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Abstract

Potentiometric measurements on aqueous solutions
of zinc chloride have been made in the concentration
range 0*0004 - 1*0 mol.kg"*^. The standard electrode
potential of zinc electrode in zinc chloride and the
activity coefficients for this salt have been calculated,
taking into account incomplete dissociation. Comparison
with literature data has been made and reasons for
discrepancies are suggested. Existing potentiometric
data on aqueous cadmium iodide has been used to obtain
refined values of stability constants and concentra- 

2— xtions of Cdlx (x=1,2 ,3,4 ) complexes by the relatively 
new method, reported by Reilly and Stokes in 1970.

It is shown that this method can be used with a 
fair degree of confidence for heavily complexed systems 
such as cadmium iodide and cadmium chloride. For salts 
which are complexed to a lesser degree, the method may 
lead to dubious results mainly because of computational 
difficulties. This has been assessed in the light of 
results obtained for zinc chloride.

The theory of irreversible thermodynamics has 
been applied to transport processes in aqueous cadmium 
iodide solutions.

Relations are derived, in terms of phenomeno
logical coefficients, which lead to the prediction of 
experimentally measurable quantities, transport number, 
equivalent conductance and salt diffusion coefficients. 
The/
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The analysis has been further extended to include 
isotopic-diffusion of cadmium ion in cadmium iodide 
solutions.

The predicted transport parameters are 
compared with those derived from experimental measu
rements .

The isotopic-diffusion of cadmium in cadmium 
iodide has been studied by the diaphragm-cell method. 
A new type of diaphragm cell magnetic stirring unit 
capable of accommodating four diffusion cells has 
been designed and constructed. Its advantages over 
the previous systems are discussed.

Several computer programs have been written 
for involved and repetitive calculations.
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Since the earliest measurements of transport
numbers, it has been known that aqueous solutions of
cadmium and zinc halides exhibit anomalous transport 

1 2 3properties, * •  ̂ Hittorf in 1859 first observed that 
the transport number of cadmium ion decreased rapidly 
to zero with increase in concentration and subsequen
tly became negative in more concentrated solutions of

Acadmium iodide; Such effects have been qualitatively
described in terms of complexing. Negatively charged

2 -complex ions, for example Cdl^ , Cdl^ cause cadmium 
to flow to the anode in a Hittorf experiment.
The balance of cathodic and anodic flows of cadmium 
cause the transport number of cadmium ion to be zero 
at 0*28 mol.l”^.

Other transport properties like equivalent 
conductance and salt diffusion coefficients for such 
systems are also abnormally low.

In order to have a clear understanding of these 
anomalous properties, it is evident that the concen
trations of the complex species in solution, believed 
to be the cause of anomality, must be known.

In Chapter 1 and 2, therefore, potentiometric 
data are analysed to obtain stability constants and 
subsequently the concentrations of individual complex 
species in aqueous cadmium iodide and zinc chloride

5 6systems. Existing literature data for cadmium iodide ’ 
has/
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has been used to evaluate refined values for stability
2-xconstants of Cdlx ( 1,2 ,3) complexes.

Chapter 1 mainly deals with the controversy
over the standard electrode potential of amalgamated
zinc electrode in zinc chloride solutions and the

7 ftactivity coefficients for this salt. ’ In Chapter 2
the method of obtaining stability constants devised

qby Reilly and Stokes is described and its application
to complexed 2:1 electrolytes is critically assessed.

The transport properties of solutions of
cadmium iodide are dealth with in Chapter 3 and 4.
The method is fundamental and based upon the
thermodynamics of irreversible processes. It is shown
that the properties of a self-complexing electrolyte

2-xcontaining four complexes of the type MX!1 (x=1,2,3,4) 
may be described in terms of twenty one mobility and 
coupling coefficients. Only combinations of these 
coefficients are accessible from experimental study.

For the particular system of aqueous cadmium 
iodide for which self-complexing is pronounced, a 
method of predicting transport properties in solution 
is developed and tested.

In the final Chapter (4) this method of analysis 
is extended to predict the isotopic diffusion coeff
icients of cadmium in cadmium iodide solutions and 
compared with experimental measurements on this system.



13

References to the introduction

1. Harris, A.C. and Parton, H.N.,
Trans. Paraday Soc., 1940, 36., 1139.

2. Stokes, R.H. and Levien, B.J.,
J. Amer. Chem. Soc., 1946, 68., 333.

3. Sahay, J.N., J.Sci. Ind. Research, 1939.18B.233.
4. Robinson, R.A. and Stokes, R.H., 'Electrolyte 

Solutions' 2nd Edn.,Butterworths,London,1970.
5. Bates, R.G., J. Amer. Chem.Soc..1941.63.399.
6 . Bates, R.G. and Vosburgh, W.C.,

J. Amer. Chem. Soc., 1938, 60., 137.
7. Robinson, R.A. and Stokes, R.H.,

Trans. Paraday Soc., 1940, 740.
8 . Scatchard, G. and Tefft, R.P.,

J. Amer. Chem. Soc., 1930, 52 , 2272.
9. Reilly, P.J. and Stokes, R.H., Aust. J. Chem., 

1970, 23, 1397.



14

C H A P T E R  1

Potentiometric Measurements of Aqueous 
Zinc Chloride Solutions.
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I N T R O D U C T I O N

In a detailed analysis of the thermodynamic and 
transport properties of self-complexing salts, mean 
molal activity coefficients Y , are required for 
aqueous salt solutions over a wide range of 
concentration. A literature search revealed that 
most tabulated activity coefficient data for zinc 
chloride have been obtained by potentiometric measure
ments, using the cell

Zn-Hg(2-phase)/ZnC^2 (m )/AgC^*A6 cell I

for which

E = E° - k/ 2 log 4 m3 Y 3 1.1

with m, the concentration of salt in mol kg-^ and 
k = 2.30259 RT/p. They were, in consequence, 
dependent upon the values obtained for the standard
potential of the cell, E° (E°Ag,AgC^ -E° ) .u n

1 2 3Previous workers * ’ have reported that
reproducible potentials could not be obtained at 
concentrations less than 0.008 mol kg~^, Horsh ^ 
reported a precision of 1 2mV, while, in the extra
polation procedure to determine E°, Robinson.and

oStokes /
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2Stokes discarded their dilute solution results as 
inaccurate and confined their analysis to the 
concentration range 0.01 - 0.2 mol kg-'*". The value 
of E° obtained by these workers was 984.85 mV (Int.).
If dilute solution data 0.008 mol kg”^) were

2included, the results of both Robinson and Stokes
"Zand Scatchard and Tefft, (as calculated in reference 

2), would lead to a value of E° some 1.4 mV less positive. 
Such a reduction would lower the calculated values of 
Y by some 4$. In the absence of precise emf data 
for dilute solutions, the system was re-investigated.
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1.1 Experimental

1.1.1 Preparation of Stock Solutions of Zinc Chloride
The preparation of stock solutions has

2 3presented some practical difficulties, ’ largely 
because the salt cannot be conveniently purified by 
recrystallisation. Zinc chloride of high nominal

Cpurity was obtained commercially, (Mttrk p.a.), but all 
batches examined were found to contain a slight excess 
of zinc, which precipitated as an insoluble oxy- 
chloride when a clear concentrated solution was 
diluted. The preparation of zinc chloride from 
spectroscopically pure zinc oxide (dried at 900°C) 
and the stoichiometric quantity of acid (analysed to 
± 0 .02$ by conductivity measurements on diluted 
stock) was unsuccessful. Stock solutions 2.5 mol. 1*“̂  
were acidic, pH 2.5. An excess of acid of 0.06$ 
w^uld be sufficient to cause this effect. Quantitative 
addition of zinc oxide to neutralise the excess acidity 
gave solutions which, although clear, produced a faint 
cloudy precipitate on extreme dilution. The stoi
chiometric ratios of Zn:C{ in both the original and 
treated solutions were 1 :2 , within the limits of analysis 
(±0.05$ for each component). The criterion of 
precipitation was therefore considered the most

2sensitive test and, following Robinson and Stokes, 
small quantities of acid were added to stock.solutions 
until no precipitate was obtained on dilution. Using 
this /
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this method three stock solutions were prepared with 
concentrations in the range 3 .0 - 5 .0 mol. 1"^.
In each case the stoichiometric ratio of zinc to 
chloride was 1:2 within the above limits of experi
mental error. The equivalence and reproducibility 
of these preparations were tested by conductivity 
measurements on each batch, in the concentration 
range 0.3 - 0.7 mol. l~^.at 25°C. The results were 
compared graphically and the best-fit curve through 
the points obtained by a computer programme, given in 
Appendix A.I. Calculations indicated that the 
standard deviation of the experimental points from 
the computer fit was inevery case 4 0.05$, which corr
esponds to the expected uncertainty in the analytical 
estimation of concentration. The relationship between
specific conductivity, Ko . and concentration, C,sp
(mol. 1~^), is given below.

K =2.315346 + 171.9464 x C - 119.1111 x C2 + 32.0959 x C3 sp
(range of validity: 0*3 40 40*7)

1.1.2 The Electrodes
Silver-silver chloride electrodes were of the

thermal electrolytic type, prepared by the method of 
5Ives and Janz. Bias potentials between electrodes 

were 0.02 mV or less.
Zinc electrodes consisted of zinc rods (99.999$ 

pure) sealed into pyrex ground-glass cones with 
Araldite. The electrodes were cleaned with dilute 
nitric /
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nitric acid, washed and immersed in a dilute mercuric 
chloride solution containing a little nitric acid.
A period of thirty minutes was sufficient for 
amalgamation. The whole process was performed in an 
oxygen-free atmosphere (Hg/l^) • Potentiometric 
measurements were made in a hydrogen gas atmosphere or 
in a mixture of hydrogen and nitrogen gases (5 0:5 0). 
Bias potentials of less than 0.005 mV were obtained.

1.1.3 The Apparatus
Cylindrical glass cells constructed by cutting 

and grinding 250 ml. pyrex beakers were used.
Teflon tops with ’O'-rings were constructed for these 
cells. These were drilled with tapered holes corr
esponding to standard ground-glass joints. Each cell 
was provided with a gas inlet and outlet (bubbler) 
together with two pairs of electrodes; Zn/Hg, Ag/AgC^. 
In this way four separate cell emf measurements could 
be made and bias potentials monitored. A weight 
titration addition was used throughout except for 
dilute solutions, below 0 .0 1 mol kg”\  where a separate 
solution was made for each measurement. All weights 
were vacuum corrected. Air was eliminated by passing 
purified, presaturated hydrogen gas through the 
experimental cell. Three presaturators containing 
the same solution as in the cell were used and these 
were maintained at 25*0 ± 1.0°C. In titrations 
sufficient /
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sufficient time was allowed after each addition for
equilibrium to be attained. When equilibrium was
established, all readings agreed to within ± 0.1 mV
for all four possible electrode combinations and
remained constant for about 24 hours. For more dilute

-3 -1solutions, below 10 mol kg , however, the 
deviations occasionally reached i 0.2 mV. The cells 
were maintained at 25.00 i 0.01°C and emf measure
ments were made with a Solartron A210 digital volt
meter (sensitivity 10 HV on the one volt range).
The constant temperature bath was the same as described 
in Chapter 3, except that water 7/as used instead of 
oil as bath liquid.

1.1.4 Analysis of Solutions
Volumetric methods were used. All glassware 

was calibrated at 25°C 1°C) and duplicate calibrations
were reproducible to ± 0.05$• Chloride was estimated 
by potentiometric titration with silver nitrate.
The potentials between two silver electrodes, one in 
the titration vessel and the other in the burette 
tip, were measured and the end-point of the titration 
determined by the linear titration plot method of Gran, 
refined by McCallum.^ These routine analyses were 
reproducible to ± 0.05$. A similar method of 
analysis, ferrocyanide titration, was used for zinc.
In this case platinum electrodes were used and the 
titrant /
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titrant was potassium ferrocyanide solution 
containing a trace of potassium ferricyanide. The 
potentials were measured with a Solartron digital 
voltmeter. Reproducibility was i 0.05$ (as for 
chloride analysis). Standard zinc solutions for 
calibration were prepared by dissolving a weighed 
sample of spectroscopically pure zinc rod in a slight 
excess of hydrochloric acid. All potentiometric 
measurements were made at 25.00 i 0.05°C.
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1.2 Results and Discussion

1.2*1 Determination of E° by Classical Methods
The variation of emf for cell I with molality of

zinc chloride is shown in columns 1 and 2 of table
(1.1). The amalgamated zinc rod was found to be
stable and reproducible when used under an atmosphere
of hydrogen gas or a 50:50 hydrogen, nitrogen gas

15mixture, as reported by Clyton and Yosbergh. In
contrast to the reported studies on the liquid amalgam 

2 3electrodes, ’ it was also found to be stable in the 
dilute solution range m ^ 0.008 mol kg

The stable potentials, obtained in very dilute 
solutions, allow a rigorous investigation of the 
theoretical activity expressions for unsymmetrical 
electrolytes. At concentrations below 0.01 mol kg”  ̂
there is little possibility of self-complexing of the 
salt, table (1 .2 ).

An attempt was made to determine the standard
o 8potential for the cell, E , by the method of Bates,

2employed by Robinson and Stokes. The extended Debye-
Huckel equation is assumed and a function E^ plotted

oagainst molal concentration m, equation (2 .2 ).

E£ = E + | log [4m3/(l.0+0.054m)3 ] - | k $  s /jm /( I.O+aA) 

= E° - 4.5 k Bm. 1.2

where /
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where k = 2.30259 RT/j,; # is the limiting Debye- 
Huckel slope, = 1.012 and A = 0.3291 x 8 where 8 is 
the distance of closest approach of ions in Angstrom 
units. Prom equation (1.2) the potential, E^, will 
be a linear function of m and extrapolate to the 
standard potential, E°, at infinite dilution, 
provided B is a constant, equation (1.1).

2As with the data of Robinson and Stokes a
linear plot could only be obtained by ignoring data
below 0.008 mol kg”1. Furthermore no value of 8

could be obtained which fitted the experimental data
over the full range of concentration. In Fig. 1.1
the present data are compared with those of earlier 

2 3workers * (with their emf data corrected to abs. 
o o 2volts) using 8 = 5.0 A . The inflection at lower

concentrations must be considered to be real and not
due to experimental error. There are two possible
explanations of this effect. Gronwall, La Mer and 

qSandved attributed the non-linearity of equation
(1 .2 ) to the use of linear approximations in the solution 
of the Poisson-Boltzmann equation in the traditional 
Debye-Huckel analysis. The second possibility is 
that the salt is self-complexed in the concentration 
range studied by earlier workers, (0 .0 1 - 0 .2 0 mol kg”1 ). 
Hydrolysis can be discounted, since, to have significant 
eftfect, it would have to be considerably larger than 
indicated in the literature.1 *̂ llf ^

The theory of La Mer, Gronwall and Grieff  ̂was 
applied /
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Legend for Fig. 1*1

Extrapolation method of Robinson and Stokes, equation 
(1*2 ), in which the distance of closest approach was 
taken as 5*0 2 . •jthis work; o ,frora ref(2),
A ,from ref(3).

♦
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applied to eleven points in the dilute solution range 
up to 0 .0 1 mol kg“\  which is the upper limit of validity 
for this theory. The values of E° obtained for each 
concentration were calculated from equation (1 .1 ), 
the activity expression for f from reference 4 being 
used. The sole variable in this analysis is S. 
the distance of closest approach of the ions. Values 
for the parameter, 2 , were varied from 3*5 - 4 .5 2 .
A minimum standard deviation, ± 0.13 mV, was obtained 
with 2 = 4.03 2 and the corresponding E° was 984.20 mV.
A computer program, given in Appendix A.2, was written 
to perform these calculations. Above 0.01 mol kg”^ 
the theory is no longer valid and subsequent analysis 
has shown that complex formation becomes increasingly 
significant.

1.2.2 Incomplete Dissociation
The effect of incomplete dissociation was studied

13by the method of Reilly and Stokes described in 
detail in Chapter 2. The emf of the cell may be 
expressed in terms of ionic concentrations,

E = E° - | log [Z&+] [C< " ] 2 7 21 1 ,3

where [zn ] and [c^~J are respectively the molalities, 
(mol k§“^), of uncomplexea zinc ana chloride ions ana 
^2 1 ’ "the activity coefficient of the uncomplexed salt, 
ZnC^2* only the first complex is considered, then
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=

[ZncO
“ “ 4

[Zn2+][Ctf“j y

11
321

1.4

From the mass balance and electroneutrality conditions 
(neglecting the concentration of free hydrogen and 
hydroxyl ions), it can be shown that

1.5m = [Zn2r] 1 + t i 1 Y 321 / Y 2T11s

2m = [C<~]
f

1 + ^ [Zn2+] Y 321 / Y 2)11 1.6

where m is the total molality of the salt. The 
ionic strength is defined,

I = 2 [zn2+] + m 1.7

The activity coefficients Y ^  and Y2-̂ were calculated 
from the extended Febye-Kuckel expressions,

log Y21 = -1.023 s / I / (1.0 + A2 1 >/i) + B21I 1 .8a

log Yn  = -0.5115n/i / (1.0 + AX1 J i )  + Bn l 1.8b
♦

where A21 = &21 x °*3291f A11 = §11 x 0.3291 and
B2^ and B ^  are empirical constants.

From equations (1.3) to (1.8) the value of E°
and /
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and B i may be obtained by the method of successive
approximations# For a chosen value of f3 ̂  an^ starting
values of the constants of equations (1.8), a first
approximation to fzn^*] f°r each point may be obtained
from equations (1.5) and (1.6). These may be used
to evaluate ionic strength and in turn the activity
coefficients, which allow a better value of [zn^+]
to be calculated. This cyclic calculation was
repeated until the value of [zn^+] was constant to
within 0.01/6. The value for [«"] was obtained and
E° evaluated from equations (1.3) and (1.8a). Values
for all the parameters were then optimised to give
the most constant value of E°. The computer program
for optimisation of the unknown parameters is given
in Appendix The results are shown in table (1.2).
For the forty two points considered, including six
points from the data of Scatchard and Tefft and

2nine points from the work of Robinson and Stokes, 
a constant E° of 984.28, 6 = 0.15 mV was obtained.
Our own data alone gave a value of E° of 984.29 with
the same standard deviation. Table (1.2) shows that

-4  - ”5 -1in the range 4.0 x 10 - 4.0 x 10 mol kg the salt
is completely dissociated and the value of E° depends 
only upon the constants chosen in equation*(1.8a).
In that range the La Mer * theory and extended Lebye- 
Huckel equation, equation (1.8a), are equally valid.
As expected in this dilute concentration range, the 
Debye-Huckel limiting law remains a good approximation 
and /
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and consequently the value of E° obtained is insensitive 
to the values of A21 and B2 \  chosen in equation (1.8a). 
Only in the most concentrated solutions do the values 
chosen for f3̂  and the Debye-Huckel constants become 
significant.

In the optimisation procedure standard 
deviations for E° greater than 0.2 mV were considered 
unacceptable. The data in table (1.2), however, do 
not give a unique solution for f3̂ . Sets of Debye- 
Huckel parameters could be chosen for other values of 
R 1 to give the same precision in E° and the same absolute 
value as shown in table (1.3). The value of [3̂  
equal to 4*5 is, however, preferable because a positive 
value of is more in keeping with the reported 
data for fully-dissociated binary electrolytes.

To illustrate that the E° value is relatively 
insensitive to the optimised parameters used, the 
results have also been calculated according to the 
Davies equation for activity coefficients, table (1.3).
The restriction imposed by the use of this equation 
prevents optimisation of other than f3̂  and 
correspondingly E° is obtained with a slightly larger 
deviation. ♦

The value of E° is tbus established within close 
limits by two independent methods.

Ambiguity concerning the value of f3̂  cannot be 
resolved without further experimental investigations 
of /
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of mixed electrolyte systems in which more complexing
may be obtained at low ionic strengths by the
addition of chloride salts. This will be further
discussed in Chapter 2.

A list of E° values is given in table (1.4),
where they are compared with other literature data.
In some cases the original measurements were made in
International Volts and these have been converted to
absolute units. In addition, recalculations from
original sources have been made and the standard reduction
potential for zinc calculated.

The value of obtained in this study,
-761.90, 6 = 0.15 mV, and those recalculated from

2the data of Robinson and Stokes and Scatchard and
Tefft are in good agreement. It should be noted
that in recalculated data it is difficult to take
into account the possible differences in preparation
of the standard electrodes. Discussion in the
literature shows that accepted values for the standard
potentials of the halide reversible electrodes may

1 Rdiffer by up to ± 0.2 mV. In this study the latest
literature values have been adopted.

It now appears certain that the extrapolation
oprocedure of Robinson and Stokes,“ Pig. 1.1, equation # 

(1.2), was in error, because zinc chloride is
significantly complexed in the concentration range

—1 16 studied (0.01 - 0.13 mol kg” ). Stokes and Stokes
from their osmotic coefficient measurements on zinc
and /
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and magnesium halides arrived at the same conclusion.
It has been observed in this work that the linearity 
expected from equation (1.2) may be obtained over a 
limited concentration range in the presence of 
complexing if the value of 8 is increased 
sufficiently e.g. 8 = 5.0 8, Pig. 1.1. Equally the 
emf data at concentrations below 0.008 mol kg”'*'

2reported, but rejected, by both Robinson and Stokes
3and Scatchard and Tefft were more precise than the 

authors themselves considered, table (1.2). Taken 
separately, data from these two sources, including 
the dilute points, give average E° values 984.27,
6 = 0.11 mV and 984.29, 6 = 0.19 mV using the optimised

parameters of table (1.2) shown in table (1.3). It 
is interesting to note that these authors obtained 
E° values of 984.85 2 and 984.00 5 mV (Int.) 
respectively. The former is the usually-accepted 
value quoted in most standard texts.

1.2.3 Mean Molal Activity Coefficients of Aqueous 
Zinc Chloride at 25°C 

Table (1.1) gives the mean molal activity 
coefficients, Y +, calculated for the full range of 
concentration studied (4.0 x 10"^ - 1.0 mol kg~^) 
taking E° as 984.28 mV. The activity coefficients,
Y+ , were curve-fitted by a least squares standard 
computer programme in terms of the square root’of 
concentration /
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concentration to the fifth order,

Y+ = 1.01685 - 4.90609 x S + 28.08897 x S2 - 115.0959 
x S3 + 265.8095 x S4 - 249.7339 x S5 

(range of validity 0.0005 - 0.1 mol kg ) 1.9a

Y = 0.73838 - 1.086186 x S + 1.30381 x S2 - 0.764138 
x S3 + 0.138333 x S4 

(range of validity 0.1 - 1.0 mol kg ) 1.96

where S = v m  .
For comparison, the mean molal activity 

coefficients at rounded concentrations have been
calculated using these equations. The values reported 
by Robinson and Stokes 
this work, table (1.5).

20by Robinson and Stokes are some 2$ higher than in

»



33

Table 1,1 
Mean Molal Activity Coefficients

m emf Y +
(mol kg"1 ) volts
0.00043035 1.26805 0.9283
0.00061083 1.25550 0.9058
0.00063382 1.25383 0.9116
0.00083190 1.24405 0.8952
0.00098120 1.23792 0.8899
0•003663 1.19131 0.7989
0.004420 1.18471 0.7853
0.008051 1.16399 0.7385
0.008272 1.16330 0.7317
0.008857 1.16085 0.7282
0.01115 1.15311 0.7069
0.01204 1.15055 0.7000
0.01549 1.14230 0.6740
0.01812 1.13710 0.6591
0.02019 1.13345 0.6505
0.03018 1.12030 0.6121
0.03571 1.11480 0.5966
0.03911 1.11190 0.5874
0.04086 1.11088 0.5772
0.04775 1.10540 0.5694
0.05822 1.09910 0.5500
0.06154 1.09770 0.5396
0.07281 1.09190 0.5301
0.08189 1.08805 0.5209
0.08660 1.08650 0.5127
0.10180 1.08110 0.5018
0.10299 1.08078 0.5000
0.15807 1.06680 0.4683
0.16252 1.06595 0.4656
0.16431 1.06550 0.4660
0.19300 /
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Table 1,1 (cont'd)

m emf Y +
(mol kg-1) volts
0.19300 1.06070 0.4493
0.22253 1.05560 0.4448
0.23114 1.05450 0.4407
0.29603 1.04670 0.4213
0.32792 1.04300 0.4186
0.33940 1.04320 0.4090
0.33960 1.04180 0.4170
0.48516 1.03080 0.3883
0.5133 1.02910 0.3836
0.5140 1.02855 0.3886
0.5249 1.02860 0.3800
0.6498 1.02170 0.3671
0.6650 1.02065 0.3686
0.6639 1.02100 0.3659
0.6828 1.02020 0.3633
0.8607 1.01337 ~'.3441
0.8605 1.01297 0.3477
0.8766 1.01273 0.3435

*1.0310 1.00846 0.3263

2* Robinson and Stokes measurement
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Table 1.5

Activity Coefficients of Zinc Chloride at
Rounded Concentrations

m Y +
(a) (b) (c)

0.0005 0.9200 0.913 -

0.001 0.8864 0.881 -
0.002 0.8443 0.838 -

0.005 0.7759 0.767 0.789
0.01 0.7161 0.708 0.731
0.02 0.6515 0.642 0.667
0.05 0.5624 0.556 0.570
0.1 0.5025 0.502 0.518
0.2 0.4506 0.448 0.465
0.5 0.4215 0.415 0.435
0.4 0.4018 0.393 0.413
0.5 0.3867 0.376 0.396
0.6 0.3740 0.364 0.382
0.8 0.3517 0.343 0.359
1.0 0.3302 0.325 0.341

(a) This work, eqn (9)
(b) Scatchard and Tefft^

2(c) Robinson and Stokes
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C H A P T E R  2

Thermodynamic Stability Constants for 
Self-Complexed Salts in Aqueous Solutions 
of Group IIB Metal Halides.
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I N T R O D U C T I O N

In an irreversible thermodynamic treatment of the 
transport process in aqueous solutions of self-complexing 
halides of Group IIB metals, the mobility coefficients D^, 
discussed in greater detail in Chapter 3, can be expressed 
as combinations of the mobility coefficients of the 
individual complex species, The total contribution
to the transport parameter, D ^ ,  will obviously depend upon 
the intrinsic mobilities of the individual free and 
complexed ions, their interactions and most important their 
concentrations in solution.

It is to the concentrations of the individual free 
and complexed species in aqueous solutions of cadmium 
chloride, cadmium iodide and zinc chloride that this 
chapter is directed.

2-xThermodynamic stability constants for CdClx and
2-xCdl complexes have been recalculated from the existing

1 2 ^  1 literature data I The method of Reilly and Stokes ,
originally used for cadmium chloride complexes, has been
adopted for the calculation of thermodynamic stability
constants and its application to such systems has been
critically assessed.

The calculated stability constants for cadmium iodide 
2—xcomplexes, Cdlx , have been used extensively in Chapters 

3 and 4.
The transport properties of aqueous zinc chloride 

solutions/
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4 5solutions, reported to exhibit extensive self-complexing; 
are known from the experimental measurements of Agnew and 
Paterson carried out in this laboratory. Having established 
the standard electrode potential for Cell I (Chapter 1) 
and the activity coefficients for this salt, it was of 
interest to extend the e.m.f. measurements to include some 
mixtures of potassium chloride and zinc chloride.

This would provide the necessary data for the
2 Ydetermination of stability constants for ZnClx (x=1,2,3,4) 

complexes and hence the concentrations of individual complex 
species, required for a more detailed understanding of the 
anomalous transport parameters of this salt.
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2* 1 Theoretical

2*1*1 Self-Complexing in Aqueous Solutions of
Group IIB Metal Halides

7 8Although a number of methods 9 are available
for the study of ionic equilibria in aqueous solutions
of metal halides, the potentioraetric method is by far the
most accurate and widely applicable technique currently in
use. It is evident, however, that the thermodynamic
stability constants, defined by equations (2*5) to (2*8),
can be determined by potentiometric method only if the
activity coefficients are either known or are at least held
constant. In the latter method, concentrated supporting
electrolytes are used to maintain a constant ionic medium.

9 10The method has been used extensively by several workers 9

for determination of stability constants. Measurements are
usually made in the presence of an excess of inert electrolyte,
which is assumed not to form complexes with the central
metal ion, the ligand or with the complex species themselves.
Sodium perchlorate is most frequently used as the bulk
electrolyte for such measurements.

It has been reported, however, that together with
7 8its other inherent disadvantages, * Fe(III), Ce(IIl),

Hg(I), Hg(III), Cd(II) and Mg(II) form weak complexes with 
perchlorate ions.

The method is intrisically unsuited to this study 
because the activity coefficients, although held constant 
by a high ionic strength medium, cannot be evaluated with 
confidence/
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confidence. As a result concentrations of complex species 
in solution cannot be obtained.

In 1970, Reilly and Stokes1 reported a new method 
of calculation of the thermodynamic stability constants for 
cadmium chloride complexes in aqueous solutions.

The method, in principle, can be used for any 
similar system such as Cdl2 and ZnCl2 and has the advantage 
that no constant ionic medium is required during experi
mental measurements of the e.m.f of the appropriate cell.

This method is described in detail below. Since the 
mathematical treatment is similar for halides of cadmium 
and zinc, zinc chloride has been chosen as a typical 
example.

12*1*2 The Method of Reilly and Stokes for the
Calculation of Stability Constants of Complexes 
in Aqueous Solutions of Group IIB Metal Halides

The method essentially consists in 
constructing a suitable cell without liquid junction.
The potential of the cell is then measured as a function 
of the concentration of the pure electrolyte and with added 
ligand for inhanced complexation. The cell used in this 
work, for the system zinc chloride - potassium chloride 
was,

Zn-Hg/ZnCl2 (m1),KCl (m2)/AgCl-Ag
Cell I

The e.m.f of the cell is given by,
o 2 -2

E = E - RT/2F In m 1(2m1+m2) 2#1

If/
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If the molalities of the free zinc and free 
chloride ions are represented by [Zn2+] and [Cl” ] 
respectively, equation (2*1) may be written as,

2
E = E° - RT/2F In [Zn2+] [Cl“ ] 2*2

where y+ , in equation (2*1), is the stoicheiometric 
activity coefficienty of zinc chloride and Y21 

activity coefficient for the non-complexed zinc chloride 
E° is the standard e.m.f of the cell and R, T and F have 
their usual meanings.

If the various stages of the complex formation 
between zinc and chloride ions are represented as:

Zn2+ + Cl” T ZnCl

Zn2+ + 2C1” <*- ZnCl

Zn2+ + 3C1” *7 ZnCl

Zn2+ + 4C1” 4-“7 ZnCl

2*3

The thermodynamic stability constants are defined by,

(ZnCl+ )
(31 =    2*4 (a)
1 (Zn )(Cl )

(ZnClg) 

(Zn2+)(C1“)2
2*4 (b)
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(ZnCi:)
B, =----------- 5—  2 .4 (c)

(Zn2+)(C1-)3

(ZnCl?- )
&4 = -------r— ~ , 2*4 (a)

(Zn )(Cl- )

The curved brackets in equations (2*4) represent the 
activities.

The first stability constant, , for example, can 
be written in terms of concentrations and activity coefficients 
as follows,

[ZnCl4] Y +

[zn2+] [Cl-] Y..• Y_+ +

[ZnCl+ ] Y+ Y -
---------------------------  X ----------------------------------X  ---------

[Zn2+] [Cl- ] Y++. Y_ Y_

[ZnCl+ ]
2Y11 2-5

[Zn2+] [Cl- ] 3Y21

The higher stability constants are given similarly by,
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[ZnCl2l 3I32 - 2 x Y 0/ Y 21
[Zn2+J [Cl']

2*6

[ZnCl^l N ,
R 5 =* - ^ x 1 y  Y 21 2-7

[Zn2+] (Cl"]

_ [ ZnCl2 ] 3 / 3 4 2.8
I) 4 - 4 Y 12 ' Y 21 Y 11 2 8

[Zn2+] [Cl"]

As has been discussed previously, in Chapter 1, equation (1*5), 
from the mass balance and electroneutrality conditions 
( neglecting the small amounts of free hydrogen and hydroxide 
ions) it can be shown that,

m 1 = [Zn2+] + [ZnCl+] + [ZnClg] + [ZnClj]

+ [ZnCl2-] 2-9

and

2m1 + ra2 = (Cl"] + (ZnCl+ ] + 2 [ZnCl2] +

3 [ZnClj] + 4 [ZnCl2-] 2-10

where m^ is the total molality of zinc ions and 
(2m^ + m2) is the amount of total chloride in mol,kg 
By the condition of electroneutrality,

2 [Zn2+] + [ZnCl+ ] + m2 =

(Cl'] + [ZnClj] + 2 (ZnCl2-] 2*11
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and the ionic strength, I, is defined by

I = 0*5 4 [zn2+] + [ZnCl+] + [ZnClj ]

+ 4 [znCl?“] + lei-] + m,

2- 12

in equations (2*11) and (2•12) is the concentration
_ iof potassium ions in mol.kg

For mathematical simplicity, using equations (2*5) to 
(2*8), we can define new functions , Kg» and as,

[ZnCl+ ]
f31 • Y 21 / Y11 -

^2 ’ Y \\! Yq

f35 • Y 21

[Zn2+] [Cl“] 
[ZnCl2]

[Zn2+] [C1'3 
[ZnCl" ]

= K.

2 = K2

[Zn2+] [ c i “ ]

a
v 3 4 ^21 V11

V 3' 1 2

3 " K3

[ZnCl2"] 

[Zn2+] [Cl"]
4 = K,

2*13

2*14

2*15

2* 16

Equations (2*9) and (2*10) can now be written in terms 
of the concentrations of zinc and chloride ions as

m 1 = fZn2+] 1 + K1 [Cl“] + K2 f Cl"]

3 4
+ K, [ Cl” ] + K, [Cl“ ] 2*17
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(21^ + m2) ■ [Cl- ] + [Zn2+] .

3K5 [Cl“] + 4K4 [Cl“ ]

K1 [ Cl" ] + 2K2 [Cl"] +

4
2-18

The values of zinc and chloride concentrations are also 
restricted by equation (2*19), obtained from the combination 
of equations (2*1) and (2»2).

m 1 (2m^ + ra2)2 y + = [Zn^+3 fci“ J Y2+ 2 3
21 2-19

By simple rearrangements and substitutions 
equations (2-17) and (2*18) can be combined to give a 
pentic equation of the type given by equation (2*20), in 
terms of free chloride ions, I c i - J  .

a + b + c + d A2 + e A + f = 0 2*20

where A = [Cl"] and the coefficients are given by

<x = 4
b = K5 + K4 ( 4m 1 - (2mi + m2) )

c = CM + k3 ( 3m 1 - (2m1 + m2) )

d = K1 + CM ( 2m.| - (2m1 + m2) )
e = 1 + K1 ( m i -  (2m1 + m2 ) )
f = - (2m^ + m2)

If the activity coefficients are expressed by 
extended Debye-Huckel equations, equations (2*21), it is 
possible to evaluate the values of the four stability 
constants/
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constants from combinations of equations (2*1) to (2*21).

l°gv2i = -1*023 /I /(1+A21 /I) + BI + B'l2 + b V  

logŶ  = -*5115 yr /(1 +â  1 yi) + b i + b'i2 + b" i 3

1 2 11 3logy0 = BI + B I + B 1^

l°gV12 = -1*023 v/I /(1+A12v/T)+ BI + B'l2 + B"l3 

(A21=b*S21, A ^ s b ' S ^  and A 12=b*§12 ; b=0*3291)
2* 21

2*1*3 Procedure for Calculation of Stability Constants 
This essentially consists in finding out suitable 

parameters to reproduce the e.m.f or activity coefficients, 
measured for the system, by an iterative optimisation 
technique. It should be noted, however, that there are 
twenty unknown parameters, including the E°, in the mathe
matical analysis given above. The value of the E° for the 
given system must be either accurately known or could be 
determined independently by the method described in 
Chapter 1• Fifteen parameters appear in the activity coeff
icients expressions, equations (2*21), in addition to four 
stability constants defined by equations (2*5) to (2*8).

Unfortunately, the computer program for the opti
misation of these unknown parameters was not available.
The authors (Reilly and Stokes) indicated further improve-

11ments required in their method of computation.
The computer program, given in Appendix B.1 was 

therefore written in collaboration with Dr. P. Rosenberg, 
University of Glasgow. Although for computing efficiency 
the method has been slightly modified, the basic 
principle/
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principle of calculation is the same as due to Reilly 
and Stokes.^

The method requires initial assumptions about the
activity coefficients y 2 -j» Y11 * VO* and ^12*
The values initially assigned to these coefficients were 
those of fully dissociated model electrolytes with 
similar valency and ionic size charactristics. Activity 
coefficients for these fully dissociated electrolytes 
were expressed as a function of the ionic strength, 
equations (2*21). The values of mean distance of ionic 
approach, S, and the emperical constants of the Debye- 
Huckel equations for these electrolytes were evaluated 
by a least squares technique using the authorfe own 
program given in Appendix B*2.

The electrolytes considered and the data obtained 
will be given in the results and discussion section of 
this chapter.

Having the parameters of equations (2*21) fixed 
at their initial values, for each experimental 
concentration an ionic strength was assumed and the
activity coefficients Y21» Y-j -j» Yo anci ^12 were 
calculated. These were combined with guessed values of 
stability constants and a value for the free chloride 
ion concentration was calculated from equation (2«20). 
The free zinc ion concentration and the concentrations 
of the individual complexes were then computed using 
equations (2*5) to (2*11). A new value of the ionic 
strength was then calculated from equation (2*12). 
Activity coefficients were then recalculated, using the 
new /
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new ionic strength, and a new value for chloride ion 
concentration was obtained. This cyclic calculation was 
repeated until the value of the ionic strength and the 
free chloride ion concentration were constant to 0*01%.

Having obtained the free chloride and zinc concen
trations a value for the e.m.f was obtained from equation 
(2*2) and compared to the experimentally measured value.
The standard deviation between the calculated and 
measured e.m.f for all the experimental concentrations 
was then minimised by optimisation of the four stability 
constants in a least square sense; utilizing the standard 
computer subroutines.

The entire procedure was then repeated allowing 
the optimisation to be performed on the activity coefficient 
parameters as well as the stability constants for optimum 
reproduction of the experimental data.
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2•2 Results and Discussion

2*2*1 Test of Computational Methods

Since a new computer program had been 
written, it was necessary to make a series of 
investigative calculations.

The experimental data and final values of 
stability constants and activity coefficient 
parameters used by Reilly and Stokes were processed.
The program reproduced exactly the same deviations 
between measured and calculated e.m.fs for the cadmium 
chloride system. Data obtained by Reilly and Stokes 
and by our own calculation are given in table (2*1).

This first calculation did not test the 
optimisation capabilities of the program. To this end 
a new set of stability constants which were signifi
cantly different from the literature results were 
introduced into the program as initial 'guess' values; 
simulating the normal procedure for dealing with a. 
truly unknown system. Activity coefficient parameters 
were retained at their reported values, table (2*4).

The optimised values of stability constants 
obtained from the second calculation are given in 
table (2*1), together with a new set of deviations 
between observed and calculated e.m.f of the cell, 
table (2*1),column II. It can be seen that with the 
exception of last two points these deviations are 
equally acceptable to those of Reilly and Stokes.
Since/
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Table 2*1

Comparison of measured and calculated e.m.f for cadmium chloride.

2m. +m0 E/ \ E / « \ — E / \ ^1 2 (meas.) ^  (cal.) (meas.)
Volts Lit. I II

0*0009139 0*0018278 0*83297 -0*01 -0*02 -0*09
0*002229 0*004458 0*80305 0*31 0*30 0*18
0*003458 0*006916 0*78968 -0*08 -0*09 -0*24
0*005294 0*010588 0*77668 0*12 0*11 -0*06
0*010026 0*020052 0*75861 0*02 0*00 -0*17
0*03230 0*06460 0*72752 0*80 0*79 0*67
0*03763 0*07526 0*72490 -0*27 -0*28 -0*38
0*04802 0*09604 0*71936 -0*49 -0*51 -0*57
0*05061 0*10122 0*71771 -0*06 -0*08 -0*14
0*05105 0*10210 0*71719 0*26 0*24 0*18
0*05431 0*10862 0*71569 0*33 0*31 0*26
0*06812 0*13624 0*71098 -0*11 -0*13 -0*15
0*09568 0*19136 0*70335 -0*45 -0*46 -0*43
0*10196 0*20392 0*70235 -0*31 -0*32 -0*29
0*27463 0*54926 0*68274 -0*45 -0*46 -0*35
0*44080 0*88160 0*67440 -0*48 -0*48 -0*42
0*46730 0*93460 0*67345 -0*50 -0*51 -0*45
0*49080 0*98160 0*67276 -0*65 -0*65 -0*60

0*69223 1*38446 0*66722 -0*63 -0*63 -0*66
0*91069 1*82138 0*66276 -0*31 -0*31 -0*43
1*22611 2*45222 0*65825 -0*03 -0*03 -0*26

0*03345 0*56690 0*70431 0*02 0*01 0*08
0*07725 0*65450 0*69362 -0*21 -0*22 -0*16
0*08516 0*67032 0*69170 0*44 0*43 0*48

0*24419 0*98838 0*67792 0*36 0*36 0*34
0*39398 1*28796 0*67181 0*18 0*17 0*09
0-40536 1*31072 0*67155 0*07 0*06 -0*02

0*41550 1*33100 0*67118 0*11 0*11 0*01

0*43104 1*36208 0*67089 -0*08 -0*08 -0*18
0*61551 1*73102 0*66604 0*14 0*14 -0*02

(Continued)
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Table 2*1 Continued

m1 2m1+m2 E(meas.) 
Volts

E(cal.)
** Lit.

- E/(meas
I

o*
II

0*80974 2*11948 0*66267 0*37 0*28 0*15
1*09022 2*68044 0*65838 0*55 0*55 0*25
0*027023 2*1682 0*70675 1*02 1*02 0*49
0*005248 4*1619 0*73488 -0*46 -0*46 -3*27
0*002448 4*2988 0*74478 -0*20 -0*19 -0*97

* E/ , x - E> \ in millivolts,(eal.) (meas.)
i** Reported data of Reilly and Stokes.

R 1 R 2 R 3 R4

(a) I 8 5 + 1  231+2 122+1 0*053 ± 0*001

(b) II 82*3 269.5 73*3 0*032

(a)— Reported values of stability constants"* and the activity 
coefficients were U3ed and calculations were carried out 
with the computer program given in Appendix B.1.

(b)~ Values of stability constants obtained when the program 
was allowed to perform optimisation of stability constants 
from new ‘guess' values. The activity coefficient parameters 
were fixed at the reported values, given in table (2*4).



59

Since the sole test of the optimisation 
procedure depends upon the deviations between 
calculated and measured e.m.fs, it is important to 
note that stability constants obtained by this 
second calculation are somewhat different from those 
of Reilly and StokeJ and outv/ith their uncertainity 
limits.

While the limits of uncertainity are smaller 
than for the similar but less refined calculations, 
the method of Reilly and Stokes could also produce 
a range of final results for stability constants.
It seems that the method is somewhat dependent upon 
techniques of numerical analysis available for carrying 
out optimisation of unknown parameters.

Inclusion of initial guess values for 
activity coefficient expressions would be expected to 
modify the final results to some degree, but for 
cadmium chloride the optimisation of activity terms 
are of secondary importance. This is even more true 
for the comparable but more complexed system of 
aqueous cadmium iodide discussed below.

2*2*2 Stability Constants of Cadmium Iodide
Complexes in aqueous Solutions.

The primary aim of carrying out this 
calculation was to obtain refined values for the

2 “ Ystability constants of Cdl (x=1,2,3,4) complexes 
suitable for calculation of concentrations of individ
ual complex species in solutions of Cd^, containing 
no/
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no added salt. The e.m.f measurements of the cell,

Cd-Hg/Cdl2 (m1)/Agl-Ag Cell II

2 3made by Bates and those of Bates and Vosburgh for
the cell,

Cd-Hg/ Cdlg(m1), KI(m2) /Hg2I2-Hg Cell III

were used.
2 3Bates and Bates and Vosburgh have shown

that the silver-silver iodide electrode behaves
abnormally in cadmium iodide solutions. Following
these authors, the normal potential of this electrode
in cadmium iodide solutions was taken as -0*1508 V
and E°gg j /Hg equal to -0*0405 V.

To obtain an extended set of experimental 
data, e.m.f measurements for the mercury-mercurious 
iodide cell (Cell III) were converted to those for 
the silver-silver iodide system (Cell II) using the 
relationship,

Ecell II = Ecell III " °-1105

The combined data are given in table (2*2).
The published stability constants of Bates

3and Vosburgtr were used as initial 'guess' values in 
the computer program together with the activity 
coefficient parameters obtained by Reilly and Stokes 
in their study of cadmium chloride. Preliminary 
calculations showed that the calculation of stability 
constants/
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constants for cadmium iodide was rather insensitive 
to changes in activity coefficient parameters.
The formal similarity between the cadmium iodide and 
cadmium chloride complex ions made this a suitable 
initial assumption.

In the first calculation on cadmium iodide 
the activity coefficient parameters were not optimised. 
The resulting stability constants are given in table 
(2*2), where they may be compared with literature 
values.

The deviations between the measured and 
calculated e.m.fs are much smaller than for cadmium 
chloride system and were not improved by further 
optimisation of activity terms. This effect is due 
to the very high degree of complexation which reduces 
the contribution of activity coefficients terras 
significantly.

The stability constants obtained in these 
calculations were used to calculate the concentrations 
of individual complex species in aqueous cadmium 
iodide,shown in table (3*3) (Chapter 3).

2*2»3 Thermodynamic Stability Constants for Complexes 
in Aqueous Zinc Chloride Solutions

The e.m.f data used in Chapter 1 for a 
re-investigation of the normal potential of the zinc 
amalgam electrode were extended by further experiments 
in which potassium chloride was present in the cell 
solution.
The /
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Table 2*2
2-xThermodynamic Stability Constants for Odl^ (x=1,2,3,4) complexes, 

re-calculated from the e.m.f, measurements of Bates and Bates and 
Vosburgh. The activity coefficients parameters were fixed at those 
given in Set 1, table (2*4).

ra1 2m^+m2 E(meas.) I E/ 1 \—E/(cal.; (meas.) Y ±
* 0-001224 0-002448 0-45503 0-002923 -0-00021 0-7026
* 0-003993 0-007986 0-42052 0-007731 0-00016 0-5223
* 0-006407 0-012814 0-40805 0-011208 0-00033 0-4479
* 0-007912 0-015824 0-40293 0-013197 0-00025 0-4150
* 0-01250 0-02500 009214 0-018728 0-00052 0-3452

0-01032 0-02064 0-39700 0-016182 -0-00006 0*3742
0-01023 0-02046 0-39730 0-016074 -0-00016 0*3755
0-01023 0-02870 0-39220 0-022104 -0-00017 0-3421
0-01032 0-03679 0-38970 0-028527 -0-00053 0-3113
0-01023 0-04125 0-38810 0-032293 0-00017 0-2961
0-01023 0-05274 0-38720 0-042199 -0-00032 0-2607
0-01032 0-07357 0-38690 0-061005 -0-00029 0-2096
0-01023 0-08299 0-38710 0-069964 0-00015 0-1908
0-02020 0-04040 0-38280 0-026978 0-00008 0-2753
0-02020 0-04528 0-38130 0-030274 0-00019 0-2645
0-02020 0-05105 0-38040 0*034398 -0-00013 0-2521
0-02020 0-05259 0-38000 0-035531 0-00000 0-2488
0-02020 0-05890 0-37890 0-040313 0-00024 0*2359
0-02020 0-08882 0-37780 0-065087 0-00029 0*1844

265*76 ( 192*31)

IICM
C2 1415*5 (8333*3)

R 5 = 1-1147 x 105 ( 1*0 x 105)

ZD II 7-7112 x 105 ( 1*25 x 106)

The values in parenthesis are those of Eates and Vosburgh.^
* 2Bates data.
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The experimental techniques were as described in 
Chapter 1. The total e.m.f data which has been used 
for the calculation of stability constants are given 
in table (2*3).

A variety of stability constants have been
1 3presented in the literature for this system.

Table (2»3) contains a selction of these results.
To apply the Reilly and Stokes method for 

calculating stability constants initial 1 guess1 
values are required both for the stability constants 
and the parameters of equations (2*21).

Activity coefficients data for a number of
fully dissociated model electrolytes with the same 

*stoichiometric coefficients as the component 
electrolytes of the complexed salt were obtained by 
the method of least squares to conform with the 
format of equations (2*21). For example sodium 
chloride data was used as initial model for 
ZnCl+,Cl” . The parameters of the extended Debye- 
Huckel equations, equations (2,21) are given in 
table (2*5). The first set of model electrolytes 
chosen was NaCl, C a C ^  and Ite^SO^. The starting 
values for the activity coefficients for the neutral 
complex, ZnCl2 > were obtained from the same relation 
as for cadmium chloride.

Having fixed the activity coefficient 
parameters at their initial guessed values, the four 
stability constants were optimised using the liter
ature values as the starting points. In contrast to 
cadmium/
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cadmium chloride and cadmium iodide, very little 
improvement was achieved, in terms of minimising the 
sum of squares between the measured and calculated 
e.m.fs, by this initial optimisation. This, however, 
signified the importance of activity coefficient 
terms in dealing with the zinc chloride system.

A total optimisation of the fifteen activity 
coefficient parameters in one computing run was not 
possible. For this reason a cycle of calculations was 
made. In each cycle only four parameters were attacked.
Once these had been improved they were held constant 
and a further four unknown parameters were optimised.
The criterion of optimisation was once more the impro
vement in deviations between measured and calculated 
e.m.fs.

These calculations show that solely on the basis 
of agreement between calculated and measured e.m.fs 
of the zinc chloride cell, a variety of stability 
constants could be obtained.

The problem of optimisation is made more difficult 
than for cadmium iodide or cadmium chloride because 
zinc chloride is coraplexed to a lesser degree than 
either of the above examples. The activity coefficient 
parameters appear to have almost equal weight to the 
stability constants. The values of the input parameters 
in the extended Debye-Huckel expressions, equations (2*21), 
and in particular the chosen values of 2, have major 
effects/
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effects upon the set of stability constants. The 
problem is essentially an extention of that discussed
in Chapter 1, where it was shown that by choosing a

o 12higher value for a, Robinson and Stokes could totally
absorb the effect of the first complex (ZnCl+) in
their extrapolation procedure to obtain in a
zinc chloride system.

It has become obvious that no unequivocal 
solution for the stability constant of zinc chloride 
complexes can be obtained using our present optimis- 
tion procedures. Although further sophistication of 
the method of optimisation is under consideration, in 
which the more efficient. NAG (Nottingham Algorithms 
Group) subroutines recently made available at the 
University of Glasgow, are intended to be used it 
appears that these difficulties are inherent to the 
zinc chloride system. This observation in no way 
prejudices its application to more complexed systems 
where the optimisation of activity expressions const- 
tute a secondary refinement upon the prediction of 
a series of cell potentials, which are dominated by the 
relatively large magnitudes of stability constants.

Typical results for zinc chloride system are
given in table (2*3). It should be noted, however, that
direct comparison of stability constants obtained here
with those of literature values is not possible. Most

13of the results of previous workers tabulated refer to 
particular ionic strengths or have been obtained with 
various standard conditions.
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Table 2*3

Deviations between measured and calculated e.m.f for zinc chloride. 
The activity coefficient parameters are those given in table (2*4) 
(Set, 2) > obtained by cyclic optimisation procedure.

m1 2m1+m2 E(meas.) I E(cal.)-E(meas• ) Y +
0*0006108 0*00122166 1*25550 0*001828 -0*00011 0*908
0*0008319 0*0016638 1*24405 0*002488 0*00002 0*895
0*003663 0*007326 1*19131 0*010866 -0*00024 0*804
0*008051 0*016102 1*16399 0*023653 0*00004 0*738
0*008857 0*017714 1*16085 0*025979 -0*00004 0*729
0*01115 0*02230 1*15311 0*032566 -0*00002 0*707
0*03018 0*06036 1*12030 0*085676 0*00011 0*610
0*04086 0*08172 1*11088 0*114454 -0*00026 0*581
0*05104 0*10208 1*10299 0*141276 0*00051 0*560
0*05822 0*11644 1*09910 0-159854 0*00012 0*548
0*06154 0*12308 1*09770 0*168352 -0*00027 0*543
0*07281 0*14562 1*09190 0-196773 0*00011 0*528
0*08660 0*17320 1*08650 0*230679 -0*00009 0*514
0*10299 0*20598 1*08078 0*269776 0*00003 0*499
0*15303 0*30606 1*06790 0*381534 0*00003 0*469
0*15807 0*31614 1*06680 0*392189 0*00011 0*467
0*19300 0*38600 1*06070 0*465226 -0*00027 0*452
0*29603 0*59206 1*04670 0*647649 -0*00004 0*421
0*32173 0*64346 1*04360 0*688692 0*00041 0*416
0*33960 0*67920 1*04180 0*716233 0*00050 0*411
0*51330 1*02660 1*02910 0*949930 0*00039 0-379
0*64980 1*29960 1*02170 1*102622 0*00072 0*360
0*86067 1*72130 1*01340 1*306389 0*00086 0*336
1*0310 2*0620 1*00846 1-453029 0*00063 0*321
0*049135 0*18056 1*09120 0*211927 0*00039 0*528
0*045860 0*31545 1*08020 0*335949 0*00035 0*495
0*083658 0*24687 1-07955 0.293194 -0*00057 0*498

( Continued)
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Table 2-3 (Continued)

m1 2m ^  m2 E(meas.) I E(cal.)-E(meas.) Y +
0-078009 0-38820 1-07137 0-416522 -0-00153 0-477
0-039572 0-57445 1-07050 0-579384 -0-00111 0-467
0-033239 0-83534 1-06618 0-830031 -0-00294 0-452
0-14752 0-36645 1-06330 0-427249 0-00095 0-464
0-13725 0-47901 1-05710 0-515983 0-0018? 0-456
0-11435 0-72993 1-05040 0-727744 0-00110 0-444
0-10443 0-83863 1-04860 0-824684 0-00081 0-440
0-30936 0-69679 1-04190 0-722074 0-00055 0-415
0-28651 0-79529 1-03980 0.788589 0-00029 0-415
0-24477 0-97523 1-03750 0-925342 -0-00058 0-415
0-20520 1-14580 1-03690 1-071815 -0-00194 0-416

The values of stability constants obtained are given below, 
a b c d e

p i 3*53 3*1 0-64 2-69 2-7

02 0-072 1-1 3*98 4-07 2-9

03 0-067 0-6 1-41 3-38 0-14

04 0-0102 0-1 - - -

a This work. 14b Belousov and Alovyainikov. (distribution method)
15c Sillen and Liljeqvist. (3 molar KaClO.)

16 ^ N d Marcus and Maydan. (anion exchange method).
17e Fedorev and Cherikova. (Ionic strength, extrapolation method)•
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Table 2*4

Emperical constants of the extended Debye-Huckel expressions, 
equations (2*21),

Set 1

log

Y21

*11

*0
Y 12

3*07
3-55

5*62

B

0*04014
-0*05077
-0*13540
-0*06060

B

0*005254
0*009006
0*000365
0*005441

B

0*001001

-0*000799
0*000609
0*000846

Set 2**

' 21 

*11  

*0 
Y 12

4*49
4*30

4*46

0*2165
0*0535
-0*08894
0*17421

0*004721
0*007953
0*020080
0*005006

0*000115

0*000200
0*000776
0*000985

1* Reilly and Stokes data , used for cadmium chloride

** This work, using the computer program given in Appendix B.1.
These coefficients were obtained during cyclic optimisation 
procedure adopted for zinc chloride system.
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Table 2*5

Parameters of the extended Debye-Huckel equations, equations (2*21), 
for the fully dissociated electrolytes, used as initial guesses on 
the activity coefficients.

Salt 0a Bi B2 B3

NaCl 4*42 0*02227 0*0025998 0*00090254

CaCl2 4*86 0*04409 0*0036399 0*00012905

KgCl2 4*95 -0*06313 -0*0009836 -0*00072298

Na2S04 4*04 -0*07220 0*0082490 -0*00041380

Li2S°4 4*45 0*03776 -0*0090111 0*000541930

The values of these emperical constants were obtained by the 
method of least squares, using the program given in Appendix B.2, 
from the data tabulated in ref• (18),
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C H A P T E R  3

Relationship between the transport properties 
of aqueous cadmium iodide solutions and the 
degree of self-complexing in these solutions.
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Introduction

Chapter 2 was devoted to the analysis of the 
stability constants of Group IIB metal halides in 
aqueous solutions (particularly zinc chloride and cadmium 
iodide) from which the concentrations of the free and 
complexed ions may be computed at a given salt concentration.

This present chapter deals with the problem of 
the transport behaviour of such self-complexed salts.

In any discussion of the transport properties 
of an ionic solution both the concentrations of the 
component ions and their mobilities must be known.
The basic treatment of such transport process is 
discussed in terms of irreversible thermodynamic theory.

It is shown in the theoretical section that the 
binary mobility coefficients of a self-complexed salt 
can be expressed as summations of the mobility and 
coupling coefficients of individual ionic components: 
that is, the free ions themselves and such complexes 
as exist at any concentration. This analysis can be 
used to predict firstly the mobility coefficients 
which characterise the system and then transport properties 
which are usually measured in the laboratory, equivalent 
conductance, transport number and salt diffusion 
coefficient.

The method of calculation is based upon Pikalfs 
analysis,1 which is, in reality, a re-statement of the 
classical /
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classical theories of Fuoss and Onsager in macroscopic, 
irreversible thermodynamic terms. As such it retains 
the inherent limitations of that analysis and is only 
precise when the electrolyte to which it is applied is 
at very low concentration.

With this limitation in mind the predictive cap
abilities of the theory have been applied to the aqueous 
cadmium iodide system. Cadmium iodide is the most 
complexed of the halides of the Croup IIB metals in 
dilute solutions. Its transport properties are quite 
anomalous when compared to dissociated 2:1 electro
lytes. In particular, it is characterised by a transport 
number for cadmium which decreases rapidly with
concentration and, at 0.28 mol. 1”^, becomes zero and

2subsequently negative. Equivalent conductance and
salt diffusion coefficients are also abnormally low.

■3Earlier, experimental studies by Paterson et al 
have provided both measured transport data and the 
mobilities and coupling coefficients for this system 
in the concentration range 0.05 - 0.6 mol. 1”^. There 
are therefore sufficient data from experimental sources 
to test any predictive theory. Equally since the theory 
must be limited to application in the dilute 
concentration range 0.0 - 0.05 mol. 1"^ cadmium iodide 
is again the most suitable test system. Zinc chloride, 
which has also been investigated by Agnew and Paterson,^- 
is much less complexed in dilute solutions and shows 
inversion of the sign of the transport number for zinc 
only at 2.0 mol. 1"^.
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3.1 An Irreversible Themodynamic Treatment of a 
Self-Complexing System

The aqueous cadmium iodide system has been
treated as a binary electrolyte in which the net flow
of cadmium and iodide were expressed as functions
of their conjugate thermodynamic forces, X-̂  and 

3respectively. These forces are defined as the negative 
gradients of the electrochemical potentials of these 
species under the experimental conditions of transport.

Prom the dissipation function, $ , equation (3.1), 
linear phenomenological equations may be obtained, 
equations (3.2),

$ = J 1 X1 + J2 X2 £ 0 3.1

(The flows, here are obtained on a solvent-fixed frame 
of reference)

J1 " L11 X1 + L12 X2

J2 = L21 X1 + L22 X2

3.2

These equations show that the flow is influenced 
not only by its conjugate force X-̂  but also by the 
non-conjugate force (in this case the thermodynamic 
force on iodide, X^). The transport properties of 
any solution are therefore determined by the mobility 
coefficients , 1^2 and ^ 2  = ^21 i'*ia‘t solution.
This /
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This latter equality is obtained from the Onsager 
Reciprocal Relations. These coefficients are functions 
of concentration and it is only from an examination
of the factors which determine their magnitude that a
true understanding of the transport phenomena may be 
obtained.

When the flows, , and forces, , are expressed
-2 -1 -1 -1as mol cm s and J mol cm , respectively, the

2 -1 -1 -1units of are mol cm s J
Although this representation is mathematically

rigorous, it provides little insight into the factors
which influence transport properties in a self-
complexed system such as cadmium iodide. In
qualitative terms the observation that the transport
number of cadmium may become negative in concentrated
solutions (^0.3 mol. 1~^) can only be understood by
considering the influence of increasing proportions of

-  2-negatively charged cadmium complexes Cdl^ and Cdl^ 
upon the net flow of cadmium in an electrical experiment. 
The theory presented below therefore deals explicitly 
with the individual species in solution and the 
forces upon these species.

Consider an electrolyte containing six solute 
species, i=a,l,2,3,4,b in a solvent. Using a solvent- 
fixed frame of reference, the dissipation function,
$ , may be expressed as the sum of the products of the 

solvent-fixed flows, and their conjugate forces x^ ,
equation (3.3).

$ = /
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Under conditions close to equilibrium phenomenological 
equations may be defined which express the flows j.. 
as linear functions of all the forces in the system, 
equation (3.4).

4 ^aa 4l 4 2 4 3 4 4 4 b xa

h ^la 4l *12 4 3 4 4 4 b X1

h <2a 4 l *22 4 3 4 4 4 b x2

h 3̂ a 4 l *J>2 4 3 4 4 4 b
•

x^

h 4  a 4 l *4 2 4 3 4 4 4 b X4

h 4 a 4 l 4)2 4 3 4 4 4 b xb
3.4

The direct mobility coefficients, , express the
contribution of the conjugate force, x^ , upon the flow 
j^ (as x^). However, all the remaining (non
conjugate) forces also influence the flow of species i 
by coupling. The terms 4 ^  x̂ . therefore represent 
the contribution to j^ of a force on species k.
Since /
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Since by the Onsager reciprocal relations ,
the system is described by 21 mobility coefficients.

If this system represents a self-complexed elect
rolyte, as for example cadmium iodide, then certain 
additional limiting conditions apply. The six species
a,l,2,3,4 and b are identified as Cd^+ , Cdl+ , C d ^  ,

-  2-  -Cdl^ , Cdl^ and I , respectively.
A basic postulate of irreversible thermodynamics 

is that, even in a system in which there are gradients 
of free energy, there may be chosen a volume element 
in which local equilibrium may be assumed. The 
restriction to the lower volume limit for such a postulate 
is that the element, although small on a macroscopic 
scale, should contain sufficient molecules to 
define a local temperature, pressure or chemical 
potential without undue statistical fluctions.
This condition is known to be obeyed when the macro
scopic gradients of chemical potential are small and 
the true system as a whole is close to equilibrium. 
Applying this postulate to the self-complexing system 
then local equilibrium between the complexed species 
must be assumed, equation (3.5).

^i = + 1 %  (1=1,2,3,4) 3.5

In equation (3.5) represents the electro-chemical 
potential of the species i. (Since for the neutral 
species 2, C d ^  there is no charge, chemical and 
electrochemical /
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■electrochemical potentials become identical)*
Since the forces, x^ , of equation (3.4) are 

the local gradients of chemical potential ( - d 1} ̂  /
from equation (3 .5 ) a series of force relationships
are obtained, equation (3.6 ),

x^ = x& + i x^ where i=l,2 ,3 ,4 3 .6

If the total flow of cadmium and iodide are defined as 
and Jg as in equation (3.1) and (3.2) then:

4
® 2a + ^i + dg + ^3 + ^4 = 2  3.7

i—a

and

4
J2 = ii + 2^2 + ^ 3  + 454 + jb = 2  i + 3b

Substituting equations (3.6), (3.7) and (3.8) into the 
phenomenological equations, equation (3.4 ), the binary 
representation corresponding to equation (3.2 ) is 
obtained where:

J1 s L11 xa + L12 xb
3.9

J 2 = L21 xa + L22 xb

In equation (3.2), the thermodynamic forces on free
cadmium and iodide ions are defined as X^ and X2 ,
identified /

dx ),

3.8
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identified as x& and x^ in equation (3.9). Equations 
(3.2) and (3.9) are thus identical and the binary 
coefficients may be expressed as summations of the 
mobility coefficients of the complexes in the solution, 
equations (3.10) to (3.12).

L11 * "aa + "al + "a2 + "a3 + â4

+ 4 + 4  +  4  +  4 + 4la + 11 + 12 + 13 14

+  * + / „ + /  + 4 + 4+ 2a 21 22 23 24 3.10

+  4  + 4 + 4  + 4  + 4+ 3a + 31 32 33 34

+  4  + 4  +  4 + 4  +  4+ 4a + 41 42 43 44

I,o = L, ^al + 2 â2 + 3 â3 + 4-fa4 + ^ab

+ + 2 ̂ 12 + 3 ^13 + 4^i4 + ^ib

+ * 21 + 2^22 + 3^23 + 4-f24 + -^b 3.11

+ + 2^32 + 3^33 + 4^34 +

+ *41 + 2^42 + 3'f43 + 4-(44 + ^ b

and /
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and L22 = ^  + 2^12 + 3^13 + 4 ^  + ^ lb

+ 2-^i + 4-^2 + 6-̂ 2j + 8 ̂24 + 2 2̂b

+ 3'<’31 + 6^j2 + 9^33 +12^34 + 3 <jb 3>12

+ 4 < n + s A ,  +12 < ,  +16-f., + 4<,v 4-1 42 43 44 4b

+ A>1 + 2A>2 + 3 ̂3 + 4-fb4 + ̂bb
In these equations the coefficients by the
Onsager reciprocal relations.

The values of and L^  obtained
experimentally are complicated functions of 
coefficients. In the absence of complexing, equations 
(3.10), (3.11) and (3.12) would become L-, n = ^ QQ ,X JL a a

L12 = I ^  = and I ^  = * T^e exPerimentally
measurable transport properties, equivalent conductance, , 
transport number of cation, t^, and 1volume-fixed * salt
diffusion coefficient, Dv for a given electrolyte are
related to the mobility coefficients by the relations:

A  = ( cr • 103 F2) / N 3.13

2,\  ^2 I»2]_ ) / Cf 3.14

Dv - /
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103 E T r 
Dv = ----------- (1 + din y / din m)

C
✓ 'v
IZ1 z?l (Ln L22 - L12 L21) / a
rl r2

3.15

2 2where ol =? ^zq ^11 Z2 "̂ 22 ^1 ^2 "̂̂ 12 "̂ 21̂  ^

In equations (3.13) to (3.15) the dimensions of A  and
2 - 1  _i 2 -1Dv are cm ohm *“ equiv, and cm s respectively.

Molar, molal and normal concentrations of the salt are 
denoted by C, m and N, respectively. The stoichio
metric coefficients for the salt are r^ and r2 for
cation and anion respectively and r - r, + r2 , In
the *Activity term* of equation (3.15), 7 is the mean 
molal activity coefficient of the salt.

It is now obvious that the binary coefficients 
can be represented as summations of the mobility 

and coupling coefficients defined on the basis of a 
prior knowledge of the complex species and their mobilities 
in a complexed electrolyte solution.

In principle therefore, any theoretical method 
of evaluation of the coefficients of equation
(3.4) would allow prediction of the measured transport 
data using equations (3.10) to (3.15).
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3•2 Experimental

3.2.1 Measurement of Conductivity
Conductivity measurements were made in the dilute 

solution range 0.001 - 0.1 mol. 1"^ of cadmium iodide. 
The design of the cell used was similar to that of 
Jones and Bollinger. A schematic diagram of the
cell is given in Pig. 3.1. The bulbs incorporated 
in the filling tubes facilitated rinsing and filling 
the cell.

The electrodes consisted of 16 mm platinum disks 
connected to platinum wires sealed into the glass 
side tubes. The side tubes were filled with mercury. 
Electrical contact with the conductance bridge was 
then made with short pieces of thick copper wires 
dipping into mercury.

3.2.2 Platinisation of Electrodes
The effect of polarisation was minimised by 

platinising the electrodes by the method recommended
7by Jones and Bradshaw. The platinising solution

was 0.025 molar hydrochloric acid containing 0.3 %
platinic chloride and 0.025 $ lead acetate. A current 

__2of 10 mA cm supplied by a Solartron P.S.U. AS 1413 
constant current source was used. The polarity of 
the electrodes was reversed every ten seconds by an 
electronic switching device. The cell, after 
platinisation of the electrodes, was thoroughly washed 
with /
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Copper Contacts

Mercury

Platinum
Electrodes

Glass Seal Araldite

Pig, 3*1—  Conductivity Cell
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with distilled water and was always stored filled with 
it.

3.2.3 Constant Temperature Bath
A light mineral oil bath was used for temperature 

control. The bath was fitted with a toluene-mercury 
coiled glass thermoregulator, connected with an 
electronic relay and a 40 watt electric bulb as a source 
of heat in the bath. Cooling was achieved with 
controlled circulation of cold water through a coiled 
copper tubing immersed in the oil. The bath oil was 
vigorously stirred with a paddle stirrer attached to 
an electric motor. The bath was installed in a room 
maintained at 25° - 1°C and by adjusting the heating, 
cooling and stirring rates, the bath temperature was 
maintained at 25°C with temperature fluctuations less 
than ± 0.003°C. Temperature was recorded with an 
E.Mil Standard Thermometer, model K14047, calibrated 
to N.P.L. standards.

3*2.4 The Conductance Bridge
Conductance measurements were made using a Y/yne- 

Kerr digital autobalance precision bridge, type B-331.
The bridge had a special * lead eliminator1 circuit which 
eliminated errors in resistance caused by the use of 
connecting leads. Measurements were made at a frequency 
of 1591.55 Hz.

3.2.5 /
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3.2.5 Calibration of the Conductivity Cells
The two cells in use were calibrated with 0.01,

0.1 and 1.0 demal solutions of potassium chloride by
7the method due to Jones and Bradshaw. Potassium 

chloride used for preparation of calibrating solutions 
was recrystallised twice from distilled water, dried 
at 130°C and stored over silica gell in a vacuum desiccator. 
The weights required for preparation of the standard 
solutions, with the corresponding specific conductances, 
are given in table (3.1). All weights were 
corrected for buoyancy of air.

Cell I with a cell constant of 35.801 was used 
for measurements of conductivity of dilute solutions 
(less than 0.1 mol. 1"^) and was calibrated with 0.01 
and 0.1 demal solutions of potassium chloride. Cell II 
(cell constant, 87.265) was calibrated with 0.1 and 1.0 
demal solutions of potassium chloride and was used for 
solutions above 0.1 mol. 1"^ (zinc chloride analysis,
Chapter 2). The cell constants were periodically 
checked and remained constant within 0.1$.

3.2.6 Measurements of Conductivity of Cadmium Iodide 
Solutions

Analar cadmium iodide supplied by Kopkin and 
Williams Ltd., England, was used for preparation of 
the stock solution. Conductivity water was prepared 
from water, distilled in an all Pyrex glass apparatus, 
by first boiling and degassing with a suction pump 
and /
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Table 5.1

Weights of potassium chloride in vacuo and the 
specific conductances required for calibration of 
the conductance cell.

conc. Wt. of KC1 Wt. of Sol. K (ohm-1 cm"1 )sp N '

1.00 D 7.11352 100 g 0.000342

0.10 D 0.741913 100 g 0.012856

0.01 I) 0.0745263 100 g 0.0014087
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and then saturating with purified nitrogen. The 
stock solution was standardised with EDTA hy a similar 
method as described in Chapter 2, for zinc chloride 
analysis. Further dilutions were made by weight- 
dilution technique. The apparatus shown in Fig. 3.2 
was used for purification of nitrogen and direct 
transfer of solution to the conductivity cell under 
the pressure of nitrogen. The cell was flushed 
several times with a few ml of solution before final 
filling was accomplished. It was placed in the oil 
bath to equilibrate to temperature for about half an 
hour. Readings were then taken every five minutes 
until no change in successive readings was observed. 
The specific conductance, Kgp , was then calculated 
from the relation:

where k is the cell constant and R the measured resistance. 
The equivalent conductance, A  » was calculated from:

A  = 1000 K / Nsp '

N, being the concentration in equivalents per litre.
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3.3 Results and Discussion

The results of conductance measurements in the 
concentration range 0.001 - 0.1 mol. 1”^ are given in 
table (3.2).

In Section 3.1 of this chapter it was shown 
that the binary coefficients , for cadmium iodide
system, may be expressed as summations of mobility 
and coupling coefficients, individual
complex species, equations (3.10), (3.11) and (3.12).
Prom a prior knowledge of the stability constants for 
cadmium iodide, Chapter 2, the concentrations of the 
individual complex species present in solution may be 
obtained. Using these constants an attempt was made 
to evaluate the coefficients via Pikal theory.'*'
This would allow prediction of all the transport properties 
of aqueous cadmium iodide, including the equivalent 
conductance, which might then be compared with the 
experimental data for this system.

3.3.1 Application of Pikal!s Theory to a Self- 
Complexing System

Pikal ^ has used the classical transport theories 
of Puoss and Onsager to obtain expressions for mobility 
coefficients and has shown clearly the dependence of 
these coefficients upon the concentrations of the ionic 
species present in solution and their mobilities at 
infinite dilution. The treatment is not confined to 
simple binary electrolytes, which are completely 
dissociated /
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dissociated in solution, and so may be used to evaluate 
the coefficients of equations (3*10) to (3*12).
The expressions for in terms of ionic conductances
at infinite dilution are given below.

10 12 ^ii 
■ C, 0*10740

0
h i

Zil

0*10740

and

✓
( V ) 2 / zf

S  H  °Xi / M
d _  n.) Aii + z f  n ±

(i-k)

o* 1 0 7 4/ |ik

3 * 1 6

(°Xi / U J k V  / |zkl)
s Hi °xi / |zj

S

Aik - Bo 1 2 <zi zk>
S

(i *  k) 3*17

The ionic strength fraction, |i ̂  , is defined as 
P’i = Z^ / 21 , where I is the true ionic strength 
and and Z^ are the concentration and charge, respectively, 
of the species, i, present in solution. The term 
involving is due to the relaxation effect, with

« 0*22962 | Z^ | (after substitution of the numerical
values for the appropriate constants).
The electrophoretic effect is given by the term 
associated/
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associated with Bq , where Bq/2 = 30.2475.
Pikal’s own calculations have shown that these 

expressions, equations (3.16) and (3.17), adequately 
estimate the direct mobility coefficients and
L22 o f dissociated 1:1 electrolytes and give a rather 
better estimate of the interionic coupling coefficients 
L^2 above the concentration limits for the validity 
of the limiting theory of Fuoss-Onsager.

In applying the Pikal representation to the 
present problem of cadmium iodide system, the aims 
were not to achieve quantitative prediction of the binary 
coefficients , L22 an<l ^ 2  °'u'k
whether this method of analysis would faithfully 
reproduce the abnormal concentration dependence of 
these parameters and the measured transport number, 
conductance and diffusion characteristics.

In the Puoss-Onsager theory and consequently 
in Pikal’s analysis there is no satisfactory method 
for estimating the direct mobility coefficients ^ 2  

(for the neutral complex, Cdl^ ) or the associated 
coupling coefficients, . This analysis therefore
omits these terms.

3.3.2 Optimisation of the Values of Eauivalent
Conductance at Infinite Dilution. * i , for 
the Complex Species present in aqueous Cadmium 
Iodide Solutions 

Prom equations (3.16) and (3.17), it is obvious
that /
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that a complete mathematical analysis would require a
knowledge of the concentrations of the individual
complex species, i , present in solution and their

0
ionic conductance at infinite dilution, ^ i .

Earlier analysis of potentiometric data for
cadmium iodide (Chapter 2) provided the refined values
of stability constants for the complexes between
cadmium and iodide.

A computer subroutine was written to generate
2+  -the concentrations of free Cd , I and the complex

+  2 -  species, Cdl , Cdl^ , Cdl^ and Cdl^ in the
required concentration range (0.001 - 0.1 mol. 1“^)

qby the method of Reilly and Stokes described in
Chapter 2; utilizing the four stability constants
and the given activity coefficient parameters,
Appendix C, Subroutine PA.THAN. The remaining problem,
however, was to estimate the ionic conductances at
infinite dilution for all the ionic entities present

8 0in solution. The values of 53.5 for X n ,2 + and 
02 + 76.8 for X j -  are well known, but those of Cdl ,

-  2-Cdl^ and Cdl^ must be estimated by an optimisation 
procedure. This was accomplished as follows.

For the chosen experimental concentrations in 
the range 0.001 - 0.01 mol. 1”^ , the concentrations 
of the individual complex species were calculated by 
subroutine PATHAN. These were inserted into equations 
(3.16) and (3.17) with ° X cd2+ and ° X j- fixed at 
53.5 and 76.8 respectively, with guessed values for 
the /
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the ionic conductances, . , of the remaining three
+  -  2-complexes, Cdl , Cdl^ and Cdl^ • The calculated

^ik coefficients from equations (3.16) and (3.17) 
were used to obtain the binary mobility coefficients 
L n  , L^2 and ^22 ^rom equations (3.10) to (3.12).
These binary coefficients have been shown to be 
related to the equivalent conductance, A , by 
equation (3.13) reproduced below.

A = ( Z? Ll;l + z\ L22 + Zx Z2 2 L12 ) P2 105

3.13

Equation (3.13) thus allowed calculation of a value 
for the equivalent conductance, A , for the given 
concentration. A standard NAG subroutine (E04FAF, 
Nottingham Algorithms Group, Document No. 329, 1972) 
was then used to minimise the sum of squares of the 
deviations between the calculated and the experimentally 
measured equivalent conductance, over the concentration 
range 0.001 - 0.01 mol. 1”\  by adjusting the 
unknown parameters, °x CdI+ , °X cdI" and cdj2- .

The method of optimisation is thus solely based 
upon the conductance of dilute solutions, precise exper
imental measurements of which are easily made. 
Furthermore, the terms in and cancel in
the expansion of the expression for the equivalent 
conductance in terms of ionic coefficients, ,
equations /
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equations (3,10) to (3.13). This means that the neutral 
complex species, C d ^  , does not contribute in any 
way to the electrical conductance. (This is an 
assumption which is often made in electrochemistry, 
but has not been proved by mathematical analysis.)
For our purpose, however, this method is probably 
suitable since the optimised ^X j_ are in no way 
influenced by the omission of terms due to the
lack of theory regarding the coupling and mobility 
coefficients of a neutral species in an ionic 
medium.

The complete computer program, incorporating 
the subroutines PATHAN and E04FAF is given in 
Appendix C . The program is capable of calculating 
the equivalent conductance, transport number and 
diffusion coefficient, for the given concentrations, 
after evaluating the coefficients and the binary
mobility coefficients, L ^  , by optimising the 
values of ^ X ̂  for the five ionic species involved 
or for any arbitrarily fixed values of ^X j_ • 
transport number and diffusion coefficients being 
calculated from equations (3.14) and (3.15), respectively.

Before discussing the results of optimisation of 
the ionic conductances at infinite dilution for the 
complex species present, a mention will be given to 
the concentrations of these species and their 
relative proportion in solution. In table (3.3)

2+are listed the values of concentrations of free Cd , 
free /
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free I~ and the four complex species Cdl+ , C d ^  ,
2-Cdl^ and Cdl^ , over the concentration range 0*001 

- 0*5 mol. 1 . In Figs. 3*3 and 3*4 the distribution
of the free and complexed ions are shown as a function 
of the total cadmium and total iodide respectively.
Figures 3*3 and 3*4 immediately reveal the fact that the 
dominant species is the Cdl+ over almost the entire 
range of concentration. At 0*01 molar a maximum of 
60 % of the total cadmium is present as Cdl+ , only 
thereafter do the concentrations of the higher 
complexes become significant.

In the optimisation procedure it was found that 
the experimental values of equivalent conductance could 
be reproduced, within 0*5 % , only if ^X 0^2+ was also 
allowed to ’float1 up to 57*8 compared to the literature

Qvalue of 53*5 . Otherwise, to attain this degree of 
accuracy, the computer subroutine assigns unrealistic 
values to ^X (1°w , -22) and °^cdl^~ (hig*1* — 150).

The reason is most probably due to the limiting 
validity of Pikal theory and the relatively lower

2-proportion of the complex species Cdl^ and Cdl^
compared to Cdl+ in the concentration range
0*001 - 0*01 mol. 1~ 1 , Figs. 3*3 and 3*4.

The value of ^X q ^j+ obtained (33*51), however,
was found to be rather insensitive to the guessed
values for ^ X n .T” an(i • This reflects theCdl^ Cdl^
secondary contribution of these higher complexes 
in /
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in such dilute solutions#
With the above mentioned limitations in mind, 

constrained optimisation was performed in which 
^ X Qd^+ an<* ^ ̂  i“ were fixed at their literature 
values of 53.5 and 76.84, respectively, and the values

0f ° * Cdl+ ’ °^Cdl“ and Cdl2" were allowed to 
float within chemically acceptable limits. In 
consequence, the values of measured equivalent 
conductance could only be reproduced to 2-3$. The 
optimised values of ^X  ̂  are given in table (3.4).

The value of 33.51 obtained for the ionic 
•conductance at infinite dilution of the complex species 
Cdl+ appears to be lower than for the common uni
valent cations (Ag+, Cs+, Rb+, K+, Na+ etc.)

2
but is close to Li ion (38.68). It may be worth
mentioning here that a value as low as 22.0 for ^^cdl*
has been suggested by McBain, Van Rysselberge and
Squance^ in 1931.

The equivalent conductance at infinite dilution
2-for the complex species Cdl^ and Cdl^ are, however,

—  2—similar to those of 10^ and C0^~ (40.5 and 69.3 
respectively).

3.3.3 Calculation of the Coefficients and
Prediction of the Transport Properties in dilute 
solutions of Cadmium Iodide 

The irreversible thermodynamic mobility and 
coupling coefficients, L ^  f°r aqueous cadmium iodide, 
in /
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in the concentration range 0.05 - 0.6 mol. l”^ f are 
available from the experimental transport data of 
Paterson, Anderson and Anderson.^ In Pigs. 3.5 (a, b 
and c), these coefficients, ^13/N * an^ L22/N

are reproduced as a function of the square root of 
concentration, N • The values of the intrinsic 
mobilities, L ^ / N  and I ^ / N  at infinite dilution, 
were calculated from equation (3.18) given below.

  =   i = 1, 2 3.18
N | Zi |2 10)3 P

N — ► 0

Where . is the limiting ionic conductance of
1 8 2 cadmium ion (53.5) or iodide ion (76.84). The

infinite dilution value of the coupling coefficient,
L ^ / N  is known to be zero, as for any other
electrolyte system.

Prom Pig. 3.5(c) it appears that in the region
of discontinuity between experimental and infinite
dilution value, I ^ / N  will pass through a minimum
at a concentration below 0.05 mol. 1“^ and there is a
possibility that might behave similarly, Pig.
3.5(a). Experimental evidence in support of these
assumptions is not available due to the lack of
reliable data in dilute solutions, in particular, those
for the salt diffusion coefficients and transport
number. /
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number. An attempt was therefore made to investigate 
these minima by theoretical evaluation of the mobility
and coupling coefficients, , in the concentration
range 0.003 - 0.06 mol. 1”^. The method of calculations 
described in the previous section was used once again,
except that the values of ^A ̂  for the three complex

+  _  2-species Cdl , Cdl^ and Cdl^ were now held
constant at their optimised values, table (3*4).

The results of these calculations are given in 
table (3*5) where the predicted transport properties, 
equivalent conductance, transport number and salt 
diffusion coefficients are also listed, up to an 
increased concentration of 0.1 mol. l“\

The calculated binary mobility coefficients are 
shown graphically in Pig. 3.5 (a, b and c), together 
with the experimental values of an<̂
L22 / ^  • These figures show pronounced minima in both 
L ^ / N  and I ^ / N  which could only be implied 
previously. It must be stressed, however, that the 
calculated binary coefficients, , are subject to
increasing inaccuracies, as concentration is 
increased, due to the intrinsic limitations of Pikal 
theory. Nevertheless, these predicted coefficients 
and the derived estimates of measurable transport data, 
shown in Figs. 3.6 (a, b and c), are remarkably good.

3.3.4 /
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3.3.4 Effect of Variations of ^ X ^  » from their 
Optimised Values, upon Predicted Transport 
Properties and Binary Mobility Coefficients 

Having illustrated the predictive capability of 
the theory in solutions far above the concentrations 
used for estimation of ^X  ̂  values (Section 3.3.2) 
it was of interest to investigate the effects of 
arbitrary variations from the optimised values of

° ^ C d I + * °^CdI” and ° ^ C d I 2 ’ uP°n ’b h e  calculated3 4 ,transport properties and binary mobility coefficients.
In preliminary calculations it was found that

the transport parameters and, in particular L-q  , were
sensitive to relatively small variations, of the order
of two units of conductance, in ^ ^ c d l + * Such
small variations in ^X  ̂  for the complex species

-  2-Cdl^ and Cdl^ , however, were found to have
little effect upon the transport properties.

A scheme of calculations was therefore adopted, 
in which the value of ^ A ^  f°r a given species, i, 
was raised and lowered by suitable units, while all 
others were fixed at their optimised values. The
exact values used are given in table (3.4). The
calculated transport properties and coefficients,
using the six sets of ^A ̂  values (table (3.4), sets
2-7)* are given in tables (3.6) to (3.8). The relative
sensitivity of the Lik ' coefficients, equivalent 
conductance, cationic transport number and the salt 
diffusion coefficient to changes in ^A ^ is shown 
in /



101

in Pigs, 3.7 (a,b,c) to 3.12 (a,b,c). In these
3 11figures the experimental values of transport number *

3salt diffusion coefficients and the derived
3coefficients have been retained for the purpose of 

comparison. The experimental values of the 
equivalent conductance, are those measured in this 
work.

Figures 3.7 (b,c) indicate that the parameters 
L12/N , I ^ / N  an(l ^he equivalent conductance, A  ,
Pig. 3.8(a), are relatively insensitive to variations 
in ^ \ c d l+ (3.4), sets 2 and 3). The
intrinsic mobility for cadmium, however,
most sensitive to even such small variations in 
^ ^Cdl+ 3.7(a). In consequence, measurable
transport data (transport number and diffusion 
coefficient) are also subject to large variations,
Pigs. 3.8 (b,c). In addition, it may be observed 
that although the higher value of (35.0)
gives a better agreement with the experimental 
transport number, Pig. 3.8(b) the lower value (30.0) 
is more favourable for the salt diffusion predictions, 
Pig. 3.8(c). The optimised value of ^ \ (33.51)
provides, as would be expected, a compromise between 
the two limits.

The optimised values of ^ X Cdl~ an(* ^ ̂  Cdl^“3 4were 39.70 and 68.67, respectively, and to test the
sensitivity of calculations upon variations in these 

Cdlparameters was varied by approximately -  10
units /
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units and ^ X Cdl^~ ^  ^  units. The exact values
4

are given in table 3,4 (sets, 4-7). The results of
these calculations are given in table (3.7) to ('3.8)
and are shown graphically in Pigs. (3.9) to (3.12).
In the most dilute solutions where neither complex is
present to significant proportions the calculated
transport parameters are insensitive to such
variations in ^ X j- and ^ X j2- . They

3 4therefore affect the transport predictions only in
the higher concentration range above 0.01 mol. 1”^.
Once more the essential validity of the optimised

values of ^ ̂  cdl” an(* ^ ̂  Cdl^“ "*"s o1:)vious* ^3 4is noted, however, that lower values of the
conductances for these species raise the transport 
number, t^ • This is the reverse of the observation 
for ^x Qai+ • This effect is obvious, since larger 
mobilities of the two negatively charged cadmium con
taining species will increase the anodic migration of 
cadmium. However, in diffusion where both positive 
and negative complex species flow concurrently an increase
in either ^ X or increase the

3 4overall mobility of the salt and hence increase
diffusion coefficient.

3.3.5 Percentage Contribution of the Coefficients
to the Binary Mobility Coefficients. ,
1^2 and ^22 

It may be recalled that in section (3.3.2) the
component /
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component coefficients, , which define the binary
mobility coefficients, , were calculated as a
necessary step in the assessment of the optimisation 
procedure for predicting the cadmium iodide transport 
properties. The complete matrices of the 
coefficients, calculated over the concentration range 
0.003 - 0.06 mol. 1"^, are given in table (3.9).
Prom this table it is obvious that certain cross 
coefficients are positive and other negative in sign.
Prom the basic theory of irreversible thermodynamics 
the direct coefficients, , must always be
positive, since a force, x^ , on a species, i, will 
cause a flow always in the direction of x^ •
Equally since the dissipation function, $ , equation
(3.1), must always be positive or zero the additional 
condition 5  ( ^ik^ obtained.
This allows that the cross coefficients may be positive 
or negative.

An examination of Pikal's equation for ^ik U A ) ,  
equation (3.17), shows that when ions of the type i
and k have opposite signs, is positive but
is negative if the two ions have like signs. This is 
caused by the dominant electrophoretic term which is 
either positive or negative depending upon the sign of 
the term - (Bq/ 2) . In a dissociated binary
electrolyte, the ions i and k have opposite charges
and the coefficient, , will always be p o s i t i v e ^
In a complexed system, however, the sign of the 
coefficient, /
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coefficient, , will always depend whether the
complexes have similar or opposite charges, table (3 *9 )# 
At infinite dilution cadmium iodide is completely 
dissociated and the direct coefficients L-^ and 
are identical to the ionic coefficients, f  andcl cl D D

respectively, while the coupling coefficient is
zero, because there can be no coupling between ionic
species at infinite dilution. At concentrations where
complexing becomes significant (Pig. 3.3) the direct
mobility terms will include , *^ 3 an(*
f AA (in addition to and I , ,  ), and non-zero44 aa bb ’
coupling coefficients between various combinations of 
the ionic species will also be taken into account.
The magnitudes of all are determined by the 
concentrations and mobilities of the ionic species 
according to equations (3.16) and (3.17).

Since the binary mobility coefficients, ,
are strongly dependent upon concentration, the percentage 
contributions of 4 ^  to L-q , an(l 1^2 were
calculated over the range 0 .0 0 3 - 0.06 mol. 1“^ of 
cadmium iodide. These percentage contributions are 
given in tables (3 .1 0 ) to (3 .1 2 ) and are also displayed 
in Pigs. 3.13 to 3.15 . To facilitate discussion 
and graphical representation the positive and negative 
^ik coupling coefficients have been tabulated and
displayed as ^+mm an(* 2  ( ^ + + + ^__) respectively;
this is largely because of the number and in some 
cases the small magnitude of the coefficients involved.

h i  . /
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I n  , contributions
The percentage contributions of the component 

mobility coefficients, , to L-^ are shown in
Pig* 3.15. At the most dilute concentration for which 
calculations have been made the sole significant
complex is Cdl+ (46$) and its direct mobility, ;
amounts to 59$ of while contribution due to
cadmium ion itself ( )  is reduced to 44$, table (3.10).gLgL

-  2-The higher complexes Cdl^ and Cdl^ are present
to a trace level and contribute no more than 0.5$
( t  + / ). The positive coupling coefficients,

2  ^+_ (equal to 2 ( 4 a + 4 a + 4 l +  ̂ involve
only coupling between Cd (or Cdl ) with the higher

-  2 -negatively charged complex species, Cdl^ and Cdl^
As these higher complexes have negligible small 
concentrations, S  amounts only to 0.05$. What 
is, however, most interesting is that because Cdl+ 
is the major complex, the coupling coefficient between 
this species and free cadmium ion, , is negative
and contributes -3.7$ to the total L-q  • (The 
potentially negative term is zero at this
concentration.)

Thus in dilute solutions the direct mobility 
coefficient, , is determined almost entirely by

4 a  ’ 4 l  and 4 l  •
As concentration is increased, complexing becomes 

more pronounced and, as can be seen from Pig. 3.13,
, the direct mobility coefficient, decreases

Cl Cl

continuously /
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continuously over the range of concentration as free 
2 +Cd ions are removed "by formation of the higher 

complexes.
The major contributor to , however, still

remains, , the direct mobility coefficient for the
complex species Cdl+ • At 0*01 molar it contributes
a maximum of 76$ and even at highest concentration
(0*06 mol. 1"^) 59$ of the total L-q is due to this
coefficient, table (3 .1 0 ).

The direct mobility coefficients for the complex
2 -species Cdl^ and Cdl^ increase from zero and it

is seen that ^ 3  makes a larger contribution to
than . . This is a concentration effect since 44

is smaller than ° \ n ,T2- .
The negative coupling coefficients 2 (^+_+ ^__  )

are still largely due to £  which alone amounts to
-7$ at 0.06 mol. 1“^. The remainder -0.8$ is due to

2 0coupling between Cdl^ and Cdl^” , 3 4*
Positive coupling coefficients at the highest 

concentration calculated now contribute 14$ of the 
total , made up almost equally by contributions

from f ^ 3  an(* ^14 # conse<luence»
over the whole range of concentration, the value of 

is largely dependent upon the summation of
direct ionic coefficients ( n and 4 AAv aa ’ 11 9 33 44
and the cross or coupling coefficient contributions 

amount to between -6$ and +6$ of the total, depending 
upon the degree of complexation.
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^12 9 con^r -̂1:iû ions i“
As has been noted above, the binary mobility 

coefficient is zero at infinite dilution.
The formulation of L ^  as a summation of ionic coupling 
coefficients, equation (3 .1 1), shows that in a 
complexed system the direct coefficients , 3 ^ 3

and 4 * .  A contribute. This is, of course, quite 
unlike the situation in a dissociated electrolyte.
If cadmium iodide were completely dissociated 
would equal f. • It is observed that the positive 
interionic coupling terms ( S ^ + ) are much larger 
than the negative (2 ( O  )• Together they
amount to some 14-18$ of the total over the concentration 
range, table (3.11). The coefficient which
is 14$ of L^2 a"t 0.003 molar reduces to 3$ at 0.06 
mol. 1"^. The major contribution to is once
more which is maximum at 0.003 mol. 1~^ (83$)
and decreases thereafter, Pig. 3.14. The direct 
coefficients for the higher complexes ^ 3  and 
make little contribution in dilute solutions but at 
the highest concentrations both are significant, 
especially the contribution, which, at 0.06
mol. 1""̂ , amounts to 37$ and is larger than that of 
*n  (33$) or (12$), table (3 .1 1 ).

The observed values of f°r complexed
electrolytes are found to be exceptionally large when

3compared with fully dissociated salts. What becomes 
obvious from this analysis is that this abnormally 
large /
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large L-^ is iue i° contributions of the direct
mobilities , ^^33 an^ ^^44 in binary
terms would be interpreted as a cross-coefficient 
dealing with coupling between ions, only.

L22 * contributions
Table (3.12) lists the percentage contributions 

of to L22 9 a graphical representation of which
are displayed in Fig. 3.15. At infinite dilution 
the coefficient equals and, at the lowest
concentration for which calculations have been made 
(0.003 mol. 1”^) ^ i-s still the major contributor 
to L22 amounting to 87$, table (3.12). Only 12$
is due to the mobility of the dominant complex Cdl+
( ). Interionic coupling, 2  , makes up the
remaining 1$ and is due almost entirely to coupling 
between iodide and Cdl+ ( ^bl). As concentration 
is increased, decreases due to removal of free
iodide from solution, Fig. 3.15. The mobility of 
the Cdl+ species remains almost constant, but shows
a small maximum (16$) at 0.01 molar. The emergence

-  2 -of Cdl^ and Cdl^ complexes is reflected in the
increasingly important contributions of - ^ 3  an<* ^44 • 
Once more the percentage contribution of ^ 3  is larger
than ( ,  This is observed in spite of the lower

-  2-ionic conductance of Cdl^ compared to Cdl^ and
the lower factor for ^ 3  i*1 summation which
evaluates 1^2 ^ ^ 3 3  compared to ^6^44 ) i equation
(3.12). The larger contribution of £ ^ 3 is thus 
solely /
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solely due to its larger concentration in solution.
Even at the highest concentrations coupling coefficients 
are of little significance, amounting in total to no 
more than 3fo9 with the positive contribution, »
(equal to + 8^41 + ^ ^ 1  ̂ ) amounting to 7$ of
the total compared to 2  ( __ ) which contributes
-4$> to L22 •

What emerges most forcibly from these analyses 
are the very large contributions of the direct mobility 
coefficients of the ions to L-q  , and even to
L^2 9 which is formally a purely interionic coupling 
coefficient.

Cross coefficients, being both positive (S  ) 
and negative (S ( • * + * _  ) partially cancel, for both 
the direct binary coerficients, L-^ and 1^2 •
Only in the case of do they make a significant
and, in this case, positive contribution.

Although aqueous cadmium iodide is a most compli
cated system, it is worth noting that the percentage

2+  +  —  ? -  contributions of Cd , Cdl , Cdl^ and Cdl^ to
the total cadmium in the system are very similar to
the percentage contributions of the corresponding mobilities,

^aa ’ ^11 > ^33 and "*44 ' t0 L11 at each
concentration, Eigs. 3*3 and 3*13# A similar situation
is observed in the comparison of percentage.concentrations
of iodide species and mobility contributions to 1^2 >
Pigs. 3.4 and 3.15. These similarities reflect the
concentration dependence of 4 ^  upon Ci and the
secondary /



secondary importance of mobilities of the ions#
Secondary but obviously not unimportant since the 
theory is semi-quantitative only for mobilities 
selected within rather narrow ranges. It has always 

been observed that is a less variable
function than or independently. This is
obvious in conductance and diffusion expressions, 

equations(3*13)and(3*15), where are defined.
What is interesting is that the basic proportionality 
between and Ch is ‘retained in this complexed
system, calculated by Pikal expressions#

In conclusion, the methods and theory developed 
here have been proved to be viable for the prediction 
of transport in complexed ionic systems.

The basic limitations of the Onsager-Fuoss 
Limiting Law theory, obviously restrict the application 
to relatively dilute solutions. It is interesting, 
however, that meaningful predictions have now been 
made up to a concentration of 0.05 molar, far above 
the normally acceptable range for that theory.

The direct mobility and coupling coefficients 
for the neutral complex, Odl^ , have been omitted, 
because there is no satisfactory theory by which they 
may be estimated. It is probable, however, that they 
will make a relatively small contribution to the 
binary mobility coefficients and it has been shown 
that they do not appear in the expression for 

conductance. Most probably all ^  g k ^  “ 0,1,3,4)
will /



111

will be positive, and their magnitudes will depend 

upon C2  the concentration of C d ^  in solution.
This latter never amounts to more than 57° of the total 
cadmium species present. Furthermore it is a 
reasonable assumption that the coupling coefficient 
between a neutral species (Cd^) and an ion will be 
many times smaller than the corresponding interionic 
coupling coefficient. These considerations seem to 
indicate that the effect of neglect of C d ^  in these 
analyses will be small and most probably within the 
uncertainties of the basic Pikal theory.
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Table 3*2

Experimental equivalent conductance 
data for aqueous cadmium iodide at 
25°C.

Concentration
(mol.l“1)

0*001026
0*002023
0*003160

0*005012
0*008503
0*01135
0*03063
0*05501
0*10845

Conductance
2 —1 —1 (cm ohm equiv. )

100*62 
90*79 
83-35 
74-81 
65 - 60 
60*23 
43-30 
35-10 
27-36
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Definations of Symbols and Units for Tables (3*3) 
to (3*12).

The salt concentrations C, m and N 
represent molarity, molality and normality respectively. 
(The molar concentration of water is designated Cq .)
A , t^ and Dy have their usual significance and the 
‘Activity term1 which appears in equation (3*15) is the 
function (1 + dlnY / din m). The mobility coefficients 

1*11 * ^12 an^ ^22 are by bhe phenomenological
equations (equations (3*2)) and, in inverse form, the 
corresponding resistance coefficients R-j-j» an^ ^22
are obtained by matrix inversion. Additional resistance
coefficients relating to solvent, 0, interactions, R^q

12(i=1,2) and Rq q » are obtained from the identity:

2  CA Rik = 0  (i and k = 0,1,2)

-2The dimensions of are J cm s mol , the inverse of

Most of these tables are reproduced from 
computer printouts and the format is as in FORTRAN IV 
computer programming language. The exponent is expressed 
as D + x, where x is the power of ten. For example 
1*36909D-12 may be read as 1*36909 x 10
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Table 3.4

The values of ^X  ̂  used for calculation of the 
irreversible thermodynamic mobility coefficients, L-^ , 

L- ^ 2 and ^22 an(̂  Predicted transport properties of 
aqueous cadmium iodide in the concentration range 

0.003 - 0.1 mol. 1"^ are given below. Those marked 
with an asterisk were obtained by the optimisation 
procedure from the conductance measurements in the 
dilute solutions (0.001 - 0.01 mol. 1~^).

Cd++ Cdl+ Cdl2 i ^wO Cdl \ - I

1 53.50 33.51* - 39.70* 68.67* 76.
2 it 30.00 - it II it

3 it 35.00 - n II it

4 ii 33.51* - 30.00 II ii

5 it ii - 50.00 II it

6 ii it - 39.70* 50.00 ii

7 it it _ it 100.00 ii
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Table 3.10

Percentage Contributions of to L-^ , using
Optimised ® \ ^ (set 1, table 3.4))

N ^aa 'll ^33 ^44 2 * +.

0.006 44.32 58.845 0.514 0.016 0.054 -3.748
0.01 34.856 68.432 1.373 0.067 0.184 -4.912
0.02 24.07 76.481 4.438 0.391 0.882 -6.262
0.04 15.983 75.210 10.841 1.604 3.350 -6.986
0.06 12.458 70.094 15.456 2.915 6.278 -7.198
0.08 10.436 65.327 18.477 3.999 9.154 -7.394
0.10 9.104 61.398 20.452 4.820 11.862 -7.636
0.12 8.140 68.198 21.771 5.416 14.400 -7.926
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Table 3.11

Percentage Contributions of to , using
Optimised ^ ± (set 1, table (3#4))

N CVJ
C

\J

CVJH 3-f33 4144 M 1 2 ( * +++ 0

0.006 83.271 2.181 0.090 17.12 -2.661

0.01 81.558 4.910 0.319 16.17 -2.956

CMO•o 73.390 12.775 1.502 15.469 -3.137

0.04 57.395 24.819 4.897 16.033 -3.144
0.06 46.936 31.048 7.808 17.52 -3.311
0.08 40.290 34.186 9.864 19.277 -3.617
0.10 35.832 35.808 11.252 21.101 -3.991
0.12 32.662 36.656 12.159 22.918 -4.396
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Table 3.12

Percentage Contributions of to L22 f using
Optimised ^ ^ (set 1, table(3-4) )

N 1—1 y 33 16* aa44 ^bb M 1 S (*.++*__)
0.006 11.523 0.905 0.050 86.648 0.880 -0.008
0.01 13.915 2.513 0.218 82.025 1.360 -0.032
0.02 16.063 8.389 1.315 72.147 2.270 -0.188
0.04 15.685 20.348 5.353 55.879 3.554 -0.820
0.06 14.377 28.530 9 • 566 44.563 4.602 -1.640
0.08 13.270 33.778 12.996 36.888 5.562 -2.492
0.10 12.438 37.289 15.623 31.515 6.460 -3.326
0.12 11.820 39.796 17.601 27.593 7.324 -4.136
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Fig. 3*3 —  Percentage distribution of free and complexed
cadmium as a function of total concentration of 
cadmium, C. (x=0,1,2,3,4)
0, Cd2+; 1, Cdl+ ; 2, Cdl2 ; 3, Cdl"; 4 , Cdl2“ .
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Fig. 3*4—  Percentage distribution of free and complexed 
iodide as a function of total concentration of 
iodide, 2C. (x=1,2,3,4):
0, I“ ; 1, Cdl+ ; 2, Cdl2 ; 3, Cdlj; 4, Cdl^“ .



137

1,60

1.55

./ \
1,45

1 Da

1.30

1.25

C.C C.,5

>/~N

■5
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+ , predicted, using optimised values of ^ ;
• , limiting value.
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Fig. 3*6 (a)

Equivalent conductance, JV , for Cdl^ at 25°C.
, experimental, this work;

-*• , predicted, using optimised values of ^
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Fig. 3*6 (b)

Cadmium iodide, cationic transport number, t^. 
t# , from ref. (3); O, from ref. (11);
* , predicted, using optimised values of ^ ;
• , infinite dilution value.
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Fig. 3*6 (c)

Salt diffusion coefficient of cadmium iodide.
3# , Paterson ejt al. ;

+ , predicted, using optimised values of ^  ̂  J
• , limiting value.
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General Description of the Graphical Representation 
of the Transport Properties of aqueous Cadmium Iodide, 
shown in Pigs. 3*7 (a,b,c) to 3*12 (a,b,c)

The sensitivity of transport parameters to 
deviations from the optimised values of ^A ̂  is shown 
in Figs. 3*7 to 3*12, as follows:

Figs. 3*7 and 3*8 variations in ^x  c d l+ *

Figs. 3-9 and 3-10 " " ° X CdI" »

and Figs. 3*11 and 3*12 " " ° X c d I ^ _ '
4

Positive deviations in ^A^ are represented by A and 
negative by V . ( The values of chosen are those
given in table (3*4).)

For comparison optimised and experimental data, 
from Figs. 3*5 and 3*6,are also included.
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C H A P T E R  4

Isotopic-Diffusion of Cadmium in 
Aqueous Solutions of Cadmium Iodide.
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Introduction

The mathematical treatment given in 
Chapter 3 has been extended to include predictions 
of isotopic-diffusion coefficients.

Experimental measurements of isotopic- 
dif fusion coefficients for ^ ^ C d ^ + in aqueous cadmium 
iodide have been made in the concentration range

_ -i0*1 - 0*6 mol.l fby the diaphragm-cell method.
A new type of diaphragm-cell and magnetic

stirring unit, capable of accommodating four diffusion
cells, has been designed and constructed. Its use
and advantages over the previous systems are discussed.

Isotopic-diffusion coefficients obtained
from experiments are compared with those predicted

yfrom the theory and reasons for discepancies suggested.
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4.1 Influence of Self-Conplexing on Isotopic
Diffusion of Cadmium in aqueous Cadmium Iodide

In earlier discussions upon isotopic diffusion 
in electrolyte solutions, Anderson and Paterson'*" have 
shown that the diffusion coefficient D__ of the iona a

a can he represented by equation (4.1),

Daa = RT < Laa / Ca " °a Laa* / Ca° Ca* > ^

The first term, within the brackets, is the direct 
mobility of the ion in the binary solution (L__)3 3

Tdivided by the total concentration of the ion C .wt
The second term represents the contribution from coupling

* obetween labelled species a and the unlabelled remainder a ;
concentrations C * and Cno respectively. The isotope-a  **

T yisotope coupling coefficient function, C_ L_ * / CQo C * ,S  a a  &  9.

was obtained from experimental measurement of the
diffusion coefficient, and a prior knowledge of the

Tdirect mobility coefficient LQ_ of the unlabelled3  cl

solution. For the alkali metal chlorides these 
isotope-isotope terms were shown to be of negative sign 
and so contribute positively to DQQ • They had the3 3

general characteristics of interionic coupling 
coefficients and their magnitude could be evaluated 
from the classical theories of Fuoss and Onsager.

Isotopic diffusion coefficients for cadmium in 
cadmium iodide solutions have been measured in this 
study. /
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study. They show most unusual variations with increasing 
concentration of cadmium iodide. Undoubtedly this 
anomalous behaviour may be ascribed to the extensive 
self-complexing which occurs in these solutions, Chapter
3. The present theory was developed to obtain an 
explicit expression for D , the diffusion coefficient
of cadmium, in which complex-to-complex species inter
actions were identified and subsequently evaluated (or 
at least approximated) by numerical expressions.

Before developing an expression for isotopic 
diffusion in terms of the complex species present it 
is necessary to define the nomenclature and symbols.

pThe complexes (Cdlx ) “ are identified by the 
2-value of x, thus Cdl^ will be species 4. The free

2+ -aqueous ions Cd and I will be denoted by a and b
respectively. In any solution of cadmium iodide the

T Ttotal concentration of cadmium, C& , and iodide, C-̂  will

When a proportion of the normal unlabelled cadmium 
is removed from solution and replaced by an equal 
amount /

be given by equations (4.2) and (4.3):

4.2

and

Cb = • ci + 2C2 + 3C3 + 4C4 +  Cb 4.3

m m(Prom the stoichiometry of the salt
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amount of isotopically labelled cadmium, the total
concentrations of all species will remain unaltered,
but each will now contain both labelled and unlabelled
components. For any species i (i = a, 1, 2, 3, 4),
the total concentration, C^, will be the sum of

0 *concentrations c^ and c^ ; those of unlabelled and 
labelled respectively, equation (4.4).

C± a c? + c? i = a, 1, 2, 3, 4 y 4.4
b

The specific activity of the labelled and unlabelled
*cadmium in each solution species are defined by and 

0
P^ respectively, equation (4.5).

Pi = ci / Ci and pi = °i / Ci 4,5

i - a, 1, 2, 3, 4
* 0 \(From equation (4.4) + p^ = 1 .)

A fundamental assumption will now be made. It 
will be assumed that the labelled isotope is chemically 
identical to the normal bulk isotopic mixture of cadmium 
in the unlabelled solution. In consequence there can 
be no isotopic enrichment of labelled species in any 
one of the complexes. This is a widely held assumption 
in diffusion studies and essentially equates isotopic 
diffusion as being equivalent to self-diffusion. In 
the present context it requires that the specific

-X-activities, P^, for all species involving cadmium are 
equal /
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equal and so the subscript i will be dropped in all 
further discussion. Similarly p? becomes p^.

*The total concentration of labelled cadmium, C&
Tis therefore related to total cadmium, CL by equation 

(4.6).

* JL * * T
Ca = S  ci = P ca 4 *6i=a

oThe total contribution of unlabelled cadmium, CL . isa

given by an expression analogous to equation (4.6).
A similar scheme for defining fluxes is required. 

T TJ , J, are the sums of the molar fluxes of all cadmium a 7 b
and all iodide species in solution respectively, 
equations (4.7) and (4.8).

and

= J ̂ + 2J2 + 3J^ + 4J ̂ 4.8

When a proportion of the cadmium is labelled the total 
flux of any species will remain unaltered (by the
assumption of the chemical identity of isotopes) but

* .0will now be the sum of labelled j and unlabelled, j.
i 1

fluxes, equation (4.9).

Ji - i°± + i*±

*The total flux of labelled cadmium species, J , is the 
only /
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only flux to be measured experimentally thus:

* 4
Ja 4.10

i=a

and in any experiment

Ja
* 4.11

where J? is the net flux of the unlabelled componentSt
It is now necessary to define forces, For a 

species i, the thermodynamic driving force which causes 
a directed flow is (-grad {1^); the negative gradient 
of the electro-chemical potential of that species at 
any point in the non-equilibrium system and will be 
represented as X^, equation (4.12),

X± = - grad |i±

= - RT dlnC./dx - RT dlny^/dx + Zj^C-dw/dx) 4.12

where Z^ is the valency, including sign of the species 
i, and the molar activity coefficient. When the 
species is neutral, the valency is zero and the force 
is simply the negative gradient of chemical potential.

When labelled and unlabelled species i are intro-
o * 2duced with forces x^ and x^, respectively then :

x* = -grad jju = -RT dlnc?/dx - RT dlny?/dx + Z.F(-dvy/dx) 4.13

For /
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For unlabelled species the expression for x? is formally
identical, except that the concentration and activity
coefficient c? and y? replace those of the labelled
species in equation (4.13). Since the labelled and
unlabelled species may be assumed to have activity coefficients

those of
which are equal to one another and to/the total species

0 *in any local volume element and since dCj_ = dc^ + dc^ , 
from equation (4.4), then from equations (4.12) and (4.13),

or
0 0 * *X± = p xV + p x ± 4.14

Under the special conditions of isotopic diffusion, 
in which no bulk gradients of chemical potential exist 
and the sole source of non-equilibrium is due to 
isotopic gradients, = 0 and so, from equation (4.14)

0 0 * *
c ± x ± = - c ± x ± 4.15

0 0 * * or p x ± = - p x±

Equally there are no gradients of activity coefficients 
or of electrical potential ('iy ) and so the forces 
x^ and x? are simple functions of concentration gradients, 
equation (4.16).

x? s -(RT/c?) (-dc?/dx) superscript g = 0 or * 4.16
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4*1.1 Irreversible Thermodynamic Approach
In Chapter 3, the binary coefficients of cadmium 

iodide were expanded in terms of mobility and coupling 
coefficients of the uncomplexed and complexed species 
present in the solution. For any species k, linear 
phenomenological equations were written, equation (4.17).

4
= 2  l^i X-̂  k = a, 1, 2, 3, 4 4.17

i=a

Equation (4.17) deals with any experimental conditions 
likely to be obtained in normal studies and it is 
assumed here and in all subsequent discussion that the 
Onsager Reciprocal Relations (O.R.R.) are obtained and 
so = 1 ^ *  It is also assumed that the experimental
conditions to which equation (4.17) refers were again 
obtained with the same solution in which now labelled 
isotope was present, then from equation (4.9)

The sum of the flows of labelled and unlabelled isotopic 
species., k, are equal to the net flow, Ĵ .. The 
phenomenological equations for isotopic flows will be 
represented by a symmetrical 12 x 12 matrix of mobility 
coefficients, since each of the six flows and six 
forces of equation (4.17) are now subdivided into 
two components. The phenomenological equations of 
the isotopic system are given by equations (4.18), (4.19) 
and /
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and (4*20).

Jk = .2 ( xi + ^ki* xi } + 1i=a kb Abx, 4.18

i=a

k = a, 1, 2, 3, 4

* -L jP  *  -vb 4.191 *  s 3? ( ' f * . X ?  + x. ) + ^V*-U XJk v k i i  k i i ' k b

k = a, 1, 2, 3, 4 

h  m £  ( *bi xi + * i ± *  xi } + A>b xb 4 *20i~a

Prom equations (4.9), (4.18) and (4.19), 

4

or

„  . / ^ l £ V 4

+ < ^kb + V b  } xb

Comparing terms in equations (4.17) and (4.22), having 
noted that Lki x9 + Lfci xi from
equation (4.14) then,

Lki - ( ^ki + ”̂ k*i > / P°

.21

.22

- ( ^ k i * + V  i* } / p* 4.23
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i and k = a, 1, 2, 3, 4

and ^ b  = ( ^kb + ^k* b  ̂ k = a, 1, 2, 3, 4 4.24

Since the forces on iodide, x^ and X-̂ , are identical
under conditions when only cadmium species are labelled,
from equations (4.14), (4.17) and (4.20)

Lbb = A,b 4 -25

and

Lbi = / P° = V  / P*

i = a, 1, 2, 3, 4 4.26

Prom equations (4.24) and (4.26), using the Onsager 
reciprocal relations,

^ b  = rkb / p° = V b  / p* 4 *27

Equations (4.23), (4.25) and (4.27) establish specific 
relationship between the mobility coefficients of 
equation (4.17) those of the isotopic matrix, equations 
(4.18), (4.19) and (4.20).

We must now formulate expressions for the total 
flow of labelled cadmium J_, equation (4.10) under the

a

more restricted conditions of isotopic diffusion, in 
which no bulk chemical potential gradient exists and 
so /
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so all X.. and J\ are zero in equation (4.17).
Under these conditions x^ the force on iodide 

ion is zero and hence from equations (4.10), (4.18) 
and (4.19),

4 4 f
k=a i=a

£  $ki / 0 0, ki / - - n  ( P +   ( p x± )* *

\ p
0

* *since from equation (4.14), p x^ = 0 0 , v n - p x^ when X^ = 0,

*  * k i
k=a i=a

k i
0

*  * 
P

and from equation (4.23)
/

4 4
j* = 2a k=a i=a L.., - I *ki* / P* + V i  /P°ki

* * 
ip x.

From the analysis of the concentrations of complexes 
to the binary coefficients (Chapter 3),

4 4
2  2k=a i=a ( Lki ) = L

T
aa 4.29

rpwhere L is the direct mobility coefficient of cadmium aa
in the binary solution for which the phenomenological 
equations are:

T „ tT y tT y
a ~ aa a ab b

and /
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and

b = Lb a Xa + Lb b Xb

Recalling the isotope-isotope terms in equation (4.28), 
expansion of the summation shows that, when the Onsager 
reciprocal relations are assumed, equation (4.30) is 
obtained.

i i (<tlk=a i=a V * / + V i /  p ° )

4 4
2  2k=a i=a

r / * / 0 * ^\ / d o /p p 4.30

Prom equations (4.28) to (4.30)

J = RT a
• T 
Jaa

4 4- 2 2k=a i=a
( - d p  /dx) 

4.31

When C , total cadmium concentration, is constant at a ’
all points in the solution (as it must be for isotopic 
diffusion) then from equation (4.6) :

d p  = 1/ C dCa / dx 4.32

and equation (4.31) becomes

J = RT a aa
,T

4 4
£  2k=a i=a

(  *ki
0 * P P

(- dCa / dx)

4-33
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Equation (4.33) # therefore, has the form of Fick's 
Law, (section 4.2),

J! = Daa < " dCI / dx > 4 *54

*The flow J is that measured by experiment and thuscL
DOQ is the isotopic diffusion coefficient obtainedEa
from such experiments. Comparison of equations (4.33) 
and (4.34) gives :-

Daa = RT ( Laa / Ca ~ 1 / Ca 2  < ^ki* / P° P*> >k=a i=a

Equations (4.35) and (4.1) reveal that expressions for 
isotopic diffusion coefficients in a complex or a 
simple dissociated electrolyte have identical form.
It may be noted that from equation (4.5) the term
m

I*o«*/(CQ° Cq *) in equation (4.1) is equal tocl E E  cl E

(l/C^)(Loo*/ p^p*) making the similarity of equations
S L &  cl ^

(4.35) and (4.1) more obvious. The isotope-isotope 
coupling term, which is a function of a single 
coupling coefficient L_ * in equation (4.1), is nowE E

replaced by a summation of coupling coefficients which 
include all possible interactions between labelled and 
unlabelled forms of the cadmium containing species in 
the complexed solution.

In equation (4.1) the isotope-isotope coupling 
term'is bi-ionic, that between two simple ions of 
equal charge. In such cases Laa* is negative and the 
coupling /
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coupling term in equation (4.1) makes a positive 
contribution to D_ . Coupling coefficients betweena a

ions of opposite charge, are typically positive.
The situation may therefore arise that isotope-isotope
coupling may occur between cadmium containing species
of opposite charge (for example, 9 between Cd^+

2 _and Cdl^ ) making the summation term in equation (4.35) 
more positive (and therefore less negative) than for 
non complexed electrolytes.

Experimental evaluation of the isotope-isotope 
term shows that much of the anomalous behaviour of 
cadmium ion diffusion is due to isotope-isotope 
coupling. In the discussion section methods of 
predicting these contributions are discussed, section 
4.4.
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4 •2 The Measurement of Diffusion Coefficients

*5 15A number of ingenious methods J are available 
for the study of the fundamental irreversible process 
of diffusion in electrolyte solutions. In most cases 
for salt-diffusion and for isotopic-diffusion experiments, 
the techniques are essentially similar. Isotopic- 
diffusion, however, is characterized by the fact that 
the diffusing species is present in negligible quantity 
in the bulk of electrolyte of much higher concentration. 
The physical properties of the system such as 
electrical conductance, density, refractive index etc., 
are thus unchanged by the addition of the isotope.
Perhaps, the only example is the study of fself-

A 7diffusion’ of water, using case
substantial quantities of isotopic species have been 
used. In general, experimental methods which make 
use of the physical properties, mostly optical methods, 
for obvious reasons, are not utilized in isotopic- 
dif fusion measurements.

The primary interest, however, lies in the 
determination of the coefficient of diffusion, D, 
defined by an experimental flow equation:

J = - D ^ C  / 3x 4.36

where the flux, J, is the amount of material crossing 
unit area of a plane perpendicular to the direction 
of flow in unit time and dc / 3x is the concentration 
gradient /
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gradient in the positive x-direction. Experimental 
methods based directly on equation (4.36) usually 
embody the assumption of a linear gradient of 
concentration. This assumption is sometimes described 
as a * steady state1.

5-8The diaphragm cell method, essentially a 1 steady 
state* method was adapted for the study of isotopic- 
diffusion in this work.

A detailed description of this method and the 
ancillary apparatus will be given in section 4#3*
The alternative methods, in which concentration 
changes are regarded as a function of both time and 
distance, are briefly mentioned below. Here the 
determination of the diffusion coefficients depend on 
the solution of a second-order partial differential 
flow equation:

5 C / d x  = 3/ 3x D ( <*C / dx ) 4.37

with suitable boundary conditions. Further details
for these methods can be found in several excellent

4 7 9reviews available on the subject. ’ 9 J Equations
(4.36) and (4.37) are often refered to as Fick*s 
first and second laws of diffusion.

4.2.1 Optical Methods
Almost exclusively used for salt-diffusion 

measurements, these methods employ free diffusion 
from /
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from an initially sharp boundary formed between two 
solutions of different concentration in an effectively 
infinite column of solution. The non-uniformity of 
the refractive index, as the diffusion proceeds, provides 
the basis for the determination of concentration gradient 
with the help of suitable optical arrangements. Of 
the various methods in use, the one which has yielded 
the most precise results and has received a widespread 
application is the Goiiy Interference Method.^ In 
this method, monochromatic light from a horizontal 
slit is passed through a vertical cell in which a con
centration gradient exists. The interference fringes 
containing a finite number of lines are photographically
monitored. The method has been theoretically further

11 12 developed by Gosting and Onsager, Culsen et al,
13 14Kegeles and Gosting and Longsworth. It is capable

of producing absolute values for integral diffusion
coefficients to an accuracy of 0.1 - 0.2$, but is
unsuitable for dilute solutions. The Rayleigh Inter-
ferometric Method, ^  instead, has been used to
study both free and restricted diffusion over a wide
range of concentration. The basic principles of the
Rayleigh1 s method are the same as for the Goiiy's method
except that the monochromatic light from a point source
is split into two beams. One beam is passed through
a cell containing a concentration gradient and the
other,passed through a medium of constant refractive
index. A band of interference fringes obtained by
recombination of the two beams, provides a direct measure
of the /
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of the refractive index gradient. This method is also 
very accurate and gives directly differential diffusion 
coefficients. It is therefore prefered sometimes over 
the Goiiy method.

4#2.2 The Harned Conductimetric Method^ *  ^
This method for the study of restricted diffusion 

was developed by Harned and co-workers for dilute 
solutions. The method basically consists of 
measurement of changes in the electrical conductance 
of a solution as a function of time in a diffusing 
system. The method is very accurate but by virtue 
of its great experimental care and problems with suitable 
electrode systems for the measurement of the conductivity, 
its application is limited'to very dilute solutions.

Absolute measurements of diffusion coefficients 
made with optical methods and conductimetric method 
provide the basis for all the relative methods.

4.2.3 The Porous Frit Method^
The procedure involved in this method of studying

diffusion consists essentially of soaking a porous
disk in the solution of interest and then suspending
the disk in a bath of pure solvent. The rate of
diffusion of solute from the frit is then monitored
by measuring the apparent weight of the suspended
disk at various times. The technique originally used

19for salt-diffusion by Wall, Grieger and Childers v has 
been /
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been adapted for the study of isotopic-diffusion by
20several investigators, notably, Nelson, Marcinkowsky

21and co-workers.
In the case of isotopic-diffusion, the counting 

rate of the frit measured over a period of diffusing 
time reveals a value for the diffusion coefficient.
The method is relative and requires suitable calibration 
system of known diffusion coefficients. It is 
comparatively cheap and quick but yields values of 
diffusion coefficients accurate only to a few per cent.

22 2^4.2.4 The Capillary Method *
The open-ended capillary method, often refered

to simply as capillary method, was developed specifically
22for isotopic-diffusion by Anderson and Saddington in

1949. A general description of the method is given
24 5by Wang and Robinson and Stokes. In this method

a uniform capillary of known length is filled with an
isotopically labelled solution and immersed in a much
larger reservoir containing inactive solvent. The
coefficient of diffusion is then obtained by measurement
of the amount of labelled material in the capillary
after certain time, utilizing equation (4.37) with
suitable boundary conditions. In theory, the method
is an absolute one, but in practice some form of
calibration has been found necessary. This method has
been extensively used for isotopic-diffusion studies
of electrolytes, but the agreement between different
workers /
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25 26workers has often been poor. Mills and co-workers 9 

have attributed this discrepancy to the convectional 
disturbances at the junction of the capillary mouth 
and the outer bath solution. Two separate sources 
of errors have been recognized. The immersion effect 
occurs when a capillary is lowered into the bath solution 
for the first time, A loss of 0,5 to 2$ of the contents 
of the capillary may occur during this operation,

27This effect can be minimized by suitable precautions.
The other effect arises from the mode of stirring of 
the outer bath solution. This turbulence could cause 
sweeping-strokes across the mouth of the capillary.
One of the boundary conditions in application of equation
(4.37) to the capillary method can be described as C = 0 
for x > (  , where is the length of the capillary.
The above action is thus equivalent to reducing the
effective length of the diffusing column. It has

o 28therefore been termed the A\ effect by Wang and gives
27rise to high results. Mills, however, has overcome

this difficulty by careful design of the apparatus.
Subsequent studies of the A*f effect have been made

2qby Berne and Bergren. Other errors in this method
can arise from traces of radioactive material not 
properly removed from the fine capillaries and the 
difficulties in preparation of reproducible counting 
samples. M i l l s ^  and independently Thomas^ 
suggested continuous monitoring of radioactivity by 
enclosing the capillary in a scintillation counter. 
Measurements /
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Measurements made by this method indicate that 
precision of the order of 0.2% could be achieved with 
capillary method.

Radioactive counting facilities for the present 
studies were kindly extended by the department of 
Physiology, University of Glasgow. Under the 
circumstances it was considered desirable to adapt 
the diaphragm cell method in this work. It also 
offered an opportunity to modify the technique to suit 
the requirements of a practicing diffusion experimentalist.

4.2.5 The Diaphragm Cell Method^ 9 ^ 9 ®
Since the development of this technique for the

measurements of diffusion coefficients by Northrop and 
"52Anson in 1928, a number of attempts have been made 

to improve the method in various ways. All variations 
are similar in at least one respect: a concentration
gradient is set up between two solutions of different 
concentration in a porous disk which separates the 
solution compartments. The process of diffusion is 
thus confined to the pores of the sintered diaphragm, 
thereby reducing greatly thermal and mechanical convections. 
There are, however, some inherent problems associated 
with confining diffusion process to a sinter of this 
kind. The method is relative since the effective 
diaphragm pore area and length can not be determined 
in an absolute manner. The general practice is to 
determine the cell constant with a system of known 
differential diffusion coefficients. Aqueous KC1 
at /
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at 25°C, for which precise and reliable data are 
available, is usually used as the reference standard.
Since it is impossible to analyse the solution within 
the diaphragm, the diffusion coefficient must be 
obtained from measurement of material passing through 
its boundaries. In consequence, it is essential to 
maintain a uniform concentration on either side of the 
diaphragm right up to the entrance of the pores.
The effective diameter of the pores in the diaphragm 
must be such that gross streaming through the diaphragm 
and surface transport along the walls of the pores is 
avoided. A variety of diaphragm cells have been used 
to fulfil these requirements. Different types of
homogenizing techniques, including the earliest density-

■30 33stirring and the use of glass spheres rotating on
the diaphragm surface, have been used both to avoid
the formation of stagnant layers adjacent to the diaphragm
and ensure uniformity of the contents of the solution
compartments. The problem of surface transport on
the diaphragm has also been investigated with experiments
carried out in Pyrex glass, stainless steel, and platinum
sinters.^ The surface effects, hov/ever, have been
attributed to the formation of a double layer due to
adsorption of ions rather than the material of the
sinter. These effects which result in enhanced
diffusion, have been found undetectable at concentrations

-3above 0.05 mol dm . The diaphragm cell method is 
therefore /
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therefore not suitable for measurements in electrolyte
-3solutions at concentrations less than about 0,05 mol dm •

The experimental technique adapted for the study
of diffusion by diaphragm cell method, at present, is

5 8primarily due to Stokes. * The Stoke-type of
diaphragm cell has been used most widely in the past 
two decades. Its essential features, modifications 
by other workers and major changes being brought in 
the course of the present investigation will be 
discussed in section 4.3 of this Chapter.

4.2.6 Theoretical Principles of the Diaphragm Cell 
Method5, 6

As mentioned previously, the diaphragm cell 
method is essentially a steady-state method and 
measurement of the flux, J, and the concentration 
gradient ^C / 2 x  gives the diffusion coefficient,
D, from equation (4.36). The quantity J and D being 
measured on the cell-fixed frame of reference. In 
actual practice, however, a true linear gradient of 
concentration will rarely be present in a diaphragm 
cell since the concentrations on either side of the 
diaphragm are changing, although at a relatively slow 
rate. A p s e u d o 1 steady-state is therefore assumed 
to be present and if the flux, J, is considered to be 
uniform across the diaphragm at any instant then 
an effective diffusion coefficient also defined by 
D can be treated mathematically as if it were the 
proportionally /
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proportionally constant of a linear gradient of 
concentration.

A diagrammatic representation of the diaphragm 
cell is given in Pig. 4.1. The volumes of the compart
ments and the diaphragm are indicated in the figure.

Figure 4.1

If the concentrations in the top and bottom compartments 
at the commencement of the experiment (t = 0 )  are 
denoted by and and after time, t, by and
C-g , the changes in the concentrations in the appropriate 
compartments of the cell while the diffusion is 
proceeding are given by :

dCT / dt = J(t) A / VT 

dCB / dt = - J(t) A / Vfi

where J(t), the flux of solute, is a function of time. 
Combination of equations (4.38) gives

d (CB-CT ) / dt = - J(t) A (1/VB + 1/VT ) 4.39

. t
If /

4.38a

4.38b
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If the diffusion coefficient is assumed to be independent 
of concentration the flux, J(t), is given by Fick's 
law equation (4.36)

J(t) = (CB - CT ) /< . D 4.40

so that equation (4.39) becomes :

- d ln(CB - CT ) / dt = D A /-( (1/VB + 1/VT ) 4.41 

and this after integration may be written as

In
/

0 „ 0, = D t 13 4.42( cB c t )/(c b _c t )

where (3, the cell constant, is given by

A = A /i (1/VB + 1/VT ) 4.43

Equation (4.42) is, however, strictly applicable to 
systems where D is independent of concentration, such 
as self-diffusion. For concentration dependent
systems the above equations have been modified by

7 5Gordon and Robinson and Stokes and then further
6 34theoretical treatment has been given by Barnes. 9 

Equation (4.40) for such systems can be written as :

J(-t) = (CB - CT ) /-? . D' 4.44

where /
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where D is the averaged value of the diffusion 
coefficient over the concentration range to 
during time t, hence

D = 1 / (CB-C ) J D( C) dC 4.45a
'T

= -1 / (CB-CT ) /  • D(C) ( 30 / ix) dx 4.45b
x=0

D(C) is the differential diffusion coefficient at 
concentration C. Prom equations (4 .4 4 ) and (4.39)

- d In (CB-CT ) / dt = A // (1/VB + 1/VT ) d ’ 4.46i

Upon integration this gives :

In (°cB-°cT)/(cB-cT) /-f (1/VB + 1/VT ) /  D* dt
0

4.46b

It is customary to define an integral diffusion coefficient

= (1 /  t )  f D dt 4.47
0

Equation (4.20) thus becomes:

]) = .---  In
f 3 1

B T

CB ” CT
4.48

Thus /
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Thus from measurements of the concentrations in the top 
and bottom compartments at the beginning and end of a 
diffusion run over a period of time t the diaphragm 
cell integral diffusion coefficient D may be 
determined.

4.2.7 Calculation of D from D
The usually complex concentration- and time- 

averaged integral diffusion coefficient obtained from 
the diaphragm cell measurements is very often 
converted to the more fundamental differential diffusion 
coefficient, D, defined by Pick’s first law. However, 
where the concentration gradients are absent, as in 
isotopic-diffusion, D and D are identical. For the
calculation of D for calibration experiments the

7 5method of Gordon and Robinson and Stokes is commonly
used. Gordon showed that a negligible error is
introduced if D is redefined by :

Stokes then defined a diffusion coefficient D(C) by

D dC 4.49
CT

where

CB = (°CB + CB> / 2 4.50a

CT = (°CT + °°T) / 2 4.50b

0

015(0 ) /
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-° jPD(C) = 1 / C /  D dC 
0

4.51

Combination of equations (4.49) and (4.51) gives

5 = l/(Cg - Ĉ ,) (CjD (Cg) - cj D (oj)) 4.52a

Multiplying and dividing equation (4.26) by (C^-C^)/ CB
and defining C™/Cg by C" the resulting equation is

I) =
_0 , _0 ,

( D (CB ) - C" D (CT ) ) / (1 - C") 4.52b

If reliable data for D over the required concentration
_0

range are available, values of D (C) can be obtained 
by suitable integration for a calibration system.
The values of D for use in equation (4.48) are then 
obtained from equations (4.52).

4.2,8 Barnes Theoretical Treatment of the Diaphragm

Barnes has shown that since a true steady-state 
condition in the diaphragm does not exist, a rigorous 
mathematical solution to the equation of the diaphragm 
cell should not, therefore, contain the assumption 
that a linear gradient is continuously present. By 
assuming D to be independent of concentration a general 
solution to Fick*s second law, b C/ <5t = 9/ 9 x ( D ^ C / 9 x ) ,  
giving the variation of concentration with time, has 
been obtained for two different initial conditions of 
the /
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the diaphragm. This treatment has been further
3*5extended by Mills, Woolf and Watts to include a

third initial condition. The three cases of
interest are usually called, 1 solvent-filled diaphragm',
'gradient-filled diaphragm' and 'solution-filled
diaphragm'. A diagrammatic representation of the
concentration profiles in the diaphragm at the initiation
of diffusion is given in Pig. 4.2

On the assumption that D is independent of
concentration, and that Vg and 7^ are virtually
identical so that the ratio = \ is so small

2that the terms in \ and higher powers are small 
compared to unity; within these limitations, Barnes 
has used the boundary conditions of the diaphragm cell:

Cjj (x,t) s when t = 0 and 0 ^ x ^ 4# 53a

CD (0,t) = CB (t) ; Cp (-?,t) = CT (t) when t > 0  ; 4.53b

and acB/ at = D/Vb ( *Cj/*x)Xa0 i a CT/ d t  = - D / V ^ C j /  dx)x= »̂

when t > 0 4.53c

to obtain the equations for and for the first 
two cases.
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'B

’T

(a)
Solvent-filled

0,
B

T

Gradient-filled 

Figure 4.2

'B

—  °cT

(c)
Solution-filled

4.2.8a Case 1, Solvent-filled Diaphragm The 
diaphragm and top compartment are filled with pure 
solvent = 0 )  and the bottom compartment has
solution of concentration at the beginning of the
experiment (Fig. 4.2 (a) ). The equation for this
initial condition is given by

In (°cB/(cB-cT) ) (1- Ve) = k/t (1/VB+1/VT)(1- x/6) Dt

= n Dt 4.54

Since the concentration in the top compartment is
zero, the initial concentration'in the bottom compartment 
Ĉ-n can be readily obtained from the mass-balance

.D

equation:

4.2.8b /
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4.2,8b Case 2. Gradient-filled Diaphragm In this 
case prior to beginning a diffusion experiment, a pre
diffusion period is used to establish a concentration 
gradient across the diaphragm. The top compartment 
is then rinsed and finally filled with pure solvent. 
The time at which the final rinsing is completed is 
normally taken as zero time for the diffusion run.
The equation for this case takes the form :

In CB/(CB-CT ) = A/-f (1/VB+1/VT )(1- V 6 )  Dt

® f3 T) t 4.56a

and is given by

°CB = CB + CT (VT + iVD )/(VB + iVD ) 4.56b

4.2.8c Case 3. Solution-filled Diaphragm This
initial condition for the diaphragm has been included

35by Mills, Woolf and Watts. It is essentially the 
reverse of case 1. The bottom compartment and the 
diaphragm are filled with solution of concentration ^C^ 
and the top compartment with pure solvent. The equation 
for the diaphragm is the same as for case 1. In 
this case is calculated from the mass-balance
equation :

CT = CB ^VB+^VD ^ VT + CT - °Cb V̂B+VD ^ VT

4.57
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A comparison of equations (4.48) and (4.54) reveals 
that Barnes’ mathematical treatment has lead to the 
inclusion of (1 - ty6) logarithmic term and
also

B  ( 1 -  x/ 6 )  = b '

A general theoretical and experimental study of the 
three types of distributions has been made in 1967 
by Mills, Woolf and Watts.^
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4.3 Expe rimental

84.3.1 The Stokes-T.ype of Diaphragm Cell and its 
Modifications 

The cell is shown in Fig. 4.3. A sintered disk 
of porosity No. 4 (2-10 micron pore size) divides the 
main body of the cell into two nearly equal compartments 
of approximately 40 - 50 ml capacity. Standard taper 
ground glass joints are usually sealed to the ends of 
the cell which can be fitted with suitable plugs.
Mechanical stirring is effected by soft-iron wires 
enclosed into drawn-out Pyrex glass tubing slightly 
shorter than the diameter of the disk. The weights 
of the stirrers are so adjusted that the upper one 
just sinks and the lower barely floats immediately 
above and below the diaphragm. A U-shaped permanent 
magnet, mounted coaxially with the cell, is then rotated 
around the cell with a motor and belt or a direct 
drive mechanism.

Several variations of the Stokes method have
■2 C

been used. Nielsen, Adamson and Cobble^ have used 
a cell in which the magnets were kept stationary and
the body of the cell was rotated with suitable bearings.

37In another type of cell reported by Lewis, a ring of 
eight soft-iron cored solenoids have been used to rotate 
special magnetic stainless steel stirrers. The solenoids 
are energized, in sequence, with a low voltage d.c 
source to set up a rotating magnetic field round the 
cell. A maximum stirring speed of 150 r.p.m. has 
been /
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been achieved. This type of system which seemed, at 
first glance, to avoid the use of unweildy magnet 
assembly, has been discarded by later workers^ on the 
grounds of heat generated by the magnetic coils during 
prolonged operations. The original worker has reported 
the use of seven cells in a single unit, with an 
obvious number of fifty six coils connected in parallel. 
Although all the cells have been independently water 
jacketed the heat associated with the windings of the 
electromagnets in close vicinity of the diaphragm does 
not seem to be adequately exchanged with the thermostat 
bath. A multicell unit has also been reported by 
Dullien and Shemilt.^® The body of each cell was 
enclosed in a brass sleeve with perforations to aid 
circulation of bath liquid. The cells were kept in 
position inside the sleeves with pieces of cork.
The assembly was mounted on a brass support and a rather 
complicated gear-mechanism, with a central shaft attached 
to a motor, was then used to rotate pairs of magnets 
around each cell.

In general, the conventional rotating assembly 
or its slightly modified form by Mills and Woolf^ 
is preferred over the above variants.

From the viewpoint of the practicing experimentalist, 
however, the Stokes-type of magnetic stirrers and the 
associated driving mechanism have a few disadvantages.
These are summarised below:

a) /
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y

Fig. 4-3 The Stokes type of Diaphragm Cell
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a) The diaphragm wearing hy action of the stirrers
makes it necessary to calibrate the cells periodically,
very often after two or three experiments only. Janz
and M a y e r ^  have avoided this by using a graph of k/Jt ,
characteristic of the diaphragm only, as a function of
the working life of the cell. While, in their work

40in this laboratory, Jalota and Paterson overcame 
this difficulty by adjusting the magnets such that 
the stirrers rotated 2-3mm away from the surface of 
the diaphragm. No significant change in the final 
results, because of this modification, has been reported 
by the latter authors.

Since the weights and densities of the stirrers 
are involved, several sets of sinking and floating 
stirrers, for top and bottom compartments respectively, 
may be required for a given solvent system when wide 
concentration ranges are being studied.

c) The unwieldiness of the magnet assembly does not 
permit the use of more than one diaphragm cell in an 
averagely sized bath. Apart from the space requirements, 
this causes unnecessary delay in the study of a process 
for which already an individual experiment may require 
more than 3 days.

For the above mentioned reasons, the design of 
the stirrers and their driving mechanism was reconsidered 
and an extremely simple and new type of method was 
devised in this work.

The /
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The simplicity of the new method of magnetic 
stirring lies in the fact that no motor and belt or 
metal gearing system is involved in rotating the magnets 
around the cell.

Two bar magnets were mounted on a small Perspex 
impeller, enclosed in an outer casing around the body 
of the cell. The impeller was then rotated by a jet 
of water pumped from the thermostat bath itself.
The entire rotating device thus occupies a mere 5 cm 
space around the sinter of the cell. Inside the cell, 
the Stokes-type of stirrers were also changed to four- 
bladed propellers, one in each compartment. The 
propellers were attached to the’ side walls of the cell 
and positioned in the centre at a distance of 2-3 mm 
from the diaphragm. Such type of stirrers would not 
scratch the surface of the diaphragm and will also 
rotate in a wide range of solvent systems and 
concentrations.

A unit capable of accommodating four such cells 
was constructed. A detailed description of the unit 
is given below.

4.3.2 The Diaphragm Cell and the Magnetic Stirrers 
Pyrex glass standard filter tube with sintered 

disk (Porosity No. 4) sealed in center waist (no.
3790/68 Jobling Pyrex Ltd., London) was used for the 
construction of the cell body.

The stirrer for the top compartment was constructed 
by enclosing a soft-iron wire in a medium walled Pyrex 

tubing and attaching two side arms at right angles to 
it. /
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it# The side arms consisted of thick walled capillary 
tubing# The lengths of the arms of the resulting 
four-bladed propeller were slightly shorter than the 
diameter of the diaphragm# A central shaft of glass 
rod was then sealed to the propeller, perpendicular 
to the- junction of the blades. This was passed through 
a collar and its end melted into a small solid sphere, 
which rested on the flanged end of the collar#
The collar was then sealed to the side wall of the 
cell with a length of glass rod, such that the propeller 
is 2-3 mm away from the surface of the disk and is 
positioned exactly in the centre of the cell.

The stirrer in the bottom compartment of the 
cell was similar in all respects to the one in the top 
compartment except that the end of the collar closer 
to the diaphragm was flanged and a solid sphere on the 
central shaft adjacent to the junction of the blades 
provided the seat of rotation for the bottom stirrer.

The action of the stirrers in both compartments 
was tested to ensure smooth rotation# The ends of 
the filter tube were terminated into B-19 standard 
taper ground glass joints. The cell assembly was 
then thoroughly annealed and tested for pinholes under 
vacuum.

An exploded diagram of the cell and magnetic
stirrers is shown in Fig# 4.4.

4.3.3 The Plugs for the Cell Ends
The top plug, shown in Fig. 4.5 a, was constructed

from /



205

B-19 ground glass 
joint

Top Stirrer

Sintered
Disk

Bottom

Stirrer *

Fig. 4*4 (a)—  The Diaphragm Cell used in this work.
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Collar

Solid rod

Solid Sphere 
Flanged end of the 

Collar.

Pig. 4*4 (b)—  Enlarged view of the top and bottom
stirrers attached to the side wall 
of the cell.



Legend for Figure 4.5 

Top Plug
A* Capillary bore B-19 inner joint 
B# B-7 ground glass joint
C# B-7 stopper ending into a fine capillary

Bottom Plug 
A# Glass impregnated teflon body 
B. Stainless Steel valve 
C# Brass adjusting knob 
D# Brass holding knobs 
E. Side holes
P. Plugs for the side holes E 
G. Rubber 'o'-rings
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Fig- A-5a Top Plug
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Fig. A• 5 b Bottom Plug
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(a) -

(b) -

Legend for Figure 4*6

The impeller 
C Cuts made into the body of the impeller 

for magnets 
H Central hole 
M Magnets
P Paddle drillings around the periphery

Casing for the impeller 
B Base, filled with 3 mm thick pool of 

mercury 
I Inner wall
L Lugs for mounting the casing on the 

tray
N Nozzle for the water jet 
0 Outer wall
H Hole for the body of the cell
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from a simple capillary bore B-19 inner joint, broadening
into a tube of 0.5 cm inner diameter, cut to a length
of 1 cm# A B-7 ground glass joint was attached to
the end of this tube. The design of the bottom plug,
constructed from glass impregnated teflon, was similar

41to that reported by Albright and Mills# A diagrammatic
representation of the bottom plug is shown in Pig. 4#5 b#

4.3.4 The Rotating Magnet Assembly
A piece of Perspex, 2.5 cm in length, was cut off 

from a solid rod of 9*5 cm outer diameter. The 
resulting disk-shaped impeller was bored through to 
provide a hole of 5.2 cm diameter in the centre.
A standard f" (9.5mm) drilling rod was then used to 
machine twelve tangential paddle drillings around the 
periphery, to a point 5 mm in from the circumference.
Two cuts, facing the central hole and opposite to each 
other, were made on the top edge of the impeller.
These cuts, 2 cm deep and 1.3 cm square, provided 
access for the magnets. A pair of Eclipse* bar 
magnets (James Neill, Sheffield Limited, England) 
were wrapped in plastic tape for protection against 
rust and simply push-fitted in the proper positions.
A diagram of the impeller, viewed from an angle, is 
shown in Pig. 4.6.

The casing for the impeller consisted of an 
outer wall, an inner wall and a base. The walls were 
made by cutting standard 3 mm Perspex tubes of 10 cm 
and 5 cm outer diameters respectively, to a length of

3*5 cm. A 3mm thick circular disk of diameter equal 
to /
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to the outer diameter of the outer wall provided the 
base. A central hole equal to the inner diameter of 
the inner wall tubing was drilled through the base.
Prior to sealing the walls of the casing to the base, 
the surface of the inner wall was accurately machined, 
such that when the impeller is slipped into the casing 
it provided an axis of rotation for the latter. The 
gap between the outer wall of the casing and the 
periphery of the impeller was of the order of 1.5 mm.
A 6 mm hole in the side wall of the casing, in line 
with the paddle drillings of the impeller, was fitted 
with a 3 cm long nozzle. The end of the nozzle was 
threaded to accept rubber tubing. A diagram of the 
casing is shown in Pig. 4.6. The three lugs shown 
at the base of the casing were used to fix the entire 
assembly on a common tray in the centre of the thermostat 
bath. The casing was filled to a depth of 3 mm with 
mercury to provide a frictionless surface at the 
bottom of the impeller. Pour such magnetic rotating 
devices were mounted on the common tray made from 
thick sheet of Perspex. Two rectangular bars were 
glued to the under-surface of the tzay for increased 
stability, Pig. 4.7 (0). The tray was perforated 
with a number of i cm holes to aid circulation of the 
bath liquid. Pour holes, matching the central holes 
in the impeller casings were drilled through the tray, 
allowing the cells to be mounted in position. The 
tray was supported by four adjustable legs in the 
thermostat /
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Legend for Figure 4*7

A Perspex Tank
B Central Tray
C Cell Holder (Brass)
D Adjustable Legs for Tray B 
E Cooling Coil
F Paddle Stirrer
G Mercury-Toluene Thermoregulator 
H Water Circulation Pump 
I Rubber tubing
J Pressure Distributer
K Pressure Regulator
L Brackets for mounting the Impeller Casing
M Perforations for Circulation of Water
N A Typical Cell Assembly 
0 Perspex Support Bars
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thermostat bath. These allowed the tray to be set 
perfectly horizontal at the required level in the tank.
The details of constructions are illustrated in Fig. 4.7.
A typical cell assembly with magnet driving device is 
shown in the figure. The cell holder (Fig. 4.7 C) 
consisted of a brass rod with a plastic coated terry 
clip screwed to its tip. The brass rod was then 
attached with a right angled aluminium screw-bracket 
to a main support rod which was mounted vertically on 
the Perspex tray. After initial adjustments, the 
cell and its attached rod can be removed from between 
the magnets, for manipulation, and brought back to the 
same reproducible position.

4.3.5 V/ater Circulation Pump
A laboratory thermostat-water pump unit (Shandon, 

Gallenkamp, Ltd., London) was used for driving the 
four impellers. The thermostat of the unit was dis
connected and its heater removed, msk ing use of the 
immersion pump only. A pressure distributer, shown 
in Fig. 4*7 J, was constructed from a 100 ml Pyrex 
round bottom flask by attaching four short side tubes 
to its stem, near the bulb. The stem of the pressure 
distributer was then passed through a hole in the 
middle of the tray and connected with the outlet of 
the pump with rubber tubing. The four side-outlets 
from the distributer were then connected to the appropriate 
nozzles of the magnet driving assemblies, via TF 2/18 
'Rotaflo1 /
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’Rotaflo’ pressure regulators, with small pieces of 
rubber tubing. The speed of any particular impeller 
can thus be altered by regulating the pressure of the 
water jet. The minimum speed of stirring obtainable 
in each cell was found limited by a thresh-hold starting 
pressure to about 10 r.p.m., but a maximum stirring 
speed of 100 r.p.m. can be easily achieved with this 
type of system. Above this speed, however, the combined 
action of the impeller and the jet of water tends to 
force out mercury from the impeller-casing.

4.3.6 Constant Temperature Bath
A conventional toluene-mercury glass coiled 

thermoregulator in conjunction with an electronic 
relay mechanism (Type 42, Gallenkamp, Ltd., London) 
was used to maintain a temperature of 25 ± 0.01°C 
in a water bath. The bath was heated by two 150 watt 
bulbs and cooled by tap water cooling coils immersed 
in the tank. Although the contents of the bath are 
well stirred by the water circulation pump, a paddle 
stirrer attached to a continuous duty motor, was also 
used to ensure thorough mixing. Evaporation from the 
top of the tank was reduced by covering the surface 
of the bath with polystyrene pellets. The thermostat 
tank was installed in a fume cupboard in the *radiation- 
room’. The exhaust fan of the fume cupboard was set 
to a medium draught to avoid temperature fluctuations 
in the thermostat. A photograph of the entire unit 
is /
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is displayed on p.219 • use ^ersPex ^or
construction of the tank had the advantage of being 
transparent and rust proof# The action of the stirrers 
and the alignment of the cells can be easily seen.
Since water in the bath is constantly used for driving 
the magnet rotating assemblies, any rust or other 
material may obstruct the inlet nozzle of an impeller, 
thereby reducing the speed of stirring in the cell# 
Accordingly, water in the tank was changed before 
every diffusion run. Growth of algae was limited by 
the addition of a little sodium benzoate to the bath.
The use of a filter in the circulation pump was considered, 
but this had the adverse effect of reducing the pressure 
of the pump and was therefore discarded# A totally 
water submersible pump fitted with its own filter was 
also tried, but was rejected because of the heat 
generated by the body of the pump inside the thermostat 
bath#

4#3#7 Determination of the Volumes of the Cell 
Compartments

The cell was first cleaned with hot nitric acid, 
repeatedly washed with distilled water, inverting the 
cell at regular intervals, and dried with acetone#
The volumes of the cell compartments and Vg were 
then determined by weight calibration with carbon 
tetrachloride. The density of carbon tetrachloride 
at the temperature of calibration (25°C) was calculated 
from /
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Plate 1• Photograph of the apparatus used for 
diaphragm-cell diffusion measurements
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A Ofrom the equation :

d. = 1.63255 - 1.911 . 10-3. t - 0.690 . 1(T6 . t2

The volume of the diaphragm, V-̂ , was determined independently
by reweighing, after dropwise addition of CC-^ with a 
pasteur pipette to the sintered disk, an otherwise dry 
cell, held horizontally; the capillary action of the 
pores draws in C C ^  to fill the diaphragm.

The average results of duplicate determination 
of the volumes of the cell compartments, for the four 
cells used, are listed in table 4,1.

4.3.8 Filling of the Cell for Diffusion Run
39The 1vacuum thump* method was used for the cell 

filling. All the solutions were defibered by passing 
through a millipore filter and degassed, just prior 
to cell filling. The bottom compartment of the cell 
and approximately one-half of the top compartment was 
filled with the appropriate solution. The top 
compartment was then evacuated until the solution boiled.
The vacuum was suddenly released, allowing the 
atmospheric pressure to force the solution in the diaphragm 
pores. The procedure was repeated several times; 
the cell was reversed in position at intervals to ensure 
complete filling of the diaphragm. The bottom 
compartment was then completely filled and the bottom 
plug, shown in Fig. 4*5 h, was inserted with .valve B 
open /
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open to avoid trapping air bubbles, A thin layer of 
high vacuum quality grease (Apiezon) was applied to 
the o-rings of the plug, B was then closed by holding 
knob C and rotating knob D. The internal chamber in 
the body A was then cleaned and dried by passing 
water, acetone and air through the side holes E.
The holes were then closed with the stoppers F and a 
thin layer of parafilm was wrapped around the plug 
assembly for protection against tank water. The plug 
was maintained firmly seated with rubber bands across 
the small * ears’ on the diaphragm cell. The filling 
of the top compartment was then completed and the top 
plug, shown in Pig. 4.5 a, was inserted after 
lubricating with a light coat of ’Apiezon’ grease and 
enclosing it in a teflon sleeve.

4.3.9 Calibration of the Diaphragm Cell
Aqueous 0.5 molar potassium chloride, diffusing 

into pure water, was used for cell calibration. The 
’gradient-filled method* (case 2, section 4.2.8b) was 
adapted for calibration experiments. The cell was 
filled with distilled water by the filling procedure 
described in the previous section. Water in the 
bottom compartment was then replaced by approximately 
0.5 molar potassium chloride solution using the special 
side-hole pipette arrangement shown in Pig. 4.8. The 
bottom plug was then inserted and the cell clamped 
into the thermostat bath, properly positioned and 
aligned /
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aligned between the magnet rotating assembly,
A flask of degassed distilled water, fitted with 

the assembly for washing the top compartment of the 
diaphragm cell (Pig. 4.8) was also placed in the 
thermostat to equilibrate to temperature.

Diffusion in the cell was then allowed to 
proceed for a period of approximately 2 hours to 
establish a gradient. This prediffusion time, t ,

7was estimated from Gordon1s approximation' :

B t g / /  = 1.2

It has been shown, however, that Gordon1s prediffusion 
time may be considerably longer than that required for 
attainment of a !steady-state1, but varying the length 
of prediffusion period within reasonable limits will 
cause no significant error in the experimental 
results. The period of 2 hours was therefore 
considered suitable both for establishment of a gradient 
and to bring the cell to temperature equilibrium.
At the end of the prediffusion time, the top plug was 
carefully removed and the top compartment emptied with 
one of the special pipettes without displacing the 
cell from its position. The compartment was then 
filled with thermostated distilled water, directly 
transferred from the flask, by applying a mild pressure 
(Pig. 4.8 a). This rinsing procedure of emptying 
and filling the cell with distilled water was repeated 
four /
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Sucti on 

or

Pressure

Side
hole

Fig. 4-8

Horizontal Flow Pipette Assembly
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four to five times. At the final filling the time 
was recorded with a stopwatch, the top plug firmly 
seated and the volume of the top compartment made up 
to the mark. The experiment was then allowed to 
proceed for 46 to 48 hours.

At the end of a diffusion run, the top solution 
was transferred to a 50 ml stoppered flask with the 
side-hole pipette and kept for analysis. The cell 
was quickly removed from the thermostat, externally 
dried, then inverted and the valve of the bottom plug 
released. A slight pressure was then applied through 
one of the side holes in this plug, forcing a few ml 
of solution through the diaphragm and effectively 
quenching the diffusion process. The time was recorded 
and about 15 seconds added to compensate for the time 
loss in the latter operation. The bottom solution 
was then pipetted out in similar way to the top 
solution.

4.3.10 Analyses of Potassium Chloride solutions and 
Calculation of the Cell Constant

Since accurate conductance data for potassium 
chloride solutions are available from measurements of 
Shedlovsky and Chambers^ and Stokes and Stokes,^ the 
concentrations C^ and Cg were determined from 
conductimetric analysis of weight-diluted samples of 
top and bottom solutions, by successive approximations. 
The values of equivalent conductance, A , were curve 
fitted /



fitted against the corresponding concentrations, C, by 
equation (4.58):

A n = -2.17402 -0.060649 C -0.0015556 C2n + 0.00032534 C

where Cn = ln(c/d) and A n = ln( Ad/1000)

range of validity (0.01-0.1 mol. 1"^)

( I = ±0.00012) 4.58

The density, d, being given by -

d = 0.9970874 + 0.04712739 (C/d) + 0.000445855 (C/d)2

range of validity (0.01-0.6 mol. I”1 ) 4.59

gram of each solution of concentration C-̂  mol. I-'*' 
and density d^ gm ml”^ were diluted with distilled 
water to give a concentration C2 (less than 0.1 mol. 1~^) 
of total weight W and density d2 * The concentration 
of the original solution is then given by:

C1 = (C2/d2 )(W/W1 ) dx 4.60

The specific conductance, K , equation (4.61), of thesp
diluted solution was measured by the method described 
earlier.
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K = C0 A /  1000 4.61Sp

thus Ks / 10-3 A  d2 = (C2/d2 ) 4.62

An estimate was made of {(̂ 2/^2  ̂ for the solution whose
specific conductance was measured. For this guess a
value of 1(T3 A  d2 was calculated from equation (4.58).
From the measured specific conductance a first
approximation of (02^ 2 ) was obtained from equation
(4.62). This value of (02^ 2 ) was then used to
repeat the iterations until a consistency of 0.02#
was achieved. The original concentration of
potassium chloride, C-j_> was then calculated from
equation (4.60), using equation (4.59). Having
calculated the final concentrations and C-g by this
iterative method, the initial concentration of
the bottom solution was calculated from equation (4.56b).
The cell constant, f3 , was then computed from the
expressions (4.56), using the method described
in section 4.2.7. D values for use in equation (4.56a)

_0
were calculated from Robinson and Stokes data of D (C)
for potassium chloride in the concentration range 0.0
to 1.0 mol. 1"^.

A computer program, given in Appendix D.l, was
written to perform the iterations and calculate the

_0
cell constant. The values of D (C) were curve 
fitted against the corresponding concentrations by 
the method of least squares into polynomials of the 
type: /
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type:

__0 n
D (C) = an + 2  a< C1 4.63

u i=l 1

The coefficients of the polynomials, listed in table 4.1 
are incorporated in the computer program. %

Table 4.1 

Coefficients of equation (4*63).
C

t an ao a,z(mol.I"1 ) 0 1 2  3

0.0 - 0.01 1.9834 -10.4036 978.602 -39220.0
0.01 - 0.1 1.9590 - 2.4101 27.3377 -118.482
0.1 - 0.5 1.90175 - 0.36375 0.8250 -0.6250
0.5 - 1.0 1.84273 0.000360167 0.018694 -0.0021745

1 I K4* 3* 11 Preparation of Isotopically Labelled GdJ.o,

Radioactive cadmium chloride ( ^ ^ C d C ^ ) ,  in 0-1 
molar hydrchloric acid, was obtained from the Radiochemical 
Centre, Amersham, England.

Although, experimental cadmium iodide solutions 
were spiked with injections of 0*01 - 0 0 5  ml, the presence 
of HC1 in the commercially available labelled cadmium 
chloride would cause a reduction of ca. 2 - 3  units in 
the pH of the diffusing solutions. The addition of excess 
chloride ions to the system was also considered undesirable.

4  4  C

Accordingly, labelled cadmium iodide ( ^Cdl2) was 
obtained from cadmium chloride by micro-electrolysis in 
the cell/
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the cell shown in Fig. 4*9. The two compartments of the 
electrolysis cell, constructed from Pyrex glass, were 
seperated by a small sintered disk of porosity no. 4*
Each half of the cell had approximately one ml capacity 
and carried an electrode consisting of 3mm square of 
platinum foil, spot-welded to a platinum wire. The wire 
was passed through a 4cm long glass capillary tube which - 
was sealed at both ends, leaving a centimeter length of 
bare wire at the top for electrical contact.
The electrodes were cleaned by heating to redness for a 
short while in a flame, washing in dilute nitric acid and 
rinsing thoroughly with distilled water.

A relatively thick layer of cadmium metal was then 
electrodeposited on both electrodes from a 0*1 molar 
cadmium chloride solution, acidified with hydrochloric 
acid. A little hydrazine dihydrochloride was added to the 
electrolysing solution as an anodic depolariser.
The electrolysis was continued for 3-4 hours, using a 
current of 3 mA from a constant current power supply. 
(Solartron P.S.U. AS 1413).

After both the electrodes had been coated with 
cadmium deposits, in a seperate experiment, the cathodic
compartment was injected with ^ 0  2 ml of radioactive

115cadmium chloride. The electrolysis was continued for 
further 2-3 hours, checking the radioactivity of the 
electrode and the solution in the cathodic compartment, 
at regular intervals, with a Geiger-Muller counter.
When maximum activity was transferred to the electrode, 
the/
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the electrolysis was stopped. The solution in the cell 
compartments was replaced by 0*1 molar cadmium iodide, 
the polarity of the electrodes was reversed and the 
electrolysis of cadmium iodide solution carried out for 
a period of half hour. Sufficient activity is transferred 
to cadmium iodide during this time to provide samples 
for a diffusion run. (The pre-deposits of cadmium on both 
electrodes prevent the liberation of iodine during 
electrolysis of cadmium iodide solutions.).

The electrode was always kept coated with active 
cadmium and 0.5 ml radioactive cadmium iodide was prepared 
prior to every diffusion run.

An estimated 60-70% efficiency of electrolysis 
could be achieved by this method.

4*3*12 Isotopic-Diffusion Experiments.

The 1 Solvent-Filled1 method described in
section (4*2»8a) was adopted for isotopic-diffusion 

22 +studies. Na , in 0*1 molar sodium chloride, was obtained
from the Radiochemical Centre, Amersham, England.

22 +Sodium chloride, used for Na diffusion experiments, 
was recrystallised twice from distilled water, dried at 
130 °C and stored over silica gell in a vacuum desiccator.

Analar cadmium iodide, supplied by Hopkin and 
Williams Ltd., England, was used without further 
purification.

The cell filling procedure was the same as 
described in section (4*3*8) and injections of appropriate 
isotope/
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isotope were made into the top compartment of the cell, 
using a Hamilton syringe fitted v/ith Chaney adaptor.

Diffusion run was allowed to proceed for ca.
72-80 hours and 0*1 to 0*2 ml samples from both 
compartments .were analysed using a model 3390 Packard Tri- 
Carb liquid scintillation spectrometer provided with 
an automatic sample changer and print-out device.
Samples were added to 10ml aliquots of a dioxane-based 
liquid scintillator contained in special plastic vials.
The scintillator had the composition,

*
40-50 gm Naphtalene
4-6 gm PPO

0*1-0*3 gm Dimethyle POPOP
20 ml Ethylene glycol

and 100 ml Ethenol
per litre of 1-4 dioxane. The solvent, 1-4 dioxane, 
was purified by refluxing with 10 gm ferrous sulphate 
and 10 gm sodium metabisulphate per litre for one hour.
The liquid was decanted and the dioxane distilled out 
collecting the fraction boiling between 101° and 102°C.

If this precaution was not taken,sever colour 
quenching was observed in C d ^  solutions reducing the 
counting efficiency by as much as 80-90%. Consequently, 
counting samples for cadmium iodide solutions were 
made in freshly prepared phosphor made in freshly 
distilled 1-4 dioxane.

Counting errors were reduced by diluting samples 
from the fHot* compartment to give approximately the 
same/
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same rate of counting as the samples from the ‘Cold1 
compartment.

The volume of radioactive samples in each analysis
5 6was adjusted such to give a rate of the order of 10-10 

cpm to minimise statistical errors.
Triplicate and quadruplicate samples of the same 

solution were analysed and a counting efficiency of 
0*3-0*5 % was acheived.

t
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4*4 Results and Discussion

4*4*1 Results of Calibration Experiments
The dimensions of the four cells, used for

isotopic diffusion studies, are given in table (4*2).
The speeds of stirring usually chosen, *in the

Stokes type of diaphragm cell, are in the range 50-60
r.p.m. Since a modified method of stirring was used in
this work, the effect of varying the stirring rate in the
cell was studied by calibrating the cell with potassium
chloride at three different speeds, table (4*3),»

Table 4*3
Calibration results for the cell constant, R , 
at three different speeds,

r.p.m B(Cell no.Ill) f3 /
30 0* 43202 0*99059
60 0*43612 * 1*00000 
85 0*43576 0*99917

From this table, it is obvious that (3 is constant from 
30-85 r.p.m. The pressure of the jet of water, for the 
four magnet driving devices, was therefore adjusted to 
obtain a stirring speed of 60 +_ 3 r.p.m in each cell and 
all subsequent measurements were made at this speed.

The cell constants, determined by the method 
described in section (4*3*9) are given in table (4*4). 
Duplicate determinations agreed to within 0*1 %.
It should be noted, however, that the more convenient 
method the 1 Solvent-Filled Hethod' (Section (4*3*8).) was 

used / for
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Table 4.2
Dimensions of the diaphragm cells used in this work.

Description
I

Cell
II

No.
Ill IV

*
Volume of top 

compartment VT 56.73 53.37 50.04 58.58

* Volume of bottom 
compartment VB 55.03 54.96 54.84 53.69

£-Volume of the 
diaphragm VD 1.512 1.400 1.279 1.595

(vT+ivD)/(vB+ivD) V 1.0306 0.972 0.913 1.0898

2Vj/ ( V t +Vb ) 0.02706 0.02585 0.02439 0.02841

(1- V6) 0.99549 0.99569 0.99594 0.99526

Diameter of the 
diaphragm

(mm) 40 40 40 40

Thickness of the 
diaphragm

(mm) 3 3 3 3

Length of the 
stirrers

(mm) 36 36 36 36

*JVt =3Vb = ~  0*015 ml; IVD = 0*003 ml.
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Table 4*4
Results of a typical calibration run with potassium chloride

Description Cell-I Cell-II Cell-Ill Cell-IV

Time, t (seconds) 172131.0 172104.0 169900.0 173374.0
hWt.(Top) 15.5524 16.9670 15.9755 15.7643
Wt. after dilution 48.1236 44.5607 43.9182 41.8984
Ksp (Top) 0.0075641 0.0092004 0.0080771 0.0089810
Wt. (Bottom) 8.3659 7.7827 7.3214 11.1557
Wt. after dilution 36.6839 37.9709 47.7871 40.7936

Ksp (Bottom) 0.0081706 0.0076742 0.0056981 0.0098289
V 1.0306 0.9720 0.9130 1.0898
Guess value (^Cg) 0.05 0.05 0.05 0.05

o o f-3 0.0 0.0 0.0 0.0
°cB 0.456952 0.465430 0.434141 0.476045

CT 0.177525 0.185019 0.168858 0.182542

CB 0.273924 0.285592 0.279889 0.277257
(°Cb +Cb )/2 0.365438 0.375511 0.357015 0.376651
(°Ct +Ct )/2 0.088762 0.092510 0.084429 0.091271
(°cB)/(cB-cT) 4.740171 4.627797 3.910088 5.026053
5  . R 0.904005 0.890206 0.802566 0.931301
D 1.839154 1.839305. 1.839155 1.839335
Cell constant,(3 0.49131 0.48443 0.43638 0.50632
Deviation 10.0002 10.00044 -0.00026 ±0.0006

* Wt. is the weight of solution in grams, after vacuum
corrections , taken from the top or bottom compartment,

** Averaged values of duplicate determinations.
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for the isotopic diffusion measurements of in
cadmium iodide solutions. Although the error involved
in neglecting the differences in the equations for the
two procedures is of the order of 0*3% , proper corrections
for the (1-fy6 ) terms of equation (4*54) were applied and
the ’Solvent-Filled* method was tested by studying the 

22 +diffusion of Na ion in 0*1, 0*4 and 1*0 molar sodium 
chloride solutions. The results of these calibration 
experiments are given in table (4*5), where it can be seen 
that the two results are within the error limits of the 
two sets of measurements.

Table 4*5
22 +Results of isotopic diffusion of Na 

in sodium chloride solutions.

Concentration Diffusion coefficients
( C, mol.l"^) ( D x 10“^cm^s"^)

I II
0*1 1*330
0*4 1-279 1-283 (1-278)*
1-0 1-199 1-234

I This work (Experimental uncertainity + 0*5%)
II Mills et al.9, \ " " " ")

35* Mills, Woolf and Watts measurement; the 
’Solvent-Filled Method1 was used.
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4*4*2 Isotopic Diffusion Coefficients for Cadmium 
in Aqueous Cadmium Iodide
The results of diffusion experiments are given 

in table (4*6) and Fig. 4*10. The variation of Daa
with increasing concentration of the salt is remarkably
complex and must be regarded as quite anomalous when
compared with literature data for ionic isotopic
diffusion coefficients for dissociated electrolytes.

9In Fig. 4*10 sodium ion diffusion coefficients are given 
as a function of sodium chloride concentration for 
comparison.

Before'discussing the fluctuations in D , it isaa
noteworthy that all experimental values are lower than the 
infinite dilution value, D?_ (7*12 x 10*”^ cm^ s”^),

c l Cl

calculated from the limiting equation given below.

Daa “ RT °xa 1 \ Za | ^  4>64

(In this equation the equivalent conductance of the 
cadmium ion at infinite dilution, , was taken as

a

2 - 1 - 153*5 cm ohm equiv. , from the conductance measurements
of Matheson^^.)

45Olsztajin, Turq and Chemla, in their studies of
the diffusion of ^ ^ C d ^ + in increasingly concentrated -
potassium chloride, have observed a similar increase in
D , above the infinite dilution value. The diffusion aa’
coefficient increased smoothly with increasing 
concentration of the supporting electrolyte. These authors 
tentatively/
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Table 4*6
115 2 +Isotopic diffusion coefficients of Cd in cadmium 

iodide solutions together with mobilities and isotope-
isotope coupling terms, defined by equation (4-1).

c l  x 105 a
3mol.cm

x 106aa
„m2 o“ 1cm s

Daa/ RT

x 109
Laa/°a 
x 10^

-(Laa*/pP*)/C^ 

x 10^

o•o 7-122 2•8730 2*8730 0*0000
0*10 7-860 3*1708 3-0370 0*1338
0*15 *7-436 2*9997 2*9788 0*0209
0*20 7-422 2*9941 2*8940 0*1001
0*30 *7-898 3*1861 2*7390 0*4471
0*40 8-114 3*2732 2*6318 0*6414
0*50 7-884 3*1804 2*5706 0*6098
0*60 *7-164 2-8904 2*6478 0* 3426

The experimental uncertainity in D00 is + 0*5% and inClCL *
T To estimated to be + 1*0 % thus the isotope-isotopea a  a

coupling term, in the final column, is uncertain to 
_q+ 0*04 x 10 units.

T 2 - 1 - 1  -1The dimensions of L_,_ and L0 * are mol cm s J •a a  a d

* Averaged values of D__ from duplicate determinationscLcL
within 0*5%.
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tentatively ascribed the effect to the increased
concentration of the solvent structure breaking complex,

2-CdCl. in these solutions.4
The variations in cadmium diffusion coefficients 

as a function/cadmium iodide concentration is obviously 
too complicated to be ascribed to the effect of a single 
ion complex. In the range 0*1 to 0*6 molar, D__ passesacl
through a minimum at 0-2 molar, rises to a maximum at 0*4 
molar and falls once more to the value at 0*6 molar.
In the range from infinite dilution to 0*1 molar, no 
experimental data are available, but it is obvious from 
Pig. 4*10 that must pass through a maximum betweenaa
0*1 mol.l (the lowest measured value) and the infinite 
dilution value, D?_ , equals 7*12 x 10“^ cm^ , fromcla
equation (4*64).

To explain these effects a predictive calculation 
has been made, using the irreversible thermodynamic 
analysis given in section (4*1*1).

4*4*3 Calculation of the Isotope-Isotope Coupling Terms 
In section (4*1) of this chapter, it was shown 

that the isotopic diffusion coefficient, D__, of cadmiumcl Cl
in cadmium iodide may be represented by equation (4*1) 
reproduced below.

Daa = RT (Laa/Ca " 1/°a •^aa*/?'5*) 4 ‘1

The second term in equation (4*1), the isotope-isotope 
coupling term, was equated to a summation of coupling 
coefficients/



241

coefficients between all labelled and unlabelled cadmium 
containing species in this coraplexed system, equation (4*35). 
In very dilute solutions, where complexing is negligible 
L_ * is simply * , the coupling coefficient betweencla a a

free cadmium ions, labelled and unlabelled. As complexing 
increases and concentrations of the species of the type

2—x(Cdlx ) become significant, then additional terras, which 
allow for complex-to-complex interactions become increas
ingly important.

mThe binary coefficients 1 of equation (4*1),a a

discussed in chapter 3, are available from the experimental
46studies of Paterson, Anderson and Anderson made in this 

laboratory. From these and the corresponding diffusion 
coefficients, D__, the isotope-isotope coupling term cancl cl
be calculated, using equation (4*1). These coefficients
are given in table (4*6).

Before discussing the results, a mention will
be given to the units which have been used in these
calculations. In normal practice the flow of a species,
J^, is defined as the molar flux through a one centimeter
square area, normal to the direction of that flux, in

2 - 1unit time; dimensions, mol.cm s . The forces have
- 1 - 1the dimensions J mol. cm and are the gradients of

electrochemical potential. Since the mobility coefficients
are of the dimensions of J^/X^, the units for Lik are 

2 - 1 - 1 - 1mol. cm s J The diffusion coefficient I) thereforeaa
2 —  1has the required dimensions (cm s ) if the concentration

T -3of the total cadmium, CL, is expressed m  mol.cm .a
In/
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In Fig. 4*11, values of D__ and RT L^_/C^ area a  a a  cl

plotted against the square root of the molarity of
cadmium iodide. From equation (4*1) the isotope-isotope

* Tcoupling term -RT(L * / D p )/C0 is obtained by differencea a  ' S i

and is represented by the shaded area of the figure.
— 1 TIn the experimental region (0*1-0-6 mol.l ) L0_/C_

Cl Or Cl

exhibits a smooth decline with increasing concentration
and so contributes a downward trend to I) . The variationaa _ -jin D_0 with increase in concentration (above 0-1 mol.l )clcl

is therefore due to the minimum and subsequent maximum
* mobserved in the coupling term -(I»Q */pp )/C0 , Figs.a a  ' cl

4-11 and 4-12. It is therefore to this term that we must
look for an interpretation of the anomalous variations
in !> . aa

As mentioned above, in dilute solutions
_ A(below 0-1 mol.l ) experimental values of D00 are notclcL

available, due to the intrinsic limitations of the
T Tdiaphragm cell method. In this region,however, L0_/C0a a  a

has been shown to pass through a manimum,chapter 3.
From equation (4-1), therefore, it is obvious that an
initial increase in D „ above the infinite dilution valueaa
can only be possible if the isotope-isotope coupling

T *\term -1/C (L_ */ pp ) rises steeply from zero.S i  a a

As concentration is increased this coupling term passes
_ A

through a maximum (at 0-1 mol.l ), a minimum (at 0-15
—  1 —  1 mol.l ) and a maximum once more at 0-4 mol.l , Fig. 4*12,

table (4*6).
/ *The complex variations m  L00/pp thereforea a

determine the major trends in concentration dependence 
of/
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Fig. 4*11 —  Cadmium iodide: Isotopic diffusion coefficients,
D , and the contribution of the thermodynamic aa

T Tterras, RT LQQ/C_ . The shaded area representingClcl 8L

the difference between the two curves is a 
measure of the isotope-isotope coupling contri
bution -RT (Laa*/ pp )/C*.
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of the experimental diffusion coefficients. Although 
there is little possibility of explaining the variations 
in this function in the higher concentration range 
(above 0*1 mol.l""^), experience of predictive calculations 
for the binary coefficients of this salt lead us to believe 
that theoretical predictions based upon the Onsager 
Limitin Laws (as expressed by Pikal) would prove interesting 
in dilute solutions.

4*4*4 Prediction of the Isotope-Isotope Coupling 
Coefficients
In the theoretical section it was shown that the 

isotope-isotope coupling contribution, which has been 
evaluated from experimental data, can be expressed as a 
summation.
Comparing equations (4*1) and (4*35):

Ca Laa*/CaoCa* = ((Laa*/PP*)/Ca> = A  A  (('kî P ?*>/<£>Jt— o  1 — Cl

4 • 66
The ^ i *  define the coupling between species

-£k (unlabelled) and species i (labelled). It has been 
shown above that the isotope-isotope coupling term 
largely determines the complex variation of the cadmium 
diffusion coefficient, D0 . with concentration.cld

Pikal, in his analysis of coupling coefficients, 
has used the Limiting Laws equations of Puoss and Onsager 
to obtain a general expression for such coefficients, 
equation (4*67).

1° 12y(ik*/
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W  I *  *-67

The units of ^ k* are those used in this study (mol^
—  1 —  1 —  1cm s J ) hut concentrations are expressed in molar 

units, A is a constant (0-1074), [b ] is a combination 
of relaxation and electrophoretic terms, discussed below 
and I is the true ionic strength of the solution, 
equation (4-68).

I * i S  (c.j0 + c..*) Z2 (;j=a,1,2,3,4,b) 4-68

|i. is defined by Pikal as the ionic strength fraction,J
equation (4-69).

= Cj-Z*/ 2  (c3o + c.*) Z2 = c. Z2/2I 4-69

Thus in equation (4*67)

M  <  = V ci v  l z i zk i / 21 4>7°

From equations (4*67), (4*70) and (4-5), equation (4*71) 
is obtained in the same mathematical form as 
equation (4*35),

1° 12 k i * / p p * =  A °i ck 4 *71

The term [b ] used in these equations is defined by 
Pikal, equation (4*72),

(b) = (x/y Aik* - (Bq/2) Zx Zk ) 4*72

Where terms in Aik* and BQ involve the relaxation 
and electrophoretic effects respectively.
In/
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In equation (4*72), x= X k / |Zi| Z^*, it is assumed
from the postulated identical chemical characteristics
of labelled and unlabelled species that = X-*

J J

where is the equivalent conductance of the ion at
J

infinite dilution, and y= 2  &*/ [Z . I , where the
J J I J *

summation is over all species, labelled and unlabelled, 
in the solution. From equations (4*69) and (4*4):

' - < °3 Zil*i 21 4* 73

Pikal has shown that = a^k | Z^ Z^ | where a ^
at 25°C is a constant, 0*22962. Similarly Bq is a 
constant, 60*495.
Thus equation (4*73) becomes:

[b ] =
2 X. X k I aik

- ( V 2) zi zk 4*74

Combination of equations (4*67) and (4*74) gives:
/  \

10 ik*/p p
lZi Cil 'Zk Ckl X i xk A aik

(relaxation term)

- lZi Ci| lZk Ck | <Zi zk> A V 4 I-i

(electrophoretic term)
4-75'

The relaxation/
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The relaxation contribution to ‘ik* increases while 
the electrophoretic term decreases with increasing 
ionic strength. Furthermore, although the relaxation 
term is always positive the sign of the electrophoretic 
contribution will depend upon that of the valency 
product Z^ Z^. Pikal1s analysis deals solely with 
interionic coupling and so ignores the coupling coeffi
cients an<  ̂ equation (4*76). Equally
since it is based upon the limiting Law it is precise 
only in very dilute solutions. With these two 
limitations however, it remains the most viable method 
for estimation of these coupling terms.

Expanding the summations of equation (4*66):

4
Z:=a

4
2i=a (*ki/ / T

* /  P p ) / c £ = 1/oT . 1/ *
PP X

( i *aa + Jl * a1 + V + / *a3 + f *a4

+ *1a + A * 11 + V + X *13 + *14*

+ X *2a + V + V + X *23 + *24*

+ *3a + V + *32* + X *33 + *34*

+ f *4a + V + *42* + *43* + *44*>

4* 76

These coefficients of equation (4*76) were
evaluated using equation (4*75) and the optimised 
values, obtained in chapter 3. The results are given 
in table (4*7),/
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in table (4 *7 ), where the matrices of coefficients
are displayed in the formate of equation (4 *7 6).
The negative coefficients are seen to be seperated
into two groups at the upper left and lower right 
quadrants of the matrix. These involve positive-to- 
positive ion and negative-to-negative ion interactions 
respectively. In dilute solutions, where higher complexes 
are not present in significant proportions, the negative

m *contributions to 1/C_ LQ * / p p are largely21 a a

( ^aa* + 2^a1* + *11*)' 0nly in the highest concentrations 
considered do the negative-negative ion interactions 
( ^ 33* + 2^34* + ^4 4*) contribute significantly.
The positive contributions are due solely to positive- 
to-negative ion coupling interactions 2 (*^a* + ^ 31* +
^ a* + 4̂1*)• In the lower concentration range, below 
0*07 mol.l” 1 negative terms dominate, table (4 *7 ).
As complexing becomes more significant the positive-to-

0negative coupling interactions increase disproportionately
in magnitude and ultimately at concentration greater

— 1 T  *than 0*07 mol.l the predicted value of 1/C_ L_ */ ppa  a a
become positive.

In Pig. 4*12 the predicted and experimental
isotope-isotope coupling terms are compared. It is
observed that in dilute solutions up to 0-07 mol.l” 1

/ *the calculation predicts a maximum m  L * / p p whichcla
was expected and effectively interpolates the function 

- between the lowest experimental value and infinite 
dilution.
As for/
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Table 4*7

The component coefficients > displayed in the
formate of equation (4*76), for individual concentrations,N.
N * 0*003

- 7 . 4 0 5 9 7 F-0 4  
-1 . ̂39196-04 

1 • 5 6 0 6 6 E -  0 b 
2 .2 7 3 2 S E -0 7

-1  .5 3 9 1 9 E -0 4  
~ 3 • 1 6554E-05  

3 .4 8 ^ 2 4 8 - 0 7  
5 • 05351E-08

1 .5606t>F-06 
3 .4 8 4 2 4 E -0 7  
■1 . 5 5 1 3 6 F -0 9  
•2 .41624E-10

2 . 27328F-07  
5 • 05351F-08  

- 2 . 4 1 6 2 4 F - 1 0  
- 3 .7 3 3 3 5 E - 1 1

N = 0*005
- )  • 13 3 Q 2 F -  0 3 
“ 3 • 3 -7 9 5 E -0 4  

7 .8 2 3 2 7 F - 0 6  
1*31 <u.25F-U6

•3 • 3 8 7 9 5 6 -0 4  
1 .0 0 1 9 7 E -0 4  
2 . 5 0 7 7 0 t - 0 b  
5 • 79094E-0  7

7 • 82327E-0  6 
2 .5 0 7 7 0 F - 0 6  

- 2 • 5 8 272F -08  
- 6 . 3 9 4 9 8 E - 0 9

1 .8 1 4 2 5 F -0 6  
5 • 79094E-0 7  

- 6 . 3 9 4 9 3 F - 0 9  
- 1 * 5 7 1 2 3 F -0 9

N = 0*01
-1  .8 7 3 0 3 2 - 0 3  
- 8 . 7 3 6 1 2 F-0 4  

5 . 7 6 2 3 2 E-0 5  
2 .4 5 3 7 2 E -0 5

- 8 • 7 3 6 1 2 F -0 4  
- 4 . 0 3 4 1 5 F -0 4  

2 .8 8 0 0 0 F - 0 5  
1 •2 2 1 26E-05

5 .7 6 2 3 2 E -0 5  
2 •8 8 0  0 0F-05  

- 8 • 5 9 33bF -07  
- 3 . 9 0 1 97E-07

2•  45 37 2 F -0 5  
1 .2 2 1 2 6 E -0 5  

- 3 . 9 0 197E-07 
- 1 •  75645E-0  7

N = 0*02
- 2 . 9 9 6 0 9 E - 0 3  
- 1 .9 8 4 7 0 E -0 3  

3 • 23005E-04  
2 .3 7 3 5 5 E -0 4

-1  . 9 8 4 7 0 E -0 3  
- 1 . 3 0 1 58E-03  

2 • 29341E-04  
1 • 67822E-04

3 • 23005E-04  
2 • 2 9 3 4 1 E-04  

- 1 • 6 8330F-05  
- 1 .3 1 9 3 5 E -0 5

2 • 37355E-04  
1 .6 7 8 2 2 E -0 4  

- 1 .3 1 9 3 5 F -0 5  
- 1 .0 2 6 2 9 E -0 5

N = 0*03
- 4 . 05779E-03  
- 3 . 0 9 5 4 5 E - 0 3  

7 . 7 2 35 6 E -0 4  
7 . 4 7 0 1 9E- 0 4

- 3 • 09545E-03  
- 2 . 3 3 7 1  IE - 0 3  

6 • 32372E-04  
6 .0 9 0 3 7 E -0 4

7 • 72356E-04  
6 .3 2 3 7 2 E - 0 4  

- 7 . 0 0 0 1 8F -0 5  
- 7 • 2325 2 F-0 5

7 . 4 7 0 1 9E-04  
6 • 09037E-04  

- 7 . 2 3252F-05 
-  7. 4 1 4 3 8 E -0 5

N = 0*04
-5•1799OF- 0  3 
- 4 . 2 2 9 6 6 E - 0 3  

1•36061t-03 
1 .5 6 5 9 1 E -0 3

- 4 . 2 2 9 6 6 E - 0 3  
- 3 . 4 1 723E-03

1. 19436E-03 
1 • 36866E-03

1 .3 6 0 6 1 F -0 3  
1 . 1 9436E-0  3 

- 1 .6 7 1 9 4 F - 0 4  
- 2 . 0 5 9 1 7 F-04

1 .5 6 5 9 1 E -0 3  
1 .3 6 8 6 6 E -0 3  

- 2  • 0 5 9 1 7E-04 
- 2 . 5 1 5 6 1 E - 0 4

(Continued)
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Table 4*7 Continued

N « 0*05
-6.399^56-03 
- 6 . 4 0 7 6 9 6 - 0 3  

2 • H6094E-0 3 
2 .6 8 7 0 5 8 - 0 3

- 5 . 4 0 7 6 9 E - 0 3  
-4 .S 1 9 8 6 E - 0 3  

1 .8 7 5 1 6 6 -0 3  
2 . 4 3 4 1 5F -0 3

2 .0 6 0 9 4 6 - 0 3  
1 .8 7 5 1 6 5 -0 3  

- 3 • 0 5 0 8 5 6 - 0  4 
- 4  • 268-26E-0 4

2 • 6 8 705F-0  3 
2 . 4 3 4 1 5 6 - 0 3  

- 4 . 2 6 ^ 2 6 6 - 0 4  
- 5  • 91051 E-0*+

N = 0*06
- 7  • 72976E-03  
- 6 . 6 3969E-U3

2 .P 5 8 7 6 E -0 3  
4 .1 0 3 1 7 6 - 0 3

- 6 . 6 3 9 6 9 6 - 0 3  
- 5 . b 3 9 4 b E - 0 3  

2 • 64794E-03  
3 •7 8 3 7 4 6 -0 3

2 .6 5 8 7 6 6 - 0 3  
2 • 64798E-0  3 

- 4 . 7 6 0 0 2 E - 0 ^  
- 7 • 3674dE-04

4 . 1 0 3 1 7 E-0 3  
3 .7 6 3 7 4 6 - 0 3  

- 7 . 3 6 7 4 8 6 - 0 4  
- 1 . 1 2 5 7 5 6 - 0 3

N - 0*07
- 9 . 1 7 7 0 9 E - 0 3  
-7 .9 3 0 5 0 E - 0 3  

3 . 7 4 ^ 5 4 6 - 0 3  
5 . 8 1 1 0 5 6 - 0 3

- 7 . 9 3 0 5 1 6 - 0 3
- 6 . 7 7 9 5 8 6 - 0 3
3.49^126-03
5 .3 9 8 1 4 E -0 3

3 . 7 4 4 5 ^ 6 - 0 3  
3 .4 9 4 1 2 E -0 3  

- 6 . 8 0 2 8 3 6 - 0 4  
- 1 . 1 3548E-0  3

5 . 8 1 105E-03 
5 .3 9 8 1 4 6 - 0 3  

- 1 . 1 3 5 4 8 6 - 0 3  
- 1 .8 7 8 3 9 E -0 3

N = 0*09
- ] . 2 4 3 7 3 E -0 2  
- 1 , O 6 9 7 8 t - 0 2  

5 .7 5 5 5 4 E -0 3  
1 .0 0 7 9 5 8 - 0 2

N = 0*1
- 1 .4 2 5 3 1 E -0 2  
- 1 . 2 1 7 4 9 6 - 0 2  

6 .P 7 1 6 1 E -0 3  
1 * 2 6 3 7 2 8 -0 2

- 1 .0 6 9 7 8 E -0 2  
- 9 . 0 9 1 2 6 6 - 0 3  

5 .3 5 8 4 2 E -0 3  
9 • 3 4 1 1 2E-03

- 1 .2 1 7 4 9 E -0 2  
- 1 .0 2 7 2 7 F -0 2  

6 • 35990E-0  3 
1 . 1 6 422E-02

5 .7 5 5 5 4 E -0 3  
5 . 3 5 8 4 2 6 - 0 3  

- 1 . 15453E-03 
- 2 • 1 8070E-03

6 .  87161E-03  
6 • 3 5 990F -0  3 

- 1 . 4 1 9 3 2 6 - 0 3  
- 2 . 8 1 865E-0  3

1 .0 0 7 9 5 6 - 0 2  
9 . 3 4 1 12E-03 

- 2 .1 8 U 7 0 E -0 3  
- 4 • 08039E-03

1 .2 b 3 7 2 6 - 0 2  
1 .1 6 4 2 2 6 - 0 2  

- 2 . 8 1 8 6 5 E - 0 3  
- 5 . 5 4 4 0 4 E - 0 3
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S T

Fig. 4*12 —  Isotope-isotope coupling coefficients,
rp  *-(1/C )L */ pp , as a function of square root concentration, a aa ^

for cadmium iodide. & , experimental values, obtained from 
equation (4*1); * , calculated from equation (4*35).
The optimised values of obtained in chapter 3, were used
to calculate both the intrinsic mobilities and the isotope- 
isotope coupling terms, using equation (4*67).
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As for the prediction of binary 
coefficients, chapter 3, the agreement between the 
observed coefficients and those calculated become 
progressively poorer as the concentration increases 
above 0*06 mol.l*”^. ( Additional calculations in which 
A C«di+ was varied,as in chapter 3, showed no significant 

variations in the concentration dependence of

*aa*/P P*>•
The limiting law predicts that the terms 

/ *- L_ */ p p will become progressively more positive asSI CL
_ iconcentrations increase above 0*1 mol.l , while the 

experimental values are shown to remain positive and 
to pass through a maximum, Fig, 4*12,

4*4*5 Prediction of Isotopic Diffusion, D __
With the validity of the calculation method 

justified, at least as regards dilute solutions, it was 
of interest to predict the isotopic diffusion coefficient, 
D__. These diffusion coefficients may be obtained bycl cl

Tcombining the calculated values of L__ (denoted bycl cl
\ / * in chapter 3) and LQQ*/ p p obtained here. In eachI I clcL

case the optimised values of X ̂  were used in the 
Pikal evaluation of the component and
coefficients.

The results of these calculations are given in 
table (4*8) and Fig. 4*13. The calculated diffusion 
coefficients are shown to increase initially as the 
concentration is increased from infinite dilution and 
to pass through a maximum value as inferred in the

discussion/
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Table 4*8

Predicted diffusion coefficients for isotopic cadmium 
in the dilute solutions range 0*003-0*1 mol.l""^ of 
cadmium iodide are given below.
The values of 0 / C a ) ^aa*/ pP were obtained from 
equation (4 *7 6), using optimised values of 
(Chapter 3, table (3*4).)

x 103a
3mol. cnr

<1/Ca> Laa*/ PP* 
x 1010

Laa/Ca 
x 109

DQ x106 aa
(Predicted)

0*003 -3-5857 2*7382 7-677
0*005 -3-7726 2*7579 7-772
0*01 -3-7791 2*7903 7-854
0*02 -3-2027 2*8587 7-882
0*03 -2*4510 2*9328 7-878
0*04 -1*7270 2*9993 7-863
0*05 -1*0738 3*0551 7-840
0*06 -0 *4898 3-1015 7-810
0*07 0*03619 3-1404 7-776
0*09 0*94986 3-2006 7-698
0 *1 0 1-35455 3-2243 7-657

T TL /C , tabulated in the third column of this table, aa' a 9
■3equals 2 x x 10 obtained with optimised values

of °Xi (Chapter 3, table (3*5).)*
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Dqo x aa

10

ernes'

4

r-.. c

- 6

2U

0.0 0.1 0.2 0 . 3  0 . 4  0 . 5  0.6 0 , 7

Pig. 4*13 — Isotopic diffusion coefficients,D__, for
°  a a

1 1 R p.^Cd ions in aqueous cadmium iodide. 
Observed and calculated diffusion coefficients 
are represented by & and * respectively.
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discussion of experimental data, given earlier 
(Section (4*4*2).). At 0*1 mol.l"^ the predicted 
diffusion coefficient is only 2*5% lower than that 
observed.

Thus, in the region helow 0*1 mol.l"**, it is 
seen that the predicted diffusion coefficient has 
the expected concentration dependence and is semi- 
quantitative .

This calculation, taken with those for the 
predictions of binary transport data for cadmium iodide, 
shows that the classical laws of transport in dilute 
solution may be applied with considerable success to the 
prediction of both isotopic diffusion and the binary 
solution transport parameters, conductance, transport 
number and salt diffusion coefficient.

Irreversible thermodynamics provides the 
theoretical bases of these calculations and the relation
ships between and coefficients are
mathematical identities independent of any assumptions 
other than that of local equilibrium within the system.

Although the Onsager Limiting theory as expressed 
by Pikal's equations is truly valid only at or near 
infinite dilution, these irreversible thermodynamic 
methods allow serai-quantitative predictions of transport 
data for cadmium iodide up to 0*06 mol.l” 1. In addition 
to its predictive element the method also allows 
assessment of what are the most important factors in 
determining transport in such complexed systems.
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APPENDICES

The computer programs reproduced here are 
written in FORTRAN IV language suitable for use with 
the *NUMAC1 I.B.M. 370/360 computing service. 
Extensive use of the NAG Subroutines have been made 
and slight modifications may be required before being 
used with ICL 1900 Series or other computing systems.
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APPENDIX A.1

A GENERAL PP.ObPA- F'uP CuPVl FITTING bY Tnt METrlOD 
OF LEAST SuuAkES* THE jaG SUb-<OuT I (ml LuEAoF I S  
INCORPORATED IN Trl£ PPGoKAM

IMPLICIT R£a L ^ A (A-N*U-Z)
DIMENSION XX (r>0 )* YY(SO)*X(oO) *Y(bO)fw(sO)*P (6 )* S i (o )* 

1 N  i'- M E  ( ti 0  )

LOGICAL L 
L = •F ALSE•

10 FORMAT(315)
11 FORMAT(3F10.0)
12 FQk M A T (20Ah )

P E A D (5*10)NbETS 
KOuNT=0

1 RE*D(S»lU)M 
DO 90 0 I = 1 ♦ m

900 PEAD(5»il)AX(1)»YY<1)* a (1)
V' P IT £ ( d i S 6 )
P P 1T E ( 6 * 5 0 0) ( X X ( I) » Y Y (I) * I = 1 »f 1)
MC = 0
. P£„y.N (S * 1 0 ) -n l Cvm 

99 P t ̂ L (b * i 0)R 1* t\ X * m X * K Y * t < Y 
PEAL) (5 • 12) ̂  a ml 
V' P I T E (b * 3 1 )
PR I TE ( 6 » S 5 ) N A h£
IF(KX.EN.O)uO TO 7 
DO B0 I=1*M 
IF(NX)2*3tH.

2 X (I)=DLJG(XX(i))
GO TO oO

3 X (i)=ULOG10(XX ( I ) )
GO TO 60

4 X(I)=DSJk T(x X(I))
80 CONTINUE

60 TO 2 1
7 ..CONTINUE

DO 61 1=1*M 
61 X(I)=XX(I)
21 C O T l N C t

IF (KY.EG.0)00 TO c 
DO 70 1=1 
IF ( N Y ) 5 * 9 * 1 3

8 Y (1 ) = D L J 6  ( r Y ( I ) )
GO TO 70

9 Y (I)= DL 0 G 10 (YY(I) )
GO TO 7 0

13 Y (I) =0SOKT ( Y Y ( I) )- 
70 CONTINUE

GO TO 22 
6 CONTINUE 

DO '62 1 = 1 
6 ? Y(I)=YY(I)
22 CONTINUE
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CALL E 0 2 A b F (M 9 X 9 Y 9 w 9 K 1 9 N 9 S 1 9 P 9 L )
W«ITE(b»52)
DO 30 1 = 1»M  

30 V?RITE(o»b3)K(I) *51 (I)
V;PITE (b o*+) inj 
WRITE(b * 3 0 0)
SU SGk = 0 •DO 
DO 40 1 = 1 9 H 
A X = X ( I)
AY=Y(1)
YC-L=O.JO
no 100 J=l*r\l
IF (AX.EJ.O.u O)OU TO 101

100 YCa L=YCa L+f (J)*AX**(J-i)
GO TO 10 2

101 YC-L=P(1)
102 DIF = YCm L-AY

SUdSEk = SUMSu'P + UIF **2 
PE = D A.BS (lIF/AY)-100.L'O 

40 V’ R I T E (b * d 0 0 ) A a * a V * Y C A L * 0 IF 9 P z.
STi‘EV = D5GKT ISU-’SOR/(m -1 ) )
WRITE(6*400)STDEv 
MC=NC♦1
IF(NC.NE.NCuM)GO TO 99 
KOuf\T = r\OUNT ♦1 
IF (KOUN'T • ME • NSt TS ) 00 TO 1 
STOP 

5b FORMAT(1nl)
51 FO-NAT(//bX*'LEAST SQUARE FIT uF «)
52 FO k M T  (/6Xf • CutFFICIEQTS OUOOGt-SS */)
53 FORMAT(2(1 Pulb•6 ))
54 FOKBaT(/ 6 X *'DEGREE OF btST POLY'*l4)
55 FORMAT(/6X*20a4/)

200 F 0 P V. A T' (4 (1 P D 1 6 • o ) 90PF10.J)
300 FORMAT(/ 5X * 1 X Y(ObS) Y(CaL)»*

1» DIFF P.uEv•*)
400 FOpMAT (/6 X 9 'STANDARD 'Qtv/lATlUn* 9 1PD1 2 .4////)
bOO F0*>iAT(/6X* • INPUT DATA (a-Y ha Ihb) */(d(2X 9 H U . h )))

END
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APPENDIX A.2

THIS Pk u GRmi'I CALCULATES THl STAn Um PU E m F (EO) F UK
uNSYMMc.Tric e l e c t r o l y t e s  h y uPorwALL l a m e k  a n d
SAr.DVtC TriEuPY.

IMPLICIT REALMS (A-H,D-Z)
FXTl Ri'-Al CUrcVF T * SOLVE
DI ENSIGN X(5C) * X3Y3(50) *A2Y2(S0) *XYdTAk(50)*EU(50)* 

IF (SO) ,?JM 'iL(E0)
CO' ■M0f\/K'4YbtP/M3*N2*NS
COf MON/PuShTU/COS(c) *CG2 (8 ) *CUS(d)
C1=G.56915U0 
C2=l.5363600 
C3=0• 217 AO uO 
C4=0•15Jd2uG 
C5=0.0bd79GU 
C 6 = 0 .2uO 7UU

10 F0r?*AT(2ib)
11 FOr PAT ( 2  0 a a  )
12 FOr.v.a T ( a F 1 0 • 0 )
13 F 0 a T (2 f 1 u • 0 )

PE a D (5*10) A * N
READ(St 12) ( A (1 )* a3 73(1)*X2Y2(I)*XYSTaP(1)*1 = 1,M) 
WRITE(6*1900)
CALL CUKVFT (M*f;*X*X.3Y3*C03*N3)
V P j T L ( 6 « I b 0 0 )
CALL CuKvfT (M*''J*X*X2Y2*C02*N2)
WRITE ( 6 * 160 0 )
CALL CUKVf- T ( M * I * X * X YST Ak * COS * MS )
KOUNT = 0
PEaD(S*1C)NSETS 

2 REA D (5 * 11)nahl 
WRITE( 6 tIOOu)NAMt 
PE aD (5*10) \UP
RE A D (5*13) (X(I)*E(I)*1 = 1*FOP)
PEAD(5*12)Au S*A0I*A0L 
A0=A0S
'.v KIT E ( 6 * 1 7 0 0 ) A 0 

1 SU:v-=0 • uO
DO 100 1 = 1 * NOP
XYSTAP(I)=C1#DSOk T ( X (I))
SX = X YST AK ( I) *Aii 
UX=1.0 0 /(1•uC♦SX)
P=1.DO/AU 
SA=1.D0/A0**2
CALL SOLVE (dX * ALhHA *SET A * GArlA )
X2Y2 (I) =C2*uX + C3***ALPHA-3.Uu'»CA*SA*bETA 

1-9.D0*C**SA*Ga j'A 
X3Y3(I)=-2.u O*XYSTa K (I)*x2 Y 2 (l)
FO (I)=E (1)♦C5*(Cb*ULOG10(X(1)))♦C5*XJY3(I)

100 SU». = 5UM*E0(1)
FLEOP=FLOAT(MOP)
AVERG=SUM/F LNOP 
SUHSOR=0.00 
WRITE(6*1100)
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no 200 1 = 1 *nop
DlF=AVERG-tU (I)
SU^SGR=bUhS^R+DIF**2
ECAL = AVERG-LS*X3Y3(I)-Cli*(Cb + GLUulO(X(I) ) )
D IFC=EC*L-t(I)

200 W R I T E ( o *1200)X( I ) * E (I)*XYSTAk(l)*X2Y2(I)*X3Y3(I)*
1F 0 (I ) * U IF * c.C AL * 0 IF C 
SDtV = DS-JRT (bU.xS'vrV (FLNOP-1 ) ) *1 .0 + 03 
W R I T E (b * 1300)a V£k 6*S d E v 
A0=A0+A0I
IF(AC.LE.AOL)GO TO 1 
KOUNT=KJUNT+1 
IF (KOUNT • NE • MSETb) GO TO 2 
STOP

1000 format(//Sa*2uA4/)
1100 F O R M A T (//)
1200 FO-MAT(dX*9(2a*F10.5))
1300 FORMA T ( So X ** Av£ RaGE EG=**FlU.b** S. UEV.=**Fb.2)
1400 FO-MaT (/bX* 'CotiFF ICIEbTS OF 1 0**3 (1 /2X3- 2 Y 3 ) VS X*)
1500 FORMAT(/SX*•COEFFICIENTS OF 10**2(1/2X2-Y 2 ) VS X»)
1600 FOkMAT(/SX*•COEFFICIENTS OF 1u * * 3 (1/2X3*-2Y3*) VS X»)
1700'FO - N A T ( / S X , 'A0=**F10.2)

El 'u
SUBROUTINE C U R V F T (M * N * X * Y * COE * K )
IMPLICIT Kt a L * H (A- h ,Q - Z )
DI' ENSION X (M ) * Y (M )* C O E (N )* W (40)* S (b )
LOGICAL L 
L= • F ALSc. • 
no 20 1= 1 *m 

20 W <I)=1.00
CALL E G 2A o F  ( M  * X * Y * w * N  * fvT * S * Cut. * L )
K = R N + 1 
DO 30 J=1*K 

30 W R I T E (6*100)COE (J)
WRITE(6*200)KN 
W R I T E (6*300)
SU O = 0 .00 
DO 40 1=1*m 
YCA L = 0 •00no so j = i *u
IF (X (I )•E O •0•D O )GO TO 1

50 YC AL = YCAL + CcF. (J ) *X (I ) **(J - l )
00 TO ?

1 Y C A L = C o E (1)
? n i F F = Y (I )- Y C A L  

S C = S U R + D 1F F * * 2 
40 W R I T E  (6*A G O ) X (I ) , Y (I ) *Y C A L * O I F F  

SUEV = ObjkT (SUr/(FL O A T (i 1)— 1))
100 FORMAT (SX* 1K>14.7)
200 FORMAT (/bX* • OcjREl OF FIT F0ui\'0= * * 12)
300 FORMAT(//)
400 FORMAT (3X*4(lrUl<+.5) )
500 FORMA T ( / S X * 'SIANOARD O E V I A T I O N = •*1RUI4.4)

RETURN
FNDS U S R O U T I N E  bOLVt. ( SX * a L P H A  * GL T A * G A M A )
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IMPLICIT PLAL*8
C0v.M0N/rtriYotP/N3*N2*NS
CO"MON/PUSnT U / C 0 3 (8)* C 0 2 (8)* COS(to)
a l p h a = o .do
00 20 J= 1 *N2  

20 ALPHA=ALPHA*CO?(J)*SX**(J-l) 
ALPHA=mLPHa/Sa 
Pt T A = 0 •DO 
00 30 J=l*i>Jb 

30 6 ETA=bETA*CGS(J)*SX**(J-l)
PEIA=PLTA/bX 
OAMA=O.JO 
no 40 J=l*^j 

40 Gt' A=0,V‘IA4'Cu3 ( J) *SX** (J-l)
GA* A=GAivl^/bX
PETIJPN
ENO
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APPENDIX B.1

Computer program for optimisation 
of stability constants and the activity 
coefficient parameters by the method of 
Reilly and Stokes, as described in 
Chapter 2.
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IMPLICIT REAL*8 (A-H*0-Z)
DIMENSION XdO) *H(10) *F(100) *FP(100) *IP(20) *DX(10) *AA<20*10) *
1 DFDX(100 * 10)*CH<10*10)*SU(10)*NAL(10),IZ(10)* INM(30)
COMMON A1(100)*A112(100)*AE(100)*ENEW(100)tYNEwdOO)
COMMON /RES/ SUSCUNAGA<100)*JT
COMMON/JKLM/BC(40)*NVAR(40)*E*EM1*EM2*EM112*CL*CD*CDCLB*CDCLC,
1 CDCLD*CDCLE * ALO *GA0 *MAR 
LOGICAL DER*FLAG,FIRST 
NDIM=20 
MDIM=100 
IPRIN=1
READ(5*13) N*M*NOP*NM*ITM*MAR

13 FORMAT(1615)
WRITE(6*36) N*M*NOP*NM*ITM*MAR 

36 FORMAT(• PARAMS*READINGS* VALUES* CHOSEN STARTS* MAX ITERS* EMERC 
1NCY PRINT**/*I6*2I3*3Ill)
READ(5*12) (BC(I)* 1 = 1*NOP)
WRITE(6*66) (BC(I)*1=1*NOP)

66 FORMAT(7H VALUES*/*(1P8G14.5)*/)
READ(5*122) (A1(I)*A112(I)*AE(I)* 1 = 1*M)
WRITE(6*14) (A1 (I)*A112(I)*AE(I)*I=1*M)

122 FORMAT(3F10.0)
12 FORMAT(8F10•0)
14 FORMAT(//• Ml 2*M1^M2 E •*/*(1P3G14.5))

NA=0
UB=1.D16 
I WW=1 
K=0
UU=0.D0
KK=1
DO 16 J=1*N 
READ(5*15) NVAL*NVAR(J)* <AA(I*J)*I = 1*NVAL)

WRITE(6*34) NVAL*NVAR(J)*(AA(I*J)*1=1*NVAL)
34 FORMAT</*I5*24H GUESSES AT VALUE NUMBER*15*/*(8F13.6))
15 FORMAT(215*/*(8F10.0))

NAL(J)=NVAL
IWW=IWW*NVAL
IZ(J)=1

16 H (J) =AA (1 * J)
IF(IWW.GT.10000.OR.IWW.LE.O) STOP 2 
DO 1 Iw=l*IWW 
IF(IW.EQ.I) GO TO 10 
DO 8 J=1* N
IF(IZ(J).GE.NAL(J)) GO TO 28
IZ(J)=IZ(J)*1
IJ=IZ(J)
H (J)=AA(IJ*J)
GO TO 10 

28 IZ(J)=1
8 H (J)=AA(1 * J)

STOP 3
10 CALL FUNCTN(H*F*M*N)

S=0.D0 
DO 6 I=1*M 

6 S=S*F(I)*F(I)
IFTK.GE.NM) GO TO 7



267

K=K* 1
DO 30 1 = 1 *N

30 CH(I,K)=H(I>
SU(K)=S
I£J,S.LE.UU> GO TO 11
gu=s
KK=K 
GO TO 1 

7 IF(S.GE.UU) GO TO 11 
I K=KK 
SU(IK)=S 
DO 31 1 = 1 *N

31 CH(I*IK)=H(I>
UU=0.D0
DO 32 1=1*NM
IF(SU(I>.LE.UU) GO TO 32
KK = I
UU=SU(I)

32 CONTINUE 
11 CONTINUE 
1' CONTINUE

IF(NM.LE.O) GO TO 88 
DO 3 K=1* NM 
INM(K)=0

3 WRITE(6 * 5) SU(K)*(CH(I*K)*I=1*N)
5 FORMAT(//*• STARTING POINT. SUM OF SQUARES =•*1PE1A.A,/*

1 • PARAMS=f *(8E1A.4))
WRITE(6*26)

26 FORMAT(1H1)
DO 161 MJ=1tNM
UU=1.D10
DO 20 JM=1*NM
IF(SU(JM).GE.UU.OR.INM(JM)«EQ.1) GO TO 20 
IJK=JM 
UU=SU(JM)

20 CONTINUE
INM(IJK)=1
WRITE(6*5) SUdJK) * (CH(I*IJK) *I = 1*N)
DO 35 KJI=1*N 
DX(KJI)=1.D10
IF(NVAR(KJI).EQ.5) DX(KJI)=1.0-4 

35 X(KJI)=CH(KJI*IJK)
ITMAX=IPRIN
NLP=(ITMdTMAX-1)/ITMAX 
ITER=0
FIRST=.TRUE.
FLAG=.FALSE.
DER=.FALSE.
S=1.030
DO 27 IR=1*NLP
IF(IR.EQ.NLP) ITMAX=ITM-ITER
DQ 39 KJI=1*N
HKJ=DMIN1(1.D-3*DABS(X(KJI)+1.DO)*DABS(DX(KJI))*0.100)

39 H (KJI) =L)MAX1 (HKJtl.D-6)
CALL TAYLOR(N*M*X*H*F*ITMAX*FIRST*l.0-6*1.D-2*DER*S*KENN 

1 *f l a g *m d i m ,n d i m ,a a *d f d x *f p *i p *d x *u b >
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i t e r= i t e r*itmax
WRITE(6*17) FLAG*ITER*KENN*S*(X(J)*J=1*N)

17 FORMAT(• FLAG=**L4*» ITER=»*I4*» KENN=«*I4»» SUM OF SQUARES=«*
1 1PE14.4*/** PARAMS**(7E15.7))
WRITE(6*77)

77 FORMAT(/ * • IONIC STRENGTH E(CALC)-E(MEAS) GA21
1GA11 GAO GA12 STOICH*)
THR=1.D0/3.D0 
DO 78 J=1*M 
AY=1.D0/YNEW(J)
SQAY=DSQRT(AY)
SQT=-1.0230D0*SQAY
GA21=SQT/(l.D0+BC(6)*SQAY)♦AY*(BC(7)♦AY*(BC(8)*AY*6C(9))) 
GA21=10.D0**GA21
GA11=SQT*.5D0/(1.D0*BC(10)*SQAY)^AY*(BC(11)«-AY*(BC(12)*AY*BC(13) ) 
GA11=10.D0**GA11
GA0 = 10.D0**(AY*(BC(14)«-AY*(BC(15) ♦AY*BC<16)))) 
GA12=SQT/(1.D0*BC(17)»SQAY) ♦AY*(BC(18) ♦AY<»(BC(19) ♦AY*BC(20) ) ) 
GA12=10.D0**GA12
AL0=10.D0**((BC(5)-ENEW(J))/0.029579D0)
STOICH=(ALO/(A1(J)*A112(J)*A112(J)))**THR

78 WRITE(6*79) AY*F(J)*GA21*GA11*GAO*GA12*STOICH
79 FORMAT(2F15.7*5F15.5)

WRITE(6*818) (BC(J)* J=1*20)
818 FORMAT(* BC•*(1P5G14.5))

IF(FLAG.OR.KENN.NE.l) GO TO 18 
WRITE(6*26 )

27 CONTINUE
18 MAT=MAR

IF(MAR.LT.1) MAR=1 
CALL FUNCTN(X*F*M*N)
MAR=MAT 

181 CONTINUE 
88 CONTINUE 

STOP 
END
SUBROUTINE FUNCTN(X*F*M*N)
IMPLICIT REAL*8 (A-H*0-Z)
COMMON/JKLM/8C(40)*NVAR(40)*E*EM1*EM2*EM112*CL*CD*CDCLB*C0CLC*
l c d c l d *cdcle:*a l o *g a o *mar
COMMON /RES/ SUSQ*NAGA(100)*■JT
COMMON A1(100)*A112(100)*AE(100)*ENEW(100)*YN£W(100)
DIMENSION X(l)*F(1)
COMMON /L/ AYL 
EXTERNAL YA*AYD*YAYA 
PRINT 87*(X (I)* 1 = 1*N)

87 FORMAT(7H PARAMS*(1P8E15.7))
DO 98 1=1*N 
J=NVAR(I)
IF(J.LE.5.AND.X(I).LE.O.DO) GO TO 94 

98 BC(J)=X(I)
TH=1.D0/3.D0 
AYWl=0.DO 
RAT=0.DO 
SUSQ=0.DO 
JT=M



269

DO 19 JS=1*M 
NJS=NAGA(JS)
NA6A(JS)=0 
F (JS)=10.DO 
EM1=A1(JS)
EMI12=A112(JS)
EM12=EM112-EM1 
EM2=EM12-EM1 
IF(NJS.NE.l) GO TO 76 
E=ENEW(JS)
AYN=YNEW(US)
CALL PARTS(AYN*IGDBD*8>
DE=E-AE(JS)
F (JS)=DE 
AYNI=1.D0/AYN
IF(MAR.GE.l) PRINT 60♦IGDBO»AYNI*E?DE 
IF(IGDBD.LT.O) GO TO 76 
NAGA(JS)=1 
JT=JT-1 
ENEW(JS)=E 
YNEW(JS)=AYN 
GO TO 19 

76 E=AE(JS)
ADEW=10.D0
AL0=10.DO**((BC (5) -E) /0•029579D0)
IF(MAR•GE.2) PRINT 27*EM1*EM2*EM112t£

27 FORMAT(//»5h DATA*1P8E14.4)
NK=1000
IF(EMI.GT.EM2.AND.EM1.GT.3.D-4) GO TO 17
ST=(EMI12+EM1)*0.999999900
F AC=1•DO-O•1*EM1
FINI=EM12*0.6300
WlJ=5.D0
GO TO 18

17 FINI=(EM112*EM1)*0.999999900 
FAC=1.0700
ST=EM12*0.6300

18 CONTINUE
DO 7 J=1*NK 
AYI=ST
IF(FAC.GT.1.DO) GO TO 20 
IF(MOD(J*20).EQ.O) FAC=FAC**WIJ 
IF(AYI.LT.FINI) GO TO 19 
GO TO 22 

20 IF(AYI.GT.FINI) AYI=FINI 
IF(AYWI.EQ.FINI) GO TO 19 

22 ST=ST*FAC
AY=1.DO/AYI 
AYNEW=YA(AY)
d a y =a y n e w -ay
IS=DSIGN(1.00 9DAY)
IF(J.EQ.l) GO TO 37 
RAT=(AYOLD-AYw )/DAY 
IF(IS.EQ.IW) GO TO 38
AYM=(AYW*AYNEW-AY*AYOLD)/(DAY-AYOLD*AYW) 
IF(MAR.GE.2) PRINT 56*AYM
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56 FORMAT(6H START,1PE14.4)
VAN=O.DO
AYP=YA(AYM)
YAP=(AYP-AYW)/ (AY-AYW)
IF(YAP.GE.0.D0.AND,YAP.LT.1.D0) GO TO 77 
DRELD=DMIN1(AYW.AY)
DRAY=DMAX1(AYW * AY)
CALL DRTMl(AYN,VAL,YAYA,DRELD,DRAY* 1*0-7*40 , IER)
GO TO 78

77 CALL DRTWI<AYN,VAL,YA,AYM,1.0-7,40,IER)
78 AYL=O.DO

IF (VAL.EQ.O.DO) IER=3 
58 IFCMAR.GE.2) PRINT 48,IER,AYN,VAL,AYL,VAN
48 FORMAT(4H IER,15,1P6E14.4)

IF(IER.GE.2) GO TO 37 
DM1=CD*CDCLB*CDCLOCDCLD*COCLE-EM1 
DM2=CL*CDCLD+CDCLE*CDCLE-CD-CD-CDCLB-EM2 
IF(MAR.GE.2) PRINT 57, AYN,DM1,DM2

57 FORMAT(8H AT C0NV,1P4E14.4)
CALL PARTS(AYN,IGD8D,8)
DE=E-AE(JS)
AYNI=1•DO/AYN
IF(MAR.GE.l) PRINT 60,IGDBD,AYNI,E,DE 

60 FORMAT(/,6H N RAP,14,1P3E16.6,/)
IF(IGDBD.LT•0) E=AE(JS)
IF(DABS(DE).GT•ADEW) GO TO 99 
ADEW=OABS(DE)
F (JS)=DE 

99 IF(IGDBD.LT•0) GO TO 37
NAGA(JS)=1 
ENEW(JS)=£
YNEW(JS)=AYN 
JT=JT-1 
GO TO 19 

38 IF(J.LE.2> GO TO 37
IF(RATW.LT.KDO.OR.1.DO/RAT.LT.1.00) GO TO 37 
IF(MAR.GE.2) PRINT 63,AYELD,AY 

63 FORMAT(18H NEAR SOLN BETWEEN,1P2E14*4)
0REL0=DMIN1(AYELD,AY)
0RAY=DMAX1(AYELD,AY)
CALL DRTMl(AYN,VAN,AYD,DRELD,DRAY,1.0-7,40,IER)
IF(VAN.EQ.O.DO) IER=3 
VAL=AYN-AYL 
GO TO 58 

37 IW=IS
AYELO=AYW
AYOLD=AYNEW
AYW=AY
AYWI=AYI
r a t w =rat

7 CONTINUE
19 SUSQ=SUSQ*F(JS)**2
8 MMM=M-1 

IF(MAR.GE.l) MMM=1
PRINT 49,JT,SUSQ»(F(I),1=1,M,MMM)

49 FORMAT(14,* FAILURES, SUM OF SQS =*,F15.8,*t DELTA E»,1P5E13.4,
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1 /% (10E13.4))
RETURN % .

94 DO 95 1 = 1 *M
95 F (I)=1.010 

RETURN 
END
SUBROUTINE DERIVE(X»F*DFDX*MD*M*N)
IMPLICIT REAL*8 (A-H*0-Z)
DIMENSION DFDX(MDtN)tX(l)*F(1)
RETURN
END
SUBROUTINE TAYLOR(N*M*X*H*E*ITMAX*FIRST* EPS1*EPS2*DER*S*KENN*FLAG 

1 MDIM*NDIM,AA*DFDX,FP*IP*DX*UB)
DOUBLE PRECISION HS*HL,HF,HH*hZ*SfX*H,F,EPS1fEPS2*AA*DFDX>FPfQX.U! 
1 .HT
DIMENSION X(N)«H(N)rF(M)fFP(M)*DFDX(MDIM,N)*AA(NDIM*N)fIP(N)*DX(N
LOGICAL DER*FLAG*FIRST
HS=S
KENN=0
IZ=0
IF(.NOT.FIRST) GO TO 71 
FIRST=.FALSE.

1 L=0
HL=1.DO

3 L=L + 1
4 CALL FUNCTN(X*F*M*N)

HF=0.DO
DO 5 1 = 1 * M

5 HF=HF*F(I)*F(I)
IF(L.EQ.l) HT=HF
IF(HF.LE.HS*(1.D0-0.2D0*HL)> GO T07 
IF(L.GT.7) GO TO 72 
HL=HL/(L*1.D0)
HH=L*HL 
DO 6 K=1,N

6 X(K)=X(K)♦HH*DX(K)
GO TO 3

7 HS=HF 
IF(HS.LT.EPSI) GO TO 73 
IF(IZ.LT.ITMAX) GO TO 71 
KENN=1

73 S=HF 
ITMAX=IZ 
RETURN

72 KENN=-1
IF(HT.LT.HS) HL=HL-1.D0 
DO 74 K=1»N

74 X(K)=X(K)♦HL*DX(K)
GO TO 18

71 IZ=IZ*1
IF(DER) GO TO 9 
DO 8 1=1tN 
HF=H(I)
HH=X(I)
X (I)=X(I)4HF
CALL FUNCTN(XfFPtM*N)
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X(I)=HH 
HF=1.00/HF 
DO 8 K=1 * M 

8 DFDX(K,I)=HF*(FP(K)-F(K))
GO TO 10

9 CALL DERIVE(X*F,DFDX*MDIM*M*N>
10 IF(M.EQ.N) GO TO 14 

DO 13 1 = 1 *N 
HF=0.D0
DO 11 K=1fM

11 HF=HF*DFDX(K*I)#F(K)
DX(I)=HF
DO 13 K=I*N 
HF=0»D0 
DO 12 J=ltM

12 HF=HF♦DFDX(J*I)*DFDX(J*K)
AA(I*K)=HF

13 AA(K 9 I)=HF
CALL DECOMP(N*NDIM*AA*IP) 
IF(IP(N)•EQ.O)GO TO 20 
CALL SOLVE(N*NDIM*AA*DX*IP)
GO TO 16

14 CALL DECOMP(N*MDIM*DFDX*IP)
IF(IP(N).EQ.O) GO TO 20

^ CALL SOLVE(N*MDIM*DFDX*F* IP)
DO 15 1 = 1 *N

15 DX(I)=F(I)
16 HZ=0.D0 

HF=0.D0
DO 17 I = 1*N 
X<I)=X<I)-DX<I)
HZ=HZ*DABS(X(I))

17 HF=HF*DABS(DX(I))
IF(HZ.GT.UB) GO TQ 21 
IF(HF.GE.£PS2*HZ) GO TO 1 
KENN=-2
GO TO 18 

21 KENN=-3
DO 181 I = 1*N 

181 X(I)=X(I)*DX(I)
10 CALL FUNCTN(X*F*M*N)

S=0.D0 
ITMAX=IZ 
DO 19 1 = 1 *M

19 S=S^F(I)*F(I)
RETURN

20 FLAG=.TRUE.
ITMAX=IZ
KENN=-4
RETURN
END
SUBROUTINE DECOMP<N*NDIM*A*IP) 

: CACM ALGORITHM NO 423
DOUBLE PRECISION A*T 
DIMENSION A(NOIMfN)* IP(N)
IP(N)=1
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00 6 K=1 » N
IF(K.EQ.N) GO TO 5
KP1=K*1
M=K
DO 1 I=KP1,N
IF (DABS (A (I* K) ) .GT.DABS(ACM.K) ) ) M=?I

1 CONTINUE 
IP (K)=M
IF(M.NE.K) IP(N)=-IP(N)
T=A(M.K)
A(M,K)=A(K.K)
A(K*K)=T
IF(T.EQ.O.DO) GQ TO $
DO 2 I=KP1,N

2 A(I.K)=-A(I*K)/T 
DO 4 J=KP1.N 
T=A(M.J)
A<M.J)=A(K.J)
A (K. J)=T
IF(T.EQ.O.DO) GO TO 4 
DO 3 I=KP1,N

3 A(I»J)=A(I.J)«,A(I.K)*T
4 CONTINUE
5 IF(A(K.K)•EQ.O.DO) IP(N)=0
6 CONTINUE 

RETURN
END ' ‘
SUBROUTINE SOLVE(N.NDIM.A.B.IP)

C CACM ALGORITHM NO 423
DOUBLE PRECISION A.T.B
DIMENSION A(NDIM.N).IP(N).B(NQIM)
IF(N.EQ.l) GO TO 9
NM1=N-1
DO 7 K=1.NM1
KP1=K*1
M=IP(K)
T=8(M)
B(M)=B(K)
B(K)=T
DO 7 I=KP1.N

7 B(1>=B(I)*A(I»K)*T 
DO 8 KB=1.NM 
KM1=N-KB
K=KM1♦1
B(K)=B(K)/A(K,K)
T=-B(K)
DO 8 1=1.KM1

8 B(I)=B(I)^A(I.K)*T
9 B (1)=B(1)/A (1 .1)

RETURN
END
FUNCTION YAYA(AY)
IMPLICIT REAL*8 (A-H.O-Z)
YAYA=YA(AY)-AY
RETURN
END
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FUNCTION AYD(AY)
IMPLICIT REAL*8 (A-H»0-Z)
COMMON /L/ AYL 
IF(AY.LT.O.DO) 60 TO 91 
SP=(AY*l.D0)*UD-6 
AYK=YA(AY^SP)
AYL=YA(AY)
AYK=(AYK-AYL-SP)/SP 
AYU=AYK 
RETURN 

91 AYD=O.DO 
AYL=AY 
RETURN 

END
FUNCTION YA(AZ)
IMPLICIT REAL*8 (A-H*0-Z)
COMMON/JKLM/BC(40)*NVAR(40)*E*EM1*EM2*EM112*CL*CD*CDCLBtCDCLC* 
1 CDCLD*CDCLE♦ALO*GAO *MAR 
IF(AZ.LT.O.DO) GO TO 91 
AY=1.DO/AZ 
SQAY^DSQRT(AY)
SQT=-1.0230D0*SQAY 
GA21=SQT/(1•DO^BC(6)*SQAY)
1 ♦AY*(8C(7) ♦AY*(BC(8) «*AY*BC(9) ) )
GA21=10.D0**GA21
GA11=SQT*0.500/ (1 .DO^BC (10 > *SQAY)

1 ♦AY*(BC(11)+AY*(BC(12)^AY*BC(13) ) )
GA11=10.D0**GA11
GA0=10.D0**(AY*(BC(14)♦AY*(8C(15)♦AY*BC(16))))
GA12=SQT/(1.DO+BC(17)*SQAY)
1 ♦AY*(BC(18)♦AY*(BC(19)♦AY*BC(20)))
GA12=10.D0**GA12
GA12C=GA12**3
GA21C=GA21**3
GA11S=GA11*GA11
GA11F=GA11S*GA11S
AL0=10.D0**<(BC(5)-E)/0.029579D0)
VA=AL0/GA21C
VB=AL0*BC(1)/GA11S
VC=AL0*BC(2)/GA0
VD=AL0*BC(3)
VE=ALO*BC(4)*GA11F/GA12C
C=3.D0*VB
S= VB
A=3.D0*VD-1.D0
0=2.DO♦A
R=VC^VC-EM112
B=R^R^EM2+AY^AY
P=4.D0*VE
PDA=P/A
BPDA=B*PDA
CL= <A*S-C*(Q-BPDA))/(B*(Q-BPDA)-A*(R-C*PDA>)
CLS=CL*CL
CD=VA/CLS
CDCLB=VB/CL
CDCLC=VC
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CDCLD=VD*CL
CDCLE=VE*CLS
AYNEW=0.5D0*(4.DO*(CD+CDCLE)♦CL*CDCLB*CDCLD*EM2>
YA=l.DO/AYNEW 
RETURN 

91 YA=AZ 
RETURN 
END
SUBROUTINE PARTS(AY*IGDBDtITMA)
IMPLICIT R£AL*8 <A-H,0-Z>
COMMON/JKLM/BC(40)9NVAR(AO)tE»EM1»EM2*EM112*CLtCD»CDCL8»CDCLC* 
1 CDCLDtCDCLEfALO *GA0 *MAR 
TEST=l.D-2 
DELT=0.DO 
DALT=O.DO 
IGDBD=0 
N=0

7 Z1=YA(AY)-AY
W1=CD*CDCL8*CDCLC*CDCLD*CDCLE-EM1 
Y1=CL^CDCL0^CDCLE^C0CLE-CD-C0-CDCLB-EM2 
T1=Z1/(AY*(AY*1.D0>) v
U1=W1/(EM112*1.D0>
IF(N.GT.O.AND.T1*T1*U1*U1.LT.l.0-12) $0 TO 9 
IF(DABS(DELT).LT.TEST) GO TO 6

16 IGDBD=-1 
GO TO 10

6 AYDD=AY*1.D-4*(-1)**(N/2+2)
AYP=AY*AYDD 
Z2=YA(AYP)-AYP
W2=CD*CDCLB*CDCLC*CDCL0*CDCLE-EM1
EX=E
EDO=<E«-1.DO)*1.D-6*(-1)**<N*1)
E=E*EDD
Z3=YA(AY)-AY
W3=CD^CDCLB^CDCLC^CDCLD*CDCLE-EM1 
DEL=(Z2-Z1)*(W3-W1)-(Z3-Z1)*(W2-W1)
IF(DEL.EQ.O.DO) GO TO 14
DALT=AYDD*(Z3*W1-Z1*W3>/DEL
DELT=EDD*(Zl*to2-Z2*Wl)/DEL
E=EX*DELT
AY=AY*DALT
N=N+1
IF(AY.LT.O.DO.OR.DABS(E-BC(5)).GT.0.5D0) GO TO 16 
IF(N-ITMA) 7*10*10 

14 PRINT 18
18 FORMAT<• ZERO DENOMINATOR IN SUBROUTINE PARTS*)

E=£X
9 IGDBD=1
67 FORMAT(4H TRY * 14 *1P7E14.4)
10 IF(MaR-I) 11*12*13
13 PRINT 67*N,AY*DALT*E*DELT*Z1*W1♦Y1
12 PRINT 17*CL*CD*CDCLB *CDCLC*CDCLD*CDCLE
17 FORMAT(• CONCENTRATIONS**1P8E14.4)
11 RETURN 

END
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SUBROUTINE DRTMI 

PURPOSE
TO SOLVE GENERAL NONLINEAR EQUATIONS OF THE FORM FCT(X)=0 
BY MEANS OF MUELLER-S ITERATION METHOD.

USAGE
CALL DRTMI (X,F»FCT*XLI,XRI,EPS,IEND*IER)
PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT.

DESCRIPTION OF PARAMETERS
X - DOUBLE PRECISION RESULTANT ROOT OF EQUATION

FCT(X)=0•
F - DOUBLE PRECISION RESULTANT FUNCTION VALUE -

AT ROOT X.
FCT - NAME OF THE EXTERNAL DOUBLE PRECISION FUNCTION 

SUBPROGRAM USED.
*LI - DOUBLE PRECISION INPUT VALUE WHICH SPECIFIES THE 

INITIAL LEFT BOUND OF THE ROOT X.
X«I - DOUBLE PRECISION INPUT VALUE WHICH SPECIFIES THE

INITIAL RIGHT BOUND OF THE ROOT X.
EPS - SINGLE PRECISION INPUT VALUE WHICH SPECIFIES THE

UPPER BOUND OF THE ERROR OF RESULT X.
IEND - MAXIMUM NUMBER OF ITERATION STEPS SPECIFIED.
IER - RESULTANT ERROR PARAMETER CODED AS FOLLOWS

IER=0 - NO ERROR,
IER=1 - NO CONVERGENCE AFTER IEND ITERATION STEPS 

FOLLOWED BY IEND SUCCESSIVE STEPS OF 
BISECTION,

IER=2 - BASIC ASSUMPTION FCT(XLI)*FCT(XRI) LESS 
THAN OR EQUAL TO ZERO IS NOT SATISFIED.

REMARKS
THE PROCEDURE ASSUMES THAT FUNCTION VALUES AT INITIAL 
BOUNDS XLI AND XRI HAVE NOT THE SAME SIGN. IF THIS BASIC 
ASSUMPTION IS NOT SATISFIED BY INPUT VALUES XLI AND XRI, TH 
PROCEDURE IS BYPASSED AND GIVES THE ERROR MESSAGE IER=2.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X)
MUST BE FURNISHED BY THE USER.

METHOD
SOLUTION OF EQUATION FCT(X)=0 IS DONE BY MEANS OF MUELLERrS 
ITERATION METHOD OF SUCCESSIVE BISECTIONS AND INVERSE 
PARABOLIC INTERPOLATION, WHICH STARTS AT THE INITIAL BOUNDS' 
XLI AND XRI. CONVERGENCE IS QUADRATIC IF THE DERIVATIVE OF " 
FCT(X) AT ROOT X IS NOT EQUAL TO ZERO. ONE ITERATION STEP 
REQUIRES TWO EVALUATIONS OF FCT(X). FOR TEST ON SATISFACTOR 
ACCURACY SEE FORMULAE (3,4) OF MATHEMATICAL DESCRIPTION.
FOR REFERENCE, SEE G. K. KRISTIANSEN, ZERO OF ARBITRARY 
FUNCTION, BIT, VOL. 3 (1963), PP.205-206.



o
o
o
o
o
 

oo
o 

on
 

n
o

277

SUBROUTINE DRTMI<X*F»FCTfXU»XRItEPSfIENDtIER)

DOUBLE PRECISION XtFfFCT*XLI *XRItXL*XRtFL*FR*TOLtTOLFtA*DX*XM*FM 

PREPARE ITERATION
IER=0 -
XL=XLI
XR=XRI
X=XL
TOL=X
F=FCT(TOL)
IF(F)1 *I6tI

1 FL=F
X=XR /
TOL=X 
F=FCT(TOL)
IF(F)2fl6t2

2 FR=F
IF(DSIGN(1*D0 tFL)*DSIGN(1*Q0 *FR))25*3*25

BASIC ASSUMPTION FL*FR LESS THAN 0 IS SATISFIED*
GENERATE TOLERANCE FOR FUNCTION VALUES*

3 1 = 0 
TOLF=100.*EPS

START ITERATION LOOP
4 1=1*1

START BISECTION LOOP 
DO 13 K=1 *IEND 
X=.5D0*(XL*XR)
TOL=X 
F=FCT(TOL)
IF(F)5*16«5

5 IF(DSIGN(1.D0*F)*DSIGN<1*D0»FR))7*6*7 
C
C INTERCHANGE XL AND XR IN ORDER TO GET THE SAME SIGN IN F AND FR

6 TOL=XL 
XL=XR 
XR=TOL 
TOL=FL 
FL=FR 
FR=TOL

7 TOL=F-FL 
A=F*TQL 
A=A*A
IF(A-FR*(FR-FL))8*9*9

8 IF(I-IEND)17*17*9
9 XR=X 

FR=F
C
C TEST ON SATISFACTORY ACCURACY IN BISECTION LOOP 

TOL=EPS
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A=OABS(XR)
IF(A-l.DO)11*11*10

10 T0L=T0L*A
11 IF (DABS (XR-XL) -TOL) 12*12*13
12 IF(DABS(FR-FL)-T0LF)14*14*13
13 CONTINUE

END OF BISECTION LOOP

NO CONVERGENCE AFTER IEND ITERATION STEPS FOLLOWED BY IEND 
SUCCESSIVE STEPS OF BISECTION OR STEADILY INCREASING FUNCTION 
VALUES AT RIGHT BOUNDS. ERROR RETURN.
IER=1

14 IF(DABS(FR)-DABS(FL)>16*16*15
15 X=XL 

F=F L
16 RETURN

COMPUTATION OF ITERATED X-VALUE BY INVERSE PARABOLIC INTERPOLATE
17 A=ER-F

DX=(X-XL)*FL*(1.D0*F*(A-TOL)/ (A*(FR-FL)))/TOL
XM=X
FM=F
X-XL-DX
TOL=X
F=FCT(TOL)
IF(F)18*16*18

TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP
18 TOL=EPS 

A=DABS(X)
IF<A-1.00)20*20*19

19 TOL=TOL*A
20 IF(DABS(DX)-TOL)21*21*22
21 IF(DABS(F)-TOLF)16 * 16 *22

PREPARATION OF NEXT BISECTION LOOP
22 IF(DSIGN(1.00 *F)♦DSIGN(1.DO *FL))24*23*24
23 XR=X 

FR=F
GO TO 4

24 XL=X 
FL=F 
XR=XM 
FR=FM 
GO TO 4
END OF ITERATION LOOP

ERROR RETURN IN CASE OF WRONG INPUT DATA 
25 IER=2 

RETURN 
ENO
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SUBROUTINE ORTWI 

PURPOSE
TO SOLVE GENERAL NONLINEAR EQUATIONS OF THE FORM X=FCT(X)
BY MEANS OF WEGSTEIN-S ITERATION METHOD.

USAGE
CALL DRTWI (X.VAL.FCT.XST.EPS*IEND*IER)
PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT.

DESCRIPTION OF PARAMETERS
X - DOUBLE PRECISION RESULTANT ROOT OF EQUATION

X~FCT(X).
VAL - DOUBLE PRECISION RESULTANT VALUE OF X-FCT(X)

AT ROOT X.
FCT - NAME OF THE EXTERNAL DOUBLE PRECISION FUNCTION

SUBPROGRAM USED.
XST - DOUBLE PRECISION INPUT VALUE WHICH SPECIFIES THE

INITIAL GUESS OF THE ROOT X.
EPS - SINGLE PRECISION INPUT VALUE WHICH SPECIFIES THE

UPPER BOUND OF THE ERROR OF RESULT X.
IEND - MAXIMUM NUMBER OF ITERATION STEPS SPECIFIED.
IER - RESULTANT ERROR PARAMETER CODED AS FOLLOWS

I£R=0 - NO ERROR.
IER=1 - NO CONVERGENCE AFTER IEND ITERATION STEPS 
IER=2 - AT ANY ITERATION STEP THE DENOMINATOR OF 

ITERATION FORMULA WAS EQUAL TO ZERO.

REMARKS
THE PROCEDURE IS BYPASSED AND GIVES THE ERROR MESSAGE IER-2 
IF AT ANY ITERATION STEP THE DENOMINATOR OF ITERATION 
FORMULA WAS EQUAL TO ZERO. THAT MEANS THAT THERE IS AT 
LEAST ONE POINT IN THE RANGE IN WHICH ITERATION MOVES WITH 
DERIVATIVE OF FCT(X) EQUAL TO 1.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) 
MUST BE FURNISHED BY THE USER.

METHOD
SOLUTION OF EQUATION X=FCT(X> IS DONE BY MEANS OF 
WEGSTEIN-S ITERATION METHOD* WHICH STARTS AT THE INITIAL 
GUESS XST OF A ROOT X. ONE ITERATION STEP REQUIRES ONE 
EVALUATION OF FCT(X). FOR TEST ON SATISFACTORY ACCURACY SEE 
FORMULAE (2) OF MATHEMATICAL DESCRIPTION.
FOR REFERENCE. SEE
(1) G. N. LANCE. NUMERICAL METHODS FOR HIGH SPEED COMPUTERS 

ILIFFE. LONDON. 1960. PP.134-138.
(2) J. WEGSTEIN, ALGORITHM 2. CACM. VOL.3. ISS.2 (I960).

PP.74.
(3) H.C. THACHER. ALGORITHM 15. CACM. VOL.3. ISS.8 (1960). 

PP.475.
(4) J.G. HERRIOT. ALGORITHM 26. CACM. VOL.3. ISS.11 (1960). 

PP.603.
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SUBROUTINE DRTWI(X*VAL*FCT*XST*EPS*IENDtIER)

DOUBLE PRECISION X*VAL*FCT*X5T*A*B*D*TQL

PREPARE ITERATION
IER=0
T0L=XST
X=FCT(TOL)
A=X-XST
B=-A
T0L=X
VAL=X-FCT(TOL)

START ITERATION LOOP 
DO 6 1 = 1 *IEND 
IF(VAL)1*7*1

EQUATION IS NOT SATISFIED BY X
1 B=B/VAL-1.D0 

IF(8)2*8*2

ITERATION IS POSSIBLE
2 A=A/B 

X=X*A 
B=VAL 
T0L=X
VAL=X-FCT(T0L)

TEST ON SATISFACTORY ACCURACY
T0L=EPS
D=OABS(X>
IF<D-1.00)4*4*3

3 T0L=T0L*D
4 IF(DABS(A)-TOL)5*5*6
5 IF<DABS(VAL)-1.D1*T0L)7*7*6
6 CONTINUE

END OF ITERATION LOOP

NO CONVERGENCE AFTER IEND ITERATION STEPS. ERROR RETURN. 
IER=1 

7 RETURN

ERROR RETURN IN CASE OF ZERO DIVISOR 
6 IER=2 

RETURN 
END 

CENDSB
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APPENDIX B.2

THIS PRObKAi''! H I i J 0 S Tml PaPA-IlTekS 
OF EXTENDED OL^Y-huChLL EQ U a TIO n bY 
NAG SUtiROUT 1 Nc. £uauAF

IMPLICIT keaL**(A- 8 9 O-Z)
EXTERNAL Sa j Ab 9 v AS I f AShA J
PI i ENSI ON X ( A) . F~ (bu ) * E IA ) 9 U ( a. ) 9 11 bO ) 9 NmrE (20 )
CO MON aZ Z 9 b 9 b A'MV: a (bu ) 9 3 T r< I UN (b 0 ) 9 A J AC (b 0 9 A )

10 FORMAT(<+15 )
11 FORMAT(20AA)
1? FOK^AT(2F10.0)
13 FORMAT (<+F 10.0)

KOUNT=0
P E ~ 0 (5 9 10)nSET 

1 Pt A D ( b 9 11 ) NA
’•'PITE (6 * 1 1 0 0 ) 11 £!v’ n
PEAL (b9 10 ) p.,m , I PH 1 i\'T , MAX I TP
WRITE (6*120u) 9 r j 9 1P KI! i T 9 «•1A a 1 F k
PE ̂ b (b 9 12)a ZZ 9 6
WRITE(o *1300)a 7Z*e
READ(b 9 13) (X(I) *I=1*N>
WRITE(6 9 1AOu) (X ( I) 9 1 = 1 *N)
PE AD (5 9 12 ) ( STk I Ob (I) ,bAHiA (I) ,I=1*m)
WR ITE(o*lbOO) (ST K ION (I) 9 (I)*I=1*M)
DO 99 1=1*n
S T P I O N (1)= U S O k T ( S T R I O n (1))

99 GAMMA(I)=-OLOblO(Ga M.MA(I))
DO 100 1=1 9 N 

100 F (I)=1•J-0 7 
IFAIL=1 
11/1= ( N + A ) + M
CALL EGA-bAf (f-1 El 9 A 9 F 9S9E*l*L)*.'.*I<'i9SAJAi)*wASlM*RAbNAD*

/ 1 pH I i\T 9 m a x  I TP 91 Fa IL )
WRITE(o*l6G0) 1FAIL
I F (N •E0.2)wKITF{o 9 1800)
I F (h • E u • <+ )w k I T L (o 9 1 70C )
CALL k ASHa D(M9N*X*F*39L*,,"1 )
K0UNT=K0UNT+1
IF(KOUNT.Nt.NSET)GO TO 1
STOP

1100 FORMAT ( 1 M 1 9 X , 20 < A /  )
1200 FORMAT(7X*«M N IPRINT MAxlIH♦/a I6)
1300 F 0  -  1 A T (2x* ' a  * /  7 + /.-/= * 9 f A . 4 * A A *  * ~  =  * 9 f  b  • A  )

1A 00 F O G  M A T  (b X  9 1 b l ) L S 5c.S 0"i P A R a . - I L  I l K S  * 9 A  ( £ X  9 F  1 j # 6 ) )
1S00 FO a m A T (2 X * * 1 Ou I C STH. A.n u u A' ‘in A ♦ — */l 0 (h 1 0 • A ) )
1600 F u -Ma T (/2X 9 * IH 11L= * »12 * 3X 9 * (u ) lb A SUCCl SSFUL CALL*)
1700 FO,- MaT (/2 X 9 * O-M EON FITTtb -LOu 6ANnA=A»Z **Z-*S jk I (1) / * * 

/•(1♦aG*3*Su kT(I))+ C1*1+C2*I**2*u3*1**3*/)
1800 FORMAT (/2X 9 • D-H EON FITTED -LOo OAMMA^-=A<'Z**Z-*buRT (I) • * 

/ •/(l*AO*d*SQhT(I))+C1*!•/>
END -
SULROUTINE SAJA0(M,N*X*0*IFL)
IMPLICIT REa L*8 (A-h*U-Z)
LOGICAL 1FL
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DIMENSION A (N) ♦()(*>
C O M M O N  mZZ 9 uF 9 6 P M (b O ) 9 SI (50) 9AJAC(bU94)
DO 103 1=1 f h  
SO I = S I (I)
S11 = SO I '>SU 1 
SI2=SI1»SI1 
SI3=SI2*Sil
0(1) =GRM (I) -AZZ*50I / (1 .U0*X (1) *01- *SuI)

/ - X (2)*S11-X(3)*S12-X(4)*SIJ
103 CO n TINUc.

RETURN
FNU
SUBROUTINE wASlM (H * u  9 A 9 F 9 A 9 0 )
IMPLICIT Kl a L*8 (A-r1,0-Z)
DIMENSION X (h ) 9 F (M ) 9 A (N 9 N ) ♦ V (N )
COMMON AZZ 9 U F 9 G P N (50)9 S I (50)9AJa C(S094)
DO 104 J= 1 9 ivi 
SSI=SI(J)*S1(J)
SI2=SSI*SSI
SI3=SI2*SSI
A J£C (J 9 1)=AZ7*S5I/(1.DO*A(1)*uF*SI(J))**2 
AJAC(J 9 2)= -SSI 
AJAC(J 9 J )=-SIB 
AJAC ( J9-+) =-513

104 CONTINUE
DO 105 1 = 1 9 n 
SUM=0.00 
DO 106 N = 1 9 M 

10b SUN' = SUi 1 + A JAC (N 9 I) *F (K )
V ( I)=SUM
no 105 j = 19n
SU v‘i = 0 *00
no led k = i *m

105 SUi’=SUM +a JAU ( K 9 I ) *AJAC (K9 J)
A ( I 9 J ) =  5U' 1

105 CONTINUE 
RETURN
FNU
SUBROUTINE RASHAi) ( M 9 . N 9 X 9 U 9 S 9  T 9  IR)
IMPLICIT REa L * S ( A - M 9 O - Z )
DIMENSION X(N) 9Q(M ) 9 T (f 4)
IF(IP) I O 9 I I 9 I I  

11 W PIT £(o 9 3 0 i) I n 
10 MR ITE(r 9 3U2)S

WR J T E (b 9 3Oa ) (x (I) 9 1 = 1 9 1 i)
I F (IP•L r•0)uO TO 310- 
V-PITE (6 9 30b ) ( T (I) ♦ I = 1 9 i J)
GO TO 311

310 WRITE(b930b)(u (I) 9 1=1 9 b)
311 RETURN
301 FORMAT(2X9•AFTER *9149* tVALUATIONS•)
302 FORMAT (2Xt *c.04GAF SUM OF SJUAKES *9lP016.5)
3 0 A FORMAT (2x 9 * aC f • Cut.FF. PARAM. ARE • 9 4  ( 1P016.5) )
305 FORMAT(2a9'GRADIENT •9 4 (lPUin.5))
306 F O R M A T  (2X  9 ' D E V I A T I O N S  F R O M  T H E  E U U A T I O N • / I  U (F 1 0 . 4 ) )

EM J



o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

283

APPENDIX C

CONPPEneNSI VE PROGRAM POK PLPFOkmIHG 
ft : CmLCULaT 11Ji ] Of CONCENTRATIONS Ur iNOIVIUUaL CuMPLEX

SPECiEb IN e LECTa OLY It 3 * Pk UM f\NU»vN STm u Ij-ITY
CONSTANTS ANU ACTIVITY COEFFICIENT PARAMETERS OF 
EXTENDED l)-n LOuATION* cY Tnt HEThOD Of KEILl Y AND 
5 TOKLb.

Rt OP T I 1 l  A T 10 N OF LAMbliA(O) VALUtb OF INOIDUaL SPECIES
PEuulPED APE THE Va LUe S OF m OLa k ITIES AND LOU I VALENT 
C o n u UCTAu CE.

C: CALCULATION OF Tm E IRREVERSIBLE Tm ER m ODYNAMIl
pARANe TEk 3 USIn o  PlKAL'b Td l OPY*

TNE NAG SUu^quTI mES EOAh a F AND C02AEF mavE bEEn CalLED*

IMPLICIT REm L*8(A-H,O-Z)
FXTLP^AL SIe V E *PAT m a n  *L U T F 1
Dl '-’ENSIGN ft (o a ) * OPTL Am (t>) * Cm a No (6) * vv to (900) * name (2 0 )

/ * CMOLk (ju ) * ML T A (A ) *ACTLXP(lb) »Ca Ij) *Co(.3).*Ge3LaM(d) 
CO' MOK CmOll(30)*ACTCul(h) 9 NaCOE
CO 1 MON/nMn/dPnC I 3 ( JO * 6 ) * STR I ON (30 ) *CNORM Y (30 ) * alAmD (6) 

1 * EX P E n V (3 u ) « b C A L N G ( b )
COfO'ON/^iiAN/NuLA'i (6) * NFknT * I SwTCh 9 LanF IX 
DATA CA/I«0u?bllj0*0*06b739u0*0*00 7bb3AU0/
DATA C c-/0*9h 77J7u 0*-U • oobPAbuu * 0 • 00^9a ESD0/

1 0  FORMA!(2 0 A*)
11 F O R M A T (713)
12 FORMAT(2D10.1)
13 ru-^MAT (0 FIO. 8 )
1A F 0 - M A T (I b » b A » 3 F 1 0 • b )
15 FOPMh T(2F10.5)

PEAD(b * 11)NSET 
KOUNT=u

999 V'PITE(6*112)
R E A D (b *10)n m Ml 
WRITE (b» lOu ) N a m E
P E D  (5 * 11 ) i juP * N T R 1AL * IPkInT *MAXlTK*LAN'r I X * lOPTN 
V:R I TE ( 6 * 101 ) FUP * N f R I A L * I PP. I JT * M AX I TR * L aMF I X * IOPTN 
IF(LAmF1X#Lu.0)GO TO 8  
REA D (5*12)VePS*VaLF 
WRITE <g*102) VEPS*VaLF 

A PE- D (b* 1 1) naCul
PE.- D (Si 13) (ACICUt (1) *1 = 1 *NAC'>E)
WRITE (o *123)(m CTCOE(1) *1 = 1* -̂ l OE)
P E D (b * 1 3 ) (o f f A ( i ) * i = 1 * a )
WRITE (t>* 121) (d FTa (I) *1=1*4)
P E A D (b f13) (a CTl XP(I) * I = 1 * 1 b )
white (0 *12 2 ) (actexp(I) *i = i*ir>)
IF(LAMPIx • E G •u )Go TO lb
R E ^0(5*15) (CMOLR(I)* EXPEUV(I)* 1 = 1 1 NOP)
WRITE(6*116)(CPOLk (I)*ExPE0v(l)*1=1*NOP)
GO TO 17

16 PF A D (5 * 13) (C^uLK(I)*1 = 1*n OP)
WRITE(b*124)(CMULP(l)*I=1*NUP)

17 CONTINUE
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DO 1100 1 = 1 * DUP 
CM^=CMOLk (I)
IF (CMN • ot • • u0bL>0 ) 00 TO <+
CO0LL (I) =0<h*i .0029647U0 
GO TO 1100

4 AM*YC=Ca (1)* C A (2)*CMK*CA(3)*ChR**2 
CM0-LL (1 ) =AMd YC*Cm P

1100 CD-:T I DUE
CAL L pATnA!'i(MOP«CMOLL*Dt.T/WALTEXPfSFc.ClS)
VPiTE(6fll7>
V P 1 T L (6 * 1 0 h- )
DO 700u I = 1 * NuP 

7000 uPlT£l6*lub) (SPtXI3(I*N) * r1 = 1 * to)
no 2100 1 = 1 * -up
DO 2100 h=l*b 
SP = SPECiS(I*\:)
I F (S P •Gt ••0u5U0)GU TO 3 
SPMCIS(I» N ) =Sr/l.0 02^64700 
GO TO 2100 

3 CpYN =Cb (1) + Cb (2) *SP*C3 (3) *5P**2 
SPEC IS (I * \) =CbY''*bP 

2100 CO' TIimUL
k>RIT£(o*llh)
V» P I T E (o * 11 9 )
DO 2200 1 = 1 *DUP 
CfcOkMY (1) =L.'‘ 0|_P ( I) *2 . DO
STP 101 m (1) = .bt)o* (4.l)0*SPr_CIS ( I » 1 ) ♦SPtClS II *2) ♦SPtCIS (1 *4) ♦ 

/ 4*Dl) ̂ SPELlbtljS) + 3Pfc.CIb(If6) )
2200 u p ITE (fc * 12 u ) ( SPEC 1S (1»r,) *N=l»b> »STk 1u N(I) *CMOLR(I)

IF (I OPT;-J.tu.-l ) GO TO 7 
IF (La iv"F IX..‘-it • u ) GO TO 1 
PF.' D (b * 11) LCOMP 
LCC = 0 

6 pPITE(bfll4>
p E A. U (5 * 13) ( a L a ■■v’ U (I) * I = 1 9 1>)
IF (I OPTO •EQ•0) i'Mppj .-T = 0 
I S '. TCh = 0
CALL STEVt ( i\iOp * N A T T A K ♦u p T L A vi«F F )
LCC=LCC + i
IF(LCC.NE.LCOmp)GO TO 6 
GO TO 7 

1 k T k Y=0
5 PEvD (S* i 1 ) g a TTAK

P F A D (b * i 3 ) ( a L a M -J ( I) * I = 1 * b )
V'PlTE(bf 11h )
■'lp I T l (b »1 0 3) ( a L a ' ') (I ) 9 I = l 9 b )
DO 2000 1 = 1 » M a TT AK
PF ̂ U (b ♦ 1 <+ )UuLmS (I) 9 OESLaM (I) 9 CriMNU (I) 9 SCaLnu (I)

2000 V'RITF. ( 0 9 107) NULaM (I) *Gr. bLAM ( i ) »ChANG(I) *SCaLnG(1)
V*~ IT£(b*ll*+)
IS;TCM=1 
MPPNT=1
DO 4Q00 1=1fEa TTAK 

4000 OPTLAM(I)=btSLAM(I)
FPS=VtPb 
ALr = Va LF
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m a =n a t t a k
I P = N A + 3 + N A / j
N'w = 2*N0P* A^/V + MOP^r■JA+ ( NA^LA+NA )/2*IP* (N0P*2 + 2-*Na )
IFa IL=1
C A L  L  E G - * F  A F  (N O P  , n A  * O P T L a M  9 F F  . 3U M 6U P  9 c! P S  9 A L r  9 C H a n O  9 w W  9 
1 N  n , S  T  E  Y E  , L  U  T )■ 19 I P k I N T  , N  A  X I T  r< 9 If A l L )
V. P i T E (o 9 1 U ) If ('i I L 9 c. P S
V'P I Tt (b 9 11 u ) Su ’-'d -<P
WRITE(59109)(jFTLam(I) 9 1=1»NA)
DO 300 0 1 = 1 9 Mm 
J = ,vOLAM ( i )

3000 ALAMO (J) =OP7LAM( I) /SCALNo(I)
WRITE ( 0 9 109) (aLa:»D(I) ,1 = 1,6)
IF ( Iu PTn .c u . 0 )' IPr<NT = 0 
IS-TCM=0
CALL STEVE (NOP,iNA , OPTLAM, F F )
K T h  Y  =  M P Y  + 1
IF ( KTkY • i\L . nTk I AL ) GO TO 6 

7 KOi iM = KOui\l + 1
IF ( k OUT.I • Nc. • NbET ) Gu TO 909 
STOP

100 rO-f'AT (/oA 9c Oa A/)
101 FORMAT</b*9•CONTROL PAPALETEkS*,/9 » NOP TRIALS *9

1 ' PR>\T) ITclP LANfiX UPTIOim* 9 / 9 S X 9
2 13 9 5 11 U )

102 F0 MA T (/5X ,'LIMIT ON SUN SOP *9 1PU10.1 9 ba 9 1 ACCJHACY•9 D10•1)
103 FO-O’AT (/bX, » Va l u e s  OF LAN8l)A* *S* ,/,b (3a ,F lO.J) )
104 FOKMAT (/10A, * I I++ NA ♦ MA2 * 9

1# MA3- MA4  A-*)
105 FOP-a T (2X 9b (] PiL-),6) )
107 FO^-NAT (/SX, ‘LAMHJA NO. = • 9 12 *3X9 ‘OUoSS V a LUL = *,

1 F10.2,3a,•CONSTRAINT = • 9 F 1 0.2 93 X 9 *SCALIN6=•,FlU.2)
10P FORMAT(/bA»* If*IL = ',1293X9* e PS= *9fb.l)
109 FOr-AT</SX, *OPTlNl/.tU LANHL>a »*S a PE * 9 6 (3 A 9 F 12 .4) )
110 FCPnaT(/SX,*Sun OF S3UKE3 *,lPUlb.4)
11? FORMAT (Ifil/>
114 FO -.AT (//)
l i b  FO-LAT(/bX,'^u LARITY EGV.CONO. » 9 / 9 ( F 1 2 • b 9 F 10.2) )
117 F 0 w P a T (//5a , * n OL a L I T Y OF COMPLEX SPECIES*)
11? FORMAT(//o A , «MOLm k ITY OF COMPLEX SPe CIES*)
116 FC-MAT (/10X, f-‘A♦ MA2*,

1* IA3- H a 4 ? -  a - * 9
2» Io n  STRENGTH m u l a PIIY*)

120 F 0 >-■M A T (2a, f (1P 01 r> • o ) , 0 P r 11 . o )
121 F 0 p M A T (/b X ,* L u 0 6 E T A (1—4) *9h (3a ,f 10.5))
122, FO; m l  (/DX, ' Va LUe S u F T ie a CT.CUEfFICItNT PAPAnilTo KS*/

1 5 ( 1 P U 1 O • b ) )
123 FO-Va T(/bX,*CutFFICIENTS OF u L N (OAMa )/ U L M (M ) •,

1 /,7 (lPUlb.y))
124 F0-.NAT (/bX, • INPUT MOLa k ITIl S* ,/»c (FlO.b) )

FM;
SUBROUTINE sTc-VE ( NCONC , naTAK ,ESTLAM 9 F UhCTN)
IMPLICIT PEaL^h(m-n 9 U-Z)
EXTERNAL FUp PAT
DI -'ENSI ON LbTL AM ( n.aTAK ) 9 FU JCTN ( i\iCOhC ) ,2(6) ,AOZ (o) ,PMU(6) 9 

1 CAL2U;<30),UlFcOV(30),RLlJ(b96) 9 PEKCNT(6,6)
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CO x'MON/r<Ab /COn C (30 , b ) ,U(30) * AImOk m (30 ) * ALAN (b) »UoStUV (30 )
1 , 5 C A L U J (b )
C0> K>0fv/SuHA(i A/HL11 (30 ) ,KL12 ( JU ) , RL22 (30 )
C O v i,-‘ 0 i'v / !N h A. \i / * \ u.o t. H ( b ) * i m P K , K 3 v , L h A
DATA Z/2 • ‘Ju , 1 • l) 0 , 0 • U 0 , — 1 • UCm  —2 • u0 , — 1 • D0 /
DATA AoZ/2«u0,l#UU,0*U0,l«j0,2,U0,l»L)0/
Cl=.107+J0 
C2=.23u 0lbuu 
C3 = 30*2‘t7bu0
IF (DPP • il0 • 0 • Ok • Kb 2 • c_O • 0 ) OO TO 111 
HO 10UG 1 = 1 , 5 A T A K 
J= iL i-ibEP (I)

1000 AL,<M (J) =LbTi_Aft (I) /SCALNn (I)
111 c o -.t i n u e

1‘,RITE(o »7Gd )
DO 2000 1 = 1, DCODC 
IF (NPP• DL• 0 ) (-0 TO 35 
PPI TE ( b , b b 0 ) Ai-jOH '-i (I)

55 CO T If.UL
POuTU=LiOKT(U(I))
SO = 0 • 0 0 
DO 30 OG 0 = 1, b
IF (7 (i,) .20.u. jO) bO TO 3000
PP-U (N) = CuNC ( I ,M) *Z (N) **2/ (2.:'JU*U (I) )
SUr-' = SUh + P>'’U (0) ̂ AL.a m (d ) /a &Z (N)

3000 CONTIf'.UL
no 110 0 L=i,6 
DO 1100 5=1,5
IF ( Z (L ) • L 0 • lm u 0 • 0 R • Z (M ) .tQ.O.ljO)oO Tu 10
IF ( L • NE • 5) bu TO 20
PL I J(L,M) = (CI^Al a O(L)/ndZ(L) )-C1»h OUTU*((ALAM(L>*ALAM(L)/ 

/ SLM*(1.OO-rMU(L))*C2)♦C3*Z(L)*Z(L)^KMU(L))
PL IJ(L,3)= PLIJ <L,N)*COhC(I,L>
GO TO 1100 

20 SMU=OSurtT (Rr.U (L ) *RMU(M) )
PLI J (L*'-l) =Ci*SPU*^OOTU* ( ( ( ALAtf (L) *ALAM (M) ) /SUM*C2) -C3*

1 Z(L)*Z(d ))
PL I J (L , iv1 ) = RLI J (L,M) *D3u k T (CUiX ( I ,L) *COn C (I , M) )
GO TO 1100 

10 PLIJ(L,5)=0.00 
1100 CO. TINUc

IF ( I IPk .02.0) GU TO 1120 
V!R  [ T t  (ti , 1 b 6 ) 
n 0 11 5 u L= i , b

1130 '• k 1 T t. (b , 7 0b-) ( kL I J (L , i'i) * i*'! = 1 9 b )
112'' CO .Tlr.UL

PL11(I)=U .JO 
no 120 0 K=1,5 
no 120 0 L=1,5 

1200 Pl.ll (i)=«Lli (1) +-:LIJ(K,L)
I F  ( NPk • ,'4tL • 0 ) ovj TO 1 
DO 30 5=1 9 d  

30 5PITE(b,b2u)(kLIJ(K,L), L=1,5) 
wPIT5(6t70 7)
DO 9bd G = 1,5 
DO 977 L=l,5
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977 PEk COT(K>L)=PLlJ(K*L)/hLl1 (I)*1UU.D0 
988 V RITE<6*706) <k £RCNT<K *L ) *L=l*b)

VIRIT E (6 * 6 5 0 ) P L 11 (I)
1 PU2(l)=u.uu 

00 i 3U0 K = l*6 
DO 1300 L = 3*'5

1300 c>LiJ(rML) = (L-l)*-LlJ(K,L)
T F ( •  .'id • 0 ) Gu TO 299 
5 R IT E (o * 1 o o )
DO 199 6 = 1 * o 

199 091Tl (o *70h )(KLlJ(K*L)*L=1*b)
299 COMIfjuE

DO 14 0 0 K = 1 * 5 
DO 1400 L = 2 * 6 

1400 PL12(1)=k L1c (1)*RLIJ(K*L)
IF (L P H •: j fc • u ) G u T O 2 
no 31 r'.= 1*5 

3] »-'PITE (6*620) (nLIJ(K,L) *L=2*5) 
u i< IT L ( d *7 0 /) 
r'0 956 r\ = 1 * b 
DO 95b L = 2*b 

955 PF-CoT(i\*L) =klI J (K ,|_)/kL12(1)*100.00 
96b "9ITE (b*70d) (PtRCLT(K,L)*L=2*fc)

V’ 9 i T £ (6 * b 6 0 ) P L 1 2 ( I)
2 PL2 2 (I)=0•00

IF (r-jpk • . Jc. • 0 ) 0U TO 399 
WRITE(b*id o )
DO 499 K = i * b 

499 VRITE(6*704)(PLlJ(KtL)* L = 1* b )
399 CO -TlbUE

DO 1500 !\ = 3 * 5 
00 1500 L = 2*b 

1500 PL1J (K*L) = (r\-l) *2LI J(K,L)
no 1600 K = 2*6 
no 1600 L=2 * 6 

1600 PL22(I>=RLc 2(I>*k LIJ(K,L)
IF (L'PR • Gt • o ) Gu TO 3 
no 32 t\ = 2*o 

3? WRITE (b * o2u) (k LI J(r\*L) *L=2*o)
Ok ITE(b * 7u7)
DO 944 K = 2 * o  
no 933 L = 4 * 6 

933 P£ ‘-CGT (K * L ) =Pl I J (f\ * L ) /kL22 (I) *100.00 
944 '*'9 ] TE (6 * 7 O o  ) ( hFRC'mT ( K * L ) * L=2 * b )

'■RITE ('-> * 6 7 u )^L22(I)
3 PL1 1 (1) =KL1 i (1) / 1 f-OK'l (I)

PL 12 ( I ) = t-.Ll£ ( i ) /A.Gv)pM (I)
PL22 (I)= RL 2 2 (1)/ a n OSm (1)
C a! EEV (I)=9.31041jO*(4.00*PLll(I) ♦k L22 (1)-4.u 0*5l 12 (I) ) 
niFLi;V (I) =0d 5c ')V (I)-CALt-UV (I)
F U ' - ' C T o  ( 1) = 01Fc.0 V ( I )

2000 Cu .TINUl
I F  (KSV . nIE.O ) GU TO 4 
WRIT£(6*100)
T F (LFA•£ u •0)6J TO 5 
l/ftI T E (6 * 7 0 2)
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no 50uO 1 = 1 9 otO'JC
5000 V RITE(69703)a h Op . ) (I) 9 0d SE0 V (I)tCALLUV(I) 9 DIFtUV(1)

5 CO dli\ui
CALL I U A n a T (■-; l. 0 i'0 C 9 A N 0 r<M)

4 CCMlOUt.
100 FO-MAT(///)
62" FO -AT (1X90 ( lP'U-f .i*) )
65" F 0-L a T (1X 9 •**■*# L 11 = ' 9 F13.6)
660 FO~ ViAT ( 1 X 9 * L12 =*9 K 13 . 6)
670 FO *MaT(1X9•*** L22 = ' 9 F 13 • 0 )
680 FORMAT ( /1> X 9 * F 0 A M a L NOpMaLITY = »9ld2.b)
690 FC:m a t (/b X9•v a l u e s  uf L A ;M h l) a • 1 S 0 b t U • 9 / 9 6 (3 X 9 F'12.4))
702 F0*■■' AT ( / o X  9 1 0uA ■ aLIT Y Lvi.CO ,U (Od S) EG.CGh U (CAL) • 9

1 • 0 IF F u. * u. a L E • / )
703 F 0 "; AT (•+ ( JA9t i0«-+) )
704 F 0 • 4 T ( b A 9 o (1 p U H.4-) )
705 FOr vi U  (1 m 1 / )
704 F 0'“- K'-,\ T (b A 9 b r 1 u • 3 )
707 FO-f-AT (/oX 9 •Pl PCl m T CO 'iTAIbUTiUU OF LACFi COtF FICIl ^T *
188 FO;- MAT ( 1 x 9 * * * * * * *  CURA L.d VALUcS L'F 0 X 6 iviATPIX*/)

PETUPu 
FnO
PUr:P OU T i !\z. P A i Hj£\ I „ ( |\QP 9 C * Dt T A 9 P 9 5 P S )
IMPLICIT R E a L ^ O  ( a - h 9 0 - 2 )

n r  ENSI'JN C (3u ) 9MLTA (4)9P (lb) 9SPb(30»6) 9PA (6 ) 9AI (o) 9C0t (6 )
F=2.302bb5u93uO
7 1 1 = -0 .51 lbi)0
721 = -1.023uu
n = :.'.32SljG
n C Z’ " I = 1 » A
PET A (1)=ue.ap ( d ET 4 (I) *F )

20 C O T  iI\!u l
DO 30 I= 1 9i'lup 
C M = C ( I )
C M2=C(I)*2.uO 
M=CM2*C^1  
OC = 0 

1 ?ll = DS0KT(U)
US=U*U
UC=US*U
A21=Z21*SU
All=Zll*SU
nsv=o^su
R 2 1 = A 2 i / (1.j O + P (1)*OSU)+ P (2)*U + P (3)*US + P (4)*UC 
r-1 l^-'l 1/ (1 .uO*J ( 5 ) *uSJ) + P (b) *U*P(7 ) *ub*P (ri) *UC
g o = P ( s )*u*p( l o ) * u s * p (11)*oc
612=A21/ (1 • L>0 +P (12) *USU) ♦P (13) *u + p (1h ) *US*P(lb) *UC 
G21=l>EAP (021*r )
Cl 1 = ;,£ aP ( 31 l *r )
G C = I > E a P ( 0 u * f )
61 £ = 0 c. X p (012*1' )
G21C=G21**J 
6 1 lS=Gli*Gli 
GllF=GllS*Gilb 
G12C=G12**3 
Rl=tLTA(l)*u21C/GllS
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P2=dET*(2)*u21C/uO 
83 = L3ETa (3) *u?iC 
R4 = riETA (4) *u21C*'311F/G12C 
COd (1) = d4
COE (2 ) = J3 + »*r# (4#L)0*Ch 1 ~Civi2)
C O E (3)=32+o3*(3.00*CM1-CM2)
COL (A-) =i> 1 + ( 2 • uO <},Civ! 1 -C?vi2 )
COr. (3) =i .L)0 + Ai<> (Cnl-CM2)
C O E (6)=-CM2

IE *• I L= 1
TOL=lb.O**(-13)
CALL COdALr ( COE * :; * .4 A * A I * T UL * I h AIL )
IF (IFa IL* 0 l • (») r-21 T i£ (o * M ) If- AIL 

8 FO-Ma T (/d X, *FaILEO iu C02AEP IhMlL=*>I3)
ro 4 0 j=i»b
i = - A (J)
IF ( A.u T • 0 • JU • Ai jiJ • A • Lt • CS2 ) oi) TO *+

40 CO T I l\UL
IF ( A • LL • U • uu • ur' • <■* • OT • CM2 ) »\ K 17 L (o * 1 O b ) A » C^2 

10S FCV- AT (/bX* • A- **F10.6*» TOImL MOLALITY **F10.6)
4 £S=A*A 

,AC = AS*A 
AF=AS*AS
OEi ;0.v ’= 1 • DO +d 1 'i-A + d2‘tt'AS + b3‘tt,AC + r4‘tt‘Al’
CM=CMl/j ENu m 
C M A = b 1 * C S * A 
CMA2=b2*CM*AS 
CNî 3 = E3*CM*a C 
CMA4 = r;4»Cx*AF
UN= • bOO ** ( 4 • uO* (C '-I + CMA4) ♦ C* A♦CmA3* A )
PE-0AbS ( ( Ui'M-U) / 0 ‘■*) ̂  1 0 0 • jO 
IF(HE.LE..OiU'U)GO TO 3 
M C —!; C * 1
IF (P L •6T • «01 •^iiD#:\C*tij«1000) 30 TU 2
U = *vL.
00 TO 1

2 V'f<ITE(r>*10^)C<a*«-4C*PE
100 FO1'SAT (' ***«■ F a I LUKE :i *,FlJ.fc,' ITEk »,I10»

1 • P.ERROk •»Fb«2)
3 SPS(I,l)=Ch 

SPS(I*2)=C..a
SpS(If3)=CLM?
?PS (I * 4 ) =C>-'a3 
?PS(I*b)=C-1A4 
qp^(i,b)=A 

30 CO.-TIhUc 
P E T 0 K ■ i 
F -: •
SU-.ROUTISl f-Uki-m  I (N*aNORM)
IMPLICIT k L a L^a (A-n*U-Z)
01'-'ENSIGN cj.j0 k m (3G) *n 11(30)»R12(JU) *k 22(30) *X(30)*

1 /jk13<30) *.-*2d(30) »w k 33(30) ♦h IJ(JO) *K23(30) *K33(30) 
CO'MOiJ CMOLL (30) fCOE (B) *nCOt 
COMMOn/SUPPcR/H.Ll 1 (30) *bL12(30) tbL22 (30)
COr- STl=O.3lG9u0
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CO\ST2=1.AE/3 a UO 
CO ’.ST j=1.0-i2
V R I T L '  (6 9 6 U U )
no 20 i =
Cm c l r =sHu Rm (I) /2.l>u
ALPHA=A.D0*^L11 ( I) + 3L22 ( I) - A .U0*bL12 (I)
PL ‘! = JLO vj ( L SuLL ( I ) )
FACTCP=u.DO
no 30 j= l ♦ h c O c.
IF (PLH • E U •0•D u )GO TO 31

30 F a C T 0 K = F A C T O 6 + C 0 n (j ) * R L H * * (J -1)
00 TO 2

31 FACTOrV = COL ( 1 )
2 ACTFH• != 1 • 00 ♦ FaCTur 

P IL L ~ M = C 0 N b 1 1 * A L P H A
TPi_US= (A- • uO^r-L 11 (I)-2*UU*6L12(I) ) / ALPHA
PIFFV=(CONbT?*(6L11(1)*oL22(1)-DL12(I) ) /ALPHA)*ACTERM
f L 11 (I ) = E L 11 (l)*C0riST3
pL 1 ? 11 ) =.5L12 (l ) *CO m ST3
6-L c 2 ( I ) =c:L22 (1 ) *C 0 0 3 T3
X (T)= h L 11 ( I)* ^ L 2 b (1)- o L 1 2 (1)**2
p ll(I)=oL22(T)/*.(I)
P12(1)=-lL12(I)/a(I) 
p 2 ? ( I ) = 3 L 1 1 (I J / X (I)
X ( I ) = 1 0 J U • uO*L>iOLK/ ( 1 a • U lbA^Ci'iOLL (I ) ) 
v;P 13 (I ) = - o • d f : o * ( k 1 i (I) + 2 • o u * 12 (1))
'^23 (I) =-0 .oOo* (h 12 (1) ♦2.U0*k 22 ( i ) )
P13(I)=‘»R13(I)/X(I) 
p 23 (1) = .-j k 2 3 (I) / X (I)
L K 3 3 (I ) = - 0 . b O u * < 6 1 3 ( I ) ♦ 2 . 0 0 * H 2 3 (I ))
P33 (I ) = .jk33 (I) /X (1)

20 WRIT t (6 * c? 1 0 ) CmOLH 9 CMOLL (I) * dnUKM (I) 9 d I0L A is9 TPLUS * 01 ̂ FV 9 
1 ACTEPH 
V1 PIT E (b 9 fc 2 0 )
HO 100 I= 1 9 is

100 M PIT E (6 9 b fe u ) 6 L 1 1 (I ) 9 dLi 2 (I ) 9^L22(I) 9 k 1 1 (I) 9 K12 (1) 9K22(1)
1 9 NOR i"1 ( I )
>' 0 1 T E (b 9 6 d 0 ) 
no 200 1 = 1 9 <

200 '/ PI T t (6 9 6 6 0 ) ?1 k 13 (I) 9 *'R23 (I ) 9 <k33(I) 9K13(I) 9R23(I> 9 
1 P 3 3 (I)9 X <I)

600 FO-MAT(//3a 9 •hOLaPITY MOLALITY NORMALITY LAMriUA**
1 » IVLUb J(V) ALT.Ttr^M*)

61 0 F( A ‘ AT ( dX 9 (Y 1 0 • A )
620 F0.'MAT ( //6 a 9 ' L 11 / N L12/N L22/IM»9

1 • i-̂•"’11 .\l*bl2 n *k 22*/)
630 FO * H AT (lA9t>LlD»b)
650 FORMAT (/ / 5 X 9 *03**13 C3*P23 C3*KJ3»*

1 • A 1 3 r>c3 R33 • *
? » C - w A \tr< (C3) •/)

660 FGt-MAT(lA96ulb*b9f’10«A)
RETURN
ENG '
SUBROUTINE LUTFI(NP0INT9LATA^ 9V L AMOA9S M S Q R 9ITEK>SIN9LIM) 
IMPLICIT ^ l a L * R (A - H 9O-Z)
LOGICAL SIN 9 LIM
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n ^ E h S I O N  VLA k DA (LATAK)
v*'R 1Tb 100 ) 1 TER*S*'SOK* (VLAMPA (1 ) • 1 = 1•LATAK)
IF (SIN) .v k ITc (^,3u 0)
IF ( LI M ) K 1 T c. ( o * 4 0 u )
Pc'TUPi"

100 FOR!/ M  (4X> *13* • SUMSUK**1PD12.3*• LAMdOA• • S •
/ * A ( 2 A * 0 F F h • ? ) )

300 PJ~ ̂ !A 1 (oX» 'uUtSS FaILLU N£ -i VALUE OE^EkATLu')
400 FO-PAT ( uX *' VALUES CU.\S T k a 1 .>iLu dt SUk FLILl) LIMITS')

Eh j
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APPENDIX D.1

THIS PROGRAM PERFORMS THE ITERATIONS FOR CALCULATION OF 
THE CONCENTRATIONS AND COMPUTES THE CELL CONSTANT FOR A 
d i a p h k a o m c e l l w it h kcl c a l i b r a t i o n d i f f u s i o n kun

DIMENSION A (5)*S (5)*NAME(20)
REAL KSPB* KSPT

10 FORMAT(315)
11 FOr:MAT(20A4)
12 FORMAT(8F10•0)

READ(5*10)N*NA*NB
READ(5*12) (A (I)*I=1*NA)
WRITE(6*86)
WRITE(of 1000) (A(l),I=1,NA)
READ(5*12)(6(1)*I=1*NB)
WRITE(6*1100)(8(1)*I=1.N3)
NC=0

1 READ(5*11)NAME
READ(5*12)T*KSPT*KSPB*V*£ST 
READ(5*12)WIT * WT* W16 * W B 
WRITE(6*99)
WRITE(6*1^00)NAME 
WRITE(6*2000)T 
WRITE(6*2200)KSPT 
WRITE(6*2300)KSPB 
WRITE(6 * 2A00)V 
WRITE(6*2500)EST 
WRITE(6*2600)wlT 
WRITE(6*2700)WT 
WRITE(6*2800)WIB 
WRITE(6*2900)WB 
C2 = 0 • 0
CALL CONC(A*B*MA*NB*KSPT*WlT*wT*EST*C4)
CALL CONC(A*B*NA*NB*KSPb*Wlb*wB*EST*C3)
Cl=C3MC<f-C2)*V
CMA=(Cl*C3)/2.0
CALL DOBAR(D0CMA*CMA)
CMci= (C2 + C4-) / 2 • 0 
CALL DOBAR(D0CMB*CMB)
RC=CMA/CM6
DBAR=(DOCMA*CMA-OOCMd*CMB)/ (CMA-CMB) 
RCS=(C1-C2)/ (C3-C4)
DBETA=1»0/T*ALOG(RCS)*10«0**5
BETA=DbETA/D8AR
WRITE(6*99)
WRITE(6*19)Cl 
WRITE(6 * 18)C2 
WRITE(6 * 17)C3 
WRITE(6*16)CA 
WRITE(6 * 15)CMA
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WRITE(6 * 14)CM6 
WRITE(6*13)KCS 
WRITE(6*22)06ETA 
WRITE(6*21)D8AR 
WRITE(6*20)BETA 
NC=NC*1
IF(NC.NE.N)GO TO 1
STi'P 

88 FOkMAT(IHI)
99 FORMAT(/✓)
13 F0kMAT(d X ‘
14 FORMAT(oA 
lb FORMAT(bA
16 FORMAT(bX
17 F0*Ma T(5X
18 FORMAT(5X
19 FORMAT(bX
20 FORMAT(bX
21 FORMAT(bX
22 FORMAT(bX 

1000 FORMAT(bX
1/6(1PD16•

1100 FORMAT(5X 
1400 FORMAT(/b 
2000 FORMAT(bX 
2200 FORMAT(bX 
2300 FORMAT(DA 
2400 FORMAT(bA 
2b00 FORMAT(bX 
2600 FORMAT(bA 
2700 FORMAT(bX 
2800 FORMAT(bX 
2900 FORMAT(bX 

END
SUBROUT INt CONC(C *P *N *M ,SKSP*W1*W*E*CN) 
DIMENSION C (5)*P(b)

3 CRPL=0.
DO 1 I = 1 * N

1 CRPL=CKPL«-C(I)*ALOG(E)*»(I-l) 
EN=SKSP/EXP(CRPL)
P=ABS((EN-E)/EN)*100.
IF(R•LE••02)GO TO 2
E=EN
GO TO 3

2 CRP=EN*W/Wl 
PP=0.
DO 4 I = 1 * M

4 PP=PP*P(I)*CRP**(I-1)
CN=CRP*PP
RETURN
END
SUBROUTINE OOBAR(UO*C)
CS=C*C
CC=CS*C
IF(C.GT••01)GO TO 2
D0=1.9834-10.403b *C+978.602*CS-39220.0*CC

/ \ ' »r lUiOi
(C2 + C 4 )/2 (CMb) = » *F10.6)
(C 1♦C3)/2 (CMA)=•*Fl0.6)
FINAL CONC. OF UPPER HALF (C 4 ) = • ,F 1 0 .6)
FINAL CONC. OF LOWER HALF (C3)= • *F10.6)
INITIAL CONC. OF UPPER HALF (C2)= • *F10.6)
INITIAL CONC. OF LOWER HALF (Cl)=•*F10.6)
CELL CONSTANT (BETA)=•*F 10.6>
U  BAR=•*F10.6)
D * BETA = ',F 10•6)
COEFFICIENTS OF C/P VS LAMBDA»P/1000•
)
COEFFICIENTS OF C/M VS M»/6(1PD16.5)> 
20A4/)
TIME OF DIFFUSION RUN (SECS.)=•*F10.1) 
SPECIFIC COND. OF UPPER SOLUTION=•*FI2.7) 
SPECIFIC COND. OF LO w l R SOLUTION=•*F12.7) 
V=(V2*V3/2)/(Vl*V3/2) =»*h8.3)
GUESS VALUE OF CONC.=•*Fb.3)
WEIGHT OF SOL. FROM UPPER HALF=•*F10.4 ) 
WEIGHT AFTER DILUTION=•*F10.4)
WEIGHT OF SOL. FROM LOWER HALF=•*F10.4) 
WEIGHT AFTER UILUTION=•*F10.4)
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GO TO' 8
2 If(C.GT..1)00 TO 3

00=1.959-2.*101*C*27.3377*CS-118.482»CC 
GO TO 8

3 IF(C.GT•.5)GO TO 4
00=1.90178-0.36375*C*0.825*CS-0.625*CC 
GO TO b

4 00=1.84273+.000360167*C*.0186942*CS-.002174S»CC 
b RETURN

END
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APPENDIX D.2

THIS PROGRAM CALCULATES The. iSOTOPt-iSoTOPE 
COUPLING CucF I- I C 11 - jT 5 FOR CONRLtALu SYSTEM 
CADMIUM AND CaOMIUM IOUIuE
PE -\L 10. IS Th (So) * L A '-'it'll) A (S ) * ̂ UL a K (SO) * L IJ ( 5 * 5 )
DI * ENSIOU SPECIS (b(; * b ) * z. (b ) ♦ AbZ (b ) * Nai‘>L (20)
DATA z/2.*1•*-1•*-2.*-1 ./
DATA ASZ/2.*l.*l.*2.»l./
CO STA = • i0 7*+
COOSTA = •229b1 
C0‘ STC=3u • d <jtl'D

1 0  FO'V-'AT (lb)
11 FObPAT(20h4)
1? F0o v AT(7Flu.O)

RE-D(b»10)UbEIS 
KOUMT = 0 

1 DE M) (S 91 u ) imOP 
W R I T L (6 * 1 7 0 u ) 
vpI TE (6 * 1 tu)0 )
CO 20 l=I*uuP
PE* D(b*12) (oiOLAP (1) flOMSTP (1) * (SPEC15 (I * J ) tJ=1*S> >

20 WRITE (6*1300) ( 'OLAP (1) ,IOLSTk (1) * (Sp l CIS(I*J) »J=1o ) )
R E a. (3 (b  9 11 ) M mk‘E
whITE ( 6 * 1 Ouu)NAME
READ (b» 12) (LAf-.r.:JA(I) ,1=1,5)
S' R I T E (o , l S 0 U ) (L A i n 0 A ( I ) 9 I = 1 9 S )
HO 1 0 0 1 = 1 *MOP
SOT 1=SOKT(IC'!STR (1))
0 0  30 J= 1 *b 

30 SPECIS(I * J)=SpECIS(I , J )*APZ(J ) n=o.
no au j= 1 * s

AO B=b*SPLCiS(I,J)*LAHriGA(J)
00 50 K=l*4 
DO 50 L = 1 ♦ <+
FACTOP = SPtCiS(I * r )*SPLC!S(1,L)*CONSTm 

50 LIU ( K * L ) = E a C T UkJ * L «M s u A (;\) * L A Kb L) A (L ) * C 0 i\ S T X / d * S U T I 
1 - (FACTuR*CONbTC*Z (r\) (L) / (2.*SuTl) )
WRITE(b * 110 0) v?OL A R (I)
• / R I T E  < S *  1101)

70 R = 1 *a
7 0 w R J T E (6 * 1 2 0 0 ) ( L I j ( 0 9 L ) * L = 1 * A-)

X=LIJ(1,1)+l Ij (2,2)*LIJ(3,3)+2.*l IJ(1,2)+2.*L1J(3,h )
1 ♦ L I J ( a - , 4 )
Y=2.*LlJ(l *3) ♦2.*LIJ(1 ,<f) ♦ 2.*LlJ(2*3>*2.*LIJ(2t‘+) 
X=X/MULm P(I)
Y=T/MULa R(I)
FU = X*Y
WRITE(b,l^Ou)a ,Y,FUN 

100 COPTlUUt.
KOUNT = ?\OUNT ♦ 1
I F  ( r t O U N  T • iNE • M S E T S ) G O  T O  1
STOP

1000 FOp Ma T(/5X»20a4/)
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1100 F O ^ iaT(/d X*»^ULA^ITY=• 1 0 . 6 )
1101 FORMAT (/bA, »L-COtf-FICIE.iTS* )
1200 F O R M A T  (<+ ( l P n l b . b )  )
1 JOG F O r “ A T ( 7 ( l k b l o . b ) )
1A00 FORMAT (/bA, ' Nl G a TI Vt TLkM•*lPtlb.5*• POSITIVE TLk M», 

1F15.5** TOTAL* *E1S.S)
lbOO FO-.v.a T (/bX, • V aLULS Ur L a Mc'DA(u ) 1 -h */S (F 1 0 . 2 ) )
1600 FOl-N AT (/bX, ' IoPUT f-OLAk IT Y * I u,\ . ST K . * M* ♦ * MA* * MA 3-» MAA— *A-» ) 
1700 FORMAT(lnl)

■ Eou


