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ABSTRACT
of
ADJUSTMENT METHODS FOR PLANIMETRIC OBSERVATIONS
AND COORDINATES IN SURVEY NETWORKS

Correction and adjustment of observed angles and sides
in geodetic networks are necessary for the purpose of the
correct location of coordinated points. Correction equations
are usually in the form of linear overdetermined (observation)
or underdetermined (condition) equations which are solved by
the least squares theoren.

The introduction of the electro-magnetic methods of
linear measurement requires the adjustment of sides as well as
the adjustment of angles necessary in classical triangulation
nets.

For the simultaneous adjustment of angles and sides
two new scts of conditions have been introduced - (i) the area
misfit condition, where the area obtained from distances and
angles has to satisfy a special condition, and (ii) that the
sum of the projections of the three sides of a triangle on the
coordinate axes have to satisfy a zero condition.

A special study has been made into the adjustment of the
braced geodetic quadrilateral, as being one of the most favourable
figures from the adjustment point of view. The different
apices of this quadrilateral have becen investigated to allow a
choice to be made as to which of them shall be introduced in
an angle misfit condition during adjustment. This gives rise
to the conclusion that all apices will introduce the same
corrections for all practical purposes. OSince observed angles
and sides are different physical quantities, the question of
relative weighting has been given special attention and
recommendations hawve been made in the light of wvarious
theoretical and practical investigations.

7he Bystematic relaxation method for adjusting survey nets

has been theoretically derived by Profeasors Southwell and
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Black based on the minimum strain-cnergy conserved in an elastic
frame-work at the position of equilibrium. Using this theory
mechanical analogues have been designed and constructed for the
first time to carry out the adjustment of the triangulation net
directly from field obsecrvations, without the necessity of
forming and solving a set of linear equations. An analogue for
the adjustment of angles was found to be excessively complicated
mechanically and difficult to use in practice. Through the use
of a direction adjustment mecthod these limitations have becn
overcome. The final model constructed achieved comparable
results to those obtained numerically by a lecast squares
solution. Suggestions for a more highly developed version are
made and the situations favourable to mechanical analogue
computations are discussed.

The use of an electrical analogue as suggested by Su
using a D.C. circuit has been thoroughly investigated from both
the theoretical and practical points of view, which showed that
such a solution will be sinple only for certain limited cases.
Ag an alternative the possibilitics of the more general purpose
electronic analogue computer have been investigated via the
solution of correction equations. Various examples have been
solved on this computer which prowved to have scveral advantages
over other computation methods.

Finally equivalent problems have been solved numerically
on a digital computer for a comparison of the relative merits
of analogue and digital methods for the particular case of
ad justment of geodetic networks. The relative merits of these
solutions are discussed in the light of different problems and

circumstances.

Surv. Rev., (1966), vol. 18, Nos. 140, 142; (1967) vol. 19
No. 146.



INTRODUCTION

With the advent of electro-magnetic distance measuring
equipment, such as the Geodimeter and Telluronmeter, completely
new observation methods have been made available to the surveyor
who can now accurately observe both angles and sides, or sides
only as well as the classical angular observations to fix a
framework of precisely positioned points. This has had its effect
on the traditional methods of computing and adjusting triangulation
nets, which had to be heavily modified to cope with the new form
of observation data. These radical alterations have been made in
contributions by Gale [38], Lilly [63], Murphy [71], and Rainsford
[79]s In particular, these made possible the simultaneous
adjustment of observed sides and angles, but the formulae and
proccdures devised for this purpose were found to require a great
increase in computational work, which led otherssuch as Biesheuvel
[7], and Thorntom-Smith [115], to prefer quite separate,ceucceésive
adjustment of the two different types of measured data.

In the first chapter of this thesis, further investigations
were carried out to provide Q& less complicated formulae, and
procedures for simultaneous adjustments using new geometric
conditions. DPractical experience with these new formulae show
that the corrections to the sides obtained from the simultaneous
adjustment of sides and angles, are virtually identical to thoqe
obtained from the adjustment of sides of figures with pre-adjusted
angles.

In the field of survey adjustment, numerical methods have
been always preferred, especially for triangulation adjustments.

Southwell and Black [10], [12], introduced the way for
solving these problems physically by utilising what were basically
structural analogues, but no practical method of achieving this

mechanically was devised, and so their investigations merely led to



yet another numerical method.

The possibilities of having a cheap and portable mechanical
system of adjustment, capable of being operated by relatively
untrained personnel is an attractive ome and to this Jerie has
devised a mechanical analogue system for trilateration only.

The investigation of mechanical analogue methods has been taken
some stages further, which led to the construction of mechanical
analogues for adjusting angular quantities, which after considerable
modifications proved to give accurate resulta using quite simple
operational procedures. These investigations are reported in
chapter II.

Continuing the investigation into the physical represent-
ation of survey problems led to consideration of the electrical
analogues proposed by Su [103], [104], [105], [106], and Speart
[96]. Chapter III reports the investigations made to bring these
to the point where they could be used in a really practical way
for the solution of survey problems. This was achieved using a
powerful electronic analogue computer, which has been applied to
the solution of survey problems for-the first time.

At a time where electronic digital computers are coming
to be applied in all fields of human activity, it may be thought
that physical methods of computation and adjustment are unworthy
of consideration. However, fashions change and as technology
advances, methods thought to be only of academic interest suddenly
become important again. So it is quite necessary that a further
study of physical analogue methods be made, if only to see the
extent of their limitations.

The final chapter therefore includes some discuassion of
the many different methods of computation and adjustment of
survey networks which are available.

It should be noted that, neither the theoretical
Justification of the least squares method, nor a discussion of
the necessity and merits of a simultaneous adjustment have been

made in this thesis, as they are widely known already.
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1.1 ADJUSTMENT OF TRIANGULATION NETS

1.1.1. The-Adjusiment by The Rigorous Least Square® Method

The use of the rigorous least squares solution for the
adjustment of geodetic triangulation nets has been known over 170
years, having been devised by the French Mathematician Legendre
in 1806, and further developed by the German Gauss some twenty
years later. Since Gauss introduced his mechanical procedure most
triangulation nets have been solved hy this mechanical procedure
using manual calculations with the aid of tables before even the
advent of the dzssk calculators. The advantages of this mechanical
method are the checks on the calculation work which make inevipable

mistakes eagily detectable,

1.1,2, Least Squares in the Matrix Form

Although the Gauss mechanical procedure does not require
the use of matrix algebra, it has been found that the use of this
mathematical tool has the advantage of setting out the mathematical
formulae in the most concise form. The least squares concept is
applicable only when the normal law of errory distribution is
accepted for the problem to be solved by this way; this is the
case with independent observations made in the field.

The equation of probability is given by

[ o2y2
K?e [eeve]

P ceccesssea(lel)

[02v2] is a positive quadratic which may be rewritten in the form

2.2 2 2 2 2 2
[C v lcVi + 2.01 2 l.V2 + 020v2+oo.+c .Vn cooleZ)

where c2 is the precision index, v being the error of observations.
On account of the correlation freedom, the products c;.c,,
where ¢y is different from cz,will be zero.

The quadratic form will be in this case,
[02V2] = Clov% + C%ovg + eioee + 02 2 0605500000(103)

Using p instead of 2 to represent the conventional weights
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knowing that p is inversely proportional to the standard error,
which is inversely proportional to the precision index ¢, then
we obtain:

2 2

27 _ 2
[pv ] = p11V1 + p22V2 + ceeseessccsct pﬁnvn 0000(104)

Using the matrix notation,
[pv?] = V'pV vereenas(1.5)
where p is a symmetrical positive matrix of p = p' and for all

values of V. V'pV > 0

l.1.3. The Formation and Solution of Normal Equations

l.1.3.1. Observation Equations

Observation equations are usually given in the following

linear relations.

[}
<
-~

alle+a12X2+ ® 8 08000 0000000000 +ame+ll

321Xl + a22X2 + ee0ss0ccessssacoce + a2mxm + 12

0
<
N

L A ] o 08 00 90 %0660 000000080 oo 00 L3 N 3 L ]

arllxl+an2x2+ ...O‘..........l.+MXm‘+ln=vn

Vieese Vy are the independent observed quantities.

Byeess By, lyjeees 1, are known quantities.

Xpeeee X, are the unknowns to be obtained from the solution.

Due to the fact that observed quantities could not be absolute
quantities, the solution will be for the most probable valucs and

not for the true wvalues of x.

For any assumcd set of values x's, let Fieeee Fy be
the values of the left hand side of the equations (1.6). If
Vieeee V, are the residuals,

- kl = @79Xq + 870Xy + eeesee + By3,X etc.
then vy =F] - Vy cesssscsesescs Vi, =F, =V,

1, - Vh

alSO kl = ll - Vi P00 QB0 OO OIOSTS kn

Substituting these values equation (1.6) will be:
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allxl + a.l2X2 4 coeanserese + almxm + kl = Vl

851X7 + 899X ¥ ecesescasccee + X, + K v
2141 2242 2mm 2 2
eesecescel(l.T)

o8 00 o080 oo 00 000000 L A W] LN e 0 0

aanl + an2X2 + sepesepesee + anmxm + krl = Vn
n is always bigger than m.

and in matrix notation [9]; we obtain:

A g =5 + 1 cesececas(1e8)

The solution of the equation (1.8) is given by:

-1
Hﬁ = m% nE + m‘%. nX ..7.......(1.9)
Substituting (1.9) into (1.8) we obtain:

K + V = A° K + A° vV cececsees(l.10)
nl nl m nl nn nl
Where, n%o = n'IAn m%—l = n‘IAn &%l'n‘%m)-il%l oocoao-oo(loll)

A° is thus an extraordinary unit matrix and it is always a

singular matrix, I is the unit matrix or the identity matrix
I - ATt a = (At )T A
mm mn rim nn’ mn nm
Let Aty = M
mn nl ml
Bquation (1.10) will be:

V = (AO-I)-K + on 000000000(1012)
nl nn nn nl nn nl

-1
nn  on’'n M n%m% ﬁK

+ n%nm_yt ceesosess(lel3)

As the solution required must satisfy the least squares concept

1
~
b
o
1
o
S’

N
N
o

!
BH
S
P

(ieee [vz] = minimym for the same precision of observations),

V'V =K'"(A° = I)K + 2 M' A'(A° = I).K + M AM ...(2e1
( ) X ( ) i (1.14)

ln nl In nn nn nl m nn nmm nl
where M*A M 2> O
lm mm ml
and ‘M' A'(A° - I).K = 0

lm mn nn nn nl
for all real values of the elements.

Therefore V'V is minimum when M = O, in which case the solution
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of cquation (1.8) will be:

-1
X = A aK 00...0.-(1015)
nl m nl
For n bigger than m A™l o (ar p)tar cevenssas(l.16)
mn m nm mn

The mechanical solution by Gauss when using manual desk calculators,
starts by thc formation of the normal equations. The formation
is simply obtained by forming A'A for the coefficients of the

unknowns, .and A'K for the absolute terms.

— K = 9 0 000 0o *

Thus Ami 0 (1.17)
1 - A'T —_ o .

and A Am_xL A =0 ceesssiol(lel8B)

which are the normal equations required for least squares solution
of the observation cquations. The formation will appear in the

following mechanical way:

[a .a ]xl + [a

01201 clacz]XZ + ceceess + [aclacm]xm + [aclkl] =0

[aczacl]xl + [aczacz]x2 + cosecee + [aCZacm]xm + [aczkz] =0
ees(1.19)
+ seeco00e + + k =
[acmacl]xl * [acma02]x2 [acmacm]xm [acm n] 0

Solution of the above normal cquation is given by:

X = (A.' A)—l A' K -0000000(1.20)
ml mn nm mn nl

The mechanical solution which transfersthc above equation is

described in detail in Raisford [ 77].

l.1.3.2. Condition Egquations

Following the same notation for n and m, the condition

equations have the following form, in which m is bigger than n.
allxl + alzxz 4 ecs0cccsccsce + almxm + ql =0

a X + a X + evesccccrees + 2 X +q =0
211 2272 2m m 2
010.000300(1021)

oo o s LI ] S0 0800600808008 es 0o oo L 2

aanl + %2X2 + ecevosescence + anmx.m + qn =0
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from m observation equations as;

=0, + v
2 2 ceeneess(1.22)

LN [ 2N 2 LN

X:Om+Vm

Substituting (1.22) into (1.21) we obtain:

allVl + a12V2 + coceoevsssee + alme + kl = O

v, + a

a1V1 22V

+ eSO bs 000000 +a V +k --O
2 2m’'m 2
00000016(1-23)

o000 [ 20 BN 2N 3 200000 b0 * v 000 LN

aanl + an2V2 4+ esevssescns + anmvm + kn = O

which in matrix form according to [9], will be:

n%lm\i =-'n§- 00.00.00(1024)

As can be seen from the condition cquations (1.23), the most
probable values will be for the system of correctiéns having [v2]
a minimum when the same precision is used for observations.
Solution of the condition equations by the method of corrclatives

will be:

&4ﬁﬁi=ﬁ%ﬁ ceveenes(1.25)

According to (1.11),

-1
A° =
wh ol Tmn ol
However, since the extraordinary unit matrix is singular the

solution could not be obtained in the usual way. Solution of

equation (1.24) is usually given by:

¥ =mn"i§ + (80 - 1).M ceeerease(1.26)

M is any arbitrary column matrix with m elements.

J(A® = I).M

-1 -
the > 'Y = K'A! lK M'(A? = I
herefore iV g 5 A m% nl'+fm &m ) (8° = 1)1

=-l/,0
+ 2.K'A' A and I OM 0-000000(1027
1nnm &m mm)ml )

h IO_. 0_ . é
here (A" D@ - DY 20



-l/,0
d K' A' JA - I .M = 0
an In nm &m mm)ml

for all real values of the clements.
Therefore the minimum value of V'V is obtained when M = Q.

Hence the solution of the equation (1.24) is

v = Al
nl mn nl
To obtain the reciprocal of the rectangular matrix A_l in the
solut on the correlates arec used:
— ]
ﬁi = & Ai cesesss(1.28)
where c = (A A')'lK ceeenss(le29)
nl nmmn nl
from (1.28) and (1.29) we obtain:
V = [‘L' (A A.' )-11< 0000000(1030)

ml mn nmmn nl

In a similar way to the mechanical solution used by Gauss,
the first step in forming the normal equation is to calculate
%%m%')’ and then the absolute term K is used to obtain C without
the need to multiply by any coefficicnts. The unknowns V will be
obtaincd by substituting in equation (1.28) in the usual way.

The mechanical method of formation anl solution of the normal
equations which transfers the above equations is described in

detailg in Raisford [77].

l.1.4. Number of Condition Equations in Triangulation

The conditions required in the case of free nets, where
only two datum points arc held fixed, fall under three different
categories:

1- Triangle conditions.

2- Centre conditions.

3= Side conditions.

These conditions are the figural conditions and are always used
for the adjustment of any triangulation net. In order to avoid

ill-conditioning the number of conditions is controlled by the



following formulae:

For observed angles : =N - 25 + 3,

For observed directions: =D - 3S + Su + 4.

N is the total number of angles observed.

D ee 460 secee eseene oo directions observed.

S e¢ eee ossese seeess oo stations occupied or not.

Spev ees scses soeses oo unoccupied stations, at which no

obscrvations havc been taken.

In the case of n base-lines previously fixed, additional
conditions equal to (n-1) are found necessary. The general formula
which is to be used as check for the number of the condition
equations is that "the number of conditions be equal to the

number of variables minus the number of independent unknowns".

l.2. ADJUSTMENT OF TRILATERATION NETS

In this technique sides are measured instead of observing

angles in the classical waye.

l.2.1. Methods of Adjustment

Adjustment may be carried out on the spherggd, but in
order to avoid unneccssary complications, adjustment is normally
carried out on the projection plane, by applying a scale factor
to lengths and an arc to chord correction to angles.

The analytical adjustment is traditionally carried out in
in two diffcrent ways:

1- Adjustment by variation of coordinates, (ohservation equations).

2~ Adjustment by satisfying a special condition, (condition equations).
which may be:
a~ Figural condition,
b~ Bearing condition,

¢- Position condition.

l.2.1.1. Adjustment by Variation of Coordinates

In this method approximate coordinates of new stations are

obtained by calculation from the obs%?ed sides, or from observed
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directions. From these approximate coordinates which are rounded
off to the nearest whole unit, preliminary bearings and lengths
are computed. Differential changes give the required increaments
to these approximate coordinates, using the principle that the
gsum of the squares of the residuals is minimum. Observation
equations for the indirect observed quantities (coordinates)

will be obtained for every line in the the following way:

Figure 1.1 Figure 1.2

Let PiP, D; figure 1.1

v (x; - x,)% + (v - y;)?

ap = l2(xy - x;)(ax; - axy) + 2(yy - y;)(dyy - dyy)]

_ Xi- % vi- Vi
- _:L_D__(dxj - dxg) + —J—D-—(dyj - dyy)
the correction equation will have the final form of:

Vij = (dxj - dx;).cosA; . + (dyj - dy;)sing . + D - DC..(l.Bl)

J J
where, D, is the plane computed distance from the approximate
coordinates.

DO is the observed distance reduced to the projection plane.

A similar equation will be formed for every observed side of the
trilateration net. The adjustment is obtained by solving these
observation equations in the normal way. For fixed stations, dx

and dy will be zero in the above equations.

le2.1.2a. Adjustment by Figural Condition

Figural conditions are used for the adjustment of doubly
braced quadrilateral and centered polygons, and these require

that the angles of the figure be computed. Thesc geometrical
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figures may be viewed as being composed of several individual
triangles.
If a single trianglc ABC, figurc 1.2 is considcred, then
using thc cosine formula:
a? = 12 + ¢ - 2.b.c.cosA cevecervecessla32)

and partially differentiating equation (1.32) we obtain:

2.d2 = bedb + cedc = (bedc + Cedb)coSA + CebesinA.dA ..(1le33)
and,

- becesinA.dA = b.db + c.dc - (cedb + b.dc)cosA - a.da..(1.34)

I

it

(¢ = becosA).de + (b = c.cosA).db - a.da (1.35)

However,
2 2 2 2 2
(¢ - becosA) = ¢ - c? + g.c- a = 2.02 - g.c— be + 2
= % . &2+ %%c‘ b2 _ 2eCOBB  eeeee(le36)
similarly; (b = c.cosA) = a.cosC cesessaeal(Ls3T)

Substituting (1.36) and (1.37) into (1.35) we obtain:

sB a cosC _ a da
“dA=%o%ndc+momodb mom

oooooooool(_lo38)
a _ sind ¢ a2 = E‘n‘A ese0eces .
but, 2= 3325 and = T (} 39)
thereforec,

A = = Q'GQ.CO'tB ~ %-t-)ocotc + %—Q.CosecB ooooooonc(lo40)
The last term in equation (1.40) could be written as %g.cosecc

instead of %Q.cosec‘B.

The condition used for figural adjustment is found when
angle A occurs in a doubly braced quadrilateral, figure 1.3 in
which the component triangles are:

triangle ABC = (1), triangle BCD = (2),

1]

triangle CDA = (3) and triangle DAB = (4).
The condition is obtained by requiring that:

4 + A3z = A4,
In satisfying this condition, any discrepancy found will be
distributed by emplé#ent of the Lagrange multiplier® to give
For an equation of the form ajxy + asxXo+ ... =k,

the Lagrange multiplier is = %%2.
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E

Figure 1.4

Figure 1.3

corrections neecessary for the self consistency required.

In the case of a centered polygon, figure 1.4 the
figural condition is given by dA = ZA - 3600, which will
provide the absolute term for ths: condition equation
which has to be solved.

The number of figural conditions required for the
adjustment of any net is given by: L - 28 + 3 ......(1.41)
where L is the number of lines, and 8 th~ number of the
stations. Corrcctions obtained for sides by using equation
(1.40), always come in special pattern. For the centered
polygon, the coefficients of thc adjustments to the
peripheral lines are all of the same sign and positive,
while those of thc radial lines from the centre-point
are all of the same sign and negative, provided that
nonc of Bp, Bp, end (B + BL) is greater than 180°.

1.2.1.2b. Adjustment by Bearing Condition
Phis condition [2] is used when the trilatcration

net is extended between two sides with known lengths and

bearings. This is normally cemployed when the figural
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condition could not be used.,

Figure 1.5

In figure 1.5 only thc two bearings OA and OE

are fixeds The trilateration net ABCDE is extendcd be
between these bearings. The relationship between angular
and linear changes given in (1.40) is used to satisfy
the condition of fixed bearings. If the angle between
these two fixed bearings is given by B, thereforc the
condition will be:

(8 + 05 + vo00) = (0, + Oy + eeee) + L3O =B ...0(1.42)

l.2¢1le2cCe Position Condition

This condition is used when thce trilateration net
-5
is oxtended betwecn two fixed stations. As&figural
condition could not be used, wherc the net is not a closed

onc, this conditionis used.

Figure 1.6
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In figure 1.6 the trilateration net is extendecd between
the two fixed positions A and E. The condition in this case is the
sum of the projections on the coordinate system axes of all
observed lines between the two fixed stations have to be equal
to the difference between the corresponding coordinates of the

two fixed stations.

Thus if XE - XA = AX, and YE - YA = AY
thercfore Sq e8iN0q + SHeSINKA 4+ eco0cee = AY
1 1 2 2
cesececsee(led3)
and Sl-cosal + Szocosaz 4+ osecese = AX

Differentiating with respect to both angles and sides we obtain
the required corrections for the purpose of keeping the positions
of the fixed points unchanged. In this case differentiatiom has
to be made with rcgpeet to angles and not to bearings to be able
to use the relationship given by (1.40). The relationships
between bearings and angles are as follows:

a1 = 67 + constant,

@y = 67 - 65 + constant etc..
therefore

da2 = del - dez, etc-...
Differentiating equation (1.43) we have:
sl.cosal.docl + sz.cosaz.da2 + coveee + sinal.dsl +
+ SimzodSZ + eeee +0Y =0 N
and,

—(81.51nal.dal +’82.31na2.da2 + eeesesce) + (cosal.dsl+

+ Cosazodsz + oooo) + GX = Oo
......(1.44)

Substituting d6 for da equation (1.44) will be:
del(sl.cosal + 8,eC080, + veoe) — dez(sz.coscx2 + 83.C0803 +

tooo) + d63(830008a3 + S4cosa4+ too) ~ o0 + oo +6Y =0
¢oooo¢0(lo45)

-8, (89 +sinay + 8pesina, + eee) + d05(s,.sina, + szesinas +

- d93(3303ina3 + S4.Sina4+..) + 60 = 0o + 56X = 0



- 15 -
l.2.2. Discussion

In the following pharagraphs, special consideration will
be given to the following points:
1- Number, selection and accuracy of computed angles, for figural
condition.
2= Characteristics of figural condition.
3- Adjustment by becaring and position conditions of pure tril-
ateration.

4~ Weights applicable to trilateration nets.

l.2.2.1. Computed Angles

In order to form the figural condition for adjusting the
doubly braced quadrilatcral, figure l.3, a particular apex has
to be chosen. Different points of view have been given,as to haw
this may be selected. Murphy and Thornton-Smith, [70], and [73]
recommend the use of the apex of the triangle of the smallest
area, while Tarczy-Hornoch and L. Hovanyi [109] recommend the use
of the apex of the triangle of the largest area. Thus using
figure 1.3, the figural condition for the doubly braced quadri-
lateral is either C3 + C3 = Cp, according to Murphy and Thornton-

Smith, or Al + A3 = A4, according to Hornoch and Hovanyi.

Four triangles of the doubly braced quadrilateral have to
be solved so that this condition may be formed. Furthermore to
obtain accurate corrections,angles should be accurately computed.
This is because the absolute terms in the condition equations
are linear functions of the computed angles.

Calculation of all angles to obtain this condition is a
very laborious task. Therefore, if another figural condition can
be found which will eliminate this calculation it will be of
considerable advantage. In choosing another geometric.
condition it would also help if one could avoid having to decide
which is the most favourable apex for the adjustment, e.g, either
that contained in the triangle of the small area or in the triangle
of the large area. Suggestions along these lines are discussed

in detail later in section 1.5.
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1.2.2.2. Characteristics of Figural Conditions

Figural conditions are associated with the adjustment of
the doubly braced quadrilateral and the centered polygon.

In the doubly braced quadrilateral figure 1.3, the figural
condition is obtained by measuring any arbitrary redundant.
Stations A, B, C, and D are defined in the quadrilateral with one
diagonal, but as soon as the other diagonal is measured, a figural
condition will be established.

In the case of the ccntered polygon figure 1.4, stations
4, B, C, D, E, F, and G are defined without measuring GF, but with
the measurement of this side, the figural condition will be
established, exactly as in the quadrilateral. In both cases the
figural condition will allow consistency to be achievcd with the
observed quantities. However it is worth mentioning a difference
that exists bctween these two figural conditionms.

In the doubly braced quadrilateral the condition is
obtained by equating (47 + Az). and A4(figure 1.3). Both these
guantities are obtained by computation from the observed quanti-
ties. In the ccntered polygon, the condition is obtained by
equating ZA and 360°, XA is obtained by computation from the

observed quantities, while 360° is a known geometrical fact.

In figure 1.7 a
centered polygon ABCO
having the two figural
conditions mentioned

above. In this case:

(a) A1+A3=A4 ’
or (b) IO = 360°,

Figure 1.7

In (a) all three
angles at A are obtained by computation from observed sides.
In (b) 0 is obtained by computation from the sides, while 360°
is the known geometrical condition.

To differentiate between these two characteristics
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the doubly braced quadrilateral, and any other figure, such as

figure 1.7 will be called a self-checking figurc.
l1.2.2.3. Adjustment Using Bearing and Position Conditions

In order to derive bearing and position conditions,figures
1.5, and 1.6,it is necessary to observe all sides forming complete
triangles. The number of triangles involved, depends on the |
length of the trilateration net betwecen the two fixed bearings,
or the two fixed positions, so that the number of unknowns will
be equal to (2n + 1), where n is the number of triangles in the
net. For three triangles the number of unknowns will be equal to
seven, for four triangles this number will be nine, ctc..At the sane
time, it should be noticed that, figural conditions can not be
formed for such a net. Solution of onec condition equation to
obtain large number of unkn&wns especially when it requires that
every side of triangles be observed, secems to be unwarranted,
The solution given for these two conditions, is a theoretical'
one, but practically, it w;ll be a waste of efforts as the estimate
for the coefficient of correlation will be of the order

o= el
V{Zn+l)

The same could be said about figural condition for adjusting -
a centered polygon.

As it will be shown in 1.3 the aim of simultancous obser-
vation of angles and sides is to greatly incrcase the consistency

of adjusted nets, with ¥ee little increase of effortg in the field.

l.2.2.4. Weights licab Trilateratio

Weights arc applicable to the above mentioned methods of
ad justment where condition equations have been employed.
An essential requirement for adjusting any observations,
is to have an idea of the observation errors likely to be present,
the effect of these observation errors being incorporating by
applying weights for the relavant parts of thc adjustment.

In trilateration the observation errors used for obtaining
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weights are normally related to the distance (L) observed.
However different systems of weighting have been rcommended which
are inversely proportional to:
1) 12 [7],
2) L [115],
3) The mcan square error for every observed distance [8].
4) a2 + v2,12 [20],
where a = 1 cm. in the Geodimeter, and
= 1 in. in the Tellurometer.

b

5) Unity ([68], [79].

1/200,000 = meteorological uncertainty.

1

In practice one finds it difficult to give preference
to one system over another, For a relative weight proportional
to 1/L2 it is important to quote a statement made by Murphy [73]
viz "The position is still not elear, but it is known that the
probable error of an observed side is a function of the length
of linc and as an interim approximation for lines of a modiuﬁ
distance, this may bec taken as a direct proportion", in which
casc the weight being (1/p.e)? will equal to 1/I2. Furthermore,
when tapes or wires were used to mcéasure sides or bases, it ﬁas
easier to evaluate the reliability of measurement, since most
of the factors affecting this were known or could be cstablished.
In measuring sides by this way the relationship between the length
of the measured side and ite weight is' found to be proportional
to l/L2. For sides measured by clectronic measuring cequipments,
there will be considerable uncertainty as to the meteorological
conditions between each pair of end stationsf::.this car have
a vital effect on the prccision obtained. Thus the probable
error of the instrument used does not necessarily relate to the
probable error of the measured line. The instrumental probable
error is evaluated under standard conditions, which may or may
not exist in the field, Uniformity of wecather conditions along
a long line is very rare, if not impossible, evcen when measuring

over a desert or the sea. Such uncertainty makes almost any
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assumption for weighting liable to objcction. Even if mcteor-
ological stations can be used botwecn the two ends for more
accuratc estimation (and this is not very practicable)y #his
will not eliminate thc effect of the as yet known internal
electrical and mcchanical errors in a very complicated instrument
such as a Geodimcter or Tellurometer.

A1l the above points should be kept in mind before using
any reclative welght proportional to the length. In this case,

a short mcasured side may be less rcliable than a longer side
due to special metcorological conditions or dcfects in the
particular instrument.

To obtain the mean squarc error of observation for every
line is a very laborious job. When accuracy is rcequired, the ‘
crror of observation should be obtained for cvery instrument i
as each will havétdifferent systematic error. Also mceteorological i
conditions affect our observations affecting the relative weights
to be used. The result of all these considerations is that there
is no specific cvidence to give an cstimation of observational
error, in which case weights may be choscn according to the
following criteria: |

1- That they result in a minimal amount of additional
computation.

2= That they correspond to the requircments of lcast squarcs |
theory.

3= That they give good results when compared with the results
obtained by using other weights, when the latter are
theoretically approved.
S0, using the same weight (equal to unity) for all observed

sides seems to be a reasonablc suggestion, satisfying the three

points given above.

As to whether the same reliability of observations of E
different lengths will be obtained in practice depends a great
dcal on the experience of the observing team, and on approximmtely

similar meteorologieal conditions prevailing whilc observations
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arc being taken. It should be mentioned here that the pattcrn
of observations, and thus the mean square errors, may bc misleading
to those undertaking the computing. If the observations are made
over a short period, thcy have the tendency to give uniform
readings with a small value for the mean square crror. On the
other hand observations made over a long period and during different
meteorologioal conditions will have the tondency to give readings
of a grecater spread with a larger value for the mean square error.
The small value of the mean square crror obtained in the first
case does not necessarily indicate a high absolute precision,
while the large value for the mcan square error in the second
case does not neccssarily indicate a low absolute precision.
This sort of expericnce is in fact neglcceted by the computing
people, when the mean square error is taken as a measure for the
relaibility of observations.

In very special cases, i.es under similar metcorological
conditions, thec use of the number of observations as a measurc
for the rcliability of observations follows the assumption of a

unit weight for each observation.

However; similar meteorological
conditions can be reasonably

assumed when sidces of approxi-

mately equal length are being
measurcd over fairly uniform

terrain conditions. In such

a case the number of observations

of cach side can be used as a Figure 1.8

weight to be given to each
particular side during thc adjustment of the net. For cxample
the centercd polygon figurc 1.8, in which all sides are nearly
cqual, may be given different weights depcending on the number

of measurcments of cach sidc.

It has to be stated herc that the assumption of having

similar wcights for adjusting a trilateration ncet is choscn to
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facilitate the computation, depémding on thec considcrations given
above, and on. the conclusions made by Rainsford in [79]. This
is sq especially in the normal cases, when sides of a net fall
under the particular class of being first, second, or tertiary

order.

1.2.%. Comparison Between Triangulation and Trilateration Nets.

Consider a geodetic doubly braced quadrilateral in which
8 angles are observed, and another similar quadrilateral of which
the six sides are measured.

The adjustment of the first requires the solution of four
condition equations, one of which is the side condition. The
latter quadrilateral will be adjusted by using the side condition
only. This means that a better agreement between corrections and
real errors will be obtaiqed from a least squares solution when
ad justing the first (because the estimate of the coefficient of
correlation which is equal to Vng/n will be greatcr in this qase)
than that obtained from the adjustment of the second quadrilaéeral.

On the other hand if accumulation of errors is being
considered a comparison of the two is rather more favourable %o
trilateration. All errors in scale, azimuth and position increase
with the length of the triangulation chain, while in the case -of
trilateration the scale error at the last line of the chain is the
same as that of the first line, i.e. scale errors do not accumulate.?
The other two errors do accumulate, but the position error is due
to the swing in the azimuth. Thus a short trilateration chaig,
or long one where Laplace azimuths are used,might give results
as good as those obtained by the adjustment of triangulation ﬁet.
However in general it is apparent that trilateration gives a

wecak shape, but has a better scale.

1.3. MIXED FIGURES (HYBRID OBSERVATIONS)

These are geodetic figures in which both sides and

-angles : are. observed.




l.3.1. EBEffect of Observations on thc Nets

Before the advent of the elcctronic measuring equiprent
triangulation nets were formed between two base lincs, or cxtended
from onc base linc only. The change in the shape of the net due
to the errors accumulated along this nct is similar to the change
of the shape of an clastic body subtended botween two fixed points,
or supported at onc side only as a cantilever. In this case the
elastic body will have a dcformecd shapc diffcrent to its original
shape, c.g. the straight line boctwecen two fixed conds will no
longer be straight. Original shape can be re~obtained by
introducing an infinitc aumber of supvorts betwcen the fixed ends.
The same could be said about a ncet of triangulation, i.e. the
cffect of accumulated crrors for scalc will be rcduced if the
number of bases is increased.

A distinction mmst be introduced betwecen the old type of
basce, which was very difficult to measurc and so infrequent that
it uswmally was lcft unadjustcd as an absolutc quantity, and the
ncw mecasurcd side lengths, which can be introduccd comparatively
casily, and frcquently and canéfsubjectcd to an adjustment, just

as mcasurced angles are.

1.3.2. Adjustment of Both Shape and Size Simultaneously

Another way of increasing the consistency of adjusted net
is to adjust both shape and size. This is the aim of the current
technique of observing both anglcs and sides in a net, taking
account of the fact that scale errors cannot accumulate to any
thing like the ssme extcnt where morc sides are measurcd. This
means that the number of the redundants will be doubled or
triplcd, e.g. a trianglc will be solved for three condition
cquations, rather than the simplc angle condition used in normal
triangulation. Also the Joully brac.( oo olétic quadrilateral
requires nine condition cquations instcad of the well-known
four conditions required in the adjustment of triangulation nct.

Solution by this mcthod requires a great decal of extra work
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for a given figure or nct, and should be used only in primary
work or where high accuracy is all important. This is especially
so when the net to be adjusted is a large one, for thec solution
by the least squares is known to be a quadratic function of the
number of the equations to be solved.

The main problem to be considered for the simultaneous
ad justment of both 5ides and anglcs is the selection of suitable

relative weights for such adjustment.

l.3.2.1« Relative Weights for Anglcs and Sides

In the case of pure triangulation or pure trilateration,
it is easy to use relative weights once one has decided to follow
a particular rule. The observed quantities here are similar ip
that they have been obtained by using the same set of equipmenf
and probably a standard technique. In mixed figures totally
different principles are being used for the measurement of the
different obscrved quantitics, and this dissimilarity requires
different weights to be given to both angles and sides when they
are to bc adjusted as a single problem by the method of the least
squares.

Various suggestions have been made by different contriﬂutors,
€.ge Murphy, Lilly, Eiesheuvel, and Rainsford, |
1- Murphy [71], gives a unit weight to all angular observations

while giving a different weight to cach side according to

its length. In this case he assumes that the mean square
error of a linear measurement is proportional to the lengthJ
of the side. This assumption is entirely based on conveniance
(as Murphy himself said [71]) and not necessarily upon the
charact@ristics of the electronic distance measuring apparatﬁs
itself.

For this assumption (Aa) = ———1206265

where, v, is the linear correction and (Aa)" is the equivalent
angular correction.

Minimizing the expression [(Ag)2+(Ab)2+(Ac)2+vA+vB+vc]



- 24 -~

where Va is the correction to the obscsrved angles, means
that angular corrections are all of the same weight, i.e.
unity. The linear corrections which are presented in the
form of angular corrections are obtained by having a
weight invcrsely proportional to the squarc of the length
of th- side measured.

Lilly [63] suggests that the concept "Sum of the Squares of
the Residuals" has to be replaced by the concept "Sum of
the Squares of the Reduced Residuals", where the reduced
residual * is defined as the ratio of the residual to the
probable error. This is equivalent to thc weighted squares
of the residuals, having regard to the fact that the weights
here are dimensioned quantities instead oif being pure
numbers. Thus when the dimensional residuals are divided
by the weights the least sgynares solution can be applied
to dimensionless gquantities. This explanation is given to
justify the use of the least square concept to the nroblems
of residuals of different dimensions. In this case if v

is the residual, r is the probable crror and i = 1, 2, ...n,

therefore,
(Vi)2 - (x - xl)2 (x - x2)2 - (x - xn)2
= — + +0.....+
(I‘ )2 I‘2 I‘2 I‘2
i 1 2 n
2
For d . (vi) = Q.  We have:
T = ’
dx 2
Ty

Z(x;/r2) _ E(x;/krs) E(pyox;)

£(1/r?) $1/r3)  E)

In this case k is an arbitrary constant.

Lilly's solution is completed by choosing suitable probable
errors. He proposed that this equals 0.6" for =211 observed
angles, and 1 part in 200,000 for the observed linear
measurenments.

Bieshecuvel [7] prefer; that the residual of linear
measurcment should be released from its dimension before

it is combined with thc angular rcesiduals in.the solution.

For example when Ve is the linear rcsidual,then thée amountito be

i
i
4
{
!

-
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s =

obtained by the least squares solution is v, = g _ y Where s
S

is the side observed. The correction then will be VgeS =V

for the linear mcasurements, and Vp = VS for chord measurement,

q

(figure 1.9). In this case both Vg and v¢ will be of the same

angular dimension. This consideration is commonly used in

adjusting traverses, but he rccommends against the usc of this

method in a combined net unless the mean square error is known,

or a reasonable cstimate of it can be made, othcrwisc the

combination will be futilc.

Rainsford{79] carried out a

comp¥fhensive study using the

information for the Ridgcway and Figure 1.9

Caithncss bases, with different

criteria being considcered in turn.

These involved the adjustment of:

O -

b“

Angles only - all of uniform weight.
Lengths only - all of uniform weight.

¢ - Combined angles and lengths - weight of a side inversely

of

B-

proportional to the squarc of the length.
Combincd anglcs and lengths - weight of a side is inversely
proportional to the length.
Combined angles and lengths - Angles and sides are of uniform
weight.
After comparing the various results from a practical point
view comes to the following conclusions:
There is little (if any) cvidence that the error in
Tellurometer observations varies with the length of linec,
unless the lines considered are longer than say 35 to 40
miles. It would then be a matter of uncertainty in the
meteorological conditions rather than systematic error in
the Tellurometer observations.
The introduction of observed lengths (even quite a large

proportion) does not appear to distort the general adjustment
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appreciably, considerced in rclation to the ad justment of

the angle observations only. i
C-= Good results will bc obtained by weighting anglc observations

and Tellurometer observations uniformly in the same solution,

i.e. if the weight of an angle is unity thc w.ight of

a Tcllurometer length is also unity.

The suggestions of both Murphy and Bieshcuvel are basically
the same: In both cases thc combination of the two dissimilar
quantities is allowed by having the lincar correction of a side
divided by the length. The angle corrections are obtained directly
from the correction equations. This division by the length of
the side introduccs in both cases a relative weight = l/L? which
suffers from the shortage of a strong evidence of being so.

Lilly solves the problem of combination of the two dissimilar
quantities by assuming a probable error for both angles and sides.
The choice of 0.6" as a probable crror for an observed angle is
obtained by special studics in the field. Galc [38] who did the
samc studies proposcd 0.85", which secms to bc quitc differcnt
from that of Lilly's assumption. Both Lilly and Galc agrcc on
having onc part in 200,000 as a probablc crror for an observed
side. However, although this solution scems to bec a practical ohc
but the uncertainty of thc probable crror to be given to angles
together with the extra computational work nccessary docs not
give this s~lution nuwch priority.

Rainsfords conclusions scem to be more likely acceptable,
aéjéolution according to his suggesticna requires less comput«

ational work, beside giving good practical rcsults.

1.3.3, Methods of Adjustment of Hybrid Systcm

Contributors to thc problem of adjustment of hybrid
observations, c.g. Murphy [71], Tarczy-Hornoch [110], Lilly [63],
Bicsheuvel [8], and Thornton-Smith [115],[116], usc diffcrent
methods, but basically they can be classificd under -the following:
1) Simultancous adjustmont by formation of angle and side
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conditions assigning weights according to one of the systems
suggested above, and using normal equations to obtain direct
corrcctions to thc obsurved quantities, e.g. the solution given
by Murphy [71] for this problem is obtaincd from the following
condition cquations:
a) Angle condition
A+B+C+06=180°+c¢ eeeseeee(l.46)
0 is the angu;ar correcction neccssary to closc the triangle
ABC, and theréfore 6 will be dispersed by applying corrections
Vps Vps and vg to the observed angles. It follows that:
V)t Vgt Vg=6 coeenes(1s47)

b) Length conditions

When the application of the sine formula to the Legendre
trianglc ABC does not satisfy the rule cxactly, then

RS S
sin(A-e/3) b 1-k (1.48)

= F(a,b,4A,B)
where k is the small divergence produced by the errors in
the observed quantitics,
Differcntiating the lcft hand side of equation (1.48),
with respect to a, b, A, and B and choosing the linecar
corrcctions v,, vy, Vo, and the angular corrections vy,

Vg gnd Vg SO that they satisfy the sine rule, then
k -— l.Sin B"’E oV - a 'Sin B"'e o V.
b.sinéA-e§3§ &  p2.sin(A-e/3

2e8in(B-e/3).cos(A-€ a.cos(B-e/3) . . {
b.sinc(A-e/3 Va t b,siﬁéj:gég% vpe«(3449)

ZQ - %—b- had VAQCOtA + VB.CO‘tB cooooa.(l.50)

Substituting (vp)" = vp/206265,
206265.v,/a
therefore, 206265 ky = (4a)" -(vA)"cotA - (ap)"

and (a2)"

+ (vg)"cotB ceserssess(le51)

also, 206265 ky= (8a)" = (v,)"cotA = (Ac)" + (vj,)"cotC
ereses(le52)
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Similar equations to (1.47), (1.51) and (1.52) have to be
obtained and solved for each trianglc.

2) Thornton-Smith [115], [116] has two main considcrations [(a)
and (b) bclow] in his solution to the problem. Both of these
disregard the question of a simultancous combination at all,
and give a solution for the casc when both angles and sides
arc observed. Thornton-Smith says that to combinc both angles
and sides in one solution, i.ec. to solve nine condition equations
for thc doubly braced quadrilatcral "is a herfa¥lcan task",
from the computational point of view. Furthermorc, he fecls
that it would be futile to combine the two in the first order
geodetic work unlcss the two kinds of measurements arc each
capable of the same first order prccision. So his opinion
is that there is no necd for such a combination. However,
if both arc obsecrved in one figurc one of two possibilitics
exists:

(a) Thc adjustment should be carricd out for angles first,
then using the adjusted angles, the sidcs are corrccted
which mecang in fact that the shapc be adjusted first and
then the size or scale.

(b) Thc most probable shape should be obtained from the
adjustment of obscrved anglcs only by thc lcast squares
mcthod. Next another value for the mest probable shapce
is obtained by deriving the anglcs from a scparate adjus-
tnent of the sides. In this casc we have two shapes
where thc angles satisfy the geometric condition and two
scts of residuals. The final adopted shapc will be the
wecighted: mean of the two valucs of cach individual angle
in the figure, wherc thc weights are the sum of the squares
of residuals in each case. In other words the required
angles arc obtaincd by distributing thc differcnce between
the two sects of residuals according to the assigned weights,
to produce onc final set of residuals. The angles obtained

satisfy both the angle and sides conditions for cach tringle.
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In thesc two ways Thornton-Smith avoids using rclative

weights at all, simply by going to the scparatc adjustment

of cach nect.

l.3.4+ Discussion

The numbcr of conditions to be satisfied for a trilateration
net is very small when compared with the number of conditions to
be satisfied for the adjustment of the classical triangulation
net(section 1.2.3.). This will affect the valuc of the whole
operation. The main aim of the current techniquc of obscrving
sides and angles is to increasec the consisteoncy of results.

This mecans that observation. of both sides and angles will be more

useful when the adjustment of both is carried out simultaneously.

The idea of adjusting angles and sides separately requircs much

more investigation and research. It has been stated by Thornton-

Smith {115] that the combination of angles and sides in one

solution would be futile unless both observations are capable of

giving the same precision. This statement can be discussed in
two parts.

(a) Pirst of all nost investigations lead to the conclusion
that the angular and lincar accuracies are about cqual, c.g.
Rainsfords opinion [79] is that both types of obscrvation arc
capable of giving the samc precision for first order work.
Therefore both sidcs and anglecs are given uniforn weights
irrcspective of the length measured. Also after a series of
practical investigations, Gale [38] proposed a probable orrbr
for an observed angles of 0.85", and for sides one part in
200,000. If we consider that a probable error of 1" represcnts
one part in 206,265, we can see that precision proposed for
each is very similar.

However, precision can be increased if special prccautions
arc taken, c.g. thc U.S. Coast and Geodetic Survey carricd |
out a project for the U.S. Air Force in Florida in connection
with the missile range [90]. In this project an accuracy of
1:400,000 was rcquired between Cape Kennedy and nine ballistic

e e o e e =
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Camera sitcs. Such an accuracy has not becn achiecved before

over a large net. However the project was carricd out by

mcasuring sides using Mk2 Geodimcter, and angles using Wild

T3 Thcodolite. Special proccdurcs and precautions were followed.

The simultaneous adjustment of sidcs and angles was carried

out by the variation of coordinates method. The Geodimeter

lengths being introduccd as observation equations with weights

equal to thos¢ for the directions, i.oiaborrectiony of 1:206000

(arc 1") to a length was considered the same as the correction

of one second to a dircction. So for Mltra-high precision ncts

the weighting follows the same lines as with Rains®ord and Galo.
Also for the connection betweon Britain and France across

the English Channcl 1963, satisfactory results were obtained

by using the Tellurometcr MRA2 for the dircet measurement of

103 kms. betwcen Dunnose and Beachy Hcad. In this case the

final mcan value obtained from 12 measurements, sach combrising

36 scts of finc rcadings differed from the distance obtained

by triangulation by one part in a million. Again this backs

up the other example quoted.

Lilly [62] and Konecny [55] carried out complete investi-
gations and comparisons for sides derived from existing
triangulation ncts and the length of the same sides measured
directly by means of electro-magnetic waves. An explanation
has been always given, whenever a discrepancy exists, c.g. due
to the deformation pf the existing triangulation nets, some
angular errors, e¢tCees

Thce above investigations were mainly carried out for first
order work. For sccond order work, an investigation has been
made by Kelsey [51] for a net measured by the Ordnance Survey
in South Scotland. In this investigation the Tellurometer
distances were compared with the distances computed from
existing coordinates derived by triangulation. The maximum
discrepancy was 0.2 metre in a line of 17.7 lkms, i.c. one

part in 88,000. This check showed that the second order

|
!
1
|
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control can be supplied by Tellurometer traverses to zn accuracy
comparable with that of triangulation.

(vb) However the assumption of quite different precision for the two
types of obscervation, would nct neccssarily demand successive
separate adjustment. The simultaneous adjustment will take
much more computation, but it is not futile to undertake this,
as Thornton-Smith has suggested, because of the increased
consistency which rcsults as has been shown by Konecny [20].

The current technique of measuring sides, is especially
uscful in cases when observations of angles are very difficult
or impossible, c.g. in thc case of fog, or conditions of poor
visibility. In such cases, thc observed nct will be a mixcd one,
i.c. somc angles and somec sides are obscrved. However, for the
adjustment of the gcneral case, it is not necessary to have an
anglc condition, provided that a mcthod such as Murphy's (already
discussed) is suitably modificd. In this case the angle condition
will be ommittcd.

In the rest of this chapter, further investigations into
the possible usc of the area covered by a ncet as a condition for
mixed adjustment are reported. Also the author's point of view
about éapices .of the doubly braced quadrilateral will be given.

Furthermore, a new mecthod of forming condition equations for the

mixed adjustment will be derived and modified.

l.4. AREA COVERED BY A SURVEY NET

Survey nets consist of individual geomctrical figures,
C.gs a triangle, a quadrilateral, a centered polygon. The basic
individual unit is the triangle. Each geometric figurc has
a geometric condition to satisfy, e.g. 180° for a triangle, 360°
for a quadrilateral, etc.. When only sidcs are observed, such
a geometric condition will not be found to be satisfied. For
example, computed angles satisfy always this condition, and thus
elinminate the possibility of using this condition for adjustment.
Computed angles are commonly used by contributors, c.g. Murphy
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Tarczy-Hornoch, Thornton-Smith, etc... to satisfy the figural,

bearing and position conditions for trilateration adjustment.

For observed sides, three sides will form a unique triangle,

and with n observations of the samc sides n triangles each slightly

different to the other will be obtained. Whatever number of
observations are made the figures lack the condition to adjust
them, 'ﬁ gituation rcemedied as soon as any redundant is known.

In triangulation, the angle condition cannot be used for
the adjustment of a triangle unless the three angles of the
triangle are observed. It should be mentioned here that the
adjustment of this triangle will not have any specific meaning
without additional knowledge of the scale. In other words four
parameters have to be known for the acdjustment. This can more
obviously be undecrstood, whon mechanical computers for adjusting
these nets are to be put to work. It should also be kept in mind
that the scale always exists whenever the adjustment of angles
only is being discussed, but the fourth parameter(the side) is
left unadjusted. This does not affect the number of conditions
mentioned in l.l.4. and l.2.1l.22a.

However with one anglc and threc sides observed or with
two anglcs and two sides observed, i.e. again with the minimum
four measurcments used for adjustment there is only one geomectric
condition that could be satisfied. This can be an anglc or side
condition, but whatever is adopted it can be viewed in the general
case a8 having to satisfy an area condition. As this requires
at least four out of the six elements of the triangle to be obs-
erved, it follows that an arca condition can only be used in
a triangle in adjusting hybrid observations. However area
conditions can also be used for adjustment of pure trilateration
of larger figures with self-checking properties, c.g. a doubly
braced quadrilateral or similar figurc. The adjustment of the
quadrilateral using an arca condition also avoid difficulties
of choosing the apex to be uscd for obtaining a figural condition
(see 1.2.2.1). Furthermore, it is shown that adjustment by this
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condition avoids the necessity for any extra computation.

l.4.1. Coefficicnts of Corrections and Absolute Terms in

Condition Equations

The order of the absolute term in the condition cquation
is important factor in obtaining accurate rcsults. The absolute
term normally used with an angular misfit condition is much
incrcased when an arca misfit condition is applied with consequent
favourable effects on the accuracy of the solution.

Size of the figure mey be defined as the arca covered by

the sides of this figure. Errors of obscrvations appear in the

area calculation as a multiple of these errors by other quantities.

The same errors appear in the angle calculation in a totally -
different way, as follows:

1) Error in the calculated area

A
Consider figure 1.10, and let
ap = the observed side a
c b
AO = the calculated arca from observed
gides g B a 'C
da = the crror of observation of side a,e
dA = the error in the calculated arca. Figure 1.10
a = tho corrccted sidc = (ao + da)
for a = b we have:
1.2 2
dA + AO = %03.2 = Z(ao + da <+ 2oaooda) 00000-0(1053)
ncgleeting dé, therefore,
ab + by = L(2f + 2.35.d2) ceeosa(1.54)
= l 2 oo 0000 [ )
but by = a5 (1.55)
thOI‘GfOI‘O dA = aooda voooo.(lo56?

in thec casc when a £ b
da = %(ao.db + bg.da) ceeeess(1.57)
2) Errors in the calculated anglos

The errors in the calculated angles which resultg from

errors in thc observed sides b and ¢ in figure 1.10 can be

given by:
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b
COSA=C% 00000000(1058)
bs + db
Elnd_ COS(A+dA) = O o000 0o .
G0 ¥ I b - (1.59)
for dA small, cosA - dA.sinA = 536 + cad*“
1+ 52 1+
. b db
therefore dA.sinA = =2 - Lo - _Co
co 1+ de 1+ 4¢
o Co

as %3 is very small, therefore the denominator could be

taken as unity, and

dA.sinA = Po - Po . db
C

for sinA = %5, therefore equation (1.59) will be:

__db Co_db {
dA— 6305-6-—-50" 0000000(1060) :

From equation (1.60) it can be seen that the crror in dA is
a function of the linear crror divided by the length, whereas

the error in the arca, as given by equation (1.56) is a function

of the linear error multiplicd by the length. n
Since the problem of adjustment is to obtain corrections g

for the measured sides, it is morc suitable to get these correction%
by using the condition which has larger coefficients and absolute §

terms [71], i.e. the arca misfit condition.

1.4.2 Area Covering Condition for Purc Trilateration

i
{
|

Deriviation of the condition equation is made for a doubly

braced quadrilateral, wherc all sides are dbserved.

D D

(4)

(1)

B c C B

(b)
(a) Figure 1.11
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Consider quadrilateral ABCD, figure 1.3 in which a, b,
c, &, ¢ and f arc observed sides. The area covered by +his

guadrilateral may be obtained by either the sum of the areas

of the two triangles ABC and ADC figure l.1lla, or by the sum

=i

of the areas of the two triangles ABD and BCD figure 1l.11b.
In fact there will be a difference in thc area when

calculated from figure 1l.1la or from figure l.11lb, Stations
A, B, C and D are obtained by diraoct obscrvation of sides a,
¢, ¢, £ and cither b or d. When both diagonals b and d are
obsurved,the quadrilateral will be given further rigidity, but
due to accidental or observation errors adjustment of observed
quantities is necessary to provide consistency to the calculated
stations. This requires that figures l.lla and l.11lb must
coincide with each other cxactly. Stations A, B, C and D
must have the same values no matter how they are computed. In
thie case the area covered by both must be exactly the same,
angle DAB in figure 1.11b will then be equal to the sum of the
two angles CAD and CABin figure l.lla, whether A is the apex

of theo triangle of the largest or smallest arca« Discussion
about which one is to be chosen does not apply here, as the area
of the whole figure is considered.

l.4.2.1. Derivation of thc Condition FEquation in Pure

Trilatera..on
For the quadrilateral given in figure l.11, there will be
only onc condition due to the fact that thore is only one surplus
obsorvation produced by the measurcment of the extra diagomal.
Considering an individual triangle (1)in the d-ubly braced
quadrilatcral given in figure 1.3, the arca inthis triangle with

the threc measured sides is given by:

®00 000 1061
A = Vs{s-a)(s-c) ( )
b + ¢, and A = the area if the triangle ABC.

a+ o+ o

a
Due to the large figures frund when calculating area, the use of

Wwhere s =

logarithmic tables is incvitable.
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From equation (1.61) we have:

2log.A = log.s + log.(s-a) + log.(s-b) + log.(s-c) eeeeea(l.62)

Differentiating equation (1.62) with respect to a, b, and c,

aa _ 1 rds . dss-a; + dis=b dis-c

A 2 I:s S~a s=-b * S=-c ]

_ 1 [2 da+db+de + 2 db+de=da | 2 gatde-db . 2 da+db-de
2 a+b+c 2 btc-a 2 Tatc-b 2 Tatb-—c “atb—o

eeesess(1.63)
where, (s-a) = %(b+c—a), (s=b) = l(a+c—b) and (s-c) = l(a+b—c)

Rearranging terms:
_ A 1 1 1 1
dd = 2[(a+5+c”'5+c—a + Z¥e=p + ayb=g/da
1 1 1 1
(a+5+c * a¥5=c * Bro=m T a+c—5)db

1 1 1 1
(a+b+c + a+c=b + m + a-.T.'F__C-)dC] oo--(lo64)

let;

Lo, §MZ=ng, A=, ana 230 5 Asl(1.65)

Substituting (1.65) into (1.64) equation (1.64) will be:

a8 = [(Ag+rpthz=hy)da + (Agthg+hz-Ao)db + (AgH+hg+Ao-Az)dc]
Q00000.00(1066)

Equation (1.66) gives the change in the area of a triangle due
to the change in the observed sides. In other words, corrections
are obtained by adjusting observed sides a, b, and c¢ of the triangle
ABC by using the change in the area of this triangle as given by
equation (1.66). For the other three triangles of the quadrilateral
similar three equations can be obtained.

The geometry of the adjusted figure requires that:

07 + dAy + By + dBp = Az + AAz + By + diy

where, 44, By, b3, and A, are the area of the triangles ABC, ACD
ABD, and BCD successively figure 1l.1ll.
and (A + Ay = Az = By) + (4B + dbp - dbz - dBy ) =0 ..(1.67)
the absolute term in the equation k = (A1 + Ay = Az = 4y)

let AL, 22, A3, and A% rofer to triangles (1), (2), (3), and (4)

Successively, figure 1l.11, therefore
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!

8/2 | B8y/2 pz/2

A4/2

a+b+c | b+e+f | c+d+e

Al/2 Ay/2 | 45/2

a+d+f

A4/2

b+c-a i e+f-b | d+e-c

81/2 | By/2 i Bg/2

d+f-a
A4/2

a+c=b | b+f-e i c+e-d

6 /2 Ay/2 f Bz/2

i

a+f-d

i i
B2

a+b=c | b+e-f | c+d-e

Catd-f |

table 1.1

Using table 1.1 to form the condition equation for adjusting the

quadrilateral figure 1.3, thercfore,

1,1

(xi-x +A +x1-x4+x4-x4-x4)v + (hl+h

1273

+ (xl+xl+xl-xl-x3-x3-x3+x3

o 1 2 3

2,,2.,2,,2.,3.,3.,3..3
+ (xo+x1-x2+x3-xo Ay x2+x3)ve + (A

1
o 1l 2 3 'a o 1

o 1l 2 3
2..2

+ k = 0

1.1
k2+h3+h

3.,3,.,3.,3 .44
Jve + (-Ao—xl+x2—x3-xo—xl+x

2 ,2,,2,,2
o—kl+k2+x3)vb
4 .4
2—K3)Vd

23234 54 54,,4
o FMAGAZA A x2+x3)vf

ceseass(Le68)

BEquation (1.68) is used to adjust the example given by Murphy [70],

figure 1.3. The results of this adjustment obtained by this

cquation together with those obtained by using MurphyX¥solution

are shown beclow,

Correction | Duc to equation (1.68) | Due to Murphy
v, - 0.093 - 0.096
v, + 0.1%2 L+ 04137
i Ve ! - 0.178 - 0.185
g Va ‘ + 0.199 + 0.207
i Ve - 0.153 | = 0.159
f ve E - 0.073 | - o0.076
table 1.2

The two solutions are practically identical. The maximum

difference for any side (in this case d) amounts to 0.008, while

the mimimum difference is = 0.003, with an avardge difference of
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0.005 for side b.

It could be said that the amount of work here is greater
than that when solving by Murphy}solution, but it should be noticed
that most of the work is ordinary arithmetic addition and
subtraction, which are applied to values obtained from logarithmic
tables.

1.4.2.1.1. Modification of Fguation (1.64)

Equation (1.64) could be modified, to reduce the amount
of work involved in the following way:

Consider the coefficient of da in equation (1.64),

— 1 1 1
= 2[a+b+c - BFo=a * 5706 * aTb=%)

A[ -44,&3 + 4, b?a + c. ]
2 (a+b+c)(a+b-c)(a+c—b)(b+c-é)

b2 2_,2
= 2[168%253)?g—b?(g—0j ] %"[b2+02—a2] seeese (1.69)

But b2 + c° = a° = 2.b.c.cosA

therefore equation (1.69) will be:

= %K aaboc.COSA '0000"0(1070)

The coefficients of db and dc can be obtained in the same way,

coefficient of db =ﬁ% a.b.c.cosB, also
de = a.b.c.cosC
® ® 0 00080000 LR ] —4A L[] L ] L]
Substituting in equation (1.64), we have:
dA = Qj%égl(cosA.da + cosB.db + cosCedc) eeea(1.71)

but we have 2A a.b.sinC,

n

therefore, d4A (cosA.da + cosB.db + cosC.de) «..(1.72)

281n
Although equations (1.71) and (1.72) appear in more convenient

form than equation (1.64) the amount of computation included

does not differ much.

1.4.3. Use of the Area Condition for Adjuting Observed Sides
And Angles

The use of the area coverage condition above has been

for adjusting sides only. It is however even more convenient
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and effective when both angles and sides are observed, or in
other words when one redundant or more is availabe for the
ad justment of each triangle.

Due t2 errors of observation, a different area will be
obtained for the same triangle when using the different observed
elements of this triangle, s.g. a triangle ABC (figure 1.2) of
which a, b, ¢ and A are observed gives the following geometric

Condition: Al = A2 010000'0(1073)

Due to errors of observations this condition will have the form:

Ay + dby = By + dA, cesenesa(1e74)
Where Al = V'S(S—&)(Srb)(s-(!f ] 00000000(1075)
and A2 = %oboCoSifﬂA 00000000(1-76)

Equation (1.74) can be solved by the same procedure followed in

solving equation (1.68), noting that angle A is to be adjusted.

l1.4.3.1. Use of the Logarithmic Difference in the Formation of

the Required Condition Eguation

It has been found that the most suitable way to reduce
the amount of computation in solving this equation, due to the
large figures arising from the area consideration, is the following
Using cquation (1.75) in forming equation (1.74), we have:

Al + dAlz

- Vé a+db+dc)(s_aldb+dc d8)(s-b blAa+dc dby (g3 c|da+db-dc) e (1.77)

if 6 is the log. difference, thercfore;
from equation (1.75) we have:
log.sy = %[1og.s + log.(s-a) + log.(s=b) + log.(s-c)]
ceveesss(1,78)
and from equation (1.77) we have:
log.Aq+ Sp1d8; = Z[log.s + s(da+db+dc) + log.(s-a)
+ Eé(s_a)(db+dc—da) + log.(s=b)
+ %6(S_b)(da+dc—db) + log.(s=-c)

+ 16 (o) (aasdb-do)] ceeeen(1279)

Subtracting (1.78) from (1.79) we have:
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&p1d871 = %[és(da+db+dc) + 6(s_a)(db+dc—da) + 8(g-p)(da+dc-db)

+ 8(yc)(dat+db-dc)] veeesssa(l.80)

Rearranging terms equation (1.80) will become:

86,1883 = %[[(63'5(s—a)+5(s-b)+6(s-c))da
+ (5s+5(s-a)‘5(s-b)+5(s—c))db
+ (5s+5(s—a)+5(s—b)"5(s—c))dc] ceenseea(l.81)
Following the same procedure, a similar equation can be obtained

for Ao using the sides b, and c together with angle A.

Thus using equation (1.76) to form equation (1.74) we have:

82 + db2 = L(b+db)(c+de)sin(A+dA) ceseeees(1.82)
From equation (1.76) we have:

log.8s = logeb + 10g.C + 10g.SinA - 10g8+2 eeeess(1e83)
also from equation (1.82) we have:

log(Ay+dA,) = log.(b+db) + log.(c+de) + log.sin(A+dA)
- log.2 teeseene(1.84)
Using the log. difference & we have:
log.hy + 6p7dAy = logeb + Spdb + log.c + G6,dc + log.sinA

sindA

+ 6A - lOgoZ 000-0.0(1085)

Subtracting equation (1.83) from equation (1.85) we have:

Bppdly = 8pedb + 8pede + 85 TAA  eeueenes(1.86)

Equation (1.74) satisfies the geometric condition for the triangle

figure 1.2 and gives, ‘
log.8q + 6p7.d87 = log.dp + Sppedly

and hence log.Ay = log.A, = 8p5edBy = 8)pq.d8y ..(1,87)

Subtracting equation (1.86) from equation (1.81) we have:
1
8p1+081 = 8ppedby = FL(85-8(50)*8(5-p)*0(g-c))d2
+ (6s+6(s-a)-6(s—b)+5(s—c))db
+ (68+6(s_a)+8(s_b)-6(s_c))dc]

- Gb.db - écodc - szinodA 000000(1188)

Substituting from equation (1.87) equation (1.88) will become:
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%Kés‘5(s—a)+5(s-b)+5(s_c))da + (53+6(s_a)—é(s_b)+6(s_c)—4.6b)db
+ (85 (5 )+8 (5b)=8 (5-0)=4ebo)de - 8510 .qa +
+ log.dy = log.d, =0 cessese(1.89)

Edaation (1.89) gives a condition for the area coverage of a
triangle with one redundant. Far two redundants, there will be
one more condition equation and one further if there is a third.

It can be seen that the use of this method is of great
advantage as it reduces the amount of computational work
considerably. The logarithmic diffcrence required can be obtained
easily from log. tables for the values rcquired.

oxample: a triangle of

a = 69 847.62 fect (observed)
b= 94 277.10 ..., cereceas
¢ =102 017434  eees crmenesi
Ag= 75° 13' 21960 ieeeeias
A,=75 13 20.07 (computed)

Using the area condition equation (1.89) the following is obtained:

dAy + 1.48 da + 2.45 db - 3.28 de + 1.50 = 0 ..(1.90)
For the sake of comparison an angle condition is used for
adjusting this triangle, in which case,
Ay + dAy = A, + dAg eoeees(l.91)
gives the following equation,

dA, + 1.48 da + 2.47 db = 3.29 dc + 1.53 = 0 ...(1.92)

Comparison between equations (1.90) and (1.92) shows that they
are virtually identical. |

The main advatage in using equation (1.89) is to use the
difference (A - 4,) in obtaining the absolute term, while gll
other coefficients of corrections arc obtained from standard
mathematical tables without any additional work. It has been
found however that the same procedure would not produce the same
advantages when applied to the adjustment of sides of a doubly
braced quadrilateral. In the case of the quadrilateral as in
equation (1.67) the geometric condition is:
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Ay + Al + Bp + dbp = A3 + AA3 + Ay + ddg,
which rcquires that;
(8 + 85 + alby + By) = (Bg + B4) + d(dg + By)
to be able to apply the log. difference, which would be:
loge(81+85) + 8(p1,00)8(A1+85) = Loga(Bgth,) + 8(p3,4.)0(85+0,)

However due to the fact that,

Ay +ddy=V( s&ﬂi‘gﬂﬁ) (s—a-;-fl.b_t@%:@é) (s-p+datde=dby(_. dartdb-docy
s=a 5-b+28E8 g

A2+dA2=¢(S+dbi%aidi)(§:h+daid§=dh)(§:§+dbid§=de)(§:i+dhidgzéi)
The quantity[log(aj+4,) + 6(A1+A2)d(Al+A2)] cannot be obtained

without great effort as it requires using the log. difference of
the sum of two quantities, which does not exist in mathematical
tables: Hence the simplification intended by using equation
(1.89) cannot be reached.

The alternative solution given by (1.68) can be obtained

from the equation (A1+A2) - (63+A4) = (dA3+dA4) ~ (as;+d4,)

This has the advantage of giving the corrections directly, without

the necessity of going to tables to obtain the log. differences.

1.5. _CHARACTERISTICS CF_ AN APuX

The question of selecting which apex should be used for
the adjustment of the doubly braced quadrilateral raises sone
interesting points. From [73] and due to Murphy, the following
is quoted:"In practice thc condition cquation having the largest
coefficients should takc priority of selection in the adjustment
and so it follows that the condition cquation should be formed
with respect to the apex of the triangle of smallest area. This
conclusion is exactly the opposite to the view expressed by Dr.
Tdrczy-Hornoch and the former rocommendation made by Murphy and
Thornton-Smith, while being correct for the majority of figures,
cannot now be adopted as a gunoral rule".

To find out which of thesc two comsideration ig acceptable

a spocial study of the problem has becn carricd out in the following.
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1.5.1. Mathematical Considcrations

Consider angle A, obtained by calculation from observed
sides a, b, and ¢ in the triangle ABC figure 1.2, in this case

we have:

cosA

i

+ cc - a veceeoss(1le93)

- sina 82 - - 2,
- sinA.%% = g2.cosC ceereees(1.94)
- S1nA.%% = E%E.cosB
denoting Qg + %% + Q% = dh, p 0 cesseeas(1.95)
Therefore from (1.94) and (1.95) we have:
dhg,b,c = = Foao—(cosB + cosC - 1) cecesesa(1.96)

. B 3 D
2 i‘oé
4
C
Figure 1.12

Table 1.3 gives the change in the different angles of
the doubly braced quadrilateral ABCD, figure 1.12, with respect
to the change of the sides a, b, ¢, 4, e, and £, It also shows
the area of each component triangle of the quadrilateral ABCD.



_4_4..

. . .| area change in angl
triangle sq. units |angle cos aCCO%ding tgg e
equation 1.96 (rad
B1 0.959 607 + 0.2279
1 ABD 3 D2 0.000 000 - 0,2792
A 0.316 228 + 0,0513%
= 0,0000
B 0.894 428 + 0.2871
2 BCD 3 c - 0.316 228 - 0.6015
D._ 0.707 107 + 0,31
+ Z= 0,0000
B 0.707 107 + 0.1310
3| ABC 5 ¢y 0.000 00C - 0.2620
Ay 0.707 107 + 0.1310
Z= 0.0000
Co C.948 684 + 0.8127
4 1 ACD 1 D - 0.707 107 ~ 1.8853
: i | A1 0.894 428 + 1.0726
: ; : = 0.0000
table 1.3

Table 1.4 gives the difference between the compound angle

and the ~um of its two individual component angles as computed

from the known sides given in six figures.

This table also gives

the difference between the change in the compound angle and the

sum of the changes in its two individual component angles, due

to equation(1.96). In both cases the difference at every apex is

expressed as a percentage of the largest difference found at a

particular apex, in this case apex D.

Anglé | zcalc;late;) ggaggiaigoin%%SGdaﬁgds.)
A, 26 35 09.2 + 1.0726
A, 44 58 56.5 + 0.1310
(A4 o) 71 34 05.7 + 1.20%6
A 1 1.1 - 0,0513
Difference 00 00 14.6 + 1.1526
Diff. as o/oage .59.8 60
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Angle ° ' " ! Change in angle duc to
(calculated) equation 1.96 (rads.)

By 18 26 08.5 + 0.2279

B2 26 33 19.4 + 00,2371

(B1+B>5) 44 59 27.9 + 0.5150

B 44 59 22.8 - 0.1310

Difference 00 00 05.1 + 0.3840
Diff. as ofoage 20.9 20

¢y 90 01 40.4 - 0.2620

¢y 18 27 05.9 + 0.8127

(C1+C,) 108 28 46.3 + 0,5507

C 108 28 31.7 + 0.6015

Difference 00 00 14.6 + 1.1522
Diff. as o/oage 59.8 60

Dy 44 58 09.0 + 0.3144

DQ 90 00 00.0 - 0.2792

(D1+D5) 134 58 09.0 + 0.0352

D 134 57  44.6 +1.8853

| Difference b 00 00 24.4 + 1.9205
Diff. as o/oage ! 100 ! 100

table 1.4

Inspection of the set of results in tables 1.7 and 1.4
shows that:

(1) A special geometric condition is always satisfied, as shoﬁn
by the zero sum of the effects of the three sides of the -
triangle on the three angles of this triangle, as shown in
table 1.3. This condition is explained in the following:

Gonsider equation (1.96), where,

- dAa,b,c = 2.aiea(cosc + COSB - l) ooooau-oca.o(I),
— dB = b (COSA + COSC - l) oooooo.o.coo(II)

a,b,¢ = . area

% (COBA + COSB - l) oooooovoo.oo(III)

- dca'b'c 2.area
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Adding (I), (II) and (I1I), we have:

- (dAa,b,c + dBa,b,e + 404 p,c) = ETE%Ea(a'COSB + a.cosC

+ & + b.cosA + b.cosC + b + c.cosA + c.cosB + c)

1 [é(a2+b2~02) + Al2%4c2-p2) o

2.area oo D 2eh.C
+ ﬁjb2+02—az) + %(b2+32—c§) - b
L] QC 20 Oa
£(c24v2-a2) _ 4(cP+a-p2) _
+ 2-£-b * 2oéoa C]
_ [b2+a2-c2+c2+a2—b2—2a2 + a2+b2—02+02+b2—a2-2b2
= 2a 239 +
a2+02-b2+b2+02—a2—202] = [0+0+0] = 0

2c

(2) Comparing columns 2 and 3 in table 1.4, it may be noticed
clearly that the relaticnship between the discrepancies at
the diffcrent apices of the quadrilateral is the same, whether
this discrepancy is due to computation of angles, or due to
the change in the angle with respect to the change in the sides
of a trianglc.

(3) The sum of the smallest and largest differences is equal to
the sum of the other two values. In other words the sum of
differences concerned at two opposite apices cquals the sum
of the diifcrancts a2t th. other two opposite apices.

(4) Yargest area is associated with the smallest apex, and the
smallest area with the largest apex (table 1.5).

(5) Largcst difference between the compound angle and its two
individual components (and hence the 100 percent) is associated
with the large angle, and the smallest with the small angle
(table 1.5)

Triangle 1 ! 2 3 4
Arca (unit)? 3 ‘ 3 5 1
Apex A c B D
Anglc |71 =31 510 108° 28' 32"!44° 59' 23"{134° 57'45"
' Diff. as ; | o 100
' ofoage 60 ;60 ’ 2 )

table 1.5



1.5.2. Effect of the Shane

Figure

obtained by c
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of Different Figures

1.1%3 is

alculation

of sides from coordina-

tes. Using e

(1.96), and t

quation

he calcul-

ated angles at the

different apices,results

A

are shown in table 1.6 e=V325.00
C D
Figure 1.13
s " ldAg p,ce%c.. | A of triangle wit
Angle (calculated) | radiang) apex at angle...®
A 58 17 12.16] + 0.00%9
A, 36 19 02.64] + 0.0233
(Aq+45) 94 36 14.80| + 0.0272 103.5 unit?
A | 94 36  09.84 = 0.0428
Difference ; 00 00 04.96] + 0.0700 !
Diff. as.. 81.60 80.10
B b 39 43 58,00 + 0.0224
B 47 30 51.42] + 0.0296
(Bi+B2) | 87 14 49.42] + 0.0520 104 unit?
B | 8114  43.34) = 0.0354
Difference ;| 00 00 06.08] + 0,0874
Diff e 8See 100 100
C 6 12 18.04{ + 0.0128
2 N : 107 unit?
(C1+C») 1102 38 31.32) + 0.0248
C 1102 %8 25,58 =_0.0605
Difference ; 00 00 05.74] + 0.0853
Diff. S s e ‘; 94040 9706
D, | 29 50 42.40 + 0.0309
D 9 52,20 + 0.0204
2 a— - 133.5 unit?
(D1+D5) 75 30  34.60] + 0.0513
D 75 30 _29.420 = 0.0167
Difference 00 00 05.18{ + 0.0680
| Diff. as.. 85.20 77.80
®# A is the area

table 1.6
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Some other remarks may be made here:

1) The largest and smallest angles {(apices) are not asscciated
with the smallest and largest area repectively. It may be
noted that this is quite experience opposite to (4) given in
1.5.1

2) The largest diffcrence between the compound angle and its two
individual componcnts is not associatcd with the largest angle,
nor the smallest differcnce with the smallest angle, which is
contrary to point (5) given 1.5.1.

%) There is still a constancy of the percentage difference between
the sum of the individual angles and the compound angle in any

figure, taken as = percent of the largest difference of the all

anglas of the figure.

1.5.3. Ap»iication to the Doubly Braced Geodetic fQuadrilateral

Bquation (1.96) has also becn applied to the observed
geodetic quadrilateral figure 1.7 used by Iiurphy and Thornton-
Smith, [70], in which all sides have been observed. In order to
show the effect of the adjustment on the percentage ratios, the
observed and aldjiusted sides have been used. Angles are obtained
by calculation from both observed and adjusted sides, then
comparison is made for hoth cases. Observed sides are used in
equation (1.96) to give dAg 1, o
For the quadrilatecral ABCD, figure 1.3 we have the following:

risido , obgorvwed | adjusted i
a | 69 847.62 69 847.52
b 83 587.77 83 587.91
c 44 679.24 44 679.06
a 102 017.34 102 017.55
e 65 824.23 65 824,07
£ 94 277.10 | 94 277.02

table 1.7
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Calculation of the relationship between the misfits at each

aPpEXe
: (dhg p,cetce.) 1+ ° ' " 0 ' "
i Angle x100. radians ! calcula?eé_from caleulated from
! i Observed sides ad justed sides
A + 6.708 % 32 18 19.65| 32 18 18.87
A +3.395 | 42 55  01.95| 42 55 01.55 |
(A +A ) +10.103 75 13 21.60| 75 13 20.42
A - 3.17 i 75 13 19.57 13 20.60
Difference +13.282 : - 02.03 -00.18
LPiff. aS.. 33 g 3347 36
B +23.072 |27 42 19.78| 27 42 16.68
B - 0.068 63 19 26.50f 63 19 25.87
| (B +B ) +23.004 | 91 0L 46.38] 91 OL 42.55
E B =10.575 | 91 01 41,21} 91 0L 42.99
ifference +33.579 f +05.17 -00.44
Diff. as.. 84 - 85.8 88
C + 3.867 i 56 39 59.13| 56 39 58.14
c = 4.122 77 14 02.85] 77 _14 02.50
§ (¢ +C ) - 0.255 133 54 01.98|133 54 00.64
. c ~40.070 133 53 55.96'133 54 0l.14 |
| Difference +39.815 +06.02" ~00.50 !
| Diff. as.. 100 100 | 100 l
D +16.997 18 25 44.25|18 23 42.17 |
D + 3.247 | 41 27 13,93} 41 27 13.5%
(D +D ) +20.244 | 59 50 58,1859 50 55.70
D + 0.727 ! 59 50 55.20'59 50 55.95
Difference +19.517 : +O2.98§- -00.25
}Diff. as.. ! 49 ! 49.5 § 50 %
table 1.8

It should be noted that area of the triangle with apex at

A is the largest area, while that with the apex at C is the

smallest area.

Also the largest percentage is associated with

the largest angle but the smallest is not associated with the

smallest angle. As dAj 4 o 18 derived from the observed sides,
M ]

the percentages resulting from observed sides are very close to

those obtained by dA, p c°

Although the difference between the

compound angle and thc sum of its two individual components

obtained by adjusted sides arc negative (opposite to the signs
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of the corresponding differences in the case of observed sides)

the percentages of this difference is still thc same.

1l.5.4 Triangles with Differcent Areca and Shape

Consider cquation (1.96),

—-*a -—
dhg p,c = 2.area(COSB + cosC - 1)

In this equation, dA represents the rate of change in angle A
with respect to the change in sides a, b, and c¢. For simplicity
a, b, and ¢ are considered to have the same change.

The maximum and minimum rate of change in angle A with
respect to the changes in sides a, b, and ¢ will be obtained at
the following cases:

(1) The rate of change will be maximum (infinity when the tangent
to the curve is parallel to the dA axis) when the area of the
triangle is infinitesimally small (infinity rate of change
when the area of the triangle is equal to zero). A maximum
value can also be obtained when any of the three angles of
the triangle has its cosine = + 1, (i.c. the angle is 0° or
180°), which means that the triangle will be a straight linec,
or in other words, when a = b + c. This can be proved by
the following:-

Let A be the arca of thc triangle ABC figurec 1l.2.

Differentiating equation (1.61) with respect to a, b, and ¢
and for the maximum and minimum areas equation (1.97) hag to

be satisfied.

?c:O

- 27 =13 = ¢ + bla + b%c + c2a + cfb + a%b + a
il.ce
22(b +c -a) +b2(a+c-b) +c2(a+b=-c)= 0
ceessseeness(1.97)
Equation (1.97) can only be satisfied if a, b, and ¢ are
zero, which gives a minimum arca, and the triangle in this
is reduced to a point. Also equation (1.97) will be zero

if sach quantity between brackest is zero, which can be

achieved only if a = b = ¢ = 0,
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Also if we consider equation (1.76), whorc the arca is a
function of b, ¢, and angle A, then differentiating with
respect to b, ¢, and A, the areca of the triangle can be
naximum or minimum if,

b.sinA + c.sinA + b.c.cosh = O cecesrees(1.98)

The left hand side of the cguation can be zero if,

-—cO‘tA:.b.B_":_c_ .........(1.99)

It can be scon that cquation (1.99) can only be valid if both
sides are zero, i.ee b =c = C.

In fact b, and c must always be positive or zero, and thus
the quantity (b+c)/be should be always positive and less than
unity if ncither of the two sides is unity, and zero if b and
¢ are zero. Thus only a minimum area for any triangle can be
obtaincd, and hence only the maximum rate of change in the
angle A with rcspect to the changes in the sides a, b, and ¢
can be considered through the area of this triangle.

However, zero and infinity arcas for a triangle are not @
practical considerations, especially if we have a real triangle
with three known sides. Thc above discussion shows that the
arca of the triangle does not have nuch to do with the
selection of the apex and hence with the condition equation
for the adjustment of the doubly braced quadrilatcral.
Besides, there arce cases where the arca remains constant and
the e¢ffect on the quanitity dA is only due to the gquantity
a(cosB + cosC - 1), e.g. triangles having the same base and
height, and different shapes.

On the other hand the equation (1.96) will be zero (i.e.
having the tangent to the curve parallel to the da axis)

when the quantity (cosB + cosC - 1) is zero. This will be
obtained when A = B = ¢ = 60°. In this case (cosB + cosC - 1)
will be equal to (0.5 + 0.5 = 1) = O. That is to say, a
minimum rate of the change in the angle A with respect to

the changes in the sides a, b, and ¢ will be obtained for

the equilateral triangle, or when the threc angles of the
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triangle are about to be cqual. Thc minimum ratc of change
docs not depend only on cghal angles but also on the sum of
the cosinces of the two angles B and C, or in other words, on
the shape of the triangle.

For the angles B and C in the quantity (cosB + cosC - 1)
let thc following be considered:

E2
COSB=1"'§ 't.ooooo(lolOO)

B is in radians, (expression 1.100 is due to Taylor's series),
therefore:

cosB + ¢cosC -1 =1 - % + 1 - g . 1 =0

i.c. B° +02 =2 cesenaso(1.101)
Bquation (1.101) can bc satisfied by any point on the circle
of radius V2 , figure 1.14. One of the solutions will be

B =C = 1lr .~ 60°. C

Also a maximum rate of change in 1)

angle A with rcspect to the change in

the threc sides of triangle ABC, can be 5 B
,0

obtained by considering the quantity

(cosB + cosC - 1). In this case cosB =

cosC = 0, i.ee B =C = 90°, Maximum

ate of cha can also be obtained if )
ra nee n Figure 1.14

cosB = cosC = 1, in this case B = C = 0}

and thc arga will be minimun or.zero.

Therefore, the maximum and minimum rate of change in the
angle A can be obtained by considering the quantity(cosB + cosC -1)
rather than by considering the area of thc triangle. For each
triangle in the doubly braced quadrilateral dA is supposed to be
affected by the shape of this triangle. The quantity dA of a
compound angle will be different to the sum of the two individual
componcnts of dA. |

For thé different quadrilaterals considered it has been
shown that the difference between the rate of change in the
considered angle with respect to the change of the different sides

of a compound angle and the sum of the differencecs of ite two



- 53 -

individual components have spocial relationships for 211 apiccs
of the quadrilatcral. These spe¢ial percentages are found to be
the same whon the misfit between every individual compound angle
and its two components arc treated in the samc way, i.e. both
sides of the selccted condition equation have this snccial
relationship. It follows from the previous discussion that
variation in the differences of the rate of change will be expected
from the same individual compound angle when it has two different
individual components.

As for the selection of the condition equation to be used,
according to Iurphy and Thornton-Smith [70] angle C,figure 1.3,
should be used. This does have a percentage of 100, and is
assoclated with the triangle of the smallest area. Sometimes,
however it is not, as shown in the different cases tested above.
Tarczy-Hornoch and Hovanyi [109)], recommended ansle A for the
adjustnent of the same figure. This has the smallest precentage
(33) and is associated with the triangle of the largest area in
this case.

However, it has bzen shown that the same compound angle
associated with the special arca may have different vpercentage
according to the shape of its two components, i.e. the percentage
obtained is affected by the shape (cosB + cosC - 1) in each

triangle and not by the areca of this triangle.

1.5.5 SGffect of the Misfit in the Different Apices on the

Adjusted Figures
Using the misfit in the angles of the different apices in
the condition equation suggested by Murphy, the following results

are obtained.

. misfit at final act-
corrections ual velues
A B c D
-V, 10.09626 0.09741 | 0.09760 | 0.09640 0.10
+ Yy 0.13%668 0.13831 | 0.13858 | 0.13690 0.14
- Ve 0.18500 0.18722 1 0.18758 | 0.18528 0.19
+ vy 0.20701 0.20949 | 0.20989 | 0.20732 0.21
- Vg 0.15849 0.160392 0.16070 ‘ 0.15873 0.16
- ve 0.07555 | 0.07646 | 0.07660 | 0.07338 0.08

table 1. 9
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Results shown in tablc 1.9, hardly show any vractical difference,
even though the corrections are of the ordcr 0.01. It should
also be noticed that corrections for sides using apex C are the
largest corrections, while corrcctions for sides using apex A are
the smallest. If we consider sz, the minimum value will be
obtained from the corrections due to the misfit at apex A.

2

However the value Iv< obtained using the other apices is for all

practical purposes identical.

1.6 UEW CONDITIONS FOR ADJUSTING HYBRTID OBSERVATICNS

A possible solution for this problem has been given in
le4.3., as a further application to the use of the area condition
for adjusting trilateration problems. In this section, observed
angles and sides will be adjusted simultaneously assuming the

game accuracy of observations. in both.

l1.6.1. Errors and Corrections

Before applying any geometric condition, the distinction
between errors and corrections is stated to be:-
(1) Exrrors, or errors of observations, are quantities beyond
any investigation or adjustment's reach. They occur
even with thc most accurate tools, following the best
known methods of observations. So it is impossible
t0 avoid them during observations, or to find them
during calculation and adjustment.
(2) Corrections, these are guantities obtained by satisfying
a special geometric condition, which tend to disperse
the misfit between figures formed by the observed
guantities and requirements of these geometric
conditions. These corrections have nothing to do with
the real errors, but it could be said that, applying
the least squares solution to these problems will
produce corrections as near as possible to these

errors [78].
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For adjusting a guadrilateral ‘hose sides have been
observed, the corrections obtained come out in a special
pattern (the quadrilateral here is treated as a special case
of the centered figure, and for this see sec. l.2.1.2a).
This spccial pattern of signs does not give much chance for
the validity of the statement sbout the relationship between
the corrections and the errors if the problem is solved by
the least squares method. The least squares method in this
case supposes a different sign for the two diagonals, while
no one can say that errors follow any rulc except the rule of
normal distribution. However,the sign convention here is only
due to vectorg analysis. Besides, th2 adjustment of pure
trilatcration is found to givé?ﬁeak solution from the
estimate of thc coefficicnt of correlation point of view
(see 1.2.3.). For this, angles have to be included in accurate
workg, rather than obscrving sides only.
1l.6.2. Condition Eguations for Adjusting Hybrid Observations
Using equation (1.96) for obtaining the change in the
three angles of a triangle with respect to the change in the
three sides we have:

dA + dB - dC =

a,b,c 2,b,C a,b,c

1 [a(cosB + cosC - 1) + b(cosA + cosC -~ 1)
2.area
4+ c(coshA + cosB-1) ] =0

Rearranging terms vwe have:

B bse; t Bap,e T p,e =
1 | -
TS [2.cosB + b.cosh - ¢) + (a.cosC + c.cosd

-b) + (becosC + ce.cosB -a)] = 0 ..(1.102)
Equation (1,102) has been proved in 1.5.1. In this equation
it can be seen that each guantity within’ the inner brackets
represents the geometric condition for a side, that the sum of
the projections of the two sides of a triangle on the third
side must be zero. Therefore for the whole triangle the
three quantities between the three inside brackets must be

Zero.
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Applying the geometric condition given in equation (1.102)
means that we will be satisfying:=~
(1) A direct geometric condition for each gide, e.g.
2.c08B + becosA - ¢c = 0, and
(2) A geometric condition that the sum of the changes in the
three angles with respect to the change in the thrce sides >
has to be zero. That is, the sum of the threc angles of the
triangle is always 180°. This is exactly the angle condition,
but in the form of the sum of the derivatives of the three
angles instead of the sum of the three angles themselves.
In order to obtain the corrections using equation (1.102),
its individual components will be considered separately to give

a condition for each side, thus:

b.cosC + c.c0sB - a =0 cecessee(lelO3a)
a.COSc + C.COSA - b = O ono.oooo(lolOBb)
a8.c0s8B + boCOSA -c¢c =0 tc.oooco(lolo30)

which gives a set of linked geometric conditions for angles and
sides.

For any triangle in which all sides and angles have been
observed equation (1.103) can be taken as the geometric conditions
which have to be satisfied by the adjustment of each triangle in
the net. Being observed quantities, sides and angles will always
contain errors of observations, so corrections have to be introduce
in these equations. To allow for the corrections of the five
observed quantities in (1.103c) we have:

(a + 6a).cos(B + 6B) + (b + 8b).cos(A + 8A) - (¢ + 86¢c) =0
ceeessses(1e104c)
Expanding this equation results in:

(a 4+ 8a)(cosB.cosSB - sinB.sinéB) +

(b + 6b)(cosh.cosSA = sinA.sindA) - (¢ + 8¢) = 0 ..(1.105¢)
If we consider the quantities 6B, and 6A as being of small
dimensions, then cos8B = 1, and cosbA = 1. Also, sindA = 6A
and sinéB = 6B, where SA and 6B are in radians. Furthermore we
may neglect the product of small quantities &b and 64 (i.e
8b.6A = 0), and of Sa and 8B (i.e. 8a.6B = 0), so that:
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(a + 62)(cosB = 8B.sinB) + (b + 6b)(cosA - SA.sinA)
- (c+6c) =0 cesseses(l.106¢c)
Therefore,
(a.cosB + b.cosA - ¢) + (cosB.Sa + cosA.5b - &¢c) -
- 2.8inB.8B - b.sinA.8A = O cosesess(l.107c)
To convert 6B and 8A to angular measure, these must be multiplied
by sin 1", which has the advantage of providing coefficients of
the same rank as the coefficients of 8a, 6b, and 8c in the same
equation.
Substituting ks for (a.cosB + b.cosA - c¢), the final form of
equation (1.107c¢c) will be:
cosB.Sa + cosA.8b - ¢ - a.sinB.sinl".6B -
- besinA.sinl".8A + ko = O ceseeses(1.108c)
The corresponding set of condition equations for the doubly

braced quadrilateral figure 1l.l15 will be:

Figure 1.15
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cosl.§a + co0s4.8¢c -~ 8b = a.sinl.sinl".81 -

c0sl.8b + cos(2+3).8¢c = 8a = besinl.sinl".81 -

Cesind.sinl" .84 + kyq = © ----%
c.sin(2+3) .sinl". (82483) + kyq = O +uss)ee(1.209-1)

cos(2+3).8a + cos4.8b - 8¢ - b.sind.sinl".54 -

a.sin(2+3).sinl". (62+83) + ko = O ....g

co83.8¢c + cosH.8e - 8d = c.sin3.sinl".83 -

€e5inb.sinl".66 + k3o = O sees
c0s83.8d + cos(4+5).8e - 8¢ - d.sin3.sinl".8% -

e.5in(4+45) .sin1".(64+65) + Koo = 0 ceeedes(1.109-2)
cos(445).8¢c + c0s6.8d - e = deBinb.sinl".86 -

e.8in(4+5)sinl". (54465) + koo = 0 4..s

cos5.8e + cos8.8f = 8b - e.sinb5.sinl".85 -
- chiﬂS-SiIﬂ."oéS + kb3 =0 ecse
c085.6b + cos(6+7).86f - Se = b.sin5.sinl".85 -

fesin(6+7).8inl".(86+87) + ko3 = 0 wuees)es(1.109-3)
cos(6+7).8e + cos8.6b - 8f - b.sinB8.sinl".58 - )

eOSin(6+7).Sinl".(66+67) + kf3 = O ootog

co87.8f + cos2.8a ~ 84 - f.8inT.sinl".87 -

- a.sin2.sin1".82 + kd4 =0 sesee
cosT7.8d + cos(1+8).8a = 6f = d.sinT7.sinl".57 -

- a.5in(1+8).5inl". (61488) + kpy = 0 eeeee)eo(1.109-4)
co0s82.8d + cos(1+8).8f - Sa - d.sin2.sinl".62 -

T.sin(1+8) .sinl". (81468) + kgy = 0 weues

where the component triangles are:
(2)
(4)

triangle ABC = (1), triangle BCD

triangle CDA = (3), and triangle DAB

]

An advantage of using these condition equations (1.109) over
other sets,such as Murphy's [71],13 that the coefficients of
angle corrections are the same in each equation. For example

in triangle (1), figure 1.15, we have:

(o] a

——

sinl = sin4g
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i.e. C.Sin4 = a.Sinl

where c.sin4 is the coefficient of &84 and a.sinl is the coefficient

of 81 in the first equation in the set (1.109-1). Thus the amount

of computation involved in making use of these coefficients will

be greatly reduced.

1.6.3. Relative Weights Applied with Condition figuations fl.lOQZ

The fundamental requirement of the least squares method is

that the sum of the squares of the residuals shall be a minimum,

(or if weights are used, the sum of the weighted squares of the

residuals shall be a minimum). It is also known that only

similar quantities can bc summed up in this way. The agreement

between the solution of equations (1.109) and the concept of the

least squares is given by the following:-

(1)

(2)

To accept the principle of adjusting the dissimilar '
quantities in a single least squares solution, the explanation
given by Lilly [63] is very good, as it reduces the dissimilarity
by simply dividing each quantity by an error of the same
dimensions. In this case there is no nced to use "the sum of
the weighted squares of the residuals" as a concept of least
squares, as the "sum of the squares of the reduced residuals"
will be more suitable.

Differeont probable errors can be assumed, but the one to be
preferred is that requiring less computation, on the condition
that results obtained by this solution must be just as good
from practical point of view as results obtained by other
assumptions such that of Lilly [63].

The assumption of the same relative weight for angles and
gides depends on the fact that the same accuracy is achieved
in measuring sides and angles in every type of net, i.e. in
primary nets the probable error is assumed to be 1" in every
angle and 1 ft. for each side, or one part in 206 265,

Similar assumption may be made for secondary nets, (see sec.

1.3.4.)
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(3)The solution by least squares method will then give undimensioned
corrections to angles and sides, which need to be multiplied
by 1" for angles and 1 ft. for sides to give practical
corrections. In fact this will not require any extra work.
Corrections obtained from the new set of condition equations

are examined in the following section.

l1.6.4. Examples

Table 1.10 gives all the data obtained from the field with -

reference to figure 1l.1l4.

Plane observed

Plane observed angles gides

——

o 1 "

1 32 18 19.05 a 69 847.62 ft.
2 63 19 25.20 b 83 587477 el
3 27 42 17.73 c 44 679.24 oo
4 | 56 39 56 .65 d | 102 017.34 ...
5 7 14 02.48 e 65 824423 .ol
6 18 23 44.13 f ! 94 277.10 ..J
7 41 27 12,40 "
8 42 55 01.88

2+3 91 01 43.36

4+5 | 133 53 59.64 table 1.10

6+7 5 50 56.78

8+1 75 13  12.10

The adjustment of triangle (4) of the quadrilateral, figure 1.14,

gives the following results in table 1.11, which also compares

them with those obtained by Murphy for the same problem.

Corrections | from equation (1.109) { Due to Murphyi
Gf - 0-12 fto - O.ll fto
6d + 0033 L) + 0036 s 00
63 - 0032 ses - 0017 so o
52 + 0.43" + 0.39"
§(8+1) + 0.35" + 0,08"
57 + 0.52" + 0.83"

table 1l.11
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Applying the set of conditions newly obtained to adjust the
wholc quadrilateral; figure 1l.14, results obtained and compared
with those obtained by Murphy, Lilly, and Thornton-Smith are

given in table 1l.12.

orssction | Dt | jumhyle | Dhomtons | | Iillyle
Sa - 0.44 - 0.31 - 0.39 - 0.45
5b + 0.16 + 0.24 + 0,21 + 0,18
8o + 0.10 + 0.03 + 0.07 + 0.12
bd + 0.31 + 0.31 + 0433 + 0.35
Se - 0.08 - 0.05 - 0.04 - 0.07
8f - 0.15 - 0.12 - 0.12 - 0.13
o"1 + 0.58 + 0,27 + 0445 + 0.66
"2 + OC.46 + 0.54 + 0.48 + 0.42
8"3% + 0.07 + 0,03 + 0,09 + 0.08
84 - 0.16 - 0.08 - 0.08 - 0.22
"5 - 0.50 - 0.56 - 0.54 - 0.49
5"6 - 0.87 - 1.05 - 0.98 - 0.87
87 + 0.29 + 0.53 + 0.37 + 0.24
5"8 ! - 0.03 - 0.05 0.00 - 0.02 }
table 1l.12

Comparison of Results

i) These results when compared with those of Murphy can be. seen
to be slightly different. They are however identical to those
of Thornton-Smith and Lilly. Thornton-Smith obtained his by
using the same basic information, first adjusting angles and
then using the difforence between the side values derived from
the adjusted angles and the observed sides to obtain the
corrections to the sides. This avoids the problem of selecting
relative weights. ILilly used his method of simultaneous
adjustment already discussed (sec. 1.3.2.1.), allocating a
probable error 0.6 secs. for an angle, and 1:200 000 for sides.

ii) For all the triangles, the corrections for each angle are
summed to see if they satisfy the usual angle condition (180°)
which has not been mentioned in the new solution. In each
case, there is only negligible departure from this.

iii) When the adjusted sides and angles are applied to the basic
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conditions,

a.c083 + be.cosA - c =0,

a.c0sC + cecosA - b = O,

becosC + cecosB - a = 0.

For triangle (1) of the quadrilateral in the figure, the

following results arc obtained:

a.cosl + Ce.CcO0s84 - Db =
b.cosl + c.cos(243) - a =
a.cos(2+3) + becos4 -c =

iv) The present corrections have

present sol.

Murphy's soil..

- 0.01

0.

00

+ 0,02

+ 0.07

0.00

+ 0.02

been obtained directly in the

required dimensions, whereas with the other solutions extra

work is required to reach the final answers.

v) In triangle ABD which has been adjusted twice,

results arc given in table 1.13 for comparison;

four sets of

Adiust + of tri 1 i Adjustment of doubly
Corrections justment o TLangle ! praced quadrilateral
(1) prescnt [(2) Hurphy ; (3) present: (4) Murphy
8% £t. . = 0.12 - 012 - 0.15 - 0.13
6d L I + 0.34 + 0.36 g + 0032 + 0032
58 wen ‘ - 0.34 - 0.57 : - 0.44 - 0.32
§"2 1 +0.43 i 4 0.39 |+ 0.46 + 0.55
§"(8+1) | +0.35 | + 0.08 l + 0.54 + 0.21
PooenT  +0.52 1 +0.83 + 0.30 + 0.54
table 1.13

The agreement between the

and those given by either (3)

set of results given by (1)

or (4) is much better than the

agreement betwecn these and the set of results given in (2).

In particular the corrections to the angles is triangle ABD

given in (2) are quite different to those obtained when

solving the doubly braced quadrilateral.

gside a are quite different too.

The corrections to

Although the results obtained by satisfying thce geometric

condition of a triangle should be diffcrent to those obtained

by satisfying the geometric condition for the quadrilatcral,
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this difference should not be very large. The fact that the

same clement is observed once only does not allow two differmat
corrections to be applied, especially if thig difference is

too large. The set of equations which provides two corrections
for the same element which are only slightly different should
be preferred.

It could be secn that corrcctions given in column (1) show
better agreenment to those given in colurms (3) and (4) than
that given in column (2). This agreement between corrections
obtgined for the same elements either by solving the triangle
or the quadrilateral when using the set of conditions derived
here leaveé no doubt that they are more satisfactory for the
ad justment of triangles when both angles and sides have been
observed.

If we use the estimate for the coefficient of correlation
between the system of real errors and the least gquares
corrections,

¥= Vng/n
whcre n = number of obsgerved quantities,

n,= number of condition cquations.

FPor a triangle with all sid>s end angles observed,
Yt = V3]G = 0.7

For a doubly braced quadrilateral with all sides and angles
observed we have x& = V9/14 = 0.8,

It is clear that the corrections obtaincd by adjusting a
quadrilateral should be nearer to thc rcal errors, but if

the adjustment of a triangle gives clcsely similar corrections
as shown above, it indicates that It may not he necessary to
form quadrilaterals. The difference in the coefficient of
correlation which equals 0.10 has much more effect in Murphy's
solution, which gives priority to the use of the doubly braced
quadrilaterals. But in this new s»t of conditions there is
no real advantage in using quadrilaterals, as triangles will

give similar results, as well being simpler and easier to
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adjust. Also from the economy point of view,it would be nmors
econonic to observe triangles instead of spending time and
mongy in forming doubly braced quadrilaterals for slightly more

consistent results.

1.6.%. Computation of thc Side Corrcctions in the Successive

Adjustment Suggested by Thornton-Smith

Thornton-Smith finds that solution of nine equations for
the adjustment of a doubly braced quadrilateral reprcsents a
herculean task [116]. To avoid this cnormous labour, hc offers
an alternative for the solution of this problem. In his solution
ad justed anglcs arc used to obtain the required corrections to
obscrved sides.,

liention has becn made in l.6.3. above of the identity of
the results obtained using the present solution with those obtained
by Thornton-Smith using his method. This identity crcated the
possibility of deriving a formula for adjusting sides in the

case of prc-adjusted shapc.

l.6.5.1. Condition Hquations for Adjusting Sidcs of the Doubly

Zraced Quadrilatcral of Pro-adjusted Shape

For the purpose of simplification, adjusted angles obtained
from a classical triangulation problem arc used. For cxample,
the doubly braced quadrilateral,figurc l.14,is adjusted by solving
four condition equations. The correctecd angles obtained are then
inserted in equations (1.109).

The condition equations to be solved are those which have
been used in (1.109), with the modification that as prcviously
ad justed angles have been used, the corrections 61, 62, ..., 88
are zero. Bquation (1.108) will now have the form:

8a.cosB + 8be.cosA - 8¢ + k& =0 eesees(1.110¢)
where ki = a.cosB + be.cosh - ¢ esectce
The equations derived for the doubly braced quadrilateral, figure
1.14, corresponding to this casc will be:



cosl.la +
cosl.bb +

cos(2+3).8a +

cos3.6¢c +
cos(4+5).6¢e +

cos(4+45).8¢c +

cosh.be +
cos(6+7) .86 +

cos(6+7).8¢ +

COS706f +
cos(8+1).6a +

cos(8+1).8f +

The number of equations given

cos4.bc - &8b + kél =0
cos(2+3).6¢c - da + ki = O
cos4.8b - 8¢ + kél =0
cosb.8c - 84 + kéz =0
cos?.%¢ - 8¢ + ké2 =0
cosb.8d - 8¢ + kéz =0
cos8.8F - 8b + ké3 =0
cos5.6b - S¢ + kéB =0
cos8,.,6b - 86f + k%3 =0
cos2.8a ~ 84 + ké4 =0
- v _
cos7.84 5F + kf4 =0
cos2.6d - 8a + ké4 =0
in (1.111)

be rcduced to only five equations.

ceses(1.111-1.13)
00000(10111—102)

eesee(l.111-1.3)

000..(10111—204)
oobol(lolll‘Zos)
00000(10111-2-6)

00000(10111-3.7)
00000(10111-308)

ceses(1.111-3,9)

00000(10111‘4010)
.oooo(lolll*4oll)

00000(10111“4012)

This is bccause

is twelve, and should

in the

quadrilateral of pre-adjusted shape with six measurements, only

one of these is required to give the sizc, the other five being

redundants, and thus five conditions only requircd.

In order to reduce the number of equations in (1.111) fo

the required number, it should be noticed that the unit error 84

affects both triangles (2) and (4), thus by adding cquations

(1.111-2.4) and (1.111-4.10) the effect of unit error 8d on the

whole quadrilateral will be obtained.

This could be done for

all the other sides, which leads to six ecuations instead of the

given twelve, as can be seen in figure 1.16.

These six equations will be:

co08l.8b + cos(2+3).6c + cos2.5d

cosl.fa + cos4.8¢

+ cosh.be

co0s6.8b + cos(2+3).8a + cos3.8d

cog%.6c + cosb.8e

+ c087.56f

cos6.54 + cos(4+5).6¢c + cos5.5b

c088.5b + cos(6+7).6e + cosT.8d

The five required equations could

cos(1+8).6F
cos8.6f
cos(4+5).6¢
cos2.8a
cos(6+7).8F
cos(8+1).5a

be selected

2.8a

il 206b
2.8¢

- 2.5d
2.0¢

2.6

<+

+

+

(kél+ké4)=0
(kél+ké2)=0
(ké2+ké4)=0
(kgptkgz)=0
(k%3+k%4)=0

ceseea(lell2)

as, the two diagonals



- 66 ~

A A
2 A
B B
C
C C c
D D D
(1) Common Side a (i) Common Side b (ii) Common Side c¢
A A A
B B
¢ f
C C -
| e
D D 5
(iv) Common Side d (v) Common Side e (vi) Common Side f

Figure 1.16

and any other three of the other four.

The solution of the problem is obtained here, with the
five equations for the common sidzs a, b, ¢, d, and f. Results
given below in table 1l.14, which also gives the comparable
figures obtained from the original solution of equation (1.109)

and those obtained by Thornton-Smith.

Correetions Frot?lcf]ot%%gion Frox?le.aggg‘g.ion B mg%ﬁmslgg?_
Sa - 0.45 - 0.44 - 0.45
5b + 0.15 + 0.16 + 0.18
be + 0.13 + 0.10 + 0.12
6d + 0433 + 0.31 + 0.35
Se - 0.09 - 0.08 - 0.08
6f - 0.15 - 0.15 - 0.13

table 1.14



- 67 -

It can be seen that when previously adjusted angles are
used for the additional operation in the newly develoned solution,
corrections are obtained which are virtually the same as those
resulting from a combined adjustment of sides and angles. There
is also a close agrecment betwecn results obtained by this new
solution and these of Thornton-Smith, with the difference that

corrections here are obtained in an easy direct waye.

l.6.5.2. Condition Equations for Adjusting Angles of the Doubly

Sraced Quadrilateral of Pre-Adjusted 8ize

The use of the adjusted sides for the adjustment of
observed angles, i.e. adjustment of the pre-adjusted size, does
not give the same advantages, as it requires the solution of the
same number of equations as unknowns. In this case eight
equations have to be solved, so that the number of equations is
not reduced much from the nine equations which have to be
solved in the simultaneous adjustment of the problem for angles
and sides. DBesides, the solution is based on the use of the
adjusted sides which is known to be & rathcr weak solution as
shown in the comparison 1.16.

Thus using equations (1.109) for the quadrilateral figure
1.14, for the adjusted sides and observed angles, we have the

the following twelve equations:

a.sinl.sinl".81 + c.sin4.sinl".54 -k, =0 ..(1.113-1.1)
b.sinl.sinl".81 + c.sin(2+3).sinl".(52+63) = kfi; = 0 ..(1.113-1.2)
b.sin4.sinl".84 + a.sin(2+3).sinl".(62+63) - ki = 0 ..(1.113-1.3)
c.sin3.sinl".83% + c.sin6.sinl" .66 ~kj, =0 ee(1.113=2.4)
d.sin3.sinl".63 + e.sin(4+5).sinl".(54+85) - ki, = 0 ..(1.113-2.5)
d.sinb.sinl".86 + c.sin(4+5).sinl".(64+65) = ki, = 0 +.(1.113-2.6)
c.sin5.sinl".85 + f.sin8.sinl".58 - kps =0 o (1.113-3.7)
b.sin5.sinl".85 + £.sin(6+7).sinl".(66+87) - kiz = 0 ..(1.113-3.8)

b.5in8.sinl".68 + c.sin(6+7).sinl".(56+87)

k'f'-3 = 0 o0(10113-309)

o

foSin7oSin1"067 + aoSin2oSinl"-62 - k" = 00(10113"4010}

d4
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desinT.sinl" .87 + a.sin(1+8).sinl".(61+88) - k%4 =0 ..(1.113-4.11)

desin2.sinl.81 + f.sin(1+48).sinl".(51+88) = k;4 0 eo(1e113-4.12)

Cocfiicients of &1, 82, ..., 88 are the same as before in (1.109),
because the effect of the adjusted sides is negligible. Only kgl’
esey kg4 have different values to those previously obtained in
(1.109). REight equations out of the twelve given in (1.113)
have to be solved. Equations 2,3%,5,6,8,9,11, and 12 are chosen

because they give a diagonal matrix representing observations of

the angles in anti-clockwise direction, as follows:

@y (81 + 82 + 83) - ki =

ay(62 + 83 + 84) - kli; = ceees
@3(83 + 64 + 85) = kg = ceaee
a4(64 + 85 + 66) = kI, =
a5 (85 + 86 + 87) = ks =
@ (86 + 87 + 68) = ¥z =
a7(67

ag (88 + 81 + 82) - ta =

+

LA I AN

o 6 00

+

%
)
3
3
Jeo(1.114)
3
)
)
88 + 61) - k3, = %
)

|
© O O O O o o o

o o0 0

¢ is the coefficient of the corrections in each respective
cquations, e.g. @9 = a.sinl".sinl = c.sinl".sin4 in equation
(1.113-1.1). The absolute term k" is taken as the difference
between the sum of the projections of two sides of each triangle
on the third and the length of the third side. For triangles
(1), (2), (3), and (4) common sides a, ¢, e, and f are taken as
the respective third sides.

The results of the angle corrections obtained by solving
equation (1.114) compared with those obtained by solving (1.109)
is given in table 1l.15.

table 1.15
Corrections | Due to (1.109) | Due to (1.114)
aml + 0.58 -~ 0.15
"2 + 0.47 + 0.65
o"3 + 0.07 - 1.04
"4 - 0.17 + 1.52
&"5 - 0.51 - 0.04
5"6 - 0.87 - 1.93
8" + 0.30 + l.14
5"8 - 0.04 - 0.33 |
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The corrections obtained are totally different to each other which
does not allow the use of the set of conditions given in (1.114).
These cifferent results would appear to be duec to the use of the
ad justed sides obtaincd from a previous separate trilateration

ad justment for the quadrilateral.

1.6.5.3. Comparison Between ilethods of Adjustments

A comparison between all the possible solutions including
those which could be obtained by using these newly developed
methods is shown in table 1.16.

Let: I- Adjustment of observed angles in the quadrilateral with
one known side left unadjusted, (the classical method
of triangulation adjustment).

II- Adjustment of observed sides in the quadrilateral (a
pure trilateration problem).
IITI- Simultaneous adjustment of I and IT, using equations

(1.109).

IV~ Adjustment of size for the pre-adjusted shape, using

cquations (1.112).

V.- Adjustment of shape for the pre-adjusted size, using
equations (1.114).

For the doubly braced quadrilateral we have:

No. of rcdundant iEstimate.for
Method No, of unknowns @ coefficient of

obgervations correlation
I 4 8 0.7
II 1 6 0.4
II1 9 14 0.8
Iv 5 6 0.9
A ' 8 8 1.0

table 1.16

It should be mentioned that, for I, II, and III the
estimate for the coefficient of correlation is true, as observed

quantitics are free correlated quantities. For IV, and V adjusted



- 70 -

quantities are correlated quantities, hence the estimate for
the coefficient of correlation will be affected by the estimate
for the coefficients of correlation previously obtained for I and
II. Thus if:

0.7 I = estimate for the coefficient of correlation in I,
and Oe4 IT= ceaeeee evee coe coessecssse oo sescevovses so 1l
therefore,

0.9x0.7 I = 0.63 I = estimate for the coefficient of

correlation in IV,
and

1x0.4 II = 0.4 II = estimate for the coefficient of
correlation in V.

From the above comparison, methods of adjustment can be
re-arranged in the following order of merit from the point of
view of the estimate for the coefficient of correlation:

1) III-for angles and sides.

2) I-for angles only.

3) IV-for sides only, using equation (1.112).

4) II-for sides, when sides are observed only.

5) V-this solution does not have any real advantage as
has been explained already.

Equation (1.109) is recommended for the aolution of III,
on the following grounds:-

(i) Corrections for angles are very close to those obtained by
solution I, i.e. the introduction of sides does not distort
the original solution by I, (see Rainsford, sec. l.3.2.1.)

(ii) Corrections to sides are close to those obtained by IV.

(iii) It allows the easy deriviation of a further method (IV),
which simplifies the task of solving nine condition equations
for the quadrilateral, if an electronic digital computer is

not available for the purpose.

n
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2. INTRODUCTION

Mathematics is the logic language, by which different
physical phenomena in different fields in science are explained.
In Surveying some problems may be mathematically represented in
forms, which are popular in some other fields such as mechanics,
electricity, and structures. In particular, observations in
surveying are liable to errors, causing deformation in the nets
and errors in the positions. Corrections obtained by the least
squaregfzgg/found to be the solution nearest to the real errors
(78], i.e. the corrected figure by this method will have the sum
of the squares of residuals minimum. In mechanics, and structures,
an elastic loaded framereaches the equilibrium position at the
state of minimum strain energy. That is to say the configuration
which gives the least strain energy. Also in electricity, the
balance of an electrical net is obtained with the least amount

of energy conserved.

2.1. ADJUSTMENT OF TRILATERATION BY GRAPHICATL METHODS

A graphical method may be introduced to help obtain the
coefficients for the correction equations, but the corrections
themselves will be obtained by the usual way of solving the
normal equations.

For trilateration Thornton-Smith [113] uses the calculated
coefficient of one unknown to construct a graphical figure which
will give the remaining coefficients. This is done in the
following way:

For the quadrilateral ABCD figure 1.3, the ratio: between
the different coefficients is given by:-

kg ¢ -k, 3 =Ko = 8inB; : sinBy : sinB,
-k

5
i
i

Q

e = sin02 s sinC3 : 8inCy

kd s =K _ ¢ -kf = sinD3 3 sinD4

(1]

sinD2

and to start with, one of these coeffieients has to be calculated.
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The original quadrilateral ABCD is then drawn to the right

hand side so that an additional figurec may be constructed to the

left.
B R kc=-4.302 o cCC ¢ B
o & X 5E)
R ¢‘A1 G Bﬁ
] £ A& ¢
o
o S 5&.% d ) a
) 2 e
xm © D D‘ A
AEB“ cob - A M,
' ©
A " i A
f =1 A3 Cs ‘{—6
75> .
D
Figure 2.1

Corner C is selected, in the same way as apex was selected

for the numerical solution of the problem [70]. BC' is produced
towards B'. A line C'A' parallel to BD is drawn from C'. A' is
fixed after scaling on the length C'A' equal to the computed
coefficient.

kg = FesinB = 4.814
B!' and D' will be fixed by drawing parallels to AB and DA from A'.
Lastly the values of thce coefficients other than kg are obtained
by scaling off the wvalues of the other sides.

Plotting of the vector diagram is given in figure 2.1

The graphical plotiing of the vector diagram is new to
surveying but it has been uscd for some time in the theory of
structures under the name of the force polygon, to obtain the
axial forces in the pin-jointed elastic framcworks. However in
the survey application by Thornton-Smith instead of using unit
coefficient to decide the scalg, the actual value is uscd which
will give thc required coefficients directly. Furthermorc the
sign convention followed in a survey networks is similar to that
used in the theory of structures. In the latter, equilibrium at
each joint results from having equal and opposite forces acting
at this joint. This means that tension (or compression) must

exist in the diagonal with positive (or negative) signs, while
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the forces in the other two members meeting and flanking the
diagonal at the same joint have opposite signs,in this case
compression (or tension) with the appropriate negative (or positive)
signs. In Thornton-Smith’method the sign convention is explained
by his statement " At each of the four corncrs the directions

on a diagonal must be balanced by the onpogite dircctions on

the two sides flanking it".
2.2+ SURVEY NETWORKS AND STRUCTURAL ANALOGY

The analogy between an observed survey net and a pin-jointed
or rigidly~jointed elastic frame-structurc, is used for the
ad justment, when the latter structure has rcdundant members with
an initial lack of fit.
From thc point of view of the aralogy between survey nets
and structural problems, connections and joints can be divided
into the following:-
a~ Pin-Jointed elastic frameworks: in which the frame rigidity
is obtained by deciding the length of the component members.
Rotation of the involved sides around hinges is allowed so that
no moments resulting from the structure can exist. At the same
time movement of the hinmges is restricted by the chosen elastic
properties. This case is similar and directly analogous to
trilateration networks in surveying, where small changgs in
the angles duvue to the errors or corrections applied to the

observed sides are allowed.

b- Rigidly-Jointed elastic frameworks: wherec the angles of the
joints are in a fixed configuration, i.e. cach angle might
rotate as a whole but has a fixed size. These joints are
designed to take moments. This case is similar and directly
analogous to a survey net in which both angles and sides have
bcen obgserved. The angles are adjusted first to give the
required shape, then the sides are adjusted. Corrections to
the sides are in this case allowed only on condition that they

will not affect the corrected angles.
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Linkwitz in [64] has suggested that angles can be trcated
in an exactly similar way to the way sides are treated in his
thesise A full investigation has been made to find out whether
such a possibility exists.

To establish the analogy and hencc to use structural
methods for adjusting triangulation nets the following comparison

is made,

Mathematical Model Structural Modcl

1 B is thc angle observed B is the length of an elastic
arce.

2 | 6B is the crror of observa-| 6B is the change in the lcength
tion of angle B of the eclastic arce.

3 P; any station in the sur- [Pj corresponding nodal point

vey net. in the framework.
4 p is the weight of observ- jf is the elasticity .
ation. cocfficient.

5 { A triangulation net with LAn clastic framework' to a_.
just neccessary angles and given scale without any rcdun-
one side to allow the net dancy, i.e. statically dcterm-
to be defined in the field.}inatc structure.

6 | A triangulation net with An elastic statically indet-

r-c¢xcess obscrved angles, erminate framework with .

L which gives r condition r-times indeterminacy.

| equations.

table 2.1
Applying the analogy given in table 2.1 to a doubly
braced quadrilateral the following comparison can bc mades-
(1) In surveying a quadrilateral figure 2.2a is obtained by
the intersection of rays produced from each station Pi
applying the angles 1, 2, sees, 8 after dctermination of
scalc. Four angles and the scale are necessary to define

this figure, while the other four angles are rcdundants.

(2) In the corresponding structure there are two possibilities:-
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(a)

(b)

Figure 2.2

i~ Circular elastic arcs represent the angles which are
provided with strictly straight sides (members) which
are heavy enough to resist deformation and sufficiently
light to move freely without affecting the positions of
the points. For this particular figure, due to the diff-
erent length of sides, purely circular arcs cannot be
constructed between the different nodal points, e.g. in
figure 2.2b if diagonal BD is known and can decide the
scale, arc 1 can be constructed between D and C' to
represent angle l. Again arc 4 is constructed between
B and C" to represent angle 4. From B and D two ares 8
and 5 are constructed to give the arcs through A' and A"
respectively. C and A are thus obtained by the intersection
of the corresponding radii from B and D.

For a purely structural and physical point of view

it is impossible to have all of these arcs in one plane
without intersection, as can be seen from the diagram of
the situation for a single point B. To overcome this
difficulty the connection of the four elastic arcs for
nodal point B may be made in two planes figure 2.3. In
figure 2.3a a plan of the connection at the nodal point B
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T

is shown, and in figure 2.3%Db . —

o
=
u

the clevation of this connce=~

tion is shown. In figure 2.32 (a)
the top plane gives the planc

of th>2 two clastic arecs 4 and
5, while tho othcer plane gives
that the of th: two rigid arms
BB' =na BB". Thc clastic change

of arcs 1, 2, 4e.e,3, aich

have to be coasidered for the

Figure 2.3

ad justment reocuires the free

nodal vpoint B 40 movc whilc the spindle is kept verticcl.
Tiiis cannot occur unlcss the twvo plaoncs in rFigure 2.3a
coincide which anpears -to be a physicel vossibility
without tne clesti~ arcs being intcrsected, as shown
in figure 2.3.
Howecver, construction of such as that in figure

2.2 has to be subjected to thrust only, in order to
have axial deformation and angular change. Construction
of such kind do exist either as arches or rings, and
the illustrated figure does not correspond to either
type.

ii- The second possibility is of a rigid arc constructed
at each nodal »oint (joint). This case is »reviously
given in (b) above where joints should be rigidly
connected and deformation of sides are allowed only.
In the case where an analogy is nossible a direct

application of the theory of strain enecrgy is involved.

2.2.1. Basic Strain-Tnergy

Work and energy relations are found in many fields of
science andin the field of structural mechanics, which has
adapted many of these relations and concepts to determine the
slope and deflections of elastic members.

Tor elastic structures, external work is done on the
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structurc by physically applied ecxternal forces or moments which
results in an equal amount of potential energy being stored
through the action of the internal forces and the elastic strain
mechanics of the structure. The loads are assumed to be slowly
applicd so that the dynamic influence mey be omittoed.

The work done by the constantly applied force is equal to
the magnitude of thc force multiplied by the distanée through
which thc point of application of the force moves in the direction
of the forcc. The work is positive if the displacement is in the
dircction of the forecc, and negative if the displaccment is
opposite to the dircction of the force.

To explain thc rclationship between work done and potential
energy a simple example figurc 2.4 may bc given.

L is the length of the member uscd,
A is the cross-sectional area of the member.
E is thc modulus of clasticity of the material of the member.

P is the applicd load.

_ PL
b=1x

The load is initially applicd at B, and the resisting force is
slowly builtv up to the valuc of P, which is reached at 3'. By
this time the 'load is fully applied to the member, and the member
is eclongated by A.

The work done is = P.5, but the loss in

potential energy is given by P.4, i.c. it is
twice the work donc on the member. It appears
therefore that a discrepancy cxists until it

is required that half the loss in potcntial

—D————  —
1)

energy is utilised in doing work. The strain-

b
cnergy stored in the member cquals the net p &p-

change in potential energy, i.c. the internal
Figure 2.4

cnergy is cqual to the external work donc.

The triangle abe figure 2.4 shows that, the

force in the elastic member is directly proportional to the

deformation; and-$hat the_grea4of,tho~trianglo represents the
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strain-energy = P.% = P?§%§ stored internally in the member.

A pin-jointcd clastic framework with redundant.., forced in
to its appropriate position will produce various clements of
strain in thc different memboers of this structure. This is due
to the lack of fit duc to the rcdundant members being longer or
shorter than necessary. A problem of such character could be solved
by Castigliano's thcorems [56]. Thc lincar displaccments in the

various bars of the analogic framc-structurc correspond to the

corrcctions to the relevant surveying lincs.

Professor Southwell [91] has cxtended the use of Castigliano's
theorcms t0 many problems in scicnce and enginccring, including
the adjustment of level nets. Professor Black has cxtendcd this
to thc adjustmont of dircctions [10], and it is apparent that it

can bc extended still furthor.

2.2.2. Usc of Castigliano's Theorecms in Trilstcration

Castigliano's sccond thcorem states that "The stress-
distribution resulting from given forces, applicd to a body
initially in a state of ease, can be deduced from the conditions
of cquilibrium combined with the conditions for a minimum value
of U"[95].

=}
Using figurc 2.5 wc have: 0

= oU
61_ 0Py

which mcans that thc deflection

at a particular point 1 is cgqual U U=

to the rate of change of total > S

encrgy"for all members" with
respcet to the foree Py. The use Figure 2.5

of the partial derivative mecans

that all othcr forces acting on the structurc are assumed to
remain constant while Py is varicd by small amount. The purely
lincar relationship between P and & shown in figurc 2.5 reprcsents

Hooke's law which states that "within the limits of clasticity
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the strain producced by a strcss of any one kind is proportional
to the stress producing it".

The use of this thcorcem for trilatcration adjustment is
given by Leung Kui-Wei, [56].

Suppose that A, is the misfit in the rcdundant member r,
i.c. the difference between calculated and ingerted sides.
iyith refercnce to figure 2.6 according
to Castigliano,

_ U
Ap = 5, veee(2.1)

Qv

where Sr is the axial forecc in tho

rcdundant member r.

U is the strain-cnergy in the ‘3
S%.li

2A5B4 Figure 2.6
ceveseeea(2:2)

wholec structurc = I

Si is the axial forcc in the mcmber i, where i = 1,..4.,6
14 is the length of the member i.

AyE; is the rigidity of the side i, (A; is thc cross-
scctional area of the member i, and Ej is the elastic

modulus of the material).

2
’ . oU  _ Sl'll aSl _ Sl'll v (Sj'_)oll -
thorofore §m = PRimy a%  ALECL T i agm T

coeosesese(2e3)

si is the force in any member introduced by a unit force in the

redundant member r, and obtained from the force polygon figure 2.7

B=154 35.3

(b) FORCE _DIAGRAM (c) ANALOGIC FRAME

(@) SURVEY NET

Figure 2.7

e e o
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For the use in trilateration adjustment the a2bovc formula (2.3)
can be used in the following way:

Forcc in sidc ¢ duc to misfit of A, is given by

o] AioEi-)\.c
e = -—-———2—— 0100000(2-4)
Z(S!)cli
1
hence,
Va = A B, T Scesyels, Vb = Fp.Bp - SceSbelys
é‘l.l’ld Vc = ;-C—.E]-C- = Scolc oaaono.(2.5)
ce*-eC

A tonsile force is reckoned positive and a compressive force
ncgative, If the length of the bar c is too long, then it needs
to be shortened and hence compressive force is required, thus the
negative sign is given.

For more complicated problems, when more than one redundant
exists,the effect of unit force’in each redundant should be
considered. A set of normal linear equations of the same number
as the redundants will exist to determine the actual forces in
the redundant sides. From these the displacements and hence the
corrections may be applied. The adjustment of trilateration nets
and error analysis according to the theory of elastic system

is given by Professor Linkwitz [64] in his doctoral thesis.

2.2.%. Systcmatic Relaxation of Cecnstraints

Mechanical analogue for survey adjustment problems may be
based on the systematic rclaxation of constraints method adopted
for solving linecar equations which is a Scidelian iterative method
of computation. For an explanation:of this one may quote Prof.
Southwell [95] . "The method of Systematic Relaxation of
Constraints was devised for the determination of stresses in
frameworks- that is in elastic structures having the characteristic
that a strained configuration can be specified by attaching values
to a finite number of co-ordinates. Recently it has been extended
to continuous systems (c.g. beams) on the understanding that a

finite number of co-ordinates will dcfine a configuration for
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practical purposes, though not from a mathcmatical standpoint.

So far the power of the method has becn cxhibited only in relation
to elastic problems: in these its results appear to converge
rapidly, Jjudged by a fow cxamples of which the cxact solutions 4

were known".

PN

That convergcnce takes place in this method may not be
obvious but it must be remembered that in any problem of equilibrium
we arc concerncd with a configuration of minimum energy. At every
step in the re¢laxation process, "'if positive work is donc on the
relaxcd constraint, the total energy of the system (i.c. the
strain-cncrgy stored in the framework plus potential encrgy of
the external forces) will bc reduccd. Thereforc the system must
tend towards the required configuration of equilibrium, in which
this total cnergy hes its minimum value. The required configuration
can bc approached as closcly as possible depending on the accuracy

necded. The approach to the required configuration can be

accelerated by using "block relaxation" in which case any number

of points can move together as a rigid body [81].

The advantages of using this mcthod in solving structural
problems and certain problems of adjustment in surveying have
been given by Southwell [95] for the following:

(a) It obviates entircly the nccessity of solving simultaneous
equations which is the main objcet to cxisting methods.

(b) It is simplc to apply and involves only a few standard
numerical proccsscs, easy to grasp and rcadily checked.

(¢) Its complexity is not decpendent on the order of the redundancy
and the time rcauircd for a solution, although it increascs
with the number of joints in the framework, docs not increase
rapidly as it does when simultancous equations are involved.

(d) The joint displacements arc calculated simultaneously with
the action of the members.

(e) The physical mcaning of cach process is clear, and the order
of the approximation can be judged at cvery stage, when this
is deemed sufficient the solution can bc stopped.
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2.2+:3.1. Dorivation of the Method for Structural Calculation

Consider figure 2.8

where an external force X is X
acting at joint A. To achieve { AyXaiYa)
= -
equilibriuvm X =X + X =0
ooo-o(2.6)

h X is the int 1f B
where is the internal force

’ ! (xB‘yB) W

(exerted by the framework)

\e
i is the residual force )
Figure 2.8

=0, at equilibrium.
For the general case, A and B can be given coordinates (xA,yA)
and (xp,yp). The force which X exerts on the joint A in the
direction of x has the component,
5 Xy - X
XAB.—ETKB—A = XAB(XB - XA) 0.-0.-(2.7)
If B, C, eeee, M are joints connected to A by members, then
equation (2.6) will be:
XA + XAB.(XB - XA) + XAC.(XC - XA) +o.- + XAM.(XM - XA) = O

ceese(2.8)
Also, let u and v be the component displacements of A in the

directions x and y respectively under the load, therefore the
fractional extension of the member AB will be:

1

2
lAB

e
However the strain-energy is equal to X.—%E.

epg = [(XB - XA)(uB - uA) + (yB - yA)(vB - VA)] .+(2.9)

If U is the strain-energy and V is the potential energy, then
M v 2}
1 - - - -
U a1 (R [ - %) (g - uy) + (v = 7)) (v = 7))
eeseeea(2.10)
and V = constant - zj(iA.uA +¥,.v,) by definition ....(2.11)

Initially when all joints are held fixed X = X , but when one
joint or all joints in the case of "block relaxation", is relaxed,
force X will be equal and opposite to th: force exerted by the

constraint upon the framework, by Castigliano's first theoren,

where Xy = - %H , and Xy = -.gg
bt A

3t m i h n g & TGOS
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Substituting in (2.6) which is the condition of equilibrium, we
have:

=
XA = - ‘g‘{l_A"(U + V) = O ....... 0.0.00000(2012)

which is also a condition of the minimum energy.
Since the potential energy is a linear function of the same

displacements with constant coefficients therefore:

afe aXy X

auA = auA =" aué

5_&:%‘_‘&-_-..3_6_11_ cereeea(2.13)
VA YA VA-auA

aXpy 33Xy _ 8%

aun - auB auB.auA

Since U is a quadratic function of the displacements u and v,

therefore,
2

u

Q
(e

It

z,[Ryg(xg - x3)°7 = Zpl (x,x) 5]

A

220
avA.auA

ZA[RAB(XB - XA) (YB - yA)] = ZA[(X’y)AB]

32y
auB.auA

]

- RAB(XB - XA) = - [(X’X)A_B]

and therefore equation (2.12) will be:

X =X - oa U- o-—a—-LJ—-—— o-_ag.—- oo 00000 201
A AT %A duz VA OV, e0up “B dugeouy, ( 4)

A
Corresponding expressions can be derived for the rcesidual force

at B.
According to this equation residual force ¥ will ve brought to

zero by imposing displacement,

- a2
buy = XA/%ag ceveees(2.15)

Because the strain-energy is. necessarily a positive quantity, the
coefficients of uﬁ ’ u% , etc.. in U will be always positive, and
50 will be such differential coefficient as aZU/auﬁ.

Hence according to equation (2.15) any residual force can be
brought to zero bffﬁmposing displacement having the same direction
and sense, which is the basis of the relaxation method.

- xada s

WA T AL, LT e
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e ey eiman o on
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The greatest possible decrease for a displacement of a
given type will be cbtained by bringing the corresponding force

to zero. Usually we have,

= = 2
(U+ V) = = 2X,00 =-3.0/(83) ....(2.16)

uy

Mol

Relaxation can be alwaye continued until (U+V) has been brought

to its absolute minimum, that all residual forces are negligible.

2¢243.2¢ Derivation of the Method for Surveyv Problems

For different problems when it is required to minimize the
value of some quadratic function Q (or U) of parameters X, ¥, oe,
these parameters could be treated as displacements [10], and
procedure is carried exactly as before. TIorces are fictitious,
energy and work done are imaginary or virtual.

For problems of adjustment in surveying,
let ¢ stand for an observed quantity,

« stand for the calculted value of ¢ from some approximate,

(x,y) coordinates.

As before, due to the errors of observations,

v =¢ - a = f(x,y) ceeseness(2.17)
while the least squares solution requires that va2 = minimum.
Therefore the problem is to solve for v, such that:

2Q = Zpv? = minimum ceessenee(2.18)
2Q being the quadratic function mentioned before. I% is termed
here total energy (virtual) since it is analogous to that term
ag used in structural problems.

For the adjustment of any net specified by n independent
parameters Xys Xpy coey Xpy Y19 ceeses Ypo» the problem ig to
find displacements that make 2Q minimum. x,y are the
displacements corresponding to m and v in the structural problem.

Consider the fictitious forces,

--a EEREKK) .
Xl = - %%i and X2 = % o (2 19)
The change in the residual forces X due to the relaxation of

6x is given by:-

21 32 Smndage 2 Sy 5 TE RS

[,

e et 5 A - S @ ¥ A U <
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2
-9 -
ﬁnéx = =- ZP( ) 6Xl

- _ oX
GKl = 1.6xl

ox1
6X = g_x.%oéx = - ——a'EQ—.GXl -)" Zp( )( ) 5X oo(2.20)
2 X ) aX1.8X2

32 32
ax ! aXl.aX2
coefficients" normally used to distribute the residual forces X

The values y ¢+ etc. are called the "Influence

to the required accuracy, where residual forces X become negligible.

2¢2¢3e2e1e Application of Systematic Relaxation to Directions

Adjustment in Triangulation Networks

Professor Southwell [91] applied this method to many
engineering problems and to the adjustment of levels in surveying.
At this time trilateration was not known as an alternative method
to triangulation, more recently it has been shown by many
contributors, e.g. Kui-Wai [56], Linkwitz [64], that the adjustment
of a trilateration net is simply the problem of achieving
equilibrium of a pin-jointed elastic framework, under the effect
of a redundant member of non-appropriate length. Professor Black
[10] applied this method to a more difficult problem, to the
adjustment of triangulation nets. His adjustment is made to the

observed directions. Observation equations in this case are:

VABchA_-B+I‘A-(xAB 00000000(2.21)

ceacsssssse ete,
where PAB is the observed bearing AB,
Ty is the bearing of the zero of the horizontal circle of
the theodolite at station A,
% is the calculated bearing AB, from the known approximate
coordinates (XA,yA) and (xB,yB).
The minimum energy solution requires that 2Q = va2 = minimum.
therefore, 2Qup = ZpaB-VAB = ZpaB(gaB + TA - ayp)? = minimum .
ceresenss.(2.22)

Q will be a quadratic function of the parameters x, y when we

consider tanaAB = yB ~ JA 0000000000(2.23)

XB = XA

el e
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where, Xpy pr Eps and yg are the independent parameters.
Forces acting at point A may be resolved into three components

as follows:-—

oa o
09 _ AB BA
XA = - a%a = ZA(pAB.vAB.aXA + pBAoVBAoaXA )

]
o
]

oa oa
- .59._8 - AB BA
Yy = ZA(pAB.vA‘B.—ayA + pBA.VBA._‘ayA ) 000000(2024)

X and Y are components of the force acting in the direction of the
displacements x, and y. R is another force exerted by the energy
conserved causing rotation of all rays at this special station A.
Similar rotations are caused at every other station in the net.
Thus residual forces X and Y are obtained which cause displacements
of the zero of the theodolite circle and at the same time residual
force R is obtained causing the rotation of the circle itself.

From equation (2.24) the influence coefficients are:-

Xy

—t2 AB)Z aaBA) }
OXA

BA OXA

-z rpAB(a

oXp _ O0AB _ 9RA
-é—:;z-— ZAPAB aXA aXA 000000000(2025)
oRp
oTp

Professor Black illustrated this by solving a quadrilateral for
which all bearings are observed from both ends of each line.

In this application all the information necessary for
accurate mathematical solution was supplied. The results obtained
were as accurate as those obtained by the normal least squares
solution. The snag is that solution by this method was very
complicated and more difficult to surveyors with no background
in structural theory 4o follow. The complications and difficulties
arise through the use of the bearing of the zero of the horizontal
circle of the theodolite, (usually called station adjustment),
but the method shows a complete agreement with the classical
methods of adjustment.

The advantages of using systematic relaxation appear more
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clearly when a mechanical analogue takes care of such complications
as will be shown later (sec. 2.3) or when the station adjustment
is avoided by using angles instead of directions, also discussed

in 202. '2’2.

2¢2e3¢242+ Application of Systematic Relaxation to Angles

om——

Adjustment in Triangulation Networks.

It has already been mentioned that the difficulties in
using systematic relaxation method for directions adjustment in
triangulation networks aredue to the introduction of the station
adjustment. To simplify the use of this method the possibility
of adjusting angles has becn investigated in the followinge.

In this case observation equations are formed for the
difference between the observed and calculated angles. This bears
no relation to any geometric condition of the triangle. Therefore
there is no need to go beyond considering the effect of the
residual forces at each station.

In triangle ABC figure 1.2 the three angles will be
considered as three elastic units in a structural problem,
connected to each other by the sides of the triangle.

To understand the necessity of station adjustment,

congider figures 2.9 and 2.10.

A1_ 3

Figure 2.9 Figure 2.10

Figure 2.9 shows dal_z the difference between the calculated
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bearing o, _, and the adjusted bearing A, , for the direction 1-2.
It also shows Vioo the correction applied to the obscerved \
direction Pl and r; the constant station correction (bearing

of the zero of the horizontal circle of the theodolite), and
applied to all directions observed from station 1. It is more
understandable if we notice that r is associated with every set-up
of the theodolite, i.e. it will have different value each time the
instrument is set-up. However it must be given a constant wvalue
when all directions are obtained in one set-up of the theodolite.
The correction eguation will be in the following form:-

Vl_2 = 0’.1_2+ docl__2 - ((pl_2 + I‘l) .00-.0-.-(2-26)

The constant quantity ry will be reduced if one direction is
subtracted from another. Thus for the adjustment of angles these
constant values will not appear in the adjustment process.

Using the same prégiple of minimum strain-energy for the
angles adjustment we have 2Q = Ipv® = minimum ....(2.18)
Referring to figure 2.10, the calculated angle © obtained from
the two calculated directions is 6313 = G1_3 = A1_pseees(2.27)

the observed angle B obtained from the two observed directions

is Bo13 = 91-3~ 91-» » and cessesss(2.28)
the adjusted angle obtained froem the two adjusted directions is

Ayyz = Ay 3 - Ay veeeense(2.29)
Therefore,

V13 = Vi3 = Vi35 = [(al_3 + dal_3)-(al_2 + dal_z)]
- oy 5+ 1p)=(9y_5 + 1)
= (@33 - a1.5) = (913 = 91.0) +
(day = = day_p) = (ry = ry) «...(2.30)
(rl - rl) = 0, where r is constant at a single station.

For deriviation of forces and influence coefficients, equation

(2.30) will be kept in the form,

V2l3 = (vl_3 - vl_z) = (da1_3 - dal_z) + 9213 - 8213"‘(2‘31)

As the triangle is the unit in any triangulation net, in which

angles are to be corrected, demonstration and derivation of
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formulac will be devoted to a triangle.

C
Consider the triangle CDI figure 2.11, ‘\\\\\\/////////
The force acting at joint C due to

E {

contradiction (6-8) (or in other worés

due to v), according to equation ‘
Figure 2.1]

(2.18) is given in the following:

. oo ox ac,
Xg = - Z%ac- L(von - VCD>(e"nh CD) + (vpo = vpi) (5% JC)

0Xg

O

Weante
+ (vgp - vgo) (- =22)] cerenes.(2.32)
axc

Similarly the forces acting at D and I arc:

B aaDn daym aap
Xp==-1% i [(vpo - Vo) (557 —5§%ﬁ) + (vip - vme) (53 D)
ocaD
+ (vop = vop) (= 5557) ] cerrnens(2.33)
and,
20 3Q&RED c aanE
g = - X- = [(vep - VEC)(axE ~2C) + (veg - vop) (53=8)
3apy
+ (VDC - VDE)(— aXE )] 0000.0'0(2034)

Since the triangle is a unit figure, cquilibrium should be considere
for this unit. Zquilibrium is obtained when the three following
conditions are satisfied:

X =0, Y = 0, and &M =
where IM arc the moments appliced at the joints E, C, and D.
Since in this case being considered M does not cxist, equilibrium
is obtained by satisfying the two conditions IX = 0, and XY = O.
To check the stability of the triangle under the considered forces
Xy, Xp, and Xp, their sum must satisfy the equilibrium conditions.

Adding equations (2.32), (2.33) and (2.34) we have:

Glege)s aaCD dapg
%o ) + (VDC - VDE) (B—X-E-) + (VED

[vep - vop) (35

0 d
Hvpg - VDE)(aaDC :ng) + (vgp = vgo)( a;D) + (veg - vep) (- aigD)]
+{(vgp - C)(aaﬁD 3 :n) + (vog - VCD)( g“) + (vpg - vpgli- ang)]

= 9 ceevsncees(2.35)
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but we have:

aocCE - aaEc - - a(XCE - - aaﬂ

dxyp JXR 0Xg oXp

%%c _ %%p _ _ %% _ _ %%D ... .(2.36)
dX( IXq 0Xp 0Xp

0¢gp _ %%pp _ _ %%p _ _ %%E

d3xp  3xp OXg 0xg

Substituting from equation (2.36) into equation (2.35) and

re-arranging terms we have;

Voe Y Voot Vep " Vee Y Veg ~ Vep T VEp t vgo) +

3% ( - Vog * Vep * Vpe < Vo ~ Voo * Vog * Veg ~ Vop) +

s7=-( = Vpg *+ VDB + VED ~ VEC ~ VEDp * VEc * VDo vpg) = 0
cevenees(2.37)
BEquation (2.37) shows that a triangle worked on by the forces
X will be stable, and it should be kept stable when sucessive
relaxation is being considered.

If point E is to be fixed, coordinates xp, yp, will be
liable to corrections, but the effect of a unit relaxation
(Influence coefficients) of the coordinates of point E on the
forces calculated before has to be derived first.

Referring to equations (2.32), (2.33) and (2.34) the effect of a
unit relaxation of coordinates of point E is obtained simply by
partially differentiating these quantities with respect to X, Yge

The influence coefficient of unit relmxation 6xE on the force at

C is:
2
aXC _ 5 0 Q _ [(aaCE)(aaCE _ aCCCD) (_ aC(DE)(aOCDC)
OXp ~ "OXpe0X(p dXp ’0Xg d9XQ 0
00D _ 90ECy(_ 9%EC :
(-é—x—E—- ————)( _—XC )] 'oooonooo(2.38)
At D the effect is:
2
X o ox da ox
0Xp 3@ _ _ [(- g“DE)(a DC axDE) (axED)( ED)
axE axE.axD Xp Xp D B
oa o
+ ( CE)( CD)] 0000000000(2039)

)¢ Xp axD
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and at B it is:

oX 00 oa oa
5—@ = z——g [( ED - Ec) ( Cb)z + (— —_DE)Z]OI(204O)
X3 axﬁ 0Xgp OXR OXE OXE

The above deriviation is obtained for forces in one direction only.
The force in the perpendicular direction Y should be obtained in

a similar way. This could be easily obtained by rewriting equations
(2.32), (2.33), (2.34), (2.38), (2.39), and (2.40) with respect of
y instead of x. This will give the following set of values for

Ya, and 9Y¥g, ... etc.

ox o Ja
30 CE _ CD DC |
Yo = = 5;6 = [(VCE - VCD)( Yo ayc ) + (VDC - VDE)( yc ) + ?
oa
(VED VHC)(- aygc)] 00000..0(2.41)
e o N o
YD = - Z%§5 [(VDC - VDE)( DC aygb) + (VED - VEc)(aygD) +
U
(VCE - VCD)(- Eygg)) 00001000(2.42)
JORD aa ¢
Yg = - Z%%;E- [(vgp - VEC)(TE}_ .tu ) + (vgg - VCD)( ) +

oa
(VDC - VDE)(_ aygE)] ooo.ooc(2043)

Accordingly the effect of a unit relaxation dyp on these forces

will be:
2 d

aYC - 2 ) Q__ - [(aaCE)(aaCE aaCD) ( aaDE)( aDC)

ayE 0yg+9¥e oVgm Y ¥ ayE ayc
aQED aanc BGEC (
322 = g ) (- oot voceses(2.44)
(2 - 5559 (- 57597,

oY 2 o oa o oo o

D 9°Q - - [(_ DE)( DC DE) + ( CE)(_ CD) +

ayD ayD

aaED dapay (9%ED
(ayE ayE )(5_-)] 00000-.(2.45)
and,
e . 29 o (%m0 _ 2%m0y2 , (2%0R)2 , (2ODR)2Y,,.. (2.46)
e ayf OYE  O¥E OYE OYE

Also the effect of unit relaxation 6xp on force Y, and 8yp on force
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X will be as follows:

2

EEQ _ E——Q—Q—— _ (aacu)(aacu aaCD) ( aaDB)(aaDC
3y ~ TO¥gpe0%y ) +

fefoan 0T o«
(G - fomoy( JEGy)  L.......(2.47)

9Zp 62 dapg, 99D JdaDE JUED, (OQRED
s~ Tvgn - Ly ) ) )

0GCEy (_ 9%CD
(aYE )(" axD )] 0000000(2048)
EEE _ 2__939__ - [(aaED aQEC)(aaﬁD BQDC) (aaCE)(aaCE) . ;
OYp OYyR+9Xp 0¥ Vg oXp ;
0apg 0apR !
( ayﬁ )( aXE )] 000--....(2049)
o¥g 2 [+ Tg30) aaCE aaCD J0CDE, ,0aDQ
7 = g < Lo e o)t U Gye )
0amp _ 9C¢gCy_ 9%EC
( )( ) R 2. O
Praulill p 570 J (2.50)
oaCR _ oagD
(axE )( S )] ceseesaes(2.51)
and,

- - (G2 - FEO G - 575 + (5D (55 E) +

]
=)
!
o)
éjm
ol N
=)
|

0anE aaDE
(- T —28) (o =) ceenseesa(2.52)

Although mathematical details for the solution given in equations
(2.32) to (2.52) show that solution by this method may .be.a lengthy
one, it will be very simple after da/dx, and da/3y are obtained
for each station considered. Then initial forces and influence
coefficients are obtained by simple substitution of these values
in the equations given before.

From the influence coefiicients, a table of standard

operations can be made out showing the effects on all forces of
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unit relaxations 6x , 8y ,... etc. The initial values of +the forces
are entered on a relaxation table. Usually the largest forces,

CeLe Xi is relaxed first, Then we a»nply a relaxation Sxi sufficien‘l:i
to reduce this approximately to zero. The effects of this on all
the other forces can be found from the table of the standard
operations and entered on the relaxaticn table. The larcest
remaining force can then be picked out and eliminated in the same
way, and by continuing this process until the forces have all been
reduced to negliigivle size the solution is obtained. A table of

this type has been made for a specific example given later.

2e2¢3%4242.1. Accuracy of P.sults Obtained by Using Systematic

Relaxation iiethod for Angies Adjustment

It is very important from the calculation point of view,
to check the accuracy of the given method against the results
obtained by the least squares solution. Also, as this method of
solution is given as altcernative solution to that given by Prof.
Black [10], the accuracy of results should be also checked against
his results for the same problem.

(2) To check this, trisngle CDE in figure 7.19 given by Rainsford
in "Survey Adjustnment and Least Squares" is solved by the
method given above and by the normal least squares method.
The observation equations are given by:

- 2.12 6xg - 2.76 &y - 9.80 = O
+ 4.68 6xE + 2.17 5yE + T7.85 =0
- 2.56 8xg + 0,59 dyg + 1.60 = 0

The solution by the least squares gives the following results:
6xg = - 0,117 ,  and 8yg = - 3.419 |
Using the same data systematic relaxation method [equations
(2.32) to (2.52)] gives the following results:
8x = - 0,117 , and 8y = - 3.430

.(b) To check the accuracy of results obtained by this new method
against those obtained by Prof. Black in Empire Survey Review

vole 4,p 406 [10], the same problcm is used. A doubly braced




- 94 -

gquadrilateral for which observations are obtained for all
directions from both ends of each line. In this prohlem two
stations are fixed and two stations are to be fixed. Tables
2.2 and 2.3 give the influence coefficients and the systematic

relaxation for this example using the new method for angular

ad justment.
| | i ? | - i i
' 'XN i Xg Xp i Xn. % Yy i Yg ! Yp L YT ;
) v ; I . 1
8% ~12425 111025 15549i 80821 5025 !- 9318° 2033 2260
53 - 9832¢ 6050 2033 1749 - 2924'- 2615, 5953; - 413 |
] i |
8 -10858%- 9727 soazi 12503 - 9824, 5920 1749 2155%
( ;
5y | 35141~ 7730, 2260 | 2155 - 2368 - 1096 - 415, 3837,
! , ' ' ! , :
table 2.2 =~ Influence Coefficients
o % R R Iy | Y5 1 | Ip
T ! " T ; ‘
I.F.® - 5331i— 5923 9525| 17291 6881 -10658 2717; 2060

; i ]
~0.77xg" 9567|8489 |-11972 - 6223 |- 3869 7175'—1565,-1740
0.44XT - 4777!— 4280' 3556; 5501 .- 4322‘ 26045 769l- 948
’ i

~0.37y, |- 12261 2860 - 836 = 797, 876! 405 152,-1420
- -0.18y,

B T R e Dol

| : .
1769 .- 1089§- 366 - 314: 526 470 <1072 T4

T ? ; : . |
2 52 7~ 104}  92- 4 1- 49

Summ‘:'se

v 1} .

# I.F. are the values of initial forces obtained from equatioiF
(2.32),(2.33),(2.34),(2.41),(2.42), and (2.43)
¥3% Values entered in lines 3, 4, 5, and 6 are the necess-

ary displacements and. their effect on the I.F. obtaihed

from table 2.2. !
!
®x% These are the sum of all rows. in the table,” whioh: give

4
¢

the residual forces neglected at the end of the solutioﬁ.

e e b —————— A —— e ————— Tt A = i . & Syt A e

table 2.3 - Relaxation Operations

The results given by Prof. Black are:
Sxg = = 0.77 Syp. = = 0.18



- 95 -~

and by this newly derived method the resulits for the same
problem arc identical as can be seen by the left hand column

of table 2.3.

2¢26e3e2¢2.2. Comparison of the Two Methods

The main purpose, as mentioned before, is to eliminate
the comnlications found in the method, created by Prof. Black
[10] due to the use of the station correction necessary when
adjusting directions. Solution by this newly derived method
gives the same results while avoiding the use of the forces due
to rotations of stations. In Prof. Black's method it is essential
for adjusting directions by the systematic relaxation method
to consider the effect of each linecar displacement on the force
R, as well as finding its effect on forces X and Y. At the same
time the effect of the small rotations for the purpose of reducing
force R on the two linear forces X and Y have to be calculated
and entered into tables. In fact this is a most difficult
operation to follow and excute. The number of tables necessary
for his method of solution is large, so that it takes a long
time to reach the right cntries for the different tables, even
when the solution is clearly set up in tabular forme. On the other
hand, using the systematic relaxation for angles adjustment as
given by this new method, requires much less knowlege and skill.
There is only one way of computation, X, Y, 90X/3%, «e. ctc. are

calculated in similar way, as shown in the solved examples.

The sccond way by which the difficulties of using
systematic relaxation method may be overcome is to construct
a mechanical analogue which can take over all the mathematical
differentiations and substitutions. It should also be able to
carry out the calculations arising from rotation of stationms,
which proves to be the main difficulty in using systematic
relaxation method for adjustment of directions. If an analogue
of this type can be devised it would offer a very practical

solution of such problems.



- 96 -~

2.3. SURVEY NuUTWORKS AND MECHAUICAT ANALOGY

Dr. Jerie [46], [47], has applied the systematic relaxation
method making use of the theory of least energy conservad mechanically
to different problems in surveying and photogramistry. His mechanical
analogue computers for the block adjustment of planimetric
coordinates and heights in photogrammetry are well established,
and have been used in many photogrammetric organisations all over
the world. It is only quite rccently that electronic computers
in these organisations have had much effect upon the use of these

mechanical analogue computers and still many are in every day use.

In the surveying field mechanical computers for trilateration
ad justment. have been constructed by Dr. Jerie and showed some
advantages over the use of the electronic computers especially in

the field and in thc detection of gross crrors.

From the calculation point of view the main advantage of
using these mechanical analogues is to avoid calculation of the
residual forces and influence coefficients required in the mathe-
matical solution by systematic rceclaxations. Instecad of the latter
contradictions or difference between observed and calculated
quantitiecs are obtained and introduccd to a mechanically constructed
elastic system which obeys Hooke's Law. Adjustment is reached
when the elastic analogue reaches the equilibrium position with

least energy conserved in the system.

At the start of computation, approximate values for the
coordinates af the new points to be fixed are obtained. Improvements
to these values are sought through the adjustment. The approximate
coordinates could be obtained by the equipment in which case there
would be no need for their calculation. However it speeds the
adjustment to first calculate the approximate values as this
reduces the number of iterations required.

The practical use of me~hanical analogues does not rcquire
a high level of scientific or mathecmatical knowledge, as the most

important part in adjusting the survey problems, which consists
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mainly of setting and choosing the condition equations or
observation equations is avoided so the personnel required to
execute the operation need be familiar or skilled only in

operation with a hand calculating machine to a preseribed routine.

2¢%41e Different Aspects for the Construction of a Mechanical

Analogue for Triangulation

The construction of the mechanical analogue for angle
adjustment has been a dream for sometime ago, but not realised
because of the mechanical complications encountered in the
construction, which were also expected to produce results of
rather low precision.

Professors Southwell and Black who discusseé the general-
isation of the systematic relaxation method to solving linear
equations did not make any suggestions as to the construction of
a possible mechanical analogue. Prof. Southwell did suggest a
mechanical analogue f&r the adjustment of levelling but this
was not constructed.

Purely theoretical work can exaggerate difficulties, and
lead to the conclusion that a solution is impracticable. It must
be recognised that the mechanical construction of delicate
equipment can be very difficult and may need much refinement and
experimentation over a long period before the desired accuracy
is achieved. It is worth mentioning therefore that although the
basic idea was established two years ago, its practical
construction and improvements have been cérried out continuously
ever sinéeQ Pfobably.some further impro#eﬁents may still be
necessary before the mechanical analogue computer is perfept,
but it has reached the stage of working fairly satisfactorily
to the precision required.

A big difficulty has been the expense and the time required
to have basic pieces and frequent modifications made by a
number of different outside firms since the facilities were not

available in the University.
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2.3.2. Mechanical Interpretation of the Formulae for the

Adjustment of Triangulation by Varistion of Coordinates

Method

The essential conditions for the construction of a suitably
dimensioned elastic model for the computation and solution of
special problems are:

(1) The mechanical system must give the same mathematical relation-
ship between the different quantities to be calculated.

(2) It must be possible to distort elastically the mechanical
components representing the quantities to be adjusted.

Other essential conditions which are svecific to the

construction of this analogue will be given in due course.

2¢3¢2+1. HMathematical Relationship Between Different Cuantities

Represented in the lMechanical Analogue

A triangle ABC is fully

C
defined when three quantities
are known. Usually there should
be a base line and two angles. A
B
In figure 2.12 if base line is
BC i > will b
y the triangle wil e Figure 2.12

determined when angles B and C
are observed. If angle A is obsrved also, observation in this

case has a degree of freedom, which gives one condition for the
adjustment of the observations. Corrections for these observations
may be obtained by using any of the well-known methods of adjustment,
that currently favoured being the variation of coordinates method.
Using this method, both ZvZ of the mathematical model, and Ev2

of the mechanical modcl will be functions of the same parameters.

In figure 2.12 if the observed direction. of AB is ¢pp and the
calculated direction from approximate coordinates is a@,p, then

the correction to this observed direction will be given by:
VAB=.. (rA+¢AB) +daAB+aAB oooooooo(2.53)

(see figure 2.9, where A and B stand for 1, and 2 in the figurg).
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The relationship between a the calculated direction and the
parameters (x,y) is given by:

IB ~ JA
Xy = Xp

ta‘n& = .0-0-0000(2-54)

To obtain da with respect to each of the four parameters we have:

I = ¥ r
aaAB = %-aXA = llaaXA 000000001(2055)
AB AB
y -V r
aaAB == L";'AoaXB = aXB o-t.ooooco(2056)
1xB AB
X = X
aaAB = _B—l"2—‘A'oayA == —%l—-ayA oo.oocooo(2057)
AB AB
Xpn = X
B
aaAB = 12 oayB = ToayB 000001000(2058)
AB AB
where,
yg = ¥ Xg = X
ry B A ’ and Q= 3 A
1an 1an

Adding equations (2.55), (2.56), (2.57) and (2.58) we have:

r r g q
dCtAB =-——i-:-LA-£—.dXA- ——.':j;—B—.dXB— liB .dyA + '—TiT"dyB‘(Z'Sg)
o]

It should be noted that if,

sinayng = ry , COSUpp = Qyy eeeesCtcCe
thercfore sinapy = = Ty, and cosapp= = Q- setc.

Following the same progedure we have:

.o T2 v - T2 - 42
da = .dx «dx 7 .dyA

.(2.60)
AC 1, A ac © AC lAC

Subtracting (2.60) from (2.59) we have:

g r
deA :( rl - r2 ).dXA - il .dXB + 2 och
1ig lac 1.3 lrc

- ( -T—-) y.A. _Iﬁdin - -'I}:aodycoooooooon(206l)

Similarly we have

r r
deg =("I2' - ——z—.dxc —=—udx,

Bc  Iam 1pc lAB

a3
- (—Iibc— ) dyB + "Iz-odyc odyA 000004..(2 62)
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a
+ ——z‘ody .o-oo.-o(2.63)
e 1w AC lgg B

If BC is the base line, with the two stations B and C fixed, dxg,
dxq, dyp, and dyy will be zero, so that equations (2.61),(2.62),
and (2.63) will be reduced to the following:

AL 92y .4
. y oooo..ooo(2|64)
lAB 1AC 143 10 A
I'l (. ql )
deB . —izgod A + lABodyA 00000000(2065)
_ . T2 -2
A6y = + 1 .dx, 1Ac'dyA ceseesss(2.66)

From cquations (2.64),(2.65) and (2.66) it could be seen that the
change in angle A is minus the sum of the changes in the two

directions AB and AC.

Substibuting the cquations (2.64), (2.65) and (2.66) into

equation (2.30) we have:

VA = (VAB - VLC) = deA - kA ooo-oaoo(2-67)

where, k, = (“AB ¢,n) = (wAB = ¢AC) =6, - B

FYeey =9

Thus v, is obtained and v and vp may be deriwved similarly.

Correction equations for the problem given by figure 2.12 will

be given by the matrix:

., I r q q .
VA = 1 - 12 -( 11 - 12 ) jdxp - pkA
1.8 AC AB AC -
il a1
V. - + ay. k
T2 Z 92 K
V, +
C i lAC 1AC r
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Components of normal equations are then given by:

4

B L Pyl s R Y- E -
B Lo’ iz et iz e’ Lz L
: z
1N " _ 1% |
s 118 i i3 1 i
ra T2 * _ T2 G i
lac Iac : Tie Tag !
!
A %ym 0 Ty 4 24 | % )I
s lae” Lis lac’ i lac” 1as 1 |
_a | a9 f
1az las | 1as am
| \
g 92 T2 | R 4o ;
! lac lac : lac Iac ;
| r r
K o= - (- - 22).k, |
} Tas Iac A
|
! ]’31
3 + "I‘"‘ABokB !
‘;
H r
, - 2 uk
| Tac  © .
;_ — _7: nooootoooo(2.69)
‘ a1 do %
A+ ( - )k,
s dagt A
t
| !
| a1 ;
AR S :
; 15 kB .
{
2.1

2¢5.2.2. HMechanical Relationships Between Different Quantities

Represented in the Mechanical Analogue

For the same mechanical problem, since stations B and C
are fixed, there are two fixed supports at B and C, with station
A allowed to move. Also using the superposition theorem, we have
the following.
In figure 2.1%a moment My = 1 is equivalent to an effective
force at A = 1/1,¢ and a reaction at B = 1/1pg. Similarly in
figure 2.13b MNp = 1, which is equivalent to an effective force
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equal to 1/1,p at A, and a reaction force = 1/1zy at B. For
Iy = 1, two effective forces will be acting at A equal to l/lAB
1/1AO in different sense to those produced by My and M,
for equilibrium reasons.
The problem will be solved by finding out the displacements 6x
and Oy of the station & which is necessary to reduce the strain-
energy to minimum, or in other words to find out the displacements
which satisfy the equilibrium conditions, ¥{ = 0, XY = O, and
I = O. The change in angle 6 betwecn any two sides is the result
of:

(1) A deformation in the elastic unit representing the angle

due to the moment applied.

(2) A movement of the free end of the station A.
Expressing this change in the mathematical form using equation
(2.9) to give the change due to the translation of the frece

station 4, we have:

r r o] q
r q
= = kp = et L
VB = kB lABodXA + l od:‘]A 000-00000(2.70)

r
vg = - kg + 12 CXp - —%g—.dyA

If £ is the stiffness of the elastic angle, therefore:

I = vy cevessnasa(2.71)
and, M = 8.Vy
when g(the weight) is taken unity,
therefore, M= vy
and acting foreccs as a result as this moment will be equal to
M/L. To obtain the componcnts of these forces in the directions

of coordinates x and y, equation (2.7) is used, thus we have:

%% = p(FL - T2
=5 2 - ).V
1 ( 1xB 1ac A

L R

on.ooooo(2o72)
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r—l—*
>
o)
r"'
@

O

(a) B (b)

Figure 2.13

Substituting equations (2.70) into equations (2.72) we have:

X

T >

= (053 1AC)[ ey +( AB Tyo) x4 - (15 1A.B '1—) 4ya]
r r

- =Lk, - 2L .ax, + 2L .ay.] +
Ipg B Ipg A It YA
Ir r q
2 [ 2 12

+ —= "k + .dX - '—-——cd 0000-00(2073)
Tpes © 7 It R T I Vsl

I o N 1 _ T A ! o T
g -1 =% * Tt T Trg) 3%
r

__[(1“1_2)1_ )+r1 q1+2q2],
Tos - Tac)“Tas - Tac Tas 1o © “Tac  Taci A

I‘l 1‘2 I‘l r
“[('IE - &)y - sk +—I§E.kc} cevenss(2.74)

Similarly for the other component of forces we have:

[ ) (L Y-l Ta o, 22 T2 q 4y
TAc I8 IAC Tp5" 1pB Tpao" Iac A

d1 do ay hl d> 4dp

+ (____.._.___)(._.___.___) _,.___4.____..,___..

U - T T ™ o T,5" Ta5 * Tac  Tac A
Q3 5 _ 1 2

-+ " cm—— .l\_ —-———-.k + ok EEEEXEEXX) 2

[( 1,5 T ) R " c] (2.75)

Bquations (2.74) and (2.75) when put in a matrix form will show

that

Same

they are identical to equation (2.69). TFor larger nets the

procedure can be followed, to show that mechanical system

is capable of giving the same solution given by the mathematical

forms.

Identity between equations (2.74) and (2.75) and éjuation

(2.69) shows that the normal equations in the mathematical

solution correspond to the equilibrium conditi®ns in the mechanical
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gsolution, i.e. correspond to X = 0 and XY = O.

2.3.3. Physical Reprcsentation of Angles

Figure 2.14

The dorivation of the above equations take s inta'account
the different readings of a: certain bearingataken'éﬁ”both ends of .
a line, c.g. ViR # vBA * 180°. The physical representation of
this consideration may bc understood by the diagram given in
figure 2.14.

If we consider forces acting at the joints A, B, and C, the
effect of the sum of these forces will be obtained by assembling
the,pieces..of ‘this figure. When this representation is assembled
the six component sides will represcnt the threc sides of the
triangle concerned. This will be the only way of representing the
different rcadings for the bearings at the two ends of a single
line. Thec idea of the mechanical analoguc is to find a way of
constructing a model rcpresenting this assembly, and make this in
such a way that it can produce an adjustment according to the law

of cnergy conserved.

2¢3.3.,1. Joints of the Mechanical Network for Triangulation

4£d justment

To represent an angle in the mechanical network, the size
of this angle should have the value obtained in the field. As
Observations obtained from the field arec always adjustable, the

way to represent them physically is to introduce them in an elastic
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férh which aéoepté deformation.

To elasticallyrestrict the size of an angle, produces a
partial rigidity and conserves energy. Differential deformation
is required therefore to allow digplacements necessary for
equilibrium position. To allow displacements in a net where
strictly straight sides are necessary, joints should be very
flexible.

The partial rigidity produced depends on the stiffness
of the elastic units used to represent the angles, but this
rigidity must not be too great or the sides will wot be kept
straight when a bending moment is applied.

Flexibility combined with smooth movement and rotation
which release the excess energy conserved in the elastic joints
at different stations is the main object of the construction.
When such joints are constructed the resulting deformation in
the springs will give the corrections reguired for the adjustment.
So the mechanical features should not stop the nodal points
from moving to the required positions in order to reach the

state of the minimum strain-energy conserved.

2+.3.4. Mechanical Components for Constructing the Analogue
for Adjustment of Triangulation Nets

In the field survey it is essential that:

(1) A theodolite having sufficient accuracy for the work in

hand should be employed.
(2) New stations must be connected to existing coordinated points.
The result of the theodolite observations will be a set of
readings which will contain errors. The next stage is to adjust
these readings by solving a set of linear equations for the
different observed quantities. As shown before these equations
will be solved for the purpose of distributing the discrepancy
between observed and calculated quantities.

The mechanical adjustment by the analogue duplicates these

procedures, ensuring the distribution of the discrepancy according
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to the least squares (least energy) theorem. The linecar equations
solved in the mathematical metrod are those obtained from the
observations in the field. To avoid having to introduce these
linear cquations to any computing system, mechanical analogue
should be assembled in such a way that it is identical to the
observed net. This requires that directions have to be represented
physically by straight mechanical members in such a way that these
will not be affected by the procedure of adjustment, (i.e. they
must be kept straight, as'in the initial asscmbly)s The

angles are representcd by the intersection of the individual
members representing the directions, which are connected by
suitable clastic components.

Existing and new stations have to be located physically
and analytically in a cocrdinated system. In the former case it
is plotted on a sheet of graph or other sgaure paper. The
mechanical members representing the directions have to be set in
the corrcct directions. In this case a circular disc which -
represonts the horizontal circle of the thcodolite is used. The
disc will not be expected to give exractly the same readings as
those obtained by the theodolite, but it will do so accurately

enough for the purpose.

O =DISC @ =ELASTIC UNIT — DIRECTION OF MECHANICAL SIDES

Figure 2.15

The individual components will be discussed in more detail later,
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but this introduction will suffice for the moment. A typical

net of the type described is cuiown diagrammatically in figure .15

2+.345. Mechanical Representation of Angles and Directions

Adjustment of angles and directions are known to be two
alternative methods for adjusting triangulation nets. Using
mathematical solutions the difference between using either of
these methods is insignificant, as there is hardly any difference
in results. The main difference is that the adjustment using
angles is generally regarded as being quicker in practice as it
involves less computationg. Using the mechanical analogue the
construction of the joints when using one method will be totally
different to that required for the other method. Both methods
have their advantages and disadvantages.

The main advantage of using the angles method of adjuétment
i# that it avoids the station corrections which seem to require
extra computation. The main snag is the complication in the
construction of these joints, which adds extra weight at every
station, and so caused difficulties in movement of ' the appropriate
elastic units unless undue force is applied. Another disadvantage
is the complication of the mechanical features required in using
two different sides to represent one direction as mentioned in

2.3.3, This is really so complicated as to be impractical.

The main advantage in using the direction method of
adjustment is the ease of construction of these joints as compared
with those required for angles. The circular disc acts as an
adjusting device which can be subjected to all forces acting
at one joint. Another advantage is that the use of the two
mechanical members in the analogue gives an exact representation
of the two rays observed at each end of a single line in the
field.

Both possibilities fr~ adjustment have been constructed
to see if these apparent advantages and disadvantages are realised

in practice.




- 108 -

Whether angles or dircctions are to be adjusted a mecha-

nical analogue simulating the triangulation net must have the

following:

(1) Control Points. (2) Elastic Units.

2.3¢5.1s Control Points

Lixamples of these may be primary stations acting as control
for secondary nets, or Laplace stations for primary nets. These
points are fixed mechanically while translation of the other
stations is allowed. The ranidity with which the final values are
reached will depend ta a considecrable extent on the number of the

control points and on their location and distribution.

2¢3.5.2. Blagtic Units

The type of elastic unit to be inserted in the joint
constructed is very important. The size of the proposed analogue
must be limited both because of weight and the sheer difficulty of
opsrating a physically large device. In addition, with a large
system of some weight, elastic system of considerable size would
be necessary, which would make it very difficult to insert small
angles or small values of the directions.

The use of the different types of elastic units is
discussed in the following:

(i) Flat Clock Springs: The first possibility is the use of a

flat clock spring, the centre of which is attached to a
spindle representing the point and the free end attached to
one direction(the side). The direction of each side has to
be set using this clock spring, but there are considerable
difficulties in producing graduated clock springs for this
purpose, and even further mechanical difficulties occur in
making connection of the flat clock spring to the sides.

A circular disc may be used for setting, but its connection
and relation to the spiral clock spring is very complicated.
A1l the other directions observed at a point will also have
to be represented by other clock springs acting about the

. B
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same vertical spindle and +ius pose still -
further difficulties
Because of these difficu’ ties flat clock

springs do not appear to offer a praciical

‘ Figure 2.16
solution for the representation of arngles in
a mechanical analoguce.
(ii) Coil Springs: The H
familiar coil spring G A =
with a constant diamdter E_. jﬁ. n_E_ﬂ
_ (2
has been considsred both (a) ELEV. OF THE CONNECTION
as a tension and as a (1)-SDE a  (2)= SPINDLE  (3)=HORIZ DISC
compression spring.
Figure 2.17 shows how .
such a coil: spring may C)
be connected to sidz a
and to the circular dirc, (o} < o)
The action of the spring
will be due to the rota- )
tion of side = Gtowards (b) PLAN OF THE CONNECTION
the vertical scrcws.
Figure 2.17

() Tension Springs:

Tension springs can be inserted directly as shown in
figure 2.18. There is no nced for any extra wire to keep
the spring in position, as the connection of the initial
assembly of an analogue regquircs preliminary tonsioning
of the spring to give it the spring action wanted. The
disadvantage of using such a spring is that when side

a moves towards one dire¢ction such additional stretching
could rcsult that one of the springs rcaches the critical
point of elasticity and docs not zct as an elastic unit
in the analogue. The power obtaired from such a spring
depends on its stiffness together with the limit to which
this spring can be initially pulled, which depends in

turn on the length of the spring, and again on the size
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of the joint. This special type of s»nrings has been used
in the experimental ans” tgae for angles adjustment, where
the sizc of the joint was large, and long springs were

usecd.

(b) Compression Springs

In figure 2.17 springs mey be conpression springs,
but in this case a special wire, figure 2.19, has to be
used to ensure that the compressed springs act in the
direction of rotation of {the circular disc. This will not
cause any extra difficulty provided the design is such
that the wire itself is not compressed or interfers with
the forces applied, as shown in figure 2.19, when the size
of the joint is small. On the other hand the difficulty
of comnection will be incieased if the size of the joint
is largs, as the wire required for guiding the long
compression spring has to be stiff and exactly circular
throughout its length.

The compression spring does allow the full strength
of each spring to be uscd. Also such springs are usually
constructed to allow full compression without loosing
any of its strength. Conmpression springs are used in the
final construction of the mechanical analogue for the

direction adjustment.

(iii) Flat Steel Springs: This is a piece of .specially tempered

stecl which would appear to require a simple small conn-
cction and to offer the facility for adjusting numereous
directions at a single point. This has been tried exper-
imentally, e.g. in figures' 2.20 and 2.20a the rotation
of the direction a is detecrmined elastically by the two
flat steel springse.

The connection is relatively small when compared with
that of figure 2.17, bu.. certain difficulties prevent I .
the successful use of this tvpe. These difficulties are:
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) Since it is mounted at one
end of each side, this type

of spring does not havc cnough

e ——

(3

(Ble— & s)
elastic power to translate (4¥ | | I
(2]
the joint at the other end
of the side. (a) ELEV.OF THE CONNECTION
) The clastic effect of this (1):SDE 2 (2):SPNDLE (3):HORIZ DI5C

type of spring on the side is
greatly affected by the ver-
tical position of the side
against the spring. Since

the sides have to be connected
at different levels, the

clastic effect will not be (b)

PLAN OF THE CONNECTION

equal. (4)=STEEL SPRING _
(5) :DIRECTION OF ACTION OF THE SPRING

The Tfirst difficulty

might bc overcome perhaps by Figure 2.20
utilising some special type of
stecl made up for the purnosec.
A _ A B B
VAl [ 5 = 1 gﬂg
O O
_A4) [144)
(1 | IA5) OGN, (2 i (3 [ 3)
1T | AL AL
-
1 ]
e : = < b3 L — < [4
(b) SECTION (a) ELEVATION (b) SECTION
1) HORIZONTAL DISC, (2) SHORT SPRING FOR SIDE 1, (3) LONG SPRING FOR SIDE 2, (4) SIDE 1, (5) SIDE 2
Figure 2.21

However it appears impossible to avoid the second difficulty

for this particular design of the analogue. As a result, one

side of the two representing the two directions obtained at both

ends of a line, will be clastically affected at both ends, while
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the other onc will be affected at one end only. This can be
secn infigure 2.21.

240 EXPERIMENTAL ANATOGUR FOR ADJUSTILNT OF ANGLES

Bearing all the above cuonsiderations in mind a mcchanical
analogue has becn constructcd. This is shown In figures 2.22

and 2.22a.

A D 25 Y, D

(a) SURVEY NET (b) CORRESPONDING MECHANICAL FRAME
"} =HORZ. DISCS OF THE SAME No. AS THE SIDES AT EACH JOINT o = SPINDLE
Figure 2.22

Turning to thc individual conrponents we haves

(1) Short slecves, figure 2,23, which can hold the sides

clamped or allow completcly frec movement, in the

direction of obser¥ation. Rollers are used to assist
this movemenit. The sleeves are provided with collars
to make a connection with the corresponding vertical
spindle when the tensile force is applied.

(ii) Two horizontzl discs, figure 2.24, or a disc and an arm

which are provided with collars connecting them to the
corresponding spindles. Again this connection should
have a clamp against slipping.

(1iii) Two spindles, figure 2.25 of two different diameter#,
one which could be inserted exactly inside the other.
Insertion in this case should allow free rotation, with

minimum friction,
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i.e. the force applied should be exerted fully on the two sides.

(iv) Two tension springs, figure 2.26, connected to the two

discs. A proper connection of these springs is given in
figure 2.27.

(v) Two direction arms (sides), figure 2.28, which can be

inserted inside the sleeves. These should not allow any
appreciable elastic deformation, so the sides used are of

the width that can resist any lateral bending. The thickness
of the sides is of less importance, but this should be

chosen to suit the clearance of the sleeves. The sides
should be of minimum length necessary to avoid adding extra
weights to the joints.

(vi) The stud, figure 2.25, plays a major part in the constr-
uction of the elastic joint, as it is the pivot to which
all mentioned parts are connected and so to represent mech-
anically the station in the triangulation net. It is made

up of (a) A circular base-plate which is necessary to prevent

the joint from being turned over or tilted when forces or
moments are applied at the joint. This should also have a
smooth undersurface to prevent frictional forces from
becoming significant against the working forces.

The accuracy of results depends to a great deal on such
achievoment, and so the undersurface has been made hollow.
The frictional forces also depend on the weight of the joint
itself. (b) The spindle, waich is attached rigidly to the
base-plate and has an external diameter equal to the inner
diameter of the inner collar allowing a free rotation of
one around the other. (c) Long pin of hard steel, which
is introduced into the hollow spindle to fix it to the base
board in the case of the control points and to mark the
position found after the adjustment in the case of the
new stations to be fixed.

(vii) The setting discs,figure 2.24, these are the horizontal

discs mentioned before, and are used as setting protractors.



3 Inches

7 cms.

figure 2.26

figure 2.28
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A small channel shaped motal piece with a clamping screw
can be set at any position on the circumference of the disc
as indicated by a fine mark which is set against the required
angular valuc. The two tension s»rings are connected to
this piece as shown in the figure.
In figure 2.27, the flexiblc joint is asscmbled to show
the conncctions. Beside the above mentioned components, there
arc clamping screws necessary for inserting the springs, and
tightening the connections between spindles, discs and sleeves.
The spindle height is made so that it allowes the assembly of
the components necessary for adjusting three angles at one station.
It must be said here that the construction of the
experimental model is much too heavy, so that the results obtained
were perhaps a little less accurate than they could be, but most
of all, the weight and friction resulted in more iterations and

computations than would be nccessary in a fully developed version.

2.4.1. Weights Applied to Observed Anglcs

The accuracy of observations in the field normally affects
the weights used for the adjustments of these observations, but
the weights here will be considered unity. The validity of this
consideration is based on the conclusions drawn in l.3.2.1 as
this has been theoretically accepted when the adjustment of the
combined net is considered, in which case it is also justified
for adjusting angles only. Computers prefer to use the same
weight for simplicity and for the reason that the observational
equipment is now so improved and the accuracies normally achieved
are so high that slight difference could be casily neglected.

So all angles will be given the same weight and hence the springs
used will be of the same stiffness and length. Even if different
weights were accepted it would be necessary to give the angles
unit weight for the following mechanical reasons:

(1) The space which can be al.iowed for the springs used is very
restricted, which prevents different lengths of the same spring

being used to represent these different weights.
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(2) Springs of equal length, but of different stiffness, can be
considcred, but it was very difficult in practice to obtain
sufficient reliability in springs which are normally available.
It is also very difficult to obtain a sufficient range of
springs of varying stiffness to correspond to all the weights

which may be encountered.

2.4.2. Working Procecdure

2efealale Preparing the Working Surface

The computation is carried out on a plane horizontal wooden
surface such as plane chip board. This must allow the pins to be
fixed with a minimum of cffort, when marking the new stations
after each iteration, or fixing the cantrol roints on the working
board. Tor fixing or marking points a light hammer can be used.
The area of this working surfacc must be large cnough (say, 1.5m°)
to allow the adjustment of different problems of varying area.
However this arez should not be so large that it might be difficult
to shake the board .as this is nccessary to releaée any forces that
may not be working due to the friction betwecen the board and the

base plates. The weight of the board must allow this vibration

and not be deformed by it.
2¢4¢2.2. Reference Grid

Rectangular graph paper is used to provide a reference
grid for the necessary control points and the computation which
follows, so that the accuracy of this representation will be that
of the graph paper itself. Normally millimetre graph paper is
used, and in practice becausc of the pin hole size and the
mcchanical limitations 1.0 attempt has been made to gﬁgﬁ off values
better than this. If one millimetre representsonc kilometre,
(i.e. 1 : 1000,000) then any fraction of the kilomctre will be
neglected in this first assembly. However with each iteration
the plotting scale of correct’on is progressively enlarged {e.g.
131000, 1:100, 1:10, or ecven 1l:1). So thore is a linear reference

scale 8y, which should be fairly small for plotting the initial
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position of the control points. The correction scale (SC for linear
values) will be that of the reference scale 51, at the first assembly
but will become progressively larger as each iteration is made.

SA is the angular scale and will be equal to SC/SL in each case.,

2.4.2.3. Choice of Linear Reference Scale (Sy) of the Net

A small scale has the advantage of reducing the weight to
be translated under the effect of the lateral forces acting at the
different stations. A larger scale means longer rays, and conse-
quently longer mechanical pieces. As the new points to be fixed
by the mechanical analogue have to be translated by lateral forces
acting at different stations, the scale used affects these forces
considerably. For instance, if M is the moment acting at one
station of the mechanical .side, the other station will be trans-
lated due to a force = M/L, where L is the length of the side.

As has been seen M is introduced by the tension applied between
the two horizontal discs due to the contradiction used, and the
elgstic unit used will be of the same stiffness irrespective of
scale the moment applied will be the same = unity (say). Hence
the force acting and causing the translation of the different
joints will be inversely proportional to its distance from the
point of application of the moment in consideration.

The ideal case is to reduce the length of the sides to
a minimum. The choice of the minimum length used is restricted
by the size of either the base plate or horizontal discs used.

So the necessary length of a side connected to two horizontal
discs can not be less than (2r + 8), for the shortest side in the
net, where r is the radins of the horizontal disc and & is the
maximum displacement caused by the different iterations required
for the adjustment. Practice and experience with the experimental
analogue show that the minimum length of a side used should not

be less than 3r.
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2.4.2.4. Setting up the Zero Assembly

The zero assembly or initial assembly represents the
observed quantities at scale Sy and as already mentioned this will
be the same for the zero and every other assembly. The angular
values represent the observed angles in the mechanical net and can
only be set to +0.5° in the zero assembly. This is due to the
fact that the disc will not be graduated to finer than 0.5° unless
a disc of much larger diameter is used for the assembly, which is
not desirable.

Setting the zero assembly results in the approximate
location of the new points at the intersections of the sides.

The coordinates of these points of intersection are obtained from
the graph paper, and normally will be checked against the more
accurate preliminary values obtained by calculation. The latter
are preferred in order to save some iterations during the process
of adjustment.

As the location of the points of intersection depends
mainly on the direction of different rods, the difference of the
height of ©both ends of the same rod will not affect this
location provided that the spindles remain vertical. Sometimes
due to difficulties in mechanical setting, it is advised to have the
sides slightly inclined to the horizontal direction.

After assembling the dirction rods, and connecting the
different joints using the original observations, the working
surface together with the zero assembly is slightly shaken. To
achieve this properly, the. surface of the board is beaten by hand
in a rapid drumming action. So releasing any strain that might
be created by the assembly of the mechanical analogue.

The approximate positions of the stations are then marked
by inserting the long steel pins through the hollow spindles and
pricking through the graph paper. The assembly is then disconnected

to mark up these positions and scale off coordinates.
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2.4.2.5. Computation of the Angle Discrepancies

The scaled coordinates are used to calculate the directions

(z), as for example from figure 2.10,

tanal 2 = Xg—:—Zl
- X2 - X1

and angle B, = ay_z = 03 5

S0 the difference between the observed and computed values is

obtained.

2.4+.2.6. Choosing the Angular and Linear Correction Scales

This is the angular scale at which the discrepancies are
introduced to the analogue. In determining this scale, it
must be kept in mind that to obtain high accuracy using a
mechanical analogue based on the method of systematic relaxation,
the contradictions (discrepancies) must be introduced at an
appropriate scale, which is neither too large or too small. If
the contradictions are too large, the translation of joints
will be fairly large too, this means that large values of stress
and strain are introduced. In this case the relationship between
stress and sticin of the elastic material may not be a linear
one, which means that there will not be a linear relationship
between contradictions introduced and the resultant translation
of the joints. If the scale is too small the contradictions
introduced will not give appreciable translation to the joints.

The angular scale will of course be changed for each

successive setting of the mechanical analgue. For example,, in
the first assembly an angle 156° 23' 30" will be set as 156° 30',
the angular scale is 1l:1. When a difference (say +5") is
calculated between the observed and computed angles as given
above, then this difference and those for the other angles will
be inserted at a larger angular scale(say, 1":30', i.e.1:1800)
and the new setting of the angle will be given the value of
156° 30' + (5x1800):= 156° 30'+2° 30' = 159°. The introduction

of the difference to the mechanical analogue in this way is known
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as the contradictions. In practice when 1" was represented by 30
for the first iteration, then 17:1° (1:3600), 1":2° (1:7200), are
found to be convenisnt for the successive iterations without any
excessive strain being produced in the springs.

The relationship between linear scale Sy, angular correction
scale Sy, and the linear correction scale Sy can be explained in
the following,

The larger the linear scale Sy, the larger will be the amount
of translation of joints. Also for the effect of the angular
correction scale, the amount of linear translation of joints will
be directly proportional to the quantity introduced in the form of
contradiction, hence the linear correction scale.

If Sy is the linear correction scale used to convert the
scaled units to the actual units, therefore SC = SL'SA° Sy, will
be fixed from the start of the computation process, and Sc will be

varied according to the change in 3,.

2.4.2.7. Computation of the First Correction to the Observed Angles

Having decided the angular correcticn scale Sp and hence
the linear correction scale SC’ the mechanical analogue is
re-assembled to give the first correction to the approximate
coordinates. Thc same procedure is followed as before, but with
the contradictions introduced. The working surface is again shaken
properly to overcome any resistance to the forces acting on the
mechanical pieces. When the analogue has reached the position of
least energy conserved (when..it has ceased to move) the new positions
are pricked with the long steel pins. Then the coordinates
differences between the initial points obtained from the zero
assembly and those obtained by the new assembly are measured and
given the symbols 6xy,8x5,8yy, 8yo, etc.... 0%, and &y will be
positive if the joint translates in the positive direction of x
and y axes,and negative if it translates in the negative direction.

The corrected direction will be obtained from the formula,

_ (Y2 + AYZ) - (yl + Ayl)
T Txp + bx2) - (x1 + Bbx1)

tana12
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where A4x = Sp.ox, and Ay = Sp.dy
From the new values of ajj,and a3 the new values of the angle 65

will be obtained.

2.4+2.8. The Iteration Process

Usually the steps given by 2.4.2.6, and 2.4.2.7 with the
new contradictions are repeated to reach the final solution. Due
to mechanical and graphical limitations the final adjusted walues
cannot be obtained from a-‘single iteration. The improvement
obtained after each iteraticn should be appreciable, practical
experience on the analogue shows that normally the largest
discrepancies are reduced after the first iteration to ‘a f£ifth
of their original values. This could reach a tenth of their
original values in certain cases.

The iteration protess should be ended when no further
improvement can be obtained, i.e. when the angular values obtained
are the same after two successive itcerations at least to within
the order of correcctions appropriate to these observations.

The number of iterations necessary also depends wery much
on the number of control points and the size of the problem to be
adjusted. Mechanical limitations of friction and weight are usually
the main reasons for having to increase the number of iterations
necessary with larger problems.

The number of each iteration being given in different

colour for each successive set up.

2.4.3+ Practical Examples

Results using the experimental mechanical analogue for

adjusting angles of different examples are given below.

2¢4.3,1. Adjustment of an Equilateral Triangle

The simplest problem to be solved is to find the corrections
to coordinates of a triangle, such that the corrected coordinates

would satisfy the angle condition, IBy - 180° = 0,
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The least squares solution for such a problem is found by using
Largange multiplier, for the correction cquation,
a10691 + a20692 + 33.563 - k = O oonooo..(2.76)

the correction will bo:

{ oK
66 - all
£a2
1

where —5—2 is the multiplier.

28.1

The solution of the triangle, where aj = ap = az =1 is

I
50y = 88, = 665 = £

Another way of obtaining the corrections for angles is by
mathematically adjusting the coordinates by variation of coordinates
mcthod and then computing the angles.

Using the mechanical analogue, the base line AB is fixed
by tho two fixed stations A and 3, the three observed angles are
set on the horizontal discs, and the initial positions of points
are obtained. The contradictions bectween the observed and calculated
values of the three angles arc introduced to the appropriate joints.
The joint C will then move to its equilibrium position, so that
the corrcctiong to its approximate coordinates arc obtained. The
threc observed anglces are:

A = B = C = 59° 59' 59900
The base line is given by the fixed coordinates A(0.00, 0.00),
and B(50,000.00, 0.00), approximate coordinates of the third
station C is given by (25,000, 43,301).
Using the least squares method for the solution of this triangle
and applying equation (2.76) we have:
(179° 59' 57" + 8671 + 862 + 663) - 180° = O

and, 681 + 86, + 665 - 3" =0
therefore 66 = 86, = 693 = % = 1"

The solution of the same triangle by the mechanical analogue yields
the following coordinates (25,000,00, 43,301.31), the corrected
angles being A = B = 60° 00' O0%05, and C = 59° 59' 59%90.

These results are obtained with a minimum linear scale Sy allowed



- 122 -

by the horizontal dises (AB= 7.5 ins.)

Since the mechanical triangle satisfies the angle condition,
By = 180° exactly the amount of computation can be reduced,since
only two angles of the triangle need be computed, the third one
being obtained by subtraction of the sum of these from 18C°.

As the analogue used is only an experimental model, the
required solution was obtained after the third iteration process
which is a very lengthy calculation when compared with the casy

and quick way of the least squares solution.

2.4.3.2. Adjustment of a Parallclogram Figure with One Diagonal

The purposec is to find out A D

the change in the corrections
obtained in the example solved in

2¢4¢3.1. when another identical

triangle is added to it, figure 2.29. g4l C
A] = By =C3 =59° 59' 59".00

A, =Dy, =Cy, =60 00 O01.00.

Coprdinates of the base line AB are Figure 2.29

A(0.00, 0.00) and B(50,000.00, 0.00).

The calculated coordinates obtained from approximate obscrvations
are C(25,000, 43,301), and D(-25,000, 43%,301).
Solution by the least squares is obtained by satisfying the angular
conditions of the two triangles in separate stages. This solution
gives the following correctionsy 04y = 8By = 6Cy = + 1".00
and 8A, = 8Dy = 8Cp = = 1".00
Procedure of computation by the mechanical analogue is exactly the
same as before. The angles corrcctions obtained being identical
after the fourth iteration, when the corrccted coordinates were:
¢(25,000.03 , 43,301.32), and
D(-25,000.03, 43,301.39).
Results obtained are more accurate than expected from such a

heavy and complicated mechanical model.
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2¢4.3.3. Adjustment of a Braced Quadrilateral

As compared with the previous

example two different triangles are :
used, figure 2.30. B
The angles used in the problem are:
A; = 32° 18' 19".00
By =91 01 43.00
C, 556 39 57.00 C
=179 59 59.00 D
and, Figure 2.30

A, = 42° 55' 02",00 B
D, =53 50 57.00
02 =73 14 02.00

L =180 00 01.00
The fixed coordinates of the base line AB are (0.00, 0.00) and
B(0.00 , 40,000.00). The approximate coordinates C and D from
computation are €(25,582 , 40,459) and D(52,204 , 13,771).
Results obtained by the least squares solution are:
8Ay = 68, = 8C; = 0933, and 6A2 = 6D2 = 602 = - 0V33
The corrections to angles when using the mechanical analogue are:
8A; = + 0V40, 6By =+ O¥70, and 8C; = - 0O¥10
and 8Ap = - O¥30, &Dp = - O¥70, and 8Cr = OVOO
obtained when the coordinates are C(25,582.70 , 40,459.43) and
D(52,204.50 , 13,771.09).
Results obtained for this example are different to those obtained
by the mathematical solution.
The reason for this difference is not a mechanical one
at the joints as the connection between sides allows the same
mechanical effect on the two sides of each angle, independent of
the size of the angle itself. The only possible reason seems to.be
that the joints of this experimental molgl are toc heavy to give
the properly translatory movement when the angles are very large

or very small. Probably very large forces will be needed to produce
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appreciable movement of some joints in this configuration.

2e4.3.4. Adjustment of a Doubly Braced Quadrilateral

When a doubly braced quadrilateral is

adjusted, three horizontal discs have to be

3
mounted and connected at all four points instead 2§ §3

of the two required in the previous pair of
examples. This adds to the weight and the
complications of the connections. The connection

Figure 2.32
necessary at a single joint is shown in figure

2.32. Obviously the difficulties over the translatory movement
can only be overcome if the weight is reduced to a minimum.

Only in this case would better results be achievod.

2.4.4. DPossibilities of Using the Mechanical Analogue for

Ancular Adjustment

As can be seen from the details of the construction the
mechanical analogue for angular adjustment is complicated and lacks
the real representation of the observations in the field. As
mentioned before, the construction of such an: analogue tries to
produce a model which will allow direct forces to act between the
sides of an angle, so avoiding the necessity for station correction.
The work with the experimental analogue recounted above showed
that:

(1) Real observations are not represented. For instance, the
direction observed at both ends of a side requires two sides
in the mechanical representation. This necessitates the use of
twice as many mechanical pieces, as would be required for the
construction of an analogue which did not include such a

eonsideration. Thetextra mechanical pieces mean heavier and

more complicated models.

(2) As tho complexity and therefore weight increases,larger
forces are found necessary to translate joints and these cause

excesgive strain on the elastic unitse.
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(3) A centered point figure in a net reguires the following
mechanical connections if all possible angles are considered

at this station.

(@ (b)

(a’) (b') (c") d’)

Figure 2.33

In figure 2.33 (a) two angles are derived from three
observed directions,and in figure (b) three are considered.
The mechanical connections for these are given in (a') and
(b') respectively. In both figures the mechanical repres-— -
entation has the same sides but the number of elastic units
will vary due to these different considerations.

If all possible angles are considered at the central
point, the number of the mechanical connections required for
adjustment will increase very rapidly. For instance, if all
possible angles derived from four directions are considered
six connections are necessary as given in figure (c). For
five observed directions the number of connections which will
represent all possible angles will be 10 as shown in figure (a).
Table 2.4, shows the rapid increase in. the number of connections

as the number of directions increase.
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Number of observed | . - s .o
directions = n Number of mechanical connections
2 1 = g(n-i) =1 '
4 1+2+3 = 5(n-1) =6
5 1+2+3+4 = n(ggl) = 10
6 1+42+43+4+45 = 5(n-1) = 15
] 7 14243444546 = n(852) = 21

tablc 2.4.

The complications in constructing the mechanical assembly
required for such obsecrvations will be enormouss When fiftecn
or twenty onc forces are applied at a single nodal point the
difficulties in making thce requisite connections between sixzx or
seven discs at this joint will be apparent. The weight is very
great and probably differcnt sizes of disc would have to be
introduccd.

If one abandons the
procedure for deriving all

possiblec angles given above 1

and adopts the simpler 3
procedure of considering

only the angles derived

fron adjacent directions

the number of connections Figure 2.34

required will be cequal to
{n-1), wherc n is the numbcr of directions observed, e.ge. for
four rays there are three angles as shown in figure 2.34.
This reduces the number of connecticns nccessary but still
requires thc same number of discs as before, so that while the
complications are reduced the weight is not.

(4) If further development was carried out, especlally on weight
reduction, some of these difficulties would be overcome and
much better results obtained. However it was felt that the

use of a mechanical analogue for the type described for adjusting
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angles is restricted to rather small nets and even if developed

further it would not bec capable of giving thc required corrections

for a larger survey ncts especially where first or sccondary

order was requircd. It might be uscd for problems of tertiary

nets, but such a restricted use would not justify the further

cffort required.

However this first analoguc did prove that many of the

bagic idcas were sound and that a fresh solution along somecwhat

different lines would be more fruitful.

2.5. MECHANTCAL ANATOGUE FOR THE PROBLEM OF DIRECTIONS ADJUSTMENT

The main purpose of this sccond construction is to
investigate the possibilities of adjustment of directions which
give promise of simpler connections at the joints, less complic-
ations ovcrall and of lighter weight.

The basic distinction between the adjustment of angles and

that of directions is given in 2.3.5.

2.5.1. Analogy Between the ILeast Squarcs and Mechanical Solutions

The analogy between equations (2.74) and (2.75) with
equation (2.69) given in 2.3.2.1. and 2.3.2.2. is obtained after
subtraction of two directions from one another for each angle.
This means that the analogy made for angle adjustment is also

valid for directions adjustment, c.ge.,

r r q2 q2
da, = _L.dx - 2 «AX - ——'—odyA + ndyC 000000(2060)
ACT TIaTA 10T 0 1pc 1pc

When the coordinates of station C are fixéd, equation (2.60)

will be rewritten as,

daAC = iicodXA - %‘dyA oooo.ooooo(2077)

Similar equations will be derived for all the other directions
observed in the net. To solve this problem by the least squares,
the normal equations will be fdrmed in the usual way using the

following observation equations:
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VAC = = (rA + CPAC) + G’.AC + daAC .ooocoo.(2¢53)
For a triangle ABC figure 2.12, with the base line BC the following

observation equations are obtained:

vac = [=(ra + 9ac) + aac] + dapq (2.78)

Vg = [-(r_A + ¢AB) + aAB] + daAB

Substituting equation (2.77) into equation (2.78) we have:

r2 92
.dX - .dy o..ooooo(2c79)
Ipc” A7 a0t A

vac = - kpo 4+

similarly for direction AB we have the following observation

equation:

r
VAB = - kAB <+ l .dXA — "%‘]A-'—B'odyA rooo..o(2.80)

1xB

The normal equations are therefore:

S o r | r Q1 oy ry
A'A = —l,_—i_ - ..__l_.___ K=, .k
| Tap"Tap , ~ 1aB” 1aB |~ TIapAB
: |
F2 T2 _ T2 % | T, |
¢ lag , lac 1ac 1y AC
L - ..(2.81)
-9 . ! 1 91 a_ g
i3 Iap | IaB Ipm Ipp 48
H
2 T2 2 92 92 .
TacIac '+ TacTIac L TIpgtAC
t 3

In mechanical terms equilibrium of figure 2.13 requires that

¥X = 0, and XY = O, and according to equations (2.72),

%x

m — ]( + . dx - ——— o dy ) +

ceesenes(2.82)

il
| mnne AV
e
;
5
Hg
s
5

ro ro q2
+ —4—(- kpo + WdX) = —f—.dy,)
1ac T, & Lac A

(Fi, 91, Fo %

9 m—

L. 2 T2
4+ —=2 dxy -
(15 A I8 1aB lpc lac

. ) 'd'yA
1aB 1pB lac 1ac

r
- ( rl .kAB+ -—-g—okAC) noooooo(2083)
1y 1IN, :
also,
9 I + 22 92 4.4
LY = "(T— lAC -TL) dx, + ( lao lAC) Ia

q
+(_%;-AB'kA-B + -Ti-'c-'kAC) - -000(2¢84)
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By inspection of equations (2.81), (2.83) and (2.84) the analogy

between the mathematical and mechanical solutiors can be seen.
2.5.2. Construction Difficulties

In constructing this new analogue the main aims were %o
avoid the troubles encountered during the construction of the -
first analogue for angular adjustment and to avoid difficulties
over the special features of a direction adjustment such as the
station corrections.

The points to be bhorne in mind were:

(1) The avoidance of the excessive weight in the joints themselves.

(2) The horizontal disc size must be chosen so that the large
linear scale is avoided.

(3) The connections at joints must be as simple as possible.

(4) There must be a full representation of the observed directions.

(5) There must be a simple application of forces at joints.

(6) A mechanical analogy for a'station correction should be
incorporated.

(7) An improved design for elastic unit has to be devised.

2¢De2s1l. Experimental Analogue for Adjustment of Directions

A L)

C

(a) SURVEY NET (b) CORRESPONDING MECHANICAL FRAME

(:>=H0RQ.DSC WITH ELASTIC UNIT  © = SPINDLE

Figure 235
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The analogue design is shown diagrammatically in figure
2.35 and as a photograph in figure 2.36, the basic components of
its contruction are as follows:

(i) Horizontal disc, figure 2.37d4, the diameter of which is 2.5

inches, made of light alloy, and fitted with a coller and clamping
screw so that cach closely fits on the vertical spindle.

Sometimes when the net has small angles or very close directions
an extra horizontal disc has to be added to the smame spindle,

but this does not result in a large increase in the weight at

this speaial joint.

(ii) Hollow steel spindle,figure 2.37c, having an inner diameter

to take the marker pin. This spindle fits into a boss on the
centre of each base plate.

(iii) An elastic unit, which is mounted on the horizontal disc to

give the connection to each direction. The number mnounted on
a given disc equals the number of directions to be adjusted.
Bach unit consists of two pieces. (a) Piece A, figure 2.37e
which is made from a block of aluminuim. A groove is cut into
the block and the horizontal disc is inserted into this and clampede.
This block is connected to a long tongue of aluminuim to form a
T—shaped piece which has two vertical metal posts which are
removable. The distance between these two posts is set to suit
the length of the two elastic springs. (b) Piece B,.figure 2.37f
which is attached to the sides representing the directions.,
It is also T-shaped with a hollow slot cut in the cross piece
into which the side can be inserted and slide freely along.
A rectangular slot at the foot of the upright has a wire inserted
with two eyelets, one at each end to allow the two vertjcal metal
posts from piecc A to be inserted. Along this wire two compression
springs are mounted. The wire is used for keeping the springs
in position so that they act always along a single line.

(iv) Marker pin, figure 2.37b, made of hard steel used to prick the
positions of new stations on the working surface and to keep the

control points fixed in position.



figure 2 .36b



figure 2.38
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(v) Base plates, figure 2.37a, of very light alloy. Fach has a
diameter of 3 inches with a boss (or a collar) into which
fits the vertical spindle, and a screw to act as a clamp on
the vertical spindle.

(vi) Sides, figure 2.37m, to achieve maximum light weight with
sufficient rigidity in the lateral direction, 5/8 inches
Tufnol strip has been used with a slot cut in to accept the
vertical spindle and to allow it to translate along the side
with minimum friction. Various lengths, 8, 11, 14, 17, and
20 inches have been fabricated to cope with the varying length
of side likely to be encountered. With longer strips,
aluminuim clamps are used to prevent twisting or compression or
vwidening of the slot when lateral forces are apnlied. The
material has been fabricated to give smooth surface which
results in minimum friction when movement of the analogue is
in progress.

Ag a first attempt metal alloy sides adopted from Meccano
pieces were tried, figure 2.38, but difficulty arose in
getting long enough sides. When these were constructed from
individual smaller pieces, it was difficult to cut a single
straight slot so recourse was made to the Tufnol, which had
the additional benefit of being still lighter.

The weight of each component is, (i) 18.30 grms., (ii) 4.54

grms, (iii) 12.99 grms, and (v) 40.00 grms. Total weight of
all components at each joint is 75.83 grms. This weight could
be reduced still further to about three quarter of that given.

2.5.2.2. Disc 8ize and Linear Scale

As already discussed the linear scale chosen has a great
effect on the performance of the analogue, in general the smaller
the scale the better the results obtained. As the minimum linear
scale attained is governed by the larger diameter of either the
horizontal disc or the base-plate. These two diameters have to
be chosen with a diameter which is sméll, yet will prevent the

joint being tilted or overturned when forces are applied. A 3
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inches diameter has been used for the basc-plate. In this analogue
the minimum side length is made = 2d, which allows adequate space
for the translation of the joints, than 3r given before,which

gives 2x% inches against the 7.5 inches given before.

2¢5.2¢3. Connection of Sides and Joints

In the first experimental mechanical analogue for angles,
a horizontal disc was provided for each side, so that when the
discs are elastically connected a certain rigidity is induced.
Also each disc required the provision of a scparate spindle.

The system in second analogue is designed such that normally one
disc is sufficient to provide a connection to a number of sidés.
When two of these discs are used, these are connected as a single
unit to the individual spindle which is simpler and allows a
much freer movement than before. Obviously with two discs a
common gero should be retained at all the times during the .

ad justment procedure. This can be obtained e ither by using a
vertical marker, figure 2.37i, or by aligning the two by eye..
In practice the latter is much easier and quicker, while still
retaining the same precision. When the two are aligned they are
clamped together via the spindle which is free to rotate in its
boss.

The simplicity of the connection between a side and the
horizontal disc makes it possible to attach as many as eight
sides, if these are evenly distributed. Although the elastic
joint has the rigid cross piece of the T with two posts which
keeps the two directions apart by an angle of less than 60°, this
angle can be made still smaller (to about 45°) by a special
connection, figure 2.39. In figure 2.40 side a is connected to
the underside of the disc, while side b is connected to the top
side of the same disc. In this case the size of the cross piece
will not have any effect on the size of the angle between the two
direcctions. The size of the block being the deciding factor.
When this special type of connection fails to give room for wery

small angles between pairs of directions another disc has to be



figure 2.40



3 \nch«»

7 cmv

figure 2,42
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added, figure 2.41, and 2.42. This would apparently allow sixteen

directions (eight to each disc) but in practice a reduction to

eight or ten (four or five to each disc) is advisable, because

large = contradictions might be introduced as angular changes

at large scales. If the connections between two discs and spindle

remain really rigid under the different forces applied, there is

no difficulty in dncreasing the number of discs to three giving a

total of twelve directions at one joint. In practice there is no

need to provide for such a number of directions at one station;
six being a practical maximum. So a third disc will not normally
be needed.

Although the double disc functions just as accurately as
the single disc, the following differences will exzist:

1- For ona disc, setting and assembling will be done very quickly
but the time will obviously increase with two discs which affects
the speed of this operation.

2- When a single disc is used, rotation of this disc about the
spindle will be very easy. However when more than one disc is
used, rotation of the spindle itself is’involved, and care has

to be taken to prevent this sticking in the boss.

2.5%2.4. Correct Renregentation of the Observed Directions

Solution by the least squares method is recognised as the
most reliable way of adjustment, since apart from other wvirtues,
it offers the possibility of including every observed element in
the mathematical model during the coﬁputation, e.g. when a direction
is observed and has two different readings at both ends. To
include such observations in the solution of the same problem by
using the mechanical analogue for angular adjustment leads as
have been seen, to0 a very complicated and heavy analogue.

The adjustment of directions by a mechanical analogue is
made simpler since all observed quantities are easily included.
In this case each direction is considered to be a separate element
to be adjusted. Each of the two directions at both ends of the

same line will have a separate correction. The mechanical
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arrangement to allow this is shown in figurc 2.43. In this

figure the side representing one direction is elastically connected
at the first station and freely attached to the second station,
while the other is elastically connected at the second station

and freely attached to the first. The elastic connection of one
side at a station should allow sufficient room for the free end

of the other side to go through the spindle. The elastic unit
consists of the two separate pieces A, and B to allow such an
arrangement. So a correct and easy representation of the observed

quantities in the field could be obtained.

2.5¢2.5. Application of Forces

The springs used for adjusting the angles in the first
analogue were connected to the two separate discs which transferred
the forces to the two corresponding collars and then to the two
component sides of the individual angle. When directions are
being adjusted in the second analogue, connection will be made
directly to the horizontal disc. Thus all the forces applied
will be acting on the same disc and so to all the sides passing
through that point. This is a more direct application of forces

than in the first case.

2.5+2.6.. Station Correcction

As mentioned in 2.2.3.2.2. a station correction is
necessary for the adjustment of triangulation net when using
the direction method. Using a mechanical analogue for the same
purpose requires the same treatment. This could be explained
fully by the following:

The function of the horizontal disc in the mechanical
analogue system is to represent the horizontal circle of the
theodolite making the observations. Setting up the observed
quantity for each direction on the disc can be made to an accuracy
of 30' of arc. In the ordinary least squares solution, the
station correction provides a specific angular shift of the zero

of the theodolite circle to help provide a best fit of all the
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observed directions. Such a shift.is necessary if a single value
for each direction observed from both ends of a line is to be
achieved. The possibility of a rotation of each horizontal disc
in the analogue has to be provided also and must be made under the
influence of all the readings at the different stations. This is

done quite automatically by the arrangement which has been desecribed

2¢5+2.7. Design of Hlastic System

Since the analogue must be kept as small as possible, only
limited space exists for inserting the elastic units. The springs
chosen therefore have to be short, figure 2.37f. Considerable
work was carried out on different types of springs and on different
possible arrangements.

Flat steel springs were connected vertically along the
vertical sides of the aluminuim block to0 straddle the side, to
provide the elastic change required. These springs have such a
small elastic stiffness that even the light joints were not
translated properly.

Tension springs showed the same difficulty in use due pastly
to the necessity of also keeping the two springs under tension
all the time.

Compression springs are found to give suitable translation
to the joints but as already seen they require the introduction
of a wire to guide the line of action of each pair of springs.

The wire is chosen to satisfy the purpose only, i.e. stiff enough
to withstand deformation due to applied forces, and light enough
to share in minimising thc weight. Also they have to be soft
enough to allow easy workability to give the alight curvature

necessary as a route for a point moving on a circle.

2.5.3. ¥Working Procedure

Much of the procedure given in 2.4.2. for adjustment of
angles is followed with one or two additional steps due to the

rather different design.
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2¢5+3.1s Use of a Separate Sctting Device

Connecting several aides to one disc in a convenient way
requires that a separate sctting device should be used, figure
2.37Tk. This is rather similar to the disc itself and consists of
a protractor mounted on the usual spindle. When only one horizontal
disc is required, all the dircctions are set by refecrence to the
protractor using the fine mark on the block of the elastic unit
as an index. They are then clamped to the horizontal disc. With
two discs it is obviously necessary to use the common zero with

mark on each disc, but this plays no part in setting a single disc.

2¢5¢342¢ Calculation of Directions

The calculation of contradictions will be also different
to that given before, and has the merit of being simpler and
involving less computational work. In this case,

_ﬁyg + Ayo) - (Y;7+ Ayq)
(Xz + AXZ) - (il + AXl)

tanal2

where x and y are thoee given in 2.4.2.7.
The contradictions will be the difference between, for
example a calculated direction from the coordinates to be corrected

Q10 and the corresponding observed direction P10

2.5.4. Lxamples

An example given in Survey Adjustment and Least Squares
by Rainsford, p.l74, has been solved. One component triangle

CDE was solved first. The given data areas follows:

Fﬁlection © ' "
D 104 36 45.69
CE | 142 28  18.43
DC 284 36 45.69
DE 256 57 51.14
EC ‘ .322 28 18'43.
ED { 76 57 51.49!
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Coordinates of C and D are fixed, C(343 232.3%6 , 656 116.53) and
D(313 928.90 , 768 512.17).

Approximate cocrdinates of & are

(296 960 , 692 200). C

Solution by least squares using

the variation of coordinates method

yields the corrections:

dxy = - 0.11 ft., dyp = -3.47 ft.

Using the mechanical analogue gives

the following results:

gIterafion dxy - dyp ;
l}
second - 0.16 ;- 3.61
|
third - 0.10 - 3.37
! !
__fourth b= 0.16 = 3.44 Figure 2.44

The figures given above show that a close approximation
to the final results was obtained after two iterations and that
there was no necessity to have any more iterations than four at
most. The following figurcs for the successive contradictions

confirm this:

' Tteration in seconds CE LC | D& D
first + 9.80!+ 9.80{+ 1.60{+ 1.95
second 1= 1.50{- 1.50(- 0.06{+ 0.29
third |- 0.77f- 0,77}~ 0.22+ 0.13 |

} fourth 4 0.250+ 0,25 - 0,221+ 0.13 !

The full net to be adjusted is given in figure 2.44.
Arrows in the figure show the direction of observatienms.
Stations A, B, C, and D are pre-fixed, the coordinates of these
stations in-feet are, A(81 511.76 , 613 085.00), B(236 406.59,
622 992.06), C(343 232.36 , 656 116.53) and D(313 928.90 ,
768 512.17).

Stations E, F and G are to be fixed, their approximate coordinates
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are, E(296 260 , 692 200), F(224 510 , 724 290), and G(164 920 ,
707 290).

Rainsford solution by least squares using variation of coordinates
method including the station corrections gives the following .

results:

dxp dyg dxp dyp ‘ dxg dyg

+ 3.44

Solution by the mechanical analogue gives the following results:

Iteration dxg dyg dxp dyp dxg dyae
{  first - 0.65 |- 3.07 |+ 1.94 |+ 3.48| + 2.92] - 2.75
$  gccond | - 0.39 |- 2.94 |+ 1.04 |+ 3.26| + 3.53| - 2.29
third - 0.30 |- 3.14 |+ 0.86 { + 3.15 + 3.85| - 2.10

Difference from Rainsford solution is
0.04 0.07 0.05 0.03 0.41 0.13

There is therefore a close agreement between the results obtained
by using both solutions. TFurther iterations were found not
necegsary as increase of scale of correction beyond 10°:1" does
not give any significant improvement. Also compression forces due
to the large contradictions at very large scale will be of such

an order that they might cause failure of the individual joints.
2.5.5. Conclusions

Using the mechanical analogue for the adjustment of
directions by correcting the approximate coordinates in the
above examples shows that:

1- The design and construction of this second model overcomes
most of the difficulties found in the first one, which means
that it can be considered a much more practical solution from
the user's point of view. In particular, there is a free
and easy translation of the joints during adjustment.

2- The physical representation of each direction includes the
possibility of representing observations from one or both

ends of the ray.
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The station or zero correction required for the best
fit does not cause any difficulty, as it is obtained
automatically by allowing a free rotation at each station
where directions have been observed.
Some remarks must be made over the poor results at station
G which occurred every time the example was repeated. It
will be noticed that the other points to be fixed, E and F
had observations made at these points whereas G had none.
The difference between the analytical least squares
solution and the mechanical solution seems to be due to
this.

The effect of the spring at the point of insertion,
e.g. close to the point E in figure 2.44 is very marked,
but this willdecrease as the point moves along the side
away from E. When no observations are taken at point G,
then its position will be located only by the effect of
the spring at the far ends of the lines FG, BG and AG.
This explains the importance of making observations at
each station in the net which is to be adjusted mechani-
cally by this analogue. These observations will determine
the locus of the movement of this station, while the
particular position will be determined by the intersection
of the rays at the other stations, e.g. at point C in
figure 2.45, the same
angle will be obtained
for different rays from
A and B. In this case

C.will be moving along

this special locus, but A
its position will ‘be

Figure 2.45

determined by the angles

at the other two stations'

A, and B.
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2.5.6« Further Pogsible Improvements

A great deal of time was spent on experimenting with the
two mechanical analogues until the second one proved practicable.
In the light of still further experiments, the following
further improvements could be considered:

1- The weight assembled at each joint might be still further
reduced by:

i) A rcduction in the sizc of piece A of the elastic unit

to half that used.

ii) A still lighter material could be used for the base
plate, which could be drilled out to give the configur-
ation as a wheel with apokes. The importance of such
steps can bec seen when it is realised that this plate
is about half the total weight of the wholad joint. The
horizontal disc can also be treated in the same way to

give a better weight reduction.
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3.1 INTRODUCYTION

The theory of the analogy between survey and electrical
nets is the same as that for survey nets related to mechanical
and structural analogues. Southwell and Black [12], applied the
basic theory of the relaxation method to both survey and electrical
nets. For practical reasons, a different form of analogy between
survey and electrical nets was found necessary and was devised by
Su [102], [105], and [106]. Successive approximations [103] has
been also used by Su to demonstrate this analogy using levei nets;
in this context, the special systematic relaxation used in the
mechanical and structural problems always involves such an
iterative procedure.

As the work involved here deals with the adjustment of
triangulation, trilateration, and hybrid observations, adjustment
of level nets using this iterative method will not be given, and
the reader has to refer to these in [103] and [104].

Many of the electrical components suitable for survey
problems have been devised by Speart [96], 1947, but he does not
appcar to havc published any practical results. EHowever in 1958,
Su made the first general statement of how electrical analogies
might be applied to survey problems and produced some practical

rcsults.

3.p, BLACTRICAL ANALOGY OF THE PROBLEM

Obviously in this case elcctric units are the physical
quantities being used to rcprescnt the variables of the survey
problem to boc solved. In these the voltage at a point in a
circuit is directly proportional to the variablc that is to be
represented.

Consider a component triangle, figure 3.1, in

which the six dircctions are observed in the

usual way. The angle condition for this

Figure 3.1
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triangle will be formed by subtracting the observed directions,

thus;
= V]t Vy = Vz + Vv, = Vg+ Vg +ky =0 cerenseaa(3.1)
For a net of n triangles, figure 3.2, n such condition equations

will be formed, which can be solved by using the method of

correlates.

Figure 3.2

The normal equations will take the form:

601 - 202 + ki = Og
LI Y e o LI ) )0050000(3.2)
- 201 + 6Cy + k, = 0)
(where C is the correlate)
Bquations (3.2) can be given in the forms:
c = l had l R R X
C =;QC +l.ﬂ —;ck -ocoo-)
2 3 1 3 3 6 2 ;
@0 00 e0 OO0 COOEECEOTEOETEOIEOEEOEEDS oo'ocag ......(3.3)
Cn"l = %'Cn-2 + .Js‘.ocn "%okn_l .ooooni
1 1
Cn = -3-.Cn_l - gokn oo-t..\ C
In the case of a
simple direct current, RC
according to figure 3.3, wo
Eac
have? A ,RA, ~ A EO|A Q
: Vo« Vi By Eos
I. - -9 AT Por .
QA RQ,A. B
VA = Vg + B
QB8 4 Figqure 3.3
RQB g B
_ Vg - V¢ + EQQ.
T R O Y
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Where;
I = current in amperes,
V = potential in volts,
E = electro-motive force in volts,
R = resistance in ohms.

According to current continuity, ZI must be zero at any point.
Therefore;
v v
1 1 1 A B
Vv + + 55==) =
Qlrg; + Rgp * Roo) = R t R

VC) _

('_O'A ‘R-QE ﬁ-) 00.0..0.0.(305)
Roa  Rgp  Rqe
If R is the same for all resistances, i.e. QA QB R = R,
and if joint C is earthed, i.e. Vg = O, equation (3.5) will be:

Vg = %(vA + Vg) - %(ZE) ceesssaces(346)

Equation (3.6) is similar to equation (3.3), thus an analogy
can be introduced between the solution of the two consideréd
problems. The solution of any of these two analogous problems
can be obtained by following the procedure of solving the other.
An electrical net can be built up to solve the adjustment
problem, in which case the results of the solution will be in
the form of the electrical potential at the joints considered,
so that the problem of adjustment is transferred to a problem
of voltage measurcment once the net has been set up corréctly.
Resemblance betweon electric and survey nets is given in the
following:

(L) An internal triangle in the triangulation net (i.e. one
completely surrounded by other triangles), is represented
in the electrical net by an internal joint, which does not
kave any earthed path,(triangle r and joint r in figure 3.4).

(2) An external triangle(i.e. one with at least one side with
no adjacent triangle), is represented by an external joint
in fhe electrical net. If there are two external sides
they are represented in the electrical net by an ehrthed
path, (triangle r+2, and joint r+2, figure 3.4).

(3) Sides of a triangle correspond to paths of the electrical
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l"+1 r‘+3 /s \\ s

/ r+1 r+3

r+2
Figure 3.4

net connected into a joint which correspond to the triangle.

For simple triangies, or for small nets it may be easier
to calculate the required corrections via the electrical theory
than to build a net and measure these voltages.

For the calculation method we have:
V =IR + B ceseneed(3.7)

As both Y and I are variables, thercfore;

AV = RaAI, and AT = ARY -o-oo--o(308)
Again according to the continuity law,
(I + AI) = 5T + AV.Z% =0 vevoeses(3.9)
and
LI
AV = bl E 00000000(3110)
R
Substituting in (3.8) therefore;
L
AI =.é.Y = - R oZI ="S¢EI 0000000(3 ll)
R —ij:_—_ L ]
R

For a joint with three paths, and corresponds to a triangle,

8 = =

3
which is called the distributing factor.

This analogy can be extended to a net of n triangles
which mcans n conditions to be solved for the adjustment. In

this case, it could be seen that all coefficients are the same,
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with the same distributing factor,and the same sign (which is
positive in this case).

Up till now the solution is offered for the simple
triangulation net, corresponding to very simple direct current
electrical net. The general problem in surveying is to adjust
nets of different individual units, such as triangles, braced
guadrilaterals, etc. The most common problem is to adjust
quadrilaterals where side equations will be involved. Also
trilateration problems could ret be adjusted if tho analogy is

limited to such a simple case.

3.241. General Survey Problems

As already explained, the solution of survey problems is
achieved after reducing the correction equations (observation or
condition equations) to normal equations, and solving these by
the ordinary methods of linear algebra. This procedure for
solving observation and condition equations is also followed
when using digital computers, the only difference being that the
computer is carrying out the routine work while avoiding mistakes
and errors in the calculations.

For solving the survey problems the least squares method
requires (equation 1.5) that:
(V'PV) = minimum cesnsess(3.12)
where V is a column matrix of the residuals (Vi’ v2,...), V' is
ts transpose, and P is the diagonal matrix of the weights.
The normal equations will also be preferred in matrix form for

an electrical analogy.

From equation (3.12), ﬁigéle =0, (4=1,2,+0,m) «sees(3.13)

where x is a linear function of V.

As the independent observations are subject to the condition

that, . V=H=AX 000-000(3014)
. . . _ OV .
where A is the matrix with the elements ay; = 55% , and j = 1,2,

esee, N, substituting (3.14) into (3.13) gives;
APH'F.APA'X:O 00.0000(3015)
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and, BX"—'-‘K o0 es es e (3016)

where B

APA', and K = APH

54242+ General Tlectrical. Problems

Any form of analogy bctween the lcast squares and the
minimum energy conserved allows the nossibility of building an
analoguc or conscrvative system capable of solving the linear
gguations uscd in tae lecast squarcs solution. For an electrical
analogue this similarity can be shown as follows:-

In c¢lectrical nctworks the total encrgy is a positive
definitc quantity, and at the equilibrium —osition thc internal
energy resulting from the external disturbance (corresponding
to the discrepancies of +th: survey nets) is a minimum.

If (B'C) is the intornal encrgy = minimum, ceeeea(3.12)
where B! represcnts tho effective potential diffcrencies
(='el, e2,a..), and C the effictive current corresponding to
the relative difscrences (=cl,02,...), then differentiating
with rcspcet to the potentials,

ol g'YE = 0, cesens(3.13)"

°i

where Y is a symmetrical matrix of short circuit admittances
with the self-admittances as its prinecipal diagonal.
According to Ohm's law, IEB' = V' - C'Z cessss(3.14)"
where V' is a row matrix of actual voltages, C' is a row matrix
of the astual current suvplied, and 2 is a symmetrical matrix
of open circuit impedences and equal to Yfl

Substituting equation (3.14)' into cquation (3.13)' gives:

E' "—'-V'Y - C'ZY = O .oo-oo(3n17)
since ZY = 1, thercfore V'Y -=C' = O ereee(3.18)
and YV=C o-coco(3016)'

Equation (3.16)% is known to be Kirchoff's first laws

It could be scon that, equations (3.12), (3.13), (3.14), and
(3.16) are analogous to cquations (3.12)', (3.13)', (3.14)',
and (3.16)' respectively.
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Equation (3.16)' has the property that the sum of the
elements in any row or any column of the matrix Y must vanish,
which does not occur in matrix B of equation (3.16). This missing
property can be achieved by adding another column and another
row to matrix B, so completing the analogy. Thus equation (3.16)

will become: DXy = Ky ceeessa(3.19)

where D = [% cf], which is one rank higher than B.
X, denotes the column matrix [X, xy],
K, denotes the columr matrix (K, ky].
L 1is a vector to make the sum of the elements in any row or
any column vanish.
o« corresponds to the admittance of the earth which is unlimited.
Xy is equal to zero.
ks is an indefinite value (current fed into the earth, which
could be any value).
.The possibilities of constructing this analogue and making
use of it in a practical way are discussed in 3.2.3.

3423 Practicality of Su's Analogue

The use of the calculation method based on the electrical
analogy gave satisfactory results which added another method to
the computation method. already lnown. The practicality of
constructing and using such an analogue electrically is diécussed
from the point of view of a civil engineer, who is already
familiar with simple electrical nets.

An electrical analogue for the solution of linear equations
consisting of a direct current circuit is very simple and accurate
if positive and equal resistances are used. The net in this
case consists of:.{}) Resistance boxes. (2) Power supply. (3)
Voltmeters.

Since readings are required to three significant figures,
and different coefficients will be encountered, some additional
features proved to be necessary. These have been devised by

9peart [96], and a short summary is given below:
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(1) Bach resistance has to consist of two wire-rheostats oz

potentiometers in series. Their sizce is chosen such that one
is used for coarse setting and

the other for fine adjustment.

Such connection is given in fym;Lf /4
figure 3.5. ' /
Figure 3.5
(2) Power supply, figurc
3.6. This usually . o : fa) :

consists of a battery of

chosen voltage, (2 volts :

AN _
(b) T
/

gives good results) linked

(c)
) /
in series with a fixed S «Afb\ \bﬁva

resistance. (a) which

Figure 3.6
prevents overloadiug;

two snall blceder rcsistances: (b), across either of which the
desired voltage may be tapped, and two variable resistances
(c) for adjusting the tapped voltage. For large discrepancies
the voltage is tapped across the two bleeders, while for small
discrepancies the voltage is tapped across one only. A
separate power supply has to-bs supplisd Por ssch diserepancy.
(3) Voltmeter, figure 3.7.
The voltmeter is

required for setting o /(W)
the closure (i.e. — (i
discrepancy) and \ iy

/

measuring the corr-

-— -I-(i)

ectionss Thuas it is

carrying out the

Figure 3.7

critical part of the

solution, so it has to be sensitive and not liable to errors.
The needle of the standard type of resistance voltmeter
deflects under the effect of a small amount of the current

being drained from the circuit to be measured. In such a
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circuit where current is mcasured in milliemperes and voltage
measurad in millivolts range (to give the three significant
figurcs) any appreciable drain of current from the circuit
will make the meter reading erroneocus. To overcome this a
special "feed back" meter is needed to measure the voltage
without any drain from the circuit. This is done by setting
a voltage in the meter, cqual and opposite to the voltage of
the circuit to be mecasured. When the two voltages are exactly
balanced, as indicated by a null reading on a galvanometer,
the meter voltage is read. The layout of the complete
voltmeter is shown in figure 3.7, where:

(1) Battery.

(ii) Fixed resistance to prevent overload.

(iii) Two potentiometers (coarse and fine) for regulating

the current through the milliammeter circuit.

(iv) Milliammeter for current reading.
(v) Two accurately matched resistances.
(vi) Voltmeter terminals.

(vii) Galvanometer for volt measurement.
(viii) Fixed resistance to protect the galvanometer.
(ix) Large resistance (variable) for sensitive setting of
the galvanometer.

For %the use of this voltmeter, two terminals are connected
to the two points between which the voltage corresponding to
the discrepancy or corrections is to be taken. The galvanometer
reading is brought to zero by manipulating potentiometer (iii)
and the large resistance (ix). When the needle of the galva-
nometer indicates null the needle of the milliammeter indicates
the current passing through this circuit, and hence the voltage
drpp of each of the two fixed resistances is known, since it
is proportional to the milliammeter reading.

This electrical net does not include any ncgative resi-

stors which will be required if any of the coefficients of the
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problen has a nuzative sign as might occur if the general

problem is to be introduced

into the analogue. ééf'

Su [106] suggests the Vv R R

following negative resistor

for this situation, figue 3.8. | |
P B

Figure 3.8

3.2+.4. Discussion

In the analogue introduced in 3.2.3 the number of electrical
components depends on the size of the problem to be solved, or,
in other words, on the number of unknowns for which the normal
equations are to be solved. It should be kept in mind that
electrical preparations for solving the normal equations start
after the formation of the normal equations themselves. For a
small problem of about 8 unknowns (8 normal equations), formation
of the normal equations takes half the time and effort necessary
for solving the whole problem by the desk calculator. There
appears therefore little to be gained in using the electrical
analogue in place of the calculator for problems of this order.
At the same time, the number ot components necessary for the
analogue solution increases linearly with the number of the
unknowns, so that there are considerable difficulties with larger
nets.

Su sees that reliability in solution by a desk calculator
can be reached only after months of practice, but thig ignores
the fact that most of the difficulties over obtaining reliable
results are found to be due to mistakes in forming the normal
equations themselves. Once these are properly formed and checked,
either a desk calculator, or an electrical analogue will be able
to give reliable results in a comparatively short time. One
realises the great effort necessary in forming the normal equations,

if we consider the way in which the matrix B.-:0f the normal .
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oduation (3.16) is formed.
Here B = AA', in the case of condition equations, or A'A in the

case of observation equations.

For observation ecuations = o » B is greater than m.
FOI‘ Condition eq_uations n% = A. A' ’ M eevevsceccoccece o

For example if a 6x14 rectangular matrix A with 6 unknowns
anf 14 equations must be multiplied by its transpose to give a
6x6 square matrix which involves the multiplication and addition
of the number of equations by itself (in this case 14x14).

A further point is that the time considered in preparing
the electrical components necessary for the solution by the
electrical analogue does not cncourage the use of such a method,
especially when they follow the long calculation processes to
form the normal equationse.

One point which seems to be important is the acceptance of
the chénge. I find it difficult myself to stop the calculation
after spending so much time in formation of the normal equations,
only to start and work in a different field. Nowever, one feels
that one should just finish the job off as one began. The work
could be split between two people,with some other person taking
over the electrical part. This might not be a very different
procedurc however.

To have sufficient electrical components to meet the
requirements of solving a medium size problem (which is congidered
to be g laborious by a desk calculator), requires an electrical
laboratory with considerable resources and skilled technical staff.
The analogue suggested by Su is a simple and inexpensive one, but
it may be quite difficult to implement because (a) it requifes a
pyramid of electrical units, the interconnection of which must be
changed for every problem, which is a time consuming job; (2)
adjusting every unit to give the necessary working elements
promiges to be guite troublesome.

If cxperience is taken into account, a desk calculator

operated by an expert computer. will give accurate results, while
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the electrical analogue operated by an exvert will give rather
less accurate results in comaratively the same time. FEowever in
survey field it is easier to find the first type of cxperience,
but not the second one.

The idea of constructing a D.C. circuit for the solution
of linear equations will stay simple for small problems, with no
negative coefficients involved. For example, for adjusting small
nots of triangulation where no side condition ecuations are ‘
involved.

The larger and more complex survey nets which would be
difficult to adjust using Su's suggested scheme may be adjusted
by means of an electronic analogue which, although more
sophisticated, is of a general purpose type which is more readily
avallable. Also, the work involved will be greatly reduced. All
computations will bz:eliinindted in.the solution of the correction
equatidns, i.e. for observation and condition equations, without
the extra work of forming the normal equations found necessary
when solving problems of adjustment using any means, which operate
along the lines of a:.general purpose electrical analogue system,
but with substitution of electronic components for many of the

electrical ones.

3¢3. GLECTRONIC ANATOGUES

The analogy between the survey problems and the electronic
system is similar to that given for the electrical analogue in
3.2.1. A suitable electronic analogue is readily available in
in the form of electronic analogue computers. These solve
mathematical equations instead of trying to achieve a physical
correspondence with the problem to be solved. This is called
indirect computation [50], as there is only one dependent Qariable,
thus strictly it is an equation solver rather than a physical
analogue system. As will be seen, this computer is capable of
forming mathematisal operations of addition, subtraction,

multiplication, and integration using electronic differential
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analyscrs.

The basic clectronic components of the computer are:

1) Drift corrected, high gain operational amplifiers.
2) Close~tolerancs resistors and capacitors.

3) Coefficient-setting potentiometers.

4) TFunction generators.

5) lMultipliers.

6) Resolvers.

3+3.1s Operational Amplifier and Basic Mathematieal Operations

The operational amplifier: This is the heart of the analogue

computer, which performs mathematical operations to a high degree

of accuracy, and so deserves some detailed description. It has

the following characteristics:

i- High gain, normally this will exceed 15,000 - a gain of
100,000 is quite usual in practical operations.

ii- ILinearity over a wide ragion of operations, generally from
- 100 to + 100 volts at the output.

iii- Zero output voltage for zero-input voltage.

iv- A very high input impedencc; this input stage should draw

negligible grid current.

A typical direct current operational

i

VAL

amplafier used to carry out basic '
’ ’ &2k

h 77777
<[> =AMPLIFIER

mathematical operations is shown

diagramatically in figure 3.9.

where: Figure 3.9

Zy is the input impedence

Zp is the feed-back impedence.

By this arrangement the amplifier draws a negligible grid current,
The node (A) equation for the current is i3 = ip =i ..(3.20)

- epn - e
therefore’ lz eA = A Zf 0 oootoouoo(Bozl)
1
e

Due to the high gain (-4) , 6, = = == =0 ceseesees(3.22)
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From equatisns (3.21) and (3.22) the output voltage is:

Z.p
T

= =€ 00000 e e -2
1 1 (3.23)

€po =

If the feed-back and input elements are resistors of the same
magnitude, therefore: g = = €1, ceseeene(3.24)
i.es. the output voltage is equal to the input voltage with a
change of sign.

By varying one of the two resistors, figure 3.10, the input voltage

will be multiplied by an arbutrary

constant according to: R,
R R
= - "':'f"o s 0ese . 1
6o = Ry € ceseas(3.25) e e,
For addition a number of input 7777
resistors can be connected to the Figure 3.10

amplifier, figure 3.11l, and in this —

case:
| el 92 R Rf
eo = —RO{HT.+H‘2“] -0010(3026) e1 1
. . . . R €o
This is called a "sammer" circuit.
€ w777
For integration, a capacitor is used
in place of the feed-back resistor, Figure 3.11
as shown in figure 3.12. In this
case: .
! nef
= = O 't L eoee °
e, RIT._:?Jel dt + k (3.27) . R, .
i.e. the output voltage is therefore Va
proportional to the negative wvalue of Figure 3.12

the integral with respect to the time
of the input voltage. k is the output at time equal to zero,
which specifies the initial voltages to which the capacitor must

be changed at the beginning oi the computation.

For addition and integration C
| . R, —{—
the connection is shown in figure e e
———‘ >—' o]
3.13, In this case: e Ro
1 2 7777
e - - -J-.‘([‘?'!:‘ + E'g‘] 000(3028)

° ¢ R Figure 3.13
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These basic mathematical operations are enough for the
solution of the linear equations, and have the merit of being easy
to understand as they only require the knowledge of some simple
laws of electricity.

To allow the multiplication of two variables by each other
several devices have been developed which are connected as
additional items to the operational amplifier. However as all
these devices are complicated and require details and‘exﬁlanations
found beyond the scope of this thesis, readers may refer to [50],
at p. 249. The same refecrence gives details of the negative
resistors and capacitors, at p. 257. Also reference may be made

to [42].for further explanation.

3e3.2. Pace Analogue Computer

The computer which hasg been used to solve examples is the
PACE 2313-V, manufactured by Blectronic Associates Timited.

To programme a problem a pateh panel is used, This has
numerous sockets which provide access to the electronic components
of the computer. These components are inter-connected by wires
carrying p.ugs which are inserted into appropriate sockets. TFor
large probl.ms which use many of the component units, making these
interconnections takes considerable time, and if it were to be
done on the machine, the computer would be out of use for a
considerable period. The patch panels are therefore detachable
allowing the interconnections to be made off line. The complete
plugboard is then placed onto the computer in one operation.
Inputs are in the form of time-varying voltage, while the
solutions (obtained in similar fashion) are displayed on a digital

voltmeter, or a graphical plotter.
3¢e3.3. Solution of Linear ¥quations

Since the inputs and outputs of electronic analogue
computers are usually in the form of time varying voltage, the
computer is most frequently used for the solution of differential
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equations. To solve linear algebraic equations, a special form
of programming . {84} . is required.
Let the linear algebraic equations be given by:

AX =K cecsnees(3.29)
where A is a square matrix of order n, K and X are two column

vectors, where,

B all a12 ece aln'* l-le» -kl-
a a ese & X k
A = 21 22 n X = 2 K = 2
81 @n2 e+ @pn Xn ky
L . L .

Consider the differential equations,

i + AX =K 00000000(3030)

where X is a column vector,

)

bge
il
e
e N

.
.
X

B

A steady state or equilibrium will be reached when i =0, ;n
which case X will satisfy cquations (%3.92) and (3.30). To ensure
this steady state for equation (3.30), matrix A must be positive,
definite (where all determinants are positive and greater than
zero), which is not always the case in the survey problems.

Where it is not, ,matrix A must be multiplied by its transpose A'
to yields positive definite positive matrix A'A (=B). Bguation’ -
(3.29) would then be replaced by,

A'AX = A'K cevesess(3e31)
similarly equation (3.30) will have the form, '
X + A'AX = A'K ceeernea(3.32)
and X +A'(AX -K) =0 cersensa(3.33)
The steady state will then be reached to give the solution

Sought .
Simulation of equation (3.32) on the computer will be

shown later in the solved examples.
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3e3e341 Solution of Survey Problems

Electronic analogue computers may be programmed to give
the least sum of the squares of the residuals using the steepest

descent nethod.

For observation eguations, where a matrixmﬁ is used in
equation (3.29), let e be the residual error and t the time in
scconds.

If e, = fj(l,2,.....,n)

J
the sum of the least squares will be

n
S - .z e? 0060-0000(3034)
=1 7
, as n dej
thorefore; - = Z-E e_' onl.oooo.(3035)

(j=l,2,cot,n)oooooo(3036)

t
from (3.35) and (3.36) we have:
as mdxs n de
.a_-t- = Ziéla-'-t-; jglej.-d—x-g: 0-00000000(3'37)

In order that S be minimum, dS/d+t must be zero, and the computer

is programmed so that,

dXi n d91 /

a%-=— 3-_2=1 ej . Es{-‘i 000000000'0\3.38)
Inserting equation (3.38) into cquation (3.37) yields,

ds _ dx4 42 (3.

H -— _l( ] ® 0 00 600 00 (3 39)

Since all terms on the right hand eide of equation (3.39) are

negative, the computer operates to decrease S until dS/dt = O.

For condition equations, the same procedure must be
followed, but the following points have to be considered.
(a2) The results have to satisfy exactly the condition equations,
but since the PACE computer is not programmed to produce
zero residual crrors, an additional constraint must be intro-

" duced. The residual errors may be made infinitesimally
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“smekl LY incereasing tho gain of tho fasd.~back paths from the
residual errors to the integrator inputs.

(b) The increase in gain of these fecd-back paths will not provide
a unique solution and an infinite number of solutions could
be obtained which satisfy cxactly the condition equations.

A further constraint must be introduced to obtain a unique
solution, which will be that characterised by ng = minimum.
ng may be minimised by a method similar to that used for

minimising the residual errors, by introduction of an

additional feed-back path.

3.303.2. Exampples

To discover the possibilitiss and problems of using
electronic analogues for the solution of both observation and
condition equations several examples have been solved on the
PACE computer. Two of these, together with the necessary

gimulation and programming are given in detail.

Bxample 1.

This solution is given for the problem solved by Rainsford
in "Survey Adjustment and Least Squares", page 180. ©1s €5y eoy
seesy €1y are the residual errors of the corresponding equations.

This problem is given in table 3.1

e X1 =dxp | Xo=dyg x3=dxF x4=dyF x5=de xe=4yg | k
- ej|- 2,12} - 2.76 ',9'80
- eyl + 2.12 | + 2.76 + 9.45
- ez| - 1.70| + 1.48 + 3,01
- eul+ 1,70 - 1.48} - 2.01 | - 0.24 + 0.77
- eg + 2,00} + 0,24 - 1e42] - 1e21 ] - 2.40
- eg + 1.42 |+ 1.21 | - 1.68
- ey - 1,231+ 1,09} + 9.21
- eg - 1,10} - 3.44] - 0,91 | + 3.20| +19.91
- eg|+ 1.07|+ 2.40 | + 0.94| - 2.16 +14.61
~e301 = 1.07| - 2.40 | + 1.99 ] + 0.55 - 9.69
-eqyq|+ 4,68 | + 2.17 + 7.85
-6y ,| - 1.49 | + 299 | - 1.07| = 2,40 + 17.78
=01 3|~ 2.56 | + 0.59 + 1.60
=84l + 2.56 ] - 0,59} - 0.92] + 1.85 - 6.62
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The patching diagram for this problem is givin in figure 3.14.

According to equation (3.38),

dXi

dXi
at

14 .
D Y Eil
=1 7J dxy

(i = 1,2,0006)

- I 1s in fact used as thc integrator input because of the

associated inversion in the operational amplifier.

therefore,

- dxl/lO
dt

dx,/10
dt

_ dx}/lo
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dt
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Since amplifiers are designed to provide linearity between

- 100 and + 100 volts, it is necessary to scale the problem to

ensure that the voltage corresponding to a wariable never exceeds

these limits.

Scaling is carried out by dividing every variable

by its maximum expected value.

After scaling, all new variables

have values betwecen -1 and +1, and the computer voltages may

then be restricted to the linear range by a voltage scaling

of 100.

For this particular problem, equation 8, 9, and 12 given

in table 3.1, have to be divided by 10 due to the fact that the
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valucs of k are 19.91, 14.61, and 17.78. This rcduces thesc
values to 1.991, 1.461, and 1.778, and by using gain 10, their
potentioncters will be sct at 0.1991, 0.1461, and 0.1778. The
other equations do not neccd division by this factor.

The output reading should also lie between -1 and +1, which

means that instead of using the full values of the unknowns —

‘max.
is used, in this problcom it is %5'
Results were as follows:—
Amplifier Unknown Reading Rainsf?rd's
solution
A 00 x7/10 - 0.0340 - 0.0338
A 05 xo/10 - 0.3031 - 0.3036
A 50 x3/10 + 0.1058 + 0.1042
A 10 x4/10 -+ 0.3112 + 0,3110
Al5 x5/10 + 0,3131 + 0.3126
A 60 ' xg/10 - 0.2135 - 0.2144
.. table H.ze
Lxample 2

This is the problem solved by Clark, in "Plane and Geodetic

Surveying", vol. II, page 285. The condition equations are as

follows:-
Xy +x2: +x3 +x4w. +x5 +X¢ +x7 +Xg = 4.80 = —-eq
Xy - - =X ~Xg +Xg + 3.90 = =0,
+12 +X3 -X6 -X7 + T 50 = -63
3 . 58Xl-2 L) 78x2+l . 87XB"1 [ 74X4+2 olSXS“‘3 . 51xs+1 . 49X7"l 003X8 +25 [} lO =4 -e4

The additional equation required for the stability of the .
solution is
2 2 2 2 2 2. : —
x% +x5 +X% +Xj +x§ +x§ +x5 +X§= minimum= es
The patching diagram for the problem is given in figure 3.15.
For linear operations the problem is scaled for x/10, and

equation 4 .ig divided by 10 for the same reason.
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According to equation (3.38),

dx,/10 e e
at 10 10 10 10 100
dx,/10 e e e X5 ©
- 2 = L 4+ 23 ~0.078.24 - 5,22 55
at 0710 21835 = 2:35°7501%°
dx=/10 e e e Xz e
- 2L L3233, 0. 4 - 0,23
e 75 + 5 - 187. 2.10.100.100
dx,/10 e e e X
-4 _ 2122 - °
4 T - 15 0.174.ig Z'Ié'igﬁ'loo
_dx5/10 o1 _ e ey _, X5 e
_-§¥-_ 5 - T8 + 0-218.7 2’10'186'100
- ___._____dx6/lo = e—l — -e—z - 0035102 - OX—6'SE-']-OO
at 10 10 10 100
ax~-/10 e e Xm €
at 5 " 10 * 9014918 - 215716010
dxs/10 e e e e
-8 = -1 4+ 22 _ 0. -4 _ -8
at 10 10335 - 2+35°100°19°
Results:
Amplifier | Unknown I Reading at | Clark's sol.
gain 10 | gain 100
A 05 x1/10 - 0.1751 | - 0.,1768 - 0.176
A21 x5/10 + 0.0106 | + 0.0120 + 0.012
A 25 x3/1o -~ 041989 | - 0,1999 - 0.200
A 10 x4/10 + 042128 | + 0.2137 + 0.213
A 15 x5/10 + 0.0355 | + 0.0341 + 0.034
A 30 x6/10 i + 043933 | + 0.3952 + 04395
A 35 x7/10 + 0.1668 | + 0.1674 + 0.167
A 00 xg/10 + 0.03%4 | + 0.0343 + 0.034
table 3.3

Comparison between the errors corresponding to each equation,

for the gain employed are given in table 3.4

M i

Amplifier Ao2 | Al2 | A2 A 27 A 07=2x?

0.0006 | 0.0012 | 0.0029 | 0.3008
0.0001 ' 0.,0002 | 0.0004 0.3034

Gain 10 | 0.0003
Gain 100 | 0.0002

!
!
| 1

table 3.4

As shown in tables 3.% , and 3.4, close agreement is
obtained between the results obtained by this method and those
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obtained by Clark when a gain of 100 is employed.

Some experiments were carried out to ascertain the gain to
be given to the feed-back paths corresponding to the errors of
the condition equations. The amount of error at each amplifier
representing a condition equation could always be reduced by
increasing the gain of the feed-back paths corresponding to this
special equation. However, beyond a certain point this error is

virtually irreducible. For omne problem the following was recorded.

Gain 10 30 100 130 200
Error | 0.,0043 ! 0.0015 0.0006 0.0004 0.0004
table 3.5

In all the problems so far solved, no worthwhile improvement
in the results has been observed by using a gain greater than
100, For feed-back paths corresponding to the additional
equation (Zx2= minimum), gain 1 is chosen. Gain 10 is used for
the loops corresponding to the original condition equations.

If the error readings with this setting are not satisfactory,
gain 100 should be used, and this will be satisfactory for most

problems.

3e3+343. Constraint Necessary for the Solution of the Condition

Bquations

This point has already mentioned in 3.3.3.1., but it
requires some more detailed discussion.

The PACE computer could be easily used for solving
rectangular matrix ﬁ% , waere n is greater than m. In this case
the most probable solution will be obtained according to the
steepest descent method (3.3.3.1l.), i.e. according to the least
squares method, where the sum of the squares of the residuals
is minimum.

For the rectangular matrix .4 , where m is greater than n
solution of the problem will not be so easy. For this matrix

an infinite number of solutions would be obtained which gives
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instability to the answers obtained by the computer. All these
answers satisfy the condition equations. The required solution
which is the most probable one is known to be that one characterised
by 2x2 = minimum. Thus a meaningful set of answers will be
obtained by adding this condition as additional condition. In
order to add this condition it is necessary to consider the
following:

£y = (X1, Xpyedsapxy) =b =0 cesssesal(3.40)

and fj = €5, the residual error which will go to zero for an
infinite number of results.

enrl is the residual error of the additional condition which should
go to minimum and not to zero.

Both e; and ep4y Will be used as feed-back to the same integrators.

J

To bring both ej and e to the same order, €41 should be

n+l
multiplied by a factor k, which must be close to zero. In fact
using k = 10~4 or 1072 will suit the computer which can give
readings = 0.,0001,

To derive a value of the gain which will be applied, let,

2
epn+1 = ZX§

According to the steepest descent method,

. n .
gﬁ: = - ,_Z C.se -d;-l L 2¢en+loden+l 000000(3041)
dt =L 3 axyg , dx

To bring ep,yy and ej to the same order, equation (3.41) should be

replaced by;

dx., n de. de
i - - .,.——1-— eKe . n+l evs0s0eesce .
n
= - jgl ej.ajicxi - 2.k.en+l .Xi
where, ej = I ajiexj - by

If M, the maximum possible value of x;, is larger than unity,

equation (3.42) should be scaled, thus,

d(xy/M) noeqy en+ly X1y m2
== jgl(M )eajy = 2.k 2 )G M.l (3.43)

let M = 1x10°, where L L1,
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As the most sensitive potentiometer setting should lie between

Ol and 1 (= 2-LX10—1), therefore equation (3.43) will be:
d(x4/M)

n e . 2 2S e X

= = 2 . ;8 - O oT . —r}i]—. "i eoesoece .
= j=1(Ml) aj; = 2.k.1°.107%( > ) (7=) (3.44)

_ 2s+lp10™2s—1 & ey, 21 9-1(8n+ly Xi
= = k.10° [E— '.—El(Ml)‘aIJl + 2.L510 ('-_"'2—')(»—/{—)]

J M

occ-oooo(3045)
If the most sensitive potentiomecter setting is used with gain 1

for the second term in equation (3.45), the first term in equation

(3.44) will be multiplied by a corresponding factor = 10-28'1,
-28-1
Since k is infinitesimally small, the factor %9 will be

much larger than unity.
In practical survey adjustment problems 8 is equal to 1,
and M = 1x10 = 10,

therefore ’ Ilg—o-—zs-l = %9-3 evéevoncace (3 . 4—6)

for k = 1074, this factor will be = 10, and

FOr K = 1072, veueeiessonecssnses = 100,

The most accurate results are obtained with the gain 100 which

is derived from k = 10-5.

The quantity k.10257louteide the square brackets in
equation (3.45) will affect the rate of integration and will not
affect the valucs of x5. Thus it is found that, for solving
condition equations;

(1) ™hc most sensitive potentiometer settings arc used for
setting the coefficients of both original and additional
condition equations.

(ii) Gain 1 is given to the loops corresponding to the additional
condition equation. |

(1ii) Gain 100 is given to the loops corresponding to the Qriginal

condition equations.
For any other problem, which might require g ) 1, k should
be smaller than 10-5. However in this case the gain necessary
to solve this problem without causing overloading or instability
to the solution has to be obtained after some experimentation.
It should be noticed that, using larger gains than are really
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necessary will not give any more improvement to the results.

The best guide is to check the wvalue of € to make sure that it

is zero, or as near as possible to zero. After a certain point,
overloading and instability of the results given by the computer

will stop further trials.

3e3e4e Accuracy and Capacity of PACE 231R-V Analogue Computer

The PACE computer found capable of solving unknowns up
to the fourth decimal place. These unknowns in survey problems
are corrections to angles, length of sides and coordinates. TFor
first order work these corrections should be accuratc to the
second decimal place which is easily achieved on the PACE computer.
Sometimes the accuracy of the unknowns given by the PACE computer
is reduced by the necessity of scaling the problem. For instance,
if instead of obtaining the unknowns x to 0.0001, we read
x7 (= x/10) to this accuracy, x will be obtained only to 0.001,
which is still satisfactory for first order problems.

The size of the problem to be solved depends on the size
of the available computer. The size of the PACE computer available
for this work at Glasgow is restricted by:
(a) 100 amplifiers. (b) 150 potentiometers. (¢) 48 multipliers.
(a) 100 amplifiers¢ These arc used for:-

i- Summation; Summation of different unknowns will be obtained
by using some of the amplifiers. In other words, every
cquation will be represented by an amplificr.

ii- Integration: This is achicved by connecting a capacitor as
as the feed-back clement in 30 of the operaticnal amplifiers.
Since the integrators are used to solve the unknowns the
computer is limited to problems of 30 unknowns.

iii~ Inversion: In most cases, it is necessary to obtain both
positive and negative values for each unknown, and for
residual errors of each equation. This necessity reduces
the capacity of the amplifiers to half the nominal figure.
Multipliers could be used as invertors, which adds 48
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invertors in the case when multipliers or part of them are
not used for multiplication.

(b) 150 potentiometers: These are the units which mainly restrict

the size of the problem to be solved. For every coefficient
in the problem, two potentiometers are necessary and an
additional potentiometer is required for each equation for the
inclusion of the constant term. For a problem requiring the
solution of ten equations with seven unknowns, ten potentiom-
eters are uscd for the constant terms, leaving 140 potentiom-
eters (2x70) for 70 cocfficients. The problem given by
example 1 of 14 equations and 6 unknowns was solved very
easily, due to the fact that four and two were the maximum
and minimum number of unknowns in an individual equation. In
practicc the full number of unknowns is rarely found in an
equation in survey work. Furthermore some coefficients are
unity, in which case no potentiometers will be necessary for
setting this value which is fed in directly. TFor these two
reasons, observation cquations of the order n.m = 100 (e.g.
10x10 or 16x6) could be solved by this computer on condition
that (m#n) is not greater than 50. (m is the number of unknowns
and n is the number of cquations).

For condition cquations the extra constraints necessary
reduce the number of amplifiers available by twice the number
of residual errors to be driven to zero, e¢.g. if n is the
number of residual errors(e) to be driven to zero, and g is
the gain nocessary for this purpose (which is equal to 10P),
the number of amplifiers to bc reduced will be n(p+l). 10 is
the normal gain given to a loop from an individual amplifier,
though a maximum of 33 can be obtained if rcquired. Thus the
number of amplifiers which can bc used will be (m+n)T 50-n(p+l).

(¢) 48 multiplicrs: Since an additional equation (2x°= e) is

nocessary to give stability to the solution of problems,
where thce number of unknowns is always greater than the number

of equations (condition equations), the number of multipliers
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necessary for solving these problems is another important
factor affecting thc size of the problem which can be tacklced.
For cvery unknown two multiplicrs arc nccessary. 48 multiplicrs
arc availablc so that thc unmber of unknowns should not exceed
24 rathcr than the 30 which the number of integrators would

secm to allow.

3+3.5. Conclusions

1- In an analoguc computcr, computation of observation cquations

is a lincar function of the numbcecr of cquations, wherecas using
ordinary dcsk calculators, it is a quadratiec function of the

numbcr of equations:

2= Although a positive definite matrix (of thc normal equations)

is nccessary reach a stecady state on the PACE computcr, programm—
ing of this matrix is vcry simple. The derivation of the
dynamic form of cquations is very simple and is achicved in
routine fashion. In the example solvcd the required equations
were obtained from the original linear equations. Furthermorc
programming and drawing thce patching diagrams is carricd out
using these original cquations, but in a special way which leads
to the steady state. This is done in a manner that raises no
difficulties for those continually dealing with survey
computations.

Although for the solution of condition equations some work
must be done to choose the necessary gain, unknowns will be
obtained directly, without any of the substitutions which are
found necessary in any other method of solution, e.g. by desk

calculators or digital computers.
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I- CONCLUSIONS

Sincc sides as well as angles may now be obscrved, it

has been found necessary to derive a system of conditions which
decals with both types of observations at the same time. For
this purpose two sets of new conditions have been reached.
These proved to be simple and easy to form and to calculate.
However their simplicity dcpends to a certain extent on the
weights recommended which in these cases will be unity for both
angles and sidcs.

As for the ways of computations there is the desk
calculator, which will always be used either to solve the whole
problem or to help in calculation when using any other form of
computation such as these given below. As desk calculators
are freely available they are particularly useful in solving
small problems, e.g. the solution of 8 normal equations by the
least squares method may take two hours which is not a long
time when compared with the considerable time spent in
preparation for »nrogramming or éetting up problems in other
methods. However the time consumed in solving linear equations
for the purpose of adjustment is known to be a quadratic
function of the number of these equations [105]. This means
that the simultaneous solution of a large block of survey points
by desk calculator is uneconomic from the practical point of
view.

Apart from the desk calculators, the ways of computa-
tions can be classified under four main headings. The criteria
for this classification is the type of equation which can be
solved and the way in which the adjustment can be carried out.
These four types are:

I- Analogues which are capable of simulating physically the
net to be solved, including the observations made in the

field, e.g. mechanical analogues. As has been seen, these
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do not require the formation of set of linear equations
since they solve problems directly from the observed
quantities.

Analogues capable of physically simulating the normal

equations, e.g. the electrical analogue system designed by Su.

TII- Digital computers, which are able to solve numerically for

IV-

a square matrix, i.e. for a set of normal equations.

Computers and analogues which are capable of solving directly
any sort of linear equations (i.e. observation, condition,
or normal equations). These are capable of solving over-
determined or underdetermined ecquations directly, e.g.
electronic analogue computers.

The order and size of problems recommended as to be

adjusted by using each type can be given by the following:

Group I
These simulate the problem physically in an exact way,

and so far the mechanical analogues in which angles are repre-
sented by angles, directions by directions and sides by sides,
are the only examples which have been realised. Results
obtained by Jerie for trilateration networks [46], and by the
writer for the examples solved in 2.5.4. were identical to
those of the least squares solution.

However the necessity of having frequent control points,
both to fix the mechanical net to the working surface, and
to give a datum to the mechanical energy at frequent intervals,
restricts the use of this method to the solution of secondary
and tertiary networks only, as far as angles and directions
are concerned. The size of the problem which can be handled
cannot be definitely given, as this depends on the weight and
the standardisation in manufacture of the different joints to
be translated. Both of these need to be developed further
than in the prototypes which have been constructed so far.

Furthermore the size of these problems, beside being dependent
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on the number of control points, depends also on being able
to observe at every new station towards two control points.
However the size of the problem can perhaps be increased
by introducing a differential adjustment of observations [122].
In this case new points would be connected to somc existing
control points, and using the mechanical analogue these are
adjusted as a unit. The whole net is then used as control for
the remaining observations, so that adjustment is made stage
by stage using the analogue. To assist in thesc successive
ad justments it would be necessary to introduce some form of
spring~loaded intersection locator, figure 1. The purpose of
these locators would be to allow some adjustment of the - -
previously adjusted stations in conjunction with the newly
introduced observations. The sketch given in figure 1 is based
on the locator of Trorey used in photogrammctric work [124].
The springs usced would have to be of a special stiffness to
allow further adjustment to take place, and obviously this
will be the most difficult problem to solve. This idea, if
it can be realised, would assist greatly in overcoming the
limitations of the mechanical analogue, where there is an
insufficient density or a lack of sultably distributed control
points.

The size of the secondary net ré;mmended for the
existing analogue should not be greater than that given in
figure 2.44 at least to one side of the net. On the other hand,
a further three stations can easily be accomodated to the west
and north of the control points. The net in this case will
amount to nine new stations, beside the four existing ones.
Comparing it with a least squares solution solved numerically
this will be equivelant to a problem of 18 unknowns with
approximately 45 observations. However it should not be made
any larger without some of the necessary improvements discussed
in 2.5.6, being incorporated. These might allow a 50 percent
increase in the size of the problem which might be tackled.
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Primary nets cannot be easily adjusted by the mechanical
analogue, bccause of the required frequency of control points.
Normally Laplace stations are npt frequent enough to provide
enough control points for the mechanical nets. However the use
of a mechanical analogue in this case needs further consideration.

To detect gross errors, this analogue can be used for
any triangulation net without the necessity for the density of
control points needed for a complete adjustment. This gives
the method & certain value. The accuracy in this case is less
important, as the gross error shown by the excessive compression
in some elastic units is not affected very much by the weight
of the analogue.

The possibility of simultaneously adjusting sides and
directions by this analogue has been investigated, and as a
result, it is believed to be difficult. The introduction of
the linear contradictions will affect the radial lengths, which
result in different linear scales for angular adjustment. To
introduce the angular contradictions to the model with different
linear scales upsets the translation of the different joints.
However figure 2, shows that the second model of the mechanical
analogue for angles has been constructed in suéh a way that
after adjusting angles, it can be used directly by substitution
of the appropriate parts to allow an adjustment of the sides
only using the system devised by Dr. Jerie of the I.T.C., Delft.
This allows the adjustment of size after a previous adjustment
of the shape. One precaution has to be considered, that this
can only be applied to figures where different individual
components (sides and angles) were measured with the same
precision, otherwise the adjustment of sides will only result

in distorting the shape which has peen previously corrected.

Group II

These include the electrical analogues introduced by
Su in which he obtained the correlates in the form of the
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physical voltages measured between different points to solve
the normal equations only. It is difficult to build this type
of system, which requires so many electrical clements and some
sort of standardisation. So this method can be used only if
the problem is small and does not involve any negative
coefficients. The difficulties are such that no one has as
yet constructed this type of analogue, and since electronic
analogues are quite widely available and work along a similar
analogy, the possibility of having electrical analogues
constructed in future would appear to be very small.

This leads to a discussion of group IV, which includes
the electronic analogue computers, so allowing the analogue
methods to be considered together; the discussion of group III,
mainly the electronic digital computers, can then take place

partly as a comparison with the analogue methods.

Group IV

The fourth group (the equation solving analogues),
which includes electronic analogue computers can be used to
solve any problem if the latter meets the size requirements.
The different elements that restrict the size of this analogue
has already been discussed in 3.%.4., and the problem recommended
for a mediun size electronic analogue computer was 10x10 or
16x6. Quite recently much larger electronic analogue machines
have been proposed and now begining to come into use. Their
capacity will be much larger.

The main aim of the electronic analogue computer is to
solve observation and condition equations directly, i.e. without
the necessity of forming the normal equations, which does not
seem possible in any other computer. In fact using this facility
reduces the size of this problem considerably. For example,
it was recommended that a problem 16x6 can be introduced to
this analogue as maximum size, but this problem can be reduced

to a $x6 natrix if the normal equations are formed. But with
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the normal equations much more preliminary calculations will be
necessary to form this type of equations. If this is accepted,
this solution allows the use of such a medium size analogue for
larger size problems. The size of the problem will then be
increased to obtain 10 unknowns (i.e. 10x10 matrix). In this
case the short side of the rectangular matrix will be of the
order 10, while the long side of the matrix may go up to any
practical number. In this case the analogue will solve a
problem for fixing 5 new stations, when the solution is carried
out by the variation of coordinates method. But in this case
the analogue computer will loose its advantage of being able to
solve the observation equations directly.

The size of the problem solvable on this analogue
computer can also be greatly increased if one adopts one of the
iterative methods of solution, e.g. [99]. The size of the
problem solved by this method will be doubled, i.e. twenty
unknowns can be obtained by using this analogue. The idea in
this case is to solve for the lower diagonal matrix of the
normal equations. But this will require more and more prepar-
ation and desk calculation. However even with all these
computations and preparations, the efficiency of the analogue
conputer compared with that of the digital computers is
remarkably high, especially when compared with small or even
medium size digital computers. In the latter great deal of
preparatory work and much time is involved in trying to introduce
a large problem to these computers.

The time required for solving by the electronic analogue
method is mostly that necessary for preparing the patch board,
which is carried out away from the machine. For a matrix of
10x10, 4 or 5 hours will be enough to have all the connections
of the patch board made ready. Another hour or less may be
necessary for the physical check of the machine before running
the problem. Once this is achieved then using the key board,

the answers appear instantaneously when the individual keys are
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pressed, so that the total time spent in solving this »nroblem

is not long.

Group III

Digital computers are fairly familiar to those engaged
in survey computation, at least in principle. They require the
use of an input device which accepts tapes or cards to allow
observational data andjgfogramme giving the computational
sequence to be entered and solved in the computer. The data
is then processed in accordance with the details given in the
programme and the answers are recorded in a store for output
either on tape or cards, or visually printed out via a line
printer.

There are now a large number of electronic computers
on the market possessing widely different characteristics with
regard to stofage capacity, calculation speed, input/output
devices, etc.., These features will affect greatly the type
and size of survey adjustment problem which can be tackled and
a discussion of all the relevant points would require at least
a separate dissertation.

Since the computers now available are so large in capaecity
and computing possibilities,at first sight it would seem possible
to solve all the types of survey network which might be
encountered in practice. However such computers are few in
number and require complicated programming particularly for
the discovery and elimination of gross errors and mistakes,

80 much so that they have apparently not yet been used for the
ad justment of survey networks. These difficulties will in time
probably be overcome, but so far most survey computations and
ad justments are being handled on relatively small digital
computers.

The procedure generally followed can be seen from the
following examples:

1- The Directorate of Overseas Surveys uses an I.C.T.(Ferranti)
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Pegasus computer with an 8000 word drum store. This capacity
is rather limited so that the following procedure is
undertaken.

The method of variation of coordinates and observation
equations is used. As a first stage the observation equations
are produced from the known coordinates of the fixed stations
and the provisional coordinates of the stations which are
being adjusted. These observation equations are punched out
on tape. The second stage is the production of normal
equations. This is done from the output tape of the first
stage without any alterations being made, the normal equations
being punched out on tape. The third stage is the solution
of the equations directly using the Cholesky method. Again
this is done from the output tape of the second stage without
any alterations being made. The output from this stage is
the required corrections to the provisional coordinates.

The process is done in three stages in order to get

as large a block as possible into the computer - the punching
out of equations is time consuming and expensive, but it
saves storage space. However it might be possible to speed
up the solution or to increase the problem size to be tackled,
ceges by taking account of the large number of zero coefficients
which occur in survey matrices and by the solution of the
normal equations by iterative rather than direct methods.

The Photogrammetry and Mapping Division of the Iranian

0il Operating Companies utilises an IBM 1620 computer with

. 5000 word store. Their experience is reported by King [133].

The variation of coordinates method is also utilised and
again amultiple stage procedure is necessary. As a complete
maximum a problem of 22 unknowns (11 new points) can be
solved. It may be noted that this is similar to the capacity
of the mechanical analogue designed and ccastructed by the
author or by the PACE 231R-V electronic analogue computer
discussed in 3.3.
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3= The author has attempted a much larger problem using the

larger inglish Elcctric KDF-9 computer at the University of
Glasgow. This has a total storage of 32,000 words, but
18,000 words are used for the compiling programme, so that
only 14,000 words are available for the programming instruc-
tions and the observational data. A programme was prepared
with the assistance of Mr Saad Ben Hamid, which allowed the
solution of the normal equations formed by 12x18 condition
equations, sc that 18 unknowns were solved.

This cxperience gives some experience for a comparison

for analogue and digital computers.

I1- COMPARISON

First of all, the time which can be spent on achieving
a correct programme is very long. On the other hand if:guitable
programme offgeneral naturc can be satisfactorily achicved it
can be used for a large number of networks. So if there is a
great deal of work to be carried out, which will recur regularly
then the investment of a considerable time in achieving a
programme is amply repaid.

With analogue computation, no programming is required
so that, after a small amount of preparation, the data can be
introduced and the problem solved directly in short time. On
the other hand since no programme exists, if another problem
of the same type occurs then the problem has to be tackled
completely afresh. This will happen both with electronic
analogue and mechanical analogue solutions, but is not so serious
for relatively small problems. A large problem would be
a different question.

Again the question of expertise is important. Much
less skill is needed for analogue computation and it is possible
to use semi-skilled personnel after a little training. On the
other hand the analysis, formulation and programming of the

forward and back solution of the normal equations for elewtronic
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digital computers is quite an exacting and elaborate task
requiring the use of highly skilled and trained programmers.
However such skills are rather more readily available than
before and as the use of digital computers becomes more wide-
spread this point may become less important. Electronic analogue
computers are not unoommon, but are nowhere as common as digital
computers except in research institutions.

The question of data input is a vital one in wéighing
up the relative merits of these computation systems. The
observations are made in the field - manually at present.
These have to0 be reduced and tapes or cards prepared to give
all observational data as well as the programming instructions.
To pfoduce error-free tapes or cards is difficult and if the
errors go undetected, their effect goes unobserved until the
final solution is printed out. Ewen then a great expertise
may be required to detect errors in programming or observational
data. When they are found there is a need to alter the tape
and to re-run the problem. With large computers it is probable
that the limit of the problem which can be tackled is more
likely to be determined in practice by the difficulties of
providing an error-free input tape for a large block than by
the capacity available. This is particularly so with survey
obgservations which are invariably manually recorded and do not
have automatic measurement and recording as is normally
encountered in photogrammetric work for example.

With analogue computing, corrections can be made
immediately by inspection while the problem is being solved.
There is no need to wait till the final solution appears in
either the mechanical or electronic analogues. In the latter
the time required for the physical checks of all the elements
incorporated in the problem is very much less than the time
necessary to.find out the errors and repeat the programming
when the digital computers fail to give any solution. However

with an electronic analogue computer, if a problem of double
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the size requires solution, an electronic analogue computer of
double the capacity(and-:cpst)has to be provided. With digital
computers those larger problems can be handled without the need
to employ a computer of double the cost, so that they are more
suitable for large adjustment problems from an economic point

of view. However digital computers only become attractive for
larger problems when the amount of storage is correspondingly
large. A solution which might be attractive for adjustment work
could be a hybrid link between an analogue and a digital computer.
The digital machine could be used to programme the analogue
computer so eliminating the need to set up the coefficients
manually on the electronic analogue computer. It also provides
the storage which is missing on the analogue computer while
still allowing the problem to be solved on the analogue computer
so0 retaining the advantages alreadly discussed in 3.3.5.

The place of the mechanical analogue computer is more
difficult to assess. It can be developed more highly than the
prototypes constructed far this study. Whether this would be
worthwhile in view of the developments in both electronic digital
and analogue computers is open to question. It is a useful
method in places where shortage of skilled personnel and lack
of resources prevent the use of more expensive machines and it
is the only one of the four computation methods which is of use
in the field, especially for the detection of gross errors.

It is also possible to view the mechanical analogue method
as being an extremely useful one for demonstrating the comp-
utation and adjustment processes and my belief is that they
could play an extremely useful role in the way in universities
and similar institutions. In particular students can understand
the proeedures much more easily through this seeitig it happens
directly. At present the mechanical analogue methods could
hold their own against the competing ones having little less
capacity and the attractive features of easy checking of the

computation and detection of mistakes and requiring a relative



- 179 -

small investment both in capital and skill. The method can
be developed to give a greater efficiency, but it must be
doubtful this can be done to the extent that seems to be possible

with either of the electronic methods.
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