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ARSTRACT.,

The theory of solvated electrons is traced from its early
origins. The successes and limitations of thece treatments are
discussed. An alternative viewpoint, which considers the local
interactions between the surplus electron and the molecules in its
immediate environment, is developed. Dimeric and tetrameric models
for the excess electron in water and ammonia are proposed and
investigated by way of semi-empirical molecular orbital theory.

The peak nositions calculated for the optical ahsorption
spectrum of the c¢clectron in water, ammonia and ammonia-water
mixtures are in fair agreement with experimental observations.
Variations in pezk vnosition with pressure and temperature are in
accord with experiment.,

Dilation measurements are suggested to be better accomouvated
by a lattice expansion than by cavity formation.

Accounts of some of this work have peen published in
Ber. Bunsenges. phys. Chem., 75, 626 (1971), Radiation Reviews,

(in press) and J. Phys. Chem., (in precs).
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CHAPTER 1.

THE AIMS OP THE THEORY
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Yeoo electrons are the atoms of the chemical element
electricity...” This hypothesis was introduced by Sir William Ramsey
in 1908 in order tc¢ represent some chemical phenomena. Since the
previous year, when Kraus intimated that solutions of alkali metals
in ammonia contain the solvated electron, the subsequent discoveries
by research in this field can perhaps be considered to strengthem
Ramsay's hypothesis.

Many of the phenomena exhibited by the surplus electron
in a ligquid are indeed analogous to those of an element, or at
least, a unique chemical entity. For example the electron displays
a typical optical absorption band shape and the properties of a
well defined nucléogpile.l fven more interesting are the observations
that the volume associated with the electron and the absorption
peak position vary considerably over a range of solvents,

The properties of solvated electrons have been the focus
of concentrated investigation for some 70 years, leading to the:
detection of the hydrated electron in 1962.2 That the electron is
now known to exhibit many characteristic properties in liquids
and solids is currently a matter of great theorétical and
experimental interest.3 In conjunction with the observation of
new manifestations of the electron's prescence, the theoretical
studies have advanced to a fairly sophisticated level, but many
gaps in our understanding s%ill exist,

It is unfortunate that the lack of information concerning
the liquid state dictates that these theoretical treatments be
based on mddel structures for the solvated electron. In this light, a
comment made by Stoney may be considered to be apposite — ' A theoxry
means a supposition which we hope to be true...'

Any attemﬁt to account for all the properties of the
surplus eleciron within one model appears to be a futile exercise,
For example, metal-ammonia solutions exhibit cation-electron and
electron~electron interactions and a transition to metallic
behaviour as the alkali metal concentration is increased. By choice,
we are concerned with the properties of low concentrations of
trapped electrons in ammonia and water, where the interactions with
other species present in the liquid may be ignored.

Within this concentration range, a selection from the

manifold phenomena observed for excess electrons has recently been
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4 A satisfactory theofy should

advocated to be of prime importance.
be capable of rationalising at least this limited choice of
proverties, 4

The five observations so chosen are concerned with the
primary process, dilation phenomena, absorption spectra, induced
electron migration and electron spin resonance spectra. These
five areas provide a natura' pathway for the development of the
thecry of solvated electrons. At one extreme the important processes
occuring during stabilisation are sought, whilst at the other, the
intimate interactions of the localised electrons with the surrounding
medium nuclei require some consideratiem. This wiewpoint leads the
theory in a direction which emphasises the dynamic nature of the .
solvated electron,

The main features of these five observations are here
introduced, and are discussed in greater detail where appropriate
in Chapter 4.

Little is understood concerning the process occuring in
the liquid prior to solvation of the electron., Sub-excitation !
electrons are considered to i1each thermal energies in a time of
the order of J.O_13 sec.5 Whether the electrons which escape
geminate recombination then form their own trapping potential by
poldrisation or find some defect sites in the liquid and by
molecular reorientation form a deeper well is still to be
ascertained. Certainly, the measurements of the free-ion-pair yield
by Freeman and Fadyah, which were shown to exhibit some correlation
with the dielectric constant of the solvent,6 suggest that
solvation takes place at a time comparable with the dielectric
relaxation time, T.

The theory of Mozumder7 holds that substantial neutralisation
occurs in the time O - T , if the distance of the electron from the
parent ion is less than the distance achieved on thermalisation. To
estimate this thermal length, the theoretical and the observed
electron escape probabilities, assessed by the ratio of the free
ion yield to the total ionisation yield, are equated. In water,
vhere the escape probability is approximately 0.5, the thermal
length increases from 278 (296%) to 358 (273%K) as the relaxation
time increases. In general, excepting ice, a smaller relaxation

time decrecases the thermal length. When multiple relaxation procesdes
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can occur, for example in the alcohols, a variety of thermal lengths
may be obtained, suggesting that the important mode of relaxation
lecading to stabilisation must be determined.4 It is also to te
recognised that microscopic relaxation times may be expected to
differ from the macroscopic values, thereby limiting the utility
of Mozumder's approach.
' Once the trapned electron is established, other important
properties are exhibited. From the effects of pressure on the
equilibrium constant of the reaction,8 .

NH; + %Hz = NH, + egslv ,
the volume increment associated with the ammoniated electron is
assessed to be 84+£15 ml/mole at 240°K. Direct observation of this
dilation on solution of alkali metals in ammonia lead to similar
values of ~ 64 ml/mole,9 86.1 ml/mole 10 and 103.6 ml/mole.ll These
expansions correspond to the formation of a spherical void with a
radius of the order of 33. That the volume requirements of the
electron vary with solvent is demonstrated by measurements on
the hydrated electron which place the volume increment at
<20 ml/mole12 13

Whether cavities are formed in the liquid or the density

and more recently 1 - 6 ml/mole.

falls in the region of the localised electron, or both, is yet to
be ascertained.

The ovotical absorption spectrum of the solvated electron
in general consists of a broad featureless band with a high
energy 'tail'. In only one instance, for trapped electrons in
deuterated methyl cyanide crystals, has any vibrational coupling
with the medium motion been detected in the band.l4 Pulse radiolysis
of water shows that the optical absorption band of the hydrated
electron is fully established in a time less than 10 picoseconds,15
while in some alcohol glasses at 77°K the snectrum forms and moves
to the blue on the micrsecond time scale,

Increases in temperature and pressure shift the peak
position to lower and higher energies respectively. The bandwidth
is less susceptible to temperature variations.17

The excited state of the surplus clectron in water apoears
to have a lifetime of less than 6 picoseconds and the view is expressed
that the absorption band may be better interpreted 2c a photoionisation

L. . 16
efficiency profile,
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tthile the excited state in ice has been demdnstrated to be
bound,19 this does not appear to be the case in Y-~ irradiated alkaline
glasses.

At 77°K the absorption maximum of the electron in alkaline

glass lies at 59Onm.20

Photobleaching by light of shorter
wavelengths than 590 nm moves the peak position to the red. With
light of wavelength 700 nm, the spectrum moves to the btlue, These
observations may be interpreted if the view is taken that the
electron resides in a variety of different traps and photo -
excitation of the electron proceeds via an unbound or autoionising
"state so that electrons may be redistributed between difrerent
sites, In its essentials, this picture is corroborated by the
recent observation of a photocurrent in Y-irradiated alkaline
ice.21

Observations of hyperfine splittings in the ESR spectrum
of the trapned electron in irradiated alkaline ices are few.22
Hyperfine interactions with protons appear to be small, with a
coupling constant of 4 - 5 gauss. For dilute metal solutions in
amines and ammonia the interactions are modulated so quickly that
the observed specfrum is usually comprised of a single narrow
resonance.23 The small and negative electron spin density at
protons in ammonia and amines suggests that some svin polarisation
mechanism is operative. '

The importance of the molecular nature of the medium is
,evident in each of these five areas. In particular, the detection
of spin densities at nuclei suggests that the molecular orbital
technique may be useful to evaluate the importance of spin
polarisation,

This thesis'is concerned with the study of molecular
models for the surplus electron in liguids and a fresh approach to the
understanding of the properties outlined above is commenced, The
current theories and their limitations are reviewed in Chapter 3.

The results of the molecular orbital calculations are
discussed in Chapter 4. The molecular orbital methods and semi-

empirical theories for open shell systems are reviewed in Chapter 2,
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CHAPTER 2.

THE SEMI-BLMPTRICAL MOLSCULAR ORBITAL METHOD.




A, Introduction.

As an alternative to the valence bond quantum mechanical
approach to electronic structure calculations, Mulliken emphasised that '
the electrons in a molecule should be considered as belonging to the
molecule as a whole.1 This simple concept, coupled with the subsequent
development of moleculér orbital techniques, has laid the foundation
upon which many chemical and physical properties of systems may be
rafionalised in terms of their electronic distributions. To draw on
one example may suffice. The simple: molecular orbital method developed
by Hackel has provided a simple tool for the understanding of phenomena
exhibited by planar conjugated hydrocarbons.2 Such simple methods have
been superceded but their contribution to chemical theory remains.

For many particle systems the Schroedinger equation cannot
in general be solved. It is necessary to have recourse to approximations
of which the most widely used is the self-consistent field (SCF) method
developed by Hartree.3 In an intuitive way, each electron is considered
to move under the influence of an average field set up by the nuclei
and other electrons. The Sciuroedinger equation for a closed shell

system becomes of the form

for each molecular orbital. Heff is some effective Hamiltonian operator,
¢k is a one-eclectron wave function -~ an orbital and e the eigenvalue.,
The relationship between equation (1) and the Schroedinger equation. can
be demonstrated using the variation principle and an approximate total
wave function written as an orbital product or determinant.4 The
determinant is a formal expression of the self consistent field model

of electron distribution.

In general, the accurate wave function is a linear combination
of determinants, the first and dominant terms being made use of in
molecular orbital theory. Since the fields exerted by the electrons
are averaged, a single wave function will alﬁays neglect the instantancous
interactions of the electrons. The subsequent error in the calculated
energy over the energy of the true solution to the unrelatavistic Schroedinge
equation is called the correlation energy. The effective Hamiltonian

operator appearing in equation (1) may be shown to take the form

Hope(1) = V5 -X5,/r) +f3:r;§(2 $3(2) ¢4(2) - $3(2) ¢4(2)Py,)av,
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which illustrates the averaging procedure. is a permutation operator

P
12
which permutes electrons 1 and 2. The conventional coulcmb and exchangs

operators are defined as
* i
3y f¢j(2) $5(2)/r), av,
¥*

so that the effective Hamiltonian operator is
2
Heff(l) = --%\7l - )i:zi/rli + }j:(z.rj_.- Ki,).
Since the systems of interest, excess electron states, contain

an odd number of electrons, modifications in the theory described are

required,

B(i) Open-Shell Molecular Orbital Theory.

The SCF theory of open shell systems is beset with difficulties
not found in closed shell theory especially when a degenerate configuratiom
is investigated. In such cases the trial wave function cannot be
identified with a single determinant. Even if a convenient energy
expression may be written, the system may not be described by a set of
single particle equations having the simplicity of relation (1).

Consider the general form of equation (1):

Heff(l) ¢k(l) = % ¢jejk°
The off-diagonal multipliers ejk’ j#k, are introduced in the variation
calculation to ensure the orthogonality of the orbitals ¢j and ¢k'
By a unitary transformation of these molecular orbitals among themselves
the ejk can be eliminated in closed shell theory. In general the open
shell theory is complicated by the fact that all these multipliers
cannot be simultaneously destroyed; consequently the equations are not
unique.5
Three main methods of handling these off-diagonal multipliers

exist, The first, described by Roothaan is called the combined
Hamiltonian method.5

22 Commencing from the energy expression for an onen shell
system, each orbital is subjected to the variation ‘bi - ¢i + 5¢i.
Minimisation of the energy, subject to the constraint that orbitals form

an orthonormal set, leads to two coupled SCF equations
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" by = X $1 e * §¢n ®nic

0
. ¢m= %4’1 i * Z—d’nzenm'

The subscripts k,l1 and the superscript ¢ refer to the orbitals within the
closed shell while 1,m and o denote the open shell. F® and F° are some
operators the form of which need not be reproduced; f is the fractional
occupation of the open shell.,

By unitary transformations of the orbitals, the off-diagonal.
multipliers within each shell may be annihilated, but not those coupling
open and closed shell orbitals, Roothaan showed how the absorption of
the off-diagonal multipliers into some single effective Hamiltonian
leads to a single eigenvalue equation of the form (1). The subsequent
interpretation of the eigenvalues is not easy. In general they cannot
be equated with ionisation potentials for the removal of an electron
from a molecular orbitale.

v Alternatively, the problems arising from the multipliers may
be sidestepved completely. In Nesbet's method, it is proposed that the e
nolecular orbitals be calculated via a suitably chosen effective
Hamiltonian.6

Electrons are constrained to occupy an orbital set in such a
way that the total wave function can satisfy spin and symmetry
requirements, The molecular orbitals are obtained as solutions of an
arbitary set of equations taking the form

1§
(r + ;‘:‘Tj"};-:xj.) by = by
The summation over Kj runsg over those orbitals with alpha spin factor,
Utilising the aufbau principle, electrons are paired in orbitals - a spin
equivalence restriction.

Unfortunately, the effective Hamiltonian may not conform to the
form of the assumed wave function. Consequently, the energy is not the
Hartree - Pock energy and as such is not an absolute minimum. In addition,
the best form for the SCF equations may not be obvious, the choice of
equations necessarily entails some degree of arbitrariness. Further
improvements can be made by the inclusion of configuration interaction
effects. Such calculations may be lengthy since Brillouin's theorem
concerning the matrix elements of the Hamiltonian operator between
mono~-excited states and the ground state does not hold.7 prillouin's

theorum states that the matrix elements of the lamiltonian between the
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ground znd excited configurations obtained by replacing one Hariree-Fock

orbital in the ground state by one of the virtual orbitals is zero ie,

<PIHId> = 9

For ease of interpretation and improvement of the wave functiom,
the unrestricted Hartree-Fock method (UHF) for open shell systems might
be the best to use. This technique is used in the calculations to be

described in chapter 4 and is dealt with more fully.

(ii) The Unrestricted Hartree — Fock Method.

The electrons of alpha spin in a system of non-zero spin
suffer a different exchange potential from that of the beta spin electrons.8
As a result, the spatial orbitals occupied by electrons of opposite spin
will differ. This effect is termed *spin polarisation'. In addition,
permitting distinct spatial factors in the orbitals of a closed shell
system represents the tendency of electrons to avoid each other. In short,
some corielation between the electronic motions is introduced. Constraining
particular orbitals to be doubly occupied is not a priori justified. It is
often convenient, _

For an N electron system, the electrons may be assigned to a set
of orthonormal spin orbitals, p of the form ¢a and q of the form ¢ .
The trial wave function for a variational calculation of the energy may

be constructed as the single determinant

& = (1) Faet($,(1) a(1).nnnn b (2 a(0) §

in which no restrictions are imposed on the form of the spatial parts of

41 (P1) B (pHl)eees), (2)

the one-electron functions. This determinantal wave function is not an

eigenfunction of the total spin operator 52 (ref.9) ie.
. P * *
< %>av = 3(p-a) +3(pwa) - 3 3 [6,(1) 4(2) 63(1) ¢;(2)av v,
+ J
Only in the special case when q orbitals are doubly occupied (p;:q) is
this @ an eigenfunction of Sz.

The expectation value of the energy is given by the expression

E a- < P/ HId >
<olo>

= ZH,+¥ ZJ .- X'k (3)



-11 -

The summation over Kij ig limited to between orbitals of the =ame spin
factor. The one electron integral Hii' the coulomb integral Jij’ and

the exchange integral Kij are given by

My = ﬁ;’;(l) {-% Vf-i:zk/rlk} $,(1) av =ﬁ:(1) B $,(1) av,

Ty =/¢:(1) Ty 4;(1) avy

*
Kij =/¢i(1) Kj ¢i(1) av, .
When the energy is minimised, the orbitals in each set must satisfy

the SCIF equations

N P ?
(H + } J, - ? Kl) $; = % ?leli i=1,2....p
( 33 % 5 - i W
H+ 1J,- Kl) ¢, = f‘j’leli i=p+l,...N.

No Lagrangian multipliers e i coupling the two sets of orbitals are

1
introduced since the solutions of the two equations are automatically
orthogonal by virtue of the spin factors. Eliminating the off-diagonal
multipliers by transforming the orbital sets reveals two sets of

equations of the form (1),

3 d a a.a
(H+ ZJ,- 2K)e5=e50;
(0 + ;:J'-'::K)op—epd»p

Y57 e % T e %

which are linked by a common c?ulomb potential.

It may be showm thaf}the solutions of this set »f equations
do satisfy Koopma.ns10 and Brillouins {theorems.

The advantage of the UHF method lies in the simplicity of
calculation for open shell systems, but ngdin focuses attention on
several objections to the method.9

Albeit that the magnitude of the orbital splitting is
dependent on the correlation between electron motions, systems with
unbalanced spin exhibit the exchange or spin polarisation effect.
Doubts may be cast questioning the accuracy of the UHF method for the
evaluation of such effects. Can a wave function which is not an eigen-
value of 52 adeguately describe proverties arising from electron snin?

Theoretically, the energy calculated with an unrestricted
wave function will be lower than that calculated by the Roothaan

method. As the orbital snlitting increases, the single determinantal

function avproximates less to that for a purz spin state.
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Eventﬁally the contribution from higher multiplicities may balance
any lowering in energy by further orbital splitting. No improvement
will be observed.

If the desired multiplicity is 2s+l1, the unwanted contam-
inants may be removed from ¢ by application of the projection
operatorll

A= II S2 - k(k+l).A
k¢s s(s+l)- k(k+l)

ngdin recommends that a trial function A®D be utilised to calculate

the energy. The computations become formidable. For approximate

calculations it may be sufficient to apply the projection operator

after the calculation of the best single determinantal wave function.

Amos and Hall derived the formula for the energy after destruction

of the principal contaminant, the lowest unwanted multiplicity.12

The underlying conditions upon which some benefit is ohtained by

projection are not clea,r.13
Of the three techniques described, the UHF scheme supplies

the least complicated avenue to an approximate open shell wave function.

14

In the study of hyperfine interactions the method is invaluable.

C. The liatrix Formulation of the UHF !lethod.

The spherical symmetry of atoms lcnds simpliciiy to the
solution of the Hartree-Fock equations. No analytic form need be
imposed on the one-electron orbitals. For molecular problems, it is
more convenient to express each orbital é:i as a linear combinztion

of some set of basis functions X,

$; = IXCy5e (4)

Collecting the coefficients into a column vector gi, this equation may
be written éi =X €;+ If C is the array whose i'th column is C., the

molecular orbitals may be collected in the form

¢ - xc.

If the expansion (4) is to be exact, the basis set must be
complete, For practical reasons, a truncated basis set must be used,

the size being dictated by the accuracy in the energy required and the
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computer to be used. Appropriate atomic orbitals centred on each atom
in the molecule are chosen to synthesise the molecular orbitals,
although the work of Whitten emphasises that this need not be the case.l5
The orbital centres may also be allowed to 'float' over the molecular
framework to positions for which the energy is 1owest.l6

When the expansion technique is used, the search for the
best molecular orbitals involves the manipulation of matrices. To each

one-electron operator A is assigned the matrix A with elements Aij

*
Aij=/XiA xj dv.

In particular, the overlap matrix elements are

s * '

In matrix notation, the orthonormality condition for the molecular

calculated as

orbitals is

‘Q'i S .(.;.J = aij'

assuming that the molecular orbital coefficients are real.
For the unrestricted single determinantal wave function (2),

the expectation value of the energy (3) is

E=73C HC, + €. J.C - $c%k%c% - 5cPxBcP
F-i= i =i i=j-=i

ig T1 = Tt wy~TL Ty 1
where gg and K? are the molecular orbital coefficient vectors and the
exchange operator matrices for alpha spin respectively.
When this energy is a minimum, any infinitesemal change in
the molecular orbitals, tantamount to altering the vectors gi by an
increment Ggi, the energy is raised. Constraining any such variations

to preserve the orthonormality of the orbitals implies that

8C;'8 &, +C 8 8C; =0
for each pair of orbitals i and j. Recognising that each of the alpha
spin orbitals is automatically orthogonal to all the beta spin
orbitals, the variation in energy on altering one of the alpha spin

orbitals is

82 = 80 {[H+ X, - Tk%]ct -Zs5 0% %} + c.c.
‘ ~-1 i J 3 -7 53— 73 91
Lagrangian multipliers egi are introduced as described in the previous

section. The symbol c.c. stands for the complex conjusgate cxnression.
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If the Hartree-Fock operator for alpha electrons is defined

by
N P a
=H+ ZJ.."‘-ZK.’
i J 3 Jd
the 'best'! alpha spin molecular orbital coefficients satisfy the

equation, fordi=0,
°c° s ¢
X5 iy
The equation for the bveta spin orbital coefficients is of the same

form with the alpha superscript changed to beta. Annihilating the

off-diagonal multipliers displays the familiar secular equation form

(Ef-els)ci=0

( _B p )C‘3 = 0,

These equations become identical when the wave function (2) represents
a pure singlet state.

The secular equations (5) show that one has to deal with two
sets of simultaneous egquations which are coupled.

The difficulties which have plagued the investigator of
electronic structures lie in the construction of the F matrices. Every
element of the Hartree-Fock matrix involves the computation of two

electron integrals, viz.
-1 ’ _
(pa/rs) = fxp_(l) X (D)r]; X (2) X (2) avyav,,

a
qu = Hpq + T}Z‘s Prs (pa/rs) - Prs (ps/ra),

(6),

where the one electron density matrices Pu, P are obtained from the molecular

orbital coefficients.

Pa @ B - ycP B - o B
rs 5 cr:. si Tr izcm.csr. Pre = Fra * Fre

Fach of the basis functions may be centred or different nuclei present
in the system, and the integral (pa/rs) becomes extremely difficult
and tedious to calculate, Yhen the basis set is large, more time may
be spent in calculating thece integrals than in thé steps towards
obtaining the molecular orbital.coefficients:

Constructing a basis set from Gaussian orbitals facilitates

17

this calculation,”’ but large numbers of basis orbitals must be utilised.

The ease of computation is offset by the problem presented by efficient
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storage of these integrals.,

With the advent of larger and faster computers, it should
soon be a routine matter to perform ab initio calculations on fairly
large molecules. However, this was not always the case, and a large
body of simplified methods based on the secular equations (5) has
grown up. Approximate calculations were viewed to be better then

none at all,

D. The Semi~tmpirical Techniques and the INDO lethod,

The impetus to investigate chemical phenomena by way of
quantum mechanical calculations is great. Yet this should only be
performed with an economy of effort, enough to reveal the salient
features where accurate evaluation of a property is precluded.
Senmi-empirical molecular orbital techniques provide such a ready
tool. These schemes, based on the equations (5), lie within a spectrum
of comnlﬂx1ty rangeing from ab initio through to the simple Huckel
treatment for planar hydrocarbons, the particular technique for use
being suggested by the prohlem. The success of naive schemes and the /
recognition that refinements usually lead tb poorer agreement between
theory and experiment has led to speculation as to whether the
Hartree=Fock scheme really repregents the fundamental basis for
these semi-empirical theories.18
4 In essence, semi-empirical schemes rely on the plausability
of constructing a theory to simulate the accurate calculation by
sole consideration of the quantities likely to be imoortant in a full
treatment. It follows that any satisfactory theory should exhibit the
proverties of the Hartree-Fock solutions, particularly the invariancy
properties, That is, the total wave function and energy must be
invariant to unitary or orthogonal transformations of the molecular orbitals

4

among themselves,  or to any such transformation of the basis set

orbitals. Preservation of this property enforces other approximations.19
For example, in the neglect of all two-electron integrals involving
overlap charge densities, Xp(l) Xq(l), it is imperative that the
remaining integrals are indoependent of orbital type. This is the
criterion used to construct the Complete Neglect of Differential
Overlap method, (CNDO).20 Approximate methods invariably neglect,

estimate or do not consider at all, some two-electron integrals,
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arguing that their effecits are only marginal,

The approximations invoked should not be so severe that the
predictions made by the method are at variance with experience. The
CNDO method predicts that the singlet and triplet states of the
linear CH2 radical are degenerate, the triplet should be more
stable., The inclusién of single centre exchange integrals rectifies
this fault, giving rise to the Intermediate Neglect of Differential
Overlap method (INDO).21 Retention of these exchange integrals is
important for calculations on systems with non-zero spin.

Many scmi-empirical methods are available,22 but the
success achieved by the INDO method for open shell systems
recommends its use for the study of solvated electron models, and

the approximations are here laid out in detail,

(ii) The INDO Approximations.

(2) By virtue of their relatively small spatial extension
and low energy, it is reasonable to assume that the inner shell
electrons form part of an unpolariseable core of charge ZA = ZA - n,
where ZA is the nuclear charge and n is the number of rn:cn-valence

electrons. The one-electron operator matrix elements become

Hoo= [x ({498 -2v,() } x (1) av

where VA(r) is the electrostatic field of the ccre of atom A. The
core—core interaction energy is aporoximately ,Z;ZA&B/RAB°

(b) Multicentre integrals (pa/rs) are in general small
when overlap charge distributions are involved. The INDO method
retains only the integrals involving differential overlap of

basis orbitals on the same centre, all others are neglected.

(1)

Choosing a basis set of the s,p,d... type ie., not hybrid orbitals, the

remaining integrals are of the sorts (po/pv), (pa/pa), P # ¢ on the

samc centre, and (pp/qq). Two-centre integrals of the latter form must

be assumed independent of orbital type in order to preserve the

invariancy conditions described in the orevious section. In such cases,

Gp = (pp/an), is therefore dependent only on the nature of atoms
A and B. This integral is estimated to have a magnitude given by the
coulomb repulsion integral between the valence s orbitals on atoms
A and B.

(c) To be consistent with the aporoximations set out in

(b), the basis set is assumed to be orthonormal.
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(d) The diagonal elements of the H matrix from equation (7)
may be writien
H = 1 2 _ v 1 . v Da
o = [0 [ = V] 0 (ary =3 [ (1) K, 1)
e U - v ,
oD BAZZA(p 5 P)

where p is centred on A. The quantity Upp is an atomic parameter and
is estimated from experimental data. The term (p VB p) represents
the attraction of an electron in the orbital p for the core of B,

and is approximated by

The off-diagonal matrix elements between orbitals on the

same centire,

B =U « V..
pq"Cnq RZM(p 5 @)
are zero; qu by symmetry (s,pyde.. basis set) while (p Vﬁ a)
involves the core interaction with a differential overlap density
on another centre and are neglected.
When orbitals Xp and Xq lie on different centres,

A and B, the sole remaining term is

B, =fxp(1)[-%v§ -V, - VB]Xq(l)dvl.
This '"resonance integral" is a measure of the lowering c¢. energy-
levels by the introduction of an electiron into the attractive
field between two cores. To satisfy invariancy conditions, it
must be assumed that this element is independent of the orbital
types on atoms A and B. The magnitude of Hbq is taken to be
proportional to the oyerlap integral Spq with a proportionality
constant assumed to be the mean of two atomic quantities BA and BB’
The overlap integrals are computed using Slater orbitals centred on
each atom,.

y = -?-,L =
B ~(BA + BB)qu B

P AB Spg

(e) Utilising these aporoximations the Hartree~Fock matrix

elements (6) are reduced to the relations

a _ A . _ pa : - '
Top = Upp * I Pop(P/re) = ¥7 (or /or) +£A(PBB 25)%5
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a _ pa _ pa '
Foq = (2P, = Po) (pafpa) - P, (ppfaa) ptq both on A
F¢ =B,_ S =P @
Pq AB "pq pg A3 P#qQ, P on A, q om B,
where PﬁB is the electronic charge on atom B given by
B
PfB - E Prr’

Comparison of these equations with the ab initio matrix
elements (6) demonstrates the considerable simplification achieved
by adopting the INDO approximations. The remaining problem lies in
the appropriate choice of the parameters.

(iii) The Parametrisation of the INDO Method.°r

The core integrals Upp may be related to the ionisatiom
potential and the electron affinity of the average atomic states of
the isolated atom. Single centre repulsion integrals may be estimated
from experimental spectral data. In this work, these integrals have
been computed exactly.23 Ths BA parameters have been selected by
Pople et al21 to give the best overall fit with accurate limited
basis set molecular orbital calculations on diatomic molecules.,

The parameters used in the calculations are collected in Table 1.

Table 1, The parameters used in the INDO calculations.

Atom B 0 N
Orbital Exponent 1.2 2.275 1.95

-3, (a.u.) 0.3307635 1.1392965 0.9187875
Uss(a.u.) . =0.638729 ~5.153006 -3.695835
Uzpzp(a.u.) -4.661061 ~3.296007
Z, 1.0 6.0 5.0

An ALGOL computer program to perform these INDO calculations

was written for the KDF9 computer at Glasgow,
As a comvarison between the INDO calculation and a full

limited basis set ab initio calculation, the charge density-bond

order matrices computed for the water molecule are shown in Table 2.

The matrix from the 2b initio calculation has been transformed using



TARLE 2

The charge dencity-bond order matrices computed for the water molecule
by the INDO method and' an ab initio SCF method. The y-axis is

perpendicular to the plane of the molecule, the z-axis is directed

between the two protons. R(O-H) = 0.958A, HOH = 104.45°.

Ab initio

oIs. Oés- o2px: oépy' O2pz His: Eis
02S 0.065 1,607 0.000 0,000 -=0,372 0.495 0.495
o2px- 0,000 1,217 0,000 0.000 ~0.690 0,690
02py’ 0.000 2,000 0,000 0,000 0,000
02pz 0.061 1,648 0.468 0.468
Hs -0,081 0.769
Ols‘ 1.989
INDO
023 02px‘ 02py— oépz His- His
025~ 1.736 0,000 0,000 =0.355 0,407 0.407
o2px 1.226 0.000 0.000 =0.689 0.689
0 . « 000 0 0.
2py 2,000 0 9 0.000 000
02pz 1,522 0.549 0.549
HiSY 0.758 =0.016
H’l 0.758

2]
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ngdin's orthoganalisation prooedurn24 to that anpropriate to an
ecrthonormal basis set for che commarison between the two calculations.
The vasis set is that devised by Palmer and Gaskell.25

Althongh the INDO calculation does not include the core

orbitals, the fit is seen to be quite good.

%+ The Calculation of the ¥xcitation lnergies.

A facility for the calculation of excitation energies was
included in the computer vrogram.

lMaking the assumption that little orbital reorganisation
tokes place on excitation, this is a relatively simple computation.
The highest occupied molecular orbital is wacated and the electron
is promoted to the lowest unoccupied virtual orbital. The excited
state energy is then calculated in the usual manner,

The restriction that little orbital reorganisation takes
place on excitation is important. When the electron shifts are
extensive, the ground state orbitals and the virtual orbitals are no
longer good approximations to the excited state orbitals. More
involved procedures are required. Extensive configuration
interaction or a full SCPF calculation on the excited state may be

2
necessary.
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CHAPTER 3»

SOLVATED ELECTRON THEORY.
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Introducticn

''vo basic conceptions dominate the theory of dilute solutions
of surplus elecirons in polar liguids. The first stresses the
contribution of polarisation effects towards electron stabilisation
while the second lays importance upon formation of woid volumes at
the localisation centre. Both facets are now incorporated into
solvated electron theory. The development of the current models

for electron stabilisation in polar media is traced.

A(i) The Importance of Folarisation.

Landau intimated that electrons in an ideal crystal may be
stabilised at some locally deformed site if the total energy of the
deformed crystal and electron is lower than that of a 'free!
electron and the undeformed crystal.1 The deformation is here
associated with the prescence of the electron. Coulombic interactions
between the lattice and the electron set up a polarisation field
which Pekar identified with the trapping potential.2

Two distinct cases can be discerned. This polarisation
either can or cannot follow the moving electron. In ionic crystals,
where the displacement of ions creates a polarisation field, the
latter case is important. Hassive ions are unable to adjust their
position fast enough to follow the electron motion. Consequently,
this 'inertial polarisation' causes a force to act back upon the
electron.

| The potential well so formed localises the elecsron and
is held by Pekar to be responsible fo both the deformation of the
crystal as well as the electron stabilisation. Electrons in such

states are termed 'polarons',

(ii) The Theoretical Descrintion of the Polaron.

When the localised electron in a crystal is distributed
over a large region in the medium, the discrete lattice may be
approximately replaced by a continuous dielectric medium. The
polarisation at any point in the dielectric will be determined

by the field

D(xr) = fl¢(r")|2 (r-z)/|z -z av (1)
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wuere tp(r‘) is the wave function of ths electron.
Tor a medium characterised by lLigh and low frequency

dielectric constants Dop and DS respectively, the total polarisation

t
created by the displacement D is

Pp= (1 -1/p,) Din.

fince the electronic polarisation is described by

»

.?.e = (1 - l/Dop) 2/4“’ ’

the inertial polarisation which cannot follow the electron's motion is
Py = (E, - B,) = C D/anm (2)

where C = (1/1)op - L/Dst).

The energy of the electronm in this polarisation field is

given by the relation
E=1/20 [(y§)° av+ [V9? av (3a)
= 1/2n* (9 §)% av - fP..D av (3b)

where m* is the effective mass of the electron in atomic units and V
is the potential energy acquired by the electron in a system of
polarisation dipoles located at the lattice sites. Equation (3b)
follows from equation (3a) when the lattice is replaced by a

aielectric continuum, in which case,
V(r) = ¢ 19z ® / 1z -z av* ()

Since the potential energy involves the wave function of the electron
we have necessarily a self-consistent field problem.

To obtain the total energy of the crystal and electron, the
energy B must be supplemented by the energy expended in inertially
polarising the medium, %jfi.g dv, and the energy of the electron in
the conduction band of the unpolarised crystal.

Equations (3) may be solved by utilising the variation
principle and some suitable approximate wave function. The lowest

energy state has a wave function given by minimising the functional

7 = 1/20% (v §)? av - ¢/8m [ 2% av.
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Employing a two-parameter variational function of $he form
p = A(L + ar + brz)exp(—ar), (5)
Pekar showed that an upper bound to the energy, by minimising J is
E = =0.164m*C? (6)

associated with the optimised wave function
) = 0,12293.3/2 (1 +ar + 0.451632 2 ) exp (-ar)

Photo-e jection of the electron from the localisation field
will occur on a time scale too short for the inertial polarisation of
the medium to relax. Accordingly the iong wave limit of the photo-effect
is determined by

h"V = -E.

The medium polarisation energy is dissipated as heat at a later time,
Thermal degtruction of the polaron is accompanied by depolarisation
of the medium, and the energy of heat dissociation is accordingly
- 4B since the potential energy of the electron is 4/3 B

The electronic polarisation does not contribute to the
binding energy of the surplus electron. This treatment is equivalent

to the adiabatic approximation.

(iii) The Range of Validity of the Polaron Theory.

The separation of the polarisation into two components
certainly requires some justification, and may be examined in the
following way.3

If the field produced at an ion by vibration of the
electron is of the form Eo + El cos w t, the polarisation is

proportional to

1/(wr +w) +1/((‘Jr -w) (71

where w = E/h is of the frequency of the polarising field, h(gr is the
separation of the ground and excited states of the ion. Eo stems from
the average electron distribution. If the strongly bound medium
electrons have frequencies W, YW, the electronic polarisation may
respond instantaneously to the motion of the surplus electron. On the

other hand, the inertial polarisation may respond only to frequencies
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of the order of ionic vibrations, u)r~u1013sec_l. hen W L the
icns see only the average field Eo.

It therefore follows that 'such a strict subdivision of
the polarisation into inertial and non-ineriial components can only
be achieved if the natural frequency of the electron E/h lies in the
crystal transparency zone.'2

If the polaron model is to be a reasonable model for the
surplus electron in polar iiquids anrd crystals, the binding energy
must lie between the two limits defined by the characteristic
frequencies of the medium electronic and vibrational motions.
Blectrons in polar liquids have binding energies of the order of
1-2eV so that the effects of medium motion are unimportant. However
this energy is not very different from the excitation and binding
energies of the medium electrons so that electronic polarisation
becomes an important feature. This behaviour contrasts with that in
ionic crystals eg. NaCl, where the binding energy of the electron is
small ~‘0.1eV.3 In this case the effectis of lattice vibration are
significant.

Uncertainty principle arguments show that medium electrons
within a distance dav(ﬁ/tormV) cannot respond insiantaneously to the
excess electron's motion regardless of how high their frequency W,
becomes.4 The electronic polarisation is then of the order of
—(1/2d)(1—1/Dop). When w_, is ~ 3x107 sec—l, d equals 0.558. This
aistance is much smaller than the circumference of the pnolaron orbit
so that any corrections to the energy of the polaron are small.4
Analogous statements may be made concerning the other contributions to
the volarisation.

A prerequisite of polaron theory is that the electron be
dispersed over a large number of centres in the medium. The displacement
D is assumed to vary slowly over the lattice distance a, so that the
polarisation of any ion is proportional to D and is indevendent of
the polarisation of neighbouring sites. To justify this assumption, the
volaron radius rp must be much greater than a. To an order of
magnitude, rp is equal to the radius of the spherical region within
which one half the interaction of the charge cloud and the inertial

polarisation is attained, namely

r, = 10/m*C. (8)
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Pekar's initial concepts have taken their place in the
theory of solvated electrons. Long range polarisation interactions
are still viewed to be an importent feature of excess electron

states in liquids,

B. The Importance of Cavity Formation,

As an alternative to proposing somc trapping mechanism
Ogg drew on experimental data to present a model for su.plus
electrons in ammonia.5 Acknowledging the large volume expansion
which occurs on solution of alkali metals in liquid ammonia, Ogg
suggested that spherical cavities were formed in liquid, within
which the electron resides.

An electron localised in such a cavity of radius R in a

medium of dielectrie constant Ds acquires a potential energy given

tr
by the Born expression

Va==1/2R (1 - l/DSt).

Neglecting all surface forces, collapse of the cavity is countered
by a simple gquantum mechanical effect, namely ' the magnitude of the
de Broglie wave length of the electron must correspond i~ the

cavity diameter leading to a zero-point kinetic energy.' Thus,
A = 2R = h/mv
P 2
T = n< /2R a.u,

where T is the kinetic energy. The total energy of the electron

so confined, 1/bst « 1,
E= w2 /2R = 1/2R  a.u.

is minimised when R = 272 a.u. and E' = -1/8T72. The inclusion of
the interacdtions of the electron with a positive ionic atmosphere
leads to further stabilisation.

The formation of large cavities of radius 108 is physically
unrealistic, while the binding energy, -0.35eV, is low suggesting
that the electronic transition is between a bound and an unbound
state., BElaboration of the model is possible, but its importance
lies in the contrast presented to the polaron model of Pekar. This

simple cavity model emphasised that a localised surplus electron
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in a liquid of high dielectric constant should be stabiiised by
forming a cavity around itself,

C» Subsecuent Refinements of the Pekar and Ogg llodels.

7

Pekar and Deigen6 and Davydov' considered the polaron
model to be applicable to the surplus electron in liquid ammonia.

If the observed absorption band arises from an electronic transition
between ls and 2p states, the absorption maximum is computed to be

at an energy

a 2
I‘Jmax = 00071 C m* Qele (9)

With Emax = 0,8eV, for the ammoniated electron,8 the effec?ive mass
is ~ 1.6 and the polaron radius is 4.683.

Scaled to methyl alcohol, m* = 3,6, the computed excitation
energies for the solvated electron follow the experimental trends
for a variety of alcohols.9 Deviations are ohserved for water,
ethylene glycol and ammonia. To discuss the polaron nature of the
hydrated electron, Weisslo suggested that the effective mass, from
equation (9) and the observed Emax = 1,72eV, is more appropriately
assigned a value ~ 3. The polaron radius is accordingly 3.33.

Kevan11 modified Pekar's treatment to account for the
contribution of the electronic polarisation to the binding energy.

The corrected optical dissociation energy becomes
5 = * . < ) - ° l.O
hop m {o 164C“ + 0.062C(1 1/Dop)} (10)

When the interaction of the surplus electron and the electronic

. . . 12
polarisation is the important mode of trapping, this energy is

L 2
Eop = 0.5 m* (1 = 1/Dop) . (11)

llore correctly, this equation should take the same form as equation (6)
with C replaced by (1 - l/Dop).

The inclusion of the electronic polarisation contributicn
does have some effect on the estimated effective mass and the polaron
radius. Identifying the absorption perk of the hydrated electron with
the Kevaen formula (10) yields m* = 0.98 and s polaron radius of 9.8%.
The original Pekar treatment gives m* = 1.27, decreasing the volaron
radius to 7.6%.

The predictive capacity of the polaron model is limited by
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the lack of knowledge about the effective mass. Equating the theoretical

expressions for some property with the experimental value allows some
estimate to be made. Information regarding the sphere of influence
of the electron in the medium may then be obtained from the polaron
1adius. In essence, one is determining whether the polaron model
can account fer the properties of the surplus electron for a choice
of solvent. By studying a cpectrum of similar solvents such as the
alcohols, the range of applicability of the theory may be examined.
Improvements on the Ogg model recognise the importance
of surface forces at the cavity boundary. Inclusion of the effects
of surface tension, electrostriction and electronic polarisation of
the dielectric surrounding the cavity leads to an energy for the

localised state given by 13

B = -0.69/R + 4TR°S + W2/2R° a.u.

where S is the surface tension of the cavity wall. Taking a value
for S equal to the macroscopic value for a plane surface in ammonia,
S=32ergs/cm2 (2.06 x 1074 a.u, ), the ammoniated electron is unbound,
E = +0.,13eV, at the equilibrium cavity radius of 4.88. A larger
surface tension, 4Bergs/cm2, increases this energy to +0.40eV
while reducing the cavity radius to 4.52. _
Increasing the attractive potential term in eguation (12)
to ~1.0/R leads to better accord with experiment. For S= 32ergs/cm2,
E = -0,87eV and R=4.2X. Lipscomb is led to suggest that 'some
specific quantum mechanical interactions appear to be necessaby in
order to make the cavity stable.' However, as Stairs pointed out,14
if the electronic wave function is allowed to penetrate into the

medivm so that the potential energy of the electron is

V=~1/2R (1 - 1/1;Bt ) r<R

VY= 0 r >R,

with the inclusion of a simple surface tension term, the excess
electron is stable by -0.35eV at an equilibrium cavity radius of
2.98. '

The electron in a box model has been utilised to discgss
5

the spectral behaviour of trapped electrons in organic glasses,

Taking the observed absorption band to be of s+ p character, the

o Tmnrnla mAadal mveadsantoes +hie tvancitian +a hae at an enereov

(12)
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2 2
B = . » olUe 1
ax 1.04 w</2R a.u (13)

An apprepriate cavity radius is obtained by equating this relationship
to the observed absorption maximum. Por a range of alcohols,16 the
radius so obtained increases with the bulk of the alcohol. From n-butyl
alcohol to t-butyl alcohol the cavity increases from 2.893 to 3.27K}

As the polarity of the alcohol increases the cavity contracts. The
absorption band widths are rationalised by allowing a range of

cavity radii about the optimum value obtained from equation (13).

D(i) The Fusion of the Polaron and Cavity Models.

It would be a substantial improvement on the theoretical
model if the best features of the Ogg and Pekar approaches'could be
combined in a unified theory. This synthesis was first performed by
Jortner.l7 However, the concept of a trapping potential created by
inertial polarisation had already proved to be of utility in a model
for charge transfer to solvent spectra of negative ions in solution.18’19
Jortner also proposed that this idea and cavity formation were the
two key features of the reformulation,

At large distances from an electron disposed round a
spherical cavity at » = 0 in an infinite dielectric, the displacement
D is approximately given by -r / r3. The inertial polarisation is

therefore, from equation (2),
Pi==-Cz Jam e,
The potential created by this polarisation field is

w0
V(r) = f(Pi / r2)dv = C/r (14)
~
This potential is assumed to be continuous up to the cavity, radius R,
and constant thereafter. Perturbations of the potential near the
cavity are ignored. At small distances, the displacement is not of the
simple form shown above but deviates from a Coulombie form cf.
equation (1). The medium molecules may also be influenced by a
charge less than the electronic charge, since the wave function
may penetrate the dielectrice.
Relative to the energy of an electron in the conduction band

of the medium, the poteatial energy of the eleciron is
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V(r) = -C/R | r<R (15)
V(r) = -C/r r>R

The ground state wave function is represented by the 1s

hydrogenic form

le = (p>/m® exp(-pr) (16)

At a selected cavity radius, the optimum exponent for this function is

found by minimising the energy
2]
W o= p°/2 - ¢/R + C exp(-2pR) (pR + 1)/R .
The exponent q of the 2p excited state function

= (q57n)% r exp(-qr) cos@ ,

2p
is obtained by minimising
w2p = q2/2 - C¢/R + C exp(-2qR) (1 + %qR + q°r? +~éq3R3)/R .

Regarding the electronic transition between these two states as an
adiabatic transition, the inertial polarisation and the cavity
radius do not change on excitation. .

The energy of these two states must be supplemented by a
term accounting for the electronic polarisation energy.l8 hssuming
that the electron distribution may be represented by a charged
sphere of radius equal to the mean radius of the orbit, the

interaction energy is given %y the Born formula
5, = -1/2ri 1 - l/Dop) .

The total electronic energy of each level,
A . i =1s or 2
Ei Hi + S1 i s or 2p,

may then be used to calculate the absorption maximum for a chosen

cavity radius

B =5 - .
“max = T2p Els

R may be determined by matching the computed and observed absorption
mexima, and the model applied to calculate some other properties of
the solvated electron. Alternatively, the cavity readius may be
estimated from dilation measurements, and the degree of agreement
between the computed and the observed peak voesitions used to

gauge the apnlicability of the model for the surplus elcctron in a

varticular solvent.
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Por the ammoniated electron, ¢ = 0,523, the absorption
maxima at cavity radii of 3.02 and 3.45R ere caliculated to be
0.85eV and 0.7T4eV respectively, At R = 3.23, suggested by volume
expansion measuvrements, the computed and observed values are
matched. The mean radii of the ground and excited state orbits at
this cavity radius are 4.3X and 6.68 respectively. The electron is
by no means localised within the cavity.

Por the solvated electron in the lower alcchols, the
predicted cavity radii are found tc fall smoothly with increasing
32.6, the cavity
1.328. The

t

polarity except for n—butanol.zo In methanol, Dst

radius is 1.15%, whilst in ethanol, D, = 24:4, R

]

hydrated electron does not fit into this pattern. VWith a ‘dielectric
constant of ~ 80 the observed and computed excitation energies are
matched at R = 1,58.,21723

The heat of solution of the excess electron may be
obtained when the magnitudes of the medium polarisation energy and
the energy of an electron in the conduction band of the liquid are
known. Cchen and Thompson indicate that the latter quantity is small

for ammonia, The medium polarisation energy,ll, for ammonia,

n=4 [1,,12 () av,
R

contributes some 0.475eV, when R = 3.23, towards the heat of solution
H = -Els - = 1.6eV, The experimental estimate is l.7eV.17
If the cavity contracts when pressure is apvlied, the
spectrum should shift to the blue, a result qualitatively in accord
with experiment. Spectral variations with temperature may be
accomodated within the model by variations in each of the 1ls and

2p energy levels., For the ammoniated electron

-4.60 (ac/aT) + 0.409 (ar/ar)

At / at

1

aE, / 4T = -3.12 (4¢/dT) + 0,132 (ar/aT).

Jith a thermal expansion coefficient, dR/AT = 3){10_3 R/OK, the shift
in peak position is calculated to be in agreement with exmneriment.

A potential well of the form (15) can support an infinite
number of bound energy levels. Sincc the excited state orbitalsy
becone more diffuse »c the vrincipal quantum number n increaces,

their energy is approximately given by
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E_ = % f2n° - /28, (1-1/p )  a.u. ny2 (18)
The asymmetry of the absorution band on the high energy side may be
the esult of overlapping abscrotion bands @rising from transitions
between the ground state and these higher energy levels.17
To distinguish this approach from those of Ogg and Pekar
this mcdel has recently been named ‘'the polarised cavity model'.24
The assumption tr:t inertial polarisation provides the
voteniial well for the electron entails that the medium molecules
are capable of reorientaticn in the field of the electron. If the
relaxation times are long, as in a low temperature glass or a
crystal, the build-up of orizntational polarisation is slow. The

25

observation that the travped electron in ice is stable suggests
that by applying Jortner's model, which relies on long-range
interactions to contribute to the stability of the electron, the
trapping site must be identified with a2 defect in the medium or
that some frozen-in polarisation exists.22 _ A

Hamlet and Kevan conclude that the excited state of the
traoped electron in agueous glasses is unbound.26 This is confirmed
by the recent observation ot a photocurrent.27 An easy rationalisation
is effected if cnly short-range interactions contribute to the
stability of the excess electron (Section ). If it is the case
that microscopic relaxation processes proceed much faster than
macroscopic relaxation time328'29 the application of the polarised
cavity model may be justified.

Taking cognizance of the observations discussed in Secticn
A(iii), concerning the subdivision of the total polarisation, for
electrons in polar solvents a self-consistent field approach in
which both volarisation fields are simultaneously accounted for
should be adopted.30’31

At the limit of zero cavity radius Jortner so computes

the heat of solvation of the surplus electron to be
2
E = -0.0488 (1 - l/Dst) Aele

The observed hydration energy for the localised electron in water,
1.7eV, is only approached by this formula. Ailthough unawvare of the

fact, Pekar2 also solved this provlem utilising the more flexible
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variaticnal fvuction (5), deriving the solvation energy

E = —0.0547 (1-1/1)8,6)2 a.u,

6,7

From the early investigations the absorption maximum should lie

at an energy

2
B oy = 0.071 (l-l/Dst) Belle

The excitation ehergies of the hydrated and ammoniated electron are
so calculated to be 1.88eV and 1.72eV respectively. The use of a
more flexible function increases the calculated value for: the
hydrated electron to 2.18eV.32 The disparities in the observed

and calculated absorption maxima is taken to imply cavity formation.

The unsatisfactory nature of calculations which impose
cavity formation is illugtrated by examination of the energy
surfaces for the ammoniated electron33 (see Appendix). This diagram
was drawn utilising the polarised cavity model, As a consequence
of neglecting the surface forces across the cavity boundary, the
lowest energy configuration lies at R = 0. within the cavity
models, this parameter is necessarily ascertained by recourse to
some experimental observation. A satisfactory theory should

uniquely determine this parameter.

(ii) Prelude to the Semicontinuum Treatment.

The models hitherto described talke no account of the
molecular nature of the medium in which the electron is localised.
The individual characteristics of the matrix are assumed 1o be
adequately represented by variations in the dielectric constants,
To encompass the behaviour of surplus electrons within a single
formula such as equation (19) is an unlikely achievement, and
some deviations have been noted. The microscopic properties of a
solvent are likely to manifest themselves in a more complex fachion
than the early theories would suggeste.

The two important advances towards the sophistication
solvated electron theory were made by O'Reilly34 and by Iguchi.35

To incorporate short range interactions, O'Reilly
proposed that a cavity in the medium is boundeg by n point dipoles

B and quadrupoles Q, at a distance a = R + %Hg from the centre of

(19)
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the voide R is the void radius and M the molecular volume. When the
solvent is ammonia, the number of molecules on the veriphery,

2
approximately given by n = 41'ra?‘ / Mg,. ig ~23 fer R = 3.02 and

2
M= 433“’. The potential energy of the electron,

V=0 r>a (20a)

V= ---n/a.2 {<cosg> - q/a} r<a (201b)
)

= -4 /M  {<cos0> -q/a} (20¢)

is however independent of ths number of molecules.

Thermal agitation of the molecules on the boundary of the
cavity disturbs the alignment of the dipole moment with the field
such that the angle 06 subtended by the dipole moment: and the radius

vector is determined by

<cos@> = coth x = 1/x = L(x) : (21)

where x = pEloc/k'I‘ and E c is the local electric field acting on a

lo
molecule,

Choosing the field to be given by the simple Torm

Boo=- /1 (22)

the depth of the well in ammonia is 4.7eV for-a = 4.75&;}1= 1.46D
and Q = 1x10-26esu. As a is 1ncreased from this value to S.SR\the
absorption maximum is calculated to fall from 1.20eV to 0.90eV. By
far the most dominant interaction: is with the permanent dipole. '

The later study by Iguchi was developed in the spirit
of polaron theory.

The molecular density of the solvent is taken to vary with
temperature T as n =mw /{1+ K(T-273)} where n_ is the molecular
density at 273°K and Kk is the thermal expansion coefficient. The
inertial polarisation created by the interaction of the electron

vwith solvent layers is

Pi(r) =m p <cosf>.

If the local field has the simple form (22), in which case
<cos@ > = L( p/kTr"), the potential energy of the electron, given by
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equation (14) is

Viv) = -nh;tJ(£(|1/kTr2)/r2 av
T

»

Tne energy levels are obtained variationally using functions of the
form (16) and (17) and equation (3a) with m* = 1. The electronic
polarisation is added at a later stage.

The computed excitation energies for ethanol are
1,69eV at 300°K and 1.89eV at 180°K matching well with the cbserved
values 1.77eV (298%K) and 2.17eV (195°K).9 Keeping the potential

V(r) constant at distances less than 4.6 spoils this agreement.36

Ee The Semicontinuum Treatment.

Separating the nuclear and electronic motions through the
Born~Oppenheimer approximation, the energy surface for a system
consisting of a surplus electron in a liquid is multidimensional,

The complexity of such a problem precludes the possibility of obtaining
even an approximate quantum mechanical description of the elecironic
states. Appeal must be made to the general features which have '
proved to be of importance in the simplified theories and employ

them in some physically reasonable model by which the stability of
excess electron states in liquids may be investigated.

Adopting this viewpoint, the total energy of the system
may be partitioned into the electronic energy Ee and the medium
reorganisationzenergy-Em resulting from the disruption or the notmal
liquid structure. For stability, the total energy of the localised
excess electron state must be lower than the energy of an electron
at the bottom of the conduction band, Vo, Theoretical studies of
electrons in non-polar fluids have verified this assertion.2

Accepting that the formation of void volumes, short -
and long-range interactions are the important features of electron
localisation in polar liquids, a physically rcasonable model for the
solvated electron may be visualised.37

The localisation centre is considered to be a void
surrounded by a single solvation shell of N oriented dipoles at a
distance T from the cavity centre, embedded in a continuous
dielectric medium commencing at a distance Toe The rigid alignment
of these dipoles with the electric field created by the eleciron

is opposed by thermal agitation.
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The attractive short-range interactions are applied by
utilising the microscopic molecular electrostatic potential derived
by O'Reilly,34 equation (20b). Long-range pclarisation interactions
are introduced by way of the simple Landau potential, equation (15),.
for the adiabatic treatment. Alternatively the SCF potential, equation
(4) with C replaced by (l-l/Dst), may be used.38

Neglecting the quadrupole terms, the short-range attractive

potential energy of the electron, given by equation (20b), is
Vir)==(Np_/ r2) <cos@>~ Nag> / ort (23)
8 ) d i/ =74

where Q 1is the molecular polariseability of the solvent. Tae local

field at a molecule in the coordination shell is

Broe = % / rs (24)

where’Gf is the total charge contained in the void volume,
: . ) |
¢, =[| $,12 av. - (25)

The treatment of Copeland et al, conducted within the adiabatic
approximation, accounts for the second term in equation (23) within
the electronic polarisation, while Fueki et al consider the inertial
and electronic polarisation simultaneously. The averaging term
<cos@> is calculated using equations (21) and (24).

It is implicitly assumed in equation (23) that the
coordination shell consists of point dipoles which can be oriented
by the electric field produced by the electron at the dipole. This
assumption restricts the semicontinuum treatment to solvents of
small and fairly rigid molecules.

Utilising the Landau potential (15) the potential energy

of the electron is therefore given by

-Np<cos9>/r§ - C/rc r<R

v(r)

v(r)

il

~C/r + 7V, r>R.

Penetration of the electron into the medium is resisted by
exclusion of the electron from the region occupied by the medium
electrons., Such short range interactions are absorbed in the
parameter Vo'

Choosing a variational wave function of the form (16),
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the optimum encrgy is found by minimising

©Q

Y = 2 - ,‘ 2 : 2 .
Wy, =0 /2 {Jp<cose>/rd +C/rc} Gy - Cf\llls /r dv
R
+ (1 - Gis) v,

and adding the electronic polarisation energy
. Nac2 4 _1 TR a2 a2
85 NaGi/zrd 2(1-1/1)01)) j;( _£¢i dv)< © = dr.

The orientation of the permanent dipole depends on the wave function
giving rise to a self consistent field problenm.

The magnitude of Vo is not known: for pclar liguids, although
the experimental heats of solution show that V°>>- 1l.7eV for water
and > -1,7 ¥ 0.7 for ammonia. Fortunately the depth of the potential
well does not critically depend on V0 due to a balance of terms in
the potential. As Vo increases, the cavity radius is likely to
increase and charge will flow from the medium into the cavity. The
subsequent increase in Gis then lowers the potential energye.

The process of cavity formation requires the investment
of energy. The reorientation of the molecules on the boundary
enhances both dipole -~ dipole and, in ammonia for example,
hydrogen - hydrogen repulsions. For water, the latter term is
ignored; rotation of the molecule can alleviate this interaction.
Expansion of the cavity is opposed by a surface tension f£-rce
4nR2

and at high pressures the work done in creating a void volume.

S, the surface tension being taken as the macroscopic value,

Disruption of hydrogen bonds is neglected since the detailed
structure of the solvated electron is unknown.

The medium reorganisation energy is therefore computed
as the energy required to polarise the dielectric and form the
cavity.

Calculation of the total energy at various vedd radii
allows a unique determination of the cavity radius in ammonia
and water. For N = 4 and 6,assuming~vo = 0, at 300%K the most
energetically favourable centre to dipole distances are 2.722
and 3.25R respectively for ammonia37 and 2,078 and 2.588
respectively for water.38 An increase in Vo expands the cavity.

The energies of the most stable cavities for N'= 4 and 6 do not
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greatly differ, indicating that some equilibrium between these two
coordination numbers may exist.

The volume expansion: within the semi-continuum treaiment is

- 3wl )
AY = 4n/3 (rc Ivreff.

where Torr is the effective radius of the volume occupied by each
solvent molecule in the normal liquid, so that dilation measurements
are interpreted as a manifestation of cavity formation and a
decrease in the density of the solvation sheath over the normal
liquide. For ammonia, N = 4 and r, = 4.223, the volume increment is
66.8 ml/mole, matching quite well Schindewolf et al's experimental
measurement 84% 15 ml/mole at 240°K. ‘

The vertically excited state electronic energy is

2 2 T 2
E2p =q°/2 - Gzp{ITp<cose>/rd - C/rc} -C £ ¢2p [r av

+ (1 - Gép)vo + S2p’

with <cos@> appropriate to the ground state.

In general, the excitation energiés are overestimated but
of the correct order of magnitude. Purther, the inclusion of long
range polarisaticn appears to be necessary to lower the energy of

the excited state.29’40

41

Experimentally, Kawabata finds the excited state in ice
to be bound. Theory predicts the vertical 2p state to be unbound, but
no autoionisation to the conduction band takes place, whereas the
relaxed excited state in water and ice exhibits no energy minimum.

The best understood energy level structure from photo-—
bleaching phenomena is for trapped electrons in 2-methyltetrahydrofuran

40

glasses. Bxcitations to the unrelaxed excited state and the
conduction band or an autoionising state occur at energies
~1.,0eV and 1,6 ¥ 0.2eV respectively. Relaxation of the excited
state results in crossing to a relaxed 2s state some l.leV below
the relaxed conduction band.

Theoretical calculations support this picture.42 For n = 4
and Vo = =0,5 the 1ls= 2p transition is calculated at 1l.0eV while the
transition to the unrelaxed conduction band is placed at l.4eV. The
relaxed 2s state lies O.leV above the relaxed 2p state along the
configurational co-ordinate and crosses near its minimum. Excitation

from this state to the relaxed conduction state is placed at 0.6eV in



-39 -

fair agreement with l.leV from experiment.
Some calculated properties for the ammoniated and hydrated

electrons are compared with observation in Table 1.

Table 1.

Experimental and calculated properties for the solvated electron.
n=4,vo=O.

Ammonia (203°K) Water (300%K)
Obs, Calc.37 Obs. Calc.38
E . (eV) 0.80 (240°k) 1.19 1.72 2,11
Half-linewidth(eV) 0.46 0.12 0.92 0.18
Oscillator strength 0,77 0.49 0.71 0.78
AR (eV) 1.7 0.7 1.43 1.7 1.94
AV ml/mole 84+ 15 66.8 1-6 25

Exact agreement with experiment would be fortuitous but
overall the semicontinuum model reproduces many of the observed features
quite well, Some discrepancies remain, in particular concerning the
band width,.

The semicontinuum treatment presents a great advance in the
theory over the early models. However, some criticisms may be made.

The medium rearrangement energy is introduced in a coarse
fashion. For example, it is open to debate as to whether o
macroscopic surface tencion force exists at molecular dimensions.

The acceptance of such forces entails that cavities are created in
the medium by the electron. lWhen the localisation site exists
naturally, no such surface tension force is operative.

The model permits one configurational coordinate, the void
radius R, so that the cavity can only 'breathe' symmetrically, while
other modes are possible.

Although the forces determining the structure of the second
solvation shell are not pure charge-dipole interactions, the
substantial penetration of the electronic wave function into the
medium serves to illustrate that effects in this layer may be
important.

In completing this review of solvated electron theory, it

may be noted that the viewpoint taken of the surplus electron has
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subiely changed on proposal ol the semicontinuum model. The polaron
treatment considers electron trapping by polarisation fields while
the current conception resembles that of a solvated ion around which
solvent dipoles have been oriented. Referring to the suggestion of
Weiss that the trapped electron in water be called a 'polaron' and
not a 'hydrated electron',lo it may indeed now be permissable to

speak of the 'hydrated electron?'.
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A(i) Introductisén.

It has been emphasised in Chavter 3y that the current thecries
of surplus electrons in polar liquids rely on being able to replace the
surrounding medium by a dielectric continuum. Short-range medium—
electron interactions are incorporated into the semi—continuvum
modelvia an electrostatic potential arising from point dipoles on
the boundary between a cavity and the continuous dielectric
medium,

However, at the localisation centre, the microscopic
structure of the medium will manifest itself through a
non - spherical local potential experienced by the surplus electron,
so modifying its properties. Electrostatic models fail to
highlight these local variations in the potential, In addition,
if the excess electron is sufficiently well localised, the bulk
dielectric properties of the medium will be inadegquate to portray
the potential experienced by the electron. Long-range polarisation
interactions in this case do not dominate the properties of the
surplus electron state.

The molecular approach takes the alternative viewpoint
and examines the microscopic structure of the localisation site.

The surplus electron is considered to be trapped at, and stabilising,
3 cluster congstructed from a variable number of solvent molecules,
The energy of the electron depends not only upon this number, but

on their orientation, In time, reorganisation of such clusters ‘
will provide a variety of different sites in the liquid within

which the electron resides.

The energy of these charged molecular aggregates may be
investigated using molecular orhital theory. This method by-passes
the need to differentiate between the medium and the surplus
electrons. All interactions are simultaneously accounted for.
Important features such as spin polarisation are naturally
incorporated in this method. This effect cannot be studied in any
other way.

‘ The sole properties which are immediately open to
investigation are those which arise mainly as a result of local
interactions. Relatively distant disturbances in the medium are

asgumed to have a minor effect,
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Dye has indicated some examples of this nature for
metal-ammonia solutionsl which may be in accord with the interpretation
that they arise from local intercctions. As the metal concentration in
ammonia increascs from dilute to moderate, the absoroticin band shape,
extinction coefficient and electron relaxation are independent of the
metal concentration while the peak position in the optical absorption
spectrum is only slightly concentration dependent.

This chapter is devotcd to the molecular approach. Molecular
models are propoced for the hydrated and ammoniated clectrons and
the energy of each cluster is calculated using the semi-empirical
INDO molecular orbital method. |

Lii) Some Early Molecular Hodels for the Solvated Hlectron.

In the spirit of a molecular orbital treatment, Kaplan and
Kittel assumed that the orbital of the ammoniated electron was a
linear combination of ls and 2p atomic orbitals centred on the
hydrogen nuclei at the boundary of a cavity.2 Although no énergy
calculation was performed, polarisation effgcts were assumed to
deplete the 1ls character of the molecular orbital to ~50%, This
model is similar to that proposed for the F — centre in alkali
halides by XKahn and Kittel.3 The number of ammonia molecules
surrounding the cavity wds taken to be ~17.

This basic model h~s been utilised extensively in
investigations pertaining to the hydrated electron.4 A structural
model comprised of four tetrahedrally disposed meclecules with four
protons directed towards the centre was considered. This system
may be envisaged to be formed by molecular reorientation round a
vacancy in the ice I lattice. Molecular orbitals are constructed
from scaled ls orbitals centred on the inner hydrogen nuclei.
Coulombic interactions between the surplus eclectron and the tetramer
nuclei and the electrons provide a potential well within which the
electron resdies. Exchange interactions and perturbation of the water
orbitals are neglected. .

At an oxygen~oxygen distance of 2.168, approoriate to ice,
the ground state is calculated to lie at ~4.38eV and the triply
degenerate excited state at —-3.58eV. The optical excitation energy is
s0 calculated to be 0.8eV, which is approximately half the observed

value 1l.72eV (3OO°K)5. In order to match this value, Matori found



it necessary to distort the geometry of the water molecules.

Estimating the energy investment in the formation of this
structure to be 2eV, the heat c¢f hydration is 2.4eV, comparing
gquite well with an observed l.7eV.

The treatment suffers from the deficiency that the total
energy of the system is not open to evaluation. At least one
experimental observation is required to evaluate the parameters
within the model, VWhether this structure is stable or not remains
to be ascertained,

The first investigation of the configurational stability
of a solvated electron mecdel was undertaken by Raff and Pohl,
Dimeric structures were proposed to represent the immediate
environment of the solvated electron in eight media.

The electron is considered to be bound in the field of two

opposed molecular dipoles, written for hydrogen fluoride
F - H...e:..H"- P,

To gimplify the calculation, this system may be viewed as a hydrogen
molecule ion perturbed by two fluoride ions

- + -
F o9 @ H2 [ X N ) F.

The molecular orbitals for the excess electron may then be taken
to be linear combinations of screened hydrogenic ls functions
centred on the protons. The screening constant is estimated in an
empirical manner,

The transition energies, og-acyu, are computed to be
2,39eV and 1l.63eV at equilibrium proton-proton separations of
1.678 and 1.888 for the hydrated and ammoniated electrons respectively.
For such a crude model, the prediction of excitation energies to
within approximately 90% of the observed absorption maxima is
somewhat fortuitous. The importance of the treatment lies in the
recognition that energetic quantities should be evaluated at equilibrium
configurations and not artificially matched with observation,

The CNDO/2 studies of Weissmann and Cohen into hydrated
electron models also suffer from this deficiency.7 Within the
approximations involved, the most favourable structure for the
hydrated electrcn is reported to be a normal ice = like structure,
and the excitation energy is placed at 3.8eV. Whether the single

geometry studied represents a minimum energy configuration or not
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is not considered. In addition, the CIIDO method has been shown in
Chapter 2., Section D, to he inadequate for the investigation of

opern--shell systems.

(dii) A Stability Criterion for the Molecular Cluster.

The lecalised excess eleciron state hecomes stable when
the energy of such a state is lower than that of the gquasi - free
electron. When the molecular approach is utilised, the cluster is
essentially isolated, and any effects arising from the surrounding
medium are neglected. The cluster may perhaps be viewed as
persisting in the gas phase, so that some other criterion is
required to determine the stability in the prescence of the surplus
electron.

For a system containing n solvent molecules S and an

electron, the total energy of a stable species must be lower than

the energy of the separated molecules and an electron. The latter state,

hereafter called the reference state, may formally be written
(n = 1)S + 8™ where the electron has been associated with one
solvent molecule., For stability,

E, = E [(Sn).e-] - EB[(n - 1)s +57]<o0,

This energy difference maj be partitioned in a revealing way. If ths

2lectron affinity of the golvent S is
A(S) = B(S7) - B(S),

relation (1) may be written as
E[(Sn) -nsS] + [A(Sn) - A(s)] <o,

The first term in this expression is the energy required
to synthesise the solvent cluster, whilst the second measures the
difference in electron affinity of the cluster and an isolated
molecule,

Providing the former quantity is relatively small, the
cluster of molecules will stabilise the electron if the electron
affinities of the solvent and complex are disparate. The electron
affinity of a cluster is likely to be smaller (less positive) than
the electron affinity of a solvent molecule, so that solvents of

high and positive affinities may be expected to yicld stable species,

(1)

(2)
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Intuitively this stability criterion seems to make chemical sense.

Large positive electiron affiniuvies arise when the electron
is forced to enter a highly antibonding orbital on the solvent
molecule. Such orbitals generally have a large spatial extension,
and electron density flows over the molecular system and is
stabilised.

For future reference, the computed energies, within the
INDO approximation, for neutral and negatively charged water and

ammonia molecules are collected in Table 1.
Table 1.

The computed energies (a.u.) for the water snd ammonia molecules

and their negative ions,

Hfzo -19.2519 H2O" ~18.9867
NH, -13.5299 NH,~ 13,2756
NH3 (planar) -13.5241 NH3f (planar) -13.2925

B(il,Some Dimer Models for the Solvated Klectron.

As a first stage in the investigafion of molecular cluster
models for the hydrated and ammoniated electrons, various dimer
models have been considered.

The process envisaged during solvation may be described
as follows. Thermalised electrons are trapped at a dimeric site in
the liquid in a time compnarable with the dielectric relaxation
time. Subsequent reorientation of the dimeric fragments may follow.
The full trapping ability of the liquid may be further developed by
the involvement of additional molecules in the trapping site.

Figure 1 depicts the geometry of three dimer models for
the hydrated and ammoniated electron. Structure III is a fragment
detached from the wurzite ice structure, while models I and II are
nlanar. Structure I for the hydrated electron bears some resemblance
to the 'D defedt' invoked by Bjerrum in order to rationalise the
dielectric relaxation phenomena observed for ice.

INDO molecular orbital calculations were carried out at

several intermolecular distances for each model. The angle a in the



Pigure 1. The geometries for the dimer structures I, II and III for

the ammoniated and hydrated electrons.
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The total energy variations for the dimer structures I,

Migure 2.

II and III (a = 0) with intermolecular separation. The reference

state energy in each diagram is highlighted by the broken line.
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ice=likc structure III was varied between Oo and 900. Th2 computed
energies are displayed in Tables 2,3, and in Figure 2. The tables
are collected together at the end of this chapter. The reference
state energy for ecach model is highiighted in the figure.

it is immediately apvarent that all the dimeric structures
portray a stable equilibrium geometry in the prescence of the excess
electron. The ovtimum intermolecular separations for structures I and
IT are gauged to be at 1.2% and 1.38 respectively. These distances
are approximately 0.42 smaller than the calculations of Raff and
Pohl suggest.6
9

The study of McAloon and Webster,” conducted within the
extended Hﬁckel method, assigned intermolecular distances by

matching the observed transition energies and the difference between
the energies of the lowest unoccupied viritual orbital and the highest
occupied orbital. The separations so obtained were 1.53 for structure I
and 3.52R for structure II. This procedure has already been criticised.

The INDO calculations locate the optimum intermolecular
distances for the structure III at 1.303 for a = 0° and 1.35R for
a = 900 with a smooth variation between these limits,

At the most energetically favourable geometry, on utilising
“equation (1) and the data in Table 1, structures I - III lie
1.09eV, 0.41leV and 2.23eV ( @ = 0°) respectively below the reference
state energy. The most favourable conformation for the ice~like
dimer III is at a = 0°. The energy difference between a (= 0° and
90o is some 0,33eV.

The larger stabilisation energy for structure III over
gstructure I is maintained for all intermolecular angles. Partiticning
the stabilisation energy in the manner of equation (2) may illuminate
this preference.

At the equilibrium geometries above, when the electron is
removed, the dimers I and III have energies -38.4953 a.u. and
-38.5201 asu. (a = OO) respectively. Some 0.23eV is therefore
required to form structure I, whilst an energy gain(.45eV is
made on forming structure III. The electron affinities of these
structures are calculated to be 5.90eV for model I and 5.43eV forv
model III. The ice-~like structure is therefore favoured due to the
larger affinity for electrons and the energy gain on forming this

structure.



(ii) The Ixcitation Fnergies.

Transition energies at each intermolecular separation for
structures I, IT and III were evaluated by the method descrihed in
Chapter 2, Section E,

A%t the equilibrium geometries, the excitation energies are
computed to be 1.98c¢V for the hydrated eleciron model I and
1.10eV for the ammoniated electron model II, Amuch higher value,

5 - 6eV, is obtained for siructure III. The two former vaiues
match the exverimental observations of 1.72eV for the hydrated eleciren
and 0,80eV (240°K) for the ammoniated electron.lo

The variation in calculated excitation energy with
intermolecular geometry is shown in Tables 4 and 5. A

For planar structures I and II, a decrease in the
intermolecular separation shifts the transition energy towards the
blue. From Table 4, a compression of the dimer intermolecular distances
by 0.1% increases the excitation energy by 0.18eV and 0.13eV for
structures I and II respectively., If the effect of increased pressure
on these systems is reflected in smaller intermolecular separations,
the absorption maximum is predicted to shift to shorter wavelengths.
This result is in qualitative agreement with experiment. Conversely,
if a temperature increase expands the dimer structure, a red shift
is indicated, in qualitative agreement with experiment.

, If such dimeric structures are initially formed in
radiolysed water and ammonia, an interesting spectral phenomenon

is predicted to occur. In water at OOC, the two nearest neighbour
oxygen atoms lie at 2.83R and 3.273 for the ice I structure.l1

In ammonia at 199°K the nearest nitrogen atom lies at ~:3.56X%2 It
dimer structures of the types I and II are formed, the proton-
proton separations are 0.913 and 1.35R for model I and 1.533 for
model II,

As the water dimer relaxes, the proion-proton separation
may move towards A»l.ZR. The spectrum, if observed at a short enough
time, will be seen to build up as two high and low energy bands
coalesce. Alternatively the initial spectrum may narrow. The ammonia
dimer spectrum is predicted to shift to the blue.

No such shifts have yet been detected for these systems,
If the microscopic relaxation time is very short, the above

processes may not be easily observed.



Pigure 3. The variation in calculated excitation energy , Emax’

with intermolecular angle for two intermolecular distances, D(X),

of structure III.
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The behaviour of the excitation energy with the geometry of
the ice-like fragment III is more comvlex.

_ Over all intermolecular angles, the data displayed in
Table 5 shows that a compression of the intermolecular distance
D, results in an increase in the excitation energy.

Although, as a varies, the excitation energy is computed
to be rather large, 5 - 6¢v, the interesting feature of this
variation is that the excitation ernergy exhibits a maximum in the
range a = 45° - 70°. The wurzite anzle in ice is 54°44'. If this
behaviour, illustrated in Pigure 3, is proved to be substantiated
in the light of further studies, a rationale of some spectral
phenomena may be effected.

' When the cluster is initially stabilised by the trapped
electron, the geometry of the site may be expected to vary. As the
cluster relaxes, the intermolecular orientation might be exvected
to move towards angles in the central region so depleting the number
of geometries at angles a = 0 — 10° and a'= 80 - 90°. The
absorption spectrum, if observed before this time, will reveal a
band maximum at lower energizs than the final spectrum.

Bathing such a system in light of shorter wavelength than
the absorption maximum may invoke a 'photo-shuttle'! effect and
repopulate the traps witﬁ angles away from the central region. The
spectrumn will shift to the red. Irradiation at longer wavelengths ~-’
empty the lower energy traps and a shift to the blue in the spectrum
is effected. These predictions are in accord with photoblecaching
experiments on irradiated alkaline glasses.13

Compression of the cluster results in a blue shift,
expansion results in a red shift. The red shift with temperature
may be further enhanced by increasing the number of orientations
lying away from median angles. These conclusions are in qualitative
agreement with the experimentally observed effects of pressure and
temperature on the absorption maximum of the hydrated electron.

The structures I and II may also be utilised to rationalise
the bleaching nhenomena by making the assumption that traps of
different depths exist in the liquid. Shallow traps have intermolecular
distances larger than the optimum geometry.

The ﬁagnitude of the calculated excitation energy for

structure III is a warning against a too ready acceptance of the



description of bleaching phenomera using this model. It is not
intended that *oo much emphasis be placed on the behaviour for
this cluster until further studies of larger clusters are
performed at a more accurate level of calculation.

An examination of the charge distributions for the dimer
models indicates a possible source of an excitation energy of this

maganitude,

(iii) The Charge Distributions for the Dimer Models,

The computed charge densities of the excess electron at
each atom for Structures I - III are displayed in PFigures 4 and 5.
Figure 4 portrays the ground state distribution, and Figure 5, the
excited state distribution. The charge densities calculated by

9

McAloon and Webster” by performing a population analysis on the extended
H&ckel molecular orbitals are included for comparison in Figure 4.
The INDO calculations reveal that in the ground state,
.the surplus electron is delocalised overthe molecular framework
of the water and ammonia dimers I and II. There is also to be noted
a slight preference for the electron to reside on the protons near
the centre of the dimer. The major portion of the charge lies on
the hetero-atoms,

This distribution is in direct contrast to that obtained
from the extended H&ckel calculations, Within this approximation,
the dimeric protons retain most of the charge. Delocalisation
takes place only in the water structures I and III. The contrast
displayed in the charge densities for these two dimers, I and II,
was invoked to rationalise the observation that the polaron model
appears to be a better theoretical model for the hydrated electiron
than for the ammoniated electron, as noted in Chapter 3, Section
D(i). This conclusion no longer obtains. The INDO studies conclude
that delocalisation is appreciable in both solvents.

An examination of PFigure 5 shows that on excitation the
charge is dispersed towards the outer regions of the structures
I and II.

In the ground state, the charge on model III is almost
completely localised on one molecule. This disposition is

maintained for all orientations. When excitation occurs, the



Fi e 4. The ground state charge distributions of the surplus
electron computed by the INDO (right hand side) and the extended

"
Huckel methods (left hand side)? for the dimer structures I, II and III.
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Figure 5. The excited state charge distributions of the surplus

electron conputed by the INDO method for the dimerstructures I, IT and III.
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charge is seen to 'hop' from one molecule to the other. Herein may
lie the reason for the large excitation energy computed for this
strvcture.

It was asserted in Chapter 2, Section E,that when charge
redistribution on excitation is significant it may be necessary to
employ configuraticn interaction technigues or to perform a new SCF
calculation for the excited state. The ice-like structure III does
indeed exhibit extensive charge movement.

On de-excitation, the electron may be stabilised on a
site other than the original molecular cluster. This movement of
charge is reminiscent of a photocurrent. Recently, reports of
photoconductivity in Y-irradiated alkaline glasses have been made,14

although such behaviour has not been observed in water.

(iv) Some Alternative Dimer Models.

In Figure 6, four dimer models are depicted. The dipole
moments of the constituent molecules are directed towards the centre
of the cluster., In structures IV and VI the intermolecular proton-
proton distances are minimised. This interaction is minimised in
structures V and VII by rotation about the symmetry axis running
through the two hetero-atoms in each model. ’

At a choice of intermolecular distances, Table 6 shows the
computed total energies. It can be seen that each dimer structure
wttains an equilibrium geometry.

When the lowest computed energy is compared with the
reference state energy none of these structures, excepting V is
predicted to be stable. The stability of dimer V over the referencs
state is a mere 0.005eV, far less than any of the structures I - III.
The utility of these dimer models is therefore low, and will not be

further discussed.

(v) The Dimer lodel Calculations in Perspective.

It would be imprudent to entertain the conception that a
dimer model represents the structure of the solvated electiron.
Indeed it is highly unlikely that this species may be fully understood
on the basis of such structures. As an examvle of the degree of
complexity which may be involved in taking the molecular approach,

recent magnetic resonance studies of metal-ammonia solutions detect
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the interactions of the surplus electron with some 3 — 13 ammonia
molccules.15 However, it is hoped that some of the important

features of the solvated electron may be recogniced within a simple
model such as tne dimer structures. Further, as previously discussed,
the existance of dimeric sites in the liquid may be important in the
processes leading to stabilisation of the localised electron state.

The main features which have been distilled from the dimer
mod2l calculations may be summarised as follows,

¥Yiith changes in the molecular geometries of the dimer
models, predicted variations in spectral phenomena appear to be in
qualitative accord with experimental observations. Some measure of
 success, perhaps fortuitous, has been achieved in the calculaticns
on structures I and ITI for which the match of calculated and
observed excitation: energies is fair,

The electronic® distribution of models I and II highlighis
the tendency of the excess electron to be delocalised but with a
preference fo lie on protons near the cluster centre. Dispersal of
charge occurs on excitation.

The ice = like dimer calculations allow some speculations
to be made concerning the spectral changes as the cluster relaxes., A
mechanism for electron migration is indicated.

Attention is now directed towards the investigation of
some tetramer models for the solvated electron in water, ammonia and
vater-ammonia mixtures. These structures may be a more physically
reasonable representation of the localisation site than the dimer

structures.,

¢(i) Some Tetramer Models for the Hydrated and Ammoniated Electrons.

A -defect tetramer model for the hydrated electron which has
been the focus of a great deal of theoretical interest is illustrated
in Pigure 7, and labelled VIII., This stiructure may be formed by the
removal of a tetrahedrally coordinated water molecule in the wurzite
ice-lattice followed by reoriemtation of the four remaining molecules
such that four p-otons point towards the tetrahedron centre.

This model is found to be compatible with many experimental
observations concerning the surplus electron in aqueous media. The
similarity in the spectra, B _ = 1.72eV (300°K) in water,5
1.94eV (77°K) in crystalline ice17'18 and 2.12eV (77°K) in alkaline

ice,19 in conjunction with the lack of any sharp discontinuity at the



FPigure 7. The tetramer siructures for the hydrated and ammoniated
electrons. D is the distance from the ceatre of the tetrahedron to

the vertices.
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17

freezing point suggests that the sites housing the elcctron are
very similar. The low yield of trapved electrons in crystalline ice
indicates a requirement for some pre-existing site at which the
electron is established. Kawabata recently found that by doping ice
crystals with fluorides, so enhancing the number of defect sites

in some way, the yicld of trapned electrons was dramatically
increased.18 EPR studies suggest that the site is water—walledl3 and
coordinated by aporoximately four water molecules.20 '

Another model which may also satisfy these criteria is to
be found in Pigure T, labelled IX, The eight protons of the
surrounding water molecules point towards the centre of the
tetrahedron, To construct a solvation shell of this form from the
ice structure requires considerably more molecular reorientation
around some vacant site.

The problem of alleviating the resulting proﬁoa—pboton
repulsions is achieved by rotation of each molecule until the sum of
the intermolecular proton-prdton distances is a maximum.

In the tetramer model X proposed for the ammoniated electron,
the twelve protons lie between the nitrogen atom and the tetrahedron
centre. It is difficult to relieve any proton-proton repulsions since
a rotation of any molecule, increasing the distances between some nuclei,
brings other repulsions into play.

' This structure is =n:cessarily an arbitrary choice. The
number of molecules surrounding the localisation site of the
ammoniated electron is known only to lie within a range 3 = 13.15

The INDO energies computed for the negatively charged
tetramers at various distances from the centre to tetrahedron
vertex, are collected in Table 7, and displayed in Figure 8. The
feference state energy is highlighted on each diagram,..

The hydrated electron structures VIII and IX exhibit an
equilibrium geometry at D = 1.922 and 1.853 resvectively. At the
minimum energy, each structure is found to be stable with respect
to the reference state energy =76.7424 a,u., model VIII by 2.22eV
and model IX by 1l.63eV.

‘This conclusion is at variance with the CNDO/2 studies of
Weissman and Cohan.7bAt a distance D = 1.738, they report that
structure VIII is energetically unfavourable by 0.40eV. The energy
expended on forming this structure is 1.90eV while the electron

affinity is placed at some 1,50eV below the electron affinity of the



Figure 8» The total energy variations for the tetramer structures
with tetrahedron size. The appropriate reference states are high-

lighted by the broken lines.



isolated water molecule,

I¥ is the author's ooinion that this conclusicn may be a
conszquence of using the CNDO approximation. It may be recalled from
Chapter 2, section D(i), that the INDO technique was proposed in
order to compensate for the inherent deficienciés of the CNDO method
for calculations on oven - shell systems.

Utilising equation (2), the stabilisation energies reported
kere rmay be partitioned to illustrate the essential differences between
the two structures and CNDO calculations.

At the optimum geometries for the charged structures, the energy
of the neutral tetramer models are =77.0078 a.u. for structure VIII
and =77.0129 a.,u, for structure IX. The electron affinities of the
tetramer structures are therefore 5.00eV and 5.73eV respectively.
Utilising the data in Table 1, the energy gains on formation of these
two structures from the separated components are 0.00éeV‘for VIII
and 0,145eV. for IX,

On introduction of the surplus electron, structure VIII
becomes more stable than structure IX, mainly as a consecquence of the
greater affinity of model VilI for an electfon.

A simple electrostatic'model might be expected to predict
that structure IX is the most favourable arrangement of the four
water molecules. When the dipole moments are aligned in the manner
degscribed for model IX, the potential well will be deeper than that
set up by model VIII, leading to a lower energy. The INDO calculations
illustrate the importance of investigating solvated electron models
by a technique which will allow the detailed evaluation of short
range interactions.

The tetramer model X proposed for the ammoniated electron
is found to be stable by 0.63eV over the reference state energy
-53.8652 a.u., at an equilibrium geometry of D = 2,078,

The energy of the uncharged structure at this geometry is
-54.,1223 a.u. By partitioning the stabilisation energy into the
components defined in equation (2), it is found that a small energy
gain, 0.,076eV, is obtained on formation of the solvation shell. The
low stabilisation energy arises as a result of the fairly large and
positive electron affinity, 6.35eV, of the neutral structure.

Pinally, it may be noted that the centre to vertex distances
calculated for the tetramer structures are smaller than the centre to

dipole distances obtained from the semicontinuum treatment described



in Chapter 3., Section E.

(ii)  Phe Comouted hzcitation Tincrgies for the Tetramer Hodels,

The calculated excitation energies for the three tetramer
structures, VIII, IX and X, are assembled in Table 8.

At the optimum geometries, the excitation energies for: the
hydrated eclectron models VIII and IX are computed to be 2.08eV and
0.85eV respectively. The former value matches guite well with the
observed absorption maximum of 1.,72eV, while the latter is low.

Consider model VIII, If increases in temperature and
Pressure cause respectively expansion and contraction of the water
cluster, the predicted shifts in the absorption spectrum are
gualitatively in accord with experiment.

The contrasting behaviour of the transition energy for
the two water clusters is shown in Figure 9. As the water cluster
IX is compressed, the transition energy moves to longer wavelengths,
while for structure VIII the shift is to the blue and levels off
for distances less than ~ 1.8f.

As a consequence of its higher energy, the chaiged structure
IX might be expected to persist only at high temperatures., Therefore,
at elevated temperatures, the blue shift in the absorption maximum
with pressure might be expected to reverse its direction. The recent
study of the absorption spectrum of the hydrated electron between
- 4° and 390°C did not detect any such effect.or

to note that at 390°C in supercritical water the absorption maximum of

It is interesting

the optical spectrum lies at 0.93eV, although at this primitive level
of the molecular approach, no direct assignment of structure can be
made., _
' Structures intermedizte between VIII and IX may develop
as the temperature increases, moving the transition energies to

longer wavelengths.
Utilising the data in Table 8 concerning the defect model VIII,

an attempt to quantify the spectral shifts with temperature and
pressure might be made if the size of the cluster is taken to depend

on the temperature and pressure.
The first peak in the radial distribution curve for water

11
manifests a temperature depvendence of the form

R(R) = 2.83 + 0.0018% - (3)




Figure 9. The variation of the calculated excitation energies, AE(eV),
with the distance D(R) from the tetrahedroca centre to the vertex for

structures VIII and IX. The arrowed positions show the excitation

energies at the optimum geometries.
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where t is the temperature in 00, The gevaration between nearest
neighbour oxygen atoms increzses with temperature at a rate
0.00182/0K. The water cluster VIII may he assumed to have a thermal
expansion coefficient of this order by recoganition that the
localised electron might simulate the behaviour of the absent oxygen
atom in the hydrogen - bondzd water structure.

Close tn the lowest energy geometry, D = 1.928, the
excitation energy varies with cluster size as dEmax /db = - 2.23eV/X}
Combined with the thermal expansion coefiicient of the cluster, the

computed temperature dependence of the peak position is

T N o
aE /ar= (a8 _/ dD.dD/aT) = -0.0040sV/K,

A similar calculation fdr the planar dimer model I yields a value
- 0.0032 eV / %K, Over the range 0° - 90°C, Gottschall and Hart”
found that the absorption maximum for the hydrated electron has a
temperature coefficient of —0.0029eV/°K. The theoretical shift is
in fair agreement with the experimental observation.

The temperature ccafficient in icé17 is ~O.0012eV/0K, lower
than that in weter. The average oxygen to oxygen distance in ice is
less temperature dependent than in water. Irom the x-ray data of

22 between =10°C and 0°C the average thermal

La Placa and Post,
expansion coefficient of ice is ~ 0.000168/°K. The calculated
temperature coefficient of the absorption maximum in ice may then be
placed at dEmax/dT = —O.OOO}SeV/OK, a factor of three smaller than
the observed value,
At 24°C, if the apnlied pressure is raised to 1000 atmospheres,
the average oxygen - oxygen distance in water decreases from 2.8733
“to 2.8253.23 Taking the size of the tetramer to vary at a rate
(2)825 - 2.873)ﬁ/kbar, the pressure coefficient of the absorption
maximum is calculated to be 0.085eV/kbar. The trend in the excitation
energy, displayed in Figure 9 for structure VIII, shows that this
pressure coefficient should fall off as the cluster is compressed,
Lxperimentally, the pressure coefficient is observed to
be 0.053 - 0.06eV/kbar for pressures up to approximately Skbar. At
pressures in excess of S5kbar, further increases have little effect

24

These calculations assume that the spectral shifts with

on the spectrum.
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pressure and tcmperature are determined mainly by variations in the
dimensions of the cluster. Effects which may arise from reorientation
of the coordinaticn shell have not been considered quantitatively.
Despite the approximations involved, the qualitative and quantitative
conclusions which may be drawn match quite well the observed spectral
phenomena for the hydrated electron. We now consider the ammoniated
electron structure X,

At the equilibrium geometry D = 2.07%, the ammonia tetramer
model exhibits an excitation energy of 0,72eV, slightly lower than the
observed value 0.80eV at 24O°K.10 The temperature coefficient of the
absorption maximum is - 1.5 £ 0,2 x 107> ev/%k. ‘ '

As the cluster size decreases, the calculated excitation
energies shift to the blue, qualitatively in accord with the effects
of pressure on the spectrum.25

From x-ray diffraction experiments,l2 each molecule in ammonia
at 199°K is surrounded by approximately seven molecules at a distance
3.563, with four more at 4.13. Raising the temperature to 277%
increases the former distance to ~ 3.742. The latter value should be
regarded as an estimate, since it was obtained from the radial
distribution curves published by Kruh and Petz.12

Setting the thermal expansion coefficient of the tetramer
to (3.74 ~ 3.56)/(277 - 199) = 0,00268/°%, the temperature coefficient
of the absorption maximum igs calculated to be -0.002eV/°K, in good
agreement with experiment. A similar calculation for dimer siructure II

affords an estimate ~0.0065eV/%K.

(iii) The Bandwidth of the Hvdrated and Ammoniated Electron Cotical Spectrum,

For the single configurational coordinate D, the predicted
band shape is determined by the thermal population of a configuration
and the transition energy at that coafiguration. lMeasured from the
minimun energy Emin’ the half band - width at high temperatures T,
is determined from the points D1 and D2 for which

E(Dl) ~B in " E(Dz) -~ B i SKT D,>D,

where k is the Boltzmann constant. The half bandwidth is then given



Figure 10. The breakdown of the optical absorption spectrum of the
anmeniated electron at 258OK (from ref. 33) following tke methcd of

Hamill (ref. 29). The full line shows the observed spectrum.
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where Eex(Dl) is the computed transition energy at Dl'
The half bvandwidths calculated in this way are 0.lceV for
structure VIII at 300°K and 0.08eV for structure X at 240°K. The
observed half bandwidths of the solvated electron svectra are somewhat
larger, 0.56eV in ice (77OK),18 0.92eV in water (3OO°K)26 and 0.46eV
in ammonia (24OOK).10
This discrepancy concerning the width is also a feature of
the semicontinuum treatment.27
A rationalisation of the observed bhand shape is achieved by
proposing that a variety of different trapping sites around the
ovtimum exist in the 1iquid28 or that the observed svectrum is the

27

envelope of several absorption bands. arising from several excitations,
The true situation probably combines both features.

In support of the second alternative, Hamill29 showed that
the shavpe of the absorntion spectrum of the trapped electron in
3-methylpentene is consistent with the overlapping of two
excitation bands.

Following Hamill, the absorption spectrum of the ammoniated
electron at -1500, shorm in Figure 10, may be considered to be the
envelope of two absorption bands, one at 0.77eV and anothrer at 1.08eV,
with the indication of further bands or a continuous absorotion
at higher energies. This breakdown is achieved by reflection of the
lower energy edge of the band and subtraction of the intensity from
the total intensity.

If the higher energy absorntion at 1.08eV arises from a
ls to 3p trénsitioh, the polarised cavity model may be utilised to
estimate the energy for such a process. With Dou = 1,756 and
D_, = 22, eguation (18) places the 3p level at an energy -0.783eV.
For a cavity radius of 3.23, the ground state energy is -2,073eV. The
ls to 3p transition should therefore lie at 1.29eV, in good agreement
with the high energy peak in Figure 10.

The half bandwidth of the first excitation band is 0.36eV,
a fair reduction over the total bandwidth. This value is still larger

by a fazctor of ~4 than the tetramer model calculation suggests.
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The observation that the large bandwidth in water, 0,02eV,
falls to 0.56eV in ice perhaps susgests thal there is & wider
range of similar traps in water. To account fully for the observed
bandwiath would therefore appear to be futile unless boti the
distribution of traps and higher energy absorption processes are

taken into account.

(iv) Dilation Phenomenae

The volume increments associated with the surplus eledtron
have recently been measured to be 84 £ 15 ml/mole (240°K) in ammonia
and 20 ml/mole,25 1 -6 ml/mole3o

phenomena on the theoretical models for the solvated electron is

in water., The impact of such

reflected by the inclusion of a parameter which describes the
effective radius of a void volume. The molecular approach introduces
a new factor to be considered.

Consider structure VIII for the hydrated electron. In the
absence of the surplus electron, the lowest energy geometry lies at
D = 2,118, Introduction of the electron contracts this distance to
1.928, as already mentioned in Section C (i). This featu.e suggests
that volume increments may be a ﬁanifestation of some other
phenonmenon than cavity formation, for example, the whole lattice about
the localisation site may be expanded. Alternatively, the region
surrounding the site may be diluted compared to the normal liquid.30

Developing the former concept, four molecules in water may
be situated at the corners of a tetrahedron fixed in a cube of volume
119.563.3 In the prescence of the electron, this cell expands by a
distance (1.92 - 0.958)% in each direction, aquiring a volume
320.013.3 The volume expansion is therefore 30.19 ml/mole. Treating
the ammonia tetramer structure in this way predicis a volume expansion
of 81 ml/mole, for an ammonia density of 0.6814 g/ml at 240°K.

No cavities are formed in the liquid. An excluded volume
is ecreated within which the molecules coordinating the centre may not
enfer, thus exvanding the volume associated with each cluster.

In 2 more conventional way, the molecules could be ascribed
a radius r, beyond which lies the second solvation shell. Taking
T = 1.58 for ammonia and water, as suggested by Copeland et 2;’2
the spherical region associated with the tetramers may be ascribed

a volume 167.56R 3 for structure VIII and 190.598 3 for structure X,
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The volume increments associtied with the surplus electron in water
and ammovia are 28,9 ml/mole and 20,9 ml/mole respectively. The
observed maguitudes are in the rcverse for these solvents.

The relationship between these two viewpoints uay be seen
if the lattice expansion is treated as crudely equivalent to an
expansion of the molecular radii in the prescence of the electron.
The congideration of models which include a second solvetion shell

would be an interesting test of the lattice expansion concepte

(v) The Ammonia — Water Mixed Solvent System,

The polaron theory qualitatively accomodates the observation
than an increase in solvent polarity leads to a peak absorption for
the solvated electron at shorter wavelengths. By sampling a large
portion of the medium the electron is expected to exhibit a
compromise spectrum lying bet;een the spectra of the pure compongnts.

2 3

and of Dye, DzBacker and Dorfman~~ were

The studies of Arai and Sauer
instigated to investigafe-this behaviour in alcohol-water and
amine-~water soluticns respectively. In both cases it is concluded
that the solvéted electron interacts with a large number of molecules.

Yet there is some evidence that the formation of aggregates
of polar molecules is important to stabilise the electron in
mixtures of polar-non-polar mixtures.34 Two absorption peaks,
characteristic of the pure l.iquids, are observed.35

It is of interest and desireable, as a test of the
molecular approach, to investigate the manner in which the tetramer
models portray the behaviour of the surplus electron spectra in
amnonia-water solutions. Tetramer aggregates which might be important
at different mole fractions of water are illustrated in Figure 11,
Bach structure is obtained by successive replacement of one water
molecule in structure VIII by an ammonia molecule oriented as in
structure X. The computed ground state and transition energies are
collected in Table 9.

The excitation energies computed at the lowest energy
geometry for each structure are superimpoged on the exverimeatal
data observed by Dye, DeBacker and Dorfman in Figure 1l2. The
computed energies vary non~linearly between the limiting excitation
energies for the pure tetramer models. Although the match of these
two curves is not guantitative, the overall trend in the excitation

energy of the surplus electron is well reproduced by the calculations,



Figure 11. The tetramer structures utilised to represent the
molecular clusters occuring in ammonia - water mixtures at various

mole fractions, x, of water.
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Pigure i2. The computed and observed excitation energies of the
surplus electron in ammonia - water mixtures. The full line shows
the experimental data; the crosses mark the calculated transition

energies at 5 mole fractions of water.,
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xamination of the total energy for each tetramer shows thut
there is a ﬁrogressive decrease in the stabilisation energy over the
reference state as each water molecule is replaced. or example, on
moving from (HH3, 3H2O). e to (2NH3, 2H20).e_ the decrease in
stabilisation energy is 0.5leV. The energy of the mixed structures
is to be compared with two reference states, depending on whether the
surplus electron is formally associated with an ammonia or a water
molecule,

As ammonia molecules are added, the cluster in general
expands, excepting that a small contraction is observed at a mole

fraction of water 0.75.

{(vi) The Charge Distributions.

The calculated excess electron density at each atom for
for the tetramer models VIII to X is portrayed in Figure 13, As
was observed with the dimer structures I and II, the electron is
delocalised over the cluster. Protons lying closest to the centre of
the tetrahedron acguire more charge than the more distant protons. It is
also in evidence that the hetero-atoms retain most of tie electron
density, the overall average value being 0.l6e .

One of the important features of the molecular approach
is that spin densities at nuclei comprising the cluster are readily
obtained. Earlier treatments relied on orthogonalising the wave
function obtained from a cavity model calculation with the peripheral

36 The INDO molecular orbital treatment includes

solvent orbifals.
spin polarisation in a natural way.

By comparison with some experimental data from magnetic
resonance experiments, the grain of the molecular orbitals might

be examined.

1(vii) The Llectron Spin Resonance Spectrum of the Solvated Electron,

(a) Introduction.,

The electron spin resonance spectrum of the solvated electron
in polar media is typified by a single resonance. Linewidths vary from

the fine, 0,02 gauss in liquid ammonia at 293°K,37 to the broad,
38

greater than 50 gauss for caesium in methylamine.
The origin of this narrow absorption has been interpreted in

two ways. Kaplan and Kitt912 proposed that hyperfine interactions of



Figure 13, The calculated charcge densities of the excess electiron

at each atom in the tetramer structures VIII, IX and X.
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the surplus electron with the protons in ammonia weve rapidly
modulated by the Brownian motion of the medium molecules. Subseguent
NIR mecasurements were at variancs with this proposa1,39 while isotopic
substitnution of ammonia revealed the predominant origin of the
residual broadening to be due to hyperfine interaction with nitrogen

40,41

nuclei, The relaxation mechansim has also been considered as a

manifestation of tunnelling effects which modulate the ryperfine
interactions.15’4l’42'
The alternative avoroach views the solvated electron as a

43

polaron. Deigen and Pekar '~ showed that to a first approximation,
hyperfine interactions do not alter the energy of the polaron.
Consequently no broadening of the ESR spectrum will be observed. The
extreme sharpness of the linewidth in metal-ammonai solutions is held
as evidence for the existance of the polaron in this medium. The
observation cf such hyperfine interactions invalidates this conclusion.

The imnortance of hyperfine interactions with protons is
demonstrated by the spectra of alkaline aqueous glasses44 and
glasgsy a.lcohols.45 In the deuterated medium the linewidths of the
spectra are more than halved from 15 to T gauss,.

The ®SR spectrum has not yet been observed in pure ice,
although in water at SOC the linewidth is reported to be < 0.5 gauss.46
Recalling the correspondahce between the structure of the solvated
electron in ice, alkaline glnss and water (cf. Section C (i)) it
would apnear that the narrow linewidth in water is a result of

medulatior of the hyperfine interactions with protons.

(b) Theoretical Considerations,

When the ESR spectrum is assembled from the envelope of
absorptions-arising from hyperfine interactions with various different
nuclei, the calculation of the linewidth for a rigid lattice is

relatively simple. The root mean square linewidth may be assessed by

the relation47
Wl = 64 n2 / 21 292 Ii + 1 p_f gauss (4)
i I.
i

where pi is the magnetic moment of nucleus i with spin I,. piis the

unpaired spin density at nucleus i. This expression has been utilised

20

by Kevan to illustrate that the linewidth of the TSR spectrum in

Y —irradizted alkaline glasses arises from the interaction of the
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electron with approximately eight nrotons.
Fquation (4) is apolicable to a rigid lattice. When the
hyperfine interaction fluctuates at a rate T;J, the linewidth is

48

modified and may be calculated from the relation

SE = YU’ T _  gausa.
where Y ig the electron gyromagnetic ratio.
» The value adopted for the correlation time Te is critical,
To make an estimate, the relaxation mechanism must be known.

Nuclear magnetic' resonance studies by Catterall, Stodulski
and Symons concluded that the modulation of the contact interactions
proceeds more rapidly than viscosity controlled molecular process.40
It is therefore surprising that the linewidth variations of dilute
sodium-ammonia solutions with temperature are accommodated utilising
a correlation time proportional to n/T where 1 1is the viscosity of
the medium.:.lB'42 »

For these reasons, upper limits to the correlation time are
estimated, The correlation time for restricted rotation ~f ammonia
molecules in the liguid at 293°K'is estimated from the Debye
relation to be 4.8 picosec.50 The Debye formula is found to hold
when the tumbling species is approximately spherical and ~ 3 times
larger than the solvent molecules.51 When some account of the
molecular nature of the medium is taken, the predicted correlation
times are reduced by a factor of 5 = 6 times,52 for ammonia to
~ 0,96 psece

Utilising an equation between the correlatiogStime for

dielectric relaxation and viscosity reported by Grant,

water at 500 is taken to be 13.6 psec.

Tc for

(c) The Linewidth Calculations,

The INDO calculations utilise a basis set consisting of
Slater fuactions. Consequently, the node in the 2s functions for
first row atoms is collapsed to a point node at the nucleus and spin
densities at the nucleus are not immediately available within the
INDO method. Recognising this defect, Pople, Beveridge and Dobosh54
showed that the spin densities at nitrogen and hydrogen nuclei may

be estimated from the semi-empirical relations

(5)
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wkere the spin density matrix elementis qu are given by

R =p® -pP,
pa = ‘pa " ‘pq

Table 10 displays the spin densities so computed at various nuclei for
the tetramer models VIII to X. The total spin densities are compared

20,55

with the observed values in alkaline ices and metal-ammonia

solutions.l5

In general the spin density at the protons is somewhat
overestimated by a factor of about four in the hydrated electron
models, The small negative spin density observed at the ammonia
protons is not at all well reproduced, the calculated value being
about 0.9. The calculated density at nitrogen nuclei is of the
correct magnitude.

Negative spin densities at protons are also observed in
metal-amine olutlons.5 This feature is not an uncommon phenomenon
for organic radicals. Usually some spin polarisation mechanism is
indicated,

Using equations (4) and (5) and the data in Table 10, the
7SR linewidths were calculated for a range of correlation times,
Computed and experimental values are collated in Table 11,

For the hydrated electron, the agrecment with the currently

46

available experimental data' 1is fair. On deuteration, the linewidth
is predicted to decrease markedly,

For the ammoniated electron, the calculated linewidth is of
the correot-order of magnitnde, the dominant interaction being with
the nitrogen nuclei. The linewidth is predicted to decrease in
deuteroammonia. Recalling that the spin density in metal-ammonia
solutions is found to be negative, with a comparable correlation
time in deuteroammonia the linewidth should increase over that
observed in ammonia, Taking the correlation time to be pronoritional
to 1/m, T, in WD,
in NH .41 The calculated difference in linewidths between the two

3

solvents then becomes smaller.

is increased by a factor of ~ 1.2 over that

That the predominant hyperfine interactions in ammonia

golutions are with the nitrogen nuclei is well accounted for within
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the INDO calculations, The discrepancy concerning the sign of the
density at protons may be a fault of the simple tetramer model
proposed for the ammoniated electron. The introduction of larger
coordination shells or further coordination shells may indeed be
required to describe the electron - proton interactions more fully.

In addition, the molecular orbitals of the system are
constructed from a minimal basis set of atomic orbitals centred on
each atom. It may be necessary to iniroduce more flexibility into this
set by including more atomic orbitals or functions which stem from
the centre of the tetramer. Spin density may then be better
represented.

Parametrisation of these orbitals within the INDO
approximation is a very difficult process. An attempt to introduce
2p functions on the hydrogen atoms met with complete failure. An
ab initio UHF calculation on the ammonia tetramer may be the only

way round this oroblem,

(viii) The Tetramer Model Calculations and the Semicontinuum Treatment.

To summarise the calculations on the tetramer models for
the solvated electron, Table 12 collates the calculated and observed
properties of the hydrated electron (structure VIII) and the
ammoniated electron (structurelxj. The data in this table may be
compared with that in Table i1 of Chapter 3.

Both the molecular apnroach and the semicontinuum treatment
provide a reasonable match with exverimental data when the same
property is considered, in particular spectral observations. However,
within the molecular approach, it is difficult to predict such a
property as the heat of solvation. This calculation would involve
scme consideration of the liquid surrounding the molecular cluster.
The molecular orbital calculations are necessarily performed for the
isolated cluster, although a correspondance with the liquid state is
claimed. This problem must await further developments.

It is unfortunate that some recoursz must be mnde to
experimental observations on the pure liguids in order to quantify
the svectral shifts with temperature and pressure. This feature of
the molecular approach arises since the configuration diagram is not
temperature or pressure dependent, as in the semicontinuum treatment.

The molecules comprising each cluster are held rigidly at the vertices
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of the tetrahcdron. Temperature and vressure effects are then assumed
to expand or contract the tetramer., Yet even so, some experimental
observations have heen shown to ve well accommodated in this simnle
fashiorn.

A particularly important facet of the molecular orbital
treatment is that spin polarisation effects may be immediately
investigated., Although the INDO spin densities at the cluster
protons are somewhat higher thau the observed values, it is
recognised that a more refined computational technique or a more
elaborate model structure may be required to produce closer agreement
with experiment. The semicontinuum treatment cannot account for this
feature,. _

Some discrepancies still remain within the molecular approach,
particularly those concerning the bandwidth. The analysis of the
bandshape of the ammoniated electron, section (iv), demonstrates that
this deficiency may not be as severe as first supposed. There would
appéar to be a range of different clusters around the optimum
geometry which the molecular approach does not accommodate. For each
tetramer model a unique cluster size is predicted.

The successes of the two approaches to the treatment of the
solvated electron recommend thatAperhaps both treatments should be
utilised in a complementary fashion. The semicontinuum treatment
may be useful to gauge the gross properties of the solvated electron,
while the molecular approach utilised to refine the model. The theory
may also be further advanced by some fusion of the two apwvroaches as
was performed by'Jortner in the formulation of the polarised cavity

model,



TABLE 2

The calculated energies E(a.u.), for the planar structures I and II

o
for various intermolecular separations D(A).

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

I

E
-38.2683
-38.2764
-38.2787
-38.2781
-38.2757
-38.2723
-38.2687
-38.2649

TABLE 3

1.0
.1
1.2
1.3
1.4
1.5
1.6
1.8
2.0

—

IT

B
-26.8179
~-26.8275
-26.8321
-26.8337
-26.8334
-26,8321
-26.8304
-26.8265
-26.8230

The calculated energies E(a.u;), for ghe ice=like fragment III for:

various intermolecular separations D(A)and‘angles qo.

D/a
1.1
1.15
1.2
1.25
1.3
1.35
1.4
1.5

0
-38.2942
-38.3069
~38.3158
-38.3198
-38.3207
-38.3195
-38.3170

15
-38.2938
-38.3073
-38.3154
-38.3195
-38.3205
-38.3193
-38.3166
-38.3087

30
-38.2925
-38.3064
-38.3147
-38.3189
~38.3200
-38.3189
-38.3162
~38.3084

45
-38.2902
-38.3042
-38.3130

-38.3175

-38.3189
-38.3179
-38.3154
~38.3075

60 75
-38,2862 ~38,2796
-38.3010 -38.2951
-38.3101 -38.3051
-38.3151 -38.3107
-38.3168 -38.3131
-38.3162 -38.3132
-38.3140 -=38.3115
-38.3069 -38,3085

90

-38.2974

-38.3074
-38.3085
-38.3074
-38.3022



TABLE

The calculated excitation energies Eex(ev) for various intermolecular

separations D(!) of the dimer structures I and II.

I 1T
D ex D Eex
1.0 2.32 1.0 1.53
1.1 2.16 1.1 1.38
1.2 1.98 1.2 1.23
1.3 1.80 1.3 1,10
1.4 1.63 1.4 0.98
1.5 1.46 1.5 0.87
1.6 1.30 1.6 0.77
1.7 1.15 1.8 0.59

2.0 0.45

TABLE 5

The calculated excitation energies in: eV forothe ice-like structure

III at various intermolecular separations D(A)and angles a°.

D/a 0O 15 30 45 60 75 90

1.1 T7.20 7.25 T.36 T.50 T.60 7.61
1.15 6.92 7,00 T.l4 7T.22 T.23
1.2 6.50 6.57 6.66 6.75 6.85 6.84 6.72
1.25 6.18 6.21 6.29 6.40 6.47 6.46
1.3  5.82 5.85 5.97 6.03 6.10 6.09 5.99
1.35 5.47 5.50 5.58 5.67 5.73 5.72 5.63
1.4 5.13 5.16 5.23 5¢32 5.38 5.37 5.29
1.5 4.52 4.59 4.66 4.T2 4.75 4.65



The czlculated energies ®(a.u.) for the dimer structures IV, V, VI

and Y1TI ot various semarations D(R). B¢ is the reference state
of

cnersy.

Iv

VI

2.1
2.2
2.3
2.4
2.5

I"r‘e&f

-38.1496
-38.1989
-38.2125
-38.2133
-38.2124
-38.2098

-38.2075

-38.2386

B
~-26.8030
-26.8034
-26.8035
-26.83033
-26.8030

TABLE 6

2.4
2.5
2.6
2.7
2.8

2.0
2.1
2.2
2.3
2.4

v

VII

n
~38.1830
-38.2245
-33.2372
-38.2385
~38.2388
-38.2382
-38.2371

-38.2386

5
-26.8007
-26.3018
-26.8024
~26.8O259
-26.80256



TABLE T

The calculateg total energies E(a.u.) for the tetramer structures VIII,
IX and X, D(A) is the distance from the centre of the tetrakedron to
the vertex,
VIII _ IX X
D B D B D B
1.758 -76.7989 1.80 =76.3013 1.874 -53.8674
1.808 ~76.8141 1.82 -76.8020 1.924 =53.878¢
1.858 =76.8217 1.84 -76.8024 1.974 -53.8852
1,908 -76.8241 1.85 -=76.8025 2,024 -53,8882
1.958 -=76.8232 1.86 =76.8024 2,034 -=53.0884
2,008 =76.8202 1,88 -=76.8021 2,054 -53.8887
2.058 =76.8159 1.90 =76.8017 2.064 —53.88875
2.108 =76.8109 1.94 -76.8002 2.07T4 -53.8888
2.158 -76.8057  2.00 =76.7970 2,084 -53.8887
2.124 -52,8881
2.174 =53.8866

2

TABLE 8 e

The computed excitagion energies Eex(eV) for the tetramer structures
VIIJ, IX and X. D(A)is the distance from the tetrahedron centre to

the vertex,

VIII X X
D E D E _ D E
ex ex ex
1.758  2.33 1.80  0.78 1.874  0.87
1.808  2.28 1.82 0.8 1.924  0.84

1.858 2,20 1.84 0.84 1.974 0.80
1.908 2.09 1.85 0.85 2.024  0.76
1.958 1.97 1.86 0.86 2.034 0.75
2.008 1.84 1.88 0.87 2.054 0.74
2.058 1.71 1.90 0.89  2.064 0.73
2.108 1.57 1.94 0.90 2.074 0.72
2.158 1.53 2.00 0.90 2.084 0.71

2.124 0.68

2.174 0.64



TABLE 9

The computed total energies, £(a.u. and excitation energies, E ‘(eV

_ : 1 ' g ' oy ’
for the ammonia - water teframers. D(X) is the distance from the
tetrahedron cenire to the vertices; n is the number of ammonia mnlecules

substituted in structure VIII; E, and E_, are the reference state

1
energies when the electron is associated with a water and an ammonia

molecule respectively.

n=1l n=2

b B E D E B
ex ex

1.874 -71.08855 1.72 1.874 -65.3467 1.23
1.879 -71.0886; 1.71 1.924 =65.3479 1.19
1.884 -71.0886, 1.70 1.934 -65.3480 1.18
1.889 -71.0886 1.69 1.944 =65.3479 1.17
1.894 -71.0885, 1.68 1.954 -65.3478 1.16
1.924 =71.0879 1.63 1.974 =65.3475 1.14
1.974 =71.0856 1.55

El -71.0204 ~65.2984
E2 -71.,0312 -65.3092
n=3
D E Eex

1.874 =59.6000 1,02
1.924 =59.6063 1.00
1.974 =59.6096  0.99
2.024 ~59.6110 0.97
2.034 -=59.6111 ° 0.917,
2.044  =59.6111, 0.97
2.054 =59.61115 0.96
2,064  =59.6111, 0.964
2,074 -59.6111 0.967
2.124 =59.6104 0.963
By ~59.5764

E -59.5872



TABLE 10

The calculated and observed spin density, ia units of 1024 cm—3, atf
various nuclei in the tetramer siructures VIII, IX and X.
3 ,
tructure Nucleus Rns ns Pcalc ~ Ptotal Ptotal(Obs)
VIII 33 0.0572 0.130 4 ceg 0.169,2°
H 0.0163  0.037 9414077
IX H 0.0459 0.105 0.816
H 0.0433 0.099
X N 0.0677 1.505  6.018 6.440 12

H 0.0325 0.074  0.888 -0,072

TABLE 11

The calculated and observed ESR linewidths for the hydrated and

ammoniated electrons for a range of correlation times.

Solvent Structure 7(°K) Tc(psec) SHcalc SH_,
H,0 VIII 278 13.6 0425 <0.5 40
D,0 VIII 278 13.6 0.015

H,0 IX 278 13.6 0.28
m,0 X 278 13.6 0.017
NE, X 293 4.8 0.22 0025 37

0.96 0.045
ND, X 293 4.8 0.15
0.96 0,031
5.76 0.18

1.15 0,037



TABLS 12,

Some experimental and comvuted properties fer the ammoniated and

hydrated electrons.

Ammonia (240°K) Hater (300°K)
Obs. Calc. Obs. Calc,
Emax‘(eV) 0.80 0.72 1.72 2.08
aB /a7 % 10%eV/%k  -1.5:0.2 2.0 ~2.9 -4.0
max :
Half-bandwidth (eV) 0.46 0.08 0.92 0.1
1SR linewidth (gauss) 0.025 0.045: 0.5 0.25

AV ml/mole 84215 81 1-6 30.19
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CONCLUSION#



The current theories of the scolveied sloctron in polar
liguids have been reviewed ond a fresh approach, bzzed on the
pronosal of moelecular models, introduced. Althoursh more calceulations
on other species are reguired to ascertein the vrofitability of the
molecular aporoach, the model calculations described are very
encourasing.

Both the semicontinuuwm treatment and the moleculzr approach
give cstimates for the same property, and fail in the bandwidth
calculations. The nolecular models do revezl features which are
not accomodated within the semicontinuum treatment. The latter
approach relies on molecular reorientation and polarisation
to provide a potential well within which the electron is trapped.

The degree of rceorganisation is not readily ascertained.

The molecular approach, on the other hand, is immediately
suited to accomodate the singularities in the potential éxperienced
by the electron as well as the effects of molecuiar orientation.

If molecular rearrangement or the existance of some defect site in the
liguid is important for stabilisation, a molecular model is most
likely to reveal the outstanding features,

The dimer model calculations proved to be useful in this
context. By consideration of the relaxation of the dimer structure
some observed and new spectral phenomena are predicted. The INDO
calculations also showed that, for the hydrated electron, the most
favourable molecular gecometry of a tetramer structure is not that
expected from an electrostatic model. The match between the computed
properties for the cluster model VIII, and the observed properties of
the hydrated electron demonstrates that this structure certainly
deserves further study.

Contrary to the semicontinuum and cavity models, in the
prescence of the excess electron, no conventional cavity is formed.
The molecular model VIII of the hydrated electron contracts when
the electron is introduced. Dilation phenomena are suggested to be
a manifestation of lattice expansion. The test of this hypothesis
awaits the investigation of more extensive molecular models.,

Although the calculated ESR linewidths are of the correct
order of magnitude, the spin densities at protons are larger than
the ohserved values in solid media., This property may perhaps be better

evaluated using a more accurate technique than the INDO method.



