Studies on the Extraction, purification, and Analysis of Sugars and Sugar Juices with spedial reference to the Desiccation Process.

by ThOHAS JAGBE MTMCALLL, Ph.D., P.C.I.C.,

A Thesis presented in fulfilment of the requirements for the degree of Doctor of Science in the Faculty of Science at Glasgow University.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11011984
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACGNOWLEDGEMBNT

The author is greatly indebted to w. H . Cumming, Esq., O.B.E., D.Sc., B.K.I.U., A.I. Chem, B., F.R.S.E., Director of the School of Chemistry, and "Young" Professor of Technical Cheaistry in the Royal Technical College, Glasgow, for his advice and guidance over many years, and for facilities granted in the laboratories of his Department, where the major portion of this woris was carried out.

_IST OR ILLUSTRATIONS.

FIGURi
PAGR
1 Hilger E. 498 Hedium Quartz Spectrograph. 33
2 Positive Spectrogram of Ash of Dried Beet 33
3 Beet Knife...Goller type 47
4 Beet Knife...iñnigafelder type 47
4a Profile of Ideal Connette 49
4b Large Scale Drier for heet Cossettea 54
4c Sugar Beet Drier... Thermal Diagram. 56
4 Water Removal to produce 1 Ton of Dried Material 60
$4 e$ Composition of Sugar Beet at various water 65
4ea. Drying Curve for Sugar Beet Cossettes 66
4eb. Equilibrium Moisture in Dried Beet Cossettes.. 67
4ec. Fxperimental Beet Drier 69
4f Stamer's Diffusion Experiments...No. 1. 83
4 g ...No. 2....... 83
5 Diffusion Diagram.........E.Saillard 83
6 Diffusion Process...Graphical Outline.M.J.Proffitt85
7 Anerican Diffusion Practice 88
8 Battut Diffusion Diagram 87
9
" " " 8710
11 " "87
12 Experimental Diffusion on Dried Beet : 93 93 cell by cell, Brix ${ }^{\circ}$, Sugar, Purity, pH value.. 93
13 Experimental Diffusion Battery on Dried Beet: 93 Influence of draw-off on Sugar and Purity
14 Bxperimental Diffusion Battery 94
15 Diffusion Buttery : Line Diagram. 94
16 Diffusion Battery : Single Vessel 99
17 Arrangenent for Pulp Discharge. 99
18 Experinental Battery : Series Brix ${ }^{\circ}$ in cells. 101
19 Sxperimantal Battery : Sugar Increase from 101Cell to Cell....
19a Raabe-Paschen Continuous Diffuser : Evolution 105
19b Raabe-Paschen Continuous Diffuser. 106
19 c Section of Experinental Continu 106
20 Experimental Battery : Test l-Cossettes aried 118 with acid air :
: Testl-invert-Sujar 118212.22324variation.$\therefore \quad$: Test 2 - Cospettes 120120
dried with pure air...: Test 2 -Invert-Sugarvariation.120
: Sodiun Carbonate Treataent 123
: Variation of Brix° 123
Composition of Products in Beet Sugar Tanufacture 152
28a Relation of Time of Filtration to Colloid Content. 158
27 Ultra-microscopic Cataphoresis Apparatus 161
28 Cataphoresis Tube 161
29 Standard Filtering Apparatus 195
30 'Spekicer' Photoelectric Absorptiometer 201
31 Stammer's Colorimeter 201
32 Variations of Stamer Colour in Experimental 203Defecation33 pH Values in Simple Carbonatation204
34 Juice Defecation Tank. 205
35

$35 a$

The Keil-Dolle Segment Rasp

222

35b The stryhlein Hill.. 222
$35 c$ Telation of Water Content and el. Rumidity. 258
36 Vacrum Oven. 266
37 Solubilities of Carbohydrates 292
38 Various Koisture Dishes used in tests 307
39 Fffect of Ventilation on Oven concitions. 318
Oven Drying of Golden syrup : Syrup/Celite
Ratio 340
4142Steam Oven : Golden syrup : Sand/Syrup Ratjo344
43

59a The Serbia Drying oven. 424
59: Desiccators showing stirring arrangement and Safety Box 428
60 Desiccation fethod : removal of water from Levulose Solution 428
61 Cireulatinis Pump. 438
62 Desiccator wita stirring arrangement 438
63
Desiccation of Levilose Solution on Paper Folls at foom Temperature 465
Vapour Pressures of Organic Liquids 481Distillation Method...Various types ofApparatus.502" " " " "
" \quad " Toluene Method- 3 types... 504502503
70 71
" " ... Dean and stark Kethod..... 505 505Distillation ${ }^{\prime \prime}$ nothod Tate and werren Apparatus..
British Standard Specification : Dean and Stark. 506507507
" " : Various ifethods. 508": Special Designs
77 - : Thielepape and Fulde type. 509508
78
" : Speciel Stopcock 509
79
": Hercules Hoisture Tube
" : Type for Heavy Ifquids. 510 511
". Puel Research station type. 511
". Special Type No. ${ }^{3}$ 512
512
No. 1.522

INTRJDUCTIOH.

Exactly two hundred years ago the German chemist Marggraf demonstrated the presence of sucrose in beet by drying the roots and then extracting the sucrose by alcohol.

Since his time there have been numerous attempts to perfect
a process of desiccation with the main object of preserving the beet and thus allowing extension of the extraction season from the three months of the harvest to the full year.

The work here presented is a record of research carried out on various problems arising from the desiccation process of beet sugar manufacture, as follows :-
1.The composition of fresh and dried sugar beets :
2.The desiccation of sugar beets :
3.The design of a suitable apparatus for extracting sucrose from dried sugar beets:
4.Purification of the raw sugar juice thus extracted :
5. Methods of Analysis, with particular reference to the estimation of water in sugar products.

The problems arising in a desiccation process for sugar manufacture can be ascribed to a number of causes. There is first of all the concentration effect on other constituents due to the elimination of water ; there are the physical and chemical changes occurring during the drying process both naturally and by the use of furnace gases in the drying air ; and there is the danger of fracture and powdering of the dried cossettes if they are over-dried. Then there is the danger of deterioration during
storage over a period of 3 to 9 months.
In the extraction process, several difficulties appear, necessitating radical changes in the apparatus ised. There is excessive frothing in the diffusion battery due to high concentrations of saponins, and there is often undue compression unless the amount of cossettes filled per cell is carefully regulated. The main difficulty in extraction however, is the risk of caramelisation and inversion, causing dark juices and loss of sucrose. This risk is even more evident in the ensuing purification process, which is further complicated by the high density and viscosity of the raw diffusion juice.

It was therefore necessary to make analyses of the various constituents of the fresh beets, the dried cossettes, and the raw diffusion juice, and to constrast these results with analyses of juices after purification. It will be clear that many of the methods of analysis used had to be modified to suit these concentrated products.

One of the most important of these analytical operations is the determination of water in materials sensitive to heat, and the latter part of this work deals with this problem.

DESICCATIUN PROCESS.

- SUMARY ARD CUNCLUSIONS.

ORCTION1

Detailed analyses have been made of fresh sugar beets and of the dried slices (cossettes) derived from them.

A spectroscopic examination has been made of the mineral matter in dried beets.

The dried beets analysed included samples dried (a) by direct furnace gases, (b) by pure air, and (c) by air containing known quantities of sulphur dioxide.

Special attention was airected to the determination of harmful ("noxious") nitrogen in sugar beets.
S. CH HON 2 TIE DESICCATION OP SUGASBMETS.

SLICIMG:- An analysis has been made of the size distribution of fresh beet slices and dried cossettes, and from this study the profile of an "ideal" cossette has been drawn. DKING_- The process of drying has been described, and details given of the drier dimensions and the conditions of drying.

Analyses made by the author of the drying air and of the coal used have been of service in tracinis the development of acidity in the dried beet cossettes. Analyses have been made of the beets in the various stages of drying.
 given of an extensive series of tests carried out by the author on the use of various neutralising agents in the drying process. It was found that there was a wide choice of reagents with which the fresi slices can be treated so that neutral or slightly alkaline dried cossettes can be produced.

This avoidance of low pii values has important repercussions on the loss by inversion of sucrose during the extraction of the dried cossettes in a diffusion battery.

SHCLION 3: Part 1.

DESION: The standard cell type of diffusion battery having failed to give even moderately satisfactory results when operating on dried beet slices, the author carried out a series of experiments to determine :-
(I) a suitable design of diffusion battery for this purpose:
(2) the percentage extraction obtainable with such a battery :
(3) the bahaviour of the constituents of the dried beet cossettes during extraction, and
(4) the effect of chemical conditioning of the cossettes in the diffusion battery.

After experience with six different pilot plant and large scale batteries the author has given a survey of the desirable features in a diffusion battery for the extraction of dried beet cossettes.

EAThACION:- Detailed results of extraction tests devised and controlled by the author are shown. They indicate that in a properly designed battery an extraction of over 97 per cent is possible when extracting dried beet cossettes; and that the inversion loss can be reduced to about 0.5 per cent on sugar.
\qquad
OECTION 3 : PAFT
COMPOSITION OR DIFFUSIUN JUICES : - Detailed analyses made by the author are given for diffusion juices obtained from dried beet cossettes dried with (a) direct furnace gases, and (b) with pure air. INVERSION DIFPUSION IRIASS:-

A series of diffusion trials mede by the author sought to determine the conditions necessary to keep to a minimum the $10 s 8$ by inversion of sucrose in the diffusion of dried beets.

In thesetests the effects of temperature and time of contact upon the extraction were also studied. CONCLUSTONS

It was found that with pure-air dried cossettes there is some inversion of sucrose during diffusion, but much less than that occurring with cossettes dried by direct furnace gases.

Temperature increase caused an imnediate rise in the rate of inversion.

The addition of alkali to reduce inversion was successful, but required exact control and careful mupervision.

The author has discussed in this section some considerations regarding the formation of invert-sugar during the drying of sugar beets. The control of this loss by inversion of sucrose can be
regarded as the key to the technical success of a beet desiccation process.

SECTION 4 : PART 1.

——IED BEETS.
Introduction :- The general methods used in the purification of sugar juices are discussed in relation to the composition of these juices.

Special attention has been given to the colloidal aatter in the juices, and the use of an electrophoresis method of estimating colloid content is described, and the experinental results obtained are recorded. The method has also been used to trace the removal of colloids from the juices in the several stages of purification. The relation between colloid content and the rate of filtration has also been studied.

PAhi 2 : Experimental :- A method develoged by the author for the purification of diffusion juices of high density frou dried beete is described. It involves the addition of alkali, aid an electrolyte, such as aluminium sulphate in separate stages, followed by neutralisation with an acid reagent such as carbon dioxide or sulphur dioxide, the latter preferably in liquid form.

A comprehensive study has been made of the variable factors in this purification process especially in regard to quantities of reagents used, times of contact, temperatures, times of filtration, and improvement of colour and purity. The experiments were controlled primarily by purity, colour, and pH value determinations.

In the final testing of the process, more complete analyses were made of all the products derived from a pilot plant working of the process, and from this scheme a balance of ash and invertsugar was drawn up. The elimination of impurities in the stages of this process is shown by these analyses.
\qquad
SECTIUN 5

Hetheds developed for the analysis of dried beet cossettes from the work described in Dart 2 of the present Section are given in detail.

PAXI \& : - The experimental work carried out by the author on the perfection of suitable methods for determining polarisation and reducing sugars is described. The tables shown here record this experimental work.

The factors investigated included :-
(a) Adsorption of sucrose by the insoluble marc :
(b) The influence of temperature upon digestion :
(c) A comparison of polarisation methods-e.g., alcoholic and aqueous digestion ; cold and hot digestion ; comanution of the sample by saw, mincer, rasp, or special mill:
(d) The influence of concentration of solutions :

The methods evolved for dried beet analysis as a resalt of this work were used throughout the investigations recorded in Section 1 to 4,(composition, extraction, and purification).

The determination of reducing sugars forms subject 4 of the Research asenda of the International Comission for Uniform Hethods of Sugar Analysis, under the Presidency of Dr. Trederick Bates, U.S. National Burean of standards. The suthor is an Associate Referee for subject 4 : he hopes to present the results here recorded at the fenth Gession of the Comaisaion.
\qquad

The specific gravities of fresh beets, dried beet cossettes, and dried marc have been determined by the author.

An investigation has been nade of the problem of determining insoluble marc in dried beets, and the results are here presented.

The presence of raffinose in dried beets does not appear to have been investigated previously : the author's experimental Iigures are recorded with the reservation that they merely indicate that raffinose may provide the largest proportion of the percentage here called "rafrinose".

Bibliographies are included for arc and for raffinose.

PREVIOUS WOKS:-

So far as the author is aware lit ile or nothing
has been published on the composition and methods of analysis of dried beets.
similerly no detailed research on the problems of extracting dried beets has appeared, and there is little or no recorded data regarding the purification of beet juices of high density.

A survey has been nade of the literature relating to -
(a) the presence of water in solid materials ; (b) its determination ; (c) oven methods in general.

The influence of numidity on noisture determinations has been discussed, and the importance of the determination of water has been recognised.

A general comparison of methods has revealed a multiplicity of these, often very diverse in character and accuracy.

A sumary has been made of various reasons for discrepancies and poor agreement in oven methods of determining water.

A graph has been constructed showing the solubilities of Various carbohydrates
\qquad

This part serves as an introduction outlining the scope of the work.

Detailed consideration has been given to the many factors involved in the use of the various types of oven-drying, and it has been shown that, on account of these factors, oven drying is far from being the simple operation it appears to be.

An attempt was made to establish :-
1.

The best type and quantity of absorbing medium and its prepara-
2. The best type and dimensions of drying dish :
3. The optimum time and temperature of drying :
4. The best type of oven:
5. Whe infiuence of mtmospherio pressiare:
6. The effect of drying at a pye-debermined pH value.

$$
\text { SXOTION } 5: \text { PAK } 6 .
$$

The rate of evaporation of water from open vessels in "gtill" air has been investigeted by several workers, but he conditions of evaporation of water in a closed compartment of a steam or vacuum oven are markedly different from those in open evaporation systems.

The experimental work of the author on tais subject is summarised on page .

It has been shown that the rate of evaporation of water in a ventilated closed compartment of an oven is very much lower than the rate of evaporation from an open pan in "still" air, and that the rate of supply of heat to the vessel is probably the most important factor influencing this rate.

> SECTLONE: PKTI7.

On account of its very high content of reducing-sugars and its very low proportion of mineral matter, golien syrup is very sensitive to heat, and it therefore forms an excellent test-material in comparing methocs of determining water.

Factors influencing this determination in golden syrup have been studied, and severel methods have been compared.

A full smalysis of two samples of golden syrup has hoen tade. Ar acid-washed kieselgur (Celite) has been found suitable as an absorbent for the syrup, yielding nore concordant resuits than sand.

A method is recomended for the estination of water in such thermally sensitive substances as golden syrup.

AND LSVULOSE.

In these experiments the solutions were dried on sand, delite, paper, and asbestos. Crushed pumice was also used.

Analyses were made of various acid-washed kieselgurs. duch of tais experimental work was conducted at pe-deterained pit values.

CONCLUSEVN: -
Levulose in Vacuum oven:- Levulose can be dried wituot appreciable loss in the vachum oven at $70^{\circ} \mathrm{C}$., at pi values of 4,5 , or 6 for periods up to 4 hours. Drying at pri values above 7.0 is slower, and there appears to be more decomposition of the sugar. Drying on punice gave good results : drying on sarid and Celite gave slightly low results.
lor vacuum oven drying, $60^{\circ} \mathrm{C}$. is definitely preferable to $70^{\circ} \mathrm{C}$., but the optinum time of 4 hours at $70^{\circ} \mathrm{C}$. becomes 7 to 9 hours at $60^{\circ} \mathrm{C}$.

When drying on paper rolls there is danger at this lower temperature that water will not be expelled from hydrated forme
of the sugars.
Levulose in steam oven : In all the oteam-oven tests there was considerable loss of solids even after only 3 hours heating at approximately $98^{\circ} \mathrm{C}$.

Glucose in tacuun oven :- No decomposition was seen after 28 hours heating at $70^{\circ} \mathrm{C}$. In tests with regulated ph values, drying at 2,5 , and 11 pH was satisfactory at $70^{\circ} \mathrm{C}$., with faster drying in the acid region.

Glucose in steamogen :- Resulta were good : the rate of drying appears to be faster tian for levilose. Glucose was relatively stable at $98^{\circ} \mathrm{C}$. With an optimum heating period of just over 3 hours.

Sngrose in vacuum oven :- Drying on Celite or on paper rolls gave remarkably constant results at $70^{\circ} \mathrm{C}$. Sand gave slower drying, the known percentage solids being reached in 28 hours, compared with $3-6$ hours for Celite or paper rolls. Drying with buffer solutions gave good resultafat 5 to 12 pH , but not below 5 pH . Sucrose in atean oren :- Very consistent results were obtained, but in no case was the known percentage of water reached.

Suerose seems to be very reluctant to part fith the last trace of water. This may be due to very close atomic binding of part of the water, or it is possible that partial inversion occurs, taking up a sinute quantity of water, and thus increasing the apparent sollas.

SHCTION 5: PAFT 9
 TIIE DETGKMINATIOS OF WATHK IM RAW SUGAES.

In this work the factors investigated included a study of replication, of optimum time and temperature of heating, of the Influence of the weight of sugar taken, and of the type of dish used. The effect of position in the oven was also studied. Analyses are given of the various raw sugars teated.

The effect of heat on the reducing sugars was also observed by determining the reducing sugars in the dried residues.

SUMGARY OP CONCIUSIUHS. - (See page 4II).
Time of Heating : - There is higher apparent loss as the time of heating is increased : the vacuum oven gives lower results than the steam oven.

Weight taken : It is recommended that not less than 5 gor more than 20 g . of sample be weighed for each determination. Effect of Dishes : Glass dishes and nickel dishes give sonewhat higher results than aluminium dishes. The bottom of the dish must maintain good contact with the oven bottom. Aluminium dishes of small diameter tend to give higher results than those of larger diameter.

Renlication : Similar dishes have aimilar results: the position of the dish in the oven was a mach more important factor. Temperature of Heating: - In the vacuum oven there was ilttle difference in results at 50,60 , or $70^{\circ} \mathrm{C}$.

In the stean oven a departure of one or two degrees from $100^{\circ} \mathrm{C}$. hed considerable effect on the molsture content recorded.

Decomposition of Reducing Sugars:- This was found to occur even after only 30 minutes heating in the steam oven. There is a likelihood that inversion of sucrose, oxidation of organic matter, and actual destruction of reducing sugars - in particular of levuloses.re going on simultaneously during the heating.

SECTION 5: PAKT 10.
DHTERMNATION OF WATHH USING LAE SPENCER OVEN.
In this oven, air heated electrically is continously drawn through the sample to be dried. Four series of tests were carried out.

SULAAKY OF TESTS AHD CUNCLUSIONS.

(1) Drying of a known levulose solution :- Using a 38,27 per cent solution of levulose at average temperatures of $53,66,77,80$, and $85^{\circ} \mathrm{C}$. the following results were obtained :-

At $53^{\circ} \mathrm{C}$. it was found that the temperature was too low for the driving off of the last traces of water from the levulose.

At $66^{\circ} \mathrm{C}$. the drying was completed in about 4 hours, and there was little change in 16 hours.

Temperatures above $75^{\circ} \mathrm{C}$. should not be used in the Spencer oven when drying a sensitive sugar like levulose. (2) Comparison of Spencer oren and eteamoven for Raw Sugars:-

In the spencer oven at $70^{\circ} \mathrm{C}$. 0.72 per cent, at $77^{\circ} \mathrm{C} ., 0.73$ per sent, and at $91^{\circ} \mathrm{C}$. 0.75 per cent water was found compared With an average of 0.84 per cent in the stean oven at $99^{\circ} \mathrm{C}$. (3) Moisture in different gizes of Raw Sugar crystals: The differences found were not significantly great.

(4) Ffiect of Spencer oven heating on reducing sugars :-

Using a Cuban raw sugar, heating above $115^{\circ} \mathrm{C}$. for over 20 minutes caused a progressive decrease in the reducing sugar content. Genergl Conclusion :-

The Spencer oven can yield comparable reaults in routine teating, but it cannot be regarded as an accuratemeans of determining water in thermally sensitive substances.

A note is appended on the Serbia drying oven.

$$
\text { SGCION } 5 \text { : PANI } 11
$$

THM DESEKHINAT ON OR WATKK BY DESICCATIOA MGTHUDS.
Introduction : Various types of drying agents and their mode of action are discussed, and factors which the author found significant in chemical desiccation methods are described.

Hxperimental Results: $=$ See summary on page 469.
Solutions of sucrose, glucoze and levulose were dried at room temperature, (a) in a static atmosphere, (b) in a stirred atmosphere, using concentrated sulphuric acid as drying agent.

Celite and sand were used as dispersing and absorbing media. Similar tegts were made using solden syrup, and vacuum drying was also used for this material, both at room temperature and within the teraperature range $36-50^{\circ} \mathrm{C}$.

The moisture content of a raw gugar was estimated at roon temperature with stirring : this served as a contrast to the estimations made on solutions as above.

Time of Drying:- Tiais was found to be excessively long, and only in a few tests was a satisfactory result obtained. Stirring: This considerably shortened the drying time when "free" water was present, but the effect of stirring was much less marked When the sample was nearly dry.

Vacuum :- The drying time was greatly reduced in vacium conditions at room temperature, but the vacuum oven at $50^{\circ} \mathrm{C}$. was found to give satisfactory results in much less time. GECOMESDATIUT :
(a) The use of stirring and vacuum is recommended when desiccation at room temperature is found desirable. Adequate ratios of absorbing medium to sample must be saintained.
(b) The use of a vacuum oven at low temperature is generally more satisfactory than desiccation at reom temperature, and should be preferred when contitions permit.

_ANAYEIS: SECIION 5 : 3ART 12.

Introduction:- A critical survey of tine literature nas been made. The advantages and disadvantaces of the distillation method are reviewed. The types of liquids used in the nethod are discussed, and a description is given of the various types of apparatus used.

Sumary of xperimental resultg_:

(1) Levuloze Solution:- Tests were made on a 40.16 per cent levulose solution ith three aiverse types of apparatus using benzene, heptane, toluene, and xylene, and with one type of apparatus using cerbon tetrachloride and tetrachlorethylene. Conclusions :- The results that the distillation method with the types of apparatus used is not suitable for the determination of water in thexmally sensitive media like lexulose solution.

There was progressive decomposition as the distillation proceeded. (a) Golden Gyrup:- Ten different types of apparatus were tested With golden syrup using a wide range of solvents.

Conclusions : The results bore out those obtained with levulose solution in series (1), but showed that with careful standardisation the rathod might be adapted for routine comparison purposes Where the matexials being tested are not unduly sensitive to heat.

The use of ignited celite in the distillation flask to of heat
"blanket" the solution rom the source/is recomended.
(3) Known sugar golutions :- A comparison was made between the Dean and Stark distillation method, the vacuum and ateara oven methods, and the refractometric aethod of determining water in known solutions of sucrose, glucose, and levulose.

The Dean and Stark method gave comparable results for these sugars only after 8 hours heating, and tended to give low results for sucrose and levulose.
(4) Levulose Solution with special apoaratus and mixed liguide :-

Various mixtures of solvents were made of suitable boiling points and densities, and these were used in testing levulose solutions in various types of apparatus.

In some of these tests the recovery of water was slightly lower than the amount of water known to be present, but in several cases the recovery was very satisfactory.

It seems clear that for levulose the temperature of distillation should be kept below $100^{\circ} \mathrm{C}$., and that the time required for complete distillation of the water present is between 2 and 3 hours. Special types of Apparatus :- Several types of distillation apparatus were devised by the author which could be used with solvents both lighter and heavier than water. This type of apparatus was found useful in finding a mixture of solvents which was of suitable density and boiling-point, and also non-inflamable. (5) Distillation with Buffer Solutions of known pH ralue :-

The object of these tests was to find (a) the best conditions for a clear meniscus, and (b) the variation in pH caused by the solvents.

It was found that in general toluene gave less emulsification than benzene or xylene.

The most permanent emulsions occurred with alkaline buffer solutions, but paradoxically, the two cases found of a perfect meniscus were from alkaline solution.

The acid buffer solutions caused a greater clinging of water to the condenser walls.
(6) Vacuum Distillation : A series of tests was made using acuna technique with the object of preventing the destruction of the more hest-sensitive sugars such as levulose.

The vacuum method was found to be difficult to apply owing to the surging and "bumping" properties of the maxtures involved, and the results obtained were not considered to be sufficiently accurate to justify the extra care and time necessary.

THE DISTILLARIUN MATMOD: FINAL SUMGARY.

A technique is recommended for the distillation method With the use of electric hot plate neating by radiation and the eraployment of a disperging redium (Celite) in the flask.

For satisfactory results all apparatus used should have slass jointa and stoppers.

The washing-down of water from the condenser is most important.

Three types of dual purpese apparatus are described.

_ SLCTION 5: PART 13.

THE DETERHINATION OF WATER BY CHE SOAL METHODS.
Introduction $:=A$ sumary is given of methods for determining water, including a note on the carbide method.

The expertmental work deals with the Fischer method, which is described in detail.

Experimental :- Two series of tests were made - one on refined white sugars and samples of solid sugars other than sucrose, the other on golden syrup.
(1) Solid sugars: : These were found to require up to 3 hours contact tirae at $13^{\circ} \mathrm{C}$. , compared with 1 aour at $60^{\circ} \mathrm{C}$.

In general the results were lower than those obtained in the vacuura oven at $70^{\circ} \mathrm{C}$., or the steam oven at $99^{\circ} \mathrm{C}$.
(2) Golden Syrup:- In twenty tests made at $60^{\circ} \mathrm{C}$., the previously discovered contact time of 10 minutes was given.

The results again tended to be lower than those found by vacuum oven or stean oven raethods.

Conclusion :- The Fischer method is well adapted for use where a large number of moisture estimations is to be performed daily. Otherwise the frequent standardisation and care required to exclude water render the rethod tedious. It is not necessarily more accirate than other methods, as side-reactions may occur.

BIBLIOGRAPHIES.

Extensive selected bibliographies for the determination of water have been compiled and are given in the form of an appendix.

SWCTION 12

A knowledge of the nature of the non-sugar constituents of the sugar beet is inportant with regaxd to the subsequent purification of bect juices which will contain at least part of these non-sugars.

Analyses have been made using well-known methods and modifications of these, both of fresh beet slices and of the dried slices (cossettes) derived from them.

The rethods of analysis used for the dried beet have been modified to suit this concentrated product : a spectroscopic examination has been made of its mineral matter.

1. Introduction :
2. Composition of the sugar Beet :
3. Constituents of plants :
4. Objects of the present work :
5. ifethods of analysis :
6. Analyses of fresh and dried beet cossettes :
7. Spectrodcopic examination of the ash :
8. Nitrogen in the Sugar Beet :
9. References and Bibliography.

Scientific methods of plant improvement are well illustrated by the modern sugar beet. By methods of modifying the conditions of growth of the plant and breeding new varieties the sugar content of the beet hes been raised from 5 to 7 per cent to $15-20$ per cent. The yield of sugar per acre and the disease-resistance of the plant have also been substantially improved.

The soluble solids of the beet are dissolved in about 80 per cent of water, siving approximately 95.5 per cent of juice. The remaining $4.5-5$ per cent consists of cellulose with other carbohydrates and is known as the 'marc!

There has been a progressive change in the non-sugar content of the plant as the sugar percentage has increased : this is shown in the table below :-
TABLE I. Per cent

Source

Voelcker ${ }^{1}$	83.0	9.3	I. I	2.3	4.3
Heriot ${ }^{2}$	78.0	15.0	1.0	1.5	4.5
Present work	76.5	16.7	0.7	1.3	4.8
		er	ndr	besig	
Voelcker	54: ${ }^{3}$	54.7	6.5	13.5	25.3
Heriot	6-	68.2	4.6	6.8	20.4
Present work	---	71.1	3.0	5.5	20.4

CUNSTITUMTS OR PLANTS: WATLR :-
Water is present in all plants, and the exact anount present is not easily found, since it may be held very tenaciously, and the organic matter of the plant may decompose at a temperature well below that necessary to drive off all the water. Protein :- Protein is usually calculated as total nitrogen multiplied by the factor 6.25. Since the nitrogen may be present partly in non-protein forn, and since the nitrogen content of vegetable proteins ranges from 15 to over 19 per cent, this calculation can be only approximate.

Fats and Oils:- These consist mainly of the glycerides of fatty acids, with small amounts of free fatty acids, and are often referred to as "ether extract". Ether will also dissolve chlorophyll, lecithin, cholesterol, and some alkaloidal substances, so that this extract may vary widely in nature and may be most unlike fat or oil.

Crude Fibre: : The fibre contant of a plant is taken to mean that part of the structure which defies solution on boiling with dilute acid and/or dilute alkali. This estimation can have great error, particularly when the fibre content is high aue to suth substances as the lignin of selerenchymatous fibres, the subenin of cork, or the cutin of cuticles.

Ash :- The ash is usually taken as the reaidue obtained when the material is ignited to whiteness at a temperature just below redheat. Relatively volatile substances such as sulphuF and chlorine
may escape in part during the ignition, and there is scant knowledge of how mineral bodies are bound up in plant tissues, so that the ash figure thus obtained is only approxinate, and efforts to re-combine the elements in ash analyses are therefore difficult. Nitrogen-free Extract :- Winton ${ }^{3}$ refers to this as a numerical expression of our ignorance and errors. In cereals it consists principally of starches, sugars, and dextrins : with non-starchy vegetables a large proportion is composed of substances not yet thoroughly investigated. Organic acids, glucosides, and tanins will also appear in this extract.

Pentosans:- The pentosesugars in pants occur mainly as polysaccharides. Pentosans for example, may be present as gums such as araban or xylan. These sugars are also present in the nucleic acida and seem to be of vital physiological importance. They are intengely hydrophilic, having a major part in the water relations of many plants. In the sugar cane, pentosans are the principal constituents of cane-zum.

Pectins:- These are colloidal carbohydrates of high molecular weight and rather complex composition. At present three of these substances are generally recognised - protopectin, pectin, and pectic acid. Pectin itself is a mixture of polysaccharides including an araban, a galactan, and polygalacturonide known as pectic acid. The proportions of these constituents vary widely with the source of the pectin. protopectin is regarded as the mother - substance of the group : it occurs in the cell walls of most plant tissues. It was formerly named pectose.

The protopectin of sugar beet juice has been shown by Ehrlich and Sommerfeld ${ }^{4}$ to consist of an araban togetner with the Ca-iab salt of pectin combined with the cell wall. This protopectin can be freed from the cell wall by hydrolysis and converted to hydro-pecti which pass into colloidal solution in the extracted beet juice.

It is evident that the average composition of vegetables such as sugar beets is merely suggestive, and should not be considered to be anything more than an approximation for individual samples. All comparisons should be made on the basis of dry matter, or on the basis of a calculated uniform water content.

Objects of the present work :-
In the purification of beet sugar juices the behaviour of the constituents other than sugar is of the greatest importance, especially if these are of colloidal character. It is thus necessary to have a comprehensive knowledge of the composition of the original beets. This knowledge is also essential for adequate understanding of the process of drying sugar beet slices, which aims to extend the manufacturing season from the three months of the normal harvesting period to the full year. Analyses were therefore made of fresh beet samples and of dried cossettes which had been dried (a) with direct furnace gases, (b) with hot air without adulteration, and (c) with air containing a known amount of sulphur dioxide. The results are shown in Tables II. to V.

METODS OF ANALYSIS

Polarization Fresh beet slices -
The hot digestion method was used at $88^{\circ} \mathrm{C}$. taking a normal Weight of 26 . in a 200 c.c. flask, and digesting for 30 minutes with $160-170$ e.c. wster, and for a further 30 minutes after completing to the mark without coolong. Besic lead acetate solution ($5-7$ c.c) is added before digestion. The marc volume allowance is 1.2 c.c. per normal weight of fresh bots.

Polarization - Dried cossettes :
As for fresh beet, using 13 . in 200 c.c.
Determination of Reducing Sugars:
For fresh boets 60 g. are taken and for dried coseettes 15 g . In 200 c.c. flask, and digestion is carried out as for the polarization and preferably at the same time, but using neutral lead acetate solution as required. The marc volure allowances are a. 8 c.c. for fresh beets, and 0.7 c.c. for dried cossettes.

The filtrate is de-leaded with dry potassium oxalate and filtered. For the estimation, so c.c. of this de-ieaded filtrate is placed in a 150 c.c. conical fiask, 20 c.c. of mixed Bertrand-Saillard ${ }^{5}$ copper reagent added, and the flask heated for exactly $2 \mathcal{L}$ minutes in a water bath maintained at $62-63^{\circ} \mathrm{C}$. The cuprous oxide is filtered off, and after washing, dissolved in ferric sulphate solution, and is finally titrated against a standard potassium permanganate solution 1 c.c. of which 1 s equivalent to 2.5 mg . copper. The percentage of reducing sugars is found from specially prepared tables. Note i- The marc volume allowances are based on experimental average figures for both fresh beets and dried cossettes.

Total Nitrogen : \quad Jjelabhl method $:$ digestion with conc. HaSO_{4} and iodine catalyst in presence of cuco 4 . followed by distillation in presence of MgO into $\mathbb{N} / 10$ is SO_{4}, and titration with $\mathrm{N} / 10$ NaOL using methyl red as indicator.

Ammoniacal Nitrogen - Distillation in presence of excess Mgo into $\mathrm{N} / 10 \mathrm{NaO}_{4}$ and titretion with $\mathrm{N} / 10 \mathrm{NaOA}$.

Soluble Nitrogen $:-\operatorname{Col}$ d $:$ Mine cossettes were extracted with cold water and an aliquot portion digested by sjeldahl method as above. Soluble Nitrogen: = Hot:- The cossettes were extracted with hot water followed by rjeldahl digestion.

Protooectin : Finely ground cossettes (1 G.) were heated on a boiling water beth with 100 c.c. $\% / 60$ hol under reflux for two hours. The mixture mas filtered through cloth, and 40 c.c. $N / 10$ NaOH added to 50 c.c. of filtrate. After 2 hours (or preferably overnight, 25 c.c. of $N=a c e t i c$ acid were aciced, followea by $2 c$ c.c. Mocelcium chloride, and the solution boiled. The calcium pectate precipitated was tiltered througn a sintered glass crucible and dried at $100^{\circ} \mathrm{C}$.

Soluble pectin : Finely ground cossettes ($2-3 \mathrm{~g}$.$) were diffused$ with 100 c.c. cold water and filtered. An aliquot portion of the filtrate was treated as for protopectin using only 35 c.c. $N / 10$ NaOH. (For these pectin estimations see Farnell ${ }^{6}$). Pentosan :- Tollens-Krober method ${ }^{7}$, the distillation being made froik $0.5-1.0$ g. material. The method converts the pentose sugars into fuffural by distillation with $H C l$. The furfural is then converted to phloroglucide by precipitation with phloroglucinol and weished. ph Values:- By glass electrode : (Cambridge Instrument Co.)

Ash:- 5y direct incineration in platinum capsules.
Moisture : Vacuum dryins at $70^{\circ} \mathrm{C}$. for 5 hours was the method most commonly used.

Insoluble matter :- Acid extraction and baking at low temperature followed by weiginins.
Carbonaceous matter:- Free carbon was estimated by igniting the ecid-extracted insoluble matter and was found to be negligiblein inost cases below 0.0 per cent.
Slaphate:- Gravimetric estimation as BaSO_{4}.
Chloride $:=$ Volhard titration ${ }^{8}$.
Aluminium and Iron:- Gravimetric estimation by amonia precipitation and weighing.
Phosphate_: volorimetrically by coeruleo blue - molybdate method ${ }^{9}$. Calcium:- Precipitation as calcium ox late and ignition to calcium carbonate.

Hagnesium :- Precipitation as magnesium amonium phosphate and ignition to magnesiura pyrophosphate.
Sulphite_= Monier-Williams distillation method ${ }^{10}$.
Alkalis :- By difference.

Preporation of Ash for Spectroscopic inalysis : -

(1) Fifty grams of dried cossettes were ashed below red-heat in a large silica basin, 3.59 per cent ash resulting. (2) Fifty grams of dried cossettes were slowly ashed as in (1), with the addition of "Analar" sulphuric acid. In this way the loss of volatile salts was minimised : the sulphated ash was 3.77 per cent.

2SE CEATOMASE

CUNGTI- TUEAT						1.		[1K.	1908^{3} 2.
Puhity	90.7	39.4	87.8	85.9	---	---	---	---	---
SUGAF	18.23	18.22	17.23	14.97	---	15.7	12.8	18.28	17.14
ASid	2.75	3.27	3.31	4.45	---	---	---	---	---
SILICA	0.92	0.46	0.54	0.33	2.64	---	---	---	---
ReO_{3}	0.57	0.32	0.50	0.38	---	2.6	7.6	4.2	4.5
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.20	0.14	0.14	0.10	1.84	---	---	---	---
Mno	0.12	0.16	0.12	0.13	---	---	---	---	---
CaO	6.02	4.62	3.98	3.68	0.59	15.4	12.3	15.2	14.8
1480	10.65	10.87	9.21	8.52	2.05	12.6	8.8	10.8	10.7
$\mathrm{K}_{2} 0$	33.18	34.21	36.92	37.7\%	30.35	20.4	17.3	37.9	36.1
$\mathrm{Na}_{2} \mathrm{O}$	11.22	15.00	14.90	15.02	11.28	27.7	33.4	7.8	11.2
Cl^{\prime}	5.74	22.65	7.88	17.16	6.87	2.6	7.6	1.0	1.1
$\mathrm{SO}_{3}{ }^{\prime \prime}$	2.79	2.41	3.20	2.32	3.61	6.5	6.6	6.7	6.3
$\mathrm{P}_{2} \mathrm{O}_{5}$	8.08	7.43	7.05	6.58	7.42	17.5	16.7	16.4	14.8
$\mathrm{N}_{2} \mathrm{O}_{4}$	2.62	2.23	3.71	3.96	---	---		---	---
$\mathrm{CO}_{3}{ }^{\prime \prime}$	---		---	---	30.98	---	---	---	---
UNDETERMIERD			---	---	2.17	---	---	---	---

1
Ind. Eng. Chem., 25, 426, 1933.
2
Chem. Hetb. Eng., 23, 421. 1920
O. Wohryzek,"Chemie der Zucirerindustrie", p. 170, 1914.

Wethod of Drying	Pex Ceit On DEY SUBSi M MeE.			
	Ph39i	Beat DRLu UUGetue quality Average quality		
	1.	Direct gases	Direct gases	4. Direct gases
CUVGTITUENTS				
Dry Substance	23.56	92.74	92.16	91.73
Sucrose	70.91	68.58	68.14	69.34
Reducing Sugars	1.27	1.43	0.87	0.82
Ash	2.91	2.56	3.18	4.44
Albuminoid Nitrogen	2.19	2.38	7.31	4.19
Ammoniacal Nitrogen	0.29	0.18	0.20	0.19
Pentosans	9.13	12.51	6.51	8.18
Protopectin	4.67	6.51	5.59	5.41
Soluble pectin	Nil	0.20	0.33	0.68
Other Organic Matter (By difference)	8.63	5.65	7.87	6.75
ASH CONSIITUENTS :-				
Insoluble Matter	0.33	0.24	0.32	0.50
Sulphate - as $\mathrm{SO}_{3}^{\prime \prime}$	0.20	0.54	0.49	0.84
Chloride - cl ${ }^{\prime}$	0.16	0.02	0.03	0.04
Phosphate - as $\mathrm{P}_{2} \mathrm{O}_{5}$	0.34	0.15	0.11	0.30
$\mathrm{Al}_{2} \mathrm{O}_{3} \quad \mathrm{He}_{2} \mathrm{O}_{3}$	0.21	0.26	0.35	0.71
CaO	0.17	0.39	0.55	0.28
Mgo	0.08	0.21	0.24	0.21
Alkalig (By diffce.)	1. 42	0.75	1.12	1.57

Mode of Dry-	PRK CENT ONASH.								
	Fresh Beets	2.	3.	4.	Dried Cossettes			8.	9.
	1.				5.	6.	7.		
	-	Di	eect 3	ses	Pure Air			$\begin{aligned} & \text { Air } \\ & 0.016 \% \\ & 0.02 \% \\ & \hline 10.028 \% \end{aligned}$	
$\begin{gathered} \text { Per cent ash } \\ (\text { on dry }) \end{gathered}$	2.91	2.56	3.18	4.44	4.65	3.72	3.76	5.22	3.93
Insoluble Matter	11.34	9.38	10.07	11.27	12.04	15.32	20.42	10.15	11.70
Sulphate as $\mathrm{SO}_{3}{ }^{\prime \prime}$	6.87	21.10	15.48	18.82	12.80	17.96	5.35	6.90	29.26
$\mathrm{Chloride}^{\mathrm{Cl}}$	5.49	0.78	0.94	0.90	0.65	1.08	1.33	0.57	1.02
Phosphateas $\mathrm{P}_{2} \mathrm{O}_{5}$	11.69	5.86	3.46	6.76	8.41	5.11	9.31	7.09	2.80
$\mathrm{Al}_{2} \mathrm{O}_{3}$	7.22	10.16	10.13	15.90	22.15	20.38	19.95	26.63	18.58
CaO	5.84	15.24	17.30	6.31	3.44	3.49	2.39	5.36	3.82
Mgo	2.75	8.20	7.55	4.73	3.57	4.03	0.27	2.49	4.07
Alcalis, etc., By diffce.	48,80	29.28	35.07	35.31	36.94	32.63	40.48	40.83	28.76

Saectroscopic examination of the Ash of Dried cossettes
Samples of the ash obtained with and without sulphation were removed from the silice basins, taking care not to include ash adhering to the sides of the dish.

Spectrograms were taken using a Hilger Hedium quartz spectrograph, the samples being placed in a bored grapinte cathode. Dure iron and graphite spectra were included for comparison.

After the standard checking of the iron spectrua, the unknown lines were obtained by comparison with standard plates of the elements, and the "raies ultimes" of the elements were checied from wave-length tables for spectrum analysis ${ }^{1 l}$.

The results are sumarised below :-

Figure 1 : Hilger E. 498 Medium Quartz Spectrograph.

Figure \square : Positive Spectrogram of Ash of Dried Beet.

HITROGHN IN THE SUGAK BEDT.

Certain non-sugars occurring in the sugar beet are known to hinder the crystalligation of sugar and thus ingreage the amount of molasses produced. Among these are chlorides, organic potassium salts, and various compounds of nitrogen. Protein nitrogen is not considered to be detrimental since it is alnost completely precipitated by the reagents used in the purification process, but all forms of nitrogen not thus elininated have been termed 'noxious' or 'harmful nitrogen.

Such compounds of nitrogen include the decomposition products of proteins, betaine, glutamine, asparagine ara aspartic acid, xanthine, adenine, hypoxanthine, guanine, allantoinf, arginine and vicine, with many other related compounds. This objectionable nitrogen varies in anount in the sugar beet depending upon many factors such as the soil, its cultivation, the method of manuring, the length of the season, and the time of harvesting. These factors can be controlled to some extent, but others, such as the choice of a situation, the climate, or the local weather conditions, cannot be controlled. Dry warm weather and small rainfall are known to cause great increase in the content of harmful nitrogen.

About 90 per cent of the harmful nitrogen in the beet passes over almost unchanged into the molasses. In addition, the protein nitrogen narmally precipitated during purification may be re-dissolved unless the conditions for working are rigidly Pol1owed.

The determination of harmful nitrogen in the beet is thus of importance from the technological standpoint.

DETHRIMNATION OF 'NOXIOUS' NITROGRN.

It has been commonly accepted that harmful nitrogen is to be as considered/the anount found by subtracting the protein andamania plus amide nitrogen from the total nitrozen found on the beet by the Kjeldahl method. In Stutzex's ${ }^{12}$ original method, the substances not precipitated by cupric hydroxide - mainly amonia, amides, and nitrates - were called objectionable nitrogen.

Hadrlik ${ }^{13}$ precipitated the protein with copper sulphate and sodium hydroxide solutions, leaving the amonia and amide nitrogen in solution together with the harmful nitrogen. Since the amonia and amide nitrogen are not considered harmful, the nitrogen present in amide form is converted to ammonia in an aliquot portion and distilled from ignited magnesia along with the original ammonia. The harmful nitrogen is then the residue left by subtracting the protein, amide, and amonia amounts from the total nitrogen. This method is lengthy, and has been replaced by/a procedure due to Friedi ${ }^{14}$, based on the colour intensity produced by the copper surphate and sodium hydroxide. This method was used in the present work, in conjunction with a modification of Andrlik's method.

It has been pointed out by fiart and Bentley ${ }^{15}$ that all the protein is not precipitated by cupric hadroxide, so that the results obtained for albuminoids will tend to be low.

Friedl (ibid) holds that amide nitrogen is harmful on the basis that the araides break up and form salts, and there is thus as yet no definite information regarding the exact rofle of nitrogenous substances as molasses-formers in sugar manufacture.

Results for nitrogen in continental sugar beets are shown in the following table:-
$\frac{\text { Kleinwanzle ben }}{}{ }^{1921}$ (Germany) 1922

Eormof Nitrosen	Uine	Haxe	4ine	Haxe	Min.	4ax.
Total Nitrogen	0.145	0.180	0.133	0.179	0.150	0.287
Nitrogen not pptd. by $\mathrm{Cu}(\mathrm{OHI})_{2}$	$0.04{ }^{47}$	0.078	0.035	0.067	0.067	0.210
Alburainoid Na_{2}	0.092	0.113	0.096	0.118	0.014	0.132
(NH_{3} \& Araide Nitrogen)	0.006	0.114	0.003	0.010	0.005	0.038
Noxious Nitrogen	0.041	0.064	0.031	0.060	0.040	0.130

The results obtained by the author are here summarized :TABLE VII. N1trogen Content of Fresh Beets \mathcal{H} Bow in Southern Figlande and of Dried Cossettes derived from them:-

PhuSH BerTS:- Average Water Content 76.45 per cent

No.	Total Nitrigen	Witrozen not ppta. by $\mathrm{Cu}(\mathrm{OH})_{2}$	$\left\lvert\, \begin{aligned} & \text { Drotein } \\ & \text { Nitro- } \\ & \text { gen } \end{aligned}\right.$	Ammonia and. Amide initrogen	Nexious Nitrogen	Noxious Nitrogen $\%$ of Total Nitrogen
1.	0.150	0.093	0.057	0.007	0.086^{x}	57.3
2.	0.223	0.129	0.094	0.015	0.114^{x}	51.2
3.	0.195	0.072	0.123	0.019	0.053	27.2
4.	0.163	0.081	0.082	0.027	0.054	33.1
5.	0.190	0.069	0.121	0.020	0.049	25.8

x Harveated in searly september : others in mid-october.

QRIRD COSSETLES:- Average water content:-7.5 oer cent

No.	Total Nitrogen	Nitrogen not pptd. by $\mathrm{Cu}(\mathrm{OH})_{2}$	Protein Nitrogen	Anmonia and Anide Nitrogen	Noxious ivitrogen	```Hoxious Nitrogen % of Total N2```
1.	0.74	0.41	0.33	0.17	0.24	32.5
2.	0.91	0.52	0.39	0.21	0.31	34.1
3.	0.63	0.36	0.27	0.16	0.20	31.8
4.	1.26	0.73	0.43	0.18	0.55	43.6
5.	0.96	0.40	0.56	0.16	0.24	25.0

Note : - These samples de not correspond exactly to the Fresh Beet above samples/ although they were from the same harvesting period.

The variability of the noxious nitrogen content shown by these samples eraphasises the need to know more about the non-sugars in the sugar beet, and their behaviour during the manufacturing process.

It is evident that of two beets giving equal yield per acre and of equal sugar content, the one with a higaer content of noxious nitrogen will be less valuable since this nitrogen will lower the potential yield of sugar. Similarly beets with more nitrogen and other non-sugars present generally have less natural alkalinity and lower purity.
\qquad

BETERENCES AND BIESIOGKAPIX.

1
VOBLCLBA: - Beets grown at Lavenham, Suffolk, in 1868 a analyses due to Voelcker quoted in Lock. Wigner, and Harland, "Sugar Growing and Hefining*, Spon, Jondon, 1882.
2
difhig't : "The sanufacture of Sugar from the Care and Beet",
Jongmans Green, 1920: p. 138.
3
WIWTON :- "Composition of Foods", New York, 1935, Vol. I.sp. 10. 4
Bithlida Aub Sudumblid :- Biochem. Z., 168, 263, 1926: see also Hirst, J.C.S., 70, 1942.
5
 Betterave", Paris, 1923.
6
Fariad工 :- Interi. Sugar J.s p. 630, 1923. 7
 J. landw., $48,355,1900: 49,7,1901$. See Browne and Zerban, "Sugar Analysis", John Wiley \& Sons, New York, 1941, p. 904: and Farnell, Intern. Sugar J., 480, 1924.
8 VOMALD TIMRaTION :- Sutton, "Volumetric Analysis", p. 462, 1935. 9

COERULRO BLUE MRHOD :- Atkins, J. Agr. Sci., 14, 192, 1924 :
Farnell, Intern. Sugar J., 149, 1929.
10
ZONIHK-WILLIAMS :- Distillation method for SO S_{2} in foodstuffs,偪inistry of Health Report no. 43, 1927: Intern. Sugar J.,371,
11 SEECIROGRAPHIC AMALYSIS :-

Scett and Furman, Standard Methods of Chemical Analysis, 5th. Ed. Vol. II., D. 2602, 1939.

Twyman and smith, Wave length table for Spectrum Analyais: Bardet, Atlas de Spectres d'arc, Paris.

12

Stutzer, Bied. Cent., 875, 1880: Stutzer-Barnstein-Andrlik, Zeit. Zuckerind. Bohrn.,1904-5,26, p. 513:

Stanek and Pavlas, Zeit. Zucherind. Czechoslot.,1934-35,58,p.129.
Rienm,Z. wirtsch. Zuckerind. $85,381,1935 .(t i t r a t i o n ~ w i t h ~$ formaldehyde) :see Intern. Sugar J., 403, 1935.
13
AULikLiK : - Zeit. deut. Zuckerind., 906, 1903.
14
PRIBDL :- Osterr. ung. Zeit. fur Zuckerind. u. landwirts, p. 240, $1910:$ p. 274, 1911; p. 189, 1914.
15
HaKT ADD Henchex :- J. Biol. Chem., 477, 1915
16
 17

Reswinbluh : - Zeit. Zuckerind. Czechoslov., pp.110, 115, 1934 : See also Flizabeth Roboz, Proc. Amer. Soc. Sugar Beet Tech. 3rd. Leeting, p. 515. Intern. Sugar J., 328, 1945

SECTION 2.

THE DESICCATION OT SUGAR BEETS.

1. The Desiccation Process in Sugar itanufacture :
2. Bibliography of Drying Processes :
3. The Slicing of Sugar Beets :
4. The behaviour of Sugar Beets during Drying :
5. Description of the Drier for Sugar Beet Cossettes :
6. Typical Results of Beet Drying :
7. The Chemical Conditioning of Dried Beet Cossettes.

THE DESICCATION PROCESS IN SUGAR MAMUFACPURE.

The German chemist Margeraf can bo creulbed with the fixtt mention of the extraction of suerose from the sugar beet. In $104 y$ he described the drying of two pounds of beet cut into small pieces yielaing half a pound of ary water from whicn he obtained by extraction with alcohol a half-ounce of good sugax.
F.C.Achard, a pupil of Marggrat's, erected the first beet sugar factory at Cunern in Silesia in I799, and in the same year a well-known chemist, Gotting, of Jena, conceived the idea of drying the beets and extracting the sugar with cold water.

Schützenbach in 1836 improved a cold maceration process due to Pelletan, and in 1837 proposed the preliminary drying of the beet and its etraction with water at $90^{\circ} \mathrm{C}$. Dumas exhibited in Paris in 1838 dried beet and refined sugar obtained from it by the methods of Schutzenbach. M. Lirac of Carpentras had employed sun-drying for beets in France in the same jear.

A paper by Gotting in 1811 described a scheme for drying and storing beets for subsequent extraction of sugar, and patents with similar objects were taken out by Crossly (7469, 1937), and Newton in 1848 (12053). Daubrée imported dried sugar cane in Paris in 1850 and reported little effect on the sugar content during transit. Fremy gave a full account of Schutzenbach's work in his book published in Parid in 1875. Schutzenbach put his process into practice at a large factory in Galieia, comprising a central factory with fourten small drying atations plaeed at moderate distanees from it. In thes $\%$ arying stations the beet from the neighbourhood wes dried in large kilns. The resultant dried cossettes were
carried to the central factory and extracted in closed vessels. The jujcos reached $40^{\circ} \mathrm{Brix}$. Whey were treated with Ime and then with boneblack, filtered, and passed to the evaporators. In the campaign of $1848-50,1,116,000$ inundredmeights of beets were troated in this way. The lime treatment took place in the macerxting vessels, using 6 per cent of lime on dried boets.

The next large scaletests on beet drying vere made by J.C.F. Lafeuille (1901-5) who experimented in zgypt, Spain, Italy, and France, and tried several methods of drying such as sun drying, drying mith heated air, and drying with carbon dioxide. His testa were not satisfactony, mainly due to invert sugar formation and the very dark juicen produced. Lafeuille has sincs engegged in beet drying for other purposes, but in 1924 vrote to tine Journal des Fabricants de Sucre saying he had confirmed De Vachis' results. His patents included 301,206 and 147,676 (U.S.), and Fr.pat. 326,035.

Daubreband (French patent $414,329,25 / 3 / 1910$) described the drying of whole beets : this was not primarily for sugar making. In 1908 GefomaMullen of Chicago took out British patent No. 18237 to shred and dry sugar cane, extract the sugar and use the bagasse for paper manufacture. He also worked with beet but considered cane drying to be more econonical on account of the paper manufacture.
G. H.Benjamin (1914) proposed drying beet at fairly low temperature until 90 per cent of the water had been removed with the object of coagulating albuminoid substances without causing cell rupture. The sugar was then extracted in diffusion vessins.

Benjamin maie the claim that his process actually increased the amount of sucrose present, by stimulating enzyine action.

De Vecchis conducted large scale tests of beet drying and extraction for the Romano sugar Company at Viterbo in Italy, commencing in 1923. He clained diffusion juices of $45-50^{\circ} \mathrm{Brix}$ and of 86-88.3 Purity quotient. The juices were treated with powdered lime and superphosphate and gave nassesuites of 89.9-90.2 purity.

Weichmann stated in 1915 that beets could be dried without the formation of reducing sugars, and mentioned the advantages due to dehydration of a longer running season and the high purity juices of higher density.

Haseltine (1919) estimated the cost of drying a ton of beets by his process at 75 cents.

The De Vecchis process was investigated by a Commission from the Institute of Agricultural Engineering under British Government guspices in 1925-6, and this enquiry resulted in the setting up of an experimental drying station and sugar Pactiry at Eynsham, near Oxford. The process was ultimately transferred to the commercial scale, and factories using this process were erected in Prance and in Russia. Those in Russia appear to be still in active operation as the geographical conditions in the northern portions of European Russia are peculiarly favourable for the development of a Central factory surrounded by feeder drying stations.

The desiccation process was investigated by practically every country in Europe during the experimental work at oxford, and the literature of the period deals fairly fully with the process.

QEBLIOQZAPHY

Marggraf :- énoires de l'Academie des Sciences, eerlin...... 1747Philosophical Magazine,VII1800
John Taylor :- Transactions of the Society of Arts, XVIII.... 1800
Gotting :- Bulletin de Pharnacie, III 1811
Chaptal:- "Chemie appliquéà l'Agriculture, Vol.II., Paris 1823
M. Lirac:- Comptes Rendus de l'Academie des Sciences,Paris.
Dumas:-

" "
VII. 1838
VIII. 1839

X 1841

Schützenbach, c. L. i- Denkschrift über das Verfahren der Zuckerfabrikation aus getrockneten Rüben,Baden-Baden........ 1861 Frémy, Edu., et Deherain, PoP.:-"Recherches sur les Betteraves $\begin{aligned} & \text { de Sucre" Paris 1873, }\end{aligned}$ Mcirullen,G.W.f-Chicago, Br. Pat. 18237, U.S.Pat.89859, 15 Sept. 1908 I.3.J., $307,313,634,(1910): 160,(1911): 132,(1912)$. Benjamin, G.H.j= $\begin{aligned} & \text { U.S patents }:-854,598(1 / 8 / 14): 1,140,353,1914 \\ & 1,207,840,(12 / 12 / 16): 1,264,600: 1,284,218\end{aligned}$ 1,319,320:1,339,092.

Weichmann :- "Sugar", Vol. 17,..................................... 1915
Haseltine : " \quad " 21,.................................... 1919

Lafeuille, J. U.f.:- U.S.Pat. 147,476, and 301,206, Fr. Pat. 326,035: German Pat. 195,740 Journal des Fabricants de Sucre,.......... 1924

Report of the Commission of Enquiry on the De Vecchis Beet
Sugar Process. Cmd. 2343. H. W.Stat. Office.
Investigations into the desiccation (De Vechis) process for producing sugar from sugar beet : Progress Report,H.M.Stat. Office

Desiccation of Sugar Beet and the Extraction of Sugar, H.iH.Stat. Office
Beet Drying Operations at Egnsham Factory, Bulletin 4,
Institute for Research in Agricultural Engineering, Oxford, 1929

Russian Experiments on Drying Sugar Beet Cossettes,
A. Vostokoff, Sovetskii Sakhar, 1,38,1929.

THE BLIUING O SUGAR BEETS.

DIMENSTUSS OE B, CO COLETES:-
Type of Knife: : Knives of various tyoes and sizes were tested and the optimum dimensions were found with a knife 9 mas. deep conteining 20 divisions in a length of 14 cas.

This type oi knife cuts a cossette which is considerably larger then is usual for the ordinary wet beet diffusion process, but this larger slice has been found necessary owing to the difficulty of drying a mess of small slices which tend to cling together. This proolem is perticularly apparent when the beets have been denaged by irost, or are insufficiently washed. Smaller cossettes also lead to more fine particles and dust.

- To facilitate drying and diffusion each cossette should present as lerge a surface aree as possible in proportion to its volume ; the ideal cossette therefore would seem to be one resembling a thick " V " in cross-section. The (roof-ridge" or 'Splitter' knife apears to be the only type which will produce a lerge proportion of cossettes of this shape, and was adopted as the standara type. Experiments were made using specially constructed qungereld knives producing square-section slices. It was found that these knives had to be changed more frequently and that square-section cossettes could not be dried as efficient ly as the V-shaped cossettes. Unfortunately the 'roof-ridge' knives cannot be sharpened in one operation, but this drawback is more than balanced by the better drying and the less frequent
changing of the knives. These V-section cossettes are sometimes called butterfly section cossettes. They favour free circulation of the cell flux, since the slices lie loosely one over the other, so that the circulating liquid is able to flow around them and can thus more easily penetrate the walls of the cells.

The 'splitter' knives have a dividing rib under each corrugetion of the cutting edge, wheflas königsfelder and coller knives merely have a corrugated edge. The knives are made with varying pitches, the pitch being the distence between the centres of the corragetions. The fonigsfelder end Goller knives in genera: use are 6 or 7.2 mins. pitch : pitches of 5 or 8 mas. are less frequently used. 'Splitter' innives are used with widely varying pitches-e.g. $8,7,6,5,5,5,4.5,3.5$, and 3 mons., the wider pitches being used for poor quality or 'woody' beets. Pitches of 5 and 5.5 mas. are most generally used with an edge depth of 9 mans. Below 4 mas. pitch, the edge depth is usually 7 mas. Typical beet knives are shown in Figures 1 and 2.

$$
\text { Fig. } 3 \text { GOLLER KIIE. }
$$

Fig. 4 KÖNIGSHELDER KNIPE.

DIMENSIONS OR COSSEMTES.

PROCRDURE :- A random sample was taken and weighed in the case of the fresh beets. The dried cossettes samples represented the average of cossettes in storage. Each piece was measured for length,width, and thickness.

Dimensions of Beet Knives used in normal practice and in the present Experimental work:-

TYPE

DEPTHI
Lill.
APPROX. HEIGRT
DIVISIUNS OF KNIFS
PoH 14 ABUVE
CMS. PLATE
Ledicia

Standard wet diffusion knives 9
As used for Dried Cossettes 9
Special Konigsfelder knives 7
Normal Konigsfelder knives 7.2

26
20
16
20

6	$2-4$
$5 \frac{1}{2}$	$1 \frac{1}{2}$
$5-5 \frac{3}{4}$	$0-2$
6	3

THE IDEAL COSSUTD.

As seen in Figure la the cossettes produced by the "Splitter" type of knife are tent-shaped in section: they tend to be of the two shapes shown, in about equal proportions.

From the figures, the total surface area of cossette B is 7.27 sq . cm . While that of cossette A is 8.26 sq . cm. The volumes are 0.673 cu. cm. for A, and 0.625 cu . cm. for B.

Claassen ("Beet-Sugar Manufacture", Wiley, 1911, p. 7.) states that the average diameter of the beet cells in the plant is 0.04 mm., and the volume 0.000033 cu . man . with a proportion of 2 to 5 per cent of broken or ruptured cells.

It is clear that the ideal cossette would offex considerable. surface area for contact with the circulating liquid, and that it would have a long smooth surface with uniform section throughout ita length. In prectice about one-fourth of the cossettes will haver about this ideal shape and size, the remainder being ixregalax due mainlt to non-uniformity of the roots and defects in the knives.

Behaviour of Sugar Beets during Drying:-
The success of the drying process as applied to layers of vegetable matter in relatively small layers is primarily afiected by the temperature and time of treatment. Ignoring exothermic reactions occurring within the beet slices, the drying efficiency will depend upon certain specific factors which arise from the composition and properties of the beet itself. These factors are:-
1.Consolidation and porosity or penetrability :
2. Volume and pressure of the drying air:
3.Time of Drying :
4.Thickness of the layer of material :
5.Temperature of the air at varying ranges of moisture.

Tests showed that to avoid caramelisation and inversion the moist material must not be heated above $220^{\circ} \mathrm{F}$. The rate of formation of invert sugar is a product of temperature and moisture, and the amount of invert sugar formed is a product of tempersture, moisture, and time.

It was found that so long as the beet slices contained more than 20 per cent of water the temperature of the drying air (100 to $260^{\circ} \mathrm{F}$.) had little effect on the sugar in the beet, but above $235^{\circ} \mathrm{F}$. there was a $108 s$ of sugar with slices containing less than 20 per cent of water.

The normal acidity of the beet which is lazgely due to partially dissociated organic acids, increases during the drying period due to concentration of the juiee present, and high tepperaturetis
then much more haraful. It is evident that the reactions occurring within the slices during the temperature rise from $50^{\circ} \mathrm{F}$. to $150^{\circ} \mathrm{F}$. are of an involved nature and will include oxidation and enzyme action. The moist faintly acid material offers, at the lower ranges of temperature at least, a favourable medium for such enzyme action and bacterial metabolism with their accompanying sugar loss.

During drying, the resistance offered by the material to the drying air is greatly affected by the shrinkage of about 50 per cent in the bulk of the slices. The penetrability of the material is further increased by slicing the beets into cossettes of "V" cross-section.

Summary of desirable conditions for Drying.
1.The layer of slices to be dried must have a pre-determined thickness.
2.The beets must be dried in a limited time.
3. The layer of beet must not be broken or interrupted during the period.
4.The velocity and volume of the drying air must be exactly determined so that the beet is not disturbed or blown away during drying.
5.The layer must pass through definite heat zones within definite ranges of moisture content and humidity, since the exothermic effect has a critical point above which destruction of sugar occurs. Tais point must be properly determined and controlled. The Drying of Sugar Beets.
The beet cossettes are treated in a mass 7 to 8 inches deep, which remains undisturbed during the whole course of drying, but passes in continuous progression through a multi-stage drier: the temperature, volume, and velocity of the drying air are controlled.

Deceription of the Drier for Beet cossettes.

Tho poot cosoctted are treated in an undsturbed mase which is in continuous motion on a conveyor belt. The furnace gases and hot air which form the drying medim are passed through the material so that it is dried progressively in three stages, separated from one another by air locks. In each of these stages the material is subjected to a texperature constant for that stage. (Figure 2a).

The first air enters the drier at a temperature of 190°. at the end where the beet is undergoing its third stige of arying. It then passes upwards through the cossettes and is afterwards reheated by the addition of furnace gases to $230^{\circ} \mathrm{F}$., find by means of a second fan is forced through the material in stage two, and is then in turn reheated to $250^{\circ} \mathrm{F}$. by the addition of more furnace gases. This reheated drying air then passes through the fresh beet cossettes in the first stage of the drier, and is finally exhausted to tine atmosphere.

In the first stage (fresh beet cossettes) about 65 per cent of the water is removed in 15 to 20 minutes. Owing to the cooling effect due to evaporation, on air temperature of $260^{\circ} \mathrm{F}$. is not harmful in his stage. (Pigure 2b).

In the second stage a further 25 per cent of the water is renoved : the remainder is lost in the third stage. The time of passage through the arier varies slightly according to the initial moisture content of the beet. For beete containing 74-78 per cent water the drying time varies from 50 to 60 minutes, the final product containing 5-10 per cent water.

Figure 4b

The exact temperatiares used in each stage are obtained by easily regulated dampers controlling the flow of furnace deses. The air passing throng the fresh cossettes has been usea three times, having passed upwards through the material in aach of the three stages. It is aischarged wopl etely setarated with water at a temperature of $110-120^{\circ} 4$. ine volume of air at each stage is so regulated that it is safficient to rempve the required anount of water ; it is greatest for the fxesh cosasttes in the first stage. The length of conveyor exposed at each stage diminishes from the fresh cossette stage to the dried cossette stage, the velocity of the air likewise diminishing, since too high a velocity in the dried stage would blow the material off the conveyor. The velocity of the drying air is also limited by economic considerations since an increase in velocity involves a disproportionately ereater increase in the power required.

The conveyor belt is an endess periorated steel band driven through four-speed fear box and worm reduction gearing by a variable speed electric motor, this permitting a wide variation of the conveyor speed. The three drying compartments consist of a steel Pramework covered with steel plates : each compartment has a separate fan. A levelling device is provided at the feed end to distribute the material evenly before it enters the first drying compartment. At the dischare end the dried material falls on to a conveyor or elevator and passes to the storage warehouse.

The correct size and condition of the material entering is Vitally important for arying efficiency, involving the factors of reduction of air resistance, uniform drying, and exit air saturation.

FIGURE Ac.

SUGAR BEET \qquad

Total Horse-Power estimated from volume and water-gauge :-122.1
Equivalent amps. \quad - 812
Average amps recorded $:-820$

60htitiveni	-1.	-2.	-3.	-4.	-5.	-6.	7.
CO_{2} \& SO_{2}	1.2	0.8	1.5	1.4	1.2	1.5	0.8
02	19.6	19.7	19.5	10.7	18.6	19.5	19.7
Co	- . 0	0.1	0.0	0.0	0.0	0.0	0.1
N_{2} (Diffce.)	73.8	79.4	79.0	73.0	70.2	79.0	79.4
SO_{2}	.023	. 014	. 026	. 037	. 015	. 039	. 009
TEMPRATUKES:							
1st. Stage							
Inlet	245	2:0	235	245	240	225	24.0
2nd. Stage							
Inlet	230	230	220	225	2×5	215	230
Discharge	145	140	145	150	150	165	140
3rd. Stage							
Inlet	180	180	180	190	190	180	180
Discharge	170	165	170	180	185	170	165
Drying Belt Speed :ft./m.	0.8	0.8	0.8	1.02	1.02	0.7	0.8

FANS AND AIF VELOCITIES:-

Stage	$\begin{aligned} & \text { Fan } \\ & \text { Capacity } \\ & \text { Cu.ft./min } \end{aligned}$	$\begin{aligned} & \text { speed } \\ & \text { r.p.m. } \end{aligned}$	Total Water geuge"	$\begin{aligned} & \text { Air } \\ & \text { Velocity } \\ & \text { Ft. min. } \end{aligned}$	Ibs. gases per min.		
					Air	Eurnace	Total
1	54520	450/620	2.9"	350	2212	105	2317
2	46620	300/475	1.9"	345	2156	56	2212
3	26160	425/625	1.75"	270	1724	190	1914

Total Furnace Gases :- 351 1bs. per minute.

The absoxption of Sulphur Dioxide by Bects during urytne.

1. Analysis of Coal used in Drier Purnaces:-

Screoned Nuts of $1 / 2$ to $11 / 2$ inch size : hard, with a bright splintering resinoid frecture : the volatile matter burned with a long smoky flame and the coke was dark grey hard, compact, and dull.

Anglysis	As Received	As Dried
Sulphur - combustible	0.75	0.82
Sulphur - incombustible	0.05	0.07
Volatile Matter	36.01	37.15
Coke	57.38	63.85
Ash	4.04	4.42
Fixed Carbon	53.34	68.43
Froe Moisture	-	-
Hygroscopic Moisture	8.71	-
Thermal Values		
Calorific Value Gross B. Th. Us.	12,539	13,735
Nett	12,029	
Garbon Equivalent	.	13,807
Evaporative Power		
(Lbs. of water from and at $212^{\circ} \mathrm{F}$. per lb. of coall.	1\%.45	14.21

Qgiculetion of Theoretical Amount of Sulphur Dioxide in Drier Air.
Ascuming 0.75 per cent combustible sulphur in the coal used, and a coal consumption of 10 per cent on beets with a drier capacity of 5 tons beets per hour; also that all the sulphur onters the drien as SO_{8} and that the air passing through tho drier is 4000 lbs. pex minute:-

The coal burned per hour will be 1120 Ibs., and the sulphur burned per hour, $\frac{0.75 \times 1120=8.401 \mathrm{bs} .}{100}$
men 1bs. SO_{2} per minate, $\left(\mathrm{s}: \mathrm{SO}_{2}=1: 2\right),=\frac{8.40}{60}=0.28 \mathrm{Ib}$. and per cent SO_{2} in the drier air $=\frac{0.28 \times 100}{4000}=0.007$.

DEYING FACYORA.

The drying factor represents the weight of wet material required to produce one part of dried material at the given moisture contents - that is, it is the ratio (Solids in Dried material) $\left(\right.$ Solids in wet $\frac{\text { raterial })}{\text { (}}$

Per cent Moisture in wet material

Per cent Hoisture in Dried material

	-	-	-	-	-	-	-
70	3.20	3.17	3.13	3.10	3.07	3.03	3.00
72	3.43	3.39	3.36	3.32	3.28	3.25	3.22
74	3.69	3.65	3.62	3.58	3.54	3.50	3.46
75	3.84	3.80	3.76	3.72	3.68	3.64	3.60
76	4.00	3.95	3.92	3.88	3.83	3.79	3.75
78	4.36	4.31	4.27	4.22	4.18	4.14	4.09
70	4.80	4.75	4.70	4.65	4.60	4.55	4.50

It is seen in the above table that in the drying of sugar beets with average moisture content of the fresh beet at 76.5 per cent, and dried cossettes at 7.5 per cent moisture the drying factor will be $\frac{92.5}{23.5}$ or 3.94 . For most purposes the factor 4.0 is satisfactory.

Typical Results is the Irying of Beet cossettes.

The smount of water to be removed in drying a substance will naturally vary with the water content of the substance and the curve shown in igare 4 d shows the anount of water in cwts. that must be removed to produce 1 ton of finished material of 10 per cent water content froil any state or wetness.

The heat required to evaporate 1 lo. of water at a temperature of $100^{\circ} \mathrm{F}$. is $1093 \mathrm{~B} . \mathrm{Th}$. Ts. made up of 1033 T . Th. Us. as latent heat of vaporisation and 60 E.Th. Ts. for beating the moisture from say 40°. to 100°. This figure does not inciude the heat absorbed in heating the dry natter of the material. In general in manufacturing processes 1,500 to 1,900 B.Th. Us. per 16. of weter are. required. Any leakage of aix and the exit of air not completely saturated will decrease the efficiency of drying. Coal or coke may be regarded as the cheapest form of fuel for direct atilisation in Chain Grate Stoker furnaces. Gas Producers or Dil-burning furnaces mals alse used. In these direct systeas the gases from the main source of heat are mixed with the air and high thermal eficiency is thus obtained. Any external sources of waste heat such as exhaust stean, boiler flue gases, or the exhaust products from Gas or oil engines should also be incorporated in the heating system. Assuming $1,700 \mathrm{~B} . \mathrm{Th}$.Us. per 1 b . required per Ib . of water removed, and taking coal at $13,500 \mathrm{~B}$. Th. Us. per Ib . each Ib . of coal will evaporate approximately 8 lbs . of water.

Some typical liguras for a 5 ton per hour Drier with coal furnace, exhaust steam heaters, and arrangements for utilisation of Boiler flue gases are here shown :-

Urying Results over firee nonths drying of Beet Gossottes.
The fuel used was coal nuts of $13,500 \mathrm{~B} . \mathrm{Th}$. Us. per Ib . Calorific Value.

Average oisture Content of Presh Beet Cossettes $=77.64$ per cent Average Capacity of the Drier for Presh Beet $=5.03$ fons/Hour. Average oisture Content of Dried seet $\quad=8.20$ per cent Average Hourly evaporation of viater $\quad=8,530 \mathrm{lbs}$. Average Coal Consumption, per cent on Fresh Beet $=6.38$ per cent Bqual to 143 los. fuel per ton of Fresh Beet. Lowest Cosi Consumption in any 24 hours $=6.10$ per cent Equal to 137 lbs. fuel per ton of zesh Beet. Averace Power Consumption per ton of Fresh Beet $=15 \mathrm{k} . \mathrm{w}$.

The complete utilisation of Boiler flue gases brought this fuel consumption down to 5.0 per cent on the weight of Fresh Beet. In this 5 ton Drier the first and second stages are divided underneath the conveyor band into a number of separate cells by steel partitions with air locks.This offsets the variable resistance encountered by the drying air from one end of each of these stages to the other due to the varying moisture content of the material in its 7-8 inches thick layer. ithout this cellular contre rol the greater part of the air entering these stages would take the line of least resistance, thus reducing the effective area of the drying band. The material in the third stage is nearly dry, so that resistance to the air is fairly even all over this stage and cellular control is not necessary. The three stages are separated by air locks, and the divisions or cells below stages 1 and 2 have separate controls for admission of air.

Analyses of Cossettes from the three stages of a multi-stage Drier.

The samples were teken by inserting a wire mesh basket 12 inches square and 10 inches deep in the bed of cossettes at the feed end of the drier. Threc anch baskets were used across the width of the drying belt, one being removed at the end of each stage. 1. Test on first drying Stage.

Hour	$\begin{gathered} \text { Fresh Beet Enterind } \\ \text { Drier } \end{gathered}$			Cossettes from and of first Stage			Cossettes from Discharge Bna of Drier		
	Sugar	Red. Sugax	$\begin{gathered} \frac{\%}{6} \\ \text { Water } \end{gathered}$	Sugar	Red. Sugar	$\frac{\%}{\%}$	$\begin{aligned} & \text { Suger } \\ & \text { Sug } \end{aligned}$	red. Sugar	$\begin{aligned} & \frac{p}{k} \\ & \text { mater } \end{aligned}$
1st.	16.6	0.15	75.4	18.95	0.31	70.8	63.6	0.88	9.0
2nd.	15.9	0.15	75.4	17.30	0.24	74.4	62.3	0.93	9.0
3 rd .	14.5	0.27	75.4	1\%.10	0.36	70.3	61.0	1.40	9.0
4th.	14.8	0.27	75.4	17.30	0.34	70.7	59.2	1.40	9.0
		2.	Test on	cond	Drying	Stage			
1st.	15.3	0.19	76.2	37.60	0.60	24.9	64.6	0.71	10.6
2nd.	15.8	0.20	76.2	39.90	0.63	23.4	63.8	0.82	10.6
3 ra.	17.8	0.16	76.2	41.2	0.65	23.2	64.0	0.77	10.6
4th.	15.3	0.20	76.2	38.6	0.63	24.2	62.4	0.88	11.4

Dried cossettes sampled from discharge end of Driexs :-

| Sugar | $\%$
 Reacing
 Sugars | $\%$
 mater |
| :--- | ---: | ---: | ---: |
| Bot of Belt | - | |

THE COMPOSITION OF SUGAR-BEET AT VARYING WATER C ONTENTS

The moisture content of dried beet slices during drying when measured as a function of time gave a curve of the type shown in Figure 4ea. It appears that the moisture content diminishes as a linear function of time in each of three stages. The curves have been constructed on the basis of the experiments with sample baskets passing through the 5 tons per hour driers.

It is probable that in the beginning evaperation takes place at the surface, and saturated augar solution gradually deposites crystals which may wholly or partially close the pores through which the solution has been reaching the external surface. In the rinal stages the drying from the interior may take place by diffusion of water vapour through the crystal film.

PERCENT RELATIVE HUMIDITY

EQUILISRIUI MOISTURO IN DKIBL BEHTS.

This figure is of obvious importance in the atorage of dried beets. Some data obtained by the author using air currents of known humidities are shown in the graph,Figure 4 eb .

A critical point occurs at about 83 per cent relative humidity when there is a very sharp rise in the amount of water absorbed 可 the dried cossettes as the air humidity increases.

The time required for attainment of the equilibrium exceeded 24 hours at the humidities used in the experiments.

The temperature of the material ranged from 15 to $18^{\circ} \mathrm{C}$. at a barometric pressure of 758 mm .

One of the mein problens orising in the extraction of dried beet cossettes is the loss coused by inversion of sucrose during diffusion. In the ordinary wet beet process this loss is negligible due to the ereater speed of working, and to the fact that fresh beet slices are only faintly ecid, having a pit velue of 6.4 to 6.6 . The cease of this inversion is the higher acidity of dried beet cossettes, the pll value of which renges from 4.5 to 5.5 , end this acidity is reflected in the low pli value of the diffusion juice, at ebout 4.5 ph .

It was at first thought that this increase in acidisy was due to concentrydion of scidity during drying with possibly decomposition of sowe of the selts present. It was soon realised, however, that the acid gases present in the furnace air were much more likely to be the cause. The sulphur dioxide formed during combustion of the coal will probebly be transfomed to sulphurous acid in contect with the wet cossettes, and may even be partially oxidised to sulpharic ecid which has a high inverting power.

Experiments were made using hot air without furnace geses present, find the beet thus dried wes found to undergo practically no fall in pH value. This appeared to show that the greater part of the acidity developed during drying with furnece gases was due to the sulphur dioxide in these gases.

The next step was the attempted production of neutral dried cossettes by treatment of the fresh beet slices with a suitable reegent.

Figure

tee.

EXPERIMENTAL BEET DErEK.
The trays used were made of stout wire gauze and were 9 inches long by $32^{\prime \prime}$ wide by $1^{\prime \prime}$ deep. The fan was out from tin plate and had 16 vanes. It was coupled directly to the motor.

It was found that without baffles in the drier the hot air rose to the top of the drier giving uneven temperatures in the trays. The first arrangement of baffles shown above as"faulty" gave dry slices in trays 1 and 3, but damp slices in tray 2. The second baffle system shown was satisfactory. Each tray was loaded with 100 gms . of fresh slices.

The average drying conditions maintained in the drier after some preliminary adjustments were :- Temperatures - A, $132^{\circ} \mathrm{C} .$, $B, 83^{\circ} \mathrm{C} ., \mathrm{C}, 73^{\circ} \mathrm{C}$. , and air velocity 330 feet per minute.

The results of trials adad with various reagents are sumarised below :-

1. Ordinery drying oven with no eir circulation

Treatment	Ifter Trent	$\begin{aligned} & \text { Inver ic } \\ & \text { Fon suger } \\ & \text { Untreented } \end{aligned}$	Treated	Remarks
Amonium Cerbonate	4.0	0.77	0.73	
$\begin{aligned} & \text { Time } 0.75, \\ & \text { Jime } 1.0 \end{aligned}$	7.7 7.4	0.03 0.86	0.86 0.92	Fesults very variable.
Lime $+\mathrm{SO}_{2}$		--	--	Very nigh inversion loss

2. Small experimental fan drier

3. Small Experimental fan driex (continued):-

Treatment		Inversion $\%$ on sugar ntraeted	Remarks
7. 3leaching powder 0.4%	7.0	0.23	0.03
8. Armonia Solation, 2 N	6.7	0.10	0.01 Cossettes very hyeroscopie.
9. Borsx 0.4\%	7.4	0.40	0.64
10. Armonium Chloride 1%	5.9	nil	0.13

QOQOUSLONS:- Purs air was used in all these tests so that the inversion occurring withat trentwent is a measure of the effect of heat and internal changes in lowerirg the ply value. These results can therefore be taken as giving a true reflex of the influence of the various reagents on inversion. There woultd seem to be a wide choice of reagents with which the fresh cossettes can be treated so that a neutral dried cossette results. This might have the effect ol yielding a diffusion juice which was almost neutral, and in this way the diffusion battery inversion loss might be kept to a minimum.

A similar result might on the other hand, be achieved by the neutralisation of the furnece gases before they reach the slices.

CHEMICAL CONDITIONING - DRYING IN AN AIR OUHKRN'.

SECTION 3.

THE DESIGN AND OPERATION OE A DIFFUSION BATTERY FOR THE EXTRACTION OF SUCROSE FTOL DSIED SUGAR BEETS.

PART 1 : GENRRAL :

1. The Diffusion Process :
2. General Principles of Design for Diffusion Apparatus :
3. The Control of the Working of a Diffusion Battery :
4. Factors in the Diffusion Process :
5. Trials with an Experimental Diffusion Battery.

The first method used (c. 1796) for the extraction of sugar from the sugar beet was hydraulic pressing of the rasped roots in one or more stages. In 1831. de Dombasle (Prench Patent \%981, 1831) introduced the process of slicing the beet and treating the slices with liouors of aradually decreasing sugar content. Ie used wooden vats open at the top, in the first of which the slices were neated with live steam. In the remaining four vats the leaching proper took place. A sixth vessel contained the cold water supply.Pumps were provided to circulate the liquors, and the leaching vats were fitted with false bottoms of perforated wood.

From his experiments de Dombasle concluded that cold water would only leach out a small quantity of sugar from the cossettes no matter how small the slices were. Boiling temperature should be avoided however, and only enough heat used to destroy the vegetable principle and prevent decomposition of the sugar by bacterial action.

Duquesne (F.P. 697, 1845) was responsible for the introduction of closed diffusion cells made of sheet iron, but it was not until 1864, and after many years of work that Robert et Cie made warm leaching successful on the plant scale (F.P 65,607,1864: see Brit.P. 594, 1866).

The work of Fremy (Sitzber. K. Akad.wiss.wien, $50,442,1864$) on pectose had led to an observation by Wiesner that $80^{\circ} \mathrm{C}$. Was too high a temperature for extraction. He advised $50^{\circ} \mathrm{C}$., whic h was Jow enough tp prevent swelling of the pectose in the cell walls. This swelling greatly hindered diffusion. There was also risk at
$80^{\circ} \mathrm{C}$. of partial solution of the pectose with resulting impure juices which were more difficult to purify.

To-day the optimum temperature at the head of the battery is considered to lie between 72° and $80^{\circ} \mathrm{C}$., since it has been found that coagulation of albuminoid substances is aided between these temperatures. The spead of diffusion is also much greater so long as actual des ruction of the cell walls is avoided. At lower temperatures bacterdal action is promoted and the enzymes diastase $\left(60-68^{\circ} \mathrm{C}\right.$) and peptase ($38-49^{\circ} \mathrm{C}$.) are active.

In the early diffusion cycles the time taken was of ten very prolonged. Thus Donald (T.I. Chem.E., 15, 86,1937) states that the average cycle time was 8 hours in 1874, which had been reduced to 48 minutes, and even as low as 18 minutes by 1880 . At present many factories work 2.5 to 3.0 ceßls per hour, although as many as 7.0 cells per hour are filled in certain factories.

The velocity of the circulating liquids has been the subject of several studies. Thus Bouchon (Bull. assoc. chim. suc.,11,32, 1893) investigated the effect of the height to diameter ratio of a diffusion cell, and found that with the height small there was more rapid circulation since the slices did not pack so tightly. It is clearly of advantage, however, from the factory output point of view, to pack as much beet as possible into each cell.

Szyfer (Deut. Zuckerina.,18, 539, 1894) found that good results were obtained with a juice velocity of 18 cms. per minute, and the poorest results at 40 cms . per minute.

Lizeray (Alcool et Sucre,2, $75 \& 105$, 1894) showed that with

4 rin. cossettes, the resistance of the cossettes was about equal to that of the battery, while with $3.0-3.5 \mathrm{~mm}$. cossettes, the resistance became two and a half times that of the battery.

Donald (loc. cit.) has reviewed the diffusion process in beet sugar manufacture, and has given an extensive bibliography. -LLOQETICAL CORSIDEFATIUNS.

In the fresh beet the plant cells are full of liguor nolding the soinble latter in solution. After drying these cell walls collapse, and the water removal leaves the precipitated soluble matter inside the cells.

In diffusion of such material, the speed of solution will depend on the extent of rupture of the cell walls. If the walls remained unbroken, the solvent will have to diffuse into the cell, dissolve the soluble material, end then pass out again with this material in solution. There is thus diffusion through the cellulose membraness well as through the film at the liquid / solid interface. With ruptured cells there is only normally diffusion through the filter at the licuid/solid interface.

It has been shown by Gayley (J. Amer. Leather Chem. Assoc., 15, 344, 1920) thet tannins from chestnutwood tend to diffuse preferentially along the fibres of the wood instead of across them, this being in accordance with expectation from a consideration of the structure of the woon. Bir analogy, it is probable that sugar will diffuse more readily from beet silices along the grain than across it.

$-\angle \mathrm{LF} \mathrm{Q}$ IUS PROCSS

The wirlusion process oi extraction/ of ger from beetroots consists in heeting the sliced beet cossettes with hot juice and slowly lixiviating the uass with water in a systematic sanner.

The liquor is disolaced forward through a series of diffusion vessels filled witf cossettes by adaitions of weter to the first vessel until the extracted juice has a concentration of about 15° Brix.

During this process three different actions are taking place sinulteneously-

1. The washirig out of the cell contents from broken cells, 2. The diffusion by dialysis of the soiuble atter contained in the deed but otherwise minjured vegetable cells,
2. The graduel solution of the difificultly soluble constituents of the beets.

The last of these is undesirable and nust be restricted, since incresse in the extraction of such inpurities gives a lower purity juice which causes trouble in later stages of manufacture. If aiffusion could be carried out with beet reduced to the thickress of thread, an almost ideal extraction would result, but the diffusion battery would soon choke with this fine material, which in any case would be difificult to prepare.

The time fot conplete diffusion is regulated by the dimensions of the largest cossettes, but it must be remembered that the smaller chips are already over-exhausted when this time has elepsed, and considerable amounts of non-sugars raay thus have
passed into the juice. It is thus aparent thet unicorm srooth slices are especially desirable, and that the smaller and more nearly perfect are the cossettes, the better is the diffusion work, and the better are the operating conditions in the succedding parts of the process.

The diffusion process can be regarded as consisting of FOUR operations :-

1. Sixe reduction of the solid :
z. Contact with a solvent for diffusion to take place :
2. Separation of the liquid and solid phases :
3. Recovery of the solvent (if necessary).

Theoretically this process may be represented by a modified Noyes-Whitney equation in which are included as constants all the resistances to mess transfer :- the interface reaction ; the solid ; the cell wall ; the stagnant fila ; and the bulk of the solvent.

The theoretical calculation is best based on the number of equilibriums occurring rather than on the number of cells filled. If simple decantation is practised, the number of cells in, required will equal the number of contacts. In diffusion work such as that used for sugar beets, the number of cells wbwill bear the relation(2ifb - 1) to the number of contacts, i.e. :-

Decantation - say 19 cells required, then Number of contacts is 19 : Diffusion - " 10 " " " * " " "

General princigles of design for diffusion apparatus.
The geaeral plan will include : -
A. The diffusion cells : B. The calorisators : C. Accessories, and the design proolen will be concerned with :-
E. Type of apparatus chosen : Its general design : G.structural details.

A diffusion battery nay be regarded as a chenical ergineering unit process system : the particular example selected is the extrection of sugar from dried beet cossettes by water in a tencell diffusion arit. Many of the factors involved are common to design problens for other unit processes, and are given in detail.

This systen aptly illustrates two well-known axioms in chenical engineering - that what goes in must come out, and that the ideal effluent from an industrial plant is distilled water or pare air.

A basic problen here was the di ference of behaviour of the aried material from that of ordinary fresh beet slices, while a subsidiery difficulty was the familiar one of translating a qualitative laboratory performace to the necessarily quantitative extraction required for economic wori in a large size unit.

Earlier work on a lar,e scale had shown that a diffusion battery of standard pattern did not work efficiently on dried beet cossettes. The main troubles were channelling and shortcircuiting of the juice giving uneven extraction, production of excessive amounts of foam, and choking of the pipes by accumulations of fine cossette dust.

Losses of sugar were very heavy, the extraction seldom reaching 85 per cerit.

It was therefore decided to conduct experiments to determine the following :-

1. A design of aiffusion battery suitable for this material
2. The percentage extraction obtainable with such a battery
3. The benaviour sf the constituents of the dried beet cossettes during extraction.
4. The effect of conditioning the cossettes before or after drying to influence their subsequent extraction.

Six diffusion batteries in all were operated : these were :-

1. A large scale battery of standard wet beet design, giving not above 85 per cent extraction with dried beet cossettes
2. A seven cell pilot plant experimental battery, capacity 25 lbs . of dried cossettes per cell.
3. A ten cell pilot plant bettery of special desicn, capacity 28 lbs. dried cossettes per cell
4. A leboratory battery with 14 cells, capacity 200 ems. per cell
5. A continuous diffusion battery of large pilot plant scale, total capacity, 80 lbs . dried cossettes, per hour.
6. A large scale battery, designed on the performance of No. 3 battery above : cell capacity 896 lbs. aried cossettes (8 cts.)

Of these systers, Nos. 3,4, and 6, were successful : the designs for these were evolved from the less successful work with the remainder.

The Control of the Working of a Diffusion Battery.
A reliable method for determining the conditions existing in
 gives even an approxination is that of taking samples from differeat parts of each vessel simultaneously gna analysing them. When the anelytical results are plotted on speph a curve is obtained which should have a determined shape when based on rational rules. Irregylar working of the battery will be revealed by an irregular curve. This method of testing the performance of a battery was proposec by Battut (La Sucrerie Indigene, 27,414,1836 : some of the Battut Diagrams are shown in Figures 8,9,10, and11. Similar curves due to Stammer and Saillard are shown in Figures 3 , 4, and 5, and a curve illustrating American practice (private commanication) is given in Figure 7.

Curves obtained in the work on Dried beet Cossettes are shown in Figures 18 to 25. In these curves the decrease in pH value as the juice density increases is well evident. The Brix ${ }^{\circ}$ "ex cell" represents the density of a randon sample taken from the cell while the battery was in operation : the final Brix ${ }^{0}$ is that of the mixed contents of the cell when run off at the end of each test. When working with dried beet cossettes it was found that the absolute temperature maximum permissible was $90^{\circ} \mathrm{C}$. : this is the maximum generally taken for fresh beet diffusion also.

Battut concluded from his graphical results that the maximum exhaustion of cossettes takes place at $65^{\circ} \mathrm{C}$., and not $75^{\circ} \mathrm{C}$. , as had been commonly supposed. The coagulation of albumen is more complete at the higher temperature, however, and the juices purer.

Fig. 4 f

HEAD To TAIL
Fig. 48

HOT RAPID WORNGIG VITH RRATIMG IIT TBB READ CELLS

The diffusion Process in Beet Sugar manufacture:-

The factors influencing the extraction of sugar from the beet by the diffusion process may be conveniently classified as follows:1. Design and construction of the system,
2. Materials entering, circulating, and issuing,
S. Operation and Control, including Economics.

This general scheme may be expanded under each of the above headings :-

1. Design and Construction of the systern-General Plan
(a) Type
(b) General design
(c) Structural details

Under these headings will be included, the number, shape, and size of the vessels, their capacity for beets, the ratio of height to diameter of the cells, the screening area provided in the vessels With its ratio of screening surface to total surface, and its efficiency. The arrangement of the cells-e.g. In two Ines or in a circle, and the total length of the diffusion comun will also be considered here.

Structural details :- These include the actual materials of construction, the types of valves and thedr positioning, the pipfes and their dimensions, length and gauge of chains used for supporting the beet slices, the calorisators and their haating capacity, the steam traps, and the gaskets for cell closure. other important points in general design are the positior of the pipelines, the ease of access to the cells and calorisators, and the overall watertightness of the system.

Graphical Representation of the Diffusion Process. (M.J.Proffitt).

Fig. 6

Fig. 7

GURUCTURAL DETAILS : -

Materials of Construction :- Cast iron is preferable for the cell bodies, and can be recommended for all piping except vertical pipes, which should be of forged iron. Copper is expensive, and is liable to attack by the juices.

Pipes :- The pipe joints should not be cast with the vessel. All piping should be of adequate diameter for the flov of liquid, and should be as short in length as possible, thus avoiding dilution of the juice. Bends are preferable to elbows, which impede the juice flow. The internal dimensions of the oipes should bear a ratio to the cell diameter of about 1 to 12 for eficient circulation.
Valves :- These should be flat-seating and independent. They should be easy of access, and by preference situated at the working front of the vessels. The valve seatings should be of soft rubber which lasts longer than fibre if carefully handled. (Hard fibre leaks if the valve stem position moves).

Bye-passing arrangements :- This is very convenient in case of serious mishap such as a cracked cell, or for severe choking of a cell. The pipes used should be short with valves very close to the cell walls. Alternatively two standard pipes may be provided which can be joined up.
Mechanical tightness :- It is clearly essential that the system should be as free as possible from leaks or potential sources of leaks.

IRRBGULAR WORK-POOR RXHAUSTIOR, ALTHOUGK COMSIDERABLE thcranse of sugar percemtage betwbrt certaim cells.

Pig. 8
-CELLNE. -BATTUT DIAGRAM NE.2.

YORIE REGULAR WORK : COISIDERABLE INCREASEINT
SUGAR CONTEFTT BETVEBN CELLS 7 AEDP B.

Fig. 9

teupbratures very regular aid bxtraction regutar, but very slighr sugar
TMCREASE FROM CELL TO CELL (DUE TO COSSETTPS BETYG TOO LARGB).

STROCTORAL DLTAILS : - These should have adequato heating power, and should have heating tubes of dimensions such that the battery circulation is never slowed down in them. Access to the alorisators should be easy for cleaning, or in case interior choking occurs. Wach calorisator should be provided with a steam-trap, and these should in turn lead to a main steam-rap. Gaskets :- Cell closute should be preferably by pressure joints, water inflated.

Amonia pipes and gas ejection :- There should be a gas blow-off cock on the top of each vessel, and also on both the juice and steam sides of each calorisator at the top. Control devices:- 1. Thermometers :- There should be a thermomtor attached to each vessel, placed in a position where the bulb is in direct contact with the flux. These instruments should be of mercury type, with bold figures, and should be placed where they can be easily read. Central thermometers of the recording type may be provided for average daily returns of head and tail temperatures. Since temperature is such an important factor in battery operation, every care should be taken to maintain regular temperatures, and to record them properly.
2. Pressure gauges :- These should be of automatic type.
3. Juice measurement :- Wherever possible the juice should be weighed on automatic recording scales - i.e. in a weigh-tank.

2. Materials entering, olrculating, and issuing :-

(a) Entering : Factors to be considered are the size and quality of the slices, their packing in the cells, and their freedom from small particles and large uncut fingers. The filling apparatus and its operation are likewise important.
(b) Circulating : - The water entering will be considored under the hoading solvent. The flux or circulating liquids in the cells must be controlled for velocity and temperature, and the draw-off juice for volume, density (Brix), and purity.
(c) Issuing : - The drew-off juice has been mentioned above. The other materials issuing are the waste water and the exhausted or waste pulp. The arrangements for discharge of these will require attention, and the discharge temperature and sugar content of both products are of Vital importance.

Gaseous interference and foaming :- There shoula be a minimum of air trapped while filling the cells, and arrangement inust be made for release of gases evolved during extraction,e.g. by ammonia pipes. 3. Operation, Control, and Economics :- There must be adequate sampling and chemical control of the various products, including testing of condensates for sugar traces. The labour should be well-trained assuring efficiency in actual manipulation of the flow. There is also variation possible in the actual formation of the cells worked, that is, in the cycle of filling, extracting, and emptying the cells. The steam consumption and the balance of materials in and out of the systom should be worked out for average working conditions.

The Rav Waterial :- In considering the diffusion of vet or dried beet cosoettes the proportios which are significant include :The porosity : the relative ease of diffusion : The percentage of broken cells present : the quality of the beets- whether sound, bolted, or frosted roots: the dimensions of the silces- length, breadin, thickness, and surface area : the general physical propertfes of the sliees : the sugar content and other analytical data for the cossettes (careful selection of analytical methods is important here) : the percentage of small particles, dust and large, bady sliced pieces present : Freedom from dirt- i.e. the washing efficienc? the mechanicsl strength of the slices : and in the case of dried beet slices, the recucing sugars content, the per cent water present, the ash percentage, and the content of harmful nitrogen.
feneral arrangement of the battery :- The operating platform should be placed hign up on the cells. The pipe-Iines must be placed at least parallel to the bottoms of the cells to ensure proper drainage when eaptying the cells. The calorisators should be placed similarly. Care must be taken that there is no excessive resistance to the flow of juice through the calorisator tubes. The calorisator bodies should be insulated. Throughout the system there should be a total absence of jofce and water pockets. The clamping valve-doers at the cell tops should be of the single action wheel type. The best arrangement of the battery for say twelve cells is in two rows of six, so that the return line from no. 12 to no. 1 is not abnomally long. The screen holea should be made so that there is maximum screening area per unit of total area.

In most cases the solvent used will be water, although certain adventeges are claimed for the use of alcohol. The alcohol process was largely devoloned by the French, and was used about 1860 for the removal of gums from sorghum juice. It was later elaborated to give nearly complete precipitation of the sugar, so eliminating several stages in the water extraction process. This process is feasible, but has proved to be either too expensive or too much restricted by Government legislation.

The factors requiring consideration for the colvent may be grouped as below :-

1. Supply : 2. Quantity used : 3. Quality of supply : 4.Temperature at entrance, 5 . Pressure available, 6. Economy of use, 7. Treatment of waste solvent : 8. Possible re-circulation of used solvent, 9. Corrosion factors.

Volume of water entering : - This determines the juice density, the rate of extraction, and the evaporator economy. The supply of fresh water should be adequate and continuous, and it should be of suitable quality. A hard water may not necessarily be a disadvantage, since diffusion juice is always acid. The pressure used on the battery is a key factor in circulation : it is normally kept within the limits 7-15 lbs. per square inch. A meter should be provided to measure the total amount of water used, and careful control shold be made of the water amount used for washing out the cells after emptying.

Corrosion problems are also directly affected by the quallty of the water supply.

General points on battery operation :- The timing of the cycle must De controlled- i.e., for filling the cell, golng through the flowcycle, and discharging. The battery working must not be hindered by allowing the waste pulp sump to become too full : sinilarly the pumping away of waste water must be co-ordinated with the treatment given to this water in the effluent plant. A comprehensive reporting system is necessary for the proper control of the battery working. The lagging of the cells maty be practised for heat economy : for the same reason the battery should be kept as free as possible from cold air currents. The size of the pulp discharge door should be arranged to give gravity emptying of the waste pulp, although this is seldom complete where chains are used in the cells. Economics of the system :- This can be stated to include :1. the Capital cost : Fuel and steam costs : Labour costs :

Overhead costs : Running costs, and Depreciation.
Type of Apparatus : - The type of apparatus used is a primary consideration, involving the following general factors :-

1. The daily amounts of material to be treated,
2. Wether operation is to be by batch or in a continuous system, 3. Wether the materlal is to be treated while static or is to be stirred or otherwise moved during extraction.

Location of apparatus : - The placing of the battery in the factory will have regard to:- 1 . Access to raw materials, steam, power, and water : 2. Waste disposal,3.Adequate control, 4. Minimum labour, 5. Relation to the other stages of the process, 6. Proper working conditions for the operators.

REGULAR AND VERY SATISFACTORY WORKING : GOOD EXHAUSTION.

Pig. 11

Fig. 12

Fig. 13

Experimental Difeusion Battery.

Fig. 14

DIFFUSION BATTERY
Pig. 15

Trials with Improved Experimental Diffusion Battery

Test No. :-	1.	2.	3.
Duration of test, hours	24	24	24
No. of vessels in battexy	10	10	10
Wt. Cossettes per cell, Ibs.	28	28	28
\% Dust in Cossettes	9.5	6.4	6.8
Juice Draw-off, Ibs.	45	45	38-42
Draw-off, \% cossettes	160	160	136-150
Theoretical Draw-off, lbs.	42.6	43.0	41.1
Theoretical Draw-off, $\%$ on Cossettes	152	153	147
ANALYSES			
Cossettes, Sugar\%	61.28	61.63	61.12
Juice, Brix9	48.06	46.71	47.78
Sugar\%	38.90	37.96	39.17
Purity	80.94	81.27	82.00
Wasto Pulp Sugar\%	0.33	0.16	0.32
Waste Water Sugar\%	0.20	0.08	0.12
Lbs. Sugar Entering	821.29	7\%0.90	822.00
Extraction, \% on Sugar	97.07	57.65	95.54
Waste Pulp, \% on Sugar	1.67	0.74	1.62
Waste Water, \% on Sugar	0.74	0.29	0.50
Inversion, x on Sugar	2.25	0.51	0.58
Circulating pipe, $\%$ on Sugar	--	0.63	1.44
Total Extraction, (including			
Circulating pipe, $\%$ on Sugar	--	98.28	96.98
Unknown Loss, \% on Sugar	--	0.18	0.32
W Waste Pulp on Cossettes	314	311	315
$\%$ Waste Water on Cossettes	233	248	246
Cells drawn off	45	44	50
Cells Filled	55	50	56
Cells Emptied	47	42	48
Average Cells per hour	1.87	2.08	2.33

The analytical figures represent the average results of the analyses made for each cell.

TRIALS YITH EXPERIMENTAL DIFFUSION EATTERY:

Test No. :-	1	2	3	4	5	Presoaking
Duration of test Hours	24	27	18	12	24	15
No, of vessels in Battery	7	7	10	10	10	7
Vt. Cossettes per Cell, lbs.	28.5	28	28	28	23	28
Per cont Dust in	5.7	4.25	5.1	8.05	5.4	2.9
Draw-off Jufce lbs.	32.4	49	50	40	45	27.3
Draw-off per cent on Cossettes	114	175	178	143	160	98
Theoretical drawoff, lbs.	40.5	41.7	45.1	43.1	--	--
ditto, \% on coss.	142	148	161	154	--	
AMALTSES						
$\overline{\text { Cossettes, sugart }}$	62.37	63.39	60.38	62.34	62.14	61.91
Juice Brix	40.89	42.18	38.61	46.8 ?	46.30	-
Sugar	41.63	34.51	31.20	39.05	38.20	39.18
Purity	83.45	81.82	80.81	83.41	88.50	--
Saste Pulp Sugar	2.02	1.18	0.39	0.73	0.38	1.30
waste water sugar\%	0.95	0.49	0.13	0.24	0.13	1.07
Lbs. Sugar entering	904.0	1195.47	770.5	593.6	929.09	337.8
$\frac{\text { All } \% \text { on Sligar }}{\text { Extraction } \%}$						
	86.1	90.63 5.83	94.4	81.7	1.04	8.34
Waste water\%	3.51	1.71	0.50	0.93	0.68	5.08
Inversion	1.33	1.17	1.75	1.57	1.09	1.20
Unknown Los's \%	--	0.66	1.35	12.16	0.23	9.30
Cells filled	61	74	53	42	61	30
Cells drawn-off	56	64	46	31	53	24
Cells emptied	56	67	44	33	52	24
Cells filled per hour	$2 \dot{1} 54$	2.74	2.94	3.50	2.54	2.00

DLSCUSSION OR FBSULTS.

 were A^{\prime} in dianeter and this caused poox circulation and, in one case complete choking. Prior to Trial 2 these holes were increased to $5 / 16$-inch diemeter and no further difficulty in circulation was encountered.

TRIAL_2: 9 CEISS:-A draw-off $v a r y i n 马$ from 143 per cent to 213 per cent on Dried Cossettes was taken during this trial, and it was found that the supar content of the waste pulp and water, and the concentration of the juice were in direct relation to the draw-off. It was also evident that 7 cells were not enough and that a battery of at least 10 cells would be necessary for extracting dried beet. MIML $3:=$ Three cells were added to the geven of the previous tests and a uniforia draw-off of 178 per cent on Dried Cossettes was maintained. This trial save much improved extraction. UALURGIX OR EXIRACILUN: : The following analyses, made during this trial, indicated faixly uniform extraction conditions :-

SAMPLA FFOM

Top of Vessel
Middle of Vessel
Bottom of Vessel
Average
Actual average content by analysis

PGR CENT SUGAE

2.09
0.77
0.40

TKIAE 4: LOWER DKAV-OPF: The draw off in this trial was kept constant at 143 per cent on Dried Cgssettes, and a corresponding rise in the sugar content of the waste pulp and water was observed. The abnormally low extraction recorded was found to be due to the
juice remaining in the return circulation pipe containing 16 per cent of sugar. Allowing for this, the extraction becomes 93.5 per cent.
rinh taken in this test with satisfectory regtits. with allowence for certain known leaks, it \quad ma considered possible to obtain a 98 per cent extraction with this battery.
 of the abore trinls hed a ratio of neight to faneter of unity ath inoreased screening srea and ninimura lengthe of piping. Ten cells were used and a draw-off of 160 per cent od Drifed Cosmettes mas taken. The three trials made wave satisfactory resulta. In the third test, the influence of the lower draw-off on the extraction is clearxy seer.

This experimental battery wes used ss the basis for the design of a latge scale battery to deal with 2 E tons of Dried Coasettes per day (equivalent to 100 tons of fresh beets).

LIGMSIUNG:- Diameter $4^{\circ} 5^{\prime \prime}$ by $4^{\prime} 5^{\prime \prime}$ high : area of bottom 15.3 94. ft. with a circumferential screen 6 inches deep. Total screen
 to 35.4 per cent of total \&res : circular holes. Screening area equivalent to $\frac{4}{4}$ sq. ft. per cu. ft. of cell volume. Cells filling 825 lbs. of Dried Cossettes per vessel, or la. 5 lbs. per cu. ft. Recommended draw-off 150 per cent on Dried Cossettes, giving 2237 lbs. fuice per cell at $48^{\circ} \mathrm{Brix}$, or 315 gallons juice per howr.

Fig. 16

Fig. 17

UTLORUTICAI DEA: - OFF ON IMPROVED EXPERIMENTAL DIFFUSION BATTERY Juice at $46^{\circ} \mathrm{Brix}$

Juice at $50^{\circ} \mathrm{BrLx}$
Juice at 5: Brain

Calculation:-

Los. draw-off $=\left[\begin{array}{l}\text { Dried cossetted filled } x \text { \%. in D.C. } \\ \frac{x \% \text { Extraction } \times 100}{\% \text { Sugar in juice } \times 100}\end{array}\right]=x$
Gallons drew-off $=\left[\frac{x}{\text { lbs. wt per gallon }}\right]$

Fig. 18

Fig. 19

DIFfUSION BATTERY.

BASIS :- 100 lbs . Dried Cossettes per hour containing 60 per cent Sucrose. Per cent Draft) $=189$ lbs. Raw Juice at 35° Brim per hour. Assuming 97 per cent Extraction of sugar

313 per cent Wet Pulp on weight Dried Cossettes 242 per cent Waste Water on " " "

Specific Heats :- Dried Cossettes, Wet Pulp and Waste Water taken as approximately equal to 1 : Row Juice at $35^{\circ} \mathrm{Brix}=0.806$.

Radiation Loss assumed to be approximately 15 per cent of total heat supplied.

Heat supplied per hour :-
(a) Heat in Tried cassettes (100 lbs. at $59^{\circ} \mathrm{F}$.):-

$$
=100 \times(59-32) \times 1=2,700 \mathrm{~B} . \mathrm{Th} . \mathrm{Us} .
$$

(b) Heat in Battery Supply Water (68 gallons at $113^{\circ} \mathrm{F}$.) : -

$$
=680 \times(113-32) \times 1=55,080 \text { B.Th. Us. }
$$

(c) Heat in steam to Battery Calorisators :- "X"

Heat Leaving per Hour :-

(d) Heat in Raw Juice :-(189 lbs. per hour at $122^{\circ} \mathrm{F}$. :-

$$
=189 \times 0.806 \times(122-32)=13,710 \mathrm{~B} . \mathrm{Th} . \mathrm{Us} .
$$

(e) Heat in wet Waste Pulp : 313 lbs. at 90% water and $131^{\circ} \mathrm{F}$. :-

$$
=313 \times 1 \times(131-32)=30,987 \text { B.Th. Us. }
$$

(f) Heat in Battery Waste Water : 242 lbs . at $131^{\circ} \mathrm{F}$. : -

$$
=242 \times(131-32) \times 1=23,958 \text { BeTh. Us. }
$$

$(\mathrm{d})+(e)+(f)=68.655 \mathrm{~B} . \mathrm{Th} . \mathrm{Us}$.
(g) Radiation Loss $(15 \%)=\frac{(\mathrm{d}) *(\mathrm{e}) *(\mathrm{f}) \times 15}{85}=\frac{68,655 \times 15}{85}$

The $a \neq b \neq c=d+e+f+g$, or $57,780+x=80,771$ and $x=22,991$ BoTh. Us. per hour to Calorisators

Approximate lbs. steam required per hour for Calorisators :-
Steam Pressure $=20 \mathrm{lbs} . / \mathrm{sq}$.inch
Temperature of condensate $=\frac{\text { Temp. Head Calorisator }+ \text { Yemp.Tail Cal. }}{2}$.

$$
=\frac{176+113}{2}=145^{\circ} \mathrm{F}
$$

BoTh. Us. per 1 lb . steam at $20 \mathrm{lbs} . / \mathrm{sq}$. inch pressure condensing at $145^{\circ} \mathrm{F} \cdot \mathrm{L} \cdot \frac{145-32}{212-32} \times \mathrm{h}=942+\frac{113}{180} \times 227=1078$

Lbs. steam required per hour at $20 \mathrm{lbs} . / \mathrm{s}$.inch pressure :-

$$
=\frac{22,991}{1078}=21.33 \mathrm{lbs} .
$$

Taking Conductivity Efficiency of Calorisators at 80 per cent :Lbs. Steam per Hour to Battery Calorisators $=26.67$ at $20 \mathrm{lbs} . / \mathrm{sq}^{n}$. = say 27 lbs.

Lbs. Steam per Hour to Battery Feed Water :-
BoTh. Us. Required per Hour, (b), $=55,080$
Using steam at $60 \mathrm{lbs} . / \mathrm{sq}$.inch and condensing to $113^{\circ} \mathrm{F}$.
BoTh. Us. per 1 lb . steam $=1180:$ so lbs. steam per hour $=\frac{55,080}{1180}$
$=46.68$ or say 47 lbs. steam per hour at $60 \mathrm{lbs} . / \mathrm{sq}$. inch pressure.

CONTINUOUS DIFGUSIUN.

Several British beetsugar factories employ modification of the diffusion battery - the continuous aiffuser. This consists of a long cylinder about 9 feet in Gmater and 82 feet in length, inclined at an angle of 4° to the horizontal. The cylinder is partitioned into 22 chambers in each of which paddes are fitted. The paddies lift the cossettes by gtages from the lower to the higher end of the diffuser. A flow of hot water from the higher end gives continuous extraction, the raw diffusion juice leaving at the lower end. The water from the pulp presses is returned to the diffuser to recover the sugar whici it contains.

Sugar losses in this type of diffusion apparatus are somewhat higher than in the cell diffusion battery.

This Rabbe-Paschen diffuser is made by the zeugfabrik A.G. vorm A. Paschen : it is shown in various stages of development in Figure 19a (due to h. B. Donald, T.I.Chem. E., 15, 94, 1937).

The first design provided separate weirs and overfalls (German patent $26 \%, 133,1912:$ U.S. patent $1,077,296$). It was found that sand and other foreign matter collected in the non-perforated part. To prevent this the weir was enclosed by perforated cover and the liquors were caused to converge to keep the exit clear (German patent 331,129,1919). In later designs circular screens allow the liquor to flow through them, the cosaettes being advanced by a side spiral (German patent 612,092, 1932), or by a buciret-shaped device in the circular screen itgelf (German patent 616,054,1933).

Figure 19b... Phe Raabe-Paschen Continuous Diffuser.

Figure 19c... Section of Rxperimental Continuous Diffuser.

_AN EXPEEILENTAL CONT INUOUS DIPEUSER.

The continuous diffusion battery operated by the author was specially constructed for experimental work with dried beet slices.

The cylinder was 22 inches in dianeter by 48 feet long, the lower half of the body being cast iron, and the upper half mild steel plate.

As shown in Figure 19 b the lower part was divided into 17 chambers by partitions extending up to near the centre line. A shaft in two parta passed through the centre, each part being driven separately from the end of the diffuser (lower part 10 r.p.m., and higher part 8 r.p.m.). In each chamber there were four sets of arms. Seraping arms Bkept the strainer A of the throwover chamber free of pulp, and conveying arms C, C, propelled the pulp towards the comb-shaped arms D which lifted the pulp into the succeeding chamber.

The dried beet cossettes entered at the lower end of the diffuser, where they mixed with the liquid, and were thrown over into each succeading chamber, passing from the top chamber to a conveyor carrying ther to the pulp press. Fresh water entered at chamber F or G, while the water returned from the pulp press entered about half-way along the diffuser. Thus the fresh hot water met exhausted cossettes, passed through the strainer plate in the top chambers, over the weir lip of the partitions A, and then down between the partition plates to the next chamber, so meeting richer cossettes in succession until it left as concentrated juice at the lower end of the diffuser.

The dried cossettes were heated in a small pre-soaking tank and mixed with some previously obtained diffusion juice before entering the continuous diffuser.

The total fresh water required in such a diffuser even for fresh beets is less than half that necessary for the battery diffusion process. On fresh beets the cycle time is approximately 30 minutes, and fresh slices are normally only steamed at the slicing machines to raise their temperature to point suitable for diffusion.
\qquad
Preliminary teste :- The pre-soaking tank as originally constructed would not discharge cossettes, and the discharge chute was lowered 3 inches and a baffle plate inserted with satisfactory results. In the first test the cossettes were exhausted to 0.46 per cent sugar, but a high density juice was not obtained.

In the second test juice of $2^{70} \mathrm{Brix}$ was obtained with pulp at 1.8 per cent sugar, but the juice purity was very low due to the prolonged soaiking of the cossettes in the pre-soaking tank with consequent softening of the slices and choking of the diffuser screens. Considerable difficulty was found in maintaining sufficient heat for correct diffusion. Little weter is necessary to produce a juice of $35-50^{\circ} \mathrm{Brix}$, and since the quantity of slices treated was small in relation to the length of the diffuser, the heat legs was excessive, and it was necessary to carry high temperatures at bothe ends, with adverse effect on the juice purity.

The diffuger reguired a good deal of attention mechanically. The fine dust in the pulp was not carried forward through the diffuser and tenced to accumulate in the chambers and either choke the screens or energe with the juice. The advantage claimed that the pulp press water could be returned to the diffuser is not obtained with dried cossettes owing to the lowering of the juice purity due to the pulp press water.

Although the temperature could not be raised to the desired level, the third test gave an extraction of 86.5 per cent with wate pulp containing 2.1 per cent of sugar and juice at $48^{\circ} \mathrm{Brix}$.

Results

Duration of test, hours....................................... 10.5
Wt. cossettes entering per hour, lbs......... 80
per cent dust in dried cossettes.............................. 5.1
Juice drawn off, lbs. eer hour................................. 161
Draw-off, per cent on cossettes per hour.................. 200
Theoretical draw-off...................... per cent........... 133

Analyses	Dried cossettes	Daw Juice	Haste pulp
Brix ${ }^{\circ}$	--	44.71	--
Sugar, per cent	64.0	36.05	2.11
3urity	--	60.63	--

Balance
Lbs. sugar entering in dried cossettes..........537.60
840 lbe. at 64.0 per cent sugar
Lbs. sugar entering in stock juice............... 114.20

Lbs.sugar entering, total............................. 461.10

BOILING OF TREATED JUICR FROM TIE CONTINUOUS DIFTUSER.

The fuice was very dirty and contained a large amount of suspended pulp particles. A double clarification was given, the juice being passed through a high speed Sharples ciarifier to remove the pulp and then limed to pir 7.2 and re-clarified. The olear juice was boiled to grain in a vacuum pan.

ANALYSES:-	BEIX ${ }^{\circ}$	DHLCMT SUGAR	PUKITY	DHEVALUT
Raw Juice	44.71	36.05	80.63	4.5
Double Glarified	46.30	38.70	83.5'	7.2
Massecuite	90.92	75.40	82.93	7.0
Green Syrup	79.90	60.20	75.36	6.9
Unwashed sugar	-	95.10	-	-

CONCLUSIUNS:-

The continuous diffuser would require to be provided with an efficient heating and screening syster specially designed for use with dried cossettes.

It is apparent that there is greater room for losses to occur in a diffuser where both the slices and the juice are in motion. The average purity of the juice obtained and the average loss in the pulp are both less favourable then results easily maintained in a cell diffusion battery.

The maintaining of a continuous diffuser in good working order was found to be much more difficult than the maintenance of a cell battery, even in the short working periods of these tests.

section 3.

PART 2 : THE DIPEUSION OR ERLED COGSEITES : = THE INYSRSION PRORLEM:

1. Analyses of Diffusion Juices from Dried Cossettes :
2. Inversion - Diffusion Trials :
3. Sumnary of Trials.
4. The Formation of Invert Sugar during Eeet Drying.

0056 ETHE
The wein fectors controling the estent of inversion of suger in the dilfasion process fre the temperature, the tine of contact, the pif value of the cossettes and the juice, the density of the finel raw juice drewn off, had the percentege extraction which is required. Subsidiery fectors sxe the size of the beat slices, their chemicel coraposition, sno their compression in the bettery.

Gatelytic ention due to the iron vessels or to the occluded geses of the bettery any also be significant. The nethod of heatiag the circulating Ilax of the sface 111 undountedly be nost vital ix determining the extent of inversion, or even destruction of suecr. fncidenthl factors such es spastodic working or locel overheating must be ignored in general survey of the couses of this inversion.

The incresse in the reducing sugers / sucrose ratio which is obeerved in diffusion may be occssioned in pert by the formation of other reducing substences during extrection, to general errors in the methods of onslysis, to the under-extraction of sucrose with complete extraction of reducing sugars, or to the influence of other bodies present in the dried cossettes on the determination of either sucrose or reducing sugers, but it ib probeble thet the bulk of the rise is caused by inversion of sucrose.

Two problens which axe of interest ray be answered by the experimentel work which wes carried out on extraction with special reference to the behaviour of the reaucing sugars. These are :1. Is the invert ratio increase greater when the initial amount of
reducing sugers present in the coseettes is high- in othex words does invert-sugar estalyee the fornetion of more invert-suger? 2. boer the invert ratio rise as the pexcent e extrection of sucrose is increseed?
EXPERIMENTAL WORK :-

1. The fijusion battexy:- This oonsisted of twelve iron vessels each holaing npproximately 20 g ginc. of aried cossettea. Ben vessel wos provided with coppex soxesne top and bottoa, and the connecting pipes wese of copper. The outsides of te vessels and pipes vere Trgesd, shd the celle were errmged one sbove the other for convenience in worising.

The trifle were made (e) on ordinary 'ecid-dried' cossettes1.e. aried vith iumece gemes ; (b) on 'neutrsl' cossettes dried with pure aix; ena (c) on 'acid-dried' cossettes with chemicel treatment in the battery. Sixteen tente were mede in all. Dimensions of the bettery:-

Fach cell wes 6.1 inches long by 3.6 inches aiemeter : the effective Iongth belwean screens being 5.6 inches. This geve a screan of 10.18 scuexe inches, and cepecity of 57 cubic inches which wes equivalent to 0.934 litre. The 200 gme. fill of dried coasettes per cell therefore amounted to 214 eme per litre or 21.4 Ege. per Hectolitre.
Eeggents used :- From the tests mede on addition of reagents curing beet drying, it wes decided to try the effect of conditioning the weter ased for the battery with 1. Sodiwa hydroxide, 2. sodiun cerbonate, 3. Aamonim cerbonete, nad 4. iine.

ARALYOES O DTPUSION JULOES PROL DELED COSSETTES

DESC IETIOA	ram D.O. DRLED GLTH RUBACA GASBL		G动 D.O. DAIG 		HROM BEST DRIED cossareas (GELBOTMD)	
	ON MET	$\mathrm{ON}_{\substack{\text { DEY }}}$	On ${ }^{\text {a }}$	On DİY	OR \% $\%$ \%	$\begin{aligned} & \text { OH DiY } \\ & \hline \end{aligned}$
WATLE	63.78	--	66.19	--	42.30	--
SUCROSE	31.40	86.70	29.10	86.07	50.20	86.90
Reducing SUGARS	0.82	2.86	0.67	1.98	1.05	1.82
ASH	0.73	2.02	0.93	2.75	1.21	2.10
OTHER OIGanIC ifatpek (By Differen	$e)^{3.27}$	9.03	3.11	9.20	5.30	9.18
BRIXO	36.22	--	33.81	--	57.70	--
TOTAL NITROG:	N 0.28	0.77	0.20	0.59	0.36	0.63
AMIONIACAI NITROGEN	0.07	0.20	0.05	0.15	0.10	0.18
PROTOPECTIN	0.50	1.38	0.56	1.66	0.42	0.73
$\begin{aligned} & \text { SOLUBLE } \\ & \text { PETIN } \end{aligned}$	0.04	0.11	0.05	0.11	0.07	0.12
PsNTOSAN	0.14	0.39	0.26	0.77	0.32	0.55
INVERT RATIO	--	2.61	--	2.30	-	2.09
pH VALUE	4.70	--	6.30	--	5.10	--
PURITY	86.70	--	86.07	--	86.90	--
ALBUMINOID NITROGEN	1.75	3.56	1.25	2.75	2.25	2.81

The elbuminoid nitrogen was taken es 6.25 times (total nitrogen less amoniscel nitrogen.).

DESORIPTION	GROM I.C. DRIED WITh wUZNACE GASES		FMOM D.C. DRIED WITH PURE AIS		```FROOI D.C. DRIED 00SSTTES (SELECTAD)```	
,	$\begin{gathered} \text { ON VEI } \\ \text { D.J. } \end{gathered}$	ON DKY Аรี!	$\begin{gathered} \text { On } \mathrm{VET} \\ \mathrm{D} . \mathrm{J} . \end{gathered}$	ON DRY ASH	$\begin{gathered} \text { ON WET } \\ \text { D.J. } \end{gathered}$	ON DRY ASH
INSOLUBLE HATTER	0.34	16.73	0.41	14.96	0.22	10.36
$\underset{\mathrm{SO}_{4}^{\prime \prime}}{\text { SULPHATE }}$	0.18	8.91	0.57	20.80	0.33	15.73
$\mathrm{SO}_{3}{ }^{\prime \prime}$	--	7.43	--	--	--	--
$\underset{\mathrm{Cl}^{\prime}}{\mathrm{CHLORIDE}}$	0.04	2.10	0.03	1.26	0.04	1.82
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.06	2.96	0.10	3.74	0.10	4.65
$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3}+ \\ & \mathrm{e}_{2} \mathrm{O}_{3} \end{aligned}$	0.22	10.71	0.17	6.07	0.11	5.37
CaO	0.16	7.92	0.05	1.87	0.03	1.50
Mgo	0.09	4.60	0.08	3.05	0.09	4.12
ALKALIS by DIFperence	0.93	46.07	1.34	48.25	1.18	56.45
SO_{3}	0.004	--	0.0005	--	--	--
LIME SALPS (AS CaO)	0.16	--	--	-	--	--

IMVBASION-DIFUSION TRIALS.

1. Diffusion at $15^{\circ} \mathrm{C}$. ;acid-dried cossettes : 15 mins. contact.
2. " " $15^{\circ} \mathrm{C}$. pure-air-dried cossettes ; 15 mins. contact.
3. " " $15^{\circ} \mathrm{C} . j$ pure-air-dried cossettes ; water made alkaline.
4. iepeat of No. 1 Trial, using different dried cossettes.
5. Cold diffusion of pute-air-dried cossettes ; 15 mins. contact.
6. As in Mo. 5 Trial, with only 5 minutes contact time.
7. Cold diffusion of acid-dried cossettes with 5 mins. contact time.
8. Hot Diffusion $\left(60^{\circ} \%\right.$) of pure-air-dried cossettes : 5 mins.cont-
9. Hot Diffusion ($60^{\circ} \mathrm{C}$.) of acid-dried cossettes with only 5 mins. contact-time.
10. Hot Diffusion ($79^{\circ} \mathrm{C}$.) of pure-air-dried cossettes with 5 minutes contact-time.
11. Hot Diffusion ($75^{\circ} \mathrm{C}$.) of acid-dried cossettes with 5 minutes contact-time.
12. Hot Diffusion ($73^{\circ} \mathrm{C}$.) of pure-air-dried cossettes with 5 minutes contact-time.
13. Hot Diffusion ($78^{\circ} \mathrm{C}$.) of acid-dried cossettes $: 5$ mins. contact.
14. Hot Diffusion ($78^{\circ} \mathrm{C}$.) of pure-air-dried cossettes treated with Ammonium Carbonate to pHi 7.1 ; 5 minutes contact time.
15.as in No. 14 Trial, using acid-dried cossettes.
16.As in No. 14 Trial, but cossettes treated with 0.5 per cent lime.

IWLR TUM DTEFUSTON XEIGS
 10. 1:5111usion at $15^{\circ} \mathrm{C}$.

Conditions : - rill=200 gras. 'ecid-dxied' cossettes of manysis \%eter, 8.50: SHEer, 62.40: Invert sugar, $1.14: \%$ Invert Sugar on dry, 1.25 : Invert Ratio, 1.83.
Filteen minutes contact in each cell - 12 vells filled

$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \sin \mathrm{s} \\ & \text { Con } \\ & \text { tect } \end{aligned}$	$\begin{aligned} & 13 x^{0} \\ & e x \\ & c e 1 \end{aligned}$	$\begin{aligned} & 3 x^{\circ} \\ & \text { at } \\ & \text { ond } \end{aligned}$	sut_{y+x}	$\begin{aligned} & \because \\ & \because 2 \\ & \text { Inv。 } \end{aligned}$	$\begin{aligned} & \operatorname{In} v- \\ & \operatorname{ert} \\ & \operatorname{ratio} \end{aligned}$! Inv. on $d x y$	pH	c̈as. doe.	Gys. Euly	Purity
1.	15	--	1.19	2.10	0.23	20.9	19.33	7.5	210	610	92.45
2.	30	8.3	1.44	1.30	0.21	8.45	7.64	7.4	225	605	90.26
3.	45	16.3	2.04	2.30	0.23	10.00	8.71	7.3	180	650	87.12
4.	60	25.4	3.69	3.50	0.29	8.29	7.86	7.1	205	640	94.86
5.	75	27.8	5.59	5.10	0.21	4.12	3.76	7.0	205	640	91.24
6.	90	31.9	7.39	7.00	0.22	3.14	2.98	6.9	210	635	94.73
7.	105	32.5	9.59	8.60	0.29	3.37	3.02	6.7	215	630	89.69
8.	120	33.1	12.74	12.00	0.45	3.75	3.53	6.5	230	67.	94.19
9.	135	37.2	16.88	16.00	0.65	4.06	3.85	6.3	315	590	94.77
10.	150	38.97	22.88	20.50	0.81	3.95	3.54	5.9	355	595	89.62
11.	165	41.9	31.36	28.50	0.76	2.67	2.39	5.6	325	615	90.88
12.	180	43.5	42.84	38.50	0.48	1.25	1.12	5.3	385	605	89.89

\% Eugar in Pulps : - Cell $1=2.4$: cell $2=3.0:$ cell $3=4.6$
Eemerks : - Whe most noteworthy feeture in this test is the high purity of juice obtsined by cold extraction. There is also a steady drop in the pH value of the juice as it concentrates fron cell to cell. See Figures 20 and 21.

Fig. 20

Fig. 21

No. 2 Diffusion et 15°. using cossettes driea with 'pure' air. Conoitions:- Fill = 100 gms . Cossettes analysis - Mater, 12.0 :
 Invat hetio, 1.15 . 25 minutes contsct ineech of 12 cellsfilled.

$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	ine Con- tact	$\begin{aligned} & B x^{0} \\ & e x \\ & c e 1 \lambda \end{aligned}$	$\begin{aligned} & 3 x^{\circ} \\ & \text { st } \\ & \text { end } \end{aligned}$	$\begin{gathered} T \\ u_{6} \end{gathered}$	$\left[\begin{array}{l} \vdots \\ \operatorname{Tn} v \\ \operatorname{ert} \end{array}\right.$	Invert ratio	$\left\|\begin{array}{c} \vdots \\ \operatorname{Inv}- \\ \text { ert } \\ o x \end{array}\right\|$	pH	$\begin{aligned} & \text { wims. } \\ & \text { Jce. } \end{aligned}$	$\begin{aligned} & \text { cms. } \\ & \text { Pulp } \end{aligned}$	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1.	15	--	0.40	0.20	0.45	225.0	112.5	6.9	520	370	50.0
2.	30	7.53	0.45	0.30	0.62	207.0	157.8	6.8	525	350	66.67
3.	45	9.13	0.60	0.50	0.33	68.0	55.0	6.8	530	370	83.33
4.	60	11.33	1.15	1.00	0.12	12.1	10.52	6.6	545	350	86.95
5.	75	13.23	2.05	1.80	0.22	12.22	10.73	6.4	540	370	87.80
6.	90	14.48	3.35	2.90	0.32	12.03	9.55	6.3	510	380	86.58
7.	105	16.14	4.05	3.60	0.18	5.08	4.52	6.2	520	405	88.88
8.	120	10.29	5.40	4.80	0.21	4.29	3.81	6.1	530	355	88.88
9.	135	29.89	7.73	7.00	0.16	2.33	2.11	5.0	530	350	90.55
10.	150	20.45	22.33	10.1	0.23	2.28	2.03	6.0	520	360	89.15
11.	165	21.19	15.34	14.0	0.15	1.04	0.95	5.9	595	270	91.26
12.	180	23.14	20.84	29.2	0.21	1.07	0.99	6.3	715	210	92.12

Total water used :- 9 litres. \& Suger in pulp in last vescel $=0.6$

Femarks :- It is clear from the ebove results thet the orying with pure air has had a merked effect on the invert ratio during extrac-
tion. In the last few cells worked there has been little or no incre ase in this figure. See Figures 22 and 23.

Fig. 22

Fig. 23

MVQiE TON DTHEUEIOH TRTGS

Wo. 3 Diluusion at 15°. - -rater made lkaline with foot
Conditions :- Fill = 100 gar. /atedried coseattes, anelysis Hater, 3.5 : Sugex, 62.8, : Tnvert fagar, 0.6 : finvert Sugar on ary, 0.66 : invert matio, $0.96: 15$ mins. contact in each cell. Twelve cells iilled, ono then 13 : semples taken after 25 cells.

$\begin{gathered} \mathrm{Ce} 11 \\ 1: 0 . \end{gathered}$	$\begin{aligned} & \text { ins } \\ & \text { ©on } \\ & \text { tact } \end{aligned}$	$\begin{aligned} & B x^{\circ} \\ & e x \\ & c \in I I \end{aligned}$	$\begin{gathered} t \\ \cos 1 \end{gathered}$ suger	$\operatorname{lin}_{\ln x}$	$\begin{aligned} & \text { uv- } \\ & \text { sttio } \end{aligned}$	$\begin{aligned} & \text { Inv- } \\ & \text { ert } \\ & \text { on dry } \end{aligned}$	pr:	ims. गee.	$\begin{aligned} & \text { rins. } \\ & \text { Pulp } \end{aligned}$	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
I.	210	$\begin{gathered} \text { cee } \\ \text { below } \end{gathered}$	0.80	0.12	14.38	12.23	9.0	350	4.50	--
2.	225		2.70	0.16	6.08	5.74	8.95	365	460	--
3.	240		3.70	0.27	7.30	6.68	8.50	450	410	--
4.	255		5.49	0.19	3.56	3.50	8.05	320	420	--
5.	270		7.90	0.21	2.61	2.57	7.7	365	410	--
6.	285		8.50	0.25	2.94	2.88	7.5	380	390	-
7.	300		13.60	0.22	1.62	1.51	7.3	410	365	93.46
8.	315		15.10	0.25	1.66	1.57	7.1	460	360	94.65
9.	330		17.70	0.25	1.61	1.45	7.0	540	355	92.68
10.	45		22.40	0.28	1.23	1.15	6.8	585	370	93.33
11.	360		20.20	0.22	0.73	0.69	6.6	585	365	94.14
12.	375		38.90	0.48	1.23	1.13	6.4	590	360	91.68

Remarks:- The sodium hydxoxide was adaed to the battery water supply to give 0.084 per cent in solution. It is seen that the invert ratio hes not greatly increased in these conditions, but thet a slight grount of inversion is still occurring. See Figures 24 and 25.

INYERETON DTFEUSIOR TEIATS

 Ho. 3 Brix of esch cell efter 15 minutes contact:-| Ce27 ${ }^{\text {No. }}$ | $3 \mathrm{Br} \mathrm{x}^{0}$ | Brix ${ }^{\text {ot and }}$ | Sinutes Contact |
| :---: | :---: | :---: | :---: |
| 1 | -- | -- | 15 |
| 2 | 4.95 | -- | 30 |
| 3 | 8.93 | -- | 45 |
| 4 | 11.33 | -- | 60 |
| 5 | 12.58 | -- | 75 |
| 6 | 12.88 | -- | 90 |
| 7 | 15.49 | -- | 105 |
| 8 | 17.99 | -- | 120 |
| 9 | 15.19 | -- | 135 |
| 10 | 21.64 | -- | 150 |
| 11 | 22.39 | -- | 165 |
| 12 | 24.04 | -- | 180 |
| 13 | 27.36 | -- | 195 |
| 14 | 27.48 | 0.94 | 210 |
| 1.5 | 29.26 | 2.84 | 225 |
| 16 | 30.81 | 4.04 | 240 |
| 17 | 31.91 | 5.49 | 255 |
| 18 | 34.84 | 8.02 | 270 |
| 19 | 36.59 | 8.69 | 285 |
| 20 | 38.44 | 14.55 | 300 |
| 21 | 38.94 | 15.95 | 315 |
| 22 | 39.92 | 19.10 | 330 |
| 23 | 40.32 | 24.00 | 345 |
| 24 | 42.06 | 32.08 | 360 |
| 25 | 45.52 | 42.42 | 375 |

Fig. 24

Fig. 25

 at $15^{\circ} \mathrm{C}$.

Gonditions:- Filling 200 gis. cossettes of analysis ator, 9.3 :
 contect in eech cell: 12 cells filled.

Cell No.	uins. fon- tact	$\begin{aligned} & \mathrm{Bx} \\ & \text { ex } \\ & \mathrm{cell} \end{aligned}$	$B x$.	sing	Tuv- eri	$\begin{gathered} \text { Inv- } \\ \text { ext } \\ \text { netio } \end{gathered}$	$\begin{gathered} \text { Inv } \\ -e x t \\ \text { on } d x y \end{gathered}$	PH	Gus. Jee.	Gms.	$\begin{aligned} & \text { Pur } \\ & \text { ity } \end{aligned}$
1	15	7.38	0.44	0.30	0.26	85.0	58.0	6.9	330	575	--
2	30	12.73	0.59	0.50	0.18	36.5	31.0	6.7	310	590	--
3	45	16.99	1.39	1.10	0.18	16.6	13.2	6.5	290	580	--
4	60	22.98	2.54	2.20	0.32	24.6	12.6	6.3	360	550	--
5	75	26.86	4.25	3.70	0.29	7.7	6.6	6.2	230	625	--
6	90	29.56	5.79	5.20	0.22	4.23	3.8	6.1	330	590	--
7	105	30.71	7.84	7.30	0.25	3.42	3.2	5.9	300	600	--
\&	120	33.99	12.27	10.30	0.29	2.77	2.5	5.7	285	630	91-41
9	135	30.44	14.27	12.90	0.34	2.64	2.4	5.5	360	580	90.42
10	150	39.79	15.93	18.00	0.50	2.78	2.5	5.3	440	540	90.33
11	165	39.84	27.31	24.20	0.60	2.48	2.2	5.0	550	475	88.59
12	180	41.84	38.54	33.90	0.90	2.65	2.3	4.7	690	420	87.94

Viaste pulps :- \% Sugar :- Cell $1=1.3: \operatorname{cell} 2=1.9: \operatorname{coll} 3=2.5$:
9.2 litres of water used in test.

Kemerks: comparing this trial with No. 1 , it is seen at once that there is condiderbble divergence in the results : the initial invert suger content mey be the couse of this.

18. 5-Cola difusion of pure-air dried cossettes:-

Gondivione: -
rilling 200 gus. coseettes of analysis : - watex, 9.2% : Sugex, 62. $\%$: invert-Guger, 0.6\%: Invert antio, $0.96: 15$ mins. contact in each oell : lo cella filled.

Cell No.	Hing Contect	$\begin{aligned} & 13 \times 0 \\ & \text { ex } \\ & 0.21 \end{aligned}$	Hx:	$\left[\begin{array}{l} 6 \\ \text { ing } \\ -\operatorname{cr} x \end{array}\right.$	$\begin{aligned} & \text { दिv- } \\ & \text { ert } \end{aligned}$	$\begin{aligned} & \text { Inv- } \\ & \text { ert } \\ & \text { Fatio } \end{aligned}$	$\left.\left\lvert\, \begin{array}{l} \text { Inv- } \\ \text { Invt } \\ \text { on dry } \end{array}\right.\right]$	0 H	Gras. Jee.	$\begin{aligned} & \text { Gns. } \\ & \text { Pulp } \end{aligned}$	$\begin{aligned} & \text { pur- } \\ & \text { ity } \end{aligned}$
1	15	6.55							260	635	
2	30	7.20	1.14	1.10	0.16	26.3	--	6.9	250	640	--
3	45	13.19							265	635	
4	60	16.99							260	640	
5	75	19.79	5.09	4.90	0.14	2.9	--	6.8	270	630	--
6	90	22.84							290	620	
7	105	26.36							270	510	
8	120	28.56	21.27	10.7	0.19	1.79	--	6.4	290	620	$\underline{94.97}$
9	135	31.11							320	580	
10	150	34.85	19.60	18.6	0.25	1.33	--	6.0	430	520	95.52
11	165	35.09	26.31	24.4	0.43	1.76	--	5.9	470	470	92.72
12	160	36.14	35.25	33.20	0.45	1.36	--	6.3	640	340	94.08
Waste pulp fro, cell No. 1 :- F Sugar $=1.6$: totel woter used $* 8.9]$ litre											

Remerks : - This test egein showed that even with pure-air dried cossettes of low aciaity and with cold diffusion, the invert ratio rises, but is much less then with acio-dried cossettes.

ENVGRSION DIPGUSION TETALS

pure
No. 6:-Cold difeusion oe/air-dried cossettes with shorter contact time :-
Conditions :- filling 200 gms . per cell of cossettes of analysis :Water, 10.3% : Sugar, 59.2% : Invert-sugar, 0.61% : Invert Ratio, 1.03 : 5 ainutes contact inneech cell: 12 cells filled.

$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	mins Comtact	$\begin{aligned} & \mathrm{Bx} x^{0} \\ & \operatorname{ex} \\ & c e l l \end{aligned}$	$3 x^{0}$	Sug Sue -ar	$\begin{aligned} & \text { 至 } \\ & \text { Inv- } \\ & \text { ert } \end{aligned}$	Invert Satio		pH	Gms.	Gins. Pulp	Pur
1	5	5.93	2.25	2.1	0.21	9.8	--	6.9	250	620	
2	10	10.18							260	630	--
3	15	11.33							280	620	
4	20	12.03							270	640	
5	25	13.23	5.35	5.1	0.18	3.49	--	6.6	280	640	--
6	30	15.04							290	635	
7	35	16.84							300	630	
8	40	19.29	9.53	9.00	0.18	2.03	--	6.3	370	580	--
9	45	20.49							350	555	
10	50	21.09	14.74	13.40	0.27	2.01	--	6.2	400	490	90,89
11	55	22.24	18.54	17.30	0.16	0.94	--	5.7	560	430	93.30
12	60	24.09	22.99	21.60	0.26	1.18	--	5.9	620	390	93.97

Cell No. 1 :- \% Sugar in waste Pulp $=4.7$
Remarks :- There appears to be a slight reduction in the invert ratio by the speeding up of the contact time.

INVGREION LIRMUSION TRIALS

No. 7:-Cold diffusion of 'acid-dried'cossettes with shorter contact time :-
conditions :- illing 200 gms. per cell of cossettes, of analysis :Water, 8.6% : sugar, 60.0% : Invert-sugar, 0.88% : Invert Ratio, 1.47 : 5 minutes contact in each cell : 12 cells filled.

$\begin{aligned} & \text { Cell } \\ & \text { Ho. } \end{aligned}$	$\begin{aligned} & \text { Mins } \\ & \text { con- } \\ & \text { tact } \end{aligned}$	$\begin{aligned} & \mathrm{Bx} 0^{0} \\ & \text { ex } \\ & \text { cell } \end{aligned}$	${ }_{13} x^{\circ}$	$\begin{aligned} & \% \\ & \text { sug } \\ & -\operatorname{ar} \end{aligned}$	$\begin{aligned} & \text { P } \\ & \text { Inv- } \\ & \text { ert } \end{aligned}$	$\begin{aligned} & \text { Inv- } \\ & \text { ert } \\ & \text { Ratio } \end{aligned}$	pH	Gms. Jce.	Gus.	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	7.4						220	625	
2	10	12.1	3.25	2.90	0.14	4.9	6.5	220	630	--
3	15	16.24						200	635	
4	20	20.64						200	640	
5	25	24.64	6.75	6.2	0.19	3.1	6.1	210	645	--
6	30	25.96						220	650	
7	35	29.11						230	650	
8	40	30.11	14.0	12.7	0.29	2.26	5.7	290	640	90.72
9	45	32.06						250	695	
10	50	33.46	23.44	20.6	0.57	2.77	5.4	380	580	87.72
11	55	35.60	29.71	26.4	0.80	3.01	5.3	400	630	88.86
12	60	35.85	38.70	34.3	1.10	3.21	4.8	510	570	88.63

Cell No. 1 :- \% Sugar in Waste Pulp :-4.3\%
Remarks :- There has again been a large increase in the invert ratio and acidity with the use of cossettes dried with furnace gases.

IWVEIOION DIRESION REIALS

H0. 8:-Hot diffusion at $60^{\circ} \mathrm{C}$. of pure-air dried cossettes with shorter contact time :conditions :- Filling 200 gms. perpell of cossettes , of analysis :Water, $11.8 \%:$ Suger, 63.2% : Invert-Sugar, $0.58 \%:$ Invert Ratio, 0.92 : 5 minutes contact in each cell : 12 cells filled.

cell ivo.	nins. Contact	$\begin{aligned} & \mathrm{Bx} 0 \\ & \text { ex } \\ & \text { cell } \end{aligned}$	$B \mathrm{X}^{0}$	\% P	$\begin{aligned} & \% \\ & \text { Inv } \\ & \text { ert } \end{aligned}$	Invert Catio	pH	Gms. Jce.	Gms. Pulp	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	8.05						270	570	
2	10	12.23	1.75	1.40	0.15	10.6	3.6	260	590	--
3	15	15.24						300	605	
4	20	15.99						300	610	
5	25	17.34	6.95	6.20	0.27	4.27	6.5	320	600	--
6	30	17.89						240	640	
7	35	18.19						240	645	
8	40	22.99	15.29	14.10	0.27	1.88	6.2	230	640	92.21
9	45	24.04						310	600	
10	50	28.56	23.09	21.60	0.31	1.41	5.9	310	610	93.56
11	55	29.11	29.86	28.00	0.66	2.36	5.6	370	640	93.78
12	60	31.31	34.01	32.00	0.62	1.94	5.9	520	570	93.97

Cell No. 1 :- $\%$ Sugar in Waste Pulp :- 1.6
Remarks :- This test shows very clearly the increase in inversion increase caused by even a moderate/in temperature.

LWEXSION DLIUSOH TILALS

1io. 9.- Hot difeusion at 60°. of 'acid-dried' cossettes with shorter contact time:-
Conditions :- Filling 200 gms. per cell of cossettes of analysis :Water, 9.9% : Sugar, 61.6% : Invert-Sugar, 0.61% : Invert Ratio, 0.99 : 5 minutes contact in each cell : 12 cells iillea.

$\begin{aligned} & \text { ell } \\ & \text { No. } \end{aligned}$	Mins. Con- tact	BX. ex cell	Bx.	\% $\begin{aligned} & \text { \% } \\ & \text { Sug } \\ & \text {-ar }\end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { Inv- } \\ & \text { ert } \end{aligned}$	$\begin{array}{\|l} \text { Inv- } \\ \text { ert } \\ \text { Ratio } \end{array}$	pH	Gms. Jce.	Gms. pulp	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	11.32						215	540	
2	10	13.65	1.15	1.00	0.16	16.0	6.4	210	560	--
3	15							200	590	
4	20	20.60						205	645	
5	25	23.48	5.45	5.10	0.25	4.9	6.1	210	630	--
5	30	24.98						250	640	
7	35	25.73						245	665	
8	40	26.43	12.58	11.60	0.29	2.46	5.5	250	655	92.23
9	45	28.68						350	640	
10	50	33.93	21.59	1,60	0.46	2.35	5.3	420	600	90.59
11	55	36.72	28.46	25.90	0.79	3.03	4.7	540	520	91.01
12	60	37.67	39.75	34.40	0.74	2.15	4.8	600	470	88.08

Cell No. 1 :- \& Sugar in gaste Pulp:-1.8
Remarks :- Using 'acid-dried' cossettes, the purity of the juice obtained is seen to be appreciably lower than with the pur-air dried cossettes.

INTEXSTON DIRHUSION TRTALS

130. 10:- Hot diffusion at $75^{\circ} \mathrm{C}$. of pure-air dried cossettes with short contact time:-
Conditions : Willing 200 gns per cell or cossettes; of analysis :Water, $10.0 \%: 3 u g a r, 62.0 \%:$ Invert-Sugar, 0.58% : Invert-aatio, $1.04: 5$ minutes contact in each cell: 12 cells filled.

$\begin{aligned} & \text { cell } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Mins. } \\ & \text { con- } \\ & \text { tact } \end{aligned}$	$\begin{aligned} & \mathrm{Bx} \text { o } \\ & \text { ex } \\ & \mathrm{Cell} \end{aligned}$	$B x$.	Sug	$\begin{aligned} & \text { \% } \\ & \text { Inv- } \\ & \text { ert } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Inv- } \\ & \text { ert } \\ & \text { Ratio } \end{aligned}\right.$	pHI	Gins. Jce.	$\begin{aligned} & \text { Cms. } \\ & \text { Pulp } \end{aligned}$	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1.	5	6.98						290	630	
2	10	9.38	1.95	1.50	0.15	10.2	6.5	275	635	--
3	15	11.33						290	625	
4	20	13.33						285	640	
5	25	14.59	5.55	5.00	0.23	4.6	6.3	290	645	--
6	30	17.49						290	640	
7	35	20.49	12.53	11.60	0.37	3.15	6.1	300	630	92.60
8	40	24.61						310	635	
9	45	28.06						320	630	
10	50	31.31	22.84	21.50	0.44	2.05	5.9	325	650	94.14
11.	55	32.66	29.56	27.80	0.45	1.62	5.5	400	620	93.04
12	60	36.90	36.10	33.20	0.51	1.54	5.7	590	530	91.96

Cell No. 1 :- \% Sugar in Waste Pulp:-1. 8
Remarks:- As far as was possible, the temperature in the head cell of the battery was kept at $75^{\circ} \mathrm{C}$. There has been little variation in the invert ratio from the results at $60^{\circ} \mathrm{C}$.

IMVESSION DI MPUSION TRIALS

No. 11 : - Hot diffusion at $75^{\circ} \mathrm{C}$. of acia-dried cossettes with short contact time :-

Conditions :- Pilling 200 gms. per cell of cossettes, of analysis :Water, $11.0 \%:$ Sugar, $61.6 \%:$ Invert-Sugar, 0.64 : Invert Ratio 1.04 : 5 minutes contact in each cell : 12 cells filled.

$\begin{aligned} & \text { De11 } \\ & \text { No. } \end{aligned}$	Mins. contact	$\begin{aligned} & \mathrm{Bx} \text { : } \\ & \mathrm{ex} \\ & \mathrm{cell} \end{aligned}$	Bx.	\% Sug -ar	$\begin{aligned} & \text { \% } \\ & \text { Inv- } \\ & \text { ert } \end{aligned}$	$\begin{aligned} & \text { Inv- } \\ & \text { ert } \\ & \text { Ratio } \end{aligned}$	pH	Gms.	$\begin{aligned} & \text { Gms. } \\ & \text { Pulp } \end{aligned}$	$\underset{\text { ity }}{\text { Pur- }}$
1	5	10.83						265	625	
2	10	12.73	1.60	1.10	0.16	14.8	6.5	260	630	--
3	15	15.79						275	615	
4	20	20.49						265	640	
5	25	22.84	6.20	5.70	0.25	4.39	6.2	270	620	--
6	30	25.16						275	610	
7	35	29.06	15.34	14.10	0.28	1.95	6.0	280	610	91.91
8	40	33.21						300	580	
9	45	33.46						335	565	
10°	50	35.60	25.91	23.60	0.47	1.99	$5 \cdot 5$	320	560	91.07
11	55	36.65	33.01	29.90	0.58	1.92	$5 \cdot 3$	490	580	90.59
12	60	38.30	41.60	36.80	1.01	2.74	4.7	530	630	88.45

Cell No. 1 :- \% Sugar in Waste Pulp :- 1.4
Remarks :- The rise in invert-sugar content in the last cell (No. 12), seems abnormal, and may be due to local over-heating.

ITV GBSTON DTEUSION TRTALS

Ho. 12:- Hot diffusion at $78^{\circ} \mathrm{C}$. of pure-air dried cossettes trested with $\mathrm{Na}_{2} \mathrm{CO}_{3}$-to pH 7.1 : short contact time.
Gonditions :- 200 gms . cossettes per cell. Analysis :- Water, 11.8 F : Sugar, 60.4 : : Invert-surtr, 0.53% : Invert katio, $0.88: 5$ mins. contact per cell : 12 cells filled: $\mathrm{Na}_{2} \mathrm{OO}_{3}$ used-0.2 \% on D.C. weight.

$\begin{aligned} & \text { Nell } \\ & \text { no. } \end{aligned}$	hins. con- tact	$\begin{aligned} & \mathrm{Bx} \text { : } \\ & \text { ex } \\ & \text { cell } \end{aligned}$	$B x$.	\% Sug -ar	$\begin{aligned} & \frac{1}{\operatorname{Inv}} \\ & \text { ert } \end{aligned}$	Invert Eatio	1H	Gas. Jce.	$\begin{aligned} & \text { Gms. } \\ & \text { Pulp } \end{aligned}$	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	8.03						280	635	
2	10	8.38	1.90	1.70	0.16	9.59	7.1	285	640	--
3	15	13.09						275	625	
4	20	13.24						280	630	
5	25	13.24	7.75	7.00	0.27	3.79	6.6	290	620	--
6	30	14.29						295	605	
7	35	18.09	15.24	14.10	0.24	1.70	6.7	300	625	92.53
8	40	20.79						305	630	
9	45	21.34						330	615	
10	50	24.64	22.84	21.30	0.23	1.08	6.8	340	620	93.26
11	55	27.01	28.01	26.10	0.19	0.74	6.9	410	600	93.15
12	60	30.31	33.61	30.40	0.38	1.25	7.2	580	520	92.58

Cell No. 1 :- \% Sugar in Waste Pulp :- 2.0

Remariss :- It is evident that inversion still occurs despite the treatment with alkali, but is considerably lessened.

IVUGION LTREUSION TEIALS

Mo. 13: - Hot diffusion at $75^{\circ} \mathrm{C}$. of 'acid-dried' cossettes treated With $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to pH 7.1 : short contact time. Conditions:- $2 J \mathrm{gms}$. cossettes per cell. Analysis :- Water, $10.6 \%:$ Sugar, 59.2% : Invert-sagar, 0.94% : Invert Ratio, $1.59: 5$ minso contact per cell : 12 cells $12 l l e d: \mathrm{Na}_{2} \mathrm{CO}_{3}$ used-0.2 $\%$ on D.C. weight

$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Lins. } \\ & \text { Con- } \\ & \text { tact } \end{aligned}$	$\begin{aligned} & \text { Bx: } \\ & \text { ex } \\ & \text { cell } \end{aligned}$	$B \mathrm{x}$:	$\begin{aligned} & \% \\ & \text { Sug- } \\ & 6 r \end{aligned}$	$\begin{aligned} & \text { Inv } \\ & \text { Inv } \\ & \text {-ext } \end{aligned}$	Invert Ratio	pH	Gms. Jce.	Gms. Pulp	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	8.73						260	635	
2	10	13.94	1.85	1.70	0.14	7.9	7.1	270	620	--
3	15	20.19						275	610	
4	20	21.54						260	625	
5	25	. 25.16	9.38	8.30	0.31	3.7	6.5	280	610	--
6	30	26.81						275	620	
7	35	27.41						290	600	
8	40	29.26	20.29	17.80	0.33	1.85	6.4	305	585	87.72
9	45	32.36						340	565	
10	50	33.41	29.94	26.80	0.50	1.87	6.3	345	545	89.50
11	55	35.05	37.70	33.00	0.64	1.94	6.0	330	560	87.54
12	60	39.40	42.35	37.40	0.995	2.66	6.4	495	590	88.35

Cell No. 1 :- \% Sugar in Waste Pulp:-1.6
Remarks :- These acid-äried cossettes would require a larger dose of sodium carbonate to ensure that the diffusion went on at 6.9-7.1 pH.

INUESSION DI RMUSION TRIALS

No. 14 :- Hot diffusion at $78^{\circ} \mathrm{C}$. of pure-air dried cossettes treated with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ - to pH 7.1 : short contact time.
Conditions:- 200 gns. cossettes per cell : Analysis :- Water, 9.0% : Sugar, $61.2 ;$: Invert-Sugar, 0.51 : Invert Ratio, $0.83: 5$ mins. contact per cell. : 12 cells filled: $\left(\mathrm{HH}_{4}\right)_{2} \mathrm{OO}_{3}-0.4 \%$ on D.C. wt.

©ell No.	Mins. Contact	$\begin{aligned} & \mathrm{Bx} 0 \\ & \text { ex } \\ & \text { Cell } \end{aligned}$	3 x .	Sug sur	Invert	Invert Ratio	pH	Gms. Jce.	Gms. Pulp	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	7.03						280	635	
2	10	12.19	3.25	2.50	0.15	5.92	7.1	270	630	--
3	15							285	625	
4	20	14.44						295	635	
5	25	14.89	8.83	7.60	0.18	2.34	6.7	280	640	--
6	30	15.79						295	620	
7	35	19.44						300	615	
8	40	19.79	17.34	16.10	0.19	1.92	6.9	315	625	92.85
9	45	20.49						330	640	
10	50	22.24	24.04	22.10	0.19	0.87	7.3	390	600	91.94
11	55	22.99	26.66	23.80	0.18	0.75	7.5	410	590	89.28
12	60	25.71	29.66	26.80	0.30	1.12	7.7	565	635	90.33

Cell No. 1 :- $\%$ Sugar in Waste Pulp :- 1.6
Kemarks :- The waste pulp was greener than with soda treatment, and the juice was slightly darker than usual.

INVERSION DIPGUSION TRIALS

No. 15 :- Hot diffusion at $78^{\circ} \mathrm{C}$. of 'acid-dried' cossettes treated with (MH4) $2 \frac{C O}{3}_{3}$ to pH 7.1: short contact time.
Conditions:- 200 gms . cossettes per cell : Analysis :- Tater, 11.2 per cent : Sugar, 58.4% : Invert-Sugar, 1.32% : Invert katio, 2.26: 5 minutes contact per cell: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}:-0.4 \%$ on D. C. Weight.

cell No.	Mins. Contact	$\begin{aligned} & \mathrm{Bx} . \\ & \mathrm{ex} \\ & \mathrm{Cell} \end{aligned}$	Bx.		$\begin{aligned} & \% \\ & \text { Inv- } \\ & \text { ert } \end{aligned}$	$\left\lvert\, \begin{aligned} & \operatorname{Inv-} \\ & \text { ert } \\ & \text { Ratio } \end{aligned}\right.$	pH	Gis. Jce.	Gms. Pulp	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	4.04						270	620	
2	10	10.77	2.74	2.00	0.16	8.2	7.0	260	625	--
3	15	15.45						280	610	
4.	20	18.90						270	630	
5	25	20.60	8.91	7.60	0.17	2.24	6.6	265	620	--
6	30	21.90						285	610	
7	35	24.15						305	590	
8	40	26.53	16.35	15.10	0.27	1.75	6.3	330	560	92.37
9	45	30.33						325	555	
10	50	30.43	25.98	23.30	0.16	0.70	6.2	495	570	89.69
11	55	31.03	33.33	29.80	0.81	2.70	6.1	490	560	89.41
12	60	37.27	38.37	33.70	0.94	2.79	6.1	510	620	87.82

Cell No. $1:-\neq$ Sugar in Waste Pulp :-1.9
Remarks :- The juice here was dark, and the pH was too far on the acid side to keep inversion down. As a whole, however, this test and No. 14 gave the best results obtained in inversion-reduction.

IUVERSTON UTFMUSION TRLALS

No. 16 :- Hot dirfusion at $78^{\circ} \mathrm{C}$. of pure-air dried cossettes
treated with 0.5 Lime : short contact tirue.
Conditions :- 200 gms. cossettes per cell : Analysis :- Vater, 10.9\%; Sugar, 58.4 : Invert-Sugar, 0.48% : Invert katio, $0.82: 5$ minutes contact per cell : 12 cells filled.

$\begin{aligned} & \text { Cell } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Tins. } \\ & \text { con- } \\ & \text { tact } \end{aligned}$	$\begin{aligned} & \frac{3 x}{e x} \\ & \operatorname{ce} \\ & \operatorname{cell} \end{aligned}$	Bx^{5}	$\begin{aligned} & \text { Tug } \\ & \text { Sur } \end{aligned}$	$\begin{aligned} & \mathbb{F}_{0} \\ & \text { Inv- } \\ & \text { ert } \end{aligned}$	$\begin{aligned} & \text { Inv- } \\ & \text { ert } \\ & \text { Fatio } \end{aligned}$	pH	$\begin{aligned} & \text { Gms. } \\ & \text { Jce. } \end{aligned}$	$\begin{aligned} & \text { Gms. } \\ & \text { Pulp } \end{aligned}$	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$
1	5	3.35						280	620	
2	10	5.75	3.65	2.9	0.15	5.0	7.3	285	630	--
3	15	10.03						290	625	
4	20	10.18						295	620	
5	25	12.38	8.03	7.4	0.15	2.1	6.9	280	640	--
6	30	12.88						300	625	
7	35	15.64						310	620	
8	40	16.24	14.59	13.4	0.32	2.35	7.0	315	640	91.85
9	45	17.34						325	605	
10	50	18.09	19.89	18.4	0.58	3.13	7.1	325	610	92.51
11	55	26.34	23.14	21.8	0.44	2.02	7.5	390	595	94.23
12	60	26.36	26.31	24.7	0.50	2.35	7.7	540	565	93.87

Cell No. 1 :- Sugar in Waste Pulp :- 2.6
Eegerts: - The lime was made into a cream with water and well mixed with the total bulk of cossettes berore the test. The above results ehow a considerable increase in the invert ratio with conditions almost completely alkaline throughout the system.

SULERY OF INVERSTOH DTHPUSTOA TETATS

QUWARY OF TIVELETON DIFPGETOH TRIGSE
(contremen)
comoteroins

	9	10	11	12	13	14	15	16
Gus. Pill	200	200	200	200	200	200	200	200
Contect ijine Mins. per ce		5	5	5	5	5	5	5
$\begin{aligned} & \text { Temp. }{ }^{\circ} \mathrm{C} . \text { at } \\ & \text { Head } \end{aligned}$	60	75	75	78	78	78	78	78
Cossettes	Acid	Neut.	ciad	Neut.	Acid	Neut.	Acid	Neut.
Invert Ratio Coseettes	0.99	0.94	1.04	0.88	1.59	0.83	2.26	0.82
Invert getio 3rd. Heed Vessel	2.35	2.05	1.99	2.08	1.87	0.87	0.70	3.13
Invert latio 2ra. Heed Vessel	3.03	1.62	1.92	0.74	1.94	0.75	2.70	2.35
Invert Ratio Hesa Vessel	2.15	1.54	2.74	1.25	2.66	1.12	2.79	2.35
$\begin{aligned} & \text { Teil Pulp } \\ & \text { \% Suger } \end{aligned}$	1.8	1.8	1.4	2.0	1.6	1.6	1.9	2.60
$\begin{aligned} & \text { Highgst } \\ & \text { Brix } \end{aligned}$	39.8	36.1	41.6	33.6	42.4	29.7	38.4	26.3
Purity at Head	88.1	92.0	88.5	92.6	88.4	90.4	87.8	93.9
pH Velue et Head	4.8	5.7	4.7	7.2	6.4	7.7	6.1	7.7
Treatment	--	--	--	$\begin{aligned} & \text { Sedta } \\ & \text { sh } \end{aligned}$	Sode A.sh	Amm. Carb,	$\begin{aligned} & \text { Ama. } \\ & \text { Carb. } \end{aligned}$	CaO
Reagent on Cossettes	--	--	--	0.2	0.2	0.4	0.4	0.5

 THE DRYING OR TOGAS BET.
The invert ratio $=\frac{\text { Invert-sugar } x 100}{\text { sucrose }}$
Let $\mathrm{FY}=$, Invert-Sugar in fresh beet $: ~ P s=\$$ Sucrose in fresh beet.
Let LI $=$ Invert-Bugar in Dried rosettes, and
Let $D S=\because$ Sucrose in dried cossettes
Then Increase in Invert ratio $=\left(\frac{100 D I}{D S}-\frac{100 \mathrm{FI}}{\mathrm{DS}}\right)$
Example:- FI $=0.127: P S=17.05: D I=0.858: D S=64.53$
so increase in Invert Ratio $=\left(\frac{100 \times 0.858}{64.53}-\frac{100 \times 0.127}{17.05}\right)$
which equals 0.585.
The increase of invert- sugar only represents $342 / 360$ parts of sucrose, ie. 0.95 of sucrose . So for the above example the formula becomes :- $\left(\frac{85.8 \times 0.95}{64.53}-\frac{12.7}{17.05}\right)=0.518$

Gormula on tonnage:-

NI : WS : DI : DS, as before: $M D=$ tons dried cossetted and TF = tons fresh beet. The per cent Inversion on beets during drying is given by :- $\left\{\frac{\mathrm{TD} \times \mathrm{DI} \times 0.95}{100}-\frac{\mathrm{TP} \mathrm{xFI}}{100}\right\}=\mathrm{say}, \frac{\mathrm{A}}{\mathrm{TF}}$

Then Loss of Sucrose due to Inversion expressed as a per cent on Sucrose present in the original beet :-

An example is given to show the application of this formula during e day's run :-TD $=52.7161$ tons $: ~ T P=201.419$ tons (in 24 hours). So formula becones : $-\left\{\frac{52.7161 \times 0.858 \times 0.95}{10}-\frac{201.419 \times 0.127}{100}\right\}$ Which worics out to 0.086 per cent loss of sucrose by inversion on weight of fresh beet entering. Per cent on sugar entering $\left(\frac{0.173 \times 100}{201.419 \times 17.05}\right)=0.504$

The linal dicference between the increase in the Invert Ratio and the per cent Loss on sugar due to inversion represents the inaccurac in the actual analyses and in the weighing and sampling.

In order to obtain an accurate ligure for the anount of sugar as sucrose lost by fornation of invert-sugar during drying it is necessary to have :-

1. accurate weighings, and no "mechanical" losses,
2. Vo alteration of the polarisation during drying except that due to inversion.
3. No formation of dextro-rotatary atter capable of concealing loss of sugar and polarisation.
4. Assurance that the original invert-sugar, as also that formed by inverston is not destroyed during the drying process.
It is at once apparent that there is no guarantee that any of the points mentioned can be assumed ; on the contrary it is certain that most of these errors occur.

If we consider that destruction of sucrose is small enough, we
can assume that the Polarisation of the dried cossettes is equal to ' a ' tines the Polarisation of the fresh beet where ' n ' is the Lrying katio. On this basis The Invert katio of the dried naterial instead of being ($\left.\frac{\operatorname{DI} \times 10}{\mathrm{DE}}\right)$ is $\left(\frac{\mathrm{LI} \times 100}{\mathrm{nin}}\right)$.
It will be seen that the increase in Invert Natio or the destruction or sucrose uring drying, calculsted in this way, will be:-
$=P 8\left(\frac{D I}{D S}-\frac{V^{2}}{F}\right\}$ - Lating the figares of the previous example this will give:-

Increase in Invert istio $=17.55\left(\frac{0.858}{64.53}-\frac{0.127}{17.05}\right)=$ $=17.05 \times 0.00585=0.0997$. This does not allow for the 0.95
factor for conversion of sucrose to invert-sugar, fo allowing for th this the calculation becomes more complicated.

The essence of the calculation is that DI -the invert-sagar found in the dried cossettes consists of the original invert in Presh beet multiplied by the drying atio plus the invert formed by inversion again multiplied by the drying antio; i.e. say there is 0.1 invert in fresh beet and a drying atio of 4 , this will be 0.4 ; invert in the aried cossettes. Thus if we find 0.6% invert in the dried cossettes the difference 0.2 will be due to sucrose inverted if no other change has taxen place, and this amount of sucrose inverted will be (0.2×0.95) or 0.19 per cent. If we take fresh beet at 15.0 polarisation and dried cossettes at 60.0 polarisation the $\mathrm{E} \cdot \mathrm{B}$. invert atio will be 0.67 , and the D.O. invert ratio will he 1.0 , and the inc ease in invert ratio 0.33.

Mowever taking (DI - nHI) $x 0.95$ as the true increase in invertsugar the anount is ($0.6-0.4$) $x 0.95=0.19$ per cent incresse in invert, an therefore the true increase in invert ratio will be :$\frac{(0.19 \times 10)}{00}=0.317$ (instead or 0.33).

Lryind Gatio:- This may be variously definea as :-

1. The proportion of dry material to wet material by (a) weight : (b) volume.
2. The proportion of wet material required to produce one unit of Aried material.

The percentages of moisture, polarisation, fibre, and ash should geree for the wet and ary materials after correction by this factor.

This drying ratio is clearly important, and if a true average figure is known it would be possible to obtain a correct balance of the sucrose and weight of cossettes produced by multiplying the * sucrose in the fresh beet by this drying ratio.

The following excerpt shows campaign averages over 50 days :Tons fresh beet slicea
$=9538.8910$
\% Polarisation
$=18.21$
\% Mater $=73.47:$ so Solids $=26.53$
W Water in Dried Cossettes $=3.16: \%$ Solids $=91.84$
The Drying iatio $=\frac{91.84}{26.53}=3.4617$
The theoretical polarisation in Dried Cossettes $=63.04$
Actual percentage in D.C. Pron lab. average $=65.44$ Tons iried cossettes recorded
$=2636.1642$
If ; polarisation is 65.44 and the theoretical weight of Dried cossettes produce is 2753.551 tons ($9530.0310 / 3.4617$) the 10 ss

$$
\text { Will be given by } \frac{2755.551 \times 63.04}{65.44}
$$

difference from the recorded weight (2636.1642) being 19.33 tons. The loss from the recorded weights and analyses is shown below:Tons sucrose (polarisation) in fresh beet $=1737.032$ tons sucrose (polarisation) in dried coss. $=1725.118$ Tons Loss of sucrose (polarisation) $=11.914$
\qquad
Tons sucrose in fresh beet $=9533.3910 \times 0.1021=1737.032$ (Actual)
Tons sucrose in dried coss. $=2755.5510 \times 63.04=1737.099$ (Theory) Tons sucrose in dried coss. $=2636.1642 \times 65.44=1725.118$ (Actual) It is clear that the theoretical sucrose in the aried cossettes takes no account of inversion or destruction losses.

The key Iigure in these analyses is the per cent polarisation in the fresh beet. In drying control this is estinated by a not diestion method, and such aethods are known to give almost always a slightly higher polarisation (0.1-3.2) than the cold digestion practised in the tare house, and it may therefore be possible that the loss in drying as recorded any be due in part to errors in the method of analysis and to differences in the sampling.

A balance such as that above is only a check on the overall accuracy of the chemical control of the drying process.

SECTION 4.

THE PURIFICATION OF RAW BEET DIFFUSION JUICES
OF HIGH DENSITY FYOM DEISD BEETS:
PAET I: GGYERAL:

1. Sugar Hanufacture :
2. Definitions ar mechnical Terms used :
3. The Purification of Sugar Juices :
4. The Composition of Raw Juices from the Cane and Beet :
5. The Composition of Products in Beet Sugar Manufacture:
6. Colloids in Beet Sugar Juices and their removal :
7. The Deterinination of Colloids in Sugars and Sugar Products.

GTGAR GLGFFORURG

The process of suger annufacture can be divided into three perts1. Extraction of the suger from the plent yielding a raw juice, 2. Purification of the raw juice
3. Crystallisation of sagar

On the efficiency of the extraction denexd the quantity and puri y of the raw juice, and on the purification process depend the quality and yield of the ininal suger. These two processes are more inportant than the crystalisation process, which, while relatively skilled, is essentially mechenical. Beet Sugar manufacture:- Byonsis

The washed beete which have been 'topped' and 'tailed; are cut into slices cslled cossettes, of inverted V-section.

The cossettes are pecked into the cells of a diffusion battery where the sugar, with soluble impurities, is extracted by water at carefully reguleted temperature. The raw juice thus obtained is purified by chemical treatment, and the precipitated impurities are renoved by filtration.

The sugar is recovered from the purified juice by evaporation and fractional crystallisation. when the mother-liquor cen no longer be profitably treated it is discarded (as mplasses).

Premises fundemental in other industries are equelly applicable to the sugar industry, i.e., the impurities should be removed and the final product obtained in the minimum time and at the minimum cost, and there should be maximum yield of the final product.

The Brix hydroneter gives directly the percentage of sucrose in pure sucrose solutions. hen impurities are present in a solution the Brix ${ }^{\circ}$ shown is higher than the true sucrose content.

Direct This is the sum of the readings due to all sugars present Polaris- in a given sugar solution. In raw sugars containing only ation about 1 per cent of reducing sugars the direct polarisation is very close to the true percentage of sucrose.

Purity The approximate amount of sucrose as shown by the direct polarisation, when multiplied by 100 and divided by the krix ${ }^{\circ}$ of a solution is known as the apparent purity : it is also known as the purity coefficient or quotient.

Masse- This term,(literally a "cooked mass"), refers to the cuite. mixture of crystals and mother-liquor resulting from the boiling and crystallisation of sugar liquors in a vacuuna pan.

Mol- This term is applied to the syrup spun off from a masseasses

Coss- These are the slices into which the sugar beets are cut ettes by revolving knives. They are about three inches long, a quarter of an inch wide, and/eighth of an inch thick.

The raw juice extracted from the sidgar cane or from the sugar beet is a complex mixture of organic and inorganic substances, some in suspension, some in colloidal solution, and some in true solution.

Many of these compounds exert a harmful effect on the crystallization of sugar from the juices, causing slow working in the evaporation and boiling pans, and in the subsequent separation of the crystals. If allowed to remain in the juice they will increase the amount of molasses fovmed.

The amount of sugar produced will depend on how efficiently these impurities can be removed.

Over twelve centuries ago in Ligypt the use of lime and heat was practised for making ram sugar, and this is largely the process used to-day, when it is probable that about 90 per cent of the world's cane sugar is made with lime as the sole chemical employed.

This is undoubtedly due to the small difference of profit to be expected by changing existing methods, since there are many suitable reagents available for purification. Thus Von Lippmann, (Deut. Zuckerinf.,34, 9, 1909) listed 622 proposed processes for sugar manufacture, and many others have been described since then.

Few of these have persisted, mainly because of the low price of sugar, and the small margin of profit in its manufacture.

Recent work on purification of sugar juices by ion exchange -using synthetic resins has so far proved uneconomic owing to the high cost of the resins and their regenerating chexaicals, and to the need to keep temperatures below $20^{\circ} \mathrm{C}$., which is difficult in the tropics.

The Purification of Sugar Juices.

In beet suger manufacture and in the making of cane plantation white sabses, lime and sulphurous acid, or lime, sulphurous acid, and carbonic acid are used, and these three agents are those mainly used in current processes. odiua carbonete finds occasionsl use in elimincting line-salts. nimel chercoal is used only in sugar refinexies, and decolorising carbons sre used to a limited extent in the direct menufecture of white sugars.

The purificetion by lime and heat eppears to be largely an inorganic reaction in which the floculent precipitate traps the coarse suspensions of the juice, occludes the finer suspensions; and adsorbs some of the colloids : few, if eny, oi these reactions can be quantitative. The colloids removed aremainly irreversiblei.e. they do not re-disperse when teken up egain with weter. feversible colloids appear to pass through the process almost without change. Paine, Keane, and Accaliep (I. A.c., p.262,1928), showed tiat an excess of lime over the optiman amount required for defecation probably converts irreversible colloids into the reversible type, and may enter into direct chemical combination with these reversiole colloids : it also appears to have a peptising effect on the pectious substences in the juice. We thus have a scientific besis for the avoidance of excess lime, which has long been known 60 onuse poor after-working, and to produce derk sticky sugers.

Many workers heve shown that the phosphate content of cane juice is a vital factor in efficient purification. Walker (I.F.C., 164,1923), found that $0.02 \mathrm{gm} . \mathrm{P}_{2} \mathrm{O}_{5}$ per mi. of juice was the
minimum requirement for good clarification. R.H.King, (The Pianter,287, 1927), found that the ferric, aluminium, and silicate ions of the juice formed a very gelatinous precipitate when lime was encied, end that much orgenic matter wes occluded in this precipitete sind thus removed from the juice: he agreed that phosphate ion had a major influence in proper clarification.
paine and his co-workers chowed that colloid eliminetion wes directly proportional to the amount of lime added and the anount of $\mathrm{P}_{2} \mathrm{O}_{5}$ present at a controlled pH value. They found that added phosphate hed the same effect as that naturally present in the juice. Noel Deerr ("Cane Sugar", Hondon, 1920) found that filtretion through asbestos would remove 75 per cent of the total non-sugars eliminated by a lime end heat treatment.

The sugar cene end the sugar beet vary greatly in composition depending on the country of origin, the climate, the locality, and the particular year. The character of the soil, the age of the plant and its variety, the mamer of fertilisation and the mode of cultivation have elso considerable effect on its composition. This variation is naturally reflected in the composition of the raw juices extracted, but the non-sugers of these juices cen be classified qualitatively as follows :1. Fineral iratter:- this generally consists of salts of sodium, potassium, calcium, megnesium, aluminiun, iron and amonium which have been acquired from the soil during the growth of the plents. These beses are combined with acids as chlorides, sulphates,
nitrates, phosphates, and etc.
2. Organie Salts:- composed of the same mineral elenents combined with organic acids such as acetic, oxalic, citric, tartaric, malic and succinic acids.
3. Nitrogenous organic compounds:- such as albuminoids. These bodies occur more abundantly in beet juice, which contains among others, asparagine, betaine, glatamine, legumine, leucine, trimethylamine, and tyrosine, with compounds derived from these. 4. Non-nitrogenous organic compounds : - These include glucose and levulose, Rafrinose (in beet), waxes, aromatic substances, pectin and related bodies, mannite, dextran, cellulose, oums, essential oils, arabinose, vanillin, and colfouring matter. 5. Enzymes : - These include soluble Ierments, acting for the most part by hydrolysis as colloid catalysers. Diastase, invertase, maltase, lactase are the chief sugax-splitting enzymes known to be present. Tmulsin, which attacks glucosides is present, and there are several proteo-splitting enzymes, and also oxidase, reductase, and catalase, which effect biological oxidations and reductions.

Cane-wax, a complex mixture of alcohols or esters of high-boiling point, has been found to be mainly responsible for the objectionable colloidal properties of cane juices, particularly that part of the wax soluble in acetone. Much of the wax is removed in defecation, but part may re-enter the juice during the washing and steaming of the filter-press cake. (Bardorf,I.E.C.,20,258,1928. $: 21,366,1929)$

SILICA:- In organic combination, silica appears to affect tre milling qualities and the ease of clarification of the cane. The milling would seen to be mainly influenced by the "encrusting" silica, usually abundant in the peripheral tissues of grasses, (Hardy, I.S.J., 120, 1945). Phosphate and silica in the soil are mutually replaceable in certain chemical combinations (Branchley, Maskell, and Warington, Ann Appl. Biol.,45,1927), so that the silicate status of soil may be closely connected with its status as regards phosphate, and Hardy suggests that suitable soil treatments day reduce clarification trouble in the factory due to colloidal inorganic compounds, particularly silica.

OTHE: ORGANID MATPER:- It is beyond doubt that pentosans, gums, pectine, and various products of carbohydrate oxidation may interfere with purification and filtration processes. Phosphate seems to be concerned in this oxidation (Dickens, Nature,1057, 1936). Preliminary studies of uronic acid and methoxyl content of cane juices have been made (Browne and Phillips, I.S.j., 430, 1939).

PROTEINS :- Proteins are thought to aid clarification, presumably because they form stable flocs when the juice is heated and limed. Theymay possibly hydrolyse into peptones and amino-acids during these processes.
ASH : - It has been suggested that juice quality may in some cases be due to the presence of traces of manganese in the plant. It is known that sulphates and chlorides are often harmful, and that the calcium intake of the plant is uniform, regaraless of the lime status of the soil.

The Composition of Products in Beet Sugar fanufacture. The ordinary process of Deet Sugsr Manufacture by the Double Carbonatation Process eenerally eives a purbty rise of 3 to 3.5 degrees. The fisures shown diagramatically in Figure 26 portray cleorly the gradual increase in purity as defecation prodeeds,and the decrease in density due to the various filtrations.

The pressed juice sample is one obtained by hydraulic pressure in the laboratory, when more impurities are extrected than by diffusion. The fluctuation of density is important from the heat economy standpoint : excessive dilution must be avoided for obvious reasons. The Relter solution consists of Second Product Sugar dissolved in thin juice and returned to process.

Pigure 26

UULLOIDS IN BALT SUGAK MANUFACTURE AND THEIR REMCVAL.
Colloid chemistry is important in beet sugar technologg as has
beon emphasised by Kruyt (Arch. Suikerind.,20,1102,1921) and by Berge (Bull.Soc.Chim.Belg.,38,31,1929). The organic matter assocjated with the sugar in beets is largely of colloidal character: with diffusion processes there is a purer juice than where extraction is made by pressure. The colloids floceulate in diffusion juic at pH 4.5 and pH 10.5, and at these values hot wator diffusion is not possible because of inversion loss in the acid range or very slow diffusion in the alkaline range.

The raw diffusion juice is usually purified by double carbonat ation, this consisting of the addition of lime (2 Kgs . per 100 Kgs . berts) and passage of CO_{2} at $75^{\circ} \mathrm{C}$. After filtering, this operation is repeated at $90^{\circ} \mathrm{C}$. , using 0.25 to 0.50 Kgs . lime per 100 Kgs . beet. The filtered juice should now be brilliant and froe from colloids. lleat coagulates the colloids, and their floceulation is total at
 the adaition of 0.1 gm. CaO per 100 Kgs . beets. The excess carbonate acte as an adsorbent and as a filtex-ald : this may be shown by use of a Sharples Centrifugal which shows two layers,one of almost pure CaCO gand one one of $\mathrm{CuCO}_{\mathrm{g}}$ plus organic unttar of a bluish tint. Baissac (slanter and Sugux manufacturex, 70,040, loco) found that the most desirable swelling of cane juice colloids occurs at circa 7.0 pH , and that further liming causes greater swelling and much reduced filtration rates.

Concentration of the purified juice causes the appearance of colloids escaping removal in the previous process : these are
mainly of emulsoid type (Paine and Balch, I.E.Chem., 10,1255,1924). ais colloidal matter strongly retards sugar crystallisation : thus Berge (loc.cit.) reports tests with three sugar solutions :- l.Blank, - Containing added colloids from molasses, and 3 . treated mith $0.2 E$ per cent Norit and filtered. All were seeded with sucrose and evapor. ated under identical time/temperature conditions : the yields of sugar were $33.8,4.8$, and 34.2 gms. respectively.

BEHAVIOUR OF JUICES RITH LIME. AND HEAT.
Addition of lime to hot juice yields a precioitate which
becomes optimum in quantity and properties with correct lime control.
The precipitate sweeps down colloidal impurities and remove the colloidal matter both by adsorption and mechanical action.

The exact pH value necessary for maximum defecation has been hotly disputed . Paine and Balch (loc.cit.) state that maximum clarification and minimum inversion loss occurs when cane jices are limed (hot or cold) at $\mathrm{pH} 8-9$, the pH varying with individual juices. Roxas (I.S.J.,26,486,1984) mentions that limimg cold and then heating to boiling point gave two points of maximum clarity, at pH 5.22 5.50 and pH 11-12. Honig and Khainovsky (Arch. Suikerind.,35,639, . 19S7) obtained maximum defecation when the pH of the treated juice was 7.2-\%.6. Britton has studied pH limits in defecation ("Hydrogen Ions, London, p . 397 seq., 1929 . He found that sucrose acted as a buffer agatnst decrease in pH value in the reaction between calcium hydroxide and aqueous solutions of phosphoric acid. At $20^{\circ} \mathrm{C}$. precipftation of calcium is delayed until pH 6.7 is renohed and 1.5 equivdents of calcium hydroxide are added.

The determinetion of colloids in sugars and sugar producte.

The removal of colloide is one of the wincipal aims in the clurificction of impure sugc juicen. Colloidg increase the viscosity of the rroducts and ainder crystallisation ; they ere adsorber on suger crystals during their growth and caues the production of dull off-coloured sugara.

Nethods proposed for the determinction of colioids in auear products include airect methods such as dialysis, ultra-tiltration, and ard centrifuging, and other methods such as the determination of the' Gold number'or of the' Dye number'.

Dialysie is tedious, ond difficult to control and standerdise, and has not been much used. Centrifuging reouires very high speads and expensive equiment and for these reasons has not been widely adopted. Ultra-filtration, however, has been used with considerable success by Paine, Gertler, mat Lothrop (I.T.C.,06.73.1936), tho used a method due to Dewson. Peine, Bedollet, End Kedne (I.B.C., 10, I252, 1924) mace deteminations of the Gold ambers of cranulated sugars cind of beet molasses. The Dyo number mothod wes devised by Badollet and Peine, (I.S.J., vol. 3 , 23, $97,137,407,(1026)$: Jouisiene Planter,70, I21, (19,7), anc Bar been feimy extensively used in the canc-sugar industry.

The Dye Mumber :- This method is based on the fact that the colloid substances in cane and beot juices carry a negative chorge, ond that this charee can be neutralised by the addition of a known amount of a womtivoly chered colloic ceucine complote floculation of the
colloid complex when the isoelectric point is reached. The dye Nicht Blue has been found satisfactory as the positive colloid, fiving rapid flocculation and settline of the precipitete. It is used as a 0.1 per cent solution, not more than a week old. The pHi value of the product jo be tested must be adjusted to a uniform figure, choosing a fairly low value es standard : values of 5.2pH and 6.0 pH have boon used in work with cone products. The adjustment of pH Velue is made with 0.05 NHCl and 0.05 MeOH . For approximate measurements, portions of 25 ccs . each of the product, containing about 100 mcms . solids, are placed in tall tubes, and varyinf amounts of Night Rlue solution (made up to 25 cos.) are adced. After gheing and ellowing to settle for a few minutes the tubes are examined in transmitted light ; those showing the largest flocs and the most rapid setting indicate the range of the isoelectric point.

Cataphoresis aporatus :- In order to determine the exact isoclectric point the migration of the colloidal particles under the influence of an electric current is observed by mans of an ultramicroscope. Particles with necative chare travel to the positive electrode, and vice versa. Acdition of a colloid of opposite charge reduces the micration velocity of the particles, and at the isoelectric point micration stops. Pxcess of the oppositely charced colloid then reverses the direction of the migretion. See Figures 27 and 28. Mxamie:- Five gms. of a rav gugar was mode up to 100 cos. oftor filtorine me ojusting the pH value to 6.0 . It reauired 20 cos. of

Night Bue solution, equal to 20 mgms. of dye.
Hence $\frac{20}{5} \times 100=400$, is the Dye Number of the sugar.
Were the water content of the muger is over 2 per cent, the Dye Tumbor should be based on the sugar solids. If possible a dilution is chosen such that the quantity of dye solution required for 100 cos. lies between 1.5 arc 25 ccs . The procedure should be closely standardised as regarcs the time consumed in rixing and reading, to obtein comparable resulte.

The Dye method wes oplied to the raw diffusion juice and to the clarified juices ct various ateser of the lime/aluminium sulphate process. A typical determination of isoelectric point is shown below:-

$\begin{gathered} \text { Milligrams } \\ \text { of Dye. } \end{gathered}$	Order of Magmitudo of floceulation.	Migration of Colloidal Particles	pHet Iso- olectric Point.
4.0	X	Negative	-
4.5	XX	megetive	-
5.0	XXX	Negative	-
5.5	$x \mathrm{XXX}$	Slouly Negative	-
5.7	XXXX	Positive and Negative	4.93
5.9	XXXX	Slowly Positive	-
6.5	XXX	Positive	-
7.0	XX	Positive	-
7.5	X	Positive	-

Figure 26a.

The work of Badollet and Paine has been criticised by Mattson (J. Phys.Chem., 32, 1532, 1928), who states that since the presence of different electrolytes and a difference in reaction modifies the electrical neutralising power of colloi dal material, an exact proportion between the amount of dye required and the colloid content should not be expected. This does not datract from the value of the method for conparative purposes.
mattson appears to have been the first to apply a dye (methylene blue) to indicate the proportion of colloidal aatter present in raw sugars and molasses.

Control of pH:- It has been pointed out that to obtain comparable results all the products in a series must be adjusted to the same pil value, and since the use of alkali is liable to cause partial flocculation of the colloids, it is best to select a ph value below 7.0 an standard. A figure of 5.2 pi has been found satisfactory for cane sugar products, bitt 6.0 pit has also been used, particularly for refinery products.

Direct determination of Colloids :- Dumanski and Charin have devised a method of precipitation for estimation of colloidal matter in sugar products.(See Gundermann, I.S.J., p. 276,1933). As applied to diffusion juice 25 g . of the juice are treated with 7 ccs. of $\mathrm{N} / 10$ oxalic acid, 30 ces. of ether, and 240 ccs . of 96% alcohol under reflux in a water-bath for 30 minutes in a conical flask. The residue is filtered, washed with 96% alcohol, and dried to constant weight at $100^{\circ} \mathrm{C}$. Gundermann found from 3.454 to 4.736 g . per 100 polarisation of colloids in beet diffusion juice.

THE RLIMTNATION OF COLIOIDS IN THE AUULIIUK SUEPHATE PROCESS

UP PUKIFYING DIFFUSION JUICE RROI DEITL BRET COSSETRES.

PRODUCT

1. Raw Diffusion Juice.................................. 1890
2. Filtered Limed Juice (0.5 per cent on beets). 303 3. Piltered Juice after Line and Ala($\left.\mathrm{SO}_{4}\right)_{3} \ldots \mathrm{C} \quad 112$

4.	$"$	$"$	$"$	$"$	$"$	$"$	and SO_{2}	86	
5.	$"$	$"$	$"$	$"$	$"$	$"$	$"$	CO_{2}	46

6. First Massecuite.
52
7. Pirst Sugar 17
8. First Syrup 77
9. Tirst Syrup after 0.2 per cent Suchar carbon 30
10. Second Massecuite 69
11. Second Suger. 25
12. Second syrup 123
13. Tinird (Final) massecuite. 186
14. Third Sugar 39
15. Third Syrup (Molasses) 406-990
16. Beet 20$] p$ extracted with weter at $100^{\circ} \mathrm{C}$. for
.30 minutes... Dye Value of extract 11,210
-----000-----

These results are average ifgures except for molasses where a range is shown. They clearly indicate the removel of colloids in the process of purification.

Figure 27. Ultranicroscopic Sataphoresis Apparatus for Leteraination of the Isoclectric point.

Pigure 28: Gataphoresis Tube from above Apparatus.

OULLOIUS IV SUGAF PIUDUCIS.

AUTHOE KID SUBJEUS

Badollet and Paine

Dye lest method for estimeting Colloids in sugar products

Wffect on Filtration of ram sugars Fiffect on bone-char filtration Dye jest : revised technique Colloid survey of a cane sugar refinery

Colloids in cane fectory aroducts
Olarification processes (starch)
Balch and paine
Colloid Chemistry in the Sugar Industry
 Bardorf - Colloids in granulated sugar
Ben and Sigal - Change of Colloids long Storage Brown = Elimination of Colloidal Metter
Bomonti = Colloids in Hawaian Sugars
Gundermann - Colloids in Beet Diffusion Juice Kharin and Gmirnova - Detn, of

Colioids in the Sugar pactory Lothrou and Paine -
Removal of Colloids with Bentonite
Manoney = Colloids in a Carbon Refinery
Mattson = Cataphoresis of Colloids
Parashar - Colloids in Cane Juices Rice = Colour and quality in raw sugars
Schonebaum and moen - removal of
Colloids from Beet Juices
Clayton - "Colloid aspects of Food
Chemistry"Churchill, London

International
Sugar Journal
International
Sugar Journal
"Colloid Chemj.stry"
Alexander, Vol. 4
Int. S. J.
on
I. S. J.
I.G.J.
I.s.J.
I.ร.J.
I.G.J.
I.s.J.
I.S.J.
J. pays. Chem.

32,1532,1928
I.S.J.

1932

1944
1931
1935
PAGHS

23-28
97-103
137-140
540-543
609
611-612
375-379
389
615-616
33-34
388

539
1936
235
280
387
276
109
642
437

17
359
303

STCTION 4 (CONTLNGBD).

TAK PUKIFICATION OR RAW BBET DIFRUSIOH JUICES OR HIGH DEASITI FROM DFIED BEET COSSETHES.

PARI_2.
, THE ALUMINIUG SULPHATE PRUCESS OF DERECATION.

1. Outline of the process :
2. Stages in the process :
3. Experimental :
4. Balance of Ash and Reducing Sugars in Experimental Defecation :
5. The Stammer Colorimeter.

Aluminium Sulphate Process of Defecation for Diffusion Juices

from Dried Beet Cossettes.

Selts of aluminium in the presence of alkalis produce a very bulky precipitate of the hydroxide, which carries down much cooloid and colouring matter. Such a reaction was used at least a century and a half ago in the cane sugar industry, being described in a treatise by the Marquis de Casaux in 1778 (Essai sur I art de cultiver la canne, Paris). The property is also included in Howards patent 3754 of 1813, and the alumina so prepred was for long known as Howard's Finings. A number of other patents have becn granted for the use of aluminium compounds in sugar defecation : these are listed on the next page. Patent 244.924 (U.K.), by Majithia and Sinch (1926) describes a treatment of the juice (or other liquid) whereby aluminium hydroxide is precipitated therein by adding aluminium sulphate or other soluble aluminium salt, then adding the requisite amount of alkali, such as caustic soda, sodium carbonate, or milk-of-lime to give a slightly alkaline reaction, and heating, preferably to $100^{\circ} \mathrm{C}$., afterwards separating the precipitated matter.

A new principle in the purification of sugar juices was embodied in Belgian patent $367,847(15 / 62 / 30)$ by Dario Teatini of Hougaerde, in the addition to the hot alkaline juice of liquid sulphur dioxide. Teatini claims a large reduction in the amount of lime required as compared with the carbonatation process, and several other advantages.

Arising out of the use of aluminium salts and liquid $\mathrm{SO}_{\mathrm{g}}, \mathrm{a}$ process was devised by the author, and is described on pagel65.

The stages in tie Process.

Aluminium Sulphate process of Defecation for Diffusion Juices

from Dried Beet Cossettes.
The process consists of the following stages:-

1. Raw Juice Extraction in diffusion battery at approximately $36-37^{\circ}$ Brix (preferably not higher than $40^{\circ} \mathrm{Brix}$). The concentration $36-37^{\circ}$ Brix is an optimum for defecating efficiency.
2. Liming: - Approximately 0.5 per cent lime, calculated on the weigh of fresh beets, is added at low temperature (say $40-50^{\circ} \mathrm{C}$.), and followed by rapid heating. Fifteen minutes contact at $75^{\circ} \mathrm{C}$. gives favourable results. The lime is added in the form of a cream of composition 50/50 Buxton hydrated lime and water, or in any other suitable manner. This has proved to be the optimum amount for precipitation of impurities without causing difficulty in filtration. 3. Secondary Reagent : - The juice is now treated with approximately 0.3 per cent of an electrolyte (for example, aluminium sulphate), which by reason of its electrical charge is able to fix and disperse some of the colloidal and colouring matter which remains after liming. Contact is maintained for about 5 minutes at $75^{\circ} \mathrm{C}$. The juice is brought b_{y} this treatment to a pH value of $7.8-6.0$ or thereby. 4. Final Reagent : - The juice with its precipitate is now treated, either with or without an intermediate filtering, with approximately 0,09 per cent of a suitable acid reagent, using the quantity necessar. to obsain the requisite pH value in the final filtered juice. This acid treatment is preferably carried out before the juice is filtered, as this will accelerate the whole process and a better final juice is obtained. The acid substance added may be acid
calcium phosphate, carbon doxide, or sulphur dioxide, but is preferaby sulphur dioxide in liguid form. The addition may be sufficient to cive a pH value of $7.3-7.4$ vhere there is a further sulphitation after concentration. Where the juice ie not to be further sulphited, or where it is to be treated with carbon, the pH value. may be brought down to 6.9-7.0. This acid twobment is carried out at ancroximately $75^{\circ} \mathrm{C}$., elthough a tompercture betyen the rence $05-95^{\circ} \mathrm{C}$. may be usec in speciel cusos.
3. Filtration:- The solide precipitate are now sopareted in my suitable momer : whe thocipitate is copious, the mid chamber of the filter should have ample copacity. The temperature can be reised at this stage, but the colour of juices containing invert sugar is better when $75^{\circ} \mathrm{C}$. is mainteined, and filtretion is rapid at this temperature. The cake is easily sweetened off, and leeves a hard compact cake which falls readily from the choths of the filter. No extrafilter aid was found necessary in the trials of this method.
4. Multinle Effect Evanoration:- The juice is concentrated to a density mot suitable for boiling, any $65-68^{\circ} \mathrm{Brix}$.
5. Thich Juice Treatment :- When the juice is sulphited after concentration, the pll before the initial filtration should be kept at 7.3-7. 4 , and recuction to $6.9-7.0 \mathrm{pH}$ effected on the thick juice Alternatively, the thick juice may be treated with decolorising carbon, when 6.9-7.0 pH is required in the thicy juice. 8. Grarity Filtors :- The treated thick juice is filtered throuch Greviby filters.

9. After-treatment of filtered thick juice :- RTRST PAIS :-

The tro-massecuite systen is used, chorcing the first boil-
ing with the cawon-treatod remelt sugar, and building up the crestals with thick juice, with the possible addition of treated high wash or high green syrup to bring purity conditions to the correct proportions.
GECOMD PAMS :- A proportion of hich wasin gyrup is need to grain the second boiline, and the high reen syrup is used to buile up the crystals. The pan is completed with low wash syrup to the roquisite purity.
10. Remelt suger :- The remelt suger (from the second boiling) is mashed to the required colour in the centrifugal machines, and dissolved in tocete juice of about $35^{\circ} \mathrm{Brim}$ to make a Byrup of $55-60^{\circ} \mathrm{Brix}$. This syrup is treated with 0.3 per cent decolorising carbon on the weight of suger solids in the remelt and filtered. Mote The method outined for after-treatment may be repleced by any suitable process.

RECAPITULATION

STEPS :-
mamaction - $36-40^{\circ} \mathrm{Brix}$.
TRIPLT DRFEGATION mREATMETT
FILTRATION
BYAPRATION - $65-68^{\circ} \mathrm{Brix}$.
GLIPITLATOM OR CARBON TREATMETT.
GRAVITX FIITRATION
ABTER-TCHATMEIT
AdVantages :- By this process defecation is accomplished at 36° Brix instead of $10-15^{\circ} \mathrm{Brix}$; there is only one main filtration; manufoture is spesded up ; and there is saving of steam.

List of Patents for the use of aluminium salts in defecation.

Year	Number	Name	Description
1661	1856	W. E.Gedge	Alumina jelly by poter. alun with NH_{3} (Abridgements, p. 23)
1867	3406	W. R.Lake	```Neutral Al sulphate on soln* of sugar in lime-water (Abr. p. 4)```
1871	2090	Duncan \& Newlands	Formation of alum to ppt. K and NH_{3} salts from sugar solns. (Abr. p.26)
1874	1989	J.Duncan	Acidification of limed juice by Al sulph -ate. (Abr. p. 39)
1874	3852	Gill and Martineau	Use of alumina after tamin (Abr. p.41)
1875	4264	Duncan \& Newlands	Al. Sulphate, 30 m . contact ord. temp., then lime: or vice-versa.(Abr.p.54)
1876	4433	Geistodt \& Plicque	Use of aluminates of barium, etc. (Abr. p. 68)
1877	1902	Loewig	Use of gelatinous Al hydrate with lime. (Abr. p. 3)
1879	1076	Loewig	Lime-water and gelatinous AI hydrate. (Abr. p.17)
1880	861	Gawelowski \& Teichmann	Phosphite or phosphate of AI prepared from the sulphate. (Abr.p.25)
1886	3196	Englert \& Becker	Neut. or basic Al or Fe sulphite or hydrosulphites. (Abr.p.18)
1893	14373	Evans	Aluminium hydrate, alone or mixed. (Abr.p.3)
1878	4861	Hunt	Use of basic aluminium sulphate. (Abr.p. 25)(1897)
1879	3195	Loewig	Basic chloride of Al, prepared from gelatinous Al hydrate (Abr.p.26) (1897)
1903	16750	Hlavati	Al. polysilicates : Al sulphate during diffusion. (Abr. p. 16)
1916	108303	Hayashi \& Emura	Clarifying matter made from char and $\mathrm{H}_{8} \mathrm{PO}_{4}$ with Al salts. (Abr.p.2)
1918	134607	Hood, Clark, \& Clark	Granular alumina or magnesia- Al salts may be used, (Abr.p.8)

Analress of the reagents used in the purification toets on raw Diffusion Julces.

Hydrated Lime		17/18\% Aluminium Sulphate
	$\%$	(17
Colcium Hydroxide	96.17	$\mathrm{Al}_{2} \mathrm{O}_{3} \quad 17-18$
Calcjum Garbonate	1.18	$\mathrm{Fe}_{2} \mathrm{O}_{3}$ 0.001-0.007
Colcium Sulphate	0.58	SO_{3} (combined) 36.6-42.0
Magnesjum Carbonate	0.47	SOs (free) Nil-0.20
Perric Oxide	0.02	Insoluble matber Nil-trace
Alumina	0.10	Hater 40-43.4
Tnsoluble in HCl	0.53	
Sater	1.10	
Aloverest		Sulphur Dioxide Gas.
Through 50 mesh	100.00	The purity of the gas as
100	$\because 8.00$	supplied in cylinders was
150	94.00	98-100 per cent, the press-
300	94.00	ure being between 30 and 45 lbs.,(2-3 atmospheres).

Analysis of mono-calcium phosphate :-

Per cont

Mono-calcium Phosphate,	$\mathrm{CaH}_{4}\left(\mathrm{PO}_{4}\right)_{2}$
Calcium oxide,	CaO
Magnesium, oxide,	Mgo
Phosphorus pentoxide	$\mathrm{P}_{2} \mathrm{O}_{5}$
Ferric oxido \& Alumina $\mathrm{Fe}_{2} \mathrm{O}_{2}+\mathrm{Al}_{8} \mathrm{O}_{3}$	
Ignition Loss (with Zno)	
Sulphur trioxide, SO_{3}	

$$
\begin{array}{r}
82.90 \\
2 . .00 \\
0.03 \\
55.74 \\
0.03 \\
20.03 \\
0.07=0.12 \mathrm{CaSO}_{4}
\end{array}
$$

$\mathrm{As}_{2} \mathrm{O}_{3}$. 0.5 part per million
$\mathrm{Pb}, \quad 5.0$ parts per million

Interaction of Ilme and aluminium sulphate(as in defecation).

$$
\begin{aligned}
& \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Ca}(\mathrm{OH})_{2}=3 \mathrm{CaSO}_{4}+2 \mathrm{Al}(\mathrm{OH})_{3} \\
& 342.4+222.27
\end{aligned}
$$

That is, 1 part $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ requires 0.65 part $\mathrm{Ca}(\mathrm{OH})_{2}$

Tring the hydrated compound :-

$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}=666.8$ requires 222.27 of $\mathrm{Ca}(\mathrm{OHI})_{2}$ or 1 part of hydrated Al. sulphate requires 0.33 part $\mathrm{Ca}(\mathrm{OH})_{2}$.

List of Experiments on the Defecation of Dried Beet Juices.

1. Determination of the Optimum amount of Lime.
2. Neutralisation by sulphuric acid.
3. Treatment with lime and calcium phosphate.
4. Optimum for temperature and for time of contact.
5. Effect of decolorising carbon.
6. Effect of variation of amount of calcium phosphate used.
7. Trials with various grades of alumina.
8. After-treatment of limed juices with SO_{2} and with CO_{2}.
9. Treatment of limed juice with aluminium sulphate.
10. Effect of Temperature on clarified filtered juice.
11. Solid and fractional addition of lime.
12. Further tests on fractional limimg.
13. Defacation of juice from cossettes dried with pure air.
14.Effect of higher density of juice upon defecation.
14. Settling rates of precipitated defecating agents.
15. Behaviour of reducing sugars during the defecation process.
16. Determination of the amount of aluminium sulphate for defecation. 18. Use of SO_{2} and of CO_{2} after defecation with lime and Al.sulphate. 19. Jse of calcium phosphate in the aluminium sulphate process. 20. Effect of juice density in the aluminium sulphate process. 21. Variations in the method of applying reagents in the Al.S.process 22.The use of other aluminium salts in the defecation of dried beet juices.

Bonorimontal woris on tho ferocation of diffusion juices.

 2. Dotarmination of tho ontimur framot of hodrated lime reguired.In thome tests 500 cob. of row difurion jutce war tokon for oach exporimont. The time was mado into on mir in 10 ces. or water

 ring. It was thon Pistexer ase the timo of ristration mont.

Tha optimum amount of 1 im an apoara to bo $0.5-0.6$ por cont hydrated Lino(on fromh bocts), tha onoumt givinc the palest fuice and a satio

- Pectory rieg in purity, Much artermettilig out of golid was aeon in tuben of jutco kevt for 5 dawn, axcont in ro. 10 which had not then precipitatod. The stammer cozour dectoes ware read at $10^{\circ} \mathrm{Brix}$. The Piltration rete was thkon in a standard filter by stop-clock.

2. The Effect of sulphuric acid neutralisation of limed juice.

A typical lined juice was taken in 500 cos. portions and the influence of sulphuric acid was observed at 20,75 , and $95^{\circ} \mathrm{C}$. The contact time was 15 minutes in each test. The lime used was 6 gas. per 500 cos. juice, equal to 0.54 per cent on fresh beets.

L.J. = Limed juice.
3. The effect of lime and phosphate troatment of diffusion juice. This test aimed to find the optimum point of application of colctny phosohate. The temperature used was $75^{\circ} \mathrm{C}$. for both liming and phosphating, 500 ccs. of jufce being used in each test. The contact time was is minutes for lime and 5 minutes for phosphate : the quantities required of lime and phosphate were added each in 10 ces. of water.

The most striking feature of the above test was the effect of adding the phosphate before the lime (No.3). Filtration was slowed up at once, and the pH value did not fall as in No. 2. The colour was also darker in No. 3 , and the filtrate hazy. It is clear that lime must be adced first.
4. Determination of optimum temperature and contact time of liming.
(a) Temperature :- 500 cos. juice per test,adding 5 gms. of lime in 10 cos. water in each case ($=0.44$ per cent on fresh beets).

10.	Teno. ${ }^{\circ} \mathrm{C}$. 15 mins contact time	Brix ${ }^{\circ}$	Wsugar	$\left\lvert\, \begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}\right.$	Colour - Stammer 10° BRIX	$\begin{aligned} & \text { Filt } \\ & \text { tion } \\ & \text { mins. } \end{aligned}$	rarate secs.	pur- ity Diffce.	Value
Raw	-	40.4	35.8	88.6	-	-	-	-	4.6
1	30	38.4	34.5	89.8	8.0	3	45	$+1.2$	9.8
2	40	38.5	34.7	90.1	5.4	5	00	$+1.5$	9.9
5	50	38.2	34.4	90.0	5.7	9	30	+1. 2	10.0
4	60	37.4	33.7	90.1	6.25	7	10	+1. 5	10.0
5	70	39.3	35.5	90.3	7.55	3	45	+1.7	9.9
6	80	39.4	35.5	90.1	8.0	4	5	+1.5	10.0
7	90	39.3	35.2	83.6	8.3	4	30	+1.0	9.9
8	100	41.6	37.7	90.6	11.1	3	00	+2.0	9.7
9	70	38.3	34.5	90.1	6.7	1	00	+1.5	10.0

5. Determination of the effect of decolorising carbons on diffusion juice after liming, but without neutralisation.

A diffusion juice limed with 6 gms. hydrated lime per 500 ccs., equal to 0.54 per cent lime on fresh beets, was treated with three different decolorising carbons using 500 ces. julce for each test at $70^{\circ} \mathrm{C}$. The lime was allowed 15 minutes contact at $75^{\circ} \mathrm{C}$. and the carbon contact time was also 15 minutes : carbon and line were each adied in 10 ccs. of water.

TO.	Brix ${ }^{\circ}$	\%Sugar	Purity	$\begin{aligned} & \text { Colour } \\ & \text { ostammer } \\ & 10^{\circ} \text { Brix } \end{aligned}$	$\begin{aligned} & \text { Filt } \\ & \text { tion } \\ & \text { Rate } \\ & \text { mins } \end{aligned}$	secs	Pur-	pH	Carbon Gre. and typs
I. J.	37.1	33.2	89.5	8.7	2	30	-	7.8	-
1	38.9	35.2	30.5	9.1	2	10	+1.0	7.7	$\begin{gathered} \text { Williams } \\ 1 \mathrm{gm} . \end{gathered}$
2	38.1	34.6	90.8	8.7	1	30	+1.3	7.7	$\begin{gathered} 0.09 \% \text { on } \mathrm{Ft} \\ \text { Esbit } \mathrm{lgm} \\ 09 \% \text { on } \mathrm{F}, \mathrm{~B} . \end{gathered}$
3	37.8	34.0	89.9	9.1	2	00	+0.4	7.6	$\begin{aligned} & \text { Carboraffin } \\ & 0.25 \mathrm{Gr.} \text {. } \\ & 02 \% \text { on } \mathrm{F} . \mathrm{B.} . \end{aligned}$

This test demonstrated that it is not satisfactory to apply carbons to juices above the neutral point. while a juice may be decolorised at say $6.9-7.3 \mathrm{pH}$, it is difficult to decoloriso it if its pH value is above say 7.3 pH . The purity rise and rate of filtration were satisfactory in these tests.

The pH value should be reduced to near the neutral point before using eabbon : this can be done by means of $\mathrm{CO}_{8}, \mathrm{SO}_{2}$ or an acid phosphate. It is well known that the decolorising power of carbons is greater, in general, in contact with acid juices.
6. The offoct of verying amounts of acid phosphate on limed juice.

\#\%.	Gms. Lime	Contact Time Mins.	Temp.	Gms. Phosphate	$\%$ Iime on F.B.	\% C Phos. T on P F.B.	Contact Time for Phosphate mins.	Temp. oc. for Phos.	ces. water for Lime \& Phos.
Raw Jce.	-	-	-	-	-	-	-	-	(each
1	5	15	75	0	0.43	-	-	-	10
2	5	15	75	1	0.43	0.09	5	${ }^{7} 7$	20
3	5	15	75	2	0.43	0.17	5	76	10
4	5	15	75	3	0.43	0.27	5	75	10
5	5	15	75	4	0.43	0.36	5	75	10
6	5	15	75	5	0.43	0.43	5	75	10
No.	Brax ${ }^{\circ}$	\%Sugar	Purity	Colou ${ }^{-}$Stam -er $10^{\circ} \mathrm{Br}$	$\begin{array}{c\|c} \text { Fin } \\ \text { in } & \text { Fins } \\ \hline \end{array}$	tration Rate s. secs.	$\begin{aligned} & \text { Purity } \\ & \text { Diffce. } \end{aligned}$	pH Velue	-
$\begin{aligned} & \text { Raw } \\ & \text { Jce. } \end{aligned}$	39.8	34.9	87.7	-	-	,	-	4.8	
1	37.9	33.6	38.6	7.9	5	10	+0.9	9.9	
2	36.8	32.7	38.9	10.6	10	10	41.2	8.8	
3	37.9	35.8	89.2	17.0	5	30	+1.5	7.8	
4	39.7	35.3	38.9	19.0	4	45	+1.2	7.5	
5	40.0	35.8	89.5	9.5	5	10	4.8	7.0	
6	40.4	36.2	89.6	5.7	5	10	+1.9	6.8	

This test showed satisfactory purity rise and filtration rate : the colour did not improve until the juice was acid.
7. Effect of various grades of alumina on limed diffusion juice.

The juice was limed in 500 ces. quantities with 5 gms. of rydrated lime, equal to 0.43 per cent on fresh beets, allowing 15 minutes contact time at $75^{\circ} \mathrm{C}$., and was then treated with 3 gms. of the aluminium compound por 5 minutes at $75^{\circ} \mathrm{C}$. This was equal to 0.27 per cent on fresh beets. Each reagent was added in 10 cos. of water.

Mo.	Erix ${ }^{\circ}$	$\%$ sugar	Puxity	Colour - Stammer 10"Brix	$\begin{aligned} & \text { Filt- } \\ & \text { ration } \\ & \text { Rate } \\ & \text { mins } \end{aligned}$	sses	Purity Diffee.	$\int_{\mathrm{gaj}}^{\mathrm{oH}}$	Remarks
Rave Jce.	35.2	31.2	88.6	-	-	-	-	4.7	-
1	35.2	31.4	89.2	8.9	2	20	+0.6	9.8	Lime alone
2	34.9	31.4	90.0	9.5	2	00	+1.4	7.8	Dry Al (OH) ${ }_{3}$
3	34.5	31.0	89.9	6.5	2	00	+1.3	7.8	99\% Calcined alumina
4	84.8	31.2	89.7	10.6	2	30	+1.1	7.0	98\%
5	25.0	31.5	90.0	11.3	3	10	+1.4	7.8	Crude alumina
6	35.2	31.6	89.8	5.7	2	50	+1.2	7.5	Calcined alumina
7	35.1	31.5	89.7	9.5	2	50	+1.1	7.8	Crude Bauxite

The purifying action of these grades of alumina appears to be in direct ratio to their own purity. No attempt was made to render these alumina samples active by lgnition or other treatment.

Filtration rate and purity rise are very satisfactory in all the tests, but only Nos. 3 and 6 gave setisfactory reauction of colour.
8. Ireatment of limed juice with acid reagents - use of sulphur dioxide, and of carbon dioxide.

A litre of raw diffusion juice was taken for each experiment. This was treated with 10 gms. of lime, equal to 0.43 per cent on Presh beets, with 15 minutes contact at $75^{\circ} \mathrm{C}$ 。, and filtered. The acid reagent was then applied to the liltered limed juice prom a cylinder at a temperature of 65°. . to npproximately pH 7.0. The neutralised juice was filtered.
(a) sulphur dioxide treataent :-

No.	Brix ${ }^{\circ}$	\% Sugar	Purity	$\left\lvert\, \begin{gathered} \text { Colour } \\ 0 \text { Stanner } \\ 10^{\circ} \text { Brix } \end{gathered}\right.$	$\begin{gathered} \text { Riltr } \\ \text { ation } \\ \text { Rate } \\ \text { mins. } \end{gathered}$		$\begin{aligned} & \text { Pur- } \\ & \text { ity } \\ & \text { Diff } \end{aligned}$	Value	Remariss
Raw	35.8	31.4	87.7	-	-	-	-	4.7	-
1	36.7	32.7	89.1	5.3	7	00	+1.4	9.9	Lime alone
2	37.1	33.0	88.9	7.7	0	55	+1.2	7.2	Filtered Juice $+\mathrm{SO}_{2}$

(b) Garbon dioxide treatment : -

3	36.7	32.7	89.1	5.3	7	05	+1.4	9.8	Lime alone 4
37.0	33.0	89.6	7.5	2	10	+1.9	7.0	Filtered Juice $+0_{2}$	

An important result in these tests is the great increase in the spedd of filtration. The colour is slightly darker in both finished juices, but the purity is substantially the same after SO_{2} treatnent. With CO_{2} it was observed that it was much easier to control the reaction than woth SO_{2}; the 'gassing' with CO_{2} was not so fast. It is probable that some of the colouring matter is not affected by the acid reagents, which sugeests the use of a third reagent to fix
9. The use of alurinium sulphate as a defecating agent.

The aluminium sulphate reagent was made by dissolving 510 gms. of hydrated salt in 500 cos. of distilled water and filtering hot. This gave a solution of about $70^{\circ} \mathrm{Brix}$ which crystallised out below $30^{\circ} \mathrm{C}$. It therefore represented saturation at ordinary temperature. The following tests were made :-
(a) 5 gms. $\lim _{\text {g }}$; followed by 5 ces. Al. B . soln. : Piltered. (b) 5 ces. Al.S. soln. followed by 5 gms . of lime : filtered. (c) 5 cos. of Al.s. soln. Pollowed by 5 gms. sodius carbonate. (d) 5 gas. of soda-ash, iollowed by 5 ces. of Al. s. soln. In each test 500 ces. of jaice was taken, heating for 15 minutes with the alkaline reagent, and for 5 minutes with the Al. S. soln. The temperature used was $75^{\circ} \mathrm{O}$. The 5 gns. alkaline reagent represc ents 0.44 per cent on fresh beet : the Al.S. 5 ces. $30 \operatorname{lr} .0 .22 \%$.

No.	Brix ${ }^{0}$	3ugar	Purity	$\left\lvert\, \begin{gathered} \text { ©olour } \\ 0 \text { tammer } \\ 10^{\circ} \cdot 3 \text { rix } \end{gathered}\right.$	Purity liffce.	Fil atio Rate mins	r- n -secs	ply	Remarks
Baw	35.6	31.4	83.2	-	-	-	-	4.7	
(a)	36.3	32.4	89.2	2.2	+1.0	3	30	5.5	Very acid
(b)	36.9	32.7	88.6	3.9	+0.4	4	00	7.7	Good
(c)	36.0	32.0	88.9	12.7	+0.7	49	00	7.4	Very slow
(d)	37.0	33.0	89.1	9.0	+0.9	38	00	7.0	Slow

There is obviousiy great difference in the resction obtained by the reverse method of addition: the soda gives dark juice and slow
10. The effect of temperature on Clarified filtered juice.
additions of reagents are shown as per cent on weight of fresh beat Lime was added to give pit 7.4 using 0.17 per cent: this was followed by Aluminium sulphate solution (0.27 per cent). Lime was again added (0.27 per cent) and the juice was then treated with sulphur dioxide to give a final ph value of 7.5. The first liming was at 75°. for 15 minutes, the Al. S. solution was for 5 minutes at 75°. and the final liming was for 5 minutes at $75^{\circ} \mathrm{C}$.

Experiment $:=$ separate 500 cos. lots of the treated filtered juice were heated for 15 minutes at $80,85,90,95$, and $100^{\circ} \mathrm{C}$.

The original treated juice was now 'gassed' with SO_{2} in the cold, heated to $75^{\circ} \mathrm{C}$. , and filtered 50 cos. filtered in 10 secs.

The juice has bleached as the temperature increased : the second sulphitation has markedly improved the juice.
11. Investigation of solid and fractional addition of lime in the Purification of Diffusion Juice.

Various tests were made comparing addition of lime-cream with solid liming, and also with fractional liaing,both liquid and solid. All heating was at $75^{\circ} \mathrm{C}$. : 500 ces. of juice used for each test.

no.	ums. Lime aaded	$\begin{gathered} \text { rora } \\ \text { added } \end{gathered}$	Gms. Al. S. adied	$\begin{aligned} & \text { Form } \\ & \text { added } \end{aligned}$	Conditions of test
1	5	liquid	-	-	15 mins. heating at $75^{\circ} \mathrm{C}$.
2	5	solid	-	-	15 " "
3	5	solid	-	-	1 gm. added each min. for 15 mins.
4	5	1iquid	3	liquid	Lime 15 mins.: Al.S. 5 mins. at $75^{\text {d }} \mathrm{C}$
5	5	solid	3	solid	"
6	5	solid	3	solid	
7	5	liquid	-	-	Lime in 2 lots of 2.5 gms. each: 1st lot 7 mins. 2nd. lot 8 mins. contact
8	5	solid	-	-	As in No. 7, but using solid lime.
9	5	solid	-	- 1	Pirst added 2 gms. lime at $75^{\circ} \mathrm{C}$. the rest added 1 gm : at a time each 3 mins. thereafter. 15 mins.total time

Note:- Special care was taken to ensure that the lime added solid was in very finely divided form, and a mechanical stirrer was used to give thorough mixing of the juice and reagents.
11. Continued:- Analytical cesulte:-

no.	Brix ${ }^{\circ}$	/sugar	purity	golour stanaer 1). Brix	$\begin{gathered} \text { Purity } \\ \text { Liffce. } \end{gathered}$	ailtr ation date ins.		$\begin{gathered} \text { pH } \\ \text { Value } \end{gathered}$	Form of Adition
Kaw Jeo.	36.9	31.7	86.2	-	-	-	-	4.8	-
1	37.4	32.5	86.9	9.1	+0.64	8	50	9.9	1iquid
2	37.8	33.0	87.3	8.3	+2.04	7	30	9.8	soild
3	38.2	33.2	87.0	5.6	$+0.8$	8	20	9.3	solid
4	37.5	33.0	83.0	6.7	$+1.8$	5	20	7.6	liquid
5	39.6	34.3	80.7	7.1	$+.3$	7	00	8.0	aolid
6	41.0	35.7	87.1	5.1	$+0.9$	9	10	7.8	golid
7	37.2	32.4	87.0	6.3	+0. 8	9	45	9.6	liquid
8	38.3	33.4	87.3	6.6	+1.1	5	00	9.4	solid
9	39.1	33.7	86.3	6.0	+0.1	17	50	9.8	solid

The most noteworthy feature of this series of tests is the great variation in the colourg, the parity increases, and the rates of filtration. In Nos. 3 and 6 a very good juice has been produced by fractional addition of the lime. 隹itration was remarkably slow in No. 9 test. The general conclusion is that the addition of the reagenta is a matter requiring great care as to the actual conditions and method of addition. In every case the colour of the final juice was lighter where the lime had been added fractionally as compared with tests 1 and 2 where it was added in one lot.
22. Purther tests on fractional liming of diffusion juice.

Tests made using 50 cos. juice.

Sod	$\left\lvert\, \begin{aligned} & \text { Gms. } \\ & \text { I, ine } \end{aligned}\right.$	$\left\|\begin{array}{c} \text { Gms. } \\ \text { n. } \end{array}\right\|$	Form added	Iime Contact Time ins.	A1.5. Contact Time Mins.	Conditions of test		
1	5	3	liquid	$15 \frac{175}{15}$		Normal defecation		
2	5	-	solid	$15 \quad 75$	-	1 gr. Lime added every 3 mins.		
3	5	3	oolid	1575	5	Lime added as in mo. 2 , then Al.s.		
4	5	3	solid	1575	5	Lirae as in No.2, then Al.s. added		
5	6	-	liquid	2080	-	1 gn. at a time during 5 mins, Tormal defecation		
6	6	-	solid	1575		Lime placed in vessel and 100 cce raw juice added every 3 mins. to total of 500 ccs., all at $75^{\circ} \mathrm{C}$.		
7	5	5	1iquid	1575	5	Tormal bulk additions, completed by adding 1.25 gas. Ca phosphate and giving 5 mins. at $75^{\circ} \mathrm{C}$.		
No. 3 rix ${ }^{\circ}$			\% sugar	$\mathbf{r}{\underset{\mathrm{Pur}}{\mathrm{it}} \mathrm{f}}^{\text {it }}$	Colour 0 otammer 100Brix	Purity	```ailtr- ation Fate ins.becs,```	$\begin{gathered} \mathrm{pH} \\ \text { Value } \end{gathered}$
	Raw	35.9	30.0	85.5	-	-	,	4.8
	1	34.2	29.6	86.6	6.3	+1.1	600	9.9
	2	37.7	32.5	86.2	4.4	+0.7	820	7.9
	3	37.9	32.6	86.2	4.1	+0.7	640	7.6
	4	38.1	32.9	86.3	4.3	+0.8	1030	7.9
	Raw	36.6	31.7	86.6	-	-	- -	4.7
		37.2	32.6	87.7	11.1	+1.1	30	9.7
	6	37.3	32.8	87.8	7.1	+1.2	320	9.8
	7	36.5	32.3	88.5	4.6	+1.9	440	7.0

13. Hests on the defecation of diffuston juice from cossettes aried by pure air.

These tests were wade at $75^{\circ} \mathrm{C}$. using 500 ces, of raw juice, and allowing 15 minutes contact time for lining, and 5 minutes for Al. sulphate where it was used. The lime and Al.sul wate were each added in 10 cos. of water

No.	$\left\|\begin{array}{l} \text { Omb. } \\ \text { Lime } \end{array}\right\|$	Mras.	Brix ${ }^{\circ}$	\%rugar	Purity	colour 0 tammer $10^{\circ} \mathrm{Brix}$	$\begin{aligned} & \text { Pil } \\ & \text { ati } \\ & \text { Rat } \end{aligned}$	tr- on e Sec.	Purity Diffce.	$\begin{gathered} \mathrm{pH} \\ \mathrm{Value} \end{gathered}$
Raw	-	-	32.9	29.0	88.0	-	-	-	-	6.0
1	5	-	34.0	30.6	89.9	5.6	3	10	+1.9	9.9
2	7.5	-	33.6	30.3	90.1	5.1	3	50	+2.1	11.3
3	10.0	-	33.0	29.3	90.2	5.8	5	40	+2.2 ex	12.0
4	5	3	33.0	29.8	90.2	4.8	3	50	+2.2	7.8
5	7.5	3	$3 \% .2$	29.9	90.2	4.1	3	00	+2.2	8.6
6	10.0	3	33.5	30.1	90.0	5.6	9	20	+2.0	11.0
7.	5	5	32.9	29.4	89.4	4.5	5	40	+1.4	7.2
8	7.5	5	33.2	30.0	90.5	4.4	6	10	+2.5	8.0
9	10.0	5	32.1	28.9	90.0	4.2	3	10	+2.0	9.8

Discussion of results in Tests 12 and 13:-

The addition of more lime at a higher temperature and time darkens the juice. The method of adding the juice to the lime offers no great advantage over the ususl procedure. The filtration rate when using solid lime is slower, and this slowing down is also seen with more heavily limed juices.
14. Tests on the defecation of dif usion juices at higher ${ }^{\circ}$ Brix.

Diffusion juices at 44° and 55° Brix were prepared and treated by the normal lime/aluminium sulphate process developed in the previous tests, the quantities of reagents used being corrected for the increased density : 500 ccs. of juice were used in each test, with 15 minutes contact time for lime and 5 sinutes for aluninium sulphate, and using a temperature of $75^{\circ} \mathrm{C}$.

No.	Gms. Lime	$\begin{aligned} & \text { Gras. } \\ & \text { A1. } \end{aligned}$	Brix ${ }^{\circ}$	\%sugar	Purity	Colour ostanne $10^{\mathrm{P}} \mathrm{Brix}$	Purit	Hi Re.at Ra a	tr ion te s.	Falue
Raw	-	-	43.9	38.6	87.8	-	-	-	-	4.7
1	- 9	-	43.9	38.8	88.3	11.1	+0.5	4	40	9.6
2	6.7	-	43.9	38.7	88.1	8.6	+0.3	4	10	9.6
3	6.7	4	43.4	38.2	88.0	7.5	+0.2	7	05	8.1
Ra	-	-	57.2	49.3	86.4	-	-	-	-	4.7
4	9	-	58.2	50.4	86.9	17.1	+0.5	150	00	9.7
5	9	5.4	57.9	49.9	86.5	11.5	+0.1	185	00	8.5
6	13.5	-	56.8	49.4	86.9	14.9	+0.5	230	00	10.9
7	13.5	8.1	57.1	48.8	85.5	18.0	-0.9	260	00	8.3

Remarks : - These tests show clearly the impracticability of treating raw juices for a major removal of impurities by ordinary defecation methods when the Brix is above about 35°. The rate of filtration is very slow, the purity increase small, and the colour poor in all the above trials. The times of filtration given in tests 4-7 are only approximate.
15. Test on the settling rate of reagents as used in the lime/aluminium sulphate process of defecation.

The usual anounts of reagents were allowed to interact in water and the settling rate noted, with the time for complete settling. Distilled water was used, 500 ces. per test, and the precipitates were settled in a litre cylinder at $20^{\circ} \mathrm{C}$. The internal diameter of the cylinder was 6 cms. and the length of each column of liquid was 18 cms.

No.	Conditions of Experiment	$\begin{gathered} \text { Settling } \\ \text { Time } \\ \text { Mins. } \end{gathered}$	$\begin{gathered} \text { Ppt. } \\ \text { volume } \\ \text { Ccs. } \end{gathered}$	Remarks
1	5 gus. of hydrated lime alone	$24^{3} \mathrm{hrs} .$	$\begin{aligned} & 35 \\ & 34 \end{aligned}$	Compiete and rapid settling
2	$\begin{aligned} & 5 \mathrm{gms} \text { hydrated lime and } \\ & 3 \text { gas aluminium sulphate } \end{aligned}$	$24 \stackrel{9}{\mathrm{hrs} .}$	$\begin{array}{r} 150 \\ 80 \end{array}$	Complete settl- -ing very slow
3	10 gms . of hydrated lime	$24 \stackrel{4}{\mathrm{hrs}} .$	$\begin{aligned} & 60 \\ & 56 \end{aligned}$	Compares well with No. I
4	10 gms. of hydrated lime and 6 gms. of aluainium sulphate.	$\begin{array}{r} 8 \\ 18 \end{array}$	$\begin{array}{\|l\|l} 450 \\ 380 \end{array}$	Setting very auch slower.
5	1 gm . lime and 3.3 gms al Sulphate-these are the th reaction quantities	inium retical $\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 490 \\ & 473 \\ & 455 \\ & 435 \end{aligned}$	This produced aluminium hyóroxide which settled very slowly.

Where there was an excess of the large lime particles the flocculation was rapid, and this would indicate that an excess of lime is desirable over that amount necessary to interact with the aluminium sulphate, and the amount required to corbine with the impurities in the raw juice.
15. Test following the behaviour of reducing-sugars during the Iive/aluminium sulphate process of defecation.

The tests were conducted at $75^{\circ} \mathrm{C}$., using 15 minutes contact time for the lime and 5 rainutes for the aluminium sulphate $;$ each reagent was added in 10 ccs. water ; 500 ccs. raw juice were used in each test.

No.	Gms. Lime	Gms. Al.s.	Conditions of Experiment
1	5	-	formal aduition of line alone.
2	5	3	Wormal lime/aluminium sulphate process.
3	5	-	3 ccs. 1.16 s.e.HCl added, 15 rins. contact : then the lime added with 5 mins. contact at $75^{\circ} \mathrm{C}$.
4	5	3	As in No.3, with after-addition of 3 grns.Al.S. 5m. $/ 75^{\circ}$
5	5	3	Hormal process with after-addition of $\mathrm{SO}_{2}{ }^{\text {- }}$
6	5	3	-. " " " 乡\% " CO_{2}

| 7 | 5 | 3 |
| :--- | :--- | :--- | \(\begin{aligned} \& Lime, aluminium sulphate, and \mathrm{SO}_{2} added together.

\& 15 minutes total contact time.\end{aligned}\)

No.	Brix ${ }^{\text {d }}$	\%sugar	P唯	Qolour Stam. $10^{\circ} \mathrm{Ex}$.	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \\ & \text { Liff. } \end{aligned}$	Fi at Ra H.	$\begin{aligned} & 1 \mathrm{tr}- \\ & \text { ion } \\ & \text { be } \\ & \text { S. } \end{aligned}$	Value	$\%$ Redu- cing Sugars	Invert Ratio
D.C.	-	63.2	-	-	-	-	-	5.0	0.54	0.85
Raw Jce	36.2	31.7	87.7	-	-	-	-	4.7	0.79	2.49
1	36.2	32.2	89.1	7.9	+1.3	2	50	9.9	0.47	1.46
2	36.9	33.2	90.0	6.9	+2.3	3	10	8.6	0.44	1.33
3	36.8	32.0	87.0	5.0	-0.7	15	00	7.3	-	
4	36.9	32.7	88.6	6.3	+0.9	5	50	7.8	0.62	1.90
5	36.8	32.6	88.7	6.7	+1.0	9	20	8.1	0.50	1.53
6	37.0	33.5	90.4	5.9	+2.7	9	30	8.0	0.61	1.51
7	35.6	32.0	89.8	4.4	+2.1	4	30	7.7	0.35	1.09

17. Lime/aluminium sulphate process of juice defecation :Setermination of optimum amount of aluminium sulphate.
In these tests 500 cos. of raw diffusion juice was used and the lime was kept at the optimum amount of 5 gms. except where mentioned, giving 15 minutes contact time at $75^{\circ} \mathrm{C}$. The aluminiam suiphate was given 5 minutes contact at the same temperature. Each reagent was added in 10 ccs. of water.

No.	Gms. Line	nins.	brix ${ }^{\text {d }}$	\% 3ugar	Purity	$\left\lvert\, \begin{aligned} & \text { Pur- } \\ & \text { ity } \\ & \text { Liff. } \end{aligned}\right.$		Fi	$\begin{aligned} & \text { Itra- } \\ & \text { on } \\ & \text { te } \\ & \underline{S} \end{aligned}$	$\begin{aligned} & \mathrm{pH} \\ & \text { Value } \end{aligned}$
Raw	-	-	34.2	30.3	88.6	-	-	-	--	4.6
${ }_{1}$	5	-	33.5	29.8	89.0	+0.4	5.6	3	10	0.9
2	5	1	33.2	29.6	39.2	+0.6	4.8	2	00	9.1
3	5	2	33.6	29.9	89.0	+0.4	5.3	2	45	8.5
4	5	3	32.8	29.3	89.3	+0.7	4.9	3	50	7.9
5	3.51	4	34.2	30.5	89.2	+0.6	4.7	3	20	7.8
6	5	4	33.6	30.0	89.3	+0.7	5.0	3	10	7.7
7	5	5	34.0	30.3	89.1	+0.5	4.9	4	20	7.6
8	5	6	33.6	30.0	89.3	+0.7	4.7	3	30	7.6

It seems probable that the optimum amount of aluminium sulphate required is 3 gms. per 500 ccs. of raw diffusion juice when using lime at the rate of 5 gms . per 500 ccs. juice. These amounts correspond to 0.43 per cent on weight of fresh beets for lime and 0.26 per cent for aluninium sulphate.
18. The use of Sulphur Lioxide ara Carbon Dioxide in the lime/ aluminium sulphate process of defecation.

These reagents were used to reduce the pH value of the treated juice to just above 7.0; the normal 5 gms. of lime and 3 gms. of aluminum sulphate were used on 500 cos. of juice.

NO. -1	Gms • Lime \qquad 10	$\begin{gathered} \text { Time of } \\ \text { Contact } \\ \text { ings. } \\ 15 \end{gathered}$	$\begin{aligned} & \text { Temp. } \\ & \frac{\text { Te }}{} . \end{aligned}$	$\|$cos. Juice 1000	
2				500	$\begin{aligned} & \text { B. J. Tron ro.1 treated with } \mathrm{SO}_{2} \text { at } \\ & 65^{\circ} \mathrm{C} \text {. to } 5.9 \text { pfi, then added } 3 \text { ges. Al, } \\ & 5^{\text {g. with } 5 \text { mins. contact at } 75^{\circ} \mathrm{C} \text {. }} \text {. } \end{aligned}$
3				500	F.J. from no.l treated with SO_{2} uritil just colourless to phenolphthalein.
4	10	15	75	1000	Filtered
5					F.J. from no. 4 treated with 3 gms. A1.S. with 5 mins.contect at $75^{\circ} \mathrm{C}$.
$\underline{6}$				500	F.J. Prom no. 4 treated with SO_{2} at $65^{\circ} \mathrm{C}$. to faint pink to phtialein. Then added 3 gas. Al.S. +5 mins. 75°
7				250	F.J. from no. 5 treated with SO_{2} at $65^{\circ} \mathrm{C}$. to 5.9 pH .
8	20	15	75	2000	Filtered
9				500	F.J. from no. 8 treated with CO_{2} at $65^{\circ} \mathrm{C}$. to 8.5 pH , then $3 \mathrm{gms}. \mathrm{Al.S}$. 5 mins. at 750 C .
10				500	```F.J. from no.8 treated with 3 gms. A Al.S. for 5 mins. at 75'0. Then CO to pH 7.0```

No.	$3 \mathrm{rix}{ }^{\circ}$	S Sugar	Purity	$\left\|\begin{array}{l} \text { Solour } \\ \text { Stamn } \\ 1003 r i x \end{array}\right\|$	eurity Diff.	Hi	$\begin{aligned} & 1 \text { tra- } \\ & \text { on } \\ & \text { te } \\ & \text { s. } \\ & \text { So } \end{aligned}$	pH Value	Remarks
Raw	37.4	32.8	87.7	-	-	-	-	4.8	
1	36.4	32.1	88.2	5.9	+0.5	7	00	9.8	Lime alone
2	37.2	33.0	88.7	2.4	+1.0	0	40	5.5	$\mathrm{SO}_{2}+\mathrm{AJ} .5$.
3	37.7	33.8	89.7	2.4	+2.0	0	55	5.5	$\mathrm{SO}_{2}+\mathrm{Al}$. 5 .
4	37.3	33.3	89.3	6.7	+1.6	7	15	9.9	Lime alone
5	37.7	33.6	89.1	4.4	+1.4	0	30	7.9	Lime + Al.S.
6	38.2	33.8	38.5	3.6	+0.8	0	25	7.3	$\mathrm{SO}_{2}+\mathrm{Al}$ S.
7	37.9	33.7	88.9	3.3	+1.2	0	25	6.7	$\begin{aligned} & \text { LimetAl.S.t } \\ & \mathrm{SO}_{2} \end{aligned}$
8	37.8	33.7	89.1	6.7	+1.4	7	00	9.9	Lime alone
9	38.2	34.1	89.3	3.7	+1.6	0	35	7.2	$\mathrm{CO}_{2}+\mathrm{Al} . \mathrm{S}$.
10	37.1	33.2	89.5	3.7	+1.8	0	30	7.0	Al.S. $+\mathrm{CO}_{2}$
11	37.1	32.8	88.4	3.5	+0.7	0	30	6.9	Hepeat of 7.
12	36.5	32.6	89.3	4.4	+1.6	0	25	7.3	Repeat of 10.

The filtered juices produced by the above methods were very satisfactory in comparison with those from previous tests. The use of carbon dioxide gives juices almost as good as those from sulphur dioxide treatment. It was noticed that with the carbonated juices there is always a dark shadow in the buice when viewed in a boiling tube, whereas with sulphited juice the tint seems to be more a monochromatic yellow.

Hest with filtration rate of water and a pure sucrose solution through the standard filter used in the purification teats.

A solution of pure sucrose was made at $36.57^{\circ} \mathrm{Brix}$, and 500 ccs . of this solution was heated to different temperatures and the time of filtration of 50 ces. noted.

Sugar solution :-		Brix		\% Sugar		$\frac{\text { Purity }}{98.17}$	
			36.57		. 90		
Results:- (1) Water							
Temperature ${ }^{\circ} \mathrm{C}$.							
	30	40	50	60	70	80	90
Time of (a)	50	40	35	33	31	28	25
Hiltration(b) for 50 ccs.	48	42	35	31	31	28	25
Average	49	41	35	32	31	28	25

(2) Sugar Solution

			mp	e			
	30	40	50	60	70	80	90
Time of (a)	30	24	22	20	18	17	15
Filtration (b)	32	24	22	18	19	18	15
Average	31	24	22	19	18.5	17.5	15

This test was designed to serve as a basis for comparison with the raw juices used in the defecation experiments as regards rate of filtration. It was found that the sugar solution Brix° had risen to 41.2 arter the test at $100^{\circ} \mathrm{C}$ 。

Consider a funnel of cone angle 2α, and height h from cone apex.

An element as will have area alkyds,
where $\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sec \alpha$
Thus $d s=2 \pi t a n d s e c a d x$
The force on the element $=$ pods were
$p=P(n-x)$, and the total force on the cone

$$
\begin{aligned}
& =\int_{0}^{h} \rho(h-x) \cdot \pi \tan \alpha \sec x d x \\
& =\quad 2 \pi \rho \tan \alpha \sec \alpha\left[\frac{h x^{2}}{2}-\frac{x^{3}}{3}\right] \\
& =-\frac{1}{3} \pi \rho^{3} \tan \alpha \sec \alpha
\end{aligned}
$$

Total surface area of the cone $=\int_{0}^{h} d s=2 \pi t a n o s e a c h^{2}$
Thus the mean pressure per unit area, $\bar{p}=\frac{1}{3} \rho \mathrm{~h}$.
Example:- In a 6 inch funnel (diameter) with 60° sides : $h=4.5^{\prime \prime}$, and in filtering $30^{\circ} \mathrm{Brix}$ juice (spier. $=1 \cdot 13$)
the pressure, $p=\frac{1}{3} \times 1.13 \times 4.5 \times 0.0361$

$$
=0.061 \text { lbs. per sq. inch. }
$$

(AI inch column of water $=0.0361$ lbs., per sq. inch)
19. The use of oslciua phosphate se neatralising agent in the lime/ aluantum sulphte arocess of aetecation.

Lime was applied at the rete of 5 gna. per 50 ces. raw diffusion juice with 15 ainutes contact et $75^{\circ} \mathrm{C}$. gna aluminima sulphate at 3 gis. per 503 cea. at the same temperature, allowing 5 minuter contact. Tha varyine quantitiea of phosphete were gllowad 5 minutes coatact at $75^{\circ} \mathrm{O}$. , the treated juice then beine flltered.

: B 。	lase. ajamed ada	Briy ${ }^{\circ}$	Sougar	Pucity	$\left\|\begin{array}{l} 0.0 n \\ 0.6 \mathrm{man} \\ \operatorname{ergh} 0^{2} \end{array}\right\|$		$\begin{aligned} & 1 \text { tr- } \\ & \text { on } \\ & 5 . \\ & \hline \end{aligned}$	Purity \qquad	ph Value
Raw Jce.	121	39.8	34.9	37.7	-	-	-	-	4.8
1	"	37.9	33.6	88.6	7.9	5	10	+0.9	9.9
2	2.3	39.3	35.4	88.9	5.0	12	0.3	$+1.2$	7.8
3	1.5	39.8	35.5	89.2	4.2	17	0.	+1.5	7.7
4	2.0	40.5	35.9	88.5	4.0	17	15	+0.8	7.6
5	1.0	39.9	35.3	88.5	4.7	19	03	+0.8	7.9

In all teste the lime was added in 10 ces. of water ; in wos. 2 and 5 the difference lay in eduing the A. S. and phosphate solid in No. 2 and in 10 cee. water arch in Mo. 3.

These reaults were sutisfactory with regard to colour and purity of the final juices, bat the filtration rates wexe slow, and the phosphate is a relatively expensive reagent. The sarae results are achieved by sulphur dioxide or carbon dioxide with very much better filtration. This test emphasises the well-known tendency of the phosphate defecants to give close-grained, slow-settling, andfiltering
20. The effect of juice density in defecation by the lime/aluminium sulphate process.

The effect of lime, and of lime and aluminium sulphate were observed on the same raw diffusion juice diluted from $40^{\circ} \mathrm{Brix}$ to 30° 20°, and $10^{\circ} \mathrm{Brix}$, the weights of reagents used being calculated in proportion to the amounts of solids in 500 ccs., for each juice.

Brix ${ }^{\circ}$	Lbs.Sol1ds per Gallon	Gms. Lime used	Gms. Al.S. used	Example $30^{\circ} \mathrm{Brix}$
40	4.72	5.00	3.00	Lime $=$
30	3.38	3.58	2.16	$\underline{5 \times 3.38}$
20	2.17	2.30	1.40	Al.S. $=$
10	1.04	1.10	0.67	$\frac{3 \times 3.38}{4.72}$

All tests were made at $75^{\circ} \mathrm{C}$. with 15 minutes contact time for lime, and 5 minutes for aluminiun sulphate : the reagents were added each in 10 ces. of water.

No.	$\left\lvert\, \begin{aligned} & \text { Gms. } \\ & \text { Lime } \end{aligned}\right.$	$\left.\right\|_{\mathrm{Gms} .} ^{\mathrm{Gm} . \mathrm{S} .}$	Brix ${ }^{\circ}$	\%Sugar	pur-	Colour ${ }^{\circ}$ stam. $10^{\circ} \mathrm{Bx}$.	$\begin{aligned} & \mathrm{Fi} \\ & \mathrm{at} \\ & \mathrm{Ra} \\ & \mathrm{M} \end{aligned}$	1 tr- ion te (S.	$\left\lvert\, \begin{aligned} & \text { Pur- } \\ & \text { ity } \\ & \text { Diff. } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & p \mathrm{H} \\ & \text { Value } \end{aligned}\right.$	Kemarks
$\begin{aligned} & \text { Rew } \\ & \text { Jce } \end{aligned}$	Nil	Nil	40.1	35.3	88.0	-	-		-	4.7	Origin
1	6	Nil	41.0	36.5	89.0	6.8	14	00	$+1.0$	6.3	ime
2	5.58	2.16	40.6	36.1	0	5.6	9	10	+1.0	7.2	$\begin{gathered} \text { Lime \& } \\ \text { Al.S. } \end{gathered}$
3	Nil	Nil	30.4	26.7	87	-			-	4.7	Raw Jee
4	3.58	N11	31.9	28.3	88.7	6.8	4	50	+0.	8.6	lime Alone
5	3.58	2.16	31.5	28.0	88.9	7.3	4	10	+1.1	$\% .1$	Lime \& Al.S.
6	Nil	Mil	20.7	18.3	88.4	-			-	4.7	Raw
7	12.30	Nil	20.9	18.5	88.6	9.3		110	+0.1	2.0	Lime alone

No.	Grs. Jime	Gms. Al.S.	Brix ${ }^{\circ}$	\% Sugar	$\begin{aligned} & \text { Pur- } \\ & \text { ity } \end{aligned}$	Colour $10^{\circ} \mathrm{Bx}$.		$\left\lvert\, \begin{aligned} & \text { Pur- } \\ & \text { ity } \\ & \text { Diff. } \end{aligned}\right.$	pH	Remarks
8	2.30	1.40	21.4	19.0	88.8	7.3	150	+0.4	1.4	
9	131	nil	10.5	9.3	88.5	-	-	-	4.7	Raw Jce.
10	1.10	Nil	11.4	10.2	88.5	9.3	100	+0.1	8.7	Lime
11	1.10	0.67	10.9	9.7	90.8	4.8	040	+0.3	7.7	
1 12.	10.00	3.00	41.3	36.5	88. 4	6.			. 7	Al.S.
								+0.1		Al.S

The raw juice used in this test was of poor quality : even with the lime quantity doubled the result was not good, the colours being darker than usual. The filtration rate increases apparently in di. rect ratio to the dilution, but the colour was better at $40^{\circ} \mathrm{Brix}$ ㅇ than at 20 or 30°.

Comparison of Piltration Rates:-

The apparatus used was similar to that shown in Pig. 35. The paper filter a is held fast at its upper edge by the covers \underline{b} and \underline{c}. The jacket \underline{d} serves as heat insulator. The juice to be filtered is placed in vessel e whicn is closed by stopper f on rod g.This rod is surrounded by a hollow spindle h to which two stirrers i and i^{\prime} are fixed.

(Reprodivecel with permidesion from, z. Ver. Apparatus for determining filterability of sugar juices. The cone \underline{k} serves to distribute the
21. Variations in the method of application of aluminium sulphate in the lime/aluminium sulphate process of defecation.

The juice used in this test was daris and of poor quality: 500 ccs. were used for each test with 10 gms. of lime added in 20 ccs. of water and 15 minutes contact time. This gave 0.89 per cent lina on Presh beets, and did nit give a finished juice of better colour. The aluminium sulphate was given 3 minutes contact time,

No.	$\|\mathrm{Gms.}\|$	$\left\lvert\, \begin{aligned} & \text { Temp. } \\ & \mathrm{C} .\end{aligned}\right.$	Brix ${ }^{\circ}$	/sugar	$\left\lvert\, \begin{array}{ll} \text { Pur-poo } \\ \text { ity } & \\ \text { St } \\ & 10 \end{array}\right.$	$\begin{aligned} & \text { Colour } \\ & \text { Stamer } \\ & 10 \text { obrix } \end{aligned}$		$\begin{aligned} & 1 \operatorname{tr}-1 \\ & \text { ion } \\ & \text { te } \end{aligned}$	$f_{\text {palue }}^{\text {pil }}$	Remarks
Raw Jce,	-	-	31.8	28.0	88.3	-	-	-	4.5	-
1	Wil	75	31.3	27.8	88.8	6.2	4	30	10.9	Lime alone
2	3	75	30.8	27.4	89.0	3.9	4	00	8.3	standard procedure
3	3	95	32.5	28.7	88.4	5.3	5	20	7.7	Limed at 75°
4	3	75	31.6	28.0	88.6	5.1	5	00	7.6	Lime is Al.S.
5	3	95	32.1	28.5	88.8	5.4	4	55	7.4	odded together

In test inc. 5 the lime and aluminium sulphate were added together at $95^{\circ} \mathrm{C}$.

It is clear from these tests that this beet juice containing relatively large amounts of reducing sugars cannot be treated at a temperature much above say $80^{\circ} \mathrm{C}$. Without attack on the reducing sugars and consequent darkening of the colour. The addition of the reagents together has not given so good a result as the usual method of separate additions. The increased line used in this test was necessary with the poor quality juice, and this shows the need for cautious regulation of the amounts of reagents used in proportion to the quality of the juice.
22. Use of aluminium salts in defecation after liming:-

If this series of tests 50 cos. of raw diffusion juice was used for each test, and 5 gins. of lime was added giving 15 minutes contact at 75°. Three gms. of each aluminium salt was used with 5 minutes contact at 75°., except in the case of the powdered metal where 10 minutes contact was allowed.

The best result was obtained with the carbonate, but in general no great advantage is visible with any of these salts in comparison with aluminium sulphate. The juice from silicate treatment was dim, and that from nitrate very dull in appearance.

Piomuer er	$\begin{gathered} \mathrm{YILDD} \\ \mathrm{LBS} . \end{gathered}$	SOLIDS	$\begin{aligned} & \operatorname{sic}- \\ & \operatorname{cose} \end{aligned}$	$\left\|\begin{array}{l} \% \\ \text { QROU } \\ \text { OUGAR } \end{array}\right\|$		$\begin{aligned} & \text { GRGB } \\ & \text { arganco } \\ & \text { מampar } \\ & \text { by diff.) } \end{aligned}$	$\left\lvert\, \begin{aligned} & \% \\ & \text { LrALE } \\ & \text { SALTS } \end{aligned}\right.$
Fresh seet	400	23.55	70.91	1.27	2.91	7.12	0.17
Lried Cossettes	100	92.16	68.14	0.87	3.18	8.07	0.55
Diffusion Juice	160	36.22	87.10	1.56	2.02	9.32	0.44
Filtered Limed Joe	. 158	36.12	87.50	1.41	2.13	3.96	0.94
Filtered Juice after $\mathrm{Al}_{2}\left(\mathrm{SU}_{4}\right)_{3}$	160	35.79	87.80	1.42	2.79	7.99	0.78
Filtered Juice after sulphitation	160	35.79	87.44	1.29	2.71	8.56	0.39
Filtered Juice after Carhonatatn.	. 160	35.86	89.82	1.33	2.68	6.17	0.75
First massecuite	63.5	91.00	89.80	1.46	2.65	6.09	0.43
First Syrup	31.1	82.00	79.49	3.63	4.98	11.90	0.97
First Sugar	32.4	0.02^{x}	99.85	0.02	0.07	0.04	--
Second Massecuite	27.2	93.20	24.49	3.92	3.17	8.42	--
Second Syrup	15.0	82.00	67.24	6.98	6.20	19.58	--
Second Sugar	12.2	1.00^{x}	97.00	0.75	0.80	1.45	--
Third Massecuite		94.00	75.20	5.73	16.60	11.47	--
Third Syrup (Final Molasses)		86.80	58.80	7.80	10.20	23.20	--
Third Sugar		98.00	94.20	1.33	1.43	3.04	--
Waste Pulp	350	12.25	3.51	--	--	--	
Iried Pulp		88.80	2.25	--	7.23	--	--
Dried Pulp (Ordinary Process)		86.52	0.92	-	4.32	--	-
(Siltered Juice	155	37.00	87.30	1.49	2.24	8.97	0.65
F.Jce.(Dble. Lime)) 160	35.92	87.14	1.42	4.09	7.35	2.53

HAALYSES OF P YODUCTS FRON EXPERIMGNTAL CLAELPLCATION

PRODUCT $\left\lvert\, \begin{aligned} & \text { Soun } \\ & \mathrm{P}_{1}\end{aligned}\right.$	$\begin{gathered} \% \\ \text { SOLUBT } \\ \text { E.OLLH } \end{gathered}$	$\left\lvert\, \begin{aligned} & \% \\ & \text { pago } \\ & \text { pacisi } \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \% \\ \text { pento } \\ -3 \% \end{gathered}\right.$	$\begin{gathered} \% \\ \operatorname{mon}_{2} \\ \mathrm{~N}_{2} \\ \hline \end{gathered}$	$\frac{\%}{A_{1}}$ N_{2}	$\begin{gathered} \mathrm{SO}_{2} \\ \text { P.P. } \mathrm{P} . \end{gathered}$	$\left\lvert\, \begin{aligned} & \mathrm{SO}_{3} \\ & \text { P.P.H. } \end{aligned}\right.$
Erewa seet	trace	4.67	S. 2.	0.64	2.19	below 1	5.75
Dricu usset	0.33	5.59	6.2	1.37	7.31	90	21.2
Diffusion Jce.	0.11	1.38	0.39	0.77	3.56	110	7.4
piltered Limed Juice	0.019	--	0.27	0.80	5.00	69	0.4
piltered see. after $\mathrm{Mi}_{2}\left(\mathrm{SO}_{4}\right)$	3 Wil	Nil	0.20	0.75	4.69	56	0.9
Filtered Jce. after SO_{2}	Nil	Nil	0.31	0.67	4.19	(0.33\%)	0.8
Filtered Jce. After Carbin.	Hil	Nil	0.26	0.6\%	4.19	110	0.8
First il/cuite.	trace	Nil	0.11	0.68	4.25	75	0.9
First wuear	$\underline{11}$	H11	Nil	--	--	± 6	--
Eirst Syrup	trace	Wil	trace	1.10	6.88	42	1.6
second i/cuite	trace	Vil	0.20	1.20	7.50	20	1.4
Second syrup	Nil	Nil	0.33	1.63	10.18	46	2.1
Second Sugar	Mil	Nil	Nil	--	--	22	--
Third $4 /$ caite	411	Nil.	0.3 .5			73	2.0
Third Syrup (Pinal molasse	$\left.\right\|_{e s)} \text { trace }$	Wil	0.22			60	3.6
Third Sugar	Nil	Nil	Wil			21	0.4
Waste pulp	2.69	13.55	17.96	1.06	6.63	--	--
Tried Pulp	0.44	17.57	18.47	1.98	5.13	75	--
Dried Pulp (ord.process)	1.96	21.84	23.58	1.96	12.25	--	1.4
Filtered Jce. (Solid Liming)	Nil	Nil	0.51	0.70	4.38	135	0.5
Filtered Jce. (Double Lime)	Nil	Nil	0.36	0.67	4.19	84	0.6

Ammoniacal Nitrogen:- Fresh Beet, 0.29% : Dried Cossettes, 0.20% : Diffusion Juice, 0.20%.

BaLAMOE OM ASH ANL INVETT SUGAR IN EXPERIMENTAL DEFTCATION.

PGODUOT	$\begin{gathered} L B S . \\ \end{gathered}$	Pid CENT SULIDS	LBS. LiY	$\left\|\begin{array}{c} \text { PER } \\ \text { CGTT } \\ \text { ASH } \\ \text { DNYY } \end{array}\right\|$	PRR CEMT abuocing BUGAZS ON DRY	$\begin{aligned} & \text { LBS. } \\ & \text { DEX } \\ & \text { ASHI } \end{aligned}$	LBS. DRY ReDUCIMG SUGARS
DRIED OUS	$\begin{aligned} & \text { wTPES } \\ & 100 \end{aligned}$	92.16	92.16	3.18	0.87	2.93	0.80
Refob	160	36.22	58.0	2.02	1.56	1.17	0.90
$\begin{aligned} & \text { PJELIZ } \\ & \text { JULCZ } \end{aligned}$	160	35.86	57.4	2.68	1.33	1.54	0.76
Pitist M/OUITE	63.5	91.00	57.8	2.65	1.46	1.53	1.06
SRETP	31.1	82.00	25.5	4.98	3.63	1.27	0.93
FIROT SUGAR	32.4	99.98	32.3	0.07	0.02	0.02	0.01
GECOMD H/ UUITE	37.2	93.2	34.7	3.17	3.92	1.10	1.36
Second syzup	20.5	82.00	16.8	6.20	6.98	1.04	1.17
SECOND SUGAR	16.7	99.00	16.5	0.80	0.75	0.13	0.12

This balance shows some discrepancies, but on the whole is probably as close as could be expected for the experimental conditions in a pilot plant using relatively small quantities of material. Part of the second crop sugar was used as a footing for the final boiling made, so that the balance is not complete. The yield from the first massecuite was approximately 51 per cent crystals, and
from the second massecuite 45 per cent.

FIGURE $30-$ "SPEKKER" PHOTOFIECTRIC ABSURPT IOMETER.

_FIGURE 31.

The Stamer Culorimeter.

The original Stammer colorimeter was described instamer's "公uckerfforikation", p.747,1e8\%. Discs of coloured glass were used to give a reproducible colour standard, and a value of 100 was given by Stamer to a solution which matched the standard dise for a scale reading of 1 min. The colour value of any liquid in stamer degrees is found by dividing 100 by the reading of the seale in ma, this colorimeter was used in all the defecation bests described in this work, and the Stamer glasses were checked by a rethod due to Jandera (Z.Zackerind.cechoslovak. Rep.,57,44,1932/33). This consists of comparing the glass discs with a standard solution which has practically the same absorption curve as the glass. The solution is made by dissolving 1 gm. nickel amoniun sulphate, $\mathrm{NiSO}_{4} \cdot\left(\mathrm{HHI}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{~K}_{2} \mathrm{O}, 1.2$ gms. cobolt ammondum sulphate, CoSO_{4}. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{HI}_{2} \mathrm{O}$, and 0.019 gm .potassium dichromate in dust-free distilled water, and diluting to 100 cos. The A and Co salts are first recrystallised from water and dried in dust-free air on a glass plate. The recrystallised potassium dichromate is aried at $150^{\circ} \mathrm{C}$. These salts are stored in glass stoppered bottles, and made fresh as required. The standard solution has a colour of exactly 5° Stanmer, that is, 1° Stammer is defined by a thickness of 20 mino of the soletion. If a normal glass to be checked is found to be matched in the colorimeter by say, 22.8 ma. of the solution, then all results obtained with this glass must be multiplied by $\frac{22.8}{20}$; or 1.14 , to convert the observed degrees into standard stammer degrees. A complete spectrophotometric analysis of the normal Stamuer glass is giver oy Spengler and Landt (2.ver.d.zucker-Ind.

-OO FIGURE $33:$ PHVALUES IN SIMPLE CARBONATATION DOO

- JUICE DEFECATION TANK-

SECTIOM5.

PAFT 1 : Summary of Anslytical Tethodsused for the determination of the apoarent sucrose (polarization) and reducing sugars in fresh beets and Dried Cossettes.

1. Sampling :
2. Polarization :
3. Reducing sugars.

NOTE:- The methods of analysis for polsrization and reducing sugars in fresh beets and dried cossettes have already been given In brief outline in section 1 (Composition of the Sugar Beet).

In the present section these methods are described in detail.

METHODS OF ANALYSTS

Analysis of fresh beet slices :- Sampling:-

In a plant working over the full 24 hours of the day the perfect method of sampling would be the taking of a sample almost continuously, abovt every 3 minutes, with removal of the average sample to the laboratory every two hours. Properly carried out, this method is beyond criticism. In practice, the sample may be taken every quarter of an hour, and removed to the laboratory at once. These samples are composited and analysed every hour, taking care to mix thoroughly and to take smaller lots from different parts of the pile. The average sample is passed through a mincer of the Russwin or Universelle type (Gillet) with exterior knives, taking care that no juice is expressed from the sample.

Polarisation :- The normal veight, 26 gms. is weighed out in a tared nickel capsule and transferred to a 200 ces. Kohlrausch flask with distilled water. The necessary volume of neutral lead acetate solution (or of Lead subacetate solution) is added to the flask before adding the cossettes. Usually $5-7$ cas. will be sufficient. The volume in the flask is made to $160 / 170$ ccs. with warm sugar-free water, and the flask is transferred to a thermostatically controlled water-bath regulated in advance to $88^{\circ} \mathrm{C}$. The flask is left in for 30 minutes, and then withdrawn and the volume completed to the mark without cooling. The flask is replaced in the bath and digested for a further 30 minutes. It is now cooled, froth removed by application of ether vapour, and the volume completed. After shaking well the liquid is filtered with addition of a drop of glacial acetic acid if neccessar

Analysis of Driod Cossettes :- Sampling:-

Samples are collected along the breadin of the discharge end of the Drier (for drying control), taking care to sample the depth of the layer as well. These samples should be taken at quartex-hour intervals. During extraction control the samples are taken from the conveyor belt bringing the cossettes from storage.

The sample is thoroughly mixed and a representative portion ground in an tmpact type mill with a $3 / 8$ inch screen to yiold about 200 gms . as sample. The Harrison-Carter mill with four beater arms is satisfactory.
polarisation:- The estimation is carried out exactly as described for fresh beet, but taking a half-normal weight (13 gms.) Determination of Reducing Sugars in Fresh beet and Dried cossettes.

The weights used are 60 gms . for fresh beet and 15 gms. for dried cossettes, taking marc volume at 2.8 ces. and 0.7 ce. respectively. If the marc volume allowance be included in the weight the amounts taken will be 59.2 for fresh beet, or 14.8 gms for dried cossettes. Digestion is made in each case exactiy as for the polarisation and preferably at the aame time, but with the use of neutral lead acetate as required. The final filtrate obtained is used for the reducing sugar determination by the Bertrand-Saillard method, 100 ces. being deleaded whth potessium oxalate (dry), and filtered. For the actual estimation 50 ccs . of the deleaded filtrate is placed in a 150 ces. conical flask, 20 ces. of mixed Bertrandsaillard Copper reagent added, and the whole heated for 22 minutes exactly in a water bath maintained at $62-63^{\circ} \mathrm{C}$.

The filtrate, which mast be perfoctly clear, is polarised in a 400 num. tube at close to $20^{\circ} \mathrm{C}$.

The Digestion bath used should be cylindrical, preferably of copper, and fittod with a constant level device arranged so that the water level is always a lititle above the gauge mark of the flasks. The bath should hold atleast five flasks, and will have a perforated tray in the bottom, on which the flasks rest. The thermostatic control should keep the temperature of the bath within $\pm 0.5^{\circ} \mathrm{C}$. of $88^{\circ} \mathrm{C}$. Marc Volume:- This was taken as 1.2 ces. per Mormal woight of fresh beet. The final volume in the flasle must therefore be 201.2 ccs. Alternatively this allowance may be made in the Normal weight and the volume made to 200 ccs.-11.e. 25.7 gms . weighed instead of 26 ems. or 12.85 in place of 13 , or 51.4 in place of 58 gms. according to the weight required for a particular estimation.

Notes:- The saccharimeter zero point shoula be checked frequently with a standard quartz plate reading around 35°, and the instrument should be accurate to 0.05°. It is not recommended to use tubes longer than 400 mm. , as in practice the reading errors will outweigh the additional accuracy due to the longer tube.

The first few drops of filtrate should be thrown away and all the remaining liquid filtered and mixed before filling the tube, taking every precaution to avoid evaporation. A very little Analytical grade Celite (kieselguhr) may be used to aid clarity in difficult filtrations : this must be added after completion to volume.

The use of Haynes special volumetric flasks carrying a lateral tube of small diameter is convenient for making to volume when there ir

SECTION 5. METHODS OF ANAIYSIS.

PART 2 : Determination of Major Constituents other than Water.

Polarisation
Sucrose
Reducing Sugars

Part 2 :- Determination of gajor Constituents other than Tater : MCTOMS OP OLGREMTON:-
Expression : Extraction : Digestion :

- Application to Dried Beet Cossettes.

Adsorption of sucrose by the Marc.

EXPLSLGTAL:-
Testis on polarisation of Drach Dects and Dried Cossettes :
Experiments on the influence of tenperature in hot digestion of :1. Presh Begts : 2. Dried Cossettes :

Comparison of Metnods for tho polarisation of Gagar Beets : Consideration of gesults.

Experiments on the determination of the Polarisation and ReducingSugar content of Iriee 3eet cossettes:-

1. Pffect of size of material and mode of Digestion :
2. Cold ∇. Hot Digestion for leducing Sugars estimation :
3. Influence of concentration on Polarisation :
4. Extended Tests on the influence of concentration on polarisation :

The Bertrand-Saillard Method for Letermination of Feducing Sugars : Application to Dried Beet Cossettes :

Experiments on the Determination of Reducing Sugars :

1. Digestion with $\mathbb{N} / 28$ sodium IIydroxide :
2.Variation of Digestion c onditions :
2. Use of different filteting media :
3. Check of method using Standard Invert Sugar Solution :
4. Use of Neutral and Basic Lead Acetate :

GUL POLARISATLON OF GUGAT BEUTS AMD SUGAR PGOLUTSS.

The readings of the saccharimeter scale indicate percentage of sucrose only if other constituents are without effect upon the reading, and results obtained with impure materials are thus more correctly expressed as degrees "polarisation".

The clarifying agents used way have considerable influence upon the reading and must be selected with great care and used in ainimum amount which will ensure sufficiently rapid filtration, a bright filtrate, and the smallest possible error due tofits use. Methods of polarisation:-

In polarising plant naterials the inethods in general use are expression, extraction, or digestion. The material should be in a very finely divided condition for all of these.

In prinsiple the method of expression is the most accurate since it eliminates errors due to the uneven nature of the juice, the presence of colloid water, or the adoption of a fixed figure for marc content. The main difficulty with this method is to ensure that the same pressure is used in all cases.

The extraction method using hot water is liable to cause solution of optically active gums, hemi-celluloses, and pectic acid, leading to considerable errore in the polarisation taken as sugar. This particular error is eliminated by alcoholic extraction, since these substances are relatively insoluble in ethyl alcohol. The alcoholic method has been regarded as giving an accurate estimate of the sugar in a plant substance, but Herzfeld long ago
admitted that its absolute accuracy had not heen proved. It is not now regarded as the standard method. The principal errors which may arise in alcoholic extraction are the effect of alcohol on the polarisation of the non-sugars present, and the effects on both the sugars and the non-sugars of the prolonged period of heating, and of the excess lead and acetates formed in the clarification of the solution. Alcoholic extraction normally gives lower results than obtained by expression of the juice, and it is also tedious and long requiring fragile apparatus. Its use as a standard for judging the results by other methods has been abandoned on these grounds by some continental countries.

Digestion method :- These may be regarded as a combination of the methods of extraction and expression, and are generally rapid. The principle is to digest a weighed amount of pulp with a large excess of water or alcohol for a tome long enough to ensure complete difiusion of the sugar throughout the liquid. The volume is then made up at standard temperature after clarifying, and the solution filtered and polarised. With hot digestion a coarser pulp may be used but the time required is greater : this method is often used in routine control. Cold digestion methods are well adapted for rapid testing - e.g. in beet selection trials or the polarisation of beets entering the factory when hundreds of samples may have to be analysed each day.
Dried Beets :- These are high in both sugar and marc content. Spengler, Paar, and Hack (Z. verein Deut. Zuck. Ind., $87,594,1937$)
have found that the marc volume of dried beets upon digestion with water is 4.5 ccs . per Normal weight, and the marc volume for dried cossettes from the Steffen hot juice extraction process is 9.6 ccs. Extraction or digestion methods are probably not suited for accurate work with dried products, since caramelisation and inversion of sucrose may occur during the drying process.

The method adopted for dried beet polarisation should employ not more than a half-normal weight in a 200 ccs. flask with allowance for marc volume, and making the reading in a 400 mm . tube Using Spengler's figures (ibid.) for marc volume, the volume would be made to 202.25 ccs. It is generally more convenient to take a smaller normal weight (12.86 gms . in place of $13 \mathrm{gms}$.) rather than have flasks marked specially at 202.25 ccs. AUSOKPTION OP SUCROSE BY THE MARC: : Martraive, (Bull. Assoc.Chim., 52, 775,1935: $53,609,1936: 55,441,1938$) has shown that hot aqueous digestion of a beet pulp with and without added sucrose gave a lower result than that expected where sucrose had been added, and ascribed this to adsorption of sucrose by the marc. It is also possible that this may be due, at least in part, to the dehydrating effect of sucrose on the marc. It has also been suggested that the lead subacetate added causes shrinkage of the marc hydrate by withdrawing colloid water. Beets with 3.96 per cent dry marc were found to have 0.12 gm. colloid water, and beets of 5.47 per cent marc contained 0.20 gm . colloid water. It would appear therefore that a normal weight of average beet pulp will contain about 0.15 gm (or cc.) of colloid water.

Sests on the Determination of the polarisation of fresh beet and
Dried Cossettes:- Using various weights and volumes, the standard hot digestion procedure was followed.

seight teiken Gms.	Volume of Plask Ces.			$\begin{gathered} \% \\ \text { Polarisation } \end{gathered}$
6.5	100	0.3	7.8	15.6
13.0	10.)	0.6	15.6	15.6
26.0	100	1.2	31.2	15.6
26.0	200	1.2	15.8	15.8 x
52.0	200	2.3	31.4	15.7
26.0	300	1.2	10.6	15.8
52.0	300	2.3	21.0	$15.7 \times$

TIES COSELTEET.				
6.5	100	1.2	30.4	60.8
13.0	100	2.3	60.2	60.2
6.5	200	2.2	15.3	61.2
13.0	20.	2.3	30.7	61.4 x
26.0	200	4.6	61.1	61.1
13.0	300	2.3	20.4	61.2 x
26.0	300	4.6	40.4	60.6
39.0	30%	6.9	60.2	60.2

The tests marked ' x ' appear to give the most satisfactory results : there is much wider discrepancy in the dried cossettes, and the
ratio of water to oossettes in the flask is obviously important.
Test on the inclusion of the marc allowance in the weight taken.

BTESH BEET:

Weight taken Gms.	Volume of flask Ces.	Marc Allowance per NJ wt.	Neutral Lead Acetate added Ccs.	Reading 400 mm. tube	$\begin{gathered} \% \\ \text { Polar- } \\ \text { isation } \end{gathered}$
12.85	200	1.2	3	11.2	22.4
12.85	200	1.2	3	11.2	22.4
25.70	200	1.2	5	21.2	21.2
25.70	200	1.2	5	20.8	20.8
51.40	200	1.2	9	42.2	21.1

 1. Prech Peet : Scries (1) :- 3 Horma weichte in 300 cos. Plante

Tempe chure ${ }^{\circ} \mathrm{C}$.	$\frac{\mathscr{R}}{\text { (polarimation) }}$	$\begin{gathered} \text { o } \\ \text { Reducing } \\ \text { Sugers } \end{gathered}$	Averace Polarisation	$\begin{gathered} \text { Averize } \\ \text { Reducing Sugars } \end{gathered}$
80	$\begin{aligned} & 14.8 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.155 \end{aligned}$	14.90	0.153
85	$\begin{aligned} & 15.0 \\ & 15.1 \end{aligned}$	$\begin{aligned} & 0.166 \\ & 0.167 \end{aligned}$	15.05	0.166
90	$\begin{aligned} & 15.1 \\ & 15.15 \end{aligned}$	$\begin{aligned} & 0.181 \\ & 0.184 \end{aligned}$	16.12	0.132
95	$\begin{aligned} & 15.2 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.190 \\ & 0.192 \end{aligned}$	15.22	0.191

\% Sugar (Polarisation)				Senple 4
Temp. O.	Sample 1	Sample 2	Semple 3	
Alcoholic	15.0	14.7	10.3	16.0
70	15.0	14.3	10.2	16.2
75	15.4	15.1	16.3	16.1
30	15.3	15.0	16.3	16.2
85	15.3	15.0	16.4	16.3
90	15.4	15.1	16.3	16.4
95	15.4	15.3	16.4	16.4

The alcoholic methoc wes used as comparison for series (2) employing the standard Scheibler alcohol extraction process (see Browne and Zerban, "Sucer Analysis" 3rd, \#d. 1941, p.353.)

Tomp	$\begin{gathered} \frac{\text { Sugar }}{\text { (Polarisation) }} \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Reducing } \\ \text { Suecrs } \end{gathered}$	Average \% polarisation	
80	$\begin{aligned} & 60.2 \\ & 60.0 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.32 \end{aligned}$	60.10	1.35
85	$\begin{aligned} & 60.3 \\ & 60.2 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 1.33 \end{aligned}$	60.25	1.36
30	60.0	$\begin{aligned} & 1.40 \\ & 1.30 \end{aligned}$	60.0	1.38
93	$\begin{aligned} & 60.4 \\ & 00.4 \end{aligned}$	$\begin{aligned} & 1.42 \\ & 1.41 \end{aligned}$	60.4	1.41

Conclusions end notes:- The method used was the stenderd hot digestion method (seo 2.208). The reducing sugar consent tends to increase as tho temperoture is roised, and there is a similar tendency to increase in the polarisation. A temperature of $70^{\circ} \mathrm{C}$. appears to be too low : there is naximum extrection at $95^{\circ} \mathrm{C}$.

Comparison of methods for the nolarisation of sugar beets:-

Provod methods of preparing samples for analysis have shown that provided there is thorough disintegration of the cellular tiscue and no lose by leakoge of juice or by evaporation, almost any of the numerous raspern, shredcers or graters may be used. The Keil-Dolle segment rasp in the standerd machine used in beet sugar factories in this country, the U.S.A., snd much of continentol Surope. Some comperisons of methods of preparation and snamyis are hore shown :-

SALPLT	3. T0 DOCTE		$\frac{\mathrm{SLCO}}{}{ }^{-}$			IIL	SIMCED	S.an
$\begin{gathered} \text { 1. } 1 \mathrm{ij} \mathrm{gh} \\ \text { Low } \end{gathered}$	$\frac{10.1}{15.3}$	$\begin{aligned} & 16.0 \\ & 10.7 \end{aligned}$	$\begin{array}{r} 15.3 \\ 15.7 \end{array}$	10.1	$\begin{aligned} & 10.7 \\ & 1.6 \end{aligned}$	$\frac{10.1}{10.4}$	15.7	
	$\frac{13.1}{17.5}$	$\frac{13.2}{17.6}$	18.0 17.5	13.0	12.0	$\frac{13.3}{13.1}$	27.6	18.6
	$\begin{aligned} & 18.0 \\ & 10.0 \end{aligned}$	13.0 14.9	17.9	17.8	$7 \% .4$ 10.3	13.6 17.9	1\%.5	13.3
$\begin{gathered} \text { S.Higa } \\ \text { Lowion } \end{gathered}$	$\begin{aligned} & 13.0 \\ & 14.4 \end{aligned}$	$\frac{17.2}{14.2}$	$\begin{aligned} & 17.7 \\ & 1<.1 \end{aligned}$	13.0 14.3	$\begin{aligned} & 13.6 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 14.3 \end{aligned}$	17.3	13.3
$\begin{gathered} 5 . \mathrm{migh} \\ \mathrm{Low} \end{gathered}$	$\begin{aligned} & 21.6 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 14.0 \end{aligned}$	21.3	$\begin{aligned} & 21.5 \\ & 14.6 \end{aligned}$	20.7	21.9
$\begin{aligned} & \text { C. Hich } \\ & \text { Lov } \end{aligned}$	$\begin{aligned} & 17.9 \\ & 11.7 \end{aligned}$	$\begin{aligned} & 17.6 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 17.8 \\ & 12.5 \end{aligned}$	17.7	$\underline{19.1}$	13.0	17.1	13.0
$\underset{\text { How }}{\text { 7. HiEh }}$	$\begin{aligned} & 10.0 \\ & 17.6 \end{aligned}$	$\frac{18.2}{17.6}$	178.9	17.6	$\begin{aligned} & 13.2 \\ & 17.6 \end{aligned}$	17.8 17.5	17.1	13.3
$\begin{aligned} & \text { 3. High } \\ & \text { Low } \end{aligned}$	$\begin{aligned} & 19.7 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 10.3 \\ & 10.5 \end{aligned}$	10.0	$\begin{aligned} & 21.4 \\ & 15.0 \end{aligned}$	13.2	21.6
$\begin{gathered} \text { 9. } \mathrm{Hi} \mathrm{ch} \\ \text { Lov } \end{gathered}$	$\frac{10.5}{10.0}$	$\begin{aligned} & 13.5 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 13.3 \\ & 16.7 \end{aligned}$		$\begin{aligned} & 17.8 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 17.0 \end{aligned}$	13.0	18.6
$10 . \mathrm{Hi} \mathrm{H}^{3}$	$\begin{aligned} & 1.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 13.9 \\ & 15.6 \end{aligned}$	$\begin{aligned} & 18.7 \\ & 18.5 \end{aligned}$	19.4 15.0	19.9 15.4	19.0 15.2	17.7	13.9
$\begin{gathered} \text { 11. } 111 \mathrm{Sh} \\ \text { Low } \end{gathered}$	$\begin{aligned} & 15.7 \\ & 13.7 \end{aligned}$	$\begin{aligned} & 16.6 \\ & 13.5 \end{aligned}$	15.5 13.6	12.3	17.2 12.5	16.8	16.0	17.3
$\begin{gathered} \overline{\text { linigh }} \\ \text { Low } \end{gathered}$	$\begin{aligned} & 17.6 \\ & 16.4 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 16.2 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 16.4 \end{aligned}$	17.7	18.4	1.8 16.8	17.1	18.3

Consideretion of results:- The method of simple polarisetion for tho dotermination of sucrose in beote essumes thet the only noterial present which is opticelly active is the sucrose, wh also assumes that the sucrose rotation in unaltarec by socompanying impurities. These assumptons are both incorrect. Vormal beots contain snall anounts of invert sucar, rafinose, asparagine, glutaninc, gums, and other opticelly active substances, which by therselves may case a quite appreciable pius or rinus error. In adition the rotation of come of theoe is considerably arfocted Ay the adcition of basic lead ocetate. For example, aperasine, which is slightly levorotatory in aqueous solution becomes strongly coxtroretotory in presence of lead subacetate, while with gutanino the reverse is true.It is evident thet there will be errors which may or may nat be mutuelly compensatine. The eatraction of highly dextrorotatory gums is aso likely to occur even with the cold whter digestion methods, if the boets are un ripe, frosted, discased, or othervise abnormal. The alcohol method eliminates this particular error, since these gune ere insoluble in elcohol.

Usually efrcomont betweon the water ane alcoho a methods is very close. The cold-water method is only suitable where the pulp cen be prepared in edequate fineness : the hot vater method is eenerally preferred for factory loss-control routine.

Many of the other optically booties prosent may chance rotation under the influence of heat, and some substances may be hycrolysed by heat producing ontically activo bodies when woide, elnals, or enzymes are present. In ceneral the tendency is towares doztro-
rotation, so thet the apperent polarisation is always higher than the time shorose content. As a rule a plant containing a glucoside has elso present s corresponding enajae capeble of hydrolysing it, the enzuta beine alco present in similar species which do not contrin the enayme. Glucoside and enzame do not exist in the same cenl, but. are brought together if the cell structure is dameged. Thus the finer the pulp the more the cells puptured and the more intimete the con- tact of enzyme and clucoside, producine dextrose usumily anc increasing the polarisetion.

The stronlein mill wrocuced o pulp which wes outronely finely divided, and maich yielded in gencrel approciebly higher results than other methods. The seapling by means of a sow slso seems to cive high rosults, while properetion of the ample by paseing through an ordinary mincer, gavo abomally low results, mporently atue to incomplete extraction. The samples cone by the Sachs-Le-Docte method were prepared by tho standard bect rasping nethod, and this pulp was also used for the alcoholic extraction.

Cunulative experienco of these nethods hes shown that the Swchs-Le-Docte nethod, where a constant volume of water and lead acetate is edded, gives a fair and relutively acourate estimate of the sugar present in the beet,particularly where the cycle of analysis is arraMged so that each copsule is allowed to stand for at least 20 minutes before polarising. In addition it is probably the only feasible method where a very large number of samples have to be analysed each day. It is the standard methoc in this country for commercial valuetion of sugar beets.

Figure 35a...The Keil-Dolle Segment Rasp.

Figure 35b... Mill for reduction of beet samples.

Experiments on the determination of the polarisation and reducingsugar content of dried beet cossettes.

1. Iffect of size of material and mode of digestion
(a) Hot water digestion : 35 minutes at $88^{\circ} \mathrm{C} .:-$

Gms, taken infoo ccs. flask	Marc allow -ance	(A) Hand ground in mortar $\%$ Sucrose	(B) Through mill: holes 20 per sq.in. $\%$ Sucrose
6.5	1.2	64.8	65.6
13.0	1.7	64.8	64.8
26.0	3.4	63.8	64.0

(C) Through mill:
holes: 144
per sq. inch.
\% Sucrose
65.6
64.8
64.2
(b) Cold water digestion : 2 hours standing:-

0.5	1.2	60.2	62.4
13.0	1.7	61.6	63.2
26.0	3.4	60.0	63.6

(a) Hot digestion : 35 mins.

	1.18	1.40	1.43
(b)cold digestion $: 2$ hours			

It is clear from the above results that cold digestion is not sufficient to bring all the sucrose into solution from the plant cells : the reducing sugars are similarly affected. The fineness of grinding would appear to make little difference once a certain size has been reached. The use of 6.5 gms. is not advisable.
\therefore A contrast of cold and hot aigestion nethods for the estimation of reducting sugars by the Eertrandsalliaxd method.

Test (a) : - 15 gms. in duplicate, using 5 ces. neviral lead acetate solution (10%), 20 ecs. mixed copper solution and 100 ces. water 2 bours digestion in cold :- Reducing sugarsil(0.66% :) e(0.67%. Test (b):- 15 gras.in dunlicate, otherdetails as above with 30 mins. drection at $88^{\circ} \mathrm{C}$. : - Redueing sugars (I) 1.07% : (9) 1.10%. Surose in cossettes 62.0 per cent.

This once again brings out the necessity for hot depestion.
S. The influence of concentration on the polarisation round.

In this test all marc volumes were allowed for at 1.2 cos. per Normal weight of fresh beet, and calculated back from the polstisations.

After 30 rins, digestion

After 60 mins. digestion
Lead acetate used, ces.

Secona series on same cossettes
After 30 mins. aigestion
After 60 mins. digestion

In 200 ces. 8lasks			
yms.	6.5	13.0	26.0
	68.10	65.80	63.45
	67.35	60.40	65.30
	4	7	10
	64.0	84.5	63.2
	67.3	04.6	63.2

The results show that 6.5 gms. introduces too large a multiplier, wille ack does not $2 l l o w$ sufficient liquid for complete extraction of the sucrose. The use of 13 gns. would seem beat.
4. Extenced tosts on the influence of coneentretion on the polarisation of dried beet cossettes.

With marc allowance calculated at l. 2 cos. per Nomal weight of fresh beet. All in 200 ccs. flasks.

Polarisations

Using 8.5 gms .	Using 13 gms .	Using 6.5 gms.	Using $13 \mathrm{gms}$.
64.0	64.2	56.8	56.4
4.0	62.4	66.0	6 6. 4
A. 6	62.8	64.4	65.0
4.8	63.2	56.4	53.6
64.0	61.6	53.2	52.8
$6 \% .2$	58.4	62.4	60.8
64.0	62.8	64.4	63.8
6.e.	61.8	60.0	57.6
68.4	56.0	64.0	64.0
64.0	62.0	61.2	52.0
6.6	65.2	64.0	62.8
S1.6	60.0	64.0	61.6
6.4	62.4	61.6	61.2
$6 \% .0$	60.4	62.4	57.2
64.0	63.2	60.4	63.2
60.8	57.2	61.6	61.2
59.2	60.6	64.6	64.0
+4.0	62.0	64.0	61.6
6.4	62.0	56.8	56.4
61.6	53.2	59.2	57.2
60.8	60.0	64.8	64.0
60.0	59.2	60.4	58.2
64.6	62.4	62.4	62.0
53.2	61.2	64.8 61.6	62.4 61.6
60.0	59.2 63.2	61.6 59.2	58.6
65.0 60.8	63.2 57.6	63.2	62.8
65.0	61.4	62.4	60.4
61.6	58.0	61.6	61.2
31.6	60.8	62.4	61.2
64.0	63.2	62.4	61.6
63.2	61.2	61.6	67.6 61.6
63.2	60.2	62.8	61.6

(66 results)
4. (Continued) Influence of concentration on the polarisation of Dried beet cossettes. Details as in previous test.
polarisations.

Using 6.5 gms.	Using 26 gms.	Using 5.5 gms.	Using 13 gms .
62.8	63.0	64.0	58.6
61.6	58.7	58.4	58.9
61.6	56.2	58.4	57.2
62.0	58.8	58.8	57.8
61.2	60.6	57.2	54.6
63.6	55.9	64.8	61.9
63.6	54.8	64.0	55.6
63.6	60.4	64.4	61.5
59.2	58.7	60.8	57.2
58.0	51.5	62.0	50.5
60.5	60.8	64.0	61.8
60.0	57.8	64.4	62.8
66.0	58.5	62.0	55.0
60.0	57.8	60.8	60.7
58.0	57.5	62.4	57.8
61.6	54.6	55.2	60.8
59.2	58.2	58.8	57.6
59.6	55.6	58.8	54.8
59.6	57.6	59.2	54.9
62.0	59.1	60.8	57.1
59.2	57.5	63.6	57.7
60.4	55.2	60.8	57.0
64.0	62.0	66.4	63.6
58.4	56.3	58.8	55.8
57.6	55.1	61.2	58.8
65.6	61.0	64.0	61.5
64.0	57.2	64.0	51.1
64.0	62.0	65.2	61.0
63.2	59.9	64.0	61.9
64.4	60.7	64.4	62.2 61.5
62.3 65.6	61.0 63.4	(63 results)	61.5
	Averages	61.89	58.32
	Difference	3.57	

The first series of tests using 6.5 and 13 gas. cossettes show considerably less difference than the second series using 6.5 and 26 gms. There is not enough liquid present when 26 gms. are taken. The adoption of 13 grs. would seem the best compromise, since with 6.5 the reading must be multiplied by 4 .

The precipitated cuprous oxide is flltered through a sintered glass crucible, washed with water and dissolved in 10 ces. of ferric culphate solution. This solution is titrated against a standard potassium permanganate solution until faintly pinit. The anount of reducing sugars present is found from specially prepared tables. Solutions :- Fehling s solution as modified by Bertrand-Saillard :-
A. COPPER SOLUTION - 68.3 gms. $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ per litre
B. ALKALINE SOLUPION - 346 gms. Sodium Potassiun Tartrate (Rochelle Salt), per litre.

130 gms. NaOH per litre.
A and B mixed in equal volumes jugt before use.
The alkalinity of this solution is very much reduced from that of the normal Fehling s solution, which minimises the effect of alkali on the sucrose, and gives results nearer the truth than would be possible with say, the methylene blue method of titration. POTASSIUM PERMANGANATE SOLUTION :-
6.75 gms. KMnO_{4} in 5 litres solution

1 cc. $=2.5$ mgms. Copper
This solution is standardised by titration against 125 mgms. of amonium oxalate which is dissolved in water in a conical flask with addition of 2 or 3 ces . of 5 sulph sic acid, heated to $70^{\circ} \mathrm{C}$., and the KMnO_{4} solution added to a faint pink colour. This should require 22 ccs.

FEREIO SULPHATE SOLUTION :- Sulphuric acid - 200 gms .
Fefric sulphate - 50 gms.
This is made up with water to just under litre, filtered through e sintered glass funnel, and completed to volume.

Further check on the Bertrand-Saillard method:-
In addtion to the titration with ammonium oxalate, the following check should be made :-

A solution of 9.5 gms . of pure sucrose in slightly less than 100 cos. of approximately 0.6 Nydrochloric acid is kept for a week at room temperature (or heated for 7 minutes at $67-70^{\circ} \mathrm{C}$. as jn the clergetHerzfeld conditions of inversion) and is then diluted accurately to 1 litre and bottled. This acid 1 por cent solution of invert sugar Will keep unchanged for many months. For standardisation it may be neutralised with sodium hydroxide solution and suitably diluted. The neutralised solution does not keep for more than a day or two. A volume of the solution correspondirg to 25 mgms. of invert sugar is placed in a conical flask with 20 ces. of the mixed BertrandSaillard solution and made up to 100 ccs . with water. Tae reduction and titration with permanganate are carried out in the standard way and comparison made with the figure shown in Saillara's table for sucrose $=0$.

The burette used for the permanganate should read to 0.05 cc e each division being at least $1.5-2 \mathrm{mms}$. broad. It must have a glass stopRTEERENCES : -
The so-called Bertrand method was first proposed by Schwarz (Ann. 84, 84, 1852), who dissolved the cuprous oxide in Fecl ${ }_{3}$ solution made acid with HCl, and titrated the ferrous ixon formed with $K M n O$ e. Saillard :- Betterave et Sucreries des betteraves, Paris, 1913. Lane and Eynon, J:S:C:I., 32T.,1923

Bxperinents on the deteruination of reducing sugars

1. Dried cossettes digested with $\mathbb{N} / 28$ sodiun hydroxide by standard digestion method, using neutral lead acetate mo dry deleading witin potassium oxalate. Compared with ordinary method used simultcneously. Both tests in duplicate.

Alkaline digestion

$\left|\begin{array}{c}\text { Av. } \\ \text { Qil } \\ \frac{\text { Value }}{7.5} \\ 5.4\end{array}\right|$
(after digestion).

Orainary method This test was an atterpt to prevent inversion of sucrose during digestion. The results show very little difference between the timn methods, in any case not enough to make the change desirable.
2. Purther tests were made using different conditions of digestion.

Digestion using
\qquad
10 cos, neutral lead acetate
10 ces. N310 Sodium carbonate vater alone
1.5 gms. Calcium carbonate
\% Reducing Sugars
(Bertrand-Saillard method)
6.5

Each test was made in duplicate. Filtration was very slow where lead was not used. The calcium carbonate gave the next best filtration. The usual method of adding neutral lead acetate before digestion appears to be the most satisfactory.
3. Test on the use of different filtering media in Bertrand-Saillard method :Asbestos (Gooch) Paper pulp Sintered glass $\%$ Reducing sugars $0.57: 0.58 \quad 0.58: 0.58 \quad 0.58: 0.58$

It is seen that the filtering medium has no influence of the results and its choice is therefore a matter of individual prefersince.
4. Check on the Bertrand-Saillard method using standard invertsugar solution.

Five gus. of specially purified white sugar was inverted by standing for a week with 0.6 N HCl and made to 1 litre after neutraising. 1 cc. therefore contains 5.26 gas. invert-sugar. KnO_{4} solution 1.035 factor against ammonium oxalate.

A check was made on this invert solution using the gravimetric method for estimating the copper:-
(a) Reduction to Cu by alcohol

1. $0.185 \mathrm{gm} \cdot \mathrm{Cu}_{\mathrm{n}}$
2. 0.185 m
(b) Weighing direct as $\mathrm{Cu}_{2} \mathrm{O}$
3. 0.185 " "
$3.0 .210 \mathrm{gm} . \mathrm{Cu}_{2}{ }^{\mathrm{O}}$
Theoretical 0.184 gm .

These results indicate that the Bertrand-Saillard method can be considerea reliable for the estimation of small amounts of reducing sugars in presence of excess of sucrose.
5. The effect of neatral and of basic lead acetate in the BertrandSaillard method for reducing sugars.

This test was carried out on raw diffusion juice from dried cossettes, using varying quantities of the two lead solutions for defecation.

Lead solution used, cos.	Reducing sugars using Basic Lead Acetate solution	Reducing Sugars Using Feutral Lead Acetate solution
2	0.68	0.70
4	0.74	0.77
10	0.85	0.67
12	0.75	0.70
16	0.69	0.58
17	0.78	0.76

These results are rather inconclusive. Possibly precipitation of reducing non-sugars may occur in some cases, while invert-sugar or its components may be precipitated in other cases.

The effect of lead acetate on the polarisation was found in the following test :- 13 gms. dried cossettes in 200 cos. flask with 2.3 cos. allowance for marc volume : digestion by standard method. 1. +6.5 ccs . Basic Lead Acetate

$\frac{$| 2. +6.5 ccs. Neutral |
| :---: |
| Lead Acetate |}{64.5} | 64.8 |
| :---: |

$$
\begin{gathered}
\text { 3. }+6.5 \text { ecs. } \\
\text { Amoniacal Lead } \\
\text { Acetate }
\end{gathered}
$$

64.8
64.6
64.8

There is apparently no difference : These results are all within experimental error.

PART 3: Determination of some Ginor Constituents in the
Sugar Beet.
Density of Fresh Beets and Dried Cossettes : Deteraination of 'marc' in the beet : The estimation of Eaffinose.

NOTE:- The density of fresh beets and dried cosmettes is included in this section for convenience. 3 . 5

1. Dried Cossettes :- The cossettes tester contained 7.5 per cen of weter whd 64.4 per ceat polarisation. The ap. cr. wes taken by rejghing 5 gras. of the fine cossette 'flour' in petroleun ether of sp. Ex. 0.79216 at $20^{\circ} \mathrm{C}$. The average of six tests gave 1.4300 at $20^{\circ} \mathrm{c}$.
2. Dried marc:- The atove method gave 1.19012 gn. gr. as the avorace of six determinations.

Mote :- The sp. gr. of Sucrose is 1.583 at $20^{\circ} \mathrm{C}$.

Check Irom Composition of Dried Cossettes:-

Assuming 644 per cent sucrose at 1.5877 density in the dried cossettes and 7.5 per cent water, this leaves 28.5 per cent marc and soluble non-sugars which can be assumed to have density 1.19.

On this basis:- 64 at $1.5877 / 100-1.016$

$$
\begin{array}{cc}
28.5 \text { at } 1.19 & -0.339 \\
7.5 \text { at } 1.00 & -0.075 \\
\text { Total } & -1.430
\end{array}
$$

Weight per qubic foot of fresh beets and Dried Cossettes :
Loose Dried Cossettes vary rather widely in weight per cubie foot according to the conditions of packing of the slices.

DKIED COSSETTES:-
Composite sample over 7 days Average from storage bins
Staneik and Sanderal
Fresh Beets (cossettes)
Washed Beets (clazasen)
1
Zeit. Zuckerind. ezechlslov.,525,1929 :I.S.J.,501,19es.

'MARC' IN THB SUGAB BEET.

clanasen defines marc as the residue remaining after complete ixtraction of the sugar from the beet, and of the easily soluble non; Gears under conditions similar to those in factory operations, working is rapidly as possible to prevent the formation of soluble substances y the decomposition of hemicelluloses, pectin, and like bodies. This marc, or insolable cellular matter, is sometimes assumed to be resent ata constant percentage of 5.0 or 4.75 per cent. This cannot se axact since the percentage oi cellular matter varies considerably vith locality and climatic conditions, and also with other conditions such as the age of the plant and the soil fertility.

It is apparent from the indefinite natuxe of Claassen's attempt at definition that marc cannot necessarily be considered the waterinsoluble portion of the beet, since this figure will vary with the particle size of the beet pulp, the length and mode of treatment dopted, and in particular the temperature and the quantity of water גsed. The temperature nust be at least $60^{\circ} \mathrm{C}$. to destroy the protoplasm.

The corrections generally accepted for the volume error due to narc in determinations of sugar in the beet by digestion are those of Rapp and Legener (2. VER. DEUT. ZUCK IND., 32,786,1882) who assumed 4.8 as the average dry marc content of the beet, and 2.0 as the density of the marc, iving a correction of 0.6 cc . per Normal weight. Heintz (Z. enalyt. chem. 262,1874) found that dry sugar beet nard would adsorb water from sugar solutions, and Schiebleas, (Tbid., 176,255, 879) later showed the preseace of colloid water in beet marc. ie found an average of 2.5 ccs. volune for the hydrated marc per formal
weight of beet, this being much higher than the volume ocupied by the dry marc.

If summary of the principal conclusions regarding maxc volume is

GLTHODS OF ESTMAATITG TAZO IN SUGAR BHET

Staminer's method:- Twenty gms. of the finely divided sample are digested in a beaker with $300-400$ ces. water for 30 mins.
the solution is removed by suction and the digestion and filtration repeated until the filtrate is free from sucrose os indicated by α-naphthol. The residue is treated with boiling distilled water and collected on a dry weighed filter-paper and washed with alcohol and then with ether. It is then dried first at low temperature and finally at $100-110^{\circ} \mathrm{C}$. to constant weight. The marc is then ignited and the ash weight deducted from the total weight first obtained. The per cent of dry marc is then five times this figure. Claassen's method :- Iwenty-tive gms. of ground pulp is placed in a beaker marked at 40 ccs. and boiling water is poured in up to the mark. The pulp is digested for 2 mins. and rapidly filtered through a Bachmer funnel. The pulp is returned to the beaker and the process repeated thrice. After the fourth digestion the marc is collected on a tared filter-paper, washed with a few ccs. of alcohol and dried for $6-8$ hours at $105-110^{\circ} \mathrm{C}$. The calculation is made as in the above method.

It is clear from a study of these methods that the marc result obtained will depend on the temperature of digestion primarily. During exhaustive hot water extzaction certain normally insoluble pectins are known to hydrolyse and pass into solution, and it may well be that other cell constituents will behave similarly.

EXELSIHME ON_MACO:-

1. Quantities of $6.5,13$, and 26 gms . of dried cossettes ground in the standard way in an impact mill were digested in a beaker with water at 5000. , transfered to a tared filter-paper, and washed with water at $50^{\circ} \mathrm{C}$. until there was no reaction with the alphanaphthol test for sucrose. The residue was dried at $105^{\circ} \mathrm{C}$. for 6 hours and weighed. (It was then ashed and re-weighed - not reported).

$\begin{aligned} & \text { Cossettes } \\ & \text { taker ms. } \end{aligned}$	vit. of Marc gns.	$\begin{aligned} & \text { Jer } \\ & \text { cent } \\ & \text { Harc } \end{aligned}$	$\begin{aligned} & \text { Sp. Gr. } \\ & \text { Marc } \end{aligned}$	$\begin{aligned} & \text { Occupied } \\ & \text { Volume } \\ & \text { ccs. } \end{aligned}$	Apparent Volume occupied, cos.
6.5	1.5190	23.37	1.19	1.31	2.08
6.5	1.5950	24.54	1.19	---	---
13.0	3.2540	24.80	1.19	2.71	6.40
13.0	3.2170	24.75	1.19	---	---
26.0	6.0790	23.38	1.19	5.21	7.80
26.0	6.3190	24.30	1.19	---	---

The occupied volume was found by dividing the gas. weight of narc by the specific gravity of the marc. The apparent $\begin{gathered}\text { molume }\end{gathered}$ occupied was found by pu ting the dry mare into a dry 100 ccs. flask in each test and adaing water from a standard burette up to the 100 cos. volume at $15^{\circ} \mathrm{C}$. This took no account of occluded air. 2. Indirect estimation of marc error:- Anounts of 100 gms . of dried cossettes were washed free from sugar as above, and the mass was semi-dried so that it would wet easily. Half-normal weights of dry sugar were then taken and varying amounts of this semi-dried pulp added.The sugar was dissolved in a little water, and the volume
made up to 200 cos . at $20^{\circ} \mathrm{C}$. The roading wera then taken. of noteture in the gemf-aried puip $=40.6$

Pulp takon che.	をquํา\%。 Ory Weight \qquad gm.s.	$\%$ Polar- Asation	Deper -enoe	Ditfeg. per gm. wot 7a?	Diffoe. per mon
31.2	0	24.5	-	-	53-
2.5	1.02	25.8	2.4	0.50	1.37
5.0	2.03	26.7	2.2	0.44	0.80
9.5	3.05	23.1	3.6	0.49	1.40

3. 195 gms. of white sugar mado to 1 1itre, am 100 ece. of this soluthon used for each tost. A quantitu of dried coseettes wem Continuously estrsetod with cold wher for 9 hours until sugar free to bipha-mahthol, the resultent puly being ariee for 6 hoverg at $105^{\circ} \mathrm{O}$.

Discounting the result with I gm. of the pulp, the arerage is $0.40-1$. e. roughy 0.5 difforence per gru. of mate precent.

A repeat experiment was carried out with a different suger solution, but with details athervise as sbove :-

Puly tolson cac.	Polexisation	Difierence	DIfference per gn. of werc
0	36.9	-	---
0.5	37.2	0.3	0.60
1.0	37.3	0.4	0.40
2.0	37.5	0.6	0.30
3.0	37.8	0.9	0.30
4.0	38.2	1.3	0.33
5.0	38.6	1.7	0.34
6.0	33.8	1.9	0.38
7.0	39.3	2.4	0.34
8.0	39.9	3.0	0.33
		Average	0.363

This test has eiven results differine rather widely from those in the previous test : the dried cossettes in this case were not the saxie minch probobly ha some influonce.

4. Direct Estimation of merc:-

In this test a finely ground 'flour' wes made from the dried coseottes sample. Smollor mounts are ucod in ewch test than in Test Mo. 1, the procuct, atter washing froe from sugar,being ashed. The detailf were othervise as in Mo. I test.

Weight Cossettes taken : gre.	Veicht Pulp found	Gns. \sin Sound	$\underset{H a r c}{\mathscr{H}}$	$\begin{gathered} \text { \% } \\ \text { (ashofree) } \end{gathered}$	$\%$ Ash
3	0.625	0.062	20.83	13.76	2.07
3	0.636	0.073	21.20	13.77	2.43
4	0.862	0.097	21.30	13.87	2.43
4	0.859	0.096	21.48	19.08	2.40
4	0.869	0.104	21.73	19.13	2.60
		Averoce	21.31	18.92	2.39
2	--	--	19.60	17.00	2.60
20	--	--	20.61	13.11	2.50

The results of various cimilar ostinations on fresh beet and cried cossettes are sumarisod below :-

BRESA BETET
Sempla Ho.
1
2
3
4
5
6
7
8
8
10
11
12
13
14
15
AVEPAcE
RANGE: - $4.0-5.4$
At say 78\% water $=22.004 \% \mathrm{mare}$ on ary)
D.C. RANGE : - 19.6-26.7

At 8% Water $=20.24 \%$ Marc

- ocurrence of raffinose in the sugar-beet.

The trisaccharide raffinose was obtained by Loiseaul in 1876 from beet sugar. It was first described by Johnston ${ }^{2}$, who isolated it from eucalyptus manna in 1843, and it was then named melitose by Berthelot ${ }^{3}$. Kaffinose occurs noraally in the sugar beet in very small amount : it accurulates in the molasses and is recovered in large quantities as a by-product of the Barium Process for the recovery of sucrose from the molasses. It is comercially available from the Great Western Sugar Company, Denver, Colorado.

Raffinose crystallises in long needles of composition $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{16} .5 \mathrm{H}_{2} \mathrm{O}$, and giving $(\mathrm{a})_{\mathrm{D}}^{20}$ of 105.2^{O} in 10 per cent aqueous solution, without mutarotation. It is, not readily oxidised and does not reduce Fehling's Solution. On hydrolysis it yields firsta mixture of levulose and melibose, and further hydrolysis of the melibiose gives glucose and galactose.

Saillard ${ }^{4}$ has observed progressive formation of raffinose in the sugar beet as the season advanced, due to the gradual lowering of temperature, and has pointed out that in the south of France where the temperatures are higher, the raffinose content of the beet is much less than in the colder north. He also states that the rafinose is hisher in wet seasons, and believes that raffinose may form while the roots are lying in silos before entering the factory.

Dahlberg ${ }^{5}$ found that where the roots are not exposed to frsst no raffinose eccumulated in the molasses, and Hungerford and Nees ${ }^{6}$ report an inexplicable variation in the raffinose content of beet grown in the Rocky Mountain region, U.S.A., from 0.01 to 0.10 per
cent in different years.
Estimation of Raffinose :
Since raffinose nearly always occurs in association with sucrose, it is necessary when these two sugars are present to use a method which combines their hydrolysis equations. With two unknown quantities two equations are sufficient, but complication is caused by the presence in the suar beet of other optically active bodies mainly nitrogenous in character. The nature of these substances varies with the soil and growing conditions among other factors, for example Daine and Balch mention a preponderance of dextro-rotatory non-sugars in beets grown in Idano, while in beets from Utak, colorade and Nebraska, the non-sugars were levo-rotatory.

The well-known Creydt ${ }^{8}$ formula for the estimation of raffinose uses the relation that raffinose has 1.852 times as great a rotatory power as an equal weight of sucrose (anhydrous raffinose, 123.20: sucrose, 66.5°). One of Creydt's aquations states that the direct polarization is the sum of the rotations of the sucrose and raffinose, and the other states that the invert polarization is the sum of the rotations of the products of hydrolysis. The Creydt formula is thus only valid in the absence of other optically substances than sucrose and raffinose. Owing to the presence of the optically active nonsugars mentioned above, the precision of the creydt method may appear good but its accuracy is doubtful, and for this reason the double enzyme method ${ }^{9}$, or, in some localities, the double acid method of Osborn and $Z i s c h^{10}{ }_{i s}$ required. Browne and Zerban ${ }^{11}$ suggest that no greater accuracy than 0.5 per cent can be expected by any of the
methods for determining raffinose in mixtures, since caramelization products, gura, and organic acids may indicate raffinose when none is present. They suggest that even the twomenzyme procedure of Paine and Balch ${ }^{9}$, while much more reliable than creydt's method, should be used only in the investigation of substances in which raffinose is likely to occur, and should never be used as a test for raffinose in unknown mixtures. For unknown products, the raffinose should be isolated in crystalline form, and its physical and chemical properties confirmed. BRPREMEMAL

With the above limitations in view an attempt was made to apply both the double enzyme method ${ }^{9}$, and the osborn and Zisch method 10 to the analysis of fresh beet slices and dried cossettes. It was thought that the fourfold sucrose content of the dried cossettes afforded an excellent opportunity to secure a positive result for raffinose.

The results found are, of course, difficult to assess, since other optically active bodies are still present and may in fact have altered their optical properties during the drying process.

It is thus necessary to regard the figures with reserve, as they merely indicate that raffinose may provide the largest proportion of the percentage called "Raffinose".
 (a) Seed beets end beeta fron rial Eielas : $=$

No.	$\left\lvert\, \begin{aligned} & \text { Direct } \\ & \text { Poln. } \end{aligned}\right.$	\% Sucrose	\%Raf Acid tethoo	finose Double Bnzyme lethod	No.	$\left\|\begin{array}{l} \text { Direct } \\ \text { Poln. } \end{array}\right\|$	$\begin{gathered} \text { Suc- } \\ \text { rose } \end{gathered}$	$\left\|\begin{array}{l} \text { F Fafeil } \\ \text { Acid } \\ \text { Method } \end{array}\right\|$	nose Double inzyme Hethod
1	13.4	13.20	0.08	0.01	13	1\%.1	16.98	0.06	0.09
2	13.7	13.45	0.13	0.06	14.	1\%. 3	16.86	0.34	0.27
3	14.4	14.10	0.16	0.14	15	17.5	16.98	0.35	0.19
4	14.8	14.27	0.28	0.27	16	17.6	16.79	0.41	0.37
5	15.1	14.82	0.2\%	0.31	17	17.6	17.37	0.12	0.10
6	15.6	15.40	0.06	0.02	18	17.8	17.59	0.11	0.27
ry	16.2	15.77	0.19	0.23	19	18.0	17.49	0.29	0.38
8	16.35	15.91	0.23	0.26	20	18.0	17.90	0.01	0.18
9	16.7	16.12	0.36	0.47	21	18.2	17.72	0.21	0.23
10	16.7	16.21	0.49	0.24	22	18.2	10.15	0.03	0.07
11	17.0	16.72	0.15	0.19	23	19.0	18.42	0.39	0.33
12	17.1	16.70	0.25	0.24	24	19.7	18.71	0.27	0.19

(b) Factory Cosgettes:- January to February:

1	16.0	15.77	-	0.11	5	15.5	15.49		NiL
2	15.9	15.81	-	0.04	6	15.7	15.49	-	0.11
3	15.7	15.64	-	0.03	7	15.8	15.62	-	0.03
4	15.9	15.72	-	0.09	8	15.6	15.61	-	Mil

Hange :- Nil to 0.49 per cent raffinose; it is clear that part of this apparent raffinose is due to the rotation of non-sugarg.

DETEKMNATION OF RAFPIDOSE IH DRIRD COSSETTES.

AVALAMB WATRK COTHEN:-7.5 per cent.

No.	Direct ?olariz- ation	Sucrose per cent	Gucrose per cent on dry	Raffinose per cent	Remarks
1	66.0	65.31	70.62	0.69	These samplea do not
2	64.2	62.81	67.92	1.48	correspond to the
3	63.4	63.25	68.37	0.15	fresh beet samples
4	62.8	61.95	66.99	0.85	in the previous table.
5	62.0	60.05	64.94	1.95	
6	64.0	63.17	68.29	0.83	
7	64.2	63.75	68.92	0.45	
8	64.8	64.62	69.85	0.18	
9	69.2	67.75	73.24	1.49	
10	64.8	64.13	69.36	0.67	
11	65.6	64.83	70.99	0.47	
12	64.0	63.65	68.82	0.18	

Range 0.15 to 1.95 per cent : this figure in nore correctly named 'apparent Raffinose'.

RAFYINOSE BIBEIOGRAPHY.

1
LOISisin, Compt. rend., 82, $1058,1876$.
2
JOMYSTON, J.pr. Chem., (1), 29, 485, 1843.
3
Beificaioit, Ann. chim, phys..(3).46, 66, 1856.

4
SALLLARD, Suppl. circ. hebdom. \#0. 2193: I.S.J.,342, 1931.
5
DAilituks, Chem. 根t. Bng.,23,421,1920: I.S.J.,415,1921.
6 HUNGHUR AND NEES,I.L.S.,26,462,1934 : I.S.J.,195, 1934.

7
PAMH AND BaLCH, Report No. 6, U.S. Dept.Agric., 蹎abnington : I.S.J.,238, 1933.

8
GhyDI, Z.ver.deut. Zuckerind., 37, 153, 1887.
9
GUDSN Lad HARDIIG, I.L.c..7, 2193, 1915.
10
OSBOLIA AMD ZISCEI, I.E.C., Am. Fd., 6, 193, 1934.
11
Bhown And Zbibair, "Sugar Analysis", gohn wiley, New York, 1941.

Invires ION

The action of en inverting agent such as an acid or the enayme. invertese on the sucrose molecule gives rise, by the addition of one mo ecule of water to one molecule each of glucose and fructose, the nixture being known as invert sugar.
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\quad+\mathrm{H}_{2} \mathrm{O}=06 \mathrm{H}_{22} \mathrm{O}=\quad+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ sucrose (34i2)
Glucose(180) Fructose (180) Invert Suger 360

Inversion by acid follows the unimolecular reaction law, by which the rete of the reaction $\frac{d x}{d t}=k(a-x)$, where t is the anount of sucrose oricinelly resent, 天 the quentity inverted at the ond of time i anter the start of the inversion, du the infinitosimal guantity invorted during the infinitesimal tine interval dt, and k a constant temmed the velocity constent of the inver ion. Integration gives the following value for $k=\frac{1}{t}$ log nat. $\frac{a}{a-x}$, or ohanging to comon logerithas :-

$$
15=\frac{1}{0.4343 t} \log _{10} \frac{a}{a-z}
$$

From the above 1 pert of sucrose is converted into $\frac{360}{342}$ or 1.05263 parts of invert sugar. Teling the apecific rotetion of sucrose as -66.5 at $20^{\circ} \mathrm{C}$. gand that of the hale normal weiget of invert sugar as -20.28 at $20^{\circ} \mathrm{C}$. the rolation of the optical activity of one part of sucrose before inversion to thet after inversion is given by :-

$$
66.5: 1.65263(-20.23)=66.5:-21.3473=87.8473 \text { decrease }
$$

in specific rotation. for 1 degree of the saccharimeter seale the decreese is $\frac{37.3473}{60.5}$ or 1.3210. Thus the total decreass in the secherimeter readinget $20^{\circ} \mathrm{C}$. of the helf normal weight of product
enter inversion, ?ivied by 1.3210 ene then multiplied by a, gives the percentage of sucres if no other optically active component is. Gyangacd and there is no change occurring in the special rotation of other optically active bodies present.
closet fyctometisod this process and eave the formula
3- $\frac{100 D}{186}$, where s is the per cent sucrose, D, tho algebraic diffprance between the direct ane the invert polarisations, and $13<$ is the fActor corresponding to 1.3210 above, and similar derived fox $20^{\circ} \mathrm{C}$. Heraseld (z. Ven. deut. Zucker-Inc.,33,693,1389) when Schrefeld (ionic., 70,402,1920-), have further modified the original claret formulnenc the current Pom accepted by the American Association of Official Agricultural chemists is $S-\frac{100\left(P-P^{\prime}\right)}{143-0.5 t}$, where P and p are the direct and invert polarisations, and t is the temperature. This method is etcentially one requiring strict adherence to detill in ores to get comparabio results.

Avolicition or the method to the dotorminction of Raffinose: -

Tho hydrolysis of raffinose with hydrochloric acid under the conditions of the clercet method proceacs according to the equation:-

$$
\begin{aligned}
& \mathrm{C}_{1} \mathrm{H}_{32} \mathrm{O}_{10}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\
& \text { Rexrinose } \\
& \text { a-Tuc toss } \\
& \text { Melibiose } \\
& (\alpha)=+104.5 \\
& \text { for raffinose bydrete } \\
& \text { before hydrolysis } \\
& -92 \\
& (\alpha) \beta=+53.5 \text { for raffinose } \\
& \text { hydrate after hydrolysis. }
\end{aligned}
$$

The normal weight for raffinose for the Ventage scale, corresponding to 26.026 gms . of sucrose ($a_{\mathrm{D}} 66.5 \mathrm{ft} 20^{\circ} \mathrm{C}$.) is 16.562 gms . for the nycrete $\left(a^{2} 104.5\right.$ at $\left.20^{\circ}\right)$, and 14.051 game. For the anhydride $\left(a_{1} 123.17\right)$

 $10^{\circ} \mathrm{C} .0 \mathrm{on}$ a decrease of $4.00 \mathrm{~F} .$, or $0.436^{\circ} \mathrm{V}$. Sor the weight of raffinose rewing $1^{\circ} \mathrm{V}$. Tho colculation of pure rafinose may then be
 F' tho olarifatione of the nomal weight before and aftor invereion.

 marinoce anhyride.

Tais is probubly the comonect onlication of the clarget inver.. cion principlo apart fon oucroce, bince rafinono occure in beets an boot producte. Sucrose is then invariably preeent in adeition to refcinose, and the formale above in therefore of little practical Vaiue. Creydt (2.Ver. doat. zucker-Ine..37, 153,1037) combined the eghations for the calculation of sucrose and rafinose, wno what a to estimate the two puger in mizturee. The if a oubstance containo E yex cent sucrose and R per cent rafinose, and the suwfose nomal weight in 100 cos. in polariced in a 200 m . tube, the tucroce polarisetion will be 5 , but the raffinose polarisetion millbe 1.85 E , sinco 1.062 is tho rabic of the nomal weights of cucrose and rafinose andrace. The diroct polarisction will be show by the comala $P=S+1.352 \mathrm{R}, \mathrm{whence} \mathrm{R}=\left(\frac{7-5}{1.352}\right)$. If the suerose norma reight is now inverted by chrofold'a method, ite folarisation at $20^{\circ} \mathrm{C}$. will be regreeented by -0.33 (since $1^{\circ} V$. sucrose bepore inversicn reads
 will be 1.052 Z 天 0.614 .

Tais rises since for a raffinose solution reading $100^{\circ} \mathrm{V}$., each $1^{\circ} \mathrm{V}$. before hyrolysic, reade $+0.514{ }^{\circ} \mathrm{V}$. at $20^{\circ} \mathrm{C}$ after hydrolysis by Schrereld's method. The invert polarisation $\boldsymbol{p l}^{\prime}$ (the sum of the raff. nose wat sucrose invert polerisetions) is shown then by the formula $\mathrm{F}^{\prime}=-0.335+1.852 \mathrm{R} \times 0.014$

Ty suaretituting the quantity $\left(\frac{p-9}{1.952}\right)$ or equation (2) for a in equation (3) we get :-

$$
\begin{equation*}
\mathrm{P}=-0.35+0.514(\mathrm{P}-5), \text { whence } \mathrm{S}=\left(\frac{0.514(P-S)}{0.344}\right) \tag{3}
\end{equation*}
$$

A is thengot from $R=\left(\frac{P-S}{1.852}\right)$. By substituting the quantity P-1.052 R of equation (1) for 5 in equation (2) me obtain the Combe $:-P^{\prime}=-0.33(p-1.352 R)+0.9519 \mathrm{R}$, and from this, $R=\frac{0.33 P-P^{1}}{1.563}$

By formula (4) the refinnose may be calculated from the direct an invert polarisations immediately. me results are not quite exact as formulae (3) and (4) do not correct for variations in p due to changes if the concentrations of sucrose enc raffinose. Exam pe illustrating the use of the formulae:-

A beet monases free from reducing sugars cave a direct pol. of $+49.75^{\circ} \mathrm{V} .$, and an invert pol. of $-14.80^{\circ} \mathrm{V}$.

ES formula (3), per cent sucrose $=\frac{(0.514 \times 40.75)-(-14.30)}{0.844}$
$=47.83$
By Tommie (17, per cent raffinose $=\frac{49.75-47.33}{1.852}=1.04$
By formula (4), per cont raftimoso $=\frac{(0.33 \times 49.75)+(-14.30)}{1.563}$

$$
\begin{gathered}
\text { SGCTION 5. } \\
\text { SHTHOLS OP ANALYSIS. }
\end{gathered}
$$

PAFT 4_ DETEFEINATION OP WATER AND TOTAL SOLIDS:

- INThUDUUTIUN

1. Adsorbe and sorbed water ; tine states of water in solid materials :
2. The mode of retention of water in a colloidal material :
3. The removal of water from biolosical materials:

4. Methods of determination :
5. The inportance of itoisture deterainations :

6. Over methods in general:
7. Method of the Chicago Malt Standaraization Committee :
8. Ovens and over temperature :
9. The influence of humidity on moisture determinations :
10. The determination of water in organic materials:
\qquad
11. Behaviour of heat-sensitive materials on drying :
12. Feasons for discrepancies in results by oven methods: THE SULUELLITLGS OF OAFBOHYDEASS.

 AOSORBMD AND SORBM WATAR.

Water vapour is generally alsorbed by substances exposed to the atnosphere. This adsorption takes place on their surface and is relatively large at snall pressuxes, changing rapidiy in this region with the vapour pressure. The relation between the amount adsorbed and the tension of aqueous vapour is given by the adsorpa tion isotherm : the effect of temperature is adsorption decrease as temperature rises.

If glass is heated to a temperature above $150^{\circ} \mathrm{C}$. it is wetted by water only with difficulty, and this effect is also apparent at $110^{\circ} \mathrm{C}$. Thus the weight of aish inay slowly increase as the water film returns after heating : final equilibrium is reached more rapidly from the wet side than from the dry. By reason of this water film also, changes of atmospheric humidity and temperature will cause change in the weight of a glass container.

Finely divided substances attract water frow the atoosphere and hold it on their surfaces : equilibrium is usually reached in 5 to 10 minutes. Such water is called hygroscopic water, and will increase in amount with increasing surface area, and with increasing humidity of the air. many substances of a colloidal nature have a very large internal surface development and can adsorb very large amounts of water. In such cases equilibrium is very slowly attained and the process is called a sorption process. This water is often called water of imbibition. Thus starch, agar, cellulose, and silica-gel in air-dried condition may contain $20-30$ per cent of water and still appear to be perfectly dry powders.

The water content of such substances changes with humidity, for example, potato starch may have 10 per cent of water at relative humidity 0.20 , and 21 per cent water when the relative humidity changes to 0.70 . It is not easy as a rule to determine the water content of such materials. At $100-115^{\circ} \mathrm{C}$. the water is given off very slowly ; moreover it is impossible to remove the last traces of water since there is humidity in the surrounding air, and the sorption at very low aqueous vapour pressures is still relatively large. If heating is taken to $180-200^{\circ} \mathrm{C}$. there is grave danger of decomposition occurring, especially with organic materials.

It is therefore necessary to use a vacuum oven at $70-100^{\circ} \mathrm{C}$., removing the water vapour given off, or drying must be done by a current of perfectly dry air.

> THE STATES OF WATER IN SOLID MATERIALS.

1. Mon-essential or adventitious water :- Hygroscopic water is usually very small in quantity after a substance has been heated. The water taken up by a substance in this mechanical way can be very large indeed since it is adsorbed at both the external and the internal surfaces. Internal surfaces arise from say, the precipitation of extremely fine particles from relatively concentrated solutions at room temperature. The very fine crystals thus formed have come into being so rapidly that they may have a discontinuous structure and consist of microscopic units containing few ions or molecules and fitted together like the bricks in a wall. These discontinuities give rise to an internal surface and the total surface of such cystals is much larger than that measured by the microscone

Adsorbed water is not always removed quantitatively at $100-130^{\circ} \mathrm{C}$. since the adsprption and desorption processes are reversible. 2. Occluded water : - This can be present in almost any solid, and is not usually removed by heating at $100^{\circ} \mathrm{C}$. but disanpears continuously at much higher temperatures. Water may be occluded in cavities containing mother-liquor in the solid,or may occur at the internal surfaces. It is also possible for water to be distributed homogeneously throughout a solid, e.g., natural glasses may contain several per cent of water.
3. Water of Imbibition or Colloidal water : - This may be taken up in various ways :-
(a) The water is sorbed without changing the lattice of the original materigi:-This may be due to the presence of vacant spaces in the dry lattice which are easily accessible to water or other vapour, and water may condense in thesofspaces, c.g., zeolites. Again, the crystallites in lyophilic organic colloids such as starch and agar may absorb water at their surfaces, and a swelling restits.
(b) The sorbed water changes the lattice of the matorial :This can be caused by water penetrating into the/lattice,giving rise to a continuous increase of the distance between the planes of a layer lattice, and therefore resulting in a swelling, e.g., Graphitie acid, (Katz and Derksen, Rec. Trav. Chim.,55,052,1934). A second way in which the lattice changes is by formation of a definite hydrate.

4. Essential Water: - This may be (a) Water of Crystallisation,

 (b) water of Constitution.water of crystallisation occurs in hydrated salts which are stable in air between certain humidity limits.

Water of Constitution is not present as water, but in the form of hydroxyl or hydrogen, chemically bound in the compound.
On heating, decomposition takes place with the formation of water which may be called water of constitution.
occurrence of non-essential water :- W. F.Hillebrand, discussing the analysis of silicate and carbonate rocks (U.S.Ceol.Survey Bulletin $700, \mathrm{p} .64,1419)$, gives the following classification of the occurrence of non-essential water :-

1. In liquid solution : (deliquescent powders, amorphous materials, and supercooled liquids.
2. Held by surface forces -
(a) Adsorbed on surfaces in flims of monomolecular thickness (i) On walls of cavities within grains of aggregates (ii) On exteriors of grains.
(b) Held by Capillarity, in liquid form -
(i) In colloids with mesh structure
(ii) In definite openings within grains of aggregates
(iii) In spaces between separate grains.
3. Included -
(a) As liquid droplets in cavities
(b) As included grains of minerals belonging to one of above classes.

The water in a colloidal material is held in part relatively loosely by capillarity in the fine pores of the structure (absorbed) while the remainder is held much more tenaciously in very thin layers on the surfaces (adsorbed). There is no fixed division between these processes, which merge gradually into each other.

The most firmaly held water on such surfaces is in the form of a monomolecular layer, in which each molecule is necessarily in direct contact with the adsorbing surface, and is bound to it by strong inter-atomic forces comparable withethe forces binding the congtituent atoms in ordinary compounds. The water layers inmediately above this first layer are not quite so firmly held, and as further water layers form, the forces of adsorption rapidly become less, until they are no greater than the eapillary absorption forces which hold most of the water.

When attempt is made to remove this water it is probable that various compounds, particularly hydrated substances where the water is loosely held will release water before the last surface-adsorbed water is driven off. It cannot therefore be said precisely how much of the water rexoved from a colloidal material was adsorbed, how much absorbed, and how much truly combined.

It is therefore clear that the water content of a colloidal material can be stated only in terme of the reault given by a specified method.

Water which has been adsorbed into the colloidal structure of a material is of slightly higher density, slightly lower specific
heat, and of much lower vapour pressure than free water. This last difference is important since it means that the amount of water vapour contained in an atmosphere in equilibrium with the colloidal material is always less that that of an atmosphere in equilibrium with a free water surface at the same temperature.

The lower the water content of the material, the more tightly the water molecules are bound, and hence the less free they are to escape to the atmosphere. Thus the relative humidity of an atmosphere in equilibrium with a colloidal material is lowest at low water contents, and may approach 100 per cent as the water content increases.

If the temperature of the colloidal material be increased, the vapour pressure of its contained water will also increase almost exactly as does that of a free water surface, so that the relative humidity remains almost constant. The effect of temperature for wheat at constant relative humidity is about 0.6-0.7 per cent decrease of water content for each $10^{\circ} \mathrm{C}$. temperature increase.

Results obtainea by various workers for the relation between the water in grein and atraospheric relative humidity are shown in the combined graph in Figure 35a, due to oxley ("The Scientific Principles of Grain Storage, "Northern Publishing Co.,1948, p.18). In spite of the diversity shown here, the geberal form is a sigmoid curve rising steeply above 80 per cent relative humidity. There is reasonable agrement around $78-80$ per cent relative humidity, but as oxley points out, all the workers started with grain near this humidity and conditioned it upwards and downwards with. greater or less success.

Oxley suggests that a more accurate curve would result by adding liquid water or water vapour to wheat, and after a suitable time interval, determining the relative humidity of the intergranular atmosphere. Normal humidities in Britain are near the inflection points of the curves shown, and a rather small increase in relative humidity will correspond to a large increase in quilibrium water content.

Water is held with great tenacity upon surfaces, and if the surface is that of a colloideg, appreciable amounts of water may reain in the material after it has been heated to a fairly high temperature. Nelson and Hulett (I.E.C., 12, 40, 1920) showed that water is retained by biochenical products at least to temperatures as hish as 365° C., the critical temperature of water.

The purely eapirical process of hetemining the moisture in a biological substance is thus governed by the three variables - tine, pressure, and temperature. As R.A.Gortner has remarced ("Oublines of Biochemistry", and. Bd., John Wiley,p.231, 1938) :" The removal of water from a biocolloid is merely shifting one equilibrium between a colloid surface and water to a now equilibrium, and the extent to which the equilibrium is shifted is determined by these three variables. "
R.Newton (J.Agr. Sci., 12, 1, 292.) in a study of the winter hardiness of the wheat plant, concluded thet under the stimulus of cold, the water in the tissues of the wheat plant is'bound' on the surface of the hydrophilic colloids.

There is considerable experimental evidence to show that there is a hydration shell connected with hydrophilic colloids, and that the water molecules in this shell differ from the state which characterises the water molecules in ordinay liquid water. Heat of hydration, dielectric constant measurements, and the contraction of the system 'colloid-water', all indicate that the water molecules in bound water are rather more closely packed and
probably specifically oriented in relationship to each other, possibly in a more or less true crystal lattice which is more densely packed than the crystal lattice of ice. It has been shown that such oriented molecular films may be many molecular diameters in thickness. Experimental data shows also that 1 gm . of dry selatine carries 0.5 gm . of closely bound water. one molecule of gelatine (nol. wt. 34,500) is therefore closely bound to 960 of water, a figure very close to the calculated number of possi le co-ordination centres. It can be concluded therefore that the forces which bind water on the surface of lyophilic colloids are of the same nature as the forces which cause the association of water in bulk, althoidg the actual magnitude of these forces is probably greater In the colloidal system. similar forces immobilise water in the ice crystal lattice. The presence of colloidal matter appears to induce some change in the water molecule from the condition which characterises water in bulk.

Two hypotheses are current for bound water :-

1. The orientation of water molecules at the interface :
2. Selective adsorption of oriented layers of hydrogen and hydroxyl ions to form a shell surrounding the micelle.

Presumably under (1) for a positively charged colloid we should have an orientation with the oxyen end of the water molecule oriented towards the particle, and the hydrogen end oriented toward the body of the liquid. The reverse orientation would occur if the micelle were negatively charged. Nuting has shown that the water film thickness at a silica-water interface represents a layer of
water from 100 to 120 molecular diameters
deep, and that the energy of adsorption is by no means confined to the first molecular layer. It is not yet possible tosay whether this corresponds with what the biologist calls 'bound water. It is, however, logical to think that bound water consists of an oriented shell, a layer or layers of water nolecules or hydrogen and hydroxyl ions more or less firmly bound at the interface of the colloid particle, and that hydration is closely connected with the orientation of the water dipoles. The solubility of a particular compound may be zero in completely orientated water, whereas in the non-orientated water it will be normal, and between these limits we probably have the case of partly orientated water. It is possible that after orientation of dipoles a shifting of the equilibrium between $\mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$ occurs when water is 'bound'.

Gortner (loc.cit) suns up the position by saying- "The present evidence available points strongly to the conclusion that biochemical products in general contain appreciable quantities of water which cannot be removed by the ordinary methods of drying... no biological material can be completely dried without destroying the organic structure. I do not believe there is any sharp line of demarcation betwesn free and bound water, but that we must postulate an insensible gradation between molecules of water having the normal activity of pure water, and molecules of water where this activity has been so reduced that such moleculas have become to all intents and purposes a part of the solid upon which they are adsorbed. : He emphosises thet different methods for determining bound water will show different results since they draw the dividing line at different activity values for the water molecules.

THE DETRHITNATLOA OR WATEK CONTENT.

Most methods are based on either of two assumptions :-

1. That all the water can be removed by some process (e.g. heating or chemical combination), and that the amount removed can be estimated directly or by loss in weight ; or, 2. That some other property of the sample (e.g. dielectric constant, or equilibriua water vapour pressure) can be correlated with the water content.

The difficulty of removing or attacking All the water in a sample makes assumption 1 faulty, mile assumption 2 is often rendered inaccurate by variations in different samples.

It is apparent that the term 'water content' is itself an indefinite concept, but the practical utility of its determination outweighs the inherent defects of the methods used.

Oxley cites as criteria for a good method :-

1. Its precision :
2. Its ability to show accurately known amounts of water added to or subtracted from the sample.

- METHODS OF ESTIMATION.

1. QVum detions :- These are the most popular, since the results are reproducible. They are laborious as a rule, and require grinding of the sample and careful standardiantion of the procedure. 2. DIETILLATIUN IMETHODS:- These have the same faulty assumption of the oven methd that heating for a certain time will remove substantially all the water from a sample : there may be less oxidation with many samples.
2. KAEL EISOHEF FHACDT :- The basic assumption of this method is that ill the water present in a sample can be removed by treatment with dry alcohol, and this is just as erroneous as the assumptions underlying the over and distillation methods,
3. ETAOSEICAL MESIUDS:- These methods involve the assumption that the physical condition and aistribution of the water in the sample is always the same for a given water content, irrespective of the previous history or variety of the sample. The main advantage here is thet of speed. The methods have been largely developed for grain, and they differ in the property measured. Thus the Tag Heppenstall meter measures pure resistance, while other systems use alternating current and measure various combinations of resistance and dielectric constant.
 approximate results since the relation between water content and relative humidity of the atmosphere in contact with a sample is far from constant. It must be remembered that relative humidity largely determines the liability of vegetable substances and foodstuffs generally to attack by fungi or insects, and is thus a very important figure in the study of storage conditions.

The importange of moisture determingtion.

1. In drugs exact oontent important ainee if exoessive mould grovith and enzyme action tre pevoured, and these are both injurious to the drug.
2. Weter increases the weight of a substance und decreasts its velue so thet eomercially the buyer does not mant to pey for useless vater and for its transport.
3. In making estimates of stock in progess water content is importent for raw material entering taterials in process and finishod products leaving.
4. Moisture absorbing pover of electrical insulation is also importent since it influanoes the insulating qualities of the materiels.
5. A process may be held up until a moistiure figure is detercined, henee repid estimetion is often neaessury. Hore efficient control is possible by eutting dom the time of estimation.
6. Woisture ostimation is essential in debydration and drying processes renerelly.
7. For hygroscopio substances.
8. For proper interpretzition of legal definition of buying and seling stendards.
9. The moisture content of a comodity is closely related to its intrinsic value, its keeping quality, and its transportability.
10. wisk methods lessen gost of testing.
11. For beet sugar work shall errors in purity determinations cause large variations in oblculating per cent dikimarion.
12. For evaluation of resesroh data.
13. Control of plant operations, and of the intermediates and finished products.
14. In interpreting menufacturing costs.

Fairbrother , (Ind. Chem. p.243. (1929)) points out the importance of the moisture content of whert and flour. If wheat is too dry it mills 'flinty'and the flour is contamineted with much offal. If, on the other hand, it is too damp, it mills'sticky and the mills get cloged and the yield of flour is reduced.

The moisture content of flour has also grat influence on the keoping propertios of the flour. Lof moisture is essential for prevention of mildew and prevention of the development of mites. Refs: Shuey:- Gollaborative Study of Moisture Methods, Cereal Chemistry Vol. II, p. 319

L.H. Bailay $:$	$:$	Vol. I. p. 183
Fisher and Helton $:$	$:$	Vol. V.
Fisher and Jones J.	Science, Vol. 18, part IV. p. 42.	

> Summary - Importence of the estination of moisture.

1. For buying rew materials - water increases weight and decreases value.
2. For stock in process - rapid estimation necessery for routine purpose - exact estination necessary for stock balance.
3. Finished products and their keeping qualities - high moisture content favours mould growth, enzyme action, and the development of mites in foodstuffs, drugs, eto.
4. The hygroscopicity of electrical insulators and many other materials must be estimated and controlled.
5. Legally defined moisture limits must be controlled by an exact method.

Figure 36 : Vacuums oven used in tests: the switchboard with rheostats is in left hand upper corner : the drying tower is used when 'breaking' vacuum.

Eorms in which wator occurs.
Infer and ulliven (1224) recogntsea the term moisture or water in foods to meen all the mater present in a free state, i.e. not combined in any form with the infedients or the material, and other substences volatile at the temptriture of drying.

For example, the main part of the free vater of flour is given off in veter-oven drying, much of thet expelled at higher temperstures being in a different form. Many investigators supposed thet beter-oven temperature was the dividing line between free vater End veter in other forms. Water is still held tenaciously at higher temperetures as physically bound weter, and some may be held as water of hydration of the cerbohydrates and proteins. Qoleman and aider (1235) arain define moisture as the vater which may be added to or taken from a moduct without ohanging the chemical composition of the product, and does not therefore include water of erystallisation or beter of constitution.
Q. B. Morison (1226) pointed out that the inherent difficulties in making an accurate deteraination of the total water content of foods composed larely of waterere well recognised.

Nelson and Hulett (1920) emphasised one of these difliculties:The layer of water adsorbed on the surfoee of colloids has quite different properties from ordinary water. Its vapour pressure is much lover, and if this layer is of molecular dimensions it cannot be removed by the best desiccating agents in a vacuum desiccator.

Sohneller (1926) in a comparison of drying, donsimetric, and refractometric rethods of deternining weter in sufur procucts containing invert-sure stet u thet apparent efreenent of results wes due mainly to oompensation of errors suoh as persistent retention of moisture by film formation; oxjution; inversion of suarose; and decomposition of invert-sugar espeaially levulose. He found thet vacuum drying on sand at $70^{\circ} \mathrm{C}$ did not give constant weight after a veek; 30-36 hours heating, hovever, gave a result which afreed fairly clocely with the densimetric reauing. Distillation with toluene was not found better than the dryins method, as the end-point was not sharp and ruch time was required.
de Whalley (1936) stated that drying at room tempersture in vacuo can be said to give true solids, which when corrected for combines water in dextrose geve solids which differ only 1.72 per cent from refractometer solids corrested for invert sugar: whereas drying at $60^{\circ} \mathrm{C}$ in vecuo gives solids whioh difier 3.49 per cent from refractometer sugar. solids corrected for invert\% This work was carried out on golden syrup and molasses and led to the conclusion that all the advantages lie with the refractometer as a practical metiod of determining water. Gusterson and Pierce (1224) carried out tests on the volatile compounds evolved by beet molasses at $104^{\circ} \mathrm{C}$. They found an acid Praction at 90° and a strongly alkaline distillate at $104^{\circ} \mathrm{C}$. pointing to decomposition of an amido component of the molasses at this temperature. The analyses of viley and Browne had shown the presence in molusses of such amido bodies (see sherman, p.421,427, and 431.)

Colegan and Snider (1935) carried out an extensive investigation of methods of determining water in barley malt. As a preliminary step a sample was sent to about twenty laboratories connected with brewing and malting. The figures returned showed differences as high as 2.5 per cent in moisture content, and there were wide variations in the temperatures, apparatus, and methods used. Thus the amounts weighed varied from a to 10 grams, texperatures from 98° to $132.5^{\circ} \mathrm{C}$., and drying time from 10 minutes to 5 hours.

In consequence the authors set out to test ten existing methods, with the ain of selecting and standardising any likely procedure. They mention that the ideal noisture method is the one which least disturbs water of constitution or water of crystallisation while removing all the hygroscopic water. This they believe to be possible with vacuum desiccation at roon temperature.

They found that a large difference was caused in oven methods by even 1° lowering of the oven temperature. The water oven was found to give low results compared with vacuur desication. High results were obtained where the temperature was about $130^{\circ} \mathrm{C} .$, these being ascribed to caramelisation, and decomposition of amino acids. The vacuum oven yielded low results.

Their final conclusion was that low temperature vacuum desiccation and an oven method such as that carefully standardised by the Chicage Malt Standardisation Committee, were the best procedures. This Chicage method is worth quoting in full as an attempt to standardise the heat of a drying oven.

Oven method for moisture recomended by the Chicago Melt

 Standerdisation Comaittee.1. The oven shoula be provided with outomatic temperature control to keep vithin $0.5^{\circ} \mathrm{C}$. temperture.
2. The aven should accommodat all the samples on one shelf, and so that no sample is outsjde the area indjacted by test to give comporable results in duplicete samples.
3. The oven is to be standardised at the lovest temperature below $106^{\circ} \mathrm{C}$. Which will give a moisture content wion after 3 hours of drying will be within 0.l per cent of thet attainable at the same tempereture within 4 hours.
4. The weighing bottles are to be of glass or aluminium with tightfitting cover - 40 mms . diam. for a 5 gms . sample, and 55 mms . for 10 gms .
5. The ventiletors of the oven shall be open during the vihole drying period, and the door is on no account to be opened during the 3 hours of drying.
6. The sample shall be of the same fineness as finely-ground malt for the determinstion of extract.
7. The sample shall be veighed as soon as cold.
8. Results shall be reported to the nearest $1 / 10$ th per cent. Coleman and nider found that their oven was at $104-105^{\circ} \mathrm{C}$. While under load, but when empty, the temperature rose to $106.5^{\circ} \mathrm{C}$.

Colemen and Saider finally plottod moisture contents by the various methocs includine the stanuard method, and thus got a besis for obtaining the true moistiure oontent when the determination had been made by any method not standard.

Novak and nuers (1236) also state thet the only absolute method is vacuum desiccetion using $p_{2} 0_{5}$. They found that the water content by herting 3 hours at $1.05^{\circ} \mathrm{C}$. was on the average 1.44 times the water by vecuum desication over $P_{3} O_{5}$, the naterial tested being hops. Anderson (1236) paid special ettention to water estimations in the vecuum oven. He worked out the energy recuirements for the operation, showing that twice as much heat vas necessary to raise the sample to oven tempersture as for the getual removal of water from it. The conduction of heat to the sample was Iimited by the thickness of the metal shelves and by the area of the shelf which was in contact with the dish: the heat conductivity of the bress in a vacuum chamber is approximately 3.600 times as great as that for air. He found that samples still showed loss after 54 hours heating in the vacuum oven. the true The same author comments that if the sample is ground/loss of water cannot be established owing to mechaniaal loss.

Grissinger (Greet Vestern sugar co.) states that experiments have indicated thet glass and aluminium vossels give identicel results in oven methods.

Brown, Sharp, and Hees (I.E.G.,945,1928) tried to devise a method for the accurate determination of dry substance in beet house syrup using absorption on sand at $90^{\circ} \mathrm{C}$. in a vacuum oven with an atmosphere of CO_{2}, and heating for 72 hours. Individual desiccators with fresh $\mathrm{P}_{2} \mathrm{O}_{5}$ were used, allowing the sample to stand 3 days or more before weighing. They found that the weignt obtained af ter cooling say, 3 hours in a desiccator is invoriably higher than tidat after 3 days or nore. The drop sfter 3 days is usually 0.6 to 0.8 mgm . and the weight remains constant within $\pm 0.2 \mathrm{mgm}$. This difference they believed to be due to the slow dispersal of static charge from the aluminium dishes used.
"If a thoroughly dried dish after 3 days in the desiccator is weighed, replaced in the desiccator for tree hours and re-weighed, it is found to have gained 0.5 mg . or more : after three more days the weight goes back to the original value". These investigators state that the dish may pick up 1 mm . of water during weighing. They used $\mathrm{P}_{2} \mathrm{O}_{5}$ since sulphuric acid allowed the dried material to increase in weight. In this connection Hellor and Thompson ("Textbook of Inorganic Quantitative Analysis", Griffin, London, 1938, p.6) state that large glass and porcelain vessels and platinum crucibles and besins are particularly liable to condense wateron their surfaces while being weighed. Ostwald held the opinion that rapid weighing would minimise error by absorption, but J.L.Smith recommended leaving the diah in the balance-case for 20 minutes after
removal from the desiccator so that it may regain its normal film of moisture. Hellor also comments on the remarkable facility with which some substanceg, e.g. clays, will absorb the dry gases in an ordinary desiccator, as much as 1.5 per cent being absorbed in some cases.

> OVENS AID OVEX TEMPEATURE.

It is important to place the thermometer in an oven very close to the samples being dried or a false idea is easily obtained as to the temperature of drying. Thus I.H.Bailey (I.E.C., 6,585,1914, see also R.G. Grimwood,J.S.C.I., $32,1040,1913$) tested a number of diff erent ovens and found a very marked variation of temperature :TYPE OS OVEN

1. Electricallyheated and
2. Gas-heated, porcelain lined

thathomemea	Max. TEMP. RANGE	
READIIMG	TOP SHEL	
${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{0} \mathrm{C}$.
107	99-114	90-108

3. Gas-heated, air-jacket
4. Gas-heated,steam-jacket, constant water leudl

The atmosphere in some air-baths and srean ovens is quite humid and contaminated with sulphurous gases arising from the products of the gas burning beneath the oven. Dust from corroded metal walls in the oven may also fall on to the materials being dried : this may be prevented by lining the oven with tiles or smooth asbestos board. Bailey comments:- "Elaborately designed and expensi ve ovens are no more reliable than the more simple and inexpensive types: only those surrounded by boiling water and ateam were SETYODS.

In any analytical estimation the natural trend is to prefer methods which are either more convenient, more accurate, or more rapid than the standerd methods, and if all three criteria can be found then the operator is indeed fortunate.

In the attainment of rapid drying in moisture determinations there must be rapid transfer of heat to the sample, and rapid removal of the vapour driven off, and the sample should be heated to the highest possible temperature mithout causing decomposition, Data obtained by a conajttee for hethods of Analysis of the American Association of Cereal Cheritsta in 1925, ghowed that a tolerance of 0,3 per sent between results could be reasonably expected from different laboratories working on cereal products suoh as flour. The limits allowable between duplicates in ths same batch of samples with the same operator varied from 0.1 to 0.5 with an average of $0,2 \%$ per cent. This committee recommended that the methods should specify a definite tine of heating rather than a heating to constant weight, and also advocated a specific time of cooling in the desiccator.

Snyder and Sullivan (1924-26) criticised the vacuufo-oven method on the grounds of fluctuations of pressure and inequality of temperature in the oven. They were unable to obtain satisfactory results by drying at room teraperature using sulphuric acid or phosphorus pentoxide. Spencer (1925) working with wheat flour found fair agreement between duplicates on any one day, but irregularity on different days when weighings were aade under different atmospheric hurnidity

Smith end hitchell (1225) usine the stean, vacum, and electric ovens on flour studied the effect of different positions in the seme oven, and the offegt of different cooling conditions prior to veighing. Their duplisates shoved as high as 0.47 per cent diference for identieal conditions. Ithe vouum oven gave higher and more uniform results for different deys aid positions then the electric oven and much more so than the water-oven. Whey emphasised the eare necessary to avoid re-absorption of water during transfer from the oven and while weighing.

Mitehell and Alfend (1924) showed thet flour dricd with covers left loosely over the semple gave higher and better egreang results than with covers of and noted the it vas aporentily not muterial Whether the covers vere under the aishes or removed from the oven. Bailey and collaborators reported that the temperature of the interior of the kater-oven was recoraed by tro collaboretors as 94.6° and 95.5° respectively. It must be remembered thet vater oven drying -Will show a boiling-point eocording to the altitude.

Leavitt (1210) working on grain studied drying at tempretures carefully regulated to $97^{\circ}, 98^{\circ}, 99^{\circ}, 100^{\circ}$ and $101^{\circ} \mathrm{C} .$, found differences up to 1.75 per cent on moisture contint of $8-10$ per cent. Anderson (1936) reduced the time taken by the sample to reach the oven temperature from 90 to 10 minutes by circulating steam through the brass plate on which the sumple was placed.

Ianning (1935) studied the temperture changes in e small oven operatincest $130^{\circ} \mathrm{C}$. and conclucied that the re was consicierable difference of temperture at various locations in the oven, theit the position of the thermometer vas importent, that the time taken for the oven to regain its tempereture after introduction of the samples should be definitely fixd, and thet the meximum and minimum number of samples to be dried gt one time should also be controllea.

Davis (1235) studied the effect of forced dreught in overs as an aid to moisture detormintion, and conoluded theit different oven ventilation conditions had very little efiect, on results in the air-oven method $\left(130^{\circ} \mathrm{C}\right)$. He pointed out that viriability of results appeared to be caused by lov results near the oven door. This could be due to radietion, lack of convection currents at thet pert of the oven or recovery of vater by the sample when the door was opened. Leatherock (1222) sent sealed samples of flour to 69 operators. The averace result was 14.19 per cent vater and the range was from 13.22 to 15.00 per cent. Air-ovens shoved 14.15 per cent average and vecuum ovens 14.50 per eent average. The investigution showed thet the results nere affected by the type of oven used, the weight of sample taken, and the shape and dimensions of the container. The gein in the vacuum oven results was put down to the relative absence of oxidation as compared with the air oven. There is also the possibility of the loss of fine purticles of flour by the suction. Leatherock also states that water-jacketed ovens give regular results
if attention is peid to the size, lagging and fitting of the door. He mentions an inside oven temperbture of $98.5^{\circ} \mathrm{C}$., and thinks the largest veriation likely is $98-99^{\circ} \mathrm{C}$. at sea-level. Distilled water should be used in the jacket since there may be a steady inerease With tep-water through time due to the oncentration of soluble salts. In 2224 the referee on cereal foods for the A.O.A.C.
reportod the results of a collaboration on deternination of vater by three methods viz. vacuo at $70^{\circ} \mathrm{C}$., vacuo at $100^{\circ} \mathrm{C}$., and air-oven at $103-105^{\circ} \mathrm{C}$. Vacuo at $100^{\circ} \mathrm{C}$. shovad consistently higher results than the airoven, while the results at $70^{\circ} \mathrm{C}$. vere lover and less concordant than those by the other methods. It was also reported that the copper weter-jacketted oven is less afficient than the elactric type of oven and gave lover results even when the samples were dried to constant weight at the same temperature. rxperimental work indicated that errors due to meohanical loss by suation were improbeble.
C. F. Ofelt (Cereal Chem. p. 650,1940) compared the officiel air-oven moisture method and the ropid aluminium plete method. (Sandstedt. ibid. 813. 1938). Ihe official method was interpreted to mean 1 hour of total time in the oven. The two methods when used on flour samples gave results which we in agreement vell within the limits of error of either method. There is a lesser tendency for varistion due to oven position with the repid al. plate method than with the officiel method. Samplos must not be placed too near the front of the oven when using the officiel method. With Ground Wheat the Al.
plate mothod requires more than the stipulated 20 minutes hesting; 40 mins. seam necessary for comparable results. (The oficiel a.o. A.C. method is drying for 1 hr . at $230^{\circ} \mathrm{C}$.).

Putnam and Jolitz Cereal ©hem. p. 653 (1240) recorded the results from 26 collaborators on comparisons of the Al plate and official methods on flour and ground wheat. Seven sanples of flour and six of ground wheat vere tested. Goh oven load vas 8 samples onjy on the assumption that speed is luss when a lurger number of samples is accumulated before drying is stiorted. Gencral precautions used:All oven vents open; avoiding large temperature drops by loading the oven quickly; avoiding pleance of samples under the pilot light; placing lids atilt on the dishes vile drying; placing lids on before renoval from oven; 20 minutes in desiccator. (above for al plate method).

For the oficicial method 130° plus or minus 3° was maintained; no forced draught or Al plate vas used. The thermometer was placed With the bulb tip level with the top of the dishes but not directly over a sample. For the Al plate method directions vere:- place the $\frac{1}{2}$ inch (or more) thick al plete on the lowest shelf support of the oven; keep al plate temperature at 240° plus or minus 1°; place thermometer bulb in a small can filled withfine sand; dry 15 minutes for flour and 20 minutes for ground wheat.

Flour Results

	5.	$\underline{6}$.	Z.	8.	2.	10.	11.
f.O.A. ${ }^{\text {. }}$ dethod	9.71	12.61	12.13	12.10	13.06	8.95	11.74
Al Plate liethod	9.66	12.53	12.08	12.04	12.99	8.92	11.70

Ground Whest Results

	12	13.	14.	12.	16.	17.
A.O.A. ${ }^{\text {. Lethod }}$	8.66	3.82	6.38	8.64	13.71	6.30
Al Plete Lethod	8.57	8.71	6.19	8.50	23.58	6.12

The chief advantage of the in plate method is the even distribution of hoat over the shelf area; its ohief trouble is the dificulty of meesuring its tonp. accurately.

Probeble ources of rror in ovens.
Bailey (1914) spoke of non-uniformity of drying-oven temperatures; Jonning (1935) showed that a poorly designed thermostat gove unevon temperatures. Davis (1935) found that different oven ventilating conditions hed little influence on results by the official method (1 hr. at $130^{\circ} \mathrm{C} .1$ putnam and Jolitz reoomend The one hour period of drying begins when the oven temperature regains $130^{\circ} \mathrm{C}$. It should be stated where the tip of the thermometer shall be placed in relation to the samples.

The Influence of Humidity on Moisture jeterminetions. Tudrig Papp (1934) studifd the effect of humidity on moisture determinations on flour. He instenogd limits of 30% relative humidity on a bright cold wintar day at a temperature of $15^{\circ} \mathrm{C}$. and 65% relative humidity at $25^{\circ} \mathrm{C}$. in hot damp summer weather. The possible variation for the same sample with these conditions were from 13.26 in winter to 12.66 in summer. The absolute bumidity is lover in winter than in sumer so thet in the winter hipher moisture results are obtained. The ifeures aited relite to the oven method at $1.05^{\circ} \mathrm{C}$. and Papp points out that the influence of the humidity is even grester at temperatures below $105^{\circ} \mathrm{C}$., since the pressure of satureted water vapour is lower, which gives a higher absolute humidity in a room than the humidity at the drying temperature. For example 50% relative humidity at $20^{\circ} 0$. corresponds at $105^{\circ} \mathrm{C}$. with a relative vapour pressure of 0.97%, and at $95^{\circ} \mathrm{C}$. with a relative vapour pressure of 1.38%, the corres sonding water peroenteges being 13.00 and 12.73. Rapp used $\mathrm{P}_{2} \mathrm{O}_{5}$ in ordex to deternine the water lert in his samples after overi-drying at $105^{\circ} \mathrm{C}$. He found thet a sample first dried at $109^{\circ} \mathrm{C}$. and then placed in a container with $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ and re-dried had 0.53 per cent of residual water. on drying at 20:0. 0.25 per cent of water remained after months of exposure. He concludes thet materials with a gel-structure cannot be dried completely when weter-vapour is present in the atmosphere. similarly if air is bled through a vacuum oven the vapour tension is deoreased in proportion to the vacuum, and higher values are got for moisture
content, the erfect of humidity and temperiture being reduced. Mason (1939) comments on the wide diversity of opinion as to which method should be considered the standard in moisture determinations, and considers that there is some weight of opinion in favour of the vacuum oven method even with all the variod conditions advocated. His ovn experience indiouted thet the vocuum oven method geve higher results than the electric oven method.

The followine adenteres of the vacum oven are enumerated by meson:-
(1) conomy of time for each determanation.
(2) Tess risk of aerobic oxidation due to prolonged heating in air. (3. Tower temperetures may be omployed, thereby reducine the dangers of thermel decomposition.
(4) The effects of varying conditions of humidity are reduced to a minimum.
(5) The liberated moisture is removed speedily from the heeting chember.
Shuey (1925) using o vacuum oven at $98-100^{\circ} 0$. and a maximum pressure of 25 inms. also obteined slightiy hieher results than by air-oven method at $125^{\circ}, 130^{\circ}$, and $135^{\circ} \mathrm{C}$.
Davies (1935) steted thet foreed air-draught did not materially improve the air-oven method, and argued thet as ventilation conditions were not of vital importineethis favoured the use of the air oven method as a stendard.
Koster (1936) defended the use of $130^{\circ} \mathrm{C}$. Por 1 hour on the grounds that temperature and humidity fluctuetions have less influence than they have while heating at $105^{\circ} \mathrm{C}$. for 3 to 8 hours.

Methods for Determinetion of ater or rotal solias from chamistry in commeroe, dewnes, $1234-1932$.

No.	Material	Weight used gms.	$\begin{gathered} \text { Temperature } \\ \text { oc. } \end{gathered}$	$\begin{aligned} & \text { Type of } \\ & 0 \mathrm{ven} \end{aligned}$	Details
1.	Balsams	---	Room	Vac. $\mathrm{H}_{2} \mathrm{iO}_{4}$ desicuator	Cocking, p. 912 nime - 48 hours.
2.	Butter	3-5	100	Slectric	$\begin{gathered} \text { Pime }- \text { min } .234 \\ \text { hours } \end{gathered}$
3.	$\begin{aligned} & \text { Brewer's } \\ & \text { Malt } \end{aligned}$	5	Boiling weter	Buth	Oliver, p. 327 Time - 3 hours
4.	Cacao Beans	3	team- oven	steamoven	.-- p. 1382 Time - 3 and to constent weight.
5.	Chocolate	---	100-105	air oven	$\text { Time }-3^{\text {p. } 1384} \text { hours. }$
6.	Casein plastics	3	100	welldesigned air oven	Hand, p. 597 Time - to constant veight.
7.	Coal	5	105-110	$\begin{aligned} & \text { double- } \\ & \text { valled } \\ & \text { oven } \end{aligned}$	$\text { Mills, p. } 1178$ Time - 1 hour.
8.	Corned Beer and Heat Pastes	5	100	```Cellular water- bath```	$\begin{aligned} & \text { Oross, p. } 333 \\ & \text { Time } 18 \text { hours. } \end{aligned}$
9.	Flour	10	130 Pwheat 120 (Flour)	Llectric	Fairbrother p. 935 Time - 2 hours

No.	kataria?	Meight ussed cms.	$\operatorname{mempers}^{\circ}$	Typa of oven	Details
10.	Flour	2	$\begin{aligned} & =.93-100 \\ & \mathrm{~b} .130 \end{aligned}$	a. oluatric b. vacuum	Thotous, p. 1171 a.to constint wt. is. 1. hour (A.O.A. . methols)
11.	Glycerol	$\int_{\text {(absorbed }} \frac{1}{2}$ on asbesto	3ioom	Var. $\mathrm{H}_{4}: \mathrm{O}_{4}$ desidegutor	Davis, p. 373 time \div about 43 hours.
12.	Inks	smalı	10%	$\begin{aligned} & \text { double- } \\ & \text { nalled } \end{aligned}$	Harman. p. 1030 time - 3 hours.
13.	Leather	1	93.5-100	Fizter or steam-ovon	Hepburn. 0.922 Fime - 3-4 hrs. then to constant voight.
14.	$\begin{aligned} & \text { Mest } \\ & \text { Strect } \end{aligned}$	2	100	cel.ular waterbeth	tross, p. 104 and 205. Time - 22-36 hours.
15.	Milk	---	18000	Vacuum Destecator	Hamley, p. 1058 2tme - 18 hours.
16.	M11k	5008.	100-102	deatric	
17.	Pigments	---	105	an ovon	$\text { Bryson, p. } 1063$ $\text { Time - } 2 \text { hours. }$
18.	Pigments	5-1.0	$\begin{aligned} & 100(1 \mathrm{hr} .) \\ & 82(2 \mathrm{hrs.}) \end{aligned}$	an oven	rilsong p.1353 lethod uependent on nature of sampl
19.	Rubber	20	100	-	soott. p. 416 time - to constant veight.

NO.	Materi	$\left\{\begin{array}{l} \text { uight } \\ \text { used } \\ \text { gms. } \end{array}\right.$	q'empera ture ${ }^{\circ} \mathrm{C}$.	Type of oven.	Dotails
20.	Rubber Mixings	$2-5$	110	an oven	$\begin{aligned} & 300 t t, \text { p. } 1500 \\ & \text { Time - hours. } \end{aligned}$
21.	Shellac	---	Ho om	Vac. $\mathrm{H}_{2} \mathrm{O}_{4}$ vesicoator	$\begin{aligned} & \text { Bryson, p. } 1374 \\ & \text { Time }-48 \text { hours. } \end{aligned}$
22.	ugar	10	100-205	Mactric	$\begin{aligned} & \text { de Whalley, } \\ & \text { p.l278 } \\ & \text { Time }-3 \text { hours. } \end{aligned}$
23.	Sticky uqurs	$\begin{gathered} 10 \\ \text { with sand } \\ \text { admixed. } \end{gathered}$	100-105	rlectrio	```de halley, p.1278 Time - }3\mathrm{ hours.```
24.	Drugs	Oven metho Distillati chlorethyl llectromet (dielectri	not recommen With tetrae suitable. ic method constant) Por	outine.	Middleton, p.414.
25.	General	Descriptio distillati methods.	of the oven method and	thod, emical	Hepburn, p.113.

CONCLUSIONS

The Determinution of ater in organic Materials.
A study of the methods desuribed above reveris that there is no great liking for the vecuum oven, practicelly all the operators preferring the steam-oven or the electric oven. In some cases official methods are used, and with some products the method of vacuum desication is employed (balsams, flycerol, milk and shellac). The dishes used include clouk and watoh glesses, porcelain crucibles, alminium or niokel flat dishes or basins, stainless steel dishes without lids,flat porcelain dishes, and toll or squat glass weighing bottles. Petri dishes and silica dishes have also been recommended. Several operators take to constant veight: solenoid weighing is specified by one worker and the use of a chainomatic balance by another. In one case the open dish is covered by e watch-glass while weighing. Vith flour and sugar it is stated that higher results are obteined in the vacuum oven. Chocolate is dried in thin flakes, and cacao beans are roughly broken up. sand and asbestos are specified in certain instances as absorbing media. sulphuric acid desicators are used by several analysts, and the usual time of cooling (where mentioned) is 20 minutes.

With such a vide diversity of dishes, ovens, times, weights taken, temperatures, cooling times, and weighing directions, it is apparent that uniformity between different observers is haraly possible and it must be remembered thet in many instences it is never required. It is also evident that no one method could be expeated to be appliaable to all the products listed.

The behaviour of heat-sensitive oaterials on dryingi-

 Occurrence of water :- All comodities and chemical systens contais water unless special care has been taken to prevent its entrance. The determination of water is one of the most familiar and frequent operations in analytical laboratories, and the mode of estimation has been a najor problem almost since the introduction of the balance.Water may occur as free or mechanical water which is often an equilibriug amount remaining constant at constant atmospheric humidity. It may occur as water of crystallization or as water of constitution, which last is usually terised combined water. Finally, in organic compounds of natural orisin or from living tissues, bound water may be present.

Water removal :- Free water is easily removed by heat, but water of constitution and bound water provide the main difficulty in the accurate estimation of water. The temperature may be raised to remove this type of water, but the degree to which this is permissible is naturally governed by the type of material under test.

The dilemar is that if the temperature is not raised sufficiently all the water is not driven off, and if it is raised, much more than water may be driven off.

Oxidation :- With thermally sensitive substances oxidation is an important factor, and the end-point in an oven method for moisture is often the point at which the loss due to the last trace of water is balanced by the gain by oxidation or other changes.

Oxidation is minimised by vacuum oven drying, the maintenance of the vacuum removing water vapour from the neighbourhood of the sample and hastening the drying of the sample, particularly when a small air leak is allowed.

Water may be retained very persistently due to the formation of surface films, or to the high surface tension of concentrated syrups, even wen absorbent substances such as and or puaice are used to disperse the sample.

Sources of error : - Variations between observers are usually due to differences in the details of methods, especially when oven methods are used.

Relative huaidity variations and differences in atmospheric pressure are particularly liable to cause discrepancies in results from different laboratories, and even in those from the same laboratory.

Choice of method:- Drying over desiccating agents at room temperature has been proposed as an absolute method for standardizing other methods, but the process is extremely slow, and there is the usual difficulty when a time factor is involved, of deciding when to stop. With acid desiccating agents, absorption of acid vapours may occur. As with many other methods, the removal of the last traces of water is difficult, generally taking about 90 per cent of the total drying time. The nature and freshness of the desiccating agent are important in this method, as they are also in the process of codling oven-dried samples

In many cases the method of desiccation at room temperature will show alternate loss and gain from day to day, as the water passes back and forth from sample to desiccating agent.

Similarly, drying to constant weight does not ensure accuracy: since constant weight is limited by the conditions of drying, and also by the conditions of desiccator cooling and subsequent weighing. The necessity of having fresh desiccating agent in the desiccator is thus apparent ; dry sand as well as the dried sample will absorb appreciable anounts of water from many desiccating agents, and are in fact, better drying agents in many instances then that in the desiccator.

Ideally, the seme percentage of water should be found in a given sample by any number of analysts who adhere rigidly to the conditions laid down by the method. In choosing a suitable method for any material many factors must be taken into account, and some of these are described below.

Factors in oven drying:- The time factor in a method should be kept as low as possible. This can be aided by taking as small a sample as is consistent with accuracy. Errors in weighing may become unduly large when less than 0.5 g . of sample is used.

It is doubtful whether the reduced pressure in the vacuum oven is an important factor in rapid drying, since the rarefied atmosphere acts more like an insulator than a conductor of heat. On the other hand, the removal of water vapour by the puap is an advantage over steam-oven drying.

The time necessary for drying rapidly decreases with increase of drying temperature. It may be expected that removal of moisture from solids will cease when the vapour pressure of the remaining water is in equilibrium with the vapour pessure of the atmosphere in the hot oven. It seems certain that drying to say $105^{\circ} \mathrm{C}$. or to constant weight can only give comparative results at best and often not particularly quickly. Some substances have not lost all their moisture at such a temperature, and others have already started to decompose - for example, the caramelization of sugars begins near their melting points, and this is dangerously close to $105^{\circ} \mathrm{C}$.

Among the many factors influencing the results obtained by oven drying are the state of division of the substance, the amount of water used to mix absorbent and substance, the ratio of absorbent to substance, the pressure, and the time and temperature of heating. The size, shape, and material of the dish are also significant, and the rate of evaporation may vary from dish to dish even when the dishes appear to be uniforis. The position of the dish in the oven, the closeness of its contact with the oven bottom, and the continuity of the heating in the oven will also influence results. The ventilation conditions in the oven are important with regard to removal of water vapour expelled from the sample.
Chemical methods :- These have been adrocated for substances which decompose easily, which oxidise readily, or which are very volatile The usual errors in these methods are caused by combination of the reagent used with constituents other than water in the sample.

Various reasons for diserspancies and poor wereement in the Deter rination of mojsture by oven drying.

1. tate of division of substance.
2. Usuz errors of veighing - carelessness, eto.
3. adsorption ot rases either while in oven or in desiccator.
4. Retio of adsorbent to sample.
5. Amount of vater added to mix sampze and adsorbent.
6. Time : tempreture : pressure.
7. Ventilation of oven.
8. Atros pherio humidity.
9. Rete of evaporation fron dish to dish whether of the same material or of diferent muteriels.
10. Nature of substance, e.g., Ash/Reducing sugars ratio.
11. Diference between ovens.
12. Closeness of conteg with oven bottow.
13. ize of dish : height, diameter, shape, knobs.
14. Position in oven.
15. ontinuity of heatink in oven.

In vacuum drying the rarecied etrosphere is an insulation.
The heat conduction to a sample in an oven is limited by the thickness of the metal shelves (note effect of prorated shelves), and by the area of the shelf wich is in contact with the shelf.

Heat transmission may vary from dish to dish - this variation is likely to be more between glass dishes then for say metal dishes of unform thickness.

Vogel, uantitative analysis, 19j9, ว. 209.
lectrifitation of the surface of a veighing vessel due to ribbing may cause a onogretively lare orror, particularly if both the atmosohere and the aloth are dry. It is slomiy dissipeted on standing, but is best renoved by placing a piece of pitchblend or other redioactive material in the balance ause to ionise the air.

The time of cooling in a desicutor will depend on the tempert ture and the size of the dish, as well as upon the material of which it is corposed and the nature and mass of the sample within. Pt. crucibles should be left 25 minutss, and crucibles of other materials for 35 to 40 minutes before being leighed.

A Note on the Determination of Water in Coal :-
In fethods of Analysis of Coal and Coke (Fuel Hesearch Board, Survey Paper No. 44, . 0.0 .0 , 1940), it is recomanded that the weight of eoal taken and the diameter of the dish should be arranged to give a layer of coal weighing not more than 0.3 gm . pe sq. cm. of expesed surface.

Coals which oxidise readily should be dried in a bath through wh which a slow current of aitrogen is being passed.

SULUBLLITTES UF CREBUTYNAATS

In the experimental work on the estimation of water it was necessary to prepare solutions of various sugars. The solubilities of the principal sugars a e converiently grouped in pigure 37 :-

Eiguxe 37 : Solubilities of sugars

Heferences_-

Galactose :- Dehn, J.A.C.S., 39, 1400, 1917.
Glucose :- Anthon, Dingler, 168, 456, 1863.
Lectose :- Hudson, J.A.U.s., 30, 1767, 1908.
Levulose :- Jackson, Silsbee, and Proffitt, Bur. Standards Sci. Paper No. 519 : Bull. Bur.stds., $20,587,26$.

Maltose :- Gillies, Rec.Trav.Chim. Pays Bas,70,43: 135, 44 : Int. Crit. Tables, II, 347, 1927.

Sucrose :- Courtonne, Ann.chim.phys., 5, 12, 569, 1877 : Taylor, J. ©. S., 1678, 1947 : Herzfeld, Z. ver. Zuckerind., 181, 1892 : Grut, Z. Zuckerind.Czecho., 61, $366,1937$.

SECTION 5

Dart 5 ：Qren Kethods for the Determination of Water．

EAPERI解时A工

1．Scope of the Work ；
2．Factors in oven methods ；
3．General procedure．
\qquad
 T x ，

SCOJS OF THE WORK OH THE OVEN DRYIMG OF SUGAR

$$
\text { SOL } 19 \mathrm{TO} \text {. }
$$

In the preliminery work on dryine suger solutions in the stean oven it vas attempted to establish the following points :-

1. The beat type of aborbing mecian to use.
2. A comprison of the use of glass and metal dishes of various shapes and gizes.
3. The optimun depth of mized substance in the dish.
4. The acrement of duplicstos, and the reproducibility of results.
5. The optimu amount of absorbing medium to use in relation to the anount of the sample taken.
6. The amount of water necescary for mixing the sample with the absorbing medium, and the effect of this weter on decomposition and on drying time.
7. The oftimum time of heatine.
8. The overall time recuired for each estimation.
9. The proper proparetion of the absorbing nedium.
10. The erfect of drying at a pre-determined pH value.
11. The influence of extermel atmospheric conditions on the estimation when repeate day after day.
12. The effect of using different ovens.

A comperison was then mede with the vacuum oven nethod of drying using the deta goined above. Comparisons were also mede using the distillation method, the Karl Fischer chemical method, and the refrac tometer method of estimeting vater.

Themelly aensitive eugars may decompose giving ofl volatile. zroductso.e.ganahydes, ectern, alcohols, organic acids, amonia, and carbon dioxide : this decomposition may proceed simultaneously with absorption of oxygen by the dried material. Host impure sugar producte contain toids, Gums, protein, and mineral metter which agein complicate the drying problem, apart from decomposition of the sugar itself,

The main variables strestad in the literature are Temperature rime, and Drying Surface. When the bemperature is lowered to protect the sugar, the time of heating has to be increased, and this extra time in itself may give rise to decomposition of the sugars or impurities present. The time of dryine is much shortened by extendine the aryinc surface.

Defects of ateam-oron dying :: Uncertain results are mainly due to :-

1. Slow escape of air, the vapour from the samples being incompletely removed, The vapour preasure in the oven is thus higher than in the surrounding atmosphere, and this tends to give low results, with a slow continuel rise.
2. The temperature of drying largely controls the rate of drying, both factors being dependent upon the intensity of heating,which may vary considerably in a multi-celiular oven.
Vacuun-oven Drying :- These are usually operated at 15 to 100 mms pressure with a gentle air current passing.

Without the air current, the water vapour escaping from the sample
fo not carciad of so readily, and the results given will not site close agrecnent.

Ith tho air curfomt the vapour tension is roduced in the oven accorcing to the vacum, The results obtained are higher, varying with this pressure. The influence of temperature and of humidity are lesene.

Introduction of Eemples : Drying must not be disturbed by introw Aucing frech semples during the drying period. The number of somples placed in one compretaent of an oven must be strictly controlled.

Detailed Consideration of oran Ceting:
This will involvo a study of the following factors :-
(a) The substance to be dried
(b) The drying dish
(c) The absorbing mediun used : hence drying surface.
(d) oven conditions and hoating details
(e) Time
(f) Desiccetor detaile
(c) Weighinc details
(a) General fisctore

(2) The substance :-

1. Hethoc of sampling:- Is the sample representative of the bulk? 2.Gereral nature of the samole:-
(a) State of sub-aivision -Is grinding possible or necessary?
(b) How is the wetor distributed in the structure of the aemple?
(c) Uniformity of the sample.
(d) Can water escape easily from the sample ?
(e) Sampe dencity, for estimation of a convenient weight to take. 3. Behaviour of the sample on heatinc:-
(3) Tendency to decompose - Coneral resistance to heat and time of
(b) Tendency to owidise
(c) Liability to fometion of surface filns occluding water, e.e. surface glazing, or fomation of horn-like masses.
(d) Liability to form viscous syrups from which water escapes slowly: (e) Danger of lows by air-currents or suction (with light materials). 4. Forms in which weter is oresent in the somple :-
(a) Mechanical or adventitious water
(b) Water of conetitution
(c) Water of crystallisation
(a) Zeolitic water
(e) Bound water
(b) THE DRYING DISH:-
2. Materiale of construction : Metals :- copper, nickel, aluminium,
alloys such cs Monel metal or Stainless steel. Non-metals :- glass silica, porcelain.

2. Properties :-

(a) Resistance to heat
(b) Resistance to corrosion by sample, by atmosphere, or by acid fumes (c) State of surfece : polished, dull ; smooth or rough.
(d) Co-erficient of heat transfer, controlling the rate of evaporation obtainable, and the rate of cooling in the desiccator.
(e) Tendoncy to acquire static cherge, and ease of removing this.
(f) Air-tichtness, and generel convenience in handing.

3. Dimonsions :-

(a) Ratio or height to dianeter
(b) Shape - round, roctangular, 'aished', etc.
(c) Type of lid, e.e., ticit of loose-fitting, with or without knob.
(d) woight - in ceneral preforably as light as possible.
(e) Wlatnese of bottom surface - important for heat-transfer.
4. Preperations for weighing :-

Woshing, dryine, polishing, heating,handing, wiping, etc.
(c) The Absorbine Mecium :-

1. Type:- \quad. $6 .$, sond, puraice, kieselguhr or ceiite, asbestos, peper. 2. Preparation :-
(a) Cleaning and sieving (if necessary).
(b) Treatment by acic or alkali
(c) Weshing with water
(d) Ignition to remove water and volatile matter.
(e) storace.
2. Properties :-
(a) Inertness : thore should be no side-reactions between sample and
(b) State of sub-diviaion.
(c) Porosity and weight per cubic foot.
(d) Colour : if white, decomposition of the sample can be seen.
(e) Hygroecopicity when dry.
(f) Surface area expoed : this controls the area of the film of sample

- Felation to Sample :-

(a) Weicht required for optimum dryine, i.e., ratio of absorbing mediun to test substance.
(b) Mickness of layer in arying dish, controlling resistance to the escape of water.
(c) Amount of vater required to mix the ebsorbing mediun and the sample, if the use of water is necessary.
(d) The oven :- The main requircmente are a unifore temperature End adecuate ventilation.

1. Generg1 :-
(a) Type : size : shape : number or compartments.
(b) Fittings :- doors, shelves, themostat, lageing, thermometer. 2. Heatine Ventilatione and Temperature control:-
(a) Mode of heating - ges, stean, electricity, etc.
(b) Adequacy of temperature control - thermostatic regulation within $1^{\circ} \mathrm{C}$. is desirable to encure uniform heating.
(c) Ventilation :- there should be an anple inlet and outlet for air and mater verour $:$ fan ventilation is preferable. The system used should be capable of close regulation.
(d) Steammeateo shelves may be required in laree ovens.
(e) The thermometer should be placed so that the bulb comes just over the samples.
(f) The oven should be screened from draughts.
(c) The outside of the oven, particularly the door, should be properly lageed.

3. Relation of Sample to oven :-

(a) Position of Sample in Oven.
(b) Closeness of contact or sample dish and oven bottom.
(c) Humber of samples in the oven at one time.
(d) Fluctuations in the oven conditions due to variations in humidity and temperature, or to the opening of the oven door during drying.
(e) The use of inert gases to minimise decomposition or oxidetron.
(f) The absence of conditions tending to cause oxidation.
(c) Continuity of heating,e.e. no samples should be addediurine a heating period, nor should the oven doors be opened until drying is thought to be complete.

4. The Vacuum Oren :-

(a) Temperature and pressure employed.
(b) The constancy of temperature, These factors will depend on.. and pressure: \quad the vacuum pump and the mode of heating.
(c) The degree of superheating in the oven jacket.
(d) Introduction of air during drying the use of an air-leak.
(e) Pre-crying of the air entering the oven, ie. air-leas or when breaking vacuum.
(f) Provision of efficient trap between oven and vacuum pump. 5. placing of dishes :- Different workers recommend varied procedures, such es placing the lid beside the dish in the oven, covering the dish loosely or partially with the lid during drying, placing the lid under the dish, or leaving the lid
outside the oven. The best procedure would appear to be that of plecing the lid alongside the dich in the oven.
(e) Tine Factors:-
(a) Time for preparation for the estimation - sampling,preparing sample, assembling apparatus, heating oven.
(b) Time required for initiel veichincs.
(c) Tirae of heating in the oven, including time taken by sample to attain oven temperature.
(d) Time to cool, ane total time in the desiccator.
(e) Time for finel weighings.
(f) Total time tekon for the estimation.
(G) Exact time when the somple is completely dry.
(h) Rate of Rvaporation for the given conditions.
(f) The Dessiceator :-
(a) Type, shape, and size of desiccator; material of construction - glass, metal, etc.
(b) Moture and efficiency of the desiccating agent, its type, its physical state.
(c) Ratio of the volume of the desiccating agent to the total volume of the desiccator.
(d) Total anount of desiccating agent present.
(e) Uge of cooling plate or cooling water.
(f) Freshness of the desiccating ecent.
(8) Hygroscopicity of the dried eamples.
(h) Time in desiccator before weighing -1.to cool : 2. total.
(i) Humber of samples in the desiccator atone time.
(j) Risk of loss during opening of desiccator mathod of opening.
(k) Differenco betweon weiching infentately wampe is cool, and after say, 24 hours, in the desiccator.
(1) Danger vith sulphuric acio of losing SO_{3} vapour, especially when usine vacuum desiccators.
(in) The use of syecial modes of desiccation, e.en, evacuation, stirring of desiccator air, etc.
(n) Distance of desiccating agent from the sample.
(o) Position of sam le in the desiccator - above or below desiccating agent.
(p) General convenience of desiccator for carrying and handing.
(c) The weighing :-

1. The Belance :-
(a) Tye :- The belsnec should be of "short-arm" type. It may be an ordinary analytical balance, or preferably chainometic, air-damped, or magnetically-damped to give quicker weighing.
(b) Sonsitivity:- 0.1 ngra. should be readily detectable with average loads.
(c) Speed :- The period of oscillation should be short ; a period of swing of 5-10 seconds is satisfactory.
(d) Load:- The load at which the sensitivity becomes forty per cent of its maximur value should be the greatest load allowed.
(e) Goneral :- The belance should be level ; the doors should be kept closeci as much as nossible; woights should be pleced in
the centre of the pans ; e desicoator should be placed in tho belance cose ; weights should be handled with forceps.
(f) welnts : Should be calibrated, and checked at least once each yesr. The same weighte should be used in any one experiment.
2. Me thor of wreighine:-
(a) The weight takon may be a round number ; where woighing by difference is necessary it should be made ropidiy.
(b) A definite sequence of operations in weighing will make for greater spedd, and lessen the chances of error. The choice of the actucl method of weighing is zlso important: for example, the nethod comanly adopted of mazing the pointer swing of the loaded balence equal to the pointer swing of the unloaded balance may give rise to considerable error if the zero point changes within a short time.
(c) Tonge may be usec in handing dishes to avoid finger-prints, etc
(d) Temperature differences should be avoided: there should be noappreciable chance of external humidity of temperature between weighings : the dishes must be shequately cooled.
(e) Constant Weight :- There is consicerable difference of opinion as to whet is meent by constant weight. This term should be rigidly defined for any siven procedure.
(f) Weiching by difference usuolly gives slightly gigher results, and is advisable if the operator cannot weigh quickly.
(8) The time intervals of re-heating to "constant weight", should be strictly prescribed and achered to.

Rurther notes on the Belance :-

1.The belcace should be on afirm founcotion, as free as posaible.
from yibration anc ahock. It should bo perfectly level, and should be in a room at even temperature and placed away from doorsinot pipes, draughts, etc. It should be as dust-free as possible.
2. The balance must give consistent results-that is, it must give the same recult in successive weighinge of the some bory.
3. The balance must be accurate - that is, the beam must be horizontal then the pans are empty and when equal masses are placed on the pans.
4. The balance must be stable, that is, the beam arter being displaced from its horizontel position must return to its horizontal position.
(h) General Details:-

1. Method of reporting results:-

(a) The extent of replication desirable should be determined.
(b) There should be a stendard procedure governing the agrement of duplicate results.
(c) Analyses should be reported to the second decimel place only when justifiable, bearine in mind that the first decimsl place may be accurate, and that the second is retained usually to keep the first place as accurate as possible when using the data in celculation.
(d) For oven drying methode the procedure adopted should be mentioned When reporting results, e.e. "S houre in steam-oven at $95^{\circ} \mathrm{C} . "$, or " 6 hours in vacuum oven et $70^{\circ} \mathrm{C}$. vith presmure 5 cms ."
2. Agxemont of dunticete rosults :-
(a) Renults shoule agree within plus or minus a per cent to be aooeptod as duplicates.
3. ayoe of Dothod :- This will depend ypon the accurecy desired, and sactors such as the offect of sion drying versus cuick drying on the decomposition of themally encitive matexials.

In eeneral the vacuma oven operating at temperetures below $100^{\circ} \mathrm{C}$. Was found to give rosults much more variable than thoge by the steam ofen without vacuum. This is probebly due to the arrangemont of the heating olenent causing a resular convection current aystem through the water jacket, wince certain areas of the oven consistently gave low results.
4. Desiccatore : A desiccator can be disyensed with if the sample. is heated in a shiold box with tightly sitting lid surrouncing the sample dish. The two are cooled and weighed together.

Two important factors with regerd to desiccation are the surface area of the desiccating agent exposed to the sample, and the surface areo of the sample expoged to the desiccating agent.
 Ir SUGAR SOLUTIOMS. XI Tri OTEM NOTHODS.
 deop, With incide-iitting grounc-in lids, vere carefully selected to ensure thet the bottom surface was plane, and thet their weights were approxinately tho same. Boeh cish wa provided with a small close rod, ilat at one end, and suriciently short to lie flet in tho dish. The required amount of freshly-ichited abcorbent (sand, celite, punice, etc.) was placed in the dish, and the weight tokenWith the lid and rod, The estimated amount of gyrup or sugar solution mas now run on ton of the absorbont, ving a small wide pipetbe, and counting drops to get the appromimetely correct weight. Whie operation was carried out as rapidy as possible, and the lids of tho dish and of the samplye bottle were kept open for the minimun timppossible. Arter accurato weighing, enough mator was added to leave the meterial daturated, but without excess water. Thesyrup, sand, and water wore now thoroughly mixed by means of the rod, which was finally dropped on top of the sand (or other absorbent). The dish was placed in the drying oven with the lid alongaide, placing one dich in each compartmont on asiz compartment celluler type stem-ovon, with tho ventilators open, or for vacuum work, placing four dishes together in a semi-circular section vecum oten (sec illustration). At the end of the heating period (e.G. 5 hours) the lid wes repleced on the dish while still in the oven, and tho sample cooled in a desiceator for 20 minutes, allowing more or less time accorcing to the meights of material
present and the nature of the dish (e.g. glass or aluminium). The weighing was made as rapidly as possible on an air-damped belance, using standard weights. The sample was returned to the oven for subsequent periods as desired, cooling and weighing as before.

FIGURE 38: Aluminium, nickel, and glass dishes of various types as used in moisture determinations by the oven methods.

SBCTION 5.

METHODS OF AMALYSTS.

Part 6: The Rate of Evaporation in the Determination of Water.

1. Introduction :
2. Bxperimental :
3. Discussion of Results.

IRTRODUCTIOR.

In the constant rate period of evaporation which is the first stage in many drying processes, the rate of evaporation appears to vary as the 0.8 power of the mass velocity of the air (see farshall and Hougen, T.A.I.Chem. F., p.91,1942). In the limiting ease where a Iiquid surface is exposed, Powell and Griffiths (T.I.Chem.E., p,175, 1935) have shown that the rate of evaporation is affected by edgeeffects which cause irregular turbulence of the air stream by protecting a proportion of the area from the currents of air.

Several formulae have been sugsested for the expression of the rate of evaporation from open ishes both in "still" air and in currents of air. These are generally admitted to be empirical in nature. Thus Thomas and Ferguson (Phil. 崌ag.,34,308.1917) state "Evaporstion Irom full circular dishes was not proportional to the radius as stefan suggested, nor to the square of the radius(or first power of the area) as was comanily assumed, but followed an exactly intermediate, law - that of the three-halves power of the radius..." Hinchley developed the well-known "Imperial College" formula $W=0.02\left(p_{e}-p_{d}\right)^{1.2}$ where W is the rate of evaporation (kilos per 8q. m. per hour at 760 mins. pressure), pe is the vapour pressure of the water in the pan (sms. Hg), and p_{d} is the vapour pressure of the water in the air (mms. Hg). This formula has since been modified by Himus (Hinchley, A.S.C.I., $242 T, 1922$: Hinchley and Himus, T.I.Chem.E.,2,57,1924: Himas, ibid. 7,166, 1929).

Powell (ibid.,13,36,1940) and Made, (ibid.,20,1,1942) have given modified formulae of a dimensional character.

In a closed compartment of a steam or vacuum oven, the conditions are narkedly different from those in open evaporation systems, and the present tests were designed to investigate this difference. From Hinchley's formula it was calculated that if evaporation takes place at $100^{\circ} \mathrm{C}$., with the anbient air at $20^{\circ} \mathrm{C}$., the rate of evaporation of water from an open pan with natural convection alone operating, should be 255 gms . per 100 sq . cms. per hour.

The temperature in a single unit steam oven was found never to exceed $98^{\circ} \mathrm{C}$. and to reach this temperature the ventilator had to be kept closed. With the ventilator open, the oven temperature fell to $84-88^{\circ} \mathrm{C}$. The introduction of a sample caused a drop of about $6^{\circ} \mathrm{C}$. in the oven temperature. In nost cases the sample dish temperature did not exceed $38^{\circ} \mathrm{C}$., with an average of $86^{\circ} \mathrm{C}$. On this basis, the rate of evaporation calculated from Hinchley's open pan formula should be 136 gms. per 100 sg. cms. per hour. In the tests made this figure was not approached, but it must be remembered that the rates include here the period of heating up to $86^{\circ} \mathrm{C}$., which usually lasted $5-7$ minutes. Even allowing for this, the rate would only be increased by about 20 per cent, and would still be well below the Hinchley figure.

Care was taken in the tests to have the copper bottom of the oven well cleaned, so that adequate thermal contact was assured for the dishes.

Of the various factors studied, that of heat maintenance seemed to be most important : the heat necessary to evaporate the liquid must be supplied ti the dish. Neglect of this simple fact probably accounts for many discrepancies in results for rooistwee by

Experiments on the Rate of Evaporation in the steam and Yacuum ovens.

1. Effect of dish material
2. " " " diameter
3. Evaporation through sand and through celite
4. Effect of using deep containers
5. Variation of duplicates in different compartments of the oven
6. Evaporation Rate in the vacuum oven - effect of dish material'
7. Vacuum oven - effect of insulating the dish
8. Vacuum oven - evaporation through sand
9. iffect of presence of oven shelf
10. fivaporation Rates with silica, porcelain, and clipped watch-glass-
11. Bffect of high collar on the dish
12. Replicate tests in different compartments of the oven
13. Effect of having more than one dish per compartment
14. Effect of rate of boiling of the oven water jacket
15. Replicate tests using same dish on different days - Series 1
16. Tests in Single Unit oven - temperatures and conditions
17. Temperature Conditions in a Single Unit oven
18. Collected Results of Replicate Tests in same dish on different days and under different conditions. - Series 2.

varoration mete in tuer-oven in dicss and Niokel pishes.
 vei had acourately. aoh dish was given a soparetes oompronent in the stetm-oven at about $93^{\circ} 0$. In one omporment a niokel and a glass dish were plaged together.

Dish Dimensions mms. Gxass		Hickel Alloy
	$-1 \quad(2)$	
Diameter 97	53	60
Depth 31	29	16
vaporation hate gms. vater per 100 aq. ems. per hour		
	(2)	(2)
Nickel alloy dish alons	56	65
$: \quad: \quad: \quad \begin{aligned} & \text { when in vith } \\ & \text { glezs dish } \end{aligned}$	44	-
: : : alone on shels	29	-
Glass dish alone	32	33
$: \quad \text { : when in with nioke? }$	26	-
: : alone on shelf	23	-

Creat of Dish Diameter.
2.

Vaportion aetes gms. Wetar par 100 sy. ams. per hour.

Gl8ss			mms Miokel Alloy			Aluminium		
Dismeter Height Rata			micigeter Heisht wite			Diemeter Height rat		
47	23	46	57	29	67	45	13	63
58	31	32	60	16	62	55	16	27
82	13	35	69	20	33	62	24	36
92	12	28		-	-	72	18	22

	Glass	Micole ${ }^{k} 110 \mathrm{y}$	Aluminium (Busin shape)
	33	64	58
	32	61	72
3.	Qvaporation late through and and through celite.		

In this case 20 gms . of sand (or colite) wore just covered by water and heated in the steam oven in various dishes.

	Glass	Nickel Alloy	Aluminium (Basin ghape)
Sand	27	48	46
Celite	23	50	35
Water alone	32	56	36

4.

.		ege		
	Et	wa	Sq.	. pe
				ium
		(2)	(I)	(2)
Height	42	31	75	18
Diameter	65	58	70	72
Rate	40	32	53	22

5. Variation of Duplicetes in steam-0ven separate compartments.

Test	Glass Vessels 60 minutes heating.		
	Diameter	Depth	Dracoration Rate gms $2100 \mathrm{sq.0ms./hr}$
1	58	29	29
2	58	31	29
3	58	30	30
4	60	27	33

6. Waporation hgite in Vagum-oven in Various Dishes

	Fater	Alone	and
Glass	34	0elite	
Aluminium (Basin)	48	30	33
Nickel Alloy	61	36	43
Comoarison - oteam oven $93^{\circ} 0$		63	43
Glass	32	27	23
Aluminium (Basin)	36	46	35
Nicisel Alloy	56	48	50

The surface area of the ontainer bot tom and the oloseness of sontact betwean it and the bottom of the oven appear to be the importent factors in atermining the eveporation rite for different meteriols.

It is elear that the results obtunge in the oven method evaporation.
7.

This was demonstrated by placisu alshos in the ovens on glass triangles thus keqping the dish olace of the metal surfaces of the ovens.

Deporation rats geas/100sq.ans/hx.

	$\frac{\text { gtagat }}{\text { oven }}$	$\frac{\text { Normeg }}{\text { Dtte }}$
Gless	24	32
Aluminium	10	36
Niokgl Alloy	11	56

9. Afect of oven shelf:- A perforited metal shelf put in above the sample did not materially affect the evaporation rate with a glass dish viz. 28.5 found as beainst the normal 28.6 gas $/ 100 \mathrm{sq.ems} / \mathrm{hr}$. 10. Quporetion Rates with other Matorisis:- stecmover

Rate		
	Silica	44
	Porcela	28
	clipped	32
Comparison	Glass	32
	Alumini	36
	Nickel	56
Efect of Collar orn Dishes (Vickel Gollar on Wickel alloy Dish)		
$\begin{aligned} & \text { Steam Oven : Normal Height of dish } 2 \mathrm{oms} . \\ & \text { Height vith collur } \quad 15.25 \mathrm{oms} .\end{aligned}$		
vaporetion Rate gms/100 sq.ens./hr		Normal Rate
		61

 Dimensions:-69 mms. diam. x mms. depth.

Dish	$\frac{\text { TVaporation Retes }}{\text { Test }} \frac{\text { Rest } 2}{\text { stem oven }}$		$\begin{aligned} & \text { Vacuum oven } \\ & 61_{0}^{0} .70 \text { cms. } \end{aligned}$	
1	57	57	76	
2	53	66.	64	78
3	58	60	157 $(63$	
4	49	65		90
5	60	68	.	
6	58	65		83
Dish - 102 mms. diam. x 19 mms. depth.				
1	38		46	
2	42		55	

It is possible thet a dish of low concuctivity is better for thermally sensitive materials, as the tendency toverds burning and decomposition may be grester with vessel of high conductivity. Metal dishes are generally more planar than gless ones which often have a dished base so thet contact rith the bottom of the oven is not complete.

The rate of evaporction depencis on the rite at which heat can get to the sample and also on the rite at which water vapour cen escape from the sample and from the oven.
$\frac{\text { Replicete tests on Dish } 1 \text { (isteam oven) }}{\substack{\text { Rete } \\ 1}}$

13. fiect of Heating more than one aish in team oven compartments. AIuminium Capsules 69 mms . diam. $x 20 \mathrm{mms}$. deep.

	Dish	$\frac{\text { vaporetion igate }}{\text { gms/ } 100 \mathrm{sy} \text {. }}$
Alone	1	54
Together	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & (44 \\ & 142 \end{aligned}$
Together	4 $(5$ 1	38 38 31 31

Note systematic decrease in veight of vater evagorited. This follows the order of peighing. This test beings out the error which may result from comparing results from a single semple with resuits obtained where severel sumples have been heated together.
14. Daporation Rete with aluminium oapsules, using 20 gms. send:-

Vecuum oven Rete - 75
Test in steam-oven viih water just bojlige - i.e. steam esaaping at top but no distilled water being made.

Dish No. 1.

Gas turned full on 67
a semple exposed on an ordinary ring water bath gave a rate of 191 gms/100 sq.oms./hr.

The above results show the extrene variation which may occur in evaporition rite in a steam oven, and the large difference on an open water bath shows that the evaporation problem is yuite aistinat in a closed steam oven.
15. Replicatemestsin stecm oven on Al. Dish Ho. .

Test No.	Gomporation Rete.	$\text { Baronetric } \frac{\text { Series } 1 .}{\text { pressure }}$
1	72	760.5
2	73	:
3	74	:
4	76	:
5	78	:
6	66	766
7	69	766
8	69	:
9	78	767.5
10	71	:

Figure 39.
16.

BYARORATION BATE

Tests in single unit stecm-oven. Aluminium capsules 69 mms . diameter by 20 mas. deep.

Temperatures and Conditions.

Humidity (Atnospheric) - 75 per cent.

№.	Tvaporation Reta gms. 7100 sa . oms. hr	$\frac{\text { Barometric }}{\text { Bresure }}$	$\left\|\frac{\text { qime of }}{\text { Hegting }}\right\|$	Gonditions
1	57	750	30	multipla steam-oven full on
2	57	763	30	-do-
3	76	763	30	Vacuum ovon
4	45	765	30	Multiple team-oven full or
5	64	765	30	-do-
6	63	765	30	-do-
7	34	769	30	-do-
8	14	753	30	-do- just boiling
9	12	753	30	do- -do-
10	11	755	50	$-\mathrm{do}-\quad-\mathrm{do}-$
11	17	755	50	-do- -do-
12	12	755	50	-do- -do-
13	191	759	15	On Bolling Mater Bath
14	67	765	30	Multiple iteam-oven full on
15	72	761	30	-do-
16	73	761	30	-do-
17	74	761	30	-do-
18	76	763	30	-do-
19	78	761	35	-do-
20	66	766	30	-do-
21	69	766	32	-do-
22	69	766	31	-do-

Evaporetion bates zn the same aluminiur wepsuze (contd.)

No.	$\frac{\text { ge oration kate }}{\text { gms. } L 100 \operatorname{cose} / \mathrm{hr} .}$	$\frac{\text { Baronetric }}{2 r e s s u r e}$	$\frac{\text { 年me of }}{\text { Heating }}$	Conditions
23	69	766	32	Single Unit isteam Oven
24	72	766	30	- ${ }^{\text {do- }}$
25	78	768	34	sultiple tecm-oven full on
26	71	768	38	- CO^{-}
27	67	768	36	Single Unit steam-oven
23	64	768	30	3do-
29	62	766	30	-do-
30	66	766	30	-60-
31	63	766	30	$\therefore \quad-d o-$
32	71	768	30	-do-
33	74	768	30	-do-
34	53	767	5	-do-
35	68	767	10	-do-
36	71	767	15	-do-
37	78	767	20	-do-
38	74	767	25	-do-

CONOLUSTONG AND HISCUSBIUN OB HUSULTS

1. The average rate of evaporation of water from an aminium capsuls 69 mas. diameter and 20 mas. deep was found to be 70 gms. per 100 sq . cms. per hour. The rate was lower with glass, silica, and porcelain dishes.
2. The rate of evaporation of water through sand or celite was not appreciably lower than for water alone.
3. Results were reproducible, allowing for atrospheric conditions.
4. In the vacuuan oven tine rate of evaporation was on the whole higher than in the steam oven : this appears to depend upon the better withdrawal (by pump) of the water vapour from the vacum oven.
5. Deep dishes caused lowering of the rate of ovaporation : the velocity of escape is apparently reduced by the 'baffling' effect of the high dish wall.
6. A very marked lowering of the rate of avaporation is observed when rore than one sample is heated in the same compartment of the oven.
7. The normal fluctuations of barometric pressure have a small but distinct effect upon the rate of evaporation.
8. The results for oven temperature reveal surprisingly low figures in a normal single unit steam oven. The effect of opening the ventilator is very marked.
9. The rate of evaporation of water in a closed compartment of a steam oven is very much lower than the rate of evaporation from an open pan in'still'air as calculated by Hinchley's formula. 10. The rate of supply of hat to the dish is probably the most important factor in determining water by oven methods.

SECGTIOM 50

METHODS OF SNALYSIS

Part 7 : The Determination of Water in Golden Syrup. Introduction :

Experimental :-
Effect of various types of Dishes and Absorbents. Effect of Ratio of Absorbent to Syrup. Effect of Time of Heating. Contrast of Steam and Vacuum Oven Methods. Summary.

ABSTRACT

Factors influencing the determination of water in the thermally sensitive material golden syrup have been studied, and several methods have been compared.

An acid-washed kieselgur has been found suitable as an absorbent for the syrup, yielding more concordant results than sand.

A method is recomended for the estimation of water in such thermally sensitive substances.

INTRODULTION.

Golden Syrup is a refinery product made by inverting the sucrose in a low grade product with acid, neutralising with lime and chalk, and adding some of the uninverted product so as to reach a certain ratio between the sucrose and reducing sugars present. The process is completed by filtering, and concentrating the clear liquor in a vacuum pan. The finished syrup should be a light golden-yellow colour and should not crystallise out for at least six months. With such a high proportion of reducing sugars coupled with a very low ash content, golden syrup is very sensitive to heat, and is therefore eminently well suited as a test material in comparing methods for the determination of water in sugar produets.

The syrups used in the present work were stored in large airtight jars in the dark. They had the following composition :-

Per Cent	Sample	A	B
Sucrose	33.91	32,36	
Reducing Sugars	46.50	45.83	
Water (Refractometric)	17.50	17.93	
Ash (Sulphated)	1.17	1.21	
Other Organic Matter (Diffce.)	0.92	2.67	
		100.00	100.00
		0.96	

The composition of the ash of these two samples follows :-

Per Cent	Sample A	B
Silica	7.7	6.0
CaO	3.1	3.6
H0	1.4	6.6
Naco	9,9	18.3
$\mathrm{K}_{2} \mathrm{O}$	38,1	28.5
SO_{3}	16.5	1.5
C1	0.3	18.1
$\mathrm{P}_{2} \mathrm{O}_{5}$	1.7	1.5
CO_{2}	18.2	14.2
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.5	0.4
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.2	0.3
Unestimated	2.4	1.0
	100.00	100,00

The increased chloride in sample B is possibly due to added salt. Both ashes are alkaline.pointing to the absence of added organic salts. These samples kept well, there being no apparent crystallisation after a year.

The syrups were used to investigate the effect of various types of dishes and absorbents on the moisture per cent obtained, and also the effects of the ratio of absorbent to syrup, and of time of heating. Comparisons were made of the steam and vacuum ovens for heating.

1. Use of various types of dish and various absorbing media:
2. Influence of ratio of absorbent to syrup -collected results :
3. Effect of thickness of layer of absorbent and syrup:
4. Effect of diameter of dish:
5. Effect of time of heating)- Series 1 and $2:$
6. Optimum ratio of elite to syrup - vacuum oven:
7. Optimum ratio of elite to syrup - steam oven :
8. Use of various organic liquids for mixing syrup and absorbent :
9. Use of sand ss absorbent - experiments in steam and in vacuum ovens:
10. Comparison of rate of loss in replicate dishes.

To.	Retio aveorvent to 1 of BuTup	\% Wher Founc	$\begin{gathered} \text { wixine } \\ \text { whoz } \\ \text { coce. } \end{gathered}$	Dich	Absombent
1	4	4.90	7	G1006	sanct
2	10.3	15.93	7	9	n
3	23.8	10.95	7	\#	\#
4	22.2		7	*	m
5	37.7	20.24	25	*	3
6	21.7	16.70	90	*	${ }^{2}$
7	25.6	17.03	5	\%	*
3	25.0	20.77	10	,	n
9	15.0	27.12	5	$*$	*
10	25.0	14.71	5	*	4
11	5	16.85	20	*	Colite
12	4	17.12	30	!	*
13	1	15.76	10	n	*
1.4	8	17.02	10	*	n
85	3	27.20	20	*	*
16	6	27.10	80	*	*
17	4	37.14	10	-	*
13	4	17.02	10	*	*
19	4	17.17	10	\cdots	-
30	d	27.16	10	*	*

 HEATTHG USITG VARIOUS TYPES OR DISTES AND ABSORBEHTS.

110.	natio absorbent to 1 of Byrup	Water Found	Bixing Fater \cos.	Dish A	Absorbent
21	4	16.78	10	Gless	Celite
22	4.	17.01	10	*	"
23	4	17.32	10	"	"
24	4	17:01	10	\cdots	"
25	4	16.80	15	"	-
26	4	13.42	10	Aluminium	"
27	4	16.97	10	"	n
28	4	27.01	10	n	"
29	25	13.02	10	Glass	Sand.
30	26	27.07	10	-	"
31.	25	17.26	10	*	"
32	25	17.30	10	*	*
33	25	17. 28	10	"	"
34	25	13.41	10	0	\square
35	25	26.63	10	Aluminium	
36	25	16.81	10		
37.	25	17.08	10		
38	25	16.81	10	\cdots	"
39	25	10.82	10	-	
40	25	17.20	10		"

W0.	2cio	Medixa	Augarome	asent	ithate at	2 hectine
1	4: 2	sone	$\frac{5.4045}{4.96}$	$\frac{10 \text { Yous }}{9.25}$	$\frac{1610075}{21.56}$	$\frac{20 \text { 10urs }}{12.36}$
a	11:3	\cdots	16.90	10.69	16.35	1.16
3	23×2	*	16.05	20.85	27.63	27.66
4	$11: 1$	*	15.90	20.62	10.33	27.24
5	$30: 1$	*	16.4s	20.43	16.91	27.10
6	$20: 1$	"	16.70	20.30	37.14	27.26
7	$25: 1$	"	17.03	37.00	17.03	27.72
8	3 ; 7	\%	10.77	27.04	17.28	27.52
9	15: 2	\#	37.12	16.35	17.27	17.27
10	$15: 7$	*	14.71	24.53	15.01	15.05
32	$5: 3$	colito	16.35	17.14	17.93	23.65
12	$\leq: 2$	\%	17.12	17.46	23.03	13.53
13	$1: 1$	\%	10.74	-	-	-
14	$2: 1$	*	17.08	-	-	-
15	3:1	"	27.10	-	-	-
16	$6: 1$	"	77.10	-	-	-
17	$4: 1$	*	17.14	-	-	-
18	$4: 1$	-	1702	-	-	-
19	$4: 1$	\#	17. 27	-	-	-
20	4 : 1	"	17.16	-	-	-
21	4:1	\%	16.78	-	-	-
22	A : 1	*	17.01	-	-	-

VABIOUS TESTS OLTHE DEYMGG OR GOLDRN SYRUP IN THE STEAM-OVEN 1. Dryinf in narrov eighing bottles on acic-washed sand absorbent Dinensione of bottlec 30 mm , diameter by 75 mms . high : ratio of sand to syrup $25: 1$. Height of sand layer in bottles. IA mas. 10 ccs, mixing water used.

Drying time Hours	思Water Pound	
6	(1)	(2)
7	15.53	16.10
	15.31	16.25

Dryine was evidently slowed up by the thick layer of raterial : this test illustrates the importence of crying in as thin a layer es possible. There is a mide difference in the two result.
2. Test ith eluminium conteiners of different diemeters

Dryinc Time Hours	$45 \text { mase. Dienctor }$		Eter Found 55 mas. Diameter		72 nax	$\begin{gathered} \text { Diane- } \\ \text { ter } \end{gathered}$
	(I)	(2)	(1)	(2)	(1)	(2)
3	16.29	16.44	15.92	16.03	16.21	16.75
4	16.51	16.54	16.34	16.72	16.57	16.93
5	16.68	16.31	17.08	16.81	16.82	17.20
6	16.77	16.30	17.34	17.09	16.92	17.29
7	16.85	16.92	17.44	17.20	17.15	17.38
Approx. Height Sand, mas.				4.5		

The sand/syrup ratio was $25: 1$, mith 10 cos. mixing vater used. Tais test clearly choms the intuence of the dish dimensions on the result gobtaine.

Ho.					Gma. Absorbert	Dopth of layor in Dish - mus.
		Per ce	2 t you			
1	2.90	O.65	31.56	12.80	20	7
8	10.02	10.69	10.35	13.10	20	6
8	10.33	23. 3	17.61	I\%. 66	8	7
\square	18.02	20.03	10.33	17.14	16	5
5	13.	10.4	10.01	$1 \% .10$	40	12
0	13.70	1.05	2%.	17.20	30	10
7	19.03	17.03	79.03	29.71	14.7	5
B	26.77	2. 0.06	37.0	17.52	36.6	12
9	17.11	10.08	17.27	17.27	3.2	4
10	12.71	14.53	26.01	28.05	14.2	4
1.	36.85	1\%.16	17.03	13.65	3.5	5
12	17.12	17.45	18.08	13.53	4.2	6

SERTES $2:-$

SaIER $e($ Continued $):-$

170.	Tino of Howting - Hours					cras. Absorbent	Denta of Logen in Dish - mas.
	8	4	5	6	7		
17	16.45	16.92	2\%.17	17.06	17.17	3.1	5-7
18	10.60	16.74	17.16	17.30	17.46	3.3	"
10	--	13.73	2 m .3	17.8.	17.10	8.7	*
20	--	10.22	17.01	27.00	17.03	2.0	*
21	--	10.37	16.36	27.0\%	17.25	3.3	"
0	\cdots	17.96	1.25	3.65	18.05	2.6	"
26	--	10.47	16.37	27.27	17.27	2.4	"
24	--	10.63	17.01	17.60	17.60	2.3	"
25	--	23.01	13.02	10.62	13.61	21.7	6-7
26	--	10.95	17.07	17.15	27.17	24.0	-
87	--	16.65	17.20	17.20	17.16	19.8	"
28	--	10.61	17.30	17.99	27.41	10.9	"
29	--	10.45	17.78	17.73	17.66	22.1	"
30	--	17.10	13.41	13.05	17.97	17.2	"
31	18.29	10.51	16.63	10.77	16.35	13.5	
32	16.44	16.54	10.31	20.00	16.92	14.0	
33	15.98	10.94	17.08	17.34	17.44	14.1	
34.	10.03	10.72	10.81	17.09	17.20	13.6	"
36	16.21	10.57	10.38	10.92	17.15	14.2	n
36	16.76	16.93	17.20	17.29	17.33	14.1	*

using oelite bbsorbent in shundiua capsules.

Determinetion of optimum ritho oelito : yrup.
Vecuta ofon at $70^{\circ} \mathrm{O}$ and 70 ans. vacuam. araminium aupales 69 mas. diam. $x 20$ mas. depth.

 bottom of the assule. Hos. 4. 5 and 6 washed alown very easily. The high result in No. 3 is thus arobably dut to local over-heating of the syrup. From above results it would not seam advisable to exced a retio or syrup to oelito of $2: 1$

Estimation of Watur in Golden syrup in Vecuum oven using Celite Absorbent in Aluminjum capsules.

Determination of optimum ratio celite : yrup.
Vacuum 0 ven at $70^{\circ} \mathrm{C}$ and 68 cms . vaculm. aluminium aapsules 69 mms . diam. $x 20$ mrs. depth.

Time of	Capsule		\% Hater			
Heating						
Hours	1.	2.	3.	4.	5.	6.
1	16.6	16.5	16.6	16.8	16.6	16.6
2	16.8	16.8	16.9	16.9	16.8	16.9
3	16.7	16.7	16.9	16.9	26.8	16.9
4	16.8	16.8	16.9	16.9	16.8	17.0
5	16.8	16.8	36.9	16.9	16.8	27.0
10	16.8	16.8	27.0	17.0	17.0	17.1
Ratio syrup to Celite	1:1	1:2	2:1	1: 7	1:3	1:2
Multiplier	40	40	20.	20	40	20.
Gms. gyrup	2.5	2.5	5.0	5.0	2.5	5.0
Gms. Celite	2.5	5.0	2.5	5.0	7.5	10.0
cos. Water edded	6	13	6	12	24	26

Atmospheric o onditions 69% R.H. $15^{\circ} 0 .: 756 \mathrm{mms}$. Barometer.

stimation of Water in golden Syrup in Vacuum oven using Celite Absorbent in Aluminium Capsulos.

Further test on optimum ratio of celite to syrup. Vacuum oven at $70^{\circ} \mathrm{C}$ and $65-68$ chs. First hour s heating at $70^{\circ} \mathrm{C}$ and 45 cm .

$\begin{aligned} & \text { Time of } \\ & \text { Beating } \\ & \text { Hours } \end{aligned}$	1.	$\underline{2}$	3.	4.	2.	6.
1	10.7	10.6	-	-	-	-
2	16.8	16.8	16.9	16.7	16.7	16.8
3	16.8	16.8	16.9	16.8	26.8	16.8
4	16.8	16.7	16.9	16.8	16.8	16.9
5	16.7	16.6	26.8	16.7	16.7	16.9
Atmospheric	iti	-61	.:	C:	mms.	met
Ratio Syrup to Celite		1	1	2		
Multiplier	40	40	40	40	20	20
Gms. Syrup	2.5	2.5	2.5	2.5	5.0	5.0
Gms. Celite	2.5	2.5	5.0	5.0	5.0	5.0
$\begin{aligned} & \text { ce.s. Water } \\ & \text { added } \end{aligned}$	6	6	13	13	12	12

Totimation of water in Golden ryup in Steam-0ven using Celite Absorbent in Aluminium Capsules.

Duplicite of Vacuum-0ven Test, using steam oven.

Atmospheric Conditions:- $57 \% \mathrm{R} . \mathrm{H} .: 12^{\circ} \mathrm{C}$: 760 mms . Barometer.

Eeating Continustion:

8						
Hirs.	-	-	15.9	15.8	-	-
10	15.6	15.5	16.7	16.7	-	-
11	16.4	16.4	16.5	16.5	-	-
16.1	16.1	16.3	16.3	-	-	

(See figure 40).

Notes on Qpimum dejite iatio Steam-oven.
On washine out the dishos nu bers 5 and 6 were found to have little nodules of symp on the botton. Dishes 3 ana 4 washed out cleanly but 1 and 2 were coats at the bottom with a thin film of syrup. This roula inciate that the ratio of celite to syrup must be over l:1 i.e. that more selites is required.

GSTIMATION OF WATER INGOLDEN SYRUP IN THE STEAM-OVEN USINE GELTE ABSORGENT IN ALUMINIUM CAPSULES

Figure 40.

Estimation of Water in Goluon Syrup in steam-oven using Celite hbsorbent in ilubinium uapsules.

Variation of yrup - celite natio.

$\begin{aligned} & \text { Time of } \\ & \text { Heating } \\ & \text { Hours } \end{aligned}$	Capsule			\% 埧世ter		6.
	1.	2.	3.	4.	5.	
2	15.4	14.8	-	-	-	-
3	15.6	14.9	13.4	-	15.8	15.4
4	14.7	14.2	15.7	15.5	15.6	15.2
5	-	-	-	14.8	-	-
7	16.3	15.7	-	-	-	-
8	-	-	16.3	16.1	16.3	16.0
Ratio Syrup to selite	1:2	1:3	1:4	1:5	1.25:4	1:2
Multiplier	100	100	100	100	80	100/15
Gms. Syrup	1.0	1. 0	1.0	1.0	1.25	1.50
Gms . 3elite	2	3	4	5	4	3
cos. Water added	5	6	10	13	11	7

Atmospherio conditions: $57-60 \% \mathrm{k} . \mathrm{H} .: 13-14^{\circ} \mathrm{O}: 752 \mathrm{mms}$. Barometer.

In this test the samples were weighed out and mixed with the celite at the week end and three days elapsed before they were aried. The ol ose settling and caking of the celite syrup nixture has thus hindered drying and has resulted in very low figures for moisture content.

Fstimation of water in Golden syrup in steam oven using $0 \theta i t e$ absorbent in aluminium ogpsules.

Variation of Syrup: Celite Ratio (Repast of Previous Test.)

Atmospheric conditions:-65\% R.H. $13^{\circ} \mathrm{O}: 759$ mas. Barometer.
$\frac{\text { Estimation of ster in Golden Sypup usine Celite }}{\text { Absorbent in Aluninjutapsules. }}$ Using liquids other than water for nixing sample and celite.

$\frac{\text { Time of }}{\text { Hesting }}$	ACETONE		$\frac{\text { KEMHYT }}{\text { ATCOHOL }}$		${ }^{\text {ETHYI }}$	
Hours	3team	Vacuum	Steam	Vacuum	steam	Vecuum
1	15.5	15.2	19.2	25.4	14.2	13.2
2	25.8	15.4	19.5	25.6	14.5	14.2
3	15.9	14.9	19.6	15.0	14.7	13.2
7	16.5	15.0	20.0	25.4	15.5	14.0
ces. Solvent added	13		12		12	

Ratio Syrup to velite
multiplier
Gms. Syrup
Gms. Celite

All $1: 4$
All 100
1.0 gms. in each oase.
4.0 gms . in each case.

Atmospheric conditions:-63\%R.H.: $11.5^{\circ} 0: 749 \mathrm{mms}$. Barometer.

New
Syrup Sample

$\begin{aligned} & \text { Heating } \\ & \text { Hours } \end{aligned}$	ACETONE		$\frac{\text { BEIHYI }}{\mathrm{A}_{5}^{\mathrm{COHOLOL}}}$		$\frac{\text { THYYI }}{\text { ALCOHOL }}$	
	Steam	Tacuum	Stegarn	Tacuum	Steam	Vaquam
2	29.2	19.3	19.6	18.9	19.4	-
4	19.1	19.2	3.9 .5	18.9	19.3	-
8	29.3	18.4	29.6	18.2	19.4	-

The general conclusion drawn from these tests was that there is no apparent advantage, in time of drying, to be obtained by the use of solvents such as those above, with B. Pts. below that of water. In general the results are not consistent and show that thofroughe mixture is not possible with these solvents: in adition danger of loss byspurting is greatily increased.

Higure 42.

FEFECT OF VARIATION OF SAND : SYRUP RATIO

Pigure 43.
$\frac{\text { Estimation of Water in golden Syrup in Vecuum end }}{\text { Steam ovens using Avuninum Copsules. }}$
$61^{\circ} \mathrm{C}$ in bath, 70 cms . vacuum. Absorbent 20 gms . sand for each cepsule.

In test (3.) about 2.2 gms. of syrup was placed on 40 gms . of sand as absorbent and mixture was made very thoroughly. This mass of material refused to dry quickly and geve considerable trouble in the desiccator and while weighing due to re-absorption.

Figure 44.

Estimation of Water in Goldon jyrup using Aluminium Capsules in Facuur oven
$61^{\circ} \mathrm{C}$ and 70 cms . Dishes 69 mms . diam. $x 20 \mathrm{mms}$. deep. 20 gms . sand as absorbent.

There vas a tendency for the dishes to lirtas air vas admitted to the oven; this should therefore be done very slowly.

Diecussion:-
Whe evaporation rate given above is that for water alone from ach aish. It is clear that other factors have come in when the syrup was dried, as No. 3 dish gives the quickest rate in the above test. The mixing of the absorbent and sample is probably the injortant factor in these results apart from the dish itself.

A comparison of the various results found by different methods of estimetion is given on the next page.
\qquad
\qquad
HETHOD

1. Fischer's Titrimetric $\begin{aligned} & \text { fethod }\end{aligned}$
2. Refractometer at $20^{\circ} \mathrm{C}$.
3. Steam-oven : glass dish, Celite absorbent : 5 hours heating
4. Steam-oven : aluminium dish, Qelite absorbent : 5 hours heating
5. Steam-oven : glass dish, sand absorbent : 5 hours heating
6. Steam-oven : aluminium dish, $\frac{\text { Diam. }}{45 \text { mins. }}$ sand absorbent : 5 hours heating
7. Vacuum-oven : aluminium dish, Celite absorbent : 5 hours heating, $70^{\circ} \mathrm{V} .68 \mathrm{cms}$. vac.
8. Vacuum-oven : aluminium dish, sand absorbent : 5 hours heating. 61 U. 71 cms. vac.
9. Vacuum-oven : glass dish, sand absorbent : 5 hours heating. $70^{\circ} \mathrm{C} .70 \mathrm{cms}$. vac.
10. Vacuum-oven : glass dish, Celite absorbent : 5 hours heating. $70^{\circ} \mathrm{C} .70 \mathrm{cms}$. vac.
11. Desiccator Method
lalwith stirring : Celite
(b) Oirculating Pump : Sand
c) Vacuum Desiccation: Sand
12. Vacuum-oven : glass dish, sand abgorbent : 72 cms. vac. $50^{\circ} \mathrm{C}$.

PG CBT WATEL PER CEMT SOLILS 16.62 83.38
17.93 82.07
17.07
82.93
82.97
17.35
82.65
83.08
16.95
83.05
17.01
82.99
16.89
83.11
82.86
82.73
17.27
82.82
83.62

Hours
16.38
83.97

526
520
16.03
32.74

Hours
17.10
82.90
82.95

 DISCUSCION OR RESULTS:-GOTSAL PACTORS(a) The ootimun ratio of aborbing mediun to sugar solution Bxperiment chowed thet for wend this ratio must exceed $15: 1$. In the case of celite a ratio above $1: 1$ should be satigefactory; that feraly selectod was $4: 1$.
(b) The angunt of mixinc wator usod

This was found to be important. Very thorough mixing was necessary to get good agreenent of duplicates. The emount used should not be so ezcessive as to longthen unduly the time of drying. For celite an adequate anount was found to be 2.5 cos. per em. of celite, and for gand I cc. per 3.0 gms . of sand.
(c) Acreement of duplicates

On the whole, acreement was satisfactory, although occasionally a result appecrod mbich was well outside the usual range. (a) Dish meterial

Aluminiun dishes were founc to have the advantage of rapid heating and cooling, and lack of fragility, this breakage problem being always present then using glass dishes. The rapid heating on the other hand, tends to local decomposition of the sample inmediately above the dish bottom.

(e) Ontimura time of heating:

This proved to be the most difficult factor of all to assess ; the majority of the results cited show agreement at 5 hours heating for the eiven conditions, but it is clear that the correct result,
(that is, about 1% per cent for this oven method on this syrup), is given at/a time somewhere between 4 and 6 hours heating, the exact time depending upon such factors as the thickness of the layer in the dish, the amount of water used, the diameter and material of the dishes used, and the actal temperature of the oven on the particular day of the estimation.

(f) Optimum depth of mixture in the drying dish:-

The depth obviously depends on the amounts used, and on the dianeter of the dish. The wider the dish the more rapid is the drying with other factors equal. The dish diameter is usually limited by the diameter of the balance pans. (a) The use of celite in place of sand:-

Hore consistent results are obtained with Celite than with sand. The low specific gravity of the celite may cause error unless precautions are taken to prevent loss by dispersal of the material. (h) Other factors:-

The oven method requires more time than that necessary for several other methods.

The start of the decomposition period is more easily seen against the nearly white celite than against the dariker sand. Unfortunately part of a sample is of ten dry while the remainder is still drying ; thus drying is normally guicker at the edges of the dish, and decomposition may commence in these dry portions before the other zones are dry. It is probable that decomposition is very small right up to the completion of drying of a sample. During certain conditions of the atmosphere it was found difficult
to weigh out levulose solution sufficiently quickly to avoid evaporation when using an ordinary Bunge analytical balance. An air-damped Oerting bilance was therefore used for most of the work. Using the ordinary belance, rather more than 1 mgm. loss in weight by evaporation wes detected on accasion in two minutes of weighing time.

The ratio of sand to sugar solution must exceed $15: 1$: for celite, a ratio of 4 : 1 is satisfactory. Aluminium dishes with close-fitting lids, approximately 70 mans. dianeter by 20 mins. deep are suitable: the metal should be about $19 \mathrm{~S} . \mathrm{w}_{\mathrm{w}} . \mathrm{G}$. or about 1 mm . thick (0.04 inch). They should preferably have no knob. With celite, up to 5 gms , of syrup can be used in such dishes. hixing water should be used in the proportion of 2.5 cas. per gm. of celite, or l co. per 3 gms. of send. Very thorough mixing is absolutely essential.

Five hours heating is recommended for either steam or vacuum oven. The vacuum oven should be operated at $70^{\circ} \mathrm{C}$. andabout 70 cms. vacuum, with a small air leak. The dishes should be placed in direct contact with the clean metal surface of the oven bottom, and should not be placed on a shelf. If possible each dish should be placed in a separate compartment of the oven. When more than one dish is put in a single compartment, lower results should be expected, and the conditions of heating should be standardised to allow for this.

SECTION 5. WETHODS OF MNALYSIS.
 Part 8 :- The determination of Water in Known Solutions of Glucose, fructose, and Sucrose.

Introduction :
The drying of Levulose Solutions:
The Drying of Glucose Solutions:
The Drying of Sucrose Solutions:
Sumary and Conclusions.

The determination of water in glucose, levalose, and sucrose solns.

INTHODUCTION : -

1. Decomposition of levulose and glucose :
2. The work of Matthews and Jackson:
3. Refractometric readings of various sugar solutions :
4. Correction of refractometric solids for reducing sugars :
5. Note on the refractive index of zlucose solutions :
6. Bxamination of kieselguhrs used as absorbents:
7. Technique of the paper roll method for total solids :

8. Carr and Sanborn's experiments :
9. Modification of Carr and Sanborn's experiments, using sand, celite, pumice, and paper as absorbents :
10. Shielding experiments - bot or of dish protected from direct aeat of vacuum oven bottom :
11. Drying levulese solution at varying pH values : vacuum oven- $60^{\circ} \mathrm{C}$.
ľ. Drying levulose solution on sand and celite in the steam oven at approximately $98^{\circ} \mathrm{C}$:
12. Drying of levulose solutions - steam and vacuum oven methods contrasted :
13. Drying of levulose solution - control tests wothout buffer solutions in vacuura oven at $70^{\circ} \mathrm{C}$. :
I5. Drying of levulose solution on paper rolls at varying pH values in vacuum oven at $70^{\circ} \mathrm{C}$. :
14. Drying of levulose solution on paper rolls in vacuum oven at $60^{\circ} \mathrm{C}$. 17. Drying of levulose solution on sand, celite, and pumice in the vacuum oven at $60^{\circ} \mathrm{C}$. :

THE DRYIAG OB GLUCOSE SOLURTONS_-

18. Drying of glucose solution in glass and aluminium dishes in the steam oven using celite and sand : contrasted with the drying of sucrose solution under similar conditions:
19. Drying of Glucose solution - control tests in vacuum oven using sand, celite, and paper as absorbents :
20. Drying of glucose solution in the steam oven on paper rolls: 21. Drying of glucose solution in the steam oven on paper rolls at varying pH values: 22. Drying of glucose soln.-vacuum oven on paper rolls with varying pH values at $70^{\circ} \mathrm{C}$. :
21. As in No. 22 , using celite as absorbent: $70^{\circ} \mathrm{C}$. ;

TIIE DRYING OR SUCROSE SOLUTIONS :-
24. Drying of sucrose soln. - vacuum oven- $70^{\circ} \mathrm{C}$.-control tests : 25. Drying of sucrose soln.-vac. oven $-70^{\circ} \mathrm{C}$.- using paper rolls with varying pif values.

1. The Docomooition of Lovulose in selution

Ievuloce in one of the nore recctive sugere, whe in anueous solution is pertionlandy wateble at the extreme encs of the pH somlo. Jot has shom thet the wrolonged action of relatively strone altali locde to a complote disintegration of the levuloso molecule Wita the poseible fomation of about 116 procucts, (Amalon,305,121,1904:307,214,1207 : 376,1,1310:403,204,1914).

Lobry de Brayn anc von menstoin chowod that the action of aild
altuli lesds to the Pomation of an equilibrium betroon loviose, doztrose, and mamoses, by rownangonont of the comon dienol, (Rec. trav. Chim., 14,156,203,1895 : 16, 256,1397). This is often renored to as the Lobw de Bruyn roambegonent.

Pictet and Charan (Welv. Chim. Acta., 9, 309.1926) Pound that strong acid wolutions rieldec heterolevulosan as a primary product. by dohyration. In tho sone series of reections this abetance condexses in part to the dimer, dihotorolevulosan. More prolonged action of ceic solutions results in the forastion of levulinic weic, fomic. acic, orymethyl furfural, and humus subatances of hich caroon content
 und Som, Brunswica).

While the inter-conversion of levulose, dextrose, and mannose in a reversible proceses true equilibrina is not obtaned due to secondary imeversible changes which ocur. The transformation can be onfected with weat arolis, with weak bases such as guanidine, and aren mith neutrel codim phosphato solution. Wolfros ane Lewis (J.A.C.S., 337,1923), found thet in acturated colcium hydroxico golu-
solution glucose was converted into a mixture of 63.4 per cent glucose, 30.9 per cent levulose, and 2.4 per cent mannose,together with 3.3 per cent non-sugar substance, probably saccharinic acias. Stronger alkalis cause more drastic degradation of sugars. Saccharinic acids are formed in the absence of oxidiaing agents, one part of the sugar molecule being reduced, and another simultaneously oxidised. Twenty-four isomeric acids with six carbon atoms are possible theoretically, and a number of these have been prepared and studied (Kiliani,Ber.,41, 469, 1908 : Nef, Ann.,357, 301, 1907).

Levulose always appears in large quantities in the final molasses in cane sugar manufactire, and this may not all be due to inversion of sucrose, but is often caused by the conversion of dextrose to levulose due to the action of alkalis and salts of alkalis with heat. Likewise under similar conditions levulose may be isomerised and converted into dextrose.

It is clear, therefore, that in sugar solutions containing large amounts of reducing sugars there is considerable scope for decomposition or change, depending upon the pH value of the medium. The work reported in the following pages was an attempt to find the effects of heat and pH value on the decomposition of solutions of glucose, levulose, and sucrose. In figures 45 and 46 , the rate of inversion of sucrose is shown (after Sadtler) at $70^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$. fromin pH 4.7 to 7.1 : the two graphs bring out the marked increase in this rate between the temperatures mentioned.

2. THE DECOMPOSITION OF LEVULOSE IN SULUTION

MATHEWSAND JACKSON: Bureau of Standards Journal of Research, Ho.5, p. 619, 1933

These workers investigated the stability of levulose in aqueous solutions of varying pi value. Measurement were made of the initial rate of decomposition of pure levulose over the range of temperatures 4° to $100^{\circ} \mathrm{C}$. and from pH 14 to the activity of concentrated Helon the acid side. The reaction was found to be independent of the concentration of the levulose and of the nature of the buffering solution : the concentration range selected for this work was 2 to 10 per cent levulose. The course of the reaction was followed polarimetrically, and in selected cases with determination of reducing power and of levulose. Velocity constants deterained by three independent methods agreed within experimental error.

The primary reaction in alkaline solution is the Lobry de Bruyn rearrangement, and in acid solution is dehydration to hetero-levulosan. The stability of the sugar was found to be maximum at 3.3 pH . Some of the results obtained are appended :Time for 1 per cent decomposition of levulose at vacious pH values.

nH Value		$70^{\circ} \mathrm{C}$.			$100^{\circ} \mathrm{C}$.	
$\frac{1}{1}$		hrs. 1	0 mins.		6.8	mins.
2		47 h	rs.		78	
3		141	"		275	"
4		138	"		280	"
5		56	"		108	"
6		12	"		25	
7		hrs.	6 mins.		4.1	*
8		18.5			0.6	"
9		2.7	"		--	
10		0.4	"		-	

Figure 47.
3. Refrectometer Readings of Various rugar solutions at $20^{\circ} \mathrm{C}$.

No.	Derscript	ion	$\begin{aligned} & \text { yosolids } \\ & \text { as prepured } \end{aligned}$	$\frac{\text { hefractometer }}{\frac{\text { Regding }}{\text { at } 20^{\circ}}}$	$\frac{\text { Refractive }}{\frac{\text { Index }}{\text { at } 20^{\circ} \mathrm{C}}}$
1	Jevulose	1	58.937	57.90	1.4374
2		2	17.029	17.00	$\begin{gathered} 1.3592 \text {) } 4 \text { th } \\ \text { (place } \end{gathered}$
3		3	17.005	17.00	1. 3590 doubt
4	Glucose	A	49.96	(40.40)	1.4007
5		B	44.105	43.60	1.4.4069
6	sucrose		64.935	64.92	1.4534

From Jackson and Mat thevis' Levulose table:-

Levulose		$\begin{aligned} & \text { Prepared } \\ & \text { Dids } \end{aligned}$	$\frac{\mathrm{R} \cdot \mathrm{I}}{20^{\circ} \mathrm{C}}$	
	1	58.937	1.4374	59.08
	2	17.029	1.3592	approx.
	3	17.005	1.3590	17.43\%

The discrepancy in the lower coneentration levulose solutions appears rather large,
The refractometer was checked by the following liyuids:-

Vater	Ro1.at $20^{\circ} 0$
Benzene	1.3333
Toluene	1.501
Bromo-naphthalene	1.497
	1.660

Correction of Fefractometric Total Solids for Reducing Sugara. De Whalley (I.S.J.,353, 1935) has shown that for wateriala containing a high percentige of invert sugar a correction should be made of 0.02 f for each per cent of invert. This work was done on golden syrup and geve close asreement between refractometer solids corrected for invert and solids obtsined by drying in a vacuum oren at $70^{\circ} \mathrm{C}$.

When applied to the present work the following results were obtained :- Golden syrug - refractonetric solids at $20^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 82.07 \\
& 46.83 \\
& 1.008 \\
= & 83.08 \quad \text { (True total Solids) }
\end{aligned}
$$

Per cent Reducing Sugars
45.83×0.022
$82.07+1.008$
This figure agrees very closely with the results tabulated on page 347 .

Levulose:- The result for Levulose solution 1 becomes $5 \% .90$ plus 1.2\%, or 59.17 when corrected. This agrees well with 59.08 obtained from Jackson and fatthews table for Levulose (Browne and Zerban, "Sugar Analysis", p. 1241). The result for the more dilute ievulose solutions gives 17.37 in place of 17.43 from the table, but according to the make up of the solutions, neither is correct, and there appears to be some discrepancy in this table at the lower concentrations of levulose.
5. Wote on the Fer ractive Index of glucose solutioris. -rowne and Zerban "Sugar Analysis"g.103.
Figliable refractive index tables for glucose solutions are not yet available.

Stolle found refractive indices Ror glucose solutions at $17.5^{\circ} \mathrm{C}$. tobe lower than thone for sucrose solutions of the sase concentrations, but fulvertecher, working at $25^{\circ} \mathrm{C}$. found the reverse, e.g.Stolle

	\% bugar	-5	-15	-20
alucose K.I.	$17.5^{\circ} \mathrm{C}$.	1.34030	1.35555	1.37169
sucrose R.I. $1 . .5^{\circ} \mathrm{C}$.	1.34054	1.35594	1.37256	

Pulvermacher

	B Sugar	- 1.36	$\underline{15.72}$	-24.03
Glucose R.I.	$25^{\circ} \mathrm{C}$.	1.3401	1.3575	1.3710
Sucrose F.I.	$25^{\circ} \mathrm{C}$.	1.3388	1.3562	1.3700

This subject requires further investigation, and the work of Stolle and of pulvermacher on galactose, lactose, maltose, and raffinose also needs revision.

References :-

Stdile - Z. vex deut Zucker Ind., 51, 469, 1901 : palvermacher - Z. anorg. allgem. them., 113, $141,1920$.

Examination of Various sampies of Kieselguhr

usen as abs rbing Eelie.

Several semples of Johns Manville celite filter aids were examined for moisture, apoernt density, ad ph value (after boiling under reflux).
 per cu.it.
(apoaront density)

Desoriptions

Filter cel:- a natural diatomaceous siliea filtor aid of the finest pore size.
Stenderd aper-cel:- i calcined filter aid of approx. tifice the flow rate oir filder-cts.

Hyplo super-cel:- a chenically ondeined pure white filter aid: flow rate aprox. twice that of std. super-cel (i.e. with correspondingly greater porosityl.

Celite No. 501:- cimiler to Hyplo super-cel with $40-50 \%$ greater flow rate.
Lab.sta.filter cel:- Specially propared for standard laboratory filtration tests to give a uniform rate of filtration.
Delite analytical filter-uid:- Highly purifig to give the equivalent of un A. ic charical for quantitative chemical work.

Anglygis of a traicel Kiesslguhx $=$ Loss on ignition - 0.32 :
Silica - $94.42: \mathrm{Pe}_{2} \mathrm{O}_{3}-0.32: \mathrm{Al}_{2} \mathrm{O}_{3}-3.04: \mathrm{TiO}_{2}-0.14=$
$\mathrm{CaC}-0.40: \mathrm{I} g \mathrm{~g} 0-0.32:$ Totel Alkalis (as $\left.\mathrm{Na}_{2} \mathrm{O}\right)-0.63: \mathrm{SO}_{3}-0.10:$
Toter - oa ga ner cent.

1. Preperation of Paper kolls:-
’ostlip Rnglish ulate filur paper shaets ware cut into strips
1.75 in. vide and 20 inches long (several shects can be out at once).

When required for pH expertionts the pajer was soaked for 10-15
minutes in the apropriate pH solution, and air dritu on a string in a neut ral atmosphere. (approx. 0.004 in. thick),
A strip of gauge/atuminium foil $\frac{1}{2}$. Wiae by 18 inches long and the paper are gauge/azump togtother and a papor olip inserted to keep the roll together. The roll is nov pleced in a clean weighing bottie and hateded in the vacuum oven at $70^{\circ} \mathrm{C}$ for $5-6$ hours at $68-70 \mathrm{cms}$. vecuum.
2. Weighing of gmple:-

Method (a): Whe coil is removed from the butle and the solution Weisbed into it: 2 cos. of wator are added and the coil replaced. After 5 minutes standing to allom even absorption of the liquid by the coil the bottle is placed in the oven and drying is started. Method (b):- The coil is kept in the veighing bottle and the sample solution is dropped on to it so that it is all absorbed. The diluting vater is added similarly.

Figure 48.

Pigure 49.

	8.		$\frac{\text { eat of }}{17.03}$	$\frac{\operatorname{car}}{\operatorname{Lev}}$	$\frac{a}{3 e} \frac{\operatorname{san}}{30}$	$\frac{\text { orn }}{\text { ution }}$	$\frac{p e r i n}{\text { the }}$		Levu:	$\frac{\text { so usj }}{0^{\circ} \mathrm{C}}$		
				Levu	$\frac{e}{6}$	ution i	$\begin{aligned} & 1 \text { the } \\ & \text { press } \end{aligned}$	gouum	n ut			
Time of					pH Va	es an	0 col	S Foun	See NIa	igure głass	$1 .$	
Heating										rrand	janbor	
Hours	Blank	2	3				Z	8	1	2	3	hean
4	17.12	16.91	16.79	17.00	17.02	27.04	16.96	16.89	17.12	17.09	17.06	17.09
6	17.08	16.75	16.55	16.81	16.94	16.94	16.87	16.85	-	-	-	-
8	17.08	16.67	16.49	16.81	16.90	16.90	16.83	16.80	17.11	17.09	17.08	17.09
12	17.06	16.56	16.41	16.76	16.66	16.66	16.82	16. 30	17.06	17.05	17.06	17.06
17	16.93	15.46	16.19	16.69	16.53	16.53	26.71	16.72	17.09	27.07	17.07	17.08
			Orig	e1. 301	ution	. 03%			Orig	avi ol	ution	. 10%

The experiments recorded at the end of the toble under Garr and sanborn were
mede by these workers on a solution cont dining 17.10% levulose, which was dried on
pumice stone in flat bot tomed dishes at $70^{\circ} 0$ with 25 inches vacuum. It is seen that
constency in weight was secured after 4 hours, and thet no further appreable loss
took place even after 17 hours drying.
It is evident thet results with the une of pH buffer solutions are not so satism
factory in the above tests as the results without addition.
factory in the above tests as the results without aduition.
Ref.:-Carr and Sanborn, Bu11. 47, U.S. Bureau of Chemistry,pp.134-151,1895

$$
\text { Browne and Zerban, "Sugar Analysis", pp. } 32-33
$$

Figure 50.

Figure 51.
8. Further experiments on the carr and sanborn

In the following tests celite, send, and pumice were used as adsorbing media: approx. $3-3.5 \mathrm{gms}$. solution was weighed out.

Flat bottomed glass meighing bot thes provided with glass rods were used in the vecuum oven at $70^{\circ} \mathrm{C}$ and $60-65 \mathrm{cms}$. vecuum. Mean Results (fron tripliocte estimations)

Hours of		$30 / 60$ Mesh	8/20 Mesh
Heating	Colite	Sand.	umice
4	16.92	1.6.98	17.11
6	16.95	16.98	17.06
8	16.92	16.97	17.02
12	16.91	16.96	16.94
17	16.90	16.92	16.90
Gms. Adsorbent used	4	12	12

The $8 / 20$ mesh pumive was prepered by digestion with 2% $\mathrm{H}_{2} \mathrm{SO}_{4}$ for 24 hours, followed by washing, drying, and ignition. See official method of A.O.A.C. Browne and Zerban, p. 28.

10. Shieiding Experiment using paper pulpind Gooch Asbestos-Levulose Solution-17.02 2 Solias

In vacuum over at $70^{\circ} 0$, ard 6 exas. yacuan- Aluminium disheze
Heurs

	Paper pulp	
3	Shielded	Not Shielded
4	16.62	16.56
8	16.67	16.52
	16.66	16.63

ger cent folids

The paper pulp was prepared from swedish filter paper by maceration with water followed by thorough drying.
11.
 Leing 58.9 per cent solution (in. 1 per cent water) on glass dishes in vacuum oven at 6000. and 68-70 cms. vacuum.

See Figure 51.
The results underlined are within reasonable limit from the theoretical per centage of levulose.
12. Try DuTM on 39.92 per cent Ievulage solution in the stean orom.

The prepared levulose solution was dried on senc, celite or
 in aluminium dishes, 45 mas. diaketer. Teap. c. $98^{\circ} \mathrm{C}$.

Timo os Heating Hounc	Per cent solids round					
	Scge		Commercial celito		A.R. Celite	
	(I)	(2)	(1)	(2)	(1)	(e)
3	39.53	83.76	33.81	33.76	38.30	36.86
\therefore	33.62	33.49	38.48	33.33	38.45	36.51
5	33.95	33.13	37.91	37.38	33.09	36.10
6	33.73	37.97	37.59	37.58	37.85	35.81
7	33.58	37.85	37.36	37.35	37.64	35.70

Lose per 100 os Ievulose:-

3	-1.09	-1.15	-1.29	-1.18	-6.03	
4	-0.3	-1.95	-2.13	-2.35	-2.05	-6.90
5	-0.80	-2.35	-3.40	-3.48	-2.05	-7.93
6	-1.35	-3.25	-4.20	-4.35	-4.53	-8.65
7	-1.73	-3.55	-4.80	-4.30	-4.08	-8.93

The results chow that thore is better agrement between the duplicates won ucing comarcial celite than wen using send. In all cases there hes been considerable lose of solids even after 3 hours heatinc. The aiscrepency between the duplicates for A.R.
 abameret.

Decomposition of Levulose.

team and vacuum ovens contrasted with weak and concentrated levulose solutions.

Drying on Double Fluted Filter Papers.

	20.69\% 3olution.		17.005\% \%olution.	
$\begin{aligned} & \text { Hours } \\ & \text { Heating } \end{aligned}$	$\frac{\text { Vacuum oven }}{60^{\circ} \mathrm{C}}$	$\frac{\text { Vacuum oven }}{70^{\circ} \mathrm{C}}$	$\frac{\text { Vacuūm oven }}{60^{\circ} \mathrm{C}}$	$\frac{\text { Vacuum oven }}{70^{\circ} \mathrm{C}}$
3	50.30	50.43	16.76	16.96
5	50.27	50.26	16.74	16.89
7	50.28	-	16.74	-
9	50.28	-	16.74	-
10	-	50.50	-	16.96

Hours
Heating

24

Stem-0ven 98-100 ${ }^{\circ} \mathrm{C}$		
50.62\% Solution	17.005\% Oolution	
51.06	20.45	In this ense immediate
50.51	16.88	position occurred after
50.19	16.73	the material had become dry.
49.90	16.62	
49.53	16.48	(See Figure 49.)
49.37	16.45	
49.17	16.39	
48.91	16.32	
48.47	16.14	
48.07	16.02	
47.90	15.97	

14. Control Tests on estimation of water in a 58.9% Levulose Solution in the vouum oven using absorption on peger Rolis, on and and on Celite at $70^{\circ} \mathrm{C}$ and $6-8$ cms. Eressure.
Time of

Heating Hours

- 3

4
6
8
10
12 28

These results are satisfactory in the sand and celite drying but the paper rolls show a large incrase in loss which is too high to be merely experimental error.

$\frac{\text { Time }}{\text { Heating }}$	\% Fater Found							
Hours	pH 2	3	4	5	6	Z	8	Blank
5	42.0	41.7	41.5	41.3	41.8	40.4	40.6	41.3
11	43.5	43.3	43.0	42.5	42.7	41.6	41.8	42.0
Dish	Glass	Glass	Glass	Glass	AI	A1	Glass	Al

These results were very erratic. The Lab.std. Filter-cel
used was rather high in iron - i.e. was apparently not acid-washed.
15. 3stimation of water in a 58.9% Levulose solution 41.1\% waterl in the vacuum oven using paper kolls impregneted with vurious ph Butfer Salts. Temprature $70^{\circ} \mathrm{C}$ at $6-8$ cms. pressure.

$\frac{\text { Time of }}{\text { Heating }}$						pH Ve	alues					
Hours.	1	$\underline{2}$	3	4	5	$\underline{6}$	I	8	2	10	12	12
3	34.1			-	41.5	41.3	42.1	42.0	41.4	41.4	41.4	41.5
4	41.6	41.1	41.1	42.1	41.4	41.5	42.3	42.2	41.6	42.7	41.5	41.7
6	42.1	41.5	41.5	41.4	41.5	41.6	42.3	4.2 .3	41.6	41.7	41.5	42.7
8	42.0	41.4	41.4	42.3	41.5	4.2 .5	41.4	41.4	41.6	41.6	41.4	41.7
10	42.3	41.4	41.6	41.4	42.7	41.6	42.5	41.5	41.6	41.7	41.5	41.9
12	42.4	41.6	41.7	41.5	41.7	41.5	41.4	41.4	41.6	41.8	41.5	41.9
28	43.3	42.1	42.5	42.1	41.9	41.8	41.8	41.9	42.0	41.5	41.2	42.3

The general tendency is towards decomposition: in no case have accurate results been obtained throughout the period of heating. The closest results to the known water content are at 7 and 8 pH for 3, 4 , and 6 hours heating. Results at 2,3 and 4 pH for 4 hours heating are good, but deteriorate at once on further heating.
16.

> Decomposition of Jevulose

Drying on Paper Roils in Vacuum oven at $60^{\circ} \mathrm{C}$
and 65-70 coms. Vacuum: 17.005\% Eevulose. Zolution.
Paper rolls 1.75 in. broad by 20 inches long $=35$ sy.ins. $x 2$ $=70 \mathrm{sy}$.in. surfice.

Hours	Paper	Peper	Al Separator	Al Segarator	Cu Separator	n separator
HeEting	aIone	+0lip	no OLip	$\pm \mathrm{CIIg}$	no CIIP	no 01 ln
2	16.66	19.34	17.30	18.97	16.74	17.06
4	16.60	16.61	16.64	16.60	16.66	16.65
6	16.58	16.58	16.60	16.57	16.62	16.61
8	16.62	16.60	16.64	16.61	16.68	16.64
12	16.64	16.60	16.63	16.60	16.66	16.63
17	16.64	16.60	16.63	16.60	16.66	26.63

This test demonstreted thet the type or seprator used and the presence or absence of paper clip or separator did not influence the results obtained.

A test was made under above conditions using 2 wedish filter papers 21 cms . diameter per dish as adsorbing medium (in tall glass weighing bottles).

Hours	\%	
Heating	I	$I I$
4	16.83	16.77
8	16.84	16.97
12	16.84	16.77
16	16.82	16.75
20	16.84	16.74

The two filter papers gave approx. 59 sq . in. surfoce as compared with 70 sq . in. for the rolls. The filter papera were used without separators.

17.	Decomposition of Levulose in vacuum oven at $60^{\circ} \mathrm{C}$ and 65-70 cms. Vacuum: Levujose SoIution 17.005%						
$\begin{aligned} & \text { Hours } \\ & \text { Heeting } \end{aligned}$	PAPR ROIJS GIaSS Dishes Duplicate at	$\text { Alum } \frac{0}{\text { ini }} \text { ITM }$	Gless	Aluminium	Glass	$\begin{aligned} & \text { DUMICE } \\ & \text { minium } \end{aligned}$	Glass
4	16.36	16.96	16.91	16.90	16.97	17.09	17.0
6	16.36	16.98	16.91	16.92	16.95	17.12	17.01
8	26.37	16.98	16.93	16.88	16.97	17.12	17.03
12	16.34	16.93	16.90	26.88	16.95	17.07	16.97
17	16.30	16.88	16.84	16.81	16.90	16.98	16.90

cooled more quickly than those rith sand: pumice being intermediate. This is largely because of varying total mass required for these three adsorbents.

It is cle日r from above results thet peper rolls give low results and pumice the best results. With peper rolls the variation of apparent percentage error is 3.8-4.2, with oelite 0.44-0.97, With sand $0.21-0.62$ and with pumice $0.03-0.62$: over 17 hours heating.
18. (of Enimetion of deter in 40.16% Glucose olution

$\frac{\text { Time of }}{\text { Beating }}$				
Hours	1.	2	3.	Anminium 1 .
3	59.0	60.0	59.7	59.8 Absorbent
4	59.0	59.9	59.6	59.71 \& $2-\mathrm{celite}$
5	59.0	59.7	59.7	59.7 Al. 1- sand
6	58.9	59.9	59.7	59.7
7	39.4	59.9	. 59.7	59.7
10	58.8	59.7	59.7	59.8
15	53.9	59.3	59.7	59.7
20	59.1	60.1	59.9	59.8

The differences are extremely small between 3 hours heating and 20 hours heating.
\#stimation of Water in 40. 16% ucrose solution in steam oven.

Time ofHeatingHours	Per Cent Water Found.			
		Dish		Aluminiun
	1.	2.	3.	1.
3	59.5	59.6	59.5	59.4
4	59.3	59.7	59.5	59.4
5	59.5	59.7	59.5	59.4
6	59.4	59.6	59.4	59:4
7	59.5	59.6	59.5	59.5
10	59.4	59.4	59.2	59.4
15	59.5	59.5	59.4	59.5
20	59.5	59.6	59.4	59.6

These results are very steady but have in no case reached the 59.8 per cent of weter known to be present.

Figure 52.

Pigure 53. control Tests in Vacuum oven using various absorbents vithont DH Olutions. $70^{\circ} \mathrm{C}$. $65-70 \mathrm{~cm}$ s.vacuum.

Time of	on sand	On Qelito	paper	2aper
Hegting	Aliminium	AJuninium	Narrow Glass	ive Glass
Hours	Dishes	Dishes	Bottles	Bottles
3	55.7	55.9	56.0	56.0
4	55.9	56.0	56.1	56.1
6	56.0	56.2	56.2	56.2
8	56.4	56.1	56.2	56.2
10	56.5	56.1	56.1	56.1
12	55.9	56.1	56.2	50.2
28	55.7	55.9	56.2	56.1

The difficulty vith most oven results is here well exemplified - thet of knowing VHFN to take the reading as final. There has been uniformity here over 23 hours but the results do not agree with the original. solids. The results with paper are low throughout while those using send and celite descend and then return to the original level e.g. compare results for 3 and 28 hours.
20. Estimation of water in a 49.98 ger cent Glucose Solution using Absorotion on paper Folls in Glass dighes in the stean oren.

Time or
Heating
hours.
2

3
4
7
10
12
15
17
21
39 Original water content $=50.04$ per cents

After 39 hours heating both pspers were light cream in colour and light brown at the top edge.

The above results show that glucose is relatively stable to heat at approximately $98^{\circ} \mathrm{C}$.
21. Estimation of Water in a 49.26% Glucose Solution using Absorption on Paper Rolls in steam oven in GIass Dishes.

The peper rolls were souked in selegted pH Butier olutions and dried. Time of Hours

3

4	49.7	49.9
5	49.8	50.1
6	49.9	50.1
7	49.9	50.1
8	50.0	50.2
9	50.0	50.3
14	50.2	50.3
20	50.4	50.5
25	50.5	50.6

Q Wuter Found

urs	$\left(1 \frac{p H}{1} \frac{5.0}{1}(2)\right.$		PH-6.0			
3			(1) 49.4	(2) 49.5	3.8	(2) 7.7
4	49.7	49.9	50.3	50.1	40.2	41.4
5	49.8	50.1	50.2	50.7	49.9	49.9
6	49.9	50.1	50.3	50.1	50.1	50.2
7	49.9	50.1	50.3	50.2	50.2	50.3
8	50.0	50.2	$50.4{ }^{\circ}$	50.2	50.3	50.3
9	50.0	50.3	50.2	50.0	50.3	50.3
14	50.2	50.3	50.2	50.1	50.3	50.4
20	50.4	50.5	50.6	50.3	50.5	50.6
25	50.5	50.6	51.1	50.7	50.8	50.9

It is seen from the above results that there is a time zone during which true results are obtained, this being 5 to 8 hours heating at 5.0 pH and 5 to 6 hours heating at 7 pH .

Glass Dishes in the vacuum oven.

Peper rolls dried efter souting in selected buffer solutions.

Time of					TGlue	6nd	- Wut	Er For	und.			
$\begin{aligned} & \text { Heating } \\ & \text { Hours } \end{aligned}$	1	2	3	4	5	b	7	8	9	10	11	12
3	56.2	25.8	55.5	55.4	55.6	32.2	56.1	56.3	56.8	56.0	55.6	52.8
4	56.4	52.9	55.5	55.4	55.2	56.2	56.2	50.3	57.1	56.3	55.8	26.0
6	56.3	55.2	55.6	55.6	25.2	36.1	56.4	50.3	57.1	56.3	53.8	56.2
8	57.0	55.2	55.6	55.7	56.0	50.2	56.4	56.4	57.2	56.4	52.9	56.3
1.0	57.1	55.9	55.7	55.7	56.0	56.1	50.4	56.4	57.2	56.4	52.2	56.3
12	57.2	55.9	55.6	55.7	56.0	56.2	56.4	56.4	57.3	56.5	52.2	56.4
28	57.6	52.9	55.7	55.9	56.1	56.2	56	4	57.3	56.6	56.0	56.6

(See Figures 53, 54, and 55.)
Atmospheric conditions:-
oven conditions:- $70^{\circ} \mathrm{G}$ and 68 cms . vacuum.

Figure 54.

Pigure 55.
\because Estimation of Water in a 44.2% (55.9% wat er) Glucose 23. solution using Absorption on Celite with addition of DH Buffer Solutions in the vacuum oven et $70^{\circ} \mathrm{C}$ and 63-70 cms. vacuum.

Time of			lues	2d \%	er Fou		
Heating	$(1)^{2}$	(2)	$(1)^{2}$	(2)	$8 \mathrm{pH}$	11	pH
Hours.	(1)	(2)	(1.)	(2)	(2)	(1)	(2)
3	56.7	57.5	55.5	55.2	55.7	-	-
4	57.0	58.1	55.9	55.6	25.9	55.4	55.0
6	57.1	58.1	56.0	55.8	56.0	55.7	55.2
8	57.2	58.3	56.2	55.9	56.2	55.8	55.4
10	57.0	58.2	56.0	55.8	56.3	55.8	55.4
12	57.0	58.2	56.0	55.8	56.3	55.3	55.4
28	57.0	58.4	56.1	55.9	56.2	56.0	55.6
$\begin{aligned} & \text { Mean } \\ & \text { Results } \end{aligned}$	2		5		8 pH		
3	- 57		55.		55.7		
4			55.		55.9	55	
6			55.		56.0	55	
8			56.		56.2	55	
10			55		56.3	55	
12			55.		56.3	55	
28			56.		56.2	55	

From above tests the drying at 2 pH appears to be rapid, that at 5 pH and 8 pH of medium speed, and that at 21 pH slow.
24. Control Tests on istimation of water in a 65% suorose solution

The results show that sand gives slower drying than celite or peper rolls, either of which gives remarkably constent results for sucrose over as much as 24 hours heating in the vacuum-oven.

Note on Duplication :- Tach result reported throughout this work represents the average value of two duplicate tests.

BUPY的 SOLUMLUNE:- These were made up according to standard formulae with the usual precautions. They were checked by the glass electrode and this check was repeated at intervals. The results after 22 months are here shown :-
$\mathrm{KCl} / \mathrm{HCl}-\mathrm{pH} 1.0$ read 1.0

25. Stimetion of Vater in a 65% worose ; 2 lution (535% Feter) usine absorption on peqer rolls in iflass weskhing botties In the vacuum =oven at 70° gind $6-8$ oms pressures
Time of
Hegting
Hours.

using ebsorption on Paper Rolls in Glass Reiehing Bottles in the vacuun over at $70^{\circ} \mathrm{C}$ and $6=8$ ams. pressure.
Time of Raper Impreeneted with various pH Burfer salts - \% Vater Found.

Heating

$$
12
$$

28
$\frac{\text { Series }}{\mathrm{pH}}$.

$\frac{\operatorname{ser} \theta \mathrm{S} 3}{\mathrm{pH}}$

| $\frac{6}{8} .0$ | 7 | 3 |
| :--- | :--- | :--- | :--- |
| 34.8 | 33.6 | |
| 34.2 | 34.2 | 34.0 |
| 34.3 | 34.5 | 34.2 |
| 34.4 | 34.6 | 34.3 |
| 34.6 | 34.7 | 34.5 |
| 34.6 | 34.8 | 34.6 |
| 35.2 | 35.2 | 34.2 |
| $\mathrm{Na}_{2} \mathrm{HPO}_{4}+\begin{array}{l}\mathrm{citric} \\ 80 \mathrm{id}\end{array}$ | | |

It is evident from these results that the sodium phosphate
and oitric acid bufers are not suitable for this drying process,
giving relatively slow drying.

TA DKYING OF LEVULOSE, GLUCOSE. AND SUCROSA SOLUTIUNS

SUMMARY AND CONCLUSIONS

LeVULOSE:- 1. Vacuum oven:-
Levulose solutions can be dried without appreciable loss in the vacuum oven at $70^{\circ} \mathrm{C}$. at pH values of 4,5 , or 6 for periods up to 4 . hours. Drying at pH values above 7.0 is slower and there appears to be more decomposition of the sugar (Expt. 11). Drying on pumice gave good results : drying on sand and celite gave slightly low results.

For vacuum oven drying, $60^{\circ} \mathrm{C}$. is definitely preferable to $70^{\circ} \mathrm{C} .$, but the optimum time of 4 hours at $70^{\circ} \mathrm{C}$. becomes $7-9$ hours at $60^{\circ} \mathrm{C}$. When drying on paper rolls, there is danger at this lower temperature that water will not be expelled from hydrated forms of the sugars. (e.g. compare results of tests 15 and 17.)
2. Steam oven :- In all tests made there was considerable loss of solids even after only 3 hours heating at approximately $98^{\circ} \mathrm{C}$. (See tests 12 and 13.)

GLUCUSE:- 1. Vacuum oven :- There was no decomposition apparent after 28 hours heating at $70^{\circ} \mathrm{C}$. in the vacuum oven. In tests with regulated pi values, drying at 2, 5 , and 11 pH was satisfactory at $70^{\circ} \mathrm{C}$., with faster drying in the acid region.
2. Steam Oven :- Results were good : the rate of drying appears to be faster than for levulose. Glucose was relatively stable at $98^{\circ} \mathrm{C}$. With an optimum heating period of just over 3 hours.
SUCROSE:- 1. Vacuum oven :- Drying on celite or paper rolls gave remarkably constant results at $70^{\circ} \mathrm{C}$. Sand gave slower drying, reaching the known percentage after 28 hours, compared with $3-6$ hours for celite or paper rolls. Drying with buffer solutions gave good results
at $5=12 \mathrm{pH}$ but not below 5 pH . 2. Steam Oven :- The results obtained were very consistent, but in no instance was the known percentage of water reached (test 18). Sucrose seems to be most reluctant to part with the last trace of water. It is possible that partial inversion occurs,taking up a minute quantity of water and thus increasing the apparent solids.

SECTION 5.

MUTHODS OF ANALYSIS.

Part 9 : The Determination of Water in Raw Sugars.
. Introduction.

Experimental.

Summary.

It is well known that moist sucer or sugar products, syrups, can molesces resist drying vith greet obstincoy. Thus Circular c\&40 of the U.S. Nationel Bureau of stendards, Weshington, 1942, p. 797, atater :- "An accurate determination of the moisture in sugar products is Prequently a matter of groat difficulty, and the proper procedure has not been definitely established."

Sometimes the nateriel is hygroscopic, ane at orinary pressure moisture con only be removed py long heating at high tomperature, che it is also mom thet high tempacture axerts a dostructive offoct on meny of the solid sugars. A tomperature or $100^{\circ} \mathrm{C}$. for oxmble, till ceuse conctereble decomposition of levulose, and will oventhelly affect such surers as puercse and dextrose.

It would therefore wear thet the best conditions for drying Will be those where low temperature and hich vacumare employed. With Iiguid products it is usual to mix the semple with arie sand
 voating tho formation of a hare surfsce cruct or film. Asbectosfand rolle of filtermeper heve elso boon used to secure a lerger drying area. If levulose is present in other than very small awounts, the drying temperature should not exceod $70^{\circ} \mathrm{C}$.

For the determination of mosture in raw sugars circular c440 recomends the use of polished duminium dishes of diameter 55 ms. and height 15 mms . With tigitly-fititing lids. Approximately 4 gms. of the mugar is oriod for a hours at a tomperature of $100^{\circ} \mathrm{C}$. , care beine toven thet the dishes are not in close prowinity to the
hosthe olononto of tho oven. Uon zemovel fron the oven the dish is wiped, coverod, placed in a desicoator to cool, and finally Weithed.

The methods recomended by the Asoociation of official Agricultural Chomists for the determination of moisture in sughrs are otill widely used. The most recent instructions for direct drying specify the drying of $2-5$ ghs. of the prepered sample in aflet dish of nickol, platinum, on aluminixm, at the temperature of boilimg water for 10 hours, tollowed by cooling in a desiccator and weighing. A funther heating is then given for 1 hour, or a hooting until the chance in weicht after e further period is not more than 2 mgms. FOI Eugers of lare grain it is recommended to heat at $105-110^{\circ} \mathrm{C}$. to erpel the last traces of ocoluded mater.

In vacuun crying, $2-5$ gms of the sample is tekon in a dish as above, but with a tighty-fitting cover and heated at a temperature not exceoding $70^{\circ} \mathrm{C}$. (pretorably at $\left.60^{\circ} \mathrm{C}.\right)$, ware a pressure not excecing bo mon of meroury, for a period of 2 houre. The sample is removed from the oven, covered, cooled in desiccator, did weighed. Drying is then continued until the change in weight is not more than 2 mgas. between successive veighinge at 1 hour intervals. The oven should be "bled" with a curreat of dry air during drying to ensure removal of water vepour.

Brome and Zerban ("Sugar Anelysig", 1941, 2.24) gtete that refined sugars, raw beet sugars, and the superior grades of raw cane sugers cen be succesofulny chayarston by heating $2-5$ pas. of the finely powdered sample in a thin layer for $2-3$ hours in an oven
hected by boiling water, and then heating in a special oven for 1 hour at $105-110^{\circ} \mathrm{C}$. phe sample if remeated at $105-110^{\circ} \mathrm{C}$. until succestive neatings cause no fruther los.

With lover grade sugare it is recomended that the dish be covered during weighing.

Pectors investigate in the oresent work.

Wator estimation in raw sugars.

1. Effect of time of heating :- (a) Hourly weighings.
(b) Continuous heating periods.
2. Brfect of woight taken.
3. Brect of dish ueed :- (a) matorial : (b) diameter :
(c) Variation in similar dishes.
4. Study of replication.
5. Effect of oven temperature.
6. Comparison of steam and vacuum ovens.
7. Bffect of poeition in the oven.
8. Erfect of atmospheric concitions - temperature, humidity,pressure.
9. The effect of the heating in various ovens on the re ucing sugars present.
10. The use of the Spencer oven for raw sugar moisture estimations, with speciei regard to the high temperature used in this oven. 11. The effect of grain size in the sugar on its moisture content. 12. A study of the reto of evaporation in a steam oven.

HOISTURE TKSTS.

ORIGIN	BARBADOS	BKITISH WEST INDIES	I.	LI.	NATAI I.	II.	Samio
SUCROSE	96.36	96.72	96.25	96.93	98.93	97.90	97.19
FUDUCING SUGAFS	1.26	1.39	1.49	0.95	0.21	0.57	1.33
ASH	0.54	0.49	0.53	0.56	0.33	0.59	0.41
Water	0.72	0.69	0.73	0.59	0.27	0.52	0.50
OTAGR ORGANIC Mitcer	1.12	0.71	1.00	0.97	0.73	0.42	0.57
$\begin{aligned} & \text { RATIO } \\ & \text { ASA } \\ & \text { RHEDUGAFS } \end{aligned}$	0.43	0.35	10.35	0.59	1.57	1.03	0.31
pH Valua (Glass Electrode)	- 5.97	5.85	5.86	5.93	6.05	5.80	6.08

In the experimental section which follows, various rav sugars were testec in the stean oron et $03-90^{\circ} \mathrm{C}$., and in the vecum oven. The first torts made sought to esbeblish the extent of the Tariation in moisture contont recorded with time, and from smple to 1 sampe. Aluminim dighes more usec, as was. in diameter, with tight 1ids.

Bxperimemt (1) :- Tive gace of the raw augm more meighed into osch dishn, usinc bin dishes. One dish mas weiget eboh hour for three hours, and then pairs of dishes were weiched after 4, 5, and 6 hours.

sugar	Time	of Hour	Apparent Moisture $\%$	Tine of Heating Hours	Replicates	$\begin{aligned} & \text { Ayparent } \\ & \text { Woisture } \\ & \% \end{aligned}$
Test	1		0.70	4	0.75	
		2	0.70		0.75	0.75
Indian	3		0.70	5	0.72	
		4	0.73		0.73	0.73
(Weichinge		5	0.73	6	0.74	
each	our)	6	0.72		0.72	0.73

Experiment (2) :- No weighing for firgt two hours

Notes on experiments $1-3$:- In Experiment (1) the oven door was oponed each hour, and cold samples mete later returned to the oven : this was a disturbing factor. On the whole the results were remarkably uniform. All samples vere in one compertment of the oven. In $\operatorname{argeriment~(2)~the~first~test~was~repeated~with~no~weighings~until~}$ two hours hesting had been given to all the samples : this treatment Geve hicher results.

Experimont (3) was conducted as in test (17 using a different sufar. Apperent moisture figures here tenced to increase as the time of heating was increased : there is a notable discrepency between the duplicates after 4 hours heating.

Experiment (4):- The samples mere placed in duplicate pairs in separate comertments of the steam oven and were not disturbed until the full time of heating hed elopsed.

Suger	Tins of Heating Hours	$\begin{gathered} \text { Apparent } \\ \text { Moisture } \\ \% \end{gathered}$	$\begin{aligned} & \text { Time of } \\ & \text { Gooling } \\ & \text { in Desicoetor } \\ & \frac{\text { minutes }}{} \end{aligned}$
West	4	0.744	20
Incion	5	$\begin{aligned} & 0.714 \\ & 0.728 \end{aligned}$	20
	6	$\begin{aligned} & 0.772 \\ & 0.792 \end{aligned}$	20

Mean Apyarent期isture

0.745
0.721
0.732

Experinent (5) contimed :-

sugar	Tine of Heatine Hours	$\begin{gathered} \text { Apgrent } \\ \frac{1}{\%}+\mathrm{sture} \end{gathered}$	Tine or cooling in Desicector	Hean Apparent Moisture \%
West	9	(3) 0.752	$\frac{\text { Minates }}{20}$	0.757
Incion	10	(1) $\begin{aligned} & \text { (2) } 0.770 \\ & 0.790\end{aligned}$	20	0.780

The sample marked " " above had a lov result to start with, and this did not improve as the heating continued : it is therefore doubtrul in it chould be incluced in the average results.

Tinc of Heating Moure	1	2	zmporimont		6	mean Result
			4	5		
1	0.70	--	--	--	--	0.70
2	0.73	0.71	-*	--	--	0.72
3	0.70	0.72	--	--	--	0.71
4	0.73	0.73	0.75	0.75	0.73	0.74
5	0.73	0.76	0.72	0.75	0.73	0.74
6	0.72	0.79	0.73	0.77	0.71	0.75
3	--	--	--	0.76	0.77	0.77
9	--	--	--	0.76	0.76	0.76
10	--	--	--	0.78	0.73	0.76
12	--	--	--	0.78	--	0.73
13	--	--	--	--	0.78	0.78
14	--	-	--	--	0.75	0.75
						$\text { nge } 0.70-0.79$
Factor	$\begin{array}{\|l\|} \text { Weighings } \\ \text { each hour } \end{array}$	$\left.\begin{array}{\|c\|} \hline \text { Toighed } \\ \text { zfter } \\ 2 \text { hours } \end{array} \right\rvert\,$	Contin -uous heat- ine periods	continvous heatinc periods	$3 x \operatorname{ten}$ -ded heat -ing	
Investi-						0.75
gated.						
Gme. taken	5	5	5	10	5	
	45	45	45	55	45	
diameter						
eter						

SUGARS: DETBREIMATIOI OP WATMR ITM DISHES OF VANYIFG DIAMBTAR.
Bxat.7:- The raw sucer ueod wos fron San Domingo : teste were bado in
duplicate in alminiun dishes or various diameters, peirs beine
placed in soparate compertments of colular eteam oven at $99.5^{\circ} \mathrm{C}$.
The amosheric temperature $24.7^{\circ} \mathrm{C}$. , and thenpressure 766 ras.
Ten crans sugar were takon in oech dieh, the reducing sugars being estimated before and after heeting.
Time of
Heating
Mours
1
2
3

Dish dimensions
arag.
Height
Diameter
Bottom surface area : sq.oms.

Depth of sugar in dish : mas.

Series 2
Series 3
19
102
81.7
3

Series 1

$$
13
$$

$$
45
$$

15.9

8

After the hesting period, the sugar in each dish was made up to 1 Iitre was the reciucing sugars estimeted.

Series	Dish Dianeter mans.	Total Hours Heating	Hean Apparent Hoisture	Reducing Sugars $\%$	Decrease in Reducing Sugars $\%$
2	45	4	0.52	1.32	0.14
3	63	4.5	0.55	1.29	0.17
102	4.5	0.43	1.20	0.20	

per cent roducing sugers in original guear :- I. 46

THE BFRET OS THE REDUCING SUGMR OONTENT OF RA: SUGARS OF 1 AND 2

Experimont 8 :-
In this test tho conditione mere maintained as in the previous. experiment, usinc six $69 x 20$ mon. duninium dishes, and placing each pair of dishes in a geprate compartment of the stean-oven. Reducingsugers rere estinetod in the residues.

Mo.	Gms. Weibiod	Apperent moisture \%	Av. Moisture $\%$	Reducing Sugars	nean $\%$ Reducing sugars	Decrease in Roducing sugara \%
1	10	0.45		1.36		
2	$10^{1} \mathrm{in}$	0.40	0.47	1.35	1.36	0.10
3	$10^{\text {oven }}$	0.47		1.36		
4	$\begin{array}{lll} 10 & 2 & \mathrm{hrs} \\ \mathrm{in} \end{array}$	- 0.50		1.32		
5	10 oven	0.50	0.53	1.33	1.32	0.14
6	10	0.59		1.31		

Per cent reducing sugars in originel sugar :- 1.46 .

THE GTFECT ON THE REDUCING SUGAR COMTENT OF RAW SUGAR OF $/ 3,4$, AND 5 HOURS THATIMG IN THT STEAKi - OVET.

Expt. $9,-\operatorname{mis}$ test was conducted as in the previous oxperiment, using six 69×20 mats. dishes, and placinc oach pair of dishes in a separate compertment of the stean-oven. Reducing gugars were estimeted in the resicues. Ton gas. of sugar were weighed in each dish.

Wo	gours Heating	$\begin{aligned} & \text { Apperent } \\ & \text { \% } \\ & \text { Moisture } \end{aligned}$	$\begin{aligned} & \text { Averege } \\ & \text { Moisture } \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Reducine } \\ \text { sugers } \end{gathered}$		Decrease in \% Reducing Sugars
1	2	0.46		1.33		
2		0.46	0.16	1.31	1.32	0.08
3	4	0.49		1.28		
4		0.50	0.50	1.28	1.28	0.12
5	5	0.52		1.28		
6		0.53	0.53	1.26	1.27	0.13

Per cent reducing sugars in original sugar :- 1. 40

Experinent $10:$ As in previous test, using aluminium dishes of larger diameter : 10 gns. sugar in dishes 102 mm . dian. $x 19 \mathrm{~mm}$. deep each dish placed in a separete compartment of the steam-oven.

No.	Houra Taeting	Apparent Moisture	$\begin{gathered} \text { Average } \\ \text { Moisture } \end{gathered}$	$\begin{gathered} \neq \\ \text { Reducing } \\ \text { Sugars } \end{gathered}$	mean \% Reducing sugars	Decrease in $\%$ Reducing sugars
1	0.5	0.45		1.40		
2	0.5	0.44	0.45	1.40	1.40	0.02

Per cent reducing sugers in original sugar :- 1.42

LOSS OF REDUCITG SUGARS DURTHG THE RSTLMARIOT OF MATE
II S4 DOIITGO BAE SUGAR BY STEAT-OVMY DEYIMG
A gUTCATY OT BXERTETE $7-10$.
Aluninum dishos base with 10 gre sucar.

1\%.	Mours	Avocront voisture wos cont	Recuoing Sugers por cont	Lorr of Rocucine Sucurs	Decresse Reducing Sucert per hour	$\begin{aligned} & \text { Dish } \\ & \text { Dicial } \end{aligned}$	
1	0.5	0.44	1.40	0.03	--	102	2
2	1	0.47	1.36	0.07	0.07	69	3
3	2	0.53	1.32	0.11	0.04	69	3
4	3	0.46	3.32	0.12	--	69	2
5	4	0.40	1.23	0.15	0.04	69	\%
0	5	0.53	3. 27	0.16	0.01	63	2
7	4	0.52	1.32	0.11	0.03	45	2
3	4.5	0.54	1.29	0.14	0.03	69	2
9	4.5	0.23	1.25	0.17	0.04	102	2
	Orici	al suger	1.43				

The reducing sugars were estimated by Lane and Bynon's method using methylene blue, removing calcium salts as oxalate.

DPTERMTNATION OF WATER IN CUBAY RAY GUGAR IN A SHALI STGAPGOVEN

Experinent 11 :- In this case a enall steam-oven 6.5 inches cube internally was used. The temporature of the weter in the jacket was $93.5^{\circ} \mathrm{C}$. , the room temperature $17^{\circ} \mathrm{C}$, wnd the berometric pronure 751 ans. The internal temperature was take. - on the ohele, $33^{\circ} \mathrm{C}$., and on a themometer suspended over the somple, $92.5^{\circ} \mathrm{C}$.

Fous roplicates were woiched using 2 gms. sugar ; two in aluminima dishos 69 mos. diencter by 20 mms. deop, ad two in similes dishee 45 ars. dicneter by 12 mas, ceep.
Hours
Neuting
1
2
3 Dishes

Apperent per cent moisture

The diches to the right hand side of the bath shomed greater loss, but there is little difference in the actual drying rate. The disher were placed on the oven bottom ; not on the shelf.
Experiment 12:- As in No. 11, using a Natal raw suger Room temperature, $17.5^{\circ} \mathrm{C}$., Berom. pressure, 752 mas. 2 gms. sucar. Hours
Meating

Apparent per cent moisture

Manciment 13 :- Cuban raw suear was used, weighing 5 gras. in triplicato in aluminium copsules of 45 mas.and 03 mas. dianeter respectively with a temperature of $70^{\circ} \mathrm{C}$. and 63 cms. vacuma. Series (1):-

| Hours |
| :--- | :--- |
| Heating |\quad Amarent noisture per cont

	Dish diameto		$45 \mathrm{mms}$.		69 mms			
	1	2	3	intean	1	2	3	Mean
1	0.43	0.44	0.42	0.43	0.29	0.33	c. 39	0.35
2	0.44	0.45	0.41	0.42	0.34	0.41	0.42	0.39
3	0.45	0.45	0.44	0.45	0.37	0.45	0.12	0.42
4	0.45	0.16	0.45	0.45	0.37	0.44	0.44	0.22
9	0.49	0.40	0.43	0.49	0.45	0.51	0.51	0.49

Series (2):-

1	0.45	0.46	0.48	0.40	0.47	0.44	0.44	0.45
2	0.56	0.49	0.51	0.50	0.50	0.48	0.46	0.48
3		0.53	0.50	0.52	0.52	0.50	0.47	0.46
4	0.54	0.51	0.53	0.53	0.52	0.49	0.47	0.48
9	0.57	0.53	0.55	0.55	0.57	0.52	0.51	0.53

In series (2) the oven vas taken to $76^{\circ} \mathrm{C}$., inadvertently, for about 20 minutes while the saxales were in. It was coo jed then to $66^{\circ} \mathrm{C}$. re-heated to $70^{\circ} \mathrm{C}$., and the samples replaced. This mishap is reflected in the higher avorace figures obtained in this series for the apparent moisture content.

THE BBFECY OF DISY SIZE AND MBTERTAL.

Erepimont 14 :- Tects vere meco uking verious aishes of glass,
 each case : the oven was mointaine at $70^{\circ} \mathrm{C}$, whe 63 cms . Vtanum.

Hours Hosting	Glese Veigaing			watch Glesmes			\|nickel Dishes			$\begin{array}{\|c} \text { Aluginiua } \\ \text { Basin } \end{array}$
	(1)	(2)	Meas				(1.)	(2)	e	
1	0.51	0.43	0.50	0.31	0.36	0.34	0.46	0.40	0.47	0.43
2	0.53	0.49	0.51	0.35	0.36	0.36	0.47	0.50	0.40	0.50
3	0.54	0.49	0.58	0.35	0.36	0.36	0.49	0.51	0.50	0.50
4	0.56	0.51	0.54	0.34	0.39	0.37	0.57	0.53	0.55	0.52
9	0.55	0.51	0.54	0.37	0.35	0.36	0.58	0.53	0.56	0.58

Plat Aluminium Dimhes:- Diometer chow in mas.

Tours Heatine	45 mas. dianeter				69 mas. dienoter					$\begin{aligned} & 102 \text { mime } \\ & \text { Dtumeter } \end{aligned}$	
	1.	2.	3.	Mean		2.	3.	Moan		DFEMe?	$\frac{e p}{\text { ean }}$
1	0.43	0.46	0.48	0.46	0.35	0.45	0.39	0.40	0.39	0.40	0.40
2	0.44	0.50	0.50	0.48	0.39	0.48	0.43	0.43	0.41	0.44	0.43
3	0.45	0.52	0.51	0.49	0.42	0.48	0.43	0.45	0.46	0.47	0.4
4	0.45	0.53	0.50	0.49	0.42	0.49	0.42	0.44	0.40	0.41	6.41
9	0.49	0.55	0.53	0.49	0.49	0.53	0.45	0.49	0.46	0.46	0.47

TH EPPMCT OT OVMT TEMWBRAURE.

Tive gras. of cuhen raw sugar (new wample) in aluminium dishes 69 mas. diemetor. Six renlicatos in eqoh test.

Bxperiment $15:=$

Mours	Oven Temperature $80^{\circ} \mathrm{C}$						Oven Tempereture $50^{\circ} \mathrm{C}$.					
Heatinc:	1		${ }^{1} 3$									
	1		\cdots			,	1.	2	3	4	5	
1	0.35	0.41	0.43	0.43	0.41	0.45	0.38	0.38	0.41	0.42	0.34	0.29
2	0.44	0.40	0.67	0.46	0.42	0.49	0.42	0. 24	0.47	0.46	0.39	0.33
3	0	0.	0	0.44	0.43	0.4	0.43	0.43	0.47	0.47	0.39	0.34
4	0.23	0.89	0.50	0.49	0	0.5	0.44	0.22	0.47	0.49	0.40	0.
9	0.68	0.49	0.50	0.50	0.48	0.58	0.54	0.52	0.53	0.54	0.44	0.33

Oven Temperature $60^{\circ} \mathrm{C}$.
Oven Temperaturo $70^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	1	2	3	4	5	6
1	0.50	0.45	0.49	0.33	0.52	0.50	0.43	0.48	0.37	0.41	0.46	0.48
2	0.47	0.45	0.48	0.36	0.52	0.50	0.50	0.53	0.42	0.46	0.50	0.53
3	0.50	0.48	0.53	0.39	0.54	0.52	0.53	0.57	0.59	0.48	0.52	0.53
4	0.50	0.49	0.52	0.40	0.54	0.53	0.49	0.52	0.55	0.45	0.49	0.52
9	10.5	10.49	0.53	0,38	0.54	0.52	0.57	0.61	0.63	0.521	0.55	0.58

Hxperinght 15 (continued) :-

Mean Results for the effect of oven temperature in the vacuum oven doterwinction of moisture in Cuben rea sugar :-

Hours
Heating
2
2
3
4
9

	oren Temperature $40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$.
0.42	$60^{\circ} \mathrm{C}$.	$70^{\circ} \mathrm{C}$.	
0.46	0.37	0.47	0.44
0.44	0.42	0.46	0.49
0.49	0.42	0.49	0.54
0.50	0.48	0.46	0.50
		0.49	0.58

Total Range :- 0.37-0.58

Atmoswheric Conditions durine the above tests :-

Terst	$\begin{array}{c}\text { Roon Temperature } \\ \text { Dry Bulb } \\ \text { C. }\end{array}$	\% Relative Humidity	Barometric pressure mans.
$40^{\circ} \mathrm{C}$	15.5	74	769
$50^{\circ} \mathrm{C}$.	16	81	743
$60^{\circ} \mathrm{C}$.	17	62	750
$70^{\circ} \mathrm{C}$.	19	69	765

THE TEFESCT OF THIS POSITION OF THE SAMPLE IN THE

VACUUL OVEM ON THE APPARENT ROISTURE CONYTIT OF

RA: SUGAR.

Experiment $16:-$ six replicates were placed in standard positions in the vacura oven at $70^{\circ} \mathrm{C}$. and 68 cms . vacuum, using 5 gms. of Cuben ram sugar in each aluminium capsule.

Thesc tests extended over 5 days with the
oven and stmospheric conditions noted below.

Hours Heating		Mean muarent per cont moisture.					
	1	2	3	4	5	6	Average
1	0.50	0.48	0.43	0.48	0.47	0.48	0.47
2	0.54	0.53	0.49	0.51	0.50	0.51	0.51
3	0.54	0.53	0.52	0.52	0.50	0.51	0.52
4	0.54	0.52	0.52	0.53	0.51	0.52	0.52
9	0.60	0.56	0.55	0.55	0.53	0.54	0.56
Average	0.54	0.52	0.50	0.52	0.50	0.51	

Range of mean results :-0.43-0.60

Atmospheric and oven conditions:-

Day	$\begin{aligned} & \text { Atmos } \\ & \frac{\text { Bry }}{\text { Bulb }} \end{aligned}$	$\frac{\text { Temp. }}{\text { BuIb }}$	\% Rel Humid -ity	Barom. Prese. mus. Hg	oren Jacket temp. ${ }^{\circ}$ C	$\begin{aligned} & \text { Temp. } \\ & \text { Inside } \\ & \text { oven }^{\circ} \mathrm{C} . \end{aligned}$	Vacuum rams. Hg.
1	18,0	14.5	68.5	765	70	69	680
2	19.5	16.5	74.2	759.5	70	69	680
3	19.0	10.5	76.0	763.7	70	69	630
4	19.5	17.0	82.0	763.3	70	69	630
5	20.0	17.0	32.5	765.0	70	69	680

Experiment 16 (continued) :-
 RAIGGES OF RGSULTS.

Hour	Test 1		Test 2		Test 3		$\frac{\text { Test } 4}{\text { Min. }} \text { Max. }$		Test 5	
				Max.	Min.	Max.			隹的.	Max.
1	0.37	0.49	0.43	0.51	0.45	0.50	0.47	0.55	0.49	0.54
2	0.42	0.53	0.47	0.57	0.49	0.58	$0 . \leq 3$	0.65	0.50	0.55
3	0.43	0.59	0.45	0.55	0.47	0.56	0.50	0.55	0.50	0.56
4	0.14	0.55	0.47	0.57	0.47	0.53	0.51	0.57	0.53	0.62
9	0.52	0.63	0.49	0.61	0.49	0.62	0.47	0.53	0.55	0.65

Extrenes :-0.37 (Ist. Hour) to 0.65 (9th. Hour).
Probeble fean Value :- 0.52 (see previous teble).

Bxperiment 17 :- Betimation of Moisture in Cuban rav sugar in the Vacuum oven with Continuous Periods of Hectins.

The oven was at $70^{\circ} \mathrm{C}$. and 68 cms. vacuun : 5 gras. of sucar weighed in each of six aluminium capsules, 69 mas. iameter

Hours							
Heatine	-1	2	$\frac{2}{3}$	$\frac{2}{4}$	$\frac{5}{3}$	0	Averaze
2	0.52	0.61	0.61	0.55	0.58	0.62	0.58
3	0.58	0.61	0.59	0.57	0.59	0.54	0.58
4	0.50	0.54	0.56	0.50	0.56	0.58	0.54
5	0.55	0.56	0.60	0.56	0.58	0.59	0.57

The average results obtained in this test are rather similar to those obtaineo in Experiment 16. In general the vacuum oven appears to give slighty lower results than the stean oven.

THE VARIAYION IN INDIVIDUAL CAPSULIES.

Experiment 17:- Aluminiun Capsules 69 mas. diameter were used, veighing 5 gm. samples of a Cuban rew sugar in each of six dishes. The vacum oven was rainteined at $70^{\circ} \mathrm{C}$. and 68 cms.vacuum.

Hours Heating	1	2	Capsule Mumber			6	Average
			3	4	5		
1	0.46	0.49	0.48	0.47	0.47	0.49	0.43
2	0.49	0.52	0.52	0.51	0.51	0.53	0.51
3	0.50	0.53	0.55	0.50	0.51	0.53	0.52
4	0.49	0.53	0.55	0.50	0.52	0.53	0.52
9	0.53	$\begin{aligned} & 0.55 \\ & \text { er } \mathrm{ces} \end{aligned}$	$\begin{aligned} & 0.53 \\ & \text { apper } \end{aligned}$	0.54	$\begin{aligned} & 0.55 \\ & \text { cura) } \end{aligned}$	0.55	0.55

Mean Results for five series of tests:- six replicates in each:-

Series	Hours Heating and per cent appare				
\therefore	1	2	3	4	9
1	0.44	0.49	0.54	0.50	0.58
2	0.46	0.51	0.49	0.52	0.54
3	0.46	0.52	0.51	0.48	0.56
4	0.51	0.52	0.53	0.54	0.50
5	0.52	0.53	0.53	0.56	0.57
Average	0.48	0.51	0.52	0.52	0.55
Range	$0.44-$	$0.49-$	$0.49-$	$0.48-$	$0.50-$
Total Range	0.52	0.53	0.54	0.56	0.58
	$0.44-0.58$				

With 5 weighings for coch replicate, this gave a total of 150 results

DATEMMTMATION OF MOISTURE IN RAW CUBAN SUGAR IN TMIE STEAM OVOM AT $99.5^{\circ} \mathrm{C}$. IN ALUMINTUM CAPSULESS.

Experiment 18 :- six 5 gm . portions of the gugar weighed in 45 mms . diameter aluminiun capsules : all samples in one compartment of the oven.

	1	2	3	4	5	6 Averace	erase
1	0.59	0.61	0.64	0.65	0.69	0.60	0.63
2	0.64	0.65	0.68	0.70	0.73	0.62	0.67
3	0.61	0.63	0.66	0.67	0.71	0.62	0.65
4	0.62	0.64	0.63	0.69	0.72	0.64	0.67
9	0.63	0.66	0.69	0.70	0.74	0.05	0.68

SERIRS 2:-

1	0.61	0.64	0.60	0.63	0.63	0.62	0.62
2	0.63	0.67	0.63	0.65	0.65	0.64	0.65
3	0.67	0.71	0.66	0.68	0.68	0.67	0.68
4	0.69	0.73	0.69	0.71	0.71	0.69	0.70
9	0.71	0.75	0.70	0.72	0.72	0.71	0.72

Joint average for series 1 enc Series 2 (Steam-oven) :-
1
0.63

The probable Mean value is 0.67 : this
20.66 compores with a mean value of 0.52 for the vacuum oven.
$\therefore \quad 0.69$
9
0.70

THE DETRMINATION OT MOISNURE IIT CUBAN RAW SUGAR IN THE

VACUUL OVEII USIMG 10 GM . SAMPLIS

Mugeniment 19 :- The oven vas mainterined at $70^{\circ} \mathrm{C}$., anc 68 cms . Vacum. Six replicates were weighed in aluminium capsules 69 mas. in diameter.

Hours Heating

ting	1	2	3	4	5	6	Average
1	0.55	0.55	0.50	0.48	0.52	0.47	0.51
2	0.55	0.54	0.51	0.43	0.52	0.48	0.51
3	0.58	0.53	0.54	0.50	0.55	0.51	0.54
4	0.53	0.53	0.54	0.51	0.56	0.51	0.55
0	0.53	0.53	0.55	0.51	0.57	0.52	0.55

COMPARISON OF AVMRAGE RESULTS FOR 5 AND 10 GMS. SAMPLES IN THE

Hours Heating)	Vecuum oven 5 gms. Samples				$\begin{gathered} \text { Averase } \\ \text { of } 5 \\ 10 \text { gms. Tests } \\ \text { Samples } \\ \hline \end{gathered}$		Steam oven 5 Gms.
	$40^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$60^{\circ} \mathrm{C}$.	$70^{\circ} \mathrm{C}$.			
1	0.42	0.37	0.47	0.44	0.51	0.48	0.63
2	0.46	0.42	0.46	0.49	0.51	0.51	0.66
3	- 0.44	0.42	0.49	0.54	0.54	0.52	0.67
4	0.49	0.43	0.46	0.50	0.55	0.52	0.69
3	0.50	0.48	0.49	0.58	0.55	0.55	0.70

This average includes the results for 5 gme sugar with continuous periods of heating (Experiment 17).

REPIICATE DETERMINA IMS OF YOISTURE IN CUBAN RAV SUGAR IN THE

 STEAT OVE USING 5 GMS. IN DUPLICATE ATD 2 HOURS HEATMG PRRIOD.Experiment 20 :- The dishes used vere aluminium capsules 45 mas. in dianoter : They vere placed always in the sene relative positions in the micdle botton compartant of a cellular stean oven for 2 hours test Boch roplicate/was mode on a differont day or at a different time on the cone day.

Test per cent moisture No

Tes	Pe	cent	cure	\%	Atrnos-	Baro-
No	1	2	Average	Rel. Finmid -ity	pheric Teinp. C.	metric Prescure man. HE
1	0.67	0.62	0.65	76	20	750
2	0.60	0.61	0.61	82	17	762
3	0.60	0.61	0.61	30	18	754
4	0.56	0.61	0.59	77	17	756
5	0.62	0.59	0.61	77	17	756
6	0.65	0.65	0.65	71	13	751
7	0.53	0.57	0.55	80	16	743
8	0.60	0.59	0.60	80	16	743
9	0.62	0.61	0.62	74	16	756
10	0.67	0.60	0.67	74	16	756
11	0.58	0.59	0.59	71	15	766
12	0.53	0.65	0.62	65	16	771
13	0.62	0.61	0.62	65	16	771
14	0.62	0.62	0.62	71	14	773
15	0.56	0.57	0.57	67	15	775
16	0.63	0.63	0.63	82	16	759
17	0.60	0.59	0.60	60	17	760
18	0.64	0.61	0.63	60	15	764
19	0.60	0.62	0.61	74	16	758

Replicates on one
Dey for Comparison
2 Hours Heating

$$
\text { RANGE :- } \frac{\text { Min. }}{0.53} \quad \frac{\text { Max. }}{0.67} \quad \frac{\text { Humidity Variation. }}{60-82 \%}
$$

$\frac{\text { Temperature Variation :- } 14-20^{\circ} \mathrm{C} \text {. Barom. Pressure Variation }}{743-775}$ Note :- Series (1) and (2) above pere not in continuous heating periods : Series (3) was in continuous periods of 2 hours.

DETEEMARTISH OQ MOISTUR IM OJBAN RAW SUGAR.
YARIATION OF:- (a) Weight Taken : (b) Type of Dish used :
(c) Temperature : (d) Iype of Oven used.

No.	MLTHOL	$\begin{gathered} \mathrm{T}+\mathrm{P} \text {. } \\ 0_{\mathrm{C}} . \end{gathered}$	GIS. Thum	DISH	$\frac{\mathrm{PH}_{\mathrm{S}} \mathrm{C}}{\underline{2}}$	$\frac{105 S}{3}$	4
1.	Electri Oven	65	10	Aluminium, 69 mas.diam.	0.39	0.40	0.42
2.	"	65	5	\cdots	0.38	0.40	0.41
3.	Steam Oven	98	10	" "	0.41	0.43	0.46
4.	"	98	5	" "	0.40	0.45	0.47
5.	Vacuum Oven	70	10	"	0.28	0.32	0.34
6.	"	70	5	" "	0.30	0.35	0.36
No.	WETFOD	TEP.		Dish		$\frac{\text { Per Cent Loss }}{4 \text { Hours. }}$	
		C.	TAKEN				
7.	steam oven	98	5	Watch-glass		0.37	
8.	"	98	10	Al. 69mms.diam. (Sugar ground) Large Nickel Dish		0.37	
9.	"	98	20			0.44	
10.	"	96	10	Alumirisua Basin		0.43	
11.	Vacturn oven	70	10	A1. 69 mins.	iam.)	0.32	
12.	"	70	10	" "	" $)$	0.34	
13.	"	70	5	Watch-glass			0.34
14.	"	70	20	Large Al. Dish,105 mms. Diameter.			0.35

SUMOAY OE COHCLUSIOES ON THE OVEN DETHOD TOR THE MSTHATION OP

WATER IN RAY SUGARS.

EPect of Tinc of Heating: Weiching at intervals of one hour gives lower results then weighing only aiter a continuous period erceeding a hours.

There is an overcll tencency towards hifior apearent loss as the time of heating is increased.

Tho vacum oven gives unipomaly lower loss figures than the stean oven, wut there is virtually the same order of increasing loss with increasing time.

Fifoct of the weight taken : The orror aue to multiplication may become inportant. Thus 2 gas. taken meas multiplication by 50 ; 5 gra, by 20 , whe 10 gus. by 10. It is not often practivable to use more than say 20 gus. of the sugar per estimation.

It is clow thet too small a weight should be avoided, and for practical convenienco and rapicity a weight of not less than 5 gms, nor more than 20 gus. would seem to be desirable for this method. Efect of Cish matorial : Glass dishes apear to sive sonemat . higher resuits than alminium capsules. Nickel dishes gave the same. results ascelass dishos in these tests. The 'dished' aluminium basif with only a small area in contact with the oven bottom geve a result intermediate betweon nickel ane gloss. The convex surface of a watch Glass similurly prevents sufficient trensfer of heat to give evaporation of the water in a reasoneble time.

Efect or Dich Dignetor :- Ueing aluminima dishes, the gmaller dianetor dishes tond to give higher results than those of lareor diogter

Variation of results with sinilar dishes:- With a set of six diches of identical dimensions it was found that there was little difierence in the results given by any ono dish,or between the resulte civen by the six dishes. The actual position in the oven seenod to bo a mach more significant factor.
Study of Poplication:- A coneral conclueion from this part of the work is that the apparent moisture percentage obtained is largely conditioned by the time of heating. The range in one test was from 0.37 per cent in the firt hour to 0.65 per cent in the ninth hour, With a probable mean value oi 0.52 per cent moisture artor 150 seperete weichings. Contributing fectors which disturb exact replication include the tempersture of the oven, the position of the genve in the oven, the tyye of dish used, the atrospheric conditions during the test, and the type of oven used.

Effoct of oven Tomperatare):- Temperatures of $40^{\circ}, 50^{\circ}, 60^{\circ}$, and $70^{\circ} \mathrm{C}$, were used in the vecuum oven, and did not appear to influence the reanlts appeciably. In the ordinary oven, with a higher rance, of temperature, this factor was much more inportant, and a departure of a row desrees from $100^{\circ} \mathrm{C}$. had consideretle efrect on the moisture content found.

Contrast of the stean oven vith the vecuum oven : A Cuban raw suger cave an apparent water content of 0.67 per cent at $93^{\circ} \mathrm{C}$. compered with 0.52 per cent weter in the vacuum oven at $70^{\circ} \mathrm{C}$. Effect of position in the oven :- Tais was of definite importance. Veriatione wore recored betweon aisher placed on the oven bottom, the oven shelf, and in positiona close to the oven walls.

Pffect of atmospheric conditions :- It seems probable that the Atmoshemic concitions of pressure, temperature, and humidity were dt least party reaponsible for many of the variations found in the day by day replicetion of raw suger moisture in the same sample. This expect has often boen weed so on arement aceinet the use of tize over aethod.

EPrect of Heating on the reducing sugurs :- The resulte found chow a decrease in the reducing suger content on heating raw sugas in the stean oven, even atter only 30 minates heatine. It is poscible that thee actions are proceering simultaneously during this heating, viz :- Inversion of sucrose ; increase in weicht by oxidation : she decrease in weight by actual decomposition of reducing sugars.

SECTION 5.

METHODS OH ANALYSIS.

PART 10 : Deterraination of Water in the Spencer Oren.

Introduction - The Spencer Oven :
The Drying of a known Levalose Solution :
Application to Raw Sugars :
Effect on the Reducing Sugars in Raw Sugars.

DETERMINATION OP WATER USING THE SPENCER OVEN.

ABSTRACT.

In this oven, in which electrically heated air is drawn through the sample being dried, four series of tests were made. 1. Known Levulose solution:- A temperature of $53^{\circ} \mathrm{C}$. was too low. At $66^{\circ} \mathrm{C}$. drying was satisfactory, and required 4 hours. Temperatures above $75^{\circ} \mathrm{C}$. were unsuitable and should not be used. Le spencer and steen oven Comparison on haw sugars: $=$ In the steam oven 0.84 per cent water was found, compared with 0.72 at $70^{\circ} \mathrm{C}$., 0.73 at $77^{\circ} \mathrm{C}$, and 0.75 per cent, water at $91^{\circ} \mathrm{C}$. in the Spencer oven. 3. Fioisture in different sizes of Rev Sugar crystals:The differences found were not significantly great. 4. Effect of Spencer oven heatinson Reducing Sugars :- Using a Cuban raw sugar, heating above $115^{\circ} \mathrm{C}$. for over 20 minutes caused a progressive decrease in the reducing sugar content.

General Conclusion:-

The Spencer oven can yield comparable
results in routine testing, but it cannot be regarded as an accurate means of determining mater in thermally sensitive substances.

BOLABSES, SYEUPS, JUICES, PtC.

The Spencer oven is a device for passing a large volume of air over a neating element and then through a capsule containing the material to be dried. The temperature is regulated by a rheostat. The capsules are made of aluminium and have a metal mesh botrom of Aonel metal to permit air to pass. Solid sugars are weighed directly into the capsules. (see Spencer's Cane Sugar Hand Book,7th. Ed., p. 203,1929).

With liquid products the material is absorbed on asbestos. Several precautions are hecessary to ensyre concordant results :- The asbestos should be freshly ignited and fluffy, only one test should be made at/a time and not more than 4 ccs. of the liquid used. The oven should be brought to temperature of operation (about $110^{\circ} \mathrm{C}$.) before inserting the sample : liquids other than thin juices should be diluted 1 : 1 before weishing.
ProcEDUT: : - The capsule is loosely filled with fluffy freshly ignited asbestos and heated in the oven at $110^{\circ} \mathrm{C}$. for a few minutes, cooled, and weighed. The liquid is then slowly added frof a weighing bottle fitted with a droping pipette, taking care that it is absorbed by the asbestos. (The drops should be kept to the middle of the asbestos : if there is any sign of liquid on the botton gauze, start again.) The capsule is thenplaced in the oven(at $110^{\circ} \mathrm{C}$.), and suction applied for 20 mirutes, keeping the temperature at $110^{\circ} \mathrm{C}$ 。; it is now cooled and weighed. It has been found that the air will not pass evenly through two or more capsules, so one sample only should be tested at a time.

Spencer
Electric
Oven.

Higure
56

Figure
57

Figure
58

The levulose solution used contained 61.73 per cent water and 38.27 per cent levalose. It was absorbed on either Gooch asbestos or $16 / 20$ mesh pumice in the usual spencer oven capsules.

No.	Average	Hours			pparent	Per Cen	ter
	乌emp.	$\begin{array}{\|c} \text { Heat- } \\ \text { ing } \end{array}$	1.	2.	3.	4.	Average
1	73-78	3.5	61.95	61.69	-	-	61.82
2	73-78	1.33	61.18	61.07	-	-	61.13
3	77	2.5	61.37	61.27	-	-	61.32
4	77	4.0	61.59	61.57	-	-	61.58
5	75	6.0	61.64	61.60	-	-	61.62
6	77	7.0	61.77	61.72	-	-	61.75
7	77	9.0	61.74	61.72	-	-	61.73
8	77	11.0	61.78	61.74	-	-	61.76
9	76	13.0	61.82	61.76	-	-	61.79
10	76	16.0	61.77	61.74	-	-	61.76
1	53	2.0	61.12	61.12	61.14	61.05	61.11
2	54	4.0	61.13	61.11	61.14	61.07	61.11
3	52	8.0	61.23	61.20	61.21	61.19	61.21
4	54	10.0	61.28	61.26	61.29	61.26	61.27
5	53	14.0	61.34	61.31	61.34	61.30	61.32
6	52	19.0	61.16	61.12	61.16	61.06	61.13
7	53	26.0	61.19	61.17	61.20	61.14	61.18
1	65	2.0	61.56	61.58	61.61	61.59	61.59
2	67	3.0	61.67	61.69	61.73	61.73	61.71
3	68	5.0	61.71	61.74	61.77	61.74	61.74
4	64	16.0	61.72	61.72	61.75	61.77	61.74
Veigat levalose			3.0274	3.0740	3.0446	2.9953	-
,	asbestos		3.7979	3.8540	3.2051	3.8149	-

Drying of Levulose Solution in the Spencer oven.

At the drying temperature of $66^{\circ} \mathrm{C}$. drying appeared to be complete in about 4 hours, and there was little change after 16 hours from the figure reached in 5 hours. The dishes which had a degree or two higher temperature were highest in apparent per cent water. At $53^{\circ} \mathrm{C}$. the temperature appears to be too low for the levulose to part with its last traces of water.

Examination of the residues left in the capsules indicated that the solution remained in the top half of the asbestos absorbent, leaving the bottom part of the packing unused-i.e., about 3 gms. of the levulose was absorbed in about 3 gms . of the asbestos. At $90-95^{\circ} \because$. there was a distinct odour of burnt sagar in the air ; this is too high a temperature.

At a temperature of 82.5°. the correct result was obtained in 90 minutes, while at $83.7^{\circ} \mathrm{C}$. the correct result was exceeded in 65 minutes. It seems probable that it is not wise to dry a sensitive sugar like levulose above $75^{\circ} \mathrm{C}$. in the Spencer oven. Temperatures :- The spencer Oven was fitted with four thermometers and temperatures taken during the final experiment : some specimen results are here shown :-

At stert	
Oven empty	Temperatures

Thermometer Number | 87.5 | $\frac{1}{81.5}$ | 80.5 | 81 | 81 | 81 | 8 | 8 | 8 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 87.0 | 82.0 | 80.5 | 81 | 81 | 81 | 82 | 82 | | |
| 87.0 | 82.0 | 81.0 | 81 | 82 | 82 | 83 | 83 | | |
| 85.0 | 82.0 | 81.0 | 81 | 82 | 82 | 82 | 82 | | |

Drying of Levulose Solution in the Spencer Oven (continued):-

No.	Average gerap. 0 。	$\begin{aligned} & \text { Hours } \\ & \text { neating } \end{aligned}$	1.	Apparent Per Cent 7ater			
				2.	3.	4.	Average
1	85	1	61.72	61.82	61.85	61.77	61.79
2	87	2	61.83	61.86	61.88	61.85	61.86
3	89	3	61.88	61.93	61.96	61.92	61.92
Ave	age Tein	ratares	86	85	86	87	-

1	80	1.5	61.77	51.74	61.74	61.77	61.76
2	85	2.5	61.76	61.72	61.76	61.77	61.75
3	78	3.5	61.79	61.72	61.77	61.77	61.77
4	95	4.5	62.03	61.96	62.01	62.00	62.00
Average Temperatures	80	78.5	82.5	81.0	-		
1	78	20	39.86	33.95	40.19	42.87	39.22
2	82	40	59.43	54.64	59.20	61.19	58.62
3	82	60	61.51	61.46	61.51	61.54	61.51
4	34	80	61.62	61.62	61.64	61.63	61.63
5	87	120	61.67	61.68	61.72	61.69	61.69
6	85	140	61.72	61.73	61.79	61.76	61.75
7	83	160	61.73	61.73	61.77	61.75	61.75
8	88	100	61.60	61.61	61.65	61.64	61.63

SUMMAEY OF RESULTS.

Average Temperature	Time to get Approx. correct Result, Hrs.
$75-77$	7
53	14
66	3
85	1
80	1.5

Best Eesult (Levulose Solution Obtained 61.73 \% Water)
61.77 and 61.72
61.34 (followed by less).
61.71 and 61.74
61.79 (Temperature too high). 61.76

Comparison of Steam Oven and Spencer Oven for Raw sugar Moistures. These tests were made using a Barbados Raw sugar:

Spencer Oven:- Av. Temp. $70^{\circ} \mathrm{C}$., four sam les in oven at once, 5 gms. Test 1. sugar in each capsule.

Hrs. Heat -ing	1.	Apparent Per Cent Moisture			
		2.	3.	4.	Mean
1	0.70	0.69	0.72	0.71	0.71
2	0.75	0.69	0.72	0.72	0.72
3	0.74	0.70	0.70	0.72	0.72
4	0.72	0.71	0.73	0.70	0.72

Test 2a:- Started with four capsules at $73^{\circ} \mathrm{C}$., and removed one

His. Heat -ing	社。 Teinp. ${ }^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Vessels } \\ & \text { in } \\ & \text { Oven } \end{aligned}$	Apparent Per cent water	Test 3 :- Same sugar in Steamoven at $99^{\circ} \mathrm{C}$.			
$2 \mathrm{a} \cdot 0.5$	-	4	0.69		Gms. Taken \qquad	Hours	Apparent Per Cent Water
1.0	77	3	0.69	1.		5	0.80
1.5	77	2	0.73	2.	10	5	0.82
2.0	78	1	0.73	3.	5	2	0.83
${ }^{2 b} \cdot 0.5$	88	4	0.75	4.	5	4	0.91
1.0	88	3	0.77			2	0.80
1.5	91	2	0.75			4	0.87
2.0	95	1	0.71				

The effect of temperature, and the effect of the number of samples in the oven at one time are clearly seen from these tests.

Determination of Moisture in different sizes of crystals in various Raw Sugars in the Spencer Oven.

Source of Sugar	Colour	Per Cent Retained on Mesh				
		10	20	30	40	50
1.San Domingo	Dark	1.54	83.41	14.79	0.24	0.02
2." "	Light	5.72	89.72	4.56	-	-
3."	Medium	0.01	65.57	32.90	1.42	0.10
4.Natal	-	0.23	53.53	45.35	-	-

RESULTS:

Sugar	Temperatures ${ }^{\circ} \mathrm{C}$.			${ }^{\circ} \mathrm{C}$. Temp. Range	Per Cent Moisture			
	Start	Middle	End		Normal	Porti	ion Ret	ined on
					Sugar	10	$\underline{20}$	30 mesh
1.	88	87	90	85-90.5	0.034	-	0.024	0.034
2.	85	87	89	85-89	0.041	0.059	0.040	0.026
3	87	88	90	87-90.5	0.039	-	0.042	0.041
4.	85	87	89	85-89	0.027	-	0.025	0.024

The tests here recorded were carried out to see if there was any marked difference with small crystals where the surface of the molasses film on the crystals would be necessarily less in area, and where in consequence less water might be expected to be present The most notable difference is on 30 mesh with No. 2 sugar, but this result is in direct contradiction to the result expected. In any case the differences are not significantly great.

IN CUBAR TAM CAME SUGAR.

Rive grars of the sugar were taken for each test and the time factor was varicd for temperatures of 110,115 , and $120^{\circ} \mathrm{C}$. Eeducing eugars were estimated by the Lane and fynon method, and a control test was run in the stem and vacuum ovens.

No.	Temp. of Heating	rime of Heating Hinutes.	Reducing Sugars $\%$	Apparent Moisture 8	Decrease in Reducing Sugars \%
1	120	40	1.02	1.72	0.22
2	"	35	1.08	1.67	0.16
3	"	30	1.13	1.02	0.11
4	1	25	1.17	1.57	0.07
5	"	20	1.20	1.52	0.04
6	"	15	1.22	1.47	0.02
7	"	10	1.22	1.44	0.02
8	115	40	1.03	1.69	0.16
9	"	35	1.13	1.64	0.11
10	"	30	1.16	1.58	0.08
11	"	25	1.19	1.52	0.05
12	"	20	1.21	1.46	0.03
13	"	15	1.22	1.41	0.02
14	"	10	1.22	1.41	0.02
15	110	40	1.11	1.52	0.13
16	"	35	1.14	1.50	0.10
17	"	30	1.17	1.49	0.07
18	"	25	1.19	1.48	0.05
19	"	20	1.21	1.47	0.03
20	"	15	1.22	1.46	0.02
21	"	10.	1.23	1.44	0.01

QVEN			$\frac{\text { RHUNCINO }}{\frac{\text { EUGARS }}{2}}$	
Ohigival SUGAR	---	--0	1.24	---
Vacuum	60	4	1.24	1.40
*	70	4	1.24	1.48
Steam	98	4	1.16	1.49

CONCLUSLOQ :- This work shows that heating ebove $115^{\circ} \mathrm{C}$. for over 20 minutes causes higher apparent moisture percentage to be recorded when using the Spencer oven system. There is at the same time a progressive dectease in the reducing sugar content.

It does not seem that there is appreciable inversion of sucrose under these conditions ; in fact, sucrose is probably stable in normal circumstances at this temperature anless the medium is of low pH value.

The Spencer oven cannot be regarded as an accurate means of determining water in thermally-sensitive substances, but it will yield comparable results for routine testinf when the oven is carefully controlled and standardised.The apparent increase in moisture in a saw war would be reflected as an increase in the Safety Factor of the sugar (S.F. - $\frac{\text { Hoisture }}{100-\text { Poln. }}$), where the maximum allowable ratio is 0.33 . The Factor would appear fictitiously high. Not much harm would result as a carefully watched sugar of apparently high safety factor would in reality be quite safe.

THEDRILA OR SUGAKS UNDSH VAUUUK

A NOTE OH THE SHKDA DKYINU OVEM

G. R. Sbibia (Sugar, Aug. 1943, p. 19) has described a simple and inexpensive oven for determining roisture in sugars.

It is a combination of the Spencex oven method of drying in a current of heated air and the official vacuum oven methed.

A thermostatically controlled electric drying oven supplies the heated air at the temperature required. The circulation of air within the oven is arranged so that it passes over the heating elements, the thermometer and the thermostat, and thence goes through the sugar sample contained in a perforated capsule. The cassule is itself placed in an airtignt chamber with an easily removable cover. A manometer connection is provided and the rate of flow of air can be regulated from outside to give the desired pressure. It is possible to dry 10 gram samples of sugar in 30 minutes at $75^{\circ} \mathrm{C}$. with a vacuum of $25^{\prime \prime}$ after which the loss is less than 1 mgm . per hour. At higher vacua, lower temperatures can be used and the operation is completed in very much less time than that prescribed in the official methods.

Figure 58 a.

SETTION 5.

MTHODS OP AKALYSIS.

Part 11 : The Determination of Water by Desiccation Methods.

Introduction :

The Drying Agent :
Discussion of Factors influencing the Methodz
Experimental :
Summary of Results.

The Determination of Water by Lesiccation :- Introduction:glyer Iyle, (Wheholory Ror sugar Refinery wordery", ohoman and
 that fally ostimetion of weter cocounte for our unknomn loss, but the rect remeins that the octimebton of weter in ravergars, molanos, end golden gymp it ons of the parte of our andysis in which te can put leat faths and is the one ectimation that can put an our lose figures chtiroly wrong."

Therepo a netural tonconoy in most experimental mork on sugar moisture determination to toet the complex substance being invent-ifoted-e.e. solden nymp, starch, or elucose syrup, although ite true water content is not and onmot be directy knom.
on the other hend it is difficult, if not imposoible to prepre e gymbetic material which vill contain all the constituente of the netural material in their correct ratios.

The chief problem with mont methods of determining water in in knowing when to otop - thas in - the tine at phich the percentage rocorded is the true dmont of weter present in the sample under teat.

A further dificulty ithot dieserent methods uned for the estimation do not uwally give comprable results, for instance, one method may eive both the mechanical' and the combined water, while another method may give only the 'mechanical' veter.

The invortance of adecuate and correct sampling must also be omphasised : no analyeis can be any better than the sample.
Q. B. Horison (1920) staters that the methot of Factum deciecation
 whop beorbe this beinc due principally to the direioulty of Whintaning conebent prefcure in the desicoator ane constant composition in the drying acent. He also noted that these tests wo time conaminge war reanire onresul attention. asger and sullivan (1924) do not consider this metnod any more cocurste than other nethods, manly becaume of the uracertininty of caciag the exact and-polnt of the estimation. They found that Rlour itself is a good desiecating agent when tiry, and will then aboct wator from many reagents used for orying. In adation, perticlee of flour aro often lost whie evacuating the deciccator. Whoghorus pentoxide was found to give lower final results than कutvouric acid outhg to the imporvious glaze mich soon forms on the mufceo of the solid reagent.

Colown and Enicer (1035) thke the contrary view thet this methot can reasonebly be assumed to reprecent more nearly the true water contont of a material than realts w any other method largely on account of the absence of hoatine. De Whalloy" victe have alreary ben mentioned in this connection.
Rice (1927) states that desiocation at roon temperature will remove Wetor of cryetalligation from some but not from all subetances 15kely to ocour in final sugar syrups. Such gyrupg reached constant weigh in to houre in a Hompel deciccator with sulphuric acid at

Pigure 59.

17igure 60.

DESICCATION AT ROOD TEMPERATURE -

THE DRYING AGENT

Yoe (Chem News, $130,340,1925$) stated :- A satisfactory desiccating agent should have the qualities of high capacity and high activity, and should show little change in efficiency with change of temperature. It should be capable of easy and repeated re-activation and be cheap and obtainable in large amounts.

Other desirable qualities include absence of channelling through use, absence of volume change through water absorption, freedom from stickiness, and non-reactivity with the substance being dried. Booth and McIntyre (I.E.C., Anal. Ed., p. 12, 1330) pointed out that the use of desiccators in the analytical laboratory is frequently faulty, and often led the chemist to form erroneous ideas in recsard to its efficiency - In view of the moisture always inadvertently admitted, no matter how papidly the desiccator is opened and closed, it is useless to use a desiccant of the highest drying power such as $\mathrm{P}_{2} \mathrm{O}_{5}$, since the object cooling in the desiccator will ordinarizy be removed for weighing before the space can be dried completely...... Generally the air in the laboratory is nearly satuxated with moisture.....

The anthors considered sulphuric acid to be satisfactory, apart from the daregor of spilling, for use in ordinary anulytical work, and advocated hydroxide-free calcium chloride as a neutral desiccant. Bower (Bur. Stands. J1. Res., 12, 241,1904) studied the comparative eficiencies of virious dehydrating agents used for drying gases. His results chow tho various dehydrating efficiencies to fall into
four groups, in which the agents are arranged in order of efficioncy (most efficient first). The group headings show the mgms. water left per litre of ait after drying at $30.5^{\circ} 6$. With the desiccants mentioned :-

GROUP 1 :- Residual water 0.00065 to 0.005 mgms. Barium Oxide : Anhydrous Magnesium Perchlorate : Calcium Oxide : Calcium Sulphate.

GROUP 2:-Residual water 0.01 to 0.02 mgas. Potassium Hydroxide (sticks).

Grout 3 :- Residual water 0.02 to 0.05 mgms.
Silica Gel : Magnesium Perchlorate trihydrate.
GROUP 4 :- Residual water 0.1 to 0.3 mgms.
Calcium chloride (anhydride) : Sodium Hydroxide (sticks) :
Barium Perchlorate (anhydrous) : Zinc Chloride (sticks) : Colcium chloride (technical anhydrous) : Calcium chloride (grandlar) : Copper Sulphate (anhydrous).

It is clear that the only real dehydrating agents are to be found in the fl rst three groups, those in group four being more correctly called dehumidifiers. The efficiency of calcium oxide will be greatly reduced if it contains even small amounts of silicates or aluminates which glaze its surface during the burning. THE MODE OF ACTION OF DESTCCATING AGENTS.
The removal of water from a system by a drying agent is generally accomplished either by fixation of the water by chemical resation with the agent, or by removal of the water by physical surface adsorption. Some drying agents combine these two mechanisms, drying
both by chemical combination and by contact adsorption. When new chemical compounds are formed the capacity of the drying agent for water is dependent upon the number of co-ordinate valencies which come into play.

Drying agents which react through primary valence bonds include $\mathrm{P}_{8} \mathrm{O}_{5}$ and metallic sodium or potassium. With $\mathrm{P}_{2} \mathrm{O}_{5}$ metaphosphoric acid HPO_{3} is formed as a first product of the reaction with water, and finally orthophosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$. This type of reagent forms the largest group. The primary valence type shows the greatest number of perfect drying efficiencies, but as a rule they are not regenerative, and while exceedingly fast have often low capacity. The physical and chemical properties of the product are often undesirable in this class also. Bower (loc.cit.) divtdes drying agents into five classes with efficiencies depending upon physical and chemical reactions of the following types :-

Class I :- $\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{y}+\mathrm{XH}_{8} \mathrm{O}=\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{x}+\mathrm{y}($ solid $)$: example:-
Calcium chloride monohydrate
$\mathrm{CaCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
Class $2:-A(s o l i d)+H_{2} O=$ Saturated solution, e.g., common salt.
Glass 3 :- A(liquid) $+\mathrm{H}_{\mathbf{2}} \mathrm{O}=$ Solution, e.g., Sulphuric acid.
Class 4 :- Adsorption drying agents, e.g., Silica-gel.
Class $5:-M+\left(H_{2} O\right) x \quad=M(O H) x+x / 2 H_{2}$, where $M=$ metal : Examples :- metals and metal alloys such as the alkali and alkaline metals and their amalgams.
Thus class 1 gives solid reaction products, class 2 gives saturated solutions, class 3 gives solutions of low vapour pressure, class 4
hold water by capillary attraction, and class 5 absorb water through its decomposition to form hydrogen.

CO-ORDINATION DEYING AGENTS AND PRIMARY VALENCY REACTANTS.
Drying agents which form new chemical compounds in removing water from a system can be classified by the Werner system of co-ordination types. The co-ordination numbers are usually 2,4, or 6,1 : 3 and 5 are less common.

The water molecules and the parent substance are joined by secondary valence bonds, and the combination is generally less intense as the number involved decreases.

The capacity of reagents of this type for water is dopendent upon the number of co-ordinate valencies at work. Thes desiccants are usually less efficient than the primary valence reactants. Fhosphorus pentoxide and the alkall metals are examples of the primary Valence type of desiccant, and anhydrous magnosium perchlorate is the most efficient of the co-ordinate valence desiccants. INTMASIV: DEYIMG.

The principal investigations of water catalysis due to Baker, (J.C.S.,01,1862,1907 : 101,2239,1912: 121,568,1922), involved the study of intensive drying, with a technique based on heating glass apparatus nearly to fusion in a vacurm, and the use of $P_{8} O_{5}$ as drying agent over a period of several years. Many attacks have been made on Baker's results, with which we are not concerned here, but the experiments emphasise the difficulty of removing the last traces of water from a system. Smits has given a theory of dynamic allotropy, where water catalyses the changes between two molecular species in the undried liauid.

Solutions of sucrose, glucose, and levulose were dried at room temperature, (a) in a static atrosphere, (b) in a stirred atmosphere, using concentrated sulphuric acid as drying agent.

Celite or sand were used as dispersing and aborbing media. Similar tests were made using golden syrup, and vacuum drying was also tried wita this material, both at room temperature and within the temerature range $36-50^{\circ} \mathrm{C}$.

The moisture content of a raw sugar was estimated at room temperature with stirring: this was intended to serve as a contrast to the estimations made on solutiona as above.

A detailed description of the various factors encountered, and of the precautions found necessary, is given on the following pages.

THE DRYING OF SUGAR SOLUTIONS AT ROOR TEMPERATURE

1. Use of single desiccators :- It wes quickly found that each eample mast have a desiccator to itself. Thus, for example, with two samples in one deciccator it was found thet the first semple tasen out differed by 0.0004 gm . from the previous weighing (loss). The second sample which hed suffered exposure during the opening of the first weighing, was founc to be 0.0039 gm . heavier, a gain of nearly 4 milligram, apparently due to the double exposure. 2. 'Dished' Containers :- The 'cished aluminime conteiners used. in one series of teste were found to be unsuitable for two reasons, firgtly the uneven thickness of the sample layer caused uneven drying, and secondly there tias very poor contact with the oven surface then these dishes were used for oven drying : this also applies to the use of watch classes which are frequently recommended for moisture determinations.
2. Mixinc water uscd:- The amount of water added had to be varied to suit the nature of the absorbing medium, the nature of the sugar dried, and the amounts of the sugar and absorbing medium weiched.
3. Use of stirring :- In tects involving stirring it was found necessary to have a shield over the semple to prevent glass or rubber dust from the stirrer falling into the sample. Care wes also required to ensure that there was no blowing away of the sample as it became dry : this was nore likely to happen where celite was used as absorbent.Reguation of the stirrer speed was thus important, witil adjustrent as the motor marmed up.
4. Static charge:- In one or two tests loss vas caused by static charee induced by wiping the dishes,e.g. in one case particles of celite flew to the lid after its inner surface had been wiped. This charge must therefore be guarded ageinst by the usual precautions of micro-malysis when miping the diehes.
5. Time Iactor in weiching and manipulation:- Approsimately 15 minutes was required for the complete weighing of one sample, that is, for the weighine of dish,lid, and rod alone, then plus absorbent, and finslly with the sucar solution,or three veighings in all. It took about 5 minutes more to pipetie the mixing water and mix it with the sample.
6. Precautions with Celite :- This material, especially the analytical reacent grade, is very light and 'flupfy' and therefore liable to loss by blowing away unless care is taken. This loss is most likely when the mixing water is added. The commercial grade of celite (acid-washed) was preferred as absorbent since it was not so light. On the whole there was better agrement among the replicates when celite was absorbent than when sand was used. It is possible that the greater surface of the celite may render it more liable to absorb moisture while weighing, although no trouble was actually encountered from this in the course of this work. Static charge was much more noticeable with ignited send than with celite or pumice. 8. Advantages of Celite :- (a) No preparation is required except ignition : (b) larger surface exposed than with sand or pumice : (c) the weight is less :(d) it dries adequately at almost any ratio of celite to syrup : (e) it is almost white, hence decomposition is
 dicadvantage ie the risk of lose in air currents. 9. Amont os cucar solution or grrun to be weighed i- since 1 mgm. makes relatively a large difference in the misture content when smoll amomats of syrup are weighec, an amount equivalent to 0.5 gra solids is the nirimum which should be taken. 10. The mizing of the sample vith the absorbent using weter :Wost of the discordant results obtained in the earlier part of the worls conld be tracod to incomplete mixing of the sample with the Ebsorbent. Bnough metor must be added to ensure thorough mixture, without swaming the sample. It is possible that failure here is a frequent source of orror in the determination of total solids. MOTES ADELICABLE TO OVEN DRYIMG:-
7. Decomposition of levulose :- Levulose appears to start decomposing imediately the last trace of water has been evaporated. It is also more liable to loss by ovaporation while weighing, for instance, a loss of 1 mgm. in a rinutes was found while weighing a 39 per cent levulose solution.
8. Metal dishes ar generally more uniform than glass ones, which often have a concave base, so that there is not complete contact of the bottom of the dish with the metal of the oven.
9. The rate of evaporation depends on the rate at which heat can get to the sample, and also on the rate at which water-tapour can escape from the oven. There noy be danger however in having too good a rate of hest transfer, as the tendency to burn and decompose will be greator A plane glass dich has some advantage with heat-sensitive materials.

FIgure 62.

Figure 61

SARPLS SUEPACS EXROSD
$\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{UHFACO}_{2} \mathrm{XPOSAD}$
RETIO ABGORBMT E UGAR SOITDS

RAT 10 OT URFAOC XPOCDD
SAMPTE: DSICUAITT

Two samples in one desiccator $=$ static desiceation.

1500 ces. 2.34 sp . Err. fresh $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed in 2 cuse by kor drying (454 gms.)

Ignited celite 2.5 gms. per sample. Glass petri uishes 82 mms. diam. $x 13$ mms. deep. 52.8 sy . ams. 263.8 sg . cms. Approx. 4 : 1

Aporox. 1.: 76
Aporox. 25 mms .

Approx. $2: 5.1$

RESULIS :- The experiment was continued over nearly 33 days and there was about 0.5 per cent of water still retained in the sample (1) after that time. It is evident that the static drying of a sugar solution at room temperature is very slow.

DKYING BY DES ICCAPION OF 32.92% L TULOSE SOIUTION. CORDIIIONS.

ARGENGMENT	nwo samples in one desicoator static desicoation.
DESIOU NT	1500 ces. Presh 1.84 sp . gr. sulphuric
	acid.
ABORBING LIDIUM	Ignited celite 1.5 gms. per sanple.
DISHES	Glass petri dishes
	$82 \mathrm{mms}$. diam. $\times 13 \mathrm{mms}$. deep.
SALPT URFACA XPOSQ	$52.8 \mathrm{~s} 4 . \mathrm{cms} \mathrm{}$.
	268.8 sq. ens.
	$1 .\left(\begin{array}{c} (2) \\ 1.21 \\ (2): 1 \end{array}\right.$
To U0AR OT, ID:	Approx. $3: 1$
	Approx. 50 mms.
RATIO W,TRETO DSICOANT	Approx. $1: 316$.
	Approx. 1 : 5

In this experiment the amount of absorbent used was halved and in consequence the amount of water required for nixing was reduced from 9 ccs. to 4 ccs. The result of this test was satisfactory, and it is clear that the water to be dried out should be kept to the minimum.

Drying of 32.22% Levulose Solution as in
DI but loss witer added.
Gms. Wit. of Levulose colution tiken
Wt. of weter present
Wt. of water added
Totel gms. veter present
solids
0.4963
$1 . \frac{(1)}{2427}$
$\frac{(2)}{1.2667}$
$0.7464{ }^{.501 i d s} 0.7609$
$4.0000 \quad 4.0000$
4.7464
4.7609

No.	Drying Time Hours	water fost gms.		$\begin{aligned} & \text { Water Ieft } \\ & \text { gns. } \end{aligned}$				Difíerence from known total solids	
		III	(2)	(II	T21	- (I)	T2I	(I)	[2]
1	19	2.2645	2.2933	2.4819	2.4676	-	-	-	-
2	92	4.7407	4.7542	0.0057	0.0067	$\begin{aligned} & 59.58 \\ & 40.42 \end{aligned}$	$\begin{aligned} & 59.54 \\ & 40.46 \end{aligned}$	$+0.50$	+0.54
3	11.9	4.7430	4.7549	0.0034	0.0060	59.80 40.20	$\begin{aligned} & 59.60 \\ & 40.40 \end{aligned}$	+0.28	+0.48
4	141	4.7435	4.7575	0.0029	0.0034	59.84 40.16	$\begin{aligned} & 59: 80 \\ & 40.20 \end{aligned}$	+0.24	+0.23
5	165	4.7443	4.7583	0.0021	0.0026	$\begin{aligned} & 59.91 \\ & 40.09 \end{aligned}$	$\begin{aligned} & 59.07 \\ & 40.03 \end{aligned}$	+0.17	+0.11
6	191	4.7450	4.7590	0.0014	0.0019	$\begin{aligned} & 59.96 \\ & 40.04 \end{aligned}$	$\begin{aligned} & 59.91 \\ & 40.09 \end{aligned}$	+0.12	+0.47
7	287	4.7458	4.7534	0.0006	0.0025	$\begin{aligned} & 60.03 \\ & 39.97 \end{aligned}$	$\begin{aligned} & 59.37 \\ & 40.13 \end{aligned}$	+0.05	$+0.21$
8	312	discarde	4.7545	-	0.0064	-	$\begin{aligned} & 59.57 \\ & 40.43 \end{aligned}$	-	+0.51
9	429	-	4.7632	-	0.0023	-	$\begin{aligned} & 60.24 \\ & 39.76 \end{aligned}$	-	-016
10	500	-	4.7613	-	0.0004	-	$\begin{aligned} & 60.10 \\ & 39.90 \end{aligned}$	-	-0.02

DRYING BY DTSICOATION OF 40.255% UCBOSA $O O I U Y I O H$. GONDITIONS.

ARRANG CHOMP

DSEICCANT
$\triangle B: D O K B I N G$ MEDIUA

DISH2S

AMPT URTACS EXPOSED
$\mathrm{H}_{2} \mathrm{OO}_{4} \mathrm{SURFACE} \mathrm{EXPO} \mathrm{SD}$

Two samples in one desiocetor static desiccation.

750 cos. fresin 1.84 sp.gr. sulphuric Acid.

Ignited celite 2.5 gms. per sample. Dished aluminium capsules 72 mos. diam. x 18 mms. deep. $40.7 \mathrm{sy} . \mathrm{cms}$.
$188.7 \mathrm{sq} . \mathrm{cms}$.

DISMANCE SAMPIS YO DESICUANT ADPTOX. 50 mos.

BATIO WATER MO DBICCANT

Rar 10 OF URFAO $X X P G$ SID SAMPLE:DBSIUCANT
(1)
approx. 1:157
$1: 154$

In this experiment, the drying of a sucrose solution at room temperature was found to be extremely slow. After 36 days there was 0.545 gm . of water left in one sample; while the other had come very near to the known water content in about 19 days. This difference seems to be caused by variation in the thoroughness of mixing.

Drying by Desicection of 40.255% uarose solution. Gms. ucrose so lution Taken
t. of Water Present
Wt. of Water adued
potel gms. ater Present.

50lids	. .3080	$301 i d s$	1.4140
0.5250	0.7830	0.5580	0.8568
	4.0000		4.0000
	4.7830		4.3568

No.	Dry ing Time Hours	ater Tost gms.		heter Left gms.		\% Watar and $\%$ Potal colids		Difference from known totel solids	
		TIT	(2)	TIT	(2)	(I)	(2)	(1)	(2)
1	68	3.8217	4.3450	0.9613	0.3118	-	38.52 61.48	-	-
2	95	4.7657	4.3200	0.0173	0.0368	58.56 41.44	$\begin{aligned} & 57.95 \\ & 42.05 \end{aligned}$	$+1.285$	+1.895
3	118	4.7740	4.8255	0.0090	0.0313	59.13 40.81	58.35 41.65	$+0.655$	+1.495
4	14.1	4.7750	4.8295	0.0030	0.0273	59.27 40.73	$\begin{aligned} & 53.64 \\ & 41.36 \end{aligned}$	+0.575	$+1.205$
5	168	4.7755	4.8305	0.0075	0.0263	$\begin{aligned} & 59.30 \\ & 40.70 \end{aligned}$	58.70 41.30	+0.545	$+1.145$
6	264	4.7788	4.8315	0.0042	0.0253	59.55 40.45	$\begin{aligned} & 58.78 \\ & 41.22 \end{aligned}$	+0.295	$+1.065$
7	239	4.7788	4.8305	0.0042	0.0263	59.55 40.45	$\begin{aligned} & 58.70 \\ & 41.30 \end{aligned}$	+0.295	$+1.145$
8	308	4.7800	4.8325	0.0030	0.0243	59.64 40.36	58.84 41.16	+0.205	+1.005
9	381	Both tr 4.7780	ansferre 4.8358	to Des	ceator	$\begin{aligned} & \text { ith fr } \\ & 59.50 \\ & 40.50 \end{aligned}$	sh KOH 58.92 41.08	$+0.345$	+0.925
10	451	4.7840	4.8355	0.0010	0.0213	$\begin{aligned} & 59.95 \\ & 40.05 \end{aligned}$	$\begin{aligned} & 59.06 \\ & 40.94 \end{aligned}$	+0.105	+0.785
11	475	-	4.8372	-	0.0196	-	$\begin{aligned} & 59.17 \\ & 40.83 \end{aligned}$		+0.67!

heSULis (continued).

No.	$\begin{aligned} & \text { Drying } \\ & \text { Time } \\ & \text { Hours } \end{aligned}$			$\begin{array}{r} \text { Vबter } \\ \text { gras } \end{array}$	art	$\left[\begin{array}{c} \text { Wut } \\ \% \text { Tot } \\ \% 101 \end{array}\right.$	$\begin{aligned} & \text { und } \\ & \frac{1}{d} \\ & \hline \end{aligned}$	Difue from totel	no e own olids
		(I)	(2)	(I)	(द)	(1)	(2)	(1)	$\frac{12}{}$
12	549	-	4.8365	-	0.0203	-	59.13 40.87	-	+0.715
13	611	-	4.3382	-	0.0186	-	$\begin{aligned} & 59.24 \\ & 40.76 \end{aligned}$	-	*0.605
14	635	-	4.8390	-	0.0178	-	$\begin{aligned} & 59.30 \\ & 40.70 \end{aligned}$	-	+0.545
15	710	-	4.8407	-	0.0161	-	$\begin{aligned} & 59.53 \\ & 40.47 \end{aligned}$	-	+0.315
16	755	-	4.8395	-	0.0173	-	$\begin{aligned} & 59.34 \\ & 40.66 \end{aligned}$	-	+0.505
17	778	-	4.8400	-	0.0168	-	$\begin{aligned} & 59.37 \\ & 40.63 \end{aligned}$	-	+0.475
18	850	-	4.8400	-	0.0168	-	$\begin{aligned} & 59.37 \\ & 40.63 \end{aligned}$	-	+0.475
19	870	-	4.8390	-	0.0178	-	$\begin{aligned} & 59.30 \\ & 40.70 \end{aligned}$	-	+0.545

In these experiments there was loss by blowing away of the Celite in the six current caused by the fan in the desiccator, and the tests were abandoned.

This is obviously a danger when a process of dynamic absorption is adopted, and the rate of stirring must therefore be carefully regulated.

Experiment 14 -

DEXING BY DESICOATION

CONDTYTUSE.

 desiocators.

DhGICCALT: :- Sulphuric acid, 1.84 sp . gr., 750 ccs . fresk acid per desiccator
 Rativ of aboubmit to sugat come a1.11: 1 1.1 : 1

 1 : 156

$$
1: 2.8 \quad 1: 3.6
$$

The samples were finally transferred to desiccators each containing 1 lb. of fresh KOH pellets.
 SULUTLINA.

					(1)				
Gms. Glucose solution taken Weight of water present, gins.					1.3505		1.3585		
					$\begin{aligned} & 0.8081 \\ & 0.5424 \end{aligned}$		$\begin{aligned} & 0.8129 \\ & 0.5456 \end{aligned}$		
Weight of water added, gms. Total gras. water present					4.0000 4.8081		$\begin{aligned} & 4.0000 \\ & 4.81 .2 \theta \end{aligned}$		
No.	$\begin{aligned} & \text { Dryin } \\ & \text { Time } \end{aligned}$	Water left Gms.		Per cent water		$\begin{gathered} \text { per cent } \\ \text { solids } \end{gathered}$	Difference from known solids		
	Hours		(2)		(2)	(1)	(2)	(1)	(a)
1.	21	1.3790	1.0486						
2.	43	0.0236	0.0197	58.09	58.39	41.91	41.61	+1.76	+1.45
3.	68	0.0123	0.0125	58.92	58.92	41.08	41.08	+0.84	+0.84
4.	94	0.0101	0.0112	59.09	59.02	40.31	40.98	+0.75	+0.82
5.	191	0.0081	0.0094	59.24	57.16	40.76	40.84	+0.60	+0.68
6.	216	0.0084	0.0089	59.21	59.20	40.79	40.80	+0.63	+0.64
7.	235	0.0071	0.0382	59.30	59.26	40.70	40.74	+0.54	+0.58
	Tran	ferred	o fresh	Soh des	cators	:			
8.	307	0.0076	0.0137	59.28	58.83	40.72	41.17	+10.56	+1.01
9.	377	0.0071	0.0096	59.30	59.14	40.70	40.86	+0.54	+0.70
10.	403	0.0056	0.0123	59.43	58.93	40.57	41.07	+0.41	+0.91
11.	475	0.0055	0.0089	59.43	59.20	40.67	40.80	+0.41	+0.64
12.	547	0.0106	0.0079	59.06	59.67	40.94	40.73	+0.78	+0.57
3.	569	0.0051	0.0071	59.46	59.32	40.54	40.68	+0.38	+0.52
14.	644	0.0051	0.0072	59.46	59.32	40.54	40.68	+0.38	+0.52

In this experiment there was a mariced increase in water content When the samples were transferred to the fresh desiccators ; the known amount of water was not reached in either duplicate. The test extended over nearly 27 days.

ARhNGEMAT :- One dish in Desicoator, above desiccant:
DESICCANI:- Sulphurio acid. $750 \mathrm{cos} ., 1.84 \mathrm{sp} . \mathrm{gr}$:

DISI:- Olass Petri dish; 92.mm. diam. by 12 ma . deep :
Detconiof $:=15.5 \mathrm{~cm}$. dian. Done type : sample 25 m. from desiccant:

 1.e. approx. 1 to 3 :

RATIO GTEATO SULPHUEOACID:- approx. 1 to 175:

Levulose solution taken, gmase: 1.3303 containing 0.7993 gm, water and 0.5310 mm . solids : 3.5 gras . water added,macing 4.2393 gas.total

RESULRS

No,	$\begin{aligned} & \text { Drying } \\ & \text { Time } \\ & \text { Hours } \end{aligned}$	Vater lost gins.	water left gms.	Per cent water	per cent Total Solids	Difference froin known Total Solids
$\underline{1}$	4	1.6435	2.6558	---	---	---
2	25	4.2835	0.0158	57.55	42.45	$+2.53$
3	23	4.2910	0.0083	59.46	40.54	+0.68
4	123	4.2965	0.0028	59.87	40.13	+0.21
5	148	4.2965	0.0026	59.87	40.13	$+0.21$
6	167	4.2988	0.0005	60.03	39.97	+0.05
7	192	4.2975	0.0018	59.95	40.05	+0.13

In this test the use of vacuum brought a result which was very near the known amount of water present : a week was required.

AhaNondint :- See Figures 59 and 62 : fan in desiccator :
DRSICCALII: Sulphuric acid: 750 ccs., 1.84 sp. gr.;

DISi := Glass Petri dish ; 9i m. diam. by 12 mm . deep :

 cm., i.e. approx. 1 to 3 :

 EAN: Approx. 50 ma. from sample : $270 \mathrm{r} . \mathrm{p}$.

Levul se solution taken, gms. $=1.3363$ containing 0.8029 gat water and 0.5334 gra. solids : 3.5 gms. water ad ed, making 4.3029 gns. total water.

RESULTS						
No.	Drying Time Hours	water lost gns.	Water left gms.	Per cent Water	$\begin{aligned} & \text { Per cent } \\ & \text { Total } \\ & \text { Solids } \end{aligned}$	Difference from known Totel Solids
1	155 rains	3.8471 (89.4%)	0.4558	25.96	74.04	---
2	94.5 hr	3.4.2967	0.0062	59.61	40.39	$+0.47$
3	118.5 "	4.2971	0.0058	59.65	40.35	+0.43
4	Transfer 166	red to see 4.2998	ond desi	tor : ${ }_{59}{ }^{\text {P20 }}$	without	$\begin{array}{r} \text { irring : } \\ +0.26 \end{array}$
5	308	4.3013	0.0016	59.95	40.05	$+0.13$
6	332	4.3025	0.0004	60.10	39.90	-0.02

Note the rapid removal of 89.4 per cent of the total water present (in 155 minutes), due to the stirring of the desiccator air.
 OF LEVULOSE WITHSTIRKINU OF TIE DESICCATOFAIR. AMANGE MENT:- See Figures 59 and 62 : fan in desiccator : DESICCAWI :- Fresh sulphuric acid $: 750 \mathrm{ccs}$: 1.84 sp.gr. :

 GATIO SAMPLE SURFACE TO SULPHURIC SUKPACK :- $52.8 \mathrm{sq} . \mathrm{cm}$. to 188.7 sq . cra., i.e. approx 3.6 to 1 of sample :

RATIU SAND TO SUGAK TOTAL SOLINS: $=16.85$ to 1 :
KATIU WATEF TO SULPRUELUACID: $=$ approx. 1 to 268 : sample 25 mm . from desiccant :
EAN:- approx 50 mm . from sample ; $2 \% 0$.p.m.

Levulose solution takene gms. :- 1.3383 gms . containing 0.8041 gm.
water and 0.5342 gm, solids $: 2.0 \mathrm{gms}$. water added, aking 2.8041 gns.

No.	Time Hours	Water lost,gms	Water left,gms	RESULTS.		Difference	Per cent water removed	
				Per cent Water	Per cent Solids			
1.	1	1.6998	1.1043	---			60.61	60.61
2.	2	2.5198	0.2843	39.02	60.98	$+21.06$	89.86	29.25
3.	3	2.7373	0.0668	55.09	44.91	+ 4.99	97.16	7.30
4.	4	2.7525	0.0516	56.22	43.78	+3.86	98.17	1.01
E.	5	2.7578	0.0463	56.62	43.38	+3.46	98.58	0.41
6.	72	2.7798	0.0243	58.25	41.75	+1.83	---	---
7.	96	2.7838	0.0203	58.56	41.44	+1.52	---	
8.	118	2.7865	0.0176	58.76	41.24	+1.32	---	---
9.	144	2.7873	0.0168	58.83	41.17	+1.25	---	
10.	218	2.7889	0.0152	58.93	41.07	+1.15	---	
11.	240	2.7943	0.0098	59.34	40.66	+0.74	---	
12.	262	2.7950	0.0081	59.40	40.60	+0.68	---	
13.	334	2.7955	0.0086	59.44	40.56	+0.64	---	
14.	379	2.7958	0.0083	59.46	40.54	+0.62		
15.	527	2.7926	0.0115	59.21	40.79	$+0.87$	---	
16.	599	2.7926	0.0115	59.21	40.79	$+0.87$		
17.	692	2.7930	0.0111	59.26	40.74	+0.82		
18.	788	2.7933	0.0108	59.28	40.72	+0.80	---	
19.	2423	2.7958	0.0083	59.46	40.54	+0.62	---	

The difference column shows the difference from the known total solids.

EXPERIMEN D9: L $=$ DKYING BY DESICCATION OF A 39.92 PEF CENT SOLUTION OF LEVULOSE WITISTIHRING OF THE DESICCATOR AIR.

Ahugedent :- See Figures 59 and 62 : fan in desiccator:
DESICCAXT: : Sulphuric acid, once used : 750 ccs. : $1.84 \mathrm{sp} . \mathrm{gr} .:$
 DISH:= Glass Petri dish : 92 man. diam. by la man. deep:

RATIO GAKPLE EUKFACETO SULPLURIC SUKRACE : -66.48 sq . cas. to 188.7 sq . cm., i.e., approx. 1 to 3 :

MATIO UELTM TO GUGAK TOTAL SULEOS: 2.78 to $1:$
RA'IO WaqER 10 SULPHUKIC ACID:- approx. 1 to 178 : sample 25 mm . from desiccant : EAN:- approx. 50 mm . from sample : 200 r.p.m.

Levulose solution taken :- 1.3467 gms , containing 0.8089 gm. water, and 0.5378 gm. solids : 3.5 gras. water added, making 4.3089 gms. total water

No. Drying					
Time Hours	Water lost gms.	Water left gms.	Per cent Water	Per cent Total Solids	Difference from known Total Solids
1	4.5	4.3007	0.0082	59.44	40.56
2	26.0	4.3069	0.0020	59.89	40.11
3	26.0	4.3059	0.0030	59.82	40.18
$4,46.5$	4.3069	0.0020	59.89	40.11	+0.64

The results of experiments $D 8$ and $D 9$ show that there is a great acce eration of the rate of removal of water from the samples by the stirring of the desiccator air. There is risk in this stirring that the light Celite may be blown from the dish ; for thesreason the spedd of the fan was reduced to 200 r.p.m. from 270 r.p.m.

 OF GLUCOSE WITE STIRELNO OR DESICCATOF AIK. GUdidide :- Stirring of desiccator air for the first 7 hours only : fan in desiccator as in Figures 59 and 64 :DESIGCANT: Fresh sulphuric acid : 750 ccs : : $1.84 \mathrm{sp} . \mathrm{gr}$. : ASSORBING MELUAK: Ignited Celite : 1.5 gms. :
DIEAi : Glass Petri dish : 82 mm . diara. by 13 mra . deep:
 cin., i.e., approx. I to 3.6 ;

RATIO CELTTE TO SUGAF TORAL SULIDS: -2.84 to 1 :
RASIO WALES TO SULPUMICAOID : $=$ approx. 2 to 175 : sample 25 ma. from PAN:- approx. 50 mra . from sample : 20 rep . m .

Glucose solution :- 1.3285 gms. taken, containing 0.7948 gm. water and 0.5337 gm . solids : 3.5 gms. water added, making 4.2948 gms . total water

No.	$\begin{aligned} & \text { Drying } \\ & \text { Tine } \\ & \text { Hours } \end{aligned}$	Water lost gms.	Hiculis		$\begin{aligned} & \text { per cent } \\ & \text { Total } \\ & \text { Solids } \\ & \hline \end{aligned}$	Difference from known Total Solids
			Water reft gms.	per cent Water		
1	7	2.1760	2.1188	--	---	---
2	22	4.2800	0.0148	58.70	41.30	$+1.144$
3	48	4.2855	0.0093	59.13	40.87	+0.714
4	71	4.2825	0.0123	58.89	41.11	+0.954
5	146	4.2855	0.0093	69.13	40.87	+0.714
6	191	4.2860	0.0088	59.16	40.84	+0.684
7	315	4.2873	0.0075	59.27	40.73	+0.574
8	387	4.2880	0.0068	59.30	40.70	+0.544
9	481	4.2866	0.0082	59.20	40.80	+0.644
10	577	4.2878	0.0070	59.29	40.71	+0.554
11	2012	4.2873	0.0075	59.27	40.73	+0.574

It is clear from the above results that there is a very slow interchange of water between the sample and the desiccant in the latter stages of drying . This sample did not dry down to its expected total solids.

 Far in desiccator as in Figures 59 and 62 :
LeSicchil: : Fresh sulphuric acid : 760 cos. : 1.84 sp . gr. :

—ICH:-G1ass Retri dish: 92 man. diam. by 12 ma . deep:
 sq. cm., i.e., approx. 1 to 3 :

 from desiccant.
SLCOW LSSICASOR: The samples were transferred to a Kof desiccator containing 500 gas. fresh Koh pellets after 5 hours :

Ehe :- approx 50 man . from sample : 140 r.p.m.

Glucose Solation := 1.2968 gms. taken, containing 0.7760 gm , water and 0.5208 gm . solids: 3.5 gm . water edded making 4.2760 gm . total water.

			- 2.8015			
No.	Drying Time Iours	Water lost gMe.	water left cins.	Per cent Water	$\begin{aligned} & \text { Per cent } \\ & \text { Total } \\ & \text { Solias } \\ & \hline \end{aligned}$	Difference from known Totad Solids
1	5	4.2576	0.0185	58.41	41.53	$+1.434$
2	25	4.2611	0.0149	58.69	41.31	+1.154
3	48	4.2630	0.0130	68.83	41.17	+1.014
4	123	4.2642	0.0118	58.92	41.08	+0.924
5	168	4.2652	0.0108	69.00	41.00	+0.844
6	195	4.2605	0.0155	58.64	41.36	+1.204
7	289	4.2640	0.0120	58.91	41.09	+0.934
8	361	4.2552	0.0105	59.00	42:00	+0.874
9	455	4.2655	0.0095	59.03	40.97	+0.844
10	551	4.2665	0.0095	59.10	40.90	+0.744
11	2187	4.2695	0.0065	59.33	40.67	+0. $\$ 14$

In this experiment there was considerable regaining of weight
after some of the time periois.
 - LOISTUFHE IN A BHITSH WEST INDIAN RAW SUGAR. A A DESICCANT:- Fresh sulphuric acid : 750 ccs : $1.84 \mathrm{sp} . \mathrm{gr}$. VISH: Glass Petri dishes :Diameter, man. Depth, man.

No. (1) | 92 |
| ---: |
| 12 |

SnMPW CUKPACE EXPOSTED:- Sq. cm .
66.48

SULPAUEIC SULTACE EXPOSED: -"
188.7

KATIO OE SURFACR EXPOSED
SAMPLTODESICCANT:-
KATOWATERTU DESICCANT it
1: 3
$1: 1316$
EAY :- 50 mn . from sample:- r.p.m. 140 DISTANCE EAMPLP TO DESICUANT:- approx. 25 mm .

No. (2)
82
13
52.81
188.7

1 : 3.6
1 : 1363
B. W. I. SUQAR :- 5 gms. weigned into each dish: no water added :

NTo.	Drying Time Hours	1. Loss in weight	RESULTS		Loss in weight cims.	per cent water
			per cent Water			
1	3	0.0192	0.384	4	0.0195	0.390
2	7	0.0202	0.404	7	0.0202	0.404
3	24.5	0.0222	0.444	76	0.0235	0.470
4	100	0.0215	0.430	122	0.0247	0.494
5	146	0.0240	0.480	150	0.0247	0.494
6	174	0.0240	0.480	844	0.0247	0.494
7	270	0.0240	0.480	317	0.0247	0.494
8	342	0.0244	0.488	338	0.0250	0.500
9	366	0.0238	0.476	410	0.0248	0.496
10		0.0246	0.492	506	0.0259	0.518
11	531	0.0250	0.500	2142	0.0275	0.550
12	2167	0.0285	0.570	-	-	-

This sugar showed 0.802 per cent moisture by vacuum oven drying at $70^{\circ} \mathrm{C}$. No attempt was made to grind the sugar. The absorptive power of sulphuric acid of this strength is apparently not enough to withdraw the occluded moisture from the sugar crystals. The tests lasted 90 days.

EXPERIMONT D14:- DFYING BY DESICCATIOT OF GOLDGASYKUP

WITH STIREINO OP THE DESICCAIOR AIK.
 HESICUANT :- Fresh sulphuric acid : 750 cos.: $1.84 \mathrm{sp} . \mathrm{gr}$. :
 DISif:- Glass Petri dish: 82 man. diam. by 13 ma. deep :
 sq. cm., i.e., approx. 1 to 3.6 :
 MAIU WALER TO SULPHOEICACID: approx. 1 to 182 : sample 25 mm . fror RAN:_- aporox. 50 mm . from sample : 200 r.p.in.

Golden Syrup:- 0.7375 gm . taken, containing $0.1 \approx 54 \mathrm{gm}$. water and 0.6121 gm. solids (at 17.00 per cent water in syrup) : 4 gms. water added, making 4.1254 gms. total water present.

It is probable that the low result here is due to the inability of the desiccant to abstract the moisture in the interior of the dried syrup due possibly to the viscous films at the surface.

Anhactatin:- Fan in desiccator as in Pigures 59 and 62 : two sampl in separate desiccators:
ESTUGAM:- Presh sulphuric ecid: yso cos. in eaca desiccator :

LSAE : $=$ alass Detri dishea :-

> Diameter, mm.
> Depth,

No. (1)
92
16
no. (2)
82
13

65.40

180.7

MASO OH EUMRCS ERPOCS
EAMLXODCICOANK——:
1 : 2.8

1: 175
4AN - 50, from samples :- r.p.a. 200

Sucrose Solution:-
3.5 gmas. water added to each sample

Gms. taken
Water present, zras.
Total solids, gms.
Total wester, gres.
2.87: 1
2.71 : 1

\%o.	Drying Time Hours	Water lost gms.	(1) water left gms.	Per cent water	KREULE per cent Total Solids	water lost zms.	(2) water left zms.	Per cent water	$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & \text { T. Solids } \end{aligned}$
1	$\left\|\begin{array}{c} \text { Booth with } \\ \text { STRRRG } \end{array}\right\|$	4.2568	0.0237	58.05	41.95	2.0248	2.3008	---	---
2		4.2685	0.0120	58.95	41.05	4.2950	0.0306	57.61	42.39
3	48 statc	4.2703	0.0102	59.06	40.94	4.3100	0.0156	56.69	41.31
4	55	4.2720	-0.0085	59.21	40.79	---	----	---	---
5	124.	4.2735	0.0070	59.33	40.67	4.3158	0.0098	59.12	40.88
6	196	4.2747	0.0058	59.41	40.59	4.3168	0.0083	59.19	40.81
	220	4.2738	0.0067	59.34	40.66	4.3163	0.0093	57.16	40.84
8	290	4.2745	0.0060	59.40	40.60	4.3173	0.0083	59.23	40.77
	386	4.2740	0.0065	59.36	40.64	4.316 c	0.0094	59.14	40.86
10	2022	4.2748	0.0057	59.41	40.59		---	---	---

The nearest approach to the knomn total solids still left 0.435 per cent of water in the sample..
 ETIRALNO AND VACUUKTOAID DREINA.
ABABCHENT:- Fan in vacuum desiccator with mercury gland seal as shown in Figures 59 and 62 :
DSSICCANT:- Sulphuric acid: 1000 ccs : $1.84 \mathrm{sp} . \mathrm{gr} .:$ DISA:- Glass petri dish : 92 mm . diam. by 12 mm . deep :
ABSORBINOMEIUG:- Ignited Celite : 1.5 gms. :
 sq. cro., 1.e., approx 1 to 3 :
RAIIOGELTE TO SUQAKTUTL SOLIDS: 3.28 to 1 :
RATIO MATGE TO SULPHURIE ACID: $=$ approx 1 to 191 : sample 25 mm . from Fan:- Approx. 50 ma. from sample : 200 r.a.m. :

Vacuurn:-60-61 can. mercury.

Golden Syrup : $=0.5518 \mathrm{gm}$. taken, containing 0.0938 gm . water, and 0.4580 gm . solids (allowing 17.00 per cent water in the syrup). Water added - 5.2505 , giving a total of 5.3443 gms. water present.

No.	Drying Tine Hours	water lost gms.	-KiSULTS		Per cent Total Solids	Difference from average Total Solids
			water left gms.	Per cent Water		
1	1	1.1168	4.2275	-	-	-
2	2	2.3755	2.9688	-	-	
3	3	3.5106	1.8337	-	-	-
4	4	4.3088	1.0355	-	-	
5	5	5.0638	0.2805	-	-	
6	6	5.3098	0.0345	10.75	89.25	$+6.25$
7	7	5.3121	0.0322	11.16	88.84	$+5.84$
8	8	5.3210	0.0233	12.77	87.23	+4.23

One of the difficulties with golden syrup is the large arount of water necessary to mix the syrup thoroughly with the celite. Host of the work of the sulphuric acid is done in removing this added water. It is probable that the difficulty of penetrating the surface film of the syrup at room temperature makes this method unsuitable for viscous syrups such as this.

AIR CIFCULATING SISTEN (SHE PIGUK 62).

 desiccator containing the sample, and air was circulated in closed circuit at the rate of approximately 420 ccs . per minute.

The fan was kept zoing at the same time. The desiccant was 1000 ccs. fresh sul phuric acid with surface exposed of 188.7 sq . cm. The dish was a glass petri dish 82 mm . diameter by 13 mm . deep, and the absorbing medium was 20 gms , of ignited sand. atatio water to sulphuric was 1 : 161, and the ratio of absorbent to sugar was 44:1.

The combination of fan stirring (200 r.p.m.) and circulating pump was in operation for the first 51 hours of this test.

Golden Xrup : $=0.5480 \mathrm{gm}$. taken containing 0.093 gm . water and 0.4543 gm solids : 6.1315 gm . Water added : total water 6.2247 gms.

No.	$\begin{aligned} & \text { Drying } \\ & \text { Time } \\ & \text { Hours } \end{aligned}$	water lost gms.	KSULTS		Per cent Total Solids	Difference from estimated Total Solids
			霜ater left gms.	Per cent water		
1	1	0.3389	5.8858	-	-	-
2	2	0.6850	5.5397	-	-	-
3	26	0.7000	5.5247	-	-	-
4	27	1.7357	4.4890	-	-	-
5	28	2.8405	3.3842	-	-	-
6	29	4.1870	2.0377	-	-	-
7	30	5.0449	1.1798	-	-	
8	31	5.6740	0.5507	-	-	-
9	49	6.1948	0.0299	11.55	38.45	$+5.45$
10	50	6.1935	0.0314	11.32	88.68	$+5.68$
11	51	6.1893	0.0354	10.54	89.46	$+6.46$
22 2ay	\% 5	6.2002	0.0245	12.54	87.46	$+4.46$
13 "	6	6.2013	0.0234	12. 74	87.26	+4.26
14 "	7	6.2026	0.0221	12.97	87.03	$+4.03$
15.	8	6.2047	0.0200	13.36	86.64	+3.64
16 "	11	6.2055	0.0192	13.50	86.50	+3.50
17 "	13	6.2067	0.0180	13.72	86.28	$+3.28$
$18{ }^{\prime \prime}$	28	6.2100	0.0147	14.32	85.68	+2.68
19 "	47	6.2110	0.0137	14.51	85.49	$+2.49$
$0^{\prime \prime}$	182	6.2135	0.0112	14.96	85.04	$+2.04$
21 "	526	6.2193	0.0054	16.03	83.97	$+0.97$
$2{ }^{1}$	1173	6.2053	0.0194	13.47	86.53	$+3.53$

The conclusions already drawn are borne out in this test- $1 . e$. . that it is extremely difficult to dry Golden syrup completely at room temperature. After 16 months of desiccation, 16.03 per cent water is shown compared with the estimated 17.00 per cent.

 hifanguent :- Glass desiccator containing 1000 ccs. fresh sulphuric acid of 1.84 sp.gr.and with 188.7 sq. cms. of surface exposed. The dish used was a glass Petri dish 82 mm . dianeter by 13 nin. deep, and the absorbing nedium was 20 gms of ignited sand. Ratio of water to sulphuric acid was $1: 162$, and the ratio of absorbent to sugar solids was 30.4 : 1. The sample surface exposed was 52.8 sq. cons.giving a ratio to desiccant of 1 : 3.6.

SUCOM DESICCATOK : This contained 500 gms. of phosphorus pentoxide mixed with an equal volume of ignited Celite.

Golden Byrup :- 0.7945 gm . taken containing 0.1351 gm . Water and 0.6594 gin. solics : 6.0215 gms . water added giving 6.1566 gms . total water.

No.	Drying Time Hours	water lost gms.	Water left gms.	RESULTSPer cent Water	Per cent Total Solids	Di ference from Estimated Total Solids
1	1	0.1272	6.0294	-	-	-
$\underline{2}$	2	0.2605	5.9361	-	-	-
3	3	0.3505	5.8061	-	-	-
4	4	0.4773	5.6793	-	-	-
5	5	0.5875	5.5691	-	-	-
6	6	0.7078	5.4483	-	-	-
7	7	0.8428	5.3138	-	-	-
8	8	0.9445	5.2121	-	-	-
9	$2{ }^{2}$	2.4235	3.7331	-	-	-
10	16	4.5080	1.5486	-	-	
11	94	6.1128	0.0438	11.49	88.51	+5.51
12	166	6.1280	0.0346	12.65	87.35	$+4.35$
13	Tr nef	rred to	$\mathrm{Pa}^{2} 5 \mathrm{des}$	cator		
	218	6.1257	0.0309	13.11	86.89	+3.89 +3.03
14	576	6.1325	0.0241	13.97	86.03 85.83	+3.03 +2.83
151	yys46	6.1341	0.0255	14.17	85.83 85.09	+2.83 +2.09
16	- ${ }^{181}$	6.1400 6.1455	0.0166 0.0111	14.91 15.61	85.09 84.39	+2.09 +1.39
18	'1172	6.1285	0.0281	13.47	86.53	$+3.53$

The best result was obtained at Weighing No. 17 afterli months, but there is a wide divergence from the estimated solids in the syrup. ($=83.00$ per cent.).

It is evident that static desiccation is far too slow a method, and that there isn means of judging when a particular drying may reasonably be assumed to be complete.
 AEASGMET- Glass desiccator with sample above desiccant : vacuum junp ke t running throughout: $67-70$ ems. vacuum : DESIOUAM :- Fresh sulphuric acid : $1000 \mathrm{ccs} .: 1.84 \mathrm{sp.gr} .:$ DIGA:- Jlass Detri diah : 92. man diameter by 12 mm . deep :

 sa. cm., i.e., approx. 1 to 3 :

SATE SANETO SUGAB TOPAL SULNES: 22.9 ; 1 :

Golden Gyrup:- 1.0497 gm . taken, containing 0.17485 gam. water, and $0.87485 \mathrm{gm} . \operatorname{solids}($ allowing 17.00 per cent water in the syrup). water added 6.0248 gms., giving a total of 6.2032 gms . water present.

50.	Drying Time Hours	water 10st gras.	water left gms.	$\begin{aligned} & \frac{\text { BULTS }}{\text { Per cent }} \\ & \text { Water } \end{aligned}$	Per cent Total solids	Difference from estimated Total Solids
1	2	5.4350	0.7682	-	-	-
2	3	6.0940	0.1092	6.59	93.61	+10.61
3	4	6.1180	0.0852	8.88	91.12	+ 8.12
4	5	6.1250	0.0782	9.54	90.46	+ 7.46
5	6	6.1280	0.0752	9.83	90.17	+ 7.17
6	7	6.1338	. 0.0684	10.38	89.62	+6.62
7	8	6.1365	'0.0667	10.64	89.36	$+6.36$
81)a	E22	6.1630	0.0402	13.16	86.84	+3.84
9 "	42	6.1647	0.0385	13.32	66.68	+ 3.32
10 "	176	6.1755	0.0277	14.35	85.65	+4.35
11 "	520	6.2060	0.0028	17.26	82.74	-0.26

In this experiment there appeared to be complete absorption of all the water in the syrup, but 520 days were required to achieve this
 ESD INCEARAD KATIO OR GAVD LO SEKUP.
 DESICCANT: Presh sulphuric acid : 1000 cos . : I. 84 sp . gr. : UISH:- Glass petri dish : 90 mm . diameter by 12 mm . deep :
ABGUREING, MEDUG:- Ignited sand, 20 fras. :
RAIIO SASELE GUFACE TO SULPAKKIC GURFACE:- 63.6 sq . cas. to 188.7 sq. cms., i.e., approx 1 to 3 :

KATIUSADDPOSUGAR OTA SOLIDE :- 44.2 to 1 :
KAIU WATE TO CULPGKICACID:- approx. 1 : 160 : sample 25 mm . from MAIOUR ETKPRTOMETCCAMF:- aporox 1 to 37 :

VAOUUM PU4P: $=65.70 \mathrm{cms}$. Vacuum : pump kept running throughout test.

Goiden Syrup:- 0.5450 gm . taken, containing 0.09665 gm . water, and 0.45235 gm. solids (allowing 17.00 per cent water in the syrup). water added, 6.1585 gms.,giving a total of 6.6512 gms. water present.

No.	Drying Time Hours	Water lost gras.	$\begin{gathered} \text { Water left } \\ \text { gras. } \end{gathered}$	Per cent water	Per cent Total Solids	Difference from estimated Total Solids
1.	1	1.5080	4.7432	-	-	-
2	2	5.2947	0.9565	-	-	-
3	3	6.2100	0.0412	9.45	90.55	$+7.55$
4	4	6.2173	0.0339	10.79	89.21	$+6.21$
5	5	6.2210	0.0302	11.47	88.53	$+5.53$
6	21	6.2548	0.0036	17.67	82.33	-0.67
7	static 21 Da	$\begin{aligned} & \text { irying with } \\ & 5.2555 \end{aligned}$	$\begin{aligned} & \text { ut vacuum } \\ & 0.0043 \end{aligned}$	17.80	82.20	-0.80

This result is surprisingly good, and in view of the difficulty in the previous tests in getting down to the known composition of the sample it must be regarded with reserve - the constant anck of the vacuum pump may have removed some solid matter.

ATEANGTHT:- Using vacuum-oven shown in Figure 36 : one sample dried at $36^{\circ} \mathrm{C} .$, and the other at $50^{\circ} \mathrm{C}$.

DIEAS :- Glass petri dishes :- No. (1)
Diameter, mm. Depth, ram.
 RATIO ABCORBENT TO EUGAS SULIUS:

BAROMTRIC PRESSURE : 757.5 mm .

Gms. Taken
water present, gms. Total Solids, zins. Water added, gras.
Gms. Total water present,

No.	Drying Time dours	$36^{\circ} \mathrm{C}$. water lost gms.	$\frac{\text { RSULTE }}{\text { Water left }} \begin{gathered} \text { gms. } \end{gathered}$	Per cent Water	Per cent Total Solids	Difference from Total Solids known present
1	5	12.3638	0.0033	16.28	83.72	$+0.72$
2	7	12.3653	0.0018	16.62	83.38	$+0.38$
3	10	12. 3664	0.0007	16.86	83.14	+0.14
1	1	$50^{\circ} \mathrm{C} .$	0.3119		-	-
2	2	12.1950	0.0004	16.92	83.08	$+0.08$
3	3	12.1945	0.0009	16.82	83.18	$+0.18$
4	4	12.1990	-0.0036	17.75	82.25	-0.75
5	5	12.1983	-0.0029	1\%.61	82.39	-0.61
satisfactory at $50^{\circ} \mathrm{C}$., but the per cent loss is decidedly high for this sample of syrup. The use of the vacuum-oven at $50^{\circ} \mathrm{C}$. gives mich quicker resulte.						

 samples dried on sand :

Drying of Levulose olutions by Desiccation at room temperature (I2 ${ }^{\circ}$ C).

(a) Semples in septritedesiccators - solids found.

Hours	$\frac{50.69}{\text { on }^{20.6 I E \theta}}$	$\frac{\frac{12}{2} \frac{005}{\text { orinte }}}{\text { over KoH }}$	$\begin{aligned} & \text { Hours } \\ & \text { contect } \end{aligned}$		$\frac{17.005}{\text { onelite }}$
24	52.15	60.49	268	84.70	1
90	51.20	17.31	285	51.41	17.44
120	51.1 .6	17.28	333	51.28	17.07
144	-	17.26	453	51.23	17.04
263	-	17.22	978	51.15	1.7 .07
311	-	17.21	1844	50.79	16.97
431	-	17.21	2823	50.76	16.98
956	-	17.14			
1822	-	17.08			
2801	-	17.04			

Pigure 63.

Drying of Ievulose olutions by Desicoation
 at room temporature ($17^{\circ} \mathrm{C}$)

(b) Sauples paired in seme desicoators (all on celite)- \% Bolids Found

$\begin{aligned} & \text { Hours } \\ & \text { Contact } \end{aligned}$	$\frac{0 v \in r ~}{H_{2} \mathrm{SO}_{4}}$		$\begin{aligned} & \text { Hours } \\ & \text { Conteict } \end{aligned}$	OVer KOH	
- 18	60.35	51.59	22	74.44	60.79
41	56.75	20.17	46	58.02	21.35
- 109	51.27	17.21	112	52.32	17.32
139	51.15	17.14	142	51. 23	17.25
164	51.12	17.15	166	51.24	17.33
281	50.91	17.10	285	51.09	17.21
329	50.87	17.09	333	51.06	17.20
449	50.87	17.08	453	51.00	17.20
974	50.80	17.10	978	50.74	17.14
1840	50.69	17.06	1844	50.55	17.08
2819	50.76	17.08	2823	50.58	17.07

(c) Four samples in one desioustor over 500 cos. $H_{2} 0_{4 \%}$ all 50.69%

Hours	on send	On Pumion	$\begin{aligned} & \text { Hours } \\ & \text { Conteat } \end{aligned}$	Qn celite	
					II
29	67.50	72.15	64	72.60	66.88
53	57.16	56.34	94	61.00	62.11
171	54.52	54.14	118	53.85	54.29
195	54.22	53.90	236	51.32	51.11
315	53.90	53.65	284	51.26	51.09
840	53.63	53.12	404	51.13	50.94
1705	52.91	52.79	929	51.13	50.78
2684	52.59	52.66	1794	52.18	50.65
			2773	51.09	50.58

These results show the importanco of a suitable adsorbing agent: here celite hes proved better than sand or pumice in the same desiccator. The explanation possibly lies in occlusion by the send or pumice and better porosity with the celite. The final figure 50.58% is below the 50.69% of the original solution; probebly witer of crystallisation was then coming off. the whole process is too slow for ordinary routine work.

Desiccation of 17.03% Levulose 30 lution on peper holls at room temperature.

Two samples of $3.6-3.8 \mathrm{gms}$. Levulose solution without addition of water ves dropped on to paper rolls in $65 \times 35 \mathrm{mms}$. glass weighing bottles. These pere pluced in desiccators - one containing 500 ces. of coneentrated sulphuric acid - the other with 500 gms. of KOH pellets.

3 T,	Mocio of Desiccation	$\begin{aligned} & \text { Sugar } \\ & \text { Dried } \end{aligned}$	8. Mator Drocont	\% Tater Sound	ARter kis. Drying	Ratio Abeowb ent; Sugor s01tna	$\left[\begin{array}{l} \text { atio } \\ \text { ater to } \\ \text { periconit } \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { surfaces } \\ & \text { Ratio } \\ & S: D \end{aligned}\right.$	$\begin{aligned} & \text { Gras. } \\ & \text { Vater } \\ & \text { added } \end{aligned}$	$\begin{aligned} & \text { Vms. } \\ & \text { absor } \\ & \text {-bont } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Desic } \\ & -\operatorname{cant} \\ & \text { cc. } \mathrm{H} 2 \mathrm{SO}_{4} \end{aligned}\right.$	Dish diam. mas.	$\begin{array}{\|l\|} \text { Gras. } \\ \text { solids } \\ \text { weianed } \\ \hline \end{array}$	Gms. Vater present
1	Stotic ovos ${ }^{7}, 2 \mathrm{SO}_{4}$: 24 2 dosiccatoz	$\begin{aligned} & \text { Lovul- } \\ & \text { ose } \\ & \text { roln. } \end{aligned}$	39.93	$\left(\begin{array}{ll}(3) & 00.33 \\ (2) & 32.33\end{array}\right.$	$\begin{aligned} & 738 \\ & 285 \end{aligned}$	$\begin{aligned} & 4: 2 \\ & (\operatorname{col} 260) \end{aligned}$	I : 76	1 :5.1	9 9	2.5 2.5	1500	82	$\begin{aligned} & 0.6024 \\ & 0.6259 \end{aligned}$	$\begin{aligned} & 0.9061 \\ & 0.9421 \end{aligned}$
2	as lubove	"	39.92	(2) 30.97 (3) 39.30	$\begin{aligned} & 237 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { andro. } \\ & 3: 2 \\ & (\cos 250) \end{aligned}$	1 :	1 : 5	4	1.5	1500	82	$\begin{array}{\|l} 0.4963 \\ 0.5058 \end{array}$	0.7464 0.7609
3	an abovo	$\begin{aligned} & \text { 5ucr. } \\ & \text { pso } \\ & 0.12 . \end{aligned}$	0.26	$\left(\begin{array}{ll}12) & 10.05 \\ (2) & 40.67\end{array}\right.$	$\begin{aligned} & 453 \\ & 720 \end{aligned}$	$\begin{aligned} & \text { Auraz: } \\ & \text { (cosite) } \end{aligned}$	$1: 155$	$7: 4.6$	4 4	1.5	${ }^{7} 50$	(${ }^{72}$ (2)	0	$\begin{aligned} & 0.7830 \\ & 0.8568 \end{aligned}$
4	woparmbo contecatore	$\begin{aligned} & 012 . \\ & 5000 \\ & 302 n . \end{aligned}$	40.26	$\begin{array}{ll} (1) & 40.54 \\ (2) & 40.03 \end{array}$	$\begin{aligned} & 646 \\ & 644 \end{aligned}$	$\left(\cos : \frac{1}{20}\right)$	1 : 156	$1: 2.8$ $1: 3.6$	4	1.5 1.5	750	$\begin{aligned} & 92 \\ & 82 \end{aligned}$	0.5424 0.5456	$\begin{aligned} & 0.8081 \\ & 0.8029 \end{aligned}$
5	Tocura Doviccaston		39.92	(1) 33.97	267	$\left(\operatorname{coz} \dot{3} t{ }^{2}\right)$	$1: 175$	1 : 3	3.5	1.5	750	92	0.5310	0.7993
6	 $365 \operatorname{can}^{2} \mathrm{E}$	d	39.22	(2) 30.90	332	$\left(\cos \mathrm{i}^{2} \mathrm{a}\right)$	$1: 175$	$1: 3$	3.5	1.5	750	92	0.5334	0.8029
7	*	a	39.92	(1) 37.33	(Discardod Loce by b .	aiten 3 hre.current).	---	---	3.5	1.5	750	32	0.5940	0.8943
8		"	30.92	(2) 20.54	2483	16.9 : 1	$1: 268$	$1: 3.6$	2.0	9.0	750	82	0.5342	0.8041
9	$\int_{(\cos 2 \hat{6} 0)}$	n	39.23	(1) 40.11	22	2.0 : 1	$1: 178$	$1: 3$	3.5	1.5	750	92	0.5378	0.8089
20	\cdots		40.16	(2) 37.10	(Disoarda	560: 5 hourw	---	---	3.5	1.5	750	82	0.5027	0.7491

No．	Mode of Desiccation	Sugar Dried	\％Water prosent	\％Woter Found	Arter hrs． Dryine	Ratio Absorb－ ent ：Sugar Solids
11	With Stirring	$\begin{aligned} & \text { Gluc- } \\ & \text { ose } \\ & \text { Soln. } \end{aligned}$	40.16	40.70	337	2.3 （ 2014 to$)$
12	＂	＂	40.16	40.67	2137	2.9 （colita）
13	－	Rew： sucar	－－	$\begin{aligned} & (1) 0.57 \\ & (2) 0.55 \end{aligned}$	$\begin{aligned} & 2167 \\ & 2142 \end{aligned}$	－－－
14.	＂	Golden Syrup	17.00	16.38	2070	$\begin{aligned} 2.5 & : 1 \\ & (\text { colite }) \end{aligned}$
15	，＂n	$\begin{aligned} & \text { Sucr- } \\ & \text { ose } \\ & \text { Soln. } \\ & \hline \end{aligned}$	40.16	（1） 40.53	196	$\begin{aligned} & 2.9: 1 \\ & 2.7: 1 \\ &(\text { celato }) \\ & \hline \end{aligned}$
16	With Stir－ ring and Vecuum	Golden syrup	$\begin{aligned} & 17.00 \\ & \text { (Av.) } \end{aligned}$	11.16	7	$\begin{aligned} & 3.3: 1 \\ &(001+t e) \\ & \hline \end{aligned}$
17	Circulat－ inf punp 8 Vac．Stirne	＂	$\begin{aligned} & 17.00 \\ & \text { AV. }) \end{aligned}$	16.03	526	$4.4 \text { Sin }^{1}$
18	Static Droine	＂	$\begin{gathered} 17.00 \\ (A 7 .) \\ \hline \end{gathered}$	15.61	525	${ }^{30}(\sin d) .$
	Vacuum Desiecation	＊	17.00	17．26	520	$\begin{aligned} & 23: 1 \\ & (\text { sand }) \end{aligned}$
20	＂	＊	$\begin{gathered} 17.00 \\ \text { (AV.) } \end{gathered}$	17.30	504	$44 \frac{1}{(\sin d)}$
21	Vacuum Oven at low Temperature	＂	$\begin{aligned} & 17.00 \\ & \text { (Av.) } \end{aligned}$	$\begin{aligned} & \text { (I) } 16.28 \\ & \text { (2) } 17.61 \end{aligned}$	$\begin{array}{l\|l} 8 & 5 \\ 2 & 5 \end{array}$	$\begin{array}{ll} 107: 1 & 36^{\circ} \\ 100: 1 & 50^{\circ} \\ \text { (sand) } & C . \end{array}$
22	＊	＂	$\begin{array}{r} 17.00 \\ (\mathrm{Av}) \end{array}$	$\begin{aligned} & \text { (1) } 17.05 \\ & \text { (2) } 17.10 \end{aligned}$	5 3	$\left.\begin{array}{c} 50: 1 \\ 54: 1 \\ (5 \operatorname{sand}) \end{array}\right\} \begin{aligned} & 50 \\ & { }_{c} \end{aligned}$

$\begin{aligned} & \text { Retio of } \\ & \text { Weter to } \\ & \text { desicean } \end{aligned}$	$\begin{gathered} \text { Sumpeod } \\ \text { Ratio } \\ \text { S : D } \end{gathered}$	Gma． Weter 0ひ民Od		Des：－ coant co． $\mathrm{I}_{2} \mathrm{SO}_{4}$	$\left\lvert\, \begin{gathered} \text { Dish } \\ \text { diam, } \\ \text { mans. } \end{gathered}\right.$	Gms． Solids weighea	Gins．橎を近 present
$7: 176$	$1: 3.6$	3.5	1.5	750	32	0.5337	0.7948
$1: 175$	$1: 3$	3.5	1.5	750	93	0.5208	0.7760
$\begin{aligned} & 1: 1316 \\ & 1 ; 2363 \end{aligned}$	$\begin{array}{l:l}1 & : 3 \\ 1 & : 3.6\end{array}$	27\％	H21	780	$\begin{aligned} & 92 \\ & 32 \end{aligned}$	－－	－－
$1: 182$	1 ： 3.6	4.0	1.5	750	82	0.6121	0.1254
$1 \mathrm{I}: 178$	$\underline{1} 12.3$	3.5	1.5	750	32	$\begin{aligned} & 0.5235 \\ & 0.5542 \end{aligned}$	$\begin{aligned} & 0.7805 \\ & 0.8256 \end{aligned}$
1 ： 291	$1: 2.8$	5.25	1.5	1000	30	0.4530	00338
1 ： 161	$1: 3.6$	6.13	20	1000	82	0.4543	0.0932
1 ： 102	$1: 3.6$	6.02	20	1000	82	0.6594	0.1351
业： 160	$I: 2.3$	6.02	20	1000	92	0.8749	0.1749
1 ： 160	$1: 3$	6.25	20	1000	90	0.4524	0.0927
－－	－－	12.29	40	－－	92	0.3714	0.0768
		12.11	20	－－	82	0.3984	0.0816
－	－－	6.18	20	－－	32	0.4016	0.0823
	－－	12.09	20	－－	32	0.3699	0.0758

 comenue IOHE greatly in excess of that reported in the liserature.

In nost of the tests the roisture content finally reacned was below the known percentage present, althouga constant weight and a satiafactory agreement mas obtained in a few experiments,

GITMITG:- There was a marked shortening of the time of dryinz when the air in the desiccator was stirred. There seems $115 t h e$ doubt that stirring is advantageous if precautions are taxen against loss of sample in the air strean. The effect of stirring Fab much less pronounced when the sample was nealy dry - Within about 1 per cent of its known water content - tata is, in the region where water of crystallization or "bound" water hat to be removed.

Qacuun: The drying time was considerably lessened by using vacuma particularly when the vacuum punp mas kept running conatantIy so that, in fact, there was silgat motion of toe reaminimg air. The vacuum ofen at $50^{\circ} \mathrm{c}$. was found to give satiofactory result in such less tige.
GECuCGMATIUP: (a) If deniccation at roon temperature in found deairable, the use of vacuum and stirring in recomended. There mast be alequate ratios of absorbing aediun to maple, and of desiccant to sample.
1b) The uge of acum oven at low temperatire is generally more satiefactory than festccation to roon teaperature. The necesuary precautions wat the taken see acction of overiayingi.

STCMION 5.

METHODS OF ANALYSIS.

Part 12 :- Determination of water by Distillation Methods.
Introduction :
Survey of the Literature :
The Rate of Evaporation of Liquids :
General Notes on the Apparatus :
Experimental :
Sumary.

TITA DHTERMTMATON OF WATET BY DIETIL工ATION WETHODS.

ABSTRACT.

A survey has been made of the literature of the distillation method of deterrining water.

The distillation liquids nomally used in these methods mave been tested for stability and $p H$ value.

Ten types of distillation apparatus have been used experimentally on golden syrup, and on solutions of sucrose, glucose, and, in particular, levulose.

Trials have been made of distillation with pH buffer solutions, and of distillation using e vacuum teohnique.

The results show that the distillation method is not auitaole for the accurate determination of water in thermally sensitive sugars, but may be used for routine comparison purposes when the materials under test are not unduly sensitive to heat.

A method of prodedure is recommended: close attention to experimental details has been found necessary.

Three special types of apparatus have been devised and are described.

The most important factors in the method have been found to be - the use of glass joints and stoppers throughout ; the use of a dispersing medium such as celite in the flask ; the use of electric hot plate heating, and the thorough washing down of water from the condenser.

DRTMMITHATION OF WATER BY THE DISTILIATION MBTHOD.

This procedure consists of heating the sample with some Voletile and imaiscible liguid, the water from the sample being carriod over with the distillate and measured directly in a suitable tube.

Many methods besed on this principle have been proposed, verying greatiy in experimeatal detail and in the liquids employed. The ideal aimed at is to distil over all the water quickly without decomposing the sample and liberating chemically formed water.

In general the methods can be divided into two claseen, those wsing Jiqios heavies than water, snd booe ueing liquids lishter than weter. The light liquids used include, benzene, toluene, xylene, and various petroleum fractions, while the heavy liquids are usually chloro-subetituted hydrocarbons such as trichlorethylene, carbon tetrachloride, and perchlorethylene.

SURVEY OT THE IITEXRATURE.
The distillation method of detemmining water appeared with the grant of a Geman patent in 1901 which covered two methods :1. distillstion of the test cample with an imascible liquid of higher bofling point, and z. heating of the staple as in l., followed by distillation with a liquid of lower boiline point. The distillation liquids recommended were toluene and petroleum fractions, and the method was first applied to ceresl products.

Many veriations followed, using a wide range of liquids, and ampying the method to Poods, coal, hons, and celluloge productes anonc others.

A review of distillation methods up to 1908 is given by Hoffmann, (Z. ancew. Chenie, 21,2095,1908), who described ten variations of the method, and compared results by distillation with those obtained ty drying irs vacuo with $\mathrm{P}_{2} \mathrm{O}_{5}$ or by drying at $80^{\circ} \mathrm{C}$. Schwalbe used distillation in 1903 for plant materials, and comanented or the recessity of having a distillation licuid of boiling point high enough to drive the buboles of water through the masa of material. This view is comon in the earlier literature, and little success attended the use of lower boiling point liguids until a method of samle dispersion appeared together with improved spperatus and technique.

Tertoni (Staz. sper. asrar.Ital.,27,366,1904) first applied the nethod to sugar-containing materials using turpentine of boiling point $160^{\circ} \mathrm{C}$. on molasses.

Van der Linden described a method for water in molasses and other sugar products in 1917. He used xylene in a copper distillation flask connected to a verticel condenser which discharged into a 250 cos. measuring cylinder craduated to 0.05 cc .

A Ereat improvenent of the method resulted from the introduction in 1920 of the Dean and Stark tuoe enabling continuous reflux to take place, and facilitating the removal of the last traces of water. The Bidmell and sterling type of trap (1925) represented a further advance in design which has become standard equipment.
other modifications and improvements of the apperatus have included the incorporation of a built-in condenser, the use of
standard glase joints, the standardication of dimensions, and the aceptation of the trap for distillation liquids heavier than water. Thus Norman (2. ancev. Chem. $33,380,1925$) claimed accurate results with a bulltin reflut condenser using benzene wita such materials as fints, oils, and soaps.
Yenncte and Koshitaka nodified Norman's apparatus in 1927 by the insertion of an inverted section at the end of the condenser, and clamed that this proventod ahesion of water on the walls of the still-head.(J. Soc.Chen. Ind. (Jupan), 30,356,1927).
Vecuum distillation using xylene for meat extracts was used by Dedlow and smith in 1920, in an effort to prevent decomposition of the material by heat. They used a condenser specially cooled by brine. (tnd. Fng.Chem.,13,858,1926).

The use of a dispersion medium :- The application of the distillation method to sugar products was ereatly helped by the proposal to use a dispercion medium by Rice in 1929. He used "Filter-cel". a proprietory acid-washed kieselgunr which was placed in the flask and the semple run in on top. (Ind. Tng. Chem., 21,31,1929). This technigue wes further studied by Fetzer, BVans, and Loncenecker and applied to very viscous corn-syrups. (Ind. Bng.Chem.13,855,1941, The introduction of liguids seavier than water :-

There are two main objections to the use of liquids lighter than water in the distillation method, firstly the risk of fire, and secondy the fact that most products tested sink in these liquids and are in direct contact with the bottom of the flask
where tuperheating and decomposition more readily occur. To eliminate these objections, Thielepape and Fulde (z. ver, Deut, Zucker Ind. $82,567,1931$) introduced the use of aligl and sikylene chlorides. At firct amixture of trichlorethylene (1 vol.) and trichloretrane (a vola.) was used, but this was later abanconed on account of its toxicity, and tetrachlorethylene, sp. ©r 1.62 and B.Pt. $119^{\circ} \mathrm{C}$, with onIy slight toxic action, was adopted, The apparatur employed wes that aue to Lundin (Chem. Zte., $56,762,1931$): this is chovin in Fig.67. In this aparatus the sample and dietilling liquid are placed in a flask of 250-500 coc. capacity. On distillation the vapour of the tetrachlorethylenc and the weter rise in the verbicel tube and are condensed by the worm condensex. The condensed liguids flow into the graduatod tube where separation occurs, the water beine trapped in the tube, while the tetrachlorethylene rurs beck through the side tube (with stopcock). Several measuring tuber may be proviccc,e.e. 2, 5, and 10 cos. capacity, to cover a wide rance of water content they wre usually graduated in $1 / 20$ the. ce. This method usine heavy distillstion liquids hes been used by Burke and Tucker (Analyst, $60,663,1935$) who succesrfully determined moisture in cereals using tetrachlorethane. They found, however thet progrescive decomposition occurred when the method was applied to cene sugar syrups and molases, and concluded that the method vas unsatisfactory when appreciable anounte of invert sugar were present Alexancer (Ind. Png. Chem., Anal. Rd., 8, 314,1936) used carbon tetrachloride with a peoiel tube for routine moisture determinations on
dynamite. Gleland and Fetzer (ibia., 14,124,194at used Alexander'o tube for corn syrupe. They found a high "blank" figure for carbontedrechloride, and also used a smaller anount than usual of filtercol as dispersion medium. The water was recovered more rapidly then when using benzene.
H. David (centr. Zuckerind., 41, 44,1936), used percilorethyiene for bobt suear producto includine raw syrups, coesettes, beet pulp, mex filter press celke.

Adherence of water to the apparatus :- Phere are many references in the literature to the trouble canced by the adherence of fine drops of water to the upper part of the walls of the trap anc to the valls of the condenser.
ce Loureiro (J.A.O.A.C., 21,645-8,1933) has pointed out two reasons for the adherence :- "The first is mechanical. In an ordinary reflux condenser in which the vepour travels upwards, toluene, the lese volatile liquid, condenses below the water, and there is nono left to sweep down the condensed droplets of water. The other reason is physico-chemical. At neutrel or acic reaction water has more affinity for glass than has toluene hence it tends to deposit alone the walls of the apparatus as stubbornly adherent droplets. The condition is reversed when the action is strongly alkaline." "Thenthe glass is easily moistened by toluene, and gravity will cause even the smallest drops of water to slide along the walls." Two methods are suscested by de Loureiro to surmount these difficulties. One is the use of an aparatus wich chenges the direction of the vapour flow so that the toluene will wash down the
watcr, and the other is the use of 5 per cent potassium hydroxide solution to rinse the apparatus so that the glass surface is kept
 find this alkaline rinse helprul, but adocated allowing the condenser to stend in alkaline solution (0.2 . alcoholic potash) when not in use, rinsing with distilled water before using.

Main defecte in earlior methods :- The application of the metiod to sugar roduets necessitates the use of liquids of low boiling point and if the B. pt. is mach below that of weter the metiod nay become tediously long. Rliminetion of the last traces of water from the sample is the main difficulty with any of the variations of the method. The early types of apparatus vere provided with corks, and. this was without doubt the cause of many discrepant results. Another most importent factor is the means of heating the apparatus.

Heating over a naked fleme or with a gauze is obviously dengerous With the light inflamable liguids, and the use of an oil-bath or other type of immersion bath is messy and the temperature is not easily controlled. The use or electrical heaters aypears to be the only really satisfactory method. In ehort, this distillation method which at first sight appears simple, must be conductod with exact attention to the correct technique,particularly when dealing with thermally-sensitive materials. The solvent used must be pure and of sufficiently low boiling point ; the apparatus must have glass joints ; and the method of heatine must give adequate control of the temperature. Oil-baths are not satisfactory.

THE RATE OF EVAPORATION OF LIQUTDS.

The rate of evaporation for any given single solvent is governed by several factors :-

1. The vapour-pressure of the liquid at the given temperature
2. The rate at which heat is supplied to the liquid
3. The conductivity for heat of the liquid
4. The specific heat of the Ilquid
5. The latent heat of evaporation of the liquid
6. The degree of association of the molecules
7. The surface tension of the 1iquid
8. The molecular weight of the liquid
9. The humidity of the atmosphere
10. The rate at which the vapour adjacent to the liquid is removed.
W.th mixtures the rate of evaporation is further governed by:1. The molecular attraction of one component for another
11. The depression of the vapour pressure of one component by another.
12. Were dissolved colloids are present, e.g., lacquers, viscosity is very important.
(See T.H.Durrans, Solvents, Chapman \& Hall,3rd. Ed., p. 30, 1933)
Very little reliance can be placed on most of the published information on evaporation rates as the phenomenon is profoundly affected by several factors which are difficult to control or standardise. Hofmann (I.E.C., $24,135,1932$) has determined the rates for several solvents and has confirmed that approximate
results can be calculated from the formula :-

$$
\text { Rate }=\frac{\text { (Vapour Pressure } \times \text { Molecular Weight) }}{11} \text { at } 20^{\circ} \mathrm{C} \text { : }
$$

the rates being referred to butyl acetate $=100$. (see De Heen,
J. chim. Phys.,11,205,1913).

De Heen found that the evaporation rates of organic liquids are not proportional to their B.Pts. and that while the rate determined by weighing was satisfactory for practical purposes the results were not capable of numerical expression. For pure liquids the slope of the evaporation curves could be used to express the rate of evaporation: the rate is taken as the tangent of the angle the Timed Evaporation per cent makes with the horizontal, divided by the tan of the angle of the similar curve for n. butyl acetate x 100. The per cent evaporation line is obtained by evaporating the solvents in aluminium dishes of uniform size and shape. These were allowed to stand for 1 hour protected from draughts and were then weighed, continuing these weighings each hour for five hours.

Figure
64.

\begin{tabular}{|c|c|c|c|c|}
\hline IITQED \& \[
\begin{aligned}
\& \text { B.Pt. } \\
\& \mathrm{o}_{\mathrm{C}} .
\end{aligned}
\] \& Sp.Gr. \& \begin{tabular}{l}
PHYSIO- \\
LOGICAI \\
PRONTATES
\end{tabular} \& REMARES \\
\hline \begin{tabular}{l}
Methylene \\
Dichloride or Iichloromethan \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
\end{tabular} \& 40-42 \& 1.346 \& Warcotic \& \begin{tabular}{l}
Highly volatile \(=\) \\
1.8 where ether \(=1\)
\end{tabular} \\
\hline Chloroform
\(\qquad\) \(\mathrm{CHCl}_{3}\) \& 61.2 \& \[
\begin{aligned}
\& 1.49- \\
\& 1.50
\end{aligned}
\] \& Acutely
toxic \& Solubility in water 0.5 名: turns acid in presence of light \\
\hline Carbon Tetrachloride \(\mathrm{CCl}_{4}\) \& 75-77 \& \[
\begin{aligned}
\& 1.600- \\
\& 1.608
\end{aligned}
\] \& ilay form phosgene \& Should be free froin chlorine \& neutral finax.fesidue 0.01\% \\
\hline \begin{tabular}{l}
Trichlorethy- \\
lene \\
\(\mathrm{C}_{2} \mathrm{HCl}_{3}\)
\end{tabular} \& 86-88 \& \[
\begin{aligned}
\& 1.469- \\
\& 1.475
\end{aligned}
\] \& Narcotic \& Forms HCl slowly in light of catalytically :Insol.in water \\
\hline \[
\begin{aligned}
\& \text { Tetrachlor- } \\
\& \text { ethane } \\
\& \mathrm{CHCl}_{2 . \mathrm{CHCl}_{2}}
\end{aligned}
\] \& 140-150 \& \[
\begin{aligned}
\& 1.600- \\
\& 1.602
\end{aligned}
\] \& Phe most toxic of these liquids \& Slowly liberates HCl in presence of water \\
\hline Tetrachlorethylene (Perchlorethy
\[
\mathrm{CCl}_{2} \cdot \mathrm{CCl}_{2}
\] \& 119-121

ne) \& $$
\begin{aligned}
& 1.624- \\
& 1.632
\end{aligned}
$$ \& ```

Less toxic
than chloro
-form or
CCl}

``` & Stable to moisture : Slightly narcotic \& toxic : Sub-cutaneo). usly more toxic than \(\mathrm{CCl}_{4}\). \\
\hline \[
\begin{aligned}
& \text { Benzene } \\
& \mathrm{C}_{6} \mathrm{H}_{6}
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& \text { (m.pt. } \\
& 500 .) \\
& \hline
\end{aligned}
\] & 0.884 & Very toxic & Solubility in water \(0.2 \%\) : volatile. \\
\hline Toluene
\[
\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{3}
\] & 109-111 & \[
\begin{aligned}
& 0.860- \\
& 0.871
\end{aligned}
\] & tioxic, probably less so than benzene & Solubility in water \(0.047 \%\) at \(20^{\circ} \mathrm{C}\). \\
\hline Xylene
\[
\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{3}
\] & 135-145 & \[
\begin{aligned}
& 0.862- \\
& 0.865
\end{aligned}
\] & Toxic :approx. equal to benzene \& toluene. & --- \\
\hline n. . Heptane
\[
\mathrm{C}_{7} \mathrm{H}_{16}
\] & \[
\begin{aligned}
& 99.5- \\
& 100.2
\end{aligned}
\] & 0.712 & Toxic & Very inflammable : the data relates to "Iecinical" heptane. \\
\hline
\end{tabular}

Dichloroethane (B.Pt. \(80-85^{\circ} \mathrm{C}\). ) \(\mathrm{CH}_{2} \mathrm{Cl} . \mathrm{CH}_{2} \mathrm{Cl}\), and Dichloroethylene CHCl.CHCl, (B.Pt.) \(=\$ 8-600 \mathrm{C}\).) are both slowly hydrolysed by water, while Pentachlorethane, \(\mathrm{OHCl}_{2} \cdot \mathrm{CCl}_{3}\) has \(\mathrm{B} . \mathrm{Pt} .162^{\circ} \mathrm{C} .\), which is too high. Reference:- "Toxicity of Industrial Solvents", H. H .S.0., 1937

W4TRR BY THE DTSTIDTARTOA MGTMOD.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Wo. & \[
\begin{aligned}
& \text { By Vol } \\
& \text { Toluene }
\end{aligned}
\] & \begin{tabular}{l}
me \\
Carbon \\
Tetra \\
Chloride
\end{tabular} & \[
\begin{gathered}
\text { Sp. Gr. } \\
\text { Calcul- } \\
\text { ated }
\end{gathered}
\] & Sp.Gr. Actual & \[
\begin{aligned}
& \text { B.Pt. } \\
& \text { Calcul- } \\
& \text { oted }
\end{aligned}
\] & \begin{tabular}{l}
E.Pt. \\
Actual
\end{tabular} & Remarks \\
\hline 1 & 10 & 90 & 1.510 & 1.523 & 79.7 & 77.5 & \\
\hline 2 & 20 & 80 & 1.439 & 1.440 & 83.1 & 79.2 & \\
\hline 3 & 30 & 70 & 1.367 & 1.367 & 86.6 & 81.0 & \\
\hline 4 & 40 & 60 & 1.296 & 1.294 & 90.0 & 88.0 & \\
\hline 5 & 50 & 50 & 1.224 & 1.210 & 93.5 & 86.5 & Satisfactory \\
\hline 6 & 60 & 40 & 1.152 & 1.147 & 96.9 & 87.8 & \\
\hline 7 & 70 & 30 & 1.081 & 1.047 & 100.4 & 93.5 & \\
\hline 8 & 80 & 20 & 1.009 & 1.005 & 103.8 & \[
95.0
\] & Sp.Or: too \\
\hline 9 & 90 & 10 & 0.938 . & 0.929 & 107.3 & 100.0 ) & \\
\hline
\end{tabular}

No. 9 fixture burned with difficulty : No. 8 burned when a taper was held to it but the flame went out when the taper was removed.
Other Mixtures:- By Volume


These mixtures did not ignite with a taper, but burned wen a burner flame was played on them the flame went out when the burner was removed.

\section*{OP WATER BY DISTILLATION.}

The liquids were steam-distilled where practicable, and then fractionally distilled, the fraction distilling within \(1^{\circ}\) of the listed boiling point being collected.

Whirty cos. of each liquid were refluxed with 10 ccs. of twicedistilled water for one hour. The water was separated and cooled and its pH value determined by the Glass \(\operatorname{llectrode.~A~sample~of~each~}\) liquid was allowed to stand over NaOH for a week : the results shown refer to the pH values of water extracts made from (a) the solvent decanted from the NaOH , and (b) the solvent distilled from the NaOH .
\begin{tabular}{|c|c|c|c|c|}
\hline Liquid & B. Pt. & Untreated & \[
\begin{aligned}
& \text { pH Value } \\
& \begin{array}{l}
\text { After } \\
\text { Undisiolille }
\end{array}
\end{aligned}
\] & After NaOH Distilled \\
\hline Carbon Tetrachloride & 76 & 4.7 & 9.6 & 8.4 \\
\hline Benzene & 80 & 6.2 & 8.5 & 7.2 \\
\hline n-Heptane & 100 & 6.8 & 8.4 & 4.6 \\
\hline Tetrachlorethylene & 120 & 7.7 & 8.4 & 6.8 \\
\hline Toluene & 110 & 6.4 & 9.0 & 6.8 \\
\hline Xylene & 135-145 & 4.6 & 9.2 & 7.4 \\
\hline Tetrachlorethane & 145 & 5.0 & 8.6 & 7.2 \\
\hline Trichlorethylene & 86-88 & 6.0 & 8.3 & 6.7 \\
\hline Chloroform & 61 & 6.8 & 8.7 & 7.3 \\
\hline Original Mater & --- & 6.25 & --- & --- \\
\hline
\end{tabular}

GSNEGAL WOTES ON THE VAELOUS TYPES OR APPARATUS:1. The ruel Research Station type ("F.R.S." type):- Figure 81. Using benzene this apparatus gave rapid distillation at \(115^{\circ} \mathrm{C}\). temperature in the oil-bath. The speed was mainly due to the anclosure or the graduated trap and the shortness of the vapour pipes. The enclosed tube was found to clog frequently with bubbles of benzene, and would be more efficient if a channel were provided so that a wire could be inserted to clear the bubbles.

At certain conditions of temperature and humidity in the atmosphere it was found that moisture tended to condense on the outside of the apperatus at the top : this water ultimately ran down into the moisture tube and vitiated the result.

A defect of this type is the condenser : the immiscible liquid channels on the large condenser surface and does not wash down the condensed water. This also applies to the sides of the upper portion of the apparatus. Elaborate washing down is thus necessary at the end, and with a large surface to wash, loss of water may result. With certain materials such as coal the apparatus "bumps" bady and the condenser may lift up and allow vapour to escape. Another difficulty with coal is that the very fine particles often entrain in the vapour and blur the meniscus reading.

Other points noted were the difficulty of reading the tube graduations through the rest of the apparatus, and the relative difficulty of cleaning the apparatus as compared with other types. The short vapour travel is a good point in this design : the water tube can, of course be semoved for rsading.

\section*{2. The Tate and Tarren Tube (Figure 93):-}

The calibrated tuoe in this apparatus is too narrow to permit of easy cleaning, and for the same reason the water does not drop to the bottom of the tabe unless the liquid is stirred by a wire; this is particularly troublesome at the start of the estimation. These calibrated tabes are better when provided with a flat or rounded bottom and not a point as in this design. The Tate and Barren apper -atus used in this work took much longer to start distilling, and distilled much more slowly than the Dean and Stark type (Figure 70).

Heating the trap in an electric oven to \(120^{\circ} \mathrm{C}\). before use did not materially help the settling of the water in the trap ; there was much emulsification and the water clung even more olosely to the sides than in the previous tests. Fith all types of spparatus it wes found desirable to clean the glass with chromic acid mixture before each estimation.
3. The bean and stak aporatus :- This aparatus is very similar to the Tate and warren type. A wodification of the trap is described in Britigin Standard Hethods for Festing Conl and Coke 1016-1942, and is shown here. The Fusl Research station type of \(1 / 4\) HOLE \(\longrightarrow\) apparatus is also described in this puolication. The standerd procedure recommends that the receiver and
 condenser be cleaned with a mixed dichromate/ \(\mathrm{H}_{2} \mathrm{SO}_{4}\) before each test.
Modified trep.

ESTPMATION OP MATER BY THE DISTILLATION METIOD USING 48.16 PER CETT LEVULOSE SOIUTION VITH DIFYYEENT INMISCIBLE LIQUIDS. Levalose solution dispersea by addition of 10 gms . celite. (a) Dean and Stark Apparatus:-

Distillation Liquid
\(1 \frac{\text { Bemtane }}{\text { B. Pt. } 80^{\circ} \mathrm{C}}\). Solids

Time in minutes and per cent (solids)found. 15
\(71.6\left|\begin{array}{l|l|l}35 & 150 \\ 60.7 & 53.3 & 49.8\end{array}\right|\) \begin{tabular}{l|l|l|l}
195 & 240 & 360 & 540 \\
48.4 & 48.4 & 47.9 & 47.9
\end{tabular} 10 gms. celite added to 10.6 gms . levalose solution and 100 cos. solvent used :no charring apparent : Oil Bath Pemperature \(=125-130^{\circ} \mathrm{C}\).
2. n.-HEPTANE
B.Pt. \(100^{\circ} \mathrm{C}\). 15 10 gms. celite used as dispersion agent : 100 ecs. solvent : charring almost negligible. \(0 i 1\) Bath remperature \(=130-135^{\circ} \mathrm{C}\).
3. TOZUSHE
\begin{tabular}{r|l|l|l|l|l} 
B.pt. \(110^{\circ} \mathrm{C}\) & 35 & 60 & 90 & 270 & 450 \\
Water & 50.4 & 51.5 & 52.1 & 52.9 & 54.4 \\
Solids & 49.6 & 48.5 & 47.9 & 47.1 & 45.6
\end{tabular}

10 gms. celite used as dispersion agent : 100 cos. solvent (toluene \(\mathrm{NaOH}-t r e a t e d\) ) : charring very slight, merely a brown ring round flask at the surface of the liquid. Oil Bath Temperature \(=138^{\circ} \mathrm{C}\).

\section*{Distillation Liquid}
4. XYIEME
\begin{tabular}{r|l|l|l|l|l|l} 
B.Pt. \(135-140^{\circ} \%\) Pime in minutes and \(\%\) Solids and Water \\
Water & 60 & 90 & 120 & 300 & 480 & 840 \\
Solids & 39.6 & 52.3 & 53.9 & 54.5 & 57.7 & 59.3 \\
60.4 & 47.7 & 46.1 & 45.5 & 42.3 & 40.7
\end{tabular} 10 gms . celite used as dispersion medium : 100 ccs. solvent : xylene residues were very much discoloured and the celite formed hard brown lumps with the levalose.
(b)"W.K.S." Apparatus (Fuel Researoh Station type):-
1. BENZENE
\(\frac{\text { TIME }}{1}\)

IH HINUPES.

10 gas. celite : 100 ccs. Solvent : residue white, no apparent charring. OiI Bath Temperature \(=124-\frac{1}{3} 30\), and at \(140^{\circ} \mathrm{C}\). between 480 and 840 Fater leaking in.
2. n.-HEPTANE
\begin{tabular}{l|l|l}
300 & 480 & 840 \\
50.3 & 50.7 & 66.9 \\
49.7 & 49.3 & 33.1
\end{tabular}

\section*{minutes.}
\begin{tabular}{r|l|l|l|l|l|l} 
B.Pt. \(100^{\circ} \mathrm{C}\) & 30 & 60 & 90 & 120 & 180 & 300 \\
Water & 45.3 & 48.8 & 51.9 & 52.6 & 52.9 & 54.6 \\
Solids & 54.7 & 51.2 & 48.1 & 47.4 & 47.1 & 45.4
\end{tabular}

Conditions as for Benzene : very slight charring 011 Bath Temperature \(=130-135^{\circ} \mathrm{C}\).
3. TOLUETE
\begin{tabular}{|c|c|c|c|c|c|}
\hline B. Pt. \(110^{\circ} \mathrm{C}\). & 35 & 60 & 90 & 270 & 450 \\
\hline \% Mater & 40.2 & 47.6 & 50.3 & 53.3 & 53.6 \\
\hline \multirow[t]{3}{*}{\(\%\) Solids} & 59.8 & 52.4 & 49.7 & 46.7 & 46.4 \\
\hline & \multicolumn{5}{|l|}{0.1 Bath remperature \(=141{ }^{\circ} \mathrm{C}\). 10 gms. celite :} \\
\hline & \multicolumn{5}{|l|}{100 ecs. solvent : slight charring.} \\
\hline
\end{tabular}
4. XYEENE
\begin{tabular}{r|ll|l|l} 
B.Pt. 135-140 & C. & 30 & 60 & 90 \\
\% Water & 51.3 & 53.3 & 54.5 & 55.1 \\
\% Soilds & 48.7 & 46.7 & 45.5 & 44.9
\end{tabular}

THE IN MIUUTES
\(0 i 1\) Bath Temperature \(=150^{\circ} \mathrm{C}\). 10 gms. celite used
l00 ccs. solvent : Considerable charring.
(c) Thielepape and Fulde Apparatus :-
1. \(\operatorname{GARBON}\)

TGTPACHLORIDE
\begin{tabular}{r|l|l|l|l|l} 
B.Pt. \(76^{\circ} \mathrm{C}\) & 60 & 120 & 180 & 300 & 600 \\
\(\%\) Water & 43.2 & 44.7 & 46.1 & 43.9 & 50.2 \\
\(\%\) Solids & 56.8 & 55.3 & 53.9 & 51.1 & 49.8
\end{tabular}
0 iI Bath Temperature \(=115^{\circ} \mathrm{C}\). 10 gms. celite :
100 ccs. solvent : no charring : distillation extremely slow.
2. TETRACHLORETHYLENE

(d) Tate and Warren Apparstus :-
1. BCLZEME

TIME IN MINUTES
B.Pt. \(80^{\circ} \mathrm{C}\).
\begin{tabular}{l|l}
300 & 480 \\
31.7 & 32.2 \\
68.3 & 67.8
\end{tabular} \(0 i 1\) Bath Temperature \(=124^{\circ} \mathrm{C}\).

10 gms. celite and 100 ccs. Solvent : no charring : Distillation very slow.
2. n. -HEPTANR

PMES IN HINOTES
\begin{tabular}{r|l|l|l|l|l|l|l} 
B.Pt. \(100^{\circ} \mathrm{C}\) & 60 & 120 & 360 & 480 & 720 & 1200 & 1700 \\
\% Vater & 51.6 & 51.9 & 53.2 & 53.6 & 53.9 & 53.2 & 54.4 \\
\% Solids & 48.4 & 48.1 & 46.8 & 46.4 & 45.1 & 46.8 & 45.6
\end{tabular} \(0 i 1\) Bath Temperature \(=125-130^{\circ} \mathrm{C}\).

Conaitions as for benzent :very slight charring.
3. TOLUENE
\begin{tabular}{r|c|} 
B.Pt. \(110^{\circ} \mathrm{C}\) & 35 \\
\(\%\) Water & 51.2 \\
\(\%\) Solids & 48.8
\end{tabular}

TIME IN HINUTES
\begin{tabular}{l|l|l}
60 & 270 & 450 \\
52.0 & 53.8 & 54.1 \\
48.0 & 46.2 & 45.9
\end{tabular}

011 Bath Temperature \(=138^{\circ} \mathrm{C}\).
Conditions as for benzene : moderate charring.
4. XYLENS

TIME IN MINUTES
B.Pt. \(135-140^{\circ} \mathrm{G}\).
\begin{tabular}{l|l|l|l|l|l|l|l}
15 & 35 & 70 & 150 & 195 & 240 & 360 \\
\(\%\) Sater & 39.4 & 56.6 & 56.9 & 58.2 & 58.5 & 59.3 & 64.1 \\
60.6 & 43.4 & 43.1 & 41.8 & 41.5 & 0.7 & 35.9 \\
Oil Bath Temperature \(=145^{\circ} \mathrm{C}\).
\end{tabular}

Conditions as for benzene : considerable charring.

SUALAYY OF RESULTS RO? TUE IETERLIAATION OF WATER IN A 48.16\%
LEVULQSE SOLUMISN EY THE DIXILIATTON METHOD.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} & \% SOLIES & TLME HOURS \\
\hline \multirow[t]{4}{*}{Dean \& Stark} & Senzene & 80 & 51.6 & 48.4 & 4 \\
\hline & n-Heptane & 100 & 53.3 & 46.7 & 4 \\
\hline & Toluene & 110 & 52.9 & 47.1 & 4考 \\
\hline & Xylene & 135-140 & 54.5 & 45.5 & 5 \\
\hline \multicolumn{6}{|l|}{Fuel Fesearch} \\
\hline \multirow[t]{3}{*}{"F.EI. 3.0} & n-Heptane & 100 & 54.6 & 45.4 & 5 \\
\hline & Toluene & 110 & 53.3 & 46.7 & 4흘 \\
\hline & Xylene & 135-140 & 56.9 & 43.1 & 5 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Thiclepape is } \\
& \text { Fulde ITpe }
\end{aligned}
\]} & Carbon Tetrachloride & 76 & 48.9 & 51.1 & 5 \\
\hline & fetrachlorethylene & 120 & 52.0 & 48.0 & 5 \\
\hline \multirow[t]{4}{*}{Tate \% Warren} & Benzene & 80 & 31.7 & 68.3 & 5 \\
\hline & n-Heptane & 100 & 53.2 & 46.8 & 6 \\
\hline & moluene & 110 & 53.8 & 46.2 & 4 4 \\
\hline & Zylene & 135-140 & 59.3 & 40.7 & 4 \\
\hline
\end{tabular}

It is evident that the distillation method with the types of apparatus used is not suitable for the determination of water in sugar solutions so thermally sensitive as those of levulose. There is progressive decomposition of the sugar as the distillation proceeds.

The results shown by Golden Syrup by distillation methods bear out the conclusions reached above : the Eyrup contained about 46 per cent of reducing sugars, of which slightly less than half congists of levulpse.

Listillation Method for Estimation of Water.
Sumary of Results using the Vacuum Distillation ethod.
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & \[
\begin{aligned}
& \text { Iaterial } \\
& \text { Tested }
\end{aligned}
\] & Water Present & Water Found
\(\qquad\) & Apparatus & \[
\begin{gathered}
\text { Kemarks } \\
\text { Solvent, additions. }
\end{gathered}
\] \\
\hline 1 & Water & 5.09 & 4.90 & Hercules & \[
\mathrm{CCl}_{4} \text {-tetrachlor- } \begin{gathered}
\text { ethane }
\end{gathered}
\] \\
\hline 2 & " & 5.09 & 5.00 & Dean Stark & n.-Heptane \\
\hline 3 & " & 5.09 & 5.00 & " " & Xyl01 \\
\hline 4 & Levuluse & 4.44 & 4.10 & " \({ }^{\prime}\) & Senzol \\
\hline 5 & Solution & 3.09 & 2.80 & 14 & " + 5g. Selite \\
\hline 6 & 4 & 0.568 & 0.305 & Nicro-tube & Toluene+ " \\
\hline 7 & " & 4.80 & 4.65 & Dean \& Stark & Senzol+10g.Celite \\
\hline 8 & " & 4.83 & 4.40 & App.with ! & " " " \\
\hline 9 & " & 7.99 & 7.80 & & \(1{ }^{\prime \prime}\) \\
\hline 10 & 1 & 7.56 & 6.40 & " & " FC Glass wool \\
\hline 11 & \(\mathrm{CuSO}_{4}\) & 2.16 & 2.15 & Dean \& Stark & " alone \\
\hline 12 & Levimose & 5.56 & 5.20 & App.with corks & " \& Glass wool \\
\hline 13 & " & 5.58 & 5.20 & Tate \% \%arren & " " \\
\hline 14 & " & 5.58 & 5.40 & " " & Benzene + 10g.Cel. \\
\hline 15 & " & 5.55 & 4.70 & App.with corks & \\
\hline 16 & \(\mathrm{CuSO}_{4}\) & 2.71 & 2.10 & Deen \& Staric & Toluene alone \\
\hline 17 & " & 2.71 & 2.20 & App.with corks & Berizene alone \\
\hline 18 & " & 1.80 & 1.20 & Tate Warren & Xylol alone \\
\hline 19 & Levulose & 5.68 & 5.08 & " " & \[
\text { Toluene }+\begin{gathered}
\text { log. Na } \\
\text { oxalate }
\end{gathered}
\] \\
\hline 20 & " & 5.56 & 5.50 & Dean \& Stark & \[
\begin{aligned}
& \text { Benzene }+ \text { Celite } \\
& 10 \text { gme } .
\end{aligned}
\] \\
\hline 21 & " & 4.75 & 4.15 & Tate \& Warren & \[
\begin{aligned}
& 1 \quad+\text { Sand } \\
& 20 \mathrm{gms}
\end{aligned}
\] \\
\hline 22 & " & 4.75 & 4.22 & Dean Stark & \[
\begin{aligned}
&+ 5 \mathrm{~g} . \mathrm{Na} \text { ox } \\
& 5 \mathrm{~g} \cdot \mathrm{Celite}
\end{aligned}
\] \\
\hline 23 & Water & 5.00 & - & Tate \& Warren & " + 20g.Pumice (Bumped violently: spoiled). \\
\hline
\end{tabular}

Distillation ethod for oisture in Levulose solution.
Tests using mixea Distillation liguids and Special apparatus
Levulose Bolutions:- No. \(7=61.73\) : No. 861.546 per cent Mater.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 13. & \begin{tabular}{l}
Gins. \\
Levulose Solution
\end{tabular} & \[
\begin{aligned}
& \text { Distilling } \\
& \text { Liquid }
\end{aligned}
\] & \[
\frac{13 . \text { Pt. }}{\mathrm{c}_{\mathrm{C}} .}
\] & \begin{tabular}{l}
Gms. \\
 \\
present
\end{tabular} & \[
\left|\begin{array}{l}
\text { oms. } \\
\text { fater } \\
\text { found }
\end{array}\right|
\] & Time & Apparatus \\
\hline 1. & 6.2941 & n.-Heptane & 100 & 3.90 & 3.90 & 50-140 & 1. S. \\
\hline 2 & 6.3610 & Bensol & 86 & 3.92 & 3.90 & 40-115 & \%. \({ }_{\text {\% }}\) \\
\hline 3 & 6.2489 & Loluene & 110 & 3.85 & \[
\begin{aligned}
& 3.89 \\
& 4.00
\end{aligned}
\] & \[
\begin{array}{r}
76 \\
185
\end{array}
\] & D. \& S. \\
\hline 4 & 5.3670 & Xyl02 & 144 & 3.93 & \[
\begin{aligned}
& 3.95 \\
& 4.22
\end{aligned}
\] & \[
\begin{array}{r}
16 \\
191
\end{array}
\] & 7. * \\
\hline 5 & 6.3794 & \(\mathrm{COH}_{4}\) & 76 & 3.94 & 3.90 & 36 & I. \& P. \\
\hline 6 & 6.4050 & \(\mathrm{C}_{2} \mathrm{Cl}_{4}\) & 120 & 3.95 & 3.90 & 9 & Hercules \\
\hline 7 & 1.8692 & Benzol & 86 & 1.154 & 1.22 & 36 & Gicro tube with coriss \\
\hline 8 & 6.2087 & benzol & 86 & 3.83 & 3.30 & 60 & Special 1 \\
\hline 9 & 6.4049 & \(\mathrm{COL}_{4} /\) Toluene & 93.5 & 3.95 & 3.95 & 20 & 1 \\
\hline 10 & 5.3708 & \(\mathrm{OOL}_{4}\) 30/70 & 76 & 3.11 & 3.10 & 135 & " 2 \\
\hline 11 & 6.4177 & \(\mathrm{OCl}_{4} / \mathrm{Xyl} 101\) & 84.3 & 3.95 & 3.50 & 140 & 2 \\
\hline 12 & 6.4525 & n.-Heptane & 100 & 3.97 & 43.95 & 105 & " 1 \\
\hline 13 & 6.5303 & \[
\begin{gathered}
6014 / \text { Roluene } \\
10 / 90
\end{gathered}
\] & 100 & 4.02 & 3.97 & 190 & " 2 \\
\hline 14 & 6.5140 & \[
\begin{gathered}
\mathrm{COI}_{4} / \mathrm{TO}=1 \text { uene } \\
20 / 80
\end{gathered}
\] & 95 & 4.01 & 3.50 & 205 & 2 \\
\hline 15 & 6.4312 & \[
\mathrm{CCl}_{4} / \mathrm{Tol}_{40 / 6 \mathrm{ene}}^{40 / 69}
\] & 27.8 & 3.96 & 3.70 & 205 & " 1 \\
\hline 16 & 6.5155 & \[
\begin{gathered}
\mathrm{col}_{4} / \text { Toluene } \\
50 / 40
\end{gathered}
\] & 88.0 & 4.01 & 3.80 & 176 & 11 \\
\hline 17 & 6.5145 & 0014 /roluene & 31.0 & 4.01 & 3.90 & 176 & 2 \\
\hline 18 & 6.5086 & \[
\mathrm{COI}_{4} \text { /Toluene } 80 / 20
\] & 79.2 & 4.01 & 3.80 & 90 & " 1 \\
\hline 19 & 6.5097 & " " 90/10 & 77.5 & 4.01 & 3.55 & 170 & 2 \\
\hline 20 & 6.4775 & - " 50/50 & 86.5 & 3.99 & 4.00 & 95 & I. \& P. \\
\hline 21 & 6.5145 & Bensol/ \(\mathrm{C}_{2} \mathrm{Cl}_{4}\) & 81.3 & 4.01 & 4.00 & 95 &  \\
\hline 22 & 6.0370 & " \(\mathrm{both}_{90 / 10}\) & 81.3 & 3.02 & 3.02 & 150 & \\
\hline 23 & 6.5690
6.6830 & \({ }_{3 \mathrm{COn}}{ }^{4} \mathrm{zol}\) & 76 & 2.38 & 2:87 & 180 & I. \({ }_{\text {d }} \mathrm{P}\) P \\
\hline 24
25 & 6. 6.3852 & \({ }^{1} / \mathrm{Ocl}_{4}\) : 90 & 81 & 2.24 & 2.24 & 100 & L. P. \\
\hline
\end{tabular}

Distillation with Buffer Solutions of known pH falues.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline RO. & Apparatus & Liquid Used & \[
\left|\begin{array}{c}
\text { Bupfer } \\
\text { Soln. } \\
5 \text { ces. } \\
\text { pHi }
\end{array}\right|
\] & Time Mins & \[
\left|\begin{array}{c}
\text { Water } \\
\text { Recov } \\
\text { ered } \\
\text { ces. }
\end{array}\right|
\] & \[
\begin{aligned}
& \text { Final } \\
& \text { pH }
\end{aligned}
\] \\
\hline 1. & D.tes. & Benzol & 4.0 & 90 & 5.00 & 3.82 \\
\hline 2. & " & " & 8.0 & 120 & 5.0 & 8.35 \\
\hline 3. & " & n & Sat. Na oxalat & 1.20 & 5.0 & 6.71 \\
\hline 4. & " & " & 10.0 & 90 & 5.0 & 8.11 \\
\hline 5. & T. t W. & \# & Sat ii & 90 & 5.0 & 7.05 \\
\hline 6. & D. \(\dot{\text { S }} \mathrm{S}\). & " & 12.0 & 160 & 4.75 & 6.80 \\
\hline 7. & T. \({ }^{\text {\% }}\) & " & 6.0 & 160 & 5.00 & 8.36 \\
\hline 8. & Hercules & " & 2.0 & 160 & 4.95 & 3.94 \\
\hline 9. & L. \({ }^{\text {P }}\). & " & 11.0 & 160 & 4.95 & 5.48 \\
\hline 10. & D. S S.TO & oluene & Dist. & 40 & 5.00 & 3.29 \\
\hline 11. & T. \({ }^{\text {c }}\) W. & " & yater
12.0 & 40 & 5.00 & 5.87 \\
\hline 12. & 工.: S. & " & 4.0 & 100 & 4.95 & 6.94 \\
\hline 13. & T. \({ }^{*}\) & " & 8.0 & 100 & 5.00 & 6.80 \\
\hline 14. & D. \& S. & " & 10.0 & 60 & 4.95 & 8.80 \\
\hline 15. & T. \({ }^{\text {\% }}\) & " & 6.0 & 60 & 4.95 & 7.10 \\
\hline 16. & D. \& 5. & Xylol & 8.0 & 60 & 4.90 & 5.44 \\
\hline 17. & T. \& TV. & " & 2.0 & 60 & 4.95 & 2.50 \\
\hline
\end{tabular}

Remarks

Some emulsification; straight meniscus. Wo emulsification; Perfect meniscus, Water part hazy; straight meniscus. Wuch emulsification; Indistinct meniscus.
Distn. very rapid; Clean meniscus.
ppt. in water layer; Meniscus "fuzzy"
Good clear separa'n. Best meniscus obtd. Wuch water on condenser walls.
Permanent emulsion at meniscus.
Wuch water on conden.
ser; clear meniscus.
Clear meniscus.
Watex globules in
Condenser.
Clear meniscus.

Clean meniscus : no
emulsification.
Clear meniscus
clear meniscus
T. \& W. = Tate and Warren : D. \& S. = Dean and Staris :
L. A P. = Langeland and Pratt.

In general toluene gives less emulsification than benzene or xylol.
The worst emulsions occur with alkaline buffer solutions,but acid buffers cause more clinging of water to the condenser walls.

QOMPARIOON OF RESULTS BY VARIOUS METHODS FOR THE DETERMINATION OP WATEH IN GOLIEN SYRUP.
DISRILLATION METHODS:- \(\frac{\text { B.Pt. of LIQUID }}{{ }^{\circ} \mathrm{C} .}\)
1. Warren \& Tate apper-

100

3. Enel Research Station
apparatus "F.R.S." type
\begin{tabular}{lr} 
Benzene & 80 \\
Moluene & 110 \\
Xylene & \(135-140\)
\end{tabular}
4. Apparatus using corks

Dean d Staric pattern
\begin{tabular}{lr} 
Benzene & 80 \\
Toluene & 110 \\
Xylene & \(135-140\)
\end{tabular}
5. "Hercules" apparatus
(Alexander) -
Carbon Tetrachloride 76 Tetrachlorethylene 120
Heavy ilixture 88
(40/60 Toluene/ \(\mathrm{CCl}_{4}\) )
6. Langeland \& Pratt appar- \(\quad 76\)
(40/60 Toluene/ \(\mathrm{CCl}_{4}\) )
7. Thielepape: Fulde
apparatas-
Carbon Tetrachloride 76
Tetrachlorethylene 120 Heavy Mixture
8. Special Apparatus ho. 1
\(\begin{array}{lr}\text { Carbon Tetrachloride } & 76 \\ \text { Tetrachlorethylene } & 120 \\ \text { Benzene } & 80 \\ \text { Toluene } & 110 \\ \text { Xylene } & 135-140\end{array}\)
Refractometric Brix \({ }^{\circ}\)
\begin{tabular}{ll}
17.63 & 17.87 \\
18.01 & 19.50 \\
17.56 & 17.73 \\
& \\
17.01 & 17.70 \\
18.22 & 18.96 \\
17.55 & 18.21 \\
17.90 & 19.36 \\
18.27 & 20.08
\end{tabular}
17.93
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{OF WETER IN COIJEN SYRUP.} \\
\hline DISTIJJATION METHODS:- & B. Pt. of LIQUTD & \[
\frac{\mathrm{PBR} \mathrm{CE}}{4 \mathrm{HS}}
\] & \[
\frac{\text { TATER }}{6 \mathrm{HRS}}
\] \\
\hline \multicolumn{4}{|l|}{Q.Special apparatus To -2-} \\
\hline Corbon Tetrachloride & . 76 & 16.88 & 17.20 \\
\hline Tetrechlorethylene & 120 & 17.80 & 18.32 \\
\hline Eenzene & 80 & .17.50 & 18.12 \\
\hline Toluene & 11. & 18.06 & 19.30 \\
\hline Xylene & 135-140 & 18.52 & 18.93 \\
\hline \multicolumn{4}{|l|}{10. Special Apparatus No. 3} \\
\hline Carbon Tetrechloride & 76 & 16.71 & 16.80 \\
\hline Tetrachlorethylene & 120 & 18.00 & 18.60 \\
\hline Senzene & 80 & 17.72 & 17.99 \\
\hline Toluene & 110 & 17.22 & 17.54 \\
\hline Xylene & 135-140 & 18.68 & 18.73 \\
\hline
\end{tabular}

QQPARISON OP RESULTS EY VARIOUS HTTHOLS TOR THE DETERATNARION OF
\begin{tabular}{|c|c|}
\hline WEPHOD & SUGAR SOLJIIOH \\
\hline
\end{tabular}

SUCROSE

Known Composition, per cent 40.21

GLUCOSE
LTVULOSE : \(60^{\circ} \mathrm{C}\).
. Vecuam oven: \(60^{\circ} \mathrm{C} .\), 70 cms. vacuum
8 nours heating
40.27
40.68 40.00
2.Steam oven : \(98^{\circ} \mathrm{C} .\),

8 hours heating
40.08
40.41
40.78
3. Refractometric

Brix, \(20^{\circ} \mathrm{C}\).
40.22
41.15
40.75
4.Distillation-Dean \& Stark apparatusToluene: 4 hours -ditto- : 8 hours 37.35 40.15 38.15
39.70
40.50
39.80

DETERTINATION OF GATER BY THE DISTILLATION WETHOD.
Advantages of the method :- These may be summarised as follows:a. The water is estimated directly.
b. There may be considerable saving of time, depending on the sample under test.
c. There is little opportunity for oxidation to occur.
d. A much larger quantity of the sample can be taken, thus reducing the error due to a large multiplier.
e. In the use of chlorinated hydrocarbons as distilling liquids the fire risk is eliminated, and since the sample usually floata on the surface of these liquids there is less risk of deconposition by local superheating.
f. The water is measured free from other volatile substances unless these are soluble in water.

\section*{Disauvantages:-}
a.There is often great difficuity in getting all the water to distil over.
b. At the temperatare necessarily used there is danger of decomposition of thermally sensitive substances.
c. Inflammable liquids introduce considerable risk of fire.
d. Several of the liquids commonly used are dangerously toxic.
e. Water may cling very tenaciously to the glass surfaces.
f. In some estimations much "bumping" of solutions is met with. g. The actual temperature used requires very careful regulation.
h. The cleaning and drying of the apparatus is troublesome.
i. The water may disperse through the immiscible liquid ; there is also often a "hanging" drop at the meniscus line.
j. With glass-jointed apparatus (the use of which is essential), there is sometimes trouble due to the joints "freezing" with viscous or sticky samples.
y. In washing down the last traces of water, there is danger of the adhering droplets being washed back into the flask and not into the trap.

Precautions necessary for the distillation method for water :-
1. The use of glass-jointed apparatus is essential.
2. The amounts of sample and liquid used should be kept standard.
3. The apparatus should be scrupulously clean,in particular the lower portion of the condensing surface and the water trap.
4. The water trap should be calibrated, and the apparatus correction factor should be checked periodically (by distilling over known weights of water).
5. The condeaser water should be run at room temperature as far as practicable, to aroid condensation of water on the outside of the condenser.
6. The glass surfaces in contact with the water should be made alkaline to give the water less affinity for the glass than toluene has, and thus minimise the adherence of the water to the glass.
7. The use of a spiral oi copper wire serves to move bubbles of either liquid, and also aids in clearing up the meniscus line and bringing it to the correct shape.
8. The final reading should not be taken for at least 15 minutes after the final distillation period.
9. The source of heat should ensure constant conditions to keep the rate of distillation as constant as possible : the degree of superheat should be low enough to minimise "bumping".
10. The immiscible liqid should be saturated with water before use : water is usually slightly soluble in these liquids.
11. The condenser top should be plagged with cotton wool.
12. Washing down of the last traces of water is definitely necessary : a spray tube with several small holes was found to be satisfactory in most cases, but use of a small brush may also be necessary.
13. Lagging of the distillation neck aids distillation considerably.
14. The chlorinated hydrocarbons are prone to decomposition particularly if of technical grade. This can be kept down by standing over borax for some days and re-distilling.
15. Owing to the sugar syrups and solutions e.g. levulose, sticking to the bottom of the flask, serious decomposition may occur by local heating. An attempt to add the solvent first and then weigh on the levalose by difference did not help matters with light liquids as the sugar stuck even more firmig to the flask and the nass was much more difficult to remove or break up than when the solvent was added after the sugar solution.
16. There appears to be much more clinging to the sides of the flask in the tests made with liquids heavier than water. The solids tend to mass on the glass and charring then soon occurs : this seems a disadvantage of this type of apparatus.

Further testing of the Distillation Method for Moisture. Sethod of Heating : - The oil-bath method was found to be extremely messy and difficult to control. In seeking a substitute method of heating various baths were tried, but the best method found was suspension of the flasks over an electrical hot plate without actual contact with the plate. With benzene for example it was found adequate to heat with the flask suspended about three quarter of an inch above the hot plate. By adjusting this distance the rate of distillation is easily controlled. A trial was made with a metal container packed with asbestos wool in which the flask was bedded but this was found to be less satisfactory than naked heating since the heating up of the system then took longer, and the rate of heating was then less easy to control. flat-bottomed flasks were found more convenient for this work than round bottomed flasks, since weighing was easier with the flat base. It wes found possible to heat three flasks at once over a round hot plate of 8 inches diameter, although a tendency was present when using carbon tetrachloride for the water floating on top to drift to the cobler parts of the flask at the edge just off the not plate and this slowed the rate of distillation.
Vacuum Distillation :- tests were made using a vacuum technique with the object of preventing the destruction of the more easily destroyed sugars such as levulose.
Dual purpose apparatus :- Several types of distillation apparatus were devised which could be used with solvents both lighter and heavier than water. This type of apparatus was found useful in enabling a raixture of solvents to be tried with a view to the
production of a non-inflamable liquid of suitable density and boiling-point. ( see Figure 76 ). Techinique of the Listillation Iethod.
1. Weigh 10 gas. of freshly-ignited celite in a counterpoised nicsel 'sugar' basin and transfer to a dry stoppered aistilling plask of 250 ces. capacity, Rlat-bottomed.
2. Oounterpoise flask suc celite on the balance.
3. Pipette into the flask 5 cos. of the sucar solution as quickly as possible, avoiding disturbence, of the celite, and distributing the solution evenly over the celite surface.
4. Hind weight of suger solution added.
5. Add 100 ces. of the chosen solvent from anecuring cylinder and otate the flask carefully untill all adhesions are freed.
6. Wit up the apparatus with the flask bottom 30 mins. Prom the hot plate, fill the trap with solvent through the condenser, and start heating.
7. Jee a copper wire spiral to send down adhering water.

Sith liquids lighter than water the reading can be taken approximately while the apparatus is runing; with liquide hesvier than water the hot plate can easily be removed for a fow minutes while the approximate reading is taken.

It is convenient to have the ineasuring traps aariced in cos. both back and front, and to have the 0.1 cc. 'rings' etched three quarters round the tube circumference.
Observation of the clinging of water droplets to the apparatus i-
This was done by distilling over water from buffer solutions of Erown pil value.


Eigure


Pigure

Figuxe 67.


Various Porme of apparatas for the estimation of
Hater using toluene: Hos. 1 and 2 Ror very small amolants of water, No. 3 with wicie bore for large amounts : all necessitating the use of coris.


Figure 69.


British Standard Specifications for the Dean and Stark Apparatus for the petimation of Fater.


The fate and Warren hpparatus for Moisture Estimation.


Figure 73.
Figare 74


Pigure 75.

migure 76.

Ihielequpe arid Pulde type of Apporatus for Estimation of Water by Distillation: for use with liquids of high density, e. Gi. chlorinated hydrocsrbons:


Ficure 77.
Figure 78 : Special arrangement of stopcociz.


Apperatus for the Istimation of Water by Distillation.

\author{
type for use with \\ Heavy Liquids.
}


Figure 81.

Listillation : apolicable with both light and heavy density Liquids.


Pigure 82.


Figure 83.
```

 SECTION 5.
 METHODS OF AWALYSTS.

```

\section*{Part 13 : The Determination of Water by Chemical Methods.}

Summary of Methods for determining Water : Chemical Methods :-

The Carbide Method :
The Karl Fischer Method :
Conclusions.

\section*{METHODS OF DETERMIMIMG WATER.}
1. Oven Drying :-

Methods :- 1. Alone
2. With sand, pumice,kieselguhr,or other adsorment.
3. In thin films (Rice)
4. With air current (e.g. Spencer oven)

Temperatures :-
1. Below \(100^{\circ} \mathrm{C}\). (usually vacum oven type)
2. At or near \(100^{\circ} \mathrm{C}\). (steam-oven)
3. Above \(100^{\circ} \mathrm{C}\). (Electric ovens : Sinon-Carter oven).

Vgual dishes:-
Glass, porcelain, silica : aluminiam, nickel, silver, and platinum.
2. Fhysical methods :-
1. Specific Gravity botile :- 1. Direct, 2. 0il mixture, 3. 50 per cent solution.
2. Refractometers :- Oxdinary and Dipping types.
D. Hyrometers:- of various scales and types.
4. Viscosimetric methos.
5. Cribical Solution Temperature:- Phase separation of alcohol/ potroleum mixtures.
- Freozing point method (as for milk)
3. Elcotrical Methods :-
1. Blectro-magnetic density.
2. Dielectric constant.
3. Blectrical Resistance.
4. Infra-red heating.
5. High Frequency heating.
©. Dielectric heating.
4. Distillation Methods :-
1. Jsing liquids lighter than water.
2. Jsing liquids heavier than water.
(Normal boiling-point (range-77-120 \({ }^{\circ} \mathrm{C}\). or higher.
5. Chomical methods :-
1. Seleeted chemical reactions :-
1. Fischer s Iodine/ \(\mathrm{SO}_{2}\) method.
2. Acetyl chloride method
3. Acetic anbydride method
4. Benzoic annydride method
5. Naphthyl phosphorus oxychloride method
6. Cinnamyl chloride method
7. Sodiun formate method.
8. Methylene dichloride method.

\section*{WEREODS OF DETMFTHTNG WATRR (Continued).}
5. Cherical Methods (Continued) :-
1. Acetylons methods - from Calcim carbide
2. Hydrogen methods - Sodium annlgam, hydrides, etc.
3. Ammonis - from \(\mathrm{Mgg}_{3} \mathrm{H}_{2}\).
6. Desiccation Mechodis :-
1. Not Evacuated :-
1. No stirxing
2. Air in desiccator stirred
s. Heated above room temperature
4. Desiccator rotated
5. Desiccant atirred or circulated
6. Sample dish rotated
7. Air circulated round closed system by a circulating pump.
G. Samplo stirrod.
9. Beth air in desjecator and desiceant stirred
2. Evacuated :-
1. No stirring
2. Residual air stirred
5. Heated above room temperature
4. Desiccator rntated
*- Desiccant stirred or circulated
- Sam? dish rotated
i. Semple stirred
. Both residail air and desiccant stirred.
3. Methods of Stirring: \(=\)
1. Fan magnet system
2. Mercury seal
3. Gland
4. Circulating pump
7. Absomption Methods :- For Hater Vapour :-
1. Absorption tubes, e.g., Calcium chloride.
2. Volumetric method, using sulphuric acid.

Note :- References for most of these methods will be found in the Bibliography.

\section*{GHEMCAL MEMHODG FOR THE DERERMLNATIOY OF GATER.}

The Carbide fethod :- This method depends on the liberation of acetylene from finely divided calcium carbide by reaction with water. Several ways of recording the end-point of this reaction have been devised :-
1. Whe pressure developed by the evolved acetylene is measured, 2. The volune of acetylene svolved is measured,
3. The loss of weight of the system due to loss of the evolved acetylene is measured,
4. The acetylene evolved is caused to combine chemically, and is then estimated in the compound formed.
5. The rise of temperature caused by the reaction is measured. The values ohtained with this method are influenced by the state of division of the material and by the physical condition of the carbide,for example its state of division and its freshness, this last factor depending largely on the conditions of its storage. Eisher and Tomlinson (1932) state that :-"The reaction is rapid at first, but after a few minutes becomes very slow, and does not actually cease for many hours."

In estimating water in flours by this method it was found that a proportion of the water in flour did not react with the carbide ; this proportion appears to be almost a constant percentage of the flour. A similar correction must be determined for each material tested by the carbide aethod. The above authors claim that the method takes only 20 minutes, and that it is subject to smaller errors than the usual oven methods. Their special container has mann notontod (Rr. Pat. 365,247).

\section*{THE KARL PISCHER METHOD FOR FOISTURE DETERMINATION.}

The simple method of weighing, heating, and weighing again is by no means invariably applicable for determining water since many substances are damaged by heat,since volatile materials other than water are expelled by heat, and since water is obstinately retained even at temperatures well above its boiling point.

In 1935, Dr. Karl Fischer of the Edeleanu Company, Berlin, publiched a description of very useful volunetric method which overcomes these dificiculties (Ancewandte Chemie, 48, 394,1935). This procedure, although originally developed for finding the water content of liquid sulphur dioxide, has proved applicable in a much wider field and is now employed not only to deternine water but many other substances.

The fundamental principle involved is the oxidation of sulphur dioxide by iodine in the presence of water, thus:-
\[
\mathrm{SO}_{2}+\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HI}}{2}
\]

As this is a reversible reaction it is obviously necessary to convert it to an irreversible one by fixing the two acids formed. Fischer achieved this by adding pyridine together with anhydrous methyl alcohol. His reagent thus consists of a solution of iodine and sulphur dioxide in anhydrous pyridine mixed with anhydrous methyl alcohol.

So long as it is kept entirely free from water, Fischer's reagent has a distinct brown colour due to the free iodine it contains. When it cones in contact with water free iodine is used up and the brown colour is replaced by a distinct chrome yellow
colour due to the formation of the stabilised acid products; pyridine hydriodide and anhydro-N-pridinium sulphonic acid :\(\left(\mathrm{SO}_{2}+\mathrm{I}_{2}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{O}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{HI}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}<\mathrm{SO}_{2}\) Brown reagent + Water \(=\) Yellow Derivatives The reagent is run from a burette into a flasis containing the sample, when the colour immediately changes from brown to yeliow. As soon as all the water to be estimated has been used up, the brown colour of free iodine again appears in the flask. No indicator is therefore required. It is necessary to prevent interference from atmospheric or other adventitious moisture during the titration. Small dry narrow-mouthed flasiss are therefore used, and the burette is provided with a \(\mathrm{P}_{2} \mathrm{O}_{5}\) tube. The reagent is so sensitive that the brown iodine colour formed in the flask when titration is complete can be destroyed by breathing gently into the mouth of the rlask when the yellow colour of the spent reagent appears.

One-litre quantities of fischer's reagent are prepired thus :Dissolve 84.7 gms. of resublimed iodine in a mixture of 269 ccs. of pyridine and 667 ces. of synthetic anhydrous methyl alcohol ; cool in ice and cautiously add 64 gms . of liquid sulphur dioxide. The water content of the methyl alcohol and the pyridine should not exceed 0.1 per cent since the presence of as much as 6 gms , of water per litre will completely exhaust the reagent.
The reagent must be standatdised daily to obtain its equivalent in terms of water : this is done against methyl alcohol containing a known amount of water.

Extensive studies of the Fischer method have been made by D. H. Smith \(_{\text {, }}\) W. IV.D.Bryant, and J.Mitchell (Amonia Department, E.I. du Pont de Nemours \& C.O.),(J.A.C.S., 61,2407-2412,1939: 62,1-3,4-6,608-609, 3504-3505,1940: 63, 573-574,1700-1701,2924-2927,2927-2930,1941: and I.E.C., Anal.Ed.,12,390-391,1940). This group of workers think that while the reaction between the reagent and water cannot be definitely expressed stoichiometrically, it can be represented in two steps. In the first step the iodine, sulphur dioxide and pyridine combine with the water to give the \(1: 1\) complex of pyridine and sulphur trioxide, and this thereacts with the mathanol to give the pyridine saly of inethyl sulphuric acid. The second stage is thus :\(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{H}<\mathrm{SO}_{2}+\mathrm{CH}_{3} \mathrm{OH}=\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}<\mathrm{SO}_{4} \cdot \mathrm{CH}_{3}\).

They have applied the method to determine alcoholic hydroxyl, acid anhydrides, organic acids, carbonyl compounds, water in the presence of carbonyl compounds, water of hydration of salts, and the moisture content of native and processed cellulose.

The method requires modifications of treatment for various materials : the degree of fineness of grinding and the time of contact required vary widely, and must be determined for any specific case. One of the greatest adtantages of the Fischer method is the saving of time possible ; thus oven methods require 2 r 6 hours on the average, whereas the Fischer process is completed in \(10-60 \mathrm{~min}-\) utes, depending upon the time the material must remain in contact with the reagent to obtain complete extraction of the water. The estimations are unaffected by fluctuations in barometric
pressure, and only one welghing is required as compared with three for the oven method.

Since there is a deinite change of potential at the end-point the pischer reaction can be observed very satisfactorily by electro. metric iseasureinent. Two inethods have been proposed : the first, by Alry, Griffin, and Wilcox, (I.E.C., Anal.Ed., 12 392,1940), uses one electrode of platinum and one of tungsten, and measures the change of potential with sensitive galvanometer : the second method, by Foulk and Bawden (J.A.O.S., 40,2045-51,1926), applied to the Fischer method by Wermimont and Hopkinson (I.E.C.,Anal.Ed.,15, 272-4,1943), is the'dead-stop' end-point method,involving the use of two platinum electrodes with an impressed voltage across them, the end-point being indicated by a sudden decrease of the current to zero. The current flow may be measured with a galvanometer or with a cathode ray "Magic Eye" electronic tube. This adaptation has been described by wcKinney and Hall, (ibid.,15,460-62,1943), and hos been applied to cereal products by R.H.Fosnot and R.W.Hamen, Cereal Chemistry,22,41,1945).

\section*{REAGINTS AND STANDARDISATION.}

FISCHEA REAGENT :- The original reagent has been modified by the American workers : it is now prepared as below:-

A 1 litre conical flask is placed on a large balance and 700 cos. of purified pyridine placed in it. The flask is tared and gaseous sulphur dioxide is added through a rubber tube until 380 gms. have been added. After cooling the solution is transferred to a 3 -litre container and 1 litre of pyridine and 200 ccs. of methanol are added. The solution is cooled in an ice bath and 500 gms.
of resublirned lodine added slowly with shaking.
Anhydrous aethanol :- Conmercial nethanol is allowed to stand over 'Drierite' Iur severil days. It is then distilled from 'Lrierite' and collecte in a receiver protected from atmospheric noisture by means od 'Drierite'.

Standard later solution:- Pive cos. of distilled water are adaed to 1 litre of anhydrous methanol. This solution is dispensed from an ar sutomatic burette; protected from atmospheric moisture by 'Drinrite' Standardisation:- The following factors are needed:-
1. The relationship between the Fischer solution and the standard water solution is called factor \(E\). This factor when multiplied by the cos. of Fischer reagent gives equivalent volume of standard water solution. E is determined by titrating 15 or 20 ces. of the Fischer reagent to a dead-stop end-point with the water solution,
\[
\mathrm{R}=\frac{\text { cos. standard water solution }}{\text { Ccs. Fischer reagent. }}
\]
2. Constant \(\underline{b}\) gives the correction necessary for the amount of water in the 25 ccs. of methanol used to dissolve the test sample. It is determined by titrating 25 ccs. of the 'arhydrous' methanol with Fischer reagent until the brown iodine colour appears, and then back-titrating with the saandard water solution to a dead-stop end-point. Then \(\underline{b}=\) (ccs. Fischer reagent \(\times \underline{R}\) )-ccs. std.woter soln 3. The water factor I may be defined as the gms. of water per cc. of standard water solution. This factor, multiplied by the net weight of standard water solution gives the weignt of water in the sample.

Storage of the Reagent.


Figure 84.

\section*{THE FIBCHER BETYOD POR MATER DETHELNATION}

\section*{EYPURIM WTAL}

The reagent was prepared and standardised according to the details of Smith and co-workers (loc.cit.). The fresh reagent was found to have a water equivalent equal to about 75 per cent theoretical strength (By Fischer's original equation 1 litre of solution is equal to 7.2 gms. water).

Various solid sugars were tested by the method covering the two vital factors of grain size and time of contact :-
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Sugar & Type & Grain Size & \% Moisture in Vacuum oven- 10 hours et \(70^{\circ} \mathrm{C}\). \\
\hline 1 & Sucrose A & Caster & All throogh 80 mash sieve & 0.09 \\
\hline 2 & B & Std. Gran. (Cane) & \(0.011-0.02^{\prime \prime}\) & 0.11 \\
\hline 3 & C & " & \(0.02^{\prime \prime}-0.03^{\prime \prime}\) & 0.16 \\
\hline 4 & \(\cdots \quad D\) & " & 0.01 - 0.02" & 0.13 \\
\hline 5 & \(\cdots \quad \mathrm{E}\) & \[
\begin{aligned}
& \text { Std. Gran } \\
& \text { (Beet) }
\end{aligned}
\] & 0.02"-0.03" & 0.21 \\
\hline 6 & Dextrose & Anhydrous & 0.003"-0.005" & 0.37 \\
\hline 7 & Levulose & "Lextrose-f & \[
\begin{aligned}
& \text { free " } \\
& 0.0066^{\prime \prime}-0.009^{\prime \prime}
\end{aligned}
\] & 2.39 \\
\hline 8 & Lactose & "Biological & 10.001"-0.003" & 0.46 \\
\hline 9 & Maltose & --- & 0.009"1-0.010" & 0.96 \\
\hline
\end{tabular}

The sucrose samples \(B\) to \(E\) were standard granulated 'cane-sugar' from separate sources. The determinations in the vacuan oven were made on 10 gms . samples for the sucrose, 5 gms . for the lactose, and 2 gus.for ine remaining sugars. The grain sizes were determined by
titration of very alkaline liquids will suffer similar interference. Acids which react with methanol liberating water also interfere e.g. boric acid, but acetic acid does not interfere.

In general it would appear that Fischer's method can be used for foodstuffs since in absence of a catalyst the reaction of lodine with the organic compound is slow in comparison with the reaction with water and sulphur dioxide. Richter (Angew. Chem., 48, 776,1935) sgys " Even with foodstuffs containing a high percentage of sugar such as marmalade the method gives results agreeing with xylol distillation : with substances in coarse division, such as cheese, where occlusion occurs, low results are obtained."

\section*{SUMGFARY OF FISCHER REAGENT PREPARATION DETAILS.} Methanol, pyridine, iodine, and sulphur dioxide used:-
\begin{tabular}{|c|c|c|c|}
\hline Constituent & Original Fischer Reagent & Smith and Bryant Reagent & \[
\begin{aligned}
& \text { Almy, Griffin,\& } \\
& \text { Wilcox's } \\
& \text { Reagent }
\end{aligned}
\] \\
\hline Methyl Alcohol & 1000 ccs. & 667 cos. & 496.3 gms . \\
\hline Pyridine & 158 gms . & 269 ccs. & 313.9 \\
\hline Iodine & 50.8 " & 84.7 gms. & 126.2 \\
\hline Sulphur Dioxide & \(38.4{ }^{\prime \prime}\) & 64 & 63.6 \\
\hline Standard Water Solution & \[
\begin{aligned}
& 5 \text { ccs. in } \\
& 500 \text { ccs. } \\
& \text { Methanol }
\end{aligned}
\] & \begin{tabular}{l}
18 ces. wgd. \\
to 1 litre \\
Methanol
\end{tabular} & 10 gms. water wgd. to 2 litres这ethanol. \\
\hline
\end{tabular}

Caloulated on gms. basis.

The heating of the sample with methanol before the period of contact was given was found to facilitate the dispersion of the materr ial and to help in the complete extraction of the water. The small loss of methanol had no effect on the results.

The Fischer method has been applied to the determination of water in fats, butter, and margarine by Kaufmann and Funke, (Fette u. Seifen, \(44,386-390,1937\) ), to potato starch moistures by Porter and Willits, (J.A.O.A.C., 27,179-194,1944), to soya beans by Krober and Collins ( Oil and Soap, 21, 1-5,1944), to pine oils and terpene solvents by Grotlisch and Burstein ( I.E.C., Anal.Ed., 382,1945), and to Penicillin sodium salt (micro-determinations), by Levy, ifurtaugh, and zosenblatt ( ibid., 17,193,1945). The authors last nemed compare the Fischer method with \(\mathrm{P}_{2} \mathrm{O}_{5}\) vacuup desiccation for 6-9 days with at least 4 micro-balance weighings, which they characterise as long and tedious, open to error by the hygroscopicity of the sample, and giving a large scatter of results in replicate determinations. C.M.Johnson ( ibid., \(17,312,1945\) ) used the method for water in dried food materials such as carrots, peas, and beets, and found reults to be higher than those by the vacuum oven method ( 38 hours at \(70^{\circ} \mathrm{C}\).). The main difficulty with the method lay in the time of contact necessary which he found to vary from 30 minutes to 24 hts . Substances which react with free iodine cannot be dealt with by the fischer method, although if the reaction is slow with iodine a good approximation to the water content can be made by carrying out a rapid determination. Inorganic oxides interfers by forming salts with the acids formed in the titration, and it is likely the

To determine W, 0.03-0.15 gm. portions of water are weighed into dry flasks containing 25 cos. of anhydrous methanol. Fischer reagent is then slowly added to these until excess is present : this excess is at once back-titrated with standard water solution to a dead-stop end-point. Then,
```

V =

```

The final formula for per cent water in a test sample is then :\(\%\) Water \(=(\) Ccs. Fischer reagent \(x \hat{X})-\cos\). Std. Water Soln. \()-\mathrm{b}\) Wx100 Weight of Sample

Frequency of Checking Factors:- The reagent gradually weakens in storage, so that factor 프 must be determined each working day. It is desirable to check factor b for the methanol each day also. The standard water solution remains constant within the limit of experimental error and need only be determined for each batch of standard water solution.

Procadune :- A sample containing \(50-150\) mgms. water is weighed into a dry titration flask, 25 ccs . of methanol added and the mixture brought to the boil in a water-bath. The solution is cooled and Fischer reagent added to about l-2 ccs. excess, shown by the colour change from yellow to brown. Contact time is now allowed to ensure complete extraction of water, and on its expiry the flasi is placed below the std. water burette, the'magic eye' adjusted to the completely open position and the std. water added till the eye closes. To overcome reaction lag the final additions should be slow.

\section*{Estimation of Water by the Karl Fischer Fiethod.}

Eceulte with samples of sucrose of various grades and with pure
Lactose, Maltose, Dextrose, and Levalose.


Sucrose samples \(A\) to \(D\) were of cane origin.

\section*{THE FISCHER WETHOD FOR WATER DETERMINATION}
Estimation of water in solid sugars:-


In the titration of lactose a voluminous white precipitate appeared which increased in bulk as the reagent was added : this was with 5 gms. lactose. Using 0.5 gm . lactose, the lactose first seemed to dissolve and then was reprecipitated leaving a bulky precipitate at the addition of 18.25 ccs. when an end-point appeared. This gave an apparent water percentage of 5.04 which would indicate that the reagent and the sugar are interacting in this case. With levulose the sample dissolved completely in the 10 ces. of methanol used, but the end-point was satisfactory. Maltose also dissolved completely but the end-point was not easily discerned.

Estimation of weter in Golden syrup:-
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Teet } \\
& \text { To. }
\end{aligned}
\] & Gms. syrup Taken & \begin{tabular}{l}
Time \\
OP Contact
\end{tabular} & Temp. Qolntact C. & Per Cent Water \\
\hline 1 & 0.3065 & 10 mins. & 60 & 16.90 \\
\hline 2 & 0.2595 & \(10 \quad *\) & 60 & 16.80 \\
\hline 3 & 0.4410 & 10 & 60 & 16.68 \\
\hline 4 & 0.4790 & 10 & 60 & 16.49 \\
\hline 5 & 0.9275 & 10 & 60 & 17.10 \\
\hline 6 & 0.1750 & 10 & 60 & 16.70 \\
\hline 7 & 0.3180 & 10 & 60 & 16.78 \\
\hline 8 & 0.1975 & 10 & 60 & 16.89 \\
\hline 9 & 0.2260 & 10 & 60 & 16.29 \\
\hline 10 & 0.3040 & 10 & 60 & 16.58 \\
\hline 11 & 0.2117 & 10 & 60 & 17.26 \\
\hline 12 & 0.6630 & 10 & 60 & 16.66 \\
\hline 13 & 0.2018 & 10 & 60 & 16.23 \\
\hline 14 & 0.3510 & 10 & 60 & 16.89 \\
\hline 15 & 0.2190 & 10 & 60 & 17.19 \\
\hline 16 & 0.3310 & 10 & 60 & 17.00 \\
\hline 17 & 0.3665 & 10 & 60 & 16.84 \\
\hline 18 & 0.3428 & 10 & 60 & 16.93 \\
\hline 19 & 0.7880 & 10 & 60 & 16.73 \\
\hline 20 & 0.3962 & 10 & 60 & 16.91 \\
\hline
\end{tabular}

Kemariss.

It was found particularly necessary with golden syrup to give ample time for the reaction to go to completion.

The optimum time
lay between \(\equiv 5\) and 17 minutes.

There was a
general tendency with this method towards low results : the large difference between maximum and minimum results is striking.
larly necessary with

The persistence of the brown shade of the end-point was timed, and the final end-point was taken when the shade persisted for 30 seconds by stop-watch.

\section*{SELECTED BIBLIOGRAPHIES FOR}

TRE DETERMINATION OF WATER AND SOLIDS.

\section*{Classifieation :-}
1. Chemical Methods.
2. The Karl Fischer Method.
3. Distillation Mothods.
4. Oven and Desiccation Methods Comparisons.

6. Electrical Methods.


\section*{BIBLIOGRARHX}

\section*{DFTERMINARIOH OF YOTA YOI,IDS AND LOISTURE} OVEN E HOLS
A.O.A.C. Methous 3rd Ed. 1930 (Wushington D.U.).

Moisture in ager and dugar Products. Drying methods, pumice tone, Sand \(0.363-4\).
A.0.A.O. Methous, 3rd Ed. 1930. Moisture in wheat Flour, p. 165.
Vacuum Nethod (93-100 \({ }^{\circ} \mathrm{C}\) ): Air oven Method \(130^{\circ} \mathrm{C}\).
J. . Anderson Ceresl Chem. Vol. 13. p.437. 1936.

Tacuum oven moisture Determination.
J. F. Anderson, Cereal Chem. Vol. 13, p.437-453, 1936.

Detn. of \(\mathrm{H}_{2} \mathrm{O}\) in Cereals. (iteam heated brass piate in oven).
I. H. Bailey. J.I.T.0., 6. 535, 1914.

Non-uniformity of arying oven temperatures.
 Dry substance determination in Beet yrups and Molasses.
R.J. Brovin, J.I.T.C.. 16, No. 7. \(746-8\), 1924, (I.S.J. 1924, p.500). Determination of the Dry substance of Beet Juices using the Desiccat ion Method.
H.H. Bunzell. Cereal Chen. Vol. 12, 1935, p. 54. Davis and Wise, vereal Chem. 10. 203-12, 1.933.
The Bunzell-Becker Moisture Deterralination Apparatus.
C. W. Glifford. J.I.J.C., 13, 623-31, 1921.

Heating cample to \(110^{\circ}-150^{\circ} \mathrm{C}\) in a current of nitrogen absorbing the evolved material in \(\mathrm{P}_{2} \mathrm{O}_{5}\), dehydrite or \(\mathrm{CaCl}_{2}\).

Davis, Cereal Chem. Vol. 12, 512-517, 1935. Detn. of \(\mathrm{H}_{2} \mathrm{O}\) in Cereals, (Vac. pump forced draught).

RoG. Gustavson and JoA. Pierce, J.I.B.C. 16, Ho. 2, 167-8, 1924. (I.S.J. 1924, p.163).

Decomposition during detn. of dry substance content of Beet Molasses by desiccation.
J.H. Tanning, Cereal Chem. 12, 69-77, 1935.
A. study of temp. chanfes in a small oven when drying flour by the \(130^{\circ} \mathrm{C}\) oven method.
S. Leavitt, J.I.T.C. Vol. 11, p.19. 1910.

Detn. of liosture in Grain. ffect on \(\mathrm{H}_{2} \mathbf{O}\) detn. of beth temperature \(97-101^{\circ} \mathrm{C}\).
C.p. ieacie, J.I. .O., 13, 10. 10, 924-5, 1927, (I.:3.J. Dec. p.701. T921T. The spencer oven for dry substance in juices, syrups, molasses, etc.
C.A. Nelson and G.A. Mulett, J.I. .a. . 12, 40-45, 1920.

The Horsture Content of Vereals.
 Determinetion of weter in syrups, molesses, etc.
C.J. Rodmen, J.I. .O., 13, 1149-50, 1921.

Meating sample to \(110-150^{\circ} \mathrm{C}\) in a currant or nitrogen.
andsteat, cereal Chem. Vo1. 15, p.313-816. 1938.
AT. Plate kethod.
S. Keiner, lektrotech, Z. 46, 2447-8, 1925. Heating semple to \(110-150^{\circ} \mathrm{C}\) in a curcent of nitrogen.
armin seidenbere, J.A.O.A.C., 7 нo. 1. 98-206, 1923. (I.S.J. 194. Jan. 0.54 ).
Dry substance using Pumice.
G. Spencer, J.A.0.A.C., Vol. 8, p.301-31.1, 1925. The quantitative deterraination of water in wheat flour.

Spencer oven Patent (I.s.J. 1924. p.449)
3. Stein. Cereci Chem. Vol. 16, p.481, July 1939. Application of the al. plate method for molsture detn. in a malting lab.
F.M. Feininger, ooh. Brau, 53, 249 (B.1936, 903 ). Use of Ulsch Oven for \(\mathrm{H}_{2} \mathrm{O}\) detn. Reports of Progress appl. chem. Vo1. 21. p.635. 1936.

\section*{BIBLIOGRAPHY.}

\section*{ELECTPICAL METHODS FOR THE DETERMINATION OR MATER.}
1.Anon. :-Chemistry in Conmerce, 327 , Newnes, 1934-5: Hoisture of Malt and Malt products.
2. Brabender G.m.B.H.,:- Industrial Chemist,14,84,1938: Electrical Fethod for Moisture estimation.
3. E. Landt :-Centr. Zuckerind., \(43,24,548,1935:\) I.S.J.,32,1936: Exluan method (electrical) for water.
4.C.B. Limbrick : - Thermionic valve method, U.S.P., \(1,000,545\) : B.Abs. 816,1933.
5.C.H.W.Long : - Water determination by thermionic valve :dielectric Method : B.P.396,098 : B.Abs.816,1933.
6.J.S.Fankin :-J1.Roy.Tech.Co11., 3,212,1934: Mo1sture Content of wood.
7.0.Spengler, W. Matthies, andF. Todt:-Zeit.ver. Deutschen Zuckerind., 84, 241-953,1934:I.S.J.,149,1535: water in Beot slices using a Dielectric constant method.
8. G. Steinhoff :- Exluan process for water using dielectric constant principle :Zeit. fur Spinitusind.57,25,145-6,1934: I.S.J.,270,1935.
9.V.B. Yevstigneyev:- Dielectric constant method for water content of powdery substances,Cereal Chen., 336-53,1939:Am.Chem.Abs., 6771,1933 , under V.B.Evstigneev.

\section*{High Frequency Heating.}
1.D. \({ }^{\text {. Brown : High Frequency Heating, Plastics, May, 1944. }}\)
2. L. Hartshorn :- Principles of High Frequency Heating, Chem.\& Ind., 322,8ept.9,1944.
3.O.F.Hi11 : - Trans.Am.Inst.Chem.Eng., 31,249,1935.
4. M.C.Lacey : - Dielectric Heeting : a survey of developments and applications, Sc1. \& TechF Memos. . Forest Products Research Lab. 24/4,F.F.20,RIS 10 : with bibliography.
5. Letter by Laminates and reply by L.Hartshorn, Cheni. \& Ind., oct. 28, 1944 and Nov. \(18,1944,(p .399)\).
6. H.F.Lion : - J.App.Phys., 14,545,1943.
7. T. C. Wallns : - Infra Red Heating, Eleckev., 370,1944 .
8. A. L. Foberts :- Drying by infra-red heating, Chem.\& Ind., 366,1944.
9. Tomason and Mercer : - Pamphlet on water detn. by high frequency
method.

\section*{B IBI IOGRAPHY}

\section*{DRYERITNATION OF TOTAE SOTID \(A N D\) GOLSTUETS CHEMDOL HEXODS: COETMRIBOHT: \\ DE IOCAT ION KILHOIS.}
L. Bailey et al, Cereal unem. Vol. I. p. 193 (1924). Comparison of \(\overline{Z_{2} O}\) detra, by various methods.
dook, Hopkins andegeddes, Cam. J. Hescarch 11, 264, 1934. Rapid
D.f. Coleman and S.R. Snider, Cereel. Chem. Nov. Vol. 12, p.621, 1935. Determination of moisture in harley nalt. Desaribes 10 methods and comperes thom.

Cook. Hookins the geddes, Oer. ther, Vol. 12, p. 230 (1935). Rapid detormination of maisture in grain. Brovn- Duvel: \(230^{\circ} 0\) and Flectrical hethous.
H.c.3. de Whalley. (I. 3.0, p. 353 , (3ept. 1933). stimation of dissotved molide in suever syrups contg. invert surer.
J.G. DEVies, Trop. Her. 9. No. 7. p. 218-223. 1932. (I.f.J. oct. p.402. 1932). helationship between the hydrometer and the refractometric Brix in final molasses.
H.O.S. de Fhalley. I.S.J. p. 345 cept. 2936. Determinution of the water content of molasses and syrup. Drying methocs compared with refractometer results.

Gyans, Devenport and Bevukes, ind. ne. Chem. Vol. 13. No. 10, oct. 1939 (Reviews previous methods). Detn. of water in peiperinsulated abibes end insulating oil.
J.J. Fox, 0.12 and Colour Trade Journal, 93. 993 and 995, 1937 ( \(n\). heptane mothod). Woisture detominetion by distillation urying and dielectric wethods in the fovsrment lubozatory.
T. T. Pairbrother and
R.J. Wood Ind. Chem. Vol. 6. p.442. Jov. 1930. Repia netermination of moisture. (Distillation, Burton- pitt and Heilan D.K. methods).
Theo Herkovits La. Manter 76, No. 5, 90-91, 1926 (I.s.J. p.443.2926) Comparison of refractometric, urying and distilletion methods.
G. Miadleton, p.416. (Contracts Oven and Distillation Methods B. D. H. improved distiliation apparatus.). hoisture vontent of Drugs.
C.E. Mengels, Cereal. Chem. Vol. 1, 3.27, 1924, Vol. 2. p. 235: 1925 Bumary of work on water determination in cergels by A.O.A. .
Q.t. . Lengels, Coreal Chem. Vol. 1, p.27, 1924, Vo1. 2, p.235, 1925. ummery of work on viater determination in ceres?s by a.0.A.C.


Recomenuetions of committee for noisture determination in cereals. Cerecil Chen. p.25?, Vol. IT. liay, 1925.
D.A. joleman, Cereal Ohem. Voz. III. Julj, 1926. Report oi committee on methoas of anclysis A.O.A.C.
3.B. horison, cereal Diem. Vol. 3. p.323. 1.926. whe determanation of water in flour: a reviev of recent work.

Max chnel2er J.A.0.A.O..9, No. 2, 256-165, 1926. (I.O.J. p.443.1926)
 H. Snder and getty cullivan J.I.P.O., Vol. 16, No. 7. p.74l, July.

 Nov. 5924. Detn. of \(\Pi_{2} \mathrm{O}\) in wheat and flour Pert II.
gith end yitchel1, J.I. .0. Vol. 17: pp. 180-132, 1925.
A.O.A.C. Melhods 3ra Fd. 1950 (lashincton D.C.) irain and stock Fed wethous. Drying without heat (over \(\mathrm{H}_{2} \mathrm{SO}_{4}\) ) p. 273 .
Baker's work on the affeats on moissure, (drying over \(\mathrm{P}_{2} \mathrm{O}_{5}\) p.205). J. Chem. Soa. 91, 1362 (1907): 101, 2239 (1912): 121. 568 (1922). Ibid. G. Howak and O. Friders. Tages 3tg. Bran. 9 Hay, 1936, Bran. Natit 26. 23, 1936. Reports of progess of aplica ohem. p.635 (1936). Vac. des. ueing \(\mathrm{P}_{2} \mathrm{O}_{5}\) :epparent \(\mathrm{H}_{2} \mathrm{O}=1.44\) times \(\mathrm{H}_{2} \mathrm{O}\) by vac. method.
(2. P. Smith, Dehydration stuaies using anhydrous magresium perchlorate Smith Hethod for humiaification in destocators. Br. Ohem. Abs. B.. 5.578. (2935).

Frank J. Zink, J.I.E.C. Anal. Ed. Vol. 7. No. 6, p.442, 1935. Stirring air vithin desicoators.

\section*{BIBLIOG位?HY}

\section*{ \\ MIMDIXIEOUS.}
A.O.A.C. Methods 3rd Pd. 1930 (Wushington D.C.). olias in milk. 0.214.
A.O.A.C. Methods \(3 \mathrm{rd} \mathrm{Fd}. \mathrm{1930}, \mathrm{10.363}\)
moisture in sugars and suesar products. preperation of samples.
En Adickes (with W. Brunnert and 0. Lucker \({ }_{2}\) )Ber. 63B. 2753-60 (1930) Br . Chem. Abs. Vol. 25 0.1796, (1931).
Preparation of anhydrous alcohol and the detn. and estn. of vater in alcohol.
H.K. Alber; Mikrochem., 25, 47-56, 167-81, (1.930), inalyst 64, p.630, Aug. 19391.
Pyrex glass tends to accumulato elgotriad charges.
B.Arthangel'skij : - Spirto vodochnaya Prom.,14, No.14,14-16,1937 : Chen.tentr., II., \(3681-2,1937:\) Br.Chem Abs., \(53,6200,1939\).
Determination of water in Alcohol.
I.R. B1shop, J. Inst. Brewing, 40, 110. 3, po.42-44 (1934) through
 magnetic method of detg. sp, gr.
C.A. Brovne, J.I.T.C. 14, 712, 1922. Hygroscopicity of various Garoohydrates.
Bouyougos J.am.a.e. 17, 203-6 (3933) Br. Ohem. Abs. B.p. 823 (1938) Waporating water with burning aloohol: applita to sendes eto.
W. Narrier J.I.R.C. 13. 432 (1921). Theory of Atmospheric Eveporation. J.H. Dit tmar, J.I.T.O. p.333, Vol. 27, No. 3., 1935. Hygroscopicity of sugars and sugar mixtures.
Dolch, pochmulier, and Devid, Oher appar. XVI, 13-14, p.137-9 and 151-3 via Industrial ohemist may 1930, Vol. 6, p.216 (critical temp. c of solution method). Rapid and xact Determination of hoisture in technical products.
T.H. Fairbrother Ind. Shem. april, Vol.7, p. 169, 1931 . iritioal solution temp. method, recommends isopropyl alcohol und benzene.
T. Hendon Ta Revue Agricole, Nburitius, No. 71, p.28, (2933). comparison of golids by spinde and Refractometer.
F. Hayos and . . Hedley Afr. uqar fechnologists ann. Meeting (I. .J. D.185 may. 1932.) Determination of the Density of Molasses.
T. F.G. Hepourn. Vol. I D. Chomistry in Comerce articles. The Determination of hoisture content.
J.A.O.A.O. 19, pp.399-400. 1936. (I.3.J. June, 1937. p.231). ineport on Refractometric method of determining dry substance.

Dean O. Jeackson Reports of H. H . R. assoc. p.171-173, 1992.
ubstituting the Rerractometor por the Brix Rydrometer.
A. o. Kulman, Zavod. Jab. 7, 1436-7, 1938, Br, Ghem. Abs. B.p.450. 1939 Rania Determination of wets.
hacara, analyst A. p.353, 2931, Correotion for Invert-sugar on solids by Refractomet er.

Mikulina and others, Br. Chem. Abs. p. 330, 1938. The cryohydric metröd is as accurate as distillation with \(\mathrm{O}_{6} \mathrm{H}_{6}\) or \(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{H}_{3}\), or drying in \(\mathbb{N}\).

Mitra and Venkatarama J.9.C.I. 57. 306-310. (1938). Vol. estimation water in ootton. Rellux with \(\mathrm{Ac}_{2} \mathrm{O}\).
D. Mulier I.S.J. p. 635, 1922 (I.\%.J.) Determination of true Brix \({ }^{\circ}\) of motasses by calculation.
A.R. Hees, J.I.T.C. vol. 25, No. 4, p.462, (1933). Relation of Inorganie constituents to sugar content and purity of sugar Beets. (Complete anelyses of Beets).

James H: 0liver, Brewing, p. 264 C. in c. urticles. The use of solids factors.
H. pelug, Ohem, 2tg. 51, 717-18, (1927). Depth. of \(\mathrm{H}_{2} \mathrm{O}\) by heat of hydration.
pidgeon and haess, can. J1. Research 2, 318-26, (1930). Use of the quartz fibre belance in determining water.
Bosenthal, Chem. Ztg. 33, 1259 (1909). Centrifuging method for detn. of water.
E.0. Sawyer, Jr. Facts about Susar 30. No. 6, p. 209-11, (1935). (I. .J. Aus. \(0.315,1935\) ). The Diatom goes to harket.

Shut t and Moloney, Trans. Roy. Soc. van. Vol. 12, series 3, p.101-5. oxidation of flour by drying in air. (Found no appreciable oxidation) C. Sylmans, Archiof.40, II, Ho. 48, p.913-1007. 1932. (I.אi.J. Wivroh. p.116. 29331. Nstimetion of true dry substance content of molasses Prom Brix and sulphate ash content.
A.C. Walker. Bell System Tech. J. 12, 433, (1933). (As in
 Bound water.

Wood and Neal. J. Inst. Pet. Tech. 12, 473-4. (1.925). Determination of water by critical solution in aniline.
E. Y Young, Proc. Trans. Nova scotian Inst. Sod. (17), 248-55 (1930) Z.A. Vol. 25. p. 1796 (1931). Preparation of Absolute Alcohol.
 vellum carbide method iTBeet Pulps: Absolute Alcohol and their sp. gr. (neither satisfactory).

\section*{BIBLIOGRAPHY.}

Chemical Methods for the Determination of mater (See separate 11st for the Karl Fischer Hethod,)
1. Akcrff-Petersen : - Zeit. fur Hygiene,75,236-44,1913 : Carbide method. 2. \(\frac{\text { H. J. Blish and B.D.Hites }:-C e r e a l ~ C h e m ., ~ 7, ~}{\text { applied to flour. } 1930 \text {, Carbide method }}\)
3.W.Boller :- Chem, Ztg., 50,537-8,1926, Carbide method for water,
4. A. Bunce :- Moisture tester for Carbide method, Chemistry in Glass Manufacture, \(\mathrm{p}, 397\), Made by T.Ashworth \& Co, Burn 7 ey. Method depends on measurement of pressure developed by the acetylene.
5.R.P.Bell :- J.C.S., 2903,1932, Water determination by alpha naphthoxy dichlorophosphine.
6.T. Bonwetsch :- Zeit, Zuckerind.czechaslov,Rep. 47,59,192\%,I.S.J., 161, 1925, Carbide method applied to sugar solutions.
7. Broche and Schear : - Brennstoff-Chem. ,13, 281-5, 1932, Ain. Chem. Soc. 26. Calcium hydride Method. 14,408-9,1930, Abs. 5196.
8.M. Chopin :- Compt.Renaus.,209,235-7,1939, Chem.Abs., 34, 8141, 1939 : Ignition of acetylene method.
9. Cripps and Brown :- Analyst, 34,519, Carbjde method.
10.F.H.Campbel1 : - J.S.C.I.,67,1913 : Carbide method.
11. Danne :- Proc. Soc. Chem. Ind. Vic., 1900 : Carbide Method.
12. Dupre :- Analyst, 31,213 : Carbide Method.
13. K. Fischbeck and E.Eckert :- Al. chloride used :HCl formed titrated. Z. Ana1.Chem.,112,305-13,1938:Br. Chem, Abs, A. I, 368, 1938.
14. E.A.Fisher and J.Thomlinson:- J.S.C.I.,51,377T.,1932, Carbide \(\underset{\text { method. }}{\text { mat }}\) 15. Food,11,261,1942 : general discussion.
16. E.Graefe :- Petroleum,1,813-17,1906: Evolution pf hydrogen by Na. 17. F. Heule t -Berichte, \(53,719,1920\) : Determination of water by Al.
18.R.G.Larsen :- I.E,C.An.Ed., 10,195-8,1938, determination of water by Grignard reagents, producing Methane.
10.H.C.MacNeil :- U.S.Dept.Agric., Circ.97,1-8,1912:Carbide Method.
20.0rme Masson :-proc.Chem.Soc.Vic., 1909 : Carbide hethod.
21.I.O.Masson :- J.C.S.,98,851 : 'Carbide Method.
2.T.Radeff :-Archiv.i,wissensch, von prakt. Fierheilkunde,223-242, 1026 : Calcium carbide Method.

2S. 0 berts and Fraser : - J.S.C.I.,197,1910 : Calcium Carbide Method.
24.D.M.Smith and W.M.D.Bryant :- J,A.C.S., A, 841,1935 : Estimation of Organic Liquids using Acetyl Chloride and Pyridine.
25.J. Rosso :- mater determination usingBenzoic Anhydride, J.S.C.I., 51,121T. 1932 :
2. O. Spengler, Matthies, and Todt :-Z.Ver, deut. Zuckerind., 84,941,1934, Carbide method on Beet pulp : found unsatisfactory.
27. G. Toennies and M.Elliott : - J.A.C.S., 57,2136-30,1935: Titration Nethod for water and alcohols by acid-cあtalysed reaction with acetic anhydride in organic media.
28. F. R. Weaver :- Cuprous Acetylide test for water ( \(\mathrm{CaC}_{2}\) and Ammoniacal CuCl : J.A.C.S., 13,2462,1914.
20. …... West : - J.I.E.C.,1916, N0.1, 31-35 : Carbide method on syrups.
30.T. Zerewitinoff :- Zeit.aral.Chem.,50,680,1911 : uses pyriaine soln. ofly methyl iodide and estimates methane liberated.
31. Lindner, Wirth, and Zaunbauer:- Aromatic Phosphorus Halides and their use for the volumetric determination of water : monatsh.,70,1-19,1937 :Chem.Abs.11,901,1925.
32.van Nieuwenberg : - Chem Weekblad,34,217,1937 : see also Mikrochim. Acta, 1,71-74,1937, and Chem.Abs., A, \(260 \& 630,1937\) : use of Cinnamoyl chloride for water determination (titration of HCl 1ib.)
33.0. Notevarp:-2.Anal.Chem., 80,21-56,1930:Br.Chem.Abs.A,560,1930: Calcium Hydride method for water.

\section*{The Karl Fischer Method for the Determination of water.}

 316,1945.
 Substances, 1b1d.,12, 392-396,1940.


E.Eay Fischer :- Original method : Angew. Chem, 48,394-6,1935.
6.C.W.Foulk and A.T.Bawden :- J.A.C.S., 48,2045,1926: Dead-stop endpoint liethod.
7.H. Gilman and A.H.Blatt :-Drying of Alcohol : Organic Syntheses,2nd. Ed., vol.1,pp.219-49,John Wiley, New York,1941.
8.V.E.Gretilisch and H.N.Burstein :- Application to Pine oils and Terpene solvents , I. E.G.An.Ed., 382,1945.
9.J.Hardy, W.D.Bonner, and R.M.Noyes,:- ibid.,751,1946 : Comparison of Fischer method with \(\mathrm{CCl}_{4}\) distillation, etc., on solventiess doublebase powders.
10.C.M.Johnson :- 1bid.,312,1945:application to dried food materials.
11. H. F. Kaufmann and S. Funke :- Effect of humidity on moisture in Soyabeans : Fette und Seifen, 44,386-390,1937. Fats, butter, margarine.
12. R. Kieselbach :- ibid.,726,1946 : improved apparatus.
13.0.A. Krober and F.I.Collins :- Application to Soyabean 0il : 011 and Soap, 21,1-5,1944.
14.G.B.Levy, J.I.Murtaugh, and M.Rosenblatt : - Micro Fischer method : I.E.C.,An.Ed.,193,1.945.
15.C.D.MoKinney and R.T.Hall :- ibid.,15,460-62,1943 : Cathode ray tube for end-point.
16. WBL.Porter and C.0.Willets :- J.A.O.A.C.,27,179,1044: Chem.Abs.,
17.A.H.Prater, C.M.Johnson, M.F.Pool, and G.MoKinney :- Determination of \(\mathrm{SO}_{2}\) in dehydrated foods,I.E.C., An.Ed., 16,153-7,1944.
18. R.M.Reeve :- Food Research, 8,128-36,1943 : Case-hardening and Gelation of dehydrated foods.
10. Richter :- Application of Fischer me thod to foods, Angew. Chem., 48. 776,1935.
20.D.M.Smith, W.M.D.Bryant, J.Mitehell, and E.C.Ashby :The papers by these authors are here grouped together: the authors' nemes are indicated by \(S, B, M\), or Apalso \(H\), for W. Hawkins. S.B.M., J.A.C.S.,1939,61,2407-12, Nature of the reagent.
B.II.S., \(\quad 1940,62,1\), Determination of alcoholic hydroxyl.
\begin{tabular}{|c|c|}
\hline 1. S.B. 2 & 1940,62,4, Determination of organic acids. \\
\hline S.B.M. 2 & 1940,62,608-9, Detn. of acid anhydrides. \\
\hline B.M.S.2 & 1940,62,3504-5,1040,Detn. of water in pre Carbonyl compounds. \\
\hline M.S.B.e. & 1941,63,573, Detn. of Carbonyl compounds. \\
\hline
\end{tabular}
S.B.M. \({ }_{2}\) 1941,63,1700-1, Alternative method for detn. of Acid Anhydrides.

1941,63,2924-27, Detn, of water of hydration of salts.
1941,63,2927-30,Reactions employing inorganic oxides : Oxidation and Reduction reactions.
M., I.E.C., 1940,12,390.91, Detn. of moisture in native and An. Ed. processed cellulose.
S.M. \& W. Hawkins,
M. \(\mathrm{H} \cdot \mathrm{S} .2\)
H.S.M. \({ }_{\text {. }}\)
M. H. 2
M.H.,
M.A. 2

1944,J.A.C.S., 66,715-16,Detn. of allphatic hydroxy amines (amino alcohols).

1944,J.A.C.S., 66,782-4,Detn. of primary + secondary amines.

1944,J.A.C.S., 66,1662-3,Detn. of primary Amines. 1945,J.A.C.S., 67,777,Detn. of Nitriles.

1944,J.A.C.S., 66, 1797,Detn. \(\mathrm{H}_{8} \mathrm{O}\) in \(\mathrm{HCO}_{2} \mathrm{H}\).
1945, J, A.C.S., 67, 161.4, Detn. of unsubstituted acid amides.
21.M.H.Swann :- water in Paints and Varnishes, I.E.C., An.Ed.,799,1946. 22.G. Wernimont and F.J.Hopkinson :- 1bid.,15, \(272,1943:\) Dead-stop endpoint.
23.F.W.Zerban and L. Sattler: - Water In Sugar Solns.:ibid., 138,1946. 24. A. Zimmerman:-Fette u.Seifen, 46,446,1939,Am.Chem Abs., \(34,4015,1940\), Iists substances analysable by Fischer's Method.

\section*{BIBLIOGRAPHY}

\section*{DISTILLATION HETHODS FOR THE DETERMINATION OF WATER.}
1. C.A.Allen and i.A.Jacobs :- Water in Petroleun products,
2.C.Arragon :- Analysis of Spices,Schweiz. Apoth. Ztg.,58,220,2915: Chem Abs., \(0,1945,1915\).
S.Alexander,H.E. Use of \(\mathrm{CCl}_{4}\) : I.E.C.,An.Ed., 8, 314, 1936.
4. C.Aschmann and J.P.Arend:- Water in Butter and other fats, Chey.2te., \(30,953,1906\) : Analyst, 1307.
E.A.S.I.M. Standards,Part II., 1933 Non-metallic materials :
 A.S.T.M., D158-28.
6.A.J.Bailey: - I.E.C.,An.Ed.,9,568-9,1937 : I.S.J., 514,1938
7.C. Bakker and A.J.Stunhauer : - Water in Foods and Soices, Chem.
e. B. Bnlowski and E.Treszczowicz:- Przemysl Chem., 2\%,259,1938: Br. Chem Abs., 14, 1939 : 115, 1938. (Azeotropic method for organic 1fquids).
O.C. P. Barber :- Uses Sulphonated oils, paraffin, toluone, gesoline, Xylenol and benzene.J.Soc Leather Trades Chem., 3,206,1919.
10. \(\frac{\text { Beckel, Sharp, and Miner :- Special apparatus, I. F.C., An. Ed., }}{425,183 .}\)
11. Besson, A.A. :- Petroleum spirit on cheese and Soap: Schwoiz.A Apothe 2tg., 55,69, 1917.
12.G.I.Bidwell and W.F.Sterling :- I.E.C., 17,147,1925. Improved precision traps.
13. J.R.BIythe:- J.Soc. Leather Trades Chem. Sulphomated 011 s 3,101,1919.
14.型.H.Boller: - Chem. Ztg.,52,721,1928. Using hydrocarbons.
15. Brown and Duvel : - Water Estimation by distillation with oil : t.S. Patent No. 848,616 , Warch \(26,1807\).
16.H.W.Galderwood and R.J.P1echowski, I.E.C., An.Ed., \(0,620,1937\) : Discussion of technique.
1\%. y . Clacher : - New method for water determination:I. S.J., 126,1914. 1e.D.A.Coleman and E.G.Goerner: - Brown-Duvel method, Bulletin 15\% , U.S.Department of Agriculture, 1926.
 20. K.M.Cone and L.H.Davis :-ibid., \(9,219,1937\) :Tobacco. 21.A.V.do Couto:- Chimica Industria (Italy), 3,462,1928:0il and tar. 22.E.W.Dean and D.D.Stark:- I.E.C..,12,486,1920 : Special receiver tube : extensive bibliography.
 22.B. W. Dean : \(=\) I.E.C., 10,823, 1918. F.G.Dedlow and D.T.Smith : - ibid., 18, 858,1926 : vacum distillation 2a.De Louriero, J.A.,:- J.Assoc. Official Agric. Chem., 21,645,1938: Improvements in technique.

 Tater in wood preservatives.
20. H.David : - Perchlorethylene Distillation, Centr. Zackerind., 4An, 1036: I.S.J.,191, 1937. Application to Sugar products. S0.A.Dogbomont :- Ann. Zymol.s 3,72, 1036 : Tolueno distillation mothod : see Reports of Progress of Appl. Chem.,635, 1936.
31. J. H . Evans and H.R.Fetzer : - I. I.C.,An.Ed., 13, 3E5, 1941. 32. Frats and 0ils:- Standard methods of Analysis, I.E.C., 18,1348, 1026 : See also Lefax Edition, A. Chem. Soc., and Am. 0 il Chem. Soc. 36. स. Z. Feder : - Nahr. Genuss., 37, 265-78, 1919 : Hater in sausages. 34.w.R.Fetzer, J.W.Evans, and J.B. Longenecker, I.E.C., An. Ed., 5, 81, I.B. Improved method of dispersion. 35. T. Folpmex : - Chem. Heekblad., \(13,14,1916\) : Toluene, benzene, and xyiene on spics.
36. F.C.Fuchs : - Eng. Wining J., 106,357,1918 : Benzene method for finorrl oils : Chen. Abs.,12, 2455, 1818.
31. Ib.Grafe : - Braunkohle.5, 581, 1906 : application to lignites. 35.ayay, C.今.,-2. Angew. Chem., 21,890,1908 : vartous substances. 5. Gra, C.E. : Wator in Butter, U.S. Dept. of Agric., Bureau of Antmal Industry, Circular 100.
40.H.Hart : Water in Soap, I, E.C. \(10,598,1918\).
41. J.F.Hoffmann:- Z.Angew.Chem., 21,2095,1508: Resune of literature : anrifcation to Fops.

4e. K.d.Holtappel:-Pharm. T1jdschr. Nederland Inaio : x, 247-61,1924: Detillation of foods using xylene.
43. L. F.Hovt and P.C.Clark: - Soap, 7, \(25,1931:\) Bidvell and Sterling

A.J.M.Jones and T.McLachlan:-Analyst, \(52,383-7,1527\) : Toluene used.

Ab. W. Kingman :- I.E.C. \(18,93,1926\) : Tetrachlomethano method used for liquia glues and fats.

A\%. I. Van der Iinden : - with H. Kauffmann and F. Letstra, Archief. Suikerind. Applied to molasses analysis, xyleno proferred. \(26,951,1417\).
4r. U. I. Lindfors: - Distillation method, I.S.J., S60, 19es.
ab. Lunain : Using tetrachlorethylene in special apparatus : Chem. Ztg.,55,762,1331: Z. Ver. Deut. Zuckerind., 8\%, 330,1937.
50. C. Wal and E. Rheinberger:- Water in cheese, Nahr. Gennasm. 24,125 , 112: ChomoAbs.,6, S131,1612.

SL. Whanheimer : Extraction of coal by a hygroscopic liquid with subsequent determination of water in this:I.E.C.An. Ed.I, 3, 1929.
 with desiccation and refractometric methods.

5S. J. Marcusson :-Mitt. Kgl., Material Prufungssant Gross-Lichterfelde Togt, 2, 48, 1804: \(23,58,1905:\) 2. Angew. Chom, 18, 744,1005:011s, fats and soaps using xylene and benzene. See also Die Untersuchung der Fette und 0le, Dritie auflage, Wilhelm Knappe, Halle, 1927.

56 .A.E. Hyhill : -Gas J. \(150,21,1820:\) Special apparatus: coals with benzene, toluene, xylene.
56.
 011s, and Soans preforred benzene.
\(5 \%\) P. F.prutzman : Distillatoontest for water in petroleum : Chem. Abse,6,927,1912 Californian Derrick, 3,5,1910.
\(50 \cdot\) Pritzker and Jungkumz : - Chem. \(2 \mathrm{tg} \cdot, 50,962,1926: 1 . \mathrm{S} . \mathrm{J} ., 280,192 \%:\) Xylene: turbid distillate centrifuged:internally suspended cooler.

E9.E.W.Rice :- I.E.C.,21,31,1929 : Use of celite and sodium oxalate as dispersing media.

60 . Rogers :- Bur. Chem. Bull. 137,172, 1910 : Leather with toluene. 61. R. M.Reed :-011 and Soap, \(9,67,1932\) : Bidwell/sterling method on essential oils using toluene.
62.S.S.Sadtler :- I. F.C.,2,66,1910 : Benzene for cheese \& egg albumen.
63.M.Schneller : -J.A.O.A.C.,156,1926: I.S.J., 443,1:26 :Dean \& Stark method using toluene on sugar produsts: not considered a good method since it needed much time, and the end-point was not sharp.
64.A.Scholl and R.Strohecker :- Z. Nahr.Genussm., 32,493,1916: Chem. Abs.11,854,1917.
65.C.G.Schwalbe :- Z.Angew.Chem.,21,2311,1908: water in cellulose products : See also ibid.,125,1919 and Chem.Abs.3,406,1909, and 13,3315,1919.
66.
E.Senger : - Water in tar by distillation : Gasbel. 45,841,1902 : J.S.C.I.,21,1475,1902.

6\%.H.E.Sindall :- J.A.O.A.C., 2,197,1917 : kerosene on spices. ibid.,3,427-8, 1920 :Chem.Abs.,11,1212,1917.
68.
W.Spalteholz : - Water in tar : Chem. Weekblad,15,1546,1918 : Chem. \(\overline{\mathrm{Abs}}, 13,1785,1919\).
69. Spiehl-Striemann :- Refluxing with high-boiling hydrocarbons : Z.Angew.Chem. 40,464-6, 1927 .
70. Tate and Warren :- Water determination using n.-Heptane : Analyst, 61,367,1936. Special apparatus.
r7.G.Testoni :- Staz. sper. Agr.Ital.,37,366: Chem. Zentr.,2,75,562. Application to sugar molasses.
1904.
72. E. Thielepape and A.Fulde :- Use of Perchlorethylene on sugar products : Zeit. Wirtsch.Zuckerind., 87,303-342,1937 : I.S.J., 401,1937.
73. W. Thorner : - Z.Angew. Chem., 21,148, 1908 :Application to foods.
74. R.B.Trusler : - I.E.C.,An.Ed., 12,509,1940 : Soaps, benzene, toluene, xylene.
75. Tucker and Burke :- Application to grain products : Cereal Chem.. vol.13,378,1936.
76.
L. Ubbelohde :- Handbuch der 0le und Fette, 1, 189,1408.
77.A.Urich : - Rapid method for moisture in bagasse, I.S.J., 80,1913.
\%. S. Mama and T. Woshitaka : - J. Soc. Chem Ind. (Japan), 30,356,1v27: Toctied Norman s apparatus: fo und xylene preferable to benzene.

\section*{}
\%.G. . Gxiffths : - I. E.C.,An. Ed., 394,1938 : Levelling device for man and Stark method to avold parallax:oil-soluble dye at meniscus
 150,
P.F. H.J.

240lt, and Callow: - Hature,755, 1941: special apparatus :benzene.
a. Langeland and ratt :- I.E.C.,An.Ed., 400,1936 : Improved moisture Frap : tetrachlorethylone.
O...W.LIndsay : - 101d., 69, 1946 : Trap for snall anounts of water ratne perchlorethylene. A.G.
o4. Lownes :- Mature, 1 tr, 594, 1041 : Dotermination of water in animal ardplant materials : uses xylol with an clectsic heater.
 aroeratus using toluene with electric heating.
Hfigleton, G., : - Tmproved B.D. H. form of apparatus, chemistry in Comerce, vol.1,p.41e, Nevnes, 1034-35.
W. Wrecenc, F. S. . and Simons, A., : - Nature, 149,170,1942 : Proc. Phys. Soc.,52,480,1940: Freezing method using solid \(\mathrm{CO}_{2}\) : equilibrium wator vapour pressure measured.
88. L.G.G. Warne, : -lature, 148,756,1941 : Dean \& Stark method using xylol and toluene : latter preferred.
89. J. Fardy, W. M. Bonner, and R.M. Noyes : - Water in solventless doublewith desiccation over \(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Karl}\) Fischer method, and an oven method.
80. C. R. Churchward :- J.Proc.Austral.Chem Inst., \(10,00 \mathrm{~B}, 1943: 111,118\), 1943, Distillation using petroleum fractions of b.pt. \(105-1100^{\circ} \mathrm{C}\). See, Foods, E.B.Hughes, Reportos on progress of Appl. Chem., 405,1943.
91. F.R.Johnston :- Canad.Chem. 27,100,1y43: B.abstracts,III,131,1943: Uses chloroform with a specially narrow collecting tube.
Main Lists of references:- 1.Hoffmann,1908: 2. Dean and Stark, 1920:
3.Cleland and Fetzer;1936: 4.Scott's Standard hethods of Chemical

Analysis,1939, vol.II.,p. 1345 : 5.Browne \& Zerban, Sugar Analysis,1941.```

