
SURVEY OF FLOATING-POINT SOFTWARE ARITHMETICS

AND BASIC LIBRARY MATHEMATICAL FUNCTIONS

BY

KENG HO LEE

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE
AT THE UNIVERSITY OF GLASGOW

SEPTEMBER 1973

ProQuest Number: 11017960

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11017960

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

ACKNOWLEDGEMENTS

I am grateful to Professor D.C. Gilles for his
permission to carry out tests on the MULTUM computer
and to make use of the facilities in the Computing
Department. I am also indebted to Dr J.E. Jeacocke
for his guidance and encouragement and for many helpful
discussions.

Thanks are also due to Mrs J.K. Clydesdale for her
patience with the typing and in general to all the
members of the Computing Department of Glasgow University
for services rendered, both great and small.

I wish to dedicate this thesis to my wife,
grandmother and mother, whose constant encouragement
has been of great help to me.

CONTENTS

PART ONE: BASIC FLOATING-POINT ARITHMETICS SOFTWARE Page
Introduction 1-2
CHAPTER 1 FIXED AND FLOATING-POINT ARITHMETICS 2-34
Sections 1.1 Notation

1.2 Negative numbers
1.3 Fixed-point arithmetic
1.4 Floating-point arithmetic
1.5 Normalised calculations
1.6 Floating-point arithmetic for

Algorithmic Languages
1.7 Unnormalised floating-point numbers
1.8 Exact arithmetic
1.9 Theorems on exact arithmetic
1.10 Conclusion

CHAPTER 2 IMPLEMENTATION OF FLOATING-POINT ARITH
METICS SOFTWARE ON THE MULTUM COMPUTER 35-70

Sections 2.0 Introduction
2.1 General description (of Alp 2/3)
2.2 Fixed-point formats and instructions
2.3 Floating-point formats and floating

point instructions
2.4 Double precision arithmetic
2.5 Double precision add/subtract
2.6 Conclusion

BIBLIOGRAPHY 71-72

PART TWO: BASIC LIBRARY MATHEMATICAL FUNCTIONS
Introduction

CHAPTER 3 GENERAL CONSIDERATIONS FOR WRITING BASIC
LIBRARY ROUTINES

Sections 3.0 Objectives
3.1 Classification of routines
3.2 Choice of Programming Language
3.3 System Specifications
3.4 Standard reference for accuracy
3.5 Theoretical background
3.6 Fundamental properties of Chelayshev

Polynomials
3.7 Chehyshev Series
3. 8 Polynomial Approximation methods
3.9 Polynomial Evaluation methods
3.10 Conclusion

IHAPTER 4 IMPLEMENTATION OF MATHEMATICAL FUNCTIONS
ON THE MULTUM COMPUTER

Sections 4.0 Introduction
4.1 Square root routines
4.2. Trigonometric functions
4. 3 Logarithmic functions
4.4 Exponential functions
4. 5 Inverse Tangent
4.6 Hyperbolic Sine and Cosine

4.7 Double precision basic library
4.8 Self-contained power routines
4.9 Performance testing of basic library

sub-routines

oi—ia- Conclusion

Page
73-74

75-100

101-134

BIBLIOGRAPHY
APPENDIX 1
APPENDIX 2

1

PART ONE
INTRODUCTION

In this short span of thirty years man, with the help
of digital computers, can perform arithmetic operations at
a rate of three million per second. How fast we can
really add, multiply, subtract and divide in the future has
to do with the performance of tomorrow's computer com
ponents, the hardware of the future. Shimuel Winograd (1)
in his article has given some insight into the problem
involved. In spite of the tremendous increase in the
speed of computation, there is little success in overcoming
the ’inexact nature’ of arithmetic. In the nineteenth
century, Mrs La Touche summed up our present problem in
her statement ’There is no greater mistake than to call
arithmetic an exact science’.

In search of better control over the ’inexact nature’,
continuing attention has been given to questions concerning
the representation of numbers for computers. R.L. Ashen-
hurst (2) listed the following factors that will affect the
choice of a number system.
a) Engineering efficiency.

This clearly establishes the advantage of the binary
system instead of the decimal system.

b) Programming convenience.
For example, using floating-point rather than fixed-point
representation.

c) Detection and correction of machine malfunction.
For example, introducing extra digits to permit a
redundancy check.

d) Assessment of computation error.
The presence of computational error is, of course,

inevitable in computation confined to finite resources.
Computer designers tend to sacrifice the efficiency in
error assessment for the enhancement of performance with

2

respect to objectives in the first three categories.
It is not the intention of the author to give a detailed

study of error assessment. Instead, a survey of the number
representations of computers is given. The later part of
Chapter One gives an axiomatic approach to floating-point
operations. Theorems and definitions quoted are taken from
the paper by T.J. Dekker (6). Implementation of both
single length and double length floating-point operations
is discussed in Chapter Two. Procedures for single length
floating-point operations are based on the algorithms given
in Kruth (3). Two methods for double length floating-point
operations are discussed. Both are based on the theories
given in the earlier chapter.

Notations used will be those given in Kruth (3) and
those used by Wilkinson (4).

CHAPTER ONE

1.1 NOTATIONS
The positional number system will be referred to

throughout the discussion of fixed-point arithmetic,
normalised floating-point arithmetic and unnormalised
floating-point arithmetic.

DEFINITION (1.1.1)
Positional notation using base b (also called radix b)

is defined by the rule
(.. .a a a a .a a ...), = .. .a b? +a +a b1 +a +a b 1 +a b 2 +.. .) (1.1 . 2)3 2 1 0 — 1 —2 D 3 2 1 0 - 1 2
The ’dot’ between aQ and a is called the radix point. If

b=10, we have the decimal system and the ’dot1 is commonly
known as the decimal point. The a fs are called the digits
of the representation.
DEFINITION (1.1.3)

The most significant digit is the non-zero digit with
the highest subscript.
DEFINITION (1.1.4)

The least significant digit is the digit with the
smallest subscript.

1.2 NEGATIVE NUMBERS
There are several different ways of representing

negative numbers in a computer.
1.2.1 SIGNED MAGNITUDE REPRESENTATION

This corresponds to the conventional notation by plac
ing a minus sign in front of the number. In the computer
whose number representation is in binary, the sign is simply
denoted by !0 ' and '1' for positive and negative numbers
respectively. However, we are up against the problem of
having two different representations for zero, viz. ’minus
zero' and ’plus zero' when they are, in fact, the same value.

This strongly undermines the practical aspect of computer
design which otherwise has a great theoretical advantage
over the Complement Notation (3). This inconsistency may
be avoided by defining the pattern for ’minus zero1 as
invalid pattern which may be picked up by the compiler.
1.2.2 COMPLEMENT NOTATION

No explicit sign is attached to the number and calcul
ation is done modulo b^ where p is the number of digits in
the computer word and b is the base of the representation.
In this case, the question of having two representations
for zero is eliminated. However, it should be noted that
the complement system is not symmetrical about zero. This
not uncommon asymmetric range will, in fact, give rise to
overflow in certain types of arithmetic operations. For
example, negating the largest negative number gives an
overflow as the positive number so formed is not in the
range of representation. Shifting right in the complement
notation does not necessarily divide the magnitude by the
base b. For example, given b = 10, (i.e. the decimal system)
a number say (-13^ Q is equal to 99987 if calculation is
done modulo 105. Shifting right one place gives 9 9998
which is ("2) . Similarly, for b=2, shifting right does
not necessarily divide the magnitude by the base. In fact,
the shifting right operation merely produces the functional
effect of the function ’entier’.

1.3 FIXED-POINT ARITHMETIC
In this mode the computation is so framed that every

computed number x lies in a given range depending on the
size of the computer word. Take, for example, the 16 bit
word MULTUM Computer; fixed-point numbers are represented
in 2’s complement with binary point after the least
significant bit (see figure 1). The computed number x
will then lie in the range d“215 9 215-lJ.

5

No______________________Nig

A
binary point

(Figure 1)

Nn . . . N. _ j 16 bit 2's complement with binary point after NU I o 15
All 216 bit patterns are legal, and bit NQ will always

be set for negative values. If we were to interpret with
the binary point lying between bit 0 and bit 1 , then the
number x will lie in the range £-1 , 1) (see figure 2).

N0 N, N15

7binary point
(Figure 2)

In general, each number will be allowed a fixed number
p of binary digits for its representation and we shall say
that the computer works with words of p binary digits.
If it is necessary to work to a higher precision than one
part in 2 ̂ then we may employ numbers which are represented
by a multiple of of. p. binary ..digits.

1-3-1 r o u n d i n g ERRORS IN FIXED-POINT COMPUTATION
We now consider the rounding of errors made in the

fundamental arithmetic operations. There is no round-off
in fixed-point addition and subtraction. However, the
computed number x may be outside the permitted range.

In fixed-point multiplication, the product of two
p-digit numbers lying in the interval (j-l9 1) is, in general,
a number requiring 2p digits for its representation. This
exact product is rounded off to a p-digit approximation by

6
adding \2 p if number is positive (or by subtracting \2~^
if number is negative) and discarding digits p+1 to 2p.
Let z be the exact product and z' the p-digit approximation
of z, then

z = z1+e where i 2 P.
Different machines may use different rounding procedures.
In some machines, the last p-digits of the exact product

"t*hare discarded and the p digit is replaced by 1. This
gives an error lying in the range ± 2~P and therefore a
maximum error which is twice that of the earlier method
of rounding. It should be noted that the procedure used
for rounding will greatly affect the results in floating
point computation; especially so if we were to simulate
the floating-point operations using the available fixed-
point instructions.

The quotient x/y of two p-digit fixed-point binary
numbers will lie in the permitted range unless |y|<|x|.
The quotient will, in general, be a non-terminating number.
The exact quotient may be rounded to give a p-digit fixed-
point number by the same rounding procedure stated earlier.
Note that we need to compute only the first p+1 digits of
the exact quotient in order to derive a rounded result.

If z is the exact quotient and z1 the computed
quotient, then z = z1 + E where |E |ij2 p.
Note: The exact quotient is replaced by the p-digit

approximation obtained by adding \2 p and retaining
only digits 1 to p.

Unfortunately, not all machines produce rounded results.
This may lead to serious loss of accuracy in the final
result. For example, the MULTUM computer returns a
truncated result instead of the rounded one. The error E
in this case is less than 2 p.

If x and y are integers, no rounding is performed.
Instead, the quotient is the p-digit approximation obtained
by truncating digits p+1 to 2p. This is none other than
the function ’entier' defined in Algol 60 (12). This

7

truncating procedure for integer arithmetic is commonly
practised in most computers. No special algorithm will
then be required for integer arithmetic in the case of a
Fortran compiler.

1.4 FLOATING-POINT ARITHMETIC:
In this notation, we let the position of the radix

point be dynamically variable (’floating’) as the programme
is running, and carry with each number an indication of
the corresponding radix point position.

The two basic components of a floating-point number,
x, are the exponent e(x) and the mantissa (also called
fraction part, or significant) m(x). The nomenclature
and the precise specifications for e(x) and m(x) vary
from one representation to another, but they essentially
serve the same purposes. The pair(e(x), m(x)) stands for
the number 1 jn(x)b where b is the base (or radix)
for the representation. The choice of the base, b, and
the number of jD-ary digits in m(x) are therefore basic
parameters characterising the representation. Hence,
given a floating-point number, x, we have

x = m(x) be(x) 1.4.1
Among other characteristics are the range of m(x) and the
manner in which m(x) (the mantissa) and e(x) (the exponent)
are encoded in the machine, including such things as
placement of radix point and representation of negative
numbers. For example, the Floating-point Representation
proposed by A.A. Garu (5) has m(x) as integers and in the
range -K < m(x) < K, where K is determined by the number
of bits allotted to express m:(x). He called m(x) the
'fixed-point part’. Here the implied radix point is after
the least significant bit of the p-digit 'fixed-point
part’. In fact, Burroughs 5500 (Octal) and Philips
Electrologica XB (binary) use this format to represent
the floating-point number system (6). Apart from over
flow and underflow, the floating-point systems have this

form in most if not all computers, since the mantissa can
always be interpreted as an integer by subtracting a
suitable constant from the exponent.

Representation given by equation (1.4.1) is not
always unique. In most machines, a certain standard
isation is defined in order to make the representation
unique. The most common standardisation is the normal
isation in which the magnitude of a non-zero mantissa has
a lower bound M/b, where b is the base of the representa
tion and M the largest value in the p-digit mantissa.
(M = b^ if considered as fixed-point part or M = 1 if
mantissa is a fraction).

If we take the mantissa m(x) to be a signed fraction,
then the process of standardisation consists of selecting
as normal that representation in which m(x) has the
largest possible absolute value such that

| m(x) | < 1.
In other words, the radix point appears at the left

of the positional representation of m(x). If p is the
number of mantissa digits then m(x) b^ is an integer and

-b^<b^m(x)<b^.
This floating-point representation was proposed by Kruth(3)
in his 'MIX' computer. The floating-point number x is
said to be normalised if the most significant digit of the
representation of m(x) is non-zero, so that

■i 4 |m(x)|<l where m(x) is the p-digit mantissa

If m(x), the mantissa, is a p-digit signed-2’s complement
fraction, there is a slight re-adjustment in the range.

For m(x) positive, \ ± m(x) ^ (1-2 P)
and m(x) negative, -1 4 m(x) 4 (5+2 P)
In general, to tell which of the two normalised

floating-point numbers has a greater magnitude, we simply

9

compare the exponent parts first and then test the
fraction parts only if the exponents are equal. Clearly,
comparison of this type will be slightly complicated if
2fs complement notation is used.

In the later part of the chapter, we will discuss
in more detail the various types of floating-point
representations.

1.5 NORMALISED CALCULATION
The adjustment to normalised form is justified on

the basis that one would like to have numbers uniquely
represented and also to preserve as many "significant
digits" as possible (since rounding errors are then of
relative as well as absolute magnitude b ̂ to m(x)).
The operations of floating-point arithmetic will be
studied in detail in this section. The algorithms for
floating-point addition, subtraction, multiplication
and division will be discussed with the intention of
simulating these operations in the I.C.S. MULTUM computer.
1.5.1 NOTATION

The notation found in Kruth (3) will be used. To
denote floating-point addition, subtraction, multiplica
tion and division we write© , Q , © , © to distinguish
the approximate operations from the true ones. The
mantissa, m(x) is taken to be a p-digit signed magnitude
fraction. Note, however, that in Chapter Two m(x) is
taken to be a p-digit (p-24)2fs complement fraction
since the MULTUM computer uses the 2f s complement
representation. Minor adjustments are required to. imple
ment the algorithms given here. We shall use the
notation, (e(x), m(x)) to denote the floating-point x
such that

(e(x), m(x)) = m(x) be x̂ ̂ ^ where q is the
excess (c.f. equation 1.^.1)
For example, in the MULTUM computer with excess q equal

10

"to 12 8, "the number (12 8, 0.10000^) denotes "the floating
point number 0.5,

i.e. (128, 0.100002) = \ 2128-128 = (0.5)

Similarly, the number
(127, 0.10000) = i 2127-128 = (0.25)

2 10

This reduces e(x), the exponent to a positive
integer. The assignment of sign to the exponent is
avoided and arithmetic operations (addition or subtraction)
on the exponent are greatly simplified by introducing
the excess q.

ADDITION/SUBTRACTION
Let x and y be two normalised floating-point numbers,

such that
(x ,e(x)-q x = m(x) b %

and y = m(y) be^^ where £<jn(x), m(y)<l.
Assume |x|^|y|, for floating-point addition we

6(Z)“Qrepresent the sum z, where z = m(z) b H
such that

, x Ke(z)-q , x ,e(x)-q ^ , x ,e(y)-qm(z) b ^ = m(x) b (+) m(y) b J H
also written as

(e(z), m(z)) = (e(x), m(x)©(e(y), m(y))
Assuming |x|^[y|, we need to divide m(y) by the amount
b0(x) e(y } go as to align the radix point for a meaning
ful addition (or subtraction). This is equivalent to
a shift right operation of e(x)-e(y) positions. Hence
we have

m(z) = m(x) © m(y)/be
The mantissa, m(z) is then normalised.

1.5.2 ALGORITHM FOR ADDITION/SUBTRACTION
The same algorithm may be used for floating-point

subtraction if -y is substituted for y. The base b is

11

assumed to be even. Note, however, that negating a
negative number, y, may give an overflow in subtraction.
Step 1. The floating-point numbers are first unpacked

Step 2. Test if e(x)<e(y), interchange x and y if true.
Step 3. Set e(z) = e(x).
Step 4. Obtain e(x)-e(y) and test if e(x)-e(y) .> p+2.
Step 5. m(y) is shifted right e(x)-e(y) places.
Step 6. Round m(y) to p+2 digits to minimise the length

of register which is needed for addition/
subtraction in Step 7.

Step 7. Addition/subtraction.
Set m(z) = m(x) ± m(y)/be x̂ ^

Step 8. Normalise m(z) and round z into the final answer.
1.5. 3 REMARKS

(a) In Step *4, we can jump out of the routine instead
of going to Step 7 as the operands are assumed
to be normalised. Also note that testing
e(x)-e(y) ^ p will be sufficient if truncation
is used instead of rounding in Step 6 (and also
in the normalisation procedure).

(b) In Step 5, scaling right involves the shifting
of m(y) up to p+1 places. This implies that
an accumulator capable of holding 2p+l base b
digits to the right of the radix point is
required. Normally m(y) is truncated to p+2
digits to minimise the length of register which
is needed for addition/subtraction in Step 6.
The procedure for truncating to p+2 digits is as
follows: If m(x) and m(y) have the same sign,

to give the exponents and fractional parts
(mantissae).

replace m(y) by sign m(y)

12

m(x) and m(y) have opposite signs, replace m(y)
by sign m(y) b ̂ 2|b̂ + 2|m(y)|
where|x|= max kJ k being an integer

k < x- (1.5.4)
k being an integer k ^ x

The transformation has no effect if m(y) = 0
D + 2and e(x)-e(y) < 3 since bp m(y) would then be

an integer. Assuming m(y) i 0, and e(x) ^ e(y)+3
and since x is normalised, we have x i 0 , clearly

t m(x) + m(y) |> | - i 3> i2
This implies that the leading non-zero digit of
m(x) + m(y) must not be more than two positions
to the right of the radix point and the digit
which governs rounding must not be more than p+2
positions to the right of the radix point.
This is equivalent to zeroing out the digits of
m(x) + m(y) which are more than p+2 digits to
the right of the radix point.

(c) If x and y are not normalised, deleting Step 4
will give the required result. This is very
impractical since it will require a very large
accumulator (with about as many digits as the
range of exponents). Alternatively, we can
normalise X and y between Step 1 and Step 2.
Another solution is to change Step 4 to Step 4*.
If m(x) = 0, set e(z) = e(y) and m(z) = m(y)
and jump to Step 7; otherwise, if e (x)-e (y):>2p+l,
set m(z) = m(x) and go to Step 7. This implies
a large accumulator of 3p digits is needed
unless some pre-normalisation has been done.

i. 5.5. ALGORITHM FOR NORMALISATION
Assume b is even and |f| < b. This algorithm

converts an unnormalised floating-point number to the

and M = min k

13

normalised form. The fraction, m(x) is rounded to p-digits
before packing the exponent e(x) and the fraction part, m(x)
to give the desired representation. The following rounding
procedure is used:

If m(x) > 0 set m(x) = b P|_bPf + |J
m(x) < 0 set m(x) = b P [b^f -

(refer equation 1.5.4.)
If 2fs complement notation is used, the rounding procedure
will be slightly different.

Alternatively, we can truncate the fraction part
(i.e. mantissa) m(x) to p-digits after normalising m(x).
However, the result obtained will have a larger probable
error.
Step 1. Test if |m(x)| ^ 1,

Overflow if true, jump to Step 4.
If m(x) = 0 set e(z) = 0 and go to Step 7.

Step 2. Test if m(x) normalised,
i.e. test if |m(x)| > i, go to Step 5 if true.

Step 3. m(x) not normalised, scale left.
m(x) is shifted one place to the left and
decrease exponent by 1, go to Step 2.

Step 4. Overflow occurs, m(x) is shifted one place to
the right, and increase exponent by 1.

Step 5. Round (or truncate) m(x) to p-digits.
In rounding to p-digits, overflow may occur
when |m(x)| = 1, go to Step 4.

Step 6. Test for exponent overflow and underflow.
If underflow set m(z) = e(z) = 0.
If overflow set largest representable floating
point number and jump to error condition.

Step 7. The fractional part m(z) and the exponent e(z)
are put together into the desired output
representation.

14

1.5.6 FLOATING POINT MULTIPLICATION AND DIVISION
Assume x and y to be normalised floating-point

numbers such that
X = m(x) b e (x) -<l

and y = m(y) ^
where i 4 |m(x) | , |m(y) | < 1

and b,the base of the representation,is even.
Let z be the product of x and y.
It follows that either m(z) = 0 or

< I m(z)| < 1 .
In division, m(x) is shifted right one place before
division. This ensures that |m(y)|>Jm(x)|. The division
m(y) is first tested for zero divide. Error condition
is returned if zero divide.
Algorithm (for floating-point multiplication and division)
Step 1. The floating-point numbers, x and y, are first

unpacked.
Step 2. Test if m(y) = 0.

If true jump out of routine and set error condition
for division.

Step 3. (i) For Multiplication:
Set e(z) = e(X) + e(y)-q where q is the
excess; then multiply the fraction parts.

m(z) = m(x) x m(y) .

(ii) For Division:
Set e(z) = e(x) - e(y)+q+l, where q is the
excess.
Shift m(x) one place to the right and divide,
by m(y),
i.e. m(z) = m(x)/m(y)*b

Step 4. Jump to normalisation routine.

15

Remarks: Rounding overflow cannot occur after division.
However, rounding overflow is possible in
multiplication.
For example: Let m(x) = (255, 0.10001)

m(y) = (255, 0.11110),
then x # y = (255, 0.1111111110),
rounding gives (256, 0.10000).
If 0 < e < 255, overflow occurs.

1.6 FLOATING-POINT ARITHMETICS FOR ALGORITHMIC LANGUAGES
Two types of numbers, real and integers used in

Algorithmic languages (e.g. ALGOL) are implemented on the
computer by means of floating-point numbers and fixed-
point numbers, respectively. However, the set of fixed-
point numbers is not a proper subset of the set of float
ing-point numbers, while in the mathematical sense the
set of integers is a proper subset of real numbers.
Further, two types of arithmetic operations (floating
point operations and fixed-point operations) are needed to
describe the one type of mathematical operation. This
divergence between the mathematical(and ALGOL) number
concept and hardware usage imposes on ALGOL translation
the necessity of handling types (real or integer)
dynamically (5). Garu (5) described a floating-point
representation and normalisation scheme which avoids, for
the most part, the need for dynamic type handling.

The floating-point number representation defined is
the same as that described in section (1.4) except that
m(x), the ’fixed-point’ part (to denote the difference
from ’mantissa', which is a fraction) is an integer in the
range

-K < m(x) < K, where K is an integer determined by
the number of bits used to represent m(x).
This range has the advantage that a number with an integral
value N in this range then has a floating-point representa
tion (N, 0). However, normalisation may change the

16

representation to one in which there is no simple relation
between the floating-point representation and the fixed-
point representation. The following normalisation algo
rithm was suggested to avoid this (5).

Let (m(x), e(x)) be any floating-point number, r the
number of leading zeros in the fixed-point part, and s the
number of trailing zeros, then:
1. If e(x) = 0, the number (m(x), 0) is normal.
2. If e(x) > 0, shift off a number of leading zeros equal

to the smaller of b and r and compensate by decreasing
the exponent b by this number.

3. If e(x) < 0, shift off a number of trailing zeros equal
to the smaller of -e(x) and s and compensate by increas
ing the exponent b by this number.
The normal form is that representation of a number

in which e(x) is as close as possible to 0. Table 1
illustrates the patterns of the representation. For
simplicity, the decimal system is taken.

Clearly, integers can be recognised immediately by
the property e(x) ^ 0 and if the integer is in the range
-K<N<K, by e(x) = 0. Fixed-point numbers can be extracted
from the normalised floating-point number with an integral
value. The problem of not having the set of fixed-point
numbers as a proper subset of floating-point numbers is
resolved. If the set of fixed-point numbers is restricted
to those that can be represented in the fixed-point part
range, it is no longer necessary to provide for two sets
of machine operations to correspond to the set of mathe
matical ones. Normalised floating-point addition, for
example, will also serve as fixed-point addition and may,
therefore, be referred to simply as addition. The use
of this kind of fixed-floating arithmetic will considerably
simplify the handling of types in ALGOL and other algo
rithmic languages. In particular, the problem of the
dynamic handling of types for the most part is satis-

17

TABLE 1 Examples Illustrating the Algorithm

INITIAL FORM NORMAL FORM
ACTUAL NUMBER m(x) r s e(x) m f(x) ef(x) 3NTEG1

12345678. 12345678 0 0 0 No change Yes
1234567800. 12345678 0 0 2 Yes

1234.5678 12345678 0 0 -4 No

12340000. 12340000 0 4 0 Yes
1234000000. 12340000 0 4 2 Yes

123400. 12340000 0 4 -2 000123400 0 Yes
12. 34 12340000 0 0 -6 00001234 -2 No

5678000000 00005678 4 0 6 56780000 2 Yes
56.78 00005678 4 0 -2 00005678 -2 No

18

factorily solved.

1.7 UNNORMALISED FLOATING POINT NUMBERS
A.L. Asherhurst and N. Metropolis (7) suggested an

arithmetic in which some of the difficulties of conven
tional floating point arithmetic are avoided by not
normalising the numbers used except where absolutely
necessary. Algorithms for floating-point computer arith
metic are described in which fractional parts are not
subjected to the normalisation conventions. These algo
rithms give results in a form which furnishes some
indication of their degree of precision. The unnormalised
arithmetic system must be flexible enough to permit
adjustment to be determined by a combination of automatic
ally applied rules and programme-determined options. The
MANIAC III Computer in the University of Chicago was
designed to achieve this in hardware (2).Based on a single
unnormalised exponent-coefficient number format, several
varieties of arithmetic manipulation are made possible
through the inclusion of operations which employ ’specific
point', 'normalised' and significance adjustment rules
for results. The unnormalised format permits smooth
transition to zero since there exists a multiplicity of
"relative zero" with coefficient 0 and arbitrary exponent.
There is also an incidental advantage in the avoidance of
'exponent underflow' by never allowing a result to be
adjusted so that its exponents exceed the lower limit.

In Metropolis (7), (8) type of arithmetic the
probable error in the absolute value of a number is
implied by the presence of leading zero digits rather
than being stated explicitly. Any number so represented
is implied to have an error of plus or minus half the
least significant digit.

In addition and subtraction, the exponents of the two
operands are made equal by shifting the number having the
smaller exponent and then adding (or subtracting) the

19

fractions. Thus the sum will have no fewer leading zero
digits than is justified by the accuracy of the operands.
The result is left unnormalised so that all the digits
which appear in the register are significant. Thus at
any stage of the computation, a meaningful result is
produced with no ambiguity as to the significance of the
digits.

In multiplication, the factor having the larger
fraction is first normalised. The other operand enters
the multiplication with its leading zero digits. The
product so formed will have about as many leading zero
digits as the least accurate factor.

In division the divisor is first tested for zero
divide. The correct number of leading zero digits in
the quotient is produced by first shifting the dividend
fraction right until it is less in absolute value than
the divisor fraction. The quotient fraction is formed
by dividing this shifted dividend fraction by the normal
ised divisor fraction. The exponent is incremented each
time a right shift is performed and exponent overflow and
underflow are tested before assembling the quotient
fraction and exponent.

This sort of unnormalised floating-point representa
tion gives an extra dimension to the process, which can
be exploited for purposes of significance monitoring.

W.G. Wadey (8) gave a comparative study of these
types of arithmetic as compared to the conventional
floating-point arithmetic. In addition to the Metropolis
floating-point arithmetic given above, floating-point
arithmetics with probable error computation are discussed
(refer (8)). In the later type, the probable errors in
arithmetic computations are computed as the root mean
square of the probable errors of the two operands, and
are explicitly carried in the last significant digit.
This sort of arithmetic can be used as a check on the

20

accuracy of computations with other arithmetics. It can
also be used to perform at once a computation where error
analysis is difficult or long in order to determine how
many significant digits are obtainable. The validity of
this arithmetic is based on the assumption that the errors
of the operands are not correlated and the error dis
tributions are normal distributions (5).

1.8 1 EXACT ARITHMETICS'
Notations used in the sections that follow are taken

from Wilkinson (4). The expression fl(A) is used to
correspond to an expression involving floating-point numbers
and the arithmetic operations, +, -, x, /. (Denote +, -,
x or / by *.) The definitions and theorems given are
taken from Dekker's paper (6).
DEFINITION (DEKKER) 1.8.1

The floating-point number system R is defined as
R = {x|x = m(x) be x̂ \ |m(x)|< M, -D < e(x) < E} (1.8.2)

where M is a positive integer,
D and E are positive integers or infinite when we disregard
overflow and underflow,
b is the base of the system R,
m(x) is the mantissa and e(x) the exponent.
Note: The m(x) and e(x) are integers with a certain range

and M depends on the number of mantissa digits.
DEFINITION (DEKKER) 1.8.3

The floating-point operation corresponding to * is
'faithful’ if, for all x and y, the result fl(x * y) equals
either the largest element of R smaller than or equal to
x * y, or the smallest element of R larger than or equal to
x * y.

i.e. z = fl(x * y)
where z = Max z1 or z = Min z1

z1 < x * y z*> x * y
When x * y lies between two successive elements of R,
either one will do. When x * y R, then z=fl(x*y)=x*y

21

i.e. result exact. When x*y is outside the range of R,
then z = fl(x*y) is the largest or the smallest element of
R.
DEFINITION (DEKKER) 1.8.4.

The floating-point operation corresponding to * is
optimal (or properly rounding) if, for all x and y, the
result fl(x*y) is an element of R nearest to x*y.

Hence, if z = fl(x*y), and if * is optimal,
z is uniquely defined except when x*y lies halfway
between two successive elements of R;
in which case, an optimal operation may round up or
down.

DEFINITION (DEKKER) 1.8.5.
Floating-point addition is ’properly truncating' if

it is commutative (i.e. fl(x+y) = fl(y+x)) and, for all x
and y satisfying |x|>Jy|, the result fl(x+y) equals the
largest element R smaller than or equal to x+y if y > 0
or the smallest element of R larger than or equal to x+y
if y < 0.

The definition uniquely determines the result. When
x+y is not an element of R, the truncation is in the
direction of -y.
DEFINITION (DEKKER) 1.8.6.

Floating-point subtraction is 'properly truncating'
if, for all x and y, we have fl(x-y) = fl(x+y-*), where
y-' = -y and the floating-point addition is properly
truncated.
DEFINITION (DEKKER) 1.8.7

Floating-point addition and subtraction are 'super
faithful' if,for each x and y, the result fl(x±y) is
obtained by properly rounding or by properly truncating.
Remarks: 1. Floating-point numbers considered are not

normalised. To obtain a faithful addition

22

and subtraction, the result must only be
normalised before it is truncated or rounded,
c.f. Kahan (12). Optimal addition and sub
traction can be perfectly well formulated
using an accumulator having no more than two
guarding digits (Kruth (3)).

2. Floating-point arithmetic is not associative

NOTATION
For any real r, round (r) denotes an integer closest

to r. Let z = fl(x+y) and z e R.
If floating-point operation * is optimal (properly

rounding) then z can be represented by

provided that no overflow or underflow occurs.
Let us now consider some of the basic rules which are

valid for normalised floating-point operations as described
in the previous section. Note that the floating-point
number system R defined by equation (8.2) still holds except
when underflow occurs in normalisation.

(i) addition is commutative,

i.e. (x+y) + z i x + (y+z) (refer Kruth (3)
page 198).

where m(z) = round (x*y b

i.e. fl(x+y) = fl(y+x)
(ii) fl(x-y) = fl(x+(-y))

(iii) fl(x+y) = 0 if y = -x
(iv) fl(x+0) = x
(v) fl(x-y) = -f(y-x)

(1.8.8)

We shall prove rule (v) of equation(l.8.8).
Proof:

fl(x-y) = fl(x+(-y)) from rule (ii)
fl(x+(-y)) = fl((-y) +x) from (i) commutative

= -fl(y+(-x)) from (iii)
fl(x-y) = -fl(y-x) from(ii)

23

Note: The laws would not be strictly true if two's com-

Clearly, a floating-point operation corresponding to
* is optimal if this rounding procedure were used to obtain
the result fl(x*y), provided no exponent overflow or under
flow occurs.

The following relationships also hold if the above
rounding rule is used.

provided no overflow occurs.
From equations (1.8.8) and (1.8.9) the following

identities are true:

plement notation were used for the fraction-parts
in floating-binary arithmetic instead of signed-
magnitude representation.

Consider the following round procedure.
Define

round (x, p) = x rounded to p-digits

0 if x = 0

fl(x+y) = round (x+y, p)
fl(x-y) = round (x-y, p)
fl(xxy) = round (xxy9 p)

fl(x/y) = round Xx/yy-'p)

(1.8.9)

fl(xxy) = fl(yxx)
fl((-x)xy) = -fl(xxy)
fl(lxy) = y
f l (x x y) = 0 if x = 0 or y = 0
fl(-x/y) = f(x/-y) = -fl(x/y)
fl(0/y) = 0
fl(x/l) = x
fl(x/x) 1

24

The aim in floating-point routines is to preserve as many
of the ordinary mathematical laws as possible. As shown
above, if the operations are defined according to a con
sistent set of conventions, many of the mathematical laws
will hold true in spite of the inexactness of floating
point operations.

i. 9 THEOREMS.ON EXACT ARITHMETIC
To estimate the errors involved in floating-point

operations the exact arithmetic of the floating-point
numbers is considered. In addition to the system R,
defined by equation (1.8.2), we assume the floating-point
numbers are normalised. Four exact operations will be
considered, namely, addition, subtraction, multiplication
and division.
1.9.1 EXACT ADDITION

Let x and y be given elements of R (x, y normalised)
and let

z = fl(x+y).
We can find a correction term, zz, satisfying the exact
relation

z + zz = x+y
THEOREM 1.9.2 (DEKKER)

If the floating-point number system R has the form
R = {x|x = m(x) be x̂\ |m(x)|<M, -D < e(x) < E}

and if (i) b = 2 or 3
(ii) M is a multiple of b

(iii) Floating-point addition optimal and subtraction
faithful

(iv) e(x) >. e(y) where x, y are elements in R
then the correction term zz given by the equation

a) w = fl(z-x) (1.9.3)
b)zz = fl(y-w)

such that x+y = z+zz where z = fl(x+y).

25

Proof: Given x, y e R and e(x) ^ e(y)
we can write

x = mCx) be(x)
y = m(y)

To prove the theorem, all we need to show is that fl(y-w)
and fl(z-x) are exact.
Since subtraction is faithful, it remains to show that

(i) z-x e R
(ii) y-w e R

Proof (i) We need to consider 2 cases,
a) e(z) = e(x)+l
b) e(z) 4 e(x)

Case (ia) e(z) = e(x)+l
Let z = m(z)be^z ̂ where m(z) # round (x+y) b”e x̂^

i.e. m(z) = round (m(x) be x̂ +̂ m(y)be^^ b
Let d = e(x)-e(y)
then

m(z) = round(m(x)/b + m(y)/bd+d).............(*)
✓ \ . e(x)+l , x T.e(x)Now z-x = m(z) b -m(x) b

= (m(z) b-m(x)J b
then

e(x)

0 (x)z-x = jib where y = bm(z)-m(x).
Consider

y = bm(z)-m(x)
= bm(z)-m(x) - m-Ŝ — + m(y)/bd

bd
|y| 4 |bm(z)-m(x)-m(y)/bd|+|m(y)/bd |

4 b|m(z)-m(x)/d - m(y)/bd+1|+ m(y)/bd
4 b|m(z)-m(x)/d - m(y)/bd+d|+ m(y)/bd

i.e. |y| < b/2 + M from equation (*)
but

b 3 and y is integral.
We have

|y|< M.

26

Also M is a multiple of b. Hence

M < M.
By definition of R, therefore, (z-x) is an element of R.
Case (iia). To prove y-w e R where w = fl(z-x)

Now e(v) e (x) y-w = m(y) b J -m(w) b , where m(w) = y
, , ,d e(y) and e(x) = e<y>+d» d>0= m(y)- b b J

y-w = integer x be^ \
If |y—w|> |y|; then x would be closer to x+y than z,

contradicting the assumption that floating-point addition
is optimal. Therefore

|y-w l=i|y|
which implies that |y|< M, where y = m(y)-yb^.

Hence y e R.
Case (ib): e(z) 4 e(x).

Overflow may occur when e(z) = e(x)
i.e. z = fl(x+y) takes the largest value in the range of

R nearest to x+y (refer definition (1.8.4)).
Similarly, we can prove (i) z-xeR and y-weR.

This completes the proof of theorem.

1. If R is the system of normalised floating-point
numbers,Theorem (1.9.2) still holds provided no
underflow occurs in forming zz.

2. If M is not a multiple of b, Theorem (1.9.2)
breaks down. For example, if b = 3, M = ^(3^+1)
(balanced ternary system, (3)) and x = y = M-l
then z = fl(x+y) = 3^
and z-x = 3t-i(3t-l) = ^(3t+l) = M
which implies z-x I (not an elemental of) of R.

3. If base b > 3, Theorem (1.9.2) fails too.
For example: b = 10, M = 100, and x = y = 99,

27

then z = fl(x+y)
= 20 x 101
= 200

and z-x = 200-99 = 101 which is not in R
i.e. z-x i R.

4. Theorem does not hold if addition is only
faithful.
For example, let b=2, M=16, x=15, y=13/B2 and
z=16. (i.e. we take z = min. k),

k>x+y
refer definition of faithful (1.8.3),
then w = z-x = 1 e R
but y-w = -1 = -19/32 i R.

Theorem (1.9.2) can be extended to any b and M,
provided that the mantissa range is enlarged to accommodate
the intermediate value w. As w may be anonymous,
(for example in the ALGOL 60 statements

z:= x+y, zz:=y-(z-x), w remains anonymous) and some
systems have an enlarged mantissa range for the anonymous
floating-point values, an extended theorem has practical
application.

If floating-point addition, which is optimal, is
replaced by properly truncating addition (see Definition
(1.8.5)and subtraction is faithful, Theorem (1.9.2) holds
without any restriction on b and M and without requiring
an enlarged mantissa range for w. We have the following
theorem
THEOREM (1.9.i|) DEKKER

If R = {x|x = m(x) be x̂ \ |m(x) | <M, -D < e(x) < E}
(i) floating-point is properly truncated and subtraction

faithful;
(ii) x, y e R and e(x) ^ e(y);

(iii) z = fl(x+y);
then the correction term zz defined by

z + zz = x + y

28

is given by the equations
(i) w = fl(z-x)

(ii)zz = fl(y-w)
Proof of Theorem (1.9.4) is similar to the proof given for
Theorem (1.9.2). Since subtraction is faithful, we need
only to show that

(i) z-x e R
(ii) y-w e R

Remarks:
1. Consider example given in section 1.9.3, remark 4.

b=2, M=16, x=15, y=13/32, then z=15 and not 16 if
addition is properly truncating and
zz = 13/32-D = 13/32 e R.

2. From theorems (1.9.3) and (1.9.4) the following
corollary holds.

COROLLARY (1.9.5)
If R = {x|x = m(x) be x̂ \ |m(x)|< M, -D < m(x) < E}

where b=2 or 3 and M is a multiple of b, and if addition is
’super faithful' and subtraction faithful, then the correc
tion term zz is given by the equations

(i) w = fl(z-x)
(ii)zz = fl(y-w)

such that z + zz = x + y.
Proof for Corollary (1.9.5)

By definition of 'super faithful' (see definition
(1.8.7) and from theorems (1.9.2) and (1.9.4) the result
follows.

If w = fl(x-z) and zz = fl(w+y)............ (1.9.6)
the theorems (1.9.2) and (1.9.3) remain valid if the
floating-point number system R is symmetric. This
definitely will hold true if the signed-magnitude
representation was used to represent the mantissa, (as x e R
implies -x e R). Writing w = fl(x-z) and zz = fl(w+y)
instead of (1.9.3) has some practical advantage. For

29

example, in Algol 60 we write
z: = x+y,

zz: = x-z+y.
Again w remains anonymous. For applications this formula
is preferred as many compilers produce a slightly faster
code for (1.9.6) than (1.9.3).
THEOREM (1.9.7) (MOLLER-KNUTH)

If R has the form R = {x|x = m(x) be x̂ \ |m(x)|< M
-D < e(x) < D}

and floating-point addition and subtraction are optimal
then for all x and y in R and for z = fl(x+y) the
correction term zz is given the equations

w = fl(z-x), zl = fl(y-w)
v = fl(z-w), z2 = fl(v-x)

zz = fl(zl-z2)
provided overflow and underflow does not occur.
We can write this as

x+y = z+fl(zl-z2)
i.e. x+y = fl(x+y) + fl(zl-z2).

In Knuth (3), the theorem is proved for normalised floating
point numbers provided that no overflow or underflow occurs.
Instead of calculating zz, -z2 is computed, and added to zl,
i.e. we have

x+y = fl(x+y) + fl(zl+z2).
For a proof of this theorem, refer Knuth (3).

Alternatively, the same lines of the proof of the
theorem can be given. Since subtraction is optimal, we
need only to prove that (i) y-w e R, (ii) v-x e R and
(iii) zl-z2 e R.

(1.9.8) EXACT MULTIPLICATION
Let R = {x|x = m(x)2e x̂\ |m(x)|< 2^ (1.9.9)

For exact multiplication we need to find zz such that
z + zz = x + y.

NOTATION;

R(t) is used to denote a binary floating point t-digit
number system.

THEOREM (DEKKER) 1.9.10
If R = {x|x = m(z)2e x̂ \ |m(x) | < 21"},

floating-point addition and subtraction are optimal and
multiplication is faithful, then for all x and y in R
split into head and tail according to

h(x) = round (m(x)2-ti) 2e x̂^+*i^
and t(x) = x - h(x)
where tj and are given by

t = entier (t/2) and t = t-t 2 1 2

the formulae
p = fl(h(x) x h(y))
q == fl(h(x) X t(y) + t(x) x h(y)) (1.9.11)
r = fl t(x) x t(y)

z = fl(p+q)
(1.9.12)

zl = fl((p-z) + q)

and zz = fl(zl+r)...................... (1.9.13)
yield z and zz satisfying

Z + ZZ = X X y.
Proof; Given x and y are split such that

h(x) = round (m(x)2 2e ^x ^+\ #

where h(x) is the ’head' of x and is an element of R(t^)
s (x)very near x (if x = m(x)2 , m(x) is normalised)

since h(x) is obtained by rounding,
t(x) is an element of R ^ -t) as = t-t£ .

31

Then we have
h(x) x h(y) e R(2t2)
h(x) x t(y) , t(x) x h(y) e R(t-l) (1.9.14)
t (x) x t (y) e R(2tx -2)

Since t2 = entier (t/2)
and. t̂ — t-t2
then 2t2 4 t and 2^ -2 4 t-1.

Since h(x) x t(y) and t(x) x h(y) are representable as
elements of R(t-l) with the same exponent, their sum is an
element of R(t) and formulae (1.9.11) are exact as float
ing point operations are faithful.

From (1.9.12), since |p| ^ |q| we have e(p) ^ e(q)
and by Theorem (1.9.2)

z + zl = p+q

as floating-point addition and subtraction are optimal.
From these assumptions, it also follows that zl is
representable as an element of R(t-l) with the same
exponent as r. Hence

zl + r e R
so that zz defined by

z + zz = x x y
is obtained from

zz = fl(zl+r).
Hence proved.

Also zz is (almost) negligible within machine precision
with respect to x x y. This implies that for t ^ 2

|zzI4 |xxy|d2 ^/(l-d2 ^) (1.9.15)
where <ot = 2 if t is even and d = 3 otherwise.
Proof:

If x = 0, or y = 0 then
zz = z = 0

then (1.9.15) holds.
Assume x i 0 and y i 0

h(x) and h(y) i 0 and p+q i 0.

Let e = t(x)/x} r\= t(y)/y, 6 = zl/(p+q).
The exact product is given by

Z + ZZ = X X y

= xy - p+q + (p+q)6
= xy - (1-6) (p+q)

=*= xy - (1-6) {h(x)h(y)+h(x)t(y)+h(y)t(x) >
= xy - (l-6){h(x) (h(y)+t(y))+h(y)t(x)}
= xy - (1-6) {h(x)y+h(y)t(x)}

zz = xy -(l-6){xy - t(x)y+h(y)t(x)}
= xy -(1-6) {xy-t (x)(y-h(y))}
= xy -(1-6){xy-t(x)t(y)}

where z = p+q - zl.
Now ZZ = X X y - z

also h(x) = x-t(x)

Substituting for t(x) and -(y),
we get

zz = xy -(1-6) (xy-enxy)
= xy {l-(l-6)(l-en)}

zz = (xxy) { (1-en) 6+ET1 }
Since floating-point addition is optimal, we have

| 6 | <=2_t/ (l+2“t)

Similarly, |e| 2 ^2/1+2 ^

since h(x) = round {m(x) 2 ^i}2e x̂ +̂t]

and t(x) = t-h(x).
Hence

|zz|<|xxy|{2't/(l-2_t)} {l-2t_2t2 (l-21_t)/(l-2_t2)?}

and

33

and for t ^ 2
1 + 2 ~ \ > 1 + a 2“t > 1 + 21"t

we get

Hence

zz

v|zz| 4 | xxy | a 2 t/(l+a2 t).

1.10 CONCLUSION
The pair of formulae (1.9.6) and z = fl(x+y) is the

basic algorithm for exact addition of two floating-point
numbers. In the next chapter, this algorithm is used to
obtain the algorithm for double-length addition. The
role of the terms x and y is often interchanged when
|x[<|y| so that the condition (iv) in Theorem.(1.9.2)
is satisfied. It should be noted that in the actual
implementation on the MULTUM computer, the conditions
in Theorem (1.9.4-) are assumed. This is due to the fact
that floating-point numbers are truncated after normal
isation in the MULTUM computer. Further, it is assumed
that no overflow and underflow occurs in our calculation.

For exact multiplication, the formulae (1.9.11) to
(1.9.13) are used to obtain the algorithm for double
length multiplication. The extra condition (1.9.15)
is assumed. However, the bound for zz may be modified
to give a smaller bound by the following algorithm.

After calculating z and zz as (1.9.15),an exact
addition of z and zz is performed.

Let u = z and uu = zz,
then calculate

z = fl (u + z z) (1.10.1)
and zz = f3((u-z)+uu)

Then z and zz still satisfy
Z + ZZ = X X y

34

and since addition is optimal, we now have
|zz| 4xxy|2 t/(l+2 t).

The bound for zz is only 2 or 3 times smaller than (1.9.15).
It may not be worthwhile in terms of three extra additions
or subtractions to form z and zz.

35

CHAPTER 2

2.0 INTRODUCTION

The implementation of both single precision and double
precision floating-point arithmetics is based on the
discussions found in the first chapter. One major differ
ence between this and the theories described in Chapter 1
is that the two’s complement representation is used
instead of the sign-magnitude representation. Only minor
changes are required to implement the floating-point arith
metics in the MULTUM ALP 2/3 computer. For example, in
truncation, the difference in the direction of truncating
must be appropriately accounted for and care be taken if
negating a negative number.

A brief description of the MULTUM ALP 2/3 processor
and its arithmetic instructions will be given in the next
two sections. Literature regarding the specifications
of ALP 2/3 processor and the description of the symbolic
language used can be found in references (9) and (10).

Two methods of making double-precision arithmetic
available are discussed in the later part of the chapter.
The methods studied are Dekker's method (6) and the one
using the conventional method (3). The second method
needs special fixed-point arithmetic, namely ’Long Multiply’
and ’Long Divide’ in addition to those fixed-point
instructions available.

36

2.1 GENERAL DESCRIPTION (of ALP 2/3)

The main arithmetic, decision making, and logical
operations of the computer system are performed by the
Arithmetic and Logical Processor (ALP 2/3). The processor
works on 16-bit words and up to 2 56K words of immediate
access memory can be addressed. Arithmetic operations are
performed using 2’s complement arithmetic.

There are seven 16-bit programme accessible registers,
namely, registers A, B, X, Y, S, P and the condition
register (CR). Register A is the main programme access
ible register of the ALP and acts as the accumulator in
single-length arithmetic operations. Register B is used
for double-length operations and it forms the least
significant half of the double length register E (AB).
Information can be fetched and stored from memory using
registers A, B or E. Registers X and Y are general
purpose registers and are used for address calculation and
for inter-register arithmetic and logical operations. The
register S is the sequence control pointer and holds the
address of the next instruction in the programme sequence.
The Data pointer register P is used as the base address for
the current set of memory held registers. (See page 13,
Ref. (9)).

37

2.2 FIXED POINT FORMATS AND INSTRUCTIONS

2.2.1 SINGLE LENGTH INTEGERS

N_ N.15

binary point

figure 1

Single precision fixed point values are held as 16 bit
2!s complement binary numbers with the assumed binary
point immediately to the right of the least significant
bit. This gives a range of integral value of

-215 < i < 215-l.
The range is assymetric about zero and there exists an
integer -215 which has no representable negative.

DOUBLE PRECISION FIXED-POINT FORMAT

The double precision fixed point values are held as
32 bit 2fs complement binary numbers with assumed binary
point immediately to the right of the least significant
bit of the least significant word. The range of values
representable by this format is £-231 , 231-l] . Similarly,
-231 will have no representable negative.

N, N N,
word 0

15 *"16
word 1

figure 2

N31

binary point

Note that the double precision format is slightly modified

38

in division.

2.2.2 FIXED-POINT INSTRUCTIONS

In fixed-point operations, ’overflow’ is said to occur
when the result of an operation is outside the representable
range. In single precision, fixed-point addition and
subtraction (ADDA, SUBA) overflow occurs when the result r
is less than -215 or greater than or equal to 215 .

The instruction MLTA multiplies two single-length
precision fixed-point values and produces the correct
double precision fixed-point result in the range

- (230 -2 15) 4 i ̂ 230
It should be noted that the double precision fixed-point
result obtained by the operation ’MLTA' is a 30 bit product
occupying bit position 2 to 31 (inclusive) of the 32 bit
register E (AB). The sign bit is duplicated in bit 0 and
1. Interpreting the result as a fixed-point fraction
(i.e. radix point between bit 0 and bit 1), the product
formed must be shifted left one place to give the correct
fraction. Bit 0 i Bit 1 if we multiply (-1) by (-1).

The only serious problem arises with division. The
instruction DIVE treats the dividend as a special format
and divides it by a single precision fixed-point divisor,
and produces a single-length fixed-point quotient and a
single-length fixed-point remainder. There are two
interpretations of the double precision fixed-point format

in division.

a) Fraction.
All operands and results have an assumed binary point

39

immediately to the right of the most significant bit
n"b ni

f -----
binary point

-31
DIVIDEND

n. n

. t .binary point

15

Figure 3

REST

Interpreted in this sense, the dividend is taken to be
a fraction occupying 31 bits (0-30). Overflow occurs if
the divisor is less than or equal to the dividend.

b) Integer.
The dividend has an assumed binary point immediately

to the right of bit 30. The remainder and quotient are
single length integers with binary point immediately after

bit 15.

n. n 30 n 3i
DIVIDEND

binary point

n. n15

-------2i

binary point

REST

Figure 4-

Given any double-length integer, the dividend must be
shifted left one place before division is carried out.
Two errors may occur with DIVE,
(i) Zero divide,

(ii) Overflow.

An overflow situation occurs when the ratio of the
absolute values of the dividend and divisor is greater
or equal to 215.

Remarks:

There is a lack of uniformity in fixed-point formats
for double-length operations. This can be resolved
most simply by using the format for ’MLTA’ as a
standard. In this, bit 0 is equal to bit 1 for all
valid patterns. Arithmetic overflow should be set
if any fixed-point operation produces a double-length
result with bit 0 not equal to bit 1. However, the
instruction ’DIVE' is defined to work on bit 0 to 30,
so either re-define DIVE to operate on bit 1 to bit
31 or always precede 'DIVE1 by a logical shift left
of 1 bit.

2.3 FLOATING-POINT FORMATS AND FLOATING-POINT INSTRUCTIONS

2.3.1 FLOATING-POINT FORMAT (SINGLE PRECISION)

*0 n l ^ 3 n 24

i

<r-
Mantissa Exponent

\
binary point

Figure 5

41

n0 *J*n2 3 24-bit mantissa m(x) , 2Ts complement with
assumed binary point between nQ , n . The 24 bit
signed 2rs complement fraction will be in the
following range

m(x) positive J 4 m(x) 4 (l-2~23)
m(x) negative -14 m(x) 4 -(|+2_23)

n2b ’’,n3l 8”bit exponent stored biased 128,
base 2. Range of exponent e(x) is in the range

-128 4 e(x) 4 127 and stored as 0, 255

The above range for mantissa assumes standardisation-
to either all 32 bits zero, representing value zero, or
bit 0 not equal to bit 1 (nQ i). All other bit
patterns are said to be non-standard but all have the value
2exPonent ^ mantissa assigned. The bit pattern 80000000

for single precision floating-point number is undefined.

2.3.2 DOUBLE PRECISION FLOATING-POINT FORMAT

Double precision floating-point arithmetics are
realised by software (using the available fixed-point
instructions or using the available single precision
floating-point instructions). This is dependent on the
format used. The following double precision floating
point format was first proposed by I.C.S.

2.3.3 DOUBLE PRECISION FORMAT (by I.C.S.)
Double precision floating-point numbers will occupy

four words of store and are allocated as detailed in figure
(6).

word 0

word 1

word 2

n

n16

n32

n15

n31

nif 7

4-8 bit mantissa

word 3
nif 8 n63

Figure 6

Exponent - 16 bits

_if 7

The mantissa is a 4-8 bit signed 2's complement fraction
and is in the following range:

m(x) positive
m(x) negative -1 m(x) -(J+2)

The exponent is held as a 16 bit number in excess 32 76 8.
Zero is held as four zero words. For standardised
floating-point numbers, bit 0 and bit 1 are not equal.
All other bit patterns are non-standard. The bit pattern
8000 0000 0000 0000,,. for double-precision floating-point1 6
number is undefined.

2.3.1+ DOUBLE PRECISION FORMAT WITH REDUCED EXPONENT

Alternatively we could have the following set-up as
a double precision floating-point format (refer to figure 7

43

word 0

word 2

n

n32

mantissa (most significant bits)-
n15 n

n47 n,48
word 3

*4-
n n n

word 1
31

exponent

n 55 n 56 n6 3

n09

n24

n 32

n56

-mantissa (least significant bits)-

Figure 7

n 31

n6 3

reduced
exponent
 >

n , n , ...n Mr! bit mantissa 2’s complement with 23 33 35
assumed binary point between^ and .

Range of mantissa
[-1, - (J+2-1*6)j , 0, [J, 1-2-1*6]

8 bit exponent, stored excess 12 8, base 2
Exponent range is [-128, 127j and stored
as [o, 255]
always set to 0 and is not part of
mantissa.
8 bit reduced exponent, stored excess
12 8, base 2. The reduced exponent
takes the value (exponent -23)if this
is greater than, or equal to, zero and

If
reduced exponent is zero then all of
n.„...nee are not all zero.3 3 O J

n32 to ng3 are cleared

The above range for the mantissa assumes standardisation
to either all 64 bits equal to zero, representing value 0

44
or bit 0 not equal to bit 1 (i.e. nQ i). All other

bit patterns are non-standard, but still have the value
2exPonent x man-j--j_ssa assigned. The pattern

8000 0000 0000 0 0 0 0 is the 'undefined value' for double
precision floating-point number.

Remarks:

1. The proposed new format having the advantage;
a) Conversion from single precision to double

precision is done by appending 2 cleared words.
b) Software implementation will be satisfactory.

As seen in Chapter 1, a straightforward coding
of Dekker's method (6) can be used. In the
later part of the chapter we shall discuss the

y methods involved.
c) Word 2 and word 3 form a (possibly non-standard)

single-precision floating-point number.
d) Implementation of multiple-precision floating

point software is simplified.

2. The loss in the range of double precision is
scarcely a disadvantage since
a) there was a lack of compatibility between

single and double precision floating-point
formats. Conversion from one to the other
is hazardous.

b) the hidden danger of catastrophic loss of
precision when using values of the size of
]_q 1000 far outweighs the small advantage.

45

2.3.5 FLOATING-POINT INSTRUCTIONS

Floating-point arithmetic for single precision is
realised by hardware in the ALP 3 processor. The
floating-point instructions for addition, subtraction,
multiplication, standardisation, etc., are simulated here
for the ALP 2 processor and also to test the accuracy of
the floating-point arithmetics performed by the hardware
(in the ALP 3 processor). The following mnemonics
FADDF, FSUBF, FMLTF, FDIVF, FSTND, FFIXF, FFIXI, FFLTF,
FFLFI and FNEGF are used to denote floating-point add,
subtract, multiply, divide, standardise, fixed fraction,
fixed integer, float fraction, float integer and floating
point negate respectively.

2.3.6 ADDITION/SUBTRACTION (FADDF/FSUBF)

The flowchart for addition/subtraction is given in
figure (8). Coding of the algorithm is straightforward
arid is given in the appendix (1). The routine expects
the operands to be in standardised format.

The alignment of the binary points before adding the
mantissa is done by an arithmetic shift (of the mantissa
with smaller exponent) by, at most, 2 3 places. If more
than 2 3 right shifts are required the smaller operand is
set to zero. This procedure ensures that addition or
subtraction is properly truncating (refer Chapter 1,
definitions (1.8.5) and (1.8.6)). For example, consider

the extended mantissa m(x) and m(y).
Let m(x) = (45678900)lg

m(y) = (FFFFFE00)16

If we allowed a right shift of more than 2 3 places (bits)

46

say e(x) = 81lg and e(y) = 69lg (i.e. an exponent difference
of 2 4) then the sum m(x) + m(y) is equal to (45678FF),„ .

16

After standardisation and truncation, the floating-point
result is equal to (45678781)lg . If a right shift of less
than or equal to 2 3 places (bits) is allowed, the sum so
formed would then be (456 7 89 81) . In this case, we

16

return the value of the larger operand if the difference
in exponent is greater than 23. Clearly we can see that
the operation in the latter case is properly truncating
(as given by definition (1.8.5) and (1.8.6) since

(45678981^g > (45678781) lg.

2.3.7 MULTIPLY (FMLTF)

The flowchart for the multiplication routine is
given in figure (9). It is a straightforward adapt
ation of the algorithm given in Chapter 1. The- main
difficulty in the procedure is in Step 3 when we multiply
the mantissae. The multiply instruction available is
MLTA. However, this instruction multiplies two single
length numbers (16-bits) to form a 32-bit product (refer
section 2.2.2). Interpreting the mantissa and product
as fixed-point fractions, the correct fraction (product)
is obtained by a left shift of one bit, (provided no
overflow occurs). The extended mantissae are first truncated
to two 16-bit words before multiplication. The truncated
mantissae are then multiplied to give a 32-bit product. A
significance of at most 16-bits is attained by this process.
To get a full 24-bit significant (digit) fraction,
the extended mantissae are split into two

47
FLOWCHART: ADDITION/SUBTRACTION

(FADDF/FSUBF)

^FADDF/FSUBF^

UNP/
x to m(x
y to m(y

ĈK
), e(x)
), e(y)

>
set: e(z)-*- e(x)

No

Yes

set: diff<- e(x)-e(y)

set:m(z)«-m(x) ± m(y)

No Overflow

Yes

(Figure 2)

set: e(z)•«- e(y)

set: diff«-|e(x)-e(y)

arith. shift right.
m(x) by diff. arith. shift right

m(y) by diff.

STANDARDISE
entry point ’STEXP

logical shift right
restore sign bit
set: e(z)-*-e(z) + 1

48

16-bit words and the following procedure is.followed.
Let m(x) , m(y) be the two 32-bit mantissae (extended,

last 8 bits all zero). Then m(x) is split into 11̂ (x) and
(x), where (x) is the most significant half and (x)

the least significant half. Similarly, m(y) is split.
Then,

m(z) = m(x) m(y)
= {m^ (x) + ein (y)} {n^ (y) + ein (y)}

= (x)n^ (y) + <x)n^ (y) + (x)]̂ (y)} +e2n̂ (x)n^ (y)

where e is the reciprocal of the word-size.
The value e2 m^ (x)m2 (y) is too small to be significant in the
final result since e2 is a right shift of 30 bits (places).

Hence we have
m(z) * m (x)m (y) + e{m (x)m (y) + m (x)m (y)}1 1 1 2 2 1

Remark:
Adjustment of (x) is required if m(x) is negative.

This is best explained by an example.
Suppose m(x) = (80010400)16
then mn (x) = (8002). instead of (8001)1C1 16 lb
and (x) = (8200)16 .

jî (x) is a 2fs complement single length fraction. To get
m2 (x), the least significant word {of m(x)} is shifted right
by one bit and then insert the sign bit according to the sign
of m(x). As for 11̂ (x) , the most significant word {of m(x)}
is increased by 1 {to give(8002) If such adjustment in
m̂ (x) is not carried out then

49

FLOWCHART: MULTIPLICATION
(FMLTF)

FMLTF*

set: e(z) e(x)+e(y)-128

arith. shift right ci 9 14 places

STANDARDISE
ENTRY POINT ’STEXP

m(y) to m1 (y),m2 (y)

SPLIT

y to e(y), m(y)

UNPACK

RETURN (Figure 9)

5G

(80010000)n c 16
+ (FFFFO 4 00)1,6,,

(80000400)lg 1 m(x)

If the least significant word of m(x) is zero, then (x)
is returned as (8001)lg and m2(x) as (0000)16

Note that the procedure of splitting is only valid if the
floating-point numbers are in the standard format. If not,
overflow may occur in forming (x). For example, m(x) =
(FFFFF000)lg , following the procedure described for splitting,

(x) is then equal to (0000)lg and overflow occurs as sign
bit changes from 1 to 0.

2.3.8 DIVIDE (FDIVF)

The flowchart for floating-point divide is given in
figure (10) and the procedure follows closely to that given
in section (1.5.6) in Chapter One. The fixed-point instruc
tion used in Step (3) of the procedure is DIVE. Here a 31-
bit dividend is divided by a 16-bit divisor to give a 16-bit
quotient and a 16-bit remainder. As in multiply, we need
to devise a procedure for this type of mantissa arithmetic
in order to get 24 significant digits (bits) for the mantissa.

Consider the mantissa arithmetic. Let m(z) be the
quotient, m(x) the dividend and m(y) the divisor. Similarly
we split m(y) into two single precision fixed-point fractions
(refer section 2.3.7). Then

m(z) = m(x)/{m1 (y) + en^(y)}

where e is the reciprocal of the word size,
i.e. m(z) = m(x) {1 + eiî (y)/]^ (y)}

mfy)

51

7^T7l " e (y) + eV I® (y ^ 2+ •••>V 3̂ sfTyi {£vh) }
Neglecting terms 0(e2)

m(z) « m(x) ■ j-1 - e n^Cy^
in̂ Ty) m^(y)

Now m(x)/m (y) gives a 16-bit quotient and a 16-bit
remainder.
Let m!(z) = m(x)/m (y)

= m-J(z) + r'(z) where r1 (z) is the remainder,
and r(z)/m1(y) = m^(z) + r"(2) where r"(z) is the
remainder,
then « m f(z) - m ’(z) + m ’(z)

m(z) a m'(z) {i - em2(y)/mx(y)}
■ m'(z) - cmjtjr) m ,(z)

mi (y;

Remark:
1. Care should be taken in the coding of the

routine. Likely error will occur in the shift
factor e (reciprocal of word size).

2. The correction term eni2 (y) m i(z) is computed by
m~(y)

multiplying m^(y) and m T(z) before division by

m1(y). The result is then shifted right by the
amount given in e, If we were to perform divis
ion (i.e. m2-1-̂-2- before multiplication, then m0(y) m^y) z

is extended to a double precision fraction before
division. The result obtained will be slightly
different* since floating-point arithmetic is not

52

FLOWCHART: DIVISION
(FDIVF)

(zero dividV. ̂ exit_ J ±
No

Unpack numbers
x+e(x), m(x)
y+e(y) , m(y)

arith. shift right
m(x) one place
set: e(x)-*-e(x)+1

split:
y (y), m2(y)

set:e(z)-*-e(x)-e(y) +12

z '-em(x) /mi (y)
z"<-r (x) /mj (y)
c T̂ m (y)/mi(y)

arith. shift right
z", c’, by 14 places

set: m' (z)«-z ' +zM

set: m(z)-«-mf (z)-c’*m! (z)

STANDARDISE
Entry Point ’STEXP’

(Figure 10) ^ RETURN ^

53

associative (refer section 1.8).

2.3.9 STANDARDISED (FSTND)

This routine is a straightforward adaptation of the
algorithm given in sectionC1.5.5) of Chapter One. There
are two 'entry points' in this routine. The entry point
'STEXP' (refer to FSTND,in Appendix 1) is used to form a
standardised floating-point number when the extended mantissa
(32 bits) and the exponent are given. For non-standard
floating-point numbers the entry point is 'FSTND'.

Remark:
The 32-bit extended mantissa is truncated to a 24-bit
fraction (instead of rounding as discussed in the
first chapter) after standardisation. The exponent
is tested for overflow and underflow before it is
concatenated to form the standardised floating-point
number.

The flowchart for the standardised routine is given in
figure (11).

2.4 DOUBLE PRECISION ARITHMETICS ■

Two methods of implementing the double-precision floating
point arithmetic are given in this section. Throughout the
discussion, the standardised double length floating-point
format proposed at Glasgow University (11) (refer to section
2.3.4) is assumed.

54

FLOWCHART: STANDARDISE
(FSTND)

ENTRY
FSTND

No

Yes

No

No

Yes

No underflowe(x)>. 0

Yes

ure 11)RETURN

e (x) <.2 5 5

m(x)
standard

overflow

set: e(x)-e-e(x)+1

logical shift left
m(x) by 1 place

(AB)
(Y)

ext. mantissa m(x)
exponent e(x)

UNPACK

Truncate m(x) to 24-bit
mantissa.
Concatenate:

55

2.4.1 METHOD 1

This is the conventional method as found in Knuth
Difficulties arise in this method as the fixed-point
instructions available do not give sufficient significant
digits. We shall use the term "mantissa arithmetic1 to
denote operations performed on the mantissa. We need
instructions capable of multiplying two 32-bit fixed-point
numbers to give a 64-bit fixed-point product and also in
division where a 32-bit dividend, divided by a 32-bit
divisor, gives a 32-bit fixed-point quotient and a 32-bit
fixed-point remainder. We term these operations as 'Long
Multiply' and 'Long Divide' respectively.

We begin the discussion with the following proposed
64-bit fixed point format.

a) 64-bit fixed-point fraction.

n,

word 0

binary point
word 1

word 2

figure 12

word 3

The fraction is held as a 64-bit (4 words) 2's complement
binary number with the assumed binary point immediately
after bit 0 (as shown in figure 12). The fraction lies in the

56

range

-1 4 f 4 l-2~63
b) fixed-point integer;

If binary point is assumed immediately after bit 63,
the number represented is a fixed-point integer. The
range cover by this format is -263 4 i 4 263 -1.

2.4.2 LONG MULTIPLY
The operands (32-bit number) are first split into two

single precision fixed-point numbers such that x = x1 +
(refer to section 2.3.7). The procedure followed is the
same as that described in the earlier section (where we
split the extended mantissa into 2 16-bit fixed-point
numbers). To obtain the 64-bit product, the following
procedure is used (c.f. section 2.3.7).

Let x, y be two 32-bit fixed-point numbers and
x = x 1+ ex2 where e is the reciprocal of word size

Xj being the most significant half
*2 being the least significant half

Similarly, y is split into y = y + ey2

x,y = (xx+ ex2) (yx+ ey2)
= xxyx + e(xxy2 + x2yx) + e2x> y2

Ijj this case term with e2 is not neglected as the term
so formed may be significant. Following the same convention
as that given for 'MLTA', the 64-bit product has bit 0 equal
to bit 1 (nQ = nx). Overflow occurs if bit 0 is not equal
to bit 1 (i.e. nQ i n l).

2.4.3 LONG DIVIDE

The procedures differ slightly for fixed-point
fractions and for fixed-point integers.

a) Fixed-point fraction:

Let x, y be two double length fixed-point fractions.
We are required to find x/y. As x is a 32-bit fraction
we only need to split y into two single precision fractions
(c.f. section 2.3.7). We shall use the same algorithm
given in section (2.3.8) (for floating-point division).
Let y = y + ey2 where e is the reciprocal of word size,
then z, the approximate value for x/y, is given by

z = - ■ u - I2 + 0(e2)}
yi yi

The quotient z is a 32-bit fraction. The routine for
long division does not return any value for the remainder.

b) Fixed-point integer:

We need to modify the procedure if the numbers are
fixed-point integers. Similarly, the divisor y is split
into two single length integers, say yx and y2 . If y:
is equal to zero, division is the same as the instruction
DIVE. We shall only consider the case when y / 0

Let x be the 32-bit dividend and y be the divisor.
Assume y = ey +y2 where e is the word size (i.e. 215)

58

Let = z1 + r where z1 is the quotient (integer)

and r is the remainder.

I “ (zi + ri) (l-&_ >
eyi

* z -Z1 Xz + r _ rt y2
1 eYj 1 eŷ

Since ^ returns an integer, terms r , ^ y-2. can be
y 1 eyx

neglected since they are fractions (i.e. < 1).
The correction term is obtained by first multiplying
rx and y2 and then dividing by y . The result is then
scaled to form a 32-bit fixed-point number. The 32-bit
quotient is correct if either word 0 is equal to zero or
(FFFF)lg . Any other patterns in word 0 indicate an over
flow (or undefined). The 32-bit remainder may be obtained
by multiplying the 32-bit quotient with the 32-bit divisor
and subtracting this amount from x.

It remains to describe the addition (or subtraction)
of two 6 4-bit fixed-point numbers (both fractions or both
integers). Similarly, the operands are first split to
form two 32-bit fixed-point numbers.
(i) Let x, and y be two fixed-point fractions and

x = xL + £*2

y = Yl + ey2
where e is the reciprocal of word size and ^ ^ , y1 , y2
are two’s complement double length fixed-point fractions.

Then x + y = (Xĵ +yl) +e(^+y2)

59

then x + y = (x[+yi) + e(*2+y2)

(ii) If x and y are integers
then let x = e» Xj + 3̂

y = ef yx + y2

where e’ is the word size (231) and x1 , ^ , yx , y2 are
32-bit fixed-point integers.
Similarly, x + y = e» (x̂ +) + (x + y).....(*)

Special care should be taken in evaluating the term
e(x2 + y2) or (2̂ + y2) in equation (*). Overflow may
occur when adding the terms and y2 .

FLOATING-POINT (DOUBLE PRECISION) ARITHMETICS

2.4.4 METHOD 1
With the availability of ’Long multiply’, ’Long

divide’ and extended precision (to 64-bit) addition and
subtraction we can follow the algorithms given in section
(2.3.6) for single precision floating-point arithmetics
to design the double-precision floating-point operations.

We do not go into the details of designing the
routines as it would be the same as that described in the
single precision routines. It should be pointed out that
care needs to be taken in getting the ’reduced exponent’
and in concatenating the mantissa and exponents to form the
standardised double precision floating-point number. The
64-bit extended mantissa is truncated to 48 bits after
standardisation (c.f. section 2.3.9).

2.4.5 METHOD 2 (Dekker’s method)
The second method takes advantage of the algorithm

60

for exact addition, exact multiplication and exact division,
as described in Chapter One. The procedures are given in
Appendix (2). The algorithms make use of the floating
point (single-length) operations available and deliver
the result as a double length floating-point number.

The accuracy of the algorithms depends mainly on
how we split the double-length floating-point number to
two single-length floating-point numbers. The theorem
which follows gives the method by which a double precision
floating-point number should be split.

THEOREM (2.4.6) (DEKKER)

Let R be the floating-point number system such that
R = {x|x = m(x) 2e ^x \ |m(x)|<2t}.

If floating-point addition and subtraction are optimi.1,
multiplication is faithful and tx and and C are
defined by equations

= entier (^)

ti = t-t,
C .= = 2tl + 1

then for all x in R, the following set of formulae
p = fl(xxc)
q = fl(x-p)

h(x) = fl(q+p)
yields h(x) defined by the equation

if \ j- c / \n —t i rte(x)̂ ’th(x) = round {m(x)2 i }2 i

Proof:
If x = 0 then the theorem is obvious.
Assume x i 0 and floating-point numbers are normalised,

(x0e(x) i.e. x = m(x)2

61

and 2t_1 4 |m(x)| <2t
since addition is optimal and given

h(x) = round {m(x) 2_tl}2e(x)+ti which implies
h(x) e RC-tg,) is contained in R(t)

we need only to show that q + p e R and
q + p = round {m(x)2-tl }2e x̂^+tl

i.e. to prove
h(x) = q + p

Now p = fl(x x c)
Let p = m(p)2e^^

obviously e(p) = e(x) + or e(x) + t + 1

a) e(p) = e(x) + tj
since q = fl(x-p),

then e(q) is equal either e(p) or e(p) - 1 .
If e(q) = e(p) - 1
then |m(q)|>. 2 which is outside the mantissa range.

Hence e(q) = e(p)
and result follows.

b) e(p) = e(x) + tx + 1
Then obviously e(q) = e(p) - 1 or e(p).

If e(q) = e(p) - 1
result follows.

If eCq) = eCp) then we have
|mCq)|< |m(x)|/2 + 3/2

This is within the normalised mantissa range,
2 ^ ~ 1<: |m(q)|* 2 ̂ only if |.m(x)|= 2*"- e

where e = 1 or 2
but then we obtain

q + p = round {m(x) 2

62

= round (m(x) 2-ti } 2e^ “1
i.e. q + p = round {m(x) 2~^'1 } 2e x̂^+tlJ

Hence h(x) = q + p.

From theorem (2.4.6) we have
t(x) = fl{x-h(x)}

and this is equivalent to
t(x) = x-h(x)

since subtraction is optimal and t(x) e.R.
Now given a double precision number x, - V , we can split
this into a pair of single-length floating-point numbers
{h(x), t(x)}. It remains for us to give a formal
definition of double precision floating-point number.

DEFINITION (DEKKER) 2.4.7

A double precision floating-point number is a pair
(r, s) of single-length floating-point numbers (r, s)e R,
satisfying

lsU |lr + s| 1+2=1: (2.4.8)

The value of the double precision number (r, s) is, by
definition, equal to r + s.

This definition of double precision floating-point
numbers fits in neatly to the proposed double precision
floating-point format. The number representation in our
system is a particular case of the system R where floating
point numbers are not standardised. Neglecting overflow
and underflow, the theorems stated still hold. Also minor
adaptation is required in the mantissa arithmetic. In
Dekker’s system, the mantissa is taken to be a fixed-point

63

integer, whereas it is defined as a fixed-point fraction
in the computer (MULTUM) representation. The double
precision floating-point number is split in the following
manner. Word 0 and word 1 of the double precision
floating-point number are taken to be h(x) (i.e. the head)
and t(x) be represented in word 2, 3 of the floating-point
number. We need only to put in the sign bit in bit 0 of
word 2 to form t(x). If word 2, and word 3 are equal to
zero t(x) is taken to be zero. Similarly, adjustment is
required in forming h(x) if x is negative and the least
significant mantissa is not zero (c.f. section 2.3.7).
The adjustment is the same as that described earlier when
we truncate the mantissa to a single precision number.
In particular, if s = 0, we have a double-length number
(r, 0). If addition is superfaithful then any pair (z, zz)
obtained by performing an exact addition is a double
precision floating-point number.

If condition (2.4.8) is replaced by
s 4 1 r + s | C 2 ^

where C is some constant nearly equal to 1 (but greater than
1) then the pair (r, s) satisfying this inequality is
defined as nearly double precision floating-point number.
In particular, a pair of floating-point numbers (z, zz)
obtained by exact multiplication is nearly double precision

• • “"tfloating-point number since C is equal to a/(l+a2)
in- condition (1.9J.5) in Chapter One.

64

2.5 DOUBLE PRECISION ADD/SUBTRACT

The double precision sum of two (nearly) double length
floating-point numbers (x, xx) and (y9yy) is calculated as
follows:-

2.5.3. ALGORITHM

1. The heads of x and y (viz. h(x) and h(y) are added
exactly (refer Appendix 2). We assume I x| > | y| in
the algorithm. If | y|>|x|, the role of the
terms x and y is interchanged.
A double precision number (r9 rr) is obtained using
the algorithm for exact addition,
i.e. r + rr = x + y.

2. To get the tail s9 we perform the floating-point
addition where

s = fl{(rr+yy) +xx>....... (**)
so that (r9 s) approximates the sum of (x, xx) and
(y, yy). Similarly, the role of the terms xx and
yy is interchanged if |xx|<|yy|. This reduces
the maximum error in (**) and ensures commutativity.

Note that floating-point (single precision) arithmetic
assumes numbers to be in standardised form. Since single
length addition is ’superfaithful' (refer definition 1.8.7)
the final exact addition of r and s transforms the approx
imate sum into a double precision floating-point number
having the same value.

The pair (r9 s) of floating-point numbers is concat
enated to form the double precision floating-point number.

65

Care should be "taken in selling up the reduced exponent
in word 3. The procedures for double precision add
is given as an ALGOL 60 procedure, add 2 in Appendix 2.

Similarly, Ihe procedure for double-length floating
point subtract can be obtained. The calculations of
double precision floating-point product and divide are
straightforward coding of the algorithms given for exact
multiplication and exact division respectively. Pro
cedures in ALGOL 60 are given in Appendix 2 for multiply
and divide.

In forming the product, a nearly double precision
approximation (c, cc) of the required result is first
calculated. The exact multiplication procedure is
followed. The pair (c, cc) satisfies the condition

|s|^ |r + s|a2 ^ where a is the constant as
stated in Definition (2.4.7).

Finally, an exact addition is performed to transform
the result into a double precision floating-point number
having the same value (refer to Appendix 2: ALGOL pro
cedure multi, Mult 2).

2.5.2 Remarks
1. Cancellation may occur in forming r = fl(x+y),

thus making |r| slightly less than |s|. If
|r| = 0 we return the standardised value of s
as the double-precision solution since in exact
addition r + s is equal to s. Note, however,
that when |r| t 0 but less than |s|, and the

66

condition e(r) ^ e(s) still holds, the role of r
and s is not changed in the final exact addition.

2. To obtain the negative value of a double precision
floating-point number we simply set x equal to
zero and then perform the exact subtraction with y.
This will give us the negative value of y provided
that no overflow occurs in the process of sub
traction. This method is not very efficient as it
would involve a lot of unnecessary arithmetic
operations. An alternative is an algorithm as
described in the earlier section for single
precision floating-point numbers.

ERROR ANALYSIS

£he error in the double-length addition is committed
in calculating s = fl{(rr+yy) • + xx.'}
If (x, xx) and (y, yy) are nearly double length numbers
satisfying

Ixxl^ |x+xx|C 2"t and | yy |<J y+yy | 2 t

where Cx and C£ are constants very near one (but greater
than 1) then the error E of double length addition satis
fies the relation

|e | <̂{ |x+xx| (l+c) +1y+yy | d+C2) >2 .

Proof of this inequality is given by Dek]ger (6). Also,
analysis of errors for multiplication and division are

also found in (6).

67

2.6 CONCLUSION

The procedures given in Appendix 2 were not tested on
the MULTUM ALP 2 computer as no floating-point operations
were available then. If the arithmetic routines given in
Appendix 1 were used in place of the hardware instructions,
it would have involved a lot of procedure calls. This
is very time consuming and inefficient. In addition, there
is an uncertainty as to which double precision floating
point format will be adopted by the manufacturer.

As discussed in section (2.3.4), the floating-point
double precision format with reduced exponent seems a
better choice from the point of view of implementing
Dekker's procedures. Both double precision formats may
encounter early underflow. More risk is involved if the
format proposed by I.C.S (refer section 2.3.3) were used.
The double precision format in this case has a large
exponent range (.32768, 32767) and this may give overflow
or underflow in the splitting stage where the double
precision number is split to a pair of single precision
floating-point numbers. Such early overflow will not
occur in the other double precision format as both the single
precision and double precision have the same exponent range.
(128, 127). Splitting the double precision number to a
pair of single precision numbers is easier. However, in
both cases the smaller term (zz) is required in the
standardised format and likely underflow may occur in the
process of standardisation. Difficulties arise also in

68

concatenating the pair of single precision floating
point numbers to the double precision format. In the
case of the format with reduced exponent, underflow may
occur in the adjustment of the reduced exponent (to e(x)-23).
However, this can be satisfactorily solved by clearing
word 2 and word 3 of the floating-point number (i.e. set
least significant mantissa and the reduced exponent to
zero). This is fairly acceptable as the least significant
mantissa would be out of range in this case.

Dekker’s method seems more suitable for computers
with large exponent range in the single precision format.
This may prevent unnecessary underflow in the earlier
stages of the calculation. The procedures have actually
been tested on the Philip's Electrologica X8 computer at
the Mathematical Centre, Amsterdam (6). The exponent
range of the Philip’s Electrologica X8 is £-204-8, 2048j|
(i.e. 12-bit for the exponent) and a 40-bit mantissa.

In the other method of implementing double precision
arithmetic (section 2.3.3), both formats are likely to
encounter the same sort of difficulties. Routines for
’Long multiply’ (section 2.4.2) and ’Long divide’ will
be required for either format. In any case, the double
precision multiply (’Long multiply’) and double precision
division ('Long divide’) for integers are required for
the Fortran compiler and the Pascal compiler, and it may
seem more practical to have the double precision floating
point operations simulated in this conventional way. The

69

likely problem in this method will be similar to those
routines written for single precision arithmetic.

The routines given in Appendix 1 were tested on the
MULTUM computer. Random checks were made to test the
solutions given by the hardware instructions and those
given by the software. A bug was found in the hardware
for floating-point addition and floating-point subtraction.
Instead of returning the value (4000 006A)lg for adding
(4000 0081)gl and (8000 0180)^ or subtracting (4000 0081)lg
and (7FFF FF80)lg the value (0000 0000)lg was returned.

-15 _ l5 _ i 5(i.e. (1+ (1-2)) or (l-(l-2)) give 0 instead of 2).
The software operations on these numbers returned the
correct result. Floating-point premature overflows and
inconsistency occur in the hardware operations for multi
plication and division.

Floating-point premature overflows occur in multi
plication when the unnormalised product has an exponent
equal to the maximum allowable exponent plus one (i.e.
x = m(x) 2255+1 where 0 < m(x) < and 255 is the biased
form of the maximum exponent). For example, if x = \ 2255
and y = \ 2129 then xy = ̂2256. Exponent overflow is
tested at this stage by the hardware, which obviously will
give an overflow. If the exponent was tested after
standardisation, the result ^*2255 is returned, which is
allowed. The result of multiplication in this case forms
a proper subset of the floating-point number. Such
reduction in the range of the floating-point is hazardous

70

in computation. This, too, will greatly affect the imple
mentation of double precision arithmetic by Dekker’s method
as overflow occurs in some intermediate computations and
floating-point multiplication is not faithful. (Refer
section 1.8.7). For details of hardware operations refer
’Specification of the ALP type 3’ (13). To avoid such
premature overflow either increase size of the exponent
registers or perform testing to see if the mantissa is
less than half before testing the exponent for overflow.
The earlier case may be too expensive and the latter may
have a heavy penalty in the efficiency of the operation.

Floating-point multiplication by hardware is not
commutative. For example, if x = 5.2128 (i.e. x = 1)
and y = (-1).2255 (i.e. the largest allowable negative
number) the product xy gives an overflow as y is first
negated to give a positive value. Overflow occurs in
negating the largest negative number. However the product
yx will not give an overflow as only the second operand
is tested for overflow if it is negative. In theory, the
product xy is a floating-point number in the range of
floating-point numbers. Such inconsistency may lead to
erroneous results in the evaluation of power series.
The hardware operations and those simulated by software
are found to be consistent with each other (other than
that mentioned earlier). Flowcharts for fixed integer,
negate, etc. are given in Appendix 1* It is straight
forward coding and no further discussion on these routines

is given.

71

BIBLIOGRAPHY

1 Winograd, How fast can computer add? Computers and
Computation. Reading from Scientific
American (1971)

2 Ashenhurst, R.L.Number Representation and Significance
Monitoring Mathematical Software
(Ed. Rice) 1971, Academic Press

3 Knuth, E.D. The art of Computer Programming, Volume 2,
"Semi-numerical Algorithms" 1969,
Addison Wesley

4 Wilkinson, J.H. Rounding Errors in Algebraic Process.

5 Garu, A.A.

6 Dekker, T.J.

7 Ashenhurst, R.L.

8 Wadey, W.G.

9 Yardly D.T.

10 Ashurst, C.A.

Her Majesty’s Stationery Office (196 3)
On a Floating-point Number Representation
for Use with Algorithmic Language
C.ACM 5, pg. 160-161
A Floating-point Technique for Extending
the Available Precision, Numerische
Mathematik, 18, 1971, pg. 224-24-2
Unnormalised Floating-point Arithmetics
J.ACM 6 (July 1959) pg. 415-428
Floating-point Arithmetics
J.ACM 7 (April 1960), pg. 129-139
Specification for the Alp Type 2
Information Computer System (I.C.S.)
2002-042
Usercode Language, Information Computer
System, (I.C.S.) No. 2003-024

72

11 Glasgow University Multum Hardware Memo. No. 2
(17/8/72). Fixed and Floating-
Point Arithmetics

12 Naur, P. (ed.) Revised Report on the Algorithmic
Language. ALGOL 60 (196 2)

13 Illing, D. Specification of the Alp type 3
Information Computer System
(I.C.S.) 2002-052

73

PART TWO

INTRODUCTION

Demands for higher quality in standard mathematical
libraries have been building up. In recent years, pro
grammes in these basic libraries have been subjected to
thorough scrutiny and users expect the library to achieve
maximum accuracy. By maximum accuracy we mean the results
returned by the library to be accurate to the last digit.
At this level of last digit accuracy, we regard the given
argument value as exact and aim at producing an answer
value that is the nearest in the given precision to the
exact infinite precision answer (1). In most instances,
this goal can be attained only by carrying out parts of
computations with working precision higher than that of
the library, especially when the relative accuracy of the
result is very sensitive to the accuracy of the argument.
In Chapter Three, we look into how the added accuracy helps
to limit the accumulation of round-off errors, improving
the probability of successful computation.

LAYOUT OF CHAPTER THREE
1. OBJECTIVE
2. CLASSIFICATION
3. ERROR ASSESSMENTS
4. MATHEMATICAL BACKGROUND
5. RANGE REDUCTION

In Chapter Four some of the basic library routines are
discussed. The later part of the chapter gives a survey

74

of methods available in extending the library to include
double precision routines. A brief discussion of the
performance and testings of the library routines is also
included.

The primary objective of this part of the thesis is
to give a general survey of the methods available and the
considerations required in the designing of a basic
(mathematics) library. No attempt is made to prove any
of the theorems quoted in Chapter Three and no proof is
given for the polynominal approximations to the functions
in Chapter Four. Literature regarding the proofs and
theorems can be found in Hart (2), Fike (3), Snyder (4),
Rice (5) and Achieser (6).

75

CHAPTER THREE

3.0 OBJECTIVES

Libraries of programmes of elementary functions are
the basic structure for any Scientific System Library.
Stringent requirements for this library must be met to
satisfy the general user. Computer manufacturers usually
supply these basic system libraries together with the
processors. Unfortunately it cannot be said that all
manufacturers supply noteworthy sub-routine libraries (14).
H. Kuki (7) listed some of the important conditions that
must be observed in order to produce a library that would
satisfy most users all the time and all the users most of
the time.
a) Reliability:

The meaning of the word is self-explanatory. Absolute
reliability is expected from the libraries. This includes
both numerical accuracy and adequate diagnosis of errors.
A rigid accuracy standard which is commensurate with the
precision of the given computer must be maintained.
Acceptable answers must be returned for all legitimate
arguments and mark all other arguments. Numerical accuracy
is normally attained at the expense of speed and storage

requirements.

b) Domain:

The legal domain of function routine defined should
Include virtually all those arguments whose function- values
are representable in the number system of the given computer.

76

For those arguments which are outside the legal domain,
proper diagnostics should be given.

c) Speed;

Optimal speed under the above constraints should
be arrived at. This largely depends on the hardwares
available and the choice of programming languages.

d) Size:

When all the above requirements are met, we are left
only to scale down the size of the programme.. It can be
said that the smaller the better.

In general, Accuracy-Efficiency-Space conventions
are used as the general guideline for designing library
routines. Finally, we have to perform extensive testings
of the routines to certify that the routine is creditable.
For example, ’Random Test’ to determine the reliability
may be used. Unfortunately, this is not sufficient to
ensure that routines are one hundred percent reliable (8).
The best method to ensure reliability is for the coder to
completely document his methods and for the certifier-to
check on the method and code, and then devise test cases
which are likely to cause trouble.

3.1 CLASSIFICATION OF ROUTINES

Function routines are classified into three categories,
namely, primary, secondary and management (14).

3.1.1 PRIMARY ROUTINES

These are the basic building blocks of any library.

77

The routines ere completely self-contained and rely upon
no other routines for computation. Instead, these
routines are frequently called upon by other routines
to perform critical computations. Examples of primary
routines are routines for sine, cosine, logarithm, and
exponential.

3.1.2 SECONDARY ROUTINES

Secondary routines do part of the computation themselves
but rely upon other routines (e.g. primary routines or
other secondary routines) for some of the computations.
Typical routines for the inverse trigonometric functions
and some hyperbolic functions are among the secondary
routines in the library.

3.1.3 MANAGEMENT ROUTINES

These routines merely manage the flow of information
from one routine to another. Computations are done by
calling on the primary and secondary routines in the library
Routines for exponentiation and for certain hyperbolic
functions and complex functions are frequently in this

category.

3. 2 THE CHOICE OF PROGRAMMING- LANGUAGE

To produce optimal programmes in regard to the
conditions described earlier, it is necessary to make the
most out of the peculiarities of the computer for which
the library is designed. Accuracy and domain require—

78

merits are stated in terms of the machine. In addition,
the reduction algorithms of several elementary functions
are intimately related to the internal number representa
tion. This leads to the choice of the Assembler code for
basic system libraries. H. Kuki (7) concludes that in
the present state of compiler art, codes generated by
computers cannot compete with the assembler code in terms
of economy of space and speed. The timing figures and
storage requirements shown in Table 1 are excerpted from
H. Kuki1s paper

Three Fortran codes were prepared and execution times
cited are for the I.B.M. 360/65G computer. Codes for the
exponential, logarithm, sine/cosine sub-programmes are
aimed at the basic accuracy of 10~7. For details of the
coding of these routines, refer to (7). The compiled code
excludes the routines that are referred to.

The results only iterate the demands for the
Assembler Codes be used for writing basic library routines.

TABLE 1 Comparison of the Timing and Storage between
Fortran Code and Assembler Code

FORTRAN CODE TIMING ASSEMBLER CODE TIMING
FUNCTION STORAGE (IN BYTES) (y SEC.) STORAGE (IN BYTES) (y SEC.)
Exponential
Exp(x) 452 128 184 86
Logarithm
A LOG (x) .458 291 184 83
SINE/COSINE 712 169 200 76

79

3.3. SYSTEM SPECIFICATIONS

Those features that either enhance the capabilities of
the host system or features that are required by the host
system should be provided. Arguments that are outside
the specified domain should have proper diagnostics. In
general programmes in a standard library should be equipped
to handle any input argument that is capable of being
produced by the host system. For example, if the host
system only works with normalised floating-point numbers,
any input arguments that are unnormalised may produce
erroneous answers. Also programmes should behave
consistently with the conventions of the host system. For
example, treatment of underflows and overflows should be
appropriately dealt with. Users should have an alternative
as to whether to be informed of occurrence of underflow or
not.

3. 4- STANDARD REFERENCE FOR ACCURACY

Accuracy is defined here as the measure of deviation
of the computed answer from the exact one. Assume that the
given argument value is exact, then the infinite precision
function value corresponding to this argument value is taken
to be the exact answer. By exact argument, we mean that
value for which the argument in its machine representation
stands as it is passed on to the sub-routine. No allowance
is made for minimal rounding error, conversion errors and
accumulation of errors from prior processing.

80

3.4.1 EFFECT OF AN ARGUMENT ERROR

There are "two major sources of error associated with
any function value.

Transmitted error:

This is an error due to a small error in the argument.
Let x be the argument and y = f(x) be the exact function
value. Also write Ax and 6x as the absolute and relative
error of x inherited from prior computation, respectively.
If Ay and 6y are respectively the absolute and relative
error in y, and function f(x) is a differentiable function,
then

df .
Ay = dx

and 6 y _ Ay „ dy

= ff(x) d „ f1(x) .
" T O O dx " “TTxT 6x
x dfi.e. Sy - — 3— fix.J y dx

The transmitted error fiy depends solely on the inherited
error fix and not on the sub-routine.

3.4.2 GENERATED ERROR

This type of error is generated by the sub-routine.
It includes the error due to approximation of the function
f by an arithmetically specifiable function <J>, as well as
error due to the round—off characteristics of the machine.
In particular, it includes the error due to the inexact
representation of constants as machine words.

Since sub—routines have no control over the inherited
error, they should then be designed to minimise the

81

generated error. The next few sections survey the methods
available in approximating the function f so that generated
error is minimal.

Remark:

a) We shall use the same notation f to denote both the
function and the infinite expansion (approximation)
of this function since mathematically they are
equivalent.

Let <j) be the finite approximation of f. If x
is the argument value that is passed to the sub

routine (i.e. x'”-x = Ax where x* is the exact
argument) then the generated error will be f(x)-<j>(x)
(c.f. Ashenhurst rC4)) or f(x)-<|>(x) /f(x) depending
on the methods of error measurement (c.f. Fike (3)).

b) From equation (3.4.3)

6y = xf’(x)/f(x)6x 3.4.3
the function corresponding to the argument x is said
to be unstable if xf’(x)/f(x) is very large.

3.4.4 TECHNIQUES OF REDUCING GENERATED ERRORS

Generated errors of the type mentioned above may be
reduced with some additional codes. The basic technique
is to use guard digits at crucial points in the computations.
Fixed-point computation is used profitably when the precision
of the fixed-point representation is several digits longer
than that of the floating-point. For single precision
sub-routines 5 a limited use of double precision computations

82

allows a very accurate computation of the reduce argument
in the reduction stage. However, in double precision
routines such back-up precision (multiple precision) is
not usually available. If available, the time penalty
for using the multiple precision calculations is very heavy.
It would be too expensive to carry out the entire calcula
tion in multiple precision. Instead, a certain strategy
is followed. The crucial step is usually located and
computation at this stage is carried out (in extra precision)
to obtain a better approximation of the exact value.
This technique may turn out to be far less expensive (in
terms of speed and storage) than to carry out a full
precision calculation on every step.

Listed in Table (2) (given in (2)) are certain tech
niques that may be useful in the writing of an efficient
code.

DESCRIPTION
As described in section (3.4.4)
to provide good error control.

Certain operations may be
replaced by those arithmetic or
logical operations that are more
efficient. For example, if
division is slower than multi
plication, it may be desirable
to store the reciprocal of a
constant and use multiplication
rather than division. Also in

NAME
Fixed-point Arithmetic

Equivalent Operations

83

Variable Timing

Shared Storage for
Instructions

Inner Loop Efficiency

cases of multiplication or
division by 2, in fixed-point
it is better to make use of the
shift operations. In case of
floating-point arithmetic,
replace multiplication and
division by addition or sub
traction involving the exponent
part of a floating-point number.

The time of evaluation of a power
series may be shortened by
forcing coefficients to assume
a form which is exactly represent
able on a computer by a few digits.

Different sub-routines may share
common sections of code or
tables of constants. It would
be more economical to combine
these routines in one multiple
entry suh-routine. Example of
shared storage routines is the
sine and cosine routines.

Remove from inner loops all oper
ations which can equally well go
outside the loop.

84

3.5 THEORETICAL BACKGROUND

The computation of a mathematical function consists ,
in general, of two stages $ the reduction stage and the
approximation stage. The basic stage into which the
argument is reduced must be such that, within this range,
one has an approximation algorithm that is both efficient
and stable. Our accuracy goal is to keep the maximum
relative error well within the range of the last digit
value of the working precision.

Among polynominal (or rational) approximations of a
given degree there is one that minimises the maximum error
in the given range. In the next section we shall give a
brief discussion of this type of approximation, namely
minimax approximation. Several algorithms are available
to us to determine coefficients of such approximations.
We shall confine ourselves to Remez's method and
Chebyshev interpolation in determining the coefficients.

No attempts will be made to prove any of the theorems
given in the next few sections on polynomial approximations.
Most of the tables and data given are excerpted from
Hart (2).

3.5.1 MINIMAX POLYNOMIAL APPROXIMATIONS

In the preceding sections we have discussed the nature
and requirements of basic library sub-routines. Also we
have considered factors which will influence the results.
In the sections that follow we give a survey of a type of
optimum approximation that minimises the generated error.

85

Instead of permitting the search for optimal approximations
to range over the class of all possible algorithms for a
given machine, we will restrict the search to polynomial
approximations and the rational approximations.

Throughout the discussion, we will use f(x) to denote
the function to be approximated, and [a, b] to denote the
approximation interval* The function f(x) is assumed to
be continuous in this interval.

THEOREM 3.5.2 (Chebyshev’s theorem on polynomial
approximation)

Let u(x) denote a function continuous in the closed
finite interval £a, bj and let v(x) denote a function
continuous and non-zero in [a, b] . Let Vn denote the
set of polynomials of degree n. There exists a
unique polynomial P “(x) in Vn such that

max
a ,b

Pn*(x> . .
 7 r— “ U(X)v (x)

m m max

Pn (x)£Vn ta >b]
P, (x)
^ 7 " U (X)

Let P_̂ (x) denote a polynomial in Vn . Then P^Cx) is P (x)
if and only if there exist N >_ n+2 points in £a, bj

X* < < X£ .

such that
P C X*)n * _ y(x*) = (-l) li* for k=l, 2,...N
v(x*)

where
i * I max P_ Cx)
Im 1 tut - u (x) | -

Proof of the theorem can be found in Achieser (1956) (7).

86

Remarks:

(i) If (x)=l, and u(x)=f(x),

then function Pn (x)~feic<j>mes the absolute function
v (x)
Pn (x)-f(x).

In this case the theorem asserts that there exists a unique

polynomial P̂ ‘(x) of degree 4 n that approximates R(x) with
minimax absolute error in £a,bj . Also the maximum dis
crepancy between f and P̂ ‘ must occur with alternating sign
at n+2 successive points of the interval. Finally, there
must exist points

a4 xq < x*< • • *=b such that

PH (*L*> ' = f(xi+l) " Pn*'’(3i l) = *1 IP* 11
(ii) With (x)=f(x) and u(x)=l, and f(x)̂ 0 in [a,bj

then P (x) , x becomes relative error functionn - u(x)
v (x)

P (x)-f(x) n fix) *

Similarly as in (i) there exists a unique polynomial P̂ (x)
of degree <_ n that approximates f(x) with maximum relative
error in |~a, bj also there exist n+2 extreme points in
a, b such that

(P*(x)-f(x))/f(x) = (f(x)-P*(x))/f(x)n n
if f(x)=0; for x=a, then approximate does not hold unless
the following conditions are satisfied.
1. The only point in £a, bj at which f(x)=0 is x-a
2. f(x)/(x-a) is non zero in £a, b]

This implies that limit f(x)/(x-a) exists and we
x+a

define f(x)/(x-a) to have that limit as its value at x=a.

87

Therefore

Pn (x) = (x-o)Pn _1(x)
whsx1© Pn_^(x) is & polynomial of dsgnes <. n~l.
Also

P*(x) = (x-a)P* . (x)n n-1
and (x) approximates f(x)/(x-a) with minimax relative
error in £a, bj.

Note: 1. The polynomial of degree <. n that approximates f(x)
with minimax absolute error in [a, b) is, in general,
not the same as the polynomial of degree n that
approximates f(x) with minimax relative error in
[a, b] .

2. The minimax polynomial approximation is dependent
on the integer n and the interval £a, bJ . In
general, changing either one will give a different
approximation to a function. In fact, there is no
general way to have one common minimax polynomial
approximation to a function for different intervals
or of different degrees. In other words, select
ing an optimal approximation for a function in one
computer may not necessarily give an optimal approx
imation in another machine as different machines
have different number representation.

3. A minimax polynomial is an even/odd function if it
is a minimax absolute error or minimax relative
error approximation to an even/odd function in a
symmetrical range (i.e. in interval (j-a, a])*

88

Proof:
Suppose f(x) is an odd function and P*(x) is the
unique polynomial of degree <. n that approximates
f(x) with minimax relative error in [-a, a-],

Then
max

[-a, a]
PjJ* (x)-f (x)Tnn* = max

[-a, aj fC-x)
Definition of odd function implies

f(x) = -f(-x)
max

[-a, aj
P*(x)-f(x) = max P*(-x) + f(X)

f (X) L aJ -f(x)

max j -P'' (-x) - f(x)
[-a, a] | -S FT3n----

since P*(x) is unique
P*(x) = - P *(x)

which implies that Pn (x) is an odd function-

3.5.3 NEARLY MINIMAX POLYNOMIAL APPROXIMATION

The theorem given below gives an estimate of the
maximum absolute error in a minimax absolute approximation
or an estimate of the relative error in the minimax
relative approximation. The usefulness of this lies in
the fact that it makes it possible to obtain knowledge of
the accuracy of a minimax polynomial approximation without
actually having to derive the polynomial itself.

THEOREM 3.5.4
Let P (x) denote a polynomial of degree <, n and let n

*1 ’ *2
» denote points such thatn+2

a = xl < *2 < • ’ ’< xn+2=
(x) = (-1)V , k=l, 2, ... n+2

89

where , . . . , Wq+2 denotes non-zero numbers having
like signs.

Then
m m

l<k<n+2

(Refer Achieser (1956) for proof of theorem (6), Rice (5)).
Remark:

The theorem is interpreted in terms of minimax
absolute error if u(x)=f(x) and v(x)=l, in terms of
minimax relative error if u(x)=l and v(x)=f(x).
The theorem implies that if the error function for an
approximation alternates in sign at n+2 points in [a, b],

the magnitude of the maximum error for the correspond
ing minimax approximation is bounded below by the
smallest of the error magnitude at the n+2 points.

3.5.5 REMEZ’s SECOND METHOD

The algorithm of Remez exploits Chebyshev's Theorem
for minimax polynomial approximation. Two methods for
Remez’s procedure will be considered, namely RemezTs method
for minimax absolute error and Remez’s method for minimax
relative error.

1. For minimax absolute error

Let Pn (x) be the polynomial that approximates 'f(x)
with minimax absolute error in £a, bj , and

(x) = x + ... + 3^ xn

From Chebyshev’s Theorem (3.6.2), the standard error
function processes exactly n+2 critical points in [a, b] ,

say, xk , k=l, 2, ..., n+2 such that

90

a = x

and that

where
Pn (xk) " f(xk } = (-1)kn > k =1,2, n+2, ... (S’>

M =rmax .. I pn " Kx)|[a, b]
The coefficients aQ , , . . . , an are obtained by
solving the system of equations (*), but the critical
points are unknown. To obtain the coefficients for the
minimax polynomial the following iterative method is
followed.
1. Initially, select n+2 numbers 2̂., k=l, 2, ..., n+2

such that

a = Xj < y^< . . . < *n+2 = k

2. Solve the set of equations
P (x,) - (-l)kp = f(x,) n k k

for the coefficients of P (x) and y.n
3. Substitute the calculated values of aQ, a15 ..., an and

'P (x) and then locate the extreme point for the
standard error function {P̂ (x) - f(x)} in £a, bJ.
Assume there are exactly n+2 extreme points, yk , k=l,..,
n+2, including a, and b
such that

a = yl < y2 '*• y3 < -- < yn+2 = b*
3. Replace xR by yk for k=l, 2, ... n+2 and repeat the

sequence of steps given above beginning with 2.

It can be proved that x^ converges to x*k and y
converges to y' (^0) and ak converges to a’k for any

91

starting value in step (1). (Refer Veidinger (1960) or
Rice (19 67) (9), (5) for proof of theorem). It is known
(Veidinger (19 60) that if f" exists and is continuous and
if |P -f| achieves its maximum at the end points and at
exactly n other points, then the maximum deviation in
Remez’s algorithm converges quadratically to their infimum

Remark:

The system of linear equations (1) and (2) tends to
become ill-conditioned as n increases. Modification
to the method of the algorithm or the use of high
precision arithmetic can overcome this problem.

3.6 FUNDAMENTAL PROPERTIES OF CHEKYSHEV POLYNOMIALS

The Chekyshev polynomial of degree n, T^(x) is defined
recurringly for each non-negative integer n by the equation

T (x) = Cos (n arc Cos x) for -1 <_ x <. 1 . . . (3.6.1)n — —
where x = Cos 6.
The Chekyshev polynomials have a number of interesting and
useful properties which can be derived from the Definition
(3.6.1). Among these are the following:

1. T (x) is a polynomial of degree n in x. If n is evenn
Tn (x) is an even polynomial; if n is odd, Tn (x) is an

odd polynomial.

2. The coefficient of xn in Tn (x) is 2n 1.

3. T (x) has exactly n real zeros in the interval [-1, il.n i_ j

92

From Definition (3.6.1) these zeros are located at
x.=Cos^i II, j =0, 1, 2, . . .n-1 j 2

*+. | (x) |̂ | j -1 4 x 4 1 for all n.

5. Tn (x) (n>0) attains its bounds ± 1 alternatively at
the points

Xj = CoS iT 9 j = 0, 1, 2, n

T (x.) = (-1)3n 3
6. Minimax property

Let Pn (x) be any polynomial of degree n with leading
coefficient unity. Then

max I 21 nT (x)I< max I P (x)I • n 1 = I n 1
- I4X4I - I4X4I

No attempts will be made to verify the properties
stated. (For proofs, refer (5)).
These properties may be used to find polynomial approx
imations for function f(x) directly or indirectly.

-3.7 CHEBYSHEV SERIES.

If the function f(x) has a continuous first derivative
in (V, 1]. then it processes a Chebyshev series expansion

f(x) V o ak ^ (x) = 1 aD To (x) + + V T2 (x) + •••

which converges uniformly and absolutely in P 1’ where
the coefficients in the series are given by

â. = ^ f1 f(x) (1-x2)”2 dx

The infinite series is normally truncated to a finite

93

series and is an excellent means of obtaining near mini
max approximations to the function f(x) in the range

3.8 POLYNOMIAL APPROXIMATION METHODS

Various methods are available to approximate a
function such that the approximation is a nearly minimax
approximation. Methods like truncation of power series,
method of economisation, truncation of Chebyshev series
and Chebyshev interpolation can be used to obtain poly^
nomial approximations for the function f(x). Literature
regarding these methods is readily available. (Refer
(2), (3), (5)).

A brief description of Chebyshev’s interpolation
method will be given here as we will be using this type
of approximation method in our discussion in Chapter Four.

3.8.1 CHEBYSHEV INTERPOLATION

Suppose f(x) and f (x) (i.e. the function and the
(n+l)st derivative) are continuous in the interval £-1, 3]
and Xj , 3̂ , ... xn+1 are n+1 distinct numbers in s
then there exists a unique polynomial of degree 4 n

such that Pn (x̂ .) = f) for k-1, 2, ..., n+1

The coefficients ag , ..., an can be obtained by solving

n+1 linear equations

Pn (x) = Sq +a1 x + . . . +anx'n

94

nap + a[x + ... + â xj. = f(^) , k=l, 2, . .., n

for the n+1 unknowns. Xj , ^ , . .., xn+2 are called the
nodes of the approximation. If the zeros of the Cheby
shev polynomial T (x) are taken to be the nodes of the
approximation, the method is then called Chebyshev
interpolation. The zeros for Tn+-]_ (x) is given by

x^ - Cos 2 ̂ k-1, 2 , . . . , n+1.

Remarks;

1. If f(x) is an even function, an approximation
Pn (x) obtained by Chebyshev interpolation is also
an even function. Likewise, if f(x) is odd,
P (x) is odd. n

2. Let Pn (x) be a polynomial of degree 4 n determined
by Chebyshev interpolation as the approximation to
a function f(x) in [-1, lj, and given that
PR (x) = ^bQ Tx (x) + bx T: (x) + ... + b̂ Tn (x)

then the coefficients b̂ , p = 0 , 1, 2, ..., n can
be computed by means of the formula
w . 2 r*1 j. (CosC2k-l)K) ^_(2k-l)
p " n+I kil f 2TS+I) ■ 2Tn+I) p

3.8 RANGE KEDUCTTOM

The computation of basic library functions involves
a reduction of the argument to some primary interval,
followed by the evaluation of an approximation to the
function over that interval. In some cases, like sin(x)J

95

In x, there are no practical useful approximations to
these functions for large ranges. It is, therefore, ::
essential to be able to reduce the argument range over
which such functions must be approximated.

It can be said that the quality of the library
routines hinges upon the care used in the argument
reduction stage. The main objective of the range
reduction is to approximate the function with a minimum
number of terms and also to avoid the occurrence of
singularities. Suppose, for example, the function
arc tan (x) is approximated by a polynomial of degree n,
say Pn (x) and that we require x in the range [a, bj.
In Table (3) we can see that, for a given maximum rela-
tive error, the number of terms increases for increas
ingly large approximation intervals. The values in the
table are excerpted from Hart (2).

However, in some cases, range reduction does not
improve the accuracy in the approximation, for example,
approximations involving the Gamma functions. In some
applications, the logical approximation range is small
enough for no range reduction, for example, if the
function sirih (x) is computed with the aid of the
identity sinh (x) = £(ex-e“x), and approximation of ex
in the range [-lln 2, lln 2]. The evaluation of sinh' (x)
using this procedure is very unsatisfactory for very small
argument. When x is nearly 0, e and e are near 1 and

cancellation occurs in the evaluation.

96

TABLE (3) Comparison of Range and Number of Terms
Required to Achieve that Accuracy for
Arc Tan (x)

MAXIMUM RELATIVE NO. OF TERMS
fa b] ERROR n

[o, tan y . 3987 H O 1 00 2

[0 , tan y .1996 io~8 3

[0 , tan i_i12J .1121 10“ 9 4

[o , tan .1197 -910 5

[0 , tan y .1383 -810 9

Segmented approximations lead to greater accuracy.
However, we may need more storage space to hold the
constants for each of the segmented intervals. Logical
tests will be required to determine which segment
(interval) the argument belongs to. Functional prop
erties like periodicity, symmetry, addition formulae and
recurrence relations sometimes allow some range reduction
without the use of segmented approximations. For example,
in approximating the function sin(x), the periodicity
helps to reduce the complexity of range reduction (refer
section (*+.2.2) Chapter H).

In all the routines discussed in Chapter Four, range
reductions are carried out. The error in the reduction
process will be carried forward as argument errors

97

(refer section 3.4.1). Extreme care is required to
prevent this. As discussed in section (3.4.4) extra
precision arithmetic may be required to calculate the
reduced arguments. One method is by phase reduction
where only critical steps are carried out in double
precision arithmetic (refer (7)).

3.9 POLYNOMIAL EVALUATION METHODS

The technique used to evaluate a polynomial
approximation affects the speed of a function evaluation
routine. The most common and frequently used polynomial
evaluation method is the technique called ’nest multi
plication’ . This method is simple to perform (code)
and also it is numerically reliable. For example, to
evaluate a fourth degree polynomial

P̂ (x) = aQ + ai x + â x2 + a3 x3 + â x^

we express the polynomial in the form

P (x) = ((a^x + a)x + a)x + a)x + a
t 3 2 1 0

■f“ "hIn general, a n degree polynomial will require n multi
plication and n addition to evaluate the polynomial.

This technique of evaluation will be extensively
used in Chapter Four. Other methods such as economical
evaluation will not be considered, as evaluating an
approximation polynomial with the aid of an economical
evaluation method can often be unsatisfactory numerically.

98

Rounding errors tend to propagate in this method even
though the evaluation is faster than evaluation by-
nested multiplication (as economical evaluations require
less multiplication). Details of polynomial evaluation
methods can be found in Fike (3).

3.10 CONCLUSION

In conclusion, it is only apt to mention the
documentation of the basic library routines. The basic
library is very dependent on the machine it was written
for and on its environment as the routines are written
in the Assembler code (section 3.2). It is important
for the user to have access to the documents regarding
the routines they so often use. In general, proper
documentation is expected from those routines written
for numerical algorithms. In recent years, more
emphasis is being placed on documenting the all-important
basic library; and performance testing and certification
are carried out to certify the routines (10), (11).
Dickinson (12) listed the following documentation format
for mathematical routines. However, this can also be
applied to the basic library sub-programmes.

The following document may be included with the

basic library:

1. SCOPE:

A short rst&tement regarding what the programme
does in non-mathematical terms is given.

99

2. MODEL:

The model which programmes use is stated generally
in mathematical terms. Emphasis is made here to
state what the routine does. The details of the
algorithm are reserved in the appendix of the
documentation.

3. LIMITATION:

Here all known limitations of the routines are
listed. For example, the range of arguments and the
range of the expected result.

4. ERROR ANALYSIS:

An error analysis of the probable errors that may
occur in the routine. In particular, it should give
detailed analysis of expected critical values (range
of any) and the range of the errors.

5. LISTING OF PROGRAMMES:

Listing of programmes is important for checking and
for future extension to the (library) routines.
Appropriate comments should be included in each step
of the programme listing as it may be difficult to
figure out the content if the programmes were written

in the Assembler Code.

6. APPENDIX:

Here detailed description of the way in which the model
is implemented is given. Outline of the procedure
should be given if the algorithm is an implementation

100

of a literature procedure. Flowcharts should also
be helpful in simplifying the description.

With proper documentation, the basic library can be
frequently reviewed. Also this makes the library more
portable. By fportable1 we mean small easily identifiable
changes are necessary to transfer the software to a new
environment. (Traub (13)).

101

CHAPTER FOUR

4.0 INTRODUCTION

In this chapter we shall discuss some of the routines
in the basic library. Only single precision routines for
square root, sine and cosine, logarithm, exponential,
arctangent, and hyperbolic sine and cosine are considered.
The purpose of the survey is to determine suitable algo
rithms for implementation on the MULTUM computer. In
terms of accuracy, the routines are expected to give a

-2 3maximum relative error of less than or equal to 2
(or 10 7 in decimal). A brief discussion of extending
the single precision routines to double precision is given
in section (4.7). We have left out the routines for
intrinsic functions as these are very machine dependent.
Coding of these functions is straightforward. A brief
discussion of performance testing is also given in section

4.9.

4.1 SQUARE ROOT ROUTINE

The square root routine is based on the iterative

process
y. = 1 y. + ——— (4.1.1) i = 1, 2, 3...*l 2 *1.-1 ^

i
Limit y_ =. x5.•'nn->°°

Equation (4.1.2) is a special case of the well-known
Newton-Raphson iteration formula

102

yi = yi ' f(yL }(4.1.2) i = 1, 2, ...

where f(y) = y2-x.

The sequence y1 , y2 ... defined by (4.1.1) converges
quadratically to Jk (refer Fike (3) for proof). This
implies that any (arbitrary) choice of the initial
approximation yQ will eventually give the square root of x
(after a number of iterations). A reduction in the number
of iterations needed to achieve a prescribed accuracy can
be affected by expressing an arbitrary operand x in the

2 ̂
form x = m(x)2 where n is chosen so that \ «m(x)<l, then

i j ■ ■using x2 = vjjl(x)2 . The reduction is simply a consequence
of the fact that as the range of allowed m(x) values
decreases, increasingly accurate initial approximations yQ
are possible. The number x is representable in the form

x = m(x)2e x̂ ^....................... (4.1.3)
In the floating-point representation
equation (4.1.3) can be written as

2 kx = m(x)2 if e(x) is even
m(x).2.22l<: if e(x) is odd

and 5 4 m(x) <1 for positive value of x.

Negative values of x give imaginary roots and will not be

considered here.
The square root is

x = 2^/m(x) if exponent e(x) is even
2^/2mTx7 if exponent e(x) is odd

The computation of Vx is then reduced to find the square root
of m(x) or 2m(x) in the range [j 1). Write m(x) or 2m(x)

103

as m, the iterative process used will then be

i = 1, 2

Let Ê (m) be the relative error after i iterations.
Hence

i
E. (m) = y. m 2-l i (4.1.4)

satisfying
Ê (m) = sE^^Cm) (1-Ê _1(m)) 1 (4.1.5)

These features,together with the economy of arithmetic
operations involved in carrying out one cycle of the
iterative process, imply that there is little to be gained
by using sophisticated approximation to represent the
initial approximation yQ . The choice of possible forms to
represent Xq is therefore limited to these three

a) linear approximation yg = 3q + ax m
b) bilinear approximation yQ = bQ + b 1 (m + t^)^‘
c) Quadratic approximation yQ = Cq + clm + c^m2

a) Linear Approximation

The constants aQ , aj can be obtained by applying
Chekyshev's (minimax) Theorem (refer 3.5.2) and .are found
to be: 0Q = 0.4173, a[= 0. 5902 , (Eve, (19))

From equation (4.1.4)

The maximum relative error in the initial approximation is

which can be deduced by application of Chekyshev's Theorem

(m) = y0 m 2-l.

| E0 ($) |̂ 0.96 x 2 ,

104

and also taking the approximation yQ = 0.4173 + 0.5 902m
as the initial approximation.

From equation (4.1.5), we can see that the maximum
relative error after two iterations, (m) is

0 < E2 Cm) < 2-31

and after three iterations
0 < E3(m) < 2“63

b) Bilinear Approximation

y0 = b0 + bj Cm + b2)_1
Similarly, bQ , b , b c a n be obtained by application of
Chekyshev Theorem.
We have (Eve, (19))

y = 2. 541639-4. 837528/(m+2 . 137255)........... (4.1. 6)
From equation (4.1.4) and Chekyshev Theorem,together with
the approximation (4.1.6) the maximum relative error EQ (m) is

IEq (m) |< 0.33 x 2"10

Repeated application of equation (4.1.5) gives
1 -47| Eq (m) | < i x 2

c) Quadratic Approximation

Similarly we have
yn = 0. 313553 + 0.890245m - 0.204445m2, J < ni< 1 (refer
0 Eve (19))

for which
|E0 Cm) | < | x 2'9

and after one iteration, |Ej (m)|< 2
1 — 44and |I^(m)|< 2 after two iterations.

105

Comparison of the three approximations:

Table (1) gives the maximum relative errors correspond
ing to the three approximations and the number of iterations
required.

TABLE (1): Comparison of Maximum Relative Errors Ê (m)

APPROXIMATION EQ (m) Ej_ Cm) E£ (.m)

-7 -15 -31LINEAR 0.96 x 2 2 2
-10 -21BILINEAR .33 x 2 2 1 X 2 - W

5
-9 -19QUADRATIC .33 x 2 2 2

Comparison between the three types of approximations *
The linear approximation tends to converge more

slowly than the other two cases. The maximum relative
error registered in the bilinear and quadratic approxima-

— if 5tions is in the order of 2 as compared to that of the
-31 . . .linear form, which is 2 . However, the initial approx

imation of y in the bilinear and quadratic case requires •'O
more arithmetic operations. For example, in the bilinear
approximation, two additions and one division are required
to evaluate yg as compared to one addition and one multi

plication in the linear form.

The floating-point representation in the MULTUM
— *+ocomputer does not require accuracies in the order of 2

The linear approximation is a better choice for implementa

106

tion in the MULTUM computer. We can use fixed-point
arithmetic to evaluate' yQ and the subsequent iterations.

The approximation y after the second iteration will then
be concatenated with the exponent, 2 , to form the result
of the square of x. If linear approximation were used,
calculation of yQ cannot be performed in fixed-point arith
metic as bQ , ^ and b2 are not pure fractions. Working on
floating-point arithmetic, the accuracies in the order of
2 would serve no purpose at all since floating-point
numbers require only 24- significant binary digits to
represent the number.

4.1.7 ERROR PROPAGATION

Let argument have error e and the exact value

x* = x + £
From binomial expansion

/xCl+e) = /x Cl+^e - §e2 + ...)

The relative errors of the results are approximately
one half of those of the arguments. Evaluations of ŷ
are performed in double-precision fixed-point arithmetic.
In this case the full length of the accumulator is used.
This will minimise the propagation error.

4. 2 TRIGONOMETRIC FUNCTIONS

4.2.1 SINE AND COSINE SUB-ROUTINES

The relative accuracy of the computed value of a
trigonometric function depends largely on the care
exercised in the reduction stage. For this reason, it is

107

desirable to use an arithmetic higher than the working
precision during this stage.

4. 2. 2 REDUCTION STAGE

Let the floating-point argument be x. Our task is
to decompose the given argument x as

|x| = (i)n + r(n/a) where n is an integer and
a is a positive integer

and 0 4 r < 1

That is, given x, there is exactly one pair of values
(n, r) that satisfies this relation. Then the reduced
argument is either

g = C—)r = I x | - n(—) (4.1. 2)6 a 11 a
or g1 = (S) (1-r) = (n+1) (£) -Ixl (4.1.3)® a a 1 1

depending upon the value of
m = n mod 2a , a = 1, 2, 3...

and the main computation will be sine or cosine of g or g'.
From equation (4.1.2) and (4.1.3) loss of accuracy can
occur in forming the difference between nearly equal
quantities |x| and an integer multiple of n/a. For
example, |x| and ^ n agree for the first k bits; then g
may be in error in the last k bits leading to a large
value of fig even though <Sx = 0. The following example
is due to Cody (8). If we let xxxxxxxx represent the
computer bits devoted to normalised fraction part of a
floating-point number x, a typical computation of g is

as follows: x = xxxxxxxx
-n.3 = xxxyyyyy

OOOzzzzz

108

where the renormalisation of the intermediate result
shifts zero bits into the low order positions. Suppose
x is extended to double precision by the appendage of
extra zero bits. Then computation of g is as follows

x = 'k xxxxxxxx 00000000
n“n~ = rxxxyyyyy y y y y y y y y

.OOOzzzzz zzzzzzzz

normalised to give .zzzz zzzz.
The accuracy of g is then dependent on n̂ - alone. If we
assume 6xe0, we can see that

6sin (g) = g cot (g) 6g
5cos (g) = -g tan (g)Sg

Hence the magnitude of <5g, the argument error (in the
reduction stage) has a great influence on the accuracy of v

the computation over the reduced range.

In general, the constant a can be chosen arbitrarily.
(Refer Hart (2).) For convenience, a is taken to be
either 2 or 4 in our discussions. Consider the following
algorithm for sine/cosine.

n
Define z = jj|x| Let z = n+r

where n is an integer and r a fraction 0 4 r < 1

We then have
n ^ nx = j n + j r

The full range of the variable x is reduced to [0 , |-J
in our case here. If we restrict r in the range [-J, J]

Ln n 1-45
We shall only consider the first case.

The following trigonometric identities enable us to

109

cover "the negative values of x by adding integer constants
to n in the reduction stage.

If sine of a negative argument is desired, add 2 to n.
If cosine is desired, add 1 to n. This adjustment of n
reduces the general case to the computation of sin(x) for
x>p.
Let me = n mod 2a
if a = 2, m = n mod 4.
Using the identity sin (A+B) = sin(A)Cos(B) + sin(B)cos(A)
we have, for m = 0 , sin(x) = sin(^r)

The formulae reduce each case to the computation of either

Cos(±x) = Sin(̂ -+x)
Sin(-x) = Sin(n+x)

m = 3, sin(x)

m = 2, sin(x) -sm(^r)
. /3IUII x ,n ssinCy+^r) = -cos (̂ -r)

If a = 4, the reduction stage will be
|x| = |n + f r , 0 < r < 1, n is an integer

The full range is then reduced to ĵ O -|J.
Now m = n mod 8, and we have

m = 2, sin(x)

m = 3, sin(x)

cos (jj-r)

sin{-(l-r)}

110,

m = 4, sin(x) = -sin(^r)

m = 5, sin(x) = -cos -|(l-r)

m = 6, sin(x) = rcos(|r)

m = 7, sin(x) = -sin{^(l-r)}

The computation is also reduced to the evaluation of either
sinC^) or cos) where r2 is either r or (1-r) and is
within the range 0 < ^ < 1.

4.2.3 CHOICE OF q

From Chapter Three, we infer that the smaller the
approximation range the less terms a polynomial or rational
approximation must contain to approximate a function with
a specified accuracy.

Suppose the sine function is approximated by a poly
nomial, say sin(IT/ax) * xP(x2).
The following table (2) is excerpted from Hart (2):-

TABLE (2) Comparison of Precision for Different a and n
• “XMaximum Relative Error = 2

a/n 3 4 5
a = 2 x=20.03 x = 27. 47 x=36.14

4 28.20 37.67 47.66
6 32.92 43.55 54.71

From Table (2) It can be seen that precision increases
when x increases. For example, when a ̂ 4, the maximum

— 2 8 20relative error is less than or equal to 2 * ̂ if a poly

Ill

nomial of degree 3 in x2 is used to approximate sin(—x).a
-20 03When a = 2, maximum relative error is 2 * for a poly

nomial of the same degree. For practical consideration,
a = 4 is a better choice than a = 2, since floating-point
number representable by the MULTUM computer (refer section
2.3.1) has a significant of 2*4 binary digits. Hence the
computation for either sine or cosine is performed using
the Chekyshev interpolation of degree 3 in r2 (refer
section 3.8.1). The maximum relative error in the sine

”281 “24*6approximation is 2 * and that of cosine is 2
We have

3
Sininx * r P(r2) = rE a (r2)r=0 31

The coefficients are due to Hart (2) (Table sin 3040).
aQ = + 0.78539 816 x 10Q:
aj = - 0.80745 433 x 10_1
ag = + 0.24900 010 x 10’2
83 = - 0.35950 439 x 10~3

n=3
and for Cosqllr * P(r2) = 2 b (r2)31

n=0 n
b Q = +. 99999 997- * 10°
^ = -.30842 417 x 10°

-1
b2 = +.15849 684 x 10
b3 = -. 31872 780 x 10“3

4.3 LOGARITHM (ALOG, AL0G10)

The natural logarithm, ln(x), (or written as lo^(x))
is the inverse of the exponential of x.
i.e. In exp(x) = x - exp ln(x)

112

In addition, logarithm is defined only for real positive
values of x.

RANGE REDUCTION

It would be most impractical and cumbersome to find an
approximation for ln(x) in the range 0 < x < oo or in the
range of x representable by the machine. Thus it is
necessary to reduce x to an interval that will give a rapid
convergent for the approximation.

A typical range reduction will be the decomposition
of the argument x as the product

x = 2n.m where 0.5<:n < l (4.3.1)
Then the logarithm of x will be

ln(x) = n ln(2) + ln(m).............. (4.3.2)
The approximation for ln(x) is then reduced to finding
a suitable approximation for ln(m) in the interval

0.5 4 m < 1
This reduction scheme is easily realised as the standard
ised floating-point number is of the form given in equation

(4.3.1).

For practical and accuracy requirements, the interval
£4 m< 1 can be subdivided into 2 intervals,

£ 2”^ ^ , 2 3 by -the substitution
= 2<l-j)/2t

5 m

then
ln(x) = ln(2n .2^_1/2k)

= n ln(2) + i l ln(2) + InCg)2k
It only remains to find an approximation for ln(g) that

113

will give a rapid convergence in the chosen interval.

Two forms of approximation are considered for ln(m).
The first is a simple polynomial or rational approxi
mation in m.

ln(m) = R(m)....................(4.3.3)
The second is of the form

ln(g> = (fil) R (fil)2 ^-3.4)

Table (3) gives an indication of how rapidly these
approximations converge.

TABLE 3 Comparison between Approximation of Form
(i) ln(m) - R(m) , (ii) ln(g) = zR(z2)
where g = (g-l)/(g+l)

• • -Xmaximum relative error = 2

INTERVAL X
DEGREE
hi FORM OF APPROXIMATION

(i>l[i> i j 25.01 8 ln(x) - P(x)

1[i. i] ,7.05 3 2 ln(x) - P(x)/Q(x)

ii) |
£ ✓2-1. 25.51 2 In (x) - z P(z2)

1 * 3 28.16 1 1 ln(x) - z P(z2)/Q(z2)

The values in Table (3) are excerpted from Hart (2).

Approximation in the form ln(x) = zP(z2) where
z = (x-1)/(x+1) gives a fast convergence at the expense
of two extra additions and one division and one multi
plication to form z2 in addition to the arithmetic
for evaluating the polynomial.

114-

Subdivision of the interval [^, l] into 2k intervals
may require k comparisons to determine which interval
contains m and also extra storage is required to store

• • Jcthe quantities (j-l)/2 . The trade-off between storage
space, accuracy and speed will deter the possibility of
having too many subdivisions. As an alternative to approx
imate function ln(m) in l] we may use the substitution

s = am where m< 1
and a is a constant,
in which case s is in the interval j^, a]
where s e I" — 1 and

L/2,/2J

ln(x) = 2n - s
/2

= (n-2) ln(2) + ln(s)

To calculate the logarithm function ln(x), the

Chebyshev polynomial expansion on [2 9 -1] is truncated
and transformed into a power series.

ln(x) = -Un2 - E 4p2k+1 (/2+1)2 l - ® \
- W ^)
4/2-1where p = ----
Lf/2+1

This expansion is obtained by using the ortnogonal properties

of the polynomial, Tn Cx) to determine the constants in

the expansion,
00

ln(x) = JaQ + £ â T̂ Cx) by integration.

The economised Chebyshev polynomial expansion, is
3 2k+lln(x) = Jln2 + ^ a2)c+1 u

115

j/2
where u = x - 2 , i ,<-x 4 1

x + /2
2

_32A maximum error of 2 is incurred if the approximation
is used. The constants are

a1 = 1.999 999 993 788
a3 = 0.666 669 470 507

= 0.399 659 100 019
a = 0.300 974 506 336 (refer (18))

Evaluation of the parameter u will cancel a number of
significant digits if x is very nearly — . Extended

SI
precision arithmetic is required to determine u accurately
as the whole accuracy of the routine depends on this.

Alternatively, we can have the following algorithm.
Suppose that we have a polynomial approximation
ln(m) = zP(z2) where z = i , — m < Si .m+1 ^ ~
To calculate ln(x) , we write

nx = a m i <
and ln(x) = n In (2) + ln(m).

si
If — 4 m < 1, evaluation of ln(x) is obvious.

However, for \ 4 m < i , we need to have an approximation,
Si

zP(z2) in this range or use a substitution in order to make
use of the same polynomial approximation for the range

[i>
Let the substitution be

s = 2m,

116

this transforms s e fl, /2 1 ^ f" — 9 /2
l/2

and evaluation of ln(x) will be
ln(x) = (n-1) ln(2) + ln(s).

Then

ln(s) - zP(z2) where z - 2m-1 = m-5
2m+l " m+2.

An example for the polynomial approximation zP(z2) is

zP(z*> - I a ^ z 2"41 n=0 2n+l

where â = 2.0000008
a = 0.66644078 3

The evaluation of logarithm to base 10 is obtained
from the relation

log10 (x) = log2(E) In (x)

where loĝ (E) = 1.4426 9504

4.4 EXPONENTIAL FUNCTION (EXP (x))

The range of argument x, for the exponential function
exp(x) (or written ex), runs from to +«>. Range reduction
is practical and necessary for exponential routines.

a) RANGE REDUCTION

We may write

a = 0.415177395 (refer Kuki (7))

A maximum relative error for this approximation is 10
(or 2” 23•2)

x/ln(2) n+m (4.4.1)

with n integer and 0 4 m < 1.
This reduces to finding an approximation for 2m as the factor

117

2 may be "taken into account by adding n to the exponent
in floating-point.

Now
,m ln(2)m2 = e

= em ln(2)

_ ^e 2m ln(2) ^ 2

if we define y = m ln(2)/2
Then

y e [-isi, ln2 1
L 2 2 J

On this interval, we can find a polynomial or rational
approximation to ey .
For example

(ey) = 1 + 2y______
a -y-a 0 y 1

b +y2 1 J

is nearly the best (in Chekyshev’s sense) rational approx-
-9imation which has a relative error of less than 10

-29.6 (or 2)

The constants are
Oq = 12.015 167 538 7500
aj = -601.804 266 697 9565
b2 = 60.090 190 731 9260 (refer (18))

Also we can express
exp (x) = 2X lo% e

= 2n“m
= 2n. 2m where 0 < m < 1 (4.4.2)

Evaluation of exponential of x (exp(x)) is therefore
confined to finding a suitable approximation for 2m (or 2 m)
instead of finding an approximation for ey in the earlier

118

case. If a polynomial approximation, P(x) is used to
approximate 2m i.e. 2m - P(m) |m|< 1
then value of the reduced argument from equation (4.4.2)
is always negative by a proper choice of n.

5Let P(m) - Z a. m
i=0 1

where ag = 0.999 999 93
a1 = 0. 693 142 26
a, = 0. 240 172 24
a^ = 0.552 798 30 10-1
â = 0.918 869 80 10“2
35 = 0.938 811 00 10"3 (refer (18))

™ 7 - 0 3 IThe maximum relative error is less than 10 (or 2 *)
-7.As accuracy of 10 is only required by the computer,

the approximation of exp(x) by P(m) - 2m seems a better
choice.

The routine for exponential, exp(x) should provide
alarms in case exp(x) exceeds machine capacity. This is
most easily determined by checking that n in equation
(4.1.2) is not larger than the largest allowable exponent.
Also provision should be made to return zero if n is less
than the smallest allowable exponent. In cases where
x is very near zero, 1 is returned as the answer.

4.5 INVERSE TANGENT (ATAN, ATAN2)

The value of inverse tangent function is the angle at
which the corresponding tangent attains a special value.
The tangent function is periodic and takes on the same

119

interval twice in each interval of length 2n 9 the
inverse tangent is multiple valued. Using the following
identities

arc tan (-x) = -arc tan (x)
and arc tan C.— .) = 5 - arc tan (x)| x| z

the range (-°°'9 °°) can be reduced to £o, lj
Thus arc tan (x) can be expressed in terms of arc tan (y)
where y = g(x) and g(x) = x or — .X
Further reduction of the interval 0 <. y 4 ls (or O4 y^ tan
to a smaller interval gives a better polynomial approxima
tion in the smaller range than the larger range £ 0 , lj
Table (4) illustrates the influence of the interval on the
accuracy and speed of the polynomial approximation. The
values in Table (4) are excerpted from Hart (2).

120

TABLE (4)

Arc tan - xP(x2)
Comparison between Different Ranges,

Maximum Relative Error = 2 x

RANGE x DEGREE OF POLYNOMIAL

[0, tan |y] 27.90 2

36.93 3

[O, tan — 1 21.85
L 16-1

2

28.90 3

[0, tan 2 5.54 3
31.69 4

Jo, tan ^ J 15. 74 2

20.71 3
25.71 4

jo, tan |] 20.56 6

23. 6 7
25.97 8

From Table (4) we can see that a polynomial of degree
7 in x2 is required to approximate arc tan (x) in the range
0<. x<. 1. To achieve, the same accuracy, that is a maximum
relative error of 2~ 25, a polynomial of degree 3 in x2 is
required if the argument x is in the range [0 , tan Sj].

121

Hence the following algorithm is used.
When x < 2-/3 then z = x and c = 0
and x ^ 2-/3 then z = and c = n/b

x+/3
3and arc tan (z) = Z =, 72k+lk=0 zk+1 z

arc: tan (y) = arc tan (z) + c
The coefficients a's are

a1 = +. 99999 99797 73
ag = -. 33332 42344 5
^ = +.19935 72694
ay = -.12813 3334 (refer Hart (2))

r XFor arc tan 1 ̂ r, the algorithm is the same as that for

one argument.
If ^ = 0

X IIarc tan (Jl.) = sign (x1)
*2

if *i_ > 22if , the value x = 'j'*L| is an integer
1*2 I *2

as the mantissa of the floating-point number is 24 digits
and the value — is very small and arc tan (—) = 0X X

if 22lt, arc tan (^L) = (sign x1).̂ -
x, x,

otherwise if x > 0 the answer = arc tan (*1)

and if x < 0 the answer = are tan () + (sign x[)n.
2 *2

Care should be taken in coding the algorithm. Instead of
computing the value /3x-l directly, (/S-Dx-l+x is computed
to avoid loss of significant digits.

122

4.6 HYPERBOLIC SINE AND COSINE (SINH and COSH)

The hyperbolic sine and cosine functions are defined
by equations (4.6.1) and (4.6.2)

sinh: (x) = (eX-e x)/2...........................(4.6.1)
cosh (x) = (ex+e x)/2(4.6.2)

The value of sin h (x) is symmetrical about the y-axis and
for all values of x, sin h (x) >,1. By symmetry, we need
only consider the argument range 0, 00 . To get a better
result in sin h (x) near the origin, that is for argument
in the range [o, 1 J, we may compute sinh \ (x) by the
polynomial approximation

sin h (x) ~ xP(x2)
where xP(x2) ~ E a . n x21+1 i=0 2i+1

and ^ = 1.0000 00000 1327
3^ = 1. 6666 65805 763

_ 2
= . 83416 01527 * 10

(refer Hart (2), Table
SINH 1962)

The maximum relative error of this approximation is

less than 232?1*

If 0 4 x 4 5 were chosen, the best (in Chekyshev's
sense) polynomial approximation for sinh. (x) is given by

xP(x2) = E b . x21+1i=0 21+1

and bx = 1.0000 00095 55
bg = .16666 97150 46
b = .8077 9341 x 10 2 (Hart (2) Table SINH 1982)5

123

The maximum relative error in this case is less than
- 23.4 _30An accuracy in the order of 2 is not2

required. It is the best choice in approximating the
sinh(x) in the range [p, For values of |x|>2, sinh(x)
is computed as

sinh(x) = (sign x)

where w = e

From equation (4.6.2), Cosh(x) behaves like the
exponential function. To obtain the value for
hyperbolic cosine of x, Cosh(x) is computed as

Cosh(x) = (w+w 1)/2

where w
e

The real exponential sub-programme is used to compute
the value of w in both cases.

4.7 DOUBLE PRECISION BASIC LIBRARY ROUTINES

So far, we have only discussed single precision routines
for the basic library. Double precision routines are
required to provide higher level language support for double
precision (or extended precision) floating-point arithmetic.
In the MULTUM computer, no double precision floating-point
instructions are available. In addition to the explicitly
and implicitly double precision mathematical routines,
double precision arithmetic simulators and input/output
conversion, programmes should be included in the library.

Double precision arithmetic simulation is required to
provide the complete set of double precision instructions

124

that is not available in the computer (see section 2.4).

A routine is required for base conversion of an input
decimal number into an internally useable form, including
the conversion of up to 15 decimal digits of input into
the double precision binary form. Another routine is also
required to handle output conversion including conversion
of a double precision number to a decimal number of up to
15 decimal digits. This routine handles the conversion
and format of the print field.

Double precision mathematical functions can be made
available using the same algorithms given earlier except
the -.approximation used. For example in the sine/cosine
routine, to extend the routine to a double precision
routine, we approximate sine/cosine function by Chebyshev"
interpolation of degree 6 instead of the Chebyshev inter
polation of degree 3 in r2 (see section 4.2). Comput
ations are done in double precision arithmetic. Coefficients
of the polynomial approximation are given to the double
precision accuracy. However, difficulties do arise in the
reduction stage where we need extra accuracy to calculate
the reduced argument. (See section 4.2.2). Similarly,
we can extend the logarithm, exponential, inverse trigono
metric functions by finding the appropriate ’double precision'
approximation. In the square root routine we can either
iterate a few more terms using the same starting approx
imation (but work in double precision arithmetic) or use
another starting approximation given in section (4.1).

125

More sophisticated methods of designing a double
precision routine can be done using a Chebyshev best fit
approximation by rational functions. The approximation
can either be presented by a Thiele-Tyre fraction or a
Jacobi-fraction. If Thiele-Tyre fraction were used,
P. Spelluci (18) found that the evaluation would be slow
but well behaved with respect to error propagation. If
the approximations were presented by the Jacobi fractions,
evaluation was fast but needed provision for guard digits
to preserve the full precision of approximation.

Considering the speed and accuracy required in the
MULTUM computer, the method of extending the available
logarithm is a better method.

4.8 SELF-CONTAINED POWER ROUTINES

We have left out one important routine in our
discussion of library functions, viz. the exponentiation
or power routines. The exponentiation routines are some
of the most important in the library corresponding to the
Fortran operation "**" operator. The survey of floating
point power routines reported in Clark and Cody’s paper
(11) shows that error in the last 7 to 10 digits is
common even for moderate arguments.

Normally, the power routines are considered as manage
ment routines (see section 3.1.3)* The exponential and
the logarithm routines were used to compute the value
x**y. The standard approach to floating-point exponenti-

126

ation involves the computation
x*w«y = exp y In (x)

Let w = y In (x)
and z = exp (w)
then <$z =: exp (w) 6w
i.e. 6 z - Aw

If w is computed in working precision, the word length
of the computer assures us that Aw, hence Sz, is likely
to be large whenever w is large. This phenomenon is
independent of the two primary routines (viz. logarithm
and exponential). To avoid this error, both ln(x) and w
should be computed to higher than working precision,
assuming that arguments x and y are precise. If the
required reduction

w = n In (2) + f, | f | 4 In (2) / 2
is performed in the higher precision, the final computation
will be essentially as accurate as the exponential comput
ation.

If the working precision is single precision, the extra
precision required for this approach can be obtained by
doing the steps in either fixed-point arithmetic or in
double precision floating-point if that is available.

The raising of the status of the power routines to
that of primary routines will improve the accuracy of the
routine. This can be done by computing the logarithm
and exponential routines in the power routine itself.
Such self-contained power (exponentiation) routines were

127

suggested by Cody, Clark and Kuki (15), (16). Working
versions of self-contained single precision routines of
this type have been available on the IBM 7094 at the
University of Toronto and on the CDC 3600 at Argonne
National Laboratory since early 1960fs, and on IBM 360
at Argonne and IBM 7094 at the University of Chicago since
about 1967 (16).

The elevation from management status to primary status
increases the accuracy and speed of the routine but has a
penalty on the storage requirements. Some of the overall
storage can be retrieved by reducing the standard exponential
and logarithm routines to appropriate entries in the
corresponding self-contained power routines. Unfortunately,
the execution time of the logarithm routine and the
exponential routine is considerably slower. Clark (15)
gives a 50% increase in execution time for the logarithm
and about 10% increase in time for the exponential routine.

4. 9 PERFORMANCE TESTING OF BASIC LIBRARY SUB-ROUTINES

The certification of basic library sub-routines for
computers is relatively easy compared with the general numer
ical sub-routines. In any case, it is often a difficult
job to define a concrete measure of performance for a
particular type of routine as the details of the performance
testing vary from one type of sub—routine to another.

Distribution is required between actual testing of
performance of a sub-routine and judgement of quality based

128

upon the results of the testing.

Rigorous testing is required to ensure that statistics
and facts from the testing are indisputable. Quality
testing should attempt to determine error as precisely as
possible, in order to be meaningful to any potential user.

To begin with, we shall look into the question of
errors made by sub-routines, as quality testing will largely
depend on this. Clark and Cody (11) classified these
errors into three types, namely (i) transmitted error,
(ii) analytic truncation error and (iii) analytic rounding
error. Analytic truncation error is error made in the
finite approximation to the infinite process. Analytic
rounding error is error made in the computation of the
approximation. Together, these two types of error are
termed as generated error. (Refer section 3. .4. 2).
Transmitted error is error due to the arguments. (Refer
section 3.4-.)

4.9.1 ERROR TESTING

The simplest method of testing is direct testing of
computed function values against published tables.
However, this method is most unsatisfactory. Comparison
values of this type will involve human handling of the
standard values. In practical terms, this is inefficient
and likely human errors will be involved in transcribing
the tabular values. Entries in published tables are
normally very sparse. Values returned by a routine may
agree with tabulated values and may yet give poor results

129

for other arguments. Also comparison against tables
always involves conversion of tabulated decimal arguments
into binary arguments. This leads to generated errors
from conversion routines. In addition, transmitted error
and the subsequent error in conversion of computed results
back to decimal form will contaminate the final error
statistics. In some sub-routines generated error is
difficult to detect unless it is very large.

All these point to the need for automation in quality
testing. Machine generated arguments and standards
should be used to reduce the drawbacks stated. Clearly,
the best tests involve a large number of arguments that
are dense and not restricted to relatively small finite
sets of ’nice' arguments given in most tables.

4.9.2 BIT PATTERN COMPARISON

Standard arguments generated by the computer will need
greater precision than that of the value under test.
For example, if a single precision routine were under test,
we would then require to compute the same function more
accurately than single precision (say, double precision).

Testing arguments are generated by the computer. These
pseudo-random numbers are either uniformly distributed or
exponentially distributed depending on what is required.
The arguments are computed in test precision and extended
to higher precision by appending appropriate low order
zeros. Computation can then be carried out with 'identical*
arguments in both single and double precision routines.

130

The possibility of transmitted error is eliminated by this
process. Rounding the double precision result is normally
preferred to truncating to single precision (10). A bit-
pattern comparison of the results is obtained using fixed-
point subtraction. Tables of the frequency of the
difference in the bit pattern between the rounded single
precision result (from double precision) are made. These
statistics give an indication as to how well the sub
routine produces the machine number closest to the correct
function value.

Additional statistics may be obtained from the above
procedure. The maximum relative error and the root mean
square relative error can be easily obtained. However,
computation of the maximum relative error and the root
mean square relative error should be in higher precision.
Extensive testings were performed by Clark and Cody (11)
• • I y ' ’ using the unrounded value of the standard
value to obtain the root mean square relative error and
the maximum relative error.

The choice of test intervals and the distribution of
random arguments is greatly related to the internal structure
of the sub-routine under test. Special tests are required
for critical ranges such as neighbourhood points where
intermediate underflow or overflow may occur. Also, tests
for the error return by using arguments at and just beyond
the limits of acceptability are required. Extremely large
and small numbers are tested to check for overflow and

131

underflow problems.

4.9.3 TIMING

Time checks are normally obtained by performing
the sub-routine for several thousand random arguments
using a loop of some sort. The overhead for the loop
can be obtained by testing an identical loop with the
test sub-routine replaced by a special sub-routine whose
only executable instruction is a return to a calling
programme. Instead of testing with several thousand
random arguments, this can be replaced by a fixed argument
and then perform the routine several thousand times. It
is important to have a sufficient number of time round the
loop to minimise the effect of the coarseness of the clock.

For double precision sub-routines a computer with
larger word length may be used to generate the standard
values. Pseudo-random double precision floating-point
numbers in the larger computer word machine are generated
and then converted to the length of the machine under test
by rounding and zeroing out the extra bits. These
converted arguments are then used to generate the
corresponding function values on the 'larger' machine and
the results are rounded to the 'test' computer number
format. The pairing of arguments and function values may
be transmitted to the 'test' computer via magnetic tape
and the testing carried out on these, in a manner analogous
to the single precision testing. The root mean square
relative error and maximum relative error computed is not

132

as accurate as those for the single precision routine
if higher precision arithmetics are not available. Such
procedures were, in fact, used by Clark and Cody in finding
the performance statistics of the Fortran IV (H) Library
for IBM sys./360 (10). The large machine used was the
CDC 3600 where the double precision format is an 80-bit
mantissa.

4.10 CONCLUSION

The need for double precision floating-point arith
metic by hardware is obvious if we are to design accurate
and efficient basic library routines. Double precision
arithmetic is required in some stages of the evaluation
in order to obtain a last-digit accuracy for the result.
For example in the argument reduction stage in most of the
routines, the accuracy of the routines depends on the last
digit accuracy of the reduced argument. Computation of the
reduced argument at this stage by double precision arith
metic will ensure this. Unfortunately, hardware instructions
for double precision arithmetic are not available in the
MULTUM and this greatly affects the design of the library.
Simulated double precision (floating-point, refer section
2.4) arithmetic by software has heavy penalty in the time
of execution of the routine. Also, double precision
arithmetic is required in testing and certification of the
library. Implementation of the double precision basic
library routines without double precision floating-point
arithmetic by hardware is most inefficient and very slow.

133

Also double precision arithmetic is needed in the
generation of accurate constants to assist in the
preparation of full accuracy single precision routines.
In many cases, these will be the coefficients in expans
ions of functions, in particular, as power series, series
of Chebyshev polynomials and continued fractions.
Accurate zeros for routines are needed to preserve
relative accuracy in constructing function routines.
Having considered these factors, it is strongly urged
that double precision floating-point arithmetic be
included as hardware operations by the computer manu
facturers .

The routines have not been coded. Careful con
sideration should be given in the actual coding as errors
due to straightforward coding can be substantial. For
example, in the sine/cosine routine, using straightforward
coding to obtain (2/n)x-n (refer section *+.2) introduces
an absolute error approximately equal to n2 ^ where p is
the binary precision of the machine, bince Sin(^ r) - 2r,

an absolute error of n.2 in the answer from this
source. This is the same as the effect of the minimal
round-off error in the argument. Since Sin(x) becomes 0
periodically, this means that generated relative error
will become infinite periodically. It can be concluded
that straightforward (coding) reduction generates an
error approximately equal in magnitude to the effect of the
minimal round-off error in the argument.

134

The trade off between cost and refinement is a matter
of individual judgement. Kuki (7) suggested that an
increase in execution time by 10% and 15% in storage to
attain a virtual last-digit accuracy is acceptable.

Routines like tanh(x), arc- sin(x) and arc cos(x),
which are not in the ASA Fortran standard,should be
included in the library routines. If these are included
they should be written as primary routines and not as
secondary routines. That is, computation of arc sin(x)
and arc-cos(x) (for example) will not call upon the arc-tan(x)
routine to perform the main calculation. The elevation
of status from secondary to primary often increases the
efficiency and accuracy of the routines.

135

BIBLIOGRAPHY

Kuki, H. and Ascoly, J

Hart, Joh. F.

Fike, C.T.

Snyder, M.A.

Rice J.R.

Achieser, N.I.

Kuki, H.

8 Cody, W.J.

Veidinger, L,

10 Cody, W.J.

11 Clark, N.A. and Cody,
W.J.

Fortran Extended Precision
Library, IBM SYSTEM JOURNAL,
No. 1, 1971, pg. 39-61
Computer Approximations - (1968),
John Wiley
Computer Evaluation of Math
ematical Function (196 8) Pren-
tice-Hall
Chebyshev Methods in Numerical
Approximation (19 66) Prentice-
Hall
The Approximation of Function.
Volume I. 1964, Addison-Wesley.
Theory of Approximation. Ungar,
New York. English translation
by C.J. Hyman (1956)
Mathematical Function Sub-
programmes. Basic System
Libraries - Objectives, Con
straints and Trade-off.
Mathematical Software (Ed.Rice)
1971. Academic Press
Software for the Elementary
Functions - Mathematical
Software (Ed. Rice) 1971.
Academic Press.
On the Numerical Determination
of the Best Approximations in
the Chebyshev Sense. Numer.Math.
2, 99-105.
Performance Testing of Function
Sub-routines, AFIPS Conf. Proc.
34, pg. 759-763.

Performance Statistics of the

136

12 Dickinson, A.W.
Herbert, V,P.

13 Traub, J.F.

14 Cody, W.J.

15 Clark, N.W. and
Cody, W.J.

16 Clark, N.W.,
Cody, W.J., Kuki, H,

17 P. Spelluci

18 POP-11

19 Eve, J.

Fortran IV (H) Library for
IBM SYSTEM/360. Argonne
National Laboratory May 1967^
ANL-7321
The Development and Maintenance
of a Technical Sub-programme
Library. Mathematical Soft
ware (Ed. Rice) 19 71 - Academic
Press
High Quality Portable Numerical
Mathematics. Mathematical
Software (Ed. Rice) 1971.
Academic Press
The Influence of Machine Design
on Numerical Algorithms. Vol.30
AFIPS Conf. Proc. 196 7,
pp.305-309
Self-contained Exponentiation.
AFIPS Conf. Proc. Vol.35,
(1969) pg.701-706
Self-contained Power Routines.
Mathematical Software (Ed. Rice)
1971, Academic Press
Double Precision Approximations
to the Elementary Functions
Using Jacobi-Fractions. Numer.
Math. 18. (1971) pg.127-143
Paper Tape Software Programme-
ing Handbook
Dec.-11- GGPB-D
Starting Approximations for the
Iterative Calculation of Square
Roots (1963). Comput. J. 6,
274-276.

137

APPENDIX 1

In this appendix, a set of Usercode MULTUM Usercode
Language procedures for single precision floating-point
arithmetic is given. These are grouped into three
modules, S0FT1, S0FT2, and SOFT3.

Module S0FT1 simulates the four basic single precision
floating-point instructions, viz. add, subtract, multiply
and divide. The corresponding entries to the module are
FADDF, FSUBF, FMLTF, and FDIVF.

In module S0FT2, we simulate the instructions for
fixed integer, fixed fraction, and negate with entries
FFIXI, FFIXF, and FNEGF respectively.

Module SOFT3 simulates the instructions float integer,
float fraction, and standardise. The corresponding
entries into the module are FFLTI, FFLTF, and FSTND (or
STEXP)’. There are two entries for the standardise
operation. The entry ’FSTND' is the entry for standard
ising unnormalised floating-point numbers. ’STEXP' is
the entry for standardisation if mantissa is given as a
32-bit extended mantissa (in register E) and exponent in

register Y.

The results are returned as standardised single
precision floating-numbers and are stored in register
AB (or E). If overflow, underflow, no fixed or zero
divide condition occurs the value of the first operand is

returned.

138

NOTATION IN FLOWCHARTS:

We denote (AB) , (Y) to represent the content of
register AB and register Y respectively.

The flowcharts for addition/subtraction, multiplication,
division and standardisation are given in figures 8, 9, 10,
11 in Chapter One respectively. The flowcharts for the
rest of the procedures are given in figure la, lb, and lc
in Appendix 1.

139
1BLER

UNPK1;

UNPK2

ADSR

STORE

MODULF FSOFT1
ZAOM
Z F L S
ZSLS
7FLM
ZMOD FSOFT1
SF.'NT=FMLTF=2=2?
SETA LO
JUMP S(UNPK1-*)
SFNT=FADDF=2=25
SETA L2
JUMP S (UNPKI—*)
SENT=FSURF=2=2;
SETA L3
JUMP S(UNPKl-*>
SENT=FDIVF=2=2?
SETA LI

SRFS=TFMP=2
SPAR=OPND1
SPAR=0PND2
SWRK=9=2
SLCL=REXPON=l
SLCL~FLG=1
SLCL=COUNT=l
STAS P(FLG)
SETA L2
STAS P (COUNT)
LDRA P

ADDA L(COUNT+l)
STAS PO
CLP A
STAS PI
SETE P(OPNDl)
LDRY B
EXP A Y
ANDA LCFF]
STAS MO Ml
INCS PI
SETA P(FLG)
SZBA L 1A
JUMP S(AD3R-*>
LSRB L8
LSLB L7
SOBY LO
JUMP S(STORE-*) ?
SFCB ZZ
JUMP S(STORE-*)
RSOR LO
ADMY LI
JUMP S(STORE-*)
LSRB LB
LSLB LB
LORA Y
STAS MO Ml
INCS PI

/SET UP DATA AREA

/SET UP COUNTER
/LOAD A WITH CONTENT OF P, ?
/ SET UP BASE ADDRESS IN PO

/SET INDEX =0
/OPERAND 1 ..UNPACK

/EXTRACT EXPONENT
/EXP 1 IN M0 + 0* EXP2 IN MO + 3

/SET A=FLG
/TEST BIT 14 IF =0* MLT OR DIV.
/NO ADJUSTMENT NEEDED

/GET LSF OF OPERAND
/TEST IF MANTISSA POSITIVE.
/PQSITIVE * NO RE-ARRANGEMENT
/TEST IF B= ZERO
/POSITIVE* SIGN O.K.
/NO..PUT IN SIGN SIT FOR NEG.NUMBER

/NO REARRANGEMENT FOR A D D * S UB T .
/PUT Y IN A
/STORE
/INDEX REGISTER INCREASE RY ONE

m o
HBt-ER

TF6

FMLTF15

FADDF 15

FSUBF1?

MODULE FSOFT1
STBS M 0 M 1 /STORE IN MO+2* MO+5
INCS PI /INCREASE INDEX
DECS P(COUNT) /DECREASE COUNTER
JUMP SI /NOT ZERO TAKE 0PERAND2
JUMP S(TF6-*) 5 /FINISH UNPACK
SETE P(OPND2)
JUMP S(UNPK2-*)
SETA P(FLG) /TEST FLG
LDRB A
STCB IZ
SETA SB /SWITCH
JUMP ZA
(F M L 'TF1)
(FOIVF1)
(FADDF1)
(FSUBF1)

SETA ’ MO +0
/MULTIPLY STARTS

ADDA MO +3
SUBA L128 /EXPI+EXP2 -128(EXCESS)
LDRY A /PUT REXPON INY
SETA MO +1 /MSF(l)
MLT A MO +5 /MSF(1)*LSF(2)
ASRF. L 14
STES P (TEMP) /STORE IN TEMP
SETA MO +4 /MSF(2)
MLT A MO +2 /MSF(2)*LSF(1)
ASRE L14
ADDE P (TEMP)
STES P(TFMP)
SETA MO +1
MLT A MO +4 /MSF(1)#MSF<2)
SZBA LO /TEST IF BIT 0 OF A=0
JUMP S4 /NO
SOB A LI /TEST IF LARGEST FRACTION
JUMP S2
ADM Y LI
JUMP SI /INCREASE EXPONENT
LSLE LI
ADDE P (TEMP)
SNAO
JUMP S (SCALE-*)
JUMP S(NORM-*)

BSZY L 1 4
/ADDITION..START
/SET BIT 14 OF Y=0 TO INDICATE

JUMP SI

BSOY L 14
/SUBTRACT..START
/SET BIT 14 OF Y=1 IF SUBTRACT

SETA M 0 + 0
STAS P (RFXPON) /STORE REXPON=EXPI
BSZY L 15
SURA MO +3 /EXP1-EXP2..=DIFF
STCA PZ /TEST IF DIFF GE 0
JUMP SI /NO
JUMP S4 /YES
BSOY L 1 5 /SET BIT 15 OF Y =1

141
(RL FR

LT?3

VGTU

FLAG

FDIVF1

MODULF FSOFT1
SETB MO +3
STBS P(RFXPON)
NEGA /REPLACE REXP0N=EXP2« NEGATE DIFF
STAS PI / M • .DIFF
SUB A L23 /TEST IF DIFF GE 23
STCA PZ /SKIP IF GE 23
JUMP S(LT23-*)
SZBY L15 /YES..TEST IF EXP1 GE EXP2
JUMP S3
SETE. LO /CLEAR 0PND1 IF EXP1 LT EXP2
STES MO +4 /STORE 0PND1
JUMP S(FLAG-*)
SETE LO
STES MO +1 /CLEAROPND1=0 IFEXP1 LT EXP2
JUMP S(FLAG-*)
SETA PI /PUT DIFF IN A
SUBA L 15
STCA PP /SKIP IF GT 0
JUMP S4
STAS P(COUNT)
SETB L 15 /STORE DIFF -15 IN P4 ..SET B=15
STBS PI /STORE IN PI
JUMP S2
CLR A
STAS P (COUNT) /CLEAR CONTENT IN COUNT
SZBY L 15 /SKIP IF EXP1 GE EXP2
JUMP S (VGTU-*)
SETE M 0 + 4 /SET MANTISSA OF OPND2 AND SHIFT
ASftE Ml
ASRE M4
STES MO +4 /SHIFT 0PND2
JUMP S (FL AG-*)
SETE MO +1
ASRE Ml
ASHE M4
STES MO +1
SNAO /CLEAR AO
CLR A u
SETE MO +1
SOBY L 14 /TEST FLAG IF 1 SUBTRACT
JUMP S2
SURE MO +4 , /SUBTRACT
JUMP SI
ADDE MO +4 /ADD
LDMY M?
SNAO /TEST FOR MANTISSA OVER FLOW
JUMP S (SCALE-*)
JUMP S (NORM—*)

/DIVISION..START
SETA MO +0
SUBA MO +3
ADDA L 129 /EXP1-EXP2+128EXCESS
LORY A
SETA P (0PND2)
SFCA 1 7 /TEST IF ZERO DIVIDE
JUMP S(C0DE3~*> / ERROR CONDITION RETURN 0PN91

142
H6LER MODULE FSOFT1

SETE P(OPNDl)
ASRE LB
LSLL L7

DIVE MO +4
STAS P(TFMP)

CLRA
EXRA B
STBS P(TF.MP+1)
ASRE LI
DIVE MO +4
CLRB
ASRE L14
ADDE P(TEMP) ;
STES P (TEMP)
CLRB ;
SETA MO +5
ASRE LI
DIVE MO +4

MLTA P(TEMP)
ASRE L 13
STES MO + 4
SETE P(TFMP)
SUBE MO +4
SNAO
JUMP S (SCALE-*)
JUMP S (NORM—*)

CODE3;
SETE P(OPNDl)
LDMY L3
JUMP SO I
(FE1)

SCALE ASRE LI
ADMY LI
SZBA LO
JUMP S2
BSOA LO
JUMP SI
BSZA LO

NORM STES P(TEMP)
STCK =E
SCFP=STEXP=Y
SXIT=N=TEMP
ZEND

MO WARNINGS: ALP2

/OBTAIN MANTISSA OF OPERAND D
/SHIFTED ONE PLACE RIGHT
/DIVIDED BY M S F (2)
/REMAINDER IN B»?
/QUOTIENT IN TEMP

/PUT REMAINDER IN A
/CLEAR CONTENT IN TEMP+1

/DIVIDE THE REMAINDER BY MSF (2)
/CLEAR REMAINDER AND ADD TO TEN
/SHIFT RIGHT 14 PLACES
/ADD TO TEMP
/STORE BACK IN TEMP

/LSF(2)

/LSF(2)DIVIDED BY MSF(2>?
/....CORRECTION TERM
/TIMES

/STORE CORRECTION TERM IN MO+4

/SUBTRACT CORRECTION TERM

/ZERO DIVIDE
/SET E= OPERAND 1
/SET Y=3 IF ZERO DIVIDE

/NEGATIVE

/POSITIVE

143

STEXP1?

BEGIN 1i

BEGIN

BEGIN?

OK 1

MODULE FSQFT2
ZELS
ZSLS
ZELM
ZMOD FS0FT2
SENT=FFIXI=1=2
BSZY LI
SETA L 159
JUMP S (STEXP1—*)
SENT=FFIXF=1=2
SETA L32R
BSOY LI

JUMP S(STEXP1-*)
SENT=FNEGF=1=2
MRKA

SRES=ftESULT=2
SPAR-OPND
SWRK=1=0
SLCL=KEXPON=l
SFCA DD
JUMP S (RRNEG—*)
STAS P(RFXPON)
SETE P(OPND)
ASRE.L 8
LSLE LB
STES P (RESULT)
STCA NN
JUMP S(BFGINl-*)
STCB ZZ
JUMP S (REGIN—*)
BS08 LO
SERA B
JUMP 8 (BEGIN-*)
ASRA LI
STAS P(RESULT)
SETA P (OPND + 1)
ANDA LIFFI
ADDA L. 1
JUMP S (BEGIN?-*)

STCA ZZ
JUMP S(BEGIN-*)
SNR A 8
JUMP S(LFAVE— *)
SETA P (OPND+I)
ANDA LCFF3
LDR8 A
SUBA P(REXPON)
STCA PP
JUMP S (OK 1. —*)
LDMY LO
SETE P(OPND)
JUMP SO I
(FE1)
LDRA B

/SET 8 1T1 OF Y =0
/INTEGER 31 INTEGRAL PLACES

/FR ACT I ON * 0 INTEGRAL PLACES
/SET BIT 1 OF Y=I?
/.•USE AS MARKER FOR FFIXF

/SET UP DATA AREA

/GET MANTISSA ONLY
/STORE MANTISSA IN RESULT
/SKIP IF A LT 0
/POSITIVE
/SKIP IF 8=0
/NO..NOT ZERO
/SET B= C 8000]
/COMPARE WITH A
/ANOT EQUAL TO [60003
/DE-STANOARDISE
/STORE IN RESULT
/EXTRACT EXPONENT

/INCREASE EXPONENT

/TEST FOR ZERO MANTISSA
/SKIP IF A=0

/SKIP IF NOT EQUAL
/A=R=0

/PUT EXPONENT IN 8
/SUBTRACT..EXPONENT-159 O R (128)
/SKIP IF REXPON-159(128) .GT.O

/ERROR CONDITION..NO FIX* SET Y

/JUMP OUT OF ROUTINE

11+4
iblhr

FL

f TNEG

AGAIN

RRNEG

F I N 1
FIN

LEAVE

MO

MODULE FSOFT?
SZBY LI /TEST IF FFIXI ORFFIXF
JUMP S2 /NO FFIXF
SUBA L 1 28 /YES..FFIXI
JUMP SI
SUBA L97 /FFIXF..EXPONENT -128-31
STCA NZ /SKIP IF LE 0
JUMP S (TNEG-*)
CLRA
CLRB / (A B.) = 0
JUMP S (LEAVE-*)
LDR A B
SUBA P(REXPON) /EXPONENT -12R O R (159)
LORY A / (Y) = (A)
SETE P(RESULT) /LOAD MANTISSA INTO E
SFCY 77. /SKIP IF NOT ZERO
JUMP S(LEAVE-*) /(AB)=EXTENDED MANTISSA
ASRE LI /NOT ZERO ARITH.SHIFT 1 PLACE
ADMY LI /INCREASE EXPONENT
JUMP S (AGAIN-*)

/FNEGF...START
SNAO
CLRA /CLEAR AO
SETA P(OPND+l)
AND A LCFF] /EXPONENT
STAS P (REXPON)
SETE P(OPND)
ASRE L8
LSLE LB /GET MANTISSA
NEGE
SNAO /SKIP IF NO OVERFLOW
JUMP SI /OVERFLOW
JUMP S (FIN-*) /n o ’OVERFLOW
LSRE LI /SHIFT RIGHT 1 PLACE
INCS P(REXPON) /INCREASE EXPONENT
STES P(RESULT)
SETA L255 /TEST FOR OVERFLOW
SUBA P(REXPON)
STCA NN /SKIP IF GE 0
JUMP S (F I N 1 - *)
LDMY LI /OVERFLOW ..ERROR CONOITION SET
SETE P(OPND)
JUMP SO I
(FE1) /JUMP OUT OF ROUTINE
SETE P (RESULT)
LOMY mo ;
//LOAD EXPONENT BEFORE'TO STANDARDIZE ROUTINE ENTRY (STEXP)
STCK =E
SCFP =:STFXP=Y
STES R (RESULT) /EXIT FROM MODULE
SXI T =:N=RESULT
ZEND

w a r n i n g s : ALP?

MODULE FSOFT 3
B 5

ZFLS -
ZSLS
ZELM
ZMOD FSOFT3
SENT-FFLT1=1=2
CLR A :
LORY A
SETA L 159 /INTEGER HAVE 31 INTEGRAL PLACES
JUMP $(ST EXP2-*)
SENT=FFLTF=1=2
CLR A
LORY A
SETA L 128 /FRACTION 0 INTEGRAL PLACES
JUMP S (STEXP2—*)
SENT=STEXP-1=2
CLR A
EXRA Y
JUMP S < STEXP2-*)
S E N T=F S TN 0=1=2
MRK A
LDRY A

SRES=RFSULT=2
SPAR=OPND
SWRK=1=0
SLCL=REXP0N=1
STCY NN
JUMP S (STEXP3—*)
SETB P (OPND+1)
LORA 8
SETH LO
STAS P (OPNQ+1)
LORA 8
ANDA L [FF 3 • /EXTRACTTHE EXPONENT

N T Z E R O i //NUMBER NON-ZERO ..ENTER THE STANDARDIZE SEQUENCE

STEXP2 /SET UP MACROS FOR WORK SPACE

STFXP3 STAS P(PFXPON)
LDRY A
SETE P(OPNO)
SERA 8 .
JUMP S(NT ZERO-*)
SFCA 1 2
J U M P S(OUT-*>

/FETCH THE UNSTANDARDISED NUMBER
/TEST IF LOWER HALF= UPPER HALF
/NO,NOT ZERO IF DIFFERENT
/TEST IF MANTISSA =0
/RETURN 0 IN E

STCA NN
JUMP S(POS~*)

FRNFG SOP A LI /TEST IF BIT 1=01T1 =1

/TEST IF •NE • 0

JUMP S (JO IN-*)
LSLE Ll
SBMY Ll
JUMP S(FRNEG-«)

/SHIFT UP ONE PLACE
/DECREASE EXPONENT

p o s ;
FPPOS SZBA Ll

JUMP S(JOIN-tt)
LSLE L 3
SBMY Ll
JUMP S(FPPOS-*)

/STANDARDISE ..A POSITIVE NUMBER
/TEST IF BIT 1=81T0=0
/NO.•STANDARDISED

/DECREASE EXPONENT

JOIN? //E NOW

14 6
,ER MODULE FSOFT 3

//TEST FOR OVERFLOW AND UNDER
STFS P(RESULT)
STCY NN
JUMP S(OK2-»)
LDMY L?

v SETE P (OPNO)
JUMP SO I
(FEl)

OK2 LDRA Y
SUBA LCFF3
STCA PR
JUMP S(OK3-*>
LDMY Ll
SETE P(OPND)
JUMP SO I
(FED

OK3 SETE P(RESULT)
ASRE L8
LSLE LB
ADRB Y

OUT?
STES P(RESULT)
S.XIT=N=RESULT
ZEND

NO WARNINGS: ALP2

FLOW

/ TEST FOR UNDERFLOW

/UNDERFLOW...SET Y=2

/TEST FOR OVERFLOW

/ERROR CONDITION.. OVERFLOW * SET Y

/JUMP OUT OF ROUTINE

M j T LAST 8 BITS =0
/ADD IN THE EXPONENT
/EXIT FROM MODULE

147

FLOWCHART: FIX INTEGER/FIX FRACTION
(FFIXI^FFIXF

FFIXI/FFIXF

no fix

Yes A clear (AB)

e(x) -<-e(x)+l

NoArith. Shift Right.
Ext. Mantissa

e(x)=A

Yes

(AB)=ext. mantissa

RETURN

(Figure la)

Note: v
A = 12B + 31
B = 128
A = 128
B = 128-31
If mantissa is (-1), it is de-standardised before a fixed
instruction.

148

FNEGF ...

(AB)=ext. mantissa

No (AB)=(-1)

Yes

Yes fe(x)=255 Overflow

No

Arith. Shift right
extended mantissa

Negate ext. mantissa

STANDARDISE
Entry point ’STEXP
(AB)=ext. mantissa
(Y)=exponent

RETURN

(Figure lb)

FLOWCHART: FLOAT INTEGER/FLOAT FRACTION
(FFLTI/FFLTF)

FFLTI/FFLTF

RETURN

(AB)=ext. mantissa

STANDARDISE
entry point 'stexp'
(AB): = ext .mantissa
(Y)=exponent e(x)

(Figure lc)

Note:
'Extended mantissa1 is mantissa with extra 8 bits
added to least significant end.
A = 128 + 31 for float integer routine
A = 128 for float fraction routine

150

APPENDIX 2

The ALGOL 60 procedures for double precision arith
metic and exact multiplication are taken from Dekker's
paper (6).

The procedures work correctly if the single precision
floating-point system is binary, single precision floating
point addition and subtraction are optimal, multiplication
is faithful and no overflow or underflow occurs.

In the comments (x, xx), (y, yy) and (z, zz)
denote nearly double precision numbers.

The algorithm for exact addition is
z = fl(x+y)
w = fl(x-z)
zz = fl(w+y)

In ALGOL 60 statements, these are written as:
z:=x+y

and zz:=x-z+y
comment add2 calculates the double precision sum of (x, xx)

and Cy, yy), the result being (z, zz) ;
procedure add2 (x, xx, y, yy, z, zz);
value x, xx, y, yy;
real x, xx, y, yy, z, zz;
begin real r, s;

r:=x+y;
s:=if abs(x)>abs(y) then

x-r+y*yy*xx else y-r+x+xx+yy;
z:=r+s;

zz:=r-z+s
end add2
comment sub2 calculates the double precision of (x, xx)

and (y, yy) the result being (z, zz);
procedure sub2(x, xx, y, yy, z, zz);
value x, xx, y, yy;
real x , xx, y , yy, z, zz;

151

begin real r , s ;

end
comment

pro c e d u r e
value
real
begin real

end
comment

procedure
value
begin real

end
c o mment

procedure
value

5 ‘-'5
r:=x-y;
s:-if abs(x)>abs(y) then

’ x-r-y-yy+xx else -y-r+x+xx-yy;
z:=r + s;-
zz:=r-z+s
sub2 ;
multi. calculates the exact product of x and y,
the result being the nearly double precision
number (z, zz). The constant should be chosen
equal to 2 (t*2)+l, where t is the number of
binary digits in the mantissa;
multi (x, y, z, zz) ;
x, y;
x, y, z, zz;
hx, tx, hy, ty, p, q;
p:=x constant;
hx:=x-p+p; tx: =x-hx;
p :=yxconstant;
hy:=y-p+p; ty:=y-hy;
p:=hxxhy;
q:=hxxty+tx*hy;
z:=p+q;
zz:=p-z+q+txxty;
multi ;
mul-b 2 calculates the double precision product
of (x, xx) and (y, yy), the result being (z, zz);
mult 2(x, xx, y , yy, z, zz);
x, xx, y, yy; real x, xx, y, yy, z, zz;
c , cc;
mult 2(x, y, c, cc);
cc: =xxyy+xx.\y+cc;
z:=c+cc;
zz:=c-z+cc; .
mult 2
div2 calculates the double precision quotient
of (x, xx) and (y, yy), the result being (z,zz);
div2(x, xx, y, yy, z, zz);
x, xx, y, yy; •

real x XX, y, yy, z, zz;

152

begin real c, cc, u, uu;
c:2x/y;
multl2(c, y, u, uu);
cc:=(x-u-uu+xx-cxyy)/y
z:=c+cc;
zz:=c-z+cc

end div2

