APPLICATIONS OF GAS CHROMATOGRAPHY - MASS SPECTROMETRY TO ORGANIC CHEMISTRY

B.S. Middleditch

Ph.D. Thesis

Department of Chemistry University of Glasgow

1971

ProQuest Number: 11011958

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11011958

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

CONTENTS

Introduction	1			
Gas chromatograhy Mass spectrometry	7 9			
Gas chromatography - mass spectrometry	16			
Ancillary techniques of GC-MS	22			
Applications of GC-MS	31			
Steroids Differentiation between steroids of similar structu	37			
by GC-MS The use of (chloromethyl)dimethylsilyl ether	46			
derivatives in GC-MS The mass spectra of TMS ether derivatives of some	63			
Δ^2 -3(3-hydroxy C ₁₉ steroids The mass spectra of TMS ether derivatives of some	74			
unsaturated sterols	107			
Characterization of yeast sterols by GC-MS	133			
Characterization of sterols and squalene in a				
bacterium (<u>Methylococcus capsulatus</u>) grown on metha Reduction of 50-androstane-3,16-dione by a crystall 203-hydroxy steroid-nicotinamide-adenine dinucleoti	ine			
oxidoreductase preparation	154			
Characterization of steroidal drug metabolites by GC-MS	160			
Boronates	170			
The mass spectra of some corticosteroid boronates	171			
The mass spectra of some 1,3,2-oxazaborolidines The use of n-butyl boronate derivatives in the characterisation of catecholamines and related	216			
4-hydroxyamines by GC-MS	228			
Gas chromatography - mass spectrometry of some				
boroxines	240			
Aliphatic compounds	249			
The mass spectra of <u>O-methyloximes</u> of some aliphati aldehydes and ketones	.c 250			
Hydrocarbons from the green form of the freshwater alga Botryococcus braunii	274			
Cuticular leaf waxes: <u>Chenopodium</u> album L. and Lolium perenne L.	284			
Air pollution	290			
GC-MS analysis of air pollutants: a feasibility study	291.			
Data handling 31				
Data handling and GC-MS	311			
Perfluorodecalin as a mass calibration standard for	-			
low resolution mass spectra	316			
Conclusions	320			

ACKNOWLEDGMENTS

Thanks are due to Prof. R.A. Raphael for the opportunity to carry out the research described in this thesis and to Dr. C.J.W. Brooks for encouragement, advice, and discussion throughout the period of this research.

The contributions of other colleagues are acknowledged in the appropriate sections of the thesis.

APPLICATIONS OF GAS CHROMATOGRAPHY - MASS SPECTROMETRY

TO ORGANIC CHEMISTRY

B. S. Middleditch

Summary

The work described in this thesis was based on applications of the combined technique of gas chromatography - mass spectrometry $(GC-MS)^{1}$ to a variety of topics in organic chemistry and biochemistry. The research included studies of the scope of the technique (based on model compounds) and applications to actual analytical problems.

Following the introduction, a section of the thesis is devoted to work on steroids. Results obtained with progesterone and testosterone analogues confirm the value of GC-MS in distinguishing isomers. The use of trimethylsilyl (TMS) ether derivatives in GC-MS is well established, but the advantages of (chloromethyl)dimethylsilyl ethers as derivatives for GC-MS have been little explored. The utility of these derivatives is illustrated and discussed for the example of $1/a-alkyl-1/\beta$ -hydroxy steroids. The mass spectral fragmentations of TMS ether derivatives of endrost-5-en-3 β -ol analogues and of other unsaturated 3β -hydroxy steroids have been investigated. The results of this survey have been applied to the characterisation of yeast sterols, sterols from a bacterium (<u>Methylococcus capsulatus</u>) grown on methane,² steroidal drug metabolites,³ and a steroidal enzyme-reduction product.⁴

Corticosteroids cannot be examined directly by GC-MS because of

References cited in this summary are restricted to publications incorporating work described in the thesis.

the low thermal stability of the side chain. Earlier work has shown that their boronate derivatives are quite stable. The mass spectra (recorded by GC-MS) of representative corticosteroid boronates are discussed in respect of their use in structural assignments.

Similar difficulties are encountered in GC-MS of β -hydroxy emines because of their relatively high polarity and low thermal stability. The use of boronate derivatives in the characterisation of catecholamines and related β -hydroxy emines by GC-MS is discussed,⁵ and a more detailed investigation of the mass spectral fragmentations of the derived 1,3,2-oxazaborolidines has been carried out.⁶

<u>O</u>-methyloxime (MO) derivatives are of value in the analysis by GC-MS of aldehydes and ketones. Salient features of the spectra of MO derivatives of aliphatic aldehydes and ketones are enumerated. Aldehydes from the cuticular leaf waxes of <u>Chenopodium album</u> L. and <u>Lolium perenne</u> L. have been identified by GC-MS of their MO derivatives.⁸ Unsaturated aliphatic hydrocarbons from the green form of the freshwater alga <u>Botryococcus braunii</u> have been ozonised and cleaved to form aldehydes which have been identified as their MO derivatives. The structures of the hydrocarbons have thus been inferred.⁹

An exploratory study of the use of GC-MS in the analysis of air pollutants has been carried out. The gas chromatographic and mass spectrometric properties of some polycyclic aromatic hydrocarbons have been surveyed and a number of these compounds have been tentatively identified in dust collected from air conditioner filters.

-2-

Perfluorodecalin has been found to be a convenient mass calibration standard for low resolution mass spectra.¹⁰ The need for, and problems associated with, computer-assisted data handling in GC-MS are discussed. The development of an on-line real-time data acquisition system is described. References

.

1.	B. S. Middleditch, <u>Proc. Inst. Electronics</u> , 19/0, <u>11(4)</u> , 11. "Principles and applications of gas chromatography - mass spectrometry"
2.	C. W. Bird, J. M. Lynch, S. J. Pirt, W. W. Reid, C. J. W. Brooks, and B. S. Middleditch, <u>Nature</u> , 1971, 230, 473. "Steroids and squalene in <u>Methylococcus capsulatus</u> grown on methane"
3.	C. J. W. Brooks, A. R. Thawley, P. Rocher, B. S. Middleditch, G. M. Anthony, and W. G. Stillwell, J. Chromatog. Sci., 19/1, 9, 35. "Characterization of steroidal drug metabolites by combined gas chromatography - mass spectrometry"
4.	 T. Pocklington, J. Jeffery, B. S. Middleditch, and C. J. W. Brooks, <u>Biochem. J.</u>, 19/0, <u>119</u>, 803. "Reduction of 5a-androstane-3,16-dione by a crystalline 20β-hydroxy steroid - nicotinamide - adenine dinucleotide oxidoreductase preparation"
5.	 G. M. Anthony, C. J. W. Brooks, and B. S. Middleditch, <u>J. Pharm. Pharmacol.</u>, 19/0, 22, 205. "The use of boronate derivatives in the characterisation of catecholamines and related β-hydroxyamines by combined gas chromatography - mass spectrometry"
6.	C. J. W. Brooks, B. S. Middleditch, and G. M. Anthony, <u>Org. Nass Spectrometry</u> , 1969, <u>2</u> , 1023. "The mass spectra of some 1,3,2-oxazaborolidines"
7.	C. J. W. Brooks, D. J. Harvey, and B. S. Middleditch, <u>Org. Mass Spectrometry</u> , 1970, <u>3</u> , 231. "Gas chromatography - mass spectrometry of some boroxines"
8.	J. E. Allebone, R. J. Hamilton, B. A. Knights, B. S. Middleditch, and D. M. Power, <u>Chem. Phys. Lipids</u> , 19/0, <u>4</u> , 3/. "Cuticular leaf waxes: <u>Chenopodium album L. and Lolium perenne</u> L.
9-	B. A. Knights, A. C. Brown, E. Conway, end B. S. Middleditch, <u>Phytochemistry</u> , 19/0, 9, 131/. "Hydrocarbons from the green form of the freshwater elga <u>Botryococcus braunii</u> "
10.	B. S. Middleditch, <u>Analyt. Chem.</u> , 1969, <u>41</u> , 2092. "Perfluorodecalin as a mass calibration standard for low resolution mass spectra"

۲

-4-

I INTRODUCTION

INTRODUCTION

The objective of analytical chemistry is to identify and determine quantitatively the chemical constituents of sample materials. A wide variety of methods is available, but there is a constant demand for techniques which afford higher sensitivity or greater selectivity. It is generally accepted, at the present time, that combined gas chromatography-mass spectrometry (GC-MS) provides the most powerful procedure for the analysis of many organic samples. Its suitability for organic chemical analysis depends on its dual mode of operation: it first of all separates the components of a mixture by gas chromatography (GC) and then provides additional structural information by mass spectrometry (MS).

The classical analytical chemist relied on such methods as fractional distillation and crystallisation to isolate components of mixtures. Identification was possible by comparison of physical properties, such as melting and boiling points and optical activity. Characterisation of hitherto unknown compounds was carried out by correlation of chemical properties. Methods were also available for the estimation of various elements. Positive identification was carried out by synthesis of possible structures and comparison with the "unknown".

Classical procedures, both in analysis and characterisation, have been largely supplanted by more powerful methods based on

-2-

physical techniques. Infrared (IR) spectra can be used as "fingerprints" for comparison of samples.¹ and additional information is provided by the presence of absorption bands at frequencies typical of certain functional groups.² Nuclear magnetic resonance (NMR) spectra can be interpreted to give evidence of the environment of certain atoms in a molecule.³ Mass spectrometry - to be discussed in more detail below - can also be used to provide spectra as fingerprints or as sources of more specific structural information.⁴ Ultraviolet $(UV)^{2}$ spectra are effectively limited in application to conjugated systems, but within such a field they are often capable of giving detailed information about the chromophoric part of the molecule. Each of these methods has advantages and disadvantages and is more suited to some applications than others. To the organic chemist, however, the most important consideration is often that of sensitivity. In this respect, mass spectrometry has a great advantage over IR and NMR spectroscopy. McFadden has listed⁶ typical limits of detection and identification (Table 1). It should be emphasised that the quoted limits depend to a large extent on the sample, and also that they are continually being improved upon.⁷ In practice, measurements are usually carried out well above the limits of sensitivity whenever sufficient sample is available. One effect of the increase in sensitivity of nonselective analytical methods is

-3-

	Detection	Identification		
Chemical analysis				
selective reagents	10 ⁻⁵	$10^{-5} - 10^{-4}$		
microreactor	10 ⁻⁶	10 ⁻⁶ - 10 ⁻⁵		
IR	$10^{-6} - 10^{-7}$	10 ⁻⁶ - 10 ⁻⁵		
NMR	10-4	$10^{-5} - 10^{-4}$ $10^{-6} - 10^{-5}$ $10^{-6} - 10^{-5}$ 3.10^{-3} 10^{-5}		
computer averaging (24 hr)		10 ⁻⁵		
MS				
standard inlet	10 ⁻⁷ - 10 ⁻⁶	10 ⁻⁵ - 10 ⁻⁴		
direct probe	10-11_ 10-10	10 ⁻⁹ - 10 ⁻⁸		
GC-MS	10-12-10-11	$10^{-5} - 10^{-4}$ $10^{-9} - 10^{-8}$ $10^{-10} - 10^{-9}$		
	1	1		

Table 1. Ultimate sensitivities (g.) of various analytical techniques.⁶

4

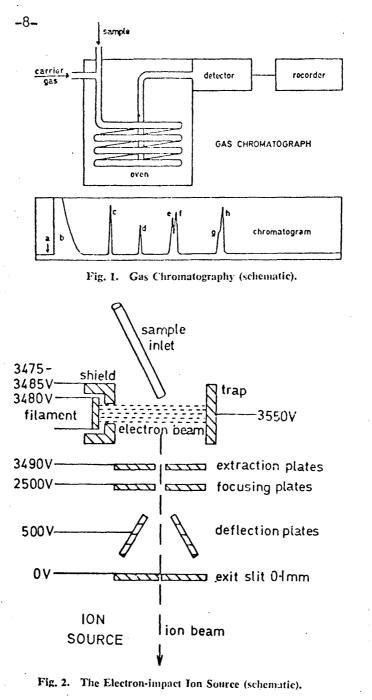
that samples must be isolated in a high degree of purity: impurities and artefacts often mask or modify the spectra obtained. The difficulties of handling samples in very small amounts should not be overlooked. It is. for example. impossible to isolate microgram quantities of material by fractional crystallisation or fractional distillation. Fortunately, it has been found possible to exploit the properties of solubility and adsorptivity of substances in order to effect their separation. This approach was first employed in 1906 by Tswett^{\mathcal{B}} who succeeded in separating components of plant pigments using a column of solid adsorbent though which a solvent was flowing, hence the term "chromatography". A modern definition of chromatography 9 covers the technique in its various guises: "Chromatography is a physical method of separation in which the components to be separated are distributed between two phases, one of the phases constituting a stationary bed of large surface area, the other being a fluid that percolates through or along the stationary bed". The stationary phase can be a solid* ("adsorption chromatography") or a liquid* ("partition chromatography") and the mobile phase Brenner and Olson¹⁰ have summarised the a liquid or gas. development of the various forms of chromatography as in Table 2. which has been amended to include gel chromatography. 0f

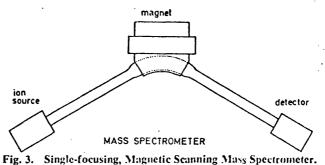
-5-

^{*}The division into adsorption and partition chromatography as between solid and liquid phases is a simplification, since silica gel has a surface gradually merging from tightly bound water to water in equilibrium with liquid water, or with atmospheric water vapour.

Table 2. Summary of the different chromatographic methods and

	adsorption chromatography		partition chi	romatography
stationary phase	solid		liquid	
mobile phase	liquid (LSC)	gas (GSC)	liquid (LLC)	gas (GLC)
form of development:				
elution	Tswett (1906, Kuhn, Winter- stein, and Lederer(1931,	and Thiele (1943)	liquid-gel	James and Martin (1952) Ray (1954)
frontal analysis.	Tiselius (1940) Claesson (1949)	Phillips (1953-1954)	Phillips (1952)	Phillips (1954)
displacement	Tiselius (1943) Claesson (1949)	Schuftan (1931) Turner (1943) Claesson (1946) Turkel'taub (1950)	Le vi (194y)	


the first significant contributors. 10


particular interest in the present work are the gas chromatographic methods: gas-solid and gas-liquid chromatography.

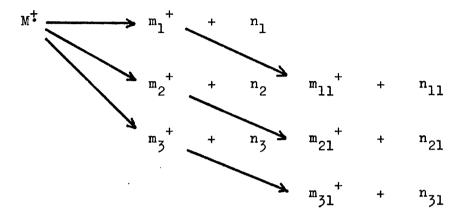
GAS CHROMATOGRAPHY

In the gas chromatograph (Fig. 1) the sample is swept through a column by a stream of carrier gas. In gas-liquid chromatography the column is packed with a finely divided. inert solid ("support material") upon which is coated a nonvolatile liquid ("stationary phase"). Alternately, the column inner wall is coated directly with stationary phase. Individual components of the mixture, which emerge from the column in an order dependent on their vapour pressures and on their affinity for the stationary phase, are detected and a "chromatogram" is produced - giving a record of their retention times and an indication of relative concentrations (which may be determined if the detector response is known). Characterisation of samples is often effected by comparison of standardised retention times, but more positive identification can be obtained by supplementary techniques such as It is possible to collect some or all of mass spectrometry. the material emerging from the column for mass spectrometric analysis. However, since the sample emerges from the column in the vapour phase, gas chromatography is amenable to direct instrumental coupling with mass spectrometry.

-7-

MASS SPECTROMETRY

Mass spectrometers have been in use for more than half a century and have been subjected to major changes in both complexity and diversity of design and application. The principle of their operation, however, remains relatively simple: the sample molecules are ionised in a vacuum, and the energised molecular ions which are produced decompose to give characteristic fragment ions. The relative abundances of the various ions are measured, and this information is used in the identification of the sample. In the instruments most commonly used for gas chrometography-mass spectrometry, an electron-impact ion source produces a beam of positive ions, which is focused electrostatically and separated magnetically: the individual ionic abundances are recorded electrically.


-9-

In the electron-impact source (Fig. 2), the sample molecules (M) are directed into a high energy (usually 5-100 eV) electron beam. The ions produced are withdrawn from the source and directed along a flight tube through a series of slits of successively decreasing potential. If the electron energy is greater than the ionisation potential of the sample molecules, molecular ions (M^{\ddagger}) are produced by the loss of electrons:

M ----> M⁺

The energised molecular ions may then decompose to give

primary fragment ions $(m_1^+, \text{ etc.})$ which, in turn, may break down to produce secondary fragment ions $(m_{11}^+, \text{ etc.})$, and so on until sufficient energy has been carried away by neutral fragments (n) to leave stable fragment ions:

Most of the positive ions thus produced are singly-charged, although a few may become multiply-charged by further electronloss. In practice, singly-charged ions are assigned massto-charge ratio ($\underline{m/e}$) values corresponding to the sums of the atomic weights (C=12,0000) of the constituent atoms, the charge being taken as unity. Multiply charged ions may be observed at $\underline{m/e}$ values corresponding to the appropriate fraction of their masses.

The flight tube leads into a magnetic analyser (Fig. 3) which spreads the ion beam into a "spectrum": the lighter ions are deflected more than the heavier ones. The spectrum can be "swept" over a detector by varying the magnetic field strength.

Ions emerging from the ion source have a potential

energy \underline{eV} , where V is the accelerating voltage. This is equal to its kinetic energy, $\frac{1}{2m}v^2$, where v is its velocity, so: $eV = \frac{1}{2}mv^2$

The magnetic field, of flux density B, exerts a centripetal force <u>Bev</u> on this ion. This is balanced by the centrifugal force \underline{mv}^2/R , where R is the radius of the ion path, so:

 $B\underline{e}v = \underline{m}v^2/R$ i.e. $\underline{m/e} = B^2R^2/2V$

In a magnetic-scanning instrument, $\underline{m/e}$ is directly proportional to B^2 .

Occasionally, ions of mass m_1 decompose between the ion source and electromagnet to produce fragment ions of mass m_2 and neutral fragments. The neutral fragments carry away a fraction of the kinetic energy, so ions of mass m_2 formed in this region of the analyser tube possess less kinetic energy than ions of the same mass produced in the ion source. Consequently, they have lower momentum, are deflected to a greater extent, and appear at a lower apparent $\underline{m/e}$ value than the equivalent ions formed in the ion source. This apparent mass, m^* , is approximately related to m_1 and m_2 by the expression:

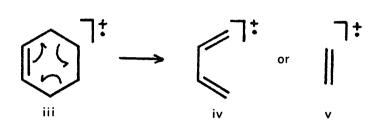
$$m^* = m_2^2/m_1$$

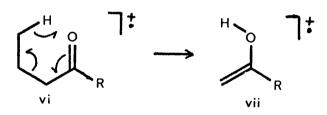
The neutral particles may carry away varying amounts of energy from ions of mass m_1 . Therefore, the <u>m/e</u> values of ions of apparent mass m* are somewhat dispersed and appear in the

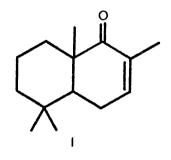
spectrum as diffuse peaks. They are erroneously referred to as "metastable" peaks. They can, of course, be used to determine fragmentation routes. Also, it is possible to ascertain that ions "linked" by a "metastable" ion are produced from the same component of a mixture.

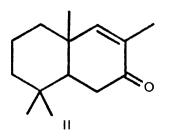
This type of mass spectrometer, on its own, could be used to identify pure samples introduced to the ion source in the vapour phase. It is, however, usually extremely difficult to identify individual components of mixtures by direct mass spectrometry. Various methods could be used for the separation of mixtures before their identification by mass spectrometry, but gas chromatography is the most convenient because it deals with the sample already in the vapour phase.

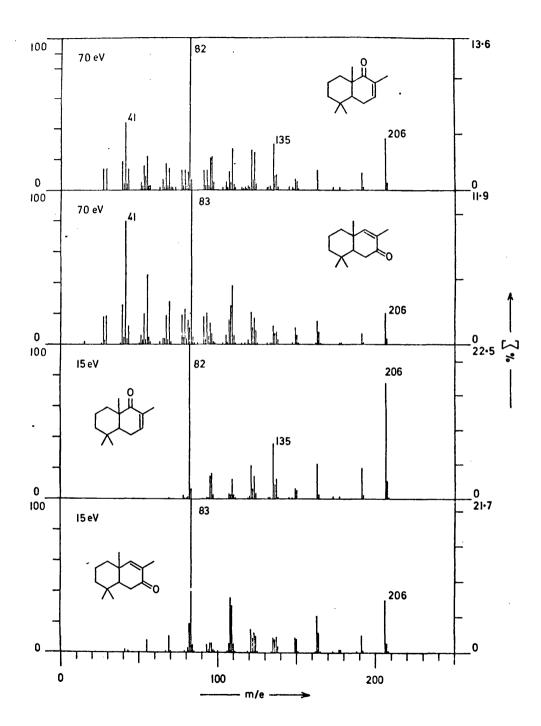
The information obtainable from a mass spectrum depends largely on the type of sample and the instrumental conditions. Most samples give a molecular ion, which is often of greater relative intensity with an ion beam of moderate energy (12-15 eV as opposed to the conventional 70eV). Examples of sample types for which the molecular ion is often absent are alcohols and acetates, for which the ions of highest mass often appear to be [M-18][†] or [M-60][‡], respectively, corresponding to elimination of water or acetic acid. It is nearly always possible to convert an alcohol to a derivative which is more stable to electron impact, such as a trimethylsilyl (TMS) ether. In fact,

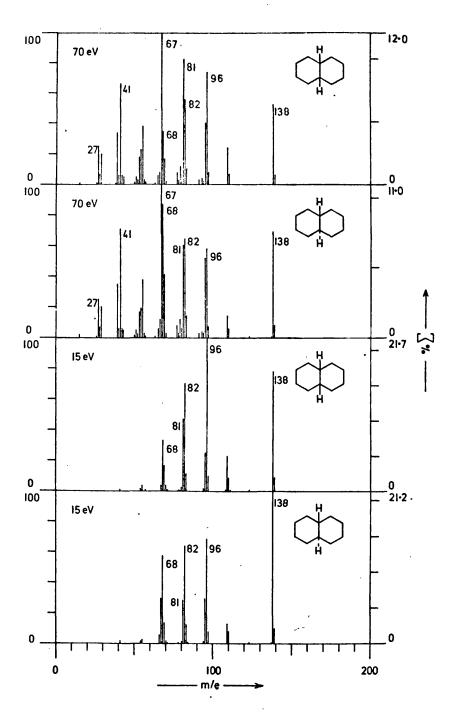

-12-


derivatives must be formed from many compounds because they are involatile.


Electron impact-induced fragmentation is rarely a random process: for all but the simplest molecules some bonds are more labile than others. The preferred fragmentations may be simple, as in the α -cleavage of ketones (i- \rightarrow ii). They may involve more extensive electron-rearrangement as in the "retro-Diels-Alder" fragmentation of cyclohexene-type systems (iii \rightarrow iv or v). Frequently, fragmentation is accompanied by atomic rearrangement, as in the McLafferty fragmentation of ketones (vi-vii). These preferred fragmentations, which are also more prevalent than others at lower electron energy, are accompanied by many more fragmentations: the complete spectrum comprising a "fingerprint" of the sample molecule. The spectra of more than 17,000 organic compounds have been published 11 and much progress has been made on the correlation of fragmentation mode with structural features.⁴ It is often easy to distinguish structural isomers by mass spectrometry. For example, nordrimenone (I) gives a base peak at $\underline{m/e}$ 82 whereas <u>isonordrimenone</u> (II) undergoes rearrangement to give a base peak at m/e 83. These ions are the base peaks in both the 70eV and 15eV spectra and it can be seen (Fig. 4) that these ions and the molecular ions are of greater relative abundance at 15eV. The spectra of stereoisomers are usually rather similar, any differences in

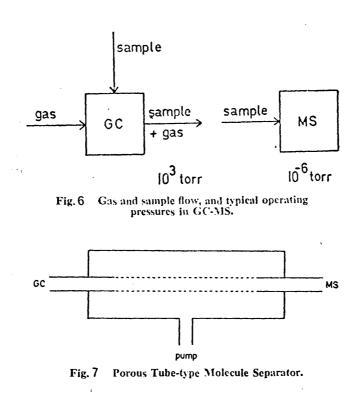

-13-




Fig. 4

relative abundances of certain ions being statistically insignificant. Such differences may, however, be accentuated in the low voltage spectra (cf. spectra of <u>cis-</u> and <u>trans-</u>decalin at 70eV and 15eV in Fig. 5). In many instances, stereoisomers are more easily differentiated by gas chromatography.

GAS CHROMATOGRAPHY-MASS SPECTROMETRY


Before GC and MS can be operated in combination with each other, one major problem must be overcome: the sample emerges from the chromatograph in a stream of carrier gas, whereas the mass spectrometer must operate under high vacuum (Fig. 6). The carrier gas flow rate through the gas chromatograph is, typically, about 30 ml/min. A 1 µg sample emerging during a period of 10 sec. would. therefore, be present in much less than 1% concentration in the gas stream. A suitable ion source pressure could be maintained if only a small proportion of the total effluent from the gas chromatograph were introduced to the mass spectrometer, but this would lead to an extremely low net sensitivity of the combination. Selective removal of all or the majority of the carrier gas would be preferable. Several methods are, in fact, available for carrying this out, each based on the different physical properties of the carrier gas and sample.

Various types of porous tube separator (Fig. 7) have

•

Fig. 5

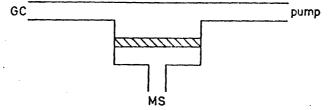
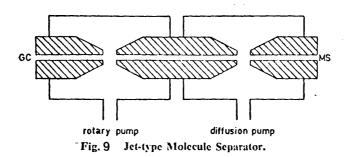



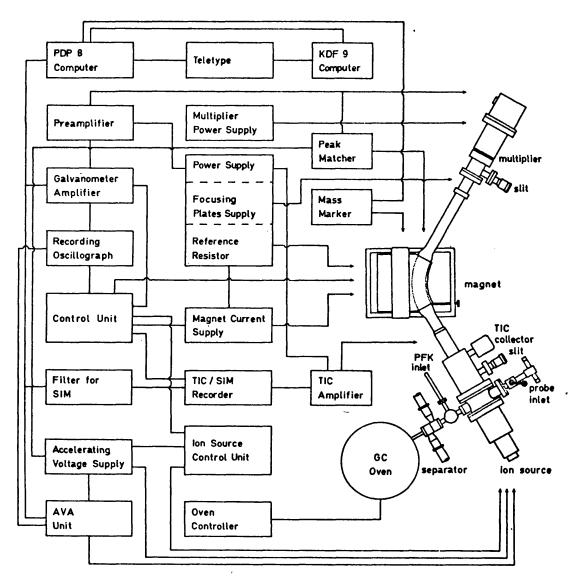
Fig. 8 Membrane-type Molecule Separator.

been described. They make use of the preferential diffusion of carrier gas (helium) through the porous tube, which is surrounded by a chamber maintained at a low pressure by means of a rotary pump. The separator tube can be made of porous glass,¹²⁻¹⁴ Teflon^{15,16} or porous stainless steel.¹⁷ The porous glass separator is the most commonly used, but suffers from the disadvantage that polar samples can become adsorbed onto the glass surface. This leads to "tailing" of the sample and often imposes a lower limit on the sample size.¹⁸ This problem can be overcome to some extent by "silanization" of the glass.¹⁹ Teflon is apparently more susceptible to "memory" effects.²⁰

The membrane-type molecule separator (Fig. 8) makes use of the selective permeability of the sample molecules through a silicone membrane.^{21,22} The carrier gas (which need not be helium) is removed by a rotary pump. An interesting feature of this type of separator is that there is a time delay of several seconds between the sample's leaving the column and entering the ion source: an ancillary detector at the exit of the column can alert the operator before the sample actually enters the mass spectrometer.

The jet-type separator (Fig. 9) comprises two pairs of stainless steel jets, each pair surrounded by an evacuated chamber: the second chamber is at a lower pressure than the first.²³, ²⁴, ²⁵ The carrier gas, again helium, diffuses away

-19-


from the supersonic stream more rapidly than the sample and is selectively removed. Since the sample makes little or no contact with the separator, there is not the same problem of decomposition as is encountered with the other separators.

Each separator has its advantages and disadvantages but the choice depends largely on the problem of commercial availability unless the laboratory has appropriate workshop facilities. The geometry of the interface, in limiting remixing of sample, is apparently more critical than "dead" volume.

Sample enrichment is not the only problem to be overcome in the direct coupling of gas chromatography with mass spectrometry. The sample may be emerging from the gas chromatograph for only a short period of time. The mass spectrometer, then, has to be modified for rapid scanning. In one commercially available combined instrument, the magnetic field can be increased from 0 to 14 kgauss (corresponding to $\underline{m/e}$ 0-1000) in under 5 sec: the ions are detected by an electron multiplier connected to a wide-band D.C. amplifier, and the mass spectra are produced on a recording oscillograph. A chromatogram is obtained by monitoring the total ion current.²⁶ (Fig. 10).

It has been mentioned that helium is often used as a carrier gas, particularly with porous tube and jet-type separators. The value of such an inert carrier gas in preserving labile

-20-

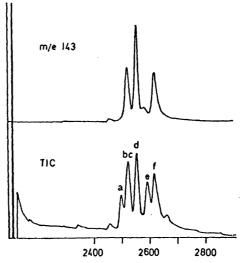
GAS CHROMATOGRAPHY - MASS SPECTROMETRY INSTALLATION

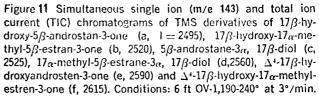
compounds up to the point of electron impact should not be underestimated. Precise retention data are of prime importance in many structural assignments, and care should be taken to ensure that retention indices <u>at the positions of actual MS</u> <u>scans</u> are noted. This can usually only be effected by determining retention times from runs carried out with mixtures of sample and suitable standards. Obviously, the sample must be well resolved from the standards.

GC-MS is not, by any means, limited to the instrumentation described above: many other types of mass spectrometer have been used, including time-of-flight,²⁷ quadrupole, and double-focusing spectrometers. If capillary columns are used in the gas chromatograph, the carrier gas flow rate may be so low as to obviate the need for a molecule separator.

ANCILLARY TECHNIQUES OF GC-MS

The combination GC-MS instrument is capable of performing operations other than conventional GC-MS, but the flexibility of any particular model depends on its design. <u>Single Ion Monitoring</u>. The magnetic field or accelerating voltage may be adjusted so that any ion in the spectrum is brought into focus on the detector. If the abundance of ions of this mass is monitored during a GC run, a "single ion" chromatogram is produced. Substances giving rise to character-


-22-


istic ions in their spectra may be selectively detected. For example, Henneberg and Schomburg have used this method to detect lead alkyls in petroleum $(\underline{m/e} \ 207 = Pb^+)$.²⁸ We have found²⁹ that single ion monitoring can be successfully employed to detect steroids containing distinctive structural features (Fig. 11) and have applied the technique to the detection of possible drug metabolites in urine extracts (see below). Using a twochannel potentiometric recorder, we have been able to determine the position of the possible metabolites in the total ion current chromatograms so that a full spectrum could be obtained during a subsequent run.

<u>Multiple Ion Detection</u>. Using a similar method, but with two adjacent detectors, it is possible to monitor simultaneously the intensities of two classes of ion. This has been carried out by Gorshkov <u>et al</u>.³⁰ who claim that the ratios of abundances of common fragment ions, such as <u>m/e</u> 39 and 41 or 41 and 43, are of diagnostic significance in the analysis of petroleum naphthas. However, this technique can only be used if appropriate instrumentation is available [<u>eg</u>. MC-1307 ("CHROMASS-2"), MS-1, M2-2M, MI-1305] and is rarely employed outside the Soviet Union.

A more widely applicable method was developed by Sweeley <u>et al.</u>³¹ for use with conventional mass spectrometers.

-23-

The two or more ions of interest are sequentially brought into focus onto the detector by varying the accelerating voltage. The detector signal is reproduced by an oscillographic recorder with a slow chart speed. In this manner, several single ion chromatograms may be produced simultaneously. This is of particular value if partially resolved GC eluates give different characteristic ions or if the compounds of interest each give rise to more than one characteristic ion. The method has been used with success in the search for metabolites of Chlorpromazine.³²

<u>Isotope Labelling</u>. Hydroxylic, enolic and other readily exchangeable hydrogen atoms can be selectively replaced by deuterium atoms by GLC with a suitable stationary phase.³³⁻³⁶ The presence of strongly acidic or basic catalysts, <u>e.g.</u> phosphoric acid³³ or potassium hydroxide,³⁴ is required for effective replacement of enolic hydrogen atoms by deuterium atoms. Deuterium labelling is used extensively in the investigation of mass spectral fragmentation modes.⁴ Conversely, the mass shifts of parent and fragment ions upon deuteriation are a valuable indication of their structure and hence of the environment of functional groups in the molecule. GC-MS affords a useful method of labelling and identifying small quantities of material, and exploratory investigations have

-25-

been carried out on steroidal ketones and their derivatives.³⁷ Apiezon L was selected as the stationary phase because it has low polarity and good thermal stability. It had, moreover, also been shown to be compatible with potassium hydroxide in the GLC of free amines.^{38,39} Barium hydroxide was found to be a suitable catalyst since, although it is a weaker base then potassium hydroxide, it gave satisfactory results and caused less.column "bleed" - a critical consideration for GC-MS. The columns used were packed with OV-1 (1%), and Apiezon L (1%) incorporating barium hydroxide (1%) on Gas-Chrom Q (100-120 mesh). Before use, the column was "saturated" with deuterium by injection of D₂O or MeOD.

There have been various reports of isotopic exchange of radiolabelled ions by GLC^{4O-43} , but it should be pointed out that, at the isotope dilutions employed, mass spectrometry is of insufficient sensitivity to differentiate the labelled molecules.

<u>Reaction Gas Chromatography</u>. Many systems have been devised for modification of sample before, in, or after the GC column.⁴⁴⁻⁴⁶ However, little use has been made of the potential of combined GC-MS in this field, identification of products resting mainly on retention times. Examples of reaction gas chromatography are:

(i) Hydrogenation. Hydrogen is usually used as carrier

-26-

gas, with a precolumn containing catalyst. The technique was first employed by Rowan for the analysis of hydrocarbons.⁴⁷ The method has since been extended to the study of a wide variety of compounds.^{48,49} Practical applications have included the identification of insect attractants,⁵⁰ the queen bee substance,⁵¹ alkaloids,⁵² and fatty acids from wool wax.⁵³

(ii) Dehydrogenation. There has been less practical application of dehydrogenation, but studies have been made on alicyclic and heterocyclic compounds⁵⁴ and monoterpenes.^{55,56}

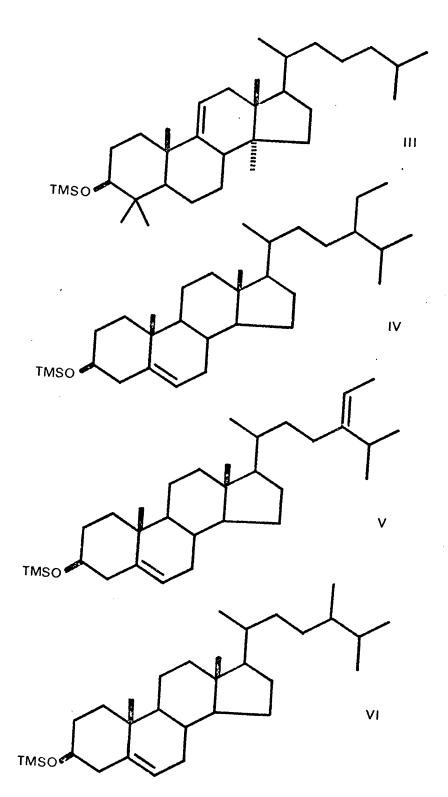
(iii) Carbon Skeleton Chromatography. In an extension of the work of Thompson <u>et al.</u>,⁵⁷ Beroza <u>et al.</u> have developed a technique for the catalytic saturation of multiple bonds and stripping of functional groups containing oxygen, nitrogen, sulphur and halogen from the molecule. This work has recently been reviewed by Beroza.⁵⁸

(iv) Pyrolysis. Pyrolysis of samples often gives rise to products which yield characteristic chromatograms (pyrograms). This is particularly useful for the identification of polymers: Groten has found that different pyrograms were obtained for each of more than 150 polymers.⁵⁹ The technique is of limited use for samples of low molecular weight, although it has been shown that <u>cis</u>- and <u>trans</u>-isomers of some hydrocarbons give different pyrograms.⁶⁰

-27-

(v) Other Techniques. Many more applications of reaction GC have been described, but few have been used in conjunction
 with GC-MS.

<u>Other Techniques</u>. Various instrumental techniques have been used in direct combination with GC,⁶¹ but only infrared spectroscopy⁶² has been used to any great extent in tripartite combination with GC and MS.⁶³ It is usually difficult to obtain infrared spectra at the rate at which samples emerge from a GC column, but a technique has been developed for interrupting the carrier gas flow during IR and MS scans.⁶⁴


A more recent development, pioneered by Lovelock <u>et al.</u>,^{65,66} is carrier gas transmodulation. If hydrogen is used as the carrier gas, it can be selectively removed by passage through a heated palladium-silver tube. It may be replaced, if required, by another gas. A logical development of this technique is the inclusion of hydrogenation or dehydrogenation processes between the gas chromatograph and the mass spectrometer, thus providing further useful information on the structures of the samples.

<u>Precise Mass Measurement</u>. While unlikely to be of use with combined GC-MS,⁶⁷ precise mass measurement facilities are available for a number of low resolution mass spectrometers to be used in conjunction with conventional sample introduction systems. If the mass of any ion can be determined at sufficiently

-28-

high accuracy (normally within 5-10 p.p.m.) it is possible to calculate the empirical formula of the ion. 68 Tables have been compiled to facilitate this task. 69,70 Direct measurement of mass ⁷¹ is only feasible with a suitable high-resolution instrument. It is also possible to calculate ratios of masses to a high degree of accuracy by measurement of the ratio of the accelerating voltages required to focus each of a pair of ions onto a detector.⁷² This is known as "peak matching" because, in its practical form, 73 the method involves superposition of MS peaks on an oscilloscope screen. This latter method is also suitable for use with low-resolution instruments, although it cannot be used for measurements of peaks comprising unresolved isobaric ions (i.e. ions of the same nominal m/e). In practice, low-resolution peak matching is limited to molecular ions and simple fragment ions, such as $[M-15]^+$ and $[M-18]^+$.

We have applied the technique to the investigation of plant sterols.⁷⁴ A 3-component mixture was found to give TMS ethers with molecular ions at $\underline{m/e}$ 486 (major component), 484 and 472 (minor component). The authentic TMS ether III was used as a mass standard because it was of similar volatility and molecular weight. The precise mass of the molecular ion of III was 500.4413. 2 µg each of the standard and the unknown mixture were introduced to the ion source via the

direct probe and the molecular ions of the standard and the major component of the mixture were located by adjustment of the accelerating voltage. Final adjustment of the peak matcher controls was carried out using a further 5 µg sample of each. The measured ratio of the masses of the molecular ions was 1.028806, giving a molecular weight for the major component of 486.4292. This is within 7 p.p.m. of $C_{32}H_{58}^{OS1}$ (486.4256). Subsequent examination of the mass spectrum showed that the major component was β -sitosterol TMS ether (IV). Similar measurements were carried out on the other two components of the mixture, and they were identified (with the aid of GLC) as fucosterol TMS ether ($C_{32}H_{56}OSi$)(V) and campesterol TMS ether ($C_{31}H_{56}OSi$)(VI).

APPLICATIONS OF GC-MS

The immense value of GC-MS as an analytical tool can be gauged by the number of papers which have been published on the subject: more than 300 in the past five years alone. Several reviews of the literature of GC-MS have appeared, including those contributed by Leemans and McCloskey,⁷⁵ Ryhage and Wikström,²⁶ and McFadden.⁶ A more detailed review has recently been presented by Watson,⁷⁶ and more recent work has been summarised by Brooks.⁷⁷ Geochemical applications

-31-

have been described by Calvin,⁷⁸ and Eglinton and Murphy.⁷⁹ Useful bibliographies are compiled periodically by LKB-Produkter,⁸⁰ and GC-MS abstracts by Science Technology Agency.⁸¹

The main advantages of GC-MS over other methods of chemical analysis are that only very small quantities of materials are required (typically, 1 μ g) and mixtures are separated and characterised in the same instrument. GC-MS has, therefore, an enormous potential in the field of natural product analysis. Examples of applications which have already been exploited are given in Table 3. The power of the technique is well illustrated by its application to the study of lipids from diseased human arteries: sufficient material for analysis by modern chromatographic techniques can be obtained from single aortas, and mass spectrometry is the only generally-applicable technique suitable for characterisation of the small quantities of components so separated.⁸²

GC-MS is also of great utility even when relatively large quantities of material are available. This is particularly so for the study of flavours and aromas although here, too, it is advantageous to work on a small scale.⁸³ Some examples of aromas which have been investigated are given in Table 4.

It is rather difficult to define the sensitivity of GC-MS: it depends on the sample. High sensitivities could

-33-

GC-MS APPLICATIONS: NATURAL PRODUCTS

STEROIDS IN:	HYDROCARBONS IN:
Amniotic fluid	Algae
Bile	Bacteria
Blood	Bituminous coal
Brain	Cattle manure
Faeces	Foodstuffs
Insects	Fungal spores
Plants	Petroleum
Urine	Plant waxes
AMAZONIAN HALLUCINOGENIC DRUGS	
DRUG METABOLITES	
EMULSIFIERS IN GASTRIC JUICE OF CRABS	
HOP CONSTITUENTS	
INSECT JUVENILE HORMONES	
LIPIDS OF DISEASE	D HUMAN ARTERIES
LIPIDS OF QUEEN OF	F ORIENTAL HORNET
Table 3	

GC-MS APPLICATIONS: AROMAS

AppleHBananaHBeeLBeefNBlack currantNBone glueCCheeseHCloverHCoffeeSCranberryTCatty odours in foodWeed taint in milk

Hop oil Human breath Locust Maple syrup Milk Orange Pea Peanut Strawberry Tobacco

÷.,

Table 4

be quoted for samples which give simple but highly characteristic spectra, such as benzene, toluene, methyl chloride and carbon disulphide. For samples which give more complex spectra, larger quantities are required. Some samples are detectable. by virtue of characteristic ions, at much lower concentrations than are needed to obtain a full enough spectrum for identification purposes. For example, we have applied the single ion monitoring technique to detect TMS derivatives of 17a-methyl 17β -hydroxy steroids (see below) in quantities of less than 10 ng. The recording of full spectra of good quality, however, requires about 1 µg of sample. Another limitation on sensitivity is due to loss of sample on the GC column: cortisone t-butyl boronate gives fairly intense spectra with $3 \mu g$ of sample, but only very weak spectra with $l \mu g$. In general, we have found that satisfactory spectra are usually obtained for samples of $1 - 3 \mu g$ if the GC conditions are adjusted to give retention times of 15 - 20 minutes.

Additional problems arise from GC. Column "bleed", if it is too high, can rapidly contaminate the ion source of the mass spectrometer. For this reason, low concentrations of stationary phase are employed, typically 1%. Column temperatures are maintained at 250° or less: samples of high retention index are best run on shorter columns. The homogeneity of GC

-34-

peaks can be checked by multiple scanning⁸⁴ and useful data can be extracted from unresolved GC peaks by the multiple ion detection technique.³¹

The following sections of this thesis relate to work carried out by the author since October 1967. His previous use of GC and MS was confined to analysis of vapour phase photolysis and reaction products: in this work, MS analysis was carried out on collected GC fractions.⁸⁵

The GC-MS facilities available for the present work in the Chemistry Department of the University of Glasgow were based on an LKB 9000 gas chromatograph-mass spectrometer (LKB-Produkter AB, Stockholm). This comprises a gas chromatograph with temperature programmer, a Ryhage-type jet molecule separator and a single focusing mass spectrometer equipped with a 60° sector, 20 cm radius magnetic analyser and sweep generator for fast scanning of spectra. A rhenium filament is used to provide an ion source of the electron bombardment type. The measuring system comprises a 14-stage electron multiplier. electrometer and a wide-band amplifier feeding a direct-writing UV oscillograph. A direct probe inlet was available and a heated inlet system for the introduction of marker substances (see below) was constructed by the author. During the three-year period, several more accessories were installed: accelerating

voltage alternator (for multiple ion detection) (April 1969), mass marker (June 1969) and peak matcher (March - April 1968 and July 1970). Various gas chromatographs and other equipment were available, as referred to in the text.

The sections on GC-MS of steroids and boronate derivatives comprise part of a progressive programme of work on the development of methods and techniques of GC-MS analysis. The section on aliphatic compounds describes work carried out primarily in collaboration with workers in other laboratories. The work on particulate air pollutant analysis was a trial of the suitability of GC-MS for studies in this area, and the section on data handling details our attempts at automation of this phase of GC-MS.

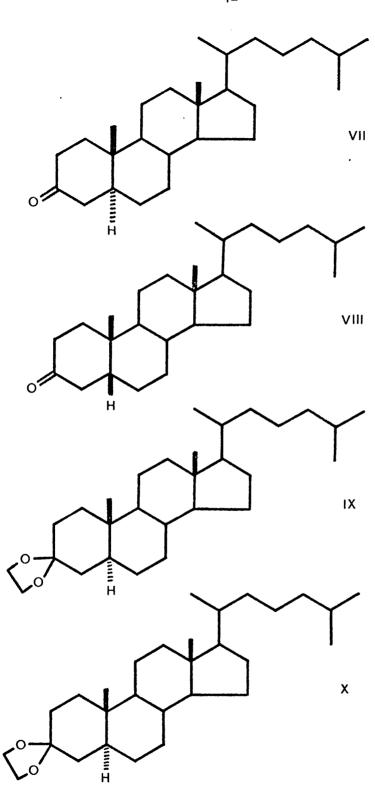
=36-

II STEROLDS

STEROIDS

Steroid analysis poses a particularly challenging problem for the analytical chemist. Firstly, there is (within the group of similar tetracyclic structures) a multiplicity of skeletal types, with both nuclear and side chain variants. There is also the possibility of multiple bonds and substituent functional groups, such as hydroxylic, ketonic, acidic and aldehydic. Finally, the question of stereochemistry must be decided. Perhaps no single technique, other than X-ray crystallography, is capable of solving all of these problems. Much structural information can, however, be gleaned from gas chromatographic and mass spectrometric data of steroids and their derivatives. Moreover, only small quantities of material are required for gas chromatographic-mass spectrometric investigation.

Rapid progress has been made in the field of gas chromatographic analysis of steroids since the first report⁸⁶ in 1959. Reviews have been compiled at frequent intervals.⁸⁷⁻¹⁰³ Mass spectrometry has made similar progress since 1956,¹⁰⁴ although fewer general reviews¹⁰⁵⁻¹⁰⁷ have been compiled: mainly because of the fact that GC has attained wider acceptance as a practical tool, particularly in the biomedical field. A recent review⁷⁷ of GC-MS gives good coverage of applications to steroids. The approaches used in gas chromatographic-mass spectrometric investigation of steroids are best discussed in three sections, dealing respectively with steroid ketones, sterols and multifunctional steroids (including corticosteroids).


(i) Ketones. More work has been carried out on the mass spectrometry of steroidal ketones than on any. other steroid type. Consequently, more is known of the fragmentations associated with the various ketones. Many of these processes have been clarified by deuterium labelling studies, particularly by Djerassi's group. 108 It is found that, in general, the ketone function has little fragmentation-directing influence. In the absence of other functional groups, there may be ions at $[M-18]^+$ and $[M-33]^+$ corresponding to successive elimination of water and a methyl group, but the spectra are normally dominated by peaks due to "erosion" products of the steroid nucleus, chiefly eliminations of fragments from rings A and D of the nucleus. Transfer of hydrogen atoms is widespread and often random. Certain structural configurations may, however, give rise to favoured fragmentation modes. For example, the McLafferty rearrangement of 20-isopropyl-5a-pregnan-16-one produces an ion (m/e 259) accounting for more than 80% of the total ion current.¹⁰⁹ The presence of a double bond in a suitable position may have a pronounced effect on the fragmentation of steroidal ketones. The spectra of Δ^4 -3-ketosteroids have been the subject of comprehensive studies: they are discussed further in the following section. It should be noted that, in general, the molecular ion is stabilised by the presence of a conjugated

-39-

enone moiety. Vinylic fission is generally a very unfavourable process and "typical" fragmentations of steroidal ketones¹¹⁰ and their derivatives¹¹¹ are often suppressed in the spectra of these compounds. The apparently anomalous formation of ions at $\underline{m/e}$ 43 and $[M-43]^+$ from Δ^{16} -20-ketones has been rationalised by postulation of loss of the 17-acetyl group accompanied by concerted migration of the angular C-18 methyl group.¹¹⁰ It is often advantageous to examine the spectra of fragmentation-directing derivatives which enhance the structural differences of the parent molecules.

Ethylene ketal, ethylene thicketal and dimethylamine derivatives are particularly specific in their fragmentationdirecting behaviour.¹¹² This high specificity is often somewhat of a disadvantage since little general structural information is obtained from the spectra. For example, loss of ring A is negligible in the spectrum of cholestan-3-one (VII) but gives rise to a peak of medium intensity in the spectrum of coprostan-3one (VIII).¹¹³ The spectra of the derived ethylene ketals IX and X are virtually identical.¹¹⁴ On the other hand, Δ^4 and Δ^5 -3keto-19-methylsteroids¹¹⁵ and Δ^4 -, Δ^5 , and $\Delta^{5(10)}$ -3-keto-19norsteroids¹¹⁶ can be well distinguished by mass spectrometry of their ethylene ketals. Also, Whalley and co-workers have shown^{117,118} that 19-nor- and 19-methyl-3-ketosteroids can be distinguished by mass spectrometry of the derived 2-spiro-2'-(1,3-dithian) analogues: highly characteristic ions are observed

-40-

-41-

at m/e 145 and m/e 159, respectively. The results are not so sharply defined in the spectra of derivatives of steroids having a double bond in ring A or B. The gas chromatographic separation of ketosteroids as ethylene thicketal derivatives has been described. 119 but the most widely used derivatives for gas-phase analytical characterisation of steroidal ketones are the oximes, particularly the O-methyloximes.¹²⁰ Syn- and anti-oxime derivatives may be formed from steroidal ketones, and in certain instances can be separated by GC¹²¹⁻¹²⁵ or TLC.^{122,123,126} The relatively high polarity of simple oximes essentially limits their use to monoketones which have no other functional groups. This range of application can, however, be extended by conversion to the much less polar <u>0</u>-trimethylsilyloximes.^{111,127-130} A further type of derivative suitable for GC-MS of steroidal ketones is the enol-TMS ether. 131,132 As mentioned in the Introduction, ketones can be readily deuteriated in transitu in GC-MS, and considerable information can thereby be obtained about the environment of the ketonic function. Another approach to the characterisation of steroidal ketones is via their reduction to sterols, for which a different range of methods is available.

(ii) <u>Sterols</u>. Spiteller-Friedmann and Spiteller have reviewed¹⁰⁷ the mass spectral fragmentations of sterols. Other than the ubiquitous elimination of water from the molecular ions and from certain fragment ions of sterols (a process which is also observed in the spectra of

-42-

many ketones), the majority of the fragment ions arise from fragmentation of the unsaturated parent steroid. Fissions directed by the hydroxyl group are often greatly accentuated in the spectra of the TMS ether derivatives.¹³³ These derivatives are of lower polarity than the corresponding sterols and thus exhibit excellent gas chromatographic properties.¹³⁴ Many papers have been published on the GC-MS of steroid TMS ether derivatives, both with reference compounds and natural products. Many of the early observations are reviewed by Brooks et al. in a comprehensive paper ¹³⁵ on sterol trimethylsilyl ethers and the recent literature is cited in the first of the Chemical Society Specialist Periodical Reports on Mass Spectrometry.⁷⁷ It should be noted that rearrangement ions may be produced from sterols via migration of trimethylsilyloxy groups 136-138 analogous to those observed in the spectra of other TMS derivatives. 139-151 Comparison of the spectra of TMS derivatives with those of the corresponding d_q-TMS derivatives 152 gives a clear indication of the TMS-containing ions. Similarly, mass shifts are observed in the spectra of (chloromethyl)dimethylsilyloxysteroids, which also have higher retention indices.¹⁵³ The retention indices of the bromo- and iodo-analogues¹⁵⁴ are even higher, but the iodo compounds have been used as derivatives of estradiol and estrone for electron-capture GC.¹⁵⁵ Acetates have long been used as derivatives for mass spectrometry of sterols,¹⁵⁶ but they are of limited use for GC-MS

-43-

since they have relatively high retention indices. The acetate function is readily eliminated, as acetic acid, under electron impact and has little fragmentation directing influence. Trifluoroacetates were used¹⁵⁷ in much of the early work on GC and GC-MS of bile acids and sterols. Heptafluorobutyrates,¹⁵⁸ which have retention times similar to trifluoroacetates, are useful in electron-capture GC and are suitable for routine gas chromatographic analysis of estrogens.¹⁵⁹ They have also recently been used as derivatives for GC-MS,¹⁶⁰ but because of the high molecular weights (Oestriol tris-heptafluorobutyrate = 876) obtained they are of limited applicability. Methyl ethers also appear to be useful derivatives for GC-MS,¹⁶¹

(iii) <u>Multifunctional steroids (including corticosteroids)</u>

The most widely used derivatives are the TMS ethers (of sterols) and O-methyloximes (of steroidal ketones) and, accordingly, if a steroid contains both ketonic and hydroxyl functions it may be advantageous to use the joint derivative (O-methyloxime trimethylsilyl ether: MO-TMS) for gas chromatographic-mass spectrometric analysis. In practice, it is relatively easy to prepare the MO-TMS derivatives by sequential reaction of the functional groups. The gas chromatographic and mass spectrometric properties of these derivatives are found to be such as would be expected of steroids containing MO and TMS moieties.¹²¹

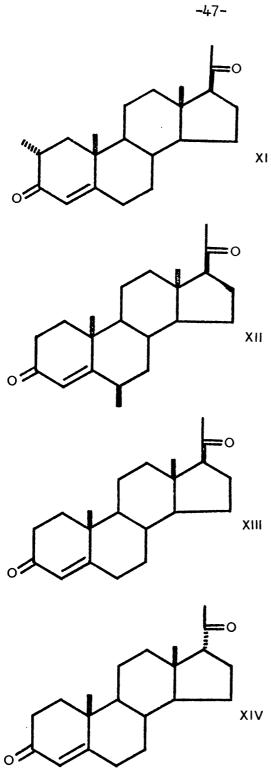
A major problem of corticosteroid analysis by vapour phase

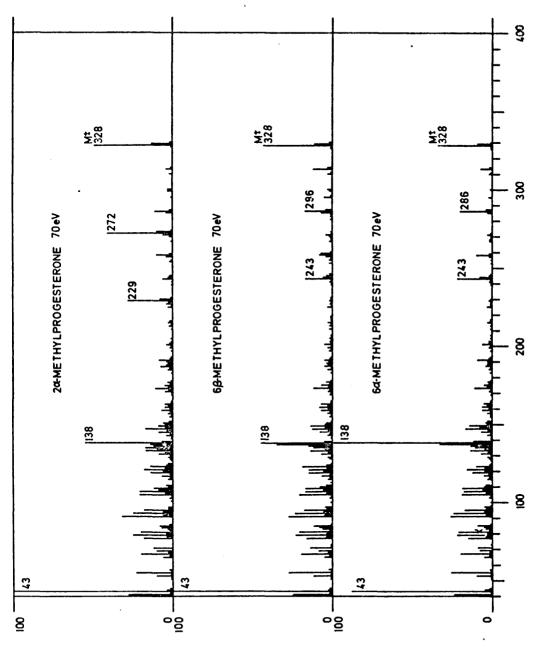
-44-

methods is that many of the characteristic C-17 side chains are thermally labile. For example, it has been shown that corticosteroids with a 17c,21-dihydroxy-20-oxo side-chain (cortisol, cortisone, and ll-deoxycortisol) are partially degraded to 17ketosteroids and changed also in other ways, giving complex peaks in the expected C₂₁-region.¹⁶² The various methods which have been applied to gas chromatographic analysis of thermal degradation products and oxidation products of corticosteroids have been reviewed by Bailey.¹⁶³ It is obviously advantageous to carry out analytical work with a derivative which retains the side chain - particularly for GC-MS. TMS ether derivatives are useful for polyhydroxy compounds,¹⁶⁴ and TMS-enol TMS derivatives have recently been shown to stabilise effectively the side chains of various 20-keto steroids.165 The MO-TMS derivatives of Gardiner and Horning¹²¹ are more widely used. Cyclic dimethylsilyl derivatives have been found to be useful derivatives for diols.¹⁶⁶ We have investigated the use of cyclic boronate derivatives for GC and GC-MS analysis of diols and ketols: these results are discussed below.

As an aid to the identification of steroids by MS, Spiteller and co-workers have recently compiled lists of "key fragments" of steroids and their derivatives (with references). It is claimed that it may be possible to use these in an automated system (computer or punched card) to characterise "unknown" steroids.¹⁶⁷⁻¹⁷⁰ The amount of information required for a claim of "identification"

-45-


depends to some extent on what is known of the source and history of the sample, but it seems likely that we are nearing a situation where steroid identification can be carried out with confidence even if no authentic sample is available for comparison.¹⁷¹


GC-MS of steroids and derivatives is exemplified, below, by accounts of investigations carried out on both authentic steroids (and their derivatives) and those isolated from natural sources. The mass spectrometry of boronate derivatives of steroids will be discussed in a later section of this thesis.

DIFFERENTIATION BETWEEN STEROIDS OF SIMILAR STRUCTURE BY GC-MS

Molecular weights of the majority of steroids may be ascertained by GC-MS. For those steroids which give molecular ions in low abundance, <u>og</u>. some sterols, the molecular weights can usually be inferred from those of suitable derivatives. A major problem of analysis of steroids by GC-MS is, then, that of differentiating between isomers. Fortunately, as described in some detail in the previous section, different functional groups, or their derivatives, give rise to characteristic fragmentation modes. Positional isomers can often be readily distinguished if substituent shifts in major fragment ions can be demonstrated. For example, 29-methylprogesterone (XI) can be distinguished from 63-methylprogesterone (XII) by comparison of ions formed by fragmentation of ring A (Figs.12 and 13). Elimination of C-2 and C-3, with substituents, gives rise to an ion at [M-56][‡]

-46-

Figs 12-14

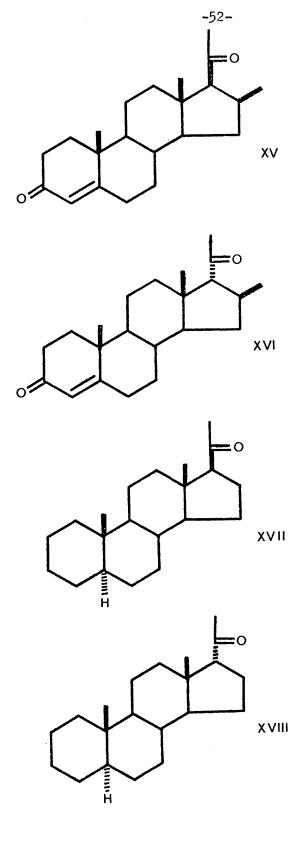
 $(\underline{m/e} 272, 41\%)$ in the spectrum of XI, and an ion at $[\underline{M}-42]^{\ddagger}$ $(\underline{m/e} 286, 17\%)$ in the spectrum of XII. This mass shift is not immediately apparent, since there is a fairly abundant ion at $\underline{m/e} 286$ (11%) in the spectrum of XI. A further indication of the structural difference in ring A is given by ions due to further loss of 43 m.u. (the 17-acetyl group). These ions appear at $\underline{m/e} 229$ (28%) and $\underline{m/e} 243$ (17%) in the spectra of XI and XII, respectively. These differences are even more striking in the spectra obtained at an electron energy of 15eV. A large number of other cases of different-iation between positional isomers could be cited.

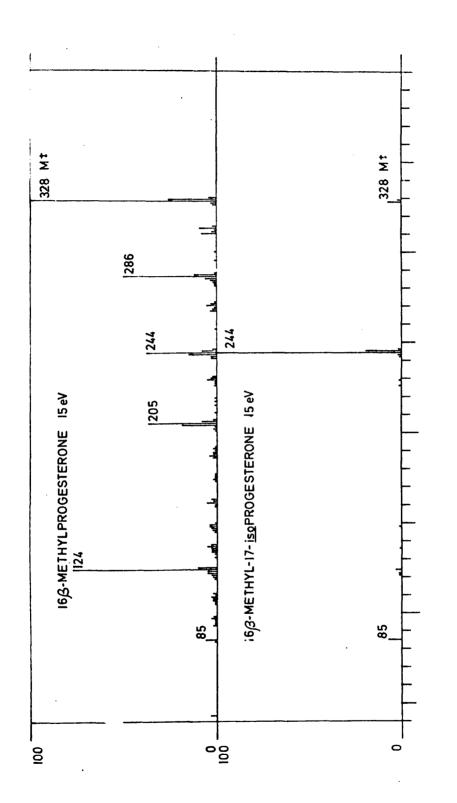
Characterisation of double bond isomers of steroid TMS ethers is discussed in a subsequent section (p.107). Double bonds in certain positions in the steroid nucleus or side chain give rise to characteristic fragmentation modes, such as the retro-Diels-Alder and McLafferty rearrangements.

Mass spectra of stereoisomers are, in general, qualitatively similar; even quantitatively, they usually differ but little.¹⁷² Such differences as exist may be enhanced by employing lower electron energies,¹⁷³ reduced source temperature,¹⁷⁴ or a photoionisation source.¹⁷⁵ These methods apparently minimise thermal reactions and reduce the initial energy content of molecular ions, thereby producing fragment ions <u>via</u> shorter decomposition sequences. Ions arising from

-49-

primary and secondary processes are produced in greater abundance than those formed by subsequent fragmentations and are more likely to reflect the initial molecular structure.¹⁷²

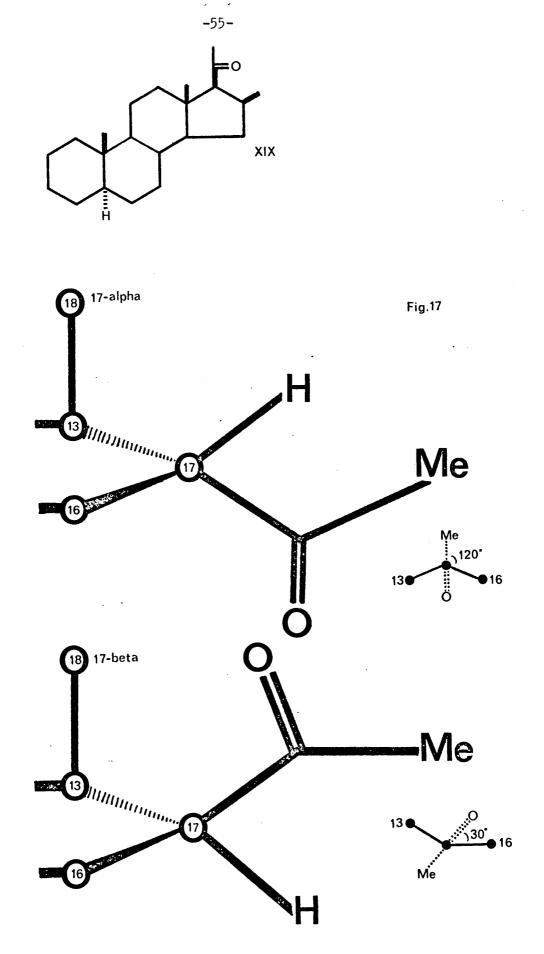

A wealth of mass spectral data on epimeric steroids has been produced by Zaretskii and co-workers. They have discussed the spectra of epimeric steroidal secondary and tertiary 177-179 alcohols as well as ring-junction stereoisomers of steroids and related model compounds.¹⁸³ The initial work¹⁷⁷ indicated that differences between spectra of epimers were due to steric "crowding". It was also noted that water was eliminated more readily from epimers with axial hydroxyl groups than from those with equatorial hydroxyl groups. Following criticism from Pandit et al.¹⁸⁴ that the heated metal sample-introduction system employed could give rise to inadvertent thermal dehydration, the work was repeated using a glass inlet system and a lower source temperature. It was found that differences between spectra of epimers were even more pronounced.¹⁷⁸ Even so. deuterium labelling experiments showed that some dehydration proceeded via a 1,2-elimination, indicating that thermal decomposition was taking place.¹⁸⁵ There is therefore some doubt as to the authenticity of these results but, under controlled conditions, it is apparently possible to distinguish ring junction epimeric steroids and terpenoids by exemination of "ionisation efficiency" curves (i.e. plots of ion currents <u>vs.</u> electron energy).¹⁸⁶


Zaretskii et al. have also found significant differences between

-50-

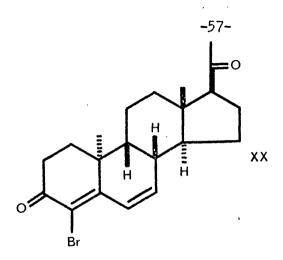
the spectra of progesterone (XIII) and $17-\underline{iso}progesterone$ (XIV) and between those of 16β -methylprogesterone (XV) and 16β -methyl--17- $\underline{iso}progesterone$ (XVI).¹⁸⁷ This is somewhat surprising in view of the report by Djerassi's group that the mass spectra of 5α -pregnan-20-one (XVII) and its 17α -epimer (XVIII) are very nearly identical.¹⁸⁸

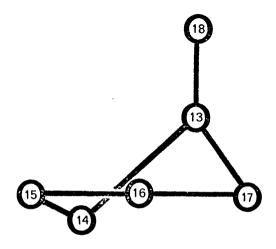
It is now reported that significant differences exist between the spectra of XV and XVI when these are obtained by GC-MS. These differences are more notable in the 15eV spectra [Fig. 15 (XV) and Fig. 16 (XVI)] than in the 70eV spectra. The [M-84]⁺ ion (m/e 244. 100%) accounts for 68% of the total ion current in the spectrum of XVI. This ion is presumably formed by elimination of C-16. C-17 and substituents from the molecular ion. Analogous ions are observed in the spactra of 5x-pregnan-20-one (XVII), 5x-pregnane, 188 16,16--dimethylprogesterone, and its 17~-epimer.¹⁸⁷ Fregmentation of XV occurs to a much lesser extent (M^+ : m/e 328, 100%, 16.6% Σ) and is more random in nature. The ion of m/e 244 is present in relatively low abundance (38%, $6.5\%\Sigma$). The major fragment ion (m/e 124, 77%), formed by cleavage of the C-6/7 and C-9/10 bonds and concomitant transfer of two hydrogen atoms, is typical of certain steroidal Δ^4 -3-ketones. There are also ions at [M-124]⁺ (m/e 204, 19%) and m/e 205 (37%), presumably formed by related processes. A further ion, characteristic of the Δ^1 - and Δ^4 -3-ketone moieties. arises at



[M-42][±] (m/e 286, 50%). The most notable additional features of the 70eV spectra are the differences in intensity of ions at $\underline{m/e}$ 43 (XV:100%, XVI:59%) and at m/e 85 (XV: 19%, XVI: 43%). The ion of m/e 43 arises mainly from C-20 and C-21 by \propto -cleavage, and the ion of $\underline{m/e}$ 85 comprises C-16 and C-17 with substituents and an additional hydrogen atom. The rationale for the differences between the spectra of XV and XVI is rather obscure: the controlling factor appears to be the ease of partial fission of ring D in XVI, as compared with XV. It has been noted that fission of the C-15/16 bond is enhanced by 16-methyl substitution, but this factor, of course, applies to both XV and XVI. The corresponding fragmentations of both 64,164-dimethylprogesterone and 6α , 16β -dimethylprogesterone give rise to ions at m/e 260 in very low abundance, so the relative stereochemistry at C-16 and C-17 appears to have no effect on this fragmentation mode. It should, however, be borne in mind that these data 189 were obtained using a conventional heated inlet system. In an attempt at explaining this partial fragmentation, Zaretskii et al. could only suggest that the 17-acetyl group results in increased ring strain in ring D.

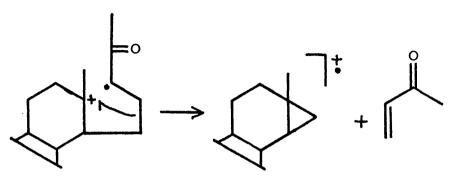
Before the steric effects on the fragmentation of XV and XVI can be determined, the favoured conformations of ring D and the 17-acetyl groups in these compounds must be considered. Allinger <u>et al</u>. have reviewed the literature on the conformations of 17-acetyl groups and have investigated the conformations of these groups in XVII, XVIII, and 16 β -methyl-5 \propto -pregnan-20-one (XIX).¹⁹⁰ They found


-54-


that the preferred conformations of the 17-substituents were as shown in Fig. 17. It should be noted that the 20-keto and 21-methyl groups are well clear of C-13, C-16, and C-18 in 5x-17-isopregnan-20-one (XVIII), but that the 20-keto group is relatively close to the 16β--methyl group in XIX and C-18 in XVII and XIX. Allinger et al. also found that the presence of a 16β -methyl group, as in XIX, had little effect on the conformation of the 17-acetyl group. The conformation of ring D is more difficult to ascertain. The results of X-ray crystallographic analyses are usually published in the form of bond lengths and bond angles, from which it is not easy to extract details of conformation. However, Altona et al. have determined the conformation of ring D for a number of steroids, including 43-bromo-98,104--pregna-4,6-diene-3,20-one (XX).¹⁹¹ The conformation of ring D of XX is shown in Fig. 18. It is reasonable to essume that the conformations of ring D of XV and XVI are similar to that of XVIII and that the conformations of the 17-acetyl groups in XV and XVI are similar to those in XVI (or XIX) and XVIII, respectively, although the structure of ring A can influence the preferred conformation of ring D.¹⁹¹

When these conformational factors are taken into consideration in a discussion of mass spectral fragmentations of XV and XVI, it can be seen that the explanation proposed by Zaretskii <u>et al</u>. is unsound. They suggested that the 17α -acetyl group imparted more strain to ring D than the 17β -acetyl group, whereas there is more "crowding"

-56-

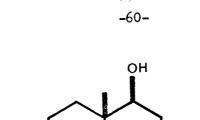


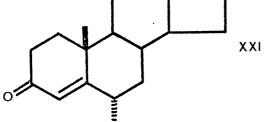
.

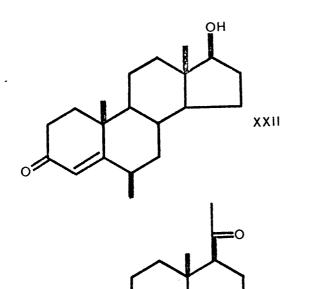
ŧ

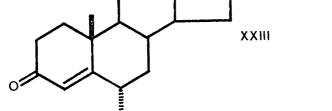
Scheme 1

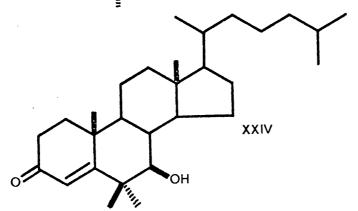
•••••

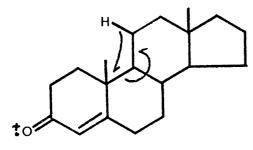

of substituents in ring D of XV than XVI and therefore, presumably, more D-ring strain in XV than XVI.


In order to determine the fragmentation mechanisms of XV and XVI, the site of charge localisation in the molecular ion must first be considered. It may be postulated that formation of the [M-847^t ion arises via initial cleavage of, and charge localisation at, the C-13/17 bond.¹⁸⁸,192 In the analogous fragmentation of 5a-pregnan--20-one, Djerassi and co-workers postulated that the next stage is fission of the C-15/16 bond and concomitant bond-formation between C-13 and C-15, producing a cyclopropane ring (Scheme 1). If this mechanism were applied to XV, there would be considerable steric hindrance between the C-18 methyl group and the 17β -acetyl group as they appraach during the bond-formation step. There is no such steric hindrance in the tragmentation of XVI. This can be clearly seen if Dreiding molecular models¹⁹³ are examined. Consequently, formation of the [M-84]^t ion from XVI is preferred. This fragmentation route is apparently capable of dissipating much of the energy content of the molecular ion of XVI. The equivalent energy content of the molecular ions of XV must, therefore, be expended via alternative fragmentations, hence the differences between the spectra of XV and XVI. It would be interesting to examine the spectra of other analogues. eg. the 18x,175- and 18x,17x-isomers. It is, however, doubtful whether consideration of spectra of simpler molecules such as

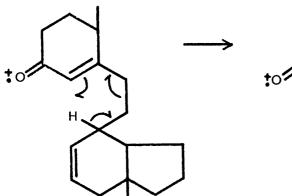

substituted indanes would be informative.¹⁰⁵ Moreover, the structure of ring A appears also to influence the fragmentations of ring D of these steroids:¹⁸⁸ elimination of C-16 and C-17, with substituents, from 5*A*-pregnan-20-one and its 17A-epimer accounts for much less than 0.5% of the total ion current in each case. The preferred primary fragmentation of these compounds involves loss of C-15 to C-17, with substituents, and an additional hydrogen atom (probably from C-8). The stereochemistry at C-17 apparently has no effect on this fragmentation mode, hence the close similarity between the spectra of these isomers.

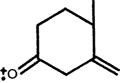

A further possibility of the influence of steric effects on mass spectra, <u>viz</u>. selective blocking of hydrogen transfer, becomes apparent in the spectra of 6a-methyltestosterone (XXI) and 6A-methyltestosterone (XXII) and in the spectra of 6a-methylprogesterone (XXIII) and 6 β -methylprogesterone (XII). As noted above, steroidal Δ^4 -3-ones (unsubstituted in rings A and B and at C-ll) undergo fragmentation of the C-6/7 and C-9/10 bonds with transfer of hydrogen atoms from C-8 and C-ll resulting in the formation of an ion of <u>m/e</u> 124 containing ring A with C-6 and C-19. Shapiro and Djerassi have postulated two alternative mechanisms for this process.¹⁹⁴ The first (Seneme 2a) involves hydrogen transfer from C-ll to C-10 and from C-3, while the second involves hydrogen transfer from C-8 to C-10 and from C-11 to C-6 (Scheme 2b). The second mechanism is supported by the observation that this ion, at m/e 138, appears as the base peck in the spectra of


-59-

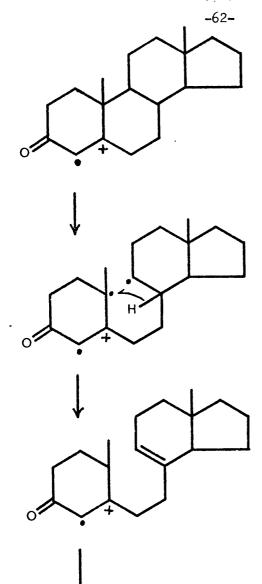


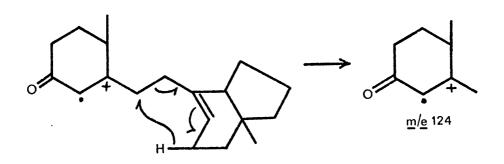






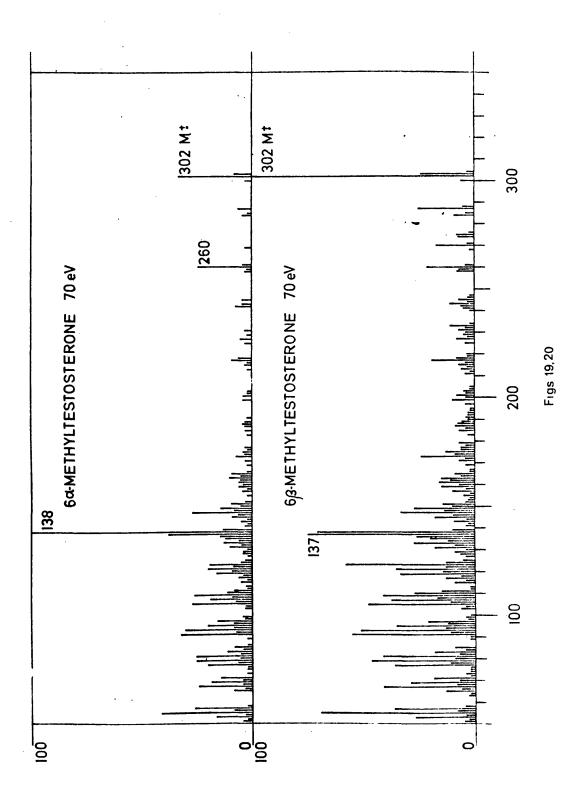
,





•

Scheme 2b


the 6a-isomers XXI (Fig. 19) and XXIII (Fig. 14) and that the ions at <u>m/e</u> 138 and <u>m/e</u> 137 (presumably formed by a similar route, but involving transfer of only one hydrogen atom) are of approximately equal abundance in the spectra of the 6 β -isomers XXII (Fig. 20) and XII (Fig. 13). It should also be noted that ions of <u>m/e</u> 138 constitute the base peaks in the spectra of 6 α ,16 α -dimethylprogesterone and 6 α ,16 β -dimethylprogesterone.¹⁸⁹ The first alternative mechanism apparently applies in the fragmentation of 7 β -hydroxy-6,6-dimethylcholest-4-en-3-one (XXIV) with the formation of ions at <u>m/e</u> 152 (100%) and <u>m/e</u> 151 (70%).¹⁹⁵

THE USE OF CHLOROMETHYL) DIMETHYLSILYL ETHER DERIVATIVES IN GC-MS

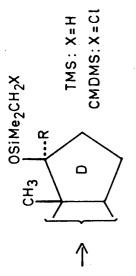
The work of Eaborn and co-workers on the gas chromatographic properties of (chloromethyl)dimethylsilyl (CMDMS) ethers has already been mentioned.^{153,154,196,197} In view of the excellent chromatographic properties of TMS ethers, and the useful fragmentation directing influence of the TMS group in mass spectrometry, the advantages of CMDMS ethers as derivatives for use in GC-MS are not immediately apparent. In fact, with one exception, ¹⁹⁸ CMDMS ethershave not been employed for gas chromatographic - mass spectrometric analysis.

The identity of an "unknown" steroid can often be ascertained by GC (preferably on more than one stationary phase) and GC-MS of both the steroid and a suitable derivative. Such an identification can be carried out with a high degree of confidence if an authentic

-63-

-61+-

semple of the steroid is available for comparison, or even if the relevant gas chromatographic and mass spectrometric data are found in the literature. It is, nevertheless, often desirable to employ other physical and chemical techniques as an aid to identification, and to synthesise new compounds for comparison of chemical and physical properties. When this is not possible, <u>eg</u>. if only small quantities of the "unknown" steroid are available or if reference samples cannot be readily synthesised, it is important to extract the maximum amount of information by GC-MS. Comparative examination of TMS ethers and d₉-TMS ethers, which have similar retention times, provides a simple method of strengthening such information in respect of hydroxylic steroids.¹⁵² We considered that further structural evidence could be obtained by using CMDMS ethers; accordingly, we selected, for an initial survey by GC-MS, a series of CMDMS ethers of steroids.


Fig. 21 lists retention indices and retention index increments for eight free sterols, TMS ethers, and CMDMS ethers. It can be seen that CMDMS ether formation gives rise, fairly consistently, to a retention index increment of about +400 (1% OV-1, 220-235°). [It should also be noted that the increment (TMS \rightarrow CMDMS) is +270 - <u>ie</u>. the added 34 m.u. behaves almost exactly like an added CH₂, with only marginal extra polarity.] This relatively large increment (+400) suggests that CMDMS ethers may effectively be employed for gas chromatographic separation of sterols, diols, and triols from each other and from other components of complex natural product mixtures. This has been

-65-

RETENTION INDEX INCREMENTS

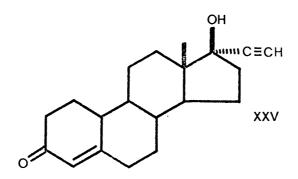
НÒ

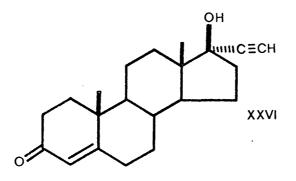
снз

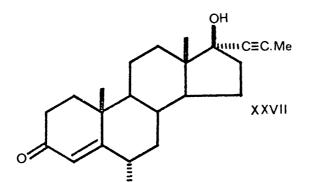
Substituents in androstane	Retent	Retention data (1% 0V-1, 220-235 [•])	00-1, 220-	235°)	
	Free	TMS	14	CMDMS	
(R:CH ₃)	-	-	10	-	3
∆3 5,β-Н	2230	2360	130	2630	007
3β-TMS0 5α-H	2600	2715	115	I	I
∆ ⁴ -3-one 19-nor	2550	2680	130	2950	400
∆ ⁴ - 3-one	2605	2730	125	3005	4.00
Δ ⁴ - 3-one 9α-F 11β-HO	2 810	2935	125	ı	1
Δ ^{1,4} - 3 -one	2640	2770	130	3050	410
<u>(R: C ≡ CH)</u>					
Δ ⁴ - 3-one	2625	2730	105	3035	410
∆ ⁴ – 3-one 19-nor	2590	2700	110	2970	380

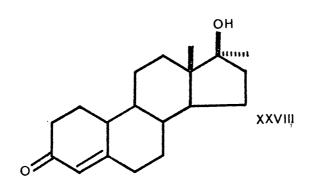
Fig. 21

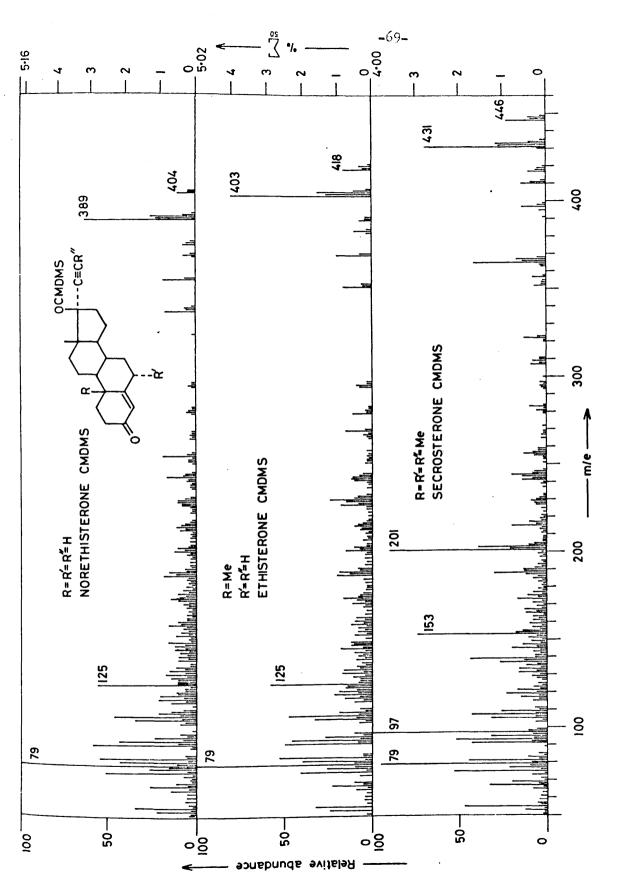
-66-

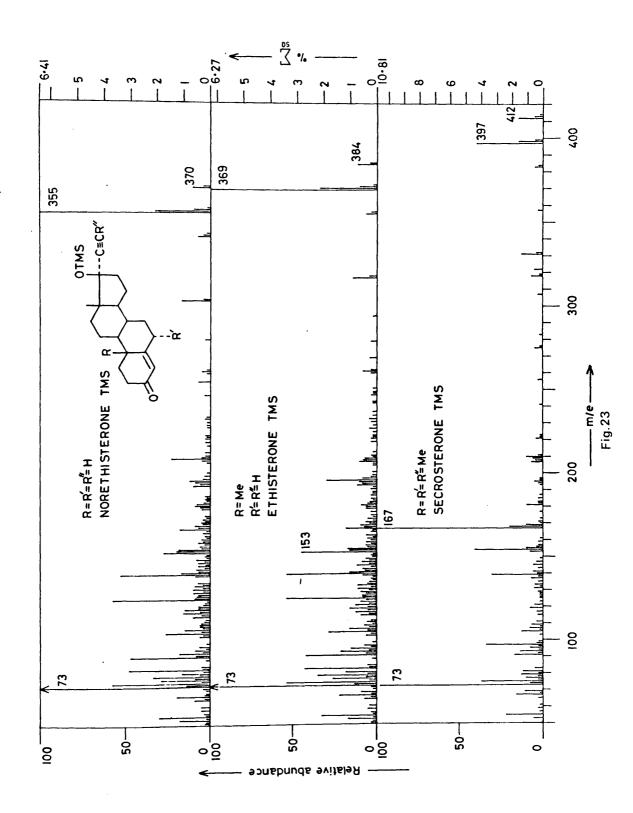

achieved with some degree of success by Medeni¹⁹⁹ for hydroxylated metabolites of Nilevar (see below, pp.160-70). This approach is particularly useful if molecular ions of the free sterols and TMS ethers (and CMDMS ethers) are present in low abundance, since it is difficult in these cases to determine the number of hydroxyl groups in the molecule. Similarly, increased retention index increments have been found for <u>O</u>-benzyloximes (as compared with <u>O</u>-methyloximes), yielding information on the number of ketonic groups in the molecule.


The mass spectra of CMDMS ethers are comparable with those of TMS ethers, with appropriate mass shifts. Mass spectra of these derivatives of norethisterone (XXV), ethisterone (XXVI), and secrosterone (XXVII) are represented in Figs. 22 and 23. Notable features of the CMDMS ether spectra are the presence of ions containing both isotopes of chlorine (35 Cl and 37 Cl), and the presence of ions at [M-15]⁺ and [M-49]⁺, due to loss of methyl and chloromethyl radicals, respectively.


Spectra of CMDMS ether derivatives of 17β -hydroxy- 17α -metnyl steroids have been examined in more detail. Base peaks in all of the 70 eV spectra of TMS and CMDMS ethers of this class of steroid which we have studied appear at <u>m/e</u> 143 and 177, respectively, corresponding to C-15/16/17 and substituents, less one hydrogen atom. At lower electron energies, abundant fragment ions are observed due to the corresponding nuclear fragments (Fig. 24). Mass spectra of 17α -methyl-19-nortestosterone (XXVIII) and its TMS end CMDMS ether


-67-





.

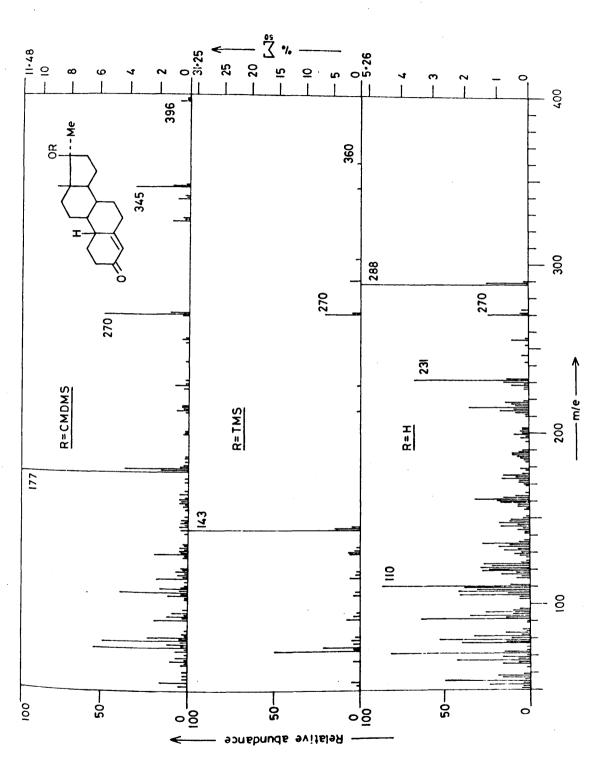
-70-

	-71-					
			NS IN 15	eV SPECTRA		
	R≖TN				MDMS	
OR	Base peak		4† %	Base peak		M :
OR Me	<u>m/e</u>	<u>m/e</u>	1.	<u>m/e</u>	<u>m/e</u>	%،
	143	360	7	270	394	20
	143	450	5	177	518	3
HMe	270	3 60	10	270	394	12
OR OFMe	284	374	5	284	408	8
HO OR	300	390	60	300	424	9
RO O O RO O RO O RO O R O RO O R	372	462	17	406	530	21
OR 0	282	372	5	282	406	4
Base peak	in all 70eV spectra:	ŌR		TMS m/e143 CMDMS m/e177		

כ

derivatives are represented in Fig. 25. It can be seen that the CMDMS group confers stability on the major fragment ions similar to that observed for TMS ethers.

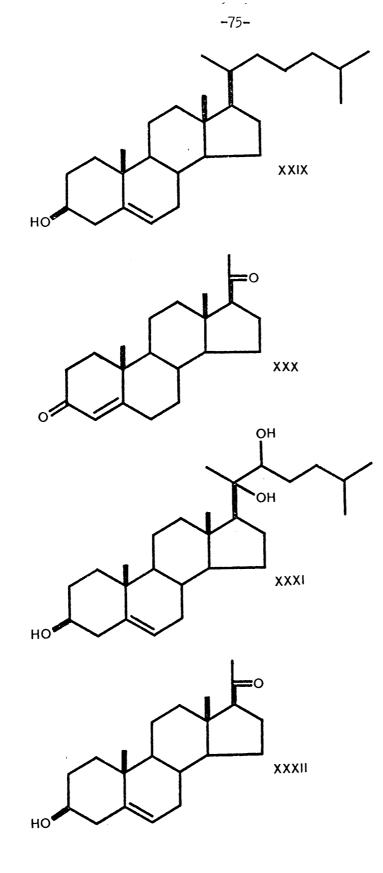
CMDMS ether derivatives appear to possess the desirable gas chromatographic and mass spectrometric characteristics of TMS ethers and, in addition:


(i) to provide additional gas chromatographic and mass spectrometric data,

(ii) to be capable of effectively separating steroids with differing numbers of hydroxyl groups,

(iii) to provide further insight into fragmentation modes, observed by appropriate substituent shifts, and

(iv) to permit initial ges chromatographic work to be carried out using extremely small quantities of sample, with electron-capture detection.¹⁵⁴


VandenHeuvel and Braly have demonstrated the utility of mixed TMS/CMDMS ethers for the characterisation of bile acid methyl esters.²⁰⁰ There are, however, no reports of the application of this method.

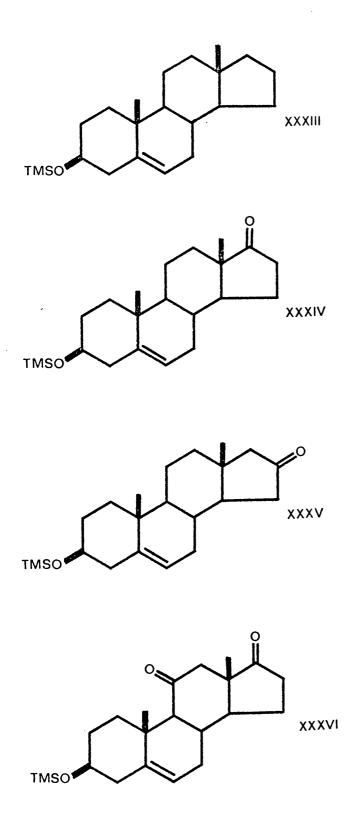
C19 STEROIDS

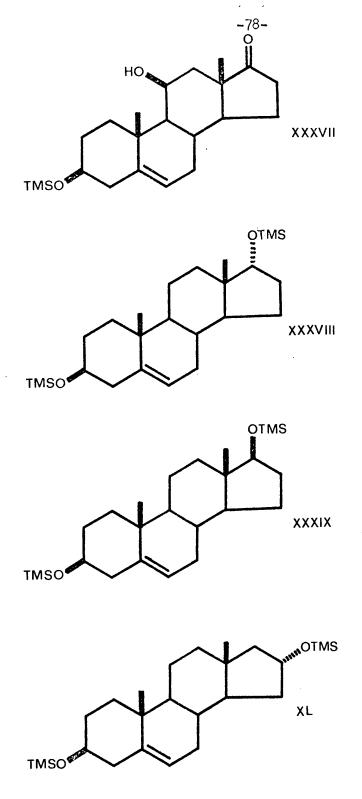
Cholesterol (XXIX) is present in practically all living organisms, and is the primary source of mammalian hormones. It can be converted to progesterone (XXX), for example, <u>via</u> 20,22-dihydroxycholesterol (XXXI) and pregnenolone (XXXII). Alternatively, complete oxidative removal of the side chain leads to dehydroepiandrosterone (XXXIV) and then the C₁₉ hormonal steroids. The Δ^5 -3 β -hydroxy steroids are "inactive" precursors of hormones with the Δ^4 -3-one structure, and their reduction products.²⁰¹ Consequently, Δ^5 -3 β -hydroxy steroids (or their conjugates) are only found in quantity if 3 β -hydroxysteroid dehydrogenase is not actively converting them to Δ^4 -3-keto steroids. This situation may arise, for example, in newborn mammals or under certain pathological conditions.²⁰²

GC-MS has been used in the identification of a large number of Δ^5 -3 β -hydroxy C₁₉ steroids, as their TMS ether derivatives, including those extracted from urine ^{129,136,203-205} and faeces²⁰⁵⁻²⁰⁷ of newborn and infant humans, meconium of newborn humans,²⁰⁵ human umbilical cord plasma,²⁰⁵ human amniotic fluid,²⁰⁸ human bile,²⁰⁹ human peripheral plasma,²¹⁰⁻²¹³ plasma end urine of an eight-year-old boy with 3 β -hydroxy steroid dehydrogenese deficiency,²¹⁴ urine of a newborn chimpanzee,²¹⁵ and urine and faeces of female germ-free and "conventional" rats treated with a 3 β -nydroxy- Δ^5 -oxidoreductase inhibitor.²¹⁶ The mass spectra of such compounds have been considered in other reports concerning various aspects of MS end GC-MS^{26,31,217-219}

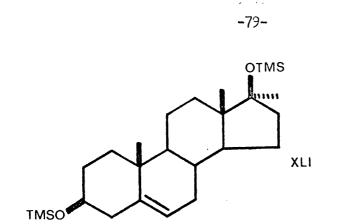
Nevertheless, despite the clinical significance²²⁰ of androstenols, there has been no systematic survey of the mass spectral fragmentations of their TMS ether derivatives. We have accordingly examined the mass spectra of seventeen of these compounds.

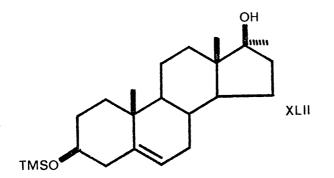
The use of an electron energy of 70 eV in the measurement of mass spectra of many samples gives rise to the formation of a multiplicity of fragment ions of relatively low mass. Often, these are of limited structural significance: few informative ions in the mass spectra of steroids and their derivatives have $\underline{m/e}<100$. Spectra obtained with a lower electron energy contain fewer ions, and these, usually being formed as products of primary, secondary, or tertiary fragmentations, often afford a more useful insight to the processes taking place in the ion source. 20 eV spectra have, therefore, been used in this study. The mass spectra of compounds XXXIIII-XLIX are represented in Figs. 26-42.

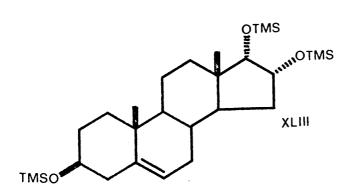

Many of the observed fragmentations are common to all of the samples studied, and to analogous compounds with side chains at C-17.¹³⁵ The investigations of Diekmann and Djerassi²²¹ on labelling of cholesterol with deuterium or other substituents were particularly useful in assigning origins to many of the common ions. Briefly, they can be summarised as follows (possible structures of ions Vili-xxviii are given in Scheme 3).

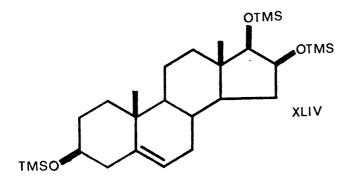

 $[M-90]^{\ddagger}$ (viii): elimination of the 3β -trimethylsilyloxy moiety with a hydrogen atom, mainly from C-4(β).

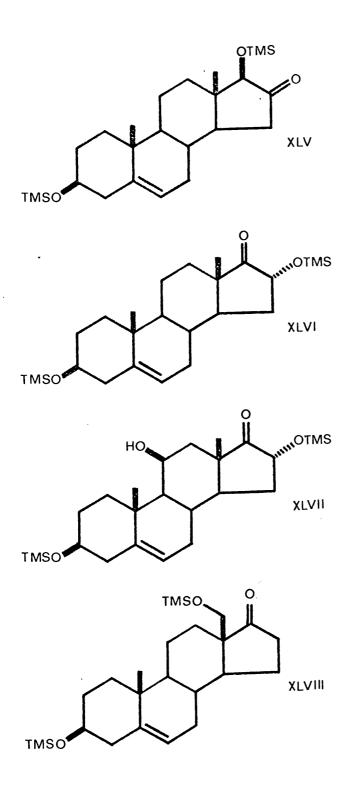
[M-129]⁺ (ix): formed by scission of the C-1/10 and C-3/4 bonds

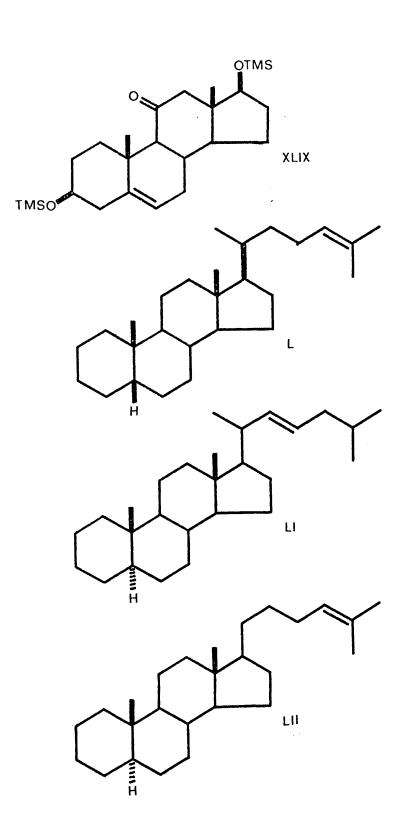

-76-

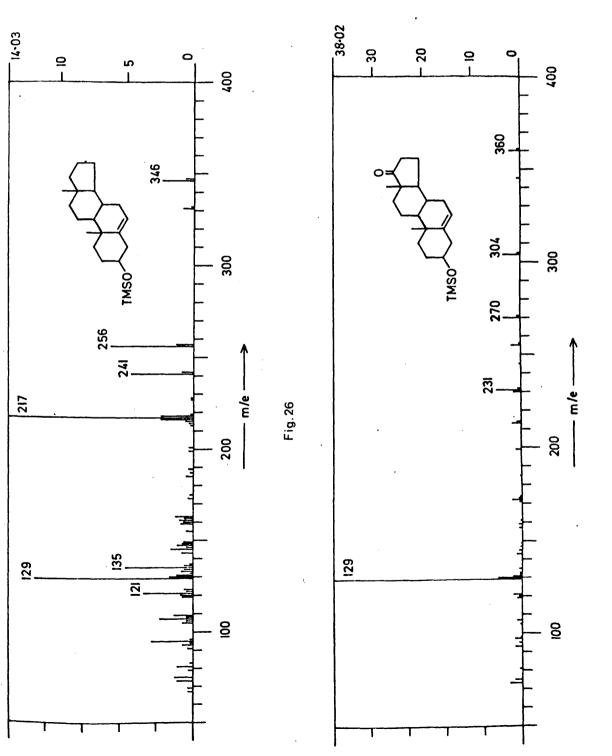

•

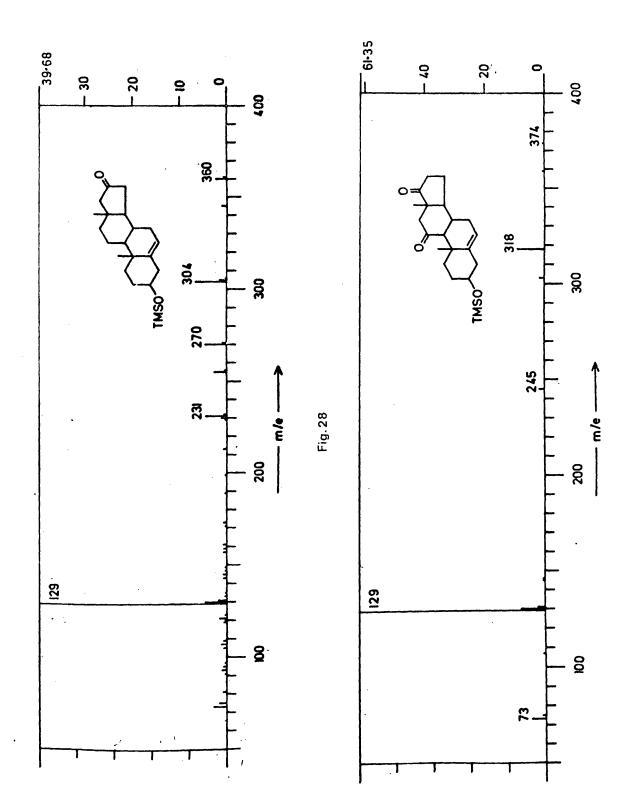


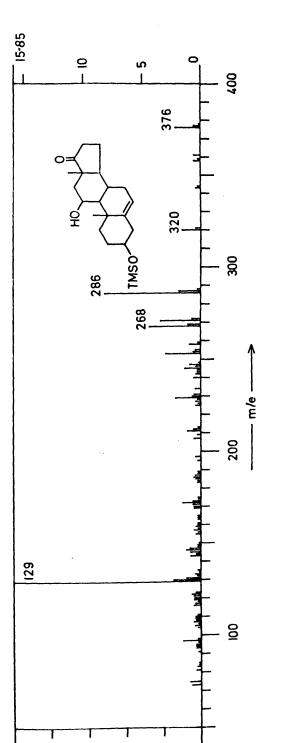

.



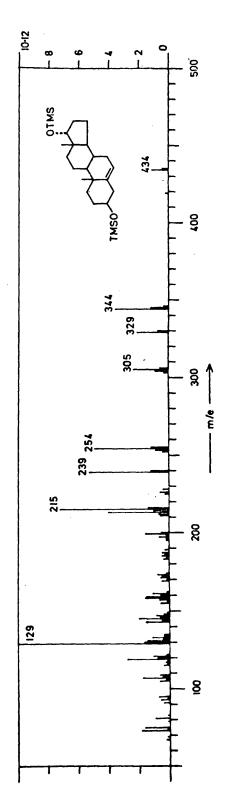

.

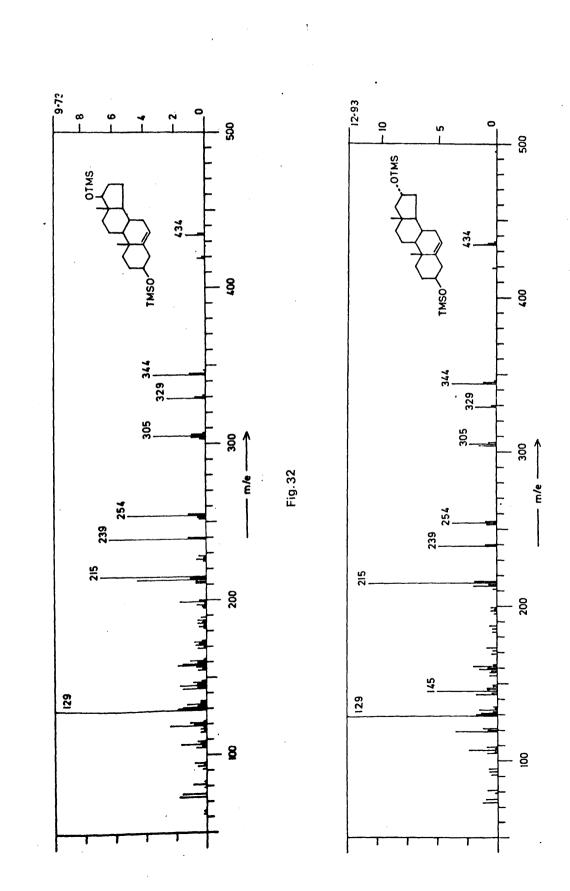


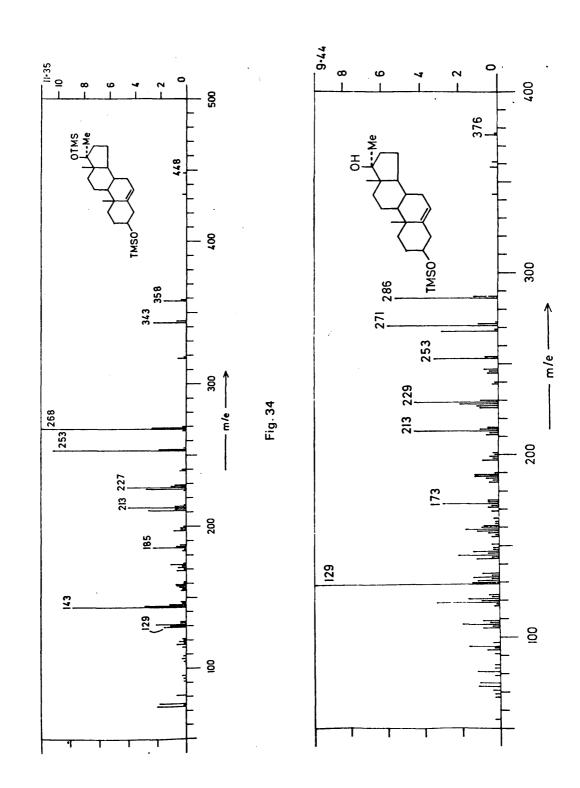

-80-

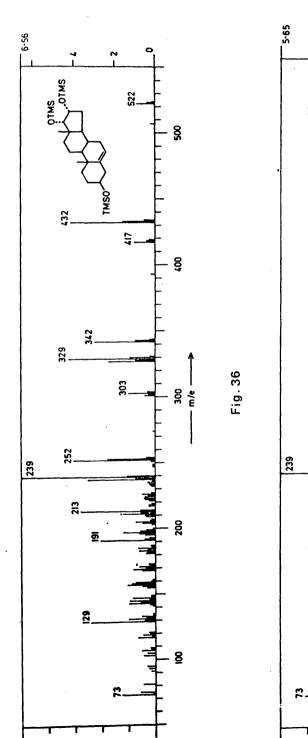


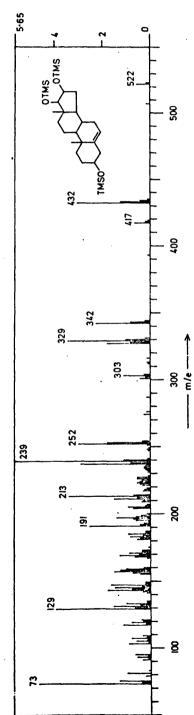
,

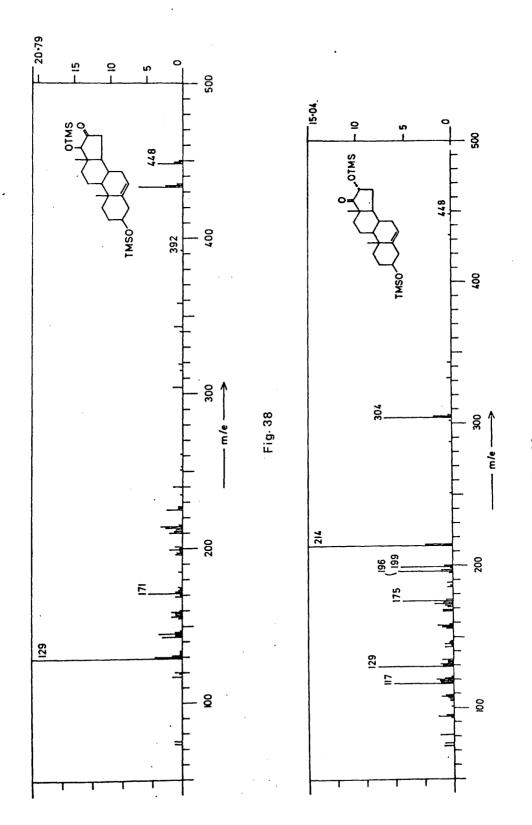

-81-

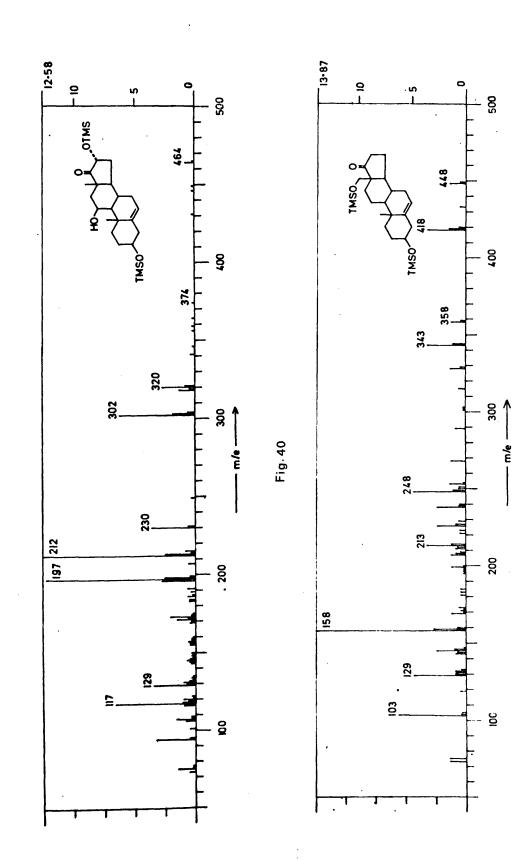


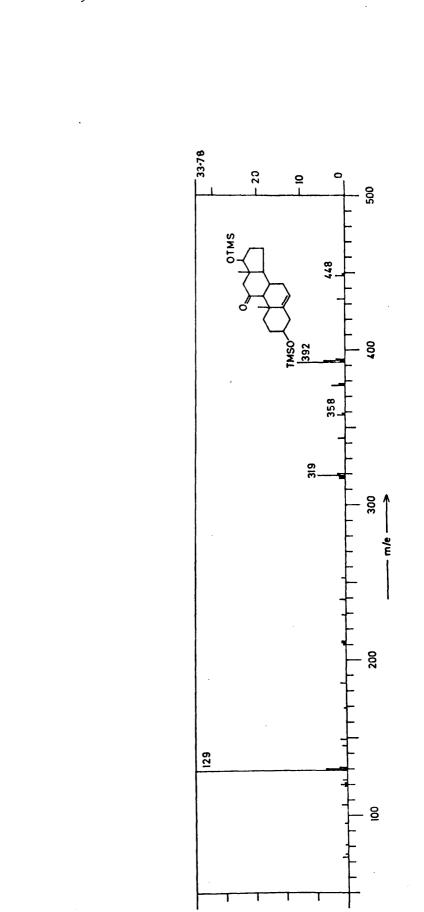


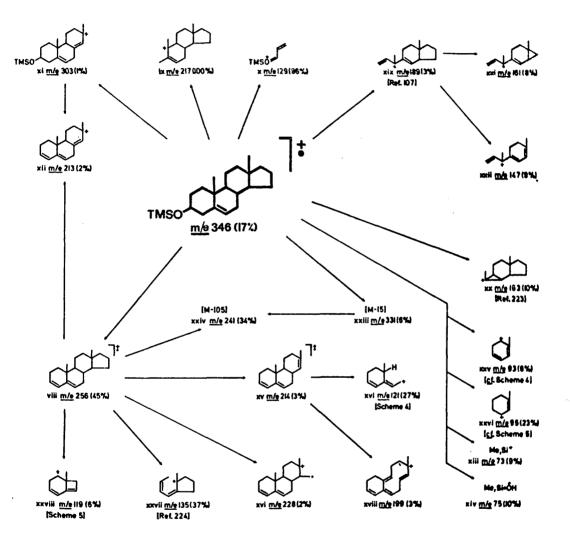


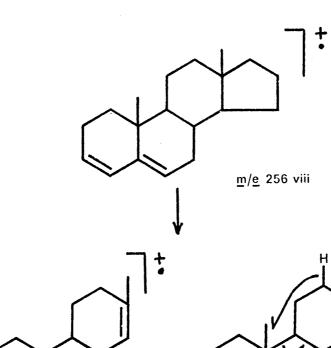


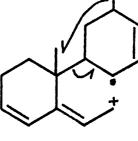


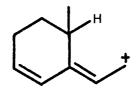






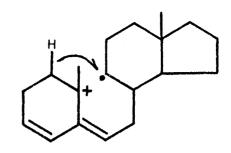




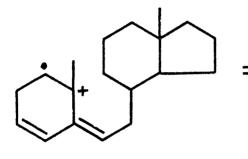

Scheme 3

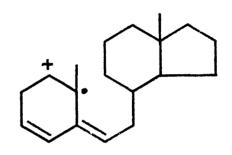
<u>m/e</u> 214 xv

xva



<u>m/e</u> 121 xvi


Scheme 4


-93-

<u>m/e</u> 256 viii

.

<u>m/e</u> 119 xxviii

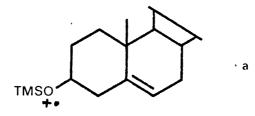
Scheme 5

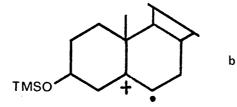
with hydrogen transfer from C-2 to C-4, and with the charge localised on the larger fragment.

<u>m/e</u> 129 (x): as for (ix), but with charge localisation on the smaller fragment.

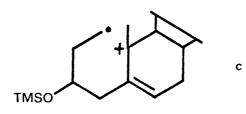
The formation of these three ions can be readily rationalised by postulating that formal charge localisation is more likely at one of the following sites:

(a) the oxygen atom of the 3β -trimethylsilyloxy group by removal of an electron from a lone-pair on the oxygen atom, promoting α -fission of the C-2/3 and C-3/4 bonds (Fig. 43a),


(b) the C-5/6 bond, by removal of an electron from the π -orbital, promoting β -fission of the C-1/10, C-3/4, C-7/8, and C-9/10 bonds (Fig. 43b), or


(c) one of the bonds (C-1/10 or C-9/10) adjacent to the tertiary ring junction at C-10, breaking one of these bonds by removal of an electron from the σ -orbital (Figs. 43c, 43d).

The tendency for any of these processes to take place depends, to some extent, on the influence of other substituents in the steroid nucleus. It should be noted that, whereas Δ^5 -3 β -hydroxy steroid TMS ethers give rise to ions at <u>m/e</u> 129, Δ^4 -3 β -hydroxy steroid TMS ethers give rise to ions at <u>m/e</u> 142 and 143.²¹⁷


Fragmentation of ring D of steroids depends largely on the substituents therein, but also on substituents elsewhere in the molecule.¹⁰⁷ A major ion (xi) is formed by loss of a fragment apparently comprising

-94-

.

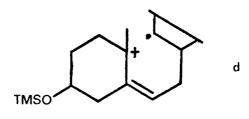


Fig. 43

C-15/16/17, with substituents, and a hydrogen atom (usually from C-8) from the molecular ion of many of these androstenol TMS ethers.²²² Loss of such a fragment ion from viii, or elimination of trimethylsilanol from xi, gives rise to a "nuclear" fragment ion (xii) of $\underline{m/e}$ 213, or of correspondingly higher mass if there are further substituents in this fragment.

Loss of a methyl radical from the molecular ion, and many of the fragment ions, is observed and could conceivably arise from several sources. For cholesteryl TMS ether, however, it has been demonstrated that the $[M-15]^+$ ion is formed mainly by loss of a methyl redical from the TMS group.²²¹ This should not preclude the possibility of its origin by other routes from suitably substituted androstenol TMS ethers.

Ions of $\underline{m/e}$ 73 (xiii) and $\underline{m/e}$ 75 (xiv) appear in the spectra of almost all TMS ethers but are of little diagnostic significance.

In order to gain further insight to the mechanisms of fragmentations of these compounds, it would seem logical to examine, first of all, the spectrum of androst-5-en-3 β -ol TMS ether (XXXIII, Fig. 2b, Scheme 3) and then to attempt to correlate the various influences of other substituents. It will, however, be seen that XXXIII is not truly representative of the series. Each of the ions vili-x is formed in relatively high abundance. Further loss of a methyl radical from vili is attested by a metastable ion: it probably originates by loss of C-19. As with cholesteryl TMS ether, it seems likely that the

-96-

[M-15]⁺ ion is formed <u>via</u> loss of a methyl radical from the TMS group, there being no metastable ion for further loss of 90 m.u. The abundant ion of m/e 135 is probably formed in the same way as that in the spectrum of bx-androstane: it would comprise rings C and D from which a hydrogen atom has been lost.¹⁰⁷ A further significant ion appears at m/e 121. This ion appears in the majority of the spectra of XXXIII-XLIX and also in many previously published spectra of samples of this type, but its significance has been obscured by the presence of other ions of similar mass, particularly in the 70 eV spectra. A possible mechanism of its formation is postulated in Scheme 4. Elimination of C-15/16/17 from viii gives rise to an ion (xv) of m/e 214 (3%). Allylic participation of the double bonds at C-5/6 and C-13/14 leads to preferential charge localisation at the C-7/8 bond (xva). This, in turn, and with the participation of the C-5/6 double bond, tends to polarise and weaken the C-9/10 bond. Fission of this bond and concomitant transfer of a hydrogen atom to C-10 produces the ion xvi. This hydrogen atom probably arises from C-12, since its bond to C-12 is weakened by the presence of the C-13/14 double bond and also because an ion of $\underline{m/e}$ 121 is present in the spectra of the 11-substituted analogues. Moreover, an ion of m/e 121 is observed in the 20 eV spectrum of cholesteryl TMS ether which is shifted to $\underline{m/e}$ 135 and $\underline{m/e}$ 149 in 4q-methyl- and 4,4'-dimethylcholesteryl TMS ether, respectively. 135 It can be seen, then, that the formation of xvi requires a delicately

-97-

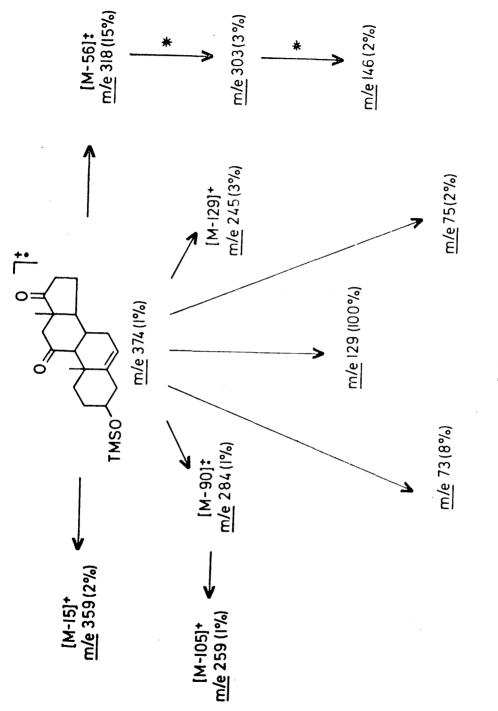
balanced interplay of electrostatic effects and it is not surprising that the relative abundance of $\underline{m/e}$ l2l is much lower in the spectra of samples containing other substituents. Possible origins of these and other ions in the spectrum are shown in Scheme 3, although it should be emphasised that there is little direct evidence for the structures of these ions. It would be difficult to assign mechanisms to the formation of the few ions of lower mass because of the numerous alternative possibilities. Nevertheless, the present explanation is sufficient foundation for investigation of the influences substituents on the fragmentations of other androstenol TMS ether derivatives.

An impressive feature of the mass spectrum of 3/3-hydroxyandrost-5-en-17-one TMS ether (XXXIV, Fig. 27) is its simplicity.^{26,31,210,219} The base peak, at <u>m/e</u> 129, accounts for 38% of the total ion current. The high abundance of this ion can be accounted for on the basis that the neutral fragment is capable of removing a greater proportion of the excess energy by virtue of its possession of a keto group. The $[M-56]^{\dagger}$ ion at <u>m/e</u> 304 appears to be formed by loss of C-15/16/17, with substituents, and a hydrogen atom from the molecular ion. The origin of this fragment ion appears, however, to be more complex. While this thesis was in preparation, it was found that $16,16-d_2-$ 3/3-hydroxyandrost-5-en-17-one TMS ether (formed by <u>in transitu</u> deuterium labelling) also gives an ion at $[M-56]^{\ddagger}$ (<u>m/e</u> 220). This might indicate that the fragmentation of ring D is accompanied by specific double hydrogen atom rearrangement, although there remains the possibility that the ion at <u>m/e</u> 220 is formed by an alternative loss of 56 m.u.

-98-

It was also found that 5^{α} -androstan-17-one and its 16,16-d₂ analogue both gave rise to an ion at <u>m/e</u> 218 corresponding to the expected ring D fragmentation.²²² This observation confirms that of Djerassi and co-workers, who found that the peak at <u>m/e</u> 218 in the spectrum of 5 α -androstan-17-one contains only traces of oxygen-containing fragments, although the peak at <u>m/e</u> 217 represents 80% C₁₆H₂₅ and 20% C₁₅H₂₁0.²²⁵

The spectrum of 3β -hydroxyandrost-5-en-16-one TMS ether (XXXV, Fig. 28) is similar in many respects to that of the isomeric 17-one, the [M-56]⁺ ion being somewhat more abundant. Again, the 15,15,17,17-d₄ analogue gives rise to an ion at [M-56]⁺. This would appearently preclude the formation of this ion by ring D fragmentation of the molecular ion since there have been no previous reports of specific quadruple (nor even triple) reciprocal hydrogen transfer. Further work, involving high resolution mass measurement and deuterium labelling of other keto-steroids, is to be carried out in an attempt to elucidate the mechanisms of these rragmentations.


An additional ketone function, in ring C, as in 3β -hydroxyandrost-5-ene-ll,l7-dione TMS ether (XXXVI, Fig.29), affords extra stability to both the neutral particles and the ions produced by certain fragmentations: the base peak (x, <u>m/e</u> 129) accounts for 61% of the total ion current. There is an ion at [M-56]⁺. There is an intense metastable peak attesting to loss of a methyl group from this ion with the formation of <u>m/e</u> 303 (3%). An <u>extremely</u> intense metastable peak

-99-

indicates that there is a further loss of 157 m.u. with the formation of an ion of $\underline{m/e}$ 146 (1%). This is unusual in that the metastable ion is very much more abundant than both the parent and daughter ions giving rise to it. This would appear to signify that the mechanism of formation of the ion of $\underline{m/e}$ 146 has a low rate constant (the parent ion disintegrating mainly between the ion source and the magnetic analyser rather than in the ion source) presumably because of the involvement of extensive rearrangement. The fragmentations outlined in Scheme 6 account for all ions in the spectrum of XXXVI which have relative abundance greater than 1% of the base peak.

The spectrum of 3β , 11β -dihydroxyandrost-5-en-17-one mono(3) TMS ether (XXXVII, Fig. 30) is similar to that of XXXIV, but with additional ions corresponding to elimination of water from viii, ix, $[M-15]^{\ddagger}$, and $[M-90, 157]^{\ddagger}$. No ion is observed at $[M-56, 18]^{\ddagger}$.

The presence of a TMS ether group in ring D does not afford stability to the molecular ion, or to major fragment ions, to the same extent as a ketone group. This results in the formation of a wider variety of ions, as in the spectra of androst-5-ene- $j\beta$,17 α -diol TMS ether (XXXVIII),²¹⁰,²¹³ androst-5-ene- 3β ,17 β -diol TMS ether (XXXIX),²¹⁰ and androst-5-ene- 3β ,16 α -diol TMS ether (XL): the utility of low voltage spectra as an aid to the elucidation of fragmentation mechanisms is thus apparent. It is of interest to note that, whereas ions ix are formed from ring A, there is no ion corresponding to further loss of 129 m.u.. Ions of <u>m/e</u> 129 probably derive from both ring A and ring D since analogous ions are observed in the spectra of

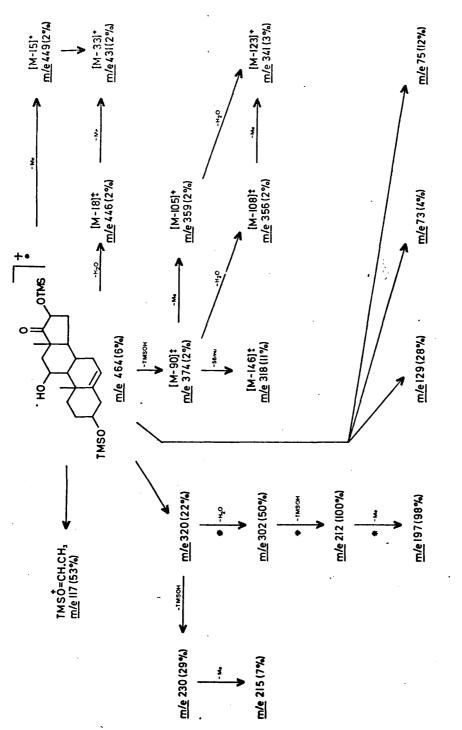
-101-

Scheme 6

many 17-trimethylsilyloxy²²⁶ and 17-(chloromethyl)dimethylsilyloxy steroids. Thus, in the spectrum of 17α -methylandrost-5-ene-3 β ,17 β diol TMS ether (XLI, Fig. 34), <u>m/e</u> 129 (from ring A) is of relative abundance 16%, whereas <u>m/e</u> 143 (from ring D) is 79%. A 17-hydroxyl group (as in 17α -methylandrost-5-ene- 3β ,17 β -diol mono(3) TMS ether, XLII, Fig. 35) directs the fragmentation of ring D to a much lesser extent than a TMS ether group. Instead, water is eliminated from the molecular ion and certain fragment ions containing a hydroxyl group, as observed in the spectrum of XXXVII.

The mass spectra of TMS ether derivatives of the trihydroxy analogues are more complex than those of the diols, and fragmentation is even more extensive: the base peaks in the spectra of androst-5ene-33,164,174-triol TMS ether (XLIII, Fig. 36) and androst-5-ene-3/3,16/3,17/8-trio1 TMS ether (XLIV, Fig. 37) contribute 6.5% and 5.6%, respectively, of the total ion current. The spectra of XLIIT, XLIV, and the TMS ether derivatives of the 38,168,17A- and 38,164,17B-triols are similar. 205,206 The expected fragmentations of TMS ether derivatives are observed, with sequential loss of trimethylsilanol (90 m.u.) and methyl radicals. There are additional intense ions at m/e 329 (61%), 239 (100%), and 191 (45%)(relative intensities are for XLIV). The ion of m/e 191 has been observed in the spectra of TMS ether derivatives of other 16,17-diols, 204,226-228 17,18-diols 229 15,17-diols, 218 and a 15,16,17-triol¹³⁶ and has been demonstrated to be a rearrangement ion containing two trimethylsilyloxy groups.²³⁰ "the ions at m/e 329 and $\underline{m/e}$ 239 are apparently formed by sequential loss of trimethylsilanol

from the ion $[M-103]^+$. There is, in fact, en ion of low abundance at $[M-103]^+$ (m/e 419; 4%,2%: XLIII, XLIV). Ions at $[M-103]^+$ are typical of TMS ether derivatives of primary aliphatic alcohols ¹³³ and also those of 21-hydroxy steroids.²³¹ These ions also appear in the spectra of TMS ether derivatives of steroids with vicinal hydroxyl groups.²²⁷ They are probably formed by fission of the C-13/17 bond, transfer of a hydrogen atom to C-17, and rupture of the C-16/17 bond. This latter fission would be directed by the presence of the 16-trimethylsilyloxy group.


There are significant differences between spectra of the 16-keto-1/B-trimethylsilyloxy and 16-trimethylsilyloxy-17-keto steroids. 203,206 Spectra of the former, as in 3β , 178-dihydroxyandrost-5-en-16-one TMS ether (XLV, Fig. 38), have an ion of type ix as the base peak and afford many of the expected fragmentations. The ion $[M-56]^{\ddagger}$ could be formed by sequential loss of a methyl radical and C-15/16 with substituents, less one hydrogen atom but, in view of the observations on the spectra of deuteriated 16- and 17-ketones (see above), further work is to be carried out on this compound. The fragmentation pattern of 36,16x-dihydroxyandrost-ben-17-one TMS ether (XLVI, Fig. 39) has been described by Siegel et al. 208 Both XLVI and 36,116,164-trihydroxyandrost-5-en-17-one di(3,16) TMS ether (XLVII, Fig. 40) give relatively weak m/e 129 peaks. The base peaks (m/e 214,212: XLVI,XLVII) are due to fragments formed by elimination of C-15/16/17 and, in the case of XLVII, a molecule of water from viii. Abundant ions are produced by

-103-

further loss of methyl radicals. Formation of the ion of $\underline{m/e}$ 175 has been explained²⁰³ by elimination of C-15/16/17 from x. Abundant ions are present at $\underline{m/e}$ 117, probably comprising C-15/16 with substituents and an additional hydrogen atom. Several of the proposed fragmentations of XLVII are substantiated by metastable peaks: these are summarised in Scheme 7. In all of these spectra, an ion comprising C-16/17, less a hydrogen atom, accounts for a proportion of the peak at $\underline{m/e}$ 129.²³²

The spectrum of the 18-trimethylsilyoxy compound, 3 β ,18-dihydroxyandrost-5-en-16-one TMS ether (XLVIII, Fig. 41), is more difficult to interpret. In particular, the ions of <u>m/e</u> 158 (base peak) and <u>m/e</u> 248 have apparently not been previously observed. It is tentatively proposed that <u>m/e</u> 248 comprises rings A and B, whereas the base peak is produced by elimination of trimethylsilanol from this ion. The ion of <u>m/e</u> 103 is presumably TMSO=CH₂ from C-18 (see above). The [M-30][‡] ion apparently arises <u>via</u> a migration of the TMS group.¹³⁸

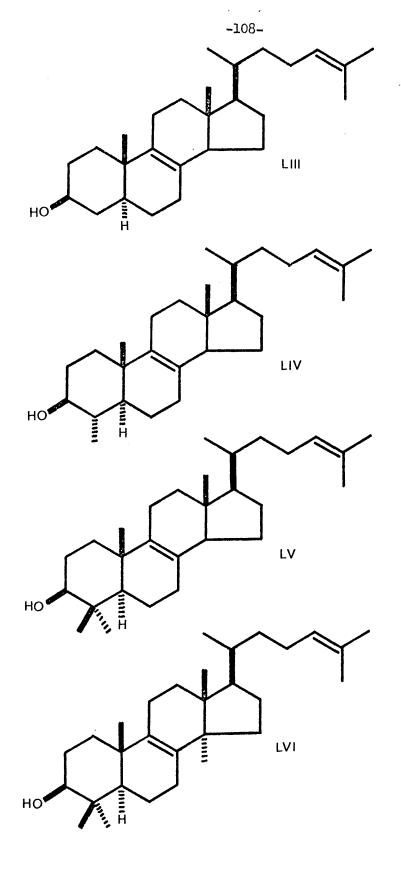
The apparently anomalous ion at $[M-56]^+$ in the spectrum of 3(3,17)3-dihydroxyandrost-5-en-ll-one TMS ether (XLIX, Fig. 42) may have a similar origin to that tentatively proposed for XLV; loss of a methyl radical being accompanied by elimination of C-ll/l2 with substituents, less a hydrogen atom. The origin of this ion is to be further investigated by deuterium labelling studies. The high abundance of the ion of <u>m/e</u> 129 may be rationalised on the basis that energy can be readily delocalised over the ketone-containing neutral

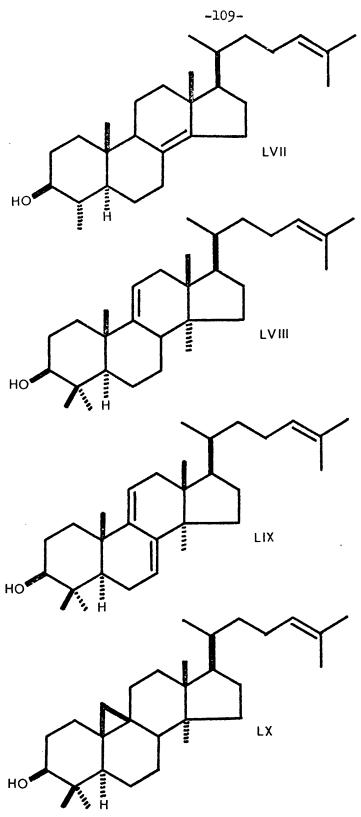
Scheme 7

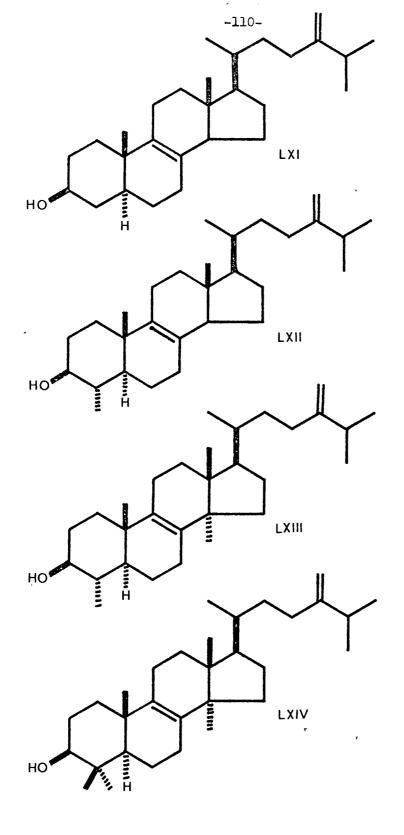
-105-

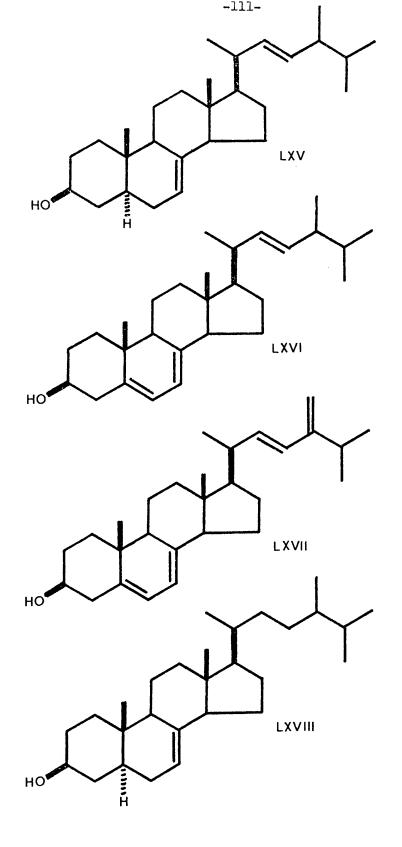
fragment.

The major fragmentations of a series of seventeen analogues of endrost-5-en-3%-ol TMS ether have been examined. Many of these have been observed and explained previously: their generality is now demonstrated, with the exception of [M-56]⁺ ions in several spectra. It has been found desirable to carry out deuterium labelling and high resolution measurements to account for the formation of these ions. Several mitherto unobserved ions are reported and possible origins are postulated. More stable ions (hence, usually, ions of greater relative abundance) are formed if the neutral particle formed in a fragmentation contains a keto group. This observation can be explained if it is assumed that the energy content of such particles can be higher than those which do not contain keto groups, because more energy wan be delocalised over the keto group. This factor is of particular relevance in the comparison of the spectrum of XXXIII with those of the substituted analogues: this illustrates the pitfalls of a "systematic" approach to the investigation of fragmentation mechanisms of complex molecules.


-106-


THE MASS SPECTRA OF TMS ETHER DERIVATIVES OF SOME UNSATURATED STEROLS


In mass spectrometry, the presence of a double bond in a molecule has been found to give rise to several types of fragmentation including simple β -cleavage, the McLafferty rearrangement, and the retro-Diels-Alder rearrangement. The formulation of mechanisms for these processes usually requires formal charge localisation at the double bond. 'l'he influence of any particular double bond on the fragmentation of the molecule is affected by other double bonds or functional groups which may be present in the molecule. Wyllie and Djerassi have carried out deuterium labelling experiments on three steroid hydrocarbons with unsaturated side-chains (53-cholest-24-ene,L, 54-cholest-22-ene,LL, and 21-nor-5a-cholest-24-ene, LII) and have proposed mechanisms for fragmentation of these and other unsaturated side-chains.²³³ They reported that these fragmentations are typical, also, of sterols with unsaturated side-chains but that they are somewhat suppressed by the formation of acetates or TMS ethers. The mass spectra of TMS ethers of a large number of unsaturated sterols have been briefly discussed by Knights²²³ and Brooks et al.¹³⁵


In an attempt to characterise certain sterols isolated from yeast (see following section), it was found necessary to investigate the mass spectral fragmentations of further reference steroids. TMS ethers were used because of their superior gas chromatographic properties: mass spectra of TMS ethers of seventeen authentic sterols (LIII-LXIX) were examined in detail. Partial mass spectra (70 eV) are presented in Table 5.

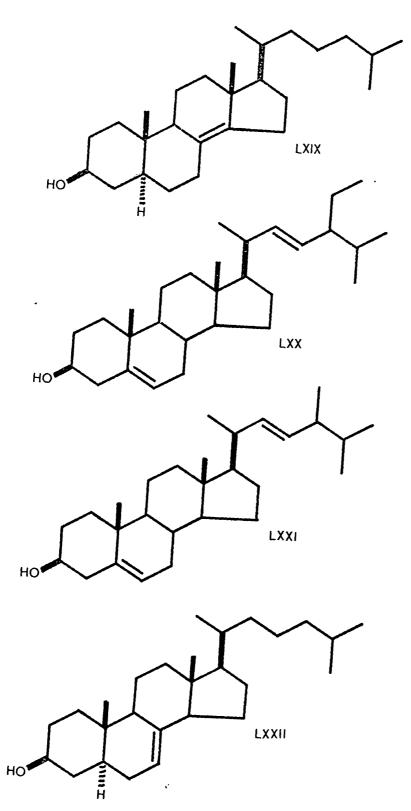

-107-

Table	5.	Part:	iel	nass	spe	ctral	L da	ta f	or T	MS e	thers	\mathbf{of}	LII
LIII		69 10 0				81 40			105 33				
LII		69 100		75 60		121 51	95 42		109 38	-			
III		69 100				81 34				93 24			
LIV		69 100				55 40			81 29				
LAIA		121 47							69 24				
LVIII		69 100				55 39		109 31		129 25	119 21		
LIX		69 100			55 42	253 38				157 23			
LX		69 100								75 30			
TXI		227 61											
LXI I		55 100	73 92			121 75			105 62				
TXIII		393 100											
TXIA		407 100							135 15				
LXV		69 100		81 68		255 61							
LXVI		69 100											
LXVII	466 29	361 100	73 89	251 68	81 68	123 55	211 41	143 40	119 55	55 35	131 34		
LXVIII	472 りん	75 100	255 76	73 58	55 50	107 43	81 41	95 37	213 36	105 34	57 32		
LXIX	472 100	75 76	107 73	73 60	55 53	147 45	229 43	213 40	57 40	105 39	81 39		

•

Table 5. Partial mass spectral data for TMS ethers of LIII - LXIX

Δ^{24} -sterol TMS ethers

Zymosterol (LIII) TMS ether (Fig. 44). The molecular ion, base peak of the 20 eV spectrum, 135 is of relative abundance 36%. The base peak (m/e 69) is undoubtedly due to fission allylic to the Δ^{24} bond.²³⁴ There is no corresponding ion at $[M-69]^+$, nor at $[M-69,907^+$, which would result from further loss of trimethylsilanol. There is no evidence for a McLafferty rearrangement in the side-chain. In fact, it appears that the sole contribution of the Δ^{24} bond to the spectrum is in the formation of the base peak. Simple cleavage of the C-17/20 bond would produce an ion $[M-111]^+$. This ion is absent from the spectrum, although there is an ion (m/e 255, 6%) due to a further loss of trimethylsilanol. Concomitant loss of the side-chain and two hydrogen atoms, a major feature in the spectra of sterols 223,235 and steroid hydrocarbons²³³ with unsaturated side-chains, gives rise to an ion of low (4%) abundance at m/e 343. The corresponding ion at m/e 253 is also of low abundance (3%). The usual fragmentations of sterol TMS ethers are observed: [M-15]⁺ (m/e 441, 21%), [M-90]⁺ (m/e 300, 8%), [M-90,15]⁺ (m/e 351, 19%), m/e 75 (70%), and m/e /3 (58%). Other major fragment ions appear to be produced by fragmentation of ring D of the steroid nucleus. Mechanisms of fragmentation of this type are extremely complex, often involving reciprocal hydrogen transfers and several parallel pathways.²²² Loss of C-16, C-17 and the side-chain produces ions at m/e 310 (2%) and 228 (7%). A similar fission, accompanied by loss of a hydrogen atom gives no ion of $\underline{m/e}$ 319, but an

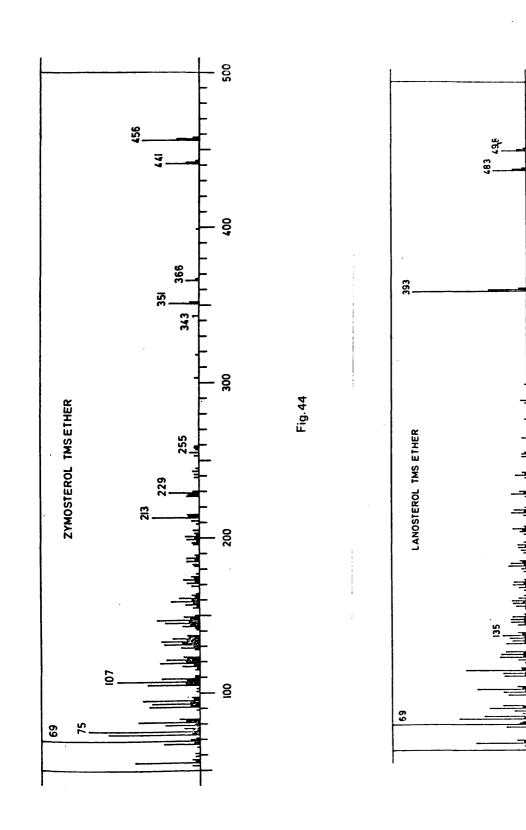


Fig.45

500

007

300

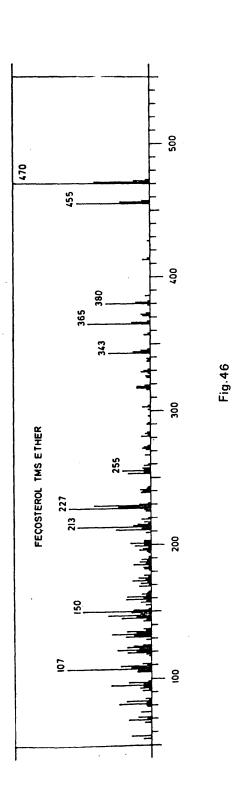
200

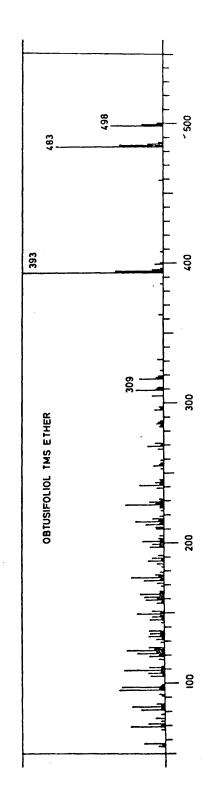
<u>0</u>

ion of relatively high abundance (19%) at m/e 229 is formed. Elimination of C-15/16/17 and the side-chain with an additional hydrogen atom produces ions at m/e 303 (3%) and m/e 213 (30%). 4A-Methylzymosterol (LIV) and 14-Desmethyllanosterol (LV) TMS ethers give similar spectra to that of zymosterol TMS ether. A notable trend in the spectra of this series is the relatively high abundance of ions of m/e 10/ (52%), m/e 121 (50%), and m/e 135 (7/%) from LII, LIII, and LIV TMS ethers, respectively, although each of these ions is present in all three spectra. This indicates that these ions comprise C-4 and substituents with an additional C_7H_9 unit. It would be rash to suggest a structure for these ions without further evidence. Lanosterol (LVI) TMS ether gives a rather different spectrum (Fig. 45). The additional methyl group at C-14 is allylic to the Δ^8 bond and appears to be readily eliminated. There are abundant ions at $[M-157]^+$ $(\underline{m/e} 483, 24\%)$ and $[\underline{M-15,90}]^+$ ($\underline{m/e} 393, 84\%$; base peak of 20 eV spectrum). There is no ion at [M-90]⁺ in the 70 eV spectrum, and one of only 1% relative abundance in the 20 eV spectrum. The base peak is still at m/e 69, but fragmentation of ring D is greatly suppressed. The ion of m/e 135 is of lower relative abundance (19%) than in LV TMS ether. 4x-methyl-5x-cholesta-8(14),24-dien-3ß-ol (LVII) TMS ether. The molecular ion is the base peak, demonstrating the greater stabilising influence of the $\Delta^{8(14)}$ bond as compared with the $\Delta^{8(9)}$ bond. This is further reflected in the relatively low abundance of ions of $\underline{m/e}$ 200. Allylic assistance of fission of the C-6/7 and C-9/10 bonds leads to ions of relatively high abundance (13%) at $\underline{m/e}$ 258. As expected, the

ion of $\underline{m/e}$ 121 is also formed in high abundance (46%) compared with $\underline{m/e}$ 10/ (14%) and $\underline{m/e}$ 135 (21%).

Parkeol (LVIII) TMS ether gives a similar spectrum to that of LVI TMS ather. In this case, it is more likely that the 19-methyl group is eliminated in the formation of ions at $[M-15]^+$ (m/e 483, 13%) and $[M-15,90]^+$ (m/e 393, 48%). It is of interest to note that the $\Delta^{9(11)}$ bond exerts a similar, but weaker, influence to the Δ^2 bond on the fragmentation of ring A: ions are formed at m/e 129 (25%) and $[M-129]^+$ (m/e 369, 7%). Analogous ions have been observed for the corresponding 24-dihydrosterol TMS ether (III). 74,236 Elimination of the side-chain with two additional hydrogen atoms produces a relatively abundant (12%) ion at $\underline{m/e}$ 385. This appears to indicate that one of the hydrogen atoms implicated in this process erises from C-12 by allylic participation. Wyllie and Djerassi found²⁵³ that, for several Δ^{24} steroid hydrocarbons, in the formation of similar ions, one of the two hydrogen atoms originates from C-17 and the other from C-12 (35%), C-14 (10%), C-16 (25%), or elsewhere in the molecule. Agnosterol (LIX) TMS ether. Elimination of methyl groups from the molecular ion and $[M-90]^{\ddagger}$ ion does not take place as readily as in LVI TMS ether. The conjugated double bonds (Δ^7 and $\Delta^{9(11)}$) appear to stabilise rings B and C of the molecule. The usual fragmentations or the side-chain and ring D take place, in particular, elimination of C-15/16/17 with the side-chain and an additional hydrogen atom from the ion $\int M-90$ (m/e 253, 38%). An additional ion, also observed in the 20 eV spectrum of dihydroagnosterol, appears at $\underline{m/e}$ 240 (19%).


-117-


The origin of this ion is uncertain, but it probably comprises rings A, B, and C with four methyl or methylene residues.¹³⁵ There are also ions at <u>m/e</u> 129 (26%) and $[M-129]^+$ (<u>m/e</u> 367, 4%). <u>Cycloartenol</u> (LX) TMS ether. The molecular ion (<u>m/e</u> 498) and $[M-15]^+$ ion (<u>m/e</u> 483) are of very low intensity (1% and 3%, respectively). The $[M-90]^+$ ion (<u>m/e</u> 408) is of greater intensity (26%) and metastable ions attest to its decomposition to produce ions $[M-90,15]^+$ at <u>m/e</u> 393 (27%) and at <u>m/e</u> 365 (20%). The precise origin of this latter ion is uncertain. A corresponding ion (at <u>m/e</u> 379) is observed in the spectrum of cyclolaudenol.²³⁶ The ion at $[M-90,69]^+$ (<u>m/e</u> 539) is of relatively high abundance (21%) compared with the equivalent ions from the TMS ethers of LII1-LIX (less than 4%).

$\Delta^{24(28)}$ -sterol TMS ethers

The mass spectra of many $\Delta^{24(28)}$ -sterols and their esters show abundant ions produced by McLafferty rearrangement in the sidechain. $^{223,233,238-241}$ These ions are, however, of relatively low abundance (less than 4%) in the spectra of the four $\Delta^{8,24(28)}$ -sterol TWS ethers examined here.

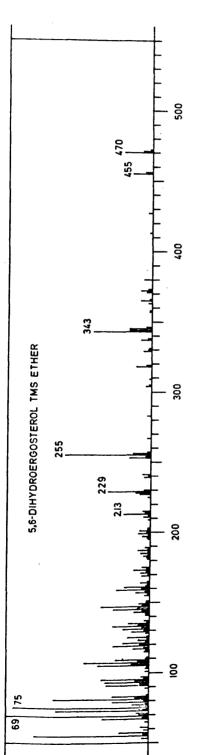
<u>Fecosterol</u> (LXI) TMS ether (Fig. 46). The molecular ion ($\underline{m/e}$ 470) is the base peak, and there are abundant ions at $[M-15]^+$ ($\underline{m/e}$ 455, 54%), $[M-90]^+$ ($\underline{m/e}$ 380, 33%), and $[M-90,15]^+$ ($\underline{m/e}$ 365, 46%). Metastable ions attest to the transitions $\underline{m/e}$ 470 to 455 and $\underline{m/e}$ 380 to 365. As in the case of the Δ^{24} steroids, the side-chain is lost from the molecular ion with two hydrogen atoms ($\underline{m/e}$ 343, 31%) and from the

[M-90][†] ion with (<u>m/e</u> 253, 17%) and without (<u>m/e</u> 255, 21%) hydrogen transfer, the latter predominating. Fragmentation of ring D, however, appears to be more complex. In addition to the fragmentations observed for the Δ^{24} -sterol TMS ethers, several more are observed:

(i) <u>m/e</u> 227 (60%). Corresponds to elimination of C-16/17 and side-chain with an additional hydrogen atom from $[M-90]^{\ddagger}$. Hydrogen transfer takes place in the opposite direction for Δ^{24} -sterol TMS ethers.

(ii) <u>m/e</u> 211 (26%). Can be ascribed formally to elimination of C-15/16/17 with side-chain and three hydrogen atoms from $[M-90]^+$, but probably involves an alternative fragmentation of ring D and loss of one or more methyl groups.

(iii) <u>m/e</u> 150 (50%). May comprise C-16/17 and side-chain, less two hydrogen atoms, or C-15 to C-26 and C-28 less one hydrogen atom.


The mode of formation of these ions can only be ascertained by the study of deuterium labelled or more highly substituted analogues. An ion of <u>m/e</u> 107 (62%) is observed, as in the spectrum of LIII. <u>4 α -Methyl-24-methylene-24,25-dihydrozymosterol</u> (LXII) TMS ether. The spectrum is similar to that of LXI, with the appropriate mass shifts for ions containing the 4-methyl group. There is more extensive fragmentation of the steroid nucleus, leading to more intense ions of <u>m/e</u> 200: the molecular ion (<u>m/e</u> 484, 92%) accounts for 3% of the total ion current, compared with 5.4% for LXI. The ion of <u>m/e</u> 150 is less intense (23%) than in the TMS ether of LXI, but quite significant as an odd-electron ion.

-120-

<u>Obtusifoliol</u> (LXIII) TMS ether (Fig. 47). This spectrum exhibits the same general features as observed for the other Δ^{0} -14-methyl sterol TMS ethers, namely, nigh abundance of $[N-15]^{+}$ (m/e 483, 76%) and $[M-90, 15]^{+}$ (m/e 393, 100%). Metastable ions attest to the sequence: M^{\ddagger} (m/e 498, 37%) to m/e 483 to m/e 393. The ion $[M-90]^{\ddagger}$ (m/e 408) is formed in low abundance (2%). There are ions corresponding to formal loss of C-15 to C-28 and a methyl group (m/e 317, 17%) and loss of $C_{6}H_{12}$, by McLafferty rearrangement in the side-chain, from $[M-90, 15]^{+}$ (m/e 309, 19%). Ions of lower m/e are present only in relatively low abundance. The ion of m/e 150 (of. LXI and LXII TMS ethers) is absent, and there is no corresponding ion at m/e 164. 24-Methylene-24,25-dihydrolanosterol (LXIV) TMS ether. The spectrum is also dominated by the molecular ion (m/e 512, 25%), $[M-15]^{+}$ (m/e 497, 33%), and $[N-90, 15]^{+}$ (m/e 407, 100%). There are no other ions of greater relative abundance than 21%.

Δ^{22} -sterol TMS ethers

<u>5,6-Dihydroergosterol</u> (LXV) TMS ether (Fig. 48). Fragmentation of the side-chain is more prevalent than in the examples already discussed. The ions at $[M-43]^+$ (m/e 427, 3%) and $[M-90, 43]^+$ (m/e 337, 5%) appear to be formed by loss of the terminal isopropyl group, promoted by allylic participation of the Δ^{22} bond, as proposed for the TMS ethers of stigmasterol (LXX)²⁴¹ and brassicasterol (LXXI).²²³ The ion of m/e 372 (8%) is formed by the apparently unfavourable cleavage of the C-20/22 bond, with hydrogen transfer from the steroid nucleus. Several plausible mechanisms for the equivalent fragmentation of

-122-

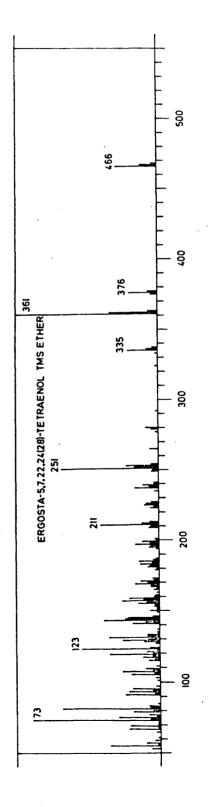
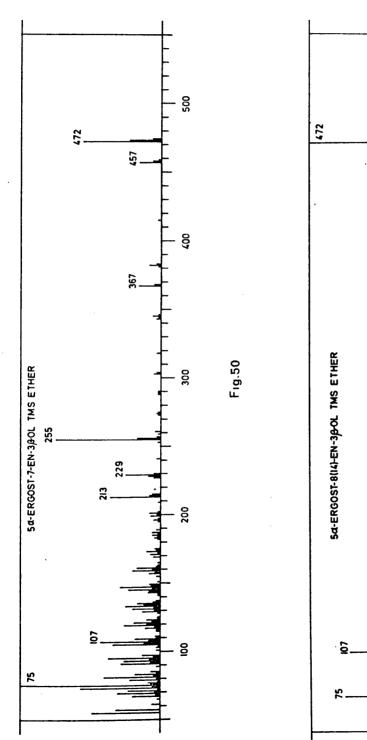


Fig. 49

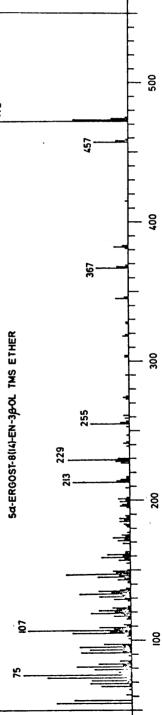

5%-cholest-22-ene have been suggested.²³³ Fission of the C-17/20 bond gives rise to ions of $\underline{m/e}$ 345 (16%) and $\underline{m/e}$ 255 (60%; base peak of the 20 eV spectrum²³⁶) from the molecular ion ($\underline{m/e}$ 4/0, 20%) and [M-90] + (m/e 380, 6%), respectively. Conversely, the corresponding ion (m/e 343, 41%) formed by loss of the side-chain and two hydrogen atoms from the molecular ion is more abundant than that (m/e 253. 15%) formed from [M-90]⁺. The origin of several fragment ions may be formally ascribed to retro-Diels-Alder rearrangement in ring B of fragment ions of higher mass $\left[\frac{m}{e} \ 161 \ (18\%)\right]$ from $\frac{m}{e} \ 345$, $\frac{m}{e} \ 159$ (24%) from m/e 343, and m/e 119 (25%) from m/e 303 (4%)]. Their relatively low abundance, however, renders them of little diagnostic significance. The base peak of this spectrum is at m/e 69. The origin of this ion may only be ascertained by deuterium labelling, but it should be noted that it is also the base peak in the spectrum of the TMS ether of LXVI and the acetate of LXVII obtained on the same instrument and under conditions similar to those employed in the present investigation.

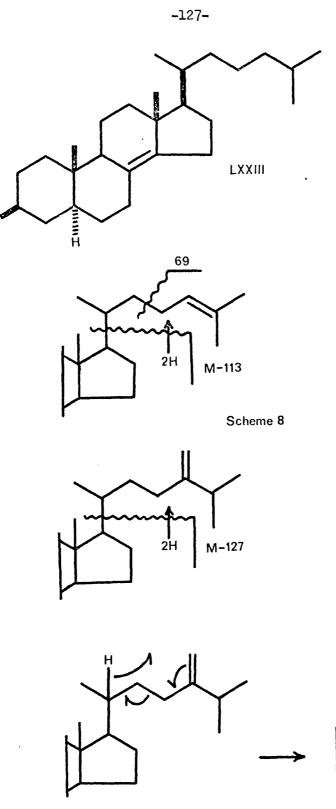
Ergosterol (LXVI) TMS ether. The 20 eV spectrum has been discussed previously,¹³⁵ and the /0 eV spectrum is very similar, but with the base peak at <u>m/e</u> 69. The base peak of the 20 eV spectrum (<u>m/e</u> 303) is of relative abundance 76% in the 70 eV spectrum. Ions characteristic of the $\Delta^{5,7}$ structure¹³⁵ are observed at <u>m/e</u> 131 (36%) and [M-131]⁺ (<u>m/e</u> 337, 55%). An ion of <u>m/e</u> 33/ (23%) is also found in the 20 eV spectrum of LXVI TMS ether. The ion at [M-129]⁺, normally observed in the spectra of TMS ethers of $\Delta^5 - 3\beta$ -hydroxy steroids, is absent. It was previously suggested¹³⁵ that the ion at <u>m/e</u> 211 comprised rings C and D with the side-chain attached. It appears more likely that this ion arises by elimination of C-15 to C-28 with an additional hydrogen atom from $[M-90]^{\ddagger}$.

<u>Ergosta-5,7,22,24(28)-tetreenol</u> (LXVII) TMS etner (Fig. 49). The side-chain, since it contains a pair of conjugated double bonds, undergoes little fragmentation except, perhaps, elimination of the C-21 or a terminal methyl group. The $[M-15]^+$ ion is, in fact, absent, but a metastable ion attests to the formation of $[M-90,15]^+$ (m/e 361, 100%) from $[M-90]^{\ddagger}$ (m/e 3/6, 20%) which would be expected to be formed readily since it may take up a conjugated 3,5,7-triene structure. A relatively abundant ion at m/e 123 (54%) probably comprises C-20 to C-28, formed by fission of the C-17/20 bond, allylic to the Δ^{22} bond. There are no ions corresponding to loss of this side-chain from the molecular ion, but abundant ions exist at m/e 251 (68%) and m/e 253 (23%) by analogous processes commencing with the ion $[M-90]^{\ddagger}$. There are the expected ions at m/e 131 (35%) and $[M-131]^+$ (m/e 355, 21%).

Ergostenol TMS etners

 5α -Ergost-7-en-3 β -ol (LWIII) This ether (Fig. 50). The most notable feature of the mass spectra of many steroids with saturated side-chains is the loss of the side-chain without net hydrogen transfer.^{106,107} Loss of the side-chain from the molecular ion of the TMS ether of LXVIII gives rise to an ion (<u>m/e</u> 345) of relatively low abundance (6%) but to an intense ion (<u>m/e</u> 255, 75%) from [M-90] t (<u>m/e</u> 382, 8%). Ions



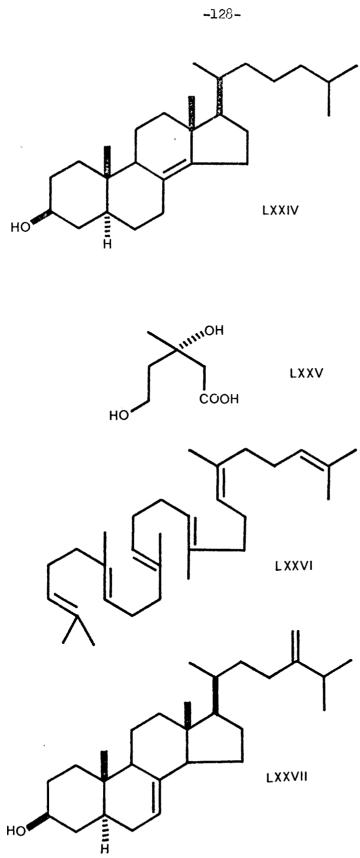

Fig.51

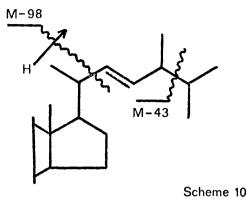
produced by fragmentation, with hydrogen transfer, of ring D of $[M-90]^+$ are formed in relatively high abundance $[\underline{m/e} 229 (25\%)]$ and $\underline{m/e} 213 (36\%)$. The base peak ($\underline{m/e} 75$) is an ion typical of TMS ethers.

 5α -Ergost-8(14)-en-3 β -ol (LXIX) TMS ether (Fig. 51). The spectrum is qualitatively similar to that of the TMS ether of LXVIII, but has diagnostically signicant quantitative differences. lons of <u>m/e</u> 472 (M⁺, 100%), <u>m/e</u> 229 (43%), and <u>m/e</u> 107 (72%) are of notably increased relative intensity, whereas those of <u>m/e</u> 255 (27%) and <u>m/e</u> 75 (75%) are of decreased intensity in the spectrum of the TMS ether of LXLX. The reason for this relationship is uncertain, but it is appropriate to note, here, that a similar phenomenon is observed in the 20 eV spectra of TMS ethers of 5 α -cholest-7-en-3 β -ol (LXXIII) and 5 α -cholest-8(14)-en-3 β ol (LXXIV).¹³⁵ In the former, <u>m/e</u> 255 is in nigh abundance, and in the latter <u>m/e</u> 107 is more prominent.

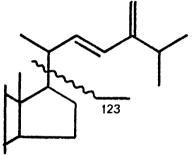
<u>Conclusions</u>. In spite of the inherent complexity of the fragmentation of ring D^{234} and unsaturated side-chains²³³ of steroids, it has been possible to recognise various features of diagnostic significance in the mass spectra (Schemes 8-12).

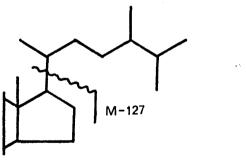
The TMS ether function, while giving rise to ions at $[M-90]^{\ddagger}$, <u>m/e</u> 73, and <u>m/e</u> 75, promotes little fragmentation of the steroid nucleus in most cases. Notable exceptions are the formation of ions at <u>m/e</u> 131 and $[M-131]^{\ddagger}$ in the spectra of $\Delta^{5,7}$ compounds and ions at <u>m/e</u> 129 and $[M-129]^{\ddagger}$ in $\Delta^{9(11)}$ and $\Delta^{7,9(11)}$ compounds. This may serve




НΟ

· ·


Scheme 9



.

Scheme 11

Scheme 12

to distinguish these compounds from those with double bonds in other positions in the steroid nucleus, although it should be remembered that the corresponding Δ^5 compounds usually give rise to ions at <u>m/e</u> 129 and [M-129]⁺, but in greater relative abundance.

The ease of recognition of the size of saturated side-chains from steroid mass spectra has been known for some time, 104 but is not quite as simple as in the "rule" enumerated by Fitches: "For steroids containing less then three ring-keto groups the molecular weight of the side-chain at C_{17} is given as the parent mass, p, minus 42, minus the mass of the principal peak in the mass range 205-245, minus 18 for each hydroxyl group and minus 60 for each acetate group."¹⁵⁶ Nevertheless, in the spectra of TMS ethers of LXVIII and LXVIX, ions resulting from loss of the side-chain from, and fragmentation of ring D of, the molecular ion and [M-90]⁺ are easily recognised. Features which serve to distinguish Δ^7 and $\Delta^{8(14)}$ isomers have been discussed. In particular, the relative abundances of ions of m/e (105, 4-substituents) and ions resulting from sequential loss of trimethylsilanol and side-chain from the molecular ion should be noted. Also, Δ' isomers can usually be distinguished by their higher retention indices.

The majority of the Δ^{24} compounds have base peaks at <u>m/e</u> 69 in the /U eV spectra (the exception being the TMS ether of LVII), presumably formed from the side-chain by fission allylic to the Δ^{24} bond (Scheme σ). The same base peak is, however, observed in the spectra of Δ^{22} compounds,

-130-

probably by McLafferty rearrangement in the cleaved side-chain. Interpretation of the significance of a base peak at $\underline{m/e}$ 69 in the spectra of "unknown" steroisd should therefore be treated with caution. Δ^{22} and Δ^{24} isomers can also be distinguished by further characteristic fragmentation of the side-chain (Schemes 8,10).

In contrast with the spectra of steroids with saturated sidechains (Scheme 12), unsaturated side-chains are eliminated from M^{\ddagger} and $[M-90]^{\ddagger}$ both with and without two additional hydrogen atoms (Scheme 12). It should be noted that this hydrogen transfer is more prevalent in the fragmentation of M^{\ddagger} than of $[M-90]^{\ddagger}$.

The presence of a $\Delta^{24(28)}$ bond can be recognised by the presence of an ion which formally corresponds to elimination from $[M-90]^+$ of C-16 to C-28 and an additional hydrogen atom. The more usually observed ion, formed by hydrogen transfer <u>to</u> the steroid nucleus, is elso present.

An extremely abundant $[M-90,15]^{\ddagger}$ ion is observed in the spectra of compounds possessing a Δ^8 -14-methyl molety. Metastable ions attest to the formation of $[M-90,15]^{\ddagger}$ from $[M-15]^{\ddagger}$. There are also intense ions at $[M-90,15]^{\ddagger}$ in the spectra of the $\Delta^{5,7}$ compounds, the methyl group eliminated being, apparently, that at C-19. In this case, metastable ions indicate that $[M-90,15]^{\ddagger}$ is formed from $[M-90]^{\ddagger}$. The $[M-90,15]^{\ddagger}$ ion is of low intensity in the spectrum of the $\Delta^{7,9(11)}$ -14methyl compound.

-131-

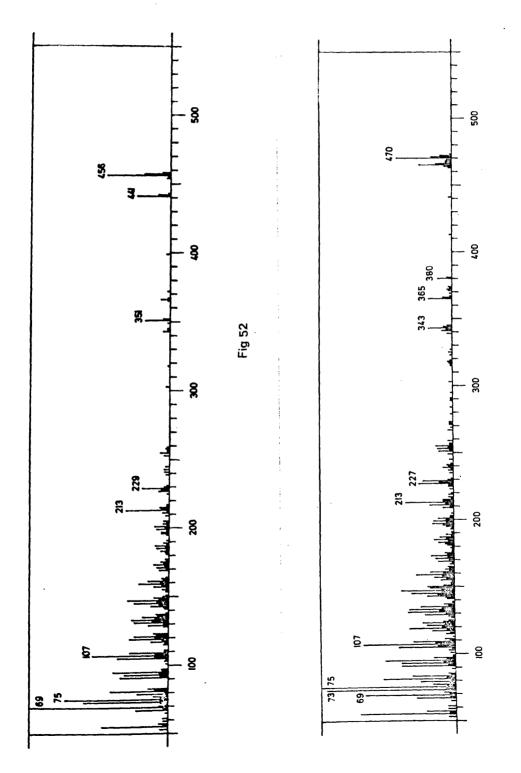
There appears to be little direct fragmentation of ring A in most of these compounds, but it seems possible to escertain substituents at C-4 by the intensities of ions at $\underline{m/e}$ 107 (from 4,4'-di-H), $\underline{m/e}$ 121 (from 4-methyl), and $\underline{m/e}$ 135 (from 4,4'-di-Me). Such observations should, however, be treated with some caution since, at the present time, it is uncertain which other carbon atoms are included in these ions: methyl groups at other positions could give rise to analogous mass shifts.

Cycloartenol TMS ether gives rise to an additional fragmentation, presumably directed by the 9,10-cyclopropane ring, with elimination of a $C_{3}H_{7}$ fragment from $[M-90]^{\dagger}$: this interpretation is supported by metastable ion evidence.

CHARACTERIZATION OF YEAST STEROLS BY GC-MS*

In recent years, much progress has been made in the elucidation of the pathways by which sterols are biosynthesised, not only in animals, but also in fungi and higher plants.^{243,244} Ergosterol (LXVI) has long been known as the major sterol of yeast and other fungi - it forms crystalline inclusions in <u>Neurospora crasse²⁴⁵</u> - and is formed from lanosterol (LVI), which apparently originates from mevalonic acid (LXXV) <u>via</u> squalene (LXXVI). Details of the conversion of lanosterol to ergosterol are, at present, not clear. Various hypothetical biosynthetic pathways have been proposed and attempts have been made to identify the intermediates. In investigations of this type, it is usually necessary to isolate such sterols and to apply a wide range of physical and chemical techniques to determine their structures.²⁴⁶

In the present study, an attempt has been made to characterize sterols in relatively crude fractions of sterols of the yeast <u>Saccharomyces cerevisiae</u> Meyen. Column adsorption chromatography (at Imperial College) yielded three fractions, broadly representing: 4-desmethyl, 4x-methyl, and 4,4-dimethyl sterols.


GC-MS of the derived TMS ethers was carried out using a loft 1% OV-17 column. Because of the incomplete resolution obtained, retention indices were determinable only approximately. Spectra were recorded at an electron energy of /0 eV.

-133-

^{*} Preliminary fractionation of the yeast sterols was carried out by Prof. D. H. R. Barton, Dr. D. A. Widdowson, and co-workers (Imperial College of Science and Technology, University of London).

The 4-desmethyl sterol fraction was found to contain three major components, giving TMS ethers of retention index 3340, 3305, and 3420. The mass spectrum of the first (Fig. 52) corresponds to that of zymosterol (LIII) TMS ether (Fig. 44). Zymosterol is a well-known yeast sterol.²⁴⁷ The retention index of the TMS ether of the second major component is closely similar to those of 5,6-dihydroergosterol (LXV) TMS ether (I = 3395) and fecosterol (LXI) TMS ether (I = 3390). The mass spectrum (Fig. 53) exhibits features characteristic of both of these compounds: there is an abundant (20%) ion of m/e 150 (cf. Fig. 46), and ions of m/e less then 100 are relatively intense (cf. Fig. 40). This component is probably a mixture of these sterols. The third component of this fraction appears also to be an ergostadienol. The retention index of its TMS ether (Fig. 54) is similar to that which would be expected (cf. Table 6) for the TMS ether of episterol (LXXVII, $I_{calc.}^{TMS} = 3430$). No reference sample was available for comparison of mass spectra. Ergostadienols previously isolated from fungi include 5.6-dihydroergosterol,²⁴⁰ fecosterol,²⁴⁹ episterol,^{250,251} and ascosterol (LXXVIII). 249,252 "Anasterol", previously claimed to be an ergostadienol from yeast,²⁵³ is apparently a mixture.²⁵⁴

The 4 \propto -methyl sterol fraction contained two major components. The TMS ether of the first (I = 3420) gave a spectrum (Fig. 55) which resembled that of the TMS ether of 4 \propto -methyl-5 \propto -cholesta- \approx (14),24dien-3 β -ol (LVII, I^{TMS} = 3400) more closely than that of the TMS ether of the Δ^8 -isomer, 4 \propto -methylzymosterol (LIV, I^{TMS} = 3400). In particular,

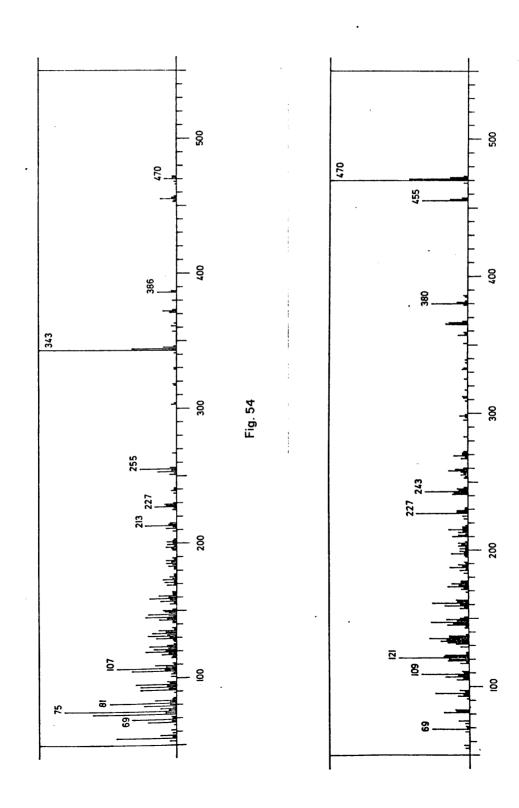
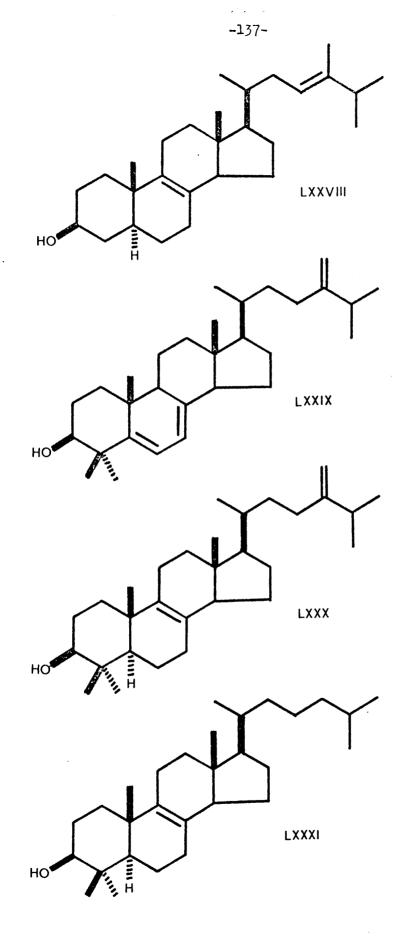
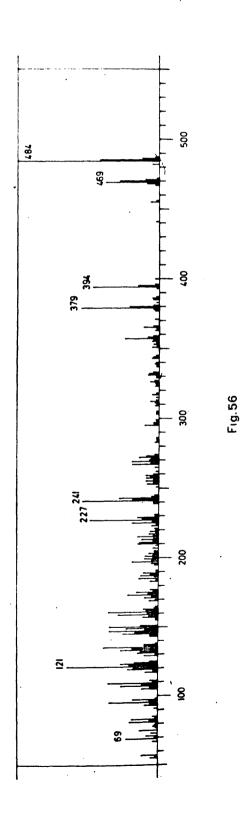




Fig.55

it should be noted that the ions of <u>m/e</u> less than 100 are less abundant in the spectrum of the $\Delta^{8(14)}$ -isomer. But for the relatively high abundance of ions of <u>m/e</u> less than 100 in the spectrum of its TNS ether (1 = 3460, Fig. 56) the second component of this fraction would resemble 404-methyl-24-methylene-24,25-dihydrosymosterol (LXII, $I^{TMS} = 3450$) isolated by Barton <u>et al</u>.²⁴⁶ This could be the the $\Delta^{8(14)}$ isomer.

The 4,4-dimethylsterol fraction also contained two major components. The spectrum of the TMS ether of the first (I = 3430, Fig. 57) has an extremely abundant ion at m/e 393 (20% Σ) characteristic of the Δ^{0} -14methyl structure. Ions of m/e less than 100 are present in low abundance, compared with those in the spectrum of the TMS ether of lanosterol (LVI, I^{TMS} = 3420, rig. 45). This difference may not be significant in view of the evidence for the presence of a Δ^{δ} -14-methyl grouping. Closely related isomers with other nuclear double bonds have quite different retention indices ($\Delta^{9(11),24}$, I = 3480; $\Delta^{7,24}$, I_{calc.} = 3470). Δ^{22} -isomers would have much lower retention indices: $\delta I(\Delta^{24} \longrightarrow \Delta^{22}) =$ -125. The low abundance of the ion of m/e 69 (base peak of the spectrum of the TMS ether of lanosterol) might be accounted for by a structure with a different side-chain. The TMS ether of the other major component of this fraction (I = 3465, Fig. 58) is not completely resolved from the first, but interfering ions appear only at $\underline{m/e}$ 393, 483, and 498 (cf. Fig. 57). Its mass spectrum is somewhat similar to that of the TMS ether of 14-desmethyllenosterol (LV, $I^{TMS} = 3450$). However, ions

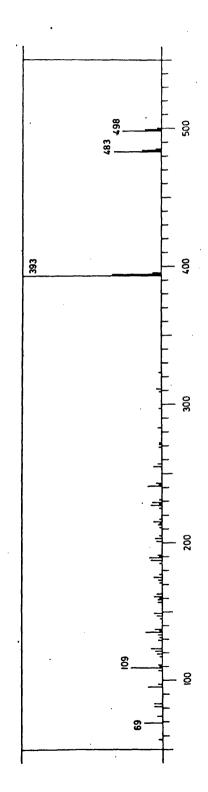
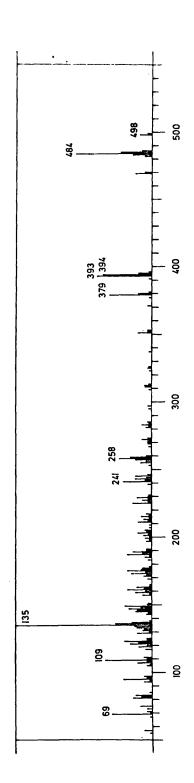
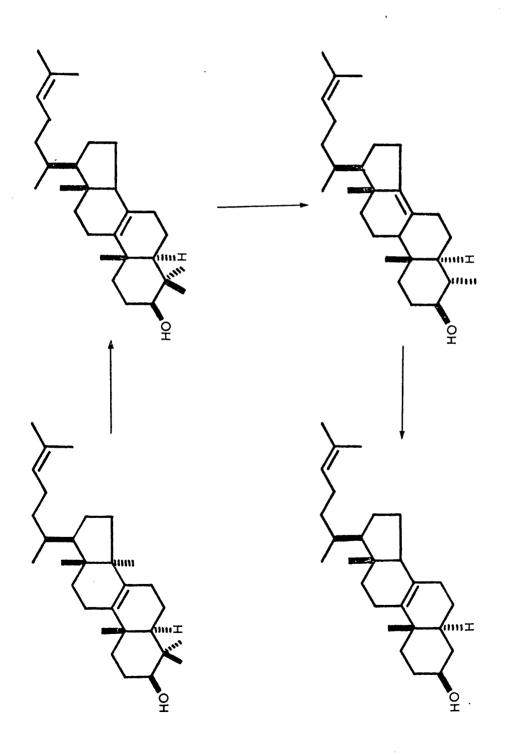



Fig. 57

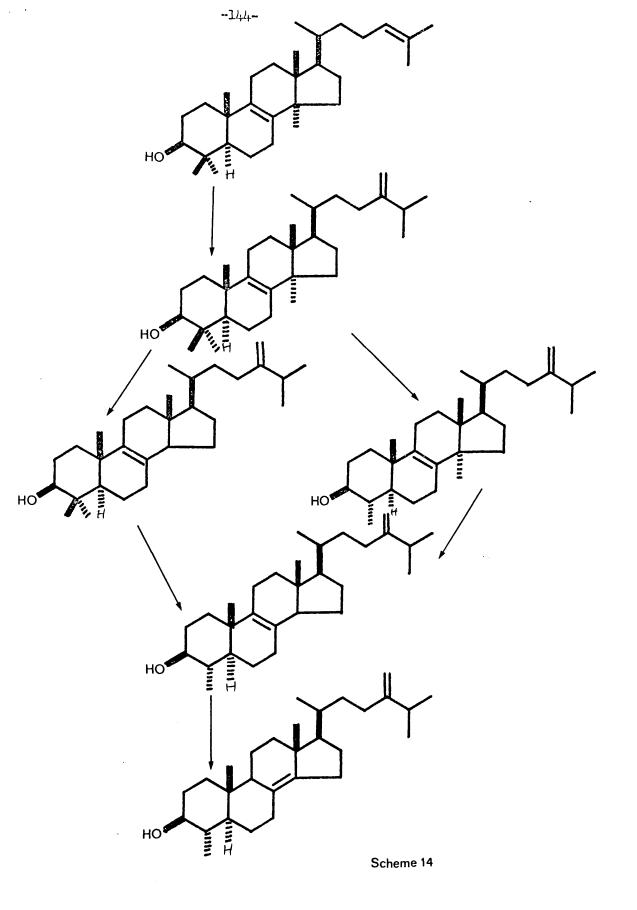


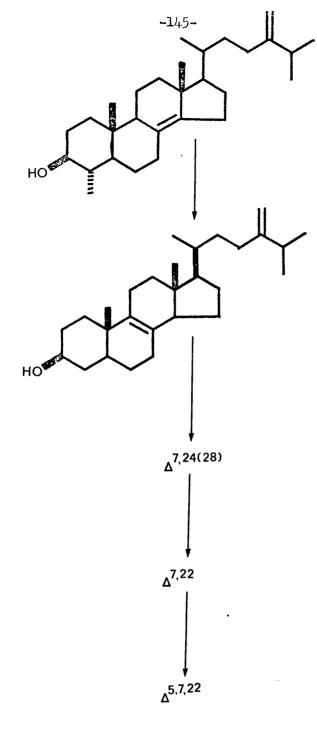
of <u>m/e</u> less than 100 are present only in low abundance in the spectrum of the TMS ether of this component. A minor component of this fraction, which affords a TMS ether (I = 3520) of molecular weight 496, could be 4,4-dimethylergosta-5,7,24(28)-trien-3/3-ol ($I_{calc.}^{TMS}$ = 3530).

In this brief study, a number of yeast sterols have been characterized by GC-MS. It has been found possible to determine the masses of the nuclear and side-chain moieties in each case, but not always the locations of nuclear double bonds. In particular, differentiation between Δ^8 and $\Delta^{8(14)}$ double bonds is difficult if suitable reference compounds are not available. It should be noted, however, that, in cases where definite identification has been made, as for zymosterol and 4d-methyl-5d-cholesta-8(14),24-dien-3\beta-ol, there is excellent agreement between spectra of TMS ethers of authentic samples and those of extract components. It is clearly desirable to obtain mass spectra of TMS ethers of many more unsaturated sterols of this type to aid further studies.

All of the sterols identified, albeit tentatively, in the yeast extracts can be placed on hypothetical biosynthetic pathways from lanosterol to ergosterol. Sequential elimination of methyl groups apparently leads to the formation of zymosterol (Scheme 13). Schwenk and Alexander were unable to demonstrate the conversion of zymosterol to ergosterol by yeast²⁵⁵ but, more recently, Katsuchi and Bloch have shown that this process probably proceeds <u>via</u> ergosta-5,7,22,24(28)-

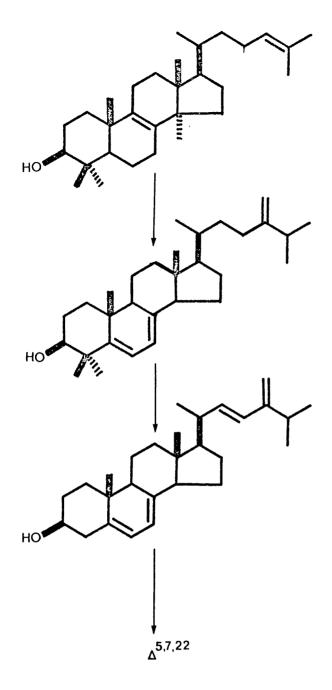
-141-


Scheme 13


tetraen-3ß-ol (LXVII).²⁵⁶ Barton <u>et al</u>. have shown that yeast can convert 44-methylzymosterol to ergosterol in 15% yield.²⁴⁶

Alternatively, it has been suggested that elaboration of the 24-methylenc moiety can precede demethylation. 257 24-methylene-24,25dihydrolanosterol (LXIV) has been found in a fungus.²⁵¹ and it has been demonstrated that this compound is converted to ergosterol by yeast.^{257,258} Scheme 14 illustrates two possible routes for the formation of 4α -methyl-5d-cholesta- $\delta(14)$,24-dien-3 β -ol from lanosterol. Both proceed via 24-methylene-24,25-dihydrolanosterol. Elimination of the 14-methyl group may lead to the formation of 4,4-dimethyl-5%ergosta-8,24(28)-dien-38-ol (LXXX) (tentatively identified in Phycomyces blakesleeanus by Goulston et al. 251), whereas loss of a 4-methyl group may afford obtusifoliol (LXIII) (shown by Barton et al. to be convertible to ergosterol by yeast in 8% yield²⁴⁶). Further loss of a methyl group from either of these sterols may produce 4d-methyl-ba-ergosta-8,24(28)-dien-3B-ol (isolated from yeast by Barton et al. ²⁴⁶) which presumably isomerises to the $\Delta^{8(14),24(28)}$ sterol now identified.²⁵⁹ Scheme 15 shows a probable route for conversion of this sterol to ergosterol via the ergostadienols described above. The tentative identification of 4,4-dimethylergosta-5,7,24(28)-trien-3/3-ol indicates a further route for conversion of lanosterol to ergosterol, possibly via ergosta-5, 7,22,24(28)-en-3/3-ol (Scheme 16).

Goad has suggested²⁴³ that different biosynthetic pathways between lanosterol and ergosterol may be operative in different fungi.


-143-

Scheme 15

•

Scheme 16

It is possible that the full potential of GC-MS in this field will be realised in comparative studies of sterol biosynthesis. Meanwhile, GC-MS has a significant role to play in the characterization of minor sterols which often cannot be isolated in quantity Table 6. Retention increments (OV-17) (with repect to 5^{α} -cholestan- 3^{α} -ol, I_{240}^{α} = 3230)

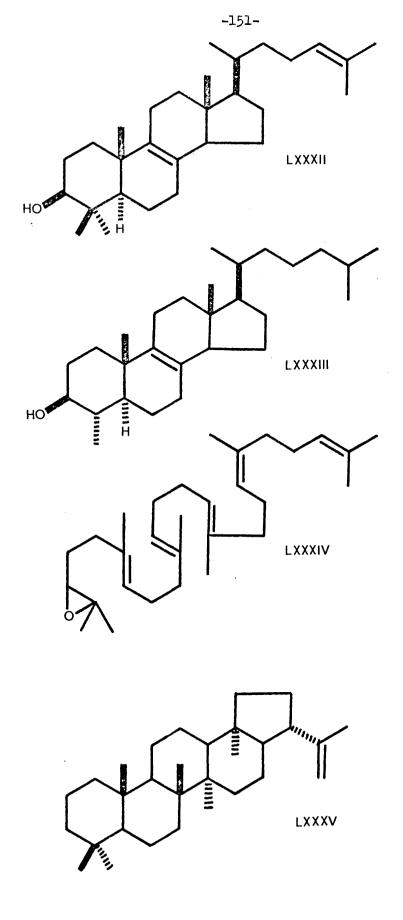
۵ ⁵	0
∆7	+65
Δ ⁸	+15
۵ ⁸⁽¹⁴⁾	+15
²⁹⁽¹¹⁾	+45
Δ ²²	-50
۵ ²⁴	+75
∆ ²⁴⁽²⁸⁾	+15
4 %- Me	+60
4β-ме	+35
14-Me	-10
24-Me	+100

CHARACTERIZATION OF STEROLS AND SQUALENE IN A BACTERIUM (METHYLOCOCCUS CAPSULATUS) GROWN ON METHAN 5*

The ubiquitous occurrence of steroids in nature, and their fundamental importance for plant and animal life, are well known. Until 1967, nowever, steroids had not been detected in prokaryotic organisms, <u>i.e.</u> the bacteria and blue-green algae, but only in a eukaryotic (higher) organisms. Reports of the detection of sterols and squalene in prokaryotic organisms are summarized in Table 7. In general, it is found that amounts of steroids found in prokaryots are lower than those found in eukaryots. Dr. C.W. Bird, Prof. S.J. Pirt, and co-workers have observed that the bacterium <u>Methylococcus</u> capsulatus, grown in methane, is remarkable in containing comparatively large amounts of squalene and sterols.²⁶⁰

<u>M. capsulatus</u> cells were extracted with a chloroform-methanol mixture and the extract was fractionated by TLC to provide four fractions: A, B, C and D comprising, respectively, hydrocarbons, 4,4-dimethyl sterols, 4Q-methyl sterols, and 4-desmethyl sterols.

GLC of fraction A (at Queen Elizabeth College) revealed the presence of squalene (LXXVI) and a series of alkanes from $C_{20}^{H}H_{42}$ to $C_{30}^{H}H_{62}$, in approximately equal quantities. An additional component $(I_{230}^{OV-1} = 3150)$ was characterized by GC-MS as a further triterpene


* Growth of the bacteria and extraction of the sterols and squalene were carried out at Queen Elizabeth College, University of London, by Prof. S.J. Pirt, Dr. W.W. Reid, Dr. C.W. Bird, and Mr. J.M. Lynch.

-149-

 $(M^{\ddagger}, \underline{m/e} 410; \text{ base peak}, \underline{m/e} 69; \text{ intense ions at }\underline{m/e} 189 \text{ and } 191).$ This hydrocarbon was later identified as diploptene (LXXXV).²⁶⁴ Diploptene has since been isolated from another (unnamed) bacterium.²⁶⁹

Fraction B was resolved into two components by GLC: $I_{250}^{(V-17)} c_8$. 3510 and 3570. The first showed a mass spectrum in which the molecular ion (m/e 414) was the base peak. An ion at m/e 301 was consistent with the loss of a C_8H_{17} side-chain. The second chromatographic peak yielded a mass spectrum in which the base peak was at m/e 412. The predominance of the ion at m/e 69 suggested the presence of a Δ^{24} double bond. The gas chromatographic retention indices, the retention index difference between the two peaks, and the mass spectrometric data were all consistent with structures 4,4-dimethyl- $5^{(L\times X\times 1)}$ and 4,4-dimethyl-5%-cholesta-8,24- $(L\times X\times 1)$ dien-36-o1 \langle , respectively. There was insufficient sample for further study.

Fraction C contained substantially more material. GC-MS indicated two main incompletely-separated peaks, I_{250}^{OV-17} <u>ca.</u> 3410 and 3430. The mass spectra paralleled those recorded for fraction B: the first component had a molecular ion at <u>m/e</u> 400 as the base peak, and the second showed <u>m/e</u> 69 as the base peak, with the molecular ion (<u>m/e</u> 398) of relative abundance 77%. The corresponding TMS ethers were better separated (I_{250}^{OV-17} 3315 and 3385). The first, preponderant component gave a mass spectrum in which the molecular ion (<u>m/e</u> 472) was the base peak, both at 70 eV and 20 eV electron energy. The second

component yielded a molecular ion at $\underline{m/e}$ 470, amounting to 78% of the abundance of the base peak at $\underline{m/e}$ 69. The retention data and the full mass spectrum were in close agreement with those recorded for authentic 4 \propto -methylzymosterol (LIV) TMS ether. The combined data for fraction C are thus compatible with the assignment of structures 4α -methyl-5 α -cholest-8-en-3 β -ol (LXXXIII) and 4α -methyl-5 α -cholesta-8,24-dien-3 β -ol (LIV) to the two main components. Similar mass spectra would probably be obtained from the Δ^7 and $\Delta^8(14)$ isomers, but the Δ^7 isomers would have distinctly longer retention times and are not clearly present as major components.

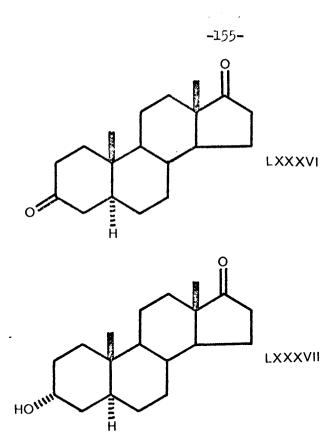
Fraction D has not yet been examined by GC-MS because of lack of material. The TLC properties of the major component of this fraction suggest that it is zymosterol (LIII).

No squalene-2,3-oxide (LXXIV) was detected in fraction A, and neither lanosterol (LVI) nor cycloartenol (LX) was detected in fraction B. Table 7. Squalene and sterols found in prokaryotic organisms.

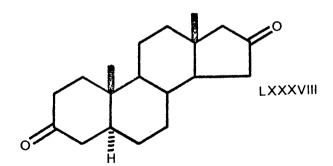
Bacteria:	squalene	sterols	ref.
M. capsulatus Halobacterium cutirubrum Staphylococcus sp. Rhodomicrobium vannielli R. rubrum	0.55% 0.1% 0.002% detected detected 0.0001%	0.22% none	260 261 262 263 263 263
Azobacter chroococcum Streptomyces olivacens Blue-green algae:		0.01% 0.0035%	265 266
Phormidium luridum Anacystis nidulans Fremyella diplosiphon	trace	0.003% detected detected	267 268 268

.

.


.

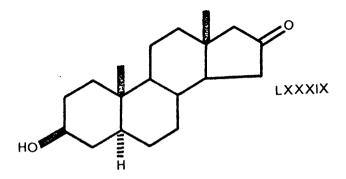
<u>REDUCTION OF 5a-ANDROSTANE-3,16-DIONE BY A CRYSTALLINE</u> 20B-HYDROXY STERCID-NICOTINAMIDE-ADENINE DINUCLEOTIDE OXIDOREDUCTASE PREPARATION*

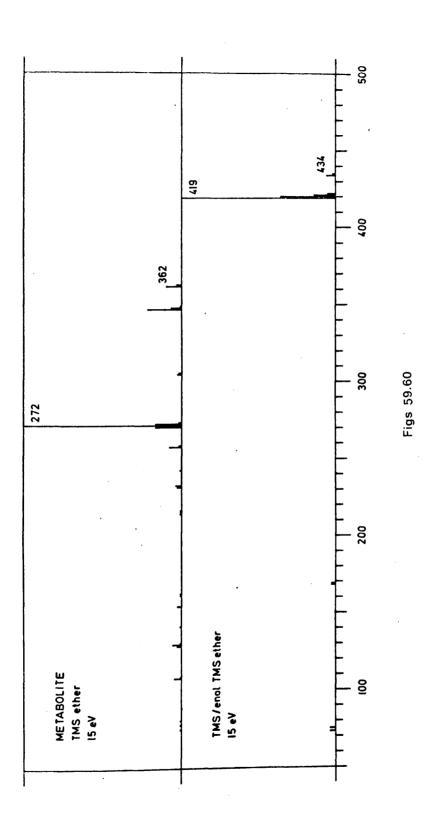

Pocklington and Jeffery found²⁸⁴ that crystalline preparations of 20β -hydroxy steroid-NAD oxidoreductase reduced 5%-androstand-3,17-dione (LXXXVI) to 3%-hydroxy-5%-androstan-17-one (LXXXVII). The present investigation was carried out to determine whether 5%-androstane-3,16-dione (LXXXVIII) was reduced at the 3-position, or whether the preparation possessed 16-hydroxy steroid-NAD oxidoreductase activity hitherto unrecognised.

The isolated reduction $product^{132}$ was examined by GLC and GC-MS. Retention indices of the reduction product and of various reference compounds (OV-17 and OV-210) as their TMS ethers are given in Table 8. These indicate that the metabolite is not 3,8-hydroxy-5,-androstan-16-ome (LXXXIX). In fact, the mass spectrum (Fig. 59) of the TMS ether of the metabolite is similar to that of the TMS ether of 3,-hydroxy-5,-androstan-17-one (LXXXVII), which also had a similar retention index on OV-17, but not on OV-210. The absence of a 3-keto function in the reduction product was evident in the spectrum of its TMS/enol TMS ether (Fig. 60). 3-Enol TMS ethers of both 5,- and 5,8- steroids give rise to prominent fragment ions of <u>m/e</u> 142 and 143.¹³¹ Such ions

The reaction was carried out, and the reduction product was isolated by Dr. J.d'A. Jeffery and Dr. T. Pocklington at the University of Aberdeen.

.

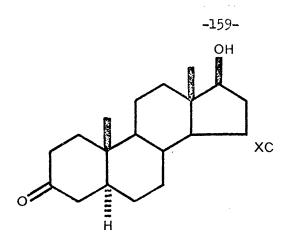


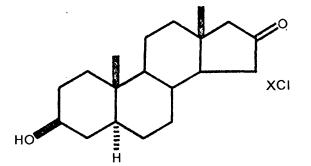

Table 8. Retention indices of TMS ether of metabolite of 5x-androstane-3,16-dione and related compounds.

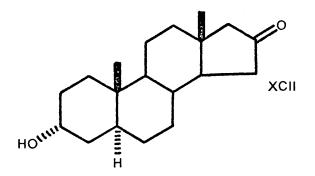
,

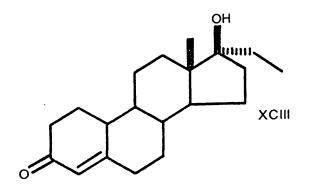
	0 V-1 7	0V-21 0
Metabolite TMS	2695	3000
173-hydroxy-5x-androstan-3-one TMS	2805	3140
3α-hydroxy-5∝-androstan-17-one TMS	2695	2960
3ß-hydroxy-5x-androstan-16-one TMS	280 0	3130
5~-androstane-3,16-dione	2960	3540

٠


1




Ŧ

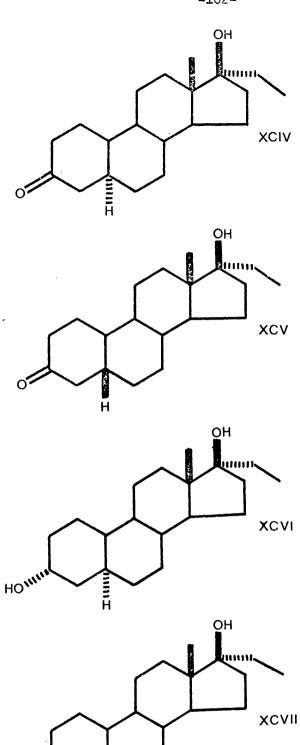

were observed in the spectra of the TMS/enol TMS ether of 17/3-hydroxy-5\pi-androstan-3-one (XC) and of the monoenol TMS ether of 5\pi-androstane-3,16-dione (LXXXVIII), whereas there were no significant ions of $\underline{m/e}$ 142 or 143 in the spectrum of the TMS/enol TMS ether of the reduction product. This spectrum was closely similar to that of the TMS/enol TMS ether of 3\beta-hydroxy-5\pi-androstan-16-one (XCI).

It may be concluded that the metabolite is 3x-hydroxy-5x-androstan-16-one (XCII), if the reasonable assumption is made¹⁷¹ that the skeletal structure remains unaltered in the reduction.

CHARACTERIZATION OF STEROIDAL DRUG METABOLITES BY GC-MS *

Structural features which distinguish steroidal drugs from natural hormones often persist in their metabolites. At the same time, the metabolic transformations of the drugs parallel, in certain respects, those of endogenous steroids. These factors provide scope for techniques based on combined GC-MS in investigations of steroidal drug metabolites. On this basis, e preliminary study has been made of neutral urinary metabolites of the anabolic steroid, 174-ethyl- 17β -hydroxyestr-4-en-3-one (Nilevar, XCIII).²⁷⁰ This steroid is in widespread therapeutic²⁷¹ (and veterinary²⁷²) use. It was considered particularly useful for study since its possession of an ethyl substituent leads to a molecular weight 14 units above that of testosterone. It was hoped that metabolites retaining this moiety would be readily distinguished from natural metabolites by GC-MS.

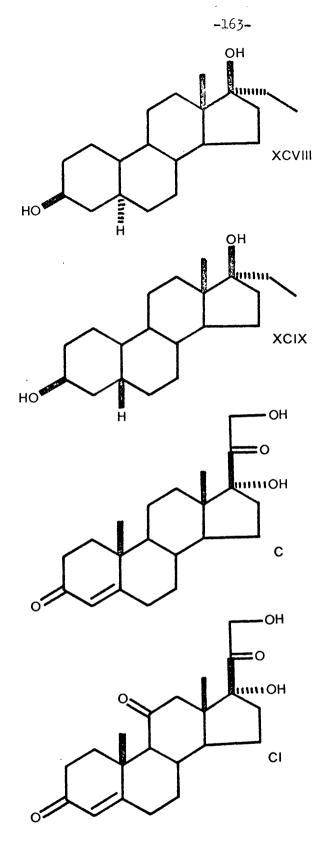
Urine collections were made during the 24 hr. before and after administration of a single dose (50 mg) of Nilevar to a normal adult male volunteer. Preparation of unfractionated extracts of the enzymehydrolysed urine is described in the full report.²⁷⁰ Three extracts were obtained containing, respectively, free steroids, steroids obtained by hydrolysis of glucosiduronates, and steroids from sulphates.


-160-

Extraction of urinary metabolites was carried out by A.R. Thawley and P. Rocher. Preliminary examination by GLC was also carried out by G.M. Anthony and W.G. Stillwell.

The extract containing free steroids gave no indication of drug metabolites and was not further studied. Gas chromatographic examination (by W.G. Stillwell) of the extracts obtained by enzyme-hydrolysis of urine collected before and after administration of Nilevar revealed the presence of small quantities of possible metabolites. In the characterization of these possible metabolites, use was made of the full range of GC-MS facilities available to us during the first few months of 19/0 (see p. 35). This involved (i) direct interpretation of retention index values, where peaks were sufficiently clearly defined by GLC alone; (ii) use of the multiple ion detector to distinguish pairs of ions characteristic of metabolites; (iii) monitoring of single ions; and (iv) repetitive scanning of mass spectra throughout the peaks suspected of containing metabolites. Each of these procedures was applied to extracts of urine collected both before and after administration of Nilevar. Glucosiduronate and sulprate hydrolysates were separately examined.

In general, Δ^4 -3-oxosteroids yield tetrahydro metabolites;²⁷³⁻²⁷⁵ the formation of phenolic metabolites appears to be a minor pathway in the human metabolism of Δ^4 -estren-3-ones;²⁷⁶⁻²⁷⁹ and alkyl and alkynyl substituents at C-17 are retained in major metabolites.²⁷⁸⁻²⁸⁰ It was, therefore, considered likely that dihydroand tetrahydro analogues of Nilevar would be produced as metabolites. Consequently, the two dihydro (XCIV, XCV) and four tetrahydro (XCVI-XCIX)


-161-

но**''''**

H

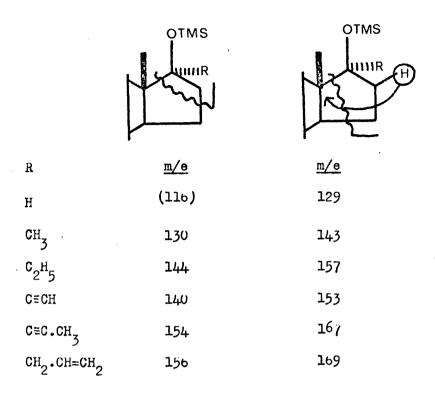
-162-

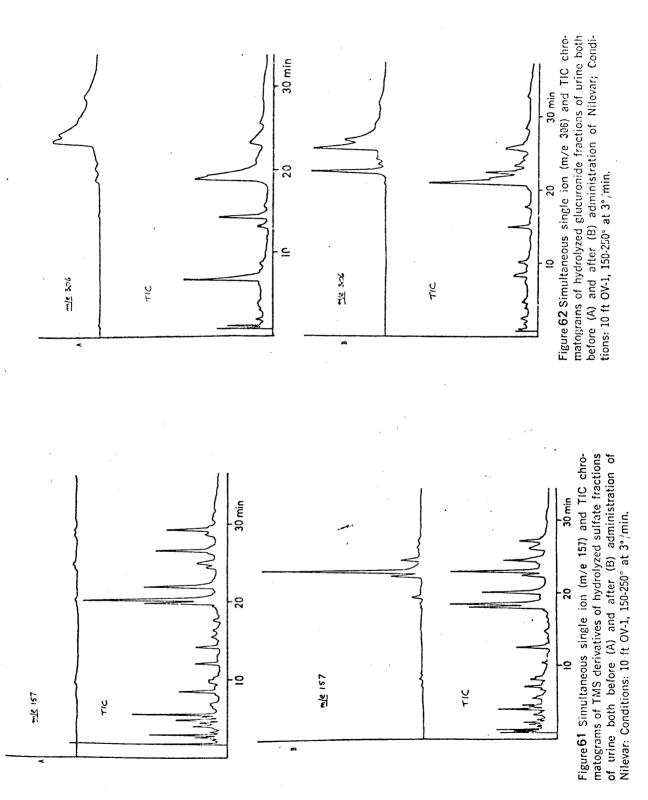
analogues of Nilevar were synthesized (by A.K. Thawley). Retention indices of these compounds, of Nilevar, and of the derived TMS etners, on OV-1 and OV-17, are given in Table 9. The mass spectra of these analogues were recorded. In each case, a molecular ion was observed and a relatively intense ion at $[M-29]^+$ demonstrated the easy loss of the 17-ethyl substituent. The latter ion is of little diagnostic value since it coincides in mass with ions formed by loss of methyl groups from natural steroids. The ion of <u>m/e</u> 85, expected to arise from the 17-ethyl-17-hydroxy group, ^{192,281} was prominent only in the spectra of the 3-ketones. Spectra of the TMS ethers were also recorded. Again, molecular ions and relatively intense ions at $[M-29]^+$ were observed. However, highly characteristic ions of <u>m/e</u> 144 and <u>m/e</u> 157 were observed in all of these spectra. (Scheme 17). The spectra of stereoisomers, both free sterols and TMS ethers, were very similar.

It was desirable, therefore, to carry out GC-MS using single or multiple ion detection at characteristic <u>m/e</u> values, in an attempt to locate possible metabolites. Monitoring of free sterols at <u>m/e</u> 302, 304, and 306 would be expected to indicate the presence of, respectively, Nilevar and its dihydro and tetrahydro analogues. The presence of tetrahydro analogues only was indicated. On OV-1, a peak with retention index 2510 was observed for both hydrolysed glucosiduranate (Fig. 61) and sulphate fractions. On OV-17, two peaks were observed (I = 2850, 2000) which indicated the presence of 5%- and 5%-isomers. Because of the relatively low abundance of the molecular ions of the

-164-

Table 9 Retention indices of Nilevar, reduction products, and TMS ethers

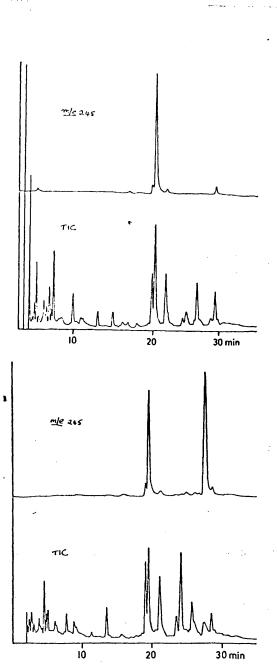

compound		OV-1 free TMS		OV-1/ free TMS	
XCIII	Nilevar	2650	2115	3060	3060
XCIV	59-dinydro	2535	2660	2915	2905
XCV	5ß-dihydro	2540	2670	2925	2920
XCVI	3a,5a-tetrahydro	2515	266 0	2845	2740
XCVII	3∝,5β-tetrahydro	2520	2690	2865	2 (ک
XCVIII	3ß,5d-tetrahydro	2520	2735	2855	2800
XCIX -	3,6,5,5-tetrahydro	2505	2700	2865	2765

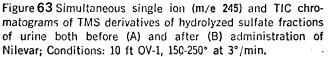

Table 10. Retention indices of possible metabolites of Nilever, and TMS ethers.

extract	OV free ^e	1 TMS ^b	OV- free ^a	17 TMS ^b	possible identity
GLU ^C	2510 2510	2660 2690	2850 2880	2785	3α,5α-diol 3α,5β-diol
SULd	2520 2520	2655 2685	2850 2880	2115	3∝,5∝-diol 3∝,5β-diol
a monito					

c glucosidurenate fraction. d sulphate fraction.

Scheme 17




-167-

free sterols, it was necessary to use the maximum electron multiplier voltage. Consequently, there was considerable interference from natural steroids (Fig. 61). More satisfactory results were obtained with the TWS ethers, monitoring at $\underline{m/e}$ 157 (Fig. 62). This revealed the presence of possible metabolites of retention index (on OV-1) 2660 and 2690, corresponding to the $3\alpha, 5\alpha$ - and $3\alpha, 5\beta$ -diols. Their identity was confirmed by monitoring at $\underline{m/e}$ 144 and 157 and by individual addition of reference compounds which gave coincident peaks. The retention index data obtained by single and multiple ion monitoring in the search for possible tetrahydro metabolites of Nilevar are summarized in Table 10 Because of their low concentration, these possible metabolites did not yield satisfactory mass spectra. The possibilities of a preliminary fractionation by TLC have since been explored (by C.K.Y.S. Madani).

During the course of this investigation, evidence was obtained for the presence of possible triol metabolites. In particular, one of these appeared to possess a hydroxyl group on the ethyl substituent: the TMS ether gave a spectrum with ions at $\underline{m/e}$ 245 and 103. The former ion is analogous to that of $\underline{m/e}$ 157 in the spectra of the diols, but with an additional trimethylsilyloxy moiety; the latter ion is enaracteristic of TMS ethers of primary alcohols, 133,231 but also appears in the spectra of TMS ethers of sterols with vicinal hydroxyl groupa.^{22/} Fig. 63 shows chromatograms obtained by monitoring at $\underline{m/e}$ 245 of TMS ethers from the hydrolysed sulphate fractions of urine,

-168-

•

.

both before and after administration of Nilevar. It should be noted that ions of $\underline{m/e}$ 245 are present in the spectra of etiocholanolone and androsterone (major components of the urine extracts).

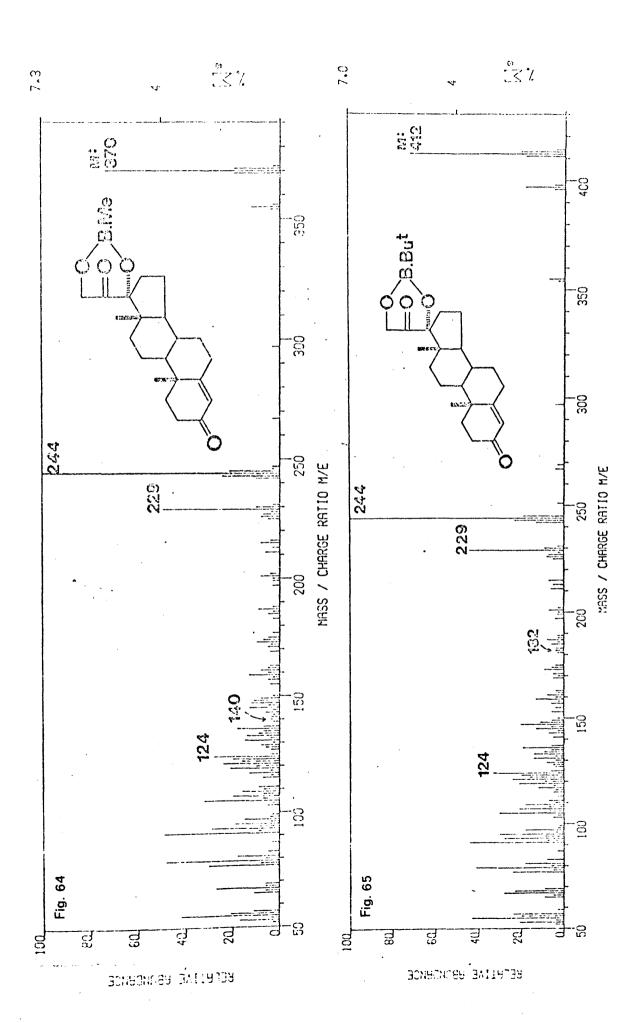
This study has indicated the potential of GC-MS in the field of drug matabolism studies. In particular, it may be possible to "screen" urine extracts for possible metabolites when relatively small quantities of the drug have been administered. Alternatively, relatively small volumes of urine, collected after administration of a larger dose, may be examined. It has been shown that quantitative GLC can be performed by single ion monitoring in the 50 - 1000 pg range.²⁸² A dynamic peak matching device which, it is claimed, permits determination of molecular formulae of submicrogram samples during GC-MS runs, has recently been described.²⁸³ III

BORONATES

THE MASS SPECTRA OF SOME CORTICOSTEROID BORONATES

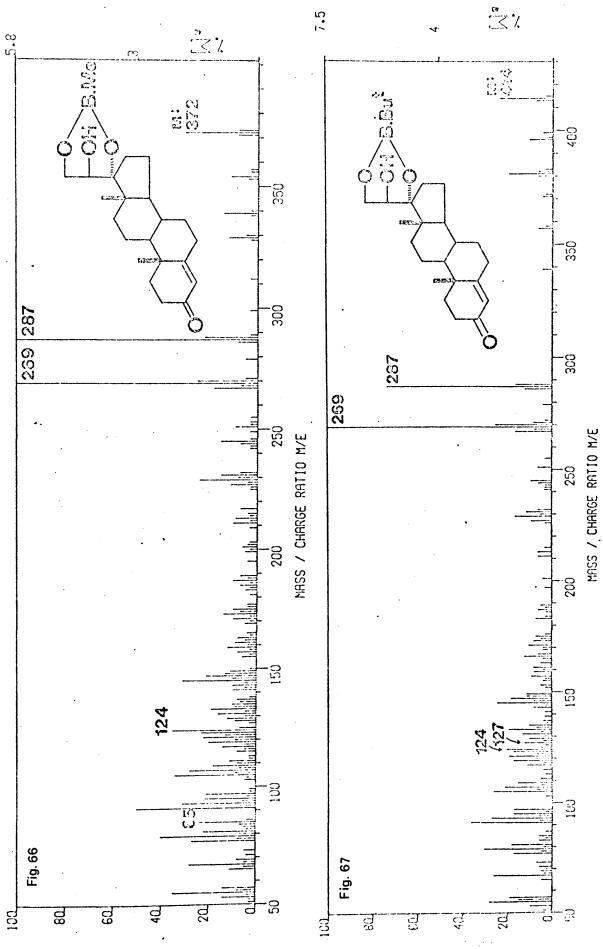
In the course of our recent studies on the analytical utility of boronate derivatives²⁰⁵⁻²⁹³ we have obtained mass spectra of a large number of methyl, n-butyl, t-butyl, phenyl, and cyclohexyl boronates of various classes of corticosteroid. These derivatives possess good gas chromatographic properties^{206,292} and the mass spectral fragmentations are usefully characteristic of the structure of the side-chain of the parent steroid.^{206-208,292} This latter aspect is now discussed in more detail.

Line diagrams of low-resolution mass spectra of representative corticosteroid boronates are shown in Figs. 64-/3. Selected data for other compounds discussed are given in Tables 11-15. Accurate mass measurements "substantiating the elemental compositions of many of the ions discussed in the text are presented in Table 16. Tabulated mass spectral data (low-resolution) have been submitted to the Mass Spectrometry Data Centre.

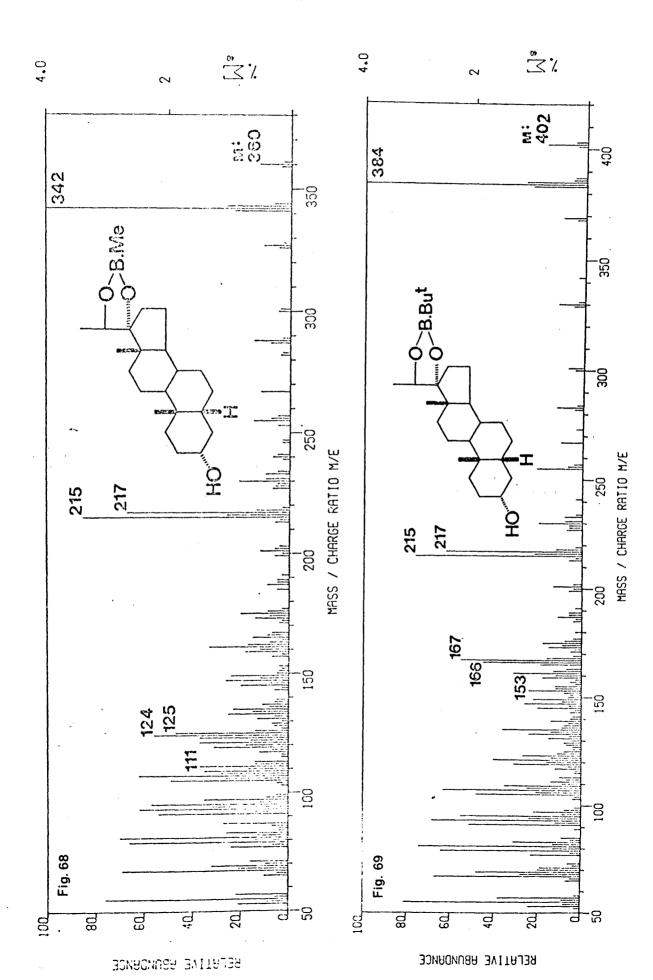

Boronates of 17x,21-dihydroxy-20-ketones

In a preliminary survey²⁸⁶ of n-butyl and phenyl boronates it was noted that the mass spectra gave prominent molecular ions, and ions at $[M-15]^+$. Derivatives containing free hydroxyl groups yielded ions also at $[M-18]^+$. There were no other noteworthy ions containing boron in the higher mass range. The base peaks were due to "nuclear" fragments

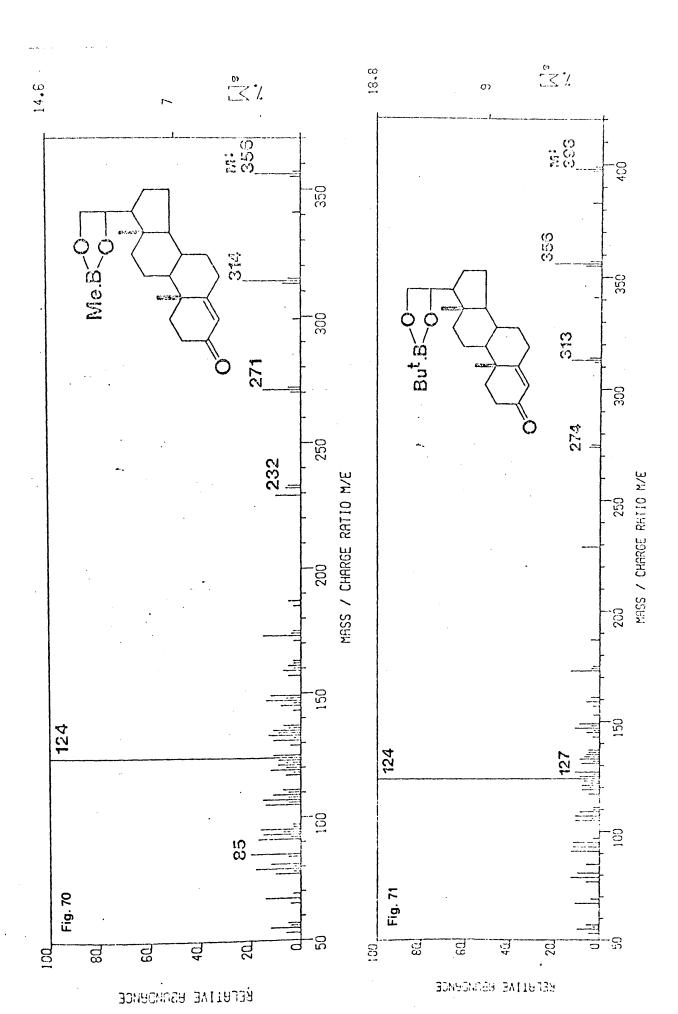
-171-

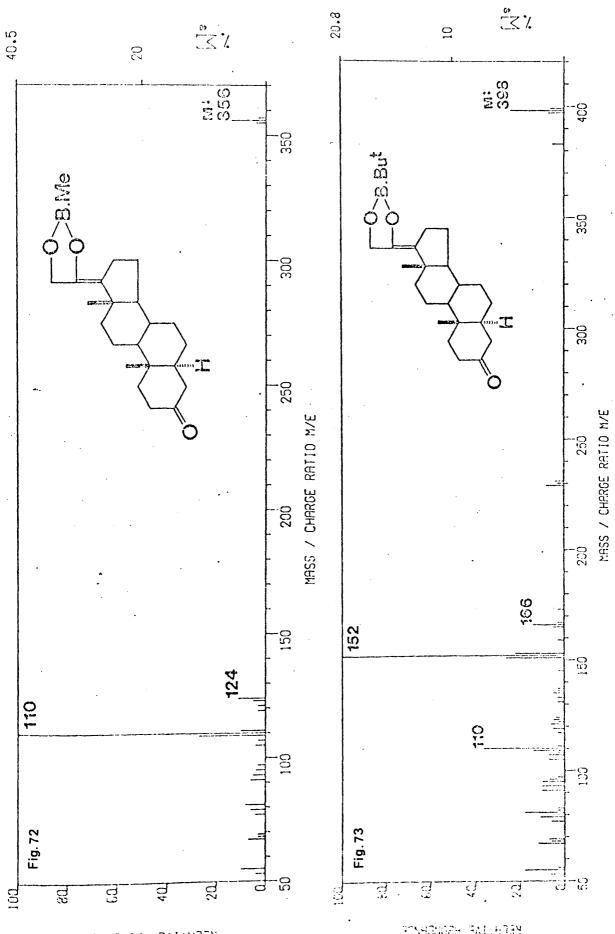

This work was carried out in collaboration with Dr. D.J. Harvey, now at the Institute for Lipid Research, Baylor College of Medicine, Houston, Texas, U.S.A.

High-resolution mass spectrometry was carried out on a CEC 2/-110B instrument fitted with a gas chromatographic inlet system 1/



-172-


-173-


RELATIVE REUNDANCE

-174-

-175-

-176-

SOMPONURE BYITAJER

SOVAGINGA EVITEDAA

Mass spectrometric data for boronates of 174,21-dihydroxy-20-ketones Table 11.

.

.

. 1 1

.

•

an prio rod	And and the state of the state	and the second s				TO COULT AND DUT AND MADE ADD					
17c, 21-D	17a,21-Dihydroxy	pregn-4-ene-3,20-dione	ene-3,6	20-dio:		(Substance	ן גט	cortexol	terolone)		
р С	370 73	244 100	229 49	105 32	124 28	121 24	0 20 20 20 20 20 20 20 20 20 20 20 20 20	245 21	51 21	123 20	107 20
ср	412 71	244 100	229 44	124	105 30	12J. 24	8 74 87 87 87 87 87 87 87 87 87 87 87 87 87	119 21	107 21	413 20	147 20
ပိ	412 74	244 100	229 39	124 29	105 26	413 23	243 22	121 22	245 21	411 19	123 18
Cđ	432 41	244 160	105 57	124 45	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	エックラ	121 30	107 23	1.23 27	136.	1 22 22
Ge	438 34	244 100	124	229 40	105 33	121 28	123 26	107 26	136 22	119 22	109 22

-177-

-178-

].7α,21-Dihydroxy-5β-pregnene-3,11	hydroxy-f	puSord-g		L1,20-1	,20-trione						
CIIIe	386 35	260	259 88	121 37	135 35	109 33	122 51	136 29	10 M 10 M	105 29	107 28
CIIID	428 · 18	259 100	371 84	260 70	121 38	135 35	109 252	107 33	725	123 28	119 23
CIIIC	428 21	259 100	260 29	246 26	121 14	107 14	135 11	109 11	105 11	156 9	245 8
CIIId	448 36	259 100	260 30	246	105	109 19	121 16	107	123 14	135 135	449 1.1
CIIIO	454 10	259 100	260 90	135 43	122 43	121 43	109 41	123	136 35	107 35	371 30
11β,17α,21Trihyâ	21Trihyā:	roxypregn-4-ene-	1-4-en(e-3,20-d:	-dicne	(corti	sol,	hydrocort	Ч	one)	•
CIVa	386 67	242 100	227 98	119 82	105 72	260 68	123 53	368 46	121 46	107 46	124 36
CIVb	428 29	242 100	227 60	119 60	260 53	105 52	121 44	123 42	124 40	107 38	225
CIVc	428 43	242 100	227 57	260 55	119 48	410 47	121 35	105 35	123 33	395 32	124 28

.

Table 11 (cont.)

-179--

cont.
Table

		-									
llα,l7α,	lla,l7a,21-Trihydroxypregn-4-ene-3,20-dione (11-Epicortisol)	xypregi	1-4-ene	-3,20-	-dione	(11-E]	picorti	isol)			
CVa	386 67	260 100	242 87	119 75	105 67	124	123 52	121 52	227 50.	107 50	109
слр	428 42	260 100	242 95	119 60	124 78	105 73	123 62	121 62	227 58	107 53	122 45
3a,17a,2	3a,17a,21-Trihydrox	oxy-5β-pregnane-11,20-dione (Tetrahydrocortisone	regnane	-11,20	-dione	(Teta	rahydrc	ocrtis	sone)		
Į	388	243	243 370	105	107	121	147	244	261	135	108

j

- .

3a,17c,21~Trihydroxy-5f-pregnan-20-one	~Trihydr	[−Ĵ Ĵ− }(xo	prégnar	120-or	10						
CVIIa	416 8	229 100	230 45	398 39	215 37	107 35	105	147 30	182 25	109 25	217 23
CVIID	374 3	229 100	230 45	215 35	107 35	105 33	147 30	356 25	140 24	121 24	217 22
CVIIC	416 4	229 100	230 47	107 35	215 34	105 33	147 28	208 208 25	121 25	182 24	217 23
3α,11β,17α,21-	a,21-Tet	Tetrahydroxy-5β-pregnan-20-one	×v-5β-1	regnan	1-20-01	0					
CVIIIa	390 1	228 100	246 100	174 59	213 56	105 55	107 46	911 39	227 37	131 34.	145 32
CVIIIb	432 1	246 100	228 84	174 40	213 39	105	107 .34	119 27	131. 24	227 23	145 235
CVIIIC	432 5	246 100	228 60	244 54	т 72 т 72 т	107 38	105 35	119 30	213 29	147 25	229 23

Table 11 (cont.)

-181-

L-triols
174,20,21
boronates of
data for bor
spectrometric c
Mass
Table 12

Boronate	м.+		Ten	most a	most abundant fragment ions of	it fra{	gmen t	ions o	r m/e >100	1.00	
17a,20c,21-Tri	L-Tringd	roxypregn-4-on-3-one	;n−4−cn	-3-0116	ð						
CIXa	372 30	287 100	269 100	124 35	105 34	1 45 З1	107 23	270 25	229 24	123 23	288 22
CIXP	414 25	269 100	287 73	105 26	270 25	145 24	107 21	124 20	381 19	1.33 1.9	121 19
CIXC	414 35	287 100	269 46	268 29	124 27	229 25	267 23	270 21	145 21	107 21	105 21

Table 12 (cont.)

-183--

ar Progn	5a-Pregnane-3β,1	.16,17c,206,21-pentol	oβ,21-j	pentol							
CXIIa	392 1	271 100	253 49	105 43	159 37	107	145 27	11.9 25	272 22	131 22	213 20
CXIIP	434	271	105 52	253 50	107 74	159 38	119 74	145 245	151 80	215 27	576 276

•

Table 13 Mass spectrometric data for boronates of 17α ,20-diols

Boronate	м+ • м		Ten	nost	abundant fragment	bari 1		ions of	<u>m/e</u> >100	- 001	
58-Pregnane-30	ne-3a,1'	a,l7c,20c-triol	riol								
CXIIIa	360 13	342 100	215 85	217 67	107 62	124 56	105	125	123	121 37	111
CXIIIP	402 18	384 100	215 76	107 63	217 62	167 55	105 45	166 45	121 40	135 36	100 35
CXIIIC	402 11	107 100	215 99	167 86	105 83	217 80	166 77	384 75	109 72	135 69	147
CXIIIA	422 26	404 100	105 54	215 47	217 37	405 30	187 30	186 23	403 24	107 24	173 23
CXIIIe	428 11	410 100	215	217 38	193 58	107 38	411	105 30	192 28	109 27	409 25

--185-

Table 13 (cont.)

5β-Pregnane-		a,17a,20β-trio1	riol		•					•	
CXIVa	360 10	342	215 77	124 68	107 61	-217 60	111 52	105 51	125 49	123 35	121 34
CXIVD	402 12	384 100	215 60	107 50	217 47	166 45	167 44	105 39	121 32	385 29	109 29
CXIVC	402 8	166 100	215 95	107 93	167 78	216 75	105 72	384 70	135 57	121 56	100 00 00

5 β-Pregn	5β-Pregnane-3α,11β,17α,20β-tetrol	ιβ,17α,20	Jβ-tet1	:ol							- -
CXVa	376	124	125	111	105	107	178	213	358	215	228.
	1	100	60	60	58	53	52	50	48	46	38
CXVb	418	166	167	105	107	215	400	213	119	246	223
	1	100	64	64	61	49	46	42	42	40	40
CXVc	418	166	400	167	105	107	246	215	213	119	109
	2	100	48	48	44	42	37	33	31	31	31

•••

-1.86-

<u>Table 14</u> Mass spectrometric data for boronates of 20,21-diols

.

۰.

$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Boronate	M.+		Ten	most e	abundant fragment	it fraf		ions of	001< 3/1 3	001	
556 124 314 271 175 107 147 105 133 149 100 23 15 15 15 15 11 11 107 105 229 722 100 21 144 13 111 111 111 111 9 798 124 107 127 107 105 229 598 124 107 127 107 105 229 700 144 13 13 111 111 111 9 718 100 147 127 107 105 276 129 100 124 107 127 107 173 576 149 133 418 124 147 105 107 173 576 149 133 125 418 124 382 541 107 283 581 173 276 149 133 125 424 120 91 355 229 2376 149 133 125 56 100 91 55 229 231 229 125 125 424 120 91 361 107 283 281 175 127 56 100 91 255 229 229 129 125 424 120 91 275 225 225 225 129	20,6,21.D	ihydroxy.	ν. γ. γ. γ. γ. γ.	en-3-01	10							
398 124 356 173 313 147 127 107 105 229 308 124 107 127 105 137 11 11 11 9 398 124 107 127 105 173 356 125 109 313 86 100 14 13 13 11 10 10 10 6 100 14 13 15 17 556 125 109 315 418 124 147 105 107 173 376 149 136 6 10 100 33 24 15 12 10	CXVIa		124 100	314 23	271. 15	173 15	1.07 1.5	77 771	105 14	133 13	149 12	500 11
398 124 107 127 105 173 356 125 109 313 6 100 14 13 13 11 10 10 10 6 418 124 147 105 107 173 376 149 133 125 10 100 33 24 15 12 10	CXVID		124 100	356 21	173 14	313 13	147 11	127 11	101 11	102	229 9.	1,49 9
418 124 147 105 107 173 376 149 133 125. 10 100 33 24 15 12 10 10 10 10 424 124 382 341 107 383 381 173 147 153 56 100 91 35 28 25 25 23 22 19	CXVIC		124 100	107 14	127 13	105 13	173 11	356	125 10	109 10	313 6	145 6
424 124 382 341 107 383 381 173 147 153 56 100 91 35 28 25 25 23 22 19	CXVId		124 100	147 33	105	107 15	173 12	376 10	149	133 10	125	119 10
	CXVIe		124	382 91	541 35	1 07 28	383 25	381 25	173 23	147 22	1 1 2 3 2 3	105

	CXVIIa	376 6	358 100	107 94	105 79	340 77	343	147 61	133 61	119 60	213 58	245 51
······································	CXVIIb	418 6	107 100	400 84	105 76	362 70	147 70	395 64	133 4 9	119	109 47	121
. L											•	
	5a-Pregnane-3	le-3α,11β,20β,21-tetrol	20 f., 21	-tetro	Ŭ							
	CXVIIIa	376 2	107 100	105 95	358 74	119 65	147 59	325 58	133 55	340 53	106 51	131 50
	CXVIIIb	418 1	107 1.00	105 92	400 72	382 64	147 63	361 61	119 61	1 33 52	127 51	145 48
.												

Table 14 (cont.)

.

. . . .

5α-Pregnane-3α,11β,20α,21-tetrol

-188-

.

Table 15 Mass spectrometric data for boronates of 20,21-ketols

lloronate	•+ + H		Ten	t som	e bunden t		f ສາແລຼມສ ີ ເ	ions of	::/ <u>c</u>	>100	
21-IIyûroxy-5a-p		regnanc-3 , 20-di one	,20-di¢	one							
CXIXa	356 14	110 100	109 28	124 11	111 10	123 5	355 4	105 4	. 357	121 3	, LI 9, K
CXIXD	398 24	152 100	110 36	151 26	153 22	166 14	001 41 42	341	229 8	397	107 7
CXIXC	398 27	152 100	151 26	153 18	583 9	399 8	166 8	797 7	1 147	107 7	105
21-Hydroxypr ⁶ gn		-4-ene-3,20-dione	20-dior	le (Dec	(Deoxycorticosterone	cicos te	crone,	Cortexone	cone)		
CXXa	354 19	110 100	109 28	01 111	124 8	105 8	355 5	353	123 5	119 5	107 5
cxxb	396 37	152	339 91	110 011	105 23	338 22	151 22	340 21	109 20	153	191 14

nan-20-one 109 124 107 215 30 19 151 167 153 107 25 20 13 13 15 107 215 107 215 107 215 107 215 107 25 107 165 46 43 34 31	7 145 119 143 131 8 17 15 14 13 5 119 151 213 155 0 28 27 25 25 17 229 143 119 400 8 16 16 16 10
-5a-pregnan-20-one 110 109 124 100 30 19 152 151 167 100 25 20 20 100 33 25 100 33 25 100 46 43	
	I-5-en-20-one 110 109 105 100 33 25 152 105 229 100 46 43 172 105 171 100 36 31
<pre>3a,21-Dihydroxy CXXIa 358 CXXIc 400 CXXIc 400 24 256 CXXIIa 356 CXXIIa 25 CXXIIa 25 CXXIIa 25 CXXIIa 25 CXXIIa 25 CXXIIa 25 CXXIIa 25 CXXIIa 25</pre>	,21-Dihydroxypregn- ,21-Dihydroxypregn- 556 1 25 10 cXXIIa 393 1 cXXIId 418 1 cXXIId 418 1

Table 15 (cont.)

.

-190-

ł

.

6 -1	
spectra o	constes
in	Ę
ions ^a	-butwl
some	ioid r
of G	ter
2 Elemental compositions of some ions ^a in spectra of	representative corticosteroid n-hutvil homometes
Elemental c	representat
Table 16	

Compound	Meanured <u>m/e</u>	Elemental Comp. ^b	Brror (p.p.m.) ⁰
	412,2784	c_{25} H_{37} 10_{4}	- 0,16
	397.2554	H 3./	+ 0.32
	244.1820	II 2A	- 0.72
	229.1595	C ₁₆ H ₂₁ O	+ 0.23
	182.1129	Co H _{1 G} BO ₃	+ 1.45
	124.0897	H 10	+ 0.85
·	123.1169	$c_{9} H_{15}$ (725)	+ 1.51
	123.0818	с _{в Н1} о (28%)	+ 0.86
	121,1022	$c_{q} H_{1, z}$ (61%)	+ 0.42
	121.0667	с, н ₉ о (39%)	+ 1.54
			•
CIXe	414.2904	$c_{25, H_{3,q} B0_A}$	• 0.69
	287.1990	П_27	- 2,10
	269.1893	Н Ч 2	- 1.22
•	229.1583	$C_1 (H_2) O$	- 0.96
	103,1170	Co H ₁₆ .BO3	- 2.27
	145.1010	C11 H13	- 0.71
	127.0937	$c_{6} H_{12} R_{02}$	+ 0.69
	JOAN ACL		07 0 .

ţ

.

-1.91-

,

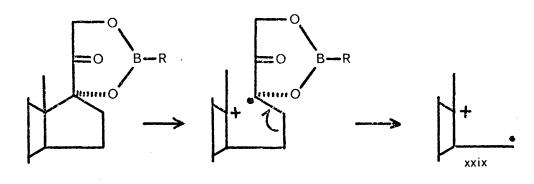
CXIIIC	384.3229	CGE H, BOS	+ 2.92
	217.1964	н - н - н - н	+ 0,80
		22 OT	
	215.1805	Cl6 H23	+ 0.23
	167.1242		- 0,16
	166.1191	H15	+ 2,61
CXVIC	398.2982	C ₂₅ H ₃₀ BO ₃	- 1,20
	356.2889	H ⁷	+ 0.04
	313.2341	H ₇₀ BO	+ 0.13
	275.2173	H ₂₈ BO	- 0,98
	147.1167	H ₁₅	- 0.64
	147.0806		- 0.35
	127.0946	C6 H12 B02	+ 1.59
	124.0894	H12	+ 0.56
CXIXc	166.1176	C9 H15 B02	+ 1.03
	152.1005	H13	- 0.37
$\begin{array}{c c} a & \underline{m}/\underline{e} > 12(\\ b & ions & con'\\ c & mcasured \end{array}$	0. taining most value mirus	abundant isotopes only listed. calculted value.	

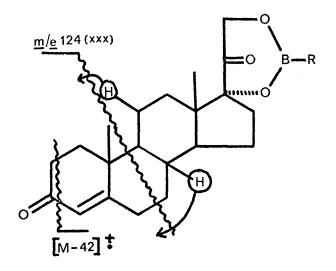
•

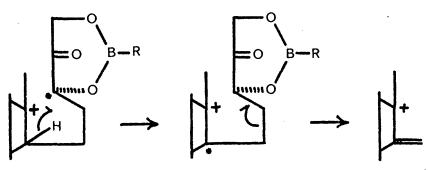
Table 16 (cont.)

.,• **v**

•


comprising rings A-C and part of ring D.

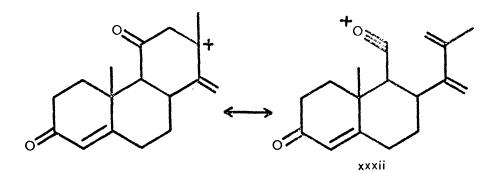

The mass spectra (Figs. 64,65) of the methyl and t-butyl boronate derivatives of Substance S (C) are characteristic of boronates of steroidal 170,21-dihydroxy-20-ketones ("dihydroxyacetones"). The molecular ions from compounds Ca-Ce^{*} are fairly abundant (34-74%). All of these derivatives give rise to a base peak at <u>m/e</u> 244 evidently formed by scission of the C-13/17 and C-15/16 bonds (xxix). The majority of the ions in the lower mass region of the spectra appear to arise from fragmentation of this nuclear fragment. This is indicative of preferential charge residence on the steroid nucleus, which is consistent with the comparative paucity of characteristic boron-containing ions. There is an ion (xxx) at <u>m/e</u> 124 typical of the steroidal 4-en-j-one structure^{189,194,195} but no ion at $[M-42]^{\ddagger}$ corresponding to the usual elimination of ketene from ring A of such steroids.²⁹⁴⁻²⁹⁶

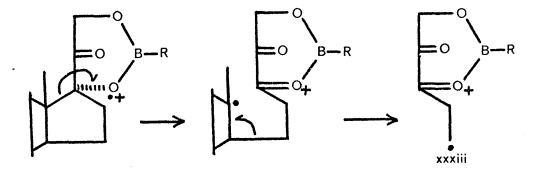

The introduction of a further ketonic function, as in boronates of cortisone (CI), results in greater stability of the molecular ion and nuclear fragment. As expected 194,297 the presence of the ll-keto function prevents the formation of an ion of <u>m/e</u> 124. An interesting feature of the spectra of the cortisone boronates is the prominence of a nuclear fragment ion (<u>m/e</u> 25/: possibly xxxi) containing one less hydrogen atom than xxix. The stabilisation of the even-electron ion

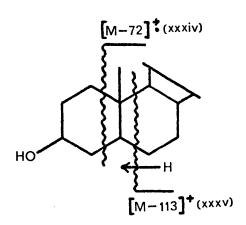
Throughout this section the particular boronate types are indicated by suffixes a to c: a = methyl boronate; b = t-butyl boronate; c = n-butyl boronate; d = phenyl boronate; c = cyclonexyl boronate.

-193-

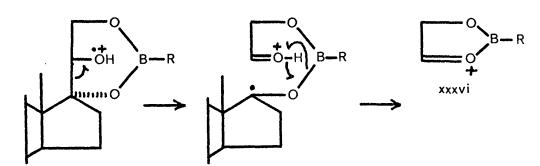
xxxi

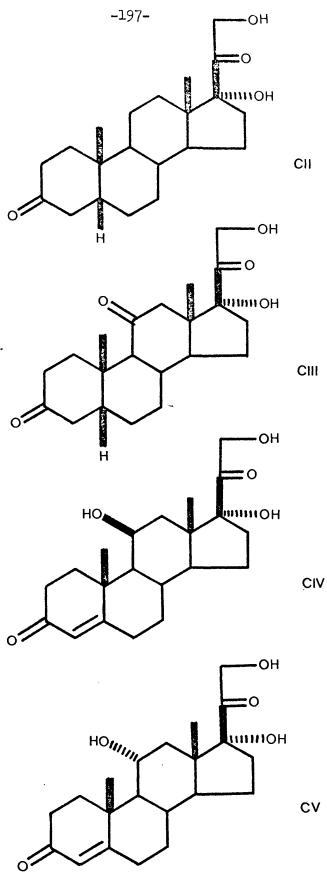

by an ll-keto group may be rationalised on the basis of a structure such as xxxii. Ions at $[M-70]^{\ddagger}$ are formed by the usual ring A fragmentation.²⁹⁸


Molecular ions in the spectra of boronates of dihydro-S (CII) are less abundant than those of derivatives of C. The base peaks at <u>m/e</u> 246 are due to ions of type xxix. There are ions formed by loss of a t-butyl radical from CIIb (<u>m/e</u> 357, 64%) and a cyclonexyl radical from CIIe (<u>m/e</u> 357, 23%). Such ions are insignificant in the spectra of CIIa and CIId. The small degree of direct fragmentation of ring A of the molecular ion reflects the directing influence of the boronate function. Several ions can be discerned which show appropriate mass shifts with different substituents on the boron atom suggesting that they contain the boronate molety: their relative abundances are given in Table 17. These ions appear at $[125+R]^{+}$, suggesting that they are formed by scission of the C-13/1/ and C-14/15 bonds as in xxxiii.


The even-electron ion xxxiii is particularly abundant in the spectra of boronates of 5β -dinydrocortisone (CI11) (<u>m/e</u> 259,260: CIIIa,88,100%; CIIIb,100,00%; CIIIc,100,29%; CIIId,100,30%; CIIIe,100,90%).

The ease of elimination of water from the molecular ions of boronates of cortisol (CIV) is illustrated by the low abundance of $[M-15]^+$ ions and high abundance of $[M-18]^+$ and $[M-18,15]^+$ ions. The base peak (m/e 242) corresponds to an ion of type xxix from which one molecule of water has been eliminated. The even-electron fragment ion


-195-



Ţ

-196-

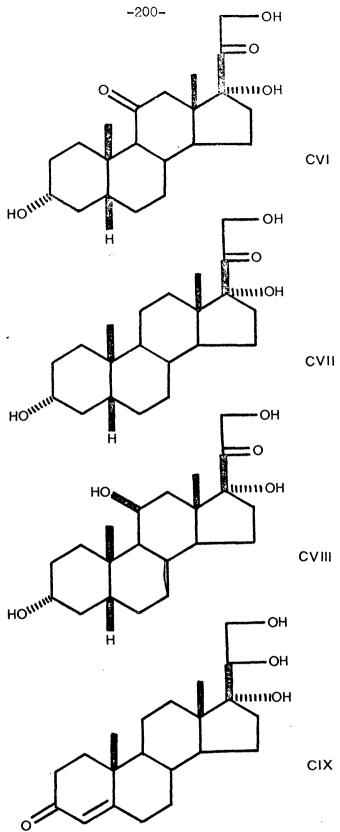
.

	lative ab ronates o		of boro	n-contain	ing ions	from
m/e	140	182	202	208		
Methyl	<u>16</u> ^a	0	3	0		
t-Butyl	2	<u>13</u> a	1	0		
n-Butyl	0	<u>15</u> ª	0	. 0		
Phenyl	0	0	<u>15</u> ª	0		
Cyclohexyl	0	2	0	<u>12</u> ª		
	^a [12]	5+R] ‡				

Table 18	Relative abundances	of boron-containing ions from
	boronates of CIX	
<u>m/e</u>	85 127	
Methyl	<u>24</u> ^a 3	
t-Butyl	6 <u>12</u> ^a	
n-Butyl	6 <u>11</u> ^a	
	a [70+R]+	
	· ·	

.

.


-

 $(\underline{m/e} \ 241)$ is present only in low abundance. The boronates of cortisol (CIV) and its ll%-isomer ll-epicortisol (CV) show some significant differences. Ions corresponding to the elimination of the elements of water from the molecular ions, and from fragment ions of $\underline{m/e} \ 260$, are more abundant in the spectra of CIVa (at 70 and 22.5 eV) than in the corresponding spectra of CVa. Also, the ion of $\underline{m/e} \ 124$ (formed with transfer of a hydrogen atom from C-ll) is less abundant in the spectra of the ll%-isomer.

Water is eliminated readily from the molecular ions of boronates of tetrahydrocortisone (CVI). As might be expected, the presence of the ll-keto function in the latter compound leads to predominant formation of even-electron nuclear fragment ions (xxx1, $\underline{m/e}$ 243,100%): ions of $\underline{m/e}$ 244 (xxix) are of relative intensity 33-35%, irrespective of the nature of the substituent on the boron atom. Ring A/B fragmentation gives rise to ions at $[M-72]^{\dagger}$ (xxxiv) and $[M-113]^{+}$ (xxxv). Analogous ions are formed from the 3-trimethylsilyl ether of tetrahydrocortisone methyl boronate at $[N-144]^{\ddagger}$ and $[M-185]^{+}$. Ions xxxiv are well known 168,299 and those of type xxxv have been noted for 3-hydroxy steroids.

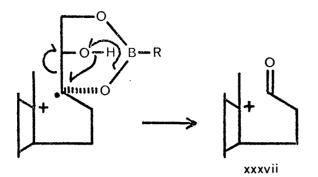
The base peak of the n-butyl boronate of tetrahydro-S (CVII) is due to the even-electron nuclear fragment (xxxi). The 3-substituent (keto- or 3-(-hydroxy-) appears to exert a strong influence on the fragmentation of ring D. Long-range influences have previously been encountered in the study of steroid mass spectra³⁰⁰ and

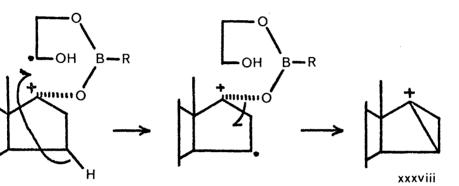
-199-

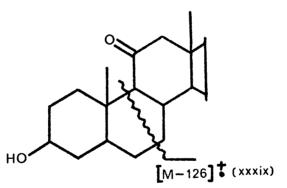
intramolecular electrostatic interactions have been invoked to explain similar effects in steroid chemistry.³⁰¹

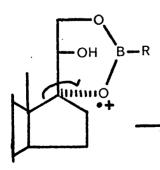
On the other hand, the base peaks of the boronates of tetrahydrocortisol (CVIII) are due to the odd-electron nuclear fragments (xxix): the $ll\beta$ -hydroxy function appears to exert a greater influence on the fragmentation than the ll-keto moiety. The molecular ions of the tetrahydrocortisol boronates are weak, bur there are fairly intense ions corresponding to successive eliminations of molecules of water and of methyl radicals.

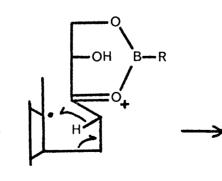
Boronates of 17x,20,21-triols

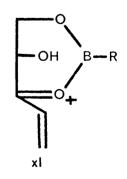

Present evidence suggests that these boronates are sixmembered esters involving the 17- and 21-hydroxyl groups.²⁹² As already noted,²⁰⁶ many of them give rise to abundant molecular ions.

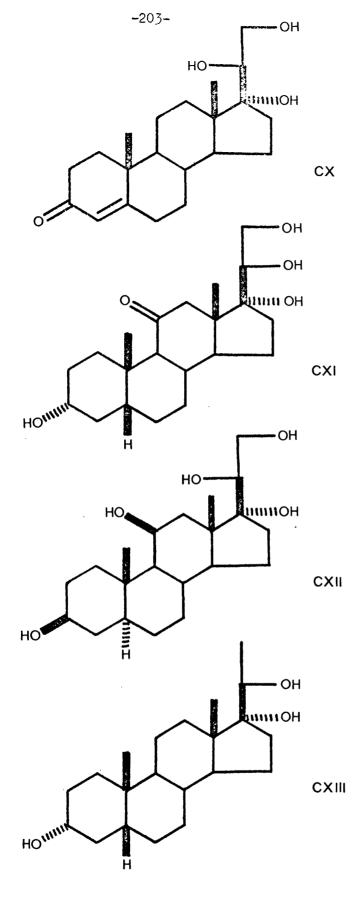

The mass spectra of the methyl and t-butyl boronates of $17\alpha,20\alpha,21$ -trihydroxypregn-4-en-3-one (C1X) are shown in Figs. 06,67. It can be seen that fragmentation of the boronate group of the triols is more varied than that of the dihydroxyacetones. There are abundant lons at $[70+R]^+$ (Table 18) and <u>m/e</u> 207, probably as xxxvi and xxxvii, respectively. Prominent ions of <u>m/e</u> 269 are due to complete loss of the 1/-substituent with hydrogen transfer from the steroid nucleus. A possible structure is xxxviii.


Boronates of the 20 β -isomer (CX) yield spectra similar to those


-201-


-202-





of ClX, although ions produced by elimination of water are formed in lower relative abundance.

The presence of the ll-keto group in the boronates of cortolone (CXI) appears to stabilise fragment ions arising from eliminations in rings A and D. There are ions containing boron at $[M-113]^+$ (xxxv) (CXIa:m/e 277, 19%; CXIb: m/e 319, 28%; CXIc: m/e 319, 24%) and at $[M-126]^+$ (CXIa: m/e 264, 10%; CXIb: m/e 306, 13%; CXIc: m/e 306, 10%) corresponding to fragmentation of ring B as in xxxix. Further boron-containing ions appear at $[126+R]^+$ (Table 19) and can be tentatively assigned structure xl.

The molecular ions of the boronates of 5d-pregnane-3 β ,11 β ,17d, 20 β ,21-pentol (CXII) are very weak, although there are well-defined ions arising from successive eliminations of water. The base peak (<u>m/e</u> 271) arises from a fragment of type xxxviii by elimination of a molecule of water. Further loss of water from this fragment ion is attested by the presence of a metastable ion (<u>m/e</u> 236.2; calc. for m/e 271->m/e 253: 236.19).

Boronates of 17x, 20-diols

The principal fragmentations of several n-butyl boronates of this type have already been described.²⁰⁶

The mass spectra of methyl and t-butyl boronates of 5/-pregnane-3<,1/<,20<-triol (CXIII) are shown in Figs. 68,69. There are insense ions ions at $[M-18]^{\ddagger}$ in the spectra of all the boronates of CXIII studied. King A fragmentation leads to the

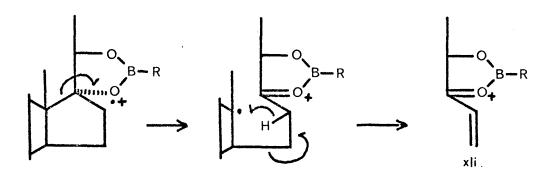
-204-

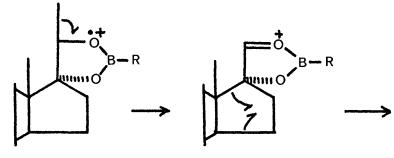
Table 19 Relative abundances of boron-containing icns from boronates of CXI

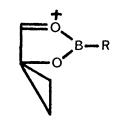
•

.

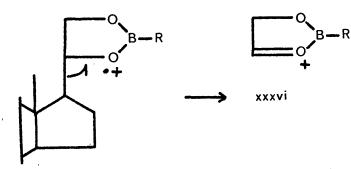
<u>m/e</u>	141	183
Methyl	<u>14</u> ª	5
t-Butyl	0	<u>16</u> ª
n-Butyl	0	2 ^a
	a [126+R]] +

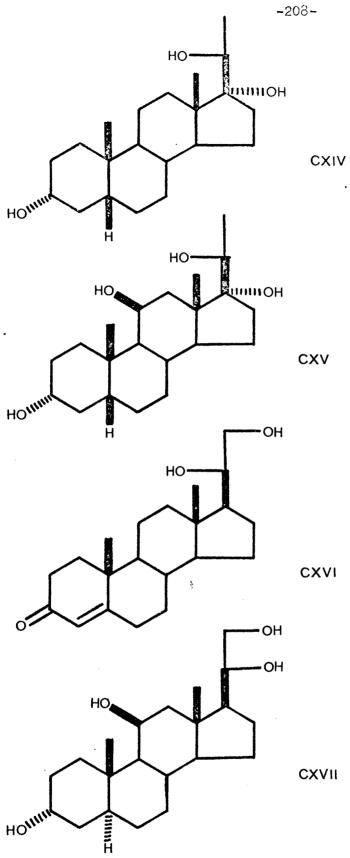

•


Table 20	Relati	ve abi	indan	ces of	f bor	on-coi	ntaini	ing i	ons fi	rom bo	oronat	tes
(of CXI	II										
m/e	124	16 6	186	192	125	167	187	193	111	153	173	179
Methyl	<u>56</u> ª	9	2	l	47 ^b	7	9	0	<u>37</u> °	4	14	2
t-Butyl	11	<u>45</u> ª	3	l	8	<u>55</u> b	11	0	14	<u>24</u> °	15	2
n-Butyl	13	<u>55</u> ª	0	0	12	<u>61</u> b	9	0	23	<u>28</u> °	15	0
Phenyl	3	2	<u>28</u> ª	0	l	0	<u>30</u> b	0	2	0	<u>23</u> °	0
Cyclohexyl	7	3	2	<u>28</u> ª	3	2	5	<u>38</u> b	8	0	10	<u>14</u> °
	a	109+R] :	Ъ[:	110+R]+	° [:	96+R]	+			


formation of ions at $[M-72]^{\ddagger}$ (xxxiv). Loss of the 17-substituents with hydrogen transfer as for the 170(,20,21-triols (xxxviii) and concomitant elimination of water gives rise to ions at <u>m/e</u> 255 (CXIIIa, 15%; CXIIIb, 21%; CXIIIc, 13%; CXIIId, 15%; CXIIIe, 13%). The presence of boron-containing ions at $[109+R]^{\ddagger}$ and $[110+R]^{\ddagger}$ (xli) has already been noted²⁸⁶ in the spectra of n-butyl and phenyl boronates. These are also present in the spectra of methyl, t-butyl, and cyclohexyl boronates (Table 20). There is evidence (Table 20) for the formation of boron-containing ions (xlii) at $[96+R]^{\ddagger}$. These could arise by cleavage at C-13/17 and C-15/16 with hydrogen transfer to the nuclear fragment, but a more plausible mechanism is illustrated.

The spectra of boronates of the $3 \ll 17 \ll 20$ (S-triol (CXIV) are closely similar to those of the $3 \ll 17 \ll 20$ (CXV). The slightly increased relative abundance of the $[M-18]^{\ddagger}$ ion observed for the 20 (CXV) are abundance of the $[M-18]^{\ddagger}$ ion observed for the molecular is an indication of the greater stability of the boronate molecular ion is observed in the spectrum of the 3-acetyl derivatives of the n-butyl boronate of the 20 (S-isomer, although there is an intense (69%) ion at $[M-60]^{\ddagger}$ due to loss of acetic acid.

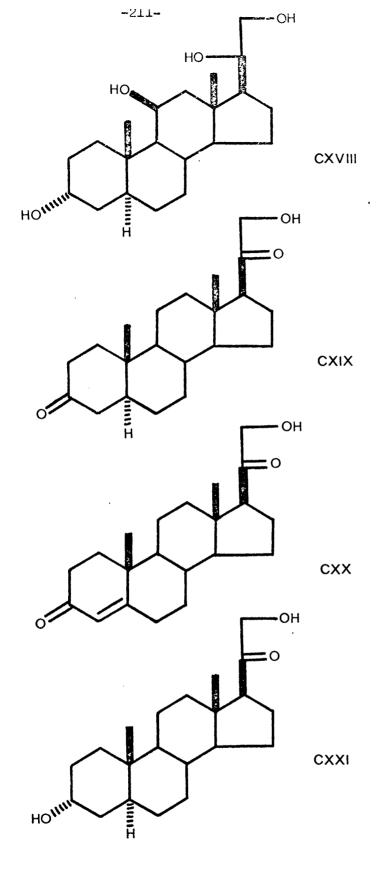

Boronates of 5 β -pregnane-3 α ,11 β ,17 α ,20 β -tetrol (CXV) give spectra analogous to those of the triol boronates. Additional ions arise from the possibility of elimination of two molecules of water.



xlii

Boronates of 20,21-diols

Boron-containing ions were not prominent in the spectra of the first compounds of this class that were studied.²⁸⁶


-209-

The mass spectra of methyl and t-butyl boronates of 20β , 21dihydroxypregn-4-en-3-one (CXVI) are shown in Figs. 70,71. Many of the fragmentations parallel those of androst-4-en-3-one and steroids of similar structure. 189,194,195,294-297 The base peaks appear at <u>m/e</u> 124 (xxx). Ions of low intensity at $[218+R]^+$ and $[217+R]^+$ (Table 21) probably arise from related fissions of ring B with the respective transfer of one or two hydrogen atoms, and charge retention on the larger fragment.¹⁶⁸ Elimination of ketene from ring A produces fairly abundant ions at [M-42][‡]. A characteristic fission of the C-17/20 bond results in the formation of abundant ions (xxxvi) at [70+R]⁺ (Table 21). An additional fragmentation mode is apparent in the mass spectrum of the cyclohexyl boronate. There is an ion at m/e 341 (35%) due to loss of the cyclohexyl radical, but the ion at m/e 342 (15%) appears to be too intense to represent ¹³C isotope, and probably involves hydrogen transfer to the larger fragment, with loss of cyclohexene. Such a hydrogen transfer has been observed in the spectrum of tricyclohexylboroxine.290

The mass spectra of boronates of $5\propto$ -pregnane- $3\propto$, 11 β , 20 \propto , 21tetrol (CXVII) and $5\propto$ -pregnane- $3\propto$, 11 β , 20 β , 21-tetrol (CXVIII) have been examined. In each case, there was no observed fragmentation of the boronate moiety, major fragment ions arising only from eliminations of

m/e	232	274	294	300	233	275	295	301	85	127	147	153
Methyl	<u>6</u> ª	0	0	1	<u>5</u> b	0	0	0	<u>20</u> °	2	14	0
t-Butyl	0	<u>5</u> ª	l	l	0	4 ^b	l	0	6	<u>11</u> °	11	3
n-Butyl	0	<u>3</u> ª	0	0	0	<u>3</u> b	0	0	2	<u>13</u> °	10	3
Phenyl	0	0	Zª	0	0	0	<u>3</u> b	0	0	0	<u>34</u> °	0
Cyclohexyl	0	0	1	<u>15</u> ª	0	0	3	<u>11</u> b	0	0	22	<u>19</u> °
	a [2	17+R]	•	^b [2	18+R]	+	° [7	D+ R]⁺				

Table 21 Relative abundances of boron-containing ions from boronates of CXVI

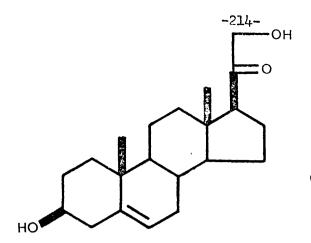
water and fragmentation of ring D. There is a marked tendency for more pronounced losses of water from the 202-isomer.

Boronates of 20,21-ketols

It is now believed that these are formed with a $\Delta^{17}\text{--}20,21\text{--boronate}$ structure. 292

The mass spectra of methyl and t-butyl derivatives of 21-hydroxy-5x-pregnane-3,20-dione (CXIX) are shown in Figs. 72,73. The spectra are dominated by ions at $[95+R]^{\ddagger}$ (Table 15, base peaks) formed by fission of the bonds C-13/17 and C-15/16. The presence of an abundant ion at <u>m/e</u> 110 in the t-butyl boronate spectrum was first noted during a series of measurements in which methyl boronates hed been included. It seemed possible that this ion might have been due to methyl boronate formed by transesterification in the column. However, the ion was regularly observed in later experiments from which methyl boronates were excluded. Presumably it arises <u>via</u> rearrangement of the t-butyl group. The ions at $[109+R]^{\ddagger}$ are probably formed by fission of the bonds C-13/17 and C-14/15. There is little further fragmentation.

The methyl boronate of 21-hydroxypregn-4-ene-3,20-dione (CXX) gives a similar spectrum, whereas the t-butyl boronate undergoes much more fragmentation, producing an ion due to loss of the t-butyl radical at m/e 339 in high abundance (91%).


Fragmentation of ring A of the boronates of 30,21-dihydroxy-

-212 -

 5° -pregnan-20-one (CXXI) produce ions of low abundance at $[M-72]^{+}$ (xxxiv) and $[M-73]^{+}$ which are completely absent from the spectra of boronates of 3(3,21-dihydroxypregn5-en-20-one (CXXII).

The various boronates of each class of corticosteroid undergo characteristic fragmentations: the nature of the boron-substituent has little effect on these. Dihydroxyacetone derivatives generally give rise to stable molecular ions, together with intense nuclear fragments formed by elimination of C-16, C-17 and attached groups. Ther is little observed fragmentation of the boronate moiety. 20,21-ketol boronates produce characteristic ions at $[95+R]^{\ddagger}$. Derivatives of 17¢,20,21-triols and 20,21-diols also, in most cases, give stable molecular ions and abundant nuclear fragments. The boronate moiety produces boron-containing ions at $[70+R]^{\ddagger}$. 17¢,20-Diol derivatives undergo extensive fragmentation, producing many abundant ions of low mass. Additional hydroxyl groups undergo elimination, giving rise to ions at $[M-18]^{\ddagger}$, often as the base peaks. The quantitative differences between 20×- and 20⁴S-hydroxy derivatives are insufficient for a priori identification of "unknown" substances.

The extensive data obtained in this investigation have fully substantiated earlier reports^{286,292} on the characteristic features of the mass spectra of corticosteroid boronates. In particular, clear and often intense - molecular ions are invariably observed, except for the single example of a pentol t-butyl boronate (CXIIb): in this case,

.

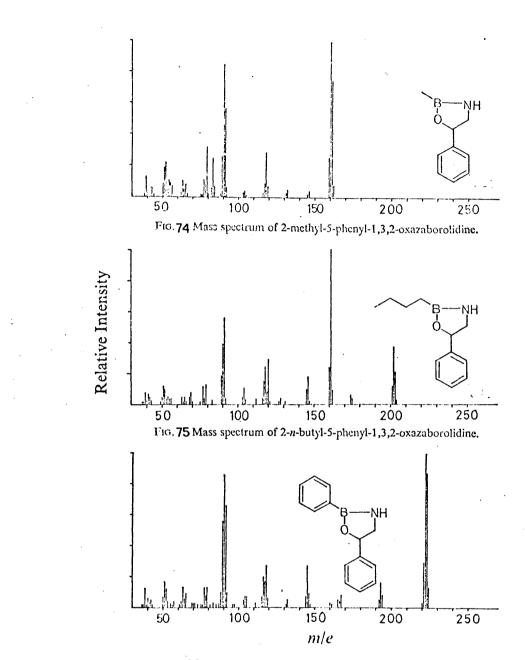
CXXII

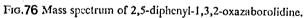
well-defined ions at $[M-18]^{\ddagger}$ and $[M-36]^{\ddagger}$ are present. In addition to their effect in stabilising the molecular ions, boronate groupings direct further fragmentation, yielding ions characteristic of the parent corticosteroids. In most instances, the fragment produced from the steroid nucleus retains the positive charge. However, ions essentially comprising the boronate moleties are present in all the spectra: the individual <u>m/e</u> values are determined by the types of side-chain (and by the substituent on boron). In the spectra of the 20,21-ketol boronates, such ions form the base peaks.

THE MASS SPECTRA OF SOME 1,3,2-OXAZABOROLIDINES

The behaviour of many five-membered heterocyclic ring systems upon electron impact is now well documented.³⁰²⁻³¹⁰ The mass spectra of several boroxines,³¹¹⁻³¹³ borazoles,³¹⁴ and diazaboretanes³¹⁵ have also been reported, but no detailed study of the mass spectra of oxazaborolidines had been published at the outset of this work. This section deals with the mass spectra of a series of alkylphenyl-1,3,2-oxazaborolidines prepared during a recent survey²⁸⁷ of the use of cyclic boronate esters as derivatives for GLC and GC-MS. Representative spectra are shown in Figs. 74-82. The characteristic fragmentations are an aid to the elucidation of the identity of the substituents in the 1,3,2-oxazaborolidine ring.²⁸⁹

Use has been made of a "substituent shift" technique in the interpretation of the relevant ionic decompositions, and the elemental composition of several ions has been confirmed by high resolution mass measurement.^{**} The principal features of the mass spectra are discussed in the following paragraphs.


Ions retaining the oxazaborolidine ring and 2-substituent


In each spectrum, there is a relatively intense molecular ion (xliii). This is a useful feature of these cyclic boronate derivatives, particularly for GC-MS, since it gives their molecular weights directly. The $[M-R]^+$

-216-

The synthetic work for this and the following section of the thesis was carried out by G.M. Anthony.

Kindly carried out by Dr. A. McCormick, AWRE, Aldermaston, Berks.

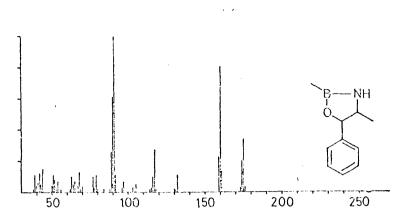


Fig. 77 Mass spectrum of 2,4-dimethyl-5-phenyl-1,3,2-oxazaborolidine.

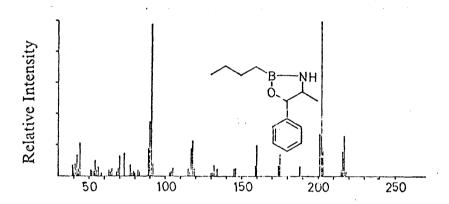


FIG. 78 Mass spectrum of 2-n-butyl-4-methyl-5-phenyl-1,3,2-oxazaborolidine.

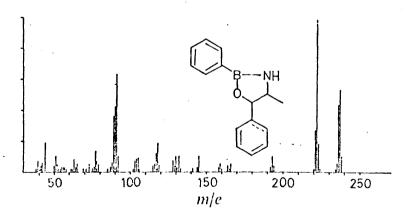


Fig. 79 Mass spectrum of 4-methyl-2,5-diphenyl-1,3,2-oxazaborolidine.

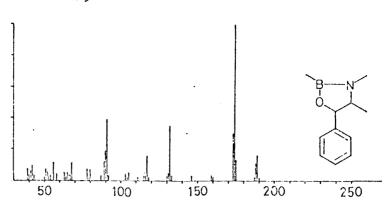


FIG. 80 Mass spectrum of 2,3,4-trimethyl-5-phenyl-1,3,2-oxazaborolidine.

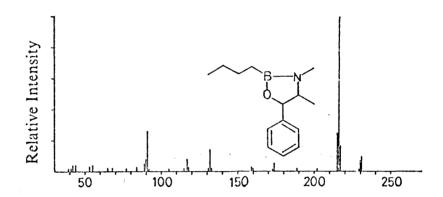
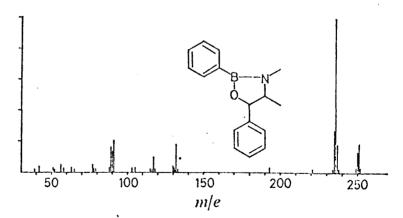
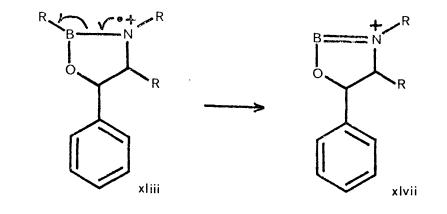
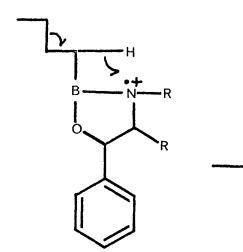
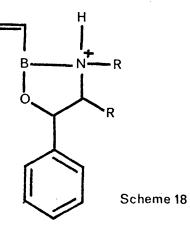
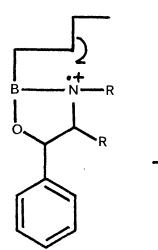
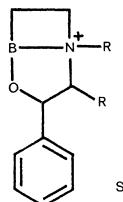


FIG.81 Mass spectrum of 2-n-butyl-3,4-dimethyl-5-phenyl-1,3,2-oxazaborolidine.


FIG. 82 Mass spectrum of 3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaborolidine.

Scheme 19

ion gives an intense peak, often the base peak, in the spectrum of each of the samples under investigation. Its origin can be inferred from a comparison of the spectra of differently substituted compounds: for example, 2,5-diphenyl-1,3,2-oxazaborolidine (CXXIII, Fig. 76) and 4-methyl-2,5-diphenyl-1,3,2-oxazaborolidine (norephedrine phenylboronate, CXXIV, Fig. 79, see Table 22). Its formation can be represented as in xliv \rightarrow xlv. The alternative loss of a hydrogen atom gives rise to a moderately intense ion at $[M-1]^+$ (probably as xlvi) even when there is a methyl substituent in the 4-position.

Fragmentation involving loss or degradation of the 2-substituent

It can be seen from Figs. 74-82 and Table 22 that there is a tendency to lose the 2-substituent from the 1,3,2-oxazaborolidine ring (as in xliii \rightarrow xlvii) although this is less pronounced than the formation of the $[M-R]^+$ ion. There is also evidence for the fragmentation of the 2-butyl substituent.

The peak at $\underline{m/e}$ 146 in the spectrum (Fig. 74) of 2-methyl-5-phenyl-1,3,2-oxazaborolidine (CXXV) is presumably formed from the molecular ion by loss of the substituent methyl radical. This fragmentation is obscured in the spectra (Figs. 77 and 80) of 2,4-dimethyl-5-phenyl-1,3,2-oxazaborolidine (norephedrine methylboronate, CXXVI) and 2,3,4trimethyl-5-phenyl-1,3,2-oxazaborolidine (ephedrine methylboronate, CXXVII) by the predominant loss of the 4-methyl substituents.

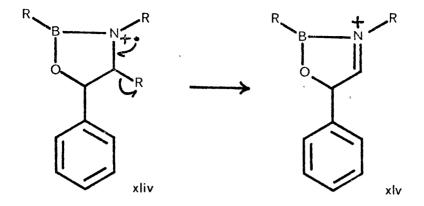
Peaks due to the [M-57]⁺ ions in the spectra of 2-n-butyl-5phenyl-1,3,2-oxazaborolidine (CXXVIII, Fig. 75), 2-n-butyl-4-methyl-

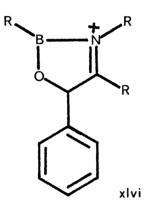
-221-

.

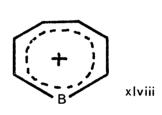
Fig.	Sample	M÷	[M-1]+	[M-R] ⁺	[M-R"]+	[117+R']*	[117+R"] ⁺
74	CXXV	161	160	160	146	118	132
75	CXXVIII	203	202	202	146	118	174
76	CXXIII	223	222	222	146	118	194
77	CXXVI	175	174	160	160	118	132
78	CXXIX	217	216	202	160	118	174
79	CXXIV	237	236	222	160	1 1 8	194
80	CXXVII	189	188	174	174	132	132
81	CXXX	231	230	216	174	132	174
82	CXXXI	251	250	236	174	1 32	194

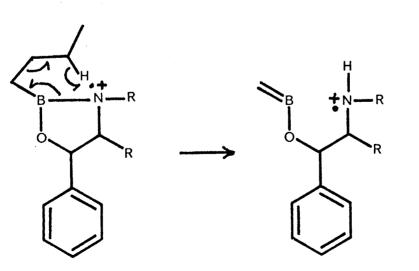
Table 22	Substituent shift	correlations	for the	spectra	represented
	in Figs. 74-82.				


Table 23	Accur	ate mass me			
Sample	peak	measured mass	possible formula	calculated mass	intensity ratio
CXXX	174	174.1090	C_H_BNO	174.1090	singlet
	117	117.0704	10 1 2 C9 ^H 9	117.0704	2
		117.0577	C8H7N [‡]	117.0578	2.9
		117.0511	с_н6в0+	117.0512	1
CXXXI	117	117.0704	с ₉ н ₉ +	117.0704	1
		117.0577	с ₈ н ₇ N [±]	117.0578	4
CXXIII	90	90.0471	c7 ^H 6 [‡]	90.0470	singlet
	89	89.0392	с ₇ н ₅ ‡	89.0391	2
		89.0560	C ₆ H ₆ B ⁺	89.0563	l


•

,


•


•

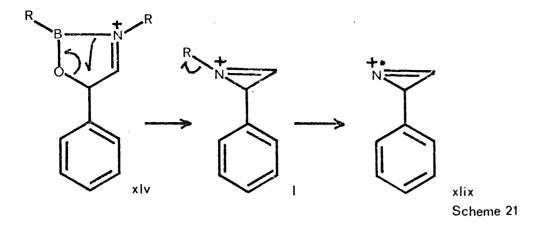
.

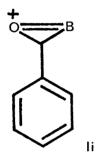
Scheme 20

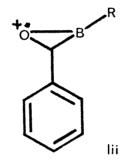
5-phenyl-1,3,2-oxazaborolidine (norephedrine n-butylboronate, CXXIX, Fig. 78) and 2-n-butyl-3,4-dimethyl-5-phenyl-1,3,2-oxazaborolidine (ephedrine n-butylboronate, CXXX, Fig. 81) are present at $\underline{m/e}$ 146, 160, and 174, respectively. In the last instance ($\underline{m/e}$ 174), accurate mass measurement confirmed the elemental composition expected for structure xlvii (Table 23). The corresponding peaks in the spectra of the 2-phenyl derivatives are less intense, presumably because of the increased stability afforded by the charge delocalisation over an extra aromatic ring.

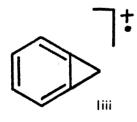
The 2-n-butyl derivatives apparently fragment to form ions $[M-29]^*$ and $[M-42]^{\ddagger}$. For example, there are peaks at <u>m/e</u> 188 and 175 in the spectrum of CXXIX, but no corresponding peaks in the spectra of CXXVI (at <u>m/e</u> 146 and 133) and CXXIV (at <u>m/e</u> 208 and 195). Two simple routes, both involving 4-membered cyclic intermediates, can be envisaged for the formation of $[M-29]^{\ddagger}$ ions (Schemes 18,19). The $[M-42]^{\ddagger}$ ion, on the other hand, is more likely to be formed <u>via</u> a six membered cyclic intermediate, with the elimination of a neutral propylene molecule (Scheme 20).

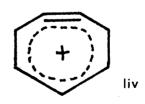
The 2-phenyl substituent does not appear to undergo extensive fragmentation, but it is of interest to note a possible incorporation of the boron atom into a tropylium-like ion (xlviii). High-resolution mass measurement has shown (Table 23) that the peak in the spectrum of CXXIII at $\underline{m/e}$ 89 is due, in part, to the ion $C_6H_6B^+$. Kotz <u>et al</u>. have


-224-


suggested 316 that such ions may have a linear structure.


Fragmentations of the 1,3,2-oxazaborolidine ring


A study of the observed substituent shifts indicates that the ring undergoes extensive fragmentation, directed to some extent by the nature of the substituents. One of the most significant peaks in the low-resolution spectra is that at <u>m/e</u> 117: this was further investigated by high-resolution mass measurement (Table 23). For CXXX it was found that the peak at m/e 117 was atriplet, the components of which were shown unequivocally to have the elemental compositions $C_{q}H_{q}^{+}$, $C_8H_7N^{\ddagger}$, and $C_7H_6B0^{\ddagger}$. The nitrogen-containing species may be of the phenylazirine type (xlix) and is likely to be produced via the ions xlv and 1 (Scheme 21). Ions corresponding to 1 were observed, at $\underline{m/e}$ 118 and 132, for compounds with 3-substituent H and Me, respectively (Table 22). Ion xlix is similar to the thiiren species postulated in the spectrum of thiophene.317,318 The ion $C_{76}H_{6}BO^{+}$ is probably formed in a similar way, and may be tentatively assigned the phenyloxaboriren structure (li). Ions retaining the 2-substituent and ascribable to the species lii (117+R". Table 22) are prominent in the spectra (Figs. 74 to 82).


Alternatively, acyclic structures for both nitrogen- and boroncontaining species may be postulated. Similarly, the $C_9H_9^+$ ion can be satisfactorily rationalised from the 4-methyl-1,3,2-oxazaborolidines, as either a phenylcyclopropanyl or a phenylpropenyl species.

Hydrocarbon fragments

The peak at $\underline{m/e}$ 91 in all of the spectra is escribed mainly to the tropylium ion formed by incorporation of the adjacent carbon atom into the 5-phenyl substituent, with hydrogen transfer probably from C-4. Similar ions have been observed in the spectra of phenylboronates³¹⁹ and a variety of compounds of the type $(CH_2)_2$.Y.BPh.X where X and Y are 0 or S.³²⁰

The abundant fragments at $\underline{m/e}$ 89 and 90 have been shown by highresolution mass measurement to be mainly of the hydrocarbon type (Table 23). Similar peaks are not observed in the spectrum³²¹ of toluene, so it can be assumed that they do not arise from fragmentation of the tropylium ion, but rather from further breakdown of other fragment ions. Structures liii and liv have been postulated for ions of $\underline{m/e}$ 90 and 89 observed, for example, in the spectra of benzofuran derivatives³²², coumarin,³²³ and furanocoumarins.^{324,325}

Metastable peaks

Metastable transitions were observed for all of the fragmentations proposed in this section, either for the 5-phenyl derivatives described here, or for other corresponding 5-aryl derivatives.²⁹¹

-227-

THE USE OF n-BUTYL BORONATE DERIVATIVES IN THE CHARACTERISATION OF CATECHOLAMINES AND RELATED β-HYDROXYAMINES BY GC-MS

Difficulties are encountered in the gas chromatographic analysis of biological amines because of their low thermal stability. Satisfactory results are obtainable for certain amines by coating the support with potassium hydroxide³²⁶⁻³²⁹ or by using high percentages of stationary phase.³³⁰ Particular difficulty is, however, attached to the analysis of β -hydroxy- β -phenylethylemines, both with and without nuclear hydroxyl groups. In such cases, it is necessary to employ suitable derivatives.³³¹ Advocated procedures include Schiff's base formation.^{326,329,332} trimethylsilylation of hydroxyl groups with conversion of the amine to a Schiff's base or oxazolidine, 333-335 trimethylsilylation of hydroxyl groups and primary emino groups, 336,337 trimethylsilylation of hydroxyl groups with acetylation on the nitrogen atcm, 338 and acetylation of hydroxyl and amino groups. 331 Detection of catecholamines in very small quantities by electroncapture GLC is feasible if they are converted to trifluoroacetates 339 or if hydroxyl groups are trimethylsilylated and N-heptafluorobutyryl derivatives formed.³³⁸ Moffat and Horning have recently reported³⁴⁰ satisfactory results obtained using N-pentafluorobenzylidene-O-TMS derivatives.

The mass spectra of various phenylethylamines have been studied,^{34,1,342} but they are of limited analytical utility because the molecular ions are, in general, of low abundance. In the present work, various cyclic boronates were evaluated for use as derivatives for GLC and GC-MS.²⁹¹ The n-butylboronates were prepared (by G.M. Anthony) by treatment of the β -hydroxyamine (l mg), in the form of its free base, hydrochloride, sulphate, or tartrate, with n-butylboronic acid (l-1.5 molar equivalents) in pyridine (l ml) which had been dried and distilled over sodium hydroxide. The free base could be conveniently prepared from the hydrochloride by exposing the pyridine solution of the hydroxyamine salt to ammonia vapour and separating the precipitated ammonium chloride before derivative formation. For hydroxyamines, such as isoprenaline sulphate, which were not sufficiently soluble in pyridine, a suitable reaction solvent was dimethylformamide which had been dried by azeotropic distillation with benzene and further distilled over anhydrous sodium sulphate.

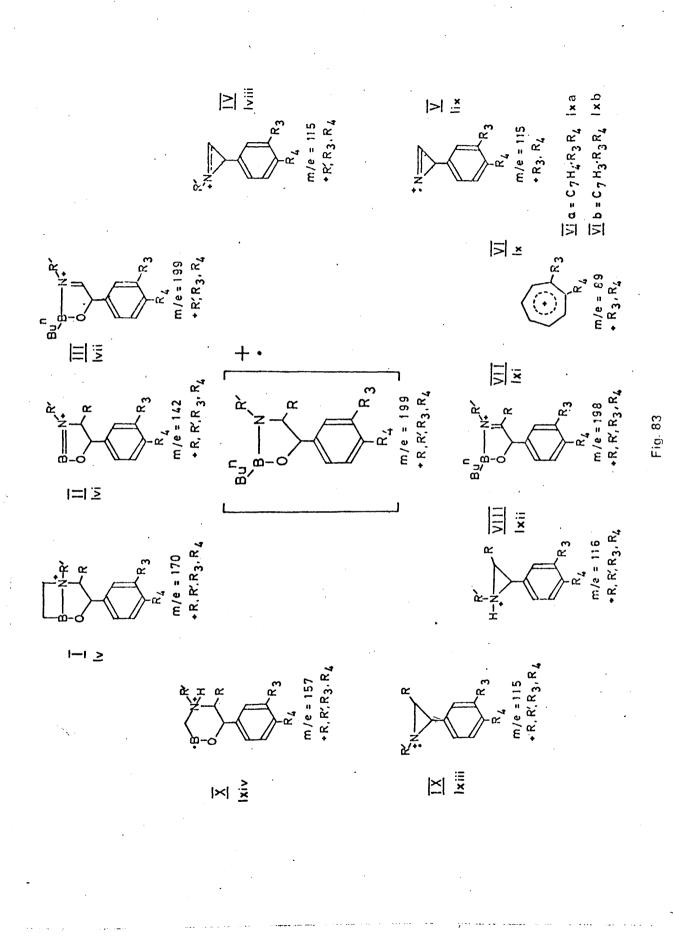
In most cases, aliquots of the reaction mixture were injected directly onto the GLC column. In the reactions involving octopamine and 4-deoxynoradrenaline, cyclic derivatives appeared to be formed in low yield, and vacuum sublimation at $250^{\circ}/0.01$ mm Hg was used to separate the derivative (in its free-base form) from non-volatile material.

The GLC properties of the boronates of β -hydroxyamines,²⁸⁷ 1,2- and 1,3-diols²⁸⁶ and a variety of other compounds²⁹³ have been examined previously in the Chemistry Department of Glasgow Unviersity. In the series of β -hydroxy- β -arylethylamines studied, satisfactory peaks were generally obtained except for derivatives containing free phenolic groups. Retention indices are listed in Table 24.

compound	temp. (°C)	I
CXXVIII	140	1800
CXXIX	140	1775
CXXXII	140	1 775
CXXXIII	140	1780.
CXXX	140	1795
CXXXIV	170	2220
CXXXV	170	2200
CXXXVI	170	2185
CXXXVII	170	2170
CXXXVIII	190	2 3 15
CXXXIX	190	2270
CXL	190	2480
CXLI	190	2440
CXLII	190	2450
CXLIII	190	2510

Table 25 The effect of different groups on the boron atom in resolving the diastereoisomers ephedrine and ψ -ephedrine as their boronate derivatives by GLC

	temp. (°C)		index (I) y-ephedrine	I
Methyl	90	1515	1510	5
n-Butyl	140	1795	1780	15
t-Butyl	130	1680	1670	10
Cyclohexyl	150	2080	2065	15
Phenyl	170	2260	2240	20


	R	R ₂	Rz	R ₄	
&-Hydroxyphenylethylamine	H	หั	н	н	CXXVIII
Norpseudoephedrine	Me	H	H	H	CXXIX
Phenylpropanolamine	Me	H	H	Н	CXXXII
Pseudoephedrine	Me	Me	H	H	CXXXIII
Ephedrine	Me	Me	Н	H	CXXX
Octopamine	H	H	H	OH	CXXXIV
4-Deoxynoradrenaline	H	H	OH	Н	CXXXV
Synephrine	H	Me	Н	OH	CXXXVI
Phenylephrine	H	Me	ОН	H	CXXXVII
Normetanephrine	H	H	OH	OH	CXXXVIII
Metanephrine	Н	Me	OMe	OH	CXXXIX
Noradrenaline	Н	H	Bun	. ^{B0} 2	CXL
Adrenaline	Н	Me,		2	CXLI
Isoprenaline	H	Pr ¹	1		CXLIII
3,4-Dihydroxynorephedrine	Me	H	11		CXLII

Buⁿ B N R₂ R₁ R₁ R₃

Previously reported methods for distinguishing between diastereoisomers of (-)-ephedrine $(l\underline{R}, 2\underline{S} \text{ configuration})$ and $(+)-\psi$ -ephedrine $(l\underline{S}, 2\underline{S} \text{ configuration})$ have been based on chemical conversion of the isomers, by reaction with acetone, to the corresponding oxazolidines. Although these two hydroxyamines, as their boronates, cannot be distinguished by mass spectrometry, we have obtained separation of the n-butylboronates by GLC with a moderately polar column. The difference in retention behaviour was enhanced by using boronates with substituents bulkier than n-Bu on the boron atom. This is illustrated in table 25.

The mass spectra of a series of 1,3,2-oxazaborolidines have been discussed in the previous section. Although the relative intensities of some fragment ions are influenced by the nature of the substituent on the boron atom, the fragmentations of the methyl-, n-butyl-, cyclohexyl-, and phenylboronates studied are, in general, rather similar. Proposed fragmentations characteristic of n-butyl boronates are shown in Fig 83, and relative abundances of ions are given in Table 26. It can be seen that molecular ions are relatively abundant and, therefore, molecular weights can be determined with ease. The masses of the substituents at C-4 can be inferred from the $\underline{m/e}$ value of fragment ions of type lvii. The ${}^{10}B/{}^{11}B$ isotope ratios for these ions indicate the numbers of boronate groups incorporated in the molecule and hence the number of suitable receptor moieties in the parent molecules. The formation of pyroboronates would, of course,

-232-

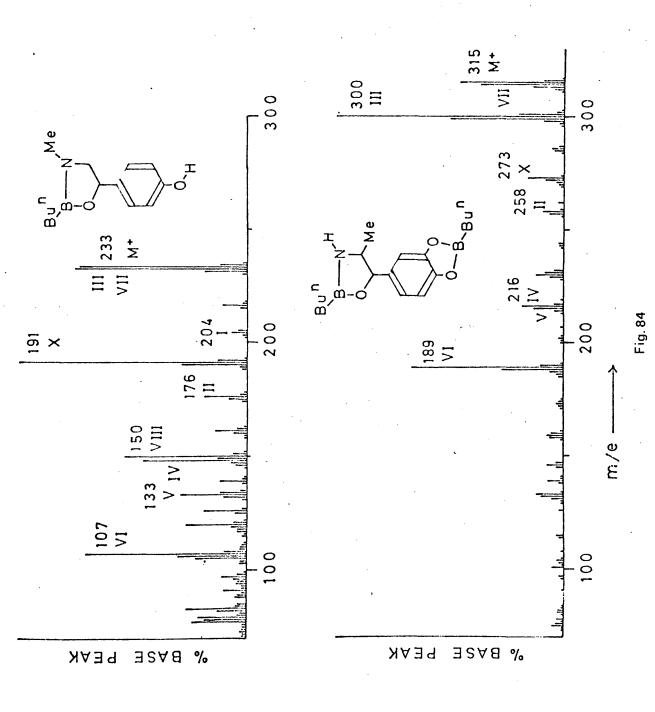
-233-

compound	M‡		<u>m/e</u> o	f maj	or fr	agmen	t ion	sa			
CXXVIII	203	161	91	90	202	120	118	89	146	1 17	10 <i>1</i> +
CXXIX	(21%) 217 (33%)	202	91	90	160	118	216	117	175	89	188
CXXXII	217 (26%)	202	91	90	118	160	117	89	216	175	132
CXXXIII	231 (9%)	216	91	132	117	90	89	23 0	118	105	174
CXXX	231 (10%)	216	91	132	117	90	230	174	89	159	118
CXXXIV	219 (100%)	107	218	134	177	133	105	162	1 36	106	135
CXXXV	(100%) 219 (100%)	107	218	134	177	133	105	162	136	106	135
CXXXVI	233 (74%)	1 91	232	107	150	148	106	133	120	105	176
CXXVII	233 (84%)	191	232	107	149	148	120	133	150	134	105
CXXVIII	(04%) 249 (100%)	137	248	219	218	163	232	135	166	136	150
CXXIX	263 (100%)	262	137	180	179	2 21	163	164	246	146	136
CXL	(100%) 301 (84%)	300	189	217	216	218	215	188	244	25 9	272
CXTI	(84%) 315 (71%)	273	314	231	232	189	230	188	258	202	215
CXLII	(71%) 315 (46%)	300	189	314	188	216	215	230	273	258	2 31

a in order of relative abundance.

.

.


complicate matters but these can be readily detected by their gas chromatographic behaviour and mass spectra. The mass of the N-substituent is indicated by the difference in $\underline{m/e}$ of ions lviii and lix, although it should be noted (see below) that the <u>N</u>-isopropyl derivative gives rise to a special fragmentation.

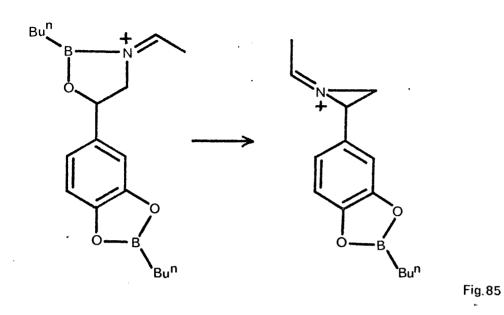
In the compounds studied, the substituents on the benzene ring are retained in fragments of type lix, where the hydroxyamine sidechains are reduced to a common moiety (C_2H_2N) , and of types lv, lva, and lvb, which are hydrocarbon fragments. These relatively prominent ions readily indicate the combined molecular weights of the substituents on the benzene ring (<u>cf</u>. Reisch <u>et al</u>.³⁴²). Certain other fragments arise from the breakdown of hydroxyl and methoxyl substituents on the benzene ring. Thus synephrine gives an ion at <u>m/e</u> 216 due to loss of OH^{*}. Metanephrine gives a similar ion at <u>m/e</u> 246 and also one at <u>m/e</u> 232 due to loss of OMe^{*}.

As noted above, the spectra of n-butylboronates contain, sometimes as major ions, fragments dependent on the presence of the n-butyl substituent. Thus, the ion of type lxiv is the base peak in the spectra of β -hydroxyphenylethlamine n-butylboronate, synephrine n-butylboronate, and adrenaline bis-n-butylboronate. When this fragment is predominant, the two daughter ions lxii and lxiii can also be observed. Fragment ion lv appears to arise by loss of an ethyl radical from the butyl side-chain.

Representative results are depicted in Fig. 84, in which the mass spectra of 3,4-dihydroxynorephedrine bis-n-butylboronate and

-235-

-236-


synephrine n-butylboronate are given and the fragment types indicated.

Isoprenaline n-butylboronate gave only two major fragments. The first ($\underline{m/e}$ 328) is presumably due to loss of Me[•] from the isopropyl group on the nitrogen atom. The other predominant peak ($\underline{m/e}$ 244) is most likely due to further loss of n-BuBO (Fig. 85). This transition is verified by a metastable peak at $\underline{m/e}$ 181.8.

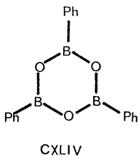
Within the group of compounds studied, substituents in the benzene ring appear to have little effect on fragmentation, which is accordingly insensitive to positional isomerism in the ring. Consequently, n-butylboronates of octopamine and 4-deoxynoradrenaline, which have a free phenolic group at the <u>para-</u> and <u>meta-position</u> respectively, cannot be effectively distinguished by their mass spectra. Their retention times are, however, different (Table 24).

It may be concluded that qualitative analysis of catecholamines and related β -hydroxyamines after reaction with n-butylboronic acid is possible by the combined GC-MS technique. The boronic acid reacts under mild conditions both with the β -hydroxyamine group to form a 1,3,2-oxazaborolidine ring and with the catechol grouping to form a 1,3,2-dioxaborole ring. Mass spectrometry gives the molecular weight, indicates the mass of substituents at positions 2 and 4 of the oxazaborolidine ring, and gives the combined molecular weights of substituents on the benzene ring. Diasterecisomers on the oxazaborolidine ring and positional isomers on the benzene ring can be distinguished by GLC by use of a moderately polar stationary phase.

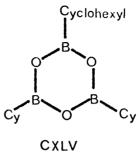
-237-

-238-

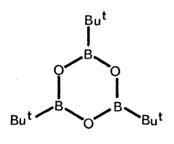
The reaction of n-butylboronic acid with β -hydroxyamines as described above is not complete, but occurs without a catalyst. The selectivity of the reagent affords a clear distinction by GLC between catecholamines and their methylated analogues (eg. adrenaline and metanephrine), and between compounds with and without a β -hydroxyamine grouping.

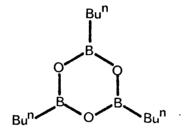

GAS CHROMATOGRAPHY-MASS SPECTROMETRY OF SOME BOROXINES

The mass spectra of boroxine,³⁴³ fluoroboroxine,³⁴³ difluoroboroxine,^{343,344} and trimethylboroxine³¹¹ have been reported. Gas chromatographic and mass spectrometric data are described below for triphenylboroxine (CXLIV), tricyclohexylboroxine (CXLV), tri-tbutylboroxine (CXLVI), and tri-n-butylboroxine (CXLVII).²⁹⁰ These compounds are observed as by-products when an excess of the boronic acid is used in the preparation of cyclic boronates of such compounds as diols²⁸⁵ and hydroxyamines.^{287,289} The value of such compounds as derivatives for the characterisation of steroidal diols and related compounds by gas chromatography and GC-MS²⁸⁵⁻²⁸⁹ has been indicated in earlier sections (pp. 171-239.


The substituted boroxines were produced by thermal dehydration and trimerisation of the corresponding boronic acids.^{**} This was conveniently carried out in a stream of nitrogen or helium in the "flash heater" of a gas chromatograph. The products were studied directly by GLC or GC-MS. Commercial triphenylboroxine gave GLC and MS behaviour identical to that of the dehydration product of

*


Preliminary gas chromatography was carried out by Dr. D.J. Harvey.
**
t-Butylboronic acid was prepared by a variation of the method of
Snyder et al.³⁴⁵ in which a fractionating column was used (cf.
McCueker et al.³⁴⁶) to reduce losses of product during evaporation
of the ether extract. n-Butyl- and cyclohexylboronic acid were
obtained from Alfa Inorganic Inc., Beverly, Mass., and phenylboronic
acid from Aldrich Chemical Co. Inc., Milwaukee, Wis. Triphenylboroxine
was obtained from K & K Laboratories, Inc., Plainview, N.Y.



.

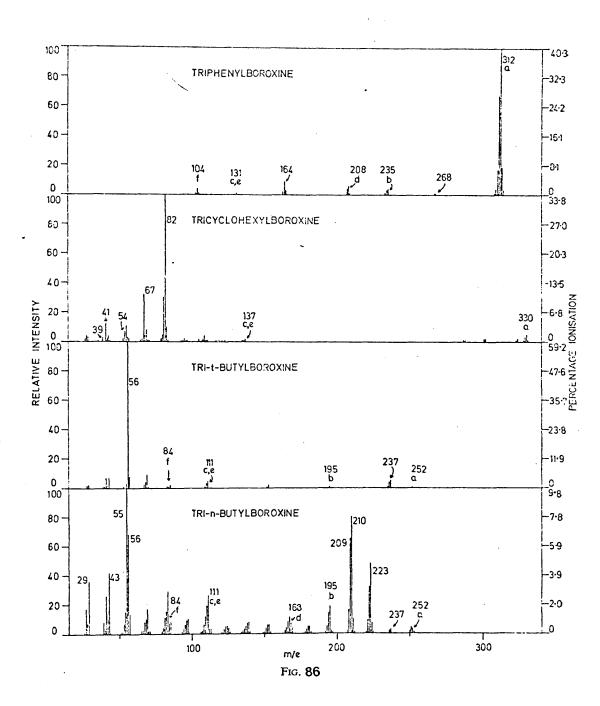
•

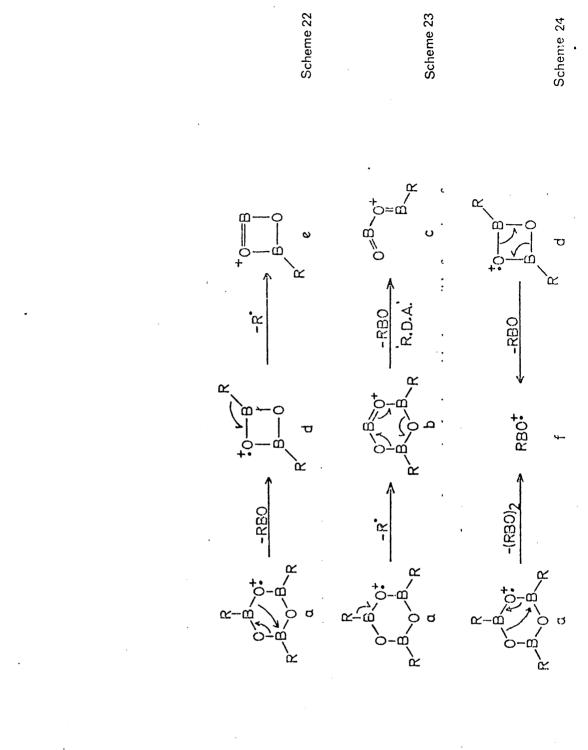
phenylboronic acid. GLC data are shown in Table 27, and mass spectral line diagrams in Fig. 86.

Fragmentations of the boroxine ring

A number of mass spectral fragmentations are common to all the substituted boroxines studied.

The intensity of the molecular ion in each case mainly reflects the stability (towards fragmentation) of the substituent in the boron atom: triphenylboroxine gives the molecular ions as the base peak, whereas tri-t-butylboroxine gives the molecular ion of only 0.4% of the intensity of the base peak. In the latter case, the base peak arises from a fragmentation directed by a t-butyl substituent. It could be considered that the stability of the molecular ion of triphenylboroxine might reflect some degree of conjugation between the phenyl and boroxine rings. Evidence from calculations of electronic structures and from spectroscopic measurements,³⁴⁷ however, indicates that phenyl substituents have little effect on electron distribution in unionised boroxine.


There is direct evidence for the loss of one substituent in each case, with the formation of an ion as illustrated in scheme 22. This ion may undergo an electron rearrangement analogous to a "retro-Diels-Alder" fragmentation to give an acyclic ion. Similar fragmentations are observed for triflouroboroxine^{343,344} and trimethylboroxine.³¹¹


Skeletal rearrangements of the molecular ion, with the possible

-242-

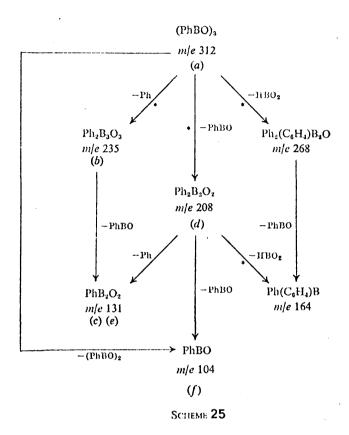
Table 27 Gas chromatographic behaviour of boroxines.

	0	V-1	0	0 V-1 7		
	I	Temp.	I	Temp.		
Triphenylboroxine	2410	1 80	2755	20Õ		
fricyclohexylboroxine	2175	150	2 295	1 50		
Tri-t-butylboroxine	1140	50	1075	50		
Tri-n-butylboroxine	1460	100	1485	85		

-245-

formation of a radical-ion containing a four-membered ring is also apparent. This is analogous to the elimination of the REO group from substituted oxazaborolidines.²⁸⁷ A further substituent may be lost, as shown in Scheme 23.

Radical ions RBO[‡] may be formed by two routes, dirctly from the molecular ion or <u>via</u> the dimeric radical ion(Scheme 24). Doublycharged dimeric radical-ions could also give rise to peaks of similar $\underline{m/e}$. Their formation is unlikely, however, in view of the relatively low pressure in the ion source; moreover, there was no indication of the presence of doubly-charged ions of odd mass.


The major ion from trifluoroboroxine corresponds to a loss of BO_2 from the molecular ion. This was postulated as arising from a ring opening and migration of a fluorine atom.³⁴⁴ There is no evidence for any analogous fragmentations in the spectra of the boroxines described here, although ions are produced which could be attributed to losses of BO₂ or HBO₂ from certain fragment ions.

Other fragmentations

In contrast to the spectrum of triphenylboroxine, the typical ions arising from the fragmentation of the boroxine ring of tricyclohexylboroxine are present in low abundance. The base peak apparently results from the scission of a boron-carbon bond accompanied by hydrogen transfer - probably from the cyclohexyl ring to the boron atom - with the formation of a cyclohexenyl radical-ion ($\underline{m/e}$ 82). This is further confirmed by the striking similarity of the low mass portion of the mass spectrum to that of cyclohexene itself, 348 with characteristic ions at $\underline{m/e}$ 67, 54, 41, and 39. Similar fragmentations are observed for tri-t-butylboroxine and tri-n-butylboroxine, giving intense peaks at $\underline{m/e56}$. The base peak of the latter compound, at $\underline{m/e}$ 55, apparently ensues from a similar fission accompanied by elimination or transfer of two atoms of hydrogen. Isotope ratio measurements on ions of $\underline{m/e}$ 54 and 55 in this spectrum confirm the absnce of boron in the ion giving rise to the base peak.

Other ion characteristic of the substituents are observed, such as $[M-15]^+$ from the tributylboroxines and $(M-29]^+$, $[M-42]^+$, and $[M-43]^+$ from tri-n-butylboroxine. Scheme 25 summarises the principal fragment-ations of triphenylboroxine.

Since completion and publication of the work described in this section, a further paper³⁴⁹ containing details of the mass spectrum of triphenylboroxine has appeared. The results therein are similar to those shown in Scheme 22, but are given without mechanistic details. This paper also included discussion of the mass spectrum of triferrocenylboroxine.

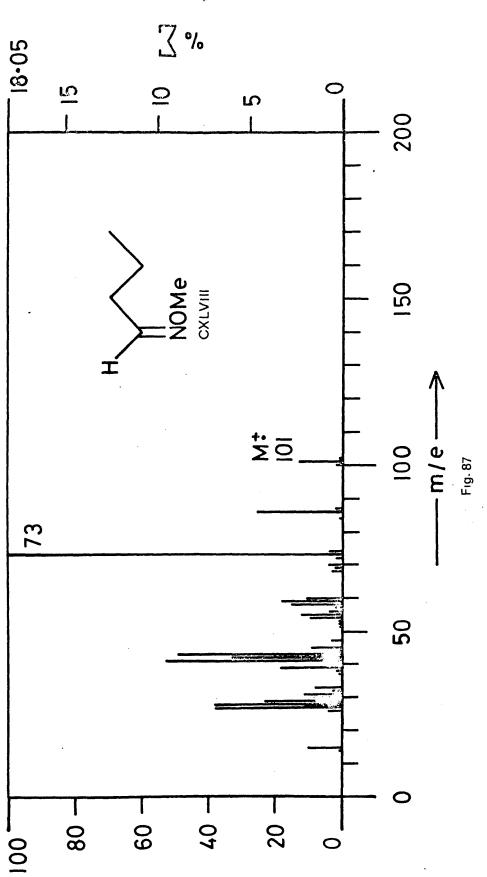
IV

ALIPHATIC COMPOUNDS

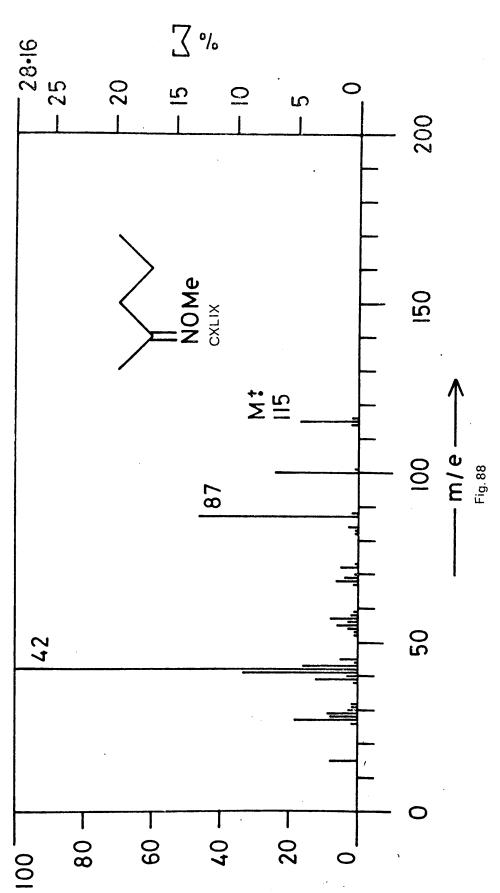
.

THE MASS SPECTRA OF O-METHYLOXIMES OF SOME

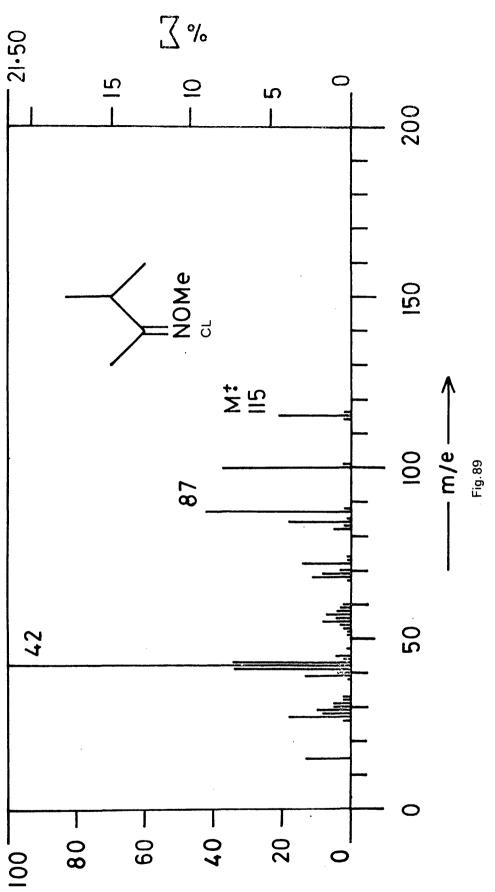
ALIPHATIC ALDEHYDES AND KETONES.*

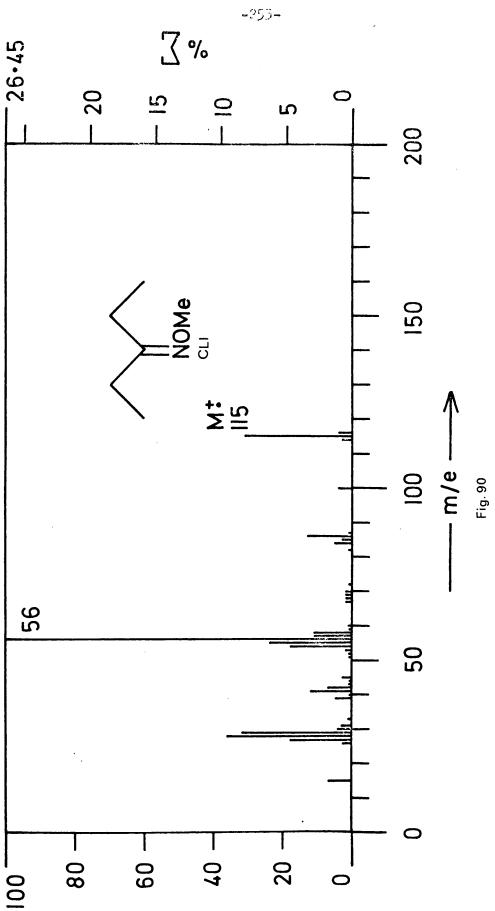

<u>O</u>-Methyloxime derivatives have been used (see below) as an aid to the identification, by GC-MS, of aliphatic aldehydes of cuticular leaf waxes³⁵⁰ and the aldehydes and dialdehydes produced by cleavage of ozonides formed from aliphatic dienes extracted from the green alga <u>Botryococcus braunii</u>.³⁵¹ The realisation of the utility of these derivatives in the gas chromatographic and mass spectrometric characterisation of such compounds, and of steroid ketones,^{111,120,124}, ³⁵²⁻³⁵³ terpenoid ketones,³⁵⁴ and prostaglandins³⁵⁵⁻³⁵⁶ prompted a closer examination of the mass spectra of <u>O</u>-methyloximes.

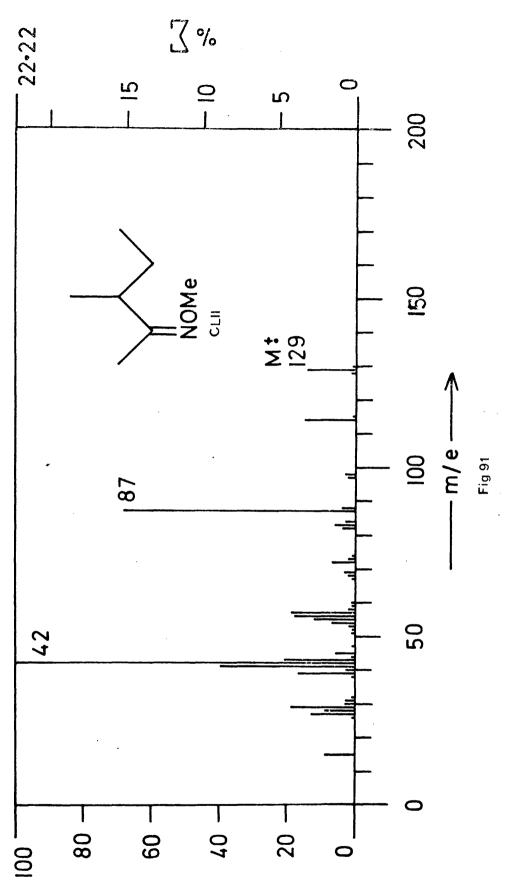
The mass spectral fragmentations of aliphatic ketones are fairly well understood, $^{357-358}$ whereas those of aliphatic aldehydes 359 appear to be rather more complex. $^{360-363}$ The mass spectra of several unsubstituted oximes have been discussed. $^{364-365}$ An attempt is now made to rationalise the mass spectral fragmentations of the <u>O</u>-methyloxime derivatives by comparison with these reports.


* Preparative work and preliminary gas chromatography was carried out by Dr. B.A. Knights (Department of Botany). Line diagrams representing low-resolution mass spectra of <u>O</u>-methyloximes of various aldehydes and ketones (CXLVIII-CLXIII) are shown in Figures 87 to 101. A molecular ion is present in each case, although it is of lower abundance for the samples of higher molecular weight.

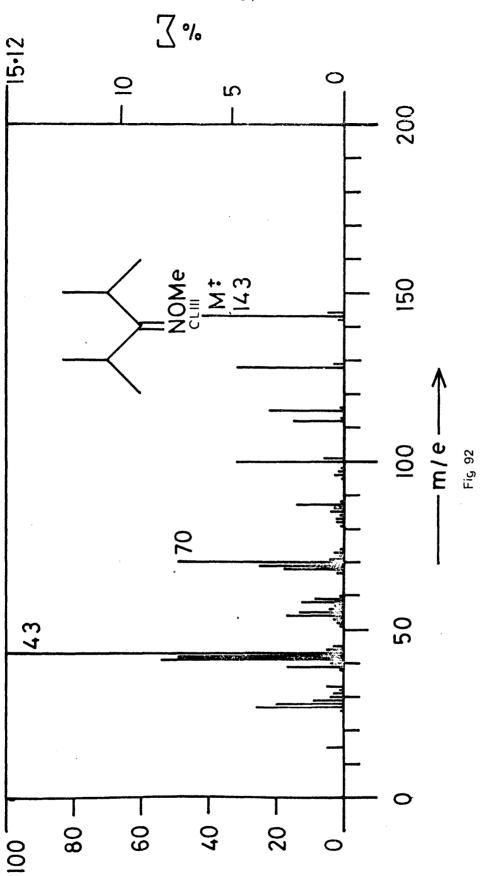
Ions arising from simple cleavage. Ions, the formation of which may be formally ascribed to simple cleavage with charge retention either on the nitrogen-containing fragment or on the hydrocarbon fragment, are listed in Table 28. a-Cleavage leads to the production of abundant ions only from molecular ions of relatively low mass, particularly from the branched-chain molecules. For example, α -cleavage of CLIII gives rise to ions of $\underline{m}/\underline{e}$ 43 (100%) and 100 (32%), whereas α -cleavage of CLXIII produces no hydrocarbon fragment, and the ion $(\underline{m}/\underline{e}$ 72, 1%) corresponding in mass to the nitrogen-containing species is of very low abundance. Similarly, β -cleavage produces abundant ions only from the branched-chain samples of low molecular weight. Y-Cleavage has been observed to account for ions of relatively high abundance in the mass spectra of aldoximes and ketoximes.³⁵⁹ This process appears to be paralleled in the fragmentation of O-methyloximes, particularly for the production of nitrogen-containing ions. The mechanism of such fragmentations has been discussed³⁶⁴ and, although no definite conclusions were reached, it seemed likely that a cyclic fragment ion was produced. The equivalent mechanism for γ -cleavage of the O-methyloximes is lxv->lxvi/lxvii (Scheme 26). An alternative mechanism involving reciprocal hydrogen transfer has been suggested 365 and substantiated by deuterium labelling for di-n-hexyl and di-n-heptyl ketoximes. However, it does not, for example, account for the [M-15]⁺ ion from CXLVIII. Ions are produced, the formation of which may be formally ascribed to cleavages more remote from the O-methyloxime moiety, although there is no direct evidence for their formation from the molecuar ion.


-251-

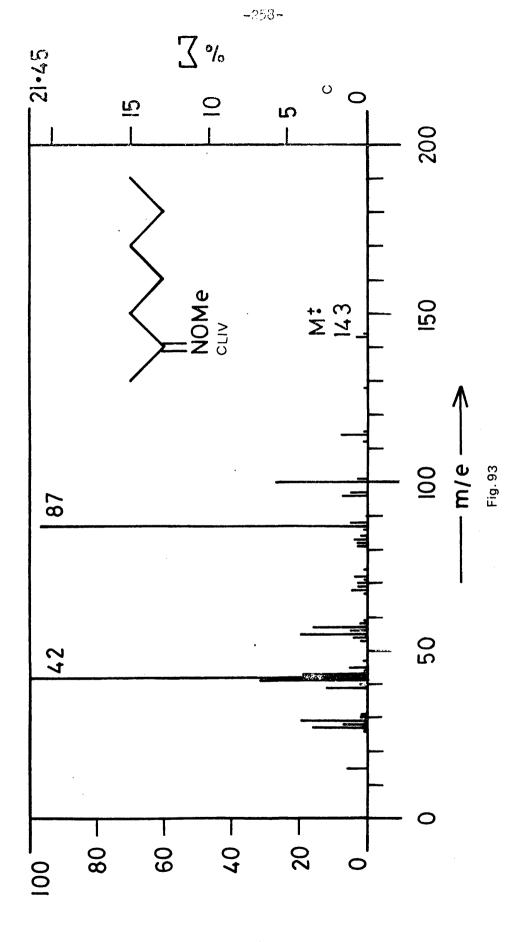

-252-

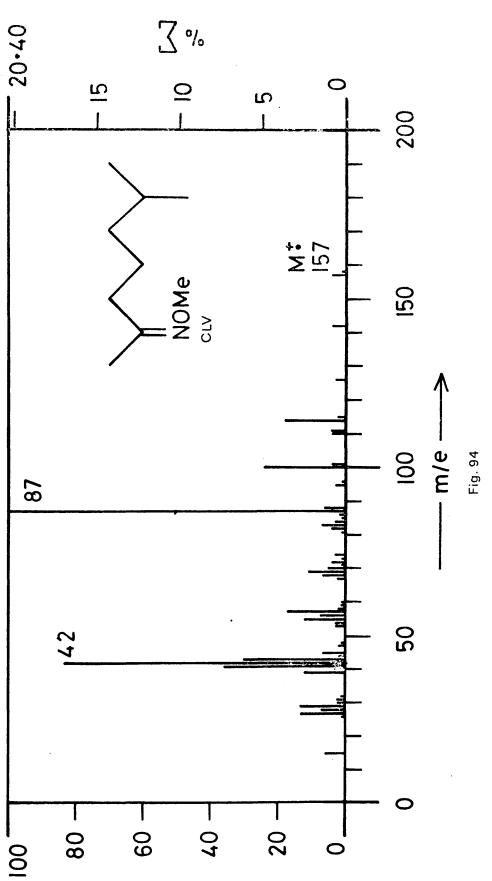


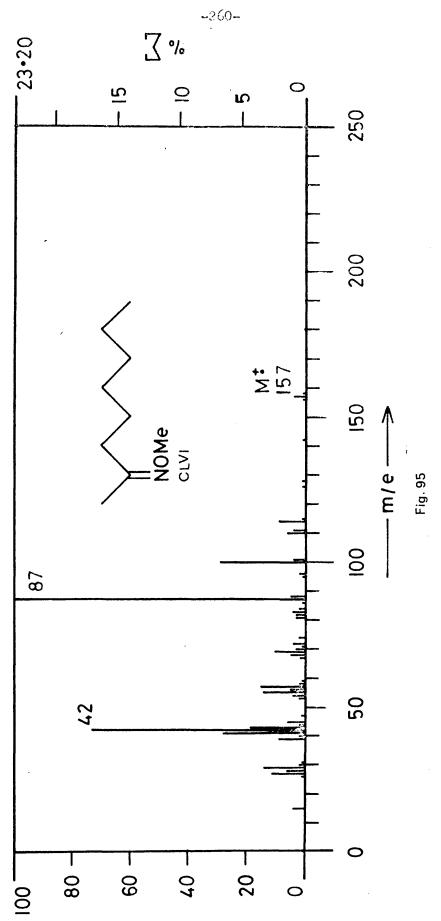
~:\$<u>}</u>~

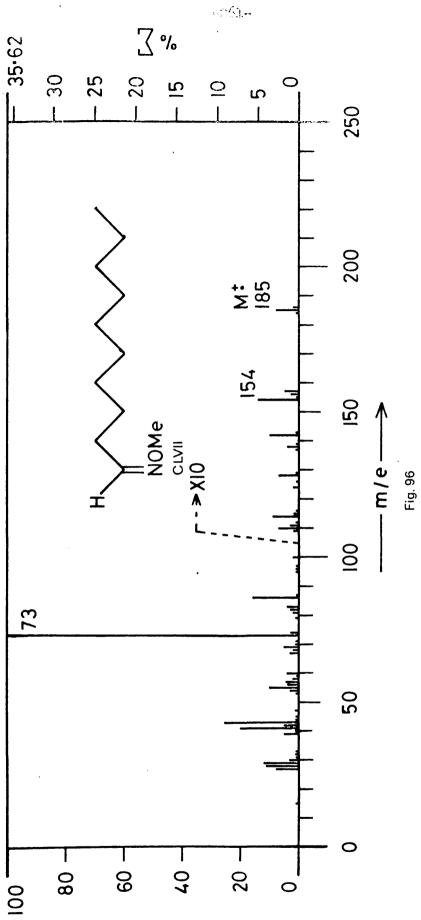


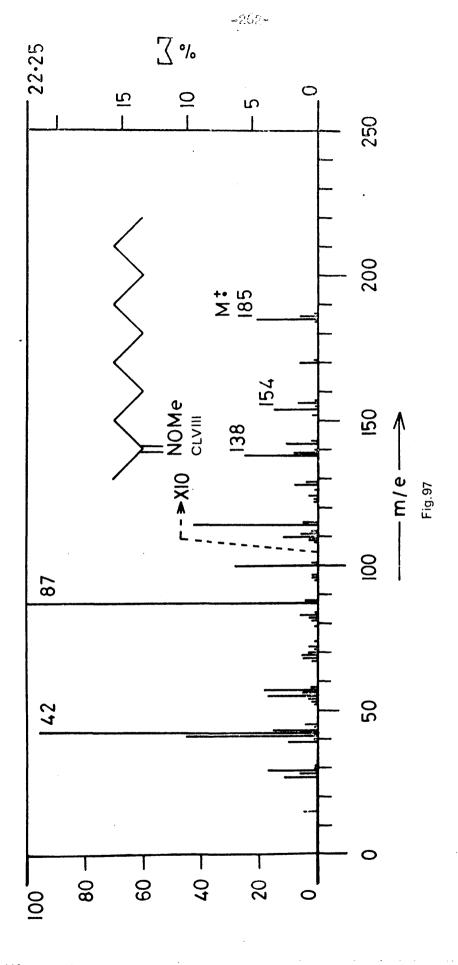
-254-






-256-


-257-



•

-263-

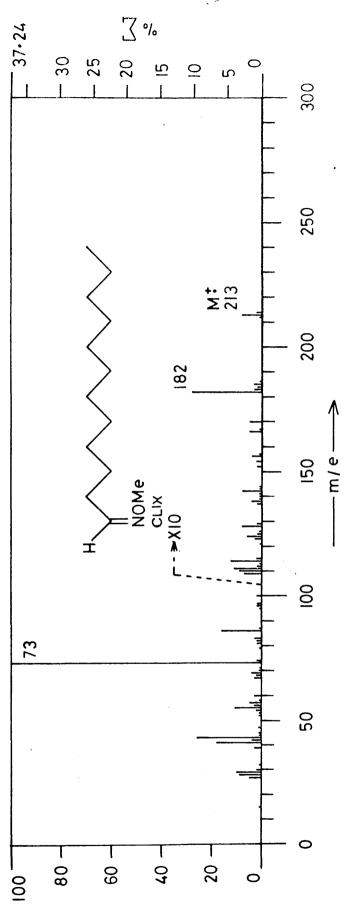
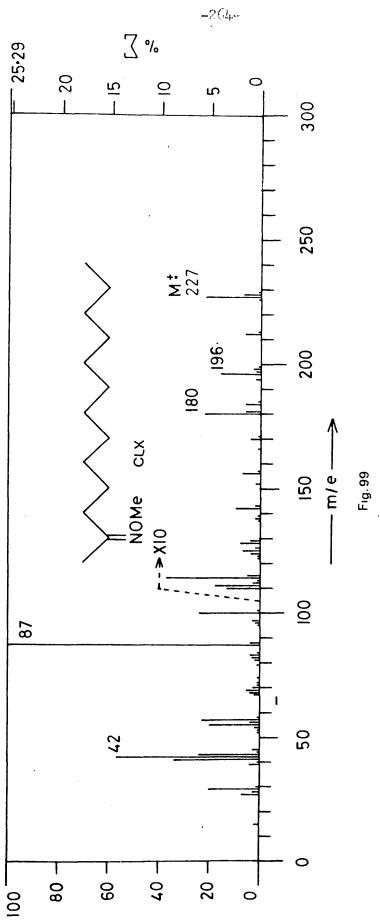
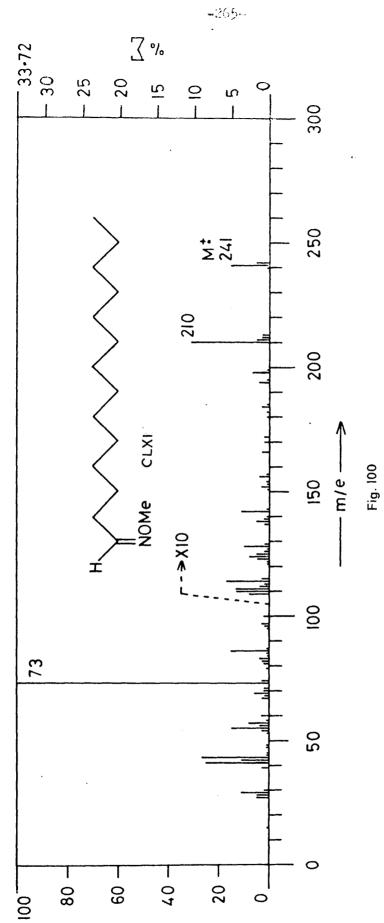




Fig. 98

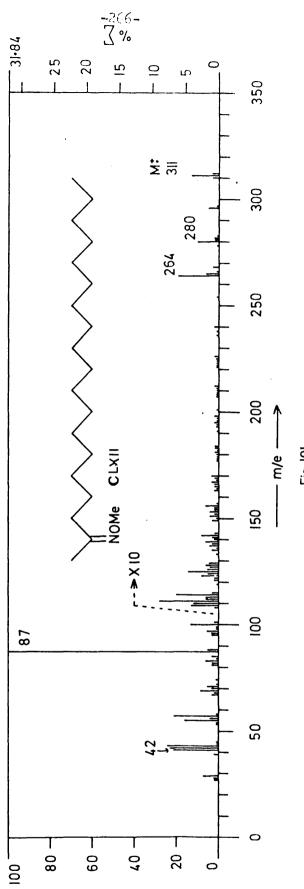
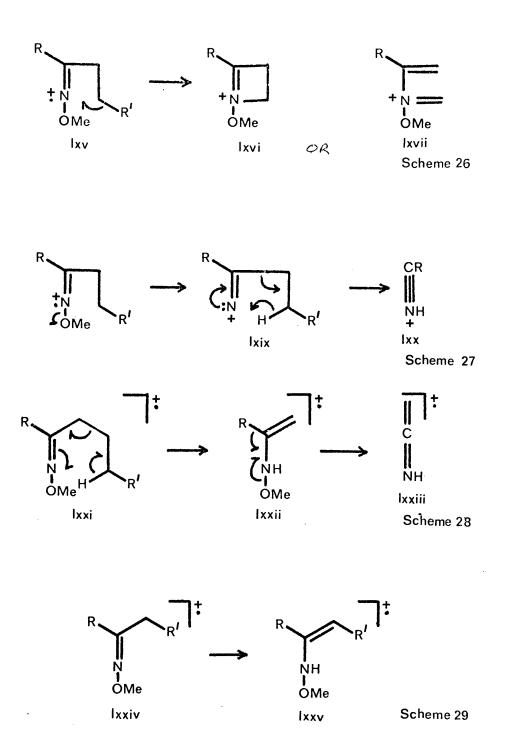



Fig. IOI

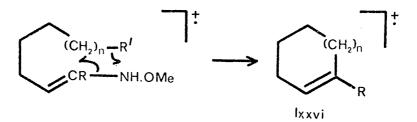
Sample	CXLVIII	CXLLX	CL.	CLI	CLII	CLIII	CTIA CTA
∝-Fission	100 (2) 58(15) 43(33)	72 (5) 43(16)	100(37) 72(14) 43(34) 15(15)	29(32)	114(15) 72 (7) 57(19) 15 (9)	43(100	128 (1) 142 (4)) 72 (4) 72 (4) 71 (1) 85 (1) 15 (6) 15 (6)
β-Fission	72 (2) 29(23)	86 (-)	114 (2) 100(37) 15(13)	100 (4) 15 (7)	114(15) 100(-) 29(19)	15(5) 142(1)	57(16) 71 (1)
J-Fission	85(25) 15(10)	100(24) 15 (8)	114 (2)	114 (3)	128 (1) 114(15) 15 (9)		100(27) 100(24) 43(19) 57(17)
§ - Fission	100 (2)	114 (2)	-	-	128 (1)	-	114 (8) 114(18) 29(19) 43(30)
Sample	CLVI	CLVII	CLVIII	CLIX	CLX	CLX	I CLXII
∝-Fission	72 (4)) 72 ()113 (3) 58		(1) 58	(0.1) 296(0.5) (1) 72 (1) (-) 239 (-) 15 (-)
β -Fission	156 (1) 86 (1) 71 (1)	72 (- 113 (-) 184(0.) 86 (99 (1) 72 -) 141(0 -)	(-) 226(.1) 86 141	0.1) 72 (-) 169 (-)	(-) 310(0.3) (-) 86 (-) 225(0.1)
V-Fission	100(29) 57(15)	86 (15 99 (-) 100 (2) 85 (8) 86 (-) 127	16) 100 (-) 127	(24) 86 (-) 155	(15) 100 (13) (-) 211(0.1)

.

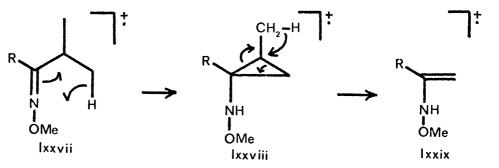
-269-

Cleavage of the nitrogen-oxygen bond gives rise to ions (Table 29) of $\underline{m/e}$ 31 (lxviii) and $[\text{M-31}]^+$ (lxix). It is possible that the latter ions undergo further degradation by fragmentation of their hydrocarbon substituents.

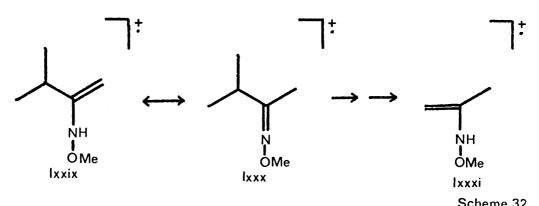
<u>Lons arising from rearrangement</u>. An abundant ion (lxx) in many of the spectra appears (Table 29) at $[27 + R]^+$, where R is the smaller substituent attached to the <u>O</u>-methyloxime molety. The formation of a similar ion, observed in the spectra of ketoximes,³⁶⁴ has been ascribed to further degradation of lxix. The corresponding mechanism for <u>O</u>-methyloximes is lxix \rightarrow lxx (Scheme 27). An ion (lxxi) analogous to the McLafferty rearrangement product provides the base peak in many of the spectra, particularly those of longer chain length (Table 29). A smilar fragment ion was observed in the spectra of aldoximes and ketoximes³⁶⁴ and it was postulated that it underwent further degradation to form an ion of <u>m/e</u> 41. A similar mechanism (lxxi \rightarrow lxxii, Scheme 28) appears to operate in the case of the <u>O</u>-methyloximes (Table 29).

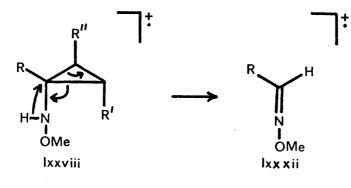

Fragmentation mechanisms invoking tautomerisation. Tautomerisation has been suggested as a factor contributing to the formation of several fragment ions of aldehydes, 362 and has been discussed in connection with the fragmentation of aldoximes and ketoximes. 364 It is possible that it is implicated in the fragmentations of <u>O</u>-methyloximes. The ion [M-46]⁺ would arise from simple cleavage of the enamine tautomer (lxxv, Scheme 29). A similar fragmentation, with hydrogen transfer to the nitrogen-containing moiety, gives rise to an ion [M-47]⁺.

A further mode of tautomer fragmentation would produce ions $(lxxvi) [67 + R + 14n]^+$ This type of mechanism (Scheme 30) accounts for many abundant fragment ions of aldehydes, ³⁶² but does not appear to be of importance in the fragmentation of <u>O</u>-methyloximes.


Table 29.	Peaks corresponding to selected fragment ions (relative
•	abundances in parenthesis)

Sample	CXTALLI CXTIX	CL	CLI	CLII	CLIII	CLIV	CLV
lxvii i	31(11) 31 (2)	31 (5)	31 (3)	31 (3)	31 (3)	3l (2)	31 (2)
lxix	70 (4) 84 (3)	84(18)	84 (5)	98 (3)	112(15.)	112 (1)	126 (3)
lxx	28(38) 42(100) 42 (100)) 56 (100)) 42 (100)) 70(49)	42(100) 42(83)
lxxii	73(100) 87(46)	87 (41) [*]	101 (-)*87(68)	115(22)	[*] 87(97)	87(100)
lxxiii	41(52) 41(33)	41(34)	41(12)	41(40)	41(54)	41(32)	41(36)
lxxv	55(12) 69 (4)	69 (8)	69 (2)	83 (6)	97 (2)	97 (5)	111 (4)
Sample	CLA CTAI	CLVII	CLVIII	CLIX	CLX	CLXI	CLXII
lxviii	31 (2) 31 (1) 31 (1)) 31 (1) 31 (-) 31 (-	-) 31 (-	-) 31 (-)
lxix	126 (3) 1 26 (1) 154(1.1	+)154(1.	5)182(2.8	8)196(1.0	5)210(3.	1)280(1.0)
lxx	42(83) 42(7 <u>3</u>) 28(11)) 42(95) 28 (9) 42 (57) 28 (5) 42(23)
lxxii	87(100) 87(100) 73 (100) 87 (1 0	D) 73(10	0) 87(10) 73(10	0) 87(100)
lxxiii	41(36) 41(28) 41(20) 41(45) 41(18) 41(34) 41(11) 41(21)
lxxv	111 (4) 111(4)	139(0.1)139(0.8) 167(0.1)181(0.6)195(0.1)265(0.6)


.


Scheme 30

Scheme 31

Scheme 32

.

Scheme 33

Fragmentation mechanisms entailing cyclic intermediates. The formation of most of the fragment ions has been accounted for on the basis of previously proposed fragmentation pathways. Many of these have been substantiated by high-resolution and isotopic-labelling studies and agree well with our present knowledge of mass spectral fragmentation. The mechanisms requiring tautomerisation of the molecular ion, however, involve cleavage of a single bond adjacent to a double bond, whereas allylic cleavage is normally favoured. Also, it is observed that CL eliminates a fragment equal in mass to that produced by McLafferty rearrangement of CXLIX: CLIII eliminates two such fragments. Neither CL nor CLIII contains the requisite Y-hydrogen atom for the McLafferty rearrangement and so an alternative or additional fragmentation mode may be operative. The fragment of 28 mass units eliminated from III could be C_2H_4 , CO or CNH_2 . Of these, C_2H_4 seems to be the most likely (this is to be checked by high-resolution mass measurement), particularly since the spectra of CXLIX and CL are so similar and CLIII appears to lose two such fragments. A possible mechanism for this fragmentation is lxxvii-->lxxviii-->lxxix (Scheme 31). The second such elimination from CLIII can be represented as lxxix-->lxxx -->lxxxi (Scheme 32). The postulated fragmentation of the cyclopropane ring is analogous to that proposed by Weinberg et al. An alternative mode of fragmentation of lxxviii may produce an ion [58 + R]⁺ (lxxxii), Scheme 33. Such an ion is observed in moderate abundance in the spectra of CXLVIII and CLIII, but is almost or completely absent from the other spectra. It is also possible that ions arising from scission of the carbonnitrogen bond may be formed via mechanisms involving intermediate ring formation rather than oxime-enamine tautomerisation. Deuterium labelling studies on di-n-hexyl and di-n-heptyl ketoximes, 365 however, suggest that this mechanism cannot be extended to these compounds unless specific reciprocal hydrogen transfer takes place. This is not

-272-

impossible,³⁶⁴⁻³⁶⁵ but the fact that ions of type lxxix are only observed in the spectra of CXLVIII-CLIII indicates that this type of mechanism may be restricted to compounds of relatively low molecular weight. In any case, it is not suggested that this mechanism should supplant that of the "conventional" McLafferty rearrangement or those postulating the existence of an ionised cyclobutane intermediate.^{360,361,367}

1

HYDROCARBONS FROM THE GREEN MORE OF THE FRESHWATER ALGA BOTRYOCOCCUS BRAUNII*

Botryococcus braunii (Kutz.) is a freshwater green colonial alga of widespread occurrence, which is known to occur in at least two physiologically distinct forms. The first of these is a green exponentially growing stage of limited abundance and the second is a brown resting stage which often arises as massive rust-coloured algal blooms on the surface of lakes.³⁷⁸ From paleobotanical studies it has been suggested 379 that <u>B. braunii</u> may be the causal organism of the boghead coals (e.g. Torbanite), Coorongite, and also oil shales of the tertiary period 380 and a number of investigations of these theories have been undertaken (for brief reviews see Refs. 381-382). It has been shown in the brown resting stage that 70 per cent of the dry weight of <u>B. braunii</u> may be accounted for by two isomeric hydrocarbons, botryococcene and isobotryococcene, which occur in a 9:1 ratio. 382 In the green exponential form, however, it has been found that only about 20 per cent of the dry weight of the alga could be accounted for as hydrocarbons³⁸³⁻³⁸⁴ and also that less than 5 per cent of these hydrocarbons was botryococcene or its isomer. In fact, three homologous series of hydrocarbons were demonstrated by GLC and the dominant "A" series with five members was found by mass spectrometry to have the general formula $C_{n}H_{2n-2}$. The next most-abundant series with four members was shown to have the formula $C_n H_{2n-4}$. These results were similar to those found for what was described as the "golden brown alga B. braunii", 380 when six compounds of the general formula $C_n H_{2n-2}$ and one of the formula $C_n H_{2n-4}$ were described.

* Growth of the alga, extraction of, and chemical transformation of, the hydrocarbons, and preliminary gas chromatography were carried out by Dr. A.C. Brown, Dr. E. Conway and Dr. B.A. Knights (Dept. of Botany).

-274-

In the present work, 351 locations of the positions of the two double bonds of the "A" series hydrocerbons of the green stage of <u>B. braunii</u> have been determined. Hydrocarbons were isolated by acetone extraction of the dried alga and separated by chrometography on alumina. 383 I.r. spectroscopy of these hydrocarbons indicated the presence of a vinyl group (1638, 990 and 908 cm⁻¹) and a <u>cis</u> disubstituted double bond (720 cm⁻¹). Gas-liquid chromatography (GLC) indicated that the mixture contained three components (>90 per cent of the total fraction) and, by inspection of the data (Table 33), these were found to be members of the previously decribed ³⁸³ "A" series of hydrocarbons, and to correspond to those compounds which had been shown by GC-MS to have the formulae $C_{27}H_{52}$ (peak 1), $C_{29}H_{56}$ (peak 2) and $C_{31}H_{60}$ (peak 3).

Ozonolysis of the hydrocarbon fraction was attempted using a Supelco microozonizer³⁸⁵ and the method described by Beroza and Bierl,³⁸⁶ Under the prescribed conditions, no reaction products could be detected using GLC, in spite of a positive reaction to ozone from the indicator solution. In addition, it was found that triphenylphosphine and triphenylphosphine oxide could be detected in GLC traces and it was thought that in this case these compounds might interfere with the analysis by GLC of possible products of ozonolysis. Ozonolysis was therefore attempted by adapting the method of Munavalli and Ourisson³⁸⁷ for use with the microozonizer. Using a flame ionization detector, tetracyanoethylene, which was incorporated into the reaction mixture to decompose ozonides, could not be detected under the conditions for GLC used in this work. Reaction with ozone was continued until hydrocarbons could no longer be detected by GLC. The aldehyde fraction so formed showed carbonyl absorption (1720 cm⁻¹) but no double bond absorption in the i.r. GLC (Table 33) indicated three products derived from the three corresponding hydrocarbons.

TABLE 33.	GLC data for the ozonolysis products from hydrocarbons of B. braunii	the	ozonolys	is pr	oducts f	rom hy	drocarbo	ns of	B. braun	ŗŗ		
			71-VO			•			SE-30	0		
Fraction	Peak I %	20	Peak2 %	%	Peak 3 %	%	Peak 1 %	20	Peak2 🌾	c/5	Peak 3 %	, ⁶ ,
Hydrocarbon *	2705 12	5	2915	42	3115	46	2705	I	29 0 5	I	3100	1
Aldehyde ⁺	2355.	۵۵	2560	46	2760	46	2115	7	2330	46	2530	47
O-Methyloxime [†]	2525	6	2730	42	2930	49	2310	13	2520	42	2720	45
Methyl ester †	2550 19	6	2750	36	2955	45	2320	15	2525	40	2725	45
						Ŕ						
*244°. †0V-17, 223°;	*244°. †0V-17, 223°; SE-30, 230°.					3						
•	•											,

TABLE 34.			Partial	Partial ozonolysis products	products				
			0V-17	7			SE-30	0	
Fraction		Kobile Compound	Peak 1	Peak 2	Peak 3	Mobile Compound	Peak 1	Peak 2	Peak 3
Aldehyde	* +	85 -	2135 193	2340 211	2545 229	11	2030	2225	24,20
0-Methyloxime	* +	95	2230 201	2435 219	2630 237	105	2130 212	2325 231	2520 249

*205°. Tremperature of emergence (programme rate 2°/min from 50°).

-276-

Using GC-MS, mass spectra (the most significant and the eight most abundant ions in these spectra are listed in Table 35) were obtained for peaks 2 and 3 and it was clear from inspection of these data that these two compounds were homologous, differing in mass by 28 units (i.e. $C_{2}H_{4}$). Fragmentations for the loss of water, [M-18]⁺, [M-36]⁺, ethylene, [M-28]⁺, and ethylene plus water, [M-46]⁺, from these compounds were observed, similar to those observed by Gilpin and McLafferty³⁵⁹ for mass spectra of aldehydes. The ion arising by loss of hydrogen, [M-1]⁺, formed via a-cleavage was not significant in the present work, and the corresponding ion at <u>m/e</u> 29 was only of medium intensity. The ions for [M-43]⁺ and [M-44]⁺ probably arise by β -fission processes.^{359,388}

The aldehyde fraction was converted to the corresponding 0methyloxime derivatives¹²⁴ and were thought to be derived by loss of fragments including methoxyl and methyl radicals, and methanol. The base peak of these spectra at $\underline{m/e}$ 73 and the ion observed at $[M-72]^+$. for each compound were probably formed by β -cleavage reactions. The ion at $\underline{m/e}$ 73 from 0-methyloximes appears to be equivalent to the ion found by Goldsmith <u>et al</u>.³⁶⁴ to occur at $\underline{m/e}$ 59 for the oxime derivatives of butyraldehyde and valeraldehyde. The same group also described an ion at $\underline{m/e}$ 72 from these compounds and an equivalent ion at $\underline{m/e}$ 86 was noted for the 0-methyloximes in the present work.

Oxidation of the aldehyde fraction produced an acid fraction from which methyl esters were prepared. Analysis by GLC (Table 33) demonstrated the presence of three compounds in this fraction. GC-MS analysis indicated the presence of two carboxylic acid methyl ester groups and confirmed that the original fraction was composed of dialdehydes. The McLafferty rearrangements³⁶⁰ produced the ion at $\underline{m/e}$ 74, in agreement with previous work on the mass spectra of methyl esters.³⁸⁹ The spectra were similar to those reported in the literature for a,ω -dicarboxylic acid methyl esters.^{381,390}

					A1(dehyde	fraction	ion									!
	W	M-18	M-28	M - 36	M-43	M-44	M-46				Eight	nt mos		abundant	t ions	υ	Í
Peak 2 Mass Abundance Peak 3 Mass Abundance	296 28 324 14	278 13 306	268 296 5	260 288 288	253 11 281	252 11 280	250 12 278 11			55 1000 55	41 900 41 860	850 843 800	57 820 57	530 530 550	500 500 530 530	67 420 81 500	81 390 67 60
	-	-			U	thy		fraction									
	M	M-31	M-46	M-63	M-71	M-72	M - 78	M-88 N	M-104		Eight	nt mos	4	ebund <i>a</i> n'	t ions	TO IN	ſ
4 0 H	326 354 554 6	9 L N O U	280 11 308 20	04 04 r	255 25 283 25 283	254 150 160 160	248 11 276 13	MH WH C	222 12 11 11	43 1000 1000 1000	73 940 750 750	55 740 500 500	41 630 550 500	57 610 86 320	69 450 260	- 71 280 260 260	280 1906 1906
reak 5 Mass Abundance	292	94 94	22	017 48	211 25 1 Methyl	es 20	ter DO	4 294 3 11 fraction	11 718	1000	660	0054	410 410	310	290	290	200 200
	M	M-31	M-64	M-73	M-92 I	M-105	M-106 N	M-123 M	и-146 _г		Bigh	ght mos		abundant	t ions	10	
Peak 1 Mass Abundance Peak 2 Mass Abundance Peak 3 Mass Abundance	328 356 384 384 5	297 34 325 73 353 77	264 11 292 20 320 24	255 29 283 58 311 55 55	236 13 13 13 292 14	223 21 251 251 259 279 279	222 13 250 218 278 24	205 17 233 15 261 261	182 13 210 20 238 10	43 1000 1000 1000 1000	555 950 960 900	57 780 41 750 700	41 57 650 670 670	580 650 660 660	74 450 650 630 630	71 98 600 620 620	67 240 370 370 370 370

Mass spectral data for the three main compounds produced upon complete ozonolysis of hydrocarbons of <u>B. braunii</u>

TABLE 35

-278-

A second ozonolysis experiment using a shorter reaction time was carried out. GLC analysis indicated the presence of unreacted hydrocarbons together with three main aldehyde products. Retention data for these aldehydes are listed in Table 34. In addition, a single, low molecular weight aldehyde was detected when using temperature programmed GLC. This compound was not detected in the previously described ozonolysis experiment.

Analysis by GC-MS (see Table 36) of the aldehyde and O-methyloxime fractions indicated that the three main components of the partial ozonolysis experiment were monoaldehydes containing one double bond. The molecular weights and GLC data, when compared with the dialdehyde series, were consistent with the double bond present in the monoaldehydes being the vinyl group. The low molecular weight aldehyde afforded a mass spectrum similar to that recorded by Gilpin and McLafferty for n-nonanal.³⁵⁹ The data for the corresponding Omethyloxime were also in agreement with this compound's being nnonanal, the mass spectrum being similar to that obtained from the O-methyloxime of an authentic sample of n-decanal.

-279-

ss spectral data for partial ozonolysis products from hydrocarbons of <u>B. braunii</u>

ļ						fracti							-	
		М	M-18	M-29	M-43	1.1-44]	<u>Sigh</u>	t mos	st al	ounde	ant :	ions	
<u>k</u> 1	Ion Abundance	266 11	248 9	237 7	223 10	222 9	55 1.000						29 460	
ak 2	Ion Abundance	294 18	276 12	-	251 8	250 7	55 1000						81 370	
ek 3	Ion Abundance	322 14		293 4	279 6	2 7 8 5	55 1000			69 540				•

0-Methyloxime fraction

		М	M - 15	M-31	M-41	M-43	Eight most abundant ions
ek 1	Ion Abundance	295 15	280 4	264 60	254 4	252 6	73 55 43 41 59 69 83 86 1000 390 360 340 280 240 200 150
ak 2	Ion Abundance	323 34	-	292 103	282 8	280 7	73 55 41 43 86 69 57 29 1000 380 370 335 210 180 140 130
ek 3	Ion Abundance	351 26		320 86	310 5	308 6	73 55 43 41 69 86 57 83 1000 350 300 290 170 160 140 115

Lower molecular weight compound detected by temperature programmed GLC

			Alde	ehyde									
M	M-1	M-18	M-28	M-44		Ē	light	t mos	st al	ounda	ant :	ions	,
142	141	124	114	98		57	41	43	29	44	56	55	27
2	4	40	50	270		1000]	1000	840	770	660	600	570	550
. 5	4	70	90	400		1000	700	680	360	560	630	500	260
	142	142 141 2 4	142 141 124 2 4 40	M M-1 M-18 M-28 142 141 124 114 2 4 40 50	142 141 124 114 98 2 4 40 50 270	M M-1 M-18 M-28 M-44 142 141 124 114 98 2 4 40 50 270	M M-1 M-18 M-28 M-44 142 141 124 114 98 57 2 4 40 50 270 1000 1	M M-1 M-18 M-28 M-44 Eight 142 141 124 114 98 57 41 2 4 40 50 270 1000 1000	M M-1 M-18 M-28 M-44 Eight mos 142 141 124 114 98 57 41 43 2 4 40 50 270 1000 1000 840	M M-1 M-18 M-28 M-44 Eight most all 142 141 124 114 98 57 41 43 29 2 4 40 50 270 1000 1000 840 770	M M-1 M-18 M-28 M-44 Eight most abundant 142 141 124 114 98 57 41 43 29 44 2 4 40 50 270 1000 1000 840 770 660	M M-1 M-18 M-28 M-44 Eight most abundant 142 141 124 114 98 57 41 43 29 44 56 2 4 40 50 270 1000 1000 840 770 660 600	M M-1 M-18 M-28 M-44 Eight most abundant ions 142 141 124 114 98 57 41 43 29 44 56 55 2 4 40 50 270 1000 1000 840 770 660 600 570

L			0-	Methyl	oxime							
	М	M-29	M-31	M-43	I	Sight	t mos	st al	ounda	ant :	ions	,
2	171	142	140	128	73	43	41	86	29	28	27	55
mdance	10	8	13	12	1000	330	320	200	190	180	140	140
								······				

-280-

Previously, it had been shown³⁸³ that the principal series of hydrocarbons from the green exponentially growing stage of <u>Botryococcus</u> <u>braunii</u> had the empirical formula C_nH_{2n-2} . Further, for the three main members of this series, it was found that n was 27, 29 and 31 with the order of relative abundance being $C_{29}H_{56} > C_{31}H_{60} > C_{27}H_{52}$. Since the i.r. data showed the presence of a vinyl group and a <u>cis</u>disubstituted double bond, it is possible to write a general formula (i) for these three hydrocarbons, as shown in Scheme 34. From the complete

 $CH_2 = CH - (CH_2)_x - CH = CH - (CH_2)_y - CH_3$ (i) GLC: Peak 1 $M \cdot W \cdot 376$: x + y 22 Peak 2 M.W. 404: x + y 24 Peak 3 M.W. 432: x + y Ozonolysis $[CH_2=0]*+0=CH-(CH_2)_x-CH=0+[0=CH-(CH_2)_y-CH_3]*$ (ii) Peak 1 [M.W. 268]: x 15 Peak 2 M.W. 296 : x 17 Peak 3 M.W. 324 : x = 19 Partial ozonolysis $CH_2 = CH - (CH_2)_x - CH = 0 + 0 = CH - (CH_2)_y - CH_3$ (iii) Peak 1 M.W. 266: x = Peak 2 M.W. 294: x = M.W. 142: y = 715 17 Peak 3 M.W. 322: x = 19 $CH_{2} = CH - (CH_{2})_{15} - CH = CH - (CH_{2})_{7} - CH_{3}$ (iv) $CH_2 = CH - (CH_2)_{17} - CH = CH - (CH_2)_7 - CH_3$ $CH_2 = CH - (CH_2)_{19} - CH = CH - (CH_2)_7 - CH_3$

*Not observed.

SCHEME .34

-281-

ozonolysis experiment, three dialdehydes were produced in the same relative proportions as were found for the three parent hydrocarbons. The mass spectral data in Table 35 showed that the formulae for these three aldehydes may be expressed as indicated (ii) and that X = 15, 17 and 19 for GLC peaks (1), (2) and (3) respectively. Thus, it would be expected that Y = 7 for all three hydrocarbons, although the presumed aldehyde n-nonanal could not be detected in this reaction mixture using GLC. Partial ozonolysis was found to produce four monoaldehydes, together with small amounts of the dialdehydes and some unreacted hydrocarbon. Three of these monoaldehydes were closely related to the dialdehydes (ii) and had the structures (iii). The fourth aldehyde, a more mobile substance on GLC, had the correct molecular weight (142 as the aldehyde and 171 as the O-methyloxime) for n-nonanal and thereby confirmed that y = 7. Thus the formulae for the three hydrocarbons represented by (i) are as shown in (iv). This method of analysis does not rigorously exclude the possibility of a branched-chain structure. Since fragmentation is most likely to occur at highly branched carbon atoms, ³⁹¹⁻³⁹² irregularities in the relative abundances of fragmentations, due to C-C fission of longchain molecules, would not be expected to occur in unbranched molecules. No such irregularities were observed in the spectra recorded. Further, the similarity between the mass spectra from the methyl esters and those recorded by Ryhage and Stenhagen 390 for $\alpha_*\omega_$ dicarboxylic acid methyl esters lends additional support for the view that these hydrocarbons from B. braunii are the unbranched, diunsaturated compounds heptacosa-1,18-diene, nonacosa-1,20-diene and hentriaconta-1,22-diene.

The presence of a terminal double bond (i.e. a vinyl group) in long-chain hydrocarbons of freshwater green algae has been previously reported for unnamed species of <u>Scenedesmus</u> and <u>Chlorella</u>.³⁹⁴ The

-282-

cis-disubstituted double bond in each of the hydrocarbons of <u>B. braunii</u> is located at the same position with respect to the terminal methyl group of the carbon chain as the double bond of oleic acid. This is consistent with the current theories on hydrocarbon biosynthesis via decarboxylation of the corresponding fatty acid $^{395-396}$ and suggests that, in <u>B. braunii</u> at least, decarboxylation of an α,β -unsaturated fatty acid may occur to produce the vinyl group. Oleic acid has been demonstrated as a major component of the fatty acid fraction of the green stage of <u>B. braunii</u> 384 but no evidence can be advanced to support the occurrence of long-chain α,β -unsaturated fatty acids in this organism, although such compounds have been isolated from pollen.³⁹⁷

-284-

CUTTCULAR LEAF WAXES :

CHENOPODIUM ALBUH L. AND LOLINE FERENCE L.*

Plant waxes have been the subject of increasing study in recent years.³⁶⁸⁻³⁶⁹ Investigations have included the isolation of novel compounds³⁶⁸⁻³⁷¹ and detailed studies of biosynthesis.³⁷² A recent report³⁷³ described the occurrence of long chain n-aldehydes in cabbage, apple and broccoli waxes and showed that reexamination of previously studied waxes can demonstrate the presence of unexpected lipid classes. As part of a study of the penetration of herbicides into leaves (by the Liverpool group*), the less familiar waxes of two plant species have been examined: the monocotyledon <u>Lolium Perenne</u> L. (perennial rye grass) and the di-cotyledon <u>Chenopodium Album</u> L. (fat hen).³⁵⁰

The separation of <u>Lolium perenne</u> L. wax by column chromatography was described in a preliminary communication by Hamilton and Power.³⁷⁴ In the present work, better resolution of the more polar lipids was obtained by TLC, which resulted in separation of the wax into five discrete fractions (Table 30). Fractions I and II contained the hydrocarbons and esters, respectively. Fraction III, which was not separated from Fraction II by column chromatography, gave a yellow colour when treated with 2,4-dinitrophenyl hydrazine reagent. The composition of this fraction from <u>L. perenne</u> and <u>C. album</u> is described here.

* Preliminary practical work was carried out by Dr. R.J. Hamilton, Miss J.E. Allebone and Mr. D.M. Power (Liverpool Regional College of Technology) and Dr. B.A. Knights.

* Solvent system: petroleum ether, (b.p. 40-60°): ether 19:1.

TABLE 31

Retentic	m indic	ces (I) ar	nd mass s	pectral data	a (Molecula	Retention indices (I) and mass spectral data (Molecular ion M ⁺) for Components of Fraction III (L. perenne L) and corresponding derivatives	Componer	nts of Fra	ction III ((L. peren	ne L) an	id correspo	onding de	rivatives
Fraction III	in III	Autl aldej (from	Authentic aldehydes (from grape)	Fraction III O-Methyloximes	on III vloximes	Reduced fraction III	Standard n-alcohols	Standard n-alcohols	Reduced fraction III acetates	ced n III tes	Stan n-alo ace	Standard n-alcohol acctates	Reduced fraction III TMSi ethers	n III ethers
9			(E		(ii)	(iii)	(iii)	(1	(111)	(Ü	(iii)	(II)	(
I	Σ	I	Chain length	Ι	M	I	Π	Chain length	I	¥	I	Chain length	Ι	M ¹
							2580 2780	nC22 nC24			2730 2930	nC22 nC24		
2960	380	2960	nC ₂₆	3015 3075	409	2980	2990	nC ₂₆	3135	424	3140	nC26	2935	454 *
3160	408	3160	nC ₂₈	3215 3280	437	3180	3190	nC ₂₈	3335				3140	482*
3360	436	3360	nC ₃₀	3420	465	3380			3535				3340	510*
									3735				3540	
(i) 1.5 (ii) 3 % (iii) 1.5 * Mole	% 0V- % 0V- % 0V- cular io	-17 7 ft. -17 9 ft. -17 9 ft. -17 7 ft.	 (i) 1.5 % OV-17 7 ft. column 270°C. (ii) 3 % OV-17 9 ft. column 246°C. (iii) 1.5 % OV-17 7 ft. column 250°C. * Molecular ion not recorded. Ion of 	:70°C. 46°C. 50°C.	st mass reco	 (i) 1.5 % OV-17 7 ft. column 270°C. (ii) 3 % OV-17 9 ft. column 246°C. (iii) 1.5 % OV-17 7 ft. column 250°C. * Molecular ion not recorded. Ion of highest mass recorded was (M - 15). 	15).							

ş

P. D. K. A. P. W. COMPARING M. Man. No. 71, 101

化合物 化合物 经公理人 化基苯基甲基基甲基甲基 化氯化氯化氯化 化分子 副子

-285-

Experimental

Fraction III: L. perenne

Fraction III was present to the extent of 9.1% by weight of the total wax. The presence of aldehydes was indicated by infrared spectroscopy (carbonyl absorption at 1725 cm⁻¹) and nuclear magnetic resonance (NMR) spectroscopy (triplet at 0.3 :CHO and doublet at 7.7 : CH₂CHO). The absence of ethylenic and acetylenic unsaturation was confirmed by NMR and silver nitrate TLC.

Analysis by GLC indicated the presence of three major and six minor components whose retention data (Table 31) corresponded to the values for authentic n-aldehydes, both synthetic³⁷⁵ and extracted from grape fruit wax.³⁷⁶ The components of Fraction III were reduced to the corresponding alcohols, which were analysed by GLC both free and as their acetate and trimethylsilyl ethers. These results (Table 31) confirmed the identity of the major components as n-C₂₆, n-C₂₈ and n-C₃₀ aldehydes with the minor components as homologues.

Fraction III wax material was treated in ethanol solution with excess sodium borohydride at 50° for 1 hour. After acidification (HCl) the mixture was extracted with ether, the ethereal solution dried (MgSO₄) and solvent removed under vacuum. The reduced material was purified by TLC.

The free aldehydes, their O-methyloximes, and the acetates and TMS ethers of the alcohols obtained by reduction of the aldehydes were examined by GLC and GC-MS. Results are summarised in Table 31. All of the mass spectra were consistent with the structures indicated.

Fraction III: C. album

Fraction III was present to the extent of 10.6% by weight of the total wax. Infrared and NMR spectroscopy gave similar results to those obtained for <u>L. perenne</u>, indicating the presence of aldehydes. However, absorption in the infrared at 1738 cm⁻¹ and 1250 cm⁻¹

-286-

suggested the presence of an acetate group. The fraction from <u>C</u>. <u>album</u> was analysed by GLC and proved to be more complex than that from <u>L. perenne</u>. The retention data (Table 32) suggested that two homologous series of compounds were present. The first series (80.8% of the total) contained thirteen members (peaks 1, 2, 3, 6, 7, 9, 10, 12, 13, 15, 16, 18 and 20) with peak 15 predominating, and the second series consisted of six members (peaks 5, 8, 11, 14, 17 and 19). Members of the principal series had identical retention data to the aldehydes in the corresponding <u>L. perenne</u> fraction. GLC retention data for the other series corresponded with that obtained for authentic acetates of n-alcohols.

Spectra were obtained for peaks 11, 12, 14, 15, 17 and 18. Peaks 12, 15 and 18 gave spectra identical to those of n-hexacosanal, n-octacosanal and n-tricontanal. Peaks 11, 14 and 17 gave molecular ions at $\underline{m/e}$ 396, 424 and 452 and major fragment ions at $\underline{m/e}$ 336, 364 and 392, respectively. These data are consistent with the formulation of peaks 11, 14 and 17 as acetates.

The components of Fraction III, after treatment with O-methylhydroxylamine were re-examined by GC-MS. Peaks 11, 14 and 17 were unchanged, again giving typical acetate fragmentations. The aldehydes (peaks 12, 15 and 18) formed the expected O-methyloximes.

It has been shown that surface waxes of <u>Lolium perenne</u> L. contain a mixture of nine aldehydes with chain lengths $n-C_{25}-n-C_{34}$ and that n-hexacosanal is the major component. Similarly, <u>Chenopodium album</u> L. wax contains thirteen aldehydes, with n-octacosanal as the principal component. Reports of the occurrence of n-aldehydes in plant waxes are becoming more frequent^{373,376} and it has been suggested³⁷⁶ that the use of alumina in the past, for the chromatographic separation of waxes, has led to destruction of the aldehydes. Kolattakudy³⁷⁷ recently demonstrated that administration of ¹⁴C-labelled precursors

-287-

	<i>lbum</i> frac alkanes (r fraction II and acetates			<i>enne</i> frac Idehydes	
, I	Chain length	Area %	Peak No.	I	Chain length	Area %	I	Chain length	Area %
2200	nC22	0.6	1	2170	nC18	0.3			
2300	nC ₂₃	1.0	2	2280	nC19	0.1			
2400	nC24	0.5	3	2380	nC_{20}	0.1			
2500	nC25	2.7	4	2500		0.1			
2600	nC_{26}	0.5	5	2540	nC20	Trace			
2700	nC27	14.2	6	2580	nC22	0.4			
2800	nC28	1.4	7	2680	nC23	0.2			
2900	nC29	64.6	8	2730	nC22	0.1			
3000	nC30	1.1	9	2760	nC ₂₄	2.9			
3100	nC31	12.8	10	2870	nC_{25}	0.6	2860	nC25	1.6
			11	2930	nC24	3.3			
			12	2960	nC26	13.6	2960	nC_{26}	55.7
			13	3060	nC27	1.2	3060	nC27	1.2
			14	3120	nC26	4.7			
			15	3160	nC ₂₈	46.0	3160	nC28	22.3
			16	3260	nC ₂₉	0.3	3260	nC29	Trace
			17	3320	nC28	10.5			
			18	3360	nC30	14.6	3360	nC30	15.8
			19	3510	nC30	0.6			
			20	3560	nC32	0.3	3560	nC22	1.7
							3760	nC ₃₄	1.5
							3960	nC36	Trace
		100.0				100.0			100.0

.

•

TABLE 32 GLC data for C. album and L. perenne waxes

(a) 1 % OV-17 at 230°; 5' column
(b) 1 % OV-17 at 240°; 5' column
(c) 1 % OV-17 at 260°; 5' column

to the leaves of <u>Brassica</u> spp. resulted in the incorporation of the isotope into a fraction whose composition was unknown. Schmid and Bandi³⁷³ have shown that this fraction contained aldehydes and they drew attention to the fact that the major components of the alkane, ketone and secondary alcohol fractions of cabbage wax were C_{29} compounds, whereas n-triacontanal was the major aldehyde. Although no direct precursor/product relationship could be demonstrated, it was suggested that aldehydes might be implicated in alkane biosynthesis.

The results presented here show no obvious biosynthetic correlation between aldehydes and n-alkanes. Thus the major aldehydes in <u>L. perenne and C. album</u> are n-hexacosanal and n-octacosanal respectively, whilst the major alkane in both species is n-nonacosane. Furthermore, a similar situation has been reported for grape wax. It is, therefore, possible that the apparent correspondence in chain length between the major components of the aldehyde and hydrocarbon fractions in cabbage and apple may be fortuitous.

In addition, the fraction from <u>C. album</u> was found to contain acetates of alcohols with even-numbered chain lengths $n-C_{22}-n-C_{30}$. We believe that whilst acetates have not been reported in plant waxes, it is possible that they may be of much wider distribution than has been realised, since saponification has often been the first step in previous workers' analysis.

-289-

V

AIR POLIUTION

•

GC-LIS AMALYSIS OF AIR POLLUTANTS :

A FEASIBILITY STUDY

A preliminary investigation has been carried out to explore the possibilities of carrying out small scale analyses of organic constituents of particulate air pollution. The method used involved solvent extraction, TLC, GLC and GC-MS.

Experimental

A total of 10 g. of dust was collected from the filters of the air-conditioning units ("Airking Aries" Model; Stewart King Industries Ltd., Waterlooville, Hants.) in the GC-ES laboratory of this Department. These units had only recently been installed and the filters had not previously been cleaned: consequently, they were relatively "clean". The dust was removed from the filters only by gentle tapping so as not to collect particles of filter material (about 10-20% of the dust was collected for study).

1 g. of the dust was shaken with 7.5 ml ether, allowed to stand at room temperature for 0.5 hr, and centrifuged. The ether extract was concentrated to a volume of 0.5 ml under a stream of nitrogen, and applied to a TLC sheet (Chromar 1000). Six fractions were obtained by development with n-heptane (Table 37). The TLC sheet was cut up and individual fractions were extracted with chloroform/methanol. Yields are given in Table 37.

Fraction 1 was examined by GC and GC-MS and found to contain a series of n-alkanes: $C_{20}H_{42}$ to $C_{35}H_{12}$, with $n-C_{30}H_{62}$ predominating. Aliphatic hydrocarbons have been identified in other dust samples³⁹⁸ during a study by Gelpi <u>et al</u>. on the ubiquity of hydrocarbons in nature.

Fraction 3 gave many peaks on GLC, with retention indices in the range 2000-3500. On examination by GC-MS, the majority of these

TABLE 37.

TLC separation of ether extract of filter dust

Fraction 1	absorbed U.V.	40 mg
=	fluoresced blue under U.V.	0.3 mg
	visible yellow	0.7 mg
	visible yellow	0•2 Bg
= 5	fluoresced "white" under $U_{\bullet}V_{\bullet}$	3.6 mg
9 =	absorbed U.V.	0.8 mg

components were found to give extremely intense molecular ions, with little additional fragmentation. They are probably polycyclic aromatic hydrocarbons. There is considerable interest in polycyclic aromatic hydrocarbons, because of their potential carginogenic properties, and various procedures have been devised for their identification.³⁹⁹ They have been found in the atmosphere in some large American cities,⁴⁰⁰ Sydney,⁴⁰¹ Merseyside,⁴⁰² Newcastle-on-Tyne,⁴⁰³ and Naples.⁴⁰⁴

In an attempt at characterising the suspected polycyclic aromatic hydrocarbon substituents of the dust, several authentic samples (CLXIV-CLXXV) (from the collection of Prof. Sir James Cook, by courtesy of Prof. J.D. Loudon) were examined by TLC (Table 38), GLC and GC-MS (Figs. 102-113). The multiple elution - TLC technique devised by Petrowitz⁴⁰⁵ afforded no better resolution than the conventional single elution method when chromar 1000 sheet was used.

Component 1 gave a mass spectrum with an intense ion $(\underline{m/e} \ 215, 65\%)$ corresponding to methyl radical loss from the molecular ion $(\underline{m/e} \ 230, 100\%)$. This would indicate a structure such as 10-methylbenzanthrene (CLXXVI).

Component 2, with molecular ion at $\underline{m/e}$ 228 (100%), gave no significant fragment ions. It may be an isomer of chrysene (CLXX).

Component 3 provided a molecular ion at $\underline{m/e}$ 242 (100%) which indicates a molecular formula $C_{19}^{H}_{14}$. No reasonable multihexagonal aromatic ring structure is possible for this compound.⁴⁰⁶

In the spectrum of component 4, there is an ion of $\underline{m/e}$ 239 (35%) which may be formed by loss of H0° from the molecular ion ($\underline{m/e}$ 256, 100%). A possible structure for this component is 10-hydroxynaphtho-[2'.7':1.8]-anthrene (CLXXVII).

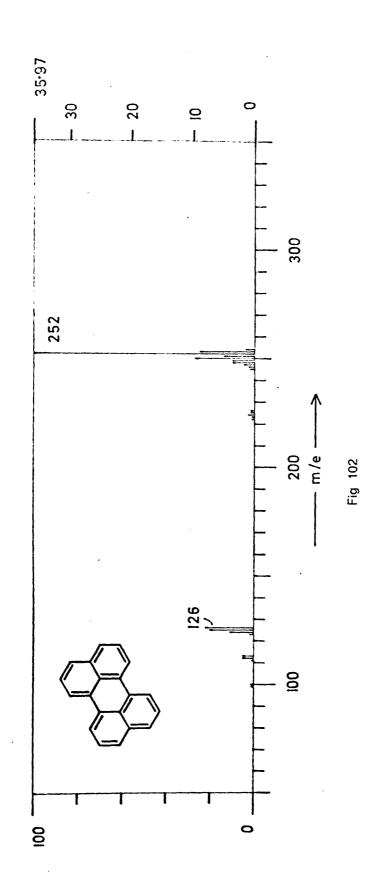
Component 5 (molecular ion: $\underline{m/e}$ 252, 100%) has mass spectrum and retention index similar to those of perylene (CLXIV), 1,2-benzpyrene

6

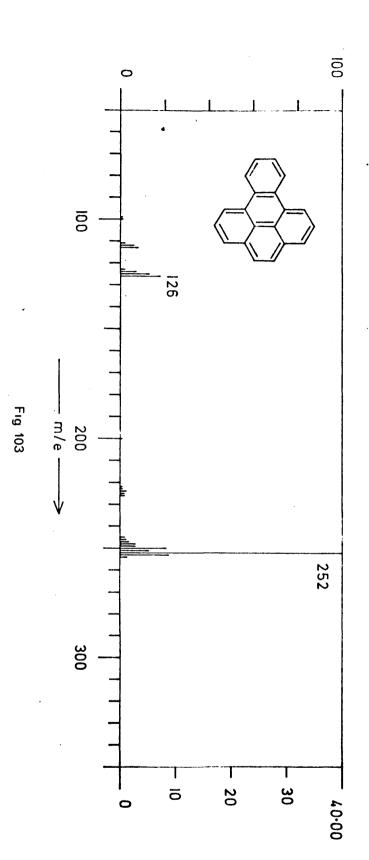
-293-

WELE 38.

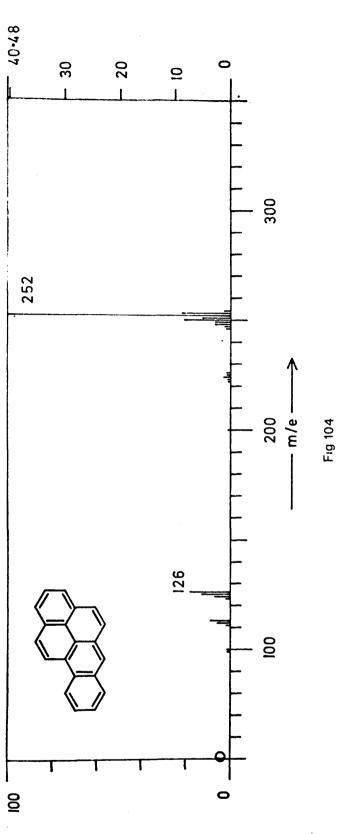
T

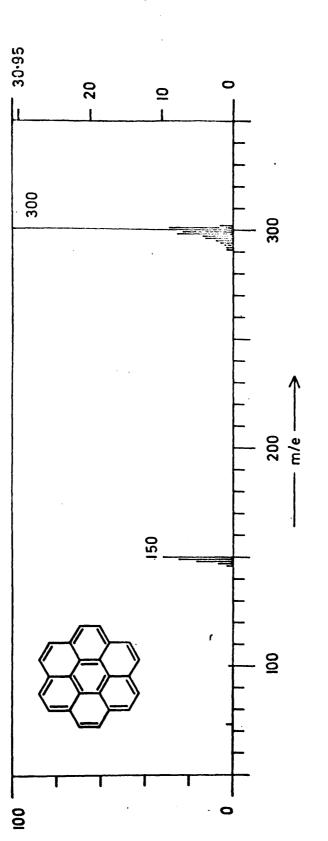

	СН	 252	2680	0.40	0.64	0.78
Perylene (CLXIV) 1,2-Benzpyrene (CLXV)	° ₂₀ ^H 12 ° ₂₀ ^H 12	252	2680	0.46	0.68	0.78
3,4-Benzpyrene (CLXVI)	C ₂₀ H ₁₂	252	2680	0.46	0.68	0.78
Coronene (CLXVII)	C ₂₄ H ₁₂	300	3310	0.44	0.68	0.76
l,2-Benzanthracene (CLXVIII)	C ₁₈ H ₁₂	228	2330	0.48	0.72	0.82
l,2-Benzonaphthacene (CLXIX)	C ₂₂ H ₁₄	278	3010	0.34	0.54	0.66
Chrysene (CLXX)	C ₁₈ H ₁₂	228	2350	0.46	0.68	0.80
l,2-Dimethylchrysene (CLXXI)	°20 ^H 16	256	2580	0.42	0.66	0.78
l,2:5,6-Dibenzanthracene (CLXXII)	C ₂₂ H ₁₄	278	3000	0.34	0.52	0.64
1,2:7,8-Dibenzofluorene (CLXIII)	C ₂₁ H ₁₄	266	2710	0.36	0.56	0.68
10-Methyl-1,2-benzanthracene (CLXIV)	C ₁₉ H ₁₄	242	2480	0.44	0.66	
9,10-Dimethyl-1,2:5,6- dibenzanthracene (CLXXV)	°24 ^H 18.	306	3200	0.34	0.52	0,66

^{*} A = single elution


5

B = double elution


C = triple elution


. `

-296-

-297--

-298-

Fig 105

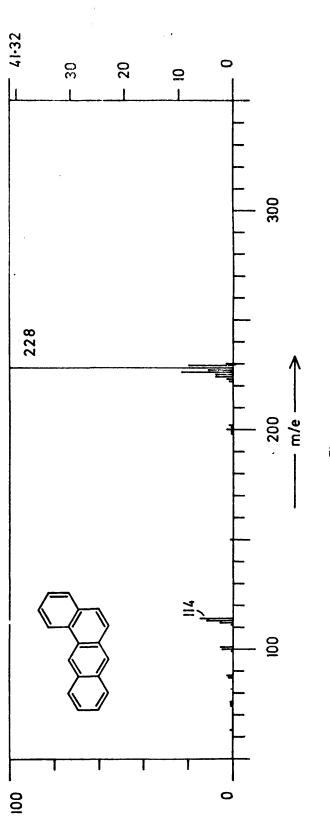
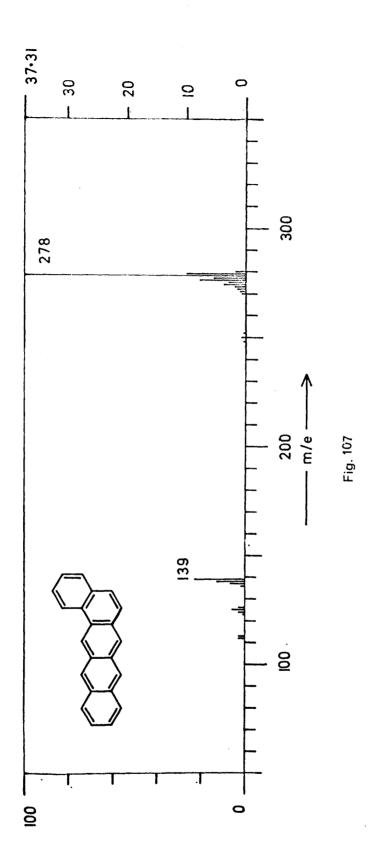
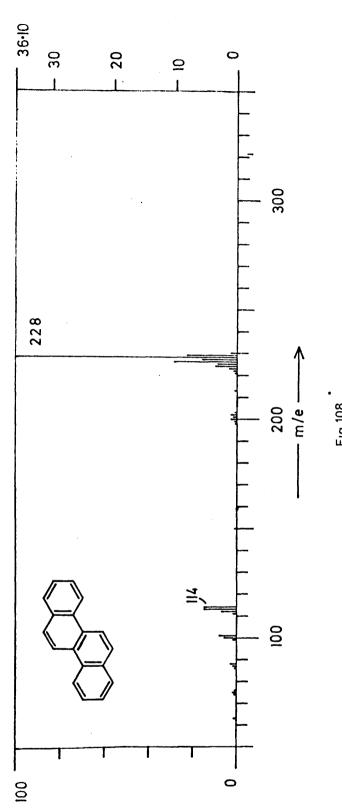
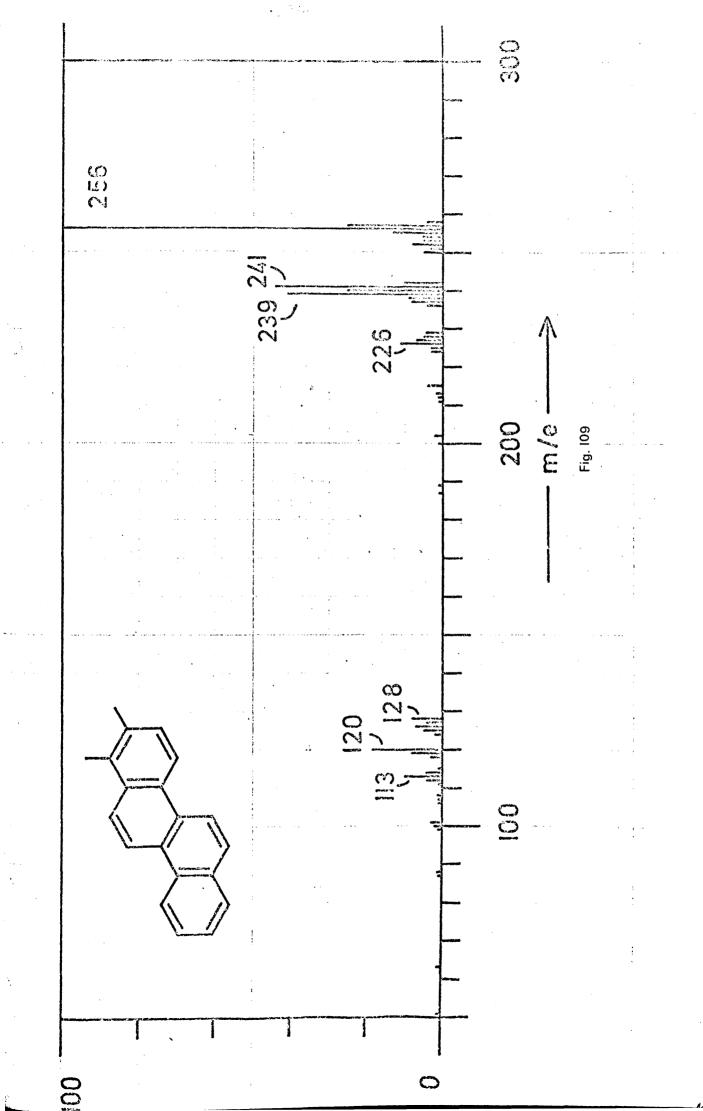
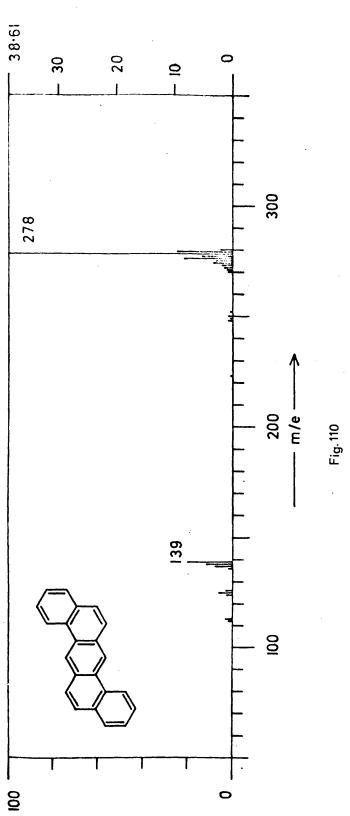
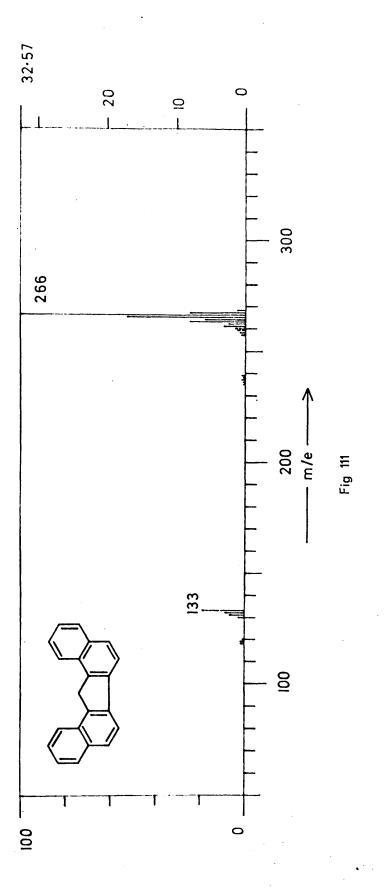



Fig. 106

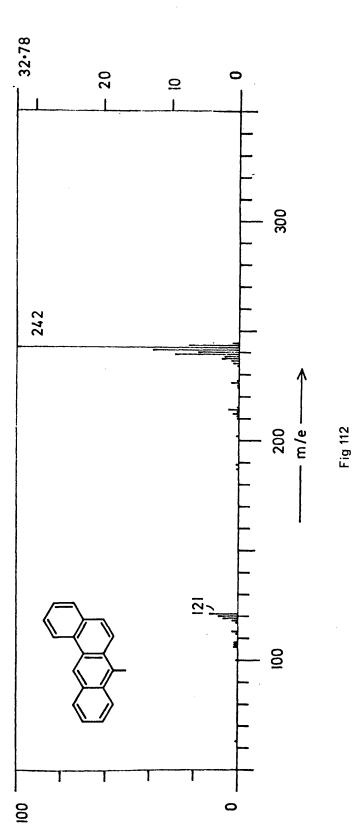
-299-

-300-


Fig 108

-301-



-303-

-304-

-305-

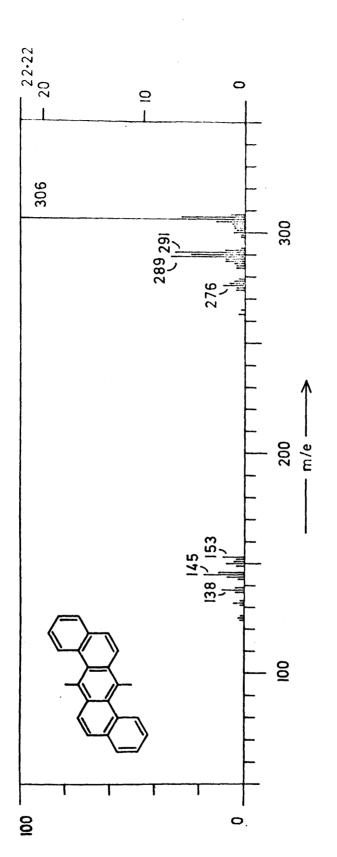
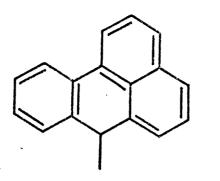
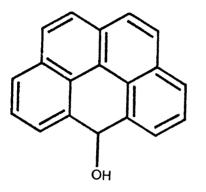
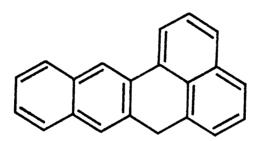
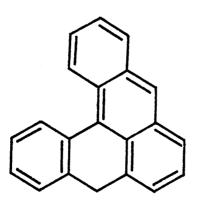




Fig 113



CLXXVI


•

CLXXVII

CLXXVIII

CLXXIX

(CLXV) and 3,4-benzpyrene (CLXVI).

Component 6 gives an intense peak at $\underline{m/e}$ 252, but this may be the "tail" of component 5. In fact, it was observed that CLXIV-CLXVI "tail" rather badly on GLC. An intense ion is observed at $\underline{m/e}$ 263 which may be ascribed to a molecular ion of composition $C_{21}H_{16}$.

The mass spectrum of Component 7 (molecular ion; $\underline{m/e}$ 266, 100%) suggests a dibenzanthrene (<u>e.g.</u> CLXXVIII) or coeranthrene (CLXXIX) structure.

Fraction 5 gave two major peaks on GLC, but these could not be readily identified by GC-MS: ions of $\underline{m/e}$ greater than 400 were observed and molecular ions were not distinct.

Conclusions

This brief study has shown that it is possible to analyse fairly small quantities of pollutants in a short time. It would thus be suitable especially for comparative studies.

It has been demonstrated that the air conditioner filters contain appreciable quantities of n-alkanes and significant amounts of polycyclic aromatic hydrocarbons. This filter dust was chosen because it was a ready supply of material suitable for a preliminary feasibility study. It is doubtful, however, whether dust collected in a chemistry laboratory is representative of city air pollution. Further investigations could be carried out on samples collected elsewhere, possibly with a portable vacuum cleaner fitted with a glass wool filter.

More efficient and selective extraction and "clean-up" procedures could be devised. Liberti <u>et al.</u>⁴⁰⁴ carry out Soxhlet extraction with cyclohexane andremove polycyclic aromatic hydrocarbons with nitromethane. It was found that the authentic samples partially decomposed during TLC, probably with formation of peroxides. Better results may be obtained in the absence of light. GLC was carried out using OV-1 as stationary phase, effecting separation mainly by molecular

-308-

weight differences. Consequently, perylene and the benzpyrenes were not resolved. Using OV-17, marginally different retention indices were observed for these isomers, but they were not resolved in admixture. SE-52 has been suggested 407 as a more selective phase and the additional phenylsiloxane groupings present in OV-25 may be expected to improve distinctions between isomeric polycyclic aromatic hydrocarbons.

With improved extraction and separation methods, more sophisticated investigations could be carried out by GC-MS. In particular, components of selected molecular weights could be located by single ion monitoring. Fuller interpretation of the mass spectral data would be possible if a wider range of reference samples were examined.

VI

_

DATA HANDLING

DATA-WANDLING AND GC-MS

The major practical problem of GC-MS analysis is a consequence of a factor contributing to the efficiency of the technique: <u>viz</u>., the rate at which data are produced. It is not unusual for hundreds of spectra to be obtained in the course of one day, particularly if complex natural product mixtures are being investigated. The difficulties formerly encountered in assigning mass numbers to peaks in the spectra have now largely been overcome. (For a brief discussion, see the following section). There remains the onerous task of converting the data to a form in which they can be readily utilised (as tabulated ion abundances, or as line diagrams) and of correlation and interpretation of the spectra. These procedures are efficiently effected with the aid of a digital computer.

At the outset of this project, comparatively little work had been done on computerised data handling systems for mass spectrometry. Semi-automatic devices had been devised for measuring and drawing mass spectra, and these were capable of adaptation to provide punched paper tape for off-line computer processing.⁴⁰⁸⁻⁴¹⁰ An alternative approach involved recording of the data in analog form for processing by a computer with an analog-to-digital converter (ADC),⁴¹¹ or recording of digitised data.⁴¹²⁻⁴¹³ It was, however, considered desirable to carry out data acquisition and processing on-line and in real-time.

At this time, Hites and Biemann had published details of a dataacquisition system which involved regularly repetitive scanning of spectra throughout chrometographic runs.⁴¹⁴ Mass calibration was performed by comparison of arrival times (at the detector) of ions in spectra of known and of unknown compounds. In such a system, much information which is largely redundant must be processed if spectra of only the components of mixtures under investigation are required,

-311-

as is usually the case in GC-MS analysis. Moreover, large-scale computing facilities are required for all but the briefest of GC-LIS runs (Hites and Biemann used an IBM 1800 computer with a relatively large magnetic disc store). Ryhage and co-workers at the Karolinska Institutet in Stockholm were, at this time, investigating the feasibility of incorporating the LKB 9010 mass marker, which they had earlier developed, into a data-handling system in which only one intensity value per mass number would be recorded. As a result of initial discussions with Dr. R. Ryhage, Dr. S. Wikström and Mr. S. Melkersson (January 1968), it was decided to adopt this system. (A generous grant from the Science Research Council provided for the purchase of a mass marker unit). A major factor which influenced this decision was the limited nature of on-line computing facilities available. No dedicated computer was available for mass spectral data acquisition and processing, but we were offered the part-time use of a PDP-8 computer (linked directly to a KDF 9 computer) situated in the Computing Services Department (at that time, part of the Department of Computing Science). This led to the initiation of the required computer programs and to the installation of the necessary cables and interfacing components during 1968-70. Dr. R.N. Stillwell, a visiting worker on leave from Baylor College of Medicine, Houston, U.S.A. (July-September 1969) made a major contribution to the programs, while valuable advice and help was provided until September 1970 by Mr. A.D. Wilkinson of the Department of Computing Science.

Two output signals are produced by a gas chromatograph-mass spectrometer: mass spectra and TIC. The latter can be constructed from the former so, in general, only the mass spectral output need be measured. Spectra may be scanned from $\underline{m/e}$ 10 to 1,000 in 1 second, but the scan rate is usually somewhat lower. High frequency electrical noise can be filtered from the signal via a capaciter.

-31.2-

Noise of frequency less than 120 cps, ascociated with mechanical vibration and the A.C. mains supply, cannot be removed without also damping the spectral record and is a factor limiting sensitivity. Although tabulations of spectra rarely contain significant ions of relative abundance less than a few percent of that of the base peak, it is desirable to record spectra with a dynamic range of about 10,000 to take account of components of widely varying quantity throughout the chromatogram.

Any effective system of data handling should be capable of carrying out all or the majority of the operations which are normally performed manually. A comprehensive system would collect data concerning mass numbers, ion abundances, and metastable ions from spectra, together with their standardised retention times. The output should comprise "normalised" tabulations and line diagrams of individual spectra, with background spectra subtracted and facilities for scale expansion and/or contraction. It is also desirable to automate the "bookkeeping" aspect of GC-MS when large numbers of spectra are handled. Records of scan number, retention time (or retention index) and salient mass spectral data (<u>e.f.</u> base peaks or molecular ions) should be compiled to assist correlation of spectra. A degree of dialogue between the user and the system is desirable at this stage.

In designing the system for the Glasgow University GC-MS Unit, priority was given to development of an effective means of data acquisition with the available hardware with a view to later expansion if and when further facilities become available. The PDP-8 computer used was fitted with a single-channel ADC with no multiplexer. Pulses from the mass marker were carried to the interrupt bus of the PDP-8. The scan start and stop were signalled to the computer by superimposing a potential of -10 V. on the analog channel: this line was at OV. between scans, and the mass spectrum was added to the -10 V. signal during scans. These values were convenient since the analog

-313-

output from the LKB 9000 was within the range 0 to 10 V., whereas the ADC on the PDP-8 accepted signals within the range -10 to 0 V.

It was not possible to obtain a grounded output directly from the LKB 9000, so an interface was constructed (based on a design kindly supplied by S. Melkersson, with modifications suggested by J.A. Hardy) incorporating an active filter network of variable bandwidth. This interface also incorporated a relay, operated in turn by the "scan start" relay in the LKB 9000 control unit, which was used to apply -10 V. to the output during scans.

The PDP-8 was programmed to carry out an initial data reduction, and to place on file a set of ion abundances correlated with nominal mass numbers. A teletype unit was provided in the GC-MS laboratory to permit a degree of remote control over the PDP-8 during the data acquisition phase. It is envisaged that the system will be further developed so that subsequent data handling and output (on line printer, incremental plotter, and magnetic tape) could be performed by the KDF 9 or other large computer.

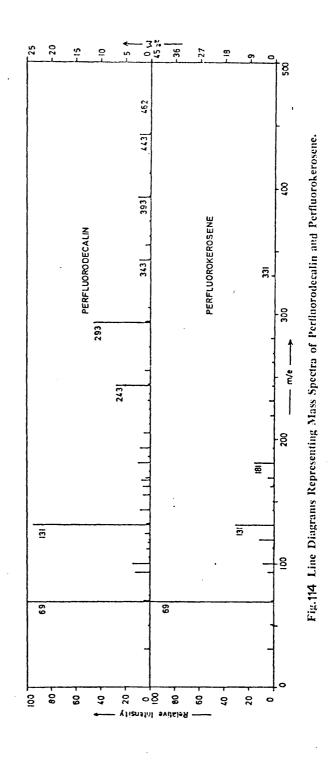
The viability of the system was demonstrated in September 1969, but work was virtually suspended pending the appointment of a full-time programmer (Dr. J.A. Wilson) in October 1970. In the meantime, as a result of further discussions with Drs. Ryhage and Wikström, and Mr. G. Jälkemo (LKB Produkter AB), a more heavily shielded coaxial cable was installed between the LKB 9000 and PDP-8 in an attempt to reduce noise.

There is no provision in the present system for the recognition of metastable ions or ions of non-integral $\underline{m}/\underline{e}$ value. This could be effected only with a more complex program and a computer with more core-storage.

Mass spectra are usually produced in hard copy and stored in tabulated form and/or as line diagrams. This method is only wholly suitable if relatively few spectra are involved: otherwise, information

-314--

retrieval tends to be slow and inefficient. It has been suggested that spectra be stored on edge-punched cards,^{167,415} but rapid sorting is not possible with large numbers of cards. The use of IEM punched cards and a mechanical sorter⁴¹⁶ has been found to be impracticable.⁴¹⁷ Initial trials with optical coincidence systems,⁴¹⁷⁻⁴¹⁸ whereby large numbers of partial spectra are stored on relatively few cards, appear to show promise.


With the increasing availability of large collections of reference spectra, it is apparent that computer-assisted retrieval systems are necessary. Various approaches have been discussed, ⁴¹⁹⁻⁴²¹ and the methods now employed appear to be quite satisfactory. ⁴²² Procedures have been devised for computer-assisted characterization of spectra which do not require full searches of reference spectra, ⁴²³⁻⁴²⁴ and a recent innovation has been the application of computerized learning machines to the problem. ⁴²⁵ Even though GC-MS usually provides - spectra of relatively "pure" components, computers can be used to identify components of mixtures from their mass spectra. ⁴²⁶⁻⁴²⁷

PERFLUORODECALIN AS & MASS CALIBRATION STANDARD FOR

LOT RESOLUTION MASS SPROTRA

In low-resolution mass spectrometry, the integral mass of each peak has to be determined beyond doubt. Several automatic mass markers are commercially available, but each is designed for use only with a particular type of instrument. A more widely applicable method of mass calibration involves the simultaneous introduction of a reference standard into the spectrometer. The most commonly used reference standards are the perfluoroalkanes. 428However, there is a predominance of ions of low mass in their spectra, and a relatively high partial pressure of standard must be employed if the peaks of higher $\underline{m/e}$ are to be used for mass calibration. The detector, amplifier, and recorder will then be overloaded at the low mass end of the spectrum. Other compounds such as heptacosafluorotrin-butylamine and perfluoroalkyl-s-triazines have been used 75,429,430 but these suffer from the same disadvantage: the perfluoroalkyl substituents readily undergo cleavage to form fragment ions of low mass.

In a search for more suitable markers, the mass spectrum of a bicyclic fluorocarbon, commercial perfluorodecalin, was examined (Fig. 114).⁴³¹ Although the ion of $\underline{m/e}$ 69, which may be ascribed to CF_3^+ , is the base peak, its relative contribution to the total ionization is much less than for the standards previously employed because it cannot be produced by simple fragmentation. The mass range extends conveniently to $\underline{m/e}$ 462 (molecular ion), and peaks are well distributed throughout the spectrum. At high concentrations a peak is observed at $\underline{m/e}$ 481, due to an ion-molecule reaction in the ion source. Several metastable peaks are present, and these are an aid to the rapid location of fragment peaks. Perfluorodecalin is a liquid with sufficient volatility at room temperature to obviate

.....

-317-

the need for a heated inlet system; it can be introduced from a cold reservoir fitted with a suitable valve and pumping line. It is chemically inert and can be pumped away from the spectrometer within seconds.

Perfluorodecalin is accordingly a suitable calibration standard for use in mass spectrometry, particularly with low resolution instruments which are extensively used for the mass range $\underline{m}/\underline{e}$ 1-500. Perfluorodecalin has been used in this department and elsewhere for several years as a reference for accurate mass measurement by the peak matching method, its advantages in this respect being essentially as outlined above.⁴³²

EXPERIMENTAL

The perfluorodecalin was obtained from Ralph Emanuel Ltd, Middlesex, England.

The mass spectrum was obtained using an LKB 9000 mass spectrometer under the following conditions: electron energy, 70 eV; ion source temperature, 270° C; accelerating voltage, 3.5 kV. The sample was introduced from a cold glass reservoir fitted in place of the gas chromatograph column.

-318-

VII

CONCLUSIONS

.

CONCLUSIONS

The work described in this thesis was based on applications of the combined technique of GC-MS to a variety of topics in organic chemistry and biochemistry. The research included studies of the scope of the technique (based on model compounds) and applications to actual analytical problems.

Following the introduction, a section of the thesis was devoted to work on steroids. Results obtained with progesterone and testosterone analogues confirmed the value of GC-MS in distinguishing isomers. The use of TMS ether derivatives in GC-MS was well established, but the advantages of (chloromethyl)dimethylsilyl ethers as derivatives for GC-MS had been little explored. The utility of these derivatives wes illustrated and discussed for the example of 17α -alkyl- 17β -hydroxy steroids. The mass spectral fragmentations of TMS ether derivatives of androst-5-en-3 β -ol analogues and of other unsaturated 3 β -hydroxy steroids have been investigated. The results of this survey were applied to the characterisation of yeast sterols, sterols from a bacterium (<u>Methylococcus capsulatus</u>) grown on methane, steroidal drug metabolites, and a steroidal enzyme-reduction product.

Corticosteroids cannot be examined directly by GC-MS because of the low thermal stability of the side chain. Earlier work had shown that their boronate derivatives are quite stable. The mass spectra (recorded by GC-MS) of representative corticosteroid boronates were discussed in respect of their use in structural assignments.

-321-

Similar difficulties are encountered in the GC-MS of β -hydroxy amines because of their relatively high polarity and low thermal stability. The use of boronate derivatives in the characterisation of catecholamines and related β -hydroxy amines by GC-MS was discussed, and a more detailed investigation of the mass spectral fragmentations of the derived 1,3,2-oxazaborolidines has been carried out.

<u>O</u>-methyloxime (MO) derivatives are of value in the analysis by GC-MS of aldehydes and ketones. Salient features of the spectra of MO derivatives of aliphatic aldehydes and ketones were enumerated. Aldehydes from the cuticular leaf waxes of <u>Chenopodium album</u> L. and <u>Lolium perenne</u> L. have been identified by GC-MS of their MO derivatives. Unsaturated aliphatic hydrocarbons from the green form of the freshwater alga <u>Botryococcus braunii</u> have been ozonised and cleaved to form aldehydes which were identified as their MO derivatives. The structures of the hydrocarbons were thus inferred.

An exploratory study of the use of GC-MS in the analysis of air pollutants was carried out. The gas chromatographic and mass spectrometric properties of some polycyclic aromatic hydrocarbons were surveyed and a number of these compounds were tentatively identified in dust collected from air conditioner filters.

Perfluorodecalin was found to be a convenient mass calibration standard for low-resolution mass spectra. The need for, and problems associated with, computer-assisted data handling in GC-MS were discussed. The development of an on-line real-time data acquisition system has been described.

-322-

VIII

REFERENCES

.

REFERENCES

- W.W. Coblentz, "Investigations of Infrared Spectra," publication No. 35, Carnegie Institute of Washington, 1905. Republished by the Coblentz Society and the Perkin-Elmer Corporation, 1962.
- 2. L.J. Bellamy, "Infrared Spectra of Complex Molecules," Wiley, New York, 1958.
- J.A. Pople, W.G. Schneider, and H.J. Bernstein, "High-Resolution Nuclear Magnetic Resonance," McGraw-Hill, New York, 1959.
- 4. H. Budzikiewicz, C. Djerassi, and D.H. Williams, "Mass Spectrometry of Organic Compounds," Holden-Day, San Francisco, 1967.
- 5. H.H. Jaffe and M. Orchin, "Theory and Applications of Ultraviolet Spectroscopy," Wiley, New York, 1962.
- 6. W.H. McFadden, <u>Separation Sci.</u>, 1966, <u>1</u>, 723.
- 7. R.A. Saunders, J.Phys.E: Sci.Instrum., 1968, 1, 1053.
- 8. M. Tswett, Ber.deut.bot.Ges., 1906, 24, 316, 384.
- 9. A.I.M. Keulemans, "Gas Chromatography," Reinhold, New York, 1959.
- 10. N. Brenner and R.J. Olson in "The Practice of Gas Chromatography," ed. L.S. Ettre and A. Zlatkis, Interscience, New York, 1967, p.1.
- 11. Mass Spectrometry Data Centre, "Eight Peak Index of Mass Spectra," Her Majesty's Stationery Office, London, 1970.

-324-

· · · · ·

- 12. J.T. Watson, Ph.D. Dissertation, M.I.T., Cambridge, Mass., 1965.
- 13. J.T. Watson and K. Biemann, <u>Analyt.Chem</u>., 1964, <u>36</u>, 1135.
- 14. J.T. Watson and K. Biemann, <u>Analyt.Chem</u>., 1965, <u>37</u>, 844.
- 15. S.R. Lipsky, C.G. Horvath, and W.J. McMurray, Analyt.Chem., 1966, <u>38</u>, 1585.
- 16. S.R. Lipsky, C.G. Horvath, and W.J. McMurray in "Gas Chromatography 1966," ed. A.B. Littlewood, The Institute of Petroleum, London, 1967, p. 299.
- 17. P.M. Krueger and J.A. McCloskey, <u>Analyt.Chem.</u>, 1969, <u>41</u>, 1930.
- M.C. ten Noever de Brauw and C. Brunnee, Z.analyt.Chem., 1967, 229, 321.
- 19. W.D. MacLeod, Jr. and B. Nagy, <u>Analyt.Chem.</u>, 1968, <u>40</u>, 841.
- 20. R.L. Foltz, M.B. Neher, and E.R. Hinnenkamp, <u>Analyt.Chem.</u>, 1967, <u>39</u>, 1338.
- 21. P.M. Llewellyn and D. Littlejohn, presented at the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, 17th March, 1966.
- 22. J.T. Watson in "Ancillary Techniques of Gas Chromatography," ed. L.S. Ettre and W.H. McFadden, Wiley-Interscience, New York, 1969, p. 145.
- 23. R. Ryhage, <u>Analyt.Chem</u>., 1964, <u>36</u>, 759.
- 24. R. Ryhage, S. Wikström, and G.R. Waller, Analyt.Chem., 1965, <u>37</u>, 435.
- 25. R. Ryhage, <u>Arkiv Kemi</u>, 1967, <u>26</u>, 305.

- 26. R. Ryhage and S. Wikström, <u>Sci.Tools</u>, 1967, <u>14</u>, 1.
- 27. R.S. Gohlke, <u>Analyt.Chem.</u>, 1962, <u>34</u>, 1332.
- D. Henneberg and G. Schomburg, <u>Z.analyt.Chem.</u>, 1965, <u>215</u>, 424.
- 29. C.J.W. Brooks, A.R. Thawley, P. Rocher, B.S. Middleditch, G.M. Anthony, and W.G. Stillwell in "Advances in Chromatography 1970," ed. A. Zlatkis, University of Houston, 1970, p. 262.
- 30. V.I. Gorshkov, G.D. Tantsyrev, and V.L. Talroze, Zavodskaya Lab., 1966, <u>32</u>, 114.
- 31. C.C. Sweeley, W.H. Elliott, I. Fries, and R. Ryhage, <u>Analyt.Chem.</u>, 1966, <u>38</u>, 1549.
- 32. C.-G. Hammar and B. Holmstedt, <u>Agressologie</u>, 1968, <u>9</u> (Suppl.), 109.
- 33. W.J. Richter, M. Senn, and A.L. Burlingame, <u>Tetrahedron Letters</u>, 1965, 1235.
- 34. M. Senn, W.J. Richter, and A.L. Burlingame, J.Amer.Chem.Soc., 1965, 87, 680.
- 35. G.T. Kallos and L.B. Westover, <u>Tetrahedron Letters</u>, 1967, 1223.
- 36. I. Kiss, G. Jansco, G. Jákli, H. Illy, and K. Poros, J.Labelled Compounds, 1967, <u>3</u> (Suppl. 1), 411.
- 37. G.M. Anthony and C.J.W. Brooks, <u>Chem.Comm.</u>, 1970, 200.
- 38. L.D. Metcalfe and A.A. Schmitz, J.Gas Chromatog., 1964, 2, 15.
- 39. A.H. Beckett, G.T. Tucker, and A.C. Moffat, J.Pharm.Pharmacol., 1967, <u>19</u>, 273.
- 40. J. Tadmor, <u>Analyt.Chem.</u>, 1964, <u>36</u>, 1565.

-325-

- 41. J. Tadmor, Israel At.Energy Comm. Report IA-895, 1964.
- 42. H. Elias, <u>Nuclear Sci.Abs.</u>, 1965, <u>19</u>, Abs. 32274.
- 43. G. Stoecklin, <u>Nuclear Sci.Abs.</u>, 1965, <u>19</u>, Abs. 32275.
- 44. V.G. Berezkin, "Analytical Reaction Ges Chromatography," Plenum Press, New York, 1968.
- 45. M. Beroza and M.N. Inscoe in "Ancillary Techniques of Gas Chromatography," ed. L.S. Ettre and W.H. McFadden, Wiley-Interscience, New York, 1969.
- 46. M. Beroza and R.A. Coad in
 "The Practice of Gas Chromatography," ed. L.S. Ettre and A. Zlatkis, Interscience, New York, 1967.
- 47. R. Rowan, Jr., <u>Analyt.Chem.</u>, 1961, <u>33</u>, 658.
- 48. M. Beroza and R. Sarmiento, <u>Analyt.Chem.</u>, 1966, <u>38</u>, 1042.
- 49. P.M. Adhikary and R.A. Harkness, <u>Analyt.Chem.</u>, 1969, <u>41</u>, 470.
- 50. M. Beroza and F. Acree, Jr., J.Assoc.Offic.Agric.Chemists, 1964, <u>47</u>, 1.
- 51. R.K. Callow and N.C. Johnston, <u>Bee World</u>, 1960, <u>41</u>, 152.
- 52. M. Beroza, <u>J.Org.Chem.</u>, 1963, <u>28</u>, 3562.
- 53. D.^T. Downing, Z.H. Kranz, and K.E. Murray, <u>Austral.J.Chem.</u>, 1960, <u>13</u>, 80.
- 54. I.C. Nigam, <u>J.Chromatog</u>., 1966, <u>24</u>, 188.
- 55. I. Mizrahi and I.C. Nigam, <u>J.Chromatog</u>., 1966, <u>25</u>, 230.

-326-

- 56. T. Okamoto and T. Onaka, <u>Chem.Pharm.Bull.(Japan)</u>, 1963, <u>11</u>, 1086.
- 57. C.J. Thompson, H.J. Coleman, R.L. Hopkins, C.C. Ward, and H.T. Rall, <u>Analyt.Chem</u>, 1960, <u>32</u>, 1762.
- 58. M. Beroza, <u>Accounts Chem.Res.</u>, 1970, <u>3</u>, 33.
- 59. B. Groten, <u>Analyt.Chem.</u>, 1964, <u>36</u>, 1206.
- 60. A.I.M. Keulemans and C.A.M.G. Cramers in "Gas Chromatography 1964," ed. A. Goldup, The Institute of Petroleum, London, 1965, p. 154.
- 61. L.S. Ettre and W.H. McFadden, ed., "Ancillary Techniques of Gas Chromatography," Wiley-Interscience, New York, 1969.
- 62. D. Welti, "Infrared Vapour Spectra," Heyden and Son, London, 1970.
- 63. F.E. Saalfeld, <u>Ind.Res.</u>, 1969 (August), 58.
- 64. R.P.W. Scott, I.A. Fowlis, D. Welti, and T. Wilkens in "Gas Chromatography 1966," ed. A.B. Littlewood, The Institute of Petroleum, London, 1967, p. 318.
- 65. J.E. Lovelock, K.W. Charlton, and P.G. Simmonds, <u>Analyt.Chem.</u>, 1969, <u>41</u>, 1048.
- 66. J.E. Lovelock, P.G. Simmonds, G.R. Shoemake, and S. Rich in
 "Advances in Chromatography 1970,"
 ed. A. Zlatkis, University of Houston, 1970, p. 262.
- 67. R. Ryhage, personal communication, 1970.

 J.H. Beynon,
 "Mass Spectrometry and its Applications to Organic Chemistry," Elsevier, Amsterdam, 1960, pp. 54-57.

-327-

- 69. J.H. Beynon and A.E. Williams,
 "Mass and Abundance Tables for Use in Mass Spectrometry," Elsevier, Amsterdam, 1963.
- 70. G. Ege, "Zahlentafeln zur Massenspektrometrie und Elementarenalyse," Verlag Chemie, Weinheim, 1970.
- 71. J. Mattauch and L. Waldmann, Z.Naturforsch., 1953, <u>8a</u>, 293.
- 72. C.F. Giese and T.L. Collins, <u>Phys.Rev.</u>, 1954, <u>96</u>, 823.
- 73. K.S. Quisenberry, T.T. Scolman, and A.O. Nier, <u>Phys.Rev.</u>, 1956, <u>102</u>, 1071.
- 74. C.J.W. Brooks, B.S. Middleditch, and J.A. Zabkiewicz, unpublished observations, 1968.
- 75. F.A.J.M. Leemans and J.A. McCloskey, J.Amer.Oil Chemists' Soc., 1967, <u>44</u>, 11.
- 76. J.T. Watson in Ref. 61, p. 145.
- 77. C.J.W. Brooks in "Specialist Periodical Report: Mass Spectrometry," ed. D.H. Williams, The Chemical Society, London, 1971.
- 78. M. Calvin, "Chemical Evolution," Oxford University Press, 1969.
- 79. G. Eglinton and M.T.J. Murphy, ed., "Organic Geochemistry: Methods and Results," Longman, London, 1970.
- 80. Anon. "Literature Notes, LN 9000," LKB-Produkter, Stockholm.
- 81. <u>Gas Chromatog.-Mass Spectrometry Abs.</u>, Science Technology Agency, London.

- 82. C.J.W. Brooks, W.A. Harland, and G. Steel, Biochim.Biophys.Acta, 1966, <u>125</u>, 620.
- P. Issenberg, A. Kobayashi, and T.J. Mysliwy, <u>Agric.Food Chem.</u>, 1969, <u>17</u>, 1377.
- 84. R.A. Appleton and A. McCormick, <u>Tetrahedron</u>, 1968, <u>24</u>, 633.
- 85. B.S. Middleditch, M.Sc. Dissertation, University of Essex, 1967.
- 86. G. Eglinton, R.J. Hamilton, R. Hodges, and R.A. Raphael, <u>Chem.and Ind.</u>, 1959, 955.
- 87. E.C. Horning, T. Luukkainen, E.O.A. Haahti, B.G. Creech, and W.J.A. VandenHeuvel, <u>Recent Progr.Hormone Res.</u>, 1963, <u>19</u>, 57.
- 88. E.C. Horning and W.J.A. VandenHeuvel, Ann.Rev.Biochem., 1963, 32, 709.
- 89. E.C. Horning, W.J.A. VandenHeuvel, and B.G. Creech in "Methods of Biochemical Analysis," Vol. XI, ed. D. Glick, Wiley-Interscience, New York, 1963, p. 69.
- 90. E.C. Horning and W.J.A. VandenHeuvel, J.Amer.Oil Chemists' Soc., 1964, 41, 707.
- 91. E.C. Horning and W.J.A. VandenHeuvel in "New Biochemical Separations," ed. A.T. James and L.J. Morris, Van Nostrand, Princeton, 1964, p. 25.
- 92. R. Neher, "Steroid Chromatography," Elsevier, Amsterdam, 1964.
- 93. J. Sjövall in "New Biochemical Separations," ed. A. James and L.J. Morris, Van Nostrand, Princeton, 1964, p. 65.
- 94. W.J.A. VandenHeuvel and E.C. Horning in "Biomedical Apolications of Gas Chromatography," ed. H.A. Szymanski, Plenum Press, New York, 1964, p. 89.

- 95. M.B. Lipsett, ed., "Gas Chromotography of Steroids in Biological Fluids," Plenum Press, New York, 1965.
- 96. H.H. Wotiz and S.J. Clark, "Gas Chromatography in the Analysis of Steroid Hormones," Plenum Press, New York, 1966.
- 97. C.J.W. Brooks and J.A. Zabkiewicz in "Hormones in Blood," Vol. II, ed. C.H. Gray, and A.L. Bacharach. Academic Press. London, 2nd. Edition, 1967, p. 51.
- 98. F. Polvani, M. Surace, and M. Luisi, ed.,
 "Gas Chromatographic Determination of Hormonal Steroids," Academic Press, New York, 1967.
- 99. K.B. Eik-Nes and E.^C. Horning, ed., "Gas Phase Chromatography of Steroids," Springer-Verlag, Berlin, 1968.
- 100. E.C. Horning, C.J.W. Brooks, and W.J.A. VandenHeuvel, Adv.Lipid Res., 1968, 6, 273.
- 101. B.A. Knights in "Steroid Hormone Analysis," ed. H. Carstensen, Edward Arnold, London, 1968, p. 367.
- 102. H.H. Wotiz and S.J. Clark in "Methods in Enzymology," Vol. XV, ed. R.B. Clayton, Academic Press, New York, 1969, p. 158.
- 103. H.H. Wotiz and S.J. Clark, <u>Methods Biochem.Anal.</u>, 1970, <u>18</u>, 339.
- 104. P. De Mayo and R.I. Reed, <u>Chem.and Ind.</u>, 1956, 1481.
- 105. C. Djerassi, Pure Appl.Chem., 1964, <u>9</u>, 159.
- 106. H. Budzikiewicz, C. Djerassi, and D.H. Williams, "Structure Elucidation of Natural Products by Mass Spectrometry,"Vol. II, Holden-Day, San Francisco, 1964.

- M. Spiteller-Friedmann and G. Spiteller, 107. Fortschr.chem.Forsch., 1969, 12, 440. Ref. 106, pp. 64-93. 108. Ref. 106. p. 68. 109. L. Tökes and C. Djerassi, 110. Steroids, 1965, 6, 493. 111. C.J.W. Brooks and D.J. Harvey, Steroids, 1970, 15, 283. 112. Ref. 106, pp. 25-49. 113. H. Budzikiewicz and C. Djerassi, J.Amer.Chem.Soc., 1962, 84, 1430. Z. Pelah, D.H. Williams, H. Budzikiewicz, and 114. C. Djerassi, J.Amer.Chem.Soc., 1964, 86, 3722. 115. P. Toft and A.J. Liston, Steroids, 1968, 12, 447. P. Toft, N.N. Saha, and A.J. Liston, 116. Steroids, 1969, 14, 621. J.M. Midgley, B.J. Millard, W.B. Whalley, and 117. (in part) C.J. Smith, Chem.Comm., 1969, 84. 118. J.M. Midgley, B.J. Millard, W.B. Whalley, and (in part) C.J. Smith J.Chem.Soc.(C), 1971, 19. 119. A. Zmigrod and H.R. Lindner, Steroids, 1966, 8, 119. H.M. Fales and T. Luukkainen, 120. <u>Analyt.Chem.</u>, 1965, <u>37</u>, 955. W.L. Gardiner and E.C. Horning, 121. Biochim.Biophys.Acta, 1966, 115, 524.
 - 122. S. Hara, T. Watabe, and Y. Ike, Chem.Pharm.Bull., 1966, <u>14</u>, 1311.

- 123. M.G. Horning, A.M. Moss, and E.C. Horning, <u>Analyt.Biochem.</u>, 1968, <u>22</u>, 284.
- 124. J.G. Allen, G.H. Thomas, C.J.W. Brooks, and B.A. Knights, Steroids, 1969, 13, 133.
- 125. E.C. Horning, and B.F. Maume, J.Chromatog.Sci., 1969, 7. 411.
- 126. S. Hara, K. Oka, and Y. Ike, Chem.and Ind., 1967, 832.
- 127. C.C. Sweeley, R. Bentley, M. Makita, and W.W. Wells, J.Amer.Chem.Soc., 1963, 85, 2497.
- 128. Z. Horii, M. Makita and Y. Tamura, Chem.and Ind., 1965, 1494.
- 129. C.J.W. Brooks, E.M. Chambaz, W.L. Gardiner, and E.C. Horning, <u>Excerpta Med.Int.Congr.Ser.</u>, No. 132, 1966, p. 366. (Proc.2nd.Internat.Congr. Hormonal Steroids, Milan, 1966).
- 130. T. Nambara, T. Kudo, and H. Ikeda, <u>J.Chromatog</u>., 1968, <u>34</u>, 526.
- 131. W. Vetter, W. Walther, M. Vecchi, and M. Cereghetti, <u>Helv.Chim.Acta</u>, 1969, <u>52</u>, 1.
- 132. T. Pocklington, J. Jeffery, B.S. Middleditch, and C.J.W. Brooks, <u>Biochem.J.</u>, 1970, <u>119</u>, 803.
- 133. A.G. Sharkey, R.A. Friedel, and S.H. Langer, <u>Analyt.Chem.</u>, 1957, <u>29</u>, 770.
- 134. T. Luukkainen, W.J.A. VandenHeuvel, E.O.A. Haahti and E.C. Horning, <u>Biochim.Biophys.Acta</u>, 1961, <u>52</u>, 599.
- 135. C.J.W. Brooks, E.C. Horning, and J.S. Young, Lipids, 1968, <u>3</u>, 391.
- 136. E. Chambaz, C.J.W. Brooks, M.G. Horning, E.C. Horning, and R.M. Hill, Compt.rend., 1969, <u>268D</u>, 2817.

-332-

J.A. Gustafsson, R. Ryhage, J. Sjövall, and 137. R.M. Moriarty. J.Amer.Chem.Soc., 1969, 91, 1234. 138. T. Laatikainen and R. Vihko, Steroids, 1969, 13, 615. J. Diekman, J.B. Thomson, and C. Djerassi, 139. J.Org.Chem., 1967, 32, 3904. W. Richter, M. Vecchi, W. Vetter, and W. Walther, 140. Helv.Chim.Acta, 1967, 50, 364. 141. P. Capella and C.M. Zorzut, Analyt.Chem., 1968, 40, 1458. 142. J. Diekman, J.B. Thomson, and C. Djerassi, J.Org.Chem., 1968, 33, 2271. 143. G.H. Draffan, R.N. Stillwell, and J.A. McCloskey. Org.Mass Spectrometry, 1968, 1, 669. G. Eglinton, D.H. Hunneman, and A. McCormick, 144. Org.Mass Spectrometry, 1968, 1, 593. 145. N.K. Kochetkov, O.S. Chizov, and N.V. Molodsov, Tetrahedron, 1968, 24, 5587. 146. W.J. Richter and A.L. Burlingame, Chem.Comm., 1968, 1158. R.E. Wolff, M. Greff, and J.A. McCloskey in 147. "Advances in Mass Spectrometry," Vol. IV ... ed. D.A. Kendrick, Institute of Petroleum. London, 1968, p. 193. D.C. DeJongh, T. Radford, J.D. Hribar, S. Hanessian, M. Bieber, G. Dawson, and C.C. Sweeley, 148. J.Amer.Chem.Soc., 1969, 91, 1728. 149. A.J. Polito, J. Naworal, and C.C. Sweeley, Biochemistry, 1969, <u>8</u>, 1811. W.P. Weber, R.A. Felix, and A.K. Willard, 150. J.Amer.Chem.Soc., 1970, 92, 1420. P.D. Woodgate, R.T. Gray, and C. Djerassi, 151. Org.Mass Spectrometry, 1970, 4, 257.

-333-

152. J.A. McCloskey, R.N. Stillwell, and A.M. Lawson, <u>Analyt.Chem.</u>, 1968, <u>10</u>, 233. 153. B.S. Thomas, C. Eaborn, and D.R.M. Walton, Chem.Comm., 1966, 408. 154. C. Eaborn, C.A. Holder, D.R.M. Walton, and B.S. Thomas, J.Chem.Soc.(C), 1969, 2502. 155. D. Exley and A. Dutton, Steroids, 1969, 14, 575. 156. H.J.M. Fitches in "Advances in Mass Spectrometry," Vol. II, ed. R.M. Elliott, Macmillan, 1963, p. 428. 157. W.J.A. VandenHeuvel, J. Sjövall, and E.C. Horning, Biochim.Biophys.Acta, 1961, 48, 596. 158. S.J. Clark and H.H. Wotiz, Steroids, 1963, 2, 535. 159. K. Honda, D. Ostergard, and S. Kushinsky, Amer.J.Obstetr.Gynecol., 1969, 104, 528. 160. J.R.G. Challis and R.B. Heap, J.Chromatog., 1970, 50, 228. 161. D.R. Idler, L.M. Safe, and S.H. Safe, Steroids, 1970, 16, 251. 162. W.J.A. VandenHeuvel and E.C. Horning. Biochem.Biophys.Res.Comm., 1960, 3, 356. 163. E. Bailey in ref. 99, p. 316. 164. R.S. Rosenfeld, Steroids, 1964, 4, 147. C.K.Y.S. Madani and E.M. Chembaz, 165. Excerpta Med.Internat.Congr.Ser., 1970, 210, 97. 166. R.W. Kelly, Steroids, 1969, 13, 507. G. von Unruh, M. Spiteller-Friedmann, and G. Spiteller, 167. Tetrahedron, 1970, 26, 3039.

-334-

168.	G. von Unruh and G. Spiteller, <u>Tetrahedron</u> , 1970, <u>26</u> , 3289.
169.	G. von Unruh and G. Spiteller, <u>Tetrahedron</u> , 1970, <u>26</u> , 3303.
170.	G. von Unruh and G. Spiteller, <u>Tetrahedron</u> , 1970, <u>26</u> , 3329.
171.	C.J.W. Brooks, R.V. Brooks, K. Fotherby, J.K. Grant, A. Klopper, and W. Klyne, <u>J.Endocrinol.</u> , 1970, <u>47</u> , 265.
172.	S. Meyerson and A.W. Weitkamp, Org.Mass Spectrometry, 1968, 1, 659.
173.	R.S. Gohlke, <u>Chem.end Ind</u> ., 1963, 946.
174.	M.M. Green and J. Schwab, Tetrahedron Letters, 1968, 2955.
175.	C.E. Brion, J.S.H. Farmer, R.E. Pincock, and W.B. Stewart, Org.Mass Spectrometry, 1970, <u>4</u> , 587.
176.	V.I. Zaretskii, N.S. Wulfson, V.G. Zaikin, L.M. Kogan, N.E. Voishvill, and I.V. Torgov, <u>Tetrahedron</u> , 1966, <u>22</u> , 399.
177.	S.N. Ananchenko, V.N. Leonov, V.I. Zaretskii, N.S. Wulfson, and I.V. Torgov, <u>Tetrahedron</u> , 1964, <u>20</u> , 1279.
178.	V.I. Zaretskii, N.S. Wulfson, V.G. Zaikin, S.N. Ananchenko, V.N. Leonov, and I.V. Torgov, <u>Tetrahedron</u> , 1965, <u>21</u> , 2469.
179.	V.I. Zaretskii, N.S. Wulfson, V.G. Zaikin, V.N. Leonov, S.N. Ananchenko, end I.V. Torgov, <u>Tetrehedron Letters</u> , 1966, 347.
180.	N.S. Wulfson, V.I. Zaretskii, V.L. Sadovskaya, S.N. Ananchenko, V.M. Rzheznikov, and I.V. Torgov, <u>Tetrahedron</u> , 1966, 22, 1885.
181.	V.I. Zaretskii, N.S. Wulfson, and V.L. Sadovskaya, <u>Tetrahedron Letters</u> , 1966, 3879.
182.	N.S. Wulfson, V.I. Zaikin, V.L. Sadovskaya, A.V. Zakharychev, S.N. Anenchenko, and I.V. Torgov, <u>Tetrahedron</u> , 1967, <u>23</u> , 3667.
183.	N.S. Wulfson, V.I. Zaikin, V.L. Sadovskaya, A.V. Semenovsky, W.A. Smit, and V.F. Kucherov, <u>Tetrahedron</u> , 1966, <u>22</u> , 603.

184.	U.K. Pendit, W.N. Speckamp, end H.O. Huisman, <u>Tetranedron</u> , 1965, <u>21</u> , 767.
185.	J. Karliner, H. Budzikiewicz, and C. Djerassi, <u>J. Org. Chem.</u> , 1966, <u>31</u> , /10.
186.	V.L. Sadovskeya, V.I. Zaretskii, N.S. Wulfson, and V.F. Sizoy, Org.Mass Spectrometry, 1969, 2, 347.
187.	V.I. Zaretskii, N.S. Wulfson, and V.G. Zaikin, <u>Tetrahedron</u> , 1967, <u>23</u> , 3683.
188.	L. Tökés, R.T. LaLonde, and C. Djerassi, J.Org.Chem., 1967, <u>32</u> , 1020.
189.	L. Peterson, <u>Analyt.Chem.</u> , 1962, <u>34</u> , 1/81.
190.	N.L. Allinger, P. Crebbé, and G. Perez, <u>Tetrahedron</u> , 1966, <u>22</u> , 1615.
191.	C. Altona, H.J. Geise, and C. Romers, <u>Tetrahedron</u> , 1968, <u>24</u> , 13.
192.	M. Spiteller-Friedmenn and G. Spiteller, Org.Mass Spectrometry, 1968, 1, 231.
193.	A.S. Drieding, <u>Helv.Chim.Acta</u> , 1959, <u>42</u> , 1339.
194.	R.H. Shapiro and C. Djeressi, J.Amer.Chem.Soc., 1964, <u>86</u> , 2825.
195.	H. Audier, M. Fétizon, and W. Vetter, <u>Bull.Soc.chim.France</u> , 1964, 415.
196.	C. Eaborn, D.R.M. Walton, and B.S. Thomas, Chem.and Ind., 1967, 827.
197.	B.S. Thomas and D.R.M. Walton, J.Endocrinol., 1968, 41, 203.
198.	D.B. Gower, F.A. Harrison, R.B. Heap, and R.L.S. Patterson, <u>J.Endocrinol.</u> , 1970, <u>47</u> , 35/.
199.	C.K.Y.S. Madani, unpublished observations, 1970.
200.	W.J.A. VandenHeuvel and K.L.K. Braly, <u>J. Chromatog</u> ., 196/, <u>31</u> , 9.
201.	E. Heftmann, "Steroid Biochemistry," Academic Press, New York, 1970.
202.	L.F. Fieser and M. Fieser, "Steroids," Reinhold, New York, 1959, pp. 524-525.
203.	C.H.L. Shackleton, R.W. Kelly, P.M. Adhikary, C.J.W. Brooks, R.A. Harkness, P.J. Sykes, and F.L. Mitchell, <u>Steroids</u> , 1968, <u>12</u> , 705.

204.	M.G. Horning, E.M. Chambaz, C.J.W. Brooka, A.M. Moss, E.A. Boucher, E.C. Horning, and R.M. Hill, <u>Analyt. Biochem.</u> , 1969, <u>31</u> , 512.
205.	C.H.L. Shack eton, J.A. Gustafsson, and J. Sjövall, <u>Steroids</u> , 1970, <u>15</u> , 131.
206.	JA. Gustafsson, C.H.L. Shackleton, and J. Sjövall, European J. Biochem., 1969, <u>10</u> , 302.
207.	JA. Gustafsson, C.H.L. Shackleton, and J. Sjövall, <u>Acta Endocrinol.</u> , 1970, <u>65</u> , 18.
208.	A.L. Siegel, H. Adlercreutz, and T. Luukkainen, Ann. Med. Exper. Fenn., 1969, <u>47</u> , 22.
209.	T. Laatikannen, Steroids, 1970, <u>15</u> , 139.
210.	R. Vihko, <u>Acta Endocrinol. Suppl.</u> , 1966, <u>109</u> , 1.
211.	J. Sjövall and R. Vihko, <u>Steroids</u> , 1965, <u>6</u> , 59/.
212.	J. Sjövall and R. Vihko, Steroids, 1966, 7, 447.
213.	J. Sjövall and R. Vihko, Acta Endocrinol., 1968, 57, 247.
214.	O. Jänne, J. Perheentupa, and R. Vihko, J. Clin. Endocrinol. Metab., 1970, <u>31</u> , 162.
215.	C.H.L. Shackleton, F.L. Mitchell, JA. Gustafsson, and J. Sjövall, <u>F.E.B.S. Letters</u> , 1970, <u>11</u> , 129.
216.	I. Björkhem, JA. Gustafsson, and S.A. Gustafsson, European J. Biochem., 1970, <u>16</u> , 557.
217.	C.J.W. Brooks, Process Biochem., 1967(2), 2/.
218.	JA. Gustafsson and J. S övall, European J. Biochem., 1968, 6, 22/.
219.	R. Blomstrand and J. Gürtler, <u>Arkiv Kemi</u> , 1969, <u>30</u> , 213.
220.	 F.L. Mitchell and C.H.L. Shackleton in "Advances in Clinical Chemistry," Vol. 12, eds., O. Bodansky and C.P. Stewart, Academic Press, New York, 1969, p. 141.
221.	J. Diekman and C. Djerassi, J. Org. Chem., 196/, <u>32</u> , 1005.

222.	L. Tökés, G. Jones, and C. Djerassi, J. Amer. Cham. Soc., 1968, <u>90</u> , 5465.
223.	B.A. Knights, J. Gas Chromatog., 196/, 5, 2/3.
224.	K. Biemann, "Mass Spectrometry: Organic Chemical Applications," McGraw-Hill, New York, 1962.
225.	L. Tökés, R.T. LaLonde, and C. Djerassi, J. Org. Chem., 1967, <u>32</u> , 1012.
226.	JA. Gustafsson, B.P. Lisboa, and J. Sjövall, European. J. Biochem., 1968, <u>5</u> , 437.
2 21.	B.P. Lisboa, JÅ. Gustafsson, and J. Sjövall, European J. Biochem., 1968, <u>4</u> , 496.
2 28.	G. Zucconi, B.P. Lisboa, E. Simonitsch, L. Roth, A.A. Hagen, and E. Diczfalusy, <u>Acta Endocrinal.</u> , 1967, <u>56</u> , 413.
229.	JA. Gustafsson and B.P. Lisboa, <u>Steroids</u> , 1970, <u>15</u> , 724
230.	JA. Gustafsson, R. Ryhage, J. Sjövall, and R.M. Moriarty, J. Amer. Chem. Soc., 1969, <u>91</u> , 1234.
231.	JA. Gustafsson and J. Sjövall, European J. Biochem., 1968, <u>6</u> , 236.
232.	H. Adlercreutz and T. Luukkainen, Acta Endocrinol. Suppl., 1967, 124, 101.
233.	S.G. Wyllie and C. Djerassi, <u>J. Org. Chem.</u> , 1968, <u>33</u> , 305.
234.	G. Galli and S. Maroni, <u>Steroids</u> , 1967, <u>10</u> , 189.
235.	B.A. Knights and W. Laurie, Phytochemistry, 1967, <u>6</u> , 407.
236.	G. Steel and C.J.W. Brooks, unpublished observations.
237.	R.T. Aplin and G.M. Hornby, J. Chem. Soc.(B), 1966, 1078.
238.	MF. Hügel, W. Vetter, H. Audier, M. Barbier, and E. Lederer, Phytochemistry, 1964, 3, 7.
239.	J. Bergman, B.O. Lindgren, and C.M. Svahn, Acta Chem. Scand., 1965, <u>19</u> , 1661.

240.	B.A. Knights, Phytochemistry, 1965, 4, 857.
241.	P. Benveniste, L. Hirth, and G. Ourisson, Phytochemistry, 1966, <u>5</u> , 31.
242.	P. Eneroth, K. Hellström, and R. Ryhage, Steroids, 1965, <u>6</u> , 707.
243.	L.J. Goad in "Natural Substances Formed Biologically from Mevalonic Acid (Biochemical Society Symposium No. 29, Liverpool, 1969)," ed. T.W. Goodwin, Academic Press, London, 1970, p. 45.
244.	E. Lederer, <u>Quart. Rev.</u> , 1969, <u>23</u> , 453.
245.	Ref. 201, p. 22.
246.	D.H.R. Barton, D.M. Harrison, and D.A. Widdowson, Chem. Comm., 1968, 1/.
247.	I. Smedley-Maclean, Biochem. J., 1928, 22, 22.
248.	R.K. Callow, <u>Biochem. J.</u> , 1931, <u>25</u> , 87.
249.	H. Wieland and M. Asano, <u>Annalen</u> , 1929, <u>473</u> , 300.
250.	H. Wieland, F. Rath, and H. Hesse, Annalen, 1941, <u>548</u> , 34.
251.	G. Goulston, L J. Goad, and T.W. Goodwin, Biochem. J., 1967, <u>102</u> , 15c.
252.	W. Fürst, <u>Annalen</u> , 1966, <u>699</u> , 206.
253.	H. Wieland and G.A.C. Gough, Annalen, 1930, <u>482</u> , 36.
254.	J. Jacques, H. Kagan, and G. Ourisson, "Tables of Constants and Numerical Data. 14. Selected Constants, Optical Rotary Power. 1a. Steroids," Pergamon, Paris, 1965, p. 892.
255.	E. Schwenk and G.J. Alexander, Arch. Biochem. Biophys., 1958, 77, 65.
256.	H. Katsuki and K. Bloch, J. Biol. Chem., 1967, <u>242</u> , 222.
257.	D.H.R. Barton, D.M. Harrison, and G.P. Moss, Chem. Comm., 1966, 595.

	258.	M. Akhtar, M.A. Parvez, and P.F. Hunt, <u>Biochem. J.</u> , 1966, <u>100</u> , 38c.
	259.	Ref. 202, pp.353-354.
	260.	C.W. Bird, J.M. Lynch, S.J. Pirt, W.W. Reid, C.J.W. Brooks, and B.S. Middleditch, <u>Nature</u> , 1971, 230, 473.
	261.	T.G. Tornabene, M. Kates, E. Gelpi, and J. Oro, J. Lipid Res., 1969, <u>10</u> , 294.
	262.	G. Suzue, K. Tsukada, C. Nakai, and S. Tanaka, Arch. Biochem. Biophys., 1968, <u>123</u> , 644.
	263.	J. Han and M. Calvin, <u>Proc. Nat. Acad. Sci., U.S.A.</u> , 1969, <u>64</u> , 436.
	264.	J.M. Lynch, Personal communication, 1970.
	265	K. Schubert, G. Rose, H. Wachtel, C. Horhöld, and N. Ikekawa, European J. Biochem., 1968, 5, 246.
	266.	K. Schubert, G. Rose, and C. Horhöld, <u>Biochim. Biophys. Acta</u> , 1967, <u>137</u> , 168.
	267.	N.J. de Souza and W.R. Nes, <u>Science</u> , 1968, <u>162</u> , 363.
L	268.	R.C. Reitz and J.G. Hamilton, Comp. Biochem. Physiol., 1968, 25, 401.
	269.	M. De Rosa, A. Gambacorta, L. Minale, and J.D. Bu'Lock, Chem. Comm., 1971, 619.
	270.	C.J.W. Brooks, A.R. Thawley, P. Rocher, B.S. Middleditch, G.M. Anthony, and W.G. Stillwell, <u>J. Chromatog. Sci.</u> , 1971, <u>9</u> , 35.
	271.	See, for example, "MIMS (Monthly Index of Medical Specialities)," ed. E.N. Pullom, Haymarket Press, London.
	272.	L.K.P. Liang and O.T. Fosgate, J. Animal Sci., 1970, <u>31</u> , 92.
	273.	E.L. Rongone and A. Segaloff, J. Biol. Chem., 1962, <u>237</u> , 1066.
	274.	H. Floch, A. Crastes de Paulet, and E.E. Baulieu, <u>Compt. rend.</u> , 1962, <u>255</u> , 2512.
	275.	E. Caspi, A. Vermeulen, and H.B. Bhat, <u>Steroids Suppl.</u> , 1965, <u>1</u> , 141.
	276.	J.B. Brown and H.A.F. Blair, <u>Proc. Roy. Soc. Med.</u> , 1960, <u>53</u> , 433.
	277.	D.F. Dimick, M. Heron, E.E. Baulieu, and M.F. Jayle, Clin. Chim. Acta, 1961, <u>6</u> , 63.

. .

278.	D.S. Layne, T. Golab, K. Arai, and G. Pincus, <u>Biochem. Pharmacol.</u> , 1963, <u>12</u> , 905.
279.	S. Kamyab, K. Fotherby, and A.I. Klopper, J. Endocrinol., 1968, 41, 263.
280.	A. Segaloff, R.B. Gabbard, B.T. Carriere, and E.L. Rongone, Steroids Suppl., 1965, 1, 149.
281.	V.I. Zaretskii, N.S. Wulfson, V.G. Zaikin, V.N. Leonov, and I.V. Torgov, <u>Tetrahedron</u> , 1968, <u>24</u> , 2339.
282.	C.J.W. Brooks and B.S.Middleditch, Clin. Chim. Acta, in press.
283.	CG. Hammar and R. Hessling, Analyt. Chem., 1971, <u>43</u> , 298.
284.	T. Pocklington and J. Jeffery, European J. Biochem., 1968, 7, 63.
285.	C.J.W. Brooks and J. Watson, Chem. Comm., 1967, 952.
286.	C.J.W. Brooks and J. Watson in "Gas Chromatogrephy 1968," ed. C.L.A. Harbourn, Institute of Petroleum, London, 1969, p.129.
287.	G.M. Anthony, C.J.W. Brooks, I. Maclean, and I. Sangster, J. Chromatog. Sci., 1969, <u>8</u> , 623.
288.	C.J.W. Brooks and D.J. Harvey, <u>Biochem. J.</u> , 1969, <u>114</u> , 15P.
289.	C.J.W. Brooks, B.S. Middleditch, and G.M. Anthony, Org. Mass Spectrometry, 1969, 2, 1023.
290.	C.J.W. Brooks, D.J. Harvey, and B.S. Middleditch, Org. Mass Spectrometry, 1970, <u>3</u> , 231.
291.	C.J.W. Brooks, G.M. Anthony, and B.S. Middleditch, J. Pharm. Pharmacol., 1970, 22, 205.
2 92.	C.J.W. Brooks and D.J. Harvey, <u>J. Chromatog.</u> , 1971, <u>54</u> , 193.
293.	C.J.W. Brooks and I. Maclean, <u>J. Chromatog. Sci.</u> , 1971, 2, 18.
294.	A.L. Burlingame, C. Fenselau, W.J. Richter, W.G. Dauben, G.W. Shaffer, and N.D. Vietmeyer, <u>Jl Amer. Chem. Soc.</u> , 1967, <u>89</u> , 3346.
295.	R.L.N. Harris, F. Komitsky, Jr., and C. Djerassi, J. Amer. Chem. Soc., 1967, <u>89</u> , 4765.

•

-341-

•

296.	C. Fenselau, W.G. Dauben, G.W. Shaffer, and N.D. Vietmeyer, J. Amer. Chem. Soc., 1969, <u>91</u> , 112.
297.	R.H. Shapiro, J.M. Wilson, and C. Djerassi, <u>Steroids</u> , 1963, <u>1</u> , 1.
298.	R.H. Shapiro, and C. Djerassi, <u>Tetrahedron</u> , 1964, <u>20</u> , 1987.
299.	R. Ryhage and E. Stenhagen, J. Lipid Res., 1960, 1, 361.
300.	Ref. 106, p.75.
301.	H.B. Henbest and W.R. Jackson, J. Chem. Soc. (C), 1967, 2459.
302.	Ref. 4, pp.22-25.
303.	W.D. Crow, J.H. Hodgkin, and J.S. Shannon, Austral. J. Chem., 1965, <u>18</u> , 1433.
304.	K. Heyns, R. Stute, and H. Scharmann, <u>Tetrahedron</u> , 1966, <u>22</u> , 2223.
305.	J.H. Bowie, R.G. Cooks, SO. Lawesson, and G. Schroll, Austral. J. Chem., 1967, 20, 1613.
306.	D.C. Nonhebel, Org. Mass Spectrometry, 1970, 3, 1519.
307.	A.M. Duffield and O. Buchardt, Org. Mass Spectrometry, 1970, 3, 1043.
308.	R.A. Auerbach, D.L. von Minden, and C.A. Kingsbury, Org. Mass Spectrometry, 1970, 4, 41.
309.	S. Osman, C.J. Dooley, T.A. Foglia, and L.M. Gregory, Org. Mass Spectrometry, 1970, <u>4</u> , 1391.
310.	M. Ohashi, H. Kamachi, H. Kakisawa, A. Tatematsu, H. Yoshizumu, H. Kano, and H. Nakata, Org. Mass Spectrometry, 1969, 2, 195.
311.	W.J. Lehmann, C.O. Wilson, Jr., and I. Shapiro, J. Inorg. Nuclear Chem., 1961, <u>21</u> , 25.
312.	W. Snedden in "Advances in Mass Spectrometry," R.M. Elliott, ed., Vol. 2, Macmillan, New York, 1963, p.456.

- 313. O.S. Chizov, B.M. Zolotarev, A.N. Sukiasian, V.P. Litvinov, and Y.L. Gol'dfarb, Org. Mass Spectrometry, 1970, 3, 1379.
- 314. E.D. Loughran, C.L. Mader, and W.E. McQuistion, U.S. At. Energy Comm. LA-2368, 1960.

-342-

315.	M.F. Lappert and M.K. Majumdar Proc. Chem. Soc., 1963, 88.
316.	J.C. Kotz, R.J. van der Zanden, and R.G. Cooks, Chem. Comm., 1970, 923.
317.	V. Hanuš and V. Čermák, Coll. Czech. Chem. Comm., 1959, 24, 1602.
318.	I.W. Kinney, Jr. and G.L. Cook, <u>Analyt. Chem.</u> , 1952, <u>24</u> , 1391; 1953, <u>25</u> , 1729.
319.	I.R. McKinley and H. Weigel, Chem Comm., 1970, 1022.
320.	R.H. Cragg, D.A. Gallagher, J.P.N. Husband, G. Lawson, and J.F.J. Todd, <u>Chem. Comm.</u> , 1970, 1562
321.	A. Cornu and R. Massot, "Compilation of Mass Spectral Data," Heyden, London, 1966.
322.	R.I. Reed and W.K. Reid, J. Chem. Soc., 1963, 5933.
323.	N.S. Wulfson, V.I. Zaretskii, and V.G. Zaikin, Izvest.Akad. Nauk S.S.S.R., Ser. Khim., 1963, 2215. Chem. Abs., 1964, <u>60</u> , 10040a
324.	C.S. Barnes and J.L. Occolowitz, Austral. J. Chem., 1964, <u>17</u> , 975.
325.	N.S. Wulfson, V.I. Zaretskii, and V.G. Zaikin, <u>Doklady Akad. Nauk S.S.S.R.</u> , 1964, <u>155</u> , 1104. <u>Chem. Abs.</u> , 1964, <u>61</u> , 1737a.
326.	E. Brochmann-Hansen and A.B. Svendsen, <u>J. Pharm. Sci.</u> , 1962, <u>51</u> , 938.
327.	K.D. Parker, C.R. Fontan, and P.L. Kirk, Analyt. Chem., 1962, <u>34</u> , 1345.
328.	A.H.Beckett, A.C. Moffat, M. Rowland, G.T. Tucker, and G.R. Wilkinson, J. Chromatog., 1967, 30, 199.
329.	A.H. Beckett, G.T. Tucker, and A.C. Moffat, <u>J. Pharm. Pharmacol.</u> , 1967, <u>19</u> , 273.
330.	D.E. van Zwol, <u>J. Chromatog.</u> , 1966, <u>24</u> , 26.
331.	A.H. Beckett and G.R. Wilkinson, J. Pharm. Pharmacol. Suppl., 1965, <u>17</u> , 1045.
3 32•	C.J.W. Brooks and E.C. Horning, Analyt. Chem., 1964, <u>36</u> , 1540.
333.	D.D. Clarke, S. Wilk, S.E. Gitlow, and M.J. Franklin, J. Gas Chromatog., 1967, <u>5</u> , 307.

-343-

P. Capella and E.C. Horning, <u>Analyt. Chem.</u>, 1966, <u>38</u>, 316. S. Kawai and Z. Tamura, <u>Chem. Pharm. Bull. Japan</u>, 1967, <u>15</u>, 1493. N.P. Sen and P.L. McGeer,

Biochim. Biophys. Res. Comm., 1963, 13, 390.

- 337. M.G. Horning, A.M. Moss, and E.C. Horning, Biochim. Biophys. Acta, 1967, 148, 597.
- 338. M.G. Horning, A.M. Moss, E.A. Boucher, and E.C. Horning, <u>Analyt. Letters</u>, 1968, <u>1</u>, 311.
- 339. S. Kawai and Z. Tamura, Chem. Pharm. Bull. Japan, 1968, <u>16</u>, 699;1091.
- 340. A.C. Moffat and E.C. Horning, Biochim. Biophys. Acta, 1970, 215, 248.
- 341. R.M. Teeter, <u>Analyt. Chem.</u>, 1966, <u>38</u>, 1736.

334.

335.

336.

- 342. J. Reisch, R. Pagnucco, H. Alfes, N. Jantos and H. Möllmann, J. Pharm. Pharmacol., 1968, 20, 81.
- 343. R.F. Porter and W.P. Sholette, J. Chem. Phys., 1962, 37, 198.
- 344. R.F. Porter, D.R. Bidinosti, and K.F. Watterson, J. Chem. Phys., 1962, 36, 2104.
- 345. H.R. Snyder, J.A. Kuck, and J.R. Johnson, J. Amer. Chem. Soc., 1938, <u>60</u>, 105.
- 346. P.A. McCusker, E.C. Ashby, and H.S. Makowski, J. Amer. Chem. Soc., 1957, 79, 5179.
- 347. D.R. Armstrong and P.G. Perkins, J. Chem. Soc. (A), 1967, 790.
- 348. H. Budzikiewicz, J.I. Brauman, and C. Djerassi, <u>Tetrahedron</u>, 1965, <u>21</u>, 1855.
- 349. E.W. Post, R.G. Cooks, and J.C. Kotz, <u>Inorg. Chem.</u>, 1970, <u>9</u>, 1670.
- 350. J.E. Allebone, R.J. Hamilton, B.A. Knights, B.S. Middleditch, and D.M. Power, <u>Chem. Phys. Lipids</u>, 1970, 4, 37.
- 351. A.C. Brown, E. Conway, B.A. Knights, and B.S. Middleditch, Phytochemistry, 1970, 9, 1317.
- 352. F. Dray and I. Weliky, <u>Anal. Biochem.</u>, 1970, <u>34</u>, 387.

353.	W.L. Gardiner and E.C. Horning, <u>Biochim. Biophys. Acta</u> , 1966, <u>115</u> , 524.
354.	J. Cassan, A. Cambon, and M. Azzaro, Bull. Soc. Chin. France, 1969, 3624.
355.	F. Vane and M.G. Horning, <u>Analyt. Letters</u> , 1969, 2, 357.
356.	M. Hamberg and B. Samuelsson, J. Amer. Chem. Soc., 1969, <u>91</u> , 2177.
357.	Ref. 4, chapter 3 and references cited therein.
358.	G. Eadon and C. Djerassi, J. Amer. Chem. Soc., 1970, <u>92</u> , 3084.
359.	J.A. Gilpin and F.W. McLafferty, <u>Analyt. Chem.</u> , 1957, <u>29</u> , 990.
3 60 . [.]	R.J. Liedtke and C. Djerassi, J. Amer. Chem. Soc., 1969, <u>91</u> , 6814.
361.	C. Fenselau, J.L. Young, S. Meyerson, W.R. Landis, E. Selke, and L.C. Leitch, <u>J. Amer. Chem. Soc.</u> , 1969, <u>91</u> , 6847.
362.	K. Christansen, V. Mahadevan, C.V. Viswenathan, and R.T. Holman, Lipids, 1969, 4, 421.
363.	A.G. Harrison, Org. Mass Spectrometry, 1970, 3, 549.
364.	D. Goldsmith, D. Becher, S. Sample, and C. Djerassi, <u>Tetrahedron Suppl.</u> , 1966, <u>7</u> , 145.
365.	M. Kraft and G. Spiteller, Org. Mass Spectrometry, 1969, <u>2</u> , 541.
366.	D.S. Weinberg, C. Stafford, and M.W. Scoggins, Org. Mass Spectrometry, 1969, 2, 567.
367.	A.F. Gerrard, R.L. Hale, R. Liedtke, W.H. Faul, and C.A. Brown, Org. Mass Spectrometry, 1970, 3, 683.
368.	G. Eglinton and R.J. Hamilton, <u>Science</u> , 1967, <u>156</u> , 1322.
369.	P.E. Kolattakudy, <u>Science</u> , 1968, <u>159</u> , 498.
370.	A.J. Baker, G. Eglinton, A.G. Gonzalez, R.J. Hamilton, and R.A. Raphael, <u>J. Chem. Soc.</u> , 1962, 4705.
371.	D.H.S. Horn and J.A. Lamberton, Chem. and Ind., 1962, 2036.
372.	P.E. Kolattekudy and L. Hankin, J. Gen. Microbiol., 1968, <u>54</u> , 145.

•

373.	H.H.O. Schmid and P.C. Bandi, Z. physiol. Chem., 1969, 380, 462.
374.	R.J. Hamilton and D.M. Power, Phytochemistry, 1969, 8, 1771.
375.	C.W. Rees and R.C. Storr, Chem. Comm., 1968, 1305.
376.	F. Radler and D.H.S. Horn, <u>Austral. J. Chem.</u> , 1965, <u>18</u> , 1059,
377.	P.E. Kolattakudy, Biochemistry, 1966, <u>5</u> , 2265.
378.	E. Conway, Brit. Phycol. Bull., 1967, 3, 161.
379.	K.B. Blackburn and B.N. Temperly, Trans. Roy. Soc. Edinburgh, 1936, <u>58</u> , 841.
380.	E. Gelpi, J. Oro, H.J. Schneider, and E.O. Bennett, Science, 1968, 161, 700.
381.	A.G. Douglas, K. Douraghi-Zadek, and G. Eglinton, Phytochemistry, 1969, 8, 285.
382.	J.R. Maxwell, A.G. Douglas, G. Eglinton, end A. McCormick, Phytochemistry, 1968, 7, 2157.
383.	A.C. Brown, B.A. Knights, and E. Conway, <u>Phytochemistry</u> , 1969, <u>8</u> , 543.
384.	A.C. Brown, Ph.D. Thesis, University of Glasgow, 1969.
385.	N. Pelick and W. Supina, Chromatog. Lipids (Supelco Inc.), 1968, 2, 2.
386.	M. Beroza and B.A. Bierl, <u>Analyt. Chem.</u> , 1966, <u>38</u> , 1976; 1967, <u>39</u> , 1131.
387.	S. Munavalli and G. Ourisson, Bull. Soc. chim. France, 1964, 1.
388.	F.W. McLafferty, <u>Analyt. Chem.</u> , 1959, <u>31</u> , 82.
389.	R. Ryhage and E. Stenhagen, Arkiv Kemi, 1959, <u>13</u> , 523.
390.	R. Ryhage and E. Stenhagen, <u>Arkiv Kemi</u> , 1959, <u>14</u> , 497; 1965, <u>23</u> , 167.
391.	R. Ryhage and E. Stenhagen, Arkiv Kemi, 1960, 15, 291.
392.	R. Ryhage and E. Stenhagen, J. Lipid Res., 1960, 1, 361.
393 <u>•</u>	I. Iwata, H. Mizushima, and Y. Sakurai, <u>Agric. Biol. Chem.</u> , 1961, <u>25</u> , 319.

-346-

394•	I. Iwata and Y. Sakurai, Agric. Biol. Chem., 1963, 27, 253.
395.	P.E. Kolattekudy, <u>Biochemistry</u> , 1966, <u>5</u> , 2265.
396.	P.E. Kolattakudy, Phytochemistry, 1967, 6, 963.
397•	C.Y. Hopkins, A.W. Jevas and R. Boch, Canad. J. Biochem., 1969, 47, 433.
398.	E. Gelpi, D.W. Nooner, and J. Oro, Geochim. Cosmochim. Acta, 1970, 34, 421.
z 00	· · · · · · · · · · · · · · · · · · ·
399•	R.M. Duncan, Amer. Ind. Hygiene Assoc. J., 1969, 30, 624.
400.	E. Sawicki, T.R. Heuser, W.C. Elbent, F.T.Fox, and J.E. Meeker, <u>Amer. Ind. Hygiene Assoc. J.</u> , 1962, <u>23</u> , 137.
401.	G.J. Cleary, Internat. J. Air Water Pollution, 1963, 7, 753.
402.	P. Stocks, B.R. Commins, and K.V. Aubrey, Internat. J. Air Pollution, 1961, 4, 141.
403.	G.R. Clemo, Tetrahedron, 1967, 23, 2389.
404.	A. Liberti, G.P. Cartoni, and V.J. Cantuti, J. Chromatog., 1964, <u>15</u> , 141.
405.	HJ. Petrowitz, ChemZtg., 1964, 88, 235.
406.	E. Clar, "Aromatische Kohlenwasserstoffe: Polycyclische Systeme," Springer-Verlag, Berlin, 1952.
407.	V. Cantuti, G.P. Cartoni, A. Liberti, and A.G. Torri, J. Chromatog., 1965, <u>17</u> , 60.
408.	R.N. Stillwell, Analyt. Chem., 1966, <u>38</u> , 940.
1.00	G. Widmark, Personal communication, 1968.
409.	
410.	J.A. Hardy, <u>Proc. Inst. Electronics</u> , 1969, <u>10</u> (3), 2.
411.	P. Issenberg, M.L. Bazinet, and C. Merritt, Jr., <u>Analyt. Chem.</u> , 1965, <u>37</u> , 1074.
412.	R.F. Klaver and R.L. LeTourneau, <u>Proc. Amer. Petroleum Inst., Sect. III,</u> 1963, <u>43</u> , 254.
413.	P.E. Moreland, Jr., C.M. Stevens, and D.B. Walling, <u>Rev. Sci. Instrum.</u> , 1967, <u>38</u> , 760.

-347-

414.	R.A. Hites and K. Biemann, Analvt. Chem., 1967, <u>39</u> , 965.
415.	P.D. Zemany, Analyt. Chem., 1950, 22, 920.
416.	C.R. Haefele and J.F. Tinker, 4 4 12 J. Chem. Documentation, 1964, 4, 112.
417.	C.H. O'Donohue, M.A. Manzelli, W.F. Kuhn, and W.A. Powell, J. Chem. Documentation, 1969, <u>9</u> , 147.
418.	H. Pauschmann, Z. anal. Chem., 1969, 246, 366.
419.	B. Pettersson and R. Ryhage, Arkiv Kemi, 1966, 26, 293.
420.	S. Abrahamsson, Sci. Tools, 1967, 14, 29.
421 . [.]	L.R. Crawford and J.D. Morrison, Analyt. Chem., 1968, 40, 1464.
422.	S.D. Ward. in "Specialist Periodical Report: Mass Spectrometry," ed. D.H. Williams, The Chemical Society, London, 1971, p. 253.
423.	B. Pettersson and R. Ryhage, <u>Analyt. Chem.</u> , 1967, <u>39</u> , 790.
4 24.	L.R. Crawford and J.D. Morrison, Analyt. Chem., 1968, 40, 1469.
425.	P.C. Jurs, B.R. Kowalski, and T.L. Isenhour, <u>Analyt. Chem.</u> , 1969, <u>41</u> , 21.
426.	J.M. Ruth, <u>Analyt. Chem.</u> , 1968, <u>40</u> , 747.
427.	L.F. Monteiro and R.I. Reed, Internat. J. Mass Spectrometry Ion Phys., 1969, <u>2</u> , 265.
428.	J.H. Beynon, "Mass Spectrometry and its Applications to Organic Chemistry," Elsevier, Am ^{ste} rdam, 1960, p.414.
429.	T. Aczel, Analyt. Chem., 1968, <u>40</u> , 1917.
430.	R.H. Wallick, G.L. Peele, and J.B. Hynes, Analyt. Chem., 1969, <u>41</u> , 388.
431.	B.S. Middleditch, Analyt. Chem., 1969, <u>41</u> , 2092.
432.	E. Clayton and A. McCormick, personal communication, 1969.

-