A THESIS

Topics in the Chemistry of Niobium and Tantalum Pentafluorides and other Higher Halides

Submitted to the University of Glasgow by J. C. Fuggle B.A. in part fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science

Work presented in this thesis is the result of research carried out by the author, in the Chemistry Department of the University of Glasgow, between October 1968 and May 1971, except where specific reference is made to other publications.

ProQuest Number: 11012000

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11012000

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

This thesis is dedicated to all those who have played a part in my education and in particular to my parents, whose share in the work involved was greatest, and probably most arduous.

"Ad apris ki bien conuist ahan"

Song of Roland (13th

"The converse is also true." - Ph.D student

GLASCOW 1971

I gratefully record my obligation to my supervisors, Professor D. W. A. Sharp and Dr. J. M. Winfield for their encouragement, advice, tolerance, and patience during the course of my work.

To my colleagues in the Chemistry Department, and in particular to Dr. A. P. Lane, J. Dunsmuir, and I.Forrest I would like to express my gratitude for many helpful and stimulating discussions during the last three years. I am also grateful to the University of Strathclyde, and Dr. D. Adams of the University of Leicester for allowing me use of their Raman Spectrometers, to the technical staff of the University of Glastow Chemistry Department who built some of my apparatus, and to Miss M. McCartney who proofread most of this thesis. Summary

Research presented in this thesis falls into four areas.

1) Vibrational spectra of pentafluorides.

2) Preparation and spectra of NbF₅ and TaF₅ complexed with Lewis bases.

3) Preparation and some properties of some Nb, and Ta (V) fluoride-halides and pseudohalides.

4) $93_{\rm Nb}$ n.q.r. spectra of some compounds derived from NbF₅.

 93 Nb n.q.r. spectra of NbF₅ and vibrational spectra of NbF₅ and TaF₅ are interpreted in terms of a very small deviation from C_{4v} symmetry in the tetrameric molecules of the solid state. I.R. spectra suggest that NbF₅, and TaF₅ are polymeric in the liquid state up to at least 150°C, but that the Lewis acid-base complexes formed by reaction of NbF₅, or TaF₅ with a series of oxygen, and nitrogen donor molecules contain no bridging fluorine atoms. Assignment of vibrational frequencies associated with the coordinated Lewis bases is almost complete. Vibrational and ⁹³Nb n.q.r. spectral data of 1:2 complexes of NbF₅, and TaF₅ prove neither the absence or presence of NbF₅⁻ or TaF₅⁻ anions.

Substitutions for F atoms in pentafluorides by NEt₂, Cl, Br, CN, NOS, NCO (O) and (NNe) groups using the reaction of MF₅ or MF₅.OET₂(M= Nb,Ta) with Me₃Si reagents are reported. The products of substitution reactions were investigated by I.R., and Naman spectroscopy and x-ray powder photography. Evidence obtained suggests that the fluoride-dialhylamides are weaker Lewis acids than the parent pentafluorides and consist of fluorine-bridged polymers. Evidence obtained from other mixed halide materials is not sufficient to prove the absence of mixtures of compounds.

An investigation of the use of 93 Nb n.q.r. spectroscopy as an aid to study of some niobium compounds is reported. Resonances observed for NbF₅, NbF₅.2Py, NbF₅.CH₂CLCN, NbF₅.Me₂O, NbF₅.XeF₂, and (NbF₅)₂ XeF₂ are assigned to the possible quadrupole transitions of the 9/2 93 Nb spin system and some conclusions relevant to the structures of the compounds are presented.

- III -

Contents

section	page
I Introduction	I
References	II
Chapter 1; Pentafluorides and their	
Complexes with Lewis Bases.	
1:1 Introduction	13
1:2 Results	21
1:3 Vibrational Spectra and Stereochemistry	
of Metal Pentafluorides	22
1:4 Stereochemistry of 1:1 and 1:2 Complexes	of
Metal Pentahalides in the Solid State	37
1:5 Stereochemistry of Pentafluoride Adducts	
in the Vapour and Liquid State	48
1:6 Some Chemical Aspects of Reactions of	
Pentahalides with Bases and Vibrational	
Spectra of Complexed Bases	51
1:7 Reactions between Niobium and Tantalum	
Pentafluorides and Dialkyl Sulphides and	
Selenides.	84
1:8 Reactions of Pentafluorides with Dialky-	
lamines	<u>ب</u> ع
1:9 Experimental	٤7
References	1C 4

sec.	tion	page
	Chapter 2; Substitution Reactions of	
	Pentafluorides.	
2:1	Introduction	118
2:2	General Considerations	125
2:3	Nitrogen-Metal Fluorine Compounds	135
2:4	Fluoride-Chlorides and Fluoride-Bromides	142
2:5	Other Substitution Reactions	148
2:6	Experimental	151
	Chapter 3; 93Nb n.q.r. Investigations	•
	of some Niobium Compounds.	
3:1	Introduction	167
3:2	Results	185
3:3	Discussion	194
3:4	Experimental	205
	References	207
	Appendices	
AI	Experimental Methods	210
AII	Activity of I.R. & Raman Modes in	
	Pentafluoride Oligomers	217
AII	I Observed Vibrational Spectra, X-ray	
	Powder Photograph, Data	221
AIV	Ratios of Energies of n.g.r. Transitions	
	for the ⁹³ Nb 9/2 Spin System	241
AL V	Successions for Junther Hork	242

.

.

Introduction

The history of investigations of halogens and halides is long and eventful. There can be little doubt that the corrosive, suffocating, greenish-yellow fumes of chlorine must have been known from the thirteenth century by those who made, and used, aqua regia. (1) The recognition of chlorine as an element was bound up with the evolution of the concept of "elements" (2,3) and with bromine, and iodine (established as elements in 1824⁽⁴⁾ and 1813⁽⁵⁾ respectively) it has been recognised as an element from the period at the beginning of the ninteenth century when "chemistry" may be said to have evolved from alchemy. Chlorine, bromine, and iodine may all be isolated by treatment of halides with oxidising agents, but no satisfactory 'chemical' method for isolation of fluorine has been found and only electrolytic methods are extensively used. Although the existence of an element "fluorine" was postulated in 1810⁽⁶⁾ experimental difficulties, largely attributeble to the extreme reactivity of fluorine, delayed its isolation until $188'_{+}(7)$

Many of the binary fluorides were known and recognized before the isolation of fluorine itself and by the end of the first third of the twentieth century, fluorides of most of the non-metallic, and main-group metallic elements, and a number of those of transition metals, were known. Lowever, during, and after the Second Morld War a renewed interact in

- 1 -

fluorine chamistry was rewarded by the discovery of many new binary fluorides, culminating in the spectacular discovery of noble-gas fluorides in 1962^(8,9).

It should not be inferred from the differences in the history of these halogens that either fluorine, or fluorides, are fundamentally different from the other halogens, or halides. The chemistry of the halides is more dependent on the metal, or non-metal, combined with halogen, and its omidation state, than the halogen present (e.g. NoF_5 shows more similarity to $NbCl_5$ than PF_5). The probability of the other atoms and are more electronegative than other halogens and the P-F bond strength is weaker than the corresponding bond strength of the other halogens. This leads to higher reactivity of fluorine, with respect to other halogens, and a greater thermodynamic stability of fluorides with respect to other halides.

It is no coincidence that modern chemistry evolved from alchemy at about the same time that modern methods of scientific glassblowing were developed⁽¹⁰⁾

Use of silicate-based glasses has become almost fundamental in modern experimental chemistry. Fluorine, and many fluorides, react with silicate glasses, either alone, or in the presence of minute amounts of water which act as catalysts

i.e.

 $\frac{\text{NF}_{x}+\text{H}_{2}0 \Rightarrow \text{NOF}_{x-2}}{\text{sio}_{2}+^{4}\text{HF}} \Rightarrow \text{siF}_{4}+2\text{H}_{2}0$

- 2 -

Phosphate glasses are not attached by fluorides, but are not suitable for glass blowing. Although many fluorides, e.g. $WF_6^{(11)}$ do not react with dry glass very small amounts of water, or hydrogen fluoride, catalyse the reaction with glass which itself contains water, both in its surface layers and in the bulk, which can never be entirely removed by degassing.⁽¹²⁾ Free hydrogen fluoride may also be produced by reaction of fluorides with hydrocarbon, and rubber-based greases.

Many higher halides are air, and/or moisture sensitive and dry-box techniques have been developed to handle airsensitive materials. However no dry-boxes are perfect (some are worse than others) and whenever a moisture-sensitive fluoride is used in a dry-box it will inevitably pick up some moisture.

The above remarks suggest that experimental work with higher halides will always be done in conditions that are less than perfect, but that great care should be taken to ensure that water levels are acceptable. It is no insult to early workers in this field to state that some literature work is wrong, or unreliable, because of the possibilities of hydrolysis. Whilst the study of the chemistry of halides is very incomplete many trends in the chemistry of binary fluorides have begun to emerge.

All known hexafluorides, and heptafluorides are monomoric and volctile under vacuum, at room temperature. Pentafluorides

- 3 -

A.J.Edwards

Fig I:1 Structure of NbF5

particularly of heavier elements, usually form fluorine bridged polymers in the colid state, $(13, 1^4)$ thus completing octahedral coordination about the central atom (see figures I: 1,2,). Transition metal tetra-fluorides and trifluorides are not, in general, well characterised, but usually have threedimensional lattices, probably best regarded as an array of ions (e.g. ZrF_{h} , (15) NbF_h (16)).

These changes in structure are reflected in fluoride volatilities. The volatility of a series of metal fluorides increases with increasing valency of the metal. e.g. ReF_4 can be sublimed at 500°C (;7) ReF_5 , ReF_6 and ReF_7 . have the boiling points 221 (19) (by extrapolation) 53.7, and 73.7°C (18) respectively.

There are not sufficient thermodynamic data available to be able to state absolutely what trends are present in transition metal-fluorine bond strengths. There is a regular decrease in the frequency of the a_{1g} stretching mode of transition metal hexafluorides as the metal is changed for metals further to the right of the periodic table. This is not proof that transition-metal-fluorine bond strengths are loss for metals to the right of the periodic table, but the sequence fits in with the known chemical reactivity of hexafluorides. The relative reactivities of hexafluroides with EO, EOF, and Xe demonstrates this order of reactivity (Table I 1)⁽¹¹⁾

Table I 1 Reaction Products of Transition Metal Hexafluorider.

Reacta	unt ⁽ F6	ReF6	OsF6	IrF'6	PtF6
ΗO	n.r.*	NOReF ₆	HOOsF ₆	HOIRF (NO) ₂ IrF ₆	NOPtF ₆ (NO) ₂ PtF ₆
NOF	NCWF 7	(NO) ₂ ReF _S	NOOsF ₇	NOIrF ₆	NOPtF6
	(NO) ₂ WF8		NOOsF6		(NO) ₂ PtF $_{\varepsilon}$
Xe ·	n.r	n.r.	n.r.	n.r.	Xc(PtF ₆) _m

The reactions summarised in table I1 are principally addact or salt formations, or reduction of the transition metal. No systematic studies of halogen exchange reactions have been undertaken.

The transition metal fluorides become progressively more difficult to work with as their volatility decreases. Whilst volatile fluorides may be easily purified by distillation involatile fluorides may not. Further the involatile, lower fluorides of transition metals are insoluble in solvents with which they do not react, and this has so far proved an insurmountable barrier to purification of lower fluorides. The lower transition metal fluorides may be consitive to oxygen, as well as water, and many of the reported lower fluorides are thought to contain large quantities of orde-fluorides $\binom{(11)}{0} = \frac{100F_{0}(16,20)}{0}$ has lattice dimension very simily us $NbO_{2}F^{(21)}$, $HbO_{1.25}F_{1.75}$ and $HbO_{0.99}F_{0.25}^{(22)}$ These experimental problems have probably been at least partially responsible for the lack of studies of lower transition metal fluorides.

The research into the chemistry of MbF_5 , and TaF_5 , presented in this thesis was started with the intention of extending the knowledge of chemistry of transition metal fluorides in the direction of the lower fluorides, with a view of providing a possible basis for later studies of lower fluorides. MbF_5 , and TaF_5 have physical and chemical, properties intermediate between those of MoF_6 , or WF_6 , and ZrF_4 or $\text{HfF}_4^{(11)}$. NbF_5 and TaF_5 were chosen for study because their reactions are not complicated by oxidation, or disproportionation of the metal as Nb, and Ta have a maximum valency of five.

- 7 -

Figure I:3 Structure of HbCl₅

In nature the ores of niobium, and tantalum are normally associated and separation is extremely difficult because of the similarity of their chemical properties. That niobium and tantalum were two different elements was not, at first realised and true understanding of the identities of the elements may be dated to the work of Rose ⁽²³⁾ between 1840 and 1845. However the reports of Berzelius in 1825 ^(24,25) suggest that he prepared nearly pure $K_2 TaF_7$, and $TaCl_5$ and he may well have made TaF_5 . Rose prepared $TaCl_5$, and $K_2 TaF_7$ in 1856 and the vapour densities of NbCl₅ and $TaCl_5$ were first studied in 1866 (27,28)

After the first possible propartions by Berselius other materials which might have been HbF5, or TaF5 were reported throughout the nineteenth century bu their characterisation was not achieved until the early twentieth contury. (29,30)

Niobium, and tantalum pentahalides are, with the possible exception of the iodides, polym ric with bridging halogen atoms (13,31) (fig I 1, I 3). Although seven, and even eight coordination is known for second, and third row transition metal compounds (see e.g. ref. 32,33), it is not common and in this respect these elements are intermediate between the first row metal⁽³⁴⁾ and actinide⁽³⁵⁾ halides, the former having a maximum coordination number of six, and the latter commonly being found with coordination number eight.⁽³⁵⁾ Fluorine is a good ligand and often brings out the highest coordination number of elements, e.g. IF_7 , $^{(36)}$ ReF_7 , $^{(37)}$; $\mathrm{K_2PaF_7}^{(38)}$ In a study of niobium, and tantalum fluorides the possibility of higher coordination numbers should be considered.

This thesis is arranged in three chapters. The first deals mainly with vibrational spectra of the pentafluorides, and their Lewis acid-base complexes. The study of the complexes was started as a training exercise, but it rapidly became clear that a confirmatory study of much of the previous work was necessary. The second chapter deals with 'attempts to substitute other atoms, or groups of atoms, into NbF₅ and TaF₅ and to see if the Lewis acidity, and polymerisation properties of the products isolated were similar to the pertafluorides. Niobium and Tantalum nuclei have large quadrupole moments, which, together with the various exchange reactions undertone

- 9 -

in the compounds investigated make ¹⁹F N.N.R. investigations of these materials very difficult. Chapter 3 deals with investigations into the use of n.q.r. spectrometry as an alternative probe of the nature of these compounds.

- (1) W. Mellor "Treatize on Inorganic and Theoretical Chemistry"Vol II, Longmans, 1922.
- (2) C. W. Scheele, Konig Vetens Akad. Stochholm (1774), 25,89.
- (3) H. Davy, Phil Trans (1810), <u>100</u>, 231.
- (4) A. J. Balard, Ann Chim Phys (1826), <u>32</u>, 337.
- (5) B. Courtois, Ann Chim Phys. (1913), <u>88</u>, 304.
- (6) A. Ampere, Ann Chim Phys (1885), 4, 8.
- (7) H. Moissan, Compt. Rend. (1884), <u>99</u>, 665, 874.
 (1885), <u>100</u>, 272, 1384.
- (8) N. Bartlett, Proc Chem Soc. (1962), 218.
- (9) H. H. Claasen, H. Selig, J. G. Malm, J.A.C.S. (1962), <u>84</u>,3393.
- (10) J. A. Frost, Chem. Brit (1970), <u>6</u>, 529.
- (11) J. H. Canterford, R. Colton "Halides of the Second and Third Row gransition Letals" J. Wiley (1968).
- (12) Handbook of Vacuum Physics. Ed. A.H.J. Beck, Pergamon,Oxyford (1964).
- (13) A. J. Edwards, J.C.S. (1964), 3714.
- (14) A. J. Edwards, G. R. Jones, B. R. Steventon, J.C.S.
 (D) (1967), 462.
- (15) R. D. Burbank, F. N. Bensey, U.S.A.E.C. Report H 1280 (1956).
- (16) F. P. Gortsema, R. Didchenko, Inorg Chem (1965), 4, 182.
- (17) G. B. Hargreaves, R D. Peacock, J.C.S. (1960), 1099
- (18) G. H. Cady, G.B.. Hargreaves, J.J.S. (1961), 1563, 1568.

- 12 -

	- 12 -
(19)	J. G. Malm, H. Selig, J.I.M.C. (1961), 20, 189.
(20)	E. L. Muetterties, J. E. Castle, J.I.N.C. (1961), <u>18</u> ,148.
(21)	E. Ehrlich, F. Plogar, G. Pietzka, Z. Anorg. (1959), 300, 1.
(22)	L. K. Frevel, H. W. Kinn, Acta Bryst, (1956), <u>9</u> , 626.
(23)	H. Rose, Annalen der Physik (1844), <u>63</u> , 317, (1846), <u>69</u> ,
۰.	115, (1853), <u>90</u> , 456.
(24)	J. J. Berzelius, Annalen der Physik (1825), 4, 1,22.
(25)	J. J. Berzelaus, Ann Chim Phys (1825), 29, 295.
(26)	H. Rose, Annalen der Physik (1856), <u>99</u> , 295.
(27)	C. W. Bloomstrand, J. Prackt. Chem. (1866), <u>97</u> , 37.
(28)	M. C. Marignac, Ann Chim. Phys. (1866) 4, 5, 249.
(29)	H. Moissan, Compt Rend, (1901), 133, 20.
(30)	O. Ruff, J. Zedner, E. Schiller, A. Heinzelmann, Chem. Ber.
	(1909), <u>112</u> .
(31)	A. Zalkin, D. E. Sands Acta Cryst, (1958), 11, 615
(32)	M. E. Willians, J. L. Hoard, J.A.C.S. (1941), <u>64</u> , 1139.
(33)	J. L. Hoard, W. J. Martin, M. E. Smith, J. F. Whitney
	J.A.C.S. (1954), <u>76</u> , 3820.
(34)	J. H. Canterford, R. Colton, "Halides of the First Row

- (94) J. H. Canterlord, R. Colton, "Halldes of the First Row Transition Metals" Wiley (1966)
- (35) D. Brown "Halides of the Lanthanides and Actinides" Wiley (1968).
- (36) R. D. Burthank, Acta Cryst 1962, <u>15</u>,1207.
- (37) J. G. Malm, H. Selig, J.I.H.C. (1961), 20, 109.
- (38) D. Srown, S. F. Kettle, A. J. Smith, J.C.S.(A), (1987) 1029.

CHAPTER Í

Pentafluorides and their Complexes with Lewis Bases.

1:1 Introduction

G. N. Lewis ⁽¹⁾ defined a basic substance as one "which has a lone pair of electrons which may be used to complete the stable group of another atom," and an acidic substance as one "which can employ a lone pair from another molecule in completing the stable group of its own atoms." Almost all pentafluorides act as Lewis acids under some circumstances (e.g. $\mathrm{IF}_5^{(2)}$, $\mathrm{BiF}_5^{(3)}$, $\mathrm{PF}_5^{(4)}$, $\mathrm{RuF}_5^{(5)}$, $\mathrm{PaF}_5^{(6)}$. It should, however, be noted that not all of the pentafluorides act as Lewis acids in the original sense; Lewis thought of a stable group of electrons as a closed shell of valence electrons. It is perhaps better to define a Lewis acid as a molecule, with a high electron affinity, capable of forming a bond to a basic molecule by use of a lone pair of the base.

Amongst non-metal pentafluorides the strongest acidity is shown by those of group \overline{V} B, whose acid strength increases along the series PF₅ AsF₅ SbF₅ There is, as yet, insufficient evidence to make a comparison between the Lewis acidity of metal and non-metal pentafluorides.

- 13 -

The reactivity of transition metal pentafluorides increases

from left to right across the periodic table (e.g. $RhF_5(7)$) oxidises CCl4 to give ClF). It is probable that transition metal pentafluorides to the right of the periodic table would be reduced, or otherwise transformed, by all organic bases and studies of their Lewis acidity will be limited to acceptance of fluoride ions from inorganic fluorides (e.g. see refs 5,6). This chapter deals with the products of reaction between the less reactive transition metal pentafluorides, and ethers, thioethers, dialkyl selenides, dimethyl sulphoxide, amines, nitriles, and pyridines. With higher metal halides of reactivity intermediate between NbF5 and RhF5 (e.g. MoCl5, TcF5) all of these bases except nitriles and pyridines are known to break up, giving halogen replacement reactions.(17) Nitriles and pyridines tend to be oxidised by these halides (e.g. see refs. 31, 33, 35). By comparison with other metal pentahalides, niobium, tantalum and molybdenum pentafluorides are comparatively unreactive and give a large number of 1:1 and 1:2 acid base complexes with organic donor molecules. Some of these complexes, along with new complexes prepared in these studies, are shown in Table 1:1:1

T. L. M. LE 1:1:1 10.	ID-33.35 (JOM. LAXES OF NDF5 TaF	5, NOF5		
NbF5 complexes	ref	Taf5 complexes	ref	MoF5 complexes	ef
NbF5.Clie2	(6)	TaF5.OMe2	(6)	MoF5. ONe2	(16)
NbF_{5} , CEt ₂	(6)	TaF5.0Et2	(6)		
NbF5.She2	(6)	TaF5.SMe2	(6)		
NbF5.SEt2	(6)	Taf5.SEt2	(6)		
NbF ₅ • ($C_{A}H_{B}S$) 2	(6)			MoF5. (CH3CN)2	(91)
NbF5. CH3CN*	(12)	TaF5. CH3CN *	(13)	MoF5. CH3CN	lew
NbF ₅ •CI2CLCN	New	TaF5. CH2CLJN	New	MoF5. CH2 CI CN	lew
NbF ₅ CH ₃ CH ₂ CN	New	TaF5. CH3CH2CN	New		
Nbf5. ^{hie2S0}	New	TaF5. Ne2S0	New		
NbF ₅ . (Me2 ^{SO)} 2	(11)	TaF5. (Ne2S0)2	(11)		
NbF5• (Py)2	(01)	TaF5.(Py)2	(10)	MoF5. (Py)2	(91
NbF5. (4Me-Py)2	New	TaF_5 (4Me-Py)2	New		
NbF5.Me2S0.Py	New	TaF5.2Me-Py	New		
NbF5• ^{(VH} 3)2	(12)			MoF5. NH3	16)
NbF ₅ . (NILie2)2	New	TaF5. (NiMe2)2	New	* These complexes were The Ported in the literation	- 0
NbF5. (WHEt2)2	(14)	TaF5. (NIEt2)2	(14)	arter completion of Work.	STI

- 15 -

•

ð

The main aim of the work presented in this chapter was to investigate the vibrational spectra, and relationships between structure and spectra, of miobium, tantalum and molybdenum pentafluorides and their complexes with organic bases. It was also hoped that the vibrational spectra arising from bases coordinated to pentafluorides would give a possible basis for characterisation of mixed halides of miobium, tantalum, and molybdenum by adduct formation. Some space is given in section 1:6 to assignment of these bands.

To show the context in which the chemistry of this chapter should be seen it is necessary to mention some discrepancies between this and previous work.

Dimethyl sulphoxide reacts with many metal halides to break metal-halogen bonds and form metal-oxygen bonds. (18) The halo-alkyl sulphides produced are often unstable except when coordinated to a metal atom, and other products may be difficult to separate. Excess dimethyl sulphoxide is also capable of acting as a donor molecule to the oxyhalides formed e.g. (19) NbCl5+3MepSO-> NbOCl3.2MepSO+HCl+CH2SCH2Cl

Replacement of the methyl groups in Me₂SO by increasingly electronegative groups ⁽²⁰⁾ or coordination of a metal ion to the sulphur atom in Me₂SO ⁽²⁰⁾ leads to an increase in vS=0. Bonding of a metal ion to the oxygen atom of dimethyl sulphonide decreases the S-O bond order and vS=O ⁽²¹⁾ This may be

- 16 -

used to differentiate between sulphur- and oxygen - bonded dimethyl sulphoxide complexes.

In this work, in the absence of a solvent, dimethyl sulphoxide did not react cleanly with NbF₅ or TaF₅. The reaction was very exothermic, and gaseous, and liquid by-products were formed. The reported dimethyl sulphoxide complexes of NbF₅ and TaF₅ were made without a solvent and no analytical data was given. (11) This, and other discrepancies between reported results, and those found here, suggest that NbF₅. (Me₂SO)₂ and TaF₅. (Me₂SO)₂ have not previously been obtained pure. Formulation of the compounds as ionic species (12) (MF₆₇, MF4L₄+) on the basis of conductivity in the molten complexes (11) is not valid because decomposition occurs on melting these complexes.

A minolysis of higher transition metal halides by amines cormonly occurs under mild conditions (22,23,24) Few aminolysis reactions of transition metal fluorides have been reported. However TiF4 and dialkylamines undergo aminolysis (25) and recent attempts to produce the reported adduct WF6 $.(NHMe_2)_2$ (26) have failed because of aminolysis (27) It is likely that further investigation may show more fluorides to give aminolysis. The reported adduct MoF5.NH3 (16) was characterised only by metal analysis (which would be almost identical to that of $MoF_x(NH_2)_{5-x}NH_3[X=0-5]$) and gave a strong broad 1.R. band at 550 cm -1 not found in other 1:1

- 17 -

adducts of MoF5.

In this chapter only reactions of secondary amines are reported. Secondary amines are known to solvolyse two metalchlorine bonds of niobium and tantalum pental chlorides (22,23) e.g. NbCl5+5NHMe2 -> NbCl3.(NMe2).NHMe2 +2NHMeC1

The adducts NbF5 .(NHEt2)2, and TaF5 .(NHEt2)2 have been reported and are reinvestigated here. The formulation of the products of reaction of ethylamines with pentafluorides as 1:2 acid-base complexes was made partly on the basis of l.R. spectra of the products in ethanol and acetone solutions. Such spectra are of dubious value and bands of 3400, 1630 cm⁻¹, dismissed as being due to water absorbed during preparation, might be due to the presence of NH2 Et2⁺ ions formed by aminolysis. $2NbF_5+4Et2NH \rightarrow NbF4.N Et_2 \cdot (Et2NH) + NbF_6 Et_1NH_2^+$ No evidence was presented to prove the absence of amminolysis in the reactions performed.

It has been found that aminolysis of $PF_5^{(28)}$ and $TiCl_4^{(29)}$ by diethylamine occurs more readily than aminolysis by dimetylamine and this may be general.

The reaction

NbX₅+Et₂O \longrightarrow NbX₅.OEt₂ \longrightarrow NbOX₃ + 2EtX (X=Cl,Br) has been reported ⁽³⁰⁾ but it is not clear how easily this reaction occurs. The literature report ⁽³⁰⁾ that NbCl₅.OEt₂ loses ethyl chloride at room temperature does not agree with results presented here. NoCl₅ gives the adduct NoCl₅.(OEt₂ with diethyl ether but in

- 18 -

the presence of a trace of moisture $MoOCl_3(OEt_2)_2$ is formed⁽³¹⁾ (31) A trace of water in the reported NbCl₅CEt₂ may explain discrepancies between the reported work and that presented here.

NbF₅.CEt₂ may be vacuum distilled at $60^{\circ}C$ (9) but WF₆ forms an oxyfluoride with diethyl ether at $0^{\circ}C$ (32) Reactions of this type with other transition metal halides have not been investigated.

The above information suggests that pentachlorides of niobium and tantalum undergo halogen replacement reactions more easily with organic bases than pentafluorides, but data on some reactions are still incomplete, and confused. No halide-replacement reaction have been observed for dialkyl sulphides and selenides, but few investigations have been made.

The ease of reductions of transition metal pentahalides by pyridine show the following trends :- $NbF_5 < NbCl_5 < NbBr_5$ $<NbI_5$, (10,33) $MoCl_5 > NbCl_5 > TaCl_5$ (31,33) The products of these reactions are usually a tetrahalide di-pyridine adduct and a mixture of bipyridyls. The ease of reduction of niobium pentachloride is a matter of some discussion in the literature (33,34) and some comments on this are made in section 1:6

Alkyl cyanides are weaker reducing agents than pyridine but do reduce molybdenum pentachloride. (35) Niobium and tantalua pentafluorides, (12,13) chlorides, (36) and

- 19 -

bromides (36) all give 1:1 adducts with nitriles. In addition a 1:2 adduct, MoF₅ $(CH_3CN)_2$ has been characterised (16) and since work reported here was done, an adduct NbF₅. $(CH_3CN)_2$ was reported but no evidence was guoted.(37)

Since this work was started papers have been published on the 1:1 and 1:2 complexes of niobium and tantalum pentafluorides with ethers, sulphoxides, formamides, and pyridine stating that the 1:1 complexes have C_{4v} symmetry and the 1:2 complexes have a structure with MF6⁻ and MF4L4⁺ ions.^{12,13} No evidence was given to support the C_{4v} structure for 1:1 complexes and the only evidence for ions in the 1:2 complexes was detection of MF6⁻ ions by N.M.R. spectroscopy. The reported compounds were, in general, coloured whilst those prepared here were white or colourless. Nb(\overline{y}) and Ta(\overline{y})are d^o species and their compounds are expected to be white It is possible that reported colourations were due to impurities and that the MF6⁻ ions detected by N.H.R. spectroscopy in solutions of 1:2 complexes were produced by hydrolysis.

The structure of niobium, tantalum, and molybdenum pentafluorides in the liquid state is discussed in section 1:5 Several studies of the vibrational spectra of niobium (38, 39, 40, 41) $_{tantalum}$, (38, 40, 41, 42) and molybdenum (43, 44) pentafluorides have been made but these are not all in agreement, either with each other, or with this work, and they are discussed in section 1:4

1:2 Results

A large amount of vibrational spectral data has been accumulated in these studies. Despite the complexity of the molecules many I.R. and Raman bands can be assigned and it is convenient to divide the data into sections for discussion. Complete lists of observed I.R. and Raman spectra are presented in Appendix 5, along with results from x-ray powder photographs, and mass spectra of some of the compounds. Tables and figures of selected data are presented throughout the discussion section of this chapter.

It is believed that the products obtained from reactions with nitriles, ethers, dimethyl sulphoxide, pyridine, and 4 Methyl pyridine are pure and comprise adducts of 1:1 or 1:2 stiochiometry.

Details of the I.R. spectra of solid, and liquid niobium, and tantalum pentafluorides, Raman spectra of solid niobium and tantalum pentafluoride, and I.R. spectra of solid molybdenum pentafluoride are given in section 1:3.

- 21 -

- 22 -

Since this work was started there have been five publications concerned with the vibrational spectra of solid and liquid pentafluorides of niobium, tantalum and molybdenum (38,40,41,45,44)The sets of experimental data are not all in agreement, either with each other, or with this work. Before discussing the implications of these spectra it seems desirable to discuss the variations in experimental results. Some recorded vibrational spectra of solid NbF5, TaF5, and MoF5, and liquid NbF5 and TaF5 are given in tables 1:3:1 and 1:3:2. I. R. spectra of solid and liquid NbF5 and TaF5 are also shown in figures 1:3:1 a,b,c, and d.

The I.R. spectra of solid niobium, and tantalum, pentafluorides of Preisset al, (38) are in reasonable agreement with the present work except in the region above 600 cm⁻¹, where differences in mulling technique, or reaction with the caesium bromide plates used by Preis may be important. Other differences are of little consequence and are attributed to different interpretation of band shapes and intensities.

The differences between the I.A. spectra of miobium poutafluoride obtained by Boattie et al (40) for a powder sublimed onto a silicon plate cooled to -196° C, and that obtained by this author, are more difficult to explain. It is possible that abs: ences of some bands in the higher regions of this spectrum

^{1:3} Vibrational spectra and storeochemistry of __otal contafluorides

- 24 -

Raman spectra of solid and liquid NbF_5 abd TaF_5 (all frequencies in cm⁻¹, band intensities given by letters or numbers in brackets).

NbF ₅ (s)	NbF ₅ (s)	NbF ₅ (s)	TaF ₅ (s)	TaF ₅ (s)	NbF ₅ (1)	TaF ₅ (L)
(40)	(38)	This work	(40)	Tais work	(40,41)	(40,41)
	.820(3)	м.,				
7 66 vs	7 73 (10)	765 (125)	757vs	756 (120	767s,p	752 v s,p
752w		754 (25)	727m	727 (20)	726w≢	713w
716vs	724 (5)	716 (70)	694ms	697(50)	683m,p	69 ⁰ w,p
668w	669 (2)	673 (5)	671w			
656m		6 56 (30)	646mw			
270ms	266 (6)	267 (50)	273ms	271 (60)	(315w) [*]	+ (312w)
252vw			254w		253m	245 m
238vw			236m	237(20)	226m	213sh
226w			221 vw			
182w			183w		(180) [*]	(184w)
763w	168(1)					
130w	146 (1)		119vw		136w	121w
			106			
*	These bar	ids were not	found by	/ Selig et a	(41)	

+ These bands were not found by Beattie et al (40)

(s) Indicates solids, (L) indicates liquids p= polarised.

. .

•

TABLE 1:3:2

I.R. spectra of Solid Pentafluorides (all frequencies in cm^{-1})

NbF5 (41)	NbF5 (39)	NbF5 This Work	NbF ₅ (41) calc [±]	TaF5 (39)	TaF5 (43)	TaF5 This	MoF5 Work	NoF5 (44)
734vs	•	s97L	749(22)	752s	750m	754ms	763vs	745vs
		721vs 700vs	746(25)			721 vs 698s	736ms 722m	698 v s
688 s		692sh		675s		974s	71 Om	
		672s	662 (27)			667sh	696 vs	
6 61m	6508	660 s		637s	645s,b	94,4ms	650bsh	647vs
514ms			- <u> </u>		•	585vw		
479w	486s,b	4,98s,b	478(28)	507s_b	515s,b	511b,s	510b,m	520m
378vs							я	480w

- 25 -

166m		187ш 138		185ш 135w	167(32) 121 (33)	170sh 132s	185sh 131w	· ·
					205(31)	202vs	20 3m	204 vw
		216s,b	220vs	219m	241 (24)	213sh		
200m	230s	232sh	235vs	242m	255 (30)	235s		246w
	250sh		253vs	280vw	266(29)	255sh		279 m
	307w	310w	310w	305w	269(23)	300m	304w	303vw
			377 vw					320m

Continuation/

Numbers in brackets correspond to mode descriptions as follows Str.(e_u), 27-Nb-Fax Str.(e_u), 2^R-Nb-F-Nb. br. Str.(e_u), 23-Nb-Feq Wag (a_{2u}) , 29,32,33,34-mixed (e_u) , 30-Nb-Fax 22- Nb-F ax Str.(A_{2u}), 25- Nb-F eq Str.(e_u), 26-Nb-Fe q Bend (e_u), 24-Nb-Fax rock (a_{2u}), 31 Nb-Feqbend (e_u). dH

The calculated numbers are presented for comparison and are not meant to imply assignment of observed bands.

- 26 -

(e.g. those at 721 and 700 cm⁻¹- see table 1:3:2) and shifts in some other bands (e.g. the band at 514 cm⁻¹ is 16 cm⁻¹ higher than that found by this author) are due to the use of silicon plates which absorb strongly, and non-uniformly, in the region 450-1300 cm⁻¹. A very strong band at 378 cm⁻¹ is present in Beattie's spectrum of NbF₅ which is absent in the spectra of Preis, and of this author. It is suggested that this peak must be attributed to hydrolysis products.

Figures of the I.R. spectrum of TaF_5 as a nujol mull published in reference (42) show the peaks at approximately 515 and 645 cm⁻¹ to be poorly resolved. The spectrum is otherwise in reasonable agreement with this work and a weak peak at 377cm⁻¹ is again attributed to hydrolysis. Differences between the published I.R. spectra of solid MoF₅ ⁽⁴³⁾, and that of this author are attributed to differences in mulling technique, although a weak band at 480 cm⁻¹ in the published spectra may be due to impurities.

In this work the similarity of I.R. spectra obtained using KBr, AgCl, Si, and Ge windows, and the lack of change in the I.R. spectra of NbF5 heated to 140° with nujol indicate that little or no reaction with window materials, or nujol occurs so long as water and unsaturated hydrocarbon impurities are removed.

Because of experimental difficulties the I.R. spectra of liquid niobium and tantalum pentafluoride could not be obtained
under such rigorously dry conditions as the spectra of solid pentafluorides. Weak peaks, attributed to hydrolysis, and observed at 1020 cm⁻¹ at room temperature disappeared and medium weak bands appeared at approximately 950 cm⁻¹

In preliminary experiments in the present work on the solid spectra of niobium, tantalum and molybdenum penta-fluorides weak peaks were observed at approximately 1020 cm⁻¹ and ascribed to hydrolysis, but there were no changes in the I. R. spectra of other regions. It is concluded that the I.R. spectrum of the liquid pentafluorides is probably not affected by hydrolysis in the region 800 - 400 cm⁻¹

Differences between Raman spectra of niobium and tantalum pentafluorides obtained by this author, and those in the literature (38,40) are almost certainly mainly due to differences in instrumentation. The Raman spectrometer used in reference (41) was fitted with an argon ion laser probably giving 700 m watts of energy at the sample. The Cary 81 used in this work was fitted with a helium-neon laser giving 30-40 m watts of energy at the sample and with these samples no spectra could be obtained when the Raman shift was less than 220 cm.⁻¹ The Raman line reported at 820 cm⁻¹ (38) in NbF₅ may be due to an impurity in the sample used as no band was found, either by this author, or by Beattie et al ⁽⁴⁰⁾ in this region.

The tetrameric ⁽⁴⁵⁾ molecules of solid niobium, tantalum

- 28 -

and molybdenum pontafluorides have D4h symmetry. In the isolated molecule there are sixty six internal modes of vibration of which thirty two are in sixteen degenerate pairs. The modes have the following species and activities:- $6a_{1\sigma}$ (R) + $4a_{2g}$ (i) + $6b_{1g}$ (R) + $5b_{2\sigma}$ (R) + $6e_{g}$ (R) + $2a_{11}$ (i) + $4a_{21}$ (I.R.) + $3b_{11}$ (i) + $4b_{21}$ (i) + $10e_{11}$ (I.R.), (i), (R), and (I.R.) indicate inactive, Raman active, and I.R. active respectively, giving a total of twenty three raman and fourteen I.R. active fundamentals. In the crystals, which have space group $C_{2/m}$ (45) the symmetry of the molecule drops to In this environment all the "g" modes and "u" modes of C2h. the D4h environment are formally Raman and I.R. active respectively. The "e" modes are all split so thirty three Raman and thirty three I.R. bands are formally expected. Because there is only one tetrameric unit per primitive unit cell (45,46) the position is not further.complicated by "factor group" splitting.

For tantalum pentafluoride thirteen I.R. and twelve Raman bands are found, for niobium pentafluoride fifteen I.R. and twelve raman bands are found, and in both cases the poor quality of the I.R. spectra below 400 cm⁻¹ probably conceals more bands (see tables 1:3:1, 2, and figures 1:3:1 a,b) The overall superfluity of I.R. bands, over the number predicted for a D4h tetramer, and the presence of six bands in the region 640-770 where four are predicted $^{(40)}$ suggest that the approximation of D4h symmetry, implied in the simplified vibrational analysis of Beattic et al⁽⁴⁰⁾, is not completely valid, although the overall predicted energies are unlikely to be much affected. Both the experimental vibrational spectra of NbF₅, TaF₅ and MoF₅ and the simple vibrational analysis⁽⁴⁰⁾ of miobium pentafluoride suggest that vibrational spectra of these pentafluorides may be divided into three regions:- a metal-terminal fluorine stretching region ($600-800 \text{ cm}^{-1}$, a metal-bridging fluorine stretching region ($450-550 \text{ cm}^{-1}$) and a metal-fluorine angle deformation region ($50-350 \text{ cm}^{-1}$). The different types of quite different energies and mixing of modes of different types will probably have little effect on their energy.

I.R. bands which can be assigned to metal bridging fluorine stretching modes are found in the I.R. spectra of NbCl₄F, and TaCl₄F, which are tetrameric with fluorine bridges similar to NbF₅ and TaF₅ (45, 47, 48) at 485 and 495 cm⁻¹ respectively. The similarity of the bands of tetrachloride fluorides, and penta-fluorides provides further evidence that these bands are due to metal-fluorine bridging modes and that their energy is not greatly affected by coupling to other modes.

An important consequence of the separation of vibrational spectra of pentafluorides into regions involving different modes is that I.R. spectra may, in certain circumstances, be used as a diagnostic test for the presence of bridging and terminal fluorine atoms. Raman spectra are not so useful because metal fluorides are weak Raman scatterers and the stretching modes of symmetrical M-F-M-bridges are expected to be very weak Raman scatterers. This latter is because on movement of the fluorine

- 30 -

atom the increase in polarisability at one metal atom is matched by a decrease in that of another metal atom and the overall change in molecular polarisability is small.⁽⁴⁰⁾

The structure of liquid pentafluorides has been the subject of some discussion. Polymoric structures have been suggested for niobium and tantalum pentafluorides on the basis of viscosity, (49,50) and Raman⁽⁴⁰⁾ measurements, whilst Raman measurements have also been quoted as evidence that niobium ⁽⁴¹⁾, tantalum (41) and molybdenum ⁽⁴³⁾ pentafluorides are all monomeric with D_{3h} symmetry in the melt. It is the view of this author that Raman spectra can provide little information relevant to this problem.

It is first necessary to consider all the structural possibilities for these pentafluorides in the melt. A selection of the more reasonable structures are shown in figures 1:3:2 a - h.

Of these structures "h" may be ruled out immediately because there are no strong I.R. absorptions in the region 570-620 cm⁻¹ in the liquid spectra where MF_6^- ions are known to absorb strongly, and conductivity measurements suggest that self ionisation of niobium and tantalum pentafluorides is less than 1% ^(49,50)

Group theoretical studies of I.R. and Raman activities indicate that in all the cis, and trans-linked oligoners of MF5 units involving pseudo-octehodral coordination there should be formally active metal-bridging fluorine stretching modes and

- 31 -

e) Infinite "cis" polymer

g) "Frans" polymeric ions (also "cis" version)

b) Dimer

d) Infinite "trans" polymer

f) Heteropolar "trans" polymer (also "cis" version)

h) Simple ions

Figure. 1:3:2(a=h), Possible structures of MF, (M=Mb, Ta, Mo) in the melt.

•=Nb •=F

- 32 -

metal-terminal fluorine stretching modes. (see e.g. Appendix 2)

Niobium, antimony (51), and molybdenum pentafluorides as well as the trans-bridged bismuth pentafluoride (52) and niobium and tantalum tetrachloride fluorides (58) and other bridged fluorides all show an I.R. band attributable to a metalbridging fluorine stretching mode. Only SbF5 (53) gives a Raman band in this region, which may be due to deviation from linearity in the Sb-F-Sb bridging bonds. (54) It is thus not possible to detect bridged species in liquid pentafluorides by Raman spectra alone.

It may be considered proved by induction that in all cases where octahedrally coordinated, five valent, central atoms are linked by fluorine atoms there will be I.R. active modes corresponding to metal-bridging fluorine stretching modes with frequencies approximately 65-75% of the frequencies of central atom - terminal fluorine stretching modes. The spectra of monomeric arsenic, (55) and vanadium (56) pentafluorides suggest that there is no such distribution of I.R. bands in D_{3h} species, although v_{l_1} is at lower frequencies than the totally symmetric stretching modes. In all cases metal-terminal fluorine stretching modes were present in both I.R. and Raman spectra.

The presence of a strong peak in the reported I.R. of liquid MoF_5 , $(^{143})$ at approximately 500 cm², and similar peaks found in liquid MbF_5 and TaF5 in this work (see figs 1:3:1 c, d) is considered indicative of bridging fluorine atoms. The frequencies

of these peaks are too high to be associated with $v_{\rm h}$ of a D_{3h} monomeric species as was previously suggested. ⁽⁴³⁾

The Raman spectra of liquid niobium, tantalum, and molybdenum pentafluorides are different from those of the solids, (40,41,43) and the peaks are broader. This suggests that the tetrameric rings are broken. The greater linewidth of Ramnn bands in the melt could be due to rotational isomorism in the polymers, interactions between oligomeric ions, or a large dispersion of molecular weights in oligomers present. In view of the absence of tetramers in the melt it is unlikely that other cyclic oligomers represent a large proportion of the material present in the molt. It is not possible to tell from vibrational spectra whether the oligomers present in the melt are of cis, or trans configuration, or whether they are ionic or not. Conductivity data (49,50) does not prove the presence of ions because the heteropolar open chain structure (fig 1:3:2f) can act as a conductor by dissociating at the electrode. This conductivity suggests, although not conclusively, that structure "g" is not prodominant unless the ions have a very high molecular weight (\mathbb{N}) 10,000)

The presence of only one detectable resonance in the 19 F[•] N.M.R. spectra of liquid miobium and tantalum pentafluorides is consistent with either fast intermolecular or intramolecular exchange, but the presence of only one line in a mixture of the two suggests a low activation energy for intermolecular exchange It is not possible to gauge the rate of exchange because of

- 33 -

quadrupole broadening of the 19 F resonances observed. $^{(57)}$ In view of the low conductivity of NbF₅ and TaF₅ melts N.M.R. data suggests that the melt contains open-chain species (fig 1:3:2f).

 ${
m MbF}_5$ and ${
m TaF}_5$ are only slightly soluble in solvents with which they do not react irreversibly. Solutions of NbF5 in benzene and tungsten hexafluoride gave no ${
m ^{19}F}$ N.M.R. attributable to niobium fluorides although the tungsten hexafluoride solution was approximately 10% NbF5. The slow rate of reaction of NbF5 with anisole, even in solution, implies a significant activation energy to reaction. This activation energy probably does not arise from steric factors in the anisole and pentafluoride monomers, or open chain oligomers should not show significant activation energies to adjuct formation. The evidence thus suggests that the tetrameric unit is retained in solution at room temperature.

The published I.R. spectra of niobium pentafluoride in the vapour phase at 100-140°C is consistent with the presence of polymers.⁽³⁹⁾ The original interpretation of the spectra seems invalid as the band found at 510 cm⁻¹ is too high to be associated with v_4 of a trigonal bipyramid as suggested. Two bands at 748 and 732 cm⁻¹ were assigned to P, and R branches of v_5 . It is not clear why the Q band should be missing ⁽⁴⁰⁾ or the NbF₅ molecule should have been assumed to have such a small moment of inertia.

Mass spectra of miobium pentafluoride produced no evidence for polymers in the gas phase. However this is not proof that they do not exist. An attempt was made to keep both the heated sample inlet tube and ionisation chamber below 70° C but this may not have been successful. In a comparable mass spectroscopic study of antimony pentafluoride at 25° C the intensities of $\text{Sb}_2 \text{ Fg}^+$ peaks were only 0.44% of those for SbF4^+ (58) It is known from vapour pressure measurements that antimony pentafluoride is polymeric in the gas phase (55) (SbF5)x at 150° , 180° , and $250^{\circ}\text{C} \text{ x=3,2.7}$, and 2 respectively. Breakdown reactions of polymeric cations, e.g. $\text{Nb}2\text{F9}^+ \longrightarrow \text{Nb}\text{F5+Nb}\text{F4}^+$, may be faster than breakdown of neutral species. Negative ion mass spectrometry would be more likely to detect polymeric species.

Three additional, recent publications on the state of niobium, tantalum, and molybdenum pentafluorides in liquid and gaseous phases are worthy of note:-

The observed electron diffraction patterns (59) of niobium pentafluoride are not consistent with either NbF₅ monomers, or NbF₁₀ dimers. The divergence from calculated monomeric diffraction is smallest at high temperatures and the results are consistent with a temperature dependent equilibrium involving at least one type of polymeric molecule.

Magnetic measurements of molybdenum pentafluoride ⁽⁶⁰⁾ as a solid and liquid over a variety of temperatures have shown a discontinuity in magnetic behaviour at the melting point. This indicates that the tetramers of the solid state are not retained in the liquid. The results obtained were not consistent with the presence of monomers in the liquid state

- 35 -

Molecular beam-mass. spectroscopic experiments have detected M₃ fragments above melts of miobium and tantalum pentafluorides.⁽⁶¹⁾ Curiously the proportion of polymeric fragments found above pentafluoride melts increased along the periodic table and pentameric fragments were found above iridium pentafluoride melts. The results are consistent with the presence of open-chain polymers in pentafluoride melts. The absence of fragments higher than trimers of NbF5 and TaF5 does not exclude the possibility of their presence.⁽⁶²⁾

Summary

The vibrational spectra of niobium, tantalum and molybdenum pentafluoride may be satisfactorily divided into three regions, a terminal fluorine-metal stretching region, a bridging fluorinemetal stretching region, and fluorine-metal bending region. The I.R. bands in the bridging fluorine region may be used as a diagnostic test for bridging fluorine atoms. NbF5, TaF5, and MoF5 are thus judged to be polymeric in both liquid and vapour state although the tetrameric structure of the solid is not retained. An open-chain, non-ionic, polymeric structure (see fig 1:3:2f) is consistent with all published information on the liquid NbF5, TaF5 and MoF5 systems.

- 36 -

- 37 -

1:4 Stereochemistry of 1:1 and 1:2 complexes

of Metal Pentahalides in the Solid State.

The possible structures of 1:1 complexes include those shown in figures 1:4:1a,b and c and a large number of structures involving seven and eight coordinate metal atoms linked by bridging halogen atoms.

Figure 1:4:1 Structure of 1:1 pentahalide complexes

• = halogen \bullet = metal L = base.

The 1:1 complexes of niobium, tantalum and molybdenum pentafluorides show no I.R. bands in the region 400-510 cm⁻¹ which suggests that no bridging fluorine atoms are present.

The possible structures for 1:2 pentafluoride-base complexes include those illustrated in figures 1:4:1a,b, as c with some free base incorporated in the lattice, ionic structures containing MF6⁻ and $MF_{L}L_{L}^{++}$ ions, and a variety of structures involving seven

TAFLE	1:4:1		FAC	TOR GROUP ANALYSIS		
KNbF ₆	- ^{-12d} N	ا ⁰ 116	$c_2^{"} \rightarrow c_2^{\prime}$	$c_2 \rightarrow c_{22}$	$c_{2X} \rightarrow c_{2}$	
Mode	Spe	cies	Distorted	Site	Factor	Activities
	u ^l o	D _{4h}	ion 2 _d	Group D2	Group D _{2d}	
	Alg	Alg	ЧI	A	$A_1 + B_1$	R
-	(8)					
2	ដ្ឋ	(Alg	A2	B1	ы	IR R
	(R)	(B ₁ g	Bl	А	Al + Bl	R
ຕ	Flu	(A ₂₁₁	B2	ដែ	ш	IR R
4	1	(Eu	ы	2 2 1 1	۲J	IR R
	(1 R)			(+B3	5 A2	-14
					(+E2	IR R
S	For	(B)	B	A	$A_{I} + B_{I}$	U
	ת 1		ц	(B2)	۲. ۲.	IR R
				(+B3	(A2 (+b2	i IR R
9	F ₉₁₁	{B ₂ "	Iv	Ą	$A_1 + B_1$	64
	2	(E _u	ы	< B2	с л	IR R
		5		(+B3	A2 (+D ₂)	i IR R
C _S NF	y.	- c ₃ ² N	•143	Mode Ĉ _h	Th	s ₆
hode	oh		Th S _k	364 F _{1u} (1R)	Ъ	A _u +E _u (1R)
	Alg		Ag A (3)	5 F ₂₉ (R)	Fg	Ag+Eg (R)
¢1	Г ^а (?		E ₍₁ [E ₍₁ (R)	6 $F_{2_{\rm u}}$ (i)	ц ^С и	$\Lambda_{\rm u}^+ E_{\rm u}$ (13)

- 58 -

•

coordinate metal atoms. No evidence was found for any uncoordinated base in the 1:2 complexes (see section 1:6)

If hexafluormetallate ions are present in these compounds there should be I.R. and raman bands corresponding to those ions. The vibrational spectra of $KHbF_6$, $KTaF_6$ and $KMoF_6$ (63) which have the crystal structure D_{2d}^6 , N^o116, (64,65) and CsTaF6 (42,66)and $C_{sNbF_6}^{(67)}$ which have the crystal structure $C_{3i}^2 \equiv S_6^2$, N°-148 (65,68), have been studied but have never been analysed in the light of a proper factor-group analysis, or the probable optical properties of the compounds. The factor group analysis, performed by the method of Halford, (69) and given in table 1:4:1 for octahedral, and pseudo-octahedral ions present in D_{2d}^3 and C_{3i}^2 crystals has been checked by the method of Adams and Newton. (70) Correlation tables used were those of Wilson et al (71) except for the $C_{2x} \longrightarrow C_2$ correlation of site group D_2 with Factor group D_{2d} which was worked out (The need for this was pointed out by J. Dunsmuir).

The relative size of these splittings is difficult to predict with accuracy, and may not be the same for all modes. The most common order of size of splittings is distortion > site group > factor group but in these cases some modes will be completely unaffected by distortion of the hexafluoro-metallate anion.

A further cause of complications becomes evident in the I.R. spectra. The refractive index of a material changes in the region of an I.R. absorption band. If the mode is associated with a large dipole change, it absorbs very strongly, and may also become what is known as a "strong oscillator (72) these are associated with large changes in refractive index over large frequency ranges. In these ranges large losses of light are caused by scattering, the bands observed are not purely absorption bands, and the observed \mathcal{V} max of an I.R. band is not, necessarily, the true vibrational frequency of the molecule or ion, which tends to be at higher frequencies than \mathcal{V} max. Strong oscillator effects are not observed in dilute systems and may also be allowed for by recording reflectance I.R. spectra. No reflectance, or solution I.R. data for these hexafluoromellate ions is available.

The following bands have been observed in niobium, tantalum, and molybdonum hexafluoride ions:- (all frequencies in cm⁻¹) CsNbF₆ Raman ⁽⁶⁷⁾ 683,s, 562,w, 280,b,m. CsTaF₆ Ruman ⁽⁶⁵⁾ 692,s, 581,w, 270b,m. I.R. ⁽⁴²⁾ 720m, 582vb,asg,vs,480m 245sh,s,232s,220sh,s KNbF₆ I.R. ⁽⁶³⁾ 580s KTaF₆ I.R. ⁽⁶³⁾ 580s KTaF₆ I.R. ⁽⁶³⁾ 580s KMoF₆ I.R. ⁽⁶³⁾ 580s

By comparison with hexafluorides the following bands and activities are expected in isolated octahedral anions: $v_1(R)$ 680-700 cm⁻¹, $v_2(R)$ 550-590 cm⁻¹, $v_5(R)$ 260-300 cm⁻¹, $v_4(I.R.)$ 210-240 cm⁻¹, $v_3(R)$ 560-650 cm⁻¹, $v_6(inactive)$ 100-240 cm⁻¹(motal dependent)

- 40 -

It is unfortunate that only two Raman spectra of these hexafluorometallate ions have been reported, because Raman spectra are not subject to strong oscillator effects and present an easy method to study both site-, and factor-group splitting and the effect of cationic size on the hexafluoride anion frequencies. In the CsNbF6 and CsTaF6 systems ν_5 is the only Raman active band expected to show site group splitting. Although Keller et al only report one Raman band in the region $240-300 \text{ cm}^{-1}$ for CsNbF6⁽⁶⁶⁾ and CsTaF6⁽⁵⁷⁾ their diagrams^(66,6) clearly show the bands at 270-280 cm⁻¹ in CsNbF6, CsTaF6 to be broad and symmetric, consistent with a splitting of about 20 cm⁻¹

The reported I. R. spectrum of $\operatorname{CsTaF_6}^{(42)}$ contains six bands but this author suggests that the published assignments are incorrect. In a $\operatorname{C_{2i}}^2$, $(\operatorname{S_6}^2)$ environment both v_3 and v_4 of TaF6⁻ are split into Au and Eu components. Baum et al assign a very strong band at 580 cm⁻¹, together with medium bands at 720 and 480 cm^{-1} to v_3 stating that anharmonicity may have lifted the degeneracy of the Eu component to give a total of three components. This author would assign the band at 720 cm⁻¹ to nujol, and that at 480 cm⁻¹ to an impurity, or an overtone or combination enhanced by fermi resonance. The site group splitting of v_3 contributes to the asymmetry of the broad band at 580 cm⁻¹

The group of bands at 220,250 cm^{-1} has a total half-band width of about 50 cm^{-1} and probably does not exhibit strong oscillator

- 41 -

effects. Again splitting of the Eu component is discounted by this author and it is suggested that one of the shoulders is due to v-6 which is I.R. active under S₆ symmetry.

The values of \mathcal{V}_3 reported for the potassium hexafluorometallates ⁽⁶³⁾ are even more dubious than that of C_sTaF₆ for, as shown in the factor group analysis, there are three I.R. active components of \mathcal{V}_3 , and no splitting was observed although the ion shows distortions observable by x-ray diffraction ⁽⁶⁴⁾. The band observed must have been greatly broadened by strong oscillator effects and the recorded \mathcal{V} max is not the true oscillator frequency.

The true values of v_3 are almost certainly higher than those quoted in the literature, but it is not possible to say how much higher. If MF₆ anions were present in the 1:1 and 1:2 complexes of pentafluorides the cations would be far larger than alkali metal ions so that the system would be effectively diluted and strong oscillator effects would be reduced with respect to alkali metal hexafluorometallates. Thus values of v_3 for MF₆ ions observed in these complexes would be higher than those recorded above if MF₆ icno were present.

The 1:2 pentafluoride complexes with pyridine, with crystal type $P2_{1/m}$ (No 11), are the only pentafluoride complexes of known crystal type. In all the environments, C_1 , C_2 , C_1 , which the NF_6^- ions could take up in these lattices ⁽⁷⁰⁾ some components of all six modes are active in both I. R. and Raman, and all the

observed bands should be split. The bands \pmb{v}_3 and \pmb{v}_4 would be expected to remain the strongest I.R. bands and v_1, v_2 , and v_5 should remain the strongest Raman bands. Similar considerations probably apply to all the other solid complexes as it is unlikely that they constitute a lattice of high symmetry. In all the complexes I.R. bands were found which might correspond to \boldsymbol{v}_{3} and $\boldsymbol{\upsilon}_{4}$ if only one compound were to be considered (Tables 1:4:2, 1:4:3). However there is little difference between the frequencies which might be associated with $oldsymbol{v}_{\mathfrak{Z}}$ for pentafluoride complexes of molybdenum, tantalum, or niobium with the same base, whilst a large difference (40-45 cm^{-1}) is found in the hexafluorometallates. The observed frequencies of the 1:1 and 1:2 complexes are more base-dependant than would be expected in ionic structures. (See tables 1:4:2, 1:4:3), which, if complexes of the same stoichiometry are assumed to have similar structures, suggest that the complexes are not ionic.

Because no work has been done on comparison of Raman shifts of hexafluorometallate anions with different cations it is not known how large the variations may be. In most of the complexes Raman bands were found which might have corresponded to the strong υ_1 (680-700 cm⁻¹) and medium υ_5 (260-290 cm⁻¹) bands of an NF₆⁻ion. However no bands were found which might correspond to υ_2 (562 cm⁻¹ in CsTaF₆) in any of the tantalum compounds. Although this is not a strong band it is felt that such a band should have been observed if NF₆⁻ions were present. In the

2
••
4
••
1
ы
허
ГЗ

Bands in the vibrational spectra of 1 : 1 complexes attributed to metal-fluorine modes in the range 300-800 cm⁻¹ (all values in cm⁻, Raman intensities in brackets)

2 2		- non obur			• ••••	ייםוומוז זואטייםיי	ILL COLUCTOR	NT GOVERS	
NbF5	;. Ne20	NbF5.	cH2C⊒CN	NbF5.	CH3CN	NbF5•(cH ₃ CH ₂ CN	NbF5.1	Nc2SO
I.R.	Raman	I.R.	Raman	1.R.	Raman	I.R.	Raman	1 . R.	Raman
709m 674ch	(06) 269	719s	714(12)	710s	702 (20)	710s	702 (200)	721mw	
6660S	664 (20)	660vs	684 (14)	660s	673(3)	666s	663sh	664ms	665(15)*
5115050	(01) 265	SAC 20		0.00 \$	592 (2)	0.00	296 (10)	505vs	
TaF5	;•Me20	TaF5.	CH2CT JN	TaF5.(CH ₃ CN	TaF5.	3H ₃ CH ₂ CN	TaF5.h	ie ₂ S0
1. R.	Raman	1.R.	Raman	1. ₽.	Raman	1. R.	Raman	1. R.	Raman
722ms		715s	712 (40)	712vs	710 (30)	708s	not	722m≎	
670w		669ms	673(30)	655m		657sh	scanned	677m	673(15)*
SUCO	614(65)	608vs	609 (15)	612sb		615vs		532 s	
TaFç	. Me250-d6	NoF5.	CH2CL3N	NoF .(CH3CN	faF5.2	MePy	NF5CI	
I.B. Ra	ກເລກ	I.R. I	Затап	L. 3. 1	laman	I.A. 3	ละกลุก	I.A. Rame	u
6 31) ^{\$}	1011 OF 1	mC17	706 (200)	703mu	(06) (00)	69As	not	743s (1)	7445
506vs	638 (10) •	6375 . 6375	(CTV (610)	635sm		600sh 590sh	scanned	640s (5) 640s (5)	661m 661m 644w

*may be ligand bands

- 44

~

Table 1:4:3, Vibrational spectra of 1:2 pentafluoride complexes (all Raman intensities in brackets)

EDF ₅ .2	2Py	"IDF(4	HePy)2"	hbF ₅ .	2Me ₂ SO
I.R.	Ranan	I.R.	Raman	I.R.	Raman
290b,sh 343m 563b,s 584w 602s,b 614s,b,as	588(40) 640(30) 676(50) 687(100)	2405 3465 568m 607vs,b	600(4) 610(10) 665(40)* 686(50)*	240m 265sh 330m 358m 555m 579n 603s,b 610sh 635sh 722ms	not scanned
TaF ₅ .21	?у	TaF ₅ .(D ₅ Py) ₂	TaF.	(4MePy) ₂
I.R.	Raman	I.R.	Raman	I.R.	Raman
330m 585vs,b	145(w) 180(w) 190(w) 240(30) 280(45) 320(w) 603(60) 645(45) 693(40)	245sh 328ms 532m 570sh 500vs,b	160w 230w 280m 595(50) 625(90) 638(10)	240 m 298w 332ms 578)vs 584)	140(15) 260(8) 285(5) 300(3) 613(90) 670(50)* 67(40)
"NbF2NI	IMe_"	TaF ₅ .210	HHe 2	TaF ₅ •21	Me ₂ SO
I.R.	Ranan	I.R.	Rutten	I.K.	Ravan
552n 5921m 6090,aoy,	560 (3) 567(4) 678(7) 678(7)	554vs,0,na 560vvo,0,a 659ms	*y ∽ry 540(100)	240 s 260n 310ms 331w 359n 350vs 370w 503s,asy 722n	604(30) 691(140) 723(30)*

may be ligand bands

niobium and molybdonum pentafluoride complexes some Raman bands were observed in the 580-600 cm⁻¹ region, but it is thought that they showed too much variation to be considered MF₆⁻ frequencies. Thus this Raman evidence also suggests that no MF₆⁻ ions are present in pentafluoride complexes of the solid state.

The structure of WF₅ Cl is similar to that shown in fig. 1:4:1 a. Group theory predicts four Raman bands, of which three are I.R. active for WF₅Cl in the metal-fluorine stretching region. The bands found ⁽⁷³⁾(see table 1:4:2) in the gas and liquid phases are consistent with the predictions. In the solid phase the fourth Raman band (\mathcal{P}_5) becomes I.R. active. In many of the 1:1 complexes only 3 I.R. bands are found in the metal-fluorine stretching region, but this is to be expected as the complexes are probably not isomorphous. Taken together the vibrational spectra of the 1:1 complexes strongly suggest that they have approximately C_{4y} symmetry (cf Fig. 1:4:1 a)

The I.R. spectra of all the bases used in this work show changes upon coordination to an acid. In none of the 1:2 complexes investigated was any uncoordinated base detected. This is important because no evidence has ever been published to show that both molecules are coordinated to the metal. Little more can be said of the 1:2 complexes of NbF5, TaF5 and MoF5. Although the I.R. and Raman spectra suggest they are not ionic. The evidence is not as conclusive as in the case of the 1:1 complexes. N.Q.R. spectra of NbF5.Py2 did not give any unambiguous

- 46 -

NbCl Cll3EN Raman 397 (24)	assignment * NB-Cl., a,	v in Jianovia. NbCl ₅ .Me ₂ S I.R. Raman 395sh 381 (250)	NbCl ₅ .0Et2 I.R. Raman 389sm 384(150)	NbCl ₅ .Py I.R.Raman 408s 420 (30)	NbC16 I.R.	Raman +
377 (15) 372 (7) 354 (1)) Nb-Cl qe Nb-Cl a	372vs a 363 (15)	368vs 355vs 356 (50)	373sh 3755) b 361 (50) 345) vs	\$	الم مرد بدو
347 (0, 5 347 (0, 5 300 (3) 279vw	Nb-Cl xq a.	299 (10)	279sh	335) 335) 280b sh	رغ 333 ۔ 336	33)-360. 250-300
246 (1) 220 ww 192 (7) 172 (sh) 164 (5)	v mixed el Nb-Cl al v mixed e	185(20)	161 (20)		v_a≏270 n. o.	150-180
158 (2) 127 (3) 115 (6)	NbCl b2 v mixed b ,	155 (15) 146 (20)		<pre>> reference 74 * Values by compar</pre>	rison w	ith
80 (sh) 59 (2)	v mixed e	q = cquatorial	x = axial	other hexachlor	ides	

Vibrational spectra of pentachloride complexes (values in cm⁻¹

TABLE 1:4:40

Raman

intensities in brackets.

results (see Chapter 3) and further conclusions about these compounds must await single crystal x-ray analysis.

The I.R. and Raman spectra of pentachloride complexes of niobium show similarities to the spectra of 1:1 pentafluoride complexes (Table 1:4:4). It is not possible to separate all the bands in the metal-chlorine stretching regions. Vibrational analysis of NBCl₅·CH₃CN has been attempted twice since this work was started (74, 120) and provides evidence in support of conductivity data (36) that the adducts may be formulated as non-ionic six-coordinate monomers. Hexachloroniobates (76,77)show I.R. absorption bands between 333 and 336 cm⁻¹ not found in NBCl₅ complexes which is further evidence that the complexes are not ionic.

As in the pentafluoride complexes the bands in the metalhalogen stretching region of pentachloride complexes show some sensitivity to change of coordinated base. There is, however no obvicus pattern to the shifts. The assignments of Raman bands of NbCl₅·CH₂CN are those of Ozin and Walton (74)

There are considerable differences in the number of bands found in the Raman spectra of these pentachloride complemes. This is thought to be due to differences in refractive indices of the compounds which are known to have an effect on the quality of Raman spectra.⁽⁷⁵⁾ 1:5 Storeochemistry of pentafluoride adducts in the vapour and liquid phases and in solution.

Evidence relating to these systems is very limited. The

- 48 -

complexes with Me₂O, and CH₂ClCN are more volatile than the corresponding pentafluorides, suggesting considerable acid-base association in the gas phase. The absonce of ions in the mass spectra which could not have been derived from separate pontafluoride an base colocules is not proof of dissociation.

In the liquid phase the I.R. spectra, due to M-F frequencies of NbF₅·OEt₂, TaF₅·OEt₂, and NbF₅·CH₃OC₆H₅, are similar, in the range 250-750 cm⁻¹, to those of other, solid, 1:1 complexes. ¹⁹FN.M.R spectra of liquid 1:1 pentafluoride complexes indicate the presence of some exchange phenomena which averages the ¹⁹F environment. In contrast to these systems NbF₅Cl⁻⁽⁷⁸⁾WF₅OR,⁽⁷⁹⁾ and WF₅Cl⁽⁸⁰⁾ and many other C_{4v} systems exhibit the expected quintet-doublet resonance pattern. If the exchange processes were intramolecular, or involved fluorine bridges there would be no obvious reason for absence of exchange phenomena in the WF₅Cl, NbF₅Cl⁻ systems. It seems most likely that exchange occurs by a mechanism involving cleave ge of metal-base bond which is in agreement with the observed averaging of ¹H.N.M.M. spectra in the presence of excess base.

Surprisingly Raman spectra of solutions of NbF₅·CH₃CN in CH₃CN suggest presence of a 1:1 $Q_{4,7}$ complex despite Raman evidence that a 1:2 adduct is present in a 1:2 stoichiometric mixture of NbF₅ and CH₃CN (Table 1:6:11) and the claimed isolation of complexes NbF₅·(CH₃CN)₂⁽³⁷⁾ and NoF₅·(CH₃CN)₂⁽⁴³⁾. In contrast the I.R. spectrum of a mixture NoF₅, and CH₂ClCN o staining 30

- 49 -

mole% of MoF₅ seems to indicate the presence of a 1:2 complex in solution (Table 1:6:12)

No ¹⁹F N.M.R. spectra of pyridine and methyl pyridine adducts in excess ligand could be obtained because of small solubility of the adducts. All the 1:2 complexes investigated showed signs of decomposition when melted. It is unlikely that these compounds can be obtained in the gas phase.

- 50 -

1:6 Some Chamical aspects of reactions of pentaholides with bases and vibrational spectra of complexed bases.
A) Reactions and spectra of pentafluorides with ethers.

Although some metal fluorides react with ethers to give oxyfluorides (32), satisfactory analytical data for all the ether complexes except tantalum pentafluoride dimethyl etherate, (which gave I.R. data similar to corresponding niobium compound), and the absence of any I.R. absorptions in the 900-1050 cm⁻¹ region, indicate that no fluoride elimination has occurred. Contrary to literature reports ⁽³⁰⁾ niobium pentachloride diethyletherate, (prepared indirectly see sections 2:2, 2:5, 2:7) gave no evidence of chloride elimination under vacuum at room temperature. The presence of non-crystalline white powders, and methyl and ethyl fluorides respectively in the thermal decomposition products of NbF₅·OMe₂, and NbF₅·OEt₂ respectively shows that these reactions can take place under more extreme conditions.

Although the vibrational spectra of some dimethyl, and perdeutero dimethyl-ether complexes of $^{10}\text{BF}_3$, and $^{11}\text{BF}_3$ have been investigated and taken to indicate that there is no coupling between vibrational modes of the acid and base parts of the molecule later studies throw some doubt on this conclusion⁽³²⁾ However coupling is limited (giving shifts of 15 cm⁻¹ in BF₃ modes on deuteration) and no modes are split on ad uct formation. This is fairly typical of behaviour of complexes.

Because some of the CH3 rocking and deformation modes are

either accidentally degenerate, or too weak to be observed the spectra of dimethyl etherates are quite simple in appearance. Assignments of dimethyl ether bands in the I.R. spectra of NbF₅Me₂O, and TaF₅Me₂O are given in table 1:6:1 along with dimethyl ether and ¹¹BF₃·Me₂O⁽⁸¹⁾ bands for comparison. Because the I.R. spectrum of liquid dimethyl ether has not been recorded ⁽⁸³⁾ quoted frequencies are taken from the Raman spectrum of liquid Me₂O⁽⁸⁴⁾ whilst quoted intensities are from the gas phase I.R. spectrum. ⁽⁸⁵⁾ Here, and elsewhere in this chapter except where otherwise stated, assignments reflect only the major characteristic of the modes involved.

Table 1:6:1

Me ₂ 0	11BF ₃ •Me20	NbF .Me20	TaF ₅ .Me ₂ 0	
265w(I.R.)	322(R)			O(CH3) wag
334g(R)	344(m)	314m,b		O(CH3) rock
420w	499 v w	48 5 w	487w	COC def
610w(IR)				
918m	918w	882m,asy	870m,b	C-O sym str
		970w	885m,b	
1094s	-	1020m,b	1015m,b	C-Oasy str
11 ⁴ 7s	1150m	1157m		CH3 rock
1238(R)		1258w	1263w	CH ₅ rock

I.R. of Me₂O complexes due to Me₂O

* All frequencies in cm⁻¹
(R) means hand is only found in raman spectra
(IR) means bond is only found in infra red

- 52 -

Vibrational spectra of diethyl ether complexes are very difficult to interpret because of the relatively large number of atoms present

- trans-trans rotamer
- (tt) (C_{2v})

gauche-gauche rotamer

(gg) (C₂)

Figure 1:6:1 - rotamers of diethyl ether

• = H

• = C

and rotational isomerism in the ethyl groups. There are infinite numbers of possible rotational isomers, but because rotation about carbon-carbon bonds is hindered only a few of these need be considered (see fig 1:6:1).

It has been calculated from the Kerr effect $\binom{(86)}{}$ that liquid diethyl ether acts as a slight modification of the (tt) rotamer with methyl groups rotated 24° from the C^OC plane. This does not rule out an equilibrium between the various forms. Comparison of I.R. spectra of ethyl $\binom{(87)}{}$ and some deutero-ethyl

trans gauche rotamer

 (t_g) (C₁)

gauche-gauche rotamer

(gg) (C_s)

- 53 -

(88) ethers at various temperature with spectra credicted by vibrational analysis for the rotamers illustrated in fig 1:6:1 strongly suggests a temperature - dependent equilibrium between (tt) and (tg) rotamers in the free ethers. The (tt) form is the more stable by approximately one Kcal per mole and no trace of (gg) forms could be detected by I.R. spectroscopy.⁽⁸⁷⁾

Use of Fieser models suggests that it is not possible for diethyl ether in the (tt) form to act as a base because of steric shielding of the oxygen atom by methyl hydrogen atoms. It is also unlikely that the tg rotamer could act as a base.

These are important conclusions because similar considerations apply to diethyl amido-, diethyl sulphide-, and diethyl selenide - compounds. Etherates are also important in certain fields of catalysis. The I.R. spectra of free, and complexed ether are compared in table 1:6:2 with a view to finding experimental evidence for these conclusions.

All the vibrational modes of each of the diethyl ether rotamers are formally both I.R. and Raman active, except the A_2 modes of the (tt) rotamer which are formally I.R. active. However models indicate that in the (tt) rotamer rotation of the methyl groups is hindered, the most stable configuration is not strictly of C_{2v} symmetry, and the A_2 modes may be weakly I.R. active.

The lists of contributions to the modes of (tg) and (tt) forms of diethyl other ^(87,88) suggest, perhaps surprisingly,

- 54 -

Explanation of symbols used in Table 1:6:2

* Spectra and assignments of Et₂0 tt, tg, species taken from ref.86

#, *, Principal components of modes in $_{tt}$, $_{tr}$, species H approximate position, peak is hidden by COC stretch

+ Symmetry of Et20tt modes

So Methylene bend

To Methylene twist

7 Asymmetric HCH bend

Wo Methylene wag

U Symmetric HCH bend

To Methylene twist

Po Methylene rock

B Methyl rock

R C-C stretch

X OCC bend

e COC bend

M-Cl¹ Et₂O bands obscured by M-Cl bands

:6:2
μ
2
$\mathbf{T}\mathbf{A}$

57

I.R. spectra of $\mathbb{E}t_2^O$ and $\mathbb{E}t_2^O$ complexes

t,0 t C 2v	-t i-1	#	Et ₂ 0 tg(c)	#	Et_2^0 gg Calc.	Et20 gg calc.	TaF5 Et20	NbCI Et28	
490m	Ιv	S _o T _o	1490m	SoTo					
473w	ДЭ	လို	1494sh	້າດ	1		1476	1474 (R)	
			1466w			-	-		
456m	LA A	8	1456	K					
45.6m		X	1456	X	1446	1449	1451ms	1445(R)	
443m	^.^2	X	1443	Y		<u>arti - 44449999999999</u>			
143m		Y			-	ł	_		
414 w	•		1393 sh	°.					
393s	ľa	n, w	139.25	Wo, U	1339	1388	1392s	1302 (R)	
372.sh	Ål.	D	1372sh	۵l	1354	1358	1360	1356 (R)	
			1372sh	(u			1330m	1315w,a	
351s	ла Га	n, Wo						- · ·	
			1297	°E	1291	1268	1287m	1273w	
279w	a ²	To	1279w	To					

- 56 -

1104s	1070sh	1142m-w	984vsa	1084m		1015sh	871s	82.3mw	7 55s	725sh	5 05m	-459w	M-C1 ¹
	1193s	1152d	998vsa	1092s		1020 ¹¹	880s	834	800 _W	773s	512m	475w	350w
	1179		1139			1029		006	808		481		215
	1189		1070			1022		840	813		530		284,
	B, Z 0	Po, B	S	۲a	R, B	ы	B, S, R	S, B	Po, B	Po, B	θ, Χ, Β		×
	1183m	1168	1153	1097 (8)	1074sh	1023w	916w	837	822 vw	794w	503w		376vw
To		Po, B	в , л,	Ś	CI	៥ ភ្នំ	ы	S	B, PO	Po, B	X	ө , В	
42		යි	ΑI	ណ		ລີ	ເສ	Γv	చి'	Λ_2	БJ	AI	
(1) (1) (1)		168sh	153s	120vs	077m	043m	35w	46w	22 VW	WP6.	51vw	VIOL	

- 57 -

•

÷

that apart from methyl and methylene rocking motions, mixing of modes has little effect on the vibrational frequencies, and it is possible to define energy regions for the vibrational motions quite closely. The calculated frequencies for (gg) and (gg¹) modes were not all given⁽⁸⁷⁾ (table 1:6:2), but those listed seem to define regions for the different mode types The only mode which shows a large shift between conformers is the asymmetric C-O stretch which ranges from 1153 cm⁻¹ in the (tg) rotamer to 1070 cm⁻¹ in the (gg) (C₂) rotamer

In the region 350-1400 cm⁻¹ $Et_2O(tt)$, $Et_2O(tg)$ and TaF₅·CEt₂ all show sixteen I.R. bands (excluding metal-fluorine bands in TaF₅·CEt₂) and in the regions where extra bands would be expected if mixtures of conformers were present TaF₅OEt₂ shows no extra bands (for example there are two bands in the 830-950 cm⁻¹ region of TaF₅OEt₂ and four in (tt)-(tg) mixtures.) It may be concluded that only one conformer of diethyl ether is present in this etherate.

In the following discussion it is assumed that $TaF_5 \cdot Et_20$ is monomoric with site symmetry at the Ta atom being approximately C_{4v} . $TaF_5 \cdot CEt_2$ shows one I.R. band in the region 450-550 cm⁻¹ and two bands in the region 1300-1380 cm⁻¹ whilst Et_20 (tg) shows two and one bands in the respective regions. The medium-intensity I.R. band at 512 cm⁻¹ in $TaF_5 \cdot CEt_2$ is too high and too intense to correspond to the very weak band at 451 cm^{-1} in the I.R. spectrum of $Et_20(tt)$. This I.R. evidence is not absolutely conclusive on its own, but when coupled with evidence from the models it does seem certain that (tt) and (tg) rotamers of diethyl ether are not involved in complexes with pentafluorides.

The very strong bands at 998, 984, and 998 cm⁻¹ in the I.R. spectra of TaF₅. OEt₂, NbCl₅.CEt₂, and NbF₅.CEt₂ are assigned to the asymmetric C-O stretching mode on the basis of their intensity. The shift of the asymmetric stretching mode of dimethyl ether on complexing is approximately 80 cm⁻¹ (table 1:6:1). The calculated asymmetric C-O frequencies of (gg), (C₂) and (gg¹), (C₈) forms of ether are 1070 and 1139 cm⁻¹ respectively. If the (gg¹) form were involved in these complexes the shift would be 140-155 cm⁻¹ This is too great and the (gg) <u>is probably</u> (C₂) rotamer_A the one acting as base; I.R. and Raman spectra of TaF₅.CEt₂, NbF₅.CEt₂, and NbCl₅.CEt₂ suggest that all three have similar structures.

Because of lack of accurate structural data it is impossible to confirm these suggestions. I.R. Spectra of other etherates suggest that all diethyl etherates that have been investigated involve the same diethyl ether rotemer. There is no structural evidence on the angles at the oxygen atoms in diethyl etherates (89) However complexes of HgCl₂ with diethyl sulphide, (90) and tetrahydrothiophen (91) have very similar angles at the sulphur atom and it is suggested bust the engles at oxygen in complexes of diethyl ether, and tetrahydrofuran will be similar also. A Cr III complex of tetrahydrofuran(92) has been found to have planar oxygen atoms and C-O bond lengths slightly longer than in free tetrahydrofuran.⁽⁹³⁾ In the absence of other data this system is taken as a model for all these ether complexes.

Sulphur and selenium are larger atoms than oxygen and the C-S-C, and C-Se-C angles are smaller in diethyl sulphides and selenides than the C-O-C angle in diethyl ether. The stabilisaton of (tt) with respect to (tg) and (gg) rotamers is thus greater in sulphides and selenides and steric shielding of the sulphur and selenium is not so great in (tt) and (tg) forms. The possibility of (tg) rotamers acting as a base increases in the series $Et_2O \rightarrow Et_2Se$ and is more favourable where there is non-planarity at the donor atom.

In complexes where alkyl sulphides act as donors the sulphur atoms are pyramidal, (90,94) and in the complexes of monodentate Et_2S studied up to 1970 (e.g. ref 90) the diethyl sulphide conformation was (gg), (C₂). The presence of (tg) donor molecules in WF6•(Et₂ Se)₂ would explain the apparent magnetic inequivalence of both methyl, and methylene protons in the proton N.M.R. of this compound. (32)

The published assignments of phenyl methyl ether (95)(anisole) are given in table 1:6:3. Whilst some of the assignments may be optimistic their absolute accuracy is not essential to the arguments which follow. The vibrations numbered I to $\overline{1X}$ are vibrations of the methyl group and those numbered 1 to 30 are vibrations of the aromatic ring. In anisole itself the

- 60 -

TALL 1: :3

I.R. bands of free and complexed pheayl methyl ether

baad	sym	CCH3	complex	assignment	other bands
1 2 3 4 15 1 VII 15 6 7 8 VIII 17 9 10 VI 14 11 12 23 24 25 17 29 26 27 18 19 20 20	$\begin{array}{c} A^{1} \\ A^{1} \\$	3005vw 3095m 3032*m 3032*m 3000ms 2955m 2942 2334 1599 vs 1585mw 1496vs 1485sh 1460mv 1452mw 1334m 1301s 1294w ¹ 1246vs 1179w 1334m 1301s 1294w ¹ 1246vs 1179w 1171s 1154m 1076s 104Cvs 1019mv 994 n.o. n.o. 332s 825w 733s 754vs 690vs 662w 615w 552s 503s 264mw	n. 0. n. 0. 3060m 3020*sh 3020*sh 3020*sh 2950w 2930mw 2864mw 1630m 1535m 1478*vs 1490sh 1473*vs 1459sh 1330w 12335w 1215vs 1185sh 1161s 939vs 1017m -756s (M-F) (bands) 595w 490*sb 300mw	C-H str C-H str C-C str C-C str C-C str C-C str C-H st	1285mw 1120sh 1038w 915s .786w

(all frequencies in cm^{-1})

* indicates absorption assigned to more than one mode

1 not observed in ref 8

aromatic ring probably lies in the plane of the C-C-C angle (96,97,98) but use of models indicates that the ring must be twisted out of this plane when anisole is complexed to niobium pentafluoride. The symmetry of the ring thus changes from approximately C_c, probably to approximately C_c. The band symmetries given in table 1:6:3 refer to symmetries under C. The I.R. bands of NbF5. Anisole have, where feasible, been written alongside bands in free anisole. The C-O stretching frequencies are assigned on the basis of intensities and because the consequent shifts upon coordination are compatible with those in other ethers. It can be seen that I.R. bands in free, and complexed anisole in the 770-1310 region do not correspond with out assuming some shifts of up to 75 cm⁻¹ or very large changes in observed intensities. That such effects are not found in complexed pyridine. (see later in this section) or substituted aromatics (99) where changes in electronic effects are much larger, suggests that changes are due to changes in symmetry of the benzene ring which change the mixing of modes.

B) Complexes with dimethyl sulphoxide

Vibrational spectre of a number of dimethyl, and perdeuterodimethyl, sulphoxide complexes (e.g. ${}^{10}\text{BF}_3 \cdot \text{Me}_2\text{SO}$, "BF3 $\cdot \text{Me}_2\text{SO}^{(100)}$, Ni(ClO₄)₂ Me₂SO⁽¹⁰¹⁾ and a review of dimethyl sulphoxide reactions (102) have been published. When the oxygen atom of dimethyl sulphoxide is coordinated to a metal atom \mathcal{V} S=O shifts to lower

- 62-
frequencies, whilst when sulphur is coordinated a chift to higher frequencies is observed. (103, 104) When dimethyl sulphoxide is oxygen-coordinated to Fe^{111} the angle Fe-O-S is 124° (105) In the absence of other data it may be assumed that the angle at oxygen is similar in other oxygen-coordinated dimethyl sulphoxide complexes. As mentioned previously (section 1:1) there are differences in properties of 1:2 complexes prepared here, and by previous workers. (11) (see table 1:6:4). In particular vS=0 of TaF₅·Me₂SO is surprisingly No other S=0 frequency as low as 878 cm^{-1} has ever been reported and this might be metaloxygen frequency of an oxyfluoride.

Table 1:6:3

Property	NbF5•2Me2SO	TaF5•2Me2SO	NbF5•2Me2SO	TaF5•2He2SO
	ref (11)	ref (11)	this work	this work
M.Pt.	4 ⁴ ⁴ °C	63.5°C	64 [°] C	79 ⁰ C
Decomp.	70°¢	95 [°] C	54 [°] C	79 [°] C
vS≖O	940cm ⁻¹	878cm ⁻¹	956 , 935cm ⁻¹	970,930cm ⁻¹

Properties of 1:2 pentafluoride: Me₂SO Complexes

Analytical, (table 1: 9:1), spectroscopic, (figure 1:6:2, table 1:6:5), and x-ray powder photograph (figure 1:6:3, appendix 3), data all confirm that two discrete complexes of 1:1 and 1:2 stoichiometry have been prepared for each pentafluoride. The 1:1 complexes of the pontafluorides cannot be mixtures of pentafluoride and 1:2 complexes because the diethyl ether present in the pre-

- 64 -

Figure 1:5:5 K-rey poster photo maphs of some Me₂SO complexes

Table 1:6:5

•

I.R. Frequencies due to Me_2SO in Me_2SO -Pentafluoride complexes.

				- 6	6 -										
		+57		I	- 29	-14		+13			ې ۱				
Δd		ידבוי	+ - +	+21	-23	<mark>،</mark>		+12			۲ <u>۰</u>				
TaF5°	umoua ₆	2285m J	2278m ^J	2145mw	1020sh	1020sh		1027ms		<u></u>	1046mw		990shw		
₽	7:1	+191		+121	-15	0		+14	œ						
۵(ط) م	2:-	747		1	-16	42		-2+			(- +	<u>, , , , , , , , , , , , , , , , , , , </u>			
TaF .	2 2 Verinu)	2268ms	2258sh	2136mw	1027ms	1027ms		1022sh			1044w				
DMSOd ₆ (107)	^g (106)	2249		2124	1043	1025	1025	1015	1084sh		1043	·			
Assignment		v1, v2, v14, v15, CHstr		v ₃ , v ₁₆ , CHstr	Vir Jon CH Jof All	V ¹¹ S ueg on det, A			V19'Sym,CH3,def A"		V ₆ ,sym,CH ₃ ,def A'				
DMSOg (107)	(106)	2973m		2908m	1455m	1440ms	1419m	1405m	1319w		1304m		1287w		
TaF5°		3020			1440sh	1440sh		m6141	11331w	1324w	1308vw	1314vw			
TaF5°	Ocimu	3030w			1426w	1426w		1418w	1329mw		1302v			<u></u>	
NbF5°	SUCURAU/2) 3018m				1432ms		1419w	1330w	1322w	1310vw	1304vw			
NbF5°	Dermit	3030m				1425w		1418w	1325vw		1300vw				

- 66 -

•								67 -							
-139		+29		-13		L -		+31				-21			
 -139		+35		12		+23		+19				1		·	
 957sb		838m		801w		773m		638sh	-	mr44		337m			
-132	-164	+32		-13		417		+33				-186	-4 1		
-122	-153	+31		-22		+20		+23				9	÷3		
 974s	943s	839m	829m	794w	789w	770m		642w		447mw	430sh	334mw	310s		310s
 1096 v s		803		814		750	756	619	611			340	307		
 v_7 , S=0 str		V ₂₀ , Me rock A"		V8, Me rock A1		V21, Me rock A"	vg, Me rock A'	v_{22} , asy CS str	v_{10} , sym CS str	O-W V	2 M-0	V ₁₁ , sym CSO def	V ₂₃ , asy CSO def		V M-F
 1102s		1016m		1006m		929w	915w	689 m	672m			376s	335m	3338	
970ms	938bs ^j	104 Jm	1028m	1000s	985s	946sh		722m		472	460sh	358m	330m		310ms
963vs		104.3mw		m466		922w	905w	720mw		470ms	4	355m	330bsh		
 966s	935bvs	1041mw	1025mw	1000sh	993s					468s	452m	358m	330m		330m
955s		m 440		m466		992w	M006	721mw		460s		358m	330w		

d indicates hexadeutro-DMSO

≡ shift between free and complexed DMSO ٩ liquid m Ч gas 111

60

paration ensures that no free pentafluoride is present.

1:2 complexes of dimethyl-ether and sulphide ⁽⁹⁾ and acetonitrile ⁽³⁷⁾ have been suggested to explain observed vapour pressure-composition curves but these are the first cases where both 1:1 and 1:2 compounds have been completely characterised.

The 1:2 compounds did not have sharp melting points and some gas evolution was observed just above the melting points. This is consistent with transformation of the 1:2 complexes to 1:1 complexes and free dimethyl sulphoxide followed by fluoride elimination in the melt. The 1:1 complexes are stable up to at least their melting points, which are $50-60^{\circ}$ C higher than the decomposition temperature of the 1:2 complexes. This suggests that the first step in fluoride elimination does not involve uncoordinated dimethyl sulphoxide.

Assignment of I.R. bands due to dimethyl sulphoxide in the complexes with pentafluorides are given in table 1:6:5. The numbering and description of the modes is taken from references (106,107). The assignments of the degenerate C-H deformations, v_{17} , v_{18} , and v_4 , v_5 must be regarded as no more than tentative Weak bands at 922 cm⁻¹ in 1:1 complexes of dimethyl sulphoxide have been written opposite v_2 , but, by comparison with other complexes $(100, 101) v_2$ would be expected at approximately 950 cm^{-1} and is probably obscurred by the strong metal-fluorine stretching bands. Frequencies in the region $450-475 \text{ cm}^{-1}$ are assigned to metal-oxygen frequencies. Similar values have been found in the Ga(Me₂SO)₆³⁺, and In(Me₂SO)₆³⁺ ions. (108)

The general similarity of shifts of dimethyl- and perdeuterodimethyl-sulphoxides on complexing to pentafluorides in both 1:1 and 1:2 complexes suggests very strongly that the constitution of modes is not greatly affected by complexing. The clear splitting of v_{19} , v_6 , v_7 , v_{20} , and v_8 in the 1:2 complexes cannot be due to a lowering of the symmetry of individual dimethyl sulphoxide modes because this would not split v_7 , the S=0 frequency. The large size of these splittings makes it unlikely that they are due to coupling of the modes in different dimethyl sulphomide molecules, or to a correlation splitting. Inequivalence of complexed Me₂SO molecules is consistent with the results.

69

Raman spectra, apart from that of TaF₅•(Me₂SO)₂ were not very good because of problems with fluorescence and weak scattering.

C) <u>Reactions and spectra of pyridines and methyl pyridines with</u> <u>pentafluorides.</u>

Analytical data (table 1:9:1) clearly indicates the products of reaction of niobium, and tantalum, pentafluorides with pyridine (Py) and perdeuteropyridine (Py-d₅) to be 1:2 complexes. The isolation of only a 1:2 adduct from mixtures of NbF₅, Py, and diethyl ether is probably only an indication that NbF₅. Py, is solu ble

Tantalum pentafluoride is shown, by the analytical data, to form 1:2 and 1:1 adducts with 4 methyl- and 2 - Methyl pyridine respectively. Nothyl groups in the 2- and 4- positions of pyridine should increase the electron density on the mitrogen atom. The formation of a 1:1 complex TaF₅•2Me-Py rather than a 1:2 complex is attributed to steric factors. Recent crystal studies on other 2-methyl pyridine complexes, e.g. significant $CuCl_2(2MePy)_2$ are consistent with a slight distortion of the metal-mitrogen-carbon bond angles in the plane of the ring⁽¹⁰⁹⁾ It would be interesting to react 2-6-dimethyl pyridine with TaF₅ as this is sterically similar to the (tt) rotamer of diethyl ether discussed earlier in this section.

The results obtained from the reactions of NbF₅ with 2Me-Py, and 4 Me-Py are suggestive of some reduction of the niobium.

Crystal studies of pyridine ^(119 111) and methyl pyridine (119) complexes show the nitrogen to be almost planar and no significant differences are found in the bond lengths and angles of free ⁽¹¹²⁾ and coordinated ⁽¹¹¹⁾ pyridine.

The adduct MbCl_5 Py (prepared as in section 2:6) is stable in the absence of excess pyridine up to 125° C, at which temperature a little discolouration occurs, but extensive decomposition does not occur below the melting point of 220° C. Niobium pentachloride is partially reduced by excess pyridine at room temperature. (115) This suggests that either miobium \underline{V} is greatly stablilised by complexing with pyridine, or that uncoordinated pyridine is needed for reaction to proceed.

The assignments of bands in the I.R. spectra in some of these complexes due to the coordinated pyridine, and 4-Me Pyridine groups are given in tables 1:6:6, 1:6:7. The scheme of labelling of the modes is that of Kline and furkevich (114) as followed by Wilmhurst et al in a study of pyridine. The assignments of bands in coordinated pyridine are analogous to those of Sharp et al⁽¹¹⁶⁾ except that a weak band at 870 cm^{-1} in complexed pyridine is attributed to v10a, or v10b. Weak bands in the I.R. spectra of pyridine - pentafluoride complexes remain unexplained. Where a comparison of band shifts, upon coordination, of pyridine and perdeuteropyridine is possible the agreement is generally good, although some differences, (e.g. in the bands attributed to v_{9a} , and v_3 , at approximately 1218 $cm^{-1}(Py)$ and 886 $cm^{-1}(Py-d_5)$ shift by +3 and +19 respectively.) suggest that the composition of some vibrational modes change upon coordination. The assignments of I.R. bands of the 4-MePy complexes (given in table 1:6:7 alongside those of 4MePy, and COCl2.4MePy for comparison) are fairly straight forward, although some assignments, e.g. CH_5 rock, v_1 , ring vibrations, are a little speculative. The ring vibrations, v_{15} and v_{16} , are tentatively assigned Raman active frequencies. The strong bands at 332, and 345 cm⁻¹ in TaF5. (4MePy)2 and NbF5. (4MePy)2 respectively are too strong to be ligand vibrations and are attributed to metal-fluorine modes. Bands in the I.R. spectra of NbF5. (4MePy)2 at 692, 688, 570 and 496 cm⁻¹ are probably the to impurities.

- 7.1 -

Pyridine	Tar5.		Pyridine	Taf 5.		assignment
liq T	2 Py	٩	-d5 liq [‡]	2Py-d5	4	
1923m	1930 W	14			:	11+9a
	1348 w			•	1	
1583 vs	1609s	+26	1530	15		8a
1570	n•0°		1542	1539	1	8b
1482 s	1490m	æ	1340 w		- - -	19a
1441 vs			1302s	1329	+27	19b
1375 m			1322 m	1329 s	2+	14
	1233 w		1223m	1237 w	+12	d5 ^P y. 10a+11,3+16a
1213 s	1220 w	ţ	836 m	905 m	419	9a, 3
1148 s	1159 w	24		900 sh		15
1085 vw				4s 006		18b
1068 s	1070	ę	823s	840s	+17	18a

I.R. spectra of coordinated pyridine in TaF_5 complexes

.

TAME 1:6:6

- 72-

				1		Ç
30vs	1045m	+14	1019 m	1025 w	+13	12
	-		1043 w	1049 vw	+15	10a,+16b,2X11
32	1017	125	963s	982 ms	+19	p1
	10155					
12	950W	ę	-		·	ß
36 vw	870w	-16	762 m	M 027	₽	10b
36 VW	870 w	-16	M 069	R) 630 W	-16	10 a
49 m	760 s	11+	567 m			4
sv OC	\$028	-10	530 vs	532 VS	Ŷ	
52 w	651 mw	25 1	625 w			6b
05 s	635 m	+30	582 s		•	ú а
03	448 m	25+	371	410 w	+39	16b
74 VW			329 vw	- -		1 6a

Erom ref (11.5) all frequencies in cm⁻¹

 Δ = shift of band on coordination

I.R.	spectra	of	coordinated	4Me-Pyridine
------	---------	----	-------------	--------------

a 11 D-	CoClo	T2F-	NbF-	assignments
4-Mery	00012	±a* 5•		assignmento
liq [‡]	.4-MePy*	(4MePy) ₂	(4-MePy)2	
1604vs	1629	1628s	1625s	8a
15660	1621 1560	1610sn 1563	151051 1560w	8b
1300s 1495s	1500 1504	1511mw	1509m	19a
1340w	1336) 1328)	1340w	1339w) 1305vw)	2X6b or 1+16a
1223s	1242)	1243ms	1240m	9a
	1227)	-		
1212s	1214) 1205)	1218m	1215m	13
1114w	1074)	1114w	1114m-w	15+4 18a
10.10	1071)	10103	100 / 113	100
1042s	1043	1031	1040m	CH ₃ rock
994s	1033	1031s	1029m	
		1012vw)	1006w)	?
972m	983)	9701	969w	17a
070	964)	0.95)	00011	5 100
012W		868mw)	867mw)	0, 10a
799 v s	821	817s	819s	10b
001(0)	815	000	70 4	12
728s	723	802VW 72.4m	724m	4
		704w	702w	?
			692m)	1:1 complex or
			630m) 670vw	reaucea product
66 8 w	669	656w	654s	6b
523m	551	550mw	555w.sh	6a
490s	493s	506s	503ms	11
384 (R)	375(2)	370 (8) ?	490mw 375(R) ?	15
341 (3)	352	350 (R) ?	362 (R) ?	16a
211 (R)		190(3) ?		16b

₺ from ref. (117) * from ref. (118)

The very weak bands in the $1000-1020 \text{ cm}^{-1}$ region may be due to traces of oxyfluorides.

A curious feature of the spectra of pyridine, and 4-Me pyridine complexes is that the majority of bands move to higher frequencies upon coordination. This is particularly marked in pyridine complexes. There is no simple explanation for this, but one explanation is that removing a lone pair from nitrogen lessens shielding of other electrons from the nitrogen nucleus. As all the π orbitals are delocalised a drop in the energies of the orbitals associated with nitrogen would decrease energies of bonding orbitals throughout the molecule and hence all ring vibrations would be expected to rise in energy. This explanation is not, however, ideal because it would predict that the shifts of ring frequencies would be much greater than those of C-H frequencies and this is not observed.

The assignments of the I.R. spectrum of TaF₅.2Me-Py are not presented here because the greater reducing power of 2Me-Py makes it unlikely that 2Me-Py complexes will be of any use in characterising mixed-ligand compounds of niobium, tantalum and molybdenum.

D) Reactions and spectra of nitriles with pentafluorides.

None of the results obtained in these reactions suggested any reduction of the metal. The reported adduct $\text{MoF}_5 \cdot (\text{CH}_5 \text{CH})_2$ (16) has an I.R. spectrum characteristic of a 1:2 adduct (see

- 75 -

section 1:4) and is not the same as the compound reported here. The I.R. and Raman spectra of the products of the reaction of niobium pentachloride and acetonitrile are identical to those published for NbCl₅·CH₃CN^(119,120) after investigation by this author was complete.

The vibrational spectra of acetonitrile (121, 127) monochloroacetonitrile (123) and propionitrile (124) have been extensively investigated and the assignments are given in tables 1:6:8, 1:6:9 and 1:6:10 for nitrile bands in the J.R. spectra of the complexes. The assignments are mostly straight-forward although in the region 250-450 cm⁻¹ they must be regarded as tentative because bands in this region often show large shifts on coordination.

In view of the probably formation of 1:2 complexes between pentafluorides and nitriles (discussed later in this section) the bands found at approximately 2250 cm⁻¹ in CH₃CN, and CH₃CH₂CN complexes are attributed to changes of phase (table 1:6:12) The I.R. of M₀F₅·CH₂ClCN in solution is very similar to that obtained for the 1:2 complexes (see section 1:4) and it is clear that there has been a change in coordination pattern at the metal atom. The I.R. band at 585 cm⁻¹ is probably too low to be associated with MoF6⁻⁽⁶³⁾, (see section 1:4) which wight be produced by self ionisation. i.e. $2MoF_5 \cdot CH_2ClCN \longrightarrow MoF_4 \cdot (CH_2ClCN)_2^+ + MoF6^-$

TABLE 1:6:8

I.R.	oî	CH_CN	coordinated	to	pentafluorides.
		-			

CH ₃ CN Liq ^I	NbF5. CH3CN	TaF5. CH ₃ CN	^{MoF} 5 [•] CH ₃ CN	assignments
3009s			3020m	$v_5,$ e, asy.C-H str.
2954			2952ms	V1,a1,sym C-H str.
2291	2320ms	292 7 ms	2522m)	v_{3^+}
2262	2298s	2301s	229 7 s)	$v_2,a_1, C = N str$
	2 25 6w		2255w	free ligand?
1454vs	obscur	ed by 1	v 3,a1, sym. CH3 def	
1389vs	obscur	ed by r	nujol	θ7,e,CH3 rock
1041 vs	1033m	1030mw	1028mw	v7,e,CH3 rock
920 s	950m	953m	953m	v_4 , a ₁ , C-C str
361	410m	410m	418w	$v_{3,e},$ CCN bend

1 from ref. 121 (all frequencies in cm⁻¹)

78 -TABLE 1:6:9

CH ₂ CLCN Liq [±]	NbF5. CH2CICN	TaF5. CH2CICN	^{MoF} 5• CH ₂ C1CN	assignments
3180w	3160w		-	v2+v5(A ¹)
3021	3020m	3020m	3016ms	$v_{9,a}^{11}$, asy CH ₂ str
2976 ' s			296 0vs	$v_1, a^1, sym.CH_2 str.$
2347s	2320s	2524s	2312s	$v_2, a^1, C \equiv N \text{ str.}$
1418 vs	1414m	1414m	1404s	v_{10} , a ¹¹ , CH ₂ trist
1277vs	1268m	1266m	1264m	$v_{3},a^{1}, CH_{2} def.$
11 86.m	1191w			$v_{11}^{a_{11},a_{CH_2}^{11}}$ rock
1026(R)			1620mw	v_4, a^1, CH_2 wag
932vs	948s	950s	948s	$v_5, a^1, C-C$ str.
909 . 1w	903w	903w	893m	?
741 vs	750m	750m	752mw	$v_{5},a^{1},C-Cl$ str.
491 m	520m	52 1 m	522m	$v_7, a^1, C-C$ Cl bend
359 w	387m		330w,b	v_{12} , a^{11} , CC Cl bend
798(R)	300bw			v_8,a^1,CCN bend
				•

I.R.	spectra	of	coordinated	chloro-acetonitrile.
------	---------	----	-------------	----------------------

4 From ref. 123 (all frequencies in cm⁻¹)

(R) indicates Raman band.

- 79 -

TABLE 1:6:10

I.R. spectra of coordinated propionitrile

·			·
CH ₃ CH ₂ CI	N CH ₃ CH ₂ C	N CH 3 CH 2 CN	assignments
liq [‡]	•NbF ₅	•TaF5	
3250w	3300 v w	3303vw	v_{4+10} (Å)
3085w	3155w	3160w	$v_{l_{+}+,11}(A^{1})$
2252s	22 93vs	2296s	$v_{4}, a^{1}, CN str$
	2246w	2249w	free ligand ?
1461 vs	1470(R)		$v_5, a^1, v_{16}, a^1, asy CH_3 def$
1431s	1418m	1415m	v_6, a^1, CH_2 def
1316m	1306m	1305m	v8,a ¹ ,CH ₂ wag
1260vw	1250w	1 n.o.	v_{17}, a^{11}, CH_2 twist
1075s	1073m	1075m	v9,a ¹ , asy CC str.
1004m	100 0 w	1000w	v ₁₀ ,a ¹ , sym CH ₂ rock
836w	856m	860w	v ₁₁ ,a ¹ , sym CC str.
784s	783m	784m	v_{19} , $a^{11}CH_2$ rock
754m	obscu	rred by	2v ₂₀
670vw	M-F vibr	ations	$v_{21} + v_{20}$
545m	568m	570m	v_{12}, a^1, CCC bend
416w			2°13
378(R)		4:10w	v_{20}, a^{11}, CCN bend
226(R)	2905 , sh	300m,b	$\mathcal{P}_{13}, a^{11}, C-CN$ bend
293w, gaa	5		v ₂₁ ,a ¹¹ ,Cil ₃ torsion

1 from ref. 123 (R) indicates a Raman frequency

section 1:4) and is not the same as the compounds reported here. The I.R. and Raman spectra of the products of the reaction of niobium pentachloride and acetonitrile are identical to these published for $NbCl_{5}$. $CH_{3}CN^{(119,120)}$ after investigation by this author was completed.

The vibrational spectra of acetonitrile ^(121,122)monochloroacetonitrile ⁽¹²³⁾ and propionitrile ⁽¹²⁴⁾ have been extensively investigated and the assignments are given in tables 1:6:8, 1:6:9 and 1:6:10 for nitrile bands in the I.R. spectra of the complexes. The assignments are mostly straight-forward although in the region 250-450 cm⁻¹ they must be regarded as tentative because bands in this region often show large shifts on coordination.

In view of the probable formation of 1:2 complexes between pentafluorides and nitriles (discussed later in this section) the bands found at approximately 2250 cm⁻¹ in $CH_{3}CH$ and $CH_{3}CH_{2}CN$ complexes are attributed to combination, or difference modes rather than traces of excess ligand.

It is thought that the apparently crystalline solid formed when miobium, or tantalum pentafluoride was first precipitated from accountrile solution might be an unstable 1:2 adduct. The changes observed in Raman spectra of mixtures of MbF_5 and $\text{CH}_{3\text{CN}}$ in the metal-fluorine stretching region suggest a change in geometry about the central metal atom, but do not provide any conclusive evidence for a 1:2 adduct (table 1:6:11)

5

80.

- 81 -Table 1:6:11

Raman spectra of mixtures of MbF_5 and CH_3CN (all frequencies in cn^{-1} , intensities in brackets).

NDF.CH_CN	NDF_OILCH	CH_CN Soln	CH ₃ CN
	+encess CH_CN	of NbF	
705(90)	680(6)	706(17)	-
670(w)	640(8)		
590 (w)	430(w)		
	390 (w)	380 (30)	361w ·

The MoF_5-CH_2CICN system was chosen for investigation by I.R. spectroscopy because of the high solubility of $MoF_5.CH_2CICN$. Here the change in I.R. spectra in the region 550-760 cm⁻¹ of MoF_5CH_2CICN is too great to be due to changes of phase (table 1:6:12) The I.R. of $MoF_5.CH_2CICN$ in solution is very similar to that obtained for the 1:2 complexes (see section 1:4) and it is clear that there has been a change in coordination pattern at the metal atoms. The I.R. bands at 585 cm⁻¹ is probably too low to be associated with MoF_6^{-} (63)(see section 1:4) which might be produced by self ionisation.

i.e. 2MoF₅.CH₂ClCN ⇒MoF₄.(CH₂ClCN)₂⁺ + MoF₆⁻

- 82. -

TABLE 1:6:12

Liquid	NoF5.	band assignments	CH ₂ C1CN	Ŧ
CH ₂ C1CN	CH ₂ C1CN		soln .MoF ₅	
2316m		impurity ?	2314sh	f,c
2265s	2512s	C≡N stretch (2305s	с
		((2 2 65mw	f
1420vs b	1404s	A ^{l 'CH} 2 twist (1414m	f
		(1401s	с
730vs b	752m w	A ^I C-Cl stretch	736s	f,c
	710m			
	660s b			
	630 sb			
		MoF ₅ •2L M-F	585s asy	
494m	522m	C-C-Cl bend	520 m w	c
			495 m	f

I.R. spectra of chloroacetonitrile adducts of MoF5

▲ assignment of ligand bands to either free (f) or coordinated (c) ligand An adduct NbCl₅·CCl₃CN is briefly reported in the literature (119) but it is not stated how easily it looses base. In mixtures of NbF₅ and CCl₃CN the presence of niobium pentafluoride made no difference to the volatility of CCl₃CN as judged by the time taken to pump away the latter. The trace of orange product formed on heating the mixture may be analogous to the product of reaction of WCl₅ with CCl₃CN, (WCl₄:NCCl₂CCl₃)₂⁽¹²⁵⁾

Summary

It has been possible to assign almost all bands due to complexed base in the I.R. spectra of pentafluoride complexes of dimethyl and diethyl ethers, anisole, dimethyl sulphoxide, some nitriles and some pyridines. The results strongly suggest that in diethyl ether complexes the base undergoes a change in configuration upon coordination and that in 1:2 complexes no uncoordinated ligand is present. Both 1:1 and 1:2 pentafluoride dimethyl sulphoxide complexes have been prepared.

- 83 -

1:7 Reactions between Hiobium and Tentalum pentafluorides and dialkyl sulphides and selenides

These reactions have been reported to give 1:1 adducts.⁽⁹⁾ However the only evidence is some incomplete analytical results. In later investigations of these systems no attempt was made to analyse the reaction products ^(12,13) Analytical results obtained in this work were not reproduceable and did not correspond to any one compound (see table 1:9:3). N.M.R. (table 1:9:5) and N.Q.R. (section 3: 3) results suggest the presence of mixtures and I.R. spectra in the metal-fluorine stretching region were not reproduceable.

I.R. spectra of diethyl sulphide itself (section 1:9, appendix 3) over a range of temperatures are explicable in terms of the presence of only one (tt) rotamer (see section 1:6 also) with some splitting of methyl and methylene-group modes in the crystalline state. Strong I.R. bands found at 450-525 cm⁻¹ in samples of the pentafluoride-dialkyl sulphide adducts are tentatively assigned to a M = S mode, the M=S bond possibly being produced by the reaction $MF_5+2R_2S \longrightarrow MSF_3\cdot R_2S+2RF$.

The bursting of tubes containing the products of reaction of NbF5 with Et₂Se is also consistent with this reaction.

1:8 Reactions of contailuorides with dialkylamines.

Properties of the products of reaction of niobium, and tantalum pentafluorides with diethylamine suggest the presence of more than one compound. Intensities of I.R. bands at

- 84 -

3300 cm⁻¹ and 1650 cm⁻¹ increase with time and the reaction products, at first crystalline, rapidly become slushy. The green colouration produced whilst the samples were irradiated with CoK \sim X-rays suggests decomposition and may invalidate conclusions from X-ray powder photography. No crystalline material was detectable.

The reactions of dimethylamine with NbF₅ and TaF₅ seem less complicated. TaF₅ (NHMe₂)₂ showed no I.R. absorptions at 1600-1650 cm⁻¹ and I.R. absorptions in the range 500-700 cm⁻¹ not due to the ligand are similar in pattern to those in other 1:2 adducts. NbF₅ (NHMe₂)₂ gave a weak I.R. absorption at 1625 cm⁻¹ indicating presence of a small amount of -NH₂ compounds.

Both $PF_5^{(28)}$ and $TiCl_4^{(29)}$ initially form complexes with dialkylamines and aminolysis occurs under more extreme conditions. TaF_5 , and NbF₅ give similar reactions and are also similar to PF_5 and $TiCl_4$ in that aminolysis occurs more readily with diethylamine than dimethylamine.

The very low volatility of dimethylamine solutions of niobium and tantalum pentafluoride must be due to some association between solute and solvent. There are few reports of dialkylamines having such large decreases in vapour pressure in the presence of small amounts of solute. However such depressions of vapour pressure are known for a monia itself. Ammonium balides form a variety of compounds with armonia. e.g. $NH_4Cl \cdot 3NH_3$, $NH_4Br \cdot 3NH_3$, $NH_4I \cdot (NH_3)_x = 1,2,3,4,5$, (126) some stable under 10 mm Hg of aumonia up to $-5^{\circ}C$. Niobium pentachloride gives similar compounds with up to 18 moles of ammonia, but here the position is complicated by aumonolysis. (127)

1:9 Experimental

The sources, and purification procedures for starting materials used in this chapter are described below. Me₂O:- Air products, vacuum distilled through two traps at -78°C and kept for two months over fresh sodium. Et₂O:- McFarlane and Smith - anhydrous grade, vacuum distilled from - $^{-}60^{\circ}$ C and kept over fresh portions of sodium until no tarnishing of the sodium surface occurred. CH₃CN:- B.D.H. Refluxed 4 hours over 5% P₂O₅, distilled, refluxed 15 minutes over 5% fresh P₂O₅ and distilled. Kept over fresh sodium.

CH₂ClCN:- B.D.H. Fractionally distilled (B.P. 123-124[°]C 755 mm Hg) from P₂O₅ after refluxing 2 hours and stored over activated 4 Å molecular sieves.

 $CCl_3CN:-$ R.Emmanuel, Stored 3 months over CaH_2 , fractionally distilled from P_2O_5 (B.P. 83-85°C) and stored over activated 5 **A** sieve.

CH₂CH₂CN:- B.D.H. Purification as for CH₂CN.

Me₂SO:- B.D.H. Spectroscopic grade; stored over activated 4 **A** molecular sieves and melted occasionally to renew contact with sieves.

Me₂SO-d₆:- Prochem Ltd, 99%, purification as for Me₂SO Pyridine: - Analar distilled from MaOH and kept over activated 48 molecular sieve for one week, then vacuum distilled onto

- 87 -

freshly activated 4 R molecular sieve for storage.

Pyridine-d₆:- Ciba 98.5%, kept over activated 4 Å molecular sieve for one week, then vacuum distilled onto freshly activated 4 Å molecular sieve for storage.

4 Me-Pyridine:- B.D.H., fractionally distilled, (B.P. 140-142°C) twice shaken two weeks over crushed NaOH, twice vacuum distilled onto activated 5 % molecular sieve and kept one week, stored over molecular sieve.

2Me-Pyridine, fractionally distilled (B.P. 124-126°C) and purified as 4Me-Pyridine.

 NHMe_2 :- B.D.H. Distilled through traps at -78, twice kept one month over fresh sodium, and stored two months over sodium before use.

NHEt_:- B.D.H., purification as for NHMe2

Me₂S:- B.D.H., distilled under vacuum onto fresh sodium and kept two months. This was repeated twice. N.B. the residues from this purification can explode on contact with air.

Et₂S:- B.D.H. purification as for Me₂S.

Et₂Se:- Alfa Chemicals. Stored over freshly activated molecular sieve.

CH₂ClOCH₃:- B.D.H. Tech. Fractionally distilled twice, B.P.57-60°C, hept two months over sodium and stored over 4 A molecular sieves.

Phenyl-methyl-ether (anisole):- Hopkins and Williams, fractionally distilled (B.P. 153-4°C) and kept over sodium.

SOF₄:- donated by D.S. Ross, see D.S. Ross Ph.D. Thesis 1971 NbF₅, TaF₅, MoF₅:- see appendix I

1) Reactions between pontafluorides and nitriles

The procedure for these reactions was used for almost all the reactions reported in this chapter. Reactions were carried out in vacuum lines by condensing the bases into flasks containing the pentafluorides, allowing the mixtures to warm to room temperature, and cooling the reaction flasks with liquid nitrogen if any reaction became tooviolent. The pentafluorides were loaded in an inert atmosphere box, or sublimed directly into the reaction flasks. When reaction was considered complete the volatiles were pumped off, and where appropriate identified by I.R. spectroscopy.

The colourless crystals precipitated on concentration of CH_3CN , and CH_3CH_2CN . solutions of NbF₅, TaF₅ and MoF₅ broke up when kept in vacuo to give fine white powders which analysed as 1:1 complexes (see table 1:9:1). The Raman spectra of NbF₅·CH₃CN, and NbF₅·CH₃CN in excess CH₃CN were significantly different (see table 1:6:11).

NbF₅, TaF₅ and MoF₅, all gave 1:1 complexes with CH₂ClCN. NbF₅ did not visibly interact with CH₃CN at room temperature and Raman spectra of NbF₅, and NbF₅ and CCl₃CN, were similar in the range 200-100 cm⁻¹. When the mixture of NbF₅ and CCl₃CN was heated to 60° C the NbF₅ dissolved but on later evaporation

- 89 -

			ANAL)	SIS		other	char temp	
compound		ບ	H	z	íz.	elements	M. Pt. oC	Physical Properties
TaF5, CH3CN	found calc	7.3 7.6	1.4	4.3	30.4 30.0		chars 210 m. 236	white*crystalline powder not volatile 2000C
TaF ₅ • CH ₂ C1CN TaF ₅ • CH ₃ CH ₂ CN	found calc found calc	6.5 6.8 10.4 10.9	1.5 2.5 1.5	2.00 3.90 4.20 5.00	27.2 27.0 28.9 28.7	Cl=9,5 Cl=!0,1	chars 140 m.74.5 chars 155 m. 166	colourless crystals volutile 10^{-4} mm, 20° C white crystalline powder not volatile 100° C
NbF ₅ • CII ₃ CN	found calc	10.4 10.5	ຕ. ຕ	6.0 6.1	41.0 41.5			white*cyrstalline powder
NbF ₅ • CII ₂ CLCn	found calc	8 .5 9 .1	1.1 0.8	4.8 5.3	36 . 1 36 . 1	Cl=12 . 5 Cl=13 . 5	m . 65	colourless crystalo volatile 10 ⁻³ _{min,} 20 ⁰ C
NbF5. CH3CH2CN	found calc	14 . 7 14 . 8	2.3 2.1	5.3	38 . 7 39 . 1			white crystalline powder not volatile 100°C
MoF5. CH3CN	found calc	10.5 10.4	1. 34	0°0	39. 7 40. 9		chars 190 m. 176	white powder
MoF5. CH2CICN	found c,lc	6 0 0	0°0	00 940	34•5 35•6	CI=13.6 CI=13.3	m . 59 . 5	colourless crystals volatile 10-4,2000
TaF5.0Et2	found calc	13 . 6 13 . 7	2.7 2.9		26.8 27.1		· · ·	colourless liquid ^{&}
Taf5. Olle2	found calc	7.4	1.9 1.9		29 . 5 24 . 2			colourless crystals volatile 10 ⁻³ mm.20 ^o C

TABLE 1:9:1

NbF5. OEt2	found calc	18 . 2 18 . 3	ວ ດ ຕໍຕໍ່		36 . 4. 36 . 3			colourless liquid [*]
NbF5• Offe2	found calc	10.3 10.3	2.3 2.6		40.4 40.6		chars 150 m. 34	colourless crystals volatile 10 ⁻³ mm, 20 ⁰ C
NbF ₅ • OMeC ₆ H ₅	found calc	27.7 27.5	2.9 2.6		30 . 5 31 . 0	Nb=13.9 Nb=13.4		viscous orange-red liquid
Taf5. (Me2SO)2	found calc	11.0 11.1	5 0 5 0		22.0 22.0	S=14.7 S=14.8	m .79 lost gas 110	white crystalline powder not volatile 80°C
TaF5.Me2SO	found calc	6.8 6.8	1.8 1.7		27 . 9 26.8	S=9 . 0 S=9 . 1	m 133 no decomp 133	white crystalline powder volatile 100°C
TaF5• (Me2S0)2 ^d	found calc	10.8 10.8	5.6 5.4		20.6 21.4	S=14.4 S=14.4		white crystalline powder not volutile 20 ⁰ C
TaF5. Me2S0-d6	found calc	6.3 6.7	ຕ ຕ ຕິ		23 . 3 26.4	S=8 . 3 S=8 . 9	m131	white crystalline powder volatile 100 ⁰ C
NbF5• (Me2SO)2	found calc	14.1 14.0	3 . 7 3 . 5		27.2 27.6	S=17.8 S=13.6	m 55-64	white crystalline powder non volatile 60°C
NbF5•Me2S0	found calc	9.1 9.0	22.33		35. 2 35. 2	S=12, 1 S=12, 1	m.125 some gases lost	white crystalline powder volatile 1000C
Tar 5. Py2	found calc	27.4	2. 2. 3.	6.5 6.5	22.2 21.9		chars 180 -250 m 170	white crystalline powder not volatile 150°C
Taf5. (Py-d5)2	found calc	26 . 2 26.2	4 . 5 4 . 5	6.1 6.3	21.3 21.4		chars 180 m 160	white powder not volatile 150°C

•

•

91 --

white crystalline powder not volatile 150 ⁰ C	white crystalline powder not volatile	s 120 fawn coloured powder 61	white powder	usly reported	
•	·	char m l		om those previo	
25.1 26.7	20 .7 20 . 8 20 . 5	29 0 25 4 33 8	25.0 25.7	fer fr	
7.3 7.9	6.2 6.1 6.1	6.3 5.0	ດ ຕ ຕໍ່ຕໍ່	les dif	
5.6 5.6	3°0 3°1 3°1	ນ. ເມີດ ເຊິ່ງ	2 2.1 1.9	operti	
31.2 33.7	29.5 23.6 31.1	35.5 38.5 25.6	20.12 19.5	al pr	
found calc	found found calc	found calc calc	found calc	physic	
NbF5. (Py-d5)2	TaF ₅ . (4 Me-Py) ₂	"NbF5. (4M2-Py)"2 NbF5.(4Me-Py)2 NbF5.4Me-Py	Tar ₅ •2ke-Py	<pre>* indicates that</pre>	

-

of the mixture at room temperature all the chloroacetonitrile was removed and only a trace of orange powder was present in addition to the original NbF_E

2) <u>Reaction of niobium and tantalum pentafluorides with ethers</u>

At room remperature the reactions of NbF₅ or TaF₅ with Me_2O , or Et_2O all produced 1:1 complexes as the only involatile products. $NbF_5 \cdot OEt_2$, and $TaF_5 \cdot OEt_2$ were miscible in all proportions with diethyl ether and mixtures with ether gave only one set of ethyl-group signals in their N.H.R. spectra. When $NbF_5 \cdot OMe_2$, or $NbF_5 \cdot OEt_2$ were heated to $140^{\circ}C$ for ten hours in a stainless steel bomb the gaseous products contained methyl, or ethyl fluoride respectively. The residues were messy, water sensitive, white-blue powders.

Niobium pentafluoride is quite soluble in anisole (phenylmethyl ether) at room temperature. Although at 40° C a reaction occured to give a 1:1 complex, almost all the anisole could be pumped from a fresh solution of niobium pentafluoride at room temperature. At room temperature chlorodimethyl ether gave a black tar when reacted with niobium pentafluoride.

3) <u>Reactions of michium and tantalum pentafluorides with dimethyl</u> <u>sulphoxide</u>.

even under high vacuum. It was loaded in the inert atmosphere box into one side of a double-sided flask (see appendix I) containing pentafluoride in the other side, and tipped onto the pentafluoride after the flask had been evacuated. In later experiments dimethyl sulphoxide was reacted with pentafluorides in diethyl ether to dissipate the heat of reaction and prevent breakdown of the dimethyl sulphoxide. Quantities of reactants used in typical preparations are given in table 1:9:2. When reaction was complete the products were washed several times with ether to remove excess reactants and vacuum dried.

Table 1:9:2

-	1 1 .			
	Compound	pentafluoride	Et20	Me2 ^{SO}
	TaF5 ^{•Ne2} SO	7.24	XS	4.76
	TaF ₅ •(Me ₂ SO) ₂	10 •77	XS	21,45
	TaF5•Me2S0-d6	3.21	4.21	2.73
	NbF5•Me2SO	l+ • 84	4.54	4.20
	NbF ₅ •(Me ₂ SO) ₂	9.19	XS	22.5

Reactants used in preparation of dimethyl sulphoxide complexes (quantities in m. moles XS = excess, i.e. > MF_5)

When dimethyl sulphoxide was added directly to MbF_5 a vigorous, exothermic reaction took place and the products were a white, crystalline solid, a viscous, colourless liquid, and a gaseous mixture. The gaseous products gave peaks in the mass spectrum at mass numbers 104(s), 94(mm), 87(s), 86(s), 85(vs), 95 77(ms), 76(ms), 69(ms), 66(m), 57(m), 47(m), 53(m) and 17(s) and an I.R. spectrum with leaks at 2940vs, 2860vs, 2820vs, (1740, 1747, 1718), P.Q.R. s, 1501 m, 144vs,b, (1323, 1314, 1300) P.Q.R. 1035vs, 1018 vs, 960s, 700m, 680m. It is not possible to identify the gaseous products from this data.

When the reactions were repeated using diethyl ether as a solvent it was found that the composition of the precipitates formed on addition of dimethyl sulphoxide varied when the ratio of $MF_5:Me_2SO$ was less than 1:1, or more than 1:2 adducts precipitated were of 1:1 or 1:2 stoichiometry respectively. When the ratio was between 1:1 and 1:2 I.R. spectra, and x-ray powder photographs indicated the presence of a mixture of 1:1 and 1:2 adducts with no evidence for any other phases. When the ratio of $Me_2SO: MF_5$ was greater than 4:1 no precipitate was formed and the products separated into two fluid layers.

4) The reaction between TaF5. Me2SO and pyridine.

The product of quantitative addition of pyridine to an equimolar amount of $TaF_5 \cdot Me_2SO$ suspended in diethyl ether was a white powder with an x-ray powder photograph which was not a superposition of NbF_5Me_2SO on that of $MbF_5 \cdot 2Py$ (see fig 1:6:)

5) Reactions between pentafluorides and pyridines.

These reactions gave $1F_5 \cdot 2Py$ (Mb=Nb,Ta,Mo) as white crystalline powders. NbF₅ • 2Py and TaF₅ • 2Py were almost insoluble in diethyl ether but moderately soluble in mixtures of MF₅ • OEt₂ and diethyl ether . Despite changes in the ratio of reactants only products with 1:2 stoichiometry could be obtained from reactions of NbF5, or TaF5 with pyridine in ether. Dr. A.F. Cameron has made some preliminary single crystal studies on crystals of NF5.2Py obtained from the NF5.0Et2, OEt2, Py mixtures. These show NbF5.2Py and TaF5.2Py to be isostructural, with the monoclinic crystal type P2, or P21/m The known cell dimensions of NbF5.2Py are a=7.72%, b=14.85%, c=14.88%, (all \pm 0.15%) $\beta \triangleq 90^{\circ}$

Tantalum pentafluoride reacted with 2- and 4- methyl pyridines to give compounds of 1:1 and 1:2 stoichiometry respectively(see table 1:9:1) NbF₅ reacted, in about five minutes at room temperature, with 2Me-Py to give an inhomogeneous mixture of grey and white solids.

6) <u>Reactions of niobium and tantalum pentahalides with dialkyl-</u> <u>sulphides and -selonides</u>

The products of reaction of NbF5 and TaF5 with dialkyl sulphides did not give analytical results (listed in table 1:9:3) consistent with the presence of single compounds. The diethyl sulphide reactions gave viscous yellow liquids whilst dimethyl sulphide and NbF5 or TaF5 gave white solids slightly volatile in vacuo at 20° C. NbF5 and He2S also yielded traces of involatile blue solids.

Niobium pentachloride reacted with dimethyl sulphide to give a brown solid in the presence of excess dimethyl sulphide. When

- 96 -

- 9-7-Table 1:9:3

Analytical data for reactions with dialkyl sulphides

Compound/		L	ANAL	YSI	S	
reaction		С	Н	N	F	Cl
NbF ₅ +Me ₂ S	Found	9.3	2.6	15.2	31.3	
NbF ₅ +Me ₂ S	found	9.9	2.6	13.3	36.4	
NbF ₅ +Me ₂ S	found	9.3	2.6	12.7	36.0	
NbF ₅ •SMe ₂	calc	9.6	2.4	12.8	38.0	
NbSF ₃ •SMe ₂	calc	9.8	2.5	26.3	23.5	
NbF ₄ •SMe ₂	calc	10.4	2.6	13.9	32.9	
NbCl ₅ +Me ₂ S	found	7.4	11.9	9.7		47 . 2
NbCl ₅ •SMe ₂	calc	9.7	1.8	9.7		53 . 3
TaF5+Me2S TaF5+ Me2S	f ound f ound	6.7 6.9	1.8 4.7	9 .3 8.8	31.4 26.2) 25.9)	
TaF5.SMe2	calc	7.1	1.8	9•5	28.1	•
TaSF3.SMe2	calc	7.2	1.8	19•3	17.2	
TaF4.SMe2	calc	7.5	1.9	10•1	23.8	
NbF5+Et2S	found	15.7	3.2	10.3	31.8	
NbF5+Et2S	found	14.8	3.6	9.7	34.1	
NbF5-SEt2	calc	17.3	3.6	9.7	34.2	
TaF5+Et2S	found	11.8	2.4	7.8	23 .4	
TaF5+Et2S	found	11.6	3.3	7.8	24 . 0	
TaF5•SEt2	calc	13.1	2.8	8.8	26 . 0	

the excess dimethyl sulphide was removed a bright orange powder formed.

Niobium pentafluoride reacted with diethyl selenide to give a viscous red liquid which darkened in colour over a period of several days. If kept too long at room temperature the sample tubes containing the liquid exploded, so the compound was not further investigated.

7) Reactions of pentafluorides with dialkylamines.

On allowing mixtures of dimethylamine and NbF₅, or TaF₅ to warm from -196° C a reaction started at about -20° C to give yelbw, or white solids respectively. The colours of the solids dissolved in excess amine were the same as those of the isolated solids. However even at mole ratios of pentafluoride : dimethylamine of 1:6 the vapour pressure of the solutions at room temperature was only a few millimeters. Dimethylamine boils at 7.4° C. The stoichiometry of the products left after pumping on the niobium solution for four days corresponded to 1:2 adducts (see table 1:9:4). The complexes of niobium and tantalum pentafluorides did not visibly change in appearance over quite large periods of time.

It was also difficult to remove excess diethylamine from the yellow products of its reaction with miobium and tantalum pentafluorides. Reaction of miobium pentafluoride with diethylamine gave a yellow slush. "TaF5•(NHEt2)2" became slushy within a few weeks. All the amine compounds exhibited fluorescence in the Raman spectra although it was possible to obtain Raman spectra

99 -
TABLE 1:9:4

Analytical data for reactions with dialkyl amines

- 9.9-

Compound/		ANAL	YSIS			
reaction		C	H	N	F	Nb/MO
NbF5+NHMe2 NbF5・2NHMe2	found calc	17.1 17.3	5.4 5.1	9.9 10.1	54.4 34.2	Hb=33.9 Nb=33.4
TaF5+NHMe2 TaF5・2NHMe2	found	13.0 13.1	3.8 3.9	7•5 7•7	26.3	
NbF5 ^{+NHMe} 2	not	analysed	obvious	mixt	ure	
TaF ₅ +NHEt ₂ TaF ₅ .2NHEt ₂	found calc	18.1 22.8	3.8 5.3	6 .9 6 . 6	24.2 22.5	
MoF ₅ +NHEt ₂ brown product white product MoF ₄ -NEt ₂ •NHEt ₂ NH ₂ ET ₂ F NH ₂ Et ₂ MoF ₆ MoF ₄ •NEt ₂	found found calc calc calc calc	35.1 30.0 30.3 51.7 16.9 30.6	8.1 7.5 6.7 13.0 4.3 6.4	10.1 9.4 8.9 15.0 4.9 8.8	22.9 26.1 23.9 24.4 40.1 24.0	Mo=28.2 Mo=30.2 Mo=0.0 Mo=33.8 Ho=30.3

en e of the methylamine adducts.

When a mixture of molybdenum pentafluoride and diethylamine was allowed to warm to room temperature the products of reaction, washing with amine which could only be partially separated by were a brown compound, sparingly soluble in amine, and a nearly white powder moderately soluble in excess amine. The observed gain in weight corresponded to a mole ratio MoF5:NHEt2 of 2:3 in the involatile products.

I.R. and Raman spectroscopic measurements were carried out as described in Appendix I. Reaction of samples with KBr plates used for infra-red analysis was detected by appearance of a redbrown colour in the sample, or the appearance of a very strong absorption in the I.R. spectra at approximately 600 cm^{-1} All of the 1:1 complexes, but none of the 1:2 complexes, were observed to react with K Br. Reaction with AgCl Plates, detected by appearance of a red colouration in the sample was observed with the products of reaction of pentafluorides with dialkyl sulphides.

When nujol was heated with niobium pentafluoride to 130° for six hours no new peaks in the I.R. spectrum of the nujol were detected in the range 1000-1200 cm⁻¹. No gaseous products were found and the I.R. spectrum of the niobium pentafluoride was unchanged.

N.M.R. measurements were carried out on samples loaded into tubes, degassed at 400°C in vacuo, in the inert atmosphere box and sealed under vacuum. The results are given in table 1:9:5 Mass spectra were run on the M.S.12 mass spectrometer under

- 100-

- 101 -

•

TABLE 1:9:5

 $19_{\rm F}$ and $1_{\rm H}$ NMR spectral results

COMPOUND	T ^o c	19 _{F*}	تر 1 _H		J _{HH}
			С <u>н</u> з	CH2	Hz
NbF5.0Et2 OEt2	53 33	-156	8.57 8.84	5.62 6.57	5 5
MbF5•OMeCSH5	10-80	n.o.	7.32		
ND#5.0120101	- 90	- 10 1		5.93	
NbF ₅ .ScEt ₂	55 10 - 40	n.o.	8.5	6.9	v.b.
"NbF5.SMe2"	33 33	-1 4 7	7•59 8.00		
"NbF ₅ .SEt2" sample(1);	100 90 75 60 50 40 30 10 0 -20	-155.4 -154.3 -151.8 -148.8 -146.6 -143.6	8.79 8.79 8.79 8.76 8.76 8.76 8.76 8.77	7.30 7.29 7.29 7.28 7.29 7.28 7.29 7.28 7.28	7.6 7.6 7.7 7.8 7.6 7.4 b
"NbF ₅ •SEt ₂ "(2) "sample(3) "sample(4) SEt ₂	 33 33 33 33	-150.3 -158.8 -157.6	8.63 8.60 8.82	7.53	7•4 7•1
NbF5 (SEt2)1.6 NbF5 (SEt2)1.9 NbF5 (SEt2)4.5 NbF5 (SEt2)4.5 NbF5 (SEt2)5.6 NbF5 (SEt2)6.2 NbF5 (SEt2)6.4 NbF5 (SEt2)10.4	33 33 33 35 35 35 33	-141.5 -144.1 -146.4 -147.6 -148	8.60 8.69 8.73 8.75 8.75 8.75 8.90	6.90 7.21 7.37 7.39 7.40 7.44	

TaF5.CH2CICN	10.0 85 95 10	-93 -93 -92 -92			
"TaF ₅ •SEt ₂ "(1) - " sample (2) -	<u>33_</u> 25 10 _ 10 - -45	88 -82.7 -78 -80 v .5 n.0.	8.77 8.57 8.56 8.51 8.58	_7 <u>.06</u> 6.88 6.92 6.91 6.90	

* ¹⁹F are given in ppm from CCl₃F, the -ve sign indicates that all ¹⁹F resonances are downfield from CCl₃F. NbF₅ gave one broad ¹⁹F resonance ¹⁹F=-184 ppm at 80-100°C TaF₅ gave me broad resonance at -104 ppm at 100-120°C A mixture of NbF₅ and TaF₅ with mole ratio 1:0.57 gave the a resonace at -151 ppm at .80-100°C, linewidths 80°-230Hs, 100°160Hz, 110°150Hz 120°130Hz. conditions as described for miobium pentafluoride in section 1:3. X-ray powder photographs were run in quartz, or pyrex tubes of 0.5, or 0.3 mm diameter with a 114.6 mm Debye-Scherrer camera using Co-K~ irradiation. Tubes were loaded in the inert atmosphere box and scaled with a flame, and a small amount of Kel-F wax.

Temperature dependent I.R. studies of diethyl sulphide were attempted, using the cell described in Appendix 1, to investigate rotational isomerism in diethyl sulphide. No I.R. bands disappeared on cooling but splitting of several bands was observed when samples were annealed for a few minutes at approximately -120° C before cooling to -196° C. No splittings were observed when diethyl sulphide was cooled directly to -196° C (full lists of bands observed are given in appendix 3)

-103

- (1) G. E. Lewis, "Valence and Structure of Atoms and Molecules." Chem. Catalogue Co. Inc. New York 1923. J. Franklin Inst. (1938), <u>226</u>, 293.
- (2) A. M. Rogers, W. K. Meyer. J. Phys. Chem. (1962),
 66, 1397.
- (3) J. Fischer, E. Rudzitis. J.A.C.S. (1959), <u>81</u>,
 6375.
- (4) E. L. Muetterties, T. A. Bither, M. W. Farlow,
 D. D. Coffmann. J.I.N.C. (1960), <u>16</u>, 52.
- (5) N. Bartlett, P. L. Robinson. J.C.S. (1961), 3417.
- (6) L. Stein. Inorg. Chem. (1959), <u>3</u>, 955.
- (7) J. H. Holloway, P.R. Rao, N. Bartlett. J.C.S. (D)(1965), 306.
- (8) L. Kolditz, W. Rehak, Z. Anorg. (1966), 342, 32.
- (9) F. Fairbrother, K. H. Grundy, A. Thompson, J.C.S.(1965), 765.
- (10) H. C. Clark, H. J. Emeléus. J.C.S. (1958), 190.
- (11) F. Fairbrother, K. H. Grundy, A. Thompson. J. Less.-Comm. Metals. (1966), <u>10</u>, <u>38</u>.
- (12) K. C. Moss. J.C.S. (A) (1970), 1224.
- (13) J. A. S. Howell, K.C. Moss. J.C.S. (A) (1971), 2483.
- (14) Ya. A. Buslaev, N.A. Glushkova, M. M. Ershova, V. A.
- Bochareva. Euss J. Inorg. Chem (1958), <u>13</u>, 31.
- (15) R. G. Cavell, H. C. Clark. J. I. N. C. (1961), <u>17</u>, 257.
- (16) M. Morcer, T. J. Ouellette, S. T. Ratcliffe, J. .. A. Sharp
 J. C. S. (A) (1969), 2532.

(17) J. H. Canterford, R. Colton "Halides of the Second and Third Row Transition Metals" J. Wiley, 1968.

(18) W. L. Reynolds, Prog. Inorg. Chem. (1970), 12, 1.

(19) D. B. Copley, F. Fairbrother, K. H. Grundy,

A. Thompson. J. Less-Comm. Metals (1964), 6, 407.

- (20) L. J. Bellamy in "Organic Sulphur Compounds" Pergamon Press, New York (1961) Chap. 6, p.51.
- (21) F. A. Cotton, R. Francis, W.D. Horrocks, J. Phys.
 Chem. (1960), <u>64</u>, 1534.
- (22) P. J. H. Carnell, G. W. A. Fowles, J. C. S. (1959), 4113.
 (23) G. W. A. Fowles, C. M. Pleass, J.C.S. (1957), 2078.
 (24) G. W. A. Fowles, B. P. Osborne, J.C.S. (1959), 2275.
 (25) H. J. Emeléus, G. S. Rao, J.C.S. (1958), 4245.
 (26) H. C. Clark, H. J. Emeléus, J.C.S. (1957), 4778.
 (27) A. Majid, Glasgow University personal communication.

(28) J. S. Harman, Ph.D. Thesis Glasgow University (1970).

J. S. Harman, D. W. A. Sharp, J.C.S.(A) (1970), 1138.

(29) R. T. Cowdell, G. W. A. Fowles J.C.S. (1960), 2522.

- (30) A. H. Cowley, F. Frirbrother, N. Scott, J.C.S. (1958), 3133.
- (31) W. Wardlaw, H. W. Webb, J. C. S. (1930), 2100.
- (32) A. Noble, Ph.D. Thesis Glasgow University (1970).A. Noble, J. M. Winfield, J.C.S.(A) (1970), 2574.
- (33) R. E. McCarley, E. G. Hughes, J. C. Boatman, B. A. Torp
 Adw. Chem. Ser. 1963, <u>37</u>, 245.

- (34) N. Allbutt, K. Feenan, G. W. A. Foules J. Less-Comm. Metals (1964), <u>6</u>, 229.
- (35) E. A. Allen, B. J. Brisdon, G. W. A. Fowles J.C.S. (1964), 4531.
- (36) K. Feenan, G. W. A. Fowles J.C.S. (1964), 2842.
- (37) L. Kolditz, U. Calov, Z. Anorg. (1970), <u>376</u>, 1.
- (38) H. Preiss, P. Reich, Z. Anorg. (1968), <u>362</u>, 19.
- (39) S. Blanchard, J. Chim Phys. (1965), 62, 920.
- (40) I. R. Beattie, K. M. S. Livingston, G. A. Ozin,
 D. J. Reynolds, J.C.S. (1969), 958.
- (41) H. Selig, A. Reis, E. L. Gasner, J.I.N.C. (1968); 30, 2087.
- (42) J. S. Fordyce, R. L. Baum, J.Chem. Phys. (1966), <u>44</u>, 1159.
- (43) T. J. Oudlette, C. T. Ratcliffe, D.W.A. Sharp, J.C.S.(A) (1969), 2351.
- (44) J. E. Bates, Spect. Acta (1971), 27 (A), 1255.
- (45) A. J. Edwards. J.C.S. (1964), 3714.
- (46) P. J. Hendra, T. R. Gilson, "Laser Raman Spectroscopy"J. Wiley (1970).
- (47) H. Preiss, Z. Anorg (1966), <u>346</u>, 272.

chem

- (48) H. Preiss, Z. Anorg (1958), <u>362</u>, 13.
- (49) F. Fairbrother, K. H. Grundy, A. Phompson, J.C.S. (1965), 761.
- (50) F. Fairbrother, W. C. Frith, A. A. Woolf J.C.S. (1954), 1031.

- (51) J. Gaunt, J. E. Ainscough, Spect. Acta, (1957-8), <u>10</u>, 57.
- (52) I. R. Beattie, N. Cheetham, T. R. Gilson, N.N.S. Livingston,D.J. Reynolds, J.C.S. (A) (1971), 1910.
- (53) K. Dehnicke, J. Weidein, Z. Anorg. (1963), 323, 267.
- (54) A. J. Edwards 6th Int. Fluorine Symposium (at Durham) (1971).
- (55) D. R. Hub, P. L. Robinson J.C.S. (1954), 2640.
- (56) H. H. Claasen, H. Selig, J. Chem. Phys. (1966), <u>44</u>, 4039.
- (57) M. Suzuko, R. Kubo J. Mol Phys (1964), 7, 201.
- (58) A Muller, H. W. Roesky, D. Bohler Z. Chem (1967), 2, 469.
- (59) G. V. Romanov, V. P. Spiridonov, Siberian Chem. (1968), 105.
- (60) Ya. V. Vasilev, A. A. Opaloyskii, K. A. Khaldoyanidi.

Izv. Akad. Mauk. S.S.R. Ser. Khim. (1969), 251.

- (61) M. J. Vasile, G. R. Jones, W. E. Falconer. 6th Int. Fluorine Symposium at Durham, 1971.
- (62) G. R. Jones, Royal Radar Establishment, Melvern. Worcs. England. Personal Communication.
- (63) R. D. Peacock, D. W. A. Sharp, J.C.S. (1959), 2762.
- (64) H. Bode, H v Döhren Acta Cryst (1958), <u>11</u>, 80.
- (65) R. D. Kemmitt, D. R. Russell, D. W. A. Sharp J.C.S. (1963), 4408.
- (66) O. L. Keller, A. Chetham Strode, Inorg. Chem. (1966),5, 367.
- (67) O. L. Keller, Inorg. Chem. (1963), 27, 783.
- (68) B. Cox, J.C.S. (1956), 876.

- (69) R. S. Halford, J. Chem. Phys. (1946), <u>14</u>, 8.
- (70) D. M. Adams, D. C. Newton J.C.S. (A), (1970), 2822,
 Tables for Factor Group Analysis Beckman R.I.I.C. Ltd.,
 (1970).
- (71) E. B. Wilson, J. C. Decius, P. C. Cross "Molecular Vibrations" (Mcc Graw Hill, New York, 1955 P.340).
- (72) C. Philippi. Tech Report for U. S. Air Force Materials Laboratory - AFML-TR-68-317 Jan. 1969.
- (73) D. M. Adams, G. W. Fraser, D. M. Morris, R. D. Peacock,J.C.S. (A), (1968), 1131.
- (74) G. A. Ozin, R. A. Walton J.C.S. (A), (1970), 2236.
- (75) Manual for "Cary81" Spectrometer.
- (76) K. W. Bagnall, D. Brown J.C.S. (1964) 3021.
- (77) D. M. Adams, J. Chatt, J. M. Davidson, J. Gervatt J.C.S. (1963), 2189.
- (78) U. A. Buslaev, S. V. Bainova, M. N. Kratkina, Dokl. Akad. Nauk.S.S.S.R. (1971), <u>196</u>, 374
- (79) A.M. Noble, J. M. Winfield, J.C.S. (A), (1970), 2574.
- (80) G. W. Fraser, M. Mercer, R. D. Peacock, J.C.S.(A), (1967), 1091.
- (81) G. M. Begun, W. H. Fletcher, A. A. Palko, Spect. Acta, (1962), 18, 655.
- (82) J. Lo Calve J. Chim. Phys. (1970), <u>67</u>, 1987.
- (83) A. Allan, D. C. McKean, J. P. Perchard, M. J. Josien, Spect. Acta, (1971), <u>27Å</u>, 1409.

109 -

- (84) R. C. Taylor, G. L. Vidale. J. Chem. Phys. (1957), 26, 122.
- (85) Y. I. Mashiko, K. S. Pitzer J. Phys. Chem. (1958), 62,367.
- (86) M. J. Aroney, R. J. W. Lefevre, J. Saxby, J.C.S. (1962), 2886.
- (87) R. G. Snyder, G. Zerbi. Spect. Acta, (1967), 23A, 391.
- (88) W. Wieser, W. G. Laidlaw, P. J. Krueger, H. Fuhrer, Spect. Acta, (1968), <u>24A</u> 1055.
- (89) O. Kennard, D. G. Watson, "Molecular Structures and Dimensions" Qosthock's Uitgevers, Utrecht (1970).
- (90) C. I. Brandon, Ark Kemi (1964), <u>22</u>, 83.
- (91) C. I. Bränden, Ark Kemi (1964), 22, 495.
- (92) J. J. Daly, R.P.A. Sneeden, J.C.S. (A), (1967), 736.
- (93) J. Y. Beach, J. Chem Phys. (1941), 2, 54.
- (94) J. Stokes, D. L. Sales, P. Woodward, J.C.S. (A), (1968), 1852.
- (95) N. Owen, R. E. Hester, Spect. Acta. (1969), 25A, 343.
- (96) R. T. C. Brownlee, A. R. Katritzky, R. D. Topson, J.A.C.S. (1965), <u>87</u>, 3260.
- (97) H. Hart, L. E. Wagner, Proc. Chem. Soc. (1958), 284.
- (98) A. D. Baker, D. P. May, D. W. Turner, J.C.S. (B), (1968), 22.
- (99) A. R. Katritzky, Quarterly Rev. (1959), 13, 353.
- (100) M. T. Ford, M. Tranquille, M. Fouassier, Spect. Acta, (1970), <u>26A</u>, 1777.
- (101) W. E. Curvier, J. H. Weber, Inorg. Chem (1907), <u>6</u>, 1519.

- (103) F. A. Cotton, R. Francis, W. D. Horrocks, J. Phys. Chem. (1960), <u>64</u>, 1534.
- (104) J. Selbin, M. E. Ball, L. H. Holmes, J. I. N. C. (1961), 16, 219.
- (105) M. J. Bennett, F. A. Cotton, D. L. Weaver. Acta Cryst, (1967), <u>23</u>, 581.
- (106) W. D. Horrocks, F. A. Cotton, Spect. Acta (1961), <u>17</u>, 134.
 (107) M. T. Ford, M. Tranquille, Spect. Acta (1970), <u>26A</u>, 1023.
 (108) A. J. Carty, H. A. Patel, Can. J.Chem (1970), <u>48</u>, 492.
 (109) V. F. Duckworth, N. C. Stephenson, Acta Cryst (1969) 25<u>B</u>, 1795.
- (110) G. A. Barclay, C. H. L. Kennard, J.C.S. (1961), 5245.
- (111) I. Søtofte, S. E. Rasmussen, Acta, Scand. (1967), <u>21</u>,2028
 (112) B. Bak, L. Hansen-Nygaard, J. Rastrap Andersen, J. Mol.

Spect. (1958), 2,361.

- (113) J. O'Keane, Ph.D. Thesis, Glasgow University (1971).
- (114) C. H. Kline, J. Turkevich, J. Chem Phys. (1944), <u>12</u>, 300.
- (115) J. K. Wilmhurst, H. J. Bernstein, Can. J. Chem. (1957), 35, 1185.
- (116) N. S. Gill, R. H. Nuttall, D. E. Scaife, D. W. A. Sharp J.I.N.C. (1961), <u>18</u>, 79.
- (117) J. H. S. Green, K. Kynaston, H. M. Paisley, Spect. Acta (1963), <u>19</u>, 549.

- (118) N. S. Gill, N. J. Kingdon, Aust. J. Chem. (1966), 19, 2197.
- (119) G. W. A. Fowles, D. A. Rice, N. Rolfe, R. A. Walton, J.C.S. (D), (1970), 459.
- (120) J. M. McCordick, G. Kaufmann, J. Mol. Struct. (1970), <u>6</u>, 305.
- (121) D. E. Milligan, M. E. Jacox, J. Mol. Spect. (1962), 8, 126.
- (122) J. C. Evans, G.V.S.Lo, Spect. Acta, (1965), 21, 1033.
- (123) W. Zeil, Z. Phys. Chem. (1958); 14, 230.
- (124) N. E. Duncan, G. J. Janz. J. Chem. Phys. (1955), <u>23</u>, 434.
 (125) M.G.B. Drew, G. W. A. Fowles, D. A. Rice, N. Rolfe, J.C.S.
 (D), (1971), 231.
- (126) G. Spacu, P. Voichescu, Z. Anorg. Chem. (1937), <u>233</u>, 197.
 (127) G. W. A. Fowles, F. H. Pollard, J.C.S. (1952), 4938.

- 111 .

II CHAPTER

Substitution Reactions of Pentafluorides.

- 118 -

2:1 Introduction

This chapter deals principally with some attempted preparations of fluoride-halides and fluoride - pseudohalides of nioblum and tantalum. NF_5 , NCl_5 , MBr_5 , $\text{MI}_5^{(1)}$, $\text{M(OR)}_5^{(1)}$, $\text{M(OR)}_5^{(1)}$, $\text{M(OR)}_5^{(2,3)}$, $\text{M(NCS)}_5^{(4-7)}$ and $\text{M(NMe}_2)_5^{(8)}$ (M=Nb,Ta) are all known and although M(CN)_5 , and M(NCO)_5 have not been prepared some chloride-cyanides ⁽⁹⁾ and chloride cyanates ⁽⁷⁾ are known. A number of mixed halides and mixed halide-pseudohalides of Nb, and Ta are known but until this work was started the only Nb or Ta mixed "halides" containing fluorine were the tetrachloride-fluorides, ^(10,11) and fluoridealkoxides. ⁽¹²⁾

Many oxidation, and substitution methods are available for preparation of halides and a classification of some of these is given below

- (1) Oxidation
- (a) of metals by halogens
- e.g. $2Nb+5F_2 \xrightarrow{150^\circ} 2NbF_5$ (see appendix 1)

(b) of metals by reactive halides

e.g.
$$3Nb + 8BrF_3 \rightarrow 3Br F_2 \cdot NbF_6 + 5/2Br_2$$

 $BrF_2 \cdot NbF_6 \longrightarrow BrF_3 + NbF_5$ (13)

Mothod 1b seldom gives pure products because the salts (e.g. $\operatorname{ErF}_2 \cdot \operatorname{Nb}\mathbf{F}_6$) are quite stable.

(c) of lower halides: The lower halides of niobium

and tantalum have not been well characterised. Use of method 1 c has not been reported in niobium, or tantalum chemistry, but omidation of lower halides has been successfully used in non-metal pentahalide chemistry

 $\circ \cdot \varepsilon \cdot PF_3 + Cl_2 + Cl_2 + 3$

The frequent need for high temperatures to initiate oxidation reactions has tended to limit their use in halide preparations for pseudo-halogens, and halides, often decompose at moderately high temperatures.

2) <u>Substitution</u>. he generalised reaction is $MX_5+ZM'Y \rightarrow MX_5-zX'zX+ZM'X_X$ The degree of substitution which can be achieved is often limited by the nature of M, and Y. The reactions may be classified by the nature of M¹.

a) M'=H. These reactions have been much used to produce ethoxides ^(2,3) cyanides, ⁽⁹⁾ and alkylamides and dialkylamides ^(15,16,17,18)

e.g. $\operatorname{TaCl}_{5^{+}3\text{EtOH}} \rightarrow \operatorname{TaCl}_{2}(\operatorname{OEt})_{3^{+}3\text{HCl}}$ TaCl₅₊₅ EtOH+5NH₃ \rightarrow Ta(OEt)₅+5NH₄Cl⁽²⁾

b) $M^{1} \pm$ alkali metal. These reactions have been used extensively for preparation of metal pseudohalides using $GH_{Z}CH$ as a solvent.

e.g. $\operatorname{HCl}_{5}+5\operatorname{LiMe}_{2} \longrightarrow \operatorname{H(NMe}_{2})_{5}+5\operatorname{LiCl}^{(8)}$

c) M^{\dagger} =As. ASP_{3} has been used to produce the tetrachloridefluorides of miobium and tantalum(10,11) and represents one of the few reported cases where a halogen attached to mashium, or tantalum is replaced by a more electronegative halogen in a substitution reaction.

e.g. $3PCl_5$.NbCl_5+6AsF_3PF_5+3NbCl_4F+6AsCl_3

d) M¹=Nb,Ta. These reactions have not been attempted.
e) M¹=Si. The use of Me₃Si halides and pseudohalides in substitution reactions with tungsten and boron halides is well established (e.g. references 22,23). They have not, however, previously been used for preparation of Nb, or Ta mixed halides. The reactions are thought to proceed via intermediate acid-base complexes which can, in some cases, be isolated

e.g. $Me_3SiCN+BF_3 \rightarrow Me_3SiCN.EF_3 \rightarrow Me_3SiF+BF_2CN^{(22)}$. This mechanism is not proved, however, because the complex may dissociate before substitution occurs. The strong Lewis acidity of Ab and Ta (V) makes it possible of that it may, in some cases, be difficult to remove excess reagent (Me_3SiX). Me_3Si compounds are generally less reactive as substituting agents than alkali metal salts (24,25,4-8) which can replace all the halogens of transition metal halides with pseudohalogens.

f) M¹ = other elements. Few other halides have been used as substituting agents, but it is suggested that phosphorus, germanium, and sulphur compounds may, at some stage, be found useful because the by-products of reaction should, as in the Me₃Si-X reactions, be volatile and easily removed from tho reaction mixtures.

A list of which, pentavalent halides, mixedhalides, mixed pseudohalides, and pseudo-halides of Nb, and Ta is

- 121 -

Table 2:1:1 No and Ta (V) Halides

Compound		Reagents	Ref	Comments	
Prep.	anthon	5			
MF ₅	la,b	H+F2,BrF3.	27,13] F-bridged	
MF 5	St	101_{5}^{+2nF} 2	28	tetramer	
MC15, MBr5, M15	la	^{N+Br} 2,Cl2,12	29,30	X-bridged	
MC15	2e	MF ₅ +TiC1 ₄	26	dimers (not iodides	
MC 1 ₄ F	2c	HCt ₅ +AsF ₃	10,11	F-bridged tetramer	
M(CH5) 5	2Ъ	MC1 ₅ +KCNS	⁴ :-7	contains NCS	
MCl _x (CHS) _{5-x} }	2b	MC1 ₅ +NCNS	¹ :-7	b identate bridges CHS is N bonded	
X=0-4					
MCl_(CRO) ₅₋₂₀ x=0-4	2Ъ	MC1 ₅ +KCNO	7	NCO is N bonded to metal	
MX4CN X=Cl,Br	2a	MX ₅ +RON	9	CN is C bonded to	
M(NR ₂) ₅	_2b	MC15+LiNR2	8	NR ₂ =NMe ₂ ,NC ₄ H ₈	
MC1 ₃ (NR ₂) ₂ . MIR ₂	2a	MC15+NHR2	15-		
R=H,Me,Et			18		
MX _x (OR) _{5-x}	2a	MX ₅ +ROH	2,3	M(OR) ₅ compounds	
X=Cl, , ,R=Me, Et			32	are O-bridged	
X=0- ² ;				dimors ^(3,19)	

•

ч - . given in table 2:1:1 together with notes on the methods used in their preparation(labelled as above).

In all reactions producing mixed halides analytical data are not sufficient proof that only one compound is present in the reaction products. For instance NbF_4 .NEt₂ would give the same analysis as an equimolar mixture of NbF_3 . (NEt₂)₂ and NbF_5 . Reactions should, ideally, be done in solution to ensure homogeneous reaction products, but this is difficult because no suitable non-interacting solvent has been found for transition metal pentafluorides. C_6H_6 , and C_6F_6 are poor solvents for pentafluorides. Lewis bases have been used as solvents (see Chapter 1) but in these solutions pentafluoride complexes and not pentafluorides are present.

In recent experiments the monosubstituted anions MX_5Y^- (X, Y=Cl, Br, 1) were produced by addition of Et_4NY in 1:1 stoichiometry to CH_3CN solutions of MX_5 .⁽³³⁾ The anions M $Cl_xF_{6-x}^-$ (X=O to 5) have been observed by ¹⁹F N.M.R. spectroscopy of solutions of NbCl₅, or Ta Cl₅ in 60% HF⁽³¹⁾ but NF_5Cl anions have been reported to undergo dismutation when attempts were made to isolate them in colid state.⁽²¹⁾ (In this chapter the word dismutation will be used to indicate a reaction in which a mixed halide reacts to give species with different halogen ratios

e.g. $2MCl_3F_2 \rightarrow MCl_4F+MClF_3$ A material will be said to be dismutated when the species present do not all have the same composition as the bulk). There is also N.M.R. evidence for non-ionic chloride-fluorides, in melts and solutions, of $Nb(V)^{20}$, $Ta(V)^{(20)}$ and $W(VI)^{(34)}$ other than those which have been isolated pure $(NbCl_4F, TaCl_4F, WClF_5)$. In all cases where reactions are carried out in solution it must

of the solutions are the ones thermodynamically most stable to dismutation in solution.

not be assumed that the species precipitated by concentration

Reactions reported in this chapter produced mixed "halides" and 1:1 and 1:2 complexes of mixed "halides" with bases. Where dismutation and scrambling reactions are feasible there is no reason to assume that the ratios of F:X(X=another halogen or pseudo-halogen) in compounds separable from mixtures will be the same for all systems. The 1:1 complexes may show greater similarities to the mixed hexahalide anions than to mixed pentahalides due to the greater inequivalence of chemical bonds in the latter. It may be predicted that the stable ratios of F:X will not be the same for all X. Where X is very bulky the interactions between X groups should increase rapidly as the degree of substitution increases and these compounds may show greater stability to dismutation reaction although reductions may become more favourable.

 $e \cdot g \cdot MX_3 \mathbb{Z}_{2} \longrightarrow MX_3 + \mathbb{Z}_{2}$

Most Nb, and Ta pentahalides and pseudobalides a pear to be polymeric in the solid state containing bridging

- 125 -

"halogen" atoms. The penta-dialkylmmides are notable exceptions.⁽³⁵⁾ Here steric strain, to which the instability of $M(\text{NEt}_2)_5$, (M=Nb,Ta), has been attributed, may be an important factor, or M-NR₂-M bridges may be inherently unstable. The intense colours of dialkyl amino compounds and the planarity of nitrogen atoms in $W(\text{NMe}_2)_6^{(36)}$ suggest $N_{p_{\pi}} \rightarrow M_{d_{\pi}}$ bonding and the possibility of nitrogen-metal charge transfer.

There are spectroscopic criteria for deciding whether the CN, or CNS and CNO compounds of low oxidation state are C,N,S, or O bonded. However the last general survey of the spectra of cyanates and thiocyanates is now outdated by more recent publications containing information on systems with metal in high oxidation states (see e.g. ref 43,44). It is beyond the scope of this thesis to extend the correlations to the more recent data.

2:2 General Considerations

To illustrate the problems of identifying solid, mixed halides, six possible "forms" of a hypothetical material, analysing as X_{32} , and consisting of square-planar molecules, shown in figures 2:2:1 a-f, will be considered.

In situation "a" there are two distinct compounds, MX_4 and MX_2Z_2 . This situation is readily detected when MX_4 , and MX_2Z_2 are not isomorphous, for x-ray powder photographs, and vibrational spectra, consist of the superimposed photographs, and the spectra of X_4 , and NX_2Z_2 , and in theory the I.R; and maman bands should not be broader than in the isolated compound.

In situation "b" substitution is non-random but dismutated, for no $\mathbb{P}X_{3}^{\mathbb{Z}}$ molecules are present. X-ray powder photographs will show only one crystalline substance, but this may exhibit some disorder effects, and the material will not necessarily be isomorphous with either $\mathbb{N}X_{4}$, or $\mathbb{N}X_{2}\mathbb{Z}_{2}$. I.R. and Raman opectra may not consist of the superimposed spectra of $\mathbb{N}X_{2}\mathbb{Z}_{2}$ and $\mathbb{N}X_{4}$. The observed bands may be broader, and some extra bands may arise because of the lower symmetry of the lattice sites.

Figure c represents a situation where MX_4 , and MX_2Z_2 are not necessarily isomorphous but are partially soluble in each other. Substitution is non-random, but dismutation has occurred. This situation can be very difficult to recognize for two

- 125 -

Figure 2:2:1, Possible structures of " $MX_{3}Z$ " materials

crystalline substances are present wit. Lattice dimensions <u>not</u> these found in the parent compounds $1X_2Z_2$ and MK_4 . I.R. and Raman spectra consist of the superimposed spectra of those of MX_4 and MX_2Z_2 with some broadening of peaks. Only where the vibrational spectra of a material MX_3Z shows strong bands not found in MX_4 , or MX_2Z_2 , or the x-ray powder photograph lines can all be assigned in terms of a single crystal lattice with fixed dimensions is this possibility excluded.

In "situation d" substitution is totally random. I.R. and Raman spectra are likely to consist of broad lines and powder photographs show only one lattice, but many lines may be missing because of disorder effects.

In "situation e" no dismutation has taken place but the orientation of the molecules is disordered. This satuation results in disorder phenomena in the samples' powder photographs, and probably some broadening of lines in the vibrational spectra.

In "situation f" the material consists entirely of ordered MX_3Z molecules. The I.R., and Raman spectra will not be the same as for MX_2Z_2 or MX_4 , and Raman bands should be harrow. X-ray powder photographs should show no disorder effects.

Effects of disorder on x-ray powder photographs. (37,38)

A disordered cryst/lisperiodic only in a statistical sense, and frequently a disordered crystal will have a higher symmetry, and give fewer x-ray reflections than the ordered crystal from

- 127 -

which it was derived. In other areas of chemistry, e.g. metals, disordered crystals can be ordered by annealing. As the degree of order in a crystalline material increases the relative intensities of the original, or so-called FUNDATENTAL reflections will remain unchanged but now reflections, known as SUPERLATTICE reflections will appear. Thus, for example, a monoclinic lattice contains derivative lattices of orthorhombic, and cubic symmetry. A disordered, monoclinic crystal may only show the reflections of a cubic system, but as the order increases extra, superlattice reflections appear, to complete first the orthorhombic, and then the monoclinic reflection patterns.

These disorder phenomena have not been extensively investigated in the chemistry of metal halides. An example is given by the series of compounds WOCl_4 , WOCl_3Br , and WOBr_4 (39). Single crystals of WOCl_4 , and WOBr_4 both show all the reflections of the space group I4. In single crystals of WOCl_3Br some superlattice spots are absent, and this, together with the presence in the I.R. spectrum of WOCl_5Br of all bands found in the I.R. spectra of WOCl_4 and WOBr_4 , is taken to indicate a random distribution of bromine atoms in the halogen sites of JOCl_3Br . (In fact a totally random distribution does not fit the evidence for this would give the proportion of WOBr_4 units as $(1/4)^4 < 1\%$ and the proportion of WOCl_4 units as $(3/4)^4 \simeq 50\%$ so that no WOBr_4 she uhd be detectable. In any polycrystalline material other factors, bouldes those outlined above, may affect the nature of the powder photographs obtained.^(37,38) Thermal scattering occurs because of vibrational motions of the atoms in crystals and gives a broad background of scattered radiation which increases in intensity at high scattering angles, and in the region of lattice reflections. Also stacking disorders lead to the absence of lattice reflections at high scattering angles.

The quality of an x-ray diffration powder photograph is also affected by the size of the crystallites. When the size of crystalline particles is below 10^{-6} cm. the observed lines become very broad and it is often not possible to pick out diffraction lines at all. When the particle size is more than 10^{-3} cm. diffraction lines become uneven and spots appear (37)

Thermodynamics of Mixed Halide formation.

Consideration of some simple models does give some understanding of the factors involved in isolation of mixed halides. Of the situations illustrated in figure 2:2:1 a-f only "a" and "f" are fully ordered. If we consider N MX4Z or N MZ4X molecules in which the "hetero-bond" (M-Z or M-X respectively) may be orientated in five directions, (this is orientational disorder and is analogous to that shown by MX_{3Z} molecules in figure 2:2:1e), the number of ways of arwanging the units is $5^{\rm N}$. . Entropy of random orientation

= K $\ln 5^{\text{N}}$ = kNln5=Rln5=3.20 cal deg⁻¹ mole⁻¹

 $T\Delta S = 0.953$ heal (kc) mole ⁻¹ at $25^{\circ}C$ (N=Avogadro's number, R= gas constant.

For MX_2Z_3 , or MX_3Z_2 molecules the orientational entropy = kln($5X4^{N}$ = kHln20 = R ln20=5.95 cal deg⁻¹ mole⁻¹ and T Δ S= 1.77 ke mole⁻¹ at 25°C.

These quantities are small but may be important where X, and Z are not very different in size, e.g. chloride-fluorides.

In the situation represented by fig 2:2:1d the number of ways of distributing $(1-\theta)n \times atoms and n Z atoms in n sites$ $is n! <math>(n-\theta n)! \times (\theta n)!$ where $\theta = degree$ of substitution of x atoms by Z atoms and n=number of halogen atoms present. The entropy of the random structure is given by

 $KlnW = kln \frac{n!}{(n-\theta)! (\theta n)!}$ (1)

Where W= number of possible arrangements. Using Stirlings approximation (lnN:=NlnN -N) (1) rearranges to

k $\ln M = -nk \left[\theta \ln \theta + (1-\theta) \ln (1-\theta) \right]$

For a mixed halide MX_XZ_z where all the halogen positions are equivalent the entropy must be calculated per mole of M atoms, but the number of sites is $M_{(x+z)}$ so that the entropy of random substitution is proportional to the total number of halogen atoms. The entropy of random substitution at 250; may be more than 2 kc mole⁻¹ (see figure 2:2:2 b,c,d m=0)

In considering the likely states of mixed halide materials

it is necessary to fix the energies of formation of the individual halides. In fig 2:2:2a three possible cases are considered. If a plot of $E_{\rm f}^{\rm o}$ of the mixed halides against ratio X:Z is a straight line (case 1) there is no thermo-dynamic energy barrier to dismutation of the mixed halides. If the energy of formation of a mixed halide MX_xZ_{5-x} is greater than that expected by interpolation from the values for $MX_5 + MZ_5$ (case 2) thermodynamically reorganisation to the latter is favourable. Conversely if a mixed halide MX_xZ_{5-x} has $E_{\rm f}^{\rm o}$ less than that expected by interpolation (case 3) its formation from MX_5 , and MZ_5 is favoured.

In a randomly substituted mixed halide of a 5 valent central atom where the ratio of X;Z atoms is 1-0 :0 the probabilities of finding the states $MX_5 - \dots - MZ_5$ are as follows $MX_5 = (1-0)^5$ $MX_2Z_3 = 200^3(1-0)^2$ $MX_4Z = 50(1-0)^4$ $MXZ_4 = 50^4(1-0)$ $MX_5Z_2 = 200^2(1-0)^3$ $MZ_5 = 0^5$

Thus by fixing the energy differences (A,B,C,D in fig 2:2:2a) from the interpolated values, (i.e. case 1), for the mixed halides it is possible to calculate free energies of random substitution with respect to non-random, heterogeneous mixtures. The results of these calculations are shown in figures 2:2:2 b,c,d. The curves show the order of stabilisation energies which are required for occurrence of various phenomena. - 132 -

Figure 2:2:2a-d, Thermodynamics of formation of mixed halides.

For instance in figure 2:2:2 b it is seen that the molecules EX_3Z_2 , and EX_2Z_3 have to be destabilised with respect to the interpolated E_f^o values by about 6 kc mole⁻¹ before complete separation of EX_5 , and EX_5 can be achieved. In case 3 the intermediates EX_2Z_3 , and EX_5Z_2 have to be stablised by about 8 kc mole⁻¹ before separation of discrete mixed halides can be achieved.

Other, more general points are also indicated by the graphs In case 2 it is seen that situations can exist (when x=1 or 2 and the compositions lie between points P, and Q where separation of mixtures into two phases of composition P, and Q may occur. This is similar to the situation shown in figure 2:2:1c. Another feature of the models chosen for case 3 (fig 2:2:2c,d is that in situations where x, and z in $\mathbb{N}X_{x}Z_{z}$ are not integers random substitution is often favoured over a heterogeneous mixture whilst the opposite may be true when the ratio is X:Z is such that x, and z are close to integers (see e.g. fig 2:2:2d, x=4)

The above thermodynamic considerations contain some approximations, for instance a random distribution of states has been assumed instead of a Boltzmann distribution, but the basic principles of the discussion are valid and have been used elsewhere (e.g. ref 40). In the discussion of experimental work which follows no conclusions will be derived from this discussion of thermodynamics, but it should be worne

- 133 -

in mind in any discussion of mixed halides.

One more point complicates interpretation of results. A number of systems are known where the phase of a material changes when its composition is changed. e.g. cubic KTaO_3 becomes pseudo-monoclinic when 72% of the potassium atoms are replaced by sodium atoms. It is feasible that a random mixture of MX₅, and MZ₅ will give similar behaviour and at intermediate compositions may even exist in phases not found in either of the pure compounds. Thus the fact that a material MX₂Z₃ has a crystal type not found for MX₅, or MZ₅ is not in itself, proof that MX₂Z₃ units are present and that the material is a discrete compound.

Criteria for identification of discrete mixed halides in the solid state.

This author would define a molecular mixed halide in which compound as a material all of the molecules present are of one type. When the proportion of molecules of one type is greater than 95% (say) other molecules may be treated as impurities. At higher levels of other molecules the material must be regarded as mixture, although at a molecular level. The above discussion suggests that it is virtually impossible to give absolute proof of discrete mixed halides in the solid state. In this work the following criteria will be taken as proof, <u>beronic restaonable doubt</u> of the formation of discrete compounds:-

- 1) reasonable analytical data,
- x-ray powder photographs showing the absence of obvious mixtures,
- 3) vibration spectra showing marked differences between the members of a series $M_{x}Z_{5-x}$ (x=1 \rightarrow 5).

In addition melting points may be quoted as suggesting the absence of mixtures as is common practice in organic chemistry.

2:3 <u>Nitrogen - Metal - Fluorine Compounds</u>

Analytical data. (see table 2:6:1) and x-ray powder photographs, (see for example fig 2:3:1) both suggest that the materials $MF_3(NEt_2)_2$, MF_4 .NEt_2 (M=Nb, Ta) and their complexes with Py, and 4Me-Py are discrete compounds. In addition there are marked changes in the I.R. and Raman spectra of the series of materials $MF_{5-x}(NEt_2)_x$ (x=0,1,2 M=Nb,Ta, and their complexes as x is changed and they generally have sharp melting points. The materials may thus, by the definition __bove, be considered as discrete compounds.

That no more than two fluorine atoms per metal atom may be replaced by NEt₂ groups, under the conditions used may be due to steric factors. Control of the degree of substitution may be either kinetic or thermodynamic. In ammonolysis of the corresponding pentachlorides not all the chlorine may be replaced by nitrogen ligands. (15-18)

Fig 2:3:1 x-ray lowder _hotograph data for fluoride diallyl mides (1 indicated broad peaks

behaviour is found in PF_5 chemistry (49)

The fluoride dialkylamides, and their complexes are coloured (see table 2:6:1). This is not thought to be due to reduction to Nb (IV) or Ta (IV) as these are normally lue, or black if coloured at all.⁽¹⁾ As Nb(V) and Ta(V) have no 'd' valence electrons this colouration is attributed to nitrogen to metal charge transfer. This further suggests that the nitrogen lone pair has symmetry suitable for donation to the metal, and that the nitrogen is planar as in $W(N Ne_2)_6^{(36)}$

The penta-dialkylamides of niobium, and tantalum are monomeric ⁽³⁵⁾ whilst the pentafluorides are tetrameric.⁽⁴¹⁾ described in section 1:3 bands in the I.R. spectra of niobium and tantalum fluorides at approximately 500 $\rm cm^{-1}$ may be taken as a diagnostic test for fluorine bridges. Such bands are present in the dialkylamide-fluorides themselves, but absent in their complexes (see e.g. fig 2:3:2). By comparison with M(N Me₂)₅ (M=Nb,Ta) and M(N Et₂)₄ (M=Ti, Hf)⁽³⁵⁾ molecules, terminal nitrogen-metal modes are expected at higher frequencies. The shifts of NEt, Frequencies between the fluoride-dialkylamides, and their complexes are negligible (see table 2:0:1) and suggest that the hEt, groups have similar environment, and configuration in both cases. The strong bands at 458, 480, 475 and 499 cm⁻¹ in the I.A. spectra of LbF₅ (NEt₂)₂, NoF₄NEt₂, TaF₃ (NEt₂)₂

and $\operatorname{TaF}_4\operatorname{NEt}_2$ respectively are thus attributed to retal-

bridging fluorine modes and the fluoride-dialkylamides are prosumed to be polymeric. There is no evidence to distinguish between cis, and trans fluoride bridges.

Bradley⁽³⁵⁾ assigns bands at 998-1003 cm⁻¹ and 1150-1160 cm⁻¹ in metal dialkylamides to symmetric ($\mathbf{v}_{g} \ NC_{2}$) and asymmetric ($\mathbf{v}_{gS} \ NC_{2}$) C-N-C stretching modes respectively. NR₂ compounds are structurally very similar to OR₂ complexes. The shifts of $\mathbf{v}_{S} \ AC_{2}$ and $\mathbf{v}_{gS} \ AC_{2}$ (X = 0,N) between Me₂O and Me₂N compounds are approximately +60 and +35 cm⁻¹ respectively (see table 1:6:1 and ref 48) Similar shifts are expected between Et₂O and Et₂N compounds. In Nb(V) and Ta(V) Et₂O complexes $\mathbf{v}_{S} \ OC_{2}$ and $\mathbf{v}_{aS} \ OC_{2}$ are at 820-840 and 980-1000 cm⁻¹ respectively so that the assignments of Bradley seem unlikely. In these fluoride-dialkylamide compounds bands at 900-920, and 980-1008 cm⁻¹ (see table 2:4:1) are tentatively assigned to $\mathbf{v}_{S} \ NC_{2}$ and $a_{S} \ NC_{2}$ on the basis of their intensities and the above arguments.

The formation of a new crystalline phase from mixtures of $\text{NbF}_3(\text{NEt}_2)_2$ and $\text{NbF}_5.\text{OEt}_2$ indicates that rearrangement has occurred and a new compound $\text{NbF}_{20-x}(\text{NEt}_2)_x$ (x=1,2,3,5,6,7) may be isolable but this has not yet been attempted.

That dialkylamide fluorides are weaker Lewis acids than pentafluorides is indicated by the absence of detectable interaction with diethyl other, or acctonitrile. Steric factors are not thought to be important. In particular the steric
Table 2:3:1 Vibrational spectra of HEt₂ groups in the range $700-1650 \text{ cm}^{-1}$ (Frequencies in cm⁻¹

NbF_{l_1} .REt ₂	TeF_{h} . HEt_{2}	Car ₄ .UEt ₂	.Py,I.R.	183 ₇ .22y
MEt ₂ bunds	NEt ₂	NEt ₂	Py	I
I.R. Raman	I.A. Dands	bands	bands	bands
1454(10)	2		1612s	1609s
1368vw 1380(6)	1364w ·	1366w	1576vw	
1351w		1358w	1450vs	1450vs
1338vw	1339w		1243w	1238w
1324w	1330w	7	1220w	1220w
1272mv	1276w	1278w	1159w	1156vw
1189m 1187(15)	1193ms	11 93m	1069s*	1070s
1124s	1126	1130m	1044s*	1045m
1092ms	1093ms	1095mw		1017)s
1069ms 1071(7)	1071m	1069s*	1008s,b) 1015)
1035ms 1033(7)	1043ms	1048s*	956w	950w
994s 994(30)	1004(s)	1008c,þ*		870w
907sh	905w		762s	760s
901s,asy 898(40)	917ms	906s,asy	697s	690s
793ms 790(8)	794ms	792m		

* indicates band used more than once

***** The only additional band in this region was a very weak band at 1230 cm^{-1}

requirements of acetonitrile as a ligand are very small. The weaker Lowis acidity may be due to nitrogen-metal $p_{\pi} \rightarrow d_{\pi}$ bonding as has been suggested by Gradley⁽³⁵⁾ although the relative strength of metal-fluorine bridging bonds in fluorides, and dialkylamide-fluorides may be important.

No compounds were isolated from reactions of MoF_5 and Me_3SiNEt_2 and some disproportionation to Mo(VI) and Mô(IV) may have occurred.

Analytical data suggests that although some substitution was for fluorine by NMe groups, achieved in the reaction between (Me₃Si)₂NMe and pentafluorides no pure compounds have yet been obtained. This may have been due to the presence of NHMe₂, or Me₃SiNHMe in the (Me₃Si)₂NMe, which is difficult to purify.

2:4 Fluoride-Chlorides, and Fluoride-Bromides

Reactions between Ne SiCl, or Me SiBr, and MbF 5 are far more complicated than reactions of dialkylamides because:-

a) The mixed fluoride bromides, or fluoride-chlorides show more tendency to reorganise than fluoride dialkylamides.

b) Using Me_Si-halides substitution for all five fluorines by chlorine, or bromine is possible, whilst only two fluorine atoms may be substituted by NEt, groups.

c) The acceptor power of the pentahalide is not greatly decreased by introduction of chloride, or bromide, and a precipitating ligand must be added to solutions in diethyl ether to isolate the mixed halide.

The presence of extra lines in the ¹⁹F.N.M.R. spectra in the supernatant liquor in a mixture of composition NbCl_{2.2}F_{2.8}.OEt₂ indicated that more than one fluorinecontaining niobium species is present. The 'H spectrum shows only one triplet-quartet pattern for OEt₂ groups. This suggests that the exchange mechanism for ether molecules is intermolecular whilst that for F atoms must be intramolecular, for otherwise only one ¹⁹F resonance would be observed (as in NbF 5-TaF₅ mixtures, see section 1:5).

In solution in other the chloride-fluorides of miobium seem to be subject to easy riorganisation and a degree of randomness of substitution. On precipitation only MbCl_c.OEt_c is isolated but this does not necessarily mean that it is the predominant species in solution .

When pyridine is added to the chloride-fluoride-ether solutions the system becomes more complicated. It is not known whether the precipitates reflect the equilibrium in the 1:1 complexes or the 1:2 pyridine complexes. Analysis of the materials NbCl_{0.5}F_{br.5}.2Py, NbClF₄.2Py, NbCl₂F₃.2Py, $NbCl_{3}F_{2}.2Py$, and $NbCl_{5}Py$ are all consistent with the presence of single compounds. Interpretation of x-ray powder photograph data is more difficult. No lines were detected with scattering angle greater than 20° and a degree of thermal scattering was found. Such behaviour may be due to stacking faults, crystal disorder, thermal motions, imperfect sampling, or a combination of all four. The powder photograph lines cannot be indexed, but the intensity patterns of the lines suggest that NbCl - -F4.5.2Py, NbClF4.2Py, and NbCl2F3.2Py are probably isostructural (see fig 2:4:1). In no cases do mixtures appear to be present. . The material designated NoCl_LF.2Py is not isostructural with any of the other materials obtained.

The changes in I.R. and Raman spectra in the series of materials $MCl_{x}F_{5-x}$. 2Py (x=0, 0.5,1,2,3,4,5) are not sufficient to state that a series of chloride-fluorides have been isolated. Taking all the evidence together it seems certain that the degree of randomness of substitution in these 1:2 materials is not as great as in colutions of the 1:1 complexes; but it

Figure 2:4:1 X-ray pouder photographs of Chloride-Fluoride Pyridine complexes.

is not possible to say which of the materials obtained, if any, are discrete compounds.

Niobium pontachloride can be reduced by pyridine (see sections 1:1, 2:6). In the chloride-fluoride-pyridine systems changes in colour from yellow to green, and then to brown or black, are taken to be indicative of reduction of Nb(V), to Nb(IV) as Nb(IV) compounds are often brown or black.⁽¹⁾ Reduction of NbCl₅ detected in this way was observed only in the presence of free pyridine, in solution, or at high temperatures. No reduction was observed visually when the ratio of Cl:F was less than 5:2 but it may have been a factor in the imperfect analysis of the material NbCl₄F.2Py. NbCl₅. Py could only be made in small quantities when excess pyridine could be rapidly removed under vacuum.

Because NbBr₅ is more reactive than NbCl₅ attempted preparations of fluoride bromides were carried out using CH₅CN rather than Et₂O as a solvent. The isolation of almost pure NbBr₅.CH₅CE from a solution with 1:1 ratio of NbF₅:Me₃SiBr suggests that either reorganisation reactions occur readily, or that bromination becomes faster as more bromine atoms replace fluorine toms. The large number of washings needed to isolate NbBr₅.CH₃CE, and the presence of only small quantities of the yellow material at any one time suggest that the degree of substitution is nearly random and NbBr₅.CH₃CE is only isolable because of its lower solubility in CH₃CE, and rapid reorganisation reactions.

complexes.

NbCIF-2Py

Figure 2:4:3 Raman spectra of Chloride-Fluoride-Pyridine complexes.

2:5 Other Substitution Reactions

Production of Me_3SiF by reactions of pentafluorides with Me_SiCN, Me_SiNCO, or Me_SiNCS suggests that some substitution reactions have taken place in each case. In all cases the I.R. spectra indicate that pseudohalide units have remained intact and are bonded to the metal but analyses are imperfect and indicate the absence of pure compounds. All the fluorine attatched to the metal can be replaced in reactions with Me₃SiNCS, or Me₃SiNCO. Whether in actions with the dealer of the dal S. In the reaction of NbF5.0Et2 and Me_SiNCS no intermediate fluoride-thiocyanates could be isolated and analysis suggested that almost pure Nb(CNS)5 was obtained from an ether solution containing a 1:1 ratio of Me_3SiNCS : $NbF_{5}.OEt_{2}.$ This reorganisation did not occur in the reaction of TaF5 with Me2SiNCS. In the cyanide reactions not all the fluorine could be replaced. The strong band at 2200 cm⁻¹ in the I.R. spectra of the material is consistent with the presence of either bridging, or terminal carbon-bonded C=N groups. (42,45)

The failure to isolate pure fluoride cyanates, thiocyanates, and cyanides of miobium and tantalum is surprising in view of the existence of chloride cyanates, thiocyanates, and cyanides of miobium. (4-9) It is possible that other preparative methods (see decision 2:1) or changes of experimental conditions might lead to successful isolation of the fluoride-compounds. The only other substitution reaction attempted was that of $(Me_3Si)_2O$ and BbF_5 which gave a product with analytical data, and I.R. spectrum consistent with $FbOF_3$. $HbOF_5$ can be made by the reaction $4NbO_2F \rightarrow Nb_3O_7F+NbOF_3$ at $700^{\circ}C$. ⁽⁴⁶⁾ TaOF_3 has been reported as a product of the reaction of TaF_5 and silica at $400^{\circ}C$, but no further information has been reported. ⁽⁴⁷⁾ These high temperature methods of preparation yielded crystalline products, but the absence of crystalline material in the products of reaction of BbF_5 with $(Me_3Si)_2O$ does not exclude the possible presence of $MbOF_5$. Interpretation of the I.R. results is difficult because the bands are very broad (see fig 2:5:1)

Fig. 2:5:1 I.R. spectrum of "NbOF"

These broad bands, and the absence of lines in the x-ray powder photographs are consistent with the presence of a mixture. However large I.R. bandwidths are consistent with strong oscillator effects (discussed in section 1:6) which would be expected in N+OF₃ which must have bridging oxygen or fluorine atoms and strongly interacting bond dipoles. The blue colouration formed in exposure of the material to light may be due to reduction of the niobium by some organic residues present, or to production of vacancy sites in the NbOF₃ lattice. No further work was done to characterise these products, but it might be possible to achieve this by formation of Lewis acidbase complexes.

2:6 Experimontal

Preparation of reagents :-

NbF₅, TaF₅, MoF₅:- See Appendix 1

Me_Sicl:- Fluka, puriss grade, kept over freshly activated 3 A Molecular sieve NHEt₂:- B.D.H., shaken three days over fresh, crushed sodium hydroxide.

Me₃SiNEt₂:- made in vacuo by the reaction Me₃SiCl+2NHEt₂ Me₃SiNEt₂+NH₂Et₂Cl. The reactions is reversible and some of the NH₂Et₂Cl precipitated as a white solid is always carried over in distillations of Me₃SiNEt₂. The Me₃SiNEt₂ was vacuum distilled (seventeen times) until no white solid appeared and no NHEt₂ or NHEt₂⁺ could be detected in the 'H N.M.R. spectrum of the Me₃SiNEt₂.

Me_zSiH:- Alfa Inorganics.

Me₃SiBr:- Me₃SiH and bromine (Analar) were condensed together in stoichiometric quantities and allowed to warm to room temperature at which temperature the reaction

 $Me_3SiH+Br_2 \rightarrow He_3SiBr+HBr$ occurred. The product was distilled and trapped at $-63^{\circ}C$ in a dynamic vacuum so that HBr was removed, twice vacuum distilled onto freshly activated 5 Å molecular bieves to remove any residual Me_3SiH and HBr, and kept over 5 Å molecular sieves. The 'H R.H.A. spectrum showed only one resonance at 9.477. AgCN: B.D.H.

NegSiCN:- NegSiBr was refluxed with AgON and the NegSiCN was

fractionally distilled

Me₃SiBr+AgCN \rightarrow Me₃SiCN+AgBr (B.P. 115-117°C. The 'H N.N.R. spectrumshowed only one peak at 10.09 τ)

(Me_Si)₂0:- Mc_SiCl was reacted with H₂0

 $2\text{Me}_{3}\text{SiCl}+\text{H}_{2}0$ (Me $_{3}\text{Si}$)₂0+2HCl and the (Me $_{3}\text{Si}$)₂0 fractionally distilled (B.P.109-10^O) The product was dried over NaOH and portions of fresh sodium until the sodium did not tarnish. The 'H N.M.R. spectrum showed one peak at 9.947.

AgCNO: - made by the reaction

 $AgNO_3 + KCNO \rightarrow AgCNO + KNO_3$ was washed with water, then ethanol and dried 150°C.

AgCNS:- prep as for AgCNO using KCNS instead of KCNO. Me₃SiCNO:- Me₃SiCl was refluxed with AgCNO

 $Me_3SiCl+AgCNO \rightarrow Me_3SiCNO+AgCl$ and the products fractionally distilled, B.P. 90-91°. The product was dried over freshly activated molecular sieve. $Me_3SiCNS: Me_3SiCl$ was refluxed with AgCNS and the product fractionally distilled, (B.P. 140-142°C)

 $Me_{3}SiCl+AgCNS \rightarrow Me_{3}SiCNS+AgCl.$

The product was dried over two successive portions of freshly activated 4 Å molecular sieves, and stored over a third portion. The 'H .N.R. spectrumshowed only one peak at 10.067

NH₂Me:- E.D.H., shaken two days at 20°C over fresh crushed NaOH. (Me_Si), IMe: - made by the reaction,

 $2\text{Me}_3\text{SiCl}+3\text{NH}_2\text{Me} \rightarrow (\text{Me}_3\text{Si})_2\text{NMe}+2\text{NH}_3\text{MeCl},$ by passing HH_2Me through Me_3SiCl at -78°C . The product was distilled off, and fractionally distilled (B.P. 148-149°C) The material may have been contaminated with a little free NHMe₂, and Me₃SiCl as the reaction is to some extent reversible. Et₂O, CH₃CN, Py, 4Me-Py, and Me₂SO were purified as in section 1:9.

Preparation of fluoride-dialbylamide compounds, and their complexes with pyridine and WMe-Pyridine.

 Me_3SiNEt_2 was vacuum distilled onto the pentafluoride in a pyrex flask, nd the reaction mixture warmed to room temperature and shaken under vacuum for three days. After eight hours the reaction had produced viscous liquids, immiscible with excess me_3SiNEt_2 , which reacted further with Me_3SiNEt_2 to give solids. The Me_3SiF formed (identified by I.M.) and unreacted He_2SiNEt_2 were pumped off and the solids were crushed in the inert atmosphere box. More Me_3SiNEt_2 was vacuum distilled onto the solids, and the mixture again shaken for three days. When the volatile fraction was pumped away analytical data showed the solids to be $MF_3(NEt_2)_2$ (Table 2:6:1).

MoF₅ took considerably longer to react and was shaken for two periods of one cek. A black solid was formed which Cave the analysis C = 14.4, H = 2.9, E = 4.1, F=31.8%MoF₄.NEt₂ requires C = 19.7, H = 4.1, E = 5.7, F = 31.1%

Table 2:6:1

Analytical Data for metal-fluoride-nitrogen compounds

•

	ANALYSIS			Relting, decomposition			
compound		11	C	11	11 11	F	Temps, colours
TaF4. NEt2	found calc	54.8 55.0	14.7 14.6	3.7 3.1	4.2 4.3	22.5 23.1	n-123 ⁰ C,pale_yellow volatile 175 ⁰ C,d-2600
$TaF_{3}.(NEt_{2})_{2}$	found calc	48.1 47.3	24.4 25.1	5.2 5.3	7.6 7.3	14.9 14.9	m-203 ⁰ C,ycllow
NbF4.NEt2	found calc.	37.8 38.6	19.8 19.3	4.3 4.2	5.9 5.8	31.2 31.5	n-150 ⁰ 0, orange, d d-170 ⁰ 0
NbF3.(NEt2)2	found	31.1 31.6	32.2 32.7	6.8 5.9	9.4 9.5	19.3 19.4	m-32 ⁰ C,scarlet d-120
TaF ₄ .NEt ₂ .Py	found calc	44.9 44.3	26.0 26.5	3.6 5.7	6.7 6.9	19.1 18.6	m-115 [°] C,yellow d-300°C
TaF ₃ .(NEt ₂) ₂ .Py	found calc	39.9 39.2	52.9 53.8	5.) 5.5	9.2 9.1	12.7 12.4	m-51 ⁰ C, brown, crystalline
NUF3.(NEt2)2.PY	found calc	24.5 24.9	41.7 41.8	6.8 5.9	11.3 11.3	14.8 15.3	m-56°C
TaF4.NEt2.41ePy	found calc		28.7 28.5	3.4 4.0	6.7 5.6	18.4 19.0	m-122 ⁰ C,yellow, d-210 ⁰ C
TaF ₃ .(MEt ₂) ₂ .4MePy	found calc	37.9 38:1	35.9 35.4	5.5 5.7	9.0 8.8	11.5 12.0	light brown liquid
"TaF ₃ .HMe" TaF ³ .INe TaF ³ (MMe) ₂	found calc calc		9.8 4.5 9.3	2.7 1.1 2.3	4.7 5.2 10.9	18.9 21.4 7.4	yellow
"NbF ₃ . RHe ^u	found calc		6.3 6.7	1.8	4.4 7.8	55.7 52.0	yellow
"Ta ₂ F ₃ .Me"+Et ₂ 0 Ta ₂ F3.Me Ta ₂ F3.Me.(OEt ₂)	found calc calc		13.7 2.3 1.59	5.1 0.5 1.9	2.1 2.7 2.1	15.7 25.7 22.3	pale yellow
Tary. Die 1+25 Tary. Lie Py	f uns calc		26.0 22.1	7.2 2.9	7.6 7.4	16.9 20.0	yellow

Reaction between miobium, or tantalum pentafluoride, dissolved in diethyl ether, and Me₃SiNEt₂ produced orange, or yellow solutions respectively, which, when shaken after two hours produced orange, or yellow precipitates respectively. Quantities of reactants used in typical reactions (in m. moles)were

NbF₅:Et₂O: Me₃SiNEt₂ = 11.73 : 24.23 : 11.26 TaF₅ : Et₂O : Me₃SiNEt₂ = 18.4 : 62.3 : 13.2

The solids that precipitated from this reaction were washed with the liquid mixture of Et_20 and Me_3 SiF present to remove excess pentafluoride.

Acid-base complexes of the fluoride-dialkylamides were prepared by vacuum distilling pyridine, or 4 Me-pyridine onto the dialkylamide, allowing it to react, and pumping off excess base. No interaction was observed between the niobium, or tantalum fluoride-dialkylamides and acetonitrile, or diethyl ether.

Reaction between NbF5 and MezSiCl.

When Me₃SiCl (6.8 m moles) was added to NbF₅ (3.2 m moles) a yellow solid and Me₃SiF (identified by I.R. spectroscopy) were formed. When the solid was heated to approximately 140°C in vacuo a viscous yellow liquid distilled off which did not solidify for three days. The products of this reaction were not further investigated.

Other HbFy-NegSiCl reactions were carried out in solution in disthyl ether. The NegSiCl was normally added in stoichiometric

TABLE 2:6:2

Quantities of reactants used in reactions between

NbF5 and Messicl	(all quantities	in m	moles)	
------------------	-----------------	------	--------	--

Compound	1.b2 ² 5	Et2	Co_SiCl	Ру	exp
desired					ы
NbgClF9.4Py	13.85	21.6	6.91	xs	1
NbClF ₄ .2Py	6.68	33	6.68	xs	2
MoClF ₄ .2Py	4.20	32.2.	4.20	35	3
NbCl ₂ F3.2Py	7.24	22.3	14.46	19	4
NbCl _{3²2} .2Py	7.97	25	25.81	18	5
NbCl ₄ F.2Py	6.09	32.9	24.3	XS	6
NbCl ₅ .Py	7.72	22	41.5	xs*	2
NbCl4F.Et20	8.24	8.35	32.35	-	8
NbCl ₅ .Et ₂ 0	7.76	33.3	41.9		9
NbCl_F.Et 0 from	9.34	8.1	25.2		10
NbCl_3.Py from	9.37	13.99	31.96	6.3	11
"RbCl4F.Et20" *	9.37	13.99	31.96		

xs indicates that more pyridine was added than was enough to precipitate all the niobium species.

in this experiment pyridine was added to a small portion of the NbCl₅.Et₂0 and the mixture was pumped dry before it was washed with ether.

- 157 -

Table 2:6:3

Analysis	i, f	Miobium	chloride-fluoride	cerroi erras

em	compound	%	C C	Fì	N	01	F	Пр
1	EbClF9.4Py	found calc	32.9 53.9	5.4 2.9	7.7 7.9	4.8 5.0	24.4 24.1	
2	NbClF ₄ .2Py	found calc	3 3.0 33.1	3.0 2.8	7.8 7.7	10.0 9.8	20 .7 21.0	
L _i .	NUCl ₂ F ₃ .2Py	found calc	31.7 31.7	3.0 2.7	7•4 7•4	18.4 18.7	14.9 15.0	24.5 24.5
5	NbCl ₃ F ₂ .2Py	found calc calc	28.7 30.4 19.0	2.8 2.5 1.6	6.7 7.1 4.4	28.9 26.9 33.6	9.3 9.6 12.0	20.5 23.5 29.4
6	Mbul ₄ F.2Py	found calc	27.7 29.1	2.5 2.5	5.9 5.8	32.6 34.4	5.9 4.2	
	MbCl ₄ F.Py NbCl ₄ .2Py	calc calc	18.0 30.6	1.5 2.6	÷.2 7.1	42.6 36.1	5.7 0.0	
7	MbCl ₅ .Py	found calc	17.6 17.2	1.7 1.4	3.9 4.0	50.0 50.8	0.2 0.0	26 .7 26.6
9	NbCl ₅ .OEt ₂	found calc	13.9 13.9	3.1 2.9		51.7 51.5	0.3 0.0	26.5 27.0
10	NbCl ₄ F.OEt ₂	found calc	15.3 14.7	2.9 3.1	•	41 .7 43 . 3	3.6 5.8	
8	"NbCl4F.OEt2"	found	10.7	3.1		45.8	2.0	
11	"NbCl ₅ .Py"	found	17.5	1.7	4.1	45.8	2.4	

quantities in an attempt to prepare mixed chloride-fluorides. A yellow precipitate was formed in these reactions when both the ratio of Mb:Et₂O $\langle 0.9 \rangle$ and of Me₃SiCl:Mb \rangle 3. In attempts to precipitate solids which could be washed by the ther and Me₃SiF present, pyridine was added to the reaction mintures. The quantities (in millimoles) used in a series of reactions are given in table 2:6:2. All the chloride-fluorides prepared were yellow, and the intensity of colouration increased as the number of chlorine atoms increased. Melting (m) and decomposition (d) temperatures (^oC) were

Nb₂ClF₉.4Py m166°, NbClF₄.2Py m148°, NbCl₂F₃ d 126°, m140°, "NrCl₃F₂.2Py" m56° "NbCl₄F.2Py" d123°, NbCl₅.Py m,d,220°, NbCl₅.Et₂O m80°, d110°, "NbFCl₄.Et₂O" (experiment 10) m66°.

Reactions between NbF5 and Me3SiBr.

To 5.72 m moles HbF_5 was added 92.7 m moles CH_5CN and 5.73 m moles Me_3SiBr . A mixture of a purple solid and what appeared to be only a little yellow solid which was moderately soluble in CH_3CN precipitated. The CH_3CN was decanted into one compartment of the two compartment vessel in which the reaction was carried out (see appendix 1) and the CH_3CN was pumped away to yield a yellow solid. This solid gave the analysis C=9.7, H=1.4, H=4.4, H=7.4, H=54.5% NbF₅.CM₅CM requires C=10.5, H=1.3, H=6.1, F=41.5% NbF₄Br.CH₅CM requires C=8.3, H=1.0, N=4.8

158 -

Er=27.6 F=26.2% The yellow product gave the following I.R. absorptions (all frequencies in cm⁻¹) 25245, 2298s, 1368mw, 1032mw, 951m, 704s, 665vs,vb, 415mw.

Many washings were required to decrease the proportions of yellow: purple colids (estimated visually) in the residues. After about a dozen washings the purple solid could still be seen to contain traces of yellow solid. It gave the analysis C=4.4, H=0.7, N=2.5, Br=71.8, F 0.3: $NbBr_5.CH_3CN$ requires C=4.5, H=0.6, N=2.6, Br=74.9, F=0% The purple solid gave I.R. absorptions as follows (frequencies in cm⁻¹) 2312s, 224s, 1358ms, 1020m, 947m, 799w, 660mw, 604w, 250s,b

Reactions between NbF5 and MezSiCN.

a) To 4.38 m moles NbF₅ were added 20.25 m moles Me₅SiCN, a white-grey solid, and Me₃SiF (identified by I.R. spectroscopy) were formed. The solid gave the analysis C=12.0, H=1.0, N=9.4, F=25.7% suggesting a C:N mole ratio of 1:0.7. NbF₄CN requires C=6.2 H=0 N=7.2 F=39.0\%. NbF₅(CN)₂ requires C=11.9 H=0 N=13.9 F=28.2% The solid gave the following I.R. absorptions (all frequencies in cm⁻¹) 2200s, 1265m, 1020w, 890w, 870mw, 852m,b 710m,vb, 660s,vb,500m,b, X-ray powder photography showed the solid to be amorphous.

b) To 5.26 m moles NbF_5 were added 30m moles CH_5 CH and 5.28 m, moles Me_3SiCH . A finely powdered grey-brown solid was formed which was too fine to be washed by decantation and charred at 198° C when heated in vacuum, to give a black oil. The solid gave the

analysis C=11.7, U=1.3, N=10.2, F=30.4%. $MbF_4CN.CH_3CN$ requires C=15.3, H=1.3, N=11.9, F=32.2%. The I.R, spectrum showed the following absorptions (all frequencies in cm⁻¹) 232bvs, 2298vs, 2198s, b, 1368w, 1030mw, 930w, 7065, 660vs, vb, 500b, m 240, s.

Reaction of Pentafluorides with MezSiNUS.

a) To 3.27 m.moles NbF₅ were added 10.2 m.moles st₂0 and 3.30 m.moles he SiumS. The mixture reacted to give a black solution after eight hours which precipitated a black, crystalline material which was a red-brown colour when ground. The solid gave the analysis C=22.9, H=2.4, N=15.3, S=33.0, F=0% Nb(NCS)₅ requires C=15.7, H=0, N=18.3, S=41.8, F=0%. Nb(NCS)₅-.Et₀0 requires C=23.6, H=2.2, N=13.6, S=35.1, F=0%. The material did not give a good I.R. spectrum but showed the following absorptions. (all frequencies in cm⁻¹) 2020mw, 1950vs,b, 1900vs,b, 1860vs,b, 1184v, 1080v, 1000v, 982v,943mv, 924m, 876mw, 825mw, 755m, 560mw, 335b, vs. A solution of the material in Nujol showed the I.R. absorptions 2064s, 1960mw, 1259mw, 920-970b,w, 859m, asy, 760w, 720m, 630m. He₃SiNCS gives the following I.R. absorptions: - 2964s, 2900w, 2520m,b 2180w, 2060b, vs, 1955m, 1410m, b, 1335w, 1260s, 1050mw, 985sh, 950s, 859s, 820s, 750s, 700m, 630s, 435vs,b.

b) To 11.83 n.moles NbF5 were added 8 m.moles Et20 and 11.2 m.moles Me5SiCHS. The solution reacted over several hours to give a black solid which was a red-brown colour when ground and gave the following analysis .Nb=20.7, C=22.3, H=2.5, N=12.8, S=30.0, F 0.2%. Nb(NCS)₃.OEt₂ requires Hb= 20.5, C=23.6, H=2.2, N=15.5, S=35.1, F=0% Nb(NCS)₃0.OEt₂ requires Hb=26.0, C=23.5, H=2.8, L=11.8, S=2.69, F=0%. I.R. abcorptions of the solid were similar to

those found in the last experiment.

c) To 5.3 m.moles TaF₅ and 20 m moles $Et_{2}0$ were added approximately 17 m. moles of Ne₃SiNCS. The mixture separated into a heavy, viscous orange layer and an orange solution composed chiefly of He_SiF and Et_O. An attempt to follow the reaction by 19 F M.M.R. spectroscopy at 20° C failed because of the heat generated by the reaction. At lower temperatures the viscous layer froze out. The viscous orange layer, when all the volatiles were pumped off, gave the analysis C=15.6, H=2.4, S=15.6, F=2.4%. Ta(MCS)₄F.Et₂O requires C=19.6, H=2.1 S=26.1 F=3.9% The orange material gave the following I.K. and Laman bands (all frequencies in cm⁻¹, Raman intensities in brackets) I.R. 3020w, 2985s, 2935m, 2915w, 2218m, 2186m, 1°70-2000, vvs,vb, 1469m, 1444ms, 1385s, 1317m, 1276w, 1254m, 1186ms, 1144ms, 1083s, 995s, b, 937m, 873s, 848sh, 825sh, 795s, b, 750s,b, 615s, 498s. Raman, 195w, 350 (220) polarised, halfwidth= 60 cm⁻¹. 502(40) polarised, 620(20), b, 1450(10), 1890(10), 1947(10), 2029(120), polarised, half-width = 40 cm^{-1} . The Raman spectra showed other broad, polarised bands, but these were not easy to pick out.

• 162 -

Reactions of pertafluorides with Ne_SidCO.

a) To 4.6 m.moles NbF₅ were added 15 m.moles $\exists t_2 0$ and 30 m.moles Ne₃SiNCO. The mixture reacted over several hours to give a fine purple-black powder. The material gave the analysis Nb=32.2, C=17.6, H=1.2, N=15.7, F=8.4%. NbF(NCO)₄ requires Nb=33.7, C=17.4, H=0, N=18.5, F=6.9%. NbF₂(NCO)₃.OEt₂ requires Nb=28.1, C=25.4, H=3.0, N=12.7, F=11.5%. The solid gave the following I.R. absorptions (all frequencies in cm⁻¹) 3560mw, 2160vs, asy, 1398m, 1220w, 1090mw, 1005m,b, 880w, 795w, 760w, 665m,b, 612s.

The material did not look pure and washing a portion with CH_3CN did not improve its appearance. The portion washed in CH_3CN did not melt below $360^{\circ}C$, was soluble in EtOH, gave a white precipitate with water, and developed an acrid smell when left in air.

b) To 6.4 m.molec TaF₅ were added 11m.moles $\mathbb{E}t_2^{0}$ and 34 m. moles Me₃SiNCO. The minture did not appear to react at all for two days, despite heating to 70°C for an hour. A cream-white precipitate formed in the third day and after this the reaction behaved as if it was auto-catalytic. After three days the procipitate was washed with the liquids present and pumped dry. It gave the analysis C=17.0, H=2.3, N=7.8, F 0.5%. Ta(NCO)₅ requires C=15.4, H=0, N=17.9, F=0%. The I.R. spectra of the material was not wood but showed the following absorptions (all frequencies in cm⁻¹) 3595m, 2210vb,vs, 1005ms, 1259ms, 1240w, 1188w, 1148v, 1088w, 1010w, 949m,b, 850s, asy, 825m, 706m, 619s, 590w, 480b,vs. The cream powder was soluble in EtOH and 'HN.M.R. of the solutions showed inequivalent Et groups. The solid gave a white precipitate with water.

Deaction of HbF5+(Me3Si)20.

Approximately 10 m moles NbF₅ and a large excess of $(Me_3Si)_2^{\circ}$ were mixed in a glass vessel and heated to 140° C for one hour. The 1.4. spectrum of the volatiles showed the presence of $(Me_3Si)_2^{\circ}$, Me_3SiF , and a little SiF_4 . The white solid produced gave the analysis Nb=55.9 F=34.7% NbOF₃ requires Nb=56.0, F=34.4% The solid was shown to be amorphous by x-ray powder photography and gave only the following very broad I.R. absorptions (frequencies in cm⁻¹) 950 m,

650 vs, 450 m. The solid was light-sensitive and became royal blue when exposed to sunlight.

- F. Fairbrother. The Chemistry of Hiobium and Tantaum, Elsevier (1967).
- (2) D. C. Bradley, W. Wardlaw, A. Whitley, J.C.S. (1955), 726.
- (3) D. C. Bradley, M. Wardlau, A. Whitley J.C.S. (1956), 5.
- (4) H. Bohland, E. Tiede, J. Less. Common Metals, (1967)13,24.
- (5) H. Böhland, E. Tiede, E. Zenker, J. Less. Common Metals(1968), 14, 397.
- (6) H. Böhland, E. Zenker, J. Less. Common Metals(1968),<u>14</u>,397
- (7) D. J. Machin, J.F. Sullivan, J.Less. Common Metals, (1969),
 <u>19</u>, 413.
- (8) D.C. Bradley, I.M. Metals, Can.J.Chem. (1962), <u>40</u>, 449, 1335.
- (9) G. Brauer, H. Wals, Z. Anorg (1963) 319, 235

(hem

- (10) L. Kolditz, G. Furcht. Z. Anorg, (1964), 329, 172; (1961),
 312, 11.
- (11) H. Preiss, Z. Anorg., (1966), <u>346</u>, 272; (1968), <u>362</u>, 13.
- (12) Yu. A. Buslaev, Yu. V. Kokunov, Izv. Aked. Nauk.S.S.S.R.
 Neorg Mater. (1968), 4, 537.
- (13) V. Gutman, H.J. Emeteus, J.C.S. (1950), 1046.
- (14) R. R. Holmes, M. P. Gallacher, Inorg. Chem. (1963), 2, 433.
- (15) H. Moureau, C. Hamblett, J.A.C.S. (1937), 59, 33.
- (16) G. W. A. Fowles, F. H. Pollard, J.C.S. (1952), 4938.
- (17) P. J. H. Carnell, G. W. H. Foulas, J.C.S. (1959), 4113.
- (18) G. W. A. Fowles, C. M. Pleass, J.C.S. (1957), 2078.
- (19) D. C. Bradley, B. N. Chakravarti, A. K. Chatterjee,

W. Wardlaw, A. Whitley. J.C.S. (1958), 99.

- 165 -
- (20) L. Kolditz, A. Calov, Z. Chem (1970), <u>10</u>, 35. z. Anorg Chem
- (21) L. Kolditz, A. Calov, (1970), 376, 1.
- (22) E. C. Evans, W. O. Freitag, W. A. Kriner
 A. G. McDiarmid, S. Sajishi, J.I.M.C. (1960), <u>15</u>, 239.
- (23) G. M. Fraser, M. Mercer, R. D. Peacock, J.C.S. (A)
 (1967), 109.
- (24) J. C. Fuggle, A. Majid, R. R. McLean, J. M. Winfield 6th Int. Fluorine Symposium, Durham. (1971).
- (25) A. Majid, Person al communication.
- (26) J. H. Canterford, T. A. O'Donnell, Inorg. Chem (1966), <u>5</u>, 1442.
- (27) F. Fairbrother, W. C. Frith, J.C.S. (1951), 3051.
- (28) K. J. Niehues, communication in H. Schäfer H. G. Von Schnering, K. J. Niehues, H. G. Nieder - Vahrenholz, J. Less. Common Metals, (1965), <u>9</u>, 95.
- (29) K. M. Alexander, F. Fairbrother, J.C.S. (1949) 5223.
- (30) R. F. Rolsten. J.A.C.S. (1957), 79, 5409.
- (31) Yu. A. Buslaev, E. G. Ilbin, C. B. Bainova, H. H. Krutkina Dolk. Akad. Nauk S.S.R. (1971), 196,
- (32) A. Syanal, D. H. Fricks, D. C. Pantales, P. G. King,
 R. C. Johnson, J. Less. Common Metals (1969), <u>11</u>, 14.
- (33) G. A. Ozin, G. M. A. Fowles, T. J. Tidwarsh, M. A. Malton
 J.C.S. (A), (1969), 642.
- (34) G. U. Frager, C. J. U. Gibbs, R. D. Peacock. J.C.S.(A)
 (1969), 1708.

- (35) D. C. Bradley, N. M. Gitlitz, J.C.S. (A), (1969), 980
- (36) D. C. Bradley, N. H. Chisholm, C. E. Heath, M. B. Hursthouse,
 J.C.S. (D), (1969), 1261.
- (37) L. V. Azaroff, M. J. Buerger "The Powder Method" McGraw-Hill (1958).
- (38) H. G. Pieser, H. P. Rooksby, A. J. C. Wilson "X-ray Diffraction by Polycrystalline Materials" The Institute of Physics, (1955) p435.
- (39) P. M. Boorman, N. N. Greenwood, H. J. Whitfield, J.C.S.
 (A), (1968), 2256.
- (40) J. D. Fast, "Entropy," Philips technical library (1962)
- (41) A. J. Edwards. J.C.S. (1964), 3714)
- (42) D. M. Adams "Metal-Ligand and related vibrations", E. Arnold Ltd., London (1966).
- (43) T. M. Brown, G. F. Knox, J.A.C.S. (1967), <u>89</u>, 5296.
- (44) G. F. Knox, T. M. Brown, Inorg. Chem, (1961), 8, 1401.
- (45) K. Nakamoto "I.R. Spectra of Inorganic and Coordination Compounds", J. Wiley (1963).
- (46) A Astrom, Acta. Chem. Scand. (1967), <u>21</u>, 915.
- (47) H.Schafer, D. Bauer, M. Beckman, R. Gerken, H. G. Nieder-Vahrenholz, K. J. Niehues, H. Scholz, Naturviss (1965), 51, 241.
- (48) H. Bürger, H. Stammveich, Th. Teixeira San. Monatch. Chom (1966), 97, 1276.
- (49) J. Harman Th.D. thesis Glasgow (1970).

CHAPTER III

93_{Nb} n.q.r. Investigations of some Niobium Compounds

Chapter III

Introduction

The results given and discussed in this chapter include the n.q.r. spectra of $MbF_5 \cdot XeF_2$, $Mb_2F_{10} \cdot XeF_2$, NbF_5 , and the complexes of MbF_5 with Me_2O , Me_2S , CH_2ClCN , and pyridine.

As n.q.r. spectroscopy is a relatively new and obscure technique a short introduction to the principles involved will be given before proceeding to discussion of the results. Symbols used in this chapter are listed in tables 3:1:1. As all theoretical predictions made are concerned with ratios of transitions energies rather than their absolute values almost all units have, for the sake of simplicity, been ignored in this presentation of the theory of m.q.r. spectroscopy. For a fuller discussion the reader is referred to references 1,2,3, and 4.

When the spin, I, of an atomic nucleus is greater than $\frac{1}{2}$ its distribution of positive charge is non-spherical and may be presented as an ellipsoid that is either oblate, or prolate with respect to the spin axis.

- 157 -

Symbols used in this chapter

e= protonic change.

Q= scalar quadrupole moment of the nucleus.

q= $\psi_e \frac{3\cos^2 - 1}{r_e} \psi_e^*$ d = field gradient at the nucleus η = asymmetry parameter

m= magnetic quantum number of the nucleus.

I= nuclear spin

V= electrostatic potential at the nucleus

 V_{ii} = gradient of V in the ith dimension

n_o= occupation factor for niobium valence orbitals directed towards oxygen.

n_{Fe}, n_{Fa}, n_{Fb}, n_{Ft} = occupation factors for niobium valence orbitals directed towards equatorical fluorine, axial fluorine, bridging fluorine and terminal fluorine atoms respectively.

K= constant

 $r_i = average distance of the electron i from the nucleus <math>\langle r_i^3 \rangle$ av = average of r_i^3 $\hbar = Plancks constant/2\pi$

- 168 -

(figs 1a, 1b)

fig 1a pro**late** nucleus eQ**>0**

fig 1b oblate nucleus eQ <0

The nucleus has an electric quadrupole moment, e Q, which is a measure of the deviation from spherical distribution of positive charge. Such a nucleus, when situated in an inhomogeneous electric field, has a potential energy dependent upon:- (a) the size of the field gradient, e.q; (b) the size of the quadrupole moment of the nucleus, e Q;

• 169 -

(c) the orientation of the quadrupole with respect to the field gradient, that is the nuclear magnetic quantum number, m.

If the electric field gradient is described by a symmetric tensor with diagonal elements V_{xx} , V_{yy} , V_{zz} such that $|V_{xx}| \leq |V_{yy}| \leq |V_{zz}|$ then

 $eq = V_{zz}$

Because of the Laplace equation, $(V_{xx}+V_{yy} + V_{zz} = 0)$ if we define another quantity, η , such that

$$\eta = \frac{v_{xx} - v_{yy}}{v_{zz}}$$

- 170 -

the field gradient tensor can be represented in terms of γ and eq. x,y and z are known as the PRINCIPAL AXES. γ is known as the ASYMEETRY PARAMETER and varies between 0, in environments of fairly high symmetry, and up to 1 in environments of low symmetry, (e.g. for Nb in rhombohedral KNbO₃ γ =0⁽⁵⁾ In K Cu(CN)₂ where copper is three coordinate and almost planar with two strong Cu-C bonds and a weak Cu-N bond, C¹-Cu-C²=134.2°, C¹-Cu -N=112⁶, C²-Cu-N=108° (7)_{γ} for Cu is 0.78⁽⁶⁾).

Most nuclei with quadrupole moments have odd spinvalues and for these nucle: the levels with $m=\pm I, \pm I-1$' $\pm J_{a}$ are degenerate in the absence of an applied magnetic field (ref 1,p36-37). Thus a nucleus with spin 3/2 e.g. 35 Cl, 119 Sn placed in a field gradient gives one observable transition between states with $m=\frac{1}{2}$ and m=3/2 with energy $\frac{e^2q}{2n}$ $(1-\eta^{23})^{\frac{1}{2}}$ In this case it is not possible to determine e^2q Q without perturbation of the nucleus by an applied magnetic field.

For 93 Nb, and other systems with spin 9/2, the secular equations for the quadrupole splittings of nuclear energy levels have been solved in terms of e^2q Q, and the solutions tabulated $^{(8,9)}$ The variations of the energy levels with η in units of $\frac{1}{24}e^2$ q Q are shown diagramatically in Fig 3:1:2. The energies of transitions between levels thus vary as shown in fig $^{3:1:3}$ (see also appendix 4), and the ratios of observed - 171 -

transitions vary as shown in fig 3:1:4. Using graphs of these types the experimental ratios of observed frequencies may be used to calculate η and hence e² q Q.

The main contributions to eq at the nucleus in a species with no unpaired electrons, such as niobium(V)are:- (10,11)

a) valence electrons associated with the chemical bording and having a high probability of being found near the nucleus,

b) electrons and nuclei present in atoms surrounding the central niobium atom

c) Polarisation of the inner shells of electrons on the niobium atom by surrounding atoms.

Of these factors the largest is the first and this alone will be considered in detail. (Sternheimer Shielding, (12) which involves polarisation of the inner shells of electrons by the outer electrons, will not be considered)

A "point" or "donated" charge model has been developed (11,13) to predict eq, and γ , in terms of the number of electrons, n_i , in each of the valence orbitals of the central atom. A given number of electrons, n_i , in an orbital, directed at angle θ to a principal axis j, is considered to give the contribution

$$v_{jj(i)} = K n_i \left(\frac{3\cos^2\theta - 1}{\langle r^2 \rangle av}\right)$$

to the gradient of electrostatic potential along the J axis

TABLE 3:1:2

Contributions of niobium valence electrons to the field gradient at the niobium nucleus.

atom	axis	3cos ² 0-1	contribution	V _{ii}
			to V _{ii}	
0	Z	2	-2n)	
4 _F e	Z	-1) +4n _{Ft})	2(n _{Ft} -n _o)
Fa	Z	2	-2n _{Ft})	
0	Х	-1	+n)	
$2F_{e}(x)$	X	2	$-^{l_{\rm Hn}}$)	-(n _{Ft} -n _o)
2F _e (y)	X	-1	+2n _{Ft}	
F	Х	-1	+n _{Ft})	
0	Ϋ́	-1	+n)	
2F _e (y)	У	2	-4n _{Ft})	-(n _{Ft} -n _o)
2F _e (x)	У.	-1	+2n)	
F a.	Y	-1	+n_)	

- 173 -

where r is the distance between the electron and the nucleus. Where orbitals are of the same $type \leq r_i^3 > av$ and the constant K are approximately the same in all cases, and will be left out of this discussion from now on.

To illustrate the use of this method the contribution of the valence electrons to the field gradient at the niobium nucleus in the pseudo-octahedral species of fig 3:1:5 are given in table 3:1:2

pseudo octahedral stereochemistry adopted by 1:1 pentafluoride adducts.

It may be noted that in table 3:1:1 the approximation is made that $n_a = n_e = n_t$. In view of the similarity of equatorial and axial metal-fluorine bond lengths in tetrameric NbF₅⁽¹⁴⁾ (see fig I:1)this is reasonable.

The point charge model and its application entail a large number of approximations. The main justification for its use is that it is simple, and has been shown to work reasonably well (11,15,16,17) and to provide a rethod for differentiating between 4,5 and 6 coordination of the metal in compounds of iron and tin. It can also differentiate between the different isomers of compounds of the same coordination number,
e.g. cis and trans disubstituted octahedra (11,16,17)

Most reported work on quadrupole splittings of nuclei of central atoms has been by Mössbauer studies of 57 Fe, and 119 Sn in which quadrupole splittings, for nuclear transitions between a ground state, with spin $\frac{1}{2}$, and an excited state with spin 3/2, are observed. η , and hence e^2 q Q, is found from changes in the shape of Mössbauer absorption lines upon application of a magnetic field to the sample. Because of the difficulty of these magnetic experiments, the work on 119 Sn and 57 Fe systems has been largely based upon the observed quadrupole splittings.

N.Q.R. studies of 93 Nb systems have the great advantage that e 2 q Q, and η follow immediately from measurement of the observable transitions in the absence of a magnetic field, but suffer from the great disadvantage that, unlike the ¹¹⁹Sn and ⁵⁷Fe systems, there have been virtually no studies on model compounds.

The field gradient around an atomic nucleus in a solid fluctuates withtime because of thermal vibrations of the atoms in the crystal. The most important of the thermal vibrations are torsional modes whose frequencies are much higher than those of quadrupole resonance so that a timeaverage of the field gradient is observed. When the amplitudes of thermal vibrations increase the average field gradient becomes smaller. ^(18,19) Thus it would be expected that as the temperature of a sample is decreased, and the mean amplitude of thermal vibration is decreased the observed frequencies should increase. This is known as the "Bayer Effect". In liquids, and solids where molecular rotation occurs with random orientation no quadrupole resonance can be observed because of broadening of resonance frequencies. N.Q.R. transitions are generally recorded at 77 K to minimise the Bayer effect.

Quadrupole resonance frequencies are known to change if pressure is applied to the sample (e.g. ref. 20). It seems likely ⁽¹⁾ that the principal mechanism giving rise to pressure shifts, is the modification of the internal electric field caused by displacement of the molecules in the crystalline lattice. If pressure were applied nonuniformly the lines would be broadened and perhaps made undetectable. It has been shown that slow crystallisation of alkyl bromides and iodides gave samples with satisfactory n.q.r. spectra, whilst rapidly cooled samples gave no resonances (21) and strain may have been an important factor. The presence of impurities also leads to broadening ⁽³⁾ and this may also be due to strain.

Pressure effects can be related to changes in the volume of the crystal. Thermal expansion causes a volume change when the temperature is changed which leads to a change in observed resonance frequencies. This "volume effect" may cause observed frequencies to increase, or decrease with increasing temperature (e.g. ref. 22).

Two types of behaviour can be envisaged for variation of resonance frequencies depending on whether the supplementary, Bayer, and volume terms complement, or oppose each other. (figs. 3:1:6, 3:1:7)

Figure 3:1:6 Supplementary contributions to field gradient complementing each other.

Figure 3:1:7 Supplementary contributions to field gradient opposing each other.

In a crystalline environment it is possible that chemically equivalent atoms will be crystallographically non-equivalent.

- 177 -

Because the crystalline field can be different from nonequivalent nuclei several different pure quadrupole frequencies may exist for each transition. The effect of crystalline field is generally less than 1% ⁽¹³⁾ of that due to valence shell electrons but may, in some cases, be up to 3% (e.g. in 1.3.5. trichlorobenzene. ⁽²³⁾ It can be neglected in the investigation of the electronic structure of molecules, but it can be useful in detecting crystalline phase transitions, which produce an abrupt change in frequencies, and in some cases the number of frequencies observed.

Because of the lack of model compounds work presented in this chapter must be regarded, to some extent preliminary in its nature. It was chiefly aimed at elucidation of the structure of 1:1 and 1:2 adducts of niobium pentafluorides with organic bases, and kenon difuoride, and of substituted niobium pentafluorides.

It was also hoped that the work might provide a basis for determination of the structures of other niobium(V) compounds, and give some indication of trends of charge distribution within the compounds investigated. In complexes of gallium trichloride with organic bases, Tong (24) has found correlations between ⁶⁹Ga and ³⁵Cl, n.q.r. frequencies, and between n.q.r. frequencies and heats of complex formation. The ⁶⁹Ga frequencies were ten to twenty times as sensitive to change of ligand as were the ³⁵Cl

- 178 -

-179 frequencies. It was felt that this work might yield a correlation between 93Nb, n.q.r. frequencies and 19F chemical shifts.

The 1:1 miobium pentafluoride-base complexes investigated here are thought to have a pseudo-octahedral structure (figs 3:1:5, 3:1:8b, also section 1:4). As discussed previously (section 1:4) the structures of the 1:2 pentafluoride-base complexes are unknown but a variety of seven-coordinate structures based upon pentagonal bipyramids (e.g. Re $F_7^{(25)}$, $UO_2F_5^{3-(26)}$ figs 3:1:8 g-j) and the face centred trigonal prism (e.g. NbF $_7^{2-(27)}$, fig 3:1:8 k) are possible. Ionic structures, involving a mixture of six, and eight coordinate ions (MF $_6$, MF $_4L_4^+$) have also been proposed ⁽²⁸⁾. Eight coordinate ions are mostly square antiprismatic, (e.g. TaF $_8^{3^{-(29)}}$), dodecahedral (e.g. Mo(CN) $_8^{4^{-(30)}}$) or cubic (see figures 3:1:8 1-r).

The dodecahedron, and square antiprism can be defined by the angles between the bonds and the S_4 , and S_8 axes respectively. The angles used in the calculations for table 3:1:3 were based upon the predictions⁽³²⁾ of a "hard sphere between model" (H.S. model) which minimises repulsion non-bonded atoms, or a model maximising the angular dependent parts of the hybrid valence orbitals of the central atom (M.H. model).

All the basic 6-, 7-, and 8- coordination types discussed in this chapter are illustrated in figures 3:1:8 a-r along

with the axis systems used in the point-change calculations, for values of electron field gradient tensor components, and η , given in table 3:1:2. In K₂NbF₇²⁻ the NbF₇²⁻ ion is distorted from C2v symmetry. (27) Because of this, and difficulties in fixing the principal axis system for face centred trigonal prismatic ions no calculations have been made for these ions. The calculations are dependent upon the values of γ , and hence $3\cos^2\theta$ -1, used. In NbF₅, and presumably other of these compounds, distortions from the ideal angles of the parent structure can be observed (14). However, in view of the approximate nature of the point charge model, and difficulties arising, even in compounds of known structure, because the bonding orbitals are not always directed along inter-atomic lines (see e.g. ref (31).), no allowances were made for distortions in the calculations for table 3:1:3. $\frac{d}{d\theta}$ (3 cos² θ -1) = - 6 sin θ cos θ which is **0** when $\theta = 0$, or 90° and 3 when $\theta = 45^{\circ}$, so that in many cases, (e.g. fig 3:1:8b, table 3:1:2) quite large distortions will have very little effect because θ is close to 0, or 90°.

180 -

- 181 -TABLE 3:1:3

Electron Field Gradient tensor components for Nuclei in Various environments.

Structure V		r	Structu	ire V	2
a)	V _{ZZ} =O	0	m)	V _{ZZ} =1.76 _{nf}	0
b)	$v_{zz} = 2n_F - 2n_z$	0	0 _=59.25°		
c)	$-V_{zz}=2(n_{\overline{F}}-n_{\overline{X}})$	0	m)	V _{zz} =0.96n _F	0
d)	V _{ZZ} =4n _F -4n _x	0	θ _A =57.3°		
e)	$V_{ZZ} = -(2n_{F} - n_{X} - n_{X^{2}})$	0		•	
ſ)	$V_{zz} = 4n_{y} - 2n_{x^{1}} - 2n_{x^{2}})$	0	n)	$V_{zz} = 0.48(n_{F} + n_{x})$	0
g)	$V_{zz} = 5n_F - 4n_X$	0	$\theta_{\mathbf{F}} = \theta_{\mathbf{X}} =$	57•3°	0
h)	V _{ii} =2n _F -n _x		n)	V _{zz} =0.88(n _F +n _x	0
	V _{ii} =2n _x -2.5n _F	[?	$\theta_{F} = \theta_{X} =$	59 . 25 [°]	
	V _{kk} =0.5n _F -n _x				
i)	V _{ii} =2n _x -n _k		n)	V ₂₂ =0.82n _F -0.48n _x	0
•	$V_{jj} = -0.43n_{F} - 0.07n_{X}$?	θ _F =59.25°	θ _x =57.3 [°]	
	$V_{kk} = 1.43n_{r} - 1.93n_{x}$		<u>ر</u> ظ	$V_{ii} = 0.88(n_F + n_x)$?
j)	V _{ii} =2n _x -n _F		θ _F =59.25	$V_{jj} = 1.78n_{F} - 2.66n_{X}$	
	V _{jj} =2.93n _F -5.43n _x	?	θ _x = _F	V _{1:1x} =1.7ôn _x -2	
	V ₁₋₂ =1,43n _x -1.93n _F		p)	$V_{ii}=0.48(n_F-n_X)$?
1)	$V_{zz} = 3.60n_{z} - 2.52n_{z}$	0	θ _∰ =57.3	V _{jj} =1.88n _x _2.76n_	
1)	$V = 0.90 \cdot 9^{\circ} \circ B = 39 \cdot 9^{\circ}$		9 = 59,25°	Viz=1.78nn.2.36n	?
	$x = 35.20$ $x = 73.5^{\circ}$		$\Theta = \Xi \nabla = \Sigma \nabla$	$V_{1} = 1.88n - 2.66$	
	$\mathbf{r} \rightarrow \mathbf{r} = \mathbf{r} = \mathbf{r} = \mathbf{r} \rightarrow \mathbf{r}$		$\frac{x^{-j}(\cdot)}{q,r,}$	V =0	

- 182 -

a) O_h Symmetrical octahedron **b)** C_{4v} Substituted octahedron e.g. NbF₆⁻ e.g. NbF₅-F.XeF

f)

C) C_{2v} symmetrically as disubstituted octahedron e.g. NbF₅ (14)

d)^D_{kh} symmetrically transdisubstituted octahedron

 C_s asymmetrically cis disubstituted octahedron
 (e.g.the Sb atom closest to Xenon in XeF₂.2SbF₅

Fig 3:1:8(a-f)

C_{4v asy metrically trans} disubstituted octahedron

h)

g) D_{5h} trans disubstituted pentagonal bipyramid (e.g. $u O_2 F_5^{3-(26)}$)

C_s cis disubstituted pentagonal bipyramid

i)

C2v disubstituted pentagonal bipyramids

k)Face-contred tigonal prims, c.g. NbF₇²⁻⁽²⁷⁾

Fig 3:1:8(g-1)

184 -

M) Square antiprism e.g. TaF₈³⁻⁽²⁹⁾

n) C_{4v} tetra substituted square antiprism

P) C_{2v} tetra substituted square antiprism

q),r) cubes

Fig 3:1:8 (m-r)

For the sake of clarity the stuctures k-r are represented by polyhedra defined by the ligands rather than by the bonds to the central atom.

The H.S. model gives $\theta_A = 36.9^\circ$, $\theta_B = 69.5^\circ$ for the dodecahedron and $\theta = 59.25^\circ$ for the square antiprism.

The M.H. model gives $\theta_A=35.2^\circ$, $\theta_B=73.5^\circ$ for the dodecahedron and $\theta=57.3^\circ$ for the square antiprism.

3:2 Results

NbF 5. $^{OEt}_2$, NbF₅+SEt₂, NbF₅+SeEt₂, NbF₅Me₂SO, NbF₅ Anisole, NbF₅·CH₃CN, NbF₅·CH₃CN in the presence of excess CH₃CN, NbF₅·CH₃CH₂CN, NbCl₅·SMe₂, NbCl₅·CH₃CN, and Nb(OEt)₅ all failed to give any observable resonance between 5 and 35 MHz at either room temperature, or 77 K. NbF₅·(Me₂SO)₂, NbF₃·(NEt₂)₂·Py, NbF₄·NEt₂, and NbF₅·(Me₂SO)₂ all failed to give any observable resonance between 5 and 55MHz at either room temperature, of 77 K. Observed n.q.r. spectra are given, along with experimentally calculated values of e^2qQ and η in tables 3:2:1-7.

TABLE 3:2:1

Temp ^o K	trans-	Е	ratio		e ² qQ					
group	ition	HHz	7	2	MH_Z					
77	9/2 - 7/2	19.478*	1 3706	$ \cdot $	140 28					
group	7/2-5/2	14.54	, 1, 2, 2, 90	0.2044.05	117.20					
one	5/2-3/2	n.o.			±.24					
77	9/2-7/2	19.057*	1							
group	7/2-5/2	14.21	\$1.3411	0.23 ±.04	114.69					
• ·	- 10 - 10				0.3					
two	5/2-5/2	n.o.								
273	9/2-7/2	19.270*	\		_					
ຕະເດນາກ	7/2_9/2	14 429	1.3355	0.1354.02	115.80					
5- 0 u p	(/ = _/ =	1.1.1.1.1.	31.526	0.130±.015*	±.026					
one	5/2-3/2	9.458	$)_{1 659}$	0.140+.02						
	3/2-1/2	5.70?	y ¹ , ⁰ , ^y	0.1102.02						
273	9/2-7/2	19.002*								
רווסייש	7/2-5/2	14,208	1.334	0.175±.02	114.29					
STOWD	1/2 //2		1.540	0.172*±.015	±0.05					
two	5/2-3/2	9.227	31.60	0 160+ 02						
	3/2-1/2	5.70?		0.100-02						
* These values were used for calculation of eqg										
"groups" of resonances may be attributed to Nb nuclei in										
the	same envi	the save environment								

N.Q.R. Parameters of NbF.

• .

TABLE 5:2:2

Dem	Temperature dependence of 93 Nb 9/2-7/2 transitions							
in Nb4 ^F 20								
Tomp.	Е	Temp.	Е	Tomp.	E	Temp.	E	
°ĸ	MH_Z	° _K	MHz	° _K	lHz	°K	MHz	
82.	19.055	197	19.065	268	19.022	190	19.426	
82	19.056	201	19.062	269	19.019	193	19.411	
86	19.054	204	19.060	272	19.017	197	19 • 40 7	
87	19.037	209	19.056	274	1 9. 013	201	19.396	
92	19.058	212	19.055	275	19.014	205	19.391	
99	19.062	217	19.055	i		213	19.384	
108	19.067	221	19.053	73	19.476	219	19.375	
115	19.067	224	19.051	73	19.472	223	19.358	
123	19.068	227	19.049	79	19.480	229	19 . 357	
126	19.069	231	19.047	84	19.472	231	19.354	
132	19.071	235	19.047	86	19.479	234	19.345	
135	19.068	238	19.045	99	19.478	238	19.346	
139	19.070	240	19.044	108	19.491	241	19.336	
144	19.070	243	19.042	117	19.502	244	19.330	
147	19.076	245	19.040	122	19.495	246	19.326	
151	19.070	248	19.038	130	19.489	249	19.322	
156	19.069	250	19.035	135	19.478	252	19.318	
161	19.059	254	19.035	139	19.475	254	19.311	
169	19.070	255	19.031	146	19.470	257	19.305	
173	19.069	258	19.029	154	19.462	260	19.297	
182	19.068	260	19.026	162	19.460	263	19.294	
136	19.066	2/4	19.025	169	19.448	256	19.289	
192	19.066	265	19.024	174	19.438	268	19.285	
				181	19.426	271	19.263	

TABLE 3:2:3

N.Q.R. Parameters of 1:1 HbF5 complexes with Lewis bases.

Temp ⁰ K	trans-	E	ratio	2	e ² qର୍				
Group	ition	ME			MHz				
NbF5.Me2	NbF ₅ .Me ₂ 0								
77	9/2-7/2	14.212	1 331	0.0+05	86 10				
group	7/2-5/2	10.603*	1 5028	0.02+0.7*	+ 08				
one	5/2-3/2	7.047	<u>ر ار ار</u>	0.024.05	- . 00				
77	9/2-7/2	14.138*	1 340	0.24.2	84 86				
group	7/2-5/2	10.603	1.5046	0.04±05	±.05				
two	5/2-3/2	7.047	1.)040	0.0409					
273	9/2-7/2	14.359	<u>}1 331</u>	0.0+06	86 10				
	7/2-5/2	10.768*) ···//] 1 5028		+ 08				
	5/2 - 3 / 2	7.165	\$1.5020	0.021.05	±.00				
NbF ₅ .CH ₂	CICN								
77	9/2-7/2	16.63*	} 1 35	0.0+0.1	99,78				
	7/2-5/2	12.551		0.042	+ 20				
	5/2-3/2	8.05?	\$1.501		<u></u> .20				
273	9/2-7/2	16.814*	1 377	0 0 $+$ 0	100 02				
	7/2-5/2	12.618	$\begin{cases} 1 \cdot 222 \\ 3 \cdot 507 \end{cases}$	0.00 ± 04	+ 00				
	5/2-3/2	8.375	31.507	0.04-04	±.07				
* those values were used for calculation of eq2									

TABLE 3:2:4

N.G.R. Parameters of NbF₅.2Py.

temp ⁰ K	trans-	E	ratio	η	e ² qQ		
	-ition	MHz			MHz		
77	9/2-7/2	16.02	, }1.33	0.0±.2	96.1		
	7/2-5/2	12.02)		+ 5		
	5/2 - 3/2	n.o.			±•2		
273	9/2 - 7/2	16.695*			100 77		
	7/2-5/2	12.514	1.5341	0.05±.06	+ 04		
	5/2-3/2	8.254	51.5161	U.10±.01*	⊥.04		
* these values were used for calculation of eqQ							

TABLE 3:2:5 N.Q.R. Spectra of products of reaction of HbF & Me2S

Temp ^K group	trans- ition	E MHz	ratio	n	e ² qQ Mil2		
77	9/2-7/1	15.74*	1.334	0.08±0.1	99.5		
group	7/2-5/2	11.80			to a		
one	5/2-3/2	7.82		0.00-04	-0.2		
77	9/2-7/2	15.44*	1 331	0.0+4	02 7		
group	7/2-5/2	11.6			74•7		
two	5/2-3/2	7.67	1.512	0,1 <u></u> ,2*	τ0• ?		
Other	Other resonances found						
Sample	1,293 [°] K	15.36	, 14.87,	11.14, 10.2	25, 7.44 MHz		
Sample	2,293°K	not	<u></u>	11.23, 10.8	38 7.47 7.25		
		Scarr	ied		·		
Sample	2,273 [°] K	15.36	14.38,	11.25, 11.0	015, 7.47, 7.37		
		15.01	, 14.695	, 11.16, 10.	.69.		
Sample	2,250 ⁰ K	15.23	, 14.865	, 11.28, 10.	.91, none found		
		15.05) .	11.16, 10.	. 17.		
Sample	2,227 [°] K	15.24	14.88,	11.28, 10.	.92 none found		
		15.04)	11.17, 10.	.11.		
Sample	2,210 ⁰ K	15.12	, 14.98	, 11.33; 10.	.93. none found		
				11.16			

- 191 -

WABLE 3:2:6

N.Q.R. Parameters of NbF₅-XeF₂ compounds

atom	temp ^o K	trans-	Е	ratio	n	e ² qQ				
	group	ition	MHz			MHz				
.Nb ₂ F	·Nb ₂ F ₁₀ ·XeF ₂									
Nb ^a	77	9/2-7/2	18.621*	1 7757	0 11+ 05*	111 85				
	group	-7/2-5/2	13.940	1 /108	0 + 07	+ 10				
	one	5/2-3/2	9.30+	J 1r90	007	∴. 10				
		3/2-1/2	n.o.							
Nb a	77	9/2-7/2	18.208*	*	0 10+ 07	100.78				
	group	7/2-5/2	13.635	1.2254	0 + 47	+ 11				
	two	5/2-3/2	9.10 ⁺	\$1.490	0 1.19	<u></u> • }				
Nb ^b	77	9/2-7/2	12.665*							
	group	7/2-5/2	•9•48+	1.336	0.141.07	+ 18				
	one	5/2-3/2	n.o.			- • 10				
Nb ^b	77	9/2-7/2	12.17*	R 4 770	0 10 + 17	0 77 O				
	group	7/2-5/2	9 . 10 ⁺	1.337		()•4 + 5				
	two	5/2-3/2	n.o.			-• <i>\</i>				
a Nb	290	9/2-7/2	18,20	21 255	0 0+ 15*					
		7/2-5/2	13.65			109.20				
		5/2-3/2	9.1+	1.50	0.0≖.2	≖.26				
1	Į	· ·								

1	92	

atom	temp ^o K	trans-	12	ratio	η	e ² qର୍
	group	-ition	MHz			Mz
Nb ^b	290	9/2 -7 /2	12.185			
		7/2-5/2	9.1	2.017	0.08±.03	73.15
		5/2-3/2	6.06			±.11
NbF ₅	.XeF ₂					
	77	9/2-7/2	5.70*	1 36	0 4 ± 4*	34 6
		7/2 - 5/2	4 . 2 ‡	1.00		±.8
	290	9/2-7/2	5.65*	1 35	0 3 + 3*	zh o
		7/2 - 5 / 2	4.2 [‡]	1	0.99	±.6

These values were used for calculation of e²qQ
resonances over lapped.with each other and spurious noise in this region and may not be accurate.

These resonances have frequencies too low to be accurately determined (see experimental)

a,b See fig

TABLE 3:2:7

Temperature dependance of $93_{\rm Nb}$ 9/2 - 7/2 transitions in Nb₂ F₁₀·XeF₂

o _K	E	Temp	E	Tem p	E	Temp	E
	MH z	o _K	MHz	° _K	MHz	^o K	MHz
73 73 74 79 82 102 127	18.208 18.620 18.208 18.208 18.621 18.53 18.53	. 131 152 160 167 170 178 185	18.46 18.302 18.302 18.296 18.295 18.291 18.290	191 194 202 205 212 221 221	18.284 18.286 18.278 18.275 18.272 18.268 18.265	229 235 .89 107 124 2 73	18.264 18.260 18.217 18.238 18.313 18.229

3:3 Discussion

Disorder effects, detected by the absence of high angle scattering in the x-ray powder photographs (see chapters 1 and 2) are thought to be responsible for the absence of observable resonance in a large number of compounds used in this study. Disorders in packing of the layers of the crystal and orientation of the species present, and faulting and twinning of crystals are all possible. Most of the compounds which gave detectable resonances have low melting points and this may have been important in annealing the material. Disorder in a crystal lattice gives non-regular crystalline fields and distortion of molecules in the region of the disorder, as described in section 3:1

The observed n.q.r. spectrum of NbF₅ at 273 and 77 K (table 3:2:1) indicates that miobium atoms with two physically different environments are present. A weak peak at approximately 5.7 MHz. in the n.q.r. spectrum of NbF₅ is tentatively attributed to the 1/2- 3/2 transition, but it might be spurious. It is not essential to the arguments which follow.

NbF₅ crystallises in the $62_{/m}$ space group (No 12) with two tetrameric units in the crystallographic unit cell ⁽¹⁴⁾ (i.e. one per primitive, or bravais unit cell⁽³³⁾). In each tetramer there are two mobium atoms with site symmetry C_2 , (g sites) and two with site symmetry C_s , (i sites). No significant differences in chemical environment are

194 -

detectable by x-ray single crystal techniques. (14)However, the differences found in e^2q Q for the two environments ($\simeq 3\%$ at 77 K) are rather large to be due to crystal fields alone (1,3) and this, with the marked difference in temperature dependence of e^2q Q for the two environments, (see fig 3:3:1, table 3:2:2) indicates that the differences in environment, are due to a physical distortion of the chemical environment, rather than to crystal field, or vibrational effects. The deviation of η from the value \log^4 zero expected for a regular, cis disubstituted, octahedron (fig 3:1:8:c) is attributed to the observed distortion of bond angles from 90^{o(14)}

The n.q.r. spectrum of NbF₅.Me₂O at 77°K indicates two physical environments of ⁹³Nb atoms whilst that at 273 K indicates only one. (Table 3:2:5). It is concluded that a phase change occurs between these temperatures. The n.q.r. spectra of NbF₅.Me₂O, and NbF₅.CH₂ClCN are consistent with the presence of pseudo-octahedral (C_{4y}) symmetry at the niobium atom. In this environment both distortion of bond angles from the "ideal" octahedral angles, and asymmetry of the base, might produce asy metry in the electric field gradient tensor. In both complexes the experimental values of η are small, indicating that both effects are elmost negligible.

The n.c.r. spectra of samples of "NbF5+Me2S" are not

consistent with the presence of a single compound, and cannot, except at 77 K, be arranged in groups corresponding to the four observable transitions. The spectrum at 77 K can reasonably be attributed to chemically similar 93 Nb atoms in physically different environments. As NbF₅.Me₂S was probably a major component of the samples used the values of eqQ and γ found are taken to be representative of the compounds.

The n.q.r. spectrum of the 1:2 complex, NbF₅.2Py shows that only one physical and chemical environment has been detected and that in this environment $\eta = 0$. It is not possible to say which of its possible structures is taken up by NbF₅.2Py on the basis of this information. It is unlikely to be one of those structures where η is not predicted to be zero (table 3:1:2, fig 3:1:8 structures h, i, j, p,).

In the n.q.r. spectrum of $XeF^+ Nb_2F_{11}^-$ resonances are found for ⁹³Nb in two, chemically different environments. The additional splitting at low temperatures, is attributed to crystallographic non-equivalence in chemically equivalent atoms because its size is consistent with this ⁽¹³⁾. This phase change which occurs at 140 K (fig 3:3:2, table 3:2:7) is unlike normal phase changes in that the observed frequencies do not change abruptly but appear to become equivalent as the temperature is raised. The temperature dependence

of line energies below 140°K is far greater than expected if only external fields, or vibrational factors were involved (figs 3:3:1, 2, table 3:2:7) It is suggested that the observed behaviour is due to distortion of the molecules at low temperatures as the crystal dimensions change due to thermal expansion. Low-temperature x-ray diffraction studies of the compound might yield some interesting results.

The bonding in $XeF^{+}-M_{2}F_{11}^{-}$, and XeF^{+} MF_{6}^{-} compounds has been a subject of some discussion, Raman spectra being taken as an indication that NF_{6}^{-} , or $M_{2}F_{11}^{-}$ and XeF^{+} ions are present, ⁽³⁴⁾ whilst the structure of XeF^{+} $Sb_{2}F_{11}^{-}$ has shown an increase of the Sb-F bond length where the fluorine atom is directed towards Xenon⁽³⁵⁾ (see fig 3:3:3). Holloway ⁽³⁶⁾ has suggested that the relative strength of the $FXe^{+}-F$ — Mand $Xe^{+}-F--M$ bonds are not always the same.

The NbF₆ ion should give a quadrupole coupling constant of 0 MHz (table 3:1:2 structure a) The ⁹³Nb quadrupole coupling constant in XeF⁺.NbF₆ (or XeF₂.NbF₅) (table 3:2:6) suggests a significant deviation from the purely ionic structure. The structure of XeF ⁺.Nb₂F₁₁ has not been determined but it may be assumed, by analogy with XeF⁺.Sb₂F₁₁ that a unit approximating to Nb₂F₁₁ is present. In XeF⁺.Sb₂F₁₁ the Xe-F-Sp bond is cis to the Sb-F-Sb bridge (see fig 3:3:3)

Calculations of the expected values of $e^2 qQ$ may be made using values of $n_F - n_{Fb}$, $n_F - n_{Fb}'$. $(n_{Fb}', \equiv \text{ orbital occupancy})$

~ 200 **~**

M^cRae Peacock & Russell

Fig 3:3:3

factor for Nb orbital directed towards F in the Xe-F-Nb bridge) derived from NbF₅ and NbF₅.XeF₂ and the predictions of table 3:1:2 (structures b,c,e,f.) Results for the two possible structures (1) and (2) are given below. (The superscripts a,b, refer to the Nb atoms as labelled in the diagrams; where crystal splittings were observed average values of e^2qQ are used)

F-Xe-F-ND-F-ND-F

Structure (1) NbF₅, 77 K.; $2n_{F} - 2n_{Fb}$ $e^{2}qQ = 116.0$ MHz FXe-F-NbF₅ 77 K; $2n_{F} - 2n_{Fb}$, $e^{2}qQ = 34.4$ MHz Structure (1) Nb^a; $e^{2}qQ = 2n_{F} - 2n_{F\overline{b}}$ 116.0 MHz Nb^b; $e^{2}qQ = 4n_{F} - 2n_{Fb} - 2n_{Fb} = 150.4$ MHz Structure (2) Nb^a; $e^{2}qQ = 2n_{F} - 2n_{Fb} = 150.4$ MHz Nb^b; $e^{2}qQ = 2n_{F} - 2n_{Fb} = 116.0$ MHz Nb^b; $e^{2}qQ = 2n_{F} - n_{Fb} - n_{Fb} = 75.2$ MHz. XeF⁺Nb₂F₁₁ found at 77 K:-Nb¹; $e^{2}qQ = 110.6$ MHz, Nb²; $e^{2}qQ = 74.6$ MHz The results are thus in excellent agreement with a cis structure and in future discussion it will be assumed that the structure of KeF+ Nb₂F₁₁ approximates to structure (2)

It also follows from the predictions of table 3:1:2, and the experimental results that

$$\frac{n_{F} - n_{Fb'} (XeF_{2} \cdot NbF_{5})}{n_{F} - n_{Fb} (XeF_{2} \cdot Nb_{2}F_{10}; Nb^{a})} = \frac{34.4}{110.6} = 0.31$$

$$\frac{n_{F} - n_{Fb}}{n_{F} - n_{Fb}} (XeF_{2} \cdot Nb_{2}F_{10} \cdot Nb^{b}) = \frac{2X74.6 - 110.6}{110.6} = \frac{39.2}{110.6}$$

= 0.35

Translating this into words - in XeF⁺.NbF₆⁻ the decrease in electron density in the Nb valence orbital directed towards fluorine when that fluorine is brought into contact with an XeF⁺ species is 31% of that which occurs when the fluorine atom is bridge-bonded to another NbF₅ unit. In XeF⁺.Nb₂F₁₁⁻ the corresponding decrease in electron density in the orbital directed towards the fluorine directed towards Xenon is 35% of that in the orbital directed towards fluorine bridge-bonded to niobium. If the value $n_{\rm F}-n_{\rm b}=116.0$ MHz obtained from NbF₅ is used the decreases are 29.7, and 28.6% for XeF⁺.NbF₆⁻ and XeF⁺.Nb₂F₁₁⁻ respectively.

The Raman spectra of a series of $XeF_2 \cdot MF_5$ and $XeF_2 \cdot (MF_5)_2$ compounds have been studied and interpreted in terms of purely ionic structures $\binom{(34)}{}$. Similar correlations may be made in these compounds (see table 3:3:1). The Raman spectra of $XeF_2 \cdot NbF_5$ does not compare very well with the spectra of previous $XeF_2 \cdot MF_5$ compounds $\binom{(34)}{}$ and this may have been due to reaction between the surface of the sample and the pyrer sample tube. It was not possible to check this possibility because the sample consisted of one solid lump. However, because the sample was a solid lump it was unlikely that any impurities produced by surface reaction should have effected the observed n.q.r. spectrum.

TABLE 3:3:1

Raman Spectra of XeF₂.MP₅ compounds (frequencies in cm^{-1} intensities in brackets)

compounds	Xe-F	v, MF ₆	v₂№_6	v311F6	
	("XeF ⁺ ")				
Cs [†] RuF ₆ (3+)		656 (100)	581 (18)	269 (90)	
XeF ⁺ RuF6 ⁻ (3+)	604 (51) 599(86)	683 (100)	645 (48)	270(36) 260(18)	
Cs ⁺ NbF ₆ -(40)		683 (s)	562 (w)	280(m)	
xef ⁺ NbF ₆	596 (80)	769 (3) 737(6)	663(4)	464(50)	
		M2F11 bands			
XeF ⁺ RuF ⁻ (3+)	604(100) 598(53)	733(18), 696 (23), 650(62) $285sh$ 716(97), 683 (54) $645(82)$ 269(58) 246(32)			
^{Xer⁺Nb} 2 ^F 11	598 (58)	766(13), 72 738(28) 71	4(6) 680(3 2(4)	5)	
XeF ^{†Sb} 2 ^F 11	618(50)	688(28) 650 681 (7) 525((24) 10)		

3:4 Experimental

Highly specialised apparatus is required to observe nuclear quadrupole resonance. A comparison with N.N.R. spec, troscopy is instructive. Most N.N.R. spectrometers consist, essentially of four parts, ⁽³⁷⁾ a) a magnet to give a strong homogenous field to produce the non-degenerate energy levels for nuclear transitions b) a method for varying the magnetic field over a small range c) a radio-frequency oscillator of fixed frequency to produce a source of monochromatic electromagnetic radiation, and d) a radio frequency receiver to act as a detector and indicate when electromagnetic radiation is absorbed by the sample.

In n.q.r. spectroscopy the nuclear quadrupole interacts with a field gradient within the molecule and no static fields are normally needed. There can be no modulation of the field as in N.M.R. spectroscopy and frequency modulation must be used. The frequency range of n.q.r. is far greater than that of N.M.R., where shifts are seldom more than a few thousandths of the total applied frequency, and this presents certain experimental problems, but also means that meaningful results are obtained without the accurate frequency measurements of N.M.R. The Decca instrument (38) used in this work has a super-regenerative oscillator detector (39) with the range limitations 5-60 MHz and is considerably less sensitive in

- 205 -

in the lower ranges (5-10 MHz). A prototype of the Decca n.q.r. spectrometer was also available which gave spectra in the region 3.5-5 MHz if the "coherence" level was decreased. The frequencies registered in this region were not very accurate (0.1MHz)

NbF₅.XeF₂, and Nb₂F₁₀.XeF₂ were prepared by J. H. Holloway. (36) Nb(OEt)₅ was purchased from Alfa Chemicals. Preparation of other samples is dealt with in other chapters. The samples were loaded into 12.6 mm, thin walled pyrex tubes to a depth of between 1.5 and 2 cm in the inert atmosphere box and sealed under vacuum. The tubes were inserted into the coils which produced the r.f oscillatin, magnetic field. In all cases a combination of coils was used to scan the range 5-35 MHz; the 1:2 complexes and dialkylamido complexes were also scanned in the range 35-55 MHz. The time of scan per coil was 18 hours and the scan was recorded on a standard servoscribe recorder.

Sample temperatures were controlled by immersing the sample, rf coil, and sample chamber in a dewar flask filled with an appropriate fluid or slush bath. Variable temperature scans of $XeF_2.2NbF_5$, and NbF_5 were run by cooling sample chamber with liquid nitrogen and allowing them to warm to room temperature over a period of about twelve hours. Temperatures were measured by attaching a thermocouple to the sample chamber. The expected lag in temperature between sample and thermocouple was no more than $5^{\circ}K$.

References

- E. A. C. Lucken, "Nuclear Quadrupole Coupling Constants, (1)Academic Press 1969.
- G. A. Jeffrey, T. Sakurai. Prog Solid State Chem. (2)(1964), <u>1</u>, 380 Pergamon.
- R. Livingston, Hethods of Experimental Physics (3) (1962) 3,501 Academic Press.
- (4) M. J. Orville-Thomas Quarterly Rev. (1957), 11,162.
- (5) R. M. Cotts, W. D. Knight, Phys. Rev. (1964), 96, 1285
- (6) G. L. McKown, J. D. Grabeal, J. Chem. Phys. (1966), <u>44</u> ,610.
- D. T. Cromer, J. Phys, Chem. (1957), 61, 1338. (7)
- M. H. Cohen, Phys. Rev. (1952), 86 280. (8)
- A. H. Reddoch, Ph.D. Thesis, University of Berkeley, California. (9)
- (10) C. T. Townes, B. P. Dailey, J. Chem. Phys. (1949), <u>17</u> 782; (1952), <u>20</u>, 35.
- R. V. Parish, C. Z. Johnson, J. C. S.(A), (1971), 1906. (11)
- R. Sternheimer, Phys. Rev. (1956), 102, 73, and references (12)therein.
- R. L. Collins, J. C. Travis "Mossbauer effect Methodology" (13) Vol 3, p.123 Ed. E.l. Gruvernman, Plenum Press, New York. A. J. Edwards J.C.S. (1964), 3714.
- (14)
- R. R. Berret, B. W. Pitzsiamons J.C.S. (A), (1967) 525. (15)
- B. W. Fitzsiamons, N. J. Seeley, A. W. Smith, J.C.S.(A), (16)(1969), 143

- 208 -

- (17) R. V. Parish, R. H. Platt J.C.S. (A), (1969), 2145
- (18) H. Bayer, Z. Phys. (1951), <u>136</u>,227
- (19) T. C. Wang, Phys. Rev (1935), <u>99</u>,566
- (20) T. Kashidu, G. B. Benedik, N. Bloembergen Phys.Rev (1956), 104,1364
- (21) H. Zeldes, R. Livingston. J. Chem. Phys. (1953), 21,1418.
- (22) C. Dean, R. Livingston. J. Chem. Phys. (1956), <u>24</u>,1114.
- (23) -P. J. Bray, G. O. O'Keefe, R. G. Barnes, J. Chem. Phys.
 (1956), <u>25</u>,792.
- (24) D. A. Tong, J.C.S. (D), (1969), 970.
- (25) E. J. Jacob, L. S. Bartell J. Chem. Phys. (1970), <u>53</u>, 2235.
- (26) W. H. Zachariasen, Acta. Cryst. (1954), 7,783.
- (27) G. M. Brown, L. A. Walker Acta Cryst. (1966), 20,220.
- (28) K. C. Moss J.C.S.(A), 1970, 1224
- (29) J. L. Hoard, W. J. Martin, M. E. Smith, J. F. Whitney,
 J.A.C.S. (1954), 76, 3820.
- (30) J. L. Hoard, H. H. Nordsieck J.A.C.S. (1939), <u>51</u>,2853.
- (31) U. Kaldor, J. Chem. Phys. (1967), <u>46</u>, 1981.
- (32) J. L. Hoard, J. V. Silverton, Inorg. Chem. (1963), 2, 235.
- (33) P. J. Hendra, T. R. Gilson, Laser Raman Spectroscopy.
 J. Wiley (1970).
- (54) F. O. Sladky, P.A. Bulliner, N. Bartlett. J.C.S.(A)(1969) 2179
- (35) V. M. McRae, R. D. Peacock, D. R. Russell J.C.S.(D)(1969) 62.

(36) J. H. Holloway, J. C. Knowles, J.C.S.(A) (1969), 756.
(37) Pople, Schneider, Bernstein "N.M.R." McGraw-Hill (1959).
(38) J. A. S. Smith, D. A. Tong (Decca Ltd) pat U.S. 3,515,981
(39) J. R. Whitehead, "Super Regenerative Receivers" Cambridge University Press London & New York (1950).
(40) O. L. Keller Inorg. Chem (1963), 2,783

209

Appendix I

Experimental Methods

Because of the reactivity of higher metal halides many of the manipulations described in this thesis were carried out in vacuo, or in a Lintott inert atmosphere box. The vacuum line used was constructed with "Rotaflo" teflon-glass taps so that no grease was present in the line except between the liquid nitrogen "muck-traps" and the rotary pump. The vacuum was maintained with a three-stage mercury diffusion pump and an Edwards twostage rotary pump and monitored using a Pirani gauge.

The Lintott inert atmosphere box was used to circulate oxygen-free nitrogen over activated molecular sieves and the water level in the box was monitored using an Elliot moisture monitor (model 111) fitted with a P_2O_5 electrolytic cell. The water level in the box was below 14 p.p.m. when it was used for transfer of hygroscopic materials. Readings from the monitor when the inert atmosphere box was dried with dishes of P_2O_5 suggests that the water level in a conventional dry box is between 80 and 300 p.p.m.

- 10

NbF₅, and TaF₅ were prepared in the apparatus shown in Figure A1:1 by passing a 10% F_2/N_2 mixture over heated

1

Nb, or Ta. The apparatus was first degassed by flaming out, and passivated by passage of a $10\% F_2/N_2$ mixture for an hour. The fluorine, prepared by electrolysis of a KF/2HF melt, was dried in Trap A which was kept at -182°C with liquid oxygen. After passing fluorine for an hour the metal was heated with the furnace, G, to 250°C to initiate the reaction

$$M + 2\frac{1}{2}F_2 \rightarrow MF_5$$

after which the furnace was kept at 150° C. The pentafluoride condensed at the end of the metal reaction tube and was occasionally melted and collected in vessel B. When fluorination was finished the apparatus was purged of F_2 by passage of N_2 and evacuated. The vessel B was then sealed off at the constrictions O, and E.

 MoF_5 was prepared by the action of MoF_6 on Mo at 150°C in a stainless steel, or monel "Hoke" bomb.

$MoF_5 + Mo \rightarrow 6MoF_6$

It was then sublimed from the tube into a glass vessel.

In the prep rations of pentafluoride, it is very difficult to avoid production of small amounts of oxyfluoride impurities. These pentafluorides were purified using the apparatus shown in figure A1:2. Pentafluoride was loaded into the Kel-F tube A in a Lintott inert atmosphere box

- 213 -

and vacuum sublimed into a glass tube B. Because pentafluorides react with glass in the presence of traces of water it was necessary to thoroughly degas the vacuum line. To do this, fresh sodium was melted on the walls of trap C to act as a "getter" for any water present in the line. It is also present during sublimation to react with any HF absorbed by the pentafluoride during its preparation.

Reactions with the pentafluorides were carried out in vessels fitted with "Rotaflo" taps. In cas is where quantitative addition of reactants was required a twocompartment vessel (see fig. A1:3) was used. The vessel was evacuated, and reweighed. The other reagent was then put into compartment B and when the quantity was sufficiently adjusted the two materials were mixed. This vessel was also used for washing reaction products in vacuo. The solvent was added to the sample in vessel A and decanted into vessel B. Tap C can also be used as a crude filter.

The cells used for obtaining high, and low temperature I.R. spectra are shown diagramatically in figures A1:4 and A1:5 respectively. The high temperature cell was loaded with pentafluorides in the inert atmosphere box. There was about a ten minute time lag between temperatures at the thermocouple T and the sample S whilst the cell was heating. -- 216 ---

Figure A 1:5

Appendix II

Activity of I.R. and Raman modes in Pentafluoride Oligomers.

It was mentioned in Section 1:3 that an analysis had been made of the possible activities of bridging fluorine modes for some hypothetical MF_5 oligomers. The method used is illustrated for the hypothetical trimeric anion, with <u>trans</u> fluorine bridges, shown below

Figure A2:1

The numbers in table A2:1 are taken from the tables of Adams and Newton (ref. 70 Chapter 1) and represent the number of vibrational modes carrying the different group representations.

The characters of six orthogonal modes of the two bridging fluorine atoms (four of which are in two degenerate pairs, i.e. are "E" modes) are given in table A2:2. The "E" modes correspond to bending vibrations.

Table	A2:1	Factor	group analy	rsis (of an	isol	ated	M ₃ F ₁₆	ani	•uo				
Atom	Sym.	Wyk.	·No, of			Mode	s and	repr	esente	ation	ß			
		Site	Atoms	A ₁ g	A2g	B B	$^{B}2^{g}$	۵۵ اتبا	Alu	A ₂ u	B ₁ u	^B 2u	ц Н	
Nb ¹	$\mathbf{D}_{\mathbf{4h}}$	A	~~	0	0	0	0	0	0		0	0	4	
$^{\rm QN}$	c_{4v}	ტ	63		0	0	0		0	, ,	0	0	<i>4</i>	
Бр	c _{4v}	ტ	2	~~	0	0	0		0	, -	0	0	/	
Ъ.	C4v	ъ	5	/	0		0	~~	0	,	0	0	*	
Fr	c _{2v}	ۍ ۲	4	~~			~~		0	~~	~~	0	0	
111	പ്	S	8	0		2		ŝ		0	~ -	0	რ	
Total	modes			9	N.	ŝ	0	7		7	2	2	5	
Transl	lational	modes		0	0	0	0	0	0	-	0	0	N N	r- CI
Rotati	ional mo	des		0		0	0	20 X	2 2					
Total	externa	1 modes		0	~~	0	0			~	0	0	~	
Total	interna	l modes		9	-	ĉ	0	9	, 	9	0	0	∞	
Т , К	ıctive m	odes		0	0	0	0	0	0	9	0	0	∞	
Polari	ised Ram	an mode:	ß	9	0	ĉ	0	0	0	0	0	0	0	
Depol.	ırised R	aman moo	des	0	0	0	0	9	0	0	0	0	0	

- 218 -

		,			
Table A2:2 Characte	ers of the	modes of	f vibrat:	ion of	
bridging fluorine at	oms in an	^M 3 ^F 16 ⁻	ion,		
Vibrations of F_b^*	x y z	⊷ → ~·→	> <	11 77	↑ ↓ .7 64
• •	E	1	1	2	2
Characters	20 ₄	1	1	0	0
of vibration	с ₂	1	1	-2	-2
	20 ¹ / ₂	-1	1	0	0
	20 <mark>"</mark>	-1	1	0	0
	i	-1	1	-2	2
	2S ₄	-1	1	0	0

by vibration

Representation carried

Activity

I.R. R. I.R. R.

1

1

1

Aig

2

0

0

 $\mathbf{E}_{\mathbf{u}}$

-2

0

0

Eg

-1

1

1

A_{2u}

 σ_{h}

 $2\sigma_{T}$

 $2\sigma_{\rm d}$

* To visualise vibrations transpose arrows on to F_b in figure A2:1.

The representation carried by each mode is found by comparison of the characters of the mode with the character table for the C_{Av} group.

It may be shown that in all cases where linear fluorine bridging atoms are present there are movements of bridging fluorine atoms which correspond to formally active I.R. and Raman bands. There are other A_{1g} and A_{1u} modes and some mixing of the modes is inevitable. In particular, the A_{2u} modes must be mixed to produce translational modes, but as argued in section 1:3, this mixing has little effect on the energy of the modes.

and the second secon

the second state of the second

and the second second

Observed vibrational spectra, X-ray powder photograph data.

(All spectral frequencies are given in cm^{-1} , X-ray powder photograph data is given as the measured distance between arcs of scattered radiation (in cm) measured using Co K α irradiation and a 114 mm camera. To convert to ^o divide by 0.4.)

TaF₅(solid) I.R.; 754 ms, 721vs, 698s, 674s, 667sh, 644ms, 585vw, 511b,s, 310w, 232sh, 216s,b, 187m, 138m.

Raman; 765(125), 754(25), 716(70), 673(5), 656(30), 267(50).

X-ray; 2.23vvw, 3.46₅w, 4.01w, 4.16₅w, 4.37m, 4.54s, 4.84₅vvw, 4.97w, 5.34₅ms, 5.44₅vw, 5.60₆vvw, 5.75₅vw, 5.98₅w, 6.21₅vw, 6.48mw, 6.67₅vw, 7.04vvw, 7.24vvw, 7.56m, 7.72₅vvw, 7.98mw, 8.47₅s, 8.67₅vw, 8.98s, 9.11₅w, 9.27vw, 9.46₅vvw, 9.65m, 9.76vvw, 9.93w, 10.28w, 19.49vvw, 10.58w, 10.79mw,d, 11.50m, 11.72vvw, 11.90vw, 12.00w, 12.35vw, 12.55₅mw, 12.79w, 12.92w, 13.16₅vw, 13.60vw, 13.97₅vw, 14.28vw, 14.69vw, 14.84w, 15.40w, 15.74w, 16.08mw.

NbF₅(solid) I.R.; 746s, 721vs, 700s, 692sh, 672s, 660s, 498s, b, 300m, 255sh, 235s, 213sh, 202vs, 170sh, 132s, 81m.

Raman; 756(120), 727(20), 697(50), 271(60), 237(20).

X-ray; 1.90vvw, 2.14vw, 3.48₅w, 3.95w, 4.14₅w, 4.29m, 4.46₅s, 4.87vw, 4.95vw, 5.31ms, 6.47w, 6.50w, 7.39mw, 7.97m, 8.65vw, 10.31vw, 10.58w, 10.85w, 11.38₅w, 11.89w, 12.48w, 12.71w.

MoF₅(solid I.R.; 763vs, 736ms, 722m, 710m, 696vs, 650b,sh, 150b,m, 307w, 250sh, 230s.

X-ray; 2.21w, 3.34₅w, 3.94₅vw, 4.13s, 4.46s, 4.87w, 5.02w, 5.31m, 5.47vw, 5.72w, 6.11vvw, 6.42w, 7.25w, 7.59vvw, 7.73vvw, 7.95w, 8.49w, 9.09m, 9.51vw, 9.76vw, 10.02vvw, 10.29mw, 11.70vw, 11.96d,vw.

TaF₅·CH₃CN, I.R.; 2327ms, 2301s, 2055w, 1030mw, 953m, 827w, 712vs, 655m, 612s,b, 410m, 300b,w, 260b,mw, 240, m. Raman; 2300w, 710(30).

TaF₅·CH₂ClCN, I.R.; 3020m, 2324s, 1414m, 1266m, 950s, 903w, 750m, 715s, 669ms, 630m, 608vs, 521m, 240, m.

Raman; 2322(60), 746(20), 712(40), 673(30), 609(15).

TaF₅·CH₃CH₂CN, I.R.; 3300w, 3160w, 2296s, 2249w, 1415m, 1305m, 1075m, 860w, 783m, 708s, 657sh, 615vs, 570m, 410w, 300m,b, 240, ms.

NbF₅·CH₃CN, I.R.; 2320ms, 2298s, 2256w, 1367m, 1033m, 950m, 823w, 710b,s, 660b,s, 638b,s, 410m, 255m,sh,

240, m.

Raman; 2326(15), 2297(15), 705(90), 670(w), 590(4),

"NbF₅·2CH₃CN" Raman 2322(3), 2293(2), 2250(3), 1366(3), 680(6), 640(8), 430(b,w), 390b,w, 2846b,w.

NbF; CH₃CN X-ray; 2.78vw, 3.16vvs, 4.51vvs, 4.73vw, 4.98vw, 5.56m, 6.52₅vw, 6.76vw, 7.22₅mw, 7.92s, 9.23₅w, 9.55₅w, 9.85mw, 10.40₄w, 10.96w, 11.50vw, 11.98vw, 12.49w, 13.92vw, 14.39vw, 14.82vvw, 15.44vvw.

NbF₅·CH₂ClCN, I.R.; 3020m, 2320s, 2270w, 1414m, 1268m, 1191w, 948s, 903w, 750m, 719b,s, 660b,vs, 625b,vs, 520m, 387m, 300b, 240, vs.

Raman; 2317(7), 747(15), 714(12), 684(14).

NbF₅·CH₃CH₂CN, I.R.; 315ow, 2293vs, 2246w, 1418m, 1306m, 1250w, 1073m, 1000w, 856m, 820w, 784m, 704m, 640vvs,b, 568m, 290b,sh, 240, s.

Raman; 2295(10), 1470w, 1418w, 1311w, 1075(6), 1002(6), 863(w), 702(200), 668sh, 596(10), 568(10).

MoF₅·CH₃CN, I.R.; 2322m, 2397s, 2255w, (1028, 1015)mw, 953m, 720w, 703mw, 650b,vs, 635sh,b, 418w, 285b,m, 250,b, m.

Raman 2324(10), 2295(12), 955(6), 697(90), 665(5), 426(10).

MoF₅·CH₂ClCN, I.R.; 3010vs, 2960vs, 2312s, 1404s, 1264m, 1020mw, 948s, 893m, 752mw, 710m, 660b, vs, 630b,s, 522m, 330b,w, 240, m.

TaF₅·OEt₂, I.R.; 2295s, 2950w, sh, 2930w, 2880w, 1640w, 1476s, 1451ms, 1392s, 1360w, 1330m, 1287m, 1193s, 1152s, 1092s, 998vvs, asy, 880s, 834m, 880w, 778s, 695s, TaF₅ • OMe₂, I.R.; 1300w, 1264, 1155m, 1015b,m, (885, 875)m, 723ms, 710w, 670w, 630, 240, s.

Raman; 698(55).

NbF₅·OEt₂, I.R.; 2980ms, 2935m, 2870s, 2610w, 1975w, 1488s, 1445m, 1387s, 1322m, 1280m, 1188s, 1147m, 1108w, 1085s, 998vs,b,asy, 879vs, 828m, 791sh, 771s, 690vs,b, 640vvs,b, 506m, 467m. No spectra taken below 450 cm⁻¹.

NbF₅·OMe₂, I.R.; 3010sh, 2965vs, 2920vb,s, 2853vs, 2300w, 2020w, 1880b,w, 1258w, 1157m, 1020m,b, 970w, 882m,asy, 825b,w, 722m,w, 709m, 674sh, 666vs, 643sh,s, 595,

240, s.

Raman; 880(10) 690(200), 664(30), 593(7), 224(4). Raman intensities of this compound are unreliable because of its intensity.

NbF₅·OMeC₆H₅, I.R.; 3060m, 3020sh, 2950w, 2930mw, 2864mw, 1880w, 1630m, 1585b,m, 1510sh, 1490sh, 1478s, 1459sh, 1380w, 1335w, 1285mw, 1215b,vs, 1185sh, 1161s, 1120sh, 1111s, 1038w, 1017m, 938b,vs, 905sh, 815s, 786vw, 756s, 680-620vvs, 595sh,w, 490b,s, 380b,w, 300b,mw.

 $TaF_5 \cdot (Me_2SO)_2$, I.R.; 3020m, 1440sh, 1419w, (1331,1324)w, (1314, 1308)vw, 1041m, 1028m, 1011sh, (1000, 995)s, 970ms, 946sh, 938b,s, 722m, 583s,asy, 570w, 550b,vs, 472m, 460sh, 359m, 331w, 310ms, 260m, 240, s. Raman; 723(50), 691(140), 604(30).

X-ray; 2.83₅vvs, 3.10ws, 3.49vw, 3.69₅s, 4.26w, 4.66s, 4.99m, 5.60w, 5.87d,mw, 6.25mw, 6.76d,w, 7.06vw, 7.22w, 7.46mw, 7.64w, 8.04mw, 8.52w, 8.43w, 8.83vw, 9.13vw, 9.30w, 9.44w, 9.62w, 9.88vw, 10.07vw, 10.39w, 10.80vw, 11.25vvw, 11.62w, 11.90w, 12.22vw, 13.07w.

TaF₅·Me₂SO, I.R.; 3030mw, 1426w, 1418w, 1329mw, 1302w, 1043mw, 994m, 963b,vs, 922w, 905w, 720mw, 674s, 658w, 610b,sh, 582b,vs,asy, 470ms, 355m, 330b,sh, 240, s.

Raman; 673(15) some fluorescance.

TaF₅·(Me₂SO-d₆)₂, I.R.; 2268m, 2258sh, 2136mw, 1044w, 1027ms, 990sh, 974s, 943s, 839m, 829m, (794, 789)w, 770m, 642w, 580s,b, 570sh, 552s, 447mw, 430sh, 369w, 334mw, 310s, 255sh, 240, m.

Raman; 1031(21), 1016sh, 984(4), 947(9), (838, 829)(5), 785(w), 770(8), 689(30), 633(60), 602(55), 440b,w, 375b,w.

X-ray; 2.80vvs, 3.11vvs, 3.51vw, 3.63s, 4.27vw, 4.65s, 4.85vw, 5.02ms, 5.61vw, 5.89d,m, 6.27w, 6.42vvw, 6.74d,vw, 7.51d,w, 8.08w, 8.54vw, 8.67vw, 8.84vvw, 9.12vw, 9.31w, 9.46w, 9.64w.

TaF₅·Me₂SO-d₆, I.R.; 2285m, 2278m, 2145mw, 1046mw, 1027sh, 1020ms, 990sh,w, 957s,b, 910sh,b, 838m, 801w, 773m, (681, 676)s, 638sh, 586vs,asy,b, 441m, 337m, 325vw, 240, m,b.

Raman; 672(10), 638(10), some fluorescance.

X-ray; 3.00ms, 3.15vs, 3.58v, 3.89s, 4.25vs, 4.45ms, 4.93s, 5.65vw, 5.82vw, 5.98d,w, 6.37d,mw, 6.68w, 6.97w, 7.17w, 7.63vw, 7.79vvw, 7.92w, 8.18vw, 8.51w, 8.80vvw, 9.41w, 9.67w, 10.07w, 10.31w, 10.49vw, 10.77w, 11.03vw, 11.44vw, 11.55vw, 11.89vw, 12.56vw, 13.13vvw, 13.36w.

NbF₅ (Me₂SO)₂, I.R.; 3018w, 2325w, 2245vw, 2230vw, 1865w, 1432ms, 1418mw, (1331, 1324)mw, (1311, 1305)w, 1041mw, 1025mw, 1000sh, 993s,b, 966s, 935b,s, 722ms, 635sh, 610sh, 603b,s, 579m, 555m, 468ms, 452w, 380w, 358m, 380m, 265sh, 240, w.

X-ray; 2.95vs, 3.15_5 vs, 3.46_5 mw, 3.87vs, 4.32_5 vs, 4.44₅s, 4.92vs, 5.64w, 5.98m, 6.24ms, 6.67₅m, 6.69m, 7.15m, 7.58₅w, 7.87₅w, 8.15mw, 8.48₅m, 8.65₅w, 9.00₅w, 9.40₅mw, 9.62mw, 9.80vw, 10.04₅mw, 10.26₅mw, 10.80w,d, 11.04₅w, 11.23w, 11.58w, 11.86₅w, 12.54₅w, 13.27mw.

NbF₅·Me₂SO, I.R.; 3030m, 1425w, 1418vw, 1325w, 1300vw, 1044m, 994m, 955s, 922w, 900w, 721mw, 664ms, 625vvs, 605b,vs,asy, 460s, 358m, 330w, 280sh,b, 250, s.

Raman; 665(15), some fluorescence.

X-ray; 2.23₅vvw, 2.93₅s, 3.14s, 3.55mw, 3.87₅s, 4.22vs, 4.43₅m, 4.93m, 5.95₅w, 6.35d, w, 6.65₅vw, 6.97vw, 7.18vvw, 7.61vvw, 7.89₅vw, 8.15₅vw, 8.50d, w, 8.82₅ww, 9.00₅vvw, 9.38vvw, 9.63vw, 10.08w, 10.28w, 10.51₅vvw, 10.78₅vw, 11.62₅vw, 13.28w. "TaF₅·Me₂SO·Py", I.R.; 1612s, 1491w, 1329w, 1244w, 1224m, 1160mw, 1071m, 1048m, (1040, 1036)w, 1019mw, 1006w, 995s, 953m, 922vs, 908m, 773w, 764m, 724m, 697s, 682w, 641m, 580vvs,b, 555sh, 497w, 482w,asy, 458w, 449w.

Raman; 693(13), some fluorescence.

X-ray; 2.66s,d, 3.05vvs,d, 3.30vw, 3.50vw, 3.53w, 3.79vw, 3.92vw, 4.17m, 4.28m, 4.58mw, 4.76w, 4.94w, 5.09vw, 5.26ms, 5.58d,w, 5.98w, 6.22w, 6.43vw, 6.81mw, 7.29w, 7.91w, 8.13vw, 8.51w, 8.78vw, 9.00vw,d.

TaF₅·2Py, I.R.; 3290w,b, 3100m,b, 1930w, 1848w, 1609s, 1490m, 1230w, 1220w, 1159m, 1070s, 1045m, (1015, 1017)s, 950w, 870w, 760s, 690s, 651mw, 635m, 585b,vs, 448m, 330m.

Raman; 1611(10), 1575(10), 1227(10), 1048(55), 1019(150), 693(40), 644(45), 663(60), \sim 460(w), \sim 390(w), \sim 320(w), \sim 280(m), \sim 240(w), \sim 220(m), \sim 190(w), \sim 180(w), \sim 145(w). (Peaks below 460 cm⁻¹ were found by Dr. D. Adams on a Codberg machine at Leicester University.)

TaF₅ (Py-d₅)₂, I.R.; 2476w, 2320w, 2300w, 2270vw, 1653w, 1593w, 1572s, 1539mw, 1329s, 1237w, 1049vw, 1025vw, 1014w, 982ms, 903m, 900sh, 850sh, (841, 835)m, 770w, 680w, 620sh, 610m, 590vs, b, 570sh, 532m, 410w, 328ms, 245sh.

Raman; 1569(20), 1537(50), 1347(20), 983(200), 902(70), 839(60), 780(10), 688.5(60), 625(90), 595(50), X-ray; 1.58vw, 2.00vw, 2.58s, 2.67w, 2.87vw, 2.95s, 3.17w, 3.40s, 3.50_5 mw, 3.81_5 w, 3.98_5 vw, 4.18vw, 4.39m, 4.51m, 4.84m, 5.01_5 m, 5.24vw, 5.34w, 5.45vvw, 5.56vw, 5.75w, 5.89w, 6.12mw, 6.43_5w, 6.55vvw, 8.25w, 8.88w, 9.56m, 9.73mw, 9.88m, 10.23w, 10.43vw, 10.68vw, 11.10mw, 11.92w.

NbF₅·2Py, I.R.; 1930w, 1850w, 1609m, 1490m, 1230m, 1221w, 1160m, 1071m, 1044m, (1019, 1015)m, 950w, 870w, 762ms, 692ms, 652w, 635w, 614b,s,asy, 602b,s, 584w, 563b,s, 453sh, 447m, 343m, 290b,sh, 240, m.

Raman; 1608(14), 1576(18), 1495(8), 1227(20), 1160(7), 1044(150), 1017(200), 676(55), 640(55), 587(100), 562(3), 414(5), 363(10).

X-ray; 1.57w, 1.99_5vw , 2.58s, 2.93vs, 3.16w, 3.39_5s , 3.53m, 3.84_5w , 4.08w, 4.21_5vvw , 4.39_5ms , 4.52_5ms , 4.84_5m , 5.00_5mw , 5.22_5vw , 5.54_5vw , 5.77vw, 5.90vw, 6.15w, 6.42_5vw , 6.58vw, 6.72_5vw , 6.94_5vw , 7.26w, 7.40w, 7.62w, 7.77_5vw , 7.97vw, 8.15_5vw , 8.22_5vw , 8.50vw, 8.67vw, 8.90_5vw , 9.18w, 9.57m, 9.84m.

NbF₅·2(Py-d₅)₂, I.R.; 2650w,vb, 2475w, 2294w, 1650vw, 1566s, 1537w, 1336w, 1320vs, 1235w, 1165w, 1048w, 1024w, 1009w, 979s, 900m, (845, 838)m, 810w, 679m, 644sh, 610vs, 565s, 529s, 407m, 345m, 240, m. Raman; 990(200), 906(50), 846(30), 788(15), 693(50), 632(100), 600(30).

TaF₅ (4Me-Py)₂, i.R.; 3100w, 2495w, 1954w, 1848w, 1780vw, 1678w, 1628s, asy, 1563w, 1511mw, asy, 1340w, 1243ms, 1218m, 1114w, 1070s, 1031s, (1012, 1008)w, 970w, 885w, b, 868w, 817s, 802vw, 724m, 704w, 656w, (584, 578)vs, 550mw, 506s, 332ms, 298w, 240, m.

Raman; 1629(10), 1070(20), 1034(40), 882(80), 688(40), 670(50), 613(90), 547(10), $\sim 370(4)$, $\sim 350(5)$, $\sim 300(8)$, $\sim 285(5)$, $\sim 260(8)$, $\sim 140(15)$. (Peaks below 400 cm⁻¹ were found by Dr. Adams.)

X-ray; 1.69vw, 2.14₅vw, 2.46vvs,d, 2.75m, 3.20vw, 3.69vvs,d, 4.17w, 4.40s, 4.22vvw, 4.98mw, 5.22m, 5.65m, 5.87w, 6.11w, 6.45w, 6.69vw, 7.08vw, 7.48w, 7.67vvw, 8.01w, 8.47vw, 8.67vw, 8.90d,m, 9.43mw, 9.62w, 9.91vw, 10.05vvw, 10.36vvw, 10.50vvw, 1067vw, 11.51vw, 11.80w, 12.56w.

"NbF₅ · (4Me-Py)₂", I.R.; 2726w, 2495w, 1945b,mw, 1845b,w, 1675s, 1585w, 1509w, 1339w, 1240m, 1214m, 1132w, 1114w, 1069s, 1040m, 1029m, 1008w, 970w, 888vw, 868mw, 819s, 795w, 724m, 703w, (693, 689)m, 654s, ~605vs,b, 568m, 555w,sh, 545w,sh, 503ms, 496w, 346s, 240, s.

Raman; $\sim 686(4)$, $\sim 665(5)$, 610(10), 600(4), (375, 362)(4).

TaF₅[•]2Me-Py, I.R.; 3300b,mw, 3205b,w, (3100, 3090)w, 2030w, 1945w, 1900vw, 1860w, 1655w, 1639w, 1619s, 1582w, 1570m, 1561w, 1543w, 1499s, 1397w, 1319ms, 1233w, 1174ms, 1118m, 1073ms, 1035w, 1029s, 998w, 890w, 873m,b, (802, 798)mw, 772s, 720ms, 698s, 650m, 609vb,vs, 590sh,s, 554w, 468m, 430m, 415m, 318m,b, 220vs.b.

"TaF₅·Me₂S", I.R.; 1431vs, 1336m, 1316m^{*}, 1039ms, 988ms, 920w, 840m^{*}, b, 721w^{*}, 705w, 660b, s, 630s, 570b, vs, 487m^{*}, b.

(* Indicates band shapes varied from sample

to sample.)

Raman; 745(14), 722(22), 690(25), 608(45).

"NbF₅·Me₂S", I.R.; 2930s, 1428s, 1332m, 1315mw^{*}, 1039s, 984s, 924w, 718sh, 712s^{*}, 670sh, 663vs, 638s^{*}, 602vs^{*}, 566vs, 475s, b, 328ms, 295m^{*}, b, 240, s.

(* Indicates band shapes varied from sample

to sample.)

Raman; 1439(10), 1421(3), 1335(6), 1050(3), 985(3), 742(15), 715(30), 686(25), 630(40), 582(100), 290(w).

"NbF₅Me₂S + Me₂S", slush, Raman; 580(35), 682(2), 691(7), 746(4).

"NbCl₅·Me₂S", I.R.; 1426s, 1328m, 1032ms, 982s, 793vs, 787sh, (735, 722)mw,b, 677mw, 372vvs.

"NbF₅°Et₂S", I.R.; 2980s, 2945ms, 2870m, 1453s, asy, 1428m, 1383ms, 1284m, 1266ms, 1079m, 1052m, 973s, 780m, 745w, 719w, 700s^{*}, 655sh, 610-640vvs, 498b, s, 390m, 328w, 285s, sh, 250, s. "NbF₅ Et₂S", I.R.; 2976vs, 2940m, 2878m, 1455w, 1426m, 1382ms, 1284m, 1262s, 1078m, 1050m, 975s, 898vw, 785m, 765w, 690vs,b, 650vvs,b, 585m, 510b,m, 473b,m, 305b,ms, 260b,m.

Raman; 1064(10), 976(3), 712(3), 682(10), 628(80), 592(26), 392(4), b, 335(2), (308, 289)(3), 246(3), (190, 182)(7), 136(10).

"NbF₅·2Et₂S", Raman; 715(2), 691(2), 662(1), 641(1) 589(25).

Et₂S, 25^oC, as a liquid film or in solution in CS₂, and CCl₄, I.R.; 2970vs, 2925s,asy, 2872m, 2854w, 2832w, 2804w, 2726w, 2690vvw, 2415w, 2225w, 1545b,m, 1520w, 1446vs,asy, 1427mw, 1374vs,asy, 1313w, 1252s,asy, 1072ms, 1045mw, 1035vw, 1000sh, 970ms, 780m, 760w, 734w, 696mw, 652mw, 637mw.

Et₂S, -196^oC, not annealed; 2970-2860vvs,b, 2725m, 2700sh, 2490b,w, 2446w, 2350ms, 2226mw, 2160w, 1513m, 1440vvs,vb, 1373vs, (1322, 1314)mw, 1280sh, 1255vs,b, 1076s, 1047ms, 1030sh, 1015vvw, 1008mw, 970vs,asy, 893w, 795vs,b, 773s, 738s, 692s, 654s, 636s.

 Et_2S , -196°C, annealed, or solutions of Et_2S in CS_2 , or CCl_2 cooled to -196°C, I.R.; 2920vs, b, 2870vs, 2740ms, 273m, 2352m, 2276w, 2240m, 1945mw, 1510w, 1490vw, 1439vs, asy, 1373vs, asy, 1323mw, 1279vs, 1250vs, 1079s, 1041s, 1035sh, w, 1025sh,w, 990m, 983vs, 795vs, 762w, 735w, 688vs, 660ms, 650mw.

TaF₅·2NHMe₂, I.R.; 3282s, 3020w, 1412w, 1404w, 1284ms, 1223m, 1122m, 1084m, 1063ms, 1022s, 901s, 721m, 639ms, 568vvs,b,asy, 534vs,b, (465, 458)w, 340s, 314w, 276m.

Raman; 1470(20), 1280(7), 1220(5), 1059(10), 1026(10), 905(15), 640(100).

"NbF₅•NHMe₂", I.R.; 3316s,b, 3140b,sh, 2450w, 1610mw,b, 1300b,w, 1258w, 1214w, (1130, 1122)mw, 1045m,asy, 1020ms, 958m, 908m, 854mw,b, 720mw, 609s,asy,b, 592mw, 551m, 482m.

Raman; 958(15), 892(3), 678(7), 587(w), 560(3), 356(5).

"TaF₅·2NHEt₂", I.R.; 3215b,s, 3148m,sh, 2945ms, 2468mw, 1588b,ms, 1392w, 1360m, 1342vw, 1328vw, 1306mw, 1280w, 1192s, 1158m, 1129m, 1094ms, 1049s,b,asy, 1008s, 965w, 910ms, 845w, 790s,b,asy, 778s, 722mw, 693mw, 645m, 580vs,b, 545vs,b, 450b,ms, 380b,m, 350w, 280m,b, 240, s.

TaF₄ •NEt₂, I.R.; 1364w, 1339w, 1330w, 1276w, 1192ms, 1126m, 1093ms, 1071m, 1043ms, 1004s, 917ms, 905w, 794ms, 723mw, 666s, 638vs, 620vs, 550w, 499s,b, 420w, 365m,b, 306m, 240, s.

Raman; 1003(15), 919(20), 662(28), 598(18), 305(10).

X-ray, 2.04d, vvs, 2.28vw, 2.49s, 2.96vw, 3.24s, 3.46vs, 3.55vvw, 3.64vw, 3.85ms, 4.10mw, 4.43₅m, 4.64vw,

7.85mw, 8.36mw, 8.75mw, 9.05w, 9.39d, w, 9.70w, 9.86m, 10.23vvw, 10.57vvw, 10.87vw, 11.16vw, 11.53vw, 11.90vvw, 12.12w.

NbF₃ (NEt₂)₂, I.R.; 2660w, 1351mw, 1338w,sh, 1320w,sh, 1278m, 1190ms, 1136s, 1090ms, 1068ms, 1050ms, 1000vs,asy, 906sh,w, 890vs, 843w, 790s, 723w, 630vs, 610w, 584vs, 458vs,b, 330sh, 320ms, 306sh.

Raman; 1013.(6), 900(12), 800vw, 593(10), 490(vw), 445(vw), 345(5).

X-ray; 1.53vvs, 1.97vvs, 2.42vvw, 2.70m, 2.99s, 3.13m, 3.35₅vw, 3.58₅w, 3.79₅mw, 4.13w, 4.36mw, 4.73w, 4.91ms, 5.10₅vw, 5.40w, 5.57mw, 5.87m, 6.12vw, 6.38vw, 6.81d,m, 7.74vvw, 7.99vvw, 8.38vw, 8.60vw, 8.77vw, 9.09vw, 9.58m, 9.86w.

TaF₄·NEt₂·Py, I.R.; 2485w, 1990w,b, 1870vw, 1840vw, 1650b,w, 1612s, 1576vw, 1450vs, 1366w, 1358w, 1278w, 1243w, 1230vw, 1219m, 1193m, 1159w, 1130m, 1095mw, 1069s, 1049s, 1008s,b,asy, 956w, 906s,asy, 792m, 762s, 697s, 681w, 644s, 631w, 590vs, 580vvs, 450w, 433w, 336m, 310m,b, 262m,

240, s.

Raman; 648(12), 632(13), 581(7), 316(5) (some fluorescence).

X-ray; 2.56vs, 3.05ms, 3.28ms, 3.35₅ms, 3.56vvw, 3.78vvw, 4.26s, 4.55₅mw, 4.88m, 5.33mw, 5.46w, 5.85m, 6.13mw, 6.63mw, 7.30mw, 7.42vvw, 7.595w, 8.01w, 8.32vw, 8.57vw, 4.82n, 5.05d, m, 5.29d, vs, 5.52w, 5.78vw, 5.97₅vw, 6.07vw, 6.22₅vw, 6.43w, 6.87w, 7.05w, 7.30mw, 7.52w, 7.86mw, 8.30vvw, 8.70₅w, 9.03vw, 9.22vw, 9.38vw, 9.43vw, 9.84m, 9.96vvw, 10.20vvw, 10.29vw, 10.54vw, 10.81w, 11.15vw, 11.36vw, 11.54w, 11.85vw, 12.08w.

TaF₃·(NEt₂)₂, I.R.; 2656b,w, 1356w, 1335mw, 1278m, 1191s, (1142, 1136)s, 1094s, 1066w, 1052ms, 1018m, 1002s, 904w, 894s, 789s, 723m, 662w, 610vs,b,asy, 595sh, 523mw, 475vs,b, 292ms,b,asy.

X-ray; 1.43w, 2.05vs, 2.63s, 3.04m, 3.44w, 4.21₅mw, $^{\prime}$ 4.27mw, 4.41m, 4.88₅w, 4.97₅ms, 5.09₅vvw, 5.31vw, 5.52w, 5.68mw, 5.93mw, 6.14₅vvw, 6.36vw, 6.84m, 7.01vvw, 7.24vvw, 7.37vw, 7.53vvw, 7.85vvw, 7.95vvw, 8.07vvw, 8.22vw, 8.55vw, 8.75vvw, 8.81₅vvw, 8.98vvw, 9.03vw, 9.55₅vvw, 9.68m, 9.75m, 9.94w, 10.00w, 10.21vw, 10.29vw, 11.02d,m.

NbF₄ •NEt₂, I.R.; 1590w,b, 1368vw, 1351w, 1338vw, 1324w, 1272mw, 1189m, 1124s, 1092ms, 1069ms, 1035ms, 994s, 907sh, 901s,asy, 793ms, 722w, 674w, 646vs,asy,b, 622w, 600vs, 595w, 480s,b, 325ms.

Raman; 1454(10), 1380(6), 1187(15), 1071(7), 1033(7), 994(30), 898(40), 790(8), 638(15), 594(28), 334(25).

X-ray; 2.05(vs), 2.31vw, 2.49m, 2.73vw, 3.26m, 3.43s, 3.53vvvw, 3.69vvw, 3.87m, 4.13mw, 4.45mw, 4.62₅vvw, 4.82₅vvw, 5.01m, 5.09m, 5.29s, 5.37mw, 5.55mw, 5.78₅mw, 5.91mw, 6.09w, 6.27vw, 6.49w, 6.91w, 7.10w, 7.34mw, 7.65w, 8.79vw, 8.97vw, 9.06vvw, 9.40vvw, 9.48vw, 9.65vw, 9.91w, 10.13vw, 10.36w, 10.75w, 11.88vw.

TaF₃ (NEt₂)₂Py, I.R.; 3090w, 2000w, 1941w, 1890vw, 1870vw, 1720vw, 1652w,b, 1611s, 1576w, 1491w, 1354w, 1336w, 1322w, 1281mw, 1240w, 1224m, 1192s, 1162mw, 1135s, (1095, 1088)ms, 1067s, 1048s, 1004vs, asy, 904w, 893s, 820w, 794w, 788s, 770s, 722mw, 707w, 199s, 680w, 654w, 640s, 565vs, 539w, 519vs, 437m, 311m, 250mw, sh, 240, m.

Raman; strong fluorescence.

X-ray; 1.47w, 2.41vs, 3.02s, 3.63mw, 3.79mw, 4.10vvw, 4.32vvw, 4.51w, 4.90₅w, 5.05vw, 5.94mw, 6.19vw, 6.58vw, 8.10vw.

NbF₃°(NEt₂)₂Py, I.R.; 3080w, (2665, 2640)w, 1605s, 1348m, 1331w, 1317w, 1276mw, 1240w, 1220m, 1186m, 1156w, 1132m, 1086m,asy, 1061ms,asy, 1044m, 998s,asy, 902w, 889sh, 883s, 792sh, 786m, 766ms, 698ms, 653mw, 636m, 590sh, 576vs,b, 557sh, 542sh, 511s, 435w, 340sh, 326ms, 303sh,w.

NbF₃·NEt₂ + NbF₅·OEt₂ + Et₂O, X-ray; 1.48vw, 1.73mw, 2.00mw, 2.23vs, 2.46vs, 2.69vw, 2.85vvw, 3.05vw, 3.32mw, 3.58₅w, 3.84vvw, 4.50w, 4.69w, 5.07w, 5.24vw, 5.78vw, 9.61m, 9.83w, 9.15mw.

TaF₄ • NEt₂ • 4Me-Py, I.R.; 2760b, w, 2496w, 2180b, w, 2090b, w, 1950w, 1844w, 1780vw, 1686w, 1624s, 1565w, b, (1511, 1508)mw, 1350w, 1240m, 1233vw, 1215m, 1210w, 1195mw, 1129m, 1045mw, 1069s, 1052w, 1030s, 1007m, 907ms, 815s, 789mw, 724m, 704w, 667w, 635m, 583vs,b,asy, 548w, 505m, 497w, 334m, 298m, 240, m.

X-ray; 2.47vvs,d, 2.75m, 3.10s, 3.33ms, 3.70s, 4.21s, 4.39ms, 4.59ms, 4.76vw, 5.06m, 5.22w, 5.41m, 5.72m, 5.96vw, 6.13m, 6.30w, 6.52w, 6.72vw, 6.92vw, 7.15m, 7.29mw, 7.49m, 7.97m, 8.28mw, 8.37mw, 8.61w, 8.81w, 8.94₅w, 9.16w, 9.45vw, 9.87w, 10.29w, 10.86w, 11.81mw.

 $TaF_{3} \cdot (NEt_{2})_{2} \cdot 4Me-Py$, I.R.; 3755vvw, 3720vw, 3136w, 3075mw, 3045mw, 2965vvs, 2926vs, 2860vs, 2720vw, 2680w, 2550vw, 2480mw, 2410vw, 2260vw, 2230w, 2140vw, 2032w, 1945mw,b, 1850w,b, 1770w,b, 1680w,b, 1628s,asy, 1558mw, 1505w, 1462w, 1446s, 1425w, 1373s, 1354m, 1335sh, 1320w, 1280mw, 1233m, 1219vw, 1212m, 1189vs, 1134s, 1094s, 1070m, 1050vs, 1008vs,asy, 889vs,asy, 814s, 791s, 725m, 705mw, 671w, 654m, 643m, 565vvs,b, 497ms, 303m, 250, s.

NbCl_{0.5}F_{4.5}2Py, I.R.; 3124w, 2486w, 1985w, 1933w, 1851w, 1710w, 1655w, 1611s, 1580w, 1491m, 1451vs, 1243w, 1228w, 1222m, 1163m, 1071s, 1045m, 1019s, 953w, 762s, 694s, 663mw, 637s, 620sh, 611vs,b, 600w, 570ms, 458mw, 450mw, 345vs, 325sh, 240, ms.

Raman; 1608(12), 1576(12), 1493(5), 1227(22), 1161(7), 1043(65), 1017(100), 695(2), 675(10), 662(7), 651sh, 641(50), 612(2), 586(85), 567(3), 349(4), 311(4).

X-ray; 1.75w, 2.24vw, 2.62vs, 2.76₅s, 2.96w, 3.13₅vs,

 $3.31_{5^{W}}$, $3.59_{5^{S}}$, $3.85_{5^{W}}$, $4.10_{5^{W}}$, $4.52_{5^{S}}$, $4.72_{5^{S}}$, $4.91_{5^{VVW}}$, 5.04_{W} , 5.14_{VW} , 5.51_{M} , 6.19_{VVW} , $6.31_{5^{W}}$, 6.67_{W} , 6.79_{W} , 6.93_{W} , 7.20_{VW} , 7.43_{MW} , $7.56_{5^{VW}}$, $7.76_{5^{VVW}}$, 8.10_{W} , $8.52_{5^{VW}}$, 8.58_{VW} , 8.92_{W} , d, 9.15_{VW} , 9.28_{VVW} , 9.40_{W} , $9.64_{5^{VW}}$, 10.66_{W} .

NbClF₄·2Py, I.R.; 2484w, 1995vw, 1980vw, 1932w, 1849w, 1650w, 1614s, 1580w, 1491mw, 1450vs, 1243mw, 1228m, 1221ms, 1162m, 1971s, 1044m, 1018s, 973w, 933w, 762s, 722w, 694vs, 665mw, 656w, 652ms, 636s, 625m, 610vs, 600mw, 572s, 458w, 450mw, 342vs, 240, m.

Raman; 1608(8), 1575(7), 1493(2), 1227(10), 1043(60), 1016(90), 681(vw), 663(8), 651(7), 642(50), 611(4), 587(70), 567(3), 371(9), 343(7), 314(w), 267(vw).

X-ray; 1.24_5 vw, 2.27vvw, 2.59_5 vs, 2.76ms, 3.09_5 vs, 3.29_5 vw, 3.56_5 d,m, 3.81vvw, 4.06_5 vw, 4.49ms, 4.76w, 5.40_5 w, 5.51w, 6.27w, 6.62w, 6.85_5 vw, 7.33_5 d, 7.92_5 w, 8.86w, 9.11vw, 9.30_5 vw, 9.57w.

NbCl₂F₃°2Py, I.R.; 2480w, 1994w, 1980w, 1930mw, 1850w, 1610s, 1576w, 1490w, 1448vs, 1242m, 1226sh, 1221s, 1161s, 1040s, 1043m, 1016s, 975w, 950w, 944w, 870w, 762s, 693vs, 657mw, 653mw, 634vs, 610vs, 600m, 570s, 458mw, 450m, 240, m.

Raman; 1607(10), 1575(8), 1443(3), 1227(10), 1044(65), 1018(95), 893(4), 650(sh), 641(50), 633(sh), 610(30), 588(80), 369(30), ~350b,(10). X-ray; $1.67_5 vw$, 2.29 mw, $2.56_5 vs$, $2.73_5 ms$, $3.03_5 vs$, 3.24vw, $3.42_5 w$, $3.55_5 vw$, 3.72 vw, 4.02 vw, $4.38_5 m$, 4.49 w, 4.65m, 4.93 w, $5.28_5 vw$, 6.13 w, 6.25 vvw, $6.53_5 d$, w, $6.76_5 vvw$, 7.00 vvw, 7.33 w, 7.45 vvw, $7.81_5 w$, 8.04 vvw, $8.22_5 vvw$, $8.47_5 vvw$, 8.64 vw, $8.96_5 vw$, 9.15 vw, 9.68 vw, 9.91 vw, 11.14 d, w.

NbCl₃F₂·2Py, I.R.; 1935w, 1884w, 1608s, 1490w, 1447s, 1238mw, 1223ms, 1158mw, 1070s, 1043m, 1014s, 945w, 870s, 760s, 693s, 655mw, 637ms, 632ms, 607s, 585w, 574mw, 450mw, 435vw, 422vw, 410mw, 360sh, 335vs,b.

Raman; 1044(14), 1017(18), 640(7), 594(6), 424(15), 368(45).

X-ray; 1.62vw, 2.29w, 2.51s, 2.72m, 2.98s, 3.22₅w, 3.40mw, 3.52vw, 3.71w, 3.97vw, 4.33ms, 4.63mw, 4.92w, 5.23vw, 5.39vvw, 5.81₅w, 6.52mw, 7.10w, 7.41vvw, 7.69vw, 8.00vw, 8.67₅vvw, 8.85₅vvw, 9.11w, 9.44w, 10.18vw, 10.82vw.

"NbCl₄F·2Py", I.R.; 1922vw, 1840vw, 1608ms, 1487sh, 1446s, 1238w, 1225m, 1158mw, 1071ms, 1043mw, 1013ms, 970w, 950w, 760ms, 723w, 691s, 654mw, 636ms, 608s, 585sh, 567sh, 450mw, 434mw, 422vw, 355sh, 335vs,b.

Raman; 1050(8), 1018(20), 593(5), 423(20), 366(35).

X-ray; 1.65m, 2.28₅s, 2.51s, 2.70₅m, 3.01₅d,vs, 3.22₅s, 3.37_5 w, 3.52_5 w, 3.72w, 4.32s,d, 4.62mw, 4.92w, 5.33vw, 5.81m, 6.08vvw, 6.17₅vvw, 6.49mw, 6.86vw, 7.12w, 7.40₅vw, 7.81₅vw, 7.95w, 8.35vw, 8.82vw, 9.14vw, 9.39₅vw, 9.665W, 9.885W, 10.17W, 11.27VW.

NbCl₅·Py, I.R.; 2000vw, 1924vw, 1651vw, 1610s, 1599sh,w, 1496w, 1449vs, 1306vw, 1255w, 1229ms, 1159mw, 1086w, 1071s, 1044s, 1013s, 980w, 849w, 757s, 691vs, 677w, 636ms, 437m, 420w,sh, 409s, 385sh, 352vs,b, 286sh.

Raman; 1605(6), 1227(s), 1044(8), 1012(40), 420(40), 361(7?-.

X-ray; 2.83₅vw, 3.04₅d,vs, 3.40w, 3.58₅vvw, 3.82₅w, 4.36₅d,mw, 4.65w, 5.02d,w, 5.67₅vvw, 5.84₅s, 6.16₅vw, 6.71₅vw, 6.86₅vw, 7.18₅w, 7.76vw, 7.95₅mw, 8.29w, 8.84w, 9.30d,w, 9.86w, 10.24w.

NbCl₅°OEt₂, I.R.; 1315w,asy, 1273w, 1184mw, 1179sh, 1142mw, 1084m, 1015sh, 984vs,asy, 871s, 823mw, 755s, 505m, 459w, 388m, 370vvs, 355vs, 320w,sh, 280sh.

Raman; 1474(4), 1415(12), 1382(3), 1366(8), 1316(7), 1081(12), 985(4), 754(4), 505(2), 384(130), 356(50), 298(13), 161(20).

X-ray; 2.48m, 2.82mw, 3.03ms, 3.12ms, 3.26ms, 3.80m, 4.11vw, 4.26w, 4.83w, 5.10vw, 5.41w, 5.73w, 5.79w, 6.04vw, 6.24mw, 6.55mw, 6.80w, 7.03w, 7.45vw, 7.70vw, 7.85vw, 8.12mw, 8.70d,w, 9.00w, 9.45w, 9.41w, 10.72w. Mass Spectra:

Appearance potentials (A.P.) are not corrected for the machine work-function.

 $NbF_5 \cdot OEt_2$ at 25°C and 70°C; 169s (NbF₄⁺), 166ms

 $(NbOF_3^+?)$, 150s (NbF_3^+) , 147m $(MbOF_2^+)$, 131s (NbF_2^+) , 112s (NbF^+) , 935 (Nb^+) + many peaks attributable to organic fragments.

 $NbF_5 \circ OMe \text{ at } 25^{\circ}C, 169s (NbF_4^+), 150s (NbF_3^+) 131s (NbF_2^+), 112s (NbF^+), 93s (Nb^+).$

TaF₅ at 70°C, 257s (TaF₄⁺), A.P. = 18.5 ev, 238s (TaF₃⁺+, A.P. = 24 ev, 219s (TaF₂⁺), A.P. = 34 ev, 200s (TaF⁺), A.P. = 40 ev, 181s (Ta⁺), A.P. = 49 ev.

NbF₅ at 70^oC, 169s, 150s, 131s, 112s, 93s, attributable to NbF₄⁺, NbF₃⁺, NbF₂⁺, NbF⁺, Nb⁺ respectively.

1.2

- 241 -

,

Appendix IV

•

	Ratios of	energies	of nuclear	quadrupole	transiti	ons in the	93 _{Nb} 9/2	spin system,		
η^2	η	9/2-7/2	7/2-5/2	<u>9/2-7/2</u> 7/2-5/2	5/2-3/2	<u>7/2-5/2</u> 5/2-3/2	3/2-1/2	<u>3/2-1/2</u> 5/2-3/2	<u>7/2-5/2</u> 3/2-1/2	<u>9/2-7/2</u> 3/2-1/2
0	0 -	4•00000	3.00000	1•33	2.00000	1•5000	1•00000	1/2		
0.01	0•1	3•99676	2•99439	1•3347	1•97540	1•5158	1•08614	1/1•18187		
0•02	0 • 1414	3•99352	2•98872	1•3362	1•95449	1•5292	1•16500	1/1 • 6777		
0.03	0.1732	3•99027	2•98297	1•3377	1•93659	1•5403	1•23827	1/1•5639		
0•04	0•20	3•9870	2•97717	1•3392	1•92119	1•5496	1•30663	1/1•4703		
0.05	0°2236	3•98377	2∘(µ131	1•3407	1•90792	1 • 5574	1•37093	1/1•3917		
0•06	0•2449	3•98051	2•96540	1•3423	1•89650	1•5636	1•43170	1/1•3246		
0.07	0•2646	3 • 97725	2•95946	1•3439	1•88670	1•5686	1•48940	1/1•2611		•
0•08	0•2828	3•97398	2•95344	1•3455	1•87833	1•5724	1•54437	1/1•2162		
0•09	0•3	3•97071	2•94 7 40	1•3472	1•87125	1 • 5751	1•59691	1/1•1718		
0•10	0•3162	3•96744	2•94132	1•3489	1•86532	1•5768	1•64726	1/1•13237		
0•11	0•3366	3•96417	2.93521	1•3506	1 • 86045	1•5777	1•69563	1/1.0972		
0.12	0•3464	3.96089	2.92907	1•3523	1 • 85653	1•5777	1•74219	1/1.0656		
0•16	0•4	3•94773	2.9043	1•3593	1 • 8 4 8 9 7		1•91302	1•0346	1•51817	
0•25	0.5	3•91789	2.84826	1 • 3755	1 • 86591		2•23173	1•1961	1•2763	
0•36	0.6	3.88097	2•78128	1•3954	1 • 92515		2•54193	1•3204	1•0942	
0•49	0.07	3.83665	2.70715		2.02305	1.3376	2•83928		1/1•0488	1•35 13
0.64	0.08	3.78457	2.63076		2 • 02))) ·	1.2794	3•12316	•	1/1•1872	1 • 2 118
0.81	0.9	3.72430	2.55735		2-13024	1 • 1 0 4 0	3•33946		1/1•3274	1•0917
1.00	1.0	3.65515	2 . 10102	1.4660	2 40102	1 • 0000	3•65545	1•4669	1/1•4669	1•0000
	, ,	2 07747	ム・ナクトフノ	1-4009	4°4717)	1,0000				

•

Appendix V

Suggestions for future work

Sb, and Ta both have nuclei with quadrupole moments and an analysis of e²Qq and η for Nb, Sb, Ta nuclei in various bridging fluoride compounds (e.g. NbF₅·SbF₅, MF₅·SeF₄, MF₅·(XeF₂)_x) similar to that made for NbF₅·XeF₂ should yield interesting results.
Niobium and tantalum chloride-fluorides have been made here using ether as a solvent. Use of AsCl₃ as a solvent for the reactions

 $3NbCl_5 + AsF_3 \rightarrow AsCl_3 + 3NbCl_4F$ $3NbCl_4F + 4AsF_3 \rightarrow 4AsCl_3 + 3NbCl_5$ has been reported in the literature. There is no obvious reason why AsCl_3 should not be used as a

solvent for the reaction

 $NbF_5 + Me_3SiCl \rightarrow NbCl_xFy$

The conductivity data of Kolditz (Z. Anorg., (1964), <u>312</u>, 11) show possible inflections in the conductivitycomposition curves for Nb fluoride-chlorides at the compositions NbCl₂F₃ and NbClF₄. By stoichiometric addition of Me₃SiCl to NbF₅ in AsCl₃, followed by removal of volatiles new chloride-fluorides might be obtained. The products should be analysed by X-ray powder photography, and Raman and I.R. spectroscopy from $60 - 1050 \text{ cm}^{-1}$. 3) Reaction of NbF₅, or TaF₅ with Me₃SiNEt₂ in the ratio 1:x, (x = 1.25, 1.5, 1.75 etc.) in solution in Et₂0 may yield new compounds. If these could be isolated they would be almost conclusive proof of polymerisation in M-F-NEt₂ compounds.

4) NbCl_x(CN)_y compounds are known as products of the reaction of NbCl₅ with HCN. The reaction of HCN with NbF₅ may yield purer products than the reaction of Me₃SiCN and NbF₅. An unreported reaction of Me₃SiCN and SOF₄ (performed by J.C. Fuggle and D.S. Ross) yielded large colourless crystals which were slightly volatile. Reaction of Me₃SiCN with other fluorides (WF₆, M0F₆, PF₅, etc.) would be worth investigating because fluoride cyanides are possible precursors to lower fluorides, and a range of fluoride-alkyl compounds.

5) It was extremely difficult to remove NHMe_2 from the reactions of NbF_5 , or TaF_5 and NHMe_2 (see section 1:7). This suggests that there may be weak compounds between the pentafluoride molecules and large numbers of NHMe_2 molecules. An investigation of the relationship between the ratio of $\text{MF}_5:\text{NHMe}_2$ and vapour pressures over the mixtures should yield information on the system.

