A THESIS

Microwave spectral studies on aniline and some other molecules

Submitted to the University of Glascon in part fulfillment for the degree of Doctor of Philosophy in the Paculty of Science

by DAVID G. LISTER, B.Sc.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11011864
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

I would like to thank my supervisor Dr. J.K. Tyler for his help and encouragement throughout this worl.

Gifts of compounds from the following are gratefully acknowlediçed:

Professor Luttke of the University of Gottingen for aniline ${ }^{-15} 5_{N}$ and acetanilide $-4 D_{1}$.

Dr. J. M. Hollas of the University of
Reading for aniline $-\mathrm{D}_{7}$.
Dr. N.M.D. Brom of the University of Glasgow for 2,1,3 - benzoxadiazole and 2,1,3 - benzothiadiazole and for many discussions about these two molecules.

Hy thants are also due to my colleague Hr. J.N. Macdonald and to the research students in the departnents of physical and theoretical chemistry for many helpful sucgestions.

Finally, I would like to thank Professor D.H.J. Cruickshenk and Professor J.R. Robertson in whose departments this worl was carried out and the Science Research Council for a maintenarice grant.

This thesis contains an account of microweve spectral studies aniline, propiolic acid, 2,1,3benzoxadiazole and 2,1,3 - benzothiadiazole, and glycollonitrile. All of the spectra were observed at room temperature using a conventional Stark modulation spectroneter.

A brief description of the spectrometer, the method used to calculate rigid asjmmetric top energy levels and the location of atoms in a molecule are given in Chapter $1 . \quad$ Chapters 2-5 are devoted to the spectral studies on the molecules mentioned above and Chapter 6 contains details of the preparation of a number of these compounds.

The microwave spectra of ten isotopic species of aniline have been observed and transitions due to molecules in the ground and a very low first excited vibrational state have been assigned. A low.first excited vibrational state is characteristic of a pyrimidal configuration about the nitrogen atom
and an inverting anine group. The inertial defects, and substitution co-ordinetes of the aminohydrogen atoms confirm thet aniline is non-planar and an r_{s} structure has been derivad for the $\mathrm{C}-\mathrm{NH}_{2}$ group. The co-ordinntes of the ring hydrogen atoms in aniline incicate that the phenyl group is somewhat narrower and elongated compared to benzene.

Three species of propiolic acid have been studied and the plener nature and cis conformation of the hydroxyl relative to the carbonyl group in this molecule are confirmed. Allowance has been made for centrifugal distortion in deriving the rotational constants, but it is impossible to derive accurate values for the centrifugal distortion constants from the measured line frequencies. The dipole moment of propiolic acid has been obtained from Stark effect measurements and lies almost parallel to the direction of the $C=0$ bond.

The spectra of the normal isotopic species of 2,1,3 - benzoxadiazole and 2,1,3 - benzothiadiazole have been assigned and the inertial defects indicate that these molecules are plenar. Structures with consi ierable double bond fixation in the six membered rings are proposed for these molecules. Some preliminary conclusions about the structure of glycollonitrile are given in chenter 5. Spectra of the normal and one deuterated species ($\mathrm{DOCH}_{2} \mathrm{CN}$) have been assigned. The inertial defects of these molecules and the substitution co-ordinates of the hydroxyl hydrogen atom show that glycollonitrile exists in the gauche form.

COTTETS

page
Chapter 1 Introduction 1
section 1 The spectrometer 3
2 The calculation of rigid asymmetric top energy levels 7
3 The location of atoms by 8 isotopic substitution
References 11
Chapter 2 The microwave spectrum of aniline
section 1 Introduction 12
2 Analysis of spectra 16
3 Excited vibrational states: the inversion and torsional motions of the amine group 43
4 : Structure 52
References 75
Chapter 3 Propiolic acid: centrifugal distortion and dipole monent
section 1 Introduction 77
2 Analysis of spectra 80
3 Centrifugal distortion 89
4 Structure 104
5 Dipole monent and discussion 108
References 120
page
Chapter 4 Double bond fixation in the six membered rinês of 2,1,3 - benzoxadiazole and 2,1,3 - benzothiadiazole
section 1 Introduction 121
2 Analysis of spectra 124
3 Discussion 131
References 137
Chavter 5 The conformation of glycollonitrile
section $1 \quad \because$ Introduction 139
2 Analysis of spectra 140
3 Discussion 146
References 151
Chapter 6 Chemical preparations 153
References 162
Appendix 1 The derivation of 163 rotational constants by least squares
References 166
Appendix 2 Reprint of Non-planarity 167 of the aniline molecule"

INTRODUCTION

A variety of interesting information about
isolated molecules may be obtained by studying the microwave spectra of low pressure gases. Pure rotational transitions are usually observed and microwave spectroscopy is therefore limited to molecules with a permanent dipole moment. The analysis of such spectra leads to moments of inertia, and, provided the spectra of a number of isotopic species have been observed, accurate molecular structures may be obtained.

The Stark effect provides a convenient method of measuring electric dipole moments, and in the case of asymmetric top molecules the direction as well as the magnitude of this quantity may be derived. Fine structure due to the coupling of nuclear quadrupole moments with the angular monentum of the molecule is often observed on microwave lines. The nuclear quadrupole coupling constants are a measure of the
gradient of the electric field at the nucleus, and this information together with the electric dipole moment often indicates a particular distribution of electrons within a molecule.

Hindered internal motions such as the internal rotation of methyl groups or the inversion of amine groups lead to a splitting of lines or to a characteristic pattem of vibrational satellites and accurate values for the potential barriers to these motions may be obtained.

The quantum mechanics of the rotation of molecules is treated in reference $1 . \quad$ The experimental methods of microwave spectroscony, Stark effects and nuclear quadrupole coupling are discussed in the standard text books 2,3,4.

The remainder of this chapter contains a description of the spectroneter used in this work, the method used to calculate rigid asymmetric rotor energy levels and the location of atoms in a molecule
by isotopic substitution. The following chapters deal with spectral studies on aniline, propiolic acid, 2,1,3-benzoxadiazole and 2,1,3-benzothiadiazole', and glycollonitrile. I'he final chapter contains details of the preperation of a number of these compounds when carricd out by the author.
(1) the spectrometer.

All of the measurements in this work have been made on a conventional stark modulation spectrometer operating at room temperature. A block diasrem of the instrument is shom in fig l.1.

The cell is a twelve foot length of copper X band waveguide with a flange at each end. Thin mica windows are cemented onto the flanges with wax and the cell is evacuated through a small hole bored centrally in the broad face of the waveguide.

The Stark septum is tapered acutely at each end to reduce reflections and is supported on milled teflon spacers.

A $100 \mathrm{kc} / \mathrm{s}$ Industrial Components

fig. 17

Incorporated square wave modulation and phase sensitive detection system is used and electric fields of up to 4000 volts/cm are available for the study of molecules with low dipole moments.

A low voltage R.H.I. klystron is used to cover the frequency range $8000-12000 \mathrm{mc} / \mathrm{s}$ and the range $12000-40000 \mathrm{mc} / \mathrm{s}$ is covered by a number of high voltage E.l.I. klystrons. A significant improvement in the stability of the high voltage tubes was obtained when their heater currents were taken from accumulators.

The following types of crystal detector were used

CS9B	$8000-12000 \mathrm{mc} / \mathrm{s} \mathrm{X}$ band	
IN26	$12000-18000$	J band
	$18000-26000$	K band
SIM. 8	$26000-40000 \mathrm{mc} / \mathrm{s} \mathrm{Q} \mathrm{band}$	

Oscilloscope presentation of spectra was usually used and a useful feature of the spectrometer is the
provision of facilities for observing lines using slow sweep rates. Under these conditions a gain in sensitivity by a factor of ten to twenty may be obtained. Permanent records of spectra were made using a Bausch and Lomb recorder.

Approximate frequency measurements, correct to $\ddagger 5 \mathrm{mc} / \mathrm{s}$, were made using cylindrical cavity wave meters. Accurate frequency measurements were made using the system show in fig. 1.2. The licronow frequency multiplier chain provides harmonics of 50, 150 and $450 \mathrm{mc} / \mathrm{s}$ of a $5 \mathrm{mc} / \mathrm{s}$ variable frequency oscillator and these are fed onto the crystal normally used as a detector for the wave meter. This crystal serves both as hamonic generator and mixer. Harmonics spaced by $50 \mathrm{mc} / \mathrm{s}$ are produced in the microvave region and mixed with some of the pover from the klystron. The beat frequency is taken through a radio receiver and when the frequencies of the harmonic of the Hicronow and klystron differ by

fig. 1.2
the radio receiver setting a marker pip is observed on the second trace of the oscilloscope. Tho markers emanate from each hermonic and the variable frequency oscillator of the Micronow is tuned until one of the markers is set on the line. The frequency of this oscillator is neasured to $\pm 1 \mathrm{c} / \mathrm{s}$ using a Marconi frequency counter, and the frequency counter is periodically checked against the $200 \mathrm{kc} / \mathrm{s}$ Droitwich transmission of the B.B.C. In order to eliminate the radio receiver setting both markers are set on the line and to cancel delays measurements are made with the klystron sweeping from low to high frequency and then with the sweep reversed. The harmonic of the variable frequency oscillator used is determined from wave meter measurements.

Strong lines such as those of OCS have been measured to better than $\pm 0.05 \mathrm{mc} / \mathrm{s}$ using this system. The lines observed for many of the molecules studied in this work were often quite weak and broad and the measurements are probably accurate to $\pm 0.1 \mathrm{mc} / \mathrm{s}$.
(2) The calculation of rigid asymmetric top

energy levels.

The energy levels of a rigid asymmetric top 1
may be written
$E_{J}=J(J+1)(\Lambda+C) / 2+(A-C) / 2 E_{J}(K)$ where $\mathrm{E}_{\mathrm{J}}(K)$ is the reduced energy and

$$
K=\frac{2 B-A-C}{A-C}
$$

is Ray's asymmetry parameter. 'Tables ${ }^{5}$ giving the reduced energies correct to eight significant figures and at intervals of 0.001 in \mathcal{K} have been used throughout this work for the calculation of rigid asymmetric rotor energy levels. For molecules such as aniline $(\Lambda-C) / 2$ is of the order of two thousand mes and the accuracy of the reduced energy tables is such that errors of not more then $0.05 \mathrm{mc} / \mathrm{s}$ are introduced into calculated line frequencies. The small magnitudes of the second and higher differences show that linear interpolation
between adjacent entries in the reduced energy tables is a very good approximation.

(3) The location of atoms by isotopic

substitution.

The rotational constants of a molecule are related to the corresponding moments of inertia by

$$
B=\frac{h^{z}}{8 \pi^{2} I}
$$

or, if B is in mc/s and I is in atomic mass units $x \AA^{2}$

$$
B \times I=505531 \times 10^{5} \mathrm{~m} / \mathrm{s} \cdot\left(\mathrm{a} \cdot \mathrm{~m} \cdot \mathrm{u} \cdot \AA^{2}\right)
$$

Because the atoms in a molecule are vibrating the rotational constants are essentially reciprocals of the moments of inertia averaged over the vibrational state. Costain ${ }^{6}$ has show how to calculate molecular structures from ground state moments of inertia in such a way that the effects of zero point
vibrations are minimised. He recommends locating each non-equivalent atom in the principal axis system of a parent isotoric species by making an isotopic substitution of each atom. The co-ordinates in the principal axis system are then calculated from Kraitchnan's equations 7 .

For a planar asymmetric top Kraitchnan's
equations may be written

$$
x^{2}=\frac{\Delta I_{y}}{\mu}\left[1+\frac{\Delta I_{x}}{I_{x}-I_{y}}\right] \text {, etc. }
$$

where

$$
\mu=\frac{M \Delta M}{M+\Delta M}
$$

where $\Delta I x$ and $\Delta I y$ are the differences in moments of inertia of the substituted and parent isotovic species, N is the molecular weisht of the parent molecule and ΔH is the difference in mass between
the two isotopes of the substituted atom.
In the case of a non-planar top the equations take the form

$$
\begin{aligned}
a^{2}= & \frac{1}{2 \mu}[\Delta I b+\Delta I c-\Delta I a] \times \\
& {[1+(\Delta I a-\Delta I b+\Delta I c) / 2(I a-I b)] \times } \\
& {[1+(\Delta I a+\Delta I b-\Delta I c) / 2(I a-I c)] }
\end{aligned}
$$

Expressions for the b and c co-ordinates may be obtained by oyclic permutations of the subscripts of the inertial differences and moments of inertia. Structures calculated by Costain's method are temed substitution structures $\left(r_{s}\right)$ and are usually very good approximations to the equilibrium stzuctures (r_{e}). In cases where comparisons can be made the r_{s} bond lengths are usually within $0.005 \&$ of the r_{e} bond lengths. Partial moleculer stmotures can
be deterrined to the same degree of accuracy and the structure of the $\mathrm{C}-\mathrm{NH}_{2}$ group in aniline has been deternined in this vay.

REFFRRITCES

1. H.C. Allen Jr. and P.C. Cross, "Wolecular Vib-rotors", John Wiley and Sons, Inc. 1963
2. W. Gordy, W.V.Smith and R.F. Trambarulo, "Microvave Spectroscopy", John Wiley and Sons, Inc., 1953.
3. C.H. Townes and A.L. Schawlow, "Ilicrowave Spectroscopy", HeGraw-Hill Book Company, Inc., 1955
4. T.M. Sugden and C.N. Kenny, "Hicrowave Spectroscopy of Gases", D. Van Nostrand Compeny Ltd., 1965
5. M. Sidran, F. Nolan and J.H. Blaker, "Rotational Energy Levels of Asymmetric Top Molecules", Gramman Research Departnent, 1963
6. C.C. Costain, J.Chem.Phys., 1958, 22, 864
7. J. Kraitchman, Am. J. Phys., 1953, 21, 17

The microwave spectrum of aniline

(1) Introduction

The basicity constants of arometic amines are usually lower than those of aliphatic anines and ammonia by a factor of nearly a million ? This is usually attributed to delocalisation of the lone pair of electrons on the nitrogen atom into the π electron systen of the benzene ring. Or, in valence bond language aniline is a resonence hybrid of the canonical forms (a) - (e).

(a)

(b)

(c)

(d)

(e)

The enhanced reactivity of aniline compared to benzene in electrophilic substitution reactions and the ortho para directing nature of the amine group are further evidence for the contribution of structures (c) - (e) to the overall state of the molecule?

These structures can be visualised as being formed from nitrogen in an sp ${ }^{2}$ hybridized state by overlap of the $2 p_{Z}$ orbital on the nitrogen atom with the $2 p_{Z}$ orbital of the 1 - carbon atom and they are therefore planar. Depending on the weights of these structures in the total nolecular wave function the nitrogen atom in aniline might be expected to lose to a certain extent the pyrimidal configuration that is characteristic of ammonia ${ }^{3}$ and methylamine !

There is a number of precedents for taking aniline to be non-planar e.g. dipole moment relaxation studies 5 , Kerr constant measurements ${ }^{6}$ and the dipole moment of p phenylenediamine equal to 1.23D ? The infra-red ${ }^{8}$ spectrum of aniline supports a molecule with Cs symmetry and recently it has been established fron its ultra-violet
spectrum ${ }^{9}$ that aniline is non-planar in its ground electronic state. None of these studies eive a really accurate measure of the degree of the nonplanarity of aniline.

The greometry of the benzene ring is likely to be altered when a hydrofen atom is replacod by a substituent. Inductive effects can change the hybridization of the 1 - carbon atom, but except for very electronegative groups such as fluorine these effects are expected to be small. Resonance effects change the π - bond orders within the benzene ring and this will also cause small distortions. The canonical forms (c)-(e) of aniline indicate that $\left.\left.\boldsymbol{\Gamma} c_{1}-c_{2}\right\rangle \boldsymbol{\Gamma} c_{3}-c_{4}\right\rangle \boldsymbol{\Gamma} C_{2}-C_{3}$. Using the π-bond orders deduced from some Hückel calculations ${ }^{10}$ in conjunction with the slope of a bond order - bond length curve ${ }^{l 1}$ at the point corresponding to benzene the following deviations from the bond length in benzene are predicted for the carbon - carbon bond lengths in aniline.

$$
\begin{aligned}
& \Delta \boldsymbol{r}_{1}-\mathrm{c}_{2} \sim+0.005 \AA \\
& \Delta \boldsymbol{r} \mathrm{c}_{2}-\mathrm{c}_{3} \sim-0.001 \\
& \Delta \boldsymbol{r} \mathrm{c}_{3}-\mathrm{c}_{4} \sim 0.000
\end{aligned}
$$

In order to obtain an accurate measure of the degree of non-planarity of aniline and to investigate the possibilities of distortions in the benzene ring the microwave spectra of the following ten isotopic species of aniline have been examined.

$$
\begin{array}{ll}
\text { aniline }-\mathrm{H}_{7} & \text { aniline }-1 \mathrm{HHD} \\
\text { aniline }-15_{\mathrm{N}} & \text { aniline }-13_{\mathrm{C}} \\
\text { aniline }-2 \mathrm{D}_{1} & \text { aniline }-4 \mathrm{D}_{1} \\
\text { aniline }-3,5 \mathrm{D}_{2} & \text { aniline }-1 \mathrm{D} \mathrm{D}_{2} \\
\text { aniline }-2,4,6 \mathrm{D}_{3} & \text { aniline }-\mathrm{D}_{5}
\end{array}
$$

A planar stmucture with a regular six membered ring and

$$
\begin{array}{rlrl}
\mathbf{r}_{\mathrm{C}}-\mathrm{C}=1.395 \AA & \mathbf{r} \mathrm{C}-\mathrm{H}=1.084 \AA \\
\mathbf{r}_{\mathrm{C}}-\mathrm{N} & =1.350 \AA & \mathbf{r}_{\mathrm{N}}-\mathrm{H}=1.000 \AA \\
\widehat{\mathrm{HNH}}=120^{\circ}
\end{array}
$$

was used as a model for predicting line frequencies. The model is a prolate asyrmetric rotor with $K_{-} 0.55$ and the dipole moment lies along the a inertial axis. The most intense transitions in the microwave spectrum of such a molecule are the μ a R branch lines with $\Delta K_{-1}=0$ and $\Delta K_{I}=+1$.
(2) Analysis of spectra

A line diagram of the $\mu \mathrm{a} R$ branch spectrum of aniline $-\mathrm{H}_{7}$ in the region $23,000-33,000 \mathrm{mc} / \mathrm{s}$ is shown in fig. 2.1. Similar patterns of lines are observed for the other isotopic species of aniline. A very striking feature of the microw spectrum of aniline $-\mathrm{H}_{7}$, aniline $-{ }^{15} \mathrm{~N}$, aniline $-\mathrm{I}^{13} \mathrm{C}$ and the ring deuterated species of aniline is the presence to low frequency of lines due to molecules in the ground vibrational state ($V=0$) of a satellite ($V=1$) of appreciable intensity. The $V=0$ and $V=1$ lines of all of these isotopic species except aniline - $2 D_{1}$ show alternations in intensity depending on the K_{-1} quantum number of the transitions.

Key to fig. 2.1

1. $5_{15}-6_{16}$
2. $5_{05}-6_{06}$
3. $4_{22}-5_{23}$
4. $5_{24}-6_{25}$
$\therefore 5_{51}-6_{52}$
5. $5_{50}-6_{51}$
6. $6_{16}-7_{17}$
7. $5_{33}-6_{34}$
8. $5_{42}-6_{43}$
9. ${ }^{6} 06-7_{07}$
10. $5_{41}-6_{42}$
11. $5_{14}-6_{15}$
12. $5_{32}-6_{33}$
13. $5_{23}-6_{24}$
14. $6_{25}-7_{20}$
15. $7_{17}-8_{18}$
16. $7_{07}-8_{08}$
17. $6_{15}-7_{16}$

$$
6_{61}-7_{62}
$$

18.

$$
6_{60}-7_{61}
$$

19. $6_{34}-7_{35}$
20. $6_{52}-7_{53}$
21. $6_{51}-.7_{52}$
22. ${ }^{6} 43-7_{44}$
23. $6_{42}-7_{43}$

24: $726-8_{27}$
25. $6_{33}-734$

These alternations in intensity are due to nuclear spin statistical weight effects of a number of pairs of equivalent nuclei.

Fig. 2.2 shows the $6_{06}-7_{07}$ and $5_{33}-6_{34}$
trensitions of aniline $-\mathrm{H}_{7}$. The vibration giving rise to the $V=1$ state is very anharmonic since a series of vibrational satellites almost equally spaced and decreasing exponentially in intensity (apart from the nuclear spin statistical weight effects) is not observed to low frequency of the ground state lines. The spectra of the $V=1$ states of aniline - NHD and aniline - N_{2} are somewhat anomolous and are discussed below.

The analysis of the spectra of the $V=0$ and $V=1$ states of all of the isotopic species of aniline except that of the $V=1$ state of aniline - NHD and those of the $V=0$ and $V=1$ states of aniline $-N D_{2}$ followed much the same course as that of the $V=0$ state of aniline $-H_{7}$. A spectrum was predicted from a model; our preliminary structure (appendix 2) was used

fig. $2 \cdot 2$
for this purpose for aniline $-{ }^{15}$ N, aniline $-{ }^{13} \mathrm{C}$ and the ring deuterated species of aniline.

The vapour pressure of aniline at room temperature (0.5 torr) is more than adequate for microwave spectroscopy. Samples were admitted to the cell by filling a section of the manifold of the vacuum system with aniline vapour and then transferring this to the cell. Before work was started on any of the isotopic species of aniline the cell was flushed several times with normal aniline in order to remove traces of other compounds absorbed on the cell walls.

A search for lines was usually made in K band in the region where the $6_{06}-7_{07}, 6_{16}-7_{17}$ and high K_{-1} lines of the $J=5-6$ transition were expected to occur. Assignments were made on the basis of Stark effects and on seperations expected from the model. The high K_{-1} lines are modulated at low Stark fields and the pattern of $K_{-1}=3, h$ and 5 lines is very characteristic. The search for lines vas extended over a few thousand mc / s in order
to locate some of the $K_{-1}=2$ transitions.
The assignments were confirmed and an improved set of constants was obtained by the following graphicel procedure. If rigid rotor theory is obeyed the frequency of a R brench line is given by

$w=2(J+1)(A+C) / 2+(A-C) / 2 \Delta E(J) \quad 2 \cdot 1$

The line frequencies were weighted and differences taken in such a way that the term in $(A+C) / 2$ in 2.1 was eliminated, griving

$$
\Delta v=(A-C) / 2 \Delta(\Delta E(K))
$$

If the transitions have been assigned correctly then plots of $\Delta V / \Delta\left(\triangle E(X) \mid\right.$ against $\mathcal{K}_{\text {for }}$ several pairs of transitions should have a common intersection. A plot over a wide range of K for some of the transitions of aniline $-{ }^{15} \mathrm{~N}$ is showm in fig. 2.3.

Other transitions were predicted fros the new
set of rotational constants and a number of lines

fig. $2 \cdot 3$
spanning a range of $10,000-15,000 \mathrm{mc} / \mathrm{s}$ was measured accurately. The R branch plot was repeated over a smaller range of K (fig. 2.4) and the quality of the intersection shows that centrifugal distortion effects are negligible in the observed transitions. The final rotational constants were obtained by fitting the observed line frequencies by least squares to equation 2.1. A brief discussion of the procedure and computer programe used is given in appendix 1.

Because the amino-hydrogen a.toms in aniline are very labile it is impossible to prepare a sample containing more than 50% aniline - NHD. As the deuterium content of the samples was increased large numbers of low field lines with symmetrical Stark effects were observed. These lines are thought to be due to aniline - N_{2}. The $\mathrm{V}=0$ transitions of aniline - NHD with $K_{-1} \geqslant 2$ are accompanied by a vibrational satellite to low frequency. The separations between the ground state lines and these satellites are only half of those

aniline $-{ }^{95} N$ R branch
 plot

fig. $2 \cdot 4$

Key to fig. 2.3 and fig. 2.4
a $\quad\left(5_{23}-6_{24}\right) \cdots-\left(5_{14}-6_{15}\right)$.
b $6 / 5\left(4_{22}-5_{23}\right)-\left(5_{05}-6_{06}\right)$
c $\quad\left(5_{23}-6_{24}\right)-6 / 7\left(6_{06}-7_{07}\right)$
d $\quad\left(5_{14}-6_{15}\right) \quad-\quad\left(5_{15}-6_{16}\right)$
e $\quad\left(5_{05}-6_{06}\right)-6 / 7\left(6_{06}-7_{17}\right)$
f $\quad\left(6_{33}-7_{34}\right) \quad-\quad\left(6_{43}-7_{44}\right)$

NOTE Since differences between line
frequencies are taken in constmucting an R branch plot the scatter in fig. 2.4 represents deviations of less than $0.5 \mathrm{mc} / \mathrm{s}$ from rigid rotor theory. The plot also illustrates the necessity of obtaining the rotational constants by least squares.
observed for the corresponding transitions of the other isotopic species of aniline. The $5_{05}-6_{06}$,
$6_{06}-7_{07}, \quad 6_{16}-7_{17}$ and $7_{17}-8_{18}$ transitions of aniline - NHD do not have such a satellite and the
$7_{07}-{ }^{8}$ C8 transition is a doublet whose lower frequency component is assigned to the $V=0$ state. A set of rotational constants obtained from the satellites of the higher K_{-1} lines predicts thet the satellites for the $5_{05}-6_{06},{ }^{6} 06-7_{07}, 6_{16}-7_{17}$ and $7_{17}-8_{18}$ transitions lie only $1 \mathrm{mc} / \mathrm{s}$ above the $\mathrm{V}=0$ lines. The satellite for the $7_{07}-808$ transition is predicted at the frequency of the upper component of the doublet. The satellites in aniline - NHD are only slightly weaker than the $V=0$ lines and it is reasonable to assign them to the $V=1$ state. The isotope effect on the $V=1$ lines on deuteration of the amine group indicates that the vibration responsible for this state involves primarily the aninohydrogen atoms.

The very rich spectrum of aniline $-N D_{2}$ nade the assignment of the $\mu \mathrm{a} \|$ branch lines very difficult. The substitution co-ordinates of the amino-hydrogen atoms
obtained from the moments of inertia of aniline - NHD were used to predict the changes in monents of inertia of aniline $-\mathrm{N} \mathrm{D}_{2}$ relative to aniline $-\mathrm{H}_{7}$. It was considered, provided there were no dramatic rotationvibration ineractions in aniline $-N D_{2}$, that the rotational constants obtained in this manner should predict lines to within $20 \mathrm{mc} / \mathrm{s}$. Recordings of the region where the high K_{-1} lines of the $J=5-6$ transition were expected to occur were made at several Stark voltages. A large number of low field lines with symmetrical Stark effects were observed but it was possible to pick out good candidates for the $533-6_{34}$, $5_{42}-6_{43}$ and $5_{41}-6_{42}$ lines within $5 \mathrm{mc} / \mathrm{s}$ of the predicted frequency. The separation between the candidates for the $K_{-1}=4$ lines ($31.40 \mathrm{mc} / \mathrm{s}$) is within $0.1 \mathrm{mc} / \mathrm{s}$ of that predicted by the model. Recordings of other regions were made and it vas usually possible to pick out a line with the expected type of Stark effect within a few mc/s of the predicted frequency. The final least scuares fit for aniline $-N D_{2}$ is
comparable in accuracy with those obtained for the other isotopic species of aniline.

$$
\text { The aniline - } \mathrm{N}_{2} \text { lines so far assiģed do not }
$$ appear to be accompanied by a satellite of the intensity expected for the $V=1$ state. The most likely explanation is that the rotational constants of the $V=0$ and $V=1$ states are so similar that their spectra are prectically co-incident.

The measured and calculated line frequencies and the least squares rigid rotor constants for the various isotopic species of aniline are given in tables 2.1 2.10.

In an attempt to obtain the dipole momert and quadrupole coupling constants of aniline a search was made for the $1_{01}-2_{02}$ and $1_{10}-2_{11}$ transitions of aniline $-\mathrm{H}_{7}$ at the predicted frequencies of

$$
\begin{array}{ll}
\mathrm{I}_{01}-2_{02} & 8597.4 \mathrm{mc} / \mathrm{s} \\
\mathrm{I}_{10}-2_{11} & 9558.5
\end{array}
$$

The lines were very weak and were observed and measured

Measured line frequencies for aniline - H_{7}

	V observed (mc/s)	0	$\mathrm{V}=1$	
		$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$	observed (mc / s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$
$1_{10}-2_{11}$	9558.65	9558.56	9553.20	9553.45
$5_{05}-{ }^{6} 06$	23238.27	23238.26	23233.08	23232.89
$5_{15}-6_{16}$	22983.70	22983.55		
$5_{14}-6_{15}$	27107.50	27107.74	27097.05	27097.20
$5_{24}-6_{25}$	25589.75	25589.75	25579.99	25580.04
$523-6_{24}$	28524.56	28524.47	28508.85	28508.87
$5_{33}-6_{34}$	26651.24	26651.14	26638,75	26638.77
$5_{32}-6_{33}$	27426.56	2.7426 .46	27411.21	274.11 .16
$5_{42}-6_{43}$	26699.83	26699.80	26687.15	26686.95
$5_{41}-6_{42}$	26751.96	26752.09	26738.87	26738.96
$5_{51}-6_{52}$		26590.70		26578.20
$5_{50}-6_{51}$	26591.01	26591.96	26578.75	26579.45
$6_{06}-7_{07}$	26729.10	26729.14	26723.12	26723.12
$6_{16}-7_{17}$	26596.42	26596. 32	26590.05	26590.03
$6_{15}-7_{16}$	30808.54	30808.36	30798.25	30798.14

	v		V	
	observed $(\mathrm{nc} / \mathrm{s})$	$\begin{gathered} \text { calculated } \\ \text { (nc/s) } \end{gathered}$	observed $(\mathrm{mc} / \mathrm{s})$	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$
$6_{25}-7_{26}$	29529.59	29529.63	29519.06	29519.11
$6_{34}-7_{35}$	31034.94	31034.87	31020.85	31020.85
$6_{43}-7_{44}$	31252.82	31252.84	31237.64	31237.66
$6_{42}-7_{43}$	31419.81	31419.80	31403.78	314.03 .73
$6_{52}-7_{53}$	31113.65	31113.47	31098.77	31098.53
$6_{51}-7_{52}$	31119.90	31120.26	31104.99	31105.27
$6_{61}-7_{62}$	31005.98	31005.93	30991.23	30991.39
$6_{60}-7_{61}$		31006.06		30991.51
$707-808$	30245.68	30245.68	30239.03	30238.96
$7_{17}-8_{18}$	30180.88	30180.98	30173.87	30174.07
$(A+C) / 2$		3697.22		3696.15
$(A-C) / 2$		1920.18		1919.42
k		-0.574626		-0.575128

Neasured line frecuencies for aniline - NHD

	observed (mc/s)	$\begin{gathered} \text { calculoted } \\ (\mathrm{mo} / \mathrm{s}) \end{gathered}$	observied $(\mathrm{mc} / \mathrm{s})$	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$
$4_{22}-5_{23}$	22698.02	22697.94	22693.19	22693.12
$505-6_{06}$	22856.59	22856.44		22587.59
$5_{14}-6_{15}$	26262.94	26263.17	26259.62	26259.55
$524-6_{25}$	24759.67	24.759 .73	24757.44	24757.40
$5_{23}-6_{24}$	27451.83	27451.60		
$5_{33}-6_{34}$	25708.52	25703.62	25704.94	25704.91
$5_{32}-6_{33}$	26354.94	26355.11	26350.10	26350.19
$5_{42}-6_{43}$	25735.91	25735.91	25732.23	25732.07
$5_{41}-6_{42}$	25775.75	25775.81	25771.81	25771.88
$5_{51}-\sigma_{52}$	25638.47	25638.00		
$5_{50}-6_{51}$		25638.89		
$6_{06}-7_{07}$	25973.51	25973.61		26974.84
$6_{16}-7_{17}$	25820.92	25820.83		25821.90
$._{15}-7_{16}$	29913.89	29913.70		
$6_{25}-7_{26}$	28597.22	28597.32	28594.96	28595.02
		26		Cont'd.

PABLE 2.2 (cont P.)

			V	
.	observed (mc / s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$	observed (nc/s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$
$6_{24}-7_{25}$	32033.33	32033.34	32026.76	32026.82
$6_{34}-7_{35}$	29954.04	29954.02	29949.64	29949.82
$6_{33}-7_{34}$	31228.95	31228.85	31222.38	31222.42
$6_{43}-7_{44}$	30119.94	30120.03	30115.40	30115.43
$6_{42}-7_{43}$	30248.23	30248.23	30243.53	30243.53
$7_{07}-\varepsilon_{08}$	29384.75	29384.77	29385.57	29385.66
$7_{17}-8_{18}$	29307.31	29307.25		29308.03
$(A+C) / 2$		3649.03		$3647 \cdot 72$
$(A-C) / 2$		1922.93		1921.44
K		-0.600868		-0.601019

Measured line frequencies for eniline - ${ }^{15}$

	$\mathrm{V}=0$	$\mathrm{~V}=\mathrm{l}$		
	observed $(\mathrm{mc} / \mathrm{s})$	calculated $(\mathrm{mc} / \mathrm{s})$	observed $(\mathrm{mc} / \mathrm{s})$	calculated $(\mathrm{mc} / \mathrm{s})$
$4_{22}-5_{23}$	22972.40	22972.35	22958.09	22958.07
$5_{05}-6_{06}$	22820.08	22819.94	22813.83	22813.78
$5_{15}-6_{16}$	22540.74	22540.71	22534.18	22534.12
$5_{14}-6_{15}$	26551.08	26551.27	26539.28	26539.53
$5_{23}-6_{24}$	27779.58	27779.52	27762.79	27762.73
$5_{24}-6_{25}$	25034.14	25034.12	25023.46	25023.40
$5_{33}-6_{34}$	26005.36	26005.33	25992.04	25991.96
$6_{06}-7_{07}$	26242.38	26242.53	26235.39	26235.61
$6_{16}-7_{17}$	26091.52	26091.54	26084.33	26084.24
$6_{15}-7_{16}$	30231.98	30231.87	30220.50	30220.33
$6_{25}-7_{26}$	28910.39	28910.40	28898.76	23898.74
$6_{24}-7_{25}$	32408.68	32408.68	32390.14	32390.16
$6_{34}-7_{35}$	30297.38	30297.45	30282.17	30282.23
$6_{33}-7_{34}$	31611.82	31611.82	31591.57	31591.80

TABLE 2.3 (Cont'd.)

$$
\begin{aligned}
& \mathrm{V}=0 \quad \mathrm{~V}=\mathrm{l} \\
& \begin{array}{ccc}
\text { observed } & \text { calculated } \\
(\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s})
\end{array} \underset{(\mathrm{nc} / \mathrm{s})}{\text { observed }} \\
& \begin{array}{lllll}
6_{43}-7_{44} & 30471.59 & 30471.48 & 30455.29 & 30455.19
\end{array} \\
& \begin{array}{lllll}
6_{42}-7_{43} & 30605.42 & 30605.56 & 30588.45 & 30588.48
\end{array} \\
& \begin{array}{llllll}
7_{07}-8_{08} & 29689.54 & 29689.53 & 29681.81 & 29081.80
\end{array} \\
& \begin{array}{llllll}
717 & -8_{18} & 29613.37 & 29613.35 & 29605.36 & 29605.38
\end{array} \\
& (A+C) / 2 \\
& 3680.52 \\
& 3679.40 \\
& (A-c) / 2 \\
& 1936.58 \\
& 1935.84 \\
& k \\
& -0.597244 \\
& -0.59772
\end{aligned}
$$

Measured line frequencies for aniline - $1^{13} \mathrm{C}$

$$
\begin{array}{ccc}
V=0 & V=1 \\
\text { observed } & =1 & \\
(\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s})
\end{array} \begin{gathered}
\text { calculated } \\
(\mathrm{mc} / \mathrm{s})
\end{gathered}
$$

$4_{13}-5_{14}$	23006.56	23006.49	22996.37	22996.29
$4_{23}-5_{24}$	21455.46	21455.36	21446.89	21446.83
$4_{22}-5_{23}$	23506.55	23506.36	23493.32	23493.14
$4_{32}-5_{33}$	22114.48	22114.54	22104.18	22104.26
$4_{31}-5_{32}$	22424.54	22424.57		

| 5_{06} | -6_{06} | 23170.03 | 23169.92 | 23165.06 |
| :--- | :--- | :--- | :--- | :--- | 23164.78

$$
5_{15}-6_{16} \quad 22911.27 \quad 22911.18
$$

$$
\begin{array}{lllll}
5_{14}-6_{15} & 27017.08 & 27017.22 & 27006.66 & 27006.78
\end{array}
$$

$$
\begin{array}{lllll}
5_{24}-6_{25} & 25498.68 & 25498.75 & 25489.18 & 24589.20
\end{array}
$$

$$
5_{23}-6_{24} \quad 28401.94 \quad 28401.94 \quad 28386.62 \quad 28386.50
$$

$$
5_{33}-6_{34} \quad 26544.85 \quad 26544.85 \quad 26532.66 \quad 26532.60
$$

$$
\begin{array}{lllll}
5_{32}-6_{33} & 27301.60 & 27301.60 & 27286.45 & 27286.54
\end{array}
$$

$$
6_{16}-7_{17} \quad 26513.82 \quad 26513.86
$$

$$
6_{25}-7_{26} \quad 29428.35 \quad 29428.35 \quad 29417.91 \quad 29418.05
$$

TABLE 2.4 (cont'd.)

$$
\begin{aligned}
& V=0 \quad V=1 \\
& \text { observed calculated observed calculated } \\
& \text { (} \mathrm{mc} / \mathrm{s} \text {) } \\
& 6_{24}-7_{25} \quad 33095.12 \quad 33095.07 \quad 33078.15 \quad 33078.15 \\
& \begin{array}{llllll}
6_{33}-7_{34} & 32380.85 & 32380.89 & 32362.09 & 32362.07
\end{array} \\
& \begin{array}{lllll}
6_{43}-7_{44} & 31124.00 & 31123.95 & 31108.99 & 31109.01
\end{array} \\
& \begin{array}{llllll}
6_{42}-7_{42} & 31284.90 & 31285.01 & 31269.15 & 31269.21
\end{array} \\
& \begin{array}{llllll}
707 & -8_{08} & 30154.72 & 30154.73 & 30148.35 & 30148.36
\end{array} \\
& \begin{array}{lllll}
7_{17} & -8_{18} & 30080.17 & 30088.22 & 30081.50
\end{array} \quad 30081.66 \\
& (A+C) / 2 \\
& 3694.60 \\
& 3693.48 \\
& (A-C) / 2 \\
& 1922.97 \\
& 1922.15 \\
& x \\
& -0.578430 \\
& -0.578927
\end{aligned}
$$

TABLE 2.5

Measured line frequencies for aniline - $2 \mathrm{D}_{1}$

$$
V=0 \quad V=1
$$

observed calculated observed calculated
(mc / s) (mc / s) (mc / s) (mes)
$422-523538.3638 .23$

$5_{05}-6_{06}$	22799.41	22799.31	22794.46	22794.49
$5_{15}-6_{16}$	22596.48	22595.80	22590.52	22590.43
$5_{24}-6_{25}$	25264.66	25264.62	25255.52	25255.45
$5_{23}-6_{24}$	28377.60	28377.45	28362.13	28362.17
$5_{33}-6_{34}$	26436.31	26436.20	26424.02	26423.95

${ }^{6} 06-7_{07} \quad 26234.63 \quad 26234.64 \quad 26229.11 \quad 26229.12$
$6_{16}-7_{17} \quad 26135.10 \quad 26135.19 \quad 26123.36 \quad 26129.29$
$6_{25}-7_{26} \quad 29114.05 \quad 29114.03$
$\begin{array}{llllll}6_{34}-7_{35} & 30754.11 & 30754.31 & 30740.59 & 30740.64\end{array}$
$6_{43}-7_{44} \quad 31049.61 \quad 31049.48$
$\begin{array}{lllll}6_{42}-7_{43} & 31279.42 & 31279.65 & 31263.30 & 31262.91\end{array}$
$6_{33}-7_{34} \quad 32519.95 \quad 32519.95$

Cont' ${ }^{2}$

TABJE 2.5 (Cont'd.)

$$
\begin{aligned}
& V=0 \quad V=1 \\
& \begin{array}{ccc}
\text { Observed } & \text { calculated } \\
(\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s})
\end{array} \\
& \text { calculated } \\
& \text { (} \mathrm{mc} / \mathrm{s} \text {) } \\
& \begin{array}{lllll}
7_{07}-8_{08} & 29694.90 & 29695.08 & 29088.86 & 29688.86 \\
7_{17}-8_{18} & 29649.40 & 29649.53 & 29642.97 & 29643.09
\end{array} \\
& (A+C) / 2 \\
& 3545.90 \\
& 3545.54 \\
& (A-C) / 2 \\
& 1800.60 \\
& 1800.55 \\
& \text { k } \\
& -0.533358 \\
& -0.534050
\end{aligned}
$$

lieasured line frequencies for aniline $-4 D_{1}$

	$\begin{gathered} V=0 \\ \substack{\text { observed calculeted } \\ (\mathrm{nc} / \mathrm{s}) \\ (\mathrm{mc} / \mathrm{s})} \end{gathered}$		$V=1$	
			observed. (mc/s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$
$4_{04}-5_{05}$	19198.88	19198.74	19194.45	19194.24
$4_{14}-5_{15}$	18721.40	18721.15	18716.56	18716.42
$4_{23}-5_{24}$	20768.72	20768.74	20760.87	20760.77
$4_{22}-5_{23}$	22600.81	22600.66	22538.73	22588.48
$5_{05}-6_{06}$	22574.14	22573.86	22569.12	22568.95
$5_{15}-6_{16}$	22279.79	22279.98		
$5_{24}-6_{25}$	24708.02	24703.02	24698.78	24699.04
$5_{23}-6_{24}$	27344.40	27344.34	2.7329 .91	27329.97
$5_{33}-6_{34}$	25629.29	25628.90		
$6_{15}-7_{16}$	29888.60	29888.51	29879.13	29878.75
$6_{25}-7_{26}$	2854.5 .93	28546.13	23536.00	28536.38
$6_{24}-7_{25}$	31925.87	31926.33	31909.94	31910.44
$6_{34}-7_{35}$	29866.59	29866.56	29853.63	29853.60
$6_{33}-7_{34}$	31080.06	31080.07	31063.30	31062.96

TABLE 2.6 (Contd.)

$$
\begin{aligned}
& V=0 \quad V=1 \\
& \text { observed calculated observed } \\
& \text { (} \mathrm{nc} / \mathrm{s} \text {) } \\
& \text { calculated } \\
& \text { (} \mathrm{mc} / \mathrm{s} \text {) } \\
& { }^{6} 43-7_{44} \quad 30017.89 \quad 30017.59 \quad 30003.81 \quad 30003.79 \\
& 6_{42}-7_{43} \quad 30134.99 \quad 30135.20 \quad 30120.54 \quad 30120.80 \\
& 7_{07}-{ }^{-8} 08 \quad 29362.69 \quad 29362.77 \quad 29356.82 \quad 29356.68 \\
& \begin{array}{lllll}
7_{17}-8_{18} & 29278.96 & 29279.20 & 29272.52 & 29272.87
\end{array} \\
& \begin{array}{lll}
(A+C) / 2 & 3671.01 & 3670.04
\end{array} \\
& \begin{array}{lll}
(A-C) / 2 & 1946.55 & 1945.87
\end{array} \\
& \text { K } \\
& -0.61015 \\
& -0.610619
\end{aligned}
$$

35

Measured line frequencies for aniline $-3,5 D_{2}$

	$V=0$	$V=1$		
	observed $(\mathrm{mc} / \mathrm{s})$	calculated $(\mathrm{mc} / \mathrm{s})$	observed $(\mathrm{mc} / \mathrm{s})$	calculated $(\mathrm{mc} / \mathrm{s})$
$4_{04}-5_{05}$	18746.79	18746.65	18742.52	18742.29
$4_{14}-5_{15}$	18409.94	18409.76	18705.15	18704.96
$4_{23}-5_{24}$	20666.04	20665.87	20657.72	20657.60
$4_{22}-5_{23}$	22945.10	22944.94	22931.97	22931.79
$4_{32}-5_{33}$	21436.73	21436.50	21426.22	21426.55
$4_{31}-5_{32}$	21867.86	21867.85		
$4_{40}-5_{41}$	21443.24	21443.57		

$5_{05}-6_{06}$	22046.31	22046.16	22041.39	22041.22
$5_{24}-6_{25}$	24505.37	22505.25	24496.22	24496.12
$5_{23}-6_{24}$	27629.01	27629.09	27614.06	27614.15
$5_{33}-6_{34}$	25705.94	25705.96		

$\begin{array}{llllll}6 & -7_{07} & 25373.33 & 25373.26 & 25367.79 & 25367.66\end{array}$
$6_{16}-7_{17} \quad 25290.13 \quad 25290.13 \quad 25284.05 \quad 25284.24$
$\begin{array}{llllll}6_{25}-7_{26} & 28217.74 & 28218.06 & 28208.09 & 28208.37\end{array}$
Contid.

TABLE 2.7 (Cont'd.)

	V	$=0$	V	
	observed (mc/s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$	observied (mc/s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$
$6_{34}-7_{35}$	29387.53	29887.51	29874.06	29874.04
$6_{43}-7_{44}$	30219.13	30219.16	30203.98	30204.08
$6_{42}-7_{43}$	30482.78	30482.83	30466.32	30466.30
$7_{07}-8_{08}$	28723.79	28724.10	28717.63	28717.83
$7_{17}-8_{18}$	28687.25	28687.21	28680.81	28680.80
$(A+C) / 2$		3391.05		3390.31
$(A-C) / 2$		1702.60		1702.16
k				
		-0.511275		-0.511.892

TABLE 2.8

Heasured line frequencies for aniline $-\mathrm{ND}_{2}$
observed calculated

$5_{05}-6_{06}$	21982.07	21981.84
$5_{14}-\sigma_{15}$	25478.19	25478.21
$5_{23}-\sigma_{24}$	26482.88	26482.91
$5_{33}-6_{34}$	24856.43	24856.39
$5_{32}-\sigma_{33}$	25404.84	25404.89
$5_{42}-6_{43}$	24868.89	24868.96
$5_{41}-6_{42}$	24900.31	24900.35

$6_{06}-7_{07}$	25274.04	25274.40
$\sigma_{25}-7_{26}$	27739.63	27739.76
$6_{24}-7_{25}$	30943.55	30943.43
$\sigma_{34}-7_{35}$	28973.14	28973.18
$6_{42}-7_{43}$	29202.55	29202.45

$7_{07}-8_{08}$
28588.92
28588.70

$(A+C) / 2$	3599.39
$(A-C) / 2$	1920.35
\mathcal{K}	-0.622616

Measured line frequencies for aniline - 2,4,6 D_{3}

	V		v	
	observed (mc / s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$	observed (mc / s)	$\begin{gathered} \text { calculated } \\ (\mathrm{mc} / \mathrm{s}) \end{gathered}$
$4_{12}-5_{14}$	21770.24	21770.30		
$423-5_{24}$	20313.17	20312.93	20305.49	20305.54
$4_{22}-5_{23}$	22466.03	22466.09	22454.14	22454.21
$505-6_{06}$	21745.51	21745.24	21740.62	21740.94
$5_{15}-6_{16}$	21552.96	21552.90	21548.21	21548.16
$5_{14}-6_{15}$	25460.93	25461.01	25452.37	25452.86
$5_{24}-6_{25}$	24103.11	24103.33	24094.80	24095.19
$523-6_{24}$	27082.43	27082.29	27068.61	27068.79
$532-633$	26135.22	26135.39	26121.32	26121.19
$6_{16}-7_{17}$	24928.49	24928.40	24923.34	24923.20
$625-7_{26}$	27773.78	27774.02		
$6_{24}-7_{25}$	31456.15	31456.20		
$6_{34}-7_{35}$	29345.87	29345.63	29333.07	29333.54
$6_{33}-7_{34}$	31042.61	31042.70		

MABLT 2.9 (Cont'd)

$$
\begin{aligned}
& V=0 \quad V=1 \\
& \text { observed calculated observed calculated } \\
& \text { (} \mathrm{mc} / \mathrm{s} \text {) (} \mathrm{mc} / \mathrm{s} \text {) (} \mathrm{mc} / \mathrm{s} \text {) } \\
& \text { (} \mathrm{nc} / \mathrm{s} \text {) } \\
& 6_{43}-7_{42} \quad 29631.11 \quad 29630.90 \\
& 6_{42}-7_{43} \quad 29853.55 \quad 29853.67 \quad 29838.93 \quad 29838.93 \\
& 7_{07}-8_{08} \quad 28322.65 \quad 28322.94 \quad 28316.84 \quad 28317.43 \\
& \begin{array}{lllll}
7_{17}-8_{18} & 28280.19 & 28280.12 & 28274.43 & 28274.44
\end{array} \\
& \begin{array}{lll}
(A+C) / 2 & 3379.01 & 3378.54
\end{array} \\
& (A-C) / 2 \\
& 1714.35 \\
& 1715.16 \\
& \text { K } \\
& -0.531528 \\
& -0.532120
\end{aligned}
$$

Measured line frequencies for aniline $-\mathrm{I}_{5}$

$$
\begin{array}{ccc}
V=0 & V=1 \\
\text { obscrved } & =0 \text { calculnted } & \text { observed } \\
(\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s}) & (\mathrm{mc} / \mathrm{s})
\end{array} \quad \begin{gathered}
\text { celculated } \\
(\mathrm{mc} / \mathrm{s})
\end{gathered}
$$

$$
\begin{array}{lllll}
4_{13}-5_{14} & 20906.32 & 20906.17 & & \\
4_{22}-5_{23} & 21862.91 & 21862.76 & 21851.04 & 21851.05 \\
4_{32}-5_{33} & 20352.25 & 20352.26 & & \\
4_{31}-5_{32} & 20852.01 & 20851.94 & 208.40 .74 & 20840.91 \\
& & & & \\
5_{05}-6_{06} & 20706.74 & 20706.51 & 20702.56 & 20702.56 \\
5_{15}-6_{16} & 20573.72 & 20573.48 & 20569.16 & 20569.09 \\
5_{14}-6_{15} & 24317.71 & 24317.70 & & \\
5_{23}-6_{24} & 26261.36 & 26261.19 & & \\
5_{33}-6_{34} & 24386.87 & 24386.84 & & \\
5_{32}-6_{33} & 25531.17 & 25531.13 & 25516.77 & 25516.64 \\
5_{41}-6_{42} & 24638.63 & 24638.90 & & 23776.67 \\
6_{06}-7_{07} & 23840.55 & 23840.52 & 23835.77 & 2385.91 \\
6_{16}-7_{17} & 23781.53 & 23781.47 & 23776.79 & 237 \\
6_{24}-7_{25} & 30358.47 & 30358.77 & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
& V=0 \quad V=1 \\
& \text { observed calculated observed } \\
& \text { (} \mathrm{mc} / \mathrm{s} \text {) (} \mathrm{mc} / \mathrm{s} \text {) (} \mathrm{mc} / \mathrm{s} \text {) }(\mathrm{mc} / \mathrm{s}) \\
& \text { calculated } \\
& \begin{array}{lllll}
7_{07}-8_{08} & 26994.91 & 26995.21 & 26989.94 & 26990.07 \\
7_{17}-8_{18} & 26970.47 & 26970.55 & 26965.33 & 26965.31
\end{array} \\
& (A+C) / 2 \\
& 3123.08 \\
& 3122.41 \\
& (A-C) / 2 \\
& 1535.91 \\
& 1535.48 \\
& \text { K } \\
& -0.469162 \\
& -0.469779
\end{aligned}
$$

for the first tine using the recorder. The lines were too weak to resolve any quadrupole fine structure and the Stark lobes too indefinitc to make dipole monent measurements.
(3) Excited vibrational states : the inversion and torsional motions of the amine group

A very anharmonic vibration involving primerily the amino-hydrogen atoms and giving rise to a low lying first excited state hes been observed in formamide ${ }^{12}$, cyanamide ${ }^{13}$, and nitramide ${ }^{14}$. These facts have been interpreted in terms of a pyrimidal configuration about the nitrogen atom and an inverting NH_{2} group.

If aniline were planar the potential describing the NH_{2} wagging vibration would be nearly parabolic and the vibrational energy levels would be evenly spaced (fig. 2.5a). The symmetry of the vibrational wave function for this vibration with respect to inversion is even for $V=0,2,4^{\cdots}$ and odd for $V=1,3,5^{\cdots}$.
(a)

(b)

intermediate barrier
(c)

fig .2 .5

If the potential function for the If H_{2} wagging vibration is distorted by raising a hump the energy levels approach each other in pairs (fig. 2.50). Then the potential barrier is very high and the two conformations cannot. interconvert by tunnelling through the barrier the onergy levels are again evenly spaced but are doubly degenerate (fig. 2.5c). In the case of barriers of intermediate height the vibrational wave functions retain the same symmetry with respect to inversion as the corresponding wave functions of the planar molecule.

An idea of the sepration between the $V=0$ and $V=1$ states of aniline can be obtained from the relative intensities of their spectra.

In aniline $-\mathrm{H}_{7}$ and the symnetrically substituted isotopic species the nuclear spin statistical weight effects due to a number of pairs of equivalent hydrogen or deuterium atoms must be allowed for. The overall wave function for a molecule must be either symmetric or antisymmetric depending on the number of pairs of
nuclei and their spins. The wave function may be written as a product of electronic, vibrational, rotational and nuclear spin wave functions.

$$
\Psi_{\text {total }}=\Psi_{e} \times \Psi_{\text {vib }} \times \Psi_{\text {rot }} \times \Psi_{\text {H.S. }}
$$

Aniline has a symmetric ground electronic state (Ag) and the symmetries of the vibrational wave functions have been given above. The symmetry of the rotational wave function with respect to the operation $C_{2 a}$ depends on K_{-1} and is

K_{-1}	even	symnetric
K_{-1}	odd	antisymmetric

The allowed combinations of vibrational, rotational and muclear spin wave functions are given in table 2.11. The statistical weight effects ($g_{\text {H. }}$. have been calculated from the formulae 15

$$
\begin{aligned}
& g_{\text {symmetrical }}=1 / 2\left[\begin{array}{l}
\frac{n}{N}(2 I i+1) \\
1
\end{array}\right] \times\left[\pi\left(2 l_{i}+1\right)+1\right] \\
& g_{\text {antisymm. }}=1 / 2\left[\frac{n}{\pi}(2(i+1)] \times\left[\frac{n}{\pi}(2 I i+1)-1\right]\right.
\end{aligned}
$$

TんBIE 2017						
Allowed combinations of vibrational, rotational and nuclear spin wave functionsfor aniline.						
		$V=0$			$V=I$	
	ψ toter	K_{-1}	$Y_{N . S}$	GNS.	$\psi_{H S}$	$\mathrm{g}_{\text {N. }}$.
aniline -Hy aniline $-15 N$		even	antisymmetric	28	symmetric	36
aniline - $-^{13} \mathrm{C}$ antisymmetric						
aniline $-4 D_{1}$		odd	symmetric	36	antisymmetric	28
aniline $-\mathrm{N}_{2}$	symmetric	even	symmetric	78	antisymmetric	66
aniline -3,5 D_{2}						
aniline $-2,4,6 \mathrm{D}_{3}$		odd	antisymmetric	66	symmetric	78
aniline D_{5}	antisymmetric	even	antisymmetric	135	symme vric	172
		oad	symmetric	171	antisymnetric	135

where I i $i s$ the spin of one of the i th pair of nuclei and n is the number of pairs of equivalent nuclei. The $V=1$ lines of the various isotopic species of aniline never appear stronger than the $V=0$ lines even when the $V=1$ state has the lerger statistical weight. If the μ a components of the dipole moments of the $V=0$ and $V=1$ states are equal then the separation between these states is less than $100 \mathrm{~cm}^{-1}$. From the ultra-violet spectrum of aniline Brand, Willians and cook ${ }^{8}$ deduce a separation of $34 \mathrm{cn}^{-1}$. They have fitted the lower energy levels of the inversion modes of aniline $-\mathrm{H}_{7}$ and aniline $-\mathrm{N} \mathrm{H}_{2}$ to a double minimum potential

$$
V / h c=1 / 2 q^{2} v_{0}+\alpha v_{0} \exp \left(-\beta q^{2}\right)
$$

where q is the normal co-ordinate and α, β and $\boldsymbol{\nu}_{0}$ are arbitrary constants. In this way they obtained a value of the degree of non-planarity of aniline and obtained a barrier to inversion of $565 \mathrm{~cm}^{-1}$. However if their inversion splittings are fitted, assuming the
geonetry of the CHH_{2} group given in the next section, to a limnine potential

$V / h c=A \operatorname{sech}^{h}(X / P)+\theta \operatorname{sech}^{2}(X / P)$

(where X is the nomal co-ordinate and A, B and P are arbitrary constants) a barrier of $970 \mathrm{~cm}^{-1}$ is obtained ${ }^{16}$. These values may be compared with the barriers in ammonia 17 ($V=2000 \mathrm{~cm}^{-1}$), formanide ${ }^{12}$ $\left(V=310 \mathrm{~cm}^{-1}\right)$, cyanamide ${ }^{13}\left(V=710 \mathrm{~cm}^{-1}\right)$ and nitramide ${ }^{1 ?}\left(V=950 \mathrm{~cm}^{-1}\right)$ that have been obtained by fitting the vibrational energy levels of the inversion modes of those molecules to a Nanning potential.
μ_{C} transitions occur with a change in parity of the K_{-1} cuantum number and must therefore involve states with vibrational wave functions of different symmetries. For such transitions to occur in the microwave region the changes in vibrational and rotational energies must almost cancel each other. The inversion splitting in aniline $-\mathrm{N}_{2}$ has been estimated to be $7 \mathrm{~cm}^{-1}$ and the low field lines in the microwave spectrum of this isotovic
species are thought to be μ_{C} transitions between the $V=0$ and $V=1$ states. An estimate of the J and K_{-1} quantum numbers involved in these transitions may be obtained by equating the change in rotational energy to the inversion soljtting. For high J and K_{-I} the energy levels of a prolate asymmetric top are given quite accurately by

$$
W_{J}, K_{-1}=J(J+1)(B+C) / 2+(A-(B+C) / 2) K_{-1}^{2}
$$

If a $\Delta K_{-1}=+1, \Delta K_{1}=0$ Q branch line is to occur in the microwave region

$$
(A-(B+C) / 2)\left(K_{-1}+1\right) \sim 7 \mathrm{~cm}^{-1}
$$

giving $K_{-1} \sim 35$ Although the analysis of such lines would lead to an accurate value of the inversion splitting the assignment of lines with very high J and K_{-1} quantum numbers is very difficult.

The internal rotation of the amine group in aniline is hindered by a potential of the form

$$
V=V_{2} / 2(1-\cos \alpha)
$$

where α is the torsional angle (fig. 2.6). If the internal rotation of the amine groul can be separated from the other motions of the molecule the energy levels are solutions of the Hathieu equation and are given by

$$
b r(s)=\frac{8 \pi^{2} c \text { leff }}{h}\left[\frac{E(r)-v_{2}}{h c}\right]
$$

$s=\frac{8 \pi^{2} c \text { Ieff }}{h}\left(V_{2} / h c\right)$

$E(r) /$ he are the torn values, the $\mathrm{br}(\mathrm{s})$ are eigenvalues of the Mathieu equation and

$$
\text { Ieff }=I_{1} I_{2} / I_{\alpha}
$$

where I_{1} and I_{2} are the moments of inertia of the anine and phenyl group and I_{α} is the a moment of inertia of aniline. If the barrier to internal rotation is very high the energy levels are doubly degenerate and cvenly spaced and when the barrier is low the upper energy levels correspond to free rotation. The two situations

fig. $2 \cdot 6$
are show in fis 2.6.
tuans ${ }^{8}$ hes assigned an infra-red band at $420 \mathrm{cn}^{-1}$ to the $0-2$ transition of the torsional mode or aniline and calculates the barrier to internal rotation to be $1247 \mathrm{cr}^{-1}$. The splitting of the lowest energy level ($\Delta \mathbf{D} \mathbf{O}^{*}$) can be estimated from the formula

$$
\Lambda b_{0_{ \pm}}=7.6768(\mathrm{~s})^{0.75} \exp \left[-1.9860 \mathrm{~s}^{0.5}\right]
$$

and is found to be less than $1 \mathrm{nc} / \mathrm{s}$. The degeneracy of the vibrational levels of aniline due to the internal rotation is therefore not effectively lifted. There is sone uncertainty about the infra-red band at $420 \mathrm{~cm}^{-1}$ since Brand, Nilliams and Cook calculate the 0-2 transition of the inversion mode at $423 \mathrm{~cm}^{-1}$. However the similarity of the barriers to internal rotation in methylamine ${ }^{4}\left(V_{3}=691 \mathrm{~cm}^{-1}\right)$ and methyl alcohol 19 $\left(V_{3}=375 \mathrm{~cm}^{-1}\right)$ indicate that the barrier in aniline should be similar to that in phenol ${ }^{18}\left(V_{2}=1215 \mathrm{~cm}^{-1}\right)$. The vibrational satellites in the microwave spectrum of aniline are consistent with a non-planar molecule and
considerable barriers preventing the inversion and internal rotation of the amine group.
4. Structure
(a) Inertial defects

The inertial defect, defined by

$$
\Delta^{0}=I_{c}-I_{b}-I_{a},
$$

is zero for a rigid lamina and for a rigid nonplanar body

$$
\Delta^{0}=-2 \sum \sum^{2}
$$

These expressions are not strictly valid for the effective moments of inertia obtained from the ground state rotational constants of a molecule. The corrections due to Coriolis coupling and the inversion and averaging of the moments of inertia have been discussed but are too complicated to be applied to heavy molecules ${ }^{20}$. In a planar molecule the inplane vibrations make a positive and the out of plane vibrations a negative contribution to $\mathbf{1}^{\circ}$. Planar aromatic molecules have a number of low frequency out
of plane vibrations and the inertial defects of this type of molecule are usually of the order of +0.05 a.m.u. \AA^{2}. Variations of ± 0.02 a.m.u. \AA^{2} are generally found amonsst the various isotopic species of a given molecule.

The ground state and first excited vibrational state moments of inertia for the ten isotopic species of aniline whose microwave spectra have been investigated are given in tables 2.12 and 2.13. The inertial defects $\left(\Delta^{\circ}\right)$ for aniline ${ }^{-15} 11$, aniline $-1{ }^{13} C$ and the ring deuterated species of aniline are similar to that of aniline $-\mathrm{H}_{7}$. The ratios of Δ° for aniline $-N H D$ and aniline $-\mathrm{ND}_{2}$ to that of aniline $-\mathrm{H}_{7}$ are $1.42: 1$ and 1.97:1 respectively. Such behaviour is consistent with a planar $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ fragment and the amino-hydrogen atoms lying out of the plane of the rest of the molecule. The anino-hydrogen atoms were located in the principal axis system of aniline $-\mathrm{H}_{7}$ using Kraitchnan's equations and the moments of inertia of aniline - NHD and aniline $-\mathrm{H}_{7}$.

 Ia
(a.m.u. ρ^{2},
89.9938
90.7277
89.9986
89.9910
94.5536
89.9912
99.2473
91.5871
99.2529
108.5056

\%

TABLE 2.13
$V=I$ moments of inertia for aniline

$$
\begin{align*}
& \mathrm{a}_{\mathrm{NH}}=2.7801 \quad(\AA) \\
& \mathrm{b}_{\mathrm{NH}}=0.8352 \\
& \mathrm{c}_{\mathrm{HH}}=0.3016
\end{align*}
$$

The principal moments of inertia of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ fragment were calculated using the following expressions for the differences in moments of inertia between aniline $-\mathrm{H}_{7}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$

$$
\begin{aligned}
& \Delta I_{a}=\Delta^{\prime} I_{a}-2 M_{H} b_{N H}^{2} \\
& \Delta I_{c}=\Delta^{\prime} I_{c}-2 M_{H} b_{N H}^{2} \\
& \Delta I_{b}=\Delta^{\prime} I_{a}+\Delta^{\prime} I_{c}
\end{aligned}
$$

$\Delta ' I_{a}$ and $\Delta ' I_{c}$ are roots of equations 2.2 and 2.3.

$$
\begin{aligned}
& \Delta^{\prime} l^{2} a^{2}-\left[\mu\left(a_{N H}^{2}+c^{2}\right)-(l a-I c)\right] \Delta^{\prime} l a-\mu c_{N H}^{2}(I a-I c)=0 \cdot 2 \cdot 2 \\
& \left.\Delta^{\prime} l^{2}\right\}-\left[\mu\left(a_{N H}^{2}+c_{N H}^{2}\right)-[I c-[a)] \Delta^{\prime} I c-\mu a_{N H}^{2}(I c-I a)=0\right.
\end{aligned}
$$

$$
\mu=-\frac{2 M M_{H}}{M-2 M_{H}}
$$

and M is the molecular weight of aniline.
Equations
2.2 and 2.3 are derived from Kraitchman's equations for a planar asymmetric top.

The inertial defect of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ was found to be -0.0034 a.m.u. \AA^{2} and this is good evidence for the planarity of that fragment. Table 2.13 shows that Δ^{\prime} is smaller than Δ^{0} and the contribution from the inversion vibration causes the inertial defect of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ fragment to have a negative rather then the expected small positive value.

The co-ordinates of the amino-hydrogen atoms confirm that aniline hes the configuration (fig.2.7a). In configuration (b) the distence between the aminohydrogen atoms $(\sim 0.60 \AA$) is only twice the covalent radius of hydrogen and such a smell separation between non-bonded atoms is unlikely. The other possible configuration for non-planar aniline (c) is excluded because such a molecule would not show the observed inversion doubling.

Possible configurations for aniline

(a)

(b)

(c)
fig. 2.7

(b) The structure of the $\mathrm{C}-\mathrm{IIH}_{2}$ fragment

Wide ${ }^{21}$ has show that interactions between the inversion of the amine group and the overall rotation of the molecule can lead to appreciable contributions to the rotational constants. The data for aniline ND_{2} thus provides a useful check on the accuracy of the location of the amino-hydrogen atoms. The differences in moments of inertia of aniline $-\mathrm{HD}_{2}$ and aniline $-\mathrm{H}_{7}$ are given by the following expressions

$$
\begin{gathered}
\Delta I_{a}=\Delta I_{a}+2 \Delta I_{b}^{2}-2.4 \\
\Delta I_{0}=\Delta^{\prime} I_{c}+2 \Delta I_{b}^{2} \mathrm{NH}-2.5 \\
\Delta I_{b}=\Delta \cdot I_{a}+\Delta I_{c}-2.6 \\
\Delta M=M_{D}-M_{H}
\end{gathered}
$$

$$
\text { and } b_{N H}^{2}=\frac{1}{4 \Delta M}\left(\Delta I_{a}+\Delta I_{c}-\Delta I_{b}\right)-2.7
$$

The a and b coordinates were obtained by substituting ΔI_{a} and ΔI_{c} into Kraitchman's equations for a
planar asynmetric top.

$$
\begin{aligned}
& a_{\mathrm{NH}}=2.7770 \\
& \mathrm{~b}_{\mathrm{NH}}= \pm 0.8320 \\
& c_{\mathrm{NH}}=0.3305
\end{aligned}
$$

The a and b co-ordinates determined from the singly and doubly deuterated isotopic species show the variations expected from zero point vibrational
effects. The difference between the c co-ordinates is somewhat lerger, but this is the least well determined co-ordinate.

The nitrogen and l-carbon atoms were located in the principal axis systen of aniline $-\mathrm{II}_{7}$ by substituting the appropriate values of ΔI_{a} and ΔI_{c} into Kraitchman's equations for a planar top.

$$
\begin{array}{ll}
a_{N}=2.3390 & c_{N}=0.0707 \\
a_{c_{1}}=0.9365 & c_{C_{1}}=\text { imaginary }
\end{array}
$$

In view of the expected small values of the C
co-ordinates of the atoms of the $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\mathrm{H}}$ fraginent the imaginary value of $\widetilde{c}_{C_{1}}$ is not survising.

As the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ fregnent is planar there is a linear relationship between the a and co-ordinates of its atoms

$$
c_{i}=X a_{i}+y
$$

The constentis X and y can be obtaincd from the first moment conditions ($\Sigma_{m a}=0, \Sigma m c=0$) and the product of inertia condition ($\mathrm{L} \mathrm{mac}=0$). These conditions take the form

$$
\begin{aligned}
& -2 M_{H} a_{1 H H} X+\left(M-2 M_{H} \mid y=-2 M_{H} c\right. \text { NH } \\
& \left(I b+1 / 2 \Delta^{\circ}-2 M_{H} a_{N H}^{2}\right) X-2 M_{H} a_{H H}=-2 M_{H} a_{N H} c_{N H}
\end{aligned}
$$

where $\sum n^{2}$ over the atoms of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ has been replaced by

$$
I_{b}-1 / 2 \Delta^{0}-2 H_{H} a_{N H}^{2}
$$

The degree of non-planarity (ϕ) is defined as the angle between the extension of the $C-N$ bond and the
bisector of the HiN angle (fig.2:8a).

$$
\begin{aligned}
& \phi=\alpha+\beta \\
& \alpha=\tan ^{-1}\left(c_{1 N H}-c_{\mathrm{H}}\right) /\left(a_{\mathrm{NH}}-a_{\mathrm{N}}\right) \\
& \beta=-\tan ^{-1} \mathrm{x}
\end{aligned}
$$

The geometry of the $\mathrm{C}-\mathrm{MH}_{2}$ group calculated using the coordinates of the amino-hydrogen atoms obtained from the moments of inertia of the pairs of isotopic species

$$
\begin{aligned}
& \text { aniline }- \text { MHD } / \text { aniline }-\mathrm{H}_{7} \\
& \text { aniline }-\mathrm{ND}_{2} / \text { aniline }-\mathrm{H}_{7}
\end{aligned}
$$

are show in fig 2.8b and fig. 2.8c. Because the rotational constants for aniline $-\mathrm{ND}_{2}$ might well be an average for the $V=0$ and $V=1$ states of that isotopic species the structure calculated from the single deuterium substitution is considered more reliable.

The degree of non-planarity is somewhat less than that obtained by Brand, Williams and Cook ($\phi \sim 46^{\circ}$) from their study of the ultra-violet spectrum of aniline. The N - H bond length is comparable with those in

fig.2.8
nitranice ${ }^{14}\left(\mathbf{r i n}_{\mathrm{i}}-\mathrm{H}=1.005 \mathrm{~A}\right)$ and cyanamide ${ }^{13}$ $\left(\boldsymbol{T}_{\mathrm{S}} \mathrm{H}-\mathrm{H}=0.990\right.$ Q $)$ but slightly shorter than that in amonia ${ }^{3}\left(\boldsymbol{r}_{S}=1.014 \%\right.$ \% .

The degrees of non-planarity and $C-N$ bond
lengths in a number of amines are given in table 2.14a. The short bonds in aniline, formamide and cyanamide relative to that in methylamine are expected for two reasons
(i) changes in the hybridization of the carbon atom from $s p^{3}$ in methylamine to $s p^{2}$ in aniline and formamide to $s p$ in cyanamide
(ii) contributions from structures of the type $\mathrm{N}^{+} \mathrm{H}_{2}=\overline{\boldsymbol{x}}$ to the overall state of the molecule, These effects are difficult to separate but the variations in the $C-C$ bonds of the analogous methyl compounds (table 2.14b) indicate the hybridization effects may be responsible for a large portion of the bond shortenings found in these amines. The degree of non-planarity is therefore perhaps a better measure of the contributions from the structures $\mathrm{N}^{+} \mathrm{H}_{2}=\bar{x}$ then the length of the $\mathrm{C}-\mathrm{N}$ bond.

\varnothing	$\lceil c-c$
$\left({ }^{\circ}\right)$	(\AA)

methyl amine 4	55	1.474
aniline	38	1.403
formamide		
12	1%	1.376
cyanamide 13	36	1.346

	TABLE 2.14 b	
	1 $1-1$	Δr
	(8)	(\AA)
ethane ${ }^{22}$	1.536	
toluene 23	1.51	0.03
acetaldehyde 24	1.501	0.035
methyl cyanide 25	1.458	0.078

Δr is the difference between the $C-C$ bond in ethane and that in $\mathrm{CH}_{3} \mathrm{X}$.
(c) The location of the ring hydrogen atoms

The ortho and para hydrogen atons were located in the principal exis system of aniline $-\mathrm{H}_{7}$ using the monents of inertia of aniline $-2 D_{1}$ and aniline $-4 D_{1}$. The meta hydrogen atoms were located using aniline $-3,5 \mathrm{D}_{2}$ and equations 2.4-2.7. The éco-ordinates were calculated from equation 2.8 and a list of the substitution co-ordinates is given in table 2.15 .

A check on the b co-ordinates of the ortho and meta hydrogen atoms was made using equation 2.7 and the pairs of isotopic species given below
aniline $-D_{5} /$ aniline $-3,5 D_{2}$
$\mathrm{b}_{\mathrm{H} 2}= \pm 2.1440$
aniline $-D_{5} /$ aniline $-2,4,6 D_{3}$
$\mathrm{b}_{\mathrm{H} 3}= \pm 2.1443$

The agreement with the values given in table 2.13 is very good.

Before the sample of aniline $-4 D_{1}$ was available the a co-ordinate of the para hydrogen atom was found from the following calculation. The intermediato

TABLI 2.15

Isotopic substitution co-ondinates for aniline

	a	b	c
	($)$	(\AA)	(\AA)
NH	2.7801	0.8352	0.3016
N	2.3390	0	-0.0299^{1}
C_{1}	0.9365	0	-0.0163
H_{2}	0.7714	2.1442	-0.0148
H_{3}	-1.6958	2.1444	0.0091
H_{4}	-2.9513	0	0.0213

The co-ordinates of the atoms except for $c_{N H}$ have been calculated from equation 2.8 .
monent of inertia of aniline $-2,6 \mathrm{D}_{2}$ is given by

$$
I_{b}^{\prime}=I_{b}+\Delta^{\prime} I_{a}+\Delta^{\prime} I_{c}
$$

where $\Delta ' I_{a}$ and $\Delta ' I_{c}$ are solutions of the appropriate forms of equations 2.3 and 2.4. The co-ordinates of the ortho hydrogen atoms about axes perallel to the principal axes of aniline $-2,6 \mathrm{D}_{2}$ were calculated from the first moment conditions, giving

$$
\begin{aligned}
& a^{\prime}{ }_{\mathrm{H} 2}=0.7551 \\
& c^{\prime}{ }_{\mathrm{H} 2}=-0.0117
\end{aligned}
$$

Allowing for the small rotation to the principal axis system of aniline $-2,6 D_{2}$ makes negligible differences to these co-ordinates. In the remainder of this calculation the effects of the small rotations of principal axis systems relative to each other have been neglected. The para hydrogen atom was located in the principal axis system of aniline $-2,6 \mathrm{D}_{2}$ using aniline $-2,4,6 D_{3}$ and

$$
\Delta I D=\mu\left(d_{H_{4}}^{2}+t_{H_{4}}^{2}\right) \quad 2 \cdot 9
$$

${ }^{C '}{ }_{H 4}$ was estimated using $a_{H 4}$ from our preliminary structure. The co-ordinate of the para hydrogen atom in the principel axis system of aniline $-\mathrm{H}_{7}$ is given by

$$
a_{H 4}=a_{H 2}+a_{H 4}^{\prime}-a_{H 2}^{\prime}=-2.9526 .
$$

The a co-ordinate of the meta hydrogen atom was calculated in a similar manner. The co-ordinate of the para. hydrocen atom ($\mathrm{a}_{\mathrm{H} 4}$) in the principal axis system of aniline $-2,4,6 \mathrm{D}_{3}$ was calculated using equation 2.9 and the appropriate reduced mass. The meta hydrogen atoms were located in this system of axes using the inertial deta for aniline $-D_{5}$ and equations 2.5-2.7. The a co-ordinate of the meta hydrogen atom, is given by

$$
a_{H 3}=a_{H 4}+a_{H 3}^{\prime}-a_{H 4}^{\prime \prime}=-1.6949
$$

The good agreement with the values given in table 2.15 indicates the reliebility of the rotational constants of the various isotopic species of aniline.

(d) The location of the remaining atoms.

In order to determine the structure of aniline completely the a and b coordinates of the orth and meta carbon atoms and the a co-ordinate of the para carbon atom remain to be fixed. The second moment condition for I_{a}, the first moment condition $\left(\sum \mathrm{ma}=0\right)$ and the second moment condition for I_{b} mean it is necessary to assume one a and one b co-ordinate. If the reasonable assumption is made that the $C_{2}-C_{3}$ and $C_{5}-C_{6}$ bonds are parallel then the second moment condition for I_{a} may be rewritten to give

$$
b_{c}^{2}=\left(1 a+1 / 2 \Delta^{0}-2 m\left(b_{N H}^{2}+b_{H_{2}}^{2}+b_{H_{3}}^{2} 1\right) / 2 m_{C}^{2 \cdot 10}\right.
$$

where $\sum c^{2}$ has been replaced by $-1 / 2 \Delta^{\circ}$. Equations similar to 2.10 hold for all of the isotopic species with C_{s} symmetry and solution of these equations gives

$$
b_{c}=1.2060 \pm 0.0002 \AA
$$

The first moment condition may be rewritten to give

$$
2 a_{c_{2}}+2 a_{c_{3}}+a_{c_{4}}=-\frac{\Sigma_{m a}^{\prime}}{m_{c}} \quad 2 \cdot 11
$$

and the second moment condition to give

$$
2 a_{c_{2}}^{2}+2 a_{c_{3}}^{2}+a_{c_{4}}^{2}=1 / m_{c}\left[I b+1 / 2 \Delta^{0}-\Sigma_{1}^{\prime} m a^{2}\right] \quad 2 \cdot 12
$$

where Σ^{\prime} indicates a summation over atoms located by isotopic sybstitution. In benzene ${ }^{26}$ the $C-H$ bond is $1.084 \AA$ and setting $C_{4}-H$ equal to this gives

$$
{ }^{a_{c_{4}}}=-1.8673,
$$

substitution of this value into 2.11 and 2.12 and solution of the resulting simaltaneous equations gives

$$
\begin{aligned}
& { }^{a_{C_{2}}}=+0.2395 \\
& { }^{a_{C_{3}}}=-1.1712
\end{aligned}
$$

The $C_{2}-C_{3}$ bond length of $1.411 \AA$ is much longer than the $C-C$ bond in benzene ${ }^{26}(1.397 \AA)$. The replacement of a hydrogen atom by an amine group is not expected to have such a large effect on the geometry of the benzene ring. Substitution coordinates are known to place atoms too close to the centre of mass. The use of the second moment condition
in conjunction with the substitution co-ordinates can lead to serious errors in the location of atoms especially if those atoms are close to a principal axis:

When an isotopic substitution is made in a molecule the average bond lencths around the atom in question change slightly. The substitution of deuterium for hydrogen causes a shortening of approximately $0.003 \AA$ and the chanses for heavier atoms such as carbon or nitrogen are of the order of 0.00005 . Jaurie and Herschbach ${ }^{27}$ have discussed the effects of such shortenings on the moments of inertia of a linear nolecule.

If no bond shortenings occur on isotopic substitution then the change in moment of inertia is related to the co-ordinate of the atom with respect to the centre of mass of the parent molecule by

$$
\Delta I_{i}=y z_{i}^{2} \quad 2.13
$$

If the $X-Y$ bond length changes by δ_{1} on substitution of the atom x then 2.13 must be replaced by

$$
\Delta I_{1}-\mu z_{1}^{2}+2 m_{1}^{\prime} z_{1}^{\prime} \delta_{1} \quad 2.14
$$

where the primes refer to the substituted molecule. The substitution coordinate is defined by

$$
z_{i s}=\left(\frac{\Delta I_{i}}{\mu}\right) 1 / 2
$$

and provided z_{1} is much greater than δ_{1} equation 2.14 gives

$$
z_{1}=z_{1 s}+m_{1}^{1} \delta_{1} 2.15
$$

When the atom Y iss substituted the changes in the $X-Y$ bond $\left(\delta_{1}\right)$ and $Y-Z$ bond $\left(\delta_{3}\right)$ must be taken into account and 2.13 must be replaced by

$$
\Delta I_{2}=\mu_{z_{2}}^{2}+2\left(m_{1} z_{1}^{\prime}-m_{3} z_{3}^{\prime} \delta_{3}\right) \quad 2.16 .
$$

If the coordinates are large compared to the δ_{s} then equation 2.16 gives

$$
z_{2}=z_{2 s}+\left(m_{1} z_{1} \delta_{1}-m_{3} z_{3}^{1} \delta_{3}\right) / z_{2 s} \quad 2.17
$$

Equation 2.15 was used to calculate the corrections to the coordinates of the hydrogen and nitrogen atoms in
aniline. the following $\boldsymbol{\delta}_{\mathrm{s}}$ were assumed for the hydrogen atoms

$$
\begin{aligned}
& \delta_{\mathrm{a}}=0.0015 \AA \\
& \delta_{\mathrm{b}}=0.0026
\end{aligned}
$$

The HIH group was treated as a single mass and $\mathcal{S}_{\text {il }}$ was assumed to be $0.00005 \AA$. The correction to the coordinate of the 1 - carbon atom was estimated using equation 2.17 assuming

$$
\begin{array}{ll}
\dot{m}_{1}=16 & \delta_{1}=0.00005 \AA \\
m_{3}=26 & \delta_{3}=0.00003 \AA \\
z_{3}^{\prime} & =0.25 \AA
\end{array}
$$

The remaining carbon atoms were located using equations $2.10-2.13$ and assuming $C_{4}-H=1.084 \AA$. The coordinates of the atoms are given in table 2.16 and the resulting structure is show in fig. 2.9a.
the geometry of the phenyl group was also fixed using the substitution coordinates, equations 2.10 and 2.11, and assuming that $\mathrm{rc}_{2}-\mathrm{c}_{3}$ and $\mathrm{rc}_{3}-\mathrm{c}_{4}$ are equal to 1.397 . The resulting structure is

PABLIE 2.16

Co-ordinàes corrected for bond shortening effects.

	a	b	c
NH	2.7816	± 0.8378	0.3024
N	2.3398	0	-0.0300^{1}
C_{1}	0.9387	0	-0.0164
H_{2}	0.7729	± 2.1468	-0.0148
H_{3}	-1.6973	± 2.1470	0.0092
H_{4}	-2.9573	0	0.0213
C_{2}	0.2347	$\pm_{1.2056}$	-0.0096
C_{3}	-1.1644	$\pm_{1.2056}$	0.0040
C_{4}	-1.8733	0	0.0109

1. The co-ordinates of the atons except for $1 \mathrm{c}_{\mathrm{NH}}$ have been calculated from equation 2.8.
2. The a and b co-ordinates for $C_{2}-C_{4}$ have been calculated from equations 2.10-2.13 assuming $\mathrm{C}_{4}-\mathrm{H}=1084 \AA$.

(b)
fig. 2.9
show in fig. $2.9 b$ and the calculated I_{b} is lower than the observed by a factor of 1.002. Homents of inertia calculeted fron $\mathbf{r}_{\mathbf{s}}$ structures are usually smaller then the observed values by a factor of up to 1.005 .

Both of the structures shown in fig. 2.9 indicate thet the carbon-carbon bond lengths in aniline do not differ by more than 0.005 \& from that in benzene. The phenyl group appears to be somewhat narrower and elongated compared to that in benzene and this is reflected in the substitution co-ordinates of H_{3} and H_{4}. The $\mathrm{H}_{2}-\mathrm{H}_{3}$ distance in aniline $(2.467 \mathrm{~A})$ is slightly shorter than that in benzene (2.488 X) but this might be due to repulsions between the amino and ortho hydrogen atoms rather than a short $C_{2}-C_{3}$ bond. A detailed discussion of the distortions to the phenyl group in aniline must await the location of the remaining atoms by isotopic substitution.

1. A. Albert and E.P. Serjeent, "Ionization Constants of Acids and Bases", Hethven and Co. Ltd., 1962, 139.
2. C. K. Ingold, "gtructure and Mechanism in Organic Chemistry", G. Bell and Sons Ltd., 1953, Chapter 6, 223.
3. H. S. Benedict and F.K. Plyler, Canad.J.Phys., 1957, 35, 1235
4. D. R. Lide Jr., J.Chem. Phys., 1957, 27, 343
5. T. J. Bhattechanya, Indien. J.Phys., 1962, 36, 533
6. M. Aroney and R.J.H. LeFevre, J.Chem.Soc., 1956, 2775
7. A. Weissenberger and R. Sangewald, Z.Physik. Chem. 1929, 35, 237
8. J. C. Evans, Spectrochim. Acta, 1960, 16, 428
9. J.C.D. Brand, D.R. Williams and T.J. Cook, J. Mol. Spectroscopy, 1966, 20, 359
10. I. Fischer - Hjalmers, Arkiv Fysik, 1962, 21,123
11. C. A. Coulson, "Valence", Oxford University Press, 1961, 270
12. C. C. Costain and J.H. Dowling, J.Chen.Phys., 1960, 32, 158
13. J.K. Tyler, C.C. Costain and J. Sheridan, to be published
14. J.K. Tyler, J.Hol. Spectroscoэy, 1963, 11, 39

Repreicas (Cont'd.)

15. C.H. Tomes and A.L. Schamlow, Microwave Spectroscopy", JcGraw-Hill Book Company, Inc., 1955, 104
16. J. N. Hacdoneld, B.Sc., Thesis, University of Glasgow, 1966
17. H.F. lanning , J.Chem.Phys., 1935, 3, 136
18. H.D. Bist, J. C. Brand and D.R. Willians, J. Hol. Spectroscopy, 1907, 24, 402
19. E. V. Ivash and D.IT. Dennison, J.Chem. Mhys., 1953, 21, 1804
20. D. R. Herschbach and V.H. Laurie, J.Chem.Phys., 1964, 40, 3142
21. D.R.Lide, J.Mol. Spectroscopy, 1962, 8, 142
22. H. C. Allen and E.K. Plyler, J.Chem.Phys., 1959, 31, 1062
23. F. A. Keidel and S.H. Bauer, J.Chem.Phys., 1956, 25, 1218
24. R. W. Kilb, C.C Lin and F. B. Wilson, Jr., J. Chem. Phys., 1957, 26, 1695
25. C. C. Costain, J.Chem.Phys., 1958, 29, 864
26. A. Langseth and B.P. Stoicheff, Canad.J.Phys., 1956, 34. 350
27. V.H. Laurie and D. R. Herschbach, J.Chern.Phys., 1962, 37, 1687

CHAPTPR 3.

Propiolic acid : centrifugal distortion

and dipole moment
(1) Introduction

Propiolic acid may be regarded as belonging to a series of compounds derived from simple single carbon atom molecules by replacing a hydrogen atom by an acetylene group. A number of such compounds have been studied and the bond lengths in the acetylene groups have been shown to be nearly constant. The possibility of conjugation between the π-electron systems of the acetylene and carboxylic acid groups and the effect of this on the molecular geonetry and the magnitude and direction of the dipole moment are of interest in propiolic acid.

Because of strong intra-molecular hydrocgen bonding it is usually assumed that the cis conformation (a) of carboxylic acids is the only minimum in the potential function for the internal rotation of the hydroxyl group.

(a)

If minima corresponding to the other rotamers exist, then since their moments of inertia are different from that of the cis form it should be possible to detect their microwave spectra provided the Boltzman factors are not too small. Propiolic acid is a suitable molecule for this type of study because the only kind of rotational isomerism is associated with the hydroxyl group and a number of low J transitions occur in the microwave region.

A structure derived by replacing the hydrogen atom in formic acid ${ }^{1}$ by the acetylene group of propynal ${ }^{2}$ was used as a model for predicting lines (fig 3.1). llodels for the trans and gauche rotamers were obtained by making suitable rotations
of the hydroxyl group of the structure shown in fig 3.1. The models were found to be prolete tops with K~ 0.7 and the most intense transitions expected were the $\mu \mathrm{a} \mathrm{R}$ branch lines and a $\mu_{\mathrm{b}} \mathrm{Q}$ branch series of the type $J_{1}, J-1-J_{2}, J-2$.

Three isotopic species of propiolic acid, HCCCOOH, HCCCOOD and DCCCOOH have been studied. The spectrum of the normal isotopic species is too weak and complicated to observe lines due to ${ }^{13} \mathrm{C}$ species in their natural abundances. Uncertainty about the chemistry of propiolic acid has meant that the preparation of ${ }^{18} 0$ species has not been attempted.

fig. 3.1

(2) Analysis of spectra
(a) HCCOOOH

A sample of laboratory Erade pripiolic acid (supplied. by Koch-Liņht Leboratories L,td.) was pumped under reduced pressure for half an hour to remove voletile impurities and then distilled into a sample tube. When freshly distilled the acid is colcurless, but if left at room temperature and exposed to daylight it turns yellow and gradually polymerises. A preliminary search for lines was mede in K band in the region where the $J=2-3 \mu a \mathrm{R}$ branch and $\mathrm{J}_{1}, J-1-J_{2}, J-2$
$\mu b \quad Q$ branch lines were expected to occur.
A number of moderately strong Q branch lines was located and recordings were made at several

Stark voltages in order to determine the J values involved in the transitions. Assignments were made and these were confirmed from a Q branch plot. It was possible to assign the $2_{02}-3_{03}$ and $1_{01}-2_{12} R$ branch lines from the recordings (fig 3.2).

A set of rigid rotor constants was obtained and these predicted other lines to within a few mes. An estimate of the ratio of the Ja to $\mu \mathrm{Jb}$ components of the dipole moment was obtained from the relative intensities of the ${ }^{2} 02-3_{03}$ and $6_{15}-6_{24}$ lines (fig 3.2).

The ratio of the intensitieS is given by

$$
R=\underset{\mu_{0}^{2}}{\mu_{a}^{2}} \times \underset{S_{15}}{S_{02}} G_{24} \times 3_{03} \times \exp (\Delta W / k T)
$$

where S is the line strength and ΔV is the difference between the 2_{02} and σ_{15} energy levels. The ratio of the $\mu \mathrm{a}$ to $\mu \mathrm{b}$ calculated in this way is 0.7 and indicates that the dipole moment makes an angle of 60° with the spine of the molecule. In order to allow for centrifugal distortion some thirty lines were measured accurately and a list of line frequencies is given in table 3.1.

(b) Excited vibrational states and spectra due

to other rotaners

A number of vibrational satellites was observed around each of the stronger Q branch lines, but none of these vas comparable in intensity to the ground state lines. A search for spectra due to other rotamers was unsuccessful and it must be concluded that if such rotamers exist there must be a considerable energy difference between them and the cis form. (c) HCCCOOD

Attempts to prepare this isotopic species by exchange with $D_{2} 0$ and extraction into ether were not successful. It was prepared in the cell by alternately admittincs doses of $\mathrm{D}_{2} \mathrm{O}$ and propiolic acid vapours. After the cell had become acclimatised the spectrum of the deuterated species attained approximately half the intensity of that of the nornal isotopic species.

Lines for HCCCOOD were predicted from a set
of rotational constants obtained by adding the changes in moments of inertia expected on deuteration of the model to the experimental moments of inertia of the normal isotopic species. Recordings of regions where lines due to HCCCCOD were predicted to occur were made with ordinary propiolic acid and then with the acid $/ D_{2} 0$ mixture in the cell. Lines due to HCCCOOD were picked out by comparison of the two series recordings. Better values of $(A-C) / 2$ and $) K$ were obtained from a Q branch plot and $(A+C) / 2$ was calculated from the $I_{01}-{ }_{12} R$ branch line. Other lines were predicted and accurate measurements were made (table 3.2).

(d) DCCCOOH

This isotopic species was prepared by the method given in chapter 6, A spectrum was predicted from a set of rotational constants which were obtained in a similar manner to those of HCCCOOD.

TABLE 3.1

Line frequencies for HCCCOOH

	observed	rigid rotor	centrifugal calculated distortion energy $(\mathrm{mc} / \mathrm{s})$	$(\mathrm{mc} / \mathrm{s})$

	obscrved $(\mathrm{nc} / \mathrm{s})$	$\begin{aligned} & \text { risid } \\ & \text { rotor } \\ & (\mathrm{mc} / \mathrm{s}) \end{aligned}$	```centrifugal distortion energy (nc/s)```	loulated $(\mathrm{mc} / \mathrm{s})$
$3_{22}-4_{23}$	28847.55	28848.31	-0.85	28847.45
$3_{21}-4_{22}$	29792.68	29793.47	- 0.99	29792.48
$3_{31}-4_{32}$	29106.63	29108.17	- 1.73	29106.44
$330-431$	29141.26	29143.01	- 1.74	29141.27
$4_{04}-4_{13}$	14959.83	14960.74	- 0.79	14959.95
$4_{13}-4_{22}$	21810.89	21812.34	- 1.33	21811.01
$5_{05}-5_{14}$	18886.81	18838.10	- 1.29	18886.81
$5_{14}-5_{23}$	21199.49	21201.48	- 1.92	21199.57
$6_{15}-6_{24}$	21320.67	21323.56	- 2.66	21320.90
$7_{16}-7_{25}$	22416.27	22419.85	- 3.59	22416.26
$8_{17}-8_{26}$	24667.72	24672.32	-4.75	24657.57
$9_{18}-9_{27}$	28195.47	28201.73	- 6.20	28195.53

PABLE 3.2

Line frequencies for HCCCCOD

	obscrved	risid rotor $(\mathrm{mc} / \mathrm{s})$	centrifuçi calculcted distortion energy (mc/s)	$(\mathrm{mc} / \mathrm{s})$

	observed	rigid rotor	centrifugal calculated distortion enercy	
$(\mathrm{mc} / \mathrm{s})$	$(\mathrm{mc} / \mathrm{s})$	(mc/s)	$(\mathrm{mc} / \mathrm{s})$	
$7_{07}-7_{16}$	28856.67	28858.49	-1.80	28856.69
$716-7_{25}$	21910.79	21913.78	-2.93	21910.85
${ }^{8} 17-8_{26}$	23987.28	23991.25	-3.88	23987.37
${ }^{9} 18-9_{27}$	27281.69	27286.53	-4.99	27281.63

TABLIE 3.3

Line frequencies for DCCCOOH

	observed	rigid rotor (mo/s)	centrifugal calculated distortion energy (nc/s)	(nc/s)

The lines were generally found to be within $20 \mathrm{mc} / \mathrm{s}$ of the predicted frequency and a list of measured lines is given in table 3.3.
(3) Centrifugal Distortion

The effect of centrifugal distortion in propiolic acid can be seen in the Q branch plot shown in fig. 3.3. There is an uncertainty in $(A-0) / 2$ of $0.25 \mathrm{mc} / \mathrm{s}$ and 0.0001 in \mathcal{K} and this places a limitation on the usual method of deriving the rotational constants from a rigid rotor least squares fit. It is possible to derive an accurate set of rotational constants for the normal isotopic species from three lines, which if rigid rotor theory is obeyed, are simple functions of the rotational constants. Three such lines and the expressions for their frequencies are

$$
\begin{array}{lll}
0_{00}-I_{11} & A+C & 15194.50(\mathrm{mc} / \mathrm{s}) \\
1_{10}-2_{11} & 3 B+C & 15525.22 \\
2_{12}-2_{21} & 3(\mathrm{~A}-\mathrm{C}) & 27076.23
\end{array}
$$

HCCCOON Q Branch Plot

fig. 3.3

The rotational constants derived from these expressions are (in rac/s)
$A=121.09 .96$
$B=4245.36$
$C=3084.65$

For the other two species of propiolic acid it was not possible to measure all three lines and the rotational constants had to be obtained from higher J lines by allowing for centrifugal distortion. The centrifugal distortion in many slightly asymmetric top molecules has been treated using the expression for a symmetric top. An attemot was made to fit the data for propiolic acid using the following formula for the energy levels.

$$
\begin{aligned}
W_{J_{\gamma}=}= & (1+1) \times(A * C) / 2+E(x) \times(A-C) / 2 \\
& -J(J+1) K_{1}^{2} \times D_{1 k}-K_{1}^{4} \times D_{K}
\end{aligned}
$$

The D_{J} term has been omitted, since for molecules of similar molecular weight it only makes a significant contribution to high J lines.

A $-\mathrm{C} / 2$ and \mathcal{K} were obtained from an R branch plot by taking differences between the $J=2-3$
μ a lines so that the centrifugal distortion terms were eliminated. $\quad(A+C) / 2$ was calculated from $2^{2} 2-3_{03}$ and a constant value of $D_{J K}$ was obtained from the other four lines. $\quad D_{K}$ was obtained by substituting the values of the other constants into the expressions for higher J lines. The value of D_{K} depends on the line chosen and this indicates that the symmetric top expression is no longer a good approxination for molecules of this asymmetry. The results of these calculations are given in table 3.4.

A first order perturbation theory treatment of centrifugal distortion in asymmetric top molecules has been given by Kivelson and Wilson ${ }^{3}$, Watson ${ }^{4}$ has recently shown that the number of independent centrifugal distortion constants in Kivelson and Wilson's expression may be reduced from six to five by application of an additional angular momentum

Rotational and centrifugal distortion constants for HCCCOOH using the symmetric top expression for the centrifugal distortion energy.

$$
\begin{aligned}
(A+C) / 2 & =7598.07(\mathrm{mc} / \mathrm{s}) \\
(A-C) / 2 & =4513.57(\mathrm{mc} / \mathrm{s}) \\
& =-0.764623
\end{aligned}
$$

$$
\begin{aligned}
D_{J K}= & +0.0187(\mathrm{mc} / \mathrm{s}) \text { from } J=2-3 \mu \text { a lines } \\
\mathrm{B}_{\mathrm{K}}= & +0.275 \text { from } \sigma_{15}-\sigma_{24} \\
& +0.299 \text { from } 5_{14}-5_{23} \\
& +0.325 \text { from } 3_{12}-3_{21} \\
\mathrm{~A}= & 12111.64(\mathrm{mc} / \mathrm{s}) \\
\mathrm{B}= & 4146.89 \\
\mathrm{C}= & 3084.50
\end{aligned}
$$

commutation relationship. This provides a theoretical explanation of the indeterminacies Which arise in the application of the original equation. In the case of planar molecules further constraints can be applied to reduce the number of independent coeffecients to four 5 . The Hamiltonian of reference 3 is usually written as

$$
\begin{aligned}
& H=H^{0}+H^{\prime} \\
& H^{0}=A^{\prime} P_{a}^{2}+B^{\prime} P_{b}^{2}+C^{\prime} P_{c}^{2} \\
& H^{\prime}=1 / 4 \sum_{\alpha \beta} T_{\alpha \alpha \beta \beta}^{\prime} \quad(\alpha \beta=a, b, c) \\
& T_{\alpha \alpha \alpha \alpha}^{\prime}=T_{\alpha d \alpha \alpha} \hbar \\
& T_{\alpha \alpha \beta \beta}^{\prime}=\left(T_{\alpha \alpha \beta \beta}+2 T_{\alpha \beta \alpha \beta)} \pi_{\pi}\right.
\end{aligned}
$$

A small amount of the centrifugal distortion has been absorbed into H°. The T s are constants for a particular vibrational state and depend on
the molecular geometry and vibrational frequencies ${ }^{6}$. Application of first order perturbation theory gives

where is the average or expectation value of the quartic angular momentum operator $P_{\alpha}^{2} P_{\beta}^{2}$

For planar molecules the six constants in 3.1 can be reduced to four by application of Dowling's relations. These may be written in the form

$$
\begin{align*}
& T_{a a c c}^{\prime}=1 / 2 A^{2} C^{2}\left[T_{a a a a}^{\prime} / A^{4}-T_{b b b b}^{\prime} / B^{4}+T_{c c c c}^{\prime} / C^{4}\right] \quad 3.2 \\
& T_{b b c c}^{\prime}=1 / 2 A^{2} C^{2}\left[-T_{a c a a}^{\prime} / A^{4}+T_{b b b s}^{\prime} / B^{4}+T_{c c c c}^{\prime} / C^{4}\right] \quad 3.3
\end{align*}
$$

$T_{a c a c}=T_{b c b c}=0 \quad 3.4$
$T_{a a b b}=1 / 4\left[A^{2} B^{2} / C^{2} T_{c c c c}-A^{2} / B^{2} T_{b b b b}-B^{2} / A^{2} T_{a a a a}\right] 3.5$

Substitution of equation 3.2 and 3.3 into 3.1 gives

$$
\begin{aligned}
& \Delta W=1 / 4\left[\left\langle P^{4}\right\rangle+C^{2} / A^{2}\left(\left\langle P_{a}^{2} P^{2} C^{2}\right\rangle-B^{2} / A^{2}\left\langle P^{2} P^{2} C^{2}\right\rangle\right)\right] \tau_{a a a a}^{1} \\
& +1 / 4\left[\left\langle P P^{4}\right\rangle-C^{2} / B^{2}\left(A^{2} / B^{2}\left\langle P^{2} P P^{2}\right\rangle-\left\langle P P^{2} P^{2}\right\rangle\right)\right] T_{b b D b}^{1} \\
& +1 / 4\left[\left\langle P_{C}^{4}\right\rangle+A^{2} / C^{2}\left\langle P^{2} \dot{C} P\right\rangle+B^{2} / C^{2}\left\langle P^{2} P^{2}\right\rangle\right] \quad T_{C C C C}^{\prime} \\
& +1 / 2\left\langle P_{a P b}^{2}\right\rangle T_{a a b b}^{\prime} \\
& 3.6
\end{aligned}
$$

Using 3.4 and 3.5 and assuming a zero inertial defect so that C may be replaced by $A B /(A+B)$, Sorensen's expression may bo derived 8

$$
\begin{aligned}
& W=1 / 4\left[\left\langle P_{a}^{4}\right\rangle-B^{2} / A^{2}\left(\left\langle P^{2} a^{2} P b^{2}\right\rangle-(A / A+B)^{2}\left\langle P^{2} \cdot P_{c}^{2}\right\rangle\right.\right. \\
& \left.\left.+(B / A+B)^{2}\left\langle\mathrm{PbP}^{2}{ }^{2}\right\rangle\right)\right] T_{\text {aaa }} \\
& +1 / 4\left[\left\langle P b^{4}\right\rangle-A^{2} / B^{2}\left(\left\langle P^{2} a^{2} P b^{2}\right\rangle+(A / A+B)^{2}\left\langle P^{2} P^{2} C^{2}\right\rangle\right.\right. \\
& \left.\left.-(B / A+B)^{2}\left\langle P b P^{2}\right\rangle\right)\right] T_{b b b b} \\
& +1 / 4\left[\left\langle\mathrm{P}^{4} \mathrm{C}^{4}\right\rangle+(A+B)^{4} / A^{2} B^{2}\left(\left\langle\mathrm{~Pa}^{2} P^{2} b^{2}\right\rangle+(A / A+B)^{2}\left\langle P^{2} P^{2} C^{2}\right\rangle\right.\right. \\
& \left.\left.+(B / A+B)^{2}\left\langle P^{2} P^{2}\right\rangle\right)\right] T_{c c c c} \\
& +\left\langle\text { pap }^{2}{ }^{2} T_{a b a b} 3.7\right.
\end{aligned}
$$

In 3.7 the $\tau_{\text {s are }}$ in units of $夫^{4}$ and this equation has the advantage that all of the constants are by definition negative quantities. This provides an immediate check on the results of least squares calculations.

Formulae for expressing the quartic angular momentum averages in terms of the quadratic averages are given in reference 4. The expression of these quantities in terms of the reduced energy and its derivitive with respect to the asymmetry parameter and a discussion of the least squares program is given in appendix 1.

The effective rotational constants A, B and C may be expressed in terms of the constants of H^{O} and $\mathcal{T}_{\text {abib }}$ using the relations given in the appendix of reference 3.

$$
\begin{aligned}
& A=A^{\prime}+\frac{1}{2} \tau_{a b a b} \\
& B=B^{\prime}+\frac{1}{2} \tau_{a b a b} \\
& C=C^{\prime}-\frac{1}{4} \tau_{a b a b}
\end{aligned}
$$

The rotational and centrifugal distortion
constants obtained by least squercs fits to equations 3.6 and 3.7 ere given in table 3.5 . The rigid rotor frequencies, centrifugal distortion energies and calculated line frequencies are given in tables 3.1, 3.2 and 3.3, Fig. 3.4 shows that when the line frequencies are corrected for centrifugal distortion the intersection of the Q branch plot is improved. The values of $4512.80 \mathrm{mc} / \mathrm{s}$ for $(A-C) / 2$ and -0.76457 for \mathcal{K} agree very well with those obtained from the least squares fits.

The positive values obtained for $T T^{4} b b b b$ and $7^{\circ} \operatorname{cocc}$ in the case of HCCCOOD and the large variations in the centrifugal distortion constants between the three isotopic species show that the centrifugal distortions constants are not well determined from the available data. This is confirned by the standard deviations and correlation coeffecients for $H C C C O O H$ derived from equation 3.7 (table 3.6). A correlation coeffecient of 0.9 to 1.0 between two parameters means it is impossible

HCCCOOH Q Branch Plot

fig. 3.4

Least squares parameters for propiolic acid

$\underset{(\mathrm{mc} / \mathrm{s})}{\text { equation }} 3.6$	equation 3.7
$(\mathrm{mc} / \mathrm{s})$	

$\underline{\mathrm{HCCCOOH}}$

$(\mathrm{A}+\mathrm{C}) / 2$	7597.29		7597.29
$(\mathrm{~A}-\mathrm{C}) / 2$	4512.80		4512.80
	-0.764570		-0.764570
$T_{\text {aaaa }}^{\prime}$	-0.1477	$\tau_{\text {aaaa }}$	-0.1476
$\tau_{\text {bbbb }}^{\prime}$	-0.0075	$\tau_{\text {bbbb }}$	-0.0076
$\tau_{\text {cacc }}^{\prime}$	-0.0025	$\tau_{\text {cacc }}$	-0.0025
$\tau_{\text {abbb }}^{\prime}$	-0.0793	$\tau_{\text {abab }}$	-0.0426

HCCCOOD

$$
\begin{array}{cccc}
(A+C) / 2 & 7426.95 & & 7426.95 \\
(A-C) / 2 & 4431.37 & & 4431.37 \\
& -0.769799 & & -0.769799 \\
T_{a a a a}^{\prime} & -0.0169 & T_{\text {aaaa }} & -0.0172 \\
\tau_{\text {bbbb }}^{\prime} & +0.0013 & \tau_{\text {bbbb }} & +0.0013 \\
\tau_{\text {cacc }}^{\prime} & +0.0028 & T_{\text {cacc }} & +0.0020 \\
\tau_{\text {aabb }}^{\prime} & -0.0776 & \tau_{\text {abab }} & -0.0563 \\
& & & \\
& & & \text { (cont'd.) }
\end{array}
$$

equation 3.6
(mc/s)

equation 3.7
(mc / s)

DCCCOOH

$(A+C) / 2$	7504.78	7504.78
$(A-C) / 2$	4605.15	4605.15
	- 0.800206	- 0.800206
T^{\prime} a ${ }^{\text {a }}$ a	-0.0357	Taada-0.0355
$T^{\prime} \mathrm{bbbb}$	-0.0101	Tbbbb-0.0101
$\tau^{\prime} \operatorname{cocc}$	-0.0060	Tecce-0.0060
$T^{\prime} \mathrm{a}$ abb	- 0.0702	Tabab-0.0160

$$
\begin{aligned}
& 8 \\
& \hline
\end{aligned}
$$

\[

\]

$$
\begin{gathered}
\stackrel{N}{5} \\
\dot{\circ}
\end{gathered}
$$

Standard deviations and correlation coefficients for HCCCOOH

$$
\begin{array}{llll}
& \text { correlation coefficients } \\
& & & \\
1.000 & & & \\
0.661 & 1.000 & & \\
0.928 & 0.747 & 1.000 & \\
0.177 & 0.246 & 0.107 & 1.000 \\
0.129 & 0.083 & 0.050 & 0.972 \\
0.179 & 0.032 & 0.054 & 0.914
\end{array}
$$

standard

$(A+C) / 2$
$(A-C) / 2$
$\tau_{\text {abaa }}$
$\tau_{\text {bbbb }}$
$\tau_{c c c c}$
$\tau_{\text {abab }}$

$$
\begin{aligned}
& 1.000 \\
& 0.890 \\
& 0.693 \\
& 0.871 \\
& 0.207 \\
& 0.292 \\
& 0.258
\end{aligned}
$$

to determine then accurately. The correlation coeffecients indicate that $T_{\text {aaaa }}$ should be well determined, but the siall contributions made by this paraneter to the centrifugal distortion energy (table 3.7) show why this is not the case. The more usual centrifugal distortion constants D_{J}, D_{JK} and D_{K} were derived using Dowling's relations and the formulae of reference 3. The following constants were obtained for HCCCOOH

$$
\begin{aligned}
& D_{\mathrm{J}}=-0.012 \pm 0.012 \mathrm{mc} / \mathrm{s} \\
& \mathrm{D}_{\mathrm{JK}}=-0.040 \pm 0.070 \\
& \mathrm{D}_{\mathrm{K}}=0.089 \pm 0.140
\end{aligned}
$$

The negative value of D_{J} and the large errors on the constants show that the centrifugal distortion constants cannot be used to give reliable information about the molecular force field.

Contributions to the centrifucal distortion enorcy of IICCCOOII from the coefficients of equation 3.7

	Tama	Tbbbb	$T \operatorname{coco}$	$\tau_{\text {abeb }}$
	(nc / s)	(mc/s)	(ma / s)	$(\mathrm{mc} / \mathrm{s})$
$0_{00}-1_{11}$	-0.04	$+0.01$	- 0.01	0.00
$1_{01}-2_{12}$	- 0.04	$+0.05$	- 0.07	-0.04
$1_{10}-2_{11}$	$+0.01$	$+0.03$	- 0.07	-0.13
${ }^{2} 02-3_{03}$	- 0.01	- 0.08	- 0.04	-0.05
$2_{02}-3_{13}$	-0.05	$+0.11$	- 0.18	-0.99
$2_{12}-2_{21}$	-0.54	$+0.05$	- 0.04	-0.13
${ }^{2} 12-3_{03}$	$+0.03$	-0.15	$+0.02$	$+0.11$
${ }^{2} 12-3_{13}$	- 0.01	$+0.03$	- 0.12	-0.04
$2_{11}-2_{20}$	-0.56	$+0.06$	- 0.03	-0.02
$2_{11}-3_{12}$	$+0.01$	-0.04	-0.11	-0.17
$221-3_{22}$	$+0.03$	$+0.26$	-0.35	-0.51
$2_{20}-3_{21}$	$+0.04$	$+0.24$	-0.35	-0.56
$3_{03}-4_{04}$	- 0.28	-0.14	- 0.12	$+0.10$
$3_{13}-4_{04}$	$+0.01$	-0.32	+ 0.02	$+0.25$
$3_{12}-3_{21}$	-0.53	$+0.34$	- 0.26	- 0.41
$3_{12}-4_{13}$	$+0.01$	- 0.20	-0.17	-0.18
$3_{22}-4_{23}$	$+0.03$	$+0.25$	-0.51	-0.62

TABIE 3.7 (Contid.)

	$T_{\text {aaea }}$	$T_{\text {bbbb }}$	$T_{c c a c}$	$T_{\text {abab }}$
	$(\mathrm{mc} / \mathrm{s})$	$(\mathrm{mc} / \mathrm{s})$	$(\mathrm{mc} / \mathrm{s})$	$(\mathrm{mac} / \mathrm{s})$
$3_{21}-4_{22}$	+0.05	+0.15	-0.47	-0.72
$3_{31}-4_{32}$	+0.09	+0.81	-1.03	-1.60
$3_{30}-4_{31}$	+0.10	+0.80	-1.03	-1.61
$4_{04}-4_{13}$	+0.04	+0.05	-0.19	-0.68
$4_{13}-4_{22}$	-0.48	+0.68	-0.56	-0.96
$5_{05}-5_{14}$	+0.08	-0.21	-0.18	-0.98
$5_{14}-5_{23}$	-0.42	+0.99	-0.87	-1.62
$6_{15}-6_{24}$	-0.32	+1.12	-1.10	-2.36
$7_{16}-7_{25}$	-0.21	+0.86	-1.16	-3.08
$8_{17}-8_{26}$	-0.08	-0.04	-0.92	-3.72
$9_{18}-9_{27}$	+0.04	-1.82	-0.26	-4.16

4. Structure.

The rotational constants corrected for the contribution fron $T_{\text {abab }}$ and the moments of inertia for the three isotopic species of propiolic acid are given in table 3.8. The agreement between the observed moments of inertia and those calculated from the model (table 3.9) shows that the molecule has the expected cis conformation. The positive inertial defects are good evidence for propiolic acid having a planar structure. The difference in Δ° between $\operatorname{DCCCOOH}$ and HCCCOOH ($+0.0066 \mathrm{a} \cdot \mathrm{m} . \mathrm{u} . \AA^{2}$) is very similar to that found in the corresponding isotopic species of propynal (+0.0070 a.m.u. \AA^{2}). The difference for $H C C C O O D$ and $H C C O O H$ (-0.0061 a.m.u. \AA^{2}) is probably due to the torsional vibration of the hydroxyl group.

The hydrogen atons were located in the principal axis system of HCCCOOH . The co-ordinates obtained by substituting $\Delta I a$ and $\Delta I b$ into Kraitchman's equations are given in the first row of table 3.9 and

TABLE 3.8

Rotational constents and monents of inertie of three isotopic species of propiolic acid.

$$
(\mathrm{mc} / \mathrm{s}) \quad\left(\mathrm{a} \cdot \mathrm{~m} \cdot \mathrm{u} \cdot \AA^{2}\right)
$$

HCCCOCH

A	12110.07	Ia	41.7447
B	4146.92	Ib	121.9052
C	3084.52	Ic	163.8929
		Δ^{0}	0.2430

HCCCOOD

A	11858.36	Ia	42.6308
B	4015.67	Ib	152.8897
C	2995.62	Ic	168.7590
		Δ^{0}	0.2369

DCCCOOH

A	12109.92	Ia	41.7452
B	3819.70	Ib	132.3484
C	2899.63	Ic	174.3432
		$\Delta 0$	0.2496

TABLE 3.9
Moments of inertia and co-ordinates of the hydrogen atoms of propiolic acid
$060^{\circ} 0-$
$720^{\circ} 0-$
(y) 9
163.8929

a (\AA) -3.244 -3.245 Ic $=$
 $=$

-0.052
163.0235
$\begin{array}{cc}\text { Ic }=163.0235 \\ -3.246 & -0.078 \\ I c_{c}=162.5046\end{array}$
$\begin{array}{cc}\text { Ic }=163.0235 \\ -3.246 & -0.078 \\ I c_{c}= & 162.5046\end{array}$

-3.232
Ic
$\begin{array}{cc}\text { Ic }=163.0235 \\ -3.246 & -0.078 \\ I c_{c}=162.5046\end{array}$
(2)
. 0.05
.

Ib $=120.9109$
$I b=120.8760$
$b(\AA)$
-0.968
-0.966
$=41.7447$
-1.022
$=42.1126$
-0.966
41.6286
$=8 \mathrm{I}$
$686^{\circ} \mathrm{I}$
$\varepsilon 66^{\circ} \mathrm{T}$
(y) B
1.963
$1 a$
Structure fig. 3.5 1.997
(a.m.u. \AA^{2})
(a.m.u. \AA^{2})
106
those obtained using $\Delta I c-\Delta I b$ and $\Delta I c-\Delta I a$ are given in the second row of that table. Bxcept for the b co-ordinate of the acetylenic hydrogen atom which is too small to be determined by isotopic substitution the two sets of figures show the veriations expected from zero point vibrational effects. The co-ordinates calculated from the model are in reasonable agreement with the experimental values.

An attempt to improve the agreement between the observed and calculated moments of inertia and co-ordinates was made by varying the bond angles of the carboxylic acid group. The structure giving closest agreement with the observed data is shown in fig.3.5. The acetylene and carboxylic groups in propiolic acid do not seem to have a marked structural effect on each other.

5. Dipole moment and discussion.

The Stark effects of a number of lines were examined to see if they were suitable for dipole moment measurements and the $0_{00}-0_{11}$ and $3_{12}-3_{21}$ transitions of HCCCOOH and the $1_{01}-2_{12}$ and $3_{12}-3_{21}$ transitions of HCCCOOD were finally selected. The frequency displacements (Δv) of the Stark components were measured at several values of the applied modulation voltage (V) (table 3.10). Plots of ΔV against V^{2} are shown in fig. 3.6 and 3.7 and the straight lines verify the quadratic nature of the Stark effects. If no accidental degeneracies between rotational energy levels occur the Stark effect of an asymmetric rotor may be expressed in the form?

$$
\Delta V / E^{2}=A+B M_{J}^{2}
$$

or since the electric field strength is proportional to the applied voltage

$$
\Delta V / V^{2}=A^{\prime}+B^{\prime} M_{J}^{2}
$$

If $\Delta r / V^{2}$ is written as N and the Stark components are

Frequency displacenents of stark components for HCCCOOH and HCCCOOD.

HCCCOOH

$0_{00}-I_{11}$	${ }^{M_{J}}=0$	ΔV
$\mathrm{~V} \times 10^{-2}($ Volts $)$	$\mathrm{V}^{2} \times 10^{-4}(\mathrm{Volts})^{2}$	$(\mathrm{mc} / \mathrm{s})$
2.00	4.00	3.13
2.50	6.25	4.94
3.00	9.00	6.81
3.50	12.25	9.53
4.00	16.00	12.41

$3_{12}-3_{21} \quad \mathrm{~F}_{\mathrm{J}}=3$

1.28	1.64	5.41
1.50	2.25	7.23
2.00	4.00	12.78
2.50	6.25	20.58

$3_{12}-3_{21}$
$M_{J}=2$

1.50	2.25	4.27
2.00	4.00	7.56
2.40	5.76	10.75
2.83	8.01	14.54
3.00	9.00	15.77

PABLE 3.10 (Cont'd.)

HCCCOOH

$$
\begin{array}{ccc}
{ }^{3} 12-3_{21} & \mathrm{n}_{\mathrm{J}}=1 & \Delta V \\
\mathrm{~V} \times 10^{-2}(\mathrm{Volts}) & \mathrm{V}^{2} \times 10^{-4}(\mathrm{Volts})^{2} & (\mathrm{mc} / \mathrm{s}) \\
3.00 & 9.00 & 9.15 \\
3.50 & 12.25 & 12.44
\end{array}
$$

HCCCOOD

$I_{01}-{ }_{12}$	$M_{J}=1$	
1.10	1.21	1.02
2.00	4.00	2.85
2.88	8.29	5.87
3.40	11.56	8.32
$3_{12}-3_{21}$	$M_{J}=3$	
1.00	1.00	7.76
1.50	2.25	12.26
2.00	4.00	18.85

HCCCOON Dipole Moment Plots

HCCCOOD Dipole Moment Plots

fig. 3.7
labelled by their M_{J} values the following relation should hold for the $3_{12}-3_{21}$ transition.

$$
\frac{N_{3}-N_{1}}{N_{2}-N_{1}}=2.667
$$

The observed value is 2.665 and this indicates that the usual second order perturbation theory treatment is valid.

At the end of each set of measurements the apparatus was calibrated against the $\mathrm{J}=1-2$ transition of OCS (table 3.11 and fig. 3.8). This amounts to finding the electrode to cell spacing in order to determine the proportionality constant between the electric field strength and the applied voltage. The calculations are simplified if a constant (K) is derived instead. Division of $\Delta \nu / V^{2}$ by K converts the former quantity into $D^{2}(\mathrm{mc} / \mathrm{s})^{-1}$. In deriving K an average value for the $M_{J}=0$ and $M_{J}=1$ lobes was taken and the dipole moment of OCS ${ }^{10}$ was assumed to be 0.712D. The values of K used in the determinations

$\mathrm{J}=1-2$	$\mathrm{M}_{\mathrm{J}}=1$	ΔV
$\mathrm{~V} \times 10^{-2}(\mathrm{Volts})$	$\mathrm{V}^{2} \times 10^{-4}(\mathrm{VOlts})^{2}$	$(\mathrm{mc} / \mathrm{s})$
4.00	16.00	0.91
5.00	25.00	1.40
6.00	36.00	2.04
8.00	64.00	3.64
$\mathrm{~J}=1-2$	$\mathrm{H}_{\mathrm{J}}=0$	
4.00	16.00	1.15
5.00	25.00	1.78
6.00	36.00	2.57
8.08	64.00	4.52

OCS CALIBRATIOI FOR HCCCOOD

$$
J=1-2 \quad \mathrm{M}_{J}=1
$$

4.00	16.00	0.92
5.00	25.00	1.32
6.00	36.00	1.95
8.00	64.00	3.49

$J=1-2$
$\mathrm{M}_{\mathrm{J}}=\mathrm{O}$

4.00	16.00	1.15
5.00	25.00	1.68
6.00	36.00	2.64
8.00	64.00	4.30

fig. 3.8
were
HCCCOOII $K=1.121(\mathrm{mc} / \mathrm{s}) \mathrm{D}^{-2}(\text { volts })^{-2}$
HCCCOOD $K=1.069$
Table 3.12 gives the values of $\Delta v / v^{2}$ and $\Delta v / K v^{2}$ for the measured Stark components of HCCCOOH and HCCCOOD.

The Stark effect for a molecule with μa and ρb components of the dipole moment may be written

$$
\Delta v / E^{2}=\Delta X a \mu_{a}^{2}+\Delta x b \mu b^{2}
$$

 the energy levels of the transition. $X_{J, T,}, M_{g}$ is the second order perturbation theory coefficient and may be expressed in terms of tabulated line strengths in the following way ${ }^{1 l}$

$$
\begin{aligned}
& x_{J} T_{g} M_{j}=\frac{1}{2 J+1}\left[\sum \frac{J^{2}-M_{j}^{2}}{J(2 J-1)} \frac{S_{J \tau J-1 \tau^{\prime}}}{W_{j}-W_{j-1 \tau^{\prime}}^{0}}\right. \\
& \left.+\sum_{\tau^{\prime} \neq \tau} \frac{M_{j}^{2}}{J(J+1)} \frac{\left.S_{j \tau}\right) \tau^{\prime}}{W_{j \tau}^{0}-W_{j \tau^{\prime}}}+\sum \frac{(J+1)-M_{J}}{2(J+1)(2 J+3)} \frac{\left.S_{J \tau J+1}\right) W_{j \tau}^{0}}{W_{j}^{0}} W_{j+1}^{0}\right]
\end{aligned}
$$

TABLE 3.3. 2

$$
\begin{array}{ccc}
\Delta v / V^{2} & \Delta v / K v^{2} & \Delta v / K V^{2} \\
\left(\mathrm{n}: \mathrm{c} / \mathrm{s} \operatorname{volt} \mathrm{~s}^{-1}\right) & \text { (observed) } & \text { (calculated) } \\
\times 10^{-4} &
\end{array}
$$

HCCCOOH

$$
\begin{array}{rrrrr}
0_{00}-1_{11} \mathrm{M}_{\mathrm{J}}= & 7.8 \mathrm{CO} & 6.958 & 7.060 \\
3_{12}-3_{21} \mathrm{n}_{\mathrm{J}}= & 1 & 10.190 & 9.090 & 8.923 \\
& 2 & 18.680 & 16.664 & 16.553 \\
& 3 & 32.602 & 29.083 & 29.551
\end{array}
$$

HCCCOOD

$$
\begin{array}{llll}
1_{01}-2_{12}{ }_{:}^{M_{J}}=0 & 7.130 & 6.670 & 6.674 \\
3_{12}-3_{21} \mathrm{M}_{\mathrm{J}}=3 & 30.940 & 28.943 & 28.794
\end{array}
$$

In calculating ΔX_{a} and ΔX_{b} the line strengths (S) were obtained by graphical interpolation of tables 12 and the energy differences were calculated from the rigid rotor constants given in table 3.5 .

The following expressions for the Stark components of HCCCOOH were obtained.

$$
\begin{aligned}
& 3.117 \mu a^{2}+2.682 \mu b^{2}=6.9580_{00}-1_{11}, M_{J}=0 \\
& 5.290 \mu a^{2}+2.942 \mu b^{2}=9.0903_{12}-3_{21}, M_{J}=1 \\
& 21.573 \mu a^{2}+1.559 \mu b^{2}=16.6643_{12}-3_{21}, M_{J}=2 \\
& 49.159 \mu a^{2}-0.747 \mu b^{2}=29.0833_{12}-3_{21}, M_{J}=3
\end{aligned}
$$

These equations were solved graphically, fig. 3.9, $\mu_{\mathrm{a}}^{\text {with }}=0.63 \xrightarrow{\text { thellowine }} 0.05$ results.
$\mu a^{2}=0.63 \pm 0.05 D^{2} \quad \mu a=0.80 \pm 0.02 \mathrm{D}$
$\mu b^{2}=1.90 \pm 0.07 \quad \mu b=1.38 \pm 0.02$
$\mu^{2}=2.53 \pm 0.12$
$\mu=1.59 \pm 0.03$
The errors have been estimated from the intersection shown in fig. 3.9.

HCCcooll Plois of ρ_{b}^{2} against μ_{a}^{2}

The corresponding equations for HCCCOOD
are

$$
\begin{aligned}
& 0.635 \mu a^{2}+3.217 \mu b^{2}=26.6701_{01}-2_{12}, \mathrm{H}_{J}=1 \\
& 52.611 \mu a^{2}-0.878 \mu b^{2}=28.9433_{12}-3_{21}, \mathrm{M}_{J}=3
\end{aligned}
$$

If the dipole monent of propiolic acid does not change in magnitude on deuteration a third equation may be added

$$
\mu a^{2}+\mu b^{2}=2.53
$$

These equations were solved graphically (fig. $3 \cdot 10$) with the following results

$$
\begin{array}{ll}
\mu a^{2}=0.58 \mathrm{D}^{2} & \mu \mathrm{a}=0.76 \mathrm{D} \\
\mu b^{2}=1.96 & \mu b=1.40 \\
\mu^{2}=2.54 & \mu=1.59
\end{array}
$$

The angle between the dipole moment and the a inertial axis is given by $\tan ^{-1}(\mu \mathrm{~b} / \mu \mathrm{a})$ and the angles for the two isotopic species of propiolic acid are

HCCCOOH	59°	54^{\prime}
HCCCOOD	61°	30°

HCCCOOD Plois of μ_{b}^{2} against μ_{a}^{2}

If the small changes in the components of the dipole moment are significant then the angle of rotation of the principal axes on deuteretion of the hydroxyl group is - 1° 36'. This angle may be calculated from the co-ordinates of the hydrogen atom and the moments of inertia of HCCCOOH. The condition that the products of inertia about principal axes are zero leads to the following expression.

$$
\tan 2 \theta=\frac{-2 I_{X Y}}{I_{X}-I_{Y}}
$$

$I_{X Y}, I_{X}$ and I_{Y} are the product and moments of inertia of HCCCOOD about axes parallel to the principal axes of HCCCOOH but with origin at the centre of mass of HCCCOOD. The product and moments of inertia are given by

$$
\begin{aligned}
& I_{X Y}=-\mu a b \\
& I_{X}=I_{a}+\mu_{b}^{2} \\
& I_{Y}=I_{b}+\mu_{a}^{2}
\end{aligned}
$$

where I_{a} and I_{b} are the moments of inertia of HCCCOOH ,
a and b are the co-ordinates of the hydrogen atom and μ is the reduced mass used in Kraitchmen's equations. The angle of rotation found in this way is - $1^{\circ} 26^{\prime}$ and agrees well with that found from the components of the dipole moment.

The changes in the components of the dipole moment on deuteration are consistent with that vector lying in the first or third quadrant of the principal axis system show in fig. 3.5. Considerations of bond moments 13 (fig. 3: lla) favour the first quadrant and the dipole moment in propiolic acid is therefore almost parallel to the $C=0$ bond.

The dipole moments of formaldehyde, 14 propynal, 15 formic acid, ${ }^{16}$ and propiolic acid are show in fig. 3.11 b . The small increase and considerable chenge in direction of the dipole moments of the substituted molecules indicate that the acetylene group has an electron donating effect. On the basis of the small increase in the dipole moment relative to that of formaldehyde Howe and Goldstein in reference 15 argue against structure (a) contributing

(b)

$\mu=2.330$
$\mu=2.470$

$\mu=1.410$
fig. $3 \cdot 11$
significantly to the resonance hybrid of propynal.

This view is supported by the C - C bonds in propynal and propiolic acid being some $0.02 \AA$ longer than the "normal" value of Stoicheff ${ }^{17}$. Stoicheff's formula is based on data in which carbon and hydrogen atoms are adjacent to the bonds under consideration. The C - C - H angle in propynal (114 ${ }^{\circ}$) and the $\mathrm{C}-\mathrm{C}-\mathrm{OH}$ angle in propiolic acid (111°) are rather narrow for $\$ \mathrm{D}^{2}$ hybridization and the long $\mathrm{C}-\mathrm{C}$ bonds in these molecules might be due to the oxygen of the carbonyl group altering the hybridization of the carbon atom to which it is attached.

1. G.H. Kwei and R.F. Curl, J.Chen.Phys., 1960 32, 1592
2. C.C. Costain and J.R. Horton, J.Chem.Phys., 1959, 31, 389
3. D. Kivelson and B.B. Wilson Jr., J.Chen. Phys., 1952, 20, 1575
4. J.K.G. Watson, J.Chem.Phys., 1967, 46, 1935
5. R.A. Hill and T.E. Edwards, J. Hol. Spectroscopy, 1962, 2, 494
6. E.B. Wilson Jr., J.Chem.Phys., 1937, 2, 617
7. J.M.Dowling, J.Mol. Spectroscony, 1961, 6, 550
8. G.O. Sprensen, J.Mol. Spectroscopy, 1967, 22, 325
9. S. Goldien and E.E. Wilson Jr., J.Chem.Phys., 1948, I. 669
10. R. Heiss, Phys. Rev., 1963, 131, 659
11. C.H. Townes and A.L. Schawlow, Microwave Spectroscopy", HeGraw-Hill Book Company, Inc., 1955, 255
12. P.F. Wacker and Harlene R. Pratto, Microwave Spectral Tables, Line Strengths of Asymmetric Rotors", N.B.S. Monograph 70 - Volume 2, 1964
13. C.P. Smythe, "Dielectric Behaviour and Structure", NcGraw-Hill Book Company, Inc., 1955, 24.4
14. K. Kondo, J.Phys.Soc. Japan, 1960, 15, 307
15. J.A. Howe and J.H. Goldstein, J.Chem.Phys., 1955, 23, 1223
16. H. Kim, R. Kellar, and H.D. Gwinn, J.Chem.Phys. 1962, 37, 2748
17. B.P. Stoicheff, Tetrahedron, 1962, 17, 135

Double bond fixation in the six membered
 rings of 2, 1, 3 - benzoxadiazole and
 2,1,3-benzothiadiazole

(1) Introduction

The chemical properties of 2, 1, 3 - benzoxadiazole and those of the analogous sulphur and selenium compounds ${ }^{1}(a)$ indicate that the degree of double bond fixation in the six membered rings is somewhere between that in butadiene and that in naphthälene.

(a)
(The ring numbering system is that used in reference 2)

All three compounds undergo electrophilic substitution reactions, such as nitration ${ }^{3}$, thot are characteristic of aromatic compounds. The quinonoid nature of the six membered rings is shown by the addition, in the absence of a catalyst, of four atoms of halogen to the "butadiene" grouping. The compound formed by the addition of four atoms of bromine to $2,1,3-$ benzoxadiazole is quite stable and only loses two molecules of hydrogen bromide on treatment with alkali ${ }^{4}$.

The X - ray structures 5 of the three compounds are show in fig 4.1. 2, 1, 3-benzothiadiazole (b) and 2, 1, 3 - benzoselenadiazole (c) show considerable double bond fixation in the six membered rings. In view of its chemistry, the reguler six membered ring in 2, 1, 3-benzoxadiazole (a) appears anomolous. A n.m.r. study of these compounds 6 suggests that the degrec of double bond fixation in 2, 1, 3 - benzoxadiazole is very similar to that in 2, 1, 3-benzothiadiazole. The π-bond orders

fig. 4.1
from this study agree with those obtained from a simple Hückel calculation ${ }^{7}$. The resonance integrals used in this calculation were those used to interpret the e.s.r. spectra of the radical anions of 2, 1, 3 - benzoxadiazole and 2, 1, 3 - benzothiadiazole ${ }^{8}$. The predicted bond lengths 6 are very close to those found in the corresponding part of naphthalene ${ }^{9}$.

$$
2,1,3 \text { - benzoxadiazole and 2, 1, } 3 \text { - }
$$

benzothiadiazole are rather heavy for a complete structural determination by microwave spectroscopy. However, it was thought that a study of the normal isotopic species of these compounds would show whether the X - ray structure of $2,1,3$ benzoxadiazole is in error and also help to confirm the n.m.r. work.

The X - ray structures of the two compounds were used as models to predict approximate rotational constants. In these and all subsequent calculations the following assumptions were made.
(i) the lengths of the $C-H$ bonds were 1.084 凡.
(ii) the $C-H$ bonds to C_{4} and C_{7} were perpendicular to the symmetry axis of the molecule.
(iii) the $\mathrm{C}-\mathrm{H}$ bonds to C_{5} and C_{6} made angles of 120° with the bond between those atoms.

Both molecules were found to be prolate tops with $K \sim 0.7$ and with the dipole moment along the 2 inertial axis. The most intense transitions for this type of molecule are the μ a R branch lines. Apart from a shift to lower frequencies due to the increased molecular weight the spectra are similar to that of aniline (fig. 2.1).
(2) Analysis of spectra

Although they are solids, the vapour pressures (0.05 torr) at room temperature of $2,1,3-$
benzoxadiazole and 2, 1, 3 - benzothiadiazole are adequate for microwave spectroscopy. Samples were admitted into the cell in the usual vay. Both compounds were very stable in the cell and it was possible to work for up to an hour without the lines deteriorating. The dipole moments ${ }^{10}$ of $2,1,3$ - benzoxadiazole and 2, 1, 3 - benzothiadiazole are 4.03D and 1.73 D respectively, and the intensities of their microwave spectra support these figures. It was decided to look at the oxygen compound first because the greater inherent intensity of the spectrum and lower J values of the transitions should make analysis more simple.

A preliminary search was made in K band and a number of strong lines were located. Groups of lines with fast Stark effects were found near 23,500 mc / s and $20,300 \mathrm{mc} / \mathrm{s}$ and were identified as the high K -l lines which occur close to $(\mathrm{J}+1) \times(\mathrm{B}+\mathrm{C})$. Several tentative assignments were made on the basis
of Stark effects and separations expected from the model. A set of rigid rotor constants was obtained from wavemeter measurements and an R branch plot. The assignments were confirmed by predicting other lines and these were generally found within 30 mc / s of the predicted frequency. A number of lines was measured accurately and a set of rigid rotor constants was obtained from a least squares fit. The observed and calculated line frequencies and rotational constants are given in table 4.l. Although the lines were quite broad, no quadrupole fine stmacture was observed even with low pressures in the cell. The high J values of the lines and the presence of vibrational satellites to high and low frequencies meant that it was impossible to make dipole moment measurements. The analysis of the spectrum of 2, 1, 3 benzothiadiazole followed much the same course as that of 2, 1, 3-benzoxadiazole, The lines were much weaker and the Stark effects correspondingly /
heasured line frocuencies for 2,1,3benzoradiazole.

	observed $(\mathrm{mc} / \mathrm{s})$	calculated $(\mathrm{mc} / \mathrm{s})$
$6_{25}-7_{26}$	19583.87	19583.72
$6_{24}-7_{25}$	21825.50	21825.35
$6_{33}-7_{34}$	21186.07	21186.16
$6_{42}-7_{43}$	20589.03	20589.19
$7_{07}-8_{08}$	20192.31	20192.52
$7_{17}-8_{18}$	20124.75	20124.84
$7_{26}-8_{27}$	22162.13	22162.16
$7_{25}-8_{26}$	24837.33	24837.25
$7_{35}-8_{36}$	23299.78	23299.67
$7_{44}-8_{45}$	23517.23	23517.00
$7_{43}-8_{44}$	23691.83	23691.90
$7_{62}-8_{63}$	23338.36	23337.60
$7_{61}-8_{62}$		23337.82
$8_{08}-9_{09}$	22544.46	22544.44
$8_{18}-9_{19}$	22510.10	22510.17

TABLT 4.1 (Cont'd.)

	observed $(\mathrm{mc} / \mathrm{s})$	calculated $(\mathrm{mc} / \mathrm{s})$
$8_{17}-9_{18}$	25222.44	25222.51
$8_{27}-9_{28}$	24680.71	24680.65
$8_{36}-9_{37}$	26099.14	26099.04
$9_{09}-10_{010}$	24904.97	24904.92
$9_{19}-10_{110}$	24868.30	24888.15
$(\mathrm{~A}+\mathrm{C}) / 2$		2563.36
$(\mathrm{~A}-\mathrm{C}) / 2$		1378.01
K		

TABLE 4.2

Heasured line frecuencies for 2,1,3benzothiadiazole.

	observed $(\mathrm{mc} / \mathrm{s})$	calculated $(\mathrm{mc} / \mathrm{s})$
$8_{26}-9_{27}$	20981.63	20981.56
$8_{35}-8_{36}$	20444.34	20444.32
$8_{45}-9_{46}$	19943.18	19943.31
$9_{09}-10_{010}$	19756.11	19756.23
$9_{19}-10_{110}$	19684.06	19683.86
$9_{18}-10_{19}$	21936.74	21936.64
$9_{27}-10_{28}$	23273.14	23273.21
$9_{37}-10_{38}$	22062.59	22062.87
$9_{46}-10_{47}$	22195.85	22195.93
$9_{45}-10_{46}$	22302.51	22302.65

$10_{29}-11_{210}$	23229.36	23229.51
$10_{28}-11_{29}$	25487.71	25487.81
$10_{37}-11_{38}$	25421.61	25421.65
$10_{47}-11_{48}$	24450.27	24449.99
$10_{46}-11_{47}$	24653.63	24653.77
$10_{56}-11_{57}$	24380.01	24379.97

TABLE 4.2 (Cont'd.)

$$
\begin{array}{ccc}
& \begin{array}{c}
\text { observed } \\
(\mathrm{nc} / \mathrm{s})
\end{array} & \begin{array}{c}
\text { calculated } \\
(\mathrm{mc} / \mathrm{si})
\end{array} \\
{ }^{11_{011}-12_{012}} & 23485.15 & 23485.19 \\
{ }^{11_{111}-12} 112 & 234.58 .86 & 23458.84 \\
& & \\
(\mathrm{~A}+\mathrm{C}) / 2 & 2351.25 \\
& \\
(\mathrm{~A}-\mathrm{C}) / 2 & & 1412.56 \\
\mathrm{~K} & & -0.779288
\end{array}
$$

correspondingly slower. A list of observed and calculated line frequencies and the least squares rigid rotor constants are given in table 4.2.

(3) Discussion

The moments of inertia of $2,1,3$ - benzoxadiazole and 2, 1,3 - benzothiadiazole are shown in the first rows of tables 4.3 and 4.4 . The inertial defects are $2,1,3$ - benzoxadiazole $\Delta^{0}=-0.0269$ a.m.u. \AA^{2} $2,1,3$ - benzothiadiazole $\Delta^{0}=-0.0401$ a.m.u. \AA^{2} The small magnitudes of these quantities help to confirm the planar nature of the molecules. Similar inertial defects have been found for 4 - pyrone ${ }^{11}, 4$ - thiapyrone ${ }^{12}$, and pyran - 4thione ${ }^{13}$. In these molecules the major contribution to the inertial defect is due to a low frequency out of plane vibration. An analogous situation could well exist in $2,1,3$ - benzoxadiazole and 2, 1, 3 - benzothiadiazole.

The angles of the five membered ring in the X - ray structure of 2, 1, 3 - benzoxadiazole are not consistent with the bond lengths and this was rectified by increasing the CCN angle to 102°. The moments of inertia calculated from this structure are shown in the second row of table 4.3. The differences between the observed and calculated moments of inertia are too great to be attributed to changes in molecular geometry occurring on transition from the solid to the vapour phase.

A similar inconsistency between the bond angles and bond lengths occurs in the six membered ring of the X - ray structure of 2, 1, 3 - benzothiadiazole. This was corrected by lengthening the abnormally short $C_{4}-C_{5}$ bond to $1.335 \AA$ a value closer to that in ethylene ${ }^{14}$ and butadiene ${ }^{15}$. The moments of inertia are shown in the second row of table 4.4 and in this case the agreement with the observed values is more reasonable.

The five membered ring in the X - ray structure

Moments of inortio for 2,1,3-benzoxadiazole.

Ia	Ib	Ic
$\left(\mathrm{a} \cdot \mathrm{m} \cdot \mathrm{u} \cdot \AA^{2}\right)$	$\left(\mathrm{a} \cdot \mathrm{m} \cdot \mathrm{u} \cdot \AA^{2}\right)$	$\left(\right.$ a.m.u. $\left.\AA^{2}\right)$

observed	128.2628	298.2466	426.4825
X-roy structure	117.34	315.64	432.98

structure
fig 4.3
128.26
299.02
427.28
structure
128.26
290.71
418.97

Moments of inertia for 2,1,3-benzothiadiazole.

$$
\begin{array}{ccc}
\text { Ia } & \text { Ib } & \text { Ic } \\
\left(\text { a.m.u. } A^{2}\right) & \left(a \cdot m \cdot u \cdot \AA^{2}\right) & \left(a \cdot m \cdot u \cdot R^{2}\right)
\end{array}
$$

observed
134.3136
404.2760
538.5495

X-ra.y structure	132.64	406.86	539.50

structure
fig 4.3 $\quad 134.31 \quad 407.67 \quad 541.98$

structure	134.31	397.75	532.06
fig 4.4			

of 2, 1, 3 - benzothiadiazole is very similer to that found in 1, 2, 5-thiadiazole 16,17. A calculation was made in which the geometry of the five membered ring of 2, 1, 3 - benzothiadiazole was fixed at that of 1, 2, 5 - thiadiazole (fig. 4.2) and the single and double bonds in the six membered ring were set equal to 1.46 and 1.34 A respectively. The b co-ordinate of C_{4} was fixed from the second moment condition for I_{a} and the resulting structure and moments of inertia are shom in fig. 4.3 and the third row of table 4.4. The Ib like that calculated from the X - ray structure is nearly one percent higher than the observed value. The calculation was repeated for 2, 1, 3 - benzoxadiazole, the five membered ring being set equal to that of $1,2,5-$ oxadiazole. The structure and moments of inertia are show in fig. 4.3 and the third row of table 4.3. The agreement between the observed and calculated Ib is much better than for the X - ray structure.

The bond lengths in the six membered rings were set equal to those in naphthalene ${ }^{9}$ and the above calculations repeated.

1,2,5-oxadiazole

1,2,5-thiadiazole
fig. 4.2

The structures of the five membered rings are shown in fig. 4.2.
fig. 4.3

The structures of the five nombered rings are shown in fig. 4.2.
fig. 4.4

The resulting structures are show in fig. 4.4 and the moments of inertia in the fourth rows of tables 4.3 and 4.4. The calculated values of Ib are lower than the observed values and the bond angles at C_{4} are rather narrow for sp^{2} hybridization. On the basis of these calculations it appears that the degree of double bond fixation in the six membered rings of $2,1,3-$ benzoxadiazole and 2, 1, 3 - benzothiadiazole is closer to that in butadiene than that in naphthalene. However, the assumption that the five membered rings remain unchanged on annulation is very drastic and before the question of double bond fixation in these molecules can be finally settled more structural information is necessary.

REFPRMICES

1. L.S. Efros, Russian Chemical Reviews, 1960, 29, 66
2. H.A. Shermen (editor R.C. Mlderfield), "Heterocyclic Compounds", John :!iley and Sons, 1961, I, 581
3. R.J. Gaughran, J.P. Picard, and J.V.R. Kaufman, J. Amer. Chem. Soc., 1954, 76, 2233
4. D.L. Hermick, W.A.H. Edwards, and E.R. Steiner, J. Chem. Soc., 1931, 3308
5. V. Luzzatti, Acta Cryst., 1951, 4, 193
6. N.N.D. Brown and P. Bladon, Spectrochem. Acta, to be published
7. N.M.D. Brown and G. Doggett, University of Glasgow, unpublished results
8. E.T. Strom and G.A. Russell, J. Amer. Chem. Soc., 1965, 87, 3326
9. D.W.J. Cruickshank, Acta Cryst. 1957, 10, 504
10. R.H. Hill and L.E. Sutton, J. Chem. Phys., 1949, 46, 244

11,12. J.N. Macdonald, University of Glascon, unpublished results
13. Susan A. Manley, B.Sc. Thesis University of Glasgow, 1968
14. H.C. Allen and E.K. Plyler, J. Amer. Chem. Soc. 1958, 80, 2673

REFBRTMCRS (Cont'd.)

15. A. Almenningen, 0. Bastiansen, and M. Traetteberg, Acta Chem. Scand., 1958, 12, 1221
16. V. Dobyns and L. Pierce, J. Amer. Chem. Soc. 1963, 85, 3553
17. F. A. Momary and R. A. Bonham, J. Amer. Chem. Soc. 1964, 86, 162
18. E. Saegebrath and A. P. Cox, J. Chem. Phys., 1965, 43, 166

Chapter 5

The conformation of glycollonitrile

(1) Introduction

Some preliminery conclusions about the structure of glycollonitrile are given in this chapter. The most likely conformations for this kind of molecule are show in fig. 5.1. The existence of more than one conformer depends on the shape of the potential function describing the internal rotation of the hydroxyl group and the study of molecules with a number of non-equivalent conformations might help to show what kind of effects are responsible for the barriers to internal rotation.

A structure derived by replacing the methyl group of ethyl cyanide ${ }^{1}$ with the hydroxyl group of methyl alcohol ${ }^{2}$ was used as a model for predicting lines (fig.5.2). Structures for the trans and gauche forms were obtained by making suitable rotations about the C - 0 bond. All three conformers are prolate slightly asymmetric tops and because of the highly polar cyanide group all

fig. $5 \cdot 1$

have appreciable μ_{a} components of the dipole moment. An initial search for lines was therefore made in the recion $36000-40000 \mathrm{mc} / \mathrm{s}$ where the $J=3-4 \mu a \mathrm{R}$ branch lines are predicted.
(2) Analysis of spectra

A very rich spectrum consisting of a large number of low field lines with symmetrical Stark effects was observed. A group of lines near $36800 \mathrm{mc} / \mathrm{s}$ with the cheracteristic Stark effects of the $K_{-1}=0$ and $K_{-1}=2,3 \mu$ a R branch lines of a slightly asymnetric rotor were located. Candidates for the $K_{-1}=1$ lines were observed approximately $900 \mathrm{mc} / \mathrm{s}$ to high and low frequency of this group of lines. The assignments were confirmed when the $J=1-2$ and $J=2-3$ lines were observed at half and three quarters of the frequencies of the $J=3-4$ lines.

All of the lines so far assigned are accompanied by a very intense vibrational
satellite to low frequency. The relative intensities of the ground state and satellite lines indicate that the first excited vibrational state ($V=1$) of glycollonitrile lies less than $50 \mathrm{~cm}^{-1}$ above the ground state ($V=0$).

The $0_{00}-I_{01}$ transitions for the $V=0$ and $\mathrm{V}=1$ states were observed at 9217 and $9213 \mathrm{mc} / \mathrm{s}$ and both lines showed the expected quadrupole fine structure. For a slightly asymmetric rotor such as glycollonitrile the quadrupole coupling energy of the l_{01} level may be written

$$
W_{Q}=-\chi \text { aa } f(I, J, F)
$$

where $\mathcal{X}_{\text {aa }}$ is the quadrupole coupling constant along the a inertial axis and $f(I, J, F)$ is

Casimir's function. The observed splittings are shown in table 5.1 and the value of $\mathcal{X}_{\text {aaa }}=-3.6 \mathrm{mc} / \mathrm{s}$ mc / s may be compared with tret in ethyl cyanide ${ }^{4}$ $\left(\mathcal{X}_{\mathrm{a}, \mathrm{a}}=-3.3 \mathrm{mc} / \mathrm{s}\right)$.

A search was made for transitions due to the
$1 \Lambda_{\mathrm{N}}$ quadrupole fine structure for $0_{00}-I_{01}$ of $\mathrm{HOCH}_{2} \mathrm{CN}$

μ_{b} and μ_{c} conponents of the dipole moment. The $J_{O J}-J_{1}, J-1 \mu \mathrm{~b} Q$ branch series was located and the first six members have been measured. If rigid rotor theory is obeyed the rotational constants nay be derived from the following expressions

$$
\begin{array}{cc}
0_{00}-1_{01} & B+C \\
\left(1_{10}-2_{11}\right)-\left(1_{11}-2_{12}\right) & 2(B-C) \\
1_{01}-1_{10} & A-C
\end{array}
$$

The frequencies of the $0_{00}-I_{11} N_{b}$ and $0_{00}-I_{10}$ μ_{c} lines were predicted from a set of rotational constants obtained in this manner. The $0_{00}-1_{11}$ lines for the $V=0$ and $V=1$ states were found within $1 \mathrm{mc} / \mathrm{s}$ of the predicted frequencies, but an intensive search for the $0_{00}-l_{10}$ lines was unsuccessful. The measured line frequencies for the normal isotopic species of glycollonitrile are given in table 5.2. The analysis of the spectrum of $\mathrm{DOCH}_{2} \mathrm{CN}$ folloved much the same course as that of the normal isotopic

TABLI 5.2

Heasured line frequencies for $\mathrm{HOCH}_{2} \mathrm{Cm}$

	$\begin{aligned} & V=0 \\ & (\mathrm{mc} / \mathrm{s} \mid \end{aligned}$	$V \underset{(\mathrm{mc} / \mathrm{s})}{ }=I$
$0_{\mathrm{CO}}-I_{\mathrm{OI}}$	9217.40	9213.10
$0_{00}-1_{11}$	37998.04	37973.81
$I_{01}-I_{10}$		
$1_{01}-2_{02}$	1829.29	18420.78
$1_{11}-{ }_{12}$	17974.08	17969.27
$1_{10}-2_{11}$	18896.92	18887.54
${ }^{2} 02-{ }^{2} 11$	29711.38	29691.49
$202-3_{03}$	27629.88	27616.91
${ }^{2} 12-3_{13}$	26955.79	26948.82
$2_{11}-3_{12}$	28341.47	28327.81
$3_{03}-3_{12}$	30422.19	30397.30
$303-404$	36813.93	36796.66
$3_{13}-4_{14}$	35934.46	35926.85
$3_{12}-4_{13}$	37781.50	37763.47

$$
V=0 \quad V=1
$$

$$
4_{04}-4_{13}
$$

31389.36
31365.15
32628.76
32605.18
34186.44
34160.11

A	33622.54	33601.09
B	4839.41	4830.52
C	4379.99	4382.58

species. The $0_{00}-1_{11}, 1_{11}-2_{12}$ and $1_{10}-2_{11}$ transitions of this isotopic species have not been observed and the rotational constants have been ojtained from the $K_{-1}=0, U_{a} R$ branch lines and Q branch plots for the $J_{O J}-J_{1}, J-1$ series of lines. The measured line frequencies are given in table 5.3.
(3) Discussion

The moments of inertia of. glycollonitrile are compared with those calculated from the models in table 5.4. The inertial defects are lerger than those expected for the cis and trans forms and the substitution co-ordinates of the hydroxyl hydrogen atom (table 5.5) show that glycollonitrile exists in the gauche form. Allyl alcohol 5 and propargyl alcohol ${ }^{6,7}$ also have this conformation, while ethyl alcohol ${ }^{8}$ has recently been shown to exist in the trans form. In the gauche and trans forms the interactions between the lone pairs of electrons of the oxygen atom and the bonding electron pairs of the $-\mathrm{CH}_{2} \mathrm{X}$ group are

TABLE 5.3

heasured line frequencies of $\mathrm{DOCH}_{2} \mathrm{CH}$

	$V=0$	$V=1$
$(\mathrm{mc} / \mathrm{s})$	$(\mathrm{mc} / \mathrm{s})$	
$I_{01}-I_{10}$	26394.44	26389.57
$I_{01}-2_{02}$	17971.30	17965.05

$2_{02}-{ }^{2}$	26867.01	26861.46
$2_{02}-3_{03}$	26941.62	26932.86
${ }^{2} 12-3_{13}$	26266.46	26261.98
${ }^{2} 11-3_{12}$	27662.20	27650.02

$3_{03}-3_{12}$	27584.38	27575.79
$3_{03}-4_{C 4}$	35893.18	35882.08
$3_{13}-4_{14}$	35014.70	35008.78
$3_{12}-4_{13}$	36874.52	36859.21

$4_{04}-4_{13}$	28566.03	28561.34
$5_{05}-5_{14}$	29823.91	29816.05
$6_{06}-6_{15}$	31389.02	31383.33

TABLS 5.4

Homents of inertia of glycollonitrile.

TABLE 5.5

Co-ordinetes of the hydroxyl hydrogen atom
a
b
(\AA)
(\AA)
(\AA)
1.597
0
-1.022
-1.763
0.252
0
cis
trans
observed
-1.442
1.024
0.674
a minimum.

When X is an unsaturated group hydrogen bonding must make the gauche form more stable while in ethyl alcohol repulsions between the hydroxyl hydrofen atom and the methyl group make the trans form more favourable. Propargyl alcohol also has a very intense satellite to low frequency of the $\mu_{a} R$ branch lines and this has been assigned to the first excited state of the internal rotation. Hirota hes studied the internal rotation in this molecule and deduces that this motion effectively takes place in a double minimum potential (fig. 5.3). He explains the absence of the usual \int_{c} transitions by assuming that

the $V=0$ and $V=1$ states are respectively symmetric and antisymmetric with respect to the internal rotation ancle and that the $\mu \mathrm{c}$ transitions couple these two stetes. This explanation may also be used to account for the absence of the \boldsymbol{N}_{c} transitions in glycollonitrile.

I would like to thank Dr. K. Bolton, Dr. N.L. Owen, Professor J. Sheridan and Professor S. Hirota for allowing me to see their papers on propargyl alcohol prior to publication.

References

1. R. G. Tomnes and B.P. Dailey, J.Chen.Phys., 1957, 26, 678
2. E. V. Ivash and D. M. Dennison, J.Chem.Phys., 1952, 21, 1804
3. C. H. Townes and A. L. Schawlow, "Nicrowave Spectroscopy", McGraw-Hill Book Company,1955, Appendix 1, 499
4. V. W. Lauric, J.Chem.Phys., 1959, 31, 1500
5. A.N. Hurty and R.F. Curl, J.Chem. Phys., 1907, 46, 4176
6. K. Bolton, N.L. Owen and J. Sheridan, Nature, 1968, 2.27, 164
7. E. Hirota, J.Mol.Spectroscopy, 1968, 26, 335
8. M. Takano, Y.Sasada and T. Satoh, J.Mol. Spectroscopy, 1968, 26, 157.

CHAPTIER 6.

Chemical Preparations

This chapter contains details of a number of chenical preparations carried out by the author.
(1) aniline (a) aniline - NHD and aniline $-\mathrm{HD}_{2}$

These isotopic species were prepared by direct exchange with $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$. The aniline was extracted into ether and the ether extract dried overnight with anhydrous magnesium sulphate. After filtration the ether was removed under reduced pressure and the aniline was distilled into a sample tube. All of the following preparations required the separation of a mixture of water and aniline and ether extraction was used in each case.
(b) aniline $-2 D_{1}$

$\xrightarrow[\mathrm{NaOD} \mathrm{O}]{2 \mathrm{O}}$

Lauer and Prrede have shown that in the presence of base and Raney Nickel the ortho hydrogen atoms of aniline exchance at a much greater rate than the meta and para hydrogen atoms. Aniline (5g), sodium deuteroxide (5g), Raney Nickel (5g) and $D_{2} 0(20 \mathrm{ml})$ were boiled under reflux for twelve hours. The aniline was extracted into ether. and the ether removed under reduced pressure. The aniline was washed with nornal water (20 ml) and then recovered by the method described above. The infra-red spectrum of the sample had a weak C - D stretching absorption but the relative intensities of the microwave spectra of aniline $-2 D_{1}$ and aniline $-\mathrm{H}_{7}$ indicated that nearly 50% exchange of the ortho hydrogen atoms had taken place. (c) aniline $-4 D_{1}$

Acetanilide $-4 D_{1}(0.50 \mathrm{~g})$ was boiled under reflux with a solution of potessium hydroxide (4g) in water (10 ml) for 30 minutes and the aniline was recovered. No trace of aniline $-\mathrm{H}_{7}$ was found in the microwave spectrum of this sample. However, under conditions of acid hydrolysis ${ }^{2}$ it was found that the deuterium was almost completely exchanged.
(d) aniline $-2,4,6 \mathrm{D}_{3}$

This isotopic species was prepared by essentially the same method as that used by Hurray and Williams ${ }^{3}$. Aniline hydrochloride was prepared by passing hydrogen chloride gas into an ethereal solution of freshly distilled aniline. Aniline hydrochloride (lg) was dissolved in $D_{2} O(5 \mathrm{ml})$ and kept in a sealed flask in an oven at $90^{\circ} \mathrm{C}$ for five days. The water was removed under reduced pressure and the aniline hydrochloride was dissolved in water (5 ml) and dilute sodium hydroxide (5 ml) was added to the solution. The aniline was recovered in the usual manner.
(e) aniline $-\mathrm{D}_{5}$ and aniline $-3,5 \mathrm{D}_{2}$

Aniline $-\mathrm{D}_{7}$ (ag) (supplied by Merck, Sharp
and Dohme) was washed with methanol to convert N - D to $\mathrm{N}-\mathrm{H}$ bonds and the methanol was removed under reduced pressure at $50^{\circ} \mathrm{C}$ using a water bath.

$\xrightarrow{\mathrm{HCl} \mathrm{H}}{ }_{2} \mathrm{O}$

156

Aniline $-\mathrm{D}_{5}$ (lg) was dissolved in a solution of concentrated hydrochloric acid (1 ml) in water (5 ml) and the solution was kent at $90^{\circ} \mathrm{C}$ in a sealed flask for two days. Dilute sodium hydroxide was added to the solution and the aniline was recovered.
(f) preparation of a random mixture of aniline - $13 \mathrm{C}_{1}$

The above reaction scheme was investigated in order to convert the small quantity of aniline $-1{ }^{13} \mathrm{C}$
(0.4 g supplied by lierck, Sharp and Dohne) to a ramdom mixture of aniline $-{ }^{13} \mathrm{C}$. The sample of aniline $-{ }^{13} \mathrm{C}_{1}$ was $55_{\%}^{\circ}$ enriched and the product should have the following composition

$$
\begin{array}{ll}
\text { aniline }-\mathrm{H}_{7} & 45 \% \\
\text { aniline }-1^{13} \mathrm{C} & \\
\text { aniline }-4^{13} \mathrm{C} & 9 \% \\
\text { aniline }-2^{13} \mathrm{C} & \\
\text { aniline }-3^{13} \mathrm{C} & 18 \%
\end{array}
$$

The diazotisation ${ }^{4}$, nitration ${ }^{5}$ and reduction ${ }^{6}$ were essentially modifications of standard preparations. The reaction scheme was tried several times with $\frac{1}{2}$ g samples of normal aniline and good yields were obtained. The first stage of the reaction with the aniline $-{ }^{13} \mathrm{C}$ was accomplished satisfactorily but in the second stage the benzene was converted to meta-dinitrobenzene.

(2) Propiolic acid (DCCCOOH)

$\mathrm{HCCCOOH} \xrightarrow{\mathrm{HoOH}_{2} \mathrm{O}} \mathrm{HCCCOONa}$

DCCCOOH $\stackrel{\mathrm{HCl}_{2} \mathrm{O}}{\leftarrow}$ DCCCOONa

Sodium propiolate was prepared by neutralisation of a 50% aqueous solution of propiolic acid with dilute sodium hydroxide at $0^{\circ} \mathrm{C}$. The water was removed under reduced pressure and the salt (1 grn) was dissolved in $\mathrm{D}_{2} \mathrm{O}(3 \mathrm{ml})$. The pH of the solution was adjusted to 12 by the addition of a few drops of a solution of sodium deuteroxide in $\mathrm{D}_{2} \mathrm{O}$. The solution was allowed to stand for two days, the water was removed under reduced pressure at room temperature and the residue was dissolved in normal water (3 mls). The solution was cooled to $0^{\circ} \mathrm{C}$, a few drops of concentrated hydrochloric acid were added and the propiolic acid was extracted into ether. The ethereal solution was dried
overnight with anhydrous magnesium sulphate, filtered and the ether removed under reduced pressure. (3) Glycollonitrile.

$$
\mathrm{KCN}+\mathrm{H}_{2} \mathrm{CO} \xrightarrow[\mathrm{KOH}_{2}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{HOCH}_{2} \mathrm{CH}
$$

This compound was prepared using the method described by Goudry ${ }^{7}$. A solution of potassium cyanide (130 g.) in water (250 ml) in a litre three necked flask was cooled to $0^{\circ} \mathrm{C}$ in a salt bath. The solution was stirred and a solution of commercial 37% formaldehyde (170 ml) in water $(130 \mathrm{ml})$ was added from a dropping funnel at such a rate that the temperature did not rise above $10^{\circ} \mathrm{C}$ (1 hour). The mixture was allowed to stand (10 minutes) and then ice cold dilute sulphuric acid (57 ml concentrated sulphuric acid in water 173 ml) was added so that the same low temperature was maintained (1 hour).

The pH of the mixture was adjusted to 4 by addition of dilute potassium hydroxide and was then allowed to
warm up to room temperature. Ether (30 ml) was added and the mixture was filtered at the pump to remove potassium sulphate. The filtrate was extracted with ether 300 ml in a continuous ether extractor (48 hours). The ether extract was dried with anhydrous calciun sulphate (15g) overnight and filtered. The ether was removed under reduced pressure at $40^{\circ} \mathrm{C}$ using a water bath. The crude product was distilled under reduced pressure using a 10 cm . vigreux column lagged with asbestos tape and a nitrogen capillary leak. Three fractions boiling in the range $88-95^{\circ} \mathrm{C}$ at 10 torr were collected. The infra-red spectra of the samples showed traces of water and ethylene glycol as impurities.

The hydroxyl group was deuterated by mixing 2 ml of glycollonitrile with an equal volume of $D_{2} \mathrm{O}$, allowing the solution to exchange overnight and then extracting with three portions (5 ml) of ether. The glycollonitrile treated in this way
polymerised very rapidly and it was found more convenient to prepare the deuterated species directly in the cell by admitting doses of $\mathrm{D}_{2} \mathrm{O}$ and normal glycollonitrile.

RBPGRTMCES

1. W. M. Lauer and L. A. Brrede, J. Amer. Chem. Soc., 1954, 76, 5162
2. F. G. Mann and B. C. Saunders, "Practical Organic Chemistry", Longmans, Green and Co. Ltd., 1940, 69
3. A. Murray and D. L. Hilliams, "Organic Syntheses with Isotopes" part 2, Interscience Publishers Inc., 1958, 1441
4. E. R. Alexander and R. E. Burge, Jr., J. Amer. Chem. Soc., 1950, 72, 3100

5, 6. A. I. Vogel "Practical Organic Chemistry", Longman's Green and Co., 1956, 525, 563
7. R. Gaudry, "Organic Syntheses, Collective Volume 3", John Wiley and Sons Inc., 1955, 437

APPMTIX 1.

The derivation of rotational constants

by leost squares

The energy levels of a rigid asymmetric rotor may be written in terms of the tabulations of reduced energies as

$$
\begin{array}{r}
W_{J \tau}=J(J+1)(A+C) / 2+\left(E\left(K^{\prime \prime}\right)+\left(K-K^{\prime \prime}\right) \frac{\partial E(K)}{\partial K}\right) x \\
(A-C) / 2
\end{array}
$$

$$
\frac{\partial E(K)}{\partial K}=\left(E\left(K^{\prime}\right)-E\left(K^{\prime \prime}\right)\right) \times 1000
$$

and $K^{\prime \prime}$ and K^{\prime} are respectively the lower and upper entries in the reduced energy tables which \mathcal{K} lies between.

A line frequency may be written

$$
\begin{aligned}
V= & \Delta J(I+1)(A+C) / 2+\Delta\left(E\left(x^{\prime \prime}\right)-x^{\prime \prime} \frac{\partial(x)}{\partial x}\right)(A-C) / 2 \\
& +(A-C) / 2 \Delta \frac{\partial E(x)}{\partial x} \underline{K}
\end{aligned}
$$

where the underlined terms are the parameters to be refined by least squares. The method of least
squares is discussed in the referonce.
The coefficients of the underlined terms in equation 1 do not depend very strongly on the parameters to be fitted and the convergence to the least squares minimum is very rapid. Generally the shifts in $(A+C) / 2$ and $(A-C) / 2$ are found to be less than $0.001 \mathrm{mc} / \mathrm{s}$ after two or three cycles.

In the case of propiolic acid where allowance was made for centrifugal distortion equation 1 was used to express the rigid rotor part of the line frequency. The quartic angular momentum terms in equations 3.6 and 3.7 were calculated from the following expressions. These expressions were derived by substituting $X=1, Y=\mathcal{K}_{1} Z=-1$ into the equations given in the appendix of Watson's paper.

$$
\left.\left\langle\mathrm{Pa}^{4}\right\rangle=\langle\mathrm{Pa}\rangle^{2}\right\rangle^{2}+\pi(k+1) / 2(1-k)
$$

$\left\langle P b^{4}\right\rangle=\left\langle P b^{2}\right\rangle^{2}-2 \pi(\kappa+1)(K-1)$

$$
\left\langle\mathrm{P}^{4}\right\rangle=\left\langle\mathrm{P}^{2}\right\rangle^{2}-\pi(1-K) / 2(K+1)
$$

$$
\left\langle\mathrm{P}_{\mathrm{a}}^{2} \mathrm{P} \mathrm{Bb}^{2}\right\rangle=\left\langle\mathrm{Pa}^{2}\right\rangle\langle\mathrm{Pb}\rangle-\pi /(\pi-1)
$$

$$
\left\langle\mathrm{Pa}_{2}^{2} \mathrm{PC}^{2}\right\rangle=\left\langle\mathrm{Pa}^{2}\right\rangle\left\langle\mathrm{PC}^{2}\right\rangle+\pi / 2
$$

$$
\left\langle\mathrm{PbPC}^{2}{ }^{2}\right\rangle=\left\langle\mathrm{Pb}^{2}\right\rangle\left\langle\mathrm{PC}^{2}\right\rangle-\pi /(\mathcal{K}+1)
$$

where

$$
\begin{aligned}
\pi=1 / 3 & (1-K) \mid\left\langle\mathrm{Pa}^{2}\right\rangle\langle\mathrm{Pb}\rangle+\langle\mathrm{Pc}\rangle 1 \\
& +(K+1) \mid\langle\mathrm{Pb}\rangle\left\langle\mathrm{Pc}^{2}\right\rangle+\left\langle\mathrm{Pa}^{2}\right\rangle 1 \\
& -2 \mid\left\langle\mathrm{Pa}_{\mathrm{a}}^{2}\right\rangle\left\langle\mathrm{P}^{2}\right\rangle+\left\langle\mathrm{Pb}^{2}\right\rangle 1
\end{aligned}
$$

The expectation values of the quadratic angular momentum terns may be written

$$
\begin{aligned}
& \left\langle P E_{0}\right\rangle=1 / 2\left[J(J+1)+E\left(K^{\prime \prime}\right)-\left(K^{\prime \prime}+1\right) \frac{\partial E(K)}{\partial K}\right] \\
& \langle P b\rangle=\frac{\partial E(K)}{\partial K} \\
& \langle P c\rangle=1 / 2\left[J(J+1)-E\left(K^{\prime \prime}\right)+\left(K^{\prime \prime}-1\right) \frac{\partial E(K)}{\partial K}\right]
\end{aligned}
$$

The coefficients of the quartic angular momentum terms do not depend strongly on and the convergence to the least squares minimun was achieved after two or three cycles.

RGFRREMCES

1. H. Margenau and G.M. Murphy, "The Mathematics of Physics and Chemistry", D. Van Nostrand Company, Inc., 1964, 517.
