FUIGAI TEPEPIOIDS

A THESJS P? PGMED EY
CARIOG HYRHATDEZ CALZADIIIA
TO TIIE URIV DEGREE OR DOCTOR OF PHIIOGOFAY

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11011866
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

I should like to express my sincere then'es to my supervisor Dr. N.J. NcCorkindale, for his constent encouragement and advice during the course of this work and for his guidance in the presentation of this thesis.

Py thanks are also due to Dr. G. Ferguson for his assistance in the X-rey crystellocraphic analysis.

I am indebted to the P.I.O. for maintenance during one year and to Professor R.A. Rapheel, F.R.S., for providing the opportunity and fecilities for nerforning the work described here.

For their assistance end advice, my thenks are due to Mr. J.r.I. Cameron, B.Sc. and his steff (ricro-cnelyses), to lirs. F. Iawrie and technical staff (infra red spectra), to Dr. J.S. Roberts (mass srectre) to Ir. J. Gall (nuclear magnetic resonance spectra), to Liss ii. Lekenzie and Irs. J. lacIntosh (preparation of fungal extracts), to the X-ray technicians, to liss I.H. Linton (manuscript typine) and finally to my many laboratory colleagues.

SUITARY

Studies of the terpenoid constituents of the fungus Penicillium brevicompactum have established the presence of two new compounds(a furan and a dihydrofuran) with the same nucleus as mycophenolic acid but with modified terpenoid side chains. Plucidation of the structure of these has been assisted by various transformations involving the side chain.

The structure of mycochromenic acid, a further compound of this type which was previously isolated from P.brevicomnectum has been confirmed by a synthesis which establishes a new route to chromenes.

From the same fungus three related sesquiterpene benzoates (pebrolide,deoxypebrolide and desacetylpebrolide) were isolated and their structures elucidated by chemical studies and by an X-ray analysis of bromoacetylpeorolide. NRR studies of pebrolide and its derivatives and the $X-r a y$ data showed that the preferred conformation in solution and the conformation in the crystal are very similar.

A sequence for degradation of biosynthetically labelled pebrolide was established. This mas applied to material derived from doubly labelled $2^{14} \mathrm{C} / 2^{3} \mathrm{H}$ mevalonate and the presence of label at $C-1$ and at the 4α carbon established.

comicme

Tage
Generel Introcuction 1
Introciuction 7
Discussion I 10
Discussion II 24
Biosynthesis of rebrolide
Introauction 40
Discussion 45
X-ray inalyeis of Bronoacetylnebrulicie
Introauction 51
Discussion 60
Experimental 65
Bibliography 101

GENERAL INTRODUCTION

$1 \mathrm{R}=\mathrm{CH}_{3}$
$2 \cdot \mathrm{R}=\mathrm{CHO}$

4

3

5

6

7

GENERAL INTRODUCTION

The discovery of the effectiveness of the mould product, penicillin, in treating many bacterial infections in man, gave tremendous impetus to the isolation and screening of microorganisms and their metabolites for antibiotics.

The variety of mould metabolites is very large and a considerable number of them possess terpenoid structure. The last few years have witnessed many notable advances in the knowledge of pharmacological and physiological properties of the terpenoid group. In the case of the sesquiterpenes, those produced by fungi show a particularly wide variety and novelty of structure, relatively few members having skeletons similar to those found in plants. In the azulenes, from Lectarius deliciosus, lactaroviolin (I) ${ }^{\text {I }}$, lectarazulene $(2)^{1}$, Iactarofulvene $(3)^{2}$, in the benzoquinone helicobasidin $(4)^{3}$, and in culmorin $(5)^{4}$, the head-to-tail C_{5} units are easily visible, whereas, in helminthosporal (6$)^{5}$, the illudins (7), marasmic acid $(8)^{7}$, and hirsutic acid $(9)^{8}$, a

8

10

9

11

12

13

25

HOOC
HOOC

1

J

more complex pattern is observed.

Fomannosin (10) ${ }^{3}$, is the first example of a sesquiterpene containing the cyclobutene moiety. An expanding group of sesquiterpenes contain an oxabicyclo-(3,2,I)-octane system incluãing diacetoxyscirpenol (11) 10 , crotocin (12 $)^{11}$, trichothecin $(13 .)^{12}$, the verrucarins e.g. verrucarin $A(14)^{13}$, the roridins e.g. roridin C $(15)^{12}$, trichodermin (16 $)^{14}$. The conjugate acid in trichothecin and crotocin is crotonic acid, probably arising from condensation of two acetete units. The macro-ring of verrucarin A is formed by the cis,trens muconic acid (17), and an isomer of mevalonic acid (18) •Verrucarin B (19$)^{I 5}$ contains an epoxy acid related to this mevalonate isomer.

Trichothecin appears to be derived from farnesyl pyrophosphate by a pathway involving oxidations and alkyl shifts as shown in the figure $(20)^{16}$. The unusual primary epoxide grouping present in these antibiotics is also present in the unrelated antiamoebic antibiotic, fumagillin $(21)^{77}$, from Aspergillus furnigatus, which possesses an isooentenyl

21

22

।

25

26 B

27
trimer nucleus and a decatetraendioic acid side chain anparently derived from the normel C_{10} fatty acid. A possible biosynthesis is inäicateá in scheme $(22)^{16}$. The antibiotic ovalicin $(23)^{78}$, recently isolated from Pseudevrotium ovalis is closely releted.

One separate group of terpenoids is that involving alkylation of an otherwise derived nucleus with isoprenoid units. While this type of compound is very common in the higher organisms, in micro-organisms . it is relatively rare. Grifolin $(24)^{19}$, is derived by alkylation of orcinol with trans trans farnesyl pyrophosphate. Siccanin (25) is a related antifungal antibiotic in which cyclication has occurred. Siccanin (25) has a sesquiterpene portion (drimane skeleton) attached to the orcinol rine. From the same fungus chromenes have recently been isolated named siccanochromenes A and B (26 $)^{1}$ in which partial cyclisation has occurred. Tauranin (27) ${ }^{22}$ also possesses a non isoprenoid side chain derived from orcinol. Other compounds in the same group include auroglaucin (28) $)^{23}$ and flavoglaucin (29 $)^{24}$ with an isopentenyl substituent, mycophenolic acid (30$)^{25}$ with

$28(\mathrm{CH}=\mathrm{CH})_{3} \mathrm{CH}_{3}$
$29\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$

31

30

35

$\mathrm{CH}_{3}-{\underset{\mathrm{CH}}{2}}_{\stackrel{\mathrm{CH}_{2}}{\mathrm{C}} \cdot \mathrm{CO}_{2} \mathrm{CHO}}$

a degraded geranyl side chain (oxidative loss of acetone), fuscin $(31)^{26}$, mycelianamide (32 $)^{27}$, with a terpenoid ether grouping, atrovenetin (33 $)^{28}$, and quinone coenzymes (vitamin $K(34)^{29}$, coenzyme Q (35 $)^{30}$.). Benzoquinones with side chains containing six to nine isoprenoid units are generally found in fungi, bacteria and plants, whereas, those containing nine to ten units are chiefly found in animal tissues.

The fungal metabolite mycophenolic acid was one of the first secondary metabolites in which the tervenoid portion was shown to be derived from mevalonic acid 3 I The accepted sequence of reactions from acetyl Co A up to mevalonic acid is based on work in mammalian systems and is shown in scheme (36) . The acetyl Co. A is carboxylated to give malonyl Co A which is then decarboxylatively coupled to a second molecule of acetyl Co A to yield acetoacetyl Co A. Claisen condensation of this species with a third molecule of acetyl Co A leads to β - hydroxy β - methyl glutaryl Co A, The evidence suggests thet up to this point the reactions are reversible, but that the reduction of mevalonic acid is effectively irreversible and that this is one of the points at which terpene synthesis may be
controlled 32

It has been proposed 33 that the first three steps may involve enzyme - bound species rather than the free Co A esters and that the final reduction to mevalonic acid releases it from the enzyme surface. The focal point of sesquiterpene biogenesis is the naturally occurring compound farnesol whose formation from acetyl Co A via mevalonic acid hes found experimental verification. ${ }^{34}$ Iynen ${ }^{35}$ and his collaborators
identified farnesyl pyrowhosphate as a precursor of squalene in yeast and it was later shown that farnesyl pyrophosphate vas oreceded in biosynthetic sequence by geranyl pyrophosphate. The first step in the conversion of isopentenyl pyrophosphate into farnesyl pyrophosphate was the enzyric isomerisation of isopentenyl pyrophosphate to dimethylallyl pyrophosphate, which was then converted into geranyl pyrophosphate and the latter, in turn, to trens, trans farnesyl pyrophosphate. This pathway has been shown to operate in mammalian liver by Popjak et.al. 36 , who have also esteblished the trans,trans stmucture for farnesyl pyrophosphate.

Various cyclisations of farnesyl pyronhosphate give

37

38

39

40

41

42

43
the different groups of sesouiterpenes. A well defined group of sesquiterpenes has been isolated which is apparently derived by a non-stop trans antiparallel cyclisation of farnesyl pyrophosphate. for example iresin (37) ${ }^{37}$, drimenol (38) ${ }^{38}$, polygodial $(39)^{39}$, and confertifolin $(40)^{40}$. It was suggested initially that these might in fact be degreded di- and triterpenes, but iresin has been shown to have the opposite stereochemistry from that found in most higher terpenes and steroids, althouch drimenol, confertifolin, etc., have been shown to possess the "conventional" absolute stereochemistry.

The actual mechanism of cyclisation in these cases has not been proved, but in vitro treatment of the terminal monoepoxide of farnesyl acetate with boron trifluoride-ether complex or mineral acid gave a reasonable yield of the stereoisoners (4]) (42) 41 also oxidative cyclisation of farnesyl acetate (43 $)^{42}$ by a free radical path occurred in a remarkably specific way 42.
Imroougeroz

45

ITMRODUCTION

Fenicillium brevicomnectum belongs to the class of fungi known as Fungi Imperfecti and hes been previously studied anong others Gxford and Raistrick ${ }^{43}$, Godin ${ }^{44}$ and Birch ${ }^{45}$. A series of phenolic compounds was isolated, among them myconhenolic acid, which wes found by Gosio ${ }^{46}$ in 1896 to inhibit Becillus antrecis. Although the antibacterial activity/toxicity ratio was too low to allow its use as a therapeutic agent, nevertheless, this marked the discovery that antibacterial substances coulci be produced by micro-orgenisms.

Iycophenolic acid (44) has been extensively studied by Birch and co-workers. They sugcested that the aromatic nucleus is thet of orsellinic acid (45) oxidised to phtholide 47 , The C - methyl Eroun at $C-5$ and the 0 - IVe groups being derived from methionine ${ }^{48}$. When labelled orsellinic acid mas fed to the organism, incorporation was poor and the label turned up in the corresponding position in myconnenolic acid only to an extent of about one fourth, indicating the previous degradation in part to smell units ${ }^{49}$. This result may be due to problems of assimilation of the orsellinic acid fed to the oreanism,

46

47

Me

49
or it may suggest that the precursor of mycopnenolic acid is (46) instead. In support of this the C_{10} compound (47) accomnenies mycophenolic acid in P. brevicompactum and in growing experiments was found to reach a maximum concentration in early growth which later decreased 50 .

The strain of P. brevicompacturn used in the present work was previously shown to afford a mixture of C_{10} compounds including (47) $)^{51}$. Another of these compounds has now been tentatively identified as the hyäroxyphthalide (48) on the following grounds. It was phenolic and it was noted that its ultraviolet spectrum at neutrality and also at pH 10 was superimposable with that of 5,7-dihydroxyphthalide (49) - Furthernore, both substances possessed similar ultraviolet-induced deep-blue fluorescence and produced the same wine colouration with alcoholic ferric chloride. However, they did not possess exactly the same R_{f} value in methyl ethyl ketone, water, diethylamine T.I.C. system.

Fass measurement indicated the molecular formula

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \text {. If the presence of the nucleus (49) }
$$

is assumed then in the $W R$ spectrum, the one proton
signal at 4.31 could be assigned to a proton in the lactone ring. The low T value of this proton (cf 4.8 T in mycophenolic acid) could be due to the deshielding effect of a group attached at this position. The presence of a multiplet at 5.39 and of a doublet at $8.54 T$ suggests that this group could be $-\mathrm{CH} \mathrm{OH}-\mathrm{CH}_{3}$ as in (48) - This structure is strongly supported by the cracking pettern thich shows an abundant ion at $\mathrm{m} / \mathrm{e} 165$ corresponding to a loss of $-\mathrm{CH} \mathrm{OH}-\mathrm{CH}_{3}$ from the molecular ion. T.I.C. evidence of the formation of this compound was obtained following the borohydride reduction of the retone (47)

Since the main subject of the present work concerned the terpenoid constituents of P. brevicompacturn, this compound has not as yet been studied further. However, since a C_{2} unit could be lost by retroaldol cleavage this compound may have significance in the biosynthesis of the nucleus of mycophenolic acid.

DISOUSTIOT ESTS I

50

51

DISOUSSIOIT PAYT I

The side chain of mycophenolic acid is derived from mevalonate and has been shown to represent a geranyl groun from which the terminal three carbons have been removed by oxidation. Evidence of this has been provided by the isolation from a culture of P. brevicompectum containing 2 - C mevalonolactone, of acetone and mycophenolic acid in approximately equinolecular quantities and of approximately equal, molar, specific activities ${ }^{5 ?}$

In the present work a strain of P. brevicompactur was used which had already been found to produce mycophenolic acid and three metabolites which appeared to be related . Since no analogue of mycophenolic acid with an intact geranyl side chain, e.g. (50) has ever been reported and nothing is known about the mechanism of this oxidative cleavage, , it was of interest to carry out a systematic investigation of these metabolites.

One of these three compounds was the ethyl ester of mycoohenolic acid (51) ${ }^{51}$. An interesting feature is the presence of the unusual ethyl

52

54

55

56
grouping. The natural occurrence of ethyl esters such as this is rare, previous examples being curvalin (52 $)^{53}$ curvin (53) ${ }^{53}$, ethylecetioce ${ }^{54}$ ând ethyl stipitatonate (54) ${ }^{55}$ from various fungi, and monoethyl dipicolinate from various bacilli. 56

The hydroxylactone (55) ${ }^{51}$ vas also isolated
at the same time. The distinction between the two possible isomers was made by synthesis of both from mycophenolic acid, the threo-isomer via peracid oxidation and the erythro via osmylation of the double bond of mycophenolic acid.

The third compound was named mycochromenic acid (56) ${ }^{51}$. The structure of this compound was proposed on the following grounds : microanalysis and mass spectroscopy indicated the moleculer formula $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$. As with that of myconhenolic acid the inR showed resonances at $7.9,6.2$ and 4.9τ corresponding to an aromatic methyl group, to a methoxyl group and to the methylene group of the phthaliae respectively. However, the phthalide carbonyl group does not have a free phenolic grouping in the peri position in keeping with the UV spectrum being unchanged on basification. The position of the UV maximum at $\max 3325 \mathrm{~A}$ (cf UV spectrum or mycophenolic acid $\max 3070 \AA$) and occurrence in the

WR of doublets at 4.37 and $3.32 T\left(J=10.2^{c} / \mathrm{s}\right)$ suggested the presence of the mycophenolic acid chromophore extended by conjugation with a cis disubstituted double bond. The remaining features of the NIR were also consistent with the proposed structure, a singlet at 8.50 Tbeine assigned to the $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}$ - grouping and multiplets at 7.45 and 7.8 T to methylene groups respectively and to the carbonyl grouping, the latter methylene group suffering additional deshielding by the gem ether function.

In the present work an attempt to synthesise mycochromenic acia from mycorhenolic acid has been carried out to prove the suggested structure and to test in vitro the following biogenesis.

The hydroxylactone (55) occurring in
P. brevicornactun could be derived fron mycophenolic acid by initial formetion of a glycol with subsequent cyclisation to the threo - lectone (55) . This has many anclogies in plant termenoids, e.E. in coumarins in which a double bond of an isoprenoid side chain occurs as an oxidised form either as an eporide as in auropten (57) 57 or as a glycol as in toddalolactone $(58)^{58}$. Similarly mycochromenic acid might be

Path A

Path B

Fath B -

derived biogenetically from nycophenolic acid (scheme 58) by attack of the phenolste anion upon the corresponding epoyide followed by dehyaration. Alternatively, mycochromenic acid micht be aerived from mycophenolic acid by abstraction of a hydaride ion giving the unstable intermediate quinone methide which would immediately isomerize to the chromene. Three mechanisms heve been considered for the formation of the quinone methide (59) 5 ? The first mechanism(path A), based on cherical evidence that phenoxy radical formation is the initial step,involves one electron oxidation. If an ionic process is involved, then the methide could be formed by hydride abstraction from the hydroxyl group (path B)or more directly from the benzylic carbon(path B^{\prime})

It has been shown that enols are subject to two electron oxidation ${ }^{60}$. Thus in both chemical and biochemical dehydrogenation of steroidal ketones it is the enolic form of the substrate which undergoes hydride abstraction at the carbon atom . In addition suitable enolic compounds are rapidly dehydrogenated by high potential quinone reagents, thought to function by accepting hydride ion 61 Another mechanism (schene 60) which excludes a quinone

60

61

62
methide intermediate coula be rronosed, but in one case at least support for the formation of the quinone methide has been found, narely in the occurrence of derivatives of the parent phenol (61) oxyॄ̇enated at the benzylic position, this being presumed to arise by hydration of the intermediate (62) 59.

In viev of the experiments described later,
only a brief attempt to teat the first mechanism by creating the phenoxy radical was carried out. lethenolic solutions of mycophenolic acid were irradiated separately with ordinary light and with UV light under a stream of oxygen. Only starting naterial was recovered in both cases. The second mechanism was tested as folloms : Epoxidation of myconhenolic acid with m -chloroperbenzoic acid followed by treatment of the product with base resulted in the formation of the threohyaroxy lactone. Ho cyclic ether could be aetected. Similar reaction with the ethyl ester of mycophenolic acid using dury sodium ethoxide again gave only this lactone. This may be formed via hydration of the epoxide during work up.

The failure of this synthetic approach to
mycochromenic acià prompted an investication of the third route, thet is, by hycride abstraction. In order to test this possibility, mycophenolic acid was refluxed in benzene for severcl hours with 10\% palledium charcoal under nitrogen. Examination of the products by T.I.C. showed the presence of a small amount of mycochromenic acid; the yield was increased by using xylene instead of benzene, but was still very low. A substantial improvement was obtained, however, by the use of 2,3-dichloro - 5,6 dicyano - I, 4 benzoquinone in benzene or even better in xylene. lycochromenic acid was easily recognisable in T.I.C. by the unusual characteristic deep blue colour that mycochromenic derivatives give when they are sorayed with ceric monium nitrate, baked for a few minutes and allowed to cool. One of the main difficulties in this dehydrogenation experiment lay in the separation of mycochromenic acid from the reaction products. It was thought, particulerly in view of the work described later(p17), that one possible source of difficulty might be in the presence. of the free carbonyl group which might interact with the daize bond. Also one of the main difficulties is the similar R_{f} value of mycochromenic acid and the decomposition

63

64

65
products of D.D.O. Both these cifficulties were avoided by first prepering the ethyl ester of mycophenolic acid. Dehydrorenetion rith D.D.Q. in xylene now afforcied mycochromenic ester in 40% yield this being readily separated from the other reaction products by means of preparative T.J.C.

This appears to be the first experimental reproduction in vitro oí the biogenesis of natural chromenes as proposed by thurner 59.

Following the publication of this result, the potential of this method has been explored by other workers ${ }^{62}$ in the synthesis of some representative chromenes usins cyclodehydrogenetion with D.D.Q; these include D L - cannabichrome (53) , evodiononol methyl ester (64) and flemingin C trimethyl ether (65)

When coupled with prenylation of phenols, this method may be the mildest and most efficient synthesis of 2,2-dimethyl chromenes. The usual methods for synthesis of 2,2-dimethyl chromenes require the use of reagents (L A H or Grignard) which can interfere with other reactive functional groups in the same molecule. When the NR spectrum of mycophenolic acid was run

67

68
in trifluoroncetic aoid, it ves observed that the spectrur showed a rersmable difference from that in deuterochloroform. Removal of the solvent yielded an isomeric compound thet was no longer acid and whose MR spectrum in deuterochloroform did not show any vinyl protons. It was shown to be a phenolic compound because of the base shift in it's U.V. spectrum and positive test with ferric chloride. The principal features of the mycophenolic nucleus were still present in the $N M R$ spectrum. This also showed the absence of the double bond of the side chain in mycophenolic acid and the methyl appeared as a singlet at 8.86 T (cf 8.5 Tin mycophenolic acid) corresponding to a methyl group vicinal to an oxygen function. These features indicate the product is the lactone (66) The remaining features of the NR spectrun are also in accordance with this structure. Also this structure is in agreement with the mass spectrme whose base peak corresponds to the ions (67) derived by benzylic cleavage. In the case of the hydroxylactone (55) the base peak corresponds to (68) due to the presence of the hydroxyl group. This compound was also obtained on refluxing mycophenolic acid with p-toluensulphonic acid in benzene.

69

70

71

On the otnex hend the double bond of
mycophenolic acid interccia with the phenolic hydroxyl group under different acidic conàitions, namely, upon refluxing in acetic acid with concentrated sulphuric acid ${ }^{64}$. The new product was non phenolic, showing no base shirt in it's UV spectrum and showed no vinyl proton in $N: \mathbb{R}$ spectrum which was closely similar to that of the above lactone. The structure (69) which was assigned to this compound, corresponds to the dihydro derivative of mycochromenic acid and catalytic reduction of ethyl mycochromenate in fact was found to give the ethyl ester of this product.

The mass spectrum is also in agreement with the proposed structure, thus the base peak at $\mathrm{m} / \mathrm{e} 207$ corresponding to the fragment (70).

In the present work, two further metabolites related to mycophenolic acid have been isolated. Both of them are present in small amounts and are only found in the later states of growth (28 days).

One of them has been named mycofuranolide (7I) and figure (72) shows the NR recorded for this.
compound. Wlementel anolysis end mass spectroscopy indicated the molecular formala $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$. The INiR spectrun of the metabolite with resonences a.t 4.76 T (phthalide methylene) 5.82T (aromatic methoxyl) and 7.84 T (aromatic methyl) suggested that the mycophenolic nucleus was present in the new compound. In contrast with mycophenolic acid, in the IR spectrum there is only one band in the carbonyl region at $1780 \mathrm{~cm}^{-1}$ which corresponds to the γ - lactone, but in this compound the intramolecular hydrogen bonding responsible for the lowering of the frequency of the lactone in mycophenolic acid is absent. It was deduced that the metabolite was non-phenolic from the absence of any hydroxyl absorption in the infrared, from the negative test with ferric chloride and since the ultraviolet spectrun was unchanged in base.

Of the four oxygen atoms known to be present, three have been allocated. Since no other carbonyl absorption was detected in the infrared, this other oxygen aton must then form part of an ether linkage. Apart from the three signals due to the mycophenolic nucleus the NRR spectrum ohowed two doublets at 2.3 and 2.95 T ($A B$ quartet $J=2^{c} / s$). This pattern is cheracteristic of the furanoid α and β proton respectively of a benzofuran.

73

74

75

!

Analogies are found in coumarins e.g.: furocoumerinic aciá (73) ${ }^{65}$ where the furen protons came at 2.43 and 3.0τ. The above physical data allowed two structural possibilities (74) and (75) . The Low value of the methoxyl group 5.82 misht seem to be in favour of the structure (75), by analogy with 0 -methyl mycophenolic acid (76) ${ }^{51}$ where the methoxyl group in the peri position to the lactone carbonyl group appears at 5.97 r. On the other hand, the model of the structure (74) shows that the methoxyl protons lie in the plane of the double bond of the furan ring. Hodels also show that in mycochromenic acid the nethoxyl protons lie outwith the plane of the double bond of the pyran ring. This interpretation is supported by the resonance of the methoxyl group in furocoumarinic acid which appears at 5.88 T. The structure (74) was thought more likely because of the co-occurrence of a series of compounds in the same strain of fungus with the methoxyl group at the same position.

The mass spectrun of mycofuranolide shows the characteristic cracking pattern of a benzofuran as represented in figure (77). ${ }^{66}$

78

81

82

The structure (74) ves confirmed by sunthesis as follows. Ring closure involvins cyclodehycration of 1:4-dicsrbonyl compounds represents one of the oldest and most convenient methods for the preparation of furan derivatives (78) ${ }^{67}$. For the synthesis of a simple unsubstituted benzoiuran system, the required 1:4 - dicarbonyl derivative would be (79) of which the mono-enol form is 0 - hydroxyphenyl acetaldehyde (80). . The 0 - hydroxyphenyl acetaldehyde derivative required for the present work has been prepared from mycophenolic acid. Ozonolysis of mycophenolic acid in chloroform yielded a complex mixture. The acetate of mycophenolic acid was then prepared and ozonolysis in methanol'produced a mixture of acetal and eldehyde although in low yield However, ozonolysis in chloroform at- $15^{\circ} \mathrm{C}$ gave the aldehyde (81) in fair yield. Dehydaration of the aldehyde (81) with p- toluenesulphonic acid in benzene yielded (82) which vas identical to mycofurenolide in its MR, IR,UV, spectra and R_{f} value.

The existence in $P_{\text {. brevicomnactun of }}$ compounds containing isoprenoid units e.g. mycophenolic acid,

83

84
with othere containing uncubstituted furen ring has many perallels amons neturel products (83). 68 A sicnificant feature is that frequently; definite isorentane units and unsubstituted furan rings are found incorporated together in one compound (84) 69 . Recently it has been found that in furocounarins [$4-{ }^{14} c$] mevalonic acid has been incorporated into the furan ring showing that the two carbons of the furen ring vere part of an isoprene unit. 70

The second ner metabolite related to mycophenolic acid was present only in small anounts. It showed all the features of the myconhenolic nucleus (lectone methylene group at 4.95τ, methoxyl group at 6.11 τ and arometic methyl group at $7.99 \uparrow$) but was not acidic or phenolic. The IR spectrun showed carbonyl absorptions at 1780 and $2795 \mathrm{~cm}^{-1}$ indicating the presence of a second γ - lactone function apart from that of the phthalice mucleus. The similarity of its MR seectrum with that of the lactone (55) and the occurrence of its molecular ion at m/e 318 suggested the structure (85) for this compound.

At this stage we learned from Dr. \because. B. Turner that he had obtained a compound with the same gross structure,

Erythro.

by synthesis from myoonenolic ecic by succescive treatment with bromine and alkali. A comparison of the IHR spectrum of this producter with that of the isoleted procuct shoved that slthouch both had signals in the same region the peaks at $6.65 \boldsymbol{T}$ and 5.09 Tcorresponding respectively to the methylene protons and the rethine proton in the dihydrofuran ring showed a different multiplicity. In the synthetic product the methylene protons appear to be equivalent and are split by the vicinal proton into a doublet, while in the natural compound the methylene protons appear as a rultinlet which can be recognised as the $A B$ part of an $A B X$ gysten.

Comparison of models of the erytro and threo forms of this compound show that the exythro should more readily adopt a conformation in which the saturated lactone ring would cause non equivalence of the dihydrofuran CH_{2} group. This suggests that the natural compound and the synthetic compound are the erithro and threo isomers respectively. Synthetic studies to confirra this assignment could not be cerried out owing to lack of time.
*Kindly provided by Dr. W.B. Turner, I.C.I.
Pharmaceuticals Itd.

DIGCUSSIOIT PAPR II

DISOUSSIOT EGT II

Mork by Birch has shown that the side chain of mycophenolic acid is probably a degraded geranyl unit. As described in the foxeaoing section, other compounds with a degraded geranyl side chain have been isolated from P. brevicompactum but all are related to mycophenolic acid. In the screening of the broth of P. brevicomnactum for compounds containing isoprenoid units the fungus was fed with mevalonic acid and a redio T.I.C. scan of the neutral compounds was carried out. This showed the presence of a large number of compounds having radioactivity. Three of these can be distinguished from the rest by their characteristic staining proverties with ceric ammonium nitrate solution and were isolated by partition of the broth extract between water and chloroform to remove the most polar compounds, washing with satureted aqueous sodiun bicarbonate to remove the acids and finally chromatosraphy of the neutral fraction. These three compounds turned out to be closely related to one another but not to mycophenolic acid. The compound with an R_{f} of 0.65 in 10% methanol-chloroform was called

86

88

89
pebrolide shown to have the structure (86) and the others with R_{f} at 0.87 and 0.28 were shown to be deoxypebrolide (87) and desacetylnebrolide (88) respectively. Deoxypebrolide was produced in small amounts in comparison with the other two.

Figure (89) shows the NTR spectrun recorded for pebrolide. Elemental analysis and mass spectroscopy indicated that the nolecular formula of pebrolide was $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{7}$. The presence of two tertiary methyl groups in pebrolide was indicated by the two singlets at 9.04 and 8.56 Tin the $N R$ spectrum. The presence of an acetate grouping was indicated by a peak a.t $1740 \mathrm{~cm}^{-1}$ and $1243 \mathrm{~cm}^{-1}$ in the I.R. spectrum, by a singlet at 7.96 Y in the HR spectrum, and by losses of 42 and 60 mass units in the mass spectmum (90). The alconol corresponding to this acetate, which will be discussed later, did not show any of these spectral features. The presence of a benzoate grouping was indiceted firstly by the IR spectrun with peeks at $1715 \mathrm{~cm}^{-1}$ and at 1597,1580 ($C=C$ stretching $)$ and $711 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane), secondly by the NiR spectrum where the typical pattern of benzoyl ring protons appeared at 2.50 and 1.96 T . The latter

$$
\begin{aligned}
& \text { 105 } \\
& \text { m/e3:5 } \\
& 1-50 \\
& m / \in 265 \\
& m / 0303-m / e-65 \\
& r / 0 \quad 2: 8
\end{aligned}
$$

corresponds to the ortho protons, the low T value being due not only to the withdrawing capacity of the carbonyl group, but also to its anisotronic effect and thirdly by the mass spectrun where losses of 122 and 105 units of mass were favoured processes (figure 90).

The presence of a saturated γ-lactone grouping was indicated by the peak at $1780 \mathrm{~cm}^{-1}$ in the IR spectrum and the peak at $3605 \mathrm{~cm}^{-1}$ revealed the presence of a hydroxyl group.

With all the oxygens accounted for, pebrolide is thus the acetate benzoate of a trihydroxy γ-iactone of molecular formula $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}$. In this formula. two double bond equivalents, apart from the two of the lactone ring, remain unaccounted for. It was esteblished that there were no double bonds present since pebrolide gave a neaative reaction with tetranitromethane and since catalytic reduction gave only a hexahydro derivative, $1+$ at $m / e 436$, in which only the benzene ring had been reduced, as indicated by the appropriate changes in the $M \mathbb{R}$ spectrum. Pebrolide, therefore, has two rings in addition to the lactone ring.

92

That the hydroxyl group in pebrolide was secondary was show by oxidation of pebrolide with Jones reagent to a ketone (9I), molecular formula $\mathrm{C}_{24}, \mathrm{H}_{28} \mathrm{O}_{7}$ (analysis and mass spectrum) with the consequent disappearence of the multiplet at 6.7 T in the NMR spectrum assigned to the proton geminal to the hydroxyl group. That the second metabolite deoxypebrolide(87), differed from pebrolide only in the absence of the secondary hydroxyl group was indicated by the similarity of the NRR spectra, the main difference being the absence of the multiplet at 6.7 T in the spectrum of deoxypebrolide and this was also indicated by the absence of hydroxyl absorption in the I.R. spectrum, by elemental analysis and mass spectroscopy.

The NRR spectrum of the third metabolite desacetyl pebrolide (88), indicated that this compound did not possess an acetate grouping but the other resonance signials were similar to those of pebrolide. Indeed, acetylation of pebrolide and desacetylpebrolide yielded the same diacetate (92). As will be discussed later, it was not possible to interrelate pebrolide and desacetylpebrolide by basic hydrolysis of the former but

$$
\begin{aligned}
& 93 \mathrm{R}=\mathrm{H} \\
& 94 \mathrm{R}=\mathrm{CH}_{3}
\end{aligned}
$$

it was found that unaer controled conditions acid hydrolysis of peorolide removed selectively the acetate grouping yielding desacetylpebrolide identical to the natural product.

The alcohol resulting from this hydrolysis was shown to be primary by oxidation with Jones reagent to an acid (93) which was characterised as its methyl ester (94). In the NHR spectrum of pebrolide, the $A B$ system at 6.21 and 6.03τ with a coupling constant of 12 cps was assigned to the methylene protons in a tertiary acetoxymethyl group. It is well knowl that protons of this type often show different chemical shifts and a coupling constant of ll cps showing themeby that they do not freely rotate but have a preferred conformation - These sicnals are absent in the spectrum of the corresponding methyl ester (94).

Attempts to base hydrolyse the acetate grouping in pebrolide did not yield desacetylpebrolide but a compound less poler which was shown to be its isomer. The same compound was obtained when desacetylvebrolicie was treated under the sane conditions. This isomer presented similar features in the NR spectrum to that of desacetylpebrolide but with significant changes in the region 5-6 $\tilde{6}$. The double doublet at 5.74τ in

96

97
pebrolide collepseă to a doublet, $J=10$ cps, unon irradiation et 7.43 T (the midiae of superimposed multiplets) end to a doublet, $J=6$ cps, unon inradiation at 5.02τ. This incicated the poscibility of these protons forming an ABX system of the type- $\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} .00-$ where JAX was equal to zero. The isomer of desacetylpebrolide presented similar features in the MR but JAX was no longer equal to zero.

That the benzoate was secondary was shown by treatment of deoxypebrolide with aqueous sodium hydroxide which gave a diol (95) and benzoic acid. The proton under the benzoate appeared in the MR spectrum of pebrolide at $4.3 T$ and integrated for one proton while in the diol it anreered at 5.6T. Thet the benzoate group was seconảary was also indicated by the hydrolysis of the keto acid (93) yielaing a hydroxyacid characterised as its methyl ester (96). Oxidation of the ester (96) gave the keto ester (97) with the consequent disappecrence in the $\mathcal{N i R}$ spectrum of the signal assigned to the proton geminal to benzoate.

Attempts to reauce the carbonyl of the lactone group in desacetylpebrolide with IAH gave a complex mixture from which no pure compounds could be isolated.

98

Pebrolide ketone was unaffected by atternoted catalytic reduction with $10 \% \mathrm{Fa}$ - charcoal in ethanol. However, when ItO_{2} in acetic acid was used, a compound identical with the hydrogenation product of pebrolide was obtained. It thus appears that the secondary hydroxyl group in pebrolide is in the more stable configuration (egg. equatorial rather than axial).

At this stage in the investigation, attempts were made to prepare a derivative suitable for study by X -rays. Reaction of pebroliae with p-bromobenzene sulphonyl chloride did not afford a crystalline product. However, reaction with bromoacetyl bromide gave the bromoacetate which was in a suitable crystalline form. Its structure was elucidated by means of X-ray analysis (see appendix) and was shown to have the structure (98).

The absolute configuration was determined by the method of anomalous dispersion and is that shown in (98) . The same conclusion can be reached on the basis of ORD data. The ORD of pebrolide; desacetylpebrolide and deoxypebrolide all show a trough at 259 rf . The ORD curve of pebrolide ketone showed, in addition to a trough at 259 mp , a peak ai 315 mp .

100

-455
$(248 \mathrm{~m} \mu)$

99

Accordingly, the efrect of the carionyl Eroun at $C-I$ is to proauce a small positive Cotton effect. The absolute stereocheristry shown could be calculated on the basis of the cotant mile figure 99) to result in a positive Cotton effect. I - ketomanolyl oxide with comparable absolute stereochenjstry also gives a small positive Cotton effect (fi\&urel00)? ${ }^{73}$

Pebrolide isthus a sesquiterpene lactone with a drinane skeleton. Some features of this structure are particularly interesting. Firstly, the C - I oxygenation is very unusual not only in this type of sesquiterpenes but also in diterpenes, triteroenes and steroids and secondly, the presence of a benzoate grouping is unique in the sesquiterpene field.

On the basis of this structure the facile basecatalysed isomerisation of desacetylpebrolide can be understood to involve epimerisation at $C-8$ of the cis equatorial lactone. (101) Phe X-ray data show that the two six membered rings are both chairs but with a certain amount of distortion particularly in the B ring which has the fused cis lactone ring and three axial β substituents.

101

A

204

105

This crowding explains the reaction of desacetylpebrolide with base since epimerication of the axial 8β Iactonic substituent to equatorial 8α mould give the less crowded trans isoner. Analogous epimerisations have been reported, dehydroiresin (102) giving isodihydroiresin (103) ${ }^{37}$ and dihydroconfertifolin (104) giving isodihydro-confertifolin (105) ${ }^{40}$. It would be expected on mechanistic grounds that epimerisation of the lactone would occur prior to opening of the lactone ring. This was confirmed by the detection by T.I.C. of isodesacetyl pebrolide in the alkaline reaction mixture obtained by treatment of desacetypebrolide with a methanolic solution of potassium hydroxide for less than one minute. Two other spots were visible one corresponding to starting material and the other on the base line to potassium salts. Upon acidification, only two compounds appeared, desacetylpebrolide and its isomer.

- In interpreting the $M R$ spectra of pebrolide and its derivatives, it is necessary to take into account the crowded nature of the molecule which results in a number of large shielding and deshielding effects.

This interpretation was essisted by the availability
of a number of derivatives of peorolicie, sore of wich mere prepared with a view to degrading biowynthetically labelled metabolite (cf.later section).

It the NHR spectmum of pebrolide, the $A B$ part of the $A B X$ system mentioned above has been assigned to the methylene protons of the γ - lactone and these are coupled to the proton at C - 9. In the case of dihydroconfertifolin the corresponding protons appear as a multiplet at 5.89τ in deuterochloroform. If the spectrum of dihydroconfertifolin is mun in benzene then the multiplet is better spread out showing more clearly the same splitting pattern and coupling constants as in pebrolide (figure 106). It can be seen from models that with ring B as a chair the dihedral angles of the ll α and Il β protons with the proton at $C-9$ are 30° and 90° respectively which correspond according to the Karplus equation to coupling constants of 7 and 0 cps , close to the observed values of $J_{B X}(5.5 \mathrm{cps})$ and $J_{A X}$ (Ocps). This confirms that ring B adopts a chair conformation in solution. It might seem from models that the steric interaction of the three axial β substituents would be relieved if ring B
were, for exanple, a twist boat but this would not give appropriate dihedral engles. Ting B is also a chair in the crystal of bromocetylpebrolide. It may also be seen that the lactone ring is non planar and this could explain the non equivalence of the methylene protons in dihydroconfertifolin. It may be seen from the above that it is the β proton in pebrolide which has almost zero coupling with the vicinal proton and eppears at 5.0τ i.e. down-field 0.89 p. D.in. from that in dinydroconfertifolin. This effect must be due mainly to the lone pair on the hydroxyl group at C - l since the corresponding resonance in 1 - deoxypebrolide (table I) is at 5.62 T. The ll α proton is relatively remote from the oxygen atom. X-ray data show that the distance between II β proton and the oxygen at $C-1$ is~2.2 \AA while that for the II - α proton is ~ 3.3.

It has been showm 75 that when a proton
is deshielded by the lone pair of electrons of an oxygen function, an adaitional downield shift is observed when its NR spectrum is run in pyridine. This has been attributed to the lone pair of electrons of the oxygen atom complexing with the solvent. CDCl_{3} - pyridine downfield

	$\mathrm{H}-\mathrm{Il} \beta$,	$\mathrm{H}-1 \mathrm{la}$	
desacetylpebrolide	CDCl_{3}	5.02	5.74
	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	4.70	5.72
	CDCl_{3}	5.80	5.45
isodesacetylpebroliàe	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	5.66	5.29

	τ		
$\mathrm{C}-\mathrm{I}$	$\mathrm{C}-4 \alpha$	$\mathrm{H}-\mathrm{Il} \beta$	$\mathrm{H}-\mathrm{ll} \alpha$
(86) OH	$\mathrm{CH}_{2} \mathrm{OA}_{\mathrm{c}}$	5.02	5.74
(92) OA_{c}	$\mathrm{CH}_{2} \mathrm{OA}_{\mathrm{c}}$	5.36	5.78
(91) $=0$	$\mathrm{CH}_{2} \mathrm{OA}_{\mathrm{c}}$	5.50	5.70

Table 3
shifts are found for seperal signals in the IIR spectrum of desacetylpeorolicie. It may be seen. in table 2 that of the two lactone methylene protons the ll β proton shows a shift of 0.3 p.0.m. while the 11α proton shows a shift of only 0.062 p.o.m. In trans desacetylpebrolide the dihedral angles between the lla and llf protons and the proton at c - 9 are 35° and 157°, respectively, corresponding to coupling constant of 6.5 and 13.5 cps. Since the observed values are $J_{A X}=7$ cps and $J_{B X}=11$ cps, it may be seer that the 11β proton signal is that at higher field.

In trans desacetylpebrolide the 11α and 11β protons are both 2.7 A from the oxygen at $C-1$ and both show a down field shift from those in trens djhydroconfertifolin (0.35 and 0.25 p.p.n.). Table 2 shows the $\mathrm{CDCl}_{3}-$ pyridine shift for the methylene protons of the lactone in trans desacetylpebrolide. Both protons show the same additional downfield shift of $0.15 \mathrm{p} . \mathrm{p} . \mathrm{m}$.

Table 3 shows the effect on the lactone methylene protons of various functions at C - 1. It may be seen that the deshielaing effect of the hydroxyl group in
pebrolide is nocified by acetylation. This is due to the delocalisetion of the lone pair of electrons of the oxygen atom by the carbonyl group of the acetate. The 11α proton does not vary much from 5.75 in $2 l l$ these derivatives.

As mentioned earlier, the methyl resonances in pebrolide appear at 9.05 and 8.51 Talthough it is not immediately obvious which methyl appears at low field. However, a comparison of the IMR. spectra of the methyl ester (94) and the ketone (91) show that the resonance. at 9.03 亿in pebrolide is due to the methyl group at C - 4 since the higher field resonance is affected by the conversion of $\mathrm{CH}_{2} \mathrm{OAC}$ to COOLe . The deshielaing by 0.19 p.p.m. of the methyl at $C-4$ in the ketone (91) is in agreenent with the effects found in steroids where a ketone at position C-3 and C-7 deshields the C - 19 methyl group by $0.24 \mathrm{p} . \mathrm{p} . \mathrm{m}$. and $0.27 \mathrm{p} . \mathrm{p} . \mathrm{m}$. respectively.

The angular methyl group in pebrolide thus appears in the NR at unexpectedly low field (8.5T). It is well known that an axial hydroxyl group will deshield an axial methyl group situated 1,3 on the same ring ${ }^{76}$. In the diol(95) derived by vigorous hydrolysis of deoxypebrolide, both

$C-1$	4α	c-6		C-4	C-10
(104) H	H	H	cis	9.16	9.03
(95) H	$\mathrm{CH}_{2} \mathrm{OH}$	OH	trens	8.87	8.75
(86) OH	$\mathrm{CH}_{2} \mathrm{OA}_{c}$	OB_{z}	cis	9.04	8.56
* OH	$\mathrm{CH}_{2} \mathrm{OA}_{c}$	$0-\mathrm{COC}_{6} \mathrm{H}_{1 I}$	cis	8.99	8.67
(88) OH	$\mathrm{CH}_{2} \mathrm{OH}$	OB_{2}	cis	9.12	8.53
(IOIA) OH	$\mathrm{CH}_{2} \mathrm{OH}$	${ }^{O B} z_{z}$	trens	9.06	8.55
$(126)=0$	$\mathrm{CH}_{2} \mathrm{OH}$	OB_{z}	cis	9.0	8.4
$(91)=0$	$\mathrm{CH}_{2} \mathrm{OA}_{\mathrm{c}}$	OB_{z}	cis	8.35	8.35
$(94)=0$	$\mathrm{CO}_{2} \mathrm{He}$	OB_{z}	cis	8.51	8.31
** OH	$\mathrm{CH}_{2} \mathrm{OH}$	$0-\mathrm{COC}_{6} \mathrm{H} \mathrm{II}$	cis	9.10	8.65

* Hexahydropebrolide.
* Hexahydro-ciesacetylrebrolide.

Pable 4
methyl groups are deshieldeá by about 0.3 p.p.m. relative to the methyl groups in either cis or trans dihydroconfertiさolin. In the table 4 it is shown that the stereochemistry of the lectone ring makes little difference to the T values of the methyl groups (cf Nos. 88 and 101A); thus comparison of cis and trans is peraissible. The cyclohexane carboxylate group appears to deshield one of the methyl groups and shield the other and the benzoate does this to a greater degree.

If partial double bond character is attributed to the - O.CO - bond in the benzoate group, it may be seen in the slightly distorted configuration resulting from the repulsion of the B substituents, that the methyl group at C - 10 will lie in the plane of the pseudo double bond and will be deshielded while the methyl group at C - 4 will lie at right angles to this plane and will be shielded. This double bond character may be expected to be greater in the benzoate than in the cyclo hexanecarboxylate and this could explain the more marked shielding and deshielding effect in the benzoate.

Another signal in the Mir spectrum of pebrolide which appeared at an unexpectedy 1007 field is that at 4.3 T

	4α	
(88)	$\mathrm{CH}_{2} \mathrm{OH}$	4.25
(86)	$\mathrm{CH}_{2} \mathrm{OA}_{\mathrm{c}}$	4.28
(99)	COOIVe	4.46

$$
\text { desacetylpebrolide } \begin{array}{ll}
\mathrm{CDCl}_{3} & 4.25 \\
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{H} & 3.97
\end{array}
$$

Table 5
assigned to the proton geminel to the benzoete. Removal of the benzoate grouping as in the diol (95) produced an up-field shift of 1.26 n.0.m. but the value is still very low for an equatorial proton geainal to a hydroxyl group. It appears that this deshielding effect is produced by the lone pair of electrons of the oxygen of the primary alcohol. Delocalisation of the electron pair of the oxygen by acetylation as in pebrolide or conversion of the primary alcohol to the methyl ester reduces the deshielding effect. The deshielding effect due to the electron pair of the oxygen atom upon the proton gerainal to the benzoate vas again enhanced when the NHR spectrum of desacetylpebrolide was ran in pyriaine (table 5).

The absence of any significant additional do:m-field shift in pyridine of the methyl at C-4 in some diterpenoids having a $4 \alpha \quad \mathrm{CH}_{2} \mathrm{OH}$ has been used as evidence that the $\mathrm{CH}_{2} \mathrm{OH}$ group has, a preferred conformation in which the OH group is far removed from the axial C - 4 methyl group and is perpendicular to the plane of the ring. 77 This would also seem to apply to the 4β methyl group in desacetylpebrolide which shows a downfield shift in pyridine of only 0.1 p.p.m.

The proximity of one of the protons of the hydroxy methyl group and the $\sigma \propto$ proton is shorm by Nuclear Overhauser effect. Thus, irraciation at 6.2T resulted in an enhancement of the signal at $4.3 T$ by about 9%.

It was found that in the bronoacetyl pebrolide crystal, the distance between the oxygen of the primary alcohol and the hydrocen at $C-7$ is 2.56°. This suggests that there is little difference between the conformation in the crystal and the preferred conformation in the solution.

Conclusion.
From the NRR spectrum of pebrolide and its derivatives and the X-ray analysis of bronoscetyl pebrolide it may be concluded that the preferred conformetion in solution and the conformation in the crystal are very similar, in particular, with respect to the conformation of ring B, of the benzoate function and of the 4α substituent.

IMTRONCMOH

BIOSMMTEOLS OE PGZDIDE

$\mathrm{HO}_{2} \mathrm{C} \underbrace{\mathrm{OH}}_{-\mathrm{OH}}$

 $\mathrm{HO}_{2} \mathrm{C} \underbrace{>. \mathrm{OH}}_{106}-\mathrm{OPO}_{3} \mathrm{H}_{2}$
$\mathrm{HO}_{2} \mathrm{C}>\underbrace{\mathrm{OH}}_{-\mathrm{P}}$

108

109

In recent yeare procress on the study of the biogenesis of naturel products hes been greatly advanced by the use of tracers other than ${ }^{14} \mathrm{C}$, in particular, ${ }^{3} \mathrm{H},{ }^{18} \mathrm{O},{ }^{13} \mathrm{C}$ and ${ }^{2} \mathrm{H}$. The use of hydrogen and oxygen isotopes lead to an understanding of many of the processes leading from mevalonic acid to terpenoids.

It has been shown that the first two enzymic processes both phosphorylations which successively produce mevalonic acid 5 - phosphate (IO6) and mevalonic acid 5 - pyrophosphate (1.07) ${ }^{78}$. the last one gives inorganic phosphate, carbon dioxide and 3 -methyl 3 -butenyl pyrophosphste (108) . The oxygen atom from the tertiary hydroxyl group is found in inorganic phosphate after the reaction 79 It vas deduced that the hydroxyl group is phosphorylated before elimination. The formation of the new double bond is thought to occur by a concerted elimination and not, for example, by dehydration followed by decarboxylation for no hydrogen from the aqueous medium appears in the product. Stereochemically the process is a trans elimination. 80 Next, 3 - methyl - 3 butenyl pyrophosphate (108) is converted

109

108

110

108

11.1

Figure A
by a prototronic shift into 3-methyl 2 - butenyl pyrophosphate (109) ${ }^{81}$. The elimination of a proton in the change (108) \rightarrow (109) is stereospecific, the hydrogen marked $H \mathrm{c}$ being the one eliminated. These two molecules (108) and (109) are condensed with loss of pyrophosphate ion from one of them and a hydrogen ion from the other to form geranyl
pyrophosphate (110) . This product then replaces (109) in a further, exactly similar, reaction with (I03) to form farnesyl pyrophosphate (III) ${ }^{32}$.

Experiments using asymetric labelling 83 with hydrogen isotopes showed that the establishment of a new carbon to carbon bond is accompanied by complete inversion of configuration at the allylic carbon atom; such inversion is cheracteristic of an SII2 reaction rather than of a carbonium ion reaction. Further, the fixed stereochemical relation between addition of the allylic C_{5} unit and elimination of the hydrosen ion (cf figure A) is taken to indicate that the enzymic process proceeds in two distinct steps,first,trans addition of the allylic unit and of an electron donating group X and, second, trans elimination of X and the hydrogen ion.

A number of terpenes appear to arise by a non-stop

\downarrow

113

114
trens-anti-narallel cyclisetion of farnesyl pyrophoshete (three isonentenyi units), geranyl geraniol pyrophosphate (4 isopentenyi units), and squalene (six isopentenyl units) to cive sesquiternenes, diterpenes and triterpenes, respectively. Froof that the methyl. carbons in the teminal isopropylidene groups of squalene retain their individual identity in the 84 course of cyclisation has been presented by Arigoni. Soya-bean seedlings were supplied with ($2^{14} C$) mevalonate and the labelled soya - sapogenols subsequently isolated. The l,3 glycol structure in ring A (112) was oxidised to give the unstable 3-oxo-24-carboxylic acid (113) which was readily decarboxyleted to the ketone (II4) giving CO_{2} that contained no ${ }^{14} \mathrm{C}$. Hence, in the formation of this pentacyclic triterpene , the axially oriented hydroxymethyl group at $C_{(4)}$ was derived from the methyl carbon of mevalonic acid. There is also retention of individual identity by the corresponding gem disubstituted carbon atons in rosenonolactone ${ }^{84}$

Removal of the keto group from the dihydro compound (115) under Wolff - Kishner conditions took place accompanied by opening of the lactone ring. The resulting unsaturated acid decarboxylated smoothly when heated at 250° to give CO_{2} and the unsaturated hydrocaroon (116). No radioactivity

115

117

was found in CO_{2}. The absence of radioactivity in CO_{2} derived from the lactone ring parallels the findings in the triterpene series and nakes it probable thet although different initiators may be involved, the mechenism for the ring closure is essentially of the same type for the di and triterpenes. The retention of stereochemical individuality by the apparently identical terminal geminal dimethyl groups in an open chain terpenoid structure has been demonstrated in the case of mycelianamide (117) by Birch et al 85 This compound was biologically labelled as shown from ($2^{14} \mathrm{C}$) mevalonic acid and the terpenoid chain cleaved by treatment with sodium in liquid amnonia. The resulting hydrocarbon was administered to a rabbit and recorded from the urine in the form of its dicarboxylic acid metabolite (II8) . Ozonolysis of this material yielded acetaldehyde that was free from radioactivity, indicating that enzymatic attack on one of the gem - dimethyl groups had been confined to that which was lebelled. This is an example of dissymetric reactivity of a symmetrical substrate in association with enzymic site.

In contrast to this Yeowell and schmid

119

120

121

122
123
have reported evidence for randomisetion of the isopropylidene raethyl cerbons of citronellal (II9)
in the course of its presumed conversion via.
iridodial (120) into the plant glucoside plunieride(122) Comparative studies of the distribution of label from
($1{ }^{14} \mathrm{C}$) acetate and ($2^{14} \mathrm{C}$) mevalonate resnectively led the authors to postulate the union of aceto-acetate (123) with an intermediate of the type (121) in which the isopropylidene carbons become indistinguishable from each other.

DISCUSSIOT

Fungi appear to offer some advantages for the investication of terpene biosynthesis for the reason that they are readily grown under conditions which nay be rigorously defined and labelled substrates are often readily incorporated into metebolites as compared with higher plants.

Examination of the structure now elucidated for pebrolide showed that the distribution of oxygen functions would be favourable for determination of labelling patterns in different parts of the nolecule. Accordingly, we were led to study the biosynthesis of pebrolide by Penicillum brevicompactum.

One of the principal aims of this study was to establish whether the cyclisation involved in the biosynthesis of pebrolide occurs with the same stereospecificity as in di- and triterpenes with respect to the gem dimethyl at the C - 4 and to find which of the carbons at thet position is derived from the C - 2 of mevalonic acid.

It is expected that if the fungus is fed with 2- ${ }^{3} \mathrm{H}$ mevalonic acid, the tritium will be incorporated into pebrolide as shown in (124). If the β methyl group

at $C-4$ is denived fron $0-2$ on mevalonic edid then
2 tritiun atons will be axnectea in this group, but if the $\mathrm{CH}_{2} \mathrm{OAC}$ Eroup is the one which is derived frow C - 2 of mevalonic acia then there will be only $1 \frac{1}{3}$ tritium atom in this group, this beine the statistical residue of tritium resulting from oxygenation of a doubly tritiated methyl group.

It would be predicieu froin this lebelling nattern that oxidation of the hydroxyl group at C - I will - result in a drop of the ratio ${ }^{3} \mathrm{H}$ / ${ }^{\text {lf. . If the carbon }}$ at C - 4 is derived froil C - 2 of mevalonic acid and there is no scrambling, then conversion of the $\mathrm{CH}_{2} \mathrm{O} \mathrm{Ac}$ group of pebrolide ketone to a carboxyl function will result in the loss of $1 \frac{1}{5}$ tritium atons with the consequent change in the ratio of tritium to carbon. On the other hand, if it is the β substituent at $C-4$ which is derived from $C-2$ of mevalonic acid, then no change in the ratio ${ }^{3} \mathrm{H} / \mathrm{C}^{14}$ will be observed. The oxygenation at $C-6$ should also allo: the confirmation of tritium atons at C-7. Hydrolysis of the benzoate, oxidation to the ketone and ecuilibration with base should result in removal of the remaining tritium atoms.

$$
1
$$

130

131

The transforetion necesesry to cermy out this degradative schene vere mll achieved using inective material as follows. Pebrolide retone (125), obtained by oxidation of pebrolide with Jones reacent, wes selectively hydrolysed to the corcesponding alcohol (126) using acid. Oxidation of this with Jones reagent and esterification of the resultant acid (127) Eave the methyl ester (128). Basic hydrolysis of the benzoate function of the acid (127) ves accompanied by epimerisation of the lactone giving the ketol acia (129) which was characterisea as its methyl ester (130). Oxiaation with Jones reacent now gave the diketo ester (131). The compounds obtained thus were useful ε es reference cownounds in the sesquence with active material.

Preliminary studies of the type and amount of sesquiterpenes produced in relation to the time or gromth were carried out using T.I.c. It wes shown thet in six day cultures, the fraction contained mainly pebrolide. At nine days desacetylpebrolide ves present. Because the acetate group of pebrolide was necessery to allow this selective degradation, the fungus was hervested after six days.

A four day old culture of F.brevicompactum was fed
with 10 ml . of a 11 ml . acueous solution of
D L - Levelonic scia - $2-{ }^{14}$ C lactone and $D L$ -
Mevalonic acid - 2f-lactone of 0.05 mc and 2 me of activity respectively. At the end of 48 hours, the fungus was collected and the broth separated and worked up in the usual manner. To the chloroform solution of the neutrals 187 mg : of inactive pebrolide was added and re-isolated by means of crystallisation and purified to constant activity. The specific activity of pebrolide with respect to tritium was found to be $0.001 \mu \mathrm{c}$. The incorporation in pebrolide vas 0.007% (or 0.014 besed on $I_{\text {- mevelonate) }}$.

The low incorporetion could be due anong other factors to the substantial anount of mycophenolic acid produced by the fungus and present not only in the broth but in the myceliun. The side chain of nycophenolic acid is formed formally by two isopenoid units.

Another factor which might be responsible for the Iow incorporation was revealed by carrying out a TLC radio scan of the crude mixture of neutrals. This showed that an unidentified compound less polar than pebrolide having a very high activity relative to pebrolide was present. It is known ${ }^{87}$ that steroids incorporate mevalonic acid
much more readily than sesquiterpenes and this compound could correspond to a steroid ester. In addition, ergosterol has been found in substantial amounts in the mycelium of P. brevicompactum, hence the low incorporation of mevalonate into pebrolide may be partly due to channeling of this precursor into steroids.

If the number of tritium atoms in pebrolide is 5, $a^{3} H{ }^{14} C$ ratio of 33.3 would be expected, but on the other hand, if the number of tritium atoms is $13 / 3$ then the ratio should be 28.8 . The ${ }^{3} \mathrm{H} / 14_{C}$ ratio in pebrolide was found to be 29.8 in agreement with the latter. This is evidence of the possible presence of $4 / 3$ of tritium in the group at C - 4 .

Oxidation of pe brolide gave pebrolide ketone and the ratio ${ }^{3} \mathrm{H} /{ }^{14} \mathrm{C}$ was found to be 25.2 , which represents the loss of one tritium atom. The $-\mathrm{CH}_{2}$. OAc group in pebrolide ketone was transformed into a carbomethoxy function and the ratio ${ }^{3} \mathrm{H} /{ }^{14} \mathrm{C}$ was found to be 11.7 , which represents the loss of $4 / 3$ tritium atoms with respect to pebrolide ketone and $7 / 3$ to pebrolide.

This result indicates that during the biosynthesis
of pebrolide, each one of the methyl groups at C - 4 keeps its identity and that the carbon aton at C-4 position is derived from C - 2 of meveIonic acid. It is possible that although different initiators may be involved, the mechanism for the ring closure is essentially of the same type for this kind of sesquiterpene as for di- and triterpenes.

INRRODUCMIOT
$X-P A Y$ ARALYSIS OF BROROACBYILPBROIDE

IMPRODUCPION

Since the first succescful diffrection of䓵-rays by Von raue in 1912, the stady of crystalline structures, on an atomic besis, has developed repidy. A great variety of crystal structures heve now been determined renging from the very sjmple, in the case of NaCl, to the complex structures of the proteins.

The rocociure of a structure determination.
employed in this work involved recording the difirnaction of the X-rays by the crystel, photographically; estimating the intensities of the diffractea beams; determining the structure by the heavy aton method and refining the paraneters of the atoms in the molecule by Pourier and least-square method.

The following is a brief account of the theory underlining this method.

A bean of X-rays incicient on a crystal is scattered by the electrons within the crystal, the scattered wave recombining in various directions to give the observed diffraction maxina. Diffraction theory shows that the amplitude and phase of the wavelength from a scattering point in a three demensionel array is

$$
\begin{equation*}
F_{j} \exp 2 \pi i \quad\left(h x_{j}+k y_{j}+I z_{j}\right) \tag{I}
\end{equation*}
$$

where f_{j} is the scattering power of the point, $x_{j} y_{j} z_{j}$ are the fractional co-ordinates of the point with respect to the cell edge and h, k, 1 , are integers. At the maximum of the diffraction spectrum, herl, the wave resulting from a combination of all waves from all scattering points within the unit cell is given by,

$$
\begin{align*}
& F_{h k I}=f_{1} \exp 2 \pi i\left(h x+k y_{1}+l z_{1}\right)+f_{2} \\
& \exp 2 M i\left(h x_{2}+k y_{2}+l z_{2}\right)+\ldots+f_{i} \exp \\
& 2 \Pi i\left(h x_{i}+k y_{i}+l z_{i}\right)= \\
& =\operatorname{mf}_{j} \exp 2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right) \tag{2}\\
& J=1
\end{align*}
$$

$F_{h k l}$, a complex quantity is known es the structure factor, its modulus $F_{h k l}$, as the structure amplitude. The structure factor is defined as the ratio of the amplitude of the radiation scattered in the order hel by the contents of one unit cell to that scattered by a single electron under the sane conditions. In practice, it is only possible to measure directly the structure amplitude and not the phase for any given diffraction maximum.

The scattering units cfacrystal are the electrons associated with each.atom. Since atoms of different
chemical types each have their own characteristic electronic distaibution, esch oxhjoits different scattering properties, these ecatterine pronerties being described by the f - curve. rhermal motion of the atoms within the crystal causes the effective f - curve to fall off more rapidly with $\sin \theta / h$ than for the same atom at rest.

In the simpie cese

$$
f=f_{0} \exp -B(\sin \theta / h)^{2} \ldots(3)
$$

Where f and f_{o} are the scattering functions for the atom at rest and undergoing vibrational motion, respectively. The quantity, j,is called the temperature co-efficient and its value is given by

$$
\begin{equation*}
B=8 \pi^{2} U \tag{4}
\end{equation*}
$$

where U is the mean squere displacenent normal to the reflecting plane of the atom from its mean position; U is known as the temperature factor. In the case of isotropic vibration of a given atom the temperature co-efficient, B is adequately described by equation (4). In practice such an ideal case is seldon encountered and it is necessary to describe the temperature co-erficient vibration in terms of anisotropy ternerature factor $U_{i j}$ as expressed by :

54

$$
\begin{aligned}
& \exp .2 \pi i\left(U_{1 I} h^{2} a^{*}+U_{22} k^{2} b^{*^{2}}+U_{33} I^{2}\right. \\
& \left.c^{*^{2}}+2 U_{12} h k a^{*} b^{*}+2 U_{23} k l b^{*} c^{*}+2 U_{31} z I c^{*} a^{*}\right) \ldots(5)
\end{aligned}
$$

where a^{*}, b^{*} and c^{*} are reciprocal lattice parameters. In the course of the $X-r e y$ analysis the vibrational motions of the atoms must be taken into consideration. This necessitates the calculation and subsequent refinement of temperature factors.

The number of electrons in a volume element dxaydz is given by $\quad(x y z) \frac{V}{a b c} d x d y d z$ where V is the volume of the unit cell, thus the structure factor expression may be written.

$$
\begin{aligned}
& F_{h k l}=\frac{V}{a b c} \int_{a}^{a} \int_{0}^{b} \int_{0}^{c}(x y 2) \exp 2 M i(h x+k y+l z) \\
& d x d y d z
\end{aligned}
$$

where h, k, l are integers. The density of scattering matter throughout the unit cell can also be expressed in temps of a Fourier Summation

$$
x y z=\Sigma \Sigma \mathbb{E}(\underline{Z} r) \exp 2 \pi i(p x+q y+y z) \ldots(7)
$$

p, a and r being integers and $A(p a r)$ the unknown general term. Substitution of equation (6) into (7) leads to

$$
\begin{equation*}
A(p q r)=F(h k I) / V \tag{8}
\end{equation*}
$$

Subsequent substitution of equation (8) into (7)
yields the expression of the distribution and density of
scattering natter in the unit cell as a Fourier summation.

$$
P(x y z)=\Sigma \sum \sum \frac{F(h k I)}{V} \text { exp } 2 M i(h x+k y+I z) \ldots(0
$$

This cen be expressed in terms of a phase angle as

$$
\begin{aligned}
& (x y z)=\Sigma \pi \sum \frac{P(\operatorname{Inl})}{V}(\exp 2 \pi h x+2 \pi k y+ \\
& 2 \pi I z-(h k l))
\end{aligned}
$$

Examination of equation (10) reveals that determination of a structure using only observed phaseless structure amplitudes is not immediately possible on account of the unavailability of the phases $\alpha(h k I)$. This difficulty has been called the phase problem and its solution or evasion has been the object of many crystallograchere'wort. One of the more genera 1 techniques due to Robertson was employed in this analysis. The key to the Heavy Atom Method lies in the Patterson sumption

$$
P(x y z)=\Sigma \sum \sum \mid \underline{F}\left(h k I \lambda^{2} \cos 2 \pi(h x+k y+l z)\right.
$$

The square of the pheceless structure amplitudes derived from the observed diffraction a ta are included in the Patterson summation and the resulting function $P(x y z)$ is a description of the interatomic vectors within the unit cell. The height of these vectors is proportional to the square of the atomic number of the atom involved in the vector. Consequently a heavy atom to heavy atom vector would be expected to be much larger than
eny other vector; this is indeed found in proctice. From the position of such icentifiable vectors and a knowledge of one space group of the crystal lattice system, the co-ordinates of the heavy atom may be calculated. The contribution of the heavy atom, Fh (hkl), to eech reflection can then be found. If $F_{h}(h k I)$ constitutes a large percentage of the total observed amplitude then the heavy atom phase engle nay be taken as a good approximation to the (unknown) phase angle of the reflection. On the other hand, if $F_{h}(h k I)$ nakes but a smell contribution to the observed structure amplitude, assignment of phase is uncertein. Employing the phases derived in this manner in conjunction with the appropriate observed structure amplitudes, Pourier summation leads to an electron $\overline{i e n s i t y ~ d i s t r i b u t i o n ~}$ revealing some, perinaps all, of the atoms of the structure. Inclusion of the atomic co-ordinates thus found into subsequent structure fector celculations and Fourier summations eventually leads to complete determination of the structure.

On elucidation of the structure, it is important to know its degree of correctness. A measure of correctness
is found by evoluatine $?$ where

$$
\begin{equation*}
R=\Sigma|F 0|-|F| / \Sigma|z 0| \tag{12}
\end{equation*}
$$

and where Fc is the structure amplitude calculated from atomic co-orcinates of the nolecule and ' FO is the observed structure amplitude.

The last stage of an X-ray crystallograrhic analysis is the adjustment of atomic co-ordinates such that the calculated structure factors egree as closely as possible with those observed, that is, mininisation of R or some similar function.

There are a concicerable number of refinement technicues available based on Fourier methods. Unfortunately they may be subject to termination -of- series errors, end cen be rather time consuming. Since high-speed digital computers have come into comon use, the rerinement of structures by least-squares method is not a formidable undertaking. Frogrammes for these least - square calculations are now freely aveilable.

- In the least-squares method, nev co-orãinates, scale factors and vibretional parameters are derived such that $z w \Delta^{2}$ is minimised. To perform this task the expansion of a Taylor series is necessery and the concomitant end-of-series ercors require more than one
cycle of least scueres celculetions to be performed before final miniwisetion is achieved. In a refinement where each aton is considered to have isotropic vibrational properties, the parameters x, y, z, end $U_{i s o}$, as well as scale factors must be included in the normal equations. For a structure such as ours containing 35 atoms, a matrix of equations about 145×145 must be solved in the isotropic least-squares refinement. An anistropic refinement requires $x, y, z, s i x$ Uij's for atoms as well as the scale factor to be included in the normal equation. Solution of the resulting matrix was a task too great for the computing facilities available, and a block diagonal approximation vas used. The function minimised by the least-squares method is

W (Fo - Pc $)^{2}$
where is a weighting function, and

$$
\sqrt{w}=\left[\frac{1-\exp -P_{1}(\sin 0 / x)^{2}}{1+P_{2}\left|P_{0}\right|+P_{3}|P o|^{2}}\right]^{\frac{1}{2}}
$$

with $P_{1}=100, P_{2}=0.001$ and $P_{3}=0.0001$. Introduction of a weighting scheme is necessary in order to downreight the less reliable reflexions. The least-squares method also refines scale factors which are subsequently used to place all the data upon an approximately absolute scale necessary for the anisotropic refinement. Veasures of
correctnese of the refined structure given by R^{\prime} fector where

$$
R^{\prime}=\sum \frac{V(|\mathrm{FO}|-|\mathrm{Fc}|)^{2}}{\sum W|\mathrm{VO}|^{2}}
$$

are used rather than the R factors as defined earlier. 1

DIGCUSSICNE

Crystal Date.

The preparation and physical properties of the bromoccetate of vebrolide have been described in the experimental section.

A single crystal was grown from an ethereal solution and mounted so as to rotate about the a axis. Oscillation, rotation and heisenberg photographs were recorded for the crystal using $\mathrm{Cu}-\mathrm{K}_{\alpha}\left(\alpha=1.5418^{\circ} \mathrm{A}\right)$ radiation.

Precession photographs were recorded using lo - $\mathrm{K}_{\boldsymbol{\alpha}}$ ($ل=0.7107 \AA$), radiation. Calculation based on these photographs yielded crystal date as follows :

Pebrolide Derivative $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O} 8 \mathrm{Br} \mathrm{M}=552$ monoclinic, $a=9.08, b=9.41, c=15.16 \AA$. $=98.2$

$$
V=1282 \quad Z=2 \quad D c=1.43
$$

The only systematic absence in the X-ray data was Ok if k is ode. Thus the space group must be F_{2} since the derivative is optically active.

Intensity Data.

A small cryetel bethea in a unifoma -ray
bean was employed for the intensity reasurements. The data were collected on a Nonius carera using Robertsons: multiple - film technique, reciprocal lattice nets Crl to 7 kl being recorded. The intensities were estimated using a Joyce- Lobel flying spot integrating microdensitometer, intensity values being corrected for appropriate Lorentz polarisation and rotation factors. The various nets of Fo's were pleced on an arproxinetely absolute scale at a later stece of the refinement; some 879 indenendent reflexions were meesured and used in the structure solution and refinement.

Solution of the structure.
The x and y co-ordinates of the bromine atom were determined from three dimensional Fatterson synthesis. Since the space group is poler the y co-ordinate was set at zero. In the first electron-density distribution calculated with the observeci structure amplitude: and the bromine phase angle: there was, as exnected, a false mirror plane which made interpretation of the nap rather difficult.

However, it proved possible to select a few pecks es genuine atoms.

Successive cycles of structure factors and electron density distribution calculations allowed nope and more atoms of the molecular framework to be distinguished and eventually after seven cycles, the complete structure vas revealed as (98). The R factor was 16.97. Refinement.

Employing the programs devised by Prof. D.o.J.
Cruickehank and J.G.F. Smith, structure factor lecst-squeres methods were used for the refinement process. Isotropic temperature factors $U_{i s o}$, oi f 0.05 for bromine and carbon or oxygen atoms, respectively, :ere used in the initial states of the refinement. The progress of the refinement and the various values of R and 21 are given in table 6 . The final coordinates and thermal granters are in table 7 .. These are sufficient to unambiguously establish the structure as (98). No greet accuracy is chained in this analysis. The bond lenfih and the angles are in table (8). io value differs significantly from the expected value. There appears to be some disorder of the acetate group as revealed by bond length ard atom density of the type $0-\mathrm{C}=\mathrm{CH}_{3}^{0}-\mathrm{O}-\mathrm{C}-\mathrm{CH}_{3}$

$$
\mathrm{H} \quad \mathrm{~K} \quad \mathrm{I}
$$

$$
I_{k} \quad I_{k}
$$

$$
\mathrm{F}_{\mathrm{k}} \quad \mathrm{E}_{\underline{k}}
$$

$$
1 \quad 1 \quad \overline{12}
$$

$$
<
$$

$$
<
$$

$$
\begin{array}{lll}
1 & I & \overline{3}
\end{array}
$$

$$
>
$$

$$
>
$$

$$
1 \quad 15
$$

$$
>
$$

$$
>
$$

$$
2 \quad 1 \quad \overline{10}
$$

$$
<
$$

$$
<
$$

$$
415
$$

$$
<
$$

Table 9
but this in no way affecte the validity of the structure

Absolute configuration. The absolute conifeuration of the bromoacetylpebrolide was determined by means of Bijvoet's anomelous dispersion method 83 . The intensities of six Bijvoet pairs(9) were estimated visuelly and structure factors were calculated taking into eccount the anonalous dispersion conrections for bromine fiven in the international pebles. me results on the calculatio are presented in table (9). It follo::s that (98) and figure correctly represent the absolute stereochemistry of the compound.

Computing.

The calculation for this X-ray crystallographic analysis were performed using the English Ilectric KDFO computer in conjunction vith programes devised and written by the following:

Fourier Synthesis
J.G. Sime

Structure Factor Leest
Squares
D. W. J.Cruickshank
and J.G.F. Smith
Bond lengths and Angles K. W. iuir
Fumerous other small prosrames mere used for the
stmotume Pretome withe wo misiontion, eto.
The euthone on bere and otron mozanubes were
Y. Islen, i. Ooerlencli, D. Follsic anc D. IaGresor.
rable 8

$\mathrm{EBr}(1) \ldots . . . C(8)$	1.822. 1	$C(19) \ldots . . . C(9)$	1.623
$C(3) \ldots . . . C(11)$	1.4810	$C(9) \ldots . . . c(12)$	1.642
$C(11) \ldots . .0(6)$	1.275	$C(22) \ldots . . . c(12)$	1.466
$C(11) \ldots . .0(5)$	1.274	$C(12) \ldots . . .0(1)$	1.454
U(5)......c(3)	1.531	O(1)........C(27)	1.581
$c(3) \ldots . . .0(10)$	1.5655	C(27)...... $0(2)$	0.984
$C(10) \ldots . . . C(2)$	1.593	C(27)......c(13)	1.420
C(2)......C(18)	1.519	C(13)...... C(23)	1.447
C(18)......C(22)	1.585	C(23)...... $C(26)$	1.361
C(22).....c(5)	1.643	c(26)c(21)	1.449
$C(5) \ldots . . . C(3)$	1.428	C(17)......c(7)	1.437
$C(5) \ldots . . .0 \cdot(1)$	1.349	C(7).......C(13)	1.355
$C(5) \ldots \ldots$.	1.775	$C(18) \ldots . . . C(14)$	1.657
C(4)c(6)	1.537	C(18)...... $C(20)$	1.433
$C(4) \ldots . . . C(19)$	1.537	O(7)....... C (25)	1.270
C(6)...... $C^{(4)}$	1.430	C(25) C(24)	1.4415
$C(19) \ldots . . C(15)$	1.518	C(25)...... $C(16)$	1.416
O(5)......c(6)	3.054	C(1)........ ${ }^{(1)}$	3.020
$C(1) \ldots . . . C(14)$	3.1538	$0(7) \ldots C(12)$	3.1774
$C(15) \ldots . . . C(3)$	1.089		

$$
\begin{aligned}
& C(1) \ldots C(5) \ldots C(3)=116^{\circ} \\
& C(1) \ldots C(5) \ldots C(4)=116^{\circ} \\
& C(1) \ldots C(5) \ldots C(22)=120^{\circ} \\
& C(14) \ldots C(18) \ldots C(22)=110^{\circ} \\
& O(1) \ldots C(12) \ldots C(22)=111^{\circ} \\
& C(12) \ldots O(1) \ldots C(27)=113^{0} \\
& O(1) \ldots C(12) \ldots C(9)=106^{\circ} \\
& C(3) \ldots C(1 C) \ldots C(2)=103^{\circ} \\
& C(1 C) \ldots C(2) \ldots C(18)=113^{\circ} \\
& C(2) \ldots C(18) \ldots C(22)=110^{\circ} \\
& C(18) \ldots C(22) \ldots C(5)=111^{\circ} \\
& C(22) \ldots C(5) \ldots C(3)=101^{\circ} \\
& C(5) \ldots C(4) \ldots C(19)=114^{\circ} \\
& C(19) \ldots C(9) \ldots C(12)=108^{\circ} \\
& C(9) \ldots C(12) \ldots C(22)=117^{\circ}
\end{aligned}
$$

Nopuo

二axの
$\because 2 \quad 14$
$x x$

ImGMUREMEICN

IRelting points vere deternined on a Kofler hot-stage apparatus and are uncorrected. Infre red spectra were measured with a Unicam S.P. 200 instrument and for high resolution (KBr disc and solution spectra, in the solvent as stated) with a Unicam S.P. 100 double beam infre red spectrometer equipped with an S.P. 130 sodiun chloride prism grating double monochrometer, operated under vacuum.

Ultraviolet spectra were obtained, in ethanol solutions, on a Unicam S.P. 800 recorcing spectrophotometer. Nuclear magnetic resonance spectre were recorded with a Perkin-Slmer R $1060 \mathrm{ic} / \mathrm{s}$ spectroneter and with a Varian HA - $100100 \mathrm{Mc} / \mathrm{s}$ spectrometer. Unless othervise stated all values quoted are recorded at $100 \mathrm{Ic} / \mathrm{s}$ in deuterochloroform with tetramethylsilene as internal standard. liass spectra were obteined with A.E.I. $\operatorname{liS} 9$ and MSl2 mass spectroneters. Analytical gas- liquid chromotography was performed on a Fye Argon chromatograph.

Thin layer chronatocraphy.

$R f$ values were determined from elution on
0.25 mm layer of Kieselgel G, the compounds being
located by spraying with ceric ammonium nitrate (l)
in sulphuric acid (10\%) and dokine, 10\% netnenolic ferric chloride, and loc ethonolic 2,4dinitrophenylhyàrazine.

General.

Diazomethane was prevared by the method of Finore and Reed ${ }^{89}$ from bis (N - methyl - II -nitroso) terephthelamide. All organic extracts were dried over anhydrous magnesium sulphate and solvents were removed using a rotatory film evaporation. "Light petroleum", unless othervise stated, refers to light petroleum, b.r. $40-60^{\circ} \mathrm{C}$.

Culture end extractjon of the movid.
Spores of Penicillium brevicompactun (strain F-l), suspended in sterilised vater, were added to 100 Roux bottles each containing 200 ml of sterile redium Czapek - Dox with the addition of 2% cornsteep liquor). Cultures were allowed to grow at 25° for four weeks. The filtered medium was stirred with charcoal (l0g/litre of filtrate) for 1 - 2 hours and the chercoal was extracted in a Soxhlet apparatus with acetone for 24 hours. The extrect was partitioned between chloroform and water. The chloroform solution was then
extrected with a seturated aqueous colution oi sociun bicarbonete. Feutralisetion of the bicerbonete solution vith $\bar{i} i l u t e ~ H C l ~ p r e c j p i t a t e d ~ m y c o n e n o l i c ~ a c i d ~$ which was purified by crystallisation from methanol/vater. the chloroforn was then dried and the solvent renoved. The residue was chromatographed on silice gel (30g).

Fractions eluted with Llght netroleum - benzene (1:4) Eave mycoturanolide (4 me).

Fractions eluted with benzene gave a mixture of uniaentitied compouncis (100 rig).

Fractions eluted with benzene -- chloroform (9:1) gave deoxypebrolide (4 mg). Isolation of deoxypebrolide was hindered by the presence of an oul In the same fractions. However, the crystals of deoxypebrollde were physically separated from this oil and recrystallised fron ether.
fractions eluted by benzene - chloroform (9:1-1:9) gave ethyl mycophenolste (51) and the hydroxy - lactone (55) identified by comparison (T.I.C., IR) with an authentic sample. Other unidentified compounds were also present.

Prections eluted by benzene-chiorofom (I:9) gave the dihydrofuncn Iectone (IOng) (65) .

Factions elutad with chloroform fave nebrolide (30 mg) (86) after trituration of the mixture with light - petroleum.

Fractions eluted with chloroform - methanol (20:1) contained desacetylpebrolide (45m6) (88) • Some difficulty was met in the isolation of this corpound due to the presence in the earlier frections of a geletinous compound which interfered in the crystallization of desacetylnebrolide. This geletinous substance which was slightly less poler than desacetylpebrolide, could not be obtained in crystalline form even though chronatographically pure hes not been characterised as yet.

Isolation of 2,4 dihydroxy - 5 ryruvylbenzoic acid (47).
The herise extracts (6_{g}) from two 15 day cultures of P. brevicompactum were combined and partitioned between chloroform and water. The water mas removed and the resultant solid (4g) placed on a column of Vallinckroat silicic acid which had been thoroughly washed with the
solvent system benzene (90) - dioxene (45) - acetic acid (4). The fourth colum volune of solvent eluted 2,4 dihydroxy - 6 nymurybenzoic acid (90mg), identicel with authentic sample(RP and I.R. spectman.) $3,5-$ Dihydroxy - $-\left(\alpha^{\prime}-\right.$ hydroxyethyl) phthalide (48).

The broth extrects (6g) fron two 15 days cultures of P. brevicomnactum were conbined and pertitioned between chloroforn and water. The water was removed and the resultent solid (4 g) pleced on a column of Iallinckrodt silicic acid which had been thoroughly washed with the solvent system benzene (90) dioxane (45) - acetic acid (4). The tenth colum volume of solvent eluted $3,5-$ dinydroxy $-\alpha-\left(\alpha^{\prime}-\right.$ hydroxy ethyn $)$ phthalide (335 mg) which was further purified by P.I.C. (pre-washed with methanol) using methanol 30% chloroform (70%) as developing solvent. The product was removed from the silica by elution with methanol as a gummy solid. $\mathcal{v} \max (\mathrm{KCl})$ 1725, 1611, 1475 , $1160 \mathrm{~cm}^{-} \lambda \max \left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m}), \operatorname{ph} 7: 219$ (O.D. 1.4I), 258 (O.D. O.81), 293(O.D. O.25) $\lambda \max \left(\mathrm{CH}_{3} \mathrm{OFI}\right)(\mathrm{m} \mu), \mathrm{ph} 10:$ 234 (0.1 .1 .11), 285 (0.1. 0.89), 3160 (0.D. 0.51). lass spectrum : Ions at $\mathrm{m} / \mathrm{e} 210$ (20\%) 166 (100\%) 165 (70 \%) 137 (80%) m^{*} corresponding to $210-166$,

a. $\left.J=6 \mathrm{cps}-\mathrm{CHOH}-\mathrm{CH}_{3}\right), 5.40(1 \mathrm{H}, \mathrm{n},-\mathrm{CHOH}) 4.4$ and $4.31(0.3$ and $0.7 \mathrm{H}, \mathrm{d} . \mathrm{J}=3 \mathrm{cps}$, Ar. CHI. $0.00-$) 3.20, 3.27 (each $I H, S$, phenolic ring H).

Synthesis of $3,5-$ dihydroxy $-\alpha-\left(\alpha^{\prime}\right.$ - hydroxy ethyl) phthalide (48).

2,4 Dihydroxy - 6 pymuvylbenzoic acid (90me) was dissolved in nethanol and $\mathrm{Na} \mathrm{BH}_{4}(93 \mathrm{mg})$ added and stirred overnight. The solution vas then acidified, filtered and chromatosraphed in a methanol pre-washed $20 \times 20 \mathrm{~cm}$ silicacel plate of 0.7 rm thickness. The plate was eluted with methenol (30\%) - chloroform (70\%) . The major bend was removed and extracted with methanol. : Removal of the solvent gave 3,5 dinydroxy $-\alpha\left(\alpha^{\prime}-\right.$ hyaroxy ethyl) phthalide (20ng) as a gumy solid. $T \mathrm{CF}_{3} \mathrm{COOH}\left(60 \mathrm{NH}^{\mathrm{c}} / \mathrm{s}\right) 8.55$ and $8.36(0.5$ and 0.5 H , d. $\left.J=6 \mathrm{cps}-\mathrm{CHOH} \mathrm{CH}_{3}\right), 5.40(\mathrm{IH}, \mathrm{m},-\mathrm{CHOH}), 4.4$ and 4.31 (0.5 and 0.5 H , d. $J=3 \mathrm{cps}$, Ar. CH.O.CO) $3.20,3.27$ (each 1H, s, phenolic ring H).

The IR spectrum and T.I.C. properties were identical with those of a semple of the phthelide isolated as in the previous section.

Attempted synthesis of mycochromenic acid via
ethyl mycorhenolate enoxide.
i. Ethyl myconenolete (33 mm) was dissolved in chloroform (4 ml) and m-chloronerbenzoic acid (85 mg) added. The reaction vas allowed to proceed at room temperature for 7 hours. Alter this period the solvent was removed, and 4 N MaH (5 ml) added. The reaction was left to stand overnight and then acidified and extracted with chloroform. Removal of the solvent gave a solid which crystallised from chloroform light petroleum as needles ($79 \mathrm{mg} 64 \%$) mp. $218^{\circ} \mathrm{C}$.
$\checkmark \max (\mathrm{K} \operatorname{Br}) 3438$, 1763, 1739, 1620, 1199, 1160, $1136,1075,1032,968 \mathrm{~cm}^{-1}$.
$\checkmark \max (\mathrm{CH} \mathrm{Cl} 3) 3620,3451,1763$, $1741 \mathrm{~cm}^{-1}$. $\lambda \max (\operatorname{mp}) 215(346), 250(860), 304(420)$. $\tau_{\mathrm{CDCl}_{3}}\left(60 \mathrm{Ni}^{c} / \mathrm{s}\right) 8.50\left(3 \mathrm{H}, \mathrm{s},-0 . \mathrm{CO}_{\mathrm{CH}} \mathrm{CH}_{3}\right)$, CDCl_{3}
$7.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 6.2\left(3 \mathrm{H}, \mathrm{s},-\mathrm{O} \mathrm{CH}_{3}\right)$,
$6.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \cdot \mathrm{CH}_{2}-\right) 4.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{CO}-\right)$.
This compound was identical (IR, UV, MR, mp.) with an authentic sample of hydroxylectone (55) •
ii. The ethyl ester of mycophenolic acid (56ng) was dissolved in chloroform (3 ml) and m-chloroperbenzoic acid (33 mg) vas added. The solution was left to stand overnight. Removal of the solvent then gave a
solid which was dissolved in benzene and sodium ethoxide added. The mixture was left to stand for 24 hours. Removal of the solvent now gave a solid which was dissolved in water and neutralized with dilute HDl. The product was extracted with ethyl acetate Evaporation of the solvent gave the lactone (55) • This compound vas identical (IR, UV, T.I.C.) with an authentic sample of the hydroxylactone (55) .

Ethyl mycorhenolate (5I)

liycophenolic acid (506 my) in ethanol and 3 drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ were refluxed for 8 hours, the solvent removed and the remaining oil dissolved in chloroform and washed with sodium bicarbonate. Removal of the chloroform gave ethyl mycophenolate (530 mg) which crystallised from chloroform - light petroleum as needles mop. $88-90^{\circ} \mathrm{C}$.
$\nu \max (\mathrm{KCl}) 3420,1736,1624,1167 \mathrm{~cm}^{-1}$.
$\nu \max \left(\mathrm{CHCl}_{3}\right) 1737(\varepsilon 1349) \mathrm{cm}^{-1}$.
$T_{\mathrm{CDCl}_{3}}(60 \mathrm{Hc} / \mathrm{s}) 8.81\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{cps}-\mathrm{CH}_{3}\right)$, $8.20\left(3 \mathrm{H}\right.$, vinyl methyl) 7.88 ($3 \mathrm{H}, \mathrm{s}$, Ar. CH_{3}), $7.67\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CO} . \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\right), 6.61(2 \mathrm{H}, \mathrm{d}$,
 $\left.\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right), 4.80\left(2 \mathrm{H}, \mathrm{s},-\mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot 0.00-\mathrm{anc}\right.$ IH, diffuse $t,=C H-), 2.3($ IH, s, Ar. OHi):

This convound was identical (IR, ma,mixed m.n.).
Iycophenolic acid (44) (69 mg) was refluxed in xylene (25ml) with lor. Fä. chercoal (85me) for 13 hours. A small amount of mycochromenic acid (10\%) was detected then by I.I.C. with an authentic samole of ethyl mycophenolate.

Ethyl mycochromenste (ithyl ester, or 56).

Fthyl myconhenolate (51) (350nc) wes dissoived in xylene and 2,3-dichloro - 5,6 - aicyeno - 1,4 benzoquinone (319 mg) added and the mixture was refluxed for 24 hours. The solution was filtered and the oil recovered after removal of the solvent, was nurified by P.I.C. on two $20 \times 20 \mathrm{~cm}$. Kieselgel plates with chloroform as eluting solvent. Ethyl raycochromenate vas obtained as an oil (138 mg: 40\%) b. o. $140^{\circ} \mathrm{C}$ at 0.02 mm . (Found; C, 65.79, H, 6.53, It^{+}at $\mathrm{m} / \mathrm{e} 346 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $\mathrm{C}, 65.86, \mathrm{H}, 6.40$, I... 346). $\nu_{\max }(\mathrm{film}) 1765,1733,1635,1604,1596 \mathrm{~cm}^{-1}$,

$$
\begin{aligned}
& V_{\text {max }}(\mathrm{C} \mathrm{Cla}) 1752,1740 \mathrm{~cm}^{-1} \text {, } \\
& \lambda \max (\operatorname{in}) 240(496), 321(=1045), 332(=1045) \text {, } \\
& \tau_{\mathrm{CDO}_{3}}(60 \mathrm{Ircs}) 8.80 .\left(3 \mathrm{H}, \mathrm{t}, \mathrm{~J}=7 \mathrm{cps},-\mathrm{CH}_{3}\right) \text {, } \\
& 8.52\left(3 \mathrm{H}, \mathrm{~s},-\left(\mathrm{H}_{3}\right), 7.9\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{Ar} . \mathrm{CH}_{3}\right)\right. \text {, } \\
& 6.22\left(3 \mathrm{H}, \mathrm{~s},-\mathrm{OCH}_{3}\right), 5.9(3 \mathrm{H}, 9, \mathrm{~J}=7 \mathrm{cps}- \\
& \mathrm{CU}_{2^{-}} \text {), } 4.9\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right) \text {, } \\
& 4.35(1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=10 \mathrm{cps}=\mathrm{CH} . \mathrm{C} .0-) \text {, } \\
& 3.32 \text { (} 1 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=10 \mathrm{cps} \mathrm{Ar} . \mathrm{CH}=\text {). } \\
& \text { Mass spectrum : Ions at } \mathrm{m} / \text { e } 346 \text { (} 30 \% \text {), } 301 \text { (} 20 \% \text {), } \\
& 259 \text { (} 80 \% \text {), } 257 \text { (} 60 \% \text {), } 245 \text { (} 100 \% \text {), } 230 \text { (} 60 \% \text {). } 221 \text { (} 20 \% \text {) } \\
& 201 \text { (40\%). } \\
& \mathrm{m}^{*} \text { corresponding to } 346 \rightarrow 245,245 \rightarrow 230,230 \rightarrow 201 \text {. }
\end{aligned}
$$

Iycochromenic Acid (56)

To ethyl mycochromenate (5 mg) in methanol
a. methanolic solution of potassium hydroxide was added and left to stand for 30 minutes. After acidification with dilute HCl, the solvent was removed and the remaining solid dissolved in chloroform and extracted with a saturated aqueous solution of sodium bicarbonate. The alkaline solution was acidified and extracted with chloroform. Removal of the solvent gave a solid which crystallised from chloroform - light petroleum as prisns m.p. $164-165^{\circ}$. Identity with an authentic sample of mycochromenic acid was established by T.I.C.,
mixed melting point and compricon of I. F . spectra. Ethyl dihydronycochrusente (ithyl ester of 69).

Ifycochromenic ethyl ester (5mg) was dissolved in ethanol (10ml) and hydrogenated at roon temperature and atmospheric pressure for three hours with 5\% Pd. charcoal as eatalyst. Filtration of the solution and removal of the solvent yielded ethyl dihydromycochromenate as an oil. This compound was showm to be identical vith a sample obtained as described below, by comparison of T.I.C. and I.R. spectra.

Dihydromycochronenic acid (69) •

Iycophenolic acid (149 mg) was dissolved in acetic acid (IOmI),5 drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ added and the solution refluxed for one hour. The solvent was removed and the remaining oil dissolved in chloroform and washed with water. Removal of the chloroform gave the acid (69) which crystallised from chloroform - light petroleum as needles ($132 \mathrm{mg}, 88 \%$) m.p. $172-175^{\circ} \mathrm{C}$,
(Found: C, 63.77; H, 6.19; M^{+}at $\mathrm{m} / \mathrm{e} 320$,
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 63,74 ; \mathrm{H}, 6.29$; m . 7 320) 。
$\checkmark \max$ (nujol) $3250,1725,1705,1600 \mathrm{~cm}^{-1}$,
$\lambda_{\max }(\mathrm{mp}) 250(\varepsilon=3200), 308(\varepsilon=1920)$, $\tau_{\mathrm{CDCl}_{3}}\left(60 \mathrm{H}^{\mathrm{c}} / \mathrm{s}\right) 8.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $8.1(4 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{CH}_{2} \cdot \mathrm{C} .0-\right), 7.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} . \mathrm{CH}_{3}\right), 7.40$
($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \cdot \mathrm{CH}_{2}$. and $\mathrm{CH}_{2} \cdot \mathrm{CO} .0-$), 6.19 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.9\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right)$.
Lass spectrum: Ions at $\mathrm{m} / \mathrm{e} 320$ (50%), 302 ($40 \%_{i}^{\circ}$), 247 (70%), 207 (100%), 159 (60%).
m ${ }^{*}$ corresponding to $320 \rightarrow 302, \rightarrow 302 \rightarrow 207$.

Bthyl dihyäroriycochromenete (ethyl ester of 69).
Dinydroraycochromenic acid (69) (lame)
was dissolved in ethanol (10 ml) and three drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ added. The mixture was refluxed for three hours, the solvent removed and the remaining oil dissolved in ether and washed with sodium bicarbonate. Removal of the ether yielded an oil.
$\checkmark \operatorname{mex}(n u j 01) 1760,1720,1605,1320,1130,1105$, 1040, $800 \mathrm{~cm}^{-1}$.
$\tau_{\mathrm{CDCl}_{3}}(60 \mathrm{JE} \mathrm{c} / \mathrm{s}) 8.75\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{cps}-\mathrm{CH}_{3}\right)$, $8.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} . \mathrm{C} .0-\right), 8.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} . \mathrm{C} .0-\right)$,
$7.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \cdot \mathrm{CH}_{3}\right), 7.4$ (4, n, $\mathrm{xr} \cdot \mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{2} \cdot \mathrm{CO} .0-\right), 6.2\left(3 \mathrm{I}, \mathrm{s},-\mathrm{O}_{2} \mathrm{OH}_{3}\right), 5.90$ ($\left.2 \mathrm{H}, 9, \mathrm{~J}=8 \mathrm{c} 2 \mathrm{~s},-0 . \mathrm{CH}_{2}-\right), 4.9(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$. $\mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{CO}-$).

Hycoruranolide (71).

This substence was present in the fractions eluted with petroleun - benzene (4:1) as described earlier and crystallised from chloroform - light petroleum as needles m.p. $174-176^{\circ} \mathrm{C}$.
$\mathrm{R}_{\mathrm{f}} 0.75$ in 10% nethanol - chloroform,
(Found; C, 66.87, H, 4.63, H^{+}at m / e 218),
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.05, \mathrm{H}, 4.62$, 1. I. 218), $\lambda \max ($ iif $) 277(\varepsilon=5450), 226(\varepsilon=10.000)$, $\nu \operatorname{mex}(\mathrm{KBr}) 1770,1649,1608,1470,1390,1250 \mathrm{~cm}^{-1}$, $\nu \max \left(\mathrm{CCl}_{4}\right)$ 2780, (γ Iectone $\varepsilon=1000$), $\mathrm{CDCL}_{3} 7.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} . \mathrm{CH}_{3}\right), 5.82\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right)$, 4.76 (2H, s, Are $-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CO}-$), 2.95 (CHI $J=2 \mathrm{cps}-\mathrm{H}$ of furan), 2.3 ($\mathrm{IH}, \mathrm{d}, \mathrm{J}=2 \mathrm{cps}$

- H or furan).
liass spectrum : Ions at $/$ e 218 (60%), 203 (30%), 189 (100%), 175 (30\%).
m^{*} correspondine to $218 \rightarrow 189$.

O-Acetylmyconnenolic acid.

To mycophenolic acid (65 7mg) in pyridine (IOn), acetic anhydride (amI) was added and the mixture was left to stand overnight at room temperature. To the solution ice-water was added and removal of the solvent then gave a white solid which crystallised from chloroform - light petroleum as needles ($647 \mathrm{mg}, 90 \%$) mop. $156-158^{\circ}$.
$\checkmark \max (\mathrm{KBr})$ 1768, 1727, 1624, 1612, 1196, 1188, 1210, $1133,1070 \mathrm{~cm}^{-1}$,
$\lambda \max (\mathrm{mp})\left(\mathrm{CH}_{3} \mathrm{OH}\right) 2150(2.900), 246(1.040)$, 279 (= 190) , 280 (= 190) ,
$\tilde{l}_{\mathrm{CDCl}_{3}}\left(60 \mathrm{~m}_{\mathrm{c}}^{\mathrm{c}} \mathrm{s}\right) 8.17\left(3 \mathrm{H}, \mathrm{s},-\mathrm{C}: \mathrm{C}_{\mathrm{CH}}^{3}\right)$,
$7.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} . \mathrm{CH}_{3}\right), 7.58\left(3 \mathrm{H}, \mathrm{s},-0 . \mathrm{CO}^{\mathrm{CH}} \mathrm{CH}_{3}\right.$
$\left.4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO} .0\right), 6.59(2 \mathrm{H}, \mathrm{d} \mathrm{J}-6.6 \mathrm{cps}$
$\mathrm{Ar} . \mathrm{CH}_{2}-$) , $6.16\left(3 \mathrm{H}, \mathrm{s},-\mathrm{O} \mathrm{CH}_{3}\right), 4.80(1 \mathrm{H}$, diffuse $t-\mathrm{CH}: \mathrm{C}-), 4.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} . \mathrm{CH}_{2} \cdot \mathrm{O} . \mathrm{CO}-\right)$. The arylecetaldehyce (81).

O-Acetyl mycophenolic acid (200mg)was dissolved in chloroform and ozonise for three hours at - $15^{\circ} \mathrm{C}$. To the solution, a suspension of zinc in acetic acid was added and the mixture stirred for one hour.

The solution wes filtered en? the solvent removed. The remeining oil was diasolved in chlowoform and washed with a saturated aqueous solution of sodium bicarbonete. The chloroform solution was reduced toa small volume and the proanct isolated by means of P.I.C. in silicasel. The band with a positive reaction with 2,4 - ainitrophenylhydrazine was extracted with
chloroform. Removal of the solvent geve the acetaldehyde (31) wich crystallised from ether as rods ($47 \mathrm{mg}, 26 \%$) m.p. $112-115^{\circ} \mathrm{C}$.
(Found: C, 60.44; H, 5.04; H^{+}at $\mathrm{m} / \mathrm{e} 278$
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$ requires $\mathrm{C}, 60.43$; $\mathrm{H}, 5.07$; . . 278) ν max (mujol) $1750,1705,1610,1605,1180 \mathrm{~cm}^{-1}$, $\lambda \max (\mathrm{mp}) 210($ O.D.I.6), 246 (O.D.O.5) 285 (O.D.O.2), $\tau_{\mathrm{CDOL}_{3}}\left(60 \mathrm{Ni}^{\mathrm{c}} / \mathrm{s}\right) 7.78\left(3 \mathrm{H}, \mathrm{s}, \operatorname{Ar} . \mathrm{OH}_{3}\right), 7.65(3 \mathrm{H}, \mathrm{s}$, $\left.-0 . \mathrm{CO} . \mathrm{CH}_{3}\right), 6.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{CH}_{2} \cdot \mathrm{CO}-\right) 6.24(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{OCH}_{3}\right), 4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{CO}-\mathrm{O}\right), 0.34(\mathrm{IH}$, $t, J=$ lcps -CHO).
liass spectrum : Ions at $\mathrm{m} / \mathrm{e} 278$ (5%), 236 (10%), 218 (30%), 208 (100%), 207 (60%), 190 (50\%), 179 (10%), 159 (60%)
m^{*} corresponding to $278 \rightarrow 218,236 \rightarrow 208,208 \rightarrow 190$.

Synthesie of meorganolice.
To the aldenyde (01) (23me) in benzene (5m1)
p - toluene sulphonic acic was adaed (30ng) and the mixture refluxed for three hours. Piltration of the solution and removal of the sotent gave a solid which was dissolved in ether and washed with water. The solution was then reduced to small volume and chromatographed in a 10 z 20 cm silicagel plete using chloroform as eluent. . The band corresponding to the desired product was removed and extracted with chloroform. Removal of the solvent geve the furen (82) which crystallised from chloroform - lisht petroleun as needies (15 mg 68\% c_{F}) m.p. $174-176^{\circ} \mathrm{C}$.
$\nu \max (\mathrm{KBr}) 1770,1649,1608,1470,1390,1250 \mathrm{~cm}^{-1}$, τ $\mathrm{CDCl}_{3} 7.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \cdot \mathrm{CH}_{3}\right), 5.82\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3} \mathrm{O}\right.$, $4.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} . \mathrm{CO}\right), 2.95(\mathrm{IH} J=2 \mathrm{cps} \beta-\mathrm{H}$ of furan), 2.3 (IH, $\alpha, J=2 \mathrm{cps}-H$ of furan).

This compound was identical (IR, NHR, m.p. with an authentic sample of mycofuranolide.

Lactonisation of nyconhenolic acia.
i. Lycophenolic acid (96 mg) was dissolved in
trifluoroacetic acid (10nI) nd allowed to stand
for two hours at room temperature. After removal of the solvent, the resulting solid was dissolved in chloroform and washed with a saturated aqueous solution of sodium bicarbonate. After drying and evaporating the chloroform, the lactone (66) was obtained. Crystallisation from chloroform - light petroleum gave colorless needles ($66 \mathrm{mg}, 68 \%$) mop. $161-162^{\circ} \mathrm{C}$.
(Found; C, 63.79, H, 6.7, It at $\mathrm{m} / \mathrm{e} 320$,
$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 63.74, \mathrm{H}, 6.29$, i....320), $\lambda_{\max }(\mathrm{mp}) 215(14.400), 250(=4.000), 304(=2.400)$, $\nu \max (\mathrm{KBr}) 1770,1735,1630,1465,1292,1140 \mathrm{~cm}^{-1}$, $\tau_{\mathrm{CDCl}_{3}}(60 \mathrm{M} / \mathrm{s}), 8.5\left(3 \mathrm{H}, \mathrm{s},-0.0 . \mathrm{CH}_{3}\right), 8(4 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{CH}_{2} \cdot \mathrm{C} . \mathrm{O}-\right), 7.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} . \mathrm{CH}_{3}\right), 7.3(4 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{Ar} . \mathrm{CH}_{2}-,-\mathrm{CH}_{2}-\mathrm{CO} .0\right), 6.2\left(3 \mathrm{H}, \mathrm{s},-\mathrm{O} . \mathrm{CH}_{3}\right)$, $4.8\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{CO}\right), 2.3(\mathrm{IH}, \mathrm{s}, \mathrm{Ar} \cdot \mathrm{OH})$, Iras spectrum: Ions at $\mathrm{m} / \mathrm{e} 320$ (30%), 302 (28%), 247 (50%), 207 (100%), 159 (40%) . m^{*} corresponding to $320 \rightarrow 302,302 \rightarrow 207$.
ii. To mycophenolic acid (49 mg) in benzene (20 ml)
p-toluenesulphonic acid (50mg) was added and the mixture was refluxed for three hours. After filtering the solution, evaporation of the solvent gave a solid which
was dissolved in chloroform end washed with a saturated aqueous solution of sodium bicarbonate and then water. Removal of the solvent gave the lactone (66) which crystallised Iron chloroform - light petroleum as colorless needles (30ng) mon. 161-162 ${ }^{\circ} \mathrm{C}$. A mixed melting point with the compound obtained by the action of trifluoracetic acid on mycophenolic acid showed no depression.

Pebrolide (86) .

This substance was isolated as described earlier. It crystallised from light petroleum - chloroform as colorless needles mp. $167-170^{\circ} \mathrm{C}$.
$(\alpha)_{D}=-41^{\circ} . R_{f} 0.65$ in $10 \%^{\circ}$ methanol in chloroform,
(Found ; $C, 66.63, \mathrm{H}, 6.95$, r^{+}at $\mathrm{m} / \mathrm{e} 430$,
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.97, \mathrm{H}, 6.97, \mathrm{I} . \mathrm{H} .430$)
R.D: $(\Phi)_{244^{-}}$1340, $(\Phi)_{258}$ (trough) $-3950,(\Phi)_{284}$
$-1220(\$)_{333^{-465, ~(\Phi)}}^{400^{-60}}$.
$\lambda_{\max } 230 \mathrm{mp}(\varepsilon=9,729)$,
$\nu_{\max }(\mathrm{KCl})$ 3500, 1764, 1710, 1597, 1580, 1243, 711 cm^{-1}.
$\nu \max \left(\mathrm{CHCl}_{3}\right) 3605,1780$ (lactone; $\left.\varepsilon=1108\right)$,
1740 (acetate; $\varepsilon=621$), 1715 (Benzoate; $\varepsilon=907$) cm^{-1},
$\tilde{l}_{\mathrm{CDCl}_{3}} 9.04,8.56 \mathrm{each}\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.96(3 \mathrm{H}, \mathrm{s}$,
$\left.-0.00 . \mathrm{CH}_{3}\right), 6.70(\mathrm{IH}, \mathrm{in}, \mathrm{H} . \mathrm{C} . \mathrm{Cif}), 6.21,6.03(2 \mathrm{H}, \mathrm{AB}$ $\left.J=12 \mathrm{cps} .-\mathrm{CH}_{2} \mathrm{O} . \mathrm{Ac}\right), 5.74(\mathrm{IH}, \mathrm{da}, \mathrm{J},=10 \mathrm{cps}$, $J_{2}=5.5 \mathrm{cps}-\mathrm{CH}_{2} \cdot 0.00$); $5.02(\mathrm{IH}, \dot{a}, \mathrm{~J}=.10 \mathrm{cps}-$ CH_{2}.).C)-), 4.32 (IH, m, H.C. OB), 2.50 End 1.96 (3 H and $2 \mathrm{H}, \mathrm{m}$, Fh . COMO-).
Lass spectrum: Ions at $\mathrm{m} / \mathrm{e} 430$ (0.1%), 357 (5%), 325 (10%), 308 (30%), 266 (40%), 265 (70%), 248 (20%), 247 (18%), 235 (40%), 230 (30%), 217 (50%), 105 (100%). m^{*} corresponding to $325 \rightarrow 265,308 \rightarrow 290,266 \rightarrow 248,265 \rightarrow$ 247, $248 \rightarrow 230,235 \rightarrow 217$.
Desacetyineoroliae (88)
This substance was isolated as described earlier.
It crystallised from chloroform - light petroleum as colourless needles m. .n. $252-255^{\circ} \mathrm{C}$,
$(\alpha)_{D}=-25^{\circ}, R_{f} 0.28$ in 10 : methanol in chloroform.
(Found; © , 68, 41, H, 7.08, n^{+}at $\mathrm{m} / \mathrm{e} 388$,
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\mathrm{C}, 68.02$, $\mathrm{H}, 7.27$.I. $\%$. 388).
ReD.: $(\Phi)_{248}-455,(\Phi)_{259}$ (trough) $-3020,(\Phi)_{285}$
$-650,(\Phi)_{333}-420,(\Phi)_{400}-260$

$$
\lambda \max 230 \operatorname{mp}(\varepsilon=11.860)
$$

$\nu_{\max }(\mathrm{K} . \mathrm{Br}) 3420,1756,1713,1602$, $1582,711 \mathrm{~cm}^{-1}$.
$\nu_{\max }\left(\mathrm{CEOI}_{3}\right) 1771$ (γ lactone; $\varepsilon=539$), 1711 (Benzoate; $\varepsilon=472) \mathrm{cm}^{-1}$.
$\tau_{\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{TH}} 9.0,3.20\left(\mathrm{eech} 3 \mathrm{II}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.46(\mathrm{IH}, \mathrm{m}$,
$\mathrm{H} . \mathrm{C} .0 \mathrm{H}), 6.74,6.16\left(2 \mathrm{H}, \mathrm{AB}, \mathrm{J}=11 \mathrm{cps},-\mathrm{CH}_{2}\right.$
O.H) , 5.74 (IH, did $\quad=10 \mathrm{cns} \mathrm{J}_{2}=6 \mathrm{cps}-$
$\mathrm{CH} .0 .00-), 4.70\left(\mathrm{IH}, \mathrm{d}, \mathrm{J}=20 \mathrm{cps}-\mathrm{CH}_{2} .0 .00-\right)$,
3.7 (IH, m, H.C.O己示),
lass spectrum: Ions at ${ }^{\mathrm{m}} / \mathrm{e} 388$ (0.1%) 358 (1%),
357 (1%) , 283 (25%), 266 (15%), 248 (3%), 236 (20%), 218 (12%), 192 (10%), 105 (100%),
m^{*} corresponding to. $388 \rightarrow 299,388 \rightarrow 266,358 \rightarrow 304$, $266 \rightarrow 235,236 \rightarrow 218$.

Deoxypebrolide (87).

This compound was isolated as aescribed earlier. It crystallised fron ether as colourless needies m.n. 171-173 ${ }^{\circ}$.
(Found: C, 69.58, H, 7.28, It^{+}at $\mathrm{m} / \mathrm{e} 414$,
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6}$ requires $\mathrm{C}, 69.56$, $\mathrm{H}, 7.24, \mathrm{H} . \therefore$. 414), $R_{f} 0.87$ in 10% methenol in chloroform.
R.D.: $(\Phi)_{244}-220,(\Phi)_{260}($ trough $)-460,(\Phi)_{284}$ $-1410,(\Phi)_{400}-110$.
$0 \max (\mathrm{KBr})$ 1775, 1738,1710, 1605, 1588, 1249, $711 \mathrm{~cm}^{-1}$.
$\nu \operatorname{maz}\left(\mathrm{CHOl}_{3}\right) 1783$ ($\mathrm{\gamma}$ - lactone, $\varepsilon=784$) 1735 (acetate; $\varepsilon=603$) 1717 (Benzoate; $\varepsilon=733$),

$$
\begin{aligned}
& \tau_{\mathrm{CDOI}_{3}} 9.04,8.56\left(\operatorname{ecch} 3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 7.96 \\
& \left(3 \mathrm{H}, \mathrm{~s},-0 . \mathrm{CO} .0 \mathrm{CH}_{3}\right), 6.23,6,03(2 \mathrm{H}, \mathrm{ABq} \mathrm{~J}=12 \mathrm{cps}- \\
& \left.\mathrm{CH}_{2} . \mathrm{OAC}\right), 5.82\left(\mathrm{H}, \mathrm{~d}, \mathrm{~J}_{1}=10, \mathrm{~J}_{2}=6,-\mathrm{CH}_{2} .\right. \\
& 0.00-), 5.62\left(\operatorname{IH}, \mathrm{~d}, \mathrm{~J}=1.0 \mathrm{cos}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right) \text {, } \\
& 4.30\left(\mathrm{IH}, \mathrm{~m}, \mathrm{H} . \mathrm{C} .0 \mathrm{~B}_{\mathrm{z}}\right) \text {, } 250 \text { and } 2.00(3 \mathrm{H} \text { and } 2 \mathrm{H}, \mathrm{~m} \text {, } \\
& \text { Ph.CO.O -). } \\
& \text { Lass spectrum : Ions at } m / e 414 \text { (} 0,1 \% \text {), } 292 \text { (} 5 \% \text {), } \\
& 258 \text { (} 30 \% \text {), } 249 \text { (} 30 \% \text {), } 232 \text { (} 10 \% \text {), } 219 \text { (} 10 \% \text {), } \\
& 167 \text { (100\%), } 105 \text { (50\%), } \\
& m^{*} \text { corresponding to } 292 \rightarrow 219 \text {. }
\end{aligned}
$$

Isodesecetylpebrolicie (101) .

i. Desacetyl pebrolide (88) (19ng) was allowed to stand with a methanolic solution of potassium hyciroxide for three hours and then neutralised with dilute hydrochloric acid. The product was extracted with chloroform, washed with water and dried. Evaporation gave isodesacetyloebrolice (lO) which crystallised from ether as plates (17 mg 89\%) mop. 192 - $193^{\circ} \mathrm{C}$. (Found: C, 68, 31, H, 7.36, H^{+}att $\mathrm{m} / \mathrm{e} 388$, $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\mathrm{C}, 68.02, \mathrm{H}, 7.27$, I. H .388 , $v \max (\mathrm{KCl}) 3460,1760,1718,1607,1590,717 \mathrm{~cm}^{-1}$, $\nu \max \left(\mathrm{CHOl}_{3}\right) 1778$ (lactone; $\varepsilon=710$) 1719 (Benzoate; $\varepsilon=609$) ,

$$
\begin{aligned}
& \tau_{\mathrm{CDCl}_{3}} 9.06,8.55\left(\text { each } 3 \mathrm{E}, \mathrm{~s}, \mathrm{JH}_{3}\right), 6.53 \\
& \text { (IH, m, H.C.OH) } 6.37,6.83(2 \mathrm{H}, \mathrm{AB} q \mathrm{~J}=12 \mathrm{cps}- \\
& \mathrm{CH}_{2} \mathrm{OH} \text {) , 5.8-(IHI, } \mathrm{a}_{\mathrm{u}}, \mathrm{~J}_{1}=8 \mathrm{cps}, J_{2}=11 \mathrm{cps} \text {, } \\
& -\mathrm{CH}_{2} \cdot 0 . \mathrm{CO} \text {) }, 5.45\left(\mathrm{IFI}, \mathrm{ai}, \mathrm{~J}_{1}=8 \mathrm{cps}, \mathrm{~J}_{2}=7 \mathrm{cms}\right. \text {, } \\
& -\mathrm{CH}_{2} \cdot \mathrm{O} . \mathrm{CO} \text {) }, 4.18\left(\mathrm{II}, \mathrm{~m}, \mathrm{H} .0 .0 \mathrm{~B}_{\mathrm{Z}}\right), 2.43 \text { and } 1.90 \\
& \text { (3H and } 2 \mathrm{Hm} \text {, } \mathrm{Fh} .00 .0-\text {). } \\
& \text { lass spectra: Ions at } \mathrm{I} / \mathrm{e} 388 \text { (} 0.1 \% \text {), } 358 \text { (} 1 \% \text {) ; } \\
& 357 \text { (} 1 \% \text {) , } 283 \text { (} 25 \% \text {), } 266 \text { (} 15 \% \text {) . } 248 \text { (} 3 \% \text {) } 236 \text { (} 20 \% \text {) , } \\
& 218 \text { (} 12 \% \text {), } 192 \text { (} 10 \% \text {), } 105 \text { (} 100 \% \text {), } \\
& m^{*} \text { corresponding to } 388 \rightarrow 299 \text {. } 388 \rightarrow 266,358 \rightarrow 204 \text {, } \\
& 266 \rightarrow 235,236 \rightarrow 218 .
\end{aligned}
$$

ii Pebrolide was treated under the same conditions and gave a compound identical with the product obtained in i. This was established by comparison of $R_{\vec{I}}$, $N P R$ and IR spectra.

Desacetylpebrolide from pebrolice.
To a solution of pebrolide (86) (18 mg) in acetone, 6 N sulphuric acid (ml) was added and the mixture left to stand overnight. The solution was extracted with chloroform. The chloroîorn solution was washed with water, dried and evaporated to give a solid which crystallised from chloroform - light petroleum as needles (12mg.74\%).

Identity with desecetrlpebiolice wes establishea by R_{f} mixed $n \cdot D ., I R$ and $m R$ snectra.

O-Acetyl nebrolide (92)
i. From nebrolide.

To a solution of hebrolice (86) (61mg) in
pyridine (5m), acetic annydride (0.5 ml) was added and the mixture left to stand at room temperature for 12 hours. The reaction mixture was noured into ice-water and the product extractea with ether. The ethereal solution was washed with water, dried and evaporated to give o-acetyl pebrolide (92) which cryotallised from ether as needles (44mg 66\%) m.n. $178-180^{\circ} \mathrm{C}$.
(Found: $\mathrm{c}, 65.82, \mathrm{H}, 6.92$, I^{-4} at $\mathrm{m} / \mathrm{e} 472 . \mathrm{C}_{26}$ $\mathrm{H}_{32} \mathrm{O}_{8}$ requires $\mathrm{C}, 66.10$, $\mathrm{H}, 6.78$, I. H .472). - max (KCl) 1781, 1739, 1709, 1599, 1580, 1247, 711 cm^{-1}. $\tilde{\tau}_{\mathrm{CDCl}_{3}} 9.0,8.44$ each $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.92,7.89$ $\left(\operatorname{each} 3 \mathrm{H}, \mathrm{s},-0.00 . \mathrm{CH}_{3}\right), 5.99,6.19(2 \mathrm{H}, \mathrm{ABq} \mathrm{J}=$ $\left.12 \mathrm{cps}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right), 5.36(\mathrm{IH}, \mathrm{d}, \mathrm{J}=10 \mathrm{cps}-$ $\mathrm{CH}_{2} \cdot \mathrm{O} . \mathrm{CO}$ - and $\mathrm{IH}, \mathrm{m}, \mathrm{H} . \mathrm{C.OAC}$), 4.28 (IH, m, H.C.OB), 2.44 and 1.96 (3 H and $2 \mathrm{H}, \mathrm{m}$, Eh, CO. O-),

Nass spectrum: Ions at $\mathrm{m} / \mathrm{e} 472$ (12%) 399 (8%), 367 (7%) , 350 (30%), 308 (50%), 307 (48%), 290 (45%), 265 (12%) , 247 (25%), 235 (25%), 230 (70%), 227 (90%),
m^{*} corresponding to $367 \rightarrow 307,307 \rightarrow 247$,
$307 \rightarrow 265,235 \rightarrow 217,265 \rightarrow 247$.
ii Prom desecetyl nebrolice.
To a solution of desecetyl rebrolice (88) (7wc)
in pyridine (lORI), acetic anmàride (0.5 mI) was added and the mixture left to stand overnight. The reaction mixture was poured into ice-weter and the product extracted with ether. The ethereal solution was washed with water, dried and evanorated to give a solid which crystallised from ether as needles (Fms 59\%) mop. 178 - $180^{\circ} \mathrm{C}$. This mas shown to be identical with - o-acetylpebrolide by comparison of R_{f}, mixed mon. and IR spectra.

Desacetylvebrolicie (3.6 mg) in acetic acid (xml) was refluxed for two hours. ri.I.C. analysis of the reactions products showed the presence of two compounds corresponding to mebrolide and o-acetyl pebrolide in similar amounts.

Febrolicie (3.2mg) in acetic acid (xml) was refluxed for two hours. T.I.C. analysis of the reaction products shows the presence of starting material and a compound corresponding to o-acetylpebrolide. Similarly

- cholesterol enc lenoterol fere only partially converted to their acetates.

Pebrolideketone (91):
Pebrolide (86) (IO6ng) was dissolved in acetone and treated with a slight excess of chromium trioxide in sulphuric acid (Jones reagent) at room temperature for one minute. After addition of ice-rater, the mixture was extracted with chloroform. The extract was washed with brine, dried and evaporated to give the ketone which crystallised from ether as needles (94 mg 89\%), m. m . 187-190.
(Found; $\mathrm{C}, 67.02, \mathrm{H}, 6.62$, II^{+}at $\mathrm{m} / \mathrm{e} 428$, $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{7}$ requires $\mathrm{C}, 67.29, \mathrm{H}, 6.54$, in. 7.428). RAD.: $(\Phi)_{258}$ (trough) $-404,(\Phi)_{296} 0,(\Phi)_{315}$ $($ peak $)+430,(\Phi)_{321} 0,(\Phi)_{400^{-215}}$.
$\nu \max (\mathrm{KCl})$ 1787, 1732, 1711, 1598, 1582, $711 \mathrm{~cm}^{-1}$. $\nu \max \left(\mathrm{C} \mathrm{Cl}_{3}\right) 1778(\gamma$ lactone $; \varepsilon=676)$, 1736 (acetate; $\varepsilon=517$), 1710 (ketone, benzoate; $\varepsilon=845$).
$\tau_{\mathrm{CDCl}_{3}} 8.85,8.35\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.91(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \cdot \mathrm{CO} .0-\right), 6.10,5.92\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q} \mathrm{J}=11 \mathrm{cps}-\mathrm{CH}_{2} . \mathrm{OAC}\right)$,
$5.62\left(\mathrm{IH}, \mathrm{dd}, \mathrm{J}_{1}=10 \mathrm{cos}, \mathrm{J}_{2}=5 \mathrm{cps}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}\right)$,
$5.40\left(\mathrm{IH}, \mathrm{d}, \mathrm{J}=10 \mathrm{cps}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right), 4.35(\mathrm{IH}, \mathrm{m}$, $\mathrm{H}-\mathrm{C} . \mathrm{OB}_{\mathrm{Z}}$), 2.65 and 2.15 (3 H and $2 \mathrm{H}, \mathrm{m}, \mathrm{Fh}, \mathrm{CO} .0$).

```
Mass spectrum: Ions ct ile 423 (0.1\%), 323 (10\%),
306 (20\%), 263 ( \(30 \%\) ), 246 ( 105 ), 233 ( \(85 \%\) ),
223 (9\%), 197 (15\%), 105 ( \(100 \%\) ).
\(\mathrm{A}^{*}\) corresponding to \(428 \rightarrow 323,323 \rightarrow 263\).
```

Hydrogenation of Pebrolice Ketone - Hexehydropebroliee.

Pebrolide ketone (91) (12 mg) was dissolved in ethanol (10ni) and hydrosenated at roon temperature and atmospheric pressure for three hours with 5\% Fe-chercoal as catalyst. Filtration of the solution through gless paper and renoval of the solvent gave unchenged pebrolide ketone.

Pebrolide ketone (9]) (30ng) was dissolved in acetic acid (10ml) and hydrogenated at room temperature and atmospheric pressure for three hours with FtO_{2} as catalyst. After filtration of the solution, removal of the solvent gave a solid which orystallised from ether as plates (1Ong) m.p. $165-167^{\circ} \mathrm{C}$.

This conpound proved to be identical with hexahyảropebrolide by comparison of R_{f} mixed $m . p$. and IRspectra.

Hexahydropebrolide.
Pebrolide (86) (80mg) was dissolved in glecial acetic
acid (10ml) and nexrocenctec at room temperature and atmospheric pressure for four hours with platinum oxide (5 0mg) as catalyst. Filtration of the solution through glass payer and removal of tine solvent gave hexanydronebrolide which crystallised from ether as plates ($72 \mathrm{ng}, 89 \%$) m . n. $165-167^{\circ} \mathrm{C}$.
(Found; C,65.87, H, 8.44, I^{+}at $\mathrm{m} / \mathrm{e} 436$).
$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.03, \mathrm{H}, 8.31$, IT. $\mathrm{H} .=436$).
$\nu \mathrm{ax}(\mathrm{KEr}) 3500,1760,1730,1260 \mathrm{~cm}^{-1}$,
ν ax $\left(\mathrm{CHOl}_{3}\right) 1730$ (Lactone; $\varepsilon=667$), 1732 (Acetate, cyclonexanecerboxylete; $\varepsilon=764$),
$\tau_{\mathrm{CDCI}_{3}} 8.99,8.67\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 6.7(\mathrm{IH}, \mathrm{m}$, H.C. OH), 6.1, 6.22 ($2 \mathrm{H}, \mathrm{AB}$ q J, $\mathrm{AB}=12 \mathrm{cps}$,
$-\mathrm{CH} .0 \mathrm{Ac}), 5.76\left(\mathrm{IH}, \mathrm{dd}, \mathrm{J}_{1}=10, \mathrm{~J}_{2}=6 \mathrm{cps}-\right.$ $\left.\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right), 5.06\left(\mathrm{IH}, \mathrm{d}, \mathrm{J}=10 \mathrm{cps},-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right)$, 4.65 (IH, m, H.C.O.CO. $\mathrm{C}_{6} \mathrm{H}_{11}$),

Lase spectrum : Ions at $\mathrm{m} / \mathrm{e} 436$ (1%) 325 (20%), 309 (40%) , 308 (45%), 265 (100%), 249 (45%) 235 (30%),
m ${ }^{*}$ corresponding to $309 \rightarrow 249,308 \rightarrow 235$.
Hexahydrodesecetylpebrolide.
Desacetylpebrolide (88) (160mg) vas dissolved in glacial acetic acid (14 ml) and hydrogenated at room temperature and atmospheric pressure for 20 hours with platinum oxide (144ng) as catalyst. Filtration of the solvent
through glase naner and renovel of the solvent gave hexahyrodacccotylnaorolide whin oryotallisea Irom ether as plates (152 me, 92\%) n. 3. 210-215 .
(Found; C, 67.16, H, 3.82 lt $^{+}$at $\mathrm{m} / \mathrm{e} 394$, $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6}$ requixes $\mathrm{c}, 66.98$, $\mathrm{H}, 8.69, \mathrm{~T} . \mathrm{H}$.394).
$\nu_{\max }(\mathrm{KBr}) 1740,1715,1445 \mathrm{~cm}^{-1}$,
$\nu_{\max }\left(\mathrm{CHOl}_{3}\right) 1772$ (lectone; $\varepsilon=997$), 1717 (cyclohexenecerboxylate $\varepsilon=621$) cm^{-1}.
$\widetilde{l}_{\mathrm{CDCl}_{3}} 9.18 .65\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 6.70(\mathrm{IH}, \mathrm{m}$,
$-\mathrm{H} . \mathrm{C} . \mathrm{OH}), 6.86,6.42\left(2 \mathrm{H}, \mathrm{AB}, \mathrm{J}=11 \mathrm{cps}-\mathrm{CH}_{2} \mathrm{OH}\right)$
$5.73\left(\mathrm{IH}, \mathrm{dd}, \mathrm{J}=10 \mathrm{cps} \mathrm{J}_{2}=6 \mathrm{cps},-\mathrm{CH}_{2} .0 . \mathrm{CO}\right)$,
$5.05\left(\mathrm{IH}, \mathrm{d}, \mathrm{J}=10 \mathrm{cps}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right), 4.50(\mathrm{IH}, \mathrm{m}$, H.C. OB_{z}).

Mass spectrum: Ions at $\mathrm{m} / \mathrm{e} 394$ ($1 c^{\prime}$), 363 (3%), 283 (100%), 267 (80%), 266 (85%). 249 (30%), 248 (30%), 237 (50%), 236 (75%), 235 (70%), 218 (50%), 217 (75\%) 。
m^{*} corresponding to $267 \rightarrow 249,266 \rightarrow 248,266 \rightarrow 235$. Ketoacid (93)

Desacetyl pebrolide (88)(166mg) was dissolved in acetone and treated with a slikht excess of chromium trioxide in sulohuric acià at room temperature for five minutes. After adcition of ice - water, the mixture was
extracted with chloroform. Gre avocet mes resined with brine, dried ma evenoreted to give the keto acid (93) which crystallised from aqueous methanol as needles (I66mg, 97\%), n. o. $123-125^{\circ} \mathrm{C}$.
$\nabla_{\max }(\mathrm{KPr}) 1786,1755,1717,1606,1582,723 \mathrm{~cm}^{-1}$, $\geqslant \max \left(\mathrm{CHOl}_{3}\right) 1784(\gamma$ lactone $\varepsilon=800)$, 1718 (Ketone acid, benzoate; $\varepsilon=1150$) cm^{-1}.

Keto ester (94)
The keto acid (93) (33mg) was dissolved in methanol and treated with an ethereal solution of diazomethane. After one hour the solution was filtered. Removal of the solvent gave the keto ester which crystallised from chloroform light petroleum es needles (zing, 82%) m. p. 227-232 ${ }^{\circ} \mathrm{C}$. (Found; C, 66.66, $\mathrm{H}, 6.45$, IH^{+}at $\mathrm{m} / \mathrm{e}, 414 \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.66, \mathrm{H}, 6.28$, I..7. 414).
$\nu \max (\mathrm{KBr}) 1779,1731,1712,1604,1585,723 \mathrm{~cm}^{-1}$, $จ \max \left(\mathrm{CHCl}_{3}\right) 1785,1722 \mathrm{~cm}^{-1}$,
$\tau_{\mathrm{CDCl}_{3}} 8.52^{\prime}, 8.32^{\prime}\left(\operatorname{each} 3 \mathrm{Fi}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.23\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CH}_{3}\right.$. $0 . \mathrm{CO}), 5.60\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=10 \mathrm{cps}, \mathrm{J}_{2}=5 \mathrm{cps}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}\right)$,
5.32 (III, $\left.d, J=10 \mathrm{cns},-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right), 4.46(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H} . \mathrm{C} . \mathrm{OB}_{\mathrm{z}}$),2.44 and 1.96 (3 H and $2 \mathrm{H}, \mathrm{m}$, Ph. O. CO-), ias spectre: Ions at $\mathrm{m} / \mathrm{e} 414$ (1%) 383 (1%) ,
$355(19), 309(45 \%), 292(50 \%), 277(30 \%), 260(5 \%)$, 259 (15%), 249 (70%), 233 (40%), 232 (45%), 231 (48%), 209 (60\%) ,
m^{*} corresponding to $414 \rightarrow 309,309 \rightarrow 277,277 \rightarrow 249$ Hydrolysis of deoxypebrolide

$$
1 \text { - Deoxypebrolide (87) (34mg) was dissolved }
$$ in methanol and 5 H aqueous socinus hydroxide added (5 ml). The solution was refluxed for three hours and then neutralised with dilute hydrochloric acid. Extraction with chloroform gave the dehydroxytranslectone (95)

which crystallised from chloroform - light petroleum as needles ($16 \mathrm{ng}, 73 \%$), rip. $149-154^{\circ} \mathrm{C}$.
(Found; C, 66.94, H, 8.80, If^{+}at $\mathrm{m} / \mathrm{e} 268$,

$$
\left.\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4} \text { requires } \mathrm{C}, 67.14, \mathrm{H}, 9.01, \text { I. } 1.268\right) .
$$

$\nu_{\max }$ (Kor) 3,500, $1745 \mathrm{~cm}^{-1}$,
vile (CHCl_{3}) 3610 (hydroxyl; $\varepsilon=200$), 1770 (γ lactone $\varepsilon=487) \mathrm{cm}^{-1}$.
τ_{CDCl}^{3} 8.87, $8.75\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.75,6.53(2 \mathrm{H}$, $\mathrm{ABq}, \mathrm{J}=\mathrm{llcps},-\mathrm{CH}_{2} \cdot \mathrm{OH}$), $5.91(\mathrm{lH}, \mathrm{da}, \mathrm{J}=8 \mathrm{cps}$, $\left.J_{2}=12 \mathrm{cns}-\mathrm{CH}_{2} \cdot 0.00-\right), 5.89\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=80 \mathrm{~ns}\right.$, $\mathrm{J}_{2}=7 \mathrm{cms}, \mathrm{CH}_{2} \cdot \mathrm{O} . \mathrm{CO}$) , 5.56 (1H, m, H.C. OH).
Lass spectrum; me at 268 (1%), 250 (2%), 237 (30%), 232 (10%), 221 (15%). 220 (17%), 219 (100%), 191 (15%),

173 (20\%),
m* corresponding to 237-219, 219-201.
The sodium bicarbonste solution was neutralised with dilute hydrochloric acid and extracted with chloroform. The chloroform extract was washed with water, dried and evaporated to give a solid which crystallised from aqueous methanol as needles (ll rig), mop. $122{ }^{\circ} \mathrm{C}$. Identity with benzoic asia was established by R_{f}, mixed $m \cdot p$. and $I R$ spectrum.

Ketoalcohol (126)

Febrolide ketone (125) (6 9mg) in acetone (25: 1) was refluxed with 6IT sulphuric acid (5nl) for one hour, cooled and extracted with chloroform. The extract vas washed with water, dried and evaporated to give the keto alcohol (126) which crystallised from chloroform light petroleum as needles ($50 \mathrm{mg}, 80 \%$), mp. $208-210^{\circ} \mathrm{C}$. (Found; C, 68.22, H, 6.78, In^{+}at $\mathrm{m} / \mathrm{e} 386, \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$ requires C, 68.39, H, 6.73, 1...7. 386), $\nu \max (\mathrm{KBr}) 3500,1704,1596,1580,704 \mathrm{~cm}^{-1}$, $\nabla_{\max }\left(\mathrm{CHCl}_{3}\right) 1775$ (lactone; $\varepsilon=526$), 1705 (Ketone, benzoate; $\epsilon=614$),
$\tau_{\mathrm{CDCl}_{3}}\left(60 \mathrm{NE}_{\mathrm{c}}^{\mathrm{c}} \mathrm{s}\right) 9.0,8.4$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $6.78,6.32\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q} \mathrm{J}=10 \mathrm{cps}-\mathrm{CH}_{2} . \mathrm{OH}\right)$,

$$
\begin{aligned}
& 5.6\left(2 \mathrm{H}, \mathrm{Z},-\mathrm{CH}_{2} \cdot 0.00-\right) \text {, } .03\left(\mathrm{IE}, \mathrm{~A}, \mathrm{H} . \mathrm{COB}_{\mathrm{Z}}\right) \text {, } \\
& 2.5 \text { and } 2.07 \text { (} 3 \mathrm{H} \text { and } 2 \mathrm{H}, \mathrm{~m} \text {, Fhco.0-). }
\end{aligned}
$$

$$
\begin{aligned}
& 264 \text { (} 8 \% \text {), } 263 \text { (} 5 \% \text {), } 234 \text { (} 17 \% \text {) , } 233 \text { (} 5 \% \text {) , } 216 \text { (} 5 \% \text {), } \\
& 192 \text { (} 5 \% \text {), } 105 \text { (} 100 \% \text {). } \\
& \mathrm{m}^{*} \text { corresponding to } 336 \rightarrow 264 \text {. }
\end{aligned}
$$

Ketohydroxy ester (130)
The kato acid (93) (63mg) was reflured with 61 aqueous sodiurn hydroxide (5 ml) for four hours and then neutralised with dilute equeous hydrochloric acid and extracted with ether. The ethereal solution was washed, dried and evaporated to give a solid which was washed with hot ether to remove the benzoic acid present. The remeining solid crystellised from chloroform - light petroleum to give the ketohydroxyscid (129) as needies ($30 \mathrm{mg}, 63 \%$) m.p. $251-254^{\circ} \mathrm{C}$.

The ketohyciroxyacid (129) (30mg) was dissolved in methanol and treated with an excess of an ethereal solution of diazonethene and left to stand for two hours. After filtretion, removal of the solvent gave the ketohydroxyester (130) which crystallised from etherlight petroleum as plates (30ms, 95%) m.p. $175-179^{\circ} \mathrm{C}$.
(Found; C, 62.04, H, 7.17, it at m/e 310 $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6}$ reauires $\mathrm{C}, 61.92$, II, 7.15 , IF.17. 3IO).
$\nu \max (\mathrm{KBr}) 3550,1768,1712,1692 \mathrm{~cm}^{-1}$, $\bigcirc \max \left(\mathrm{CHCl}_{3}\right)$ 1770, (lectone), 1709 (retone and ester) cm \Rightarrow,
${ }^{\tau}(60 \mathrm{~N} / \mathrm{c} / \mathrm{s}) 8.5,8.28\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$,
$6.25\left(3 \mathrm{H}, \mathrm{s},-0 . \mathrm{CH}_{3}\right), 5.7 \mathrm{I}(\mathrm{IH}, \mathrm{r}, \mathrm{H} . \mathrm{C} . \mathrm{OH})$,
$5.75\left(\mathrm{IH}, \mathrm{dd}, \mathrm{J}_{1}=8 \mathrm{cps}, \mathrm{J}_{2}=12 \mathrm{cps}-\right.$ $\left.\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right), 5.19\left(\mathrm{IH}, \mathrm{dd} \mathrm{J}_{1}=8 \mathrm{cps}, \mathrm{J}_{2}\right.$ $\left.=7 \mathrm{cps}-\mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{CO}-\right)$.
 292 (1%) , 259 (20%), 251 (100%), 233 (25%), 232 ($255_{\%}^{*}$), 205 (20\%), 184 50\%) 。
m^{*} correspondins to $251 \rightarrow 233, \quad 310 \rightarrow 259$.

The keto-hycroxyester (130) (24mg) was dissolved in acetone (0.5 mil) and treated with a silent excess of chromium trioxide in sulphuric acid at room temperature for two minutes. To the reaction mixture ice-vater was added (amI) and the mixture was extracted with chloroform; the extract was washed with brine, dried and evaporated to give diketone (131) which crystallised from chloroform - light petroleum as needles ($20 \mathrm{mg}, 80 \%$) mp. $180-185^{\circ} \mathrm{C}$.
(Found; C, 61.91, H, 6.49, I^{+}at $\mathrm{m} / \mathrm{e} 308$
$\mathrm{C}_{16} \mathrm{H}_{20}{ }^{\mathrm{O}} 6$ requires $\mathrm{C}, 62.33$, H, 6.54, H. W. 308). ν inca (Fujol) 1770, 1700, 1230, $1000 \mathrm{~cm}^{-1}$, $\tau_{\mathrm{CDCl}_{3}}\left(6 \mathrm{NH}^{\mathrm{c}} \mathrm{s}\right) 8.73,8.28\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{E}, \mathrm{CH}_{3}\right)$, $6.30\left(3 \mathrm{H}, \mathrm{s},-0 . \mathrm{CH}_{3}\right), 5.70\left(\mathrm{IH}, \mathrm{da}, \mathrm{J}_{1}=8 \mathrm{cos}\right.$, $\left.J_{2}=12 \mathrm{cps},-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}\right), 5.04\left(\mathrm{IH}, \mathrm{dd}, \mathrm{J}_{1}=8 \mathrm{cps}\right.$, $\left.J_{2}=7 \mathrm{cps}-\mathrm{CH}_{2} \cdot 0 . \mathrm{CO}-\right)$.

Mass spectrum: Ions at $\mathrm{m} / \mathrm{e}, 308$ (10%), 276 (30%), 249 (100%), 248 (30%) 220 (90%), 208 (10%), 203 (10%). m^{*} corresponding to $308 \rightarrow 276,276 \rightarrow 248$.

O-Bromoscetylmebrolige (98)

Pebrolide (24ms) in benzene (IOmI)/Xyridine (5 drops) was treated with bromoacetylbronide (lnl). After an hour, a precipitate appeared which was renoved by filtration. Removel of the solvent geve an oil which was dissolved in chloroform and weshed with aqueous sodiun bicarbonate and then water. The removel of the solvent geve 0-bromoacetylnebrolide (93), which crystellised from ether as prisms (10 me, 30\%) m.p. $150-151^{\circ} \mathrm{C}$.

Found: M^{+}a.t $\mathrm{m} / \mathrm{e} 552 ; \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{8} \mathrm{Br}$ requires $\mathrm{I} . \mathrm{Y}$. 552 . $\nu \max (\mathrm{K} . \mathrm{Br})$ 1780, 1730, $1607,1590,1250,720 \mathrm{~cm}^{-1}$, $\tau_{\mathrm{CDCl}_{3}} 8.98,8.4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.92\left(3 \mathrm{H}, \mathrm{s},-0 . \mathrm{CH}_{3}\right)$, $6.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Br} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO} .0-\right), 6.17,6.0(2 \mathrm{H}, \mathrm{AB}$ q $\mathrm{J}=$ II cps $\left.-\mathrm{CH}_{2} \cdot \mathrm{OAc}\right), 5.72\left(\mathrm{IH}, \mathrm{da}, \mathrm{J}_{1}=10 \mathrm{cps}, \mathrm{J}_{2}=\right.$ 5, HC.O.CO -), $5.22(\mathrm{IH}, \mathrm{d}, \mathrm{J}=9 \mathrm{cps}-\mathrm{CH} .0 . \mathrm{CO}-)$, $5.0\left(\mathrm{IH}, \mathrm{m}, \mathrm{HC} .0 \mathrm{CO} . \mathrm{CII}_{2} \mathrm{Br}\right) 4.3\left(\mathrm{IH}, \mathrm{m}, \mathrm{H} . \mathrm{C} .0 . \mathrm{B}_{\mathrm{z}}\right)$, 2.54, 1.95 (3 H and 2 H each m , $\mathrm{Ih}-\mathrm{CO} .0-$).

Hass spectrum: Ions at $\mathrm{m} / \mathrm{e} 552$ (7%) 447 (1%), 445 (1%) , 430 (5%) , 428 (5%) , 387 (25%) , 385 (25%) 307 (75%), 290 (12%) , 230 (40%) , 277 (50%) , 105 (100%) .

The dincroiuran Iectone (85).

This compound wes isoleted es described eerlier. It crystallised from chloroform light petroleur as needles m.p. $187-190^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.7$ in 10% methenol chloroform.

$$
\begin{aligned}
& \max (\text { nujol }) 1750,1620 \mathrm{~cm}^{-1} \\
& \max \left(\mathrm{CHCl}_{3}\right) 1795,1780 \mathrm{cn}^{-1}
\end{aligned}
$$

$$
\left(\mathrm{CDCl}_{3}\right) 8.6\left(3 \mathrm{H}, \mathrm{~s},-\mathrm{CH}_{3}\right), 7.89\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{Ar} \cdot \mathrm{CH}_{3}\right),
$$

$$
6.65\left(2 \mathrm{H}, \mathrm{~m}, \mathrm{Ar} . \mathrm{CH}_{2}-\right), 6.11\left(3 \mathrm{H}, s,-\mathrm{OCH}_{3}\right)
$$

$$
5.09(1 \mathrm{H}, \mathrm{~m},-\mathrm{CH} . \mathrm{O}-), 4.95\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{Ar} . \mathrm{CH}_{2} \cdot \mathrm{O} . \mathrm{CO}-\right) .
$$

Radioactive Substrates and their Introduction into Cultures

 of P. brevicompactum.Radioactive materials used were $2-{ }^{14} C$ mevalonic acid $(0.05 \mathrm{mc})$ of specific activity $5.03 \mathrm{mc} / \mathrm{mM}$ and $2-^{3} \mathrm{H}$ mevalonic acid (2 mc.) of specific activity $90 \mathrm{mc} / \mathrm{mM}$. These radioactive precursors were dissolved in sterilised water (ll ml.). lOml. of these solutions were spread evenly over 5 Roux bottles containing 4-day old cultures of $\mathrm{Pe}_{\text {e brevicompactum }}$ grown under the usual conditions. These cultures were harvested after a further 48 hr .

Isolation of $3_{H, ~}{ }^{14} \mathrm{C}$ pebrolide.

The broth extracts were dissolved in chloroform and washed first with water and then with saturated aqueous sodium bicarbonate. To the dried chloroform solution, inactive pebrolide (187 mg .) was added and this was re-isolated by addition of light petroleum and purified by crystallisation. After 3 crystallisations, pebrolide was chemically pure as indicated by TLC. A further 3 crystallisations gave material of constant activity.

$3_{\mathrm{H}, ~}{ }^{14} \mathrm{C}$ Pebrolide ketone.

Crystals and material from the mother liquors from the last 3 crystallisations were combined (79 mg.) and
oxidised to pebrolide ketone under the usual conditions. Yield 68 mg . After crystallisation from ether the ketone was chemically pure as indicated by TLC. A further 3
crystallisations gave material of constant ${ }^{3} \mathrm{H} /{ }^{14} \mathrm{C}$ ratio.
${ }^{3}{ }_{H},{ }^{14} \mathrm{C}$ Keto-ester (94).
Pebrolide ketone (57 mg.) from the last 3 crystallisations indicated above was hydrolysed to the corresponding alcohol (43 mg .), which was oxidised and esterified under the usual conditions to give the keto-ester (30 mg.$)$. Crystallisation from chloroform- light petroleum gave pure material as indicated by TLC and the ${ }^{3} \mathrm{H} /{ }^{14} \mathrm{C}$ ratio was unchanged by further crystallisation from the same solvent.

$$
100 \text { c }
$$

Assays for Radioactivity.

Radioactive assays were carried out with a Packard Tri-Carb Liquid Scintillation Spectrometer (Series 3000). Efficiency for counting was 54% for ${ }^{14} \mathrm{C}$ and 30% for ${ }^{3} \mathrm{H}$. All the samples were counted on the same day to avoid errors due to decay of tritium. All were counted for 100 min .

The samples (ca. 2 mg.) were dissolved in 10 ml . of scintillator solution in a vial. 5 ml . of solution were transferred to a second vial by means of a pippette. Both solutions were diluted to 10 ml . with scintillator solution.
${ }^{3} \mathrm{H} /{ }^{14} \mathrm{C}$ ratio of material from the last crystallisation, based on 20 minute counts.

Pebrolide

$$
31.4 \quad 27.86 \quad 27.4^{*}
$$

Pebrolide ketone $26.7 \quad 26.5 \quad 26.1$

Keto -ester (94)

$$
12.1 \quad 11.7
$$

* A duplicate experiment has recently been carried out (R.Baxter) involving 8 crystallisation, longer counting times and giving a similar value (28.5)

Counting of Samples

1. Pebrolide.

	3_{H}	${ }^{14} \mathrm{C}$
	75,547	6,147
	76,000	6,289
	75,047	6,289
	76,902	6,268
	76,745	6,390
Average	76,048	6,277
Less background	74,449	4,491
C.p.m.	744.5	44.91
D.p.m.	$2,481.6$	83.16
	29.86	

2. Pebrolide ketone.

Pebrolide ketone.	3 H	146,7206,9696,7647,096
	73,367	
	72,704	
	73,249	
	73,364	
	73,119	
Average	73,161	6,887
Less background	71,562	5,101
C.p.m.	715.6	51.01
D.p.m.	2,385	94.5
$3_{\mathrm{H}} /{ }^{14} \mathrm{C}$ ratio	25.2	

3. Keto-ester (94)
3 H
34,033
33,944
33,821
33,283
33,125
${ }^{14}$ C
6,839
6,839
A
6,763
6,657

33,641
6,689
Less background
C.p.m.

32,042
4,903
D.p.m.
320.42
49.03
$3_{\mathrm{H}} /{ }^{14}$ C ratio $\quad 11.7$
1,067
91.25

$3 T \mathrm{BI}$ (r, 1
1.
2. D.J. Bertelli, J.if. Srabtree, Setrahedron., 24, 2079, (1968).
3. S. Matori, H. Mishikewa, H. Ogawa, Chem. Eharin. Bull., 12, 236, (1964).
4. D.H. Barton, IT.H. Werstiuk, J. Cher. Soc., 148 (1968).
5. E.J. Corey, S. Hozoe, H. Ari. Chem. Soc., 84,494,(1962).
6. K. Nakanishi, Yakugaku Zasshi., 83, 377, (1963).
7. J.J. Dugan, P.de Iayo, I. Misbet, I. Anchel,
J. An. Chem. Soc., 87, 2768, (1965).
8. F.W. Comer, F. LeCapra, A.I. Scott, Cher. Comp, 310 1965.
9. J.A. Kepler, L. . Mell, J. .. Iason, C. Besset,
A.T. IcYhail, G.A. Sim, J. An. Chen. Soc. 89, 1260 (1967
10. A.W. Dawkins, J.F. Grove, B.K. Pidd, Chem. Cor. 27, (105!
11. J. Gyimesi, A. Ielera, Metrahecron letters., 1665 , J. Gutzviller, 彐. Tuli, M.P. Sige, Ch. Tamm Herv.
12. J. Chem. Acta., 47,2234, (1964).
13. J. Gustzviller, Ch. Tamm. Helv. Chim. Acta. 48 157 (1965).
14. \%.0. Godtfredsen, Vancedal Acta. Chem. Scend. I9, 1088 (1065).
15. R.B. Detee, Antioiotio Biocynthesic, Grineer-Tenioz 1967 p. 143.
16. D. Gottlieb, F.T. Shev, Antibiotice Biosynthesis.
17. D. \because. Perbell, R... Camen, D.j. Cherman, K.R. Huffran, NJ. IcCoririndele, J. Em. Cher. Soc., 82, 1005 (1960).
18. H.P. Sigg, H. V. Veber., Helv. Chim Acta., 51 1395 (1968).
19. T. Goto, H. Kakiscva, Y. Hirata, Tetrahedron 19, 2079 (1963).
20. K. Hirai, S. Nozoe, K. Tsuad Setrahedron Ietters 2177 (1967) .
21. S. Mozoe, F.T. Suzulri and S. Okuda, Tetrahedron Letters 3643 (I968).
122. K. Kawashine, K. Nakenishi, H. Iishikawa, Chem. Mherm. BuII., 12, 796 (1964).
23. Cruickshank, Reistrick and Robinson, J. Chem. Soc., 2056 (1938).
24. A. Quilico, G. Ceirảni, G. Stacno, Gozz. Chim. Itel., 83, 754 (1953).
25. J.H. Berkinshaw, H. Raistrick, D.J. Ross, Biochem. J., 50, 630 (1952).
26. D.H.R. Barton, J.B. Henārickson, J. Chem. Soc., 1028 (1956).
 Ietters 1683 (1963).
28. N. Meracimhacheri, I.C. Vinine, Caņ. J. Chem., 4I, 641 (1963).
29. H. layer, U. Gloor, O. Isler, R. Puege, O. Tico, Helv. Chim. Acta, 47, 221 (1964).
30. Gale et al Biochemistry 2 296 (1963).
31. A.J. Birch, Z.J. English, R.A. Passy-ilestropp, H. Sraith Froc. Chen. Soc. 233 (1957).
32. P. Bernfeld, Biogenesis of Fatural Comnounds, Ferganon 1963, 2.3. Slayton, Qust. Rev., 21, 163 (1965).
33. J.J. Brodie, G. vesson, J.N. Porter, J. Biol Cher. 239, 1346 (1964).
34. U. Henning, Lynen, J. Biol. Ohem. 235, 326 (1960).
35. B. 7 . Agranoif, H. Bggerer, U. Eienning, F. Iynen, J. An. Chem. Soc., 81, 1254 (i959).
36. Aảvances in Enzimology eà lorà Interscience 1960 Vol 22282.
37. . C. Djerassi, Burnslein Petraheãon 7, 37 (1959).
38. 'H.H. Appel, C.J.W. Brooks, K.H. Overton, J. Chem. Soc. 332 (1959).
39. C.S. Barnes, J.:. Loder, Austrel J. Chem. 15, 322 (1962) !
40. H.H. Aprel, J.D. Connolly, K.H. Overton, R.P.I. Bond, J. Cher. Soc. 4685 (19:60).
41. Z. van Tamelen, A. Stomi, 3. J. Tessler, V. Schiantz, J. An. Cncti. Soc. 35, 3297 (1963).
42. R. Breslow, S.S. Olin, and J.T. Groves Tetrahearon Letters 1837 (1968).
43. A.E. Oxiora, H. Zaistrick, Biochem. J., 27 1170 (1933) A.E. Oxford, H. Raistrick, Biochen. J., 291599 (1935).
44. P. Gouin, Antonie Ven Ieeuvenioek, 21362 (1955),
P. Godin, Biochem. Bionhys. Acta, 12 528 (1953),
P. Godin, Biocher. Biophys." Acte, 11114 (1953),
F. Godin, Biochem. Bioohys. Acte, 11, 119 (1953),
F. Godin, Antonie ven Jeeuvenioek, 21 83, 94, 117 (1955).
45. A.J. Birch, Eroc. Uher. Soc., 10 (1962),
A.J. Birch, R.J. Lnglish, R.A. iassy-westropp, II. Slaytor.
46. B. Gosio, Riviste dIEiene e Senite nubblice. Ann, 7 825, 869, 961 (1896).
47. A. Birch, Proc. Chem. Soc. 3 (1962).

4है. A.J. Birch, R.J. English, R.A. Iassy - Mestropp, H. Slaytor, E, Smith, J. Chem. Soc. 365 (1953)
49. W.D. Ollis, the Chemistry of Vatural Fhenolic Comounde Perganon Ionaon 1961.
50. J.H. Richards, J.B. Henarickson, the Biosynthesis of Steroids, tervenes and acetogenins, Benjamin (1964) p. 146.
51. T. . Cemobol?, Wh. Whesis, Gleseow 1065.
52. A.J. Birch et al., ouoted by R. T. Bickeras, \#.D. OIIis (eā.), pre Ohemistry of Fatural
Fhenolic Comounds, Fergemon Iond on 1961, Chen. 2.
53. A. Kamal, A.A. Qureshi, A. Ahmad, R.T. Rickards, Tetrahearon 21, 1411 (1965).
54. J.H. Birkinshaw, Raistrick, Trans. Rov. Noc. B 220331 (1931).
55. Compare S.7. Tenenbeum Biocenecis of entibiotic substances scaderic Fress 1065, 2. 145.
56. J.J. Perry, J.7. Foster, J. Becteriology, 72, 295 (1956).
57. Bohme, Schneiàer, Ber., 72, 780 (1939).
58. G. Combes, R. Fernet, Fierre, Bull Soc. Chin. 1609 (1961).
59. A.B. Turner, Quarterly Reviews 18, 347, 1964.
60. H.J. Rineold, I. Hayano, V. Stefanonic, J. Biol. Chem, 29, 601 (1964).
61. . D. Walker, J.D.Hiebert, Ghen. Pev., 67153 (1967)
62. G. Gardillo, R. Gricchio and I. Ierlini,

Netrahearon 24, 4825 (IC63).
63. F.M. Dean, Naturally Occurring Cxyten Ping Compounds p. 222 Butterworths Iond on 1963.
64. Frivate comunication me turner.
65. T.J. Betterhen anc J.A. Iemberton, Aut. J. Chere, 17, 1305 (1964).
66. Budzikiewicz, C. Djerassi, D.F. Williens, Interpretation of Iass Spectre of Organic Compounde, Holden-Day (1964) p. 230.
67. C. Poel Ber. Dtsch. Chem. Ges., 17, 2765 (1884). R. Narayana, il. R. Bhaciane, M.R. Sarna Petrahedron Ietters 1561 (1968).
78.
K. Bloch, S. Chykin, A.H. Ihillips, A. cie :iaard, J. Biol. Chem. 2342585 (1959).
 Biochemistry I 182 (1962).
80. J.W. Cornforth, R. H . Cornforth, G. Popjek, I.s. Yegoyan, J. Biol Cnem. 241, 3970 (1966).
81. B. F. Agranoif, H, Ggerer, U. Heming end F. Iynen, J. Biol Chem. 235, 326 (1960)
82. Iynen, B. W. Agranoff, U. Fenning, Z.I. Joslein, Anger Chem. 71657 (1959).
83. J. Corniorth, R. $\mathrm{H} . \mathrm{Cornforth}, \mathrm{C}$. G. Fapjak, Proc. Roy Soc. 163, 492 (1966).
84. Arigoni, the Biosynthesis of Terrenes end Sterols, J.A. Churchill Lta., London 1959, D. 231.
85. Birch ref. 84, p. 245.
86. J.D. Bu'Lock, The Biosymthesis of natursi oroucts. LicGraw - Hill 1965 0. 62.
87. D.J. Baisted, Ehytochenistry, 6, 93 (I967)
88. J.I. Bijvoet, A.F. Feerāeman, A.J. van Bonmel Nature, 168,271 (1951)
89. J.A. Iooore, D.E. Reed, "Organic Syntheses", 41 16(1961.

