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Abstract

This thesis presents coupled model for the floating off-shore wind turbines, using a 10-MW machine
as an example. The idea put forward is to employ high fidelity Navier-Stokes solvers for air and water. For
this reason, the Helicopter Multi-Block solver was used for air, and the Smoothed Particles Hydrodynamic
method was used for water. A multi-body solver was implemented to solve for the wind turbine dynam-
ics. All solvers were validated before coupling, and results are presented in this thesis. The employed,
loosely coupled, algorithm is described in detail, and the importance of coupling is assessed. Additional
aerodynamic cases were studied to form the foundation for further model development.

The study started from the aerodynamic analysis of a 10-MW wind turbine. Straight and pre-bent
configurations of the blade were investigated under the assumption of uniform inflow. Next, the effects of
the atmospheric boundary inflow and atmospheric turbulence were studied. For this, the power law wind
speed profile was employed, and atmospheric turbulence was introduced using Mann’s model.

The aero-elasticity of the 10-MW rotor was studied next. The structural model was constructed
using NASTRAN, and the natural frequencies and modes were compared to published results, showing good
agreement. This model was then used for steady and unsteady aero-elastic computations.

The effects of employing deformable trailing and leading edge flaps on a 10-MW wind turbine were
also investigated. The results showed that the trailing edge flap can be used to control flap-wise bending
of the blade, whilst the leading edge flap can be used to counter additional pitching moment created by the
trailing edge flap.

A floating 10-MW rotor was considered next, as well as forced yaw and pitch oscillations of the
machine. The results showed large variations in thrust and power as the wind turbine pitched about a point
located 119m below the rotor. The vortex ring state was also encountered when the wind turbine was forced
to a pitching motion with amplitude of 5◦ and period of 8.8s.

A coupled method for the analysis of the dynamics of floating off-shore wind turbines was finally
described, along with the test cases and numerical parameters. The results of decoupled and coupled com-
putations are presented and analysed. The results showed that the employed floating turbine under studied
conditions did not enter a vortex ring state. A turbulent wake state was encountered, but only at the initial
pitching phase. The gyroscopic effects were also small for studied system, and did not cause significant
rotations due to large inertia of the employed floater.
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Chapter 1

Introduction

1.1 Motivation

Wind is a substantial renewable energy source that is free, environmentally friendly, and cost effective.

Historical trends presented in Figure 1.1 show the large development of the on-shore wind turbine (WT)

Figure 1.1: Size evolution of wind turbines over time with corresponding rated capacity[55].

size and power capacity over the last three decades. However, many high potential sites on land are already

occupied, and others are hard to utilise due to e.g. difficult access, high altitude, costly transportation and

1
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on-site assembly. Also, majority of worldwide power demand comes from the coastal areas. Therefore,

a growing trend is to exploit the off-shore wind potential and take advantage of the available space and

steady winds. According to the European Wind Energy Association (EWEA), new off-shore seabed-fixed

wind turbines have been installed in Europe, continuously since 2000. At the end of 2012 there were 1,662

turbines giving 5GW of installed, off-shore, wind capacity[35, 75]. However, in 2015 alone, Europe fully

connected to its grid 3GW of off-shore wind capacity. Further, the annual on-shore market decreased in

Europe in 2015 by 7.8%, and off-shore installations more than doubled as compared to 2014[33]. This

illustrates the growing trend in off-shore wind energy. As of today, off-shore wind represents 23.7% of the

annual wind energy installations across Europe[33]. Estimates for the year 2030 predict up to 11.3% coverage

of total European electricity demand by off-shore wind[34]. Similar trends are seen in the US, where on-shore

and off-shore wind energy is projected to provide up to 20% of the US electricity by 2030[58].

Over the years, off-shore wind farms moved further from the shore and into deeper waters. At the

end of 2014, the average water depth of grid connected wind farms was 22.4m and the average distance to

shore 32.9km. Projects under construction, consented and planned, confirm that average water depths and

distances to shore are likely to increase[9]. Shallow water regions suitable for constructing seabed-fixed,

off-shore wind turbines are limited, and for sea depths exceeding 30−60m, floating structures become more

economic. Hence, emphasis is placed on the development of floating off-shore wind turbines (FOWTs) with

several prototypes already operational across the world[9]. Table 1.1 presents the list of existing prototypes,

while Figure 1.2 shows their designs with clear differences in size and the support structure. The first

commercial floating wind farm of 5 machines with total capacity of 30MW is planned to be constructed

25km off-shore Scotland, UK. The design is based on the Hywind prototype, and the production is expected

to start in late 2017.

Table 1.1: List of floating off-shore wind turbine prototypes built to date.

Prototype name Year Location Rated power Support platform
Blue H 2007 Italy 80kW Tension leg
Hywind 2009 Norway 2.3MW Spar buoy
WindFloat 2011 Portugal 2MW Semi-submersible
VolturnUS 1:8 2013 USA 20kW Semi-submersible
Fukushima Mirai 2013 Japan 2MW Semi-submersible
Fukushima Shimpuu 2015 Japan 7MW Semi-submersible
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(a) Blue H1. (b) Hywind2. (c) WindFloat3.

(d) VolturnUS 1:84. (e) Fukushima Mirai5. (f) Fukushima Shimpuu5.

Figure 1.2: Prototypes of the floating off-shore wind turbines: decommissioned (a), operating (b-f).

Unlike on-shore machines, the FOWT is a highly dynamic system since it is simultaneously subjected

to the wind and wave loads, and only constrained by a mooring system. Further, the rotor frequency is low

due to the large size of the blades, and wave frequencies may come close or coincide with the rotational

frequency of the rotor. Also, the FOWT may be subjected to large amplitude pitching motions, and therefore,

operate in various aerodynamic flow states, including windmill, propeller and transient states too. Finally,

aero-elasticity becomes more important due to the large size of the off-shore WT blades, and tall towers.

Taking above into account, it is important to develop a method for the analysis of this air-structure-water

system, that can simultaneously model the effects of waves, aerodynamic forces, and platform and mooring

1 Photo: Blue H Engineering (www.bluehengineering.com)
2 Photo: Statoil (www.statoil.com)
3 Photo: Principle Power (www.principlepowerinc.com)
4 Photo: University of Maine (www.umaine.edu)
5 Photo: Fukushima Forward (www.fukushima-forward.jp)
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response.

The motivation behind the present PhD thesis is to develop such a model for floating off-shore wind

turbines by employing high-fidelity CFD methods for air and water, and representing the wind turbine

with a multi-body dynamic model. This coupled model should accurately incorporate important physical

phenomena, and should be capable of analysing the complexity of proposed FOWT systems and the variety

of their configurations. Ultimately, this type of model should provide a better understanding of the FOWTs

performance.

1.2 Literature Survey

The literature survey was conducted using the databases available at the University of Glasgow, namely

Science Direct, Aerospace Research Central, Scopus and Web of Knowledge. Lists of the explored keywords

with corresponding number of relevant papers found from each database are presented in Table 1.2. Science

Direct was the first database to search as it was found to contain the larger amount of relevant papers. Then

all other databases were searched according to Table 1.2.

Table 1.2: Keywords entered into databases, including the number

of relevant papers found.

Keywords Science Di-

rect

Aerospace

Research

Central

Scopus Web of

Knowledge

Active blades offshore wind tur-

bine

1,072 170 45 15

Atmospheric turbulence 26,713 11,689 17,629 10,468

CFD solver wind turbine 838 1,684 189 92

Coupling schemes 382,554 27,621 21,175 36,540

Cylinder impact Greenhow 38 2 - -

Continued on next page
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Table 1.2 – continued from previous page

Keywords Science Di-

rect

Aerospace

Research

Central

Scopus Web of

Knowledge

Floating body SPH 343 20 31 26

Mann turbulence wind turbine 108 135 16 13

Mooring line forces 8,224 185 568 394

Morison equation 1,313 72 560 346

Off-shore floating structures 9,686 76 153 13

Off-shore support structures 55,787 403 184 34

Off-shore wind turbine 7,338 158 677 145

Partially submerged bodies 9,566 663 82 62

Wind turbine 31,227 5,811 39,451 21,752

Wind turbine flaps 1,000 1,614 432 245

Firstly, the aerodynamic and hydrodynamic modelling approaches are presented in Sections 1.2.1

and 1.2.2, respectively. This is followed by the description of different designs for the support structure,

and mooring cable models in Section 1.2.3. Then, the structural modelling of the wind turbine components

and overall system is introduced in Section 1.2.4. The approaches to model FOWT dynamics as a combi-

nation of those methods are discussed in Section 1.2.5. More general overview of the coupling schemes is

presented in Section 1.2.6. This is followed by the description of experimental campaigns for FOWTs in

Section 1.2.7. Active rotor blades and atmospheric turbulence modelling are addressed in Sections 1.2.8 and

1.2.9, respectively. Finally, conclusions are drawn in Section 1.3 and the outline of the thesis is provided in

Section 1.4.
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1.2.1 Aerodynamic modelling

This section covers the aerodynamic modelling of off-shore wind turbines. An overview of general wind

turbine aerodynamics and its modelling is given by Vermeer et al. [204] and Sanderse et al. [171]. The com-

mon approach for modelling FOWTs is to combine simplified tools into a hybrid model to predict wind

turbine responses under wind and wave loads. The reduced order methods known as Engineering Models

are traditionally employed in the wind energy industry, due to the small computational cost and time they

require. Among others, these include the Blade Element Momentum (BEM), lifting-line, and vortex-wake

models. In the following, descriptions of these methods are provided.

Algebraic models

The first FOWT models employed simplified methods for aerodynamic modelling. The thrust force Ft on

the turbine in these methods is computed from:

Ft =
1

2
ρAU2

relCT (Urel), (1.1)

where ρ is the density of air, A is the area of the rotor plane, Urel is the relative velocity between the incoming

wind and the wind turbine hub. The thrust force coefficient CT is a function of relative velocity. It depends

on the control strategy for the wind turbine (pitch/stall controlled), and should be provided as an input to the

model. The algebraic aerodynamic model was employed in works of Nielsen et al. [152], Roddier et al. [168],

and Karimirad and Moan[97].

Blade Element Momentum method

The Blade Element Momentum (BEM) method is the most popular model for aerodynamics of floating wind

turbines. It is assumed in this method that the forces on a blade element can be calculated by means of two-

dimensional aerofoil characteristics using an angle of attack determined from the incident resultant velocity

in the cross-sectional plane of the element. The velocity component in the span-wise direction is ignored,

as well as three-dimensional effects.

The velocity components at a radial position on the blade expressed in terms of the wind speed, the

inflow velocity and the rotational speed of the rotor will determine the angle of attack. Having information
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about the aerofoil characteristic coefficients Cl and Cd and their variation with the angle of attack, the forces

on the blade element for given values of induced velocity can be determined. Hence, the method consists of

dividing the blade into small elements along its radius. For each element lift and drag can be obtained using

two-dimensional tabulated aerofoil data. The forces are then integrated along the entire blade and over one

rotor revolution in order to obtain the total thrust and power. One of the key difficulties lies in modelling the

induced velocity on the rotor disk. For this reason the blade element theory is combined with the momentum

theory to provide additional relationships necessary to describe the induced velocity on the rotor disk.

There are a number of corrections commonly applied in conjunction with the BEM model to account

for the detailed aerodynamics experienced by a wind turbine rotor. This includes the tip loss correction

(Prandtl’s tip loss factor), dynamic stall, yaw misalignment, turbulent wake, unsteadiness of the inflow

and rotational effects[171]. However, the BEM method has still several limitations like momentum balance

assumption. Hence, it is hard to model atmospheric turbulence, wind shear due to ground effect, deep

stall, and the effect of neighbouring turbines. In addition to this, the theory is still not validated for rotors

operating in large yaw angles or experiencing large pitching motion. The extensions listed above can be

applied to improve the accuracy of prediction in turbulent flow, but these corrections do not fully capture all

the unsteady flow effects.

The BEM method for FOWTs application was adopted by many authors including Larsen et al. [109],

Skaare et al. [184], Jonkman et al. [90, 92], Bae et al. [10], Lackner et al. [106], Karimirad et al. [96], and Philippe

et al. [159].

Lifting-line and Vortex-wake methods

Both Lifting-line and Vortex-wake methods assume that the flow is potential i.e. inviscid, incompressible

and irrotational; and are used to obtain the velocity induced by vortex lines (filaments). The Lifting-line

model represents the wind turbine blades by bound vortex lines, as shown in Figure 1.3(a). The strength or

circulation (Γ) of the vortex filament depends on the lift coefficient, which is extracted from a tabulated data.

Assuming the vorticity is concentrated onto a curve, as is the case for a vortex filament, the Biot-Savart may

be used to link induced velocity and strength or circulation. The mathematical approach to calculate the

actual lift on a blade element due to the induced velocities is given by the Kutta-Joukowski equation. The
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major limitation of the lifting-line model for FOWT application is the assumption of steady state, although

extentions to unsteady flow are possible[178].

(a) Lifting-line diagram for a rotor blade, illustrating trailing
vorticity[118].

(b) Vortex lattice wake structure, illustrating wake evolution be-
tween time steps[180].

Figure 1.3: Vortex filament methods: Lifting-line model (a) and Free-Vortex Method (b).

The vortex-wake methods assumes variation of the circulation with space and time, allowing for

unsteady wake development. Multiple filaments may be combined to form a closed vortex lattice that grows

with each time step, thereby modelling the complex and unsteady flow field associated with a wake, see

Figure 1.3(b). In the Free-Vortex Method (FVM), the vortex filaments are advected with the velocity U,

given by Sebastian and Lackner[180] as

U = Uwind +Uinduced +Uplat f orm, (1.2)

where Uwind is the wind speed, Uinduced is the induced velocity due to the influence of vortex filaments, and

Uplat f orm is the velocity due to FOWT platform motion. The Biot-Savart law is used to compute the induced

velocity at a point in space from the strength or circulation. When approaching the vortex line itself for

an evaluation point, the Bio-Savart law behaves singularly. This is circumvented with the introduction of a

vortex core model[180, 74]. After advecting the vortex filaments, the distribution of the lift coefficient can be

obtained from tabulated data and induced velocity. Then, the new strength or circulation is computed from

the Kutta-Joukowski equation.

Unlike BEM methods, vortex-wake models do not rely on global momentum balance, hence, can

be used in unsteady conditions and with yaw misalignment. Also, a non-uniform axial induction over the
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azimuth angle within the rotor plane is considered more accurate with the lifting-line free vortex wake

approach as compared to BEM[74]. The FVM model was employed by Sebastian and Lackner[179] to model

FOWT aerodynamics.

1.2.2 Hydrodynamic modelling

Similarly to the aerodynamic modelling, the reduced order methods for hydrodynamics are often employed

for the FOWT dynamic analysis. This includes Morison’s equation[144] and potential theory assuming invis-

cid, incompressible and irrotational flow. Those two models are described in detail below.

Morison’s representation

The Morison’s equation[144] is commonly used to simulate hydrodynamic loads on slender cylindrical struc-

tures, and is also widely used in the analysis of bottom-fixed offshore wind turbines[157]. Similarly to the

BEM aerodynamic method, the structure is split into a number of elements or strips, where two-dimensional

properties are used to determine the overall three-dimensional loading on the structure. The total hydrody-

namic force F is computed by integrating over the length of the structure the loads acting on each strip dF .

As was first proposed by Morison[144], and then extended to include platform motion, the lateral force on

each strip can be represented by the following equation

dF =

[
CmρSu̇n −CaρSẍn +

1

2
ρLCd(un − ẋn) |un − ẋn|

]
dz, (1.3)

where Ca is the added mass coefficient, Cm is the inertia coefficient, and Cd is the drag coefficient. The

quantities u̇n and un are the acceleration and velocity of the fluid normal to the body, and ẍn and ẋn are the

acceleration and velocity of the floating body in the normal direction, respectively. The density of the fluid

is denoted by ρ , and S and L represent the cross sectional area and cross sectional length, such that displaced

volume by the strip is S ·dz, and projected area is L ·dz.

The drag Cd and added mass Ca coefficients involved in Morison’s equation are often determined

based on experiments. Since they depend on many factors, including the Reynolds number, geometry, and

the presence of a free surface and a free end of a body, the experimental data is not alway directly applicable.

The drag coefficient can be obtained form a CFD computation for given support platform and then applied
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to Morison’s equation improving the results as was shown by Benitz et al. [20]. Nevertheless, Morison’s

equation can not capture time varying loads, which occur due to vortex shedding. Other limitations of this

method include the assumption of undisturbed velocity field by the presence of the body, therefore neglecting

the diffraction. This makes it applicable only for slender structures, like spar support, see Section 1.2.3 for

description of support platforms. Further, this model assumes that viscous drag dominates the damping such

that wave-radiation damping can be ignored[92]. Due to the above, the Morison’s representation is rarely

used alone. Often, this model is used in conjunction with potential theory, as explained in the following

section. However, Morison’s representation for FOWT application was adopted by Savenije et al. [173] and

Huang et al. [78].

Potential theory

The hydrodynamic loads on the support structure of FOWTs are often modelled with a linear potential

theory, also known as Airy wave theory[51, 90, 168, 96]. The hydrodynamics problem can be then split into

three separate and simpler problems: radiation, diffraction, and hydrostatics. The total hydrodynamic force

is obtained by using a linear superposition of the loads due to each of those problems, see Figure 1.4 for

illustration.

Figure 1.4: Superposition of radiation and diffraction loads[94].

The radiation problem seeks to find the loads on a floating platform when the body is forced to

oscillate with the wave excitation frequency in any rigid-body motion mode. There are no incident waves

in this case, and the resulting radiation loads are the effect of the generated outgoing waves. This includes

contributions from added mass, and from wave-radiation damping. The diffraction problem seeks to find
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the loads on a support platform when the structure is restrained from oscillating (fixed) and incident surface

waves are present and scattered by the body. Those hydrodynamic loads are called wave excitation loads

and compose the so-called Froude-Kriloff (due to undisturbed pressure field) and diffraction forces and

moments due to wave scattering. The hydrostatics problem is based on the Archimedes’ principle, and

sometimes included in the radiation problem as restoring forces[51]. The derivation of a simple hydrostatic

model can be found in Appendix B.

Given the above description, the hydrodynamic loads are computed by the following expression[40]

for each degree of freedom i = 1, . . . ,6 corresponding to surge, sway, heave, roll, pitch, and yaw

F
hydrodynamic
i = Fwaves

i +ρgV0δi3 −C
hydrostatic
i j q j −

∫ t

0
Ki j(t − τ)q̇(τ)dτ , (1.4)

where Fwaves
i represents the total excitation load on the support platform from incident waves, ρ is the

density of water, g is the gravitational acceleration, V0 is the submerged volume at equilibrium, qi is the

displacement from equilibrium in i-th degree of freedom, matrix C
hydrostatic
i j relates the hydrostatic force to

the displacement vector, and Ki j is the wave-radiation-retardation kernel. The last term is the convolution

integral in the radiation problem, where integration is over a dummy variable τ indicating past times. This

way the memory effects are taken into account, since the wave-radiation loads depend on the history of mo-

tion for the support platform. In other words, if the support platform experiences a succession of impulses,

the response at any time is assumed to be the sum of the responses to the individual impulses, each response

being calculated with an appropriate time lag from the instant of the corresponding impulse[40, 154].

The added-mass matrix Ai j resulting from radiation problem should be added to the mass matrix Mi j

of the platform in the dynamic equation of motion. Writing this explicitly, the following ordinary differential

equation (ODE) is solved at each time step

Mi jq̈ j =−Ai jq̈ j +F
hydrodynamic
i (q j, q̇ j)+F

mooring
i (q j, q̇ j), (1.5)

where, F
hydrodynamic

i are the hydrodynamic loads given by Equation 1.4, and F
mooring
i is the force due to the

mooring system that can be obtained by means of various models presented in Section 1.2.3.

The solution approach adopted by many researchers reduces then to finding functions Fwaves
i (t),

Ki j(t) and the added-mass matrix Ai j. The excitation load from incident waves Fwaves
i is a function of
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the wave spectrum S(ω), and the incident wave excitation Xi(ω), where ω is the frequency of the waves.

Commonly used wave spectra include the Pierson-Moskowitz[160], and the Joint North Sea Wave Project

(JONSWAP)[72] spectrum. Xi(ω) is a complex-valued array that represents the wave excitation force on the

support platform normalised per unit wave amplitude, where the imaginary components permit the force

to be out of phase with the wave elevation[90]. The wave-radiation-retardation kernel Ki j is a function

of the hydrodynamic damping matrix Bi j(ω), and the added-mass matrix Ai j is often assumed frequency

independent[92].

These unknown parameters (Xi(ω), Bi j(ω), and Ai j) are usually obtained from the frequency-domain

analysis, where a specific solver is employed as a pre-processor. Detailed derivation of the frequency-

domain representation of potential hydrodynamics can be found in Faltinsen[51] and Newman[149]. Here,

only the main ideas and computational procedure are outlined for brevity, and detailed description of the

approach can be found in Jonkman[90, 92].

Since the equations are linear, the non-linear hydrodynamic viscous drag is included from Morison’s

equation[144] using strip theory, see previous section for details. Linearisation of the hydrodynamic problem

implies that the translational displacements of the support platform are small relative to the size of the body,

and that amplitudes of the incident waves are much smaller than their wavelengths i.e. steep or breaking

waves can not be modelled. The first-order potential theory for FOWT application was employed by Kvit-

tem et al. [105], Jonkman[90, 92], Karimirad and Moan[97], Roddier et al. [168] Nielsen et al. [152] (neglecting

radiation damping), Lackner and Rotea[106, 107], Skaare et al. [184], Zhao et al. [216], and Philippe et al. [159].

Some extentions to the second-order potential flow was performed e.g. by Newman[150], Marino

et al. [131] and Roald et al. [167]. The second order velocity potential (like the first order) is the sum of incom-

ing potential, diffraction potential and radiation potentials associated with the rigid body motions[150, 151].

To calculate the second-order sum and difference frequency forces a free surface should be modelled, as

shown in Figure 1.5. A panel method is then employed to solve the diffraction/radiation problem using the

quadratic transfer functions[96, 10].

The second-order potential theory for FOWT application was employed by Bae et al. [10], Karimirad[96],

and Roald et al. [167]. Even with second-order hydrodynamic terms included, however, the potential hydro-
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Figure 1.5: Panels employed for quarter of the spar support (left) and quarter of the free surface (right) to
account for the second-order wave loads[96].

dynamic theory might not completely apply to floating wind turbine platforms due to the large displacements

encountered[134].

1.2.3 Support structures and mooring lines

As already mentioned in the motivation section, the support platform configurations vary. Typically, the

overall architecture of a floating platform will be determined by a first-order static stability analysis, al-

though there are many other critical factors that will determine the size and features of the final design[26]

e.g. site location and water depth, mooring system, economic feasibility etc. A classification system was

developed that divides all platforms into three general categories based on the physical principle that is

used to achieve static stability, as shown in Figure 1.6. The first type is the tension leg platform (TLP),

used for early prototypes due to experience from the floating oil and gas industry platforms. The stability

is provided through the use of mooring tension lines, where the balance between the buoyancy force and

mooring lines tension creates a righting moment. This type possess good stability characteristics, and have

a small footprint, but high vertical anchors forces require complex and costly anchors with limited anchor-

ing options[146]. The second type are ballast stabilised platforms, like spar-buoy support structures. In this

case the stability is achieved by using ballast weights attached below the centre of buoyancy, which creates

a righting moment and high inertial resistance to pitch and roll[26]. This is, of course, a tradeoff between

the stability and the cost of the structure, where long structures are more stable, but also more expensive.

Also, the centre of mass for FOWT with this type of support and without the ballast is usually above the
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centre of buoyancy. Consequently, significant ballast must be added below the centre of buoyancy, or the

buoyancy must be widely distributed to provide stability[146]. The last type of the support structure employs

distributed buoyancy, and relies on a weighted water plane areas to create righting moments. Due to the

working principle, this type is classified as the buoyancy stabilised floating platform. The advantage is that

it can support heavy wind turbines and is largely independent of the sea depth. However, this comes with

the cost of increased wave sensitivity[26]. Recently, the semi-submersible platforms have became the most

popular for off-shore wind turbines, see Table 1.1 and Figure 1.2 . This structure employs a mix of buoyancy

and ballast stabilised platforms to achieve stability. Typically, multiple floaters are used (often three) that

are interconnected by a frame. Table 1.3 summarises design parameters that would impact the performance

and cost of a floating wind turbine system[26].

Figure 1.6: Floating platform concepts for off-shore wind turbines[181].

The ballast-stabilised, buoyancy-stabilised, and semi-submersible platform concepts achieve hydro-

dynamic stability without relying on the mooring system, which is mainly required for station keeping. The

14



1.2. LITERATURE SURVEY CHAPTER 1. INTRODUCTION

Table 1.3: Support platform design parameters and tradeoffs[26]. Key: + – relative advantage; - – relative
disadvantage.

Platform Stability Classification
Platform Design Parameter Mooring Line (TLP) Ballast Buoyancy
Design Tools and Methods + - -

Floater Cost/Complexity + - -

Mooring Line System Cost/Complexity + - -

Anchors Cost/Complexity - + +

On-site Installation Simplicity - + +

Decommissioning & Maintainability - + +

Corrosion Resistance + + -

Depth Independence - - +

Sensitivity to Bottom Condition - + +

Minimum Footprint + - -

Wave Sensitivity + + -

Turbine Weight - - +

catenary mooring system is the most popular for this application, and the literature review is focused pri-

marily on this type. Other mooring systems are the taught leg, and the tension leg moorings, as shown in

Figure 1.7.

(a) Catenary system. (b) Taut leg system.

(c) Tension leg system.

Figure 1.7: Mooring line systems – catenary (a), taut leg (b), and tension leg (c).

A mooring system is made up of a number of cables that are attached to the floating support platform
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at fairlead connections, with the opposite ends anchored to the seabed. Cables can be made up of steel

rope, steel chain, or synthetic fibers. Due to their different properties it is common to combine different

materials to achieve the most suitable system. The mooring tension at the fairlead depends on a number

of parameters, including the buoyancy of the support platform, the cable weight in water, the elasticity of

the cable or its components, the geometrical layout of the mooring system, and the viscous flow separation

around the platform and mooring system. Clearly, many effects should be taken into account to accurately

model the mooring cable dynamics. Hence, simplified engineering methods are usually employed.

Force-displacement representation

A common method for modelling the foundations of fixed-bottom off-shore wind turbines is the P-Y method[126]

in which springs are employed to represent the relationship between force and displacement in the soil. This

method can be extended to the modelling of mooring lines for floating wind turbines by applying linear or

non-linear spring stiffnesses for all six degrees of freedom at the fairlead position (surge, sway, heave, roll,

pitch, and yaw). A damping matrix may also be included to account for the mooring line drag. If mooring

inertia and the hydrodynamic forces are ignored, the total load on the support platform from the contribution

of all mooring lines can be expressed as:

F(t) = F0 −Cq(t)−Bq̇(t), (1.6)

where F0 is the total mooring system load, acting on the support platform in its initial position i.e. pre-

tension; q is the displacement vector from the initial position; q̇ is the time derivative of the displacement

vector; C is the the restoring matrix from all mooring lines; and B is the damping matrix. If matrices C

and B do not depend on the displacement vector q, the relation 1.6 is linear. This model is not the most

accurate, but it can be used in the analysis of moored floating structures since it adequately represents the

mooring system characteristics for the global motions of FOWTs[24]. On the other hand, if the relation is not

linearised, the relevant force-displacement characteristics (C(q(t)) and B(q(t))) of the mooring system must

be calculated separately and added as inputs to the model. The advantage of using a single stiffness matrix

is its simplicity and ease of implementation. However, in most cases, this method is limited due to the fact

that the loads are generally not specified as functions of displacement in all six degrees of freedom. Often,
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the restoring forces are specified as independent functions of each platform displacement, and important

couplings can be missed. Modelling a spring at each mooring line attachment can minimise this loss of

accuracy[37]. This type of model was employed by Huang et al. [78] and Savenije et al. [173], where mooring

lines were represented by springs. A precomputed nonlinear force-displacement relationship for FOWT

application was employed by Karimirad and Maon[97, 96], and Matha et al. [134].

Quasi-static representation

An alternative method for representing the non-linear mooring line restoring forces is the quasi-static ap-

proach. The assumption for this type of method is that the mooring lines are in static equilibrium at any

instant in time. Hence, the tensions in the mooring lines are computed from the equations of static equilib-

rium for the mooring line suspended between given anchor and fairlead points. For this reason, this method

cannot account for the drag force and inertia of the lines. Neglecting the mooring line damping can lead

to inaccuracies since the dynamics of the mooring lines is significantly affected by the drag loading due

to hydrodynamics[16]. Neglecting mooring line inertia is justified in [92], where for the studied system it

represented a small percentage of the overall inertia of the system (around 2%). The advantage of using

the quasi-static model is that it allows properties of the mooring lines to be provided directly. Those prop-

erties include length, diameter, mass and extensional stiffness. The quasi-static representation for FOWT

application was employed by Jonkman[90, 92], Matha et al. [134], Coulling et al. [38] and Hall et al. [68, 69].

Dynamic modelling

The dynamic modelling approach gives an accurate representation of the drag and inertia of mooring lines

and their effect on the floating platform. These effects can be significant, especially in very deep water

where the mooring line is unable to take up its catenary shape instantly. Therefore, a quasi-static analysis

is incapable of accurately predicting the line tensions[37], and the dynamic approach is required. Further,

dynamic modelling allows for dynamic interaction between the mooring line and the sea-bed. One of the

limitations of this method is that due to its complexity, the model requires much more computational time

than the alternatives. This is especially pronounced for off-shore wind turbine design calculations, in which

a large number of simulations is required to fulfil the design criteria. Following the dynamic approach, the
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mooring lines are usually modelled by finite-element or multi-body methods. The latter is considered a

simplification of the former, since the model excludes torsional stiffness, and sometimes bending stiffness

too, as in [69]. The finite element model for mooring lines was employed by Skaare et al. [184], Bae et al. [10],

Jeon et al. [82], Koo et al. [101], and Hall et al. [68], where the mooring cable is considered a contiguous set

of higher-order segments, or elements, often cubic. The multi-body formulation, also known as lumped-

mass method, was first proposed by Nakajima et al. [147], and then extended by Kreuzer and Wilke [102].

In this method, the mooring line is represented by a chain of rigid bodies, interconnected by spring/damper

elements. The interaction with the sea-bed can be included by employing additional spring/damper elements

that are activated when some of the nodes are below certain depth. The dynamic model of the mooring lines

for the FOWT application in form of multi-body method was adopted by Matha et al. [134], Hall et al. [69],

and Bae et al. [10]. Table 1.4 provides a brief overview of the capabilities of the models outlined above.

Table 1.4: Characteristics of different models for mooring lines.

Force-displacement Quasi-static Dynamic
Evaluation of static forces Yes Yes Yes
Line inertia No No Yes
Line damping Yes No Yes
Line-seabed interaction No Yes (static) Yes
Line bending stiffness No No Yes
Line torsional stiffness No No Yes

1.2.4 Structural modelling

The structure of the FOWT is usually split onto components, representing floating support, tower, nacelle,

and blades. These components are then assembled using a multi-body representation, similar to the one

employed in this work, see Chapter 4 for details. In most of the cases floating platform is assumed rigid,

therefore hydro-elastic effects are neglected. This is justified for many support structures, where the floater

is very stiff as compared to the blades and the tower[92]. However, hydro-elasticity can be included in the

potential method using beam elements[96], but this is not very common.

If aero-elasticity is considered, it is often included in the BEM method. Following a multi-body

formulation, the wind turbine structures are subdivided into a number of bodies, and each body consists of

an assembly of Timoshenko beam elements[108]. Another approach is to characterise flexible bodies using
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linear modal representation, which usually assumes small deflections[93]. Typically, two flap-wise bending

modes and one edge-wise bending mode per blade, along with two fore-aft and two side-to-side bending

modes for the tower are considered[36]. This requires an additional solver as a pre-cursor step to calculate

the mode shapes of the blades and the tower. A similar technique is employed in this work for the dynamic

aero-elastic computations, where NASTRAN is used to compute the modes, as explained in Section 3.6.4

of Chapter 3,

1.2.5 Modelling approaches for FOWTs

The most common approach for modelling FOWT dynamics is by combining simplified tools into one hybrid

model. The BEM method is frequently adopted for the aerodynamic loads, and the linear potential theory

for hydrodynamic loads. In this case, frequency-dependent hydrodynamic-added-mass and hydrodynamic-

damping matrices, along with wave-excitation force vector are precomputed for a given problem, and serve

as input to the coupled model. At the beginning of the computation, the wave-radiation-retardation kernel is

obtained by integrating user-supplied added-mass or damping coefficients[90]. This way external computer

routines can be linked to the aerodynamic solver as a function that employs convolution integrals and re-

turns hydrodynamic loads at given instances evaluated from current position and velocity of the floater, see

Section 1.2.2 for details. Hence, due to the underlying assumptions, the coupling between solvers is not of

concern. In view of the coupling schemes described in Section 1.2.6, this approach would be classified as

monolithic. Similar procedure is applied for the second-order potential model, where the difference- and

sum-frequency quadratic transfer functions are required[96] additionally to the frequency dependent matrices

from the linear theory.

However, sometimes solvers are coupled directly by input/output in a staggered manner without

relying on frequency dependent parameters and convolution integrals in the aerodynamic solver, as in Bae

et al. [10]. In this case what is referred to as "fully coupled" is in fact adaptation of the loosely coupled

Conventional Sequential Staggered scheme, see Section 1.2.6 for details.

Some of the works in the field of FOWT modelling are summarised in Table 1.5. These were chosen,

because they represent different combination of models, or different coupling strategies.
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Table 1.5: Works relevant for the complete FOWT models.

Author(s) Aerodynamic
method

Hydrodynamic method Mooring model

Jonkman[90] BEM Linear potential Quasi-static
Roddier et al. [168] Algebraic Linear potential Dynamic
Huang et al. [78] Algebraic Morison’s equation Force-displacement
Sebastian and Lackner[179] FVM Linear potential Force-displacement
Bae et al. [10] BEM Second-order potential Dynamic
Karimirad[96] BEM Second-order potential Quasi-static
Hall et al. [69] BEM Second-order potential Dynamic

1.2.6 Coupling schemes

Coupling algorithms have been studied extensively for the past three decades[217], since they are needed in

many multi-physics problems, like fluid-structure interaction (FSI), or problems that benefit from domain

decomposition, where each sub-domain employs a different discretisation method, or it is solved with a

different solution approach. Multi-physics problems with adjacent domains can be simulated in a mono-

lithic or in a partitioned way. The former refers to the case where flow, and structural equations are solved

simultaneously, while the latter means that they are solved separately. The monolithic approach requires

a specific solver for each particular combination of physical problems, whereas the partitioned approach

allows for solver modularity. Moreover, the partitioned approach allows for solution of the governing equa-

tions with different techniques developed specifically for the corresponding domains; air and water in the

case of FOWT. Further, this approach reduces the computational complexity per time-step, simplifies mixed

explicit/implicit treatment of sub-domains, facilitates sub-cycling in the data exchange between solvers, and

eases code updates when better mathematical models and methods emerge. On the other hand, the parti-

tioned simulation requires a special treatment to account for the interaction between the involved domains.

Hence, the computational efficiency over a monolithic approach is not necessarily guaranteed[53]. The ad-

vantages and disadvantages of different coupling strategies are summarised in Table 1.6. Considering that

two available and validated solvers (HMB3 and SPH) can be used in this work, the emphasis is placed on

partitioned algorithms.

Partitioned coupling can be weak or strong. Explicit algorithms are weak (or loose) as the solvers

exchange information once per time step, and the coupled equations are not exactly satisfied due to explicit
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Table 1.6: Advantages and disadvantages of different coupling strategies.

Coupling strategy Advantages Disadvantages
Weak/Loose – Modular. – Less accurate.

– Fast explicit schemes. – Possibly unstable.
– Easy implementation.
– Computationally inexpensive.

Strong/Tight – Modular. – Harder to implement.
– Accurate. – Slow convergence for simple schemes.

– Requires Jacobians for faster Newton’s
methods.
– Computationally expensive.

Monolithic – Most accurate. – Not modular.
– Computationally inexpensive. – Requires solver for specific problem.

– Does not recognise the differences be-
tween the mathematical properties of the
subsystems.

treatment. Depending on the formulation, one side of the coupling boundary conditions is usually lagging

behind another. This can be improved with staggering or extrapolation techniques, but the scheme remains

weak, and coupling errors may be introduced for large time steps. However, loosely coupled algorithms are

attractive, since among all solution methods, they are the simplest to implement for realistic applications,

and the most computationally inexpensive per time step.

Implicit algorithms are strong (or tight), and enforce exactly the coupling conditions at each time

level. This is obtained by conducting iterations until the boundary equations are satisfied to a certain,

prescribed accuracy. The coupling problem can be formulated either as fixed-point or root-finding problem.

For the former, fixed-point Jacobi or Gauss-Seidel methods can be employed. Although easy to implement,

those methods converge slowly if at all. Under-relaxation techniques can be used to improve convergence

of the fixed-point iterations. Methods like fixed under-relaxation, adaptive Aitken’s under-relaxation or

steepest descent relaxation are some of the possible choices[104, 43]. The Newton’s method can also be

used. This requires Jacobians relating the solutions of both solvers that are usually not known. This can

be circumvented by employing approximation of Jacobians or Jacobian-vector products. Those types of

coupling methods are called Quasi-Newton[43].

Three next sections describe in detail the partitioned coupling schemes.

21



1.2. LITERATURE SURVEY CHAPTER 1. INTRODUCTION

Definitions

In this section, a general abstract formulation for coupled systems is presented. Consider two fluids - wa-

ter and air - defined on separate domains connected by an interface as shown in Figure 1.8. The coupling

problem consists of the aerodynamic fluid on the domain Ωa(t) ⊂ R
3 with the boundary Γa(t), and the hy-

drodynamic fluid on the domain Ωh(t) ⊂ R
3 with the boundary Γh(t). The two domains are connected by

the interface ΓI(t) = Ωa(t)∩Ωh(t). At each coupling cycle, two interface boundary conditions correspond-

Γ
IΩ

a
Ω

h

Γ
h

Γ
a

Aerodynamics Hydrodynamics

Figure 1.8: Schematic representation of the coupled domains.

ing to the continuity of the momentum flux and velocities must be satisfied along the common interface

boundary ΓI . Those can be viewed as Neumann or Dirichlet conditions, respectively. Let Pa and xa denote

the aerodynamic momentum flux and displacement field along the interface Γa, while Ph and xh denote the

hydrodynamic momentum flux and displacement field along the interface Γh, respectively. The equilibrium

of momentum and compatibility of velocity field can be expressed as

Pa = Ph (1.7a)

∂xa

∂ t
=

∂xh

∂ t
⇒ va = vh (1.7b)

on boundary ΓI , where Pa = pana −σana and Ph = phnh −σhnh. Here, pa and ph are the aerodynamic and

hydrodynamic pressures; σa and σh are the aerodynamic and hydrodynamic viscous tensors; and na and nh

are the local, unit outward normals along the interface, respectively, with na =−nh for matched interfaces.

Equation 1.7b in strong formulation also ensures the coincidence of the positions at time t > t0
[135]. The

coupling scheme aims to satisfy the compatibility conditions 1.7 at every instant of time.

We shall formulate the coupling problem using the following definitions. Consider the aerodynamic

solver A that takes as an input position at the interface xh, and returns momentum flux or force distribution
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Pa:

Pa = A(xh). (1.8)

Similarly, the hydrodynamic solver H takes as an input momentum flux Pa, and computes the new interface

position xh:

xh =H(Pa). (1.9)

The system of equations to be solved thus become





Pa = A(xh)

xh =H(Pa)

(1.10)

for each instant of time.

It is assumed in the following sections, for the sake of simplicity, that both subsystems have the same

time step ∆t. Otherwise, one subsystem may be sub-cycling. In this case what is referred to as one step for

this system is indeed a number of steps, and the ∆t is the interval between synchronisation points.

Explicit coupling

Assuming that both subsystems in Equation 1.10 have been discretized in space and time with some appro-

priate methods, and denoting the discrete approximation to the solution of governing equations at step n by

xn
j , where j = a,h, the explicit integration algorithms for the two subsystems may be expressed as:

xn
a = φa(x

n−1
a ,yh), (1.11a)

xn
h = φh(x

n−1
h ,ya), (1.11b)

where the two functions yh(t) and ya(t) are assumed given and represent the variables of the other subsystem

in the time interval ∆t = tn − tn−1.

The simplest coupling procedure is the Conventional Sequential Staggered (CSS) scheme[53, 135, 52]

presented in Figure 1.9(a). The basic steps of the CSS cycle are described in Algorithm 1, where α is

a weightening parameter to interpolate the interface solutions from the hydrodynamic to the aerodynamic

solver between time levels n and n+1. In fact, the CSS algorithm in its most popular form is obtained with

α = 0. In the case of α = 1, the hydrodynamic solution at time step n+1 is omitted, and the previous solution
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at time level n is used instead. This method is often referred to as Conventional Parallel Staggered[53, 135]

method (CPS), where Steps 1 and 3 in Figure 1.9(a) can be carried out concurrently. The resulting cycle of

the CPS scheme is shown in Figure 1.9(b). It should be noted, that this way, one of the solvers is always one

step behind the other. In general, the sequential staggered solution procedure is at most first-order, energy

accurate in time on the boundary ΓI when predictors are not employed [135], even though the individual sub-

domains may be higher order accurate. It is typical for fluid solvers to employ second order time accurate

schemes, as in the case of HMB3.

Algorithm 1 Conventional Sequential/Parallel Staggered scheme
1. Start from known solutions of interface momentum flux Pn

I and velocity field vn
I

2. For each coupling cycle between time t ∈ [tn, tn+1]

(a) Solve the hydrodynamic system for the motion of the interface boundary vn+1
h using known

aerodynamic forcing at the interface
(b) Apply Dirichlet velocity continuity condition

vn+1
a = (1−α)vn+1

h +αvn
h on ΓI , where α ∈ [0,1]

(c) Update aerodynamic mesh and advance the aerodynamic subsystem to the next time level
(d) Extract new interface momentum flux Pn+1

a and apply Neumann condition
Pn+1

h = Pn+1
a on ΓI

Algorithm 2 Improved Sequential Staggered scheme
1. Start from known solutions of predicted velocity field vn

IP and corrected momentum flux Pn
IC

2. For each coupling cycle between time t ∈ [tn, tn+1]
(a) Predict interface velocity for time level tn+1

vn+1
aP = vn

h +∆t(α0v̇n
h −α1v̇n−1

h ), where α1,α2 ∈ [0,1]
(b) Update aerodynamic mesh and advance the aerodynamic subsystem to the next time level
(c) Compute corrected interface momentum flux

Pn+1
hC = (1−β )Pn+1

a +βPn
a on ΓI

(d) Solve the hydrodynamic system for the motion of the interface boundary vn+1
h using

corrected interface momentum flux Pn+1
hC

As proposed by Lesoinne and Farhat[119], the temporal accuracy of the staggered partitioned scheme

can be improved by applying the prediction of the boundary motion based on higher order interface ve-

locity extrapolation and momentum flux correction. Several variants were proposed for the selection of

extrapolation and correction based on the discrete energy arguments [162, 161, 52]. One variant is the Improved

Sequential Staggered (ISS) scheme [135], also sometimes called Generalized Serial Staggered (GSS) proce-

dure [52], with the generic cycle described in Algorithm 2. Constant real coefficients α0, α1 and β are chosen

to increase the accuracy of the method. For instance the settings α0 = 1,α1 = 0 yield a first-order time ac-
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Figure 1.9: Generic cycles of some explicit algorithms. Letters A and H denote aerodynamic and hydrody-
namic solver, respectively.

curate predictor, and a second time accurate if α0 = 3/2,α1 = 1/2. The best choice of the last coefficient

is β = 1/2 [161], and correction step can be viewed as momentum flux averaging. These formulations are

shown to preserve second order accuracy of the coupled simulations using Taylor series expansion [52]. The

prediction based algorithm can be constructed in a leap-frog non-collocated fashion[53, 52], where one of the

fluids is solved at time level tn, and another at time level tn+1/2, as presented in Figure 1.9(c).

The improved CPS method was proposed by Piperno et al. [162]. The algorithm employs an estimate

of the interface velocity for the next time-step from a half time-step solution, as shown in Figure 1.9(d). At

the same time, the aerodynamic solver computes the half time-step momentum flux. In the second half of the

time-step, the aerodynamic subsystem is solved using estimated interface velocity, and the hydrodynamic

solver is recomputed in parallel using the newly received pressure distribution.

In this work, the Conventional Parallel Staggered scheme is employed. Details of implementation are

presented in Chapter 5, where importance of implicit coupling is assessed for studied wind turbine and sea

conditions. The algorithm is described in detail in Chapter 13, along the obtained results.
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Implicit coupling

Due to availability of several implicit coupling schemes in the literature, only a brief overview of main ideas

is presented in this section. More elaborate review of strongly coupled algorithms can be found in Matthies

et al. [135] and Degroote et al. [43].

The goal of the coupled scheme is to ensure that the system of equations 1.10 is satisfied at each

time-step. This can be formulated using the composition of functions. In this case the coupling problem is

the solution to one of the following equations:

xh =H◦A(xh), (1.12a)

R(xh) =H◦A(xh)−xh = 0, (1.12b)

where R is a residual vector. The first is a fixed-point formulation, and the other is a root-finding for-

mulation. Depending on the chosen approach, different convergence strategy can be adopted. All implicit

methods are iterative, and in the following, the subscripts are dropped for clarity, and superscripts indicate

the coupling iteration.

One of the popular fixed-point methods is the Aitken’s adaptive relaxation technique[104]. This

method determines a dynamically varying scalar relaxation factor ωk for the fixed-point iterations within

a time step. The next input for function composition H ◦A is thus a linear combination of the last output

and the previous input. The value of ωk is obtained as

ωk =
(rk−1)T (rk − rk−1)

(rk − rk−1)T (rk − rk−1)
, (1.13)

where rk is the residual based on the solution at current iteration (xk) and the result of evaluation of the

composition of functions using this solution (x̃k+1 = H ◦A(xk)), such that rk = x̃
k+1 − xk. At the next

iteration, the updated solution is obtained as xk+1 = xk +ωkrk. The procedure is repeated until the norm of

the residual vector is below a prescribed threshold.

This type of relaxation techniques was shown to be 2− 4 times slower[43, 54] as compared to Quasi-

Newton methods, for instance the Interface Quasi-Newton algorithm that uses an approximation for the

inverse of the Jacobian from a Least-Squares model (IQN-ILS), as proposed by Vierendeels et al. [205]. The

idea behind the Quasi-Newton methods is to approximate unknown Jacobians or Jacobian-vector products
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by taking into account some limited number of previous inputs and solutions obtained from the solvers using

those inputs. The approach is based on the root-finding formulation, where the solution must satisfy a set of

nonlinear equations

R(x) = 0. (1.14)

This can be obtained by means of Newton-Raphson iterations as

dR

dx

∣∣∣∣
xk

∆xk =−rk, (1.15a)

xk+1 = xk +∆xk, (1.15b)

where the residual rk is defined the same way as for Aitken’s relaxation method. The Jacobain dR/dx is

often not known, and must be approximated. It is sometimes advantageous to approximate the inverse of the

Jacobian, and write the quasi-Newton iterations as[43]

xk+1 = xk +

(
d̂R

dx

∣∣∣∣∣
xk

)−1

(−rk), (1.16)

where the hat symbol (̂ ) indicates approximation. The procedure is to store a set of known residual vectors

rk,rk−1, . . . ,r1,r0 and the corresponding set of intermediate solution vectors x̃
k+1, x̃k, . . . , x̃2, x̃1. This allows

to construct a set of ∆r/∆x̃ vectors to approximate the Jacobian or its’ inverse, as in Vierendeels et al. [205],

where the least-square fit and QR-decomposition was employed to approximate the inverse of the Jacobian.

Better estimates of the Jacobian are obtained with each Newton step, and the procedure is repeated until the

norm of the residual vector is sufficiently small.

Regarding the performance, Fernandez et al. [54] reformulated FSI as a non-linear problem in the state

of the structure, and employed the Newton-Raphson method using an exact Jacobian. The performance of

this algorithm was compared with the performance of the Aitken relaxation and Quasi-Newton Generalised

Minimal Residual (GMRES) methods, for the inviscid flow in an elastic tube. Results showed that Aitken’s

relaxation was twice as slow as the Quasi-Newton and the exact Jacobian methods, and required almost 40

times more iterations. Further, for time steps of ∆t = 10−4s, both latter algorithms showed similar behaviour

in convergence. However, for time steps of ∆t = 10−3s, the fixed-point and Quasi-Newton algorithms failed

to converge. This implies sensitivity of the methods to the employed Jacobian.
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1.2.7 Experimental data for FOWTs

The experimental campaigns for the full-scale FOWTs are expensive due to the cost of the turbine, floating

support and system deployment (overall cost around $60 million[4]). As was shown in Section 1.1, however,

several prototypes were constructed and tested. Perhaps the most studied design is the Hywind prototype

owned by Statoil[4]. The design was towed out to sea in the middle of 2009 for a two-year test campaign.

The turbine was operated for at least two more years after the initial testing, and by 2014 it had generated

over 32GWh of electrical energy[4]. However, the collected data is a property of Statoil, and as such is not

publicly available. This restriction applies to all installed full-scale FOWT prototypes, to date.

Model testing in wave basins have been also carried out. In 2006, a 1/47 scale model test of the

NREL 5-MW[89] wind turbine with a spar-buoy floating support was conducted at Marintek’s Ocean Basin

Laboratory[152]. In 2008 and 2009, 1/105 and 1/67 scale models of the WindFloat design were tested

at University of California towing tank before full-scale deployment in 2011[168, 31]. In 2010, the Deep-

Cwind Consortium tested three 1/50 scale floating platforms to support the NREL 5-MW wind turbine at

the Maritime Research Institute (MARIN). The platforms were the Offshore Code Comparison Collabora-

tion (OC3) project spar-buoy, a semi-submersible and a TLP foundations[133]. In 2013, several concepts

including the GustoMSC Tri-Floater, GICON R©-TLP and PelaStar tension leg platforms were tested in the

basin of MARIN[8, 79, 206]. Unfortunately, similar proprietary restrictions as for full-scale experiments apply

to model-scale test data. The publicly presented results are in form of the Response Amplitude Operators

(RAOs), which are defined as the square root of the ratio between power spectral densities of the response

and input. Hence, measured physical quantities are not directly provided for comparison.

It is worth mentioning here that the above basin tests employed Froude scaling and geometric similar-

ity to the full-size hydrodynamic loads, gravity, and inertia. Under such conditions the Reynolds number of

the air flow in the model is much lower than that in the reference system, making the aerodynamic properties

of the model far different from those of the reference turbine. As a result, the rotor thrust of the model wind

turbine is much lower than the target rotor thrust[136]. This is usually circumvented by installing a drag disc

in place of the rotor, as shown in Figure 1.10(a). Recent experiments addressed this issue by designing a

thrust-matched blade, as in Duan et al. [48] and McTavish et al. [136]. This results, however, in geometrically
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different shape, with different structural and inertia properties, as shown in Figure 1.10(b).

(a) WindFloat model with drag disc during testing in
water basin[168].

(b) Comparison between thrust-matched blade (1), and geometry-
matched blade (2)[48].

Figure 1.10: Different approaches to achieve desired thrust of scaled FOWTs: drag disc approach (a) and
thrust-matched blade design (b).

1.2.8 Active rotor blades

Substantial research interest in development of so called smart rotor controls and active blades can be ob-

served in the open literature. These concepts involve distributed actuators, and sensors, and one or more

microprocessors that analyse the response from the sensors and change the local aerodynamic characteris-

tics of the blade to alter its response. The aerodynamic loads and structural vibrations are of main inter-

est for control or reduction. Different aerodynamic control solutions were proposed in the open literature

including plasma actuators[208], synthetic jets[194], micro tabs[12, 86, 198], active vortex generators[182], and

flaps[15, 30, 57, 115]. A good overview of the concepts, concerns, and efficiency is given by Barlas and van

Kuik[14]. As reported there, the flaps are considered as a concept of high potential. The general idea is

to employ small movable control surfaces to directly control lift on a blade, see Figure 1.11(a). By in-

creasing (deployment towards the pressure side) or decreasing (deployment towards the suction side) the

camber of the airfoil, trailing edge flaps can generate substantial change in the lift coefficient of the airfoil

section[7]. This affects the maximum lift, lift curve slope and zero-lift angle of attack. Other advantages

include good structural and safety features, possibility of high frequency control, and substantially smaller

power requirements than full- or part-span pitch controls[14].
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(a) Conceptual layout of a smart wind turbine rotor blade. (b) Trailing edge flaps concept.

Figure 1.11: Active wind turbine rotor: conceptual layout of a smart blade (a), and trailing edge flaps
concept (b). Adapted from [14].

Trailing edge flaps can be employed in two manners: either as discrete flaps, or as continuous de-

formable trailing edge, see Figure 1.11(b) for illustration. Discrete flaps are mounted on the blade and

require a moment over the hinge to achieve the required deflection. These kinds of flaps are generally easy

to construct, but pose certain disadvantages. They do not comprise an integrated design solution, and all

the necessary structural components are subject to wear and corrosion, and the aerodynamic performance is

reduced due to the sharp change in the camber[14]. Furthermore, surface discontinuity can trigger stall and

cause noise issues. A continuous deformable trailing edge has a smooth change in shape, which increases its

effectiveness[7]. However, to be actuated, a bending moment must be applied on the trailing edge. Further,

this kind of control has to work against the structural rigidity of the trailing edge, and its skin is subject to

fatigue. This type of the trailing edge flap was designed by Madsen et al. [127] using rubber with reinforced

voids within the elastic flap that are pressurised to achieve deflection. Experimental studies showed feasi-

bility of such approach, and measured change in the lift coefficient CL was about 0.2 for applied pressure of

8bar.

Other research activities related to the actuated flaps and active blades include work of Freder-

ick et al. [57], where the application of a small (4% chord), rapidly actuated, actively controlled trailing-

edge flap was experimentally tested. Measurements were conducted in water using NACA 0012 aerofoil.
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Results showed, that the root-mean-square loading can be reduced by up to 79% with the proportional-

integral-derivative controller. Castaignet et al. [30] performed a full-scale experiments on Vestas V27 wind

turbine (225kW rated power, and 27m diameter) equipped with one active 70cm long rigid trailing edge flap.

The results showed consistent flap-wise blade root load reduction with the trailing edge flap controlled by

frequency-weighted model predictive controller. An average of 14% load reduction, and 20% reduction of

the amplitude of the one-per-revolution loads were reported. Barlas et al. [15] conducted wind tunnel tests

on two-bladed, small-scale (1.8m diameter) wind turbine equipped with two flexible trailing edge flaps per

blade. The length of each flap was 50% of the local chord, and flaps were composed of piezo-ceramic bender

actuators. A series of H∞ controllers were designed to minimise different regions of the loads spectrum. The

best performing controller managed to considerably reduce load fluctuations. The standard deviation of the

flap-wise strains was reduced up to 58.12% for 0◦ yaw misalignment case. Results also showed the reduc-

tion of 50.5% in the flap-wise moment fatigue equivalent loads. Numerical investigations (BEM method)

of Markou et al. [132] for the NREL 5-MW wind turbine showed up to 73% flap-wise load reduction for

employed trailing-edge flaps. It was concluded that in general, the flap with larger maximum deflection per-

forms better. Similar method was adopted by Barlas et al. [13] for the same wind turbine. As was reported,

the flap-wise blade root moment was reduced by up to 27.3%.

To summarise, the results for the trailing edge flap applications showed reduction in flap-wise loads

up to 58% for wind tunnel experiments[15], average reduction of 14% for field tests[30], and up to 73% for

aerodynamic method based on BEM theory[132]. These results confirm a high potential of trailing edge flap

concepts for load alleviation. For this reason, the continuous deformable leading and trailing edge flaps

were studied in Chapter 11.

1.2.9 Atmospheric turbulence

Wind turbines are often exposed to complex wind conditions in which atmospheric wind turbulence dom-

inates, causing large blade deformations and fatigue loadings. Hence, a realistic transient turbulent wind

field modelling is important for large wind turbine simulations.

The most accurate approach to simulate the turbulent field is to solve the Navier-Stokes equations

using Direct Numerical Simulations (DNS) to resolve the turbulent fluctuations. However, the computational
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cost is very high and this approach is not currently feasible for engineering applications due to the large span

of turbulent scales. Another accurate but less expensive method is Large Eddy Simulation (LES), which

is an approximate solution to the Navier-Stokes equations where the smallest scales are not resolved but

modelled[17, 99, 114, 186]. This approach was adopted for instance by Sim et al. [183], Lavely et al. [110], and

Lee et al. [114] for on-shore wind turbines. Nevertheless, the LES method still requires large computational

resources.

Currently, the most widely adopted models for wind turbulence simulations are based on the construc-

tion of spectral tensors such as the Sandia method[200] (also known as Veers model) and the Mann’s[129, 130]

model. Descriptions of these methods are provided in the next paragraphs.

Sandia model

The basic approach of the Sandia method is to simulate wind speed time series at several points located on a

plane perpendicular to the mean wind direction. By using Taylor’s frozen turbulence hypothesis[200], those

time series are propagated in the mean wind direction. Hence, this method provides a three-dimensional

block of space with a grid of instantaneous wind speeds. Analysis is performed initially in the frequency

domain, and the time series are obtained by means of inverse Fourier transforms. The required input to

the model includes the single point power spectral densities (PSDs) for all points, and the coherence func-

tions, which describe how turbulence is correlated as a function of spatial separation, mean wind speed,

and frequency[200]. In the original model, the coherence is assumed to be isotropic in the cross-wind plane,

and the cross spectral densities are assumed to be real-valued. Possible choices of PSDs include Frost[59],

Kaimal[95] and von Kármán[207] spectra. The Sandia model was calibrated and validated against measure-

ments obtained by Pacific Northwest Laboratories.

Mann’s model

Jakob Mann[129, 130] proposed and developed an efficient wind turbulence model based on the construction

of a spectral tensor for atmospheric surface layer turbulence. The model is capable of simulating three-

dimensional fields of the wind velocity fluctuations, and has the same second-order statistics as in the real

atmosphere, e.g. variances and cross spectra. Similar to Sandia method, the Mann’s model adopts Taylor’s
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frozen turbulence hypothesis to relate the spatial wind fluctuations with time, which interprets time series as

"space series". Also, starting from the basis of the isotropic von Kármán spectrum, Mann’s model linearises

the Navier-Stokes equation to estimate the effect of the shear on the turbulence by assuming the mean wind

field can be represented by a uniform shear with the flow in the prevailing wind direction. The Rapid

Distortion Theory (RDT) is used to model the response of turbulence to shear, such that the wind turbulence

is anisotropic. Two atmospheric experiments designed to investigate the spatial structure of turbulence were

used to calibrate and validate the model.

The advantage of the Mann’s model over Sandia method is that it takes into account more physical

properties e.g. boundary layer shear, and eddy life time. It also produces incompressible velocity field i.e. the

generated velocity field is divergence-free. For this reason this model was employed in Chapter 9 of this

work. Similar approach to the one presented here was used in work of Li et al. [121].

1.3 Summary of findings

The literature review showed that extensive research interest is placed on the development of floating off-

shore wind turbines. The FOWTs are very complex systems that are simultaneously subjected to sea and

wind loads, and constrained solely by the mooring system. The common approach in FOWTs modelling

is to to combine simplified tools into a hybrid model to predict wind turbine responses. Due to underly-

ing assumptions, the monolithic coupling between the aerodynamic and hydrodynamic models is usually

possible. These assumptions, however, reduce the applicable range of those models. For instance, wave run-

up against semi-submersible columns, and viscous flow separation on the floaters cannot be fully captured

by the potential-based approach. Also, as was indicated by Matha et al. [134], the potential hydrodynamic

theory might not completely apply to floating wind turbine platforms due to the encountered large displace-

ments. Additional limitations come from the chosen support design, where some models are only applicable

for slender structures, like Morison’s model[144]. Further, the assumptions of BEM and GDW aerodynamic

models are violated when the wind turbine undergoes large pitching motion[179, 195]. Mooring line models

are also important, since they directly influence the FOWT motion.

Due to mentioned above limitations of engineering models, only two very recent works employed
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CFD solvers based on Navier-Stokes equations[164, 197]. Tran and Kim[197] in 2016 employed the incom-

pressible volume of fluid (VOF) method to solve for the hydrodynamic and aerodynamic loads. The 6-DOF

solver was used to compute dynamic motion of FOWT, where the rotation of the rotor was included by a

superimposed rotation technique, which superimposes a fixed body rotation in addition to the floating mo-

tion. This way the gyroscopic effect was excluded from the model. The quasi-static mooring line model was

employed, and the coupling between the CFD and 6-DOF solvers was not addressed in this work.

Qualen et al. [164] in 2014 employed incompressible finite-difference solver. The one-sided coupling

between two phases was achieved through the free surface interface, which is subject only to the conditions

of the denser phase (water), and the air is then constrained by the calculated free surface. The FOWT

dynamics was modelled with the 6-DOF solver. The coupling between structural and CFD solvers was

obtained by means of predictor-corrector scheme, where the aero-hydrodynamic solver is solved twice per

time-step, leading to prediction, and then correction for the 6-DOF solver. The dynamic and quasi-static

mooring line models were adapted in this work.

In this thesis, the weakly-compressible Smoothed Particle Hydrodynamics (SPH) method was cou-

pled to the finite volume, compressible CFD solver (HMB3). This is in contrast to two works mentioned

above, where incompressible solvers were employed. Further, in current method, the motion of the FOWT

is computed using the multi-body formulation, allowing naturally for the gyroscopic motion. Again, this is

more accurate representation of the FOWT dynamics, whilst other works employed a simple 6-DOF solver.

Also, the linear force-displacement model was used for the mooring lines in this work, and authors above

employed a quasi-static and dynamic models. Finally, the coupling is addressed in this thesis, and the

employed scheme is described in detail, which is not very common for research articles published to date.

1.4 Outline of the thesis

The present PhD thesis is divided as follows.

Chapter 1 introduces the motivation behind the present work and provides the state-of-the-art on

FOWTs simulation methods, as well as the challenges it involves. The objectives of the thesis are also

presented.
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Chapters 2-4 provide theoretical background of the employed numerical methods. In particular,

Chapter 2 is focused on the hydrodynamic method SPH, Chapter 3 is devoted to the finite volume aero-

dynamic solver HMB3, and Chapter 4 presents the multi-body method, with derivation of the Newton-Euler

equations of motion and employed method of solving mixed differential-algebraic system of equations.

Chapter 5 presents the coupling scheme employed in this work. The validation of communication

between the solvers is also included in this chapter. Definitions of the sea states are given at the end, and

parameters to obtain a particular sea state using SPH method are provided.

Chapters 6-8 are the validation chapters for each solver. Chapter 6 presents the validation test cases

for the employed SPH method. Chapter 7 shows the validation of the HMB3 solver. This includes the NREL

Annex XX [70] and the MEXICO project [176, 177] experiments, where the pressure and PIV data have been

used for validation. Finally, Chapter 8 presents the validation of the multi-body solver.

Chapter 9 describes the 10-MW wind turbine employed in this work. It contains the computational

parameters, grid convergence study, and the results of rigid blade cases. The effects of the atmospheric

boundary layer inflow and turbulence are also investigated in this chapter.

Chapter 10 considers elasticity of the blades. It provides information of the structural model, ob-

tained natural frequencies and mode shapes. This structural model is then employed to conduct aero-elastic

computations with and without the tower.

Chapter 11 considers the application of deformable trailing and leading edge flaps for the 10-MW

wind turbine. Work presented in this chapter can be viewed as a ground for future research, where the

FOWT rotor will be equipped with flaps.

Chapter 12 is devoted to arodynamic performance of the 10-MW rotor undergoing prescribed yawing

and pitching motions. The possibility of a wind turbine entering vortex ring state during pitching oscillations

is also assessed in this chapter.

Finally, the results of coupled computations of the FOWT are presented in Chapter 13. This includes

analyses of decoupled and coupled results, as well as the computational performance of employed scheme.

Conclusions extracted from the different subjects covered in this work are provided at the end of the

thesis. Ideas and recommendations for future work are also given.

35



Chapter 2

Hydrodynamic simulation method

All hydrodynamic computations were performed using the Smoothed Particle Hydrodynamics (SPH) flow

solver. Instead of starting from scratch, an open source version of the SPH solver[60, 62, 63, 214] was adopted,

and then improved at the University of Glasgow.

2.1 Concept and formulation

The SPH is a mesh-free method where the state of a system is represented by a set of particles. Each

particle carries individual material properties like mass, density, position and velocity. The particles move

according to the governing conservation equations, where the SPH method employs weighted interpolation

which approximates values and derivatives of continuous variables by using a set of discrete points.

The first step in the SPH method is an integral function representation of field functions. The concept

of integral representation of a function f (x) starts from the following identity.

f (x) =

∫

Ω
f (x′)δ (x−x′)dx′ (2.1)

where f is a function of position vector x , Ω is a volume containing x, and δ (x− x′) is the Dirac delta

function given by

δ (x−x′) =





1 if x = x′

0 otherwise
(2.2)
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If the Dirac delta function is replaced by a smoothing function W (x − x′,h), the integral representation

becomes the so-called kernel approximation of a function f (x) and is marked by <>

< f (x) >=

∫

Ω
f (x′)W (x−x′,h)dx′ (2.3)

where h is a smoothing length defining the influence area of the smoothing function W . Note that as long

as W is not the Dirac delta function, the kernel approximation can only be an approximation of the integral

representation.

The smoothing function W must satisfy a number of conditions:

∫

Ω
W (x−x′,h)dx′ = 1, Normalisation (2.4a)

lim
h→0

W (x−x′,h) = δ (x−x′), Delta function (2.4b)

W (x−x′,h) = 0 when
∣∣x−x′

∣∣> κh, Compactness (2.4c)

The first one is the normalisation condition, which means that the integral of smoothing function over the

support domain equals unity. The second one is the Delta function property and ensures that the smoothing

function becomes the Delta function when the smoothing length approaches zero. The third is the compact-

ness condition where κ is a constant and defines the effective area of the smoothing function. Apart from

the above, the smoothing function must also be monotonically decreasing with the increase of the distance

|x−x′|. Two more important properties of the smoothing function include

W (x−x′,h)> 0, Positivity (2.5a)
∫

Ω
(x−x′)W (x−x′,h)dx′ = 0, Symmetry (2.5b)

where the first one is the positivity property that ensures physically meaningful representation of the physical

phenomena. The second one is the symmetric property, which combined with condition (2.4a) ensures the

first order consistency of kernel approximation [124].

The approximation for the derivative ∇ · f (x) is obtained simply by substituting f (x) with ∇ · f (x) in

Equation 2.3.The following equation is obtained by applying Gauss-Ostrogradsky theorem, some divergence

properties and assuming that the support domain is located within the problem domain such that the surface

integral becomes zero.

< ∇ f (x)>=−
∫

Ω
f (x′)∇W (x−x′,h)dx′ (2.6)
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If the support domain overlaps with the problem domain, the smoothing function W is truncated by the

problem boundary and the surface integral is no longer zero.

The next component of the SPH method is the particle approximation. Since in the SPH the entire

system is described by a finite number of particles, the continuous kernel approximation (Equation 2.3) is

converted to a discrete summation over all the particles in the support domain[140]. This is made by replacing

the infinitesimal volume dx′ at the location of the particle j by the finite volume of the particle ∆Vj that is

related to the mass m j of the particle by

∆Vj =
m j

ρ j

(2.7)

where ρ j is the density of the particle j. The continuous SPH integral from Equation 2.3 can then be written

in the following discretized form for particle i

< f (xi)>=
N

∑
j=1

∆Vj f (x j) ·Wi j =
N

∑
j=1

m j

ρ j

f (x j) ·Wi j , (2.8)

where summation is over total number of particles N, and

Wi j =W (xi −x j,h) =W (
∣∣xi −x j

∣∣ ,h) (2.9)

is the smoothing function evaluated at distance
∣∣xi −x j

∣∣ between particles. In this way the continuous inte-

gral is converted to the weighted summation of the neighbouring particles to given particle i. See Figure 2.1

for illustration in a two-dimensional domain.

j

i

Ω
S W

h
i

κ

r|
j
| = | −x |x i ji

Figure 2.1: The SPH particle approximation in a two-dimensional problem domain Ω bounded by a surface
S. W is the smoothing function that is used to approximate field variables at particle i by using particles j

within the support domain.
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Following the same procedure, the particle approximation for the derivative of the function is

< ∇ · f (xi)>=
N

∑
j=1

m j

ρ j

f (x j) ·∇iWi j (2.10)

where the gradient ∇iWi j is taken with respect to particle i

∇iWi j =
xi −x j

ri j

∂Wi j

∂ ri j

=
xi j

ri j

∂Wi j

∂ ri j

(2.11)

Equation 2.10 states that the value of the gradient of a function at a particle can be approximated by the

summation of those values of the function at all the particles in the support domain weighted by the gradient

of the kernel function. The smoothing kernel is usually known beforehand, simplifying evaluation of the

gradients of field variables. However, for improved approximation accuracy, the smoothing function can be

reconstructed for each particle at every time step [123, 124].

There are also other possible ways to represent the divergence of the function at particle i by substi-

tuting gradient operator identities

∇ · f (x) =
1

ρ
[∇ · (ρ f (x))− f (x) ·∇ρ ] (2.12a)

∇ · f (x) = ρ

[
∇ · ( f (x)

ρ
)+

f (x)

ρ2
·∇ρ

]
(2.12b)

into the integral equation of the form of Equation 2.6. Following the same procedure as previously, new

approximations of the divergence are obtained as:

< ∇ · f (xi)>=
1

ρi

[
N

∑
j=1

m j [ f (x j)− f (xi)] ·∇iWi j

]
, (2.13)

< ∇ · f (xi)>= ρi

[
N

∑
j=1

m j

[
f (x j)

ρ2
j

+
f (xi)

ρ2
i

]
·∇iWi j

]
. (2.14)

2.2 Smoothing functions

The smoothing function of the SPH method determines the pattern of approximation of the flow field, the

dimensions of the support domain of particles, and accuracy and consistency of particle approximation.

Different smoothing functions can used in the SPH method. Below are presented some of most frequently
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Figure 2.2: The Gaussian smoothing function and its first derivative.

used versions. Kernels are expressed as a function of the dimensionless distances between particles given

by R = r
h
= |x−x′|

h
, where r is a distance between two particles.

The Gaussian kernel is sufficiently smooth even for high order of derivatives. It is, however, not

really compact, as it never goes to zero theoretically, unless R approaches to infinity. Because it approaches

to zero very fast numerically, it is practically compact. The Gaussian kernel and its first derivative are shown

in Figure 2.2. The equation is

W (R,h) = αde−R2
(2.15)

where αd is a parameter introduced so that the unity condition can be satisfied and is dependent on the

dimensions of the space. For two-dimensional space αd = 1/πh2, and αd = 1/π3/2h3 for three-dimensional

space.
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Figure 2.3: The cubic spline smoothing function and its first derivative.

The cubic spline function was devised by Monaghan[143] and resembles a Gaussian function while
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it has a narrower compact support. However, the second derivative of the cubic spline is piecewise linear

function. The cubic kernel and its first derivative are shown in Figure 2.3. The equation describing this

kernel has the following form

W (R,h) = αd ×





2
3 −R2 + 1

2R3 0 6 R < 1

1
6(2−R)3 1 6 R < 2

0 R > 2

(2.16)

where αd = 15/7πh2 for two-dimensional space, and αd = 3/2πh3 for three-dimensional space.

It should be noted that the support radius h from a smoothing kernel is crucial for a stable and robust

fluid simulation. If smoothing length is too large, the result from an SPH approximation is inaccurate due to

large averaging radius. On the other hand, if smoothing length is too small, the results are imprecise due to

small number of particles that are included in the weighting by the smoothing kernel. It is common to employ

smoothing length h in range 1.0− 3.0d, where d is initial particle spacing[19, 39], although it is possible to

choose an adaptive length based on local particle density[163, 170]. However, the adaptive smoothing length

methods are implicit, requiring additional iterations for each particle. Hence, the constant smoothing length

of 1.5d was employed in this work.

2.3 SPH formulation of Navier-Stokes equations

The basic governing equations of fluid dynamics are based on the following three physical laws of conser-

vation:

• conservation of mass

• conservation of momentum

• conservation of energy

The governing equations in Lagrangian form will be employed in this section. The derivation of the SPH

formulation of conservation equations is based on a direct application of the particle approximation concept

to the nabla operator. Angle brackets <> indicating particle approximation are dropped for convenience.
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2.3.1 Continuity equation

The continuity equation in Lagrangian form is

Dρ

Dt
=−ρ∇ ·U, (2.17)

where ρ is the density and U is the velocity vector. As was shown before, different representations of

derivatives exist for the SPH method. Therefore, different forms of the conservation equations can be found.

By substituting Equation 2.13 into Equation 2.17 the most frequently used form of the continuity equation

is obtained as[123]

Dρi

Dt
=

N

∑
j=1

m jUi j∇iWi j, (2.18)

where Ui j = Ui −U j is the difference in velocity of the neighbouring particles.
D

Dt
is the substantial deriva-

tive, which is the time rate of change of some flow-field variable following a moving fluid particle. The

substantial derivative of variable H in vector notation is

DH

Dt
=

∂H

∂ t
+(U ·∇)H , (2.19)

where U is the velocity of the fluid. The use of Equation 2.13 instead of Equation 2.14 to represent the

derivative operator serves to symmetrise final equation, which reduces the errors arising from particle in-

consistencies. Particle inconsistencies are created when the smoothing function satisfies the normalisation

condition (Equation 2.4a) and the symmetry property (Equation 2.5b) for the continuous approximation, but

particle approximation does not (due to the distribution of particles). Then the following equations do not

hold:

N

∑
j=1

W (x−x j,h)∆x j = 1, (2.20a)

N

∑
j=1

(x−x j)W (x−x j,h)∆x j = 0, (2.20b)

where the summation is over the all particles N in the support domain.

2.3.2 Momentum equation

The momentum conservation equation in Lagrangian form is

DU

Dt
=− 1

ρ
∇p+g+Γ, (2.21)
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where Γ contains dissipative terms, p is the pressure, ρ is the density, and g is the gravitational acceleration.

Again, this equation may take different forms. The artificial compressibility considers that every theoreti-

cally incompressible fluid is actually compressible. Therefore, in order to symmetrise the approximation,

Equation 2.14 is usually employed to represent the nabla (∇) operator. Also, different representations of

viscosity are possible and described below.

Artificial viscosity

The artificial viscosity proposed by Monaghan[140] is the most widely used in SPH methods[123]. It provides

the correct amount of viscosity to convert kinetic energy into heat at shocks and also helps to prevent

unphysical penetration when two particles become close. Applying Equation 2.14 to the pressure part of

the right-hand-side of the Equation 2.21 and introducing Monaghan’s dissipation term leads to following

symmetrised particle momentum equation:

DUi

Dt
=−

N

∑
j=1

m j

[
p j

ρ2
j

+
pi

ρ2
i

+Πi j

]
∇iWi j +g. (2.22)

The viscosity term is given by

Πi j =





−αci jφi j

ρi j

, Ui j · ri j < 0

0 , Ui j · ri j > 0

(2.23)

where

φi j =
hUi j · ri j∣∣ri j

∣∣2 +ϕ2
, (2.24a)

ci j =
1

2
(ci + c j) , (2.24b)

ρi j =
1

2
(ρi +ρ j) , (2.24c)

Ui j = Ui −U j, ri j = ri − r j. (2.24d)

In the above equations c is the speed of sound of the medium assumed (see Section 2.3.3 for weak compress-

ibility), ϕ = 0.1h is a factor inserted to prevent numerical divergence when two particles are approaching

each other, and α is a free constant depending on the problem typically set around 1.0[123].
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Laminar viscosity

Alternatively, the viscous stresses in the momentum equation can be expressed as[125]

(υ0∇2U)i =
N

∑
j=1

m j

(
4υ0ri j ·∇iWi j

(ρi +ρ j)(r
2
i j +ϕ2)

)
Ui j (2.25)

where υ0 = 10−6m2/s is a kinematic viscosity. By introducing the above equation into the momentum

conservation equation (2.21) the following expression is obtained:

DU

Dt
=−

N

∑
j=1

m j

[
p j

ρ2
j

+
pi

ρ2
i

]
∇iWi j +g+

N

∑
j=1

m j

(
4υ0ri j ·∇iWi j

(ρi +ρ j)(r2
i j +ϕ2)

)
Ui j. (2.26)

2.3.3 Equation of state

The fact that a theoretically incompressible flow is practically compressible leads to a concept of artificial

compressibility. Therefore, it is feasible to use a quasi-incompressible equation of state to model the incom-

pressible flow. The compressibility is adjusted to slow the speed of sound so that the time step in the model

is reasonable. Another limit imposed on the compressibility is to restrict the speed of sound to be at least

10 times faster than the maximum fluid velocity, thereby keeping density fluctuations within 1%. Following

Monaghan[141], the relationship between pressure and density is expressed as

p = B

[(
ρ

ρ0

)γ

−1

]
(2.27)

where γ is the constant representing adiabatic index, ρ0 = 1000kg m−3 is the reference density, and B is a

problem-dependent parameter, which sets a limit for the maximum change of the density, and determines

the speed of sound. In most circumstances γ = 7, and B = c2
0ρ0/γ , where c0 = c(ρ0) =

√
∂ p/∂ρ

∣∣∣
ρ0

is the

speed of sound at the reference density.

2.4 SPH implementation

2.4.1 Moving particles

The particles are updated using the XSPH variant according to Monaghan [139] which was introduced to stop

SPH particles passing through each other. The idea Monaghan used was that each particle is moved with
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an average of the velocities of its neighbours. This approach significantly reduces the number of particles

passing through each other. The method is non-dissipative and conserves linear and angular momentum [139].

The velocity of each particle is computed by

dri

dt
= Ui + ε

N

∑
j=1

m j

2

ρi +ρ j

U jiWi j , (2.28)

where U ji = U j −Ui, and ε is a user defined parameter usually taken to be 0.5.

2.4.2 Time marching schemes

To run the simulation forward in time each particle is updated using a global fixed time step ∆t. For clarity

consider the following system of equation for density, position, and momentum:

dρi

dt
= Di, (2.29a)

dri

dt
= Vi, (2.29b)

dUi

dt
= Fi, (2.29c)

where Di is the time derivative of density given by Equation 2.18, and Vi is the velocity of the particle. If

XSPH correction is used, then Vi is computed by Equation 2.28, otherwise Vi = Ui. Following sections give

a brief overview of the most common integration schemes of the SPH method.

Verlet scheme

Verlet integration [202, 203] is a common time integration scheme used to calculate trajectories of particles in

molecular dynamics. The basic idea is to expand two Taylor series for the position ri one forward, and one

backward in time, and then add both equations.

rn+1
i = rn

i +Un
i ∆t +

1

2
Fn

i ∆t2 +
1

6
sn

i ∆t3 +O(∆t4), (2.30a)

rn−1
i = rn

i −Un
i ∆t +

1

2
Fn

i ∆t2 − 1

6
sn

i ∆t3 +O(∆t4), (2.30b)

45



2.4. SPH IMPLEMENTATION CHAPTER 2. MATHEMATICAL MODELS - SPH

where r is the position, U is the velocity, F is acceleration, and s is the second time derivative of velocity.

The current scheme is split into two parts. Normally the variables are calculated using

Un+1
i = Un−1

i +2Fn
i ∆t, (2.31a)

rn+1
i = rn

i +Un
i ∆t +

1

2
Fn

i ∆t2, (2.31b)

ρn+1
i = ρn−1

i +2Dn
i ∆t, (2.31c)

where n is a current time step. Since these equations are not coupled, every few iterations (usually 10 to 40

steps) the variables are calculated using the explicit Euler scheme as:

Un+1
i = Un

i +Fn
i ∆t, (2.32a)

rn+1
i = rn

i +Un
i ∆t +

1

2
Fn

i ∆t2, (2.32b)

ρn+1
i = ρn

i +Dn
i ∆t. (2.32c)

Symplectic scheme

The symplectic time integration algorithms are designed for the numerical solution of Hamliton’s equations

and since these conserve the Hamlitonian, are widely applied in molecular dynamics where a long term

evolution is required. These schemes are also reversible in the absence of frictional or viscous forces [117],

and hence represent a very attractive option for mesh-less particle schemes. First, the values of density,

velocity, and position are calculated at the middle of the time step as:

ρ
n+1/2
i = ρn

i +
1

2
∆tDn

i , (2.33a)

U
n+1/2
i = Un

i +
1

2
∆tFn

i , (2.33b)

r
n+1/2
i = rn

i +
1

2
∆tUn

i . (2.33c)
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The pressure at the half time-step p
n+1/2
i is obtained from the equation of state. The SPH equations are then

solved for new time derivatives at step (n+1/2), and in the second stage the following equations are used:

ρn+1
i = ρn

i

(
2ρ

n+1/2
i +D

n+1/2
i ∆t

)

(
2ρ

n+1/2
i −D

n+1/2
i ∆t

) , (2.34a)

Un+1
i = Un

i +F
n+1/2
i ∆t, (2.34b)

rn+1
i = rn

i +
∆t

2

(
Un

i +Un+1
i

)
. (2.34c)

Again, the pressure at the end of the time-step is obtained from the equation of state.

2.4.3 Solid boundary particles

The SPH code has two different lattice types for boundary particles, as shown in Figure 2.4. The type

one lattice has a single layer of particles representing solid surface, while the type two lattice has a double

layer of particles. For a given mass of the solid, the type two lattice particles have half the mass of lattice

one particles. The reason for the second approach is to reduce penetration of fluid particles through the

solid boundaries, especially for the Dalrymple [41] boundary condition. The two types of solid boundary

conditions are described in the next paragraphs.

full−mass half−mass
particles latticeparticles latticesolid body

Figure 2.4: Two different lattice types for a square floating object.

Dalrymple boundary condition

This type of boundary condition was first proposed by Dalrymple [41]. In this method, boundary particles

are forced to satisfy the same equations as fluid particles. However, they do not move according to Equa-

tion 2.28. Instead, the floating body particles are grouped, and together follow six degrees of freedom rigid
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body motion. When a fluid particle approaches a solid boundary the density of the boundary particles is

increased according to Equation 2.18. In return, the pressure is increased following the equation of state

(Equation 2.27). Therefore, the force exerted on the fluid particle increases due to the pressure term p/ρ2

in momentum equation (Equation 2.22 or 2.26). The force and moment about the centre of gravity of the

floating body are obtained from the pressure. These are then used to solve for new velocity and position of

the floating body and associated particles.

Repulsive force boundary condition

This boundary condition was developed by Monaghan [141] to ensure that a water particle can never cross a

solid boundary. In this method, the force per unit mass between the fluid and solid particles has the form

similar to the Lennard-Jones potential. In the original form [141], this boundary condition produces radial

forces with bumps, making fluid particles bounce over each boundary particle. Modified formulation was

proposed by Monaghan and Kos [142] to address this issue. The boundary particles are assigned a position

and a local unit normal vector n that points from the boundary into the fluid. The force per unit mass f is

then computed using the components of particles separation along the normal (denoted here by y) and along

the tangent (denoted by x). The distances x and y are taken as positive, and the force is computed as

f = nR(y)P(x), (2.35)

where R(y) is designed to fall to zero as the spacing normal to the wall y is increased, and P(x) is to ensure

the constant force as the fluid particle moves parallel to the boundary. As proposed in [142]:

R(y) =





A 1√
y

2d

(
1− y

2d

)
if y

2d
< 1

0 otherwise

(2.36)

where d is the initial particle spacing, and A is the parameter with dimensions of an acceleration.If fluid

particle is denoted by i and boundary particle by j, then A is chosen as [142]:

A =
1

h
(0.01c2 + cUi j ·n j). (2.37)

Finally, the function P(x) is given by

P(x) =





1
2 (1+ cos(πx/d)) if x < d

0 otherwise
(2.38)
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The advantage of the repulsive force boundary condition over the Dalrymple boundary condition is

that the former reduces fluctuations of the forces acting on the floating object [213]. However, this comes

with the increased computational cost. Also, the normal vector n should be obtained for each boundary

particle, which is often not trivial for complex geometries.

2.4.4 Computational efficiency and method overview

The outline of the SPH steps is shown in Figure 2.5. First, particles are distributed in the volume, where

each particle has associated physical properties like mass, density, position and velocity. Next, a neighbour

list is constructed to find the adjacent particles. This is done by splitting the computational domain into

boxes of size κh, see Figure 2.5 for illustration. A list is then built of all the particles which are in each

box. Since the kernel function limits the number of interacting particles, the interaction takes place only

between the particles in adjacent boxes. In this way the number of calculations per time step and, therefore,

the computational effort is reduced, from N2 operations to N logN, N being the total number of particles.

Each particle is then visited once, and neighbouring particles within the range of the kernel are then chosen.

Finally, the particles interaction is calculated and obtained field variables are used to update the physical

properties of each particle.
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(a) (b) (c)

(d)

r ij

(e) (f)

Figure 2.5: SPH method key steps - a) represent the problem domain by a set of particles b) use particle
approximation and iteratively choose particle c) find all the particles close to the current particle d) flag the
interaction particles e) solve the NS equations using all the particles within the support domain f) update the
particle to its new position. Dashed lines represent data splitting into bins for efficient parallel computing.
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Chapter 3

Aerodynamic simulation method

All aerodynamic computations were performed using the HMB3 flow solver developed at the University of

Glasgow. The flow solver has been revised and updated over a number of years and has been successfully

applied to a variety of problems including cavity flows, delta wing flows, flutter, maneuvering helicopters,

and wind turbines amongst others.

3.1 CFD Solver

The HMB3 code is a 3D multi-block structured solver for the compressible Navier-Stokes equations using a

Cartesian frame of reference. The Navier-Stokes equations consist of Partial Differential Equations (PDEs)

describing the laws of conservation for:

• Mass (continuity equation).

• Momentum (Newton’s 2nd Law).

• Energy (1st Law of Thermodynamics).

The continuity equation states that the mass is conserved, and in Cartesian coordinates, xi, is written

as:

∂ρ

∂ t
+

∂ (ρui)

∂xi

= 0, (3.1)
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where ρ is the density of the fluid, t is the time and ui is the velocity vector. In the above, Einstein’s notation

is used, which implies summation for repeated indices.

The second conservation principle states that momentum is conserved, and is written in Cartesian

coordinates as:

∂ (ρui)

∂ t
+

∂ (ρuiu j)

∂x j

= ρ fi −
∂ p

∂xi

+
∂τi j

∂x j

, (3.2)

where fi represents the body forces, p the pressure and τi j the viscous stress tensor, which is defined as:

τi j = µ

[(
∂ui

∂x j

+
∂u j

∂xi

)
− 2

3
δi j

∂uk

∂xk

]
, (3.3)

where µ is the molecular viscosity and δi j represents the Kronecker delta, defined as:

δi j =





1, if i=j

0, otherwise.

(3.4)

The third conservation principle can be written in Cartesian coordinates as

∂ρE

∂ t
+

∂

∂x j

[ui (ρE + p)]− ∂

∂x j

(uiτi j −q j) = 0, (3.5)

where E is the total energy of the fluid, defined as

E =

[
e+

1

2
uiui

]
(3.6)

and e is the specific internal energy with uiui representing the kinetic energy.

The heat flux vector, qi, is calculated using Fourier’s Law

qi =−k
∂T

∂xi

(3.7)

where k is the heat transfer coefficient and T is the temperature of the fluid.

These three laws of conservation can be combined and written in the equation shown below, which is

referred to as the Navier-Stokes equation for viscous flow. For brevity, vector notation is used:

∂W

∂ t
+

∂
(
Fi +Fv

)

∂x
+

∂
(
Gi +Gv

)

∂y
+

∂
(
Hi +Hv

)

∂ z
= S, (3.8)

where W is the vector of conserved variables and is defined by

W = (ρ ,ρu,ρv,ρw,ρE)T , (3.9)
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with the variables ρ , u, v, w, p and E having their usual meaning of density, the three components of velocity,

pressure and total energy, respectively. The superscripts i and v in Equation 3.8 denote the inviscid and viscid

components of the flux vectors F (in the x-direction), G (in the y-direction) and H (in the z-direction). The

inviscid flux vectors, Fi, Gi and Hi, are given by

Fi =
(
ρu,ρu2 + p,ρuv,ρuw,u(ρE + p)

)T
,

Gi =
(
ρv,ρuv,ρv2 + p,ρvw,v(ρE + p)

)T
,

Hi =
(
ρw,ρuw,ρvw,ρw2 + p,w(ρE + p)

)T
.

(3.10)

while the viscous flux vectors, Fv, Gv and Hv, contain terms for the heat flux and viscous forces exerted on

the body and can be represented by

Fv =
1

Re
(0,τxx,τxy,τxz,uτxx + vτxy +wτxz +qx)

T ,

Gv =
1

Re
(0,τxy,τyy,τyz,uτxy + vτyy +wτyz +qy)

T ,

Hv =
1

Re
(0,τxz,τyz,τzz,uτxz + vτyz +wτzz+qz)

T .

(3.11)

where the term τi j represents the viscous stress tensor and qi the heat flux vector.

S is the source term in Equation 3.8. For most calculations this term is set to 0, however, for hovering

rotors, a fixed grid approach is used and a source term is then added. It is defined as:

S = [0,−ρωωω ×uh,0]
T , (3.12)

where uh is the local velocity field in the rotor-fixed frame of reference.

Although the Navier-Stokes equations completely describe turbulent flows, the large number of tem-

poral and spatial turbulent scales associated with high Reynolds numbers make it difficult to resolve all the

turbulent scales computationally. In such circumstances, the number of turbulent scales are reduced by time

averaging the Navier-Stokes equations to give the Reynolds-Averaged Navier-Stokes equations (RANS).

This results in additional unknowns (called Reynolds stresses) which must be modelled. The viscous stress

tensor mentioned in Equation 3.11 is then approximated by the Boussinesq hypothesis, more description of

which is provided in the following sections.

The HMB3 solver uses a cell-centred finite volume approach combined with an implicit dual-time

method. In this manner, the solution marches in pseudo-time for each real time-step to achieve fast con-
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vergence. According to the finite volume method, the RANS equations can be discretized for each cell by

d

dt

(
Wi, j,kVi, j,k

)
+Ri, j,k = 0. (3.13)

where Vi, j,k denotes the cell volume and Ri, j,k represents the flux residual.

The implicit dual-time method proposed by Jameson[80] is used for time-accurate calculations. The

residual is redefined to obtain a steady state equation which can be solved using acceleration techniques.

The following system of equations are solved in the implicit scheme during the time integration process

∆V Wm+1
i, j,k −∆VWm

i, j,k

∆V ∆τ

∆V Wn+1
i, j,k −∆VWn

i, j,k

∆V ∆t
= Rn+1

i, j,k (3.14)

where ∆V is the change in cell volume, ∆τ is the pseudo time-step increment and ∆t is the real time-step

increment. The flux residual Rn+1
i, j,k is approximately defined by

Rn+1
i, j,k ≈ Rn

i, j,k +
∂Rn

i, j,k

∂Wn
i, j,k

(
Wn+1

i, j,k −Wn
i, j,k

)
(3.15)

By substituting Equation 3.15 into Equation 3.14, the linear system can be approximated to

(
1

∆t
+

(
∂R

∂W

)n)
∆W =−Rn (3.16)

where the subscripts i, j,k have been dropped for clarity and ∆W is used for
(

Wn+1
i, j,k −Wn

i, j,k

)
.

3.1.1 Upwind schemes

Osher’s upwind scheme [156] is used to resolve the convective fluxes. Roe’s flux-splitting scheme [169] is also

available. The MUSCL variable extrapolation method is employed in conjunction to formally provide third-

order spacial accuracy. The van Albada limiter is also applied to remove any spurious oscillations across

shock waves. The central differencing spatial discretisation method is used to solve the viscous terms. The

non-linear system of equations resulting from the linearisation is then solved by integration in pseudo-time

using a first-order backward difference. A Generalised Conjugate Gradient (GCG) method is then used in

conjunction with a Block Incomplete Lower-Upper (BILU) factorisation as a pre-conditioner to solve the

linear system of equations, which is obtained from a linearisation in pseudo-time.
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Roe’s flux-splitting scheme

Its popularity is due to its capability in resolving both shock waves and shear layers accurately in the Navier-

Stokes solutions.

The flux-splitting method consists of splitting the flux F into a forward and backward flux, as F(Q) =

F+(Q)+F−(Q) where δF+

δQ
has the positive eigenvalues and δF−

δQ
has the negative ones.

The approximate Riemann solver is then, F̃i+1/2 = F+(Qi)+F−(Qi+1)

The Euler equations, therefore, are replaced by the following linearised equation:

δQ

δ t
+ Ã(QL,QR)

δQ

δx
= 0 (3.17)

where Ã(QL,QR) is a constant numerical Jacobian matrix, which is a function of the constant data

states QL and QR in the local Riemann problem. The determinant of this matrix is obtained by using the Roe

averages ρ̃ , ũ, h̃ and ã, from the conserved variables at the right and left states.

Osher’s scheme

This scheme is considered as a refinement of the flux splitting method; since it also excludes the expansion

shock and the solver is continuously differentiable, which provides the possibility of using Newton-like

methods of convergence.

The Osher’s approximate Riemann solver is defined as

F̃OS(QL,QR) =
1

2
(F(QL)+F(QR)+

∫ QR

QL

|A|(Q)dQ) (3.18)

MUSCL scheme

It is based on a linear or quadratic distribution of Q(x) in each cell. The formulas are given for the interface

values as:
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QL
i+1/2 = Qi +

1

4
(1− k)(Qi −Qi−1)+

1

4
(1+ k)(Qi+1 −Qi) (3.19)

QR
i+1/2 = Qi+1 −

1

4
(1+ k)(Qi+1 −Qi)−

1

4
(1− k)(Qi+2 −Qi+1)

The first term on the right-hand side corresponds to the first order scheme; the additional terms

include a dependence on the adjacent points, hence, a high order accuracy in space. In order to have a

second-order accuracy, k should be different from 1/3.

3.1.2 Parallel method

The flow solver can be used in serial or parallel mode. To obtain an efficient parallel method based on

domain decomposition, different methods are applied to the flow solver [212]. An approximate form of

the flux Jacobian resulting from the linearisation in pseudo-time is used which reduces the overall size of

the linear system by reducing the number of non-zero entries. Between the blocks of the grid, the BILU

factorisation is also decoupled thereby reducing the communication between processors. Each processor is

also allocated a vector that contains all the halo cells for all the blocks in the grid. Message Passing Interface

(MPI) is used for the communication between the processors in parallel.

3.1.3 Turbulence modelling

A number of linear and non-linear statistical turbulence models have been implemented into HMB3, in-

cluding several one- and two- equation models. Turbulence simulation is also possible using either the

Large-Eddy or the Detached-Eddy simulation approach [189, 188]. Some of these turbulence models and

indeed the simulation techniques are described in greater detail in the following sections.

3.2 Reynolds Averaging

In this work the averaged Navier-Strokes equations were used. In a turbulent flow, the fields of pressure,

velocity, temperature and density vary randomly in time. Reynold’s approach involves separating the flow

quantities into stationary and random parts. The quantities are then presented as a sum of the mean flow
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value and the fluctuating part

φ = φ +φ ′ (3.20)

This formulation is then inserted into the conservation equations and a process known as Reynolds

averaging is performed. Three averaging methods are possible:

• Time averaging.

• Spatial averaging.

• Ensemble averaging.

Time averaging is used in this work.

3.2.1 Time Averaging

Time averaging is the most common averaging method. It can be used only for statistically stationary

turbulent flows, i.e. flows not varying with time on the average. For such flows, the mean flow value is

defined as

ui = lim
T→∞

1

T

∫ i+T

i
ui(t)dt (3.21)

In the above, T → ∞ means that the integration time T needs to be long enough relative to the

maximum period of the assumed fluctuations. In practice, it is assumed that the average value may be

established in a relatively short time, a few seconds or perhaps a few milliseconds depending upon the

flow. Therefore, for flows that exhibit a non-stationary character, provided that over the minimum necessary

averaging time the change in average velocity is small, then an ensemble average may be used. This means

that the time step should be chosen large enough for the average of turbulent fluctuations to be zero, and

small enough to resolve unsteadiness of the mean flow. For wind turbine applications, the time step is often

chosen as a time that is required for a rotor to cover an azimuth angle of 0.25− 1◦[28, 29, 64]. This range is

also used throughout this work.
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3.3 Boussinesq-Based Models

The Boussinesq approximation is based on an analogy between viscous and Reynolds stresses and expresses

the Reynolds stresses as a product of the eddy viscosity (µt ) and the velocity gradient. The Boussinesq’s

eddy viscosity hypothesis states that

−ρu′iu
′
j = µt

[(
∂ui

∂x j

+
∂u j

∂xi

)
− 2

3
δi j

∂uk

∂xk

]
− 2

3
ρδi jk (3.22)

where k represents the specific kinetic energy of the fluctuations and is given by

k ≡ u′iu
′
i

2
(3.23)

The key idea behind Boussinesq’s hypothesis is that the Reynolds stresses can be calculated as a product of

the dynamic eddy-viscosity, µt , and the strain-rate tensor of the mean flow, i.e.

−ρu′iu
′
j = 2µt Si j −

2

3
δi jk (3.24)

where

Si j =
1

2

(
∂ui

∂x j

+
∂u j

∂xi

− 2

3
δi j

∂uk

∂xk

)
(3.25)

Eddy viscosity, µt , is a scalar and consequently the Reynolds stress components are linearly proportional

to the mean strain-rate tensor. What is implied here is that compressibility plays a secondary role in the

development of the turbulent flow-field. According to Morkovin’s hypothesis [145], compressibility affects

turbulence only at hypersonic speeds. To compute µt , the most popular models belong to the two-equation

family.

3.4 Viscosity-Dependent Parameters

Non-dimensionalised wall distances for turbulent flow, y∗, and non-turbulent flow, y+, are defined by the

following

y∗ ≡ ynk1/2

ν
, y+ ≡ ynuτ

ν
, (3.26)

where yn is the distance from the nearest wall, uτ ≡
√

τw/ρ is the frictional velocity and τw represents the

dynamic wall shear stress. Turbulent Reynolds numbers for the k− ε model (denoted by Ret ) and for the
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k−ω model (denoted by Reω ) are given by the following equation

Ret ≡
k2

νε
, Reω ≡ k

νω
. (3.27)

3.5 Two-Equation Models

By far the most popular type of turbulence model used is of the two-equation type. Two-equation models are

‘complete’, i.e. can be used to predict properties of a given flow with no prior knowledge of the turbulence

structure or flow geometry. Two transport equations are used for the calculation of the turbulent kinetic

energy, k , and turbulence length scale, l, or a function of it. The choice of the 2nd variable is arbitrary and

many proposals have been presented. The most popular involve using:

• ε — dissipation rate of turbulence.

• ω — k-specific dissipation rate.

• τ — turbulent time-scale.

A description of the different types of two-equation models is provided in Table 3.1 below. As well as indi-

cating the variable used for the second transport equation, Table 3.1 includes the equation used to calculate

the eddy viscosity.

Table 3.1: Different types of two-equation turbulence models and the corresponding second variable used

Two-Equation Model Equation 2nd Variable Used

Kolmogorov (c. 1942) [100] k1/2l−1 ω (Frequency Length Scale)
Rotta (c. 1950) l

Harlow-Nakayama (1968) [71] k3/2l−1 ε (Energy Dissipation Rate)
Spalding (1969) [190] kl−2 ω ′2 (Vorticity fluctuations squared)
Speziale (1992) [191] lk−1/2 τ (Time-Scale)
Nee kl kl (k times length scale)
Harlow-Nakayama lk−1/2 νt (Eddy viscosity)

One of the most widely used two-equation turbulence models is the k− ε model. One of the original

versions of this model was developed by Jones and Launder [87] in 1972. The turbulent scale in the k− ε
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model is calculated using a second transport equation for the turbulent dissipation rate, ε . The eddy viscosity

for the k− ε model is typically derived from

µT =Cµρ
k2

ε
(3.28)

where Cµ is the model coefficient. The advantage of the k− ε model is that it performs well for attached

flows with thin shear layers and jets but fails to predict the correct flow behaviour in many flows with

adverse pressure gradients, extended separated flow regions, swirl, buoyancy, curvature secondary flows

and unsteady flows.

The other class of two-equation turbulence models that is widely used is the k−ω model. In 1988,

Wilcox[209] developed the famous k−ω model originally conceived by Kolmogorov. The k−ω model is

similar to the k− ε model but instead uses the k -specific dissipation rate as a second variable to compute

the turbulent length scale. The eddy viscosity is obtained by

µT = ρ
k

ω
(3.29)

Although the k−ω model provides better performance in adverse pressure gradient flows, it suffers largely

from the same problems as the k− ε model. Hybrid versions of the k−ω and k− ε models called the

Baseline k−ω and Shear Stress Transport (SST) models were later introduced by Menter[137]. These, in

particular the SST version, perform well in separated flows. The idea behind the Baseline k−ω model is

to exploit the robust and accurate formulation of the k−ω model near the wall but to also take advantage

of the lack of sensitivity to free-stream values of the k− ε model away from the wall. Menter[137] achieved

this by transforming the k− ε model into the same format as the k−ω formulation. This process generated

an additional cross-diffusion parameter in the ω transport equation. For the SST model[137], the idea was

to improve the Baseline k−ω model by including terms to account for the transport of the principal shear

stress. This term is incorporated in Reynolds Stress Models (RSM) and was also applied in the Johnson-

King model[85]. Its importance was realised based on the significantly improved results for adverse pressure

gradient flows[137]. For this reason, the k−ω SST model was employed in the simulations presented in this

work, unless otherwise stated.
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3.5.1 Model Equations: Linear k−ω Model

Mathematical formulations of the different types of the linear k−ω two-equation turbulence models dis-

cussed in the previous sections are described here. More information on the k− ε and k−g models can be

obtained from Ref. [148].

Since the introduction of the linear k−ω model by Wilcox in 1988[209], the other notable modifica-

tion to the k−ω model came from Menter in 1994[137] who proposed the hybridisation of the k−ω model

with the k− ε model, as described previously. Table 3.2 lists the four notable versions of the k−ω models

and further describes if they include parameters to compute the low Reynolds number properties.

Table 3.2: Different types of linear k−ω turbulence models

Type of Model Low-Re

Wilcox (1988) [209] Yes
Wilcox (1994) [210] Yes
Menter (1994) [137] — (i) Baseline Model Yes
Menter (1994) [137] — (ii) SST Model Yes

Turbulence transport equations used in the formulation of the k−ω models are given by the follow-

ing.

∂

∂ t
(ρk)+

∂

∂x j

(ρU jk) =
∂

∂x j

[(
µ +

µt

σk

)
∂k

∂x j

]
+ρ (P−β ∗ωk) (3.30)

∂

∂ t
(ρω)+

∂

∂x j

(ρU jω) =
∂

∂x j

[(
µ +

µt

σω

)
∂ω

∂x j

]
+ρ

(
α

νt

P− β

β ∗ω2

)
+ρSl (3.31)

In the transport equation for k and ω above, the production of turbulence, P, and the dissipation rate

specific to k , Pω , is defined by

Pk = τR
i j

∂ui

∂x j

, Pω = ρ
α

νt

Pk. (3.32)

Values for the coefficients used in all the four types of linear k−ω models discussed here are given in the

Tables 3.3 and 3.4.

Menter’s models [137] are constructed as a ‘blend’ of the k−ω and k− ε models. Here the k− ε

model is phrased in the same form as the k−ω model so as to exploit its independence of free-stream
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Table 3.3: Values of constants used in linear k−ω models (continued)

Type of Model α∗ β ∗ α β

Wilcox (1988) [209] 1 9
100

5
9

3
40

Wilcox (1994) [210]
1
40+

Rω
6

1+ Rω
6

9
100

5
18+(

Rω
8 )

4

1+( Rω
8 )

4
5
9

1
10+

Rω
2.7

1+ Rω
2.7

3
40

Menter (1994) [137] (Baseline)1 1 0.09 B

(
0.553
0.440

)
B

(
0.075
0.083

)

Menter (1994) [137] (SST)2 min
(

1, 0.31
F2

ω
w

)
0.09 B

(
0.553
0.440

)
B

(
0.075
0.083

)

Table 3.4: Values of constants used in linear k−ω models (concluded)

Type of Model σk σω Sl

Wilcox (1988) [209] 2 2 0
Wilcox (1994) [210] 2 2 0

Menter (1994) [137](Baseline)1

1

B


 0.5

1.0




1

B


 0.5

0.856


 B

(
0

1.71
ω ∇k ·∇ω

)

Menter (1994) [137](SST)2

1

B


 0.85

1.0




1

B


 0.5

0.856


 B

(
0

1.71
ω ∇k ·∇ω

)

values. Blending of the k− ε and k−ω model values for α , β , σ−1
k and σ−1

ω is (in this notation) given by

the following equation

B




a

b


≡ F1a+(1−F1)b. (3.33)

The blending function is defined by

F1 = tanh
(
arg4

1

)
, (3.34)

where

arg1 = min

[
max

(
k1/2

β ∗ωy
,
500ν

y2
nω

)
,

2kω

y2
n max(∇k ·∇ω ,0.0)

]
. (3.35)

The SST model places an additional vorticity-dependent limiter on the shear stress

F2 = tanh
(
arg2

2

)
, arg2 = max

(
2k1/2

β ∗ωy
,
500ν

y2ω

)
. (3.36)

Note that this model also uses a slightly different value of σk.
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For low-Reynolds number versions of the k−ω model and Menter’s Baseline k−ω and SST models,

the following boundary conditions are assumed for a direct integration to the wall

For k: kw = 0, f lux(k)w = 0. (3.37)

For ω : ω = 0, f lux(ω)w =−ν∇ω . (3.38)

where the subscript w denotes the value at the wall.

3.6 CSD solver

This section presents the employed Computational Structural Dynamics (CSD) solver, and the fluid structure

interaction (FSI) approach. First, the structural model of the blade is described along with the structure-fluid

mapping and the grid deformation techniques. Then, the numerical procedures for steady and unsteady cases

are described.

3.6.1 Blade structural model

Under the assumption that the blade structural properties are mainly distributed in the span-wise direction

and that the span is much longer than the chord, and the aerofoil thickness, a WT blade can be modelled

as a beam. For this reason, the structure of the blade is represented by a set of tapered beam elements

(CBEAM-type) using NASTRAN[6], as shown in Figure 3.1. Each beam contains PBEAM structural proper-

ties. Typically, the following properties are included in the blade’s structural model:

• area of the beam cross section (A),

• chord-wise (or edge-wise) and flap-wise area moment of inertia (I1 , I2 ),

• torsional stiffness (J),

• linear mass distribution (dm),

• location of the shear centre relative to the actual node location (−→wa, −→wb) to allow

for the shear centre off-set,
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Figure 3.1: CBEAM-type element of NASTRAN, with PBEAM properties. Adapted from NASTRAN user’s
guide [6].

• mass centre position relative to the shear centre (yma , zma , ymb , zmb ),

• neutral axis relative to the shear centre (yna , zna , ynb , znb ),

• radius of gyration (Rg)

All structural properties are defined at each end of the beam, and linear variation is assumed in between.

Inertial forces and an arbitrary loading could be introduced in the model using the RFORCE and PLOAD

entries of NASTRAN, respectively. Likewise, a different material (MAT entry) for each CBEAM element

could be employed. RBAR elements without any structural properties are rigidly linked to the CBEAM

elements in front of the leading edge and aft the trailing edge, and follow the beam deformation. An example

for the The DTU 10MW RWT[11] blade surface with beams and bars is shown in Figure 3.2. Note, that beams

and bars create a surface that is split into triangular elements as needed for the Constant Volume Tetrahedron

(CVT) method[46, 65] used for structure-to-fluid domains mapping.

In Chapter 10, the structural models for the DTU 10MW RWT blade are provided. The NASTRAN

input files can be found in Appendix A.
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Figure 3.2: The DTU 10MW RWT blade with the structural model consisting of beams, bars, and triangular
elements.

3.6.2 Grid deformation method

The structural model of the blade contains fewer elements than the blade surface on the fluid mesh. There-

fore, the structural solution has to be interpolated on the blade surface. The deformation of the fluid mesh

is done in three main steps, as described in greater detail by Dehaeze et al. [47]. Firstly, the constant volume

tetrahedron (CVT) method is used to interpolate the deformed shape of the blade surface. Secondly, the

block vertices are moved accordingly to the spring analogy method (SAM). Finally, the full mesh is regen-

erated with a trans-finite interpolation (TFI). The TFI first interpolates the block edges and faces from their

new vertex positions and then interpolates the full mesh from the surfaces. This method uses the properties

of multi-block meshes and maintains efficiency as the number of blocks increases. The use of spring analogy

on the block vertices only allows for efficient calculation, large deformations of the blade and good mesh

quality. Alternatively to the TFI method, the Inverse Distance Weighting (IDW) method can be used.

Constant Volume Tetrahedron

The Constant Volume Tetrahedron (CVT) method was first developed by Goura[65]. This method projects

each fluid node to the nearest structural triangular element and moves it linearly with the element. The first

step for calculating the transformation is finding the nearest triangular element (S1, S2, S3) to each fluid

point (F) as shown in Figure 3.3. Then, the location of the fluid element can be expressed as follows:

c = αa+βb+ γd (3.39)
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(a)

S1

S2

S3

F
c

d b

a

(b)

Figure 3.3: Projection of the fluid grid on the structural model through Constant Volume Tetrahedron (CVT)
method.

where a =
−−→
S1S2, b =

−−→
S1S3, c =

−−→
S1F , and d = a× b are known. The coefficients α , β and γ can then be

expressed as functions of vectors a, b, c and d as:

α =
(a · c)‖b‖2 − (a ·b)(b · c)

‖a‖2 ‖b‖2 − (a ·b)2 , (3.40a)

β =
(b · c)‖a‖2 − (a ·b)(a · c)

‖a‖2 ‖b‖2 − (a ·b)2 , (3.40b)

γ =
(c ·d)

‖a‖2 ‖b‖2 − (a ·b)2 . (3.40c)

The new position of the deformed blade fluid point is obtained by:

c′ = αa′+βb′+ γd′ (3.41)

where a′, b′ and d′ are the same vectors after the structural deformation.

Spring Analogy Method

The spring Analogy Method (SAM)[23] consists of adding springs on each surface side and diagonal of the

mesh blocks, see Figure 3.4. The springs along the sides of the surfaces tend to avoid large compression or

dilatation of the block surfaces and the ones on the diagonals tend to limit block skewness.

The strength of the springs is set as the inverse of their length and the springs in contact with the

blade are usually made stiffer in order to make the blocks close to the blade surface extremely rigid. The
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Figure 3.4: Spring Analogy Method (SAM) to obtain the updated block vertex positions. Dashed lines
represent springs on the block faces.

force on each vertex is calculated as the sum of the forces due to the neighbouring springs:

Fi =
ni

∑
j=1

ki j (δδδ j −δδδ i) , (3.42)

where ki j is the stiffness of the spring between i-th and j-th nodes, δδδ i is the displacement vector of the i-th

node, and ni is the number of vertices linked by springs to the i-th node. The displacement of the nodes on

the blade surface is obtained from the CVT method. Then, the nodes on the blade and the far-field are fixed,

and the new equilibrium position of the interior nodes is obtained by solving for each node the equation:

ni

∑
j=1

Fi j = 0, (3.43)

where Fi j is the force exerted on the i-th node by the spring between the i-th and j-th nodes and is defined

by Fi j = ki j(δδδ j −δδδ i). The iterative process is employed to solve for equilibrium vertices position and is

initialised with the vertices located in the original grid except for vertices on the blade surface which are

moved to the deformed position.

Trans-Finite Interpolation

The Trans-Finite Interpolation (TFI), described by Dubuc et al. [49], is used for interpolating the deformed

mesh. For this, the face deformations are interpolated from the edge deformations, and then the full block
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deformation from the deformation of the block faces. The mesh deformation uses a weighted approach

to interpolate a face/block from the boundary vertices/surfaces respectively. The weight depends on the

curvilinear coordinate divided by the length of the curve, whose notation is shown in Figure 3.5. Following

this notation, the generation of the mesh on a block face, x1, x2, x3 and x4, can be expressed as:

dx(ξ ,η) = f1(ξ ,η)+φ0
1 (η)

[
dx1(ξ )− f1(ξ ,0)

]
+φ0

2 (η)
[
dx3(ξ )− f1(ξ ,1)

]
, (3.44)

where, f1 is defined as,

f1(ξ ,η) = ψ0
1 (ξ )dx4(η)+ψ0

2 (ξ )dx2(η) (3.45)

with dx1, dx2, dx3 and dx4, representing the displacements of the four corners of a face and φ and ψ the

blending functions in the η and ξ directions.

x3

x2x1

x4

η

ξ

ξx( ,1)

ηx( , )ξ
x(1, )η

ξx( ,0)

ηx(0, )

Figure 3.5: Notation of a block face for Transfinite Interpolation (TFI) for full mesh generation.

A more detailed description can be found in reference [49]. The method uses the properties of multi-

block meshes to maintain its efficiency as the number of blocks increases, particularly in the span-wise blade

direction. It provides flexibility, and allows for complex multi-block topologies to be used with good control

over the distribution of mesh deformation all over the computational domain.

Summary and efficiency

This three-step grid deformation method preserves the quality of the mesh, avoiding high cell skewness and

drastic change of cell volumes. Figure 3.6 shows the changes on the cell volumes and skewness of the grid

for the DTU 10MW wind turbine[11] with 8.5m displacement at the tip. The cell volume and skewness ratios
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were computed as:

rV =
Vde f ormed

Vunde f ormed

, (3.46a)

rS =
Sde f ormed

Sunde f ormed

, (3.46b)

where V is the cell volume, and S is the cell skewness, chosen as the maximum norm of the scalar product

of the vectors normal to the cell face.

(a) Volume ratio. (b) Skewness ratio.

Figure 3.6: Cell volume ration (a), and skewness ratio (b) between deformed and undeformed grids at the
tip of the DTU 10MW RWT blade. Tip displacement 8.5m.

3.6.3 Steady FSI method

Steady aero-elastic coupling is realised using an iterative method, shown in Figure 3.7(a). NASTRAN[6] is

used as the structural solver, using the non-linear solution sequence SOL106 to solve for the blade shape. The

eigenvectors are extracted with the modified GIVens (MGIV) method[44]. This is followed by an iterative

process allowing for the large displacements to be taken into account while recomputing the forces due to

the aerodynamic and centrifugal forces at each step. For CFD/CSD exchange, the aerodynamic loading is

first extracted from the fluid grid, using a sectional pressure integration. NASTRAN is then used to compute

the deformed shape of the blade with the loads introduced as PLOAD elements (linear loading between both

ends of the beam). This new shape is applied to the fluid grid using the mesh deformation method described

in Section 3.6.2. The process is repeated until the shape of the blade and the aerodynamic loads converge to

a final value, as described in reference [45]. Figure 3.7(a) shows a diagram of this process. The advantage of
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this method is that a non-linear structural solution is always performed.

(a) Aero-elastic coupling strategy for steady case. (b) Strong (implicit) fluid-structure coupling scheme for
unsteady aero-elasticity.

Figure 3.7: Diagram of the static (a), and dynamic (b) aero-elastic coupling method employed in the HMB
solver.

3.6.4 Unsteady FSI method

For unsteady aero-elastic coupling, the modal approach is used to lower the cost of computing the blade

deformations. It expresses the blade deformation as a function of the blade eigenmodes. The blade shape

is then described as a sum of eigenvectors φi representing the blade displacements for each eigenmode

multiplied by the coefficient αi:

φ = φ0 +
nm

∑
i=1

αiφi, (3.47)

where φ0 is the undeformed eigenvector, and nm is the number of modes. The problems is then reduced to

solving for the coefficients αi. Following the modal approach, those coefficients can be obtained by solving

the second order differential equation

∂ 2αi

∂ t2
+2ζiωi

∂αi

∂ t
+ω2

i αi = fφi, (3.48)
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whose derivatives are discretized as follows:

[∂αi

∂ t

]
t
=

3[αi]t −4[αi]t−1 +[αi]t−2

2∆t
, (3.49a)

[∂ 2αi

∂ t2

]
t
=

3[∂αi

∂ t
]t −4[αi

∂ t
]t−1 +[αi

∂ t
]t−2

2∆t
, (3.49b)

where f is the vector of external forces applied to the blade projected at each structural node, ωi is the eigen-

frequency and ζi is the structural damping coefficient, which tends to be small. For stability purposes, the

analysis is usually starting with strong damping of ζi = 0.7 for each mode, to damp the oscillations created

by the sudden change in the forcing applied to the system. Once the blade reaches a level of deformation

of 80− 90%, often after a half of revolution, the damping is reduced to smaller values (e.g. ζi = 0.03) [44].

At each pseudo-time step of the employed dual time-step method, the modal amplitudes are computed by

solving the discretized Equation (3.48), which results in Equation (3.50),




2ζiωi +
3

2∆t
ω2

−1 3
2∆t







[∂αi

∂ t
]t

(αi)t


=




[ f s
i ]t +

4[
∂ αi
∂ t

]t−1−[
∂ αi
∂ t

]t−2

2∆t

4[αi]t−1−[αi]t−2

2∆t


 , (3.50)

the CFD grid is deformed using the method described in Section 3.6.2 and the flow field updated by solving

the N-S equations. At the end of each time step, the blade loads are extracted and re-applied to the system.

This process is performed repeatedly until the end of the computation, as shown in Figure 3.7(b). The

method is efficient since it involves NASTRAN only once, but assumes that the modes are unchanged during

the unsteady solution.
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Chapter 4

Multi-body simulation method

In this work, the wind turbine dynamics is modelled using a multi-body formulation of rigid bodies and

frictionless joints. For this reason, a Multi-Body Dynamic Module (MBDM) was developed. This chapter

describes the mathematical concept behind the MBDM and explains how the resulting system of differential

algebraic equations is solved. The theory presented here is mostly based on the textbooks of Haug [73] and

Nikravesh [153].

4.1 Concept and essential formulation

The basic assumptions employed in MBDM are that bodies under consideration are rigid, and all joints are

frictionless.

Each body is assigned a local coordinate system, which is attached to the body and follows its trans-

lational and rotational motions. The position and orientation of each body is then described in a global

coordinate system by seven quantities: a vector r = [x,y,z]T pointing to the local coordinate system of the

body, and the Euler parameters p = [e0,e1,e2,e3]
T ≡ [e0,e]

T indicating orientation of body frame in global

coordinate system. According to Euler’s theorem[50], any orientation of body can be achieved by a single

rotation from the reference orientation about some axis. Thus, the Euler parameters define an axis of rotation
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uuu, and an angular displacement χ about the axis as:

e0 = cos
χ

2
, (4.1a)

e1 = ux sin
χ

2
, (4.1b)

e2 = uy sin
χ

2
, (4.1c)

e3 = uz sin
χ

2
. (4.1d)

s
P

r
P

y

x

z

y
y’

z z’

x

x’r

P
u
χ

Figure 4.1: Translation and rotation of a reference frame.

Any given vector s
′

in the body coordinate system (the superscript " ′ " denotes vectors defined in

body-fixed reference frame) can be transferred to the global coordinate system vector s using transformation

matrix A, which is given by:

A = 2




e2
0 + e2

1 − 1
2 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e2
0 + e2

2 − 1
2 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e2
0 + e2

3 − 1
2




. (4.2)

A is a rotational matrix, which becomes an identity matrix if both frames of reference coincide. Therefore,

if a point P is described by a vector s
′P in the body local reference frame, the location of this point rP in the

global coordinate frame can be found by the following expression:

rP = r+As
′P, (4.3)

where r = [x,y,z]T is the vector pointing to the location of body local coordinate system, as defined previ-

ously and shown in Figure 4.1. This simple relation forms basis for the constraint equations of motion for
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multi-body model. Also, as can be easily shown, the transformation matrix is orthogonal i.e. A−1 = AT ,

which simplifies the reverse transformation of a vector from the global to the local reference frame of the

body.

4.1.1 Joint definition frames

First, let us consider a body denoted by i and shown in Figure 4.2. Its (x
′
i,y

′
i,z

′
i) body-fixed reference frame

x
i
’

y
i
’

z
i
’

i

x
i
’’

z
i
’’

y
i
’’

y

x

z

Q
i

R
i

P
i

f i

h
i

g
i

Figure 4.2: Construction of a joint definition frame.

is used to position and orient the body in the global reference frame. A second frame (x
′′
i ,y

′′
i ,z

′′
i ) is attached

to the body, with its origin at point Pi and is called joint definition frame. To orient the (x
′′
i ,y

′′
i ,z

′′
i ) frame,

the unit vectors fi, gi and hi are defined along its coordinate axes. To define hi, a point Qi is defined on

the z
′′
i axis, at unit distance from point Pi. To define fi, a point Ri is defined on the x

′′
i axis, at unit distance

from point Pi. Finally, the vector gi = hi× fi = h̃ifi, where h̃ is a skew-symmetric matrix, associated with an

algebraic vector h = [hx,hy,hz]
T and is defined as:

h̃ =




0 −hz hy

hz 0 −hx

−hy hx 0




. (4.4)
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In terms of the unit vectors f
′
i, g

′
i and h

′
i, represented in the (x

′
i,y

′
i,z

′
i) frame, the transformation matrix from

the (x
′′
i ,y

′′
i ,z

′′
i ) frame to the (x

′
i,y

′
i,z

′
i) frame is obtained as

CP
i = [f

′
i,g

′
i,h

′
i]. (4.5)

4.1.2 Basic kinematic constraints

In this subsection, the mathematical expressions of the kinematic constraints on the absolute position and

orientation of bodies in space, and on relative position and orientation of a pair of bodies connected by

joints, are derived.

i

j
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i
’

y
i
’

z
i
’

y
j
’
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’

P
i

P
j

s
i
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s

j

r
j

a
i

a
j

d
ij

r
i

x

y

z

Figure 4.3: Position vectors ri and r j, vector between bodies di j, and body fixed vectors ai and a j.

There are four basic constraints that relate two vectors or points defined in two different coordinate

frames. The first is the orthogonality of two body-fixed, nonzero, vectors ai and a j on bodies i and j,

respectively, as shown in Figure 4.3. The two vectors are orthogonal if their scalar product is zero:

Φd1(ai,a j)≡ aT
i a j = 0 (4.6)

where the superscript "d1" indicated the first form of dot product condition. Writing the vectors ai and a j

in terms of their respective body reference frames using transformation matrices, ai = Aia
′
i and a j = A ja

′
j,

Equation 4.6 may be then written as

Φd1(ai,a j) = a
′T
i AT

i A ja
′
j = 0 (4.7)
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The dot product condition can also be used to prescribe the orthogonality of a body-fixed vector ai

and a vector di j between bodies, as shown in Figure 4.3, provided di j 6= 0. This condition is expressed as:

Φd2(ai,di j) = aT
i di j = a

′T
i AT

i (r j +A js
′P
j − ri)−a

′T
i s

′P
i = 0 (4.8)

where transition to the right-hand-side is achieved by writing the vector di j as:

di j = r j +A js
′P
j − ri −Ais

′P
i , (4.9)

and applying basic mathematical transformations. It is important to recall that the orthogonality condition

of Equation 4.8 breaks down if di j = 0.

It is often required that two points defined on two different bodies coincide. The condition for points

Pi and Pj to coincide is that vector di j = 0, as shown in Figure 4.3. This is mathematically expressed as

ΦΦΦS(Pi,Pj) = r j +A js
′P
j − ri −Ais

′P
i = 0 (4.10)

where the superscript S indicates the use of this equation to define a spherical joint. Note that this vector

equation consists of three scalar equations.

Finally, the constraint on the distance between a pair of points on adjacent bodies is derived. A

condition that the distance between points Pi and Pj in Figure 4.3 be equal to C 6= 0 has a form of

ΦSS(Pi,Pj,C) = dT
i jdi j −C2 = 0 (4.11)

Note that if C = 0, the Jacobian of this constraint equation has all elements equal to 0 i.e. it does not have full

row rank and cannot be used for kinematic analysis. For this reason, use of distance constraint is restricted

to the case C 6= 0.

The four basic constraint equations derived so far form the foundation for defining a library of kine-

matic constraints between bodies. Two parallelism conditions are additionally derived.

First, let us consider two bodies with joint definition frames defined, as shown in Figure 4.4. Next,

let the z
′′
i and z

′′
j axes be required to be parallel. It is equivalent to requirement of the vectors hi and h j to

be parallel. The vector h j is parallel to hi if and only if it is orthogonal to fi and gi. This condition can be

expressed as

ΦΦΦp1(hi,h j) =




Φd1(fi,h j)

Φd1(gi,h j)


= 0 (4.12)

76



4.1. FORMULATION CHAPTER 4. MULTI-BODY SIMULATION METHOD

x
i
’

z ’
i

y ’
i

z
’
j

x
’
j

y
’
j

h
i

f
i

g
i

z
i
’’ y

i
’’

x ’’
i

P
i

d
ij

i

j

x ’’
j

z ’’
j

y ’’
j

f
j

h
j

P
j

g
j

x

y

z

Figure 4.4: Parallel vectors on and between adjacent bodies.

Finally, consider the condition that vector the h j is parallel to vector di j, in accordance to the

schematic in Figure 4.4. The vector di j 6= 0 is parallel to h j if and only if it is perpendicular to fi and

gi:

ΦΦΦp2(hi,di j) =




Φd2(fi,di j)

Φd2(gi,di j)


= 0 (4.13)

Note that this constraint breaks down if di j = 0, since the orthogonality constraint (Equation 4.8) breaks

down in this case.

4.1.3 Absolute constraints on a body

Absolute constraints may be placed on the position of the point Pi of body i, and on the orientation of the

local coordinate frame of body i. Six such constraint equations on individual generalised coordinates of a

body i may be expressed as:

Φ1 = xP
i − x0

i = 0,

Φ2 = yP
i − y0

i = 0,

Φ3 = zP
i − z0

i = 0,

Φ4 = e1i − e0
1i = 0,

Φ5 = e2i − e0
2i = 0,

Φ6 = e3i − e0
3i = 0,

(4.14)
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where the vector rP
i = [xP

i ,y
P
i ,z

P
i ]

T is defined in the global reference frame and depends on vectors ri and s
′P
i

through Equation 4.3. Therefore, absolute constraints on the position and orientation may be rewritten as

ΦΦΦ123 = ri +Ais
′P
i − r0

i = 0 (4.15a)

ΦΦΦ456 = ei − e0
i = 0 (4.15b)

where e = [e1,e2,e3]
T is a vector part of quaternion p. Note that only 3 equations are needed to constrain 4

Euler parameters. The reason is that the Euler parameters are not independent, since

e2
0 +[e1,e2,e3]

T [e1,e2,e3] = cos2(
χ

2
)+uT usin2(

χ

2
) = 1 (4.16)

that is, they must satisfy the Euler parameter normalisation constraint as presented later in Equation 4.28.

4.1.4 Constraints between pairs of bodies

Construction of mechanisms and machines employs a variety of spacial joints between pairs of bodies. The

constraint equations that define a library of such joints are derived in this subsection.

Distance constraint

The distance between points Pi and Pj on bodies i and j can be fixed and set equal to C 6= 0, as shown in

Figure 4.5.

i

j
s i

iy ’

i
’z

i
’x

y ’
j

’x j

’z j

s j

C

P j

P i

Figure 4.5: Distance constraint.

Equation 4.11 can be directly used for the distance constraint:

ΦSS(Pi,Pj,C) = 0 (4.17)

This scalar constraint equation permits five relative degrees of freedom between bodies i and j.
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Spherical joint

A spherical joint is defined by the condition that the centre of the ball at point Pi on body i coincides with

the centre of the socket at Pj on body j, as shown in Figure 4.6. This condition is the same as spherical

constraint of Equation 4.10, that is

ΦΦΦS(Pi,Pj) = 000 (4.18)

These three scalar constraint equations restrict the relative position of points Pi and Pj, whilst three relative

degrees of freedom remain unconstrained.

y’ i

z’ i

x’ i

x’j

y’ j

z’ j

P
s i

j
i

P P

js

Figure 4.6: Spherical joint.

Revolute joint

A revolute joint between two bodies i and j is constructed with a bearing that allows their relative rotation

about a common axis, but precludes relative translation along this axis, as shown in Figure 4.7. To define the

joint, the centre of the joint is located on bodies i and j by points Pi and Pj. The axis of the relative rotation

is specified in bodies i and j by points Qi and Q j i.e. by the unit vectors hi and h j along the respective z
′′

axes of the joint definition frames. The mathematical formulation of the revolute joint is that points Pi and

Pj coincide, and that the body-fixed vectors hi and h j are parallel, which leads to the constraint equations:

ΦΦΦS(Pi,Pj) = 000,

ΦΦΦp1(hi,h j) = 0.
(4.19)

These five scalar constraint equation leave only one relative degree of freedom: the rotation about the

common axis.
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Revolute-cylindrical composite joint

The revolute cylindrical joint shown in Figure 4.8 consists of a coupler that is constrained to body i by the

revolute joint about the hi axis on body i and to body j through a cylindrical joint about the h j axis. Vectors

d
ji
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j
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h
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Qj

Pi

Qi

j

x
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x
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y
i
’
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Figure 4.8: Revolute-cylindrical joint.
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hi and h j are required to be orthogonal. Additionally, providing that di j 6= 0, the vector h j must be parallel

to di j. These conditions may be written as:

Φd1(hi,h j) = 0,

ΦΦΦp2(hi,di j) = 0.
(4.20)

Note that even if di j = 0, then Pi = Pj and the geometric conditions of the joint are satisfied. Since three

scalar equations comprise the definition of the revolute-cylindrical joint, there are three relative degrees of

freedom between bodies i and j.

Translational joint

The translation joint shown in Figure 4.9 allows for the relative translation along a common axis between

two bodies, but precludes the relative rotation about that axis. The joint is defined by points Pi and Pj that are

j

i
Q i

P j

Q j

P i f i

jf

h i

h j

d ij

jx’

y’j

z’j

x’iy’i

z’i

Figure 4.9: Translational joint.

located on the common axis of translation and some additional points Qi and Q j on each body are defined

along the axis of translation to establish unit vectors hi and h j along the respective z
′′

axes of the joint
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definition frames. The x
′′

axes of the joint definition frames on bodies i and j are chosen so that they are

perpendicular, and are defined by the vectors fi and f j, as shown in Figure 4.9.

The analytical definition of the translational joint is that vectors hi and h j are collinear and vectors fi

and f j are orthogonal. Since the vectors hi, h j and di j have points in common, the collinearity condition is

enforced by the condition that hi is parallel to both h j and di j, if di j 6= 0. Equations of constraints for the

translational joints can be expressed as

ΦΦΦp1(hi,h j) = 0

ΦΦΦp2(hi,di j) = 0

Φd1(fi, f j) = 0

(4.21)

Note that if di j = 0, then Pi = Pj and the geometric conditions of the joint are satisfied.

Relative rotational driving constraint

For a relative rotational driver, the angle between the bodies to be driven in time must be specified. Consider

two bodies i and j with corresponding joint definition frames (x
′′
i ,y

′′
i ,z

′′
i ) and (x

′′
j,y

′′
j ,z

′′
j , where the vectors

hi and h j are parallel, as shown in Figure 4.10. The angle of rotation θ is to be calculated, and is positive
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Figure 4.10: Parallel vectors on and between adjacent bodies.

if counterclockwise from fi to f j. From the definition of the scalar product and the fact that the coordinate
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vectors are unit vectors,

fT
i f j = cos(θ) (4.22)

Similarly, from the definition of a vector product

f̃if j = hi sin(θ) (4.23)

Taking the scalar product of both sides of this equation with hi and using the fact that f̃ihi =−gi,

sin(θ) = hT
i f̃if j = gT

i f j (4.24)

Writing the unit vectors in terms of the respective body-fixed reference frames, and using the transformation

matrices from these frames to the global reference frame, the above equations for cos(θ) and sin(θ) become

cos(θ) = f
′T
i AT

i A jf
′
j

sin(θ) = g
′T
i AT

i A jf
′
j

(4.25)

If cos(θ) and sin(θ) are known, the value of θ , 0 ≤ θ < 2π can be uniquely determined:

θ =





arcsin(sin(θ)), if sin(θ)≥ 0 and cos(θ)≥ 0

π − arcsin(sin(θ)), if sin(θ)≥ 0 and cos(θ)< 0

π − arcsin(sin(θ)), if sin(θ)< 0 and cos(θ)< 0

2π + arcsin(sin(θ)), if sin(θ) < 0 and cos(θ) ≥ 0.

(4.26)

The calculated angle θ is in the range 0 ≤ θ < 2π .

Consider now a situation, where the angle from the body-fixed x
′′
i axis to the x

′′
j axis (positive coun-

terclockwise), is specified by some function C(t). The analytical definition of the relative rotational driver,

using the relative angle θ of rotation of Equation 4.26 is obtained as

Φrotd ≡ θ +2nπ −C(t) = 0 (4.27)

where n is the number of revolutions that have occurred. These are taken into account by requiring 0 ≤

C(t)−2nπ < 2π .
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4.1.5 Euler parameter normalisation constraint

In addition to the kinematic and driving constraints derived above, the Euler parameter generalised coordi-

nates of each body must satisfy the normalisation constraint

Φ
p
i = pT

i pi −1 = 0, i = 1, ...,nb (4.28)

where i indicates the body index, and nb is the number of all bodies.

4.2 Kinematic analysis

This section derives the equations that determine the position, velocity and acceleration of the system, given

that all degrees of freedom are constrained.

First, consider the generalised coordinate vector for a body i in a system

qi = [ri,pi]
T (4.29)

The composite set of generalised coordinates for the entire system is thus:

q = [qT
1 ,q

T
2 , ...,q

T
nb]

T , (4.30)

where nb is the number of all bodies in the system.

The combined system of kinematic, driving, and Euler parameter normalisation constraint equations,

that determines the position and orientation of the system is

ΦΦΦ(q, t)≡




ΦΦΦK(q)

ΦΦΦD(q, t)

ΦΦΦp(q)



= 0 (4.31)

where the superscripts "K", "D" and "p" denote a set of kinematic, driving and Euler parameter normalisation

constraints, respectively. It is assumed, for the purpose of kinematic analysis, that an adequate number of

independent driving constraints has been specified so that Equation 4.31 comprises 7nb equations in 7nb

generalised coordinates.
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4.2.1 Position analysis

To solve the nonlinear position equations in form of Equation 4.31, the Jacobian matrix of the system must

be calculated. The derivatives of the basic kinematic constraints, the absolute and driving constraints are

presented in Table 4.1 at the end of this section. They may be combined to form the Jacobian of the constraint

equations as

ΦΦΦq =




ΦΦΦK
q

ΦΦΦD
q

ΦΦΦ
p
q




. (4.32)

If the kinematic, driving and Euler parameter normalisation constraints are independent and if all degrees of

freedom are constrained, the Jacobian is nonsingular. Thus, provided that the system can be assembled at a

nominal position, there is a unique solution for the position and orientation of the system in a neighbourhood

of the assembled configuration.

The kinematic constraint equations are highly nonlinear. Therefore, the iterative Newton-Raphson

method is adopted to solve Equation 4.31:

ΦΦΦq∆qi =−ΦΦΦ(qi, t)

qi+1 = qi +∆qi

(4.33)

with q0 an initial estimate of the assembled configuration, improved estimates are obtained by solving the

sequence of equations in Equation 4.33, until a prescribed convergence criterion is met.

4.2.2 Velocity analysis

Since Equation 4.31 must hold at all times, both sides may be differentiated with respect to time and rear-

ranged to obtain the velocity equation:

ΦΦΦqq̇ =−ΦΦΦt ≡ v. (4.34)

Presuming that the Jacobian matrix of Equation 4.32 is nonsingular, this equation uniquely determines the

velocity q̇. This computation is efficient and direct, since the Jacobian must have been already assembled to

solve the position equations using the Newton-Raphson method. It is also useful to note that time appears

explicitly only in the driving constraints, therefore facilitating the computation of ΦΦΦt .
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4.2.3 Acceleration analysis

Similarly to the velocity equations, Equation 4.31 must hold at all times, and can be differentiated twice

and rearranged to obtain the acceleration equation:

ΦΦΦqq̈ =−(ΦΦΦqq̇)qq̇−2ΦΦΦqt q̇−ΦΦΦtt ≡ γγγ . (4.35)

This determines the acceleration q̈. Note that the right hand side of the above equation can be evaluated

once the solution for velocities is obtained.

4.2.4 Derivatives of basic constraints

For the purposes of kinematic and dynamic analyses the Jacobian ΦΦΦq of the set of constraint equations

(Equation 4.31) must be calculated. Also the vectors v and γγγ appearing in Equations 4.34 and 4.35 must

be obtained. Since all kinematic constraints are represented by the combination of 4 basic constraints, it

is sufficient to calculate the partial derivatives and corresponding components of the v and γγγ vectors only

for those 4 constraints. Additionally, partial derivatives of absolute constraints (Equation 4.14), relative

rotational driving constraint (Equation 4.27) and Euler parameter normalisation constraint (Equation 4.28)

and corresponding elements of v and γγγ vectors must be evaluated. Table 4.1 gathers the necessary partial

derivatives to construct the Jacobian ΦΦΦq, v and γγγ .

The matrix G presented in the equations of Table 4.1 is constructed using Euler’s parameters

G =




−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0




, (4.36)

and along with the similar matrix E

E =




−e1 e0 −e3 e2

−e2 e3 e0 −e1

−e3 −e2 e1 e0




, (4.37)

are used to relate the time derivative of the rotational matrix A to the time derivatives of the Euler parameters

through:

A = EGT ⇒ Ȧ = 2EĠT . (4.38)
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Another useful set of relations employing the matrix G are the dependencies between the Euler pa-

rameter variations and the virtual rotations, and relationships between the Euler parameter derivatives and

the angular velocity, and angular acceleration. The former relationship may be expressed as:

δp =
1

2
GT δπππ

′
(4.39)

while the other two relations are:

ṗ = 1
2GTωωω

′

p̈ = 1
2GTω̇ωω

′ − 1
4ωωω

′Tωωω
′
p

(4.40)

for the first and second time derivatives, respectively. These relations are important in dynamic analysis,

as explained in the next section. Note that matrix G is orthogonal i.e. G−1 = GT ⇒ GGT = I, where I is

the identity matrix. This way, the elements of the Jacobian matrix ΦΦΦq presented in Table 4.1 can be easily

expressed in virtual rotations ΦΦΦπππ
′ instead of Euler parameter variations ΦΦΦp.

4.3 Dynamic analysis

This section provides formulation of spatial equations of motion for multi-body system and presents the way

of solving the resulting system of mixed algebraic-differential equations.

4.3.1 Equations of motion of a rigid body

Consider the rigid body shown in Figure 4.11, which is located in space by the vector r, and a set of Euler

parameters, p, that define the orientation of the (x
′
,y

′
,z

′
) body-fixed reference frame in an inertial (x,y,z)

reference frame. A differential mass dm(P) is located in the point P defined on the body by the vector sP.

Forces acting on the differential elements of mass at point P include the external forces F(P) per unit

of mass at point P, and the internal force f(P,R) per unit of masses at points P and R. Newton’s equation of

motion for a differential mass dm(P) are

r̈Pdm(P)−F(P)dm(P)− (

∫

m
f(P,R)dm(R))dm(P) = 0 (4.41)

where integration of internal force f(P,R) is taken over the whole body. Let δrP be a virtual displacement of

a point P i.e. an infinitesimal variation of the location of point P that is consistent with the allowed motion
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Figure 4.11: Forces acting on a rigid body in space.

of a point P. Premultiplying both sides of Equation 4.41 by δrPT and integrating over the entire mass of the

body yields:

∫

m
δrPT r̈Pdm(P)−

∫

m
δrPT F(P)dm(P)−

∫

m

∫

m
δrPT f(P,R)dm(R)dm(P) = 0. (4.42)

The double integral that appears in the above equation can be evaluated as:

∫

m

∫

m
δrPT f(P,R)dm(R)dm(P) =

1

2

∫

m

∫

m
(δrP −δrR)T f(P,R)dm(R)dm(P). (4.43)

But, for a rigid body the distance between any two points is constant

(rP − rR)T (rP − rR) =C, (4.44)

and taking the differential of both sides results in:

(δrP −δrR)T (rP − rR) = 0. (4.45)

Since the internal force f(P,R) in the model of rigid body acts between points P and R i.e.

f(P,R) = k(rP − rR) (4.46)

where k is a constant coefficient, from Equation 4.45, the double integral of Equation 4.43 is equal zero.

Using this result, Equation 4.42 simplifies to

∫

m
δrPT r̈Pdm(P)−

∫

m
δrPT F(P)dm(P) = 0 (4.47)
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The virtual displacement δrP of a point P can be written in terms of the virtual displacement of the

(x′,y′,z′) body frame δr and a virtual rotation of the body δπππ
′ [73]

δrP = δr−As̃
′Pδπππ

′
(4.48)

Similarly, the acceleration of s point P may be written as:

r̈P = r̈+ Äs
′P = r̈+A ˜̇ωωω

′
s
′P +Aω̃ωω

′
ω̃ωω

′
s
′P. (4.49)

Substituting Equations 4.48 and 4.49 into the variational equation of Equation 4.47 and expanding the inte-

grals yields:

δrT r̈

∫

m
dm(P)+δrT (A ˜̇ωωω

′
+Aω̃ωω

′
ω̃ωω

′
)
∫

m
s
′Pdm(P)+δπππ

′T
∫

m
s
′Pdm(P)AT r̈

+δπππ
′T
∫

m
s̃
′P ˜̇ωωω

′
s
′Pdm(P)+δπππ

′T
∫

m
s̃
′Pω̃ωω

′
ω̃ωω

′
s
′Pdm(P)−δrT

∫

m
F(P)dm(P)

−δπππ
′T
∫

m
s̃
′PF

′
(P)dm(P) = 0.

(4.50)

4.3.2 Equations of motion with a centroidal body-fixed reference frame

Equation 4.50 can be significantly simplified if a body-fixed reference frame (x′,y′,z′) is chosen with its

origin at the centre of mass (or centroid) of the body. By definition for the centroid:

∫

m
s
′Pdm(P) = 0 (4.51)

Also, the following identities apply for the total mass m, the total external force F acting on the body and

the total moment n
′
of the external forces with respect to the origin of the body-fixed frame:

m ≡
∫

m
dm(P), (4.52a)

F ≡
∫

m
F(P)dm(P), (4.52b)

n
′ ≡

∫

m
s̃
′PF

′
(P)dm(P). (4.52c)

The fourth integral in Equation 4.50 can be written as

∫

m
s̃
′P ˜̇ωωω

′
s
′Pdm(P) =−

(∫

m
s̃
′Ps̃

′Pdm(P)

)
ω̇ωω

′ ≡ J
′
ω̇ωω

′
(4.53)
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where J
′

is a constant inertia matrix with respect to the centroidal body-fixed reference frame (x′,y′,z′)

defined as

J
′ ≡

∫

m
s̃
′Ps̃

′Pdm(P) =
∫

m




(y
′P)2 +(z

′P)2 −x
′Py

′P −x
′Pz

′P

−x
′Py

′P (x
′P)2 +(z

′P)2 −y
′Pz

′P

−x
′Pz

′P −y
′Pz

′P (x
′P)2 +(z

′P)2




dm(P) (4.54)

The fifth integral may be rearranged and evaluated to yield[73]:

∫

m
s̃
′Pω̃ωω

′
ω̃ωω

′
s
′Pdm(P) = ω̃ωω

′
(
−
∫

m
s̃
′Ps̃

′Pdm(P)

)
ωωω

′
= ω̃ωω

′
J
′
ωωω

′
. (4.55)

Finally, substituting the above identities into Equation 4.50 results in the variational Newton-Euler equations

of motion for a rigid body with a centroidal body-fixed reference frame,

δrT [mr̈−F]+δπππ
′
[
J
′
ω̇ωω

′
+ ω̃ωω

′
J
′
ωωω

′ −n
′
]

(4.56)

which must hold for all virtual displacements δr, and virtual rotations δπππ
′

of the centroidal frame that are

consistent with constraints that act on the body.

If no constraints act on a body, then δr and δπππ
′

are arbitrary, and their coefficients in Equation 4.56

must be zero. This yields the Newton-Euler equations of motion for the unconstrained body:

mr̈ = F,

J
′
ω̇ωω

′
= n

′ − ω̃ωω
′
J
′
ωωω

′
.

(4.57)

4.3.3 Equations of motion for constrained system

Consider nb bodies that form a constrained multi-body system. The system of generalised coordinates for

this system are:

r = [rT
1 ,r

T
2 , · · · ,rT

nb]
T ,

p = [pT
1 ,p

T
2 , · · · ,pT

nb]
T .

(4.58)

The set ΦΦΦ(r,p, t) of the kinematic, driving and Euler parameter normalisation constraints, derived in Sec-

tion 4.1, must hold at all times.

To implement the variational Newton-Euler equations of motion, Equation 4.56 is evaluated for each

body in the system and then added together to form a set of variational equations of motion for the whole
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system. To simplify the notation, let us define

δr = [δrT
1 ,δrT

2 , · · · ,δrT
nb]

T

δπππ
′
= [δπππ

′T
1 ,δπππ

′T
2 , · · · ,δπππ

′T
nb]

T

F = [FT
1 ,F

T
2 , · · · ,FT

nb]
T

ωωω
′
= [ωωω

′T
1 ,ωωω

′T
2 , · · · ,ωωω ′T

nb]
T

n
′
= [n

′T
1 ,n

′T
2 , · · · ,n′T

nb]
T

M ≡




m1I 0

m2I

. . .

0 mnbI




J
′ ≡




J
′
1 0

J
′
2

. . .

0 J
′
nb




ω̃ωω
′
≡




ω̃ωω
′

1 0

ω̃ωω
′

2

. . .

0 ω̃ωω
′

nb




(4.59)

Using this notation, the sum of Equations 4.56 over all bodies in the system may be written as

δrT [Mr̈−F]+δπππ
′
[
J
′
ω̇ωω

′
+ ω̃ωω

′
J
′
ωωω

′ −n
′
]
= 0 (4.60)

which must hold for all virtual displacements δr and virtual rotations δπππ
′
that are consistent with constraints

ΦΦΦ. Forces and moments that act on the system may be split into applied forces and torques FA and n
′A, and

constraint forces and torques FC and n
′C, respectively. For all constraints under consideration, the forces of

constraint do not work as long as the virtual displacements and rotations are consistent with constraints, that

is

δrT FC +δπππ
′
n

′C = 0 (4.61)
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Thus, the variational equation of motion for the constrained system (Equation 4.60) reduces to:

δrT
[
Mr̈−FA

]
+δπππ

′
[
J
′
ω̇ωω

′
+ ω̃ωω

′
J
′
ωωω

′ −n
′A
]
= 0, (4.62)

which must also hold for all allowed virtual displacements and rotations.

Virtual displacements δr and virtual rotations δπππ
′
are kinematically admissible for constraints

ΦΦΦ(r,p, t) ≡ΦΦΦ(r,πππ , t) if

ΦΦΦrδr+ΦΦΦπππ
′ δπππ

′
= 0 (4.63)

where ΦΦΦr and ΦΦΦπππ
′ can be assembled using the results of Section 4.2.4. Euler parameters normalisation con-

straints should not be included if virtual rotations δπππ
′

are employed, since they are automatically satisfied,

but must be included if the Euler parameter virtual variations δp are used. Since Equation 4.62 must hold

for all δr and δπππ
′

that satisfy Equation 4.63, by the Lagrange multiplier theorem, there exists a Lagrange

multiplier vector λλλ such that

δrT
[
Mr̈−FA+ΦΦΦT

r λλλ
]
+δπππ

′
[
J
′
ω̇ωω

′
+ ω̃ωω

′
J
′
ωωω

′ −n
′A +ΦΦΦT

πππ
′λλλ
]
= 0 (4.64)

for arbitrary δr and δπππ
′
. Since variations are now arbitrary, their coefficients must be equal to zero, to

satisfy the equation. This yields the constrained Newton-Euler equations of motion:

Mr̈+ΦΦΦT
r λλλ = FA,

J
′
ω̇ωω

′
+ΦΦΦT

πππ
′λλλ = n

′A − ω̃ωω
′
J
′
ωωω

′
.

(4.65)

To complete the set of equations of motion, the acceleration equation associated with the kinematic con-

straints ΦΦΦ must be taken into account. As derived in Section 4.2.3, the acceleration equation has a form of

ΦΦΦqq̈ =−(ΦΦΦqq̇)qq̇−2ΦΦΦqt q̇−ΦΦΦtt ≡ γγγ (4.66)

where the vector γγγ is defined in Table 4.1 for each of the constraint equations.

Combining Equations 4.65 and 4.66, the system of acceleration equations to be solved is:




M 0 ΦΦΦT
r

0 J
′

ΦΦΦT

πππ
′

ΦΦΦr ΦΦΦπππ ′ 0







r̈

ω̇ωω
′

λλλ



=




FA

n
′A − ω̃ωω

′
J
′
ωωω

′

γγγ




. (4.67)
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The above equation is a system of mixed first-order differential-algebraic equations for the velocity variables

ṙ and ωωω
′
, and the algebraic variables λλλ . It is not a second-order differential-algebraic system, since the

angular velocity ωωω
′

is not integrable in general. Therefore, once the angular velocities or accelerations are

obtained, they must be transferred to the derivatives of Euler parameters through Equations 4.40. In addition,

the kinematic and Euler parameter normalisation constraints and the constraint velocity equations must be

satisfied, that is

ΦΦΦ(r,p, t) = 0

ΦΦΦrṙ+ΦΦΦpṗ = v

(4.68)

where the Euler parameter normalisation constraints are already included in the ΦΦΦ(r,p, t). Initial conditions

on position, orientation, and velocity must be provided to define the dynamics of a system.

It is possible to derive equivalent of Equation 4.67 using Euler parameters instead of angular veloci-

ties. Resulting system of acceleration equations is more complex and computationally more expensive [73]

since the inertia matrix is not constant in GCS. However, since the angular velocities and accelerations must

be transferred to time derivatives of quaternions, the additional computational cost is not pronounced. The

Euler parameter system of acceleration equations is obtained as




M 0 ΦΦΦT
r 0

0 4GT J
′
G ΦΦΦT

p ΦΦΦ
pT
p

ΦΦΦr ΦΦΦp 0 0

0 ΦΦΦp 0 0







r̈

p̈

λλλ

λλλ p




=




FA

2GT n
′A +8ĠT J

′
Ġp

γγγ

γγγp




(4.69)

where G= diag(G1,G2, · · ·Gnb). It is not derived here in detail, although it is truly second-order differential-

algebraic system. This, and other possible formulations of the system of acceleration equations are presented

in detail in Haug [73] and Nikravesh [153]. Both dynamic equations 4.67 and 4.69 were implemented in the

MBDM solver, and latter was employed in this work.

4.4 Coordinate partitioning method

In this section, coordinate partitioning method of solving mixed differential-algebraic system of equations

is described. This method makes use of the fact that the n = 7 ·nb generalised coordinates q = [rT ,pT ]T are
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not independent. There are only as many independent coordinates as there are degrees of freedom. The rest

of the coordinates are dependent through the constraint equations. Thus, it is sufficient to solve the dynamic

equations for independent variables and obtain the dependent variables by solving kinematic equations.

If the n coordinates are partitioned into m dependent coordinates u and k independent coordinates v,

then the velocity vector q̇ can be partitioned accordingly into u̇ and v̇. The vectors y and ẏ are going to be

integrated in time and are defined in terms of the independent variables:

y =




v

v̇


 , ẏ =




v̇

v̈


, (4.70)

where v̈ is a vector of independent accelerations.

The kinematic constraints and the velocity Equations 4.31 and 4.34 can be expressed as

ΦΦΦ(u,v, t) = 0 (4.71a)

ΦΦΦuu̇ =−ΦΦΦvv̇−ΦΦΦt (4.71b)

Equations 4.71a and 4.71b, each, represent m independent equations in terms of u and u̇, respectively.

Once vectors v and v̇ are obtained from y, Equations 4.71 can be solved for u and u̇, and the vectors q and

q̇ of the generalised coordinates are completely known.

An algorithm for the coordinate partitioning method can be summarised in its simplest form as fol-

lows [153]:

A) Main routine

1. Specify the initial conditions on q and q̇.

2. Specify the independent variables v and v̇.

3. Define vector y as y = [vT , v̇T ]T .

4. Enter numerical integration routine.

B) Numerical integration routine

This routine solves an initial-value problem of the form ẏ = f (y, t) for y from the
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time t0 to final time t f . During integration the function f (y, t) must be evaluated

at least once per time step, or more than once for high-order schemes. For this

purpose a DIFEQN routine with known time t and vector y, to determine f (y, t)

is used.

C) DIFEQN routine

1. obtain v and v̇ from y.

2. Solve Equation 4.71a using Newton-Raphson method for u. This way q is

found.

3. Solve Equation 4.71b for u̇. This way q̇ is found.

4. Solve Equation 4.67 or Equation 4.69 for q̈ and λλλ .

5. Transfer v̇ from q̇ and v̈ from q̈ to form ẏ =




v̇

v̈




6. Return ẏ.

In step A.2 an automatic process is employed to partition the generalised coordinates into dependent

and independent variables. A matrix factorisation technique can be performed on the Jacobian matrix for this

purpose [153]. For a mechanical system with with m constraints and n generalised coordinates, the Jacobian

is an m× n matrix. The order of the columns of the matrix corresponds to the order of the elements in

vector q. After reducing the Jacobian to the row-reduced echelon form, the order of the columns determines

the ordering of the elements of q. The first m elements of the reordered q can be used as the dependent

coordinates u, and the remaining k elements represent the independent coordinates v. This way the Jacobian

ΦΦΦu is guaranteed to have a full row rank.

For the MBDM code, the Jacobian matrix is reduced to row-reduced echelon form through Gaussian

elimination with full pivoting. It is important to note, that during the time-stepping routine, the need to

change the set of independent variables may arise. The reason is that partitioning influences the accumu-

lation of the numerical error, and this must be kept under control (see Section 4.4.1 for the example). In

the extreme case, the Jacobian ΦΦΦu may have insufficient row rank. It is possible to define criteria indicating
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whether the independent coordinates must be redefined [73, 153]. In the MBDM code, the generalised coor-

dinates are partitioned at every time step. This is computationally more expensive, but safer approach to

bound the numerical errors.

Another part of the coordinate partitioning method requiring attention is step C.2, where the Newton-

Raphson algorithm is employed to solve the nonlinear set of equations ΦΦΦ(u,v, t) = 0. The algorithm is

similar to the one in the kinematic analysis of Equation 4.33, but is modified, since the Jacobian ΦΦΦq has

insufficient row rank. The Newton-Raphson algorithm for dynamic analysis can be set as follows




ΦΦΦu ΦΦΦv

0 I







∆ui

∆vi


=



−ΦΦΦ(ui,vi, t)

0




ui+1 = ui +∆ui

(4.72)

where u0 is initial estimate of dependent variables at time t, and improved estimates are obtained until

prescribed convergence criteria are met. I is the identity matrix, since the independent variables are known

and do not need an iterative update.

4.4.1 Example of automatic partitioning

First, lets consider a m×n = 2×3 matrix of general from (left) and the row reduced echelon form (right)

ΦΦΦq =




a11 a12 a13

a21 a22 a23


=




1 0 α

0 1 β


 (4.73)

where α and β result from reduction. The first m = 2 columns represent the dependent variables, the last

k = n−m = 1 columns represent the independent variables.

To gain a deeper understanding, considering the following example of a 2D pendulum of length 2d

presented in Figure 4.12. The pendulum is pivoted about the point O, and is allowed to rotate freely under

external forces and moments. In this case the system has in total 3 degrees of freedom, and 2 of them are

constrained. The vector of generalised coordinates is q = [x1,y1,φ1]
T and the constraint equation vector is

ΦΦΦ(q, t) =




Φ1

Φ2


=




x1 −d · sin(φ1)

y1 +d · cos(φ1)


= 000 (4.74)

97



4.4. COORDINATE PARTITIONING CHAPTER 4. MULTI-BODY SIMULATION METHOD
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Figure 4.12: Simple pendulum.

The Jacobian of this system is

ΦΦΦq =




∂Φ1
∂x1

∂Φ1
∂y1

∂Φ1
∂φ1

∂Φ2
∂x1

∂Φ2
∂y1

∂Φ2
∂φ1


=




1 0 −d · cos(φ1)

0 1 −d · sin(φ1)


 (4.75)

and is already in a row reduced echelon form. This indicates that the angle φ1 is a good choice for an

independent variable. This is true, because if variable φ1 is known from acceleration analysis, the remaining

variables x1 and y1 can be readily obtained from Equation 4.74.

This is quite obvious at this stage, but a more rigorous analysis can be performed to show that indeed

φ1 is the best choice for independent variable. In the following analysis, the subscript indices are dropped

for clarity. If the numerical error in the coordinates is denoted by δx, δy and δφ , then

δx = d cos(φ)δφ (4.76a)

δy = d sin(φ)δφ (4.76b)

In the selection of the independent coordinates, three cases may arise:

1. The independent variable is chosen to be x. An error δx causes errors in y and φ , as follows:

δφ =
1

d · cos(φ)
δx (4.77a)

δy =
sin(φ)

cos(φ)
δx (4.77b)
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2. The independent variable is chosen to be y. An error δy causes errors in x and φ , as follows:

δφ =
1

d · sin(φ)
δy (4.78a)

δx =
cos(φ)

sin(φ)
δy (4.78b)

3. The independent variable is chosen to be φ . An error δφ causes errors in x and y, as follows:

δx = d cos(φ)δφ (4.79a)

δy = d sin(φ)δφ (4.79b)

A comparison of the three cases reveals that for φ = ±π/2, case 1, yields large errors in φ and y

even for a small error δx. Therefore, for these values of φ , or any value close to these, the selection of x

as the independent variable is the worst choice. Similarly, in the neighbourhood of φ = 0 or φ = π , the y

coordinate is the worst choice for the independent variable. The third case shows that if φ is selected as the

independent coordinate, the error remains bounded regardless of the orientation of the pendulum. Therefore,

there is no need to switch to another coordinate at any time during computation, and this choice is the best

for given problem.

4.5 Translational springs and dampers

The MBDM code takes into account arbitrary number of springs and dampers. The only requirement is that

one end of the spring/damper is attached to a body, and the other end is fixed in the global reference frame.

This assumption is employed in the derivation below. More general formulation can be found in the book of

Haug [73]. Also, the rotational spring-damper-actuator is described in the aforementioned publication. Here,

the spring-damper system is used to represent the mooring line.

First, consider the body shown in Figure 4.13. The body is connected with one translational spring-

damper set to the point ri representing anchor, and point Pj represents fairlead. Thus, the vector di j pointing

from anchor to fairlead is

di j = r j +A js
′P
j − ri (4.80)
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Figure 4.13: Body with translational spring fixed at one point.

The length l of the spring-damper set is given by

l2 = dT
i jdi j (4.81)

and can be differentiated in time to yield

2ll̇ = 2dT
i jḋi j (4.82)

After some rearrangement, the time rate of the length change becomes:

l̇ =

(
di j

l

)T (
ṙ j + Ȧ js

′P
j − ṙi

)
=

(
di j

l

)T (
ṙ j −A js̃

′P
j ωωω

′
j

)
, (4.83)

where simplification has been made, since anchor location is fixed in time i.e. ṙi = 0. Note, that if l ap-

proaches zero an indeterminate fraction occurs in Equation 4.83. Although it is not the case for mooring

cables, L’Hospital’s rule may be used for general case to obtain liml→0
di j

l
.

The magnitude of the force acting in the spring-damper set is

f = k(l − l0)+bl̇, (4.84)

where k is the spring stiffness coefficient, and b is the damping coefficient. The virtual work done by this

force is

δW =− f δ l (4.85)
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where the variation in length δ l is obtained by taking the differential of Equation 4.81 and dividing by l to

obtain:

δ l =

(
di j

l

)T (
δr j −A j̃s

′P
j δπππ

′
j

)
. (4.86)

Substituting this result in Equation 4.85, yields

δW =
− f

l
dT

i j

(
δr j −A j̃s

′P
j δπππ

′
j

)
. (4.87)

The coefficients of virtual displacements, and virtual rotations, are the force and moment due to the spring-

damper system:

FA
m =

− f

l
di j, (4.88a)

n
′A
m =

− f

l
s̃
′P
j AT

j di j, (4.88b)

where the expression for the magnitude of force f is given by Equation 4.84.

101



Chapter 5

Conceptual model of coupling

This chapter is devoted to the employed coupling algorithm, its implementation and validation. Firstly,

the importance of strong coupling is assessed for studied system and conditions. This is followed by the

description of the communication method between the solvers. The procedure to generate a particular sea-

state is investigated at the end of this chapter.

5.1 Importance of strong coupling

The strong coupling may be important if the phenomena occurring in both fluids have similar time scales.

Due to frequency similarities, resonances may occur, and the exact response of a system will deviate from

what is predicted by a loosely coupled algorithm. On the other hand, if the time scales are largely different,

loosely coupled algorithm may be sufficient. The exact bounds when the strong coupling is required for

particular FOWT must be carefully assessed. Some indication comes from the waves and rotor frequency

analysis. The sea state, wave height, wave frequency, and wind speed are empirically related in terms of

range and most probable values e.g. in [51, 116], see Section 5.3 for details. On the other hand, every wind

turbine is designed to operate at a particular rotational frequency for a given wind speed. This allows to

construct a "Campbell"-like diagram for the FOWT investigated in this work (Figure 5.1). It is clear that for

sea states between 3 and 4 (or wind speed about 9m/s) resonances may occur. The rated power production

for this 10-MW FOWT corresponds to the wind speed of 11.4m/s, or sea state 4. This indicates that for
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rated conditions, the weakly coupled algorithm may be sufficient.
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Figure 5.1: "Campbell"-like diagram for the investigated FOWT showing frequencies of the rotor and the
waves as function of sea state and wind speed.

5.2 Communication between solvers

As was shown in Chapter 1, many disciplines converge in the coupled model of the FOWT. The current

implementation is schematically presented in Figure 5.2, where coupling is between the fluids: air and

water. Another option would be to employ a multi-phase solver (e.g. Volume of Fluid as in [197]). This

approach does not tackle the problem of coupling, but shifts it to the structure-fluid side.

Coupled model of

FOWT
MBDM

− Multi−body solver
− Mooring lines

− Hydrodynamics
SPH

− Aerodynamics
HMB3

Figure 5.2: Schematic of the solvers employed in the floating off-shore wind turbine model.
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In general, the exchange of information without stopping the computations can be implemented in

three ways: through files, shared memory or the Message Passing Interface (MPI). Writing a file is the

simplest solution. Both solvers can be launched separately and write files whenever exchange of information

is required. This approach calls for very minor changes to both codes. The drawback is that writing and

reading from a hard drive creates a bottleneck, and slows down the computation especially if information is

exchanged often, and large amount of data is to be exchanged.

In the shared memory approach multiple processes have access to the same memory, allowing them

to change it and read changes made by other processes. If random access memory (RAM) is to be used, it

requires a shared memory machine, which may not be available on a High Performance Computer (HPC),

where emphasis is usually placed on distributed memory. The file system can be used instead by mapping

the memory on the hard drive. This approach suffers from the same drawback as the case of external storage.

Both employed CFD solvers are parallelised using MPI and the Single Program, Multiple Data

(SPMD) paradigm, where each instance of the solver is assigned to perform the same task on different

sets of data. Therefore, the easiest way to combine solvers is to employ MPI, but in Multiple Program, Mul-

tiple Data (MPMD) approach, where different programs operate on different sets of data. However, direct

MPMD implementation of SPMD solvers requires additional effort to split the global communicator, such

that each of the solvers is in a separate communicator (MPI_COMM_WORLD) with a separate ordering of

processes, as detailed in OpenMPI documentation [155]. This can be avoided by dedicating one process to

execute both solvers using MPI_Comm_spawn routine. The dedicated code is referred to as master program

or parent, and spawned processes are referred to as children. This approach has a number of advantages

briefly summarised as:

1. The spawned program has its own MPI_COMM_WORLD, therefore no modifi-

cations are required to original code with respect to processes that are going to

communicate inside the child group.

2. The ordering of the processes is separate for parent and children. This way no

modifications are required to original code with respect to process that is going to

be in charge of the computation inside the child group.
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3. The child process can easily identify if it was spawned or launched directly with

an MPI command. This maintains the original code functionality.

5.2.1 MPI communication

In the present work, the communication between the solvers was established through the Message Passing

Interface (MPI), where the MBDM is executed as a single process and is dedicated to start SPH and HMB3

parallel solvers. The data flow diagram of the implementation is presented in Figure 5.3. The communication

rotor:
− forces
− moments

rotor:

−velocity
−position

Internal communicator:

MPI_COMM_WORLD

comminucator to MBDM:

size:

ordering:

MPI_comm_get_parent

(m instances)

m

0,...,m−1

SPH

− forces
− moments

support:

support:

−acceleration
−velocity
−position

Solve multi−body

(n instances)

Internal communicator:

MPI_COMM_WORLD

comminucator to MBDM:

size:

ordering: 0,...,n−1

MPI_comm_get_parent

n

HMB3

MBDM

MPI_comm_spawn

(one instance)

Figure 5.3: Flow chart of the MPI implementation and data exchange for coupled model.

was validated by executing separately SPH or HMB3, and comparing with the results where the body motion

was introduced by the MBDM. Due to the Lagrangian nature of the SPH method, the submerged bodies can

be represented with particles and do not require specific coupling. Therefore, by utilising MPI, the MBDM

substituted the body motion routines of the SPH solver and reduced the number of coupled codes to two -

SPH and HMB3. This implies that the MBDM is advancing in time with the same integration scheme as the

SPH solver.
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MPI communication with HMB

Two tests were performed to validate the communication protocol between the MBDM and HMB3. First,

the HMB3 solver was launched as a child process. Mesh velocities were transferred at each time step from

the master, redistributed among the HMB3 nodes and applied as mesh motions. This was compared to

computation using built-in functions in HMB3 to apply prescribed mesh motions. The test case was 2D

unsteady computation of a TL190-82 aerofoil that undergoes sinusoidal pitching motion about the leading

edge with amplitude of 10◦. The k-ω turbulence model was employed for this test. The computational

parameters are presented in Table 5.1, and the mesh used for this comparison in Figure 5.4. The results
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Figure 5.4: Meshes around the TL190-82 aerofoil used in 2D computations to validate communication
protocol.

of the test cases in terms of lift, drag and moment coefficients are presented in Figure 5.5. As can be seen,

the lift, drag and moment coefficients, over time, become identical for both computations. The positions

of the surfaces along with pressure coefficient distribution at time t = 3s are also compared. Results are

shown on Figure 5.6, where excellent agreement can be observed. The above results show correctness of

the established communication and procedure to apply mesh motion.
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Table 5.1: Coupling test case conditions for 2D simulations of TL190-82 aerofoil.

Re 2.5 ·106

M 0.11
Chord 1m

Grid size 0.13 ·106 cells
Pitching frequency 1Hz

Pitching amplitude 10◦

Pivot point [x,y] = [0,0]m
Iterations 1110
Steps per iteration 150
L2 convergence criteria per iteration 1 ·10−3

Total time 3s

Time step 2.72 ·10−3s

Time step in characteristic time scale 0.1

MPI communication with SPH

Four test cases were used to validate the communication between the MBDM and SPH solvers. All test cases

had the same initial particle distribution and floating object on the SPH side. The geometry of the test case

is shown in Figure 5.7, and the initial distribution of the SPH particles is shown in Figure 5.8. The spacing

between the particles was chosen to be d = 0.01m, such that the floating body is represented by at least 6

particles in each direction. All test cases were run with the same computational parameters summarised in

Table 5.2.

Table 5.2: Computational parameters of SPH communication test cases.

Spacing between particles d = 0.01m

Smoothing length 1.5d

Number of particles 157,646
CoG of floating body [1.03,0.31,0.23]m
Floating body dimensions 0.06,0.06,0.06m

Gravity acceleration [0,0,−9.81]m/s2

Viscosity treatment Artificial
Viscosity parameter α = 0.01
CFL number 0.2
Coefficient of speed of sound 20
Density filter No filter
Boundary Conditions Repulsive Force
Friction coef. between floating object and wall particles 0.20
Time step ∆t = 1.2 ·10−4s

Total time 4s

The first test case is the SPH code without any modification. The second test case involves simple
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Figure 5.5: Coefficients of lift, drag and moment c/4 as functions of time for pure HMB3 and HMB3 with
communication, where grid motion is applied at each time step.

communication, where the SPH calculates the new position and the velocity of the floating body, sends this

information to the parent process, and receives the position and velocity back from the parent. These vari-

ables are then used in the SPH code instead of original variables. This test case should reveal any problems

with the MPI communication between different programming languages: Fortran for the SPH solver, and

C for the MBDM solver. The third test case involves computation of the new position and velocity of the

floating body outside the SPH code, within the MBDM solver. The computational algorithm was kept the

same as it was originally implemented in the SPH code. A more detailed description is presented later in

this section. The fourth test case employed the computation of new position and velocity using the MBDM
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Figure 5.6: Position of the TL190-82 aerofoil and pressure coefficient distribution at time t = 3s. Compari-
son between computations using pure HMB3 and HMB3 with communication.
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Figure 5.7: Schematic geometry of the test case, not in scale. Floating body is a cube with mass m= 0.216kg.

model for 6-DOFs motion. The new position and velocity are then transferred to the SPH and applied. All

four cases are summarised in Table 5.3. The results of the computations are presented in Figures 5.9 and

5.10. The position of the floating body is shown in the global reference frame, as presented in Figure 5.7.

The rotational dynamics of the floating body, as was originally implemented in the SPH[60, 62, 63]
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Figure 5.8: Initial particles distribution for all validation test cases. Spacing between particles d = 0.01m.

Table 5.3: Test cases to validate communication protocol between SPH and master.

Test case Description
1. Pure SPH Pure SPH code without modifications.
2. SPH with simple communication Position and velocity of floating object are computed with

SPH, transferred to MBDM, and returned back to SPH.
3. SPH with calculation SPH computes the loads and transfers them to the MBDM

solver. The MBDM computes new position, velocity and
acceleration with the same equations as in the SPH solver
and returns position, velocity and acceleration back to
SPH.

4. SPH with calc. using MBDM SPH computes loads and transfers them to the MBDM
solver. In return, the MBDM computes new position, ve-
locity and acceleration using multi-body model and returns
them to the SPH solver.

code, is the solution to the following equation:

J
∂ωωω

∂ t
= ∑

k

mk(rk −R)× fk (5.1)

where J is a constant moment of inertia matrix, ωωω is rotational velocity, rk is the position of the k-th particle

in a global reference frame, R is the position of the centre of mass of the floating body in a global reference

frame, fk is the force acting on the k-th particle defined in the global reference frame, and summation is over

all the floating body particles. As can be seen, the right hand side results in a moment about the centre of

mass of the floating body. This moment is defined in the global coordinate system. Equation 5.1 is only

valid for a two-dimensional motion, where the rotation is about one of the principal axes i.e. the moment

vector has only one non-zero component in the global reference frame. When a body is displaced in such

a way that the local body frame does not coincide with the global reference frame, the moment of inertia
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Figure 5.9: Lateral dynamics of the cube during the drop into calm water. Comparison between four test
cases - Pure SPH, SPH with simple communication, SPH with calculation and SPH with calculations using
MBDM. See Table 5.3 for the description.

matrix is no longer constant, and must incorporate the new body orientation in the global reference frame.

As can be seen in the results, the computation using pure SPH and SPH with the simple communica-

tion method produced identical results. This comparison proves the ability of the MPI routines to preserve

information while sending messages between the two solvers. Also, the results of the pure SPH and the SPH

with calculations are identical. This comparison proves that the same numbers multiplied in Fortran (SPH)

and C (MBDM) codes produced the same results. Differences arise, when the multi-body code is used to
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Figure 5.10: Rotational dynamics of the cube during the drop into calm water. Comparison between four
test cases - Pure SPH, SPH with simple communication, SPH with calculation and SPH with calculations
using MBDM. See Table 5.3 for the description.

compute the dynamics of the floating body. Those differences are due to the different dynamic equations,

where Equation 5.1 in the original SPH code is not valid for general three-dimensional motion. Although

the difference is only in the rotational equations of motion, the lateral and rotational dynamics are coupled

i.e. different orientation of the body results in different lateral forces. The results show that the body flips on

the side - rotation about y axis with the angle of π/2. This is due to the initial particles that were assigned

to the body as shown in Figure 5.11. The last layer of particles in the x direction is missing, creating the
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moment about the centre of mass. This incorrect representation of the geometry of the floating body was

noticed, but was not affecting the validation, since the validation of communication between the solvers

was the main objective. However, it indicates that careful attention must be paid to how the floating objects

are represented by the particles. Hence, floating objects employed in Chapters 6 and 13 were thoroughly

checked for correct particle representation. Also, it is important to note that the results of the SPH with

calculations using the MBDM begin to deviate from the SPH solution after approximately 0.5s. This is

because the moment about other axes then y became more pronounced after this time, and the Equation 5.1

was no longer valid.

X Y

Z

(a) front view

Y X

Z

(b) side view

XY

Z

(c) isometric view

Figure 5.11: Comparison between the real shape of the body (red lines) and the particles used to represent
the body. Last layer of particles in x direction is missing.

Another aspect that must be addressed is whether the position of the SPH particles assigned to a

floating body correspond to the computed positions in the MBDM solver. This is important because the

SPH solver does not send the particles’ positions to the MBDM solver, and the MBDM solver does not send

the rotational matrix to the SPH solver. Instead, the particles are moved by using the obtained position of

the floating body, and the lateral and rotational velocities i.e. the calculated Euler angles are not used. This

is obtained by solving the following sequence of equations in the SPH solver:

xn+1
k = xn

k +∆t ·un
k (5.2a)

rn+1
k = xn+1

k −Rn+1 (5.2b)

un+1
k = Un+1 +ωωωn+1

k × rn+1
k (5.2c)

where k is a particle that belongs to the floating body, n indicates the time such that t = n ·∆t, x is the
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location of the particle in the global coordinate system (GCS), u is the velocity of the particle in the GCS,

R is the vector pointing to the centre of mass of the floating object defined in the GCS, r is a vector pointing

from the centre of mass to the particle position in the GCS, U is the lateral velocity vector of the floating

body defined in the GCS, and ωωω is the rotational velocity of the floating body defined in the GCS. Quantities

R, U, and ωωω are received from the MBDM solver.

To validate whether the position is identical, the corner particle of the floating body was chosen and

traced in time in the SPH and the MBDM solvers separately. The results of the position of this particle are

presented in Figure 5.12. As can be seen from the results, the position of the traced particle is the same in
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Figure 5.12: Comparison between the position of the corner particle in MBDM and in SPH that is governed
by the MBDM dynamic equations. Initial position of the particle was [1.0,0.34,0.26]m.

the MBDM and SPH codes. This shows the correct position and orientation of the floating body in both

solvers as they advance in time.

5.3 Generation of regular waves

This section describes the procedure to generate regular waves using the SPH solver. The sea waves can be

described in terms of the sea state, which is represented by the sea state number that is, in return, correlated

with the height and frequency of the waves. Table 5.4 shows the annual sea occurrences in the North Atlantic

as in[51]. It must be noted that the most probable modal period presents the modal period corresponding to

the centre frequency of the modal period band with the highest probability of occurrence and does not reflect

anything about the distribution within that band. Hence, the important aspect for a reproduction of the sea
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state is a wave spectrum. Commonly used wave spectra include the Pierson-Moskowitz[160], and the Joint

North Sea Wave Project (JONSWAP)[72] spectrum. In the following, the simplification is adopted by using

a regular wave with characteristic amplitude and frequency of the sea state.

Table 5.4: Annual sea occurrences in the North Atlantic[51]

Sea State
Significant Wave Height (m) Modal Period (s) Substantial wind speed (m/s)
Range Mean Range Most probable Range Mean

0-1 0-0.1 0.05 0 0 0-3 1.5
2 0.1-0.5 0.3 3.3-12.8 7.5 4-5 4.5
3 0.5-1.25 0.88 5.0-14.8 7.5 6-8 7
4 1.25-2.5 1.88 6.1-15.2 8.8 9-11 10
5 2.5-4.0 3.25 8.3-15.5 9.7 12-14 13
6 4.0-6.0 5 9.8-16.2 12.4 15-24 19.5
7 6.0-9.0 7.5 11.8-18.5 15 25-28 26.5
8 9.0-14.0 11.5 14.2-18.6 16.4 29-32 30.5
>8 >14.0 >14.0 15.7-23.7 20 >32 >32

Two-dimensional computations were performed to find the wave generator parameters required to

create characteristic waves for particular sea state. The water tank for this set of test cases was chosen to

be 500m long, where the waves are generated by the paddle at one side of the tank, and dissipated by a

beach-like slope at the other end of the tank, as shown in Figure 5.13. The tank was filled with water to the

level of 20.1m, and the slope of the beach was set to β = 8.5◦.

=8.5β
o

2
0

.1
m4
0

.0
m

200.0m

10.0m

30.0m

paddle

150.0m 150.0m

a wind turbine
(wave height is measured at this point)

Figure 5.13: Two dimensional water basin for regular waves generation test cases. Not to scale. Wave height
is measured around 150m from the paddle.

The flat-bottom part of the domain was 300m long, and the wave height was calculated at a distance

of around 150m from the paddle. This was chosen to allow at least one wave length between the paddle and

the wind turbine position, although the wind turbine was not considered in this test. The wave height was

calculated from crest to trough at given location, as shown in Figure 5.14(a). The trough was measured at

some time t, and crest was measured at time t +T/2, where T is a period of the waves.

The DTU-10MW [11] employed in this work is designed to start at 4m/s wind speed, operate at rated
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conditions at 11.4m/s, and shut down at wind speed above 25m/s. This corresponds to possible operating

sea states ranging from 3 to 6, where rated conditions are obtained for sea state 4, as listed in Table 5.4.

Computational parameters employed for the SPH solver are listed in Table 5.5.

Table 5.5: Computational parameters of SPH for wave generation test cases.

Spacing between particles d = 0.3m

Smoothing length h = 1.5d

Number of particles 83,033
Viscosity treatment Artificial
Viscosity parameter α = 0.1
CFL number 0.2
Coefficient of speed of sound 20
Density filter No filter
Boundary Conditions Dalrymple
Time step ∆t = 1.2 ·10−4s

The wave generator consisted of a paddle that was moving in the x direction in a sinusoidal manner

with amplitude A and frequency f . The frequency was kept constant for each sea state, and the amplitude

was varied to find the correlation between the amplitude of the paddle and the height of generated waves.

The results for characteristic waves for sea state 4 are shown in Figure 5.14(b), where the linear relationship

is evident. The best estimate of the sea state 4 was obtained for the paddle amplitude A = 1.2m. Three

solutions for different paddle amplitudes are compared in Figure 5.15.

(a) Wave height obtained from two solutions for sea state 4.
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(b) Wave height as function of paddle amplitude for sea
state 4.

Figure 5.14: Results for sea state 4 - definition of the wave height (a), and calculated wave height as function
of paddle amplitude (b).

Similar regular wave tests were performed for other sea states, and the results are shown in Figure 5.16
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(a) Paddle motion amplitude A = 0.5m.

(b) Paddle motion amplitude A = 1.0m.

(c) Paddle motion amplitude A = 2.0m.

Figure 5.15: Span-shots of the pressure distribution and surface elevation for the sea state 4 for various
amplitudes of paddle motion. Period of paddle motion T = 8.8s. Time of the solution t = 60.0s.

Sea state [­]

H
e

ig
h

t,
 A

m
p

li
tu

d
e

 [
m

]

2 3 4 5 6 7
0

1

2

3

4

5

6

7
Mean Wave Height
Amplitude of paddle motion

Figure 5.16: Wave height and paddle amplitude as function of sea state.

and Table 5.6. The conclusion can be drawn that amplitude of paddle motion should be around 68% of

desired wave height.
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Table 5.6: Amplitude and period of paddle motion to generate regular waves corresponding to characteristic
waves in sea states from 3 to 6.

Sea state Wave height [m] Paddle amplitude [m] Paddle period [s]

3 0.88 0.60 7.5
4 1.88 1.20 8.8
5 3.25 2.20 9.7
6 5.00 3.70 12.4
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Chapter 6

Validation of SPH

The SPH method was validated against experimental results of Greenhow and Lin[66] for the high speed entry

of a half-buoyant solid cylinder into the calm water. Following the experimental setup shown in Figure 6.1,

the cylinder of density 500kg/m3 was allowed to fall freely from the height of 0.8m. The diameter of the

cylinder was 0.11m and the length was 0.2m; the water depth was 0.3m.

(a) Isometric view. (b) Side view.

Figure 6.1: Schematic of the SPH validation setup: a) isometric view b) side view.

Simulations were executed with the cubic spline kernel, the artificial viscosity model with viscosity

parameter α = 0.1, and adiabatic index for the equation of state was set to γ = 7. The Dalrymple boundary
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condition was employed for the cylinder particles, see Section 2.4.3 in Chapter 2 for details. The XSPH

parameter (see Section 2.4.1) to move particles with the velocity close to the average in their neighbourhood

was ε = 0.5, and sound coefficient to restrict the sound to be c times faster then the maximum fluid velocity

was c = 20. The density of the cylinder was assigned by defining the relative weight between fluid and

cylinder particles to be w = 0.5. The viscosity between the cylinder SPH particles and fluid particles was

neglected. Finally, the symplectic time integration scheme[117] was employed for all presented test cases,

and the Courant-Friedrichs-Lewy number CFL = 0.2 was used. Computational parameters employed for

the SPH solver are listed in Table 6.1.

Table 6.1: Computational parameters of SPH for validation test cases.

Smoothing length h = 1.5d

Viscosity treatment Artificial
Viscosity parameter α = 0.1
CFL number 0.2
Coefficient of speed of sound 20
XSPH parameter ε = 0.5
Density filter No filter
Boundary Conditions Dalrymple
Time step ∆t = 1.0 ·10−4s

First, the influence of the viscosity parameter α on the depth of penetration was tested for the fixed

initial distance between the particles d = 0.65cm. The results are presented in Figure 6.2. As can be seen,

the reduction of the artificial viscosity below certain value of α does not increase the depth of penetration,

where the limiting value appears to be α ≈ 0.1. For this reason, further validation tests were computed with

the viscosity parameter set to α = 0.1. Also, it is clear that by tuning artificial viscosity, any slope of the

curve below the one calculated for α = 0.1 can be achieved.

Next, five test cases were compared with different distance between the particles d, and therefore

different amount of particles since the geometry was kept constant. In the first case d =R/8≈ 0.69cm, in the

second case d =R/11= 0.50cm, in the third case d =R/16≈ 0.34cm, in the fourth case d =R/24≈ 0.23cm,

and in the fifth case d = R/32 ≈ 0.17cm, where R = 5.5cm is a radius of the cylinder. Table 6.2 presents

more information on the number of particles and its mass for the computed test cases.

The penetration depths for those cases are compared to the experimental results in Figure 6.3. It is

clear that with increasing number of particles, but up to some limit, the depth of penetration has better agree-
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Figure 6.2: Depth of penetration of a cylinder of density 500 kg/m3: SPH results for different viscosity
parameters α and constant number of particles. Experimental data of Greenhow and Lin[66] is shown for
comparison.

Table 6.2: Validation test cases for the SPH method.
Initial spacing Property Cylinder Fluid Boundary Total

d = 0.69cm
Number of particles 5,713 312,481 70,183 388,377
Mass of one particle [kg] 1.63 ·10−4 3.25 ·10−4 3.25 ·10−4 -

d = 0.50cm
Number of particles 15,000 824,820 132,570 972,390
Mass of one particle [kg] 6.25 ·10−5 1.25 ·10−4 1.25 ·10−4 -

d = 0.34cm
Number of particles 47,023 2,536,398 279,445 2,862,866
Mass of one particle [kg] 2.03 ·10−5 4.06 ·10−5 4.06 ·10−5 -

d = 0.23cm
Number of particles 159,221 8,668,270 629,071 9,456,562
Mass of one particle [kg] 6.00 ·10−6 1.20 ·10−5 1.20 ·10−5 -

d = 0.17cm
Number of particles 381,871 20,556,725 1,116,921 22,055,517
Mass of one particle [kg] 2.54 ·10−6 5.08 ·10−6 5.08 ·10−6 -

ment with the experimental data. For the finest resolution of the SPH domain, the method predicted deeper

penetration as compared to the measurements. As was shown before, this can be improved by increasing

the artificial viscosity parameter, but this was not the purpose of this validation. Also, the experiments were

conducted in quasi two-dimensional conditions, where top and bottom of the cylinder were close to the walls

of the tank. However, during the simulations initial distance of the cylinder from the container walls was

introduced, and was set to 7R/8 ≈ 5cm, as shown in Figure 6.1. This was found to be necessary, as the

purpose was to validate three-dimensional SPH method, but proximity of the walls introduced interaction

between the falling cylinder and the walls of the tank. The interaction takes place when the cylinder parti-

cles fall within the range of the kernel for boundary particles, introducing friction. To avoid this unphysical
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Figure 6.3: Depth of penetration of a cylinder of density 500 kg/m3: SPH results for different distance
between particles (d) and experimental results of Greenhow and Lin[66].

friction, the aforementioned gap was introduced, and was chosen large enough to limit interaction for the

range of selected d - initial spacing between particles.

Next, the results of the SPH solver for initial particle spacing d = 0.17cm were compared to the

results obtained by Vandamme et al. [199] who used weakly compressible SPH (WCSPH) method, and

Skillen et al. [185] who used an incompressible SPH (ISPH) method. The comparison is shown in Figure 6.4.

First, overall agreement between three methods can be concluded, where current SPH method agrees very
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Figure 6.4: Depth of penetration of a cylinder of density 500 kg/m3: Comparison between current SPH
method and results of Vandamme et al. [199] and Skillen et al. [185], and experimental results of Greenhow
and Lin[66]

.
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well with the WCSPH method of Vandamme[199] and the experiment up to the time 0.4s. After this time, the

WCSPH and the ISPH methods agree very well, but current SPH method predicts lower penetration depth,

which in return agrees better with measurements of Greenhow and Lin[66].

The free surface deformation is compared to observations of Greenhow and Lin[66] in Figure 6.5. The

slice of particles that fall within range of y∈< 0.145m,0.150m > are compared to the snapshot taken at time

t = 0.32 seconds during water entry of a cylinder. The gap between the surface of the water and the surface

of the cylinder is caused by the particle interaction. The volume around given particle, where contribution

from other particles is taken into account, is directly influenced by the smoothing length h, which in return

depends on the initial particle distance d. Therefore, for larger distance d particles have greater range of

influence. Hence, larger gap between the water and cylinder.

Finally, velocities and accelerations for all test cases are compared in Figure 6.6. As can be seen,

significant oscillations in acceleration are present for all cases and is caused by the particles motion in

the fluid, where particles approach and retreat from the boundary surface, and therefore influence their

contribution to the acceleration of the cylinder centre of gravity. The width of the acceleration peak is

reduced as the spacing between particles decreases. As can be observed in the fluctuations of velocity, the

smoothest curve is obtained for the the case with lowest initial particle distance, which indicates the smallest

fluctuations in the acceleration for this test case.
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Figure 6.5: Surface deformation during water entry of a cylinder for time t = 0.32s from the beginning of
the fall. Comparison between different distances d and experimental results by Greenhow and Lin[66].
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Chapter 7

Validation of CFD

The HMB CFD solver has so far been validated for several wind turbine cases, including the NREL Annex

XX [70] and the MEXICO project [176, 177] experiments, where the pressure and PIV data have been used for

validation [27, 64]. This chapter presents results of those test cases using HMB3.

7.1 NREL Annex XX experiment

The NREL Annex XX experiment employed two-bladed NREL Phase VI rotor in upwind configuration.

Each blade consists entirely of a 21-percent thick, laminar flow aerofoil, the S809. The aerofoil is extensively

studied in wind tunnels [187, 165] and plenty of data is avaliable in the literature. For this reason, NREL used

it to design the blade for their Annex XX experiment.

This is a stall-regulated wind turbine and has a power rating of 20kW . The blade has linear taper,

nonlinear twist distribution and uses the S809 aerofoil from root to tip, see Figure 7.1. The span of the blade

is 5.029 meters. The blade has a maximum chord of 0.737m at 25% of blade span, and chord of 0.457m at

80% of the blade span. The pitch is defined at the 75% blade radius and the pitch axis is at 30% of the chord.

The wind turbine is designed to operate at a wind speed of 7m/s with a rotational speed of 72rpm resulting

in tip speed ratio λ = 5.61. Detailed description of the blade design and its characteristics are available in

the NREL report [61]. Design and experimental results for the S809 aerofoil are presented by Somers [187].
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Figure 7.1: NREL Phase VI blade – twist distribution (a), geometry (b), and NACA S809 aerofoil (c).

7.1.1 Grid and computational parameters

The NREL Phase VI rotor was modelled including the hub and the tower, but without tunnel walls and

instrumentation boxes[70]. The grid consisted of 18M cells, giving about 9M cells per blade. The topology

around the aerofoil has a C-H type, as shown in Figure 7.2(a). The normal distance of the first cells in the

blocks adjacent to the blade surface was 1 ·10−5c, where c is a maximum chord of the blade, 0.737m. Based

on the free-stream condition and the size of the first cell, the y+ parameter was found to be 0.2. The first
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layer consisted of 36 cells in the normal direction to the blade surface, and 216 cells were distributed around

the aerofoil section. The blade surface was resolved with 124 cells along the span. The tip of the blade was

rounded, and represented an approximation to the actual shape since the exact tip shape is not defined in

the reports of NREL[70]. An inflow boundary condition was placed four blade radii upstream of the rotor,

and outflow was placed eight blade radii downstream. The far-field was assigned three blade radii from the

centre of rotation. In addition, the sliding plane was employed to connect rotor to the nacelle and allow for

relative motion. The computational domain with the corresponding boundaries, a slice through the mesh

close to the blade surface, and the surface mesh of the blade are shown in Figure 7.2.

216 cells around the
aerofoil section

36 cells
Exponential 1x10

­5

(a) Slice close to the blade surface. (b) Surface mesh.

(c) Computational domain. Part of the boundaries removed to expose the wind turbine.

Figure 7.2: Grid employed for the NREL Phase VI wind turbine. Slice through the volume close to the
blade surface (a), surface mesh (b), and computational domain (c).
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The free-stream was kept to the level of turbulence of 2.6% allowing fully turbulent flow simulations,

and the k−ω shear stress transport (SST) [137] turbulence model was employed. The time step employed for

the unsteady computations was chosen such that rotor performs one degree of revolution per step, resulting

in ∆t = 2.3 ·10−3s. The conditions and computational parameters are presented in Table 7.1.

Table 7.1: Conditions and numerical parameters employed for the validation case against NREL Annex XX
experiment.

Uwind 7m/s

Rotor speed 72rpm

λ =
Utip

Uwind
5.61

Blade radius 5.029m

Number of blades 2
Grid size 18M cells
Turbulence model k−ω SST

7.1.2 Results of validation

(a) Thrust. (b) Torque.

Figure 7.3: Thrust and torque over the fifth revolution for the rigid NREL blade.

Five revolutions were computed assuming rigid blades. Figure 7.3 shows the thrust and torque over

the fifth revolution for one blade and compared with the experiments. A deficit in both quantities can be

observed as a result of the rotor-tower interaction. This is due to a change in pressure between the blade and

the tower and a change in the angle of attack as a consequence of the air deflection when it is hit by the tower.
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The under-prediction of thrust and over-prediction of torque of 3% is due to the fact that computations were

performed at the nominal conditions for the experiment, and not for the measured pitch. A small change of

pitch should account for this difference.

Distribution of pressure coefficient Cp values at different span-wise sections are presented in Fig-

ure 7.4. Two blade positions were chosen: 0 and 180 degrees of azimuth, when the blades are normal and

parallel to the tower, respectively. Good agreement with measured data can be seen. Additional results and

test cases computed for the NREL Phase VI rotor using HMB solver can be found in references [64, 28].

(a) 30%R. (b) 63.3%R.

(c) 80%R.

Figure 7.4: Comparison of Cp distribution at three blade stations, for blade azimuth positions of 0 and 180
degrees (rigid blade), at the fifth revolution.
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7.2 MEXICO project experiment

In the MEXICO project[176, 177], a three-bladed wind turbine of 4.5m diameter was tested in the open sec-

tion of the German-Dutch Wind tunnel facility. The pressure on the blades was measured at five span-wise

sections using 148 Kulite pressure sensors. Flow field mapping of the three velocity components was per-

formed with stereo PIV measurements, employing two cameras focusing on the PIV sheets (which were

located horizontally in the symmetry plane of the rotor). The PIV measurements were taken within the rotor

plane as radial traverses, as axial traverses from 1 to 1.5 diameters downstream, and the tip vortices were

tracked. The PIV samples were rotor-phase locked, and each PIV data point consisted of 30−100 samples.

Within the MexNext project[177], averaged results were investigated.

The MEXICO blade consists of three aerofoil families: the DU-W2-250 at the root of the blade

(20.0%R to 45.6%R); the RISO A1-21 at mid span (54.4%R to 65.6%R); and NACA 64-418 at the outer

part of the blade (outboard of 74.4%R), as shown in Figure 7.5. The blade has nonlinear taper and twist

distribution. The span of the blade is R = 2.25 meters, and the maximum chord c = 0.24m is located at 20%

of the blade span. The wind turbine is designed to operate at a wind speed of 15m/s with a rotational speed

of 424.5rpm resulting in tip speed ratio λ = 6.67. Detailed description of blade design and characteristic is

available in references [176, 177].

7.2.1 Grid and computational parameters

For the MEXICO rotor, only the blades were modelled, and no nacelle, spinner, or tower were considered in

the computations. The overset grid method was employed[81], which permits localised grid refinement for

the wake and the rotor. The grid consisted of 200M cells, giving about 70M cells per blade. The topology

around the aerofoil has a C-H type, as shown in Figure 7.6(a). The first grid spacing normal to the blade

surface had a size of 1 · 10−5c, where c = 0.24m is the maximum chord of the blade. This results in y+

parameter less than 1.0 all over the blade. The first layer consisted of 60 cells in the normal direction to the

blade surface, and 344 cells were distributed around the aerofoil section. The blade surface was resolved

with 370 cells along the span.

An inflow boundary condition was placed three blade radii upstream of the rotor, and outflow was
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Figure 7.5: MEXICO project blade – twist distribution (a), chord distribution (b), and blade geometry (c).

placed twelve blade radii downstream. The far-field was assigned four blade radii from the centre of rotation.

The mesh region for the wake capture extends from the blade’s root up to 1.6R in the radial direction and 8R

behind the rotor plane, where R is the radius of the blade. The computational domain with the corresponding

boundaries, a slice through the mesh close to the blade surface, and the surface mesh of the blade are shown

in Figure 7.6.

The Reynolds-averaged N-S (RANS) computations were performed for these cases, by employing a
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344 cells around the
aerofoil section

60 cells
Exponential 1x10

­5

(a) Slice close to the blade surface. (b) Surface mesh.

(c) Computational domain. Half of the domain removed for clarity.

Figure 7.6: Grid employed for the MEXICO wind turbine. Slice through the volume close to the blade
surface (a), surface mesh (b), and computational domain (c).

rotating frame of reference. Since they do not march in real time, the results can be obtained faster than

with time-accurate simulations. Likewise, the k−ω turbulence model by Wilcox[209] was employed. The

conditions and computational parameters employed for this test case are presented in Table 7.2.

7.2.2 Results of validation

In this section, a validation against the MEXICO Project experimental data [177] is presented. Figures 7.7(a-

b) show axial and radial velocity profiles extracted at a straight line crossing the first vortex for the wind
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Table 7.2: Conditions and numerical parameters employed for the validation case against MEXICO project
experiment.

Uwind 15m/s

Rotor speed 424.5rpm

λ =
Utip

Uwind
6.67

Blade radius 2.25m

Number of blades 3
Grid size 200M cells
Turbulence model k−ω

speed of 15m/s. Overall good agreement with the experiments can be seen. Strong oscillations are observed

in the region crossing the first vortex, which decay with distance.

Iso-surfaces of λ2 criterion [83] were also generated to visualise the vortical structures and characterise

the wake in more detail. Figure 7.7(c) shows the full wake at 15ms, where the unstable region for x > 4R

can be seen.

Finally, a comparison between the measured vortices in the experiments and those computed with

CFD is presented in Figure 7.8, where again, good agreement is observed. The first vortices behind the blade

at 12 o’clock were chosen for comparison, and were measured at different locations due to different inflow

speeds. The vortex was located around 0.28m downstream of the blade for 10m/s wind speed (λ = 10),

and 0.58m downstream for 15m/s wind speed. Although the predicted vortices are slightly bigger than in

the experiments due to numerical dissipation, the shear spiral generated as the vortex spins, which can be

observed in a light colour surrounding the measured vortex core (Figures 7.8(c-d)), is well captured in the

CFD (Figures 7.8(a-b)). Additional results and test cases computed for the MEXICO Project rotor using

HMB solver can be found in references [27, 29].
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Figure 7.7: Velocity profiles extracted at a straight line crossing the first vortex for wind speed 15m/s: axial
velocity (a) and radial velocity (b). Wake behind the MEXICO Project rotor visualised with iso-surfaces of
λ2 =−0.01 (c). Adapted from [29].
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(a) CFD result 10m/s. (b) CFD result 15m/s.

(c) Experiment 10m/s. (d) Experiment 15m/s.

Figure 7.8: Contours of vorticity of the tip vortex for two wind speeds: 10m/s and 15m/s. Comparison
between CFD results (a-b), and experimental data (c-d). Adapted from [29].
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Chapter 8

Validation of the Multi-Body Dynamic

Module

This chapter provides details of cases, run to validate the model. The first test case is a two-dimensional

slider-crank mechanism with known kinematic and dynamic solutions. The second test case is a three-

dimensional slider-crank mechanism with known kinematic solution. And the last test case is a simple

gyroscopic mechanism to validate that the gyroscopic effect is properly accounted for in the multi-body

formulation.

8.1 2D slider-crank mechanism

Consider the two-dimensional slider-crank mechanism of Figure 8.1. Although the mechanism is 2D, it

is modelled using 3D bodies and joints. The revolute joints are placed at points A and B in Figure 8.1,

and the ground constraint is placed on body 4. A revolute driver is imposed on body 1, and a cylindrical

joint is placed at point C. At this point body 3 is allowed to move in the x, y and z directions, and rotate

about the z axis. To restrict these degrees of freedom, absolute constraints are placed on the motion of

body 3 in y and z directions, and a revolute driver about z axis, with 0 angular velocity, is used to link the

orientation of bodies 4 and 3. The resulting system has overall 4 · 6 = 24 degrees of freedom restricted by

2 ·5+6+1+4+1+1+1= 24 independent equations. Therefore, kinematic analysis can be performed for
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Figure 8.1: Schematic representation of slider-crank mechanism.

the system, see Section 4.2 in Chapter 4 for details. All joints are summarised in Table 8.1.

Table 8.1: Summary of the joints employed to represent the 2D slider-crank mechanism.

Constraints Body i Body j Number of equations
Revolute joint 1 4 5
Revolute joint 1 2 5
Cylindrical joint 2 3 4
Absolute constraint on Y 3 - 1
Absolute constraint on Z 3 - 1
Absolute angular constraint on Z 3 - 1
Ground constraint 4 - 6
Revolute driver 4 1 1
Total number of equations 24

8.1.1 Kinematic analysis of the 2D slider-crank mechanism

The first validation test case was the kinematic analysis of the 2D slider-crank mechanism. Properties of

the bodies employed for this test case are summarised in Table 8.2. The crank was placed at angle of π/4

relative to the global x axis as shown in Figure 8.1. A rotational velocity was imposed at the crank of

ωωω1 = [0,0,2π]T . The solution was compared to the solution obtained by Haug [73] for the same mechanism

in two dimensions. The results are presented in Figure 8.2, and show good agreement. Note that the results

of Haug were extracted form the figures in the reference [73], and therefore are prone to errors related to

extraction. This is especially visible for the acceleration, but once integrated to velocity and position shows
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excellent agreement.

Table 8.2: Properties of the bodies employed to represent the 2D slider-crank mechanism for kinematic
analysis.

Number Name Position [m] Orientation [rad] Mass [kg] Inertia tensor [kg ·m2]

1 Crank [0,0,0] [0,0,π/4] 200




450 0 0
0 450 0
0 0 450




2 Rod [3.0152,0.7066,0] [0,0,−0.4158] 35




35 0 0
0 35 0
0 0 35




3 Slider [4.6162,0,0] [0,0,0] 25




0.02 0 0
0 0.02 0
0 0 0.02



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Figure 8.2: Solution of the kinematic analysis of 2D slider-crank mechanism compared to the results of
Haug [73].
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8.1.2 Dynamic analysis of the 2D slider-crank mechanism

A second validation test case was the dynamic analysis of the 2D slider-crank mechanism. The same mech-

anism was employed as for the kinematic analysis. However, different initial conditions were introduced to

match the conditions used by [73]. Further, the slider-crank was modified to act as a compressor. The slider

moves in the compression chamber, as shown in Figure 8.3.

F
C

2

3

4.5 m

Figure 8.3: Slider in a compression chamber, as used in the dynamic analysis of the 2D slider-crank mech-
anism.

As the slider moves to the inside of the chamber, a resisting force due to the compression of the gas

acts on it. This force increases until the exhaust valve opens. Equation 8.1 defines the gas force FC on the

slider during the compression, that is, when ẋ3 > 0. At x3 = 5m, the valve opens. During the intake stroke,

no gas force acts on the slider. Figure 8.4 shows the gas force as a function of the position and velocity of

the slider.

FC =





282857/(6− x3)+62857, 1.5 ≤ x3 ≤ 5

−11 ·104[1− sin(2π(x3 −5.25))], 5 < x3 ≤ 5.5
(8.1)

To match the conditions used by [73], the gravitational force was acting in the positive x direction.

The initial orientation of the crank was set to φ(0) = π and the initial angular velocity of the crank was

set to φ̇(0) = 30rad/s. The followed notation is as shown in Figure 8.1. The revolute driver at the crank

was removed, and a constant torque of 41,450Nm was applied to the crank. The Runge-Kutta fourth order

integration scheme was employed, and the time step was chosen to be ∆t = 0.001s. The results are presented

in the Figure 8.5. Good overall agreement can be seen. Small discrepancies occur due to errors in reading

the published solutions from printed graphs. Also, the numerical integration scheme and time step are not

specified in reference [73]. This may have introduced some additional differences.
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(c) Rotational velocity of the crank.

Figure 8.5: Results of the dynamic analysis of 2D slider-crank compression mechanism compared to the
results of Haug [73].
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8.2 3D slider-crank mechanism
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φ

Figure 8.6: Schematic of the 3D slider-crank mechanism.

Table 8.3: Summary of the joints employed to represent the 3D slider-crank mechanism.

Constraints Body i Body j Number of equations
Revolute joint 1 4 5
Spherical joint 1 2 3
Revolute-Cylindrical joint 2 3 3
Translational joint 3 4 5
Distance constraint 2 3 1
Ground constraint 4 - 6
Revolute driver 4 1 1
Total number of equations 24

Consider the tree-dimensional slider-crank mechanism of Figure 8.6. The revolute joint is used to

connect the crank (body 1) to the ground body, where the ground constraint is placed on body 4. The

spherical joint is used to connect the crank to the rod (body 2), and then the revolute-cylindrical joint is used

to connect the rod to the slider (body 3). The translational joint between the slider and the ground is placed

to permit only one direction of motion for the slider. Finally, the distance constraint between the rod and

the slider is employed to prevent the rod from sliding inside the slider. The revolute driver is imposed on

the crank, with a constant rotational velocity of −2π . The notation is indicated in Figure 8.6. The resulting
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system has 4 ·6 = 24 degrees of freedom restricted by 5+3+3+5+1+6+1 = 24 independent equations.

Therefore, the kinematic analysis is plausible for this system. All joints are summarised in Table 8.3.

Table 8.4: Properties of the bodies employed to represent the 3D slider-crank mechanism for kinematic
analysis.

Number Name Position [m] Orientation [rad] Mass [kg] Inertia tensor [kg ·m2]

1 Crank [0,0.1,0.12] [π,0,0] 0.12




1 ·10−4 0 0
0 1 ·10−4 0
0 0 1 ·10−4




2 Rod [0.1,0.05,0.1] [0,0,−0.4] 0.5




4 ·10−3 0 0
0 4 ·10−3 0
0 0 4 ·10−3




3 Slider [0.2,0,0] [0,0,0] 2.0




1 ·10−4 0 0
0 1 ·10−4 0
0 0 1 ·10−4




At time t = 0, the crank was placed at angle π relative to the global y axis as shown in Figure 8.6.

Properties of the bodies employed for this test case are summarised in Table 8.4. The results of kinematic

analysis are presented in Figure 8.7, where the solution of the MBDM solver is compared to the solution

obtained by [73]. Good agreement can be seen.
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Figure 8.7: Results of the kinematic analysis of 3D slider-crank mechanism compared to the results of
Haug [73].
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8.3 Gyroscopic wheel

In this test case, a simplified system of a gyroscopic wheel is considered to validate that the gyroscopic

effect is properly accounted for in the multi-body formulation. The model involves three bodies, as shown

in Figure 8.8. The ground body was placed at the origin at the global coordinate system. A short rod of

length 0.1m was attached to the ground body at height 1.0m using an universal joint such that rotation along

the rod axis is constrained. The other end of the rod was connected to the centre of mass of the steel wheel

with a revolute joint. A constant rotational speed of 60rad/s was applied to the wheel by a revolute driver.

The system has overall 2 unconstrained degrees of freedom - rotation about the direction of global axes z

and y. The gravitational force acting in the negative z direction was applied to all bodies, and at time t = 0

the system was assumed to have no precession.

Figure 8.8: Schematic of the MBDM gyroscopic set-up. System shown in the initial condition.

The system is presented in Figure 8.8, while the mechanical properties of all bodies are shown in

Table 8.5. The analytical solution was obtained from Equation (8.2) using the gyroscopic approximation,

i.e. assuming that precession is much slower than rotation of the wheel ωp ≪ ωw, so that the magnitude of

the angular velocity |~ω | ≃ |ωw| and that precession and rotation rates are nearly constant.

ωp = τ/L = mwgl/Jxxωw (8.2)
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In the above, ωp is the angular velocity of precession, τ is the moment due to gravity about the pivot point,

and L is the angular momentum of the wheel. The expansion to the right-hand side involves the mass of

the wheel mw, the length of the rod l, the gravitational acceleration g, the mass moment of inertia of the

wheel about the axis of rotation Jxx, and the rotational velocity of the wheel ωw. Substitution of values from

Table 8.5 into Equation (8.2) yields the rate of precession as ωp ≈ 0.319rad/s.

Table 8.5: Properties of the bodies employed to model the gyroscopic effect.

Name Mass [kg] Inertia tensor [kg ·m2]

Wheel 28.3




1.45 0 0
0 0.73 0
0 0 0.73




Rod 0.1




10−6 0 0
0 8.3 ·10−5 0
0 0 8.3 ·10−5




The result of the dynamic computation is presented in Figure 8.9, where the Runge-Kutta integration

scheme of fourth order was employed, with a time step ∆t = 0.001s. As can be seen, the rate of precession

developed in less then 0.1s with slight overshoot, and then maintained almost constant value that agreed

with the one obtained using the gyroscopic approximation.
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Figure 8.9: Computed rate of precession compared to the analytical value.
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Chapter 9

DTU 10-MW Reference Wind Turbine

This chapter starts the aerodynamic analysis of the DTU 10-MW Reference Wind Turbine (DTU 10-MW

RWT). Blades are assumed rigid in this chapter, and "clean" i.e. without leading or trailing edge flaps. To

begin with, the geometry of the WT is described, along with the employed mesh. The results for the mesh

convergence study are also shown. Next, results from steady computations for the DTU 10-MW RWT

are presented. The chapter ends with results for the atmospheric boundary layer inflow with and without

atmospheric turbulence.

The aerodynamic analysis continues in Chapter 10, where aero-elasticity of the DTU 10-MW RWT

is considered. In turn, Chapter 11 considers the effects of employing deformable leading and trailing edge

flaps. Floating application of this 10-MW rotor, from aerodynamic perspective, is considered in Chapter 12.

Finally, the results for the coupled model are presented in Chapter 13.

9.1 Overview of the design

The DTU 10-MW RWT design[11] is a result of a joint European effort to up-scale wind turbines (UpWind,

InnWind, AVATAR and MARE-WINT projects). The UpWind[56] project focused on the design tools for

the complete range of turbine components. The work continued in the InnWind[2] project, and resulted in

the DTU 10-MW RWT design that, in return, was inspired by the NREL 5-MW baseline wind turbine[89].

Currently, this 10MW, pitch regulated machine is used for the work within the AVATAR[1] and MARE-

146



9.1. OVERVIEW OF THE DESIGN CHAPTER 9. DTU 10-MW RWT

WINT[3] projects.

The main objective of the DTU 10-MW RWT design was to optimise the blades, to increase their

stiffness and study overall performance of the rotor by taking into account both aerodynamic, and structural

considerations. For this reason, aerofoils of the FFA-W3 series[22] were used. These aerofoils with relative

thickness between 24.1% and 36% are presented in Figure 9.1.
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Figure 9.1: FFA-W3 aerofoils with relative thickness between 24.1% and 36%.

The geometry of the DTU 10-MW RWT blade was represented using splines. In this respect, the

RWT blade was defined in a piece-wise fashion using a small set of splines, the coefficients of which

are given in Tables A.1-A.4 in the appendix A of reference [11]. Cubic splines were used to define blade

properties as a function of the radial position. Figure 9.2 shows the twist and chord distributions, and the

planform of the RWT blade.

A Gurney flap was added to the root part of the blade using a smooth wedge shape. An example of an

aerofoil section with the employed Gurney flap is shown in Figure 9.3(a). The flap was made larger closer

to the root of the blade, due to the thick aerofoils and thick boundary layer at this part. Further outboard,

the flap height is smaller, and stops after 0.4R. An isometric view of the blade root showing the Gurney flap

is presented in Figure 9.3(b). A more detailed description of the aerodynamic design can be found in Bak

et al. [11].
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Figure 9.2: DTU 10MW reference blade.

The complete DTU 10-MW RWT design is shown in Figure 9.5. The integrated mass of the rotor

is 227,962kg, and the hub is located 119m above the ground. The rotor is placed 7.1m along the shaft in

upwind configuration. The total mass of the nacelle is 446,036kg. The tower design is based on the NREL

5-MW baseline wind turbine[89], but is scaled to support the rotor. The integrated tower mass is 628,422kg,

and the centre of mass is located at 47.6m along the tower centreline and above the ground[11]. The blades

are pre-coned by 2.5◦, and pre-bent by 3.3m to increase tower clearance. The shape of pre-bending is based

on the static deflection of the blades for the turbine operating at 5m/s wind speed[11]. Figure 9.4 shows
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(a) The FFA aerofoil with the Gurney flap. (b) View of the root of the blade showing the Gurney flap.

Figure 9.3: The Gurney flap applied to the DTU 10MW RWT blade: aerofoil section with the flap (a), and
isometric view of the blade root showing the flap (b). Adapted from [11].

the blade axis shape before and after bending. Note that sections of the blade are only shifted to provide

deflection i.e. they are not rotated. Also, the pre-bent shape of the blade does not include coning, where

coning is a rotation of the blade about the root, as shown in Figure 9.5. The nacelle is tilted by 5◦ to further

increase tower clearance. The resulting tower clearance is 18.26m, as can be seen in Figure 9.5.

Hub
centre

3
.3

3
2
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2.8m

pre−bent
straight

86.366m

86.466m

Figure 9.4: The pre-bent shape of the DTU 10MW RWT blade. Not in scale.

9.2 Computational parameters

This section describes the numerical parameters employed in this chapter. For all presented test cases, the

air density was assumed to be ρ = 1.225kg/m3, the dynamic viscosity of the air was µ = 1.8 ·10−5Ns/m2,

and the speed of sound was 340m/s. Further, fully turbulent flow was assumed with a free-stream level

of turbulence of 2.6%. Note that the turbulence intensity is required to initiate the small scale turbulence,

which in return is modelled with the k−ω SST[137] turbulence model, unless otherwise stated. This enables

the simulation of cases where turbulence can be assumed to be present from the leading edges and it is
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Figure 9.5: DTU 10MW reference wind turbine design. Not in scale.

convenient to avoid the prediction of transition. This ’seeding’ turbulence does not imply that small scale

turbulence is always present in incident flows, and should be distinguished from atmospheric turbulence

obtained by means of Mann’s or Sandia models discussed in Section 1.2.9 of Chapter 1, where large and

small scale turbulence is indeed present in the flow.

Finally, a uniform inflow velocity distribution was set across the inflow boundary, apart from Sec-

tion 9.5, where the atmospheric boundary layer inflow was investigated.

9.3 Grid convergence study

The mesh convergence study was performed, before test cases were computed, to find the required density

of the mesh and cell distribution in the vicinity to the blade surface. The blade was assumed straight for

these cases i.e. without pre-cone or pre-bend. Only 70% of the blade was modelled in this study – from 0.3R

150



9.3. GRID CONVERGENCE STUDY CHAPTER 9. DTU 10-MW RWT

to 1R, where R is the radius of the blade. The flow around the blade was considered to be periodic in space

and time. This allows the use of the HMB3 "hover" formulation that converts an unsteady flow problem

to a steady-state one by using a rotating frame of reference, as described in [192]. The formulation includes

a combination of mesh motion and additional source terms in the Navier-Stokes equations. The tower and

the complete wind turbine were not modelled. The spinner was approximated as a long cylinder running

parallel to the flow and along the computational domain. The conditions selected for the first computations

are presented in Table 9.1. These cases should be within the design envelope of the wind turbine and no

severe root or tip stall is anticipated.

Figure 9.6: Computational domain for mesh convergence study with employed boundary conditions. Part
of the domain is removed to expose the blade.

Table 9.1: Conditions for the grid convergence study.

Uwind 11m/s

Utip 82.437m/s

Rotor speed 8.836rpm

Re 34.817 ·106

Mtip =
Utip

Usound
0.243

λ =
Utip

Uwind
7.494

Pitch angle 0◦

The free-stream was kept to the level of turbulence of 2.6%, and the k-ω turbulence model of

Wilcox[209] was employed. The normal distance of the first cells in the blocks adjacent to the blade sur-

face was 1 · 10−5c, where c is a maximum chord of the blade, 6.206m. An inflow boundary condition was
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(a) 0.7M cells grid. (b) 1.4M cells grid.

(c) 2.5M cells grid. (d) 5.5M cells grid.

(e) 7.0M cells grid.

Figure 9.7: Slices through the volume mesh at 75%R and close to the blade surface for various grids em-
ployed for the grid convergence study. Colour contours show cell volumes.

placed three blade radii upstream of the rotor, and the outflow was placed six blade radii downstream. The

far-field was assigned four blade radii from the centre of rotation. The domain size and boundaries are

shown in Figure 9.6.

The study started with a grid of density 0.7M, that was refined up to 7.0M cells. Slices through
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the volume at 75%R and close to the blade surface of the employed grids are shown in Figure 9.7. The

computations were run using 300 explicit steps at a CFL number of 0.4 and 65,000 implicit steps at a CFL

number of 3.0. Figure 9.8 presents the convergence history of thrust and mechanical power for the 7.0M

cells grid. At the point where the computation ended, the variation between the individual and the averaged

blade loads of the last 2000 iterations was less than 4.5·10−7N. The thrust was computed as the aerodynamic

force acting along the axis of rotation, and mechanical power was computed as the aerodynamic moment

along the shaft multiplied by the rotational velocity of the rotor. The thrust (CT ) and power (CP) coefficients

were computed from the following equations:

CT =
T

0.5ρAU2
, (9.1a)

CP =
P

0.5ρAU3
, (9.1b)

where T is the thrust force, P is the mechanical power, ρ is the air density, A = πR2 is the area of the wind

turbine rotor, and U is the wind speed.
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Figure 9.8: Convergence history of thrust and power, and corresponding coefficients for 7.0M cells grid.

The results of the mesh convergence study are presented in Figure 9.9, where the thrust force and

the mechanical power are shown versus the number of grid cells. This data is also shown in Table 9.2.

An additional computation involves the finest grid of 7.0M cells and the k−ω SST turbulence model by

Menter[137]. The pressure was integrated over the surface of the blade to produce the local thrust force and

driving forces, and the blade pitching moment as functions of the radial position for employed grids. The

driving force is defined as the force acting in the plane of rotation of the rotor. These load distributions are
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presented in Figure 9.10. Finally, the distribution of the surface pressure coefficient (Cp) for the 7.0M cells

grid is shown in Figure 9.11. The rapid reduction of the pressure coefficient peak can be seen at the tip

where the chord is reduced to almost a point, as can be seen in Figure 9.2. Also, the flow is highly three-

dimensional at the tip, due to the tip vortex. Integrating the pressure from root to tip it can be concluded that

85% of the loads are generated at the stations between 45 and 98%R.

The grid convergence study showed that a mesh between 3M to 5M cells per blade is sufficient to

obtain mesh independent solution. Also, based on the obtained solutions and the size of the first cell, the y+

parameter was found to be 1.7. This indicates that the spacing close to the wall should be reduced by half

an order of magnitude to the value of 5 ·10−6c, where c is the maximum chord of the blade.
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Figure 9.9: Thrust fore and mechanical power as function of computational grid density.

Table 9.2: Comparison between thrust and power coefficients and corresponding thrust and power obtained
by present CFD computations and by Bak [11].

CFD computation results of Bak [11]

Turbulence model k−ω SST SST
Grid size [cells] 0.7·106 1.4·106 2.4·106 5.5·106 7.0·106 7.0·106 14.1·106

CT 0.758 0.770 0.800 0.802 0.799 0.801 0.840
CP 0.415 0.475 0.526 0.533 0.530 0.532 0.495
Thrust [kN] 1401.7 1423.4 1478.9 1482.3 1477.4 1478.2 1555.0
Mech. Power [kW ] 8428.5 9650.4 10695.5 10842.4 10779.9 10291.8 10088.5
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Figure 9.10: Distribution of the thrust and driving forces, and pitching moment along the blade span. Com-
parison between solutions obtained with grids of different density.
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Figure 9.11: Pressure coefficient distribution around the aerofoil section for different radial positions along
the blade.
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9.4 Rigid blade cases with uniform inflow

9.4.1 Straight blade

For this set of cases, the blades were assumed straight (without pre-cone and pre-bend) and rigid. One blade

was included in the computational domain, and periodicity in time and space was assumed with the HMB3

"hover" formulation[192]. Various wind speeds were computed for the conditions for each case provided in

the report of Bak et al. [11] and reproduced here in Table 9.3. The computational domain is the same as for

convergence study cases and is shown in Figure 9.6. Two grids were constructed of 7.0M and 9.2M cells

as compared in Figure 9.12. The latter grid included the complete DTU 10MW RWT blade in a straight

configuration, possessed 0-grid topology, as compared to C-H topology of the 7.0M grid, and the first cell

distance from the wall was reduced to 10−6c, where c = 6.206m is a maximum chord of the blade. This

allowed to compute the y+ parameter for this grid at rated conditions (11.4m/s wind speed) as y+ = 0.2, as

compared to y+ = 1.7 for 7.0M cells grid. Another difference is that the nacelle was included in a simplified

form in the 9.2M grid. The simplified nacelle shape was obtained by rotating the hub of the rotor by 180◦

as shown in Figure 9.13.

Table 9.3: Operational parameters for the DTU 10-MW RWT rotor[11]. The pitch is defined positive nose
down.

Wind Speed [m/s] Pitch [deg] Rotor speed [rev/min]

5 1.966 6.000
7 0.000 6.000
9 0.000 7.229

11 0.000 8.836
13 7.266 9.600
16 12.499 9.600
20 17.618 9.600
22 19.860 9.600

Results in terms of thrust and mechanical power as functions of the wind speed are presented in

Figure 9.14 and Table 9.4. As can be seen, the coarser grid estimated the thrust and power at lower values as

compared to the finer grid. This was expected, since only 70% of the blade radius was included in the first

mesh. The number of cells in the boundary layer was computed once the solution has been obtained. For

the 7.0M grid the boundary layer was resolved with 12 cells at 75% of the radius, while for the 9.2M grid
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284 cells around the
aerofoil section

44 cells
Exponential 1x10

­5

(a) Slice through 7.0M mesh.

50 cells
Exponential 1x10

­6

264 cells around
the aerofoil section

(b) Slice through 9.2M mesh.

(c) Surface grid for 7.0M mesh. (d) Surface grid for 9.2M mesh.

Figure 9.12: Two grids employed for straight and rigid blade cases – 7.0M and 9.2M cells grids. Slices
through mesh in the vicinity of the surface of the blade (a-b); and surface grids (c-d). Distances in maximum
chords, c.

Figure 9.13: Shape of the DTU 10MW RWT blade with simplified nacelle as employed for the 9.2M cells
mesh.

from 25 to 30 cells were inside the boundary layer. Results for thrust and power below the rated wind speed

agreed fairly well with the results presented by Bak et al. [11]. Lower values of thrust and power for the first

grid were obtained for wind speeds above rated. However, improved results can be seen for the second grid

that employs the complete blade, and a lower y+ parameter, as well as more cells in the boundary layer.
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Note that computations involving finer grid and high wind speeds were not conducted, as this was not the

main objective of this work and was not required by the MARE-WINT consortium.
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Figure 9.14: Thrust and power as functions of wind speed for straight, rigid blade. Comparison between
results obtained by present CFD computations and Bak et al. [11].

Table 9.4: Results for straight and rigid blade for two grids in terms of thrust and power.

Grid Wind Speed [m/s] Thrust[kN] Power [kW ] Blade pitch [deg] Rotor speed [rpm]

7.0M 5 364.35 1132.36 1.966 6.000
7 624.13 2818.66 0.000 6.000
9 981.46 5880.54 0.000 7.229
11 1478.21 10291.75 0.000 8.836
13 989.15 10720.12 7.266 9.600
16 706.58 10188.38 12.499 9.600
20 502.16 9075.03 17.618 9.600
22 427.01 8198.63 19.860 9.600

9.2M 7 709.08 3045.63 0.000 6.000
9 1107.35 5880.87 0.000 7.229
11 1661.31 10876.44 0.000 8.836
13 1206.43 11562.12 7.266 9.600

The distributions of the thrust force, driving force and pitching moment for various wind speeds for

the finer grid are shown in Figure 9.15. As can be seen, the thrust force is increasing with the wind speed

below the rated conditions of 11.4m/s. This agrees with the integrated loads shown in Figure 9.14. However,

at 13m/s, the thrust force is reduced. In this case, the distribution is similar to the one obtained for 11m/s

from the root to 0.3R, and close to the distribution for 9m/s from around 0.6R to the tip. The integrated
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thrust over the blade at 13m/s is hence larger, as compared to the 9m/s wind speed case, and lower, as

compared to 11m/s case. This shows the asymmetry of the thrust force with respect to the rated wind speed,

where the total thrust is higher for 13m/s than for 9m/s. This can be seen in Figure 9.14, where the trend

is also confirmed by the results of Bak et al. [11]. The stall region was similar for both wind speeds, as will

also be shown in the following paragraphs.
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Figure 9.15: Distribution of the thrust and driving forces, and pitching moment along the blade span. Com-
parison between solutions obtained for different wind speeds using 9.2M cells grid.

The driving force is increasing with the wind speed below the rated conditions. At 13m/s wind speed,

a reduction of the driving force can be seen for the outboard part of the blade, with an increase at the inboard
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part. The overall driving moment created by this force is lower, as compared to 11m/s (1.15 · 107Nm for

13m/s, and 1.18 ·107Nm for 11m/s). However, when converted to mechanical power by multiplying by the

rotational velocity, a larger power production is computed for 13m/s, as can be seen in Figure 9.14.

The pitching moment follows similar trends as the thrust and driving forces. The blade is fairly

well balanced for the wind speed of 7m/s, where the integrated moment acting along the pitch axis of one

blade is 3.8kNm. Positive moment means that the aerodynamic forces tend to increase the angle of attack.

Starting from below rated conditions, the pitching moment becomes larger as the wind speed is increased.

For 9m/s wind speed, the pitching moment is 19.6kNm, and for 11m/s, it is 23.6kNm. At 13m/s wind

Figure 9.16: Distribution of the surface pressure coefficient (Cp) on the pressure side of the blade for the
9.2M cells grid at various wind speeds.
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speed, the pitching moment is −46.5kNm, and has a negative sign, meaning that the aerodynamic forces try

to decrease the angle of attack. This is a positive effect, since as the wind speed is further increased, the

pitch-controlling actuator should work towards the reduction of the angle of attack (pitch to feather).

Figure 9.17: Distribution of the surface pressure coefficient (Cp) on the suction side of the blade for the
9.2M cells grid at various wind speeds.

Figures 9.16 and 9.17 present the surface pressure coefficient (Cp) for 9.2M cells grid at various wind

speeds. The coefficient was computed using:

Cp = 2

(
p− p∞

γ p∞M2
∞

)
=

p− p∞

0.5ρ∞U2
∞

, (9.2)

where p is the pressure at the point where pressure coefficient is computed, p∞ is the free-stream pressure,

162



9.4. RIGID BLADE CASES WITH UNIFORM INFLOW CHAPTER 9. DTU 10-MW RWT

γ is the adiabatic index, and M∞ is the free-stream Mach number. The skin friction lines were added to

visualise the flow close to the surface. These were obtained by calculating the wall stresses.

The comparison for the pressure side is shown in Figure 9.16. Very little differences can be seen for

below the rated conditions. However, for 13m/s the pressure coefficient is lower on the pressure side. The

skin friction lines show flow recirculation due to the Gurney flap. The recirculation region spans to around

30% of the blade, and approximately coincides with the location of the flap. This recirculation was observed

for all computed wind speeds. The largest recirculation can be seen for 7m/s and 13m/s, whilst for 9m/s

and 11m/s the predicted recirculation region is a bit smaller. Introduction of the present Gurney flap did

not prevent separation on the suction side, as shown in Figures 9.17 and 9.18. This is also confirmed by the

results of Horcas et al. [76], where separation was observed for both configurations – with and without the

Gurney flap. Also, similar span-wise lengths of pressure and suction side recirculations were reported.

(a) Pressure side recirculation. (b) Suction side separation.

Figure 9.18: Streamlines showing recirculation on the pressure side, and separation on the suction side for
DTU 10MW wind turbine at 11m/s wind speed.

The distributions of the pressure coefficient over the suction side are shown in Figure 9.17. Higher

coefficients can be seen for 13m/s wind speeds, as compared to other wind speeds. Also, the flow separation

at the root can be seen. The separation region spans to around 35%, as also reported in [76].

The comparisons of the pressure coefficient distributions at various radial positions along the blade

are shown in Figure 9.19. The largest differences of Cp between both sides of the blade are observed for

9m/s and 11m/s wind speed. On the other hand, the smallest differences can be seen for 13m/s wind,
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Figure 9.19: Pressure coefficient distribution around the aerofoil section for different radial positions along
the blade and for different wind speeds.

which agrees with the observations above. The recirculation regions can also be seen at the section near

0.2R, where the pressure coefficient is almost constant towards the trailing edge. The results suggest a

chord-wise length of suction side separation of 45% of the local chord at this section. Likewise, the pressure

side recirculation is affecting 25% of the local chord. Finally, the increase of the pressure difference due to

the Gurney flap at the trailing edge of the 0.2R station can be observed.

Figures 9.20 and 9.21 present the distribution of the skin friction coefficient (C f ) over the blade

surface for 9.2M cells grid at various wind speeds. The coefficient was computed as

C f =
τw

0.5ρ∞U2
∞

, (9.3)

where τw is the wall shear stress at the point where the skin friction coefficient is computed, ρ∞ is the free-

stream density of the fluid, and U∞ is the free-stream velocity of the fluid. Looking at the pressure side, the
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Figure 9.20: Distribution of the skin friction coefficient (C f ) over the pressure side of the blade for the 9.2M
cell grid at various wind speeds.

results suggest higher coefficients for 13m/s wind speed, as compared to conditions below the rated speed.

The separation region on the suction side can be clearly identified in Figure 9.21. This region is surrounded

by low values of C f , showing the onset of separation, and negative values of C f can be seen in the separated

region.

The comparisons of the skin friction coefficient distributions at various radial positions along the

blade are shown in Figure 9.22. The results suggest similar distributions below the rated wind speed. How-

ever, at 13m/s wind speed, the differences between skin friction coefficients on both sides of the blade are

reduced. The separated regions can also be identified for section near 0.2R, where the C f coefficient be-
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Figure 9.21: Distribution of the skin friction coefficient (C f ) over the suction side of the blade for the 9.2M
cell grid at various wind speeds.

comes negative. The recirculation starts at around 55% of the local chord for the suction side, and at 75%

for the pressure side. The results also show re-attachment of the flow at the Gurney flap, where C f changes

sign from negative to positive around 95% of the local chord.
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Figure 9.22: Skin friction coefficient distribution around the aerofoil section for different radial positions
along the blade and for different wind speeds.
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9.4.2 Blade with pre-bend and pre-cone

As described in Section 9.1 of this chapter, the DTU 10MW blade has two design configurations: straight;

and with pre-bend and pre-cone. This sections considers the latter configuration at 11m/s wind speed, and

the results are compared to the straight blade.

256 cells around the
aerofoil section

40 cells 
Exponential 5x10

­6

(a) Slice through the volume close to the blade surface. (b) Surface mesh.

(c) Computational domain. Half of the boundaries removed to expose the
blade.

Figure 9.23: Grid employed for the DTU 10MW blade with pre-bend and pre-cone.

Similarly to the previous section, one blade was included in the computational domain, and peri-

odicity in time and space was assumed with the "hover" formulation[192]. The nacelle was included using

sliding planes, and was rigidly attached to the rotor. This allowed to reduce the number of cells, by combin-

ing block-to-block unmatched domains, where both grid components are refined in different regions. See

Figure 9.24 for domain decomposition methods available in the HMB3 flow solver. The total size of the
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grid was 5.4M cells. The normal distance for the first cells of the blocks adjacent to the blade surface was

5 ·10−6c, where c is a maximum chord of the blade, 6.206m. 40 cells were used within the first layer of the

blocks, with 256 cells distributed around the aerofoil section. The blade surface was resolved with 121 cells

along the span. Based on experience[64], an inflow boundary condition was used three blade radii ahead of

the rotor, and an outflow was placed six blade radii downstream the rotor. Far-field was assigned three blade

radii from the centre of rotation. The computational domain with corresponding boundaries, a slice through

the mesh close to the blade surface, and the surface mesh of the blade are presented in Figure 9.23. Note that

there is a small gap between the blade and the hub. The wind speed was 11m/s, and the rotor was rotating

at 8.836rpm. This allowed to compute the y+ parameter for this grid to be y+ = 0.9.

(a) Sliding mesh method. (b) Overset mesh method.

Figure 9.24: Domain decomposition methods: (a) sliding, and (b) overset methods. Adapted from [98].

The distributions of the thrust and driving forces, and pitching moment are shown in Figure 9.25,

where the results for the straight blade are included for comparison. As can be seen, the straight blade was

subjected to higher thrust, especially close to the root. Although, the computed distributions of the thrust

are similar for both configurations. The driving force was also higher for the straight blade, as compared to

the blade with pre-cone and pre-bend. The distribution of the driving forces coincide close to the tip (around

0.8R− 1R), but differ closer to the root. The integrated thrust and power over the rotor are compared in

Table 9.5, where a reduction of both quantities for the pre-bent blade can be seen.

The distributions of the pressure coefficient Cp for the straight and pre-bent blades are compared in
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Figure 9.25: Distribution of the loads for straight blade, and with pre-cone and pre-bend.

Table 9.5: Comparison between thrust and power for straight and pre-coned blades.

Straight blade Pre-coned blade Difference
Thrust [kN] 1661.3 1654.1 -7.2 (-0.4%)
Mech. Power [kW] 10876.4 10846.5 -29.9 (-0.3%)

Figure 9.26. The skin friction lines are also included for comparison. Very similar flow patterns can be seen

for both configurations of the blade. Differences at the root stem from the fact, that the root part of the blade

for the pre-bent configuration was not included. As a result, highly three-dimensional flow occurs at the root

for this case, affecting about 10% of the span. Hence, the differences in integrated loads are not caused by

this geometrical simplification.

The pressure coefficient distributions at various radial positions along the blade are compared in

Figure 9.27. Differences can be seen closer to the root, where a higher suction peak is observed for the

straight blade. This agrees with the distributions of loads shown in Figure 9.25.
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(a) Pressure side.

(b) Suction side.

Figure 9.26: Distribution of the surface pressure coefficient (Cp) over the pressure side (a), and suction side
(b). Comparison between straight and pre-coned blades.
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Figure 9.27: Pressure coefficient distributions at different radial positions along the blade.
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9.5 Atmospheric boundary inflow and atmospheric turbulence

This section presents results of the DTU 10MW RWT rotor subjected to the atmospheric boundary inflow

with and without atmospheric turbulence. A power law profile was used to model the atmospheric bound-

ary layer[158], and the atmospheric turbulence was included using Mann’s turbulence model[129, 130]. The

employed numerical parameters and procedure are also explained in this section.

9.5.1 Atmospheric boundary inflow

The inflow profile was defined using the power law

U(z) =Uhub

(
z

zhub

)1/β

, (9.4)

where Uhub set to 11m/s is the hub-height wind speed, z is the elevation above the ground, β = 7 is the

wind profile power coefficient[158], and zhub = 119.0m is the height of the hub as specified in Bak et al.[11].

The distribution of pressure and density were computed based on the International Standard Atmosphere

(ISA)[5], assuming sea-level pressure P0 = 101325Pa, temperature T0 = 288.16K = 15.0◦C, density ρ0 =

1.225kg/m3, and the lapse rate L = −0.0065K/m. Another possible choice to define the wind profile is

the logarithmic law, which is more complex, as the model involves shear velocity, surface roughness, and

stability parameters. The logarithmic law model is accurate close to the ground, but above ∼ 100m the

power law is more accurate in predicting the mean wind speed[32]. Given the location of the hub (119.0m),

the power law profile was chosen in this work. The employed distributions of the wind speed, pressure and

density are shown in Figure 9.28

9.5.2 Mann turbulence model

The Mann turbulence field generator was provided by the Technical University of Denmark[215] as part of

the MARE-WINT project collaboration[3]. The model starts from the von Kármán [207] energy spectrum

expressed as

E(k) = αε2/3L5/3 L4k4

(1+L2k2)17/6
, (9.5)
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Figure 9.28: Distributions of the wind speed, pressure and density obtained with the power law profile by
setting Uhub = 11m/s, zhub = 119.0m, and β = 7. Logarithmic law profile was computed using U(z) =
Uhub ln( z

z0
)/ ln( zhub

z0
), where z0 = 0.03m is the roughness length of a flat terrain. Quantities are normalised to

the values at the hub-height.

where α is the Kolmogorov constant, ε is the rate of viscous dissipation of specific turbulence kinetic energy,

L is a length scale in meters (often chosen as rotor radius), and k is the wave number. It is postulated in

Mann[130] that eddies are stretched by shear over a time proportional to their lifetime τ . For relatively high

frequencies and wave numbers, τ is proportional to k−2/3[129, 130]. Denote the dimensionless eddy lifetime

by β , then

β ≡ dU

dz
τ = Γ

dU

dz
(kL)−2/3 , (9.6)

where U is the wind velocity, z is the height, and Γ is the parameter of the sheared spectral tensor, also

known as the stretching parameter. It is assumed in the model that shear is linear such that dU
dz

is constant.

For Γ = 0, the tensor is isotropic, and can be used to model the turbulent wind field without shear. In this

case αε2/3 = σ 2/(0.688 ·L2/3), where σ = Ti ·Uwind is the velocity variance, Ti is the turbulence intensity,

and L is the length of the blade. For the atmospheric experiments over water, the parameters are L/z = 0.87,

Γ = 3.2; and for flow over flat terrain L/z = 0.91, Γ = 2.6[130], where z is the height above the ground.

The interaction between wind turbines and the turbulent field cannot be predicted using BEM method[164]

i.e. the presence of the rotor has no effect on the turbulent field. Hence, proper value of Γ is important for

engineering models. The choice of Γ may be also important for CFD computations, if a precomputed field

of turbulence is initiated on the whole CFD domain. In this work, the atmospheric boundary profile is as-

174



9.5. ATMOSPHERIC INFLOW AND TURBULENCE CHAPTER 9. DTU 10-MW RWT

sumed at the inflow, with isotropic turbulence based on Mann’s model. Hence, Γ = 0 at the inflow, and

shear in the field of turbulence is allowed to develop due to the imposed ground boundary. Also, the high

frequency correction was applied in the Mann’s model. As was shown by Mann[130], without this correction

the simulated spectra are typically attenuated at high wave numbers (or frequencies).

Computational procedure

First, the Mann’s field of isotropic turbulence was created using the parameters of Table 9.6. The resulting

field is a cube (or box, hence Mann box) of size 2km×2km×2km with a resolution of 4m in each direction.

The turbulence intensity is about 5%, assuming that the mean inflow speed is 11m/s. The obtained Mann

box is visualised in Figure 9.29.

Parameter Value
αε2/3 0.02
L 89m
Γ 0
Number of points in x direction 512
Number of points in y direction 512
Number of points in z direction 512
Spacing in x direction 4.0m
Spacing in y direction 4.0m
Spacing in z direction 4.0m

Table 9.6: Parameters used in the Mann box generator.

The implementation of the Mann turbulence model into the HMB3 solver as a wind turbulence bound-

ary condition is shown in Figure 9.30. The idea is to convect the Mann turbulence to the computational

domain through the inflow boundary. By applying Taylor’s frozen turbulence hypothesis, the time off-set

from the inflow plane of the CFD domain can be converted to a space off-set. Hence, velocity fluctuations

are extracted from Mann box in slices i.e. equally spaced planes, with a distance ∆x between consecutive

planes equal to the Mann box spacial resolution, see Figure 9.30(b) for illustration. These slices are then

interpolated onto the inflow plane of the CFD domain, and stored. As depicted in Figure 9.30, at time t = 0s

the front face of the Mann box is coincident with the inlet of the computational domain. Interpolated inflow

planes, located at x =−Uhub · t in the Mann box, are then used to impose turbulent inflow boundary at con-

secutive times during unsteady computations. This procedure is equivalent to having the Mann box moving
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(a) U [m/s] (b) V [m/s]

(c) W [m/s]

Figure 9.29: The Mann turbulence field obtained with parameters from Table 9.6.

towards the CFD domain, as shown in Figure 9.30(a). Note that the generated turbulence field is periodic

due to mathematical construction of the model. This allows to place the same Mann box at the inflow after

the previous box was entirely convected to the CFD domain. In practice, this is achieved by applying inter-

polated inflow boundaries from the start (the one used at time t = 0s). Note that the time resolution during

URANS computations is likely to be finer than the Mann box resolution i.e. ∆tCFD < ∆tMann = ∆x/Uhub. In

this case, the linear interpolation between two inflow planes is employed in the HMB3 solver. The atmo-

spheric boundary inflow profile was included in the computations by superimposing the power-law profile

with the Mann’s turbulent fluctuations. Note that the CFD domain was placed in the middle of the Mann
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box "outflow" plane. This is because the generated turbulence was assumed isotropic by setting Γ = 0. In

another case, the inflow to the computational domain should be placed at the bottom of the Mann box.

(a) Mann box with CFD domain. (b) Planes extracted from the Mann box.

Figure 9.30: The Mann box turbulence field with extracted planes used to interpolate onto the HMB3 inflow
plane.

9.5.3 Computational grids and parameters

Two grids were employed in this section, as shown in Figure 9.31. The first grid (G1) was used for the

computation with the atmospheric boundary profile, and adopted the sliding plane approach[193]. The second

grid (G2) was employed for the computation with the atmospheric boundary profile and turbulence (based

on Mann’s model). Grid resolution tests were performed on the Cartesian grids to find the best approach for

preserving Mann’s turbulence in the CFD domain. The results are presented in Appendix C. Based on this

experience, the mesh over-set method[81] was used for the latter grid.

The DTU 10-WM RWT rotor with pre-bend and pre-cone was employed for both cases. The synthetic

inflow boundary condition was placed three blade radii upstream of the rotor, and the outflow was placed six

blade radii downstream. The far-field was assigned three blade radii from the centre of rotation. The details

of those grids are provided in Table 9.7, and the computational domains with the corresponding boundaries

are shown in Figure 9.31.
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Table 9.7: Details of computational grids employed in this section.

Grid ID Test case Number of cells Number of blocks Grid assembling
G1 Atmospheric boundary

profile
17.3M 2780 Sliding planes

G2 Atmospheric boundary
profile and turbulence

27.3M 1468 Over-set method

The DTU 10MW RWT rotor was modelled without the tower. The nacelle was included in the grid

G1, but for the second grid the root was extended, such that the blades merged to the rotor without the

nacelle, as shown in Figure 9.32(d). Also, note that there was a gap between the blade and the hub for the

first grid, as shown in Figure 9.32(c). Apart from those differences, the mesh around the blades was kept

as close as possible for both grids. Slices through the volume close to the blade surface are compared in

Figures 9.32(a) and 9.32(b). For both grids the normal distance for the first cells of the blocks adjacent to the

blade surface was 5 ·10−6c, where c is the maximum chord of the blade, 6.206m. Based on the free-stream

condition and the size of the first cell, the y+ parameter was 0.9. The first layer consisted of 40 cells in

the normal direction to the blade surface, and 256 cells were distributed around the aerofoil section. The

blade surface along the span was resolved with 121 cells for the grid G1, and with 105 cells for the grid

G2. The cell spacing next to the ground boundary was set to 10−3c for both grids. Note that the second

grid had almost twice as many cells as the first grid. This was dictated by the spacial resolution required

to better preserve the turbulent structures. The uniform spacing of 4m× 4m× 4m was employed for most

of the background grid in the mesh over-set method used for the second grid. Exception regions were the

ground boundary, where the grid was refined, and the outflow boundary, where the grid was coarsened. The

comparison of the grids in the middle of the domain is shown in Figure 9.33.

The k−ω SST turbulence model was used with the grid G1 for the atmospheric boundary profile,

and the k −ω SST-based Scale-Adaptive Simulation (SAS) model[138] was employed with grid G2 with

the atmospheric boundary profile and turbulence. The scale-adaptive model was chosen to resolve the fine

turbulent structures present in the generated field of turbulence. The wind speed at the hub was set to

11m/s for both cases, and the atmospheric boundary profile was generated using the power-law according

to Equation 9.4. Then, the Mann’s turbulence field was superimposed on the atmospheric boundary layer

for the second case. The rotational speed of the rotor was 8.836rpm for both computations.
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(a) Grid employed for computation with the atmospheric boundary profile (G1).

(b) Grid employed for computation with the atmospheric boundary profile and Mann’s tur-
bulence (G2).

Figure 9.31: Computational grids employed in this section.

9.5.4 Results

The results in terms of thrust and power for each blade are shown in Figures 9.34 and 9.35, respectively.

Clear periodicity can be observed in the case of the clean atmospheric boundary layer profile. This is related
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(a) Slice through the volume close to the blade surface for grid
G1.

256 cells around
the aerofoil section

40 cells
Exponential 5x10

­6

(b) Slice through the volume close to the blade surface for grid
G2.

(c) Surface mesh of the blade for grid G1. (d) Surface mesh of the blade for grid G2.

Figure 9.32: Comparison between two employed grids G1 and G2 – (a-b) slice through the rotor grid, (b-c)
rotor surface mesh.

to the blade passing through the low wind speed region closer to the ground, and then through the high wind

speed region away from it. Note that the blade number 1 was pointing to 12 o’clock at the beginning of each

revolution, and 6 o’clock at half revolution. A phase shift between results for each blade is also visible, and

corresponds to the off-set of 1/3 of revolution, or 120◦ of azimuth angle.

The results for the atmospheric boundary layer and for the turbulent case show, on average, similar

thrust and power for the individual blades. Fluctuations due to the field of turbulence are clearly visible.

Those, however, are smaller in magnitude than the fluctuations caused by the blade passing through the low

and high wind speed regions. Hence, one per revolution variation of thrust and power are also evident for

the case of the atmospheric boundary layer with Mann’s turbulence.

Figure 9.36 shows Fast Fourier Transforms (FFTs) of the individual blade thrust and power. The
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Figure 9.33: Comparison between employed grids for the atmospheric boundary inflow. Grid points are
skipped for clarity (2 for grid G1, and 4 for grid G2).

results for the pure atmospheric boundary profile show a clear peak at the rotational frequency and its

multiples. On the other hand, the results for atmospheric turbulence show larger frequency content, where

some of the peaks do not coincide with multiples of rotational frequency. However, the largest peak in this

case can be seen to correspond to the frequency of rotation.

By adding the contribution from each blade, the total thrust and power were obtained, as shown in

Figure 9.37. First, the atmospheric boundary inflow resulted in lower variations of the loads. This is caused
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(a) Blade 1.
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(b) Blade 2.
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(c) Blade 3.

Figure 9.34: Thrust as function of revolution shown for each blade.

by the phase shift in the loads between each blade, and the fact that the variation is very regular. In other

words, when one blade is moving from the higher wind speed region to the lower wind speed region, other

blades are moving in the opposite direction. For the atmospheric boundary with turbulence, the variation

of the loads is considerably increased. This is caused by a rich frequency content in the individual blade

loads. In this case, the superposition of loads reduced the total variation, as can be seen by comparing

amplitudes of the FFT plots in Figures 9.36 and 9.38. However, the reduction is not as pronounced as

for the atmospheric boundary profile only. Finally, the increase of the average loads can be seen for the

atmospheric boundary profile, as compared to the uniform inflow case, in contrast to Li et al. [121], where the

reduction was observed. However, several differences in the set-up of test cases should be noted between the

present work and the work of Li et al. First, the logarithmic law profile was used in [121], whereas the power

law profile was adopted here. Next, the incompressible solver was used in aforementioned publication,
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(a) Blade 1.
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(b) Blade 2.
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(c) Blade 3.

Figure 9.35: Power as function of revolution shown for each blade.

Frequency [Hz]

A
m

p
li
tu

d
e

 o
f 

th
ru

s
t 

[k
N

]

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35
Atmospheric

Atm.+Mann turb.

Harmonics

(a) Fast Fourier transform of thrust.

Frequency [Hz]

A
m

p
li
tu

d
e

 o
f 

p
o

w
e

r 
[k

W
]

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Atmospheric

Atm.+Mann turb.

Harmonics

(b) Fast Fourier transform of power.

Figure 9.36: Fast Fourier transforms of the thrust and power time series for the blade number 1. The
harmonics correspond to multiples of the blade-passing frequency fn = n · f1, where f1 = 0.147Hz.

and the compressible solver was used in this work. Further, a delayed detached eddy simulation (DDES)
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model[67, 120] was employed in [121] to model the turbulence, whereas the k−ω SST turbulence model[137]

was used in the present work. Also, the comparison between the uniform inflow and the atmospheric profile

cases was conducted for below rated conditions in Li et al. (8m/s wind speed, 11.4m/s rated wind speed),

and conditions close to rated were employed in this work (11m/s wind speed, 11.4m/s rated wind speed).

Other differences include the tower (considered in [121] and not included here), and the wind turbine itself

(5MW in [121] and 10MW here). Perhaps one of the above, or combination of them, may explain the

differences, but further investigation would be required and is out of scope of this work.

The reduction of average loads can be seen in Figure 9.37 for the atmospheric boundary inflow with

turbulence. The results suggest an average thrust of 1628.8kN and an average power of 10546.8kW , which

correspond to relative reduction of 1.5% and 2.8%, respectively, with respect to the uniform inflow case.
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Figure 9.37: Thrust force and mechanical power as function of revolution. Comparison between the cases
of atmospheric inflow with and without the turbulence, and uniform inflow of 11m/s.

The vortical structures visualised with an iso-surface of Q = 0.01 are shown in Figure 9.39. Note

that for the case with turbulence, the iso-surface of Q = 0.01 was used only in the wake refinement mesh to

better visualise wake instabilities, while for the rest of the domain, the iso-surface of Q = 0.001 was used to

expose turbulent structures. Contours shown in Figure 9.39 represent the non-dimensional axial velocity.

The case without wind turbulence had strong tip and root vortices. The tip vortices were following a

spiral path, where the vortices located at the high wind speed region were convected faster, as compared to

vortices in the low wind speed region close to the ground. Notice that the tip vortices could not be resolved

too far downstream for the grid G1 (around 1 rotor radius). Even for the second grid tip vortices resolution
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Figure 9.38: Fast Fourier transforms of the total thrust and power. The harmonics correspond to multiples
of the blade-passing frequency fn = n · f1, where f1 = 0.441Hz.

(a) Atmospheric boundary inflow without turbulence. Iso-
surface of Q = 0.01.

(b) Atmospheric boundary inflow with turbulence. Iso-surface
of Q = 0.01 for tip vortices, and Q = 0.001 everywhere else.

Figure 9.39: Vortical structures represented by iso-surface of Q criterion for cases with and without wind
turbulence. Contours of non-dimensional axial velocity W are shown in the middle of domain.

was not possible beyond the region covered by the wake refinement grid.

In the case with turbulence, vortical structures are present in the domain due to imposed atmospheric

turbulence. Since the turbulence is introduced as a boundary condition, the decay of turbulence in time can

be observed in Figure 9.39(b).This is to be expected in a viscous computation, and has been observed even

for inviscid flow due to numerical dissipation, as detailed in Appendix C. A possible remedy is to employ

a turbulence scaling factor[121] in the Mann model, which multiplies (up-scales) all velocity fluctuations.
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However, this was not attempted in this work. The development of anisotropic turbulence due to shear can

be observed close to the ground surface. The vortical structures there are rather thin and stretched, which

agrees with observations made in [121].

The turbulent structures present in the domain interact with the rotor, in particular with the tip vor-

tices. Growing instabilities can be observed in the wake, and should lead to a breakdown closer to the rotor,

as compared to the case without turbulence. This, however, cannot be concluded from computed cases.

The obtained results suggest, that the part of the wake close to the ground surface (in the low wind speed

region) is affected more by the turbulent structures. The tip vortices in the high wind speed region are also

influenced by the turbulence, but to a lesser extend.
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Chapter 10

Elastic computations for DTU 10-MW RWT

This chapter completes the aerodynamic analysis of the DTU 10-MW RWT. It presents results of static

and dynamic aero-elastic computations. First, the structural model is described and the results of the elas-

tic eigenvalue analysis are compared to the results of Bak et al. [11] and Horcas et al. [77], showing good

agreement, especially for the flap-wise modes. Next, static aero-elastic computations are performed for the

straight blade, and for the blade with pre-bend and pre-cone. This is followed by the unsteady aero-elastic

computations for the DTU 10MW RWT rotor with pre-cone and pre-bend, and the results are compared to

the static case. Finally, the complete wind turbine is studied assuming rigid and elastic blades.

10.1 Elastic eigenvalue analysis

The natural frequencies of the DTU 10-MW RWT blade were obtained by employing a similar procedure as

Wilkie et al. [211] for helicopter rotors. The structure of the blade was represented using 50 beam elements.

These elements were tapered, non-linear beams using PBEAM in NASTRAN[6]. The shear and elastic axes

offsets form the centre of the beam were included in the model, where the axis of the beam is defined in [11]

as the half-cord point of each blade section. At each beam section, rigid bars (RBAR elements) without

any structural properties were rigidly linked to the beam. The bar elements originate from the centre of the

beam towards the leading edge and towards the trailing edge of the blade to assess the displacement of the

blade surface. This is shown in Figure 10.1 for the blade with pre-bend and pre-cone. The definitions of
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pre-bending and pre-coning are provided in Section 9.1 of Chapter 9. Note that beams and bars create a

surface, split into triangular elements as needed for the constant volume tetrahedron (CVT) method, that is

used for structure-to-fluid mapping. Details of the employed grid deformation, and aero-elastic methods are

presented in Section 3.6.2 of Chapter 3. Since the PBEAM element can only represent an isotropic material,

the elastic properties of each beam were set to match the flap-wise elastic properties of Bak et al. [11].

Figure 10.2 presents the Young’s modulus, the shear modulus and the torsional stiffness employed in the

NASTRAN model. Two models were created – for the straight blade, and for the blade with pre-cone and

pre-bend. The NASTRAN input files can be found in Appendix A.

(a) Plan-form view.

(b) Side view.

(c) Structural model with structural triangular elements used in the CVT method.

Figure 10.1: The DTU 10MW RWT blade surface with the structural model consisting of beams and bars.

The model frequencies and shapes were obtained by a non-linear static calculation in NASTRAN

by using the SOL106 sequence[6]. The modes were then visualised and identified. Table 10.1 compares
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Figure 10.2: DTU 10-MW RWT blade properties along span-wise direction employed in the NASTRAN
model.

the natural frequencies for the isolated blade calculated with the present NASTRAN model and the values

presented in Bak [11] and Horcas [77]. A very good agreement between the first three flap-wise modes

is seen. The differences in the frequency of the edge-wise modes stem from the assumption of material

isotropy. Note that the present NASTRAN model did not capture the 1st torsional mode reported in [11], nor

the mixed flap-wise/torsional mode reported in [77]. These differences may stem from the fact that for a

modal analysis the shell-based Finite Element Method (FEM) was used by Horcas[77]. On the other hand,

anisotropic beams were employed by Bak[11], in contrast to isotropic beams used in this work. However,

only the 1st flap-wise and 1st edge-wise modes are pure, and other modes have some torsional component.
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Table 10.1: Comparison between natural frequencies for the isolated blade obtained with NASTRAN and
results of Bak[11] and Horcas[77].

Present NASTRAN model Bak [11] Horcas [77]

Configuration Straight blade Blade with pre-
cone and pre-bend

Straight blade Straight blade

Mode Natural Frequency [Hz]

1st flap 0.61 0.61 0.61 0.64
1st edge 1.03 1.03 0.93 0.97
2nd flap 1.74 1.73 1.74 1.79
2nd edge 3.13 3.11 2.76 2.89
3rd flap 3.57 3.55 3.57 3.61
1st torsion - - 5.69 5.72
Mixed flap/torsion - - - 5.77
4th flap 5.99 5.98 6.11 6.18
3rd edge 6.48 6.43 6.66 -

Figure 10.4 visualises the first four modes for the straight blade, and Figure 10.5 visualise modes 5 through

8. The modes for the blade with pre-cone and pre-bend are shown in Figures 10.6 and 10.7.

A Campbell diagram (Figure 10.3) was created for the first seven modes showing the natural fre-

quencies of the selected modes as function of the rotational velocity. The rotational speed varied from 0 to

18rpm, which is almost twice the highest designed rotational speed (9.6rpm) the blade is expected to oper-

ate at. As can be seen, loads that occur 4 times per revolution and faster, may excite the 1st flapping mode

rotational speed [rpm]
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Figure 10.3: Campbell diagram for DTU 10-MW blade.
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and possibly other modes in the range of the operating rotational speeds, between 6.0 ≤ rpm ≤ 9.6 [11].

Also, the natural frequencies of the modes are very close for both configurations of the blade – straight and

pre-bend with pre-cone. The results suggest that the largest difference is 0.64% for the 4th flap-wise mode.
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Figure 10.4: Frequencies and corresponding shapes of the first 4 modes for the straight blade.

191



10.1. ELASTIC EIGENVALUE ANALYSIS CHAPTER 10. ELASTIC COMPUTATIONS

X
Y

Z

(a) f = 3.57Hz

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(b) in plane view

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(c) chord-wise view

y/R

z
/R

­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

­0.1

­0.05

0

0.05

0.1

(d) span-wise view

X
Y

Z

(e) f = 5.99Hz

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(f) in plane view

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(g) chord-wise view

y/R

z
/R

­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

­0.1

­0.05

0

0.05

0.1

(h) span-wise view

X
Y

Z

(i) f = 6.48Hz

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(j) in plane view

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(k) chord-wise view

y/R

z
/R

­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

­0.1

­0.05

0

0.05

0.1

(l) span-wise view

X
Y

Z

(m) f = 8.98Hz

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(n) in plane view

r/R

y
/R

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

(o) chord-wise view

y/R

z
/R

­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

­0.1

­0.05

0

0.05

0.1

(p) span-wise view

Figure 10.5: Frequencies and corresponding shapes of the modes from 5 through 8 for the straight blade.
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Figure 10.6: Frequencies and corresponding shapes of the first 5 modes for the blade with pre-cone and
pre-bend.
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Figure 10.7: Frequencies and corresponding shapes of the modes from 6 through 8 for the blade with pre-
cone and pre-bend.
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10.2 Static aero-elastic calculations

In this section, the aero-elasticity of the DTU 10MW RWT blade is considered. The static aero-elastic

coupling is employed, as explained in Section 3.6.3 of Chapter 3. Two configurations are investigated: the

straight blade, and the blade with pre-bend and pre-cone.

10.2.1 Grids and computational parameters

46 cells
Exponential 1x10

­5

272 cells around the
aerofoil section

(a) Slice through the mesh around the blade. Grid E1.

X
Y

Z

(b) Blocking employed for static aero-elastic analy-
sis of the straight blade. Grid E1.

256 cells around the
aerofoil section

40 cells 
Exponential 5x10

­6

(c) Slice through the mesh around the blade. Grid E2. (d) Blocking employed for static aero-elastic anal-
ysis of the blade with pre-bend and pre-cone. Grid
E2.

Figure 10.8: Details of the grids employed for the static aero-elastic analysis of the DTU 10MW RWT.
Mesh close to the blade surface (a, c), and blocking (b, d).

Two grids were employed for the steady aero-elastic computations of the DTU 10MW RWT. The

first grid (E1) was used for the straight blade, and incorporated the same domain as was used as for the

rigid cases in Section 9.4.1. To allow for large block deformations, the domain was split into 444 blocks as

shown in Figure 10.8, and the final size of the grid was 8.7M cells. The second grid (E2) was employed for
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the blade with pre-bend and pre-cone, the same as in Section 9.4.2. The nacelle was included, using sliding

planes, and was rigidly attached to the rotor. The grid was split into 802 blocks, and its total size was 5.4M

cells. The details of employed grids are provided in Table 10.2. The slices through the volume close to the

blade surface for both grids are shown in Figure 10.8. Note that a reduced spacing at the wall was used for

the blade with pre-bend and pre-cone. For both cases, the inflow wind speed was set to 11m/s, the rotational

speed of the rotor was 8.836rpm, and the k−ω SST turbulence model [137] was employed. The input files

for the NASTRAN, as used in this chapter, are provided in Appendix A.

Table 10.2: Computational grids employed for static aero-elastic analysis.

Grid ID Blade configuration Number of cells Number of blocks
E1 Straight 8.7M 444
E2 Pre-bend and pre-cone 5.4M 802

The iterative process was used to achieve strong aero-elastic coupling, as explained in Section 3.6.3 of

Chapter 3. This can be briefly summarised as follows. The loading is first extracted from the fluid grid, using

a sectional pressure integration. The non-linear solution sequence of NASTRAN is then used to compute the

deformed shape of the blade, with the loads introduced as PLOAD elements (linear variation of loading

between both ends of the element). This new shape is then applied to the fluid grid. For this, the Constant-

Volume Tetrahedron (CVT) method is used to interpolate the deformed shape of the blade surface. Then,

the block vertices are moved according to the spring analogy method. Finally, the full mesh is regenerated

with the Trans-Finite Interpolation (TFI) method. A new flow solution is obtained on the deformed grid,

and loads are extracted. This iterative process is repeated until a load convergence is reached.

10.2.2 Results for the straight blade

The convergence history of the loads of the static aero-elastic calculations for the straight blade are shown

in Figure 10.9, where three iterations were performed in total. The final shape of the blade was obtained

by applying the aerodynamic loads from the third iteration. This is referred to as the fourth iteration in

Figure 10.10, but the flow field solution was not computed after the last grid deformation. Thus, the loads

for the fourth iteration are not presented in Figure 10.9.

The results suggest a final displacement at the blade tip of 8.5m in the flap-wise direction, 0.3m in
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Figure 10.9: Convergence history of the loads for the static aero-elastic computation for straight DTU 10MW
RWT blade.

the edge-wise direction, −0.7m in span-wise direction, where negative sign means displacement towards the

root. This can be clearly seen in Figure 10.10(c). The tip displacement of 7.8m in the flap-wise direction

was reported by Horcas et al. [77] for the same flow conditions and blade configuration. This indicates a

difference in the predicted deformation of 9%. However, a different structural model was employed, where

the structure was linearised by means of the reduced-order model (ROM)[42]. All displacements as functions

of the elastic iteration are shown in Figure 10.10(b). The shapes of the blade for consecutive iterations are

shown in Figure 10.10(a), where shape convergence is observed.
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(a) Deformation of the blade for consecutive iteration.
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(b) Tip displacement for consecutive iteration.
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Figure 10.10: Resulting deformations of the initially straight blade from static aero-elastic computations.
Shape of the blade for consecutive iteration (a); tip displacement for consecutive iteration (b); and final
displacement at the tip in flap-wise (b) and edge-wise (c) directions.

The thrust and power for the rigid and elastic blades are compared in Table 10.3. The obtained

results suggest the reduction in both, the thrust force, and mechanical power, due to the elastic deformation.

This was expected, since the straight blade was optimal by design, and hence, should represent the best

aerodynamic shape for given flow conditions. Distributions of the loads are shown in Figure 10.9 showing a

decrease due to deformation. Reductions in thrust of 24kN, and in power of 305kW were computed, which

correspond to relative reductions of 1.6%, and 3.0%, respectively. The results presented by Horcas et al. [77]

seem to suggest a reduction of around 40kN in the thrust force, which is almost twice as much, but still less
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than 3%. The power reduction was not provided in [77], and a comparison was not possible.

Table 10.3: Comparison between thrust and power for undeformed and deformed blades. Straight blade
case.

Undeformed blade Deformed blade Difference
Thrust [kN] 1478.2 1454.2 -24.0 (-1.6%)
Mech. Power [kW] 10291.8 9986.5 -305.3 (-3.0%)

The distributions of the pressure coefficient Cp for the rigid and elastic blades are shown in Fig-

ure 10.11. The section at 75%R was chosen as a representative point along the blade span. As can be seen,

the deformation reduces the peak of the Cp, and hence, the lift. Also, the pressure side seems to experience

slightly lower Cp values, further reducing the lift at this section. This agrees with the distributions of loads

presented in Figure 10.9, and the integrated values shown in Table 10.3.
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Figure 10.11: Pressure coefficient distribution around the aerofoil section at 0.75R for rigid and elastic
blade. Straight configuration of the blade.

10.2.3 Results for the blade with pre-bend and pre-cone

The convergence history of the loads for the static aero-elastic calculations for the blade with pre-bend and

pre-cone are shown in Figure 10.12. Similarly to the previous case, three iterations were performed in total,

and the final shape of the blade was obtained by applying the aerodynamic loads of the third iteration.

The results suggest a final displacement at the blade tip of 8.7m in the flap-wise direction, 0.04m in

the edge-wise direction, 0.18m in the span-wise direction. The flap-wise deflection at the tip was comparable
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Figure 10.12: Convergence history of the loads for the static aero-elastic computation for the DTU 10MW
RWT blade with pre-bend and pre-cone.

to the one obtained for the straight configuration of the blade, 8.5m. However, the edge-wise deflection was

almost 10 times smaller. Also, the displacement in the span-wise direction was positive, as opposed to the

previous case, meaning that the blade is slightly elongated due to the deformation. All displacements, as

functions of elastic iteration, are shown in Figure 10.13(b). The shapes of the blade for consecutive iterations

are shown in Figure 10.13(a), where shape convergence can be observed. The thrust and power for the rigid

and elastic blades are compared in Table 10.4. The obtained results suggest an increase in both the thrust

force, and mechanical power, due to elastic deformation. This is contrary to the initially straight blade,
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(a) Deformation of the blade for consecutive iteration.
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(b) Tip displacement for consecutive iteration.
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Figure 10.13: Deformations of the blade with pre-bend and pre-cone for static aero-elastic analysis. Shape of
the blade for consecutive iteration (a); tip displacement for consecutive iteration (b); and final displacement
at the tip in flap-wise (b) and edge-wise (c) directions.

where the reduction was observed. However, this was anticipated, since the deformed blade is closer to the

straight configuration than initial shape with pre-bending and pre-coning. The deviation from the straight

blade at the tip was 7.2m for the rigid, and 1.5m for the elastic case. The distributions of loads shown in

Figure 10.12 include also the loads due to the deformation. The increase of thrust force of 14.7kN, and

power of 134.5kW was computed, corresponding to a relative increase of 0.8%, and 1.2%, respectively.

The distributions of the pressure coefficient Cp at 75%R for the rigid and elastic blades are shown in

Figure 10.14. As can be seen, the deformation increased the suction along the whole section, and hence, the
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Table 10.4: Comparison between thrust and power for undeformed and deformed blade. Pre-bent and pre-
conned configuration of the blade.

Undeformed blade Deformed blade Difference
Thrust [kN] 1654.1 1668.8 14.7 (0.8%)
Mech. Power [kW] 10846.5 10981.0 134.5 (1.2%)

lift. The pressure side seems to experience slightly lower Cp values for elastic blade, but the differences are

larger on the suction side, and the total lift is not compensated by this lower pressure. This agrees with the

distributions of loads presented in Figure 10.12, and the integrated values from Table 10.4.
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Figure 10.14: Pressure coefficient distribution around the aerofoil section at 0.75R for rigid and elastic
blade. Pre-bent and pre-conned configuration of the blade.

10.3 Dynamic aero-elastic calculations

In this section the dynamic aero-elastic analysis of the DTU 10MW RWT rotor with pre-bend and pre-cone

is discussed.

10.3.1 Grids and computational parameters

The complete rotor was modelled for this test case, and the grid was obtained by combining three times the

grid E2 used in the previous section. The size of the grid was 16.1M cells, and corresponds to 5.4M cells

per blade. The computational domain with the corresponding boundaries, a slice through the mesh close to

the blade surface, and the surface mesh of the blade are presented in Figure 10.15. The structural model
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(a) Slice through the volume close to the blade surface. (b) Surface mesh.

(c) Computational domain. Part of the boundaries removed to expose the rotor.

Figure 10.15: Grid employed for the dynamic aero-elastic case of DTU 10MW RWT rotor without the tower
- (a) slice through the volume, (b) surface mesh, and (c) computational domain.

was as described in Section 10.1, and the structural damping coefficients were taken from Table 6.4 of Bak

et al. [11]. The modal approach was employed as explained in Section 3.6.4 of Chapter 3, and the first six

modes were included in the model.

The unsteady computation was performed with a time step ∆t = 4.7 · 10−3s corresponding to 0.25◦

of rotation. The wind speed was set to 11m/s, and the rotor was rotating at 8.836rpm. This allowed to

compute the y+ parameter for this grid to be y+ = 0.9, and once the solution was obtained, about 20 cells

were located inside the boundary layer at the 75% radius station. At the beginning of the computation, the

blades were assumed rigid, and the "hover" formulation was first employed. Then, unsteady computations

were initiated, and the elasticity was turned on after about 60◦ of azimuth angle.
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10.3.2 Results

The time histories of loads are presented in Figure 10.16(a). The elasticity was engaged at 60◦ of azimuth

angle, and resulted in sudden changes of instantaneous thrust and power. The reduction of loads can be

observed first, and then the increase, which is followed by quite periodic variation due to vibration of the

blades. Also, the reduction of the thrust force due to elasticity is quite evident, which is opposed to what was

observed for the static aero-elastic case. The tip displacements as functions of azimuth angle are shown in

Figure 10.16(b). The reference of axes are the same as for previous cases, and can be seen in Figure 10.17,

where the shape of the blade after two revolutions is compared to the rigid blade.

Azimuth angle [deg]

T
h

ru
s

t 
[k

N
]

P
o

w
e

r 
[M

W
]

0 90 180 270 360 450 540 630 720
1000

1100

1200

1300

1400

1500

1600

1700

2

4

6

8

10

12

14

Thrust
Power

(a) Thrust and power as function of the azimuth angle for un-
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(b) Tip displacements as function of the azimuth angle for un-
steady elastic case.

Figure 10.16: Time histories of loads and the tip displacements for unsteady aero-elastic case of DTU
10MW RWT rotor without tower.

(a) Isometric view. (b) Chord wise and in-plane views.

Figure 10.17: Deformation of the DTU 10MW RWT blades after 2 revolutions.
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The results suggest that the displacement at the tip reaches an instantaneous value of 8.4m in the

direction of the wind. This value is close to the displacement obtained for static aero-elastic case presented

in Section 10.2.3. However, after the transient phase, the displacement in z direction is damped over half a

revolution to 6.7m. This is about 20% lower, as compared to the result of static aero-elastic analysis, and can

be partially attributed to the reduction of the thrust force. The blade straightens and slightly elongates in the

x direction by 0.2m due to elastic bending. The edge-wise motion is a high frequency oscillation and slowly

tends to a displacement of about 0.04m towards the leading edge. These two values are in good agreement

with the static case results.
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Figure 10.18: Distributions of the loads for the aero-elastic computations for the DTU 10MW RWT blade
with pre-bend and pre-cone.
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The instantaneous distributions of loads along the blade are shown in Figure 10.18, where they are

compared to the loads obtained in the previous section using static aero-elastic analysis. As can be seen,

the loads agree with the rigid blade from root up to around 0.5R, but there is a reduction closer to the tip of

the blade. Using these loads, the NASTRAN non-linear solution suggests a tip displacement of 8.2m, which

is about 18% larger than what was estimated using the dynamic aero-elastic approach, and is closer to the

value obtained from the static aero-elastic analysis (8.7m). The shapes of the blade from static and dynamic

aero-elastic computations are shown in Figure 10.19.

Figure 10.19: Comparison of the blade shapes from static and dynamic aero-elastic computations.

The differences between static and dynamic cases can be attributed to two effects. The first one

is related to the predicted aerodynamic loads. Comparing the shapes of the blade in Figure 10.19, it can

be seen that the dynamic aero-elastic case predicted a shape closer to the straight configuration. Therefore,

higher loadings were anticipated, as compared to the static aero-elastic case. However, this was not observed

in Figure 10.18. This indicates that the unsteady motion of the blade resulted in a reduction of the blade

loads. The second effect is related to the linearisation of the structural model. The loads from the dynamic

aero-elastic case resulted in larger displacements, when applied to the non-linear NASTRAN model. This

indicates that the modal approach may not completely apply for large rotors with large deformations. This

seems to be confirmed by the results presented in Section 10.2.2, where the linearised model of Horcas

et al. [77] predicted smaller flap-wise deflection, as compared to the results of non-linear model employed

in this work.
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10.4 Complete assembly of DTU 10MW RWT

In this section the complete configuration of the DTU 10MW reference wind turbine is considered with rigid

and elastic blades. The wind turbine consists of the tower with nacelle tilted nose-up by 5◦, as explained

in Section 9.1 of Chapter 9. The blades have pre-cone and pre-bend. The wind speed was 11m/s, and the

rotational speed was 8.836rpm.

10.4.1 Grids and computational parameters

(a) Slice through the volume close to the blade surface. (b) Surface mesh of the blade.

(c) Slice through the volume close to the nacelle. (d) Computational domain of the complete DTU 10MW RWT. Part of the
boundaries removed to expose the wind turbine and sliding plane.

Figure 10.20: Grid employed for the DTU 10MW RWT - (a) slice through the rotor grid, (b) blade surface
mesh, (c) slice through the tower grid, and (d) computational domain.

The same computational mesh was employed for both rigid and elastic blades. The grid consisted
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of the rotor mesh that was attached to the nacelle and tower grid by means of a sliding plane to allow for

relative rotation. The grid size for each of the blades was 8M cells, and for the tower with nacelle 1.5M

cells mesh was employed. The final size of the mesh was 25.5M cells. The inflow boundary was placed

3R in front of the tower, and the outflow boundary was placed 6R behind it, where R is the radius of the

rotor. The far-field boundary was assigned three blade radii from the centre of rotation. The computational

domain with corresponding boundaries and details of the mesh are presented in Figure 10.20. The tower was

extended with a cylinder to the bottom of the domain. The y+ parameter for this grid at the given conditions,

was calculated to be y+ = 0.2, and once the solution was obtained, about 30 cells were located inside the

boundary layer at the 75%R station.

The unsteady computations were performed using k−ω SST turbulence model with a time step ∆t =

4.7 · 10−3s, corresponding to 0.25◦ of rotation. First, the blades were assumed rigid and three revolutions

were performed before aero-elasticity was engaged. To avoid large deformations at the beginning of the

aero-elastic computation, the structural damping coefficients present in the modal excitation equation were

set to the values shown in Table 10.5. The computation with the rigid blades was continued for another 1.3

revolutions, such that better comparisons to the elastic case can be performed.

Table 10.5: Structural damping coefficients used in the aero-elastic computation for the complete DTU
10MW RWT.

Applied between
azimuth angles
(revolutions)

1080◦ − 1260◦

(3.0-3.5 rev.)
1260◦ − 1440◦

(3.5-4.0 rev.)
after 1440◦ (after
4.0 rev.)

Mode Damping coefficient [%]
1st flap 50 10 3
1st edge 50 10 3
2nd flap 50 10 8
2nd edge 50 10 9
3rd flap 50 20 17
4th flap 50 30 26

10.4.2 Results

Time histories of thrust and power for rigid and elastic blades are presented in Figure 10.21. The thrust

was computed as the aerodynamic force acting along the axis of rotation, and the mechanical power was

computed as the aerodynamic moment along the shaft multiplied by the rotational velocity of the rotor.

208



10.4. COMPLETE ASSEMBLY OF DTU 10MW RWT CHAPTER 10. ELASTIC COMPUTATIONS

Revolution [­]

T
h

ru
s

t 
[k

N
]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1300

1400

1500

1600

1700

1800
Rigid

Elastic

(a) Thrust force.

Revolution [­]

P
o

w
e

r 
[k

W
]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
6000

7000

8000

9000

10000

11000

12000

13000

14000
Rigid

Elastic

(b) Mechanical power.

Figure 10.21: Thrust force and mechanical power as functions of revolution for the DTU 10MW RWT.
Comparison between the rigid and elastic blades.

A large instantaneous reduction of the thrust and power due to the sudden large deformation of the

blades can be observed for the elastic case. This is similar to what was observed for the dynamic elastic case

without the tower. However, the large structural damping coefficients at the beginning of the present elastic

computation prevented large instantaneous deformations. After the transient phase, the loads stabilised and

the blade-tower interaction was clearly visible. The rigid blades case was slower to stabilise. Hence, solving

the rigid case for longer would result in better estimates of the relative changes. However, the variations of

thrust and power for the last 120◦ of azimuth angle were quite periodic, as shown in Figure 10.22.
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Figure 10.22: Thrust force and mechanical power as functions of azimuth angle for the first 120◦ of the 4th
revolution. Comparison between the rigid and elastic blades.

The results presented in Figure 10.22 suggest a mean reduction in thrust by about 70kN (4.3%) and
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in mechanical power by about 533kW (4.7%) due to the elasticity of the blades. Also, the minima in both

quantities for the elastic blades are slightly shifted towards smaller azimuth angles. Similar trends can be

observed in the results presented in Carrión et al. [28] for a two bladed wind turbine. The instantaneous

reduction of thrust by 30kN (1.8%) and power of 561kW (4.9%) due to the blade passing in front of the

tower can be concluded, and the variation is similar in both cases. Note that for the rigid blade the minimum

in power appears as the blade is passing in front of the tower (at 60◦ of azimuth angle), whilst the minimum

in thrust is delayed by approximately 5◦. Also, the overshoot of thrust and power after passing the tower can

be seen for elastic blades. This is in contrast with the variations for the rigid blades, where the thrust and

power grows gradually and stabilises before the next blade is about to approach the tower.
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(a) Tip displacements. Axes are the local axes of the rotor. (b) Comparison between rigid and elastic blades.

(c) Comparison of shape of the same blade at different azimuth angles Ψ.

Figure 10.23: Displacement of the tip as function of revolution (a), comparison between the shapes of rigid
and elastic blades (b), and shape of the blade for different azimuth angles Ψ (c).
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The displacements at the tip, as functions of the rotor revolution, are shown in Figure 10.23(a).

Note that displacements are presented for one blade, which points at 12 o’clock at the beginning of each

revolution. The obtained results suggest that the flap-wise displacement reached the mean value of 6.7m,

which agrees with the results of the aero-elastic analysis without the tower. Also, span-wise and edge-wise

displacements agree very well - 0.2m and 0.04m respectively. Unlike for the results without the tower, high

instantaneous displacements at the tip were not observed due to high structural damping at the beginning of

the aero-elastic computation. However, after 4 revolutions, the coefficients were reduced to the same values,

according to Table 10.5 and Bak et al. [11]. One per revolution excitation can be seen in Figure 10.23(a),

especially for the flap-wise and edge-wise motions (in z and y). The span-wise motion is linked to the

rotation through the flap-wise deflection, and hence, is less visible. The reduction of the thrust for the blade

(due to the tower) in the middle of a revolution delivers an impulse. As a result, the blade reduces its

deflection, and vibrates with different frequencies in both directions for about half a revolution. The effect

of the tower on the shape of the blade can be seen in Figure 10.23(c). As the blade moves away from the

tower, it begins to experience a constant loading. Therefore, the increase of deflection in flap-wise direction

can be seen. The motion would stabilise at some point, but then the blade reaches the tower again. The

comparison between the shape of the blade for rigid and elastic case is presented in Figure 10.23.

The wakes of the DTU 10MW RWT with rigid and elastic blades were visualised with the iso-surface

of Q = 0.007 in Figure 10.24. The strong tip and root vortices can be observed. Also, the interaction of

the wake generated by the rotor and the Kármán vortex street generated by the cylindrical tower can be

identified. Breaking of the vortex sheet behind the blunt trailing edge of the blade can be seen for the blade

that just passed the tower. Comparing both solutions, different shape of the blades can be seen, where rigid

blades are further away from the tower. This affected the tip vortices, where the rigid case resulted in the

tip vortex upstream the tower, whilst for the elastic case, the vortex was interacting with the tower. This is

especially clear in Figure 10.25, where contours of velocity in direction of the z axis are shown.
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(a) Rigid blades. (b) Elastic blades.

Figure 10.24: The wake of the DTU 10MW RWT visualised with the iso-surface of Q = 0.007 criterion: (a)
rigid and (b) elastic blades.

(a) Rigid blades. (b) Elastic blades.

Figure 10.25: Contours of velocity component W in meters per second: (a) rigid and (b) elastic blades.
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Chapter 11

Trailing and leading edge flaps for DTU

10-MW RWT1

In this chapter, the effects of employing deformable trailing and leading edge flaps on a 10-MW wind turbine

are investigated. The concept of deformable flaps was introduced in Section 1.2.8 of Chapter 1, and a new

flap deflection algorithm was implemented in the HMB3 solver, as explained in Section 11.1. A definition

of the employed flaps is given in Section 11.2, and computational results are presented in Section 11.4. The

blades are assumed rigid throughout this chapter.

11.1 Flap deflection algorithm

A new flap deflection algorithm was implemented in HMB3 to allow for arbitrary flap shape motion. The

algorithm is based on the surface interpolation, where the mean, maximum and minimum flap deflections

are defined by separate surfaces. Then, the linear interpolation is employed for each point on the surface

between the mean and the deflected shapes of the flap. The motion of the flap in time can be arbitrary,

and is described by a Fourier series. Since only mean and maximum surfaces are known to the solver, the

interpolation tends to slightly shrink the flap. To understand this behaviour, consider a 2D rod-like flap

shown in Figure 11.1. As can be seen, the linear interpolation tends to shrink the flap, but the effect is not

1 This work was published in Leble and Barakos[113].
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pronounced for relatively small angles of deflection.

mean

interpolated length

real length

maximum negative

Figure 11.1: Schematic of the trailing edge flap, showing mean and maximum negative deflections, and real
and interpolated length of the flap during motion.

The trans-finite interpolation (TFI) method[49] is employed to regenerate the mesh after the surface

deformation. The details of this method are presented in Section 3.6.2 of Chapter 3. Only blocks adjacent

to the deformed surface are interpolated for computational efficiency, and so the nearest mesh blocks to the

flap must be large enough to accommodate the expected flap deflections. Figure 11.2 shows the changes on

the cell volumes and skewness of the grid for the employed leading edge flap deflected towards the pressure

side by 10◦. Equation 3.46 from Chapter 3 was used to compute the cell volume and skewness ratios.

(a) Volume ratio. (b) Skewness ratio.

Figure 11.2: Cell volume ratio (a), and skewness ratio (b) between deformed and undeformed grids for the
leading edge flap deflected 10◦ towards the pressure side.

11.2 Definition of the flaps

The DTU 10-MW RWT[11] blade was equipped with leading and trailing edge flaps. The leading edge (LE)

flap was centred at 60%R, and the trailing edge (TE) flap was at 75%R. The length of each flap was 10%R,
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but the width of the TE flap was 10% of the local chord, whereas the width of the LE flap was 20% of the

local chord, as shown in Figure 11.3. The choice of the TE flap width was made under the understanding

that flaps will be used for load control and elevation. For the LE flap, it was assumed that its operation is

similar but less efficient to that of the TE flap. The width in this case was increased to 20% to allow for a

larger control surface and for smooth transition of the surface slope.

(a) Location and width of the flaps. (b) Length of the flaps.

Figure 11.3: The location and dimensions of the trailing and leading edge flaps.

The deformation of the flaps was defined with respect to the mean line of the aerofoils as shown

in Figure 11.4. Let Xm denote the mean line and h(x) denote the thickness distribution. With respect to

a curvilinear (ξ ,η) system following the mean line, the deformation is defined as η(ξ ) = φξ 2(3− ξ )/2

where ξ ∈ [0,1], and φ is providing the deflection. With this definition, the shape of the camber line is C∞

smooth. The displacement and derivative at the beginning of the flap (at ξ = 0) is 0. At the other end of the

flap (at ξ = 1), the second derivative of the displacement is 0. In this work φ ≡ φ(t) = φm sin(ωt), where

φm is the maximum value which is determined by the maximum deflection angle β . Then the upper (S+)

and lower (S−) sides of the aerofoil are

S±= Xm +η(ξ )Nm+h(x)N′
m, (11.1)

where Nm denotes the unit normal to the mean line, and N′
m denotes the unit normal to the deformed mean

line defined by X′
m = Xm +η(ξ )Nm. By denoting the point at which the flap starts with x0, the process to

compute flap deflection is as follows:
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For each point x > x0

1. Get Xm, h(x), and Nm.

2. Define ξ = ξ (x) based on the length along the mean line.

3. Define the deformed mean line X′
m(ξ ) = Xm(x)+η(ξ )Nm(x), and get N′

m(ξ ).

4. Compute deformed shape from X(±) = Xm +η(ξ )Nm +h(x)N′
m.

(a) Definition for the LE flap deformation. (b) Definition for the TE flap deformation.

Figure 11.4: Definition conditions for the LE (a) and TE (b) flap deformation.

The FORTRAN code to compute the deflection of the TE and LE flaps is presented in Listing 11.1.

The flaps were deflected form −10◦ to +10◦ with the shape and notation presented in Figure 11.5. The

frequency of flap motion was set to 0.96Hz, or six times per revolution.

Listing 11.1: FORTRAN pseudo-code to compute the trailing and leading edge flap deflections.
! Let X(i), Y(i) denote the coordinates of the nodes on the aerofoil
! Input: Xo (x/c location), amax (max angle), freq (frequency)

! Function: f(x,t)=amax*sin(2.*pi*freq*t)*ksi**2*(3.-ksi)/2.

! N number of points on the aerofoil

! Note: all dimensions are normalised to the chord

! TE Flap motion:

do i=1,N

Ynew=Y(i); dYnew=0.

If(X(i).ge.Xo) then

ksi=(X(i)-Xo)/(XTE-Xo) ! XTE=1.

dmax=(XTE-Xo)*sin(amax)/cos(amax)

Ynew=Y(i)+ dmax*sin(2.*pi*freq*t)*ksi**2*(3.-ksi)/2.

dYnew= 2*pi*freq*dmax*cos(2.*pi*freq*t)*ksi**2*(3.-ksi)/2.

endif

enddo

! LE Flap motion:

do i=1,N

Ynew=Y(i); dYnew=0.

If(X(i).le.Xo) then

Ksi=(Xo-X(i))/Xo

dmax=Xo*sin(amax)/cos(amax)

Ynew=Y(i)+ dmax*sin(2.*pi*freq*t)*ksi**2*(3.-ksi)/2.

dYnew= 2*pi*freq*dmax*cos(2.*pi*freq*t)*ksi**2*(3.-ksi)/2.

endif

enddo
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(a) Deflection of the LE flap.

=­10
o

=0
o

=10
o

(b) Deflection of the TE flap.

Figure 11.5: Definition of the positive and negative deflection for the LE (a) and TE (b) flap.

11.3 Computational grid and flow conditions

In this chapter, the same 9.2M cells grid is employed as in Section 9.4.1 of Chapter 9. This grid included

the complete DTU 10MW RWT blade in a straight configuration, and had an 0-grid topology around the

aerofoil sections. The first cell distance from the wall was 10−6c, where c = 6.206m is a maximum chord of

the blade. The hub was included based on the simplified nacelle shape, as shown in Figure 9.13.

The k −ω SST turbulence model by Menter[137] was employed, and URANS computations were

performed using HMB3 solver. The wind speed was set to the rated value of 11.4m/s, and rotational

velocity of the rotor was set to 9.6rpm. Flap motion frequency was chosen to be six times per revolution,

which corresponds to 0.96Hz. This is close to the frequency of the first edge-wise mode, as shown in

Table 10.1. However, no attempt was made to control the flaps to counter particular vibrations. In fact,

blades were assumed rigid in this chapter. The results presented here aim to investigate the potential of the

TE and LE flaps applied to large rotors.

11.4 Results and discussion

11.4.1 Results for the TE flap

The distributions of the pressure coefficient Cp in the middle of the TE flap, and for different angles of

deflection β are shown in Figure 11.6. Significant changes of the pressure at the rear part of the aerofoil can

217



11.4. RESULTS AND DISCUSSION CHAPTER 11. FLAPS FOR DTU 10-MW RWT

be observed. However, the whole length of the section is affected by the flap. The change of the maximum

value of Cp varies from 2 to about 2.3, and is located near the leading edge of the aerofoil. Interestingly

to note, that the Cp distribution crosses at the flap for the maximum negative deflection (β = −10◦). This

means that the suction side becomes the pressure side at the trailing edge flap for this angle. Therefore,

the lift is reduced, and a larger moment should be applied at the flap to achieve the deflection. As the flap

angle β changes towards positive values, the pressure is increasing at the pressure side, and decreasing at

the suction side, effectively increasing the lift. The minima and maxima of the Cp distribution are near the

beginning of the TE flap. This shows that some surface discontinuity was present. Note that for the angle

of deflection β = 0, computed Cp distribution did not coincide with the one obtained for the case without

flaps, referred to as "clean blade" throughout this chapter. This indicates the existence of hysteresis, where

the flow cannot adapt instantly to the change of the surface. Indeed, the hysteresis loops were observed in

the analysis of non-dimensional coefficients in Section 11.4.3.

The distributions of the pressure coefficient around the whole blade are shown in Figure 11.7. It is

quite evident that the flap deflection had only local influence on the pressure distribution, whereas the rest of

the blade remained largely unaffected. The change of pressure at the root of the blade is caused by the root

vortex shedding. This mostly affected the suction side, from which vortices are shed. This shedding was

found to be affecting approximately 10% of the blade span at the root. However, the root section creates very

little lift due to mostly cylindrical shape of the blade at this part. The instantaneous vortices were visualised

with the iso-surfaces of Q criterion, as shown in Figure 11.8. As can be seen, the tip vortices are much

stronger, compared to the TE flap vortices, and hence were preserved for longer, showing the expansion of

the wake. The vortex sheet behind the blunt trailing edge of the blade can also be seen. The vortex sheet

is stronger, and extends further behind the TE flap due to increased pressure difference at the trailing edge,

as was shown in Figure 11.6. Larger loads result in increased momentum deficit and larger shear. Also, the

results suggest periodical detachment of the vortex sheet behind the TE flap due to the flap deflection.

The distribution of forces was obtained by integrating the pressure from root to tip of the blade. These

are presented in Figure 11.9, where the length of each section in radial direction used in pressure integration

is ∆r = 2.15m. Again, the localised effect of the flap deflection on the distribution of the loads can be seen.

The variation of 77.4kN in the thrust force, and 422.5kW in the power with respect to the "clean" blade were
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(e) β = 10◦.

Figure 11.6: Pressure coefficient distribution around the aerofoil section in the middle of the TE flap for
different angles of deflection β .

219



11.4. RESULTS AND DISCUSSION CHAPTER 11. FLAPS FOR DTU 10-MW RWT

(a) Pressure side.

(b) Suction side.

Figure 11.7: Pressure coefficient distribution around the blade with the TE flap for different angles of de-
flection β - pressure side (a), and suction side (b).
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Figure 11.8: Instantaneous vortices visualised with the iso-surfaces of Q = 0.02 criterion. The TE flap case
with β = 10◦.

observed for the computed test case. Further, the TE flap can modify the thrust force and pitching moment,

whereas the driving force is much less affected. This indicates that the positive effect of changing thrust

force (for instance to control flap-wise bending, or for elimination of the adverse effect of the blade passing

in front of the tower) comes with undesired change in the pitching moment. Hence, stronger pitch bearings,

and perhaps also actuators, should be considered, when the TE flaps are employed.
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Figure 11.9: Span-wise distribution of thrust force (a), driving force (b) and pitching moment (c) for DTU
10-MW blade equipped with TE flap. Flap motion frequency f = 0.96Hz (6 times per revolution).
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11.4.2 Results for the LE flap

The distributions of the pressure coefficient Cp in the middle of the LE flap, and for different angles of

deflection β are shown in Figure 11.10. Significant changes of the pressure at the front of the aerofoil can be

observed, with the maximum Cp variation from 2 to almost 3.5. This variation is larger, as compared to the

trailing edge flap case. However, the distribution of the Cp at the rear part of the aerofoil (in range between

0.6c− 1.0c) is almost constant. This is in contrast with the trailing edge flap, where the whole length of

the aerofoil section was affected by the flap deflection. Note that the TE flap employed in this work is two

times shorter than the LE flap. This indicates that the TE flap is more aerodynamically efficient. A direct

comparison of the force coefficients is provided in the next section. The deflection of the LE flap shifts

the stagnation point, as can be seen by comparing Figures 11.10(a), 11.10(c) and 11.10(e). The negative

deflection shifts the stagnation point towards the trailing edge, and a positive deflection shifts it towards

the leading edge. The opposite can be seen for the suction peak, where negative deflection shifts the peak

towards the leading edge, whilst positive angles β shift the peak towards the trailing edge of the aerofoil

section. However, the suction peak is always increased, regardless of the sign of deflection. This is due to

the increase of curvature of the aerofoil at the leading edge in both cases. Interestingly to note here that

the flow must pass around the leading edge for β = −10◦, hence, increasing the suction peak even more.

This results in increased lift for negative deflections, as opposed to decrease of lift for the same deflection of

the TE flap. This observation is confirmed in the following section, where the normal force coefficients are

compared. Also, for angle of deflection β = 0, computed Cp distribution is very close to the one obtained

for the case without flaps. This indicates that the flow was able to adapt almost instantly to the change of

the surface, which is in contrast to the TE flap case. Indeed, much smaller hysteresis loops were observed

in the analysis of non-dimensional coefficients in Section 11.4.3.

The distributions of the pressure coefficient around the whole blade are shown in Figure 11.11. The

change of pressure due to the flap deflection is less visible here, as compared to the TE flap case. The change

of pressure at the root of the blade is caused by the root vortex, which is similar to what was observed for

the previous case. However, vortices created by the leading edge flap deflection are less pronounced and

dissipated faster, as compared to the TE flap case. The instantaneous vortices visualised with the iso-surfaces
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Figure 11.10: Pressure coefficient distribution around the aerofoil section in the middle of the LE flap for
different angles of deflection β .
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(a) Pressure side.

(b) Suction side.

Figure 11.11: Pressure coefficient distribution around the blade with the LE flap for different angles of
deflection β - pressure side (a), and suction side (b).
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Figure 11.12: Instantaneous vortices visualised with the iso-surfaces of Q = 0.02 criterion. The LE flap case
with β = 10◦.

of Q criterion are shown in Figure 11.12. As can be seen, the vortex sheet behind the blunt trailing edge of

the blade is largely unaffected by the LE flap, which is in contrast to the observations made for the TE flap

case.

The distribution of forces was obtained by integrating the pressure from root to tip of the blade.

These are presented in Figure 11.13, where the length of each section in the radial direction used in pressure

integration is ∆r = 2.15m. Similarly to the TE flap case, the LE flap deflection had a localised effect on

the distribution of the loads. As can be seen, the thrust force was barely affected by the LE flap deflection.

The driving force was influenced by the flap, but the change was towards both sides (negative and positive

change at either ends of the flap), resulting in a similar force integral over the blade. Note that this apparent

discontinuity stems from the number of points used for integrating the loads in span-wise direction. Further,

the most significant change was observed in the pitching moment. This indicates that the LE flap can be

used in conjunction with the TE flap to counter the additional pitching moment created by deflection of the

trailing edge flap. Finally, the variation of 9.8kN in the thrust force, and 90.3kW in the power with respect

226



11.4. RESULTS AND DISCUSSION CHAPTER 11. FLAPS FOR DTU 10-MW RWT

to the "clean" blade were observed for the LE flap case, which is much less than what was obtained with the

TE flap.
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Figure 11.13: Span-wise distribution of thrust force (a), driving force (b) and pitching moment (c) for DTU
10-MW blade equipped with LE flap. Flap motion frequency f = 0.96Hz (6 times per revolution).
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11.4.3 Comparison of the performance

To conduct a meaningful comparison of the performance of both flaps, the non-dimensional coefficients

were used. This was chosen, since flaps are located at different radial position and exhibit different inflow

conditions. For this, the normal force coefficient (CN), tangential force coefficient (CT ) and pitching mo-

ment coefficient (CM) were computed. First, the thrust and driving forces were projected on the normal and

tangential directions using local geometrical pitch angle α as:

FN = TF · cos(α)+DF · sin(α), (11.2a)

FT = DF · cos(α)−TF · sin(α), (11.2b)

where TF denotes the thrust force, and DF denotes the driving force. These forces are defined in Fig-

Pitch axis

Plane
of rotation

local pitch angle 

Thrust force T
F

Driving force D
F

Normal force F
N

Tangential force F
T

Pitching moment M
P

Figure 11.14: Definition of the normal force, tangential force and pitching moment. Quantities shown in the
directions defined as positive.

ure 11.14, and were obtained from the surface pressure integration in the middle of the flap with the length

of the section in radial direction ∆r = 2.15m. Note that the geometrical pitch angle α is constant i.e. it does

not change with the flap angle β . Then, the forces and moment were non-dimensionalised as:

CN =
FN

0.5ρU2A
, (11.3a)

CT =
FT

0.5ρU2A
, (11.3b)

CM =
MP

0.5ρU2Ac
, (11.3c)
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where U and A are the geometrical local inflow velocity, and the local planform area, respectively. The

inflow velocity is defined as U2 = (ωr)2 +U2
wind , and and the planform area is defined as A = ∆r · c, where

c is the local chord in the middle of the flap.
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Figure 11.15: Comparison of the performance of TE and LE flaps based on the non-dimensional coefficients
as function of flap deflection angle β .

The obtained coefficients for both flaps as functions of the flap angle β are compared in Figure 11.15.

As can be seen, the trailing edge flap significantly modifies all three non-dimensional coefficients. On the

other hand, the leading edge flap has the most pronounced effect on the pitching moment coefficient, and

almost negligible (as compared to the TE flap) influence on the normal force coefficient. Also, the slope of

the normal force coefficient has opposite sign for both flaps. This means that for positive angles β the lift is

increased for the TE flap, and decreased for the LE flap. This confirms the observations made in previous

sections. Further, the relative change and slope of the pitching moment coefficient is higher for the trailing

edge flap. This indicates that the LE flap should either be larger in size, or experience larger deflection, such

that it can produce similar change in the pitching moment to the TE flap. Finally, both flaps can change the

tangential force coefficient, but the TE flap has higher hysteresis loop, as compared to the results for the LE

flap. This was also indicated based on the pressure coefficient distributions. Overall, the results are in line

with the potential flow theory, where the TE flap is more efficient than the LE flap for all other conditions

being equal.
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Chapter 12

Forced oscillations of DTU 10-MW

Reference Wind Turbine1

The possibility of a wind turbine entering vortex ring state during pitching oscillations is investigated in

this chapter. Forced yaw and pitch oscillations of the DTU 10MW RWT were computed, suggesting that

partial vortex ring state may be encountered during pitching. The results also show the strong effect of the

frequency and amplitude of oscillations on the wind turbine performance.

Figure 12.1: Hypothetical flow states of FOWT during pitching motion. From left to right: windmill state,
turbulent wake state, vortex ring state and propeller state. Adapted from [196].

1 This work was published in Leble and Barakos[112].
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The motivation for this work is that the FOWT will be subjected to the pitching motion during

operation[91, 97, 111], where the amplitude of motion is dependent on many parameters, including the rough-

ness of the sea, wind speed, support structure, and mooring cables. Hence, the FOWT may operate in

various aerodynamic flow states, including windmill, propeller and transient states too. Figure 12.1 shows

the hypothetical flow states of the FOWT during a forced pitching motion. Normally, a wind turbine will

operate in the windmill state, extracting energy from the flow field. Excessive pitching motion of the FOWT

may lead to a rapid change of the effective wind speed and tip speed ratio. In extreme cases, the rotor may

also behave like a propeller. This potential cycling between the windmill and propeller states during pitching

motion, and the intermediate flow conditions, poses operational and modelling challenges for FOWTs.

The assumptions of the simplified models, which are often used for FOWTs modelling, do not al-

ways hold for the complex aerodynamic flow states that can be encountered. For instance the assumptions

of BEM and GDW models are violated when the wind turbine undergoes large pitching motion[179, 195].

Therefore, very recent works employed Navier-Stokes CFD solvers to study pitching wind turbines[195, 196].

Considerable differences were reported between predictions of BEM, GDW and URANS CFD methods.

Further, contradictory findings were reported in the open literature. For instance, Madsen et al. [128]

reported good agreement between the BEM method and URANS CFD computations in terms of power for

yawed configuration. The work of Sant and Cuschieri[172] reported large differences between the power

production obtained with BEM, and GDW or FVM aerodynamic models. On the other hand, Tran and

Kim[195] concluded that GDW model agrees better with URANS CFD results than with the BEM model.

This shows the need for further research for yawing and pitching wind turbines.

In view of the above, the purpose of this chapter is to present results of numerical computations for a

10-MW wind turbine undergoing prescribed pitching and yawing motions. These results can be used in the

future to improve engineering models for FOWTs application.

12.1 Test cases

First, the NREL Phase VI [70] wind turbine was employed due to available test data at yaw. Three test cases

were considered, and the results were compared to experiments [70].
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Next, the DTU 10-MW reference wind turbine (RWT) [11] was studied. The test cases presented

in this chapter concern the wind turbine with constant yaw misalignment, and with sinusoidal yawing and

pitching motions. The inflow was considered uniform for those cases, and the blades were assumed rigid.

The list of all test cases is shown in Table 12.1.

Table 12.1: Description of presented test cases.

Name Wind Turbine Configuration Angle/Amplitude Period Inflow Blades
N0 NREL Aligned 0◦ - Uniform Rigid
N1 NREL Fixed Yaw 10◦ - Uniform Rigid
N2 NREL Fixed Yaw 30◦ - Uniform Rigid
Y1 DTU Fixed Yaw −3◦ - Uniform Rigid
Y2 DTU Fixed Yaw 3◦ - Uniform Rigid
Y3 DTU Sinusoidal Yaw 3◦ 8.8s Uniform Rigid
P1 DTU Sinusoidal Pitch 3◦ 8.8s Uniform Rigid
P2 DTU Sinusoidal Pitch 5◦ 8.8s Uniform Rigid

12.1.1 NREL Phase VI wind turbine

The HMB3 flow solver was first validated against the experimental data for the NREL Phase VI wind

turbine[70] with yaw misalignments. That wind turbine was stall-regulated and had a power rating of 20

kW. The blade was made entirely of the S809 aerofoil[187] with relative thickness of 21%. It had non-

linear distribution of the twist and linear distribution of the chord. The rotor diameter was 11m, and the

wind turbine operated at a wind speed of 7m/s with a rotational speed of 72rpm resulting in tip speed ratio

λ = 5.45. The detailed description of the NREL Phase VI wind turbine can be found in Section 7.1 of

Chapter 7.

Grid and computational parameters

The NREL Phase VI rotor was modelled including a hub, but without the tower, tunnel walls and instrumen-

tation boxes[70]. The grid consisted of 9.3M cells, giving about 4.6M cells per blade. The normal distance

of the first cells in the blocks adjacent to the blade surface was 1 · 10−5c, where c is a maximum chord of

the blade, 0.737m. Based on the free-stream condition and the size of the first cell, the y+ parameter was

y+ = 0.2. The first layer consisted of 34 cells in the normal direction to the blade surface, and 204 cells were

distributed around the aerofoil section. The blade surface was resolved with 139 cells along the span. The tip

232



12.1. TEST CASES CHAPTER 12. FORCED OSCILLATIONS OF DTU 10-MW RWT

204 cells around
the aerofoil

34 cells
Exponential 1x10

­5

(a) Slice through the volume close to the blade surface. (b) Surface mesh.

(c) Computational domain. Part of the boundaries removed for clarity.

Figure 12.2: Grid employed for the NREL Phase VI rotor without the tower - (a) slice through the volume
and (b) surface mesh, and (c) computational domain.

of the blade was rounded, and represented an approximation to the actual shape since the exact tip shape is

not defined in the reports of NREL[70]. An inflow boundary condition was placed four blade radii upstream

of the rotor, and the outflow was placed eight blade radii downstream. The far-field was assigned eight blade

radii away from the centre of rotation. The computational domain with the corresponding boundaries, a slice

through the mesh close to the blade surface, and the surface mesh of the blade are shown in Figure 12.2.

The free-stream was kept to the level of turbulence of 2.6% allowing fully turbulent flow simulations, and

the k−ω SST[137] turbulence model was employed. The time step employed for the unsteady computations

was chosen such that rotor performs one degree of revolution per step, resulting in ∆t = 2.3 · 10−3s. The

same time step was used for this wind turbine by Li et al. [122].
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12.1.2 DTU 10MW reference wind turbine

The DTU 10MW RWT[11] rotor in the pre-bent and pre-coned configuration was also employed in this

chapter. The rotor diameter was 178.3m, and the wind turbine operates at a wind speed of 11m/s with a

rotational speed of 8.836rpm, resulting in the tip speed ration λ = 7.5. The blades have a pre-coning of 2.5◦

and nonlinear pre-bending with 3.3m displacement at the blade tip. The detailed description of the DTU

10MW RWT can be found in Section 9.1 of Chapter 9.

Grid and computational parameters

40 cells
Exponential 5x10

­6

256 cells around
the aerofoil

­0.6­0.4­0.200.20.4

(a) Slice through the volume close to the blade surface. (b) Surface mesh.

(c) Computational domain.

Figure 12.3: Grid employed for the DTU 10MW RWT rotor without the tower - (a) slice through the volume,
(b) surface mesh, (c) computational domain.

The DTU 10MW RWT rotor was modelled including the nacelle, but without the tower. As was
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shown in Section 10.4 of Chapter 10, the presence of the tower affects the aerodynamic loads. Here, the

aim is to reduce the complexity of the flow, and show purely the effects due to the motion in yaw and pitch.

Hence, the tower was excluded, and the same grid as in Section 10.3 of Chapter 10 was employed in this

chapter. The grid consisted of 16.1M cells, giving 5.4M cells per blade. This grid density is adequate for the

studied wind turbine, as was shown in Section 9.3 of Chapter 9. Also, a similar work of Tran and Kim [196]

employed 6M cells grid for 5MW wind turbine. The domain consisted of the rotor that was attached to the

nacelle through a sliding mesh plane [193]. Based on experience[28], an inflow boundary condition was placed

three blade radii upstream of the rotor, and outflow was placed six blade radii downstream. The far-field was

assigned three blade radii from the centre of rotation. The computational domain with the corresponding

boundaries, a slice through the mesh close to the blade surface, and the surface mesh of the blade are shown

in Figure 12.3.

Similarly to the NREL Phase VI wind turbine cases, the free-stream was kept to the level of turbu-

lence of 2.6%, and the k−ω SST [137] turbulence model was employed. The time step for the unsteady

computations was set to ∆t = 1.8 · 10−2s, and corresponds to the time required for rotor to perform one

degree of revolution. Work of Tran and Kim [196] employed 2.0 degree increment of azimuth angle, and 3.0

degree increment was used by Sayed et al. [174].

12.2 Results and discussion

12.2.1 NREL Phase VI wind turbine

Three yaw angles were investigated for the NREL Phase VI wind turbine, these were 0◦, 10◦ and 30◦ yaw

misalignment cases (N0, N1 and N2 respectively in Table 12.1). The pressure measurements were affected

by the wake of the instrumentation[70] as shown in Figure 12.4. This was taken into account by comparing

the distributions of the pressure coefficient at azimuth angle of 270◦, as indicated in Figure 12.4(b). The

experimental data represent the average values as were measured for the same azimuth angle over multiple

consecutive revolutions, and the error bars represent the minimum and maximum values. On average, 35

revolutions were measured for each case [70].

The results for 0◦ yaw misalignment in form of the surface pressure coefficient distributions at var-

235



12.2. RESULTS CHAPTER 12. FORCED OSCILLATIONS OF DTU 10-MW RWT

(a) Boom and instrumentation wake interference. (b) Regions of rotor plane where pressure measure-
ments are influenced by instrumentation and tower.

Figure 12.4: Regions of instrumentation and tower influence on measured pressure. Definitions of positive
yaw and azimuth angles are also included. Figures adapted from [70].

ious radial stations along the blade are shown in Figure 12.5. Good agreement between the measured and

computed pressure can be seen.
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(c) 95.0% R, Yaw 0◦

Figure 12.5: Comparison between experimental data and CP values at various span-wise station for aligned
case.

The results for 10◦ and 30◦ yaw misalignments are shown in Figure 12.6 and 12.7, respectively. The

agreement with the experimental data for those cases is not as good as for the aligned rotor. However, the

agreement is not deteriorated as the yaw angle is increased from 10◦ to 30◦. This indicates the source of

the discrepancies in yawed flow. The reason can be attributed to the combined effect of the instrumentation,

tower and tunnel walls present in the experimental set-up.
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(c) 95.0% R, Yaw 10◦

Figure 12.6: Comparison between experimental data and CP values at various span-wise station for 10◦ yaw
misalignment.
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(c) 95.0% R, Yaw 30◦

Figure 12.7: Comparison between experimental data and CP values at various span-wise station for 30◦ yaw
misalignment.

12.2.2 Static and dynamic yawing of DTU 10MW reference wind turbine

This section presents the results obtained for DTU 10MW reference wind turbine with static and dynamic

yaw misalignments. First, the comparison of the aligned and static yaw cases is performed in this section.

This involves comparison of the aligned case from Section 9.4.2 of Chapter 9, and fixed yaw case of 3◦ (Y2

in Table 12.1). Next, the sinusoidal yawing case Y3 with yaw amplitude A = 3◦ and period Tyaw = 8.8s

is compared to the fixed yaw cases Y1 and Y2. The frequency of motion was chosen based on the most

probable frequency of the sea waves for the wind speed of 11m/s [116].

The employed notation for yaw angles is shown in Figure 12.8(a). Positive yaw angle corresponds to

a reduced inflow angle for the blade at 12 o’clock or 0◦ of azimuth. Contrary, the blade at 180◦ of azimuth

has increased inflow angle for positive yaw.

The results for the fixed yaw case are shown in Figure 12.8(b). The periodic variation of thrust and

power with the blade passing frequency is evident, and is caused by the advancing and retreating blade
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(a) Employed notation for yaw angle.
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Figure 12.8: Fixed yaw test cases: employed notation for yaw angles (a), and thrust and power as function
of the rotor revolution (b).

effect [175]. To be more specific, the blade is advancing in the upper half plane and retreating in the lower

half plane with respect to the in-plane wind component. The results suggest an average reduction of thrust

by 0.8% and power by 0.5% due to the yaw misalignment. As was shown in previous chapters, the elasticity

and atmospheric boundary layer have much stronger effect on the power production, than static yaw of 3◦.

This agrees with observation of Krodstat and Adaramola[103] that the loss in power output is small (less than

3%) when the yaw angle is less than 10◦.

Next, the DTU 10-MW RWT was forced to a yawing motion about a mean angle of 0◦. The yaw

amplitude was set to A = 3◦, and the period of oscillation was Tyaw = 8.8s. Power history results are shown

in Figure 12.9, where a periodic variation with the frequency of yawing is clearly visible. In this case, the

frequency of rotation does not coincide with the frequency of yawing motion. This results in the asymmetries

observed in Figure 12.9 due to the advancing and retreating blade effect [175]. Further, the power obtained

for the fixed yaw cases is presented in Figure 12.9(b) for comparison. The power variation with the yaw

angle α may be approximated by P(0◦)cosx(α), given that the yaw angle is fixed for each point [25]. The

exponent x is often thought to be equal to 3. Experimental evidence suggests that the exponent x may vary

between 1.8 and 5 [175]. Recent wind tunnel measurements shown that the curve based on x = 3 follows well

measured data [103]. In this case, the exponent x = 3 shows good agreement with the computed power loss

for fixed yaw misalignments, as can be seen in Figure 12.9(b). The error bars indicate the minimum and
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Figure 12.9: Power as function of time (a) and yawing amplitude (b).

maximum value over the revolution.

The power production agrees between static and dynamic yaw cases for the maximum yaw angles.

This is expected result, since the rotor has zero yawing velocity at maximum angle. However, the power

variation due to the dynamic yaw motion shows larger amplitude, with the maximum value in the middle

of the cycle. The increase in power production is about 2.5%, as compared to the aligned rotor case. This

dynamic effect is comparable in magnitude to the effect of elasticity (see Section 10.4 of Chapter 10) and

atmospheric inflow (see Section 9.5 of Chapter 9).

(a) Yaw −3◦. (b) Yaw 0◦. (c) Yaw 3◦. (d) Yaw 0◦.

Figure 12.10: Instantaneous vortices visualised with the iso-surfaces of Q = 0.05 criterion coloured by the
pressure coefficient CP. Yawing amplitude 3◦, and yawing period 8.8s.

Finally, Figure 12.10 shows the wake of the wind turbine at various instances visualised with the

iso-surfaces of Q = 0.05 criterion. The presented instances correspond to the times shown in Figure 12.11,
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Figure 12.11: Yaw angle and yaw angular velocity as function of time.

where the positive and negative yaw angles are defined in Figure 12.8(a).

12.2.3 Dynamic pitching of DTU 10MW reference wind turbine

In this section, the DTU 10MW RWT rotor was forced to perform a sinusoidal pitching motion about

the point located 119m below the rotor, what corresponds to the hub height in Bak et al.[11] The pitching

amplitude was set to A = 3◦ for the first test case (Test case P1), and to A = 5◦ for the second test case

(Test case P2). These amplitudes were chosen based on numerical estimates of Jonkman[91] for 5MW

wind turbine. The mean pitch angle was zero degrees, and the period of motion for both cases was set to

Tpitch = 8.8s. The frequency of the pitching motion was chosen based on the most probable frequency of

the waves for the wind speed of 11m/s [116]. The results in terms of thrust and power for both cases are

compared in Figure 12.12. They show large variations of the thrust and power. This agrees with the findings

presented in [195], where a 5MW wind turbine undergoing pitching motion experienced from 0MW to 15MW

of instantaneous aerodynamic power. Interestingly, the average thrust for both cases is close to the value

obtained without the pitching i.e. about 1650kN of thrust. However, the mean power is about 12.3MW and

14.4MW for the pitching amplitudes of 3◦ and 5◦, respectively. This corresponds to an increase of power

by 13.4% and 32.8%, as compared to the power output of an aligned rotor not undergoing pitching motion.

This variation is significantly larger than the effect of the elastic blades and atmospheric boundary layer

inflow. This was anticipated, since energy was delivered to the system through the forced motion.

Figure 12.12(b) shows the thrust and power as functions of the pitch angle, where a hysteresis loop is

observed. Figure 12.13 shows the wake of the wind turbine at various instances visualised with iso-surfaces

of Q = 0.05 criterion. The presented instances correspond to the times shown in Figure 12.14, where
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Figure 12.12: Thrust and power as function of time (a) and pitching amplitude (b).

negative pitch angle represents a wind turbine pitching towards the direction of the wind, while positive

pitch angle represents the wind turbine pitching away of the wind.

Estimates of the induced velocity vi were used to show that the wind turbine entered the turbulent

wake or the vortex ring states. The induced velocity was estimated from the momentum theory in the

applicable range, and the formula of Rand[166] was used otherwise, leading to the following expression for

the rate of induced velocity

vi/vh =





− Vc

2vh
−
√
( Vc

2vh
)2 − v2

h for Vc/vh ≤−2

1− Vc

2vh
+ 25V 2

c

12v2
h

+ 7V 3
c

6v3
h

for −2 <Vc/vh < 0
, (12.1)

where vi is the induced velocity, vh =
√

T/2ρA is the induced velocity in "hover" for the given thrust T and

the rotor area A, and Vc is the inflow velocity normal to the rotor plane. The inflow velocity was computed

from the wind speed Uwind , the linear velocity of the hub in the direction of the wind Uhub, and the pitch

angle α as:

Vc =−(Uwind cos(α)−Uhub/cos(α)), (12.2)

where the negative sign of inflow velocity was introduced to agree with the notation used for helicopters[118, 166].

The results are presented in Figure 12.15. As can be seen, the wind turbine did not encounter a vortex ring

state for 3◦ of amplitude. This agrees with the fluctuations of thrust and power, where variations were al-

most symmetric with respect to the pitch angle. However, for the second test case (A = 5◦) the rotor partially

entered vortex ring state. The interaction between the blade and tip vortex can be seen in Figure 12.13(h)
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(a) Pitch −3◦ (b) Pitch 0◦ (c) Pitch 3◦ (d) Pitch 0◦

(e) Pitch −5◦ (f) Pitch 0◦ (g) Pitch 5◦ (h) Pitch 0◦

Figure 12.13: Instantaneous vortices visualised with the iso-surfaces of Q = 0.05 criterion coloured by the
pressure coefficient CP. Pitching period 8.8s, pitching amplitude 3◦ (a-d), and 5◦ (e-h).

and 12.13(e). A closer look at Figure 12.12(a) shows the asymmetry of the thrust and power for pitch angle

of 5◦ near maximum thrust and minimum power as the pitch velocity changes sign. The comparison of

polars in Figure 12.12(b) revealed that the overall shape of the thrust and power with respect to the pitch

angle was similar for both cases. The thrust force had a similar expansion towards lower and higher values

as the amplitude of motion was increased, therefore maintaining almost the same averaged value (aver-

aged over the cycle). However, the power curves showed a similar low-power part, where the difference

in power for both cases was much smaller as compared to the high-power part of the cycle. Although low

power output was maintained for a longer part of the pitching cycle, as compared to the high-power part, the

power averaged over the cycle increased as the amplitude of motion increased. Finally, the power showed a
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the pitch angle and pitch angular velocity as function of time for pitching amplitude 3◦.

sharper increase as the turbine transitioned from backward to forward pitching motion. This can be seen in

Figure 12.12(b).
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Chapter 13

Coupled computation of floating off-shore

wind turbine1

This chapter presents results of numerical computations for floating off-shore wind turbines. The DTU

10-MW reference wind turbine was employed as an example, and the support platform was introduced to

provide sufficient buoyancy. The hydrodynamic loads on the support platform were computed using the

Smoothed Particle Hydrodynamics method, details of which are presented in Chapter 2. The aerodynamic

loads on the rotor were computed using the Helicopter Multi-Block flow solver introduced in Chapter 3.

Further, a Multi-Body Dynamic Model of rigid bodies and frictionless joints was used to compute the

motion of the floating offshore wind turbine. Mooring cables were modelled as a set of springs and dampers

following the force-displacement approach. As was shown in Chapters 6, 7, and 8, all solvers were validated

separately before coupling, and the importance of coupling is assessed in Chapter 5. Here, the employed

loosely coupled algorithm is described. The details of the numerical domains and computational parameters

are given in this chapter, alongside the obtained results.

1 This work was published in Leble and Barakos[111].
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13.1 Coupling scheme

In the present work, a weakly coupled approach is employed, namely the parallel, conventional, staggered

method of Figure 13.1. Both solvers are advancing with different but constant time steps. The SPH solver

employs a time step of ∆tSPH = 2 ·10−4s with CFL = 0.2, whereas HMB3 employs a time step of ∆tHMB3 =

2 · 10−2s = 100∆tSPH with implicit CFL = 5.0. The small time step for the SPH method is required by the

explicit integration scheme. The HMB3 solver employs an implicit dual-time method by Jameson[80] that is

superior for larger time steps. Synchronisation of the solvers is performed at the end of each HMB3 step.

At the beginning of each synchronisation time step, the position and velocities of the rotor are trans-

ferred to the HMB3 aerodynamic solver, and forces and moments on the rotor are passed to the SPH. The

two solvers are then advanced to a new time level with different methods and different number of steps. SPH

performs 100 symplectic steps, while HMB3 performs 350 implicit pseudo-time steps. During the symplec-

tic steps of the SPH code, the aerodynamic loads are kept constant (frozen). In return, the position and

velocities of the rotor are kept constant during the implicit steps of HMB3. Once the synchronisation point

is reached, the new position and velocities of all bodies, and rotor loads are obtained. Then, the algorithm

proceeds to the new time level and information between the solvers is exchanged. Note that in this way the

air/water interface was not modelled.

send position and

velocity (n)

velocity (n+1)

send position and

3

2 2

1

t

n

n+1

send loads (n−1)

send loads (n)

SPH + MBDMHMB3

Figure 13.1: The parallel conventional staggered method employed in present work.
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13.2 Test case description

A 10-MW wind turbine design by Bak et al. [11] was used in this work. The wind turbine is attached to the

semi-submersible support which consists of three cylindrical floats that increase the buoyancy and stability

of the structure. A similar concept of the support platform was investigated by Roddier [168]. Unlike that

design, the present support is simplified to be symmetric with respect to the location of the tower and the

floats are connected to the base of the tower with a solid frame. The size of the tower is taken from [11], and

the dimensions of the support were calculated to provide sufficient buoyancy. A schematic of the studied

FOWT is shown in Figure 13.2.

Moorin
g lin

e

Rotor

Support

CoG of rotor

CoG of support

Revolute joint
& driver

XY

Z

(a) Schematic of the MBDM model of FOWT. (b) Dimensions of the support and tower.

Figure 13.2: Schematic of the employed model of FOWT (a), and dimensions of the semi-submersible
support and tower (b). FOWT model consists of three mooring lines and two rigid bodies: the rotor (blue)
and combined body representing nacelle, tower and support (red).

In the present model, the FOWT is represented by three mooring lines and two bodies, as shown

in Figure 13.2(a). The first body represents the rotor (three blades with the spinner), and the second body

represents the combined nacelle, tower and floating support rigidly linked to each other. The two bodies

are connected by a revolute joint and a constraint of constant rotational speed is applied to the rotor. The

resulting system has 6 unconstrained degrees of freedom. The mechanical properties of the bodies and

mooring lines are presented in Table 13.1.

The FOWT is placed in a shallow tank of length 500m, width 150m and height 30m. The tank is filled
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Table 13.1: Mechanical properties of the employed bodies and mooring lines.

Rotor
m [kg] 227,962

J [kg ·m2]




1.56 ·108 0 0
0 7.84 ·107 0
0 0 7.84 ·107




Nacelle, support and tower
m [kg] 4,223,938

J [kg ·m2]




2.03 ·1010 0 0
0 2.03 ·1010 0
0 0 2.81 ·109




Mooring lines
120.0 Angle between adjacent lines [◦]
20.6 Depth of anchors below SWL [m]
7.0 Depth of fairleads below SWL [m]
116.73 Length of the relaxed line [m]
400 ·106 Mooring line extensional stiffness [N/m]
40,000 Mooring line damping coefficient [Ns/m]

with water to a depth of 20.6m, and in the initial position of FOWT the hydrodynamic force is equal and

opposite to the gravitational force. The waves are generated using a paddle on one side, and dissipated using

a beach-like slope on the other side of the tank. The tank is presented in Figure 13.3. Waves are generated to

represent the specific sea state corresponding to a given wind speed. Based on the measurements of annual

sea state occurrences in the North Atlantic and North Pacific[116], the wind speed of 11m/s corresponds to a

sea state 4 with a mean wave height of 1.88m and a period of 8.8s, as shown in Table 5.4 from Chapter 5.

The investigation in Section 5.3 of Chapter 5 showed that the required paddle amplitude is 1.2m, and this

value was used in this chapter.

13.2.1 CFD mesh

The aerodynamic grid consists of the rotor and nacelle i.e. the tower is not included and the effect of the

blade passing on the tower is not investigated. The grid consists of 8M cells, where 24 cells are used in

the boundary layer, and 166 cells are distributed around the aerofoil section as presented in Figure 13.4(a).

The surface of the blade is resolved with 90 cells along the span, as shown in Figure 13.4(b). The size of

the first cell in the direction normal to the surface was 10−5c, where c = 6.2m is the maximum chord of

the blade. Based on the free-stream condition and the size of the first cell, the y+ parameter was computed
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Figure 13.3: The FOWT model placed in a shallow tank. Mooring lines are shown with dashed lines.

to be y+ = 1.2. The grid convergence study presented in Chapter 9 showed that this density is sufficient to

produce grid-independent results, but initial spacing may be reduced to improve the y+ parameter.

The density of the air was assumed to be ρ = 1.225km/m3, the dynamic viscosity of the air was

assumed to be µ = 1.8 · 10−5Ns/m2, and the speed of sound was assumed to be 340m/s. Further, the k-

ω SST turbulence model was employed with the free-stream level of turbulence at 2.6%. The flow was

assumed to be fully turbulent, and the atmospheric boundary layer was not modelled. The uniform inflow

boundary was set 3R upstream of the rotor, and the outflow boundary was set 6R downstream of the rotor,

where R is the radius of the blade. The far-field boundary was assigned 3R from the centre of rotation.

In addition, the sliding plane was used to connect rotor to the nacelle and allow relative motion. The

computational domain with corresponding boundaries, a slice through the mesh close to the blade surface,

and the surface mesh of the blade are presented in Figure 13.4.

13.2.2 SPH setup and resolution

The hydrodynamic domain is resolved using 5M particles with initial uniform spacing of d = 0.625m, cubic

spline kernel, and smoothing length h = 1.5d. Note that the best agreement with experimental data was
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24 cells
Exponential 1x10

­5

166 cells around the
aerofoil section

(a) Slice close to the blade surface. (b) Surface mesh.

(c) Computational domain. Part of the boundaries removed to expose the rotor.

Figure 13.4: 8M mesh used to solve for aerodynamic loads. Surface mesh (a), and slice through the volume
close to the blade surface (b).

obtained for 25 particles per radius of the cylinder, as shown in Chapter 6. Here, the employed spacing

corresponds to 9 particles per radius of the cylindrical leg, or to spacing d = 0.69cm in Figure 6.3 from

Chapter 6. The coarse particle distribution was chosen for economies in CPU time, where coarse domain

is obviously solved faster, but tends to under-predict the slamming loads on the structure. Three test were

performed to investigate the influence of the domain width and particle spacing on the force acting on

the support structure, as presented in Table 13.2. The average hydrodynamic forces acting on the support

during 1s of simulation were used for comparison. This time interval was chosen such that it leads to direct

comparison of the average loads per unit of time. Percentage difference is computed relative to the size and

spacing employed for the coupled computation. As can be seen, the size of the hydrodynamic domain has

little effect on the average hydrodynamic force. This is expected if the boundaries are placed far enough
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from the support, and indicates that the chosen width of the water basin is adequate for the studied problem.

On the other hand, improving the spatial resolution results in about 18% difference in the hydrodynamic

force. This agrees with observations made in Chapter 6. A spacing of d = 0.3125m would have been better,

but to improve computational performance a spacing of d = 0.625m was employed.

Table 13.2: Test cases investigating the influence of the domain width and particle spacing on the forces
acting on the support structure.

Domain size x ×
y[m]

Spacing d[m] 1s averaged hydro-
dynamic force [N]

Difference [%]

500×150 0.6250 1.070 ·107 −
500×300 0.6250 1.068 ·107 0.2%
500×150 0.3125 1.267 ·107 18.4%

13.2.3 Initial conditions

Each of the solvers was executed separately before coupling to obtain a periodic solution of the loads. During

this phase of computation the floating support was fixed, and the waves were generated for approximately

30s. The rotor was set to spin about the axis aligned with the direction of the incoming wind, and was first

solved using HMB3 "hover" formulation with 20,000 steps during which the L2 norm of the residual vector

dropped below 10−6. Then, the unsteady computation was initiated and the flow was solved for an additional

30◦ of azimuth. The aerodynamic loads were almost constant during unsteady computation. Once the initial

conditions were obtained, the coupled computations were initiated.

13.2.4 Demonstration cases

The first demonstration case consisted of the FOWT at the described configuration (see Figure 13.3) with

the difference that rotor was not included in multi-body formulation. Instead, the mass of the rotor was

concentrated in the centre of gravity of the support to produce correct mass of the floating structure. In this

way, the shift of the centre of mass due to rotor over-hang was not considered. Further, the rotor inertia was

not included, and the associated gyroscopic effects were not taken into account. The importance of these

effects for the system at hand is assessed in the results section. Calm sea was considered, and the constant

thrust of 1500kN was applied at the location of the rotor. A second demonstration case considered time
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varying rotor thrust as shown in Figure 13.5. The thrust variation was estimated from a CFD computations

from Chapter 10 of the rotor with the tower included. Five Fourier modes were used to fit the CFD data,

and the average thrust over the full revolution was set to 1500kN. Both test cases were solved for 150

seconds. Note that the demonstration cases are not coupled simulations, since the thrust force is prescribed

and independent of the platform motion.

The last test case was a coupled computation, as described in Section 13.1. This case was solved for

60 seconds, and allowed for almost 7 wave passages and about 9 revolutions of the rotor.
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Figure 13.5: Thrust as function of azimuth angle of the rotor. Two test cases are shown: with constant thrust
and estimated time varying thrust.

13.3 Results and Discussion

13.3.1 Decoupled cases - constant and time-varying thrust

The results of two first cases are presented in Figure 13.6, where rotational dynamics is shown relative

to the reference frame attached to the centre of gravity of the support and projected on the direction of

global reference axes. As can be seen, the FOWT moves in the direction of the thrust by about 0.215m

(displacement in x). The FOWT also sinks in the water for about 0.603m (displacement in z), and tends to

settle at a pitch angle of around 0.09rad or 5.2 degrees (rotation about y axis). The SPH particles are settling
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(c) Acceleration of centre of gravity.
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Figure 13.6: Comparison of lateral and rotational dynamics of the support for two test cases: constant thrust
(Case 1) and time varying thrust (Case 2).

for the first 15 seconds as is visible in the acceleration plot. This can not be avoided even if the floating body

is fixed and particles are let to settle. This is because releasing the floating structure is equivalent to a
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drop, and therefore does not represent equilibrium. Also, the overall response is dominated by the initial

imbalance of the forces, and the differences are barely visible in Figure 13.6.
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(a) Acceleration of the centre of gravity in surge.
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(b) Acceleration of the centre of gravity in heave.
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Figure 13.7: Comparison of last 20 seconds of lateral and rotational accelerations of the support for two test
cases: constant thrust (solid line) and time varying thrust (dashed line). Solid line represents time varying
thrust, as applied in the second test case.

The last 20s of lateral and rotational accelerations are presented in Figure 13.7. The differences for

both cases are now clearly visible. The effect of time varying thrust on the angular acceleration in pitch

(about y axis) can be seen in Figure 13.7(c), where the variation for the second test case is overlaid on

the response for the first case. The variation in the shape and frequency, corresponds to the applied time

dependent thrust.

The effect of time varying thrust on the lateral accelerations can be seen in Figure 13.7. Again, the
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acceleration in heave (in z direction) for the second test case (time varying thrust) is overlaid on the response

for the first case (constant thrust). Here, the frequency of acceleration corresponds to the frequency of the

thrust, but some phase shift is present and the shape of the response does not follow the shape of the thrust.

This is because the motion in heave is linked to the applied thrust only through the rotational motion of the

support i.e. through the second time integral of the angular acceleration that does follow the shape of the

thrust as shown in Figure 13.7(c). The acceleration in the x direction is directly linked to the applied thrust,

and the frequency dependence on thrust without the phase shift is clearly visible. However, the shape of the

acceleration is not following the shape of applied thrust. This is a result of high stiffness of the mooring

lines in this direction, where high frequency response of the mooring system augments the overall response

of the support platform.

There are three sources of momentum for the decoupled computations: hydrodynamics, prescribed

aerodynamics and mooring lines. Time histories of forces and moments for the test case with constant thrust

are presented in Figure 13.8. Note that for clarity, the time starts at 25s. Also, note the differences in

magnitude of the computed moments, where moments about y axis are three order of magnitude bigger, as

compared to the other moment components.

First, it should be noted that mooring lines are in general opposing the hydrodynamic forces intro-

duced by the SPH solver. This is not true for the pitching moment, where hydrodynamics and mooring lines

are acting together to counter the imbalance of the moment due to the thrust. For the mooring lines, moment

is created by the displacements of the fairleads, whereas for the hydrodynamics, moment is created by the

change of the buoyancy introduced by the rotation of the support. As can be seen, the mooring lines con-

tribute about 30%, whereas buoyancy about 70% of the restoring moment in this system. One would expect

similar, cooperative behaviour for the forces in surge (in x direction). The obtained results suggest other-

wise, as shown in Figure 13.8(a). As can be seen, only the mooring lines are responsible for balancing the

thrust force. Since the water is considered calm for the decoupled cases, the only source of hydrodynamic

force acting in x direction is the hydrodynamic damping. Therefore, it is acting in the opposite direction

of the motion, and as a result in opposite direction to the mooring force, which is a main source of motion

in this direction. Lastly, small spurious moments and forces are noted, e.g. force in sway (y direction),

which is normal to the plane of symmetry of the support. This is due to the SPH, where motion of the
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(b) Moments in roll.
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(c) Forces in sway.
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(d) Moments in pitch.
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(e) Forces in heave.
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Figure 13.8: Forces and moments acting at CoG of the support for constant thrust case.

particles is never indeed symmetric. However, these discrepancies diminish with the number of particles, as

was seen when test cases from Table 13.2 were computed. Further, the SPH method is known for its pres-

sure instabilities, where the pressure field of the particles exhibits large pressure oscillations due to acoustic

waves present in compressible fluids. This is commonly tackled with solution smoothing techniques, also
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termed particles smoothing. Schemes up to the second order were proposed in the literature e.g. Belytschko

et al. [18] and Billota et al. [21]. In the present work, no particles smoothing was applied, including validation

test cases. In fact, stability issues were encountered when a zero-order Shepard density filter was applied to

the decoupled test case every 50 and 100 SPH steps. However, smoothing was shown to have a small effect

on the overall pressure distribution for the artificial viscosity formulation used in this work[63].

The time histories of forces and moments for the second test case with time varying thrust are pre-

sented in Figure 13.9. Visible trends and relations are analogous to the case with constant thrust, and support

the observations made in the previous paragraph. The main difference is the expected variation of the forces

in surge and moments in pitch, due to the unsteady aerodynamic forcing. Also, hydrodynamic and moor-

ing forces in the y direction changed sign, although the mooring line forces are still opposing the forces of

the SPH solver. The same is observed for the moments about z axis. Those quantities are dependent, and

opposite rotation creates opposite mooring line forces.

13.3.2 Coupled case

Coupled computations were also performed, and results are presented in Figure 13.10, where rotational dy-

namics is shown relative to the reference frame attached to the centre of gravity of the support and projected

onto the direction of global reference axes. As was mentioned in Section 13.1, the time step for SPH was set

to ∆tSPH = 2 · 10−4s, whereas HMB3 employed a time step of ∆tHMB3 = 2 · 10−2s = 100∆tSPH , or 1.06◦ of

revolution per time step. The aerodynamic forces acting on the rotor as functions of time are shown in Fig-

ure 13.11(a). The platform motion shows similar trend as for the previous, decoupled test cases. However,

the rotor thrust is now dependent on the position and velocity of the rotor. As the wind turbine pitches under

the thrust force, the rotor moves in the direction of the wind (velocity in x direction in Figure 13.11(b)). In

return, the thrust force decreases due to the smaller inflow speed and the orientation of the rotor disk. As the

applied force is reduced, the rotor velocity decreases. The inverse relation between the aerodynamic force

and velocity of the hub in x direction is clear in Figure 13.11. Further, due to the pitch angle, a component

of the thrust is acting along the z axis. As a result, the FOWT experiences higher displacement in heave:

−0.8m as compared to −0.6m for the decoupled solutions.

The initial motion of the FOWT is dominated by the imbalance of the forces due to the applied thrust,
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(b) Moments in roll.
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(c) Forces in sway.
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(d) Moments in pitch.
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(f) Moments in yaw.

Figure 13.9: Forces and moments acting at CoG of the support for time varying thrust case.

and the effect of the first wave passage is not visible. However, the effect of every consecutive wave is clearly

visible in periodic variation of the moment about the y axis, as shown in Figure 13.10(f).

To facilitate the analysis of forces and moments acting on the system, the aerodynamic moments

were transferred to the centre of gravity of the support platform. The resulting time histories of forces and
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Figure 13.10: Lateral and rotational dynamics of the support platform for coupled test case.

moments for the coupled test case are presented in Figure 13.12. First, we observe lasting for about 10s

high frequency hydrodynamic forces and moments due to initial particles settling. Similar was observed for

decoupled test cases. After an initial phase, the hydrodynamic forces show periodic variation related to the

frequency of the passing waves. Next, the mooring line forces are opposing the SPH forces in all directions.
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Figure 13.11: Forces acting on the rotor and velocity of centre of gravity of the rotor as function of time for
coupled computation.

Finally, periodic variation of the aerodynamic forces with frequency of the waves is noted. A phase shift is

present, since the aerodynamic forces are dependent on velocity and position, rather than on forces, as was

discussed in previous paragraphs.

For the moments, pitching moment (about y) is dominating and after the initial phase the solvers

tend to a periodic solution. The aerodynamic moment follows the inverse relation to the the hydrodynamic

pitching moment. The phase shift for the mooring lines moment is present, as it depends on the orientation

of the support. The aerodynamic moment about x axis applied at the rotor is a result of a driving force created

by the lift and drag. Clearly, the driving force follows the same trend as the thrust force i.e. inverse relation

with the velocity of the hub. The aerodynamic moment is transferred to the structure, and hydrodynamic and

mooring lines moments are trying to compensate for this moment. Finally, the mooring lines are opposing

the hydrodynamic moments for the moment about z axis (yawing).

Note that no significant gyroscopic effect was observed for this FOWT. The value of gyroscopic

moment can be estimated using gyroscopic approximation as τ = Jzzωrωp. In this case the precession rate

ωp is caused by the waves, and gyroscopic torque τ should develop about body-fixed yaw axis. The pitching

angular velocity is shown in Figure 13.10(d) and follows sinusoidal shape with amplitude ωp ≈ 0.006rad/s.

Given that the angular velocity of the rotor ωr = 0.92rad/s ≫ ωp, some of the gyroscopic approximation

assumptions are still valid. Substituting the above values and the mass moment of inertia of the rotor
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(c) Forces in sway.
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(d) Moments in pitch.
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(e) Forces in heave.
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(f) Moments in yaw.

Figure 13.12: Forces and moments acting at CoG of the support for the coupled test case.

from Table 13.1 into the equation of gyroscopic approximation, it follows that the amplitude of gyroscopic

torque is τ = 0.86MNm. Since FOWT is oscillating about a mean pitch angle of about 0.11rad (6.3◦),

the gyroscopic torque has two components when projected on the direction of global axes : one about

the global z axis, which is equal to τz = 0.77MNm, and one about the global x axis, which is equal to
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τx = 0.09MNm. The magnitude of these estimated values is consistent with that of the computed moments

shown in Figure 13.12. As can be seen, the estimated magnitude of the rolling gyroscopic torque is about

0.75% of the mean aerodynamic moment in roll. Therefore, it can be considered negligible. On the other

hand, the gyroscopic torque in yaw is comparable to other moments about z axis. However, those small

moments did not cause significant rotation of the FOWT about this axis due to large inertia of the floater.

Finally, the estimated magnitude of the gyroscopic torque is about 0.35% of the mean aerodynamic moment

in pitch. This agrees with the observations made by [201] that gyroscopic effect and resulting moment is

small (less then 5%) as compared to the pitching moment for horizontal axis wind turbines with low speed

rotors.

Similarly to the previous chapter, estimates of the induced velocity vi were used to show at which

states the FOWT was operating. The induced velocity was estimated based on Equation 12.1 of Chapter 12,

and the results are shown in Figure 13.13. As can be seen, the wind turbine did not encounter a vortex

ring state. It did, however, enter a turbulent wake state, but only briefly. This is clear in Figure 13.13(b),

where the ratio of inflow velocity is shown as function of time. As can be seen, a turbulent wake state was

encountered during initial phase, when FOWT was pitching under the thrust force to obtain its mean pitch

angle. The angular velocity at this stage was the highest, and so the linear velocity of the hub. Also, the

FOWT was periodically approaching a turbulent wake state, but predicted oscillations were not large enough

to enter it again.
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Figure 13.14 presents different positions of the FOWT during the computation. The wave breaking

effect of the support structure is visible, and the recovery of the waves behind the FOWT can be seen. The

change of the pressure on the rotor can also be observed, especially at the tip of the nacelle. Note that the

tower was not included in the aerodynamic domain, but it is shown in the figure, as the presence of the tower

was accounted for in the multi-body model.

(a) Time t = 0s. (b) Time t = 12s.

(c) Isometric view of position at times t = 0s and t = 12s. (d) Side view of position at times t = 0s and t = 12s.

Figure 13.14: Position and orientation of the FOWT at times t = 0s and t = 12s during coupled computation.
Contours on the rotor correspond to pressure coefficient Cp, contours on the water surface correspond to
surface elevation z in meters.
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13.3.3 Computational performance

For all cases, the SPH solver with MBDM were executed on a single 8 cores Intel R©Xeon R©CPU machine

with 16 threads. Each of the CPU cores had a clock rate of 2GHz, and 6.6GB of dedicated memory. As no

interconnect switch was involved, the message passing delay between SPH and MBDM solvers was reduced

to minimum. For the coupled case, HMB3 was executed on 29 dual-core AMD OpteronTMprocessors with

4 threads, giving in total 116 parallel instances of the solver. Each of the CPU cores had a clock rate of

2.4GHz, and 4GB of random access memory. It should be noted that the SPH method requires only local

(limited by the kernel function) weighted average in the vicinity of the given particle, whereas HMB3 solves

the complete set of equations involving all the cells in the domain. Hence, more processing units were

assigned to the aerodynamic side of the coupled problem.

The average time required to compute a second of the solution for the coupled case is 27.26 hours,

where about 27.25 hours were spent to solve aerodynamics, 21.3 hours to solve hydrodynamics, and 0.24

hours to solve multi-body equations. Note that solvers were executed in parallel, as explained in Sec-

tion 13.1, and were advancing in time concurrently. The average time spent to exchange information for a

second of the solution is 0.53 seconds, and was mostly dictated by the communication between the SPH and

the MBDM solvers.

It should be noted that time accuracy can be improved, if the coupling step is reduced. In the presented

coupled case, the information is exchanged every 100 SPH steps (∆t = 2·10−2s). When information between

the solvers is exchanged every 50 SPH steps (∆t = 1 ·10−2s), the average time required to compute a second

of the solution becomes 45.0 hours. If information is exchanged every single SPH step (∆t = 2 ·10−4s), the

average time per one second extends to about 438.9 hours. In the former case, HMB3 requires on average

237 pseudo-time steps to achieve the level of convergence below 10−2, and 45 pseudo-time steps for the

later case. The convergence is defined as L2-norm of the residual vector. This suggests that computational

cost can be further reduced by employing explicit schemes for both solvers and performing less evaluations

(four for Runge-Kutta scheme of 4th order). However, the biggest possible explicit step for HMB3 that

would satisfy explicit CFL condition of 0.4 for the smallest cell in the domain is about 3.6 · 10−9 seconds.

Therefore, the aerodynamic time-step becomes the limiting factor for this approach and for the problem at
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hand. More information about the computational performance is presented in Table 13.3. Stability issues

were encountered for a time step ∆t = 2 · 10−2s and HMB3 implicit CFL number 10.0, where the residual

vector does not converge as fast as for CFL number 5.0. This indicates that CFL number of about 8.0 would

be an optimal choice for this time step.

Table 13.3: Computational performance of the coupling algorithm for various coupling time steps.

Coupling
∆t [s]

HMB3
CFL
number

HMB3
Newton
steps

SPH
steps

Time per cou-
pling step [s]

Time per 1s of
solution [s]

2 ·10−2 5.0 315 100 1.95 ·103 9.81 ·104

2 ·10−2 10.0 350 100 2.29 ·103 1.15 ·105

1 ·10−2 5.0 237 50 1.61 ·103 1.62 ·105

1 ·10−2 10.0 105 50 1.04 ·103 1.06 ·105

2 ·10−4 5.0 45 1 3.13 ·102 1.58 ·106

2 ·10−4 10.0 23 1 1.59 ·102 7.97 ·105
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Chapter 14

Conclusions and future work

14.1 Conclusions

This study was focused on modelling floating off-shore wind turbines of large diameter. A 10-MW wind

turbine was used as an example in this work, since this turbine was designed specifically for off-shore

application as part of the InnWind European project. The idea put forward in this work is to employ high

fidelity Navier-Stokes solvers for air, and water. For this reason, the Helicopter Multi-Block 3 CFD solver

was used to model aerodynamics. Likewise, the Smoothed Particles Hydrodynamic method was used for

hydrodynamics. A multi-body solver was implemented to solve for the wind turbine dynamics.

The study started from the aerodynamic analysis of the 10-MW wind turbine. Straight and pre-bent

configurations of the blade were investigated under the assumption of uniform inflow. The results showed

regions of suction side separation, and pressure side recirculation for all studied wind speeds. This agreed

with other results published in the open literature. Also, the pre-bent configuration was found to be slightly

less efficient than the straight blade, producing about 0.4% less thrust and mechanical power.

Next, the effects of the atmospheric boundary inflow and atmospheric turbulence were studied. For

this, the power law wind speed profile was employed, and the atmospheric turbulence was introduced using

Mann’s model. An increase of loads variation was seen for the turbulent case, as compared to the case

without turbulence. Also, the results for atmospheric inflow suggest a reduction of mean thrust by 1.5%,

and power by 2.8% with respect to the uniform inflow case.
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The aero-elasticity of the 10-MW rotor was studied next. The structural model was constructed using

NASTRAN. The natural frequencies and modes were compared to results of other researchers, showing good

agreement. This model was then used for steady and unsteady aero-elastic computations. The results suggest

the tip displacement of 8.7m for static, and 6.7m for dynamic cases. Then, the complete assembly of the

10-MW turbine was studied with rigid and elastic blades. The results showed reductions of thrust by 4.3%,

and power by 4.7%, due to elastic deformation of the blades.

Next, the effects of employing deformable trailing and leading edge flaps on the 10-MW wind turbine

were investigated. It was shown, that the trailing edge flap affects the thrust and driving forces, as well as

the pitching moment. The leading edge flap was seen to mostly affect the pitching moment. Hence, the

tailing edge flap could be used to control flap-wise bending of the blade, or eliminate the adverse effect of

the blade passing in front of the tower. On the other hand, the leading edge flap could be used to counter the

additional pitching moment created by the trailing edge flap.

A floating 10-MW wind turbine was considered next, by forcing the rotor to yaw and pitch oscilla-

tions. The blades were assumed rigid, and the tower was not included. The results showed larger variations

in power for the case of dynamic yaw, as compared to fixed yaw cases. Differences of up to 2.5% were

seen for the studied dynamic yaw cases. Hence, the aerodynamic effects due to dynamic yaw were found

to be comparable, in magnitude, to the effects due to the blade elasticity and atmospheric boundary layer

inflow. The results showed larger variations in thrust and power as the wind turbine pitched about a point

located 119m below the rotor. Vortex ring state was encountered as the wind turbine was forced to pitch with

amplitude of 5◦ and period of 8.8s. Also, large changes of thrust and power were obtained for the pitching

motion of the rotor. Differences of up to 32.8% were seen for the cases studied.

Finally, a coupling method for the analysis of the dynamics of floating off-shore wind turbines was

presented. The results showed that the weak coupling method put forward in this work is adequate for the

solution of the studied FOWT. Regardless of the lack of experimental data for a coupled system, validation

was carried out for all the components of the model. Data from the MEXICO and NREL Phase VI projects

were used for aerodynamics, and good overall agreement has been seen between CFD and test data. For

the hydrodynamics solver, experiments related to drops of solid objects in water were used. Again, with a

refined set of particles, the SPH method delivered good results. The third component of the method was the
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multi-body dynamics and this was validated using simple slider-crank problems. The results showed that

the employed FOWT under studied conditions did not enter a vortex ring state. A turbulent wake state was

encountered, but only at the initial pitching phase. The gyroscopic effects were also small for the problem

studied, and did not cause significant rotations due to large inertia of the floater.

14.2 Future work

The presented results show that FOWT is a highly dynamic system. To obtain a deeper understanding of how

rotor thrust and torque vary under dynamic conditions, efforts should be put forward to study aerodynamic

flow and loads when wind turbine undergoes prescribed motions in pitch and yaw. This was partially covered

in this work, but further research is required, especially comparison with experimental data.

In future, efforts should be directed towards improving the model. First, more sophisticated mooring

lines models should be implemented, preferably a dynamic model. For this, the multi-body framework

was already developed in this work. Next, the tower should be included in the aerodynamic domain, and

the air/water interface should be modelled. This naturally leads to the atmospheric boundary layer and

turbulence that can also be included in the model. Then, the deformable flaps may be used to control the

FOWT responses. For this, a control algorithm should be developed. Putting all together will lead to a

powerful tool for FOWT analysis. The present work is certainly a solid foundation for such a model.

Also, the work should continue with the validation of the method against experimental data, when

available, and comparisons with a strong coupling technique. Hence, aspect that should be addressed is

the experimental measurements. Clearly, each of the components can be validated separately, but a set of

data for a complete FOWT system would be useful. The following measurements would be an asset: forces

and moments due to the mooring system, water basin tests with small- or full-scale wind turbine including

pressure distributions on support and rotor, and the overall FOWT time response including transient and

periodic states.
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Appendix A

Structural models for DTU 10MW RWT

blade

This appendix provides the DTU 10MW RWT blade structural model input files for the NASTRAN, as
employed in aero-elastic analyses from Chapter 10. First, the structural model for the straight blade is
presented. This is followed by the structural model for the blade with pre-bend and pre-cone. Details of the
design can be found in Chapter 9.

A.1 Straight DTU 10MW RWT blade

This section considers the DTU 10MW RWT blade in a straight configuration, as employed in Section 10.2.2
of Chapter 10. Input consists of three files: the DTU.model file with the structural model, the nastran-

Loads.dat file with the aerodynamic loads to be applied to the structure, and the DTU.bdf file specifying
NASTRAN parameters.

Listing A.1: The structural model file (DTU.model) for the straight blade.
$***************************************************
$ THIS MODEL TAKES INTO ACCOUNT ELASTIC PROPERTIES

$ AND SHEAR AXIS, ELASTIC AXIS AND MASS CENTRE OFFSETS

$ THE STRAIGHT DTU BLADE IS MODELLED

$ BEAMS ARE MODELLED AS ISOTROPIC MATERIAL WITH

$ ELASTIC PROPERTIES TAKEN FROM THE REPORT

$***************************************************
$ Ixx - area moment of inertia about the first elastic axis

$ is computed from the flapwise radius of gyration Rg_xx as

$ Ixx = Rg_xx*Rg_xx*AREA

$ where AREA is the crossection area of the beam taken from the

$ geometry provided along with the report.

$***************************************************
$ Young modulus is computed as

$ E*Ixx/Ixx, where E*Ixx is the flapwise bedning stiffness in the report [Nmˆ2]

$***************************************************
$ Shear modulus G is computed from the Flapwise shear stiffness [N],

$ assuming it is defined as G*AREA

$***************************************************
$ Polar moment of area J is computed from the Torsional Stiffness [Nmˆ2]

$ assuming it is defined as G*J, where G is already computed

$***************************************************
$ Grid nodes are located in the shear centre, therefore the shear centre

$ defined in the report was first computed in the Global Referebce Frame of the blade

$***************************************************
$ Neutral axis in NASTRAN is assumed to be the elastic axis in the report,

$ and the off-set from the shear centre to the elastic axis was incorporated
$ in the PBEAM elements

$***************************************************
$ Nonstructural mass off-set in the blade reference frame from shear

$ centre to the mass centre was incorporated in the PBEAM elements
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$***************************************************
$ Structural twist is included in CBEAM elements, and was first

$ transfered to the blade reference frame

$***************************************************
$***************************************************
$ Material properties: ID, Youngs modulus, Shear modulus, Poissons ratio

$***************************************************
$***************************************************
MAT1, 1, 8.167e+08, 1.102e+08,

MAT1, 2, 8.201e+08, 1.101e+08,

MAT1, 3, 8.410e+08, 1.099e+08,

MAT1, 4, 8.462e+08, 1.060e+08,

MAT1, 5, 8.540e+08, 9.821e+07,

MAT1, 6, 8.470e+08, 8.948e+07,

MAT1, 7, 8.623e+08, 8.042e+07,

MAT1, 8, 9.227e+08, 7.309e+07,

MAT1, 9, 1.031e+09, 7.012e+07,

MAT1, 10, 1.130e+09, 6.847e+07,

MAT1, 11, 1.188e+09, 6.434e+07,

MAT1, 12, 1.222e+09, 6.473e+07,

MAT1, 13, 1.228e+09, 6.256e+07,

MAT1, 14, 1.240e+09, 6.151e+07,

MAT1, 15, 1.261e+09, 6.155e+07,

MAT1, 16, 1.277e+09, 6.151e+07,

MAT1, 17, 1.348e+09, 6.403e+07,

MAT1, 18, 1.418e+09, 6.591e+07,

MAT1, 19, 1.485e+09, 6.780e+07,

MAT1, 20, 1.548e+09, 6.865e+07,

MAT1, 21, 1.610e+09, 6.977e+07,

MAT1, 22, 1.681e+09, 7.083e+07,
MAT1, 23, 1.751e+09, 7.213e+07,

MAT1, 24, 1.820e+09, 7.329e+07,

MAT1, 25, 1.887e+09, 7.365e+07,

MAT1, 26, 1.966e+09, 7.542e+07,

MAT1, 27, 2.013e+09, 7.695e+07,

MAT1, 28, 2.090e+09, 7.765e+07,

MAT1, 29, 2.159e+09, 8.012e+07,

MAT1, 30, 2.216e+09, 8.040e+07,

MAT1, 31, 2.277e+09, 8.301e+07,

MAT1, 32, 2.348e+09, 8.457e+07,

MAT1, 33, 2.400e+09, 8.729e+07,

MAT1, 34, 2.437e+09, 8.832e+07,

MAT1, 35, 2.492e+09, 8.989e+07,

MAT1, 36, 2.510e+09, 9.142e+07,

MAT1, 37, 2.530e+09, 9.284e+07,

MAT1, 38, 2.527e+09, 9.579e+07,

MAT1, 39, 2.525e+09, 9.729e+07,

MAT1, 40, 2.523e+09, 9.903e+07,

MAT1, 41, 2.480e+09, 1.008e+08,

MAT1, 42, 2.460e+09, 1.030e+08,

MAT1, 43, 2.387e+09, 1.026e+08,

MAT1, 44, 2.292e+09, 1.037e+08,

MAT1, 45, 2.183e+09, 1.047e+08,

MAT1, 46, 2.081e+09, 1.046e+08,

MAT1, 47, 1.935e+09, 1.006e+08,

MAT1, 48, 1.786e+09, 9.368e+07,

MAT1, 49, 1.589e+09, 8.986e+07,

MAT1, 50, 1.370e+09, 8.577e+07,

MAT1, 51, 1.616e+12, 1.012e+11,

$***************************************************
$ NEW ROOT ATTACHEMENT FOR ROTATION

$ Root starts at 2.8 m

$ First 3 nodes are fixed (from 0.0m to 2.8m)

$ and artificial springs are added, but the nodes are fixed anyway.

$ Springs are added to produce the output understandable

$ by the HMB helicopter routines.

$***************************************************
GRID, 1, , 0.0, 0.0, 0.0,,123456,

GRID, 2, , 2.800, 0.0, 0.0,,123456,

$LeadLag Spring

CELAS2,2,5000.0,1,6,3,6

$Flapping Spring

CELAS2,3,5000.0,1,5,3,5

$ *****************************************
$ BLADE STRUCTURE - grid 3=root, 53=tip

$ *****************************************
GRID, 3, , 2.800, 0.0, 0.0,,123456
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GRID, 4, , 4.815, -0.00108, -0.01020

GRID, 5, , 6.542, 0.00058, -0.00863

GRID, 6, , 8.269, 0.00482, 0.00641

GRID, 7, , 9.996, 0.01839, 0.01621

GRID, 8, , 11.724, 0.03869, 0.04819

GRID, 9, , 13.450, 0.12950, 0.10178

GRID, 10, , 15.176, 0.23001, 0.15779

GRID, 11, , 16.904, 0.37696, 0.17750

GRID, 12, , 18.344, 0.46594, 0.19388

GRID, 13, , 20.498, 0.49932, 0.19549

GRID, 14, , 22.232, 0.42157, 0.19250

GRID, 15, , 23.959, 0.43672, 0.18902

GRID, 16, , 25.686, 0.45379, 0.18188

GRID, 17, , 27.413, 0.46693, 0.17377

GRID, 18, , 29.141, 0.46726, 0.15665

GRID, 19, , 30.868, 0.44684, 0.13719

GRID, 20, , 32.595, 0.45095, 0.12276

GRID, 21, , 34.323, 0.43621, 0.10913

GRID, 22, , 36.050, 0.43031, 0.10234

GRID, 23, , 37.778, 0.42171, 0.09750

GRID, 24, , 39.505, 0.40558, 0.09390

GRID, 25, , 41.233, 0.40227, 0.09232

GRID, 26, , 42.873, 0.38568, 0.08941

GRID, 27, , 44.601, 0.37586, 0.08748

GRID, 28, , 46.328, 0.36633, 0.08513

GRID, 29, , 48.055, 0.35445, 0.08311

GRID, 30, , 49.783, 0.34419, 0.08030

GRID, 31, , 51.510, 0.33313, 0.07767

GRID, 32, , 53.237, 0.32110, 0.07485

GRID, 33, , 55.051, 0.30752, 0.07137
GRID, 34, , 56.779, 0.29670, 0.06776

GRID, 35, , 58.506, 0.28786, 0.06489

GRID, 36, , 60.233, 0.26843, 0.06112

GRID, 37, , 61.961, 0.25695, 0.05710

GRID, 38, , 63.688, 0.24835, 0.05387

GRID, 39, , 65.354, 0.23696, 0.05002

GRID, 40, , 67.081, 0.21636, 0.04653

GRID, 41, , 68.808, 0.20845, 0.04365

GRID, 42, , 70.535, 0.19638, 0.04014

GRID, 43, , 72.324, 0.18664, 0.03729

GRID, 44, , 74.052, 0.17548, 0.03403

GRID, 45, , 75.779, 0.16261, 0.03214

GRID, 46, , 77.459, 0.14850, 0.02973

GRID, 47, , 79.186, 0.14029, 0.02702

GRID, 48, , 80.961, 0.12192, 0.02551

GRID, 49, , 82.688, 0.11157, 0.02330

GRID, 50, , 84.377, 0.09842, 0.02053

GRID, 51, , 86.143, 0.08157, 0.01794

GRID, 52, , 87.871, 0.06403, 0.01364

GRID, 53, , 89.166, 0.17704, 0.00123

GRID, 301, , 2.800, 5.37957, 0.0

GRID, 401, , 4.815, 5.37892, -0.01020

GRID, 501, , 6.542, 5.38058, -0.00863

GRID, 601, , 8.269, 5.38488, 0.00641

GRID, 701, , 9.996, 5.42947, 0.01621

GRID, 801, , 11.724, 5.52816, 0.04819

GRID, 901, , 13.450, 5.73031, 0.10178

GRID, 1001, , 15.176, 5.96094, 0.15779

GRID, 1101, , 16.904, 6.24271, 0.17750

GRID, 1201, , 18.344, 6.43721, 0.19388

GRID, 1301, , 20.498, 6.59796, 0.19549

GRID, 1401, , 22.232, 6.58594, 0.19250

GRID, 1501, , 23.959, 6.63548, 0.18902

GRID, 1601, , 25.686, 6.65889, 0.18188

GRID, 1701, , 27.413, 6.65325, 0.17377

GRID, 1801, , 29.141, 6.61259, 0.15665

GRID, 1901, , 30.868, 6.53166, 0.13719

GRID, 2001, , 32.595, 6.45817, 0.12276

GRID, 2101, , 34.323, 6.35116, 0.10913

GRID, 2201, , 36.050, 6.24086, 0.10234

GRID, 2301, , 37.778, 6.11808, 0.09750

GRID, 2401, , 39.505, 5.98044, 0.09390

GRID, 2501, , 41.233, 5.84948, 0.09232

GRID, 2601, , 42.873, 5.70681, 0.08941

GRID, 2701, , 44.601, 5.55965, 0.08748

GRID, 2801, , 46.328, 5.40901, 0.08513
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GRID, 2901, , 48.055, 5.2529, 0.08311

GRID, 3001, , 49.783, 5.09596, 0.08030

GRID, 3101, , 51.510, 4.9367, 0.07767

GRID, 3201, , 53.237, 4.7756, 0.07485

GRID, 3301, , 55.051, 4.60535, 0.07137

GRID, 3401, , 56.779, 4.44587, 0.06776

GRID, 3501, , 58.506, 4.2894, 0.06489

GRID, 3601, , 60.233, 4.12352, 0.06112

GRID, 3701, , 61.961, 3.96699, 0.05710

GRID, 3801, , 63.688, 3.81515, 0.05387

GRID, 3901, , 65.354, 3.66746, 0.05002

GRID, 4001, , 67.081, 3.50779, 0.04653

GRID, 4101, , 68.808, 3.36334, 0.04365

GRID, 4201, , 70.535, 3.2175, 0.04014

GRID, 4301, , 72.324, 3.07237, 0.03729

GRID, 4401, , 74.052, 2.93365, 0.03403

GRID, 4501, , 75.779, 2.79663, 0.03214

GRID, 4601, , 77.459, 2.66505, 0.02973

GRID, 4701, , 79.186, 2.53916, 0.02702

GRID, 4801, , 80.961, 2.39496, 0.02551

GRID, 4901, , 82.688, 2.24368, 0.02330

GRID, 5001, , 84.377, 2.06192, 0.02053

GRID, 5101, , 86.143, 1.821, 0.01794

GRID, 5201, , 87.871, 1.44912, 0.01364

GRID, 5301, , 89.166, 0.377036, 0.00123

GRID, 302, , 2.800, -10.7604, 0.0

GRID, 402, , 4.815, -10.7611, -0.01020

GRID, 502, , 6.542, -10.7594, -0.00863

GRID, 602, , 8.269, -10.7553, 0.00641
GRID, 702, , 9.996, -10.8038, 0.01621

GRID, 802, , 11.724, -10.9403, 0.04819

GRID, 902, , 13.450, -11.0721, 0.10178

GRID, 1002, , 15.176, -11.2319, 0.15779

GRID, 1102, , 16.904, -11.3545, 0.17750

GRID, 1202, , 18.344, -11.4766, 0.19388

GRID, 1302, , 20.498, -11.6979, 0.19549

GRID, 1402, , 22.232, -11.9072, 0.19250

GRID, 1502, , 23.959, -11.9608, 0.18902

GRID, 1602, , 25.686, -11.9564, 0.18188

GRID, 1702, , 27.413, -11.9057, 0.17377

GRID, 1802, , 29.141, -11.8234, 0.15665

GRID, 1902, , 30.868, -11.7228, 0.13719

GRID, 2002, , 32.595, -11.5635, 0.12276

GRID, 2102, , 34.323, -11.3937, 0.10913

GRID, 2202, , 36.050, -11.1908, 0.10234

GRID, 2302, , 37.778, -10.971, 0.09750

GRID, 2402, , 39.505, -10.7441, 0.09390

GRID, 2502, , 41.233, -10.4922, 0.09232

GRID, 2602, , 42.873, -10.2566, 0.08941

GRID, 2702, , 44.601, -9.99173, 0.08748

GRID, 2802, , 46.328, -9.71902, 0.08513

GRID, 2902, , 48.055, -9.44244, 0.08311

GRID, 3002, , 49.783, -9.15936, 0.08030

GRID, 3102, , 51.510, -8.87401, 0.07767

GRID, 3202, , 53.237, -8.58792, 0.07485

GRID, 3302, , 55.051, -8.28813, 0.07137

GRID, 3402, , 56.779, -8.00164, 0.06776

GRID, 3502, , 58.506, -7.7152, 0.06489

GRID, 3602, , 60.233, -7.44176, 0.06112

GRID, 3702, , 61.961, -7.16312, 0.05710

GRID, 3802, , 63.688, -6.88524, 0.05387

GRID, 3902, , 65.354, -6.62404, 0.05002

GRID, 4002, , 67.081, -6.3665, 0.04653

GRID, 4102, , 68.808, -6.10132, 0.04365

GRID, 4202, , 70.535, -5.84585, 0.04014

GRID, 4302, , 72.324, -5.58481, 0.03729

GRID, 4402, , 74.052, -5.34087, 0.03403

GRID, 4502, , 75.779, -5.10542, 0.03214

GRID, 4602, , 77.459, -4.8846, 0.02973

GRID, 4702, , 79.186, -4.65745, 0.02702

GRID, 4802, , 80.961, -4.42414, 0.02551

GRID, 4902, , 82.688, -4.15265, 0.02330

GRID, 5002, , 84.377, -3.82859, 0.02053

GRID, 5102, , 86.143, -3.39731, 0.01794

GRID, 5202, , 87.871, -2.70615, 0.01364

GRID, 5302, , 89.166, -0.222964, 0.00123
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$***************************************************
$ CBEAMs show the 2 connected grids and the reference pt. location

$ which indicates blade twist by changing the direction of the principle

$ plane of bending

$ cos(twist) and sin(twist)

$ where "twist" is a structural twist from the report defined

$ in the reference frame of the blade

$***************************************************
CBEAM, 1, 1, 3, 4, 0.0, 0.96815, 0.25038

CBEAM, 2, 2, 4, 5, 0.0, 0.96815, 0.25038

CBEAM, 3, 3, 5, 6, 0.0, 0.96815, 0.25038

CBEAM, 4, 4, 6, 7, 0.0, 0.96815, 0.25038

CBEAM, 5, 5, 7, 8, 0.0, 0.96821, 0.25013

CBEAM, 6, 6, 8, 9, 0.0, 0.87916, -0.47652

CBEAM, 7, 7, 9, 10, 0.0, 0.92785, -0.37296

CBEAM, 8, 8, 10, 11, 0.0, 0.97698, -0.21334

CBEAM, 9, 9, 11, 12, 0.0, 0.99377, -0.11144

CBEAM, 10, 10, 12, 13, 0.0, 0.99893, -0.04621

CBEAM, 11, 11, 13, 14, 0.0, 0.99992, -0.01297

CBEAM, 12, 12, 14, 15, 0.0, 0.99998, 0.00674

CBEAM, 13, 13, 15, 16, 0.0, 0.99989, 0.01508

CBEAM, 14, 14, 16, 17, 0.0, 0.99982, 0.01912

CBEAM, 15, 15, 17, 18, 0.0, 0.99973, 0.02303

CBEAM, 16, 16, 18, 19, 0.0, 0.99931, 0.03705

CBEAM, 17, 17, 19, 20, 0.0, 0.99931, 0.03725

CBEAM, 18, 18, 20, 21, 0.0, 0.99934, 0.03625

CBEAM, 19, 19, 21, 22, 0.0, 0.99945, 0.03318

CBEAM, 20, 20, 22, 23, 0.0, 0.99953, 0.03071

CBEAM, 21, 21, 23, 24, 0.0, 0.99955, 0.03001

CBEAM, 22, 22, 24, 25, 0.0, 0.99956, 0.02975
CBEAM, 23, 23, 25, 26, 0.0, 0.99959, 0.02866

CBEAM, 24, 24, 26, 27, 0.0, 0.99964, 0.02681

CBEAM, 25, 25, 27, 28, 0.0, 0.99969, 0.02508

CBEAM, 26, 26, 28, 29, 0.0, 0.99973, 0.02307

CBEAM, 27, 27, 29, 30, 0.0, 0.99981, 0.01955

CBEAM, 28, 28, 30, 31, 0.0, 0.99986, 0.01684

CBEAM, 29, 29, 31, 32, 0.0, 0.99990, 0.01383

CBEAM, 30, 30, 32, 33, 0.0, 0.99995, 0.01025

CBEAM, 31, 31, 33, 34, 0.0, 0.99998, 0.00598

CBEAM, 32, 32, 34, 35, 0.0, 1.00000, 0.00237

CBEAM, 33, 33, 35, 36, 0.0, 1.00000, -0.00138

CBEAM, 34, 34, 36, 37, 0.0, 0.99999, -0.00538

CBEAM, 35, 35, 37, 38, 0.0, 0.99996, -0.00938

CBEAM, 36, 36, 38, 39, 0.0, 0.99991, -0.01306

CBEAM, 37, 37, 39, 40, 0.0, 0.99986, -0.01686

CBEAM, 38, 38, 40, 41, 0.0, 0.99978, -0.02096

CBEAM, 39, 39, 41, 42, 0.0, 0.99970, -0.02446

CBEAM, 40, 40, 42, 43, 0.0, 0.99959, -0.02854

CBEAM, 41, 41, 43, 44, 0.0, 0.99948, -0.03217

CBEAM, 42, 42, 44, 45, 0.0, 0.99934, -0.03629

CBEAM, 43, 43, 45, 46, 0.0, 0.99921, -0.03983

CBEAM, 44, 44, 46, 47, 0.0, 0.99905, -0.04357

CBEAM, 45, 45, 47, 48, 0.0, 0.99889, -0.04715

CBEAM, 46, 46, 48, 49, 0.0, 0.99865, -0.05192

CBEAM, 47, 47, 49, 50, 0.0, 0.99846, -0.05549

CBEAM, 48, 48, 50, 51, 0.0, 0.99819, -0.06012

CBEAM, 49, 49, 51, 52, 0.0, 0.99784, -0.06570

CBEAM, 50, 50, 52, 53, 0.0, 0.99745, -0.07131

$***************************************************
$ Rigid weightless elements showing the torsion

$ Leading Edge

$***************************************************
RBAR, 301, 3, 301, 123456

RBAR, 401, 4, 401, 123456

RBAR, 501, 5, 501, 123456

RBAR, 601, 6, 601, 123456

RBAR, 701, 7, 701, 123456

RBAR, 801, 8, 801, 123456

RBAR, 901, 9, 901, 123456

RBAR, 1001, 10, 1001, 123456

RBAR, 1101, 11, 1101, 123456

RBAR, 1201, 12, 1201, 123456

RBAR, 1301, 13, 1301, 123456

RBAR, 1401, 14, 1401, 123456

RBAR, 1501, 15, 1501, 123456

RBAR, 1601, 16, 1601, 123456

RBAR, 1701, 17, 1701, 123456
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RBAR, 1801, 18, 1801, 123456

RBAR, 1901, 19, 1901, 123456

RBAR, 2001, 20, 2001, 123456

RBAR, 2101, 21, 2101, 123456

RBAR, 2201, 22, 2201, 123456

RBAR, 2301, 23, 2301, 123456

RBAR, 2401, 24, 2401, 123456

RBAR, 2501, 25, 2501, 123456

RBAR, 2601, 26, 2601, 123456

RBAR, 2701, 27, 2701, 123456

RBAR, 2801, 28, 2801, 123456

RBAR, 2901, 29, 2901, 123456

RBAR, 3001, 30, 3001, 123456

RBAR, 3101, 31, 3101, 123456

RBAR, 3201, 32, 3201, 123456

RBAR, 3301, 33, 3301, 123456

RBAR, 3401, 34, 3401, 123456

RBAR, 3501, 35, 3501, 123456

RBAR, 3601, 36, 3601, 123456

RBAR, 3701, 37, 3701, 123456

RBAR, 3801, 38, 3801, 123456

RBAR, 3901, 39, 3901, 123456

RBAR, 4001, 40, 4001, 123456

RBAR, 4101, 41, 4101, 123456

RBAR, 4201, 42, 4201, 123456

RBAR, 4301, 43, 4301, 123456

RBAR, 4401, 44, 4401, 123456

RBAR, 4501, 45, 4501, 123456

RBAR, 4601, 46, 4601, 123456

RBAR, 4701, 47, 4701, 123456
RBAR, 4801, 48, 4801, 123456

RBAR, 4901, 49, 4901, 123456

RBAR, 5001, 50, 5001, 123456

RBAR, 5101, 51, 5101, 123456

RBAR, 5201, 52, 5201, 123456

RBAR, 5301, 53, 5301, 123456

$***************************************************
$ Trailing Edge

$***************************************************
RBAR, 302, 3, 302, 123456

RBAR, 402, 4, 402, 123456

RBAR, 502, 5, 502, 123456

RBAR, 602, 6, 602, 123456

RBAR, 702, 7, 702, 123456

RBAR, 802, 8, 802, 123456

RBAR, 902, 9, 902, 123456

RBAR, 1002, 10, 1002, 123456

RBAR, 1102, 11, 1102, 123456

RBAR, 1202, 12, 1202, 123456

RBAR, 1302, 13, 1302, 123456

RBAR, 1402, 14, 1402, 123456

RBAR, 1502, 15, 1502, 123456

RBAR, 1602, 16, 1602, 123456

RBAR, 1702, 17, 1702, 123456

RBAR, 1802, 18, 1802, 123456

RBAR, 1902, 19, 1902, 123456

RBAR, 2002, 20, 2002, 123456

RBAR, 2102, 21, 2102, 123456

RBAR, 2202, 22, 2202, 123456

RBAR, 2302, 23, 2302, 123456

RBAR, 2402, 24, 2402, 123456

RBAR, 2502, 25, 2502, 123456

RBAR, 2602, 26, 2602, 123456

RBAR, 2702, 27, 2702, 123456

RBAR, 2802, 28, 2802, 123456

RBAR, 2902, 29, 2902, 123456

RBAR, 3002, 30, 3002, 123456

RBAR, 3102, 31, 3102, 123456

RBAR, 3202, 32, 3202, 123456

RBAR, 3302, 33, 3302, 123456

RBAR, 3402, 34, 3402, 123456

RBAR, 3502, 35, 3502, 123456

RBAR, 3602, 36, 3602, 123456

RBAR, 3702, 37, 3702, 123456

RBAR, 3802, 38, 3802, 123456

RBAR, 3902, 39, 3902, 123456

RBAR, 4002, 40, 4002, 123456
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RBAR, 4102, 41, 4102, 123456

RBAR, 4202, 42, 4202, 123456

RBAR, 4302, 43, 4302, 123456

RBAR, 4402, 44, 4402, 123456

RBAR, 4502, 45, 4502, 123456

RBAR, 4602, 46, 4602, 123456

RBAR, 4702, 47, 4702, 123456

RBAR, 4802, 48, 4802, 123456

RBAR, 4902, 49, 4902, 123456

RBAR, 5002, 50, 5002, 123456

RBAR, 5102, 51, 5102, 123456

RBAR, 5202, 52, 5202, 123456

RBAR, 5302, 53, 5302, 123456

$***************************************************
$ PBEAM FORMAT

$ PBEAM, PID MID, A, I1, I2, I12, J, NSM, +P2 (FOR GRID A)

$ +P2, C1, C2, D1, D2, E1, E2, F1, F2, +P3 (NOT USED) . .

$ +P3, SO, X/XB, A, I1, I2, I12, J, NSM, +P4 (FOR GRID B=X/XB)

$ +P4, C1, C2, D1, D2, E1, E2, F1, F2, +P5 (NOT USED)

$ +P5, K1, K2, S1, S2, NSI(A), NSI(B), CW, CW, +P6 (NSI=MASS INERTIA ABOUT CG)

$ +P6, M1, M2, M1, M2, N1, N2, N1, N2 (M1,M2 = Y,Z OFFSET OF CG FROM SHEAR CTR

$***************************************************
PBEAM,1,1,22.7700,70.9496,75.7551,0.0, 2.4925e+02,1189.51,+103

+103,YESA,1.0, 22.7700,70.9335,75.8133,0.0, 2.4949e+02,1191.64,+105

+105, , , , , 0.0, 0.0, , ,+106

+106,-0.00130,0.00600,-0.00180,0.00600,-0.00200,0.00630,-0.00270,0.00630

PBEAM,2,2,22.7700,70.9335,75.8133,0.0, 2.4949e+02,1191.64,+203

+203,YESA,1.0, 22.6236,70.0630,74.9055,0.0, 2.4860e+02,1202.77,+205

+205, , , , , 0.0, 0.0, , ,+206

+206,-0.00180,0.00600,-0.01020,0.00280,-0.00270,0.00630,-0.00450,0.00440
PBEAM,3,3,22.6236,70.0630,74.9055,0.0, 2.4860e+02,1202.77,+303

+303,YESA,1.0, 22.1168,67.5472,71.0785,0.0, 2.4143e+02,1171.49,+305

+305, , , , , 0.0, 0.0, , ,+306

+306,-0.01020,0.00280,-0.02360,-0.01040,-0.00450,0.00440,-0.02240,-0.00950

PBEAM,4,4,22.1168,67.5472,71.0785,0.0, 2.4143e+02,1171.49,+403

+403,YESA,1.0, 21.2052,62.8430,63.8840,0.0, 2.2545e+02,1113.62,+405

+405, , , , , 0.0, 0.0, , ,+406

+406,-0.02360,-0.01040,-0.03880,-0.01930,-0.02240,-0.00950,-0.02390,-0.01630

PBEAM,5,5,21.2052,62.8430,63.8840,0.0, 2.2545e+02,1113.62,+503

+503,YESA,1.0, 19.8717,58.7611,52.0676,0.0, 2.0552e+02,1049.31,+505

+505, , , , , 0.0, 0.0, , ,+506

+506,-0.03880,-0.01930,-0.09300,-0.04070,-0.02390,-0.01630,-0.07130,-0.03460

PBEAM,6,6,19.8717,58.7611,52.0676,0.0, 2.0552e+02,1049.31,+603

+603,YESA,1.0, 18.1044,50.2318,41.5099,0.0, 1.7372e+02,974.63,+605

+605, , , , , 0.0, 0.0, , ,+606

+606,-0.09300,-0.04070,-0.19280,-0.06340,-0.07130,-0.03460,-0.15440,-0.05930

PBEAM,7,7,18.1044,50.2318,41.5099,0.0, 1.7372e+02,974.63,+703

+703,YESA,1.0, 16.0708,42.7928,30.7696,0.0, 1.3819e+02,908.74,+705

+705, , , , , 0.0, 0.0, , ,+706

+706,-0.19280,-0.06340,-0.34310,-0.08770,-0.15440,-0.05930,-0.29520,-0.08910

PBEAM,8,8,16.0708,42.7928,30.7696,0.0, 1.3819e+02,908.74,+803

+803,YESA,1.0, 14.0891,36.4162,22.0072,0.0, 1.0622e+02,868.87,+805

+805, , , , , 0.0, 0.0, , ,+806

+806,-0.34310,-0.08770,-0.50000,-0.06940,-0.29520,-0.08910,-0.44390,-0.07510

PBEAM,9,9,14.0891,36.4162,22.0072,0.0, 1.0622e+02,868.87,+903

+903,YESA,1.0, 12.7081,32.5286,16.9177,0.0, 8.8043e+01,845.51,+905

+905, , , , , 0.0, 0.0, , ,+906

+906,-0.50000,-0.06940,-0.61290,-0.06550,-0.44390,-0.07510,-0.54870,-0.07330

PBEAM,10,10,12.7081,32.5286,16.9177,0.0, 8.8043e+01,845.51,+1003

+1003,YESA,1.0, 11.2713,28.5702,12.4479,0.0, 6.2972e+01,775.15,+1005

+1005, , , , , 0.0, 0.0, , ,+1006

+1006,-0.61290,-0.06550,-0.70430,-0.07180,-0.54870,-0.07330,-0.60580,-0.08200

PBEAM,11,11,11.2713,28.5702,12.4479,0.0, 6.2972e+01,775.15,+1103

+1103,YESA,1.0, 10.5007,26.8347,10.3584,0.0, 5.1766e+01,735.79,+1105

+1105, , , , , 0.0, 0.0, , ,+1106

+1106,-0.70430,-0.07180,-0.66680,-0.08410,-0.60580,-0.08200,-0.54190,-0.09350

PBEAM,12,12,10.5007,26.8347,10.3584,0.0, 5.1766e+01,735.79,+1203

+1203,YESA,1.0, 9.8516,24.8214,8.7977,0.0, 4.2163e+01,691.12,+1205

+1205, , , , , 0.0, 0.0, , ,+1206

+1206,-0.66680,-0.08410,-0.69000,-0.08110,-0.54190,-0.09350,-0.55030,-0.08910

PBEAM,13,13,9.8516,24.8214,8.7977,0.0, 4.2163e+01,691.12,+1303

+1303,YESA,1.0, 9.2681,22.9148,7.5289,0.0, 3.4452e+01,654.85,+1305

+1305, , , , , 0.0, 0.0, , ,+1306

+1306,-0.69000,-0.08110,-0.70100,-0.07580,-0.55030,-0.08910,-0.54140,-0.08250

PBEAM,14,14,9.2681,22.9148,7.5289,0.0, 3.4452e+01,654.85,+1403

+1403,YESA,1.0, 8.7187,21.0144,6.4529,0.0, 2.8330e+01,625.88,+1405

+1405, , , , , 0.0, 0.0, , ,+1406
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+1406,-0.70100,-0.07580,-0.70230,-0.07140,-0.54140,-0.08250,-0.52910,-0.07760

PBEAM,15,15,8.7187,21.0144,6.4529,0.0, 2.8330e+01,625.88,+1503

+1503,YESA,1.0, 8.1566,19.9518,5.3886,0.0, 2.3063e+01,593.32,+1505

+1505, , , , , 0.0, 0.0, , ,+1506

+1506,-0.70230,-0.07140,-0.73870,-0.06150,-0.52910,-0.07760,-0.57930,-0.06760

PBEAM,16,16,8.1566,19.9518,5.3886,0.0, 2.3063e+01,593.32,+1603

+1603,YESA,1.0, 7.5909,17.8835,4.5194,0.0, 1.9405e+01,580.97,+1605

+1605, , , , , 0.0, 0.0, , ,+1606

+1606,-0.73870,-0.06150,-0.72080,-0.05460,-0.57930,-0.06760,-0.55550,-0.06090

PBEAM,17,17,7.5909,17.8835,4.5194,0.0, 1.9405e+01,580.97,+1703

+1703,YESA,1.0, 7.0644,15.9438,3.8070,0.0, 1.6531e+01,566.23,+1705

+1705, , , , , 0.0, 0.0, , ,+1706

+1706,-0.72080,-0.05460,-0.71480,-0.04900,-0.55550,-0.06090,-0.54920,-0.05550

PBEAM,18,18,7.0644,15.9438,3.8070,0.0, 1.6531e+01,566.23,+1803

+1803,YESA,1.0, 6.5743,14.0580,3.2306,0.0, 1.4188e+01,548.24,+1805

+1805, , , , , 0.0, 0.0, , ,+1806

+1806,-0.71480,-0.04900,-0.69640,-0.04380,-0.54920,-0.05550,-0.51690,-0.05050

PBEAM,19,19,6.5743,14.0580,3.2306,0.0, 1.4188e+01,548.24,+1903

+1903,YESA,1.0, 6.1189,12.3087,2.7525,0.0, 1.2141e+01,529.65,+1905

+1905, , , , , 0.0, 0.0, , ,+1906

+1906,-0.69640,-0.04380,-0.67030,-0.04170,-0.51690,-0.05050,-0.48750,-0.04860

PBEAM,20,20,6.1189,12.3087,2.7525,0.0, 1.2141e+01,529.65,+2003

+2003,YESA,1.0, 5.7121,10.8750,2.3551,0.0, 1.0672e+01,510.31,+2005

+2005, , , , , 0.0, 0.0, , ,+2006

+2006,-0.67030,-0.04170,-0.64590,-0.04010,-0.48750,-0.04860,-0.46970,-0.04690

PBEAM,21,21,5.7121,10.8750,2.3551,0.0, 1.0672e+01,510.31,+2103

+2103,YESA,1.0, 5.3162,9.5986,1.9931,0.0, 9.2392e+00,494.68,+2105

+2105, , , , , 0.0, 0.0, , ,+2106

+2106,-0.64590,-0.04010,-0.62730,-0.03930,-0.46970,-0.04690,-0.45430,-0.04590

PBEAM,22,22,5.3162,9.5986,1.9931,0.0, 9.2392e+00,494.68,+2203
+2203,YESA,1.0, 4.9420,8.3738,1.6878,0.0, 7.9139e+00,477.51,+2205

+2205, , , , , 0.0, 0.0, , ,+2206

+2206,-0.62730,-0.03930,-0.60890,-0.03900,-0.45430,-0.04590,-0.44250,-0.04560

PBEAM,23,23,4.9420,8.3738,1.6878,0.0, 7.9139e+00,477.51,+2303

+2303,YESA,1.0, 4.6066,7.3879,1.4384,0.0, 6.8618e+00,460.93,+2305

+2305, , , , , 0.0, 0.0, , ,+2306

+2306,-0.60890,-0.03900,-0.59030,-0.03790,-0.44250,-0.04560,-0.42130,-0.04440

PBEAM,24,24,4.6066,7.3879,1.4384,0.0, 6.8618e+00,460.93,+2403

+2403,YESA,1.0, 4.2736,6.3994,1.2168,0.0, 6.0174e+00,441.78,+2405

+2405, , , , , 0.0, 0.0, , ,+2406

+2406,-0.59030,-0.03790,-0.57350,-0.03730,-0.42130,-0.04440,-0.40430,-0.04360

PBEAM,25,25,4.2736,6.3994,1.2168,0.0, 6.0174e+00,441.78,+2503

+2503,YESA,1.0, 3.9613,5.6040,1.0247,0.0, 5.1956e+00,425.33,+2505

+2505, , , , , 0.0, 0.0, , ,+2506

+2506,-0.57350,-0.03730,-0.56100,-0.03610,-0.40430,-0.04360,-0.39260,-0.04220

PBEAM,26,26,3.9613,5.6040,1.0247,0.0, 5.1956e+00,425.33,+2603

+2603,YESA,1.0, 3.6689,4.7206,0.8727,0.0, 4.3906e+00,401.38,+2605

+2605, , , , , 0.0, 0.0, , ,+2606

+2606,-0.56100,-0.03610,-0.51910,-0.03610,-0.39260,-0.04220,-0.36320,-0.04190

PBEAM,27,27,3.6689,4.7206,0.8727,0.0, 4.3906e+00,401.38,+2703

+2703,YESA,1.0, 3.3956,4.1094,0.7345,0.0, 3.8258e+00,385.14,+2705

+2705, , , , , 0.0, 0.0, , ,+2706

+2706,-0.51910,-0.03610,-0.50650,-0.03480,-0.36320,-0.04190,-0.35280,-0.04040

PBEAM,28,28,3.3956,4.1094,0.7345,0.0, 3.8258e+00,385.14,+2803

+2803,YESA,1.0, 3.1407,3.5136,0.6233,0.0, 3.2950e+00,365.95,+2805

+2805, , , , , 0.0, 0.0, , ,+2806

+2806,-0.50650,-0.03480,-0.47970,-0.03420,-0.35280,-0.04040,-0.33810,-0.03940

PBEAM,29,29,3.1407,3.5136,0.6233,0.0, 3.2950e+00,365.95,+2903

+2903,YESA,1.0, 2.9034,3.0147,0.5274,0.0, 2.8004e+00,346.94,+2905

+2905, , , , , 0.0, 0.0, , ,+2906

+2906,-0.47970,-0.03420,-0.46070,-0.03350,-0.33810,-0.03940,-0.32200,-0.03850

PBEAM,30,30,2.9034,3.0147,0.5274,0.0, 2.8004e+00,346.94,+3003

+3003,YESA,1.0, 2.6720,2.4980,0.4459,0.0, 2.3907e+00,326.32,+3005

+3005, , , , , 0.0, 0.0, , ,+3006

+3006,-0.46070,-0.03350,-0.42960,-0.03260,-0.32200,-0.03850,-0.29980,-0.03720

PBEAM,31,31,2.6720,2.4980,0.4459,0.0, 2.3907e+00,326.32,+3103

+3103,YESA,1.0, 2.4676,2.1591,0.3771,0.0, 2.0673e+00,310.27,+3105

+3105, , , , , 0.0, 0.0, , ,+3106

+3106,-0.42960,-0.03260,-0.41860,-0.03110,-0.29980,-0.03720,-0.29020,-0.03560

PBEAM,32,32,2.4676,2.1591,0.3771,0.0, 2.0673e+00,310.27,+3203

+3203,YESA,1.0, 2.2779,1.8189,0.3215,0.0, 1.7455e+00,291.66,+3205

+3205, , , , , 0.0, 0.0, , ,+3206

+3206,-0.41860,-0.03110,-0.39300,-0.03080,-0.29020,-0.03560,-0.27620,-0.03500

PBEAM,33,33,2.2779,1.8189,0.3215,0.0, 1.7455e+00,291.66,+3303

+3303,YESA,1.0, 2.1013,1.5318,0.2743,0.0, 1.5010e+00,272.43,+3305

+3305, , , , , 0.0, 0.0, , ,+3306

+3306,-0.39300,-0.03080,-0.36600,-0.02970,-0.27620,-0.03500,-0.25830,-0.03350
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PBEAM,34,34,2.1013,1.5318,0.2743,0.0, 1.5010e+00,272.43,+3403

+3403,YESA,1.0, 1.9368,1.3112,0.2320,0.0, 1.2962e+00,256.95,+3405

+3405, , , , , 0.0, 0.0, , ,+3406

+3406,-0.36600,-0.02970,-0.35470,-0.02790,-0.25830,-0.03350,-0.24880,-0.03170

PBEAM,35,35,1.9368,1.3112,0.2320,0.0, 1.2962e+00,256.95,+3503

+3503,YESA,1.0, 1.7839,1.0954,0.1990,0.0, 1.1089e+00,237.77,+3505

+3505, , , , , 0.0, 0.0, , ,+3506

+3506,-0.35470,-0.02790,-0.33390,-0.02730,-0.24880,-0.03170,-0.23590,-0.03080

PBEAM,36,36,1.7839,1.0954,0.1990,0.0, 1.1089e+00,237.77,+3603

+3603,YESA,1.0, 1.6494,0.9452,0.1696,0.0, 9.6039e-01,221.77,+3605

+3605, , , , , 0.0, 0.0, , ,+3606

+3606,-0.33390,-0.02730,-0.32590,-0.02550,-0.23590,-0.03080,-0.22940,-0.02900

PBEAM,37,37,1.6494,0.9452,0.1696,0.0, 9.6039e-01,221.77,+3703

+3703,YESA,1.0, 1.5172,0.7916,0.1437,0.0, 8.0393e-01,203.15,+3705

+3705, , , , , 0.0, 0.0, , ,+3706

+3706,-0.32590,-0.02550,-0.30420,-0.02420,-0.22940,-0.02900,-0.21510,-0.02750

PBEAM,38,38,1.5172,0.7916,0.1437,0.0, 8.0393e-01,203.15,+3803

+3803,YESA,1.0, 1.3926,0.6752,0.1207,0.0, 6.7452e-01,186.77,+3805

+3805, , , , , 0.0, 0.0, , ,+3806

+3806,-0.30420,-0.02420,-0.29740,-0.02330,-0.21510,-0.02750,-0.21160,-0.02650

PBEAM,39,39,1.3926,0.6752,0.1207,0.0, 6.7452e-01,186.77,+3903

+3903,YESA,1.0, 1.2755,0.5739,0.1006,0.0, 5.7281e-01,171.66,+3905

+3905, , , , , 0.0, 0.0, , ,+3906

+3906,-0.29740,-0.02330,-0.29000,-0.02140,-0.21160,-0.02650,-0.20570,-0.02450

PBEAM,40,40,1.2755,0.5739,0.1006,0.0, 5.7281e-01,171.66,+4003

+4003,YESA,1.0, 1.1618,0.4737,0.0839,0.0, 4.7588e-01,153.75,+4005

+4005, , , , , 0.0, 0.0, , ,+4006

+4006,-0.29000,-0.02140,-0.27130,-0.02050,-0.20570,-0.02450,-0.19730,-0.02340

PBEAM,41,41,1.1618,0.4737,0.0839,0.0, 4.7588e-01,153.75,+4103

+4103,YESA,1.0, 1.0593,0.4009,0.0695,0.0, 4.0275e-01,140.05,+4105
+4105, , , , , 0.0, 0.0, , ,+4106

+4106,-0.27130,-0.02050,-0.26780,-0.01850,-0.19730,-0.02340,-0.19300,-0.02140

PBEAM,42,42,1.0593,0.4009,0.0695,0.0, 4.0275e-01,140.05,+4203

+4203,YESA,1.0, 0.9637,0.3318,0.0578,0.0, 3.4786e-01,124.35,+4205

+4205, , , , , 0.0, 0.0, , ,+4206

+4206,-0.26780,-0.01850,-0.25330,-0.01780,-0.19300,-0.02140,-0.18650,-0.02050

PBEAM,43,43,0.9637,0.3318,0.0578,0.0, 3.4786e-01,124.35,+4303

+4303,YESA,1.0, 0.8772,0.2879,0.0474,0.0, 2.7961e-01,108.93,+4305

+4305, , , , , 0.0, 0.0, , ,+4306

+4306,-0.25330,-0.01780,-0.25300,-0.01630,-0.18650,-0.02050,-0.18660,-0.01880

PBEAM,44,44,0.8772,0.2879,0.0474,0.0, 2.7961e-01,108.93,+4403

+4403,YESA,1.0, 0.7943,0.2392,0.0384,0.0, 2.2819e-01,95.18,+4405

+4405, , , , , 0.0, 0.0, , ,+4406

+4406,-0.25300,-0.01630,-0.24960,-0.01440,-0.18660,-0.01880,-0.18440,-0.01690

PBEAM,45,45,0.7943,0.2392,0.0384,0.0, 2.2819e-01,95.18,+4503

+4503,YESA,1.0, 0.7107,0.2005,0.0303,0.0, 1.9362e-01,82.34,+4505

+4505, , , , , 0.0, 0.0, , ,+4506

+4506,-0.24960,-0.01440,-0.24550,-0.01290,-0.18440,-0.01690,-0.19090,-0.01520

PBEAM,46,46,0.7107,0.2005,0.0303,0.0, 1.9362e-01,82.34,+4603

+4603,YESA,1.0, 0.6240,0.1613,0.0229,0.0, 1.5443e-01,68.28,+4605

+4605, , , , , 0.0, 0.0, , ,+4606

+4606,-0.24550,-0.01290,-0.24150,-0.01140,-0.19090,-0.01520,-0.18710,-0.01350

PBEAM,47,47,0.6240,0.1613,0.0229,0.0, 1.5443e-01,68.28,+4703

+4703,YESA,1.0, 0.5296,0.1239,0.0159,0.0, 1.2161e-01,54.47,+4705

+4705, , , , , 0.0, 0.0, , ,+4706

+4706,-0.24150,-0.01140,-0.24850,-0.00880,-0.18710,-0.01350,-0.19030,-0.01100

PBEAM,48,48,0.5296,0.1239,0.0159,0.0, 1.2161e-01,54.47,+4803

+4803,YESA,1.0, 0.4182,0.0831,0.0091,0.0, 8.0281e-02,40.65,+4805

+4805, , , , , 0.0, 0.0, , ,+4806

+4806,-0.24850,-0.00880,-0.24000,-0.00690,-0.19030,-0.01100,-0.20380,-0.00850

PBEAM,49,49,0.4182,0.0831,0.0091,0.0, 8.0281e-02,40.65,+4903

+4903,YESA,1.0, 0.2683,0.0378,0.0033,0.0, 3.4228e-02,25.20,+4905

+4905, , , , , 0.0, 0.0, , ,+4906

+4906,-0.24000,-0.00690,-0.22350,-0.00410,-0.20380,-0.00850,-0.20200,-0.00510

PBEAM,50,50,0.2683,0.0378,0.0033,0.0, 3.4228e-02,25.20,+5003

+5003,YESA,1.0, 1.21e-04,8.81e-06,6.36e-07,0.0, 7.8353e-06,15.42,+5005

+5005, , , , , 0.0, 0.0, , ,+5006

+5006,-0.22350,-0.00410,-0.16620,-0.00220,-0.20200,-0.00510,-0.16030,-0.00280

Listing A.2: The aerodynamic loads file (nastranLoads.dat) for the straight blade.
PLOAD1,1,16,FZ,FR,0.,4004.571641,1.,4290.907937

PLOAD1,1,16,FY,FR,0.,669.604764,1.,1185.974568

PLOAD1,1,16,MX,FR,0.,-912.190937,1.,382.946908

PLOAD1,1,17,FZ,FR,0.,4290.907937,1.,4663.807881

PLOAD1,1,17,FY,FR,0.,1185.974568,1.,1181.595288

PLOAD1,1,17,MX,FR,0.,382.946908,1.,229.754201
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PLOAD1,1,18,FZ,FR,0.,4663.807881,1.,4971.657506

PLOAD1,1,18,FY,FR,0.,1181.595288,1.,1124.224420

PLOAD1,1,18,MX,FR,0.,229.754201,1.,57.107416

PLOAD1,1,19,FZ,FR,0.,4971.657506,1.,5309.540861

PLOAD1,1,19,FY,FR,0.,1124.224420,1.,1138.024722

PLOAD1,1,19,MX,FR,0.,57.107416,1.,30.276422

PLOAD1,1,20,FZ,FR,0.,5309.540861,1.,5640.120297

PLOAD1,1,20,FY,FR,0.,1138.024722,1.,1181.162302

PLOAD1,1,20,MX,FR,0.,30.276422,1.,29.135705

PLOAD1,1,21,FZ,FR,0.,5640.120297,1.,5970.464981

PLOAD1,1,21,FY,FR,0.,1181.162302,1.,1199.132630

PLOAD1,1,21,MX,FR,0.,29.135705,1.,39.576429

PLOAD1,1,22,FZ,FR,0.,5970.464981,1.,6289.130625

PLOAD1,1,22,FY,FR,0.,1199.132630,1.,1212.896487

PLOAD1,1,22,MX,FR,0.,39.576429,1.,29.074141

PLOAD1,1,23,FZ,FR,0.,6289.130625,1.,6579.437330

PLOAD1,1,23,FY,FR,0.,1212.896487,1.,1221.298702

PLOAD1,1,23,MX,FR,0.,29.074141,1.,21.863304

PLOAD1,1,24,FZ,FR,0.,6579.437330,1.,6868.317333

PLOAD1,1,24,FY,FR,0.,1221.298702,1.,1224.249948

PLOAD1,1,24,MX,FR,0.,21.863304,1.,19.366712

PLOAD1,1,25,FZ,FR,0.,6868.317333,1.,7157.131986

PLOAD1,1,25,FY,FR,0.,1224.249948,1.,1225.431314

PLOAD1,1,25,MX,FR,0.,19.366712,1.,25.999115

PLOAD1,1,26,FZ,FR,0.,7157.131986,1.,7440.180591

PLOAD1,1,26,FY,FR,0.,1225.431314,1.,1223.955366

PLOAD1,1,26,MX,FR,0.,25.999115,1.,37.127174

PLOAD1,1,27,FZ,FR,0.,7440.180591,1.,7719.051805

PLOAD1,1,27,FY,FR,0.,1223.955366,1.,1220.117971

PLOAD1,1,27,MX,FR,0.,37.127174,1.,51.593235
PLOAD1,1,28,FZ,FR,0.,7719.051805,1.,7996.439493

PLOAD1,1,28,FY,FR,0.,1220.117971,1.,1215.844637

PLOAD1,1,28,MX,FR,0.,51.593235,1.,73.527718

PLOAD1,1,29,FZ,FR,0.,7996.439493,1.,8265.276214

PLOAD1,1,29,FY,FR,0.,1215.844637,1.,1210.078057

PLOAD1,1,29,MX,FR,0.,73.527718,1.,101.275146

PLOAD1,1,30,FZ,FR,0.,8265.276214,1.,8537.938610

PLOAD1,1,30,FY,FR,0.,1210.078057,1.,1202.174305

PLOAD1,1,30,MX,FR,0.,101.275146,1.,131.510016

PLOAD1,1,31,FZ,FR,0.,8537.938610,1.,8789.141749

PLOAD1,1,31,FY,FR,0.,1202.174305,1.,1195.198343

PLOAD1,1,31,MX,FR,0.,131.510016,1.,160.959802

PLOAD1,1,32,FZ,FR,0.,8789.141749,1.,9028.915227

PLOAD1,1,32,FY,FR,0.,1195.198343,1.,1184.211677

PLOAD1,1,32,MX,FR,0.,160.959802,1.,197.579861

PLOAD1,1,33,FZ,FR,0.,9028.915227,1.,9253.664531

PLOAD1,1,33,FY,FR,0.,1184.211677,1.,1174.228937

PLOAD1,1,33,MX,FR,0.,197.579861,1.,235.126282

PLOAD1,1,34,FZ,FR,0.,9253.664531,1.,9459.693535

PLOAD1,1,34,FY,FR,0.,1174.228937,1.,1162.515414

PLOAD1,1,34,MX,FR,0.,235.126282,1.,270.110166

PLOAD1,1,35,FZ,FR,0.,9459.693535,1.,9658.205599

PLOAD1,1,35,FY,FR,0.,1162.515414,1.,1144.482400

PLOAD1,1,35,MX,FR,0.,270.110166,1.,299.374149

PLOAD1,1,36,FZ,FR,0.,9658.205599,1.,9830.063364

PLOAD1,1,36,FY,FR,0.,1144.482400,1.,1139.547135

PLOAD1,1,36,MX,FR,0.,299.374149,1.,330.359019

PLOAD1,1,37,FZ,FR,0.,9830.063364,1.,10001.408914

PLOAD1,1,37,FY,FR,0.,1139.547135,1.,1127.452990

PLOAD1,1,37,MX,FR,0.,330.359019,1.,354.693407

PLOAD1,1,38,FZ,FR,0.,10001.408914,1.,10150.244375

PLOAD1,1,38,FY,FR,0.,1127.452990,1.,1114.532431

PLOAD1,1,38,MX,FR,0.,354.693407,1.,377.921455

PLOAD1,1,39,FZ,FR,0.,10150.244375,1.,10259.727840

PLOAD1,1,39,FY,FR,0.,1114.532431,1.,1095.480697

PLOAD1,1,39,MX,FR,0.,377.921455,1.,396.695015

PLOAD1,1,40,FZ,FR,0.,10259.727840,1.,10359.017824

PLOAD1,1,40,FY,FR,0.,1095.480697,1.,1077.212392

PLOAD1,1,40,MX,FR,0.,396.695015,1.,419.197009

PLOAD1,1,41,FZ,FR,0.,10359.017824,1.,10414.918752

PLOAD1,1,41,FY,FR,0.,1077.212392,1.,1053.831749

PLOAD1,1,41,MX,FR,0.,419.197009,1.,435.432026

PLOAD1,1,42,FZ,FR,0.,10414.918752,1.,10445.837383

PLOAD1,1,42,FY,FR,0.,1053.831749,1.,1024.372712

PLOAD1,1,42,MX,FR,0.,435.432026,1.,453.449018

PLOAD1,1,43,FZ,FR,0.,10445.837383,1.,10407.780008

PLOAD1,1,43,FY,FR,0.,1024.372712,1.,994.953533
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PLOAD1,1,43,MX,FR,0.,453.449018,1.,464.859549

PLOAD1,1,44,FZ,FR,0.,10407.780008,1.,10320.522448

PLOAD1,1,44,FY,FR,0.,994.953533,1.,953.574920

PLOAD1,1,44,MX,FR,0.,464.859549,1.,471.482936

PLOAD1,1,45,FZ,FR,0.,10320.522448,1.,10133.922516

PLOAD1,1,45,FY,FR,0.,953.574920,1.,897.942664

PLOAD1,1,45,MX,FR,0.,471.482936,1.,468.233146

PLOAD1,1,46,FZ,FR,0.,10133.922516,1.,9792.697353

PLOAD1,1,46,FY,FR,0.,897.942664,1.,828.820016

PLOAD1,1,46,MX,FR,0.,468.233146,1.,439.694664

PLOAD1,1,47,FZ,FR,0.,9792.697353,1.,9260.542389

PLOAD1,1,47,FY,FR,0.,828.820016,1.,744.887547

PLOAD1,1,47,MX,FR,0.,439.694664,1.,386.712483

PLOAD1,1,48,FZ,FR,0.,9260.542389,1.,8276.231769

PLOAD1,1,48,FY,FR,0.,744.887547,1.,611.645049

PLOAD1,1,48,MX,FR,0.,386.712483,1.,284.292137

PLOAD1,1,49,FZ,FR,0.,8276.231769,1.,6188.951642

PLOAD1,1,49,FY,FR,0.,611.645049,1.,386.614578

PLOAD1,1,49,MX,FR,0.,284.292137,1.,126.954649

PLOAD1,1,50,FZ,FR,0.,6188.951642,1.,1780.671497

PLOAD1,1,50,FY,FR,0.,386.614578,1.,-86.782213

PLOAD1,1,50,MX,FR,0.,126.954649,1.,-149.467491

Listing A.3: The NASTRAN instruction file (DTU.bdf ) for the straight blade.
PROJ=’DTU BLADE’
ID DTU BLADE

SOL 106

TIME 20

CEND

TITLE=DTU BLADE MODEL

LABEL=ROTATION

SUBTITLE= 8.836RPM

SUPER=ALL

TITLE=DTU TEST

SUBTITLE=STATIC

SEALL=ALL

SUBCASE 1

LOAD=1

NLPARM=100

SET 1=ALL

DISP=ALL

PARAM POST -1

PARAM AUTOSPC YES

PARAM GRDPNT 0

BEGIN BULK

PARAM, TINY, 0.999

PARAM, GRDPNT, 0

PARAM, MAXRATIO,1.+13

PARAM, COUPMASS,1

PARAM, AUTOSPC,YES

PARAM, LGDISP, 1

PARAM, NMLOOP, 1

NLPARM, 100, 2, , ITER, 1, 150

PARAM,TESTNEG,1

PARAM,TESTSE, 1.-10

RFORCE, 1, 1, , 0.14727, 0., 0., 1., 2

INCLUDE ’DTU.model’

INCLUDE ’nastranLoads.dat’

ENDDATA

A.2 DTU 10MW RWT blade with pre-bend and pre-cone

This section considers the DTU 10MW RWT blade with pre-bend and pre-cone, as employed in Section 10.4
of Chapter 10. Input consists of two files: the DTU.model file with the structural model, and the DTU.bdf

file specifying NASTRAN parameters and instructions. The aerodynamic loads and the blade shape were
computed using HMB solver, as explained in Section 3.6.4 of Chapter 3. Note that conning was not included
in the structural model, but was taken into account during grid deformation.

292



A.2. DTU 10MW RWT BLADE WITH PRE-BENDING APPENDIX A. STRUCTURAL MODELS

Listing A.4: The structural model file (DTU.model) for the blade with pre-bend and pre-cone.
$***************************************************
$ THIS MODEL TAKES INTO ACCOUNT ELASTIC PROPERTIES

$ AND SHEAR AXIS, ELASTIC AXIS AND MASS CENTRE OFFSETS

$ THE WHOLE DTU BLADE IS MODELLED

$ BEAMS ARE MODELLED AS ISOTROPIC MATERIAL WITH

$ ELASTIC PROPERTIES TAKEN FROM THE REPORT

$***************************************************
$ Prebend is included by offseting the nodes further from the tower

$ the same way it is done for the geometry.

$ Precone is included by rotating the nodes and cross-sections (GRID and CBEAM)

$ entries.

$ PBEAM and MAT1 remain the same as for the straight blade.

$***************************************************
$ Ixx - area moment of inertia about the first elastic axis

$ is computed from the flapwise radius of gyration Rg_xx as

$ Ixx = Rg_xx*Rg_xx*AREA

$ where AREA is the crossection area of the beam taken from the

$ geometry provided along with the report.

$***************************************************
$ Young modulus is computed as

$ E*Ixx/Ixx, where E*Ixx is the flapwise bedning stiffness in the report [Nmˆ2]

$***************************************************
$ Shear modulus G is computed from the Flapwise shear stiffness [N],

$ assuming it is defined as G*AREA

$***************************************************
$ Polar moment of area J is computed from the Torsional Stiffness [Nmˆ2]

$ assuming it is defined as G*J, where G is already computed

$***************************************************
$ Grid nodes are located in the shear centre, therefore the shear centre

$ defined in the report was first computed in the Global Referebce Frame of the blade

$***************************************************
$ Neutral axis in NASTRAN is assumed to be the elastic axis in the report,

$ and the off-set from the shear centre to the elastic axis was incorporated

$ in the PBEAM elements

$***************************************************
$ Nonstructural mass off-set in the blade reference frame from shear

$ centre to the mass centre was incorporated in the PBEAM elements
$***************************************************
$ Structural twist is included in CBEAM elements, and was first

$ transfered to the blade reference frame

$***************************************************
$***************************************************
$ Material properties: ID, Youngs modulus, Shear modulus, Poissons ratio

$***************************************************
$***************************************************
MAT1, 1, 8.167e+08, 1.102e+08,

MAT1, 2, 8.201e+08, 1.101e+08,

MAT1, 3, 8.410e+08, 1.099e+08,

MAT1, 4, 8.462e+08, 1.060e+08,

MAT1, 5, 8.540e+08, 9.821e+07,

MAT1, 6, 8.470e+08, 8.948e+07,

MAT1, 7, 8.623e+08, 8.042e+07,

MAT1, 8, 9.227e+08, 7.309e+07,

MAT1, 9, 1.031e+09, 7.012e+07,

MAT1, 10, 1.130e+09, 6.847e+07,

MAT1, 11, 1.188e+09, 6.434e+07,

MAT1, 12, 1.222e+09, 6.473e+07,

MAT1, 13, 1.228e+09, 6.256e+07,

MAT1, 14, 1.240e+09, 6.151e+07,

MAT1, 15, 1.261e+09, 6.155e+07,

MAT1, 16, 1.277e+09, 6.151e+07,

MAT1, 17, 1.348e+09, 6.403e+07,

MAT1, 18, 1.418e+09, 6.591e+07,

MAT1, 19, 1.485e+09, 6.780e+07,

MAT1, 20, 1.548e+09, 6.865e+07,

MAT1, 21, 1.610e+09, 6.977e+07,

MAT1, 22, 1.681e+09, 7.083e+07,

MAT1, 23, 1.751e+09, 7.213e+07,

MAT1, 24, 1.820e+09, 7.329e+07,

MAT1, 25, 1.887e+09, 7.365e+07,

MAT1, 26, 1.966e+09, 7.542e+07,

MAT1, 27, 2.013e+09, 7.695e+07,

MAT1, 28, 2.090e+09, 7.765e+07,

MAT1, 29, 2.159e+09, 8.012e+07,

MAT1, 30, 2.216e+09, 8.040e+07,

MAT1, 31, 2.277e+09, 8.301e+07,

293



A.2. DTU 10MW RWT BLADE WITH PRE-BENDING APPENDIX A. STRUCTURAL MODELS

MAT1, 32, 2.348e+09, 8.457e+07,

MAT1, 33, 2.400e+09, 8.729e+07,

MAT1, 34, 2.437e+09, 8.832e+07,

MAT1, 35, 2.492e+09, 8.989e+07,

MAT1, 36, 2.510e+09, 9.142e+07,

MAT1, 37, 2.530e+09, 9.284e+07,

MAT1, 38, 2.527e+09, 9.579e+07,

MAT1, 39, 2.525e+09, 9.729e+07,

MAT1, 40, 2.523e+09, 9.903e+07,

MAT1, 41, 2.480e+09, 1.008e+08,

MAT1, 42, 2.460e+09, 1.030e+08,

MAT1, 43, 2.387e+09, 1.026e+08,

MAT1, 44, 2.292e+09, 1.037e+08,

MAT1, 45, 2.183e+09, 1.047e+08,

MAT1, 46, 2.081e+09, 1.046e+08,

MAT1, 47, 1.935e+09, 1.006e+08,

MAT1, 48, 1.786e+09, 9.368e+07,

MAT1, 49, 1.589e+09, 8.986e+07,

MAT1, 50, 1.370e+09, 8.577e+07,

MAT1, 51, 1.616e+12, 1.012e+11,

$***************************************************
$ NEW ROOT ATTACHEMENT FOR ROTATION

$ Root starts at 2.8 m

$ First 3 nodes are fixed (from 0.0m to 2.8m)

$ and artificial springs are added, but the nodes are fixed anyway.

$ Springs are added to produce the output understandable

$ by the HMB helicopter routines.

$***************************************************
GRID, 1, , 0.0, 0.0, 0.0,,123456,

GRID, 2, , 2.800, 0.0, 0.0,,123456,
$LeadLag Spring

CELAS2,2,5000.0,1,6,3,6

$Flapping Spring

CELAS2,3,5000.0,1,5,3,5

$ *****************************************
$ BLADE STRUCTURE - grid 3=root, 53=tip

$ *****************************************
GRID, 3, , 2.800, 0.0, 0.0,,123456

GRID, 4, , 4.815, -0.00108, -0.01791

GRID, 5, , 6.542, 0.00058, -0.02439

GRID, 6, , 8.269, 0.00482, -0.01747

GRID, 7, , 9.996, 0.01839, -0.01672

GRID, 8, , 11.724, 0.03869, 0.00516

GRID, 9, , 13.450, 0.12950, 0.04769

GRID, 10, , 15.176, 0.23001, 0.09148

GRID, 11, , 16.904, 0.37696, 0.09766

GRID, 12, , 18.344, 0.46594, 0.10169

GRID, 13, , 20.498, 0.49932, 0.08287

GRID, 14, , 22.232, 0.42157, 0.06158

GRID, 15, , 23.959, 0.43672, 0.03811

GRID, 16, , 25.686, 0.45379, 0.00911

GRID, 17, , 27.413, 0.46693, -0.02287

GRID, 18, , 29.141, 0.46726, -0.06598

GRID, 19, , 30.868, 0.44684, -0.11365

GRID, 20, , 32.595, 0.45095, -0.15864

GRID, 21, , 34.323, 0.43621, -0.20532

GRID, 22, , 36.050, 0.43031, -0.24772

GRID, 23, , 37.778, 0.42171, -0.29089

GRID, 24, , 39.505, 0.40558, -0.33562

GRID, 25, , 41.233, 0.40227, -0.38130

GRID, 26, , 42.873, 0.38568, -0.42888

GRID, 27, , 44.601, 0.37586, -0.48096

GRID, 28, , 46.328, 0.36633, -0.53672

GRID, 29, , 48.055, 0.35445, -0.59555

GRID, 30, , 49.783, 0.34419, -0.65873

GRID, 31, , 51.510, 0.33313, -0.72531

GRID, 32, , 53.237, 0.32110, -0.79582

GRID, 33, , 55.051, 0.30752, -0.87458

GRID, 34, , 56.779, 0.29670, -0.95397

GRID, 35, , 58.506, 0.28786, -1.03668

GRID, 36, , 60.233, 0.26843, -1.12454

GRID, 37, , 61.961, 0.25695, -1.21706

GRID, 38, , 63.688, 0.24835, -1.31321

GRID, 39, , 65.354, 0.23696, -1.41102

GRID, 40, , 67.081, 0.21636, -1.51648

GRID, 41, , 68.808, 0.20845, -1.62613

GRID, 42, , 70.535, 0.19638, -1.74135
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GRID, 43, , 72.324, 0.18664, -1.86527

GRID, 44, , 74.052, 0.17548, -1.99073

GRID, 45, , 75.779, 0.16261, -2.11996

GRID, 46, , 77.459, 0.14850, -2.25146

GRID, 47, , 79.186, 0.14029, -2.39236

GRID, 48, , 80.961, 0.12192, -2.54167

GRID, 49, , 82.688, 0.11157, -2.69359

GRID, 50, , 84.377, 0.09842, -2.84840

GRID, 51, , 86.143, 0.08157, -3.01607

GRID, 52, , 87.871, 0.06403, -3.18811

GRID, 53, , 89.166, 0.17704, -3.33028

GRID, 301, , 2.800, 3.10257, 0.0

GRID, 401, , 4.815, 3.10192, -0.01791

GRID, 501, , 6.542, 3.10358, -0.02439

GRID, 601, , 8.269, 3.10782, -0.01747

GRID, 701, , 9.996, 3.12139, -0.01672

GRID, 801, , 11.724, 3.14169, 0.00516

GRID, 901, , 13.450, 3.2325, 0.04769

GRID, 1001, , 15.176, 3.33301, 0.09148

GRID, 1101, , 16.904, 3.47996, 0.09766

GRID, 1201, , 18.344, 3.56894, 0.10169

GRID, 1301, , 20.498, 3.60232, 0.08287

GRID, 1401, , 22.232, 3.52457, 0.06158

GRID, 1501, , 23.959, 3.53972, 0.03811

GRID, 1601, , 25.686, 3.55679, 0.00911

GRID, 1701, , 27.413, 3.56993, -0.02287

GRID, 1801, , 29.141, 3.57026, -0.06598

GRID, 1901, , 30.868, 3.54984, -0.11365

GRID, 2001, , 32.595, 3.55395, -0.15864
GRID, 2101, , 34.323, 3.53921, -0.20532

GRID, 2201, , 36.050, 3.53331, -0.24772

GRID, 2301, , 37.778, 3.52471, -0.29089

GRID, 2401, , 39.505, 3.50858, -0.33562

GRID, 2501, , 41.233, 3.50527, -0.38130

GRID, 2601, , 42.873, 3.48868, -0.42888

GRID, 2701, , 44.601, 3.47886, -0.48096

GRID, 2801, , 46.328, 3.46933, -0.53672

GRID, 2901, , 48.055, 3.45745, -0.59555

GRID, 3001, , 49.783, 3.44719, -0.65873

GRID, 3101, , 51.510, 3.43613, -0.72531

GRID, 3201, , 53.237, 3.4241, -0.79582

GRID, 3301, , 55.051, 3.41052, -0.87458

GRID, 3401, , 56.779, 3.3997, -0.95397

GRID, 3501, , 58.506, 3.39086, -1.03668

GRID, 3601, , 60.233, 3.37143, -1.12454

GRID, 3701, , 61.961, 3.35995, -1.21706

GRID, 3801, , 63.688, 3.35135, -1.31321

GRID, 3901, , 65.354, 3.33996, -1.41102

GRID, 4001, , 67.081, 3.31936, -1.51648

GRID, 4101, , 68.808, 3.31145, -1.62613

GRID, 4201, , 70.535, 3.29938, -1.74135

GRID, 4301, , 72.324, 3.28964, -1.86527

GRID, 4401, , 74.052, 3.27848, -1.99073

GRID, 4501, , 75.779, 3.26561, -2.11996

GRID, 4601, , 77.459, 3.2515, -2.25146

GRID, 4701, , 79.186, 3.24329, -2.39236

GRID, 4801, , 80.961, 3.22492, -2.54167

GRID, 4901, , 82.688, 3.21457, -2.69359

GRID, 5001, , 84.377, 3.20142, -2.84840

GRID, 5101, , 86.143, 3.18457, -3.01607

GRID, 5201, , 87.871, 3.16703, -3.18811

GRID, 5301, , 89.166, 3.28004, -3.33028

GRID, 302, , 2.800, -6.20643, 0.0

GRID, 402, , 4.815, -6.20708, -0.01791

GRID, 502, , 6.542, -6.20542, -0.02439

GRID, 602, , 8.269, -6.20118, -0.01747

GRID, 702, , 9.996, -6.18761, -0.01672

GRID, 802, , 11.724, -6.16731, 0.00516

GRID, 902, , 13.450, -6.0765, 0.04769

GRID, 1002, , 15.176, -5.97599, 0.09148

GRID, 1102, , 16.904, -5.82904, 0.09766

GRID, 1202, , 18.344, -5.74006, 0.10169

GRID, 1302, , 20.498, -5.70668, 0.08287

GRID, 1402, , 22.232, -5.78443, 0.06158

GRID, 1502, , 23.959, -5.76928, 0.03811
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GRID, 1602, , 25.686, -5.75221, 0.00911

GRID, 1702, , 27.413, -5.73907, -0.02287

GRID, 1802, , 29.141, -5.73874, -0.06598

GRID, 1902, , 30.868, -5.75916, -0.11365

GRID, 2002, , 32.595, -5.75505, -0.15864

GRID, 2102, , 34.323, -5.76979, -0.20532

GRID, 2202, , 36.050, -5.77569, -0.24772

GRID, 2302, , 37.778, -5.78429, -0.29089

GRID, 2402, , 39.505, -5.80042, -0.33562

GRID, 2502, , 41.233, -5.80373, -0.38130

GRID, 2602, , 42.873, -5.82032, -0.42888

GRID, 2702, , 44.601, -5.83014, -0.48096

GRID, 2802, , 46.328, -5.83967, -0.53672

GRID, 2902, , 48.055, -5.85155, -0.59555

GRID, 3002, , 49.783, -5.86181, -0.65873

GRID, 3102, , 51.510, -5.87287, -0.72531

GRID, 3202, , 53.237, -5.8849, -0.79582

GRID, 3302, , 55.051, -5.89848, -0.87458

GRID, 3402, , 56.779, -5.9093, -0.95397

GRID, 3502, , 58.506, -5.91814, -1.03668

GRID, 3602, , 60.233, -5.93757, -1.12454

GRID, 3702, , 61.961, -5.94905, -1.21706

GRID, 3802, , 63.688, -5.95765, -1.31321

GRID, 3902, , 65.354, -5.96904, -1.41102

GRID, 4002, , 67.081, -5.98964, -1.51648

GRID, 4102, , 68.808, -5.99755, -1.62613

GRID, 4202, , 70.535, -6.00962, -1.74135

GRID, 4302, , 72.324, -6.01936, -1.86527

GRID, 4402, , 74.052, -6.03052, -1.99073

GRID, 4502, , 75.779, -6.04339, -2.11996
GRID, 4602, , 77.459, -6.0575, -2.25146

GRID, 4702, , 79.186, -6.06571, -2.39236

GRID, 4802, , 80.961, -6.08408, -2.54167

GRID, 4902, , 82.688, -6.09443, -2.69359

GRID, 5002, , 84.377, -6.10758, -2.84840

GRID, 5102, , 86.143, -6.12443, -3.01607

GRID, 5202, , 87.871, -6.14197, -3.18811

GRID, 5302, , 89.166, -6.02896, -3.33028

$***************************************************
$ CBEAMs show the 2 connected grids and the reference pt. location

$ which indicates blade twist by changing the direction of the principle

$ plane of bending

$ cos(twist) and sin(twist)

$ where "twist" is a structural twist from the report defined

$ in the reference frame of the blade.

$ rotation due to precone is also included

$***************************************************
CBEAM, 1, 1, 3, 4, 0.70711, 0.68458, 0.17705

CBEAM, 2, 2, 4, 5, 0.70711, 0.68458, 0.17705

CBEAM, 3, 3, 5, 6, 0.70711, 0.68458, 0.17705

CBEAM, 4, 4, 6, 7, 0.70711, 0.68458, 0.17705

CBEAM, 5, 5, 7, 8, 0.70711, 0.68463, 0.17687

CBEAM, 6, 6, 8, 9, 0.70711, 0.62166, -0.33695

CBEAM, 7, 7, 9, 10, 0.70711, 0.65609, -0.26373

CBEAM, 8, 8, 10, 11, 0.70711, 0.69083, -0.15085

CBEAM, 9, 9, 11, 12, 0.70711, 0.70270, -0.07880

CBEAM, 10, 10, 12, 13, 0.70711, 0.70635, -0.03268

CBEAM, 11, 11, 13, 14, 0.70711, 0.70705, -0.00917

CBEAM, 12, 12, 14, 15, 0.70711, 0.70709, 0.00476

CBEAM, 13, 13, 15, 16, 0.70711, 0.70703, 0.01067

CBEAM, 14, 14, 16, 17, 0.70711, 0.70698, 0.01352

CBEAM, 15, 15, 17, 18, 0.70711, 0.70692, 0.01628

CBEAM, 16, 16, 18, 19, 0.70711, 0.70662, 0.02620

CBEAM, 17, 17, 19, 20, 0.70711, 0.70662, 0.02634

CBEAM, 18, 18, 20, 21, 0.70711, 0.70664, 0.02563

CBEAM, 19, 19, 21, 22, 0.70711, 0.70672, 0.02346

CBEAM, 20, 20, 22, 23, 0.70711, 0.70677, 0.02172

CBEAM, 21, 21, 23, 24, 0.70711, 0.70679, 0.02122

CBEAM, 22, 22, 24, 25, 0.70711, 0.70679, 0.02103

CBEAM, 23, 23, 25, 26, 0.70711, 0.70682, 0.02026

CBEAM, 24, 24, 26, 27, 0.70711, 0.70685, 0.01896

CBEAM, 25, 25, 27, 28, 0.70711, 0.70688, 0.01773

CBEAM, 26, 26, 28, 29, 0.70711, 0.70692, 0.01632

CBEAM, 27, 27, 29, 30, 0.70711, 0.70697, 0.01382

CBEAM, 28, 28, 30, 31, 0.70711, 0.70701, 0.01191

CBEAM, 29, 29, 31, 32, 0.70711, 0.70704, 0.00978

CBEAM, 30, 30, 32, 33, 0.70711, 0.70707, 0.00725
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CBEAM, 31, 31, 33, 34, 0.70711, 0.70709, 0.00423

CBEAM, 32, 32, 34, 35, 0.70711, 0.70710, 0.00168

CBEAM, 33, 33, 35, 36, 0.70711, 0.70711, -0.00097

CBEAM, 34, 34, 36, 37, 0.70711, 0.70710, -0.00381

CBEAM, 35, 35, 37, 38, 0.70711, 0.70708, -0.00663

CBEAM, 36, 36, 38, 39, 0.70711, 0.70705, -0.00924

CBEAM, 37, 37, 39, 40, 0.70711, 0.70701, -0.01192

CBEAM, 38, 38, 40, 41, 0.70711, 0.70695, -0.01482

CBEAM, 39, 39, 41, 42, 0.70711, 0.70690, -0.01730

CBEAM, 40, 40, 42, 43, 0.70711, 0.70682, -0.02018

CBEAM, 41, 41, 43, 44, 0.70711, 0.70674, -0.02275

CBEAM, 42, 42, 44, 45, 0.70711, 0.70664, -0.02566

CBEAM, 43, 43, 45, 46, 0.70711, 0.70655, -0.02816

CBEAM, 44, 44, 46, 47, 0.70711, 0.70644, -0.03081

CBEAM, 45, 45, 47, 48, 0.70711, 0.70632, -0.03334

CBEAM, 46, 46, 48, 49, 0.70711, 0.70615, -0.03672

CBEAM, 47, 47, 49, 50, 0.70711, 0.70602, -0.03924

CBEAM, 48, 48, 50, 51, 0.70711, 0.70583, -0.04251

CBEAM, 49, 49, 51, 52, 0.70711, 0.70558, -0.04646

CBEAM, 50, 50, 52, 53, 0.70711, 0.70531, -0.05042

$***************************************************
$ Rigid weightless elements showing the torsion

$ Leading Edge

$***************************************************
RBAR, 301, 3, 301, 123456

RBAR, 401, 4, 401, 123456

RBAR, 501, 5, 501, 123456

RBAR, 601, 6, 601, 123456

RBAR, 701, 7, 701, 123456

RBAR, 801, 8, 801, 123456
RBAR, 901, 9, 901, 123456

RBAR, 1001, 10, 1001, 123456

RBAR, 1101, 11, 1101, 123456

RBAR, 1201, 12, 1201, 123456

RBAR, 1301, 13, 1301, 123456

RBAR, 1401, 14, 1401, 123456

RBAR, 1501, 15, 1501, 123456

RBAR, 1601, 16, 1601, 123456

RBAR, 1701, 17, 1701, 123456

RBAR, 1801, 18, 1801, 123456

RBAR, 1901, 19, 1901, 123456

RBAR, 2001, 20, 2001, 123456

RBAR, 2101, 21, 2101, 123456

RBAR, 2201, 22, 2201, 123456

RBAR, 2301, 23, 2301, 123456

RBAR, 2401, 24, 2401, 123456

RBAR, 2501, 25, 2501, 123456

RBAR, 2601, 26, 2601, 123456

RBAR, 2701, 27, 2701, 123456

RBAR, 2801, 28, 2801, 123456

RBAR, 2901, 29, 2901, 123456

RBAR, 3001, 30, 3001, 123456

RBAR, 3101, 31, 3101, 123456

RBAR, 3201, 32, 3201, 123456

RBAR, 3301, 33, 3301, 123456

RBAR, 3401, 34, 3401, 123456

RBAR, 3501, 35, 3501, 123456

RBAR, 3601, 36, 3601, 123456

RBAR, 3701, 37, 3701, 123456

RBAR, 3801, 38, 3801, 123456

RBAR, 3901, 39, 3901, 123456

RBAR, 4001, 40, 4001, 123456

RBAR, 4101, 41, 4101, 123456

RBAR, 4201, 42, 4201, 123456

RBAR, 4301, 43, 4301, 123456

RBAR, 4401, 44, 4401, 123456

RBAR, 4501, 45, 4501, 123456

RBAR, 4601, 46, 4601, 123456

RBAR, 4701, 47, 4701, 123456

RBAR, 4801, 48, 4801, 123456

RBAR, 4901, 49, 4901, 123456

RBAR, 5001, 50, 5001, 123456

RBAR, 5101, 51, 5101, 123456

RBAR, 5201, 52, 5201, 123456

RBAR, 5301, 53, 5301, 123456

$***************************************************
$ Trailing Edge
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$***************************************************
RBAR, 302, 3, 302, 123456

RBAR, 402, 4, 402, 123456

RBAR, 502, 5, 502, 123456

RBAR, 602, 6, 602, 123456

RBAR, 702, 7, 702, 123456

RBAR, 802, 8, 802, 123456

RBAR, 902, 9, 902, 123456

RBAR, 1002, 10, 1002, 123456

RBAR, 1102, 11, 1102, 123456

RBAR, 1202, 12, 1202, 123456

RBAR, 1302, 13, 1302, 123456

RBAR, 1402, 14, 1402, 123456

RBAR, 1502, 15, 1502, 123456

RBAR, 1602, 16, 1602, 123456

RBAR, 1702, 17, 1702, 123456

RBAR, 1802, 18, 1802, 123456

RBAR, 1902, 19, 1902, 123456

RBAR, 2002, 20, 2002, 123456

RBAR, 2102, 21, 2102, 123456

RBAR, 2202, 22, 2202, 123456

RBAR, 2302, 23, 2302, 123456

RBAR, 2402, 24, 2402, 123456

RBAR, 2502, 25, 2502, 123456

RBAR, 2602, 26, 2602, 123456

RBAR, 2702, 27, 2702, 123456

RBAR, 2802, 28, 2802, 123456

RBAR, 2902, 29, 2902, 123456

RBAR, 3002, 30, 3002, 123456

RBAR, 3102, 31, 3102, 123456
RBAR, 3202, 32, 3202, 123456

RBAR, 3302, 33, 3302, 123456

RBAR, 3402, 34, 3402, 123456

RBAR, 3502, 35, 3502, 123456

RBAR, 3602, 36, 3602, 123456

RBAR, 3702, 37, 3702, 123456

RBAR, 3802, 38, 3802, 123456

RBAR, 3902, 39, 3902, 123456

RBAR, 4002, 40, 4002, 123456

RBAR, 4102, 41, 4102, 123456

RBAR, 4202, 42, 4202, 123456

RBAR, 4302, 43, 4302, 123456

RBAR, 4402, 44, 4402, 123456

RBAR, 4502, 45, 4502, 123456

RBAR, 4602, 46, 4602, 123456

RBAR, 4702, 47, 4702, 123456

RBAR, 4802, 48, 4802, 123456

RBAR, 4902, 49, 4902, 123456

RBAR, 5002, 50, 5002, 123456

RBAR, 5102, 51, 5102, 123456

RBAR, 5202, 52, 5202, 123456

RBAR, 5302, 53, 5302, 123456

$***************************************************
$ PBEAM FORMAT

$ PBEAM, PID MID, A, I1, I2, I12, J, NSM, +P2 (FOR GRID A)

$ +P2, C1, C2, D1, D2, E1, E2, F1, F2, +P3 (NOT USED) . .

$ +P3, SO, X/XB, A, I1, I2, I12, J, NSM, +P4 (FOR GRID B=X/XB)

$ +P4, C1, C2, D1, D2, E1, E2, F1, F2, +P5 (NOT USED)

$ +P5, K1, K2, S1, S2, NSI(A), NSI(B), CW, CW, +P6 (NSI=MASS INERTIA ABOUT CG)

$ +P6, M1, M2, M1, M2, N1, N2, N1, N2 (M1,M2 = Y,Z OFFSET OF CG FROM SHEAR CTR

$***************************************************
PBEAM,1,1,22.7700,70.9496,75.7551,0.0, 2.4925e+02,1189.51,+103

+103,YESA,1.0, 22.7700,70.9335,75.8133,0.0, 2.4949e+02,1191.64,+105

+105, , , , , 0.0, 0.0, , ,+106

+106,-0.00130,0.00600,-0.00180,0.00600,-0.00200,0.00630,-0.00270,0.00630

PBEAM,2,2,22.7700,70.9335,75.8133,0.0, 2.4949e+02,1191.64,+203

+203,YESA,1.0, 22.6236,70.0630,74.9055,0.0, 2.4860e+02,1202.77,+205

+205, , , , , 0.0, 0.0, , ,+206

+206,-0.00180,0.00600,-0.01020,0.00280,-0.00270,0.00630,-0.00450,0.00440

PBEAM,3,3,22.6236,70.0630,74.9055,0.0, 2.4860e+02,1202.77,+303

+303,YESA,1.0, 22.1168,67.5472,71.0785,0.0, 2.4143e+02,1171.49,+305

+305, , , , , 0.0, 0.0, , ,+306

+306,-0.01020,0.00280,-0.02360,-0.01040,-0.00450,0.00440,-0.02240,-0.00950

PBEAM,4,4,22.1168,67.5472,71.0785,0.0, 2.4143e+02,1171.49,+403

+403,YESA,1.0, 21.2052,62.8430,63.8840,0.0, 2.2545e+02,1113.62,+405

+405, , , , , 0.0, 0.0, , ,+406

+406,-0.02360,-0.01040,-0.03880,-0.01930,-0.02240,-0.00950,-0.02390,-0.01630
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PBEAM,5,5,21.2052,62.8430,63.8840,0.0, 2.2545e+02,1113.62,+503

+503,YESA,1.0, 19.8717,58.7611,52.0676,0.0, 2.0552e+02,1049.31,+505

+505, , , , , 0.0, 0.0, , ,+506

+506,-0.03880,-0.01930,-0.09300,-0.04070,-0.02390,-0.01630,-0.07130,-0.03460

PBEAM,6,6,19.8717,58.7611,52.0676,0.0, 2.0552e+02,1049.31,+603

+603,YESA,1.0, 18.1044,50.2318,41.5099,0.0, 1.7372e+02,974.63,+605

+605, , , , , 0.0, 0.0, , ,+606

+606,-0.09300,-0.04070,-0.19280,-0.06340,-0.07130,-0.03460,-0.15440,-0.05930

PBEAM,7,7,18.1044,50.2318,41.5099,0.0, 1.7372e+02,974.63,+703

+703,YESA,1.0, 16.0708,42.7928,30.7696,0.0, 1.3819e+02,908.74,+705

+705, , , , , 0.0, 0.0, , ,+706

+706,-0.19280,-0.06340,-0.34310,-0.08770,-0.15440,-0.05930,-0.29520,-0.08910

PBEAM,8,8,16.0708,42.7928,30.7696,0.0, 1.3819e+02,908.74,+803

+803,YESA,1.0, 14.0891,36.4162,22.0072,0.0, 1.0622e+02,868.87,+805

+805, , , , , 0.0, 0.0, , ,+806

+806,-0.34310,-0.08770,-0.50000,-0.06940,-0.29520,-0.08910,-0.44390,-0.07510

PBEAM,9,9,14.0891,36.4162,22.0072,0.0, 1.0622e+02,868.87,+903

+903,YESA,1.0, 12.7081,32.5286,16.9177,0.0, 8.8043e+01,845.51,+905

+905, , , , , 0.0, 0.0, , ,+906

+906,-0.50000,-0.06940,-0.61290,-0.06550,-0.44390,-0.07510,-0.54870,-0.07330

PBEAM,10,10,12.7081,32.5286,16.9177,0.0, 8.8043e+01,845.51,+1003

+1003,YESA,1.0, 11.2713,28.5702,12.4479,0.0, 6.2972e+01,775.15,+1005

+1005, , , , , 0.0, 0.0, , ,+1006

+1006,-0.61290,-0.06550,-0.70430,-0.07180,-0.54870,-0.07330,-0.60580,-0.08200

PBEAM,11,11,11.2713,28.5702,12.4479,0.0, 6.2972e+01,775.15,+1103

+1103,YESA,1.0, 10.5007,26.8347,10.3584,0.0, 5.1766e+01,735.79,+1105

+1105, , , , , 0.0, 0.0, , ,+1106

+1106,-0.70430,-0.07180,-0.66680,-0.08410,-0.60580,-0.08200,-0.54190,-0.09350

PBEAM,12,12,10.5007,26.8347,10.3584,0.0, 5.1766e+01,735.79,+1203

+1203,YESA,1.0, 9.8516,24.8214,8.7977,0.0, 4.2163e+01,691.12,+1205
+1205, , , , , 0.0, 0.0, , ,+1206

+1206,-0.66680,-0.08410,-0.69000,-0.08110,-0.54190,-0.09350,-0.55030,-0.08910

PBEAM,13,13,9.8516,24.8214,8.7977,0.0, 4.2163e+01,691.12,+1303

+1303,YESA,1.0, 9.2681,22.9148,7.5289,0.0, 3.4452e+01,654.85,+1305

+1305, , , , , 0.0, 0.0, , ,+1306

+1306,-0.69000,-0.08110,-0.70100,-0.07580,-0.55030,-0.08910,-0.54140,-0.08250

PBEAM,14,14,9.2681,22.9148,7.5289,0.0, 3.4452e+01,654.85,+1403

+1403,YESA,1.0, 8.7187,21.0144,6.4529,0.0, 2.8330e+01,625.88,+1405

+1405, , , , , 0.0, 0.0, , ,+1406

+1406,-0.70100,-0.07580,-0.70230,-0.07140,-0.54140,-0.08250,-0.52910,-0.07760

PBEAM,15,15,8.7187,21.0144,6.4529,0.0, 2.8330e+01,625.88,+1503

+1503,YESA,1.0, 8.1566,19.9518,5.3886,0.0, 2.3063e+01,593.32,+1505

+1505, , , , , 0.0, 0.0, , ,+1506

+1506,-0.70230,-0.07140,-0.73870,-0.06150,-0.52910,-0.07760,-0.57930,-0.06760

PBEAM,16,16,8.1566,19.9518,5.3886,0.0, 2.3063e+01,593.32,+1603

+1603,YESA,1.0, 7.5909,17.8835,4.5194,0.0, 1.9405e+01,580.97,+1605

+1605, , , , , 0.0, 0.0, , ,+1606

+1606,-0.73870,-0.06150,-0.72080,-0.05460,-0.57930,-0.06760,-0.55550,-0.06090

PBEAM,17,17,7.5909,17.8835,4.5194,0.0, 1.9405e+01,580.97,+1703

+1703,YESA,1.0, 7.0644,15.9438,3.8070,0.0, 1.6531e+01,566.23,+1705

+1705, , , , , 0.0, 0.0, , ,+1706

+1706,-0.72080,-0.05460,-0.71480,-0.04900,-0.55550,-0.06090,-0.54920,-0.05550

PBEAM,18,18,7.0644,15.9438,3.8070,0.0, 1.6531e+01,566.23,+1803

+1803,YESA,1.0, 6.5743,14.0580,3.2306,0.0, 1.4188e+01,548.24,+1805

+1805, , , , , 0.0, 0.0, , ,+1806

+1806,-0.71480,-0.04900,-0.69640,-0.04380,-0.54920,-0.05550,-0.51690,-0.05050

PBEAM,19,19,6.5743,14.0580,3.2306,0.0, 1.4188e+01,548.24,+1903

+1903,YESA,1.0, 6.1189,12.3087,2.7525,0.0, 1.2141e+01,529.65,+1905

+1905, , , , , 0.0, 0.0, , ,+1906

+1906,-0.69640,-0.04380,-0.67030,-0.04170,-0.51690,-0.05050,-0.48750,-0.04860

PBEAM,20,20,6.1189,12.3087,2.7525,0.0, 1.2141e+01,529.65,+2003

+2003,YESA,1.0, 5.7121,10.8750,2.3551,0.0, 1.0672e+01,510.31,+2005

+2005, , , , , 0.0, 0.0, , ,+2006

+2006,-0.67030,-0.04170,-0.64590,-0.04010,-0.48750,-0.04860,-0.46970,-0.04690

PBEAM,21,21,5.7121,10.8750,2.3551,0.0, 1.0672e+01,510.31,+2103

+2103,YESA,1.0, 5.3162,9.5986,1.9931,0.0, 9.2392e+00,494.68,+2105

+2105, , , , , 0.0, 0.0, , ,+2106

+2106,-0.64590,-0.04010,-0.62730,-0.03930,-0.46970,-0.04690,-0.45430,-0.04590

PBEAM,22,22,5.3162,9.5986,1.9931,0.0, 9.2392e+00,494.68,+2203

+2203,YESA,1.0, 4.9420,8.3738,1.6878,0.0, 7.9139e+00,477.51,+2205

+2205, , , , , 0.0, 0.0, , ,+2206

+2206,-0.62730,-0.03930,-0.60890,-0.03900,-0.45430,-0.04590,-0.44250,-0.04560

PBEAM,23,23,4.9420,8.3738,1.6878,0.0, 7.9139e+00,477.51,+2303

+2303,YESA,1.0, 4.6066,7.3879,1.4384,0.0, 6.8618e+00,460.93,+2305

+2305, , , , , 0.0, 0.0, , ,+2306

+2306,-0.60890,-0.03900,-0.59030,-0.03790,-0.44250,-0.04560,-0.42130,-0.04440

PBEAM,24,24,4.6066,7.3879,1.4384,0.0, 6.8618e+00,460.93,+2403
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+2403,YESA,1.0, 4.2736,6.3994,1.2168,0.0, 6.0174e+00,441.78,+2405

+2405, , , , , 0.0, 0.0, , ,+2406

+2406,-0.59030,-0.03790,-0.57350,-0.03730,-0.42130,-0.04440,-0.40430,-0.04360

PBEAM,25,25,4.2736,6.3994,1.2168,0.0, 6.0174e+00,441.78,+2503

+2503,YESA,1.0, 3.9613,5.6040,1.0247,0.0, 5.1956e+00,425.33,+2505

+2505, , , , , 0.0, 0.0, , ,+2506

+2506,-0.57350,-0.03730,-0.56100,-0.03610,-0.40430,-0.04360,-0.39260,-0.04220

PBEAM,26,26,3.9613,5.6040,1.0247,0.0, 5.1956e+00,425.33,+2603

+2603,YESA,1.0, 3.6689,4.7206,0.8727,0.0, 4.3906e+00,401.38,+2605

+2605, , , , , 0.0, 0.0, , ,+2606

+2606,-0.56100,-0.03610,-0.51910,-0.03610,-0.39260,-0.04220,-0.36320,-0.04190

PBEAM,27,27,3.6689,4.7206,0.8727,0.0, 4.3906e+00,401.38,+2703

+2703,YESA,1.0, 3.3956,4.1094,0.7345,0.0, 3.8258e+00,385.14,+2705

+2705, , , , , 0.0, 0.0, , ,+2706

+2706,-0.51910,-0.03610,-0.50650,-0.03480,-0.36320,-0.04190,-0.35280,-0.04040

PBEAM,28,28,3.3956,4.1094,0.7345,0.0, 3.8258e+00,385.14,+2803

+2803,YESA,1.0, 3.1407,3.5136,0.6233,0.0, 3.2950e+00,365.95,+2805

+2805, , , , , 0.0, 0.0, , ,+2806

+2806,-0.50650,-0.03480,-0.47970,-0.03420,-0.35280,-0.04040,-0.33810,-0.03940

PBEAM,29,29,3.1407,3.5136,0.6233,0.0, 3.2950e+00,365.95,+2903

+2903,YESA,1.0, 2.9034,3.0147,0.5274,0.0, 2.8004e+00,346.94,+2905

+2905, , , , , 0.0, 0.0, , ,+2906

+2906,-0.47970,-0.03420,-0.46070,-0.03350,-0.33810,-0.03940,-0.32200,-0.03850

PBEAM,30,30,2.9034,3.0147,0.5274,0.0, 2.8004e+00,346.94,+3003

+3003,YESA,1.0, 2.6720,2.4980,0.4459,0.0, 2.3907e+00,326.32,+3005

+3005, , , , , 0.0, 0.0, , ,+3006

+3006,-0.46070,-0.03350,-0.42960,-0.03260,-0.32200,-0.03850,-0.29980,-0.03720

PBEAM,31,31,2.6720,2.4980,0.4459,0.0, 2.3907e+00,326.32,+3103

+3103,YESA,1.0, 2.4676,2.1591,0.3771,0.0, 2.0673e+00,310.27,+3105

+3105, , , , , 0.0, 0.0, , ,+3106
+3106,-0.42960,-0.03260,-0.41860,-0.03110,-0.29980,-0.03720,-0.29020,-0.03560

PBEAM,32,32,2.4676,2.1591,0.3771,0.0, 2.0673e+00,310.27,+3203

+3203,YESA,1.0, 2.2779,1.8189,0.3215,0.0, 1.7455e+00,291.66,+3205

+3205, , , , , 0.0, 0.0, , ,+3206

+3206,-0.41860,-0.03110,-0.39300,-0.03080,-0.29020,-0.03560,-0.27620,-0.03500

PBEAM,33,33,2.2779,1.8189,0.3215,0.0, 1.7455e+00,291.66,+3303

+3303,YESA,1.0, 2.1013,1.5318,0.2743,0.0, 1.5010e+00,272.43,+3305

+3305, , , , , 0.0, 0.0, , ,+3306

+3306,-0.39300,-0.03080,-0.36600,-0.02970,-0.27620,-0.03500,-0.25830,-0.03350

PBEAM,34,34,2.1013,1.5318,0.2743,0.0, 1.5010e+00,272.43,+3403

+3403,YESA,1.0, 1.9368,1.3112,0.2320,0.0, 1.2962e+00,256.95,+3405

+3405, , , , , 0.0, 0.0, , ,+3406

+3406,-0.36600,-0.02970,-0.35470,-0.02790,-0.25830,-0.03350,-0.24880,-0.03170

PBEAM,35,35,1.9368,1.3112,0.2320,0.0, 1.2962e+00,256.95,+3503

+3503,YESA,1.0, 1.7839,1.0954,0.1990,0.0, 1.1089e+00,237.77,+3505

+3505, , , , , 0.0, 0.0, , ,+3506

+3506,-0.35470,-0.02790,-0.33390,-0.02730,-0.24880,-0.03170,-0.23590,-0.03080

PBEAM,36,36,1.7839,1.0954,0.1990,0.0, 1.1089e+00,237.77,+3603

+3603,YESA,1.0, 1.6494,0.9452,0.1696,0.0, 9.6039e-01,221.77,+3605

+3605, , , , , 0.0, 0.0, , ,+3606

+3606,-0.33390,-0.02730,-0.32590,-0.02550,-0.23590,-0.03080,-0.22940,-0.02900

PBEAM,37,37,1.6494,0.9452,0.1696,0.0, 9.6039e-01,221.77,+3703

+3703,YESA,1.0, 1.5172,0.7916,0.1437,0.0, 8.0393e-01,203.15,+3705

+3705, , , , , 0.0, 0.0, , ,+3706

+3706,-0.32590,-0.02550,-0.30420,-0.02420,-0.22940,-0.02900,-0.21510,-0.02750

PBEAM,38,38,1.5172,0.7916,0.1437,0.0, 8.0393e-01,203.15,+3803

+3803,YESA,1.0, 1.3926,0.6752,0.1207,0.0, 6.7452e-01,186.77,+3805

+3805, , , , , 0.0, 0.0, , ,+3806

+3806,-0.30420,-0.02420,-0.29740,-0.02330,-0.21510,-0.02750,-0.21160,-0.02650

PBEAM,39,39,1.3926,0.6752,0.1207,0.0, 6.7452e-01,186.77,+3903

+3903,YESA,1.0, 1.2755,0.5739,0.1006,0.0, 5.7281e-01,171.66,+3905

+3905, , , , , 0.0, 0.0, , ,+3906

+3906,-0.29740,-0.02330,-0.29000,-0.02140,-0.21160,-0.02650,-0.20570,-0.02450

PBEAM,40,40,1.2755,0.5739,0.1006,0.0, 5.7281e-01,171.66,+4003

+4003,YESA,1.0, 1.1618,0.4737,0.0839,0.0, 4.7588e-01,153.75,+4005

+4005, , , , , 0.0, 0.0, , ,+4006

+4006,-0.29000,-0.02140,-0.27130,-0.02050,-0.20570,-0.02450,-0.19730,-0.02340

PBEAM,41,41,1.1618,0.4737,0.0839,0.0, 4.7588e-01,153.75,+4103

+4103,YESA,1.0, 1.0593,0.4009,0.0695,0.0, 4.0275e-01,140.05,+4105

+4105, , , , , 0.0, 0.0, , ,+4106

+4106,-0.27130,-0.02050,-0.26780,-0.01850,-0.19730,-0.02340,-0.19300,-0.02140

PBEAM,42,42,1.0593,0.4009,0.0695,0.0, 4.0275e-01,140.05,+4203

+4203,YESA,1.0, 0.9637,0.3318,0.0578,0.0, 3.4786e-01,124.35,+4205

+4205, , , , , 0.0, 0.0, , ,+4206

+4206,-0.26780,-0.01850,-0.25330,-0.01780,-0.19300,-0.02140,-0.18650,-0.02050

PBEAM,43,43,0.9637,0.3318,0.0578,0.0, 3.4786e-01,124.35,+4303

+4303,YESA,1.0, 0.8772,0.2879,0.0474,0.0, 2.7961e-01,108.93,+4305
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+4305, , , , , 0.0, 0.0, , ,+4306

+4306,-0.25330,-0.01780,-0.25300,-0.01630,-0.18650,-0.02050,-0.18660,-0.01880

PBEAM,44,44,0.8772,0.2879,0.0474,0.0, 2.7961e-01,108.93,+4403

+4403,YESA,1.0, 0.7943,0.2392,0.0384,0.0, 2.2819e-01,95.18,+4405

+4405, , , , , 0.0, 0.0, , ,+4406

+4406,-0.25300,-0.01630,-0.24960,-0.01440,-0.18660,-0.01880,-0.18440,-0.01690

PBEAM,45,45,0.7943,0.2392,0.0384,0.0, 2.2819e-01,95.18,+4503

+4503,YESA,1.0, 0.7107,0.2005,0.0303,0.0, 1.9362e-01,82.34,+4505

+4505, , , , , 0.0, 0.0, , ,+4506

+4506,-0.24960,-0.01440,-0.24550,-0.01290,-0.18440,-0.01690,-0.19090,-0.01520

PBEAM,46,46,0.7107,0.2005,0.0303,0.0, 1.9362e-01,82.34,+4603

+4603,YESA,1.0, 0.6240,0.1613,0.0229,0.0, 1.5443e-01,68.28,+4605

+4605, , , , , 0.0, 0.0, , ,+4606

+4606,-0.24550,-0.01290,-0.24150,-0.01140,-0.19090,-0.01520,-0.18710,-0.01350

PBEAM,47,47,0.6240,0.1613,0.0229,0.0, 1.5443e-01,68.28,+4703

+4703,YESA,1.0, 0.5296,0.1239,0.0159,0.0, 1.2161e-01,54.47,+4705

+4705, , , , , 0.0, 0.0, , ,+4706

+4706,-0.24150,-0.01140,-0.24850,-0.00880,-0.18710,-0.01350,-0.19030,-0.01100

PBEAM,48,48,0.5296,0.1239,0.0159,0.0, 1.2161e-01,54.47,+4803

+4803,YESA,1.0, 0.4182,0.0831,0.0091,0.0, 8.0281e-02,40.65,+4805

+4805, , , , , 0.0, 0.0, , ,+4806

+4806,-0.24850,-0.00880,-0.24000,-0.00690,-0.19030,-0.01100,-0.20380,-0.00850

PBEAM,49,49,0.4182,0.0831,0.0091,0.0, 8.0281e-02,40.65,+4903

+4903,YESA,1.0, 0.2683,0.0378,0.0033,0.0, 3.4228e-02,25.20,+4905

+4905, , , , , 0.0, 0.0, , ,+4906

+4906,-0.24000,-0.00690,-0.22350,-0.00410,-0.20380,-0.00850,-0.20200,-0.00510

PBEAM,50,50,0.2683,0.0378,0.0033,0.0, 3.4228e-02,25.20,+5003

+5003,YESA,1.0, 1.21e-04,8.81e-06,6.36e-07,0.0, 7.8353e-06,15.42,+5005

+5005, , , , , 0.0, 0.0, , ,+5006

+5006,-0.22350,-0.00410,-0.16620,-0.00220,-0.20200,-0.00510,-0.16030,-0.00280

Listing A.5: The NASTRAN instruction file (DTU.bdf ) for the blade with pre-bend and pre-cone.
PROJ=’DTU BLADE PRE-BEND PRE-CONE’

ID DTU_BLADE

SOL 106

TIME 20

CEND

TITLE=DTU BLADE MODEL

LABEL=STATIC

SUBTITLE= 0RPM

SUPER=ALL

TITLE=DTU TEST

SUBTITLE=STATIC

SEALL=ALL

SUBCASE 1

NLPARM=100

SET 1=ALL

DISP=ALL

METHOD=10

PARAM POST -1

PARAM AUTOSPC YES

PARAM GRDPNT 0

BEGIN BULK

PARAM, TINY, 0.999

PARAM, GRDPNT, 0

PARAM, MAXRATIO,1.+13

PARAM, COUPMASS,1

PARAM, AUTOSPC,YES

PARAM, LGDISP, 1

PARAM, NMLOOP, 1

NLPARM, 100, 2, , ITER, 1, 150

PARAM,TESTNEG,1

PARAM,TESTSE, 1.-10

EIGR,10,MGIV,0.1,50.,,,,1.0E-6,+EIG

+EIG,MAX

INCLUDE ’DTU.model’

ENDDATA
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Appendix B

Simplified hydrodynamic model in MBDM

In this appendix the hydrodynamic model based on buoyancy is derived assuming a cylindrical support
structure. This model was included in the Multi-Body Dynamic Module (MBDM) solver, and validated
using a cylinder floating in calm water.

B.1 Cylinder in calm water

The buoyancy force and resulting restoring moments are calculated based on Archimedes’ principle, i.e. the
total hydrostatic force exerted on a body is equal in magnitude to the weight of the displaced volume of fluid
and has opposite orientation to the gravity vector. The resulting buoyancy force is applied to the centre of
mass of the displaced fluid, creating a restoring moment about the centre of mass of the submerged body. In
this section forces and moments are derived as functions of the cylinders’ location and orientation, and the
model is verified for simple cases.

B.1.1 Buoyancy force and moment

To calculate buoyancy forces and moments, the submerged volume and centre of mass of the displaced
volume of fluid must be calculated. Consider a submerged and rotated cylinder as shown in Figure B.1
with a centroidal body-fixed, reference frame x′ − y′− z′. If the water surface, location, and orientation in
a global reference frame are known, the distance zw from the body-fixed frame to the water surface and the
unit vector u normal to the water surface defined in the global reference frame are also known. Since it is
easier to conduct all computations in the local reference frame (x′− y′− z′) of the floater, the unit vector u

is transferred to this frame through relation u
′ ≡ [a,b,c]T = AT

cylinderu.

The distance k from the centre of mass to the bottom of the cylinder is known and fixed in time. The
distance d from centre of mass to the water surface measured along the centreline of the cylinder is time
dependent and is a function of zw and angle φ measured between centreline of the cylinder and vector u

′
.

This relation may be expressed as:

d =
zw

cos(φ)
=

zw

c
, (B.1)

where c is a third component of unit vector u
′
and the transition to the right hand side is done by noting that

v
′ ·u′

= cos(φ) = [0,0,1][a,b,c]T = c.

The plane for which normal unit vector [a,b,c]T is known, is described by:

ax+by+ cz+d = 0, (B.2)
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(b) in plane of rotation view

Figure B.1: Configuration of the cylinder in calm water with arbitrary rotation and position.

where a, b and c are components of unit vector, and d is an offset in the direction of the z axis. This
definition is consistent with the problem under consideration, and thus the lower and upper boundaries
for volume integration are known. Cylindrical coordinates r −α − z are used to integrate the submerged
volume of the cylinder in the x′− y′− z′ reference frame. The integration is for 0 ≤ r ≤ R, 0 ≤ α ≤ 2π and
−k ≤ z ≤ ax+by+d

c
. The submerged volume V is calculated as:

V =
∫ R

0

∫ 2π

0

∫ ar cosα+br sinα+d
c

−k
r dzdαdr =

(
d

c
+ k

)
πR2, (B.3)

where R is the radius of the cylinder. Once the volume is obtained, the buoyancy force in the global coordi-
nate system calculated from Archimedes’ principle yields:

Fb =−V ρwaterg =−
(

d

c
+ k

)
πR2ρwaterg, (B.4)

where ρwater is density of water and g is a gravity acceleration vector.

The buoyancy force must be applied at the centre of buoyancy rb ≡ [xb,yb,zb]
T i.e. in the centre of

mass of the displaced volume. The centre of mass of any body of arbitrary shape is defined as

rb =
1

M

∫

V
ρrdV (B.5)

where M is the total mass of the body. Water is a homogeneous fluid with constant density across the
displaced volume. Therefore, centre of buoyancy in the body-fixed reference frame is

r
′
b =

ρ

M

∫

V
r
′
dV =

ρ

M

∫

V
[x

′
b,y

′
b,z

′
b]

T dV , (B.6)

where each term of the vector is integrated separately. It is useful to note that ρ
M

= 1
V

and expression for
submerged volume V was already obtained in Equation B.3. Integration for each component of the vector
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r
′
b yields:

x
′
b =

1

V

∫ R

0

∫ 2π

0

∫ ar cosα+br sinα+d
c

−k

(
r2 cosα

)
dzdαdr =

aπ

4V c
R4 (B.7a)

y
′
b =

1

V

∫ R

0

∫ 2π

0

∫ ar cosα+br sinα+d
c

−k

(
r2 sinα

)
dzdαdr =

bπ

4V c
R4 (B.7b)

z
′
b =

1

V

∫ R

0

∫ 2π

0

∫ ar cosα+br sinα+d
c

−k
(rz)dzdαdr =

πR2

V

[
a2R2

8c2
+

b2R2

8c2
+

d2

2c2
− k2

2

]
. (B.7c)

Since in the constrained Newton-Euler equations of motion of Equation 4.67 applied moments n
′A

are defined in the body-fixed reference frame, the resulting buoyancy applied moment n
′A
b is

n
′A
b = r̃

′
bF

′
b = r̃

′
bAT

cylinderFb (B.8)

where r
′
b = [x

′
b,y

′
b,z

′
b]

T and Fb is a buoyancy force from Equation B.4 defined in the global coordinate
system.

B.1.2 Validation of the model

The cylinder representing the floating platform is designed to support the NREL 5-MW baseline wind
turbine[88] and is used for validation purposes in this section. The mass and inertia properties of the cylinder
are identical to the one derived by Jonkman[88], but because the tower with the nacelle and the rotor are
not considered in the model, the overall draft is smaller. Properties of the floater and mooring cables are
gathered in Table B.1. The mooring line damping coefficient was set equal to the stiffness coefficient, and
the water density was taken as ρwater = 1000kg/m3 with gravity acceleration of g = 9.81m/s2.

Table B.1: Properties of the cylinder and mooring cables representing moored floating platform.

Properties of the cylinder
Total draft 107.5874 m

Elevation of platform top above SWL 22.4126 m

Platform diameter 9.4 m

Platform mass 7 466 330 kg

Centre of mass location below SWL 77.5029 m

Platform roll inertia about centre of mass (Ixx) 4 229 230 000 kg ·m2

Platform pitch inertia about centre of mass (Iyy) 4 229 230 000 kg ·m2

Platform yaw inertia about centre of mass (Izz) 164 230 000 kg ·m2

Properties of the mooring cables
Number of mooring lines 3
Angle between adjacent lines 120◦

Depth of anchors below SWL 320 m

Depth of fairleads below SWL 57.5874 m

Radius of anchors from platform centreline 853.87 m

Radius of fairleads from platform centreline 5.2 m

Mooring line extensional stiffness 384 243 N/m

Mooring line damping coefficient 384 243 Ns/m

The first test case considered the cylinder placed at equilibrium position, therefore the gravity force
was opposed by buoyancy and no moments acted on the cylinder. Next, the cylinder was offset from the
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Figure B.2: Schematics of the floating platform. Not in scale. Only one mooring line is presented for
simplicity.

equilibrium by rotating it around its centre of gravity by 15◦ and about the y axis in pith forward direction,
as shown in Figure B.5. This test case has two sub-cases, namely a cylinder without mooring cables, and a
cylinder with mooring lines modelled as combinations of springs and dampers. The numerical integration
used for all test cases is the Runge-Kutta scheme of fourth order with time step of ∆t = 0.1s. The con-
vergence criterion for the Newton-Raphson algorithm was set to 10−6, meaning that every component of
the residual vector is below that value. All cases were computed with the final time of calculation set to
t f inal = 200s to capture all low frequency motions. Results are presented in Figures B.3 and B.4.

Results of the cylinder placed in the equilibrium position show no change in position and orientation
of the cylinder over time. This is a trivial and expected behaviour. Consider now the cylinder rotated about
its centre of mass that is below the surface of calm water as shown in Figure B.5. The displaced volume
of fluid is now bigger than in case of the cylinder placed in a vertical position. Hence, larger buoyancy
force is exerted on the body. First of all, this simple consideration shows coupling between rotational and
lateral dynamics even for such a simple cases. Second, this means that the centre of gravity of the cylinder
should oscillate above the equilibrium position. Third, the cylinder should be excited along z direction due
to rotation about y axis. Further, the cylinder should be excited two times per rotation cycle, since there
are two angular maxima per period. Fourth, the restoring moment due to buoyancy should be influenced
by slower lateral motion of the cylinder. Finally, cylinder has symmetric inertia tensor and no forces acting
in other directions than z. Therefore, centre of mass is expected to remain in initial x and y position. All
these phenomena can be observed in the results. Note that fast accelerations in z direction due to change in
orientation about y axis are overlayed on the slow lateral accelerations due to initial imbalance i.e. buoyancy
force is higher than gravity force at time t = 0. Also, note slow variation of angular acceleration εy that
corresponds to slow variation of lateral displacement - approximately 2.5 cycles in 50 seconds.

Damping in the model is introduced only by the mooring lines. Hence, by including mooring cables
in the model, it is expected to dampen the motion of the cylinder to the equilibrium position. As can be
observed in the results, the mooring lines do not just dampen the motion, but also slightly increase the
natural frequencies of the system. Further, mooring lines smoothen high frequency oscillations as in case
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Figure B.3: Lateral dynamics of a cylinder in calm water. Cylinder placed in equilibrium position and
cylinder with offset from equilibrium by 15◦ about y axis. Results with and without mooring lines.

of acceleration in z direction. Also, mooring cables introduce the lateral motion of centre of mass in x

direction. This is because the fairleads do not coincide with centre of mass and have initial displacement.
Therefore, there is an initial force in x direction coming from springs that try to put the cylinder back in a
vertical position.
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Figure B.4: Rotational dynamics of a cylinder in calm water. Cylinder placed in equilibrium position and
cylinder with offset from equilibrium by 15◦ about y axis. Results with and without mooring lines.
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Figure B.5: Schematics of the floating platform rotated by 15◦.
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Appendix C

Convection of the Mann’s turbulence field

into Cartesian grids

This appendix is complementary to the results presented in Section 9.5 of Chapter 9 for the 10-WM wind
turbine. Here, the effect of grid density on the ability of the HMB3 solver to preserve small turbulent
structures present in the generated Mann’s field is investigated. The parameters used to generate the field
of turbulence are provided in Table 9.6 of Chapter 9. The grids employed in this appendix are Cartesian,
and do not contain any solid boundaries, as shown in Table C.1 and Figure C.1. The first grid consists of
cells with equal size of 4m×4m×4m, what corresponds to the resolution of generated Mann turbulent field.
The second grid is twice as fine in all directions, resulting in uniform cells of size 2m× 2m× 2m. Finally,
the last grid was constructed by combining the Cartesian grid with cell’s size of 2m× 2m× 2m with the
cylindrical grid with size of the DTU 10MW rotor (see Section 9.1 for details). The grid overset method [81]

was employed for the last grid, as shown in Figure C.1.

Grid ID Cell dimensions [m] Size [cells] Grid over-set method
M1 4m×4m×4m 0.75 ·106 No
M2 2m×2m×2m 5.97 ·106 No
M3 2m×2m×2m 6.11 ·106 Yes

Table C.1: Computational grids employed in this chapter.

The computations were solved for 1700 steps with time-step ∆t = 0.0198s, or non-dimensional time-
step ∆t∗ = ∆t · U∞

Cmax
= 0.033. This corresponds to the final time of computation t = 33.6 seconds, where the

characteristic length scale was used as Cmax = 6.206, and the mean wind speed was set to U∞ = 10.5m/s.
Based on these conditions, the free-stream Mach number was M = 0.031, and the Reynolds number was
Re = 4.46 ·106.

First, the coarse grid (Grid M1 in Table C.1) was employed, and the solution was obtained with
three different methods: (a) assuming inviscid flow and using second-order MUSCL scheme; (b) assuming
inviscid flow and using fourth-order MUSCL scheme[84]; and (c) assuming viscous flow and using the
k−ω Shear Stress Transport (SST)-based Scale-Adaptive Simulation (SAS)[138] with second-order MUSCL
scheme. The obtained results are compared to the case of pure convection of the Mann Box turbulent field
through the domain, see Figures C.2 and C.3. The first observation is that very similar solution is obtained
with the k−ω SST-SAS turbulence model and the inviscid fluid model. The absence of walls, and hence the
boundary layer, explains this behaviour. The decay of turbulence is caused by numerical dissipation, and no
turbulence is produced to balance the dissipation in the domain. The next observation is that the high-order
(4th order) MUSCL scheme preserves the imposed fluctuations better on the same grid, as compared to the
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(a) Grid M1. (b) Grid M2.

(c) Grid M3.

Figure C.1: Comparison of the computational grids employed in this chapter.

k−ω SST-SAS turbulence model with the 2nd order MUSCL scheme. This is again related to numerical
dissipation, where the high-order scheme is less dissipative.

Next, two fine grids were employed (Grid M2 and Grid M3 in Table C.1). First, the k−ω SST-SAS
model with the second-order MUSCL scheme was used for both grids. The fourth-order MUSCL scheme [84]

was also used for the Grid M2, assuming inviscid flow. The comparison is shown in Figures C.4 and C.5.
The results suggest that the overset grid interface does not affect the velocity field and turbulent structures
in the flow. Further, similarly to the coarse gird tests, the high-order MUSCL scheme preserves the imposed
fluctuations better on the same grid, as compared to the k−ω SST-SAS turbulence model with the second-
order MUSCL scheme. Lastly, the 4th order MUSCL scheme is also capable of preserving smaller turbulent
structures, as compared to the k−ω SST-SAS model.

Finally, a comparison between the solutions obtained with the 2nd order MUSCL scheme on the
fine grid (Grid M2), and with the 4th order MUSCL scheme [84] on the coarse grid (Grid M1) is shown
in Figure C.6. Similar solutions were obtained in both cases, although Grid M2 seems to preserve smaller
structures a bit better. Note that the coarse grid has 8 times less cells then the fine grid. This suggests that
the best approach to convect the Mann’s turbulent field is to employ the high-order MUSCL scheme on a
relatively coarse grid, and possibly employ the grid overset method to include the rotor. Unfortunately, the
development of the high-order MUSCL scheme was not complete by the time full rotor computations from
Section 9.5 of Chapter 9 were conducted.
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(a) Grid M1 - k−ω SST-SAS model, 2nd order in space. (b) Grid M1 - Inviscid flow, 2nd order in space.

(c) Grid M1 - Inviscid flow, 4th order in space. (d) Purely convected turbulent field.

Figure C.2: Comparison of the solutions obtained with different methods for the Grid M1. Contours of the
non-dimensional velocity component W in the middle of the domain.

(a) Grid M1 - k−ω SST-SAS model, 2nd order in space. (b) Grid M1 - Inviscid flow, 2nd order in space.

(c) Grid M1 - Inviscid flow, 4th order in space. (d) Purely convected turbulent field.

Figure C.3: Comparison of the solutions obtained with different methods for the Grid M1. Iso-surface of
non-dimensional Q = 0.0001 criterion.
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(a) Grid M2 - k−ω SST-SAS model, 2nd order in space. (b) Grid M3 - k−ω SST-SAS model, 2nd order in space.

(c) Grid M2 - Inviscid flow, 4th order in space. (d) Purely convected turbulent field.

Figure C.4: Comparison of the solutions obtained with different methods for Grids M2 and M3. Contours
of the non-dimensional velocity component W in the middle of the domain.

(a) Grid M2 - k−ω SST-SAS model, 2nd order in space. (b) Grid M3 - k−ω SST-SAS model, 2nd order in space.

(c) Grid M2 - Inviscid flow, 4th order in space. (d) Purely convected turbulent field.

Figure C.5: Comparison of the solutions obtained with different methods for Grid M2 and M3. Iso-surface
of non-dimensional Q = 0.0001 criterion.
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(a) Grid M2 - 2nd order MUSCL scheme. (b) Grid M1 - 4th order MUSCL scheme.

(c) Grid M2 - 2nd order MUSCL scheme. (d) Grid M1 - 4th order MUSCL scheme.

Figure C.6: Comparison of the solutions obtained with the 2nd order MUSCL scheme using fine Grid M2,
and with the 4th order MUSCL scheme using coarse Grid M1.
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