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Chapter One

INTRODUCTION 
A BRIEF HISTORY OF THE 

DEVELOPMENT OF THE MASS 
SPECTROMETER



A mass spectrom eter (o r spectrograph) i s  an instrum ent 

ab le  to  d if f e r e n t ia te  between gaseous ions w ith re sp e c t to  

th e i r  m ass-to-charge r a t io .

I f ,  fo r  the d e tec tio n  of io n s, a  photographic p la te  i s  

used, the  term spectrograph i s  common; when the d e tec tio n  

i s  made by e le c t r ic a l  means, the name mass spectrom eter 

g en era lly  i s  used.

The f i r s t  instrum ent capable of sep ara tin g  the mass 

components of a given chemical element was b u i l t  by J .  J .  

Thomson ^ in  1907* l n th is  apparatus a beam of 

p o s itiv e ly  charged p a r t ic le s  i s  subjected  to  the combined 

a c tio n  of e le c t r ic  and fp a ra lle l\m ag n e tic jf i e ld s . For each 

m ass-to-charge r a t io ,  Thomson obtained on a  photographic 

p la te  a  truncated  parabo lic  curve. A spot image fo r  each 

mass would have re su lte d  but fo r  the la rg e  energy spread of 

the  ions, produced by an e le c t r ic  d ischarge .

Even so, he could demonstrate th a t  neon consis ted  of 

two atomic spec ies, one of atomic mass 20 and the o th e r of



atomic mass 22.

This observation of the ex istence  of s ta b le  iso topes 

i s  one of the g re a te s t  achievements claimed by mass 

spectroscopy.
2

In  19191 F.W. Aston b u i l t  another type of instrum ent 

which produced a l in e  spectrum on a photographic p la te ,  

each l in e  corresponding to  a  p a r t ic u la r  m ass-to-charge 

r a t io .

The ions, a f te r  being foi£&, passed through e le c t r ic  

and magnetic f ie ld s  aaset arranged i t a H S n e  in  succession 

in  a way th a t the d isp ers io n  caused by the e le c t r ic  f ie ld  

i s  compensated by the focusing p ro p e rtie s  produced by 

th a t  of the magnet.

Thus, although the p o s itiv e  ions w ith the same mass- 

to-charge r a t io  come in to  the magnetic analyser w ith a  b ig  

range of v e lo c it ie s  and so follow  d if f e re n t  paths, they a re  

focused in  the same l in e  in  a  photographic p la te .  This 

a c tio n  i s  c a lled  "v e lo c ity  focusing".



For the id e n t i f ic a t io n  of the  masses, Aston used a 

standard mass and noted i t s  p o s itio n  in  the photographic 

p la te  and the unknown masses were deduced by em pirical 

r e la t io n s  to  i t .  Many e rro rs  were involved in  th a t  

process. The focusing was not p e rfe c t and because a t  the 

time the r e la t io n  between the density  of blackening of the  

p la te s  and the beam in te n s i ty  was unknown, i t  was no t 

p o ssib le  to  make r e la t iv e  abundance measurements.

However, Aston made a system atic search fo r  iso topes

in  more than 50 of the l ig h t  elem ents.
3

At the same time, Dempster developed another type 

of mass spectrom eter in  which the p o s itiv e  ions, a f t e r  

being acce le ra ted  in  an e le c tr ic  f ie ld ,  were passed through 

a s l i t  and d eflec ted  through 180° arc  by a  magnetic f ie ld  

placed perpendicular to  the d ire c tio n  of motion of the 

ions which in  consequence describe  a c i r c le  of rad iu s  r  

such th a t  the cen trifu g e  fo rce  equals the magnetic fo rce ,
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i . e . 2 * Bev ( i )m v 
r

where m i s  the ion mass, y  the ion v e lo c ity , y  the ion 

e le c t r i c  charge and B the magnetic induction.

The rad iu s  r  of the tra je c to ry  is  proportioned to  

the momentum of the p a r t ic le .

I f  the o r ig in a l  k in e tic  energy of the ions is  

n e g lig ib le  in  comparison with the energy obtained by 

a c c e le ra tio n  in  the e le c tr ic  f ie ld ,  we have

1_ mv
2

2 eV (2)

where V i s  the  acce le ra tin g  vo ltage . 

E lim inating  v between ( l )  and (2)

m
e

(3)

in  which the  rad iu s  of the tra je c to ry  i s  proportional to



to  the square ro o t of the m ass-to-charge r a t io  § , and then 

the spectrum of momentum becomes a mass spectrum.

The ions a re  focused in  a plane a f te r  passing  through 

the magnetic f ie ld ,  owing to  the p ro p ertie s  of d ire c tio n a l 

focusing of the magnetic f ie ld s .  * Hence the name

"d ire c tio n  focusing spectrom eter” given to the Dempster 

machine.

As he used e le c t r ic a l  means of record ing  the ion beam,

r e la t iv e  abundance measurements were p o ssib le .
7

In  1932, Bleakney described another spectrom eter 

a lso  of 180° d e f le c tio n  in  which the magnetic f ie ld  fo r  

the ion an a ly sis  was produced by a so lenoid .

U n til 1940, a l l  the mass spectrom eters produced were of 

one of these two types; Dempster or Bleakney, i . e .  a l l  of 

180° of a rc  d e f le c tio n .

The spectrom eters th a t combine "v e lo c ity  focusing" and 

"d irec tio n  focusing” a re  termed "double focusing spectrom eters” 

Their general theory was deduced by Herzog 4 and the design



Q
of Mattauch and Herzog i s  s t i l l  w idely used. However,

some of the modern "double-focusing mass spectrom eters"

use the Johnson and N ier design which i s  more amenable

to  measuring the abundance of any given ion . These mass

spectrom eters are  capable of much h igher re so lu tio n  than

the s in g le  focusing instrum ents, as the combination of

e le c t r ic  and magnetic f ie ld s  compensates fo r  the energy

spread of the ions when they leave the ion source.
9

In  1940, N ier published the d e ta i ls  of the f i r s t
s O"sec to r f ie ld  d ire c tio n  focusing instrum ent" having a  60 

of arc  sec to r fo r  the magnetic d e f le c tio n . In  1942, 

Hippie "^described  a 90° sec to r f ie ld  instrum ent and 

nowadays most of the sec to r f ie ld  magnetic d e f le c tio n  

spectrom eters a re  one or o ther of th ese .

A dd itionally , th e re  i s  the cyc lo ida l-focusing  mass 

spectrom eter f i r s t  produced by Bleakney and Hippie in  

which a beam of ions d iverging from a  source s l i t  i s  de:

:f le e te d  by crossed e le c t r ic  and magnetic f ie ld s .



Ions of a  given — r a t io  co nverge  to  a focus, a f t e r  

describ ing  d if fe re n t  cyc lo ida l t r a je c to r ie s .

One of the advantages of th is  design co n s is ts  on i t s  

r e la t iv e  in s e n s i t iv i ty  both to  energy spread and angular 

divergence of the ion beam. The instrum ent i s  mainly used 

fo r  gas an aly sis  in  the mass range 12 to 150 a.m .u.

Eadio-frequency mass spectrom eters were f i r s t  repo rted
12,15

by Smyth and Mattauch. However, the p resent models were 

described  by B ennett. ^  In  these instrum ents an ion beam 

homogeneous in  energy passes through a succession of ra d io -  

frequency stages separated  by f ie ld - f r e e  d r i f t  speces.

Those w ith an appropria te  v e lo c ity  are  p re fe re n tia l ly  

acce le ra ted  and can overcome a s ta t i c  re ta rd in g  f ie ld ,  while 

ions having o ther v e lo c it ie s  are  re je c te d . Because of the 

homogenity in  energy of the ion beam, the v e lo c ity  of an ion 

i s  c h a ra c te r is t ic  of i t s  mass then the v e lo c ity  an a ly sis  

achieved in  the spectrom eter is  equivalent to  mass a n a ly s is . 

An advantage of the radio-frequency mass spectrom eter i s  

th a t i t  req u ires  no magnet. The analyser i s  compact and 

i t s  construc tion  i s  s im p lified  by the f a c t  th a t  th ere  are  no



s l i t s  to  be a lig n ed . Although the re so lv in g  power i s  

modest the instrum ent i s  u se fu l fo r  the an a ly sis  of gases 

in  the upper atmosphere.

A fu r th e r  type of apparatus i s  the t im e -o f-f lig h t
15mass spectrom eter, f i r s t  repo rted  by Cameron and Eggers ^

and subsequently by many o ther workers ^  ^  • The ions

formed by e lec tro n  impact with a pulsed beam of e lec tro n s

are  acce le ra ted  through an e le c t r ic  f ie ld  and p ro jec ted
time

along a f ie ld - f r e e  space towards a d e te c to r . T h e /in te rv a l 

between the pulse of the e lec tro n  beam and the pulse 

produced in  the ion d e tec to r by the a r r iv a l  of a bunch of 

ions i s  a function  of the m ass-to-charge r a t io  of the io n s.

The mass re so lu tio n  obtained with th is  spectrom eter 

depends on the spread of the f l ig h t  times fo r  ions of the 

same m ass-to-charge r a t io .

This spread must not exceed the d iffe ren ce  in  tra v e l 

times fo r  ad jacen t masses i f  those are to  be reso lved .

This instrum ent is  valuable fo r  m onitoring high speed



reac tio n s  as the r e p e t i t iv e  scan r a te  may be as high as 

20000 cycles/second. With some m odifications ^  th a t 

comprise the in tro d u c tio n  of a re ta rd in g  f ie ld  b a r r ie r  in  

the f ie ld - f r e e  d r i f t  tube, before the c o lle c to r  th is

apparatus has been used both fo r  s tu d ies  in  ion d is so c ia tio n
22 23and charge tra n s fe r  processes  ̂ .

Paul and co-workers 6 developed a quadrupole

mass spectrom eter in  which the mass separa tion  is  done in  an 

quadrupolar rad io-frequency f ie ld .  The ion beam tra v e ls  

through the axis of the quadrupole f ie ld  which i s  produced 

by four p a ra l le l  c y lin d ric a l rods to which there  i s  app lied  

a  d c -p o te n tia l with a superimposed high frequency vo ltage . 

The ions perform o s c il la t io n s  perpendicular to the tra v e l 

ax is  which remain below a maximum p em ai«» tted  amplitude 

only fo r  a c e r ta in  mass range of ions. Therefore, only 

these ions can pass through the quadrupole f ie ld  and a l l  

o ther ions performing unstab le  o s c il la t io n s  w ith rap id ly  

r is in g  amplitudes s tr ik e  the rod e lec tro d es or escape



between them and are  lo s t  to  the system. The advantages of 

the instrum ent include the absence of a magnet and se the 

analyser tube i s  l ig h t .  A ctually  i t s  major use i s  in  the 

an a ly s is  of re s id u a l gases but i t  i s  a lso  widely used as a 

mass f i l t e r  of high transm ittance  as i t  i s  w ithout s l i t s .

Sommer, Thomas and Hippie ^  devised an apparatus, 

the "Omegatron", which employs a  magnetic f ie ld  crossed w ith 

a radio-frequency f ie ld  to  scan the mass spectrum. The ions 

in  resonance with the radio-frequency f ie ld  describe a  

growing s p ir a l  gaining energy in  each h a lf -re v o lu tio n  as 

in  the operation  of a  cyclo tron . The out-of-phase ions 

lo se  energy and are  not able to reach the c o lle c to r .  Because 

of the ra th e r  long ion path th is  instrum ent req u ire s  a very 

high vacuum, so i t s  main use is  re s id u a l gas an a ly s is  in  

high vacuum systems.

In  g en era l, we can say th a t  the  f i r s t  mass spectrom eters 

b u i l t  had as primary aims the  determ ination  of ion masses 

fo r  the id e n t i f ic a t io n  of substances and measurement of



r e la t iv e  iso to p ic  abundances,

Then the mass spectrom eter became a  u se fu l to o l in  the 

an a ly s is  of hydrocarbons and s t i l l  continues to  be of g re a t 

value in  the id e n t i f ic a t io n  and q u a n tita tiv e  an a ly s is  of
OO

m ixtures of th ese  •

L ater, the mass spectrom eter, besides continuing  as an 

ind ispensab le  a n a ly tic a l  to o l,  has had i t s  ap p lica tio n s  

extended to include s tu d ies  of m olecular s tru c tu re , 

chemical k in e t ic s ,  determ ination  of d is so c ia tio n  en e rg ies , 

io n iz a tio n  and appearance p o te n tia ls ,  la te n t  h ea ts  of 

sublim ation , re a c tio n  mechanisms by iso to p ic  la b e lin g  

techniques, e tc .

In  recen t y ea rs , mass spectrom ers have been designed 

and b u i l t  fo r  pure resea rch  purposes, no tably  fo r  s tu d ie s  

on io n iz a tio n  and d is so c ia tio n  processes ^9,5© Q&& f o r 

in creasin g  our inform ation about the  upper energy s ta te s  

of m olecules. 33H53

In  a l l ,  the mass spectrom eters a lread y  d escribed ,



only the p o s itiv e  ions produced in  the ion source are  

c o lle c te d  and analysed, -while the e jected  e lectrons are  

ignored ,

Rosenstock in  1961 ^4 described a coincidence tim e-of- 

f l i g h t  mass spectrom eter in  which both the secondary e lec tro n  

and the  p o s itiv e  ion produced by e lec tro n  impact io n iza tio n  

a re  c o lle c te d . The time in te rv a l between co llec tio n  of a 

secondary e le c tro n  and the corresponding p o s itiv e  ion is  an 

accu ra te  measure of the m ass-to- charge r a t io  of th is  ion .

The coincidence mass spectrom eter is  p a r t ic u la r ly  

im portant in  s tu d ies  of io n iza tio n  and d isso c ia tio n  processes

as a s in g le  io n iz a tio n  event can be detected sep ara te ly ,
35For example, Rosenstock e t  a l  used th is  apparatus

su ccessfu lly  fo r  d ire c t  observation of the decomposition of 

m u ltip ly  charged ions in to  s ing ly  charged fragments.

The method of io n iza tio n  generally  used in  most mass 

spectrom eters i s  the bombardment by nearly  monoenergetic 

e lec tro n s  of about 30-70 ev energy, produced by thermionic 

em ission from a hot filam en t.

A molecule in  the gaseous s ta te  is  bombarded by an



e le c tro n , producing a  p o s itiv e  ion and e jec tin g  another 

e le c tro n ,

AB + e —*■ AB+ + e” + e”

Owing to  the ample excess energy of the e lectrons 

over the io n iz a tio n  p o te n tia ls  of the molecules in  study, 

many secondary decompositions of the molecular ions take 

p la ce , many in s id e  the ion chamber, o thers in  t r a n s i t  to  the 

c o l le c to r .  Therefore, a very complex spectrum generally  

r e s u l t s .  Simpler sp ec tra  are produced i f  the io n iza tio n  

is  induced by the  methods of f ie ld  io n iza tio n , chemical 

io n iz a tio n  or photon impact.

The sim pler form of photo ionization  i s  described by

h* + AB — ► AB* + e“

Nearly monochromatic photon beams have been used fo r  

many years ^6 to  study photo ion ization  processes in  low 

p ressu re  gaseous systems bu t, except fo r  the ea rly



15-

experiments of Terenin and Popov 37 , not u n t i l  1956,

(Lossing and Tanaka ^  ) was photo ion ization  used fo r  the  

f i r s t  time in  an ion source in  mass spectrom etry.

In none of these experiments the photon energy could 

be varied  continuously fo r  s tu d ie sc f  the photo ion ization  

y ie ld  vs the photon energy.
29H urzeler, Inghram and Morrison ^  were the f i r s t  

to  combine a vacuum u l t r a v io le t  monochromator a ttached  

to  a mass spectrom eter to study pho to ion ization  processes.

The advantages of photo ion ization  over e lec tro n  

impact are many:

1. I t  i s  much e a s ie r  to g e t a monochromatic beam of 

photons with a s t r i c t l y  co n tro lled  energy than of 

e le c tro n s . Thus, fo r  example, w ith ordinary vacuum 

monochromators one can e a s ily  obtain  a re so lu tio n  of the 

order of 1A°, which corresponds to  a s c a t te r  of photon 

energies of the order of 0.01  ev.

2. In  pho to ion ization , the ion cu rren t near the 

appearance threshold  of the ions r is e s  very sharp ly , in  

comparison w ith io n iza tio n  by e lec tro n  impact, and so 

allows a b e t te r  understanding of the ion form ation 

processes. This d iffe ren ce  in  the shapes of the



ph o to io n iza tio n  and e lec tro n  impact e ffic ien cy  curves i s  

explained by the f a c t  th a t  the ion iz ing  e lec tro n s, having 

spent th e i r  energy in  io n iza tio n  and in  im parting a  c e r ta in  

e x c ita tio n  to  the ions, remain in  th e i r  v ic in ity  and can 

n e u tra liz e  than . The io n iza tio n  y ie ld  increases only 

when the excess k in e t ic  energy becomes la rge  enough so th a t 

the e le c tro n  and the  ion separate  quickly .

3. P ho to ion iza tion  gives more d e ta ile d  inform ation of 

io n iz a tio n , au to -io n iz a tio n  and fragm entation of ions.

4* I t  i s  more su ita b le  fo r q u a n tita tiv e  work as i t  

avoids the d i f f i c u l t i e s  a r is in g  from contact p o te n tia ls  

which a re  a sso c ia ted  w ith e lec tro n  impact sources.

5. Owing to  th e  absence of a hot filam ent, p y ro lis is  

of s e n s it iv e  substances i s  avoided and, consequently, a 

h igher p ressu re  may be employed in  the source, lim ited  only 

by the p ressu re  in  the analyser.

There a re  a lso  some disadvantages. F i r s t ,  i t  i s  

d i f f i c u l t  to  g e t in ten se  continuum sources in  the



vacuum u l t r a v io le t  and, second, r e la t iv e ly  weak ion 

beams a re  obtained.

However, owing to the above advantages, 

pho to ion ization  i s  becoming a more widespread method 

of producing ions. I n i t i a l l y ,  the photon energy used 

was lim ited  by the absorp tion  in  the window in se rte d  

between the l ig h t  source and the io n iza tio n  chamber. 

Lossing and Tanaka,'*® Herzog and Mamno 39 and M orrison, 

H urzeler and Inghram ^  used lith ium  flu o rid e  windows and 

so wavelengths below 1050 A° were completely absorbed. 

Hence the compounds th a t could be ionized were lim ited  to  

those w ith io n iza tio n  p o te n tia ls  le ss  than 11.8  ev.

L ater, th is  l im ita tio n  was removed 30,40,41 ^

e lim inating  the window, but in  view of the pressure used 

in  the lamp ( l  to r r  minimum) a high degree of d i f f e r e n t ia l  

pumping i s  necessary to  keep the high vacuum in  the 

an aly ser.

We undertook to  b u ild  a tim e -o f- f lig h t mass



spectrom eter in  which the advantages of the coincidence 

technique are  combined with those from using 

p h o to io n iza tio n . I t s  design and construction  were fo r  

the development of s tu d ies  on io n iza tio n  and d isso c ia tio n  

p ro cesses, includ ing  d ire c t  observation of m etastable 

decom positions. I t  can also  admit determ inations of 

the energy d is tr ib u tio n  of the photo-electrons e jected  and, 

consequently, determ inations on the ion energy le v e ls .
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Chapter Two

DESCRIPTION 
OF THE APPARATUS 

AND
EXPERIMENTAL PROCEDURE



A -  io n  a c c e le ra tio n  p la te s  
B -  e le c tro n  a cc e le ra tio n  p la te s  
C -  in te im ed ia te  pumping chamber 
P .-  flange supporting  c a p illa ry  p 
E -  e le c tro n  d e te c to r  ^
F -  flange supporting lamp 
G -  c a p illa ry  
H -  flange w ith  gasket 
I  -  ion  d e te c to r
K,L,M, -  f lan g es  w ith lead-th roughs 
P -  Photon d e te c to r  
P1,P2,P3 -  pumping p o r ts

, 0



P o sitiv e  ions and e jec ted  e lec tro n s  formed in  a 

uniform e le c t r o s ta t ic  f ie ld  by a photon beam of u l t r a v io le t  

ra d ia tio n  from a helium discharge lamp are acce le ra ted  in  

opposite d ire c tio n s  to  m u ltip lie r  detectors*  The 

arrangement i s  shown in  f ig .  1.

The masses of the p o s itiv e  ions are  determined by 

measuring the time in te rv a l between the e lec tro n  and ion 

pulses by delayed coincidence. As the a r r iv a l  of the e lec tro n  

to  the e lec tro n  d e tec to r i s  considered instan taneous, th is  

d iffe ren ce  in  tra v e l times is  a measure of the ion tra v e l  

tim e.

2.1 VACUUM SYSTEM

The housing of the spectrom eter co n sis ts  e s se n tia lly  

of a  c y lin d ric a l tube, 8 cm diam eter and 80 cm long, w ith



2 s id e  tubes 5 cm diam eter, as is  shown in  the diagram. 

They are  made of non-magnetic s ta in le s s  s te e l  and a l l  the 

jo in ts  are  argon-arc welded *

Copper gaskets are  used throughout which make the system 

completely bakeable.

The e le c t r ic a l  connections to  the outside of the 

vacuum housing are  made by ceramic lead-throughs in se rte d  

in  the flanges K,L and M of -the main tube.

A twin ro ta ry  pump, AEI type GDR210, keeps the 

backing p ressure fo r  two d iffu s io n  pumps P^ and P^, AEI 

type 033C, w ith a pumping speed of 130 l / s e c ,  below 

10~^ to r r .

P^ -  produces the vacuum on the main tube, and Pg -

evacuates the in term ediate  chamber C fo r  d i f f e r e n t ia l  

pumping between the lamp L and the main tube.

* Made a t  the Rolls Royce Ltd. East K ilb rid e , Scotland 

by kind perm ission of the management.
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Both d iffu s io n  pumps are  a s s is te d  by cold tra p s , AEI 

MASK I I I .  The pressure in  the backing l in e s  of the two 

d iffu s io n  pumps are in d ica ted  by two thermocouple gauges,

AEI type VH8, connected to  the AEI VC12 thermocouple gauge 

c o n tro l.

Magnetic valves fo r  a i r  adm ittance and simultaneous 

is o la t io n  of the system are  used fo r  p ro te c tio n  ag a in st 

power f a i lu r e .

A schematic diagram of the vacuum system i s  shown in  

f ig .  2.

The path between the lamp and the io n iza tio n  reg ion  is  

made windowless by means of a quartz c a p illa ry  G through 

flange I) th a t  makes the connection of the chamber C with 

one of the l a te r a l  tubes.

The a c tu a l hole of communication between chamber C 

and the main tube is  only the bore of the  c a p illa ry  G and th a t 

one can change to a  c a p illa ry  of d if fe re n t bore to  allow  

v a ria tio n s  on the th ickness of the l ig h t  beam th a t passes 

through.



This arrangement was po ssib le  due to a  small flange H 

imbedded in  flange I) th a t  makes the sea lin g  around the 

c a p illa ry  G.
—8The basic  p ressu re  in  the main tube i s  3 x 10~ to r r  

with empty cold tra p s , when a polyphenylether * f lu id  i s  

used in  the  d iffu s io n  pumps.

With the helium discharge lamp in  operation  the basic
-7

pressu re  in  the tube i s  s t i l l  3 x 10 to r r  owing to  the 

e f f ic ie n t  d i f f e r e n t ia l  pumping through chamber C.

P , i s  a  pumping p o rt in  the lamp L th a t  can be
j

connected to  a ro ta ry  pump to  help pumping the helium.

However, the operation  of the lamp i s  not a ffec ted  

i f  the pumping p o rt i s  closed .

The pressure measurements on the  high vacuum side 

are  made by two Bayard-Alpert io n iza tio n  gauges, one below 

the io n iza tio n  region and the second connected to  the 

in term ediate  chamber C. The gauges are  AEI type 7H22,
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w ith the con tro l u n it  AEI VC20.

* Convalex -  10?made by Consolidated Vacuum Corporation, 

Rochester, N.Y., U.S.A.

2.2 INLET SYSTEM

We have chosen the batch sampling system as th is  one 

i s  capable of handling a wide range of sample gas volumes 

and p ressu res . In  th is  system, small doses measured by 

the  dosim eter are  adm itted to an expansion re se rv o ir  and 

the sample in tro d u c tio n  fo r  the mass spectrom eter i s  made 

by a porous leak .

A schematic diagram of the in l e t  system is  shown in  

f ig .  3.

In  th is  system, a common manifold of small volume is  

f i t t e d  w ith four valves, A,B,C,D.

Valve A connects the whole system to  the vacuum 

pump Pg which reduces the p ressu re  in  the sample system to



-5below 10 to r r .

When valves A and C are  closed, samples contained in  

the sample ho lder F are  adm itted v ia  valve B to the manifold 

in te rsp ace , and through valve D to  the dosim eter.

The dose contained in  the dosim eter i s  adm itted to the 

expansion re se rv o ir , opening valves D and C. Of course, 

during th is  operation , valves B and A must be closed.

The leak  valve L can then be opened and regu la ted  fo r  

a su ita b le  flow of the sample in to  the io n iz a tio n  region 

of the mass spectrom eter.

The photograph on F ig . 4 shows p a r t  of the g lass  in le t  

system.

Valves A,B,C,D are  vacuum t ig h t  g lass  taps and the leak 

valve L i s  of a sp ec ia l type in  which a m etal diaphragm 

se a ls  d ire c t ly  on to  the face of a  s in te red  s il ic o n  carbide 

leak  to  reduce the "dead space" volume to  a minimum.

This batch sampling system can be used fo r  high 

vapour p ressu re  liq u id s  hy f i r s t  freez in g  the liq u id  in  the





sample holder and evacuating the space above the 

l iq u id , then, by allow ing the liq u id  to  warm or, in  

f a c t ,  h ea tin g  the liq u id , in troducing the vapour in to  

the system a t  reduced p ressu re .

Because the sample pumping system co n sis ts  of 

the ro ta ry  and d iffu s io n  pump used as w ell fo r  

pumping the helium through the discharge lamp, th is  

one should not be in  operation , and so the needle 

valve fo r  helium admission should be closed during 

the  pumping of the sample system to avoid sample 

contam ination with helium.

2.5 LIGHT SOURCE

The sim plest source of u l t r a v io le t  ra d ia tio n  is  

a gaseous d ischarge. This can be in i t i a te d  by 

ap p lica tio n  of do or ac p o te n tia ls  to  the  e lectrodes 

in s id e  the gas, or by microwave ra d ia tio n , or even by 

the  ra d ia tio n  em itted from a Te=La c o i l .



a

cn

i m  u

Fi
g*

 5



The l ig h t  source used in  our apparatus is  a dc 

c a p illa ry  discharge in  helium a t  1 to r r  p ressu re .

The lamp i s  made of Pyrex with c y lin d ric a l e lec tro d es , 

made of n ick e l about 5 can a p a rt, and is  w ater cooled.

The diagram of the lamp i s  shown on f ig ,  5«

At about 1 to r r ,  the discharge is  in i t i a te d  by a 

voltage of around 1500 V and is  maintained subsequently a t  

about 600 V. The flow of helium from a  cy linder i s  

adm itted to  the lamp through a needle valve, and the f i r s t  

pumping p o rt on the lamp i t s e l f  i s  connected to a ro ta ry  

pump and the remaining helium is  pumped through chamber C 

by the d iffu s io n  P£.

The power supply used is  v a riab le  0-2 .5  KV dc 

s ta b lis e d  and reg u la ted . The cu rren t through the lamp i s  

about 10 mA.

The resp ec tiv e  e le c tro n ic  c i r c u i ts  w il l  appear in  

paragraph 2 .6 .
1 2We b elieve  * th a t  the output of th is  lamp co n s is ts  mainly 

of the helium emission l in e  584 A (21.21ev),
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As no substance i s  known tran sp aren t to  the u l t r a v io le t  

ra d ia tio n  of th is  wavelength, no window could be used between 

the lamp and the io n iz a tio n  reg ion , which req u ires  a high 

degree of d i f f e r e n t ia l  pumping to  m aintain the vacuum in  

the analyser tube, in  s p ite  of the 1 to r r  pressure in  the 

lamp.

Using a lamp w ith a c a p illa ry  lmm bore and the hole of 

communication between the in term ediate chamber C and the 

main tube 1 mm bore a lso , the basic  p ressure in  the main
-7

tube w ith the lamp in  operation  i s  3 x 10 to r r .

However, pumping through p o rt could be elim inated 

w ithout any changes in  the p ressure conditions i f  the admission 

of the helium was ad justed  with the needle valve .

I t  became necessary to increase  the io n iza tio n  y ie ld in g  

and fo r  doing th a t we increased the photon f lu x  through the 

io n iz a tio n  reg ion .

A new lamp w ith a 3 nnn bore c a p illa ry  was made and the 

1 mm c a p illa ry  G th a t  makes the communication w ith the



io n iza tio n  reg ion  was rep laced  by a 2 mm bore c a p illa ry . 

However, keeping constant the ex terna l diam eter of the 

c a p il la ry  G, no changes are  necessary on flange H fo r  the 

sea lin g ,
-7

The basic  pressure in  the main tube i s  s t i l l  8 x 10 

to r r .

The alignment of the l ig h t  source w ith the centre of the 

io n iz a tio n  region was made through a m etalic  tube w ith in  

chamber C with both ends fix ed , one on flange I) and the o ther 

on flange F.

The in te rn a l diam eter of th is  tube was machined to f i t  

exac tly  the ex terna l diam eter of the c a p illa ry  G and the 

c a p illa ry  used in  the l ig h t  source.

There i s  good alighment of these c a p il la r ie s  in  s p ite  

of the d is tan ce  kept between them. The m etal tube has 

sev era l openings in  the region between the c a p i l la r ie s  fo r  

the d iffu s io n  of the helium in to  chamber C and consequent 

pumping.



The connection of the l ig h t  source with chamber C is

made on flange F w ith a  m e ta llic  cone B14 th a t  f i t s  the B14

Pyrex socket of the lamp#

To keep the l ig h t  source assembly s ta b le , p ro tec ted  by

ex tern a l hazards, and a lso  fo r  p ro te c tio n  of the operator

from u l t r a v io le t  l ig h t ,  a m e ta llic  box was made to  enclose

the lamp. Plugs fo r  the e le c t r ic a l  connections, needle

valve fo r  adm ittance of the helium and water pipes fo r  the

cooling of the lamp, are fixed  in  th a t  box.

In sid e  the box, and between th is  and the lamp, a l l  the

connections are  made f le x ib le  so th a t the lamp can be taken

out of the system and re p laced very e a s ily .

The photograph on f ig ,  6 shows the ta b le  top of the

instrum ent w ith the assem blies described .

As i t  i s  known th a t  the io n iza tio n  y ie ld  increases when

the d istance  between the  lamp and the io n iza tio n  region 
3

dim inishes another arrangement was stud ied  and te s te d , in  

which only one e lec trode  was in  the lamp and the second one
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was fix ed  in s id e  the chamber C.

This lamp was made of quartz and only the e lec trode  in  

the lamp was water cooled.

The e le c t r ic a l  connection fo r  the second e lectrode was 

made by a g lass  to  metal sea l placed on chamber C.

This method proved, however, to have the disadvantage 

of producing the heating  of the B14 cone of the lamp 

connection with the system, and a f te r  a c e r ta in  time of 

operation , a leak was developed in  the cone due to  the m elting 

of the apiezon wax used to make the sea l between the m etal 

cone and the quartz socket.

We t r ie d  to  use A ra ld ite  fo r  the sea lin g  b u t, because 

the  m etal and quartz c o e ff ic ie n t of expansion are  q u ite  

d if fe re n t,  a f te r  a c e r ta in  time of operation  the quartz 

socket cracked.

The problem of in creasin g  the io n iza tio n  y ie ld  was solved 

by in creasin g  the photon output from the lamp with both 

e lec tro d es outside the system, as already  described .



2.4 PHOTON DETECTOR

The d e tec to r  used fo r  m onitoring the photon in te n s ity  

i s  an EMI pho tom ultip lie r type 95 26B, w ith 11 dynodes.

I t  was s e n s itise d  to  u l t r a v io le t  ra d ia tio n  by coating  

i t  on the ou tside with a th in  lay e r of a flu o rescen t so lu tio n  

of sodium s a l ic y la te  in  methyl a lco h o l.^

This coating  is  s ta b le , does not evaporate in  vacuum, 

gives reproducible r e s u l ts ,  has an ex ce llen t response, and 

i t s  r e la t iv e  quantum e ffic ien cy  i s  constan t below 2000A°.

Because in  our work we are  no t intended to determine 

photo ion ization  e f f ic ie n c ie s , i . e .  the number of ions 

produced by an in c id en t photon, we do not need an abso lu te  

c a lib ra tio n  of the pho tom ultip lie r ag a in st a standard
5

thermocouple, or any o ther method fo r th a t  m atter.

As we have used the 584 A0 helium l in e  throughout, we 

only needed a record ing  of the anode cu rren t of the 

pho tom ultip lie r in  a rb i tr a ry  u n its  to check i f ,  during one 

experiment, the l ig h t  in te n s ity  remained constan t.



The l ig h t  beam passes through the io n iza tio n  region 

w ithout s tr ik in g  any metal p a r ts  and impacts on the 

pho tom ultip lie r in s ta l le d  in sid e  the vacuum system on a 

l a t e r a l  tube opposite the photon source.

2.5 ASSEMBLY OE THE ION AND ELECTRON ACCELERATORS WITH 
THE RESPECTIVE ION MB ELECTRON DETECTORS.

The ion acc e le ra to r  co n sis ts  e s se n tia lly  of a  s e t  of 19 

p la te s  of non magnetic s ta in le s s  s te e l ,  0.054  cm thickness 

and 7.00 cm diam eter. A ll of these p la te s  have a c irc u la r  

hole in  the cen tre  of 1.0 cm diam eter except fo r  the f i r s t  

p la te  near the l ig h t  beam which has a rec tan g u la r s l i t ,

1 .0  x 2 .0  cm, to  increase  the c o lle c tio n  e ffic ie n c y  of ions 

from the io n iza tio n  reg ion .

The e lec tro n  a c c e le ra to r  co n sis ts  of 2 p la te s  of the 

same m ate ria l and th ickness, the p la te  n ea rest to the l ig h t  

beam having a rec tan g u la r s l i t  a lso  1.0 x 2.0 cm and the 

second p la te  has a c ir c u la r  hold 1.0 cm diam eter.



Fig . 7
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A ll p la te s  have a s e t  of 3 o ther c irc u la r  holes 0.70 cm 

diam eter, spaced 120° on a c ir c le  of 3-0 can rad iu s . Three 

rods of 0.25  cm diam eter of non magnetic s ta in le s s  s te e l  

in su la ted  by quartz tubing pass through the above mentioned 

holes on the p la te s . A ll p la te s  a re  kept eq u id is tan t by 

quartz  spacers 1.00 cm leng th , th a t  go over the quartz 

tubing.

Figure 7 shows a perspective  of a p la te , rod, and 

spacer.

The th ree  rods pass equally  through 6 p y ro p h y llite  

rin g s  machined such th a t  the outside diam eter f i t s  exactly  

the in te rn a l  diam eter of the main tube ( 8 cm).

The ends of the rods a re  threaded to  receive  nuts 

a f te r  the rin g s  placed in  each extrem ity .

The assembly i s  shown on f ig .  8.

The s ix  r in g s  have d if fe re n t shapes to  accomplish the 

d if f e re n t  functions they have been b u i l t  to  do.

This has been possib le  owing to  the f a c t  th a t
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p y ro p h y llite  i s  a very e a s ily  machinable ceramic and a f te r  

being f ir e d  to about 1200°C assmnes the desired  in su la to r  

p ro p e rtie s  w ith p ra c tic a lly  no po rosity

Rings 1 and 2 have appropriate  grooves to s u i t  the g lass  

envelopes of ion and e lec tro n  m u ltip lie rs  re sp ec tiv e ly  th a t  

have been cut about 0 .5  cm from the f i r s t  dynode.

Ring 5 was machined to f i t  the base of the e lec tro n  

m u ltip lie r .

Rings 4 and 5 have been designed to  receive  the bank 

of r e s is to r s  in  s e r ie s  th a t supplies the p o te n tia l g rad ien t 

to  the ion a c c e le ra to r . The r e s is to r s  are  connected w ith 

s ta in le s s  s te e l  connectors between the metal pins through 

2 pinched g lass  bases supported by rin g s  4 and 5«

Ring 4 has a sp ec ia l shape fo r ,  besides the function  

of keeping the pinched g lass  base, i t  cen tres the ion 

m u ltip lie r  and makes the e le c t r ic a l  connections of each 

r e s i s to r  w ith each p la te  by means of s ta in le s s  s te e l  

connectors housed in  c irc u la r  holes on the periphery of
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the r in g . Nickel w ire in su la ted  by quartz  sleeving 

passing  through c irc u la r  holes made on the periphery of 

the s ta in le s s  s te e l  p la te s  makes the connection between 

the p la te s  and each connector.

A schematic diagram of r in g  4 i s  shown in  f ig .  9«

Ring 6 was introduced a t  a l a t e r  stage on the 

io n iz a tio n  region between the two p la te s  w ith rec tan g u la r 

s l i t s  to dim inish the io n iza tio n  region  volume ani so 

in crease  the concentration  of sample molecules in  th is  

reg ion .

F ig . 10 shows a schematic diagram of Ring 6.

The m ajority  of sample molecules from the in le t  

system are  forced to  go in to  the c irc u la r  hole on the 

p y ro p h y llite  r in g  owing to  the f i t  contact of the r in g  

with the tube w alls , and a f te r  passing across the l ig h t  

beam, the n e u tra l molecules are pumped through two holes 

provided.

The l ig h t  beam passes through a c ir c u la r  hole on the
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r in g  and i s  h o rizo n ta l and tran sv erse  w ith re sp ec t to  the 

e le c t r o s ta t ic  f ie ld  crea ted  hy the s e t  of p la te s .

With th is  arrangement, the assembly with acc e le ra to r  

p la te s  and d e tec to rs  makes a s in g le  u n it  th a t can be put 

in  and out the tube as a whole.

There i s ,  th e re fo re , access to every piece w ith in  the 

tube fo r  eventual replacement or m odifications, a s , fo r  

example, to increase  or dim inish the number of p la te s  

e i th e r  on ion or e lec tro n  s id e .

P ig . 11 shows a photograph of the whole assembly 

in s id e  the main tube.

A ll the p ieces, p la te s  and r in g s , have been made in  our 

workshop.

Great care was observed to  have the p la te s  p e rfe c tly  

p la in  and the c e n tra l hole abso lu te ly  c irc u la r .  The p la te s  

surfaces were polished  to  a very smooth f in is h .

These d e ta i ls  are  ab so lu te ly  e s se n tia l  to ensure th a t 

the e le c t r ic a l  f ie ld  through the p la te s  i s  uniform.





The quartz spacers * were w ith in  the to lerance  of

1.00 + 0.05  cm.

The r e s is to r s  used in  the p o te n tia l d iv id e r a re  low 

no ise , 2/o to lerance  11 MJl value.

The alignment of the l ig h t  beam on the  cen tre  of 

the io n iza tio n  region  i s  made by the l a te r a l  tube opposite 

the l ig h t  source and care was taken to avoid the l ig h t  

s tr ik in g  any m etal or p y ro p h y llite  p ieces.

The rec tan g u la r s l i t s  on the py ro p h y llite  r in g  and 

p la te s ,  one on each s id e  of the r in g , w ith the major 

dimension 2.0 cm h o rizo n ta l and p a r a l le l  to  the l ig h t  beam, 

l im it  the region from which ions and e lec trons can be 

o o llec ted .

The e lec tro n  d e te c to r  is  an EMI box and g rid  

m u ltip lie r  type 9707 w ith 17 beryllium -copper dynodes in  

which g lass  encapsulated and bakeable r e s is to r s  fo r  the 

dynode chain are  already  incorporated .

The beryllium -copper surfaces give a d e tec tio n
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e ffic ie n c y  of 90-100$ to  a s ing le  e lec tro n s of energy 

300 -  500 ©V, f a l l in g  to  50$  as the in c id en t energy 

increases to  2.5 KeV. For energies between 2.5-5 KeV, 

the e ffic ien cy  remains su b s ta n tia lly  constant a t  50$.

* Supplied by Thermal Syndicate Limited, Wallsend, 

England.

The nominal gain  of the e lec tro n  m u ltip lie r  was a t  
5

2 KV bigger than 10 , but a f te r  the dynodes have been 

exposed to a i r  fo r  sev era l periods, the gain dropped 

considerably . However, the gain and s ig n a l to noise
rj

r a t io  have improved by baking the m u ltip lie r  a t  300 C

in  oxygen a t  atmospheric pressure during one hour.

The ion d e tec to r i s  an EMI beryllium -copper

Venetian b lind dynode system type 9642 w ith 18 dynodes
£

and the nominal gain of b igger th a t  10 a t  3KV. This 

m u ltip lie r  was supplied  w ith the g lass  incapsulated and 

bakeable r e s is to r s  fo r  the dynode chain a lso .

The ion  d e tec tio n  e ffic ien cy  v a rie s  w ith impact
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energy fo r  a beryllium -copper m u ltip lie r  in  the way shown
0

on the curve in  f ig .  12.

E ffic ien c ie s  of b e t te r  than 85$ are obtained fo r  ions 

of impact energy 18 KeV, and b e t te r  than 60$ fo r  6 KeV. The 

e ffic ien cy  is  not g re a tly  a ffec ted  by ion-mass but i s  s l ig h t ly  

g re a te r  fo r  heav ier io n s. This co n tra s ts  sharply  with the 

behaviour of io n iz a tio n  chambers, so lid  s ta te  d e tec to rs  and 

s c in t i l l a t io n  counters.

Beryllium -copper m u ltip lie rs  are  in se n s itiv e  

to  wavelengths in  the v is ib le  region , having th e ir  threshold  

a t  about 2900-3000 A.

L i t t l e  i s  known of the quantum e ffic ien cy  of th is  

m a te ria l but i s  thought to peak a t  a value of about 20$ a t
o

700 A. This value i s  very approximate.

Over the s o f t  X-ray region i t  i s  about 1-5$5 a t
0

200 A i t  i s  about 0 .1$  and 0.2$ fo r  &-rays of wavelength 

4.74 x 10_5A°.

The Kodial envelope in  both m u ltip lie rs  was shielded
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9by Co-Netic magnetic f o i l  grounded to  elim inate 

environmental e le c t r ic  and magnetic f ie ld s .

The in te r io r  of the main tube was a lso  lined  with the 

magnetic sh ie ld in g  to  p ro te c t a l l  the space occupied by 

the p la te s  from ex te rn a l f ie ld s .

2.6 ELECTRONIC UNITS AND CIRCUITRY

The layout of a l l  e lec tro n ic  u n its  involved i s  shown 

in  f ig .  13 .

A fter a n e u tra l molecule i s  ion ized , the re su ltin g  

p o s itiv e  ion and e lec tro n  are  acce le ra ted  in  opposite 

d ire c tio n s  by the appropria te  f ie ld s .

E jected e lec tro n s  from the ionized molecules f a l l  

through a p o te n tia l g rad ien t of 350 V and impact on the 

f i r s t  dynode of the  e lec tro n  m u ltip lie r  th a t i s  a lso  kept 

a t  350 Y p o s itiv e .

Ions are  acce le ra ted  in  opposite d ire c tio n s  by the 

e le c t r o s ta t ic  f ie ld  which is  uniform in  d ire c tio n  and



s tren g th  (200 v/cm), ereated  by the s e t  of p la te s  and 

impact on the f i r s t  dynode of the ion m u ltip lie r  held  a t  

about -  3000V.

Only in  the f in a l  few centim etres of the io n s1 

tra v e l  there  i s  f ie ld  p en e tra tio n  from the f i r s t  dynode 

of the m u ltip lie r  but th is  has minor e ffe c ts  on paths and 

tra v e l  tim es.

The e lec tro n  path i s  very sh o rt (about 2 cm) and, 

due to the very small mass of the e lec tro n , the tra v e l  time 

to  the e lec tro n  c o lle c to r  i s  n eg lig ib le  (about 5 nsec) 

in  comparison w ith the longer tra v e l times of the ions in  

opposite d ire c tio n s .

Pulses of sh o rt duration  - about 20 nsec -  are 

received  from the anodes of both m u ltip lie rs .

The e lec tro n  pulses are about 1-2 mV amplitude and 

the  ion pulses are between 5-15 mV due to the h igher gain 

of the ion m u ltip lie r .

The pulses from the two m u ltip lie rs  are  fed  to
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sep ara te  cathode fo llow ers and are  am plified  in  separate  

am p lifie rs  and shaped by amplitude d isc rim in a to rs .

The re su lt in g  ion pulse i s  presented to the f i r s t  

channel of a coincidence u n it .

A fter d isc rim in a tio n , the e lec tro n  pulse is  delayed 

in  a v a riab le  delay network to cover the time of f l ig h t  

of the p a r t ic u la r  ion-mass we are  in te re s te d  in .

The output from the delay is  fed  to a second channel 

on the coincidence u n it .

I f  the delay s e t  on the delay l in e  i s  of appropria te  

value, both ion and the e lec tro n  pulses should a r r iv e  a t  

the coincidence u n it  a t  the same time, w ith in  lim its  s e t  

by the pulse w idth.

Single channel pulses are re je c te d  by the coincidence 

u n it  and only the co incident pulses give r is e  to output 

pulses from the coincidence -unit to  be counted on a s c a le r .

In  p ra c tic e , a  mass spectrum is  recorded by varying 

the delay time on the delay l in e  ag a in st the number of
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counts re g is te re d  on the s c a le r .

Ion mass measurement i s  based on the f a c t  th a t  the 

delay requ ired  to a c e r ta in  ion species i s  a l in e a r  

fu n c tio n  of the square ro o t of the m ass-to-charge r a t io  

fo r  th a t  spec ies.

The e le c t r ic a l  connections on the e lec tro n  m u ltip lie r  

a re  as in  f ig .  14 . The 300 V p o s itiv e  and 6.3  V fo r the 

h ea te rs  on the cathode fo llow er are supplied by the 

A m plifier (i.D .L . wide-band type 652) ,  The cathode 

fo llow er is  ou tside the vacuum but very near the anode of 

the m u ltip lie r .  On the ion m u ltip lie r  s ide  the connections 

are  shown in  f ig ,  15 and those fo r  the ion acce le ra tio n  

p la te s  are  shown in  f ig .  16,

The f i r s t  p la te  is  s l ig h t ly  below ground and the l a s t  

i s  a t  high negative p o te n tia l .  We normally use the l a s t  

p la te  a t  about -  2000 V, which brings the f i r s t  p la te  to 

a p o te n tia l about 50V below ground, but these values are  

v a ria b le .
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In  f a c t ,  the scanning of the mass spectrum could he 

done, keeping the delay  of the e lec tro n  pulse constant and 

varying the f i e ld  on the ion a cc e le ra to r  p lates*

However, we found th is  method not completely 

s a tis fa c to ry  because when the p o te n tia l on the f i r s t  p la te  

changes and so the p o te n tia l  g rad ien t across the io n iza tio n  

reg ion , the focusing p ro p ertie s  of the ik te s  are changed 

and the ion c o lle c tio n  e ffic ie n cy  v a rie s  accordingly.

Also, the v a r ia tio n  in  the e ffic ien cy  of ion 

m u ltip lie r  w ith the energy of the in c id en t ions- as shown 

g rap h ica lly  in  p. 2.5 -  m ili ta te s  ag a in st th is  form of 

scanning.

In  our apparatus, we found th a t varying the ion 

a c c e le ra tio n  from 2000 Y to  2800 Y, the number of ions 

de tec ted  by the m u ltip lie r  w ithout coincidence v a ries  from 

2200 to  1600 per m inute, in  one in stan ce .

Because of th is ,  we kept the a cce le ra tio n  voltage 

qonstant and the scanning was done on the  delay l in e .
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Care was taken to reduce to a  minimum a l l  sources 

of no ise  or r ip p le .

The e le c tro n ic  d irc u its  used fo r  the 4 KV supplies 

are  m odifications of the EKCO E.H.T. supply and the 

re sp ec tiv e  c irc u i try  i s  shown on f ig .  17 .

The noise and r ip p le  of these supplies is  le s s  than 

15 mV r .m .s . The s t a b i l i ty  i s  0.5 V between no-load and 

fu ll - lo a d  operation . The c irc u i try  fo r  the power 

supp lies to  the l ig h t  source is  shown in  f ig .  18.

The grounding of a l l  e lec tro n ic  apparatus involved, 

where 50 cycle pick-up was troublesome, appeared to be 

more of an a r t  than a science.

I t  was sp e c ia lly  d i f f i c u l t  when combined with earth ing  

fo r  sa fe ty .

There seems to be nothing b e t te r  than t r i a l  and 
10e rro r  •
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Chapter Three 

THEORETICAL CONSIDERATIONS



3 .1 » PH0T0I0NI2ATI0N PROCESSES

Consider a  molecule Rjlt, ŵ ic ^

two atoms or ra d ic a ls  covalen tly  bound; th ree  

pho to ion ization  processes can occur:

( la )  Io n iz a tio n  to  the ground s ta te  of

the ion

( l .b )  Io n iz a tio n  to an excited  s ta te  of

the ion

KjRg + h ^  -►  a LH2+ *  + e'

(2 .a) Fragmentation of the paren t ion

ILjRg + h ^  ^



(2 ,b ) D issocia tive  io n iza tio n

+ h 9 —v  R^+ + Rg + e

( 3 )  P re -io n iza tio n  of the exc ited  molecule

R^Rg + h P " V R^R2 —'fr" R^R2 + ©

The energy th resho lds f o r  these  processes a re , in

g eneral, d if fe re n t and the one fo r  the simple io n iza tio n

( l . a )  and ( l .b )  corresponds generally  to the lowest energy?

but th is  may not be always the case. For molecules

contain ing  atoms of high e lec tro n  a f f in i ty ,  Hie

photo ion ization  process most l ik e ly  to  occur a t  the f i r s t

th resho ld  could be d isso c ia tio n  in to  io n s . This phenomenon

was demonstrated in  the e a r ly  1930's by Terenin and Popov ^

fo r  thallium  h a lid e  vapours, which s p l i t  in to  Tl+ + Hal"
2as a  primary photo process. L a te r, Morrison e t  a l  have
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shown a s im ila r  process fo r  Br^ and Ig , where the f i r s t  

th resho ld  corresponds to  a p re -io n iz a tio n  accompanied by 

the d is so c ia tio n .

i  ^  +  —Br^ + h v  -— Br^ -—► Br + Br

and

x2 + h v> — I  *  — fe. I + + I"

Besides the processes described above leading  to  

charged p a r t ic le s ,  th e re  are probably o thers g iving n e u tra l 

ra d ic a ls  but these a re  not detected  in  a mass spectrom eter. 

One of the methods to  d is tin g u ish  between the d if fe re n t  

processes i s  by studying the photo ion ization  y ie ld  curves 

and from these e x tra c t the values of the pho to ion ization  

c ro ss-sec tio n s  of atoms and molecules and of the ad iab a tic  

and v e r t ic a l  io n iza tio n  p o te n tia ls .

The abso lu te  photo ion ization  quantum y ie ld  A in  ions per 

photon i s  the r a t io  of the ion cu rren t ji to  the amount of



absorbed ra d ia tio n  I o - I  where J o  and I  a re  re sp ec tiv e ly  

the l ig h t  fluxes of the in c id en t and tran sm itted  ra d ia tio n  

in  the  io n iza tio n  reg ion . The product of the abso lu te  

pho to ion ization  quantum y ie ld  A and the to ta l  e ffe c tiv e  

absorp tion  c ro ss -se c tio n  6  i s  the e f fe c tiv e  photo ion ization  

c ro ss -se c tio n  6^, sometimes ca lled  simply pho tio n iza tio n

e ffic ie n c y . I t  i s  shown th a t ,  when the p ressure  of the
—3 —5gas being stud ied  is  low (10 -  10 to r r )  the

pho to ion ization  c ro ss -se c tio n  can be given by the r a t io

of the ion cu rren t to  the inc iden t l ig h t  f lu x  in  photons 

per second.

Thus 6  . = C i__
1 ia

where C i s  a constant depending on the instrum ental 

poram eters.

In  order to  ob ta in  r e l ia b le  values fo r  io n iza tio n

p o te n tia ls ,  the shape of the photo ion ization  e ffic ie n cy  curves
3 4has to  be c a re fu lly  in te rp re te d . Watanable * has



discussed in  d e ta i l  these curves near the appearance

thresho ld  of the ion cu rren t and has e s tab lish ed  a  c r i te r io n

to  e x tra c t the ad iab a tic  io n iza tio n  p o te n tia ls  from them.

However, Watanabe could not id e n tify  unequivocally the

ions produced in  the photo ion ization  processes as he did

not use mass a n a ly s is . This was obviated by a combination
5-7of the monochromator w ith a mass spectrom eter. Even so,

in  the io n iz a tio n  of complex m olecules, the efficiency

curves became q u ite  d i f f i c u l t  to  in te rp re t  as there  is  a

smearing-out of the abrupt jumps in  the ion cu rren t, owing to

the g rea t number of v ib ra tio n a l lev e ls  involved.

A more recen t method of determing io n iza tio n  p o te n tia ls
8—1and io n ic  energy le v e ls  i s  by pho to -e lec tron  spectroscopy.

Our instrum ent can be used as a coincidence pho to -e lectron  

spectrom eter i f  a re ta rd in g  f ie ld  i s  introduced near the 

io n iza tio n  chamber, p a r a l le l  to  the e le c tro n  t r a jo to r ie s  and 

before the e lec tro n  c o lle c to r . The re ta rd in g  f ie ld  would 

be given by two f l a t  g r id s , the n ea re s t to the io n iza tio n



chamber a t  p o te n tia l V and the next one a t  ground 

p o te n tia l ,  as i s  shown in  f ig .  19#

I t  is  possib le  th a t p la te  No. 1 needs to  have a small
12draw-out p o te n tia l to  decrease the spread in  the f l ig h t  

tim es. P la te  No. 2 would be kept as i t  stands fo r  normal 

operation .

When a photon of energy hi? impacts a molecule, the 

excess energy of th a t requ ired  to produce io n iza tio n  i s  

taken by the e jec ted  e lec tro n  as k in e tic  energy.

Hence,

h'P = IP + KE

and

IP * h KE

I f  the voltage Y i s  scanned, increasing  by f in e  steps 

from zero , the curve p lo tte d  with increasing  p o te n tia l V, 

ag a in s t the number of e lec tro n s overcoming the p o te n tia l 

b a r r ie r  and so reaching the e lec tro n  d e te c to r , should



by p lo t t in g  the number of coincidences corresponding

to  th a t  p a r t ic u la r  delay tim e, vs the in c reasin g  re ta rd in g

p o ten tia l*

3.2 COINCIDENCE TECHNIQUE

The a p p lica tio n  of the  coincidence technique to the

measurement of d is in te g ra tio n  ra te s  was a simple abso lu te
13method p rac tised  in  nuclear physics since the 1930 's  .

In  order to  get b e t te r  accuracy, the i n i t i a l  simple

formulae were co rrected  to  a more complex p resen ta tio n  but

the coincidence method s t i l l  remains an absolu te method with

high s e n s i t iv i ty .

The a p p lica tio n  of th is  technique to  mass spectrom etry
14was only recen tly  described by Rosenstock and a f te r  by

V estal ^  and Brehm and P u ttk am er.^

Suppbse the number of io n iza tio n  events in  the 

io n iz a tio n  reg ion , from which ions and e lec trons are



co lle c te d , i s  Nz and Fg and J \  re sp e c tiv e ly  a re  the 

f ra c tio n s  of e lec trons and ions co lle c te d . Then the number 

of e jec ted  e lec tro n s  from the ionized molecules a rriv in g  

per second a t  the c o lle c to r  i s

N = f N  e e z

and the corresponding number of ions per second co llec ted  in  

the ion d e tec to r i s

An io n iza tio n  event i s  only detected  in  the delayed 

coincidence method i f  both electronand ion are  co llec ted

sim ultaneously. So, the number of tru e  coincidences per 

second i s  a f ra c tio n  of the io n iza tio n  events given by



The e lec tro n  c o lle c to r ,  in  ad d itio n  to the tru e

e lec tro n  p u lses , N per second, may d e te c t N pulses from e p
e lec tro n s  ex trac ted  from the w alls by photoelectron  e f fe c t  

and from d ire c t  d e tec tio n  of u l t r a v io le t  ra d ia tio n , although 

th is  would account fo r  a small percentage, owing to the 

d e te c to r  c h a ra c te r is t ic s .  Also, random noise pulses 

produced in  the m u ltip lie r  by sources as cosmic ray s . Thus, 

the to ta l  number of pulses in  the e lec tro n  d e tec to r per
t

second, or the e lec tro n  d e te c to r  counting r a te  i s  N

N* * N + N + N e e p n

As, in  g eneral, th ere  i s  no souree of s tra y  io n s, the 

to ta l  number of pulses a t  the ion c o lle c to r  per second or 

the ion d e tec to r counting r a te  is  s
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n ! « N. + N = F.N + N / 0 n1 1 m i z m  C 2 )

where N i s  the noise pulses of the ion d e te c to r , m
I f  TL i s  the coincidence u n it  reso lv in g  tim e, fo r  K

proper operation  of the coincidence mass spectrom eter the
t

product Nq must he le s s  than u n ity .

17Consider the random coincidences or background gained 

owing to  the f in i t e  value of the coincidence u n it  reso lv in g
t t

time . i f  h and N. are  the observed counting r a te s  a t  R e l
the e le c tro n  and ion channels re sp e c tiv e ly , the number of 

pulses a t  the e lec tro n  channel which did no t give r i s e  to  a 

tHae coincidence is  simply:

N* -  Ne c

and the random or background coincidence r a te  due to  these  

pu lses  i s

( N* -  N ) n ! T lx e c ' l  R.

Sim ilary, the random r a te  /



asso c ia ted  w ith the ion-charmel counting r a te  

co rrec ted  fo r  t ia e  coincidences i s

( n! -  N ) N' 'C  v 1 c' e R

Then the to ta l  random coincidence r a te  i s  given

HR “  ( '  V  NI  r R + (Ni  -  V  He VR

■ r EC2< Ki - + NJ  ( 3)

The r a t io  of random coincidence r a te  or 

background to  the tru e  coincidence r a te  i s

r R [ 2 < n !  -  ( <  + n !) N jN

B "  ^ c F.F N1 e z

and rep lac in g  Ng and IT by eq. ( l )  and (2)



As from eq. (4 ) the noise to s ig n a l r a t io  i s  a

fu n c tio n  of the io n iz a tio n  r a te  N . In  non-coincident massz
spectrom eters, the maximum s e n s i t iv i ty  is  lim ited  by the 

constan t noise le v e l,  as s ignal and noise lev e ls  are  

independent. The coincident mass spectrom eter, by the 

opposite , possesses th is  im portant c h a ra c te r is t ic  of 

abso lu te  s e n s i t iv i ty .

We considered in  expression ( 3 ) the random coincidences 

generated from the re so lu tio n  time ^  of the coincidence 

u n i t .  There i s ,  however, another fa c to r  th a t m odifies the 

coincidence r a t io ,  causing a lo ss  of coincidences.

Suppose i s  the dead time imposed on both ion and 

e le c tro n  channel input pu lses; normally 2^ i s  b igger than
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1 8Following the method of Hayward the r a te  of lo s t  

coincidences i s  given by

V. j( Vi r D + ^  -  V [Fi(l - Fe> + V1 - Fi>]) ( 5 )

As shown by eq. (3 ), (4) and (5 ), i t  i s  very im portant

to  have the re so lu tio n  time of the coincidence u n it 7^, and 

the "dead tim e1’ of the input channels 7 ^ , as low as p ossib le  

to  g e t the maximum s e n s i t iv i ty ,  or maximum sig n a l to  noise 

r a t io  in  the coincidence m ass-spectrom eter.

3 .3 . (TRAVEL TIME OF IONS AND CONSIDERATIONS 
ON RESOLUTION

The tra v e l time of an ion in  th is  instrum ent i s  obtained 

by so lv ing  the equations of motion of a charged p a r t ic le  in  

a uniform e le c t r o s ta t ic  f ie ld .

I f  ions are  acce le ra ted  through a p o te n tia l d iffe ren ce  

V, and tra v e l the d istan ce  L in  the f ie ld  d ire c tio n , the

normal t ra v e l  time of an ion species of a given m ass-to-charge
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r a t io  ( m ) i s  : 
e

*  “  i f ? - 1  < > )m

Eq.. ( l )  i s  deduced from the follow ing s e t  of 

equations.

e V = P L

P * m j

l  -  i  3 t  2

When _t i s  measured in  jx sec, L in  cm, m in  a.m 

in  v o lts  expression ( l )  becomes

tm -  i .44  j a j L ( 2 )

or

tm - 1 . 4 4 m *  j | j *  (J)

•u. and V

where E * V i s  the e le c tro s ta t ic  f ie ld  in  v o lts  per cm. 
L



The main d i f f i c u l t i e s  fo r  ob tain ing  high re so lu tio n  

come from the spread in  f l ig h t  times owing to  the v a r ia tio n s  

in  i n i t i a l  p o s itio n  and k in e tic  energy of ions formed in  

the source.

For an ion w ith a v e lo c ity  component in  the d ire c tio n  

of the acce le ra tio n  f ie ld ,  corresponding to  a n in i t i a l  

k in e t ic  energy Vo in  e .v . ,  the  to ta l  tra v e l  time i s  given by 

expression (4 )

1 1 1
t  ( Vo) = 1.44 (Vo + EL t  (y0 )g

E

The plus and minus sig n  in  Vo corresponds to  the case in  

which the ion i s  formed w ith the i n i t i a l  v e lo c ity  d ire c ted  

away from the ion d e tec to r, or towards the ion d e tec to r 

re sp e c tiv e ly .

The to ta l  v a r ia tio n  in  the ions f l ig h t  tim e, owing to  the
I .

i n i t i a l  k in e tic  energy Vo i s  the time needed fo r  an ion 

formed w ith i n i t i a l  k in e tic  energy Vo, d irec ted  away from

4



tlie ion  d e tec to r to  re tu rn  to i t s  o r ig in a l p o s itio n . In  

what follow s we c a lcu la te  the time spent in  the " turn-around11.

Suppose the ion i s  formed in  p o s itio n  P w ith k in e tic  

energy Vo, in  opposite d ire c tio n  to the f ie ld  E, i . e .  d ire c ted  

away from the ion d e te c to r .

(? This means th a t  the ion 

w ill  have a v e lo c ity  

Vo given "by

Vo « m vo^ ( 5 )

then

vo ( 2_V° ) 
( m )

( 6)

The ion w ill  take a  time t  to  tra v e l  the d istan ce  1 in  the 

d ire c tio n  of the i n i t i a l  v e lo c ity  with uniformly,: re ta rd ed  

motion u n t i l  the moment i t  tu rns round in  the d ire c tio n  of the 

f ie ld  E,
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P ■ m j

F = e E .1 ■ eE
m

VQ » j  t  . *. t  = VO

I f  in  eq, (8) we rep lace  vq and j  by e .g .

re sp ec tiv e ly  we get

t  * /£  / m Vo) i
eE ^

or

t  * 1.44 ( m Vo) i
E

(  7  )

( 8 )

(6) and (7)

( 9 )

As the ion  takes the same time t  to come from to  P ; 

the to ta l  time spent fir the " tu rn  around” i s  s
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2.88 ( mVo) £  ( 10 )
A t  (Vo) « E

When ions axe formed with no k in e tic  energy th ere  a re  

s t i l l  f lu c tu a tio n s  in  tra v e l time owing to  the v a r ia tio n s  

in  i n i t i a l  p o s itio n ; as they can he formed along a l l  

the width of the io n iz in g  beam.

I f  the width is  AL the f lu c tu a tio n  due to  i n i t i a l  

p o s itio n  w ill  be given by d if f e re n tia t io n  of eq. (2)

Hence

A t m (A L )  -  1.44 (s. ) A 1. ( 11 )1.44 j a j

To define mass re so lu tio n  we need to  c a lcu la te  the 

d iffe ren ce  in  tra v e l times fo r  two ad jacen t masses m + 1 

and m.

A - 1*1 - v  1 , 4 4 g g *  * L * [  j 1  + s  j *  ' x ]  ‘  §  < 1 2 >



p resen t a  s e r ie s  of s teps corresponding to  the d isc re te  

values of ad iab a tic  and v e r t ic a l  p o te n tia ls .

In  the way described  above, only the e lec tro n  channel 

i s  used w ithout coincidence and so the p a r t ic u la r  ion 

species where the e lec tro n s  come from are  not sim ultaneously 

mass id e n tif ie d .

However, our instrum ent is  able a t  the same time to  

mass analyse, meaning th a t the a c tu a l e lec tro n  stopping 

curves would correspond only to  a p a r t ic u la r  ion species 

id e n tif ie d  by the coincidence tim e -o f-f lig h t ana lysis  

technique,

This i s  done by f i r s t  running a sp ec tra  of the 

compound in  study, to  id e n tify  the ions p resen t. A fter th a t ,  

the delay time of the e lec tro n  pulses (equivalent to  ion 

f l ig h t  tim es) i s  kept on the appropriate  value to  c o l le c t ,  

in  coincidence, only, the ions of the d esired  mass. The 

io n iza tio n  p o te n tia ls  and hence the energy lev e ls  of the 

excited  ions would then be taken from the curve obtained



Then comparing eq. (10) w ith eq. (12) the h igher mass th a t 

can be reso lved  owing to  tra v e l time f lu c tu a tio n s  a r is in g  from 

the i n i t i a l  k in e tic  energy i s :

• p . )  -  i » }  i  j  *  ( 15)

In  the same way, comparing eq. ( l l )  w ith eq. (12) shows 

th a t the h igher mass which can be resolved due to  v a r ia tio n s  

in  i n i t i a l  p o s itio n  i s

m (  A  L )  -  K _ 1  ( 1 4 )
A L

The values ca lcu la ted  above did not take in to  

considera tion  the lo ss  in  re so lu tio n  a r is in g  from the 

e le c tro n ic  u n its ,  such as the lim ita tio n  derived from the 

coincidence u n it  re so lu tio n  time 7 ^ , and the sm allest 

av a ilab le  delay increments in  the delay l in e .



5.4 THE APPLICATION OF THE COINCIDENCE TIME-OF-FLIGHT 
MASS SPECTROMETER TO DIRECT DETERMINATIONS OF 
METASTABLE LIFE-TIMES

Some ions formed in  the mass spectrom eter are  ju s t  

long -lived  enough to decompose somewhere in  the middle of 

th e ir  f l ig h t  along the tube.
19Since the ea rly  work of Hippie , many workers

gathered inform ation about l ife - tim e s  of m etastable ions.

Very s e n s itiv e  means of d e tec tio n  sp e c ia lly  designed

fo r  m etastable ion an a ly sis  have been developed

Hippie in  h is  o r ig in a l work explained the curves

obtained, assuming th a t  there  were two processes with two
20d if fe re n t  l i fe - t im e s . Momigny repeated  th is  work and 

has concluded th is  a lso ; namely the ex istence of two 

d if f e re n t  l i fe - t im e s .
21L ater Coggeshall fo r  the same decomposition ca lcu la ted

22th ree  tra n s it io n s  w ith th ree  l i f e - t im e s , . although Schug 

demonstrated th a t the th ree  values could be represented  

a lso  by only two w ith the same p rec is io n . So, no d e f in ite



conclusion as whether two or th ree  life - t im e s  were involved, 

was p o ss ib le .
23O ttinger b u i l t  an apparatus in  which the ions a re  

formed and acce lera ted  in  a w ell defined e le c t r ic  f ie ld  

afterw ards being subjected  to  e le c t ro s ta t ic  energy an a ly sis  

and magnetic mass a n a ly s is . By varying the e le c t r o s ta t ic  

f ie ld ,  inform ation can be obtained through the k in e tic  

energy of the  fragm ents, about the time in te rv a l between the 

io n iz a tio n  of a molecule and i t s  d isso c ia tio n .

The experiments of O ttinger have shown th a t th ere  is  

a q u ite  smooth n o n -lin ea r decrease of m etastable in te n s ity  

w ith tim e, which i s  a sign  th a t a la rg e  number of l ife - t im e s  

a re  involved in  a  continuous d is tr ib u tio n .

However, more inform ation about m etastable l ife - t im e s  

i s  s t i l l  necessary . The coincidence t im e -o f- f lig h t mass 

spectrom eter in  p r in c ip le  i s  able to  give the l ife - tim e s  of 

the m etastable ions observed in  the spectrum. However, fo r  

th a t purpose i t  would be necessary th a t the re so lu tio n  of the



p a r t ic u la r  apparatus used, allows a sep ara tio n  of the peaks 

corresponding to the p aren t, fragment and m etastable ions* 

Let L be the d istance  between the ax is  of the 

io n iz in g  beam P and the ion c o lle c to r , and the d is tan ce  

between P and the po in t along the f l ig h t  tube where -the 

decomposition of the ion of mass m̂  has occurred.

L L1 P

^ 2( ^ 2 )

t f 2 ( ^ 2 ) t * l ( m i )----------------------

/  V; 0

An expression th a t allows the ca lcu la tio n s  of the 

mean l i fe - t im e  of the decomposing ion can be ca lcu la ted .

D iscrim inating as follow s the sev era l f l ig h t  times 

involved in  the process:



-  mass from P to  L

*2 '  " u" a2 f r °m P t0  1

I
t n -  mass m, from P to'1 m̂  from P to

tg  -  mass m̂  from to  L,

the i n i t i a l  v e lo c ity  of the ion of mass m̂  a t  the po in t L^,
i

has to  be considered fo r  the ca lcu la tio n  of tg»

The equations involved in  the ca lcu la tio n s  a re  the 

follow ing:
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-  L ,  -  i2e *}) *  t j  +  ix( 2 e  ( V  - V i )  4  t *  
®i > ( - * :  ) 2

«

+ t g -  T ( 4 )

t|L LT  * k  (yr \ i  (5 )
• i V & j 2

Working out those f iv e  equations we obtained the 

follow ing expression

*  L  *  '  h  +  [  *  - j  fi L h ~ J i  L  i  j  *

where

» ( 2 e V j*
( n^L )

f - \  \ \  2

M

(  3)



Eq. (6J can be solved by numerical approximation. The values of 

obtained must be p o s itiv e  and sm aller than L.

The values of are  a f te r  su b s titu te d  in  the eq.

which should give the values fo r  the mean life - t im e  of the 

m etastab le ion*
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Chapter Four

EXPERIMENTAL RESULTS AND 
DISCUSSION
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With the p resen t equipment, the re so lu tio n  of the 

spectrom eter i s  low.

In the coincidence u n it  used (type 1036 C) the 

sm allest re so lu tio n  time av a ilab le  i s  0 .1  jx s ; th is  

means th a t  mass peaks corresponding to  ion species w ith 

tra v e l  times d if fe r in g  in  0.1 jx sec or le s s  cannot be 

reso lved .

As L i s  approximately 20 cm, and using  2000 V fo r  ion  

ac ce le ra tio n , the nominal tra v e l time of an ion of mass m 

is

1
t  » 1.44 x 20 x m2m — -L-E—3—

( 2000)^

or

t  = K xm

where

K = .644
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The maximum reso lvab le  mass allowed by the 

coincidence u n it  re so lu tio n  time 7^ i s  ca lcu la ted  by- 

ap p lica tio n  of expression ( 12) in  paragraph 3*3*

As A t  -  ( l )
2m

I f  t  « .1 j i  sec.

and

t  » K x mi­ni

we get

• 1 « K m^
2m

then m ^  10

The maximum re so lu tio n , a t  p resen t i s  th e re fo re , 10.

In the spectrum shown in  f ig .  19> the tra v e l time of the 

two peaks p resen t can be taken as 6.3 and 7*5 jP* sec.

The ion acce le ra tio n  during those experiments was kept 

constant a t  -2000 V, and so we can use the above ca lcu la ted

%
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constant ( K -  . 644)» fo r  the ion mass determ ination as 

fo llow s:

fo r  t  -  7*5 U sec* * 7*5 « 11.64
'  .644

or
m « 135«5 a.m .u.

and fo r  t  « 6 .3  11 sec .r
mr *» 6.3 * 9*78

.644

or

m » 95*6 a.m .u.

The instrum ental param eters in  the experiment of 

f ig .  19 are sp ec ified  in  ta b le  I .

Those deduced masses were q u ite  unexpected, as the 

sample introduced in  the in le t  system was 1 - 1 - 1  

tr if lu o re th a n e  ( m = 84) , which m olecular ion corresponds

to  a tra v e l time of 5*9 sec.
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However, the spectrum was q u ite  reproducib le as can be 

seen in  f ig s .  20 and 21 fo r  which the experim ental conditions 

are  l i s t e d  a lso  in  ta b le  1.

There was the p o s s ib i l i ty  th a t those peaks had come from 

cracked pumping o i l ,  as the system had been acc id en ta lly  l e t  

up to  atmosphere while pumping. To confirm th is  hypothesis 

a small sample of o i l  was pyro lised , in  con tact w ith a i r ,  and 

the-.isfluing non tan t  \ri t h - a i r a n d  the issu in g  vapours trapped 

and analysed in  the AE1 -  MS9 mass spectrom eter.

The re su lt in g  spectrum presented peaks a t  masses 91>92,

93>94 and 95 in  a group, and 133 and 135 in  another, which are  

in  f a i r  agreement w ith the above ca lcu la ted  values. This 

confirmed the o rig in  of the peaks.

A gross estim ate of the re so lu tio n  fo r  th is  spectrum, 

tak ing  in to  account the la rg e  mass separa tion  of the two peaks,

was about 3* This was again in  f a i r  agreement w ith the

th e o re tic a l value, as the coincidence u n i t ' s  re so lu tio n  time 

had been s e t  a t  0 .4  n sec. (eq. l ) .
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8 6 .

A spectrum of the 1 - 1 - 1  tr if lu o re th a n e  was 

l a t e r  obtained and is  shown in  f ig .  22. P ig . 2J shows the 

spectrum of benzene.

A ll the corresponding param eters are  shown in  Table

.1.

C O N C L U S I O N S

Before fu r th e r  in v e s tig a tio n s  could be pursued i t  i s  

necessary  to  in crease  the re so lu tio n . Por th a t  purpose, 

bssides the improvement in  the e le c tro n ic  u n its  involved , i t  

would be advantageous to  add an extension to  the f l ig h t  tube 

and to  in c rease  the number o f p la te s , so th a t  the p o te n tia l 

g rad ien t would become le s s  steep .


