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SUMMARY

Vibrational spectrz of some hexafluorosilicates, -germanates,l
and -manganates(IV), with general formulz A2MF6, were recorded
in solid state, with emphasis on the far-infrared region of
wavelengths. The spectrz were obteined with a Pourier Transform
Interferometer and a Cary 81 Reman Spectrometer having an He-Ne
laser as exciting source. Many of these spectré are reported

for the first time. They sre discussed in terms of factor group
analysis, of which an up-to-dete survey is msde in Chapter 1.
Factor group anelyses are carried out for 4 of the most frequent-
1y encountered crystelline structures of AEMF6 compounds, i.e.
Og, ng, Cgv, end Dg space group (Chapter 3) and the results are
compered with the experimentsl spectrz (Chapter 5). Lattice modes
and the behaviour of gll vibrational modes under the particular
symmetries of the moleculsr species in the crystsl are largely
discussed. Force constanis are calculated by a least square pro-
cedure according to & computer program written by the author
(Chapter 6). The cslculated force constants are used to explain
the experimental vibrational spectra of the AZMF6 compounds in-
vestigated, especially in the lattice frequency region, and to
drew some conclusions gbout the nature of the bonding in these

compounds (Chapter 7).



INTRODUCTION

The vibrational spectroscopy of inorgenic compounds, which
has been for & long time a most fruitful means of elucidating
their structure, has found & renewed interest in recent years
with the advent and rapid growth of two powerful tools - far-in-
frared absorption and reflection spectroscopy by interferometric
methods, and Rsman scattering spectroscopy with laser excitstion.

These techniques have allowed investigation of two problems
which hed not been épproacheble by the older methods of the con-
ventional spectroscopy: (i) the wavelength range may be now ex-
tended down to very low vslues (10-20 cm_1), both in infrared
and Raman spectrs, snd (ii) the laser ensbles one to obtain Ra-
man gpectra from solid and/or coloured ssmples. On the other hand,
the last decede brought about significant progresses in the con-
ventionsl instrumentation itself, by improving the accuracy in
band location (¥ 0.2 cm-1), intensity snd polarisation messure-
ments, and by increasing the spectral resolution of fine structu-
red bends (down to 0.25 cm'1 for infrared and 1 cm-1 for Reman
séectra, see Chapter 2), due to the use of the grating or of
more sensitive receptors.

Under these circumstances, a reconsiderstion of older studies
on these compounds seems necessary - especially for finding,
exactly locating and assigning the absorption or scattering

bands in the range below 400 cm"1 (fer-infrared), which had not



5 .
been within eszsy reach of conventionsl spectroscopy, and to get
good spectra in the solid phase both in sbsorption spectroscopy
and Raman scattering. Many of the older data are not very accu-
rete with respect to the phases investigsted - some compounds
were studied in mixed or non-defined phases &nd, moreover, some
others in solution; force constaznt calculations bssed on such
data, or sttempts at interpretation of the bonding must therefore
be considered ss partly suspect. Purthermore, the problem of the
low energy lattice vibrations, generslly below 200 cm-T, could
not be solved with conventional instrumentation and for many years
the theoretical results of factor group (see Chapter 1) asnd other
methods of vibrationsl analysis.have lacked complete experimentasl
support.

In the last few yesrs, quite a lot of work has been carried out
upon inorganic compounds, peying proper attention to the phase
present and to the correct assignment of the bands, based on accu-
rate polarisation determinations in the infrsred spectrz and depo;
larisstion studies of the Raman bands. The data obtained and the
increasing computing facilifies have encoursged force constant cal-
culstions upon meny classes of compounds. The informstion thus ob-
tained has proved to be of great interest for chemiczl bond theory.

It is not necesssry to emphassize the importancé of & complete
and detailed study of gll the vibrations of & crystal. Knowledge
of the symmetry species of normal modes engbles conclusions to be
drawn about the crystalline environment of a certain molecular unit,

the structure of the crystal and the relative strength and type of
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inter- snd intrsmolecular bonds. More force constants may be calcu-
lated, and with greater accuracy, when more bands are correctly and
precisely assigned; the potential force field mey thus be known with
less uncertainty. This“fact has important consequences upon other
physicel studies, e.g. electrical, mechanical and thermal prqperties
of erystals (see Chapter 1).

We have undertaken the study of crystalline and molecular optical
vibrations for the class of ternary fluorides of general formula
AZMFG’ where M is Si, Ge, and Mn, and A ~ an aslkali metel. The main
reason for choosing Si, Ge and Mn as centrsl astoms was that the three
respective potassium salis, K2MF6, are usually teken as representa-
tive of the three structures in which most of the remeining A2MF6
5 3 4

h’ DBd’ and C6v space groups

(see Teble 9, Chapter 4). Thus, the study could complete in the lat-
1,2

compounds crystallize, having the O
tice vibrations range of the spectrum the existing data on spectra-
to-structure correlations for these typical compounds. Furthermore,
some hexafluorosilicates, hexafluorogermsnates end hexafluoromanga-
nates(IV) crystallize in the cubic Og space group, for which the

force constants may be easily evaluated (see Chapter 6). This per-
mits some conclusions to be drawn on the nature of the bonds in all
the remaining compounds of silicon, germanium and manganese (Chapter
7). The influence of the slkali metal ion A+ upon the frequencies

of the lattice vibrations of the three mentioned regular structures
and upon some of the force constants may be also investigated. Fi-

nally, knowledge of the vibrationzl spectra in the solid state,

over the entire frequency range (4000-40 cm_1), together with the
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unambiguous assignment of the bands, offers, by comparison with
theoretical predictions, a test of the method of factor group ana-
lysis itself.

Some other relsted work has been published. Poulet and Debeau3
have given 2 complete vibrational analysis, including force constant
celculations, for & large number of cubic (Og) A2MX6 compounds (X -
halogen); & similar snelysis has been carried out for some trigonal

A MFG compounds by Sharp snd Lane4

5

a detailed treatment of K2NiF6

has been made by Reisfeld”. All these papers, though desling with
particular AZMXS structures, contain consistent solid state spectral
data, which can be used for further work. The previously quoted pa-
pez‘-s1’2 were dedicated to gll three structures of A MFG compounds,
but only spectra above 400 em™! were reported.

The present work reports the spectra of the representative com-
pounds KZSiFG’ KéGer and K2MnF6 over the frequency range 2000-40
cm'1, in solid state, and also the spectra of the similar compounds
in which the K' cation is replaced by Rb* and Cs+; the spectrs of
sodium salts, which occur with e lattice with lower (D§) symme try
(see Teble 9) due to the smaller size of Na+'cation, are also re-~
ported. The low frequency spectra corresponding to the lattice vi-
brations are reported for the first time for most of these compounds.
Factor group snalyses are carried out for the typical KéSiFG, KzGeFG,
K2MnF6, and Na2MF6 structures (Chapter 2) and correlation with ex-
perimental results is established whenever possible. Force constant

calculations are carried out for 6 cubic A MFG structures out of the

ebove mentioned compounds, and for K2N1F6, based on data of ref.5



Chapter 1 VIBRATIONAL SPECTRA OF CRYSTALS

The crystsl is eseentially an ordered, periodicsl arrangement
of atoms. The mein feature of a crystel is the existence of the
unit cells ~ elementary volumes having identicel sizes, shapes,
orientation and composition, and which, tzken together, fill the
entire space of the crystal. The number of molecules in a unit cell
is an integer. Starting from any one of the unit cells, the crystal

may be reproduced by primitive translations of that cell along

three independent directions. If ?;,'¥é and ?3 are 3 primitive
vectors of the smellest unit cell, then6

— — —> —

R =nt, +nt, +n.t (1)

n 11 2°2 373

where n,, n end n, are integers, represents the translstion vec-

2 3
tors to all the unit cells of an infinite crystal.

The unit cell itself has certain symmetry properties, which are
best described in terms of rotation, reflection and non-primitive
treanslations; & certein combination of these operations transforms
the unit cell into itself.

The totality of opefations, including primitive translstions,
which, when applied to a primitive unit cell leave the crystsl in-
varient, form a8 group which is called the spasce group of the crystal.
Since there are certain restrictions with respect to the permissible
combinations between the point groups and the primitive and non-

primitive translations, the number of space groups is limited. In

three~-dimensional space there exist 230 space groups and any crys-



tal must fell into one of these space groups. They may be geners-

] — —
ted by combining 14 different sets of vectors t1, te,

cribing & Bravais lattice) with 32 possible crystallographic point

.-7
t3 (each des-

groups (each forming a crystal class). The 230 space groups may be
clessified according either to Schoenflies7, or to the Internatio-
nal Tables for X-Ray Crystallography (1952). Both these notations
are useful in the study of vibrational and electronic spectroscopic
properties of the crystals.

The 14 Bravais lsttices are usually classified in 7 crystallo-
graphic systems: triclinic, monoclinic, orthorhombic, tetragonal,
trigonal, hexagonal, and cubic, according to the various possible
megnitudes and orientations of the vectors ?; ,.gé and-gs. Sometimes,
the trigonal system is included in the hexagonal system. For each
Bravais lattice, a primitive unit cell may be chosen, the choice
being not unique. For vibretional anslysis, the unit cell to be
chosen is the smallest possible (see later).

The space group S is an infinite group. However, the transla-
tions which carry & point of s unit cell into the equivalent point
of another unit cell may be considered as identity operstions. The
remgining operations, relating to the symmetry properties of the
unit cell itself, form by themselves a group, celled the factor
group F. We can write symbolically:

=FXT,
where T is the infinite group of the primitive translations. The
factor group is always isomorphous with one of the crystallographic

point groups. This does not mean that all the operations in & fac-
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tor group and its isomorphous point group sre identicezl: the factor
group may contain non-point operstions, such as screw rotations
and/or glide reflections. This circumstance may lead to some diffi-
culties in carrying out the factor group analysis (FGA, see later).

Any point in a crystel has a2 'local' symmetry, i.e. the point is
left invarient by some operations of the factor group. For most
points, only the identity operstion E leaves the point invariant.
Some particular points zre, however, situzted at the intersection
of two or more symmetry elements, and these are left invariant by
the corresponding operstions. All the symmetry operetions which
leave & certsin point invazriant form a group, called the site group
of thet point. This group describes the symmetry of the crystel as
'viewed' from the considered point, or the local symmetry around
the point. The site group is isomorphous with & subgroup of the
factor group and includes only point symmetry operations. Obviously,
the gite group must be also a subgroup of the molecular group to
which the molecule or ion under study belongs.

The first step towards the understanding of the influence of
the lattice environment upon the vibrational modes (or other phy-
sical properties) of the molecule consists in finding the type of
the site occupied by the molecule or ion in the crystal. Sometimes,
the site group analysis (SGA) alone is sufficient to provide the
selection rules and to explein some features of the spectra in so-
lid phasee. This is nevertheless only & preliminary approech, in
which the motions of the molecule sre supposed to have no relstion

at 8ll1l with the motions of the rest of the crystal. This spproach,



therefore, will not result in the knowledge of the lsttice modes.
Consideration of the interactions between the constituents of =a
crystal, which cannot be alweys neglected, the factor group ana-

lysis, permits knowledge of all vibration modes of the crystal.

Vibrations of Molecular Crystals

Vibrationzl spectroscopy of solids is & helpful instrument for
studying the molecular structure, the molecular snd atomic motions,
and the intermolecular forces in crystals. The greatest advantage
is teken from it when the spectra are obtzined from single crystsl
semples. Nevertheless, the spectra still remain useful when poly-
crystalline ssmples only are available; in fact, this is for the
present the most common situation, since most compounds cannot be
grown into single crystals of suiteble size and/or cut slong any
desired plazne for subsequent spectroscopic examination.

In what follows, & short discussion Qill be given on some par-
ticular aspects of the vibrational spectroscopy of crystsls, espe-
cially those relsted to the problems of structure elucidation. The
discussion will be limited to the families of molecular and ionic
crystals only, i.e. the crystals in which individual molecular
units, or polyatomic ions, casn still be identified, and in which
the forces between these units are weak compared to the intramole-
cular forces.

For a non-linear free molecule contazining r atoms, there &re
3r - 6 normal modes of vibrationg, which can be classified among
various symmetry species - the irreducible representations of the

molecular group to which the molecule belongs. When such molecules
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zre brought together to form z crystzl, the study of the vibrztions
of its constitufents mey be reduced to the study of a single unit
cell, owing to the trensletionsl periodicity of the lattice . If

n is the number of molecules (or ions) per unit cell, the total
number of modes of vibrztion of the unit cell will be 3rn. Of these,
(3r - 6)n belong to the molecules, which do not lose their indivi-
duzglity in the crystsl, and are therefore termed 'molecular' or
'internsl' modes. The remeining 6n modes sre characteristic for

the motions of the molecules one agsinst snother and are czlled
'lattice' or 'externsl' modes of vibration.

The distinction of the vibretion modes into 'moleculszr' end 'lzti-
tice' modes is very useful in the vibretional snslysis, but it has
no sound physicel justification. The energy levels of 8 solid con-
stitute an intrinsic property of the solid s & whole. Since the
forces between atoms are usually larger within the molecular groups
constituting the crystal than the intermolecular forces, the lattice
vibretions will have generzlly lower frequencies than the molecular
vibrations, but not gll bands eppearing in the far infrared should
be autometically assigned to the lattice modes.

The lattice modes csn be further clsssified according to the
type of intermolecular motion, into 'rotatory' (or 'librational!')
(3n of them) end 'trsnslatory' [3(3 - 1)]. The remaining 3 modes
represent the motions (translations) of the unit cell as a whole
and ere called 'acoustic' (for reasons which will be discussed la-
ter in this chapter). The 3rn - 3 modes which remain after subtrac-

tion of the acoustic modes from the totsl number of modes are cal-
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led 'opticel’.

The s tudy of the interactions governing the behaviour of solids
by means of infrezred and Rsman spectroscopy involves measurement
of both optically sctive lattice and molecular modes. By 'measu-~
rement' one usually mesns location of the infrared zbsorption bands
and Raman scettering bands, &nd sometimes determination of intensi-
ties and polerisation. Much information is also available from bsnd
shepes and fine structure.

All these fzctors masy be influenced by the conditions in which
the molecule exists in the crystsl. The potential energy function
of the free molecule (or ion) is usually significasntly perturbed
by the field of the surrounding lattice. Moreover, interactions
occur in the crystal between the internal modes of the molecule,
or between the internal end the lattice modes, which meet the ne-
cessary symmetry requirements. These interzctions msy lead to
apprecieble changes in the spectrs as compared with those of the
free molecule, and the correct interpretation of these modifications
may result in useful conclusions about the structure and dynamics
of the crystel.

Usually, two kinds of spproximations are used in the study of

the crystal vibrations:

(i) Born-Oppenheimer approximation. Generally, the Hamiltonian
of a crystalline system is & function of the coordinates and mo-
menta of all nuclei and electrons. However, the large difference
in the masses and, hence, in the velocities of these particles

makes plausible the assumption that the electrons follow the nuclezar



motions edisbeticaily, moving as if the nuclei were fixed. This
assumption lezds to z separation between electronic znd nucleszsr
motions. To explein an importent class of phenomenz, including
electronic conduction or electric resistivity in crystals, this
egpproximation is no longer considered suiteble znd electron-phonon
interactions have to be taken into account. On the other hand, cou-~
pling of the electronic and vibrational excitetions (exciton-phonon
interaction) might influence11 the line shape and line temperature
dependence in the electronic spectra, or the processes of energy

12

transfer and excitation trapping .

(ii) Harmonic approximation. After the adisbatic separation of

the electronic motions, the Hamiltonian of the nuclei will consist
of the kinetic energy of these nuclei, plus the potential energy,
which is & function of the nuclear coordinates and has the perio-
dicity of the lattice. This potentiazl function, which has a mini-
mum vslue for the equilibrium configuration, may be expanded in
powers of the nuclesr displacements uk from the equilibrium posi-

tions:
v Z¢kuk+ 3 Zd’kl“k“l + (1/6) Z cbklmukulum
Usually this expasnsion is terminated after the 2nd power:
V=% Z Cbklukul (2)
(the first term vanishes becsuse V must have & minimum in the
equilibrium configureation and thus its first derivstives must

venish). ¢7k1 is the real symmetric metrix of the force constants.

This approximation is called harmonic and is most often sufficient
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for spectroscopic calculations. However, phenomena such es thermal
expansion, heat conduction, elastic behaviour etc., can only be ex-
plained by taking into account the phonon-phonon intersction, i.e.
higher (anharmonic) terms in the expansion of V.

The dynsmics of & crystalline lattice may be best understood

by considering the crystal as g system of coupled oscillators13,

sometimes with the simplifying essumption that the coupling is
effective between nearest neighbouring etoms only. The deviations
of the stoms from their equilibrium positions are supposed to be
small enough not to destroy the structure of the lattice. The
restoring forces are, in the harmonic approximation, proportional

to these deviations. The potential energy function V, defined by

F = -V | (3)
is subject, owing to the translational periodicity of the lattice,
to the condition

V(E+ R )= V@ (4)
where i; is the translation vector defined by (1), and ¥ is the
position vector of a point in the unit cell.

We will treat first the unidimensional case of a chain of N
identical atoms (Figure 1), 1 and N being the terminsl atoms. If
w, is the displacement of the nth atom and QD is the respective

force constant, the potential function is

N-{
V(x) ‘-‘-%‘P,Z (W), q - un)z}—!— V' (x) (5)
1

when the assumption is made that the coupling exists bgtween nearest
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neighbours only. For the terminal stoms a supplementary condition
must be given, in order to specify the form of V'; when these are
to be treated in the same manner as the other (middle) atoms, use

is mad.e“4 of the Borm-von Karmann cyclic boundary condition:

Wi n = Yy (6)
This condition means that the atoms 1 and N are bonded together

by similar forces to those acting between internal atoms. For

'i—er@
! 2

a

2

¥ S U N S ew‘ 2
4 N-2 N-1 N

LWe

Figure 1
such a cyclic chain, the potential (5) for the longitudinsl vibra-

tions becomes

N-4
V(x) = %cP[Z(un IR L O u1)2] :
4

The Hamiltonian of the system is

N 2 N-1
Zp S
"= 1—53—-'_%(‘)[4 (“n+1’un)2+(uN'u1)2}’ M

where Pn is the momentum of the nth stom and m its mass. ‘Resolution

of the Schroedinger equation

2 %
HZBII:-—-—-kan, (8)

where Bl; are N independent orthonormal eigenvectors, leads to the

following values for the eigenvalues and eigenvectors15:

ka

W, =2w |sin —— (9)-
Bk = exp(ikna) (10)

nVE

/._
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where «J = P /m. Owing to the cyclic condition (6), exp(ikNa) = 1
and therefore k is restricted to certain permissible values given
by16

|k|=—%=.p (p=1,2,...,N). (11)

Since k occurs only in exp(ilkna), adding to k multiples of 27(/a

changes nothing and we can further restrict k to the interval
-TC/a & k $+I/a (12)

Let us consider now & linear cyclic chain which consists of N

cells of length a, each cell containing m atoms (linear chain with

e 'basis'). The eigenvectors may be chosen in the form15
k _ _1 k .
B, I £, exp(ikx) (13)

where x == na + v represents the equilibrium position of the atoms
and v is the distance from the origin of the uﬁit cell to the equi-
librium position of the stom. These functions are plane waves,
modulated by means of a function ft which has the periodicity of

the lattice. The eigenvalues are obtained by solving the equations
k 2 k
g Coyr (R)E 0, = corfr (1)

which result from the generzl equations (8) by using the modulated
expression (13) for Bg and where va, is 8 Hermitean matrix with

m rows and m columns. For each value of k in the interval (-7T/a,
+7C/a), these equetions give m frequencies and m vectors ft. There-
fore, there will be m branches of the frequency as a function of k.
One branch represents the sound waves when k is small, and is there-

fore called ascoustic. The acoustic modes are excited when all atoms
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in the unit cell move together (in phase) and for k= 0 the fre-
quency of this vibration is zero (there is no displscement of charge).
The other branches have high frequency values even for k —> 0. Since
this type of vibration produces e displacement of the charges of the
atoms they appear in the infrared spectrz and are called opticsl.

In the optical modes, the atoms in the cell vibrate one against

other (out of phase, Figure 2s). For k = 0, all the atoms which
occupy identicel positions in different unit cells move in phase
irrespective of the kind of branch.

Por & three-dimensionsl crystszl (with 'basis', i.e. a 'complex'
unit cell) conteining N unit cells and m atoms per unit cell (the
atoms being different either by their kind or by the site they
occupy in the cell),‘following the same argument, the eigenvectors
can be chosen so that they are multiplied by a phase factor exp(iﬁi)

under a8 translastion ﬁ which carries & cell to another identicel cell;

pon —m— — o— —

tntervol modes
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the modulating factor f is a m-component vector which has the perio-
dicity of the lattice. For esch E there are 3m independent eigen-
values which can be determined from spatial equations similar to
(14). There are now 3m branches of frequency as functions of the
wave vector f, three out of which are acoustic and the remaining
ones optical. In Figure 2b these branches, known as dispersion
curves, are shown for the NaCl crystal (m = 2, 6 branches). Longi-
tudinal and transverse modes are indicated by L and T, respectively,
The TA and TO modes are doubly degenerate for NaCl (snd other cubic
crystals). For crystals such as diamond, with two identical stoms
per unit cell, 1O gnd TO are degenerste for—§'==0. The shgpe of
various dispersion curves of & crystal mgy be found from elastic
constants, specific heat, neutron scattering and other studies.

The group velocity of a wave which propagates through a solid

is given by the slope of the corresponding dispersion curve,

v, = 2 oW (15)

ok

For (E]==O, this velocity is different from zero for the acoustic
modes only; the optical modes, for which vg =0 at ['1?1:0 and *J7l/a,
are standing waves. In the genersl case, for every branch and every
value of k there would be & different velocity of propagation of
the corresponding wave through the crystazl. In particular, T and

L modes would propagate with different velocities, unless they are
degenerate. As a rule, the velocity of any T mode is not larger
that of the corresponding L mode.

It should be mentioned that this concept of T end L modes follows
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the terminology used in the study of sound propagation in elastic
solids and it is not strictly correct when other than acoustic
modes are concerned. Moreover, this terminology is improper, even
for the acoustic modes, for an anisotropic crystal.
Quantum-mechanicelly, and by analogy with the treatment of the
electromagnetic radiation, the propagation of an elastic wave
through a crystal may be interpretéd as the propagation of & par-
ticle, the phonon. The wavelength\k.of the wave associsted to this
phonon is given by
| K| = 27T/, (16)
The approximation.l]?l==-0 works at long wavelengths, i.e. at wave-
lengths much larger than the lattice constant:
A a. an
For the opticel lattice vibrations, which generally appear below
200 cm-1,3\21500 £ end this condition is fulfilled, since for most
lattices g does not exceed ca. 10-20 R.
A very convenient way of visualising the effect of the wave
vector-f'on the behaviour of various modes is to introduce the re-

ciprocel lattice. Three new lattice vectors are defined by

- ?X? w."x__> ?x—t—)
— -,
L 2 3 i-__ * 1 2 »
T Gty 2 Rty 2 T Tty
172 3) 1V72 3) 12" 3

The advantage of working in reciprocal space is that the wave

vector‘f’may be expressed very simply in terms of a translation

17

vector

y 1.0,
—g_ *:* - * n *’;* (18)
—-n1 1 n2 2 %-nB 31 1




21

* *

*
where n n2, n3 ere integers. For this reason the reciprocal lat-

1°
tice is often called theaz- or wave vector-space, The condition
(12) previously stated for k defines in the-ﬁlspace 8 zone which
is called the first (basic) Brillouin zone. The distribution of
mode frequencies in’f-space is uniform, filling the first Brillouin
zone. For an infinite crystsl (N—>°°), the states density becomes
very large and the frequency spectrum is almost continous. For
spectroscopic purposes only the frquencies at the middle of this
zone ((?]::»o) are of interest (because they represent stationary
waves created by atoms in the cell moving with & maximum phasse dif-
ference). At this particular point of the 1st Brillouin zone the
frequencies of all acoustic modes are zero; in the general case of
a unit cell containing more kinds of atoms, or identicsl atoms si-
tuated at different sites, the frequencies of all transverse or
longitudinal opticel modes are different, slthough very often some
of these modes may be degenerate. For higher fﬁl in the zone, the
frequencies of the optical modes sre in general lower than for fgl
= 0 and at certain points they become degenerate. Moreover, the
group velocities of the corresponding waves become different from
zero, i.e. the waves begin to travel through the crystal and the
modes can no longer be infrared or Ramesn active as fundamentels.
Therefore, the 13;L2=50 approximation may be considered as a (trans-

lation group) selection rule for the infrared and Raman spectra of

the lattice vibrations. As for the frequencies of the internal

modes of the molecule (or ion), they remazin practically unchanged
-y

when |k| varies from -JT/a to+iT/a (Fig. 2c), so that their measu-

rement is immaterisl of the choice of & pasrticular point in the
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zone (they are standing weves throughout the whole zone).

The dispersion curves w vs. E are significantly modified in
the presence of an electromesgnetic field; the selection rule in
the case when the photon produces a single phonon is

K-k=o, SN CL)
wherergris the wave vector of the photon (for onefphoton processes).
This influence is particularly important forf¥l=:0, and for frequen-
cies of the electromagnetic radiation which are more or less close
to some excitation frequency of the crystsl itself. This photon-
phonon interaction, which appears particularly at the middle of
the Brillouin zone, is not at present well understood and the in-
terpretation of the infrared and Raman spectra is therefoer some-
times difficult.

Although the points of the first Brillouin zone other thanAthe
middle one are irrelevant for the infrared and/or Raman activity
of the fundamentsl modes, they may play s very important pert in
the activity of combination modes18. For these 1latter bands the
X = 0 selection rule is no longer strictly velid gnd it is not
Justified to assign combinations of internal and lattice modes as

resulting from k =0 motions. The selection rule for this case is

—>
K- 2% =o, (20)
where.E; is the wave vector of the ith mode end summaetion is car-

ried over all participating modes (multi-phonon processes). The
multi-phonon processes are generally weak, but still possible.
The—E = 0 selection rule being no longer obeyed in these cases,

an almost infinite number of frequencies would be possible in a




crystal - these frequencies arising from normal mode vibrstions
which esre out-of-phase by varying amounts in successgive unit cells.
This means thet 2 continous rether than a band-like sbsorption
should be expected. Sometimes, however, infrared or Raman bands which
occur in the spectra can be interpreted as a simple algebraic sum

of various internal and lattice frequencies observed as fundamentals
(according to the specific provisos of the group theory); this is

- merely due to sccidental singularities in the phonon frequency dis-
tribution18. These singularities may be found from the shape of the
dispersion curves, but such curves zre only known for a limited
number of cases, and then only epproximately. Actually, there is

13 that.gf# 0 lattice modes msy appear in combination with

evidence
internasl modes in the infrared and Raman spectrs of some crystals.
At present, no definite sssignment of the combination bands - es-
pecially of their half-band width - could provide essential infor-
mation concerning the phonons tsking pert in the absorption or

gcattering processes, and thus on the phonon-phonon interactions.

Factor @Qroup Anslysis

The motions of the nuclei can be classified according to several
procedures, all of them based on group theory.

The first logical approach would be, &s mentioned, to consider
just the local environment of the molecule or ion. The molecule
is supposed to move in a potentisl field which reflects the symmetry
of the surrounding crystel; this is precisely the symmetry of the

8,20

site group of the molecule . Thus the snalysis reduces to iden-

tifying the site group and working out the selection rules for its
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irreducible representations on well-known linesz1. The procedure
accounts for a certain number of frequencies - those derived from
the internal motions of the free molecule. No informationm concer-
ning the intermolecular motions can be obtained.AThe site group
analysis (SGA) is very often useful when only an analysis of the
splitting of the internal modes is sought. These splittings can
be easily found by simply using the correlation tables for the

molecular group and certain of its subgroups - the site groups

of the molecule in the crystzl. In a paper of Winston and Halfordzo,

a thorough critical analysis of the method is cerried out, with
particular gattention to the relation among various crystsl groups.
One of the main interests of the site group approach consists,
according to the sbove quoted referencezO, in the fact that it may
serve as a preliminery analysis, very easy to deal with, of the
nuclear motions in & crystal. We will use it in Chapter 3 ss a
megns to find the smallest Bravais unit cell necessary to carry
out the fagtor group analysis.

A more elaborate spproach would consist in conéidering the
unit, cell as an assembly of atoms which vibrate. The free molecule
is replaced by this assembly of atoms, and the well established
methods of analysis of the stomic vibrations in a free molecule
can be applied with no change except for the new symmetry of the
assembly. Since the operations which leave the unit cell ihvariant

form & group, the factor group, this method is called factor group
10,22

analysis (FGA)
In their paperzo, Winston and Halford observed that site group
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and factor group analyses must give identicel results, since all
the operations of the factor group can be obtained by taking sll
possible products of the operations contained in the site groups.

As mentioned earlier, the factor group may contain non-point
operations (screw rotations or glide reflections), so that, unlike
the case of molecular point groups, certain of these factor group
operations can carry an atom of a unit cell into an atom of another
unit cell. In FGA, an stom in 2 unit cell is considered inveriant
under a symmetry operation either when it is left unchanged, or
when is carried into an equivalent position in another unit cell.
By equivalent positions one means those positions which can be:
reached by primitive translstions. The main problem after deter-
mining the symmetry group is to reduce the representation fﬂ of
the motions of all atoms in the unit cell among the irreducible
representations F; of the factor group in question.

Let Ni be the number of times an irreducible representation
ri is contained in the reducible representation f". This number

can be found21 from the equation
- 1.Z )
N, = 3 hy %y (R) Xy (R), (21)

where N is the order of the group, hj is the number of operations
in the jth clesss of the group, and 7Ci(R) and 7(;(R) sre the cha-
racters of the group operation R in the representations f; and fi
respectively. The normal modes can be classified using a suitable
choice of the reducible representation r: If [ﬁ is defined, as

in the case of the free molecu1e21, by all 3rn Cartesian coordi-




26

nates (r end n being, s before, the number of ztoms in the mole-
cule and the number of molecules per unit cell, respectively), the
distribution of the normal modes among the symmeitry species of the
factor group can be found by using the following expressions22 for
x'

jd

-~ for the total number of modes ni:

X‘_;(ni) = COR(i"l + 2cos'fy) (22)

where &)R is the number of stoms which remasin invariant (in the
above defined sense) under operatioﬂ-R, and %h is the angle of
rotation; the upper and lower signs referring to proper and impro-
per rotations, respectively21. It should be remembered that the
identity operation and the rotations sround Qn exes are 'proper'
rotations, while the inversion i, plane reflections O and the

rotations around Sn axfs are ‘'improper' rotatioms.

- for the number of acoustic modes T:

7633('13) = 1 + 2cospp (23)

- for the number of translatory lattice modes T':

76;;(1") = [wR(s) - 1] (21 + 2008 Pp) (24)

where ouR(s) is the number of structural groups which remsin in-

variant under operation R.

~ for the number of rotafory (librational) lattice modes R';

7(,‘.; (R') = tp(s~p)(1 X 2cos ¥) (25)

where COR(sop) is the number of polyatomic groups (molecules or

polyatomic ions) invariasnt under operation R. For the rotatory




lattice modes, the monoatomic groups need‘not be taken into account
since they do not have Protetionazl degrees of freedom. For linear
polyatomic groups (oriented slong a c-axis), the relation (25)

is replaced by22

%JY(R')

I

GJR(s-p)(iZZGOSQRR) for all operations C and §
(251)
X.(R') = O for C, and o
3 = or C, v

- for the number of internal (molecular) modes n,

may be found

from the relation

]

n, =n, - (T + T+ R") (26)
when there is 8 single structural group in the unit cell. For two
or more structural groups, the number of internal modes of each
one group is found by ignoring in turn gll other groups. For n
identical molecules per unit cell, the total number of internsal
modes must be finally (3r - 6)n. d
Expressions (22) to (25) are substituted in (21) in order to
find the distribution of the verious kinds of normal modes among

the symmetry speéies of the factor group.

In vibrational spectroscopy, the selection riles may be found

by teking into account the laws of conservation (for energy and
momentum). According to the first of these laws, the energy of
the photon must equal the energy of the phonon which is created
in the crystal. As already mentioned, the wavelength of the
electromegnetic radiation used in infrared and Raman spectroscopy
is much larger than the lattice constants, so that we may take

=0 in eq. (19). This means that in vibrastionsl spectroscopy,
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due to the conservation of momentum, only long-wavelength (§===O)
vibrations ere excited. For mqltiple-phonon processes, the corres-
ponding restriction is, according to eq. (20), z: E}ﬂz 0. These
relations mey be regarded as translation group selection rules.
Once these rules are satisfied, the problem of finding which of
the previously calculated normél vibration modes are infrared~

21, i.e, by fin-

and/or Ramsn-active may be solved in the usual way
ding whether various integrals giving the intensity of infrared

sbsorption and of Raman scattering lines, respectively,

M, «,—.[\{/:ﬁ’ VgdT (27)
oy ;/x//;.,(\//fa-c T (28)

are different from zero. Here’ﬁ.and o< gre the electrical momentum
vector and the electrical polarization symmetric tensor, respecti-
vely, and \l/i and \Df are the initial and final quentum states of
the system. To be different from zero, the integrands in eqs. (27)
and (28) (or certsin of their components only) must contain the
totally-symmetric representation of the factor group. The problem
reduces therefore to finding the products ybz'f} which contain

one of the representations of the vector_ﬁ'or of the tensor o,

-
These representations of M and < are given by20
| R 4 +
Xi(M) = +1+ 2cos ¢y (29)
]
= +
7(,3 () = 2(1 * cos Py ~+cos2¢.) (30)

where again the upper sign is taken for proper rotations and the

lower for improper rotations. Equation (29) is identical to (23),
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which gives the representations of the acoustic modes, since the
electricsl momentum vector’ﬁ'is essentially s translation vector.
As mentioned, the space group is the product of the translation
and factor groups. The ?—-: 0 selection rule means that the trans-
lation group has just one irreducible representation, the totally-
symmetric. The vectors and symmetric tensors sre invariant under
translation, so that they belong to this totally-symmetric repre-
sentation. They must therefore belong to various factor group re-

presentations in the space group. This reasoning justifies the

name of factor group selection rules given to the above procedure

for finding sctive and inactive fundamental modes.

rAs an exemple of the use of FGA we will treat the case of GeO2
(TiO2 rutile structure)23.

The rutile crystal belongs to the Dlg (P42/m21/n2/m) épace
group, with 2 'molecules' per unit cell. The unit cell, together

with its symmetry elements are illustrated in figure 3. Since
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there are 6 aztoms in the unit cell, fhere will be 18 degrees of
freedom (modes of vibration), 3 out of which are acoustic and 15
optical. The symmetry operations of the cell (noted on Fig. 3

with the International Tables symbols) can be relsted to: the

(point) factor group D

4h operations in the following way:

2" —» CY, i—>i

4’ 2? 2

S, —S,, m —o, n-——»o;, n' —0,,

4 4 h d
The number of invariant stoms (aJR), structural groups (cuR(s))

E—E, 42—>C 21——>C', 2— C

and polyatomic groups (COR(s—p)), together with the calculated
795 and number of modes of each kind, are given in Teble 1. It
was assumed that GeO2 is not a molecular polystomic group. Indeed,
in the crystalline state, each Ge atom is surrounded by 6 0 atoms
et equsl distances (within 2% - this figure being not valid for
other rutile structures). All the resulting modes are lattice
modes, Owing to the absence of polyatomic groups, there are no
rotational degrees of freedom and all modes are translatory. The
infrared spectrum of GeO2 should consiét of 4 bands:
A2u'+ 3B,

In the Ramzn spectrum there should be also 4 bands:

A, +B +-B2

g g g

2g’ 251u are optidally inactive,

The observed infrared snd Rsman spectra of Geo2 are shown in

+E.
g

The modes A

Chepter 2 (Figures 6 and 8).
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Table 1

Factor group analysis for GeO2

(rutile structure) (reference 23)

7(,:;‘(9() =2(1 t cos R +cos2 ‘FR)

E 2C c 2c} 2c" 4 28 g .o 20
Dlﬁ 4 22 2 2 4 ho27v . ¢ lInfrared Raman n T T' R' « n{”
(4,)) (= 04) (2,) (m) (n) (m)
g 1 1 1 1 1 1 1 1 1 1 o +o¢yyfo<zz1 0O 1 0 2 o0
Azg 1 1 1 -1 -1 1 1 1 - -1 R, 1 0 1 0 0 o0
Big 1 -1 1 1 -1 1 -1 1. 1 -1 ™ Ky 1 0 1 0 1 0
Bzg 1’ -1 1 - 1 1 -1 1 -1 1 Sy 1 0 1 0 1 ©
E, 2 0o -2 Ao 0 2 ) 52 ’o. 0 (Rx,Ry)(xyz,och) T 0 1 0 1 0
A 1 1 1 1 1 -1 -1 -1 -1 -1 O 0 0 0 o0 O
Ay, 1 1 1 -1 =1 -1 -1 - 1 1 T, 2 1 1 0 0 0
By 1 -1 1 1 -1 -1 1 -1 -1 1 2 0 2 0 0 0
'BZ‘; 1 -1 1 -1 1 -1 1 -1 1 -1 0O 0 0 0 0 ©
Eu 2 0 -2 0 0 ‘-2 0 2 0 ) '(Tx"Ty')’ 4 1 3.0 0 O
¥y | © 90 180 180 180 180% 90 0% O o Number of degrees
o _ of freedom 18 3 15 0 <& 0
wp 6 0 2 0 4 2 0 6 O 4
1 ] .
’)Cj(ni) 18 0o -2 0 -4 -6 0 6 o} 4
WR(S) 6 0 2 0 4 2 0 6 0 4 * Impropér rotations
] - .
763(53-) 15 -1 -1 1 -3 3 1 5 =1 3
w(-p)f O 0 0 0o O 0o 0o 0 0 0
]
xj(n') ) 0 0 0 0 0 0 0 ) 0
]
/ _-:'f ‘ - - - - -
763(‘.0) t1 + Zcos(pR 3 1 1 1 1 3 1 1 1 1
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Chapter 2 PRINCIPLES OF FAR INFRARED INSTRUMENTATION

The vibrational spectroscopic studies of metal complexes had
been limited until recently to the location and measurement of
optically active modes whose frequencies are situsted above 300-
400 cm'1. This region is characteristic for the various modes of
the metal-ligand bond. The existing conventional instrumentation
did not allow the study neither of skeletel modes of the complexes,
whose frequencies are located far below the limit of these spectro-
meters, nor of lattice modes, which arise from the lattice specific
effects.

We will sketch the improvements in the instrumentation which
have brought about the extension of the band measurements below
the mentioned threshold. We will divide the discussion into two
sections:

(i) Absorption and Reflectance Far Infrared Spectrometry;rand
(ii) Leser Raman Spectroscopy.

(1) The success and spresd of the infrared spectrometry has

been mostly based on the use of the principle of dispersion.
Prisms end/or gratings have been used to disperse, in terms of
frequency, a mixture of radiations of various wavelengths coming
from an approﬁiate infrared source. The almost monochromstic re-
distion thus obtained is passed through the sample {in the asbsor-
ption procedure) end the transmitted radistion is compared (by

intensity) with the incident rsdistion. When s range of wevelengths
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is pessed through the sample an energy spectrum is obtained which
shows certain features characteristic to the sample. If the wave-
length range scanned does not contain frequencies chesracteristic
to the molecular species present in the sample, the spectrum will
consist of & continuous line corresponding to 100 % transmittance.
If in the range there exist such frequencies, a corresponding num-
ber of 'absorption' bands will appear, arising from allowed tran-
sitions between various energy levels of the molecule._The disper-
sion procedure sllows cover of a wide range of energies, from around
"200-300 to above 4000-5000 cm'1. The resolution power may vary
very much within this renge depending on the kind of dispeising
unit used, but generally it is lerger and more uniform when using
gratings instead of prisms. Some of the spectrometers working on
the grating principle have been fitted for the low frequency re-
gion (e.g. Beckman IR 11), although the weakness of the sources

in this region requires large slit-widths and, consequently, have
reduced resolution (0.5-1 cm™ ).

Alternetively, some non-dispersive methods have been developed,
mostly based on filters or interferometers, but they have not head
widespread use becguse of technicsl difficulties. However, in the
last decade, improvements in electronic techniques, the intensity
of light sources, and the sensitivity of detectors have allowed
a revival of these methods, which show very good efficiency espe-
cielly in the low energy region. Since it does not make use of
dispersing units and narrow slits and since it ensbles good re-

solution to be reached, the interference method can give excellent
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spectra even with medium light sources and light detectors.

In what follows, a description of the principle of the inter-
ferometric method will be given, since it constitutes today s
highly efficient tool in the study of low energy vibrations in
crystels.

24 in the works of J.B.J. Fourier

Interferometry originates
(1823), who demonstrated that any complex periodical curve may
be transformed into a superposition of sine and/or cosine curves.
The next sbep wes made by A.A. Michelson (1890), who built an in-
terferometer for measuring the velocity of light; hevalso disco-
vered that an interferogram msy be transformed into a spectrum
(energy vs. frequency) after being decoded by Fourier analysis;
this spectrum contains the ususl information about the characte-
ristic absorption of the sample.

A schematic representation of the Michelson interferometer is

ahown25 in Figure 4. The light beam from source S is divided by

Figure 4
a beam splitter into two beams, the first falling on a plane moving
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mirror M1 end the second on a plane fixed mirror M The 2 beams

o*
recombine &t A and the emerging beam fslls on a Golay detector @.
The intensity of the recombined beam is & periodical function of
the difference x of total path length of the two beams before re-
combination, which depepds, in turn, of the position of M1 . For
x = 0 and other x values for which the two beams arrive at A in
phase gll frequencies of the incident light interfere constructi-
vely; when the path difference x is such that the beams are 180°
out of phase, they interfere destructively. If the light ié mono-
chromatic (wavelength oqo), the intensity of the light falling on
the detector 1326

I(x) = 312 + az + 2a,8,c082Tc) X (32)

where a, and a, are the emplitudes of the two beams, If these

amplitudes are equal, as in the case of unpolarized light,

I(x) =I(1 + cos2Tw x) (33)
where I = 2822 constant, When the incident light is no longer
monochromatic, +oo

I(x)= fl(w Yaw + /I(w)cosZIwa dw . (34)
-oo -

The value of the ;ntensity at x =0 is

1(0) =1 = 2f1<w)aw. (35)
The difference oo
P(x) = I(x) - I_/2 =/I(w)c0823th.dw (36)
~ D i

is called the interfereogram function. For monochromatic light,

the interferogram is simply a single cosine wave, whose modulation

frequency is generally in the audio range. A polychromatic source
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will produce a number of overlapping cosine waves, which can be
eanalysed by means of Fourier transform. The Fourier transform of

the right hand side of eq. (36) is

+ o0

I(k))"—‘-fF(x)cosilewx.dx. (37)

-—n0

In practice only a finite interval of distances (~X,+X) can be

scanned, so that

+X
I(w):-fF(x)cos.Qmux.dx. (38)
-X
F(x) is symmetricel about the zero path difference, so that
+X
I(w) = 2!F(x)cos2mux.dx. (39)

The greater the displscement X of the mirror M1 s the greater is
the information contained in the interferogram. Equation (39)
becomes useful if integration is replaced by summation over a

finite number of x velues:
X
I(w) '—“ZZ F(x)cos2Wwx.A x. (40)
0 B

In this summation, points have to be szmpled at intervals of

Ox S /(2w ) (41)
in order to obtain from the interferogram all the available infor-
mation in the frequency range 0 < w < € o E.g., if @ = 400
cm°1, Ax = 12-5/(,« and the detector signal must be sampled at
least every 12.5u of path length difference. The resolution de-
pends on the totsl displacement X of the moving mirror and on the
number of points sampled. Since the resolution Acw=1/X, the num-
ber of points which are to be taken from the interferogram is

X 2wmzax
Nzsz Aw (42)
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For comax = 400 cmm1 end g required resolution of 0.5 cm'1, N =

1600 points are needed.

The interfereogram thus obtained is not a spectrum, but contains
virtually all the energy-frequency informstion within it. The spec-
trum can be obtained by carrying out the Fourier transformation
of the interferogram. This involves complex calculations and modern
instruments have a 1inkgd small computer to do this task27. Alter-
natively, the interferogram analog data may be digitized, punched
on paper tape and the subsequent cazlculations may be carried out
by a large digital computer. The number of the Golay signal measure-
ments teken is & function of the wavenumber range and resolution
sought, Since even the best synchronous motor cannot assure an even
speed for the moving mirror, the control of its movement is gover-
ned by means of a Moiré grating, attached to the moving mirror.

The intensity peaks of>the Moiré fringes thus generated tell the
éomputer when to take readings..This method gssures thst measure-
ments are taken at regulsr intervals.

The Research and Industrial Instruments Company Lfd. (RIIC)

FS 720 Fourier Transform Interferometer, which was used in the
present work, is represented schematically in Figure 5. The source
is a water cooled Hg lamp. The modulated light is sent over a poly-
ethyleneterephtalate (Mylar) film beam splitter. The thickness of
the beam splitter (6-100u) is chosen according to the frequency
rangekto be measured.

The solid samples are prepared as pressed disks (pellets) in

polyethylene, which has good transmittance in the far infrared.
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Figure 5

RIIC FS 720 Fourier Transform Interferometer
and computing block

S-infrared source, M1-plane moving mirror, Mz—plane
fixed mirror, BS-beam splitter, Sp-sample, G-Golay
pneumatic detector, D-drive of the moving mirror and
gear box, C-chopper, M-condensing mirrors, P-poly-

ethylene window, L-lens

The absorption of the polyethylene itself can be eliminated by
running first its spectrum, then the spectrum of the sample em-

bedded in polyethylene, and by rationing the iwo spectra. In
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Figure 6 the interferogram snd the corresponding spectrum of solid
GeO,, (rutile structure) is shown.

For recording reflectence spectra, only the sample chamber of
the spectrometer has to be modified. The sample - a certsin face
of a single crystal - is placed in an appropiate holder, sometimes
provided with & goniometer in order to ascertain the crystal orien-
tation. The light beem may be sent, by an appropiate arrasngement
of mirrors, upon & plene face of the sample and collected from
it after reflection. By using wire grid polerisers, the electric
vector of the light may be oriented as desired with respect to
the crystallographic axes. This technique enables measurement of
the polerization properties of the active modes.

Reflectance spectroscopy is particularly helpful in studying
samples which have large sbsorption coefficients. In such cases
it is usually very difficult to prepare samples which are suffi-
ciently thin to allow measurements of the stronger bands. A re-
flectance spectrum may be used to computé.the dielectric parsme-
ters, including the absorption index, of the sampleza, on the
basis of the classical electromagnetic theory. Practical compu-
tations are carried out by using the Kramers-Kronig relation529:

1~-R

n = (43)
14+ R - 2VReos B (w)

and
-2R8in © (w)
k= (44)
1 +R - 2VRcos € (w)

where n and k are the refractive and absorption indices, respec-
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tively, R is the reflectivity and e(aJ) is the phase. The value

of B(w) may be found from the equation

2w

lozVR
6, = atm gg 5 dw. (45)
(73] —wm

where wm is a given frequency at which the value of 9, i.e. Qm,
is required. In practice, the limits of integration in eq. (45) are
chosen within the known reflectance spectrum. Computer progresms

30 for routinely performing Kramers-Kronig

are now available
transformations.
Sometimes, even an absorption séectrum has to be corrected for
errors which zre usually neglected and which are due to the influ-
ence of the changes in the reflectivity of the sample &t the sbsor-

31. In these cases, Kramers-Kronig relations may also

ption maxima
be used to find the correct location of the sbsorption bands. .
(ii) Raman spectroscopy is essentially an inelastic scattering
process of the photons when they interact with the molecules of
the sample. The energy lost by the photon is used to excite cer-
tain vibrational modes of the molecule, which become, under cer-
tain circumstances depending of the molgcular symmetry, active
(Stokes lines); sometimes, deactivation of excited vibrational
states of the molecule results in a gain of energy (anti-Stokes
lines). For crystals, the vibrations of the lattice participate
and the scattering process may be visualised a&s an inelastic
collision between photons and phonons. The first erder Raman

spectrum reflects the scsttering processes in which a single pho-

non is created (or destroyed) in the lattice at the expense of



42

photon energy loss (or gain).

The mein physicel parameter of the molecule (or crystal) which
governs the occurence of a Raman effect is the electronic polari-
zgbility symmetric tensor o, The magnitude of various componeﬁts
ocij of this tensor may be estimated approximately by different
procedures, based either on classical electromagnetic theory32,
or on the expansion of o in & series with respect to small dis-
placements of the normal coordinates from the equilibrium confi-

guration32

. However, the main problem is in fact to determine
whether the various components “ij are or are not equal to zero.
This problem may be easily solved using group theory, a&s indicated

in Chapter 1 (eq. 28). Experimentally, the various o components

i3
mey be determined using polsarized exciting radiation. This way,

the symmetries of the vibrational modes corresponding to different
Raman bends cen be identified.

A Ramen spectrum is genersted when a high-intensity beam of
monochromatic light is passed into and scattered by a sample.
Alongside the exciting (Rayleigh) line W, the spectrum will con-
tain additional weak (Raman) lines w; on both sides of the exci-
ting line. In order to obtain a good Raman spectrum, the exciting
line used must have very good monochromasticity; in classical light
sources, like the Hg (Toronto) lamp, this is realised through appro-
pqate filters which gllow a8 single exciting line to be passed into
the sample. Such sources hsve considerable drawbacks, mainly ari-

sing from the difficulty of concentrating the diffuse output of

the lamp upon the sample, the difficulty of eliminating parssitic
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light, and the high luminosity required to the monochromator.
These difficulties have retarded azdvances in Ramen spectroscopy
as compared to infra;ed absorptionvspectroscopy. The main obstacle
in the development of Raman spectroscopy was the exciting source,
a problem which was solved with the discovery of the laser. The
laser meets all the requirements for a very good Raman source -

narrowness, perfect monochromaticity and linear polarization of

the exciting line, continuous output power, low power requirements,

small beam divergence, etc. By using the laser in connection with
old dispersing instruﬁents, g tenfold increase in the signsl-to-
background ratio may be obtained. The sample preparation may be
also greatly simplified and much smeller quantities of compounds
8re necessary.

The first type of laser used33

was 8 ruby pulsed laser, which
emits at 6943 £. The first commercial laser R;men spectrometer
appeared in 1964, based on 8 continuous He-Ne source and photo-
electric detection>?,

The advantages of using the laser as exciting source in Raman
spectroscopy may be summed up as follows:
a. High monochromaticity. The width of the line emitted by a He-Ne

T for the Hg

laser reaches 0.05 cm—1 (as compared to 0.25 cm~
lamp). This allows observation of bands which are situated in
the immediate vicinity of the exciting line.

b. Stability of laser beam. This refers to both spatial and tem-
poral stability. It brings about the almost complete disappear-

ence of the continuous background in the spectrum.
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C.

Easy measurement of the depolarization ratios. The light emit-
ted by the laser being perfectly polarized linearly, it is
easy to set up 2 simple optical arrsngement for the measure-
ment of the depolarization ratios without energy loss. However,
when the laser beam suffers too many reflections on the waells
of the cell, the determination are not very accurate.

High power density. This enables one to use relatively low
power output lasers (e.g. a He-Ne laser of about 100 mW gives
better results than a 0.5-2 kW Toronto lamp). A further conse-
quence is the possibility of running spectra of powdered solid
samples. The detectors used may be of a lower sensitivity com-
pared with those used in conventional Raman spectroscopy. The
time required to record a spectrum is much shorter, Small a-
mounts of compound ahd low volume cells are needed.

Large choice of exciting line wavelengths. Various mixtures

of gases may be chosen, each of which giving & laser beam with

different wavelength:

Gas Wavelength ()
He-Cd 4416

Ar 4880 or 5145
Kr 5682 or 6471
He-Ne 6328

Moreover, construction of the tunsble leser is now under way.
This choice of the wavelength makes possible to obtain spectra
from variously coloured samples. It is, however, preferable in

some cases to use red lasers, like He-Ne, to avoid photodecom-
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position of the studied compounds and, still more important,

to enhance the signal-to-noise (S/N) ratio. The S/N ratio is
approximately proportional35 to the square root of the photon
flux at the photomultiplier. Since the photon energy is propor-
tional to the frequency, the 'fourth power 1aw'32 (the intensi-

ty of the scattered radiation is proportional to aa4)

4
Is ~ W (46)
.= becomes
3
Is w
and
S/N ~w3/? (47)
Larger S/N ratios may be obtained34 through other improvements

in the optics, e.g. S/N ~w /2

. This fact suggests the use of
long wavelength lasers for excitation. Their radiation has the
advantage of being less absorbed by coloured samples., Alterna-
tively, when the photostability of the compounds permits, short
wavelength lssers (He-Cd) may be used, because detectors are
generally more sensitive in this region.

Spectre of opaque samples can be obtained easily through reflec-

tion of the laser beam on the sample.

The laser source is very well suited to the examination of

single crystasls because the narrow besm of monochromstic, linearly

polariged radiation can be easily and accurately directed onto

small oriented crystalline faces. Single crystal spectra offer

an

unambiguous assignment of the molecular end lattice modes. In-

tensity measurements sre easy to make. They allow determination
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of the various d¢/9Q values which are importsnt in the study of
the nature of bonds.

For single crystal studies, Damen, Porto and Te1136

have in-
troduced & convenient and useful notation for various situstions
occuring iy Reman spectroscopy which takes account of the obser-
vation parameters. It is essumed that fhe Certesian zxes of the
laboratory and the crystallogrephic exes are identical, with the
z-axis of the crystal parsllel to the principal or optic axis.
Thus x(zx)y has the following meaning: incident beam arrives
glong x-esxis, with its electric vector oriented in the z direc-
tion; scattered light is observed along y-esxis and has the elec-
tric vector in the x direction. In this notetion, the peranthesis
conteing the lesbel of the derivative of the déx component of the

37 has given tebles

polarizebility tensor for each mode. Loudon
listing the symmetries of Raman active modes and the corresponding
polarizability derivatives for the most important factor groups.
.Since we are not concerned with single crystals, we will not
pursue further this matter here,

The opticel excitation arrangement of the Spectra-Physics Mo-
del 125 (60 mW) laser in the Cary Instruments Corp. Model 81
Spectrometer, which was used in the present work, is shown in
Figure 7. The geometry used in this ingtrument - laser and Raman
beams coaxial (180°) - takes the most advantage of the energy of
the laser. Other geometries, in which the angle between the two

beams varies from 0 to 900, are also possible. Illumination under

0
90" is preferred in case of single crystels because it allows ea-
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sier interpretation of the results. Alignmenf of the cell end
lager beam is criticsl and relisble spectrs cazn only be obtained
if the exciting beam enters the cell such that total reflection
occurs on the wells. Polarizations are measured by using & Pola-
roid film in the Raman besm, and by rotating the plane of polari-
zation of the exciting line from parsllel to perpendicular by
turning the hslf-wave plate through 45° about the besm axis. In
order to run crystaslline samples, the desired face of the crystal

is held directly against the flat face of the hemispheric collector

7 4
/ — Loser
£ > L:::=ﬁ
f1vy furd
w_|
\i,
{
L/ A.ZZ a
¢ — 70 the grating
ASSZavzaw 7"3 > 0/710Chromaolor
0// | B
Figure 7

Cary 81 Laser Raman Spectrometer

F-filter for 6328 % radiation, M-mirrors, P, ,P,-45°
prisms (P2 hes 1 mm square faces, so that it only
causes & 3% intensity loss), W-half-wave plate, L1—
hemispherical collector lens, L2-condensing lens
(about 8 mm@), P-Poleroid filter, RB-refernce beam,
C-sample cell, O-glycerol between cell's end and
hemisphericel lens, to allow optical contact.
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Itesicity

a0 W0 0 w0 600 w0 W0 aw a0 o

Figure 8
Raman spectrum of solid G.eO2
(The unassigned basnds might be due to some unidentified
impurities present in the sample)
lens. Solid powder samples are placed in glass tubes, whose flat
end is held in the same manner as for liquid samples (Fig. 7).
The monochromator is a double grating Littrow, with double slits
incorporated. Detection is by a photomultiplier, the recorder
being coupled to measure the difference AW between exciting and
Remen scettered frequencies.
The laser Raman spectrum of solid GeO2 (rutile structure) is
shown in Figure 8. Assignment of the bands is made following the
work of Porto et 81.38 for Tioz.

For a more detailed discussion of laser Raemen spectroscopy,

two excellent and up-to-dated reviews of the topics sere available39



Chapter 3 FACTOR GROUP ANALYSIS OF CRYSTALLINE

A2MF6 COMPOUNDS

The crystalline lattices of the AZMFG compounds studied in

this work contain isolated MFg' anions and A" cations*?

. In the
cubic (Og) structures, the MF@“ anions, which generaslly have &
perfect octahedral Oh point symmetry, are placed in an octahedrsl
site symmetry; in other structures, the site occupied by the MFE'
anions may be of a lower symmetry, but the anions continue to be
isolated from each other and from the surrounding cations, unlike
the case of other fluorocomplexes, in which the MFZ— octahedra

share41

edges (Nazch4), faces (KZMnF4) or corners {KNH4)2MnF5,
RbFeF4]. The interaction between the A’ and MFE‘ ions is relati-
vely weak as compared to the intramolecular forces within the
MFE" groups themselves41. Therefore, it is to be expected that
the fundsmental infrsred absorption and Raman scattering bands

of the anion itself, e.g. as they appear in the solution spectra,
should appear in the solid state spectra almost unchanged for s
given compound - save for a small shift due to lattice interac-
tion (which varies with the nature of A’ and with A+—MF§' dis-
tances) and a possible splitting of the MFé_ characteristic bands
when the symmetry of the surrounding lsttice is lower than thst
of a perfect cubic.

The most significant change in the spectra of the solid state

compounds as compared to the solution spectra is, ﬁowever, the
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appearence of new absorption and scattering bands in the low
energy range. These are entirely characteristic of the solid state
and are the lattice active opticsl modes (see Chapter 1).

All these results can be predicted by means of the fzctor group

snalysis (FGA) method (Chaptgr 1), i.e. by considering a single
unit cell and assuming that the vibrations of gll unit cells of
the crystal teke place in phase. The translation and factor group
selection rules are applied, as previously described. At the cen-
ter of the first Brillouin zone, all three ascoustic branches have
zero frequency, and all the observed fundamental modes may be
‘assigned, in principle, to the active optical branches which re-
sult from FGA,

This approach is rigorous for the assignment of fundamental
modes. For combination bends, which arise from combinations of
fundamental modes of appropriaste symmetry, no definite predictions
can be made on the basis of a simple model which neglects the

18,19

effects of non-central regions of the zone , even if the spe-

cies of the resulting mode is clearly allowed or forbidden by the
factor group selection rules.
Therefore, in this discussion, only the fundamental modes of

the four AZMF6 structures considered will be clagsified at the

center of the Brillouin zone, according to the FGA method in its

latest standard form10’20'22.

A detailed description of these structures will be given later

5 4

in this chapter, but we emphasize here that the 0, ng and C6v

structures are closely related to each other. Indeed, by choosing
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for the cubic structure a cell with the c-axis along the hexagonal

C, symmetry axis, the ratio of the 3 c-axes of the D3 Cgv and O5

3 34’ h
structures is, for almost gll compounds which crystsllize in these
forms41, very close to 1:2:3, This suggests that the differences
in ¢ are due to a periodical repetition of certain identicsl basic
layers, which are present in gll 3 mentioned structures. These are
close-packed layers, whose composition is AFB.

The stabilisation energies of the three widesprezd A2MF6 struc-

tures, as estimated through Madelung constants42

, are found to be
almost identical. This supports the idea that these structures
are in fact polymorphic. The alkali ions A" are coordinated by
F atoms, the coordination number being zlways 12, i.e. that cha-
racteristic of close-packing, in all three mentioned structures,
although the A-F distances are not always equsl. The coordination
of A* (A =K, Rb, Cs) by P is very different from that encountered
in NazsiF6 (D§ space group), where c.n. = 8, and the 8 Na-F dis-
tances range between very different values (see later).

All these facts, irrespective of the particular nature of the

4 or incidentegl distortions of the octahedra due to Jahn-

bonding
Teller43 or other effects, enable one to establish snalogies bet-
ween the results of the vibrational analysis in each case and to
see more clearly the effect of the lattice environment upon the
behaviour of the vibrational modes of MFS' anions.
(i 2
) A MF. compounds of Of (Fm3m) space group
t ] \ ] \J
( K2Pt016 or 'K,SiF, structure)

The crystallographic unit cell contains 4 formula-units and the
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atoms have the following positions44:

M: (4a) 000; f.c.
A: (8c) H(31); f.c.
F: (2e) *(u00; 0Ou0; 00u); f.c.

the parsmeter u varying from compound to compound (u~ 0.19-0.24).
Each M atom 1s surrounded by 6 F atoms which form & regular octa-
hedron. A atoms are equally distant from 12 F atoms, The lattice
layers along the C. axis

3 3
of the unit cell. The nature of M-F bond in these compounds

may be considered as g sequence of AF

involves a certein esmount of covalent character (see Chapter 7),
which is certainly different in such compounds as CszsiF6 and
CSZMnFG. A common feature is nevertheless that the bond is strong
enough to prevent the MFg- eanion from dissociating in solution

in most cases.

The Bravais unit cell necessary to carry out the FGA may be

chosen as in Figure 9; it contains one formula-unit snd exhibits
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the full symmetry of Oh factor group. This cell is different from
that used by Shimanouchi and co-—workers45 (Fig. 10) for the factor

group analysis of some hexaclorometallates(IV); this seems to stoi-

4,/T A

[

Figure 10
chiometrically incorrect because contains a single A atom, but
the final results are the same as ours. The number of total (ni),
acoustic (T), translatory-lattice (T'), rotatory-lattice (R'),
end internal (ﬁi) modes are given in Taeble 2 for each irreducible
representation of the 0h group, as well gs the reduction of the
x tensor.
The infrared-active modes are:
F u(internal) +-F1u(translatory-lattice)
(¥4, %) (¥,)
Reman-active modes:
A1g ﬂ-Eg + F (internal) +-F (translatory—lattice)
(V) (V) (v5) | (Vg)
Inactive modes:
qu(internal) +-F1g(rotatory-lattice)
(V) (Vg)

The acoustic mode F, (V,0) is supposed to have zero frequency
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Table 2

Classification of normel vibration modes

5
of cubiec (Oh) AQMFG compounds

5 : me ; '

0h ni T L T R* ni

A 1 0 1 0 0 1
18

A 0 0 0 0 0 0
2g

E 1 0 1 0 0 1
g

F‘,'g 1 0 0 (4] 1 0

F2 2 0 1 1 0 1
g

A 0 0 0 0 o .0
Tu

A 0 0o o 0 0 0
2u

Eu (4] 0 0 0 0 0

F1u 4 1 0 1 0 2

qu 1 0 0 ] 0 1

Number of degrees
of freedom 27 3~ 6 3 15
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(see Chapter 1 and also reference 46 for & more detailed discus-
sion).

This vibrational pattern can be easily correlsted with the vi-
brationasl spectra of the compounds in solution. The infrared
spectrum of a solution containing MFE_ ions exhibits two bands -
v3 and $u - which represent the M-F stretching snd F-M-F angle
bending infrared-active modes, respectively. These bands appear
in the solid state spectrum too, and due to the perfect symmetric
environment of the regular MFE‘ octahedre they remsin triply de-
generate (F1u)’ In the infrared spectrum of the solid state a

third F, bend will appear (v7), which is an infrared-active

iu

lattice mode. The Raman spectra of MFS’—containing solutions

consist of 3 bands - V and they remain as such

;0 »% and vV

5’

(a, , Eg and F2g’ respectively) in the solid state spectrum,

1g
but a further F2g (Vs) band appears in the lattice region.

It should be noted that the same results (with the exception
of the lattice modes prediction) might be alternatively derived
by using a site group analysis: since the site occupied by the
MFg; anions has the same (Oh) symmetry as the ﬁolecu;ar unit,
the same active modes will be present in both the free molecule
and the crystal.

(i1) AZMFG compounds of ng (P3m1) space group
('KeGer' étructure)
The crystalographic unit cell contains 1 formula-unit, the

etoms having the positions47:
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M: (1a) 000
A: (2d) *H($3w)  (u~ 0.69-0.75)
F: (6i) =*(uuvi2u u viu 2u v) (u~0.14-0.18; v~0.19-0.26)

The MFS' octahedra are not regular. In order to express the devi-

ation of their configuration from regular octahedral, let us note

4 the M-F distance and d' the 4 projection on the horizontal plane

containing the upper (or lower) 3 F atoms in the unit cell (Figure

11). The distence between 2 F stoms situsted at the same height is
rpp = &V3

and the distance between 2 neighbouring F stoms in different hori-

C.}I56‘

zontal planes is

rhp = \/2@2 - 2d%cos¥ = a \/2(1 - cos )

where ' is the angle between the bonds of these 2 atoms with the
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central stom M. Distances d and 4' may be found from the geometri-

cal relations

. 2 2
d «-\/3(uao) + (ve )
! —
a'= V@iuao)
so that the distances between the F atoms in & horizontal plane

and in different horizontal planes will be equal (and the oetahe-

dron will be regular) when

]
I
"
|
!
S
2
[«2}
E-3
0
>

The tolerance ratio w may be taken &s a measure of the octshedron
distortion. In Table 3 some geometrical parameters, including w,
are listed for various molecules which crystallize in Dga space
group. For K2GeF6 w = 0.81306 and therefore the GeF§° octshedra
are almost reguler. For other compounds, the distortion is larger
if we use the unit cell parameters given by Wyckoff47.

The 2 A atoms in the unit cell are situsted on the C3 axis of
the (assumed) regular MFg- octahedron. The 12 A-PF distances are
no longer equal, as in cubic compounds; they are divided41 into
three groups of 3, 6, and 3 equal distances. In the particulsr

case of K2GeF6, which has a more regular structure, there are

only two groups - 9 shorter and 3 longer A-F distances.
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Teble 3

Geometrical parameters of ng A2MF6 molecules
Compound ao(X) co(ﬁ) u(F) v(F) w
KzGeF6 5.62 4.65 0.148 0.220 '0.81306
R.bZGeF6 5.82 4.79 0.144 0.213 0.82143
T-KZTiF6 5-715 4-656 .00 L ) o e e
K2PtF6 5.76 4.64 0.150 0.250 0.74483
RbZZrF6 6.16 4,82 0.167 0.206 1.03605
CsZZrF6 6.41 5.01 0.16 0.198 1.03398
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The distortion of the MF%’ octehedrs and the irregularities in
the A-F distances should contribute to the appearence of extra
bands additional to those predicted by FGA, i.e. from the conside-~
retion of the perfect MFE' octahedron's surrounding. In fact, as
we will see in Chapter 5, no such extra bands appear in the infra-
red or Raman spectra and, moreover, it is sometimes difficult even
to observe the relatively small number of bands predicted by FGA4.
The splitting of the VS mode, for example, has been recorded only
for the compounds in which the octahedron distortion is largest -
RbZMF6 and 082MF6, M = Zr, Hf. For these compounds the tolerance
retio w is much larger than\/57§ (see Table 3). This rather unim-
portant chenge of the spectrum in passing from the ideal cubic to
the trigonal structure has to be explained by almost non-existing
energetic differences between these modifications,

The Bravais cell utilized for the FGA is shown in Figure 11

4

and the FGA results’ are listed in Table 4.

Infrared-sctive modes:
2A2u +~3Eu(interna1) +-52
1] ”
(vy,v)) (V3vp,va) () v3)

u Eu(translatory—lattice)

Remgn-active modes:
2A1g 4—2Eg(internal) + 2Eg(transletory+rotatory lattice)
\ n " "
%—A1g(translatory—1attice)

‘ 1
(vg§)

Optically-inactive modes:

A1u(internal) *'Azg(rotatory-lattzce)

(“é) (»4)
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Table 4

Clagsification of normal vibration modes

of trigonal (ng) AZMFé compounds

g 3] L [
ngd n, T e« T R' n!
A18 3 0 2 1 0 2
A2 1 0 0 0 1 0
&
E 0 2 1 1 2
g 4
Aiu 1 0 0 0 0 1
A 4 1 o 1 o =z
Eu 5 1 0 1 0 3
Number of degree
of freedom 727 3 Z 6 3 15
Table 5

Geometrical parsmeters of Cgv AQMFG molecules

Compound | a_(R) c_(R) u(m) u(A,) ula,) u(F) v(F,) u(F,) v(¥,)

p~K MnF 5.67 9.35 0.25 0.90 0,60 0.19 0.36 0.48 0.14

276
Rb2MnF6, 5.855 9.503 0.25 0.895 0.605 0.195 0.355 0.472 0.145

5.94 9.63 0.25 0.89 0.61 0.18 0.35 0.49 0.15

Rb GeF

27776




61

We could get the same results (with respect to internal modes)
by using the site symmetry approach. Indeed, the site symmetry of
the MFg_ octahedra in ng class compounds containing a single for-

mula-unit isB D By using the correlation tables21 between the

3d°

groups Oh and D3d’ we find the following reducible representation
of the motions in the new symmetry:

D 24 4—2Eg ﬂ-A1u &'2&2u ﬁ-BEu

3 “fig

from which the 2A2u

—I-2Eg are Raman-active,

4—3Eu modes ere infrared-active and the 2A1g

The increased number of bands of the MFE; octahedra both in
infrared and Raman spectraz, m compared with the relatively clean
spectra of the cubic compounds, originate mainly in the removal
of triple degeneracy in the new site symmetry of the anion.

; 4
(iii) AMF. compounds of Cg (P63mc) space group

('K2MnF6' structure)
The crystallographic unit cell contains 2 formula-units, the

atoms being in the positions48:

M: (2b) %;u;%,j,u-f%
A(1):(20) FFu;2,%,u+?

A(2):(2a) OOu; 0,0,u+%
F(1):(6c) uuv;u,2u,v;2u,u,v;u,u,v+$;u,2u0,v+%,2u,u,v+%
F(2):(6¢c) wuav;u,2u,v;2u,u,v;u,u,v ++;u,2u0,v +%;2u,u,v+%

The paremeters u and y of various stoms and for various compounds

8
which crystsllize under this space group are given in Tesble 54 .

In Cgv AZMFG structures, the A" cations continue to be 12-coordi-
nated by F atoms, the A-F distances being split in three groups41

of 6+3+3 equal distances, as in the trigonal form (the 6 equal
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distsnces being the shorter).

In order to find the smallest Braveis cell necessary for factor

group analysis, a method proposed by Winston snd Halford20 was

used. The site symmetry of the MFE' anions in this arrangement is
CBV' The representation Oh: A181-Eg-rF2g

motions in this new environment becomes C

5 3 1
+2F1u-fF2u of the snion's
BV: 4A1ﬂ—A21-5E, from
which only A2 is optically inactive. The site group being a sub-

group of the factor group, one can easily find the correlation

between their irreducible representations by using the relation

(F) (s)
where ngs) is the number of times the j-th irreducible represen-

tation of the site group appears in the representation of the

(F)
i

motions of the site occupant, n is the number of times the

i-th irreducible representation of the factor group appears in
the reducible representation of the motions, and the coefficients
aij gre given by

— 1 (S) o\ * . (F)
oy = R%S%j (R) %37/ (R) (49)

(h-order of site group S).

(F) (F) _

This procedure gives in the present case nA = {, nA 1,
1 2
n(F)ez 4, n(F) =1 n(F) =5, and n(F)==-5, so that the structure
B1 32 ’ E1 Ez

of the representation will be

4A1 ﬂ‘Az 'i'4B1 ﬁ'Bz ﬁ‘5E1 *’5E2
having 30 degrees of freedom; the smellest Bravais gell will con-
tain 2 formulas-units, and csn be chosen as in Figure 12 (identical

to the crystallographic unit cell).
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The results of the FGA carried out on this cell are given in
Teble 6. The 1ack:of a center of symmetry allows & lerge. number
of bands to be both infrared and Raman-active. |

Infrared-active modes:

4A, + 5E1 (internal) + 21\1 (translatory-lattice)
-’1—3E1 (translatorysrotatory-lattice)
Remen-active modes:
4A; ﬁ:EEi +'5E2(internal) ﬂ-2A1(translatory-lattioe)
—+3E1(translatory+rotoatory—lettibe)‘4—4E2(translatory-lattice)
Inactive modes:
A, + d,B1 -+ B?_(internal) + Az(rotatory-lattice)

-+ 3B1(translatory+rotatory-1attice)
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Table 6

Clagsification of normel vibration modes

of hexagonal (cgv) AZMF6 compounds

4 ’ 2 ' t
csv n T el T Rt n 1

A1 T 1 2 2 0 4

A2 2 0 0 0 1 1

B, 7 0 0 3 0 4

32 2 o 0 (4] 1 1

E2 9 0 1 3 1 5

Number of degrees 7 '

of freedom 54 3 zZ 15 6 30
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In this case, the site group anslysis gives, as already mentio-
ﬁé&, the reducible representation 4A1 -+ S5E for the motions of the
gtoms constituting the MFé' group, so that both infrared and Raman
spectra would consist of 9 (internsl) bands. The extra bands indi-
cated by FGA are due to existing interactions between the two mo-
lecules within the unit cell, which cannot be tesken into account
by SGA. As mentioned in Chapter 1, the SGA is related to a single
molecule or molecular ion, which is ascribed the symmetry of the
particular site in which it is placed in the unit cell. This way,
SGA offers no possibility to take into account intermolecular vi-
brations, whether these are genuine lattice or other kinds of
intermolecular vibrations. They can be only found by using FGA.

Owing to the large number of such intermolecular non-lattice
interactions, it is difficult in this case to assign the internal
modes which result from FGA to the previous six internal médes of
the regular MF2~ anion. (In the cese of Dg oA

formule-unit per unit cell, ho such interactions occur and the

MFG’ with only one

operation is straightforward.) The interaction non-lattice modes

can manifest themselves in the spectra in various ways46

. Thus,
the non-degenerate modes of MFS_ groups can duplicate themselves,
appearing as two neighbouring bands in the spectra of crystalline
compounds whose unit cell contains more than one formula-unit. As
we shsll see in Chapter 5, this is sctually the case with the Ra-
man-active v1 band of K2MnF6 (Cgv spece group) and of Na281F6 and

NazGeF6 (D§ space group). The separation between the components

reaches 10-15 cm"1 at the most. Such a small difference between
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the respective trensition energies shows that the site effects upon
the vibrational behaviour of the molecule ere much less important
than the effects of the molecular symmetry itself. In some cases,
a mode arising from interactions between two or more molecules in
the same unit cell, even if active, may manifest with such a weak
intensity as not to be observed at all. In 8 certain sense, these
‘interaction internal modes could be treated as pseudo-lattice modes,
although their frequencies may be generslly higher than the frequen~-
cies of proper lattice modes. A justification of this point of view
would be that the corresponding exira bands should only appear in
solid state spectra. |

Site group snalysis shows that the triply degenerate F modes of
the regular MFE- groups are split in the crystal into A +E modes,
but no definite assignment of the observed components can be made
otherwise. Tﬂe observed vibrational spectra of the Cgv A2MF6 com-
pounds have, in fact, much fewer bands then predicted by factor or
even site group anslyses. This might be quaslitetively explained by
asguming thet some of the bands - those which represent motions in
isolgted octahedrs - will have identicel frequencies, and conse-
quently the number of observed bands in the spectra will be lower
than predicted. A small number of the new internal modes represent,
28 mentioned, interactions between the two molecules in the unit
cell and it is to be expected that sometimes they will have low
intensity and w;11 be not easily observable.
(iv) A_NF, compounds of Dg (P321) space group

This structure is also trigonal, but the overall symmetry is
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much lower then in ng space group. There asre 3 formula-units in
the crystalographic unit cell, the atoms being arranged ss follows:

M(1): (1a) 000
M(2): (2d) HiFv)
A(1): (3e) wuo
A(2): (3f) wud
F(1), F(2) and P(3): (6g) uvw
F t 41,49
or NaZSiFs, the parameters u,v, and w sre H

v(SiQ) = 0.506; u(Na1) = 0.379; u(Nag):= 0.714; u(F1)== 0.087;

v(F,) = -0.092; w(F,) = 0.810; u(F,) = 0.444; v(F,) = -0.401;

w(F2):= 0.701 u(FB)‘= 0.230; v(F3):= -0.260; w(FB)'=-O.310.
Por Na2GeF6, the parameters are not known so far.

The three MFé- ions in the unit cell, slthough similar in shape
(almost perfect octzhedrs), dimension and site, are of two inde-
pendent kinds with respect to their position in-the lattice (rota-
tion around c-axis). Their site symmetry is 02. Each Na atom is in
an octahedral hole, with 6 F neighbours st distances which range
from 2.18 to 2.45 % in Ne,siF .

In this very unsymmetrical arrangement, probsbly brought sbout
by the small size of the cations, it is expected that the spectra

will be very rich,.The C, site being non-centrosymmetric, $he La-

2
porte rule is relaxed and meny transitions should gain activity

both in the infrared and Reman; all degeneracies should be removed,
the representation of nuclear motions being reduced to 8A+ 7B for
each one of the MFg' ions. On the other hand, the factor group
20

splitting is not so drastic. If Winston and Halford's method” is

épplied in order to carry out the reduction from the site group 02
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to factor group D.,, the reduced representation
\ 8A1-+'7A2 + 15E
is obtained. This has 45 degrees of freedom end thus the smsllest
Bravais cell is formed from 3 formuls-units. It may again be con-
sidered as identical with the crystalographic upit cell (Figure
13). The results of a factor group analysis carried out on this
cell are listed in Table 7. -

Infrared-active modes:

7A2-+ 15E(internal) +-7A2(translatory-frotatory-lattice)

+ 11E(translatory +rotatory-lattice)
Reman-active modes:
BA1 + 15E(internal) -+ 4A1 (translatory +rotatory-lattice)

+ 11E(translatory + rotatory-lattice)
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Isble 7

Classification of normal vibration modes
of trigonal (Dg) AZHFG compounds

|
D3 ni T o T R* ni
A1 12 0 2 3 1 8
A2 , 15 1 0 5 2 T
E 27 1 2 8 3 15
Number of degrees
of freedom 81 3 24 9 45

N\
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There are no inactive modes.

The site group anslysis is, as in the preceding case of hexa-
gonal Cgv A2MF6 compounds, unreliable, because intermolecular
non-lattice modes, arising from intersctions between the three
molecules in the unit cell, cannot be }ound by this method,

The observed spectra of the compounds in this class contzin
fewer bands than predicted by FGA. Not gll the bands predicted -
t0 appear by this method are bound to appear in the spectra at
different frequencies. Many of them, those which represent iden-
tical motions in different MF. groups, will have identical or
almost identical frequencies, thus diminishing the number of

observed distinct bands. Pseudo-lattice and lattice bands will

appesr in the same way as for Cgv AQMFs compounds.



Chapter 4 EXPERIMENTAL

The various factors that may influence the structure of A2MF6
compounds, which will be reviewed in Chapter 7, prevent the pre-
psration of a definite structure by deliberately tailoring the
preparation conditions, In this situstion, we chose to follow
standard literature preparative techniques and to subsequently
examine the compounds to identify their crystalline structure.

Preparation Details

The hexafluorosilicates A281F6 end -germanates A,GeF, (A = Na,

2

K, Rb, Cs) were prepared from aqueous solutionsso, from 8102/G902

and ACl or AF. Plstinum and Teflon vessels were used. Several
recrystallizations from water were made before use. The compounds
ere white and very stable.

Potassium hexafluoromanganate(IV) K2MnF6 was obtained either
by fluorinstion at 375-400 °C of a MnCl2 ~+ 2ACL mixture51

electrolysis at 2.5 V, in HF, of Mn(III) and the corresponding

alkali metsl fluorideBz. Rb2MnF% and CsQMnF6 were prepared by

the former method only. The compounds obtained by either of these

s, or by

methods are yellow, but they are moisture-sensitive and become
reddish in time. They were therefore handled in the controlled

atmosphere of a dry box.

X-Ray Structure

The unit cell dimensions and the space groups of all compounds

prepared were determined by X-ray powder photographs. The photo-
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graphs were obtained by using Cu Kx, radistion and a 114.6 mmg

1

Debye-Scherrer camera, with a Straumanis film arrangement. The
gsemples were sealed in 0.5 mm quartz capillaries.
The diffraction lines obtsined for each compound were measured

with an accuracy of 0.02 and the diffraction angle e%bs and

sin2 o calculated.
obs

The values of sin2 eca c for various reflection planes hkl

1
were calculated for cubic and hexagonal structures by using the
relationship?B:

- cubic structure:
e

)
= (50)
dhkl » Vh2+k +1

where a, is the assumed length of the unit cell;

~ hexagonal (including trigonal) structure:

&
Q

d

hkl= > 2:_-:—__2_—1-—-— (51)
\/ﬂ’-(h +hk +k°) + =

3 c2

’ [e]

where &, end c are the assumed lengths of the unit cell along a-
and c-axis, respectively.

The interplansr distances dhkl are related to the diffraction

angle ecalc by the Bragg relation,

nA = 24, ,,5in e (52)

calc
where ;% is the wavelength of the X radiation used and n is an
integer. Therefore
= for cubic structures:

2,..2

242
sin §_ = 22 (n211? 112 (53)

48%
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- for hexagonal structures:

21\2 2

oin? @ = BT 4G22y 17 (54)
¢ 482 3 02
[¢) (o]

The unit cell dimensions a, and c, were corrected by means of
a desk digitasl compu?er until the best fit between sin2 90 and
sin2 90 (c and o symbolizing calculate and observed values, res-
pectively) was reached, for a large number of reflection planes.

The crystallographic system to which the cell belongs mey gene-~
rally be identified by the missing reflection lines on the Debye-
Scherrer X-ray photograph54.

For a face-centered cubic structure, the lines which are extinct
are those corresponding to the reflection planes whose Miller in-
dices hkl give for

N=1n%+ k% +1° .
a velue of 1, 2, 5, 6, 7, 9, 10, 13, 14, 15, 17, 18, 21, 22, 23, etc.

For a hexagonal structure, the extinet lines correspond to the
planes whose Millervindices hk give for

2 4 hk +x°

N=h

a value of 2, 5, 6, 8, 9, 10, 11, 14, 15, 17, 18, 20, 22, 23, etec.

Teble 8 1lists the calculated (c) and observed (o) sin®0 values
for all AEMF6 compéundé whose spectrs are reported in this work.
The unit cell dimensions determined in the present work for these
compounds, together with the literature dats, are presented in
Table 9.
Infrared end Rsman Spectra

Nesr-infrared (above 400 cm-1) gspectra were run on & Perkin-Elmer
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Table 8

X-Ray Powder Dats for AZMFS compounds

Cubic Og compounds

. K, SiF, Rb,SiF, Cs,SiFg
Intens|ReTlection) 5 2 2 | . 2 2
sity '%iigi sin GO sin Oc sin 90 gin Qc sin 00 gin Oc

9 111 -0268 .0269 (.0253 .0250 (.0231 .0225
200 - . .0359 |.0331 .0333 |.0306 .0300

10 220 .0718 .0717 |.0670 .0666 |.0607 .0600
311 .0988 .0987 - .0916 |.0829 .0825

10 222 .1079 .1076 |.1004 .0999 |.0907 .0900
9 400 .1439  .1435 |.1339 .1332 |.1209 .1200
2 331 AT712 0 .1704 | - .1582 - .1425
10 420 .1800 .1794 |.1670 .1666 |.1507 .1500
10 422 .2162 .2153 |.2004 .1999 |.1812 .1800
3 511,333 |[.2433 .2422 |.2249 .2248 |.2034 .2025
7 440 .2879 .2870 |.2678 .2665 |.2408 .2400
2 531 .3151  .3139 }|.2932 .2915 - .2625
9 442,600 |.3236 .3229 [.3003 .2998 |.2707 .2700
8 620 .3600 .3588 [.3325 .3331 |.3004 .3000
7 622 .3958 .3946 |.3660 .3664 |.3305 .3300
4 444 .4324  .4305 [.3995 .3997 |.3612 .3600
2 551,711 | .4589 .4574 |.4235 .4247 |.3809 .3825
6 640 - .4339  .4331 |.3914 .3900
9 642 5037 .5023 |.4654 .4664 |.4201 .4200
2 553,731 |.5311 .5292 - .4913 - .4424
3 800 .5759 .5740 |.5326 .5330 |.4794 .4799
6 644,820 |.6108 .6099 |.5656 .5663 |.5094 .5099
6 660,822 |.6467 .6458 |.5987 .5996 |.5387 .5399
2 555,751 |.6738 .6727 |.6209 .6246 - .5624
3 662 .6819 .6816 |.6313 .6329 |.5698 .5699
4 840 7179 7175 | .6651 6662 |.5993 .5999
1 753,911 | .7445 .T444 - .6912 - .6224
5 842 L7540 .7534 |.6983 .6995 |.6287 .6299
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(conf'd)

Cubic OE compounds
Inten. |Reflection Cs,GeFy Rb ¥y Cs MnFe

sity 2;;?? sin200 sinzec sin290 sinzgc sinzao sianc
9 111 .0229 ,0220 |.0254 .0248 |.0230 .0224
200 .0302 .0293 |.0338 .0330 |.0306 .0298

10 220 .0595 .0586 | .0669 .0661 |.0604 .0596
311 .0823 .0806 | .0913 ,0908 - .0820

10 222 .0894 .0880 |.0998 .0991 |.0901 .0895
9 400 .1186  .1172 | .1329 .1322 |.1201 .1193
2 331 - .1392 - .1569 - 1417
10 420 .1482 .1465 | .1657 .1652 [,1504 .1492
10 422 L1772 .1758 | .1990 .1983 [.1791 .1790
3 511,333 |.1997 .1978 |.2236 .2230 |.2008 .2013
7 440 .2359 .2348 | .2643 .2642 |,2390 .2386
2 531 .2578 .2564 | .2897 .2890 |.2600 .2610
9 442,600 .2650 .2637 |.2977 .2973 |.2682 .2684
8 620 - .2930 | .3304 .3303 |.2980 .2982
7 622 .3229 .3223 |.3629 .3633 |.3274 .3281
4 444 .3524 .3516 | .3958 .3964 |.3574 .3579
2 551,711 | .3743 .3735 |.4199 .4210 - .3803
6 640 - .3809 - 4294 - .3877
9 642 L4110  .4102 | .4616 .4624 |,4168 .4175
2 553,731 | .4316 .4321 | =~ .4872 - .4399
3 800 .4689 .4688 | ,5277 .5285 |. - ATT72
6 644,820 | .4978 .4980 |.5601 ,5615 [.5063 .5070
6 |660 ,822 |.5272 .5273 |.5935 .5946 [.5353 .5362
2..| 555,751 | .5481 .5493 - .6193 - .5592
3 662 .5559 .5566 - .6276 | - 5667
4 840 .5853 .5859 .5958 .5965
1 753,911 - .6079 .6202 .6182
5 842 .6139 .6152 - .6263
4 664 6430 .6445 .6550 .6561
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Zrigonsl D); compounds

Inten.| Reflection K,GeF,
sty | 1y | sin"0, sin’,
7 100 0250 .0250
7 001 .0281 .0274
10 101 0531 0525
9 110 .0749 .0751
3 | 1 031 1026
> 002 .1104  .1097
10 201 1285 .1276
. 102 -1356 1348
2 210 773 1753
2 112 1857 1849
T 211 .2030 .2027
8 202 .2104 .2099
4 | 300 2262 2254
3 003 2470 .2469

3 301 2538 2528

1 103 L2735  .2720
9 212 .2860 .2850
8 220 .3011  .3005

° "o -3224  .3221
6 203 L3467 .34T1
§ 3 .3533  .3530
> 401 .4287 4281
2 [312(0047) | .4359 .4353
3 104 4629  .4640

3 303 L4716 L4723

> 321 .5030 .5032
4 402 5105 .5104
> h10 .5253 .5259
3 322 5837 L5855
7 214 6132 .6143
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Hexagonal Cgv compounds

nben. Rei%:gZion zémnFs . RZzaer ,
sity (hk1) sin Oo sin Qc sin 90 sin Oc
100" - .0243 |.0224 .0224

002 .0283 .0278 |.0258 .0256

9 101 .0321 .0312 |.0288 .0288
10 102 .0526 .0521 |.0479 .0479
10 110 .0737 .0T30 |.0676 .0673
7 103 .0870 .0868 |.0T95 ,0800
2 2007 - .0974 |.0845 .0897
6 201 .1050 .1043 |.0960 .0961
4 004 112 .1112 |.1022  .1024
10 202 1262 ,1252 |.1155 .1153
3| 10aa13 | - 11222 | lazs2 t1EES
8 203 .1604 .1599 |.1470 .1473
3 114 - .1842 |.1680 .1697
8 | 105+212 |.1970 2%?2? .1823 :}Sgg
2 204 .2082 2086 |.1915 .1921
8 300 .2190 .2091 |.2016 .2018
9 213 .2328 .2329 |.2142 .2145
9 205 .2698 .2711 |.2493 .2496
7 | 2144303 |.2m19 :201° |.2585 2233
9 220 .2922 .2922 |.2684 .2690
2 304 - .3303 |.3024 .3042
10 007 .3430 .3408 |.3159 .3135
T 313 .3780 .3790 |.3480 .3490
2 224 .4025 ,4034 |.3703 .3714
3 402 L4164 L4174 |.3841 .3843
2 314 - L4277 |.3923 .3938
2 207 .4391  .4378 |.4012 .4032
4 403 L4509 .4521 |.4151 .4163
7 225 4667 .4659 |.4299 .4289
5 410 .5094 .5113 |.4686 .4708
3 412 - .5390 |.4968 .4964
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Hexggonal D2 compoundsg (b - broazd line)

3
. Reflection | 12p51iFg Na GeF¢

nten-| " o one 2 2 2 2
sity (hk1) sin Oo sin Gc sin Go sin Gc
10 001 .0233 .0234 |.0225 ,0226
10 110 .0303 .0302 |.0288 ,0294
.0403 o 0324

10 200+101 .0366b 0335 .0328 (101)
10 111 .0539 ,0536 |.0522 .0520
10 201 .0638 ,0637 |.0613 ,0617
6 210 .0709 .0705 |. - LT
. .0935% .0905

9 002+211 .0945b 10939 .0915 ~0911
10 301 L1142 1141 | .1103 1107
T 220 1217 .1209 - 174
6 202 .1330b .1338 - .1296
T 221 .1448  .1443 | .1392 .1400
6 311 . .1548 .1544 |.1490 .1498
8 212 .1644b .1640 | .1600 .1590
10 302+401 .1843b T1847 .1787 1792
3 320 .1923 .1915 - .1860
2144 - .2079

9 222+321 .2155 12149 .2076 "2086
6 312 .2254 .2245 | .2187 .2177
8 411 .2359 .2351 | .2266 .2281
3 113 2427 .2406 | .2355 .2331
6 402 .2547b .2548 - .2371
2721 .2643

9 3304501 .2732 2754 .2622 (330)
8 420 .2826 ,2822 |.2738 .2741
.3052 .2960

2 223 .3303 .3313 - .3211
4 511 .3369 .3358 - .3260
10 502 .3443 .3455 - .3352
1 332 .3647 .3656 - .3248
.3740 .3621

4 | o442z O34 37571 T 3646
6 520 .3943 .3931 - . 3817
L4042 +3915
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Table 9

Space groups and lattice constants

of some A2MF6 compounds

Unit cell parameters
Compound | SP&C€| 5 o 85(2) co(ﬂ) Refs.
group Present  Other Present  Other
work refernces work references
N ,S1F, ng 3 8.86 8.859 5.04 5.038 29
. 5 ‘ , _
K,SiFg op |4 8.13 8.133 - - 55,56
' 8.17 57
Rb,SiF non 8.44 8.446 - - 57
' 8.452 56
8.919 56
8,867 57
2 _
Na,GeF, Dy |3 8.99 8.99 5.12 5.12 58
3 : s :
KjGeFg | Dgq |1 5.62 5.62 4.65 4.65 59
4
RbaGeFG Cov | 2 5.94 5.94 9.63 9.63 60
5
Cs,GeF, | OF |4 9.00 8.99 - - 61
9.021 56
4 i
K MnF, Cey | 2 5.70 5.67 9.24 9.35 60,62
5 : - - -
Rb MnF, op |4 8.476 8.430 60,62
Cs, MnF, v 8.92 8.92 - - 62
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Model 225 Spectrophotometer. Semples were prepared as Nujol mulls
between Csl plates, the hygroscopic compounds being handled in a

dry box. For the far-infrared (400-40 cm™ ') range, a RIIC Fourier
Transform Interfereometer was used, with Melinex beam splitter

(be sampling interval, 5 cm"1 resolution - see Chapter 2). The
compounds were embedded in polyethylene under 12 t/sq.in. pressure,
the concentration per unit surface area varying from 5 to 20 mg/
sq.in. The spectrs were recorded both at room and liquid nitrogen
temperatures. For the low temperature far-infrared spectra a special
RIIC cell was used. The temperzture was measured by means of a ther-
mocouple and precision bridge with +10-15 °c accuracy. After rea-
ching the liquid nitrogen temperature thirty minutes were sllowed
before running the spectra.

Raman spectra were obtained on a Cary 81 Spectrometer*, provided
with & He-Ne leser as excitation source. The monochromator slits
were set at 5 cm_1. Samples (as powders) were introduced in Pyrex
tubes one end of which was closed and ground flat. For hygroscopic
samples (the hexafluoromangsnates), the tubes were filled and sealed
in the dry box. The flat end of the cell was placed against the
hemispherical lens, the scattered photons being therefore observed

at 180° (see the arrangement in Figure 7).

* The suthor wishes to thank Dr. R.H. Nuttall and Mrs. Ann McConnell
for permission to use the Reman spectrometer of the University of

Strathclyde.



Chapter 5 INTERPRETATION OF THE SPECTRA

The recorded infrared and Raman spectra of the investigated
AQMFG compounds are presented in Figures 14-19 (low temperzsture
gspectra being indicated by dotted lines). The positions of maxima
of fundesmentsl and some combination bands, as well as their assign-
ment - when this could be reasonably made - is also indicated.

As a2 generzl feature, the observed spectra can be interpreted
on the basis of factor group anaiysis results (Chepter 3), though
not gll the modes predicted by FGA to be zctive either in infrared
or in Ramzn spectra could actually be observed.

Almost 811 fundemental internsl modes which are predicted %o
be present in infrared or Raman spectra were obéerved. Some lattice
fundamentals were obtasined in the infrsred spectrum, but none in
the Raman spectrum (with the possible exception of 032MnF6).

The predicted factor group splitting of some internal bands in
trigonal and hexsgonal compounds can be qualitatively accounted
for, although no definite assignments could be made without precise
polerisztion measurements. Their species remain to be determined
unembiguously by examining the spectrs of single crystel samples.

In all cases, the internal sctive fundamentals appear in the
s0lid state infrared and Remen spectra at almost the same positions
&8 those reported for the corresponding solutions1’2’63’64. In Tab-

le 10 the positions of the fundamental internal vibrationsl modes

are shown for solid state and solution spectra. This small shift
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Tsble 10

Infrered and Reman internzl mode fundamentals

for some A MF. compounds (solid state and solution) (in cm'1)

Sample
Compound atete \% \% yg \z Vg Reference
31F§’ 656 465 T40 485 400 66
. T24* 493* 420
Na281F6 667 488 e. 4T 416 This work
ASiFg | K,SiFg | 658 481 740 480 412 | "
Rb,SiF, | 653 484 732 476 407 "
Cs,SiFg | 648 ... 723 474 402 "
Gng— 627 454 600 350 318 63
634 362* .
Na2GeF6 631 ... 598% 330 °°° This work
: 625 353%
AjGeFg | KGeF, | 630 470 go2, 320" 340 "
. 353%
Rb,GeFg | 622 483 598 557 337 "
Cs,GeF, | 614 473 598 342 331 "
rmg‘ 615 480 ... ... 282 67
K MnFg 600? 5102 630% 3382 308% 68
" 600 507 620 340 310 69
. & 653  341* &
‘2MHF6 d 605 422 620% 311 231 This work
RodnF, | 585 436% 630 338 244% "
Os MnF, | 615 0% ... ... 282% 67
" 616 478% 619 335 288% | This work

* Main pesk if splitting occurs.

o From reflectance and Ramsn spectra.

& Calculsted from combination bands in Raman spectra, according to
the assignments listed in Table 13. These assignments remain
questionable.
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on passing from solutions to solid state suggests a limited influ-
ence, besides Tfactor group splitting, of the lattice environment
upon the vibrations of the MFg‘ anion. The small bandwidth of the
combination bands which involve lattice modes also supports this

65

conclusion “, For the AZMFG compounds for whcih force constant

calculations have been carried out, i.e. those crystallizing in
the 02 space group, & small emount of mixing between molecular
and laettice modes has been found (see Chapter 7), and it is reaso-
nable to believe that the seme is likely to be true for the other
structures. Of the two infrared-active molecular fundamentals VB

and V the former has a relatively higher degree of mixing with

4°
. the lattice mode 1%, in all structures. From the point of view
of group theory mixing between V., and V, and between V, gnd V

3 7 4 7
are equally permitted. The mixing of \H, with ‘3 (rather than

with xﬁ) might be explained by the resemblance of the motions in
these vibration modes, as can be seen from Table 18 and Figure 22
(Chapter 7). The mixing may account for the large half-width of
the Y., band, observed in all compounds (except CszGer). Of the

3
three Raman-active molecular modes, only V. interacts with the

5
_lattice motions of similar symmetry and for this bend too & certain
broadening may be noticed as compared with the same band in the
solution spectra.

The FZu (96) internal mode, which is insctive under perfect
octahedral symmetry (in solution or in crystaslline cubic Og com-

pounds), become infrared-active in a trigonal or hexagonal surround-

ing. Although the corresponding band may appear in the spectrum,
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its p_osition cennot be located with certainty without the assiss

tance of force constant evaluztion. We have estimzted the force

5

constants for the cubic Oh compounds listed in Table 9 (see Chap-
ter 6). The resulting frequency of ve mode is ca. 255 e~ for
1 2-

SiFg_, ca. 194 cm~ for GeF,”, and ca. 203 cn™! for Man’. Wezk
bands near these frequencies were observed in the spectrs of tri-
gonal and hexagonal compounds (Figures 14, 16; 18). Therefore these
bands can be reasopably taken as representing the v% mode. No simi-
lar situation was encountered in the Raman spectra, where v6 should
heve &n éctive component in the case of hexagonal compounds. Table
11 lists the calculated and observed v6 frequencies for various
compounds.

In the trigonal (D; 4 &nd Dg) compounds, all three infrared-
gctive modes are predicted to be split in the solid state; this

splitting was actually observed in K2GeF6, Na GeF6 and NazsiFG. No

2

definite sssignemnts of the species of the observed components

could be made. The splitting for the two moleculsr F, modes of

Tu
. -1 -1 . .
K2GeF6 is ca. 20 cm '; for NazGeF6, ca. 35 cm ; and for kazles,
ca. 20 cm”'. The P, lettice mode v, is also split under trigonal
1

symmetry, the magnitude of the splitting being 21, 13 and 21 cm™
for KQGeFG, NazGeF6 and N3281F6, respectively (cf. Table 12).
For the hexagonal (Cgv) compounds, g site splitting (F1u S
A1 *-E1) is predicted for triply degenerate modes, both components
being ective in infrared and Remen spectra. Both xﬁ and v7 F1u

bands show 2 components in the infrared spectra of sznFG and

szGeFG, but no trace of the corresponding components was observed



Teble 11

Frequency of the \)6 molecular mode (in cm-?)

* Observed
Compound Calculated (infrared)
, 253
NaZSiFG ~ 255 23 1%%
221
245
Nz GeF ~ 194 210%%*
276 170
K,GeF, ~194 219 (Vg)
RbZGeFG ~194 200
KéMnFG ~ 203 225

*
From force constant estimation for the res-~

pective cubic (O ) A, SMFe ¢ compounds.

‘Main peak if splitting occurs.
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Table 12

Observed infrared-active lattice modes

of A2MF6 compounds (in cm-1)

Compound | PEC0 | Mode | oot T |Memporatuce |
Na ,SiF, D§ A, +E | 77 +98
K,5iF | 02 F, 143 148
Rb,SiFc | " 116 121
Cs,8iF, | " " 101 105
NaGeF, Dé A,+E | 81+ 94 e
K,GeF, ng Ay + E 120 +141 | 124 +145
Rb,GeF, | Cf A +E [108 +117 | 110 + 120
Cs,GeF | 0O F. 90 93
KMnPe | Cp | A + B [129 +145 | 134 + 149
Ro P, | 07 P, 105 109
Os pinF | n 96 99

A low-energy band was observed at 119 cm”

T in the

Raman spectrum of 082Mh3b, but it cennot be taken

as the Raman-active lattice mode Fzg(va) for rea-

sons which will be discussed later in this Chapter.
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in the Raman spectra. Therefore, it might be inferred that the
Rsmzn activity gsined as a consequence of the hexagonal environ-
ment in these compounds must be weak enough, and so must be the
environmental‘perturbation upon the concerned vibrational modes.
The \3 F1u band is markedly asymmetric in the spectra of these
compounds, an indication of unresolved splitting at room tempe-
rature.

The Raman spectra for all compounds (with the possible excep-
tion of 032MnF6) have as a common feature the fact that only the
fundsmental internel ective modes could be recorded. The only: erys-
talline effect which could be detected was the duplication of the
x% totally-symmetric band in the spectra of the compounds whose
unit cell contains more than one formula-unit, i.e. KIE,MnFG,NaZSiF6
and NazGeFG, as discussed in Chapter 3. No such duplication was
noticed for szGeF6. The v2 (Eg) mode wes not observed in the case
of NazGeF6 and CSZSiF6, and ik 8ll other cases its intensity is

much lower than thst of the »H (A1g) band. The v, bends have &

2
large half-width and their location is only approximate for éll
compounds.

The only spectra which do not show the usual intensity pattern\
met in the spectrs of the AZMF6 compounds having isolated MF%’ oc~
teahedra are the Raman spectra of hexafluoromanganates(IV). Their
spectra consist of a much larger number of bands than are present
for other compounds in the same class, and the bands are much stron;
67-69

ger. This anomaly has been observed also by other authors

This complicated and unusual pattern (Fig. 19) might be explsined
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by considering that s resonance appears between the He-Ne laser

exciting line (6328 £) end either the 4A —_— 2E d-d ab=

2g g
sorption67 4A2g phosphorescenceGs. One of the

or the °E —>
'hot bands' of the szbove spin-forbidden transition, located at
15,790 cm-1 overlaps ﬁith the 1aser.excitation line. {15,803 cm-1).
The resulting resonsnce emission is much more intensive than the

Remen spectrum gnd obscures it69

. This effect is particularly
important for CSZMnFG, but it is elso present for K2MnF6 and
Rb2MnF6. It has been found that almost all the bands occuring
in the anomalous Raman spectra of hexafluoromsnganstes(IV) are
in fact vibrationsl components of the méntioned electronic tran-
gsition. Thus, a1l bends appearing in the Raman spectrum must be
either fundementzls, or combinstions of the vibration modes in
the ground (4A2g) or excited (zEg) states of the molecule. Mat-

wiyoff znd Asprey have consequently derived67

the frequency values
of the normal Rzman-active modes of CSZMnF6 on the basis of measu-
red frequencies of these anomaslous bands. We applied this method
to all alkali hexsfluoromsngasnates(IV) whose Raman spectra had
been available, the tentetive asssignments being given in Table

13. The resulting frequencies of Vv, , V5 and ﬁ% modes are listed

in Table 10. These vslues are not, however, very consistent with
the trend observed in the AZSiF6 and A2GeF6 series for the same
modes in passing from A =K to A = Rb and Cs (a general decrease
in frequency). Neither do they agree with the values for V,, v

1 2
69

and v. which Pfeil was able to determine ss fundasmentals in the

5
Reman spectrum of K¥nF. at low temperatures (i.e. 600, 507 and
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67 for the free

310 cm—q, respectively) or with the values found
MnFé— anion. (We should mention slso that the frequency of the

\% (Eg) mode, as calculated from some combinstion bands eppeesring
in the infrared specire (Figs. 14, 16, 18) are different from those
given in Teble 10, i.e. 513, 493 snd 492 cm™ | for K MnFg, Rb MnFg
and Cs2MnF6, respectively. These values agree, though, with those

found by Preil®? for the v, band of K MnF, at 85 °K.)

2
As shown in Chapter 7, the frequencies of the \% mode, &8 re-

sulting from force constant estimation for RbZMnF6 and Cs MnF6 sre

2
very low - 71.3 and 21.6 cm°1, respectively. These values differ
appreciably from the corresponding frequencies found from combi-
nation bands in the Ramen spectrz - 118 gnd 113 cm'1, respectively.
(This is a reason for not having considered the 119 cm—1 band ap-~

pearing in the Ramsn spectrum of Cs MnF6 gs the \% lattice vibra-

2
tion mode of this compound.)

All these facts do not recommend the use of the combination
absorption and emission bands in the Raman spectrs for finding
the frequencies of the fundamentsl modes. In carrying out force
constant calculstions for RbZMnFt and CSZMnF6 (Chapters 6-7), we
preferred to use for \%, ‘b andA\% modes frequency values close
to those found for the MnFé- group insteed of the values obtained
from combination bands.

The resonance nature of the gnomzlous spectra of A2MnF6 com-
pounds, discussed above, might be tested by recording the Raman

spectra with an excitation source whose wavelength is different

from 6328 K.
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Teble 13

Raman spectra of A2MnF6 compounds
(s0lid state)

: Frequencies of the Tentative Calculated
Compound -1 -1
observed bands (cm ') assignment frequencies (cm ')

KZMnF6 240 . Zx% - 239

360 Vgt Y5 353

474 Vg + 2Vg 475

585 _ ?

605 vy 605

665 \b +-2v8 666

880 ' 2v, 844
RbaMnF6 287 2V2 - v1 287

368 vs +-98 362

480 Vg + 2Vg 480

560 Vo ¥ Vg 554

585 v, 585

672 v, + 2Vg 672

885 2x§ 885

945 \21 + v5 +v8 945
082MnF6 119 'Vb,? 113

340 2V2 - v1 340

401 \)5 + Vg 491

514 vs + 2\28 - 514

616 2 616

T04 x@-+ 2»% T04

904 Vv, + v5 904
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Apart from the factor group splitting of some infrared and
Ramen bands, the crystalline environment has no other major ef-
fects on the behaviour of the bands. The splitting is most drama -
tic in the compounds which have a very low symmetry, such as the
sodium hexafluorometallates. The low symmetry of their structure,
in which the anions occupy two different positions (cf. Chapter
3), must produce, according to PGA, s notablé chenge in both
infrared and Ramen spectra as compared with‘the spectra of other
hexafluorometallates, The internal modes have to be extensively
split, and a8 larger number of lattice modes to appear. Neverthe-
less, not all active modes predicted by FGA could be observed.

Of the 18 active lattice modes predicted to appesr in the infrs-
red spectra of NazM?6 (M = 5i, Ge), qnly 5 could be actuslly re-
corded; none of the 15 Raman-active lsttice modes could be obser-
ved. Many of the lattice modes may have identical frequencies,

gso that the nu@ber of observable bands is diminished, or very
low intensities, especially in the Raman spectra. The splitting
predicted by FGA for the internal degenerate modes was generally
observed (see Tebles 10 and 12).

The spectraz of NaZSiF6 and NBZGeFG.reported in this work dis-
agree in meny respects with those reprted by other worker364’66.
The disagreement relstes to both frequency velues snd site- or
factor group splitting.

The effect of changing the cation upon the frequencies of the
molecular modes of an AZMFG series may be seen from Table 10 to

be a slight decrease of the frequency for sll modes and s8ll com-
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pounds (except the hexafluoromanganates, for which the frequency
measurement is not very accurate) in the order K — Rb —> Cs.
This might be due to a decreasing cation-znion electrostatic in-
teraction with increasing the ionic radius of the cation. If the

-

frequencies of the moleculsr modes given in Tsble 10 for A2MnF6
compdunds - which have been partly calculated from the combination
bands gppearing in the Raman spectra -~ are correct, then the re-
verse effect is observed for these compounds, i.e. a general, ra-
ther important increase of the Reman-active molecular modes fre-
quencies with increasing the cation size. Since an intensification
of the cation-gnion interaction with increasing the cation size
would be unexpected, owing to the essential ionic character of
the AV - MFS— interaction, the effect seems inexplicsble and casts
some doubt upon the validity of deriving the fundamentzl frequen-
cies from combination bands, especiglly when the lattice moﬁes‘
participate to these combinations (cf. Chapter 1 and Table 13).
Generally, the fact that the frequencies of the molecular
modes are not changed drastically on passsing from solutions to
solid state proves that the lattice has little influence upoﬁ the
vibretional beheviour of the MFg_ isolated groups. The fact that
the lattice modes have much lower energies than any moleculsar
mode also supports this conclusion.
The effect of temperature upon the frequencies of molecular
modes is different from the effect upon the frequencies of lat-

tice modes. While the molecular mode frequencies remsin practi-

cally unchanged when passing from the room temperature to liquid
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nitrogen temperature, the lattice modes shift towardé higher
frequencies (cf. Pigs. 14, 16 and 18). The value of the shift
is of about 3-5 cm™'. This seems to be an effect of lattice
shrinking, which leads to an increase in the energy of lsttice

vibrations. The molecular MFg' groups remein agasin largely un-

gffected.




Chapter 6 FORCE CONSTANT CALCULATION

The interesting problem which arises when dealing with molecular
vibrations is to get & correct and meaningful picture of the for-
ces acting to keep the molecular or crystal equilibrium configu-
ration sand of the form of the intra- snd intermolecular potential
fields governing the nuclear motions. Vibrational spectroscopy is
most helpful in this respect because it offers z set of observed
frequencies which can be correlated with those calculated from &
set of force constants. These force constants are then imﬁroved
until the best fit between the calculated and the observed frequen-
cies is obtained.

The force constants obtained in this manner aré of great im-
portance because they may be related to the electronic structure
of thé molecule in question. Indeed, the harmonic force constants
can be obtained theoretically by calculating the second derivative

of the electronic energy in terms of nuclear coordinates70. There

71’72, starting

are several ways to cerry out such calculations
from the moleculasr wave functions previously estimated by an
accurete method (self-consistent field molecular orbitals, confi-
guration interaction molecular orbitals, etc.).

Calculation of force constants from vibrational spectroscopic
dats implies a definite form to be chosen for the interaction

potential. This choice is made so that the frequencies calculsted

on its basis reproduce &s well as possible the observed spectrum,.
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The potential of a crystal is usuelly expressed - following the
same model used in the normal coordinate treatment of isolated
molecules - as & function of the nuclear displscement coordinates,
the force constants being involved as parsmeters (see relation (2),
Chapter 1). A generalized valence force field (GVFF) mey involve
various kinds of stretching, bending, and torsion force constants,
as well as interactions between them. However, this is not a prac-
tical form of potential, because generslly the number of observed
frequencies is lower than the number of force constants and these
cannot all be estimated (see later for a mathematical reason). The
difficulty mey be avoided either by having avesilsble vibrationel
dete for s number of isotopically§substituted molecules in the
same class, or by measuring the Coriolis coupling constants73

Since both these methods are tedious and difficult, & simplified
Urey-Bredley force field (UBFF) is ususlly taken74. It consists
of stretching and bending force constants; end of repulsive force
constants between non-directly bonded'atoms: Sometimes, when the
number of observed frequencies is large enough, some interaction
force constants may be included.

Choosing a UBFF means to purposely limit the number of interac-
tions to those which have 8 major physical significance. It has
the drawback of underestimating the long-renge interactions, which

maey play & very important role in crystals17.

The UB potentisl function is usually written in the form75

V:Z[%Ki(Ari)z —\—K'rl(Ar )]—p—Z E}H o (Aoc ) ")-H{jr (Ao, 3)1
. L('J
+Z (47, 5 (A0, )2 + 7} o (Agy )] (55)

t(J
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where &ri, Ao(ij, and Aqij are the changes in the bond lengths,
bond angles and bond distances between non-bonded stoms, respecti-
vely. Ki and Ki are stretching force constants, while Hij and H:;_ ,
and Fi;j and F:’ij are bending and repulsive force constants, respec-

tively. Too Ty and qi;j are the equilibrium distances. The redundant

coordinates qia. mey be removed by using the relation

qij - ri -\—rg - 2rirjcos ocij (56)
and its derivative
% %
Aggz = sij(Ari) (Ar )+ (tij al) (rj/ri) (v Bex 3)
+(1/2qij)]:tij(Ari) + 5, (Ar)? - 8y 8 (0y/m ) (g Doty )P
- 2t t (Ar Ar ) + 21: (rj/ri)(AririAo(ij)
T2t s, (Arr Ao(ij)] (57)
where
r, - r.coB oK, r.sine(,
5, = i h| ij , tijv:...i______:’:.l (58)
J 9 5 9 5 .

Substitution of (56) and (57) into (55) and neglect of linear

terms in Ar, and Ao(ij leads to

i
V=14 Z[x +Z‘*u 15+ oayRyy) | (Ary)?
ti Z 13 7 PPl bty (g A%y
+Z[ tytisBly + oy aTa] (Am) (A7)
+Z[ N M CVERLC R IV C AR R D
For octahedral MFy~ molecules, r; = ry=r,, o= 90°, a4 =

qo = ro\/_é, and
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S13= 8517 B33 = by = A2

Therefore
v_%(x+4F+F )Z(Ar 2+ grl 4+ I E )Z(Aocij
24—’**} ,
+3(F - P )Z(Ar YAry) + dr (F + F1) ) (Ary)(Ae¢; ) (60)
L;?f-S L%a }

the potential energy being expressed parametrically in terms of
four force constants. Since F' is usually taken as -(1/10)F, the
number of independent force constants is reduced to three. The
number of optically-active vibrational molecular (internal) modes
for the MFé’ anion is 5, so that 2 additional force constants may
be introduced in the calculation, as interaction force constants
between two opposite M-F bonds (k) and between two non-coplansr

)76,77

adjacent F-M-F angles (h . Therefore, if we number the atoms

as in PFigure 20, the potential function will be

3 24
5 .
V.=V +k (Ar;)(Ar;  ,) +hr (A, )(Ac, ) (61)
! opé%%ite i+3 oadggéent 1J aik
bonds perpendicular
angles

where V is given by equation (60) with F'=-0.1F.




104

When one of the latfice modes V. (F, , infrared-active) or Vg

T ""1u
(FZg’ Ramen-active) is also observed, ss it is the case with our

solid state spectra for A2MF6 (02) compounds, one more force
constant can be introduced and its value calculzated. We have

+ -
chosen the A ...F interaction force constant, KAF’ &s being re-

presentative of the forces ascting in the crystal. The force cons-

tant Kk of the repulsion between two neighbouring cations must

A

be much smaller than KAF’

than the A’ ...F~ distance. The potential energy will be

because the A*}..A+ distance is longer

24
V=V, + %KAFZ (8q) 4)° (62)
where qij represent the 24 shortest A...F distances (Fig. 20).
The 42 internal coordinstes introduced by this potential func-
tion are:
{ar ,...,0r0 ) = {R1 ++++sR; § = stretching of MF bonds

{aet, .80 5,00,

{Aq{,7a’Aq1',88""’Aqé,7d’Aqé,Sd} ’={R19""'R42}
= variation of A...F distances (63)

Ao{56 } = {R7, ces ,R18}=bending of FMF sngles

Since there sre only 9 stoms in the unit cell, only 21 of these
coordinates are independent. Some of the redundancy.conditions,
e.g. A%2+Adm+éuw+Axw=o,ﬂm,uewﬁw&bw
this is not true for 8ll of them, so that we will use the whole
set of internal coordinates (63), the redundant ones being elimi-
nated sutomatically after calculation. |

In what follows, we will use a method given by Shimanouchi and

78

co-workers in order to set up the secular equation which gives
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the frequencies and the values of the force constants.
In this method, two sets of coordinates are used:

(i) A set of internal coordinstes Ri’ defined by

R=N_ R, . (64)
ijk 9
where N is a normflizstion factor, Rijk is the internal coordinste

vector of the Bravais cell of the lattice which is located by the
indices i,j,k, and the summation is carried out over all the cells
which surround the considered one. R are termed 'optically-active
internsl coordinates'. The potential energy and kinetic energy
functions may be written, in these coordinates, as
2V=R'PR  ana 2T =R'(¢*) "R (65)
where the prime indicstes the transposed R column-matrix and the
dot the differentiation in terms of time. Fi gnd Cw:-L are the usual
Wilson matrices21, written in internal coordinates.
(ii) A set of Cartesian coordinates defined in the same way:
X= Nijk Xijk (66)

where Xi K is the Cartesian coordinate vector associated with the

J
Bravais cell ijk. The energy functions are A

2V = X'F°x and 2T =X'(c%)7 X (67)
Moreover, weighed Cartesian coordinates Xm may be used instead
of X, where

X = u¥x (68)

M being the disgonsl matrix of the masses of the atoms in thé
unit cell.

These two sets of coordinates are related to each other by the

relation
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R= BX (69)
where B is the optically-active transformstion matrix.

The advantage offered by the use of two sets of coordinates
consists in the fact that the force constant matrix F may be more
easily written in intermal coordinstes, ﬁhile kinetic energy mas-
trix G is straightforwardly obtained in Cartesian coordinates as
the inverse diagonsl matrix of the atomic masses:

G"=M (70)

The symmetry of the unit cell can bring sbout z great simpli-
fication in celculations. Thus, symmetry coordinates are intro-
duced by the relations

| st = v'r (71)
and
s® = 1% (72)
where Ui and U® are the trensformation metrices for the two sets
of coordinstes. The following relation%hold:
7S = eyt (73)

GOS

= v%°%u®’ (74)
where F'° and G°° are the P~ and G° metrices written down in the
corresponding symmetry coordinates.

The first step consists of writing the F matrix in Cartesian
symmetry coordinates, in order to go on with the calculations in

e single set of coordinates. The transformation may be carried

out as follows:

= °'FBu° (75)
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Wilson's eigenvalues and eigenvectors equstion msy thus be written
a®Sr°eLo8 = AL (76)
where /\ is the diegonal matrix of the eigenvalues end L°° the
metrix of the eigenvectors; 1°® represents also the transformation
matrix from normsl coordinztes tg Cartesian symmetry coordinates:
s® = 1°%q (77)
This matrix must be normalized:
18 'Lcs = E : (78)
Alternatively, the weighed eigenvector matrix,
1°8 = y?1°° (79)

m

with the normelization condition
'
%1% =u - (80)
mey be used. |
Equation (76) may be rewritten as
Gcs-}GcB-}chGcs%(Gcs)—%.Lcs = ALCS
or
FI°% = ALCS ‘ (81)
where use was made of eq. (79) and where
F = Gps%chGcs% _ (82)
is a symmetric matrix. |
Equastion (81) permits the eveluation of the eigenwaslues (cal-
culated frequencies) Qnd of the eigehvectors, if the matrix F
is known. By using the transformation relation
'
I =1 1" | (83)
" we can find the weighed eigenvectors in the configuration Cartesian

gpace, which have physical significance; they are related to the
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amplitudes of vibration for each normal ﬁode.

Solution of eq. (81) provides a number of eigenvalues J\ic)
(i =1,...,number of active and inactive modes or number of sym-
metry Cartesian coordinates), which are related to the (ceslculated)

frequencies by the relation

() 1 (n(edyd _ (e)yd -1
V= o (A1) = 1302,83(A ;%)% om

At the same time, a matrix L;s will result, whose columns are the
eigenvectors for every eigenvalue Jkic).

The procedure of force constant calculation‘consists in finding
a matrix P such that the difference between the calculated and

- the observed frequencies will be minimum:
vi") - v_,f°) = minimum (84)

for all frequencies which cen be measured experimentslly.
This can be best done by using the method of the Jacobien,

proposed by Overend snd Scherer79 3’75’77’80’81.

and now largely used
The elements of the F matrix are written as linear combinations

of & chosen set of force constants: .

F =Zz§k¢k _ (85)
where the coefficients ng are determined by the molecular geome-
try. If these coefficients are suitably arranged, the relation
(84) may be written in matrix form,

=z (86)
where CP is & vector of UB force constants, In this way, we seps-

rate the part of F which is determined by the molecular geometry

and the atomic masses (Z) from the part which is determined by
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the chosen set of force constants. Therefore, the problem of
correcting Fij elements until the best fit (84) is reached redu-
ces to correcting a smaeller number of components of the vector <P.
Perturbation theory may now be used to find the corrections
AP which minimize the difference A.Ai= )\ic) - )\j(.o). For s
small veriation AP of P, the F matrix will be
AF=zA¢ (87)
end equation (81) becomes
F+amI® = (A anEE (88)
where AA is the diagonal matrix of A‘Ai’ Assuming that the zeroth
order normel coordinates are good approximations for the true ones,
i.e.
FLCS =/\(°)L°s
m m
we have
FI® = ANTLS (89)
where L;s is the matrix of the non-perturbed eigenvectors. By mul-
tiplying (89) from left by I-° , we obbain
'
o8 (APIL® = NAA
or
1% (AFISS = AN (90)
where, for convenience,ZQA is now written as a column. The left
hand side of this equstion represents the Jacobisn matrix of AF,
J(AF) =1°%'(AP)L°8 (91)
its elements being of the form
g =18 1%, (Am,, (92)

for a given eigenvalue ‘)L m and its corresponding eigenvector.
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An element Jkl of the Jacobian matri¥ represents the variation

of the eigenvelue )L when the force constant d’l is changed:

k
(R
I = P, (93)
Using (87), eq. (90) becomes
AP = AN (94)

where a typical element of the (JZ) matrix has the form

“’Z’ia“{;; (T0%),s (B0 20, (95)
The matrix (JZ) has the size n X m, where n is the order of the
secular equation (81) and m is the number of UB force constants.
The equation (94) cannot be solved unless m < n. The best way to
solve (94) is by least squares. Both sides of eq. (94) are multi-
plyed from the left by a weight n X n matrix P and then by the
transpose of (JZ): -

(32)'2(32)AP = (J2)'PAA | (96)
where P, = 1/J\§°) and P, = 0 (k# 1).

This represents a system of m linear equations with m unknown
values ACP,',...,ACPm. The resulting AP vector is added to the
previous ¢ vector of the original (guessed) force constants
and use is made again of the relation (86) to rebuild & new F
matrix. The new set of eigenvalues obtained by solving eq. (81)
is compasred with the set of observed frequencies and if the dif-
ference is still large, new corrections AP are sought follo_wing
the described procedure (and using a new Jacobian, built up from
the corresponding eigenvectors). The calculation is discontinued

when the desired degree of fit between the observed and the cal-
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culated frequencies is reached, or when no further change in the
force constants is observed.

This method is very suitable for computer operation and & pro-
gram was deviéed for performing the calculation. PFor convenience,
the difference Avi= \)j(‘o) - ‘\Dj(_c) was minimized instead of
A >‘i= }ic) - .)\5(_0). In this case the forece constant correc-

tions are found from equation

(32)'P(32)AP = (J2)'PAV (96")
where ‘
B\)k
Ia = '-5-;%— (93")

.74 (0)
P =1/V, ' end P,

and C is a constant, whose value is determined from the choice

=0 (k=+1)

of units (for V's in cm'1, force constants in mdyn/}, masses in
a.m.u, and distances in 2, C= 0.848686.106). Input deta consist

of the matrix Z, the vector of 6 assumed force constants, the

(o)

P and the masses of the 9 stoms

set of observed frequencies V
in the unit cell. The coefficients Zil were calculated on a desk
computer starting from the geometrical paerameters quoted in Taebles
9 gnd 15. Output deta consist of the refined force constants, cal-
culated frequencies, difference between calculated and observed
frequencies, the eigenvectors L;S for éach normal mode, and the
potential energy distribution among force constants. The eigen-

: cs
vectors L; were obtained from Lm on a desk ecomputer,

The flowchart of the procedure is given in Figure 21.
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READ
%, size 17 x 6

vg, 1=1,2,3,5,6,7

P, gize 6 x 1

Y =2¢

Arrange elements of Y
under F matrix form (10x 10)

r

Order the eigenvalues

in descending order

within each symmetry
block

Subroutine VALVEC
Solve equation FL=1LA
and find the eigenva-
lues lk; and the eigen-

, cs
vectors Lm

\" 2

A\)i=\’i -V

1
= 1’2,31536’7
A'\J4=AV8=O'

All Yes

Z&ui<v7

No

2

Cglculate matrix J2

(¢

(1=1,2,3,5,6,7),P,, = Pga=0|

WRITE
c¢’ size 6 x 1
\Ji, i=1,2,...,10

1°%, size 10x10

Fit bgtween calculated
and observed fregs.
Potential energy dis-
tribution
Number of iterations

e
¢=b+Ad

Figure 21

Subroutine SINGQ
Calculzte corrections
AP to ¢ by solving the
system of linear egs.
(32)'P(J2)AP =(Jz2) 'PAV
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Preparatory work consists in choosing a suitable set of sym-
metrized Cartesian coordinates in order to split the F matrix
into symmetry blocks. As shown in Chapter 3, the representation
of the motions of the stoms in the unit cell, for A MF6 compounds
of Og space group reduces as follows:

A, «+E +2F, +F, +PFP, +F, +F, AF +F1u

1g g Tu 2g 2u Tu 2g 1g
\)1 "\?2 \73 4 v5 hY 6 \)7 vs ‘1)9 \)1 0
A / 1 / /
molecular ('internsl') lattice acoustic
modes of MFg- ions modes mode
The Raman spectrum consists of 4 bsands ( Vy v vs, »%) and the

infrared spectrum of 3 bands (v v ). Two modes ('VS, L@)

3’ 4!
are inactive and one (\)10) is acoustic and has zero frequency.
A symmetry Cartesian coordinate wes built for each of these 10

modes as follows (after renumbering the modes to group together

the identical species):

S:(Am) = (1/V8) (x' + y2 + 2> - xt - y5 - zs)
s3(8) = (/23 (2x" - 3% - 23 - 2xt + 37 + 2%
_ 1,.2 4 _ 5
SB(Fzg) = (1/2)(y 7+ x 8— y x7)
S4(F2g) = (N2)(z" - 27) |
c Y _
SS(Fm) =x (97)

sS(r,) = ONVB) G + xh)

S,‘,’(Fm) = (1/2)(x° + x> +x5 +x6)

Sg(F‘!u) = (1/\/5)(::7 + xs)

sg(e, )= (17207 - x° -yt )
S8 (B ) = (1/2) (2% + %% = %2 + )
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(x1 represents the x coordinate of the ith atom, etc., the numbe-

ring of the atoms and the axis orientstion being tzken as in Fi-

\j
of the corresponding ° mstrix

gure 20). The transpose matrix U°
is given on the following page as (98). In the set of symmefrized
coordinates (97) only one is redundant and may be eliminated by
using the redundancy condition

:ijxi== 0

which in our case becomes Sg + 282 +-28$

however, not to eliminate this redundant coordinate but work with

+ 2sg = 0. We prefered,

the whole set (97).

The symmetrized G°° matrix results from eq. (74) to be
C C C (o} (+3 Cc C C C [+

( s; sy S5 sp st sg s s; s5 Sy,

\

Mr

4]

(7]

M

[47]
ANAONOPLOWONO =0

Mr

[<7]

(24
w
[&2]

(99)

@
|
w

Yo Jo
x
-
X
>

[95] [4)]
- 0WO O
S
oo ]

ol MF |
where /AM’ /MF and /4A are the reciprocal masses of the M, F and
A atoms, respectively.

Sterting from the expression (62) for the potential energy

function (where we denoted K, H, F, k, h, and KAF Torce constants
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by k,,...,k;, respectively) we first write F and then find #°°

by a series of transformation given by equation (75). The nece-
ssary B matrix, giving the transformation from Cartesian to inter-
nal coordinates (eq. (69)) may be easily set up by using the rules
given in the book of Wilson, Decius and Cross®2 (see 2lso ref. 76).
We give here the final symmetrized F matrii only, calculated from

its definition (82):

— a2 —
C =4b%k, D =4k, + 2.2k,

2 _ _ 2
+ 4%k, E =4k, I= -4 2b°k,

(/u A .‘ )
fuB
MpD g T
VML MyE
Mu® Ml (Jghg® a e
- A (100)
VN A R[S
VAWSE MR MED (Mt
O \AMS VAT M4E
peC
. /fFTJ
with A =k, + 4y + k, + 4a2k6, B =k, + 0.k, +k, + 4a2k6,

' 2
J= 2(1:1 + 4k, +0.4k3 - k4—i— 8k5), M -—k1 —1—1.8k3 - k4 + 4a%kg,
L= 2k2+1.1k3+4k5 + 4b k6, N = 2(k4 k1), P= (4k2+ 0.41:3
2 _ 2
+8k5), R =~ 2XO.9k3, S=-4a"k,, T= 2k2+1.1k3 - 4k5 + 4b ke .

Thus, the Z matrix (size 17 X 6, elements Z

i
jk

as in (101) (next page), where g and b are geometricel parame-

ters, defined as>

) may be written

a,./2 - ~ d
= AAa T , b=§3§—A—-, (8% + 2% = 1) (102)
AF AF
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f’%tg.)_jl___r M S Mg 0 4aug }
Eﬁﬁl_?f___ Mp 0 0.Tup Mp 0 4a%uF

33 0 duy 2.2mg 0 o au,
(F?_g) 44 0 0 0 0 ) 4u,

34 0 0 0 0 0 -4Wb2
55 By By OB -2 16 0

66 e 0 1.8 e 0 4auy

77 0 YT S P 0 dugy  ADoU

. 88 ) | 0 0 ) Y o)

® ) 56 -m 0 0 % 0 0

57 0 -4fuypp <Oubfuyr O -8\l O

58 0 0 0 0 0 0

67 0 0 -0.9/2up O 0 0

68 ) 0 0 0 0 —4\/Ma2

18 0 0 0 0 0 -4\ b

(F,p) 99 0 0 0 0 o aviuy
(F,,)1010 0 Zup  T.m 0 -apy D )

In evgluating the elements of F and Z, the atomic masses were taken
in atomic units and the interatomic distances in 3. The interatomic
distances were calculated according to the following geometrical
relations

dMF = U8y dMA = (6/4)80’ dAA = (1/2)80’

2 3 (103)
dAF = (uo - uo/2 + 3/16)°, d'FF =2dMF
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Table ¥4

Geometrical psirameters of some cubic (Og)

A2MF6 compounds#*

d

d d

d

d

AL AN "MF AP CFF

Compound a, u (o) ) () a b Ref.
§ o/ %

K,SiF, |8.133 0.215 4.066 3.522 1.749 2.889 2.473 0.0985 0.7037| 44

8.13 0.215 4.065 3.520 1.748 2.888 2.473 0.0985 0.7038| **

Rb,SiF, |8.452 0.20 4.226 3.65971.690 3.018 0.1400 0.7001| 44

8.44 0.20 4.220 3.655 1.688 3.014 2.387 0.1400 0.7000| **

Cs,SiF, [8.919 0.19 4.459 3.862 1.695 3.198 0.1673 0.6971| 44

8.87 0.19 4.435 3.841 1.685 3.181 2.383 0.1674 0.6971| **

Cs,GeFy |9.021 0.20 4.510 3.906 1.804 3.221 0.1400 0.7001| 44

8.97 0.20 4.485 3.884 1.794 3.203 2.537 0.1400 0.7001| **

Rb MnF, |8.430 0.20 4.215 3.650 1.686 3.010 2.384 0.1400 0.7001| 44

Cs MnFg 8.92 0.195 4.460 3.862 1.739 3.191 2.460 6.1513 0.6988| 44

K, NiF18.11 (0.20) 4.055 3.512 (1.622)2.896 J2.294)0.1400 0.7001| 5

*
Distances in 3.

*

This work.
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where ao/z is the length of the edge of the cell drswn in Figure
0 (ao,being the lentgh of the crystallographic unit cell), and
uO is a fraection of ao which indicates the pbsition of the stoms.

All geometrical parsmeters of the studied A NF, (Oi) molecules
sre listed in Table 14.

The program, written in FORTRAN IV on the basis of the flow-
chart reported previously (Figure 21), 4is given in the Appendix.
For solving the secular equation (81) the Jacobi diagonalization
method was used (subroutine VALVEC, written by Shimanouchi and
co-worker581), while for solving the system of linear equations
(96') and finding the corrections‘ﬁ<P, the Gauss elimination
method was used (subroutine SIMQ, courtesy of IBM, Scientific
Subroutine Packege).

All calculations were made on the IBM 360/30 éomputer of the
University of Bucharest*. Satisfactory refinemeﬁt of the force
constants necessitated 3 to 6 reéyclings of the intermediary

data.

* The suthor is indebted to the Computing Centre of the University

of Buchsrest for permission to use the IBM Computer.



Chapter 7 FORCE CONSTANTS AND STRUCTURE OF AZMFG MOLECULES

The force constants obtsined for the cubic (Og) AZMFG compounds
according to the procedure described in the preceding Chapter may
assist in the interpretstion of the observed vibration spectrs of
these compounds and of the compounds with related structures, as
well s in drawing some conclusions about the nature of the bonding.

The problem consisted of finding a set of force constsnts which,
following the usual FG-metrix formalism, reproduce as well as po-
ssible the observed vibrational spectrum of & compound. The number
of vibrational frequencies observed being generslly much smaller
than the ectusl number of force constents involved in any molecu-
lar or crystal vibration, the procedure is by itself only approxi-
mste, assuming from the beginning the neglect of s large number of
supposedly émall force constants. Thus, even if the final refined
set of force constants gives the best possible agreement between
observed and cslculeted frequencies, asny conclusion besed on them
must be treated with care. The calculated force constants must be
considered as indices of & crude vibrationsl péttern, serving to
simplify the picture of the complex molecular vibrational behaviour.
Nevertheless, the force constants often help in understanding the
nature of the nuclear motions and, to a lesser extent, of the na-
ture of the chemical bonding between atoms in the molecule or
crystal.

Since the three kinds of central M atoms - Si, Ge and Mn -
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appeering in the AZMF6 comp_ounds investigated in the preceding
chepters have vefy close electronegstivities (1.9, 1.8 gnd 1.5,
respectively), the M-F bond is presumably.nearly similzr in g1l
compounds. Apart from the electrostatic intersction between this
central stom (Mn+) and fluorine (F ), a certzin amount of covalency
must be involved. An estimation based on the electronegstivity dif-
ference gives a 30 % covalent cherscter for Si-F and Ge-F bonds,
and 2 20 % covalent charsecter for Mn-F bonds. These metal-fluorine
bonds are certainly the least covalent of all the metal-halogen
bonds, a fact which is well supported by-spectroscopicj and other
data, The partial covelent character of the M-F bonds leads to M-F
distances somewhat shorter than the sum of M &nd F ionic radii
(Table 14). The ionic character, however, remains predominsnt and
determines certzin of the geometrical properties of the MFg' groups
- the structure similarity of the studied AQMFG compounds, for ex-
gmple. Since most transition metsl ions have ionic radii which do
not exceed lergely the size of the octzhedral hole allowed by the

6 F ioms (0.41 3), 2 large number of fluorocomplexes will have s
similar structure s far as the MFE- group is concerned. For large
M4+ radii and & relatively smell cation (& = K), as it is the case
e.g. for Zr or Hf (0.80 %), the structure of the A MF6 compounds

4 (D17 space group). For A = Rb, Cs, the

structure is again regulsr (ng speae group) and the ZrFé" and

is entirely different

Hng- groups are only slightly distorted.
Another important factor which influences the structure of a

A MFG compound is the size of the alkeli metal ion A", The hard-
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sphere model of ions is sufficiently valid for the ternary fluo-
rides to explain the various structures occuring in this class.
Unlike the M4+ ions, whose ionic radii differ only slightly from
one atom to znother, the radii of the A" cations increase rapidly
from Na* (0.95 ) to cs™ (1.69 R). The Ne* ion is too small to
build up a regular close-packed structure with the MF%“ groups,
so that A-F distances will be irregular. From K@ (1.33 £) on,
close-packing is favored, and this is especially valid for Rb™
(1.48 £) and Ccs* (1.69 %). A coordination number of 12 is a rule
for the A2MF6 compounds involving K, Rb or Cs. The ideal cubic
structure is found for slmost all Eb and all Cs hexafluorometasl-
lates(IV). However, distortions from this regular structure may
occur, caused by the influence of unsymmetric polarization41. B-
xamples are KZMHFG and KZGeFG’ in which the A-F distances gre not
equal, eglthough the coordination number continues to be 12.
| One of the force constants which is usually related to the
covalent character of the M-F bond is K, the symmetric stretching
M-F force constant. It is expected that K should decrease with the
bond becoming less covalent. Thus, K should have lower velues for
hexafluoromenganates(IV) than for hexafluorosilicates and hexa-
fluorogermsnates. The values of K given in Table 15 do not agree
with this conclusion. The value of K for hexafluoromsnganates
(~2.3 mdyn/R) is somewhat larger than for hexafluorosilicates
(1.8-1.9 mdyn/R) and hexafluorogermanates (2.0 mdyn/8), in spite
of the mentioned differences in the amount of covalent bonding

in these compounds. Therefore, K should not be straighiforwardly
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Tgble 15
Calculated force constants of cubic (Og) AZMFG.compounds
(in mdyn/K)
Compound K H F k h KAF
K2SiF6 1.937 0.054 0.688 6.167 0.075 0.078
szsiFG 1.839 0.057 0.665 0.267 0.072 0.093
CSZSiFG 1.743 0.056 0.678 0.236 0.071 0.070
082G9F6 2.011 -0.015 0.520 0.124 0.064 0.070
RbZMnFG 2.332 0.036 0.376 0.253 0.043 0.074
Cs2MnF6~ 2.309 0.0M 0.422 0.243 0.042 0.075
K,NiFg" 2.563  0.681 0.154 0.391 0.012 -0.454

* Values obtained sfter only 3 iterations.
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related to the covalent charzcter of the metal-ligend bonds.

The way in which the velues of K change in a serieé of AZMFG
compounds (M = fixed, A = K, Rb, Cs) is not regular nor very sig-
nificant. There is a slight decresse in AZSiF6 compounds in psssing
from A = XK to A = Cs, which indicates & weakening of the M-F bond
strength in the compounds with heavier cations. The same appears
to be true for szmnp6 and CsZMnFs. This weakening might be due
to @ redistribution of the electronic cloud of the anion under
the influence of the cation electric charge, although the effect
must be very weak. The A-F interection,  represented by the KKF
force constant, which is seen from Tsble 15 to have low values as
compared to K, is very weak, thus permitting formation of stzble,
isolated MF6 groups within the crystalline lattice.

F, the force constant of the non-directly bonded F...F atoms,
has relstively large values for all compounds, especislly the
hexafluorosilicates, and it does not change appreciably‘with chan-
ging the cation A+; but has different values for various central
M stoms. Other author53 heve pointed out that it does not vary
appreciably with the P-F distence, but this is not obvioué in
our casse since these distances are slmost identical in the inves-
tigated compounds (cf. Table 14).

The bending (F-M-F) force constant H has low values, indicating
an appreciable lack of oriented (directed) covalent bonds (a large
ionic character of the M-F bonds). The interaction force constants
k and h have also reletively low values, which do not depend sig-

nificantly of the nature of the cation. They are however different
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from zero and their contribution to the potential energy cannot

be therefore neglected. The force constants obtained by us for
K2N1F6 differ apprecisbly from the-values‘of Reisfelds, which were
obtained by neglecting the interaction force constants k and h,
s well as the A...F lattice force constant KﬁF'

The frequencies calculated using the sets of force constants
listed in‘Table 15 are in very good sgreement with the observed
frequencies. An exception is the frequency of the \6 (F1u) mode,
for which the fit between the observed and calculzted values is
rather poor and could not be improved even after a large number
of iterations. The cslculated value of xg oscillates with £20-50
cm'1 around thé observed value. This might be due to the large
half-width and thus the inaccurate location of the band.

The procedure of calculation permitted en estimeation of the
frequencies of 21l 10 normal modes of cubic AEMFG compounds in
the solid state. These freduencies are given in Table 16. The cal-
culated frequency of the molecular inactive mode v@ has been gl-
ready reported in Table 11 and compared with those components of
the mode which become infrared-active when the MFg'-anion is in .
an approprisate environmentﬂ

We have calculated also the percent potential energy distribu-
tion smong the force constants to each vibration of cubic AZMF6

8
compounds, according to the relation !

(32), . ¢
(P.E.F.) = —321d 200 ¢ (104)

ve
1




126

Table .16

Calculated and observed frequencies of the normszl modes

of vibration of cubic (02) AZMFG.compounds in solid

gtate (in cm"1)

Molecular modes Lattice 350des Acoustic
Compound Raman | Infrared In.”| IR R Tn. mode
IS T T T T T L 2 B T V10
K sip, | obs |659.00 481.00 412.00 740.00 480.00 -  [143.00 - - -
27776 ) a1c|659.00 481.00 412.00 772.76 480.07 253.82 |143.00 111.34 117.71 | 0.00
Rb sip. | OPS |653.00 480.00 410.00 737.00 475.00 -  [117.00 - - -
27776 | celc[653.00 480.00 410.00 792.84 475.04 256.93[117.00 81.63 127.72 | 0.00
cs sip, | ObS |648.00 469.00°407.00 723.00 474.00 -  [100.00 - -] -
2776 | £41c|648.00 469.00 407.00 775.85 474.03 252.02[100.00 57.52 110.14 | 0.00
Ce cep. | OPS |614.00 473.00 331.00 598.00 349.00 - 90.00 - L -
2776 calc|614.00 473.00 331.00 619.84 349.85 194.13| 90.01 56.16 110.40 | 0.00
Rb Map. | °PS [605.00 505.00 317.C0 630.00 338.00 -  [105.00 - -
2776 | 210(605.00 505.00 317.00 652.19 338.10 201.95 |105.00 71.28 113.74 | 0.00
Ce Jmp. | ObS |616.00 505.00 317.00 619.00 335.00 - 96.00 - - -
2776 | Ca1c|616.00 505.00 317.00 629.96 335.16 203.41]| 96.00 21.58 114.42 | 0.00
K NiF obs‘0562.00b520.00b310.00b658.00b345.OOb - - 138.00§ - -
calc|562.00 520.00 312.63 624.25 344.79 179.46|183.83 129.99 171.62 | 0,00

(IR - infrared, R - Rsman, In. - inactive)

*
The bad fit of V, mode frequency is discussed in the text.

& Ref. 3.

P pef. 5.

3

© 3 iterations only.
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Table 17

Potential energy distribution among force constants

for the normal modes of KZSiF6 (in %)

K H F k h Kyp
v, 44.8 0.0 56.6 =~1.5 0.0 0.1
v 84.2 0.0 18.6 -2.9 0.0 0.1
vy 78.2 2.8 10.4 0.0 7.6 0.0
vy 0.6 8.2 65.3 0.0 22.6 3.4
Vs 0.0 11.4 79.1 0.0 0.0 9.6
Ve 0.0 5.1 86.4 0.0 -4.2  12.5
Vo 0.0 0.3 2.2 0.0 0.8 96.9
g 0.0 1.2 8.3 0.0 0.0  90.7
vy 0.0 0.0 0.0 0.0 0.0 100.0
Vo ver  eas ceeeee e
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(P.E.F.)ij indicates the significant force constants for the

vibration vi. The results, listed &s an example for K SiF6 in Table

2
17, show that generslly more than one force constant participstes

in each vibration and that no vibrationsl mode (except v9) is 'pure',
i.e. arising from the contribution of = single force constant. The
Ramen-active »% mode and fhe infrared-sctive \6 mode are due mainly
(to the extent of 84 znd 78 %, respectively) to the force constant

K, thus being almost pure stretching vibrations.'lt is surprising

to find that \H, which has been generally considered & pure stre-
tching M-F vibration, is due largely (to the extent of 57 %) to the
non-bonded F...F interaction force constant F. The v7 and vé modes
are preponderent lattice vibrstions, as expéctéd. The F~-M-F bending
force constant H contributes to & very small extent to all molecu~

. lar snd lattice vibrations.

The geometric representation of the normal vibration modes, as
well as the szmount of mixing between certain vibration which possess
the symmetry required by group theory may be found from the Carte-
sien components of the normal coordinates, i.e. the eigenvectors
(L;)i resulting for every mode v, from equations (81) and (83).

The results are given for K231F6 in Table 18 gnd Figure 22, wherg
the displacements of the atoms in the unit cell gre drawn approxi-
mately to scale. It may be seen that the v,, v2 and v6 modes almost
pure moleculer (internsl) modes, while v3, 94 and VS sre molecular
modes with various small amounts of lattice character. V7 and »b
are mainly lattice modes, but they are elso mixed to & certain ex-

tent with the motions of the atoms within the MFé' wnit, The v,
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NOM N M OoN M Y9 Mg M N Mo M M M

M O~ 3 OV W A DWW N NS e O

0.41
0.4
0.41

-0.41

0.58

-0.29

-0.29

-0.58

0.29

0.29

Teble 18

.c . : e
Lm matrix elements for KéSiFS

(A1l zero elements are omitted)

V}

0078
"004‘4:

~-0.02

-0.02

-0.44

-0.02

—0.02

0.00

0.00

Vg

0.42
0.40
-0.35
-0.35
0.40
-0.35
-0.35

0.03

0.03

Vs

0.50
0.50

-0.50
-0.50

-0.06

0.06

Vg

-0 .50

0.50
-0.04
‘0-50

0.50

V7

—0.29 .
-0.24

-0.20
-0.20
"0f24
~-0.20
-0.20

0.57

0.57

0.04
0.04

-0.04:

0.70

9

0.50
-0.50

-0.50
0.50

0.29

10

0.36)
0.29

0.29
0.29
0.29
0.29
0.42

0.42
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mode is an acoustic mode, as expected: the motions of 211 atoms
in the unit cell constitute & translation of the unit cell as a
whole. The rotationsl or translational character of the lattice
modes may also be seen from the diegrams.

These deta allow explanstion on a ressonable basis of the sl-
ready mentioned large half-width of certain bands in the infrared
and Raman spectra, par%icularly that of the \6 snd \g bands. The
band broazdening is due to the intersction between molecular and
lattice modes of appropriste symmetr&. The results reported here
for K281F6, as far es the nuclear motions and potential energy
distribution are concerned, are quite general for all compounds
with similar structure studied in this work, slthough the degree
of mode mixing varies for esach éompound. The mixing of the lattice
modes with the low-energy moleculer modes mey be interpreted as &
modification of the respective molecular modes by action of inter-
ionic lattice forces. Strictly speegking, the vibrationsl energy
levels of the MFg" group are different in crystal and in solution,
even if to a small extent. Hence the necessity of using only con-
sistent solid state spectrs when carrying out force constant csl-

culations on such compounds.




Appendix FORTRAN PROGRAM FOR FORCE CONSTANT CALCULATION

FOR CUBIC (Og) AZMFG COMPOUNDS

PROGRAM 'CONFORT' FOR FORCE CONSTANT REFINEMENT, CUBIC A2MF6
COMPOUNDS #** INPUT DATA - OBSERVED FREQUENCIES, Z MATRIX,
ASSUMED FORCE CONSTANTS *** QUTPUT DATA - CALCULATED
FREQUENCIES, IMPROVED FORCE CONSTANTS, CARTESIAN COMPONENTS
OF NORMAL VIBRATION MODES, POTENTTIAL ENERGY DISTRIBUTION (PEF)
USED SUBROUTINES - 2 (VALVEC, SIMQ)

(Job control statements)

DIMENSION NB(6), 2(17,6), PHI(6), Y(17), F(10,10), EVAL(10),
1 EVEC(10,10), FIT(8), Vi(8,6), v2(8,6), v(8,6),
2 vr(6,8), P(8,8), VrrP(6,8), Vv(6,6), VL(6), DELPHI(6),
3 FREQC(10), PEF(10,6)
110 FORMAT (6I2)
120 FORMAT (8F10.7)
130 FORMAT (6F7.3)
140 FORMAT (6F10.7)
150 FORMAT (' ', 27HOBSERVED FREQUENCIES (CM-%) // SHNU 1 F8.2/
1 SHEW 2 F8.2/SHNU 5 F8,2/S5HNU 3 F8.2/5HNU 4 F8.2/5HNU 7 ¥8.2)

[pRoNeNeNe N

155 FORMAT (' ', 29HCALCULATED FREQUENCIES (CM-1) // 10F8.2)

170 FORMAT (* ', 22HEIGENVECTORS (COLUMNS) // 10(F10.7, 2X)/)

180 FORMAT (' ', 24HFORCE CONSTANTS (MDYN/A) // 6(3X,F7.3)).

190 FORMAT (' ', 41HCONCORDANCE OF FREQUENCIES (OBS-CALC) /!
1 8(2X,F10.7))

195 FORMAT (' ', 20HNUMBER OF ITERATIONS I3)

900 FORMAT (' ', 10E13.5/)
961 FORMAT (' ', 6HDELPHI /(3X,E15.7)
READ (1,110) (NB(L), L=1,6) #
READ (1,120) ((2(I,K), I=1,1T), K=1,6) ‘
READ (1,130) (PHI(K), K=1,6) n
READ (1,140) FREQO1, FREQO2, FREQO3, FREQOS, FREQO6, FREQOT

DO 295 I=1,8
DO 295 J=1,8

295 P(I,d) = 0.
P(1,1) = 1./FREQO1
P(2,2) = 1./FREQO2
P(3,3) = 1./FREQO3
P(494) = Q.
P(5,5) = 1./FREQO5
P(6,6) = 1./FREQO6
P(7,7) = 1./FREQO7

WRITE (3,150) FREQO1, FREQO2, FREQO3, FREQO5, FREQO6, FREQOT7
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NIT =1
30 DO 50 I=1,17
Y(I) =
- DO 50 K=1,6
50 Y(I) = Y(I) + Z(I,K)*PHI(K)
DO 200 I=1,10
DO 200 J=1,10
200 F(I,Jd) = 0.

DO 210 I=1,4

210 F(I,I)= P(I,I)+ Y(I)
DO 215 I=5,8

215 F(1,1) = F(I I) + Y(I+1)
F(3,4) = F(3,4) + ¥(5)
DO 220 I=6,8

220 F(5,I) = F(5,1) + Y(I+4)
F(6,7) = F(6,7) + Y(13)
7(6,8) = F(6,8) + Y(14)
F(7,8) = F(7,8) + Y(15)
P(9,9) =F(9,9) + Y(16)

F(10,10) = F(10,10) + Y(17)
DO 230 I=1,10
DO 230 J=1,10
230 F(J,I) = F(1,d)
WRITE (3,195) NIT
CALL VALVEC (F,EVEC,10,1,1.0E-6)
DO 240 I=1,10
EVAL(I) = O.
240 IF.(F(I,I) .GE. 1.0E-5) EVAL(I) = F(I,I)
N=0
DO 248 L=1,6
M=DN+1
N =N + NB(L)
IF (NB(L) .EQ. 1) GO TO 248
Ni=N--1 "~
DO 246 J=M, N1
EVM = EVAL(J)
M =4
Ji=J +1
DO 242 I=J1,N
IF (EVM .GE. EVAL(I)) GO TO 242
EVM = EVAL(I)
Ji =1
242 CONTINUE
EVAL(JM) = EVAL(J)
EVAL(J) = EVM ,
DO 244 K=M,N \
EVM = EVEC(K,J)
EVEC(K,J) = EVEC(K,JM)
244 EVEC(K,Ju) = EVM
246 CONTINUE
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248 CONTINUE
DO 336 I=1,10
336 -FREQC(I) = 1302.84*3QRT(EVAL(I))
WRITE (3,155) (FREQC(I), I=1,10)
FIT(1) = FREQO1 - FREQC(1)
FIT(2) = FREQOZ2 - FREQC(2)
FIT(3) = FREQO3 - FREQC(3)
FIT(4) = 0.
FIT(5) = FREQO5 - FREQC(5)
FIT(6) = PREQO6 - FREQC(6)
FIT(7) = FREQO7 - FREQC(7)
WRITE (3,190) (FIT(I), I=1,T)
FITMAX = ABS(FIT(1))
DO 250 K=1,7
IF(FITMAX - ABS(FIT(K))) 249,250,250
249 FITMAX = ABS(FIT(K))
I=K
250 COKTINUE
IF (FITMAX .LE. 2.) GO TO 334
DO 280 K=1,6
DO 260 L=1,2
260 V(L,K) = 2(L,K)
DO 270 L=3,4
270 V(L,K) = EVEC(3,L)**2*Z(3,K)+ 2*EVEC(3,L)*EVEC(4,L)*Z(5,K)
1 + EVEC(4,L)**2*2(4,K)
Vi(L,K) =
DO 272 I=5,8
M=1I+4+1
272 Vi(L,K) = V1(L,K) + EVEC(I,L)**2%Z(M,K) :
v2(L,K) = 2*(EVEC(5 L)*(EVEC(6 L)*Z(1O K) + EVEC(7, L)*Z(ﬂ K)

1 + EVEC(8, L)*Z(12 K)+EVEC(6 L)*(EVEC(? L)*Z(13 K)

2 + EVEC(8,L)*Z(14,K)+ EVEC(7,L)*EVEC(8,L)*Z(15,K))
275 V(L,K) = Vi(L,K) +v2(L K)

DO 280 L=1,T

TP(FREQC(L) .EQ. 0.) FREQC(L) = 1.0E-30

V(L,K) = V(L,K)#848686.0/FREQC(L)

IF(V(L,K) .LT. 1.0E-30) V(L,K) = 0.
280 CONTINUE

DO 285 K=1,6

DO 285 L=1,T
285 VI(X,L) = V(L,K)

DO 300 K=1,6

DO 300 L=1.7

VTP(K,L) = O.

DO 331 MN=1,7
331 VIP(K,L) = VIP(K,L) + VI(K,M)*P(M,L)
300 CONTINUE

DO 310 K=1,6

DO 310 L=1,6

VV(K,L) = O.
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DO 310 M=1,7
310 VV(X,L) = VV(K,L) + VIP(K,M)*V(M,L)
DO 320 I=1,6
VL(I) = 0.
DO 320 J=1,7
320 VIL(I) = VTP(I,J)*FIT(J)
CALL SIMQ(VV,VL,6,KS)
DO 333 1=1,6
333 DELPHI(I) = VL(I)
DO 330 I=1,6
330 PHI(I) = PHI(I) + DELPHI(I)
334 WRITE (3,180) (PHI(I), I=1,6)
DO 410 K=1,6
DO 400 L=1,7
400 PEF(L,K) = V(L,K)*PHI(K)/FREQC(L)*200.
PEF(8,K) = 0.
DO 410 1=9,10
M=1L+7
V(L,K) = Z(M,K)*848686,.0/FREQC(LY
PEF(L,K) = V(L,K)*PHI(K)/FREQC(L)*200.
410 CONTINUE
NIT = NIT +1 ‘
IF(NIT - 10) 332,332,335
332 GO TO 30
335 CONTINUE \
WRITE (3,170) ((EVEC(I,d), J=1,10), I=1,10)
WRITE (3,405) ((PEF(L,K), K=1,6), L=1,10)
END ‘

Subroutine VALVEC may be any progrem for the diggonalisation of a
mgtrix, giving the eigenvalues and eigenvectors, Its parsmeters
are: F - matrix to be diagonalised; EVEC - unitary matrix of the
eigenvectors; N = 10 - order of the matrix; IFU =1 - index showing
thet both eigenvalues and eigenvectors must be calculated; FIN = 10"6
~ indicator for shut-off, the fingl largest off-diagonal element,
Subroutine SIMG may be any program for solving a system of linesr
equetions. VV - matrix of the coefficients of the unknoﬁn DELPHI;
VI - vector of the free terms on right hand side; N = 6 - order of
the system; KS - indicstor for shut-off.

For K2NiF6, where the frequency of Vg lattice mode is known in- .

stead of vv, appropriate modifications in the program gre necessary.
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