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PART ONE
INTRODUCTION

In this short span of thirty years man, with the help 
of digital computers, can perform arithmetic operations at 
a rate of three million per second. How fast we can 
really add, multiply, subtract and divide in the future has 
to do with the performance of tomorrow's computer com
ponents, the hardware of the future. Shimuel Winograd (1) 
in his article has given some insight into the problem 
involved. In spite of the tremendous increase in the 
speed of computation, there is little success in overcoming 
the ’inexact nature’ of arithmetic. In the nineteenth 
century, Mrs La Touche summed up our present problem in 
her statement ’There is no greater mistake than to call 
arithmetic an exact science’.

In search of better control over the ’inexact nature’, 
continuing attention has been given to questions concerning 
the representation of numbers for computers. R.L. Ashen- 
hurst (2) listed the following factors that will affect the 
choice of a number system.
a) Engineering efficiency.

This clearly establishes the advantage of the binary 
system instead of the decimal system.

b) Programming convenience.
For example, using floating-point rather than fixed-point 
representation.

c) Detection and correction of machine malfunction.
For example, introducing extra digits to permit a 
redundancy check.

d) Assessment of computation error.
The presence of computational error is, of course, 

inevitable in computation confined to finite resources. 
Computer designers tend to sacrifice the efficiency in 
error assessment for the enhancement of performance with
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respect to objectives in the first three categories.
It is not the intention of the author to give a detailed 

study of error assessment. Instead, a survey of the number 
representations of computers is given. The later part of 
Chapter One gives an axiomatic approach to floating-point 
operations. Theorems and definitions quoted are taken from 
the paper by T.J. Dekker (6). Implementation of both 
single length and double length floating-point operations 
is discussed in Chapter Two. Procedures for single length 
floating-point operations are based on the algorithms given 
in Kruth (3). Two methods for double length floating-point 
operations are discussed. Both are based on the theories 
given in the earlier chapter.

Notations used will be those given in Kruth (3) and 
those used by Wilkinson (4).



CHAPTER ONE

1.1 NOTATIONS
The positional number system will be referred to 

throughout the discussion of fixed-point arithmetic, 
normalised floating-point arithmetic and unnormalised 
floating-point arithmetic.

DEFINITION (1.1.1)
Positional notation using base b (also called radix b) 

is defined by the rule
(.. .a a a a .a a ...), = .. .a b? +a +a b1 +a +a b 1 +a b 2 +.. . ) (1.1 .  2)3 2 1 0  — 1 —2 D 3 2 1 0 - 1  2
The ’dot’ between aQ and a is called the radix point. If

b=10, we have the decimal system and the ’dot1 is commonly 
known as the decimal point. The a fs are called the digits 
of the representation.
DEFINITION (1.1.3 )

The most significant digit is the non-zero digit with 
the highest subscript.
DEFINITION (1.1.4)

The least significant digit is the digit with the 
smallest subscript.

1.2 NEGATIVE NUMBERS
There are several different ways of representing 

negative numbers in a computer.
1.2.1 SIGNED MAGNITUDE REPRESENTATION

This corresponds to the conventional notation by plac
ing a minus sign in front of the number. In the computer 
whose number representation is in binary, the sign is simply 
denoted by !0 ' and '1' for positive and negative numbers 
respectively. However, we are up against the problem of 
having two different representations for zero, viz. ’minus 
zero' and ’plus zero' when they are, in fact, the same value.



This strongly undermines the practical aspect of computer 
design which otherwise has a great theoretical advantage 
over the Complement Notation (3). This inconsistency may 
be avoided by defining the pattern for ’minus zero1 as 
invalid pattern which may be picked up by the compiler.
1.2.2 COMPLEMENT NOTATION

No explicit sign is attached to the number and calcul
ation is done modulo b^ where p is the number of digits in 
the computer word and b is the base of the representation.
In this case, the question of having two representations 
for zero is eliminated. However, it should be noted that 
the complement system is not symmetrical about zero. This 
not uncommon asymmetric range will, in fact, give rise to 
overflow in certain types of arithmetic operations. For 
example, negating the largest negative number gives an 
overflow as the positive number so formed is not in the 
range of representation. Shifting right in the complement 
notation does not necessarily divide the magnitude by the 
base b. For example, given b = 10, (i.e. the decimal system) 
a number say (-13^ Q is equal to 99987 if calculation is 
done modulo 105. Shifting right one place gives 9 9998 
which is ("2) . Similarly, for b=2, shifting right does
not necessarily divide the magnitude by the base. In fact, 
the shifting right operation merely produces the functional 
effect of the function ’entier’.

1.3 FIXED-POINT ARITHMETIC
In this mode the computation is so framed that every 

computed number x lies in a given range depending on the 
size of the computer word. Take, for example, the 16 bit 
word MULTUM Computer; fixed-point numbers are represented 
in 2’s complement with binary point after the least 
significant bit (see figure 1). The computed number x 
will then lie in the range d“215 9 215-lJ.
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No______________________Nig

A
binary point

(Figure 1)

Nn . . . N. _ j 16 bit 2's complement with binary point after NU I o 15
All 216 bit patterns are legal, and bit NQ will always 

be set for negative values. If we were to interpret with 
the binary point lying between bit 0 and bit 1 , then the 
number x will lie in the range £-1 , 1) (see figure 2).

N0 N, N15

7binary point
(Figure 2)

In general, each number will be allowed a fixed number 
p of binary digits for its representation and we shall say 
that the computer works with words of p binary digits.
If it is necessary to work to a higher precision than one 
part in 2  ̂ then we may employ numbers which are represented 
by a multiple of of. p. binary ..digits.

1-3-1 r o u n d i n g ERRORS IN FIXED-POINT COMPUTATION
We now consider the rounding of errors made in the 

fundamental arithmetic operations. There is no round-off 
in fixed-point addition and subtraction. However, the 
computed number x may be outside the permitted range.

In fixed-point multiplication, the product of two 
p-digit numbers lying in the interval (j-l9 1) is, in general, 
a number requiring 2p digits for its representation. This 
exact product is rounded off to a p-digit approximation by
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adding \2 p if number is positive (or by subtracting \2~^ 
if number is negative) and discarding digits p+1 to 2p.
Let z be the exact product and z' the p-digit approximation 
of z, then

z = z1+e where i 2 P.
Different machines may use different rounding procedures.
In some machines, the last p-digits of the exact product

"t*hare discarded and the p digit is replaced by 1. This 
gives an error lying in the range ± 2~P and therefore a 
maximum error which is twice that of the earlier method 
of rounding. It should be noted that the procedure used 
for rounding will greatly affect the results in floating 
point computation; especially so if we were to simulate 
the floating-point operations using the available fixed- 
point instructions.

The quotient x/y of two p-digit fixed-point binary 
numbers will lie in the permitted range unless |y|<|x|.
The quotient will, in general, be a non-terminating number. 
The exact quotient may be rounded to give a p-digit fixed- 
point number by the same rounding procedure stated earlier. 
Note that we need to compute only the first p+1 digits of 
the exact quotient in order to derive a rounded result.

If z is the exact quotient and z1 the computed 
quotient, then z = z1 + E where |E |ij2 p.
Note: The exact quotient is replaced by the p-digit

approximation obtained by adding \2 p and retaining 
only digits 1 to p.

Unfortunately, not all machines produce rounded results. 
This may lead to serious loss of accuracy in the final 
result. For example, the MULTUM computer returns a 
truncated result instead of the rounded one. The error E 
in this case is less than 2 p.

If x and y are integers, no rounding is performed. 
Instead, the quotient is the p-digit approximation obtained 
by truncating digits p+1 to 2p. This is none other than 
the function ’entier' defined in Algol 60 (12). This
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truncating procedure for integer arithmetic is commonly 
practised in most computers. No special algorithm will 
then be required for integer arithmetic in the case of a 
Fortran compiler.

1.4 FLOATING-POINT ARITHMETIC:
In this notation, we let the position of the radix 

point be dynamically variable (’floating’) as the programme 
is running, and carry with each number an indication of 
the corresponding radix point position.

The two basic components of a floating-point number, 
x, are the exponent e(x) and the mantissa (also called 
fraction part, or significant) m(x). The nomenclature 
and the precise specifications for e(x) and m(x) vary 
from one representation to another, but they essentially 
serve the same purposes. The pair(e(x), m(x)) stands for 
the number 1 jn(x)b where b is the base (or radix)
for the representation. The choice of the base, b, and 
the number of jD-ary digits in m(x) are therefore basic 
parameters characterising the representation. Hence, 
given a floating-point number, x, we have

x = m(x) be(x) .........................  1.4.1
Among other characteristics are the range of m(x) and the 
manner in which m(x) (the mantissa) and e(x) (the exponent) 
are encoded in the machine, including such things as 
placement of radix point and representation of negative 
numbers. For example, the Floating-point Representation 
proposed by A.A. Garu (5) has m(x) as integers and in the 
range -K < m(x) < K, where K is determined by the number 
of bits allotted to express m:(x). He called m(x) the 
'fixed-point part’. Here the implied radix point is after 
the least significant bit of the p-digit 'fixed-point 
part’. In fact, Burroughs 5500 (Octal) and Philips 
Electrologica XB (binary) use this format to represent 
the floating-point number system (6). Apart from over
flow and underflow, the floating-point systems have this



form in most if not all computers, since the mantissa can 
always be interpreted as an integer by subtracting a 
suitable constant from the exponent.

Representation given by equation (1.4.1) is not 
always unique. In most machines, a certain standard
isation is defined in order to make the representation 
unique. The most common standardisation is the normal
isation in which the magnitude of a non-zero mantissa has 
a lower bound M/b, where b is the base of the representa
tion and M the largest value in the p-digit mantissa.
(M = b^ if considered as fixed-point part or M = 1 if 
mantissa is a fraction).

If we take the mantissa m(x) to be a signed fraction, 
then the process of standardisation consists of selecting 
as normal that representation in which m(x) has the 
largest possible absolute value such that

| m(x) | < 1.
In other words, the radix point appears at the left 

of the positional representation of m(x). If p is the 
number of mantissa digits then m(x) b^ is an integer and

-b^<b^m(x)<b^.
This floating-point representation was proposed by Kruth(3) 
in his 'MIX' computer. The floating-point number x is 
said to be normalised if the most significant digit of the 
representation of m(x) is non-zero, so that

■i 4 |m(x)|<l where m(x) is the p-digit mantissa

If m(x), the mantissa, is a p-digit signed-2’s complement 
fraction, there is a slight re-adjustment in the range.

For m(x) positive, \ ±  m(x) ^  (1-2 P)
and m(x) negative, -1 4 m(x) 4 (5+2 P)
In general, to tell which of the two normalised 

floating-point numbers has a greater magnitude, we simply
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compare the exponent parts first and then test the 
fraction parts only if the exponents are equal. Clearly, 
comparison of this type will be slightly complicated if 
2fs complement notation is used.

In the later part of the chapter, we will discuss 
in more detail the various types of floating-point 
representations.

1.5 NORMALISED CALCULATION
The adjustment to normalised form is justified on 

the basis that one would like to have numbers uniquely 
represented and also to preserve as many "significant 
digits" as possible (since rounding errors are then of 
relative as well as absolute magnitude b  ̂ to m(x)).
The operations of floating-point arithmetic will be 
studied in detail in this section. The algorithms for 
floating-point addition, subtraction, multiplication 
and division will be discussed with the intention of 
simulating these operations in the I.C.S. MULTUM computer.
1.5.1 NOTATION

The notation found in Kruth (3) will be used. To 
denote floating-point addition, subtraction, multiplica
tion and division we write© , Q  , ©  , ©  to distinguish 
the approximate operations from the true ones. The 
mantissa, m(x) is taken to be a p-digit signed magnitude 
fraction. Note, however, that in Chapter Two m(x) is 
taken to be a p-digit (p-24 )2fs complement fraction 
since the MULTUM computer uses the 2f s complement 
representation. Minor adjustments are required to. imple
ment the algorithms given here. We shall use the 
notation, (e(x), m(x)) to denote the floating-point x 
such that

(e(x), m(x)) = m(x) be x̂  ̂ ^ where q is the 
excess (c.f. equation 1.^.1)
For example, in the MULTUM computer with excess q equal
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"to 12 8, "the number (12 8, 0.10000^) denotes "the floating
point number 0.5,

i.e. (128, 0.100002) = \ 2128-128 = (0.5)

Similarly, the number
(127, 0.10000 ) = i 2127-128 = (0.25)

2 10

This reduces e(x), the exponent to a positive 
integer. The assignment of sign to the exponent is 
avoided and arithmetic operations (addition or subtraction) 
on the exponent are greatly simplified by introducing 
the excess q.

ADDITION/SUBTRACTION
Let x and y be two normalised floating-point numbers, 

such that
( x ,e(x)-q x = m(x) b %

and y = m(y) be^^ where £<jn(x), m(y)<l.
Assume |x|^|y|, for floating-point addition we

6(Z)“Qrepresent the sum z, where z = m(z) b H
such that

, x Ke(z)-q , x ,e(x)-q ^  , x ,e(y)-qm(z) b ^ = m(x) b (+) m(y) b J H
also written as

(e(z), m(z)) = (e(x), m(x)©(e(y), m(y))
Assuming |x|^[y|, we need to divide m(y) by the amount 
b0(x) e(y } go as to align the radix point for a meaning
ful addition (or subtraction). This is equivalent to 
a shift right operation of e(x)-e(y) positions. Hence 
we have

m(z) = m(x) ©  m(y)/be
The mantissa, m(z) is then normalised.

1.5.2 ALGORITHM FOR ADDITION/SUBTRACTION
The same algorithm may be used for floating-point 

subtraction if -y is substituted for y. The base b is
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assumed to be even. Note, however, that negating a 
negative number, y, may give an overflow in subtraction.
Step 1. The floating-point numbers are first unpacked

Step 2. Test if e(x)<e(y), interchange x and y if true.
Step 3. Set e(z) = e(x).
Step 4. Obtain e(x)-e(y) and test if e(x)-e(y) .> p+2.
Step 5. m(y) is shifted right e(x)-e(y) places.
Step 6. Round m(y) to p+2 digits to minimise the length

of register which is needed for addition/ 
subtraction in Step 7.

Step 7. Addition/subtraction.
Set m(z) = m(x) ± m(y)/be x̂ ^

Step 8. Normalise m(z) and round z into the final answer.
1.5. 3 REMARKS

(a) In Step *4, we can jump out of the routine instead 
of going to Step 7 as the operands are assumed
to be normalised. Also note that testing 
e(x)-e(y) ^ p will be sufficient if truncation 
is used instead of rounding in Step 6 (and also 
in the normalisation procedure).

(b) In Step 5, scaling right involves the shifting 
of m(y) up to p+1 places. This implies that 
an accumulator capable of holding 2p+l base b 
digits to the right of the radix point is 
required. Normally m(y) is truncated to p+2 
digits to minimise the length of register which 
is needed for addition/subtraction in Step 6.
The procedure for truncating to p+2 digits is as 
follows: If m(x) and m(y) have the same sign,

to give the exponents and fractional parts 
(mantissae).

replace m(y) by sign m(y)
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m(x) and m(y) have opposite signs, replace m(y) 
by sign m(y) b  ̂ 2|b̂  + 2|m(y)|
where|x|= max kJ k being an integer

k  < x- (1.5.4)
k being an integer k ^ x

The transformation has no effect if m(y) = 0
D + 2and e(x)-e(y) < 3 since bp m(y) would then be 

an integer. Assuming m(y) i 0, and e(x) ^ e(y)+3 
and since x is normalised, we have x i 0 , clearly

t m(x) + m(y) |> | - i 3> i2
This implies that the leading non-zero digit of 
m(x) + m(y) must not be more than two positions 
to the right of the radix point and the digit 
which governs rounding must not be more than p+2 
positions to the right of the radix point.
This is equivalent to zeroing out the digits of 
m(x) + m(y) which are more than p+2 digits to 
the right of the radix point.

(c) If x and y are not normalised, deleting Step 4 
will give the required result. This is very 
impractical since it will require a very large 
accumulator (with about as many digits as the 
range of exponents). Alternatively, we can 
normalise X and y between Step 1 and Step 2. 
Another solution is to change Step 4 to Step 4*.
If m(x) = 0, set e(z) = e(y) and m(z) = m(y) 
and jump to Step 7; otherwise, if e (x)-e (y ):>2p+l, 
set m(z) = m(x) and go to Step 7. This implies 
a large accumulator of 3p digits is needed 
unless some pre-normalisation has been done.

i. 5.5. ALGORITHM FOR NORMALISATION
Assume b is even and |f| < b. This algorithm 

converts an unnormalised floating-point number to the

and M  = min k
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normalised form. The fraction, m(x) is rounded to p-digits 
before packing the exponent e(x) and the fraction part, m(x) 
to give the desired representation. The following rounding 
procedure is used:

If m(x) > 0 set m(x) = b P|_bPf + |J
m(x) < 0 set m(x) = b P [b^f -

(refer equation 1.5.4.)
If 2fs complement notation is used, the rounding procedure 
will be slightly different.

Alternatively, we can truncate the fraction part 
(i.e. mantissa) m(x) to p-digits after normalising m(x). 
However, the result obtained will have a larger probable 
error.
Step 1. Test if |m(x)| ^ 1,

Overflow if true, jump to Step 4.
If m(x) = 0 set e(z) = 0 and go to Step 7.

Step 2. Test if m(x) normalised,
i.e. test if |m(x)| > i, go to Step 5 if true.

Step 3. m(x) not normalised, scale left.
m(x) is shifted one place to the left and 
decrease exponent by 1, go to Step 2.

Step 4. Overflow occurs, m(x) is shifted one place to 
the right, and increase exponent by 1.

Step 5. Round (or truncate) m(x) to p-digits.
In rounding to p-digits, overflow may occur 
when |m(x)| = 1, go to Step 4.

Step 6. Test for exponent overflow and underflow.
If underflow set m(z) = e(z) = 0.
If overflow set largest representable floating
point number and jump to error condition.

Step 7. The fractional part m(z) and the exponent e(z) 
are put together into the desired output 
representation.
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1.5.6 FLOATING POINT MULTIPLICATION AND DIVISION
Assume x and y to be normalised floating-point 

numbers such that
X  = m(x) b e ( x ) -<l 

and y = m(y) ^
where  i 4 |m(x) | , |m(y) | < 1

and b,the base of the representation,is even.
Let z be the product of x and y.
It follows that either m(z) = 0 or

< I m(z)| < 1 .
In division, m(x) is shifted right one place before 
division. This ensures that |m(y)|>Jm(x)|. The division 
m(y) is first tested for zero divide. Error condition 
is returned if zero divide.
Algorithm (for floating-point multiplication and division)
Step 1. The floating-point numbers, x and y, are first 

unpacked.
Step 2. Test if m(y) = 0.

If true jump out of routine and set error condition 
for division.

Step 3. (i) For Multiplication:
Set e(z) = e(X) + e(y)-q where q is the 
excess; then multiply the fraction parts.

m(z) = m(x) x m(y) .

(ii) For Division:
Set e(z) = e(x) - e(y)+q+l, where q is the 
excess.
Shift m(x) one place to the right and divide, 
by m(y),
i.e. m(z) = m(x)/m(y)*b 

Step 4. Jump to normalisation routine.
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Remarks: Rounding overflow cannot occur after division.
However, rounding overflow is possible in 
multiplication.
For example: Let m(x) = (255, 0.10001)

m(y) = (255, 0.11110), 
then x # y = (255, 0.1111111110),
rounding gives (256, 0.10000).
If 0 < e < 255, overflow occurs.

1.6 FLOATING-POINT ARITHMETICS FOR ALGORITHMIC LANGUAGES
Two types of numbers, real and integers used in 

Algorithmic languages (e.g. ALGOL) are implemented on the 
computer by means of floating-point numbers and fixed- 
point numbers, respectively. However, the set of fixed- 
point numbers is not a proper subset of the set of float
ing-point numbers, while in the mathematical sense the 
set of integers is a proper subset of real numbers.
Further, two types of arithmetic operations (floating
point operations and fixed-point operations) are needed to 
describe the one type of mathematical operation. This 
divergence between the mathematical(and ALGOL) number 
concept and hardware usage imposes on ALGOL translation 
the necessity of handling types (real or integer) 
dynamically (5). Garu (5) described a floating-point 
representation and normalisation scheme which avoids, for 
the most part, the need for dynamic type handling.

The floating-point number representation defined is 
the same as that described in section (1.4) except that 
m(x), the ’fixed-point’ part (to denote the difference 
from ’mantissa', which is a fraction) is an integer in the 
range

-K < m(x) < K, where K is an integer determined by 
the number of bits used to represent m(x).
This range has the advantage that a number with an integral 
value N in this range then has a floating-point representa
tion (N, 0). However, normalisation may change the
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representation to one in which there is no simple relation 
between the floating-point representation and the fixed- 
point representation. The following normalisation algo
rithm was suggested to avoid this (5).

Let (m(x), e(x)) be any floating-point number, r the 
number of leading zeros in the fixed-point part, and s the 
number of trailing zeros, then:
1. If e(x) = 0, the number (m(x), 0) is normal.
2. If e(x) > 0, shift off a number of leading zeros equal 

to the smaller of b and r and compensate by decreasing 
the exponent b by this number.

3. If e(x) < 0, shift off a number of trailing zeros equal 
to the smaller of -e(x) and s and compensate by increas
ing the exponent b by this number.
The normal form is that representation of a number 

in which e(x) is as close as possible to 0. Table 1 
illustrates the patterns of the representation. For 
simplicity, the decimal system is taken.

Clearly, integers can be recognised immediately by 
the property e(x) ^ 0 and if the integer is in the range 
-K<N<K, by e(x) = 0. Fixed-point numbers can be extracted 
from the normalised floating-point number with an integral 
value. The problem of not having the set of fixed-point 
numbers as a proper subset of floating-point numbers is 
resolved. If the set of fixed-point numbers is restricted 
to those that can be represented in the fixed-point part 
range, it is no longer necessary to provide for two sets 
of machine operations to correspond to the set of mathe
matical ones. Normalised floating-point addition, for 
example, will also serve as fixed-point addition and may, 
therefore, be referred to simply as addition. The use 
of this kind of fixed-floating arithmetic will considerably 
simplify the handling of types in ALGOL and other algo
rithmic languages. In particular, the problem of the 
dynamic handling of types for the most part is satis-
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TABLE 1 Examples Illustrating the Algorithm

INITIAL FORM NORMAL FORM
ACTUAL NUMBER m(x) r s e(x) m f(x) ef(x) 3NTEG1

12345678. 12345678 0 0 0 No change Yes
1234567800. 12345678 0 0 2 Yes

1234.5678 12345678 0 0 -4 No

12340000. 12340000 0 4 0 Yes
1234000000. 12340000 0 4 2 Yes

123400. 12340000 0 4 -2 000123400 0 Yes
12. 34 12340000 0 0 -6 00001234 -2 No

5678000000 00005678 4 0 6 56780000 2 Yes
56.78 00005678 4 0 -2 00005678 -2 No
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factorily solved.

1.7 UNNORMALISED FLOATING POINT NUMBERS
A.L. Asherhurst and N. Metropolis (7) suggested an 

arithmetic in which some of the difficulties of conven
tional floating point arithmetic are avoided by not 
normalising the numbers used except where absolutely 
necessary. Algorithms for floating-point computer arith
metic are described in which fractional parts are not 
subjected to the normalisation conventions. These algo
rithms give results in a form which furnishes some 
indication of their degree of precision. The unnormalised 
arithmetic system must be flexible enough to permit 
adjustment to be determined by a combination of automatic
ally applied rules and programme-determined options. The 
MANIAC III Computer in the University of Chicago was 
designed to achieve this in hardware (2).Based on a single 
unnormalised exponent-coefficient number format, several 
varieties of arithmetic manipulation are made possible 
through the inclusion of operations which employ ’specific 
point', 'normalised' and significance adjustment rules 
for results. The unnormalised format permits smooth 
transition to zero since there exists a multiplicity of 
"relative zero" with coefficient 0 and arbitrary exponent. 
There is also an incidental advantage in the avoidance of 
'exponent underflow' by never allowing a result to be 
adjusted so that its exponents exceed the lower limit.

In Metropolis (7), (8) type of arithmetic the 
probable error in the absolute value of a number is 
implied by the presence of leading zero digits rather 
than being stated explicitly. Any number so represented 
is implied to have an error of plus or minus half the 
least significant digit.

In addition and subtraction, the exponents of the two 
operands are made equal by shifting the number having the 
smaller exponent and then adding (or subtracting) the
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fractions. Thus the sum will have no fewer leading zero 
digits than is justified by the accuracy of the operands. 
The result is left unnormalised so that all the digits 
which appear in the register are significant. Thus at 
any stage of the computation, a meaningful result is 
produced with no ambiguity as to the significance of the 
digits.

In multiplication, the factor having the larger 
fraction is first normalised. The other operand enters 
the multiplication with its leading zero digits. The 
product so formed will have about as many leading zero 
digits as the least accurate factor.

In division the divisor is first tested for zero 
divide. The correct number of leading zero digits in 
the quotient is produced by first shifting the dividend 
fraction right until it is less in absolute value than 
the divisor fraction. The quotient fraction is formed 
by dividing this shifted dividend fraction by the normal
ised divisor fraction. The exponent is incremented each 
time a right shift is performed and exponent overflow and 
underflow are tested before assembling the quotient 
fraction and exponent.

This sort of unnormalised floating-point representa
tion gives an extra dimension to the process, which can 
be exploited for purposes of significance monitoring.

W.G. Wadey (8) gave a comparative study of these 
types of arithmetic as compared to the conventional 
floating-point arithmetic. In addition to the Metropolis 
floating-point arithmetic given above, floating-point 
arithmetics with probable error computation are discussed 
(refer (8)). In the later type, the probable errors in 
arithmetic computations are computed as the root mean 
square of the probable errors of the two operands, and 
are explicitly carried in the last significant digit.
This sort of arithmetic can be used as a check on the
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accuracy of computations with other arithmetics. It can 
also be used to perform at once a computation where error 
analysis is difficult or long in order to determine how 
many significant digits are obtainable. The validity of 
this arithmetic is based on the assumption that the errors 
of the operands are not correlated and the error dis
tributions are normal distributions (5).

1.8 1 EXACT ARITHMETICS'
Notations used in the sections that follow are taken 

from Wilkinson (4). The expression fl(A) is used to 
correspond to an expression involving floating-point numbers 
and the arithmetic operations, +, -, x, /. (Denote +, -, 
x or / by *.) The definitions and theorems given are 
taken from Dekker's paper (6).
DEFINITION (DEKKER) 1.8.1

The floating-point number system R is defined as
R = {x|x = m(x) be x̂ \  |m(x)|< M, -D < e(x) < E} (1.8.2)

where M is a positive integer,
D and E are positive integers or infinite when we disregard
overflow and underflow,
b is the base of the system R,
m(x) is the mantissa and e(x) the exponent.
Note: The m(x) and e(x) are integers with a certain range 

and M depends on the number of mantissa digits.
DEFINITION (DEKKER) 1.8.3

The floating-point operation corresponding to * is 
'faithful’ if, for all x and y, the result fl(x * y) equals
either the largest element of R smaller than or equal to
x * y, or the smallest element of R larger than or equal to 
x * y.

i.e. z = fl(x * y) 
where z = Max z1 or z = Min z1

z1 < x * y z*> x * y
When x * y lies between two successive elements of R, 
either one will do. When x * y R, then z=fl(x*y)=x*y
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i.e. result exact. When x*y is outside the range of R, 
then z = fl(x*y) is the largest or the smallest element of 
R.
DEFINITION (DEKKER) 1.8.4.

The floating-point operation corresponding to * is 
optimal (or properly rounding) if, for all x and y, the 
result fl(x*y) is an element of R nearest to x*y.

Hence, if z = fl(x*y), and if * is optimal,
z is uniquely defined except when x*y lies halfway
between two successive elements of R;
in which case, an optimal operation may round up or
down.

DEFINITION (DEKKER) 1.8.5.
Floating-point addition is ’properly truncating' if 

it is commutative (i.e. fl(x+y) = fl(y+x)) and, for all x 
and y satisfying |x|>Jy|, the result fl(x+y) equals the 
largest element R smaller than or equal to x+y if y > 0 
or the smallest element of R larger than or equal to x+y 
if y < 0.

The definition uniquely determines the result. When 
x+y is not an element of R, the truncation is in the 
direction of -y.
DEFINITION (DEKKER) 1.8.6.

Floating-point subtraction is 'properly truncating' 
if, for all x and y, we have fl(x-y) = fl(x+y-*), where 
y-' = -y and the floating-point addition is properly 
truncated.
DEFINITION (DEKKER) 1.8.7

Floating-point addition and subtraction are 'super 
faithful' if,for each x and y, the result fl(x±y) is 
obtained by properly rounding or by properly truncating.
Remarks: 1. Floating-point numbers considered are not

normalised. To obtain a faithful addition
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and subtraction, the result must only be 
normalised before it is truncated or rounded, 
c.f. Kahan (12). Optimal addition and sub
traction can be perfectly well formulated 
using an accumulator having no more than two 
guarding digits (Kruth (3)).

2. Floating-point arithmetic is not associative

NOTATION
For any real r, round (r) denotes an integer closest 

to r. Let z = fl(x+y) and z e R.
If floating-point operation * is optimal (properly 

rounding) then z can be represented by

provided that no overflow or underflow occurs.
Let us now consider some of the basic rules which are 

valid for normalised floating-point operations as described 
in the previous section. Note that the floating-point 
number system R defined by equation (8.2) still holds except 
when underflow occurs in normalisation.

(i) addition is commutative,

i.e. (x+y) + z i x + (y+z) (refer Kruth (3) 
page 198).

where m(z) = round (x*y b

i.e. fl(x+y) = fl(y+x)
(ii) fl(x-y) = fl(x+(-y))

(iii) fl(x+y) = 0  if y = -x
(iv) fl(x+0) = x
(v) fl(x-y) = -f(y-x)

(1.8.8)

We shall prove rule (v) of equation(l.8.8). 
Proof:

fl(x-y) = fl(x+(-y)) from rule (ii) 
fl(x+(-y)) = fl((-y) +x) from (i) commutative

= -fl(y+(-x)) from (iii) 
fl(x-y) = -fl(y-x) from(ii)
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Note: The laws would not be strictly true if two's com-

Clearly, a floating-point operation corresponding to 
* is optimal if this rounding procedure were used to obtain 
the result fl(x*y), provided no exponent overflow or under
flow occurs.

The following relationships also hold if the above 
rounding rule is used.

provided no overflow occurs.
From equations (1.8.8) and (1.8.9) the following 

identities are true:

plement notation were used for the fraction-parts 
in floating-binary arithmetic instead of signed- 
magnitude representation.

Consider the following round procedure. 
Define

round (x, p) = x rounded to p-digits

0 if x = 0

fl(x+y) = round (x+y, p)
fl(x-y) = round (x-y, p)
fl(xxy) = round (xxy9 p)

fl(x/y) = round Xx/yy-'p)

(1.8.9)

fl(xxy) = fl(yxx) 
fl((-x)xy) = -fl(xxy)
fl(lxy) = y
f l ( x x y )  = 0  if x = 0 or y = 0
fl(-x/y) = f(x/-y) = -fl(x/y)
fl(0/y) = 0
fl(x/l) = x
fl(x/x) 1
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The aim in floating-point routines is to preserve as many 
of the ordinary mathematical laws as possible. As shown 
above, if the operations are defined according to a con
sistent set of conventions, many of the mathematical laws 
will hold true in spite of the inexactness of floating
point operations.

i. 9 THEOREMS.ON EXACT ARITHMETIC
To estimate the errors involved in floating-point 

operations the exact arithmetic of the floating-point 
numbers is considered. In addition to the system R, 
defined by equation (1.8.2), we assume the floating-point 
numbers are normalised. Four exact operations will be 
considered, namely, addition, subtraction, multiplication 
and division.
1.9.1 EXACT ADDITION

Let x and y be given elements of R (x, y normalised) 
and let

z = fl(x+y).
We can find a correction term, zz, satisfying the exact 
relation

z + zz = x+y
THEOREM 1.9.2 (DEKKER)

If the floating-point number system R has the form
R = {x|x = m(x) be x̂\  |m(x)|<M, -D < e(x) < E}

and if (i) b = 2 or 3
(ii) M is a multiple of b

(iii) Floating-point addition optimal and subtraction 
faithful

(iv) e(x) >. e(y) where x, y are elements in R 
then the correction term zz given by the equation

a) w = fl(z-x) (1.9.3)
b)zz = fl(y-w)

such that x+y = z+zz where z = fl(x+y).
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Proof: Given x, y e R and e(x) ^ e(y)
we can write

x = mCx) be(x) 
y = m(y)

To prove the theorem, all we need to show is that fl(y-w) 
and fl(z-x) are exact.
Since subtraction is faithful, it remains to show that

(i) z-x e R
(ii) y-w e R

Proof (i) We need to consider 2 cases,
a) e(z) = e(x)+l
b) e(z) 4 e(x)

Case (ia) e(z) = e(x)+l
Let z = m(z)be^z  ̂ where m(z) # round (x+y) b”e x̂^

i.e. m(z) = round (m(x) be x̂ +̂ m(y)be^^ b
Let d = e(x)-e(y)
then

m(z) = round(m(x)/b + m(y)/bd+d).............(*)
✓ \ . e(x)+l , x T.e(x)Now z-x = m(z) b -m(x) b

= (m(z) b-m(x)J b
then

e(x)

0 (x)z-x = jib where y = bm(z)-m(x).
Consider

y = bm(z)-m(x)
= bm(z)-m(x) - m-Ŝ — + m(y)/bd 

bd
|y| 4 |bm(z)-m(x)-m(y)/bd|+|m(y)/bd |

4 b|m(z)-m(x)/d - m(y)/bd+1|+ m(y)/bd
4 b|m(z)-m(x)/d - m(y)/bd+d|+ m(y)/bd

i.e. |y| < b/2 + M from equation (*)
but

b 3 and y is integral.
We have

|y|< M.
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Also M is a multiple of b. Hence

M <  M.
By definition of R, therefore, (z-x) is an element of R. 
Case (iia). To prove y-w e R where w = fl(z-x)

Now e(v ) e (x ) y-w = m(y) b J -m(w) b , where m(w) = y
, , ,d e(y) and e(x) = e<y>+d» d>0= m(y)- b b J

y-w = integer x be^ \
If |y—w|> |y|; then x would be closer to x+y than z, 

contradicting the assumption that floating-point addition 
is optimal. Therefore

|y-w l=i|y|
which implies that |y|< M, where y = m(y)-yb^.

Hence y e R.
Case (ib): e(z) 4 e(x).

Overflow may occur when e(z) = e(x) 
i.e. z = fl(x+y) takes the largest value in the range of 

R nearest to x+y (refer definition (1.8.4)).
Similarly, we can prove (i) z-xeR and y-weR.

This completes the proof of theorem.

1. If R is the system of normalised floating-point 
numbers,Theorem (1.9.2) still holds provided no 
underflow occurs in forming zz.

2. If M is not a multiple of b, Theorem (1.9.2) 
breaks down. For example, if b = 3, M = ^(3^+1) 
(balanced ternary system, (3)) and x = y = M-l 
then z = fl(x+y) = 3^
and z-x = 3t-i(3t-l) = ^(3t+l) = M
which implies z-x I (not an elemental of) of R.

3. If base b > 3, Theorem (1.9.2) fails too.
For example: b = 10, M = 100, and x = y = 99,
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then z = fl(x+y)
= 20 x 101 
= 200

and z-x = 200-99 = 101 which is not in R
i.e. z-x i R.

4. Theorem does not hold if addition is only 
faithful.
For example, let b=2, M=16, x=15, y=13/B2 and
z=16. (i.e. we take z = min. k),

k>x+y
refer definition of faithful (1.8.3),
then w = z-x = 1 e R
but y-w = -1 = -19/32 i R.

Theorem (1.9.2) can be extended to any b and M, 
provided that the mantissa range is enlarged to accommodate 
the intermediate value w. As w may be anonymous,
(for example in the ALGOL 60 statements

z:= x+y, zz:=y-(z-x), w remains anonymous) and some 
systems have an enlarged mantissa range for the anonymous 
floating-point values, an extended theorem has practical 
application.

If floating-point addition, which is optimal, is 
replaced by properly truncating addition (see Definition 
(1.8.5)and subtraction is faithful, Theorem (1.9.2) holds 
without any restriction on b and M and without requiring 
an enlarged mantissa range for w. We have the following 
theorem
THEOREM (1.9.i|) DEKKER

If R = {x|x = m(x) be x̂ \  |m(x) | <M, -D < e(x) < E}
(i) floating-point is properly truncated and subtraction 

faithful;
(ii) x, y e R and e(x) ^ e(y);

(iii) z = fl(x+y);
then the correction term zz defined by 

z + zz = x + y
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is given by the equations
(i) w = fl(z-x)

(ii)zz = fl(y-w)
Proof of Theorem (1.9.4) is similar to the proof given for 
Theorem (1.9.2). Since subtraction is faithful, we need 
only to show that

(i) z-x e R
(ii) y-w e R

Remarks:
1. Consider example given in section 1.9.3, remark 4.

b=2, M=16, x=15, y=13/32, then z=15 and not 16 if
addition is properly truncating and
zz = 13/32-D = 13/32 e R.

2. From theorems (1.9.3) and (1.9.4) the following
corollary holds.

COROLLARY (1.9.5)
If R = {x|x = m(x) be x̂ \  |m(x)|< M, -D < m(x) < E} 

where b=2 or 3 and M is a multiple of b, and if addition is 
’super faithful' and subtraction faithful, then the correc
tion term zz is given by the equations

(i) w = fl(z-x)
(ii)zz = fl(y-w) 

such that z + zz = x + y.
Proof for Corollary (1.9.5)

By definition of 'super faithful' (see definition
(1.8.7) and from theorems (1.9.2) and (1.9.4) the result 
follows.

If w = fl(x-z) and zz = fl(w+y)............  (1.9.6)
the theorems (1.9.2) and (1.9.3) remain valid if the 
floating-point number system R is symmetric. This 
definitely will hold true if the signed-magnitude 
representation was used to represent the mantissa, (as x e R 
implies -x e R). Writing w = fl(x-z) and zz = fl(w+y) 
instead of (1.9.3) has some practical advantage. For
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example, in Algol 60 we write
z: = x+y, 

zz: = x-z+y.
Again w remains anonymous. For applications this formula 
is preferred as many compilers produce a slightly faster 
code for (1.9.6) than (1.9.3).
THEOREM (1.9.7) (MOLLER-KNUTH)

If R has the form R = {x|x = m(x) be x̂ \  |m(x)|< M
-D < e(x) < D}

and floating-point addition and subtraction are optimal 
then for all x and y in R and for z = fl(x+y) the 
correction term zz is given the equations

w = fl(z-x), zl = fl(y-w) 
v = fl(z-w), z2 = fl(v-x) 

zz = fl(zl-z2)
provided overflow and underflow does not occur.
We can write this as

x+y = z+fl(zl-z2) 
i.e. x+y = fl(x+y) + fl(zl-z2).

In Knuth (3), the theorem is proved for normalised floating
point numbers provided that no overflow or underflow occurs. 
Instead of calculating zz, -z2 is computed, and added to zl, 
i.e. we have

x+y = fl(x+y) + fl(zl+z2).
For a proof of this theorem, refer Knuth (3).

Alternatively, the same lines of the proof of the 
theorem can be given. Since subtraction is optimal, we 
need only to prove that (i) y-w e R, (ii) v-x e R and
(iii) zl-z2 e R.

(1.9.8) EXACT MULTIPLICATION
Let R = {x|x = m(x)2e x̂\  |m(x)|< 2^  (1.9.9)

For exact multiplication we need to find zz such that
z + zz = x + y.



NOTATION;

R(t) is used to denote a binary floating point t-digit 
number system.

THEOREM (DEKKER) 1.9.10
If R = {x|x = m(z)2e x̂ \  |m(x) | < 21"},

floating-point addition and subtraction are optimal and 
multiplication is faithful, then for all x and y in R 
split into head and tail according to

h(x) = round (m(x)2-ti) 2e x̂^+*i^
and t(x) = x - h(x)
where tj and are given by

t = entier (t/2) and t = t-t 2 1 2

the formulae
p = fl(h(x) x h(y))
q == fl(h(x) X t(y) + t(x) x h(y)) (1.9.11)
r = fl t(x) x t(y)

z = fl(p+q)
(1.9.12)

zl = fl((p-z) + q)

and zz = fl(zl+r)......................  (1.9.13)
yield z and zz satisfying

Z + ZZ = X X y.
Proof; Given x and y are split such that

h(x) = round (m(x)2 2e ^x ^+\ #

where h(x) is the ’head' of x and is an element of R(t^ )
s (x)very near x (if x = m(x)2 , m(x) is normalised)

since h(x) is obtained by rounding,
t(x) is an element of R ^  -t) as = t-t£ .
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Then we have
h(x) x h(y) e R(2t2)
h(x) x t(y) , t(x) x h(y) e R(t-l) (1.9.14) 
t (x ) x t ( y ) e R(2tx -2)

Since t2 = entier (t/2)
and. t̂  — t-t2
then 2t2 4 t and 2^  -2 4 t-1.

Since h(x) x t(y) and t(x) x h(y) are representable as
elements of R(t-l) with the same exponent, their sum is an 
element of R(t) and formulae (1.9.11) are exact as float
ing point operations are faithful.

From (1.9.12), since |p| ^ |q| we have e(p) ^ e(q) 
and by Theorem (1.9.2)

z + zl = p+q

as floating-point addition and subtraction are optimal.
From these assumptions, it also follows that zl is 
representable as an element of R(t-l) with the same 
exponent as r. Hence

zl + r e R
so that zz defined by

z + zz = x x y
is obtained from

zz = fl(zl+r).
Hence proved.

Also zz is (almost) negligible within machine precision 
with respect to x x y. This implies that for t ^ 2

|zzI4 |xxy|d2 ^/(l-d2 ^) (1.9.15)
where <ot = 2 if t is even and d = 3 otherwise.
Proof:

If x = 0, or y = 0 then 
zz = z = 0 

then (1.9.15) holds.
Assume x i 0 and y i 0

h(x) and h(y) i 0 and p+q i 0.



Let e = t(x)/x} r\= t(y)/y, 6 = zl/(p+q).
The exact product is given by

Z + ZZ = X  X y

= xy - p+q + (p+q)6 
= xy - (1-6) (p+q)

=*= xy - (1-6) {h(x)h(y)+h(x)t(y)+h(y)t(x) > 
= xy - (l-6){h(x) ( h(y)+t(y))+h(y)t(x)}
= xy - (1-6) {h(x)y+h(y)t(x)}

zz = xy -(l-6){xy - t(x)y+h(y)t(x)} 
= xy -(1-6 ) {xy-t (x)(y-h(y))}
= xy -(1-6){xy-t(x)t(y)}

where z = p+q - zl.
Now ZZ = X  X y - z

also h(x) = x-t(x)

Substituting for t(x) and -(y), 
we get

zz = xy -(1-6) (xy-enxy)
= xy {l-(l-6)(l-en)} 

zz = (xxy ) { (1-en ) 6+ET1 }
Since floating-point addition is optimal, we have

| 6 | <=2_t/ (l+2“t ) 

Similarly, |e| 2 ^2/1+2 ^

since h(x) = round {m(x) 2 ^i}2e x̂ +̂t]

and t(x) = t-h(x).
Hence

|zz|<|xxy|{2't/(l-2_t)} {l-2t_2t2 (l-21_t)/(l-2_t2 )?}

and
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and for t ^ 2 
1 + 2 ~ \  > 1 + a 2“t > 1 + 21"t

we get

Hence

zz

v|zz| 4 | xxy | a 2 t/(l+a2 t).

1.10 CONCLUSION
The pair of formulae (1.9.6) and z = fl(x+y) is the 

basic algorithm for exact addition of two floating-point 
numbers. In the next chapter, this algorithm is used to 
obtain the algorithm for double-length addition. The 
role of the terms x and y is often interchanged when 
|x[<|y| so that the condition (iv) in Theorem.(1.9.2) 
is satisfied. It should be noted that in the actual 
implementation on the MULTUM computer, the conditions 
in Theorem (1.9.4-) are assumed. This is due to the fact 
that floating-point numbers are truncated after normal
isation in the MULTUM computer. Further, it is assumed 
that no overflow and underflow occurs in our calculation.

For exact multiplication, the formulae (1.9.11) to
(1.9.13) are used to obtain the algorithm for double 
length multiplication. The extra condition (1.9.15) 
is assumed. However, the bound for zz may be modified 
to give a smaller bound by the following algorithm.

After calculating z and zz as (1.9.15),an exact 
addition of z and zz is performed.

Let u = z and uu = zz, 
then calculate

z = fl ( u + z z )  (1.10.1)
and zz = f3((u-z)+uu)

Then z and zz still satisfy
Z + ZZ = X X y
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and since addition is optimal, we now have
|zz| 4xxy|2 t/(l+2 t).

The bound for zz is only 2 or 3 times smaller than (1.9.15). 
It may not be worthwhile in terms of three extra additions 
or subtractions to form z and zz.
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CHAPTER 2

2.0 INTRODUCTION

The implementation of both single precision and double 
precision floating-point arithmetics is based on the 
discussions found in the first chapter. One major differ
ence between this and the theories described in Chapter 1 
is that the two’s complement representation is used 
instead of the sign-magnitude representation. Only minor 
changes are required to implement the floating-point arith
metics in the MULTUM ALP 2/3 computer. For example, in 
truncation, the difference in the direction of truncating 
must be appropriately accounted for and care be taken if 
negating a negative number.

A brief description of the MULTUM ALP 2/3 processor 
and its arithmetic instructions will be given in the next 
two sections. Literature regarding the specifications 
of ALP 2/3 processor and the description of the symbolic 
language used can be found in references (9) and (10).

Two methods of making double-precision arithmetic 
available are discussed in the later part of the chapter.
The methods studied are Dekker's method (6) and the one 
using the conventional method (3). The second method 
needs special fixed-point arithmetic, namely ’Long Multiply’ 
and ’Long Divide’ in addition to those fixed-point 
instructions available.
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2.1 GENERAL DESCRIPTION (of ALP 2/3)

The main arithmetic, decision making, and logical 
operations of the computer system are performed by the 
Arithmetic and Logical Processor (ALP 2/3). The processor 
works on 16-bit words and up to 2 56K words of immediate 
access memory can be addressed. Arithmetic operations are 
performed using 2’s complement arithmetic.

There are seven 16-bit programme accessible registers, 
namely, registers A, B, X, Y, S, P and the condition 
register (CR). Register A is the main programme access
ible register of the ALP and acts as the accumulator in 
single-length arithmetic operations. Register B is used 
for double-length operations and it forms the least 
significant half of the double length register E (AB). 
Information can be fetched and stored from memory using 
registers A, B or E. Registers X and Y are general 
purpose registers and are used for address calculation and 
for inter-register arithmetic and logical operations. The 
register S is the sequence control pointer and holds the 
address of the next instruction in the programme sequence. 
The Data pointer register P is used as the base address for 
the current set of memory held registers. (See page 13, 
Ref. (9)).
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2.2 FIXED POINT FORMATS AND INSTRUCTIONS

2.2.1 SINGLE LENGTH INTEGERS

N_ N.15

binary point

figure 1

Single precision fixed point values are held as 16 bit 
2!s complement binary numbers with the assumed binary 
point immediately to the right of the least significant 
bit. This gives a range of integral value of

-215 < i < 215-l.
The range is assymetric about zero and there exists an 
integer -215 which has no representable negative.

DOUBLE PRECISION FIXED-POINT FORMAT

The double precision fixed point values are held as 
32 bit 2fs complement binary numbers with assumed binary 
point immediately to the right of the least significant 
bit of the least significant word. The range of values
representable by this format is £-231 , 231-l] . Similarly,
-231 will have no representable negative.

N, N N,
word 0

15 *"16
word 1

figure 2

N31

binary point

Note that the double precision format is slightly modified
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in division.

2.2.2 FIXED-POINT INSTRUCTIONS

In fixed-point operations, ’overflow’ is said to occur 
when the result of an operation is outside the representable 
range. In single precision, fixed-point addition and 
subtraction (ADDA, SUBA) overflow occurs when the result r 
is less than -215 or greater than or equal to 215 .

The instruction MLTA multiplies two single-length 
precision fixed-point values and produces the correct 
double precision fixed-point result in the range

- (230 -2 15 ) 4 i ̂  230 
It should be noted that the double precision fixed-point 
result obtained by the operation ’MLTA' is a 30 bit product 
occupying bit position 2 to 31 (inclusive) of the 32 bit 
register E (AB). The sign bit is duplicated in bit 0 and
1. Interpreting the result as a fixed-point fraction 
(i.e. radix point between bit 0 and bit 1), the product 
formed must be shifted left one place to give the correct 
fraction. Bit 0 i Bit 1 if we multiply (-1) by (-1).

The only serious problem arises with division. The 
instruction DIVE treats the dividend as a special format 
and divides it by a single precision fixed-point divisor, 
and produces a single-length fixed-point quotient and a 
single-length fixed-point remainder. There are two 
interpretations of the double precision fixed-point format 

in division.

a) Fraction.
All operands and results have an assumed binary point
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immediately to the right of the most significant bit
n"b ni

f -----
binary point

-31
DIVIDEND

n. n

. t  .binary point

15

Figure 3

REST

Interpreted in this sense, the dividend is taken to be 
a fraction occupying 31 bits (0-30). Overflow occurs if 
the divisor is less than or equal to the dividend.

b) Integer.
The dividend has an assumed binary point immediately 

to the right of bit 30. The remainder and quotient are 
single length integers with binary point immediately after 

bit 15.

n. n 30 n 3i
DIVIDEND

binary point

n. n15

-------2i

binary point

REST

Figure 4-



Given any double-length integer, the dividend must be 
shifted left one place before division is carried out.
Two errors may occur with DIVE,
(i) Zero divide,

(ii) Overflow.

An overflow situation occurs when the ratio of the 
absolute values of the dividend and divisor is greater 
or equal to 215.

Remarks:

There is a lack of uniformity in fixed-point formats 
for double-length operations. This can be resolved 
most simply by using the format for ’MLTA’ as a 
standard. In this, bit 0 is equal to bit 1 for all 
valid patterns. Arithmetic overflow should be set 
if any fixed-point operation produces a double-length 
result with bit 0 not equal to bit 1. However, the 
instruction ’DIVE' is defined to work on bit 0 to 30, 
so either re-define DIVE to operate on bit 1 to bit 
31 or always precede 'DIVE1 by a logical shift left 
of 1 bit.

2.3 FLOATING-POINT FORMATS AND FLOATING-POINT INSTRUCTIONS

2.3.1 FLOATING-POINT FORMAT (SINGLE PRECISION)

*0 n l ^ 3  n 24

i

<r-
Mantissa Exponent

\
binary point

Figure 5
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n0 *J*n2 3 24-bit mantissa m(x) , 2Ts complement with
assumed binary point between nQ , n . The 24 bit
signed 2rs complement fraction will be in the
following range

m(x) positive J 4 m(x) 4 (l-2~23)
m(x) negative -14 m(x) 4 -(|+2_23)

n2b ’’,n3l 8”bit exponent stored biased 128,
base 2. Range of exponent e(x) is in the range 

-128 4 e(x) 4 127 and stored as 0, 255

The above range for mantissa assumes standardisation- 
to either all 32 bits zero, representing value zero, or 
bit 0 not equal to bit 1 (nQ i ). All other bit 
patterns are said to be non-standard but all have the value
2exPonent ^ mantissa assigned. The bit pattern 80000000

for single precision floating-point number is undefined.

2.3.2 DOUBLE PRECISION FLOATING-POINT FORMAT

Double precision floating-point arithmetics are 
realised by software (using the available fixed-point 
instructions or using the available single precision 
floating-point instructions). This is dependent on the 
format used. The following double precision floating
point format was first proposed by I.C.S.

2.3.3 DOUBLE PRECISION FORMAT (by I.C.S.)
Double precision floating-point numbers will occupy 

four words of store and are allocated as detailed in figure 
(6 ).



word 0

word 1

word 2

n

n16

n32

n15

n31

nif 7

4-8 bit mantissa

word 3
nif 8 n63

Figure 6

Exponent - 16 bits

_if 7

The mantissa is a 4-8 bit signed 2's complement fraction 
and is in the following range: 

m(x) positive
m(x) negative -1 m(x) -(J+2 )

The exponent is held as a 16 bit number in excess 32 76 8.
Zero is held as four zero words. For standardised
floating-point numbers, bit 0 and bit 1 are not equal.
All other bit patterns are non-standard. The bit pattern
8000 0000 0000 0000,,. for double-precision floating-point1 6
number is undefined.

2.3.1+ DOUBLE PRECISION FORMAT WITH REDUCED EXPONENT

Alternatively we could have the following set-up as 
a double precision floating-point format (refer to figure 7
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word 0

word 2

n

n32

mantissa (most significant bits)-
n15 n

n47 n,48
word 3

*4-
n n n

word 1
31

exponent

n 55 n 56 n6 3

n09

n24

n 32

n56

-mantissa (least significant bits)- 

Figure 7

n 31

n6 3

reduced
exponent
 >

n , n , ...n Mr! bit mantissa 2’s complement with 23 33 35
assumed binary point between^ and . 

Range of mantissa 
[-1, - (J+2-1*6 )j , 0, [J, 1-2-1*6]

8 bit exponent, stored excess 12 8, base 2 
Exponent range is [-128, 127j and stored 
as [o, 255]
always set to 0 and is not part of 
mantissa.
8 bit reduced exponent, stored excess 
12 8, base 2. The reduced exponent 
takes the value (exponent -23)if this 
is greater than, or equal to, zero and

If
reduced exponent is zero then all of
n.„...nee are not all zero.3 3 O J

n32 to ng3 are cleared

The above range for the mantissa assumes standardisation 
to either all 64 bits equal to zero, representing value 0
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or bit 0 not equal to bit 1 (i.e. nQ i ). All other

bit patterns are non-standard, but still have the value
2exPonent x man-j--j_ssa assigned. The pattern

8000 0000 0000 0 0 0 0 is the 'undefined value' for double
precision floating-point number.

Remarks:

1. The proposed new format having the advantage;
a) Conversion from single precision to double 

precision is done by appending 2 cleared words.
b) Software implementation will be satisfactory.

As seen in Chapter 1, a straightforward coding 
of Dekker's method (6) can be used. In the 
later part of the chapter we shall discuss the

y methods involved.
c) Word 2 and word 3 form a (possibly non-standard) 

single-precision floating-point number.
d) Implementation of multiple-precision floating

point software is simplified.

2. The loss in the range of double precision is
scarcely a disadvantage since
a) there was a lack of compatibility between 

single and double precision floating-point 
formats. Conversion from one to the other 
is hazardous.

b) the hidden danger of catastrophic loss of 
precision when using values of the size of 
]_q 1000 far outweighs the small advantage.
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2.3.5 FLOATING-POINT INSTRUCTIONS

Floating-point arithmetic for single precision is 
realised by hardware in the ALP 3 processor. The 
floating-point instructions for addition, subtraction, 
multiplication, standardisation, etc., are simulated here 
for the ALP 2 processor and also to test the accuracy of 
the floating-point arithmetics performed by the hardware 
(in the ALP 3 processor). The following mnemonics 
FADDF, FSUBF, FMLTF, FDIVF, FSTND, FFIXF, FFIXI, FFLTF, 
FFLFI and FNEGF are used to denote floating-point add, 
subtract, multiply, divide, standardise, fixed fraction, 
fixed integer, float fraction, float integer and floating
point negate respectively.

2.3.6 ADDITION/SUBTRACTION (FADDF/FSUBF)

The flowchart for addition/subtraction is given in 
figure (8). Coding of the algorithm is straightforward 
arid is given in the appendix (1). The routine expects 
the operands to be in standardised format.

The alignment of the binary points before adding the 
mantissa is done by an arithmetic shift (of the mantissa 
with smaller exponent) by, at most, 2 3 places. If more 
than 2 3 right shifts are required the smaller operand is 
set to zero. This procedure ensures that addition or 
subtraction is properly truncating (refer Chapter 1, 
definitions (1.8.5) and (1.8.6)). For example, consider 

the extended mantissa m(x) and m(y).
Let m(x) = (45678900)lg 

m(y) = (FFFFFE00)16 

If we allowed a right shift of more than 2 3 places (bits)
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say e(x) = 81lg and e(y) = 69lg (i.e. an exponent difference
of 2 4) then the sum m(x) + m(y) is equal to (45678FF),„ .

16

After standardisation and truncation, the floating-point
result is equal to (45678781)lg . If a right shift of less
than or equal to 2 3 places (bits) is allowed, the sum so
formed would then be (456 7 89 81) . In this case, we

16

return the value of the larger operand if the difference 
in exponent is greater than 23. Clearly we can see that
the operation in the latter case is properly truncating
(as given by definition (1.8.5) and (1.8.6) since

(45678981^g > (45678781) lg.

2.3.7 MULTIPLY (FMLTF)

The flowchart for the multiplication routine is 
given in figure (9). It is a straightforward adapt
ation of the algorithm given in Chapter 1. The- main 
difficulty in the procedure is in Step 3 when we multiply 
the mantissae. The multiply instruction available is 
MLTA. However, this instruction multiplies two single
length numbers (16-bits) to form a 32-bit product (refer 
section 2.2.2). Interpreting the mantissa and product 
as fixed-point fractions, the correct fraction (product) 
is obtained by a left shift of one bit, (provided no 
overflow occurs). The extended mantissae are first truncated 
to two 16-bit words before multiplication. The truncated 
mantissae are then multiplied to give a 32-bit product. A 
significance of at most 16-bits is attained by this process.
To get a full 24-bit significant (digit) fraction, 
the extended mantissae are split into two
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FLOWCHART: ADDITION/SUBTRACTION 

(FADDF/FSUBF)

^FADDF/FSUBF^

UNP/ 
x to m(x 
y to m(y

ĈK
), e(x) 
), e(y)

>
set: e(z)-*- e(x)

No

Yes

set: diff<- e(x)-e(y)

set:m(z)«-m(x) ± m(y)

No Overflow

Yes

(Figure 2)

set: e(z)•«- e(y)

set: diff«-|e(x)-e(y)

arith. shift right. 
m(x) by diff. arith. shift right 

m(y) by diff.

STANDARDISE 
entry point ’STEXP

logical shift right 
restore sign bit 
set: e(z)-*-e(z) + 1
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16-bit words and the following procedure is.followed.
Let m(x) , m(y) be the two 32-bit mantissae (extended, 

last 8 bits all zero). Then m(x) is split into 11̂ (x) and 
(x), where (x) is the most significant half and (x) 

the least significant half. Similarly, m(y) is split.
Then,

m(z) = m(x) m(y)
= {m^ (x) + ein (y)} {n^ (y) + ein (y)}

= (x)n^ (y) + <x)n^ (y) + (x)]̂  (y)} +e2n̂  (x)n^ (y)

where e is the reciprocal of the word-size.
The value e2 m^ (x)m2 (y) is too small to be significant in the 
final result since e2 is a right shift of 30 bits (places).

Hence we have
m(z) * m (x)m (y) + e{m (x)m (y) + m (x)m (y)}1 1 1 2 2 1

Remark:
Adjustment of (x) is required if m(x) is negative. 

This is best explained by an example.
Suppose m(x) = (80010400)16
then mn (x) = (8002). instead of (8001)1C1 16 lb
and (x) = (8200)16 .

jî (x) is a 2fs complement single length fraction. To get 
m2 (x), the least significant word {of m(x)} is shifted right 
by one bit and then insert the sign bit according to the sign 
of m(x). As for 11̂ (x) , the most significant word {of m(x)} 
is increased by 1 {to give( 8002) If such adjustment in
m̂  (x) is not carried out then
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FLOWCHART: MULTIPLICATION 
(FMLTF)

FMLTF*

set: e(z) e(x)+e(y)-128

arith. shift right ci 9 14 places

STANDARDISE 
ENTRY POINT ’STEXP

m(y) to m1 (y),m2 (y)

SPLIT

y to e(y), m(y)

UNPACK

RETURN (Figure 9)
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(80010000 )n c 16
+ (FFFFO 4 00)1,6,,

(80000400)lg 1 m(x)

If the least significant word of m(x) is zero, then (x) 
is returned as (8001)lg and m2(x) as (0000)16 

Note that the procedure of splitting is only valid if the 
floating-point numbers are in the standard format. If not, 
overflow may occur in forming (x). For example, m(x) = 
(FFFFF000)lg , following the procedure described for splitting, 

(x) is then equal to (0000)lg and overflow occurs as sign 
bit changes from 1 to 0.

2.3.8 DIVIDE (FDIVF)

The flowchart for floating-point divide is given in 
figure (10) and the procedure follows closely to that given 
in section (1.5.6) in Chapter One. The fixed-point instruc
tion used in Step (3) of the procedure is DIVE. Here a 31- 
bit dividend is divided by a 16-bit divisor to give a 16-bit 
quotient and a 16-bit remainder. As in multiply, we need 
to devise a procedure for this type of mantissa arithmetic 
in order to get 24 significant digits (bits) for the mantissa.

Consider the mantissa arithmetic. Let m(z) be the
quotient, m(x) the dividend and m(y) the divisor. Similarly
we split m(y) into two single precision fixed-point fractions
(refer section 2.3.7). Then

m(z) = m(x)/{m1 (y) + en^(y)}

where e is the reciprocal of the word size,
i.e. m(z) = m(x) {1 + eiî (y)/]^ (y)}

mfy)
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7^T7l " e (y) + eV I® (y ^ 2+ •••>V 3̂ sfTyi {£vh) }
Neglecting terms 0(e2)

m(z) « m(x) ■ j-1 - e n^Cy^ 
in̂ Ty) m^(y)

Now m(x)/m (y) gives a 16-bit quotient and a 16-bit
remainder.
Let m!(z) = m(x)/m (y)

= m-J(z) + r'(z) where r1 (z) is the remainder,
and r(z)/m1(y) = m^(z) + r"(2) where r"(z) is the
remainder,
then « m f(z) - m ’(z) + m ’(z)

m(z) a m'(z) {i - em2(y)/mx(y)}
■ m'(z) - cmjtjr) m ,(z)

mi (y;

Remark:
1. Care should be taken in the coding of the 

routine. Likely error will occur in the shift 
factor e (reciprocal of word size).

2. The correction term eni2 (y) m i(z) is computed by
m~(y)

multiplying m^(y) and m T(z) before division by 

m1(y). The result is then shifted right by the 
amount given in e, If we were to perform divis
ion (i.e. m2-1-̂-2- before multiplication, then m0(y) m^y) z

is extended to a double precision fraction before 
division. The result obtained will be slightly 
different* since floating-point arithmetic is not
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FLOWCHART: DIVISION 
(FDIVF)

(zero dividV.  ̂ exit_ J ±
No

Unpack numbers 
x+e(x), m(x) 
y+e(y) , m(y)

arith. shift right 
m(x) one place 
set: e(x)-*-e(x)+1

split: 
y (y), m2(y)

set:e(z)-*-e(x)-e(y) +12

z '-em(x) /mi (y) 
z"<-r (x) /mj (y) 
c T̂ m (y)/mi(y)

arith. shift right 
z", c’, by 14 places

set: m' (z )«-z ' +zM

set: m(z)-«-mf (z)-c’*m! (z)

STANDARDISE 
Entry Point ’STEXP’

(Figure 10) ^  RETURN ^
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associative (refer section 1.8).

2.3.9 STANDARDISED (FSTND)

This routine is a straightforward adaptation of the 
algorithm given in sectionC1.5.5) of Chapter One. There 
are two 'entry points' in this routine. The entry point 
'STEXP' (refer to FSTND,in Appendix 1) is used to form a 
standardised floating-point number when the extended mantissa 
(32 bits) and the exponent are given. For non-standard 
floating-point numbers the entry point is 'FSTND'.

Remark:
The 32-bit extended mantissa is truncated to a 24-bit 
fraction (instead of rounding as discussed in the 
first chapter) after standardisation. The exponent 
is tested for overflow and underflow before it is 
concatenated to form the standardised floating-point 
number.

The flowchart for the standardised routine is given in 
figure (11).

2.4 DOUBLE PRECISION ARITHMETICS ■

Two methods of implementing the double-precision floating 
point arithmetic are given in this section. Throughout the 
discussion, the standardised double length floating-point 
format proposed at Glasgow University (11) (refer to section 
2.3.4) is assumed.
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FLOWCHART: STANDARDISE 
(FSTND)

ENTRY
FSTND

No

Yes

No

No

Yes

No underflowe(x)>. 0

Yes

ure 11)RETURN

e (x) <.2 5 5

m(x)
standard

overflow

set: e(x)-e-e(x)+1

logical shift left 
m(x) by 1 place

(AB)
(Y)

ext. mantissa m(x) 
exponent e(x)

UNPACK

Truncate m(x) to 24-bit 
mantissa.
Concatenate:
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2.4.1 METHOD 1

This is the conventional method as found in Knuth 
Difficulties arise in this method as the fixed-point 
instructions available do not give sufficient significant 
digits. We shall use the term "mantissa arithmetic1 to 
denote operations performed on the mantissa. We need 
instructions capable of multiplying two 32-bit fixed-point 
numbers to give a 64-bit fixed-point product and also in 
division where a 32-bit dividend, divided by a 32-bit 
divisor, gives a 32-bit fixed-point quotient and a 32-bit 
fixed-point remainder. We term these operations as 'Long 
Multiply' and 'Long Divide' respectively.

We begin the discussion with the following proposed 
64-bit fixed point format.

a) 64-bit fixed-point fraction.

n,

word 0

binary point
word 1

word 2

figure 12

word 3

The fraction is held as a 64-bit (4 words) 2's complement 
binary number with the assumed binary point immediately 
after bit 0 (as shown in figure 12). The fraction lies in the
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range

-1 4 f 4 l-2~63 
b) fixed-point integer;

If binary point is assumed immediately after bit 63, 
the number represented is a fixed-point integer. The 
range cover by this format is -263 4 i 4 263 -1.

2.4.2 LONG MULTIPLY
The operands (32-bit number) are first split into two 

single precision fixed-point numbers such that x = x1 +
(refer to section 2.3.7). The procedure followed is the 
same as that described in the earlier section (where we 
split the extended mantissa into 2 16-bit fixed-point 
numbers). To obtain the 64-bit product, the following 
procedure is used (c.f. section 2.3.7).

Let x, y be two 32-bit fixed-point numbers and 
x = x 1+ ex2 where e is the reciprocal of word size 

Xj being the most significant half 
*2 being the least significant half 

Similarly, y is split into y = y + ey2 

x,y = (xx+ ex2) (yx+ ey2)
= xxyx + e(xxy2 + x2yx) + e2x> y2

Ijj this case term with e2 is not neglected as the term
so formed may be significant. Following the same convention 
as that given for 'MLTA', the 64-bit product has bit 0 equal
to bit 1 (nQ = nx). Overflow occurs if bit 0 is not equal
to bit 1 (i.e. nQ i n l).



2.4.3 LONG DIVIDE

The procedures differ slightly for fixed-point 
fractions and for fixed-point integers.

a) Fixed-point fraction:

Let x, y be two double length fixed-point fractions.
We are required to find x/y. As x is a 32-bit fraction
we only need to split y into two single precision fractions
(c.f. section 2.3.7). We shall use the same algorithm
given in section (2.3.8) (for floating-point division).
Let y = y + ey2 where e is the reciprocal of word size,
then z, the approximate value for x/y, is given by

z = - ■ u  - I2 + 0(e2)} 
yi yi

The quotient z is a 32-bit fraction. The routine for 
long division does not return any value for the remainder.

b) Fixed-point integer:

We need to modify the procedure if the numbers are 
fixed-point integers. Similarly, the divisor y is split 
into two single length integers, say yx and y2 . If y: 
is equal to zero, division is the same as the instruction 
DIVE. We shall only consider the case when y / 0

Let x be the 32-bit dividend and y be the divisor. 
Assume y = ey +y2 where e is the word size (i.e. 215)
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Let = z1 + r where z1 is the quotient (integer)

and r is the remainder.

I “ (zi + ri ) (l-&_ >
eyi

* z -Z1 Xz + r _ rt y2
1 eYj 1 eŷ

Since ^ returns an integer, terms r , ^  y-2. can be
y 1 eyx

neglected since they are fractions (i.e. < 1).
The correction term is obtained by first multiplying
rx and y2 and then dividing by y . The result is then 
scaled to form a 32-bit fixed-point number. The 32-bit 
quotient is correct if either word 0 is equal to zero or 
(FFFF)lg . Any other patterns in word 0 indicate an over
flow (or undefined). The 32-bit remainder may be obtained 
by multiplying the 32-bit quotient with the 32-bit divisor 
and subtracting this amount from x.

It remains to describe the addition (or subtraction) 
of two 6 4-bit fixed-point numbers (both fractions or both 
integers). Similarly, the operands are first split to 
form two 32-bit fixed-point numbers.
(i) Let x, and y be two fixed-point fractions and

x = xL + £*2

y = Yl + ey2
where e is the reciprocal of word size and ^  ^  , y1 , y2
are two’s complement double length fixed-point fractions.

Then x + y = (Xĵ +yl ) +e(^+y2 )
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then x + y = (x[ +yi) + e(*2+y2 )

(ii) If x and y are integers
then let x = e» Xj + 3̂

y = ef yx + y2

where e’ is the word size (231) and x1 , ^  , yx , y2 are 
32-bit fixed-point integers.
Similarly, x + y = e» (x̂  + ) + (x + y ).....(*)

Special care should be taken in evaluating the term 
e(x2 + y2 ) or (2̂ + y2 ) in equation (*). Overflow may 
occur when adding the terms and y2 .

FLOATING-POINT (DOUBLE PRECISION) ARITHMETICS

2.4.4 METHOD 1
With the availability of ’Long multiply’, ’Long 

divide’ and extended precision (to 64-bit) addition and 
subtraction we can follow the algorithms given in section 
(2.3.6) for single precision floating-point arithmetics 
to design the double-precision floating-point operations.

We do not go into the details of designing the 
routines as it would be the same as that described in the 
single precision routines. It should be pointed out that 
care needs to be taken in getting the ’reduced exponent’ 
and in concatenating the mantissa and exponents to form the 
standardised double precision floating-point number. The 
64-bit extended mantissa is truncated to 48 bits after 
standardisation (c.f. section 2.3.9).

2.4.5 METHOD 2 (Dekker’s method)
The second method takes advantage of the algorithm
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for exact addition, exact multiplication and exact division, 
as described in Chapter One. The procedures are given in 
Appendix (2). The algorithms make use of the floating
point (single-length) operations available and deliver 
the result as a double length floating-point number.

The accuracy of the algorithms depends mainly on 
how we split the double-length floating-point number to 
two single-length floating-point numbers. The theorem 
which follows gives the method by which a double precision 
floating-point number should be split.

THEOREM (2.4.6) (DEKKER)

Let R be the floating-point number system such that 
R = {x|x = m(x) 2e ^x \  |m(x)|<2t}.

If floating-point addition and subtraction are optimi.1, 
multiplication is faithful and tx and and C are
defined by equations

= entier (^ )

ti = t-t,
C .= = 2tl + 1

then for all x in R, the following set of formulae 
p = fl(xxc) 
q = fl(x-p) 

h(x) = fl(q+p) 
yields h(x) defined by the equation

if \ j- c / \n —t i rte(x)̂ ’th(x) = round {m(x)2 i }2 i

Proof:
If x = 0 then the theorem is obvious.
Assume x i 0 and floating-point numbers are normalised,

( x0e(x) i.e. x = m(x)2
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and 2t_1 4 |m(x)| <2t
since addition is optimal and given

h(x) = round {m(x) 2_tl}2e(x)+ti which implies 
h(x) e RC-tg, ) is contained in R(t) 

we need only to show that q + p e R and 
q + p = round {m(x)2-tl }2e x̂^+tl 

i.e. to prove
h(x) = q + p 

Now p = fl(x x c)
Let p = m(p)2e^^ 

obviously e(p) = e(x) + or e(x) + t + 1

a) e(p) = e(x) + tj 
since q = fl(x-p),

then e(q) is equal either e(p) or e(p) - 1 .
If e(q) = e(p) - 1
then |m(q)|>. 2 which is outside the mantissa range.

Hence e(q) = e(p)
and result follows.

b) e(p) = e(x) + tx + 1
Then obviously e(q) = e(p) - 1 or e(p).

If e(q) = e(p) - 1
result follows.

If eCq) = eCp) then we have
|mCq)|< |m(x)|/2 + 3/2 

This is within the normalised mantissa range,
2 ^ ~ 1<: |m(q)|* 2  ̂ only if |.m(x)|= 2*"- e

where e = 1 or 2 
but then we obtain

q + p = round {m(x) 2



62

= round (m(x) 2-ti } 2e^ “1
i.e. q + p = round {m(x) 2~^'1 } 2e x̂^+tlJ

Hence h(x) = q + p.

From theorem (2.4.6) we have
t(x) = fl{x-h(x)} 

and this is equivalent to
t(x) = x-h(x) 

since subtraction is optimal and t(x) e.R.
Now given a double precision number x, - V , we can split 
this into a pair of single-length floating-point numbers 
{h(x), t(x)}. It remains for us to give a formal
definition of double precision floating-point number.

DEFINITION (DEKKER) 2.4.7

A double precision floating-point number is a pair 
(r, s) of single-length floating-point numbers (r, s)e R, 
satisfying

lsU  |lr + s| 1+2=1:  (2.4.8)

The value of the double precision number (r, s) is, by 
definition, equal to r + s.

This definition of double precision floating-point 
numbers fits in neatly to the proposed double precision 
floating-point format. The number representation in our 
system is a particular case of the system R where floating
point numbers are not standardised. Neglecting overflow 
and underflow, the theorems stated still hold. Also minor 
adaptation is required in the mantissa arithmetic. In 
Dekker’s system, the mantissa is taken to be a fixed-point
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integer, whereas it is defined as a fixed-point fraction 
in the computer (MULTUM) representation. The double 
precision floating-point number is split in the following 
manner. Word 0 and word 1 of the double precision
floating-point number are taken to be h(x) (i.e. the head)
and t(x) be represented in word 2, 3 of the floating-point 
number. We need only to put in the sign bit in bit 0 of
word 2 to form t(x). If word 2, and word 3 are equal to
zero t(x) is taken to be zero. Similarly, adjustment is 
required in forming h(x) if x is negative and the least 
significant mantissa is not zero (c.f. section 2.3.7).
The adjustment is the same as that described earlier when 
we truncate the mantissa to a single precision number.
In particular, if s = 0, we have a double-length number 
(r, 0). If addition is superfaithful then any pair (z, zz) 
obtained by performing an exact addition is a double 
precision floating-point number.

If condition (2.4.8) is replaced by 
s 4 1 r + s | C 2 ^

where C is some constant nearly equal to 1 (but greater than 
1) then the pair (r, s) satisfying this inequality is 
defined as nearly double precision floating-point number.
In particular, a pair of floating-point numbers (z, zz)
obtained by exact multiplication is nearly double precision

• • “"tfloating-point number since C is equal to a/(l+a2 )
in- condition (1.9J.5) in Chapter One.
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2.5 DOUBLE PRECISION ADD/SUBTRACT

The double precision sum of two (nearly) double length 
floating-point numbers (x, xx) and (y9yy) is calculated as 
follows:-

2.5.3. ALGORITHM

1. The heads of x and y (viz. h(x) and h(y) are added 
exactly (refer Appendix 2). We assume I x| > | y| in 
the algorithm. If | y|>|x|, the role of the 
terms x and y is interchanged.
A double precision number (r9 rr) is obtained using 
the algorithm for exact addition,
i.e. r + rr = x + y.

2. To get the tail s9 we perform the floating-point 
addition where

s = fl{(rr+yy) +xx>....... (**)
so that (r9 s) approximates the sum of (x, xx) and 
(y, yy). Similarly, the role of the terms xx and 
yy is interchanged if |xx|<|yy|. This reduces 
the maximum error in (**) and ensures commutativity. 

Note that floating-point (single precision) arithmetic 
assumes numbers to be in standardised form. Since single
length addition is ’superfaithful' (refer definition 1.8.7) 
the final exact addition of r and s transforms the approx
imate sum into a double precision floating-point number 
having the same value.

The pair (r9 s) of floating-point numbers is concat
enated to form the double precision floating-point number.
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Care should be "taken in selling up the reduced exponent 
in word 3. The procedures for double precision add 
is given as an ALGOL 60 procedure, add 2 in Appendix 2.

Similarly, Ihe procedure for double-length floating
point subtract can be obtained. The calculations of 
double precision floating-point product and divide are 
straightforward coding of the algorithms given for exact 
multiplication and exact division respectively. Pro
cedures in ALGOL 60 are given in Appendix 2 for multiply 
and divide.

In forming the product, a nearly double precision 
approximation (c, cc) of the required result is first 
calculated. The exact multiplication procedure is 
followed. The pair (c, cc) satisfies the condition 

|s|^ |r + s|a2 ^ where a is the constant as 
stated in Definition (2.4.7).

Finally, an exact addition is performed to transform 
the result into a double precision floating-point number 
having the same value (refer to Appendix 2: ALGOL pro
cedure multi, Mult 2).

2.5.2 Remarks
1. Cancellation may occur in forming r = fl(x+y), 

thus making |r| slightly less than |s|. If 
|r| = 0 we return the standardised value of s 
as the double-precision solution since in exact 
addition r + s is equal to s. Note, however, 
that when |r| t 0 but less than |s|, and the
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condition e(r) ^ e(s) still holds, the role of r 
and s is not changed in the final exact addition.

2. To obtain the negative value of a double precision 
floating-point number we simply set x equal to 
zero and then perform the exact subtraction with y. 
This will give us the negative value of y provided 
that no overflow occurs in the process of sub
traction. This method is not very efficient as it 
would involve a lot of unnecessary arithmetic 
operations. An alternative is an algorithm as 
described in the earlier section for single
precision floating-point numbers.

ERROR ANALYSIS

£he error in the double-length addition is committed 
in calculating s = fl{(rr+yy) • + xx.'}
If (x, xx) and (y, yy) are nearly double length numbers 
satisfying

Ixxl^ |x+xx|C 2"t and | yy |<J y+yy | 2 t 

where Cx and C£ are constants very near one (but greater 
than 1) then the error E of double length addition satis
fies the relation

|e | <̂{ |x+xx| (l+c ) +1y+yy | d+C2 ) >2 .

Proof of this inequality is given by Dek]ger (6). Also, 
analysis of errors for multiplication and division are 

also found in (6).
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2.6 CONCLUSION

The procedures given in Appendix 2 were not tested on 
the MULTUM ALP 2 computer as no floating-point operations 
were available then. If the arithmetic routines given in 
Appendix 1 were used in place of the hardware instructions, 
it would have involved a lot of procedure calls. This 
is very time consuming and inefficient. In addition, there 
is an uncertainty as to which double precision floating
point format will be adopted by the manufacturer.

As discussed in section (2.3.4), the floating-point 
double precision format with reduced exponent seems a 
better choice from the point of view of implementing 
Dekker's procedures. Both double precision formats may 
encounter early underflow. More risk is involved if the 
format proposed by I.C.S (refer section 2.3.3) were used.
The double precision format in this case has a large 
exponent range (.32768, 32767) and this may give overflow 
or underflow in the splitting stage where the double 
precision number is split to a pair of single precision 
floating-point numbers. Such early overflow will not 
occur in the other double precision format as both the single 
precision and double precision have the same exponent range. 
(128, 127 ). Splitting the double precision number to a 
pair of single precision numbers is easier. However, in 
both cases the smaller term (zz) is required in the 
standardised format and likely underflow may occur in the 
process of standardisation. Difficulties arise also in
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concatenating the pair of single precision floating
point numbers to the double precision format. In the 
case of the format with reduced exponent, underflow may 
occur in the adjustment of the reduced exponent (to e(x)-23). 
However, this can be satisfactorily solved by clearing 
word 2 and word 3 of the floating-point number (i.e. set 
least significant mantissa and the reduced exponent to 
zero). This is fairly acceptable as the least significant 
mantissa would be out of range in this case.

Dekker’s method seems more suitable for computers 
with large exponent range in the single precision format. 
This may prevent unnecessary underflow in the earlier 
stages of the calculation. The procedures have actually 
been tested on the Philip's Electrologica X8 computer at 
the Mathematical Centre, Amsterdam (6). The exponent 
range of the Philip’s Electrologica X8 is £-204-8, 2048j|
(i.e. 12-bit for the exponent) and a 40-bit mantissa.

In the other method of implementing double precision 
arithmetic (section 2.3.3), both formats are likely to 
encounter the same sort of difficulties. Routines for 
’Long multiply’ (section 2.4.2) and ’Long divide’ will 
be required for either format. In any case, the double 
precision multiply (’Long multiply’) and double precision 
division ('Long divide’) for integers are required for 
the Fortran compiler and the Pascal compiler, and it may 
seem more practical to have the double precision floating
point operations simulated in this conventional way. The
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likely problem in this method will be similar to those 
routines written for single precision arithmetic.

The routines given in Appendix 1 were tested on the 
MULTUM computer. Random checks were made to test the 
solutions given by the hardware instructions and those 
given by the software. A bug was found in the hardware 
for floating-point addition and floating-point subtraction. 
Instead of returning the value (4000 006A)lg for adding 
(4000 0081)gl and (8000 0180)^ or subtracting (4000 0081)lg
and (7FFF FF80)lg the value (0000 0000 )lg was returned.

-15 _ l5 _ i 5(i.e. (1+ (1-2 ) ) or (l-(l-2 ) ) give 0 instead of 2 ).
The software operations on these numbers returned the 
correct result. Floating-point premature overflows and 
inconsistency occur in the hardware operations for multi
plication and division.

Floating-point premature overflows occur in multi
plication when the unnormalised product has an exponent 
equal to the maximum allowable exponent plus one (i.e. 
x = m(x) 2255+1 where 0 < m(x) < and 255 is the biased 
form of the maximum exponent). For example, if x = \ 2255 
and y = \ 2129 then xy =  ̂2256. Exponent overflow is 
tested at this stage by the hardware, which obviously will 
give an overflow. If the exponent was tested after 
standardisation, the result ^*2255 is returned, which is 
allowed. The result of multiplication in this case forms 
a proper subset of the floating-point number. Such 
reduction in the range of the floating-point is hazardous
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in computation. This, too, will greatly affect the imple
mentation of double precision arithmetic by Dekker’s method 
as overflow occurs in some intermediate computations and 
floating-point multiplication is not faithful. (Refer 
section 1.8.7). For details of hardware operations refer 
’Specification of the ALP type 3’ (13). To avoid such 
premature overflow either increase size of the exponent 
registers or perform testing to see if the mantissa is 
less than half before testing the exponent for overflow.
The earlier case may be too expensive and the latter may 
have a heavy penalty in the efficiency of the operation.

Floating-point multiplication by hardware is not 
commutative. For example, if x = 5.2128 (i.e. x = 1)
and y = (-1).2255 (i.e. the largest allowable negative
number) the product xy gives an overflow as y is first 
negated to give a positive value. Overflow occurs in 
negating the largest negative number. However the product 
yx will not give an overflow as only the second operand 
is tested for overflow if it is negative. In theory, the 
product xy is a floating-point number in the range of 
floating-point numbers. Such inconsistency may lead to 
erroneous results in the evaluation of power series.
The hardware operations and those simulated by software 
are found to be consistent with each other (other than 
that mentioned earlier). Flowcharts for fixed integer, 
negate, etc. are given in Appendix 1* It is straight
forward coding and no further discussion on these routines 

is given.
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PART TWO

INTRODUCTION

Demands for higher quality in standard mathematical 
libraries have been building up. In recent years, pro
grammes in these basic libraries have been subjected to 
thorough scrutiny and users expect the library to achieve 
maximum accuracy. By maximum accuracy we mean the results 
returned by the library to be accurate to the last digit.
At this level of last digit accuracy, we regard the given 
argument value as exact and aim at producing an answer 
value that is the nearest in the given precision to the 
exact infinite precision answer (1). In most instances, 
this goal can be attained only by carrying out parts of 
computations with working precision higher than that of 
the library, especially when the relative accuracy of the 
result is very sensitive to the accuracy of the argument.
In Chapter Three, we look into how the added accuracy helps 
to limit the accumulation of round-off errors, improving 
the probability of successful computation.

LAYOUT OF CHAPTER THREE
1. OBJECTIVE
2. CLASSIFICATION
3. ERROR ASSESSMENTS
4. MATHEMATICAL BACKGROUND
5. RANGE REDUCTION

In Chapter Four some of the basic library routines are 
discussed. The later part of the chapter gives a survey
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of methods available in extending the library to include 
double precision routines. A brief discussion of the 
performance and testings of the library routines is also 
included.

The primary objective of this part of the thesis is 
to give a general survey of the methods available and the 
considerations required in the designing of a basic 
(mathematics) library. No attempt is made to prove any 
of the theorems quoted in Chapter Three and no proof is 
given for the polynominal approximations to the functions 
in Chapter Four. Literature regarding the proofs and 
theorems can be found in Hart (2), Fike (3), Snyder (4), 
Rice (5) and Achieser (6).
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CHAPTER THREE

3.0 OBJECTIVES

Libraries of programmes of elementary functions are 
the basic structure for any Scientific System Library. 
Stringent requirements for this library must be met to 
satisfy the general user. Computer manufacturers usually 
supply these basic system libraries together with the 
processors. Unfortunately it cannot be said that all 
manufacturers supply noteworthy sub-routine libraries (14).
H. Kuki (7) listed some of the important conditions that 
must be observed in order to produce a library that would 
satisfy most users all the time and all the users most of 
the time.
a) Reliability:

The meaning of the word is self-explanatory. Absolute 
reliability is expected from the libraries. This includes 
both numerical accuracy and adequate diagnosis of errors.
A rigid accuracy standard which is commensurate with the 
precision of the given computer must be maintained. 
Acceptable answers must be returned for all legitimate 
arguments and mark all other arguments. Numerical accuracy 
is normally attained at the expense of speed and storage 

requirements.

b) Domain:

The legal domain of function routine defined should 
Include virtually all those arguments whose function- values 
are representable in the number system of the given computer.
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For those arguments which are outside the legal domain, 
proper diagnostics should be given.

c) Speed;

Optimal speed under the above constraints should 
be arrived at. This largely depends on the hardwares 
available and the choice of programming languages.

d) Size:

When all the above requirements are met, we are left 
only to scale down the size of the programme.. It can be 
said that the smaller the better.

In general, Accuracy-Efficiency-Space conventions 
are used as the general guideline for designing library 
routines. Finally, we have to perform extensive testings 
of the routines to certify that the routine is creditable. 
For example, ’Random Test’ to determine the reliability 
may be used. Unfortunately, this is not sufficient to 
ensure that routines are one hundred percent reliable (8). 
The best method to ensure reliability is for the coder to 
completely document his methods and for the certifier-to 
check on the method and code, and then devise test cases 
which are likely to cause trouble.

3.1 CLASSIFICATION OF ROUTINES

Function routines are classified into three categories, 
namely, primary, secondary and management (14).

3.1.1 PRIMARY ROUTINES

These are the basic building blocks of any library.
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The routines ere completely self-contained and rely upon 
no other routines for computation. Instead, these 
routines are frequently called upon by other routines 
to perform critical computations. Examples of primary 
routines are routines for sine, cosine, logarithm, and 
exponential.

3.1.2 SECONDARY ROUTINES

Secondary routines do part of the computation themselves 
but rely upon other routines (e.g. primary routines or 
other secondary routines) for some of the computations. 
Typical routines for the inverse trigonometric functions 
and some hyperbolic functions are among the secondary 
routines in the library.

3.1.3 MANAGEMENT ROUTINES

These routines merely manage the flow of information 
from one routine to another. Computations are done by 
calling on the primary and secondary routines in the library 
Routines for exponentiation and for certain hyperbolic 
functions and complex functions are frequently in this 

category.

3. 2 THE CHOICE OF PROGRAMMING- LANGUAGE

To produce optimal programmes in regard to the 
conditions described earlier, it is necessary to make the 
most out of the peculiarities of the computer for which 
the library is designed. Accuracy and domain require—
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merits are stated in terms of the machine. In addition, 
the reduction algorithms of several elementary functions 
are intimately related to the internal number representa
tion. This leads to the choice of the Assembler code for 
basic system libraries. H. Kuki (7) concludes that in 
the present state of compiler art, codes generated by 
computers cannot compete with the assembler code in terms 
of economy of space and speed. The timing figures and 
storage requirements shown in Table 1 are excerpted from
H. Kuki1s paper

Three Fortran codes were prepared and execution times 
cited are for the I.B.M. 360/65G computer. Codes for the 
exponential, logarithm, sine/cosine sub-programmes are 
aimed at the basic accuracy of 10~7. For details of the 
coding of these routines, refer to (7). The compiled code 
excludes the routines that are referred to.

The results only iterate the demands for the 
Assembler Codes be used for writing basic library routines.

TABLE 1 Comparison of the Timing and Storage between 
Fortran Code and Assembler Code

FORTRAN CODE TIMING ASSEMBLER CODE TIMING
FUNCTION STORAGE (IN BYTES) (y SEC.) STORAGE (IN BYTES) (y SEC.)
Exponential
Exp(x) 452 128 184 86
Logarithm
A LOG (x) .458 291 184 83
SINE/COSINE 712 169 200 76
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3.3. SYSTEM SPECIFICATIONS

Those features that either enhance the capabilities of 
the host system or features that are required by the host 
system should be provided. Arguments that are outside 
the specified domain should have proper diagnostics. In 
general programmes in a standard library should be equipped 
to handle any input argument that is capable of being 
produced by the host system. For example, if the host 
system only works with normalised floating-point numbers, 
any input arguments that are unnormalised may produce 
erroneous answers. Also programmes should behave 
consistently with the conventions of the host system. For 
example, treatment of underflows and overflows should be 
appropriately dealt with. Users should have an alternative 
as to whether to be informed of occurrence of underflow or 
not.

3. 4- STANDARD REFERENCE FOR ACCURACY

Accuracy is defined here as the measure of deviation 
of the computed answer from the exact one. Assume that the 
given argument value is exact, then the infinite precision 
function value corresponding to this argument value is taken 
to be the exact answer. By exact argument, we mean that 
value for which the argument in its machine representation 
stands as it is passed on to the sub-routine. No allowance 
is made for minimal rounding error, conversion errors and 
accumulation of errors from prior processing.
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3.4.1 EFFECT OF AN ARGUMENT ERROR

There are "two major sources of error associated with 
any function value.

Transmitted error:

This is an error due to a small error in the argument. 
Let x be the argument and y = f(x) be the exact function 
value. Also write Ax and 6x as the absolute and relative 
error of x inherited from prior computation, respectively. 
If Ay and 6y are respectively the absolute and relative 
error in y, and function f(x) is a differentiable function, 
then

df . 
Ay = dx

and 6 y _ Ay „ dy

= ff(x) d „ f1(x) .
" T O O  dx " “TTxT 6x
x dfi.e. Sy - — 3— fix.J y dx

The transmitted error fiy depends solely on the inherited 
error fix and not on the sub-routine.

3.4.2 GENERATED ERROR

This type of error is generated by the sub-routine.
It includes the error due to approximation of the function 
f by an arithmetically specifiable function <J>, as well as 
error due to the round—off characteristics of the machine. 
In particular, it includes the error due to the inexact 
representation of constants as machine words.

Since sub—routines have no control over the inherited 
error, they should then be designed to minimise the
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generated error. The next few sections survey the methods 
available in approximating the function f so that generated 
error is minimal.

Remark:

a) We shall use the same notation f to denote both the 
function and the infinite expansion (approximation) 
of this function since mathematically they are 
equivalent.

Let <j) be the finite approximation of f. If x 
is the argument value that is passed to the sub

routine (i.e. x'”-x = Ax where x* is the exact 
argument) then the generated error will be f(x)-<j>(x) 
(c.f. Ashenhurst rC4)) or f(x)-<|>(x) /f(x) depending 
on the methods of error measurement (c.f. Fike (3)).

b) From equation (3.4.3)

6y = xf’(x)/f(x)6x ...................  3.4.3
the function corresponding to the argument x is said 
to be unstable if xf’(x)/f(x) is very large.

3.4.4 TECHNIQUES OF REDUCING GENERATED ERRORS

Generated errors of the type mentioned above may be 
reduced with some additional codes. The basic technique 
is to use guard digits at crucial points in the computations. 
Fixed-point computation is used profitably when the precision 
of the fixed-point representation is several digits longer 
than that of the floating-point. For single precision 
sub-routines 5 a limited use of double precision computations
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allows a very accurate computation of the reduce argument 
in the reduction stage. However, in double precision 
routines such back-up precision (multiple precision) is 
not usually available. If available, the time penalty 
for using the multiple precision calculations is very heavy. 
It would be too expensive to carry out the entire calcula
tion in multiple precision. Instead, a certain strategy 
is followed. The crucial step is usually located and 
computation at this stage is carried out (in extra precision) 
to obtain a better approximation of the exact value.
This technique may turn out to be far less expensive (in 
terms of speed and storage) than to carry out a full 
precision calculation on every step.

Listed in Table (2) (given in (2)) are certain tech
niques that may be useful in the writing of an efficient 
code.

DESCRIPTION
As described in section (3.4.4 ) 
to provide good error control.

Certain operations may be 
replaced by those arithmetic or 
logical operations that are more 
efficient. For example, if 
division is slower than multi
plication, it may be desirable 
to store the reciprocal of a 
constant and use multiplication 
rather than division. Also in

NAME
Fixed-point Arithmetic 

Equivalent Operations
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Variable Timing

Shared Storage for 
Instructions

Inner Loop Efficiency

cases of multiplication or 
division by 2, in fixed-point 
it is better to make use of the 
shift operations. In case of 
floating-point arithmetic, 
replace multiplication and 
division by addition or sub
traction involving the exponent 
part of a floating-point number.

The time of evaluation of a power 
series may be shortened by 
forcing coefficients to assume 
a form which is exactly represent
able on a computer by a few digits.

Different sub-routines may share 
common sections of code or 
tables of constants. It would 
be more economical to combine 
these routines in one multiple 
entry suh-routine. Example of 
shared storage routines is the 
sine and cosine routines.

Remove from inner loops all oper
ations which can equally well go 
outside the loop.
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3.5 THEORETICAL BACKGROUND

The computation of a mathematical function consists , 
in general, of two stages $ the reduction stage and the 
approximation stage. The basic stage into which the 
argument is reduced must be such that, within this range, 
one has an approximation algorithm that is both efficient 
and stable. Our accuracy goal is to keep the maximum 
relative error well within the range of the last digit 
value of the working precision.

Among polynominal (or rational) approximations of a 
given degree there is one that minimises the maximum error 
in the given range. In the next section we shall give a 
brief discussion of this type of approximation, namely 
minimax approximation. Several algorithms are available 
to us to determine coefficients of such approximations.
We shall confine ourselves to Remez's method and 
Chebyshev interpolation in determining the coefficients.

No attempts will be made to prove any of the theorems 
given in the next few sections on polynomial approximations. 
Most of the tables and data given are excerpted from 
Hart (2).

3.5.1 MINIMAX POLYNOMIAL APPROXIMATIONS

In the preceding sections we have discussed the nature 
and requirements of basic library sub-routines. Also we 
have considered factors which will influence the results.
In the sections that follow we give a survey of a type of 
optimum approximation that minimises the generated error.
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Instead of permitting the search for optimal approximations 
to range over the class of all possible algorithms for a 
given machine, we will restrict the search to polynomial 
approximations and the rational approximations.

Throughout the discussion, we will use f(x) to denote 
the function to be approximated, and [a, b] to denote the 
approximation interval* The function f(x) is assumed to 
be continuous in this interval.

THEOREM 3.5.2 (Chebyshev’s theorem on polynomial
approximation)

Let u(x) denote a function continuous in the closed 
finite interval £a, bj and let v(x) denote a function 
continuous and non-zero in [a, b] . Let Vn denote the 
set of polynomials of degree n. There exists a
unique polynomial P “(x) in Vn such that

max
a ,b

Pn*(x> . .
 7 r—  “ U(X)v (x)

m m  max

Pn (x)£Vn ta >b]
P, (x)
^ 7  " U ( X )

Let P_̂ (x) denote a polynomial in Vn . Then P^Cx) is P (x) 
if and only if there exist N >_ n+2 points in £a, bj 

X* < < X£ .

such that
P C X* )n * _ y(x*) = (-l) li* for k=l, 2,...N
v(x* )

where
i * I max P_ Cx)
Im 1 tut  - u ( x ) | -

Proof of the theorem can be found in Achieser (1956) (7).
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Remarks:

(i) If (x)=l, and u(x)=f(x),

then function Pn (x)~feic<j>mes the absolute function 
v (x)
Pn (x)-f(x).

In this case the theorem asserts that there exists a unique 

polynomial P̂ ‘(x) of degree 4 n that approximates R(x) with 
minimax absolute error in £a,bj . Also the maximum dis
crepancy between f and P̂ ‘ must occur with alternating sign 
at n+2 successive points of the interval. Finally, there 
must exist points

a4 xq < x*< • • *=b such that

PH (*L*> ' = f(xi+l) " Pn*'’(3i l ) = *1 IP* 11
(ii) With (x)=f(x) and u(x)=l, and f(x)̂ 0 in [a,bj

then P (x) , x becomes relative error functionn - u(x)
v (x)

P (x)-f(x) n fix) *

Similarly as in (i) there exists a unique polynomial P̂  (x)
of degree <_ n that approximates f(x) with maximum relative
error in |~a, bj also there exist n+2 extreme points in
a, b such that

(P*(x)-f(x))/f(x) = (f(x)-P*(x))/f(x)n n
if f(x)=0; for x=a, then approximate does not hold unless 
the following conditions are satisfied.
1. The only point in £a, bj at which f(x)=0 is x-a
2. f(x)/(x-a) is non zero in £a, b]

This implies that limit f(x)/(x-a) exists and we
x+a

define f(x)/(x-a) to have that limit as its value at x=a.
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Therefore

Pn (x) = (x-o)Pn _1(x) 
whsx1© Pn_^(x) is & polynomial of dsgnes <. n~l.
Also

P*(x) = (x-a)P* . (x)n n-1
and (x) approximates f(x)/(x-a) with minimax relative 
error in £a, bj.

Note: 1. The polynomial of degree <. n that approximates f(x)
with minimax absolute error in [a, b) is, in general, 
not the same as the polynomial of degree n that 
approximates f(x) with minimax relative error in 
[a, b] .

2. The minimax polynomial approximation is dependent 
on the integer n and the interval £a, bJ . In
general, changing either one will give a different
approximation to a function. In fact, there is no 
general way to have one common minimax polynomial 
approximation to a function for different intervals 
or of different degrees. In other words, select
ing an optimal approximation for a function in one 
computer may not necessarily give an optimal approx
imation in another machine as different machines 
have different number representation.

3. A minimax polynomial is an even/odd function if it 
is a minimax absolute error or minimax relative 
error approximation to an even/odd function in a 
symmetrical range (i.e. in interval (j-a, a])*
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Proof:
Suppose f(x) is an odd function and P*(x) is the 
unique polynomial of degree <. n that approximates 
f(x) with minimax relative error in [-a, a-],

Then
max

[-a, a]
PjJ* (x)-f (x)Tnn* = max 

[-a, aj fC-x)
Definition of odd function implies 

f(x) = -f(-x)
max

[-a, aj
P*(x)-f(x) = max P*(-x) + f(X )

f ( X ) L aJ -f(x)

max j -P'' (-x) - f(x)
[-a, a] | -S FT3n----

since P*(x) is unique
P*(x) = - P *(x)

which implies that Pn (x) is an odd function-

3.5.3 NEARLY MINIMAX POLYNOMIAL APPROXIMATION

The theorem given below gives an estimate of the 
maximum absolute error in a minimax absolute approximation 
or an estimate of the relative error in the minimax 
relative approximation. The usefulness of this lies in 
the fact that it makes it possible to obtain knowledge of 
the accuracy of a minimax polynomial approximation without 
actually having to derive the polynomial itself.

THEOREM 3.5.4
Let P (x) denote a polynomial of degree <, n and let n

*1 ’ *2
» denote points such thatn+2

a =  xl < *2 < • ’ ’< xn+2=
(x ) = (-1)V  , k=l, 2, ... n+2
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where , . . . , Wq+2 denotes non-zero numbers having
like signs.

Then
m m

l<k<n+2 

(Refer Achieser (1956) for proof of theorem (6), Rice (5)). 
Remark:

The theorem is interpreted in terms of minimax 
absolute error if u(x)=f(x) and v(x)=l, in terms of 
minimax relative error if u(x)=l and v(x)=f(x).
The theorem implies that if the error function for an 
approximation alternates in sign at n+2 points in [a, b], 

the magnitude of the maximum error for the correspond
ing minimax approximation is bounded below by the 
smallest of the error magnitude at the n+2 points.

3.5.5 REMEZ’s SECOND METHOD

The algorithm of Remez exploits Chebyshev's Theorem 
for minimax polynomial approximation. Two methods for 
Remez’s procedure will be considered, namely RemezTs method 
for minimax absolute error and Remez’s method for minimax 
relative error.

1. For minimax absolute error

Let Pn (x) be the polynomial that approximates 'f(x) 
with minimax absolute error in £a, bj , and

(x) = x + ... + 3^ xn

From Chebyshev’s Theorem (3.6.2), the standard error 
function processes exactly n+2 critical points in [a, b] , 

say, xk , k=l, 2, ..., n+2 such that
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a = x

and that

where
Pn (xk ) " f(xk } = (-1)kn > k =1,2, n+2, ... (S’>

M  =rmax .. I pn " Kx)|[a, b]
The coefficients aQ , , . . . , an are obtained by
solving the system of equations (*), but the critical 
points are unknown. To obtain the coefficients for the 
minimax polynomial the following iterative method is 
followed.
1. Initially, select n+2 numbers 2̂., k=l, 2, ..., n+2 

such that

a = Xj < y^< . . . < *n+2 = k

2. Solve the set of equations
P (x, ) - (-l)kp = f(x, ) n k k

for the coefficients of P (x) and y.n
3. Substitute the calculated values of aQ, a15 ..., an and

'P (x) and then locate the extreme point for the 
standard error function {P̂  (x) - f(x)} in £a, bJ.
Assume there are exactly n+2 extreme points, yk , k=l,.., 
n+2, including a, and b 
such that

a = yl < y2 '*• y3 < -- < yn+2 = b*
3. Replace xR by yk for k=l, 2, ... n+2 and repeat the

sequence of steps given above beginning with 2.

It can be proved that x^ converges to x*k and y 
converges to y' (^0) and ak converges to a’k for any
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starting value in step (1). (Refer Veidinger (1960) or 
Rice (19 67) (9), (5) for proof of theorem). It is known 
(Veidinger (19 60) that if f" exists and is continuous and 
if |P -f| achieves its maximum at the end points and at 
exactly n other points, then the maximum deviation in 
Remez’s algorithm converges quadratically to their infimum

Remark:

The system of linear equations (1) and (2) tends to 
become ill-conditioned as n increases. Modification 
to the method of the algorithm or the use of high 
precision arithmetic can overcome this problem.

3.6 FUNDAMENTAL PROPERTIES OF CHEKYSHEV POLYNOMIALS

The Chekyshev polynomial of degree n, T^(x) is defined
recurringly for each non-negative integer n by the equation

T (x) = Cos (n arc Cos x) for -1 <_ x <. 1 . . . (3.6.1)n — —
where x = Cos 6.
The Chekyshev polynomials have a number of interesting and 
useful properties which can be derived from the Definition 
(3.6.1). Among these are the following:

1. T (x) is a polynomial of degree n in x. If n is evenn
Tn (x) is an even polynomial; if n is odd, Tn (x) is an 

odd polynomial.

2. The coefficient of xn in Tn (x) is 2n 1.

3. T (x) has exactly n real zeros in the interval [-1, il.n i_ j
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From Definition (3.6.1) these zeros are located at
x.=Cos^i II, j =0, 1, 2, . . .n-1 j 2

*+. | (x) |̂ | j -1 4 x 4 1 for all n.

5. Tn (x) (n>0) attains its bounds ± 1 alternatively at 
the points

Xj = CoS iT 9 j = 0, 1, 2, n

T (x. ) = (-1)3n 3
6. Minimax property

Let Pn (x) be any polynomial of degree n with leading
coefficient unity. Then

max I 21 nT (x)I< max I P (x)I • n 1 = I n 1
- I4X4I - I4X4I

No attempts will be made to verify the properties 
stated. (For proofs, refer (5)).
These properties may be used to find polynomial approx
imations for function f(x) directly or indirectly.

-3.7 CHEBYSHEV SERIES.

If the function f(x) has a continuous first derivative 
in (V, 1]. then it processes a Chebyshev series expansion

f(x) V o  ak ^ (x) = 1 aD To (x) + + V T2 (x) + •••

which converges uniformly and absolutely in P 1’ where 
the coefficients in the series are given by

â. = ^  f1 f(x) (1-x2)”2 dx

The infinite series is normally truncated to a finite
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series and is an excellent means of obtaining near mini
max approximations to the function f(x) in the range

3.8 POLYNOMIAL APPROXIMATION METHODS

Various methods are available to approximate a 
function such that the approximation is a nearly minimax 
approximation. Methods like truncation of power series, 
method of economisation, truncation of Chebyshev series 
and Chebyshev interpolation can be used to obtain poly^ 
nomial approximations for the function f(x). Literature 
regarding these methods is readily available. (Refer
(2), (3), (5) ).

A brief description of Chebyshev’s interpolation 
method will be given here as we will be using this type 
of approximation method in our discussion in Chapter Four.

3.8.1 CHEBYSHEV INTERPOLATION

Suppose f(x) and f (x) (i.e. the function and the 
(n+l)st derivative) are continuous in the interval £-1, 3] 
and Xj , 3̂  , ... xn+1 are n+1 distinct numbers in s
then there exists a unique polynomial of degree 4 n

such that Pn (x̂ .) = f ) for k-1, 2, ..., n+1

The coefficients ag , ..., an can be obtained by solving 

n+1 linear equations

Pn (x) = Sq +a1 x + . . . +anx'n
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nap + a[ x + ... + â xj. = f(^) , k=l, 2, . .., n

for the n+1 unknowns. Xj , ^  , . .., xn+2 are called the 
nodes of the approximation. If the zeros of the Cheby
shev polynomial T (x) are taken to be the nodes of the 
approximation, the method is then called Chebyshev 
interpolation. The zeros for Tn+-]_ (x) is given by

x^ - Cos 2  ̂ k-1, 2 , . . . , n+1.

Remarks;

1. If f(x) is an even function, an approximation
Pn (x) obtained by Chebyshev interpolation is also
an even function. Likewise, if f(x) is odd,
P (x) is odd. n

2. Let Pn (x) be a polynomial of degree 4 n determined 
by Chebyshev interpolation as the approximation to 
a function f(x) in [-1, lj, and given that
PR (x) = ^bQ Tx (x) + bx T: (x) + ... + b̂  Tn (x)

then the coefficients b̂  , p = 0 , 1, 2, ..., n can
be computed by means of the formula
w . 2 r*1 j. (CosC2k-l)K) ^_(2k-l)
p " n+I kil f 2TS+I) ■ 2Tn+I) p

3.8 RANGE KEDUCTTOM

The computation of basic library functions involves 
a reduction of the argument to some primary interval, 
followed by the evaluation of an approximation to the 
function over that interval. In some cases, like sin(x)J
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In x, there are no practical useful approximations to 
these functions for large ranges. It is, therefore, :: 
essential to be able to reduce the argument range over 
which such functions must be approximated.

It can be said that the quality of the library 
routines hinges upon the care used in the argument 
reduction stage. The main objective of the range 
reduction is to approximate the function with a minimum 
number of terms and also to avoid the occurrence of 
singularities. Suppose, for example, the function 
arc tan (x) is approximated by a polynomial of degree n, 
say Pn (x) and that we require x in the range [a, bj.
In Table (3) we can see that, for a given maximum rela- 
tive error, the number of terms increases for increas
ingly large approximation intervals. The values in the 
table are excerpted from Hart (2).

However, in some cases, range reduction does not 
improve the accuracy in the approximation, for example, 
approximations involving the Gamma functions. In some 
applications, the logical approximation range is small
enough for no range reduction, for example, if the
function sirih (x) is computed with the aid of the
identity sinh (x) = £(ex-e“x), and approximation of ex
in the range [-lln 2, lln 2]. The evaluation of sinh' (x) 
using this procedure is very unsatisfactory for very small 
argument. When x is nearly 0, e and e are near 1 and

cancellation occurs in the evaluation.
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TABLE (3) Comparison of Range and Number of Terms 
Required to Achieve that Accuracy for 
Arc Tan (x)

MAXIMUM RELATIVE NO. OF TERMS 
fa b] ERROR n

[o, tan y . 3987 H O 1 00 2

[ 0 , tan y .1996 io~8 3

[ 0 , tan i_i12J .1121 10“ 9 4

[o , tan .1197 -910 5

[ 0 , tan y .1383 -810 9

Segmented approximations lead to greater accuracy. 
However, we may need more storage space to hold the 
constants for each of the segmented intervals. Logical 
tests will be required to determine which segment 
(interval) the argument belongs to. Functional prop
erties like periodicity, symmetry, addition formulae and 
recurrence relations sometimes allow some range reduction 
without the use of segmented approximations. For example, 
in approximating the function sin(x), the periodicity 
helps to reduce the complexity of range reduction (refer 
section (*+.2.2) Chapter H).

In all the routines discussed in Chapter Four, range 
reductions are carried out. The error in the reduction 
process will be carried forward as argument errors
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(refer section 3.4.1). Extreme care is required to 
prevent this. As discussed in section (3.4.4) extra 
precision arithmetic may be required to calculate the 
reduced arguments. One method is by phase reduction 
where only critical steps are carried out in double 
precision arithmetic (refer (7)).

3.9 POLYNOMIAL EVALUATION METHODS

The technique used to evaluate a polynomial 
approximation affects the speed of a function evaluation 
routine. The most common and frequently used polynomial 
evaluation method is the technique called ’nest multi
plication’ . This method is simple to perform (code) 
and also it is numerically reliable. For example, to 
evaluate a fourth degree polynomial

P̂  (x) = aQ + ai x + â  x2 + a3 x3 + â  x^

we express the polynomial in the form

P (x) = ((a^x + a )x + a )x + a )x + a
t  3 2 1 0

■f“ "hIn general, a n degree polynomial will require n multi
plication and n addition to evaluate the polynomial.

This technique of evaluation will be extensively 
used in Chapter Four. Other methods such as economical 
evaluation will not be considered, as evaluating an 
approximation polynomial with the aid of an economical 
evaluation method can often be unsatisfactory numerically.
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Rounding errors tend to propagate in this method even 
though the evaluation is faster than evaluation by- 
nested multiplication (as economical evaluations require 
less multiplication). Details of polynomial evaluation 
methods can be found in Fike (3).

3.10 CONCLUSION

In conclusion, it is only apt to mention the 
documentation of the basic library routines. The basic 
library is very dependent on the machine it was written 
for and on its environment as the routines are written 
in the Assembler code (section 3.2). It is important 
for the user to have access to the documents regarding 
the routines they so often use. In general, proper 
documentation is expected from those routines written 
for numerical algorithms. In recent years, more 
emphasis is being placed on documenting the all-important 
basic library; and performance testing and certification 
are carried out to certify the routines (10), (11). 
Dickinson (12) listed the following documentation format 
for mathematical routines. However, this can also be 
applied to the basic library sub-programmes.

The following document may be included with the 

basic library:

1. SCOPE:

A short rst&tement regarding what the programme
does in non-mathematical terms is given.
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2. MODEL:

The model which programmes use is stated generally 
in mathematical terms. Emphasis is made here to 
state what the routine does. The details of the 
algorithm are reserved in the appendix of the 
documentation.

3. LIMITATION:

Here all known limitations of the routines are 
listed. For example, the range of arguments and the 
range of the expected result.

4. ERROR ANALYSIS:

An error analysis of the probable errors that may 
occur in the routine. In particular, it should give 
detailed analysis of expected critical values (range 
of any) and the range of the errors.

5. LISTING OF PROGRAMMES:

Listing of programmes is important for checking and 
for future extension to the (library) routines. 
Appropriate comments should be included in each step 
of the programme listing as it may be difficult to 
figure out the content if the programmes were written 

in the Assembler Code.

6. APPENDIX:

Here detailed description of the way in which the model 
is implemented is given. Outline of the procedure 
should be given if the algorithm is an implementation
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of a literature procedure. Flowcharts should also 
be helpful in simplifying the description.

With proper documentation, the basic library can be 
frequently reviewed. Also this makes the library more 
portable. By fportable1 we mean small easily identifiable 
changes are necessary to transfer the software to a new 
environment. (Traub (13)).
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CHAPTER FOUR

4.0 INTRODUCTION

In this chapter we shall discuss some of the routines 
in the basic library. Only single precision routines for 
square root, sine and cosine, logarithm, exponential, 
arctangent, and hyperbolic sine and cosine are considered. 
The purpose of the survey is to determine suitable algo
rithms for implementation on the MULTUM computer. In
terms of accuracy, the routines are expected to give a

-2 3maximum relative error of less than or equal to 2 
(or 10 7 in decimal). A brief discussion of extending 
the single precision routines to double precision is given 
in section (4.7). We have left out the routines for 
intrinsic functions as these are very machine dependent. 
Coding of these functions is straightforward. A brief 
discussion of performance testing is also given in section 

4.9.

4.1 SQUARE ROOT ROUTINE

The square root routine is based on the iterative 

process
y. = 1 y. + ———    (4.1.1) i = 1, 2, 3...*l 2 *1.-1 ^

i
Limit y_ =. x5.•'nn->°°

Equation (4.1.2) is a special case of the well-known 
Newton-Raphson iteration formula
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yi = yi ' f(yL } ...............(4.1.2) i = 1, 2, ...

where f(y) = y2-x.

The sequence y1 , y2 ... defined by (4.1.1) converges
quadratically to Jk (refer Fike (3) for proof). This
implies that any (arbitrary) choice of the initial
approximation yQ will eventually give the square root of x
(after a number of iterations). A reduction in the number
of iterations needed to achieve a prescribed accuracy can
be affected by expressing an arbitrary operand x in the 

2 ̂
form x = m(x)2 where n is chosen so that \ «m(x)<l, then

i j ■ ■using x2 = vjjl(x)2 . The reduction is simply a consequence
of the fact that as the range of allowed m(x) values
decreases, increasingly accurate initial approximations yQ
are possible. The number x is representable in the form

x = m(x)2e x̂ ^....................... (4.1.3)
In the floating-point representation
equation (4.1.3) can be written as

2 kx = m(x)2 if e(x) is even
m(x).2.22l<: if e(x) is odd

and 5 4 m(x) <1 for positive value of x.

Negative values of x give imaginary roots and will not be 

considered here.
The square root is

x = 2^/m(x) if exponent e(x) is even
2^/2mTx7 if exponent e(x) is odd

The computation of Vx is then reduced to find the square root 
of m(x) or 2m(x) in the range [j 1). Write m(x) or 2m(x)
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as m, the iterative process used will then be

i = 1, 2

Let Ê  (m) be the relative error after i iterations. 
Hence

i
E. (m) = y. m 2-l i (4.1.4)

satisfying
Ê  (m) = sE^^Cm) (1-Ê _1(m)) 1 (4.1.5)

These features,together with the economy of arithmetic 
operations involved in carrying out one cycle of the 
iterative process, imply that there is little to be gained 
by using sophisticated approximation to represent the 
initial approximation yQ . The choice of possible forms to 
represent Xq is therefore limited to these three

a) linear approximation yg = 3q + ax m
b) bilinear approximation yQ = bQ + b 1 (m + t^)^‘
c) Quadratic approximation yQ = Cq + clm + c^m2

a) Linear Approximation

The constants aQ , aj can be obtained by applying 
Chekyshev's (minimax) Theorem (refer 3.5.2) and .are found 
to be: 0Q = 0.4173, a[ = 0. 5902 , (Eve, (19))

From equation (4.1.4)

The maximum relative error in the initial approximation is

which can be deduced by application of Chekyshev's Theorem

(m) = y0 m 2-l.

| E0 ($) |̂  0.96 x 2 ,
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and also taking the approximation yQ = 0.4173 + 0.5 902m 
as the initial approximation.

From equation (4.1.5), we can see that the maximum 
relative error after two iterations, (m) is 

0 < E2 Cm) < 2-31

and after three iterations
0 < E3(m) < 2“63

b) Bilinear Approximation

y0 = b0 + bj Cm + b2 )_1
Similarly, bQ , b , b c a n  be obtained by application of
Chekyshev Theorem.
We have (Eve, (19))

y = 2. 541639-4. 837528/(m+2 . 137255)........... (4.1. 6)
From equation (4.1.4) and Chekyshev Theorem,together with
the approximation (4.1.6) the maximum relative error EQ (m) is

IEq (m) |< 0.33 x 2"10

Repeated application of equation (4.1.5) gives
1 -47| Eq (m) | < i x 2

c) Quadratic Approximation

Similarly we have
yn = 0. 313553 + 0.890245m - 0.204445m2, J < ni< 1 (refer 
0 Eve (19))

for which
|E0 Cm) | < | x 2'9 

and after one iteration, |Ej (m)|< 2
1 — 44and |I^(m)|< 2 after two iterations.
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Comparison of the three approximations:

Table (1) gives the maximum relative errors correspond
ing to the three approximations and the number of iterations 
required.

TABLE (1): Comparison of Maximum Relative Errors Ê  (m)

APPROXIMATION EQ (m) Ej_ Cm) E£ ( .m)

-7 -15 -31LINEAR 0.96 x 2 2 2
-10 -21BILINEAR .33 x 2 2 1 X 2 - W

5
-9 -19QUADRATIC .33 x 2 2 2

Comparison between the three types of approximations *
The linear approximation tends to converge more

slowly than the other two cases. The maximum relative 
error registered in the bilinear and quadratic approxima-

— if 5tions is in the order of 2 as compared to that of the
-31 . . .linear form, which is 2 . However, the initial approx

imation of y in the bilinear and quadratic case requires •'O
more arithmetic operations. For example, in the bilinear 
approximation, two additions and one division are required 
to evaluate yg as compared to one addition and one multi

plication in the linear form.

The floating-point representation in the MULTUM
— *+ocomputer does not require accuracies in the order of 2 

The linear approximation is a better choice for implementa
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tion in the MULTUM computer. We can use fixed-point 
arithmetic to evaluate' yQ and the subsequent iterations. 

The approximation y after the second iteration will then 
be concatenated with the exponent, 2 , to form the result 
of the square of x. If linear approximation were used, 
calculation of yQ cannot be performed in fixed-point arith
metic as bQ , ^  and b2 are not pure fractions. Working on 
floating-point arithmetic, the accuracies in the order of 
2 would serve no purpose at all since floating-point 
numbers require only 24- significant binary digits to 
represent the number.

4.1.7 ERROR PROPAGATION

Let argument have error e and the exact value 

x* = x + £
From binomial expansion

/xCl+e) = /x Cl+^e - §e2 + ... )

The relative errors of the results are approximately 
one half of those of the arguments. Evaluations of ŷ  
are performed in double-precision fixed-point arithmetic.
In this case the full length of the accumulator is used. 
This will minimise the propagation error.

4. 2 TRIGONOMETRIC FUNCTIONS

4.2.1 SINE AND COSINE SUB-ROUTINES

The relative accuracy of the computed value of a 
trigonometric function depends largely on the care 
exercised in the reduction stage. For this reason, it is
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desirable to use an arithmetic higher than the working 
precision during this stage.

4. 2. 2 REDUCTION STAGE

Let the floating-point argument be x. Our task is 
to decompose the given argument x as

|x| = (i)n + r(n/a) where n is an integer and
a is a positive integer 

and 0 4 r < 1

That is, given x, there is exactly one pair of values
(n, r) that satisfies this relation. Then the reduced
argument is either

g = C— )r = I x | - n(— ) ...................  (4.1. 2 )6 a 11 a
or g1 = (S) (1-r) = (n+1) (£) -Ixl .........  (4.1.3)® a a 1 1

depending upon the value of
m = n mod 2a , a = 1, 2, 3... 

and the main computation will be sine or cosine of g or g'. 
From equation (4.1.2) and (4.1.3) loss of accuracy can 
occur in forming the difference between nearly equal 
quantities |x| and an integer multiple of n/a. For 
example, |x| and ^ n agree for the first k bits; then g 
may be in error in the last k bits leading to a large 
value of fig even though <Sx = 0. The following example 
is due to Cody (8). If we let xxxxxxxx represent the 
computer bits devoted to normalised fraction part of a 
floating-point number x, a typical computation of g is 

as follows: x = xxxxxxxx
-n.3 = xxxyyyyy 

OOOzzzzz
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where the renormalisation of the intermediate result 
shifts zero bits into the low order positions. Suppose 
x is extended to double precision by the appendage of
extra zero bits. Then computation of g is as follows

x = 'k xxxxxxxx 00000000 
n“n~ = rxxxyyyyy y y y y y y y y  

.OOOzzzzz zzzzzzzz

normalised to give .zzzz zzzz.
The accuracy of g is then dependent on n̂ - alone. If we 
assume 6xe0, we can see that

6sin (g) = g cot (g) 6g
5cos (g) = -g tan (g)Sg

Hence the magnitude of <5g, the argument error (in the 
reduction stage) has a great influence on the accuracy of v 

the computation over the reduced range.

In general, the constant a can be chosen arbitrarily. 
(Refer Hart (2).) For convenience, a is taken to be 
either 2 or 4 in our discussions. Consider the following 
algorithm for sine/cosine.

n
Define z = jj|x| Let z = n+r

where n is an integer and r a fraction 0 4 r < 1

We then have
n ^ nx = j  n + j  r

The full range of the variable x is reduced to [0 , |-J
in our case here. If we restrict r in the range [-J, J]

Ln n 1-45
We shall only consider the first case.

The following trigonometric identities enable us to
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cover "the negative values of x by adding integer constants 
to n in the reduction stage.

If sine of a negative argument is desired, add 2 to n.
If cosine is desired, add 1 to n. This adjustment of n
reduces the general case to the computation of sin(x) for 
x>p.
Let me = n mod 2a
if a = 2, m = n mod 4.
Using the identity sin (A+B) = sin(A)Cos(B) + sin(B)cos(A)
we have, for m = 0 , sin(x) = sin(^r)

The formulae reduce each case to the computation of either

Cos(±x) = Sin(̂ -+x) 
Sin(-x) = Sin(n+x)

m = 3, sin(x)

m = 2, sin(x) -sm(^r)
. /3IUII x ,n ssinCy+^r) = -cos (̂ -r)

If a = 4, the reduction stage will be
|x| = |n + f r , 0 < r < 1, n is an integer

The full range is then reduced to ĵ O -|J. 
Now m = n mod 8, and we have

m = 2, sin(x)

m = 3, sin(x)

cos (jj-r) 

sin{-(l-r)}
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m = 4, sin(x) = -sin(^r)

m = 5, sin(x) = -cos -|(l-r)

m = 6, sin(x) = rcos(|r)

m = 7, sin(x) = -sin{^(l-r)}

The computation is also reduced to the evaluation of either 
sinC^ ) or cos ) where r2 is either r or (1-r) and is
within the range 0 < ^  < 1.

4.2.3 CHOICE OF q

From Chapter Three, we infer that the smaller the 
approximation range the less terms a polynomial or rational 
approximation must contain to approximate a function with 
a specified accuracy.

Suppose the sine function is approximated by a poly
nomial, say sin(IT/ax) * xP(x2).
The following table (2) is excerpted from Hart (2):- 

TABLE (2) Comparison of Precision for Different a and n
• “XMaximum Relative Error = 2

a/n 3 4 5
a = 2 x=20.03 x = 27. 47 x=36.14

4 28.20 37.67 47.66
6 32.92 43.55 54.71

From Table (2) It can be seen that precision increases 
when x increases. For example, when a  ̂ 4, the maximum

— 2 8 20relative error is less than or equal to 2 *  ̂ if a poly
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nomial of degree 3 in x2 is used to approximate sin(—x).a
-20 03When a = 2, maximum relative error is 2 * for a poly

nomial of the same degree. For practical consideration, 
a = 4 is a better choice than a = 2, since floating-point 
number representable by the MULTUM computer (refer section 
2.3.1) has a significant of 2*4 binary digits. Hence the 
computation for either sine or cosine is performed using 
the Chekyshev interpolation of degree 3 in r2 (refer
section 3.8.1). The maximum relative error in the sine

”281 “24*6approximation is 2 * and that of cosine is 2
We have

3
Sininx * r P(r2) = rE a (r2)r=0 31

The coefficients are due to Hart (2) (Table sin 3040).
aQ = + 0.78539 816 x 10Q:
aj = - 0.80745 433 x 10_1
ag = + 0.24900 010 x 10’2
83 = - 0.35950 439 x 10~3

n=3
and for Cosqllr * P(r2) = 2 b (r2)31

n=0 n
b Q = +. 99999 997- * 10°
^  = -.30842 417 x 10°

-1
b2 = +.15849 684 x 10
b3 = -. 31872 780 x 10“3

4.3 LOGARITHM (ALOG, AL0G10)

The natural logarithm, ln(x), (or written as lo^(x)) 
is the inverse of the exponential of x. 
i.e. In exp(x) = x - exp ln(x)
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In addition, logarithm is defined only for real positive 
values of x.

RANGE REDUCTION

It would be most impractical and cumbersome to find an 
approximation for ln(x) in the range 0 < x < oo or in the 
range of x representable by the machine. Thus it is 
necessary to reduce x to an interval that will give a rapid 
convergent for the approximation.

A typical range reduction will be the decomposition 
of the argument x as the product

x = 2n.m where 0.5<:n < l  (4.3.1)
Then the logarithm of x will be

ln(x) = n ln(2) + ln(m).............. (4.3.2)
The approximation for ln(x) is then reduced to finding 
a suitable approximation for ln(m) in the interval

0.5 4 m < 1
This reduction scheme is easily realised as the standard
ised floating-point number is of the form given in equation

(4.3.1).

For practical and accuracy requirements, the interval 
£4 m< 1 can be subdivided into 2 intervals,

£ 2”^ ^ ,  2 3 by -the substitution
= 2<l-j)/2t

5 m

then
ln(x) = ln(2n .2^_1/2k)

= n ln(2) + i l  ln(2) + InCg)2k
It only remains to find an approximation for ln(g) that
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will give a rapid convergence in the chosen interval.

Two forms of approximation are considered for ln(m). 
The first is a simple polynomial or rational approxi
mation in m.

ln(m) = R(m)....................(4.3.3)
The second is of the form

ln(g> = (fil) R (fil)2 ..... ^-3.4)

Table (3) gives an indication of how rapidly these 
approximations converge.

TABLE 3 Comparison between Approximation of Form
(i) ln(m) - R(m) , (ii) ln(g) = zR(z2) 
where g = (g-l)/(g+l)

• • -Xmaximum relative error = 2

INTERVAL X
DEGREE
hi FORM OF APPROXIMATION

(i>l[i> i j 25.01 8 ln(x) - P(x)

1[i. i ] ,7.05 3 2 ln(x) - P(x)/Q(x)

ii) |
£ ✓2-1. 25.51 2 In (x) - z P(z2)

1 * 3 28.16 1 1 ln(x) - z P(z2)/Q(z2)

The values in Table (3) are excerpted from Hart (2).

Approximation in the form ln(x) = zP(z2) where 
z = (x-1)/(x+1) gives a fast convergence at the expense 
of two extra additions and one division and one multi
plication to form z2 in addition to the arithmetic 
for evaluating the polynomial.
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Subdivision of the interval [^, l] into 2k intervals
may require k comparisons to determine which interval
contains m and also extra storage is required to store 

• • Jcthe quantities (j-l)/2 . The trade-off between storage 
space, accuracy and speed will deter the possibility of
having too many subdivisions. As an alternative to approx
imate function ln(m) in l] we may use the substitution

s = am where m< 1
and a is a constant,
in which case s is in the interval j^, a]
where s e I" — 1 and

L/2,/2J

ln(x) = 2n -  s 
/2

= (n-2) ln(2) + ln(s)

To calculate the logarithm function ln(x), the 

Chebyshev polynomial expansion on [2 9 -1] is truncated 
and transformed into a power series.

ln(x) = -Un2 - E 4p2k+1 (/2+1)2 l - ® \
-  W  ^  )
4/2-1where p = ----
Lf/2+1

This expansion is obtained by using the ortnogonal properties 

of the polynomial, Tn Cx) to determine the constants in 

the expansion,
00

ln(x) = JaQ + £ â T̂ Cx) by integration.

The economised Chebyshev polynomial expansion, is
3 2k+lln(x) = Jln2 + ^  a2)c+1 u
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j/2
where u = x - 2 , i ,<-x 4 1

x + /2
2

_32A maximum error of 2 is incurred if the approximation 
is used. The constants are

a1 = 1.999 999 993 788
a3 = 0.666 669 470 507

= 0.399 659 100 019
a = 0.300 974 506 336 (refer (18))

Evaluation of the parameter u will cancel a number of 
significant digits if x is very nearly — . Extended

SI
precision arithmetic is required to determine u accurately 
as the whole accuracy of the routine depends on this.

Alternatively, we can have the following algorithm.
Suppose that we have a polynomial approximation
ln(m) = zP(z2) where z = i , — m < Si .m+1 ^  ~
To calculate ln(x) , we write

nx = a m i <
and ln(x) = n In (2) + ln(m).

si
If — 4 m < 1, evaluation of ln(x) is obvious.

However, for \ 4 m < i , we need to have an approximation,
Si

zP(z2) in this range or use a substitution in order to make 
use of the same polynomial approximation for the range

[i>
Let the substitution be 

s = 2m,
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this transforms s e fl, /2 1 ^  f" — 9 /2
l/2

and evaluation of ln(x) will be
ln(x) = (n-1) ln(2) + ln(s).

Then

ln(s) - zP(z2) where z - 2m-1 = m-5 
2m+l " m+2.

An example for the polynomial approximation zP(z2) is

zP(z*> - I a ^ z 2"41 n=0 2n+l

where â  = 2.0000008
a = 0.66644078 3

The evaluation of logarithm to base 10 is obtained 
from the relation

log10 (x) = log2(E) In (x)

where loĝ  (E) = 1.4426 9504

4.4 EXPONENTIAL FUNCTION (EXP (x))

The range of argument x, for the exponential function 
exp(x) (or written ex), runs from to +«>. Range reduction 
is practical and necessary for exponential routines.

a) RANGE REDUCTION

We may write

a = 0.415177395 (refer Kuki (7))

A maximum relative error for this approximation is 10 
(or 2” 23•2 )

x/ln(2) n+m (4.4.1)

with n integer and 0 4 m < 1.
This reduces to finding an approximation for 2m as the factor
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2 may be "taken into account by adding n to the exponent 
in floating-point.

Now
,m ln(2)m2 = e

= em ln(2)

_ ^e 2m  ln(2 ) ^ 2

if we define y = m ln(2)/2 
Then

y e [-isi, ln2 1 
L 2 2 J

On this interval, we can find a polynomial or rational 
approximation to ey .
For example

(ey) = 1 + 2y______
a -y-a 0 y 1

b +y2 1 J

is nearly the best (in Chekyshev’s sense) rational approx-
-9imation which has a relative error of less than 10

-29.6 (or 2 )

The constants are
Oq = 12.015 167 538 7500
aj = -601.804 266 697 9565
b2 = 60.090 190 731 9260 (refer (18))

Also we can express
exp (x) = 2X lo%  e 

= 2n“m
= 2n. 2m where 0 < m < 1  ........(4.4.2)

Evaluation of exponential of x (exp(x)) is therefore 
confined to finding a suitable approximation for 2m (or 2 m ) 
instead of finding an approximation for ey in the earlier
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case. If a polynomial approximation, P(x) is used to
approximate 2m i.e. 2m - P(m) |m|< 1
then value of the reduced argument from equation (4.4.2)
is always negative by a proper choice of n.

5Let P(m) - Z a. m 
i=0 1

where ag = 0.999 999 93
a1 = 0. 693 142 26
a, = 0. 240 172 24
a^ = 0.552 798 30 10-1
â  = 0.918 869 80 10“2
35 = 0.938 811 00 10"3 (refer (18))

™ 7  - 0 3  IThe maximum relative error is less than 10 (or 2 * )
-7.As accuracy of 10 is only required by the computer, 

the approximation of exp(x) by P(m) - 2m seems a better 
choice.

The routine for exponential, exp(x) should provide 
alarms in case exp(x) exceeds machine capacity. This is 
most easily determined by checking that n in equation
(4.1.2) is not larger than the largest allowable exponent. 
Also provision should be made to return zero if n is less 
than the smallest allowable exponent. In cases where 
x is very near zero, 1 is returned as the answer.

4.5 INVERSE TANGENT (ATAN, ATAN2)

The value of inverse tangent function is the angle at 
which the corresponding tangent attains a special value. 
The tangent function is periodic and takes on the same
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interval twice in each interval of length 2n 9 the 
inverse tangent is multiple valued. Using the following 
identities

arc tan (-x) = -arc tan (x)
and arc tan C.— .) = 5 - arc tan (x)| x| z

the range ( -°°'9 °° ) can be reduced to £o, lj
Thus arc tan (x) can be expressed in terms of arc tan (y)
where y = g(x) and g(x) = x or — .X
Further reduction of the interval 0 <. y 4 ls (or O4 y^ tan 
to a smaller interval gives a better polynomial approxima
tion in the smaller range than the larger range £ 0 , lj 
Table (4) illustrates the influence of the interval on the 
accuracy and speed of the polynomial approximation. The 
values in Table (4) are excerpted from Hart (2).
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TABLE (4)

Arc tan - xP(x2)
Comparison between Different Ranges,

Maximum Relative Error = 2 x

RANGE x DEGREE OF POLYNOMIAL

[0, tan |y ] 27.90 2

36.93 3

[O, tan — 1 21.85
L 16-1

2

28.90 3

[0, tan 2 5.54 3
31.69 4

Jo, tan ^ J 15. 74 2

20.71 3
25.71 4

jo, tan | ] 20.56 6

23. 6 7
25.97 8

From Table (4) we can see that a polynomial of degree 
7 in x2 is required to approximate arc tan (x) in the range 
0<. x<. 1. To achieve, the same accuracy, that is a maximum 
relative error of 2~ 25, a polynomial of degree 3 in x2 is 
required if the argument x is in the range [0 , tan Sj].
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Hence the following algorithm is used.
When x < 2-/3 then z = x and c = 0
and x ^ 2-/3 then z = and c = n/b

x+/3
3and arc tan (z) = Z =, 72k+lk=0 zk+1 z

arc: tan (y) = arc tan (z) + c 
The coefficients a's are

a1 = +. 99999 99797 73
ag = -. 33332 42344 5
^  = +.19935 72694
ay = -.12813 3334 (refer Hart (2))

r XFor arc tan 1 ̂ r, the algorithm is the same as that for

one argument.
If ^  = 0

X IIarc tan (Jl.) = sign (x1 )
*2

if *i_ > 22if , the value x = 'j'*L| is an integer
1*2 I *2

as the mantissa of the floating-point number is 24 digits
and the value — is very small and arc tan (— ) = 0X X

if 22lt, arc tan (^L) = (sign x1 ).̂ -
x, x,

otherwise if x > 0  the answer = arc tan ( *1 )

and if x < 0  the answer = are tan ( ) + (sign x[ )n.
2 *2

Care should be taken in coding the algorithm. Instead of 
computing the value /3x-l directly, (/S-Dx-l+x is computed 
to avoid loss of significant digits.



122

4.6 HYPERBOLIC SINE AND COSINE (SINH and COSH)

The hyperbolic sine and cosine functions are defined 
by equations (4.6.1) and (4.6.2)

sinh: (x) = (eX-e x)/2...........................(4.6.1)
cosh (x) = (ex+e x)/2 ..........................(4.6.2)

The value of sin h (x) is symmetrical about the y-axis and
for all values of x, sin h (x) >,1. By symmetry, we need 
only consider the argument range 0, 00 . To get a better 
result in sin h (x) near the origin, that is for argument 
in the range [o, 1 J, we may compute sinh \ (x) by the 
polynomial approximation

sin h (x) ~ xP(x2)
where xP(x2) ~ E a . n x21+1 i=0 2i+1

and ^  = 1.0000 00000 1327
3^ = 1. 6666 65805 763

_ 2
= . 83416 01527 * 10

(refer Hart (2), Table
SINH 1962)

The maximum relative error of this approximation is 

less than 232?1*

If 0 4 x 4 5  were chosen, the best (in Chekyshev's
sense) polynomial approximation for sinh. (x) is given by

xP(x2) = E b . x21+1i=0 21+1

and bx = 1.0000 00095 55
bg = .16666 97150 46
b = .8077 9341 x 10 2 (Hart ( 2 ) Table SINH 1982)5
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The maximum relative error in this case is less than
- 23.4 _30An accuracy in the order of 2 is not2

required. It is the best choice in approximating the 
sinh(x) in the range [p, For values of |x|>2, sinh(x)
is computed as

sinh(x) = (sign x)

where w = e

From equation (4.6.2), Cosh(x) behaves like the 
exponential function. To obtain the value for 
hyperbolic cosine of x, Cosh(x) is computed as

Cosh(x) = (w+w 1 )/2

where w
e

The real exponential sub-programme is used to compute 
the value of w in both cases.

4.7 DOUBLE PRECISION BASIC LIBRARY ROUTINES

So far, we have only discussed single precision routines 
for the basic library. Double precision routines are 
required to provide higher level language support for double 
precision (or extended precision) floating-point arithmetic. 
In the MULTUM computer, no double precision floating-point 
instructions are available. In addition to the explicitly 
and implicitly double precision mathematical routines, 
double precision arithmetic simulators and input/output 
conversion, programmes should be included in the library.

Double precision arithmetic simulation is required to 
provide the complete set of double precision instructions
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that is not available in the computer (see section 2.4 ).

A routine is required for base conversion of an input 
decimal number into an internally useable form, including 
the conversion of up to 15 decimal digits of input into 
the double precision binary form. Another routine is also 
required to handle output conversion including conversion 
of a double precision number to a decimal number of up to 
15 decimal digits. This routine handles the conversion 
and format of the print field.

Double precision mathematical functions can be made 
available using the same algorithms given earlier except 
the -.approximation used. For example in the sine/cosine 
routine, to extend the routine to a double precision 
routine, we approximate sine/cosine function by Chebyshev" 
interpolation of degree 6 instead of the Chebyshev inter
polation of degree 3 in r2 (see section 4.2 ). Comput
ations are done in double precision arithmetic. Coefficients 
of the polynomial approximation are given to the double 
precision accuracy. However, difficulties do arise in the 
reduction stage where we need extra accuracy to calculate 
the reduced argument. (See section 4.2.2 ). Similarly, 
we can extend the logarithm, exponential, inverse trigono
metric functions by finding the appropriate ’double precision' 
approximation. In the square root routine we can either 
iterate a few more terms using the same starting approx
imation (but work in double precision arithmetic) or use 
another starting approximation given in section ( 4.1 ).
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More sophisticated methods of designing a double 
precision routine can be done using a Chebyshev best fit 
approximation by rational functions. The approximation 
can either be presented by a Thiele-Tyre fraction or a 
Jacobi-fraction. If Thiele-Tyre fraction were used,
P. Spelluci (18) found that the evaluation would be slow 
but well behaved with respect to error propagation. If 
the approximations were presented by the Jacobi fractions, 
evaluation was fast but needed provision for guard digits 
to preserve the full precision of approximation.

Considering the speed and accuracy required in the 
MULTUM computer, the method of extending the available 
logarithm is a better method.

4.8 SELF-CONTAINED POWER ROUTINES

We have left out one important routine in our 
discussion of library functions, viz. the exponentiation 
or power routines. The exponentiation routines are some 
of the most important in the library corresponding to the 
Fortran operation "**" operator. The survey of floating
point power routines reported in Clark and Cody’s paper 
(11) shows that error in the last 7 to 10 digits is 
common even for moderate arguments.

Normally, the power routines are considered as manage
ment routines (see section 3.1.3)* The exponential and 
the logarithm routines were used to compute the value 
x**y. The standard approach to floating-point exponenti-
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ation involves the computation
x*w«y = exp y In (x)

Let w = y In (x)
and z = exp (w)
then <$z =: exp (w) 6w
i.e. 6 z - Aw

If w is computed in working precision, the word length 
of the computer assures us that Aw, hence Sz, is likely 
to be large whenever w is large. This phenomenon is 
independent of the two primary routines (viz. logarithm 
and exponential). To avoid this error, both ln(x) and w 
should be computed to higher than working precision, 
assuming that arguments x and y are precise. If the 
required reduction

w = n In (2) + f, | f | 4 In (2 ) / 2
is performed in the higher precision, the final computation 
will be essentially as accurate as the exponential comput
ation.

If the working precision is single precision, the extra 
precision required for this approach can be obtained by 
doing the steps in either fixed-point arithmetic or in 
double precision floating-point if that is available.

The raising of the status of the power routines to 
that of primary routines will improve the accuracy of the 
routine. This can be done by computing the logarithm 
and exponential routines in the power routine itself.
Such self-contained power (exponentiation) routines were
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suggested by Cody, Clark and Kuki (15), (16). Working 
versions of self-contained single precision routines of 
this type have been available on the IBM 7094 at the 
University of Toronto and on the CDC 3600 at Argonne 
National Laboratory since early 1960fs, and on IBM 360 
at Argonne and IBM 7094 at the University of Chicago since 
about 1967 (16).

The elevation from management status to primary status 
increases the accuracy and speed of the routine but has a 
penalty on the storage requirements. Some of the overall 
storage can be retrieved by reducing the standard exponential 
and logarithm routines to appropriate entries in the 
corresponding self-contained power routines. Unfortunately, 
the execution time of the logarithm routine and the 
exponential routine is considerably slower. Clark (15) 
gives a 50% increase in execution time for the logarithm 
and about 10% increase in time for the exponential routine.

4. 9 PERFORMANCE TESTING OF BASIC LIBRARY SUB-ROUTINES

The certification of basic library sub-routines for 
computers is relatively easy compared with the general numer
ical sub-routines. In any case, it is often a difficult 
job to define a concrete measure of performance for a 
particular type of routine as the details of the performance 
testing vary from one type of sub—routine to another.

Distribution is required between actual testing of 
performance of a sub-routine and judgement of quality based
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upon the results of the testing.

Rigorous testing is required to ensure that statistics 
and facts from the testing are indisputable. Quality 
testing should attempt to determine error as precisely as 
possible, in order to be meaningful to any potential user.

To begin with, we shall look into the question of 
errors made by sub-routines, as quality testing will largely 
depend on this. Clark and Cody (11) classified these 
errors into three types, namely (i) transmitted error,
(ii) analytic truncation error and (iii) analytic rounding 
error. Analytic truncation error is error made in the 
finite approximation to the infinite process. Analytic 
rounding error is error made in the computation of the 
approximation. Together, these two types of error are 
termed as generated error. (Refer section 3. .4. 2).
Transmitted error is error due to the arguments. (Refer 
section 3.4-.)

4.9.1 ERROR TESTING

The simplest method of testing is direct testing of 
computed function values against published tables.
However, this method is most unsatisfactory. Comparison 
values of this type will involve human handling of the 
standard values. In practical terms, this is inefficient 
and likely human errors will be involved in transcribing 
the tabular values. Entries in published tables are 
normally very sparse. Values returned by a routine may 
agree with tabulated values and may yet give poor results
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for other arguments. Also comparison against tables 
always involves conversion of tabulated decimal arguments 
into binary arguments. This leads to generated errors 
from conversion routines. In addition, transmitted error 
and the subsequent error in conversion of computed results 
back to decimal form will contaminate the final error 
statistics. In some sub-routines generated error is 
difficult to detect unless it is very large.

All these point to the need for automation in quality 
testing. Machine generated arguments and standards 
should be used to reduce the drawbacks stated. Clearly, 
the best tests involve a large number of arguments that 
are dense and not restricted to relatively small finite 
sets of ’nice' arguments given in most tables.

4.9.2 BIT PATTERN COMPARISON

Standard arguments generated by the computer will need 
greater precision than that of the value under test.
For example, if a single precision routine were under test, 
we would then require to compute the same function more 
accurately than single precision (say, double precision).

Testing arguments are generated by the computer. These 
pseudo-random numbers are either uniformly distributed or 
exponentially distributed depending on what is required.
The arguments are computed in test precision and extended 
to higher precision by appending appropriate low order 
zeros. Computation can then be carried out with 'identical* 
arguments in both single and double precision routines.
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The possibility of transmitted error is eliminated by this 
process. Rounding the double precision result is normally 
preferred to truncating to single precision (10). A bit- 
pattern comparison of the results is obtained using fixed- 
point subtraction. Tables of the frequency of the 
difference in the bit pattern between the rounded single 
precision result (from double precision) are made. These 
statistics give an indication as to how well the sub
routine produces the machine number closest to the correct 
function value.

Additional statistics may be obtained from the above 
procedure. The maximum relative error and the root mean 
square relative error can be easily obtained. However, 
computation of the maximum relative error and the root 
mean square relative error should be in higher precision. 
Extensive testings were performed by Clark and Cody (11)
• • I y ' ’ using the unrounded value of the standard
value to obtain the root mean square relative error and 
the maximum relative error.

The choice of test intervals and the distribution of 
random arguments is greatly related to the internal structure 
of the sub-routine under test. Special tests are required 
for critical ranges such as neighbourhood points where 
intermediate underflow or overflow may occur. Also, tests 
for the error return by using arguments at and just beyond 
the limits of acceptability are required. Extremely large 
and small numbers are tested to check for overflow and



131

underflow problems.

4.9.3 TIMING

Time checks are normally obtained by performing 
the sub-routine for several thousand random arguments 
using a loop of some sort. The overhead for the loop 
can be obtained by testing an identical loop with the 
test sub-routine replaced by a special sub-routine whose 
only executable instruction is a return to a calling 
programme. Instead of testing with several thousand 
random arguments, this can be replaced by a fixed argument 
and then perform the routine several thousand times. It 
is important to have a sufficient number of time round the 
loop to minimise the effect of the coarseness of the clock.

For double precision sub-routines a computer with 
larger word length may be used to generate the standard 
values. Pseudo-random double precision floating-point 
numbers in the larger computer word machine are generated 
and then converted to the length of the machine under test 
by rounding and zeroing out the extra bits. These 
converted arguments are then used to generate the 
corresponding function values on the 'larger' machine and 
the results are rounded to the 'test' computer number 
format. The pairing of arguments and function values may 
be transmitted to the 'test' computer via magnetic tape 
and the testing carried out on these, in a manner analogous 
to the single precision testing. The root mean square 
relative error and maximum relative error computed is not
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as accurate as those for the single precision routine 
if higher precision arithmetics are not available. Such 
procedures were, in fact, used by Clark and Cody in finding 
the performance statistics of the Fortran IV (H) Library 
for IBM sys./360 (10). The large machine used was the 
CDC 3600 where the double precision format is an 80-bit 
mantissa.

4.10 CONCLUSION

The need for double precision floating-point arith
metic by hardware is obvious if we are to design accurate 
and efficient basic library routines. Double precision 
arithmetic is required in some stages of the evaluation 
in order to obtain a last-digit accuracy for the result.
For example in the argument reduction stage in most of the 
routines, the accuracy of the routines depends on the last
digit accuracy of the reduced argument. Computation of the 
reduced argument at this stage by double precision arith
metic will ensure this. Unfortunately, hardware instructions 
for double precision arithmetic are not available in the 
MULTUM and this greatly affects the design of the library. 
Simulated double precision (floating-point, refer section 
2.4 ) arithmetic by software has heavy penalty in the time
of execution of the routine. Also, double precision 
arithmetic is required in testing and certification of the 
library. Implementation of the double precision basic 
library routines without double precision floating-point 
arithmetic by hardware is most inefficient and very slow.
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Also double precision arithmetic is needed in the 
generation of accurate constants to assist in the 
preparation of full accuracy single precision routines.
In many cases, these will be the coefficients in expans
ions of functions, in particular, as power series, series 
of Chebyshev polynomials and continued fractions.
Accurate zeros for routines are needed to preserve 
relative accuracy in constructing function routines.
Having considered these factors, it is strongly urged 
that double precision floating-point arithmetic be 
included as hardware operations by the computer manu
facturers .

The routines have not been coded. Careful con
sideration should be given in the actual coding as errors
due to straightforward coding can be substantial. For 
example, in the sine/cosine routine, using straightforward 
coding to obtain (2/n)x-n (refer section *+.2 ) introduces
an absolute error approximately equal to n2 ^ where p is 
the binary precision of the machine, bince Sin(^ r) - 2r,

an absolute error of n.2 in the answer from this
source. This is the same as the effect of the minimal
round-off error in the argument. Since Sin(x) becomes 0
periodically, this means that generated relative error 
will become infinite periodically. It can be concluded 
that straightforward (coding) reduction generates an 
error approximately equal in magnitude to the effect of the 
minimal round-off error in the argument.
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The trade off between cost and refinement is a matter 
of individual judgement. Kuki (7) suggested that an 
increase in execution time by 10% and 15% in storage to 
attain a virtual last-digit accuracy is acceptable.

Routines like tanh(x), arc- sin(x) and arc cos(x), 
which are not in the ASA Fortran standard,should be 
included in the library routines. If these are included 
they should be written as primary routines and not as 
secondary routines. That is, computation of arc sin(x) 
and arc-cos(x) (for example) will not call upon the arc-tan(x) 
routine to perform the main calculation. The elevation 
of status from secondary to primary often increases the 
efficiency and accuracy of the routines.



135

BIBLIOGRAPHY

Kuki, H. and Ascoly, J

Hart, Joh. F.

Fike, C.T.

Snyder, M.A.

Rice J.R.

Achieser, N.I.

Kuki, H.

8 Cody, W.J.

Veidinger, L,

10 Cody, W.J.

11 Clark, N.A. and Cody, 
W.J.

Fortran Extended Precision 
Library, IBM SYSTEM JOURNAL,
No. 1, 1971, pg. 39-61 
Computer Approximations - (1968), 
John Wiley
Computer Evaluation of Math
ematical Function (196 8) Pren- 
tice-Hall
Chebyshev Methods in Numerical 
Approximation (19 66) Prentice- 
Hall
The Approximation of Function. 
Volume I. 1964, Addison-Wesley. 
Theory of Approximation. Ungar, 
New York. English translation 
by C.J. Hyman (1956)
Mathematical Function Sub- 
programmes. Basic System 
Libraries - Objectives, Con
straints and Trade-off. 
Mathematical Software (Ed.Rice) 
1971. Academic Press 
Software for the Elementary 
Functions - Mathematical 
Software (Ed. Rice) 1971.
Academic Press.
On the Numerical Determination 
of the Best Approximations in 
the Chebyshev Sense. Numer.Math. 
2, 99-105.
Performance Testing of Function 
Sub-routines, AFIPS Conf. Proc. 
34, pg. 759-763.

Performance Statistics of the



136

12 Dickinson, A.W. 
Herbert, V,P.

13 Traub, J.F.

14 Cody, W.J.

15 Clark, N.W. and 
Cody, W.J.

16 Clark, N.W.,
Cody, W.J., Kuki, H,

17 P. Spelluci

18 POP-11

19 Eve, J.

Fortran IV (H) Library for 
IBM SYSTEM/360. Argonne 
National Laboratory May 1967^ 
ANL-7321
The Development and Maintenance 
of a Technical Sub-programme 
Library. Mathematical Soft
ware (Ed. Rice) 19 71 - Academic 
Press
High Quality Portable Numerical 
Mathematics. Mathematical 
Software (Ed. Rice) 1971. 
Academic Press
The Influence of Machine Design 
on Numerical Algorithms. Vol.30 
AFIPS Conf. Proc. 196 7, 
pp.305-309
Self-contained Exponentiation. 
AFIPS Conf. Proc. Vol.35,
(1969) pg.701-706 
Self-contained Power Routines. 
Mathematical Software (Ed. Rice) 
1971, Academic Press 
Double Precision Approximations 
to the Elementary Functions 
Using Jacobi-Fractions. Numer. 
Math. 18. (1971) pg.127-143 
Paper Tape Software Programme- 
ing Handbook 
Dec.-11- GGPB-D
Starting Approximations for the 
Iterative Calculation of Square 
Roots (1963). Comput. J. 6, 
274-276.



137

APPENDIX 1

In this appendix, a set of Usercode MULTUM Usercode 
Language procedures for single precision floating-point 
arithmetic is given. These are grouped into three 
modules, S0FT1, S0FT2, and SOFT3.

Module S0FT1 simulates the four basic single precision 
floating-point instructions, viz. add, subtract, multiply 
and divide. The corresponding entries to the module are 
FADDF, FSUBF, FMLTF, and FDIVF.

In module S0FT2, we simulate the instructions for 
fixed integer, fixed fraction, and negate with entries 
FFIXI, FFIXF, and FNEGF respectively.

Module SOFT3 simulates the instructions float integer, 
float fraction, and standardise. The corresponding 
entries into the module are FFLTI, FFLTF, and FSTND (or 
STEXP)’. There are two entries for the standardise 
operation. The entry ’FSTND' is the entry for standard
ising unnormalised floating-point numbers. ’STEXP' is 
the entry for standardisation if mantissa is given as a 
32-bit extended mantissa (in register E) and exponent in 

register Y.

The results are returned as standardised single 
precision floating-numbers and are stored in register 
AB (or E). If overflow, underflow, no fixed or zero 
divide condition occurs the value of the first operand is 

returned.
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NOTATION IN FLOWCHARTS:

We denote (AB) , (Y) to represent the content of 
register AB and register Y respectively.

The flowcharts for addition/subtraction, multiplication, 
division and standardisation are given in figures 8, 9, 10,
11 in Chapter One respectively. The flowcharts for the 
rest of the procedures are given in figure la, lb, and lc 
in Appendix 1.
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1BLER

UNPK1;

UNPK2

ADSR

STORE

MODULF FSOFT1
ZAOM 
Z F L S 
ZSLS 
7FLM
ZMOD FSOFT1 
SF.'NT=FMLTF=2=2? 
SETA LO
JUMP S(UNPK1-*) 
SFNT=FADDF=2=25 
SETA L2
JUMP S (UNPKI—* ) 
SENT=FSURF=2=2; 
SETA L3
JUMP S(UNPKl-*> 
SENT=FDIVF=2=2? 
SETA LI

SRFS=TFMP=2 
SPAR=OPND1 
SPAR=0PND2 
SWRK=9=2 
SLCL=REXPON=l 
SLCL~FLG=1 
SLCL=COUNT=l 
STAS P(FLG)
SETA L2 
STAS P (COUNT)
LDRA P

ADDA L(COUNT+l)
STAS PO
CLP A
STAS PI
SETE P(OPNDl)
LDRY B 
EXP A Y 
ANDA LCFF]
STAS MO Ml 
INCS PI 
SETA P(FLG)
SZBA L 1A 
JUMP S(AD3R-*> 
LSRB L8 
LSLB L7 
SOBY LO
JUMP S(STORE-*) ? 
SFCB ZZ
JUMP S(STORE-*) 
RSOR LO 
ADMY LI
JUMP S(STORE-*) 
LSRB LB 
LSLB LB 
LORA Y 
STAS MO Ml 
INCS PI

/SET UP DATA AREA

/SET UP COUNTER
/LOAD A WITH CONTENT OF P, ?
/ SET UP BASE ADDRESS IN PO

/SET INDEX =0 
/OPERAND 1 ..UNPACK

/EXTRACT EXPONENT
/EXP 1 IN M0 + 0* EXP2 IN MO + 3

/SET A=FLG
/TEST BIT 14 IF =0* MLT OR DIV.
/NO ADJUSTMENT NEEDED

/GET LSF OF OPERAND
/TEST IF MANTISSA POSITIVE.
/PQSITIVE * NO RE-ARRANGEMENT 
/TEST IF B= ZERO 
/POSITIVE* SIGN O.K.
/NO..PUT IN SIGN SIT FOR NEG.NUMBER

/NO REARRANGEMENT FOR A D D * S UB T .
/PUT Y IN A
/STORE
/INDEX REGISTER INCREASE RY ONE
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HBt-ER

TF6

FMLTF15

FADDF 15 

FSUBF1?

MODULE FSOFT1
STBS M 0 M 1 /STORE IN MO+2* MO+5
INCS PI /INCREASE INDEX
DECS P(COUNT) /DECREASE COUNTER
JUMP SI /NOT ZERO TAKE 0PERAND2
JUMP S(TF6-*) 5 /FINISH UNPACK
SETE P(OPND2)
JUMP S(UNPK2-*)
SETA P(FLG) /TEST FLG
LDRB A
STCB IZ
SETA SB /SWITCH
JUMP ZA
(F M L 'TF1 )
(FOIVF1)
(FADDF1)
(FSUBF1)

SETA ’ MO +0
/MULTIPLY STARTS

ADDA MO +3
SUBA L128 /EXPI+EXP2 -128(EXCESS)
LDRY A /PUT REXPON INY
SETA MO +1 /MSF(l)
MLT A MO +5 /MSF(1)*LSF(2)
ASRF. L 14
STES P (TEMP) /STORE IN TEMP
SETA MO +4 /MSF(2)
MLT A MO +2 /MSF(2)*LSF(1)
ASRE L14
ADDE P (TEMP)
STES P(TFMP)
SETA MO +1
MLT A MO +4 /MSF(1)#MSF<2)
SZBA LO /TEST IF BIT 0 OF A=0
JUMP S4 /NO
SOB A LI /TEST IF LARGEST FRACTION
JUMP S2
ADM Y LI
JUMP SI /INCREASE EXPONENT
LSLE LI
ADDE P (TEMP)
SNAO
JUMP S (SCALE-*)
JUMP S(NORM-*)

BSZY L 1 4
/ADDITION..START
/SET BIT 14 OF Y=0 TO INDICATE

JUMP SI

BSOY L 14
/SUBTRACT..START
/SET BIT 14 OF Y=1 IF SUBTRACT

SETA M 0 + 0
STAS P (RFXPON) /STORE REXPON=EXPI
BSZY L 15
SURA MO +3 /EXP1-EXP2..=DIFF
STCA PZ /TEST IF DIFF GE 0
JUMP SI /NO
JUMP S4 /YES
BSOY L 1 5 /SET BIT 15 OF Y =1
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(RL FR

LT?3

VGTU

FLAG

FDIVF1

MODULF FSOFT1
SETB MO +3
STBS P(RFXPON)
NEGA /REPLACE REXP0N=EXP2« NEGATE DIFF
STAS PI / M • .DIFF
SUB A L23 /TEST IF DIFF GE 23
STCA PZ /SKIP IF GE 23
JUMP S(LT23-*)
SZBY L15 /YES..TEST IF EXP1 GE EXP2
JUMP S3
SETE. LO /CLEAR 0PND1 IF EXP1 LT EXP2
STES MO +4 /STORE 0PND1
JUMP S(FLAG-*)
SETE LO
STES MO +1 /CLEAROPND1=0 IFEXP1 LT EXP2
JUMP S(FLAG-*)
SETA PI /PUT DIFF IN A
SUBA L 15
STCA PP /SKIP IF GT 0
JUMP S4
STAS P(COUNT)
SETB L 15 /STORE DIFF -15 IN P4 ..SET B=15
STBS PI /STORE IN PI
JUMP S2
CLR A
STAS P (COUNT) /CLEAR CONTENT IN COUNT
SZBY L 15 /SKIP IF EXP1 GE EXP2
JUMP S (VGTU-*)
SETE M 0 + 4 /SET MANTISSA OF OPND2 AND SHIFT
ASftE Ml
ASRE M4
STES MO +4 /SHIFT 0PND2
JUMP S (FL AG-*)
SETE MO +1
ASRE Ml
ASHE M4
STES MO +1
SNAO /CLEAR AO
CLR A u
SETE MO +1
SOBY L 14 /TEST FLAG IF 1 SUBTRACT
JUMP S2
SURE MO +4 , /SUBTRACT
JUMP SI
ADDE MO +4 /ADD
LDMY M?
SNAO /TEST FOR MANTISSA OVER FLOW
JUMP S (SCALE-*)
JUMP S (NORM—* )

/DIVISION..START
SETA MO +0
SUBA MO +3
ADDA L 129 /EXP1-EXP2+128EXCESS
LORY A
SETA P (0PND2)
SFCA 1 7 /TEST IF ZERO DIVIDE
JUMP S(C0DE3~*> / ERROR CONDITION RETURN 0PN91
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H6LER MODULE FSOFT1

SETE P(OPNDl) 
ASRE LB 
LSLL L7

DIVE MO +4 
STAS P(TFMP)

CLRA 
EXRA B
STBS P(TF.MP+1) 
ASRE LI 
DIVE MO +4 
CLRB
ASRE L14 
ADDE P(TEMP) ; 
STES P (TEMP)
CLRB ;
SETA MO +5 
ASRE LI 
DIVE MO +4

MLTA P(TEMP)
ASRE L 13 
STES MO + 4 
SETE P(TFMP)
SUBE MO +4 
SNAO
JUMP S (SCALE-*) 
JUMP S (NORM—* )

CODE3;
SETE P(OPNDl) 
LDMY L3 
JUMP SO I 
(FE1)

SCALE ASRE LI 
ADMY LI 
SZBA LO 
JUMP S2 
BSOA LO 
JUMP SI 
BSZA LO 

NORM STES P(TEMP)
STCK =E 
SCFP=STEXP=Y 
SXIT=N=TEMP 
ZEND

MO WARNINGS: ALP2

/OBTAIN MANTISSA OF OPERAND D  
/SHIFTED ONE PLACE RIGHT 
/DIVIDED BY M S F (2)
/REMAINDER IN B»?
/QUOTIENT IN TEMP

/PUT REMAINDER IN A 
/CLEAR CONTENT IN TEMP+1

/DIVIDE THE REMAINDER BY MSF (2) 
/CLEAR REMAINDER AND ADD TO TEN 
/SHIFT RIGHT 14 PLACES 
/ADD TO TEMP 
/STORE BACK IN TEMP

/LSF(2)

/LSF(2)DIVIDED BY MSF(2>? 
/....CORRECTION TERM 
/TIMES

/STORE CORRECTION TERM IN MO+4 

/SUBTRACT CORRECTION TERM

/ZERO DIVIDE
/SET E= OPERAND 1
/SET Y=3 IF ZERO DIVIDE

/NEGATIVE

/POSITIVE
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STEXP1?

BEGIN 1i

BEGIN

BEGIN?

OK 1

MODULE FSQFT2
ZELS
ZSLS
ZELM
ZMOD FS0FT2
SENT=FFIXI=1=2
BSZY LI
SETA L 159
JUMP S (STEXP1—*)
SENT=FFIXF=1=2
SETA L32R
BSOY LI

JUMP S(STEXP1-*)
SENT=FNEGF=1=2
MRKA

SRES=ftESULT=2 
SPAR-OPND 
SWRK=1=0 
SLCL=KEXPON=l 
SFCA DD
JUMP S (RRNEG—*) 
STAS P(RFXPON) 
SETE P(OPND)
ASRE.L 8 
LSLE LB 
STES P (RESULT) 
STCA NN
JUMP S(BFGINl-*) 
STCB ZZ
JUMP S ( REGIN—*) 
BS08 LO 
SERA B
JUMP 8 (BEGIN-*) 
ASRA LI
STAS P(RESULT) 
SETA P (OPND + 1) 
ANDA LIFFI 
ADDA L. 1
JUMP S (BEGIN?-*) 

STCA ZZ
JUMP S(BEGIN-*) 
SNR A 8
JUMP S(LFAVE— *) 
SETA P (OPND+I) 
ANDA LCFF3 
LDR8 A
SUBA P(REXPON) 
STCA PP 
JUMP S (OK 1. —* ) 
LDMY LO 
SETE P(OPND)
JUMP SO I 
(FE1)
LDRA B

/SET 8 1T1 OF Y =0 
/INTEGER 31 INTEGRAL PLACES

/FR ACT I ON * 0 INTEGRAL PLACES 
/SET BIT 1 OF Y=I?
/.•USE AS MARKER FOR FFIXF

/SET UP DATA AREA

/GET MANTISSA ONLY
/STORE MANTISSA IN RESULT
/SKIP IF A LT 0
/POSITIVE
/SKIP IF 8=0
/NO..NOT ZERO
/SET B= C 8000 ]
/COMPARE WITH A 
/ANOT EQUAL TO [60003 
/DE-STANOARDISE 
/STORE IN RESULT 
/EXTRACT EXPONENT

/INCREASE EXPONENT

/TEST FOR ZERO MANTISSA 
/SKIP IF A=0

/SKIP IF NOT EQUAL 
/A=R=0

/PUT EXPONENT IN 8
/SUBTRACT..EXPONENT-159 O R (128)
/SKIP IF REXPON-159(128) .GT.O

/ERROR CONDITION..NO FIX* SET Y

/JUMP OUT OF ROUTINE
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iblhr

FL

f TNEG

AGAIN

RRNEG

F I N 1 
FIN

LEAVE

MO

MODULE FSOFT?
SZBY LI /TEST IF FFIXI ORFFIXF
JUMP S2 /NO FFIXF
SUBA L 1 28 /YES..FFIXI
JUMP SI
SUBA L97 /FFIXF..EXPONENT -128-31
STCA NZ /SKIP IF LE 0
JUMP S (TNEG-*)
CLRA
CLRB / ( A B.) = 0
JUMP S (LEAVE-*)
LDR A B
SUBA P(REXPON) /EXPONENT -12R O R (159)
LORY A / ( Y ) = ( A )
SETE P(RESULT) /LOAD MANTISSA INTO E
SFCY 77. /SKIP IF NOT ZERO
JUMP S(LEAVE-*) /(AB)=EXTENDED MANTISSA
ASRE LI /NOT ZERO ARITH.SHIFT 1 PLACE
ADMY LI /INCREASE EXPONENT
JUMP S (AGAIN-*)

/FNEGF...START
SNAO
CLRA /CLEAR AO
SETA P(OPND+l)
AND A LCFF] /EXPONENT
STAS P (REXPON)
SETE P(OPND)
ASRE L8
LSLE LB /GET MANTISSA
NEGE
SNAO /SKIP IF NO OVERFLOW
JUMP SI /OVERFLOW
JUMP S (FIN-*) /n o ’OVERFLOW
LSRE LI /SHIFT RIGHT 1 PLACE
INCS P(REXPON) /INCREASE EXPONENT
STES P(RESULT)
SETA L255 /TEST FOR OVERFLOW
SUBA P(REXPON)
STCA NN /SKIP IF GE 0
JUMP S (F I N 1 - * )
LDMY LI /OVERFLOW ..ERROR CONOITION SET
SETE P(OPND)
JUMP SO I
(FE1) /JUMP OUT OF ROUTINE
SETE P (RESULT)
LOMY mo ;
//LOAD EXPONENT BEFORE'TO STANDARDIZE ROUTINE ENTRY (STEXP)
STCK =E
SCFP =:STFXP=Y
STES R (RESULT) /EXIT FROM MODULE
SXI T =:N=RESULT
ZEND

w a r n i n g s : ALP?



MODULE FSOFT 3
B 5

ZFLS -
ZSLS
ZELM
ZMOD FSOFT3 
SENT-FFLT1=1=2
CLR A :
LORY A
SETA L 159 /INTEGER HAVE 31 INTEGRAL PLACES
JUMP $(ST EXP2-*)
SENT=FFLTF=1=2 
CLR A 
LORY A
SETA L 128 /FRACTION 0 INTEGRAL PLACES
JUMP S ( STEXP2—*)
SENT=STEXP-1=2 
CLR A 
EXRA Y
JUMP S < STEXP2-*)
S E N T=F S TN 0=1=2 
MRK A 
LDRY A

SRES=RFSULT=2 
SPAR=OPND 
SWRK=1=0 
SLCL=REXP0N=1 
STCY NN
JUMP S (STEXP3—*)
SETB P (OPND+1)
LORA 8 
SETH LO
STAS P (OPNQ+1)
LORA 8
ANDA L [FF 3 • /EXTRACTTHE EXPONENT

N T Z E R O i //NUMBER NON-ZERO ..ENTER THE STANDARDIZE SEQUENCE

STEXP2 /SET UP MACROS FOR WORK SPACE

STFXP3 STAS P(PFXPON)
LDRY A
SETE P(OPNO)
SERA 8 .
JUMP S(NT ZERO-*)
SFCA 1 2
J U M P S(OUT-*>

/FETCH THE UNSTANDARDISED NUMBER 
/TEST IF LOWER HALF= UPPER HALF 
/NO,NOT ZERO IF DIFFERENT 
/TEST IF MANTISSA =0 
/RETURN 0 IN E

STCA NN 
JUMP S(POS~*) 

FRNFG SOP A LI /TEST IF BIT 1=01T1 =1

/TEST IF •NE • 0

JUMP S (JO IN-*) 
LSLE Ll 
SBMY Ll
JUMP S(FRNEG-«)

/SHIFT UP ONE PLACE 
/DECREASE EXPONENT

p o s ;
FPPOS SZBA Ll

JUMP S(JOIN-tt) 
LSLE L 3 
SBMY Ll
JUMP S(FPPOS-*)

/STANDARDISE ..A POSITIVE NUMBER 
/TEST IF BIT 1=81T0=0 
/NO.•STANDARDISED

/DECREASE EXPONENT

JOIN? //E NOW
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,ER MODULE FSOFT 3

//TEST FOR OVERFLOW AND UNDER 
STFS P(RESULT)
STCY NN 
JUMP S(OK2-»)
LDMY L? 

v SETE P (OPNO)
JUMP SO I 
(FEl)

OK2 LDRA Y
SUBA LCFF3 
STCA PR 
JUMP S(OK3-*>
LDMY Ll 
SETE P(OPND)
JUMP SO I 
(FED

OK3 SETE P(RESULT)
ASRE L8 
LSLE LB 
ADRB Y

OUT?
STES P(RESULT)
S.XIT=N=RESULT
ZEND

NO WARNINGS: ALP2

FLOW

/ TEST FOR UNDERFLOW 

/UNDERFLOW...SET Y=2

/TEST FOR OVERFLOW

/ERROR CONDITION.. OVERFLOW * SET Y 

/JUMP OUT OF ROUTINE

M j T  LAST 8 BITS =0 
/ADD IN THE EXPONENT 
/EXIT FROM MODULE
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FLOWCHART: FIX INTEGER/FIX FRACTION 
(FFIXI^FFIXF

FFIXI/FFIXF

no fix

Yes A clear (AB)

e(x) -<-e(x)+l

NoArith. Shift Right. 
Ext. Mantissa

e(x)=A

Yes

(AB)=ext. mantissa

RETURN

(Figure la)

Note: v
A = 12B + 31
B = 128
A = 128 
B = 128-31
If mantissa is (-1), it is de-standardised before a fixed 
instruction.



148

FNEGF ...

(AB)=ext. mantissa

No (AB)=(-1)

Yes

Yes fe(x)=255 Overflow

No

Arith. Shift right 
extended mantissa

Negate ext. mantissa

STANDARDISE 
Entry point ’STEXP 
(AB)=ext. mantissa 
(Y)=exponent

RETURN

(Figure lb)



FLOWCHART: FLOAT INTEGER/FLOAT FRACTION 
(FFLTI/FFLTF)

FFLTI/FFLTF

RETURN

(AB)=ext. mantissa

STANDARDISE 
entry point 'stexp' 
(AB): = ext .mantissa
(Y)=exponent e(x)

(Figure lc)

Note:
'Extended mantissa1 is mantissa with extra 8 bits 
added to least significant end.
A = 128 + 31 for float integer routine 
A = 128 for float fraction routine
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APPENDIX 2

The ALGOL 60 procedures for double precision arith
metic and exact multiplication are taken from Dekker's 
paper (6).

The procedures work correctly if the single precision 
floating-point system is binary, single precision floating
point addition and subtraction are optimal, multiplication 
is faithful and no overflow or underflow occurs.

In the comments (x, xx), (y, yy) and (z, zz) 
denote nearly double precision numbers.

The algorithm for exact addition is
z = fl(x+y)
w = fl(x-z)
zz = fl(w+y)

In ALGOL 60 statements, these are written as: 
z:=x+y 

and zz:=x-z+y
comment add2 calculates the double precision sum of (x, xx) 

and Cy, yy), the result being (z, zz) ; 
procedure add2 (x, xx, y, yy, z, zz); 
value x, xx, y, yy;
real x, xx, y, yy, z, zz;
begin real r, s;

r:=x+y;
s:=if abs(x)>abs(y) then

x-r+y*yy*xx else y-r+x+xx+yy;
z:=r+s; 

zz:=r-z+s 
end add2
comment sub2 calculates the double precision of (x, xx) 

and (y, yy) the result being (z, zz); 
procedure sub2(x, xx, y, yy, z, zz); 
value x, xx, y, yy;
real x , xx, y , yy, z, zz;
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begin real r , s ;

end
comment

pro c e d u r e
value
real
begin real

end
comment

procedure
value
begin real

end
c o mment

procedure
value

5 ‘-'5
r:=x-y;
s:-if abs(x)>abs(y) then 

’ x-r-y-yy+xx else -y-r+x+xx-yy; 
z:=r + s;- 
zz:=r-z+s 
sub2 ;
multi. calculates the exact product of x and y, 
the result being the nearly double precision 
number (z, zz). The constant should be chosen 
equal to 2 (t*2)+l, where t is the number of 
binary digits in the mantissa; 
multi (x, y, z, zz) ; 
x, y;
x, y, z, zz; 
hx, tx, hy, ty, p, q; 
p:=x constant; 
hx:=x-p+p; tx: =x-hx; 
p :=yxconstant; 
hy:=y-p+p; ty:=y-hy; 
p:=hxxhy; 
q:=hxxty+tx*hy; 
z:=p+q;
zz:=p-z+q+txxty; 
multi ;
mul-b 2 calculates the double precision product 
of (x, xx) and (y, yy), the result being (z, zz); 
mult 2(x, xx, y , yy, z, zz); 
x, xx, y, yy; real x, xx, y, yy, z, zz; 
c , cc;
mult 2(x, y, c, cc);
cc: =xxyy+xx.\y+cc;
z:=c+cc;
zz:=c-z+cc; .
mult 2
div2 calculates the double precision quotient 
of (x, xx) and (y, yy), the result being (z,zz); 
div2(x, xx, y, yy, z, zz); 
x, xx, y, yy; •

real x XX, y, yy, z, zz;
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begin real c, cc, u, uu;
c:2x/y;
multl2(c, y, u, uu); 
cc:=(x-u-uu+xx-cxyy)/y 
z:=c+cc; 
zz:=c-z+cc

end div2


