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Abstract 

Breast cancer, the most commonly diagnosed type of cancer in women, is a major cause of 

morbidity and mortality in the western world.  Well-established risk factors of breast 

cancer are mostly related to women‘s reproductive history, such as early menarche, late 

first pregnancy and late menopause.  Survival rates have improved due to a combination of 

factors, including better health education, early detection with large-scale use of screening 

mammogram, improved surgical techniques, as well as widespread use of adjuvant therapy.   

At initial presentation, clinicopathological features of breast cancer such as age, nodal 

status, tumour size, tumour grade, and hormonal receptor status are considered to be the 

standard prognostic and predictive markers of patient survival, and are used to guide 

appropriate treatment strategies.  Lymphovascular invasion (LBVI), including lymphatic 

(LVI) and blood (BVI) vessel invasion, has been reported to be prognostic and merit 

accurate evaluation, particularly in patients with node negative tumours who might benefit 

from adjuvant chemotherapy.  There is a lack of standard assessment and agreement on 

distinguishing LVI from BVI despite the major challenges in the field.  A systematic 

review of the literatures, examining methods of detection and the prognostic significance 

of LBVI, LVI and BVI, was carried out.  The majority of studies used haematoxylin and 

eosin (H&E) and classical histochemistry to identify LVI and BVI.  Only few recent 

studies used immunohistochemistry (IHC) staining of the endothelium lining lymphatic 

and blood vessels, and were able to show clear differences between LVI and BVI.  The 

prognostic significance of LBVI and LVI was well-documented and strongly associated 

with aggressive features of breast tumours, while the prognostic value and the optimal 

detection method of BVI were unclear.  

Assessment and prognostic value of LBVI on H&E sections (LBVIH&E) was examined and 

compared to that of LVI and BVI detected using IHC with D2-40 for LVI (LVID2–40) and 
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Factor VIII for BVI (BVIFVIII) in patients with breast cancer including node negative and 

triple negative patients (n=360).  LBVIH&E, LVID2–40 and BVIFVIII were present in 102 

(28%), 127 (35%) and 59 (16%) patients respectively.  In node negative patients (206), 

LBVIH&E, LVID2–40 and BVIFVIII were present in 41 (20%), 53 (26%) and 21 (10%) 

respectively.  In triple negative patients (102), LBVIH&E, LVID2–40 and BVIFVIII were 

present in 35 (29%), 36 (35%) and 14 (14%) respectively.  LBVIH&E, LVID2–40 and BVIFVIII 

were all significantly associated with tumour recurrence in all cohorts.  On multivariate 

survival analysis, only LVID2–40 and BVIFVIII were independent predictors of cancer 

specific survival (CSS) in the whole cohort (P=0.022 and P<0.001 respectively), node 

negative (P=0.008 and P=0.001 respectively) and triple negative patients (P=0.014 and 

P<0.001 respectively).   Assessment of LVI and BVI by IHC, using D2-40 and Factor VIII, 

improves prediction of outcome in patients with node negative and triple negative breast 

cancer and was superior to the conventional detection method.  

Breast cancer is recognised as a complex molecular disease and histologically identical 

tumours may have highly variable outcomes, including different responses to therapy.  

Therefore, there is a compelling need for new prognostic and predictive markers helpful of 

selecting patients at risk and patients with aggressive diseases who might benefit from 

adjuvant and targeted therapy.  It is increasingly recognised that the development and 

progression of human breast cancer is not only determined by genetically abnormal cells, 

but also dependent on complex interactions between malignant cells and the surrounding 

microenvironment.  This has led to reconsider the features of tumour microenvironment as 

potential predictive and prognostic markers.   

Among these markers, tumour stroma percentage (TSP) and tumour budding, as well as 

local tumour inflammatory infiltrate have received recent attention.  In particular, the local 

environment of cytokines, proteases, angiogenic and growth factors secreted by 

inflammatory cells and stromal fibroblasts has identified crucial roles in facilitating tumour 
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growth, and metastasis of cancer cells through lymphatic and/or blood vessel invasion.  

This might help understand the underlying process promoting tumour invasion into these 

vessels.  An increase in the proportion of tumour stroma and an increase in the dissociation 

of tumour cells have been associated with poorer survival in a number of solid tumours, 

including breast cancer.  However, the interrelationship between these variables and other 

features of the tumour microenvironment in different subgroups of breast cancer are not 

clear.  Also, whether their prognostic values are independent of other components of the 

tumour microenvironment have yet to be identified.  

Therefore, the relationship between TSP, clinicopathological characteristics and outcome 

in patients with invasive ductal breast cancer, in particular node negative and triple 

negative disease was examined in patients with invasive ductal breast cancer (n=361).  The 

TSP was assessed on the haematoxylin and eosin-stained tissue sections. With a cut-off 

value of 50% TSP, patients with ≤50% stroma were classified as the low-TSP group and 

those with >50% stroma were classified as the high-TSP group.  A total of 109 (30%) 

patients had high TSP. Patients with high TSP were old age (P=0.035), had involved 

lymph node (P=0.049), Her-2 positive tumours (P=0.029), low-grade peri-tumoural 

inflammatory infiltrate (P=0.034), low CD68+ macrophage infiltrate (P<0.001), low CD4+ 

(P=0.023) and low CD8+ T-lymphocytes infiltrate (P=0.017), tumour recurrence (P=0.015) 

and shorter CSS (P<0.001).  In node negative patients (n=207), high TSP was associated 

with low CD68+ macrophage infiltrate (P=0.001), low CD4+ (P=0.040) and low CD8+ T-

lymphocytes infiltrate (P=0.016) and shorter CSS (P=0.005).  In triple negative patients 

(n=103), high TSP was associated with increased tumour size (P=0.017) high tumour 

grade (P=0.014), low CD8+ T-lymphocytes infiltrate (P=0.048) and shorter CSS 

(P=0.041).  The 15-year cancer specific survival rate was 79% vs 21% in the low-TSP 

group vs high-TSP group.  On multivariate survival analysis, a high TSP was associated 

with reduced CSS in the whole cohort (P=0.007), node negative patients (P=0.005) and 
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those who received systemic adjuvant therapy (P=0.016), independent of other 

pathological characteristics including local host inflammatory responses.  Therefore, a high 

TSP in invasive ductal breast cancer was associated with recurrence and poorer long-term 

survival. The inverse relation with the tumour inflammatory infiltrate highlights the 

importance of the amount of tumour stroma on immunological response in patients with 

invasive ductal breast cancer.  Implementing this simple and reproducible parameter in 

routine pathological examination may help optimise risk stratification in patients with 

breast cancer. 

Similarly, the relationship between tumour budding, clinicopathological characteristics and 

outcome was examined in patients with invasive ductal breast cancer (n=474), using 

routine pathological sections.  Tumour budding was associated with several adverse 

pathological characteristics, including positive lymph node (P=0.009), presence of LVI 

(P<0.001), and high TSP (P=0.001) and low-grade general peri-tumural inflammatory 

infiltrative (P=0.002).  In node negative patients, a high tumour budding was associated 

with presence of LVI (P<0.001) and low-grade general peri-tumural inflammatory 

infiltrative (P=0.038).  On multivariate survival analysis, tumour budding was associated 

with reduced CSS (P=0.001), independent of nodal status, tumour necrosis, CD8+ and 

CD138+ inflammatory cells infiltrate, LVI, BVI and TSP.  Furthermore, tumour budding 

was independently associated with reduced CSS in node negative patients (P=0.004) and in 

those who have low TSP (P=0.003) and high-grade peri-tumoural inflammatory infiltrative 

(P=0.012).  A high tumour budding was significantly associated with shorter CSS in 

luminal B and triple negative breast cancer subtypes (all P<0.001).  Therefore, tumour 

budding was a significant predictor of poor survival in patients with invasive ductal breast 

cancer, independent of adverse pathological characteristics and components of tumour 

microenvironment.  These results suggest that tumour budding may promote disease 

progression through a direct effect on local and distant invasion into lymph nodes and 
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lymphatic vessels.  Therefore, detection of tumour buds at the stroma invasive front might 

therefore represent a morphologic link between tumour progression, lymphatic invasion, 

spread of tumour cells to regional lymph nodes, and the establishment of metastatic 

dissemination. 

Given the potential importance of the tumour microenvironment, the characterisation of 

intracellular signalling pathways is important in the tumour microenvironment and is of 

considerable interest.  One plausible signalling molecule that links tumour stroma, 

inflammatory cell infiltrate and tumour budding is the signal transducer and activator of 

transcription (STAT).  

The relationship between total and phosphorylated STAT1 (ph-STAT1), and total and ph-

STAT3 tumour cell expression, components of tumour microenvironment and survival in 

patients with invasive ductal breast cancer was examined.  IHC of total and ph-

STAT1/STAT3 was performed on tissue microarray of 384 breast cancer specimens.  

Cellular STAT1 and cellular STAT3 expression at both cytoplasmic and nuclear locations 

were combined and identified as STAT1/STAT3 tumour cell expression.  These results 

were then related to CSS and phenotypic features of the tumour and host.  A high ph-

STAT1 and a high ph-STAT3 tumour cell expression was associated with increased ER 

(P=0.001 and P<0.001 respectively) and PR (all P<0.05), reduced tumour grade (P=0.015 

and P<0.001 respectively) and necrosis (all P=0.001).  Ph-STAT1 was associated with 

increased general peri-tumoural inflammatory infiltrate (P=0.007) and ph-STAT3 was 

associated with lower CD4+ T-lymphocyte infiltrate (P=0.024).  On multivariate survival 

analysis, including both ph-STAT1 and ph-STAT3 tumour cell expression, only high ph-

STAT3 tumour cell expression was significantly associated with improved CSS (P=0.010) 

independent of other tumour and host-based factors.  In patients with high necrosis grade, 

high ph-STAT3 tumour cell expression was independent predictor of improved CSS 
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(P=0.021).  Ph-STAT1 and ph-STAT3 were also significantly associated with improved 

cancer specific survival in luminal A and B subtypes.  STAT1 and STAT3 tumour cell 

expression appeared to be an important determinant of favourable outcome in patients with 

invasive ductal breast cancer.  The present results suggest that STATs may affect disease 

outcome through direct impact on tumour cells, and the surrounding microenvironment. 

The above observations of the present thesis point to the importance of the tumour 

microenvironment in promoting tumour budding, LVI and BVI.  The observations from 

STATs work may suggest that an important driving mechanism for the above associations 

is the presence of tumour necrosis, probably secondary to hypoxia.  Further work is needed 

to examine the interaction of other molecular pathways involved in the tumour 

microenvironment, such as HIF and NFkB in patients with invasive ductal breast cancer.   
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Chapter 1 Introduction 

1.1 Epidemiology of breast cancer  

Breast cancer is a complex and heterogeneous disease, comprising distinctive histological 

patterns.  It is the second most common cancer in the world and a major cause of morbidity 

and mortality.  Breast cancer is the most frequent malignancy in women, accounting for 

23% of all female cancers and ranks second worldwide (>10% of all new cancer), with 

more than a million women are diagnosed with breast cancer every year.  It is also the most 

common cause of cancer death among women worldwide (Ferlay et al., 2010).    

1.1.1 Incidence and mortality  

Although breast cancer is now the most frequent cancer both in developed and developing 

regions, the incidence rates of breast cancer vary considerably across the world.  The 

highest incidence rates are in Western Europe, North America and Australia, whereas 

Eastern Africa and Eastern Asia have the lowest rates (Key et al., 2001; Ferlay et al., 2010).  

However, the range of mortality rates is lower than that for incidence, due to the improved 

survival rates for breast cancer in (high-incidence) developed countries.  In 2008 breast 

cancer accounted for >450,000 deaths globally, with the highest mortality rates occurring 

in developing areas (269,000 deaths) compared to that of developed regions (189,000 

deaths) (Ferlay et al., 2010).    

In the UK, breast cancer was the most common cancer in 2014, with more than 55,000 new 

cases diagnosed, and with an estimated lifetime risk affecting one in eight people.  Despite 

the increased incidence rates, probably due to the introduction of screening program, 

improved surgical techniques and the widespread use of adjuvant chemotherapy, mortality 

rates have fallen by 40% since mid-1980s.  However, breast cancer remains the third most 

common cause of female cancer death, and accounts for >11% of all female cancer 
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mortality.  In the year 2014, there were 11,600 breast cancer deaths compared to around 

13,705 breast cancer deaths in 1992 (Cancerstats, 2014).   

In Scotland, breast cancer is the most frequently diagnosed cancer in women, with a 

frequency of 28% of all female cancers and an estimated lifetime risk of 1 in 10.  In west 

of Scotland approximately 2300 new cases of breast cancer are diagnosed each year (West 

of Scotland Cancer Network, 2015). Death rates from breast cancer in Scotland have 

decreased by almost 11% over the last decade, despite the increase in incidence 

(isdscotland, 2012). 

 

Breast cancer survival has improved over the last decade.  In the UK almost 90% of 

women with breast cancer will survive their cancer for 5 years or more after diagnosis 

(Cancerstats, 2014). In England and Wales, 5 years survival rates for women diagnosed 

between 2010 and 2011 is 87% (Cancerstats, 2014). In west of Scotland, 5 years relative 

survival for patients diagnosed between 2007 and 2011 is 88%. The highest survival rate 

(90.6%) was reported for women aged 45-64 years at diagnosis (isdscotland, 2012). 

1.1.2 Aetiology and risk factors 

It is well established that breast cancer is a hormone-related disease, in which oestrogen 

induces some breast epithelial cell growth and proliferation (Pike et al 1993).  However, 

the causes of breast cancer are complex and cannot be explained by a single etiological 

aspect. Several well-established risk factors play a significant role in the development of 

such tumours (Table 1.1).  

1.1.2.1 Geographical variation 

Breast cancer age-standardised incidence and mortality shows a strong geographic pattern 

between Western and Eastern countries and within one country.  In the UK, England and 
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Scotland have significantly higher incidence rates compared with Wales.  For almost 20 

years, the incidence of breast cancer had been lowest in Northern Ireland compared with 

the rest of the UK; however, there was no significant variation in mortality across the 

United Kingdom (Westlake and Cooper, 2008).  

In the United States, a substantial regional variation in breast cancer incidence and 

mortality rates has been observed for decades.  Most notably, an increase in the rates of 

breast cancer among women in California has been historically higher than those in many 

other areas of the USA and the world (Parkin et al., 1999).  Mortality rates in the Northeast 

United States have also been notably higher than rates in other areas of the USA (Canto et 

al., 2001).  Studies of cancer incidence among immigrants from eastern Asia (a low-risk 

area) to United States (a higher-risk area) show an increase in incidence of breast cancer 

with figures doubling within 10 years of arrival, highlighting the important role of the 

environment and lifestyle in breast cancer development (McPherson et al., 2000; Key et al., 

2001).  

1.1.2.2 Age 

The single most important risk factor strongly related to breast cancer incidence is age.  

The risk of breast cancer increases throughout a woman‘s lifetime, with the highest 

incidence rates in older women (Ferrer et al., 2005), supporting a link with reproductive 

hormones.  In the UK, almost half (48%) of breast cancers affect people aged 65 and over, 

while the highest incidence rates are in women aged 85 and over (Cancerstats, 2014).  The 

annual incidence rate of breast cancer in women 80-85 years old in the United States is 15 

times higher than that in women aged 30-35 years old (American Cancer Society, 2012). 
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Age at menarche and menopause 

Early age at menarche has been consistently associated with an increased risk of breast 

cancer and the estimated decrease in risk per five-year delay in menarche is 22% (Vogel, 

2008).  Late menopause (more than 55 years) doubles the risk of breast cancer than those 

whose menopause occurs before the age of 45.  Risk of breast cancer development 

increases by almost 3% for each year of delay in the menopause, natural or induced by 

surgery (Hulka and Moorman, 2008, Collaborative group, 2012). 

Age at first birth and parity 

Childbearing at a younger age lowers the risk of breast cancer.  The relative risk of 

developing breast cancer is estimated to increase by 3% for each year of delay 

(Collaborative Group, 2002).  First full-term pregnancy at a younger age of <30 years, and 

multiple pregnancies reduces the risk of breast cancer over the long term.  However, there 

is an increased risk of breast cancer in the immediate period after childbirth, perhaps due to 

oestrogen effects causing extensive terminal ducts differentiation during pregnancy and 

their subsequent involution after birth.  This excess risk, however, gradually diminishes, 

and the effect of birth is rather to protect against the disease for the rest of the women‘s life 

(Key et al., 2001).  Risk of breast cancer, in addition, is reduced by 7% with each full-term 

pregnancy, and overall women who have had children have a 30% lower risk than 

nulliparous women (Collaborative Group, 2002). 

1.1.2.3 Breast feeding 

Breast feeding has consistently been shown to reduce the risk of breast cancer, suggesting 

a protective role.  The greater protection is associated with longer duration and the risk is 

reduced by 4% for every 12 months of breastfeeding.  Furthermore, the risk of breast 

cancer in women who had breastfed for more than two years was 33% lower than those 
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who had never breastfed (Lodha et al., 2011).  The possible reason for this is highly related 

to delayed ovulation during lactation and suppressed levels of oestrogen after breast 

feeding (Newcomb et al., 1994).  On the other hand, a major contribution to the high 

incidence of breast cancer in developed countries has been attributed to the lack of breast 

feeding or short lifetime duration of breast feeding in these countries (Hulka and Moorman, 

2008).  

1.1.2.4 Family history and genetic predisposition  

Inherited mutations in certain genes like BRCA1, BRCA2, p53, PTEN and ATM are 

consistently linked to risk of breast cancer development (Key et al., 2001; McPherson et al., 

2000; Hulka and Moorman, 2008).  The risk increases four-folds if two or more first-

degree relatives were affected at an early age (Hulka and Moorman, 2008).  The estimated 

lifetime chance of developing breast cancer for BRCA1 and BRCA2 mutated genes 

carriers is 50% to 85% by the age of 70 (Antoniou and Easton, 2006).  Nevertheless, only 

5% to 10% of breast cancers results from genetic factors, and 25% of cases diagnosed 

before 30 years of age are attributed to mutated genes (Thull and Vogel, 2004; Key et al., 

2001; Thull and Vogel, 2004; Lodha et al., 2011). 

1.1.2.5 Benign breast disease  

History of benign breast diseases increases the risk of breast cancer development.  Lower 

category risk lesions such as cyst, adenosis, mammary duct ectasia, metaplasia, and 

hyperplasia without atypia are associated with a slight increase in the risk of breast cancer 

among women older than 50 years of age (Santen et al., 2007).  Biopsies performed for 

proliferative disease with cellular atypia account for a fivefold increase of breast cancer 

risk. Approximately 40% of women with a family history of breast cancer and atypical 

hyperplasia subsequently develop breast cancer (Hartmann et al., 2005). 
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1.1.2.6 Exogenous hormones 

Oral Contraceptives 

Current use of combined (oestrogen and progestin) oral contraceptives may slightly 

increase the risk of breast cancer, probably due to their oestrogen content (Key et al., 2001; 

Cuzick, 2003; Lodha et al., 2011).  The risk is particularly higher for women who had used 

such pills in their reproductive age however, women who have stopped using oral 

contraceptives for 10 years or more have the same risk as women who never used the pills 

(Collaborative Group, 1996).   

Hormonal replacement therapy 

Current use of hormone replacement therapy (HRT), oestrogen-progestin combinations or 

oestrogen only formulation, has been shown to increase the risk of fatal breast cancer (1.6 

to 2 fold), with a higher risk associated with longer use (Million Women Study 

Collaborators, 2003; Heiss et al., 2008).  Long-term use of 5 years or more among current 

or recent users appears to be associated with a 30–50% increase in breast cancer risk.  

Reports from both the US Nurses Health Study and the Collaborative Group support these 

estimates (Colditz et al., 1995; Collaborative Group, 1997).  Among current HRT users in 

the Nurses Health Study, older women (aged 60–64) who had used oestrogens for at least 5 

years had double the risk of women who reported no hormone use. However, the increased 

risk appears to diminish within 5 years of discontinuation of hormone use.  The effect is 

substantially greater for oestrogen-progestagen combinations than for other types of 

HRT (Million Women Study Collaborators, 2003)  

1.1.2.7 Radiation exposure 

Ionising radiation is an established risk factor for breast cancer and is strongly related to 

dose and age at exposure. Women who received diagnostic x-rays to the chest for 



 Chapter 1  

7 

tuberculosis or pneumonia between the ages of 10 to 29 have a three-fold increase in the 

risk of breast cancer (John et al., 2007).  Studies show a 12- to 25-fold increased risk of 

secondary breast cancer among women who received chest radiotherapy for Hodgkin‘s 

lymphoma before the age of 30 (Alm et al., 2008).  Women with BRCA1 or BRCA2 

mutations also have high risk, especially if exposed before 30 years of age (Pijpe et al., 

2012). 

1.1.2.8 Life style related factors  

A significant proportion of breast cancers can be linked to lifestyle factors such as obesity, 

diet, alcohol consumption tobacco smoking and physical activity. Overweight and obesity 

are associated with increased incidence and mortality of breast cancer (Calle et al., 2003, 

Cuzick, 2003; Ahn et al., 2007; Reeves et al., 2007; Begum et al., 2009).  Specifically, 7-

15% of breast cancer cases are attributed to obesity in developed countries (Lahmann et al., 

2004; Renehan et al., 2010; Parkin and Boyd, 2011). Obesity and breast cancer risk varies 

according to menopausal status. For younger women, being obese appears to protect 

against breast cancer risk (Peacock et al., 1999; Weiderpass et al., 2004) with an estimated 

20-40% reduction in cancer risk (van den Brandt et al., 2000; Reeves et al. 2007; Nelson et 

al., 2012).  In contrast, postmenopausal obesity has been reported to be associated with 

increased risk of breast cancer (Ahn et al., 2007; Begum et al., 2009; Rose and Vona-

Davis, 2010). In addition, results from the EPIC study and the Million Women Study have 

reported that obese women have a 30% higher risk of postmenopausal breast cancer than 

women with a healthy weight (Lahmann et al., 2004; Reeves et al., 2007). In respect to 

breast cancer subtype and obesity, a meta-analysis of 11 studies suggested that adult 

weight gain is predictive of a two-fold increase in the risk of hormone receptors positive 

breast cancers (Vrieling et al., 2010). 
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This inverse relationship can be explained by the different impact of premenopausal and 

postmenopausal obesity on endogenous hormone levels. The normal balance of oestrogen 

and progesterone levels in obese premenopausal women is disrupted with a decrease in sex 

hormone binding globulin and a minimal increase in exposure to oestrogen, but a decrease 

in breast exposure to progesterone (Stephenson and Ross, 2003; Dowsett and Folkerd et 

al., 2014).  In postmenopausal women, where adipose tissue becomes the main site of 

oestrogen biosynthesis, androgens from the adrenal gland are converted into oestrogens in 

fat cells via aromatisation, resulting in increased concentration of plasma oestradiol (Ahn 

et al., 2007; Rose and Vona-Davis, 2010).  

Diet and nutrition -fat intake in particular- have been proposed to be one of the reasons for 

the observed geographical difference in breast cancer rates. Several prospective 

epidemiological studies have suggested an increase in breast cancer risk with increased 

consumption of dietary fat (Cho et al., 2003; Thiebaut et al., 2007; Sieri et al., 2008), with 

saturated fat doubling the risk of breast cancer in the higher consumption group (Sieri et 

al., 2008). For example, a study assessing risk related to tumour subtypes demonstrated 

that vegetable oil–based margarine was associated with a 31% greater risk of hormone 

receptor negative breast cancer (Wirfait et al., 2011). A greater risk of hormone receptor 

positive and Her-2 negative tumours was linked to diet high in saturated fat (Sieri et al., 

2014). However, some previous studies have reported a weak or no relationship between 

fat intake and breast cancer (Willett, 2001; Prentice et al., 2009; Romieu, 2011; Martin et 

al., 2011).   

Studies that evaluated the role of red and/or processed meat on breast cancer risk have 

been inconsistent. A meta-analysis provided no conclusive evidence that red meat or 

processed meat acts as an independent risk factor for breast cancer (Alexander et al., 

2010). In addition, the evidence for the protective roles of fruits, vegetables and dietary 
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vitamins (such as vitamin C and E) are limited and have proved inconclusive (Key et al., 

2001; Gandini et al. 2000; Kushi et al. 2006).  However, some evidence suggests that soy 

food intake seems to be inversely associated with the disease (Zhu et al., 2011; Zhang et 

al., 2012).  

Alcohol intake is consistently associated with increased risk of breast cancer. This risk is 

dose-dependent and exists regardless of the type of alcoholic beverage consumed (Key et 

al., 2001; Li et al., 2003; Cuzick, 2003; Allen et al., 2009; Seitz et al., 2012). Low to 

moderate alcohol consumption (3-14 alcoholic drinks/week) is associated with a slight 

increase in the risk of breast cancer (Allen et al., 2009). The Million Women Study showed 

an increase in risk of approximately 7-12% with every extra unit of alcohol per day (Allen 

et al., 2009). Recent published meta-analysis consistently indicated a 40-50% increased 

risk of breast cancer in women consuming ≥3 alcoholic drinks/day (Seitz et al., 2012). The 

basis of this association is unclear, but may be caused by the influence of alcohol on the 

liver and so on hormone profiles (Boyle et al., 2003). Alternately changes in DNA and the 

significant increase in DNA methylation of target promoter genes may account for the 

increase in risk (Tao et al., 2011). 

Several epidemiologic studies have evaluated the relationship between cigarette smoking 

and breast cancer risk (Cui et al., 2006; Collishaw et al., 2009; Secretan et al., 2009; Luo et 

al., 2011; Xue et al., 2011; Gaudet et al., 2013). Despite the quantity of data, this 

relationship still controversial and lack scientific consensus, probably because of the 

potential confounding by alcohol consumption (Hamajima et al., 2002; Gaudet et al., 

2013). One recent study has reported that the rate of new breast cancer cases was 24% 

higher in smokers than in nonsmokers and 13% higher in former smokers than in 

nonsmokers. The combined meta-analysis of this study has found that the risk is especially 
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increased in women who started smoking at younger age (before the age of 20) or before 

the birth of their first child (Gaudet et al., 2013).  

Moderate physical activity has been documented to be inversely associated with risk of 

breast cancer (Vainio, 2002; Lynch et al., 2011), with a risk reduction up to 30% for 

women with high levels of physical activity compared to women who have none (Key et 

al., 2001; Winzer et al., 2011). Previous studies have also suggested that exercise is 

associated with longer breast cancer survival, in that 2–3 hours of brisk walking per week 

reduced breast cancer recurrence and all-cause mortality by 40-67% compared with 

inactivity (Ibrahim and Al-Homaidh, 2010; McTiernan et al., 2010). Data from the 

Women‘s Health Initiative, showed that high levels of physical activity improved survival 

in postmenopausal women with breast cancer, even among those reporting low physical 

activity before diagnosis (Irwin et al., 2011).  

Socio-economic status has been reported by several studies to be related to the risk of 

breast cancer, with higher risk in women living in high socioeconomic status (Kelsey et al., 

1992; Robert et al., 2004; Hulka and Moorman, 2008). In contrast, lower income was 

associated with increased risk of more aggressive tumour characteristics, late stage disease 

and poorer outcomes (Clegg et al., 2009; Dunn et al., 2010). 
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Table  1-1 Breast cancer risk factors 

Risk factor Relative risk High risk group 

Geographical area 5 America/ Northern Europe 

Age  >10 Postmenopausal age 

Early menarche 2 <12 years of age 

Late menopause 2 >55 years of age 

Late onset childbearing 1-2 First full-term>33years 

Breastfeeding 1-2 Never breastfeed a child 

Genetic mutation 4 Women < 40 + BRCA1 and/or BRCA2 

Family history 2.1-4 
≥2 first-degree relatives with breast cancer 

diagnosed at young age 

Previous breast disease 2-5 Atypical hyperplasia 

Exogenous hormones: 

Oral contraceptive 

HRT 

 

1-2 

1.5-2 

 

Resent use 

≥5 years use 

Radiation exposure 3 
High dose radiation to chest in young 

females after age 10 

Body weight: 

Postmenopausal 

Premenopausal 

 

1-2 

0.8 

 

BMI>35 for both group 

Alcohol consumption 1.3 Dose-dependent 

HRT: hormone replacement therapy, BMI: body mass index. Adapted from McPherson et al., 2000, and 

Hulka and Moorman, 2008. 



 Chapter 1  

12 

1.2  Breast Cancer Prognostic and Predictive Factors  

Breast cancer is characterised by its molecular and clinical diversity. While some patients 

experience long cancer-specific survival, an aggressive disease with poor outcome rates 

might affect others.  A number of tumour and patient-related factors can be identified in 

order to understand the clinical behaviour of the newly diagnosed tumour and determine 

prognosis and survival.  Importantly, these factors help optimise individual treatment plan 

to provide efficient therapy and avoid unwanted side effects of overtreatment (Cianfrocca 

and Goldstein, 2004; Weigel and Dowsett, 2010).   

In this era of high-throughput methods, several novel biomarkers have been reported for 

prognostic and predictive purposes.  Only a few have made their way into clinical routine 

due to the lack of sufficient validation, however, the identification of new markers has led 

to a more definitive insight into tumour biology and substantiates the importance of the 

existing biomarkers (Weigel and Dowsett, 2010). 

While prognostic factors supply information on the course of a disease (recurrence-free 

and total survival) and are independent of the adjuvant therapy, predictive factors provide 

prior information on the likelihood of the response of a tumour to a defined therapeutic 

intervention and are associated with tumour sensitivity or resistance to that therapy 

(Cianfrocca and Goldstein, 2004; Weigel and Dowsett, 2010).  Several prognostic and 

predictive factors are well established and routinely used in clinical practice purely as a 

prognostic or predictive, or as both (Table 1.2). 
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Table  1-2 Summary of well-established breast cancer prognostic and predictive factors 

Factor  Prognostic Predictive 

Patient age Yes  

Nodal status Yes  

Tumour size Yes  

Histological grade  Yes  

Histological tumour type Yes 
 

Lymphovascular invasion Yes 
 

Steroid hormone receptors Yes Yes 

Her-2 overexpression Yes Yes 
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1.2.1 Tumour characteristics  

1.2.1.1 Nodal status  

The axillary lymph node status is the most valuable factor for the cancer specific and 

overall survival in breast cancer (Weiss et al., 2003; Cianfrocca and Goldstein, 2004).  

Node positive patients have about a 4–8 times higher mortality rates than those without 

nodal involvement (Fisher et al., 2001; Arriagada et al., 2006).  The presence of involved 

lymph node correlates directly with the outcome, and the more nodes involved the worse 

the prognosis.  Prognosis for patients with ≥10 involved axillary nodes showed 70% 

reduced survival at 10 years than those with 1–3 involved nodes (Weiss et al., 2003; 

Cianfrocca and Goldstein, 2004).  Although lymph node status has no predictive value for 

response to treatment, it provides a very reliable assessment of local tumour spread and is 

the most consistent prognostic factor used in making decisions for adjuvant therapy.  

Therefore, careful histological examination should be carried out for all excised axillary 

lymph nodes (Cianfrocca and Goldstein, 2004).  

Recently, the use of sentinel lymph node (SLN) biopsy has replaced standard axillary 

dissection since standard axillary dissection is associated with increased morbidity after 

surgery and does not contribute to survival.  SLN could accurately stage the axilla in 96% 

of patients and identifies lymph nodes at the highest risk of harbouring metastatic disease 

(Albertini et al., 1996; Giuliano et al., 2011).   

1.2.1.2  Tumour size  

Tumour size is one of the strongest independent prognostic indicators for breast cancer 

(Aebi et al., 2000) even after long term follow-up (Arregada et al., 2006). Increased 

tumour size correlates positively with reduced survival, presence of regional lymph nodes, 

and with increased distant recurrence (Weiss et al., 2003; Cianfrocca and Goldstein, 2004; 
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Chen et al., 2010). After nodal status, tumour size is the most powerful prognostic factor 

related to prognosis, and for patients with node negative tumours, tumour size is the best 

tumour factor used to identify prognosis and to make adjuvant treatment decisions 

(Cianfrocca and Goldstein, 2004). Node negative patients with a tumour of 2–5 cm have 

lower 10-year overall survival compared to those with a tumour smaller than 1 cm, 66% vs 

79%, respectively (Chia et al., 2004). Patients with T1-T2 breast cancer with 1-3 positive 

lymph nodes have higher local and distant recurrence, and lower overall and cancer 

specific survival compared to patients with negative lymph nodes (Chen et al., 2010). 

1.2.1.3 Histologic grade  

Histologic grade, or the degree of tumour differentiation, (Figure 1.1) is widely recognized 

as an important tool in the histopathological assessment of breast cancer. The first modern 

description of the current grading system by Bloom and Richardson (1957) (Bloom and 

Richardson, 1957) was modified and validated by Elston and Ellis (1991) (Elston and Ellis, 

1991). Three morphologic characteristics, including tubule formation, nuclear 

pleomorphism and mitotic count are scored from 1 to 3 and the three scores from each 

category are grouped to produce a score between 3 and 9 (Table 1.3).  A score of 3–5 

points is assigned grade 1 (well differentiated tumour), a score of 6–7 points is assigned 

grade 2 (moderately differentiated tumour), and a score of 8–9 points is assigned grade 3 

(poorly differentiated tumour) (Elston and Ellis, 1991).    
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Table  1-3 Invasive breast cancer grade scoring (Modified Bloom and Richardson) 

 Score 1 Score 2 Score 3 

Tubule formation  >75% of the tumour            10-75% of the tumour    <10% of the tumour   

Nuclear pleomorphism 

 

nuclei with slight increase 

 in size  

nuclei with moderate increase in 

size and shape  

Marked variation in size and 

shape   

Mitotic count 

 

≤4 mitotic counts / 10 high 

power fields 

5–9 mitotic counts / 10 high 

power fields 

≥10 mitotic counts / 10 high 

power fields   

Overall grade 
Grade 1 = 3–5 points 

Well–differentiated 

Grade 2 = 6–7 points 

Moderately–differentiated 

Grade 3 = 8–9 points 

Poorly–differentiated 

Information taken from (Elston and Ellis, 1991)
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Higher tumour grade has been consistently associated with lower survival rates (Aebi et al., 

2000; Arriagada et al., 2006).  Depending on other prognostic factors, such as nodal status 

or tumour size, cumulative survival among patients with the lowest score was 90–94% 10 

years after diagnosis, and 30–78% among those with the highest score (Reed et al., 2000). 

 

 

Figure  1-1 Tumour Grade 

( A) Low-grade invasive ductal carcinoma. The majority of tumour cells form tubules that are lined 

by uniform tumour cells. ( B) High-grade invasive ductal  carcinoma characterised by solid growth 

of pleomorphic tumour cells with the numerous mitotic figures.  Original magnification x20, scale 

100µm.

A 

B 
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1.2.1.4 Tumour histological type  

Growth pattern, or histological type of the tumour, is used to classify invasive breast 

cancer and is a significant predictor of outcome.  The majority of invasive breast cancers 

are classified as invasive ductal carcinoma of no special type as they do not exhibit specific 

histological characteristics (Ellis et al., 1992).  The prognostic value of histological type 

can be grouped into four: excellent, good, poor, and very poor prognosis (Galea et al., 1992) 

with invasive cribriform, tubular, tubulo-lobular and mucinous has 10 years survival 

of >80% (Fisher et al., 2001), while invasive papillary, classic lobular and medullary 

cancers have a worse prognosis (Soerjomataram et al., 2008).  

1.2.1.5 Lymphovascular invasion 

Lymphovascular invasion (LBVI) including both lymphatic vessel invasion (LVI) and 

blood vessel invasion (BVI), has been defined as the presence of tumour cells within an 

endothelial-lined space in the area surrounding the invasive carcinoma (Rosai, 1993).  It is 

an important step in the complex process of tumour metastasis and an important criterion 

for cancer therapy.  Lymphovascular invasion is associated with other poor prognostic 

factors including increased tumour size and grade, and with axillary lymph node 

involvement (Lee et al., 2006a; Colleoni et al., 2007; Ejlertsen et al., 2009; Rakha et al., 

2012).  It is a significant prognostic marker (Lee et al., 2006a; Kato et al., 2003; Ejlertsen 

et al., 2009; Mohammed et al., 2011; Rakha et al., 2012), and increases the risk of local 

and distant recurrence (Cianfrocca and Goldstein, 2004; Truong et al., 2005; Rakha et al., 

2012).  For node negative patients, breast cancer mortality was >50% higher in women 

with positive LBVI compared to women with no LBVI (Lee et al., 2006a).   

However, there is a lack of a routine standardised and objective assessment method to 

reliably examine LBVI and differentiate between LVI and BVI. Therefore, lymphovascular 
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invasion has been systematically reviewed and will be discussed in more detail in chapters 

4.0 and 5.0. 

1.2.1.6 Hormone receptors 

Oestrogen and progesterone are steroid hormones crucial for breast development and have 

an important role in breast differentiation and tumorigenesis.  They deliver their impact 

through their nuclear receptors, the oestrogen receptor (ER) and progesterone receptor (PR) 

(Anderson et al., 2002; Allred, 2008).  ER is expressed in 70% - 95% of invasive lobular 

carcinomas, and in 70% - 80% of invasive ductal carcinomas, and PR is expressed in 60%-

70% of invasive breast carcinomas (Lal et al., 2005).  For the last two decades, 

immunohistochemistry (IHC) evaluation of hormone receptors has been the standard of 

practice (Figure 1.2).  Different cut-off values have been used to determine hormone 

receptor status, however, recent guidelines by the American Society of Clinical Oncology 

(ASCO) and College of American Pathologists (CAP) have recommended that 1% positive 

tumour nuclei can identify patients who would benefit from hormonal therapy (Hammond 

et al., 2010).     

The presence of these receptors is a very powerful predictor of breast cancer hormone 

therapies and has significantly improved the clinical outcomes of patients with hormone 

receptor-positive tumours.  Hormonal treatment response rate for ER and PR positive 

tumours is approximately 80% (Bundred, 2001; Rampaul et al. 2001).  Although the 

prognostic value of ER/PR receptors in breast cancer is considerably weak, previous 

studies have shown survival advantages among women with hormone receptor-positive 

tumours relative to women with hormone receptor-negative tumours (Anderson et al., 2001; 

Bundred, 2001; Dunnwald et al., 2007; Mohammed et al., 2012a).  
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Figure  1-2 Immunohistochemical Staining for Oestrogen Receptor 

This invasive ductal carcinoma shows that the majority of tumour cells are strongly positive for 

oestrogen receptor. Original magnification x20, scale 100µm. 
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1.2.1.7 Human epidermal growth factor receptor type 2 (Her-2)  

The human proto-oncogene Her-2 (c-erbB-2 / neu) is located on chromosome 17 and 

encodes the transmembrane glycoprotein p185
HER2 

which exhibits tyrosine kinase activity 

homologous to the epidermal growth factor receptor (Ross et al., 2009; Sauter et al., 2009).  

It is amplified and/or overexpressed in 15-30% of human breast cancer (Slamon et al., 

1987) and associated with aggressive tumour features, such as high histological grade, 

negative ER status, increased recurrence and mortality rates (Romond et al., 2005; 

Pritchard et al., 2006; Hayes et al., 2007; Wolff et al., 2007).  The prognosis of patients 

with a Her-2 positive tumour is significantly worse than that of patients with a Her-2 

negative tumour (Romond et al., 2005; Pritchard et al., 2006; Francis et al., 2006; Santin et 

al., 2008) however, its prognostic significance is not sufficient and is principally used to 

predict the response to anti-Her-2 therapy, Trastuzumab or Herceptin.  

IHC and fluorescent in situ hybridization (FISH) are the most commonly used methods to 

evaluate Her-2 status in breast cancer (Figure 1.3). Using formalin fixed paraffin-

embedded tumour tissues, IHC detects Her-2 protein at the cell membrane whereas FISH 

quantify Her-2 gene in the tumour cells (Downs-Kelly et al., 2005; Mohammed et al., 

2012b).  The most recent guidelines for Her-2 testing and scoring from ASCO and CAP 

have recommended the following: a score of 3+ on IHC stain (intense, uniform 

circumferential staining) in ≥10 % of invasive carcinoma cells, in situ hybridization 

indicating more than six gene copies per nucleus, or a FISH gene ratio (ratio of Her-2 gene 

signals to chromosome 17 signals) equal to or greater than 2 indicates a positive result 

(Figure 1.3).  A score of 0 or 1+ on IHC staining, a FISH result of less than 4 Her-2 gene 

copies per nucleus, or a FISH gene ratio of less than 2.0 indicates a negative result.  

Equivocal or weakly positive cases (a score of 2+ on IHC staining) are then referred to 

FISH test (Wolff et al., 2007).  
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Figure  1-3 Immunohistochemical staining for Her-2 protein and fluorescent in situ 

hybridization for the Her-2 gene. 

(A) positive staining is defined as intense complete membranous staining.  (B) An increased 

number of Her-2 genes amplification (red signals) is evident compared to 1 or 2 copies of 

chromosome 17 centromere sequences (green signals). This tumour is classified as Her-2 gene-

amplified carcinoma. 

A 

B 
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1.2.1.8 Tumour proliferation  

Tumour proliferation is one of the hallmarks of cancer, indicating imbalance of cell 

proliferation and cell death. Different markers have been used to evaluate tumour 

proliferation including S-phase fraction, thymidine labeling index, mitotic count, and IHC 

assays for Ki67, cyclins and mitosin (Bundred, 2001; Cianfrocca and Goldstein, 2004; van 

Diest et al., 2004; Luporsi et al., 2012).  High S-phase fraction is strongly correlated with 

high tumour grade, ER negativity, and Her-2 expression, all are adverse prognostic factors.  

Mitotic count, which is the number of mitoses in a given tumour area, has been combined 

in all grading systems of breast cancer and is considered the simplest tool to evaluate 

tumour proliferation (Bundred, 2001; Cianfrocca and Goldstein, 2004; van Diest et al., 

2004). The prognostic value of mitotic count has been previously reported (van Diest et al., 

2004) however, it has some technical and analytical difficulties.  

Ki67, which represent tumour proliferation during the active phases of cell cycle, is the 

most commonly used proliferative marker (Morabito et al., 2003; Urruticoechea et al., 

2005; Mohammed et al., 2012c).  It is an independent prognostic factor in breast cancer, 

with a high level of Ki67 index is associated with a poor survival outcome (Yerushalmi et 

al., 2010; Dowsett et al., 2011).  It is also directly associated with tumour size, lymph node 

involvement, histological grade, and Her-2 overexpression (Morabito et al., 2003). 

1.2.1.9 Tumour necrosis  

Necrosis is a type of cell death that lacks the features of apoptosis and autophagy in that it 

is often associated with the non-physiologically regulated cause of cell loss and can lead to 

local inflammation (Golstein and Kroemer, 2007).  The most common cause of necrosis 

during tumour development is obviously inadequate oxygen and nutrient supply (metabolic 

stress) of fast-growing tumour cells (Proskuryakov and Gabai, 2010).  Necrosis is a 

common histological feature and one of the established prognostic variables in many solid 
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organ tumours such as renal (Frank et al., 2002), lung (Swinson et al., 2002), colorectal 

(Pollheimer et al., 2010) and pancreatic (Hiraoka et al., 2010) cancers.    

Regarding breast cancer, several studies dating back to 1970s have shown consistent 

evidence that tumour necrosis is associated with aggressive tumour features and poor 

prognosis (Carter et al., 1978; Fisher, et al., 1978; Shek and Godolphin, 1988; Gilchrist et 

al., 1993; Carlomagno et al., 1995; Kato et al., 1997; Leek et al., 1999; Kato et al., 2000; 

Ikpatt et al., 2002; Lee et al., 2006b; Richards et al., 2011).    

A number of studies have reported tumour necrosis to predict survival dependent (Kato et 

al., 2000; Ikpatt et al., 2002) or independent of other high-risk characteristics (Shek and 

Godolphin, 1988; Gilchrist et al., 1993).  More recently, necrosis has been associated with 

basal-like breast cancers (Colpaert et al., 2001; Fulford et al., 2006).  However, there have 

been some conflicting results from reports that failed to find a relationship between tumour 

necrosis and breast cancer outcomes (Kato et al., 1997; Leek et al. 1999; Lee et al., 2006b) 

although all of these studies reported associations with high-risk features including high 

tumour grade, ER negativity and angiogenesis.   
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Grouped prognostic factors  

Combination of some of the prognostic factors into prognostic indices has become part of 

clinical practice to help treatment decisions.  These indices include TNM classification, 

Nottingham Prognostic Index, and Adjuvant! Online. 

TNM staging consists of information on primary tumour size (T), axillary lymph node 

involvement (N), and the presence of distant metastasis (M) (Table 1.4). 79% of patients 

with localised breast cancer had survived 10 years following diagnosis compared to 53% 

of those with regional metastasis (Taylor et al., 2003), whereas only 3.4% patients 

presenting with distant metastasis (stage: M1) had 10-year survival (Olivotto et al., 2003). 

Nottingham Prognostic Index (NPI) combines tumour size, lymph node status and 

tumour grade (Kollias et al., 1997; Kollias et al., 1999; D'Eredita et al., 2001), the strongest 

prognostic factors making it a suitable model for prognosis of breast cancer 

(Soerjomataram et al., 2008).  It is calculated using the following formula: 

NPI = 0.2x tumour size (in cm) + lymph node status (1, 2, or 3) + histological grade (1, 2, 

or 3).  

Patients with NPI <3.4 are stratified into good prognostic group with 80% Survive more 

than10 years, whereas patients with NPI between 3.4 and 5.4 are stratified into moderate 

prognostic group and those with NPI is > 5.4 are stratified into poor prognostic group with 

only 13% survive > 10 years (Kollias et al., 1997).  

Adjuvant Online is a web-based (www.adjuvantonline.com) statistical program and a tool 

for assessing the risk of recurrence and survival within 10 years of diagnosis.  It is used for 

patients with early breast cancer to decide the most appropriate treatment (chemotherapy, 

hormonal therapy or none) based on well-established factors including patient‘s age, 

http://www.adjuvantonline.com/
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menopausal status, involved lymph nodes, tumour size, tumour grade and ER status.  

Estimates provided by Adjuvant! have been shown to correlate closely with actual clinical 

outcomes in population- based cohorts (Olivotto et al., 2005). 
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Table  1-4 TNM stage grouping for breast cancer (American Joint Committee on breast 

cancer staging) 

Stage Grouping TNM classification 

Stage 0 Tis N0 M0 

Stage IA T1* N0 M0 

Stage IB T0 N1mi M0 

 T1* N1mi M0 

Stage IIA T0 N1** M0 

 T1* N1** M0 

 T2 N0 M0 

Stage IIB T2 N1 M0 

 T3 N0 M0 

Stage IIIA T0 N2 M0 

 T1* N2 M0 

 T2 N2 M0 

 T3 N1 M0 

 T3 N2 M0 

Stage IIIB T4 N0 M0 

 T4 N1 M0 

 T4 N2 M0 

Stage IIIC Any T N3 M0 

Stage IV Any T Any N M1 

Tis Carcinoma in situ, * T1 includes T1mi (Tumour ≤ 1 mm in greatest dimension),  

 ** T0 and T1 tumours with nodal micrometastases only (N1mi)  are excluded from Stage IIA and are 

classified Stage IB.  
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 Emerging Molecular and Genomic Markers 

The molecular nature of breast cancers was first examined in 2000 by Perou and 

colleagues, demonstrated that the expression pattern of a set of genes within the 

tumour determine the molecular signature of breast cancer and that intrinsic 

signatures predict the clinical outcome of the disease (Perou et al., 2000; Sørlie et al., 

2001).  Five molecular subtypes of breast cancers, including luminal A, luminal B, 

Her-2 positive, basal, and normal-like, was described.  Luminal A tumours have the 

best prognosis and basal and Her-2 positive tumours have the worst prognosis (Sørlie 

et al., 2001, Goldhirsch et al., 2011).  

Features of molecular subtypes of breast cancer are shown in Table 1.5.  Luminal 

types of breast cancers express high levels of ER and luminal epithelial genes.  

Luminal B tumours have a more aggressive phenotype, with higher proliferation rate 

compared to luminal A tumours.  Luminal B tumours also include those tumours that 

express ER and have Her-2 overexpression or amplification.  On the other hand, Her-

2 positive breast cancers exhibit Her-2/neu gene amplification but do not express 

ER-related genes.  The basal-like tumours frequently do not express the three key 

receptors ER, PR, and Her-2 and called ―triple negative‖ tumours, but also expresse 

basal cytokeratins 5/6 and 17.  They tend to be infiltrating ductal carcinomas with a 

high mitotic index (Eroles et al., 2012). 

The clinical course of these intrinsic subtypes vary substantially.  Luminal B breast 

cancers usually need to be treated more aggressively than luminal A, with both 

hormonal therapy and chemotherapy.  Her-2 positive breast cancers respond very 

well to Her-2 targeted therapy.  Basal type of breast cancers has a poor prognosis and 

currently there are no specific targeted therapies for them (Reis-Filho and Tutt, 2008).  

Normal breast like tumours presenting an intermediate prognosis between luminal 
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and basal-like and usually do not respond to neo-adjuvant chemotherapy.  However, 

there are doubts about their real existence and some researchers believe they could be 

a technical artifact from high contamination with normal tissue during the 

microarrays (Eroles et al., 2012).  

There are currently a few multigene prognostic and predictive tests for breast cancer 

including the Oncotype DX and MammaPrint genomic tests. 

The Oncotype DX test is a reverse transcription polymerase chain reaction (RT-

PCR)-based assay provides analysis of a panel of 21genes expression in formalin-

fixed paraffin-embedded tumour tissues.  It was originally designed to predict the 

likelihood of disease recurrence within 10 years of the initial diagnosis for women 

with early stage node negative ER positive breast cancer.  Several distinct groups of 

genes are included, among them genes related to ER, PR, Her-2, invasion, 

proliferation, and other biological processes (Goldstein et al., 2008).  The Oncotype 

DX is the most widely used molecular test in the clinical setting for making 

treatment decisions and is recommended by the St. Gallen Consensus (Gnant et al., 

2011).  

Based on the expression levels of these 21 genes, a score called breast cancer 

Recurrence Score (RS) is produced to stratify breast cancer patients into three risk 

groups; low risk (RS <18), intermediate risk (RS 18–30), and high risk (RS ≥31), 

with 10-year distant recurrence rates of 6.8 %, 14.3 %, and 30.5 %, respectively 

(Goldstein et al., 2008).  The Oncotype DX test was later developed to be used for 

hormone receptor-positive breast cancer patients with up to three positive lymph 

nodes (Albain et al., 2010).  The general consensus is that for patients with a low RS 

hormonal therapy without systemic chemotherapy is sufficient whereas, for patients 
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with a high RS hormonal therapy in addition to systemic chemotherapy is required to 

reduce risk of distant recurrence (Gnant et al., 2011).   
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Table  1-5 Features of the proposed molecular subtypes of breast cancer 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from (Eroles et al., 2012) 

Molecular subtype Frequency Cell of origin ER/PR/Her-2 Proliferation rate Histological 

grade 

prognosis 

Luminal A 50-60% Luminal epithelial cell ER and/or PR +ve, Her-2 -ve Low Low Excellent 

Luminal B 10-20% Luminal epithelial cell a) Her-2-ve, ER and/or PR +ve 

b) Her-2+ve, ER and/or PR +ve 

a) High 

b) Any 

Intermediate/ 

High 

Intermediate/

Bad 

Her-2 positive 10-15% Late luminal progenitor Her-2 +ve 

ER -ve and PR -ve 

High High Bad 

Normal breast-like  5-10% Luminal epithelial cell ER -ve/+ve Her-2 -ve Low Low Intermediate/

good 

Basal-like 10-20% Basal/myoepithelial cell/ 

bipotent progenitor 

ER -ve, PR -ve, and Her-2 -ve 

 

High High Bad 
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Other gene expression-based platforms have been developed such as MammaPrint, the 

wound-response or healing model, the twogene expression ratio (HOXB13:IL17BR), the 

Rotterdam 76 gene signature, and the genomic grade index (also known as Map-Quant Dx).  

MammaPrint is already FDA approved however, the other gene expression signatures are 

less well known (Ma et al., 2004).  Although gene profiling is useful to predict which 

patients with breast carcinoma would benefit from adjuvant systemic therapy, limitations 

such as difficulties in reproducing the specific gene sets, the expense of testing, and 

standardisation of reporting remains a challenge (Cianfrocaa and Goldstein, 2004). 

Many other potential prognostic and predictive features, related to different tumour 

characteristics or biological processes such as cell-cycle regulators (p53, c-myc, cyclins), 

protease (urokinase, cathepsin D), and metastasis-related proteins (laminin 67 kDa receptor, 

nm23), have shown some promise in breast cancer, but have not yet achieved a definite 

role in patient management (Bundred, 2001). 
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1.2.2 Patient characteristics  

1.2.2.1 Age at diagnosis and comorbidity  

Young women with breast cancer tend to have more aggressive tumours and poor 

prognosis than older women (Kroman et al., 2000).  Several previous studies reported that 

those aged 30 years old or less were associated with worse prognostic features such as high 

tumour grade, lymph node metastasis, vascular invasion, high proliferative rates, negative 

ER status, positive Her-2 status and poorer survival rate (Kollias et al., 1997; Kroman et 

al., 2000; Bundred, 2001; Sundquist et al., 2002; Morabito et al., 2003).  This poor 

outcome improves as age increases, however, those older than 70 have poor outcome 

(Fisher et al., 2001; Arriagada et al., 2006).  Furthermore, patient age is important for 

predicting response to chemotherapy and hormonal therapy, as menopausal status is an 

age-dependent factor.  Adjuvant treatment helps to diminish the poor prognostic value of 

young age, whereas very old patients exhibit high mortality probably because they receive 

less extensive treatment; either related to the advanced age itself or the presence of serious 

concomitant diseases (Louwman et al., 2005).      
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1.3 Management of primary operable breast cancer 

Optimal management of breast cancer should be provided through multidisciplinary teams 

(MDT), which include Diagnostic Team and Cancer Treatment Team. The purpose of the 

multidisciplinary team meetings is to provide tailored and appropriate treatment plans for 

all patients through coordinated multi-specialty care. According to the Association of 

Breast Surgery (ABS) guidelines, decisions of MDT meeting can be categorised as either 

diagnostic (where new cases are discussed prior to investigation for treatment), treatment 

planning (whereby the surgical treatment are discussed and appropriate adjuvant treatment 

options decided), or re-presentation (re-presentation of a patient with suspicious symptoms 

of recurrence) (ABS, 2009). 

1.3.1 Diagnosis  

For diagnosis of breast cancer, the ABS mandate, wherever possible, a non-operative 

breast cancer diagnosis by triple assessment (clinical and radiological assessment followed 

by core biopsy and/or fine needle aspiration). Fine needle aspiration cytology and core 

biopsy are simple techniques that require local anaesthesia only and accurately diagnose 

the breast lesions in at least 90% of cases (ABS, 2009).  

1.3.2 Treatment  

Treatment strategies for breast cancer in recent years have changed profoundly, with more 

treatment options and improvement in patient survival rates. These take into account the 

patients‘ age, presence of co-morbidity and clinicopathological characteristics. The main 

treatment for breast cancer includes surgery, radiotherapy, chemotherapy, hormone therapy, 

and biological therapy (targeted therapy) (Hammer et al., 2008; ABS, 2009).    
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1.3.2.1 Surgical treatment  

Surgery remains the primary treatment option of a multicomponent treatment plan for 

breast cancer. The main goal is to remove the cancer, reduce the risk of local recurrence 

and to accurately define the stage of the disease. The surgical treatment of breast cancer 

consists of two main procedures: breast conservation (lumpectomy) or mastectomy. Both 

types are combined with an appropriate assessment of regional lymph nodes, for staging 

purpose and for adjuvant treatment guide, either by axillary lymph node dissection or by 

sentinel lymph node biopsy (Hammer et al., 2008; NICE, 2009). If there is proven axillary 

lymph node disease, pre-operatively axillary lymph node clearance should be undertaken; 

if there is no proven disease, the optimal axillary procedure is sentinel lymph node biopsy 

(ABS, 2009; NICE, 2009). 

Data obtained from prospective clinical trials have demonstrated no survival differences 

between patients with early stage breast cancer based on whether they were treated with 

breast conservation therapy or mastectomy (Veronesi et al., 2002; Fisher et al., 2002).  

However, accurate pre-operative assessment of the tumour extent and size is essential for 

deciding whether breast conservation surgery is an alternative option to mastectomy. This 

is made by clinical examination, mammography and ultrasound. Under-estimation of the 

true extent of the disease may result in a considerable number of patients, particularly 

those with invasive lobular cancer, dense breast pattern on mammography, discrepancy 

between the clinical and radiological estimated extent of disease. Selective use of magnetic 

resonance imaging should be discussed at the MDT meeting to plan surgical treatment for 

those patients (ABS, 2009; NICE, 2009).  
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1.3.2.1.1 Breast conservation surgery  

Breast conservation therapy involves the resection of the primary tumour with adequate 

normal breast tissue surrounding the cancer to reduce tumour burden and obtain negative 

margins (Hammond, 2008). Breast conservation is generally followed by radiation therapy. 

Lumpectomy and radiotherapy is preferred for most women with early breast cancer; most 

stage I and II invasive carcinomas, and for some patients with larger tumours down-staged 

by neoadjuvant therapy.  There is no age limit for this operation, however a previously 

irradiated breast is not suitable for conservation (Sainsbury et al., 2000; Singletary, 2001; 

Vinh-Hung and Verschraegen, 2004). 

Patients undergoing breast conservation surgery should routinely have malignant tumours 

excised with microscopically clear circular margins. Although there is still a debate 

regarding acceptable margin, NICE (National Institute for Clinical Excellence) have 

previously recommended a minimum margin of 2 mm (NICE, 2002). More recently, the 

consensus from both the St Gallen 2013 and the ABS 2015 meetings  was that 1 mm clear 

radial margin is acceptable (Goldhirsch et al., 2013; ABS, 2015). However, additional 

surgery to obtain clear margins should be recommended if, after MDT meeting discussion, 

the margin of excision is considered to be inadequate (ABS, 2009).  

1.3.2.1.2 Mastectomy 

Mastectomy is a second surgical option for patients with breast cancer.  Mastectomy can 

be divided into three main approaches: 1) modified radical mastectomy, 2) simple 

mastectomy, 3) skin-sparing mastectomy (Hammer et al., 2008; Krag et al., 2010; Giuliano 

et al., 2011). It is indicated in cases where breast conservation is not appropriate. These are 

prior radiation therapy to the breast or chest wall, widespread disease that is multifocal, 

located in more than one quadrant and cannot be removed through a single incision with 
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negative margins, positive margin, tumours beneath or involving the nipple, after local 

recurrence in patients with previous conservation surgery, prophylaxis, and patient 

preference (Sainsbury et al., 2001; Mandal, 2012).  

Modified radical mastectomy involves complete removal of the breast and its associated 

structure including the skin, areola, nipple, and level I and II axillary lymph nodes with 

preservation of the pectoralis major and minor muscles (Cotlar et al., 2003; Sainsbury, 

2004; Loukas et al., 2011).   

Simple mastectomy involves removal of the breast tissue, with no dissection of the axilla, 

except for the axillary tail that may include a few lymph nodes of the low anterior group. 

Simple mastectomy may be followed by radiotherapy to the axilla because no pathological 

staging of the axillary lymph nodes is performed with this procedure (Sainsbury 2004; 

Hammer et al., 2008).  Removal of the nipple and areola is performed in both modified 

radical mastectomy and simple mastectomy. 

Skin-sparing mastectomy is performed when a patient is undergoing immediate breast 

reconstruction. The purpose is to remove all breast tissue, along with the nipple-areola 

complex, while preserving as much viable skin as possible to achieve better cosmetic 

outcome (Cunnick and Mokbel, 2004).  The nipple-areola complex could be also preserved 

with increased experience (Hammer et al., 2008). Several studies now demonstrate the 

improved aesthetic outcomes of skin or nipple-sparing mastectomy (Benediktsson and 

Perbeck, 2008; Gerber, 2009).   

1.3.2.1.3 Breast reconstruction  

Breast reconstruction and/or oncoplastic surgery is becoming increasingly important due to 

changes in patient expectations and demand. It aims to restore the normal shape and, to 
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some extent, consistency of the breast after wide local excision or after mastectomy. Breast 

reconstruction may be performed at the same time of the mastectomy (immediate) or later 

(delayed) (ABS at BASO, 2007). There are two basic categories for breast reconstruction; 

the implant based technique (using a silicone or saline implant) and the autologous 

reconstruction (using latissimus dorsi or transverse rectus abdominis myocutaneous flaps; 

either with ‗pedicle‘ or ‗free‘ flap). Many women may also need surgery to the contra-

lateral breast to achieve symmetry using a variety of techniques, such as reduction 

mammoplasty or mastopexy approach and transfer of local-regional flaps (Grotting et al., 

2003; Berry et al., 2010; Piper et al., 2015). Reconstruction of a nipple-sparing mastectomy 

with a variety of techniques leaves the patient with an outcome that is cosmetically and 

oncologically equivalent to that with lumpectomy, but usually without the need for 

radiation therapy (Benediktsson and Perbeck, 2008; Gerber, 2009; Endara et al., 2013). 

Immediate breast reconstruction has the advantage of preserving the maximum of breast 

skin and the inframammary fold. However, there is a potential in individual patients for 

complications to result in the delay of adjuvant treatment. On the other hand, delayed 

reconstruction avoids any potential delay of adjuvant treatment and the detrimental effects 

of radiotherapy or chemotherapy on the reconstruction. However, delayed reconstruction 

requires replacement of a larger amount of breast skin where mastectomy flaps may be thin, 

scarred, or irradiated. Breast reconstruction contraindications include; non-resectable local 

chest wall disease, rapidly progressive systemic disease, patients who have serious co-

morbidity or psychologically unsuitable (ABS at BASO, 2012). 

1.3.2.2 Radiation therapy. 

Radiotherapy is a common treatment which uses radiation to destroy breast cancer cells 

after conservation surgery. The goal is to eradicate the residual microscopic foci of cancer 

cells and reduce the risk of disease recurrence. Current indications for post mastectomy 
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radiotherapy (PMRT) include axillary nodal involvement of 4 or more nodes, tumour of 5 

cm or more, T4 disease and positive surgical margins (NICE, 2009; Vilarino-Varela et al., 

2009; Goldhirsch et al., 2013).   

Radiotherapy is usually given as external beam radiotherapy; (40Gy in 15 fractions) as 

standard practice for patients with early invasive breast cancer following breast 

conservation surgery or mastectomy. External breast boost is offered to the site of local 

excision to patients with early invasive breast cancer and a high risk of local recurrence, 

following breast conservation surgery with clear margins and whole breast radiotherapy. 

Adjuvant radiotherapy to the supraclavicular fossa is given to patients with early breast 

cancer with ≥ 4 positive lymph nodes, and patients with early breast cancer with 1-3 

positive lymph nodes if they have other poor prognostic factors e.g. T3/T4, histological 

grade 3 tumours, multifocality and LVI (NICE, 2009; West of Scotland Cancer Network, 

2012). 

Analysis of clinical trials by the Early Breast Cancer Trialists‘ Collaborative Group 

(EBCTCG) has shown that radiotherapy, after breast conservation, reduced the 10-year 

risk of any recurrence (locoregional or distant) from 35%-19%, and reduced breast cancer 

death rate from 25%-21% (EBCTCG, 2011). However, currently, there are insufficient 

recommendations for PMRT to women with 1-3 positive nodes. Individual data analysis of 

randomised trials showed that PMRT reduces both recurrence and breast cancer mortality 

for women with 1-3 positive nodes (EBCTCG, 2014).  

1.3.2.3 Hormone therapy  

Hormone therapy or endocrine therapy stops or reduces the growth of hormone positive 

breast cancer by blocking the production of oestrogen hormone or interfering with its 

ability to reach the tumour cells.  Endocrine treatment is indicated as the principal 
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treatment for patients with ER positive and/or PR positive carcinomas (Pritchard, 2003; 

Sweetland, 2004).   

Hormone therapy includes two main types: selective oestrogen receptor modulator or anti-

oestrogen drugs such as tamoxifen, raloxifene and toremifene, and drugs that block 

oestrogen production or aromatase inhibitors (AI) (letrozole, anastrozole (reversible) and 

exemestane (irreversible). Anti-oestrogen drugs bind to oestrogen receptors and block their 

effect, whereas AI block the activity of an enzyme called aromatase that converts adrenal 

androgens into oestrogens in the muscle, liver and fat tissue.  The selection of hormonal 

therapy depends on the source of oestrogen production. Before menopause oestrogen and 

progesterone are naturally produced by the ovaries and via the peripheral aromatase 

enzyme in postmenopausal women (Pritchard, 2003; Sweetland, 2004).   

Tamoxifen has been the gold standard for more than 30 years, and is mainly used for ER 

positive premenopausal and postmenopausal women in the adjuvant and advanced 

metastatic settings (Pritchard, 2003). Tamoxifen is both an antagonist and a partial agonist 

of the oestrogen receptor (Wakeling et al., 1989) and its agonist action may become 

exaggerated over time leading to impairment in its anticancer activity and resulting in 

tamoxifen resistance (Norris et al., 1999; Ali and Coombes, 2002).  

Aromatase inhibitors are an established treatment for postmenopausal women with early 

and metastatic breast cancer.  In 2002, the ATAC trial was the first and by far the largest 

trial used anastrazol as adjuvant treatment for early breast cancer (ATAC trialist group, 

2002). AIs are used as first line therapy, or as a second line therapy in patients who 

develop tamoxifen resistance (Campos, 2004; Clemons et al., 2004), and have generally 

superior efficacy and tolerability compared to tamoxifen (Cuzick et al., 2010). AIs given 

either for 5 years or for 2–3 years after 2–3 years of tamoxifen, produce greater reductions 
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in recurrence than 5 years of tamoxifen alone (Dowsett et al., 2010). However, the 

substantial benefits of AIs are associated with a significant, but manageable, increase in 

osteoporotic fractures and bone mineral loss (Perez et al., 2009).  

The clinical management guidelines of West of Scotland Cancer Network recommend that 

premenopausal women with early ER positive breast cancer be offered adjuvant endocrine 

therapy with tamoxifen for 5 years with no further endocrine therapy or tamoxifen for 

additional 5 years. For postmenopausal women with early ER positive breast cancer, 

adjuvant endocrine therapy is offered as either tamoxifen for 5 years, an aromatase 

inhibitor for 5 years, tamoxifen initially for 5 years followed by an aromatase inhibitor for 

up to a further 3 years, or tamoxifen for 2.5 years followed by an aromatase inhibitor for 

up to 5 years (West of Scotland Cancer Network, 2012).   

Bisphosphonate therapy reduces the risk of skeletal-related events in patients with bone 

metastases and can inhibit bone loss associated with AIs in postmenopausal women with 

early breast cancer (Brufsky et al., 2007; Bundred et al., 2008). 

In the present thesis, patients were recruited between 1995 and 1998 and the only 

hormonal therapy available was tamoxifen. However, AIs were not introduced to routine 

practice by 1998. Therefore, none of the patients on the present thesis have received AIs.  

1.3.2.4 Adjuvant Chemotherapy  

Chemotherapy has the ability to destroy clinically undetectable micrometastasis after 

primary surgery and is usually recommended for women at significant risk of recurrence 

and relapse. The choice of chemotherapy regimen may be individualized based upon 

cancer-related factors such as the underlying risk of recurrence and the projected relative 

and absolute benefits from chemotherapy, as well as patient related factors such as age, 
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comorbidities, and risk tolerance (Hortobagyi, 2001). Chemotherapy agents include 

alkylating agents (cyclophosphamide), antimetabolites (5-fluorouracil, capecitabine, 

methotrexate), taxanes (paclitaxel, docetaxel), anthracyclines (doxorubicin, epirubicin) and 

mitotic inhibitors (vincristine) (Bergh et al., 2001).  

Adjuvant chemotherapy may increase 10-year survival by 6% for node negative to 12% for 

node positive premenopausal women, and by 2%–6% in women aged over 50 (Bergh et al., 

2001).  Data from the Early Breast Cancer Trialists‘ Collaborative Group regarding 

polychemotherapy usage found that survival benefit was seen in the first 5 years with 

additional benefit during the second 5 years.  Chemotherapy produced reduction in 

recurrence and increased survival was found in all groups analysed with more prominent 

effect in premenopausal women and those with ER negative tumours (EBCTCG, 2005).   

Cyclophosphamide, methotrexate, and fluorouracil (CMF) and standard anthracycline 

based regimens reduce recurrence rates over 8 years by 30%, and breast cancer mortality 

rates by 20—25% (EBCTCG, 2012). Comparison of CMF with AC (Doxorubicin and 

cyclophosphamide) showed no difference in breast cancer mortality (EBCTCG, 2012). 

1.3.2.5 Biological therapy  

Trastuzumab or Herceptin is the most commonly used biological and targeted treatment for 

breast cancer.  It is a humanised monoclonal antibody against the extracellular domain of 

the Her-2 receptor, and used in the adjuvant setting for treatment of Her-2 positive breast 

cancer (Vogel and Franco, 2003; Ross et al., 2003). Trastazumab has been originally 

approved by the FDA to treat breast cancer in September 1998 and expanded beyond the 

metastatic setting to treat patients with early breast cancer in 2006.  
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Clinical trials have shown that trastuzumab has improved both disease-free and overall 

survival in patients with early Her-2 positive breast cancer with node positive or high risk 

node negative breast cancer, when given in combination with or in sequence to adjuvant 

chemotherapy (Piccart-Gebhart et al., 2005; Romond et al., 2005).  

The current optimal management and the gold-standard treatment care for patients with 

Her-2 positive tumours is one year of trastuzumab, which has been shown to be more 

effective than 6 months regimen (Gelber et al., 2012). Trastuzumab is also given in 

combination with adjuvant chemotherapy (taxan based chemotherapy is the preferred 

option) for patients with Her-2 positive and node positive tumour (West of Scotland 

Cancer Network, 2012). However, due to the age of the present thesis cohort (1995-1998), 

trastuzumab was not available for breast cancer treatment at that time and none of the 

patients on the present cohort have received this treatment. 

1.3.2.6 Neoadjuvant therapy  

The neoadjuvant (pre-operative) therapy to breast cancer is established as a therapeutic 

approach for selected high-risk breast cancers, tumours ≥ 2cm and for locally advanced 

disease.  Neoadjuvant therapy could be radiotherapy, endocrine therapy, or chemotherapy. 

This approach offers some advantages, such as reduction in tumour size and down staging 

the disease, reduction in the extent of surgery and testing the efficacy of treatment given to 

patients (Thompson and Thompson, 2012).  

Nearly half of the patients receiving neoadjuvant treatment may become suitable for breast 

conservation instead of mastectomy (Thompson and Thompson, 2012).  Recent meta-

analysis and clinical trials have demonstrated that neoadjuvant aromatase inhibitors have a 

better clinical and ultrasound response and a higher rate of breast conservation (Seo et al., 

2009; Chia et al., 2010).  In terms of survival, neoadjuvant chemotherapy is as effective as 
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adjuvant chemotherapy for locally advanced disease (Deo et al., 2003; Makhoul and Kiwan, 

2011; Le Ray et al., 2012). 
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1.4 The tumour microenvironment in breast cancer 

The tumour microenvironment is composed of several different cell types including non-

immune cells such as fibroblasts, endothelial cells, bone marrow-derived cells, adipocytes, 

and immune cells such as marcrophages, natural killer cells, neutrophil and T lymphocytes, 

as well as blood and lymphatic vessels in a scaffold of extracellular matrix (ECM) (Kim et 

al., 2005; Hu and Polyak, 2008; Joyce and Pollard, 2009; Hanahan and Weinberg, 2011; 

Cirri and Chiarugi, 2012) (Figure 1.4).  The non-cellular components of the tumour 

microenvironment including the ECM contains growth factors, proteases, protease 

inhibitors and other signalling molecules that play important roles in stromal reactions.  

Stromal cells surround and cross-talk with tumour cells and are key contributors in 

promoting the ‗hallmarks‘ of cancer cells (Hanahan and Coussens, 2012).   Importantly, 

these cells supply the tumour with molecules and growth factors essential for stimulation 

of blood vessels formation that provide the tumour cells with oxygen and nutrients (Pietras 

and Ostman, 2010). 

1.4.1 The role of tumour stroma and stromal fibroblasts   

The role of tumour microenvironment is becoming more recognised in breast cancer and 

every component plays an important role.  The interactions between cancer cells and the 

tumour microenvironment have been shown to play a crucial role in overall tumour growth 

from initiation to progression (Coussens and Werb, 2002; Grivennikov et al., 2010; Pietras 

and Ostman, 2010).  It has been reported that both the gene and protein expression profiles 

of the tumour stroma play an important role in breast cancer progression (Finak et al., 2008; 

Lin et al., 2008).  



 

46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-4 The primary tumour microenvironment 

Cancer cells are surrounded by different stromal cells including bone marrow-derived cells, endothelial cells of the blood and lymphatic circulation, fibroblasts and cancer-

associated fibroblasts (CAFs) and both innate and adaptive infiltrating immune cells. Modified from (Cirri and Chiarugi, 2012). 

 



 

47 

Furthermore, gene expression array data have shown that the activation of tumour 

associated stroma begins relatively early in the process of tumour development, even when 

the tumour epithelium is pre-invasive (Ma et al., 2009).  In fact, automated analysis of 

breast cancer haematoxylin and eosin (H&E) slides has revealed that the stromal 

compartment of breast tumours contains more prognostic information than the epithelial 

component (Beck et al., 2011).  Study of the tumour to stroma ratio indicate that expansion 

of tumour stroma is an important phenomenon influencing the prognostic outcome of solid 

organ tumours including breast cancer, with worse prognosis reported in patients with 

tumours that contained more than 50 % stroma (Mesker et al., 2007; de Kruijf et al., 2011).  

It was shown that fibroblasts from tumour compartment, compared to fibroblasts derived 

from areas that were not intimately associated with invasive breast carcinoma, significantly 

increased the growth of epithelium and provided better support for cancer growth (Orimo 

et al., 2005).  In particular, cancer-associated fibroblasts (CAFs) play an important role in 

all phases of tumour progression, supporting the influence of tumour microenvironment on 

the tumour‘s invasive behaviour (Chang et al., 2005; Cirri and Chiarugi, 2012).  Previous 

studies have reported that the proliferative activity of tumour-stromal fibroblasts plays a 

very important role in the loco-regional and distant organ metastasis of breast cancer 

(Hasebe et al., 2000; Hasebe et al., 2001). 

CAFs are the most abundant stromal cells of many tumours, including breast carcinomas 

(Kalluri and Zeisberg, 2006; Pietras and Ostman, 2010).  CAFs are the main producer of 

ECM proteins (i.e. collagens, fibronectin) and are the major player of ECM remodelling as 

they produce proteases and other enzymes involved in the post-transcriptional modification 

of ECM proteins themselves (Cirri and Chiarugi, 2012).  Collagen cross linking of ECM is 

predominantly catalyzed by lysyl oxidase (LOX), expressed in fibroblasts during the early 

stages of breast carcinogenesis, whilst in a later stage LOX is also induced in hypoxic 
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carcinoma cells, promoting aggressive growth (Santhanam et al., 2010).  Hence, ECM 

remodelling promoted by LOX activity positively affects tumour cell migration and 

invasion.  Indeed, in a mouse model of breast carcinoma, treatment with LOX inhibitors 

led to a decrease of ECM cross-links, preventing ECM stiffening and delaying tumour 

progression (Levental et al., 2009).  

Recently, emerging evidence supports the notion that the tumour associated stroma 

significantly facilitates tumour metastasis (Joyce and Pollard, 2009; Sethi and Kang 2011; 

Valastyan and Weinberg, 2011).  In particular, CAF secrete growth factors, angiogenic 

factors, and inflammatory factors, whereby CAFs interact with cancer cells and collaborate 

with other components of the tumour stroma.  These signalling molecules effectively 

mediate neo-angiogenesis, as well as proliferation, survival, motility and invasion of 

cancer cells (Kalluri and Zeisberg, 2006; Polanska et al., 2010).   

Stromal cells also contribute to metastatic colonisation of circulating tumour cells in 

distant organs, in addition to the signalling molecules secreted by primary tumour cells e.g. 

vascular endothelial growth factor (VEGF) (Psaila and Lyden, 2009).  Therefore, the local 

stromal environmental factors may support a pre-metastatic niche formation, facilitating 

homing and colonisation of circulating tumour cells.  In particular, in breast cancer 

pulmonary metastases, bone marrow-derived cells that express VEGF receptor 1, 

endothelial cells, CAFs and platelets and signalling molecules such as fibronectin, and 

matrix-metalloproteinase 9 are all involved in mediating the formation of a pre-metastatic 

niche (Kaplan et al., 2005).  In addition, it has been reported that metastatic cells bring 

CAFs originating from the primary tumours to the metastatic site, providing protection to 

circulating tumour cells from apoptosis in the bloodstream and support their growth once 

arriving at the metastatic site (Duda e al., 2010).  Furthermore, monocytes, and tumour 
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associated macrophages (TAMs) also promote metastatic colonisation (Horimoto et al., 

2012).   

Another feature of the tumour microenvironment as potential predictive and prognostic 

marker is a histological phenomenon called tumour budding (the presence of individual 

cells and small clusters of tumour cells in the tumour stroma at the tumour invasive front) 

(Ueno et al, 2002; Prall et al, 2005).  It has received much recent attention, particularly in 

the setting of colorectal cancer and has been considered as an independent adverse 

prognostic factor in colorectal cancer that may allow for stratification of patients into risk 

categories (Ueno et al, 2002; Prall et al, 2005; Prall et al., 2007; Lugli et al, 2009; Lugli et 

al., 2012, Kye et al., 2012; Mitrovic et al., 2012).  In breast cancer however, the prognostic 

value of tumour budding remains unclear.  

1.4.2 Local host inflammatory infiltrate  

Numerous host cells of the immune system are recruited to and activated in the 

microenvironment of a developing tumour (Figure 1.5).  The human immune system 

consists of the innate (natural) and the adaptive (acquired) immune systems which are both 

tightly linked together in a complex network of soluble factors (humoral innate system).  

Innate immune cells consist of granulocytes (neutrophils, basophils, and eosinophils), 

dendritic cells (DCs), macrophages, natural killer cells (NK cells) and mast cells.  Adaptive 

immune cells are represented by T- and B-lymphocytes that express antigen-specific 

receptors and Immunoglobulin.  The two major T-lymphocyte subsets are helper T-

lymphocytes (CD4+) and cytotoxic-T lymphocytes (CD8+) which are required for cell-

mediated immunity. The other subtypes of T-lymphocyte are regulatory T-lymphocytes 

(FOXP3+) and memory T-lymphocytes (CD45RO+) (Whiteside 2003; de Visser and 

Coussens, 2005; Medzhitov, 2007). Activation of the complement system, represented by a 



 Chapter 1  

50 

 

complex network of more than 30 serum proteins and cell surface receptors, is a central 

event during innate immune defence after pathogenic tissue assault (de Visser and 

Coussens, 2005).   

In the presence of a growing tumour, NK cells and macrophages activate each other via the 

reciprocal production of interferon gamma (INF-γ) and interleukin 12 (IL-12), promoting 

further tumour cell killing via apoptosis and reactive oxygen and nitrogen intermediates 

(Dunn et al. 2004; Bui and Schreiber 2007).  DCs ingest tumour cell debris produced by 

tumour death, and then migrate to regional lymph nodes where T helper 1 (TH1) cells 

activated by specific DCs stimulate maturation of CD8+ T-lymphocytes.  Tumour-specific 

CD4+ and CD8+ T-lymphocytes infiltrate the tumour site and attack the antigen-bearing 

tumour cells that remain at the site.  Some tumour cells can escape and continue to grow 

and expand in an uncontrolled manner (Dunn et al., 2004; Bui and Schreiber, 2007).  

Accumulating data has demonstrated the impact of host-related parameters on cancer 

survival. Immune-classification of inflammatory infiltrates has a prognostic value and 

could identify patients at high-risk of tumour recurrence.  Among the immune scoring 

methods are Klintrup-Mäkinen grade (Klintrup et al., 2005) and Immunoscore (Galon et al., 

2012). 

Klintrup–Mäkinen grade (K-M) is a simple grading scheme for estimation of the 

inflammatory reaction at the invasive margin using H&E pathological sections. It is a 

reproducible tool and reflects the general inflammatory response of the host to the tumours.  

It has been reported to provide prognostic information independent of cancer stage or 

grade, and categorises patients into low and high risk subgroups. Patients with low K-M 

score (low grade inflammatory reaction) have poor prognosis and form a potential target 

group for adjuvant therapy (Klintrup et al., 2005). High grade inflammatory reaction 
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predicts longer survival in patients with colorectal (Klintrup et al., 2005; Roxburgh et al, 

2009) and breast cancer (Mohammed et al., 2012e).  

The immunoscore is derived from the immune contexture and is based on the numeration 

of two lymphocyte populations (CD3/CD45RO, CD3/CD8 or CD8/CD45RO), and 

detected using IHC both in the core of the tumour and in the invasive margin (Pages et al., 

2009; Galon et al., 2012). It has been proposed as a clinically useful prognostic marker for 

cancer patients. The immunoscore provides a score ranging from Immunoscore 0 (I0) 

when low densities of both cell types are found in both regions, to Immunoscore 4 (I4) 

when high densities are found in both regions. The advantages of this test are: first, it 

appears to be a strong prognostic factor for cancer specific survival and overall survival; 

and second, it has a biological meaning as it reflects the adaptive immune response to 

tumours.  Immunoscore as a new approach for cancer classification provides a target for 

novel therapeutic approaches, including immunotherapy (Galon et al., 2014). 

The pronounced tumour inflammatory cell that infiltrates in and around the tumour is 

thought to represent the host in-situ anti-tumour immune response for many cancers 

including breast and has been described as a seventh ―hallmark‖ of cancer (Colotta et al. 

2009; Hanahan and Weinberg 2011).  Previous reviews of literature have revealed the 

paradoxical roles of innate and adaptive immune cells as a causal player in breast 

carcinogenesis and prognostic outcome.  The outcome of an immune response toward a 

growing breast neoplasm is largely determined by the type of immune response elicited 

(DeNardo and Coussens, 2007; Mohammed et al., 2012d) (Figure 1.5). 
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Figure  1-5 Infiltration of immune cells into tumour. 

Multiple immune cells of the tumour microenvironment, based on the context, can have variable functions to promote (gray highlight), or in some cases oppose, 

tumour progression.  Modified from (Janet et al., 2014). 
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A recent review of literature has reported that generalised lymphocytic or non-specific 

peri-tumoural inflammatory infiltrate is associated with improved survival.  In particular, 

there would appear to be consistent evidence that a dense CD3+ T-lymphocytic infiltrate is 

associated with improved survival in breast cancer.  However, the prognostic value vary 

according to individual lymphocyte subsets (Mohammed et al, 2012d).  The evidence is 

particularly strong for cytotoxic T-lymphocytes (CD8+) and its association with improved 

survival in patients with breast cancer (Baker et al., 2011; Ladoire et al., 2011; Mahmoud 

et al., 2011; Mohammed et al, 2012d), indicating its role in supporting anti-tumour 

immune response.  Other subgroups from the adaptive arm of the immune system 

including memory-T-lymphocytes (CD45R0+) (Scholl et al., 1994; Scholl, 1996) and T-

regulatory lymphocytes (FOXP3+) can increase breast cancer recurrence and negatively 

influence survival (Bates et al., 2006; Gobert et al., 2009; de Kruijf et al., 2010; Ladoire et 

al., 2011).  Mohammed et al, 2012b), indicating its role in supporting pro-tumour immune 

responses.  

Majority of studies examined the role of B-lymphocytic (CD20+) infiltrate in breast cancer 

survival  reported its associated with improved cancer specific survival (Schmidt et al., 

2008; Mahmoud et al., 2012d), indicating a role for humoral immune responses in cancer 

suppression.   

Evidence suggests that innate immune cells, such as mast cell and macrophages, also 

appear to have a role in predicting prolonged survival outcome, whereas the evidence for 

dendritic cells is conflicting (Mohammed et al, 2012d).  However, TAMs have long been 

known to promote cancer, partly through their ability to secrete angiogenic, metastatic and 

growth factors (Leek et al., 1996; Leek and Harris, 2002; Valkovic et al., 2002; Ostrand-

Rosenberg, 2009). 
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Other cellular components such as plasma cells, natural killer cells, and eosinophils 

infiltrates are rare in malignant breast tumours, with limited involvement in cytotoxicity or 

tumour progression (O‘Sullivan and Lewis, 1994).  Few studies have examined the 

prognostic value of these cellular infiltrate in breast cancer (Hamlin, 1968; Aaltomaa et al., 

1992; Iwamoto et al., 2003; Dabiri et al., 2004; Rajput et al., 2008) and most of these 

studies reported that high cellular infiltrate was associated with improved outcome in 

breast cancer.  

The immune cells infiltrate produce tumour-promoting or tumour-suppressor cytokines 

including interleukins such as IL-6, IL-12 and IL-17, and interferons through activation of 

various transcription factors including signal transducer and activator of transcription 

(STAT) (Grivennikov et al., 2010).  Signalling pathways including STAT1 and STAT3 

appear to mediate stromal-tumour interactions in processes involved in tumour regulation 

(Grivennikov et al., 2010).  
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1.5 The Signal Transduction and Activation of Transcription Signalling 

Pathway 

The signal transducer and activator of transcription (STAT) pathway transmits information 

received from extra-cellular polypeptides via trans-membrane receptors to the nucleus 

where STATs bind to specific DNA sequences and thereby regulate target genes 

expression and ultimately phenotypes (Darnel et al., 1994; Darnell, 1997; Bromberg and 

Darnell, 2000).  There are seven members of STAT proteins in mammalian cells (STAT1, 

STAT2, STAT3, STAT4, STAT5a & b, STAT6) (Darnell, 1997).  Activation of STATs in 

normal cells is usually temporary and critical for a variety of biological processes such as 

organ genesis, immune response, inflammation, regulation of cell differentiation, growth, 

and apoptosis (Hirano et al., 2000; Smithgall et al., 2000).  

While all seven STAT-family members have been shown to be expressed in breast cancer 

cell lines, only STATs 1, 3, 5a, and 5b are expressed in breast cancer tissues (Clevenger, 

2004).  Variety of cytokines ligands, particularly interleukin-6 (IL-6) and interferons (IFNs) 

(Darnell, 1997) and large numbers of growth factors that exhibit tyrosine kinase activity, 

such as epidermal growth factor (EGF) and platelet derived growth factor (PDGF) can 

activate STAT proteins (Ruff-Jamison et al., 1994; Zhong et al., 1994; Bromberg and 

Darnel, 2000; Bowman et al., 2000).  Each STAT family protein responds to a defined set 

of cytokines, and each also regulates a group of specific genes (Table 1.6).  Many cytokine 

receptors lack intrinsic tyrosine kinase domain and they instead rely on activation of 

receptor-associated tyrosine kinases such as members of the Janus kinase (JAK) family and 

SRC tyrosine kinases (Darnell, 1998; Ihle, 2001; Heinrich et al., 2003) or non-receptor 

tyrosine kinases such as SRC and ABL (Reddy et al., 2000) to initiate the STAT signalling 

cascade. 



 Chapter 1  

56 

 

 

Table  1-6 STAT family activators and target genes 

STAT Key activators Main target genes Example genes 

STAT1 IFNγ, IFNα and IFNβ TH1-type 

immunostimulatory, 

and pro-apoptosis 

TBX21, CD80, CD40, IL-12, 

CDKN1A and several caspases 

STAT3 IL-6, IL-10, IL-23, 

IL-21, IL-11, LIF and 

OSM 

TH17-type, 

anti-apoptosis, 

pro-proliferation, 

angiogenic, and 

metastatic 

IL-17, IL-23, BCL-XL, BCL-2, 

MCL-1, CCND1 and VEGF 

IFN, interferon; TH, T helper; TBX21, T-box 21; IL, interleukin; CDKN1A, cyclin-dependent kinase 

inhibitor 1A; LIF, leukaemia inhibitory factor; OSM, oncostatin M; BCL, B-cell lymphoma, MCL-1, 

Myeloid cell leukemia 1; CCND1, cyclin D1; VEGF, vascular endothelial growth factor. From (Yu et al., 

2009). 
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1.5.1 STAT Structure and Activation of STAT pathway. 

STAT proteins consist of various different functional domains (Figure 1.6).  The amino-

terminal (N-term) domain enables the interaction between two STAT dimers and facilitate 

tetramerisation.  This interaction can stabilise the binding of the two STAT dimers to 

adjacent sites in DNA and enhance STAT activity on certain promoters.  The coiled-coil 

domain mediates the interactions with regulatory proteins and other transcription factors.  

The DNA-binding domain is required for direct contact with STAT-binding sites in gene 

promoters, and to recognise the cognate binding sequences.  The SRC-homology 2 (SH2) 

domain mediates reciprocal interactions between one STAT monomer and the 

phosphotyrosine residue (pY) of another to form active STAT dimer, which is essential for 

the binding site with DNA. The carboxy-terminal domain or transactivation domain is a 

mediator of the transcriptional activation of target genes.  It is also having a serine residue 

for phosphorylation (pS) that regulate the transcriptional activity of this domain (Clevenger 

2004; Yu et al., 2004). 

 

Figure  1-6 Structural map of the STAT protein. 

PY, phosphotyrosine residue and PS, phosphoserine residue. 
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As shown in Figure. 1.7, transmembrane receptor activation by ligands results in the 

activation of receptor-associated tyrosine kinases or activation of intrinsic receptor tyrosine 

kinase activity such as the JAKs or Src tyrosine kinases.  Subsequently these tyrosine 

kinases phosphorylate the cytoplasmic portion of the receptor to provide docking sites for 

the recruitment of cytoplasmic monomeric STAT proteins via their SH2 domains.  Once 

STATs are recruited to activated tyrosine kinases, they become themselves substrates for 

tyrosine phosphorylation (Darnell et al., 1994; Ihle, 2001; Reddy et al., 2000; Bromberg 

and Darnel 2000; Bowman et al., 2000).  Although receptor-associated tyrosine kinases 

such as JAKs and Src kinase can cooperate in STAT activation by both growth factor and 

cytokine receptors, oncogenic forms of non-receptor tyrosine kinases, such as Src and Abl, 

can also phosphorylate STATs independently of receptor engagement (Bowman et al., 

2000; Danial et al., 2000).  Phosphorylation of STAT monomers enables them to dimerise 

via reciprocal phosphotyrosine-SH2 domain interactions (Darnell et al., 1994; Darnel 

yy1997) and further translocate into the nucleus, where the dimers bind to specific DNA-

response elements and directly regulate gene expression (Darnell et al., 1997; Reddy et al., 

2000; Bromberg and Darnell, 2000; Ihle,  2001; Buettner et al., 2002; Yu et al., 2004).  

Constitutive activation of STATs is associated with permanent changes in the expression 

of genes that control fundamental cellular processes and lead to oncogenesis.  STATs, in 

particular STAT3 and STAT5 are proposed to contribute to tumour development and 

progression through up-regulation of genes encoding apoptosis inhibition, cell cycle 

regulation, and induction of angiogenesis (Figure 1.7) (Buettner et al., 2002; Clevenger, 

2004; Alvarez et al., 2005; Hodge et al., 2005; Yu et al., 2009).  In contrast, STAT1 has 

been associated with the suppression of tumour growth (Bromberg and Darnel, 2000; 

Lynch et al., 2007). 
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Figure  1-7 STATS signalling pathway 

Binding of ligands (growth factors or cytokines) to their receptors (R) leads to activation of 

intrinsic receptor tyrosine-kinase activity or of receptor-associated kinases, such as the Janus 

kinase (JAK), in this figure, or Src tyrosine kinases. These tyrosine kinases subsequently 

phosphorylate the cytoplasmic tails of the receptor to provide docking sites for the recruitment of 

monomeric STATs. Subsequently, STATs themselves become tyrosine phosphorylated, 

dimerised and translocated to the nucleus, where they directly regulate gene transcription of 

biological processes.  Among these is proliferation, survival, apoptosis, angiogenesis and 

oncogenesis. 
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In normal untransformed mammary glands, it is not surprising that STAT family members 

modulate mammary gland development during pregnancy, lactation and involution since 

these proteins play important roles in regulating cell proliferation and apoptosis (Philp et 

al., 1996; Watson 2001).  With regard to carcinogenesis, several studies have demonstrated 

that elevated activities of STATs proteins are frequently found in variable human tumour 

cell lines (Li and Shaw, 2000; Kazansky and Rosen, 2001; Garcia et al., 2001; Buettner et 

al., 2002; Alvarez et al., 2005) and in a wide variety of human tumours, including breast 

cancers (Widschwendter et al., 2002; Dolled-Filhart et al., 2003; Gritsko et al., 2006; 

Yamashita et al., 2006). 

1.5.2 Role of STAT1 in breast cancer and stromal immune responses. 

STAT1 was the first STAT protein to be discovered and is mainly activated in response to 

Type I and II IFNs, and upon activation of their receptors, STAT1 mediates the 

transcription of genes encoding proteins with anti-proliferative, anti-viral and immune 

regulatory properties.  The activity of STAT1 is controlled by phosphorylation at pY 701 

and pS 727 within the transactivation domain of the protein (Darnell et al., 1997; Buettner 

et al., 2002; Yu et al., 2004; Schindlr et al., 2007; Stark and Darnell, 2012).  

Several lines of evidence implicate STAT1 as an anti-proliferative and a pro-apoptotic 

molecule.  Early studies, using mouse models, demonstrated that STAT1-deleted mice 

were more susceptible to tumour development than controls (Kaplan et al., 1998, 

Shankaran et al., 2001).  Activation of STAT1, in response to IFN-γ, has been shown to be 

associated with inhibition of proliferation of both mouse and human tumour cells via up-

regulation of cyclin-dependent kinase inhibitor p21 expression and down-regulation of c-

Myc promoter expression (Ramana et al., 2000).  In addition, STAT1 induces apoptosis by 

up-regulation of caspases 2 and 3 expression or the expression of inducible nitric oxide 
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synthase (Battle and Frank, 2002; Kim and Lee, 2007).  The suppressing role of STAT1 in 

cancer is further supported by its ability to inhibit angiogenesis and tumour metastasis in 

mouse models (Huang et al., 2002).  

STAT1 as a key transcriptional factor of IFN signalling plays an important role in innate 

immune response by protecting the host from virus infections and other pathogens 

(Schindlr et al., 2007; Stark and Darnell, 2012).  IFNs signal through STAT1 do not only 

increase anti-tumour immune responses through the activation of natural killer cells and 

macrophages but also through activation of adaptive immune mediators; TH1 and cytotoxic 

CD8+T-lymphocytes (Yu et al., 2009).  

Targeted disruption of STAT1 results in viable mice with compromised innate immunity 

and are highly susceptible to infection (Durbin et al., 1996; Meraz et al., 1996).  In addition, 

lack of STAT1 significantly increases the incidence of spontaneous mammary tumour 

development in mice (Schneckenleithne et al., 2011).  The increased rate of tumour 

formation in STAT1 deficient mice (STAT1−/−) was previously attributed to impaired 

immune surveillance of tumours because these mice failed to respond to IFN-γ and 

displayed reduced natural killer activity (Dunn et al., 2006).  In turn, lack of STAT1 could 

potentially promote tumour cell survival due to the loss of IFN-dependent tumour 

surveillance system (Buettner et al., 2002). 

Recent evidence for the role of STAT1 in the tumour microenvironment has further 

supported the immune surveillance role in breast cancer.  Using immunohistochemistry in 

a large cohort of patients, selective down-regulation of STAT1 protein was more 

prominent in the tumour cells compared with the surrounding stroma and infiltrating 

lymphocytes (Chan et al., 2012).  In addition, STAT1 sustained efficient cytotoxic T-

lymphocyte mediated immune response and was essential for full functioning CD8+ 
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cytotoxicity (Schneckenleithne et al., 2011).  Thus, the ability of STAT1 to control the 

function of immune cells may play a crucial role in regulation of tumourigenesis.  

In normal circumstances, STAT1 is regulated during the different stages of mammary 

gland development and its expression and activity is detected only in virgin animals, or 

during early pregnancy and late involution (Watson, 2001), but not through pregnancy and 

lactation (Philp et al., 1996). 

Recent studies, using different experimental approaches, support the anti-tumour function 

of STAT1 in mammary tumourigenesis (Klover et al., 2010; Raven et al., 2011; Chan et al., 

2012).  Tumour initiated by Her-2 in STAT1−/− female mice developed breast tumours ~6 

weeks earlier than their STAT1+/+ counterparts (Ravan et al., 2011) and the overall 

disease latency was significantly enhanced in STAT1-deficient mice being 49.4 weeks 

compared with 62.4 weeks in STAT1-proficient animals (Klover et al., 2010). Non-

tumourigenic and tumourigenic mammary epithelial STAT1−/− cells in vivo were capable 

of increasing proliferation rate and were found to form significantly thicker mammosphere 

layers in the mammary acini (Schneckenleithne et al., 2011).  In addition, Chan and 

colleagues demonstrated that STAT1 deficient mice spontaneously developed mammary 

adenocarcinomas displaying ER +ve / PR +v tumour cells similar to that of human luminal 

breast cancer, and that STAT1 expression was frequently lost during breast cancer 

progression.  Induction of wildtype STAT1 into STAT1 deficient mammary tumour cells 

lead to apoptosis (Chan et al., 2012), indicating a cell autonomous or a tumour cell-specific 

function of STAT1 independent of STAT1-mediated transcription.  Furthermore, the anti-

tumour activity of the milk protein α-casein, in preventing breast cancer growth and 

metastases has been found to require activation of STAT1 (Bonuccelli et al., 2012).  
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However, STAT1 has been also implicated in cancer development including mammary 

tumours.  This is based on the observation that total and phosphorylated STAT1 (ph-

STAT1) is elevated in human breast cancer (Widschwendter et al., 2002; Sheen-Chen et al., 

2007; Yau et al., 2010; Magkou et al., 2012) and is associated with variable prognostic 

outcomes.  STAT1 DNA binding activity and Y705 phosphorylation in invasive breast 

carcinomas was associated with improved survival independent of other prognostic 

variables (Widschwendter et al., 2002).  Increased STAT1 mRNA levels were shown to be 

part of a molecular signature associated with better prediction of the metastatic outcome 

for patients with hormone receptor negative and triple negative breast cancers (Yau et al., 

2010).  In contrast, assessment of STAT1 levels by Charpin and colleagues in larger cohort, 

reported an association between STAT1 expression and worse survival (Charpin et al., 

2009).  Also, ph-STAT1 was associated with advanced stage and worse survival in 

premenopausal women (Magkou et al., 2012).  However, one report, using total STAT1 

protein, found no association between level of total STAT1 and breast cancer survival 

(Sheen-Chen et al., 2007).   

Overall, it is clear that a conclusion about the prognostic value of STAT1 in breast cancer 

cannot be made due to rarity and inconsistency of evidence available.  
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1.5.3 Role of STAT3 in breast cancer and stromal immune responses 

STAT3 is a major member of STAT family and one of the most established intracellular 

signalling molecules.  It represents as a central effector of the local inflammatory response 

in cells and was first named acute phase response factor as it was reported to regulate the 

expression of many genes involved in the acute phase response to tissue injury and 

infection (Pensa et al., 2009).  Since then, STAT3 has been found to be activated by 

tyrosine phosphorylation (pY705) in response to IL-6 and other inflammatory cytokines 

(Berishaj et al., 2007) (Figure 1.7).  The activity of STAT3 is also controlled by 

phosphorylation at serine residue (pS727) within the transactivation domain of the protein 

by members of the mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase 

families (Decker, 2000).  

Several line of evidence from different human cell types and murine implement STAT3 as 

an oncogene because it up-regulate target gens involved in proliferation (cyclin D1, c-Myc, 

c-Fos and MEK5), angiogenesis (VEGF MMP-2, MMP-10, MMP-1 and KIF-8) and 

apoptosis (BCL-2, BCL-XL, MCL-1, and survivin), reflecting the role of STAT3 in cell 

cycle, cell invasion, angiogenesis and cell survival ( Niu et al., 2001;Buettner et al., 2002; 

Yu et al., 2004; Alvarez et al., 2005; Hsieh et al., 2005; Germain and Frank, 2007).   

Early studies, in model systems, have shown a direct role of STAT3 in oncogenesis using a 

constitutively active STAT3 mutant, which transforms fibroblasts in culture and allows the 

transformed cells to form tumours (Bromberg et al., 1999).  STAT3 inhibition is associated 

with anti-tumour effect and suppression of proliferation of tumour cells with activated 

STAT3 (Rivat et al., 2004; Gao et al., 2005; Xi et al., 2005), supporting direct contribution 

of STAT3 in tumours pathogenesis, rather than serving only as a marker of tumorigenesis.  

Inhibiting STAT3 in tumours can also induce apoptosis in addition to cell cycle arrest (Niu 
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et al., 1999; Niu et al., 2001).  In contrast, activated STAT3 in human multiple myeloma 

cell supported survival of tumour cells and prevented apoptosis by upregulating expression 

of the anti-apoptotic protein BCL-XL (Catlett-Falcone et al., 1999). 

The role of STAT3 in cancer progression is further supported by its regulatory role on cell 

migration.  STAT3 can affect the migration of tumour cells not only via its transcriptional 

regulation of genes involved in cell migration but also through its transcription-

independent interaction with focal adhesion molecules.  Phosphorylated STAT3 was found 

to localise to the migrating protrusions and focal adhesions in migrating cells (Silver et al., 

2004; Jia et al., 2005).  STAT3 also can inhibit the tubulin binding protein Stathmin which 

promotes microtubule depolymerisation (Ng et al., 2006). 

Based on its role in regulating IL6-JAK/STAT3-dependent inflammation and immunity, 

studies have identified STAT3 as an important molecule in regulating immune responses in 

the tumour microenvironment (Catlett-Falcone et al., 1999; Yu et al., 2007; Grivennikov et 

al., 2009; Mantovani et al., 2008; Kortylewski et al., 2009; Wang et al., 2009; Yu et al., 

2009).  STAT3 is implicated in mediating pro-tumour immune responses and inducing 

pathways underlying cancer inflammation (Heinrich et al., 2003; Wang et al., 2009; Yu et 

al., 2009).  It is also an important activator of many genes that are crucial for 

immunosuppression (Bronte-Tinkew et al., 2009; Ernst et al., 2008).  STAT3 on the one 

hand promotes pro-oncogenic inflammatory pathways, including nuclear factor-κB (NF-κB) 

and IL-6-JAK pathways, while on the other hand opposes STAT1- and NF-κB-mediated 

TH1 anti-tumour immune responses (Yu et al., 2007; Yu et al., 2009). 

In innate immune cells, STAT3 signalling is required for the immunosuppressive and 

tumour-promoting effects of myeloid-derived suppressor cells and tumour associated 

macrophages (Cheng et al., 2003; Kortylewski et al., 2005; Kortylewski et al., 2009).  
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STAT3 also mediates T regulatory cell expansion, an important negative regulator of TH1-

type CD4+ T-lymphocytes and CD8+ T-lymphocytes (Kortylewski et al., 2005; 

Matsumura et al., 2007; Kortylewski et al., 2009) in tumours and is central for the 

development of TH17 T-lymphocytes (Chen et al., 2006) which can promote tumour 

growth (Wang et al., 2009; Yu et al., 2009).  Thus, STAT3 plays a critical role in 

determining the nature of cancer-associated inflammation.  

STAT3 plays an important role in the normal development of the mammary gland.  STAT3 

mRNA levels are high in the mammary epithelium of adult virgins and remain elevated till 

early pregnancy (Philp et al., 1996, Watson, 2001).  It is necessary for the cell death that 

occurs during the involution and remodelling process after cessation of lactation (Pensa et 

al., 2009).  At weaning, an apoptotic program mediated by STAT3 is initiated to clear the 

mammary gland of its excess cellular burden.  During the first phase of involution, levels 

of ph-STAT3 are elevated in the mammary gland, and this rapid activation of STAT3 is 

essential for involution to proceed (Chapman et al., 1999; Humphreys et al., 2002).  During 

the second phase of involution, STAT3 induces an immune response and modulates 

macrophages and mast cells into an alternate state required for to clear epithelial cells 

(Hughes et al., 2012; Kreuzaler et al., 2011). 

However, STAT3 activation can also promote breast cancer formation and progression 

(Burke et al., 2001; Garcia et al., 2001).  Constitutive activation of STAT3 is required for 

enhancing transformation or blocking apoptosis in breast cancer cell lines and tissues 

(Bromberg and Darnell, 2000; Garcia et al., 1997; Page et al., 2000; Garcia et al., 2001).  

In mice model, constitutive activation of STAT3C allele could enhance the rat Neu 

oncogene tumourigenic activity and trigger development of earlier onset tumour with more 

aggressive features and metastatic potential than wild-type mice (Barbieri et al., 2010).  

STAT3 has also been shown to promote epithelial-to-mesenchymal transition and cell 
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invasion in breast cancer tissue (Sullivan et al., 2009).  In addition, inhibition of STAT3 

with various pharmacological agents suppresses tumour growth, recurrence and invasion in 

breast cancer cell lines as well as in a human-xenograft model (Yang et al., 2012; Zhang et 

al., 2012). 

In addition, STAT3 activation is frequently observed in breast tissue and more than 60% of 

primary tumours display constitutive pY705 STAT3 (Alvarez et al., 2005).  Previous 

studies of ph-STAT3 in invasive breast cancers showed positive correlations between 

increased levels of ph-STAT3 expression and metastasis to regional lymph nodes (Hsieh et 

al 2005), Her-2 positivity, surviving, and incomplete response to neoadjuvant 

chemotherapy (Diaz et al., 2006); all are poor prognostic features.  STAT3 is also serine 

phosphorylated in about 60% of breast tumours and is associated with ER-ve tumours, 

increased stage and increased tumour size (Yeh et al., 2006). 

However, very little is known about the prognostic value of STAT3 in breast cancer, and 

this value remains controversial.  Tissue microarray studies have reported significant 

relationship between ph-STAT3 and improved survival in 346 node negative breast 

cancers (Dolled-Filhart et al., 2003), 721 patients with low grade tumours (Sato et al., 

2011), and 125 node positive breast cancers (Sonnenblick et al., 2012).  In contrast, 

automated aassessment of ph-STAT3 levels in more than 900 specimens, found negative 

association between ph-STAT3 and survival (Charpin et al., 2009) consistent with findings 

of Sheen-Chen and colleagues (Sheen-Chen et al., 2008), whereas a study of 571 breast 

cancers documented no association between STAT3 expression and survival (Yamashita et 

al., 2006).   

It is clear that conclusion about the prognostic value of STAT3 as well as STAT1 in breast 

cancer cannot be made due to rarity and inconsistency of evidence available.  The 
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mechanisms behind the relationship between STAT1 and STAT3 and cancer survival have 

yet to be clarified.   
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1.6 Hypothesis and aims 

Breast cancer is the most frequent female cancer worldwide, and the second leading cause 

of cancer deaths in women.  Although breast cancer survival rates are better than many 

other major cancers in women, it is still relatively poor in certain subtypes, such as triple 

negative disease. 

It would appear, in patients with breast cancer, that the information of the relationship 

between the tumour-based factors and the host-based factors and the relationship with 

disease outcome is limited.  The larger impact of the tumour microenvironment on tumour 

growth and progression is increasingly evident.  Despite this, the determination of optimal 

treatment of cancer is now solely based on characteristics of the tumour cells itself (size, 

grade, involved lymph node, hormone receptor and Her-2 status).   

The importance of the stromal vasculature and the prognostic value of lymphovascular 

invasion have been established as a risk factor of relapse and death for high risk patients 

with node negative breast cancer but yet there is no standardised method for the detection 

or discrimination between lymphatic and blood vessel invasion.   

It would appear that by ignoring the stromal compartment, valuable information about 

breast cancer progression and metastasis is lost.  In fact, it has already been well 

documented in various studies that carcinoma cells and the surrounding stromal cells co-

evolve with each other during the course of tumour progression. Signalling molecular 

pathways, like STATs pathways, seem to mediate the interaction between phenotypic 

features of the tumour and the host, presumably influencing or supressing breast cancer 

progression.  
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Therefore, the aims of this thesis were to examine: 

1. The role of lymphatic and blood vessel invasion in predicting survival and methods 

of detection in patients with primary operable breast cancer. 

2. The relationship between the tumour stroma percentage, clinicopathological 

characteristics and outcome in patients with invasive ductal breast cancer. 

3. The relationship between tumour budding, the tumour microenvironment and 

survival in patients with invasive ductal breast cancer. 

4. The relationship between total and phosphorylated STAT1 and total and 

phosphorylated STAT3 tumour cell expression, components of the tumour 

microenvironment and survival in patients with invasive ductal breast cancer. 
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Chapter 2 Patients and Methods 

2.1 Patient cohorts  

Patients presenting with invasive breast cancer at Glasgow Royal Infirmary, Western 

Infirmary, Victoria and Stobhill Hospitals, all located in the West of Scotland, between 

1995 and 1998 were included in the thesis studies (total n=621).  The clinicopathological 

data available on the database were patients‘ age, histological tumour type, involved lymph 

node status, tumour size, tumour grade, lymphovascular invasion, type of surgery and use 

of adjuvant treatment. This pathological information was retrieved from the pathology 

routine reports. Other data comprising ER status, PR status, Her-2 status, Ki67 

proliferative index, CD68+ macrophage infiltrate, CD4+ T-lymphocyte infiltrate, CD8+ T-

lymphocyte infiltrate and CD138+ plasma cell infiltrate was also included and was 

performed as previously described (Mohammed et al., 2012a; Mohammed et al., 2012b; 

Mohammed et al., 2012c; Mohammed et al., 2013).  General peri-tumoural inflammatory 

infiltrate and tumour necrosis were also included and were performed as previously 

described (Ikpatt et al., 2002; Klintrup et al., 2005; Mohammed et al., 2012e) (n=474).  In 

addition, general peri-tumoural inflammatory infiltrate and tumour necrosis were scored 

according to Klintrup and Ikpatt criteria (n=147) by the author (FG). 

The surgical treatment for patients of the present thesis cohort was either breast 

conservation followed by radiotherapy, or mastectomy followed by radiotherapy, 

according to the individual patient‘s indication. The percentage of patients who received 

either of the surgical options is given in the results section of every chapter. Following 

surgery, patients received either hormone therapy, hormone therapy and/or chemotherapy, 

or did not receive any adjuvant treatment. The present thesis cohort was recruited between 

1995 and 1998, and the only hormone therapy received was tamoxifen. None of the 
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patients have received aromatase inhibitors or trastuzumab, as these treatment options were 

established after 1998. 

After surgery, patients were routinely followed-up (3 months, 6 months and then annually 

for up to five years) with clinical examination and mammography surveillance. Ultrasound, 

MRI and CT scanning are provided for patients with suspicion of recurrence.  

Information on date and cause of death was checked with the cancer registration system 

and the Registrar General (Scotland).  Death records were complete until 31st of May 2013 

and that served as the censor date. Cancer specific survival was measured from the date of 

primary surgery until the date of death from breast cancer. 

Exclusion criteria: Patients were excluded from the study if; clinical follow-up data was 

incomplete, tissue blocks were not available or had insufficient tumour tissue as 

determined by the pathologist.  To maximise group homogeneity and to limit the potential 

confounding effects of other tumour types on the analysis in the studies, ductal breast 

cancers only were included.   

Institutional Review Board approval for use of human tissue in this study was given by the 

Research Ethics Committee of the West Glasgow University Hospitals NHS Trust.  
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2.2 Methods  

2.2.1 Use of full-section haematoxylin and eosin slides. 

Full-section H&E slides stained according to standard protocol were retrieved and used to 

assess general peri-tumoural inflammatory infiltrate and tumour necrosis on a high 

definition computer monitor.  H&E sections were also used to assess and review the 

presence of lymphovascular invasion (as described on chapter 4.0), tumour stroma 

percentage (as described on chapter 5.0) and tumour budding (as described on chapter 6.0).  

2.2.1.1 Assessment of general tumour inflammatory infiltrate:  

Briefly, tumours were scored on a 4 point scores based on appearances at the edge of 

tumour invasion.  A score of 0, signified there was no inflammatory cells at the tumour‘s 

invasive margin; score 1, indicated a mild and patchy inflammatory cells; score 2, denoted 

a prominent band-like inflammatory reaction at the invasive margin and score 3, revealed a 

florid cup-like inflammatory infiltrate at the invasive edge with frequent destruction of 

cancer cell islands (Figure 2.1).  

For reproducibility, a total of 60 tumour specimens were scored independently for peri-

tumoural general inflammatory infiltrate by two observers (FG. and ZM) and the 

interobserver intraclass correlation coefficient (ICCC) was 0.96.  FG then scored all 

sections for analysis.  These scores were then subsequently classified as low (score 0 and 1) 

and high (score 2 and 3). 
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Figure  2-1 H&E sections shows scoring of general peri-tumoural inflammatory infiltrate at 

the invasive margin  according to Klintrup–Mäkinen (K-M score). 

K-M=0 no inflammatory cells, K-M=1 mild inflammatory cells, K-M=2 band-like inflammatory 

infiltrate, K-M=3 cup-like inflammatory infiltrate. 10x objective and 100µm scale. 



 

75 

2.2.1.2 Assessment of tumour necrosis 

Assessment of tumour necrosis was performed on H&E scanned sections and was adapted 

from Ikpatt and colleagues (Ikpatt et al., 2002).  The sections were examined at low power 

(×10) for evidence of tumour necrosis.  The extent of necrosis was assessed 

semiquantitatively at high power (×40 magnification) as 0 = absent (only single-cell death 

identifiable); 1 = mild or focal (necrosis in <25% of field); 2 = moderate (necrosis in 25-

50% of field) and 3 = extensive (confluent necrosis in >50% of field) (Figure 2.2).   

A total of 65 tumour specimens were scored independently for tumour necrosis by two 

observers (FG and JJG) blind to patient outcome and the other observer‘s score.  ICCC was 

0.87.  FG then scored the rest of slides for analysis.  Subsequently, these scores were then 

classified into two grades as low (0 and 1) and high (2 and 3). 
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Figure  2-2 Examples of the tumour necrosis grades 

A: absent (none), B: focal (less than 25%), C: moderate (25%–50%) and D: extensive (more than 

50%). Original magnification X20 and 100µm scale. 
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2.2.2 Use of immunohistochemistry and tissue microarray 

Formalin-fixed paraffin-embedded tissue blocks of the primary tumours were retrieved 

from pathology archives of Glasgow Royal Infirmary and Stophill hospital and utilised for 

immunohistochemistry (IHC) staining.  Two consecutive full sections of 2.5 µm thick from 

each block were cut for staining with lymphatic endothelial marker D2-40 and Factor VIII 

as described in chapter 4.0.  

Formalin-fixed paraffin-embedded tissue blocks of the primary tumours were also used to 

construct tissue microarrays (TMAs) utilised for IHC staining of total STAT1, ph-STAT1, 

total STAT3 and ph-STAT3 as described in chapter 7.0.  

TMA construction  

For TMA construction, tumour-rich areas on full H&E stained sections were identified and 

marked by a qualified pathologist (JJG), and were matched to formalin-fixed paraffin-

embedded blocks.  The procedure for construction of TMAs was as previously described 

(Kononen et al. 1998; Tovey et al. 2006).  Three different 0.6mm
2
 cores from each 

carcinoma were punched from a formalin-fixed paraffin-embedded whole section and 

distributed in three pre-prepared holes in three new recipient paraffin array blocks 

(Beecher Instruments, Silver Spring, Maryland, USA) (175 to 188 cores per block).  These 

new blocks can contain a multitude of histospots with known coordinates to allow easy 

linkage to clinicopathological data, and can be sectioned up to numerous times for multiple 

analyses.  Cores of prostate, colon, lung, Liver, Heart, kidney were also included in the 

tissue microarray as controls.   

ER and PR status were assessed on TMA using IHC with Dako (Glostrup, Denmark) ER 

antibody and Leica (Wetzlar, Germany) PR antibody as previously described (Mohammed 
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et al, 2012a), and scored according to the American Society of Clinical Oncology and 

College of American Pathologists guidelines with cut-off value of 1% positive tumour 

nuclei (Hammond et al., 2010).  Her-2 status were assessed on TMA using IHC with 

Hercep test Her-2 antibody (monoclonal rabbit anti-human, DAKO, Glostrup, Denmark) as 

previously described (Mohammed et al, 2012b), and scored as the following: 3+ score was 

regarded as positive; 2+ score was regarded as equivocal, leading to referral for Her-2 

FISH; and 0 and 1+ scores were regarded as negative.  Ki67 proliferation index was 

assessed on TMA using IHC with DAKO anti-Ki67 (Monoclonal mouse anti-human, Ki67 

antigen, DAKO, Glostrup, Denmark) (Mohammed et al, 2012c). 

IHC staining on TMA sections were also previously used for the assessment of 

macrophages, helper and cytotoxic T- lymphocytes, and plasma cells using CD68, CD4, 

CD8 and CD138 antibodies respectively (Mohammed et al, 2013).   

2.2.3 Slide scanning and scoring 

The H&E tumour sections and IHC stained slides were scanned using Hamamatsu 

NanoZoomer Digital Pathology 2.0-HT scanner (Welwyn Garden City, Hertfordshire, UK) 

at objective magnification x20.  Visualization and image analysis assessment was carried 

out using SlidePath Digital Image Hub, version 3.0 and 4.0.1, (SlidePath, Leica 

Biosystems, Milton Keynes, UK) which is a secure, web-enabled digital slide management 

system.  
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Chapter 3 The role of lymphatic and blood vessel invasion in 

predicting survival and methods of detection in patients with 

invasive ductal breast cancer 

3.1 Introduction  

The process by which breast cancer kills patients is primarily through progression, in 

particular metastatic disease.  Approximately 10% of newly diagnosed breast cancer 

patients have locally advanced and/or metastatic disease at the time of presentation (Li et 

al., 2003b; Sant, 2001).  More than 40% of node negative carcinoma patients will 

eventually experience later recurrence and/or metastasis (EBCTCG, 1998). 

Metastatic breast carcinoma exhibits a great deal of variability in its clinical presentation 

and behaviour.  The prognosis is generally poor with a median overall survival of 

approximately 2 to 3 years (Ali et al., 2003; Bernard-Marty et al., 2004).  In some patients, 

depending on the site of metastasis and treatment given, survival may range from a few 

months to several years (Insa et al., 1999; Dufresne et al., 2008).  However, over period of 

time these metastatic cells residing in distant organs often relapse, corrupt the local 

microenvironment and acquire the ability to develop into macro-metastases (Horimoto et 

al., 2012).  

One of the very early steps of metastatic spread is penetration of tumour cells into 

lymphatic and/or blood vessels in and around the primary tumour.  The prognostic 

significance of lymphovascular invasion (LBVI) has been described more than four 

decades ago (Teel, 1964).  Since then, several independent studies have investigated the 

prognostic significance of LBVI in breast cancer in both lymph node negative and positive 

tumours.  

In 1999, the College of American Pathologists (CAP) consensus accepted peri-tumoural 

LBVI as prognostic factor of local failure and reduced overall survival in breast cancer, 



 Chapter 3  

80 

 

and recommended that vascular invasion should be assessed in peri-tumoural breast tissue.  

However, not all commentators agreed on its clinical importance (Fitzgibbons et al., 1999).  

At the 9
th

 St Gallen meeting in January 2005, LBVI accepted as sufficiently reliable to 

define risk category of relapse and death form the disease in patients with node negative 

breast cancer.  The consensus from the meeting was that the presence of LBVI defined 

intermediate risk and its absence defined low risk for node negative disease.  The 

importance of LBVI in patients with node positive cancers was considered uncertain, and 

more studies were still required (Goldhirsch., 2005).  In addition, extensive peri-tumoural 

LBVI was categorised, at the 11
th

 St Gallen meeting (2009), to stratify patients with early 

breast cancer for chemotherapy induction (Goldhirsch., 2009).   

Based on the CAP consensus (1999) and both St Gallen meetings, there was no agreement 

on the need for specific stains to identify vascular spaces or the necessity to distinguish 

LVI from BVI (Fitzgibbons et al., 1999; Goldhirsch., 2005; Goldhirsch., 2009).  However, 

one of the major challenges in the field has been to distinguish LVI and BVI on H&E 

stained sections from retraction artifacts caused by tissue handling and fixation (Saigo and 

Rosen, 1987; Bettelheim et al., 1984; Van den Eynden., 2006; Hoda et al., 2006).  

Therefore, the aim of the present systematic review was to examine the prognostic 

significance of LVI and BVI separately and together (LBVI), and how they are detected. 
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3.2 Materials and Methods 

The review of published literature was undertaken according to a pre-defined protocol.  

The primary area of interest was the relationship between the lymphovascular invasion 

(either general, lymphatic vessel invasion or blood vessel invasion) and outcome (cancer 

specific, relapse free and overall survival) in patients with primary operable breast cancer.  

A literature search, using appropriate key words (breast cancer, lymphovascular / 

lymphatic / blood vessel invasion and survival) was made of the US National Library of 

Medicine (MEDLINE), the Excerpta Medica database (EMBASE), the Cochrane Database 

of Systematic Reviews (CDSR) and the Database of Abstracts and Reviews (DARE) for 

articles reporting the prognostic value of lymphovascular invasion (May 1964 to August 

2012). 

From this search, the titles and abstracts were examined and if relevant, the full text papers 

were obtained.  Studies in which sample size was ≤ 100 patients, median/mean follow-up 

was not reported or less than 5 years, and studies not available in English language were 

excluded. Where there were duplicate publications of the same patient dataset from same 

centre were only the most recent study was considered.  The bibliographies of all included 

articles were subsequently hand searched to identify additional studies.  It was taken that 

vascular invasion was ascertained in H&E sections if no other detection method was 

specified.  All papers included in the review were examined by FG.  For each group of 

studies, a weighted average for the invasion rate using H&E, H&E and/or classical staining 

and immunostaining was calculated by multiplying the invasion rate reported in the study 

by the number of patients in the study.  The product of this multiplication was added to the 

products of other studies in the group and the total was divided by the total number of all 

the patients in the group studies. 
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3.3 Results 

3.3.1 Study selection process 

The study selection process is summarised in Figure 3.1.  The initial literature search 

returned 227 articles of potential interest.  After title and abstract review, full text was 

obtained for 129 studies.  Hand searching bibliographies identified 25 additional studies.  

Of these, 95 were excluded (32 did not examine the prognostic value of lymphovascular 

invasion, 7 were review articles, 24 had sample size ≤ 100 patients, 13 had follow-up less 

than 5 years, 8 were not available in English and 11 were multiple publications).  A total of 

59 independent studies (62,514 patients) were included in the present review (Figure 3.1). 



 

83 

 

                  Figure  3-1 Flow chart depicting the study selection process 
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3.3.2 The prognostic value of general lymphovascular invasion (LBVI) in 

primary operable breast cancer 

There were 32 published studies (Table 3.1), comprising data on 43,311 patients, that have 

reported the presence of LBVI was associated with an unfavorable outcome, primarily 

relapse free and overall survival, in primary breast cancer (Bettelheim et al., 1984; Kolliase 

et al., 1990; Lee et al., 1990; Pinder et al., 1994; Magee et al., 1996; de Mascarel et al., 

1998; van Tienhoven et al., 1999; McCready et al., 2000; Jmor et al., 2002; Millis et al., 

2002; Woo et al., 2002; Kuru et al., 2003; Neri et al., 2005; Shen et al., 2005; Trudeau et 

al., 2005; Truong et al., 2005; Dinshaw et al., 2006; Lee et al., 2006a; Beinart et al., 2007; 

Mohammed et al., 2007; Grasic-Kuhar et al., 2008; Ejlertsen et al., 2009; Vial et al., 2009; 

Ragage et al., 2010; Thike et al., 2010; Viale et al., 2010; Panet-Raymond et al., 2011; 

Ovcaricek et al., 2011; Sabatier et al., 2011; Yi et al., 2011; Freedman et al., 2012; Rakha 

et al., 2012).  

The earliest report of this group observed an association between LBVI and reduced 

overall survival in node negative and node positive patients that persisted after adjustment 

for T stage and lymph node status (Bettelheim et al., 1984).     

Seventeen of these studies, comprising data on 30,462 patients, reported prognostic value 

of the LBVI independent of T stage and lymph node status (Pinder et al., 1994; Van 

Tienhoven et al., 1999; McCready et al., 2000; Jmor et al., 2002; Woo et al., 2002; Shen et 

al., 2005; Dinshaw et al., 2006; Beinart et al., 2007; Grasic-Kuhar et al., 2008; Ejlertsen et 

al., 2009; Viale et al., 2009; Thike et al., 2010; Mohammed et al., 2011; Panet-Raymond et 

al., 2011; Sabatier et al., 2011; Yi et al., 2011; Rakha et al., 2012). 

Ten studies reported prognostic value of the LBVI in patients with node negative breast 

cancer (Lee et al., 1990; Magee et al., 1996; de Mascarel et al., 1998; Millis et al., 2002; 
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Kuru et al., 2003; Trudeau et al., 2005; Truong et al., 2005; Lee et al., 2006; Viale et al., 

2010; Rakha et al., 2012).  

One report of these showed a trend with overall survival (P=0.07) in multivariate analysis 

(Millis et al., 2002).  Two studies reported prognostic value of the LBVI in node positive 

breast cancer (Neri et al., 2005; Ragage et al., 2010) independent of T stage, grade, and 

number of involved lymph nodes.  Four studies reported prognostic value of the LBVI in 

triple negative disease (Ovcaricek et al., 2011) independent of T stage and lymph node 

status (Viale et al., 2009; Thike et al., 2010; Sabatier et al., 2011). 

There were two published studies (Table 3.1), comprising data on 570 patients, reported 

that the presence of LBVI was not associated with overall or relapse free survival in 

primary breast cancer (Kim et al., 1998; Camp et al., 2000) though both studies were of 

small sample size.   

The majority of the studies (32/34) reported that LBVI was a predictor of poor overall, 

relapse free or cancer specific survival.  Most of the studies (32/34) detected the presence 

of the LBVI, primarily in peri-tumoural area by reviewing H&E stained sections.  Only 

2/34 of these reports used immunostaining with a lymphatic marker (D2-40/podoplanin) 

and blood vascular markers (CD34 and CD31) and both were independent predictors of 

outcome (Table 3.1).  The overall average of LBVI rate was (24%) using H&E and (35%) 

using immunostaining.  The rate of LBVI, as detected by H&E was variable (9-50%), and 

less variable using immunostaining (32-41%).  This would suggest that LBVI using 

immunostaining is more reliable than that using nonspecific staining.  

In conclusion, there is good evidence from the majority of studies that the presence of 

LBVI predicts poorer survival independent of T stage and lymph node status in patients 

with primary breast cancer.  In particular, LBVI provides independent prognostic 
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information in subgroup of patients with node negative tumors.  Most of these studies were 

conducted on a large number of patients and recent studies tended to use specific staining.  

Giving that the weighted average of LBVI rate, using immunostaining, was higher and the 

range was narrower, immunostaining appears to be a more reliable approach to identify 

LBVI in patients with primary operable breast cancer. 
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Table  3-1 General lymphovasular invasion (LBVI) in patients with primary operable breast cancer 

Author 
Patients n. 

(LBVI %) 

Follow-up 

months 
LN status Location Technique Comment 

Bettelheim et al., 1984 232 (50) 65 mixed Peri-tumoural H&E Predicts poorer survival in all patient, node 

negative but not node positive patients 

Lee et al., 1990 221 (24) 120 -ve LN Peri-tumoural H&E Predicts poorer OS and RFS independently  

Pinder et al., 1994 709 (23) 204 mixed All section H&E Predicts poorer OS independently  

Magee et al., 1996 708 (14) 96 -ve LN N/D H&E Predicts poorer OS independently 

de Mascarel et al., 1998 1320 (20) 103 -ve LN Peri-tumoural H&E Predicts poorer OS and RFS independently 

Kim et al., 1998 280 (48) 96 mixed N/D H&E No significant association with RFS  

Kollias et al., 1999 318 (N/D) 120 mixed All section H&E Predicts poorer OS in small size tumour ≤1 cm 

van Tienhoven et al., 

1999 

133 (42) 74 mixed N/D H&E Predicts poorer OS independently 
 

Camp et al., 2000 290 (9) 103 -ve LN N/D H&E No significant association with OS 
 

McCready et al., 2000 156 (35) 59 mixed N/D H&E Predicts poorer RFS independently
 

Jmor et al., 2002 113 (35) 60 mixed N/D H&E Predicts poorer OS independently in younger 

women ≤35yr   

Millis et al., 2002 477 (19) 226 -ve LN N/D H&E Predicts poorer OS  

Woo et al., 2002 1258 (28) 144 mixed Peri-tumoural H&E Predicts poorer OS independently 

Kuru et al., 2003 384 (11) 70 -ve LN Peri-tumoural H&E Predicts poorer OS and RFS independently 

Neri et al., 2005 376 (50) 103 +ve LN Peri-tumoural H&E Predicts poorer OS and RFS independently 

Shen et al., 2005 120 (23) 59 mixed N/D H&E Predicts poorer CSS after ipsilateral tumour 

recurrence independently 
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Truong et al., 2005 763 (28) 84 -ve LN Peri-tumoural H&E Predicts poorer OS independently 

Trudeau et al., 2005  415 (26) 96 -ve LN Peri-tumoural H&E Predicts poorer CSS and RFS independently 

Dinshaw et al.,2006 1022 (27) 53 mixed N/D H&E Predicts poorer overall survival independently 

Lee et al., 2006 2760 (19) 82 -ve LN Peri-tumoural H&E Predicts poorer CSS and RFS independently 

Beinart et al., 2007 771 (12) 60 mixed N/D H&E Predicts poorer OS independently in patients with 

bilateral cancer  

Mohammed et al., 2007 177 

H&E (19) 

IHC (32): 

LVI (31) 

BVI (1) 

96 mixed Intra-tumoural 

Peri-tumoural 

CD34 

CD31 

D2-40 

Predicts poorer OS and RFS independently 

Grasic-Kuhar et al., 2008 1035 (15) 204 mixed Peri-tumoural H&E Predicts poorer OS and RFS  independently 

Ejlertsen et al., 2009 16121 (15) 96 OS 

72 RFS 

mixed Peri-tumoural H&E, D2-40 

CD34, CD31 

Predicts poorer OS and RFS independently 

Viale et al., 2009 284 (24) 204 mixed Peri-tumoural H&E Predicts poorer OS independently  in triple 

negative disease  

Ragage et al., 2010 374 (46) 126 +ve LN Peri-tumoural H&E Predicts poorer RFS independently in patients 

with Her-2-ve/HR+ve tumour  

Thike et al., 2010 653 (45) 84 mixed N/D H&E Predicts poorer OS independently in triple 

negative disease 

Viale et al., 2010 2754 (23) 108 -ve LN Peri-tumoural H&E Predicts poorer RFS 

Ovcaricek et al., 2011 269 (25) 71 mixed N/D H&E Predicts poorer OS and RFS in triple negative 

disease  
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Panet-Raymond et al., 

2011 

269 (22) 137 mixed N/D H&E Predicts poorer overall and CSS independently 

after ipsilateral breast tumour recurrence  

Sabatier et al., 2011 101 (41) 60 mixed Peri-tumoural D2-40, CD31 Predicts poorer RFS independently in triple 

negative disease  

Yi et al., 2011 3728 (N/D) 78 mixed N/D H&E Predicts poorer CSS independently 

Freedman et al., 2012 1,478 (29) 68 mixed N/D H&E Predicts poorer OS 

Rakha et al., 2012 3812 (30) 85 mixed Peri-tumoural H&E Predicts poorer CSS and RFS independently 

Follow-up (mean/median), N/D: not described, RFS relapse free survival, OS overall survival, Her-2 human epidermal growth factor receptor-2, HR hormonal receptor, CSS cancer specific 

survival. 



 

90 

3.3.3 The prognostic value of lymphatic vessel invasion (LVI) in primary 

operable breast cancer 

There were nineteen published studies (Table 3.2), comprising data on 12, 893 patients, 

reported that the presence of LVI was associated with reduced survival, primarily relapse 

free survival, in primary breast cancer (Clayton, 1991; Clemente et al., 1992; Neville, 1992; 

Gasparini 1994; Genta et al., 1994; Nixon et al., 1994; Lauria et al., 1995; D'Eredita et al., 

2001; Fisher et al., 2001; Kato et al., 2003; Schoppmann  et al., 2004; Dinshaw et al., 2005; 

Arnaout-Alkarain et al., 2007; Yamauchi et al., 2007; Gudlaugsson et al., 2011; 

Kurebayashi et al., 2012; Tezuka et al., 2007; Mohammed et al., 2011; Matsunuma et al., 

2012). 

Six of these studies reported prognostic value of LVI independent of T stage and lymph 

node status (Nixon et al., 1994; Lauria et al., 1995; Schoppmann  et al., 2004; Dinshaw et 

al., 2005; Yamauchi et al., 2007; Kurebayashi et al., 2012).  One of these studies examined 

the prognostic significance of LVI in three different areas (intra-tumoural area, non-

tumoural area and advanced tumoural area) using H&E and D2-40 staining, reported that 

LVI predicted poorer relapse free survival independently regardless of the area examined 

or stain used, and that number of LVI identified gradually increased from the intra-

tumoural area to the non-tumoural area (Yamauchi et al., 2007).   

Six studies reported prognostic value of the LVI in patients with node negative breast 

cancer (Clayton, 1991; Neville, 1992; Lauria et al., 1995; Arnaout-Alkarain et al., 2007; 

Gudlaugsson et al., 2011; Mohammed et al., 2011) five of them were independent of T 

stage (Clayton, 1991; Neville, 1992; Lauria et al., 1995; Gudlaugsson et al., 2011; 

Mohammed et al., 2011).   

Two studies, comprising data on 1056 patients, reported that the presence of LVI was not 

associated with cancer specific survival in primary breast cancer (Rosen et al., 1991; 
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Saimura et al., 1999), both studies used homogenous group of patients with node negative 

tumours though sample size were relatively small.  

The majority of the studies (19/21) reported that LVI was a predictor of poor relapse free, 

overall or cancer specific survival.  Most of these studies (15/21) detected the presence of 

LVI in peri-tumural area using H&E stained sections. Six recent studies used 

immunostaining, four of which reported independent prognostic value (Table. 3.4).  The 

overall weighted average of LVI was 33% using H&E and 25% using immunostaining. 

The rate of LVI using H&E was wide ranging from 10-49% and was narrower using 

immunostaining ranging from 21-42%. 

In conclusion, there is good evidence from the majority of studies (19/21) that the presence 

of LVI predicted poorer outcomes in patients with primary operable breast cancer.  Further, 

LVI provides independent prognostic information in subgroup of patients with node 

negative breast cancer.  Half of the studies were conducted on relatively large number of 

patients and reported a high rate of LVI.  Giving that the weighted average of LVI was 

similar using H&E and IHC and that the rate of LVI was narrower using immunostaining, 

immunostaining appears to be more reliable approach to identify LVI in patients with 

primary operable breast cancer. 
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Table  3-2 Lymphatic vessel invasion (LVI) in primary operable breast cancer 

Author Patients n. 

(LVI %) 

Follow up 

months 

Lymph node 

status 

Location Technique Comment 

Clayton, 1991 378 (20) 182 -ve LN Peri-tumoural H&E Predicts poor CSS independently 

Rosen et al., 1991 293 (12) 238 -ve LN N/D H&E No significant association with 

survival 

Clemente et al., 1992  506 66 -ve LN Peri-tumoural H&E Predicts poorer OS and RFS in 

both routine and re-viewed reports 

Neville et al., (1992) 1203 (42) 60 -ve LN Peri-tumoural H&E Predicts poorer RFS independently  

Gasparini et al., (1994)  254 (10) 62 -ve LN Peri-tumoural H&E Predicts poorer RFS independently  

Genta et al., (1994)  318 (49) 102 mixed Peri-tumoural H&E Predicts poorer OS and RFS 

independently 

Nixon et al., (1994) 1398 (29) 99 mixed N/D H&E Predicts poorer RFS independently  

Lauria et al., (1995) 1408 (34) 76 mixed Peri-tumoural H&E Predicts increased risk of death in 

both node negative and positive 

subgroups 

Saimura et al., (1999) 763 (35) 74 -ve LN N/D H&E No significant association with 

survival 

D'Eredita et al., (2001) 402 (15) 120-192 mixed Peri-tumoural H&E Predicts poorer OS 

Fisher et al., (2001) 1036 (N/D) 180 mixed N/D H&E Predicts poorer OS  

Kato et al., (2003) 509 (23) 108 mixed N/D H&E Predicts poorer OS and RFS 

Schoppmann et al., 

(2004) 

374 (28) 268 mixed Intra-tumoural 

Invasive area 

D2-40 Predicts poorer OS and RFS 

independently  

Dinshaw et al., (2005) 1022 (27) 60 mixed All section H&E Predicts poorer OS and RFS 
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independently 

Arnaout-Alkarain et al., 

(2007) 

303 

D2-40 (27) H&E (17.5) 

89 -ve LN Invasive area H&E 

D2-40, CD31 

Predicts poorer OS 

Tezuka et al., (2007) 131 

D2-40 (42), H&E (51) 

69 mixed Peri-tumoural Intra-

tumoural 

H&E, D2-40, 

CD34 

Predicts poorer RFS 

Yamauchi et al., (2007) 151 

H&E: 

Intra-tumoural area (13) 

Non tumour area (34) 

Advance tumour area (23) 

D2-40: 

Intra-tumoural area (20) Non 

tumour area (46) 

Advance tumour area (26) 

101 mixed Intra-tumoural 

Non tumour area 

Advance tumour area 

H&E,D2-40 Predicts poorer RFS independently  

Gudlaugsson et al., 

(2011)  

240 (21) 117 -ve LN Intra-tumoural 

Peri-tumoural 

D2-40, p63 D2-40+ve/p63-ve predicts poorer 

OS independently when only 

combined with high PPH3 in older 

women   

Mohammed et al., (2011) 1005 (21) 107 -ve LN Intra-tumoural 

Peri-tumoural 

CD34, CD31, 

D2-40 

Predicts poorer OS and RFS 

independently 

Kurebayashi et al., 

(2012) 

261 (3) 

≥4 LVI/specimen 

99 mixed Peri-tumoural H&E Predicts poorer RFS and CSS 

particularly with PR -ve and high 

Ki67  
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Matsunuma et al., (2012) 1994(45) All 

(30) extensive 

112 +ve LN N/D H&E Predicts poorer RFS independently  

Follow-up (Mean/median), N/D: not described, CSS cancer specific survival, OS overall survival, RFS relapse free survival, PPH3 phosphohistone H3, PR progesterone receptor, Ki67 

tumour proliferation index.   
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3.3.4 The prognostic value of blood vessel invasion (BVI) in primary 

operable breast cancer 

There were seven published studies (Table 3.3), comprising data on 4073 patients, reported 

that the presence of BVI was associated with reduced survival in patients with primary 

breast cancer (Friedell et al., 1965; Kister et al., 1966; Ruiz et al., 1973; Sampat et al., 

1977; Lauria et al., 1995; Fisher et al., 2001; Kato et al., 2003).  Two of these studies 

reported that the presence of BVI predicted poorer survival with long-term follow up 

independent of the T stage and lymph node status (Fisher et al., 2001; Kato et al., 2003).  A 

recent study of more than one thousand patients with node negative breast cancer, using 

vascular markers CD34 and CD31, reported BVI in only 7 cases (<1%), but there were no 

specific features associated with the characterisation of these cases (Mohammed et al., 

2011). 

Two studies (Table 3.3), comprising data on 611 patients, reported that the presence of 

BVI was not associated with survival in patients with primary breast cancer (Rosen et al., 

1991; Genta et al., 1994).  Though the first study used homogenous group of patients with 

node negative tumours, both studies were relatively small.  

Majority of the studies (8/10) detected the presence of BVI using H&E and/or classical 

staining (Verhoeff technique, Weigert‘s resorcin fuchsin, van Gieson) for elastic fibers 

surrounding blood vessels.  Two recent studies (2/10) used immunostaining.  One of these 

reported that BVI was an independent predictor of outcome (Table 3.4).  The earliest 

reports of these studies reported prognostic value of BVI independent of nodal status using 

univariate analysis and small sample size.  The overall weighted average of the BVI rate 

was relatively similar using H&E and/or classical staining (16%) and immunostaining 

(10%).  The rate of BVI using H&E and/or classical staining was variable ranging from (4-

46%) and (1-29%) using immunostaining.  In conclusion, the prognostic value of the 
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presence of BVI and the best method of detection in primary operable breast cancer 

remains unclear.  
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Table  3-3 Blood vessels invasion (BVI) in patients with primary operable breast cancer 

Author 
Patients n. 

(BVI %) 

Follow up 

months 

Lymph node 

status 
Location Technique Comment 

Friedell et al (1965) 153 (46) 60 mixed N/D Verhoeff technique Predicts poorer 5-yr survival rate in 

presence or absence of +ve LN  

Kister et al., (1966) 328 (21) 120 mixed N/D  Verhoeff technique Predicts poorer OS in the presence 

but not in the absence of +ve LN 

Ruiz et al., (1973) 394 (46) 60 mixed N/D Verhoeff technique Predicts poorer 5-yr survival rate in 

LN –ve disease 

Sampat et al., (1977) 242 (N/D) 60 mixed N/D H&E  

Weigert‘s resorcin fuchsin  

Predicts poorer survival in presence 

or absence of +ve LN  

Rosen et al., (1991) 293 (19) 238 -ve LN N/D van Gieson and modified 

Hart's stains 

No significant association with 

survival 

Genta et al., (1994) 318 (14) 102 mixed Pri-tumoural H&E No significant association with 

survival  

Lauria et al., (1995) 1408 (4) 76 mixed Pri-tumoural H&E Predicts poorer OS 

Fisher et al., (2001) 1039 (N/D) 180 mixed N/D H&E Predicts poorer OS independently 

Kato et al., (2003) 509 (29) 108 mixed N/D Factor VIII, Elastica Predicts poorer OS and RFS 

independently 

Mohammed et al., 

(2011) 

1005 (<1) 107 -ve LN  Intra-tumoural   

Peri-tumoural  

CD34, CD31 

D2-40 

Analysis was not possible 

Follow-up (Mean/median), ND: not described, OS overall survival, CSS cancer specific survival, RFS relapse free survival, RR relative risk. 
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Table  3-4 Stains reporting method of detection of LBVI, LVI and BVI and their prognostic value 

 Stain Studies (n) Prognostic 

studies (n) 

Non prognostic 

studies (n) 

Total 

General Lymphovascular 

invasion 

H&E 32 30 2 34 

D2-40/Podoplanin 

CD34 & CD31 

2 2  

Lymphatic vessel invasion H&E 15 13 2 21 

Podoplanin/D2-40 6 6  

Blood vessel invasion  H&E and/or Classical stains 

(Verhoeff technique, 

Weigert‘s resorcin fuchsin, 

van Gieson) 

8 6 2 10 

Factor VIII & Elastica 1 1  

CD34 & CD31 
1 Analysis was not 

possible 
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3.4 Discussion  

From the present review, there is robust evidence that general LBVI and LVI are powerful 

prognostic factors of poorer survival in patients with primary operable breast cancer.  Also, 

immunostaining appears to detect LBVI and LVI more reliably than H&E.  However, the 

prognostic role of BVI and the optimal detection method, when specifically examined, 

remains unclear.  This would suggest that general LBVI is mostly lymphatic vessel 

invasion rather than blood vessel invasion and that this is the main rout of breast cancer 

spread. 

Further, the present review provides robust evidence that the presence of LBVI and LVI is 

independent high risk factor in patients with node negative breast cancer.  This prognostic 

effect would suggest that the process of lymphovascular invasion or lymphatic vessel 

invasion, in itself, is sufficiently valuable to be incorporated into the existing staging 

systems.  However, reliable standardised methods are required for optimal risk assessment. 

The prognostic value of LBVI has been reported using H&E staining in the majority of 

studies.  These studies have not discriminated between the types of vessel invasion whether 

lymphatic or blood vessel and have inconsistently used the terms vascular or 

lymphovascular invasion.  For example, the American Joint Committee on Cancer (AJCC) 

staging guidelines (2005) has used the term lymphovascular invasion to indicate both 

lymphatic and blood vessel invasion (TNM Atlas, 2005).  This clearly may be confusing as 

these terms may indicate involvement of lymphatic or lymphatic and blood vessels.  This is 

in large part due to the routine use of H&E slides to assess lymphovascular invasion.  H&E 

approach has lower rate of detection in some studies as low as 9%.  This could be, in part, 

attributed to the inter-observer variability (Gilchrist et al., 1982) or the difficulty to 

distinguish lymphatic from blood vessels especially for small collapsed vessels or vessels 

completely filled with tumour cells.  Another challenge, long recognised, on H&E sections 
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is how to distinguish lymphatic and blood vessels from stromal retraction artifacts caused 

by tissue handling and fixation (Saigo and Rosen, 1987; Bettelheim et al., 1984; Van den 

Eynden., 2006; Hoda et al., 2006).  Although AJCC mandates distinguishing between 

lymphatic and blood vessel invasion, these guidelines lack a routine standardised and 

objective pathological assessment method to reliably differentiate them. 

There was a substantial improvement in consistency in reporting the rate of breast cancer 

cases with LBVI and LVI using immunostaining (32-41% and 21-42%, respectively).  

Such improvement has been documented with lymphatic (e.g. D2-40 or podoplanin) and 

blood vessel (e.g. CD34 and CD31) endothelial markers.  Moreover, these markers do not 

only discriminate retraction artifacts from LVI and BVI but also distinguish between 

lymphatic vessels and blood vessels, allowing specifically study of LVI and BVI (Saigo 

and Rosen, 1987; Schoppmann et al., 2001; Mohammed et al., 2009; Van den Eynden., 

2006). 

In theory, invasion into lymphatic vessels and blood vessels may lead to different 

consequences: LVI may be predictive of lymph node metastasis, whereas BVI may be the 

source of systematic spread.  Indeed, the presence of LVI has been correlated with 

presence of lymph node involvement, local recurrence and poor survival in breast cancer 

(Rosen et al., 1981a; Lee et al., 1990; Rosen et al., 1991; Ghadha et al., 1994; Leitner et al., 

1995; Mohammed et al., 2011).  The impact of LVI is mainly seen in patients with node 

negative breast cancer, therefore, identification of LVI particularly using D2-40 could 

objectively identify node negative patients at higher risk of recurrence who might benefit 

from adjuvant chemotherapy.  BVI is also associated with metastatic spread.  Early studies 

correlated BVI with a high rate of recurrence and metastasis (Sampat, et al., 1977; Rosen et 

al., 1981b; Weigand et al., 1982).  However, further work is required to confirm such 

findings using modern staining techniques. 
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Since BVI correlates with the occurrence of systematic spread, and patients without BVI 

have better recurrence free and overall survival (Lauria et al., 1995; Fisher et al., 2001; 

Kato et al., 2003), identifying BVI objectively may be an important step forward in 

identifying patients at higher risk of systemic spread, including patients with triple 

negative cancers.  However, it is clear from the present review that BVI is currently 

assessed inconsistently (4%-46%) using H&E or classical histostaining.  In terms of 

immunostaining use to detect BVI, there are few studies have attempted to identify BVI 

using such approach.  Kato and colleagues used Factor VIII in addition to Elastica van 

Gieson stain and reported high rate of BVI up to 29% (Kato et al., 2003).  Another study 

using D2-40 and CD34 to distinguish between LVI and BVI reported higher rate of BVI, 

36% (Van den Eynden., 2006).  In contrast, more recent studies by Mohammed and 

colleagues reported as low incidence of BVI as 1% using D2-40, CD34 and CD31 

(Mohammed et al., 2007; Mohammed et al., 2011).  As Factor VIII has been found to be 

occasionally reactive to lymphatic endothelium, the high rate in Kato et al., study may 

result from LVI being counted as BVI.  Van den Eynden and colleagues used D2-40 to 

distinguish LVI however, CD34 has been found reactive to stromal cell and connective 

tissue surrounding tumour nest that may give false impression of BVI.  It remains to be 

determined whether the introduction of immunostaining for BVI will improve prediction of 

outcome in patients with primary operable breast cancer.   
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3.5 Summary  

To date, numerous studies have examined the prognostic role of general LBVI, LVI and 

BVI in primary operable breast cancer.  The majority of studies (49/59) used H&E and 

classical histochemistry to identify LVI and BVI.  Only 10 recent studies used 

immunostaining of endothelium lining lymphatic and blood vessels and were able to show 

clear differences between LVI and BVI.   

Although, most of the studies included in the present review used H&E to identify 

lymphatic and blood vessels that may be optimal, this reflects current practice in most 

pathology departments.  Thus, the present review provides clear information about the 

method of detection of LVI and BVI and how these methods influence the clinical 

outcomes. 

The present review clearly indicates that the IHC technique with appropriate antibodies 

facilitates the objective assessment of LVI and BVI in patients with primary operable 

breast cancer.  Therefore, future work should see the application of this approach to the 

routine clinical pathology assessment of these patients. 
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Chapter 4 Immunohistochemical detection improves the 

prognostic value of lymphatic and blood vessel invasion in 

invasive ductal breast cancer  

4.1 Introduction 

Breast cancer is the most frequently diagnosed malignancy among women and the majority 

of patients present with early stage disease.  Many patients with node negative tumours are 

at high risk of local and/or distant metastasis and would benefit from adjuvant systemic 

therapy.  Lymphatic and blood vessel invasion are of prognostic significance and is 

primarily used to make decisions for lymph node negative patients with borderline tumour 

sizes (Cianfrocca and Goldstein, 2004).  Lymphovascular invasion shows a clear relation 

with nodal status (Pinder et al., 1994; Lauria et al., 1995; Mohammed et al., 2007; 

Ejlertsen et al., 2009; Rakha et al., 2012).  In node negative breast cancer, LBVI has been 

found to be associated with local recurrence (Pinder et al., 1994; Veronesi et al., 1995; 

Sandquist et al., 2000; Voogd et al., 2001, Mohammed et al., 2011), distant metastasis and 

poor survival (Lee et al., 2006a; Trudeau et al., 2005; Mohammed et al., 2011).  Node 

negative patients with positive LBVI had more than 30% recurrence rate (Neville et al., 

1992) and higher breast cancer mortality (53%) compared with patients with no 

lymphovascular invasion (29%) (Lee et al., 2006a).   

10-20% of breast cancer is basal like with the majority being triple negative tumours 

(negative for ER, PR and Her-2 overexpression).  This aggressive subtype is more likely to 

be associated with younger age, higher grade and advanced tumour stage with poor 

survival (Perou et al., 2000; Sørlie et al., 2001; Carey et al., 2006; Rakha et al., 2006; 

Bauer et al., 2007).  Currently, there are no specific treatment guidelines for triple negative 

breast cancer (Reis-Filho and Tutt, 2008). In addition, neither currently used 

clinicopathological factors nor molecular profiling techniques are able to subdivide this 
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subgroup of patients with respect to prognosis (Sotiriou and Pusztai, 2009; Fan et al., 2006, 

Fulford et al., 2006). 

Lymphovascular invasion including lymphatic and blood vessel invasion is an important 

prognostic factor that stratifies risk of local failure and help decisions about systemic 

therapy.  Numerous studies have reported that LBVI and LVI are powerful prognostic 

factors of poorer survival in patients with early breast cancer using both H&E and IHC 

approaches (chapter 3.0).  While immunohistochemistry (IHC) appears more reliable to 

detect LBVI and LVI than H&E, the prognostic role of BVI and the optimal detection 

methods remain unclear (chapter 3.0).  

Therefore, the aim of the present study was to examine the prognostic value of different 

assessment methods of lymphovascular invasion in patients with invasive ductal breast 

cancers, and in particular node negative and triple negative diseases. 
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4.2 Patients and methods  

4.2.1 Patients  

360 patients with primary operable invasive ductal breast cancer whose samples were 

successfully stained for D2-40 and FVIII from patients described in section 2.1 were 

included in this study.   

4.2.2 Methods  

Lymphovascular invasion was assessed as part of the routine pathological work-up at the 

pathology department using H&E sections.  The assessment of ER, PR and Her-2 was 

performed as previously described in sections 2.2.2.  

4.2.2.1 Immunohistochemistry of D2-40 and FVIII 

For visualization of lymphatic and blood vessels, 2 consecutive samples of 2.5 µm thick 

sections from each block (one block/case) were stained for the lymphatic endothelial 

marker D2-40 (Covance, Monoclonal Antibody, SIG-3730, USA) diluted 1:100 and Factor 

VIII (Mouse Monoclonal Antibody, NCL-L-Vwf, Leica, Newcastle, UK) diluted 1:100.  

Sections were dewaxed in xylene and rehydrated through descending concentrations of 

ethanol.  For antigen retrieval of Factor VIII, sections were microwaved for 14 minutes in 

sodium citrate buffer (pH 6).  Endogenous hydrogen peroxidase activity was blocked with 

3% H2O2 for 15 minutes.  Non-specific binding was blocked by incubation with 10% 

horse serum for 30 minutes.  Sections were subsequently incubated with the respective 

primary antibody; 60 minutes at room temperature for D2-40 and 30 minutes at 25ºC for 

Factor VIII.  Sites of binding were detected using the Envision technique (Dako, code 

K5007) and with 3-30 diaminobenzidine (Vector, code SK 4001, Burlingame, CA, USA), 

as chromogenic substrate, according to the manufacturer‘s instruction. Slides were 

counterstained with haematoxylin and were dehydrated and mounted with DPX.  Two full 
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sections of tonsil tissue were used as positive and negative controls for each antibody.  The 

procedure as above was applied for positive controls. For negative controls, primary 

antibodies were omitted. 

4.2.2.2 Slide scanning and assessment 

Routine H&E sections, D2-40 and Factor VIII stained sections for the 360 patients were 

scanned at objective magnification x20 as previously described in Section 2.2.3.  

Assessment of LBVIH&E, LVID2-40 and BVIFactorVIII were carried out on a computer monitor 

using the Slidepath Tissue IA system version 3.0 (Slidepath, Leica Biosystems).  

LBVI on H&E sections (LBVIH&E) was reviewed centrally and blinded to the pathology 

report.  For the assessment of LVID2-40 and BVIFVIII, serial sections similar to that of H&E 

sections, from each block were stained with D2-40 and Factor VIII.  LBVIH&E, LVID2-40 

and BVIFVIII were identified at peri-tumoural, invasive front or intra-tumoural areas.  

LBVIH&E was identified using criteria previously described (Davis et al., 1985), as the 

presence of tumour cell emboli within a vessel space, which was identified by associated 

fibrin clot and/or an endothelial cell lining.  LVID2-40 was identified by tumour cells within 

D2-40-positively stained vessels, while BVIFVIII was counted only when tumour cells were 

identified in D2-40-negative, Factor VIII-positive vessels.  A total of 30% of H&E and 

IHC stained sections for LBVI, LVI and BVI were independently scored by two observers 

(FG, ZM) blinded to patient outcome and the other observer‘s score.  The inter class 

correlation coefficient (ICCC) of ≥0.84 was obtained for H&E, D2-40 and Factor VIII 

indicated excellent agreement, and FG scored all the slides and this data was used in the 

analysis. 
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4.2.2.3 Statistical analysis    

Consistency between the observers was analysed using the ICCC. Interrelationships 

between variables were assessed using contingency table analysis with X
2
 test for trend as 

appropriate. Univariate and multivariate survival analysis were performed using the 

Kaplan-Meier analysis and Cox proportional hazards model with a stepwise backward 

elimination to derive a final model of variables with a significant independent relationship 

with survival. All statistical analyses were 2-sided with significance defined as a P value 

<0.05.  All statistical analysis was performed using the SPSS software version 19 (SPSS 

Inc., Chicago,IL, USA). 
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4.3 Results  

4.3.1 Clinicopathological characteristics and LBVIH&E, LVID2-40 and 

BVIFVIII in the whole cohort, in node negative patients and in triple 

negative patients 

The clinical and pathological characteristics of the 360 patients are shown in Table 4.1. 

Majority of patients were older than 50 years (65%), had tumours size ≤2 cm (51%), had 

grade III carcinoma (52%) and no axillary lymph node involvement (57%).  A total of 212 

patients (59%) had ER positive tumours and 192 patients (53%) had PR negative tumours.  

Two hundred eighty nine patients (80%) had Her-2 negative tumours with 28% of patients 

had triple negative tumours.  81 (23%) patients received tamoxifen, 144 (40%) received 

chemotherapy, and 45 (13%) received both.  Eighty nine patients (24%) experienced 

recurrences.  Of these patients, 17 (5%) had local recurrence, 67 (19%) had distant 

recurrence and five patients had both.  

LBVIH&E was readily identified when tumour cells invaded into large vessels and 

especially when lymphatic vessels were accompanied by adjacent blood vessels, however, 

invasion into small lymphatic or blood vessels as well as stromal artifact could be difficult 

to assess (Figure 4.1).  D2-40 stained vessels were usually clear and readily assessed.  

LVID2-40 was identified by the presence of tumour emboli in vessels that showed D2-40 

positivity of the endothelium.  Although D2-40 was positive in myoepithelial cells of 

breast ducts in some cases, this was readily distinguished from lymphatic endothelium by 

morphological characteristics (Figure 4.1E). 
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Table  4-1 The clinicopathological characteristics of patients with invasive ductal breast 

cancer (n=360). 

 

a number of patients when incomplete data available 

Clinicopathological characteristics Patients, n (%) 

Age (≤50/ >50 years)  125(35%)/235(65%)  

Size (≤20/ 21-50/ >50 mm) 185(51%)/162(45%)/13(4%)  

Grade (I / II / III) 48(13%)/124(34%)/188(52%)   

Involved lymph node (-ve/+ve) 206(57%)/154(43%)  

ER status  (no/yes) 148(41%)/212(59%)  

PR status (no/yes) 192(53%)/168(47%)  

Her-2 status (no/yes) 289(80%)/71(20%)  

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
130(36%)/230(64%)  

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
a 81(23%)/45(13%)/144(40%)/83(23%) 

Tumour recurrence ( no/local/distant/both) 271(75%)/17(5%)/67(19%)/5(1%) 

Alive/cancer death/non cancer death 189(53%)/97(27%)/74(21%) 
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D2-40 staining was helpful in identifying small lymphatic emboli and lymphatic vessels 

obscured by tumour cells (Figure 4.1).  Blood vessels were intensely and continuously 

positive for Factor VIII.  Factor VIII staining of lymphatic endothelium was faint or 

negative (Figure 4.2).  LVID2-40 was generally more extensive than BVIFVIII and lymphatic 

tumour emboli were larger than blood vessel emboli. 

LBVIH&E was reported in 102/360 (28%) patients, LVID2-40 was present in 127/360 (35%) 

patients and BVIFVIII was present in 59/360 (16%) patients.  Eighty nine (25%) patients had 

LVI only, whereas twenty one (6%) patients had BVI only, and thirty eight (10%) had both 

LVI and BVI.  LBVIIHC (LVID2-40 + BVIFVIII) was present in 148 (41%) patients.  In node 

negative patients (206), LBVIH&E was present in 41 (20%), LVID2-40 was present in 53 

(26%) and BVIFVIII was present in 21 (10%).  In triple negative patients (102), LBVIH&E 

was present in 31 (30%), LVID2-40 was present in 36 (35%) and BVIFVIII was present in 

14(14%). 

While LBVIH&E was strongly associated with LBVIIHC (P<0.001), 80 (22%) patients in 

whom LBVIH&E had not been identified were positive for LVID2-40 and/or BVIFVIII.  Also, 

in 34 patients (9%) in whom LBVIH&E had been identified, IHC was negative for both 

LVID2-40 and BVIFVIII. 
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Figure  4-1 Examples of LVI in invasive breast cancer sections stained with H&E and D2-40. 

A: H&E conspicuous carcinoma emboli in large and small vascular spaces (single arrows) 

accompanying structurally identified blood vessels (double arrows). B: similar section stained with 

D2-40 confirming that these are LVI (arrows). C: carcinoma emboli in small vessels (arrows) that 

could not be characterised on H&E section. D: similar section stained with D2-40 confirming that 

these are LVI (arrows). (Scale bar 100 µm). E: pattern of D2-40 staining in normal breast duct 

myoepithelium (single arrows) and how it is different from that of lymphatic endothelium (double 

arrows). (Scale bar100 µm). 
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Figure  4-2 Examples of BVI in invasive breast cancer (sections stained with Factor VIII, D2-40 and H&E). 

A & C: carcinoma cells within Factor VIII-positive vessels. These are negative for D2-40 (B & D), indicating BVI. E-G show consecutive sections stained with H&E. (E) 

showing tumour cells inside endothelial lining space, however, D2-40 (F) and Factor VIII (G) are both negative suggesting stromal artifact (note the positive staining of 

blood vessel with Factor VIII). (Scale bar 10µm). 
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As shown in Table 4.2, the presence of LBVIH&E was associated with large tumour size 

(P<0.001), high tumour grade (P=0.028), involved lymph node (P<0.001), tumour 

recurrence (P<0.001) and locoregional treatment (P=0.002).  No association was seen with 

hormonal status, Her-2 status and systemic therapy.  In node negative patients, tumour size 

(P=0.008), locoregional treatment (P=0.045) and tumour recurrence (P=0.001) were 

significantly associated with LBVIH&E.  In triple negative patients, the presence of 

LBVIH&E was associated with tumour size (P=0.006), involved lymph node (P =0.003), 

locoregional treatment (P=0.017) and tumour recurrence (P= 0.012). 

Table 4.3 shows that the presence of LVID2-40 was associated with younger age (P=0.006), 

large tumour size (P=0.024), high tumour grade (P<0.001), involved lymph node 

(P<0.001), locoregional treatment (P=0.017) and tumour recurrence (P<0.001).  In node 

negative patients, the presence of LVID2-40 was associated with younger age (P=0.008) 

large tumour size (P=0.019) and high tumour grade (P=0.002), Her-2 positivity (P=0.032) 

and tumour recurrence (P<0.001).  In triple negative patients, the presence of LVID2-40 was 

associated with younger age (P=0.034), involved lymph node (P=0.001) and tumour 

recurrence (P<0.001).  

Table 4.4 shows that the presence of BVIFVIII was associated with large tumour size 

(P<0.001), high tumour grade (P=0.044), involved lymph node (P<0.001), Her-2 positivity 

(P=0.003) and tumour recurrence (P<0.001).  In node negative patients, BVIFVIII was only 

significantly associated with larger tumour size (P=0.012) and tumour recurrence 

(P<0.001).  In triple negative patients, the presence of BVIFVIII was significantly associated 

with involved lymph node (P=0.019) and tumour recurrence (P=0.001).  
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Table  4-2 The relationship between clinicopathological characteristics and lymphovascular 

invasion (LBVIH&E) in patients with invasive ductal breast cancer 

All patients (n=360) 
LBVIH&E -ve 

n=258(72%) 

LBVIH&E +ve 

n=102(28%) 
(P-value) 

Age (≤50/ >50 years)  86/172 39/63 0.379 

Size (≤20/ 21-50/ >50 mm) 147/106/5 38/56/8 <0.001 

Grade (I / II / III) 38/95/125 10/29/63 0.028 

Involved lymph node (-ve/+ve) 165/93 41/61 <0.001 

ER status (no/yes) 100/158 48/54 0.150 

PR status (no/yes) 131/127 61/41 0.122 

Her-2 status (no/ yes) 211/47 78/24 0.254 

Tumour recurrence (no/local/distant/both) 213/7/36/2 58/10/31/3 <0.001 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
106/152 24/78 0.002 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 

63/29/96/66 18/16/48/17 0.820 

Alive/cancer death/non cancer death 148/54/56 41/43/18 0.158 

Cancer specific survival (months)
a
 178(171-188) 138(121-155) <0.001 

Node negative patients (n=206) n=165(80%) n=41(20%)  

Age (≤50/ >50 years)  51/114 16/25 0.322 

Size (≤20/ 21-50/ >50 mm) 103/60/2 17/22/2 0.008 

Grade (I / II / III) 29/60/76 5/13/23 0.233 

ER status (no/yes) 69/96 18/23 0.809 

PR status (no/yes) 90/75 23/18 0.858 

Her-2 status (no/ yes) 138/27 30/11 0.123 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
77/88 12/29 0.045 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 

46/9/51/58 9/9/11/11 0.660 
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Tumour recurrence (no/local/distant/both) 143/6/15/1 27/2/10/2 0.001 

Alive/cancer death/non cancer death 104/23/38 20/12/79 0.365 

Cancer specific survival (months)
a
 190(181-199) 168(146-190) 0.010 

Triple negative patients (n=102) n=71(70%) n=31(30%)  

Age (≤50/ >50 years)  30/41 17/14 0.073 

Size (≤20/ 21-50/ >50 mm) 44/26/1 12/15/4 0.006 

Grade (I / II / III) 1/11/59 0/5/26 0.804 

Involved lymph node (-ve/+ve) 50/21 12/19 0.003 

Tumour recurrence (no/local/distant/both) 59/1/11/0 18/2/11/0 0.012 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
34/37 7/24 0.017 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 8/3/41/18 4/6/17/4 0.083 

Alive/cancer death/non cancer death 46/15/10 15/14/2 0.561 

Cancer specific survival (months)
a
 176(159-192) 126(97-177) 0.016 

a=Mean (95%CI)  
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Table  4-3 The relationship between clinicopathological characteristics and lymphatic vessel 

invasion (LVID2-40) in patients with invasive ductal breast cancer 

All patients (n=360) 
LVI D2-40-ve 

n=233 (65%) 

LVI D2-40+ve 

n=127 (35%) 
(P-value) 

Age (≤50/ >50 years)  69/164 56/71 0.006 

Size (≤20/ 21-50/ >50 mm) 129/97/7 56/65/6 0.038 

Grade (I / II / III) 41/87/105 7/37/83 <0.001 

Involved lymph node (-ve/+ve) 153/80 53/74 <0.001 

ER status (no/yes) 89/144 59/68 0.129 

PR status (no/yes) 113/120 79/48 0.013 

Her-2 status (no/ yes) 193/40 96/31 0.099 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
94/139 36/91 0.024 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 

62/25/80/63 19/20/64/20 0.384 

Tumour recurrence (no/local/distant/both) 199/5/28/1 72/12/39/4 <0.001 

Alive/cancer death/non cancer death 141/39/53 48/58/21 0.059 

Cancer specific survival (months)
a
 186(177-194) 134(120-149) <0.001 

Node negative disease (n=206) n=153 (74%) n=53 (26%)  

Age (≤50/ >50 years)  42/111 25/28 0.008 

Size (≤20/ 21-50/ >50 mm) 96/55/2 24/27/2 0.019 

Grade (I / II / III) 33/53/67 1/20/32 0.002 

ER status (no/yes) 62/91 25/28 0.400 

PR status (no/yes) 80/73 33/20 0.210 

Her-2 status (no/ yes) 130/23 38/15 0.032 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
71/82 18/35 0.116 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 

46/11/41/54 9/7/21/15 0.418 

Tumour recurrence (no/local/distant/both) 137/4/11/1 33/4/14/2 <0.001 

Alive/cancer death/non cancer death 99/18/36 25/17/11 0.266 

Cancer specific survival (months)
a
 198(190-206) 153(131-174) 0.001 

Triple negative patients (n=102) n=66(65%) 36(35%)  

Age (≤50/ >50 years)  24/42 21/15 0.034 

Size (≤20/ 21-50/ >50 mm) 38/25/3 18/16/2 0.485 
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Grade (I / II / III) 1/11/54 0/5/31 0.493 

Involved lymph node (-ve/+ve) 48/18 14/22 0.001 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
27/39 14/22 0.842 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 

9/5/34/18 3/4/24/4 0.850 

Tumour recurrence (no/local/distant/both) 58/0/8/0 19/3/14/0 <0.001 

Alive/cancer death/non cancer death 44/11/11 17/18/1 0.702 

Cancer specific survival (months)
a
 175(163-197) 125(94-139) 0.001 

a=Mean (95% CI) 
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Table  4-4 The relationship between clinicopathological characteristics and blood vessel 

invasion (BVIFVIII) in patients with invasive ductal breast cancer 

All patients (n=360) BVIFVIII -ve 

n=301(84%) 

BVIFVIII+ve 

n=59(16%) 
(P-value) 

Age (≤50/ >50 years)  104/197 21/38 0.848 

Size (≤20/ 21-50/ >50 mm) 168/123/10 17/39/3 <0.001 

Grade (I / II / III) 45/104/152 3/20/36 0.044 

Involved lymph node (-ve/+ve) 185/116 21/38 <0.001 

ER status (no/yes) 139/162 32/27 0.258 

PR status (no/yes) 156/145 36/23 0.196 

Her-2 status (no/ yes) 250/51 39/20 0.003 

Locoregional treatment (Lumpectomy+ radiotherapy/ 

mastectomy+radiotherapy) 

114/187 16/43 0.075 

Systemic treatment (hormonal/hormonal + 

chemotherapy/ chemotherapy/none)
 

70/38/118/70 11/7/26/13 0.442 

Tumour recurrence (no/local/distant/both) 243/13/42/3 28/4/25/2 <0.001 

Alive/cancer death/non cancer death 179/60/62 10/37/12 <0.001 

Cancer specific survival (months)
a
 181(173-189) 93(73-112) <0.001 

Node negative disease (n=206) n=185 (90%) n=21 (10%)  

Age (≤50/ >50 years)  59/126 8/13 0.566 

Size (≤20/ 21-50/ >50 mm) 113/69/3 7/13/1 0.012 

Grade (I / II / III) 33/64/88 1/9/11 0.294 

ER status (no/yes) 79/106 8/13 0.686 

PR status (no/yes) 100/85 13/8 0.494 

Her-2 status (no/ yes) 154/31 14/7 0.064 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 

84/101 5/16 0.059 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 

50/17/54/62 5/1/8/7 0.760 

Tumour recurrence (no/local/distant/both) 158/8/16/3 12/0/9/0 <0.001 

Alive/cancer death/non cancer death 120/25/40 4/10/7 0.003 

Cancer specific survival (months)
a
 194(186-202) 110(75-146) <0.001 

Triple negative patients (n=102) n=88(86%) n=14(14%)  

Age (≤50/ >50 years)  40/48 5/9 0.498 

Size (≤20/ 21-50/ >50 mm) 52/32/4 4/9/1 0.052 

Grade (I / II / III) 1/12/75 0/4/10 0.281 

Involved lymph node (-ve/+ve) 58/30 4/10 0.008 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 

37/51 4/10 0.342 
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Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 

12/7/50/19 0/2/8/3 0.177 

Tumour recurrence (no/local/distant/both) 71/3/14/0 6/0/8/0 0.001 

Alive/cancer death/non cancer death 59/18/11 2/11/1 0.019 

Cancer specific survival (months)
a
 179(162-191) 61(31-91) <0.001 

a=Mean (95% CI) 
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4.3.2 Survival analysis of LBVIH&E, LVID2-40 and BVIFVIII in the whole 

cohort, in node negative patients and in triple negative patients 

The minimum follow-up of survivors was 142 months; median follow-up of survivors was 

168 months.  During follow up 171 patients died, 97 died of their cancer.  The presence of 

LBVIH&E, LVID2-40 and BVIFVIII were analysed with 15years follow-up data using the 

Kaplan–Meier analysis and Cox regression.  

Kaplan–Meier curves showed increased risk of death with LBVIH&E, LVID2-40 and BVIFVIII 

in the whole cohort, node negative and triple negative patients (Figure 4.3-4.5).  Univariate 

analysis indicated that LBVIH&E was significantly associated with cancer specific survival 

in the whole cohort (P<0.001), node negative (P=0.010) and in triple negative patients 

(P=0.016).  The Presence of LVID2-40 was strongly and significantly associated with cancer 

specific survival in the whole cohort (P<0.001), in node negative patients (P=0.001) and in 

triple negative patients (P<0.001).  The presence of BVIFVIII was strongly and significantly 

associated with cancer specific survival in the whole cohort, node negative and triple 

negative patients (all P<0.001) (Table 4.5). 

On multivariate survival analysis for the whole cohort, tumour size (P=0.017), tumour 

grade (P=0.026), LN status (P=0.016), LVID2-40 (P=0.022) and BVIFVIII (P<0.001) 

remained independently associated with cancer specific survival.  On multivariate survival 

analysis for node negative patients, tumour size (P=0.038), LVID2-40 (P=0.008) and 

BVIFVIII (P=0.001) remained independent predictors of shorter cancer specific survival.  

On multivariate survival analysis for triple negative patients, tumour size (P<0.001), 

LVID2-40 (P=0.014) and BVIFVIII (P<0.001) remained independently associated with cancer 

specific survival (Table 4.5). 
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Figure  4-3 Comparison of Kaplan-Meier survival curves (Log rank) of cancer specific survival 

for (A) LBVIH&E, (B) LVID2-40 and (D) BVIFVIII in the whole cohort. 

Survival = 178 (174-186) months 
 
Survival = 142 (138-149) months 

Survival = 186 (181-195) months 
 
Survival = 134 (128-144) months 

Survival = 181 (176-195) months 
 
 
Survival = 98 (86-109) months 
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Figure  4-4 Comparison of Kaplan-Meier survival curves (Log rank) of cancer specific survival 

for (A) LBVIH&E, (B) LVID2-40 and (D) BVIFVIII in node negative patients. 

Survival = 166 (158-174) months 
 
Survival = 149 (143-157) months 

Survival = 195 (186-209) months 
 
 
Survival = 155 (151-164) months 

Survival = 193(186-203) months 
 

 

 

Survival = 110 (104-123) months 
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Figure  4-5 Comparison of Kaplan-Meier survival curves (Log rank) of cancer specific survival 

for (A) LBVIH&E, (B) LVID2-40 and (D) BVIFVIII in triple negative patients. 

Survival = 173(170-182) months 
Survival = 159(154-165) months 

Survival = 169 (158-175) months 
 
 
Survival = 80 (76-102) months 

Survival = 178 (171-188) months 
 
Survival = 119 (116-125) months 
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Table  4-5 The relationship between clinicopathological characteristics and cancer specific survival in patients with invasive ductal breast cancer 

All patients (n=360) Univariate analysis Multivariate analysis 

 Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value 

Age (<50/ >50 years)  0.97(0.64-1.45) 0.861   

Size (≤20/ 21-50/ >50 mm) 2.16(1.52-3.05) <0.001 1.55(1.08-2.24) 0.017 

Grade (I / II / III) 1.84(1.31-2.57) <0.001 1.49(1.05-2.24) 0.026 

Involved lymph node (-ve/+ve) 2.83(1.87-4.28) <0.001 1.72(1.01-2.68) 0.016 

ER (no/yes) 0.68(0.45-1.01) 0.055  0.541 

PR (no/yes) 0.64(0.43-0.97) 0.033  0.316 

Her-2 status (no/ yes) 1.34(0.84-2.14) 0.216   

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
2.01(1.27-3.19) 0.003  0.115 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 1.11(0.93-1.34) 0.229   

LBVIH&E (absent/present) 2.39(1.61-3.54) <0.001  0.173 

LVID2-40 (absent/present) 3.31(2.19-4.97) <0.001 1.71(1.08-2.69) 0.022 

BVIFVIII (absent/present) 5.12(3.38-7.78) <0.001 3.19(2.01-5.04) <0.001 

Node negative patients (n=206)     

age (<50/ >50 years)  0.69(0.36-1.36) 0.290   

Size (≤20/ 21-50/ >50 mm) 2.33(2.32-3.31) 0.007 1.92(1.04-3.59) 0.038 

Grade (I / II / III) 1.64(1.64-2.74) 0.061  0.230 

ER (no/yes) 0.83(0.43-1.62) 0.594   



 Chapter 4  

125 

 

PR (no/yes) 0.81(0.41-1.59) 0.812   

Her-2 status (no/ yes) 2.11(1.03-4.31) 0.040  0.368 

LBVI H&E (absent/present) 2.43(1.21-4.89) 0.010  0.645 

LVI D2-40 (absent/present) 3.24(1.67-6.29) 0.001 2.30(1.15-4.57) 0.008 

BVIFVIII (absent/present) 6.03(2.87-13.77) <0.001 4.23(2.96-9.71) 0.001 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
2.10(0.01-4.39) 0.047  0.162 

Systemic treatment (hormonal/hormonal + 

chemotherapy/chempotheray/none)
 0.83(0.39-1.72) 0.544   

Triple negative patients (n=102)     

age (<50/ >50 years)  1.13(0.54-2.36) 0.739   

Size (≤20/ 21-50/ >50 mm) 3.07(1.72-5.43) <0.001 3.23(1.71-6.08) <0.001 

Grade (I / II / III) 0.70(0.33-1.50) 0.364   

Involved lymph node (-ve/+ve) 3.99(1.81-8.79) 0.001  0.099 

LBVI H&E (absent/present) 2.48(1.12-5.15) 0.016  0.179 

LVID2-40 (absent/present) 3.44(1.62-7.32) <0.001 2.62(1.25-5.28) 0.014 

BVI FVIII (absent/present) 7.38(3.43-16.11) <0.001 3.79(1.74-6.08) <0.001 

Locoregional treatment (Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
1.98(0.87-4.48) 0.100   

Systemic treatment (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 0.53(0.89-1.34) 0.579   
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4.4 Discussion 

The results of the present study show that LBVIH&E, LVID2-40 and BVIFVIII all predicted 

tumour recurrence and cancer specific survival in an observational cohort of patients with 

early breast cancer.  These results make a case for routine clinical assessment of lymphatic 

and blood vessel invasion by IHC to ascertain LVI and BVI.  

In the present study, the proportion of patients with LBVIH&E (28%) was consistent with 

most previous studies of breast cancer compared with (22-48%) in the literature, (20%) 

compared with (11-28%) for patients with node negative tumour, and (30%) compared 

with (24-45%) for patients with triple negative tumour (chapter 3).  Similarly, in terms of 

the association between LBVIH&E and other well-established high risk features such as 

tumour size, LN status, tumour grade, and breast cancer recurrence and survival are 

consistent with previous studies.  Therefore, the present cohort is consistent with previous 

reports in which the prognostic value of LBVIH&E has been established. 

In the present study, the proportion of patients with LVID2-40 (35%) was consistent with 

most previous studies using a similar approach (28-46%), (26%) compared with (21-

27% %) for patients with node negative tumour, and (35%) compared with (26-41%) for 

patients with triple negative tumour (chapter 3).  LVID2-40 was associated with other well-

established high risk features such as tumour size, LN status, tumour grade, and with 

tumour recurrence.  In addition, the presence of LVID2-40 was significantly associated with 

increased locoregional treatment.  

Furthermore, the presence of LVID2-40 provided independent prognostic information not 

only in the whole cohort but also in the subgroup of patients with lymph node negative and 

triple negative breast cancer.  These results are consistent with recent studies that assessed 

LVI objectively using D2-40 (Shoppmann et al., 2004; Mohammed et al., 2007; Yamauchi 

et al., 2007; Mohammed et al., 2011).  Thus, the present study confirms that D2-40 
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staining is a practical and effective way of identifying endothelial cells lining lymphatic 

vessels in patients with early breast cancer, in particular node negative disease.  These 

findings suggest that LVID2-40 might usefully be incorporated into the routine clinical 

pathological staging of patients with breast cancer. 

In the present study, the proportion of patients with BVI (Factor VIII) was lower than that 

of previous studies by Kato and colleagues that used a similar approach (16%) compared to 

(27-29%) in the whole cohort and (10%) compared to (18%) in node negative patients 

(Kato et al., 2000; Kato et al., 2002; Kato et al., 2003).  Given that Kato and colleagues did 

not use a specific lymphatic marker such as D2-40 to differentiate between lymphatic and 

blood vessels and that Factor VIII has been found to be occasionally reactive to lymphatic 

endothelium, it may be that the higher rate reported by Kato and co-workers reflects LVI 

being assessed as BVI.  Moreover, the present cohort would not explain the large 

discrepancy between the present BVI rate and that reported by Mohammed and colleagues 

(Mohammed et al., 2007; Mohammed et al., 2011) of only 0.7% of cases.  Clearly, further 

prospective work is required across multiple centres to standardise the reporting of BVI, an 

important determinant of outcome in primary operable ductal breast cancer. 

The results of the present study show for the first time the significance of BVI in triple 

negative breast cancer. This is an important finding, because currently used 

clinicopathologic and molecular markers, including the recent multigene assays, have a 

limited prognostic value in this molecular subtype.  Most of these tumours are of high 

grade and exhibit poor prognosis gene signatures (Fan et al., 2006; Desmedt et al., 2008; 

Wirapati et al., 2008).  Triple negative tumours have also been found to metastasise to the 

brain and lung suggesting that this subtype may prefer haematogenous spreading (Luck et 

al., 2008). Thus, objective assessment of BVI may provide additional independent 

prognostic information for this clinically important subgroup, in whom risk stratification 

and decisions about systemic therapy need to be determined. 
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The results of the present study suggest that BVI is less frequent than LVI in breast cancer, 

consistent with previous studies (Lee et al., 1990; Lauria et al., 1995; Kato et al., 2003; 

Van den Eynden et al., 2006).  This would suggest that LVI is potentially a more important 

route of breast cancer spread.  However, results of the present study show that twenty one 

of 206 patients (10%) without lymph node metastases had BVI.  Blood vessel invasion in 

patients without lymph node metastases may explain the subsequent development of 

metastatic disease.  

It is recognised that D2-40 may stain myoepithelial cells of the normal breast ducts and 

ductal carcinoma in situ (DCIS) especially in small ducts completely filled by solid-pattern 

DCIS (Schoppmann et al., 2001; Kaiserling et al., 2004; Arigami et al., 2005).  There is 

evidence that p63 staining may be useful in distinguishing D2-40 positive myoepithelium.  

However, this would increase the complexity of the present approach for routine clinical 

pathological analysis.  Moreover, with awareness that myoepithelium may also be 

immunoreactive largely obviates this problem.  Specifically, the tumour growth pattern 

enables distinction of ductal carcinoma in situ from lymphovascular invasion.  Also, the 

myoepithelium is discontinuous in small ducts whereas the endothelial lining of the 

lymphatic vessels is continuous and the myoepithelial cells of larger ducts are larger than 

the endothelial cells of lymphatic vessels (Arnaout-Alkarain et al., 2007).  Finally, the 

distribution of the stain for the myoepithelial cells is recognised to be patchy and the 

intensity less than that of the adjacent lymphatic endothelium (Rabban and Chen, 2008).  

Therefore, increase in sensitivity of detection of lymphatic vessel invasion may be 

reasonably attributed to the demarcation of lymphatic endothelium that stains positively for 

D2-40 around the tumour emboli and although, D2-40 may also bind to myoepithelium of 

breast ducts, it is not difficult to distinguish between myoepithelial reactivity and 

endothelial staining of the vessels. 
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Factor VIII has been previously reported as a blood vessel endothelial marker in breast 

cancer and is consistently found in normal endothelial cells in blood vessels.  While it 

occasionally stains endothelial cells in lymphatics, staining of lymphatic endothelium is 

usually faint and discontinuous (Martin et al., 1987; Saigo and Rosen, 1987; Kao et al., 

2002).  Some studies have suggested that the vascular marker CD31 may be superior to 

factor VIII for blood vessels staining (Horak et al., 1992; Fox et al., 1994).  However, 

another study reported that the higher sensitivity of CD31 of vascular endothelium did not 

yield results more discriminating for predicting survival outcome than results produced 

with factor VIII (Gasparini et al., 1994).  

In the present study, although the value of lymphovascular invasion detected using IHC 

was significantly correlated with the value of lymphovascular invasion detected using 

H&E (P<0.001), LBVIH&E had a 22% false negative and a 9% false positive compared with 

that of LBVIIHC. In those patients, adjuvant chemotherapy treatment, to reduce the risk of 

cancer recurrence, would have been missed, which may affect patients‘ outcome 

negatively. In addition, patients with false positive results might have been offered 

unnecessary cytotoxic treatment. This would indicate that the frequency of detection of 

lymphovascular invasion increased using IHC, and that the IHC detection method has 

more sensitivity and specificity than that of H&E. 

These lesions were difficult to identify on the H&E sections due to invasion into small 

lymphatic or blood vessels or due to vessels that had been obscured by tumour cells.  

Thirty four patients had tumours that were LBVIH&E positive, were negative for both 

LVID2-40 and BVIFVIII.   A recognised explanation for such a discrepancy is that stromal 

retraction artifacts, caused by tissue handling and fixation, on H&E sections cause false 

positives (Bettelheim et al., 1984; Saigo and Rosen, 1987, Hoda et al., 2006; Van den 

Eynden et al., 2006).  In addition, the H&E approach has considerable inter-observer 

variability and lower overall detection rate in most previous studies (chapter 3.0).   
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The results of the present and previous studies point to a substantial improvement in the 

consistency of reporting and an increase in the rate of detection of LBVI, LVI and BVI in 

patients with breast cancer cases using an IHC approach (Bettelheim et al., 1984; Saigo 

and Rosen, 1987; Schoppmann et al., 2001; Arnaout-Alkarain et al., 2007; Mohammed et 

al., 2007).  

A limitation of the present study was that intra- and peri-tumoral lymphovascular invasion 

were not separately analysed owing to the small number of cases with intra-tumoural foci 

compared to that of peri-tumoural ones.  This precluded meaningful analysis of each 

component but was unlikely to materially influence the concordance between the detection 

of LBVIH&E and LBVIIHC.  Nevertheless, the results are of interest and make a case for 

further studies of routine clinical assessment of lymphatic and blood vessel invasion by 

IHC to ascertain LVI and BVI.   

In summary, the results of the present study show that IHC for D2-40 and Factor VIII 

defined lymphatic and blood vessel invasion with greater sensitivity and specificity than 

H&E, and improved detection of LVI and BVI in early invasive breast cancer.  Moreover, 

the prognostic significance of the LVID2-40 and BVIFVIII was superior to that of LBVIH&E 

and this was consistent throughout analysis of sub-cohorts.  Therefore, these results make 

the case for their assessment in routine clinical and pathological practice and to be 

incorporated into the existing staging systems.  
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Chapter 5 The relationship between the tumour stroma 

percentage, tumour microenvironment and survival in 

patients with invasive ductal breast cancer 

5.1 Introduction  

Breast cancer is a heterogeneous disease with different responses to treatment and variable 

outcomes.  Therefore, there is still a need for new prognostic and predictive markers 

helpful of selecting patients with high risk and aggressive diseases who might benefit from 

adjuvant and targeted therapy.   

Like other sloid tumour, development and progression of breast cancer is not solely 

dependent on the intrinsic properties of cancer cells but also on the interaction between the 

tumour and the surrounding microenvironment (Colotta et al., 2009; Hanahan and 

Weinberg, 2011).  Recent evidence suggests that the tumour stroma itself is now 

increasingly appreciated, influencing tumour growth, angiogenesis and dissemination.  

Tumour stroma is thought to promote tumourigenesis by different mechanisms including 

remodelling of the ECM, regulation of the tumour immune response, and alterations in 

stromal regulatory pathways affecting the motility and aggressiveness of cancer cells (Kim 

et al., 2005; Hu and Polyak, 2008; Cirri and Chiarugi, 2012; Criscitiello et al., 2014).  

It has been reported that tumour stroma has prognostic value in patients with colorectal 

(Mesker et al., 2007; West et al., 2010; Huijbers et al., 2013; Park et al., 2014) and 

esophageal cancers (Staal et al., 2010; Wang et al., 2012).  Also, the percentage of tumour 

stroma has been recently reported to have prognostic value in patients with triple negative 

(de Kruijf et al., 2011; Moorman et al., 2012) and node negative breast cancer (Dekker et 

al., 2013).  Indeed, assessment of the proportion of tumour stroma using routine 

pathological specimens may act as a surrogate for tumour stroma activity and its 

subsequent effect on survival. 
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It is not clear, however, whether the effect of an expanded tumour stroma on survival is 

independent of host local inflammatory responses and other components of the tumour 

microenvironment.  Moreover, the relationship between tumour stroma, host and tumour 

characteristics remain unknown.  Therefore, the aim of the present study was to examine 

the relationship between the percentage of tumour to stroma, host inflammatory response, 

clinicopathological characteristics and outcome in patients with early breast cancer, in 

particular node negative and triple negative disease. 
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5.2 Patients and methods 

5.2.1 Patients  

361 patients with primary operable invasive ductal breast cancer, whose routine 

haematoxylin and eosin sections were available from patients described in section 2.1 were 

included in this study.   

5.2.2 Methods  

The assessment of ER, PR, Her-2, Ki67 proliferative index, CD68+ macrophage infiltrate, 

CD4+ T-lymphocyte infiltrate, CD8+ T-lymphocyte infiltrate was performed as previously 

described in sections 2.2.2.  

Scanned routine H&E sections for the 361 patients were used to score general peri-

tumoural inflammatory infiltrate using Klintrup–Mäkinen grade and tumour necrosis as 

previously described in chapter 2.0.   

The assessment of lymphatic and blood vessel invasion was performed as previously 

described in chapter 4.0. 

5.2.2.1 Slide scanning and scoring 

Routine H&E sections for the 361 patients were scanned at objective magnification x20 as 

previously described in section 2.2.3.   

5.2.2.2  Aassessment of tumour stroma 

Assessment of tumour stroma percentage (TSP) on H&E scanned slides was carried out at 

the most invasive tumour area according to previously described criteria (Mesker et al., 

2007).  As Slidepath provides different levels of magnification similar to a conventional 

microscope, the most invasive tumour area to be analysed was identified visually and 
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selected using a ×4 or ×5 magnifications.  The magnification was then set to 10x at the 

selected area where both stroma and tumour tissue were available.  Tumour cells must be 

present at all borders of the image field (north–east–south–west) (Figure 5.1).  When 

necrotic and mucinous tissue was present within the selected area, the mucinous and 

necrotic tissue was visually excluded form the scoring.  Scoring percentages were given 

per tenfold (10, 20, 30% etc.). 

Cut-off at 50% TSP was used as described in previous reports (Mesker et al., 2007; de 

Kruijf et al., 2011) that is; stroma low tumours were the presence of tumour stroma in 

≤50 % of tumour area (Figure 5.1A) whereas, stroma high tumours were the presence of 

tumour stroma in more than 50 % of tumour area (Figure 5.1B).  

A total of 40 specimens were independently estimated for TSP by two observers (FG and 

JE) blinded to patient outcome and the other observer‘s score.  The ICCC was 0.83 

indicating excellent agreement.  The author FG then scored the rest of slides. 
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Figure  5-1 H&E stained sections of invasive ductal breast tumours showing examples of 

tumour stroma percentage 

(A) tumour with low stroma (10%); (B) tumour with high stroma (80%).  10x objective and 100µm 

scale. 
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5.2.2.3  Statistical analysis 

Consistency between the observers was analysed using the ICCC value using Reliability 

Analysis.  Inter-relationships between variables were assessed using contingency table 

analysis with the chi-squared test for trend as appropriate.  Univariate and multivariate 

survival analysis were performed using the Kaplan-Meier analysis and Cox proportional 

hazards model with calculation of hazard ratios (HR) and 95% confidence interval (95% 

CI).  A stepwise backward procedure was used to derive a final model of the variables that 

had a significant independent relationship with survival.  All statistical analyses were 2-

sided and significance defined as P-value <0.05.  All statistical analysis was performed 

using the SPSS software version 19 (SPSS Inc., Chicago,IL, USA).  
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5.3 Results  

5.3.1 Clinicopathological characteristics  

Table 5.1 shows clinicopathological characteristics of patients (n=361).  The majority were 

older than 50 years (65%), had a grade III carcinoma (53%) equal or smaller than 2 cm 

(51%) with no axillary lymph node involvement (57%).  The majority had ER positive 

tumours (59%), PR negative tumours (54%) and Her-2 negative tumours (80%). 36% had 

LVI, 16% had BVI and the majority had a high-grade tumour necrosis (64%).  60% had 

low-grade general peri-tumoural inflammatory infiltrate with the cellular inflammatory 

infiltrates (CD68+macrophage infiltrate, CD4+T-lymphocyte infiltrate and CD8+T-

lymphocyte infiltrate) presented as tertiles (Table 5.1).  In all, 81 (22%) patients received 

only tamoxifen, 144 (40%) received only chemotherapy and 45 (13%) received both.  

5.3.2 Tumour stroma percentage (TSP) 

For all patients TSP was evaluated on one section derived from the most invasive part of 

the tumour.  The tumour specimens showed variety in TSP ranging from very solid 

tumours with little stromal involvement (Figure 5.1A) to tumours with large areas of 

stromal proliferation scattered with single and grouped tumour cells (Figure 5.1B).  In total, 

252 (70%) patients had low TSP (≤50% stroma) and 109 (30%) patients had high TSP 

(>50% stroma).  In node negative patients, 153(74%) patients had low TSP and 54 (26%) 

had high TSP.  In triple negative patients, 81 (79%) patients had low TSP and 22 (21%) had 

high TSP. 
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Table  5-1 The clinicopathological characteristics of patients with invasive ductal breast 

cancer (n=361) 

 

a Number of patients when incomplete data available 

Clinicopathological characteristics Patients (n%) 

Age (≤50/ >50 years)  125(35%)/236(65%) 

Size (≤20/ 21-50/ >50 mm) 185(51%)/163(45%)/13(4%) 

Grade (I / II / III) 48(13%)/124(34%)/189(53%) 

Involved lymph node (-ve/+ve) 207(57%)/154(43%) 

ER status (no/yes) 149(41%)/212(59%) 

PR status (no/yes) 193(54%)/168(47%) 

Her-2 status (no/yes) 290(80%)/71(20%) 

Lymphatic vessel invasion (no/yes) 233(65%)/128(36%) 

Blood vessel invasion (no/yes) 302(84%)/59(16%) 

Tumour necrosis (low/high) 131(36%)/230(64%) 

Klintrup–Mäkinen grade (low/high) 215(60%)/146(40%) 

CD68+macrophage infiltrate 
 a
 82(23%)/115(32%)/103(29%)

 

CD4+T-lymphocyte infiltrate  132(37%)/112(31%)/117(32%) 

CD8+T-lymphocyte infiltrate  121(34%)/118(33%)/122(34%) 

Tumour stroma percentage (≤50%/>50%) 252(70%)/109(30%) 

Locoregional therapy.(lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
130(36%)/231(64%) 

Systemic adjuvant therapy (hormonal/hormonal + 

chemotherapy/chemotherapy/none)
 a
 

81(22%)/45(13%)/144(40%)/84(23%) 

Tumour recurrence (no/yes) 272(75%)/89(25%) 

Alive/cancer death/non cancer death 189(52%)/97(27%)/75(21%) 
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5.3.3 Association of TSP with clinicopathological variables and outcome  

The relationship between TSP, clinicopathological variables and host inflammatory 

response is shown in tables 5.2-5.4.  Patients with high TSP were old age women 

(P=0.035), had more involved lymph node (0.049), Her-2 positive tumours (P=0.029), low-

grade general peri-tumour inflammatory infiltrate (P=0.034), low CD68+macrophage 

infiltrate (P<0.001), low CD4+ (P=0.023) and low CD8+ T-lymphocytes infiltrate 

(P=0.017), had tumour recurrence (P=0.015) and shorter cancer specific survival 

(P=0.001).  In node negative patients (n=207), a high TSP was associated with low CD68+ 

macrophage infiltrate (P=0.001), low CD4+ (P=0.040) and low CD8+ T-lymphocytes 

infiltrate (P=0.016), and shorter cancer specific survival (P=0.005).  In triple negative 

patients (n=103) a high TSP was associated with increased tumour size (P=0.017), high 

tumour grade (P=0.014), low CD8+ T-lymphocyte (P=0.048) and shorter cancer specific 

survival (P=0.041).  A high TSP was not associated with hormonal status, LVI, BVI and 

tumour necrosis.  

To examine the association between the expansion of tumour stroma and tumour 

proliferation, a sub-analysis of the relationship between the TSP and Ki67 index in 

different patient groups was performed (Table 5.5).  Only 59% of patients from the whole 

cohort, 44% from node negative group and 65% from triple negative group had Ki67 

information available.  There was no significant statistical difference between TSP high 

and low groups in all sub-cohorts.  
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Table  5-2 The relationship between clinicopathological characteristics and TSP in patients with 

invasive ductal breast cancer (n=361) 

 
TSP≤50% 

n=252(70%) 

TSP>50% 

n=109(30%) 
(P-value) 

Age (≤50/ >50 years)  96/156 29/80 0.035 

Size (≤20/ 21-50/ >50 mm) 136/108/8 49/55/5 0.109 

Grade (I / II / III) 35/77/140 13/47/49 0.289 

Involved lymph node (-ve/+ve) 153/99 54/55 0.049 

ER status (no/yes) 107/145 42/67 0.487 

PR status (no/yes) 135/117 58/51 0.950 

Her-2 status (no/ yes) 210/42 80/29 0.029 

Lymphatic vessel invasion (no/ yes) 163/89 70/39 0.933 

Blood vessel invasion (no/ yes) 215/87 37/22 0.195 

Tumour necrosis (low/high) 91/161 40/69 0.915 

Klintrup–Mäkinen grade (low/high) 141/111 74/35 0.034 

CD68+macrophage infiltrate (tertiles) 40/84/80 42/31/23 <0.001 

CD4+T-lymphocyte infiltrate (tertiles) 66/111/75 36/54/19 0.023 

CD8+T-lymphocyte infiltrate (tertiles) 71/80/101 73/46/26 0.017 

Locoregional therapy.(lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
93/159 37/72 0.591 

Systemic adjuvant therapy (hormonal/ 

hormonal + chemotherapy/chemotherapy/none) 
55/35/97/61 30/21/35/23 0.104 

Tumour recurrence (no/yes) 199/53 73/36 0.015 

Alive/cancer death/non cancer death 151/55/46 38/42/29 <0.001 

Cancer specific survival (months)
a
 176(168-186) 144(128-160) <0.001 

a=Mean (95%CI) 
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Table  5-3 The relationship between clinicopathological characteristics and TSP in node negative 

patients (n=207). 

 
TSP ≤50% 

n=153(74%) 

TSP >50% 

n=54(26%) 
(P-value) 

Age (≤50/ >50 years)  54/99 13/41 0.131 

Size (≤20/ 21-50/ >50 mm) 90/60/3 30/23/1 0.709 

Grade (I / II / III) 26/45/82 8/28/18 0.123 

ER status (no/yes) 68/85 20/34 0.345 

PR status (no/yes) 87/66 27/27 0.385 

Her-2 status (no/ yes) 128/25 41/13 0.208 

Lymphatic vessel invasion (no/yes) 112/41 41/13 0.857 

Blood vessel invasion (no/yes) 139/47 14/7 0.426 

Tumour necrosis (low/high) 62/91 21/33 0.488 

Klintrup–Mäkinen grade (low/high) 89/64 39/15 0.068 

CD68+macrophage infiltrate (tertiles) 27/49/46 24/13/10 0.001 

CD4+T-lymphocyte infiltrate (tertiles) 36/67/50 17/28/9 0.040 

CD8+T-lymphocyte infiltrate (tertiles) 41/52/60 22/20/12 0.016 

Locoregional therapy.(lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
65/88 24/30 0.803 

Systemic adjuvant therapy (hormonal/hormonal 

+ chemotherapy/ chemotherapy/none) 
35/12/55/49 15/8/16/15 0.251 

Recurrence status (no/yes) 130/23 41/13 0.133 

Alive/cancer death/non cancer death 102/20/31 124/35/48 0.002 

Cancer specific survival (months)
a
 192(183-201) 164(144-184) 0.005 

a=Mean (95%CI) 
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Table  5-4 The relationship between clinicopathological characteristics and TSP in triple negative 

patients with invasive ductal breast cancer (n=103) 

 
TSP≤50% 

n=81(79%) 

TSP>50% 

n=22(21%) 
(P-value) 

Age (≤50/ >50 years)  38/43 7/15 0.208 

Size (≤20/ 21-50/ >50 mm) 48/31/2 8/11/5 0.017 

Grade (I / II / III) 0/10/71 1/6/15 0.014 

Involved lymph node (-ve/+ve) 52/29 11/11 0.228 

Lymphatic vessel invasion (no/yes) 51/30 15/7 0.563 

Blood vessel invasion (no/yes) 71/10 17/5 0.223 

Tumour necrosis (no/yes) 21/60 5/17 0.761 

Klintrup–Mäkinen grade (low/high) 32/49 10/12 0.124 

CD68+macrophage infiltrate (tertiles) 15/16/25 8/2/5 0.132 

CD4+T-lymphocyte infiltrate (tertiles) 13/33/35 7/8/7 0.123 

CD8+T-lymphocyte infiltrate (tertiles) 20/17/44 8/8/6 0.048 

Locoregional therapy.(lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
30/51 11/11 0.273 

Systemic adjuvant therapy (hormonal/ hormonal+ 

chemotherapy/ chemotherapy/none) 
9/6/47/4 3/3/11/5 0.202 

Tumour recurrence (low/high) 83/32 21/15 0.119 

Alive/cancer death/non cancer death 52/20/9 9/9/4 0.076 

Cancer specific survival (months)
a
 176(167-185) 147(133-163) 0.041 

a=Mean (95% CI) 
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Table  5-5 The inter-relationship between TSP and Ki67 in patients with invasive ductal 

breast cancer 

 

 TSP≤50% 

 

TSP>50% 

 

(P-value) 

All patients (n=214) n=115(76%) n=36(24%)  

Ki67 (low/high) 122/27 54/11 0.833 

Node negative patients (n=120) n=89(74%) n=31(26%)  

Ki67 (low/high) 75/14 28/3 0.407 

Triple negative patients (n=99) n=76(77%) n=23(23%)  

Ki67 (low/high) 61/15 19/4 0.803 



 Chapter 5  

144 

The minimum follow-up of survivors was 142 months and the median follow-up was 168 

months.  During follow-up 89 patients developed recurrence (25%), 172 patients died, 27% 

died of their cancer.   

The 15-year cancer specific survival rate was 79% v 21% in the TSP low group v TSP high 

group.  Kaplan Meier survival curves show that high TSP was significantly associated with 

poorer cancer specific survival in the whole cohort (P<0.001), in node negative patients 

(P=0.005) and in triple negative patients (P=0.041) (Figure 5.2 A-C).  In multivariate 

survival analysis, a high TSP was associated with reduced cancer specific survival 

independent of other variables in the whole cohort (HR 1.85, 95% CI 1.18-2.91, P=0.007) 

(Tables 5.6) and in node negative patients (HR 3.32, 95% CI 1.43-7.75, P=0.005) (Tables 

5.7) but not in triple negative patients (P=0.555) (Table 5.8).  

The relationship between TSP, clinicopathological characteristics and survival in patients 

who underwent adjuvant systemic treatment was examined.  In total, 270 (75%) patients 

from the whole cohort, 135 (65%) with node negative patients and 79 (77%) with triple 

negative patients received adjuvant systemic treatment.  In the whole cohort (Table 5.6), a 

high TSP was associated with shorter cancer specific survival following adjuvant treatment 

in univariate analysis (HR 2.04, 95% CI 1.29-3.22, P=0.002).  On multivariate analysis, a 

high TSP was associated with reduced cancer specific survival (HR 1.89, 95% CI 1.13-

3.16, P=0.016), independent of LVI, BVI, tumour necrosis and CD68+T-lymphocyte 

infiltrate.  In node negative patients, a high TSP showed a trend towards shorter cancer 

specific survival (P=0.071) (Table 5.7).  In triple negative patients, a high TSP was not 

associated with shorter cancer specific survival following adjuvant treatment (P=0.257) 

(Table 5.8).  
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Figure  5-2 Kaplan-Meier survival curves (Log rank) of cancer specific survival for tumour stroma percentage. 

In (A) the whole cohort, (B) node negative patients and (C) triple negative patients.  
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Table  5-6 The relationship between clinicopathological characteristics and cancer specific survival in the whole cohort 

 Univariate analysis Multivariate analysis 

 Hazard ratio(95% CI) P-value Hazard ratio(95% CI) P-value 

All patients (n=361)     

Age (<50/ >50 years)  0.97 (0.64-1.46) 0.881   

Size (≤20/ 21-50/ >50 mm) 2.17 (1.54-3.07) <0.001  0.120 

Grade (I / II / III) 1.85 (1.3-2.58) <0.001 1.49 (1.02-2.20) 0.042 

Involved lymph node (-ve/+ve) 1.97 (1.51-2.56) <0.001 1.75 (1.08-2.83) 0.023 

ER status (no/yes) 0.68 (0.45-1.01) 0.055  0.346 

PR status (no/yes) 0.64 (0.42-0.96) 0.033  0.762 

Her-2 status (no/ yes) 1.44 (0.88-2.35) 0.145   

Lymphatic vessel invasion (no/yes) 3.01 (2.39-4.95) <0.001 2.14(1.31-3.49) 0.002 

Blood vessel invasion (no/yes) 4.98(3.39-7.72) <0.001 3.49(2.07-5.91) <0.001 

Tumour necrosis (low/high) 1.97 (1.29-2.99) 0.002 2.65 (1.50-4.68) 0.001 

Klintrup–Mäkinen grade (low/high) 1.15 (0.77-1.73) 0.482   

CD68+T-lymphocyte infiltrate (tertiles) 0.73 (0.55-0.96) 0.025 0.51 (0.38-0.69) 0.001 

CD4+T-lymphocyte infiltrate (tertiles) 0.46 (0.23-1.70) 0.075  0.321 

CD8+T-lymphocyte infiltrate (tertiles) 0.64 (0.49-0.82) <0.001 0.62 (0.51-0.89) 0.014 

Tumour stroma percentage (≤50%/>50%) 1.89 (1.26-2.82) <0.001 1.85 (1.18-2.91) 0.007 

Locoregional therapy.(lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
2.01(1.27-3.19) 0.003  0.621 
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Systemic adjuvant therapy (hormonal/hormonal 

+ chemotherapy/ chemotherapy/none) 
1.15 (0.71-1.87) 0.573   

Systemic adjuvant therapy(n=270)     

Size (≤20/ 21-50/ >50 mm) 1.44 (0.96-2.15) 0.080  0.876 

Grade (I / II / III) 1.66 (1.13-2.43) 0.010  0.223 

Involved lymph node (-ve/+ve) 1.78 (1.31-2.40) <0.001  0.187 

PR status (no/yes) 0.47 (0.27-0.83) 0.009  0.530 

Lymphatic vessel invasion (no/yes) 3.78 (2.34-6.08) <0.001 3.21 (1.82-5.65) <0.001 

Blood vessel invasion (no/yes) 4.61 (2.87-6.08) <0.001 4.29 (1.45-4.96) <0.001 

Tumour necrosis (low/high) 2.53 (1.41-4.52) 0.002 2.68 (1.45-4.96) 0.003 

CD68+T-lymphocyte infiltrate (tertiles) 0.63 (0.46-0.86) 0.004 0.47 (0.33-0.68) <0.001 

CD4+T-lymphocyte infiltrate (tertiles) 0.89 (0.67-1.19) 0.456   

CD8+T-lymphocyte infiltrate (tertiles) 0.78 (0.56-1.03) 0.841   

Tumour stroma percentage (≤50%/>50%) 2.04 (1.29-3.22) 0.002 1.89 (1.13-3.16) 0.016 

Locoregional therapy.(lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
1.93 (1.15-3.26) 0.013  0.725 



 Chapter 5  

148 

Table  5-7 The relationship between clinicopathological characteristics and cancer specific survival in patients with node negative breast cancer 

(n=207) 

 Univariate analysis Multivariate analysis 

 Hazard ratio (95% CI) P-value 
Hazard ratio(95% 

CI) 
P-value 

Age (<50/ >50 years)  0.70 (0.36-1.36) 0.290   

Size (≤20/ 21-50/ >50 mm) 2.32 (1.25-4.31) 0.007 1.88 (0.95-3.72) 0.070 

Grade (I / II / III) 1.64 (0.97-2.73) 0.062  0.170 

ER (no/yes) 0.83 (0.43-1.62) 0.595   

PR (no/yes) 0.81 (0.41-1.59) 0.548   

Her-2 status (no/ yes) 2.11 (1.03-4.31) 0.040  0.676 

Lymphatic vessel invasion (-ve/+ve) 3.32 (1.67-6.29) 0.001 2.31(1.11-4.84) 0.026 

Blood vessel invasion (no/yes) 5.38 (2.57-12.28) <0.001 4.15(3.38-19-63) 0.001 

Tumour necrosis (low/high) 1.97 (1.48-8.59) 0.005 3.08 (1.21-7.83) 0.018 

Klintrup–Mäkinen grade (low/high) 1.47 (0.76-2.86) 0.255   

CD68+macrophage infiltrate (tertiles) 0.68 (0.43-1.07) 0.096  0.055 

CD4+T-lymphocyte infiltrate (tertiles) 0.88 (0.59-1.32) 0.520   

CD8+T-lymphocyte infiltrate (tertiles) 0.89 (0.59-1.33) 0.558   

Tumour stroma percentage (≤50%/>50%) 2.24 (1.29-4.97) 0.005 3.32 (1.43-7.75) 0.005 

Locoregional therapy.(Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
2.11 (1.01-4.39) 0.047  0.256 
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Systemic adjuvant therapy ( hormonal /hormonal 

+ chemotherapy /chemotherapy/none) 
1.18 (0.57-2.42) 0.657   

Systemic adjuvant therapy (n=135)     

Size (≤20/ 21-50/ >50 mm) 1.02 (0.46-2.28) 0.954   

Grade (I / II / III) 1.27 (0.70-2.29) 0.431   

Her-2 status (no/ yes) 2.34 (1.00-5.43) 0.050 3.25 (0.94-6.47) 0.081 

Lymphatic vessel invasion (no/yes) 3.10 (1.02-5.36) 0.001 3.66 (1.43-9.36) 0.007 

Blood vessel invasion (no/yes) 4.87 (2.10-15.45) 0.001 12.4 (3.91-38.98) 0.002 

Tumour necrosis (no/yes) 2.34 (0.87-6.28) 0.090 3.46 (1.08-11.09) 0.037 

CD68+macrophage infiltrate (tertiles) 0.49 (0.28-0.87) 0.014 0.44 (0.23-0.82) 0.010 

Tumour stroma percentage (≤50%/>50%) 2.12 (0.94-4.78) 0.071 2.54 (0.93-6.96) 0.078 

Locoregional therapy.(Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
1.84 (0.79-4.31) 0.158   
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Table  5-8 The relationship between clinicopathological characteristics and cancer specific survival in patients with triple negative breast  

cancer (n=103) 

 Univariate analysis Multivariate analysis 

 Hazard ratio (95% CI) P-value Hazard ratio(95% CI) P-value 

Age (<50/ >50 years)  1.13 (0.54-2.36) 0.740   

Size (≤20/ 21-50/ >50 mm) 3.07 (1.73-5.48) <0.001 2.79 (1.43-5.45) 0.002 

Involved lymph node (-ve/+ve) 3.99 (1.82-8.79) 0.001 2.26 (0.96-5.37) 0.063 

Grade (I / II / III) 0.70 (0.34-1.51) 0.364   

Lymphatic vessel invasion (no/yes) 3.44(1.62-7.31) <0.001 2.43(1.63-5.77) 0.023 

Blood vessel invasion (no/yes) 4.73(3.42-10.09) <0.001 3.75 (1.75-9.48) 0.002 

Tumour necrosis (low/high) 5.74 (1.36-24.16) 0.017 3.59 (0.82-15.75) 0.089 

Klintrup–Mäkinen grade (low/high) 1.12 (0.53-2.34) 0.770   

CD68+macrophage infiltrate (tertiles) 0.71 (0.42-1.18) 0.183   

CD4+T-lymphocyte infiltrate (tertiles) 1.07 (0.65-1.76) 0.803   

CD8+T-lymphocyte infiltrate (tertiles) 0.94 (0.61-1.43) 0.756   

Tumour stroma percentage (≤50%/>50%) 1.06 (1.03-1.12) 0.041  0.555 

Locoregional therapy.(Lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
1.98 (0.88-4.48) 0.100   

Systemic adjuvant therapy (hormonal/ 

hormonal + chemotherapy/ 
0.914 (0.56-1.39) 0.678   
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chemotherapy/none) 

Systemic adjuvant therapy (n=79)     

Size (≤20/ 21-50/ >50 mm) 1.81(0.92-3.62) 0.085  0.252 

Involved lymph node (-ve/+ve) 4.17 (1.64-10.59) 0.003  0.131 

Lymphatic vessel invasion (no/yes) 4.05 (1.06-9.87) 0.002 3.13 (1.26-7.65) 0.014 

Blood vessel invasion (no/yes) 7.93(3.36-18.69) <0.001 6.12 (2.53-14.09) 0.001 

Tumour necrosis (low/high) 4.04 (0.95-17.23) 0.060  0.186 

CD8+T-lymphocyte infiltrate (tertiles) 0.78 (0.53-1.12) 0.178   

Tumour stroma percentage (≤50%/>50%) 1.72 (0.68-4.36) 0.257   

Locoregional therapy.(lumpectomy+ 

radiotherapy/mastectomy + radiotherapy) 
2.63 (1.04-6.69) 0.042 2.72 (1.23-5.98) 0.013 
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5.4 Discussion  

The results of the present study show that high TSP was consistently associated with low 

tumour inflammatory infiltrate.  Furthermore, TSP was associated with poorer outcome in 

the whole cohort and in patients with node negative and triple negative disease with long 

term follow-up.  Taken together the present results highlight the importance of the stroma 

in the tumour microenvironment and its impact on outcome. 

Consistent with previous reports of the role of tumour stroma in breast cancer (de Kruijf et 

al., 2011; Moorman et al., 2012; Dekker et al., 2013) survival in the present study was 

significantly shorter in patients with high TSP tumours.  However, TSP was not 

independently associated with survival in triple negative patients in the present study, 

whereas de Kruijf and co-workers reported that TSP was an independent prognostic factor. 

The difference between these findings might be attributed to the differences in cohorts size, 

patients‘ characteristics or might be due to treatment regimen undertaken though in both 

studies patients did not receive neoadjuvant treatment.  Irrespective, from previous work it 

was not clear whether the effect of an expanded tumour stroma on survival was 

independent of host inflammatory response and other components of the tumour 

microenvironment.  

Although the interrelationships between the tumour stroma, tumour microenvironment and 

gross pathological characteristics are likely complex, the tumour stroma percentage 

remained independently and more strongly associated with reduced cancer specific 

survival.  These results confirm the importance of tumour-host factors, such as the tumour 

microenvironment in determining oncological outcome. 

In particular, node negative patients with high TSP had a more than triple times higher risk 

of breast cancer death compared to those with low TSP, independent and comparable to 

that of tumour size, LVI and necrosis.  Furthermore, survival was also significantly shorter 



 Chapter 5  

153 

in patients who received adjuvant therapy and had high-TSP tumours.  Thus, in addition to 

identifying patients at high risk, TSP may also select patients less likely to benefit from 

standard therapy and who should be considered for additional adjuvant treatment, 

potentially targeted at the stroma itself (Engels et al., 2012).  

Despite recognition of the importance of the tumour stroma in cancer progression, its 

relationship with other components of the tumour microenvironment has yet to be fully 

characterised.  In the present study, increased amount of tumour stroma was associated 

with a low-grade tumour inflammatory infiltrate, as measured by the Klintrup–Mäkinen 

score and by macrophages and T-cell subtypes.  This is consistent with the recent 

observation that a high TSP trended toward a low general peri-tumoural inflammatory 

infiltrate in patients with colorectal cancer (Park et al., 2014).  However, the underlying 

mechanism is still unclear.  

The interactions between breast stroma and inflammatory cells are not fully understood.  It 

has previously been proposed that the tumour stroma may prevent effective tumour 

infiltration by immune cells (Ueno et al., 2004).  The results from cell line experiments 

would also support our findings, namely that fibroblasts and myofibroblasts can modulate 

the ability of lymphocytes and macrophages to invade a tumour and may prevent 

penetration of immune cells within tumours, creating a physical barrier against an immune 

reaction while promoting tumour growth and progression, due to their contractile 

properties and their associated extracellular matrix (Lieubeau et al., 1999).  

In the present study, although the cell markers of both innate and adaptive immune cells 

were examined, the effect of TSP on survival remained independent of local inflammatory 

responses, suggesting the presence of other mechanisms rather than a direct effect on 

immune cells.  Indeed, tumour stroma may promote the development of a pro-tumour 

rather than anti-tumour immune infiltrate (Fridman et al., 2011).  Stroma-associated 
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fibroblasts or CAFs may also induce suppression of the immune response and produce 

immunosuppressive molecules such as TGF-β and VEGF, suggesting that CAFs may 

promote cancer immunoescape (Yaguchi et al., 2011; Engels et al., 2012).  This may 

implicate certain cell signalling pathways such as the common cell signalling pathway 

associated with inflammation; the JAK-STAT pathway (Yu et al., 2007; Yu et al., 2009).  

Therefore, further characterisation of the tumour inflammatory cells infiltrate and their 

association with tumour stroma and JAK-STAT signalling are warranted. 

The main potential limitation of the present study was that direct investigation of the effect 

of tumour stroma on the infiltration of inflammatory cells was not carried out.  This would 

require either cell line or animal models.  Although cell line or animal models do have the 

advantage of allowing direct investigation of the effect of tumour microenvironment on 

inflammatory cell infiltration, they often lack clinical relevance to the patient with breast 

cancer.  In particular, based on such models, progress on immunotherapy for breast cancer 

has been slow over the last 4 decades.  The present study highlights the importance of the 

amount of tumour stroma on immunological response in patients with invasive ductal 

breast cancer. 

In conclusion, the results of the present study show that a high tumour stroma percentage 

in primary operable invasive ductal breast cancer was associated with recurrence and 

shorter long-term survival.  Implementing this simple and reproducible parameter in 

routine pathological examination may help optimize risk stratification in patients with 

invasive ductal breast cancer.  The present study findings suggest that high TSP enables 

tumour cells to evade the immune surveillance and promote tumour progression.  
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Chapter 6 The relationship between tumour budding, the 

tumour microenvironment and survival in patients with 

invasive ductal breast cancer 

6.1 Introduction  

With more molecular and genomic measurements of breast cancer have emerged, it is clear 

for such disease that the need to effectively stratify patients according to likely outcome 

remains important.  This should be done against a comprehensive characterisation of the 

tumour and its microenvironment.   

Recently, the tumour budding which refers to detachment of single or cluster of up to five 

cancer cells scattered in stroma at the invasive front of tumour (Ueno et al., 2002; Prall et 

al., 2005; Lugli et al., 2009) has been proposed as an important determinant of progression 

and survival in a number of solid cancers (Hase et al., 1993; Ueno et al., 2002; Prall et al., 

2005; Choi et al., 2007; Koike et al., 2008; Masugi et al., 2010; Taira et al., 2012; 

Koyuncuoglu et al., 2012).  In particular, tumour budding is thought to be an early step in 

cancer metastasis as postulated to be linked to the process of epithelial-mesenchymal 

transition (EMT) (Masugi et al., 2010; Zlobec and Lugli., 2010; Taira et al., 2012; 

Koyuncuoglu et al., 2012, Lugli et al., 2012; Liang et al., 2013; Dawson and Lugli., 2015), 

which is a crucial step during carcinoma progression and metastasis (Kalluri and Weinberg, 

2009). 

In breast cancer, there is still limited information about the role of tumour budding (Liang 

et al., 2013; Salhia et al., 2015).  Liang and colleagues has reported the significance of 

budding in small breast cancer cohort (n=160) with limited follow-up and only reported 

budding effect on overall survival but not cancer specific survival (Liang et al., 2013).  The 

second report examined the association of tumour budding and clinicopathological 

characteristics however, survival analysis was not reported (Salhia et al., 2015) 
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Moreover, it is not clear, whether the effect of an increased tumour budding on survival is 

independent of host inflammatory response and other components of the tumour 

microenvironment. Therefore, the present study aims to examine the relationship between 

tumour budding, the tumour microenvironment and survival in patients with invasive 

ductal breast cancer.  
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6.2 Patients and method 

6.2.1 Patients 

474 patients with primary operable invasive ductal breast cancer, whose routine 

haematoxylin and eosin sections were available from patients described in section 2.1 were 

included in this study.   

6.2.2 Methods  

Assessment of ER, PR, Her-2, Ki67 proliferation index, CD68+ macrophage infiltrate, 

CD4+ T-lymphocyte infiltrate, CD8+ T-lymphocyte infiltrate and CD138+ plasma cell 

infiltrate was performed as previously described in chapter 2.0.  Scanned routine H&E 

sections for the 474 patients were used to score general peri-tumoural inflammatory 

infiltrate and tumour necrosis as previously described in chapter 2.0.   

The assessment of lymphatic and blood vessel invasion was performed as previously 

described in chapter 4.0.  Tumour stroma percentage (TSP) was also assessed on scanned 

H&E sections for the 474 patients as previously reported in chapter 5.0. 

The molecular subtypes were defined as follows: Luminal A: oestrogen (ER) and/or 

progesterone receptor (PR) positive, Her-2 negative, low proliferative index (≤15%); 

Luminal B: hormone receptor positive, Her-2 positive/or high proliferative index (>15%); 

Her-2 subtype: Her-2 positive and hormone receptor negative, any proliferative index; 

triple negative: Her-2 negative, hormone receptor negative, any proliferative index. 

6.2.2.1 Slide scanning and scoring 

Routine haematoxylin and eosin sections for the 474 patients were scanned at objective 

magnification x20 as previously described in chapter 2.0.   
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6.2.2.2 Assessment of tumour budding 

Scanned routine H&E sections for the 474 patients were used to score tumour budding at 

the deepest tumour invasion margin according to previously published protocol (Ueno et al, 

2002).  At ×5 magnification, an area representative of the tumour invasive margin was 

selected.  A grid of 0.385 mm
2
 size at five highest budding areas was drawn.  Using a × 20 

magnification a tumour budding was counted.  A bud was identified as an isolated single 

cancer cell or a group of up to five cancer cells (Ueno et al., 2002; Prall et al., 2005; Lugli 

et al., 2009) (Figure 6.1).  The highest bud count per field was used as the number of buds. 

Areas of necrosis or mucin were excluded from the field.   

To ensure reliability, co-scoring of 60 randomly selected cases was carried out by (FG) and 

consultant pathologist (JJG).  The inter-observer intraclass correlation coefficient (ICCC) 

for the raw continuous scores was 0.81 (P<0.001).  All the slides were then scored by (FG). 
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Figure  6-1 H&E stained sections of invasive ductal breast cancer showing examples of 

tumour budding. 

(A) Shows a grid of high tumour budding area at the invasive margin, (B) shows single and clusters 

of tumour budding (arrows). Original magnification x20, scale 100 µm. 
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6.2.2.3 Statistical analysis 

To identify the cut-off value of tumour budding for survival analysis, the highest 

budding count per 5 fields were split into tertiles and survival analysis between each 

group using Kaplan–Meier log-rank test was performed (Figure 6.2) (Choi et al., 2007; 

Sy et al., 2010).  Subsequently, the first and second tertiles (highest tumour budding 

count was ≤20) were considered as low budding group and the third tertile (highest 

tumour budding was >20) was considered as high budding group.  To simplify all 

further analysis, patients were subsequently grouped into low tumour budding (≤20) 

and high tumour budding (>20).  

When ROC analysis was carried out with cancer specific survival as an end-point, the 

optimal number of tumour buds was between 15 (sensitivity=0.55, specificity=0.70) 

and 20 buds (sensitivity =0.63, specificity = 0.60) per 5 fields.  Therefore, the threshold 

was set at 20 buds.  At this threshold the AUC was 0.625, (P<0.001). This was 

consistent with the threshold derived from the plot of the tertiles (see Figure 6.2).  

Consistency between the observers was analysed using the ICCC value.  The 

relationships between variables were assessed using contingency table analysis with the 

x
2

 test for linear trend.  Kaplan–Meier analysis was used to examine the effect of 

tumour budding on cancer specific survival. Univariate survival analysis was 

performed using Cox proportional hazards regression.  Variables with P-value of <0.1 

were entered into a multivariable model using a backwards conditional method for all 

patients, node negative patients, and those who have low TSP and high K-M score.  All 

statistical analyses were two-sided and significance defined as P-value <0.05.  All 

statistical analysis was performed using the SPSS software version 22 (IBM SPSS, IL, 

USA). 
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Figure  6-2 Kaplan-Meier survival curve (Log rank) and Roc curve for tumour budding.  

A-Shows Kaplan-Meier curve according to tumour budding turtiles. First tertile (1) includes 

patients with the highest budding count/5 fields = 0-9 buds. Second tertile (2) includes patients 

with the highest budding count/5 fields = 10-20 buds. Third tertile (3) includes patients with the 

highest budding count/5 fields ≥ 21 buds. B-Shows Receiver operating characteristic (ROC) curve 

aiding the selection of the cut-off score for the low-grade versus high-grade budding. The optimal 

number of tumour buds was between 15 (sensitivity=0.55, specificity=0.70) and 20 buds 

(sensitivity =0.63, specificity = 0.60). 

A 

B 
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6.3 Results 

Table 6.1 summarises clinicopathological characteristics of patients (n=474).  The 

majority of patients (70%) were older than 50 years, had small tumour size ≤20mm 

(60%), had grade II and III tumours (80%) and negative lymph node (54%).  The 

majority had ER positive (69%) tumours, PR positive tumours (61%) and Her-2 

negative tumours (80%). 182 (38%) had lumpectomy and radiotherapy, and 292 (62%) 

had mastectomy and radiotherapy.  243 (51%) patients received tamoxifen only, 101 

(21%) patients received adjuvant chemotherapy only, and 95 (20%) had both.  221 

(47%) of patients had luminal A tumours, 111 (23%) had luminal B tumours, 31 (7%) 

had Her-2 positive and 78 (18%) had triple negative tumours. A high tumour budding 

was identified in 167 (35%) patients.   

The relationship between tumour budding, clinicopathological characteristics, local 

host inflammatory response and TSP is presented in Table 6.2.  Tumour budding was 

not significantly associated with age, size, grade, necrosis, Ki67 and BVI.  A high 

tumour budding was associated with ER positive status (P=0.003), lymph node positive 

tumours (P=0.009), presence of LVI (P<0.001), and high TSP (P=0.001).  A high 

tumour budding was inversely associated with local tumour inflammatory response as 

measured by the Klintrup–Mäkinen grade (P=0.002), but not by macrophage, plasma 

cells and T-cell lymphocyte subtypes.  

The relationship between clinicopathological characteristics and tumour budding in 

node negative patients is presented in Table 6.3.  A high tumour budding was 

associated with presence of LVI (P<0.001) and inversely associated with local 

inflammatory response as measured by the Klintrup–Mäkinen grade (P=0.038).  A high 

tumour budding showed a trend towards an association with TSP (P=0.080).  
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Table  6-1 The clinicopathological characteristics of patients with invasive ductal breast cancer 

(n=474) 

 Patients, n (%) 

Age (≤50/ >50 years)  140(30%)/334(70%) 

Size (≤20/ 21-50/ >50 mm) 283(60%)/178(38%)/13(3%) 

Grade (I / II / III) 94(20%)/190(40%)/190(40%) 

Involved lymph node (-ve/+ve)
 a
 257(54%)/212(45%) 

ER status (no/yes)
 a
 141(30%)/330(69%) 

PR status (no/yes)
 a
 180(38%)/289(61%) 

Her-2 status (no/ yes)
 a
 381(80%)/74(16%) 

Lymphatic vessel invasion (no/yes) 327(69%)/147(31%) 

Blood vessel invasion (no/yes) 419(88%)/55(12%) 

Tumour necrosis (low/high) 226(48%)/248(52%) 

Ki67 index (low/high)
 a
 345(73%)/106(22%) 

Klintrup–Mäkinen grade (low/high) 345 (73%)/129 (27%) 

CD68+ (low/moderate/high)
 a
 145(31%)/153(32%)/153(32%) 

CD4+ (low/moderate/high)
 a
 207(44%)/90(19%)/157(33%)

 

CD8+ (low/moderate/high)
 a
 151(32%)/145(31%)/158(33%)

 

CD138+(low/moderate/high)
 a
 254(54%)/55(12%)/143(30%)

 

Tumour stroma percentage (low/high) 320(68%)/154(32%) 

Locoregional treatment (lumpectomy 

+radiotherapy/mastectomy+radiotherapy) 
182(38%)/292(62%) 

Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/none) 
243(51%)/95(20%)/101(21%)/27(6%) 

Alive/cancer death/non cancer death
 a
 275(58%)/96(20%)/90(19%)

 

a Number of patients when incomplete data available. 
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Table  6-2 The relationship between clinicopathological characteristics and tumour budding in 

patients with invasive ductal breast cancer (n=474) 

 
Tumour budding≤20 

n=307(65%) 

Tumour budding>20 

n=167(35%) 
(P-value) 

Age (≤50/ >50 years)  99/208 41/126 0.080 

Size (≤20/ 21-50/ >50 mm) 186/114/7 97/64/6 0.469 

Grade (I / II / III) 62/108/137 32/82/53 0.099 

Involved lymph node (-ve/+ve)
 
 180/124 77/88 0.009 

ER status (no/yes)
 a
 105/199 36/131 0.003 

PR status (no/yes)
 
 126/176 54/113 0.054 

Her-2 status (no/ yes)
 
 245/44 136/30 0.429 

Lymphatic vessel invasion (no/yes) 232/75 94/73 <0.001 

Blood vessel invasion (no/yes) 271/36 150/17 0.610 

Tumour necrosis (low/high) 138/169 88/79 0.107 

Ki67 index (low/high)
 
 225/64 120/42 0.364 

Klintrup–Mäkinen grade (low/high) 209/98 136/31 0.002 

CD68+ (low/moderate/high)
 
 99/88/101 46/65/52 0.708 

CD4+ (low/moderate/high)
 
 132/53/104 75/37/53 0.675 

CD8+ (low/moderate/high)
 
 97/79/113 54/66/45 0.173 

CD138+(low/moderate/high)
 
 164/27/97 90/28/46 0.687 

Tumour stroma percentage (low/high) 224/83 98/69 0.001 

Locoregional treatment (lumpectomy 

+radiotherapy/mastectomy+radiotherapy) 
118/189 64/103 0.891 

Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/none) 
148/92/72/18 95/33/29/9 0.096 

Alive/cancer death/non cancer death
 
 199/43/55 76/53/35 0.002 

Cancer specific survival (months)
a
  159 (153-164) 136 (127-145) <0.001 

a=Mean (95% CI) 
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Table  6-3 The relationship between clinicopathological characteristics and tumour budding in patients 

with node negative invasive ductal breast cancer (n=257) 

 
Tumour budding≤20 

n=180(70%) 

Tumour budding>20 

n=77(30%) 
(P-value) 

Age (≤50/ >50 years) 49/131 23/54 0.666 

Size (≤20/ 21-50/ >50 mm) 125/54/1 56/20/1 0.696 

Grade (I / II / III) 45/62/73 18/41/18 0.137 

ER status (no/yes) 57/122 18/59 0.173 

PR status (no/yes) 74/103 23/54 0.072 

Her-2 status (no/ yes) 151/21 66/10 0.835 

Lymphatic vessel invasion (-ve/+ve) 153/27 50/27 <0.001 

Blood vessel invasion (no/yes) 162/18 69/8 0.925 

Tumour necrosis (low/high) 93/87 49/28 0.078 

Ki67 index (low/high) 136/34 62/12 0.488 

Klintrup–Mäkinen grade (low/high) 133/47 66/11 0.038 

CD68+ (low/moderate/high) 65/52/52 26/26/23 0.747 

CD4+ (low/moderate/high) 80/31/59 38/14/24 0.623 

CD8+ (low/moderate/high) 60/46/64 26/31/19 0.313 

CD138+(low/moderate/high) 102/15/52 45/15/15 0.393 

Tumour stroma percentage (low/high) 224/83 98/69 0.080 

Locoregional treatment (lumpectomy 

+radiotherapy/mastectomy+radiotherapy) 

84/96 37/40 0.832 

Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/none 
105/20/36/17 54/6/8/8 0.142 

Alive/cancer death/non cancer death 126/15/33 45/17/15 0.184 

Cancer specific survival (months)
a
 167 (162-173) 150 (138-168) 0.001 

a= Mean (95%CI) 



 Chapter 6  

166 

The median survival of survivors was 164 months, with 96 deaths from breast cancer and 

90 non-cancer deaths.  13(3%) patients do not have survival data and were excluded from 

all survival analysis. Mean cancer specific survival was shorter in patients with high 

tumour budding compared with those with low tumour budding (136 versus 159 months, 

P<0.001) (Figure 6.3A).  

The relationship between tumour budding, clinicopathological characteristics and cancer 

specific survival is presented in Table 6.4.  On univariate analysis, a high tumour budding 

was associated with shorter CSS (P<0.001).  On multivariate analysis, a high tumour 

budding was associated with reduced CSS (HR 2.21, 95% CI 1.41-3.47, P=0.001), 

independent of PR status, nodal status, tumour necrosis, LVI, BVI, CD8+ T-lymphocyte 

infiltrate, CD138+ plasma cell infiltrate, TSP and locoregional treatment. 

In node negative patients, a high tumour budding was associated with shorter mean CSS 

compared with a low tumour budding (150 versus 167 months, P=0.001) (Figure 6.3B).  

On multivariate survival analysis (Table 6.3), a high tumour budding was associated with 

reduced CSS (HR 3.18, 95% CI 1.46-6.93, P=0.004), independent of PR status, tumour 

necrosis, LVI, and TSP.  
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Figure  6-3 Kaplan-Meier survival curves (Log rank) of cancer specific survival (A) in all 

patients, and (B) in patients with node negative tumours. 



 Chapter 6  

168 

In order to account for the high TSP and low cellular inflammatory infiltrate effects, sub-

group survival analyses were performed based on low TSP and high Klintrup–Mäkinen 

grade (Figure 6.4 and Table 6.5).  In stroma low patients, a high tumour budding was 

associated with shorter mean cancer specific survival compared with a low tumour budding 

(144 versus 162 months, P=0.002) (Figure 6.4A).  On multivariate survival analysis, a high 

tumour budding was associated with reduced cancer specific survival (HR 2.44, 95% CI 

1.35-4.40, P=0.003), independent LVI, BVI, tumour necrosis, CD68+ macrophage 

infiltrate and locoregional treatment (Table 6.5).  

In patients with high Klintrup–Mäkinen grade, a high tumour budding was associated with 

shorter mean cancer specific survival compared with a low tumour budding (110 versus 

151 months, P=0.003) (Figure 6.4B). On multivariate survival analysis, a high tumour 

budding was associated with reduced cancer specific survival (HR 2.56, 95% CI 1.23-5.36, 

P = 0.012) LVI, BVI, CD68+ macrophage infiltrate and TSP (Table 6.5).  
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Figure  6-4 Kaplan-Meier survival curves (Log rank) of cancer specific survival (A) in 

patients with low TSP, and (B) in patients with high Klintrup–Mäkinen score. 
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Table  6-4 The relationship between clinicopathological characteristics and cancer specific survival in patients with invasive ductal breast cancer 

 Univariate analysis Multivariate analysis 

 Hazard ratio (95% CI) P-value Hazard ratio(95% CI) P-value 

All patients (n=461)     

Age (<50/ >50 years) 1.22(0.77-1.91) 0.397   

Size (≤20/ 21-50/ >50 mm) 2.11(1.49-2.97) <0.001  0.324 

Grade (I / II / III) 1.87(1.38-2.53) <0.001  0.276 

Involved lymph node (-ve/+ve) 2.76(1.80-4.23) <0.001 1.48(1.12-4.93) 0.106 

ER status (no/yes) 0.62(0.41-0.93) 0.021  0.200 

PR status (no/yes) 0.54(0.36-0.81) 0.003 0.53(0.35-0.80) 0.004 

Her-2 status (no/ yes) 2.02(1.27-3.22) 0.003  0.959 

Tumour necrosis (low/high) 1.97(1.48-8.59) 0.005 3.45 (2.01-5.92) <0.001 

Lymphatic vessel invasion (no/yes) 4.14(2.75-6.29) <0.001 1.98(1.23-3.16) 0.004 

Blood vessel invasion (no/yes) 3.39(2.14-5.39) <0.001 2.04(1.22-3.41) 0.006 

Klintrup–Mäkinen grade (low/high) 1.48(0.96-2.26) 0.069  0.868 

CD68+ (low/moderate/high) 0.86(0.67-1.09) 0.222   

CD4+ (low/moderate/high) 1.00(0.80-1.25) 0.983   

CD8+ (low/moderate/high) 0.69(0.54-0.88) 0.004 0.88(0.82-0.99) <0.001 

CD138+(low/moderate/high) 1.38(1.11-1.71) 0.003 1.03(1.02-1.06) 0.001 

Tumour stroma percentage (low/high) 2.19(1.46-3.27) <0.001 1.65(1.08-2.51) 0.020 

Tumour budding (low/high) 2.53(1.69-3.78) <0.001 2.21(1.41-3.47) 0.001 
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Locoregional treatment (lumpectomy 

+radiotherapy/mastectomy+radiotherapy) 
2.34(1.47-3.75) <0.001 2.05(1.24-3.39) 0.005 

Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/none 
1.24(1.01-1.51) 0.033  0.508 

Node negative patients (n=251)     

Age (<50/ >50 years) 1.22(0.55-2.71) 0.632   

Size (≤20/ 21-50/ >50 mm) 2.49(1.25-4.97) 0.010  0.276 

Grade (I / II / III) 1.67(1.03-2.72) 0.038  0.894 

ER status (no/yes) 0.48(0.24-0.97) 0.040  0.806 

PR status (no/yes) 0.39(0.19-0.81) 0.010 0.36(0.17-0.75) 0.006 

Her-2 status (no/ yes) 1.75(0.72-4.26) 0.221   

Tumour necrosis (low/high) 3.75(1.73-8.11) 0.001 3.45(1.25-7.83) 0.003 

Lymphatic vessel invasion (no/yes) 4.67(2.33-9.36) <0.001 3.14(1.44-6.83) 0.004 

Blood vessel invasion (no/yes) 3.95(1.77-8.80) 0.001 2.38(0.98-5.79) 0.055 

Klintrup–Mäkinen grade (low/high) 1.45(0.67-3.13) 0.347   

CD68+ (low/moderate/high) 0.52(0.39-1.35) 0.643   

CD4+ (low/moderate/high) 1.04(0.63-1.21) 0.872   

CD8+ (low/moderate/high) 0.653(0.324-1.15) 0.132   

CD138+(low/moderate/high) 1.13(0.48-1.63) 0.625   

Tumour stroma percentage (low/high) 1.46(1.84-3.66) 0.014 1.91(1.45-5.21) 0.011 

Tumour budding (low/high) 2.83(1.46-5.86) 0.003 3.18(1.46-6.93) 0.004 

Locoregional treatment (lumpectomy 1.88(0.98-3.91) 0.089  0.439 
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 +radiotherapy/mastectomy+radiotherapy) 

Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/none 
0.98(0.71-1.38) 0.947   
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Table  6-5 The relationship between clinicopathological characteristics and cancer specific survival in patients with low TSP and high K-M score 

 Univariate analysis Multivariate analysis 

 Hazard ratio (95% CI) P-value Hazard ratio(95% CI) P-value 

Stroma low patients (n=311)     

Age (<50/ >50 years) 1.04(0.59-1.86) 0.885   

Size (≤20/ 21-50/ >50 mm) 2.73(1.69-4.40) <0.001  0.503 

Grade (I / II / III) 1.93(1.27-2.94) 0.002  0.422 

Involved lymph node (-ve/+ve) 2.52(1.45-4.39) 0.001  0.114 

ER status (no/yes) 0.52(0.30-0.92) 0.023  0.232 

PR status (no/yes) 0.65(0.32-1.06) 0.072  0.345 

Her-2 status (no/ yes)  1.96(1.04-3.70) 0.036  0.337 

Lymphatic vessel invasion (no/yes) 4.59(2.63-8.02) <0.001 1.99(1.06-3.74) 0.031 

Blood vessel invasion (no/yes) 5.49(3.13-9.64) <0.001 3.70(1.96-6.81) <0.001 

Tumour necrosis (low/high) 4.59(2.30-9.14) <0.001 3.95(1.89-8.22) <0.001 

Klintrup–Mäkinen grade (low/high) 1.64(0.93-2.08) 0.076  0.566 

CD68+ (low/moderate/high) 0.99(0.99-1.00) 0.028 0.94(0.92-0.99) 0.002 

CD4+ (low/moderate/high) 0.01(0.09-1.01) 0.337   

CD8+ (low/moderate/high) 0.99(0.99-1.02) 0.243   

CD138+ (low/moderate/high) 1.01(0.99-1.01) 0.092  0.888 

Tumour budding (low/high) 2.29(1.32-3.95) 0.002 2.44(1.35-4.40) 0.003 

Locoregional treatment (lumpectomy 3.41(1.65-7.00) 0.001 3.37(1.53-7.40) 0.002 
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+radiotherapy/mastectomy+radiotherapy) 

Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/none 
1.35(1.04-1.77) 0.026  0.507 

High Klintrup–Mäkinen grade patients (n=123)     

Age (<50/ >50 years) 0.73(0.36-1.45) 0.365   

Size (≤20/ 21-50/ >50 mm) 1.86(0.93-3.74) 0.081  0.238 

Grade (I / II / III) 1.75(0.71-4.32) 0.226   

Involved lymph node (-ve/+ve) 2.35(1.09-5.09) 0.030  0.235 

ER status (no/yes) 0.60(0.29-1.23) 0.165   

PR status (no/yes) 0.49(0.22-1.10) 0.496   

Her-2 status (no/ yes) 1.22(0.59-2.53) 0.598   

Lymphatic vessel invasion (no/yes) 6.25(2.65-14.49) <0.001 5.21(2.16-12.58) <0.001 

Blood vessel invasion (no/yes) 3.94(1.89-8.20) <0.001 2.91(1.32-6.39) 0.008 

Tumour necrosis (low/high) 23.78(0.16-34.34) 0.213   

CD68+ (low/moderate/high) 0.95(0.92-0.99) 0.004 0.96(0.93-0.99) 0.003 

CD4+ (low/moderate/high) 0.99(0.99-1.01) 0.300   

CD8+ (low/moderate/high) 0.99(0.98-0.99) 0.006  0.139 

CD138+ (low/moderate/high) 1.01(0.99-1.01) 0.164   

Tumour stroma percentage (low/high) 2.62(1.26-5.45) 0.010 2.35(1.10-5.06) 0.027 

Tumour budding (low/high) 2.82(1.39-5.72) 0.003 2.56(1.23-5.36) 0.012 

Locoregional treatment (lumpectomy 

+radiotherapy/mastectomy+radiotherapy) 
2.74(1.13-6.66) 0.026  0.198 
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 Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/none 
1.14(0.78-1.66) 0.500   
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When survival analysis for tumour budding was performed across the different molecular 

subtypes, a high tumour budding was associated with shorter mean cancer specific survival 

compared with a low tumour budding in luminal B patients (155 versus 114 months, 

P<0.001), and triple negative patients (154 versus 94 months, P<0.001), whereas lumnal A 

and Her-2 +ve tumours showed no significant difference in mean cancer specific survival 

between high and low tumour budding groups (Figure 6.4).  
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 Figure  6-5 Kaplan-Meier survival curves (Log rank) of cancer specific survival in different molecular subtypes. 

Only luminal B (mean survival; 155 versus 114 months) and triple negative (mean survival; 154 versus 94 months) subgroups show significant association between high 

tumour budding and reduced cancer specific survival. 
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6.4 Discussion 

In the present study high tumour budding was associated with more tumour stroma and a 

weaker inflammatory cell infiltrate and was independently associated with reduced cancer 

specific survival.  These results suggest a complex relationship between tumour budding 

and the tumour microenvironment and disease progression in patients with invasive ductal 

breast cancer. 

Few studies have examined the prognostic value of tumour budding in breast cancer (Liang 

et al., 2013; Salhia et al., 2015).  The prognostic value and method of assessment of 

tumour budding in colorectal cancer has recently been reviewed by van Wyk and 

colleagues.  They concluded that IHC did not improve the detection rate or the prognostic 

value of tumour budding over that of H&E (van Wyk et al, 2015).  Therefore, in the 

present study, the H&E approach was used.  

In the present study, examination of tumour budding was reproducible (ICCC=0.81).  

Patients, in the present study, were divided into three budding groups based on tertiles.  

The cut-off considered the best discriminator of cancer specific survival (Choi et al, 2007; 

Sy et al., 2010) was between groups 2 and 3, and yielded a cut-off consistent with previous 

reports (16-25 buds) (Prall et al., 2005; Wang et  al., 2009).  Furthermore, in the present 

study tumour budding was found in 35% of patients and is consistent with previous report 

in patients with breast cancer (Liang et al., 2013). 

The results of the present study showed that high grade budding was significantly 

associated with ER positive tumours.  These results are consistent with the recent 

observations of Salhia and colleagues using a pan-cytokeratin stain to assess tumour 

budding (Salhia et al., 2015).   The basis of these observations is not clear.  However, it 

was recently reported that oestrogen is involved in EMT in breast cancer cell lines with 

stem cell properties (Sun et al., 2014) and that oestrogen is involved in disruption of tight 
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junction and increased cell motility (Sanchez et al., 2010; Jime´nez-Salazar et al., 2014). 

Therefore, this may suggest that ER positive tumours with high tumour budding may be 

undergoing a higher degree of EMT and as a result more metastatic potential.  If this were 

to be the case, then it might be expected that anti-oestrogen treatment would reduce the 

degree of budding in those patients.  

Despite being associated with lymph node metastasis and lymphatic vessel invasion, 

tumour budding was not associated with blood vessel invasion.  The basis of this 

observation was not clear however, tumour buds might find their way of metastasis 

through invasion into lymphatic vessels than blood vessels, as it is the major route of 

metastasis in breast cancer (Mohammed et al., 2009).  In the present study, there was a lack 

of any perceived association between tumour budding and tumour size, grade, necrosis, or 

Ki67 in all cohort and in sub-group analysis.  Previous breast and colorectal cancers studies 

reported that budded cells to display lower proliferation activity rather than high 

proliferative activity (Palmqvist et al., 2000; Liang et al., 2013; Dawson and Lugli., 2015). 

This may suggest that detachment and dissociation of tumour cells are not influenced by 

increased tumour size, its differentiation or proliferation activities.  

Although the interrelationships between the tumour budding, tumour microenvironment 

and gross pathological characteristics are likely complex, tumour budding remained 

independently associated with cancer specific survival in different patient sub-groups. In 

high risk patients with node negative disease, tumour budding was significantly associated 

with reduced cancer specific survival alongside with tumour necrosis, LVI and BVI. 

Indeed, the present results further confirm the importance of both tumour and host-based 

factors of the tumour microenvironment in determining cancer outcome. 

Although there is now increased appreciation of the importance of the tumour budding in 

cancer progression and survival in several previous reports (Hase et al., 1993; Ueno et al., 
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2002; Prall et al., 2005; Koike et al., 2008; Masugi et al., 2010; Taira et al., 2012; 

Koyuncuoglu et al., 2012; Liang et al., 2013), its relationship with other components of the 

tumour microenvironment has yet to be fully characterised.  It was of interest that the 

present study found an association between tumour budding and increased amount of 

tumour stroma percentage.  Earlier reports in colorectal cancer have shown an association 

between tumour budding and the presence of an immature stroma and a high density of 

stromal myofibroblasts (Ueno et al., 2004).  Furthermore, tumour stroma has been 

implicated to facilitate EMT, which is one of the features of budded cells (Masugi et al., 

2010; Zlobec and Lugli, 2010; Taira et al., 2012; Koyuncuoglu et al., 2012, Lugli et al.,  

2012; Liang et al., 2013), and metastasis of tumour cells into normal tissue (De Wever and 

Mareel, 2003; Hemmings, 2013).  Therefore, the present finding may support an important 

role of the tumour stroma in facilitating tumour cell de-differentiation and dissemination, 

perhaps providing suitable energy substrate and reducing the build-up of metabolic waste 

(Koukourakis et al., 2006).  

Of interest, the present study has reported the relationship between tumour budding and 

local host inflammatory infiltrate.  There was a low peri-tumoural general inflammatory 

infiltrate, as measured by Klintrup–Mäkinen score but not by individual subtypes of innate 

or adaptive immune cells, in patients with high grade tumour budding.  This may suggest 

that tumour budding may promote the development of a pro-tumour rather than anti-

tumour immune response.  It is of interest that the prognostic value of the ratio of CD8+ T-

lymphocytes and budding has recently reported in primary operable colorectal cancer and 

showed that a high tumour budding and a low CD8+ T-lymphocytes index was associated 

with tumour progression and worse survival (Lugli et al., 2009), confirming the pro-

tumour impact of the tumour budding.  However, when we examined CD8+/budding index 

in the present breast cancer cohort, the CD8+/budding index did not show additional 
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prognostic value to that of tumour budding alone.  Therefore, further work is required to 

establish the prognostic value of the CD8+/ budding index in patients with cancer. 

Given that tumour budding has independent prognostic value in patients with primary 

operable invasive ductal breast cancer, it would be of interest to examine the prognostic 

value of intra-tumoural budding (ITB) since if this was the case then it may be applied to 

the initial diagnostic biopsy samples to better predict likely outcome and plan treatment 

prior to surgery.  For example, if ITB was strongly associated with lymph node metastases, 

then it may be that the corresponding sentinel lymph nodes should be analysed carefully on 

frozen sections in preoperative biopsies.  Indeed, Zlobec and colleagues reported that ITB 

in preoperative biopsies predicts the presence of lymph node and distant metastases in 

colorectal cancer patients (Zlobec et al., 2014).  However, Salhia and colleagues reported 

that, in breast cancer, ITB in preoperative core biopsies was associated with blood vessel 

invasion but not with lymphatic and nodal invasion (Salhia et al., 2015).  Nevertheless, 

prospective studies comparing the prognostic value of tumour budding in preoperative core 

biopsies and resection specimens would be of great interest.  

As breast cancer is heterogeneous, variation in stromal biology may exist between breast 

cancer subtypes, and may possibly influence on outcome.  High tumour budding was 

significant predictor of poor survival in patients with luminal B and triple negative tumours.  

Luminal B tumours have a more aggressive phenotype, with higher proliferation rate 

compared to luminal A tumours.  Luminal B tumours also include those tumours with Her-

2 overexpression or amplification and they needed to be treated more aggressively than 

Luminal A (Eroles et al., 2012; Wu and Sahin., 2016).  For Basal like or triple negative 

breast cancers, currently there are no specific targeted therapies (Eroles et al., 2012; Kumar 

and Aggarwal., 2016; Wu and Sahin., 2016).  Therefore, the detection of tumour buds at 

the invasive front may therefore represent an additional prognostic indicator that may help 
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better understanding of the malignant progression of the molecular subtypes and could be a 

potential target for their treatment.  

Taken together, the present results suggest that tumour budding may promote disease 

progression through a direct effect on local and distant invasion into lymph nodes and 

lymphatic vessels. Indeed, budded cells have been shown to display epithelial 

mesenchymal transition-like molecular phenotype in several cancers (Masugi et al., 2010; 

Zlobec and Lugli, 2010; Taira et al., 2012; Koyuncuoglu et al., 2012, Lugli et al., 2012; 

Liang et al., 2013), which is an early and critical step in cancer metastasis (Kalluri and 

Weinberg et al, 2009).  Interstingly, in breast cancer, budded tumour cells at the invasive 

margin show reduced expression of membranous E-cadherin, and increased expression of 

cytoplasmic vimentin (Liang et al., 2013), essential phenotypic features of EMT (De Crane 

and Berx, 2013).  Indeed, results of the present study would indicate that the detection of 

tumour buds at the invasive front might therefore represent a morphologic link between 

tumour progression, lymphatic invasion, spread of tumour cells to regional lymph nodes, 

and the establishment of metastatic dissemination. 

The results of the present study suggest that tumour budding should be incorporated into 

routine clinical practice.  However, in order for that to occur it has to be shown to be a 

reliable measure.  Although several studies have confirmed the prognostic value of tumour 

budding, several different methods have been described (Hase et al., 1993; Ueno et al., 

2002; Prall et al., 2005; Wang et al., 2009).  Therefore, there is a need for a standardised 

method to assess tumour budding in patients with cancer.  In particular, if the standardised 

assessment of the tumour budding can reliably be performed in routine pathological 

sections and can offer useful prognostic information for clinicians and this would form the 

platform for the integration of tumour budding into existing staging systems.  
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With reference to patients with breast cancer, to date, tumour budding has been rarely 

examined and therefore the results of the present study need to be externally validated.  

Furthermore, whether tumour budding could be used as an additional morphological 

feature to stratify ER positive into a high and low risk category has also to be validated. 

In conclusion, the present study provides comprehensive assessment of the associations 

between tumour budding and the tumour microenvironment and, in a mature cohort of 

patients with long term follow-up, further confirms the prognostic relevance of assessment 

of the tumour microenvironment in patients with invasive ductal breast cancer.  

Assessment of the tumour budding utilising routine pathological slides is relatively simple 

and may be readily incorporated into routine clinical pathology reporting to improve risk 

stratification, in particular for patients with node negative breast cancer. 
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Chapter 7 The relationship between total and phosphorylated-

STAT1 and STAT3 tumour cell expression, components of 

tumour microenvironment and survival in patients with 

invasive ductal breast cancer  

7.1 Introduction 

Components of the tumour microenvironment including tumour stroma and tumour 

inflammatory cell infiltrates are now recognised to play a key role in cancer progression 

and represent interactions between the tumour and the host (Hanahan and Weinberg, 2011; 

McAllister and Weinberg, 2014).  The underlying mechanism of the interaction between 

the different components of tumour microenvironment is not clear.  Cross-talk between 

signalling pathways determines how a cell integrates the environmental signals received, 

ultimately translating them in transcriptional regulation of specific sets of genes (Schindler 

et al., 2007).  Signal transducers and activators of transcription family (STATs) has been 

recognised to act downstream signalling of cytokine and growth factor receptors (Schindler 

et al., 2007; Stark and Darnell, 2012) and may therefore plausibly play a central role in 

determining the phenotypic characteristics of the tumour and the host. 

The IL-6/Janus-activated kinase can trigger tyrosine phosphorylation of both STAT1 and 

STAT3 through homo- or hetero-dimerisation of the signal transduction subunit gp130 

(Heinrich et al., 2003; Regis et al., 2008).  STATs detect a variety of signals at the cell 

membrane and transduce them to the nucleus directly affecting gene regulation of cell 

growth, survival, differentiation, and motility.  STAT1 is a central mediator of both type I 

and type II interferon (Darnell et al., 1997; Buettner et al., 2002; Yu et al., 2004), however 

both IFNs can in addition activate STAT3 (Regis et al., 2008).   

STAT1 and STAT3 employ a complex interaction on both tumour cells and the tumour 

microenvironment including immune infiltrates.  STAT1 and STAT3 are thought to play 

opposite roles in tumourigenesis and the set of target genes is mostly distinct (Avalle et al., 
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2012).  STAT1 is considered as a growth suppressor based on its role as a pro-apoptotic 

and anti-proliferative molecule (Bromberg and Darnell, 2002; Schindlr et al., 2007; Stark 

and Darnell, 2012; Koromilas and Sexl et al., 2013). STAT3 is well established as an 

oncogene involves in mammary epithelial cell growth and differentiation.  However, it also 

behaves as a tumour suppressor (Turkson and Jove, 2000; Ecker et al., 2009). Early studies 

have shown that STAT3 is essential in mammary gland epithelial cell apoptosis and 

involution (Chapman et al., 2000; Sutherland et al., 2006).   

Nevertheless, studies on STAT-deficient cells/animals have revealed the existence of 

reciprocal STAT1 to STAT3 regulatory mechanisms which represent the cross regulation 

between the two molecules (Avalle et al., 2012).  Increased and prolonged phosphorylation 

of STAT1 in response to gp130 cytokines occurs in several systems upon STAT3 gene 

inactivation (Regis et al., 2008; Avalle et al., 2012).   

Despite the fact that several experimental studies suggest that STAT1 and STAT3 play a 

critical role in breast cancer tumorigenesis, the prognostic value of these proteins in 

patients with breast cancer remains unclear (Table 7.1).  Five studies have examined the 

prognostic value of STAT1 in breast cancer, using either total STAT1 or phosphorylated 

STAT1 (ph-STAT1).  An initial analysis by Widschwendter et al using Western blotting 

and DNA binding technique, reported an independent association between high ph-STAT1 

activation and improved overall and cancer specific survival (CSS) (Widschwendter et al., 

2002). In contrast, IHC of ph-STAT1, found that ph-STAT1 in premenopausal women was 

associated with poor overall survival but not in postmenopausal women.  However, co-

expression of Ph-STAT1 with ER or PR was associated with longer CSS in 

postmenopausal women (Magkou et al., 2012).  Studies measuring total STAT1 have also 

reported conflicting results.  IHC of total STAT1 by Sheen-Chen et al and Huang et al 

reported no association between total STAT1 and outcome (Sheen-Chen et al., 2007; 
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Huang et al., 2014), whereas total STAT1 was a significant predictor of worse survival in 

one study (Charpin et al., 2009) (Table 7.1).  

Ten studies have examined the prognostic value of STAT3 in breast cancer, using either 

total STAT3 or phosphorylated STAT3 (ph-STAT3) (Table 7.1). High total STAT3 was 

significantly associated with improved outcome in three studies (Dolled-Filhart et al., 2003; 

Sato et al., 2011; Huang et al., 2014), and with poor outcome in one study   (Sheen-Chen et 

al., 2008). Ph-STAT3 expression was not associated with breast cancer survival in two 

studies (Widschwendter et al., 2002; Yamashita et al., 2006), and was associated with 

improved survival in large cohort of patients (Aleskandarany et al., 2016), patients with 

lymph node positive tumours (Sonnenblick et al., 2012), and patients treated with adjuvant 

chemotherapy (Sonnenblick et al., 2014). In contrast, ph-STAT3 was a significant 

predictor of worse survival in one study (Charpin et al., 2009) (Table 7.1). Therefore, 

given that clinical trials evaluating Il-6/JAK/ STAT inhibitors in breast cancer patients are 

under way (Lin et al., 2013), it would be important to determine the role of STAT1 and 

STAT3 in this disease.   

Also, commensurate with their role in regulating cytokine-dependent inflammation and 

immunity, the relationship between STAT1 and STAT3 and components of the tumour 

microenvironment is not clear.  Therefore, the aim of the present study was to examine the 

relationship between total and phosphorylated STAT1 and STAT3 tumour cell expressions, 

components of the tumour microenvironment and survival in a mature cohort of patients 

with invasive ductal breast cancer. 
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Table  7-1 Studies on the prognostic significance of STAT1 and STAT3 in breast cancer 

References    Patients  Sample size Follow-up  Protein examined Association with outcome 

STAT1 studies      

Widschwendter et al., 

2002 

N/S 53 6.8  ph-STAT1 associated with improved overall and 

CSS (multivariate analysis) 

Sheen Chen et al., 2007 N/S 102 5.8  total STAT1 no association with overall survival 

Charpin et al., 2009 N/S 924 6.5  total STAT1 associated with reduced CSS 

Magkou et al., 2012 Premenopausal/ 

postmenopausal  

165 7.5  ph-STAT1 in premenopausal women: associated 

with poor OS (univariate analysis) 

in postmenopausal women: co-

expression with ER/or PR was 

associated with improved CSS 

(univariate analysis) 

Huang et al., 2014 N/S 546 15  total STAT1 no significant association with CSS 

STAT3 studies       

Widschwendter et al., 

2002  

N/S 53 6.8  ph-STAT3 no association with survival 

Dolled-Filhart et al., 2003 LN -ve 255 5 & 20  total STAT3 associated with improved OS 

Yamashita et al., 2006 N/S 506 7.5  ph-STAT3 no association with OS and CSS 

Sheen-Chen  et al., 2008 N/S 102 5  total STAT3 associated with reduced OS  
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Charpin et al., 2009 N/S 924 6.5  ph-STAT3 associated with reduced CSS  

Sato et al., 2011 all, LN-ve/ LN+ve, 

low & high grade  

721 >10  total STAT3 associated with improved OS in patients 

with low grade tumours (univariate 

analysis) 

Sonnenblick et al., 2012 LN +ve 125 5 & 10  ph-STAT3 associated with improved OS 

Sonnenblick et al., 2013 N/S 375 10 ph-STAT3 associated with improved OS in patients 

treated with adjuvant chemotherapy  

Huang et al., 2014 N/S 546 15  total STAT3 associated with improved CSS 

(univariate analysis) 

Aleskandarany et al., 2016 N/S 1270 N/A Ph-STAT3 associated with improved CSS 

(multivariate analysis) 

N/S: not specified invasive breast cancer, LN: lymph node, ph-STAT1 tyrosine phosphorylated STAT1, ph-STAT3: tyrosine phosphorylated STAT3, CSS: cancer specific survival.  

OS: overall survival, Follow-up in years.  
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7.2 Patients and Methods 

7.2.1 Patients  

384 patients with primary operable invasive ductal breast cancer, whose samples were 

successfully stained for total and ph-STAT1, and total and ph-STAT3 from patients 

described in section 2.1, were included in this study. 

7.2.2 Methods  

TMA was utilised in this study and was constructed as previously described in chapter 2.0.  

The assessment of ER, PR, Her-2, CD68+ macrophage infiltrate, CD4+ T-lymphocyte 

infiltrate, CD8+ T-lymphocyte infiltrate and CD138+ plasma cell infiltrate was performed 

as previously described in chapter 2.0.  

Scanned routine H&E sections for the 384 patients were used to score general peri-

tumoural inflammatory infiltrate and tumour necrosis as previously described in chapter 

2.0. 

IHC were utilised to assess lymphatic and blood vessel invasion as previously described in 

chapter 4.0.  Tumour stroma percentage and tumour budding were also assessed on 

scanned H&E sections for the 384 patients as previously reported in chapters 5.0 and 6.0.  

The molecular subtypes were defined as follows: luminal A: ER and/or PR positive, Her-2 

negative, low proliferative index (≤15%); luminal B: hormone receptor positive, Her-2 

positive/or high proliferative index (>15%); Her-2 subtype: Her-2 positive and hormone 

receptor negative, any proliferative index; triple negative: Her-2 negative, hormone 

receptor negative, any proliferative index. 
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7.2.2.1 Immunohistochemistry of STAT1 and STAT3  

Immunohistochemical expression of total STAT1, Y701 phosphorylated STAT1 (ph-

STAT1), total STAT3 and Y705 phosphorylated STAT3 (ph-STAT3) were carried out 

using a previously constructed triplicate TMA blocks.  Sections of 2.5 µm thickness from 

each TMA block were placed on silanized glass slides.  Sections were dewaxed in xylene 

before being rehydrated using graded alcohols.  Antigen retrieval for all STATs isoforms 

was performed using Tris-EDETA buffer (pH 8) for 20 minutes before cooling for 20 

minutes.  Endogenous peroxidase activity was blocked using 3% hydrogen peroxide for 20 

minutes before rinsing in water.  Normal horse serum at dilution 1:10 was applied for 30 

minutes at room temperature as a blocking solution. TMA sections were then incubated 

overnight at 4
o
C with the primary antibodies as following: total STAT1 (STAT1 (42H3) 

Rabbit monoclonal antibody, code 9175, Cell Signaling Technology, USA) at a 

concentration of 1:100; ph-STAT1
 
(Rabbit PAb to STAT1 phosphoY701, code ab30645, 

Abcam, Cambridge) at a concentration of 1:150; total STAT3 (STAT3 Rabbit Ab, code 

9132L, Cell Signaling Technology, USA) at a concentration of 1:200; Ph-STAT3 (Y705) 

antibody (P-STAT3 (Y705) Rabbit Ab, code 9131L, Cell Signaling Technology, USA) at a 

concentration of 1:200. Sections were then washed in TBS for ten minutes.  Envision 

(Dako) was then added to the sections for 30 minutes at room temperature before washing 

in TBS for ten minutes.  DAB substrate was added for five minutes until colour developed 

before washing in running water for ten minutes.  Slides were then counterstained in 

haematoxylin for 60 seconds and blued with Scotts’ tap water before being dehydrated 

through a series of graded alcohols.  Cover slips were applied using distrene, plasticizer, 

xylene (DPX).   

7.2.2.2 Slide scanning and scoring 

Stained TMA sections for the 384 patients were scanned at objective magnification x20 as 

previously described in chapter 2.0.  Assessment of total STAT1, ph-STAT1, total STAT3 
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and ph-STAT3 expression levels were performed by a single examiner (FG) blinded to 

clinical data at x20 magnification (total magnification x40) using the weighted histoscore.   

Weighted histoscore: Examined protein expression levels were scored at each cellular 

location (cytoplasm and nuclei) separately.  The weighted histoscore method assesses the 

staining intensity and the percentage of cells stained with that intensity for the full slide 

(Kirkegaard et al., 2006).  It is calculated by (1 × % cells staining weakly positive) + (2 

× % cells staining moderately positive) + (3 × % cells staining strongly positive). This 

gives a semiquantitative classification of staining intensity, with the maximum score being 

300 (if 100% of cells stain strongly positive) and the minimum score being 0 (if 100% of 

cells are negative). The weighted histoscore method is a well-established method for 

scoring tissue that has heterogeneous staining.  To ensure reproducibility of scoring, 15% 

of tumours for each antibody were co-scored by a second investigator (JE) blinded to other 

data.  The intraclass correlation coefficient (ICCC) was 0.85 and 0.83 for cytoplasmic and 

nuclear total STAT1 respectively, and 0.82 and 0.87 for cytoplasmic and nuclear ph-

STAT1 respectively, indicating good agreement.  The ICCC was 0.79 and 0.80 for 

cytoplasmic and nuclear total STAT3 respectively, and 0.81 and 0.78 for cytoplasmic and 

nuclear ph-STAT3 respectively, indicating good agreement.   

7.2.2.3 Statistical analysis  

For the purpose of statistical analysis, patients were split into two groups on the basis of 

the mean of cytoplasmic and nuclear STAT1/STAT3 weighted histoscore as low 

cytoplasmic and low nuclear STAT1/STAT3 expression, and high cytoplasmic and high 

nuclear STAT1/STAT3 expression. In order to identify the impact of cellular 

STAT1/STAT3 expression at both cytoplasmic and nuclear location, an expression code 

was developed (STAT1/STAT3 tumour cell expression) as follows: patients with both low 

cytoplasmic and nuclear expression were classified as the low tumour cell expression 
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group, patients with either cytoplasmic or nuclear expression is low were classified as the 

moderate tumour cell expression group, and patients with both high cytoplasmic and high 

nuclear expression were classified as the high tumour cell expression group.  These 

analyses have been applied for total and for ph-STAT1 separately, and total and ph-STAT3 

separately. 

Subsequently, the relationships between clinicopathological characteristics, ph-STAT1 

tumour cell expression and ph-STAT3 tumour cell expression were examined using the 

Chi-square test for linear trend.  The relationship between total and ph-STAT1 tumour cell 

expression, total and ph-STAT3 tumour cell expression and cancer specific survival was 

examined using Kaplan-Meier log-rank analysis.  Univariate survival analysis was 

performed using Cox proportional hazards regression.  Variables with P-value of <0.1 

were entered into a multivariable model using a backwards conditional method. A P-value 

<0.05 was considered statistically significant.  All analysis was performed using SPSS 

version 22.0 (IBM SPSS IL, USA). 
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7.3 Results 

Total and ph-STAT1 and STAT3 expression in tumour cells were quantified using the 

weighted histoscore. The IHC staining of total and ph-STAT1 and STAT3 was 

homogenous in both the cytoplasm and nuclei of tumour cells, which is consistent with 

previous reports (Aleskandarany et al., 2016). The staining was also observed in the 

surrounding stromal cells (fibroblasts and infiltrating inflammatory cells) with variable 

degrees of positivity (Figure 7.1). 

The histoscore of total STAT1 expression ranged from 0-200 within the cytoplasm and 

from 0-220 within the nucleus, with cytoplasmic and nuclear expression in 270 patients 

(70%) and 268 patients (70%) respectively. The histoscore for ph-STAT1 expression 

ranged from 0-190 within the cytoplasm and from 0-225 within the nucleus, with 

cytoplasmic and nuclear expression in 350 patients (91%) and 374 patients (97%) 

respectively. Total STAT1 cytoplasmic expression was not correlated with ph-STAT1 

nuclear expression (P=0.421). Expression of total STAT1 and ph-STAT1 within the 

nucleus correlated strongly with their expression within the cytoplasm (all P<0.001).  

The histoscore of total STAT3 expression ranged from 0-280 within the cytoplasm and 

from 0-293 within the nucleus, with cytoplasmic and nuclear expression in 375 patients 

(98%). The histoscore of ph-STAT3 expression ranged from 0-150 within the cytoplasm 

and from 0-250 within the nucleus, with cytoplasmic and nuclear expression in 359 

patients (93%) and 376 patients (98%) respectively. Total STAT3 tumour cell expression 

correlated strongly with ph-STAT3 tumour cell expression (P<0.001). Expression of total 

STAT3 and ph-STAT3 within the nucleus correlated strongly with their expression within 

the cytoplasm (all P<0.001). 



 Chapter 7  

194 

 

Figure  7-1 Sections of invasive ductal beast carcinomas showing IHC expression levels of ph-STAT1 (first row) and ph-STAT3 (second row). No appreciable 

expression was detected in the negative controls of ph-STAT1 (A) and ph-STAT3 (B). C-H show the staining intensity of the STAT1 and STAT3 expression as low (C and D), 

moderate (E and F), and strong (G and H). Original magnification, 20×. Scale bars = 100 μm (A-F), 10 μm (G and H). 
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The clinical and pathological characteristics of patients with invasive ductal breast cancer 

are shown in Table 7.2. The majority of patients aged 50 years or older (70%), had a 

tumour size ≤ 2 cm (61%), grade III carcinoma (43%) with negative axillary lymph node 

involvement (54%). The majority had ER positive tumours (68%), PR positive tumours 

(60%) and Her-2 negative tumours (79%), with high grade tumour necrosis (53%). 241 

(63%) patients had mastectomy with radiotherapy, 194 (51%) patients received only 

hormonal therapy, 90 (23%) received only chemotherapy, and 70 (18%) received both. 174 

(45%) patients had luminal A tumours, 92 (24%) had luminal B tumours, 30 (8%) had Her-

2 positive tumours and 68 (18%) had triple negative tumours. 

The relationship between the total and ph-STAT1 expression and the total, and ph-STAT3 

expression within the nucleus and the cytoplasm is presented in Table 7.3.  Total STAT1 

cytoplasmic expression was not associated with ph-STAT3 at both nuclear and 

cytoplasmic compartments (P>0.05).  Total STAT1 nuclear expression was not associated 

with ph-STAT3 cytoplasmic expression (P>0.05).  Expression of ph-STAT1 within the 

nucleus and the cytoplasm was correlated strongly with total and ph-STAT3 expression 

within the nucleus and the cytoplasm (all P<0.001). 
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Table  7-2 The clinicopathological characteristics of patients with invasive ductal breast cancer 

(n=384) 

Clinicopathological characterestics Patients, n (%) 

Age (≤50/ >50 years) 116(30%)/268(70%) 

Size (≤20/ 21-50/ >50 mm) 233(61%)/142(37%)/9(2%) 

Grade (I / II / III) 71(19%)/147(38%)/166(43%) 

Involved lymph node (-ve/+ve)
a 

209(54%)/172(45%)
 

ER status (no/yes)
 

116(30%)/268(68%) 

PR status (no/yes)
a 

152(40%)/230(60%) 

Her-2 status (no/ yes)
a 

305(79%)/70(18%) 

Lymphaic vessel invasion (no/yes) 254(66%)/130(34%) 

Blood vessel invasion (no/yes) 340(88%)/44(12%) 

Tumour necrosis (low/high) 183(48%)/201(52%) 

Klintrup–Mäkinen grade (low/high) 272(71%)/112(29%) 

CD68+ (low/moderate/high)
a
 116(30%)/129(34%)/124(32%) 

CD4+ (low/moderate/high)
a
 160(42%)/75(20%)/136(35%) 

CD8+ (low/moderate/high)
a
 124(32%)/119(31%)/128(33%) 

CD138+(low/moderate/high)
a
 203(53%)/45(12%)/122(32%) 

Tumour stroma percentage (low/high) 264(69%)/120(31%) 

Tumour budding (low/high) 250(65%)/134(35%) 

Locoregional treatment (lumpectomy + 

radiotherapy/mastectomy +radiotherapy) 
143(37%)/241(63%) 

Systemic treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/ none)
a
 

194(51%)/70(18%)/90(23)/24(6%) 

Recurrence status (no/yes)
a
 285(74%)/95(25%) 

Alive/cancer death/non cancer death 228(59%)/82(22%)/74(19%) 

a Number of patients when incomplete data available. 
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Table  7-3 The relationship between ph-STAT1 and ph-STAT3 expression 

 

Total STAT1 

cytoplasmic 

expression 

Total STAT1 

nuclear 

expression 

Ph-STAT1 

cytoplasmic 

expression 

Ph-STAT1 

nuclear 

expression 

Total STAT3 

cytoplasmic 

expression 

0.027 0.003 <0.001 <0.001 

Total STAT3 

nuclear expression 

0.026 0.007 <0.001 <0.001 

Ph-STAT3 

cytoplasmic 

expression 

0.207 0.539 <0.001 <0.001 

Ph-STAT3 

nuclear expression 

0.115 0.003 <0.001 <0.001 
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The relationship between ph-STAT1 and ph-STAT3 tumour cell expression and 

clinicopathological characteristics was shown in Table 7.4.  Ph-STAT1 tumour cell 

expression was not associated with patient age, tumour size, Her-2 status, or the presence 

of lymphatic (LVI) and blood (BVI) vessel invasion.  High ph-STAT1 tumour cell 

expression was positively associated with ER status (P=0.001), PR status (P=0.048), and 

negatively with increased tumour grade (P=0.015). Similarly, ph-STAT3 tumour cell 

expression was not associated with patient age, tumour size and Her-2 status, though 

borderline significant associations with reduced LVI (P=0.055) and BVI (P=0.052) were 

observed.  High ph-STAT3 tumour cell expression was positively associated with ER 

status (P<0.001), PR status (P=0.015) and negatively with increased tumour grade 

(P<0.001).  

Within the tumour microenvironment, high ph-STAT1 tumour cell expression was not 

associated with tumour stroma percentage (TSP) and tumour budding. High ph-STAT1 

tumour cell expression was negatively associated with tumour necrosis (P=0.001), and was 

positively associated with the generalised inflammatory infiltrate as measured using 

Klintrup–Mäkinen (K-M) grade (P=0.007). Similarly, high ph-STAT3 tumour cell 

expression was not associated with TSP and tumour budding. High ph-STAT3 tumour cell 

expression was negatively associated with tumour necrosis (P=0.001) and cellular 

inflammatory infiltrate as measured using CD4+ helper T-lymphocytes (P=0.024). High 

ph-STAT1 and ph-STAT3 tumour cell expression were also significantly associated with 

reduced tumour recurrence (P=0.003 and P=0.001 respectively).  
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Table  7-4 The relationship between ph-STAT1 and ph-STAT3 tumour cell expression and clinicopathological characteristics (n=384) 

 

 

Ph-STAT1 tumour cell expression Ph-STAT3 tumour cell expression 

low 

n=127, 33% 

moderate 

n=136, 35% 

high 

n=121, 32% 

P value low 

n=154, 40% 

moderate 

n=121, 32% 

high 

n=109, 28% 

P 

value 

Age (≤50/ >50 years) 35/92 38/98 43/78 0.175 46/108 40/81 30/79 0.744 

Size (≤20/21-50/>50 mm) 73/48/6 88/47/1 72/47/2 0.444 91/58/5 73/46/2 69/38/2 0.402 

Grade (I / II / III) 17/43/67 29/53/54 25/51/45 0.015 14/60/80 25/47/49 32/40/37 <0.001 

Lymph node status 

(-ve/+ve) 

63/62 78/57 68/53 0.357 76/76 66/55 67/41 0.057 

ER status (no/yes) 50/77 41/95 25/96 0.001 66/88 32/89 18/91 <0.001 

PR status (no/yes) 57/70 56/79 39/81 0.048 70/83 49/72 33/75 0.015 

Her-2 status (no/ yes) 99/26 102/29 104/15 0.105 120/31 94/25 91/14 0.173 

Tumour necrosis (low/high) 45/82 69/67 69/52 0.001 60/94 57/64 66/43 0.001 

Lymphatic vessel invasion 

(no/yes) 

85/42 89/47 80/41 0.890 96/58 77/44 81/28 0.052 

Blood vessel invasion (no/yes) 109/18 123/13 108/13 0.390 133/21 104/17 103/6 0.055 

Klintrup–Mäkinen grade 

(low/high) 

97/30 98/38 77/44 0.007 108/46 81/40 83/26 0.347 

CD68+ (low/moderate/high) 40/47/33 40/39/54 36/43/37 0.514 49/53/45 42/33/42 25/43/37 0.183 

CD4+ (low/moderate/high) 47/30/44 55/28/51 58/17/41 0.297 57/30/61 51/18/48 52/27/27 0.024 

CD8+ (low/moderate/high) 46/38/37 39/51/44 39/30/47 0.179 52/43/53 36/39/42 36/37/33 0.785 
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Bold indicates significant association  

CD138+(low/moderate/high) 65/14/42 74/14/45 64/17/35 0.613 90/15/42 61/12/44 52/18/36 0.109 

Tumour strtoma percentage 

(low/high) 

83/44 93/43 88/33 0.212 99/55 91/30 74/35 0.426 

Tumour budding (low/high) 88/39 79/57 83/38 0.884 96/58 76/45 78/31 0.140 

Locoregional treatment 

(lumpectomy+radiotherapy 

/mastectomy +radiotherapy) 

47/80 52/84 44/77 0.920 55/99 43/78 45/64 0.385 

Systemic treatment 

(hormonal/hormonal+ 

chemotherapy/chemotherapy/ 

none) 

58/23/37/8 70/27/28/10 66/20/25/6 0.102 72/26/48/7 57/24/30/7 65/20/12/10 0.060 

Recurrence status (no/yes) 86/40 99/37 100/18 0.003 105/49 88/32 92/14 0.001 
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The median follow-up of survivors was 144 months, with 82 cancer-associated deaths and 

74 non-cancer deaths. The relationship between total and ph-STAT1 tumour cell 

expression and CSS using Kaplan-Meier log rank test was examined (Figure 7.2). The total 

STAT1 tumour cell expression was not associated with CSS (P=0.435) (Figure 7.2A). 

High ph-STAT1 tumour cell expression was associated with improved CSS compared to 

low tumour cell expression (P=0.002) (Figure 7.2B). The mean survival of patients with 

low ph-STAT1 tumour cell expression was 140 months (95% CI 130-151 months) and 10-

year survival rate was 64%, whereas the mean survival of patients with high expression 

was 162 months (95% CI 154-169 months) and 10-year survival rate was 84%. 

The relationship between total and ph-STAT3 tumour cell expression and CSS using 

Kaplan-Meier log rank test was subsequently examined (Figure 7.3). High total STAT3 

tumour cell expression was associated with CSS (P<0.001) (Figure 7.3A).  High ph-

STAT3 tumour cell expression was associated with improved CSS compared to patients 

with low tumour cell expression (P<0.001) (Figure 7.3B). The mean survival of patients 

with low expression was 139 months (95% CI 129-149 months) and 10-year survival was 

62%, whereas the mean survival of patients with high expression was 170 months (95% CI 

163-176 months) and 10-year survival was 80%. 

The relationship between ph-STAT1 and ph-STAT3 tumour cell expression, 

clinicopathological characteristics, and CSS is presented in Table 7.5. In univariate 

analysis, both high ph-STAT1 (P=0.002) and ph-STAT3 (P<0.001) tumour cell expression 

were associated with improved CSS.  In multivariate analysis, high ph-STAT1 tumour cell 

expression was not independently associated with CSS (P=0.193). In contrast, high ph-

STAT3 tumour cell expression was independently associated with improved CSS (HR 0.64, 

95% CI 0.64-0.90, P=0.010) independent of other variables, including nodal status, tumour 

necrosis, LVI, BVI, CD8+ T-lymphocyte infiltrate, CD138+ plasma cell infiltrate, and 

tumour budding (Table 7.5). 
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Figure  7-2 Kaplan-Meier survival curves (Log rank) of cancer specific survival.  

(A) Total STAT1 tumour cell expression and (B) Ph-STAT1 tumour cell expression. 
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Figure  7-3 Kaplan-Meier survival curves (Log rank) of cancer specific survival. 

(A) Total STAT3 tumour cell expression and (B) Ph-STAT3 tumour cell expression. 
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Due to the strong association observed between both ph-STAT1 and ph-STAT3 and 

tumour necrosis, the relationship between ph-STAT1 and ph-STAT3 tumour cell 

expression with CSS in patients with high tumour necrosis was subsequently examined 

(Table 7.6). In univariate analysis, high ph-STAT3 but not ph-STAT1 tumour cell 

expression was significantly associated with improved CSS. In multivariate analysis, high 

ph-STAT3 tumour cell expression was significantly associated with improved CSS (HR 

0.69, 95% CI 0.51-0.95, P=0.030) independent of LVI, BVI, CD68+ macrophage infiltrate, 

CD8+ T-lymphocyte infiltrate, tumour budding and locoregional treatment (Table 7.6). 

The relationship between ph-STAT1 and ph-STAT3 tumour cell expression and CSS using 

Kaplan-Meier log rank test, with relevance to different molecular subtypes, was examined 

(Figures 7.4 and 7.5). High ph-STAT1 was significantly associated with improved CSS in 

luminal A (n=174) tumours (P=0.007).  High ph-STAT3 was significantly associated with 

improved CSS in luminal A (n=174) (P=0.005) and B (n=92) tumours (P=0.017). The 

small Her-2 positive subtype cohort (n=30) precluded meaningful analysis.   
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Table  7-5 The relationship between clinicopathological characteristics, ph-STAT1 and ph-STAT3 tumour cell expression and cancer specific survival in patients 

with invasive ductal breast cancer (n=384) 

 Univariate analysis Multivariate analysis 

 HR (95% CI) P-value HR (95% CI) P-value 

Age (<50/ >50 years) 1.14(0.70-1.85) 0.604   

Size (≤20/ 21-50/ >50 mm) 2.21(1.52-3.23) <0.001  0.475 

Grade (I / II / III) 1.89(1.37-2.63) <0.001  0.254 

Involved lymph node (-ve/+ve) 3.85(2.37-6.24) <0.001 1.90(1.10-3.29) 0.021 

ER status (no/yes) 0.54(0.35-0.84) 0.006  0.141 

PR status (no/yes) 0.58(0.38-0.90) 0.015  0.181 

Her-2 status (no/ yes) 2.05(1.26-3.32) 0.004  0.272 

Tumour necrosis (low/high) 5.87(3.26-10.67) <0.001 4.42(2.31-8.45) <0.001 

Lymphatic vessel invasion (no/yes) 4.08(2.61-6.37) <0.001 1.94(1.13-3.31) 0.015 

Blood vessel invasion (no/yes) 3.28(1.98-5.43) <0.001 1.79(1.02-3.14) 0.044 

Klintrup–Mäkinen grade (low/high) 1.47(0.93-2.23) 0.099  0.526 

CD68+ (low/moderate/high) 0.79(0.59-1.02) 0.069  0.101 

CD4+ (low/moderate/high) 0.99(0.78-1.26) 0.982   

CD8+ (low/moderate/high) 0.62(0.47-0.82) <0.001 0.58(0.42-0.80) 0.003 

CD138+(low/moderate/high) 1.34(1.06-1.69) 0.014 1.65(1.25-2.18) <0.001 

Tumour stroma percentage (low/high) 2.17(1.40-3.35) <0.001  0.096 

Tumour budding (low/high) 2.46(1.59-3.78) <0.001 1.88(1.17-3.03) 0.009 
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Ph-STAT1 tumour cell expression 

(low/moderate/high) 

0.65(0.49-0.86) 0.002  0.193 

Ph–STAT3 tumour cell expression 

(low/moderate/high) 

0.54(0.40-0.74) <0.001 0.64(0.64-0.90) 0.010 

Locoregional treatment (lumpectomy 

+radiotherapy/mastectomy+radiotherapy) 

2.62(1.55-4.42) 0.001  0.054 

systemic treatment (hormonal/hormonal 

+chemotherapy/chemotherapy/none) 

1.26(1.02-1.55) 0.020  0.408 



 Chapter 7  

207 

 

Table  7-6 The relationship between clinicopathological characteristics, ph-STAT1 and ph-STAT3 tumour cell expression and cancer specific survival in patients 

with high grade necrosis (n=201) 

 Univariate analysis Multivariate analysis 

 HR (95% CI) P-value HR (95% CI) P-value 

Size (≤20/ 21-50/ >50 mm) 1.66(1.09-2.50) 0.016  0.388 

Grade (I / II / III) 1.17(0.78-1.73) 0.452   

Involved lymph node (-ve/+ve) 2.36(1.39-4.03) 0.002  0.188 

ER status (no/yes) 0.77(0.48-1.24) 0.303   

PR status (no/yes) 0.78(0.49-1.27) 0.326   

Her-2 status (no/ yes) 1.19(0.71-2.02) 0.503   

Lymphatic vessel invasion (no/yes) 3.28(1.98-5.44) <0.001 2.69(1.57-4.61) <0.001 

Blood vessel invasion (no/yes) 2.78(1.62-4.77) <0.001  0.108 

CD8+ (low/moderate/high) 0.51(0.38-0.69) <0.001 0.55(0.40-0.76) <0.001 

CD138+(low/moderate/high) 1.18(0.92-1.52) 0.195   

Tumour stroma percentage (low/high) 2.14(1.32-3.47) 0.002  0.380 

Tumour budding (low/high) 2.51(1.56-4.04) <0.001 1.66(1.01-2.75) 0.048 

Ph-STAT1 tumour cell expression 

(low/moderate/high) 
0.83(0.63-1.12) 0.230   
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Only significant variables on univariate analysis were used  

Ph–STAT3 tumour cell expression 

(low/moderate/high) 
0.65(0.46-0.90) 0.011 0.67(0.47-0.94) 0.021 

Locoregional treatment 

(lumpectomy+radiotherapy /  mastectomy 

+radiotherapy) 

2.37(1.33-4.20) 0.003 2.03(1.10-3.73) 0.023 

Systemic  treatment (hormonal/hormonal+ 

chemotherapy/chemotherapy/ none) 
1.11(0.86-1.43) 0.415   
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Figure  7-4 Kaplan-Meier survival curves (Log rank) of ph-STAT1 in different molecular subtypes. 

Only luminal A shows significant association between high tumour cell expression of ph-STAT1 and improved cancer specific survival. 
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Figure  7-5 Kaplan-Meier survival curves (Log rank) of ph-STAT3 in different molecular subtypes. 

Both Luminal A and Luminal B show significant association between high tumour cell expression of ph-STAT3 and improved cancer specific survival 
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7.3.1 Discussion  

In the present study, increased tumour cell expression of both ph-STAT1 and ph-STAT3 

was associated with improved survival and the phenotypic characteristics of the tumour, in 

particular the low tumour grade and lack of tumour necrosis. Therefore, activation of 

tumour STATs may be an important mechanism by which the tumour cells mitigate the 

development of an aggressive phenotype in patients with invasive ductal breast cancer. 

To our knowledge, no previous study has conducted a comprehensive analysis of total and 

phosphorylated STAT1 and STAT3 expression in patients with ductal breast cancer. Ph-

STAT1 and ph-STAT3 were strongly associated with each other independent of cellular 

location. In multivariate analysis, ph-STAT1 was independently associated with prolonged 

CSS, however when ph-STAT3 was also included in the model only ph-STAT3 remained 

independently associated with CSS.  These results suggest that ph-STAT3 is the dominant 

STAT protein associated with improved survival in patients with invasive ductal breast 

cancer.  

The observation that STAT1 is associated with improved survival may be explained by its 

role in promoting apoptosis and inhibition of proliferation (Koromilas and Sexl, 2013).   

STAT1 induces the apoptotic pathway by up-regulation of caspases 2 and 3 expression 

(Battle and Frank, 2002; Kim and Lee, 2007), and recently Magou and colleague has 

reported a positive association between ph-STAT1 and caspase 3 expression in primary 

breast cancer tissues (Magou et al., 2012).  Furthermore, STAT1 has been reported to 

inhibit mammary tumours development in experimental models (Klover et al., 2010; 

Raven et al., 2011; Schneckenleithne et al., 2011; Chan et al., 2012).  STAT3, in some 

contexts, also behaves as a tumour suppressor protein targeting genes involved in apoptosis 

and induction of growth arrest (Turkson and Jove, 2000; Ecker et al., 2009).  In particular, 

STAT3 is activated during apoptotic involution of mammary gland (Chapman et al., 2000; 
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Sutherland et al., 2006; Scribner et al., 2011; Hughes et al., 2012) and suppression of brain 

tumours (de la Iglesia et al., 2008).  Indeed, consistent with such a scheme, Sato and 

colleagues, in a large dataset of more than 700 patients, found that levels of ph-STAT3 

were reduced over progression from normal breast epithelia to invasive and metastatic 

breast cancer (Sato et al., 2011).  Furthermore, STAT3 has been shown to up-regulate 

tissue inhibitor of metalloproteinase-1 expression, which decreases invasiveness of breast 

cancer cells (Dien et al., 2006).   

It should be noted that discrepancies in prognostic value of STAT1 and STAT3 between 

the different studies might be attributable to a combination of factors, such as different 

protein isoforms, different methods of detection as well as differences in patient cohorts 

and length of clinical follow-up.  Also, it is plausible that STATs has prognostic value in 

certain subsets or molecular subtypes of breast cancer as well as different context of the 

tumour microenvironment.  Indeed, cross-talk between STATs and ER signalling pathways 

has been reported by several laboratories.  Oestrogen activates STAT1 in human 

osteoblasts and breast cancer cells by tyrosine phosphorylation, and promotes the 

formation of STAT1–DNA complexes (Kennedy et al., 2005).  Also oestrogen receptors 

have been reported to up regulate STAT3 activation in response to 17_β oestradiol via a 

non-genomic pathway (Bjornstrom and Sjoberg 2002) and through direct protein 

interactions between ER and STAT3, occurring primarily through the DNA-binding 

domain of ER (Silva and Shupnik et al., 2007).  Indeed, in the present study both STAT1 

and STAT3 were directly associated with ER positive status and this relationship may 

provide a useful therapeutic target in patients with primary ductal breast cancer. 

The present study reported an association between ph-STAT1, ph-STAT3 and the 

inflammatory cell infiltrate.  High ph-STAT1 tumour cell expression was associated with 

up-regulation of local inflammatory infiltrate as evidenced by increased generalised 

inflammatory cell infiltrate (K-M grade).  In contrast, high ph-STAT3 tumour cell 
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expression was associated with down-regulation of the local inflammatory infiltrate as 

evidenced by decrease in the CD4+ T-lymphocytes.  In fact, in the present study, STAT1 

and STAT3 were expressed in both the stroma associated fibroblasts and cells of the 

inflammatory infiltrate (Figure 7.1).  Taken together, the results of present study would 

suggest an important role for STAT1 and STAT3 in regulating anti-tumour immunity in 

the breast tumour microenvironment (Yu et al., 2007; Yu et al., 2009).  Such findings 

might be exploited to design therapies to counteract immune dysfunction and improve 

cancer immunotherapy (Avalle et al., 2012).   

The present study reports for the first time a negative association between ph-STAT1 and 

ph-STAT3 expression and tumour necrosis.  The basis of such an observation is not clear, 

however it is of interest that IFNγ-induced STAT1 activation has been previously shown to 

negatively regulate hypoxia-inducible factor-1 (HIF-1) α-dependent transcription in human 

glioblastoma cells lines (Hiroi et al., 2009), once more highlighting the opposing effects of 

STAT1 in tumours.   HIF-1 is a master regulator of the transcriptional response to hypoxia 

(Semenza and Wang, 1992).  Tumour hypoxia has been shown to be associated with a 

more clinically aggressive phenotype, resistance to therapy, angiogenesis and metastasis 

(Hockel and Vaupel, 2001; Harris, 2005).  Therefore, further understanding of the 

molecular mechanism by which STAT1 down-regulates hypoxia-induced transcription 

may also lead to the development of a better therapeutic measure for cancer treatment.   

The present study has found that in patients with high necrotic breast tumours, elevated ph-

STAT3 expression was significantly associated with better survival, suggesting a 

protective role of STAT3 against tumour necrosis, which may further explain the 

association of STAT3 with good prognosis.  Although the mechanism underlying this is 

not clear, hypoxic stress might influence STAT3 signalling, which in turn may down-

regulate HIF-1 pathway.  Indeed, constitutively active STAT3 acts as a master regulator of 

cell metabolism, inducing aerobic glycolysis via HIF-1 α transcriptional induction 
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(Demaria et al., 2010) as it is part of the complex signalling network that shapes the 

metabolic phenotype of tumour cells.   

Of interest, in the present study the prognostic role of ph-STAT1 and ph-STAT3 tumour 

cell expression with relevance to different molecular subtypes was examined.  Ph-STAT1 

and Ph-STAT3 were significant predictors of prolonged cancer specific survival in luminal 

subtypes.  This may indicate that the role of STATs in breast cancer may be driven by 

endocrine hormone and further support the cross-talk with ER. Previous reports have 

shown that patients with low proliferating luminal A tumours have higher ph-STAT3 

expression compared to those with the luminal B tumours (Tell and Horvath, 2014).  

Furthermore, in ER negative, Her-2 positive tumours, no response was observed to 

trastuzumab in patients with STAT3 activation (Sonnenblick et al., 2015) and that JAK2 

drives a JAK1/STAT3-independent signaling program in triple negative breast cancer 

(Balko et al., 2016), demonstrated that there are different activators and targets for STAT3 

in different subgroups of breast cancer. 

Taken together, the results of the present study would suggest that both STAT1 and 

STAT3 act as tumour suppressor proteins.  STAT1 has long been implicated in growth 

suppression (Bromberg and Darnel, 2000; Lynch et al., 2007; Koromilas and Sexl et al., 

2013) as loss of STAT1 function results in early development of breast tumours (Klover et 

al., 2010; Raven et al., 2011; Schneckenleithuer et al., 2011; Chan et al., 2012).  Unlike 

other STAT members, loss of STAT3 function results in early embryonic lethality STAT3 

(Inghirami et al., 2005) and suppression of tumour cells proliferation (Rivat et al., 2004; 

Gao et al., 2005; Xi et al., 2005), suggesting its crucial role as an oncogene. The 

mechanisms underlying STAT3 signalling pathway‘s diverse and sometimes opposing 

roles are still largely unknown.  It would suggest that this pleomorphic role of STAT3 in 

breast cancer prognosis, as an oncogene or a tumour suppressor, may be a function of the 

setting or cellular context, in particular the tumour microenvironment and necrosis.  It may 



 Chapter 7  

215 

also suggest that there are other signal transduction pathways involved in the effect 

elaborated by tumour STAT3 expression.  In addition, these results would indicate that 

STATs are central to the signalling networks in ductal breast cancer and that STAT3, in 

particular, has cross-talk with members of other pathways, such as the transcription factors 

HIF, and NFkB (Cairns et al., 2011; Mauro et al., 2011). 

In conclusion, STAT1 and STAT3 tumour cell expression appears to be an important 

determinant of favourable outcome in patients with invasive ductal breast cancer. The 

present results suggest that STAT3 may affect disease outcome through direct impact on 

tumour cells counteracting aggressive tumour features as well as interaction with the 

surrounding microenvironment.    

Of interest, several studies have examined the important role of STAT5 in breast cancer 

using both experimental and clinical data (Iavnilovitch et al., 2002; Nevalainen et al., 2004; 

Yamashita et al., 2006; Sultan et al., 2008; Peck et al., 2012). Therefore, it would be 

interesting to examine the role of STAT5 in breast cancer tumour microenvironment in 

future work. 
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Chapter 8 Discussion 

In the present thesis a number of studies were carried out and their significance is 

discussed below. 

In the present thesis it was shown that, in a review of lymphovascular invasion, the 

majority of studies used H&E and classical histochemistry to identify LVI and BVI 

reflecting current practice in most pathology departments.  The prognostic significance of 

LBVI and LVI was well-documented and associated with aggressive features of breast 

tumours, the prognostic value and the optimal detection method of BVI was unclear. Only 

few recent studies used immunohistochemical staining of the endothelium lining lymphatic 

and blood vessels and were able to show clear differences between LVI and BVI.   

 In a prospective study, IHC for D2-40 and Factor VIII defined lymphatic and blood vessel 

invasion with greater sensitivity and specificity than H&E, improving detection of LVI and 

BVI in node negative and triple negative breast cancers.  LVI and BVI, IHC compared 

with H&E, were more significantly associated with tumour recurrence and were 

independent predictors of cancer specific survival.  In particular, in patients with node 

negative and triple negative tumours.  Therefore, the results from these studies show that 

immunohistochemical detection of lymphatic and blood vessel invasion provides a superior 

assessment and may be useful for the objective assessment of LVI and BVI in routine 

clinical and pathological practice.   

Given that LVI and BVI are important indicators of poor outcome in primary invasive 

ductal breast cancer, it may be that other markers of invasion such as peri-neural invasion 

will be also shown to have prognostic significance.  If this was also observed then it may 

suggest that there is an underlying process promoting tumour invasion into these vessels.  

This concept was examined in the subsequent chapters (5.0, 6.0, 7.0).   
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In the present thesis, tumour stroma percentage was associated with positive lymph node 

(an early sign of invasion), larger tumour size and grade and Her-2 positivity.  In addition, 

TSP was consistently associated with low grade immune cell infiltrate in all subgroup 

analysis.  Although the underlying biology of this association is not clear, stroma-

associated fibroblasts (CAFs and myofibroblasts) may prevent penetration of immune cells 

within tumours, modulating the ability of lymphocytes and macrophages to invade a 

tumour while promoting tumour growth and progression, due to their contractile properties 

and their associated extracellular matrix (Lieubeau et al., 1999), and facilitate invasion into 

vessels.  Increased expansion of tumour stroma was also an indicator of poor outcome 

independent of nodal status, lymphatic and blood vessel invasion and local inflammatory 

response.  

On the basis of the above results, the relationship between the tumour microenvironment 

and tumour budding was examined.  Tumour budding was associated with the key features 

of local and metastatic spread, positive lymph node and lymphatic vessel invasion.  Of 

interest, there was an association between high tumour budding and increased amount of 

tumour stroma percentage and low local inflammatory infiltrate.  Furthermore, high 

tumour budding was an indicator of reduced CSS independent of nodal status, LVI, BVI, 

inflammatory cells infiltrate and TSP. Therefore, in the context of the present 

comprehensive examination of the prognostic value of phenotypic features of tumour and 

the surrounding microenvirounment, it was found that tumour stroma and tumour budding 

provided prognostic value independent of well-established tumour characteristics, tumour 

necrosis, and components of the local tumour inflammatory cell infiltrate.  Importantly, 

tumour stroma and budding were independent prognostic variables in node negative 

tumours indicating their importance as additional prognostic markers for early stage breast 

cancer, and that may aid risk stratification for those patients.  
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Tumour stroma has been implicated in facilitating epithelial-mesenchymal transition (one 

of tumour budding features) and metastasis of tumour cells into normal tissue (De Wever 

and Mareel, 2003; Hemmings, 2013).  Therefore, it may be that tumour stroma is essential 

in facilitating tumour cell de-differentiation and escape from immune surveillance.  On the 

other hand, tumour budding is an early and essential step for the tumour to metastasise.  

Therefore, the relationship between the tumour inflammatory cell infiltrate, tumour stroma 

and tumour budding might be linked to the process of epithelial-mesenchymal transition.  

In particular, accumulating evidence supports the hypothesis that tumour budding is driven 

by an EMT like process in the tumour microenvironment (Grigore et al., 2016; Koelzer et 

al., 2016).  Of interest, in breast cancer, budded tumour cells at the invasive margin show 

reduced expression of membranous E-cadherin, and increased expression of cytoplasmic 

vimentin (Liang et al., 2013), essential phenotypic features of EMT (De Crane and Berx, 

2013).   

Developing microenvironment based prognostic score combining constituents of tumour 

microenvironment may help to define appropriate standardised approaches to the tumour 

microenvironment.  For example, the very recently developed Glasgow Microenvironment 

Score, based on K-M grade and TSP, was independent predictor of cancer specific survival 

in patients with colorectal cancer (Park et al., 2015).  Given the potential importance of the 

tumour microenvironment, characterisation of intracellular signalling pathways important 

in the tumour microenvironment is of considerable interest.  One plausible signalling 

molecule that links tumour stroma, inflammatory cell infiltrate, and tumour budding is the 

STAT.  

An investigation of STAT1 and STAT3 tumour cell expressions was carried out in chapter 

7.0.  Ph-STAT1 and Ph-STAT3 tumour cell expression were associated with reduced 

recurrence and prolonged survival in patients with invasive ductal breast cancer.  In 

addition, Ph-STAT1 and Ph-STAT3 tumour cell expression was significantly associated 
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with good prognostic parameters including low tumour grade, ER and PR +ve status and 

low grade tumour necrosis.    

In addition, a recent study on STAT3 by Aleskandarany and colleagues, using large dataset, 

reported similar results that ph-STAT3 was associated with good prognostic markers and 

good prognosis (Aleskandarany et al., 2016).  This of particular interest especially a trial 

targeting STAT3 is under progression (Lin et al., 2013).  However, with the concept that 

there are different molecular pathways interact with STATs, inhibition of only one of them 

may not be sufficient to obtain anti-tumour effect.   

In breast cancer, it has long recognised that STAT1 plays a significant role as a tumour 

suppressor in consistent with our result.   It is apparent from the present thesis results (and 

majority of previous reports) that STAT3 may also acts as a tumour suppressor in addition 

to its role as an oncogene.  This pleomorphic role perhaps is a function of the cellular 

context (Ecker et al., 2009).  The results of the present thesis show that STAT3 is an 

independent prognostic factor of prolonged survival in high grade tumour necrosis.  

Therefore, the suppressor role of STAT3 is, at least in part, a function of the tumour 

microenvironment.   

The above observations of the present thesis point to the importance of the tumour 

microenvironment in promoting tumour budding, LVI and BVI.  The observations from 

STATs work may suggest that an important driving mechanism for the above associations 

is the presence of tumour necrosis, probably secondary to hypoxia.  Further work is needed 

to examine the interaction of other molecular pathways involved in the tumour 

microenvironment such as HIF and NFkB in patients with invasive ductal breast cancer. 

Also, it would be of interest to examine the role of STAT5 in the context of tumour 

microenvironment.   
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Appendix  

 

Immunohistochemistry 

 

1-Reagents  

 

 

Tris (hydroxymethyl) methylamine (Trizma Base) (Fisher Scientific) 

Sodium Chloride (VWR) 

EDTA, disodium Salt, dihydrate (Sigma) 

Citric acid (Sigma) 

Tri- sodium citrate (Fisher Scientific 

Xylene (Fisher Scientific) 

Alcohol solutions (100%, 90%, 70%) (Fisher Scientific) 

H202 (VWR) 

Horse Serum (Vector Laboratories) 

Antibody dilutent (DAKO) 

DAKO kit (pen, AB solution, Envision) (DAKO) 

Haematoxylin (VWR) 

DPX Mountant (VWR) 
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2-Buffers and Solutions 

 Antigen retrieval buffers 

1- Citrate Buffer (pH 6.0). Antigen retrieval buffer for FVIII  

    

Citric acid 1.92g 

Tri- sodium citrate 2.94g 

Diluted H2O 1 litre 

 

 

2- Tris Buffer (pH 8.0). Antigen retrieval buffer for total and ph-STAT1 and total and 

ph-STAT3. 

 

EDTA, disodium Salt, dihydrate 0.37g 

Tris (hydroxymethyl) methylamine 0.55g 

Diluted H2O 1 litre 

 

 

 

 H2O2 (3%)  

 

H2O2 40ml 

dH2O 360ml 

 

 

 Horse Serum (10 %)  

 

Horse serum 100 μl 

TBS 1ml 

 

 

 TBS Buffer diluted pH(7.50) (10x stronger) 

 

Tris (hydroxymethyl) methylamine 300g 

NaCl 438g 

dH2O 5 litres 

        

       To Make 1X TBS (5 liters) from 10X: 

       500 ml of 10X and 5 liters of dH2O



 

302 

 

 DAB solution (chromagen 3,3 diaminobenzidine) 

 

DAB buffer 2 drops 

DAB substrate 4 drops 

DAB hydrogen Peroxide 2 drops 

Ddiluted H2O 5ml 

 

 Scott Tap Water Substitute (S.T.W.S) 

 

Magnesium Sulphate – MgSO4, 7H2O 40g 

Sodium Hydrogen Carbonate – NaHCO3 7g 

Diluted H2O 2 litres 

 

 Mayer’s Haematoxylin 

 

Haematoxylin 1g 

Potassium Alum (Aluminium Potassium Sulphate) 50g 

Sodium Iodate 0.2g 

Citric Acid 1g 

Chloral Hydrate 50g 

Diluted H2O 1 litre 

Glacial Acetic Acid 2 drops 

 

 


