This is exactly the angle condition, 
but in the form of the sum of the derivatives of the three 
angles instead of the sum of the three angles themselves.

In order to obtain the corrections using equation (1.102), 
its individual components will be considered separately to give 
a condition for each side, thus:

b.cosC + c.cosB - a = 0 .......(1.103a)
a.cosC + c.cosA - b = 0..................(1.103b)
a.cosB + b.cosA - c = 0 ........(l.103c)

which gives a set of linked geometric conditions for angles and
sides.

For any triangle in which all sides and angles have been 
observed equation (1.103) can be taken as the geometric conditions 
which have to be satisfied by the adjustment of each triangle in 
the net. Being observed quantities, sides and angles will always 
contain errors of observations, so corrections have to be introduce 
in these equations. To allow for the corrections of the five 
observed quantities in (1.103c) we have:

(a + 6a).cos(B + 6B) + (b + 6b).cos(A + 6A) - (c + 6c) = 0
.........(1.104c)

Expanding this equation results in:
(a + 6a)(cosB.cos6B - sinB.sindB) +
(b + 6b)(cosA.cos6A - sinA.sin6A) - (c + 6c) = 0 ..(1.105c)

If we consider the quantities 6B, and 6A as being of small 
dimensions, then cos6B =1, and cos6A =1. Also, sin6A = 6A 
and sin6B = 6B, where 6A and 6B are in radians. Furthermore we 
may neglect the product of small quantities 6b and 6A (i.e
6b.6A = 0), and of 6a and 6B (i.e. 6a.6B =0), so that:
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(a + 6a)(cosB - 6B.sinB) + (b + 6b)(cosA - SA.sinA)
- (c + 6c) = 0  (1.106c)

Therefore,
(a.cosB + b.cosA - c) + (cosB.6a + cosA.db - 6c) -

- a.sinB.dB - b.sinA.6A = 0  (1.107c)
To convert 6B and 6A to angular measure., these must be multiplied
by sin 1", which has the advantage of providing coefficients of 
the same rank as the coefficients of 5a, 6b, and 6c in the same 
equation.
Substituting kc for (a.cosB + b.cosA - c), the final form of 
equation (1.107c) will be:

cosB.6a + cosA.6b - 6c - a.sinB.sinl”.6B -
- b.sinA.sinl".6A + kc = 0 ....... (1.108c)

The corresponding set of condition equations for the doubly 
braced quadrilateral figure 1.15 will be:

A

B

D
Figure /. 15
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cosl.6a + cos4*6c - 6b - a.sinl.sinl",61 -
- c.sin4.sinl" ,64 + k-^ = 0 .... 

cosl.6b + cos(2+3)*6c - 6a - b.sinl.sinl".61 -
- c.sin(2+3).sinl".(62+63) + kal = 0 ....j..(1.109-1) 

cos(2+3).6a + cos4«6b - 6c - b.sin4*sinl".64 - j
- a.sin(2+3).sinl".(62+63) + kcl = 0  ....]

cos3«6c + cos6.6e - 6d - c.sin3.sinl".63 -
- e.sin6.sinl".66 + k^2 = 0 

cos3.6d + cos(4+5)*6e - 6c - d.sin3.sinl".63 -
- e.sin(4+5).sinl".(64+65) + kc2 = 0 .... 1..(1.109-2)

cos(4+5).6c + cos6.6d - 6e — d.sin6.sinl".S6 —
- ciu8izi(4+5 )'• sinl”. (64+65) + ke2 = 0

• • •

• • • •

# • « t

cos5*6e + cos8.6f - 6b - e.sin5*sinl".65 -
- f.sin8.sinl".68 + k ^  = 0 

cos5*6b + cos(6+7).6f - 6e - b.sin5.sinl".65 -
- f.sin(6+7).sinl”.(66+67) + kg^ = 0 .... )..(l.109-3)

cos(6+7).6e + cos8.6b - 6f - b.sin8.sinlM.68 - )
- e.sin(6+7).sinl".(66+67) + kf^ = 0  . ...|

cos7.6f + cos2.6a - 6d - f.sin7.sinl".67 -
- a.sin2.sinl" .62 + k ^  = 0 

cos7.6d + cos(l+8).6a - 6f - d.sin7.sinl".67 -
- a.sin(l+8) .sinl". (61+68) + k ^  = 0 .....).. (l.109-4) 

cos2.6d + cos(l+8).6f - 6a - d.sin2.sinl".62 -
- f .sin(1+8) .sinl". (61+68) + ka/̂  = 0

where the component triangles are:
triangle ABC = (l), triangle BCD = (2)
triangle CDA = (3), and triangle DAB = (4)

An advantage of using these condition equations (1.109) over
other sets,such as Murphy's [71],is that the coefficients of
angle corrections are the sjame in each equation. For example
in triangle (l), figure 1.15, we have:

c _ a ..... 
sinl sin4
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i.e. c.sin4 = a.sinl
where c.sin4 is the coefficient of 64 and a.sinl is the coefficient 
of 51 in the first equation in the set (l.109-1). Thus the amount 
of computation involved in making use of these coefficients will 
be greatly reduced.

1*6.3. Relative Weights Applied with Condition Equations (1.109)

The fundamental requirement of the least squares method is 
that the sum of the squares of the residuals shall be a minimum,
(or if weights are used, the sum of the weighted squares of the 
residuals shall be a minimum). It is also known that only 
similar quantities can be summed up in this way. The agreement 
between the solution of equations (1.109) and the concept of the 
least squares is given by the following:- 
(l) To accept the principle of adjusting the dissimilar

quantities in a single least squares solution, the explanation 
given by Lilly [63] is very good, as it reduces the dissimilarity 
by simply dividing each quantity by an error of the same 
dimensions. In this case there is no need to use "the sum of 
the weighted squares of the residuals” as a concept of least 
squares, as the ”sum of the squares of the reduced residuals” 
will be more suitable.

(2) Different probable errors can be assumed, but the one to be 
preferred is that requiring less computation, on the condition 
that results obtained by this solution must be just as good 
from practical point of view as results obtained by other 
assumptions such that of Lilly [63].

The assumption of the same relative weight for angles and 
sides depends on the fact that the same accuracy is achieved 
in measuring sides and angles in every type of net, i.e. in 
primary nets the probable error is assumed to be 1” in every 
angle and 1 ft. for each side, or one part in 206 265.
Similar assumption may be made for secondary nets, (see sec. 
1.3*4.)
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(3)The solution by least squares method will then give undimensioned 
corrections to angles and sides, which need to he multiplied 
by 1" for angles and 1 ft. for sides to give practical 
corrections. In fact this will not require any extra work.

Corrections obtained from the new set of condition equations 
are examined in the following section.

1.6.4* Examples

Table 1.10 gives all the data obtained from the field with * 
reference to figure 1.14*

Plane observed angles Plane observed 
sides

1
0

32 18
J!

19.05 a 69 847.62 ft.
2 63 19 25.20 b 83 587.77 ...
3 27 42 17.73 c 44 679*24 • • •
4 56 39 56.65 d 102 017.34 **.
5 77 14 02.48 e 65 824*23 ...i
6 18 23 44.13 f 94 277.10 ...
7 41 27 12.40
8 42 55 01.88
2+3 91 01 43.36
4+5 133 53 §9.64 table 1.10
6+7 59 50 56.78
8+1 75 13 12.10--

The adjustment of triangle (4) of the quadrilateral, figure 1.14, 
gives the following results in table 1.11, which also compares 
them with those obtained by Murphy for the same problem.

Corrections from equation (1.109) Due to Murphy
6f - 0.12 ft. - 0.11 ft.
6d + 0*33 ... + o.36 ...
6a - 0.32 ... - 0.17 ...
62 + 0.43" + 0.39”

6(8+1) + 0.35” + 0.08”
67 + 0.52" + 0.83”

table 1.11
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Applying the set of conditions newly obtained to adjust the 
whole quadrilateral, figure 1 .14, results obtained and compared
with those obtained by Murphy, Lil3.y, and Thomton-Smith are 
given in table 1.12.

Correction Present
solution

Murphy's 
solution Thornton- 

Snith's sol. Lilly's
solution

6a - 0.44 - O.31 - 0.39 - 0.45
5b + 0.16 + 0.24 + 0.21 + 0.18
60 + 0.10 4- 0.03 + 0.07 + 0.12
6d + 0.31 + 0.31 + 0.33 + 0.35
6e - 0.08 - 0.05 - O.O4 - 0.07
6f - 0.15 - 0.12 - 0.12 - 0.13
6"1 + 0.58 + 0.27 + O.45 + 0.66
6" 2 + O.46 + 0.54 + O.48 + o. 42
6 "3 + 0.07 + 0.03 + 0.09 + 0.08
6" 4 - 0.16 - 0.08 - 0.08 - 0.22
6"5 - 0.50 - 0.56 - 0.54 - 0.49
6"6 - 0.87 - 1.05 - 0.98 - 0.87
5"7 + 0.29 + 0.53 + 0.37 + 0.24
6”8 ♦ - 0.03 - 0.05 0.00 - 0.02

table 1.12
Comparison of Results
i) These results when compared with those of Murphy can be. seen 

to be slightly different. They are however identical to those 
of Thomt on-Smith and Lilly. Thornt on-Smith obtained his by 
using the same basic information, first adjusting angles and 
then using the difforence between the side values derived from 
the adjusted angles and the observed sides to obtain the 
corrections to the sides. This avoids the problem of selecting 
relative weights. Lilly used his method of simultaneous 
adjustment already discussed (sec. 1.5.2.1.), allocating a 
probable error 0.6 secs, for an angle, and 1:200 000 for sides.

ii) For all the triangles, the corrections for each angle are 
summed to see if they satisfy the usual angle condition (180°) 
which has not been mentioned in the new solution. In each 
case, there is only negligible departure from this.

iii) When the adjusted sides and angles are applied to the basic
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conditions,
a.cosB + b.cosA - c = 0,
a.cosG + c.cosA - b = 0,
b.cosG + c.cosB - a = 0.

Bor triangle (l) of the quadrilateral in the figure, the 
following results are obtained:

present sol.
a.cosl + c.cos4 - b = - 0.01
b.cosl + c.cos(2+3) - a = 0.00
a.cos(2+3) + b.cos4 - c = + 0.02

iv) The present corrections have been obtained directly in the
required dimensions, whereas with the other solutions extra 
work is required to reach the final answers, 

v) In triangle ABD which has been adjusted twice, four sets of
results aro given in table 1.13 for comparison;

Murphy’s sol. 
+ 0.07 
0.00 

+* 0 • 02

!
Corrections Adjustment of triangle i

1Adjustment of doubly 
braced quadrilateral

(l) present (2) Hurphy j (3) present (4) Murphy
6f ft. - 0.12 - 0.12 - 0.15 - 0.13
6d . • • + 0.34 + 0.36 + 0.32 + 0.32
5a ... - 0.34 - 0.57 - 0.44 - 0.32
6 ”2 + 0.43 + 0.39 + 0 • 46 + 0.55
6”(8+1) + 0.35 + 0.08 + 0.54 + 0.21
5"7 + 0.52 + 0.83 + 0.30 + 0.54

table 1.13
The agreement between the set of results given by (l) 

and those given by either (3) or (4) is much better than the 
agreement between these and the set of results given in (2)# 
In particular the corrections to the angles is triangle ABD 
given in (2) are quite different to those obtained when 
solving the doubly braced quadrilateral. The corrections to 
side a are quite different too.

Although the results obtained by satisfying the geometric 
condition of a triangle should be different to those obtained 
by satisfying the geometric condition for the quadrilateral,
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this difference should not be very large. The fact that the 
same clement is observed once only does not allow two different 
corrections to be applied, especially if this difference is 
too large. The set of equations which provides two corrections 
for the same element which are only slightly different should 
be preferred.

It could be seen that corrections given in column (l) show
better agreement to those given in columns (3) and (4) than
that given in column (2). This agreement between corrections 
obtained for the same elements either by solving the triangle 
or the quadrilateral when using the set of conditions derived 
here leaves no doubt that they are more satisfactory for the 
adjustment of triangles when both angles and sides have been 
observed.

If we use the estimate for the coefficient of correlation 
between the system of real errors and the least squares 
corrections,

*= Vjg7n
where n = number of observed quantities,

nc= number of condition equations.
For a triangle with all sidvs and angles observed,

= v V Z  = 0.7

For a doubly braced quadrilateral with all sides and angles
observed we have = V9/14 = 0,8,q
It is clear that the corrections obtained by adjusting a 
quadrilateral should be nearer to the roal errors, but if 
the adjustment of a triangle gives closely similar corrections 
as shown above, it indicates that It may not be necessary to 
form quadrilaterals. The difference in the coefficient of 
correlation which equals 0.10 has much more effect in Murphy1s 
solution, which gives priority to the use of the doubly braced 
quadrilaterals. But in this new set of conditions there is 
no real advantage in using quadrilaterals, as triangles will 
give similar results, as well being simpler and easier to
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adjust. Also from the economy point of vievr,it would bo morc- 
economic to observe triangles instead of spending time and 
mon.ey in forming doubly braced quadrilaterals for slightly more 
consistent results.

1*6.5* Commutation of the Side Corrections in the Successive
Adjustment Suggested by Thomt on-Smith

Thornton-Smith finds that solution of nine equations for 
the adjustment of a doubly braced quadrilateral represents a 
herculean task [116]• To avoid this enormous labour, he offers 
an alternative for the solution of this problem. In his solution 
adjusted angles are used to obtain the required corrections to 
observed sides.

Mention has been made in 1.6.3* above of the identity of 
the results obtained using the present solution with those obtained 
by Thomt on-Smith using his method. This identity created the 
possibility of deriving a formula for adjusting sides in the 
case of pre-adjusted shape.

1.6.5*1* Condition liquations for Adjusting Sides of the Doubly 
Braced Quadrilateral of Prc-adjusted Shame

For the purpose of simplification, adjusted angles obtained 
from a classical triangulation problem are used.. For example, 
the doubly braced quadrilateral,figure 1.14,is adjusted by solving 
four condition equations. The corrected angles obtained are then 
inserted in equations (1.109)*

The condition equations to be solved are those which have 
been used in (1.109), with the modification that as previously 
adjusted angles have been used, the corrections 61, 62, ..., 68 
are zero. Equation (1.108) will now have the form:

6a.cosB + 6b.cosA - 6c + = 0  (1.110c)
where k* = a.cosB + b.cosA - c ...etc.
The equations derived for the doubly braced quadrilateral, figure
1.14, corresponding this case will be:
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cosl.6a + cos4*6c - 5b + k ^  = 0 .....(1.111-1*1)
cosl.Sb + cos(2+3)-6c - 5a + k^i = 0 .....(1.111-1*2)
cos(2+3) *6a + cos4*6b - 6c + k ^  = 0 .....(l.111-1.3)

cos3*5c + c o s 6.5g - 6d + k^2 = 0 .....(1.111-2.4)
cos(4+5)*6e + cos3.5e - 6c + k£2 = 0 ..*.*(1.111-2.5)
cos(4+5)*6c + cos6*5d - 6e + k^2 = 0 .....(1*111-2.6)

cos5*6e + cos8.6f - 6b + k-ĵ  = 0 .....(1.111-3.7)
cos(6+7).6f + 0085*613 - 6e + k ^  = 0 .....(1.111-3.8)
cos(6+7).6e + cos8.6b - 6f + kj^ = 0 .....(1.111-3*9)

cos7.6f + cos2.5a - 5d + k^4 = 0 .....(1.111-4.10)
cos(8+l).6a + cos7.6d - 5f + k^ = 0 ....•(I.III-4.II)
cos(8+l).6f + cos2.6d - 6a + = 0 .....(1.111-4*12)

The number of equations given in (l.lll) is twelve, and should 
be reduced to only five equations. This is because in the 
quadrilateral of pre-adjusted shape with six measurements, only 
one of these is required to give the size, the other five being 
redundants, and thus five conditions only required.

In order to reduce the number of equations in (l.lll) to 
the required number, it should be noticed that the unit error 6d 
affects both triangles (2) and (4), thus by adding equations 
(1.111-2.4) and (1.111-4*10) the effect of unit error 6d on the 
whole quadrilateral will be obtained. This could be done for 
all the other sides, which leads to six equations instead of the 
given twelve, as can be seen in figure 1.16.
These six equations will be:

cosl.5b + cos(2+3)*6c + cos2.5d + cos(l+8).6f - 2.6a + ( ^ 1+ ^ 4)=°
cosl.6a + cos4.5c + cos5*6e + cos8.6f - 2.6b +
cos6.6b + cos(2+3)*6a + cos3*6d + cos(4+5)*6e - 2.5c + (k^+k^JsQ
cos3.6c + cos6.6e + cos7*6f + cos2.6a - 2.6d + (k^2+k ^)=0
cos6.6d + cos(4+5)*6c + cos5*6b + cos(6+7)*6f - 2.6e + ( k ^ + k ^ ) ^
cos8.5b + cos(6+7) *6e + cos7*6d + cos(8+l).6a - 2.6f + (k^+k^)=0

 (1.112)
The five required equations could be selected as, the two diagonals
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B

D D

(i) Common Side a (ii) Common Side b (Hi) Common Side c

D

B

D

B

D

(iv) Common Side d (v) Common Side e (vi) Common Side f

Figure 1.16

and any other three of tho other four*
The solution of the problem is obtained here, with the 

five equations for the common sides a, b, c, d, and f. Results 
given below in table 1.14> which also gives the comparable 
figures obtained from the original solution of equation (1.109) 
and those obtained by Thornton-Smith.
Corrections From equation

Ti*ii2)
Frojj^ejua^ion By Thornton- Smith sol.

6a - 0.45 - 0.44 - 0.45
6b + 0.15 + 0.16 + 0.18
6c + 0.15 + 0.10 + 0.12
6d + 0.55 + 0.51 + 0.55
6e - 0.09 - 0.08 - 0.08
6f - 0.15 - 0.15 - 0.15

table 1.14
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It can be seen that when previously adjusted angles are 
used for the additional operation in the newly developed solution, 
corrections are obtained which are virtually the same as those 
resulting from a combined adjustment of sides and angles. There 
is also a close agreement between results obtained by this new 
solution and these of Thomton-Smith, with the difference that 
corrections here are obtained in an easy direct way.

1.6.5*2. Condition Equations for Adjusting Angles of the Doubly 
Braced Quadrilateral of Pre-Adjusted Size

The use of the adjusted sides for the adjustment of 
observed angles, i.e. adjustment of the pre-adjusted size, does 
not give the same advantages, as it requires the solution of the 
same number of equations as unknowns. In this case eight 
equations have to be solved, so that the number of equations is 
not reduced much from the nine equations which have to be 
solved in the simultaneous adjustment of the problem for angles 
and sides. Besides, the solution is based on the use of the 
adjusted sides which is known to be a rather weak solution as 
shown in the comparison 1.16.

Thus using equations (1.109) for the quadrilateral figure
1.14, for the adjusted sides and observed angles, we have the 
the following twelve equations:
a.sinl.sinl”.61 + c.sin4*sinl”.54 - = 0 .. (1.113-1*1
b.sinl.sinl”.61 + c.sin(2+3).sinl”.(52+53) - k^l = ̂  ••(1.113-1*2
b.sin4*sinl”.64 + a. sin( 2+3 )• sinl”. (62+63) - k”-̂ = 0 ..(1.113-1*3

c.sin3*sinl”.63 + e.sin6.sinl”.66 - k ^  = 0 ..(1.113-2*4
d.sin3.sinl”.63 + e.sin(4+5)•sinl”.(54+65) - k”2 = 0 ..(1.113-2.5
d.sin6.sinl”.66 + c.sin(4+5).sinl”•(64+65) - k”2 = 0 ..(1.113-2.6

e.sin5 .sinl” .65 + f .sinQ.sinl” .68 - kjĵ  — 0 ..(1.113-3*7
b.sin5.sinl”.65 + f*sin(6+7).sinl”•(56+67) - k”  ̂ = 0 ..(1.113-3*8
b •sin8.sinl”•68 + e.sin(6+7).sinl”.(66+67) - k ^  = 0 ..(1.113—3*9

f.sin7.sinl".67 + a.sin2.sinl".62 - k” = 0  ..(1.113-4*10)d4



-  68 -

d.sin7.sinl”.67 + a.sin(1+8).sinl”.(61+68) - k”^ = 0 ..(l.113-4.11)
d.sin2.sinl:j .61 + f .sin(1+8) .sinl” . (61+68) - k” = 0  ..(1.113-4.12)

Coefficients of 61, 62, ..., 68 are the same as before in (1.109),
because the effect of the adjusted sides is negligible. Only k” ,bl
•.•, k”^ have different values to those previously obtained in
(1.109). Eight equations out of the twelve given in (1.113)
have to be solved. Equations 2,3,5,6,8,9,11, and 12 are chosen
because they give a diagonal matrix representing observations of 
the angles in anti-clockwise direction, as follows:

a1 (61 + 62 + 63) - k”x = 0  ....
a2(62 + 63 + 64) - k ^  = 0 ....
0:3(63 + 64 + 65) kc2 = 0 ••••
a4(64 + 65 + 66) - k£2 = 0
a5(65 + 66 + 67) - k£3 = 0
ag(66 + 67 + 68) - = 0
a7(67 + 68 + 61) - k£4 = 0
a8(58 + 61 + 62) - k£4 = 0

..(1.114)

a is the coefficient of the corrections in each respective 
equations, e.g. = a.sinl”.sinl = c.sinl”.sin4 in equation 
(1.113-1.1)• The absolute term k” is taken as the difference 
between the sum of the projections of two sides of each triangle 
on the third and the length of the third side. For triangles 
(l), (2), (3), and (4) common sides a, c, e, and f are taken as 
the respective third sides.

The results of the angle corrections obtained by solving 
equation (1.114) compared with those obtained by solving (1.109) 
is given in table 1.15. table 1>15

Corrections Due to (1.109) Due to (1.114)
6”1 + 0.58 - 0.15
6” 2 + 0 • 47 + 0.65
6”3 + 0.07 - 1.04
6”4 - 0.17 + 1.52
6”5 - 0.51 - 0.04
6 ”6 - 0.87 - 1.93
6”7 + 0.30 + 1.14
6 ”8 - 0.04 - 0.33
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The corrections obtained are totally different to each other which 
does not allow the use of the set of conditions given in (1.114). 
These different results would appear to be due to the use of the 
adjusted sides obtained from a previous separate trilateration 
adjustment for the quadrilateral.

1.6.5-3* Comparison Between Methods of Adjustments

A comparison between all the possible solutions including 
those which could be obtained by using these newly developed 
methods is shown in table 1.16.
Lot: I- Adjustment of observed angles in the quadrilateral with

one known side left unadjusted, (the classical method 
of triangulation adjustment).

II- Adjustment of observed sides in the quadrilateral (a 
pure trilateration problem).

Ill- Simultaneous adjustment of I and II, using equations
(1.109).

IV- Adjustment of size for the pre-adjusted shape, using 
equations (1.112).

V- Adjustment of shape for the pre-adjusted size, using 
equations (1.114).

For the doubly braced quadrilateral we haves

Method No. of redundant 
observations No, of unknowns

■

.....*Estimate for coefficient of correlation
I 4 8 0.7
II 1 6 0.4
III 9 14 0.8

IV 5 6 0.9
V

.................

8
............. . . —

8 1.0

table 1.16

It should be mentioned that, for I, II, and III the 
estimate for the coefficient of correlation is true, as observed 
quantities are free correlated quantities. For IV, and V adjusted
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quantities are correlated quantities, hence the estimate for 
the coefficient of correlation will be affected by the estimate 
for the coefficients of correlation previously obtained .for I and 
II• Thus if;

0.7 I = estimate for the coefficient of correlation in I,
and 0.4 H =  II f
therefore,

0.9x0.7 I = 0.63 I = estimate for the coefficient of
correlation in IV,

and
1x0.4 II = 0.4 II = estimate for the coefficient of

correlation in V.
From the above comparison, methods of adjustment can be 

re-arranged in the following order of merit from the point of 
view of the estimate for the coefficient of correlation:

1) III-for angles and sides.
2) I-for angles only.
3) IV-for sides only, using equation (1.112).
4) II-for sides, whon sides are observed only.
5) V-this solution does not have any real advantage as

has been explained already.
Equation (1.109) is recommended for the solution of III, 

on the following groundss-
(i) Corrections for angles are very close to those obtained by 

solution I, i.e. the introduction of sides does not distort 
the original solution by I, (see Rainsford, sec. 1.3*2.1.)

(ii) Corrections to sides are close to those obtained by IV.
(iii) It allows the easy deriviation of a further method (IV), 

which simplifies the task of solving nine condition equations 
for the quadrilateral, if an electronic digital computer is 
not available for the purpose.
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2. INTRODUCTION

Mathematics is the logic language, by which different
physical phenomena in different fields in science are explained.
In Surveying some problems may be mathematically represented in
forms, which are popular in some other fields such as mechanics,
electricity, and structures. In particular, observations in
surveying are liable to errors, causing deformation in the nets
and errors in the positions. Corrections obtained by the least 

methodsquares^are found to be the solution nearest to the real errors 
[78], i.e. the corrected figure by this method will have the sum 
of the squares of residuals minimum. In mechanics, and structures, 
an elastic loaded frame reaches the equilibrium position at the 
state of minimum strain energy. That is to say the configuration 
which gives the least strain energy. Also in electricity, the 
balance of an electrical net is obtained with the least amount 
of energy conserved.

2.1. ADJUSTMENT OF TRILATERATION BY GRAPHICAL METHODS

A graphical method may be introduced to help obtain the 
coefficients for the correction equations, but the corrections 
themselves will be obtained by the usual way of solving the 
normal equations.

For trilateration Thomton-Smith [113] uses the calculated 
coefficient of one unknown to construct a graphical figure which 
will give the remaining coefficients. This is done in the 
following way:

For the quadrilateral ABCD figure 1«3, the ratio: between 
the different coefficients is given by:-

and to start with, one of these coefficients has to be calculated.

•ka : -kc = sinl^ : sinB2 : sinB^
■kc : -ke = sinC2 : sinC^ : sinC1
•ke : -kf = sinD^ : sinD^ : sinD2
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The original quadrilateral A3CD is then drawn to the right 
hand side so that an additional figure may be constructed to the 
left •

o>mCM

Figure 2.1

Corner C is selected, in the same way as apex was selected 
for the numerical solution of the problem [70]. BC! is produced 
towards B !. A line C ’A* parallel to BD is drawn from C1* A* is 
fixed after scaling on the length C !A T equal to the computed 
coefficient.

k^ = ^.sinB = 4*814 
B* and D ! will be fixed by drawing parallels to AB and DA from A'. 
Lastly the values of the coefficients other than k^ are obtained 
by scaling off the values of the other sides.
Plotting of the vector diagram is given in figure 2.1

The graphical plotting of the vector diagram is new to 
surveying but it has been used for some time in the theory of 
structures under the name of the force polygon, to obtain the 
axial forces in the pin-jointed elastic frameworks. However in 
the survey application by Thomton-Smith instead of using unit 
coefficient to decide the scale, the actual value is used which 
will give the required coefficients directly. Furthermore the 
sign convention followed in a survey networks is similar to that 
used in the theory of structures. In the latter, equilibrium at 
each joint results from having equal and opposite forces acting 
at this joint. This means that tension (or compression) must 
exist in the diagonal with positive (or negative) signs, while
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the forces in the other two members meeting and flanking the 
diagonal at the same joint have opposite signs,in this case 
compression (or tension) with the appropriate negative (or positive) 
signs. In Thornton-SmithJmethod the sign convention is explained 
by his statement ” At each of the four comers the directions 
on a diagonal must be balanced by the opposite directions on 
the two sides flanking it”.

2.2. SURVEY NETWORKS AND STRUCTURAL ANALOGY

The analogy between an observed survey net and a pin-jointed 
or rigidly-jointed elastic frame-structure, is used for the 
adjustment, when the latter structure has redundant members with 
an initial lack of fit.

From the point of view of the analogy between survey nets 
and structural problems, connections and joints can be divided 
into the following:-
a- Pin-Jointed elastic frameworks: in which the frame rigidity 

is obtained by deciding the length of the component members. 
Rotation of the involved sides around hinges is allowed so that 
no moments resulting from the structure, can exist. At the same 
time movement of the hinges is restricted by the chosen elastic 
properties. This case is similar and directly analogous to 
trilateration networks in surveying, where small changgs in 
the angles due to the errors or corrections applied to the 
observed sides are allowed.

b- Rigidly-Jointed elastic frameworks: where the angles of the 
joints are in a fixed configuration, i.e. each angle might 
rotate as a whole but has a fixed size. These joints are 
designed to take moments. This case is similar and directly 
analogous to a survey net in which both angles and sides have 
been observed. The angles are adjusted first to give the 
required shape, then the sides are adjusted. Corrections to 
the sides are in this case allowed only on condition that they 
will not affect the corrected angles.
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Linkwitz in [64] has suggested that angles can be treated 
in an exactly similar way to the way sides are treated in his 
thesis. A full investigation has been made to find out whether 
such a possibility exists.

To establish the analogy and hence to use structural 
methods for adjusting triangulation nets the following comparison 
is made,

Mathematical Model Structural Model j

1 p is the angle observed p is the length of an elastic
arc •

2 6p is the error of observa 6p is the change in the length
tion of angle p of the elastic arc.

3 Pj_ any station in the sur Pi corresponding nodal point
vey net. in the framework.

4 p is the weight of observ f is the elasticity
ation. coefficient.

5 A triangulation net with An elastic framework'to a0.
just necessary angles and given scale without any redun
one side to allow the net dancy, i.e. statically determ
to be defined in the field. inate structure.

6 A triangulation net with An elastic statically indet
r-excess observed angles, erminate framework with . ;
which gives r condition r-times indeterminacy.

I | equations.
........i

table 2.1
Applying the analogy given in table 2.1 to a doubly 

braced quadrilateral the following comparison can be made:-
(1) In surveying a quadrilateral figure 2.2a is obtained by 

the intersection of rays produced from each station P^ 
applying the angles 1, 2, • •••, 8 after determination of 
scale. Pour angles and the scale are necessary to define 
this figure, while the other four angles aj*e redundants.

(2) In the corresponding structure there are two possibilities:-



(b)

Figure 2.2

Circular elastic arcs represent the angles which are 
provided with strictly straight sides (members) which 
are heavy enough to resist deformation and sufficiently 
light to move freely without affecting the positions of 
the points. For this particular figure, due to the diff
erent length of sides, purely circular arcs cannot be 
constructed between the different nodal points, e.g. in 
figure 2.2b if diagonal 3D is known and can decide the 
scale, arc 1 can be constructed between D and Cf to 
represent angle 1. Again arc 4 is constructed between 
B and 0" to represent angle 4* From B and D two arcs 8 
and 5 are constructed to give the arcs through A 1 and A M 
respectively. C and A are thus obtained by the intersection 
of the corresponding radii from B and D.

For a purely structural and physical point of view 
it is impossible to have all of these arcs in one plane 
without intersection, as can be seen from the diagram of 
the situation for a single point B. To overcome this 
difficulty the connection of the four elastic arcs for 
nodal point B may be made in two planes figure 2.3* In 
figure 2.3a a plan of the connection at the nodal point B
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the elevation of this connoc
is shown, and in figure 2.3 b

Bn

tion is shown. In figure 2.3a J L
B

(a)

the top plane gives the plane 
of the two elastic arcs 4 and Ba

5, while the other plane gives 
that the of the two rigid arms 
BB! and BB". ’The elastic change 
of arcs 1, 2, *...,3, •'hieh
have to be considered for the
adjustment requires the free Figure 2.3

nodal point B to move while- the spindle is kept vertical. 
This cannot occur unless the two pianos in~figure 2.3a 
coincide which appears-to bo a physical possibility 
without tne elastic arcs being intersected, as shown 
in figure 2.3*

However, construction of such as that in figure
2.2 has to be subjected to thrust only, in order to 
have axial deformation and angular change. Construction 
of such kind do exist either as arches or rings, and 
the illustrated figure does not correspond to either 
type.

ii- The second possibility is of a rigid arc constructed 
at each nodal point (joint). This case is previously 
given in (b) above where joints should be rigidly 
connected and deformation of sides are allowed only.
In the case where an analogy is possible a direct 

application of the theory of strain energy is involved.
2.2.1. Basic Strain-Fnergy 

Work and energy relations are found in many fields of 
science andi n  .the field of structural mechanics, which has 
adapted many of these relations and concepts to determine the 
slope and deflections of elastic members.

For elastic structures, external work is done on the
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structure by physically applied external forces or moments which 
results in an equal amount of potential energy being stored 
through the action of the internal forces and the elastic strain 
mechanics of the structure. The loads are assumed to be slowly 
applied so that the dynamic influence may be omitted.

The work done by the constantly applied force is equal to 
the magnitude of the force multiplied by the distance through 
which the point of application of the force moves in the direction 
of the force. The work is positive if the displacement is in the 
direction of the force, and negative if the displacement is 
opposite to the direction of the force.

To explain the relationship between work done and potential 
energy a simple example figure 2.4 may be given.
L is the length of the member used,
A is the cross-sectional area of the member.
E is the modulus of elasticity of the material of the member.
P is the applied load.

The load is initially applied at B, and the resisting force is 
slowly built up to the value of P, which is reached at 3'. By 
this time the'load is fully applied to the member, and the member 
is elongated by A.

energy is equal to the external work done.
The triangle abc figure 2.4 shows that, the
force in the elastic member is directly proportional to the
deformation* and $hat the area: of. the trianglo represents the

The work done is = P»^, but the loss in 
potential energy is given by P.A, i.e. it is 
twice the work done on the member. It appears 
therefore that a discrepancy exists until it 
is required that half the loss in potential 
energy is utilised in doing work. The strain- 
energy stored in the member equals the net 
change in potential energy, i.e. the internal

Figure 2 .4

L
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stored internally in the member2
A pin-jointed elastic framework with redundant.-, forced in 

to its appropriate position will produce various elements of 
strain in the different members of this structure. This is due 
to the lack of fit due to the redundant members being longer or 
shorter than necessary. A problem of such character could be solved 
by Castigliano's theorems [56]. The linear displacements in the 
various bars of the analogic framc-structure correspond to the 
corrections to the relevant surveying lines.

Professor Southwell [91] has extended the use of Castigliano's 
theorems to many problems in science and engineering, including 
the adjustment of level nets. Professor Black has extended this 
to the adjustment of directions [10], and it is apparent that it 
can be extended still further.

2.2.2. Use of Castigliano’s Theorems in Trilateration

Castigliano1s second theorem states that "The stress- 
distribution resulting from given forces, applied to a body 
initially in a state of ease, can be deduced from the conditions 
of equilibrium combined with the conditions for a minimum value
of U"[95].

p*Using figure 2.5 we have:

of the partial derivative m e a n s __________________________ _
that all other forces acting on the structure are assumed to 
remain constant while P^ is varied by small amount. The purely 
linear relationship between P and 6 shown in figure 2.5 represents 
Hooke's law which states that "within the limits of elasticity

which means that the deflection 
at a particular point 1 is equal 
to the rate of change of total 
energy”for all members" with 
respect to the force P^. The use Figure 2 .5
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the strain produced by a stress of any ono kind is proportional 
to the stress producing it”.

Tho use of this theorem for trilateration adjustment is 
given by Leung Kui-Y/ai, [56].

Suppose that \r is the misfit in the redundant member r, 
i.e. the difference between calculated and inserted sides- 
With reference to figure 2.6 according

I.to Oa.stigliano,
X_ = |2  (2.1)x 0 O-p

where Sr is the axial force in the
redundant member r.
U is the strain-energy in the

s£.iiwhole structure = E 2AiBi
(2.2)

Figure 2 .6

S^ is the axial force in the member i, where i = 1,...,6 
li is the length of the member i.
A^Ei is the rigidity of the side i, (Aj_ is tho cross- 
sectional area of tho member i, and Ej_ is the elastic 
modulus of the material).

therefore dU _= E s± .l± 0S S, .1,
a T e I  -  1 SiTEp3! = Sr ^  T T .

,.z = xr
(2.3)

sĵ  is the force in any member introduced by a unit force in the 
redundant member r, and obtained from tho force polygon figure 2.7

FIXED
FIXED4 6 2 .6 4

FIXED

C (D(2)

B = 154* 35 .3

(c) ANALOGIC FRAME(b) FORCE DIAGRAM(a) SURVEY NET

Figure 2.7
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For the use in trilateration adjustment the above formula (2.3) 
can be used in the following way:
Force in side c due to misfit of \ Q is given by

A tensile force is reckoned positive and a compressive force 
negative. If the length of the bar c is too long, then it needs 
to be shortened and hence compressive force is required, thus the 
negative sign is given.

For more complicated problems, when more than one redundant 
exists,the effect of unit force:'in each redundant should be 
considered. A set of normal linear equations of the same number 
as the redundants will exist to determine the actual forces in 
the redundant sides. From these the displacements and hence the 
corrections may be applied. The adjustment of trilateration nets 
and error analysis according to the theory of elastic system 
is given by Professor Linkwitz [64] in his doctoral thesis.

Mechanical, analogue for survey adjustment problems may be 
based on the systematic relaxation of constraints method adopted 
for solving linear equations which is a Seidelian iterative method 
of computation. For an explanation*, of this one may quote Prof. 
Southwell [95] . "The method of Systematic Relaxation of 
Constraints was devised for the determination of stresses in 
frameworks- that is in elastic structures having the characteristic 
that a strained configuration can be specified by attaching values 
to a finite number of co-ordinates. Recently it has been extended 
to continuous systems (e*g* beams) on the understanding that a 
finite number of co-ordinates will define a configuration for

(2.4)

hence

and (2.5)

2.2.3* Systematic Relaxation of Constraints
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practical purposes, though not from a mathematical standpoint.
So far the power of the method has been exhibited only in relation 
to elastic problems: in these its results appear to converge 
rapidly, judged by a few examples of which the exact solutions 
were known”•

That convergence takes place in this method may not be 
obvious but it must be remembered that in any problem of equilibrium 
we arc concerned with a configuration of minimum energy. At every 
step in the relaxation process, if positive work is done on the 
relaxed constraint, the total energy of the system (i.e. the 
strain-cnergy stored in the framework plus potential energy of 
the external forces) will be reduced. Therefore the system must 
tend towards the required configuration of equilibrium, in which 
this total energy has its minimum value. The required configuration 
can be approached as closely as possible depending on the accuracy 
needed. The approach to the required configuration can be 
accelerated by using "block relaxation" in which case any number 
of points can move together as a rigid body [81].

The advantages of using this method in solving structural 
problems and certain problems of adjustment in surveying have 
been given by Southwell [95] for the following:
(a) It obviates entirely the necessity of solving simultaneous, 

equations which is the main object to existing methods.
(b) It is simple to apply and involves only a few standard 

numerical processes, easy to grasp and readily checked.
(c) Its complexity is not dependent on the order of the redundancy 

and the time required for a solution, although it increases 
with the number of joints in the framework, does not increase 
rapidly as it does when simultaneous equations are involved*

(d) The joint displacements are calculated simultaneously with 
the action of the members.

(e) The physical- meaning of each process is clear, and the order 
of the approximation can be judged at every stage, when this 
is deemed sufficient tho solution can bo stoppod*
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2.2.3*1* TVnrl ration of the Method for Structural Calculation

Consider figure 2*8
where an external force X is
acting at joint A. To achieve
equilibrium X = X + X = 0

• • • • • (2*6 )

X

Figure 2 .8

where, X is the internal force
(exerted by the framework)
X is the residual force 

= 0 , at equilibrium.
For the general case, A and B can be given coordinates (x^,y^) 
and (x^yp). The force which X exerts on the joint A in the 
direction of x has the component,

LAB •— rjj—  = XAb (x3 - XA>

If B, C, ••••, M are joints connected to A by members, then 
equation (2.6) will be:

XA + XA3'^xB ” XA^ + XAC"^XC “ XA^ +••• + XA M ^ XM “ XA^ = 0 (2.8)
Also, let u and v be the component displacements of A in the 
directions x and y respectively under the load, therefore the 
fractional extension of the member AB will be:

eAB = - xA )(uB - UA ) + (yB ~ yA }(vB " VA ^
AB e A T3However the strain-energy is equal to X.-&E.

If U is the strain-energy and V is the potential energy, then

U "  2 I  iRABC(xB "  XA )(uB -  UA> + (yB ~ yA)(vB "

 (2.10)
and V = constant - 2^(XA .uA + ?A .vA ) by definition ....(2.1l)

Initially when all joints are held fixed X = % , but when one 
joint or all joints in the case of ’’block relaxation”, is relaxed, 
force X will be equal and opposite to the force exerted by the 
constraint upon the framework, by Castigliano’s first theorem,

where XA = - |2 , and XA - -
0Ui 0U;
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Substituting in (2.6) which is the condition of equilibrium, we 
have:

XA = - jj—  (U + V) = 0   ....... (2.12)

which is also a condition of the minimum energy.
Since the potential energy is a linear function of the same 
displacements with constant coefficients therefore:

axA _ ax^ _ a2u 
auA auA a"uS

aXA _ dXA _ _ a2u (2 13)0VA 0VA 0VA .0UA
afA _ a x ^ ______a 2u
0u-q dug 0Ug.0uA

Since U is a quadratic function of the displacements u and v, 
therefore,

1^2 = EA^RAB^xB “ XA^2] = 2A ^ x 'x ^Ab ]
A

a2tJ = 2a[Rab(xt, - x»)(yB - y»)] = 2.[(x,y).B]
3va*3ua 'a ^  b a b a ~ AL'

2,
3 U = - ra b (x b - xa > = " E(x -x )a b 1auB .duA

and therefore equation (2.12) will be:

1 = 1 . -  - v.. a2u - ur , - ........(2.14)A A A  0U2 A 0vA .0uA B 0uB.0uAA
Corresponding expressions can be derived for the residual force 
at B.
According to this equation residual force X will be brought to 
zero by imposing displacement,

AuA = .......(2.15)
A

Because the strain-energy is. necessarily a positive quantity, the
P Pcoefficients of uA , u| , etc.. in U will be always positive, and

A Oso will be such differential coefficient as 0 U/0uA .
Hence according to equation (2.3.5) any residual force can be

jit*brought to zero by^imposing displacement having the same direction 
and sense, which is the basis of the relaxation method.



The greatest possible decrease for a displacement of a 
given type will be obtained by bringing the corresponding force 
to zero. Usually we have,

(U + V) s - |.Xa .Au = - i.XA/(|h[) ....(2.16)

Relaxation can be always continued until (U+V) has been brought 
to its absolute minimum, that all residual forces are negligible.

2.2.3.2. Derivation of the Method for Survey Problems

For different problems when it is required to minimize the 
value of some quadratic function Q (or U) of parameters x, y, 
these parameters could be treated as displacements [10], and 
procedure is carried exactly as before. Forces are fictitious, 
energy and work done are imaginary or virtual.

For problems of adjustment in surveying, 
let 9 stand for an observed quantity,

a stand for the calculted value of 9 from some approximate,
(x,y) coordinates.

As before, due to the errors of observations,
v = 9 - a = f (x,y)   (2.17)

while the least squares solution requires that Epv^ - minimum. 
Therefore the problem is to solve for v, such that:

2Q = Epv^ = minimum  ..(2.18)
2Q being the quadratic function mentioned before. It is termed 
here total energy (virtual) since it is analogous to that term 
as used in structural problems.

For the adjustment of any net specified by n independent
parameters x^, ^ xn, ŷ _, .....   yn , the problem is to
find displacements that make 2Q minimum. x,y are the 
displacements corresponding to u and v in the structural problem. 
Consider the fictitious forces,

X1 = - 1%; X2 = " §x2  (2.19)
The change in the residual forces X due to the relaxation of 
6x is given by:-



The values a2o etc. are called the ’’Influencedxi.0X2 9
coefficients” normally used to distribute the residual forces X 
to the required accuracjr, where residual forces X become negligible.

2.2.3*2.1. Application of Systematic Relaxation to Directions

Professor Southwell [91] applied this method to many 
engineering problems and to the adjustment of levels in surveying. 
At this time trilateration was not known as an alternative method 
to triangulation, more recently it has been shown by many 
contributors, e.g. Kui-Wai [56], Linkwitz [64], that the adjustment 
of a trilateration net is simply the problem of achieving 
equilibrium of a pin-jointed elastic framework, under the effect 
of a redundant member of non-appropriate length. Professor Black 
[10] applied this method to a more difficult problem, to the 
adjustment of triangulation nets. His adjustment is made to the 
observed directions. Observation equations in this case are:

....•• etc.
where 9^  is the observed bearing AB,

r^ is the bearing of the zero of the horizontal circle of
the theodolite at station A f

ceA-D is the calculated bearing AB, from the known approximate AJj

Q will be a quadratic function of the parameters x, y when we

Adjustment in Triangulation Networks

VAB " ?AB + rA “ aAB (2.21)

The minimum energy solution requires that 2Q = Epv = minimum.
•therefore, 2Qab = 2paB*vIb = zPAb(<PAB + rA “ “AB^2 = minimum .

 (2.22)

consider taaajp = yB - yA 
XB " XA (2.23)
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where, x^, y^, x-̂ , and y^ are the independent parameters.
Forces acting at point A may be resolved into three components 
as follows:-

XA = " = 2A (Pa B*vAB'3 ^  + PBA-vB A * s ^ )

YA = " 3y“ = 2a(PAB*vA B * 3 ^  + V B k 'v B k 'd y j^ ^ ......(2.24)

RA = “ §rs= ~ 1 pAB*vAB
A

X and Y are components of the force acting in the direction of the 
displacements x, and y. R is another force exerted by the energy 
conserved causing rotation of all rays at this special station A. 
Similar rotations are caused at every other station in the net.
Thus residual forces X and Y are obtained which cause displacements 
of the zero of the theodolite circle and at the same time residual 
force R is obtained causing the rotation of the circle itself.
From equation (2.24) the influence coefficients are:-

= _ E r-D (9aAB\2 + /aaBA)2-|
dx.A A AB 3x a BA 3xa

f“ “ 2aPAB §2JB - S U   (2.25)

3RA „= - EApAB*

Professor Black illustrated this by solving a quadrilateral for 
which all bearings are observed from both ends of each line.

In this application all the information necessary for 
accurate mathematical solution was supplied. The results obtained 
were as accurate as those obtained by the normal least squares 
solution. The snag is that solution by this method was very 
complicated and more difficult to surveyors with no background 
in structural theory to follow. The complications and difficulties 
arise through the use of the bearing of the zero of the horizontal 
circle of the theodolite, (usually called station adjustment), 
but the method shows a complete agreement with the classical 
methods of adjustment.

The advantages of using systematic relaxation appear more



clearly when a mechanical analogue takes care of such complications 
as will be shown later (sec. 2.3) or when the station adjustment 
is avoided by using angles instead of directions, also discussed 
in 2.2.3.2.2.

2.2.3*2.2. Application of Systematic Relaxation to Angles 
Adjustment in Triangulation Networks.

It has already been mentioned that the difficulties in 
using systematic relaxation method for directions adjustment in 
triangulation networks are due to the introduction of the station 
adjustment. To simplify the use of this method the possibility 
of adjusting angles has been investigated in the following.

In this case observation equations are formed for tho 
difference between the observed and calculated angles. This bears 
no relation to any geometric condition of the triangle. Therefore 
there is no need to go beyond considering the effect of the 
residual forces at each station.

In triangle ABO figure 1.2 the three angles will be 
considered as three elastic units in a structural problem, 
connected to each other by the sides of the triangle.

To understand the necessity of station adjustment, 
consider figures .2*9 and 2.10.

’1-2

'1-2 ‘1-2

'd*

11

3-3 1-3

k1-3

'1-2

Figure 2 .9  Figure 2.10

Figure 2.9 shows dcĉ  ^ the difference between the calculated
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bearing <*2.-2 and a(i3uste<l "bearing for the direction 1-2.
It also shows v^_2 correction applied to the observed '
direction <Pi_2 an(̂  rl "^e constant station correction (bearing 
of the zero of the horizontal circle of the theodolite), and 
applied to all directions observed from station 1. It is more 
understandable if we notice that r is associated with every set-up 
of the theodolite, i.e. it will have different value, each time the 
instrument is set-up. However it must be given a constant value 
when all directions are obtained in one set-up of the theodolite. 
The correction equation will be in the following form:-

vl—2 = al—2+ -̂al—2 ” ^1-2 + rl^ •*•••••••(2.26)
The constant quantity r-j_ will be reduced if one direction is 
subtracted from another. Thus for the adjustment of angles these 
constant values will not appear in the adjustment process.

Using the same priciple of minimum strain-energy for the 
angles adjustment we have 2Q = Epv^ = minimum ....(2.18)
Referring to figure 2.10, the calculated angle 9 obtained from
the two calculated directions is $213 = al-3 ~ al-2*•••*(2.27) 
the observed angle (3 obtained from the two observed directions
is $213 = Ti-3“ 9i_2 » and ........(2.28)
the adjusted angle obtained from the two adjusted directions is

A213 = Al-3 “ a 1-2  (2.29)
Therefore,

v213 = vl-3 " vl-2 = ^ “l-3 + dal - 3 ^ al-2 + d“l-2^

- [ ^ 1-3 + ri)“(9i_2 + r] U  

= (“i_3 ~ ai-2^ “ (9i-3 ~ 91-2^ +

(dal_3 ~ dai-2^ " r̂l ~ rU  •♦••(2.30)
(r-j_ - T j ) = 0, where r is constant at a single station.
For deriviation of forces and influence coefficients, equation 
(2.30) will be kept in the form,

"̂"21̂ 5 = (v^i^ — '7^ 2) = (dttn — dcti^) ^215 — ^213* *'
As the triangle is the unit in any triangulation net, in which 
angles are to be corrected, demonstration and derivation o f



formulae will bo devoted to a triangle# ^c--------------»d
Consider the triangle CDS figure 2.11,
The force acting at joint C due to

£contradiction (0-0) (or in other words 
due to v)> according to equation

Figure 2.11
(2.18) is given in tho following: ______________

Xc = -  ^ c= £(vC3 “  v CD) ( 3 x ^ r  “  + (VDC “

+ (VBD “ racH-  (2.32)
c

Similarly the forces acting at D and E are:

XD = -  2 §% = E(vDC -  vD s ) ( § 2  + (vHD -  TB0 ) < | ^ >

+ (vCe - v0D)(- |^2)]  (2.33)

and,
X3 = -  = [(v^  -  XBcXf^2 -  fijS ) + (vCB -  v0D) ( | ^ )

+ (vDC - VDE)(-  (2-34)

Since the triangle is a unit figure, equilibrium should be considere 
for this unit. Equilibrium is obtained when the three following 
conditions are satisfied;

EX = 0, EY = 0, and EM = 0.
where EM are the moments applied at the joints E, C, and D.
Since in this case being considered M does not exist, equilibrium 
is obtained by satisfying the two conditions EX = 0, and EY = 0.
To check the stability of the triangle under the considered: forces
Xc, X-q , and Xg, their sum must satisfy the equilibrium conditions. 
Adding equations: (2.32), (2.33) and (2.34) we have:
[(vCE -  vCI))(^SE _ _££) + (Vdc _ vde)(^_2C) + (vED _ V3C)( -  g^p)]

+[(VDC - VDE)(!gs - gji) + (.ED -  VEC) ( ! J )  + (.CE - vCD)( -  § B ) 1

+t(vED -  vBo)(|^12 -  + (vCE -  vCi))(^2S) + (vjx; -  vjjjjX - |52S)]axs axs oxB dx-g
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but we have: 0aGE 0OCBG 0aCE 0aBC0xE 0xE 0XQ 0XJJ

0gDG 0aGD 0aDC 0aGD
0XQ 0xo 0xD 0xD

daBD 0gDE 0aBD 0aDE
0xD 0xD 0xE 0XE

equation (2.36) into equation

 .(2.36)

re-arranging terms we have;

3aCE/ \0xE ' “ V0E + VCD + VED “ VEC + VCE “ VCD " VED + VEC^ +

" VCE + VCD + VDC " VDE - VDC + VDE + VCE “ VCD^ +

vT~-( “ VDC + VDE + VBD " VEC “ VBD + VEC + VDC ~ VDE^ = 00XE
........(2.37)

Equation (2.37) shows that a triangle worked on by the forces
X will be stable, and it should be kept stable when sucessive
relaxation is being considered.

If point E is to be fixed, coordinates xE , yE , will be 
liable to corrections, but the effect of a unit relaxation 
(Influence coefficients) of the coordinates of point E on the 
forces calculated before has to be derived first.
Referring to equations (2.32), (2.33) and (2.34) the effect of a 
unit relaxation of coordinates of point E is obtained simply by 
partially differentiating these quantities with respect to xE , y-g. 
The influence coefficient of unit re3aaxation dig on the force a.t 
C is:

aXQ -2a Q r /dcxCEw aaCE daCD\ ^ ( 0gDE\/0aDC\dxE .SxQ ~ ” L(axE ^Sxq dxQ dxE ax^

(aosD _ a«as)(_ a^EC)] .........(2<38)3xe axB oxq

At D the effect is:
dXn 3 Q r , aapEx /agpO a°tpE\ . / daEDw agED\
axB - axE .axD “ [(~ axB K axD " axD axB axD

+ (§2ffl)(_ |SE)]  (2.39)dx-g ax^
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and at E it is:

axE 2af ___ ____________
ax§ l^ xe 9xe 7 " Vqxe 7 ^ v 9xe

B = s i f s  = _ [ & >  _ !2B C )2  + (^ C E )2  + ( _ ! ^ E ) 2 ]> e (2 > 4 0 )

The above deriviation is obtained for forces in one direction only. 
The force in the perpendicular direction Y should be obtained in 
a similar way. This could be easily obtained by rewriting equations
(2.32), (2.33), (2.34), (2.36), (2.39), and (2.4O) with respect of 
y instead of x. This will give the following set of values for 
Yq, and dYq, .... etc.

vdQ. r „  w 0“ CE _ dotCD\ . / „  _ „  w aaDCt ^
Y° = “ Zaj£ = [( 033 CD ay^T (Vdc vraK a ^ T } +

(VBD " VB C ^ “ ay^T^  (2.41)

Y*> = ~ ^  = [(V DC " vDE) Q f  " 1 ^ ® ) + <VED “ VB C ^ ^ )  + 

<VCE -  VCD>(-  (2 .42 )

Tb = -  s ffjj; = t ( VED -  + ( VCB -  VC D ) ( | ^ )  +

<VDC - ......................................................... ............... (.2.A-3)

Accordingly the effect of a unit relaxation 6y-g on these forces
will be:

aYq _ z  a 20. _  _ r ( 3gCE) ( agCE _ 9gCP) + (_  agDB\ ( dgDC) +
ayE ayE .dyc “ 0yE dyc " 3yc ayE 3yc

 < 2 - « >

0YD _ r  a^Q _ U  a<*DEw agDC _ 8otDB\ . / agOEw  agCD\ . 
ayE a^,.ayD ayE ayD ayD ayE ayD

(aaES _ aaEc)(aaE2)] ...... ( }
3y£r SyjT SyjT

and,
!5 fi = sdSa = -  [ ( ! 2 m  _ i f s s ) 2 + ( i f s i ) 2 + < i f £ i ) 2 ] . . . . ( 2 . 4 6 )
dyE dy| dYE ^yb ayB 9ye

Also the effect of unit relaxation 6xB on force Y, and 6yB on force
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X will be as follows:

aX0 _ r a 2Q______ r/SgC3w agCE agC D s ,
3xE ayE"^xC L 3^E 3xC 3xC ®^E axC +

........<2-47)

3XD _ V a2Q  r f aaD E w agDC 3gDEi . /aaEDi/9gEDi ,Syjjj <jyB .axD LV 3yjjrM 3^J“ 3xJ)

<£§"><-!*!?»  <7-«)

aXB _ r_a£s______ /agED _ 3gECw agED _ agEC\ . /^CEx/f^3E\
3yE 3yE,axE a^E 3^E 3xE 3xE 3xE 3xE

C- |S2E)(-  (2.49)

9?C _ .. 32Q _ r/agC3w agCE agCD\ . / a£ ^ w agDCS .
axB axE.dyc “ *- 3x3 ’^WS 9yc Sxe ^ayc

(aaB £ _acBS)(_aaBc  (2>5Q)
dxB dxg dye

aYP r d2Q _ r ( aaDEw0aDC 0aDEurdaED 0aEO>f9aEP\ .
dxE - axE.ayD “ u “ 7 ^ n w ^ ~  " ajjp' 'd^T “ ̂ xjp

(|£ES1)(_ |2EB)3  (2.5i)axB dyD
and,

ayE r. 32Q ivagED agB C w aaED 3«b c \ . /3aC B w aacB^ ,
335 = £3xE .TyB = “ l<3xjf " “ S y ^  + +

« - ^ ) < - ^ ) ]   <7.53,

Although mathematical details for the solution given in equations
(2.32) to (2.52) show that solution by this method may be lengthy 
one, it will be very simple after da/dx, and da/dy are obtained 
for each station considered* Then initial forces and influence 
coefficients are obtained by simple substitution of these values 
in the equations given before.

From the influence coefiicients, a table of standard 
operations can be made out showing the effects on all forces of



- 93 ~

unit relaxations 6x , 6y etc. The initial values of the forces
are entered on a relaxation table. Usually the largest forces, 
e.g. is relaxed first, Then we apply a relaxation 5xj_ sufficient 
to reduce this approximately to zero. The effects of this on all 
the other forces can be found from the table of the standard 
operations and entered on the relaxation table. The largest 
remaining force can then be picked out and eliminated in the same 
wa3̂, and by continuing this process until the forces have all been 
reduced to negligible size the solution is obtained. A table of 
this type has been made for a specific example given later.

2.2.3*2.2.1. Accuracy of Results Obtained by Using Systematic 
Relaxation method for Angies Adjustment

It is very important from the calculation point of view, 
to check the accuracy of the given method against the results 
obtained by the least squares solution. Also, as this method of 
solution is given as alternative solution to that given by Prof. 
Black [10], the accuracy of results should be also checked against 
his results for the same problem.
(a) To check this, triangle ODE in figure 7.19 given by Rainsford 

in ’’Survey Adjustment and Least Squares" is solved by the 
method given above and by the normal least squares method.
The observation equations are given by:

- 2.12 6 x e  - 2.76 fiyg - 9.30 = 0
+ 4*68 dxjjj + 2.17 6yE + 7.85 = 0
-  2*56 5xb + 0 .59  dyB + 1 .60 = 0

The solution by the least squares gives the following results:
5xb = - 0.117 , and 5yB = - 3*419 

Using the same data systematic relaxation method [equations
(2 .3 2 )  to (2.52)] gives the following results:

6x = - 0.117 , and 6y = - 3*430

s(b) To check the accuracy of results obtained by this new method 
against those obtained by Prof. Black in Empire Survey Review 
vol. 4,p 4O6 [10], the same problem is used. A doubly braced
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quadrilateral for which observations are obtained for all 
directions from both ends of each line. In this problem two 
stations are fixed and two stations are to be fixed. Tables
2.2 and 2.3 give the influence coefficients and the systematic 
relaxation for this example using the new method for angular 
adjustment.

1 Xr iI
Xp. ?S : Yt |

5xr -12425 
- 9832

j-11025 
| 6050

15549 | 
2033 !

8082
1749

5025 
- 2924

!
9318: 

!- 2615 ,i :

2033
5953

2260 
- 413

5 Xqj

6y
-10858!- 9727 I 8082 ! 12503 9824 i 59201 1749; 2155

! I : i33141- 7730 i 2260 2155.- 2368:- 1096 - 413* 3837

table 2.2 - Influence Coefficients

Xs "R ■N S ■R

I.F.* *- 5331!- 5923 i 9525 1 1729! 6881i-10658 1717: 2060
-0.77xR I 9567; 8489 1-11972 !- 6223!- 3869 : 7175*-1565j-1740

0 .44 xt , -  47771- 4280

-0.37y
3556 1 5501;- 4322' 2604; 769,- 948

- 1226! 28601- 836'- 7971 876
. I I I 1-0.18yR 1 1769:- 1089!- 366j- 314; 526

4 0 5 ’ 152,-1420

470 -1072 74
~t
21Sum; 52 7 s- 104! 92 - 1 - 4 9

* I .P. are the values of Initial forces obtained from equations
(2.32),(2.33),(2.34),(2.41),(2.42), and (2.43) ■

RXS

Values entered in lines 3, 4* 5, and 6 are the necess
ary displacements and. their effect on th£ I.F. obtaihed
from table 2.2. J

i
These are the sum of all rows, in'the table,'whichcgive r

It

\ the residual forces neglected at the end of the solutioflj

table 2*3 - Relaxation Operations

The results given by Prof. Black ares
5xr
6xt

= - 0.77 
0.44

6yj> = - 0.18 
6yT = - 0.37
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and by this newly derived method the results for the same 
problem are identical as can be seen by the left hand column 
of table 2.3-

2.2.3*2.2.2. Comparison of the Two Methods

The main purpose, as mentioned before, is to eliminate 
the complications found in the method, created by Prof. Black 
[10] due to the use of the station correction necessary when 
adjusting directions. Solution by this newly derived method 
gives the same results while avoiding the use of the forces due 
to rotations of stations. In Prof. Black's method it is essential 
for adjusting directions by the systematic relaxation method 
to consider the effect of each linear displacement on the force 
R, as well as finding its effect on forces X and Y. At the same 
time the effect of the small rotations for the purpose of reducing 
force R on the two linear forces X and Y have to be calculated 
and entered into tables. In fact this is a most difficult 
operation to follow and excute. The number of tables necessary 
for his method of solution is large, so that it takes a long 
time to reach the right entries for the different tables, even 
when the solution is clearly set up in tabular form. On the other 
hand, using the systematic relaxation for angles adjustment as 
given by this new method, requires much less knowlege and skill. 
There is only one way of computation, X, Y, dX/dx, • etc. are 
calculated in similar way, as shown in the solved examples.

The second way by which the difficulties of using 
systematic relaxation method may be overcome is to construct 
a mechanical analogue which can take over all the mathematical 
differentiations and substitutions. It should also be able to 
carry out the calculations arising from rotation of stations, 
which proves to be the main difficulty in using systematic 
relaxation method for adjustment of directions. If an analogue 
of this type can be devised it would offer a very practical 
solution of such problems.
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2.3. SURVEY NETWORKS AND MECHANICAL ANALOGY

Dr. Jerie [46], [47], has applied the systematic relaxation 
method making use of the theory of least energy conserved mechanically 
to different problems in surveying and phot ogramo try. His mechanical 
analogue computers for the block adjustment of planimetric 
coordinates and heights in photogrammetry are well established, 
and have been used in many photogrammetrie organisations all over 
the world. It is only quite recently that electronic computers 
in these organisations have had much effect upon the use of these 
mechanical analogue computers and still many are in every day use.

In the surveying field mechanical computers for trilateration 
adjustment, have been constructed by Dr. Jerie and showed some 
advantages over the use of the electronic computers especially in 
the field and in the detection of gross errors.

From the calculation point of view the main advantage of 
using these mechanical analogues is to avoid calculation of the 
residual forces and influence coefficients required in the mathe
matical solution by systematic relaxations. Instead of the latter 
contradictions or difference between observed and calculated 
quantities are obtained and introduced to a mechanically constructed 
elastic system which obeys Hooke's Law. Adjustment is reached 
when the elastic analogue reaches the equilibrium position with 
least energy conserved in the system.

At the start of computation, approximate values for the 
coordinates of the new points to be fixed are obtained. Improvements 
to these values are sought through the adjustment. The approximate 
coordinates could be obtained by the equipment in which case there 
would be no need for their calculation. However it speeds the 
adjustment to first calculate the approximate values as this 
reduces the number of iterations required.

The practical use of mechanical analogues does not require 
a high level of scientific or mathematical knowledge, as the most 
important part in adjusting the survey problems, which consists
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mainly of setting and choosing the condition equations or 
observation equations is avoided so the personnel required to 
execute the operation need be familiar or skilled only in 
operation with a hand calculating machine to a prescribed routine.

2.3.1* Different Aspects for the Construction of a Mechanical
Analogue for Triangulation

The construction of the mechanical analogue for angle 
adjustment has been a dream for sometime ago> but not realised 
because of the mechanical complications encountered in the 
construction, which were also expected to produce results of 
rather low precision.

Professors Southwell and Black who discussed the general
isation of the systematic relaxation method to solving linear 
equations did not make any suggestions as to the construction of 
a possible mechanical analogue. Prof. Southwell did suggest a 
mechanical analogue for the adjustment of levelling but this 
was not constructed.

Purely theoretical work can exaggerate difficulties, and 
lead to the conclusion that a solution is impracticable. It must 
be recognised that the mechanical construction of delicate 
equipment can be very difficult and may need much refinement and 
experimentation over a long period before the desired accuracy 
is achieved. It is worth mentioning therefore that although the 
basic idea was established two years ago, its practical 
construction and improvements have been carried out continuously 
ever since. Probably some further improvements may still be 
necessary before the mechanical analogue computer is perfect, 
but it has reached the stage of working fairly satisfactorily 
to the precision required.

A big difficulty has been the expense and the time required 
to have basic pieces and frequent modifications made by a 
number of different outside firms since the facilities were not 
available in the University.
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2.3•2. Mechanical Interpretation of the Formulae for the
Adjustment of Triangulation by Variation of Coordinates

Method

The essential conditions for the construction of a suitably 
dimensioned elastic model for the computation and solution of 
special problems ares
(1) The mechanical system must give the same mathematical relation

ship between the different quantities to be calculated.
(2) It must be possible to distort elastically the mechanical 

components representing the quantities to be adjusted.
Other essential conditions which are specific to the 

construction of this analogue will be given in due course.

2.3-2.1. Mathematical Relationship Between Different Quantities 
Represented in the Mechanical Analogue

A triangle ABC is fully
defined when three quantities
are known. Usually there should
be a base line and two angles.
In figure 2.12 if base line is
BC, the triangle will be

Figure 2.12
determined when angles B and C
are observed. If angle A is obsrved also, observation in this 
case has a degree of freedom, which gives one condition for the 
adjustment of the observations. Corrections for these observations 
may be obtained by using any of the well-known methods of adjustment, 
that currently favoured being the variation of coordinates method. 
Using this method, both Ev^ of the mathematical model, and Ev^ 
of the mechanical model will be functions of the same parameters.
In figure 2.1’2 if the observed direction, of AB is cp̂ g and the
calculated direction from approximate coordinates is 0̂ 33, then 
the correction to this observed direction will be given by:

VAB = ~ (rA + ‘'’AB* + dotAB + aAB ........(2.53)
(see figure 2.9* where A and B stand for 1, and 2 in the figure).
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The relationship between a the calculated direction and the 
parameters (x,y) is given by:

tana = — ------------ .......... ........(2.54)
XB “ XA

To obtain da with respect to each of the four parameters we have: 

yB “ yA rl / x3(Xab = — *^XA = — ^--9xA  (2.55)
xab ab

y-n - y-A rn
8o£AB =—  o " *8xB =“ ~i *8xB ..........(2.56)

Ia b ab

8aAB =- "?; V 'Xjl-9yA =- -^-•ayA  (2.57)
A3

8o£AB ~ ® rj ’- .d y -v —  (2.58)
1AB 43

where,
ri . 2 ^ 1 2 4 ,  and. q i = ^ L ^

AB AB
Adding equations (2.55), (2.56), (2.57) and (2.58) we have:

daAB =— 7^— #dxA 7^— ,dxB 7^— *dyA + — 7^— ^ 3 . (2 .59)XAB XAB J-AB XAB

It should be noted that if,
sina^g = ri j cosa^jg = q-̂ ,  etc.

therefore sina-gA = - r^, and cosa^A= - .etc.

Following the same procedure we have:

daAC = ~T2-,dxA “ -T§-*dxC " “T 2-' ^  + -r2— dyc-(2-60)AO 1AC A 1AC 0 1AC A 1AC 0

Subtracting (2*60) from (2.59) we have:

d0A =(4r-------------- -  -r^*dxs + -72-,dxc-■•AB AC

- ^  ■) »dy« + 4 i- dyR — T7̂ *dyc.........(2.61)iab !ac a 1a3 b ^ac c

-̂AB dAC
q_2

-'-AB 3-AC
we have

.£2_ _ .rl/ T1 X - XTdQ-n =(-r-2------ - * - ) . d X p -- =-^-.dxr<-----i
B XB0 W  B BC dAB

-<.dxA

- +•:—yi— ) *<ly-Q + -y^-*dyc + -yL-.dyA ........ (2.62)Ibc ^-ab b 1bo c -Lab a
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and,

d0C~~ (“IAC i BC/*"aC + "^AC • dxA -r^ - ^ | _ ) . dx ■ r2 

+  & ; ),dyc - - f t * dyA +
<12 <12
-AC *BC -AC

*1 *dyB BC
(2.63)

If BC is the base line, with the two stations B and C fixed, dxg, 
dxc , dyg, and dyc will be zero, so that equations (2.61),(2.62), 
and (2.63) will be reduced to the following:

d0A=(-JpL---- £2_).dxA -(-iLL--- i2_).dyA  (2.64)
A I a b  I a c ^ I a b  Iac

........(2.65)

 (2.66)

10^=- ■ ■IX  ■. dx + dy
B Ia b  a  i a b  a

dep = ■+- . dx * ---.dy
G XAC a xa c A

From equations (2.64),(2.65) and (2.66) it could be seen that the 
change in angle A is minus the sum of the changes in the two 
directions AB and AC.

Substituting the equations (2.64), (2.65) and (2.66) into 
equation (2.30) we have:

VA ~ (vAB - Ta(P = d0A “ kA  (2*67)
where, = ( a ^  -  ) - (cpAB - <?AC) = 0A 0A

Thus vA is obtained and v-g and Vq may be derived similarly.

Correction equations for the problem given by figure 2.12 will 
be given by the matrix:

VA rl OJU

I

XAB
rlVB xa b

VC + -rS
•̂AC

-(■ q2
-AB AC

+ -Si-
XAB

--*2-
XAC

) dxA “ •^A

dyA kB

*C



- 101 -

Components of normal equations are- then given by:

A 1 A =
^AB

r9 r-, 
2 )( 11 ^AB 1AC -AB 1

2 )( *1
AC XAB

*1
1AB* XAB 
r2 r2
LAC XAC

1a b " 1ab
r2 # ci2
^  ^AC

■*L

K =

“1 aAB -AC XA3 -AC
*1 0-2

:+ (“I1■AB -J2-) »kA !AC A :
<11 kBiAB

q2 XLU c ’̂
q.2 ,+ — .k

-AB -AC ^AB

q2
•)!'AC !

q2 v<
-AC

<ii ri : *1 *1
1 * 11 AB AB ; XAB 1AB

! <12 r2 ! *2 q2oo<!H ZAC

1 , r-, r 0 .= ! - ( -1 - 2 ).kA i j l-AB XAC j
1 r-L i
1 + lA B 'kB ;

i -  "2  , k  |
: lAC ;
i------------------------------------f % ♦ # ..............(2 .6 9 )

2•3.2.2. Mechanical Relationships Between Different Quantities 
Represented in the Mechanical Analogue

For the same mechanical problem, since stations B and C 
are fixed, there are two fixed supports at B and C, with station 
A allowed to move. Also using the superposition theorem, we have 
the following.
In figure 2.13a moment Mq = 1 is equivalent to an effective 
force at A = l/l^c 811(1 a reaction at B = l/lgc • Similarly in 
figure 2.13b MB = 1, which is equivalent to an effective force
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equal to l/l^g at A, and a reaction force = l/l^Q at B. For 
%  = 1 t two effective forces will be acting at A equal to l/l^B 
l/laq different sense to those produced by and 
for equilibrium reasons.
The problem will be solved by finding out the displacements 6x 
and 5y of the station A which is necessary to reduce the strain- 
energy to minimum, or in other words to find out the displacements 
which satisfy the equilibrium conditions, EX = 0, EY = 0, and 
EK =0. The change in angle 0 between any two sides is the result 
of:
(1) A deformation in the elastic unit representing the angle 

due to the moment applied.
(2) A movement of the free end of the station A.

Expressing this change in the mathematical form using equation 
(2.9) to give the change due to the translation of the free 
station A, we have:

"A = ~ kA +- - T ^ - dxA - ^  ~ - i f e ^ A

VB = ~ kB " -lfe-dxA + - ^ ' dyA  (2*70)

vc = - kc + _l2_.dxA - _22_.dyA
XAC J-AC

If f is the stiffness of the elastic angle, therefore:

f.M = vA  (2.71)
and, M = g.vA
when g(the weight) is taken unity, 
therefore, M = v^
and acting forces as a result as this moment will be equal to
M/L. To obtain the components of these forces in the directions 
of coordinates x and y, equation (2.7) is used, thus we have:

ix  = -  -T 2- )  *VAIab ac  (2.72)
It * — SS_).v,
1 Iab !aC a
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L-BC La c■AC

L a c•AB
A

■AC

L a bLab
Figure 2.13

B

Substituting equations (2.70) into equations (2.72) we have:

Iab iac

rn r . r-j_n— [-kB - 
XAB

• dx. + 
XAB A

Ia b Iac

qi ,#dyA^ +

<12
â c )-dyA]

r0 r To+ -J.- - ■ I -kn + .--.4. ,dx^ -
-AC

:C(^ z s

'C(~rfe

•[(^ Z b

C 1 aAC

XAB
c±2
XAC dyA] . . . . . . . (2 .75)

W T ab

r2 w«l
H c )4Iab

r? \ rl rl r? r? i
T ac + "Ia b * xab + ^a c * 1-ac a

q2 x r i  in r 2 q? i
^AC + IAB" xAB + lAC* -t-AC 'ayA

r 2
+  ‘t l c ' kc]  (2.74)

Similarly for the other component of forces we have:

*2 w  rl r2 x , *1 rl , *2A i-H— i- - 2 \ . *1 "1 , ^2 2 1
T ac Ia b xac xa b ’ xa b ^a c ' xao a

+[(■ qi q2

+[(■

XAB

11

qi q2

xa b Iac

XAC XAB 

q-2- ) . k A  -

XAC ) + qi qi + q_2_ q2

J-AB
•kB +

xa b * xa b t Ia c ' 1AC^‘dyA

^2_.kn]  (2.75)XAC

Equations (2.74) and (2.75) when put in a matrix form will show 
that they are identical to equation (2.69)* For larger nets the 
same procedure can be followed, to show that mechanical system 
is capable of giving the same solution given by the mathematical 
forms. Identity between equations (2.74) and (2.75) and 6tjuation 
(2.69) shows that the normal equations in the mathematical 
solution correspond to the equilibrium conditions in the mechanical
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solution, i.e. correspond to EX = 0 and El = 0.

2.3*3* Physical Representation of Angles

B

Figure 2.14

The derivation of the above' equations take s ‘ into'.account 
the different readings of a; certain bearing ,taken at both ends of . 
a line, e.g. v^g ^ vgA ± 180°. The physical representation of 
this consideration may bo understood by the diagram given in 
figure 2.14*

If we consider forces acting at the joints A, B, and C, the 
effect of the sum of these forces will be obtained by assembling 
the,piocesx.of!this figure. When this representation is assembled 
the six component sides will represent the three sides of the 
triangle concerned. This will be the only way of representing the 
different readings for the bearings at the two ends of a single 
line. The idea of the mechanical analogue is to find a way of 
constructing a model representing this assemblyf and make this in 
such a way that it can produce an adjustment according to the law 
of energy conserved.

2.3*3*1* Joints of the Mechanical Network for Triangulation 
Adjustment

To represent an angle in the mechanical network, the size 
of this angle should have the value obtained in the field. As 
observations obtained from the field are always adjustable, the 
way to represent them physically is to introduce them in an elastic
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form which accepts deformation.
To elastically restrict the size of an angle, produces a 

partial rigidity and conserves energy. Differential deformation 
is required therefore to allow displacements necessary for 
equilibrium position. To allow displacements in a net where 
strictly straight sides are necessary, joints should be very 
flexible•

The partial rigidity produced depends on the stiffness 
of the elastic units used to represent the angles, but this 
rigidity must not be too great or the sides will jiot be kept 
straight when a bending momont is applied.

Flexibility combined with smooth movement and rotation 
which release the excess energy conserved in the elastic joints 
at different stations is the main object of the construction.
When such joints are constructed the resulting deformation in 
the springs will give the corrections required for the adjustment. 
So the mechanical features should not stop the nodal points 
from moving to the required positions in order to reach the 
state of the minimum strain-energy conserved.

2.3*4- Mechanical Components for Constructing the Analogue 
for Adjustment of Triangulation Nets

In the field survey it is essential that:
(1) A theodolite having sufficient accuracy for the work in 

hand should be employed.
(2) New stations must be connected to existing coordinated points. 
The result of the theodolite observations will be a set of 
readings which will contain errors. The next stage is to adjust 
these readings by solving a set of linear equations for the 
different observed quantities. As shown before these equations 
will be solved for the purpose of distributing the discrepancy 
between observed and calculated quantities.

The mechanical adjustment by the analogue duplicates these 
procedures, ensuring the distribution of the discrepancy according
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to the least squares (least energy) theorem* The linear equations 
solved in the mathematical method are those obtained from the 
observations in the field. To avoid having to introduce these 
linear equations to any computing system, mechanical analogue 
should be assembled in such a way that it is identical to the 
observed net. This requires that directions have to be represented 
physically by straight mechanical members in such a way that these 
will not be affected by the procedure of adjustment, (i.e. they 
must be kept straight, as'in tho initial assembly)* The 
angles are represented by the intersection of the individual 
members representing the directions, which are connected by 
suitable elastic components.

Existing and new stations have to be located physically 
and analytically in a coordinated system. In the former case it 
is plotted on a sheet of graph or other sqaure paper. The
mechanical members representing the directions have to be set in
the correct directions. In this case a circular disc which’ *
represents the horizontal circle of the theodolite is used. The
disc will not be expected to give exactly the same readings as 
those obtained by the theodolite, but it will do so accurately 
enough for the purpose.

The individual components will be discussed in more detail later,

• = ELASTIC UNIT —  DIRECTION OF  MECHANICAL SIDES

Figure 2.15
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but this introduction will suffice for the moment. A typical 
net of the type described is shown diagrammatically in figure 2.15

2•3•5 • Mechanical Representation of Angles and Directions

Adjustment of angles and directions are known to be two 
alternative methods for adjusting triangulation nets. Using 
mathematical solutions the difference between using either of 
these methods is insignificant, as there is hardly any difference 
in results. The main difference is that’ the adjustment using 
angles is generally regarded as being quicker in practice as it 
involves less computation^. Using the mechanical analogue the 
construction of the joints when using one method will be totally 
different to that required for the other method. Both methods 
have their advantages and disadvantages.

The main advantage of using the angles method of adjustment
i£ that it avoids the station corrections which seem to require
extra computation. The main snag is the complication in the 
construction of these joints, which adds extra weight at every 
station, and so caused difficulties in movement of'the appropriate 
elastic units unless undue force is applied. Another disadvantage 
is the complication of the mechanical features required in using 
two different sides to represent one direction as mentioned in 
2.3.3. This is really so complicated as to be impractical.

The main advantage in using the direction method of
adjustment is the ease of construction of these joints as compared
with those required for angles. The circular disc acts as an 
adjusting device which can be subjected to all forces acting 
at one joint. Another advantage is that the use of the two 
mechanical members in the analogue gives an exact representation 
of the two rays observed at each end of a single line in the 
field.

Both possibilities fr~ adjustment have been constructed 
to see if these apparent advantages and disadvantages are realised 
in practice.
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Whether angles or directions are to be adjusted a mecha
nical analogue simulating the triangulation net must have the 
following;
(l) Control Points. (2) Elastic Units.

2.3*5*1* Control Points

Examples of these may be primary stations acting as control 
for secondary nets, or Laplace stations for primary nets. These 
points are fixed mechanically while translation of the other 
stations is allowed. The rapidity with which the final values are 
reached will depend to a considerable extent on the number of the 
control points and on their location and distribution.

2.3*5*2. Elastic Units

The type of elastic unit to be inserted in the joint 
constructed is very important. The size of the proposed analogue 
must be limited both because of weight and the sheer difficulty of 
operating a physically large device. In addition, with a large 
system of some weight, elastic system of considerable size would 
be necessary, which would make it very difficult to insert small 
angles or small values of the directions.

The use of the different types of elastic units is 
discussed in the following:
(i) Flat Clock Springs: The first possibility is the use of a

flat clock spring, the centre of which is attached to a 
spindle representing the point and the free end attached to 
one direction(the side). The direction of each side has to 
be set using this clock spring, but there are considerable 
difficulties in producing graduated clock springs for this 
purpose, and even further mechanical difficulties occur in 
making connection of the flat clock spring to the sides.
A circular disc may be used for setting, but its connection 
and relation to the spiral clock spring is very complicated. 
An the other directions observed at a point will also have 
to be represented by other clock springs acting about the
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same vertical spindle and thus pose still ■ 
further difficulties

Because of these difficulties flat clock 
springs do not appeal-' to offer a practical

Figure 2.16
solution for the representation of angles in 
a mechanical analogue*

(ii) Coil Springs; The 
familiar coil spring 
with a constant diameter 
has been considered both 
as a tension and as a 
compression spring.
Figure 2.17 shows how . 
such a coilt spring may 
be connected to side a 
and to the circular disc.
The action of the spring 
will be due to the rodba,- 
t±oil_ of side a towards 
the vertical screws.

(a) Tension Springs:
Tension springs can be inserted directly as shown in 
figure 2.18. There is no need for any extra wire to keep 
the spring in position, as the connection of the initial 
assembly of an analogue requires preliminary tensioning 
of the spring to give it the spring action wanted. The 
disadvantage of using such a spring is that when side 
a moves towards one direction such additional stretching 
could result that one of the springs reaches the critical 
point of elasticity and does not act as an elastic unit 
in the analogue. The power obtained from such a spring 
depends on its stiffness together with the limit to which 
this spring can be initially pulled, which depends in 
turn on the length of the spring, and again on the size

or

(a) ELEV. OF THE CONNECTION
'1) = SIDE a (2) - SPINDLE (3 )  = HORIZ. DISC

(b) PLAN OF THE CONNECTION 

Figure 2.17
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of the joint. This special type of springs has been used 
in the experimental analogue for angles adjustment, where
the size of the joint was large, and long springs were
used.

(b) Compression Springs

In figure 2.17 springs may be compression springs, 
but in this case a special wire^ figure 2.19, has to be 
used to ensure that the compressed springs act in the 
direction of rotation of the circular disc. This will not 
cause any extra difficulty provided the design is such 
that the wire itself is not compressed or interfers with 
the forces applied, as shown in figure 2.19, when the size 
of the joint is small. On the other hand the difficulty 
of connection will be increased if the size of the joint 
is large, as the wire required for guiding the long 
compression spring has to be stiff and exactly circular 
throughout its length.

The compression spring does allow the full strength 
of each spring to be used. Also such springs are usually 
constructed to allow full compression without loosing 
any of its strength. Compression springs are used in the 
final construction of the mechanical analogue for the 
direction adjustment.

(iii) Flat Steel Springs: This is a piece of ,specially tempered 
steel which would appear to require a simple small conn
ection and to offer the facility for adjusting numereous 
directions at a single point. This has been tried exper
imentally, e.g. in figures' 2*20 and 2.20a the rotation 
of the direction a is determined elastically by the two 
flat steel springs.

The connection is relatively small when compared with 
that of figure 2.17, certain difficulties prevent j 

the successful use of this type. These difficulties are:
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(1) Since it is mounted at one 
end of each side, this type
of spring does not have enough 
elastic power to translate 
the joint at the other end 
of the side.

(2) The elastic effect of this 
type of spring on the side is 
greatly affected by the ver
tical position of the side 
against the spring. Since 
the sides have to be connected 
at different levels, the 
elastic effect will not be 
equal.

The first difficulty 
might be overcome perhaps by 
utilising some special type of 
steel made up for the purpose.

< 3 T

15V.

(2

;d
k(5)*4)

(a) ELEV. OF THE CONNECTION

(1) = SIDE a ( 2 ) -SPINDLE (3 )=HORlZ DISC

(b) PLAN OF  THE CONNECTION

(4 )  = STEEL SPRING
(5 ) ^DIRECTION OF ACTION OF THE SPRING

Figure 2.20

(2K ^ 5,

(b) SECTION

2 E

r i m O
c o

(2>

2
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B

^4)

2 E

4)
M 3 )

(b) SECTION(a) ELEVATION

1) HORIZONTAL D ISC, (2 ) SHORT SPRING FOR SIDE 1, (3) LONG SPRING FOR SIDE 2 , ( 4 )  SIDE 1, (5 )  SIDE 2

Figure 2.21

However it appears impossible to avoid the second difficulty 
for this particular design of the analogue. As a result, one 
side of the two representing the two directions obtained at both 
ends of a line, will be elastically affected at both ends, while
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the other one will bo affected at one end only. This can be 
seen infigure 2.21.

2.4* EXPERIMENTAL ANALOGUE FOR ADJU3TII5NT OF ANGLES 
Bearing all the above considerations in mind a mechanical 

analogue has been constructed. This is shown ±i figures 2.22
and 2.22a

B

(b) CORRESPONDING MECHANICAL F R A M E(a) SURVEY NET

') = HORZ. DISCS O F  THE SAME No. AS THE SIDES AT EACH JOINT o = SPINDLE

Figure 2.22

Turning to the individual components we haves
(l) Short sleeves, figure 2.23, which can hold the sides

clamped or allow completely free movement, in the

direction of observation. Rollers are used to assist 
this movement. The sleeves are provided with collars 
to make a connection with the corresponding vertical 
spindle when the tensile force is applied.

(ii) Two horizontal discs, figure 2.24, or a disc and an arm 
which are provided with collars connecting them to the 
corresponding spindles. Again this connection should 
have a clamp against slipping.

(iii) Two spindles, figure 2.25 of two different diameter**
one which could be inserted exactly inside the other.
Insertion in this case should allow free rotation, with 
minimum friction,
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i.e. the force applied should he exerted fully on the two sides,
(iv) Two tension springs, figure 2.26, connected to the two 

discs. A proper connection of these springs is given in 
figure 2.27.

(v) Two direction arms (sides), figure 2.28, which can he 
inserted inside the sleeves. These should not allow any 
appreciable elastic deformation, so the sides used are of 
the width that can resist any lateral bending. The thickness 
of the sides is of less importance, but this should be 
chosen to suit the clearance of the sleeves. The sides 
should be of minimum length necessary to avoid adding extra 
weights to the joints.

(vi) The stud, figure 2.25, plays a major part in the constr
uction of the elastic joint, as it is the pivot to which 
all mentioned parts are connected and so to represent mech
anically the station in the triangulation net. It is made 
up of (a) A circular base-plate which is necessary to prevent 
the joint from being turned over or tilted when forces or 
moments are applied at the joint. This should also have a 
smooth undersurface to prevent frictional forces from 
becoming significant against the working forces.

The accuracy of results depends to a great deal on such 
achievement, and so the undersurface has been made hollow.
The frictional forces also depend on the weight of the joint 
itself, (b) The spindle, vhich is attached rigidly to the 
base-plate and has an external diameter equal to the inner 
diameter of the inner collar allowing a free rotation of 
one around the other, (c) Long pin of hard steel, which 
is introduced into the hollow spindle to fix it to the base 
board in the case of the control points and to mark the 
position found after the adjustment in the case of the 
new stations to be fixed.

(vil.) The setting discs.figure 2.24, these are the horizontal
discs mentioned before, and are used as setting protractors.
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A small channel shaped metal piece with a clamping screw 
can be set at any position on the circumference of the disc 
as indicated by a fine mark which is set against the required 
angular value. The two tension springs are connected to 
this piece as shown in the figure•

In figure 2.27, the flexible joint is assembled to show 
the connections. Beside the above mentioned components, there 
are clamping screws necessary for inserting the springs, and 
tightening the connections between spindles, discs and sleeves.
The spindle height is made so that it allowes the assembly of 
the components necessary for adjusting three angles at one station.

It must be said here that the construction of the 
experimental model is much too heavy, so that the results obtained 
were perhaps a little less accurate than they could be, but most 
of all, the weight and friction resulted in more iterations and 
computations than would be necessary in a fully developed version#

2#4*1« Weights Applied to Observed Angles

The accuracy of observations in the field normally affects 
the weights used for the adjustments of these observations, but 
the weights here will be considered unity. The validity of this 
consideration is based on the conclusions drawn in 1.5.2.1 as 
this has been theoretically accepted when the adjustment of the 
combined net is considered, in which case it is also justified 
for adjusting angles only. Computers prefer to use the same 
weight for simplicity and for the reason that the observational 
equipment is now so improved and the accuracies normally achieved, 
are so high that slight difference could be easily neglected.
So all angles will be given the same weight and hence the springs 
used will be of the same stiffness and length. Even if different 
weights were accepted it would be necessary to give the angles 
unit weight for the following mechanical reasons:
(l) The space which can be allowed for the springs used is very 
restricted, which prevents different lengths of the same spring 
being used to represent these different weights.
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(2) Springs of equal length, but of different stiffness, can be 
considered, but it was very difficult in practice to obtain 
sufficient reliability in springs which are normally available. 
It is also very difficult to obtain a sufficient range of 
springs of varying stiffness to correspond to all the weights 
which may be encountered.

2.4*2. Working Procedure 

2.4.2.1* Preparing the Working Surface

The computation is carried out on a plane horizontal wooden 
surface such as plane chip board. This must allow the pins to be 
fixed with a minimum of effort, when marking the new stations 
after each iteration, or fixing the control points on the working 
board. For fixing or marking points a light hammer can be used.
The area of this working surface must be large enough (say, 1.5m^) 
to allow the adjustment of different problems of varying area. 
However this area should not be so large that it might be difficult 
to shake the board .as this is necessary to release any forces that 
may not be working due to the friction between the board and the 
base plates. The weight of the board must allow this vibration 
and not be deformed by it.

2*4*2.2. Reference G-rid

Rectangular graph paper is used to provide a reference 
grid for the necessary control points and the computation which 
follows, so that the accuracy of this representation will be that 
of the graph paper itself. Normally millimetre graph paper is 
used, and in practice because of the pin hole size and the

SCA./Cmechanical limitations no attempt has been made to afisk off values 
better than this. If one millimetre represents one kilometre,
(i.e. 1 : 1000,000) then any fraction of the kilometre will be 
neglected in this first assembly. However with each iteration 
the plotting scale of correction is progressively enlarged (e.g. 
1:1000, 1:100, 1:10, or even 1:1). So there is a linear reference 
scale S^, which should be fairly small for plotting the initial
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position of the control points. The correction scale (Sc for linear 
values) will be that of the reference scale at the first assembly 
but will become progressively larger as each iteration is made, 

is the angular scale and will be equal to in each case.

2.4*2.3. Choice of Linear Reference Scale (Sj,) of the Net

A small scale has the advantage of reducing the weight to 
be translated under the effect of the lateral forces acting at the 
different stations. A larger scale means longer rays, and conse
quently longer mechanical pieces. As the new points to be fixed 
by the mechanical analogue have to be translated by lateral forces 
acting at different stations, the scale used affects these forces 
considerably. For instance, if M is the moment acting at one 
station of the mechanical -side, the other station will be trans
lated due to a force = M/L, where L is the length of the side.
As has been seen M is introduced by the tension applied between 
the two horizontal discs due to the contradiction used* and the 
elastic unit used will be of the same stiffness irrespective of 
scale the moment applied will be the same = unity (say). Hence 
the force acting and causing the translation of the different 
joints will be inversely proportional to its distance from the 
point of application of the moment in consideration.

The ideal case is to reduce the length of the sides to 
a minimum. The choice of the minimum length used is restricted 
by the size of either the base plate or horizontal discs used.
So the necessary length of a side connected to two horizontal 
discs can not be less than (2r + 5), for the shortest side in the 
net, where r is the radius of the horizontal disc and 6 is the 
maximum displacement caused by the different iterations required 
for the adjustment. Practice and experience with the experimental 
analogue show that the minimum length of a side used should not 
Be less than 3r.
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2.4*2.4* Setting up the Zero Assembly

The zero assembly or initial assembly represents the 
observed quantities at scale S^ and as already mentioned this will 
be the same for the zero and every other assembly. The angular 
values represent the observed angles in the mechanical net and can 
only be set to +0.5° in the zero assembly. This is due to the 
fact that the disc will hot be graduated to finer than 0.5° unless 
a disc of much larger diameter is used for the assembly, which is 
not desirable.

Setting the zero assembly results in the approximate 
location of the new points at the intersections of the sides.
The coordinates of these points of intersection are obtained from 
the graph paper, and normally will be checked against the more 
accurate preliminary values obtained by calculation. The latter 
are preferred in order to save some iterations during the process 
of adjustment.

As the location of the points of intersection depends 
mainly on the direction of different rods, the difference of the 
height of both ends of the same rod will not affect this 
location provided that the spindles remain vertical. Sometimes 
due to difficulties in mechanical setting, it is advised to have the 
sides slightly inclined to the horizontal direction.

After assembling the dirction rods, and connecting the 
different joints using the original observations, the working 
surface together with the zero assembly is slightly shaken. To 
achieve this properly, the. surface of the board is beaten by hand 
in a rapid drumming action. So releasing any strain that might 
be created by the assembly of the mechanical analogue.

The approximate positions of the stations are then marked 
by inserting the long steel pins through the hollow spindles and 
pricking through the graph paper. The assembly is then disconnected 
to mark up these positions and scale off coordinates.
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2.4«2.5* Computation of the Angle Discrepancies

The scaled coordinates are used to calculate the directions
(a), as for example from figure 2.10,

tana-, P = ~ ---—X2 - xq
and angle 9^ = a^_^ - a^_2

So the difference between the observed and computed values is 
obtained•

2.4*2.6. Choosing the Angular and linear Correction Scales

This is the angular scale at which the discrepancies are 
introduced to the analogue. In determining this scale, it 
must be kept in mind that to obtain high accuracy using a 
mechanical analogue based on the method of systematic relaxation, 
the contradictions (discrepancies) must be introduced at an 
appropriate scale, which is neither too large or too small. If 
the contradictions are too large, the translation of joints 
will be fairly large too, this means that large values of stress 
and strain are introduced. In this case the relationship between 
stress and strain of the elastic material may not be a linear 
one, which means that there will not be a linear relationship 
between contradictions introduced and the resultant translation 
of the joints. If the scale is too small the contradictions 
introduced will not give appreciable translation to the joints.

The angular scale will of course be changed for each 
successive setting of the mechanical analgue. For example,,in 
the first assembly an angle 156° 23* 30” will be set as 156° 30*, 
the angular scale is 1:1. When a difference (say +5") is 
calculated between the observed and computed angles as given 
above, then this difference and those for the other angles will 
be inserted at a larger angular scale(say, 1”:30’, i.e.1:1800) 
and the new setting of the angle will be given the value of 
156° 301 + (5x1800)- = 156° 30f+2° 30' = 159°. The introduction 
of the difference to the mechanical analogue in this way is known
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as the contradictions. In practice when 1" was represented by 30* 
for the first iteration, then 1”:1° (1 :3600), 1":2° (1:7200), are 
found to be convenient for the successive iterations without any 
excessive strain being produced in the springs.

The relationship between linear scale S^, angular correction 
scale S^, and the linear correction scale Sq can be explained in 
th6 following,

The larger the linear scale Sp,, the larger will be the amount 
of translation of joints. Also for the effect of the angular 
correction scale, the amount of linear translation of joints will 
be directly proportional to the quantity introduced in the form of 
contradiction, hence the linear correction scale.

If Sq is the linear correction scale used to convert the 
scaled units to the actual units, therefore Sq = will
be fixed from the start of the computation process, and will be 
varied according to the change in S^.

2.4-2.7. Computation of the First Correction to the Observed Angles

Having decided the angular correction scale and hence 
the linear correction scale Sq , the mechanical analogue is 
re-aasembled to give the first correction to the approximate 
coordinates. The same procedure is followed as before, but with
the contradictions introduced. The working surface is again shaken 
properly to overcome any resistance to the forces acting on the 
mechanical pieces. When the analogue has reached the position of 
least energy conserved (when..it has ceased to move) the new positions 
are pricked with the long steel pins. Then the coordinates 
differences between the initial points obtained from the zero 
assembly and those obtained by the new assembly are measured and 
given the symbols 5x]_,6x2>6yi, 6y2, etc.... 6x, and 6'y will be
positive if the joint translates in the positive direction of x 
and y axes,and negative if it translates in the negative direction. 
The corrected direction will be obtained from the formula,

(y? + Ay2) - (y, + Ay-,)tana-, 0 = 7— £------^ ---7—±-- --±rVx2 + Ax2) - Cxi + Ax1)
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where Ax = Sq .Sx , and Ay = Sp.Sy
From the new values of ap2an(̂- ^13 the new values of the ang3-e 9p 
will be obtained.

2.4*2.8 . The Iteration Process

Usually the steps given by 2.4.2.6. and 2.4.2.7 with the 
new contradictions are repeated to reach the final solution. Due 
to mechanical and graphical limitations the final adjusted values 
cannot be obtained from a 'single iteration. The improvement 
obtained after each iteration should be appreciable, practical 
experience on the analogue shows that normally the largest 
discrepancies are reduced after the first iteration to a fifth 
of their original values. This could reach a tenth of their 
original values in certain cases*

The iteration process should be ended when no further 
improvement can be obtained, i.e. when the angular values obtained 
are the same after two successive iterations at least to within 
the order of corrections appropriate to these observations.

The number of iterations necessary also depends very much 
on the number of control points and the size of the problem to be 
adjusted. Mechanical limitations of friction and weight are usually 
the main reasons for having to increase the number of iterations 
necessary with larger problems.

The number of each iteration being given in different 
colour for each successive set up.

2.4*3« Practical Examples

Results using the experimental mechanical analogue for 
adjusting angles of different examples are given below.

2.4.3.1. Adjustment of an Equilateral Triangle

The simplest problem to be solved is to find the corrections 
to coordinates of a triangle, such that the corrected coordinates 
would satisfy the angle condition, £(3̂  - 180° = 0.
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The least squares solution for such a problem is found by using 
largange multiplier, for the correction equation,

a-̂ • 60̂ _ a2*602 a^. 60^ ** k = 0  *.....««(2.76)
the correction will be:

60 = -ai*k
Ea?

where ■ is the multiplier.
Ea i

The solution of the triangle, where ap_ = a2 = a^ = 1 is

50-p = 502 = 6 © 3 = |

Another way of obtaining the corrections for angles is by 
mathematically adjusting the coordinates by variation of coordinates 
method and then computing the angles.

Using the mechanical analogue, the base line AB is fixed 
by the two fixed stations A and 3, the three observed angles are 
set on the horizontal discs, and the initial positions of points 
are obtained. The contradictions between the observed and calculated 
values of the three angles arc introduced to the appropriate joints. 
The joint C will then move to its equilibrium position, so that 
the corrections to its approximate coordinates are obtained. The 
three observed angles are:

A = B = C = 59° 59’ 59*f 00 
The base line is given by the fixed coordinates A(0.00, 0.00), 
and B(50,000.00, 0.00), approximate coordinates of the third 
station C is given by (25,000, 4-3,301).

Using the least squares method for the solution of this triangle 
and applying equation (2.76) we have:

(179° 59’ 57” + 60i + 602 + 663) - 180° = 0
and, 60^ + ^®3 “ 5” = 0
therefore 60-j_ = 602 = 60^ = 2. = 1"

The solution of the same triangle by the mechanical analogue yields
the following coordinates (25,000.00, 43,301.31), the corrected 
angles being A = B = 6 0 °  00* 0V05, and 0 = 59° 59' 59V90.
These results are obtained with a minimum linear scale allowed
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by "the horizontal discs (AB= 7V5 î -S.)
Since the mechanical triangle satisfies the angle condition, 

Epj_ = 180° exactly the amount of computation can be reduced,since 
only two angles of the triangle need be computed, the third one 
being obtained by subtraction of the sum of these from 180°.

As the analogue used is only an experimental model, the
required solution was obtained after the third iteration process 
which is a very lengthy calculation when compared with the easy 
and quick way of the least squares solution,

2.4*3.2. Adjustment of a Parallelogram Figure with One Diagonal

The purpose is to find out  — ^D
the change in the corrections 
obtained in the example solved in
2.4.3.1. when another identical 
triangle is added to it, figure 2.29 
Ax = = (?! = 59° 59' 59".00
A£ = D2 — C2 — 60 00 01.00,
Coordinates of the base line AB are Figure 2 .2 9

A(0.00, 0.00) and B(50,000.00, 0.00). ---------------------- ----
The calculated coordinates obtained from approximate observations 
are 0(25,000, 43,301), and D(-25,000, 43,301).
Solution by the least squares is obtained by satisfying the angular 
conditions of the two triangles in separate stages. This solution 
gives the following corrections'? 6Aj_ = 6B^ = 60^ = + 1" .00 
and 6A2 = 6D2 = 6C2 = - 1".00
Procedure of computation by the mechanical analogue is exactly the 
same as before. The angles corrections obtained being identical 
after the fourth iteration, when the corrected coordinates were: 

0(25,000.03 , 43,^01.32), and
D(-25,000.03, 43,301.39).

Results obtained are more accurate than expected from such a 
heavy and complicated mechanical model.
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2.4*3.3. Adjustment of a Braced Quadrilateral

As compared with the previous 
example two different triangles are 
used, figure 2.30.
The angles used in the problem are:

0OJItH 18 1 H MD • O O

\  = 91 01 43.00
G1 =='56 39 57.00

£ =179 59 59.00
and,
A2 = 42° 551 00.CMO

D2 = 59 50 57.00

IICM
O 14 02.00

B

D

Figure 2.30

£ =180 00 01.00 
The fixed coordinates of the base line AB are (0.00, 0.00) and 
B(0.00 , 40,000.00). The approximate coordinates C and D from 
computation are 0(25,582 , 40,459) and D(52,204 , 13,771).
Results obtained by the least squares solution are:

6AX = = 501 = 0533, and 6A2 = 6I>2 = 5C2 = - 0533

The corrections to angles when using the mechanical analogue are: 
6AX = + 0540, 6B]_ = + 0570, and 6C3. = - 0510

and 6A2 = - 0530, 5D2 = - 0570, and 6C2 = 0500
obtained when the coordinates are 0(25,582.70 , 40,459*43) and 
0(52,204.50 , 13,771.09).
Results obtained for this example are different to those obtained 
by the mathematical solution.

The reason for this difference is not a mechanical one 
at the joints as the connection between sides allows the same 
mechanical effect on the two sides of each angle, independent of 
the size of the angle itself. The only possible reason seems to be 
that the joints of this experimental'modol are too heavy to give 
the properly translatory movement when the angles are very large 
or very small. Probably very large forces will be needed to produce
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appreciable movement of some joints in this configuration.

2.4.3.4. Adjustment of a Doubly Braced Quadrilateral

When a doubly braced quadrilateral is 
adjusted, three horizontal discs have to be

1]mounted and connected at all four points instead 2(
of the two required in the previous pair of
examples. This adds to the weight and the
complications of the connections. The connection

Figure 2.32
necessary at a single £joint is shown in figure ________________
2*32. Obviously the difficulties over the translatory movement 
can only be overcome if the weight is reduced to a minimum.
Only in this case would better results be achievod.

2.4«4* Possibilities of Using the Mechanical Analogue for
Angular Adjustment

As can be seen from the details of the construction the 
mechanical analogue for angular adjustment is complicated and lacks 
the real representation of the observations in the field. As 
mentioned before, the construction of such an analogue tries to 
produce a model which will allow direct forces to act between the 
sides of an angle, so avoiding the necessity for station correction. 
The work with the experimental analogue recounted above showed 
that:
(1) Real observations are not represented. For instance, the 

direction observed at both ends of a side requires two sides
in the mechanical representation. This necessitates the use of 
twice as many mechanical pieces, as would be required for the 
construction of an analogue which did not include such a 

Consideration. The* extra mechanical pieces mean heavier and 
more complicated models.

(2) As tho complexity and therefore weight increases,.larger 
forces are found necessary to translate joints and these cause 
excessive strain on the elastic units.
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(3) A centered point figure in a net requires the following 
mechanical connections if all possible angles are considered 
at this station.

(a')

(c) (d)

I
-3.
I t

ho
A

(b*> (c') (d')

Figure 2 .33

In figure 2.33 (a) two angles are derived from three 
observed directions*and in .figure (b) three are considered*
The mechanical connections for these are given in (a1) and 
(b1) respectively. In both figures the mechanical repres- * 
entation has the same sides but the number of elastic units 
will vary due to these different considerations.

If all possible angles are considered at the central 
point, the number of the mechanical connections required for 
adjustment will increase very rapidly. For instance, if all 
possible angles derived from four directions are considered 
six connections are necessary as given in figure (c). For 
five observed directions the number of connections which will 
represent all possible angles will be 10 as shown in figure (d)« 
Table 2.4, shows the rapid increase in the number of connections 
as the number of directions increase.
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Number of observed 
directions = n Number of mechanical connections

2 1 = a(n-l) = 1
3 1+2

Hi1 C\J
J ''S'II = 3
4 1+2+3 = f(n-l) = 6
5 1+2+3+4 = n(Sjl) = 10
6 1+2+3+4+5 = §(n-l) = 15
7 1+2+3+4+5+6 = n(S§l) = 21 ;

V

table 2*4*
The complications in constructing the mechanical assembly 

required for such observations will be enormous* When fifteen 
or twenty one forces are applied at a single nodal point the 
difficulties in making the requisite connections between six or 
seven discs at this joint will be apparent. The weight is very 
great and probably different sizes of disc would have to be 
introduced.

If one abandons the 
procedure for deriving all 
possible angles given above 
and adopts the simpler 
procedure of considering 
only the angles derived 
from adjacent directions 
the number of connections 
required will be equal to
{n-l), where n is the number of directions observed, e.g. for 
four rays there are three angles as shown in figure 2.34*
This reduces the number of connections necessary but still 
requires the same number of discs as before, so that while the 
complications are reduced the weight is not.

(4) If further development was carried out, especially on weight 
reduction, some of these difficulties would be overcome and 
much better results obtained. However it was felt that the 
use of a mechanical analogue for the type described for adjusting

Figure 2.34
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angles is restricted to rather small nets and even if developed 
further it would not he capable of giving the required corrections 
for a larger survey nets especially whore first or secondary 
order was required. It might be used for problems of tertiary 
nets, but such a restricted use would not justify the further 
effort required.

However this first analogue did prove that many of the 
basic ideas were sound and that a fresh solution along somewhat 
different lines would be more fruitful.

2.5* MECHANICAL ANALOGUE FOR THE PROBLEM OF DIRECTIONS ADJUSTMENT

The main purpose of this second construction is to 
investigate the possibilities of adjustment of directions which 
give promise of simpler connections at the joints, less complic
ations overall and of lighter weight.

The basic distinction between the adjustment of angles and 
that of directions is given in 2.5.5.

2.5*1* Analogy Between the Least Squares and Mechanical Solutions

The analogy between equations (2.74) and (2.75) with 
equation (2.69) given in 2.5.2.1. and 2.5.2.2. is obtained after 
subtraction of two directions from one another for each angle.
This means that the analogy made for angle adjustment is also 
valid for directions adjustment, e.g.,

da*c= ■ r2- .dxA--^2-.dxc  7^“#ciyA + ••••••(2.60)
AC XAC A XAC ° lAC A XAC G

When the coordinates of station C are fix^d, equation (2.60) 
will be rewritten as,

da^c = .£.-.dxĵ  — — «dy^ •••••••••• (2.77)
1AC XAC

Similar equations will be derived for all the other directions 
observed in the net. To solve this problem by the least squares, 
the normal equations will be fdrmed in the usual way using the 
following observation equations:
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VAC “ “ r̂A + 9AC) + aAC + daAG ....... (2.53)
For a triangle ABC figure 2.12, with the base line BC the following 
observation equations are obtained:

v a c  =  [“ (rA  +  9AC) +  aA c ]  +  d «A<J.:

VAB ~ ^ rA + ^AB^ + “aB-̂ + daAB 
Substituting equation (2.77) into equation (2.78) we have:

(2.78)

VAC = ” kAC + - '.dXfl---- dyAlAC lAC
similarly for direction AB we have the following observation 
equation:

(2.79)

VAB = - kAB + rl >.dxA ” *1
XAB XAB

The normal equations are therefore:

dyA (2 .8 0 )

a * a =:• rl rl 1 rl 91
Ia b ’ XAB ! xa b ' XAB

4*-. r 2 ' _ r 2 92
J-AC XAC j 1

O 
1

<4 
I

H 
11111 XAC

91 *1  1 <J1 91
1AB •‘‘AB [ AB 1AB
92 r 2 ! 92 92
1AC' •‘•AC 1 •‘•AC XAC

K = . rl •.kj1ab'aab 
r2 ■•k,
lAC AC

91
t a b

q2
t ac

.kAB

kAC

. . ( 2 .8 1 )

In mechanical terms equilibrium of figure 2.13 requires that 
EX = 0, and BY - 0, and according to equations (2.72),

fx  =
lAB*VAB '

and I1 ........<2-82)

EX = - p M -  kAB + -r-^-.dxA r^-*dyA) +lAB lAB lAB

+ -^2-(- kAC + - r ^ - d*A "XAC xAC J-AC
- (_£!_ £l_ + _I2_ J2_) d„A _ / *1 9l _l2_._92_).dv.

XAB*XAB xAc" xAC * XAB XAB XAC XAC

- (-p^-kAB+ -T2— kAc) 1AB •‘•AC
...•••.(2.83)

also,
BY -(-2i— .yi 1 f.2— ) .dXA + (■■» — .-■ft-- + 177;̂ >dyA

I aB lAB dAC dAC A 1 AB lAR lAC lAC a1AB# 1AB !aC 1AC

+(“X“ »kAB + “T ^ * kAc) ' -...(2.84)
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By inspection of equations (2.81), (2.83) and (2.84) the analogy 
■between the mathematical and mechanical solutions can be seen.

2.5*2. Construction Difficulties

In constructing this new analogue the main aims were to 
avoid the troubles encountered during the construction of the \ 
first analogue for angular adjustment and to avoid difficulties 
over the special features of a direction adjustment such as the 
station corrections.
The points to be borne in mind were;
(1) The avoidance of the excessive weight in the joints themsalves.
(2) The horizontal disc size must be chosen so that the large 

linear scale is avoided.
(5) The connections at joints must be as simple as possible*
(4) There must be a full representation of the observed directions.
(5) There must be a simple application of forces at joints.
(6) A mechanical analogy, for a'station correction should be 

incorporated.
(7) An improved design for elastic unit has to be devised.

2.5.2.1. Experimental Analogue for Adjustment of Directions

A

B

D

(a) SURVEY NET (b) CORRESPONDING MECHANICAL F R A M E

(̂ y = HORIZ. DISC WITH ELASTIC UNIT o = SPINDLE

Figure 2.35



- 130 -

The analogue design is shown diagrammatically in figure 
2.35 and as a photograph in figure 2.36, the basic components of 
its contruction are as follows:
(i) Horizontal disc, figure 2.37d, the diameter of which is 2.5
inches, made of light alloy, and fitted with a coller and clamping 
screw so that each closely fits on tho 'vertical spindle.
Sometimes when the net has small angles or very close directions^ 
an extra horizontal disc has to be added to the same spindle, 
but this does not result in a large increase in the weight at 
this speoAAl joint.

(ii) Hollow steel spindle.figure 2.37c, having an inner diameter 
to take the marker pin. This spindle fits into a boss on the 
centre of each base plate.

(iii) An elastic unit, which is mounted on the horizontal disc to 
give the connection to each direction. The number mounted on 
a given disc equals the number of directions to be adjusted.
Each unit consists of two pieces, (a) Piece A . figure 2.37e 
which is made from a block of aluminuim. A groove is cut into
the block and the horizontal disc is inserted into this and clamped* 
This block is connected to a long tongue of aluminuim to form a 
T-shaped piece which has two vertical metal posts which are 
removable. The distance between these two posts is set to suit 
the length of the two elastic springs, (b) Piece B .. figure 2.37f 
which is attached to the sides representing the directions.
It is also T-shaped with a hollow slot cut in the cross piece 
into which the side can be inserted and slide freely along.
A rectangular slot at the foot of the upright has a wire inserted 
with two eyelets, one at each end to allow the two vertical metal 
posts from piece A to be inserted. Along this wire two compression 
springs are mounted. The wire is used for keeping the springs 
in position so that they act always along a single line.

(iv) Marker pin, figure 2.37b, made of hard steel used to prick the 
positions of new stations on the working surface and to keep the 
control points fixed in position.
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figure 2.38
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(v) Base plates, figure 2.37a, of very light alloy* Each has a 
diameter of 3 inches with a boss (or a collar) into which 
fits the vertical spindle, and a screw to act as a clamp on 
the vertical spindle.

(vi) Sides. figure 2.37m, to achieve maximum light weight with 
sufficient rigidity in the lateral direction, 5/8 inches 
Tufnol strip has been used with a slot cut in to accept the 
vertical spindle and to allow it to translate along the side 
with minimum friction. Various lengths, 8, 11, 14, 17, and 
20 inches have been fabricated to cope with the varying length 
of side likely to be encountered. With longer strips, 
aluminuim clamps are used to prevent twisting or compression or 
widening of the slot when lateral forces are applied. The 
material has been fabricated to give smooth surface which 
results in minimum friction when movement of the analogue is 
in progress.
As a first attempt metal alloy sides adopted from Meccano 

pieces were tried, figure 2.38, but difficulty arose in 
getting long enough sides. When these were constructed from 
individual smaller pieces, it was difficult to cut a single 
straight slot so recourse was made to the Tufnol, which had 
the additional benefit of being still lighter.
The weight of each component is, (i) 18.30 grms., (ii) 4*34 

grms, (iii) 12.99 grms, and (v) 40.00 grms. Total weight of 
all components at each joint is 75*83 grms. This weight could 
be reduced still further to about three quarter of that given.

2.5*2.2. Disc Size and Linear Scale

As already discussed the linear scale chosen has a great 
effect on the performance of the analogue, in general the smaller 
the scale the better the results obtained. As the minimum linear 
scale attained is governed by the larger diameter of either the 
horizontal disc or the base-plate. These two diameters have to 
be chosen with a diameter which is small, yet will prevent the 
joint being tilted or overturned when forces are applied. A 3
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inches diameter has been used for the base-plate. In this analogue 
the minimum side length is made = 2d, which allows adequate space 
for the translation of the joints, than 3r given before,which 
gives 2x3 inches against the 7.5 inches given before.

2.5*2.3* Connection of Sides and Joints

In the first experimental mechanical analogue for angles, 
a horizontal disc was provided for each side, so that when the 
discs are elastically connected a certain rigidity is induced.
Also each disc required the provision of a separate spindle.
The system in second analogue is designed such that normally one 
disc is sufficient to provide a connection to a number of sides. 
When two of these discs are used, these are connected ae a single 
unit to the individual spindle which is simpler and allows a 
much freer movement than before. Obviously with two discs a 
common zero should be retained at all the times during the . 
adjustment procedure. This can be obtained either by using a 
vertical marker, figure 2.37i, or by aligning the two by eye.
In practice the latter is much easier and quicker, while still 
retaining the same precision. When the two are aligned they are 
clamped together via the spindle which is free to rotate in its 
boss.

The simplicity of the connection between a side and the 
horizontal disc makes it possible to attach as many as eight 
sides, if these are evenly distributed. Although the elastic 
joint has the rigid cross piece of the T with two posts which 
keeps the two directions apart by an angle of less than 60°, this 
angle can be made still smaller (to about 45°) by a special 
connection, figure 2.39* In figure 2.40 side a is connected to 
the underside of the disc, while side b is connected to the top 
side of the same disc. In this case the size of the cross piece 
will not have any effect on the size of the angle between the two 
directions. The size of the block being the deciding factor.
When this special type of connection fails to give room for very 
small angles between pairs of directions another disc has to be



figure 2.40
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added, figure 2.41, and 2.42. This would apparently allow sixteen 
directions (eight to each disc) but in practice a reduction to ^
eight or ten (four or five to each disc) is advisable, because
la rge _ contradictions might be introduced as angular changes
at large scales. If the connections between two discs and spindle
remain really rigid under the different forces applied, there is
no difficulty in increasing the number of discs to three giving a
total of twelve directions at one joint. In practice there is no
need to provide for such a number of directions at one station^
six being h practical maximum. So a third disc will not normally
be needed.

Although the double disc functions just as accurately as 
the single disc, the following differences will oxist:
1- For one disc, setting and assembling will be done very quickly I 

but the time will obviously increase with two discs which affects
the speed of this operation.

2- When a single disc is used, rotation of this disc about the 
spindle will be very easy. However when more than one disc is 
used, rotation of the spindle itself is involved, and care has 
to be taken to prevent this sticking in the boss.

2.5*2.4* Correct Representation of the Observed Directions

Solution by the least squares method is recognised as the 
most reliable way of adjustment, since apart from other virtues, 
it offers the possibility of including every observed element in 
the mathematical model during the computation, e.g. when a direction 
is observed and has two different readings at both ends. To 
include such observations in the solution of the same problem by 
using the mechanical analogue for angular adjustment lead^ as 
have been seen, to a very complicated and heavy analogue.

The adjustment of directions by a mechanical analogue is 
made simpler since all observed quantities are easily included.
In this case each direction is considered to be a separate element 
to be adjusted. Bach of the two directions at both ends of the 
same line will have a separate correction. The mechanical
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arrangement to allow this is shown in figure 2.43. In this 
figure the side representing one direction is elastically connected 
at the first station and freely attached to the second station, 
while the other is elastically connected at the second station 
and freely attached to the first. The elastic connection of one 
side at a station should allow sufficient room for the free end 
of the other side to go through the spindle. The elastic unit 
consists of the two separate pieces A, and B to allow such an 
arrangement. So a correct and easy representation of the observed 
quantities in the field could be obtained.

2.5*2.5- Application of Forces

The springs used for adjusting the angles in the first 
analogue were connected to the two separate discs which transferred 
the forces to the two corresponding collars and then to the two 
component sides of the individual angle. When directions are 
being adjusted in the second analogue, connection will be made 
directly to the horizontal disc. Thus all the forces applied 
will be acting on the same disc and so to all the sides passing 
through that point. This is a more direct application of forces 
than in the first case.

2.5.2.6., Station Correction

As mentioned in 2.2.5*2.2. a station correction is 
necessary for the adjustment of triangulation net when using 
the direction method. Using a mechanical analogue for the s^me 
purpose requires the same treatment. This could be explained 
fully by the following:

The function of the horizontal disc in the mechanical 
analogue system is to represent the horizontal circle of the 
theodolite making the observations. Setting up the observed 
quantity for each direction on the disc can be made to an accuracy 
of 30' of arc. In the ordinary least squares solution, the 
station correction provides a specific angular shift of the zero 
of the theodolite circle to help provide a best fit of all the
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observed directions. Such a shift/is necessary if a single value 
for each direction observed from both ends of a line is to be 
achieved. The possibility of a rotation of each horizontal disc 
in the analogue has to be provided also and must be made under the 
influence of all the readings at the different stations. This is 
done quite automatically by the arrangement which has been described

2.5*2.7. Design of Elastic System

Since the analogue must be kept as small as possible, only 
limited space exists for inserting the elastic units. The springs 
chosen therefore have to be short, figure 2.37f. Considerable 
work was carried out on different types of springs and on different 
possible arrangements.

Flat steel springs were connected vertically along the 
vertical sides of the aluminuim block to straddle the side, to 
provide the elastic change required. These springs have such a 
small elastic stiffness that even the light joints were not 
translated properly.

Tension springs showed the same difficulty in use due partly 
to the necessity of also keeping the two springs under tension 
all the time.

Compression springs are found to give suitable translation 
to the joints but as already seen they require the introduction 
of a wire to guide the line of action of each pair of springs.
The wire is chosen to satisfy the purpose only, i.e. stiff enough 
to withstand deformation due to applied forces, and light enough 
to share in minimising the weight. Also they have to be soft 
enough to allow easy workability to give the slight curvature 
necessary as a route for a point moving on a circle.

2.5.3. Working Procedure

Much of the procedure given in 2.4.2. for adjustment of 
angles is followed with one or two additional steps due to the 
rather different design.
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2.5.3.1. Use of a Separate Setting Device

Connecting several sides to one disc in a convenient way 
requires that a separate setting device should be used, figure 
2.37k, This is rather similar to the disc itself and consists of 
a protractor mounted on the usual spindle. When only one horizontal 
disc is required, all the directions are set by reference to the 
protractor using the fine mark on the block of the elastic unit 
as an index. They are then clamped to the horizontal disc. With 
two discs it is obviously necessary to use the common zero with 
mark on each disc, but this plays no part in setting a single disc.

2.5*3.2. Calculation of Directions

The calculation of contradictions will be also different
to that given before, and has the merit of being simpler and
involving less computational work. In this case,

(y2 + Ay2) - (yi + &yi)
12 (X2 + Ax2 ) ~ X̂1 +

where x and y are those given in 2.4.2.7.
The contradictions will be the difference between,for 

example,a calculated direction from the coordinates to be corrected 
a12 "̂iie corresPondinS observed direction 9^2*

2.5*4* Examples

An example given in Survey Adjustment and Least Squares 
by Rainsford, p,174> bas been solved. One component triangle 
CDE was solved first. The given data are as follows:
birection ... .— <5“ I H
r ... ..  -CD 104 36 45.69

CE 142 28 18.43
DC 284 36 45.69
DE 256 57 51.14
EC 322 28 18.43
ED L..  7 6 57 51.49
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Coordinates of C and D are fixed, C(343 232.36
D(313 928.90

Approximate coordinates of E are 
(296 960 , 692 200).
Solution by least squares using 
the variation of coordinates method 
yields the corrections:

dxB = - 0.11 ft., dyE = -3.47 ft.

Using the mechanical analogue gives 
the following results:

656 116.53) and 
768 512.17).

Iteration j dxB : ays ;
first I - 0.32t j- 4.05
second i- 0.16[ j -  3.61
third 1 - 0.10 t i i- 3.37
fourth j - 0.16 ■- 3.44 ! Figure 2.44

D

The figures given above show that a close approximation 
to the final results was obtained after two iterations and that 
there was no necessity to have any more iterations than four at 
most. The following figprois for the successive contradictions 
confirm this:

Xteration in seconds CE EC . D33 ED
first + 9-80 + 9.80 + 1.60 + 1.95
second - 1.50 - 1.50 - 0.06 + 0.29
third - 0.77 - 0.77 - 0.22 + 0.13 I

j fourth—i--- -----  - + 0.25. + 0.25 - 0.22 + 0.13 |

The full net to be adjusted is given in figure 2.44- 
Arrows in the figure show the direction of observations.
Stations A, B, C, and D are pre-rfixed, the coordinates of these 
stations in'feet are, A(81 511.76 , 613 085.00), B(236 406.59,
622 992.06), C(343 232.36 , 656 116.53) and D(313 928.90 ,
768 512.17).
Stations E, F and G are to be fixed, their approximate coordinates
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are, E(296 260 , 692 200), F(224 510 , 724 290), and G(l64 920 , 
707 290).
Rainsford solution by least squares using variation of coordinates 
method including the station corrections gives the following . 
results:

J dxE dxp dyP 1 dxG
f -  0.34 - 3.07 + 0.81 + 3*12| + 3 • 44 - 2.23

Solution by the mechanical analogue gives tho following results

Iteration dxB dys dxF dxa d7u
first

4 ft second
third

- 0.65
- 0.39
- 0.30

- 3.07
- 2.94
- 3.14.

+ 1.94 
+ 1.04 
+ 0.86

+ 3 • 48 
+ 3*26 
+ 3.15

+ 2.92 
+ 3*53 
+ 3*85

- 2.75
- 2.29
- 2.10

Difference from Rainsford solution is
0.04 0.07 0.05 0.03 0.41 0.13

There is therefore a close agreement between the results obtained 
by using both solutions. Further iterations were found not 
necessary as increase of scale of correction beyond 10° :lft does 
not give any significant improvement* Also compression forces due 
to the large contradictions at very large scale will be of such 
an order that they might cause failure of the individual joints.

2.5.5* Conclusions

Using the mechanical analogue for the adjustment of 
directions by correcting the approximate coordinates in the 
above examples shows that;
1- The design and construction of this second model overcomes 
most of the difficulties found in the first one, which means 
that it can be considered a much more practical solution from 
the user's point of view. In particular, there is a free 
and easy translation of the joints during adjustment.

2- The physical representation of each direction includes the 
possibility of representing observations from one or both 
ends of the ray.
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3- The station or zero correction required for the best 
fit does not cause any difficulty, as it is obtained 
automatically by allowing a free rotation at each station 
where directions have been observed,

4- Some remarks must be made over the poor results at station 
G- which occurred every time the example was repeated. It 
will be noticed that the other points to be fixed, E and F 
had observations made at these points whereas G- had none. 
The difference between the analytical least squares 
solution and the mechanical solution seems to be due to 
this •

The effect of the spring at the point of insertion, 
e.g. close to the point E in figure 2.44 is very marked, 
but this wi ll .decrease as the point moves along the side 
away from E. When no observations are taken at point G, 
then its position will be located only by the effect of 
the spring at the far ends of the lines FG, BG and AG.
This explains the importance of making observations at 
each station in the net which is to be adjusted mechani
cally by this analogue. These observations will determine 
the locus of the movement of this station, while the 
particular position will be determined by the intersection 
of the rays at the other stations, e.g. at point G in 
figure 2.45, the same 
angle will be obtained 
for different rays from 
A and B. In this case 
C .will be moving along 
this special locus, but 
its position will l>e

Figure 2 .45
determined by the angles 
at the other two stations 
A, and B.
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2.5*6. Further Possible Improvements

A great deal of time was spent on experimenting with the 
two mechanical analogues until the second one proved practicable. 
In the light of still further experiments, the following 
further improvements could be considered:
1- The weight assembled at each joint might be still further 

reduced by:
i) A reduction in the size of piece A of the elastic unit 

to half that used, 
ii) A still lighter material could be used for the base

plate, which could be drilled out to give the configur
ation as a wheel with spokos. The importance of such 
steps can be seen when it is realised that this plate 
is about half the total weight of the whold joint. The 
horizontal disc can also be treated in the same way to 
give a better weight reduction.
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3.1 INTRODUCTION

The theory of the analogy between survey and electrical 
nets is the same as that for survey nets related to mechanical 
and structural analogues. Southwell and Black [12], applied the 
basic theory of the relaxation method to both survey and electrical 
nets. For practical reasons, a different form of analogy between 
survey and electrical nets was found necessary and was devised by 
Su [102], [105], and [106]. Successive approximations [103] has 
been also used by Su to demonstrate this analogy using level nets? 
in this context, the special systematic relaxation used in the 
mechanical and structural problems always involves such an 
iterative procedure.

As the work involved here deals with the adjustment of 
triangulation, trilateration, and hybrid observations, adjustment 
of level nets using this iterative method will not be given, and 
the reader has to refer to these in [103] and [104].

Many of the electrical components suitable for survey 
problems have been devised by Speart [96], 1947, but hs does not 
appear to have published any practical results. Eowever in 1958,
Su made the first general statement of how electrical analogies 
might be applied to survey problems and produced some practical 
results.

Obviously in- this case electric units are the physical 
quantities being used to represent the variables of the survey 
problem to bo solved. In these the voltage at a point in a 
circuit is directly proportional to the variable that is to be

3.2. ELtiQTRIOAL ANALOGY OF THE PROBLEM

represented.
Consider a component triangle, figure 3*1, in 
which the six directions are observed in the 2 3
usual way. The angle condition for this

Figure 3.1
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triangle will be formed by subtracting the observed directions, 
thus;

“ V1 + v2 ” v3 + v4 “ v8 + v9 + *̂1 = ® (3.1)

For a net of n triangles, figure 3*2, n such condition equations 
will be formed, which can be solved by using the method of 
correlates.

Figure 3. ?

The normal equations will take the form:
60! - 2C2 + kq = 0

- 20-l + 6C2 - 2C3 + k,
• • • • •

•°i )
- 2Cn _2 + 6Cn_i - 2Cn + kn_]_ = oj 

— 2Cn_! + 6Cn + kn = 0)

(where 0 is the correlate)
Equations (3*2) can be given in the form:

On = i.Co - i.k-3 2

Q0 = I.O, + I .0, - l.ko 2 3 1 3 3  g 2

'n-1 “ ^*Cn-2 + ^ #Gn “ £ ,kn-l

= i.O, - i.k.'n “ 3 * n-1 “ £ n 
In the case of a 

simple direct current, 
according to figure 3-3,
have i 

I

Ra E OA

- 2 b l_QA. - R
VA '+ -EQA

QA

l m  = ~ VB + „ M ,  and

)

■QB HQB Figure 3.3

J _ VQ. -  v c + Bqc QC RLnn (3.4)

(3.2)

(3.3)
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Where;
I = current in amperes,
V = potential in volts,
E = electro-motive force in volts,
R = resistance in ohms.

According to current continuity, El must be zero at any point.
Therefore;

1 . 1 . 1 X / VA , VB ^ VCU
Vq (e qa + Hqb + Rq c } = (RqI + r ®  + -

(!m  + ! ^  + !2C)  (3.5)
r qa r qb r qc

If R is the same for all resistances, i.e. R = R.^ = R_~ = R,QA Qd QO
and if joint C is earthed, i.e. Vc = 0, equation (3*5) will be:

VQ = f(VA + V  -  (3.6)
Equation (3»6) is similar to equation (3«3), thus an analogy 
can be introduced between the solution of the two considered 
problems. The solution of any of these two analogous problems 
can be obtained by following the procedure of solving the other. 
An electrical net can be built up to solve the adjustment 
problem, in which case the results of the solution will be in
the form of the electrical potential at the joints considered,
so that the problem of adjustment is transferred to a problem 
of voltage measurement once the net has been set up correctly. 
Resemblance between electric and survey nets is given in the 
following:
(1) An internal triangle in the triangulation net (i-e. one 

completely surrounded by other triangles), is represented 
in the electrical net by an internal joint, which does not 
lave any earthed path,(triangle r and joint r in figure 3*4)•

(2) An external triangle(i.e. one with at least one side with 
no adjacent triangle), is represented by an external joint 
in the electrical net. If there are two external sides 
they are represented in the electrical net by an ehrthed 
path, (triangle r+2, and joint r+2, figure 3•4)•

(3) Sides of a triangle correspond to paths of the electrical
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r+1 r+3
r+1

■r; r+1
■rr+3

•C r+2 r+2

r+2
Figure 3. 4

net connected into a joint which correspond to the triangle. 
For simple triangles, or for small nets it may be easier 

to calculate the required corrections via the electrical theory 
than to build a net and measure these voltages.
For the calculation method we have:

V = IR + S  (3.7)
As both ? and I are variables, therefore;

AV = R.AI, and AI = M  
Again according to the continuity law, 

2(1 + AI) = n  + AV.d = 0
and

AV = - SI
vlR

(3.8)

(3.9)

(3.10)

Substituting in (3.8) therefore;
1

AI = M.   S— .EI = - s.21
R

(3,11)

For a joint with three paths, and corresponds to a triangle,
1s = — ,3

which is called the distributing factor.
This analogy can be extended to a net of n triangles 

which means n conditions to be solved for the adjustment. In 
this case, it could be seen that all coefficients are the same,
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with the same distributing factor,and the same sign (which is 
positive in this case).

Up till now the solution is offered for the simple 
triangulation net, corresponding to very simple direct current 
electrical net. The general problem in surveying is to adjust 
nets of different individual units, such as triangles, braced 
quadrilaterals, etc. The most common problem is to adjust 
quadrilaterals where side equations will be involved. Also 
trilateration problems could not bo adjusted if tho analogy is 
limited to such a simple case.

3-2.1. G-eneral Survey Problems

As already explained, the solution of survey problems is 
achieved after reducing the correction equations (observation or 
condition equations) to normal equations, and solving these by
the ordinary methods of linear algebra. This procedure for
solving observation and condition equations is also followed 
when using digital computers, the only difference being that the 
computer is carrying out the routine work while avoiding mistakes 
and errors in the calculations.

For solving the survey problems the least squares method 
requires (equation 1.5) that;

(V'PV) = minimum  (3.12)
where V is a column matrix of the residuals ( ,  v„,•• •), V* is 
its transpose, and P is the diagonal matrix of the weights.
The normal equations will also be preferred in matrix form for
an electrical analogy.
From equation (3-12),  ̂ =  (3*13)
where x is a linear function of V.
As the independent observations are subject to the condition 
that, V = H - A ’X  (3.14)
where A is tha matrix with the elements = hZl , and j = 1,2,J1 3xi
...., n, substituting (3-14) into (3.13) gives;

APH + APA’X = 0  (3.15)
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and, BX = K   (3.16)
where B = ABA', and K = APH

3*2.2. General Electrical’ Problems

Any form of analogy between the least squares and the 
minimum energy conserved allows the possibility of building an 
analogue or conservative system capable of solving the linear 
equations used in the least squares solution. For an electrical 
analogue this similarity can be shewn as follows

In electrical networks the total energy is a positive 
definite quantity, and at the equilibrium position the internal 
energy resulting from the external disturbance (corresponding 
to the discrepancies of the survey nets) is a minimum.
If (B’O) is the internal energy = minimum,....... ..... (3.12)’
where E* represents the effective potential difforencies 
(= e^, »•••)» zmd- C "t*10 effective current corresponding to
the relative differences (=c^,C2,..•), then differentiating 
with respect to the potentials,

6(3fYE) = 0, ..... (3.13)’
aei

whore Y is a symmetrical matrix of short circuit admittances 
with the self-admittances as its principal diagonal.
According to Ohm's law, B* = V 1 - C*Z ..... (3.14)*
where V* is a row matrix of actual voltages, C 1 is a row matrix 
of the actual current supplied, and Z is a symmetrical matrix 
of open circuit impedences and equal to Y.*̂
Substituting equation (3.14)* into equation (3.13)1 gives:

B f = V ’Y - C 1ZY = 0................. (3.1?)
since ZY = 1, therefore V fY - C* = 0 ......(3.18)
and YV = C ..... (3.16)1
Equation (3.16)* is known to be Kirchoff's first law*
It could be soon that, equations (3.12), (3*13), (3*14), and 
(3.16) are analogous to equations (3.12)*, (3*13)!> (3.14)f> 
and (3.16)1 respectively.
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Equation (3*16)' has the property that the sum of the 
elements in any row or any column of the matrix Y must vanish, 
which does not occur in matrix B of equation (3*16). This missing 
property can be achieved by adding another column and another 
row to matrix B, so completing the analogy. Thus equation (3.16)
will become: DX0 = K0 ...... (3.19)

B 2where D = [v 1, which is one rank higher than B.*-* qC

XQ denotes the column matrix [X, xj;],
denotes the column matrix [K, kj,].

S is a vector to make the sum of the elements in any row or
any column vanish, 

oc corresponds to the admittance of the earth which is unlimited. 
X£ is equal to zero.
k^ is an indefinite value (current fed into the earth, which 

could be any value).
The possibilities of constructing this analogue and making 

use of it in a practical way are discussed in 3.2.3.

3*2.3. Practicality of Su's Analogue

The use of the calculation method based on the electrical
analogy gave satisfactory results which added another method to
the computation methods already known. The practicality of 
constructing and using such an analogue electrically is discussed 
from the point of view of a civil engineer, who is already 
familiar with simple electrical nets.

An electrical analogue for the solution of linear equations 
consisting of a direct current circuit is very simple and accurate 
if positive and equal resistances are used. The net in this 
case consists of:((l) Resistance boxes. (2) Power supply. (3) 
Voltmeters•

Since readings are required to three significant figures, 
and different coefficients will be encountered, some additional 
features proved to be necessary. These have been devised by 
Speart [96], and a short summary is given below:
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(l) Bach, resistance has to consist of two wire-rheostats of 
potentiometers in series. Their size is chosen such that one 
is used for coarse setting and 
the other for fine adjustment.
Such connection is given in 
figure 3*5.

-A/V-
/

W \ A ^ -

Figure 3 .5

(2) Power supply, figure 
3.6. This usually 
consists of a battery of 
chosen voltage, (2 volts 
gives good results) linked 
in series with a fixed 
resistance.(a) which 
prevents overloading;

(a)
♦

(b)

(c)

Figure 3 .6

two snail bleeder resistances-(b), across either of which the 
desired voltage may be tapped, and two variable resistances 
(c) for adjusting the tapped voltage. For large discrepancies 
the voltage is tapped across the two bleeders, while for small 
discrepancies the voltage is tapped across one only. A 
separate power supply has tc~b& supplied for each discrepancy.

(3) Voltmeter, figure 3.7*
The voltmeter is 
required for setting 
the closure (i.e. 
discrepancy) and 
measuring the corr
ections.^ Thus it is 
carrying out the 
critical part of the

k(iv)

M.A.
(vii) 10w

(v) (iii)(ix)
10w

(ii)

Figure 3 . 7

solution, so it has to be sensitive and not liable to errors. 
The needle of the standard type of resistance voltmeter 
deflects under the effect of a small amount of the current 
being drained from the circuit to be measured. In such a
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circuit where current is measured in milliamperes and voltage 
measured in millivolts range (to give the three significant 
figures) any appreciable drain of current from the circuit 
will make the meter reading erroneous. To overcome this a 
special "feed back” meter is needed to measure the voltage 
without any drain from the circuit. This is done by setting 
a voltage in the meter, equal and opposite to the voltage of 
the circuit to be measured. When the two voltages are exactly 
balanced, as indicated by a null reading on a galvanometer, 
the meter voltage is read. The layout of the complete 
voltmeter is shown in figure 3-7, where:
(i) Battery.
(ii) Fixed resistance to prevent overload.
(iii) Two potentiometers (coarse and fine) for regulating 

the current through the milliammeter circuit.
(iv) Milliammeter for current reading.
(v) Two accurately matched resistances.
(vi) Voltmeter terminals.
(vii) Galvanometer for volt measurement.
(viii) Fixed resistance to protect the galvanometer.
(ix) large resistance (variable) for sensitive setting of 

the galvanometer.
For the use of this voltmeter, two terminals are connected 

to the two points between which the voltage corresponding to 
the discrepancy or corrections is to be taken. The galvanometer 
reading is brought to zero by manipulating potentiometer (iii) 
and the large resistance (ix). When the needle of the galva
nometer indicates null the needle of the milliammeter indicates 
the current passing through this circuit, and hence the voltage 
drpp of each of the two fixed resistances is known, since it 
is proportional to the milliammeter reading.

This electrical net does not include any negative resi
stors which will be required if any of the coefficients of the
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problem has a ru.native sign as night occur if the general 
problem is to be introduced
into the analogue.
Su [106] suggests the 
following negative resistor 
for this situation, figue 3.8

©

V  R R^AAAWVNA- w VNA

P B

Figure 3 . 8

3-2.4* Discussion

In the analogue introduced in 3.2.3 the number of electrical 
components depends on the size of the problem to be solved, or, 
in other words, on the number of unknowns for which the normal 
equations are to be solved. It should be kept in mind that 
electrical preparations for solving the normal equations start 
after the formation of the normal equations themselves. For a 
small problem of about 8 unknowns (8 normal equations), formation 
of the normal equations takes half the time and effort necessary 
for solving the whole problem by the desk calculator. There 
appears therefore little to be gained in using the electrical 
analogue in place of the calculator for problems of this order.
At the same time, the number of components necessary for the 
analogue solution increases linearly with the number of the 
unknowns, so that there are considerable difficulties with larger 
nets.

Su sees that reliability in solution by a desk calculator 
can be reached only after months of practice, but thie ignores 
the fact that most of the difficulties over obtaining reliable 
results are found to be due to mistakes in forming the normal 
equations themselves. Once these are properly formed and checked, 
either a desk calculator, or an electrical analogue will be able 
to give reliable results in a comparatively short time. One 
realises the great effort necessary in forming the normal equations, 
if we consider the way in which the matrix B of the normal
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oqtiation (3.16) is formed.
Here B = AA', in the case of condition equations, or A ’A in the 
case of observation equations.
For observation equations ^  , n is greater than m.
For condition equations B = A A ’ ,  ..................nn nmmn 9

For example if a 6x14 rectangular matrix A with 6 unknowns 
anf 14 equations must be multiplied by its transpose to give a 
6x6 square matrix which involves the multiplication and addition 
of the number of equations by itself (in this case 14x14).

A further point is that the time considered in preparing 
the electrical components necessary for the solution by the 
electrical analogue does not encourage the use of such a method, 
especially when they follow the long calculation processes to 
form the normal equations.

One point which seems to be important is the acceptance of 
the change* I find it difficult myself to stop the calculation 
after spending so much time in formation of the normal equations, 
only to start and work in a different field. However, one feels 
that one should just finish the job off as one began. The work 
could be split between two people,with some other person taking 
over the electrical part. This might not be a very different 
procedure however.

To have sufficient electrical components to meet the 
requirements of solving a medium size problem (which is considered 
to be j$l laborious by a desk calculator), requires an electrical 
laboratory with considerable resources and skilled technical staff. 
The analogue suggested by Su is a simple and inexpensive one, but 
it may be quite difficult to implement because (a) it requires a 
pyramid of electrical units, the interconnection of which must be 
changed for every problem, which is a time consuming job; (2) 
adjusting every unit to give the necessary working elements 
promises to be quite troublesome.

If experience is taken into account, a desk calculator 
operated by an expert computer, will give accurate results, while
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the electrical analogue operated by an expert will give rather 
less accurate results in comaratively the same time# However in 
survey field it is easier to find the first type of experience, 
but not the second one.

The idea of constructing a D.C. circuit for the solution 
of linear equations will stay simple for small problems, with no 
negative coefficients involved. For example, for adjusting small 
nots of triangulation where no side condition equations are 
involved•

The larger and more complex survey nets which would be 
difficult to adjust using Su’s suggested scheme may be adjusted 
by means of an electronic analogue which, although more : ?.
sophisticated, is of a general purpose type which is more readily 
available. Also, the work involved will be greatly reduced. All 
computations will beimilinindted in .the solution of the correction 
equations, i.e. for observation and condition equations, without 
the extra work of forming the normal equations found necessary 
when solving problems of adjustment using any means, which operate 
along the lines of ai general purpose electrical analogue system, 
but with substitution of electronic components for many of the 
electrical ones.

3.3. ELECTRONIC ANALOGUES

The analogy between the survey problems and the electronic 
system is similar to that given for the electrical analogue in 
3.2.1. A suitable electronic analogue is readily available in 
in the form of electronic analogue computers. These solve 
mathematical equations instead of trying to achieve a physical 
correspondence with the problem to be solved. This is called 
indirect computation [50], as there is only one dependent variable, 
thus strictly it is an equation solver rather than a physical 
analogue system. As will be seen, this computer is capable of 
forming mathematical operations of addition, subtraction, 
multiplication, and integration using electronic differential
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analysers.
The basic electronic components of the computer are:
1) Drift corrected, high gain operational amplifiers.
2) Close-toleranee resistors and capacitors.
3) Ooefficient-setting potentiometers.
4) Function generators.
5) Multipliers•
6) Resolvers.

3*3*1* Operational Amplifier and Basic Mathematical Operations

The operational amplifier: This is the heart of the analogue
computer, which performs mathematical operations to a high degree 
of accuracy, and so deserves some detailed description. It has 
the following characteristics:
i- High gain, normally this will exceed 15,000 - a gain of 

100,000 is quite usual in practical operations.
ii- Linearity over a wide region of operations, generally from 

- 100 to + 100 volts at the output.
iii- Zero output voltage for zero-input voltage.
iv- A very high input impedance; this input stage should draw 

negligible grid current.
A typical direct current operational 
amplifier used to carry out basic

. 1 7,
12*

1— — h>— --- e,e,— [zT}
mathematical operations is shown .  ̂ *?// / /.-£>= AMPLIFIER
diagramatically in figure 3«9»
. Figure 3 . 9where: 9

Z^ is the input impedence
Zf is the feed-back impedence.
By this arrangement the amplifier draws a negligible grid current. 
The node (A) equation for the current is i^ = ±2 = i ..(3*20)

therefore, — ---~  ••••••••• (3*21)
ZX Zf

Due to the high gain (—A) , ê  = - = 0 .........(3•22)
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From equations (3.21) and (3.22) the output voltage is:

Zfe° “ “ Z^*el (3.23)

If the feed-back and input elements are resistors of the same
magnitude, therefore: e0 = - eq,  .(3.24)
i.e. the output voltage is equal to the input voltage with a 
change of sign.
By varying one of the two resistors, figure 3.10, the input voltage 
will be multiplied by an arbutrary 
constant according to:

R - ,
• e ......(3.25) R,©i — s/XAA

r V i

For addition a number of input 
resistors can be connected to the 
amplifier, figure 3.11* and in this 
case:

eo = - +  (3.26)

This is called a "sammer” circuit.
For integration, a capacitor is used 
in place of the feed-back resistor, 
as shown in figure 3*12. In this 
case:

ti
e Q ~ — Kq U î i • dt *+■ k ....(3.27)

77777

Figure 3 .10

ei - w \ A -  
ej^/vv^-

r ^ A - i

r777Z
Figure 3.11

R,

"7777/
Figure 3.12

i.e. the output voltage is therefore 
proportional to the negative value of 
the integral with respect to the time ;
of the input voltage, k is the output at time equal to zero, 
which specifies the initial voltages to which the capacitor must 
be changed at the beginning of the computation.
For addition and integration 
the connection is shown in figure 
3.13? In this case:

e ° = - §/[S + l ]'X'

V/77,

Figure 3.13
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These basic mathematical operations are enough for the 
solution of the linear equations, and have the merit of being easy 
to understand as they only require the knowledge of some simple 
laws of electricity.

To allow the multiplication of two variables by each other 
several devices have been developed which are connected as 
additional items to the operational amplifier. However as all 
these devices are complicated and require details and explanations 
found beyond the scope of this thesis, readers may refer to [50], 
at p. 249. The same reference gives details of the negative 
resistors and capacitors, at p. 257* Also reference may be made 
to [42]?for further explanation.

3*3«2. Pace Analogue Computer

The computer which has been used to solve examples is the 
PAGE 231R-V, manufactured by Electronic Associates Limited.

To programme a problem a patch panel is used* This has 
numerous sockets which provide access to the electronic components 
of the computer. These components are inter-connected by wires 
carrying pj-ugs which are inserted into appropriate sockets. For 
large problems which use many of the component units, making these 
interconnections takes considerable time, and if it were to be 
done on the machine, the computer would be out of use for a 
considerable period. The patch panels are therefore detachable 
allowing the interconnections to be made off line. The complete 
plugboard is then placed onto the computer in one operation.
Inputs are in the form of time-varying voltage, while the 
solutions (obtained in similar fashion) are displayed on a digital 
voltmeter, or a graphical plotter.

3.3.3. Solution of Linear Equations

Since the inputs and outputs of electronic analogue 
computers are usually in the form of time varying voltage, the 
computer is most frequently used for the solution of differential
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equations. To solve linear algebraic equations, a special form
of programming . [84}. . is required.
Let the linear algebraic equations be given bys

AX = K  (3.29)
where A is a square matrix of order n, K and X are two column 
vectors, where,

'  all a12 ••• aln '*l: ^l"

= a21 a22 ... a2n
X =

x2 K k2

anl ^ 2 • * * ann
• • • •

_ —

Consider the differential equations,

X + AX = I£  (3.30)
where X is a column vector,

xi
X = *2

•  •

A steady state or equilibrium will be reached when £ = 0, in 
which case X will satisfy equations (3• 92) and (3*30). To ensure 
this steady state for equation (3*30), matrix A must be positive, 
definite (where all determinants are positive and greater than 
zero), which is not always the case in the survey problems.
Where it is not,,matrix A must be multiplied by its transpose A* 
to yields positive definite positive matrix A*A (=B). Equation:*
(3 •29) would then be replaced by,

A*AX =s A !K  .(3.31)
similarly equation (3*30) will have the form,

X + A'AX = A»K  (3.32)
and X + A 1 (AX - K) = 0  (3-33)
The steady state will then be reached to give the solution 
sought.

Simulation of equation (3*32) on the computer will be 
shown later in the solved examples.
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3 • 3 • 3 • 1 Solution of Survey Problems

Electronic analogue computers may be programmed to give 
the least sum of the squares of the residuals using the steepest 
descent method*

For observation equations, where a matrix^ is used in 
equation (3*29), let e be the residual error and t the time in 
seconds•
If ej = f..(l,2, . •... ,n)
the sum of the least squares will be

S = X    (3.54)J J

jq U -̂O-itherefore; t t = 2.S e..— .........(3.35)' dt o=l j at

de-i § dei dxi / . ~ \ ^  \
dt " ill dij/diT  (3.36)

from (3.35) and (3.36) we have:
m dx^ n de^ #

dt = 2illdt jlleJ’dxi  (3.37)

In order that S be minimum, dS/dt must be zero, and the computer 
is programmed so that,

dx.; n de.? , v
W  = " 5I1 ' Hii  v3,38)

Inserting equation (3*38) into equation (3-37) yields,

af ■ -  <’•»>

Since all terms on the right hand side of equation (3*39) are 
negative, the computer operates to decrease S until dS/dt =0*

For condition equations, the same procedure must be 
followed, but the following points have to be considered.
(a) The results have to satisfy exactly the condition equations, 

but since the PACE computer is not programmed to produce 
zero residual errors, an additional constraint must be intro* 

: duced. The residual errors may be made infinitesimally
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- small by increasing the .gain of the f ̂da-back paths from the 
residual errors to the integrator inputs.

(b) The increase in gain of these feed-back paths will not provide 
a unique solution and an infinite number of solutions could 
be obtained which satisfy exactly the condition equations.
A further constraint must be introduced to obtain a unique 
solution, which will be that characterised by Ex? = minimum. 
Ex? may be minimised by a method similar to that used for 
minimising the residual errors, by introduction of an 
additional feed-back path.

3*3.3.2. Examples

To discover the possibilities and problems of using 
electronic analogues for the solution of both observation and 
condition equations several examples have been solved on the 
PAGE computer. Two of these, together with the necessary 
simulation and programming are given in detail.

Example 1 .

This solution is given for the problem solved by Rainsford 
in "Survey Adjustment and Least Squares51, page 180. ê _, ^ 2 *

,..., e-^ are the residual errors of the corresponding equations. 
This problem is .given in table 3*1

e xl=dxE x2=dyB K*73liK x4=dyp x5=dxG x6=dyo k

- ©1 - 2.12 - 2.76 - 9.80
" e2 + 2.12 + 2.76 + 9.45
~ e3 - 1.70 + 1.48 + 3.01

e4 + 1.70 - 1.48 - 2.01 - 0.24 + 0.77
" e5 + 2.01 + 0.24 — 1.42 - 1.21 - 2.40✓
- e6 + 1.42 + 1.21 - 1.68
- e7 - 1.23 + 1.09 + 9.21
- e8 - 1.10 - 3.44 - 0.91 + 3.20 +19.91
“ e9 + 1.07 + 2.40 + 0.94 - 2.16 +14* 61
~®ip - 1.07 - 2.40 + 1.99 + 0.55 - 9.69
-en + 4.68 + 2.17 + 7.85
-el2 - 1.49 + 2.99 - 1.07 - 2.40 + 17.78
~*13 - 2.56 + 0.59 + 1.60
*e14 + 2.56 - 0.59 - 0.92 + 1.85 - 6.62
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Tho patching diagram for this problem is givin in figure 3.14. 
According to equation (3-38),

dx± 14 de-j ,. .
, ~ "i—l Gj * 1 ^  = 1»2,...6)dt 3 — L J dxi

dXi- is in fact used as the integrator input because of the 
associated inversion in the operational amplifier, 
therefore,

dx*i /lO e-i 6q e«? q , Gn
 ±  _ _ 2 .12.-i + 2.12.—= - 1.70.-2 + 1.70.-a + 1.07.-2dt 10 10 10 10 10

-  ^  ^  -  2 - 56^  + 2 -56^ §

_ = _ 2 .7 6 . f i  + 2 . 7 6 .g  + 1 .4 8 .g  -  1 . 4 8 .g  + 2 .4 0 .g

-  2 -4 0 g 0  + 2 .1 7 g i  + 2 .9 9 ^ 2  + 0 .5 9 ^ g  -  0 .5 9 ^ 4

r  “ d F ~  = "  2 ,0 1 * Io  + 2 *01* Io  "  1 ,1 0 * §  + 0 ,9 4 ,Io  + 1,99̂ 1§

"  - °*922g

“ = " 0,24*I$ + 0,24*I§ ” 3,44*I§ ~ 2*16*I§ + 0,55^i B

- 2.40^g + 1 * 8 5 ^

- ^  = - l-42.g + 1.42.g - 1.23.g - 0.91.g

- ^  = _ 1>21. g  + x.21. g  + x.og-g + 3.20.g

Since amplifiers are designed to provide linearity between
- 100 and + 100 volts, it is necessary to scale the problem to 
ensure that the voltage corresponding to a variable never exceeds 
these limits. Scaling is carried out by dividing every variable 
by its maximum expected value. After scaling, all new variables 
have values between -1 and +1, and the computer voltages may 
then be restricted to the linear range by a voltage scaling
of 100.

For this particular problem, equation 8, 9, and 12 given 
in table 3.1, have to be divided by 10 due to the fact that the
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values of k are 19*91, 14*61, and 17*78. This reduces these 
values to 1.991, 1*461, and 1.778, and by using gain 10, their 
potentiometers will be set at 0.1991, O.I46I, and 0.1778. The 
other equations do not need division by this factor.
.The output reading should also lie between -1 and +1, which
means that instead of using the full values of the unknowns §—*max.
is used, in this problem it is iL-.IB
Results were as follows

Amplifier Unknown Reading Rainsford's 
solution

A 00 xi/io - O.O34O - 0.0338
A 05 x2/l0 - 0.3031 - 0.3036
A 50 x^/lO + 0.1058 + 0.1042
A 10 X4/IO + 0.3112 + 0.3110
A 15 X5/IO + 0.3131 + 0.3126
A 60

-------------------
x6/10 - 0.2135 - 0.2144

table j>.k.

Example 2

This is the problem solved by Clark, in "Plane and Geodetic 
Surveying”, vol. II, page 285* The condition equations are as 
follows

X1 +x2■' +x3 +x4 ’ +x5 +x6 +x7 +x8 ~ 4 **30 = -e^
x ± - x ^  -X5 +x8 + 3*90 = -e2

+x2 +x*̂  ~x7 + 7 • 50 = -e^
3*58x2-2.78x2+1.87x^-1.74x4+2.18x^-3.51x^+1.49x7-1.03x3 +25*10 = -e^

The additional equation required for the stability of the . 
solution is

X1 +x2 +x3 +x4 +x5 +xi +x7 +x8= minimum=s“e5
The patching diagram for the problem is given in figure 3*15*
For linear operations the problem is scaled for x/10, and 
equation 4 is divided by 10 for the same reason.
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According to equation (3*38),
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■ a  - 2- » ' io°
,fi _ 2.2i.S5_.ioo 10 10 100
Qa X<7 6c
’io “ 2*io‘ioo,10°

,fA _ 2.— .^—.10010 10 100
Results:

Amplifier Unknown Reading at Clark's sol.
gain 10 gain 100

A 05 xi/10 - 0.1751 - 0.1768 - 0.176
A 21 0HCM* + 0.0106 + 0.0120 + 0.012
A 25 OHK~\ - 0.1989 - 0.1999 - 0.200
A 10 X4/IO + 0.2128 + 0.2137 + 0.213
A 15 O1—1inX + 0.0355 + 0.0341 + 0.034
A 30 x6/lO -r 0.3933 + 0.3952 + 0.395
A 35 X y / l O + 0.1668 + 0.1674 + 0.167
A 00 xg/lO + 0.0334 + 0.0343 + 0 .034

table 3*3

Comparison between the errors corresponding to each equation,
for the gain employed are given in table 3*4

Amplifier A 02 A 12 A 22 A 27 A 07=*£x2
Gain 10 0.0003 0.0006 0.0012 0.0029 0.3008
Gain 100—  _ 0.0002 0.0001 0.0002 0.0004 0.3034

table 3*4
As shown in tables 3*3 , and 3.4, close agreement is 

obtained between the results obtained by this method and those
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obtained by Clark when a gain of 100 is employed.
Some experiments were carried out to ascertain the gain to 

be given to the feed-back paths corresponding to the errors of 
the condition equations. The amount of error at each amplifier 
representing a condition equation could always be reduced by 
increasing the gain of the feed-back paths corresponding to this 
special equation. However, beyond a certain point this error is 
virtually irreducible. For one problem the following was recorded.

Gain [ 10 30 100 130 200
Errort..— .. ..

O.OO43 0.0015 0.0006
L.. .. _ .. .

0.0004 0.0004
table 3.5

In all the problems so far solved, no worthwhile improvement 
in the results has been observed by using a gain greater than 
100. For feed-back paths corresponding to the additional 
equation (Ex^= minimum), gain 1 is chosen. Gain 10 is used for 
the loops corresponding to the original condition equations.
If the error readings with this setting are not satisfactory, 
gain 100 should be used, and this will be satisfactory for most 
problems»

3.3*3*3* Constraint Necessary for the Solution of the Condition 
Equations

This point has already mentioned in 3.3.3.1.# but it 
requires some more detailed discussion.

The PACE computer could be easily used for solving 
rectangular matrix ^  , viiere n is greater than m. In this case 
the most probable solution will be obtained according to the 
steepest descent method (3.3.3.1.). i.e. according to the least 
squares method, where the sum of the squares of the residuals 
is minimum.

For the rectangular matrix ^  , where m is greater than n 
solution of the problem will not be so easy. For this matrix 
an infinite number of solutions would be obtained which gives
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instability to the answers obtained by the computer. All these 
answers satisfy the condition equations. The required solution 
which is the most probable one is known to be that one characterised 
by Zx^ = minimum. Thus a meaningful set of answers will be 
obtained by adding this condition as additional condition. In 
order to add this condition it is necessary to consider the 
following;

f -j = ( ,  x̂ >, • * * •, Xj£) - b = 0  ........(3* 4^)

and fj = ej, the residual error which will go to zero for an 
infinite number of results.
erw-l -̂s residual error of the additional condition which should 
go to minimum and not to zero.
Both ej and en+2. will be used as feed-back to the same integrators.
To bring both ej and same order, en+.]_ should be
multiplied by a factor k, which must be close to zero. In fact 
using k = 1CT4 or 10"^ will suit the computer which can give 
readings = 0.0001.

To derive a value of the gain which will be applied, let,

en+l = 2xi
According to the steepest descent method,

= _ 1  e,. 221 - 2.en .1 i £ s ± i ......(3.43.)dt 0=1 3 dx± n+J- dx±
To bring en+]_ and e j to the same order, equation (3.41) should be 
replaced by;

dx. n de.
W  = "o=l e y  “ 2,k*en+l-l[xi- .........(%42)

= - ^  e^aji'Xi - 2,k*en+l ,xi 

where, ej = Z &;ji*xi - ^j •

If M, the maximum possible value of xi? is larger than unity, 
equation (3*42) should be scaled, thus,

= - i(|i).aji - 2.k.(2a±i)(S).K2.....(3.43)dt 0=1 M J ^
let M = LxlOs, where L L  i.
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As the most sensitive potentiometer setting should lie between 
0.1 and 1 ( = 2.1x10*“̂ -), therefore equation (3*43) will be:

^  - 2-k -L2-1°2S(^ r )(r ) ........(3-44)

- -  k‘1°2S+1^ “2S“1J 1(ri)-3i - 2.1?10-l(^±i)(^i)]
........(3.45)

If the most sensitive potentiometer setting is used with gain 1 
for the second term in equation (3-45), the first term in equation

Og 1(3.44) will be multiplied by a corresponding factor = ~ .
—2s—1Since k is infinitesimally small, the factor i2 will bek

much larger than unity.
In practical survey adjustment problems s is equal to 1, 

and M = 1x10 = 10,
therefore, jk2 2s ^ = i2  ̂  (3.46)

-4for k = 1 0  ,. this factor will be = 10, and
for k = 10-5, .......»........... . 100.
The most accurate results are obtained with the gain 100 which 
is derived from k = 10~5.

The quantity k,10^s+^outeide the square brackets in
equation (3*45) will affect the rate of integration and will not
affect the values of Thus it is found that, for solving
condition equations; . .
(i) The most sensitive potentiometer settings are used for 

setting the coefficients of both original and additional 
condition equations.

(ii) Grain 1 is given to the loops corresponding to the additional 
condition equation.

(iii) Gain 100 is given to the loops corresponding to the original 
condition equations.
For any other problem, which might require s A 1, k should 

be smaller than 10"^• However in this case the gain necessary 
to solve this problem without causing overloading or instability 
to the solution has to be obtained after some experimentation.
It should be noticed that, using larger gains than are really
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necessary will not give any more improvement to the results.
The best guide is to check the value of ê- to make sure that it 
is zero, or as near as possible to zero. After a certain point, 
overloading and instability of the results given by the computer 
will stop further trials.

3*3*4* Accuracy and Capacity of PACE 231R-V Analogue Computer

The PACE computer found capable of solving unknowns up 
to the fourth decimal place. These unknowns in survey problems 
are corrections to angles, length of sides and coordinates. For 
first order work these corrections should be accurate to the 
second decimal place which is easily achieved on the PACE computer. 
Sometimes the accuracy of the unknowns given by the PACE computer 
is reduced by the necessity of scaling the problem. For instance, 
if instead of obtaining the unknowns x to 0.0001, we read
*1 (= x/lO) to this accuracy, x will be obtained only to 0.001, 
which is still satisfactory for first order problems.

The size of the problem to be solved depends on the size 
of the available computer. The size of the PACE computer available 
for this work at Glasgow is restricted by:
(a) 100 amplifiers, (b) 150 potentiometers, (c) 48 multipliers.
(a) 100 amplifiers* These are used for:-

i- Summation; Summation of different unknowns will be obtained 
by using some of the amplifiers. In other words, every 
equation will be represented by an amplifier,

ii- Integration: This is achieved by connecting a capacitor as 
as the feed-back element in 30 of the operational amplifiers. 
Since the integrators are used to solve the unknowns the 
computer is limited to problems of 30 unknowns,

iii- Inversion: In most cases, it is necessary to obtain both
positive and negative values for each unknown, and for 
residual errors of each equation. This necessity reduces 
the capacity of the amplifiers to half the nominal figure. 
Multipliers could be used as invertors, which adds 48
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invertors in the case when multipliers or part of them are
not used for multiplication*

(b) 150 potentiometers: These are the units which mainly restrict
the size of the problem to be solved. For every coefficient 
in the problem, two potentiometers are necessary and an 
additional potentiometer is required for each equation for the 
inclusion of the constant term. For a problem requiring the 
solution of ten equations with seven unknowns, ten potentiom
eters are used for the constant terms, leaving 140 potentiom
eters (2x70) for 70 coefficients. The problem given by 
example 1 of 14 equations and 6 unknowns was solved very 
easily, due to the fact that four and two were the maximum 
and minimum number of unknowns in an individual equation. In 
practice the full number of unknowns is rarely found in an 
equation in survey work. Furthermore some coefficients are 
unity, in which case no potentiometers will be necessary for 
setting this value which is fed in directly. For these two 
reasons, observation equations of the order n.m = 100 (e.g.
10x10 or 16x6) could be solved by this computer on condition 
that (m+n) is not greater than 50. (m is the number of unknowns 
and n is the number of equations).

For condition equations the extra constraints necessary 
reduce the number of amplifiers available by twice the number 
of residual errors to be driven to zero, e.g. if n is the 
number of residual errors(e) to be driven to zero, and g is 
the gain necessary for this purpose (which is equal to 10^), 
the number of amplifiers to be reduced will be n(p+l). 10 is
the normal gain given to a loop from an individual amplifier, 
though a maximum of 33 can be obtained if required. Thus the 
number of amplifiers which can be used will be (m+n)!-50-n(p+l).

(c) 48 multipliers: Since an additional equation (Ex^= e) is 
necessary to give stability to the solution of problems, 
where the number of unknowns is always greater than the number 
of equations (condition equations), the number of multipliers
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necessary for solving these problems is another important 
factor affecting the s-iste of the problem which can be tackled. 
For every unknown two multipliers are necessary. 48 multipliers 
are available so that the unmber of unknowns should not exceed 
24 rather than the 30 which the number of integrators would 
seem to allow.

3*3.5- Conclusions

1- In an analogue computer, computation of observation equations 
is a linear function of the number of equations, whereas using 
ordinary desk calculators, it is a quadratic function of the 
number of equations *

2- Although a positive definite matrix (of the normal equations) 
is necessary reach a steady state on the PACE computer, programm
ing of this matrix is very simple. The derivation of the 
dynamic form of equations is very simple and is achieved in 
routine fashion. In the example solved the required equations 
were obtained from the original linear equations. Furthermore 
programming and drawing the patching diagrams is carried out 
using these original equations, but in a special, way which leads 
to the steady state. This is done in a manner that raises no 
difficulties for those continually dealing with survey 
computations.

3- Although for the solution of condition equations some work 
must be done to choose the necessary gain, unknowns will be 
obtained directly, without any of the substitutions which are 
found necessary in any other method of solution, e.g. by desk 
calculators or digital computers.
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I- conclusions

Since sides as well as angles may now be observed, it 
has been found necessary to derive a system of conditions which 
deals with both types of observations at the same time. For 
this purpose two sets of new conditions have been reached.
These proved to be simple and easy to form and to calculate. 
However their simplicity depends to a certain extent on the 
weights recommended which in these cases will be unity for both 
angles and sides.

As for the ways of computations there is the desk 
calculator, which will always be used either to solve the whole 
problem or to help in calculation when using any other form of 
computation such as these given below. As desk calculators 
are freely available they are particularly useful in solving 
small problems, e.g. the solution of 8 normal equations by the 
least squares method may take two hours which is not a long 
time when compared with the considerable time spent in 
preparation for programming or setting up problems in other 
methods. However the time consumed in solving linear equations 
for the purpose of adjustment is known to be a quadratic 
function of the number of these equations [105]. This means 
that the simultaneous solution of a large block of survey points 
by desk calculator is uneconomic from the practical point of 
view.

Apart from the desk calculators, the ways of computa
tions can be classified under four main headings. The criteria 
for this classification is the type of equation which can be 
solved and the way in which the adjustment can be carried out. 
These four types are:
I- Analogues which are capable of simulating physically the 

net to be solved, including the observations made in the 
field, e.g. mechanical analogues. As has been seen, these
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do not require the formation of set of linear equations 
since they solve problems directly from the observed 
quantities.

II- Analogues capable of physically simulating the normal 
equations, e.g. the electrical analogue system designed by Su.

III- Digital computers, which are able to solve numerical].v for 
a square matrix, i.e. for a set of normal equations.

IV- Computers and analogues which are capable of solving directly 
any sort of linear equations (i.e. observation, condition,
or normal equations). These are capable of solving over- 
determined or underdetermined equations directly, e.g. 
electronic analogue computers.

The order and size of problems recommended as to be 
adjusted by using each type can be given by the following:

Group I
These simulate the problem physically in an exact way, 

and so far the mechanical analogues in which angles are repre
sented by angles, directions by directions and sides by sides, 
are the only examples which have been realised. Results 
obtained by Jerie for trilateration networks [46], and by the 
writer for the examples solved in 2.5.4. were identical to 
those of the least squares solution.

However the necessity of having frequent control points, 
both to fix the mechanical net to the working surface, and 
to give a datum to the mechanical energy at frequent intervals, 
restricts the use of this method to the solution of secondary 
and tertiary networks only, as far as angles and directions 
are concerned. The size of the problem which can be handled 
cannot be definitely given, as this depends on the weight and 
the standardisation in manufacture of the different joints to 
be translated. Both of these need to be developed further 
than in the prototypes which have been constructed so far. 
Furthermore the size of these problems, beside being dependent
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on the number of control points, depends also on being able 
to observe at every new station towards two control points.

However the size of the problem can perhaps be increased 
by introducing a differential adjustment of observations [122].
In this case new points would be connected to some existing 
control points, and using the mechanical analogue these are 
adjusted as a unit. The whole net is then used as control for 
the remaining observations, so that adjustment is made stage 
by stage using the analogue. To assist in these successive 
adjustments it would be necessary to introduce some form of 
spring-loaded intersection locator, figure 1. The purpose of 
these locators would be to allow some adjustment of the - 
previously adjusted stations in conjunction with the newly 
introduced observations. The sketch given in figure 1 is based 
on the locator of Trorey used in photogrammetric work [124]*
The springs used would have to be of a special stiffness to 
allow further adjustment to take place, and obviously this 
will be the most difficult problem to solve. This idea, if 
it can be realised, would assist greatly in overcoming the 
limitations of the mechanical analogue, where there is an 
insufficient density or a lack of suitably distributed control 
points•

cThe size of the secondary net reommended for the 
existing analogue should not be greater than that given in 
figure 2.44 at least to one side of the net. On the other hand, 
a further three stations can easily be accomodated to the west 
and north of the control points. The net in this case will 
amount to nine new stations, beside the four existing ones. 
Comparing it with a least squares solution solved numerically 
this will be equivelant to a problem of 18 unknowns with 
approximately 45 observations. However it should not be made 
any larger without some of the necessary improvements discussed 
in 2.5.6. being incorporated. These might allow a 50 percent 
increase in the size of the problem which might be tackled.
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Primary nets cannot be easily adjusted by the mechanical 
analogue, because of the required frequency of control points. 
Normally Laplace stations are not frequent enough to provide 
enough control points for the mechanical nets. However the use 
of a mechanical analogue in this case needs further consideration..

To detect gross errors, this analogue can be used for 
any triangulation net without the necessity for the density of 
control points needed for a complete adjustment. This gives 
the method a certain value. The accuracy in this case is less 
important, as the gross error shown by the excessive compression 
in some elastic units is not affected very much by the weight 
of the analogue.

The possibility of simultaneously adjusting sides and 
directions by this analogue has been investigated, and as a 
result, it is believed to be difficult. The introduction of 
the linear contradictions will affect the radial lengths, which 
result in different linear scales for angular adjustment. To 
introduce the angular contradictions to the model with different 
linear scales upsets the translation of the different joints. 
However figure 2, shows that the second model of the mechanical 
analogue for angles has been constructed in such a way that 
after adjusting angles, it can be used directly by substitution 
of the appropriate parts to allow an adjustment of the sides 
only using the system devised by Dr. Jerie of the I.T.C., Delft. 
This allows the adjustment of size after a previous adjustment 
of the shape. One precaution has to be considered, that this 
can only be applied to figures where different individual 
components (sides and angles) were measured with the same 
precision, otherwise the adjustment of sides will only result 
in distorting the shape which has £een previously corrected.

Group II

These include the electrical analogues introduced by 
Su in which he obtained the correlates in the form of the
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physical voltages measured between different points to solve 
the normal equations only. It is difficult to build this type 
of system, which requires so man3r electrical elements and some 
sort of standardisation. So this method can be used only if 
the problem is small and does not involve any negative 
coefficients. The difficulties are such that no one has as 
yet constructed this type of analogue, and since electronic 
analogues are quite widely available and work along a similar 
analogy, the possibility of having electrical analogues 
constructed in future would appear to be very small.

This leads to a discussion of group IV, which includes 
the electronic analogue computers, so allowing the analogue 
methods to be considered together; the discussion of group III, 
mainly the electronic digital computers, can then take place 
partly as a comparison with the analogue methods.

Group IV

The fourth group (the equation solving analogues), 
which includes electronic analogue computers can be used to 
solve any problem if the latter meets the size requirements.
The different elements that restrict the size of this analogue 
has already been discussed in 3.3.4.. and the problem recommended 
for a medium size electronic analogue computer was 10x10 or 
16x6. Quite recently much larger electronic analogue machines 
have been proposed and now begining to come into use. Their 
capacity will be much larger.

The main aim of the electronic analogue computer is to 
solve observation and condition equations directly, i.e. without 
the necessity of forming the normal equations, which does not 
seem possible in any other computer. In fact using this facility 
reduces the size of this problem considerably. For example, 
it was recommended that a problem 16x6 can be introduced to 
this analogue as maximum size, but this problem can be reduced 
to a 6x6 fiatrix if the normal equations are formed. But with
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the normal equations much more preliminary calculations will be 
necessary to form this type of equations. If this is accepted, 
this solution allows the use of such a medium size analogue for 
larger size problems. The size of the problem will then be 
increased to obtain 10 unknowns (i.e. 10x10 matrix). In this 
case the short side of the rectangular matrix will be of the 
order 10, while the long side of the matrix may go up to any 
practical number. In this case the analogue will solve a 
problem for fixing 5 new stations, when the solution is carried 
out by the variation of coordinates method. But in this case 
the analogue computer will loose its advantage of being able to 
solve the observation equations directly.

The size of the problem solvable on this analogue 
computer can also be greatly increased if one adopts one of the 
iterative methods of solution, e.g. [99]- The size of the 
problem solved by this method will be doubled, i.e. twenty 
unknowns can be obtained by using this analogue. The idea in 
this case is to solve for the lower diagonal matrix of the 
normal equations. But this will require more and more prepar
ation and desk calculation. However even with all these 
computations and preparations, the efficiency of the analogue 
computer compared with that of the digital computers is 
remarkably high, especially when compared with small or even 
medium size digital computers. In the latter great deal of 
preparatory work and much time is involved in trying to introduce 
a large problem to these computers.

The time required for solving by the electronic analogue 
method is mostly that necessary for preparing the patch board, 
which is carried out away from the machine. For a matrix of 
10x10, 4 or 5 hours will be enough to have all the connections 
of the patch board made ready. Another hour or less may be 
necessary for the physical check of the machine before running 
the problem. Once this is achieved then using the key board, 
the answers appear instantaneously when the individual keys are
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pressed, so that the total time spent in solving this problem 
is not long.

Group III

Digital computers are fairly familiar to those engaged
in survey computation, at least in principle. They require the
use of an input device which accepts tapes or cards to allow

rh&observational data and.programme giving the computational 
sequence to be entered and solved in the computer. The data 
is then processed in accordance with the details given in the 
programme and the answers are recorded in a store for output 
either on tape or cards, or visually printed out via a line 
printer.

There are now a large number of electronic computers 
on the market possessing widely different characteristics with 
regard to storage capacity, calculation speed, input/output 
devices, etc.. These features will affect greatly the type 
and size of survey adjustment problem which can be tackled and 
a discussion of all the relevant points would require at least 
a separate dissertation.

Since the computers now available are so large in capacity 
and computing possibilities,at first sight it would seem possible 
to solve all the types of survey network which might be 
encountered in practice. However such computers are few in 
number and require complicated programming particularly for 
the discovery and elimination of gross errors and mistakes, 
so much so that they have apparently not yet been used for the 
adjustment of survey networks. These difficulties will in time 
probably be overcome, but so far most survey computations and 
adjustments are being handled on relatively small digital 
computers.

The procedure generally followed can be seen from the 
following examples:
1- The Directorate of Overseas Surveys uses an I.O.T.(Ferranti)
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Pegasus computer with an 8000 word drum store. This capacity 
is rather limited so that the following procedure is 
undertaken.

The method of variation of coordinates and observation 
equations is used. As a first stage the observation equations 
are produced from the known coordinates of the fixed stations 
and the provisional coordinates of the stations which are 
being adjusted. These observation equations are punched out 
on tape. The second stage is the production of normal 
equations. This is done from the output tape of the first 
stage without any alterations being made, the normal equations 
being punched out on tape. The third stage is the solution 
of the equations directly using the Cholesky method. Again 
this is done from the output tape of the second stage without 
any alterations being made. The output from this stage is 
the required corrections to the provisional coordinates.

The process is done in three stages in order to get 
as large a block as possible into the computer - the punching 
out of equations is time consuming and expensive, but it 
saves storage space. However it might be possible to speed 
up the solution or to increase the problem size to be tackled, 
e.g. by taking account- of the large number of zero coefficients 
which occur in survey matrices and by the solution of the 
normal equations by iterative rather than direct methods.

2- The Photogrammetry and Mapping Division of the Iranian 
Oil Operating Companies utilises an IBM 1620 computer with 

. 5000 word store. Their experience is reported by King [133]• 
The variation of coordinates method is also utilised and 
again a multiple stage procedure is necessary. As a complete 
mflyimnm a problem of 22 unknowns (11 new points) can be 
solved. It may be noted that this is similar to the capacity 
of the mechanical analogue designed and cexistructed by the 
author or by the PACE 231R-V electronic analogue computer 
discussed in 3.3.
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3- The author has attempted a much larger problem using the 
larger English Electric KDF-9 computer at the University of 
Glasgow. This has a total storage of 32,000 words, but 
18,000 words are used for the compiling programme, so that 
only 14,000 words are available for the programming instruc
tions and the observational data. A programme was prepared 
with the assistance of Mr Saad Ben Hamid, which allowed the 
solution of the normal equations formed by 12x18 condition 
equations, so that 18 unknowns were solved.

This experience gives some experience for a comparison 
for analogue and digital computers.

II- COMPARISON

First of all, the time which can be spent on achieving 
a correct programme is very long. On the other hand if^suitable

-ttprogramme of̂  general nature can be satisfactorily achieved it 
can be used for a large number of networks. So if there is a 
great deal of work to be carried out, which will recur regularly 
then the investment of a considerable time in achieving a 
programme is amply repaid.

With analogue computation, no programming is required 
so that, after a small amount of preparation, the data can be 
introduced and the problem solved directly in short time. On 
the other hand since no programme exists, if another problem 
of the same type occurs then the problem has to be tackled 
completely afresh. This will happen both with electronic 
analogue and mechanical analogue solutions, but is not so serious 
for relatively small problems. A large problem would be 
a different question.

Again the question of expertise is important. Much 
less skill is needed for analogue computation and it is possible 
to use semi-skilled personnel after a little training. On the 
other hand the analysis, formulation and programming of the 
forward and back solution of the normal equations for electronic
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digital computers is quite an exacting and elaborate task 
requiring the use of highly skilled and trained programmers. 
However such skills are rather more readily available than 
before and as the use of digital computers becomes more wide
spread this point may become less important. Electronic analogue 
computers, are not unoommon, but are nowhere as common as digital 
computers except in research institutions.

The question of data input is a vital one in weighing 
up the relative merits of these computation systems. The 
observations are made in the field - manually at present.
These have to be reduced and tapes or cards prepared to give 
all observational data as well as the programming instructions•
To produce error-free tapes or cards is difficult and if the 
errors go undetected, their effect goes unobserved until the 
final solution is printed out. Even then a great expertise 
may be required to detect errors in programming or observational 
data. When they are found there is a need to alter the tape 
and to re-run the problem. With large computers it is probable 
that the limit of the problem which can be tackled is more 
likely to be determined in practice by the difficulties of 
providing an error-free input tape for a large block than by 
the capacity available. This is particularly so with survey 
observations which are invariably manually recorded and do not 
have automatic measurement and recording as is normally 
encountered in photogrammetrie work for example.

With analogue computing, corrections can be made 
immediately by inspection while the problem is being solved.
There is no need to wait till the final solution appears in 
either the mechanical or electronic analogues. In the latter 
the time required for the physical checks of all the elements 
incorporated in the problem is very much less than the time 
necessary to find out the errors and repeat the programming 
when the digital computers fail to give any solution. However 
with an electronic analogue computer, if a problem of double
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the size requires solution, an electronic analogue computer of 
double the capacity(and'cost)has to be provided. With digital 
computers those larger problems can be handled without the need 
to employ a computer of double the cost, so that they are more 
suitable for large adjustment problems from an economic point 
of view. However digital computers only become attractive for 
larger problems when the amount of storage is correspondingly 
large. A solution which might be attractive for adjustment work 
could be a hybrid link between an analogue and a digital computer. 
The digital machine could be used to programme the analogue 
computer so eliminating the need to set up the coefficients 
manually on the electronic analogue computer. It also provides 
the storage which is missing on the analogue computer while 
still allowing the problem to be solved on the analogue computer 
so retaining the advantages alreadly discussed in 3.3.5.

The place of the mechanical analogue computer is more 
difficult to assess. It can be developed more highly than the 
prototypes constructed for this study. Whether this would be 
worthwhile in view of the developments in both electronic digital 
and analogue computers is open to question. It is a useful 
method in places where shortage of skilled personnel and lack 
of resources prevent the use of more expensive machines and it 
is the only one of the four computation methods which is of use 
in the field, especially for the detection of gross errors.

It is also possible to view the mechanical analogue method 
as being an extremely useful one for demonstrating the comp
utation and adjustment processes and my belief is that they 
could play an extremely useful role in the way in universities 
and similar institutions. In particular students can understand 
the procedures much more easily through this seeiiig it happens 
directly. At present the mechanical analogue methods could 
hold their own against the competing ones having little less 
capacity and the attractive features of easy checking of the 
computation and detection of mistakes and requiring a relative
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small investment both in capital and skill. The method can 
be developed to give a greater efficiency, but it must be 
doubtful this can be done to the extent that seems to be possible 
with either of the electronic methods•
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