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Abstract 
Understanding the ways in which practitioners can identify and manage undernutrition is 

important within developing world countries. There is still much uncertainty when it 

comes to understanding which measures of undernutrition are the most effective 

predictors of adverse outcomes. This thesis explores how children grow and applies 

statistical methodology to three longitudinal growth datasets with frequent 

measurements in the first two years, seeking new insights into how measures of 

undernutrition can be used to predict future adverse outcomes. The three datasets are 

diverse - from Malawi, South Africa and Pakistan, the latter of which contains 4 subsets of 

different socioeconomic groups. The large number of children within the sets made it 

possible to test several different hypotheses.  

Assessing growth of children within the developing world compared to the 

WHO standard 

Growth charts (or reference charts) are charts which allow practitioners to compare a 

given infant’s anthropometric measurements with a reference population. We developed 

growth charts from the available datasets using Generalised Additive Models for Location 

Scale and Shape (GAMLSS), a method which allows users to flexibly model distributions of 

measurements over time.  

The reference charts we developed describe the growth of samples of children, many of 

whom will not have grown at a healthy rate. It is preferable to compare children with 

healthy infants from a composite external standard. The World Health Organization 

(WHO) growth standard was developed from a variety of populations from across the 

globe which describes the growth of a ‘healthy’ population. This suggests an aspirational 

model, as opposed to a reference, which describes how a sample of children actually 

grow. In this thesis GAMLSS was used to determine whether real populations of pre-

school children from the developing world fit this international standard. We found that 

relatively affluent populations fit the standard well, or even outperform it, while more 

deprived populations fall away to varying degrees, then mainly track parallel to the WHO 

mean beyond 6 months. This suggests that after the first 6 months children from the 

developing world have rates of weight gain roughly on par with the standard, although 

the children are much lighter. 
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Assessing weight gain while conditioning on initial weight 

Plotting measurements on growth charts identifies those whose weight 𝑍 score or centile 

is falling relative to the reference. However, children initially at the extremes tend to 

regress toward the mean. Conditional weight gain (CWG) takes this expected movement 

into account, but can only be used within the population in which the child originates, 

due to certain statistical assumptions. We developed a generalised measure of CWG for 

use with the WHO external standard. This measure requires the correlation between pairs 

of groups of measurements at different time points, as the amount of regression to the 

mean is synonymous with this correlation.  

If data are not available at these time points, they can be interpolated by firstly 

computing correlations between all available data, then modelling the resulting matrix. 

We found that these correlation matrices are heterogeneous within the developing 

world. Therefore, constructing a generalised correlation model was not possible. This 

makes the use of the new generalised measure of CWG impractical without access to 

correlation models computed from local data. However, the measure may be useful 

within the developed world, where correlation matrices may be less variable. 

Pathways through nutritional states 

The analysis then explored the ways that children move between different nutritional 

states, defined as healthy, thin (wasted) and/or short (stunted), over 3-6 month (m), 6-9m 

and 9-12m timeframes, and the probability these states will lead to death. We used 

stochastic models to explore the probability of moving state conditional on previous 

state, exploring the pathways children take through different states over time.  

1.) What states are likely to lead to death? 

Within all timeframes, children who were wasted as well as stunted were more 

likely to die than wasted children, who were in turn more likely to die than 

stunted children. Furthermore, as children age, the conditional risk of death in the 

next time period decreases. However, relative to healthy children, all children 

were less vulnerable within the middle period (6-9m) regardless of state. 

2.) Does wasting lead to stunting? 

Children who were wasted were at significantly higher risk than healthy children 

of later wasting, or becoming stunted as well as wasted, over all timeframes. 
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However, wasting alone significantly increased the risk of later stunting only in the 

3-6m timeframe. 

3.) Does wasting usually precede stunting?  

Across the 3-6-9m timeframes children were much more likely to move from 

either healthy healthy stunted, or healthy stunted stunted, than from 

healthy wasted stunted. This indicates children are more likely to move 

directly into a stunted state than from healthy to stunted via wasted. 

Is growth or size the best predictor of mortality?  

Change in weight (growth) has been shown to be a predictor of mortality in populations 

of children, but it is not clear if this measure is more predictive than the latest weight 

(size). Using weighted Cox proportional hazards models, we determined which of these 

measures is the most valuable predictor of mortality for the majority of children within 

each individual dataset, conducting analyses using variable levels of weightings for 

children at the extremes. We included weight-for-age and height-for-age as predictors 

within our models to determine what combination of predictors best predict mortality. 

In all unweighted analyses, size was the best predictor of time until death. However, as 

the weighting increased, growth entered as the best predictor in populations with low 

rates of undernutrition. In contrast, size always remained the strongest predictor within 

populations with high rates of undernutrition, since in these populations, such a high 

proportion of children fall away from within the centre of the normal range, making 

growth pattern non-discriminating.  

Summary 

This programme of work applied statistical techniques to three diverse longitudinal 

datasets, gaining insights into how children grow between different socio-economic 

backgrounds. We investigated measures of size and measures of growth, utilising 

methods that control for the inevitable fact that healthy children at the centre of the 

population distribution tend to dominate analyses. Furthermore, these methods were 

both multidimensional and time dependant, providing us with a useful framework to 

assess child growth while controlling for influential factors. The results should improve 

understanding of both the aetiology of undernutrition and its clinical management. 
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Chapter 1 

Introduction  

1.1 Preamble 

The primary aim of this thesis is to utilise current statistical methods available in the 

scientific literature, applying them to longitudinal growth datasets in novel ways, allowing 

us to contribute new insights to the understanding of how children grow by quantifying 

which measures of undernutrition are useful predictors of future outcomes.  

Single measurements of attained size and the change in size between two time points 

(growth) are frequently used in paediatrics and are often good proxy measures of both 

the environment children live in and their current state of health. These measurements 

are usually compared with reference charts developed from populations of children 

which closely match in terms of sex and age. Previous research has identified that the 

most recent measurements of size and measures of growth over a recent time period 

relative to a reference population can both be used to predict future survival. However, 

clinicians generally assume that measures of growth over time are superior to the most 

recent measurement, size, as they supply more information about the child’s nutritional 

history. This thesis contributes to the existing body of knowledge by investigating which 

of these measures is actually the best predictor of future outcomes. 

While continuous measures of size and growth have been shown to be predictors of 

mortality, categorical indicators of undernutrition (also known as nutritional states) such 

as wasting (thin/low weight-for-height) and/or stunting (short/low height-for-age) 

relative to the reference population have also been shown to be predictive of mortality. 
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Furthermore, research suggests that children tend to move from certain states to others 

over time. For example, wasting is thought to precede stunting and stunting is thought to 

be irreversible. We investigate the extent to which these presumed transitions are true. 

Conditional weight gain has been proposed as a more robust alternative for growth 

velocity as it accounts for the fact that children initially at the extremes are expected to 

regress toward the centre of the distribution over time. However, the assessment of 

weight gain depends on the use of a suitable, well matched reference, developed from 

healthy children.  The current expression for conditional weight gain only allows the 

comparison of an individual child’s measurements with the distribution of measurements 

in the population from which the child originates. Preferably, the comparison should be 

made with children from an idealised, healthy population of children. We extend the 

statistical methodology so that children can be compared with ‘external’ reference 

distributions, such as the World Health Organization (WHO) standard, creating a 

generalised measure of conditional weight gain. 

This introductory chapter reviews literature which has previously investigated how 

anthropometric measurements can be used to predict outcomes in the future. Reviewing 

this work provides an initial understanding of how children in the developing world grow 

and allows us to develop hypotheses based on previous research. We then test these 

hypotheses in later chapters by utilising statistical methods which have not yet been 

applied in the field. The literature and hypotheses can be found in Section 1.3. However, 

we first present a brief review on how healthy children grow and review undernutrition’s 

effects on children. This provides some background in growth before reviewing previous 

literature. We also introduce growth monitoring used for the diagnosis of undernutrition, 

the WHO standard and provide a rationale as to why conditional weight gain should be 

adapted for use with this standard. 

1.2 Review of undernutrition 

1.2.1 How do healthy children gain weight and grow? 

The first year of a child’s life is the fastest they will ever grow. In the first few days after 

birth an infant loses around 5-10% of their overall bodyweight, but after around 5-7 days 

they start to gain weight and grow quickly (Wright & Parkinson 2004). From 4-6 months, 

an infant’s weight should be around double its birth weight (Krieger 1970). During months 

6-12, weight gain is not as rapid as in earlier life and growth in height slows considerably. 



 

3 
 

The expected height by age 1 year should be around 1.5 times birth height and the 

expected weight should be around 3 times birth weight. However, during months 12-24 a 

child will only gain around 1kg. From age 2, children’s weight will increase at a steady 

pace until puberty (Kliegman 2012), generally around 3.2kg per year and around 6.3cm 

per year from years 6 to 12 (Beaumont Health System 2015). 

When children reach puberty they go through a spurt in growth although not all children 

reach puberty at the same age. It is hormones released during puberty that control 

growth and spark physical changes such as breast development in girls and testicular 

enlargement in boys. In puberty, height velocities (the rate of growth) increase, usually 

from around 9 years old for girls and 11 years old for boys. Peak height velocity occurs at 

a mean age of 13.5 years for boys and 11.5 years for girls, where the magnitude of the 

growth spurt is negatively correlated with age. This spurt in height accounts for around 

20% of final adult height - an average of 25.5cm of females and 27cm in males (Neinstein 

2002). 

Weight gain in puberty accounts for around 50% of an adult’s ideal body weight, but the 

onset of accelerated weight gain within puberty and peak weight velocity are highly 

variable. Weight velocity at its peak can range from 4.6kg/yr to 10.6kg/yr for girls, and 

5.7kg/yr to 13.2kg/yr for boys (Neinstein 2002). 

1.2.2 Introduction to undernutrition  

Undernutrition is the insufficient or unbalanced consumption or absorption of nutrients 

(Black et al. 2008). Undernutrition is most prevalent in low and middle income countries, 

resulting in increases in mortality and overall disease burden. It is one of the main 

underlying causes of illness and death in African women and children, contributing to 

more than half the deaths among under five year olds on the continent (Black et al. 2008) 

and one third of all deaths worldwide (Relman 2013). The estimated proportion of those 

undernourished around the world between 2014 and 2016 was 10.9% 

Undernutrition is one type of malnutrition, where the word malnutrition is used to cover 

undernutrition, overnutrition and specific deficiencies. The body requires essential 

nutrients including vitamins and minerals, as well as the energy to cover energy 

expenditure throughout a normal day. Children also need energy to maintain a healthy 

immune system and, in the case of children, the energy to grow. If the body does not 

have sufficient energy it cannot do this. Undernutrition occurs when people do not eat 
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enough, when the body fails to assimilate nutrients properly, or when there is a greatly 

increased need for energy (Burgess, 2008). Conditions that may greatly increase the need 

for energy include injury such as burns, high fevers, infections, pregnancy and surgery. 

Micronutrient deficiency is a sub category of malnutrition and it occurs when the body 

lacks one or more micronutrients such as iron or vitamins (Black 2008). Micronutrient 

deficiency is usually considered a different disorder. However, when energy is deficient, 

minerals and vitamins are also likely to be deficient. 

Some immediate causes of undernutrition are poor diet and disease, or the consumption 

of meals that may contain substandard nutritional content. The lack of optimal 

breastfeeding, along with illness such as diarrhoea, pneumonia, malaria and acquired 

immune deficiency syndrome (AIDS) are major causes of undernutrition. In infancy, 

underlying causes are family food insecurity, unhygienic living conditions, inadequate 

health services and poor daily care. Poverty, lack of information and war are also major 

causes of undernutrition (Burgess & Danga 2008). 

As a major cause of death and illness in the third world, it is important to understand 

both the effects that undernutrition can have on the human body and the diverse effects 

it can have on the development of children. It is also important to understand the steps 

being taken to diagnose and prevent the problem. 

1.2.3 Effects and causes of undernutrition  

In unborn and new born babies undernutrition of the mother may affect the unborn child, 

although the foetus is relatively protected as it adjusts its metabolism and production of 

hormones (Barker 2001). An example of this can be found in The Dutch Famine Birth 

Cohort study which followed mothers who were pregnant during the Dutch winter famine 

in 1944. Children of mothers who were pregnant during the famine were smaller on 

average. Furthermore, their children’s children were also smaller than average (Painter et 

al. 2008). Undernutrition may also predispose new-borns to chronic diseases such as 

diabetes, cardiovascular disease and obesity in later life. However, a child can be small for 

their age at birth due to medications or toxins, such as alcohol taken by the mother that 

limits growth during pregnancy (Hanson et al. 1978), but genetics is also a factor. A 

mother’s short stature and low weight before pregnancy has also been shown to be 

associated with low birth weight (<2500g) (Burgess & Danga 2008) .  
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For children up to 6 months old, breastfeeding problems, improper formula preparation, 

inadequate number of feedings and birth defects that affect the child’s ability to eat or 

digest normally can all have an influence on growth.  Infants who are not exclusively 

breastfed may achieve the same level of growth (Kramer et al. 2007), but there is an 

increase in the risk of infectious morbidity (Stuebe 2009). For those who use formula milk 

instead of breastmilk there is also a risk of using contaminated water, which combined 

with the loss of the immune protection conferred by breast milk, can make the baby ill. 

There may also be an increase in the amount of energy needed, such as in congenital 

heart disease (Krieger 1970).  

Undernutrition is less common in those aged less than 6 months than other ages, unless a 

baby is not adequately breastfed or the mother is human immunodeficiency virus (HIV) 

positive.  

It has been suggested that poor foetal growth, or stunting in the first 2 years of life, may 

lead to irreversible damage in later life, including shorter adult height, lower grades in 

school, lower income in later life and fewer offspring (Victora et al. 2008). In children, 

there are both short and long term potential complications. Malnutrition can compromise 

the immune system making them more prone to infectious diseases, in part due to poor 

nutritional status. This can lead to an even greater risk of weight loss and an increased 

risk of diarrhoea episodes. A Columbian study estimated that children who experienced 

between 2 and 8 episodes of diarrhoea within the first 3 years of life had between 2.5 and 

10cm less body height than those who did not experience any episodes (Lutter et al. 

1988). In the long term, malnutrition can limit bone growth. Children who are severely 

malnourished have poor developmental levels compared to matched controls or siblings 

even after they recover (Grantham-McGregor 1995).  

1.2.4 Growth monitoring for the diagnosis of undernutrition 

Growth monitoring involves regular measurement of children’s size, and can be used to 

diagnose undernutrition. Where medical services are available, health staff will usually 

perform a physical examination for diagnosis. As part of the physical examination, health 

staff will measure weight, height, mid-upper arm circumference (MUAC) and from the 

height and weight measurements calculate body mass index (BMI) or weight-for-height. 

Health staff then plot these measurements on growth charts which are made up from 

measures of healthy children and serve as a standard for how children should grow. The 
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difference between growth ‘standards’ and ‘references’ are that standards are made up 

from a healthy population of children which serve as a standard to how children should 

grow, whereas growth references simply describe the growth of a sample of individuals. 

In the past a number of charts have been used which summarise anthropometric 

measurements by age. The Tanner-Whitehouse (1966) charts cover weight, height, 

velocity, head circumference and skin folds from birth to 19 years of age (Tanner et al. 

1966; Tanner & Whitehouse 1975). Gairdner-Pearson published charts in 1971 from 28 

weeks gestation to 2 years. These charts cover weight, height and head circumference 

(Gairdner & Pearson 1971). The National Center for Health Statistics (NCHS) is an 

American reference covering height, weight and head circumference (Hamill et al. 1979). 

The UK 1990 charts included weight, height, BMI, head circumference and stages of 

puberty (Freeman et al. 1995). Measurements were from 23 weeks to 20 years (Wright et 

al. 2002). Note that these charts are all references rather than standards. 

The two main charts which are currently used around the world are the World Health 

Organization (WHO) 2006 standard and the Center for Disease Control (CDC) reference, 

which superseded the NCHS reference (de Onis et al. 2007). The WHO standard is used 

within this thesis to compare children’s growth, described at length in Section 1.2.6. 

Measurements obtained by the health staff can be compared with any of the above 

references or standards so that the centile in which they lie on can be determined.  

In developing world countries, health workers collect measurements and monitor growth 

to detect and intervene in children where there is evidence of malnutrition. This is called 

growth monitoring (Garner et al. 2000). If a child’s weight or height is average, it will 

follow the median (50th centile) curve of the reference chart. If weight or height gain 

pattern is slower than average then this qualifies as growth faltering. In this case, an 

intervention may be needed.  

Growth monitoring is considered an essential element of healthcare. In a survey of 178 

Ministries of Health, 88% reported that they monitor child growth (de Onis, Wijnhoven, et 

al. 2004). The United Nations Children’s Fund (UNICEF) recommends monthly growth 

monitoring for all children up to the age of 18 months in developing world countries and 

is usually considered part of development programmes aimed at improving nutrition 

(Panpanich & Garner 1999). 

Growth charts are intended to provide a diagnostic tool for surveillance of individual 

children’s health and nutrition, allowing effective action to be taken in the event of 
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growth faltering. They can also be used to teach families, mothers and health workers 

how weight and height can be affected by illness and poor nutrition, and this can 

promote awareness. Furthermore, it allows regular contact with primary healthcare 

services. If growth faltering is detected early and families and health workers are made 

visually aware of the abnormal height or weight gain, then families and health workers 

can intervene given that they are offered the motivation and information to do so 

(Ashworth et al. 2008). Further benefits of growth monitoring include community 

mobilisation and targeting of supplementary feeding. It also allows health workers to 

provide information on the prevalence of various indicators of undernutrition. Collecting 

information can otherwise be time consuming as special studies need to be designed and 

additional information needs to be collected on a non-routine basis. 

There are many factors that determine whether growth monitoring is successful or not. 

Measurements must be taken with good quality equipment by trained staff who can take 

reliable measurements (Hamill et al. 1979). Poor growth may be reflected by a single 

attained extreme measurement, or can be indicated through downward centile crossing 

by plotting serial measurements (Olsen et al. 2007). Serial measurements in growth are 

highly correlated and children will usually tend to track along the chart. If a child crosses a 

number of centiles, there may be cause for concern. However, some centile crossing is 

actually expected due to “regression to the mean” (RTTM). RTTM is a statistical 

phenomenon where if individuals or groups of individuals who when measured lie at the 

extremes, will on average be closer to the population mean when they are measured 

again (Stigler 1997). This means the further children are initially from the centre of the 

population distribution, the more they are affected on average. Therefore, measures of 

growth should ideally take this expected movement into account (see Section 1.2.8 for 

further information). 

Ashworth (2008) presents results from early studies, reporting how the prevalence of 

infant mortality in developing world countries was reduced through growth monitoring. A 

study in 1966 in Imesia, Nigeria, showed that infant mortality was 57 per 1000 in the 

intervention group (growth monitoring) compared with 91 per 1000 in the control village 

(no growth monitoring). For years 1-4, the intervention group mortality rate was 18 per 

1000 and in the control group it was 51 per 1000. Furthermore, children within the 

intervention group were 0.3-0.4kg heavier and 1.5-3cm taller on average (Cunningham 

1978; Gwatkin et al. 1980; Ashworth et al. 2008). Another example from Ashworth (2008) 



 

8 
 

illustrates the effectiveness of growth monitoring in Hanover, Jamaica. A child nutrition 

program comprising of growth monitoring and nutritional education showed that the 1-

48 month mortality was 15.4 per 1000 in the years 1972-1973. However, after the 

introduction of growth monitoring and nutritional education this dropped to 7.4 per 1000 

in years 1974-1975. Furthermore, the prevalence of underweight children dropped from 

11% in July 1973 to 6% in July 1975 which can be attributed to the intervention of growth 

monitoring and nutritional education in July 1974 (Alderman et al. 1978; Ashworth et al. 

2008). However, it must be noted that Roberfroid et al. (2005) concluded that there is too 

little scientific evidence to support the benefits of growth monitoring but found it may 

help with public nutrition in specific situations. 

 

Figure 1.1: Framework for analysing the effectiveness of growth monitoring programmes 

(Ashworth, Shrimpton, & Jamil, 2008) 

1.2.5 How are growth charts developed? 

Thinking about the collection of data allows us to think about the construction of growth 

charts in the simplest form. Given that we would like to calculate centiles for our data so 

that we can determine where a given child lies relative to the population, we need to 

collect enough data at certain points along the 𝑥 axis so that centiles can be calculated. 

Imagine, for example, that we wish to collect data at 5 months old. We can then calculate 

centiles for our data at that age. If we simply do not have enough information at 5 

months, or measurements are taken slightly before or after this age (perhaps participants 

turn up late for their scheduled measurement date), then it makes calculations more 

complicated since we either do not have enough information, or the parameters for the 

distribution at this age may be slightly wrongly specified (since the population mean will 

not be at  exactly 5 months) so the next stage in the construction of our chart would be to 

“join up the dots” between samples, producing a chart which has linear sections. 
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However, the problem with this approach is that it does not make physiological sense 

that a chart would have linear sections, and the closest effort to build a smooth chart 

would require vast amounts of data to calculate centiles at a vast number of ages. The 

concept of developing a smooth chart allows us to get over this hurdle. Smooth centile 

curves are more pleasing to the eye, but there is also justification that physiologically 

small changes in the covariate are likely to lead to continuous changes in the 

measurement, so that centiles ought to change smoothly (Cole & Green 1992). 

Growth chart modelling techniques, such as the LMS method, can be used to create 

growth reference charts with smooth centile curves. The LMS method is arguably the 

most popular method proposed by Cole (1988) and Cole & Green (1992). This method 

models the population distribution, taking into account: skewness (L), central tendency 

(M), and dispersion (S). The parameters are estimated and then smoothed. Any desired 

centile can then be calculated from the smoothed L, M, and S parameters, and children’s 

measurements can be compared with the chart. The centile that a child lies on can be 

converted to a 𝑍 score. 𝑍 scores are transformed measurements that express how many 

population standard deviations (SD) the measurement is from the population mean 

(assuming the distribution is a symmetric Gaussian). 𝑍 scores are normally distributed 

with zero mean and unit SD if a well matched reference is used (see Section 2.4 for more 

details on 𝑍 scores).  

This methodology can be used to create a number of different kinds of charts. For 

example: weight-for-age, height-for-age, weight-for-height and BMI-for-age. 

It is of interest to use this method to create growth reference charts for the developing 

world datasets made available for this research. This allows us to gain insights into how 

children within the sets grow in terms of median growth and variability. 

1.2.6 World Health Organization standard 

Internal references are those which are developed from the distribution of 

measurements in which the child originates, which describe how those children grow at a 

certain time and place. However, there are problems with using ‘internal’ references to 

compare child growth. It is healthy children, ideally from an ‘external’ population of 

healthy infants that should be used for comparison.  

In 1993, the World Health Organization (WHO) reviewed the use of commonly used 

references and concluded that the NCHS reference did not adequately describe child 
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growth. There was a need to develop a chart which was not solely based on a sample of 

measurements at a time and place, and that could be used to compare growth on a 

universal level.  

The WHO 2006 standard is a composite growth standard which includes children from a 

number of different backgrounds - both developed and developing world countries. The 

WHO Multicentre Growth Reference Study (MGRS) was a community based multi-country 

project. The MGRS study was conducted between July 1997 and December 2003 and was 

a population based study which took place in: Davis, California, USA; Muscat, Oman; Oslo, 

Norway; and Pelotas, Brazil as well as selected wealthy neighbourhoods of Accra, Ghana 

and South Delhi, India (de Onis & WHO Multicentre Growth Reference Study Group 

2006). Further information on each of the sites can be found on the MGRS website. The 

process of selecting the study sites lasted 24 months and involved evaluation of eligibility 

criteria for study subpopulations based on the study protocol. The inclusion criteria were 

as follows: no known health or environmental constraints; mothers willing to follow 

MGRS feeding recommendations for at least 4 months; introduction of complementary 

foods by 6 months; no maternal smoking before or after delivery; single term birth and no 

significant morbidity. The criteria were defined to help select healthy children from 

comparable affluent backgrounds across sites (de Onis, Garza, et al. 2004). 

The MGRS consisted of a longitudinal study up to 2 years and a cross sectional study from 

months 18 up to 71. Children were enrolled at birth and were visited a total of 21 times 

on weeks 1, 2, 4 and 6, monthly to 12 months then bi-monthly up to 2 years. The 

maximum delay or advance of measurements allowed by the protocol was 10% of the 

child’s age, but in practice, teams worked with more restricted tolerable delay or advance 

targets (0, 1, 2, 4 and 5 days for visits at weeks 1, 2, 4 and 6 and 2 months respectively). 

Data was collected on anthropometric measurements, socio-economic, demographic and 

environmental factors. 

The cross sectional design was adopted to avoid the time and cost constraints involved in 

conducting a longitudinal study to that age range. Furthermore, growth is more linear 

after 2 years of age. Using 18 months as the lower age limit for the cross sectional study 

allows an overlap of 6 months with the longitudinal study which provides information on 

the transition from supine length to standing height and facilitates the joining of the two 

datasets (de Onis, Garza, et al. 2004). 
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The field staff collecting anthropometric data had to be at least secondary school 

educated, be motivated, had to be able to write legibility, speak the local language and 

had to be able to interact appropriately with the high economic status families that were 

targeted for the study. Measurement procedures and training were prepared by MGRS 

coordinating centre in Geneva, Switzerland (de Onis et al. 2006). Anthropometrists were 

trained at each site by an experienced anthropometrist who followed the procedures 

outlined by the MGRS coordinating centre. An important aim was for the 

anthropometrists to measure accurately, without bias. To achieve this, measurements 

had to be obtained that were on average equal to the values measured by the expert. All 

study sites used the same measuring equipment.  

In total there were 8,440 children studied across the 6 sites. Originally 1743 children were 

enrolled in the longitudinal sample. Six children were excluded for morbidities affecting 

growth leaving a final sample of 1,737 children. This was important since the sample was 

designed to describe healthy growth. Of the 1,737 children, 882 complied fully with the 

MGRS protocol and completed the follow up period of 24 months. The other 855 

contributed only their birth records as they failed to comply with the criteria or dropped 

out.  

The WHO charts were developed from the dataset by de Onis et al. (2006). The original 

method chosen to model the data was a method called LMSP, which models four 

distributional parameters: skewness (L) (shape parameter, transformation to symmetry); 

median (M) (location); coefficient of variation (S) (scale, or variability) and kurtosis (P) 

(shape parameter, the “peakedness”). However, in the end, the LMS method was 

ultimately chosen. The LMSP method is a more flexible generalisation of the LMS method 

however it requires a more complicated 𝑍 score calculation, simplifying to the LMS 

method if no adjustment for kurtosis is necessary. The curves that describe the growth of 

the population over time can be used to determine how other datasets fit the standard. 

As the WHO charts represent optimal rather than average growth and are to be used in a 

wide range of settings, variations in fit of individual samples are to be expected. Roelants 

(2013), Hui et al. (2008) and Wright et al. (2008) have compared children’s growth from 

the developed world with the WHO standard. Roelants et al. (2011) compared Belgian 

and Norwegian children with the reference and found that Belgian children’s weights 

were roughly on par with the standard at birth, but this average rised to 0.5SD by age 2. 
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Norwegian children tracked around 0.5SD above the WHO median from birth to age 2 

(and beyond to age 5).  

Hui et al. (2008) found both boys and girls from Hong Kong were found to gain weight at 

the same rate as the WHO standard (0SD) up until 3 years, although they were shorter by 

around -0.3SD. This may be down to the MGRS inclusion criteria as children in the MGRS 

study were from six countries: Brazil, Ghana, India, Norway, Oman and USA, none of 

which are in East Asia. Children from the UK in the Gateshead Millennium Baby Study 

were 0.17SD above the WHO median at birth, while children in the Avon Longitudinal 

Study of Parents and Children were 0.34SD above the standard at birth. This increased to 

around 0.67SD by 12 months and growth paralleled the WHO standard at this distance 

until age 2 and beyond (Wright et al. 2008). 

All of these studies focus on identifying how children from the developed world fit the 

idealised reference by modelling the distributions relative to the standard. On the other 

hand, although many studies have investigated the proportions of children above and 

below certain threshold values in the developing world, little work has assessed how 

children from the developing world fit by modelling the relative distribution. One of the 

aims of this thesis is to determine how children from the developing world fit the WHO 

2006 standard by modelling the relative distributions the diverse populations made 

available for study. 

1.2.7 Indicators of undernutrition 

There are various indicators currently used to diagnose undernutrition at either individual 

or population level. An infant’s measurements are usually compared with the reference 

charts described in Section 1.2.4. For surveillance purposes, if their measurement is 

below a certain threshold value, then the child is categorised into one of a discrete 

number of “nutritional states” identified by the indicator. Table 1.1 displays the different 

available measures. 

The WHO Expert Committee (1995) defined terms to describe failings in weight and 

height: low height-for-age (stunting), low weight-for-height (wasting) and low weight-for-

age (undernutrition). Other indicators of undernutrition are also available, such as MUAC 

and BMI (Jamison et al. 2006).  
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Table 1.1: Indicators of undernutrition 

The definition of wasting, defined by the WHO Expert Committee (1995), is less than 2SD 

below the median weight-for-height of the reference population (WHO standard). Hamill 

et al. (1979) states that age independence which is an assumption of weight-for-height 

standards “is not quite true”, as children’s weight and heights increase at different rates 

at different ages. During the first year of life, children of a certain height tend to weigh 

more the older they are (Van Wieringen 1978). Therefore, weight-for-height standards 

are slightly biased (Cole et al. 1981).  

However, the effect of age can be included within the assessment of weight-for-height. 

McLaren and Read (1972) compared the ratio weight/height to the weight-for-

Indicator Description 

Stunting (low height-for-
age) 

Children are categorised by height/length measurements, usually 
based on height-for-age 𝑍 score (HAZ). 
 
Children who are stunted are not as tall as their healthy 
counterparts (categorised by a threshold value) who have the 
same physical characteristics such as similar age and sex. 
 
Moderately stunted: -3 ≤ HAZ < -2 
Severely stunted: HAZ < -3 

Underweight (low 
weight-for-age) 

Children are categorised by weight measurements, usually based 
on weight-for-age 𝑍 score (WAZ). Analysis similar to that above. 
 
Moderately underweight: -3 ≤ WAZ < -2 
Severely underweight: WAZ < -3 

Wasting (low weight-for-
height) 

Children are categorised by height and weight measurements, 
usually based on weight-for-height 𝑍 score (WHZ).  
 
Moderately wasted: -3 ≤ WHZ < -2 
Severely wasted: WHZ < -3 

Mid-Upper Arm 
Circumference  

Distance around the mid-upper arm, measured at the mid-point 
between the tip of the shoulder and the tip of the elbow.  
 
Moderate Acute Malnutrition (MAM): 115mm ≥ MUAC < 
125mm 
Severe Acute Malnutrition (SAM): MUAC<115mm 

Body Mass Index  

𝐵𝑀𝐼 =
(𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠)

(ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠)2
 

Computed as: 

BMI categories used to define underweight, normal weight, 
overweight and obese. 
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age/height-for-age ratio of the NCHS reference, obtaining an estimate of the ratio as a 

fraction of the expected ratio. This introduced age, as children were compared with 

median weight-for-age/median height-for-age of the NCHS standard. However, this 

measure was criticised as it did not accurately describe the rate of weight gain relative to 

height gain over the time frame, assuming that weight and height increased at the same 

rate. This rate was quantified using linear regression by Cole et al. (1981) in children aged 

0-12 months. Cole regressed log weight-for-age on log height-for-age in children within 

the same age group, quantifying the relationship between the two measures. Cole 

obtained log𝑊𝑓𝐴 = log (𝛼) + 𝑝. log (𝐻𝑓𝐴) which is equal to 𝑊𝑓𝐴 = 𝛼.𝐻𝑓𝐴𝑝.  

Cole (1979) and Cole et al. (1981) found that the regression slope for pre-school children 

is roughly equal to 2, and 𝛼 is equal to 1. This means that 𝑊/𝐻2 can be compared with 

the reference 𝑊𝑓𝐴/𝐻𝑓𝐴2, resulting in a better index than 𝑊/𝐻. This leads to the name 

𝑊/𝐻2-for-age since it takes age into account via the weight-for-age and height-for-age 

reference ratio. Rao & Singh (1970) and Babu & Chuttani (1979) suggested 𝑊/𝐻2 as an 

age independent index for weight-for-height in children. However Van Wieringen (1978) 

found that the ratio falls between 1 and 6 years, indicating that 𝑊/𝐻2 by itself is 

unreliable unless standardised for age (Cole et al. 1981). 

Therefore, Cole (1985) states that 𝑊/𝐻2 should be used for pre-school children. 

However, 𝑊/𝐻3 may be a more suitable measure for older children going through 

puberty since the weight gain relative to height gain increases with age. The power 𝑝 

decreases to 2 after puberty (Cole 1986).  

For these reasons, we use 𝐵𝑀𝐼-for-age 𝑍 score below -2SD relative to the WHO standard 

to define wasting within our latter analyses. This measure takes into account the 

relationship between weight, height and age, which weight-for-height references fail to 

do. When referring to wasting in reference to other published literature, we still refer to 

the WHO’s definition of WHZ < -2. It is important to note that one advantage of weight-

for-height standards are that they can be used when children’s ages are unknown. 

1.2.8 Assessing weight gain over time 

The standards described in Sections 1.2.5, 1.2.6 and 1.2.7 are usually referred to as ‘cross 

sectional standards’ which describe the distribution of measurements as functions of 

covariates, usually age and sex. Single measurements compared with cross sectional 

standards allow paediatricians to assess relative attained size. Serial measurements allow 
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for a more accurate assessment of a child’s growth rate, which describe change in size 

relative to the reference over time.  

The space between the major centile lines are called channels. There is cause for concern 

if a child crosses more than two channels (Shields et al. 2012). 

When assessing growth curves (by joining several measurements of attained size by a 

line) relative to the reference population, it is normal for children to cross one or two 

centiles in infancy and puberty, most likely towards the 50th centile due to RTTM 

(Canadian Paediatric Society 2004). However, measurements showing unexpected 

downward trend from a previously established rate of growth may be a sign of growth 

faltering.  

On the other hand, if the child sits at a higher centile at time point 2 than they did at time 

point 1, then they have gained weight at a faster rate than expected. But, how can this 

‘faster’ rate be measured and compared to other children’s weight gain? 

Growth increments are the difference in size between two time points. For example, for 

weight measurements at 𝑡1 and 𝑡2 the growth increment is 𝑊𝑡2 −𝑊𝑡1. Growth velocity is 

the difference divided by the length of the interval, expressed as rate of growth per 

unit, (𝑊𝑡2 −𝑊𝑡1)/Δ𝑡, where Δ𝑡 = 𝑡2 − 𝑡1. Velocities can be compared with velocity 

references, such as the WHO 2009 velocity standard, allowing comparisons with an 

idealised population of healthy children. As stated however, serial measurements are 

expected to regress towards the mean, which these measures do not take into account.  

Conditional measures such as those by Cameron et al. (1980) and Berkey et al. (1983) 

estimate future size using a linear regression model conditional on size at a previous time 

point, taking RTTM into account while working on the raw measurement scale. Similar 

work has been carried out by Cole (1994), Cole (1995) and Cole (1997), aiming to provide 

a simple method that would allow practitioners to assess centile change between two 

time points while adjusting for RTTM on the SD scale. This method is known as 

“conditional weight gain”. Conditional weight gain is a valid alternative for growth 

increment or growth velocity (Roelants 2013), using the properties of 𝑍 scores to express 

the change relative to the population in which the child originates. There are advantages 

of working on the SD scale over the raw measurement scale (Cole 1995). The 𝑍 scores 

follow a normal distribution with zero mean and unit variance and can therefore be 

expressed as a centile, if an appropriate growth reference is used. 
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The method provides an unbiased estimate of the change in weight since RTTM is taken 

into account. In this context the amount of RTTM is synonymous with correlation (Cole 

1995). Therefore, a way to adjust for RTTM when working on the SD scale is to quantify 

the correlation between groups of measurements at 𝑡1 and 𝑡2. The expected position of a 

measurement on the growth chart is therefore given by 𝐸(𝑍2|𝑍1) = 𝑟𝑍1. The difference 

between the true measurement and the expected value can be converted into a 𝑍 score 

itself by dividing by the standard deviation, √1 − 𝑟2. This measure can then be expressed 

as a centile (Cole 1995). All that is needed is a model which can interpolate the 

correlation between measurements on the SD scale.  

As noted, a problem with this method is that it requires a well matched reference so that 

the mean of the scores is 0 and the standard deviation is 1. To guarantee these 

conditions, only an ‘internal’ reference population can be used. However, there is a 

downside to using internal reference populations as they describe how children grow at a 

certain time and place. Ideally, references such as the WHO standard should be used. An 

aspect of the primary aim of this thesis is to derive an expression which can be applied to 

external references, and to investigate which models most accurately represent 

correlation structures. The new measure will be a generalised version of conditional 

weight gain, hence the name generalised conditional weight gain. 

1.3 Using anthropometry to predict future outcomes  
We have described undernutrition and its effects, and now move onto a more detailed 

review of literature which has investigated the drivers of undernutrition and how the use 

of anthropometry can predict future adverse outcomes. The original study aim for this 

thesis was to investigate what level of weight gain was associated with adverse outcomes 

and whether weight gain was any more predictive than recent size. Later in the 

programme of work we added an investigation of the relationships between ‘nutritional 

states’ as defined in Section 1.2.7. This investigation was added since the review of 

literature surrounding the original study aim highlighted that, while measures of both size 

and growth are predictors of adverse outcomes, nutritional states are also predictors. 

Furthermore, relationships are presumed to exist between them. However, these 

transitions are poorly understood. 

Existing research in these areas is reviewed in detail in this section and hypotheses based 

on the research are developed at the end. We investigated the general literature in the 
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area then categorised the results into sub-sections. The review is split into three parts: 

papers which have investigated measures which have been shown to predict mortality, 

papers which have investigated whether wasting leads to stunting, and papers which 

have identified whether stunting is reversible.  

Both backward and forward searching was used to find literature, mainly on internet 

search engines such as Google Scholar. Many of the papers found were observational, but 

a few were trials. Using search terms like ‘weight’, ‘morbidity’ and ‘mortality’ came up 

with millions of results due to the number of papers which come under these umbrella 

terms. Adding terms like ‘velocity’ decreased the number to hundreds of thousands. 

Finding relevant literature, therefore, proved hard due to the number of irrelevant 

results. Combinations of the words: early, infant, life, developing, world, child, children, 

mortality, morbidity, gain, weight, height velocity, growth, birth, validity, predict, 

predictive, survival, wasting, stunting, undernutrition, pathways, transition, probabilities, 

relationship, irreversible, nutritional, state, reversible, severe, moderate, mild, 

malnutrition and size were used within the search criteria as well as their synonyms, but 

still yielded fairly sparse literature. The lack of relevant material emphasises the need for 

further research in this area. 

1.3.1 How well do anthropometric measures predict mortality? 

This section is split into sub-sections assessing: size/indicators of undernutrition as 

predictors of mortality, growth as a predictor of mortality, and a section reviewing papers 

which have evaluated size/indicators of undernutrition vs. growth. Components of papers 

which review size vs. growth also review measures of size and growth independently in 

the first two sub-sections. The reason for this is that the original study question was to 

determine whether size or growth is the best predictor of mortality. Exploring literature 

which has investigated each of these areas provides an understanding of what is currently 

known as to how each measure can be used as a predictor, which leads us to develop 

hypotheses based on the research, which we will then test. 

1.3.1.1 Size/indicators of undernutrition 

Weights and heights relative to reference populations have been shown to be predictive 

of mortality. Fawzi et al. (1997), using multivariate logistic regression, found an inverse 

relationship between height-for-age and mortality within a cohort of 28753 Sudanese 

children, indicating the higher a child’s height-for-age, the lower the risk of death. Bairagi 



 

18 
 

& Chowdhury (1994) investigated whether height-for-age, weight-for-age and weight-for-

height were predictors of 2 year mortality in a cohort of 1,976 12-23 month old children 

from Matlab, Bangladesh. Bairagi used tabulation (𝜒2 tests) and logistic regression and 

found weight-for-age, height-for-age and arm circumference were significant predictors 

in univariate logistic regression models. Work assessing weight and height relative to 

reference populations was also carried out by Pelletier et al. (1995), who studied the 

proportion of child deaths related to malnutrition, defined as low weight-for-age in 53 

developing world countries around the world. Pelletier found that 56% of child deaths 

were attributable to malnutrition’s potentiating effects and 83% of these were 

attributable to mild to moderate malnutrition (60-80% of the median weight-for-age of 

the reference population) opposed to severe malnutrition, indicating the impact of 

malnutrition on child mortality.  

Schroeder & Brown (1994) pooled results from 5 previously published studies (using tests 

of heterogeneity to determine if datasets could be pooled, and pooling relative risks (RR) 

over the studies) and found that young children (6-60 months) with mild to moderate 

malnutrition (defined as <80% weight-for-age) had 2.2 times the risk of dying during the 

follow up period compared with their better nourished counterparts (>80% weight-for-

age) and severely malnourished children (<60% weight-for-age) were 6.8 times more 

likely to die.  

Nutritional status, defined using the definitions in Section 1.2.7, has also been shown to 

predict mortality. Olofin et al. (2013) used Cox proportional hazards models to estimate 

hazard ratios (HRs) in a pooled analysis involving children aged 1-59 weeks in 10 

prospective studies in Africa, Asia and South America. They found that those who were 

wasted were at a higher risk of mortality than those who were underweight or stunted, 

and as weight and height 𝑍 scores (relative to the WHO standard) decreased, the risk of 

mortality increased (using most recent measurements to categorise children into each 

nutritional state).  

In the same pooled set as Olofin’s, McDonald et al. (2013) used Cox proportional hazards 

models to determine whether a combination of anthropometric deficits increased the risk 

of death. They found wasting (W), underweight (U) and stunting (S) were all associated 

with an increased risk of death. Wasting was worse than underweight, which was in turn 

worse than stunting, with pooled HRs of 2.30, 2.49 and 1.47 respectively compared with 

children with no anthropometric deficits. Furthermore, there was a cumulative effect 
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where children had more than one anthropometric deficit. McDonald found HRs of 3.4 for 

S+U, 4.7 for W+U and 12.3 for W+S+U (again, using their most recent measurements to 

categorise children).  

Vesel et al. (2010) also carried out work on the predictive validity of nutritional status 

using sensitivity and specificity to determine whether stunting, wasting and underweight 

were good predictors of mortality from 6 weeks to 6 months, and from 6 months to 12 

months in Ghana, India and Peru. Sensitivity is the proportion correctly predicted of those 

who died, while specificity is the proportion correctly predicted of those who did not die. 

Using the WHO standard, in Indian infants from 6 weeks to 6 months, underweight was 

the best predictor, with sensitivity of 70.2% and specificity of 85.8%. There was no 

indicator available in Ghana or Peru <6m. From 6-12 months, underweight had the 

highest sensitivity and specificity in Ghana (37.0% and 82.2%, respectively) and Peru 

(33.3% and 97.9% respectively), while wasting was the best predictor in India (sensitivity: 

54.6%; specificity: 85.5%). 

Van Den Broeck et al. (1993) studied the influence of nutritional status on child mortality 

in rural Zaire (children aged 0-72 months), setting out to determine the association 

between mild to moderate undernutrition and mortality in short term (3 month) and long 

term (3-30 month) periods where risk of death was attributed to nutritional status at the 

initial time point. For short term mortality, children who survived were included every 

successive 3 month period. Children were categorised into WAZ, HAZ, WHZ and MUAC-

for-age SD categories < -4, < -3, < -2 and the reference category of ≥ -2. Those in category 

< -4 had RRs for short term mortality of 176, 143, 159 and 15 for MUAC-for-age 𝑍, WHZ, 

WAZ and HAZ. This reduced to 20, 40, 15 and 2 for those in category < -3 and 3, 3, 2 and 

1.2 in category < -2. For long term mortality, those in category < -4 had RRs of 28, NA, 47 

and 14 for MUAC-for-age 𝑍, WHZ, WAZ and HAZ. This reduced to 3, 2, 10 and 3 for those 

in category < -3 and 2, 2, 6 and 1 in category < -2. 

The last four papers to be reviewed have compared size as well as growth as predictors of 

mortality. Therefore, they appear in the next two sections as well as this one, reviewing 

the relevant components of the papers within each section. They are reviewed in 

chronological order. Three of them utilise datasets from Bangladesh, and one from the 

Democratic Republic of Congo (DRC). 

Bairagi et al. (1985) investigated whether weight-for-age %, height-for-age % and weight-

for-height % (NCHS reference) were significant predictors of one year mortality (children 
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aged 0-4 years) in rural Bangladesh. To compare indicators between living and dead 

children, Bairagi used normalised distances (ND) (a measure which allows comparisons 

between different indicators) and maximum sum of sensitivity and specificity (MSS). 

Weight-for-age % (ND = 0.71, MSS = 144) was the best predictor, followed by height-for-

age % (ND = 0.72, MSS = 126), then weight-for-height % (ND = 0.38, MSS = 116). 

Bairagi et al. (1993) also conducted research in Bangladesh to investigate whether 

weight-for-age % (NCHS reference) is a significant predictor of mortality. Bairagi used NDs 

and 𝑡-tests to compare the weights of living and deceased children for significance. The 

weights of 1,876 children aged 6-36 months were measured at time point 𝑡1. 1,900 

children were measured 3 months later, 𝑡2. 1,664 children had measurements at both 

time points. Of the 1,664 children, 27 died during the 12 month follow up period from the 

last measurement 𝑡2. The results showed that those who were still alive at the end of the 

study had a weight-for-age percentage of 70.5%, while those who died had a weight-for-

age of 61.48% prior to death (𝑝 < 0.05). 

Again, in Bangladesh, Briend & Bari (1989) investigated how weight-for-age % (NCHS 

reference) affected mortality. Briend used child months for analysis (a child was a survivor 

if alive at the next month) with children aged less than 36 months, measured each month 

for up to two years. MSS was used and significant differences were assessed using logistic 

regression and relative risks (RR). For weight-for-age <60% of the reference, the MSS was 

161.5 and the odds of death were 14.7 using logistic regression (𝑝 < 0.05). The RR was 

14.5 (95% CI: 9.8 – 21.3) compared with those >60%. 

More recently, O’Neil et al. (2012) studied child mortality in rural Africa, predicting 

mortality by nutritional status. 2,402 children between 0 and 24 months in the rural areas 

of the DRC with high malnutrition and mortality rates were studied. First measurements 

were taken between the ages 0 and 2 years old and every three months thereafter (up to 

24 months). 57 children died during follow up (median follow up time of 15 months). 

O’Neill split up anthropometric indices into three categories once they were transformed 

to 𝑍 scores: > −2, −3 < 𝑍 < −2 and 𝑍 < −3. O’Neill carried out a univariate age 

adjusted analysis to determine HRs for those within each category of: weight-for-height, 

BMI-for-age and MUAC-for-age. Baseline anthropometric indices were specified as the 

second measurement taken (the second measurement was used since the first was used 

along with the second to assess growth as a predictor). 
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Age adjusted HRs and HRs without age adjustment were calculated. In the age adjusted 

univariate analysis, those with −3 <  HAZ <  −2 were no more likely to die than those 

with HAZ > −2 and those with HAZ < −3 were 2.3 times more likely than those with 

HAZ > −2. BMI-for-age 𝑍 was an equivalent predictor of WHZ. Those with −3 <  BMI −

for − age <  −2 were 3 times more likely to die than those with BMI − for − age > −2 

and those with BMI − for − age < −3 were 8.6 times more likely. Those with MUAC-for-

age 𝑍 < −3 were 3.1 times more likely to die than those in with MUAC-for-age  > −2. 

This review of literature has found that weight-for-age, height-for-age, weight-for-height, 

arm circumference and nutritional status (including combinations of stunting, wasting and 

underweight) are all associated with mortality. The lower the 𝑍 score of a given measure, 

the higher the risk of death. Generally, wasting is a better predictor of mortality than 

stunting and children with more than one anthropometric deficit are at a higher risk of 

death. 

1.3.1.2 Growth/weight gain 

Various measures of growth have been found to be valuable predictors of mortality. 

Bairagi et al. (1985), Briend & Bari (1989), Bairagi et al. (1993) and O’Neill et al. (2012), 

reviewed in the previous section, also investigated the predictive validity of growth 

velocity as well as size. 

Bairagi et al. (1985) assessed the best interval to compute velocity over, by comparing 

velocity’s predictive validity over 2, 4 and 6 month intervals of children under 10. Bairagi 

found 4 month velocity (g/m) was a better predictor than 2 or 6 month velocity. However, 

while 4 month velocity was a better predictor than 2 and 6 month velocity, none of the 

measures were significant predictors. 

Briend & Bari (1989) investigated whether weight change in the previous month and 

weight change in the previous 3 months were significant predictors of mortality. For 

weight change in the previous month, MSS was 142 and 𝑡-tests showed significant 

differences between weight change of the living and deceased (taking into account 

various diseases). The RR for mortality was 5.8 (95% CI: 3.6 – 9.0) if children experienced 

one month weight loss. For weight change in the previous 3 months, the RR was 11.1 

(95% CI: 7.3–16.7). Research by Bairagi et al. (1993) agreed with Briend’s work, finding 

velocity to be a significant predictor. Bairagi et al. (1993) investigated whether weight 

velocity (g/month) was a significant predictor of mortality. Children were measured aged 
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6-36 months, then 3 months later. Bairagi also defined a 3 month weight velocity index as 

the ratio of the weight velocity of the child, to the weight velocity in the 50th centile of the 

NCHS standard, for a child of the same age and sex, multiplied by 100. Bairagi found that 

both weight velocity and the index were significant predictors, although weight velocity 

was better (using ND and MSS). Children in the living group had a weight velocity of 

179g/month whereas children in the deceased group had a weight velocity of 78g/month. 

O’Neill et al. (2012) also investigated whether weight gain was a significant predictor of 

mortality in the DRC. O’Neill used 3 month weight velocity-for-age 𝑍 score (initial 

measurement between 0 and 24 months), relative to the WHO standard. O’Neill used a 

Cox proportional hazards model, categorising velocity-for-age 𝑍 score into one of three 

groups. In the univariate age adjusted analysis, those with weight velocity-for-age 𝑍 score 

between -2 and -3 were no more likely to die than those with weight velocity-for-age 𝑍 

score > -2 and those with weight velocity-for-age 𝑍 score < -3 were 5.3 times more likely 

to die (𝑝 < 0.01) than those with weight velocity-for-age 𝑍 score > -2. 

Finally, in a developed world setting, sudden unexpected infant deaths are defined as 

deaths in infants less than 1 year of age that occur suddenly and unexpectedly, and 

whose cause of death is not immediately obvious prior to investigation (Centers for 

Disease Control and Prevention, Sudden Infant Death, 2013). Blair et al. (2000) 

investigated patterns of infant growth that might influence the risk of Sudden Infant 

Death Syndrome (SIDS). The study used the British 1990 growth reference (Cole et al. 

1998) to measure growth of children who died due to SIDS. Using logistic regression, Blair 

found weight gain 𝑍 score from birth to the final weight observation, and birth to 6 

weeks, were significantly less among the SIDS infants after adjustment for potential 

confounders (including birthweight). The mean change in weight 𝑍 score was -0.38SD for 

those who died from SIDS versus the controls with a mean change in 𝑍 score of 0.22SD.  

To summarise, these papers suggest that growth is a significant predictor of mortality. 

Blair et al. (2000) found conditional weight gain 𝑍 score was significantly associated with 

SIDS. O’Neill et al. (2012) found that 3 month weight velocity 𝑍 score (WHO standard) 

(initial weight between 0 and 24 months) was a significant predictor. Bairagi et al. (1993) 

found both 3 month weight velocity and a weight velocity index were both significant 

predictors (initial weight between 3 and 36m). However, weight velocity was better than 

the index. Briend & Bari (1989) found that weight change in the past 3 months was a 
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better predictor than weight change in the past month. However, Bairagi et al. (1985) did 

not find that velocity was a significant predictor in their study. 

1.3.1.3 Size vs. growth 

Only four papers could be found which made comparisons between size and growth as 

predictors of mortality: Bairagi et al. (1985), Briend & Bari (1989), Bairagi et al. (1993) and 

O’Neill et al. (2012), as reviewed in the previous two sections. 

Bairagi et al. (1985) compared weight-for-age %, height-for-age %, weight-for-height % 

(as continuous measures) and 2, 4 and 6 month weight velocity (NCHS reference). Four 

month velocity was the best interval to compute velocity over. However, 4 month weight 

velocity (ND = 0.38, MSS = 116) was not as a good a predictor as weight-for-age (ND = 

0.71, MSS = 144), height-for-age (ND = 0.72, MSS = 126) or weight-for-height (ND = 0.65, 

MSS = 124). In fact, weight velocity was not significant, whereas all other measures were. 

Briend and Bari (1989) agree with Bairagi et al. (1985) who also found that size is a better 

predictor than growth. Briend used MSS and 𝑍𝑑𝑎  tests (for predictors which may be on 

different scales) to compare the normalised distances of those who survived and died 

between weight-for-age (ND = 1.618) and: weight change in the previous month (ND = 

0.799) (g), weight change in the previous 3 months (ND = 1.304) (g), weight-for-age 

change in previous month (ND = 0.683) (%) and weight-for-age change in previous 3 

months (ND = 1.147) (%). The result of the 𝑍𝑑𝑎  test coupled with the ND and MSS 

indicated weight-for-age % was a significantly better predictor than the rest. 

Briend found that weight-for-age % had a larger ND (1.618) and a larger MSS (161.5) than 

the rest. Weight change in the previous 3 months was the next best predictor with an ND 

of 1.3 and MSS of 154. Briend also used a logistic regression model including both weight-

for-age <60% as a categorical variable and weight loss in the previous month. Weight-for-

age <60% had an odds ratio of 12 (95% CI: 7.2 – 20.2) and weight loss in the previous 

month had an odds ratio of 4.3 (95% CI: 2.5 – 7.2).  

Bairagi et al. (1993) compared weight-for-age % (NCHS reference) and weight velocity 

(g/m) (and the velocity index defined in 1.3.1.2) of those who died and survived over one 

year with MSS and normalised distances. Weight-for-age % had the largest normalised 

distance (0.76) and the largest MSS (133), followed by weight velocity (ND = 0.50, MSS = 

128), then the index (ND = 0.43, MSS = 124).  
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Results from Bairagi et al. (1993), Bairagi et al. (1985) and Briend & Bari (1989) all agree 

that size is a better predictor than growth. On the other hand, O’Neill et al. (2012) found 

weight gain to be a better predictor than size. O’Neill used a multivariate age-adjusted 

Cox proportional hazards model including HAZ, BMI-for-age, MUAC-for-age and 3 month 

weight velocity-for-age 𝑍 score, calculated between 0 and 24 months to predict mortality. 

In the multivariable adjusted analysis, only those in BMI-for-age category 3 and velocity-

for-age category 3 were significant. Those in BMI-for-age category 3 were 3 times more 

likely to die than category 1 (𝑝 = 0.04). Those in weight velocity-for-age group 3 were 3.6 

times more likely to die than those in category 1 (𝑝 < 0.01). O’Neill’s analyses suggest 

both measures are predictive (although only for 𝑍 < -3) of mortality. However, from 

O’Neill’s results, 3 month weight velocity 𝑍 score is more predictive than recent BMI-for-

age 𝑍 score. 

To summarise, these papers suggest that measures of both size and growth are significant 

predictors of mortality. Bairagi et al. (1985), Briend & Bari (1989) and Bairagi et al. (1993) 

agree that size was a better predictor than growth whereas O’Neill et al. (2012) found 

growth was a better predictor than size.  

However, O’Neill used BMI-for-age 𝑍 score to represent size, and 3 month growth 

velocity 𝑍 score to represent growth within her models (relative to the WHO standard), 

whereas Bairagi et al. (1985), Bairagi et al. (1993) and Briend used weight-for-age % 

(relative to the NCHS reference) to represent size and the weight velocity to represent 

growth. O’Neill acknowledged her results are in contrast with Briend’s, and speculated 

that the difference may be down to the use of the WHO weight increment standards. 

These standards are 1 month increments from birth until 12 months and 2-6 month 

increments from birth to 24 months. O’Neill suggested that growth monitoring programs 

should take the WHO 2009 velocity standards into consideration when defining critical 

values of low weight velocity.  

Furthermore, children in O’Neill’s analysis were 0-24 months old at their first visit, 

whereas they were 0-48 months in Bairagi’s 1985 analysis, 3-36 months in Bairagi’s 1993 

analysis and 0-36 months in Briend’s. This may have influenced results. Briend et al. noted 

that both weight gain and mortality was higher in younger children. A confounding effect 

may, therefore, explain the poor performance of velocity. However, age was included 

within a logistic regression model which did not change the relationship between velocity 

and mortality. 
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1.3.2 How do wasting and stunting relate? 

As both stunting and wasting are known consequences of undernutrition it is to be 

expected that there will be a relationship between wasting and stunting, and studies have 

generally found that there is. Victora (1992) calculated correlations and regressed the 

prevalence of wasting on stunting in different regions around the globe. Correlations 

were 0.7 in Asia, 0.65 in the Eastern Mediterranean, 0.3 in Latin America and 0.04 in 

Africa. Gorstein et al. (1994) also found little correlation between wasting and stunting in 

Africa (𝑟 = 0.1). Stunting was significantly associated with wasting in Asia and the 

Eastern Mediterranean.  

Recent work by Richard et al. (2012) found wasting is significantly related to low height-

for-age later in life. Richard analysed 8 cohort studies using correlation coefficients, mixed 

effects models (linear model with random effects term) and logistic regression. Richard 

found that wasting at 6-11 or 12-17 months was associated with decreased HAZ at 18-24 

months, although children who were wasted at 0-5 months did not suffer any long term 

growth deficits compared to children who were not wasted.  

Walker & Golden (1988) studied children treated for severe malnutrition at the Tropical 

Metabolism Research Unit, University Hospital of the West Indies (mean age of 12.6 

years). Children were treated as soon as they entered the hospital. Of those who had 

linear catch up growth, two thirds started to grow only after reaching 85% of the NCHS 

median weight-for-height. Those who had linear catch up were initially more stunted 

than the group as a whole (𝑝 < 0.0001). 

Studies by Doherty et al. (2001), Costello (1989) and Walker et al. (1996) found that low 

initial WHZ predicted subsequent low growth in height. Doherty et al. (2001) studied 

children aged 6 to 36 month who were followed for 90 days in Bangladesh. Doherty used 

regression analysis to identify predictors of linear growth. Maternal height and baseline 

WHZ were both significant predictors of change in HAZ over 90 days. More evidence 

supporting the hypothesis that children gain weight at the expense of height can be found 

in Costello (1989), who analysed data taken from 441 children aged 0-6 years in Nepal 

using linear regression, then again 6 months later. Costello found a positive relationship 

between initial WHZ and height velocity over the 6 months, and a negative relationship 

with weight velocity, indicating thin children seemed to catch up weight at the expense of 

height. Costello argued that stunting is caused largely by a reduced growth velocity during 

the nutrition dependent infantile phase of growth.  
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Walker et al. (1996) also found a positive relationship between initial weight-for-height 

and linear growth. Walker studied the relationship between wasting and linear growth in 

a group of stunted children aged 9-24 months (measured every 6 months for a 2 year 

period) in Kingston, Jamaica, using linear regression. Stunting was defined as < -2SD 

below the NCHS reference median. The results showed that initial weight-for-height 

predicted linear growth in the following 6 month interval in the stunted children, and the 

change in weight-for-height in the preceding interval was a better predictor of linear 

growth in the next interval than attained weight-for-height at the beginning of the 

interval.  

In summary, associations have been found between measures which categorise children 

thin and short. Victora (1992) found that a correlation between wasted and stunted 

states exists in some regions around the world. Richard et al. (2012) found that early 

wasting was associated with later HAZ. In fact, Doherty et al. (2001), Costello (1989) and 

Walker et al. (1996) all found that low initial WHZ predicted subsequent low growth in 

height, while Costello (1989) found low initial WHZ predicted subsequent higher growth 

in weight. Walker & Golden (1988) agreed that catch up would only occur once a certain 

WHZ was reached.  

These papers indicate that initial wasting results in subsequent low linear growth, 

suggesting that wasting precedes stunting. Various papers have discussed this presumed 

relationship, such as Briend et al. (2015). Briend states, “The relationship between 

wasting and stunting is poorly understood. Although a coherent plausible picture emerges 

from our current knowledge, there remain evidence gaps and mechanisms that require 

confirmation”. Briend, however, also states “children with severe wasting are often 

stunted, suggesting that wasting and stunting have a common cause or that one form of 

malnutrition can contribute to the other”. Richard et al. (2012) notes “the longitudinal 

relationship between stunting and wasting in children is poorly characterized” but 

suggests “instances of wasting or poor weight gain may precede linear growth 

retardation”. An Emergency Nutrition Network (ENN) report by Khara & Dolan (2014) 

provides further discussion of the relationship between wasting and stunting, quoting 

Black et al. (2013) “severe infectious disease can lead to wasting, which may have longer-

term consequences on linear growth” and Brown et al. (1982) “periods of lowest linear 

growth follow periods of lowest weight acquisition”. Ashworth & Millward (1976) state 
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that children recovering from severe protein energy malnutrition catch up in weight-for-

height before catch up in linear growth.  

1.3.3 Is stunting irreversible? 

Generally, research indicates that children who are stunted tend to stay stunted, and that 

stunting is largely irreversible. Vella et al. (1994) studied child stunting in Uganda. Vella 

used logistic regression to predict stunting 2 years after children entered the study and 

found prior stunting, no matter what age, was a significant predictor of stunting in the 

future. Mothers education was the only predictor of recovery from stunting (notably, 

income was not significant). 

Earlier work by MacWilliam & Dean (1965) followed up children who were discharged 

from hospital in Uganda and found that they moved from 87% to 90% of the international 

standard after 36 months but 6-10 years later they were still stunted, with little evidence 

of catch up to the international standard.  

Beaton (1990) states that children who are stunted and remain in the same environment 

are not likely to recover. In fact, Mjönes (1987) studied children who changed 

environment and the results agree with Beaton, finding that children who change 

environment do recover. Mjönes compared Turkish school children born in Sweden with 

children matched for sex, age and physical environment with children born in Turkey but 

who moved to Sweden. The emigrants were shorter than the Swedish born counterparts 

on arrival but soon caught up. Martorell (1992) studied a Guatemalan cohort and found 

that in early childhood (three year olds), those randomised to the atole group (which had 

protein supplementation) had around half as many severely stunted (𝑍 < −3) children 

compared to the fresco (control) group after intervention, suggesting that catch up 

growth is possible with intervention. 

Another study that investigated a change of environment was Schumacher et al. (1987). 

Schumacher showed that a study of 835 refugee children moving to the United States 

were almost all below the 25th NCHS centile for height before arrival, but quickly caught 

up to with many growth velocities around the 90th centile. Schumacher compared the 

number of children with HAZ, WAZ and WHZ scores categorised into positive and negative 

change across Chinese, Southeast Asian, Hispanic and Filipinos in their first year in the US. 

Significant positive change was found in HAZ scores for all areas, WAZ in all except Filipino 

boys and WHZ in Chinese and Southeast Asian boys. Martorell et al. (1994) states that the 

http://www.pubfacts.com/author/S+Mj%C3%B6nes
http://www.pubfacts.com/author/S+Mj%C3%B6nes
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potential for catch up growth increases as maturation is delayed and the growth period is 

prolonged. Golden (1994) agrees, stating “If puberty is delayed and/or growth continues 

into the early or mid-twenties, then an acceptable final adult height is achieved”. 

However, maturation delay in developing countries is only enough to compensate for a 

small fraction of growth retardation. Evidence for catch up growth can be found in Adair 

(1999) who states her results “suggest that there is a large potential for catch-up growth 

in the preadolescent years”. Of 63% of children within a Filipino sample who were 

stunted at age 2, 30% were no longer stunted by age 8.5 and 32.5% were no longer 

stunted by age 12. On the other hand, Adair found that those not stunted at age 2 were 

3.97 times more likely to not be stunted at age 8.5 (95% CI: 2.93 – 5.36) compared with 

those stunted at age 2. Adair also found that mean HAZ scores for those stunted at age 2 

was significantly lower for those stunted at birth than those who were not and this 

significantly reduced the likelihood of catch up in later life. 

In summary, research suggests that stunting is largely irreversible, unless a child changes 

environment, where it is more likely that they will exhibit catch-up growth. Potential for 

catch up growth among stunted children is generally thought to be limited after 24 

months (Adair 1999). Children in the developing world are on average shorter than those 

from more affluent societies (Golden 1994), born slightly below the international 

reference standard for height and weight. Victora et al. (2010) found children from low to 

middle income countries quickly fall behind within the first 2 years of life in terms of both 

HAZ and WAZ, relative to the WHO standard. Victora also assessed different regions, 

finding children from South Asia had the lowest WAZ, HAZ and WHZ scores on average, 

followed by sub-Saharan Africa.  

1.3.4 Hypotheses 

From Section 1.3.1, previous research suggests measures of both size and growth predict 

mortality, but papers that have investigated which measure is better have published 

conflicting results. However, the majority suggest size is a better predictor than velocity. 

From Section 1.3.2, papers suggest that those who are wasted are at a higher risk of 

mortality than those who are stunted, and those who are wasted as well as stunted 

(wasted-stunted) are at a higher risk of mortality than those who are just wasted or 

stunted alone. Research also suggests that wasting leads to stunting and that children 

who become stunted will most likely stay stunted  
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Hypotheses are presented based on this summary of literature, which we aim to test 

within the thesis.  

Hypothesis 1: those who are both wasted and stunted are at a higher risk of death than 

those who are wasted, who are in turn at a higher risk than those who are stunted 

Hypothesis 2: wasting tends to precede stunting  

Hypothesis 3: children who become stunted are likely to stay stunted 

Hypothesis 4: recent size is a more useful predictor of later mortality than growth over 

a recent time period 

Our main aims for this thesis are therefore to identify the trends that children take 

through nutritional states (hypotheses 1-3) and to identify whether growth over a recent 

time period adds value to size when predicting mortality (hypothesis 4). 

These aims, as well as others which focus on data preparation and modelling, are outlined 

in the next section. 

1.4 Aims and objectives 
This section outlines the aims and objectives for this thesis. Firstly, the aims focus on the 

available data: getting the data into a common format, summarising and modelling the 

sets. The aims then focus on testing the hypotheses developed in Section 1.3.4. 

1.4.1 Data formatting and modelling 

This first section of aims focus on data formatting, summarising and modelling.  

1. Import the three developing world data sets into a common format, model and 

summarise them. 

Reformatting the datasets into a common format prepares us for all further analyses 

within the thesis. After reformatting the datasets, it is of interest to model weight 

measurements as functions of age and sex to understand how children from different 

datasets grow. This provides insight into various aspects of the available datasets such as 

median growth and variability within the population of interest over time. Furthermore, 

these models can be used to create growth reference charts for each of the populations. 

However, the growth references that we will develop only describe how children grow at 

a certain time and place, which are not ideal to use as reference populations as they do 
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not describe optimal growth. Ideally, it is with a composite population of healthy children 

from a number of locations and settings that infants should be compared.  

2. Describe how real populations of pre-school children from the developing world fit 

the 2006 WHO growth standard. 

The WHO state that all children grow the same under optimal conditions. The WHO 2006 

standard describes optimum growth as children who make up the chart grew up in ideal 

conditions. Work has been carried out in the past which has investigated how children 

from the developed world grow relative to the standard. However, little is known about 

how children from the developing world fit. It is of interest to assess the fit of the WHO 

standard with the populations made available within our research, allowing us to assess 

how children from the developing world fit this idealised reference. It is expected that 

populations of children from poorer backgrounds will sit a number of standard deviations 

below the standard, while populations from more developed backgrounds will fit well or 

even outperform the standard. Furthermore, we expect patterns to emerge in which 

children fall away or catch up with the standard at certain ages. 

The growth references we develop and the WHO standard can be used to assess growth 

with age by plotting serial measurements on the charts, determining whether their 

weight measurements consistently track along a centile. If a child crosses centile lines 

downwards, it may be a sign of growth faltering. However, to compare growth in 

different children, other measures must be used. Measures such as weight velocity and 

conditional weight gain (introduced in Section 1.2.8) can be used to compare growth with 

both the reference population and other children.  

3. Describe what impact using an external reference has on some common measures 

of weight gain and investigate how to modify the measures in order to allow for 

this. 

Conditional weight gain 𝑍 scores have zero mean and unit standard deviation if 

measurements are converted with a suitable, well matched distance reference. To 

guarantee these conditions only an ‘internal’ reference can be used, like the ones we will 

develop in addressing aim 1. However, it is with an external reference that children 

should be compared, such as the WHO standard. We aim to develop a new measure of 

growth for use with an external reference - generalised conditional weight gain.  
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1.4.2 Testing hypotheses 

The remainder of the aims focus on testing the hypotheses developed in this chapter 

within Section 1.3.4. These hypotheses highlight the presumed associations between 

anthropometry and adverse outcomes.  

4. Explore the pathways children take through nutritional states over time 

Hypotheses 1 – 3 suggest that relationships exist between various nutritional states: 

Hypothesis 1: those who are both wasted and stunted are at a higher risk of death than 

those who are wasted, who are in turn at a higher risk than those who are stunted 

Hypothesis 2: wasting tends to precede stunting  

Hypothesis 3: children who become stunted are likely to stay stunted 

We test these hypotheses by applying statistical methodology to longitudinal growth 

datasets in new ways, assessing how children move to nutritional states conditional on 

previous state.  

If children between datasets share similar tendencies of moving between nutritional 

states, these datasets can potentially be combined. Pooling data together is appropriate 

when the datasets are homogeneous with respect to the parameters of interest.  

5. Identify the extent to which the data can be merged into a larger dataset   

By developing statistical tests for use on longitudinal datasets, we can determine if sets 

can be merged. Merging sets gives the analysis used to test hypothesis 4 more power as 

the sample sizes increase. 

6. Determine whether it is size or growth which best predicts mortality 

Past research suggests both size and growth are significant predictors of mortality. 

However, papers which have investigated which of these measures is the best predictor 

have published conflicting results. We aim to address the following hypothesis using a 

new weighted approach: 

Hypothesis 4: recent size is a more useful predictor of later mortality than growth over 

a recent time period 

Standard analyses are swamped by children within the centre of the population 

distribution. We aim to use a weighted analysis to gain new insights by effectively over-
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representing children within the extremes of the distribution, allowing us to determine 

which predictors are useful for children within the tails of the population distribution. 

1.5 Chapter conclusions 
Within this chapter we introduced undernutrition and its effects, growth monitoring, the 

WHO standard and measures of growth. We also reviewed literature which has 

investigated the use of anthropometric measurements in predicting adverse future 

outcomes.  

Six aims were developed in Section 1.4. These aims focus on getting the data into a 

common format so that modelling and summarising can take place, identifying how well 

these datasets fit the WHO standard, adapting the expression for conditional weight gain 

so that an external reference can be used and finally understanding how anthropometric 

measurements and indices can be used to predict future outcomes. Hypotheses based on 

previous research were developed in light of the available literature. It is our aim to 

identify the extent to which these are true using statistical methods that have not yet 

been applied in the field. The statistical methods used to tackle these aims are presented 

within Chapter 2. The datasets that these methods are applied to are introduced within 

Chapter 3. Statistical analyses are carried out in Chapters 4 – 6.
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Chapter 2  

Statistical methodology 

2.1 Introduction 
Chapter 1 introduced undernutrition, growth reference charts, measures of growth and 

reviewed literature which has investigated how anthropometric measurements can be 

used to predict future outcomes. Hypotheses were developed based on this literature 

and aims were established at the end of the chapter. The aims first focus on introducing, 

summarising and modelling the data. Latter aims focus on testing the hypotheses 

developed in Section 1.3.4 which highlight the presumed associations between measures 

of anthropometry and adverse outcomes. 

This chapter presents the software and statistical models which are used to address the 

aims highlighted in the previous chapter. A summary of the proposed methods are found 

in Section 2.3. Further details of these models are found within the body of the chapter 

and further discussion of the methods can be found at the end of the corresponding 

chapters where they are applied. 

2.2 Software 
All statistical aspects of the thesis were handled using the statistical programming 

language, 𝑅. 𝑅 is a software environment which is widely used for data management, 

software development, graphics and data analysis (R Development Core Team 2013). 

Many of the statistical models applied within this thesis are available in 𝑅’s core software 

but an extensive number of libraries (also called packages) are also available. Packages 

extend the capabilities of 𝑅 with user-created algorithms and models for specialist 
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techniques, which can be loaded into the software. Any additional packages used to apply 

the statistical models outlined in this chapter will be specified. 

2.3 Methods summary 
This section briefly outlines methods that will be utilised throughout the thesis to address 

each of the aims outlined in Chapter 1. Refer to each of the sections specified within the 

summary for a full description of each method.  

The methodology described in the summary firstly applies to aims focusing on data 

formatting and modelling then moves on to methods which address the hypotheses 

developed in Chapter 1. 

2.3.1 Data formatting and modelling 

Firstly, datasets will be reformatted into a common format. By reformatting the datasets 

into a common format, we prepare for all further analyses within the thesis, creating a 

data dictionary. 

1. Import the three developing world data sets into a common format, model and 

summarise them. 

After reformatting the data, growth chart modelling can take place. This allows us to gain 

insights into each of the datasets and allows us to create growth reference charts. A 

commonly used method used to create growth charts is the LMS method (Cole & Green 

1992). This method allows users to model distributions smoothly over time and if 

necessary, sex. Children’s measurements can then be compared with the reference 

distribution, determining which centile measurements lie on. Methodology for the LMS 

method is presented in Section 2.5. 

In 𝑅 however, this method is commonly applied via Generalised Additive Models for 

Location Scale and Shape (GAMLSS) (Akantziliotou et al. 2002). These models are semi-

parametric regression models where the central tendency of the response variable can be 

modelled as a function of the explanatory variables. The framework can be extended to 

model not only the central tendency, but also dispersion and two shape parameters e.g. 

skewness and kurtosis. 

A special case of the distribution is the three parameter Box-Cox Cole and Green (BCCG), 

also known as the Box-Cox normal distribution (modelling location, variability and 

skewness). Assuming this distribution in the GAMLSS framework is the equivalent of the 
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LMS method. The theory of application of the LMS method within the GAMLSS framework 

can be found in Section 2.6. The 𝑔𝑎𝑚𝑙𝑠𝑠 package in 𝑅 (Rigby & Stasinopoulos 2005) 

contains all functions required for application of the modelling framework. 

The ‘internal’ reference charts we will develop via GAMLSS only describe the growth of 

children at a certain time and place and, therefore, care is needed when using these 

references. The WHO advise universal use of the WHO 2006 standards, which were 

developed from healthy children from a number of locations around the world. Work has 

been carried out by Roelants (2013), Hui et al. (2008) and Wright et al. (2008), who 

determined that children from the developed world either grow on par with the standard 

or outperform it. However, little is known about how children from the developing world 

fit the standard. Describing how real populations of pre-school children from the 

developing world fit the WHO 2006 growth standard is our second aim.  

2. Describe how real populations of pre-school children from the developing world fit 

the 2006 WHO growth standard. 

We expect the average rate of growth to differ between our cohorts and the WHO 

standard. To quantify the difference in growth rates, the WHO LMS model will be used to 

convert children’s weight measurements for each of our datasets to 𝑍 scores, resulting in 

a transformed series. Assuming a normal distribution, we model the mean and standard 

deviation of this series, which describes measurements relative to the standard. These 

parameters, 𝜇𝑍𝑡and 𝜎𝑍𝑡, can be smoothly modelled using GAMLSS. The estimates can 

then be plotted to assess relative growth.  

As discussed, both the internal references which we will develop and the WHO standard 

can be used to assess child growth over time (growth velocity) by plotting serial 

measurements on the charts. If children’s measurements cross centiles downwards, this 

implies poor growth. Using charts to assess growth velocity however does not allow 

comparisons with other children. Other measures such as growth velocity or conditional 

weight gain allow comparisons with both the reference distribution and other infants. 

Our third aim is: 

3. Describe what impact using an external reference has on some common measures of 

weight gain and investigate how to modify the measures in order to allow for this.  

Conditional weight gain was introduced as a method which allows relative comparison of 

growth with both the reference population and other children expressed as a 𝑍 score, 
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conditional on the first measurement. 𝑍 scores are distributed as 𝑍𝑋~𝑁(0,1) if a well 

matched reference is used to convert measurements, e.g. using an ‘internal’ reference 

population. However, as discussed, there are problems in using internal reference 

populations to assess growth. Using the WHO standard as an external reference is a 

better alternative but the assumptions underlying conditional weight gain do not hold 

(𝑍 scores are not distributed as 𝑍𝑋~𝑁(0,1)). To address this, the expression for 

conditional weight gain needs to be extended to include 𝜇𝑍𝑡 ≠ 0 and 𝜎𝑍𝑡 ≠ 1.  

Methodology in Section 2.7 investigates conditional weight gain and subsequently 

explores development of a generalised measure allowing the use of an external 

reference. The generalised measure also takes RTTM into account. In fact, the amount of 

RTTM is synonymous with correlation when working on the SD scale (Cole 1995), 

therefore, a way to quantify the amount of RTTM is to quantify this correlation.  

Correlations can be calculated between groups of measurements at scheduled 

measurement ages, but statistical models are needed to interpolate correlations between 

these ages. Cole (1995) adopted fractional polynomials (FP) (see Royston & Altman 

(1994)), a flexible alternative to a regular polynomial to model the correlation matrix of 

the Cambridge Infant Growth study (Whitehead et al. 1989). Argyle (2002) developed the 

Argyle model, a model based on linear regression used to interpolate correlations in a 

dataset from Newcastle, England. We aim to apply both of these models to our datasets 

to assess their performance as well as two others, our own FP models and Generalised 

Additive Models (GAM). FP models can be applied using the 𝑚𝑓𝑝 package in 𝑅. The 

function used to apply fractional polynomials uses a selection algorithm to choose the 

best fitting model, described in more detail in Section 2.8.3. GAMs (Wood 2006) are non-

parametric alternatives which allow the user to specify the degree of smoothness. These 

can be applied using the 𝑚𝑔𝑐𝑣 package in 𝑅. Further details on the models and packages 

are in Section 2.8.1. 

2.3.2 Testing hypotheses 

After addressing aims which focus on data formatting and modelling, the primary 

objective of the thesis can be addressed – determining how anthropometry can be used 

to predict adverse future outcomes. The review in Chapter 1 examined research which 

has previously investigated this topic. Hypotheses were developed based on the 

evidence. Aim 4 focuses on testing hypotheses 1 to 3.  
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4. Explore the pathways children take through nutritional states over time 

We adopt a new approach to assess the presumed associations outlined in Section 1.3.4, 

using stochastic models. The approach allows modelling of a discrete sample space, takes 

an element of time into consideration and models the conditional probability of moving 

from one state to another.  

The definitions in Section 1.2.7 can be used to categorise children into nutritional states. 

We use these definitions to categorise children into dead (D), wasted-stunted (WS), 

wasted (W), stunted (S) and healthy (H) states at various time points. We use a BMI 

threshold to define wasted, the rationale for which was explained in Section 1.2.7. The 

probabilities of moving from each state to all others can be represented in a 5 by 5 

matrix. Therefore, we assess the probability of moving state conditional on previous 

state. The methodology required for this presented is in Section 2.10.  

5. Identify the extent to which the data can be merged into a larger dataset  

We propose that if the underlying stochastic model for each dataset is the same, then the 

datasets can be pooled. This is because the transition probabilities of moving from one 

state to another will not be significantly different from one another. A Generalised 

Likelihood Ratio Test (GLRT) is appropriate for use under these circumstances. The 

development of this test is presented in Section 2.10.1. Pooling datasets provides more 

power to the analysis used for aim 6. 

6. Determine whether it is size or growth which best predicts mortality 

Research papers which have investigated whether recent size or growth over a recent 

time period is the best predictor of time until death have published conflicting results. 

This aim focuses on determining which measure is more valuable using a new approach. 

Cox proportional hazards models are a standard approach which can be used to predict 

mortality in the future. However, standard models are dominated by children within the 

centre of the population distribution. By using a weighted approach we can effectively 

over represent children within the tails of the distribution, allowing us to determine 

which predictors are most valuable for children who are outwith the normal range. Cox 

proportional hazards models can be applied using the 𝑐𝑜𝑥𝑝ℎ package in 𝑅. Weights in 

Cox proportional hazards models are simply replicates of the data. Therefore, a weighting 

function is required. The weighting function is presented in Chapter 6. However, survival 

analysis and Cox proportional hazards models are presented in Section 2.11. 
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2.4 𝒁 scores 
The concept of 𝑍 scores (or SD scores) underpins some key methods used throughout this 

thesis. A 𝑍 score provides an estimate of where measurement 𝑋 lies relative to its 

population mean, 𝜇𝑋, in terms of the population SD, 𝜎𝑋. The measurement 𝑋 is, 

therefore, expressed as the number of SDs from the population mean.  

Let: 

𝑍𝑋 =
𝑋 − 𝜇𝑋
𝜎𝑋

 
(2.1) 

If the raw measurement, 𝑋, is normally distributed and estimates of the mean, 𝜇𝑍, and 

SD, 𝜎𝑍, are from the same population from which 𝑋 derives, then we can assume that, 

approximately, 𝑍𝑋 ~ 𝑁(0, 1). 𝑍𝑋 can be converted to a centile using the distribution 

function of the standard normal distribution if the variance is known, or the 𝑡-distribution 

if it is estimated. This provides an estimate of the proportion of the population below or 

above 𝑋.  

If estimates of the mean and SD do not derive from the same population as 𝑋, then 

𝜇𝑍 ≠ 0 and 𝜎𝑍 ≠ 1. These will, therefore, need to be estimated. In this case 𝑍𝑋 is 𝑡-

distributed.  

The situation is usually more complicated than this, since the raw measurement is not 

normally distributed in the population, 𝑍 has to be further adjusted to eliminate 

skewness and kurtosis and hence produce a measure that is approximately normal (see 

Section 2.5). 

2.5 The LMS method 
The LMS method allows users to create growth reference charts, modelling the entire 

distribution taking into account the Box-Cox power (L), median (M), and coefficient of 

variation (S). The LMS method involves transforming 𝑦 at age 𝑡 by the Box-Cox 

transformation such that: 

 

𝑍 =
(
y
μ)
λ

− 1 

𝜆𝜎
, 𝜆 ≠ 0 

(2.2) 

or 

 

𝑍 =
log (

𝑦
𝜇)

𝜎
, 𝜆 = 0 

(2.3) 
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where 𝑍 has distribution 𝑁(0,1). The aim is to make the distribution symmetric, so any 

skewness in 𝑦 is removed by a suitable choice of 𝜆, and therefore, the mean of 𝑍 

corresponds to 𝜇, the median of 𝑦.  

We assume that 𝜆, 𝜇 and 𝜎 vary with 𝑡. These can be read off the smooth curves 

𝐿(𝑡),𝑀(𝑡) and 𝑆(𝑡), so we can say: 

 

𝑍(𝑡) =
[
𝑦(𝑡)
𝑀(𝑡)

]
𝐿(𝑡)

− 1

𝐿(𝑡)𝑆(𝑡)
, 𝐿(𝑡) ≠ 0 

(2.4) 

or  

 

𝑍(𝑡) =
log (

𝑦(𝑡)
𝑀(𝑡)

)

𝑆(𝑡)
, 𝐿(𝑡) = 0 

(2.5) 

If we rearrange these, we can show that the centile 100𝛼 of 𝑦 at 𝑡 is given by: 

 𝐶100𝛼(𝑡) = 𝑀(𝑡)(1 + 𝐿(𝑡)𝑆(𝑡)𝑍𝛼)
1/𝐿(𝑡), 𝐿(𝑡) ≠ 0 (2.6) 

or 

 𝐶100𝛼(𝑡) = 𝑀(𝑡) exp(𝑆(𝑡)𝑍𝛼) , 𝐿(𝑡) = 0 (2.7) 

where 𝑍𝛼  is the normal equivalent deviate of size 𝛼 (Cole & Green 1992).  

2.6 Applying the LMS method  
Generalised Additive Models for Location Scale and Shape are semi-parametric models 

which allow modelling of up to four distributional parameters. This model, applied with 

the package 𝑔𝑎𝑚𝑙𝑠𝑠() in the statistical programming 𝑅, allows us to apply the LMS 

method as well as its extensions (e.g. distributions that take kurtosis into account). As this 

is a semi-parametric method which uses properties of both parametric and non-

parametric models, the terms parametric and non-parametric are firstly introduced 

within Sections 2.6.1 and 2.6.2 before presenting GAMLSS in Section 2.6.3. 

2.6.1 Parametric models 

A linear model is a parametric model which predicts response variable 𝑦, by explanatory 

variables 𝑥1, … , 𝑥𝑛. Linear models assume the identity link function 𝑔(. ), which provides a 

1:1 relationship between the mean 𝜇 and the linear predictors such that 𝑔(𝜇) = 𝑋𝛽.  

This model is in the form: 

𝐸(𝑦) = 𝜇 = 𝑔−1(𝑋𝛽) = 𝑔−1(𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛) (2.8) 

Linear models assume that the response variable 𝑦 is normally distributed. They also 

require independence of observations and constant variance. 
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In fact, linear regression is a special case of a Generalised Linear Model (GLM). GLMs are 

in the same form as (2.8) but GLMs allow the link function 𝑔(. ) to take any form which 

transforms the expectation of the response 𝐸(𝑦) ≡ 𝜇 to the linear predictor  𝛽0 + 𝛽1𝑥1 +

⋯+ 𝛽𝑛𝑥𝑛. For example, we may want to use the logit transformation in the case of a 

binomial response i.e. 𝑔(𝜇) = ln (
𝜇

1−𝜇
), constraining 𝜇 between 0 and 1. GLMs are also 

parametric in that the response variable comes from any distribution within the 

exponential family, for example, binomial, Poisson or gamma. Furthermore, GLMs relax 

the normality and homoscedasticity assumptions. However, there is substantial precision 

loss if the distribution is specified incorrectly.  

2.6.2 Non-parametric models 

Additive Models (AMs) are non-parametric models which replace the terms 𝛽1𝑥1, … , 𝛽𝑛𝑥𝑛 

of a linear regression model with smooth functions ℎ1(𝑥1),… , ℎ𝑛(𝑥𝑛). The model is in the 

form: 

𝐸(𝑦) = 𝜇 = 𝛽0 + ℎ1(𝑥1) + ⋯+ ℎ𝑛(𝑥𝑛) (2.9) 

Generalised Additive Models (GAMs) combine elements of GLMs and AMs, allowing a link 

function 𝑔(. ) such that: 

𝐸(𝑦) = 𝜇 = 𝑔−1(𝛽0 + ℎ1(𝑥1) + ⋯+ ℎ𝑛(𝑥𝑛)) (2.10) 

These unspecified non-parametric functions provide a smooth fit with relaxed 

assumptions about the relationship between the response and the predictor. 

GAM models tend to fit data better than GLMs, however, they also tend to over fit and 

are computationally expensive. GAMs can include both linear and additive terms and are 

therefore in the realm of semi-parametric models. Furthermore, the relationships 

between the response and predictors are harder to interpret. 

2.6.3 Generalised Additive Models for Location Scale and Shape 

GAMLSS models are semi parametric regression models which were introduced by 

Akantziliotou, Rigby & Stasinopoulos (2002) and Rigby & Stasinopoulos (2005). GAMLSS 

models are parametric in that they require a distributional assumption for the response 

and semi parametric in the sense that modelling the parameters of the distribution may 

involve using non-parametric smoothing functions.  

GAMLSS assume independence for observations 𝑦 with probability density function (PDF) 

𝑓(𝑦|𝜇, 𝜎, 𝜆, 𝜏) conditional on the four distributional parameters 𝜇 (location), 𝜎 (scale), 𝜆 

(shape) and 𝜏 (shape).  
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The model formulation is as follows. We have monotonic link functions 𝑔𝑘(. ) where 

𝑘 = 1, 2, 3, 4, relating the distribution parameters to explanatory variables by: 

𝜇 = 𝑔1
−1(𝑋1𝛽1 +∑ℎ𝑗1(𝑥𝑗1)

𝐽1

𝑗=1

) 

𝜎 = 𝑔2
−1(𝑋2𝛽2 +∑ℎ𝑗2(𝑥𝑗2)

𝐽1

𝑗=1

) 

𝜆 = 𝑔3
−1(𝑋3𝛽3 +∑ℎ𝑗3(𝑥𝑗3)

𝐽1

𝑗=1

) 

𝜏 = 𝑔4
−1(𝑋4𝛽4 +∑ℎ𝑗4(𝑥𝑗4)

𝐽4

𝑗=1

) 

where 𝑋𝑘𝛽𝑘 are linear terms and ∑ ℎ𝑗𝑘(𝑥𝑗𝑘)
𝐽𝑘
𝑗=1  are additive terms in the model. 

One particular case of the GAMLSS distribution is the BCCG or Box-Cox normal 

distribution. When assuming this distribution, it is the equivalent of the LMS method. This 

distribution is only a three parameter distribution, using the identity link function for the 

median 𝜇 (although the log link is often better as children cannot have negative size) and 

the Box-Cox power 𝜆. The log link is used for the coefficient of variation 𝜎.  

The untruncated BCCG function 𝑓(𝑦|𝜇, 𝜎, 𝜆) can be defined as, 

𝑓(𝑦|𝑀(𝑡), 𝑆(𝑡), 𝐿(𝑡)) =
1

𝑆(𝑡)√2𝜋
.
𝑌(𝐿(𝑡)−1)

𝑀(𝑡)𝐿(𝑡)
. exp ( −

𝑍2

2
) 

(2.11) 

where if 𝐿(𝑡) ≠ 0 then 𝑍 = ([
𝑦

𝑀(𝑡)
]
𝐿(𝑡)

− 1) /𝐿(𝑡)𝑆(𝑡), else 𝑍 = log (
𝑦

𝑀(𝑡)
) /𝑆(𝑡), for 

𝑦 > 0,𝑀(𝑡) > 0, 𝑆(𝑡) > 0 and 𝐿(𝑡) has no limits. The truncated version adjusts (2.11) for 

the condition 𝑦 > 0. If 𝑍~𝑁(0,1) then 𝑌~𝐵𝐶𝐶𝐺(𝑀(𝑡), 𝑆(𝑡), 𝐿(𝑡)). 

The log likelihood function is (apart from the constant),  

𝑙 = 𝑙(𝐿,𝑀, 𝑆) =∑(𝐿(𝑡𝑖)

𝑛

𝑖=1

log (
𝑦𝑖

𝑀(𝑡𝑖)
) − log(𝑆(𝑡𝑖)) −

1

2
𝑍𝑖
2)  

(2.12) 

Estimates of L M and S can be found by maximising the penalised likelihood function,  

𝑙 −
1

2
𝛼𝜆∫[𝐿

′′(𝑡)]2𝑑𝑡 −
1

2
𝛼𝜇∫[𝑀′′(𝑡)]

2𝑑𝑡 −
1

2
𝛼𝜎∫[𝑆

′′(𝑡)]2𝑑𝑡  
(2.13) 

where 𝛼𝜆, 𝛼𝜇, 𝛼𝜎 are the smoothing parameters. The integrals provide roughness 

penalties according to the squared second derivatives of the L, M and S curves. 
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Maximising this function will balance fit and smoothness of the curves. See Rigby & 

Stasinopoulos (2005) for further information on how this penalised likelihood function is 

derived.  

Other distributions are available within the GAMLSS framework. For example, the Box-

Cox power exponential (BCPE) distribution (which also takes kurtosis into account, which 

was considered by the WHO. The WHO also considered considered the Box-Cox 𝑡, 

Johnson’s SU and the modulus-exponential normal distribution (de Onis & WHO 

Multicentre Growth Reference Study Group 2006). 

The centile curve modelling procedure carried out in this thesis demonstrates the use of 

GAMLSS and how it is applied to real life data, allowing development of internal 

references or growth standards.  

2.7 Weight gain 𝒁 score 
Growth increments are the absolute difference in size between two time points. Growth 

velocity is the difference divided by the length of the interval. Weight gain can be 

expressed as a 𝑍 score, which is a valid alternative for growth increment or growth 

velocity (Roelants 2013), using the properties of 𝑍 scores to express the change relative 

to the population in which the child originates from, which can be expressed as a centile. 

For example, imagine a child measured at time 𝑡1 who lies on the 50th (𝑍 = 0) centile, 

which is the average weight for a child of that age. The child is then measured again at 

time 𝑡2 and has gained weight but now lies on the 40th centile (𝑍 = −0.25). The child has 

gained weight but has dropped 10 centiles, meaning that the child now weighs more than 

they did at 𝑡1, but less than average for those aged 𝑡2.  

By calculating a change in 𝑍 score between two time points and dividing by the standard 

deviation of the change, a 𝑍 score for the change in 𝑍 scores can be assessed. The 

resulting value allows us to determine what proportion of the population are likely to gain 

at least as much weight as the child in question. By conditioning on initial weight, the fact 

that light infants tend to grow faster than heavy infants can be taken into account (Cole 

1995). 

Current published methodology allows us to obtain conditional weight gain 𝑍 scores 

while using an internal reference. However, there are problems in using internal 

references to assess growth as they are developed from a sample of children and may be 

biased. Ideally, the WHO standard (or an idealised reference) should be used to assess 
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growth as children who make up the standard are considered healthy. However, the 

assumptions for conditional weight gain break down while using external references or 

standards. In this section we introduce unconditional weight gain, conditional weight gain 

and then derive a generalised measure for use with growth standards. 

2.7.1 Unconditional weight gain  

Unconditional weight gain is a measure of weight gain that is not adjusted for (i.e. 

conditioned on) the initial weight. 

The method (Cole 1997) consists of converting two successive weights to 𝑍 scores. The 𝑍 

scores are calculated while referring to an ‘internal’ reference population.  

Let 𝑋 = Δ𝑍 = 𝑍2 − 𝑍1. To convert 𝑋 to a SD score we use the following transformation, 

as described in (2.1): 

 
𝑍𝑋  =

𝑋 − 𝜇𝑋
𝜎𝑋

 

where  𝜇𝑋 = 𝐸(𝑍2 − 𝑍1) and 𝜎𝑋 = √𝑉𝑎𝑟(𝑍2 − 𝑍1). The mean and standard deviation 

are: 

  𝜇𝑋 = 𝐸(𝑍2 − 𝑍1) 

= 𝐸(𝑍2) − 𝐸(𝑍1) 

= 𝜇𝑍2 − 𝜇𝑍1  

= 0  

 

and   

 𝜎𝑋 = √𝑉𝑎𝑟(𝑍2 − 𝑍1) 

= √𝜎𝑍2
2 + 𝜎𝑍2

2 − 2𝜎𝑍1𝑍2 

= 2 − 2𝑟 

= 2(1 − 𝑟) 

 

where 𝑟 = 𝑐𝑜𝑟(𝑍1, 𝑍2). 

(Note since 𝜎𝑍1 = 𝜎𝑍2 = 1 and 𝑟 = 𝜎𝑍1𝑍2/(𝜎𝑍1𝜎𝑍2) then 𝑟 = 𝜎𝑍1𝑍2) 

To convert X to a 𝑍 score we use Equation (2.1): 

 
𝑍𝑋 = 

X − 0

√2(1 − 𝑟)
   

= 
X

√2(1 − 𝑟)
 

=
𝑍2 − 𝑍1

√2(1 − 𝑟)
          

 

(2.14) 
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2.7.2 Conditional weight gain 

Unconditional weight gain ignores the correlation between weight gain and initial weight. 

Therefore any ‘change in centile’ would be attributed to the change in weight of that 

child, assuming that no natural phenomenon would influence that change. However, this 

is not the case due to RTTM.  

The problem with unconditional weight gain is that if a child moves centile towards the 

population median, the change in 𝑍 score is completely attributable to their change in 

weight. In fact their movement towards the population median may be expected, due to 

RTTM. Conditional weight gain accounts for this expected movement, whereas 

unconditional weight gain would explain this expected movement as crossing centiles.  

The amount of expected tracking is actually synonymous with the amount of correlation 

between 𝑍1 and 𝑍2 such that the expected value of 𝑍2 is 𝑟. 𝑍1 (Cole 1995) (see proof 

below). In the unconditional weight gain case perfect tracking would require that 𝑍2 =

𝑍1, which would require the correlation between 𝑍2 and 𝑍1to equal 1, which is 

impossible. 

To derive conditional weight gain we use Equation (2.1), letting 𝑋 = 𝑍2 −  𝐸(𝑍2|𝑍1), 

𝜇𝑋 = 𝐸(𝑍2 −  𝐸(𝑍2|𝑍1)) and 𝜎𝑋 = √𝑉𝑎𝑟(𝑍2 −  𝐸(𝑍2|𝑍1)). 

Firstly, start with the linear regression model:  

 𝐸(𝑍2|𝑍1) = 𝛼 + 𝛽𝑍1 (2.15) 

which implies that  

 𝐸(𝑍2) = 𝐸{𝐸(𝑍2|𝑍1)} = 𝛼 + 𝛽𝐸(𝑍1)  

Similarly, 

 𝐸(𝑍1𝑍2) = 𝐸{𝑍1𝐸(𝑍2|𝑍1)} = 𝐸{𝛽𝑍1
2} = 𝛽𝐸(𝑍1

2)  

Therefore, 

 𝜎𝑍1𝑍2 = 𝐸(𝑍1𝑍2) − 𝐸(𝑍1)𝐸(𝑍2) 

= 𝛽𝐸(𝑍1
2) − 𝛽[𝐸(𝑍1)]

2 

= 𝛽𝜎𝑍1
2  

 

 𝑟 =
𝜎𝑍1𝑍2
𝜎𝑍1𝜎𝑧2

= 𝛽
𝜎𝑍1
𝜎𝑧2

 (2.16) 

however since 𝜎𝑧2 = 𝜎𝑍1 = 1, then 𝑟 = 𝛽. 

Following on from Equation (2.15), using results from Equation (2.16), 

 𝐸(𝑍2|𝑍1) = 𝛼 + 𝛽𝑍1 = 0 + 𝑟𝑍1 = 𝑟. 𝑍1  

since 𝐸(𝑍2)  =  𝐸(𝑍1)  =  0, therefore 𝛼 =  0. 

Therefore 𝑋 = 𝑍2 −  𝐸(𝑍2|𝑍1) = 𝑍2 − 𝑟𝑍1. 
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The mean and standard deviation are: 

  𝜇𝑋 = 𝐸(𝑍2 − 𝑟. 𝑍1) 

= 𝜇𝑍2 − 𝑟𝜇𝑍1  

= 0  

 

and  

 𝜎𝑋 = √𝑉𝑎𝑟(𝑍2 −  𝑟𝑍1) 

= √𝜎𝑍2
2 + 𝑟2𝜎𝑍2

2 − 2. 𝑟. 𝜎𝑍1𝑍2  

= √1 + 𝑟2 − 2𝑟2 

= √1 − 𝑟2 

 

So, 

 
𝑍𝑋 =

𝑋 − 𝜇𝑋
𝜎𝑋

 

=
𝑍2 − 𝑟𝑍1 − 0

√(1 − 𝑟2) 
 

=
𝑍2 − 𝑟𝑍1

√(1 − 𝑟2) 
 

 

 

 

 

(2.17) 

The expression above takes into account RTTM and therefore the 𝑍 score for the change 

in 𝑍 scores takes into account the expected amount of movement towards the median, 

conditional on 𝑍1. 

The predicted value of 𝑍2, 𝐸(𝑍2|𝑍1), is assumed to be normally distributed. The 

correlation coefficient is always less than or equal to one which means that 𝐸(𝑍2|𝑍1) =

𝑟𝑍1 will always be expected to be closer to the median than 𝑍1. 

2.7.3 What is an ‘external’ reference? 

When using an internal reference, the measurement of interest can be compared with its 

own parent population which allows us to compare all children with those who are living 

under the same socio-economic conditions. When using an external reference we 

compare children’s weights with a reference or standard which the child does not 

originate from. An expression for conditional weight gain while using an external 

reference has not previously been published. 

2.7.4 Generalised conditional weight gain  

When using an external reference, conditional weight gain is not as simple an expression 

as in Section 2.7.2 as many of the assumptions for 𝑍 scores no longer hold. The mean of 
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the 𝑍 scores will not necessarily equal zero and the standard deviations may not equal 

one. This means that the ratio of 𝑍 scores will not equal one, therefore 𝛽 ≠ 𝑟 and 𝛼 ≠ 0. 

Equation (2.15) still holds. However, 𝜎𝑧2/𝜎𝑧1 ≠ 1. Let 𝜎𝑧2/𝜎𝑧1 = 𝑘, therefore, 

 𝛽 = 𝑟
𝜎𝑍2
𝜎𝑍1

= 𝑟𝑘  

Furthermore, since 𝐸(𝑍2) ≠ 𝐸(𝑍1) ≠ 0, we yield, 

 𝐸(𝑍2|𝑍1) = 𝛼 + 𝛽𝑍1 = 𝛼 + 𝑟𝑘𝑍1 (2.18) 

To derive an expression which generalises conditional weight gain, we use Equation (2.1) 

while referring (2.18). Let: 

 𝑋 = 𝑍2 −  𝐸(𝑍2|𝑍1) = 𝑍2 − 𝛼 + 𝑟𝑘𝑍1, 

 𝜇𝑋 = 𝐸(𝑍2 −  𝐸(𝑍2|𝑍1)) = 𝐸(𝑍2 −  𝛼 + 𝑟𝑘𝑍1)  

 𝜎𝑋 = √𝑉𝑎𝑟(𝑍2 −  𝐸(𝑍2|𝑍1)) = √𝑉𝑎𝑟(𝑍2 −  𝛼 − 𝑟𝑘𝑍1) 

The mean and standard deviation are: 

  𝜇𝑋 = 𝐸(𝑍2 − (𝛼 + 𝛽𝑍1))  

= 𝐸(𝑍2 − 𝛼 − 𝑟𝑘𝑍1) 

= 𝜇𝑍2 − 𝛼 − 𝑟𝑘𝜇𝑍1  

 

and,  

 𝜎𝑋 = √𝑉𝑎𝑟(𝑍2 −  𝛼 − 𝑟𝑘𝑍1) 

= √𝜎𝑍2
2 + (𝑟

𝜎𝑍2
𝜎𝑍1
)

2

𝜎𝑍1
2 − 2𝑟

𝜎𝑍2
𝜎𝑍1
𝑟. 𝜎𝑍1 . 𝜎𝑍2  

= √𝜎𝑍2
2 + 𝑟2

𝜎𝑍2
2

𝜎𝑍1
2 . 𝜎𝑍1

2 − 2𝑟2𝜎𝑍2
2 .
𝜎𝑍1
𝜎𝑍1

 

= √𝜎𝑍2
2 + 𝑟. 𝜎𝑍2

2 − 2𝑟2𝜎𝑍2
2  

= √𝜎𝑍2
2 − 𝑟2𝜎𝑍2

2 = √𝜎𝑍2
2 (1 − 𝑟2) = 𝜎𝑍2√(1 − 𝑟

2) 

 

So,  

 
𝑍𝑋 =

𝑋 − 𝜇𝑋
𝜎𝑋

 

      =
𝑍2 − 𝛼 − 𝑟𝑘𝑍1 − 𝜇𝑍2 + 𝛼 + 𝑟. 𝑘. 𝜇𝑧1       

𝜎𝑋
 

𝑍𝑋 =

𝑍2 − 𝜇𝑍2 − 𝑟
𝜎𝑍2
𝜎𝑍1
(𝑍1 − 𝜇𝑍1)

𝜎𝑍2√(1 − 𝑟
2)

 

 

 

 

 

(2.19) 
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In the event that the SDs for 𝑍2 and 𝑍1 are equal (i.e. 𝜎𝑍1 = 𝜎𝑍2), the slope 

parameter 𝛽 = 𝑟𝑘 = 𝑟
𝜎𝑍2

𝜎𝑍1
 is simply equal to the correlation between the two SD scores, 

𝑟. Letting 𝜇𝑍1 = 𝜇𝑍2 = 0 and  𝜎𝑍1 = 𝜎𝑍2 = 1, we obtain; 

𝑍𝑋 =
𝑍2 − 𝑟𝑍1

√ 1 − 𝑟2
 

which is equal to the expression for internal conditional weight gain. Equation (2.19) is 

the result of aim 3 of this thesis. 

2.8 Modelling correlation 
As discussed, the correlation coefficient, 𝑟, is needed to adjust for RTTM. However, to 

interpolate the correlation between scheduled measurement dates, where no data are 

available, we need to build a statistical model.  

While obtaining correlation coefficients, one problem is that the sample size to calculate 

each coefficient for each pair of time points may differ and as a result the variation for 

each correlation may differ. The confidence bands surrounding each correlation will 

therefore vary in size.  As the number of pairs of measurements used to calculate each 

correlation coefficient increases, the variance decreases, giving a better estimate of the 

true correlation.   

With correlations for 𝑛 > 500, correlation variance can be expressed as: 

𝑉𝑎𝑟(𝑟) =
(1 − 𝑟2)2

𝑛
 

It is unwise to use this expression if 𝑛 < 500, as 𝑟 tends to normality too slowly (Kendall 

& Stuart 1979). In our case it is better to use Fisher’s 𝑍 transformation of the correlation 

coefficient (Fisher 1921). The reason for using this transformation is because as the true 

population parameter |𝜌| gets closer to 1, the variance of 𝑟 decreases. The Fisher 

transformation is an approximate variance stabilising transformation, meaning the 

variance of the transformed correlation is approximately constant for all values of the 

population correlation coefficient. 

Let 𝑍(𝑟) = 𝜙(𝑟) to avoid any confusion with 𝑍 scores. We transform each correlation for 

pair 𝑡1, 𝑡2 with: 

 
𝜙(𝑟) =

1

2
log (

1 + 𝑟

1 − 𝑟
) 

(2.20) 

The associated variance with each correlation coefficient becomes: 

𝑉𝑎𝑟(𝜙(𝑟)) =
1

𝑛 − 3
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Once the transformed data are modelled, the predicted values can be converted back 

using: 

 
𝑟 =

exp(2𝜙(𝑟)) − 1

exp(2𝜙(𝑟)) + 1
 

(2.21) 

Fisher’s transformation will be used to transform correlations for three of the four models 

within this thesis. The other transformation is a log transform, used by the ‘Argyle’ model. 

An approximate confidence interval for a correlation coefficient is: 

𝐶𝐼𝜙𝑟(1−𝛼) = 𝜙𝑟 ± 𝑍𝛼
2
√

1

𝑛 − 3 
  

where 𝜙𝑟 is the Fishers transformation of 𝑟 (Argyle 2002). Therefore, the larger 𝑛 is, the 

smaller the interval will be. 

2.8.1 Generalised Additive Models  

Bivariate splines are one of the modelling approaches used within this thesis. A popular 

approach which we can use to fit bivariate splines are GAMs. GAM models were 

developed by Hastie & Tibishirani (1986) to combine the properties of both Generalised 

Linear Models (GLMs) with Additive Models (AMs). GAMs can be applied with the 

𝑚𝑔𝑐𝑣 package in 𝑅, written by Simon Wood. Wood (2006) illustrates how GAMs can be 

represented using penalised regression splines.  

The model’s structure may take the form, for example: 

 𝑔(𝜇) = 𝛽0 + ℎ1(𝑥1) + ⋯+ ℎ𝑛(𝑥𝑛) (2.22) 

where 

𝐸(𝑌) = 𝜇 and 𝑌~𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑎𝑚𝑖𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Equation (2.22) can also include linear terms. For each smooth function ℎ𝑖, we must set 

the maximum number of basis functions, 𝑘, which determines the flexibility of our 

smooth. If 𝑘 is too small we will over smooth, and if 𝑘 is too large it will result in an over 

complicated model. Effectively, setting 𝑘 equal to the number of datapoints will track the 

data perfectly, but ideally we would like our spline estimate of the data to be as close as 

possible with the minimum amount of basis functions. 

Our response in this distinct case is Fishers 𝑍 transform (𝜙(𝑟𝑡𝑖,𝑡𝑗)) of the original 

correlation coefficients of the groups of 𝑍 scores of weight measurements between time 

points. 
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Our link function 𝑔(. ) is the identity link, which is simply a 1:1 function where 

𝑔 (𝜙(𝑟𝑡𝑖,𝑡𝑗)) = 𝜙(𝑟𝑡𝑖,𝑡𝑗).  Our GAM will take the form: 

𝐸 (𝜙 (𝑟𝑡𝑖,𝑡𝑗)) = 𝛽 + ℎ(𝑡𝑖 , 𝑡𝑗) 

where we have intercept 𝛽. Row 𝑖 of the vector of time points 𝑡𝑖 and 𝑡𝑗 are the vector 

time points and ℎ is our two dimensional smooth for 𝑡𝑖 and 𝑡𝑗. 

One issue with the use of a spline based approach is the smoothness of our model. As 

discussed, we wish to choose 𝑘 such that it captures most of the variation in our 

response, however, we do not wish to over fit as this can be computationally expensive. 

Choosing 𝑘 is arbitrary, however, two criteria which are available to aid us in choosing our 

smoothing parameter is Generalised Cross Validation (GCV) and Akaike Information 

Criterion (AIC) (Refer to Section 2.8.3). 

GCV was first introduced by Craven & Wahba (1979). This criterion allows us to select the 

smoothness parameter by minimising the value of: 

𝐺𝐶𝑉 =
1

𝑛
∑(

𝑦𝑖 − 𝑦�̂�

1 −
1
𝑛 𝑡𝑟

(𝐻)
)

2
𝑛

𝑖=1

 

where  

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 

In this case 𝐻 is the hat matrix where 𝑋 is our matrix of explanatory variables (and 

contains the basis of the smooths) and �̂�𝑖 is the estimate of 𝑦𝑖 from fitting all the data  

(Wood 2006). 

For each correlation matrix we will assess the fit of a number of GAM models based on 

both the GCV and AIC, with the intention of quantifying the most amount of variation but 

by keeping 𝑘 low. These models will firstly be fitted to the datasets and the best fitting 

models will be used within our cross validation approach.  

Wood (2006) states “the exact choice of 𝑘 is not critical, it should be large enough that 

you are reasonably sure of having enough degrees of freedom to represent the 

underlying ‘truth’ reasonably well, but small enough to maintain reasonable 

computational efficiency”. 

2.8.2 Argyle model 

A very simple model to capture the trend and variation within correlation matrices was 

developed by Argyle (2002).  Some of Argyle’s early work started by regressing different 
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functions of age and intervals between ages on the correlation coefficient. This led Argyle 

to a very simple model form. Argyle (2002) stated that as a result of her work, a plausible 

model for correlation could be a function of the form:  

𝑟𝑡𝑖𝑡𝑗 = 𝜌
𝑓(𝑡𝑖,𝑡𝑗) 

where 𝑟 is the actual correlation in row 𝑖 and column 𝑗 of a correlation matrix. 𝜌 is an 

unknown constant and 𝑓(𝑡𝑖, 𝑡𝑗) is a function of 𝑡𝑖 and 𝑡𝑗 where 𝑡𝑖 < 𝑡𝑗 . However, taking 

the log of each side yields: 

𝑙𝑜𝑔 (𝑟𝑡𝑖𝑡𝑗) = 𝑓(𝑡𝑖 , 𝑡𝑗) log(𝜌) 

such that the logarithm of the correlation between time points 𝑖 and 𝑗 could be modelled 

as a function of 𝑡𝑖 and 𝑡𝑗. This requires the correlation to be positive. 

By using linear regression, Argyle assessed different models by regressing functions of 𝑡𝑖 

and 𝑡𝑗 on log (𝑟𝑡𝑖𝑡𝑗). Transformations such as the square root, the difference and the 

reciprocals of 𝑡𝑖 and 𝑡𝑗 were assessed however Argyle arrived at the form: 

𝑙𝑜𝑔 (𝑟𝑡𝑖𝑡𝑗) = 𝐴𝑙𝑜𝑔(𝑡𝑖 + 1) + 𝐵𝑙𝑜𝑔(𝑡𝑗 + 1) 

where the addition of 1 to 𝑡𝑖 and 𝑡𝑗 to avoid the complications of logging 0 where birth 

weights are included within the correlation matrix.  

This form of the model fitted well. However, Argyle decided to use a constant, 𝜏, instead 

of simply adding 1. Adding 9 (if units are months) seemed like a reasonable approach 

since length of gestation is approximately 9 months, so adding this constant would result 

in gestational age. This model was not as good a fit as the previous model, and was 

subsequently abandoned.  

𝑙𝑜𝑔 (𝑟𝑡𝑖𝑡𝑗) = 𝐴𝑙𝑜𝑔(𝑡𝑖 + 𝜏) + 𝐵𝑙𝑜𝑔(𝑡𝑗 + 𝜏) 

Argyle (2008) developed the model further, by letting 𝐴 = 𝜆 and 𝐵 = −𝜆 such that the 

model’s form becomes: 

𝑙𝑜𝑔 (𝑟𝑡𝑖𝑡𝑗) = 𝜆𝑙𝑜𝑔 (
𝑡𝑖 + 𝜏

𝑡𝑗 + 𝜏
) 

           = 𝑙𝑜𝑔 (
𝑡𝑖 + 𝜏

𝑡𝑗 + 𝜏
)

𝜆

 

The final form of the model can be expressed by taking the exponential of each side of 

the formula, which then yields: 
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𝑟𝑡𝑖𝑡𝑗 = (

𝑡𝑖 + 𝜏

𝑡𝑗 + 𝜏
)

𝜆

 
(2.23) 

for 𝑖 < 𝑗. 

Argyle optimised 𝜏 by grid search, plotting the deviance against 𝜏. To explore how 

changing the constants in her models would affect the fit, Argyle (2002) let the constants 

vary between ranges of values in steps of 0.5. The resulting deviance (which is 

proportional to the sum of squares) and coefficients were plotted against the constant 

term.   

This process will be repeated for our analysis. A linear model in the form: 

𝐸 (𝑙𝑜𝑔 (𝑟𝑡𝑖𝑡𝑗)) = 𝜆 𝑙𝑜𝑔 (
𝑡𝑖 + 𝜏

𝑡𝑗 + 𝜏
) 

will be applied while varying 𝜏 over a range of values. The constant 𝜏 which results in the 

minimum deviance can then be taken with the associated coefficient (𝜆) of 𝑙𝑜𝑔 (
𝑡𝑖+𝜏

𝑡𝑗+𝜏
).  

2.8.3 Fractional polynomials  

A fractional polynomial is a flexible alternative to a regular polynomial. Low order 

polynomials are known to not always fit data well, while high order polynomials fit better 

but still fit badly at the extremes of 𝑋 (Royston & Altman 1994). Furthermore, as 

polynomials do not have asymptotes they do not fit data well where limiting behaviour is 

expected. 

A fractional polynomial of degree 𝑚 is defined as: 

 
Φ𝑚 = (𝑋; 𝜉, 𝑝) = 𝜉0 +∑𝜉𝑗𝑋

(𝑝𝑗)

𝑚

𝑗=1

 
(2.24) 

where 𝜉 = (𝜉0, 𝜉1, … , 𝜉𝑚) are real valued coefficients, 𝑋 is a positive covariate and 

𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑚) is a real valued vector of powers where 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑚. The 

bracket notation signifies the Box-Tidwell transformation where, 

𝑋(𝑝𝑗) = {
𝑋𝑝𝑗      𝑖𝑓 𝑝𝑗 ≠ 0 

ln𝑋    𝑖𝑓 𝑝𝑗 = 0
 

A stepwise procedure is used for covariate selection and model fitting when several 

covariates are available. 

In the statistical program 𝑅, the package 𝑚𝑓𝑝 is used to implement fractional 

polynomials, using a form of backward elimination for model selection.  



 

52 
 

𝑚𝑓𝑝 processes each predictor in turn, arranging predictors in order of increasing 𝑝-value 

so that important variables are modelled first. The best fitting fractional polynomial 

function for each predictor is determined using a selection algorithm (while assuming all 

other variables are linear). The functional form (but not the estimated coefficients) for 

each predictor is kept and the process is repeated for other predictors. The fractional 

polynomial functions are reassessed by re-cycling each predictor in the algorithm until the 

overall model does not change (convergence is usually achieved within 4 cycles). To 

determine which function is used for each predictor, 𝑚𝑝𝑓 starts with the most complex 

fractional polynomial model available and attempts to simplify it by reducing the degrees 

of freedom. A selection algorithm called the “closed test procedure” inspires the selection 

algorithm for 𝑚𝑓𝑝 in which the 𝑝-value is maintained over a series of tests at a pre-

specified nominal value such as 0.05. The algorithm with a maximum of 4 degrees of 

freedom for a single continuous parameter is as follows: 

1. Inclusion: test the fractional polynomial in 𝑥 for possible omission of 𝑥 (4 df test). If 𝑥 is 

significant, continue, otherwise drop 𝑥 from the model. 

2. Non-linearity: test the fractional polynomial in 𝑥 against a straight line in 𝑥 (3 df test). If 

significant, continue, otherwise the chosen model is a straight line. 

3. Simplification: test the fractional polynomial with 𝑚 = 2 against the best fractional 

polynomial with 𝑚 = 1. If significant, choose 𝑚 = 2, otherwise choose 𝑚 = 1 (Ambler & 

Royston 2001). 

To determine whether a predictor is significant, a 𝑝-value is calculated based of a 

difference of deviances having either a 𝜒2 or 𝐹 distribution depending on the regression 

in use. The procedure uses a pre-transformation scaling to avoid numerical problems. 

2.8.4 Cole model  

Cole (1995) adopted the FP approach to model the correlation structure for the 

Cambridge infant study. Cole (1995) used the mean 𝑡̅ =
𝑡𝑗+𝑡𝑖

2
 and the difference 

Δ𝑡 = 𝑡𝑗 − 𝑡𝑖 between time points where 𝑡𝑗 > 𝑡𝑖  as explanatory variables in the model. 

Cole’s model ended up with 6 terms, shown below: 

 𝐸 (𝜙 (𝑟(𝑡𝑖, 𝑡𝑗)))

= 𝛽0 + 𝛽1 log(𝑡̅) + 𝛽2 log(Δ𝑡) + 𝛽3 (
1

Δ𝑡
) + 𝛽4 log(𝑡̅) log(Δ𝑡)

+ 𝛽5[log(𝑡)̅
2] 

(2.25) 
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This model performed very well on the Cambridge data with an 𝑅2(𝑎𝑑𝑗. ) value of 0.99 

(Argyle, 2002). 

As well as applying our own FP models, we will also apply Cole’s model to our datasets 

and compare the results with the model chosen by the selection algorithm in Section 

2.8.3. This will allow us to assess the performance of a model built for a different dataset. 

2.9 Assessing model fit and comparisons 
To determine which of the 4 correlation models in Section 2.8 fit the data best, various 

model selection criteria and cross validation methods have been selected.  

2.9.1 Cross validation  

The Mean Square Error (MSE) is a statistic used to assess model fit and is used to compare 

models. The MSE is defined as: 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑌�̂� − 𝑌𝑖)

2
𝑛

𝑖=1

 
(2.26) 

To calculate the mean square error, the procedure below was followed for all correlation 

matrices: 

1.) Remove upper triangular part of the matrix and diagonal correlations. 

2.) Randomly select ¼ of the lower triangular correlations  

3.) Apply the models to the remaining ¾ correlations 

4.) Predict the correlations removed in step 2, back-transforming as necessary 

5.) Calculate the MSE for each set of predictions 

This process will be followed 10 times and the average MSE will be taken along with 

minimum and maximum values. 

The Root Mean Square (RMS) of the errors can be calculated by taking the square root of 

the MSE.  The average RMS can be calculated by taking the average of the square root of 

the ten MSE values. 

2.9.2 R-Squared  
The coefficient of determination, or more commonly,  𝑅2, is an indicator of how well a 

statistical model fits its data. The coefficient of determination can be calculated as, 

𝑅2 =
∑ (𝑦�̂�
𝑛
𝑖=1 − �̅�)2

∑ (𝑦𝑖
𝑛
𝑖=1 − �̅�)2
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where 𝑦�̂� is the estimate from our fitted model, 𝑦𝑖 are the observed values and �̅� is the 

mean of our observed data calculated as �̅� =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 . This value sits between 0 and 1. 

Values close to 0 indicate a poor fit, values close to 1 indicate a good fit. 

However, this expression does not take into account the number of variables included in 

the model. To adjust for this, we must account for the number of explanatory variables by 

modifying the expression, as shown here: 

 
𝑅2(𝑎𝑑𝑗. ) = (𝑅2 −

𝑘

𝑛 − 1
) (

𝑛 − 1

𝑛 − 𝑘 − 1
) 

(2.27) 

Since this expression takes the number of explanatory variables 𝑘 into account as well as 

the sample size 𝑛, we can adjust our 𝑅2 so that terms that add no value decrease 𝑅2. 

2.9.3 Akaike Information Criterion  

Another statistical tool which can be used to help with model selection is the AIC (Akaike 

1974). The AIC is used to measure the quality of a model as a trade-off between the 

goodness of fit of a model and the complexity of the model. The AIC can be defined as: 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔 (𝐿) 

where 𝑘 in this case is the number of parameters in the model and 𝐿 is the maximised log 

likelihood function for the model.  

The preferred model from a selection of models is the one with the minimum AIC value. 

Hence, the AIC does not test a null hypothesis for whether model parameters are 

significant, it simply indicates which is best model from a selection of models. If all 

models fitted were a poor fit, the AIC would simply select the best of the selection given. 

For models that predict on different scales, the AICs are not directly comparable. If 

however, we multiply the likelihood by the Jacobian of the transformation, then results 

can be compared directly as mentioned by Box & Cox (1964). As mentioned previously, 

two transformations are used within our modelling sections, the log and Fisher’s 

transformation. 

For log transformations, 𝑓(𝑦) = 𝑙𝑜𝑔(𝑦) and the Jacobian becomes 𝐽 = ∏
1

𝑦𝑖
. We multiply 

the likelihood 𝐿 by 𝐽 or we add 𝑙𝑜𝑔 (𝐽) to 𝑙𝑜𝑔 (𝐿). 

For the Fisher transformation, 𝑓(𝑦) =
1

2
log (

1+𝑦

1−𝑦
), so 𝐽 becomes 𝐽 = ∏

1

1−𝑦2
 . As with the 

log transformation, we can multiply 𝐿 by 𝐽, or add 𝑙𝑜𝑔(𝐽) to 𝑙𝑜𝑔(𝐿).  

Therefore, to calculate the 𝐴𝐼𝐶(𝑎𝑑𝑗. ), we can use the expression: 
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 𝐴𝐼𝐶(𝑎𝑑𝑗. ) = 2𝑘 − 2. (𝑙𝑜𝑔(𝐿) + 𝑙𝑜𝑔(𝐽)) (2.28) 

2.9.4 Bayesian Information Criterion  

The Bayesian Information Criterion (BIC), or Schwarz Bayesian Information Criterion 

(SBC/SBIC) is another tool which can be used for model selection. The BIC was developed 

by Gideon E. Schwarz, documented in his 1978 paper “Estimating the Dimension of a 

Model” (Schwarz 1978). Schwarz set out to present an alternative approach to the AIC, 

which penalises the maximum log-likelihood in the following way: 

𝐵𝐼𝐶 = 𝑙𝑜𝑔 (𝑛). 𝑘 − 2 𝑙𝑜𝑔(𝐿) 

where 𝐿 is the maximum log-likeihood, 𝑘 is the number of parameters and 𝑛 is the 

number of observations. The difference between the AIC and BIC is that the BIC is that 𝑘 

is weighted by log (𝑛) rather than 2. 

As with the AIC, models which are on different scales are not directly comparable in terms 

of BIC. However, the same adjustment with the AIC can be made to the BIC where we 

multiply the likelihood by the Jacobian, 𝐽, or we add the log of the Jacobian to the log 

likelihood. The expression therefore becomes: 

 𝐵𝐼𝐶(𝑎𝑑𝑗. ) = 𝑙𝑜𝑔 (𝑛). 𝑘 − 2 (𝑙𝑜𝑔(𝐿) + 𝑙𝑜𝑔 (𝐽)) (2.29) 

where for 𝑓(𝑦) = log(𝑦), 𝐽 = ∏
1

𝑦𝑖
 and for 𝑓(𝑦) =

1

2
log (

1+𝑦

1−𝑦
),  𝐽 = ∏

1

1−𝑦2
 . 

The BIC penalises more heavily than AIC. The reason for this is that where 𝑛 exceeds 7, 

𝑙𝑜𝑔 (𝑛) > 2.  

2.10 Transition matrices 
Hypotheses 1-3 state presumed transitions between various nutritional states. By 

calculating the conditional probability of children moving from one state to others, we 

can quantify the likely pathways children take through time. 

The probability of moving between nutritional states from one time point to the next can 

be presented within a probability transition matrix. Let 𝑖 be the state at 𝑡1 (row 𝑖) and 𝑗 be 

the state at 𝑡2 (column 𝑗), then the probability of moving from state 𝑖 to 𝑗 is 𝑃(𝑗|𝑖) =

𝑛𝑖𝑗

𝑛𝑖
= 𝑃𝑖𝑗 where 𝑛𝑖𝑗  is the number of individuals moving from state 𝑖 to 𝑗 between 𝑡1 and 

𝑡2 and 𝑛𝑖 = ∑ 𝑛𝑖𝑗
𝑘
𝑗=1  is the number of individuals in state 𝑖 at 𝑡1. 

A probability transition matrix can be therefore defined as, 
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𝑃 = [

𝑃11 𝑃12 … 𝑃1𝑘
𝑃21 𝑃22 … 𝑃2𝑘
⋮ ⋮ ⋱ ⋮
𝑃𝑘1 𝑃𝑘2 … 𝑃𝑘𝑘

] 

where  𝑖, 𝑗 = 1,… , 𝑘 and ∑ 𝑃𝑖𝑗 = 1
𝑘
𝑗=1 .  

The RR can be calculated as: 

𝑅𝑅 =
𝑃1
𝑃2

 

where 𝑃1 =
𝑎

𝑐
 and 𝑃2 =

𝑏

𝑑
. Significance can be assessed using the interval: 

 
  (𝑒

log(𝑅𝑅)−1.96√(
1
𝑎
+
1
𝑏
)−(

1
𝑐
+
1
𝑑
) 
,   𝑒

log(𝑅𝑅)+1.96√(
1
𝑎
+
1
𝑏
)−(

1
𝑐
+
1
𝑑
) 
) 

(2.30) 

If this interval contains 1, we assume 𝑃1 = 𝑃2 (Sistrom & Garvan 2004). 

2.10.1 Generalised Likelihood Ratio Test  

Before making inference based on the stochastic models, we can test whether our 

probability transition matrices are significantly different from one another. If they are 

not, datasets can be pooled. Doing so provides more power to our analyses. 

Consider two transition matrices A and B, each with 𝑘 rows and 𝑘 columns. Each 

transition within matrix A is calculated by taking the cell total 𝑛𝑖𝑗 over the row total 𝑛𝑖  

such that 𝑝𝑖𝑗 =
𝑛𝑖𝑗

𝑛𝑖
 and each transition for matrix B is calculated by taking the cell total 

𝑚𝑖𝑗 over the row total 𝑚𝑖 such that 𝑞𝑖𝑗 =
𝑚𝑖𝑗

𝑚𝑖
.  A GLRT can be carried out to test whether 

the frequencies used to calculate the transitions for matrices A and B follow the same 

multinomial distribution.  Assume each row 𝑖 of matrix A and matrix B are multinomial 

distributed such that 𝑛𝑖𝑗~𝑀𝑁(𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, 𝑝𝑖4, 𝑝𝑖5) and 𝑚𝑖𝑗~𝑀𝑁(𝑞𝑖1, 𝑞𝑖2, 𝑞𝑖3, 𝑞𝑖4, 𝑞𝑖5). 

Row 𝑖 of matrices A and B follow the distributions, 

𝑝(𝑛𝑖|𝑝𝑖) = (
𝑛𝑖

𝑛𝑖1, … 𝑛𝑖𝑘
) 𝑝𝑖1

𝑛𝑖1 …𝑝𝑖𝑘
𝑛𝑖𝑘    and  𝑝(𝑚𝑖|𝑞𝑖) = (

𝑚𝑖
𝑚𝑖1, …𝑚𝑖𝑘

) 𝑞𝑖1
𝑚𝑖1 …𝑞𝑖𝑘

𝑚𝑖𝑘  

and follow joint distribution 

𝑝(𝑛𝑖 , 𝑚𝑖|𝑝𝑖, 𝑞𝑖) = (
𝑛𝑖

𝑛𝑖1, … 𝑛𝑖𝑘
) 𝑝𝑖1

𝑛𝑖1 …𝑝𝑖𝑘
𝑛𝑖𝑘 . (

𝑚𝑖
𝑚𝑖1, …𝑚𝑖𝑘

) 𝑞𝑖1
𝑚𝑖1 …𝑞𝑖𝑘

𝑚𝑖𝑘    

and have likelihood 

𝐿(𝑝𝑖, 𝑞𝑖|𝑛𝑖 , 𝑚𝑖) = (
𝑛𝑖

𝑛𝑖1, … 𝑛𝑖𝑘
) 𝑝𝑖1

𝑛𝑖1 …𝑝𝑖𝑘
𝑛𝑖𝑘 . (

𝑚𝑖
𝑚𝑖1, …𝑚𝑖𝑘

) 𝑞𝑖1
𝑚𝑖1 …𝑞𝑖𝑘

𝑚𝑖𝑘   

and log likelihood (constants A and B) 
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 𝑙(𝑝𝑖, 𝑞𝑖|𝑛𝑖 , 𝑚𝑖) = 𝑙𝑜𝑔𝐴 + 𝑛𝑖1𝑙𝑜𝑔(𝑝𝑖1) + ⋯+ 𝑛𝑖𝑘𝑙𝑜𝑔(𝑝𝑖𝑘) + 𝑙𝑜𝑔𝐵 + 𝑚𝑖1𝑙𝑜𝑔(𝑞𝑖1) + ⋯

+𝑚𝑖𝑘log (𝑞𝑖𝑘)   

 

Under 𝑯𝟎, 𝒑𝒊𝒋 = 𝒒𝒊𝒋 = 𝜼𝒊𝒋 

𝑙(𝜂𝑖|𝑛𝑖 , 𝑚𝑖) = 𝑙𝑜𝑔𝐴 + 𝑛𝑖1𝑙𝑜𝑔(𝜂𝑖1) + ⋯+ 𝑛𝑖𝑘𝑙𝑜𝑔(𝜂𝑖𝑘) + 𝑙𝑜𝑔𝐵 +𝑚𝑖1𝑙𝑜𝑔(𝜂𝑖1) + ⋯

+𝑚𝑖𝑘log (𝜂𝑖𝑘) 

= (𝑛𝑖1 +𝑚𝑖1) log 𝜂𝑖1  + ⋯

+ (𝑛𝑖𝑘 +𝑚𝑖𝑘) log 𝜂𝑖𝑘 + 𝜆(1 − [(𝑛𝑖1 +𝑚𝑖1) log 𝜂𝑖1  + ⋯

+ (𝑛𝑖𝑘 +𝑚𝑖𝑘) 𝑙𝑜𝑔𝜂𝑖𝑘]) 

Using Lagrange multipliers under the constraints ∑ 𝜂𝑖𝑗 = 1
𝑘
𝑗=1  and 𝜂𝑖𝑗 ≥ 0 ∀𝑗  

                       = ∑(𝑛𝑖𝑗 +𝑚𝑖𝑗)𝑙𝑜𝑔𝜂𝑖𝑗 + 𝜆(1 −∑𝜂𝑖𝑗)

𝑘

𝑗=1

𝑘

𝑗=1

 

𝛿𝑙

𝛿𝜂𝑖𝑗
=
𝑛𝑖𝑗 +𝑚𝑖𝑗

𝜂𝑖𝑗
− 𝜆 = 0,    

𝛿𝑙

𝛿𝜆
= (1 − ∑𝜂𝑖𝑗)

𝑘

𝑗=1

= 0 

𝑛𝑖𝑗 +𝑚𝑖𝑗 = 𝜆𝜂𝑖𝑗 

∑(𝑛𝑖𝑗 +𝑚𝑖𝑗)

𝑘

𝑗=1

= 𝜆∑𝜂𝑖𝑗

𝑘

𝑗=1

 

𝑛𝑖 +𝑚𝑖 = 𝜆 

Since 𝑛𝑖 +𝑚𝑖 = 𝜆, we can write the maximum likelihood estimator (MLE) under 𝐻0 as: 

 𝑛𝑖𝑗 +𝑚𝑖𝑗 = (𝑛𝑖 +𝑚𝑖)𝜂𝑖𝑗  

�̂�𝑖𝑗
𝑀𝐿 =

𝑛𝑖𝑗 +𝑚𝑖𝑗

𝑛𝑖 +𝑚𝑖 
 

 

(2.31) 

Under 𝑯𝟏, 𝒑𝒊𝒋 ≠ 𝒒𝒊𝒋 

𝑙(𝑝𝑖, 𝑞𝑖|𝑛𝑖, 𝑚𝑖) = 𝑙𝑜𝑔𝐴 + 𝑛𝑖1𝑙𝑜𝑔(𝑝𝑖1) + ⋯+ 𝑛𝑖𝑘𝑙𝑜𝑔(𝑝𝑖𝑘) + 𝑙𝑜𝑔𝐵 +

𝑚𝑖1𝑙𝑜𝑔(𝑞𝑖1) + ⋯+𝑚𝑖𝑘log (𝑞𝑖𝑘)   

𝛿𝑙

𝛿𝑝𝑖
=
𝑛𝑖𝑗

𝑝𝑖𝑗
− 𝜆1 = 0      

𝛿𝑙

𝛿𝑝𝑖
=
𝑚𝑖𝑗

𝑞𝑖𝑗
− 𝜆2 = 0 

 

 

 

 

 

The GLRT for each row 𝑖 is in the form: 

𝐷𝑖 = −2 𝑙𝑜𝑔 (
𝐿0
𝐿𝐴
) = 2 𝑙𝑜𝑔 (𝐿𝐴 − 𝐿0) 

𝑛𝑖𝑗 = 𝜆1𝑝𝑖𝑗  

∑𝑛𝑖𝑗 = 𝜆1∑𝑝𝑖𝑗

𝑘

𝑗=1

𝑘

𝑗=1

 

𝑛𝑖 = 𝜆1 

𝑛𝑖𝑗 = 𝑛𝑖𝑝𝑖𝑗 

 

  �̂�𝑖𝑗
𝑀𝐿 =

𝑛𝑖𝑗

𝑛𝑖
 (2.32) 

 

𝑚𝑖𝑗 = 𝜆2𝑞𝑖𝑗  

∑𝑚𝑖𝑗 = 𝜆2∑𝑞𝑖𝑗

𝑘

𝑗=1

𝑘

𝑗=1

 

𝑚𝑖 = 𝜆2 

𝑚𝑖𝑗 = 𝑚𝑖𝑞𝑖𝑗  

 

  �̂�𝑖𝑗
𝑀𝐿 =

𝑚𝑖𝑗

𝑚𝑖
 (2.33) 
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Substituting yields, 

−2 𝑙𝑜𝑔Δ = 2([log𝐴

+ log𝐵 + 𝑛𝑖1 log 𝑝𝑖1 +⋯+ 𝑛𝑖𝑘 log 𝑝𝑖𝑘 +𝑚𝑖1 log 𝑞𝑖1 +⋯+𝑚𝑖𝑘𝑙𝑜𝑔 𝑞𝑖𝑘]   

− [𝑙𝑜𝑔𝐴 + 𝑙𝑜𝑔𝐵 + (𝑛𝑖1 +𝑚𝑖1)𝑙𝑜𝑔𝜂𝑖1 +⋯+ (𝑛𝑖𝑘 +𝑚𝑖𝑘)𝑙𝑜𝑔𝜂𝑖𝑘]) 

= 2(∑𝑛𝑖𝑗 log 𝑝𝑖𝑗 +

𝑘

𝑗=1

∑𝑚𝑖𝑗 log 𝑞𝑖𝑗 −∑(𝑛𝑖𝑗 +𝑚𝑖𝑗) log 𝜂𝑖𝑗

𝑘

𝑗=1

𝑘

𝑗=1

) 

𝐷𝑖 = 2(∑ 𝑛𝑖𝑗 log (
𝑝𝑖𝑗

𝜂𝑖𝑗
) +∑𝑚𝑖𝑗 log (

𝑞𝑖𝑗

𝜂𝑖𝑗
)

𝑘

𝑗=1

 

𝑘

𝑗=1 

) 

However, this only allows us to test whether row 𝑖 in matrices A and B are significantly 

different.  

To test the whole matrix, the sum must be taken over the rows such that: 

 

  𝐷𝑇𝑜𝑡𝑎𝑙 = 2∑(∑𝑛𝑖𝑗 log (
�̂�𝑖𝑗

�̂�𝑖𝑗
) +∑𝑚𝑖𝑗 log (

�̂�𝑖𝑗

�̂�𝑖𝑗
)

𝑘

𝑗=1

𝑘

𝑗=1

)

𝑘

𝑖=1 

 

(2.34) 

This expression requires �̂�𝑖𝑗,  �̂�𝑖𝑗 and �̂�𝑖𝑗 to be non-zero. One strategy is to add a constant 

to each and every frequency, which guarantees �̂�𝑖𝑗 ,  �̂�𝑖𝑗 and �̂�𝑖𝑗 are all > 0 but as some of 

the frequencies are small, this drastically affects results. Another option is to use the 

asymptotically equivalent Pearson 𝜒2 test statistic as this expression does not require 

�̂�𝑖𝑗 or  �̂�𝑖𝑗 to be > 0. 

 

2 ∑(∑𝑛𝑖𝑗
(�̂�𝑖𝑗 − �̂�𝑖𝑗)

2

�̂�𝑖𝑗
+

𝑘

𝑗=1

∑𝑚𝑖𝑗
(�̂�𝑖𝑗 − �̂�𝑖𝑗)

2

�̂�𝑖𝑗

𝑘

𝑗=1

)

𝑘

𝑖=1 

 ~𝜒2(𝐹𝑖 − 1) 

𝐹𝑖 = {𝑗: �̂�𝑖𝑗 > 0} 

(2.35) 

Note that no reference could be found for this test within the scientific literature. 

2.11 Survival analysis 
Hypothesis 4 states that recent size is a more valuable predictor of mortality than growth 

over a recent time period. Survival analysis using Cox proportional hazard models allow us 

to determine what the best predictors of “time until death” are. By determining whether 

models across datasets are in agreement, the best set of anthropometric measurements 

which predict mortality can be determined.  
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2.11.1 Survival function, hazard rates and censoring  

Let 𝑇 be a non-negative random variable which represents the time until the occurrence 

of the event of interest. The probability density function of 𝑇 is: 

𝑓(𝑡) = lim
𝛿𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡)

𝛿𝑡
 

and the cumulative distribution function of 𝑇 is: 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) 

and the survival function of 𝑇 is: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑥). 𝑑𝑥
∞

𝑡

 

This provides the probability of being alive just before duration 𝑡, or in other words the 

probability that the event of interest has not occurred by time 𝑡. 

The instantaneous risk of death can be expressed as the hazard function ℎ(𝑡): 

ℎ(𝑡) = lim
𝛿𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 ≥ 𝑡)

𝛿𝑡
= lim
𝛿𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡)

𝛿𝑡𝑃(𝑇 ≥ 𝑡)
 =
𝑓(𝑡)

𝑆(𝑡)
 

(2.36) 

therefore, 

ℎ(𝑡) =
𝑑

𝑑𝑡
(−𝑙𝑜𝑔. 𝑆(𝑡)) 

 

and since −𝑓(𝑡) is the derivative of 𝑆(𝑡) we can re-write 𝑆(𝑡) as: 

𝑆(𝑡) = exp (−∫ ℎ(𝑥). 𝑑𝑥
𝑡

0

) 
 

The hazard function is the probability of death in the next moment, given that you are 

alive now. We can denote the cumulative hazard as, 

𝐻(𝑡) = ∫ ℎ(𝑥). 𝑑𝑥
𝑡

0

 

This can be thought of as the sum of the risks going from 0 to 𝑡. 

Given the simplest survival distribution, which is a constant risk over time, 

ℎ(𝑡) = 𝜆 

then the corresponding survival function is, 

𝑆(𝑡) = exp(−𝜆. 𝑡) 

which is an exponential distribution with parameter 𝜆. By multiplying the survival function 

by the hazard function we obtain the probability distribution function 𝑓(𝑡): 

𝑓(𝑡) = 𝜆. 𝑒𝑥𝑝(−𝜆. 𝑡) (2.37) 

which has mean 1/𝜆 and variance 1/𝜆2. 
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One problem with survival analysis is the issue of censoring. For some individuals the 

event of interest might not occur within a certain specified timeframe. In our models we 

only wish to model up until 2 years of age – most children will not die within that 2 year 

period. Subjects who are still alive at the end of the study are right censored, as are those 

who leave before the end of the study (therefore their outcome is not known) (Miller 

2011). 

2.11.2 Cox Proportional Hazards Model  

Linear regression is not adequate while predicting mortality because it does not cope 

properly with censoring and, in any case, survival times are not normally distributed. 

Therefore a regression model tailored to survival data is needed. A suitable approach is 

provided by the Cox proportional hazards model (Cox 1972). The package 𝑐𝑜𝑥𝑝ℎ in 𝑅 can 

be used to apply the model. 

In this model, the hazard function, denoted ℎ(𝑡) is expressed as; 

ℎ(𝑡) = ℎ0(𝑡). exp(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛) ,    𝑡 > 0 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are a collection of covariates and ℎ𝑜(𝑡) is some unknown baseline 

hazard at time 𝑡 (ℎ0(𝑡) represents a person with 0 for all predictor variables, no 

assumptions are made about ℎ0(𝑡) apart from ℎ(𝑡) > 0). 

By dividing both sides by ℎ0(𝑡) we obtain  

ℎ𝑖(𝑡)

ℎ0(𝑡)
= exp(𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑛𝑥𝑖𝑛) 

and by taking logs 

log (
ℎ𝑖(𝑡)

ℎ0(𝑡)
) = (𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑛𝑥𝑖𝑛) 

(2.38) 

The ratio 
ℎ𝑖(𝑡)

ℎ0(𝑡)
 is called the hazard ratio for subject 𝑖.  

Time dependent variables can be introduced by letting 𝑥 depend on 𝑡 such that 

log (
ℎ𝑖(𝑡)

ℎ0(𝑡)
) = (𝛽1𝑥𝑖1(𝑡) + 𝛽2𝑥𝑖2(𝑡) + ⋯+ 𝛽𝑛𝑥𝑖𝑛(𝑡)) 

(2.39) 

The model is semi-parametric because the baseline hazard can take any form however 

the covariates enter the model linearly. 

If we have two observations 𝑖 and 𝑖′ that differ in their 𝑥 values with 

ℎ𝑖(𝑡) = ℎ0(𝑡). exp(𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑛𝑥𝑖𝑛) = ℎ0(𝑡). exp(𝜂𝑖) 

and 

ℎ𝑖′(𝑡) = ℎ0(𝑡). exp(𝛽1𝑥𝑖′1 + 𝛽2𝑥𝑖′2 +⋯+ 𝛽𝑛𝑥𝑖′𝑛) = ℎ0(𝑡). exp(𝜂𝑖′) 



 

61 
 

then the hazard ratio for these two observations is, 

ℎ𝑖(𝑡)

ℎ𝑖′(𝑡)
=
ℎ0(𝑡). 𝑒

𝜂𝑖

ℎ0(𝑡). 𝑒𝜂𝑖′
  

=
𝑒𝜂𝑖

𝑒𝜂𝑖′
 

= 𝑒𝑖
𝜂−𝜂𝑖′ 

Model comparisons will be carried out via BIC, with the best model minimising the 

criterion (Miller 2011). BIC was chosen as it penalises against the number of parameters 

more heavily. 

2.11.3 Stratification 

A stratified Cox model allows the form of the hazard function to vary across levels of a 

categorical stratification variable 𝑍, without estimating the effects of the outcome. This 

allows us to adjust for variable 𝑍 when making inferences with the model. This can also 

be used when the variable does not satisfy the proportional hazards assumption. 

2.12 Chapter conclusions 
In this chapter we described the statistical methodology that will be used throughout this 

thesis. Sections 2.4 to 2.9 described methodology used to address aims which focus on 

summarising and modelling data (aims 1-3). Sections 2.10 to 2.11 presented methodology 

which can be used to quantify how anthropometry can be used to predict future adverse 

outcomes (aims 4-6).  

Aim 3 investigated the impact that external references have on some common measures 

of weight gain and investigated how to modify the measures to allow for them. Section 

2.7.4 thus investigated how to adapt conditional weight gain for use with an external 

reference. Both unconditional (Section 2.7.1) and conditional (Section 2.7.2) measures 

can be used to identify the magnitude of growth of a child relative to their population. 

Caution should however be taken when using the expression for unconditional weight 

gain (Cole 1997) since unconditional measures are biased (Cole 1993). This is because 

unconditional weight gain does not take into account RTTM, and as a consequence, 

should only be used in age groups where correlation is high (Cole 1997) since any change 

in centile may be attributed to a change in weight rather than expected movement.  

Conditional weight gain (Cole 1995) corrects for RTTM by taking into account the 

correlation between 𝑍 scores at 𝑡1 and 𝑡2. Without this correction, the amount of bias 
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increases as the correlation decreases, thus, the longer the time frame in which 

unconditional weight gain is calculated, the larger the bias. However, the expression for 

conditional weight gain only allows comparative growth with the distribution of values in 

the specific population to which the infant belongs, known as an ‘internal’ reference. If an 

‘external’ reference is used, then the condition of zero mean and unit variance does not 

hold and the assumptions for the expression break down. Roelants (2013) suggests using 

models from Cameron (1980) or Berkey at al. (1983) with appropriate estimates for the 

mean and standard deviation of the SD scores to estimate conditional growth under these 

conditions, although, the advantage of working on the SD scale is largely lost. The 

generalised model, Equation (2.19), handles external references while on the 𝑍 scale, 

which in turn can be converted to a centile. However, the expression requires estimates 

of 𝜇𝑍1 , 𝜇𝑍2 , 𝜎𝑍1 , 𝜎𝑍2 and 𝑟. These parameters can easily be calculated if data are available 

at 𝑡2 and 𝑡2. However, if we wish to estimate these between measurement dates, we 

need to model these parameters. The models which can be used to do this are presented 

in Chapters 3 and 4. The GLRT developed in Section 2.10.1 is also novel. No reference 

could be found within the literature which describes this test, although, a similar “one 

sample” test was presented by Bickenbach & Bode (2001), applied to financial data. 

In Chapter 3, we introduce three developing world datasets which have been made 

available for analysis. We apply the LMS method to the datasets via GAMLSS, creating 

‘internal’ growth charts of the available datasets. This provides insight into how children 

from these datasets grow in terms of average growth trajectory and variability. The 

datasets can then be compared and contrasted. Nevertheless, there are disadvantages in 

using internal reference charts to assess child growth since these charts describe growth 

at a specific time and place. Ideally, references such as the WHO standard should be used 

as this is an idealised ‘external’ reference which describes growth under optimal 

conditions, is well known and is widely  used. In Chapter 3 we use GAMLSS to assess how 

children from the datasets made available for this thesis fit the standard, modelling the 

mean, 𝜇𝑍𝑡 , and standard deviation, 𝜎𝑍𝑡 , over time to assess how developing world 

datasets fit the standard. These models can be used to interpolate estimates of 𝜇𝑍1 , 

𝜇𝑍2 , 𝜎𝑍1 , 𝜎𝑍2 for use in the expression for generalised conditional weight gain.
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Chapter 3 

Datasets and growth characteristics 

3.1 Introduction 
Three datasets have been made available for analysis within this thesis, datasets from: 

Malawi, Pakistan and South Africa. This chapter focuses on introducing these datasets 

and reviewing how the datasets were collected. Papers which have been produced as a 

result of the studies are reviewed here. Refer to Tables 3.1 – 3.3 for summary evidence 

tables. Observational summaries and comparisons between the three datasets can be 

found throughout the chapter and towards the end the LMS method is used to develop 

growth reference charts. Serial measurements can be plotted on these charts to assess 

growth. If a child’s measurements deviate from a previously established growth pattern 

then there may be cause for concern. There are, however, disadvantages in using internal 

growth chart references as they are developed from children at a particular time and 

place. The populations of children who make up the references may not grow at an 

adequate rate. The WHO state that all children grow the same under optimal conditions 

and advise universal use of their WHO 2006 growth standard, developed from 

populations of healthy children from around the globe. Work has been carried out by 

Roelants (2013), Hui et al. (2008) and Wright et al. (2008), assessing how populations of 

pre-school children from the developed world fit the standard.However, little is known 

about how children from the developing world fit the distribution of children which make 

up this idealised reference distribution. One of our aims is to determine how real 

populations of pre-school children from the developing world fit the standard. 



 

64 
 

To do this, we convert measurements from our datasets to 𝑍 scores relative to the WHO 

standard and use GAMLSS to model the transformed series assuming a normal 

distribution, allowing us to model the mean and SD over time. By plotting the mean and 

SD curves we can determine how children from our datasets grow relative to the 

standard. Conditional weight gain was introduced in the last chapter which requires 

𝑍𝑋~𝑁(0,1). If using the expression with an external reference, we no longer assume 

𝜇𝑍𝑡 = 0 and 𝜎𝑍𝑡 = 1. Both of these parameters can be estimated from the transformed 

series at 𝑡1 and 𝑡2 to obtain 𝜇𝑍1 , 𝜇𝑍2 , 𝜎𝑍1and 𝜎𝑍2, or interpolated from the GAMLSS model 

of the transformed series. This analysis can be found after the introduction of the 

datasets. 

Note that all analyses have been restricted from 0 to 24 months, the maximum age of the 

Pakistani set, to make them comparable.  

3.2 Lungwena Child Survival Study  
The Lungwena Child Survival Study (LCSS) was an observational cohort study which set 

out to analyse the varying factors which influence child mortality in an impoverished 

community within Lungwena, Malawi. Mothers were enrolled between June 1995 and 

August 1996. Data were collected on the health of both pregnant women and their 

children under five years old. Both pre and post-natal factors which influence infant 

mortality were of interest as well as the magnitude of their influence. Referring to Figure 

3.1, from Vaahtera et al. (2000), 795 pregnant women were enrolled in the study and 813 

foetuses (18 twin pregnancies) started follow up. However, only 760 were born alive and 

of the 760, only 733 were made available (27 dropped out). Note that the number 

evaluable for neonatal outcome and infancy outcome only take abortions, stillbirths and 

dropouts into account, not neonatal deaths or postnatal infant deaths.  

A number of maternal and child health factors have already been analysed as predictors 

of infant mortality as well as socioeconomic factors such as the age of parents, number 

and age of people in the household, religion and occupation of parents and size of 

building and material of house. For those with a first recorded weight of >2500g, the 

infant mortality rate was 103 per 1000 whereas those with a first recorded weight of 

<2500g had an infant mortality rate of 205 per 1000, an RR of 1.99. Other high risk factors 

included maternal primiparity with an RR of 2.21 and birth date between May to July with 

an RR of 2.1 (Vaahtera et al. 2000). Ashorn et al. (2002) used the data to study male 
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biased mortality among 1 and 2 year old children within the Malawian dataset. A total of 

147 1-2 year old infants died during follow up resulting in infant and under 3 year 

mortality rates of 136 and 202 deaths/1000 live births, respectively. Mortality was higher 

among boys than girls immediately after birth, but not during the subsequent 6-8 months. 

Between 9 and 35 months of age, there was a notable excess of male mortality (RR 1.9, 

95% CI 1.0 to 3.0, 𝑝 = 0.04, Cox regression). Previous studies show that three biological 

factors have been associated with male biased mortality in infants and older children: 

malnutrition, immunisations and accidents (Naeye 1971). However, in general, it is 

females that have a higher mortality rate within developing world countries, whereas the 

reverse is true within the developed world (Waldron 1987). The prevalence of 

underweight, stunting or wasting was higher among boys than girls in the study and close 

to half the deaths were malnutrition associated. However, the sex difference in mortality 

was not significantly affected by adjustment for the incidence of moderate wasting, other 

forms of malnutrition, or children’s anthropometric measurements at 9 months of age. 

Ashorn states that malnutrition might have explained in part, but not the majority of the 

sex specific mortality trends among 1–2 year old children. Accident related deaths were 

infrequent and did not account for the difference (Ashorn et al. 2002). 

Growth curves for this dataset have already been developed using the LMS method by 

Maleta et al. (2003), up to 36 months. Both the NCHS/WHO and CDC reference 

populations were assessed against the Lungwena population to determine average 

deviations from the population median. New-borns in Lungwena were on average 0.5kg 

lighter and 2.5cm shorter than the CDC reference babies and 0.3kg lighter and 3.1cm 

shorter than the NCHS/WHO standard babies. Compared to both references, children fell 

away from the median after three months and then grew parallel to the 3rd centile after 

12 months. The median height was well below the 3rd centile after 12 months compared 

to both references.  

Maleta (2003) conducted additional research into growth, studying the effect of 

seasonality in the dataset. It is known that childhood growth follows a seasonal pattern in 

both low income and high income countries. Maleta argued that according to most 

available evidence, weight gain appears to peak in autumn and winter and height gain in 

spring and summer. In low income countries this is attributed to seasonal variation in 

food availability and the prevalence of infectious disease. Those under 6 months old had 

the greatest height and weight gains between May and September. After 12 months, 
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weight gains peaked in May to July and height gains 3 months later between August and 

October.  

Figure 3.1: Flow diagram of women eligible for enrolment and numbers lost to follow-up 

during the study (Vaahtera et al. 2000) 

Maleta’s further research set out to determine the predictors of malnutrition in the 

Malawian data. The reference population used was adopted from the 1977 United States 

NCHS reference, based largely on non-breast fed American infants and children. Factors 

associated with severe underweight (WAZ < -3) were: delivery attended by trained 

assistant and morbidity in infancy. Factors associated with severe stunting were (HAZ < -

3): delivery attended by trained assistant, sex and morbidity in infancy.  

Espo et al. (2002) also studied predictors of severe stunting within the dataset. Variables 

associated with stunting using a univariate analysis were: preterm birth, low maternal 

height, low weight gain of mother during pregnancy, gender, low quality weaning diet, 
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total number of illness episodes, total number of diarrhoea episodes, place of birth and 

literacy of father. All of these variables apart from literacy of father (excluding duration of 

pregnancy and diarrhoea morbidity because they are associated with birth weight and 

total morbidity, respectively) were significant predictors when included in a logistic 

regression model together (Espo et al. 2002). 

Author, year Outcome Risk factors Results 

(Ashorn, 
Maleta, Espo, 
& Kulmala, 
2002) 
(Ashorn et al. 
2002) 

Mortality Gender Mortality higher for boys 
than girls after birth 
 
Mortality similar during 
months 6-8 
 
Mortality higher for boys 
than girls during months 
9-35 

(Espo et al. 
2002) 

Stunting WAZ during first 3 mo 
Weaning diet 
Total number of illness 
episodes 
Maternal height 
Gender of child 
Place of birth 
Weight gain of mother 
>200 g/wk 
during pregnancy 
Weight gain of mother 
>200 g/wk 
during pregnancy 
Weight gain of mother 
>200 g/wk 
during pregnancy 
Weight gain of mother 
 

All associated with 
stunting 

(Maleta et al. 
2003) 

Growth Growth compared to 
other references 

Gained weight quicker 
than CDC at first, then fell 
to 3rd centile 
 
Gained weight at the 
same rate as NCHS/WHO 
then drops to 3rd centile 
 
Median height below 3rd 
centile at 12 months 
compared to both 
references 
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(Maleta et al. 
2003) 

Growth Season Weight gain peaks in 
autumn and winter, 
height gain in spring and 
summer 

(Maleta et al. 
2003) 

Malnutrition 
(underweight, 
wasting or 
stunting) 

Socio-economic 
factors 
Improper water and 
sanitation  
No possessions 
Distance to health 
centre 
≥ 5 km (vs. <5 km) 1.4 
[1.0, 1.9]* 1.2 [0.8, 1.8] 
1.3 [0.9, 1.8] 
Maternal 
characteristics 
Mother illiterate  
HIV-ELISA test 
Height  
Body mass index  
Pregnancy weight gain  
Delivery attended by 
trained assistant  
 
Child factors 
Male sex  
Average size 1–3 
months  
Complementary feeds  
Birth at < 37 
completed gestation 
weeks  
≥ 2.4 episodes/month 
infancy morbidity (vs. < 
2.4 months) 
≥ 2.4 episodes/month 
infancy morbidity 

Significant predictors:  
Underweight 
HIV-ELISA test 
Delivery attended by 
trained assistant  
Average size 1–3 months  
≥ 2.4 episodes/month 
infancy morbidity 
 
Stunting:  
HIVE-ELISA test  
delivery attended by 
trained assistant 
male sex  
birth <37 completed 
gestation weeks (vs. ≥ 37 
weeks),  
≥2.4 episodes/month 
infancy morbidity  
Wasting:  
HIVE-ELISA test positive  
delivery attended by 
trained assistant  
average size 1-3 months  
≥2.4 episodes/month 
infancy morbidity (vs. 
<2.4 months) 

 Table 3.1: Evidence table: LCSS (Malawi)  

3.2.1 LCSS observational summary 

Measurements were taken each month (including birth) up until 18 months and every 3 

months thereafter (a total of 34 scheduled measurement dates over the 5 years). Within 

the original dataset, there were 34 rows for each child, with NA values recorded if 

information was not available (27642 rows). 

Our analyses, however, have been restricted to the 0-24 month range. This smaller 

dataset includes only 21 scheduled measurements. 
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Figure 3.2: Weight vs. Age (Malawi) 

It can be seen within Figure 3.2 that age measurements around month 0 (the first 

scheduled measurement) are more spread out along the 𝑥 axis than the other 20 

measurements. This is because measurements were taken as soon as a trained 

anthropometrist was available and not necessarily as soon as children were born. 

Figure 3.3 shows the frequency of children per number of measurements.  
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Figure 3.3: Number of children per number of measurements (Malawi) 

 

Figure 3.4: Proportion of observations at each scheduled measurement number (Malawi) 

Figure 3.4 shows the proportion of total observations at each scheduled measurement 

date, with 813 as the maximum. The calculations were made by counting the number of 

observations between the mid points of scheduled measurement dates. Therefore, the 
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proportions include deaths. The proportion should therefore treated simply as the 

proportion of available observations. See Figure A1, Appendix A, for more information on 

missing data. The structure of the dataframe restricted the number of measurements at 

each scheduled measurement date by each child to be 1.  

 

Figure 3.5: Kaplan Meier plot (Malawi) 

A Kaplan Meier plot for the Malawi dataset can be seen in Figure 3.5. The plot shows the 

survival curve for the Malawi dataset. Still births can be seen at month 0. Right censored 

data are marked with crosses. The dotted lines represent 95% confidence intervals. 

3.3 Lahore Longitudinal Study  
The second dataset, from the Lahore Longitudinal Study (LLS) was collected in Lahore, 

Pakistan. Four areas were involved in this study: a village, a peri-urban slum, an urban 

slum and an upper middle class control group.  

The village was represented by the villages of Halloki and Sadoki, about 40km from 

Lahore. The peri-urban slum was selected from a 20km stretch of dwellings along the 

railway track at the periphery of the old city. The urban slum group was taken from inside 

the old walled city. The middle class group was scattered over the city suburbs (Jalil, 

Lindblad, Hanson, Khan, Ashraf, et al. 1993).  
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The aim of this study was to “characterise the determinants of child health in a rapidly 

urbanising community”. Firstly, a cross sectional survey collecting socio-economic and 

demographic background information was carried out between March 1984 and August 

1984, then this was followed up by a longitudinal study of 1,476 infants representing the 

outcome of the all pregnancies registered from September 1984 to March 1987.  

The original dataset included 1,476 infants which were followed monthly from birth up to 

36 months and less frequently thereafter. The data provider, Professor Shakila Zaman, 

specified there were no known cases of HIV. At 24 months, 70% of the infants were still in 

the study, 11% had died, 13% had moved from their respective areas and 6% refused to 

participate. A number of longitudinal, socio-economic and demographic background 

variables were recorded. Feeding practices, screening tests, vaccination coverage, 

psycho-motor development, measurements and diagnosis of various diseases were taken 

continuously throughout the study. The number of adults and children in the household, 

education, physical status of the parents and housing standard were also taken at the 

start of the study. Furthermore, childcare and hygiene scores were calculated. A number 

of papers have been published using this dataset, analysing different variables and their 

effects on the health of children from the four areas (Jalil, Lindblad, Hanson, Khan, Ashraf, 

et al. 1993).  

The dataset used within this thesis is an extended dataset which was collected from 1984-

1994. This dataset contains a total of 3146 children, 1,314 of which were from the village 

area, 572 from the peri-urban slum, 921 from the urban slum and 339 from the middle 

class area. Published papers reviewed in this section all analysed only the smaller dataset 

with 1,476 children. 

Saleemi et al. published a paper in 2001 which studied stunting at 6, 12, 24 and 60 

months as well as linear growth in the children. A number of risk factors were analysed 

which included maternal factors, size at birth and duration of breastfeeding. Maternal 

age, weight, height, education (illiterate, number of years of schooling) and gestational 

age were analysed as maternal factors. Weight and length at birth were also analysed as 

risk factors as well as duration of breastfeeding at 6, 12, 24 and 60 months. The findings 

showed that if the duration of breastfeeding was less than 4 months for the first 6 

months of life, the risk of stunting was increased twofold at 6 months of age. With a 

gestational age of less than 36 weeks, the risk of stunting almost doubled. Those who 
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were stunted at 6 months were three times as likely to be stunted at 12 months (Saleemi 

et al. 2001). 

Zaman et al. (1993) also studied morbidity within the dataset, studying patterns according 

to age, area of living, sex and season. Infections were responsible for 87% of morbidity in 

the first 24 months of life. In 20,911 examinations, 16,099 recorded at least one disease 

(77%). Diarrheal diseases were recorded in 30.3% of all monthly intervals and Acute 

Respiratory Infections (ARIs) were recorded in 22.4%. Only 0.5% of recorded morbidity 

was accounted for by vaccine preventable infection diseases. Morbidity was evenly 

distributed between sexes, but age and the area that children inhabited influenced 

patterns of morbidity.  

Mahmud et al. (1993) studied the incidence and home management of infantile 

diarrhoeal disease. On average, each child had 3.6 episodes of diarrhoea during year one: 

4.3 episodes in the village, 3.4 in the urban slum, 4.4 in the peri-urban slum and 1.4 in the 

middle class area. No difference in sex was found. However, there was seasonal variation 

with a peak between April and June. Diarrhoea was persistent in 14% of all acute cases, 

the being highest in the village at 18%, followed by the peri-urban slum at 14%, the 

middle class area at 10% and finally the urban slum at 8% (Mahmud et al. 1993). Khalil et 

al. (1993) studied the causative agents of acute diarrhoea within the population, with the 

aim to determine the frequencies of the most common enteropathogens within the 

faeces. The total isolation rate was 73.4%. One third was of viral origin and two thirds 

were of bacterial origin (Khalil et al. 1993). 

Khan et al. (1993) studied mortality rates between each Pakistani area. At age 6 months, 

the cumulative mortality rate per 1000 was 116 within the peri-urban slum population, 

105 within the village, 90 within the urban slum and 16 within the middle class area. By 

12 months, these rates had increased to: 145, 118, 96 and 16 respectively. By 2 years, the 

rates were: 158, 132, 106 and 16 respectively. The biggest associated morbidity measures 

were chronic diarrhoea, acute diarrhoea, respiratory infection and asphyxia neonatorum.  

Karlberg et al. (1993) studied infant growth within the dataset.  

Karlberg created growth reference charts for all four areas (weight, length and head 

circumference). Those within the peri-urban slum were on average shorter than those in 

the village area, who were in turn shorter than those in the urban area. Karlberg found 

that those living in the poorer areas were more likely to be stunted at 24 months of age: 

63% in the peri-urban slum, 54% in the village and 26% in the urban slum (middle class 
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reference) however, fewer differences could be seen between the areas in weight for 

length (10-20%). 

Ashraf et al. (1993) studied feeding patterns and practices. 87-98% of the infants in all 

four areas were breastfed at one month of age but only 9% were exclusively breastfed 

(declining with age and highly influenced by season) with mothers adding water to human 

milk or feeding their children with fresh animal milk and/or commercial formula. 

Yaqoob et al. (1993) studied psychomotor development between the areas. Psychomotor 

development within the middle class area was on par with European and North American 

standards, however there were significant delays in psychomotor development in infants 

belonging to the three poorer areas. Infants were on average about 3 months delayed in 

walking and fine motor activity (building a tower of 3 cubes) in comparison to the middle 

class area. 

Author, year Outcome Risk factors Results 

(Ashraf et al. 
1993) 

Feeding 
patterns  

Between cohorts See text 

(Jalil, 
Lindblad, 
Hanson, 
Khan, 
Yaqoob, et 
al. 1993) 

Weight-for-
length at birth < 
-2 % 
 
Mortality rates 
 
Mortality  

 Weight-for-height <-2 ranges 
from 12-31% for boys, 12-25% for 
girls 
 
See Karlberg et al. 1993 for 
mortality rates 
 
Mortality significantly related to 
birth weight 
 

(Karlberg et 
al. 1993) 

Infant growth Between cohorts  Length by cohort: middle class, 
urban slum, village, peri-urban 
slum 

(Khan et al. 
1993) 

Mortality  Between cohorts Mortality rates (2y): middle class 
(0.016), urban slum (0.106), 
village(0.132), peri-urban slum 
(0.158) 

(Mahmud et 
al. 1993) 

Incidence and 
home 
management of 
diarrhoeal 
disease 

Between cohorts, 
sex, season 

Cases during one year: 4.4 peri-
urban, 4.3 village, 3.4 urban slum, 
1.4 middle class 
 
No difference between sexes. 
Peak episodes April-June 
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(Saleemi et 
al. 2001) 

Stunting at 6, 
12, 24 and 60 
months 

Maternal factors: 
age, maternal 
weight, height, 
education, 
gestational age 
 
Size at birth: 
weight, length 
Duration of 
breastfeeding: at 
6m, 12m, 24m, 
60m 

Predictors of stunting at: 
 
6m: duration of breastfeeding, 
gestational age  
 
12m: maternal height, 
birthweight, stunting at 6m 
 
24m: stunting at 18m 
 
60m: stunting at 18m, stunting at 
24m 

(Yaqoob et 
al. 1993) 

Psychomotor 
development  

Between cohorts, 
sex 

Development of middle class area 
on par with European and North 
American countries. Delays in 
development in the three poorer 
areas. No differences between 
sexes (apart from in the middle 
class area, girls developed faster 
than boys by one month) 

(Zaman et al. 
1993) 

Morbidity Studied patterns 
according to age, 
cohort, sex, season 

Morbidity evenly distributed 
between sexes 
 
Age and area influence morbidity 
 

Table 3.2: Evidence table: LLS (Pakistan) 

3.3.1 Comparing growth over time 

Since measurements within the Pakistani dataset were taken over a period of 10 years, it 

was assumed that growth patterns may have changed over time. We investigated 

whether or not this was true. Dates were arbitrarily split up into two different groups: 

measurements taken between 1984 and 1987, and those taken between 1988 and 1994 

(inclusive). Figure 3.6 shows the distribution of measurements between the two groups.  
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Figure 3.6: Weight vs. Age between time groups (Pakistan) 

 

 Figure 3.7: Median weight curves between time groups vs. Age (Pakistan) 

Figure 3.7 above shows the two median curves from the 1984 to 1987 group (red) and the 

1988 to 1994 group (black). There is clear overlap between the two groups with the 1984-

1987 median, slightly lower than the 1988-1994 median after about 3 months. From this 
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preliminary analysis, there does not seem to be any difference in structure between age. 

No adjustment will be made for time within our analyses. 

3.3.2 Comparing growth between socio-economic groups  

 

Figure 3.8: Median weight curves vs. Age (Pakistan) 

Within Figure 3.8 the four median curves from the four areas within the Pakistan dataset 

can be seen for comparative purposes. All four curves sit relatively close at month 0 then 

slowly spread out. It is clear that children within the middle class area grow best with the 

highest median curve, followed by the urban slum, the village area and finally the peri-

urban slum. The difference in medians between groups in Figure 3.8 indicates the four 

different areas should be modelled separately.  

3.3.3 LLS observational summary 

The total number of children included within the analysis was 3,146 with 1,314 within the 

village area, 572 within the peri-urban slum, 921 within the urban slum and 339 within 

the middle class area.  
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Figure 3.9: Number of children per number of measurements (Pakistan): (a) village, (b) 

peri-urban slum, (c) urban slum, (d) middle class 

The number of measurements per number of children within each area can be seen in 

Figure 3.9. There are minimal numbers of repeat measurements per child within each 

inclusion region when counting the number of measurements at each scheduled 

measurement date. Calculations were made by taking the number of observations 

between midpoints of the scheduled measurement dates. Note that if no measurements 

were taken for a given child then they were excluded from the data frame, therefore 

there are no ‘no measurements’ for any of those children. The proportion of 

measurements at each scheduled measurement date can be seen in Figure 3.10, with the 

total number of measurements equal to the number of children within each cohort. 

 

a b 

c d 
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Figure 3.10: Proportion of observations at each scheduled measurement number 

(Pakistan) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Kaplan Meier plot (Pakistan) 
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The Kaplan Meier plot in Figure 3.11 shows survival curves for the four different areas in 

Pakistan. Steps indicate deaths whereas crosses indicate right censored data. It is clear 

that those within the peri-urban slum have the lowest probability of survival at all time 

points, followed by the village area, urban slum and finally the middle class area. 

3.4 Africa Centre Vertical Transmission Study  
The third dataset is the Africa Centre Vertical Transmission Study (VTS). The study was 

designed to examine patterns of infant feeding, specifically exclusive breast feeding 

associated with HIV transmission. Furthermore, it was designed to determine whether 

exclusive breastfeeding carries a lower risk of mother to child transmission of HIV 

compared to mixed breastfeeding (Africa Centre 2007).  

The study was conducted from 1st August 2001 until the 31st July 2007, which followed 

mothers and their children over 2 years after delivery. The study had two field sites, the 

largest of which was in the Mpukunyoni and Hlabisa Tribal Areas of the Hlabisa Health 

District (in the rural Umkhanyakude district of northern KwaZulu Natal) where enrolment 

commenced in August 2001 at 8 clinics. An additional site from Durban was included to 

increase numbers. The Durban site was urban and the population were very mobile with 

people migrating at very short notice into and out of the area during pregnancy and post-

delivery (Bland et al. 2010). 

In total, 3,445 woman were enrolled during pregnancy: 2,705 from the Hlabisa health 

district (1,586 rural, 1,119 semi-urban) and 740 from the urban site in Durban. 2,938 

children were enrolled and 1,833 of them were followed up to 24 months. Socio-

economic status and HIV status were collected antenatally. The study covered feeding 

practices, HIV status, morbidity, mortality, growth and development of children born to 

HIV infected and uninfected women (Bland et al. 2010). After birth, daily feeding practices 

and morbidity data were collected for the first 9 months of life and anthropometric 

measurements were taken at 6, 10, 14, 18, 22, and 26 weeks then at months 7, 8 ,9 ,12, 

15, 18, 21 and 24 (Africa Centre 2007). In total, 1,769 (51.4%) of women were HIV 

positive, 1,662 (48.3%) were negative and 12 (0.3%) were indeterminate. In terms of the 

highest level of education attained 224 (6.5%) had no formal education, 1,196 (34.7%) 

had a primary education and 2,025 (58.8%) had a secondary education (Bland et al. 2010).  
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In terms of feeding choices, most HIV infected women (80%) chose to exclusively 

breastfeed their children as most did not have the resources for safe replacement feeding 

(Africa Centre 2007). 

Rollins et al. (2008) studied infant feeding, HIV transmission and mortality at 18 months 

within the dataset. The aim of the paper was to determine the late HIV transmission and 

survival risks associated with early infant feeding practices. In total, 1193 live born infants 

were included and studied over 18 months. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Flow diagram of women and children eligible for enrolment and numbers lost 

to follow-up during the study (Bland et al. 2010). 
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The probability of death was 0.04 (95% CI 0.03-0.06) and 0.53 (95% CI 0.46-0.60) for 

uninfected and infected children respectively. It was found that there was no statistically 

significant difference in 18 month probability of survival between HIV uninfected infants 

breastfed or replacement fed from birth. The probability of HIV free survival beyond 18 

months in children alive at 6 months was 0.98 amongst infants replacement fed from 

birth. Rollins also conducted a multivariable analysis which found that maternal 

unemployment and low antenatal CD4 counts (a type of white blood cell that fights 

infection and their count indicates the stage of HIV or AIDS in a patient) were 

independently associated with more than threefold increased risk of infant HIV infection 

or death (Rollins et al. 2008). 

Patel et al. (2010) set out to examine the growth of children by maternal and infant HIV 

status, allowing for infant feeding mode (breastfed/non breastfed), up to 2 years. It was 

shown that the 𝑍 scores for HIV infected children were consistently lower than those of 

HIV exposed but uninfected children. Breastfed HIV infected infants had consistently 

higher 𝑍 scores for weight (Patel et al. 2010). 

In terms of postnatal HIV transmission, the Kaplan-Meier estimated risk of HIV infection 

between 4-6 weeks and 6 months of age was 4.04% (with a 95% CI of 2.29-5.76%). Those 

who received solids were significantly more likely to get infected with HIV than those who 

were exclusively fed breast milk, as were those who received both breast milk and 

formula milk at 12 weeks. Any HIV infected women who had serious breast health 

problems (such as bleeding nipple) were 3.55 times more likely to transmit HIV (Africa 

Centre 2007). 
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Author, 
year 

Outcome Risk factors Results 

(Africa 
Centre 
2007) 

Postnatal HIV 
transmission 

 Kaplan-Meier estimated risk of infection 
between 4-6 weeks and 6 months of age 
was 4.04%. 
 
Those who received solids and those who 
were breast fed + formula were 
significantly more likely to get infected with 
HIV than exclusively breast fed. 

(Patel et 
al. 2010) 

Growth HIV status, 
Breastfed/ 
replacement 
fed 
 

HIV infected children consistently lower 𝑍 
scores than non-infected, irrespective of 
feeding mode. Mean difference of 420g for 
males, 405g for females at 52 weeks.  

(Rollins 
et al. 
2008) 

HIV 
transmission, 
mortality at 18 
months 

Breastfed/ 
replacement 
fed 

𝑃(𝑑𝑒𝑎𝑑 𝑎𝑡 18 𝑚𝑜𝑛𝑡ℎ𝑠|𝐻𝐼𝑉) = 0.53 
 
𝑃(𝑑𝑒𝑎𝑑 𝑎𝑡 18 𝑚𝑜𝑛𝑡ℎ𝑠|𝑛𝑜𝐻𝐼𝑉) = 0.04 

 
No significant difference in 18 months 
probability of survival between HIV 
uninfected breastfed or replacement fed 
from birth. 
 
Probability of survival at 18 months given 
alive at 6 months with replacement food 
(HIV free) =0.98 
 
Breastfed for more than 6 months = 0.91 
 
Breasted for less than 6 months = 0.91 

Table 3.3: Evidence table: VTS (South Africa) 
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3.4.1 VTS observational summary 

In total, there were 2938 children included in the study. There are 15 scheduled 

measurement dates within the 0-24 month range. 

 

Figure 3.13: Weight vs. Age (South Africa) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Number of children per number of measurements (South Africa) 
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A plot of weight versus age can be seen in Figure 3.13. The number of measurements per 

number of children can be seen in Figure 3.14. Many children have been measured more 

than scheduled (in between measurement dates or after 24 months). 

The number of observations at each scheduled measurement date varies and is 

calculated by taking the sum of the number of observations between the mid points. 

Within the South African dataset there is a lot of overlap such that one observation 

included at a certain month, with an associated age close to that month, may actually be 

a measurement for the month before. This means that the number of observations at 

each scheduled measurement date may have replicates from the same children. 

 

Figure 3.15: Number of observations at each scheduled measurement date (South Africa) 
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Figure 3.16: Kaplan Meier plot (South Africa) 

A Kaplan Meier survival curve can be seen for the South African dataset above in Figure 

3.16. Steps indicate where a death has occurred whereas crosses indicate right censored 

data. Due to the number of still births, there is a large drop in the curve at month 0. The 

dotted lines represent the upper and lower bounds of a 95% confidence interval. 

3.5 Comparison of datasets 
In this section, we compare the datasets. The background of those within the datasets are 

discussed in order of affluence in this section.  

The middle class Pakistani cohort was the most affluent. Children from this area fitted 

criteria including the family earned more than US $275 per month (not adjusted for 

inflation), owned a house with more than three bedrooms and had access to health 

facilities (Jalil, Lindblad, Hanson, Khan, Ashraf, et al. 1993).  

Mothers of children within the South African Cohort lived in rural, semi-rural and urban 

areas, 58.8% had a secondary education, 34.7% had a primary education and 6.5% had no 

formal education. Children in this area had access to health facilities (Bland et al. 2010).  

The Pakistani urban slum group consisted of an organised community consisting of small 

scale businessmen and low-grade government servants. Children in this area had access 
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to public health facilities however these were under-utilised and were only used in 

emergencies (Jalil, Lindblad, Hanson, Khan, Ashraf, et al. 1993).  

Those in the Malawi cohort were around 5km from local health facilities. Around 70% of 

children lived in unburned brick houses, 19% in burned brick houses and 11% in mud 

houses. 77% of children used traditional pit latrines and 23% had no toilet facilities at all. 

Around 58% of families had kitchens outdoors, only 1% had kitchens indoors (Kulmala et 

al. 2000). Children in the Pakistani village area had no access to health facilities. The 

economy of the village was based on agriculture and women frequently helped in the 

fields (Jalil, Lindblad, Hanson, Khan, Ashraf, et al. 1993).  

People in the Pakistani peri-urban slum were nomads. There was no committee to guide 

or control social life. Health facilities were available, but these were not used (Jalil, 

Lindblad, Hanson, Khan, Ashraf, et al. 1993). 

Table 3.4 compares the three studies’ objectives, with numbers included in the study and 

mortality rates. The Pakistani dataset is the largest with 3146 children in total however 

this is split into four cohorts. The South African dataset is the second largest with 2938, 

followed by the Malawian dataset with 813. 

Coupled with Figure 3.17b, it is the middle class area of Pakistan that has the best survival 

rate at 24 months, followed by the urban slum, the village, South Africa, peri-urban slum 

then Malawi. 

    Survival rates  

Dataset 𝑛 Purpose of study 6m  12m  18m  24m 

Malawi 813 Designed to provide data 
on the health of both 
pregnant women and 
their children under 5 
years old. 

0.86 0.82 0.81 0.80 

Pakistan: Village 
                  Peri-urban 
                  Urban slum  
                  Middle class 

1314 
572 
921 
339 

To “characterise the 
determinants of child 
health in a rapidly 
urbanising community”. 

0.91 
0.87 
0.94 
0.98 

0.89 
0.86 
0.94 
0.98 

0.89 
0.86 
0.93 
0.98 

0.88 
0.85 
0.93 
0.98 

South Africa 2938 To examine patterns of 
infant feeding, 
specifically exclusive 
breast feeding 
associated with HIV 
transmission. 

0.90 0.88 0.86 0.86 

 Table 3.4: Comparisons of the three datasets 
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A variable which is used later on within this thesis is HIV status. HIV status at each month 

was available for children within the South Africa dataset. Within the Pakistani dataset, 

the data provider specified that there were no cases of HIV within any of the subsets. 

Within the Malawi dataset, no data were available to indicate whether children had HIV 

at any point in their lives. However, maternal HIV status at birth was available for the 

Malawi dataset. Both HIV status and maternal HIV status is incorporated into survival 

analyses within Chapter 6. 

Table 3.5: Scheduled measurement dates and missing values 

Scheduled measurement dates and percentage of missing at a selection of months can be 

found in Table 3.5 The Pakistani set has the most scheduled measurement dates followed 

by Malawi then South Africa.  

The percentage missing was calculating by using a search algorithm, allowing us to 

determine whether for each scheduled measurement date, at least one measurement lay 

within 9.12 days (0.025 years). While datasets like the Malawi dataset which was set up in 

such a way that there were as many rows per child as scheduled measurement dates, 

datasets such as the South African dataset was set up such that if data was missing at a 

scheduled date then no NA value would be recorded, so there were variable number of 

rows per child. We therefore had to search for measurements within the specified range. 

Furthermore, measurements were sometimes taken in between measurement dates 

making it hard to determine which scheduled date each measurement belonged to. As 

   % missing in month  

Dataset Scheduled 
measurement dates  

3 6 9 12 24 

Malawi Every month to 18 
months, then months 
21 and 24.  
 

(21 in total) 

0.27 0.29 0.28 0.28 0.32 

Pakistan: Village 
                  Peri-urban 
                  Urban slum  
                  Middle class 

Every month.  
 

(25 in total) 

0.46 
0.43 
0.31 
0.39 

0.47 
0.49 
0.34 
0.45 

0.45 
0.55 
0.36 
0.51 

0.46 
0.54 
0.40 
0.48 

0.54 
0.60 
0.56 
0.58 

South Africa Weeks: 6, 10, 14, 18, 22, 
26.   Months: 7, 8, 9, 12, 
15, 18, 21, 24.  
 

(15 in total) 

0.39 
(week 
14) 

0.39 
(week 
26) 

0.56 0.66 0.85 
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there were no scheduled measurement dates for the South African dataset at months 3 

and 6, weeks 14 and 26 were used instead.  

The median weight curves in Figure 3.17a show that the middle class and South African 

datasets were heaviest, followed by the urban slum, Malawi/village and finally the peri-

urban slum. 

One problem within all datasets is that missing values may not be missing at random. This 

means that there may be missing values dependent on the unobserved data, and may be 

subject to bias.  
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Figure 3.17: (a) Median (μ) curves, (b) Kaplan Meier curves 
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3.6 Internal and external references 
In this section we create growth reference charts for the datasets. Growth chart 

modelling allows us to compare a given child’s measurements to a population of children. 

This allows us to determine where that child sits on the chart relative to children of the 

same age group. When modelling growth charts, we assume that the reference 

population is normally distributed (perhaps after transformation). Therefore by 

comparing a given child’s weight measurement with the reference, we can express as a 𝑍 

score or centile where a child sits in relation to that specific reference. 

GAMLSS, described in Section 2.4, allows us to create growth charts. These charts allow 

us to compare children with populations of children. By using Equations (2.6) and (2.7), 

we can also superimpose centile curves on charts. Centile curves allow us to map the 

growth chart such that certain proportions of the data lie below certain centiles. For 

example, roughly 45% of the data should lie below the 45th centile. 

3.6.1 Internal references - application of GAMLSS 

By modelling the growth chart of the given child’s parent population via GAMLSS, we can 

obtain an estimate of where that child sits relative to that population. The result is three 

smooth curve estimates of 𝜇(𝑡) = 𝑀(𝑡), 𝜎(𝑡) = 𝑆(𝑡) and 𝜆(𝑡) = 𝐿(𝑡) where 0 ≤ 𝑡 ≤ 24 

(months). This allows us to convert any measurement to a 𝑍 score based on 𝑀(𝑡), 𝑆(𝑡) 

and 𝐿(𝑡) at time 𝑡, and also allows us to calculate centile curves throughout the series. By 

then applying the estimates of those parameters to Equations (2.4) and (2.5), we can 

obtain a 𝑍 score to determine which centile they lie on. 

The smoothness of each curve is based on the values of the smoothing parameters of the 

curves, 𝛼𝜆, 𝛼𝜇 and 𝛼𝜎  (see Equation (2.13)), which need to be chosen. Cole & Green 

(1992) state “Fitting smooth centile curves has always been something of a subjective 

exercise, or even a black art” as certain features of a perceived growth pattern may be 

down to sampling error, rather than a true pattern. The tuning parameters 𝛼𝜆, 𝛼𝜇 and 𝛼𝜎 

can be chosen in a number of ways. We can specify the number of degrees of freedom for 

𝐿,𝑀 and 𝑆, however as mentioned this is subjective. If the number of degrees of freedom 

is set too low, growth features may not be captured. If they are set too high, we over fit, 

resulting in a model which captures the random features of the sample. 

While using the GAMLSS package, it is recommended that the function 𝑝𝑏() is used which 

is a function based on penalised beta splines (P-splines) of Eilers & Marx (1996). The 
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function 𝑝𝑏() uses local maximum likelihood estimation to automatically choose 

𝛼𝜆, 𝛼𝜇, 𝛼𝜎 (Rigby & Stasinopoulos 2013). We use penalised beta splines, utilising local 

maximum likelihood to automatically choose our tuning parameters. 

Cole (1990) states that the centile curves must be ‘properly calibrated’, meaning that the 

proper proportions of the population must lie within certain bands of the centile curves. 

One way to check if this is done correctly is to express each measurement as a 𝑍 score 

and check if they are distributed as 𝑁(0,1) throughout the age range. This was done for 

all the growth charts that we developed. 

A brief explanation of the output is presented for the Malawi growth chart. The other 

charts are presented without text as the output is similar. 

3.6.1.1 LCSS (Malawi) 

The first application of GAMLSS was made to the Malawian dataset. Shown below in 

Figure 3.18 is weight versus age in months. Superimposed on the chart data are 7 lines 

which represent the 3rd, 10th, 25th, 50th, 75th 90th and 97th centiles.  
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 Figure 3.18: Weight vs. Age with superimposed centile curves (Malawi) 

Since the 𝐿𝑀𝑆 method takes both variability and skewness into account, all of the centile 

lines should accurately depict the proper proportions of data below the curves. For 

example, around 3% of the data should lie below the green 3rd centile curve, 25% should 

lie between the 25th centile curve, 75% should lie below the 75th centile curve and 97% 

should lie below the 97th centile curve. The proportion of measurements which lay under 

each of the centiles shown in Figure 3.18 were calculated. These proportions were very 

close to the implied centiles. 
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Figure 3.19 shows the 𝐿,𝑀 and 𝑆 curves for the Malawi dataset. The 𝑀 curve corresponds 

to the 50th centile which can be seen in Figure 3.18 (pink line). 

 

Figure 3.19: L,M and S curves (Malawi) 

The number of effective degrees of freedom can be seen in Table 3.6 below, as chosen by 

the 𝑝𝑏() function. In total, there were 18.41 degrees of freedom for males where the 𝑀 

curve had 11.06, the 𝑆 curve had 3.41 and the 𝐿 curve had 3.93. There were 10.52, 2.02 

and 2.00 degrees of freedom for 𝑀, 𝑆 and 𝐿 curves for females. 

Source Degrees of freedom (Male) Degrees of freedom (Female) 

Mu 11.06 10.52 

Sigma 3.41 2.02 

Lambda 3.93 2.00 

Total 18.41 14.54 
Table 3.6: Degrees of freedom (Malawi) 

Notably, the S and L curves of the female model are straight, with only around 2 degrees 

of freedom. The Box-Cox power for the male model falls with age, implying that skewness 

decreases with time, whereas for the female model the skewness is rising.  



 

95 
 

3.6.1.2 LLS (Pakistan) 

Area Source Degrees of freedom (Male) Degrees of freedom (Female) 

Village Mu 11.20 10.22 

 Sigma 3.24 2.03 

 Lambda 2.00 2.99 

 Total 16.45 15.25 

Peri-urban slum Mu 8.60 8.65 

 Sigma 4.05 2.01 

 Lambda 2.00 3.01 

 Total 14.66 13.68 

Urban slum Mu 9.93 9.57 

 Sigma 2.02 2.02 

 Lambda 3.00 2.29 

 Total 14.96 13.89 

Middle class Mu 8.50 8.09 

 Sigma 3.70 3.95 

 Lambda 3.75 3.33 

 Total 15.96 15.38 

Table 3.7: Degrees of freedom (Pakistan) 



 

96 
 

 Figure 3.20: Weight vs. Age with superimposed centile curves (male, Pakistan) 

9
6 
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 Figure 3.21: Weight vs. Age with superimposed centile curves (female, Pakistan) 

9
7
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Figure 3.22: Comparison of L,M and S curves (Pakistan) 
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3.6.1.3 VTS (South Africa) 

 
Figure 3.23: Weight vs. Age with superimposed centile curves (South Africa) 

 

Source Degrees of freedom (Male) Degrees of freedom (Female) 

Mu 11.50 10.86 

Sigma 2.03 5.76 

Lambda 3.27 5.27 

Total 16.81 21.90 

Table 3.8: Degrees of freedom (South Africa) 
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Figure 3.24: L,M and S curves (South Africa) 

3.6.2 External references – the WHO standard 

The internal references shown in Section 3.6.1 allow us to describe growth within each of 

the datasets. These can be used to calculate weight-for-age 𝑍 scores for individual 

children. It is however of interest to determine where these children from the developing 

world sit relative to external populations, such as the WHO standard, as it is normal 

healthy children that should be used as a reference population.  

Modelling boys and girls together would increase the sample size, however, this would 

increase variance since girls and boys grow at different rates on average.  

Figure 3.25: L,M and S curves (WHO) 
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The WHO 𝐿,𝑀 and 𝑆 curves can be seen in Figure 3.25, separately for boys and girls, with 

navy representing boys and purple representing girls. It can be seen from the plot of the 

medians versus age that the boys have a slightly higher median than girls. 

3.6.3 How well do pre-school children from the developing world 
fit the WHO standard? 

Weight measurements were converted to 𝑍 scores relative to the WHO LMS model using 

Equations (2.4) and (2.5), creating weight-for-age 𝑍 scores. We then applied GAMLSS to 

each of the transformed series, assuming a normal distribution for the response, 

modelling both the mean and standard deviation. This allowed us to gain insight into how 

children grow on average relative to the WHO standard. 

The mean curves are plotted within Figure 3.26 and standard deviations in Figure 3.27. 

The GAMLSS model used to model the transformed 𝑍 scores generates output for 

𝑁(𝜇𝑡, 𝜎𝑡) such that 𝜇𝑡 = 𝑀(𝑡) is equal to the mean and 𝜎𝑡 = 𝑆(𝑡) is equal to the 

standard deviation at time 𝑡. The degrees of freedom for each curve can be found in 

Table 3.9. 

Within Figure 3.26 values close to 0 indicate that the measurements for the 

corresponding dataset lie close to the population median of the WHO dataset, while low 

values indicate that the measurements of the corresponding dataset lie far away from the 

WHO median curve.  

 

 
 

Figure 3.26: Mean 𝑍 scores (WHO) vs. Age (a) male, (b) female 

 

a b 
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As expected, of the 4 Pakistani areas, the peri-urban slum deviates most from 0, followed 

by the village area, then the urban slum and finally the middle class area. Growth relative 

to the WHO standard is slow for these datasets in the first 3 months, however all 4 

cohorts show catch-up until around 6 months, especially boys. From 6 months onwards 

growth is roughly on par with the standard but each cohort is a number of SD below 0 

(peri-urban slum: -2SD, village: -1.5SD, urban slum: -1SD, middle class: 0SD). 

Both South African males and females are around -0.5SD at birth but catch up with the 

standard around month 6. Notably, South African females outgrow the standard until 

around 12 months where the rate of growth gradually slows until 2 years. 

The mean curve for those in the Malawi dataset exhibits a similar pattern for both males 

and females, showing a steep decline within the first year from around -0.5SD to around -

1.5SD. 

  Boys  Girls 

Area 𝜇𝑍𝑡  𝜎𝑍𝑡 𝜇𝑍𝑡  𝜎𝑍𝑡 

Malawi 7.92 3.14 7.52 3.84 

Village 9.14 5.10 9.11 2.96 

Peri-urban slum 9.44 5.70 7.47 2.96 

Urban slum 10 5.46 8.20 4.23 

Middle class 8.48 2 7.56 3.34 

South Africa 7.91 2 7.40 8.12 

Table 3.9: Degrees of freedom (of transformed series) 

Therefore, children in the developing world tend to grow at different rates relative to the 

WHO standard in the first 6 months, depending on the background of the child. After 6 

months, children parallel the WHO standard tracking along a low line within the normal 

range, apart from boys in the peri-urban slum. Generally, more children from more 

affluent areas fit the standard well, tracking along the 50th centile of the WHO standard or 

above.  
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 Figure 3.27: Standard deviation of 𝑍 scores (WHO) vs. Age: (a) male, (b) female 

3.7 Chapter conclusions 
This chapter focused on introducing the datasets and creating internal references based 

on the available data. The datasets were then compared with the WHO standard, 

allowing us to assess their fit relative to the reference. 

Three developing world datasets were introduced - one from Malawi, one from Pakistan 

(with 4 cohorts) and one from South Africa. Since the Pakistani dataset was collected over 

a long period of time, we split the data to determine if there were any differences in 

growth over the two time periods. There were no differences between the two periods.  

The internal charts were developed to demonstrate the use of GAMLSS in creating growth 

references. The three parameter Box-Cox normal distribution was applied within the 

GAMLSS framework, another term for the LMS method (Cole & Green, 1992), where the L 

curve represents the Box-Cox power (skewness), M represents the median (location) and 

S represents the coefficient of variation (scale). The LMS method worked well and the 

application of the method via GAMLSS provided the appropriate modelling framework for 

our cohorts, allowing us to accurately represent growth while adjusting for non-normality 

within the developing world datasets. Local maximum likelihood estimation was used to 

automatically choose our smoothing parameters for 𝜆, 𝜇 and 𝜎 via the function 𝑝𝑏() 

within the 𝑔𝑎𝑚𝑙𝑠𝑠 package in 𝑅, which uses penalised beta splines (piecewise 

 

a b 
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polynomials) to generate the curves (Eilers & Marx 1996). Penalised beta splines were 

chosen as smoothing functions as these are recommended by Rigby & Stasinopoulos 

(2004). However, other methods are available to generate curves such as cubic splines, 

locally weighted least squares regression, polynomials and fractional polynomials. Cubic 

splines were applied and we considered presenting these, however the degree of 

smoothing required is somewhat subjective to the user. We found finding the balance 

between different degrees of freedom was hard, as our models were either under fitting 

or over fitting. The automatic procedure found a balance, which resulted in the 

development of growth curves with the expected proportions below each centile. 

The LMS method has been applied to large numbers of datasets since publication. 

Notable early applications contributed to the development of the original UK 1990 

growth reference for BMI (Cole, 1995) height and weight (Freeman et al. 1995). However, 

other distributions were taken into consideration to model growth within our datasets, 

such as: the Box-Cox power exponential (BCPE) (Rigby & Stasinopoulos 2004), Box-Cox t 

(Rigby & Stasinopoulos 2004), Johnson’s SU (Johnson 1949) and the Modulus-

exponential-normal (Royston & Wright 1998). In fact, the WHO originally used the BCPE 

distribution to create the WHO standard curves (de Onis & WHO Multicentre Growth 

Reference Study Group 2006) but reverted to the LMS method. The CDC 2000 growth 

reference charts were also based on the LMS method (Flegal & Cole 2013). Cole & Green 

(1992) state that a limitation of the LMS method is that it does not deal with the presence 

of kurtosis. Kurtosis however tends to be less important than skewness as a contributor 

to non-normality (Cole & Green 1992). 

In this chapter we also assessed how real populations of pre-school children from the 

developing world fit the WHO standard. The WHO standard was developed using 

measurements from approximately 8500 children from a wide range of backgrounds and 

cultural settings. It was designed to represent the best description of physiological growth 

– an international standard for all children. Previous research which has investigated how 

populations of pre-school children fit the standard has mainly focused on assessing the fit 

of children from the developed world.  

Roelants (2013), Hui et al. (2008) and Wright et al. (2008) compared Belgian, Norwegian, 

Hong Kongese and British children with the WHO standard. They found that children from 

the developed world generally match or outperform children from the MGRS study on 

average, although Hui found that healthy Hong Kongese toddlers were shorter, which 



 

105 
 

challenges the assumption that children in all countries can achieve their full growth 

potential when nurtured under optimal conditions (Hui et al. 2008) since Hong Kong is 

considered a developed dependency of China.  

Our work adds to the literature by focusing on assessing the fit of children from the 

developing world. To determine where children within the developing world datasets sit 

relative to the WHO standard, the 𝐿,𝑀 and 𝑆 curves were used to create 𝑍 scores for 

every measurement within each population. GAMLSS was then applied to each of these 

transformed variables, assuming a normal distribution so that the mean and standard 

deviation for each transformed dataset could be modelled over time. Karlberg (1993) 

adopted this approach when analysing child growth within the Pakistani cohort using the 

middle class group as a reference and Maleta et al. (2003) compared the Malawian 

infant’s growth with both the CDC and NCHS references. However, Maleta superimposed 

centile curves on top of each other, rather than model the transformed data. 

In Figure 3.26, departures from 0 can be interpreted as a mean difference from the WHO 

median at any point over the 𝑥 axis. Boys and girls share quite similar mean growth 

trajectories relative to the WHO standard, suggesting that these sets could possibly have 

been pooled. Including sex as a categorical variable within a pooled model then 

comparing the 𝑡-value with the 𝑡-distribution would have allowed us to determine if sex 

was a significant variable for both the median and SD curves.  

Of the 6 mean curves, it is the middle class Pakistani and South African curves which most 

closely fit the WHO standard. In fact, both of these curves are a reasonable match, 

outperforming the standard over some portions of the 0-24 month age range. The 

children in these cohorts are from much more affluent backgrounds compared to the 

other cohorts, which is most likely the reason for considerably better growth rates. The 

South African population start around -0.5SD, but quickly catch up with the reference. 

Notably, South African females outperform the standard from around 4 months onwards.  

The middle class infants follow a similar trend with the South African cohort in the sense 

they catch up to the WHO median around month 6. However, they firstly grow slower for 

the first 3 months. The urban slum shares a very similar trend with the middle class 

infants (these two are the most affluent of the Pakistani cohorts), showing slower growth 

than the WHO infants during months 0-3 but catching during months 3 to 6. However the 

mean is around 1SD below 0 at month 6. These children come from a less affluent 
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background than the middle class area, but from an organised community with access to 

health facilities (Jalil, Lindblad, Hanson, Khan, Ashraf, et al. 1993). 

The children in the urban slum, therefore, do not fit the standard well, along with the 

Malawi, village and peri-urban slum cohorts – these children come from even less affluent 

backgrounds, without the same facilities as those from the middle class and South African 

cohorts, paralleling the WHO median on average at around -1SD, -1.5SD, -1.5SD and -2SD 

from 6 months onwards, respectively.  

In summary, more affluent populations fit the WHO standard well as children’s mean 

weight-for-age 𝑍 scores sit close to the WHO median. In populations which are 

considered less affluent, children tend to track a low centile within the normal range, 

indicating these population do not fit the reference.  

It should be noted that the design and inclusion criteria of the MGRS shows that in 

developing countries the standard is an “elite standard”, where as in the developed world 

it is simply a reference for breastfed children (Roelants 2013).  
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Chapter 4 

Modelling correlation matrices 

4.1 Introduction 
One of the parameters needed within the expression for generalised conditional weight 

gain, Equation (2.19), is the correlation between groups of measurements as 𝑍 scores at 

the times at which growth of the child was measured. The correlation is needed as this 

indicates the amount that a child’s weight (or height) 𝑍 score will be expected to regress 

towards the mean between 𝑡1 and 𝑡2.  

Obtaining the correlation coefficient, 𝑟, between time points 𝑡1 and 𝑡2 is simple when 𝑡1 

and 𝑡2 are scheduled measurement occasions. This is because each group of 

measurements corresponds to a single age. A problem arises when 𝑡1 and 𝑡2 lie between 

scheduled measurement occasions as there are no intermediate reference data. It 

therefore needs to be estimated. To do this, correlations can be calculated between all 

ages in which data are available, resulting in a correlation matrix which can be modelled. 

This model can be used to interpolate correlations between any combination of ages.  

This chapter focuses on obtaining correlation matrices for the three datasets, creating 

useable models to interpolate correlations for use within Equation (2.19). We aimed to 

develop a general model but found that on the whole, a general model did not fit the 

individual matrices sufficiently. Heimendinger & Laird (1983) state that correlations 

should be “pertinent to the target population”, suggesting that models used to 

interpolate correlations should fit well. Therefore, we apply models to the individual 

datasets and adopt a number of statistical modelling approaches and assess their fit, 

using criteria presented within Section 2.9. Estimates of the mean and standard deviation 
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of the 𝑍 scores at 𝑡1 and 𝑡2 are also required for Equation (2.19). These can be estimated 

from the same procedure used to plot Figure 3.26 - measurements can be converted to 𝑍 

scores relative to the WHO standard and GAMLSS can be applied to the transformed 

variables assuming a continuous normal distribution, obtaining estimates for 

𝜇𝑍1 , 𝜇𝑍2 , 𝜎𝑍1and 𝜎𝑍2.  

4.2 Problems with missingness 
If a dataset contains the same number of rows per child and each row represents a 

scheduled measurement occasion, we simply take our data and calculate correlations for 

each pair of occasions. This is because correlations can be calculated between vectors of 

the same length.  

For studies that have varying number of measurements per child, like the South African 

dataset, grouping data is a little more complicated. Children may have missing 

measurements or multiple measurements around the same scheduled measurement 

date.  

A simulated example of this can be seen in Figure 4.1 where 3 simulated children’s 

measurements are plotted against their population. The child represented by the blue 

line has only 4 rows to represent 4 weight measurements, the red line represents a child 

with 18 measurements. However, measurements are not necessarily at consecutive 

months. The green line represents a child with 23 measurements with no value at month 

18. This results in three vectors of weights of length 4, 18 and 23. Within the example, the 

correlation between measurements at months 3 and 4 can be calculated. However 

correlations cannot be calculated between months 4 and 5, as the vectors are of varying 

length.  

To resolve this problem, we follow a rule where if a child’s measurement lies within 0.025 

decimal years (9.125 days) of the scheduled age, that measurement is taken as the 

measurement for that child at that date. If more than one measurement is within the 

interval for a specific scheduled date, one of the measurements are taken at random and 

selected as the measurement. If no measurement lies within 0.025 decimal years of the 

scheduled measurement date, an NA value is stored for that child at that scheduled 

measurement date. Obviously, one problem with this is that much of the data are lost in 

this process. However, for a fair comparison of correlation matrices this procedure must 
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take place. The choice of 0.025 years was found to balance the loss of data and 

minimisation of standard error. 

 

 

Figure 4.1: Weight vs. Age with simulated superimposed individual growth tracking 

(Malawi) 

4.2 Producing correlation matrices 

4.2.1 Malawi 

For the Malawi dataset calculating correlations is relatively easy. Data tends to be closely 

grouped around the scheduled measurement dates and there is the same number of 

measurements per child as there are scheduled measurement dates.  

Following our rule for obtaining the MSE in Section 2.9.1, we remove ¼ of the correlations 

in our matrix and model using the remaining correlations (
1

4
. 210 = 52.5). Therefore, we 

will remove 53 correlations and predict these using our models (based on the remaining 

158), then calculate the MSE using the residuals.  

The correlation matrix of 𝑍 scores for this dataset can be seen in Table 4.1, ranging from 

age 0 to 24 months. This shows the correlation between all combinations of ages. A 

contour plot of the correlation matrix can be seen in Figure 4.2. 
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Figure 4.2: Correlations between 𝑡1 and 𝑡2 (Malawi)
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Table 4.1: Matrix of correlations between Weight 𝑍 Scores at different ages, in months (Malawi)

Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 24 

0 1                     

1 0.72 1                    

2 0.63 0.77 1                   

3 0.56 0.67 0.82 1                  

4 0.50 0.57 0.74 0.81 1                 

5 0.49 0.54 0.71 0.78 0.85 1                

6 0.46 0.53 0.69 0.76 0.82 0.88 1               

7 0.44 0.53 0.69 0.74 0.79 0.84 0.89 1              

8 0.45 0.50 0.63 0.69 0.73 0.77 0.81 0.87 1             

9 0.42 0.47 0.62 0.63 0.66 0.70 0.77 0.80 0.87 1            

10 0.43 0.47 0.62 0.65 0.66 0.70 0.77 0.78 0.82 0.89 1           

11 0.41 0.45 0.59 0.62 0.64 0.69 0.74 0.73 0.76 0.83 0.87 1          

12 0.40 0.45 0.60 0.61 0.63 0.66 0.72 0.70 0.72 0.80 0.84 0.90 1         

13 0.40 0.45 0.60 0.62 0.63 0.68 0.71 0.70 0.72 0.76 0.80 0.85 0.90 1        

14 0.41 0.46 0.61 0.61 0.62 0.68 0.68 0.69 0.69 0.74 0.77 0.84 0.87 0.91 1       

15 0.38 0.44 0.58 0.61 0.61 0.65 0.67 0.68 0.67 0.71 0.74 0.80 0.82 0.87 0.89 1      

16 0.40 0.43 0.57 0.61 0.62 0.67 0.69 0.70 0.70 0.71 0.75 0.79 0.80 0.84 0.86 0.91 1     

17 0.39 0.44 0.58 0.61 0.61 0.67 0.67 0.66 0.67 0.67 0.71 0.75 0.77 0.80 0.81 0.86 0.89 1    

18 0.39 0.42 0.55 0.59 0.59 0.64 0.63 0.65 0.64 0.65 0.67 0.73 0.74 0.76 0.78 0.83 0.85 0.90 1   

21 0.38 0.41 0.49 0.54 0.52 0.57 0.60 0.61 0.63 0.62 0.63 0.66 0.67 0.67 0.68 0.70 0.71 0.75 0.77 1  

24 0.32 0.36 0.49 0.49 0.48 0.52 0.55 0.58 0.56 0.58 0.59 0.62 0.64 0.65 0.66 0.65 0.67 0.69 0.69 0.80 1 

1
1

1
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4.2.2 Pakistan 

Since growth patterns between the four areas differ, the four area’s correlation matrices 

were modelled separately. The Pakistan dataset contains a varying number of rows for 

each of the 3146 children because some children had missing data at scheduled 

measurement dates. There were very few repeat measurements or measurements 

between scheduled measurement dates. If no data was recorded one month for a child, 

no NA value was recorded. Therefore, each row for each child therefore did not represent 

each scheduled measurement date so that if, for example, a child had three rows, they 

did not necessarily represent the first three measurements. The dataset was reformatted 

so that each child had the same number of rows where each row represented each 

scheduled measurement date - 25 rows for each of the 3146 children (78650 rows in 

total), with NA values for missing data.  

In total, there are 625 cells in the matrix however the lower triangular section contains 

25(25−1)

2
= 300 unique correlations. Following our rule for obtaining the MSE, we remove 

¼ of the correlations in our matrices and model using the remaining correlations 

(
1

4
. 300 = 75). Therefore, we will remove 75 correlations and predict these using our 

models (based on the remaining 225), then calculate the MSE using the residuals. 

Correlation matrices can be found in Tables 4.2 - 4.5, plots of these matrices can be found 

in Figures 4.3 – 4.6. 
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Figure 4.3: Correlations between 𝑡1 and 𝑡2 (village) 

 

Figure 4.4: Correlations between 𝑡1 and 𝑡2 (peri-urban slum) 

 

Figure 4.5: Correlations between 𝑡1 and 𝑡2 (urban slum) 

 

Figure 4.6: Correlations between 𝑡1 and 𝑡2 (middle class) 

 

1
1
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Table 4.2: Matrix of correlations between Weight 𝑍 Scores at different ages, in months (village)  

 

 

Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 
1                         

1 
0.77 1                        

2 
0.58 0.84 1                       

3 
0.49 0.72 0.89 1                      

4 
0.5 0.69 0.82 0.9 1                     

5 
0.44 0.64 0.74 0.83 0.91 1                    

6 
0.41 0.59 0.69 0.75 0.85 0.93 1                   

7 
0.35 0.52 0.63 0.72 0.79 0.87 0.93 1                  

8 
0.34 0.47 0.67 0.68 0.75 0.82 0.88 0.92 1                 

9 
0.38 0.49 0.59 0.62 0.72 0.8 0.82 0.87 0.94 1                

10 
0.36 0.5 0.63 0.63 0.68 0.73 0.78 0.82 0.87 0.93 1               

11 
0.36 0.47 0.57 0.59 0.66 0.7 0.7 0.78 0.81 0.88 0.93 1              

12 
0.36 0.48 0.56 0.61 0.66 0.66 0.69 0.76 0.77 0.83 0.89 0.93 1             

13 
0.38 0.48 0.57 0.55 0.63 0.66 0.67 0.73 0.75 0.78 0.84 0.9 0.94 1            

14 
0.38 0.46 0.51 0.53 0.61 0.61 0.63 0.7 0.72 0.77 0.81 0.85 0.89 0.94 1           

15 
0.33 0.44 0.49 0.55 0.62 0.65 0.65 0.69 0.7 0.72 0.78 0.8 0.83 0.89 0.94 1          

16 
0.38 0.48 0.45 0.52 0.6 0.63 0.64 0.67 0.67 0.72 0.74 0.76 0.8 0.86 0.89 0.92 1         

17 
0.39 0.47 0.49 0.52 0.58 0.61 0.65 0.67 0.68 0.69 0.73 0.71 0.78 0.83 0.85 0.9 0.95 1        

18 
0.38 0.46 0.47 0.52 0.59 0.63 0.66 0.7 0.73 0.71 0.74 0.72 0.75 0.8 0.82 0.85 0.89 0.95 1       

19 
0.38 0.44 0.45 0.48 0.59 0.63 0.66 0.7 0.73 0.69 0.73 0.69 0.73 0.74 0.76 0.82 0.84 0.89 0.92 1      

20 
0.38 0.44 0.45 0.49 0.56 0.6 0.58 0.71 0.71 0.7 0.72 0.72 0.74 0.77 0.76 0.79 0.8 0.85 0.89 0.92 1     

21 
0.37 0.43 0.42 0.44 0.52 0.53 0.57 0.69 0.68 0.67 0.72 0.7 0.74 0.78 0.76 0.77 0.78 0.82 0.85 0.88 0.93 1    

22 
0.34 0.4 0.4 0.43 0.47 0.47 0.51 0.65 0.64 0.64 0.71 0.68 0.73 0.78 0.77 0.78 0.76 0.79 0.83 0.85 0.91 0.95 1   

23 
0.31 0.43 0.44 0.46 0.51 0.54 0.58 0.65 0.68 0.68 0.74 0.72 0.76 0.79 0.77 0.78 0.77 0.8 0.81 0.83 0.86 0.9 0.95 1  

24 
0.36 0.43 0.44 0.46 0.5 0.55 0.55 0.65 0.69 0.7 0.73 0.72 0.78 0.8 0.8 0.8 0.77 0.79 0.79 0.81 0.85 0.89 0.91 0.95 1 

Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1
1

4 
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Table 4.3: Matrix of correlations between Weight 𝑍 Scores at different ages, in months (peri-urban slum) 
 

 

0 
1                         

1 
0.81 1                        

2 
0.68 0.89 1                       

3 
0.59 0.81 0.93 1                      

4 
0.51 0.71 0.82 0.89 1                     

5 
0.49 0.68 0.79 0.86 0.9 1                    

6 
0.41 0.62 0.72 0.81 0.83 0.94 1                   

7 
0.39 0.61 0.75 0.83 0.87 0.92 0.95 1                  

8 
0.38 0.56 0.67 0.77 0.79 0.88 0.92 0.96 1                 

9 
0.38 0.53 0.67 0.73 0.75 0.87 0.89 0.94 0.96 1                

10 
0.37 0.58 0.67 0.74 0.77 0.79 0.82 0.88 0.91 0.95 1               

11 
0.34 0.54 0.62 0.64 0.67 0.72 0.77 0.84 0.88 0.91 0.95 1              

12 
0.36 0.52 0.6 0.63 0.61 0.67 0.71 0.77 0.82 0.85 0.92 0.95 1             

13 
0.34 0.48 0.57 0.61 0.57 0.7 0.71 0.76 0.8 0.84 0.87 0.92 0.96 1            

14 
0.39 0.53 0.63 0.65 0.69 0.73 0.76 0.78 0.81 0.83 0.86 0.9 0.92 0.96 1           

15 
0.39 0.54 0.6 0.63 0.63 0.71 0.72 0.74 0.79 0.8 0.8 0.85 0.88 0.92 0.96 1          

16 
0.38 0.53 0.61 0.6 0.66 0.69 0.74 0.77 0.78 0.78 0.78 0.81 0.83 0.86 0.91 0.95 1         

17 
0.31 0.42 0.5 0.53 0.56 0.66 0.7 0.76 0.75 0.76 0.76 0.8 0.8 0.82 0.87 0.92 0.96 1        

18 
0.29 0.47 0.55 0.54 0.59 0.7 0.67 0.68 0.71 0.71 0.67 0.82 0.7 0.84 0.81 0.84 0.94 0.89 1       

19 
0.44 0.58 0.6 0.59 0.59 0.68 0.72 0.77 0.81 0.81 0.83 0.83 0.84 0.83 0.87 0.89 0.91 0.94 0.96 1      

20 
0.4 0.53 0.63 0.59 0.62 0.68 0.73 0.75 0.79 0.81 0.79 0.82 0.81 0.8 0.85 0.83 0.87 0.9 0.92 0.96 1     

21 
0.41 0.51 0.59 0.57 0.59 0.68 0.7 0.74 0.76 0.83 0.8 0.84 0.83 0.83 0.89 0.85 0.86 0.88 0.92 0.94 0.96 1    

22 
0.45 0.54 0.61 0.6 0.6 0.64 0.7 0.73 0.75 0.82 0.82 0.86 0.86 0.87 0.89 0.87 0.87 0.88 0.9 0.92 0.95 0.97 1   

23 
0.4 0.55 0.65 0.6 0.58 0.65 0.69 0.73 0.76 0.81 0.82 0.86 0.86 0.85 0.89 0.86 0.85 0.86 0.83 0.89 0.91 0.95 0.97 1  

24 
0.4 0.51 0.56 0.54 0.57 0.62 0.65 0.69 0.68 0.77 0.78 0.82 0.83 0.84 0.88 0.88 0.87 0.87 0.87 0.9 0.9 0.94 0.96 0.96 1 

Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1
1

5
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Table 4.4: Matrix of correlations between Weight 𝑍 Scores at different ages, in months (urban slum) 
 

 

0 
1                         

1 
0.74 1                        

2 
0.59 0.86 1                       

3 
0.52 0.76 0.91 1                      

4 
0.42 0.64 0.81 0.88 1                     

5 
0.45 0.64 0.79 0.86 0.9 1                    

6 
0.37 0.57 0.73 0.79 0.84 0.93 1                   

7 
0.37 0.55 0.71 0.77 0.81 0.9 0.95 1                  

8 
0.4 0.54 0.68 0.73 0.78 0.86 0.91 0.95 1                 

9 
0.4 0.51 0.61 0.64 0.7 0.84 0.83 0.87 0.92 1                

10 
0.39 0.5 0.61 0.63 0.69 0.8 0.83 0.87 0.91 0.9 1               

11 
0.42 0.48 0.58 0.58 0.64 0.75 0.78 0.81 0.87 0.9 0.94 1              

12 
0.38 0.46 0.56 0.56 0.66 0.72 0.76 0.79 0.85 0.85 0.9 0.95 1             

13 
0.44 0.51 0.59 0.59 0.63 0.7 0.73 0.77 0.82 0.83 0.88 0.92 0.94 1            

14 
0.41 0.46 0.57 0.58 0.62 0.71 0.73 0.76 0.78 0.76 0.82 0.85 0.87 0.91 1           

15 
0.41 0.46 0.58 0.59 0.62 0.69 0.72 0.77 0.8 0.78 0.82 0.86 0.87 0.9 0.94 1          

16 
0.38 0.42 0.51 0.56 0.57 0.67 0.68 0.72 0.76 0.78 0.78 0.82 0.84 0.86 0.9 0.94 1         

17 
0.41 0.45 0.54 0.55 0.54 0.66 0.7 0.72 0.76 0.74 0.78 0.82 0.82 0.85 0.89 0.93 0.96 1        

18 
0.4 0.4 0.52 0.52 0.59 0.67 0.68 0.73 0.74 0.75 0.77 0.78 0.82 0.84 0.87 0.88 0.89 0.95 1       

19 
0.43 0.46 0.56 0.55 0.59 0.66 0.67 0.73 0.77 0.73 0.79 0.8 0.8 0.82 0.83 0.88 0.89 0.93 0.95 1      

20 
0.4 0.42 0.54 0.58 0.61 0.63 0.67 0.72 0.74 0.72 0.78 0.79 0.82 0.82 0.83 0.86 0.87 0.89 0.88 0.96 1     

21 
0.44 0.45 0.58 0.59 0.59 0.66 0.67 0.72 0.75 0.74 0.8 0.81 0.8 0.83 0.83 0.86 0.84 0.88 0.86 0.93 0.95 1    

22 
0.44 0.46 0.52 0.52 0.5 0.6 0.64 0.67 0.72 0.75 0.77 0.78 0.79 0.82 0.81 0.83 0.8 0.83 0.86 0.9 0.92 0.96 1   

23 
0.39 0.45 0.54 0.54 0.46 0.59 0.61 0.65 0.7 0.7 0.78 0.79 0.78 0.82 0.81 0.81 0.77 0.81 0.81 0.86 0.88 0.92 0.95 1  

24 
0.46 0.48 0.56 0.58 0.53 0.6 0.64 0.68 0.71 0.7 0.77 0.8 0.8 0.81 0.81 0.8 0.77 0.8 0.84 0.86 0.86 0.9 0.93 0.96 1 

Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1
1

6
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Table 4.5: Matrix of correlations between Weight 𝑍 Scores at different ages, in months (middle class) 
 

Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

0 
1                         

1 
0.7 1                        

2 
0.54 0.78 1                       

3 
0.44 0.68 0.89 1                      

4 
0.37 0.61 0.8 0.91 1                     

5 
0.36 0.56 0.69 0.85 0.93 1                    

6 
0.35 0.48 0.59 0.74 0.8 0.9 1                   

7 
0.31 0.45 0.59 0.73 0.76 0.88 0.93 1                  

8 
0.26 0.54 0.59 0.75 0.79 0.83 0.86 0.95 1                 

9 
0.19 0.45 0.52 0.67 0.76 0.82 0.84 0.88 0.94 1                

10 
0.3 0.44 0.52 0.69 0.76 0.81 0.86 0.89 0.93 0.96 1               

11 
0.35 0.44 0.52 0.63 0.69 0.76 0.78 0.87 0.9 0.94 0.97 1              

12 
0.3 0.38 0.47 0.59 0.61 0.7 0.8 0.85 0.86 0.91 0.95 0.96 1             

13 
0.29 0.43 0.54 0.65 0.67 0.74 0.78 0.86 0.88 0.89 0.93 0.94 0.96 1            

14 
0.3 0.44 0.45 0.64 0.63 0.66 0.77 0.8 0.86 0.87 0.9 0.92 0.93 0.97 1           

15 
0.3 0.5 0.57 0.65 0.61 0.67 0.74 0.77 0.84 0.85 0.88 0.89 0.92 0.94 0.96 1          

16 
0.39 0.45 0.47 0.6 0.64 0.7 0.73 0.77 0.81 0.78 0.84 0.86 0.87 0.9 0.92 0.95 1         

17 
0.4 0.5 0.52 0.67 0.69 0.7 0.67 0.72 0.79 0.74 0.83 0.84 0.83 0.91 0.9 0.93 0.96 1        

18 
0.41 0.42 0.51 0.66 0.66 0.7 0.71 0.77 0.79 0.75 0.8 0.82 0.83 0.87 0.88 0.91 0.95 0.96 1       

19 
0.38 0.48 0.54 0.62 0.61 0.69 0.72 0.74 0.73 0.73 0.81 0.8 0.8 0.84 0.84 0.87 0.86 0.91 0.93 1      

20 
0.38 0.52 0.52 0.65 0.66 0.7 0.7 0.76 0.79 0.73 0.82 0.83 0.81 0.85 0.86 0.86 0.86 0.9 0.91 0.97 1     

21 
0.34 0.47 0.52 0.63 0.69 0.73 0.73 0.76 0.81 0.76 0.81 0.79 0.79 0.82 0.83 0.83 0.81 0.86 0.85 0.93 0.96 1    

22 
0.35 0.42 0.47 0.62 0.66 0.7 0.71 0.73 0.8 0.79 0.84 0.83 0.81 0.84 0.83 0.84 0.85 0.87 0.86 0.89 0.93 0.96 1   

23 
0.3 0.36 0.41 0.57 0.56 0.67 0.72 0.75 0.79 0.74 0.83 0.84 0.82 0.82 0.83 0.81 0.81 0.8 0.82 0.86 0.91 0.9 0.97 1  

24 
0.34 0.41 0.51 0.61 0.59 0.7 0.69 0.7 0.77 0.75 0.82 0.84 0.8 0.82 0.82 0.81 0.82 0.81 0.82 0.87 0.91 0.9 0.92 0.95 1 

1
1

7 
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4.2.3 South Africa 

As with the Pakistan dataset, the South African dataset contains a varying number of rows 

per child, therefore a correlation matrix could not be obtained using the original data 

frame. A new data frame was set up to represent 15 measurements per child, with NA 

values present where a data point for that child was not available within 0.025 years 

(9.125 days) to the left or right of the scheduled date.  

There are 2938 children within the data frame, each with 15 rows to represent scheduled 

measurement dates (44070 rows total in the new data frame).  

The full correlation matrix is a 15 𝑥 15 matrix of correlations between groups of 𝑍 scores. 

There are 225 cells in the matrix however the lower triangular section contains 

15(15−1)

2
= 105 unique correlations. Following our rule for obtaining the MSE, we remove 

¼ of the correlations in our matrix and model using the remaining correlations 

(
1

4
. 105 = 26.25). Therefore, we will remove 26 correlations and predict these using our 

models (based on the remaining 79), then calculate the MSE using the residuals. 

 

Figure 4.7: Correlations between 𝑡1 and 𝑡2 (South Africa) 
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Age 0 1.4 2.33 3.27 4.20 5.14 6.07 7 8 9 12 15 18 21 24 

0 1               

1.4 0.71 1              

2.33 0.63 0.89 1             

3.27 0.55 0.81 0.92 1            

4.20 0.49 0.75 0.86 0.93 1           

5.14 0.45 0.68 0.80 0.89 0.93 1          

6.07 0.40 0.60 0.76 0.85 0.90 0.94 1         

7 0.38 0.60 0.73 0.82 0.88 0.91 0.95 1        

8 0.37 0.53 0.69 0.77 0.83 0.88 0.92 0.94 1       

9 0.34 0.47 0.64 0.72 0.79 0.83 0.88 0.91 0.95 1      

12 0.33 0.41 0.56 0.64 0.72 0.77 0.82 0.86 0.90 0.91 1     

15 0.35 0.40 0.51 0.61 0.70 0.72 0.78 0.80 0.86 0.87 0.90 1    

18 0.35 0.42 0.48 0.58 0.68 0.70 0.74 0.77 0.83 0.83 0.89 0.92 1   

21 0.35 0.39 0.50 0.59 0.66 0.65 0.68 0.72 0.77 0.79 0.81 0.88 0.92 1  

24 0.26 0.33 0.46 0.55 0.59 0.60 0.68 0.66 0.74 0.76 0.79 0.84 0.87 0.92 1 

Table 4.6: Matrix of correlations between Weight 𝑍 Scores at different ages, in months (South Africa) 

 

1
1

9
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4.3 Model comparisons 
We applied the fractional polynomial model developed by Cole (1995), and the Argyle 

model (Argyle et al. 2008) to our matrices as well as two others - fractional polynomials 

but let a selection algorithm choose the parameters (Equation (2.24)) and GAMs 

(Equation (2.22)). We chose fractional polynomials to model our datasets as they have 

been proven by Cole (1995) to provide good fit to data of this kind. Furthermore the 

selection algorithm has been shown to select terms which model non-traditional shapes 

(Nikolaeva et al. 2015). 

However, Cole did not use the selection algorithm as it was not available at the time. The 

selection algorithm uses is a form of backward elimination. GAMs were chosen since they 

are a non-parametric alternative to parametric models which allow users to specify the 

smoothness of the models.  

Model fit was assessed by four different criteria: 𝑅2, RMS, AIC (adj.) and BIC (adj.). Since 

the Argyle model is on the log scale and all others are transformed by the Fisher 

transformation, AICs and BICs had to be adjusted by multiplying the likelihood by the 

Jacobian of the transformation. Refer to Section 2.9 for further description of the 

methods used to assess model fit.  
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 Model BIC (adj) AIC (adj) 𝑅2(𝑎𝑑𝑗) Min RMS Mean RMS Max RMS 

Malawi GAM  -902 -986 0.974 0.020 0.024 0.028 

 FP  -879 -902 0.959 0.026 0.029 0.033 

 Cole  -800 -823 0.941 0.036 0.042 0.049 

 Argyle  -512 -519 0.950 0.079 0.090 0.103 

Village GAM  -1163 -1257 0.968 0.026 0.030 0.032 

 FP  -1372 -1402 0.979 0.019 0.025 0.030 

 Cole  -1245 -1271 0.967 0.033 0.035 0.038 

 Argyle  -861 -869 0.969 0.047 0.053 0.060 

Peri-urban GAM  -1093 -1185 0.950 0.027 0.035 0.044 

 FP  -1140 -1170 0.944 0.029 0.038 0.047 

 Cole  -1085 -1059 0.926 0.033 0.034 0.037 

 Argyle  -840 -848 0.930 0.042 0.050 0.058 

Urban  GAM  -1164 -1257 0.966 0.026 0.030 0.040 

 FP -1244 -1274 0.963 0.024 0.030 0.036 

 Cole  -1223 -1249 0.959 0.027 0.033 0.040 

 Argyle  -859 -867 0.964 0.044 0.049 0.056 

Middle   GAM  -1130 -1221 0.961 0.031 0.037 0.044 

 FP -1207 -1233 0.961 0.026 0.029 0.034 

 Cole  -1046 -1072 0.932 0.041 0.050 0.058 

 Argyle  -726 -733 0.952 0.044 0.052 0.057 

S.Africa GAM  -442 -506 0.986 0.020 0.028 0.046 

 FP  -510 -529 0.986 0.016 0.021 0.029 

 Cole  -431 -449 0.971 0.032 0.051 0.076 

 Argyle  -342 -349 0.981 0.027 0.035 0.045 

Table 4.7: Model comparisons  

Model comparisons between each of the 6 models, applied to each of the three datasets 

can be seen in Table 4.7 above. Values highlighted in red show the best fitting model for 

that criterion within that dataset.  

Overall, across all criteria, GAMs and the FP models tend to perform best. However, the 

fractional polynomial models perform best in 4 of the 6 datasets. Furthermore, it is a 

parametric method and is not as computationally expensive as a GAM. The final 6 models 
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can be found in Table 4.8. In general, models not only have different parameters, but do 

not take the same form. Because these equations are different, it is hard to generalise the 

use of this methodology. A general model was built using the unique terms of each of the 

models. However, this did not perform well. 

4.5 Chapter conclusions 
Generalised conditional weight gain requires the correlation between groups of 

measurements as 𝑍 scores at the times at which growth of the child was measured. The 

correlation is required as it is the amount that a child’s weight (or height) 𝑍 score will be 

expected to regress towards the mean between 𝑡1 and 𝑡2. Correlations can be calculated 

between scheduled measurements since data are available at these times. However, it 

must be noted that since measurements were not taken at the exact scheduled dates, the 

correlations may have been impacted, possibly reduced. Berkey et al. (1983) and Wright 

(1994) calculated correlations between exact ages and Cameron (1980) estimated 

correlations within age groups within their datasets for use within their conditional 

growth methodology. Correlations cannot be calculated in between scheduled 

measurement dates as no data are available. However, we can estimate correlations 

between measurement dates by interpolation.  

Within the literature, Cole (1995) adopted fractional polynomials to model the correlation 

structure of the Cambridge Infant Growth study (Whitehead et al. 1989), England. This 

model had 6 terms (including intercept) and predicted the correlation coefficients using 

functions of the mean and difference between time points after applying the Fisher 

transformation (Fisher, 1921). Cole found that the correlation increased as the difference 

decreased and mean increased (Cole, 1995). Cole applied the Fisher transformation since 

it approximately stabilises the variance. This means the variance is approximately 

constant for the population correlation coefficient. Without the transformation, the 

variance gets smaller as the coefficient approaches 1.  

Argyle et al. (2008) and Argyle (2002) used a form of linear regression to model the 

correlational surface of a dataset from Newcastle, England, which naturally estimated on 

the log scale. Argyle applied this model to the Cambridge dataset analysed by Cole (1995) 

but found that the function did not capture some of the observed trend within that 

dataset (there was the need for a quadratic term) which suggests that the approximation 

may not fit some datasets with any trend that deviates from the model’s form. Roelants 
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(2013) also noted that this function is not always a satisfactory fit. However, Argyle (2002) 

states that the aim was simply to provide a simple model. This is of practical benefit but is 

not appropriate if structures are complex, thus requiring more flexible interpolation 

methods.  

We applied both Cole and Argyle’s models to our datasets, as well as a further two: FPs 

and GAMs. Although Cole’s FP model was developed solely for the Cambridge Infant 

Growth study, we applied it to determine how well a model built for a developed world 

dataset would fit the developing world matrices. The model’s coefficients were allowed 

to vary but we forced the model to have the same terms as specified by Cole (1995). 

The 𝑚𝑓𝑝() package in 𝑅 estimates fractional polynomial terms based on a backward 

elimination selection algorithm. The FP models were chosen because they are parametric 

yet flexible, and the selection algorithm based on the “closed test procedure” (Marcus et 

al. 1976) which controls model selection (see Ambler & Royston (2001)) has been shown 

to be a useful modelling tool where non-traditional shapes cannot be modelled by 

logarithmic or quadratic functions (Nikolaeva et al. 2015). 

The GAMs we applied had the number of basis functions set to 5 per dimension i.e. 25 in 

total. GAMs were chosen as a non-parametric alternative which allow the degree of 

smoothing to be chosen. Again, choosing the degree of smoothing is somewhat subjective 

although there are criteria to help chose smoothness, such as the GCV introduced by 

Craven & Wahba (1979). We assessed fit based on this criterion but eventually fixed the 

number of basis functions at 5 per dimension. This provided good fit over the correlations 

even though there were differences between the sizes of the matrices (Pakistani 

matrices: 300 correlations; Malawian: 210; South African: 105). All correlation coefficients 

were transformed using the Fisher transformation, for reasons given by Cole (1995), in 

that it is a variance stabilising transformation. 

Fractional polynomials performed best overall, followed closely by GAMs. Fractional 

polynomials performed best in the village, urban slum, middle class area and South Africa. 

GAMs performed best in Malawi and the peri-urban slum.  

In retrospect, using larger smoothing parameters for the GAM models would most likely 

provide a better fit than the FP models. However, GAM models are non-parametric and as 

a consequence they are harder to interpret than FPs. It is actually quite surprising that the 

GAM model did not perform well on the South African matrix as it is relatively small, with 

only a third as many data points as the Pakistani matrices and half as many as the 
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Malawian set. Roelants (2013) suggests that correlation between measurements may be 

comparable across populations despite differences in size. A general model was built by 

combining unique terms within the fractional polynomial models, however it did not 

perform very well across the datasets and was abandoned. In fact, not only were the 

parameters of the models different, the form of the models were also different. This 

highlights the need for complex modelling of correlation matrices when applied to data of 

this type, rather than a generalised model. As noted above, Heimendinger & Laird (1983) 

highlighted that correlations should be “pertinent to the target population”, so it might 

be expected that developing a generalised model would not be possible 

Coupled with interpolation from Figures 3.24 and 3.25 to obtain 𝜇𝑍1 , 𝜇𝑍2 , 𝜎𝑍1and 𝜎𝑍2, the 

estimate of the correlation coefficient can be used in Equation (2.19), generalised 

conditional weight gain. Furthermore, these models can be used in any field in which 

correlations are calculated between successive time points, allowing users to estimate 

correlations for pairs of ages when no data is available.
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Area Model Eq. number 

Malawi 

 

Village 

 

Peri-urban slum 

 

Urban slum 

 

Middle class 

 

South Africa 

𝐸 (𝜙 (𝑟𝑡𝑖,𝑡𝑗)) = 𝛽0 + 𝛽1 log (
Δ𝑡

10
) + 𝛽2 (

Δ𝑡

10
)
2

+ 𝛽3 (
𝑡̅

10
) + 𝛽4 (

𝑡̅

10
) . log (

𝑡̅

10
) + 𝛽5 (Δ𝑡.

𝑡̅

100
) 

𝐸 (𝜙 (𝑟𝑡𝑖,𝑡𝑗)) = 𝛽0 + 𝛽1 log (
Δ𝑡

10
) + 𝛽2 (

Δ𝑡

10
)
2

+ 𝛽3 (
𝑡̅

10
)

2

+ 𝛽4 (
𝑡̅

10
)

3

+ 𝛽5𝑙𝑜𝑔 (Δ𝑡.
𝑡̅

100
) + 𝛽6 (Δ𝑡.

𝑡̅

100
)

0.5

 

𝐸 (𝜙 (𝑟𝑡𝑖,𝑡𝑗)) = 𝛽0 + 𝛽1 log (
Δ𝑡

10
) + 𝛽2 (

Δ𝑡

10
)
2

+ 𝛽3𝑙𝑜𝑔 (Δ𝑡.
𝑡̅

100
) + 𝛽4 (Δ𝑡.

𝑡̅

100
) + 𝛽6 (

𝑡̅

10
)

3

+ 𝛽7 (
𝑡̅

10
)

3

. log (
𝑡̅

10
) 

𝐸 (𝜙 (𝑟𝑡𝑖,𝑡𝑗)) = 𝛽0 + 𝛽1 log (
Δ𝑡

10
) + 𝛽2 (

Δ𝑡

10
)
2

+ β3 (
𝑡̅

10
)

0.5

 + β4 (
𝑡̅

10
)

0.5

 . log (
𝑡̅

10
)

0.5

+ 𝛽5 (Δ𝑡.
𝑡̅

100
) 

𝐸 (𝜙 (𝑟𝑡𝑖,𝑡𝑗)) = 𝛽0 + 𝛽1 𝑙𝑜𝑔 (
𝛥𝑡

10
) + 𝛽2 (

𝛥𝑡

10
)
2

+ 𝛽3 (
𝑡̅

10
) + 𝛽4 (

𝑡̅

10
) . 𝑙𝑜𝑔 (

𝑡̅

10
) + 𝛽5 (𝛥𝑡.

𝑡̅

100
) 

𝐸 (𝜙 (𝑟𝑡𝑖,𝑡𝑗)) = 𝛽0 + 𝛽1 (
Δ𝑡

10
)
0.5

+ 𝛽2 (Δ𝑡.
𝑡̅

100
) + 𝛽3 (Δ𝑡.

𝑡̅

100
) . log (Δ𝑡.

𝑡̅

100
) + 𝛽4 (

𝑡̅

10
)

0.5

+ 𝛽5 (
𝑡̅

10
) 

(4.6) 

 

(4.7) 

 

(4.8) 

 

(4.9) 

 

(4.10) 

 

(4.11) 

Table 4.8: Final FP models 

 

1
2

5 
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Chapter 5 

Exploring nutritional states 

5.1 Introduction 
The first 4 chapters of this thesis addressed aims which focus on data input, data 

summarising, data modelling, and developing generalised conditional weight gain. 

The remainder of this thesis focuses on contributing to the understanding of how children 

grow by quantifying which measures of undernutrition are useful predictors of adverse 

future outcomes, testing the hypotheses developed in Section 1.3.4.  

The original study question for this whole body of research was to determine what levels 

of generalised conditional weight gain predict later adverse outcomes, which we continue 

with in Chapter 6. The review of literature surrounding the original study aim highlighted 

that not only are size and growth predictors of adverse outcomes, nutritional status is 

also valuable. However, the pathways children take through nutritional states are still 

poorly described due to a general lack of detailed longitudinal data. Furthermore, little is 

known about how these presumed transitions change depending on the time frame that 

they are evaluated.  

We therefore added an investigation of the relationships between nutritional states to 

our research agenda. We developed 4 hypotheses based on the review. 

In this Chapter, we investigate the extent to which hypotheses 1-3 are true. The three 

hypotheses describe presumed transitions between ‘nutritional states’:  

Hypothesis 1: those who are both wasted and stunted are at a higher risk of death than 

those who are wasted, who are in turn at a higher risk than those who are stunted 
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Hypothesis 2: wasting tends to precede stunting  

Hypothesis 3: children who are stunted are likely to stay stunted 

Previous research suggested that children tend to move from certain states to others 

however the transitions are still poorly understood.  

5.2 Method 
To test our hypotheses, it was necessary to adopt an approach that: allows modelling of a 

discrete sample space (as we have a discrete number of nutritional states), takes the 

element of time into consideration and estimates the probability of moving from one 

state to another.  

The approach we identified was a stochastic model, modelling the conditional probability 

of moving from one state to another, representing the probabilities of moving between 

states with a stochastic matrix. The statistical methodology used to generate the matrices 

can be found in Section 2.10. 

In this case, we define states: dead (D), wasted-stunted (WS), wasted (W), stunted (S) and 

healthy (H). These are categorised using the definitions outlined in Section 1.2.7, 

including the alternative definition of wasting. 

 

 

 

 

 

Table 5.1: State definitions 

The probability of say, a child moving from a wasted state to a stunted state, can be 

represented by 𝑃(𝑆𝑡|𝑊𝑡−𝑎) = 𝑃𝑊,𝑆. There are therefore 5 probabilities of moving from 

one state to another, resulting in 25 probabilities in total. These can be represented in the 

matrix: 

𝑃𝐴𝑟𝑒𝑎 𝑡−𝑎,𝑡 =

(

 
 
 
 

𝑝𝐷,𝐷 𝑃𝐷,𝑊𝑆 𝑃𝐷,𝑊 𝑃𝐷,𝑆 𝑃𝐷,𝑊

𝑝𝑊𝑆,𝐷 𝑃𝑊𝑆,𝑊𝑆 𝑃𝑊𝑆,𝑊 𝑃𝑊𝑆,𝑆 𝑃𝑊𝑆,𝐻
𝑝𝑊,𝐷 𝑃𝑊,𝑊𝑆 𝑃𝑊,𝑊 𝑃𝑊,𝑆 𝑃𝑊,𝐻
𝑝𝑆,𝐷 𝑃𝑆,𝑊𝑆 𝑃𝑆,𝑊 𝑃𝑆,𝑆 𝑃𝑆,𝐻
𝑝𝐻,𝐷 𝑃𝐻,𝑊𝑆 𝑃𝐻,𝑊 𝑃𝐻,𝑆 𝑃𝐻,𝐻 )

 
 
 
 

                                  

State Description Definition 

1 Dead (D) - 

2 Wasted-Stunted (WS) 𝑍 𝐵𝑀𝐼 < −2 & 𝐻𝐴𝑍 < −2 

3 Wasted (W) 𝑍 𝐵𝑀𝐼 < −2 & 𝐻𝐴𝑍 − 2 

4 Stunted (S) 𝑍 𝐵𝑀𝐼 − 2 & 𝐻𝐴𝑍 <  −2 

5 Healthy (H) 𝑍 𝐵𝑀𝐼  − 2 & 𝐻𝐴𝑍  − 2 
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where Area corresponds to the cohort. The time points 𝑡 and 𝑡 − 𝑎 can vary, as can 𝑎 (so 

long as 𝑡 ≥ 𝑎 ≥ 0). State 1 (dead) is considered an ‘absorbing state’ - children who die 

cannot move state.  

The probability that a child will move from one state to another is multinomial 

distributed. If children from different datasets follow the same multinomial distribution of 

moving between states, those datasets can be pooled. By utilising the GLRT developed in 

Section 2.10.1, we can assess whether one or more cohorts can be pooled. Pooling data is 

appropriate when the datasets are homogeneous with respect to the parameters of 

interest and by assessing whether children follow the same distribution and pooling data, 

we provide more power to analyses within Chapter 6, which focuses on testing 

hypothesis 4 - assessing whether growth over a recent time period is better than recent 

size in predicting mortality. 

5.3 Proportion of children within each state 
In this section we explore the proportion of children within each state before computing 

transition matrices. Figure 5.1 and Tables 5.2 – 5.8 display the proportions of each of the 

6 populations (plus the pooled dataset) within each of the 5 states over months 0, 3, 6, 9, 

12 and 24. It is important to note that these proportions exclude NA values, and so the 

tables describe the number of children within each state divided by the number of non-

NA values at that time point. Therefore, the proportion of dead children (in state 1) does 

not necessarily need to monotonically increase, as the proportion missing within each 

month can vary. See Appendix A for the calculated proportions within each state 

including NA values. 

Figure 5.1a and row 1 of Tables 5.2-5.8 show the proportions of children within state 1 

(dead). With the exception of South Africa and the middle class area of Pakistan, curves 

are roughly the same monotonic shape but shifted, with some areas more likely to have a 

larger number of deaths than others.  

Figure 5.1b and row 2 of Tables 5.2 – 5.8 show state 2, those who are both stunted and 

wasted over time. For most datasets, the prevalence of state 2 (wasted-stunted) varies 

slightly over time but there generally seems to be a negative linear trend. The peri-urban 

slum and village areas have the higher proportion of their respective populations in state 

2, followed jointly by the urban slum and Malawi. The middle class area of Pakistan and 
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South Africa have very low proportions of their populations within state 2, starting off at 

around 1-3% at month 0 and dropping to 0-1% from 9 months onwards. 

The proportion of those in state 3 (wasted) can be seen in Figure 5.1c and row 3 of Tables 

5.2 – 5.8. There is a common trend among all 6 areas with an inverse relationship 

between proportion stunted and time. There is some overlap between the areas. Row 4 

of 5.2 – 5.8 and Figure 5.1d illustrate the proportion of stunted children (state 4). Both 

the South African and middle class datasets follow a very similar trajectory with a linear 

downwards trend. The village and peri-urban slum follow an upward linear trend 24 

months, as does the urban slum. The Malawi dataset follows its own distinct path on a log 

trajectory, with the proportion of children in a stunted state much higher than any of the 

other groups, rising from 0.13 at 0 months to 0.62 at 24 months. 

The proportion considered healthy can be seen in row 5 of 5.2 – 5.8 and Figure 5.1e. 

Again, there is a clear trend within all areas with a decrease in the proportion and rate of 

change of those considered healthy as time progresses. The middle class area in Pakistan 

has the most children in state 5, followed by the urban slum, South Africa, and village, 

while the peri-urban slum and Malawi are last with very similar curves. 

Figure 5.1 and Tables 5.2 – 5.8 only allow us to determine the proportion of children 

within each state at a given time. They are of limited value as they do not provide the 

probability of children moving from one state to another. What is of more value is the 

conditional probability that a child in state 𝑖 at 𝑡1 shifts to state 𝑗 at 𝑡2.
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Figure 5.1: Proportion of population in states: (a) dead, (b) wasted-stunted, (c) wasted, (d) stunted, (e) healthy 
 

a b c 

d e 

1
3

0 
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Malawi Month  

 State 0  3  6  9  12  24 

Dead (State 1) 0.07 0.14 0.19 0.18 0.20 0.22 

Wasted and Stunted (State 2) 0.04 0.02 0.02 0.02 0.03 0.01 

Wasted (State 3) 0.04 0.01 0.01 0.01 0 0 

Stunted (State 4) 0.13 0.42 0.52 0.55 0.56 0.62 

Healthy (State 5) 0.73 0.41 0.27 0.24 0.21 0.15 
 Table 5.2: Proportion of children in each state (Malawi) 

 
Peri-urban slum Month  

 State 0  3  6  9  12  24 

Dead (State 1) 0.04 0.16 0.19 0.22 0.22 0.25 

Wasted and Stunted (State 2) 0.08 0.14 0.13 0.12 0.12 0.03 

Wasted (State 3) 0.15 0.09 0.06 0.06 0.02 0.01 

Stunted (State 4) 0.06 0.16 0.19 0.29 0.34 0.51 

Healthy (State 5) 0.67 0.46 0.43 0.31 0.30 0.19 
 Table 5.4: Proportion of children in each state (peri-urban slum) 

 
Middle class Month  

 State 0  3  6  9  12  24 

Dead (State 1) 0.01 0.02 0.03 0.03 0.03 0.03 

Wasted and Stunted (State 2) 0.01 0.01 0 0.01 0 0 

Wasted (State 3) 0.06 0.03 0.04 0 0.01 0.04 

Stunted (State 4) 0.04 0.14 0.11 0.1 0.06 0.03 

Healthy (State 5) 0.89 0.79 0.83 0.87 0.91 0.90 
 

Table 5.6: Proportion of children in each state (middle class) 

 

Village Month  

 State 0  3  6  9  12  24 

Dead (State 1) 0.02 0.13 0.15 0.15 0.15 0.19 

Wasted and Stunted (State 2) 0.05 0.07 0.06 0.08 0.08 0.02 

Wasted (State 3) 0.16 0.11 0.09 0.07 0.03 0 

Stunted (State 4) 0.05 0.13 0.16 0.22 0.29 0.49 

Healthy (State 5) 0.73 0.57 0.54 0.49 0.45 0.3 
 Table 5.3: Proportion of children in each state (village) 

 
Urban Month  

 State 0  3  6  9  12  24 

Dead (State 1) 0.01 0.07 0.08 0.09 0.09 0.13 

Wasted and Stunted (State 2) 0.03 0.05 0.04 0.02 0.02 0.02 

Wasted (State 3) 0.09 0.06 0.05 0.04 0.02 0.02 

Stunted (State 4) 0.06 0.18 0.20 0.24 0.26 0.30 

Healthy (State 5) 0.80 0.64 0.63 0.61 0.61 0.53 
 Table 5.5: Proportion of children in each state (urban slum) 

 
South Africa Month  

 State 0  3  6  9  12  24 

Dead (State 1) 0.09 0.12 0.15 0.31 0.27 0.49 

Wasted and Stunted (State 2) 0.03 0.02 0.01 0.01 0.01 0 

Wasted (State 3) 0.03 0.03 0.02 0.01 0.01 0 

Stunted (State 4) 0.12 0.12 0.09 0.07 0.09 0.11 

Healthy (State 5) 0.73 0.72 0.73 0.60 0.62 0.40 
 

Table 5.7: Proportion of children in each state (South Africa) 

 

1
3

1
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5.4 Estimating transition matrices 
Matrices on pages 133-135 show transition probabilities for all areas. As state 1 is an 

absorbing state, the probability of moving from this state to another is always 0. 

Probability calculations for some of the middle class transition matrices have frequencies 

of 0, returning NA probabilities, namely: from state 2 in the 6-9 month matrix and from 

states 2, 3 and 5 in the 9-12 month matrix. Generally frequencies are low when 

calculating transitions for the middle class area, which makes these probabilities 

imprecise. 

As there are a large number of proportions, it is hard to determine whether two or more 

matrices differ significantly by visually interpreting the plots. By using the GLRT derived in 

Section 2.9.1, we can determine whether two matrices of transitions are significantly 

different from one another. 

Pooled Month  

State 0  3  6  9  12  24 

Dead (State1) 0.06 0.11 0.14 0.19 0.20 0.26 

Wasted-stunted (State 2) 0.04 0.04 0.03 0.04 0.04 0.02 

Wasted (State 3) 0.08 0.05 0.04 0.03 0.02 0.01 

Stunted (State 4) 0.09 0.17 0.19 0.24 0.26 0.38 

Healthy (State 5) 0.74 0.62 0.60 0.50 0.50 0.34 

Table 5.8: Proportion of children in each state 

(pooled) 
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𝑃𝑉𝑖𝑙𝑙𝑎𝑔𝑒 3,6 =

(

 
 

1 0 0 0 0
0.14 0.35 0.05 0.40 0.07
0.07 0.11 0.37 0.19 0.26
0.05 0.03 0.06 0.55 0.31
0.01 0.03 0.10 0.08 0.79)

 
 

 

𝑃𝑉𝑖𝑙𝑙𝑎𝑔𝑒 6,9 =

(

 
 

1 0 0 0 0
0.08 0.51 0 0.38 0.03
0 0.13 0.38 0.15 0.33
0.01 0.09 0.01 0.67 0.22
0.01 0.03 0.06 0.13 0.77)

 
 

 

𝑃𝑉𝑖𝑙𝑙𝑎𝑔𝑒 9,12 =

(

 
 

1 0 0 0 0
0.02 0.52 0.02 0.43 0
0.05 0.10 0.26 0.18 0.41
0.01 0.06 0 0.80 0.12
0.01 0.01 0.03 0.14 0.81)

 
 

 

𝑃𝑉𝑖𝑙𝑙𝑎𝑔𝑒 0,12 =

(

 
 

1 0 0 0 0
0.46 0.18 0 0.26 0.10
0.15 0.15 0.05 0.27 0.39
0.14 0.14 0 0.51 0.22
0.09 0.06 0.03 0.30 0.52)

 
 

 

𝑃𝑉𝑖𝑙𝑙𝑎𝑔𝑒 12,24 =

(

 
 

1 0 0 0 0
0 0.24 0 0.76 0
0.05 0 0 0.58 0.37
0.02 0.03 0 0.89 0.06
0.02 0 0 0.35 0.62)

 
 

 

 

𝑃𝑀𝑖𝑑𝑑𝑙𝑒 3,6 =

(

 
 

1 0 0 0 0
0 0 0 0.67 0.33
0 0 0.25 0 0.75
0 0 0 0.50 0.50
0 0 0.03 0.03 0.94)

 
 

 

𝑃𝑀𝑖𝑑𝑑𝑙𝑒 6,9 =

(

 
 

1 0 0 0 0
− − − − −
0 0 0 0 1
0 0.08 0 0.54 0.38
0 0 0 0.07 0.93)

 
 

 

𝑃𝑀𝑖𝑑𝑑𝑙𝑒 9,12 =

(

 
 

1 0 0 0 0
− − − − −
− − − − −
0 0 0.08 0.58 0.33
0 0 0 0.01 0.99)

 
 

 

𝑃𝑀𝑖𝑑𝑑𝑙𝑒 0,12 =

(

 
 

1 0 0 0 0
0 0 0 0 1
0 0 0 0.18 0.82
0 0 0 0 1
0.01 0 0.01 0.06 0.93)

 
 

 

𝑃𝑀𝑖𝑑𝑑𝑙𝑒 12,24 =

(

 
 

1 0 0 0 0
− − − − −
0 0 0 0 1
0 0 0 0.25 0.75
0 0 0.05 0.02 0.93)

 
 

 

 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 3,6 =

(

 
 

1 0 0 0 0
0.15 0.46 0 0.38 0
0.14 0 0 0.57 0.29
0.05 0.02 0.01 0.82 0.11
0.02 0 0.01 0.43 0.53)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 6,9 =

(

 
 

1 0 0 0 0
0.10 0.20 0 0.70 0
0 0 0 0.75 0.25
0.02 0.03 0.01 0.77 0.16
0.03 0 0.01 0.33 0.64)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 9,12 =

(

 
 

1 0 0 0 0
0 0.14 0 0.86 0
0 0.33 0.17 0.17 0.33
0.01 0.02 0 0.84 0.12
0.01 0.02 0 0.39 0.59)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 0,12 =

(

 
 

1 0 0 0 0
0.41 0.07 0 0.48 0.04
0.17 0.09 0 0.65 0.09
0.13 0.05 0 0.71 0.11
0.12 0.02 0 0.59 0.27)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 12,24 =

(

 
 

1 0 0 0 0
0 0.07 0 0.93 0
0 0 0 1 0
0.04 0.02 0 0.85 0.09
0.05 0.01 0.01 0.49 0.45)

 
 

 

1
3

3 

 



 

134 
 

 

 

 

 

 

 

 

 

 

 

𝑃𝑈𝑟𝑏𝑎𝑛 3,6 =

(

 
 

1 0 0 0 0
0.17 0.42 0 0.42 0
0.03 0.12 0.25 0.16 0.44
0.01 0.07 0.03 0.61 0.28
0 0 0.04 0.10 0.86)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 6,9 =

(

 
 

1 0 0 0 0
0.05 0.35 0.15 0.35 0.10
0 0.04 0.48 0.17 0.30
0.01 0 0 0.76 0.23
0 0.01 0.02 0.09 0.89)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 9,12 =

(

 
 

1 0 0 0 0
0 0.40 0 0.50 0.10
0 0 0.32 0.05 0.64
0 0.02 0.01 0.82 0.16
0 0 0 0.07 0.93)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 0,12 =

(

 
 

1 0 0 0 0
0.37 0.05 0 0.42 0.16
0.22 0.05 0.03 0.17 0.53
0.03 0.03 0 0.66 0.23
0.04 0.01 0.02 0.25 0.68)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 12,24 =

(

 
 

1 0 0 0 0
0.12 0.12 0 0.62 0.12
0 0.50 0 0.17 0.33
0.01 0.03 0.02 0.72 0.23
0 0 0.03 0.14 0.83)

 
 

 

𝑃𝑃𝑒𝑟𝑖 3,6 =

(

 
 

1 0 0 0 0
0.10 0.48 0 0.40 0.02
0.09 0.27 0.27 0.15 0.23
0.04 0.26 0.02 0.53 0.15
0.02 0.02 0.06 0.10 0.81)

 
 

 

𝑃𝑃𝑒𝑟𝑖 6,9 =

(

 
 

1 0 0 0 0
0.05 0.62 0.03 0.31 0
0 0.07 0.36 0.15 0.43
0 0.12 0 0.83 0.06
0 0.01 0.06 0.26 0.66)

 
 

 

𝑃𝑃𝑒𝑟𝑖 9,12 =

(

 
 

1 0 0 0 0
0.03 0.57 0.03 0.37 0
0 0.43 0.14 0.14 0.29
0 0.13 0 0.81 0.05
0 0.01 0.04 0.15 0.79)

 
 

 

𝑃𝑃𝑒𝑟𝑖 0,12 =

(

 
 

1 0 0 0 0
0.33 0.15 0 0.37 0.15
0.16 0.24 0 0.41 0.20
0.21 0.14 0 0.57 0.07
0.12 0.10 0.03 0.34 0.40)

 
 

 

𝑃𝑃𝑒𝑟𝑖 12,24 =

(

 
 

1 0 0 0 0
0.04 0.25 0 0.71 0
0 0 0.33 0.67 0
0.01 0 0 0.93 0.06
0 0.02 0.02 0.36 0.60)

 
 

 

 

𝑃𝑆.𝐴𝑓𝑟𝑖𝑐𝑎 3,6 =

(

 
 

1 0 0 0 0
0.16 0.23 0.03 0.48 0.10
0.07 0.02 0.11 0.17 0.63
0.04 0.06 0.02 0.38 0.51
0.02 0 0.02 0.05 0.92)

 
 

 

𝑃𝑆.𝐴𝑓𝑟𝑖𝑐𝑎 6,9 =

(

 
 

1 0 0 0 0
0.38 0.12 0 0.50 0
0 0 0.20 0.10 0.70
0.03 0.03 0.04 0.41 0.49
0.03 0 0.01 0.06 0.90)

 
 

 

𝑃𝑆.𝐴𝑓𝑟𝑖𝑐𝑎 9,12 =

(

 
 

1 0 0 0 0
0 0.86 0.14 0 0
0 0.09 0.91 0 0
0 0 0 0.63 0.37
0 0 0 0.07 0.93)

 
 

 

𝑃𝑆.𝐴𝑓𝑟𝑖𝑐𝑎 0,12 =

(

 
 

1 0 0 0 0
0.37 0.07 0 0.23 0.33
0.33 0 0 0.10 0.57
0.16 0.03 0 0.33 0.49
0.09 0.01 0.02 0.07 0.81)

 
 

 

𝑃𝑆.𝐴𝑓𝑟𝑖𝑐𝑎 12,24 =

(

 
 

1 0 0 0 0
0.57 0.14 0 0.14 0.14
0 0 0 0 1
0.08 0 0 0.62 0.30
0.02 0 0.01 0.11 0.86)
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𝑃𝑃𝑜𝑜𝑙𝑒𝑑 3,6 =

(

 
 

1 0 0 0 0
0.14 0.37 0.02 0.42 0.05
0.07 0.10 0.24 0.18 0.40
0.04 0.06 0.02 0.59 0.29
0.01 0.01 0.03 0.10 0.85)

 
 

 

𝑃𝑃𝑜𝑜𝑙𝑒𝑑 6,9 =

(

 
 

1 0 0 0 0
0.09 0.46 0.04 0.39 0.03
0 0.08 0.36 0.17 0.39
0.02 0.04 0.01 0.72 0.21
0.02 0.01 0.02 0.12 0.84)

 
 

 

𝑃𝑃𝑜𝑜𝑙𝑒𝑑 9,12 =

(

 
 

1 0 0 0 0
0.02 0.50 0.03 0.45 0.01
0.02 0.14 0.33 0.12 0.39
0.01 0.04 0 0.80 0.15
0 0.01 0.01 0.11 0.87)

 
 

 

𝑃𝑃𝑜𝑜𝑙𝑒𝑑 0,12 =

(

 
 

1 0 0 0 0
0.39 0.11 0 0.34 0.16
0.18 0.12 0.03 0.28 0.39
0.14 0.05 0 0.51 0.31
0.08 0.03 0.02 0.27 0.60)

 
 

 

𝑃𝑃𝑜𝑜𝑙𝑒𝑑 12,24 =

(

 
 

1 0 0 0 0
0.07 0.20 0 0.71 0.02
0.03 0.09 0.03 0.46 0.40
0.03 0.02 0 0.83 0.11
0.02 0 0.02 0.23 0.73)
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5.5 Testing the equality of transition matrices 
The transition matrices within the previous section describe how children transition from 

one state to another through time for each individual dataset. However, if children from 

different datasets share the same transition probabilities this suggests that children are 

moving between states in the same way. These datasets can therefore be pooled, 

providing more statistical power to our analyses while using the transition matrices. 

Furthermore, these pooled datasets can be used within further analysis, as long as the 

datasets are homogenous with respect to the parameters of interest for that specific 

analysis. 

The statistical test used here was derived in Section 2.9.1. It must be noted that no 

adjustment has been made for multiple comparisons, although 𝑝-values which were less 

than 0.01 were small, indicating that our results would not have changed had a multiple 

comparisons procedure been used. 

Results show that the peri-urban slum and the village data can be pooled as their 

matrices are not significantly different at all three transition times. The South African and 

middle class area can also be pooled. The four final transition matrices can be seen on 

pages 138 and 139. 
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Figure 5.2: Test of equality: (a) 3-6m, (b) 6-9m, (c) 9-12m 
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𝑃𝑃/𝑉 3,6 =

(

 
 

1 0 0 0 0
0.11 0.40 0.02 0.40 0.05
0.08 0.15 0.34 0.18 0.25
0.05 0.12 0.05 0.54 0.24
0.01 0.02 0.08 0.09 0.80)

 
 

 

𝑃𝑃/𝑉 6,9 =

(

 
 

1 0 0 0 0
0.07 0.57 0.01 0.34 0.01
0 0.12 0.38 0.15 0.35
0.01 0.10 0.01 0.72 0.16
0.00 0.04 0.06 0.16 0.74)

 
 

 

𝑃𝑃/𝑉 9,12 =

(

 
 

1 0 0 0 0
0.03 0.54 0.03 0.40 0.00
0.04 0.18 0.23 0.17 0.38
0.01 0.09 0 0.80 0.10
0 0.01 0.03 0.14 0.81)

 
 

 

𝑃𝑃/𝑉 0,12 =

(

 
 

1 0 0 0 0
0.41 0.17 0 0.30 0.12
0.15 0.17 0.04 0.31 0.33
0.16 0.14 0 0.53 0.17
0.10 0.07 0.03 0.31 0.49)

 
 

 

𝑃𝑃/𝑉 12,24 =

(

 
 

1 0 0 0 0
0.01 0.25 0 0.74 0
0.05 0 0.05 0.59 0.31
0.02 0.02 0 0.90 0.06
0.02 0.01 0.01 0.35 0.61)

 
 

 

 

𝑃𝑆𝐴/𝑀𝐶 3,6 =

(

 
 

1 0 0 0 0
0.15 0.20 0.03 0.50 0.12
0.06 0.02 0.12 0.16 0.64
0.03 0.05 0.02 0.39 0.51
0.02 0.01 0.02 0.05 0.90)

 
 

 

𝑃𝑆𝐴/𝑀𝐶 6,9 =

(

 
 

1 0 0 0 0
0.37 0.13 0 0.5 0
0 0 0.15 0.07 0.78
0.02 0.04 0.04 0.43 0.47
0.03 0 0.01 0.06 0.90)

 
 

 

𝑃𝑆𝐴/𝑀𝐶 9,12 =

(

 
 

1 0 0 0 0
0 0.86 0.14 0 0
0 0.10 0.90 0 0
0 0 0.01 0.63 0.36
0 0 0 0.07 0.93)

 
 

 

𝑃𝑆𝐴/𝑀𝐶 0,12 =

(

 
 

1 0 0 0 0
0.35 0.08 0 0.22 0.35
0.24 0 0 0.12 0.64
0.15 0.03 0 0.31 0.51
0.08 0.00 0.02 0.07 0.83)

 
 

 

𝑃𝑆𝐴/𝑀𝐶 12,24 =

(

 
 

1 0 0 0 0
0.58 0.14 0 0.14 0.14
0 0 0 0 1
0.07 0 0 0.59 0.34
0.02 0 0.02 0. 08 0.88)
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𝑃𝑀𝑎𝑙𝑎𝑤𝑖 3,6 =

(

 
 

1 0 0 0 0
0.15 0.46 0 0.38 0
0.14 0 0 0.57 0.29
0.05 0.02 0.01 0.82 0.11
0.02 0 0.01 0.43 0.53)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 6,9 =

(

 
 

1 0 0 0 0
0.10 0.20 0 0.70 0
0 0 0 0.75 0.25
0.02 0.03 0.01 0.77 0.16
0.03 0 0.01 0.33 0.64)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 9,12 =

(

 
 

1 0 0 0 0
0 0.14 0 0.86 0
0 0.33 0.17 0.17 0.33
0.01 0.02 0 0.84 0.12
0.01 0.02 0 0.39 0.59)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 0,12 =

(

 
 

1 0 0 0 0
0.41 0.07 0 0.48 0.04
0.17 0.09 0 0.65 0.09
0.13 0.05 0 0.71 0.11
0.12 0.02 0 0.59 0.27)

 
 

 

𝑃𝑀𝑎𝑙𝑎𝑤𝑖 12,24 =

(

 
 

1 0 0 0 0
0 0.07 0 0.93 0
0 0 0 1 0
0.04 0.02 0 0.85 0.09
0.05 0.01 0.01 0.49 0.45)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 3,6 =

(

 
 

1 0 0 0 0
0.17 0.42 0 0.42 0
0.03 0.12 0.25 0.16 0.44
0.01 0.07 0.03 0.61 0.28
0 0 0.04 0.10 0.86)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 6,9 =

(

 
 

1 0 0 0 0
0.05 0.35 0.15 0.35 0.10
0 0.04 0.48 0.17 0.30
0.01 0 0 0.76 0.23
0 0.01 0.02 0.09 0.89)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 9,12 =

(

 
 

1 0 0 0 0
0 0.40 0 0.50 0.10
0 0 0.32 0.05 0.64
0 0.02 0.01 0.82 0.16
0 0 0 0.07 0.93)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 0,12 =

(

 
 

1 0 0 0 0
0.37 0.05 0 0.42 0.16
0.22 0.05 0.03 0.17 0.53
0.03 0.03 0 0.66 0.23
0.04 0.01 0.02 0.25 0.68)

 
 

 

𝑃𝑈𝑟𝑏𝑎𝑛 12,24 =

(

 
 

1 0 0 0 0
0.12 0.12 0 0.62 0.12
0 0.50 0 0.17 0.33
0.01 0.03 0.02 0.72 0.23
0 0 0.03 0.14 0.83)
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5.6 Transitions of interest 

Table 5.9: Transitions of interest (rows are 𝑡1, columns are 𝑡2) 

Table 5.9 summarises each transition in more detail. The transition matrices will be used 

to determine if the hypotheses, listed below, are true, by interpreting the probabilities of 

moving states and calculating relative risks: 

Hypothesis 1: those who are both wasted and stunted are at a higher risk of death than 

those who are wasted, who are in turn at a higher risk than those who are stunted 

Column 1 is the proportion moving from each of the nutritional states to a dead state. 

Previous research suggests that those who are wasted are at a higher risk of death than 

those who are stunted, and those who are wasted-stunted are at an even higher risk than 

both of these states. We therefore expect to observe in descending order, the probability 

of death: wasted-stunted, wasted, stunted, healthy.  

Hypothesis 2: wasting tends to precede stunting  

 1: Dead 2: Wasted-

stunted 

3 :Wasted 4: Stunted 5:Healthy 

1:Dead Still dead 

 

 

Still dead Still dead Still dead Still dead 

2:Wasted-

stunted 

Proportion of those 

wasted-stunted at 

baseline (Pws) who then 

died    

Pws now still 

wasted-

stunted  

Pws now only 

wasted  

Pws still stunted 

but no longer 

wasted  

Pws now 

healthy  

3:Wasted Proportion of those 

wasted at baseline (Pw) 

who then died    

Pw now also 

stunted  

Pw still 

wasted  

Pw stunted but no 

longer wasted  

Pw now 

healthy  

4:Stunted Proportion of those 

stunted at baseline (Ps) 

who then died    

 Ps now also 

wasted  

Ps now 

wasted but 

not stunted  

Ps still only  

stunted 

Ps now 

healthy  

5:Healthy Proportion of those 

healthy at baseline (PH) 

who then died    

 PH now 

wasted-

stunted 

PH now 

wasted  

PH now stunted, 

without having 

been wasted 

PH still 

healthy  
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Row 3 is the proportion moving from a wasted state. Previous research suggests that 

wasting precedes stunting. We should therefore observe children moving from wasted to 

stunted.  

Hypothesis 3: children who become stunted are likely to stay stunted 

Row 4 is the proportion of children moving from a stunted state. Past research suggests 

stunting is largely irreversible. Children should therefore tend to stay in a stunted state.  

These hypotheses will be compared with our findings within Section 5.7. The purpose of 

the section is to provide a general overview of the pathways children take through 

nutritional states by describing the probabilities of moving between them. Relative risks 

and statistical significance is discussed in more detail within the conclusions section. Note 

that RRs are calculated using the exact probability of moving between states, not the 

rounded probabilities shown in the transition matrices. Inference is largely made on the 

pooled dataset and should therefore be treated as a generalised result. Further inference 

on the individual sets can be made by referring to the individual probability transition 

matrices in Section 5.4 and Section 5.5. Additional analysis on the pooled South 

African/middle class, village/peri-urban slum, urban slum and Malawian sets can be found 

in Appendix B. Note however, that many RRs could not be calculated due to 

denominators with values of 0. The methodology used to compute probabilities and RRs 

can be found in Section 2.10. 

5.7 Relationships between wasting, stunting and death 

5.7.2 Moving into a dead state 

5.7.2.1 Transition probabilities 

Hypothesis 1: those who are both wasted and stunted are at a higher risk of death than 

those who are wasted, who are in turn at a higher risk than those who are stunted 

On the whole, our findings agree with this hypothesis. Within all three timeframes, 

children who are wasted-stunted are much more likely to die than those who are wasted. 

In the 3-6m and 9-12m timeframes, those who are wasted are more likely to die than 

those who are stunted. Only in the 6-9m timeframe are stunted children more likely to 

die than wasted children.  
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Timeframe Wasted-stunted Wasted Stunted Healthy 

3-6m 0.14 0.07 0.04 0.01 

6-9m 0.09 NA 0.02 0.02 

9-12m 0.02 0.02 0.01 0 

Table 5.10: Pooled probability of moving from all states to dead  

5.7.2.2 Relative risks 

Wasted-stunted children are significantly more likely to die than healthy children in all 

three timeframes. Wasted children are significantly more likely to die than healthy 

children in the 3-6m and 9-12m timeframes, as are those who are stunted. Note that 

the probability of death decreases with age but relative to the healthy children, children 

are less vulnerable within the middle period. 

Timeframe Wasted-stunted Wasted Stunted Healthy 

3-6m 11.1 (6.4, 19.1) 5.3 (2.6, 10.5) 3.0 (1.7, 5.2) 1 

6-9m 5.4 (2.6, 11) NA 1.0 (0.5, 2.1) 1 

9-12m 10.0 (1.7, 59.7) 11.5 (1.9, 68.1) 4.8 (1.2, 18.5) 1 

Table 5.11: RR (95% CI) of moving from each state to dead (baseline healthy) 

5.7.3 Moving from a wasted-stunted state 

5.7.3.1 Transition probabilities 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.14 0.37 0.02 0.42 0.05 

6-9m 0.09 0.46 0.04 0.39 0.03 

9-12m 0.02 0.50 0.03 0.45 0.01 

Table 5.12: Pooled probability of moving from wasted-stunted to each state  

Children who were wasted-stunted are most likely to revert to a stunted (but not wasted) 

state in the 3-6m timeframe, or stay wasted-stunted (42% to stunted compared with 37% 

to wasted-stunted) but are most likely to stay in a wasted-stunted state in the 6-9m and 

9-12m timeframe. However, large proportions of children die within both the 3-6m 

timeframe (14%) and 6-9m timeframe (9%). Only 2% of children die at 12m if they were 

wasted-stunted at 9m.  
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5.7.3.2 Relative risks 

Those who are wasted-stunted are significantly more likely to die than healthy children 

and are significantly more likely to become stunted in all three timeframes. Furthermore, 

wasted-stunted children are significantly more likely to stay in this state, or move to a 

stunted state in all three timeframes, compared with healthy children. These children are 

also more likely to become wasted in the 9-12m timeframe compared with healthy 

children. 

Table 5.13: RR (95% CI) of moving from wasted-stunted to other states (baseline healthy) 

5.7.4 Moving from a wasted state  

5.7.4.1 Transition probabilities 

Hypothesis 2: wasting tends to precede stunting  

40% of children move from a wasted state to a healthy state in all three timeframes. The 

second most likely final state is wasted, with about one-third of children staying in this 

state. About one-sixth of wasted children become stunted. 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.07 0.10 0.24 0.18 0.40 

6-9m 0 0.08 0.36 0.17 0.39 

9-12m 0.02 0.14 0.33 0.12 0.39 

Table 5.14: Pooled probability of moving from wasted to each state 

5.7.4.2 Relative risks 

Table 5.15: RR (95% CI) of moving from wasted to other states (baseline healthy) 

In comparison with healthy children, wasted children are significantly more likely to 

become stunted in period 3-6m but not in periods 6-9m or 9-12m. They are also 

Timeframe Dead Wasted-stunted Wasted Stunted Healthy 

3-6m 11.1(6.4, 19) 64.8 (36.3, 115.8) 0.6 (0.2, 1.9) 4.2 (3.3, 5.2) 0.06 (0.03, 0.13) 

6-9m 5.4 (2.6, 10) 49.9 (29.1, 85.7) 1.5 (0.5, 4.3) 3.3 (2.5, 4.3) 0.03 (0.01, 0.09) 

9-12m 10.1 (1.7, 59) 87.4 (44.3, 172.5) 4.1 (1.1, 14.5) 3.9 (3.0, 5.1) 0.01 (0.00, 0.07) 

Timeframe Dead Wasted-stunted Wasted Stunted Healthy 

3-6m 5.3 (2.6, 10.5) 17.7 (8.7, 35.8) 7.6 (5.3, 10.7) 1.8 (1.3, 2.5) 0.47 (0.39, 0.57) 

6-9m NA 9.0 (4.0, 20.1) 15.8 (10.5, 23.9) 1.4 (0.9, 2.2) 0.46 (0.37, 0.59) 

9-12m 11.5 (1.9, 68.0) 24.9 (10.9, 56.8) 47.1 (24.3, 90.9) 1.0 (0.5, 1.8) 0.44 (0.34, 0.57) 
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significantly more likely to become wasted-stunted or stay wasted within all three 

timeframes. They are also significantly more likely to die within the 3-6m and 9-12m 

timeframes. 

5.7.5 Moving from a stunted state  

5.7.5.1 Transition probabilities 

Hypothesis: children who become stunted are likely to stay stunted 

Past research suggested that stunting is largely irreversible as children who become 

stunted will not recover. Our findings partially agree with this hypothesis. The vast 

majority of children who are stunted at baseline stay stunted, and the probability of 

remaining in this state increases with age – from 59% of children during 3-6m to 80% 

during 9-12m. 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.04 0.06 0.02 0.59 0.29 

6-9m 0.02 0.04 0.01 0.72 0.21 

9-12m 0.01 0.04 0 0.80 0.15 

Table 5.16: Pooled probability of moving from stunted to each state 

The probability of moving to a healthy state falls with age, with 29% of children for 3-6m 

decreasing to 21% for 6-9m and 15% for 9-12m. 

5.7.5.2 Relative risks 

Table 5.17: RR (95% CI) of moving from stunted to other states (baseline healthy) 

Stunted children are significantly more likely to be stunted at the final time than healthy 

children. Stunted children are also significantly more likely to become wasted-stunted in 

all three timeframes, and significantly more likely to die in timeframes 3-6m and 9-12m. 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 3.0 (1.7, 5.2) 9.8 (5.2, 18.5) 0.68 (0.3, 1.2) 5.9 (5.1, 6.8) 0.33 (0.30, 0.38) 

6-9m 1.0 (0.5, 2.1) 4.6 (2.5, 8.6) 0.48 (0.2, 1.0) 6.2 (5.3, 7.1) 0.25 (0.21, 0.29) 

9-12m 4.8 (1.2, 18.5) 6.4 (3.0, 13.5) 0.56 (0.1, 2.0) 7.1 (6.1, 8.1) 0.17 (0.14, 0.20) 
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5.7.6 Moving from a healthy state  

5.7.6.1 Transition probabilities 

As past research has suggested that wasting precedes stunting, we expect that children 

will most likely move from a healthy state to a wasted state. Our findings do not agree 

with this hypothesis. The majority of children who are healthy will stay in a healthy state 

(around 85% in all timeframes). The second most likely state that children will move into 

is a stunted state, with 10-12% of children moving into this state from a healthy baseline 

state. Only 3% of children move into a wasted state within the 3-6m timeframe, 2% 

within the 6-9m timeframe and 1% within the 9-12m timeframe. 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.01 0.01 0.03 0.10 0.85 

6-9m 0.02 0.01 0.02 0.12 0.84 

9-12m 0 0.01 0.01 0.11 0.87 

Table 5.18: Pooled probability of moving from healthy to each state 

5.8 Chapter conclusions 
The analysis in Section 5.3 allowed us to test hypotheses 1-3, which we developed from 

previous literature. On the whole, results tended to agree with the hypotheses outlined in 

Section 1.3.2. We adopted a stochastic modelling approach to test the hypotheses. This 

approach allowed us to determine the probabilities of moving between various states 

conditional on the previous state. In this conclusions section, we discuss our findings, 

comparing them with other published literature.  

5.8.1 Pooling datasets 

We utilised the methodology developed in Section 2.9.1 to determine whether transition 

matrices were significantly different from one another. This provided justification for 

pooling datasets. This gave us more statistical power for the analyses within Appendix B, 

and further analysis within the programme of work (Chapter 6). 

Each row of the transition matrices represented samples from multinomial distributions, 

therefore a “two sample” test was needed to determine whether paired rows were 

significantly different (see Equations (2.34) and (2.35)). A problem with the form of the 

GLRT in expression (2.34) was that it required non-zero probabilities. We added 0.5 to 

every frequency so each probability was non-zero. However some frequencies were small 
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which drastically affected results. The form of (2.34) is asymptotically equivalent to 

Equation (2.35), Pearson’s 𝜒2 test (Pearson 1900). This means (2.34) and (2.35) differ by 

quantities that tend to zero as 𝑛 → ∞. While development of the GLRT was not a complex 

likelihood argument, no reference within the literature comparing transition matrices in 

this way could be found, although, a similar “one sample” test was presented by 

Bickenbach & Bode (2001), applied to financial data. This GLRT can be used in any 

application to determine whether two transition matrices are significantly different, 

where samples used to calculate the probabilities within each row are multinomial 

distributed. The datasets that were pooled were: middle class area and South Africa, 

village and peri urban slum. This resulted in 4 new datasets listed below: 

 South Africa/middle class 

 Urban slum 

 Malawi 

 Peri-urban slum/village 

5.8.2 What nutritional states are most likely to lead to death? 

Previous research has focused solely on determining whether nutritional status is a 

predictor of mortality. We hypothesised that wasting-stunting, wasting and stunting were 

all significant predictors of mortality based on this research.  

Vesel et al. (2010) used sensitivity and specificity to determine whether stunting, wasting 

and underweight were good predictors of mortality in Ghana, India and Peru. 

Underweight and wasting served as predictors in some sets over the timeframes. Vesel’s 

approach identified which predictors were good, but not whether they were significant, 

nor did the method allow probabilities to be calculated.  

More recent research has suggested that those who are wasted-stunted are at a much 

higher risk of death those who are wasted, who are in turn at a higher risk than those 

who are stunted. Olofin et al. (2013) and McDonald et al. (2013) used Cox proportional 

hazards models to calculate hazard ratios for children who were wasted, underweight and 

stunted within the same dataset (using healthy as the reference category). Olofin and 

McDonald categorised children based on their most recent anthropometric 

measurement. However, the proportions of children in different states vary by age and 

cohort (see Figure 5.1) meaning that depending on when the baseline state is 

determined, different proportions of children will be in the different states. Our approach 
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allowed us to specify the baseline state at different ages and allowed the transition 

period to vary over time.  

Both Olofin’s and McDonald’s studies found that wasted children were at a higher risk of 

death than stunted children. Olofin et al. (2013) obtained HRs of 9.4 for severe 

underweight, 11.63 for severe wasting and 5.48 for severe stunting (severe: 𝑍 < −3, 

compared to reference of 𝑍 ≥ 1). 

McDonald found HRs of 1.47 for stunted (S), 2.3 for wasted (W), 2.49 for underweight (U), 

3.36 S+U, 4.69 W+U, 12.25 W+S+U. O’Neill et al. (2012) also used Cox proportional 

hazards models to determine whether the categories (𝑍 < −3,−3 < 𝑍 < −2, 𝑍 > −2) of 

HAZ and BMI-for-age were significant predictors. Categories 2 and 3 of BMI-for-age were 

significant compared to category 1, with odds of 3 and 8.6 respectively. Those in category 

3 for HAZ were 2.3 times more likely (𝑝 = 0.01). 

The research conducted by Vesel et al. (2010), Olofin et al. (2013), McDonald et al. (2013) 

and O’Neill et al. (2012) suggests that children who are wasted-stunted will be most likely 

to die, followed by wasted, then stunted (Hypothesis 1). 

Generally, we found this to be true in our pooled dataset. Those who were wasted-

stunted were most likely to die, and those who were wasted were more likely to die than 

those who were stunted.  

In the 3-6m timeframe wasted-stunted children were 11.1 times more likely to die than 

healthy children, wasted children were 5.3 times more likely and stunted children were 

3.0 times more likely. In the 6-9m timeframe, the RRs of death were 5.4 for wasted-

stunted children and 1.0 for stunted children (no RR for wasting could be calculated) and 

in the 9-12m timeframe the RRs were 10.0, 11.5 and 4.8.  

An important result is that while the probability of death decreases as children age, 

children in adverse nutritional states are less vulnerable in the middle period in 

comparison to healthy children. 

Another interesting result is that within the middle class cohort, children were much 

more likely to revert to a healthy state from adverse states. Those who were wasted-

stunted, wasted and stunted at 3 months had respectively a 33%, 75% and 50% chance of 

moving to a healthy state at 12 months. These proportions are much higher than for the 

less affluent areas. For example in the village area the proportions were 7%, 26% and 31% 

and in the peri-urban slum 2%, 23% and 15%. This indicates children from relatively 
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affluent backgrounds are much more likely to recover from undesirable states, and that 

socio-economic status may influence a child’s ability to recover. 

5.8.3 Does wasting lead to stunting? 

It is generally assumed that wasting occurs early in the malnourished state and then 

progresses onto stunting. A number of studies have suggested that this is the case. These 

studies have assessed whether measures which identify children as short or thin are 

related. Richard et al. (2012) found that wasting at 6-11 and 12-17 months was associated 

with decreased height-for-age 𝑍 score at 18-24 months and Doherty et al. (2001) found 

that day 1 WHZ in children aged 6-36m was predictive of change in HAZ over 90 days. 

Costello (1989) found relationships between initial WHZ and height velocity and a 

negative relationship with weight velocity. Victora (1992) regressed the prevalence of 

wasting on stunting in regions around the world and Walker et al. (1996) found weight-

for-height predicted linear growth. 

These published results tend to indicate that measures of wasting and/or stunting are 

related in groups of children, and that over time, wasted children tend to gain weight 

rather than height after initial wasting. Calculating correlation coefficients and building 

linear models to assess average group relationships between measures of relatively thin 

and short children are adequate but they only allow us to quantify the dependence of one 

on the other. In contrast, our analysis, using a stochastic approach, allows us to model the 

conditional probability of how individual children move from healthy and wasted to 

stunted states.  

We hypothesised (Hypothesis 2) that children who are wasted at baseline would tend to 

move to a stunted state. Furthermore, we expected to observe children moving from a 

healthy state straight to a wasted state (no papers could be found which investigate 

which states children are most likely to move to from a healthy baseline state). 

Our findings support the hypothesis that wasting increases the likelihood of stunting, but 

only in the 3-6m period. Compared with healthy children, the RR of moving from a wasted 

to a stunted state was 1.8 over months 3-6, with 18% of children moving from wasted to 

stunted, and 10% from healthy to wasted. Within the 6-9m and 9-12m timeframes, the 

RRs were not statistically significant, with RRs of 1.4 (17% vs 12% moving to stunted 

respectively) and 1.0 (12% vs. 11%). This indicates healthy children are just as likely to 

enter a stunted state as wasted children in latter time periods. 
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However, the RRs of moving from a wasted state to a wasted-stunted state were 17.7, 9.0 

and 24.9 within the 3-6m, 6-9m and 9-12m timeframe, which does imply that wasting 

leads to stunting. In fact, this implies that wasted children become wasted-stunted before 

becoming stunted as many children move from wasted-stunted to stunted. 

When analysing transition probabilities within individual cohorts, those from more 

affluent backgrounds were more likely to move to a healthy state, and those from poorer 

backgrounds were more likely to move to a stunted state. In the middle class area, it was 

75% likely that children would move from a wasted to healthy state within the 3-6m 

timeframe and 100% likely in the 6-9m timeframe (no probability could be calculated for 

the 9-12m timeframe). Similar proportions of children moved from wasted to healthy 

states in South Africa, 63% in the 3-6m timeframe and 70% in the 6-9m timeframe. 

However, in the 9-12m timeframe, almost all children within this cohort remained 

wasted. 

Children were likely to move directly from a healthy state to a stunted state (around 10% 

likely over all three timeframes), much more likely than to a wasted state (3%, 2% and 1% 

in the 3-6m, 6-9m and 9-12m timeframes). Furthermore, children were much more likely 

to move either from healthy to healthy to stunted (𝑝𝐻𝐻. 𝑝𝐻𝑆 = 0.85 x 0.12 = 0.10), or 

healthy to stunted to stunted (𝑝𝐻𝑆. 𝑝𝑆𝑆 = 0.10 x 0.72 = 0.07) than from healthy to 

wasted to stunted (𝑝𝐻𝑊. 𝑝𝑊𝑆 = 0.03 x 0.17 = 0.0051). This indicates children are more 

likely to move directly into a stunted state than from healthy to stunted via wasted. 

5.8.4 Is stunting irreversible? 

Previous research has suggested that stunting is largely irreversible (Hypothesis 3) and 

that children in developing world countries are shorter on average than children from 

affluent societies (Golden 1994). For example, Victora et al. (2010) found children in low 

to middle income countries’ HAZ scores quickly fall behind the WHO standard, especially 

in South Asia and sub-Saharan Africa. It is hypothesised that catch up growth is possible 

with a change of environment (Beaton et al. 1990). Martorell (1992) found that children 

who were given energy supplementation in a Guatemalan randomised trial were half as 

likely to be stunted at 3 years (proportions of stunted were the same at the start), 

indicating that catch-up grown is possible with intervention, and Schumacher et al. (1987) 

found children who moved to the USA caught up with their US counterparts since they 

arrived. Potential for catch up is generally thought to be limited after 24 months, 
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although Adair (1999) found evidence of catch up growth after this period. 63% of her 

sample were stunted at age 2, of whom 30% were no longer stunted at age 8.5 and 32% 

were no longer stunted at age 12.5. Adair found those not stunted at age 2 were 4 times 

more likely to not be stunted at age 8.5. Vella et al. (1994) found that the best predictor 

of stunting is previous stunting, and that mother’s education was also a significant 

predictor.  

Our findings agree with the hypothesis that stunting is largely irreversible for those that 

remain in the same environment. Stunted children are 59%, 72% and 80% likely to stay 

stunted and 29%, 21% and 15% likely to recover in timeframes 3-6m, 6-9m and 9-12m 

respectively. This implies that with increasing age the probability the child will stay 

stunted increases. 

The RRs of remaining stunted were 5.9, 6.2 and 7.1 within the evaluated timeframes. 

Furthermore, the RRs of moving to a wasted-stunted state were 9.8, 4.6 and 6.4, implying 

that children who are stunted will not only remain stunted, but are more likely to also 

become wasted (compared with those who are healthy). In comparison, the RRs of 

moving to a wasted state were not significant, implying children who are initially stunted 

are at no more risk of becoming wasted than healthy children. Stunting significantly 

increased the RR of death in both the 3-6m (3.0) and 9-12m timeframes (4.8) but not the 

6-9m timeframe. These results suggest that stunting is largely irreversible, however 

children who are naturally small tend to stay small, so our results may partially reflect 

genetic stature. 

5.8.5 Further inference 

Inference within this chapter was made on the overall pooled dataset, and therefore the 

results quantify the general transitions within the developing world. However, from the 

results of the GLRT, it is clear that transition probabilities are both time - and cohort - 

dependent. The results must therefore be treated as a generalised description of how 

children grow on average within the developing world. Further inference on the 4 pooled 

datasets can be made by referring to Appendix B, allowing distinction as to how children 

from the different cohorts move between states. These were not summarised within the 

main body of the thesis due to the large number of transition probabilities and RRs. 

However, these can be interpreted in the same way as the general pooled set.
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Chapter 6 

Predicting mortality from anthropometry 

6.1 Introduction 
Past research has suggested that measures of size and growth are both significant 

predictors of mortality. However, these papers have published conflicting results in terms 

of which is the best predictor. This chapter aims to address this issue by adopting 

weighted survival analysis, a method which has not yet been applied to data of this form. 

The original aim was to use generalised conditional weight gain as a predictor within a 

Cox proportional hazards model to determine whether growth over a recent time period 

is a predictor of mortality. Another model would then be built including only weight-for-

age 𝑍 score at the most recent time point and the models would be compared. However, 

including two weight-for-age 𝑍 scores at 𝑡1 and 𝑡2 is the same, algebraically, as using 

generalised conditional weight gain in terms of predictive ability. Furthermore, dropping 

one of the terms changes the model from using growth as a predictor to using size as a 

predictor. We therefore adopt this approach to test hypothesis 4. 

Survival analysis is a form of analysis for time-to-event outcomes, in this case we predict 

‘time until death’. Standard analyses such as linear regression are not adequate while 

predicting mortality because analyses do not cope with censoring and survival times are 

not normally distributed. Therefore a regression model tailored to survival data is 

needed, such as a Cox proportional hazards model.  

During the initial modelling phase, the supervisory team hypothesised that weight gain 

would be the most valuable predictor. In fact, quite the opposite was found. We found 
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that in almost all analyses the same single variable stood as the best predictor – most 

recent weight-for-age. However, the survival analysis conducted on the datasets as they 

stood was dominated by children within the centre of the population distribution. 

Therefore, models identified the best predictors for the majority of children within each 

dataset. However, we are interested in children within the tails of the distribution.  

Our initial thoughts were that it is children outwith the healthy range within the extreme 

regions (very low weight 𝑍 scores) that clinicians are more interested in, where weight 

gain is likely to be a discriminating factor. To develop a model which described the best 

predictors outwith the healthy range, an initial thought was to take a subsample of 

children who are considered extreme, determined by some threshold value (perhaps 

outside the normal range), and restrict analysis to them. However, this analysis would 

have little power as the sample size would be small. 

We decided to use weightings to over represent those within the extremes, which is a 

way of correcting for lack of representativeness within datasets. Within our datasets, 

children within the extremes are not unfairly represented, but conducting analysis on the 

datasets as they stood would not allow us to determine significant predictors for children 

within the extremes. By increasing the numbers of children who have extreme 

measurements, we in effect increase the sample size so that children who are at the 

extremes are overrepresented. By conducting an analysis on these, effectively larger 

datasets, we can determine whether certain predictors might be significant for these now 

overrepresented children.  

We set out to determine: to which extent do weightings need to be applied for the form 

of the model to change, and more specifically, how much do we need to over represent 

these children for growth to stand as the best predictor. 

The previous chapter investigated the likely pathways children take through nutritional 

states. Part of Chapter 5 provided justification for pooling datasets. Results from Chapter 

5 suggested that datasets could be pooled in the following way: 

 South Africa/middle class 

 Urban slum 

 Malawi 

 Peri-urban slum/village 

These datasets will be used within this chapter since using pooled sets increases sample 

size and power.  
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Figure 6.1 displays the survival curves for the 6 separate datasets, as well as the 4 pooled 

datasets. Analyses will be carried out on the four new pooled datasets. In our analyses 

within this chapter, we set out to determine the effect on the best fitting model of 

upweighting children within the extremes. 

Figure 6.1: Survival curves: (a) original datasets, (b) pooled datasets  

6.2 Weighting children within the extremes 
As discussed in the introduction, it is children outside the healthy range that we are most 

interested in. Weights in survival analysis can be viewed simply as replicates of the rows. 

We will refer to the number of replicates per child as the weightings to avoid any 

confusion with weight measurements or weight-for-age 𝑍 score. 

A function was developed which determines how many times each child’s weight-for-age 

𝑍 score should be replicated. The closer a child’s weight 𝑍 score to the WHO median, on 

average, the smaller the data weight they receive.  

The data weights used were as follows. 𝑍�̅� is the average weight-for-age 𝑍 score, 

calculated as 𝑍�̅� = (𝑍𝑊0 + 𝑍𝑊3)/2 while predicting from 3 months onwards and, 

𝑍�̅� = (𝑍𝑊0 + 𝑍𝑊3 + 𝑍𝑊6)/3 while predicting from 6 months onwards: 

𝑤𝑖 = {
(
log(1 − 𝜙(|𝑍�̅�|))

log(0.5)
)

𝜆

   𝑍�̅� < 0

                    1                    𝑍�̅� ≥ 0

 

 

(6.1) 

where the power 𝜆 varies from 0 to 1.3. By varying 𝜆 a range of different data weights can 

be assessed. Only children with negative 𝑍 scores are upweighted, by an amount that 
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increases the further they are below the median. The rationale for dividing by log(0.5) is 

that when 𝑍�̅� = 0, log(1 − 𝜙(|𝑍�̅�|)) = log (0.5). So when 𝜆 = 0 or 𝑍�̅� ≥ 0 the weighting is 

1, corresponding to an unweighted model.  

A plot of the weighting function for a number of different 𝜆 values can be seen in Figure 

6.2. The exact values were picked so that a range of applicable weights could be applied 

to observe the effects of using extreme weights. 

 
Figure 6.2: Weight function with various values of λ  

6.4 Predictions after 3 months 
The original proposed analysis was to use Equation (2.19), generalised conditional weight 

gain, as a covariate since it is a measure of growth. However, using Equation (2.19) is the 

algebraic equivalent of using weight-for-age as 𝑍 scores at 𝑡1 and 𝑡2. Furthermore, if 

either term is dropped the model simplifies to weight size rather than weight gain. 
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Model Covariates  
1 W0 

2 W3 

3 H0 

4 H3 

5 W0,W3 

6 W0,H0 

7 W0,H3 

8 W3,H0 

9 W3,H3 

10 H0,H3 

11 W0,W3,H0 

12 W0,W3,H3 

13 W0,H0,H3 

14 W3,H0,H3 

15 W0,W3,H0,H3 

Table 6.1: Covariates used in Cox proportional hazards models (predicting after 3 months) 

Models predicting time until death after 3 months were developed using combinations of 

four covariates: weight-for-age at 0 months (W0), weight-for-age at 3 months (W3), 

height-for-age at 0 months (H0) and height-for-age at 3 months (H3), all as 𝑍 scores 

relative to the WHO standard. In total 15 models were tested, as seen in Table 6.1. 

The notation W0, W3, H0 and H3 is used instead of 𝑍𝑊0 , 𝑍𝑊3 , 𝑍𝐻0 , 𝑍𝐻3  as these are easier 

to read. Since the effective sample size changes as 𝜆 increases, BICs are not comparable 

across different 𝜆s. Children are only included within the analysis if all variables for that 

child are available, otherwise they are excluded. 

𝜆 South Africa/middle class Urban slum Malawi Peri-urban/Village 
0 1794 615 585 976 

0.4 2646 999 916 1763 
0.55 3154 1228 1109 2258 
0.7 3734 1532 1360 2934 

0.85 4524 1941 1691 3869 
1 5565 2499 2133 5176 

1.15 6956 3271 2730 7027 
1.3 8846 4356 3548 9678 
Table 6.2: Effective sample size for each λ (predicting after 3 months) 
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Table 6.3: Models ranked by BIC (predicting after 3 months) 

 

 

 

       South Africa/middle               Urban slum  Malawi  Peri-urban/village 

Model rank Power (𝜆) Model BIC Model BIC Model BIC Model BIC 

1 0 W3 1395.9 W3 164.6 W3 819.8 W3 640.8 
2 0 W3,H3 1401.4 W3,H0 170.7 H0 821.0 W3,H0 646.2 
3 0 W0,W3 1402.9 W3,H3 170.8 W0 824.3 W0,W3 647.2 

1 0.4 W3 2133.8 W3 363.5 W3 1355.1 W3 1303.1 
2 0.4 W0,W3 2137.5 W0,W3 367.7 W3,H3 1360.4 W3,H0 1309.1 
3 0.4 W3,H3 2138.8 W3,H0 368.4 H0 1360.6 W0,W3 1309.5 

1 0.55 W3 2594.8 W3 512.1 W3 1699.5 W3 1767.9 
2 0.55 W0,W3 2595.6 W0,W3 514.6 W3,H3 1704.7 W3,H0 1774.3 
3 0.55 W3,H3 2599.6 W3,H0 515.9 W3,H0 1705.6 W0,W3 1774.4 

1 0.7 W0,W3 3220.1 W0,W3 735.8 W3 2179.1 W3 2450.2 
2 0.7 W0,W3,H0 3221.1 W3 735.8 W3,H3 2184.3 W0,W3 2456.8 
3 0.7 W3 3224.3 W3,H0 738.1 W0,W3 2184.7 W3,H0 2456.9 

1 0.85 W0,W3,H0 4079.0 W0,W3 1071.2 W3 2858.1 W3 3467.8 
2 0.85 W0,W3 4083.9 W3,H0 1075.0 W0,W3 2862.6 W0,W3 3474.7 
3 0.85 W0,W3,H0,H3 4085.7 W3 1075.0 W3,H3 2863.3 W3,H3 3474.7 

1 1 W0,W3,H0 5280.3 W0,W3 1582.5 W3 3834.5 W3 5009.0 
2 1 W0,W3,H0,H3 5287.5 W0,W3,H3 1588.0 W0,W3 3836.9 W3,H0 5015.6 
3 1 W0,W3 5295.1 W3,H0 1588.5 W0,W3,H0 3839.5 W3,H3 5015.8 

1 1.15 W0,W3,H0 6984.6 W0,W3 2366.1 W0,W3 5259.0 W3 7376.8 
2 1.15 W0,W3,H0,H3 6992.1 W0,W3,H3 2370.9 W0,W3,H0 5259.3 W3,H0 7382.3 
3 1.15 W0,W3 7016.4 W0,W3,H0 2372.2 W3 5260.8 W0,W3 7383.5 

1 1.3 W0,W3,H0 9434.1 W0,W3 3571.4 W0,W3,H0 7362.2 W3 11063.9 
2 1.3 W0,W3,H0,H3 9440.7 W0,W3,H3 3575.5 W0,W3 7365.8 W3,H0 11066.3 
3 1.3 W0,W3,H3 9488.0 W0,W3,H0 3577.2 W0,W3,H0,H3 7368.1 W0,W3 11069.7 

1
5

6
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Table 6.4: Best fitting models (predicting after 3 months) 

 

       South Africa/Middle  Urban slum  Malawi  Peri-urban/Village  
Model rank Power (𝜆) Model BIC Model BIC Model BIC Model BIC 

1 0 W3 1395.9 W3 164.6 W3 819.8 W3 640.8 
1 0.4 W3 2133.8 W3 363.5 W3 1355.1 W3 1303.1 
1 0.55 W3 2594.8 W3 512.1 W3 1699.5 W3 1767.9 
1 0.7 W0,W3 3220.1 W0,W3 735.8 W3 2179.1 W3 2450.2 

1 0.85 W0,W3,H0 4079.0 W0,W3 1071.2 W3 2858.1 W3 3467.8 

1 1 W0,W3,H0 5280.3 W0,W3 1582.5 W3 3834.5 W3 5009.0 

1 1.15 W0,W3,H0 6984.6 W0,W3 2366.1 W0,W3 5259.0 W3 7376.8 

1 1.3 W0,W3,H0 9434.1 W0,W3 3571.4 W0,W3,H0 7362.2 W3 11063.9 

1
5

7 
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Table 6.3 displays the best three models with each set of weightings. Table 6.4 is a subset 

of this table, displaying only the best fitting model per 𝜆. Note that the cohorts presented 

in Table 6.4 are in order of affluence, from left to right. 

It is clear from Table 6.4 that in all four analyses, weight-for-age 𝑍 score at 3 months 

(most recent size) stands as the best predictor. Height-for-age does not serve as a 

valuable predictor while predicting after 3 months, inferring that the measure adds little 

value in children of this age. Velocity enters as the best predictor with weightings of 0.7 

within the South African/middle and urban slum cohorts whereas velocity entered as the 

best predictor with weightings of 1.15 within the Malawi models. Finally, velocity never 

enters as the best predictor for the peri-urban slum/village. The results show that velocity 

enters as a significant predictor within more affluent cohorts before entering less affluent 

cohorts. 
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6.5 Predictions after 6 months 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.5: Covariates used in Cox proportional hazards models (predicting after 6 months) 

The 63 models which were applied while predicting after 6 months can be seen in Table 

6.5. These models include weight-for-age and height-for-age 𝑍 scores at 0, 3 and 6 

months. 

 

 

 

 

 

Model Covariates Model Covariates 
1 W0 33 W3,W6,H3 

2 W3 34 W3,W6,H6 

3 W6 35 W3,H0,H3 

4 H0 36 W3,H0,H6 

5 H3 37 W3,H3,H6 

6 H6 38 W6,H0,H3 

7 W0,W3 39 W6,H0,H6 

8 W0,W6 40 W6,H3,H6 

9 W0,H0 41 H0,H3,H6 

10 W0,H3 42 W0,W3,W6,H0 

11 W0,H6 43 W0,W3,W6,H3 

12 W3,W6 44 W0,W3,W6,H6 

13 W3,H0 45 W0,W3,H0,H3 

14 W3,H3 46 W0,W3,H0,H6 

15 W3,H6 47 W0,W3,H3,H6 

16 W6,H0 48 W0,W6,H0,H3 

17 W6,H3 49 W0,W6,H0,H6 

18 W6,H6 50 W0,W6,H3,H6 

19 H0,H3 51 W0,H0,H3,H6 

20 H0,H6 52 W3,W6,H0,H3 

21 H3,H6 53 W3,W6,H0,H6 

22 W0,W3,W6 54 W3,W6,H3,H6 

23 W0,W3,H0 55 W3,H0,H3,H6 

24 W0,W3,H3 56 W6,H0,H3,H6 

25 W0,W3,H6 57 W0,W3,W6,H0,H3 

26 W0,W6,H0 58 W0,W3,W6,H0,H6 

27 W0,W6,H3 59 W0,W3,W6,H3,H6 

28 W0,W6,H6 60 W0,W3,H0,H3,H6 

29 W0,H0,H3 61 W0,W6,H0,H3,H6 

30 W0,H0,H6 62 W3,W6,H0,H3,H6 

31 W0,H3,H6 63 W0,W3,W6,H0,H3,H6 

32 W3,W6,H0 
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𝜆 South Africa/Middle class Urban slum Malawi Peri-urban/Village 
0 1429 471 496 679 

0.4 2167 746 823 1237 
0.55 2582 908 1019 1592 
0.7 3113 1122 1278 2081 

0.85 3800 1406 1626 2761 
1 4700 1790 2098 3719 

1.15 5893 2313 2746 5082 
1.3 7497 3035 3645 7043 
Table 6.6: Effective sample size for each 𝜆 (predicting after 6 months) 

The effective sample sizes can be seen in Table 5.6, again, BICs are not comparable across 

different weights as the dataset effectively changes as 𝜆 increases. 
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       South Africa/Middle               Urban slum  Malawi  Peri-urban/Village  

Model rank Power (𝜆) Model BIC Model BIC Model BIC Model BIC 

1 0 W6 887.9 W6 68.2 W6 458.7 W6,H6 165.6 
2 0 W6,H3 888.5 H0 70.7 H6 460.9 W6 167.8 
3 0 H6 888.5 W6,H0 70.7 W3 460.9 W3,W6 171.1 

1 0.4 H3,H6 1300.0 W3,W6,H0 138.6 W6 771.6 W6,H6 338.7 
2 0.4 W6,H3 1300.3 W0,W3,W6 139.9 W6,H0 777.2 W3,W6 344.1 
3 0.4 W0,H6 1300.7 W6,H0 141.1 W3,W6 777.4 W6 344.3 

1 0.55 W0,H6 1548.7 W3,W6,H0 187.3 W6 971.7 W6,H6 455.6 
2 0.55 H3,H6 1549.2 W0,W3,W6 188.4 W0,W6 977.4 W0,W6,H6 460.3 
3 0.55 W0,W6 1549.9 W0,W3,W6,H0 188.5 W6,H0 977.5 W3,W6 460.3 

1 0.7 W0,H6 1881.0 W0,W3,W6,H0 258.4 W6 1250.0 W6,H6 621.2 
2 0.7 W0,H3,H6 1882.1 W0,W3,W6,H0,H6 260.6 W0,W6 1255.0 W0,W6,H6 624.2 
3 0.7 W0,W6 1882.8 W3,W6,H0 260.8 W6,H6 1255.8 W3,W6 624.7 

1 0.85 W0,H6 2332.7 W0,W3,W6,H0,H6 363.8 W6 1644.0 W0,W3,W6,H6 854.2 
2 0.85 W0,H3,H6 2333.6 W0,W3,W6,H0 364.8 W0,W6 1647.5 W0,W3,W6 856.5 
3 0.85 W0,W6 2335.5 W0,W3,W6,H0,H3,H6 367.8 W6,H6 1649.2 W6,H6 857.8 

1 1 W0,H0,H3,H6 2955.3 W0,W3,W6,H0,H6 522.0 W6 2211.8 W0,W3,W6,H6 1183.0 
2 1 W0,H6 2955.4 W0,W3,W6,H0,H3,H6 525.4 W0,W6 2212.5 W0,W3,W6 1185.6 
3 1 W0,H3,H6 2956.5 W0,W3,W6,H0 528.4 W0,W6,H6 2212.7 W0,W3,W6,H0,H6 1189.3 

1 1.15 W0,H0,H3,H6 3820.1 W0,W3,W6,H0,H6 766.9 W0,W6,H6 3035.5 W0,W3,W6,H6 1657.3 
2 1.15 W0,W6,H0,H3 3824.5 W0,W3,W6,H0,H3,H6 769.4 W0,W6,H0,H6 3038.5 W0,W3,W6 1659.9 
3 1.15 W0,H6 3825.4 W0,W3,W6,H0 781.9 W0,W3,W6,H6 3038.6 W0,W3,W6,H0,H6 1663.0 

1 1.3 W0,H0,H3,H6 5042.0 W0,W3,W6,H0,H6 1149.2 W0,W6,H6 4263.0 W0,W3,W6,H6 2346.1 
2 1.3 W0,W6,H0,H3 5047.7 W0,W3,W6,H0,H3,H6 1150.6 W0,W3,W6,H6 4264.8 W0,W3,W6 2348.4 
3 1.3 W0,W6,H0,H3,H6 5048.4 W0,W3,W6,H0 1177.6 W0,W6,H0,H6 4264.9 W0,W3,W6,H0,H6 2350.3 

Table 6.7: Models ranked by BIC (predicting after 6 months) 
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       South Africa/Middle               Urban slum  Malawi  Peri-urban/Village  

Model rank Power (𝜆) Model BIC Model BIC Model BIC Model BIC 

1 0 W6 887.9 W6 68.2 W6 458.7 W6,H6 165.6 

1 0.4 H3,H6 1300.0 W3,W6,H0 138.6 W6 771.6 W6,H6 338.7 

1 0.55 W0,H6 1548.7 W3,W6,H0 187.3 W6 971.7 W6,H6 455.6 

1 0.7 W0,H6 1881.0 W0,W3,W6,H0 258.4 W6 1250.0 W6,H6 621.2 

1 0.85 W0,H6 2332.7 W0,W3,W6,H0,H6 363.8 W6 1644.0 W0,W3,W6,H6 854.2 

1 1 W0,H0,H3,H6 2955.3 W0,W3,W6,H0,H6 522.0 W6 2211.8 W0,W3,W6,H6 1183.0 

1 1.15 W0,H0,H3,H6 3820.1 W0,W3,W6,H0,H6 766.9 W0,W6,H6 3035.5 W0,W3,W6,H6 1657.3 

1 1.3 W0,H0,H3,H6 5042.0 W0,W3,W6,H0,H6 1149.2 W0,W6,H6 4263.0 W0,W3,W6,H6 2346.1 

Table 6.8: Best fitting models (predicting after 6 months) 

 

1
6

2 

 



 

163 
 

Eight different data weights were applied to the 63 models. The best three of each data 

weight category in terms of BIC can be seen in Table 6.7. A subset of Table 6.7 can be 

seen in Table 6.8, which shows the best model chosen by BIC. 

Again, as with our models predicting after 3 months, the most recent measure of size 

stands as the best predictor within the unweighted analysis, apart from within the peri-

urban slum/village cohort as height-for-age is also included as a significant predictor, 

inferring weight-for-height is a valuable predictor for children of this age within the 

dataset.  

As weighting increases, measures of velocity enter as the best predictor within the other 

3 cohorts. With a weighting of 0.4, height velocity enters as the best predictor within the 

South Africa/middle class cohort (height velocity/weight-for-height is the best predictor 

with heavier weightings). Weight velocity/weight-for-height enters as the best predictor 

with a weighting of 0.4 within the urban slum model. Not until a weighting of 1.15 is 

applied for the Malawian model does a measure of velocity enter as well as height-for-

age. 

Notably, as height-for-age tends to be included within the weighted models, this may 

imply that this measure may serve as a valuable predictor after 6 months in some 

populations. This is in contrast to the results predicting after 3 months (height-for-age 

was not found to be a valuable predictor within any of the >3m models). 
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6.6 Stratifying by HIV status 
As mentioned in Section 3.5, HIV status is available within a number of the datasets. 

Analysing the datasets while including HIV status as a predictor was considered. However, 

HIV status was not available for the Malawi dataset, which made comparative analyses 

between datasets impossible. In addition, there were no cases of HIV within the Pakistani 

dataset. 

Within the South Africa dataset, both the status and timing of HIV were available. Within 

the Malawi data set there were cases of HIV but they were not recorded. There was 

however information indicating whether the children’s mothers were HIV positive at 

baseline.  

In this section, two analyses are carried out using stratified variables – using child’s HIV 

status in South Africa, and using mother’s HIV status in Malawi. The procedure described 

in Sections 6.4 and 6.5 is carried out but HIV status is included as a stratified variable. 

Stratification allows us to fit a model that has a different baseline hazard for each stratum 

where the variable HIV status is a two level factor variable. 

The first analysis was conducted on the South African dataset. The number of HIV cases 

per month can be seen in Table 6.10. Measurements for HIV status were taken whenever 

possible. However a child may have contracted the virus between the last time they 

tested negative and the first time they tested positive. Therefore, HIV status was defined 

in this analysis as the midpoint between the last negative test and the first positive. 

The timing that children are infected with HIV can be categorised into three groups: 

1.) In utero 

2.) During delivery (most common) 

3.) Postnatal during breastfeeding  

Children who test positive at 6 weeks have either contracted the virus in utero or during 

delivery, children who have contracted the disease after 6 weeks have contracted the 

virus during breastfeeding. 

Those who test positive at 6 weeks (in utero or during delivery) can be categorised into 

two further groups: 

a.) Fast progressors  

b.) Slow progressors  

Half of those in group 𝑎 who receive no treatment will die within 2 years (Becquet et al. 

2012). 
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Table 6.9: Stratified South Africa models 

Since our analyses predict mortality after 3 and 6 months, the analysis will take into 

account all of those within the ’in utero’ group, the ‘during delivery’ group and part of the 

postnatal group. Therefore, the stratification variable does not separate those who do 

and do not have HIV; it separates those who do and do not have HIV at 3/6 months. 

Month 0 1 2 3 4 5 6 7 8 9 10 11 12 

Cases  53 162 187 201 210 223 227 232 236 238 238 240 244 

Month 13 14 15 16 17 18 19 20 21 22 23 24  

Cases 246 250 254 255 255 255 256 256 265 258 258 268  

Table 6.10: Number of HIV cases per month in South Africa 

For the Malawian dataset, the same procedure is carried out but using the mothers HIV 

status at baseline (birth of child) as a stratified variable. 149/813 (18.3%) of mothers had 

HIV at baseline.  

Within Table 6.10, the best Cox proportional hazards models with variable weights 𝜆 can 

be seen, as can the stratified Cox models. It is clear that as 𝜆 increases, the stratified 

models stay relatively simple compared to the unstratified models. Only with powers of 0 

and 0.4 are the two different models the same, while predicting after 3 months. 

When including mothers HIV status at baseline, significant predictors only change while 

using large data weights. While predicting after 3 months, only models using powers of 1 

and 1.15 change. While predicting after 6 months, only using data weights where 𝜆 is 

equal to 1.3 does the best fitting model change. 

 

  

 

 

 

  >3 months >6 months  
𝜆 Without HIV With HIV (stratified) Without HIV With HIV (stratified) 

0 W3 W3 W6,H3 W6 

0.4 W3 W3 W6,H3 W6 

0.55 W0,W3 W3 W0,W6 W6 

0.7 W0,W3 W3 W0,W6,H6 W6 

0.85 W0,W3 W3 W0,W6,H6 W6,H6 

1 W0,W3,H0 W3 W0,W3,W6,H6 W0,W3,W6,H6 

1.15 W0,W3,H0 W3 W0,W3,W6,H6 W0,W3,W6,H0,H6 

1.3 W0,W3,H0 W0,W3,H0 W0,W3,W6,H0,H6 W0,W3,W6,H0,H6 
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Table 6.11: Stratified Malawi models 

6.7 Chapter conclusions 
Research has indicated that measures of size are significant predictors of mortality. 

Papers by Vesel et al. (2010), Olofin et al. (2013), McDonald et al. (2013) and O’Neill et al. 

(2012) indicate that nutritional status is a predictor of mortality. Olofin and O’Neill’s work 

suggests that magnitude of the 𝑍 scores representing nutritional status hugely influences 

the odds of death, which indicates that relative size on a continuous scale is a significant 

predictor. Furthermore, their research suggests that low WHZ and WAZ are more 

predictive and tend to lead to lower odds of survival than low HAZ. Many more papers 

were found that investigated measures of size as predictors of mortality. Low birth weight 

was shown to predict mortality by McIntire et al. (1999) and Bairagi & Chowdhury (1994) 

who found that weight-for-age, height-for-age and arm circumference were significant 

predictors. Fawzi et al. (1997) found weight-for-height and height-for-age were 

predictors. 

Four papers were found which compared size and growth as predictors of mortality, 

those by Bairagi et al. (1985), Briend & Bari (1989), Bairagi et al. (1993) and O’Neill et al. 

(2012). Bairagi et al. (1985), Briend & Bari (1989) and Bairagi et al. (1993) all conclude that 

recent size is the best predictor of mortality, using weight-for-age % (NCHS reference) to 

represent size and the raw untransformed weight velocity to represent growth. In fact, 

Bairagi et al. (1985) found that velocity was not even a significant predictor. 

O’Neill et al. (2012) on the other hand, found that velocity was a better predictor than 

size. However, O’Neill used BMI-for-age 𝑍 score to represent size, and 3 month growth 

velocity 𝑍 score to represent growth. O’Neill speculates that the difference in results may 

  3 months 6 months  

𝜆 Without HIV With HIV (stratified) Without HIV With HIV (stratified) 

0 W3 W3 W6 W6 

0.4 W3 W3 W6 W6 

0.55 W3 W3 W6 W6 

0.7 W3 W3 W6 W6 

0.85 W3 W3 W6 W6 

1 W3 W0,W3,H0 W0,W6,H6 W0,W6,H6 

1.15 W0,W3 W0,W3,H0 W0,W6,H6 W0,W6,H6 

1.3 W0,W3,H0 W0,W3,H0 W0,W6,H3,H6 W0,W6,H6 
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be down to the use of the WHO standard to compute 𝑍 scores. Furthermore, Briend & 

Bari (1989) note that young children in their cohort were more likely to die, indicating a 

confounding effect may explain the poor performance of velocity. However, including age 

as a confounding factor made no difference to the relationship between velocity and 

mortality. 

We applied weighted Cox proportional hazards models to the four pooled datasets to 

investigate this problem further. We used weight-for-age and height-for-age 𝑍 scores 

relative to the WHO standard as predictors at multiple times in our analysis. We originally 

planned on using Equation (2.19), generalised conditional weight gain, as a covariate. 

However, using Equation (2.19) to calculate weight and height gain is the algebraic 

equivalent as including weight-for-age and height-for-age as 𝑍 scores at 𝑡1 and 𝑡2. 

Furthermore, dropping terms allows assessment of size as a predictor. 

We used Cox proportional hazards models to address this aim. A problem with standard 

analyses is that they are dominated by children within the centre of the population 

distribution. We are interested in children within the tails of the distribution, therefore 

applying Cox proportional hazards models similar to work by Olofin et al. (2013), 

McDonald et al. (2013) and O’Neill et al. (2012) is not appropriate for our analysis. We 

adopted a weighted Cox proportional hazard model so that we could over represent 

children with lower average weight-for-age 𝑍 scores.  

Average weight-for-age 𝑍 scores were calculated as the average 𝑍 score between months 

0 and 3 while predicting after 3 months, and the average over months 0, 3 and 6 while 

predicting after 6 months. The average 𝑍 score was then used in Equation (6.1) to 

determine the weighting. The weighting function was based on the inverse probability of 

a normal distribution so that children with low average 𝑍 scores received more weight, 

but scaled so that the minimum weight applied was 1 (any positive 𝑍 scores also received 

a weight of 1). Data weights in Cox proportional hazards models are replicates of the rows 

and a number of different data weights were used on the data while effects on the best 

fitting model by BIC were observed. 

This weighted approach proved to be a very valuable method of analysing data of this 

kind. Results of the unweighted analyses agree with research by Bairagi et al. (1985), 

Briend & Bari (1989), Bairagi et al. (1993), Bairagi & Chowdhury (1994) and Fawzi et al. 

(1997) in that weight-for-age 𝑍 score is a significant predictor of mortality and partly with 
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Olofin et al. (2013), McDonald et al. (2013) and Vesel et al. (2010) as their research found 

groupings of weight-for-age 𝑍 scores were predictors.  

In our weighted analysis, we set out to determine the extent to which do weightings need 

to be applied for the form of the model to change, specifically, what magnitude of 

weightings need to be applied before measures of velocity enter as the best predictors. 

While predicting after 3 months we found that as weighting increased, velocity entered as 

a significant predictor earlier for more affluent cohorts, whereas heavier weightings were 

needed for velocity to enter as the best predictor for less affluent cohorts. We 

hypothesise that since the majority of children within the less affluent cohorts are 

undernourished, and tend to fall from birth relative to the WHO standard, size best 

describes the way that children have arrived at their final state as the majority of children 

arrived there in the same way. Weighting the extreme children more heavily does not 

differentiate children who are at higher risk as most children are already at risk. The 

model therefore identifies that the majority of children in the weighted set are still those 

who have fallen. Refer to Figure 6.3 for a visual representation of how weighting impacts 

the proportion of children: in the healthy range, who fall, and who are naturally small. 

The width of the bar represents the proportion of children in each group. In Figure 6.3a, it 

is those who a have fallen who make up the majority of children. In Figure 6.3b, it is still 

those who have fallen who make up the majority. 

 

Figure 6.3: High prevalence cohort: (a) unweighted, (b) weighted 

In unweighted analyses within more affluent populations, the majority of children are in 

the healthy range. The model identifies size as the best predictor as the majority of 

children have arrived at their size in the same way – tracking along the same centile. 

Therefore, the model does not use growth to differentiate between those who are and 

are not at risk, as it is dominated by those within the normal range. In the weighted 
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analysis, those who have fallen and those who are naturally small are now 

overrepresented. Notice the bars in Figure 6.4b have equal width, in contrast to Figure 

6.4a, where the bar at 0SD (representing healthy children tracking the 50th centile) is 

thicker than the others. Velocity differentiates between those who are at risk (falling 

centiles) relative to those who are naturally small.  

 

Figure 6.4: Low prevalence cohort: (a) unweighted, (b) weighted 

In practice, HAZ was not as valuable a predictor as WAZ, although this was expected from 

previous research. For velocity to be a significant predictor, children within the extremes 

had to be very heavily weighted. In fact, O’Neill et al. (2012) found that only HAZ at 3m 

less than -3SD was predictive of 2 year mortality and McDonald (2013) found stunting was 

less predictive than wasting or underweight.  

After 6 months the unweighted analysis showed that WAZ is the best predictor, while 

HAZ entered as a significant predictor alongside WAZ with higher weightings. This implies 

that while making predictions from later ages, HAZ may add value to WAZ. However, 

again, in reality, the recent size tends to be the best predictor for the majority of children, 

and other measures only enter after artificially adapting the datasets.  

In summary the results suggest that to predict mortality weight-for-age is better than 

height-for-age, and recent weight-for-age is better than earlier weights. Growth adds 

little value over size for the majority of children. Stratifying by HIV status (South African 

dataset) had an effect on the best fitting models. Models became much simpler, implying 

that recent HIV status should be included within any further modelling approaches. HIV 

status of the mother at baseline (Malawi dataset) did not affect the form of the model 

unless very large weights were applied, suggesting that the mother’s HIV status is a poor 

proxy for the child’s HIV status. As HIV transmission rates are generally around 15-45% 

without intervention, and as low as 5% with intervention, our results are not surprising. 
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Chapter 7 

Conclusions, limitations and further work 

7.1 Overview 
This thesis set out to devise statistical solutions to problems in undernutrition, identifying 

anthropometric measurements which are useful predictors of adverse future outcomes. 

While each chapter contains its respective conclusions, it is helpful to reflect on our 

findings in this final chapter. Here, the study aims will be discussed, as well as how they 

were developed. The chapter is split into sections for each aim, describing them in detail 

while discussing the findings for each. Prior hypotheses based on past scientific research 

will be compared with our results, limitations will be discussed, as will proposed future 

work. 

7.2 Data Formatting and modelling 
Chapter 1 was an introductory chapter, briefly reviewing undernutrition as well as its 

causes and effects. Measures of undernutrition were introduced as were their uses for 

the diagnosis of undernutrition. Investigating the background of undernutrition led us to 

the concept of using anthropometry to predict future outcomes. Literature was reviewed 

in the general area and as a result, we developed four hypotheses and 6 research aims. 

Aims 1-3 focused on data formatting and modelling, which this section of this chapter 

describes. 
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7.2.1 The datasets 

The initial aims focused on data formatting, modelling and summarising the sets. 

Reformatting the data into a common format prepared them for all further analysis 

within the thesis.  

We imported all datasets into a common format and summarised them in a database. 

Three developing world datasets were available, cohorts from: Malawi, Pakistan and 

South Africa. The data were collected as a result of three prospective cohort studies: the 

Malawian LCSS, Pakistani LSS and South African VTS. The Malawian LCSS was set up to 

provide data on the health of both pregnant women and their children under 5 years old, 

the Pakistani LLS was collected to “characterise the determinants of child health in a 

rapidly urbanising community”, and the South African VTS was set up to examine patterns 

of infant feeding. 

In general, anthropometry is an inexpensive and valuable way of evaluating the 

nutritional status of children, but collecting data of this kind is hard and can be labour 

intensive. The process of gathering this type of data is prone to errors - health workers 

need to be adequately trained and there is variability between staff. 

However, these datasets are of very high quality and are representative of their 

population. Data were collected by carefully trained and supervised research staff. Within 

the Malawi study, trained local research assistants visited children every month up to 18 

months and every 3 months thereafter (Kulmala et al. 2000). Within the Pakistani study, 

two months were spent training health teams on how to interview families and take 

anthropometric measurements, and during the research period, the health teams were 

retrained every month, measuring child growth every month in the four study areas: a 

village, urban slum, peri-urban slum and middle class area (Jalil, Lindblad, Hanson, Khan, 

Ashraf, et al. 1993). In the South African study, nurses and clinical assistants aimed to see 

infants as soon as possible after delivery and clinical visits were planned so 

measurements could be taken at the scheduled measurement dates (Bland et al. 2010). 

The frequency of scheduled measurement dates provided enough data to carry out 

numerous statistical analyses. 

All three datasets have high rates of undernutrition and mortality. The proportions of 

those within wasted-stunted, wasted and stunted states were variable (depending on 

age), but in general there were high rates of undernutrition. By 24 months, 20% and 14% 

of those in the Malawian and South African cohorts had died. In Pakistan 12%, 15%, 7% 
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and 2% of those in the village, per-urban slum, urban slum and middle class area had died 

by 24 months, respectively.  

The high mortality rates provided the opportunity to test prediction models for adverse 

outcomes that would be underpowered using developed world datasets, as mortality 

rates are generally low in the developed world. The statistical models and tests we 

employed produced statistical significant results, which may not have been possible with 

smaller datasets with less frequent observations.  

In total, there were 6897 children in the pooled dataset. It must be noted however that 

these datasets were collected only over three geographical locations, two of which are 

relatively close - in Africa below the equator. In this sense, inference can be made about 

the sets but due to the lack of geographical diversity care must be taken when making 

generalisations based on the conclusions. On the other hand, undernutrition is mostly 

prevalent in East Africa and south-central Asia (in terms of underweight) (Black et al. 

2008), where two of these datasets were collected.  

7.2.2 Issues with the datasets 

As with all datasets of this nature, missing values were a problem. If missing values are 

random, then there is generally no cause for concern as long as there are enough children 

still in the study to make meaningful inference. Monotone missing pattern refers to those 

who miss a measurement occasion and measurements for that child are never observed 

again. Non-monotone missing pattern refers to missing data where the subject is 

measured again at a later time point. Problems arise when either monotone or non-

monotone missing pattern is present but the probability of missing data is dependent on 

the unobserved data, called Missing Not At Random (MNAR) (Rubin 1976) - this is down 

to unobserved factors which result in missing values. A potential example of these 

missing data in our research are the proportions of children who moved away from the 

study area or dropped out, which could potentially be down to unobserved factors. For 

example, in the Pakistani set, 13% of children moved away from the study area and 6% 

refused to continue to take part which could potentially have been down to unobserved 

factors which were not random. Our analyses did not control for these potentially 

unobserved factors, which may result in false conclusions about the whole study 

population. If, for example, the 6% of children who dropped out did so because of illness, 

and later died, the published mortality rate for the dataset would be biased downwards. 
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Unfortunately it is hard to tell whether these data are MNAR without observed data 

which can be used to identify trends, and while this cannot be quantified, it is worth 

noting that it is possible that at least some data may be MNAR, which could possibly 

result in bias.  

One other concern was that data for the three datasets were collected in different 

decades. However, for the Pakistani set (in which data was collected over ten years), we 

established that growth did not change by era within the sample.  

In summary, the database we created comprised three high quality diverse developing 

world datasets, each with scheduled measurement dates every month or less within early 

months. Throughout the analysis period, the database provided enough power not only 

to make general inferences, but also to make meaningful comparisons across the 

populations. This database is a resource for future studies and is currently being used for 

research in stunting at the University of Glasgow. 

7.2.3 Developing growth reference charts 

Once the database was created, we aimed to develop growth reference charts for the 

three datasets. The main reason for developing the charts was to demonstrate the use of 

current growth chart modelling methodology, though the charts we developed could 

potentially be used as internal references for the study areas. 

With increasing age, the distribution of children’s weights increase on average, spread out 

and tends to be skewed. The LMS method is a flexible approach, allowing users to obtain 

normalised growth centiles while taking both skewness and increasing variability into 

account. We utilised the method to model the datasets, creating weight-for-age 

references. Three curves were produced using the method: the Box-Cox power (L), the 

median (M) and coefficient of variation (S). Using the Box-Cox normal distribution, 

plugging in the values of L, M and S at the required age, the estimated distribution of 

weights can be obtained. Using the cumulative distribution function of the Box-Cox 

normal, the required values that lie on each centile (or any quantile for that matter) can 

be obtained. In fact, this method is the equivalent of using GAMLSS while assuming the 

three parameter Box-Cox Cole and Green (or Box-Cox normal) distribution, which we used 

to model the datasets. This allowed us to accurately represent growth while adjusting for 

non-normality, using penalised beta splines to generate the curves (Eilers & Marx 1996). 

In any further research, sex could be included as a categorical variable and one model 
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could describe the whole pooled population. Furthermore, by including sex as a 

categorical variable, the 𝑡-value for sex could be compared with the 𝑡-distribution 

allowing researchers wishing to determine if sex is a significant variable for each curve. If 

the 𝑝-value is not significant, the data could be pooled for that curve, increasing the 

sample size and precision. GAMLSS provides the framework which allows researchers to 

produce density estimates across the whole age range, not just at the scheduled 

measurement dates, and it has been found to perform better than other methods which 

are used for this kind of work, such as quantile regression. Quantile regression is a non-

parametric method which produces centiles based on the empirical data rather than 

producing a probability distribution. While its use has been shown to produce accurate 

and useful results, it can lead to overlapping centiles, implying negative probability (Rigby 

et al. 2013). GAMLSS on the other hand is a parametric method, producing density 

estimates where the whole shape of the distribution can vary according to the 

explanatory variables. 

To summarise, the GAMLSS framework is a flexible way to estimate centile curves by 

assuming either the Box-Cox Cole and Green or Box-Cox power exponential distribution. 

Its use in the field of paediatrics has been shown to be valuable for centile estimation. It is 

recommended for researchers to quantify distributions which change smoothly over time. 

The charts we developed are locally representative internal references which describe 

how local children grow. Children’s measurements can be plotted on these charts 

allowing practitioners to assess child growth relative to the distributions and can be used 

to diagnose undernutrition. Ideally children should be compared with references which 

describe the growth of healthy children in optimal conditions, such as those who make up 

the WHO standard. There are, of course, pros to comparing children with locally based 

references - not all children grow at the same rate under suboptimal conditions, and 

conditions that children live in are variable from dataset to dataset. Therefore, comparing 

children with those who live in the same geographical location provides a local reference 

allowing relative comparisons. However, justification in using an international standard 

itself lies in the fact that local references are variable - comparisons cannot be made 

across datasets unless one single reference is chosen as a baseline. Furthermore, children 

should not be compared with others that live in impoverished conditions as no real 

inference can be made to whether that child is growing at an adequate rate. The only 

inference that can be made is that they grow well relative to unhealthy counterparts 
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whose trajectory, on average, is not optimal growth. We therefore used the WHO 

standard to assess the relative growth of the children within our database. 

7.2.4 Comparing real populations of pre-school children with the 
WHO standard 

The WHO standard, published in 2006, was designed to quantify optimal growth. The 

standard was developed from diverse populations of healthy, breast fed infants living in 

optimal circumstances, including children from six different countries: Brazil, Ghana, 

India, Norway, Oman and USA (de Onis & WHO Multicentre Growth Reference Study 

Group 2006). We aimed to determine how populations of pre-school children from the 

developing world fit this standard using the database we developed. 

Since the WHO charts represent optimal rather than average growth and were designed 

to be used in a wide range of settings, variations in fit were expected. Roelants (2013), 

Hui et al. (2008) and Wright et al. (2008) identified that children from the developed 

world tend to grow on par or outgrow the WHO standard in terms of weight. They did this 

by converting measurements to 𝑍 scores relative to the standard, presenting the mean 𝑍 

scores. This approach was not found to have been applied to any developing world 

datasets, although many studies have published statistics on proportions of children 

below certain threshold values relative to the standard. We used GAMLSS to model the 

mean and standard deviation of weight-for-age 𝑍 scores within our datasets relative to 

the WHO standard. We found that children from the most affluent areas tend to grow on 

par with the standard whereas children from the more deprived areas tend to track along 

a low centile after around 6 months, or 12 months for those in Malawi. As the WHO 

standard reflects optimal growth, this implies that children living in affluent areas also live 

under optimal conditions, provided, on average, with adequate nutrition. As those living 

in more deprived area tend to track along low centiles, this implies these children lack 

adequate nutrition.  

In the Pakistani cohort, growth is relatively slow with children falling away from the 

standard during months 0-3. However, they exhibit catch-up and track the standard from 

6 months onwards, with children from the more deprived cohorts tracking at lower 

centiles. This implies that the less affluent the area, the less chance there is that children 

will meet their nutritional needs. Growth is also relatively slow for those in the Malawi 

cohort as children consistently fall from 0.5SD to 1.5SD by month 12, on average. These 

children then also tend track along a low centile. These children track above the Pakistani 
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village and peri-urban slum cohorts, but below the urban slum and middle class cohorts. 

This implies these children are receiving, on average, more nourishment than those in the 

village and peri-urban slum but again, not enough to keep up with the international 

standard. Children in South Africa are lighter than the WHO standard at birth, but quickly 

catch up. Notably, females outgrow the standard from month 6 onwards. This implies 

these children, on average, at least meet their nutritional needs. However, it must be 

noted that other factors influence growth other than nourishment, such as environment. 

A problem with this analysis was the effect of HIV status, which was not initially adjusted 

for. It was not until the end of the research period that we identified that HIV status (for 

the South African cohort) and maternal HIV status (for the Malawian cohort) could have 

been taken into account as confounding variables, by which time it was too late to re-

analyse the data. Poor growth is a sensitive indicator of disease progression in children, 

and in HIV infected children failure to thrive is reported in 20-70% (Hirschfeld 1996). As 

HIV status is available for the South African cohort, an interesting extension to this piece 

of work would be to split the dataset into categories of children with and without HIV to 

observe the difference in growth patterns. Inclusion of this variable would result in two 

separate curves, which would most likely result in one growth curve outperforming the 

standard and one tracking at a low centile. However, this is speculation and it cannot be 

concluded without further analysis. Furthermore, prospective cohort studies in 

developing countries indicate that intrauterine growth may also be affected by maternal 

HIV (Lepage et al. 1996), although studies in western countries are less consistent where 

maternal factors are more of a problem (Selwyn et al. 1989) indicating maternal HIV may 

not have an independent effect on intrauterine growth and birth weight. As maternal HIV 

data were available in both South Africa and Malawi, splitting these children into groups 

by maternal HIV status and comparing birthweights would be an interesting piece of 

work. However, maternal confounding variables would also need to be taken into account 

(Arpadi 2005).  

7.2.5 Generalising conditional weight gain 

Our third aim was to generalise the expression for conditional weight gain for use with 

external reference distributions. The original aim had been: “Describe what impact using 

an external reference has on some common measures of weight gain and investigate how 

to modify the measures in order to allow for this”. Conditional weight gain assesses the 
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weight change of a child, taking into account the fact that children’s weights are expected 

to regress towards the mean. Weight gain was of interest because latter aims were 

established to investigate whether growth over a recent time period is more valuable 

than recent size. We aimed to use conditional weight gain to identify this within statistical 

models, comparing its value against size. The logic behind modifying the measure of 

weight gain was that the original methodology, which defines the change in weight 𝑍 

score as a velocity 𝑍 score, a function of the two 𝑍 scores and the correlation between 

them, assumed that a locally based internal reference distribution is used in the 

calculation. Furthermore comparisons cannot be made directly across populations since 

the baseline reference distribution changes for each distinct dataset.  

We generalised the expression for conditional weight gain to apply to an external 

reference, in particular the WHO standard, with the intention of using it within prediction 

models to assess significance. 

Generally, to assess child growth over time, serial measurements are plotted on the 

charts developed by the LMS method in Chapter 3, such as the WHO standard charts. 

Growth velocity can also be calculated by dividing the change in measurement over time 

by the corresponding time interval. If children’s measurements deviate from a previously 

established growth trajectory they indicate growth faltering. However, as discussed, serial 

measurements also regress to the mean. To account for this expected movement, 

conditional measures of velocity can be used. Cameron et al. (1980) and Berkey et al. 

(1983) built models to predict future size based on previous size on the raw measurement 

scale whereas Cole (1994), Cole (1995) and Cole (1997), aimed to provide a simple 

method that would allow practitioners to assess centile change between two time points 

𝑡1 and 𝑡2 on the SD scale, called conditional weight gain. With an internal reference the 

means and standard deviations of the two 𝑍 scores are 0 and 1 respectively, and the 

expression simplifies accordingly. We adapted the expression developed by Cole for use 

with an external reference, which requires the means and standard deviations to be 

estimated.  

The expressions for conditional weight gain and generalised conditional weight gain both 

include an adjustment for RTTM, related to their correlation (Cole 1995). We estimated 

the correlation between 𝑍 scores at 𝑡1 and 𝑡2. Correlations can be calculated between 

groups of measurements at scheduled measurement dates as data are available, 

providing correlation coefficients for all combinations of ages within the vector of 
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scheduled measurement dates. However, statistical models are needed to interpolate 

correlations between pairs of ages for which no data are available. We modelled 

correlation as a function of the initial age 𝑡1 and latter age 𝑡2, allowing any 𝑡1/𝑡2 

combination to be obtained. We adopted 4 modelling approaches: a fractional polynomial 

model developed by Cole (Cole 1995), the Argyle model (Argyle et al. 2008), fractional 

polynomials (Royston & Altman 1994) and GAMs (Wood 2006). The Argyle model used 

the log transformation and the others used the Fisher transformation to stabilise the 

variance. To assess fit, we used the AIC, BIC, RMS and the coefficient of determination. 

The AIC and BIC had to be adapted since the models were on different scales, using the 

Jacobian adjustment described by Box & Cox (1964).  

Argyle (2008) and Roelants (2013) both state that the Argyle model is not always a 

satisfactory fit. However, the model was developed to be a simple general model, which 

we also attempted by combining unique terms within the fractional polynomial models. 

However this model did not perform very well on some of the datasets and was 

abandoned. We found that our fractional polynomial model provided the best fit, 

performing best in the village, urban slum, middle class area and South Africa.  

GAMs performed best on the Malawi and peri-urban slum matrices. In retrospect, there 

are a number of models which could have been applied which might have provided a 

better fit such as the extended AR(1) model presented by Wade & Ades (1998), kernel 

based smoothing methods such as local linear regression (Bowman & Azzalini 1997) or 

machine learning methods such as Gaussian Processes (Mackay 1998). However, these 

methods are more complex to implement and interpret, and may only slightly outperform 

fractional polynomials. We therefore recommend using fractional polynomials to model 

data of this type. Generalised models are not advised as correlation structures vary 

between populations. 

In summary, the estimated correlation coefficient coupled with estimates of the mean 

and standard deviations of the 𝑍 scores allow us to calculate generalised conditional 

weight gain. This expression is recommended for use in this field, allowing researchers to 

compute weight gain with an external reference such as the WHO standard while taking 

RTTM into account. The resulting 𝑍 score describes growth relative to that reference, and 

the expression simplifies to conditional weight gain if an internal reference is used. One 

major issue with using the measure within the developing world is that because growth 

conditions are so variable, a single correlation model is unlikely to generalise to other 
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populations. This makes the use of the measure impractical. However, the measure may 

be of more use within the developed world, where correlation matrices may be less 

variable.  

7.3 Testing hypotheses 
The remainder of this discussion focuses on assessing how anthropometry can be used to 

predict adverse future outcomes. We also summarise how these aims were developed. In 

fact, the original study aim for this thesis was to investigate whether growth over a recent 

time period is a better predictor of adverse outcomes than recent size. We later added an 

investigation of the relationships between ‘nutritional states’ as described in Section 

1.2.7, defined as: healthy, wasted, stunted, wasted-stunted and dead. This investigation 

was added since literature investigating the original study aim highlighted that not only 

are size and growth useful predictors of adverse future outcomes, but nutritional states 

are also useful predictors. The literature review also highlighted that the pathways 

children take through nutritional states are poorly understood. Furthermore, as we 

started developing models for our original study aim, we recognised that our findings 

would not add as much to the already existing scientific literature as we initially thought. 

Finally, as more models were developed for the original study aim, we identified that due 

to the low mortality rates within some populations, we needed a way to justify pooling 

datasets to increase power. Investigating the relationships between nutritional states was 

carried out after work on Chapter 6, but was presented within Chapter 5 as some of it 

provided justification for pooling datasets for use in Chapter 6.  

7.3.1 Exploring the pathways children take through nutritional 
states over time 

To investigate the pathways children take through nutritional states over time, we 

needed a framework to assess the probability that children move from one state to 

another. Furthermore, this framework had to control the initial and final ages that we 

wished to assess since trends were evidently dependent on age. Previous work in this 

field did not control for this. 

The methodology we chose to investigate the pathways was stochastic in nature, 

calculating the conditional probability of children moving from one nutritional state to 

another, presented as a stochastic matrix, representing the probability of all possible 

transitions. We developed 3 hypotheses by investigating research in this area. Within the 
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next sections, we discuss each of these hypotheses and the papers that both support and 

oppose them. We discuss our findings and compare them with previous work. Finally, we 

discuss the methodology’s strengths, limitations and possible extensions for the future. 

7.3.1.1 Which states are most likely to lead to death? 

Firstly, prior research suggested that wasted-stunted children were at the highest risk of 

death compared with wasting or stunting alone. Our first hypothesis stated:  

Hypothesis 1: those who are both wasted and stunted are at a higher risk of death 

than those who are wasted, who are in turn at a higher risk than those who are 

stunted.  

We found that in the 3-6m and 9-12m periods, wasted-stunted, wasted and stunted 

children were all significantly more likely to die than healthy children. Wasted-stunted 

children were at the highest risk of death in the 3-9m and 6-9m timeframes and wasted 

children were at the highest risk of death in the 9-12m timeframe. A notable result is that 

the RR of death was lower across all transitions within the 6-9m timeframe, indicating 

children in adverse states are less vulnerable between these ages, relative to healthy 

children. We also found that those in the middle class cohort were much more likely to 

recover from undesirable states, indicating that socio-economic status may be a driver of 

recovery. 

In previous analyses by Olofin et al. (2010) and McDonald et al. (2013), children were 

categorised into a baseline state based on their most recent anthropometric 

measurement, where the age of categorisation varied per child. Our analysis adds value 

to this research area by allowing control of the effect of age on mortality. Effect sizes 

between these studies and ours are not directly comparable since baseline states differ 

between children. Furthermore, the analyses by Olofin and McDonald were conducted on 

data in which children were aged 0-5 years, opposed to our analyses which analysed data 

of children up to 2 years old. However, on the whole, our results agree in terms of which 

nutritional states are the most valuable predictors. Notably, multiple anthropometric 

deficits are more predictive than single deficits, and wasting is a better predictor of 

mortality than stunting. 

7.3.1.2 Does wasting precede stunting?  

Secondly, prior research suggested that wasting tends to precede stunting. Our second 

hypothesis stated: 
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 Hypothesis 2: wasting tends to precede stunting.  

We found that wasting significantly increased the risk of stunting compared with healthy 

children only in the 3-6m period (RR = 1.84). Wasting did not significantly increase the risk 

of stunting in periods 6-9m and 9-12m, again, compared with healthy individuals. This 

implies that wasting does not always precede stunting, as healthy children are just as 

likely as wasted children to become stunted. 

Since prior research indicated that wasting tends to precede stunting, we expected that 

initially healthy children would be more likely to become wasted than stunted. What was 

surprising was that in all three time frames, the reverse was true – healthy children were 

more likely to become stunted than wasted.  

We also found wasted children were at significantly higher risk of later wasting compared 

with healthy children, and that wasting significantly increased the risk of becoming both 

stunted and wasted. 

Our research clarifies how wasting and stunting develop. Prior research utilised linear 

models and calculated correlation coefficients to quantify group relationships to assess 

whether measures of thinness and/or shortness are related. Our analysis, using a 

stochastic approach, allowed us to model the conditional probability of individuals 

moving from state to state while controlling for initial and final time points. To 

summarise, wasting can lead directly to stunting, but children are only at a higher risk in 

very early life. Wasting does, however, lead to later a wasted-stunted state.  

7.3.1.3 Is stunting irreversible? 

Finally, prior research suggested that stunting is largely irreversible after 2 years. 

Hypothesis 3 stated:  

Hypothesis 3: children who become stunted are likely to stay stunted. 

We found that stunted children were at a significantly higher risk of stunting in the future 

compared with healthy children in all timeframes. We also found that as the age that the 

probability of transition is calculated over shifts to higher ages, the probability of 

remaining stunted increases as the probability of recovery decreases, indicating that as 

children get older, the probability that they stay stunted increases. Children who were 

from the more affluent datasets were more likely to recover from stunting than their 

poorer counterparts, indicating socioeconomic status may play a part in recovery. 

Furthermore, children who were stunted were at no more risk of later wasting compared 
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to healthy children. In fact, very few children made the transition from stunting to 

wasting. Finally, stunted children were at much higher risk of later wasting and stunting 

compared to those who are healthy. Our analysis, however, did not take genetics into 

account as naturally small children are not necessarily malnourished. Hence the results 

with respect to stunting are not conclusive. However, we would expect the growth 

trajectory of naturally small children to parallel a reference distribution rather than to fall 

away from it, which would allow us to discriminate between the two. 

7.3.1.4 Discussion of methodology 

The stochastic modelling approach we adopted, coupled with the use of relative risks, 

proved to be very useful and is recommended for researchers working in this field.  

It allowed us to model the conditional probability of moving between states whereas 

other methods which have been employed in this field simply aim to quantify average 

group relationships. The methodology also allowed us to control for the initial baseline 

state, and in effect, allowed us to control the dependence of adverse outcomes on age. 

Furthermore, transitions from one state to another could be compared with the 

proportion of healthy children moving to the same state, allowing us to calculate the 

increased risk of moving between states given an initial adverse state. The method does 

have its drawbacks, notably that there need to be enough children to compute the 

transition probabilities reliably.  

This approach could be extended further. Other variables could be introduced into the 

framework by applying a GLM, specifying a multinomial family and logit link function for 

the mean. Each child could be categorised into one of the 5 nutritional states at each time 

point. The probabilities of moving state using the previous state and area as covariates 

could be used to estimate probabilities for the transition matrices. This method would 

allow researchers to include any extra variables within the models such as HIV status, 

family income or socio-economic status as discrete or continuous covariates. Since the 

transition probabilities are time dependent, the number of transition times could be 

extended so that a grid of probabilities for all combinations of times could be observed, 

for every set of transitions. By focusing on one transition, say wasting to death, the 

probability of children moving between all combinations of possible time points could be 

observed. This was investigated briefly at the end of the research period and was very 

informative, with clear trends over the 3D surface, highlighting that the probability of a 
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child moving from state to state was highly dependent on initial and final age. For 

example, the 3D surface showed that the higher the age of initial wasting, the lower the 

probability of death. This is what would be expected since younger children are 

intrinsically more vulnerable. This analysis could be carried out for any transition, not just 

the example mentioned above. The resulting probabilities could be plotted and modelled 

using similar techniques employed within the correlation modelling section in Chapter 4. 

Unfortunately, due to time constraints, the research could not be taken any further. In 

summary, the stochastic approach was useful, allowing us to control the baseline and 

final ages of the children when calculating transition probabilities. This method of analysis 

has not been applied in any research within this area but is recommended for use along 

with the extensions mentioned above.  

7.3.2 Could our datasets be pooled? 

Pooling data is appropriate when data are homogeneous in the parameters of interest. 

We developed a statistical test in Chapter 2 to identify whether datasets could be pooled 

based on the pathways children took through nutritional states, which were summarised 

in the previous section. This is more appropriate than simply pooling data in terms of say 

mortality rates or rates of undernutrition since it is the way that children die that we wish 

to quantify and analyse, not the number who die. 

We developed a GLRT to assess whether probability transition matrices, which quantified 

the pathways in which children moved through states, could be pooled. No reference to a 

similar test could be found within the literature, only a “one sample” test was found, by 

Bickenback & Bode (2001), which was applied to financial data. This “two sample” test we 

developed is a future resource, not only for those who work in paediatrics, but for any 

researchers working with probability transition matrices. Our results indicated that 

children could not be pooled into a single group, but could be pooled into 4 sub-groups. 

The four sub-groups were: South Africa/middle class, village/per-urban slum, Malawi and 

the urban slum. Mortality rates were low in some of the datasets, and pooling the 

datasets increased statistical power.  

7.3.3 Is growth over a recent time period a better predictor of 
mortality than most recent size? 

Initially we planned on using generalised conditional weight gain as a predictor within 

survival models to assess growth as a predictor of mortality. However, in terms of 
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predictive power, using the combination of initial weight-for-age 𝑍 score and generalised 

conditional weight gain as predictors in a survival model is algebraically equivalent to 

including the 𝑍 scores at 𝑡1 and 𝑡2, i.e. 𝑍1 plus 𝑍2 provide the same information as 𝑍1 plus 

conditional weight gain. Dropping the initial term from the models allow us to compare 

growth over a recent time period with most recent size. Obviously this loses the benefit 

of working with conditional weight gain, but the predictive ability is the same. 

Investigation of the literature in this area provided us with a final hypothesis: 

Hypothesis 4: recent size is a more valuable predictor of mortality than growth over a 

recent time period. 

We assumed that the majority of papers were correct and hypothesised that size is a 

more valuable predictor of mortality than growth over a recent time period. We tested 

this hypothesis using Cox proportional hazards models, applied to the four pooled 

datasets resulting from the analysis within Chapter 5. In fact, without pooling the datasets 

in this way, the analysis for the middle class area would have been unreliable due to the 

low mortality rate.  

Initially, the standard Cox proportional hazards models we applied were dominated by 

children within the centre of the population distribution. We therefore adopted a 

weighted approach, allowing us to over-represent children who are outwith the normal 

range so that significant predictors could be determined for those at the tails of the 

distribution. These children are the ones who are at the highest risk of mortality and the 

analysis design allowed us to control the degree of representation. 

We developed a weighting function (Equation (6.1)) which was used to increase the 

weighting a child received. The lower their average weight-for-age 𝑍 score over the 3 and 

6 month periods, the higher the weighting, where only those with negative 𝑍 scores 

received the weighting function. This approach strengthened our analysis as children 

within the tails were over-represented, hence, had greater influence on our statistical 

models. The weighting function was developed to be variable based on a power 

parameter i.e. the weighting that children within the extremes received was controlled, 

providing us with a valuable framework to evaluate the effect of the degree of weighting. 

This allowed us to investigate the effects of increasing the effective number of children 

within the analyses that lay in the extremes, which allowed us to identify the magnitude 

of weighting needed for growth to enter as an important predictor.  
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In the unweighted analysis predicting time until death after both 3 and 6 months it was 

clear that final size stood as the best predictor.  

In the weighted analyses predicting after 3 months, we found that effect of weighting on 

the best fitting model differed by dataset. The less affluent the dataset (and the higher 

the prevalence of undernutrition), weight gain was less likely to enter as a significant 

predictor as the weightings increased. We hypothesise that the majority of children 

within the less affluent datasets tend to fall away from the WHO median, hence the 

majority are at risk. Size tends to contain most information about current state of the 

children and over-representing the children who are at higher risk does not change the 

form of the model as the majority are already at risk, and these children fall from the 

WHO median. 

In more affluent populations, the majority of children are within the normal healthy 

range, so size is the best predictor in the unweighted analyses as the analysis is 

dominated by these children. However, fewer fall away, so that those who are a 

genetically small make up a larger proportion of all small children, so that over-

representing those in the extremes results in the model identifying growth as a predictor. 

The analysis is no longer dominated by children within the normal, healthy range. Growth 

serves as a discriminator between those who fall, those who are naturally small and those 

who are tracking. 

In conclusion, while predicting after 3 months, we found growth adds no more value over 

size for the majority of children. For other measures to enter as significant predictors, the 

weightings applied were so high that the datasets had more artificially replicated rows 

than there were real data. However this does imply its usefulness in assessing small 

children in more affluent populations. While predicting after 6 months, we again found 

that size stood as the best predictor, indicating that for the majority of children, this 

measure will provide enough information to identify those at risk. With higher weightings, 

height-for-age entered our models as well as weight-for-age, indicating that measures of 

height-for-age may be valuable while making predictions for children who are slightly 

older. This is in contrast to our analysis predicting after 3 months, as height-for-age did 

not enter our best fitting models at any weighting.  

A limitation of this analysis was, again, the effect of HIV status, which we did not account 

for. Newell et al. (2004) estimated that children testing positively for HIV before 4 weeks 

of age had around a 50% chance of dying by age 2 years. The post-hoc analysis within 
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Chapter 6 indicated that stratifying by HIV status impacted the South African models. 

When including maternal HIV status within the Malawi analysis, models stayed relatively 

similar. This indicates that HIV status of the mother should not be used as a proxy for HIV 

status of the child. The results of the post-hoc analysis indicate that if available, HIV status 

should be included as a stratified variable. An interesting piece of further work would be 

to include HIV status as a time-varying covariate, since we expect the probability of 

survival to be a function of the time that HIV is contracted (Miller 2011).  

In summary, the use of the weighting function increased the amount of control we had 

over our statistical analysis and it is recommended for those working in paediatrics. Using 

this approach, we were able to identify children who benefit from the extra value of 

growth in predicting mortality. Our findings, therefore, agree in part with research which 

has concluded that size is the best predictor, and in part with research that has concluded 

that growth is the best predictor. In high malnutrition prevalence populations, a large 

proportion of children fall away from the WHO median, making growth pattern non-

discriminating. 

7.4 Concluding remark 
To conclude this final chapter, and the dissertation, we summarise our work in a final 

paragraph. The analyses we carried out within the programme of work were 

multidimensional and time dependant, allowing us to demonstrate different methods 

that can be used to handle data of this nature. We created a database for further 

research, developed six developing world growth reference charts, described how 

children from the developing world fit the WHO standard, generalised the measure of 

conditional weight gain and gained new insights into how measures of undernutrition can 

be used to predict adverse future outcomes. The inability to carry out analyses on the full 

pooled dataset provided us with information about the diversity and heterogeneity 

between datasets, highlighting that pooling data of this kind is not always appropriate. 

The methodology used throughout the thesis is recommended, as are the extensions 

suggested in this final discussion chapter. 
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Appendix A 

A1 Proportion of children in each state (including NA 
values) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figu
re A

1
: P

ro
p

o
rtio

n
 o

f p
o

p
u

latio
n

 in
 states (in

clu
d

in
g N

A
 valu

es): (a) d
ead

, (b
) w

asted
 - stu

n
ted

, (c) w
asted

, (d
) 

stu
n

ted
, (e) h

ealth
y, (f) m

issin
g 



 

204 
 

 

 

 

  

Malawi Month  

 State 0  3  6  9  12  24 

Dead (State1) 0.07 0.11 0.15 0.16 0.17 0.19 

Wasted & Stunted (State 2) 0.03 0.02 0.01 0.02 0.02 0.01 

Wasted (State 3) 0.04 0.01 0.01 0.01 0.00 0 

Stunted (State 4) 0.13 0.35 0.39 0.48 0.46 0.54 

Healthy (State 5) 0.71 0.34 0.20 0.21 0.18 0.13 

NA 0.02 0.16 0.23 0.12 0.17 0.14 

  

Middle Class Month  

State 0  3  6  9  12  24 

Dead (State1) 0.01 0.01 0.01 0.01 0.01 0.01 

Wasted & Stunted (State 2) 0.01 0.01 0 0 0 0 

Wasted (State 3) 0.06 0.02 0.02 0 0 0.02 

Stunted (State 4) 0.04 0.09 0.06 0.05 0.03 0.01 

Healthy (State 5) 0.88 0.49 0.46 0.44 0.48 0.39 

NA 0.01 0.38 0.44 0.50 0.47 0.57 

  

Village Month  

State 0  3  6  9  12  24 

Dead (State1) 0.02 0.08 0.09 0.09 0.10 0.10 

Wasted & Stunted (State 2) 0.04 0.04 0.04 0.05 0.05 0.01 

Wasted (State 3) 0.15 0.07 0.05 0.04 0.02 0 

Stunted (State 4) 0.04 0.08 0.10 0.14 0.19 0.28 

Healthy (State 5) 0.69 0.35 0.34 0.31 0.29 0.17 

NA 0.06 0.38 0.38 0.36 0.36 0.44 

Urban slum Month  

State 0  3  6  9  12  24 

Dead (State1) 0.01 0.05 0.06 0.06 0.06 0.07 

Wasted & Stunted (State 2) 0.03 0.03 0.03 0.01 0.01 0.01 

Wasted (State 3) 0.09 0.05 0.03 0.03 0.01 0.01 

Stunted (State 4) 0.06 0.13 0.15 0.17 0.17 0.15 

Healthy (State 5) 0.79 0.47 0.45 0.43 0.40 0.27 

NA 0.02 0.26 0.29 0.30 0.34 0.49 

Peri-urban slum Month  

State 0  3  6  9  12  24 

Dead (State1) 0.04 0.10 0.12 0.13 0.13 0.13 

Wasted & Stunted (State 2) 0.08 0.09 0.08 0.07 0.07 0.02 

Wasted (State 3) 0.14 0.06 0.04 0.03 0.01 0.01 

Stunted (State 4) 0.05 0.11 0.12 0.17 0.20 0.27 

Healthy (State 5) 0.64 0.31 0.27 0.18 0.18 0.10 

NA 0.05 0.33 0.38 0.43 0.41 0.47 

South Africa Month  

State 0  3  6  9  12  24 

Dead (State1) 0.07 0.09 0.10 0.12 0.12 0.13 

Wasted & Stunted (State 2) 0.02 0.01 0.01 0 0 0 

Wasted (State 3) 0.03 0.02 0.01 0 0 0 

Stunted (State 4) 0.09 0.09 0.06 0.03 0.04 0.03 

Healthy (State 5) 0.58 0.52 0.49 0.24 0.28 0.1 

NA 0.21 0.28 0.33 0.60 0.55 0.74 

Table A1: Proportion of children in each state, including NAs (Malawi) 

 

Table A3: Proportion of children in each state, including NAs (village) 

 

Table A2: Proportion of children in each state, including NAs (middle class) 

 

Table A5: Proportion of children in each state, including NAs (peri-urban slum) 

 

Table A4: Proportion of children in each state, including NAs (urban slum) 

 

Table A6: Proportion of children in each state, including NAs (South Africa) 
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Pooled Month  

State 0  3  6  9  12  24 

Dead (State1) 0.05 0.08 0.09 0.11 0.11 0.12 

Wasted & Stunted (State 2) 0.03 0.03 0.02 0.02 0.02 0.01 

Wasted (State 3) 0.07 0.03 0.02 0.02 0.01 0 

Stunted (State 4) 0.08 0.12 0.12 0.14 0.15 0.17 

Healthy (State 5) 0.66 0.44 0.40 0.28 0.28 0.16 

NA 0.11 0.29 0.33 0.44 0.43 0.55 

Table A7: Proportion of children in each state, including NAs (pooled) 
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Appendix B 

B1 Moving into a dead state 

B1.1 South Africa/Middle class 

Timeframe Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.15 0.06 0.03 0.02 

6-9m 0.37 0 0.02 0.03 

9-12m 0 0 0 0 

Table B1: Probability of moving from all states to dead  

 

Timeframe Wasted-stunted Wasted Stunted 

3-6m 9.48 (3.78, 23.77) 3.87 (1.18, 12.59) 2.11 (0.90, 4.95) 

6-9m 14.13 (5.23, 38.18) NA 0.90 (0.21, 3.81) 

9-12m NA NA NA 

Table B2: RR (95% CI) of moving from states to dead (baseline healthy) 

B1.2 Village/Peri-urban slum 

Timeframe Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.11 0.08 0.05 0.01 

6-9m 0.07 0 0.01 0 

9-12m 0.03 0.04 0.01 0 

Table B3: Probability of moving from all states to dead  

 

Timeframe Wasted-stunted Wasted Stunted 

3-6m 13.10 (4.20, 40.78) 8.26 (2.38, 28.60) 4.98 (1.36, 18.27) 

6-9m 13.22 (2.61, 66.91) NA 1.31 (0.11, 14.38) 

19-12m 4.78 (0.68, 33.42) 6.68 (0.96, 46.41) 1.63 (0.23, 11.55) 

Table B4: RR (95% CI) of moving from states to dead (baseline healthy) 
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B1.3 Malawi 

Timeframe Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.15 0.14 0.05 0.02 

6-9m 0.10 0 0.02 0.03 

9-12m 0 0 0.01 0.01 

Table B5: Probability of moving from all states to dead  

 

Timeframe Wasted-stunted Wasted Stunted 

3-6m 8.73 (1.76, 43.36) 8.10 (1.03, 63.49) 2.86 (0.92, 8.86) 

6-9m 3.6 (0.44, 29.26) NA 0.84 (0.25, 2.85) 

9-12m NA NA 2.19 (0.26, 18.61) 

Table B6: RR (95% CI) of moving from states to dead (baseline healthy) 

B1.2 Urban slum 

Timeframe Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.17 0.03 0.01 0 

6-9m 0.05 0 0.01 0 

9-12m 0 0 0 0 

Table B7: Probability of moving from all states to dead  

 

Timeframe Wasted-stunted Wasted Stunted 

3-6m NA NA NA 

6-9m NA NA NA 

9-12m NA NA NA 

Table B8: RR (95% CI) of moving from states to dead (baseline healthy) 
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B2 Moving from a wasted-stunted state 

B2.1 South Africa/Middle class 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.15 0.20 0.03 0.50 0.12 

6-9m 0.37 0.13 0 0.05 0 

9-12m 0 0.86 0.14 0 0 

Table B9: Probability of moving from wasted-stunted  

 

Table B10: RR (95% CI) of moving from wasted-stunted (baseline healthy) 

 

B2.2 Village/Peri-urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.11 0.40 0.02 0.40 0.05 

6-9m 0.07 0.57 0.01 0.34 0.01 

9-12m 0.03 0.54 0.03 0.40 0 

Table B11: Probability of moving from wasted-stunted  

 

Table B12: RR (95% CI) of moving from wasted-stunted (baseline healthy) 

 

 

 

 

 

 

 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 9.48 (3.78, 23.77) 265.58 (33.59, 2099.42) 1.80 (0.25, 13.04) 10.93 (7.19, 16.61) 

6-9m 14.13 (5.23, 38.18) 47.12 (4.73, 468.71) NA 8.19 (3.88, 17.30) 

9-12m NA NA NA NA 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 13.10 (4.21, 40.78) 17.81 (9.16, 33.41) 0.28 (0.06, 1.15) 4.67 (3.11, 7.01) 

6-9m 13.22 (2.61, 66.91) 20.67 (11.17, 38.25) 0.22 (0.03, 1.67) 2.08 (1.42, 3.05) 

9-12m 4.78 (0.68, 33.41) 38.27 (15.53, 93.69) 0.86 (0.19, 3.84) 2.92 (2.00, 4.27) 
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B2.3 Malawi 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.15 0.46 0 0.38 0 

6-9m 0.10 0.20 0 0.70 0 

9-12m 0 0.14 0 0.86 0 

Table B13: Probability of moving from wasted-stunted  

 

Table B14: RR (95% CI) of moving from wasted-stunted (baseline healthy) 

B2.2 Urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.17 0.42 0 0.42 0 

6-9m 0.05 0.35 0.15 0.35 0.10 

9-12m 0 0.40 0 0.50 0.10 

Table B15: Probability of moving from wasted-stunted  

 

Table B16: RR (95% CI) of moving from wasted-stunted (baseline healthy) 

 

 

 

 

 

 

 

 

 

 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 8.73 (1.75, 43.36) 104.77 (13.59, 807.28) NA 0.89 (0.44, 1.80) 

6-9m 3.6 (0.4,4 29.26) NA NA 2.14 (1.34, 3.42) 

9-12m NA 7.00 (1.27, 38.43) NA 2.21 (1.64, 2.96) 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m NA NA NA 3.98 (2.25, 7.04) 

6-9m NA 135.41 (18.08, 1014.12) 7.75 (2.09, 28.81) 4.03 (2.00, 8.09) 

9-12m NA 54.42 (12.08, 245.15) NA 7.02 (3.31, 14.87) 
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B3 Moving from a wasted state 

B3.1 South Africa/Middle class 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.06 0.02 0.12 0.16 0.64 

6-9m 0 0 0.15 0.07 0.78 

9-12m 0 0.10 0.90 0 0 

Table B17: Probability of moving from wasted  

Table B18: RR (95% CI) of moving from wasted (baseline healthy) 

B3.2 Village/Peri-urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.08 0.15 0.34 0.18 0.25 

6-9m 0 0.12 0.38 0.15 0.35 

9-12m 0.04 0.18 0.23 0.17 0.38 

Table B19: Probability of moving from wasted  

Table B20: RR (95% CI) of moving from wasted (baseline healthy) 

 

 

 

 

 

 

 

 

 

 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 3.87 (1.18, 12.59) 25.80 (1.63, 406.58) 7.37 (3.11, 17.45) 3.49 (1.76, 6.92) 

6-9m NA NA 17.95 (3.96, 81.30) 1.17 (0.17, 7.90) 

9-12m NA NA NA NA 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 8.25 (2.38, 28.60) 6.60 (2.95, 14.76) 4.01 (2.60, 6.20) 2.08 (1.18, 3.67) 

6-9m NA 4.42 (1.85, 10.60) 6.62 (4.00, 10.94) 0.92 (0.50, 1.70) 

9-12m 6.67 (0.96, 46.41) 13.35 (4.75, 37.56) 7.28 (3.38, 15.66) 1.22 (0.64, 2.34) 
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B3.3 Malawi 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.14 0 0 0.57 0.29 

6-9m 0 0 0 0.75 0.25 

9-12m 0 0.33 0.17 0.17 0.33 

Table B21: Probability of moving from wasted  

Table B22: RR (95% CI) of moving from wasted (baseline healthy) 

B3.2 Urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.03 0.12 0.25 0.16 0.44 

6-9m 0 0.04 0.48 0.17 0.30 

9-12m 0 0 0.32 0.05 0.64 

Table B23: Probability of moving from wasted  

Table B24: RR (95% CI) of moving from wasted (baseline healthy) 

 

 

 

 

 

 

 

 

 

 

 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 8.10 (1.03, 63.49) NA NA 1.32 (2.29, 0.42) 

6-9m NA NA NA 2.29 (1.24, 4.23) 

9-12m NA 16.33 (3.32, 80.26) NA 0.42 (0.07, 2.60) 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m NA 40.62 (4.68, 352.63) 6.77 (2.98, 15.33) 1.49 (0.62, 3.54) 

6-9m NA 6.76 (0.63, 71.80) 24.78 (10.07, 60.97) 2.00 (0.76, 5.23) 

9-12m NA NA NA 0.63 (0.08, 4.53) 
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B4 Moving from a stunted state 

B4.1 South Africa/Middle class 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.04 0.06 0.02 0.38 0.51 

6-9m 0.03 0.03 0.04 0.41 0.49 

9-12m 0 0 0 0.63 0.37 

Table B25: Probability of moving from stunted 

Table B26: RR (95% CI) of moving from stunted (baseline healthy) 

B4.2 Village/Peri-urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.05 0.12 0.05 0.54 0.24 

6-9m 0.01 0.10 0.01 0.72 0.16 

9-12m 0.01 0.09 0 0.80 0.10 

Table B27: Probability of moving from stunted 

Table B28: RR (95% CI) of moving from stunted (baseline healthy) 

 

 

 

 

 

 

 

 

 

 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 2.11 (0.90, 4.95) 66.61 (8.64, 513.37) 1.15 (0.39, 3.32) 8.51 (6.30, 11.50) 

6-9m 0.90 (0.21, 3.81) 13.62 (2.30, 80.38) 4.54 (1.15, 17.82) 7.10 (4.89, 10.31) 

9-12m NA NA NA 9.55 (7.05, 12.94) 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 4.98 (1.36, 18.26) 5.58 (2.55, 12.23) 0.53 (0.21, 1.33) 6.36 (4.46, 9.06) 

6-9m 1.31 (0.11, 14.38) 3.58 (1.68, 7.62) 0.11 (0.01, 0.83) 4.41 (3.47, 5.62) 

9-12m 1.63 (0.23, 11.55) 6.22 (2.35, 16.43) NA 5.81 (4.45, 7.60) 
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B4.3 Malawi 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.05 0.02 0.01 0.82 0.11 

6-9m 0.02 0.03 0.01 0.77 0.16 

9-12m 0.01 0.02 0 0.84 0.12 

Table B29: Probability of moving from stunted 

Table B30: RR (95% CI) of moving from stunted (baseline healthy) 

B4.2 Urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.01 0.07 0.03 0.61 0.28 

6-9m 0.01 0 0 0.76 0.23 

9-12m 0 0.02 0.01 0.82 0.16 

Table B31: Probability of moving from stunted 

Table B32: RR (95% CI) of moving from stunted (baseline healthy) 

 

 

 

 

 

 

 

 

 

 

 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m 2.96 (0.92, 8.85) 4.16 (0.47, 36.97) 0.69 (0.11, 4.11) 1.89 (1.60, 2.22) 

6-9m 0.84 (0.25, 2.85) NA 1.45 (0.15, 13.86) 2.37 (1.86, 3.02) 

9-12m 2.19 (0.26, 18.61) 1.02 (0.26, 3.90) NA 2.16 (1.75, 2.66) 

Timeframe Dead Wasted-stunted Wasted Stunted 

3-6m NA 23.45 (2.92, 188.30 0.83 (0.24, 2.90) 5.81 (4.07, 8.29) 

6-9m NA NA NA 8.79 (6.04, 12.79) 

9-12m NA 4.49 (0.41, 0.49) NA 11.46 (7.45, 17.63) 
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B5 Moving from a healthy state  

B5.1 South Africa/Middle class 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.02 0.01 0.02 0.05 0.90 

6-9m 0.03 0 0.01 0.06 0.90 

9-12m 0 0 0 0.07 0.93 

Table B33: Pooled probability of moving from healthy 

B5.2 Village/Peri-urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.01 0.02 0.08 0.09 0.80 

6-9m 0.01 0.03 0.06 0.16 0.74 

9-12m 0 0.01 0.03 0.14 0.81 

Table B34: Pooled probability of moving from healthy 

B5.3 Malawi 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0.02 0 0.01 0.43 0.53 

6-9m 0.03 0 0.01 0.33 0.64 

9-12m 0.01 0.02 0 0.39 0.59 

Table B35: Pooled probability of moving from healthy 

B5.2 Urban slum 

Timeframe Dead Wasted-
stunted 

Wasted Stunted Healthy 

3-6m 0 0 0.04 0.10 0.86 

6-9m 0 0.01 0.02 0.09 0.89 

9-12m 0 0 0 0.07 0.93 

Table B36: Pooled probability of moving from healthy 

 


