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Summar

On the basis of a review of experimental data on eleciron
trapping in crystalline ice and liquid water, it may be conjectured that
these media trap electrons at defect sites, which may be present in some
quantity naturally, and can be augmcnted by 2ddiiives or radiztive
disruption. This work reports the results of theoretical investigations
into structures and situations possibly favoura®blie to electron capture.

Calculations are performed, using a flexible analyticel
wavefuhction, on an electron trapped in a cavity in & Jinear, isotrop'c
and homogenous dielectric in order o assess the coririkutions of long-
range effects to electron irapping.

Attention is then focussed oa the short-range effects due to the
detailed nature of the trapping site. After a discuszsion on possible
criteria for trapping, two possible struciures o a water dinsr are
examined, using a minimal basis set in ab initie UEF SCF MC calculaticns.
The behaviour of energies, spin densities and execital.lon vnergies as
intermolecular distance varies is discussed and the :~elevancie of each
structure to electron solvation is considered.

This is succeeded by UHF INDO calculations on a water ietramer
trapping site, using additional diffuse orbitals, and similar
investigations on an (HZO)IZ cluster.

Other solvents are not neglected: the breathing modes <i a
methanol tetramer with up to eight molecules in %two colvation shells
are examined, and the behaviour of such structumess with an excess
electron considered. A larger basis set ab initio UHF calculation on
an ammonia dimer illustrates the imnortance of hyperdiffuse orbitals in
such treatments, and concludes that such a dimer i1 isolaticn will not
stabilise a trapped electron.

Since non-regular geometries may be relevant, especially in the



initial capture of an electron, the umbrella vibration of NH3 is studied
by ab initio UHF methods, with and without hyperdiffuse orbitals; in
the excess electron state, the effect of these latter is marked, but no
evidence of stabilication with respect to the neutral state is apparent.

Examination and discussion of all these results leads to several
conclusions: (i) because of the essentially arbitrary nature of its
parameterisation, the INDO method cannot yield definitive results on
electron sclvation.

(ii) scme structures can be labelled as possible electron
traps, and others can ba considered unlikely. This is detailed in the
text.

(i1i) in all the structures studied, absolute energetic
stabilisatioﬁ with respect to the neutral state was not achieved; it is
concluded that the long-ronge effects of the medium are an essential
factor in stabilisation. and must be included in the SCF calculctions.

The work concludes with an examination of the theoretical basis
for molecular calci:laticns which involve a surrounding dielectric
medium, and identifies thrce main levels of approximation. The wost
"sweeping of these is put fcrward as a useful guide to the magnitude of

stabilisation energies, and suggestions for future work are mace.



I

Experimental Clues: the Aims and Scope of this Work

A, Some Data on the Solvated Electron: the Nature ol the Trapping

Site in Water

Electron solvation in liquids has a long history.
Ever since the observation of the dissolution of sodivm in liguid

(1)

ammonia ,» observations on, and theorising abeur tl: phenrmenon have

mushroomed. Extensive reviews of all types of exjperimeniaz) observation

(1_8). By restricting consideration to a

of the species are plentiful
few solvents, and examining informauion relating to ine nature of the
trapping site, one may gain insight ¢u which to base theoretical studies.
Such an appreoach is adopted in thic work.

The e.s.r. Speétrum of the excess electron in ice has been

(9)

examined both in 2-5 M alkaline glasses , which cannot he very

representative of ice structure, and in ice lightly doped rith HHAF
(11,12) and with alkali metal ions (10>. The latter case shows an
independence of the spectrum on tlie doruing cation, expecially at low
concentrations, with an increase in resolution as the doping
concentrations are lowered. The same effect chtains on gradia2l warming,
and has been attributed to the removal of direci dipolar in*ersctiors as

(9) or septet of

the trapped electron popu;ation diminishes. A guintet
lines, showing a uniform é;acing of ~-5-6 G and indicating interacticns
with four or six equivalent protons, isvobserved, and the role of the
protons in‘the splitting is confirmed when deuteration causes collapse
of theﬂggge structure, with narrowing of the electron resonance line.
Such data suggest (a) a localisation of the trapped elcctron in ice on

a small number of equivalently arranged water molecules, and (b) that

the traps are not part of the fegular ice structure, since the ion



concentration is found to regulate the spectral intensity.

Further confirmation of this latter point is provided by the work of

~13)
Kawabata et al.(ll 1”. It was found during pulse radiolysis

2

experiments that doping crystalline ice with 10~ M NH F produced

L

spectra with absorbances and optical decay properties identical ts those
of pure ice, but with up to a six-fold increase in optical density.

Thus the solute appears to increase the number of trapping sites,

without itself influen:ing the spectrum of the trapped species.
Production of a defect centre is inferred, and comparison of NHhCI and
HHAOH dopings shows I'"to be the active agent.,

Yet more evidence c{ the defect nature of traps in ice is provided

by the repeated irvadiation of 10~M NH
ice (12)

F doped and pure D20 crystalline

4
. Successive irradiations at 106 K caused the optical deusity
of absorption to increase by a final factor of about seven, while
subsequent énnealing at 147 X and recooling restored the original
absorption characteristics. The inference here is that traps produced
by radiation ars "frozen" into the ice, with an energy barrier 5;‘§;1b3 iK
( £ 0-01232 eV). Whether mnny of these pre-exist in non-irradixted ice

(14), (15)

is still a moot point, wiih arguments for and against

Probably, in low temperaturc ice, the number of thermally generated
traps is small in any casu.

" The absence of a suvden discontinuity in the optical spectrum ihen

(14)

the ice-water phase boundary is traversed is interesting, and

suggestive of the same defect-type trap in water, and of localisation of

the electron, while a steady increase in e yields with temperature

indicates easier trap formation. G for ice at 77 K is‘~/10.h-10—3, (4)

(%)

comparing markedly with 2-3 for ordinary water and suggesting
increased trap production as the icelike structures fragment.

Solvation of the species in water is extremely rapid. Absorptiun



(16)

appears in the infra-red at ~2 p sec , and the complete spectrum,

(17) is
(25)

established at 4 p sec, although this time maj be even smaller .

identical to that originally measured by Boag and Hart

Such a result precludes gross rearrengzmcnt ol 2 cluster oy rotation or

. : -12
even vibration, but admits O-H group roctation (F7~~1i0 ~° sec) (18)

and
electronic long-range relaxations.
It is of interest to note that the longer~term oriesntational
polarisation of the medium has no effect on ths optical epectrum.
Uniformity of traps in ice and water is also hinted ati. The half-
width of the optical absorption is rather small (~0.5 eV) (19, 20) and
shows none of the anomalous "photo-shuttle” effecis p=culiiar to alkaline
glasses (14’27), but photobleaches 2imost totally unifermly at all
wavelengths (11).
The evidence would seem to pnint to-trapping in water «#nd ice by
a defect structure containing few molecules, which pre-exists bafore
electron capture but may make some minor readjustmeﬁts within ~/4 p sec
of the event. There is probably only one main type of trapping centre,
More data on the contributicns of long and short-range interactions
in water are provided by experimental studies of Joriner et al‘(21,22)’
yhere the optical spectrum of e; was observed in D2O vapour uown to a
density of 0-2 g cm-3. At ~663 X the optical pezk shows only z «lighh
3

blue shift on increasing density up to ~0+8 g cm °, when it rises more
sharply. Such data show localised trapping on a small cluster to be
possible. The change in hy at higher densities may indicate that the
excited state wavefunction is raised more in energy on clustering than
the ground state one, Since the gound state has teen inferred to be
localised, it may be that the electron becomes more diffuse, losing some
of its long-range medium stabilisation energy, on excitation. However,

since interactions in H-bonded water dilfer from those in the vapour

phase, conclusions cannot be definite. Recently, some workers have



performed theoretical calculations on the electren affinity of an

isolated water monomer, using a LCAO-MO-SCF formalism with the

inclusion of dilfusc orbitals (26, 28, 29).

: (29) . . .
Chipman " suggeste that the moncmer might have a positive

electron affinity, ~t Ils regular geometry, but. faaicates that his
preseut results are by no means conclusive.
A noteworthy point mey be added. A shouldr in the ice spectrum,

(23)

first noted by Shukbin ev al,

(&)

appears at abouit 2¢3 eV, Independent
observations of Kewvan show that phetobleachiing efficiency in ¥-
irradiated single crystal ice sets in sharpiy a&: 2.3 oV upwards. A
transition to a bourd state at the spectral peak: of ~-1+9 eV is implied,
with trinsitions to the continuvn commencing at 2.3 eV, which would give
the spectrum in ice (and water) the observed esymmetry characteristic of
the epecies in most solvents. This shoulder is confirned at 2-2-2.5 eV

. \
by Kowabata et al.(llb’,

B, Aims and Scope of this Investigation

The above experinental data indicate the mmture of possible
trapping sites in water and ice; and the behavicoir of electrons in these
situations.

It was decided (a) to limit investigations of trapping and
solvation to (i) water and ice (ii) ammonia (iii) methanol

(b) to examine theoretically the icasibility of
trapping being due to short-range molecular fuiwes alone, with due
consideration being given to various types of stzuclure, levels of
approximation in calculation, and criteria for solvation

{¢) to examine i

{ examine ih long-rangs
interactions, such as pclarisation, on solvatiom
(d) to combine the purely sstructural models and

long-range formalism in an exact or approximater scheme, depending on the



complexity of the result.

In this thesis, we first examine the various methods used to
describe long-range polarisation effects, anc develop an analyticsl yet
flexibly optimised c.pression for the energy of an electron in a
dielectric. Shori-rarge effects are then examined by a series of
ab initio and modified INDO calculationé on various small molecular
clusters wath and without an extra electron. It is conclu&éd that sven
with the most flexible basis set, such calculations alone cannot model
a trapped electron, despite the claims of some workers in the field.

Finally, thc ilieoretical basis of a model combining long end short-
range interactions is exasmined, exact and approximate analytical
expressions being derived. Suggestions for future theoretical work are

nade,
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II

Long-Range Interactions - The Continuum Model

A, The Main Types af Treatment

Various methods have been evolved for the description of the excess
electron in liquids and solids.

(1) The polaron model

One of the earliest schemes was the polaron model of Pekar (5),
which (See Fig. II. A.1) treats the excess electron as a wavefunction
localised in a continuous, linear, isotropic homogenous dielectric. Once
localised, the electron urients the dielectric polarisation vector so as
to deepen the trapping potential - this has been referred to as ‘*'vigging
its own hole." Such a model allows for the long-range effects ol
dielectric polarisation, but ignores any local structure in the viciniby
of the trapﬁed species. Although it is reasonable to treat a cistant
piece of the trapping medium as a continuous dielectric, the discrete
nature of the solvent near the trapping centre must somehow be
acknowledged. However, this approach has the advantage of mathematizal
simplicity.

(13) The cavity continuum model

(16)

An improvement on this, due to Jortner , introduced the idea
o7 an electron centred un a spherical cavity in a linear, homogenous

aend isotropic dielectric (See Fig. II. A.2). This treats the surrounding
medium as continuous 2t a distance from the trapping centre, but allows
for empty space near the centre of the charge distribution, as would be
the case for an electrun centred on a cluster of molecules, The idea of
a cavity is also in accord with experimental data on volume

(1,21, 22)

expansion

Refinement of the electronic wavefunction for this model {a) by
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the author, using analytical methods (See Section II. E) and (b) by
(26)

Carmichael and Webster has shown it to be surprisingly good at
mimicking the gross energetic properties of the solvated electron.

(iii) The semicontinuum models

This refinement of the cavity continuup modsl generally consists
of a dielectric containing a cavity as before, but with the inclusion
of a number of dipoles within the cavity, in an atiempt to simulate moxre
detailed local interactions in the solvent (Sce Fig. 1. A.3). Such

(8, 34)

models have been developed by Jortner et al. and Kevan et al,

(29’33), the included dipoles being treated as point multipules, and
the number within the cavity being wvaried from 4 to 12. Allowances can
be made.for temperature dependence bty relating T to the average dipole
direction via the langevin equation, and more than one shell of dipoles
can be included in the calculatior, This model can be tailorsd to fit

some experimental data with reasonible accuracy.

(iv) Other approaches

Methods involving inclusion of short-range effects by detailed
SCF calculations on molecular clustzrs are dealt with in Chapters
III - VI, and the methods of Iguchi (2) and Tachiya et al. (3) are
discussed in Section II.F.

The present chapter examines in detail the methods and validity
of the cavity continuum model, considering both the quasi-adiavatic ana
Hartree approaches. In Section IL.E ihe author's own analytical
wavefunction for the ground state of this model-is described, and
comments are made on the significance and applicability of the ensuing

results.,
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B. Theory of Wavefunctions in Dielectrics

This section is devoted to a wore rigorous <Zerivation of the
relevant energy terms in the cavity centinuum rindels of solvated
electrons. The full derivations are presented here, becauss
papers in the field not only skim over the origims of the expressions,
but also contain errors and ambiguities which still excite controversy
(6,7, 8,11) '

The analysis which follows will be in S.i. wmnits, with modification
to c.g.s. or a.u. as necessary.

It can be shown (9) that if an arbitrary chargs distribution is
vassembled in the presence of dielectriﬁs, then the total. energy required

to achieve this is

W=3% Sﬂ(;)v(g)d't - {il. B.1), where F(xr) is the final
free charge.density at r, and V(z} the final potemntial at r. ian the
case of point charges, to avoid singularities, we must cmplcy the
potential due to all the other charges, exclusive of the one whose

position we consider, i.e.,

W= S PEIV (g)dr ——— (IL. B.2), vhere £(£)=)& §(B; -z,
B, being the position of the ith chage and v’(gi) the pote;tjal at R.,
due to all ?halges save Qi.

The W term is evaluated with reference to the state where the
dielectric is unmoved, but the charge distribution removed to infinity,
and dissipated; it involves (a) the enérgy required to assemble the
distribution in vacuo, (b) the energy required to polarise the dielectric

and (c) the energy of interaction between the charge distribution and the

induced dielectric polarisation.
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W=E+ v+ € ——— (II. B.3)
Now the free chargec distribution feels two potentials: one due to the
other parts of itself, Vi’ and one due to the induced charges in the
dieleciric, Vp.

Thus V = Vf + Vp

The self-ensrgy of the free charge distribution is

E = % SP(E)V,C(E):*Y - (II. B.4), and the energy due to the

charge-medium interaction alone is
7
=TI+ € =W-& = %f)f’(g)v(g)dr - %Sf(g)\"f(g}d't’
- 3P, (ar —— Q1. B.5)

Simjlarly, the enevgy required to assomble the charge distribution

in en already polarised dielectric, neglecting the sclf-energy term, is

¢ =[P (ar ——- (L. B.6)

so thet TT, the energy to polarise the dielectriz, is

M= g €= -3 (Ao (phar —— (L B7)

This pelarisation energy, or medium rearrangsment energy,
represents the znergy required te polarise ana orient thie molecules of
the dielectric.

The successful evaluation of these terms depends on the calculation
of Vp, snd the difficulty reflects the complcxity of the model chosen.

With a continuous dielectric extending over all space, one may

write

[Ri]

'13 = ‘E‘ - (II. B.S),

N

C

R3]

vhere & is the tield dus to all charges, 3 is the field due to

o
the charges only (D being the electric displacement vector), and F is

the net field due to the induced polarisation charges.
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D D
Thus E = © - (since in a linear, homogenous, isotropic
o
dielectrig E = d GOQ, d being the dielectric constant).
=> F= -+ (30D
~ E d’ ~
o
== = - ...]-'. mme————— N
=V, (1- vV, (II. B.9)

D
i -9V _=Fand -VV_, = 7
since p = F £ &

Doundary conditions thus ensure that

V= -(1-;11-)\1 ———— (II. B.10)

P £
Thus the total eneigy of the charge-dielectric system, excluding the

self-energy of the free charge distribution, is
é- rir € =3 reer - 3a-blv e,

ie. €= 31-D<yiv,|y> —— (11, B.1),
if Y'is a wévefunction describing a negative free charge distrinution.
The intrcduction of a cavity into the dielectric causes ‘
complication, since d is now a non-continuously differentiable
function, and equation (II. B.10) will not, in general, apply. .&is is

(10)

well known, '™ ‘ the poteniial Vp(g) due to a dielectric medium with

polarisation P is

. P’} (r-z")ar’
v (r) 1; S o I‘;]‘ ’
l», " 0-)’3‘ - *Vr! Iz- ”,

where the integraticn is over the volume of the dielectric.
Application of the vector identity
V.(fA) = £ Y.A + A,Ur, £3llowsd by the Divergence Theorem,

yields
V (r) = —= B (z).d8(r’) o 1 { v .B(z)aw)__ (I1.B.13)

p'~ lﬂffo |r-r'| LTE !5"5"

s oS!

wherevis the volume of the dielectric, and ,S’ is its bounding surface.




15

(We see that if the dielectric has no cavity, then the first
integral becomes zero, and the second is merely -(1- %)V g» Providing
we have a linear, isotropic, homogenous dielectric: see below). (Also,
4 ! points out of the dielectric by convention).

Thus we may replace the dielectric by a series of bound volumsz
charges /d'= - VP, and surface charges o'= P. n, where n is the unit
normal vector pointing out of the dielectric (10). In the case of a
cavity in such a mediwm; it is more convenient to use the unit normal
vector pointing out of ilhe cavity into the dielectric, §', and hence
o'=-P.0'.

Wher the charge distribution is spherically symmetric and

confined to thz cavity,

P- =V.P=(1-3)v.D = (1-1)P. = 0, the second integre3
E 3/V-2 s

—

vanishes and thus

. Pr).aS)  ;  (B(xD.afz)
* YV (r)=m=e=® - =- =
p~' L€ (z-Zl LTET Jr-x'|
_ i P(I")dS(r')
TTuEMeE ry

°/8

where ry = max (r,r’), (Spherical symmetry simplifies the ,ri T term)
and thus (1- .:.l.) 2? v "y R02
- d D . ' 1
V(r)= - = D(fo)Ro o'de'd
' P(r) LIE S r, s ¥
5.0

1
_ _(1"5) D_(BO)ROZ

o r,

» I, =max (r, Bo) |

0
Since p(Ro) = JWR2 » Where Q is the total charge contained
- ;

within the cavity,

V() = -(-D e

h’ff(-or,

* the negative sign appears if we change our convention so that d f

points into the dielectric, that is, out of the cavity.
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That is,

v (r)=-(1- 2) if rR_, and vp(r)=-(1--1-)—-9——- if ryR

h?fé R dl,,?féor

(II. B.13.a)

Thus, since the charge Q is contained in the cavity,

2
é = %SF(r)Vp(r)d't’= -%(1--;—). h_%-é— , or, in au,
o

2
€= - %{. (1-:%) ———— (II. B.14).

(¢]

If the charge is not confined to the cavity, but is permitted to
Le diffuse but still spherically symmetric, then Q above is replaced

R
S ° P )r’zar’, and the second term of equation II. B.13 is non-
o _

zero, being

(1-%) D( wt

o o~ Ty
(1'%) { rf_ﬁ:" 12 : ] 02
- hwe L 2 r}r dr' + h"f gr rz'r dr'
[¢]

Ry r

Thus

vV (r)= -(1“%) r/"f ) dr+/°§ ) ' 2ar!+ a;.:&_v_')_x_'_‘_z_ur'l
P e \ r '

when >R ———— (31. Bal5)

(o]
o r

and Vp(r) = Vp(Ro) when r Ry, Thus, for the spherically symmetric
case of the cavity model.
Vp(r) -(1 - %)Vf(r) when r>R_

(I1. B.16)
1- 1 (Ro) when rgR_

which is of the same form as equation (II. B.10), and identical to it

in the absence of a cavity., This resemblance exists because of the

assumption of spherical symmetry, however, and is not a general one,
since in non-spherical cases the surface integral loses the simple form

of equation II, B.13.a.
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We have, frem the above potential

= -%<LP|VPW>= 3(1- é-)wllvflt}», ~———— (II. B.17)
€= ~<YIV ly> and TT = ;%;<q)lvpuy>,

where Vp is defined as in II. B.16.

Generally, for an arbitrary cavity in the medium,

L (CoEnasE) (PE) e (II.B.18a)
Vpz) "W‘e;( [z-z'] -z
fl '
where o' = - P.0' and r = -V : P= (1-;11')}?,‘
: v (e) = - (1-%)/{','? D(z').d8(z") . v.D(z') dar‘.
A G AN o PR P Iz - £l

Now, we may write the first integral as

D(r').c8(z") vr,.g D(r') % dy’, where the integration

r . l
i Jint 1=
is over the :mter: or volmie of the cavity.

. = : B ___,2;,__,__ ' : 1 d'f',
R -S D). %ok Ziem } ax +Sv. O
int

int (')
= o . 1 —_ 1] Pf ~ df'
eees I=\ DX ’“f‘élz-'s’i % N T
int 1 int
(l"— ( (r') [ 3
. () = d’ )/ Yok 1 o | P~ 7 dv'y— (II. B.18)
Zint

1 all space
(1-3) :
i.e. Vp(}:)'= - (1_211,)%(2) _\ﬁ%: D(g). v§’~_ rjgd” (II. B.19)

int
which is the genzral. expression for the potential due to medivm

polarisation. As before,

E= - 3< q)lvpl Y >, where Vp is represented by equation II. B.19.
The second term is the one v_lhich causes difficulty, and it is
convenient to assume cither a spherical distribution of charge, or
the absence of a cavity in most calculations, since the term then

vanishes.,
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More subtle problems arise when the potential expressions are

considered in the light of dielectric relaxation times and electron-

medium correlation, and these are considered in the next section.

C. The Quasi-Adiabatic and Hartree-Fock Approximations

(i) Since the potential ___1 acting on a trapped electron is
dependent on the polarisation of the medium, the speed with which the
wedium polarisatiun can respond to instantaneous changes in the
position of the trapped species is of great importance.

The total medium polarisation is comprised of three contrilmiions
(9)

(a) the polarisation due to electron-nuclear displacement;
norm:1ly termed the optical., or electronic polarisation, this readjusts
rapidly to eleciric field changes,

(b) that due 1o nuclear movements such as stretching and bonding

(c) that duc to rotation of molecules.

The disparity in relaxation times between (a) and (b) and (c) is such
that we usually write

P uge +§i (5, 6), vhere fe is the electronic polarisation; and
P, the inertiat, as represented by (b) and (c).

Now the irsopped electrons will,in general, tend to be lecs
strongly bound than the electrons of the medium molecules, and will
therefore, by the Virial Theorem, have lower kinetic energies and
velocities. If their binding energies are comparable with those of the
medium electrons, then a Hartree-type wavefunction is in order (6’13{

but if the energies of the excess species are lower, they may not be

able to follow the moitions of the medium electrons (and hence the
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fluctuations in fe), and the adiabatic approximation may be more

(5,6,13).

avposite

(ii) The (Quasi) Adisbatic Approximation

If the velocity of a trapped electron is so low that it cannot
(5)

icliow the motions of the medium electrons, then we may write
for the total wavefuiction

@(Em’ ) = ¢ () ) (gysg), — (II. C.1)
where m refers to the cocordinates of all the medium electrons, and t to
those of the trapped electron. Thus q}, the trapped electron
wavefunction, has no speciiic correlation with the medium electrons, but
the faster-moving medium clectrons have a wavefunction depending on the
position of the *rapped electron,

(i3)

Gouraray and fdrien

(1)

have shown that the-usual adiabatic
approximation, involving particles of greatly disparate mess, is
valid but that it cannot »e rigorously proven for the case of itwo sets
of electrons.

The approximation, when applied to the trapped electron case,
they term tne quasi-adiabatic approximation, and conclude that it is
probably valid as long uas “he trapped electron does not spend much time
within the atomic ceres of the medium,

Thus, within the quasi-adiabatic approximation as adopted by

(15, 16)

Pekar (5) and the early papers of Jortner » the inertial

polarisation,lgi, sees only the time-averaged distribution of the excess

electron, whereas the ciectronic polarisation,‘ge, adjusts instantly to

the species! motion., Since the potential well created bylfe follows the

e el o om 4+
VEIyWNSIre i

trapped eleclron instanianeously, angd i

v
(1]
M
w

ame in a
homogenous dielectric, it is a position-independent constant potential
so long as the electron remains in the medium, and the energy of the

electron /Ee interaction is independent of r.
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Now, if Ds is the static dielectric constant, and Do the optical,
P= (1-% )E  —— (I C.2)

and P = (1-%— ) ———— (II. C.3)

erd S, P, = (%h - §=)§, and equation II. B.10 becomes
o 8

1
p -5

<
]

1 . = _
- - Ds) v £ usually written Vp AV £

Thus equation II. B.1ll would give

€= 18<Piv P>+ X, — (II. C.4)

where the first tera represents the électron/u%_interaction, and the
second the electron [fe one. This approach is still used by some

(2a, (17) that whereas in ¥-

aathors Zb{ but it has veen pointed out
centre theory, the bindinug energy of the excess electron is low and the
quasi-adiabatic theory mey be justified, solvated electrons in polar
siedia have a greater binding energy of the order of 1- 2 eV, precluding
the use of this metuod,

(iii) The Hartree-(Fock) Approximation

A more suitable method for the situation where the medium and
trapped electrons have couparable velocities is the Hartree-Fock method,

(13, 18). When the velocities of the two sets

well described elscwhere
of electrons are comparzile, the medium electrons will respond
instantly to evatial shifts of the trapped electrons, and vice versa.
Since a rigorous treatment of this correlation would involve
configuration interaction methods, it is usually ignored, and the

assumption made that the medium electrons see an averaged field due to

the trapped electron, and vice versa, the wavefunction being written as

Jll:J(gm, r) = ¥(x) R (zy) — (IL. C.5).
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Since all exchange between the two sets of electrons is neglected,
even that of a medium electron and a trapped oune of opposite spin, this
is more properly termed a Hartree approximation. Ths neglect of this
correlation polarisation' term is rot serious ii' the trappsd electron

(13, 17)

" is not too diffuse s i.e.,if ius binding energy Is reasonably
high.

It follows that in the Hartree Approximati.on both }ji and Ee sce
a time--averaged distribution of the trapped electrecn, and tlais the
self-consistent trapping potential contains a 31 and & -I:c—,- contributions
that is, Ee no longer follows the detailed motion of the tr<pped

_electron, but provides a position-d=zpendent trapping potsntial.

Equation II. B.11 becomes

Y
electron/medium energy

=1 (-5 )<yIvgly>,

V ==~ (l-fl)- ) Ve in this approximation, and the corresponding
s )

or €= 3 (A+¥)<y@lviy>, —— (1I. C.6)
ity = (1-%
ift¥= (1 Do)

Thus the essential difference between ths two approximziions is
that the < q)lvflq» term is preceded by g in the quasi-adiabailc case,

and by (A+¥) in the Hartree case (17).
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D. Historv of Continuous Dielectric Type Models and Critique of Methods

Early theories of the solvated eleciron evolved from work on so-
called F centres, that is, electrons trapped in defects in ionic

2.1 ~nd
crystals such as alkali halides (5, 13, 19, =) .

In a crucial paper on electrom trapping in crystals, landau (192
showed that local crystal disturbances can cause localisation of the
normally diffuse and periodic electivnic wavefunction; such a
temporary trapping then intensifies the local polarisation field, which
in turn reacts to deepen the potential trapping #%he electron. Such

a self-sustaining process has beer referred to as the slectiron "digging
-its own hole." This idea seemed naturally applicable tc excess eleciron
states in liquids, and when some cf the volume expansion data on metal/

(1, 21, 22)

ammonia solutions was considered, a model involving

electronic trapping in cavities in dielectrics was indicated. This

(ly),

approach was adopted by Ogg who considered an electronic vharge
‘totally confined within a cavity of radius Ro.

By equation II. B.14,

2
e=- %{- (l-% ), and if the de Broglie wavelength of the
o s

particle is set equal to the cavity diameter,

A= D 2Ro ?p 2Ro 5
2 2
. h Q i .
i.e. =KE+ b= 73—, - 5~ (1-%), or, in ay,
4 Etot L R°.2m 2R° Ds
2
1 1
E =L — o = (1_..) -——--—--(II. D.l)
tot 2R§ ZRO Ds
1 d
Neglecting §{ and setting =r - 0 gives
s “o
Ro = 271‘2 au = 197, au
= ——]-'—- - Y & = e v )e
and Etot = au 0.013 au Ne3lL eV.

T gn?
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Although this model predicts an overlarge cavity radius, it does
highlight the role of long-range medium polarisation effects in
electron trapping.

Other models wzre developed by the Russian school (5, 23, 2i.) in
which F-centre ideas were taken over and generalised, that of rekey
being particularly «dvanced, in that he uses a fairly flexible
analytical wavefunction for the electron and a self-consistent
potential. No cavily is employed.

In his first paper (52)

s he uses what we now recognise as the
quasi-adiabatic approximation (See Section II.C) in treating an alsctron
localised in a crystal, and derives a functional for the total enasrgy

£ the electrcu and inertialily polarised medium in the form of equation

II. B.17, using

—

2
= = .. Y—. -
Y =By =< - T 1y>, g (-]150 %s)<(y)vf(r)[ly>,
where V (r) = ?;—ﬁg—i d%’. Taking a function of the form

=N (1 +ar+br )e F e———— (II. D.2)

Pekar's equatlons give %

=0.6585 (5 - 1) : b=o04516%; E=-0 16&(- - -)—-—{n L.3)
0 S 0

<
(’b), in which he purports to give details of

In a sec2uid raper
calculations for an inertially polarising medium, he involves the total
medium polarisation, not merely the inertial part, in the SCF

calculation, which is equivalent to using a Hartree-type approximation

(see Section II.C) for the medium/excess electron interaction.

#* Letting #, the reduced mass of the electron equal the usual electron

mass,
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Thus
o 1 ‘
ot =<¥l- 51y > + 31-5)<y|v(rify >, ond
S

l ,') . ’ 1 2 ’
a =0:6585 (1-F ) ; b =04515"; 5= -{imF) Oo1li au ~——(I1.D.4)
S

&)

is the result,

Although Pekar neglects the additive term dwme to ihe interactions
with the electronic polarisation of the médivm. Fx the first paper,
and confuses his polarisation terms in the seccndy thz methad in the
second paper is the best for the model chosen, arsl tiwe wavefunction, as
will be seen later (Section II.E) aimost as flexible kg recessary.

The synthesis of dielectric and cavity medels was 1223t performed

(16)

by Jortner s, in a quasi-adiabaiic non-SCF cavity model of electrons

solvated in liguid ammonia.

This uses energy expressions of the type

Becpl- L IY> + €

, |
=<WPI-SY >+ - <Y >

(See equations III. B.17), where, however, thc SGF expression for Vf

is not used, the simple one

V(r) = - T TR
B being used instead {Sezec equations IT. B.13)
= .= r&R
B ©/ (This potential assumes all the charge to be

in the cavity).
Substitution of a single-parameter 1s type Slater function,
‘:‘3' —AT . . . ]
4“-7? € forly, and minimisation of E with respect tost; gives a
variational solution for the electronic energy in the field of the
inertial polarisaticn., To this is added the inertial part of the

medium rearrangement energy, TT, and finally an electronic polarisation

term which involves the total energy of interaction of the electron and
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electronic medium polarisation.
Several. flows appear in this early model. The use of the guasi-

adiabatic model for electrcns in polar liquids has since been rejected

()

in favour of a Hartree-type model, because of the

7)

by Jorciner
greater wvelocity of such bounc =2lectrons. Tachiya has recently
criticised Jortnert's use of the expression

S( LV ’_ ] L o2 dr, on the grounds that with the

fixed potential -~

J‘hc

{4
o0

the zeorrect energy expression i

p o
= g (Sce equation II. B.14).

This is true, but Jertner has improved on this by inserting a
diffuse wavefunction in the fixed potential, and it would be far more
inconsistent to compute ¢ as(lp ) - -—] L})‘ /3<-}ll 1 =|>, tut keep TT as

-é%— . However, Jortner himself points out (11) that his expression
©

éSftoqjls [r-} LT r” Ar is wrong, and that

©
= .135 \];)i*s [é}_‘ h?frz dr = -§<q_)]-11-;>] Ly > (See Equation II.B.17)

is the correc?o one.

Other objsctions may be noted:

ti) T, being dependert. wu '§), should be included in the
variaticnal procedure

(ii) E' + S°, where 8% (Jortner's notesian) is the "contribution
of the electronic poiarisation to the ‘energy" is quotad as the total
single-particle electronic binding energy; Se, however, given as

¥ . . . . . .
-5z T being the mean electronic radius, containe an implicit

-

medium electronic polarisaztion term;

E'- ¥ should be used, and the one electron E. and E, values

T is 2p

quoted by Jortner are thus incorrect., However, the total energy,
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=5 +s%+Tit , (where the i is added to emphasise that this
is the inertial part of the polarisation energy)e, is not affected,
since the extra TT° term implicit in s® combines with the TTi to give TT,
leaving a true elecironic contribution to the electron/medium encrgy in
s®.

(i1i) Under tha adiabatic approximation, the electron should be
treated as a point charge interacting with the electronic polarisaiion.
Thus, whgn no cavity is present, s® = - g% is a good approximation,
or, when the electron is restricted to a cavity, s® = - _E;_’ but the

2R
°

present situatior is more complex. Fortunately, the abandonment of the
adiabatic model removes this problem.
Later, s Hartree-type model was adopted by Jortner, in which

these problems; were overcome and the expressions III. C.6 were used,

i.e.,
2 A
=<y =T pw >+ LDyl fys,
where r
P’ )as
Vf(r) = TE:EE?_' ifr > Ro’ and

Vo(r) = V.(R)) if v LR

Application of this to the ground state of water with
X -aAr
\Pls = '\J e gives

Eiot

= -1.30°eV at R_ = OA°, and -0-91 at R_ = 3-3 A°
A freshly excited 2p state is defined in which the wavefunction,

ql2p = "‘—;r- re® cos @ is assumed to be affected by the original
inertial 1s medium polarisation (which has not yet relaxed).
Spherically symmetric potenﬁials are assumed in order to avoid the
difficulties of the second term of II. B.19. Estimation of hy=
By, = Ej, gives 1.35 eV at Ry = 0A% and 0493 eV at R, = 3.3 A°, with =n

% Not 1-32 eV, as quoted in the original paper.
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Qscillator strength of ~1 at Ro = 0+0, indicatimg that most of the
spectrum is due to this transition. As the cavity radius decreases to
zero, this model predicts an increase in the 1ls - 2p transition energy,
up to 1.35 eV, which falls short of the experimemtai value of 1-72 eV,

and indicates, unrealistically, a zerc cavity radius,.
2
(25) that

L

It was realised by Kevan et al. a more fliexible ground-
state wavefunction might affect the results, and they used a linear
combination of 1s and 2s type functions of the form

QP= I\I(l&lS + N‘st), obtaining a theat of selvaticn®

H=1-81 eV (i.e., = - 1-81 eV) and hw= 2.1¢ eV at R, = 0.

Etot
-It was also noted that hy decreased as E% increased, but mathematical
complexity debarred further calculation., Thus their results imply that
the use of a more flexible wavefunction causes n¥ to agree with the
experimental value at a finite cavity radius.

It is clearly of interest to explore the Iimite of wavefunction
(26)

flexibility, and this has been achieved by Carmichael and Webster s

who used numerical wavefunctions of high accuracy, obtaining H5=l-hho eV

and h¥y oo = 1-529 &V for water, at B =0 A%, a result mor= like that
of Jortner (27) and Pekar (5) rather than that of Kevan et al. They

have also pointed out that in evaluating the oscillator strengths of
transitions; one should use the difference in simgle-particle erergies
of the states, not the difference in total energies, since the
wavefunctions in the transition moment integral have the former, not
the latter, as their eigenwvalues.

fl(ls — 2p) is derived as 0-714 and f'(1s — 2p) as 0.917.

While this work represents the limit to which such a model can be
developed, it is nevertheless useful o have a simple analjtical
function which can be used in place of the numerical one at various

cavity radii and in various media; such a model was developed by the
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present author, and is described in section E, where long-range
polarisation effects are investigated.

Obviously, the microscopic structure of a solveat near the zone
of electron localisation will have & detailed eifect which is not
allowed for in the continuous dieleciric type mocdels, and this has led

to the development of structural and semicontinuum models.

E. A Flexible Analytical Hartree Type Model: lonec-Hange Polarisation

Effects

(i) Introduction

In this model, the Jortner Hariree-type spproximation wes used in
conjunction with the flexible analytical wavefunction to obtain ground-

state energies for the hydrated electron. While not as aceurate as the

(26)

numerical Carmichael and Webster function s it was nevertheless

found to be sufficiently close in the is state, and the anaiytical form
allows for a more compact statement of the function.
(i1) Method

In the Hartree-type SCF model, the total snergy is giver by

expressions II. C.6; i.e.,

o =154 € =<yl- Ty >+ Dyl s,

Ey

r

where Vf(r)=5 L) ar’ if r >R
°

[r -

and Vi(r)= V(R) if r LR

For the 1ls state, a three-parameter wavefunction of the form

Y= Nl(l + ar + }:’rd)e“Kr

AN

was used, where N, is a normalising factor, and a, b and k are

1
adjustable parameters. Such a funciion is more flexible than that of

Pekar (5), who used a two-parameter expression where k = a,
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Etot

analytical expression; this was one of considerable complexity,

was evaluated using these equations; giving rise to an

containing some 10,000 terms. The expression for Etot using a 3-
pvarameter wavefunction is in fact so involved as to preclude anaigtical
evaluation of this sort using 4 or more parameters.

Using an IBM 370/155 machine and a steepest descent minimisation
programme specially written by the author, the values and a, b and k
vwere optimised to yield the lowest value of Etot for a given cavity
radius, additional computations on medium polarisation energies, %
charge in cavity, eic., veing performed at the same time.

The optical spectrum was studied by means of a similar calculation
on a 2p state affected by the old inertial polarisation due to tnz= 1ls
state, but the new optical polarisation due to the 2p state. (4 Franck-
Condon type transition). -

The single parameter wavefunction

Y, = 5,re™® cos o

Pz
was employed.
(iii) Results

Optirised parameters, total energies and single particle energies
for the ground state at various cavity radii are displayed in Table
II. E.1.

The formuliaticn of Pekar places at - 1<45 eV when Ro = (.0,

Erot
whereas this more floxitle function gives an energy of - 1+439 eV, =

value upheld by the numerical Carmichael and Webster calculations (26).
Slight error in Pekar's figures must be assumed. The present method is
accurate for the 1s state, as is illustrated by its agreement with the

numerical wavefunction, but allows simple definition cf Ql(r) because

of its analytical form.
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Decreasing the cavity radius seems to stabilise the system, as
remarked by Jortner, with the greatest stability at Ro = 0.0, which
suggests at first sight a polaron midel for the hydrated electron.
Figure II. E.1 shows this energetic bLrend. CSuenh 2 view is however
nalive, Cross-cavity repulsion forces, such es those introduced in scome

(8)

of the semicontinuum models s, will counteract a total «ollapse,
stabilising the cavity at some interim radius. Haive also is the
assumption that the medium will behave like an isotropic. buoirogeneous
or even linear dielectric at short range. However, it Las sufficed to
show that, under the assumptions made, an electron may remaiin trapped
-and will tend to localise further, with a concomitant lcwering Of.Etot
until stopped by short-range repulsive forces.

Expansion of the cavity leads to a drop inm the value of k, as
shown by Table II. E.l1 and Fig. I%. E.2, indicating increasing
diffusenesslof the electron, Taken with Fig. II. E.3, the interrelation
6£ cavity size and electron localisation can be secen: the trend is
towards shrinkage of both the cavity and the electron distribution.

More useful are the concepts of th¢ meen charge radius,

F=<ylr|y > ——— (1I. E.1)

and the percentage of charge within the cavity, given by

Ro
1005 q}ad'r, —————— (II. E.2)
(o]

where Ro is the cavity radius.

Table II. E.2 shows both these criteria. While trapped, the
electron is fairly diffuse, this diffuseness, as gauged by T,
increasing with Ro, as shown in Fig. 1I. E.3. Similarly, Fig. II. E.4
graphs P2(r) = r2R2(r) normalised against R for some cavity radii
underlining the outward shift with increasing Ro. |

However, the percentage of charge retained in the caviiy is seen
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to increase with R, reaching 50% at 4A° and 75% at 10A° (Table II. E.2).
The cavity expansion overtakes the outward spread of the wavefunction.

Other data such as medium polarisation energies show a similar
trend, lessening as Ro expands, sinc; ne increasiogly diffuse charge
polarises the dielectric to‘a lesser 2xtent; these crends are exhibited
in Table II. E.3.

Similar SCF calculations on the 2p state (using a one-parameter
wavefunction) assumed it to be freshly excited; that is, tte medium
electronic polarisation was allowed tc¢ relax, tué non the siower
inertial polarisation. This was assvmed to be the situalion obtaining
Ammediately after a 1s — 2p transi*ion.

Thus the potential for the 2 siate in au is

V(r) =~ (1-5 W

-G xw ~ (II. E.2

3’
o f2p o Ds f1s

and the enefgy of the unrelaxed oxcited state is,

f2
= i i T
Eyp = <Wopl - F1Yo, >+ (- D0)<LV2p'Vf2{)§ Yop >

1 ; ~ 1.1
= 1(1 - 50)<q)2p,vf2pl {]'"ZP 7T (Do- Ds)<qJ2p)Vfls, SI)2P>

11 :
- %(-ﬁo_ ﬁs)<q}1s|vflsl (f)ls >

where the térms are, respectively, the kinetic energy, the electron/
electronic polarisation interaction energy, the electronic poiarisation
energy of the medium, the electron/inertial polarisation interaction

energy and the inertial polarisation esnergy of the medium.

Thus
2
= " g .
Eop <%p! 2 !‘7“2p>+ 2<l’:}2pivf9r{( 2p> PN Ve W >
2
= _2— ! H i
By, =<Wol -5 jt_ynp>+ <UL IV, zﬂq‘*}w( 1, | Ve 14>

(o] (o) S
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As before, the energy E, was minimised with respect to the

2p
parameter g, and energies for various cavity radii obtained, as shown
in Table II. E.4.

This time, as illustrated in Fig. II. E.5, =i optimal cavity
radius is in evidence at ~J6A°, corresponding to an energy of - 0:379 eV,
However, since the optical transition to the 2p state is assumed to be of
Franck-Condon type, where the cavity radius and inertial polarisation do
not have time to relax, this gives no clue as to the optimal RO for the

(17, 25)

ground state. Cne might expect to obtain such information

by fitting the calculat=d cptical absorption energy ta the observed
value of 1-72 eV for water at 300 K (27), but as Fig. II. E.6 shows,
only a% Ro = 0.0 &° does hy (156 eV) begin to spproach this. That this
is a fzature of the model and nct of the wavefunctions has already been

(26),

illestrated by numerical calculations 3 the claim of Fueki, Feng

(25)

and fevan to have surpassed this limit with an analytic function
must be regarded with clrcumspection. The biue shift on compression
illustrated in Fig. 11. .6 is in qualitative agreement with
'experiment (28).

Examination of g indicates increasing difuseness oo R.o increases,
and examination of T confirms this. Teble II. L.5 indicates an
expansion cof the mean charge radius with Ro’ but shows it to be greater
than the corresponding ground state 1s values. For insteuce, at RO =
1.0 A%, T =225 A%, but T 8.08 A°

= 4,+30 A®, and at B, =10 A%, F

1 2p is

vhile ?ZP = 10-60 A®. Excitaticn, as would be erpected, tends to
expand the charge. The charge contained in the cavity (See Table II.E.5)
is again correspondingly less, being 753% at RO = 10 A® for the ground
state as against 51+.0% for the excited state at the same radius. Such
expansion is depicted in Fig. II. E.7, which illustrates the radial parts

of the 2pzfunction for different cavity radii.
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(iv) Conclusion

Within its limitations, the model functions well. Trends in the
energetics have been studied as the cavity size is varied, and the
cxtent and degree oi containment of the charge assessed. Values of the
ostical transition energies approach the experimental ones to a
surprising degree for such a crude model, and the behaviour of h¥on
compression is qualitaiively reproduced, It should be noted that vhis
is all obtained by the input of two experimentally observed

parameters; the more complex semicontinuum models of some workers

(8, 29, 30)

veproduce the data more azcurately » but at the expense of
a large number of both experimentally observed and arbitrarily
adjustable varaiables; such models may mimic observation better, hut
their predictiwve value would be qnestioﬂable.

However, while this model may dupliéate some long-range erfecis
quite well, it is inadeguave for describing the detailed short-iange
e:fects due to the structure of the fluid and the properties of its
constituent molecuwles. The continuum cavity SCF model has shown us
that electron localisation in a dielectric is possible and has given us

the approximate energies involved; it is for the structural models to

provide details abcut short-range effects.
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F, Footnote; Similar Models

Other methods of treatment, in a similar vein to those in this

chapter, may be mentioned, namely the oriented dipoie technicque of

Iguchi (2a, 20)

(3a, 3b)_

and the configuraticn cocrdinate model of Tachiya et al.

In the former model, Iguchi treats the medimm as a large collection
of discrete identical point dipoles; instead of &3 a continuocus
dielectric, and splits the polarisation contributions inic & temperature-
dependent orientation effect, which cannot follew the trapped electron,
and a molecular polarisation part, wiich can. This is siwilar to the
‘quasi-adiabatic approach, save that here the effects of molecular
bonding are included in the quickly-relaxing part of the polarisation,
rather than in the inertial part.

The field due to dipole orientation‘alone, Y(r), is obtained via
| P(r')e(p-1') ¥

|z-x']

(11. F.1)

U(g) = - g

(in c.g.s. units)

© ]
_ weSP(r)dr (11, F.2)

r
If P, due to the permanent dipole moment;#o alcne, is radially

symmetric.
(9)

Iguchi then obtains P(r) via the langevin equation , namely

M E kT
Blr) = ny sy (coth =g - 257

where n, is the number of molecules per unit wvolume at the temperature

T.

— - I'4 - K] - P —— O T, 2.
nm = uo W1+ G(T' T )) is also assum "3:, where T is 273 X.

Solut W o N . P .
ution of [ - o5 + U(r) - W g?-- O gives the single-

particle energy of the solvated electron trapped by the orientational
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polarisation of the medium, Iguchi then adds the orientational medium

polarisation energy,

- ~ A

r-r|’ ) jx-zf°
~————- (II F.3)

(x)B(z') dwdv-3 ﬁ:’(;).(g-- r')Pir').(r- ¢’ )aw dz’

T.. =

P
dd ,

which is the energy required to orient the dipoles against their
mutual repulsion,
Finally, the total electron-mediua energy wve to mnlecular

polarisation is added, this being

©

€ - ‘ " = 2 o e

Si LMe _I__Pmol(r )dr 2MNe ny A (11, F.4)
i

‘where T4 is the mean radius of the orbital for the state i.

Quite good agreement with respect to heats of solvation,
excitation energies, and temperature depeqdent spectral shifts is
obtained by this method, but a further and more mealistic attempt
by Iguchi to introduce a cavity wersens agreement (Zb).

Iguchi's method has the advantage of accoumting for tecmperature
dependence, but uses not merely an adizbatic type of approach, which is

(17)

in some doubt , but one in which the whole of the molecular
polarisability, instead of just the electronic part, is assumed to have
an extremely small relaxation time,

Tachiya et al.'s configuration coordinate mocdel is based on a
different philosophy; They point out that the orientational
polarisation determines the final energy, and that, since it relaxes
more slowly than the electronic polarisation, one may construct a
configuration coordinate diagram of energy versus polarisation just
as one may consiruct diagrams of energy versus auclear separation for
a diatomic molecule. They point out iwo ways of obtaining the
orientational polarisation energy: the expression of Joriner et al,

gives



TT = 271(.%_ _.el..) Pey e (11, F.5)

(22)

on a continuum modely +the expression of Iguchi corrected by

™ . ( 2c ) .
Tachiys gives

(‘ I
r1= Tr P l- l‘:‘;“’é‘ d'}." 9 - (II. F.é)
b}r)L

where L is the distance between adjacent. point dipoles, the energy
being totally due to dipole-dipole repulsionz. Tactiya et al. then

observad that both of these huve the form

”=¥SP2d'c', snd that ¥ is greater vy & facir) of three or

four in *he first expressici. |

They therefore proceed to perform the calculation so that the
calculated heat of hydra.ion of the electron is equal to the obsefved
valu: of 1.7 eV, by adjustment of &, obt;ining an intsrmediate value
of & = 5.5.

They naturally sugzest that the first expression overestimates and
the second underestimatca ¥, buit no explanation of the dichotomy is
" afforded. The present author suggests that equation II. F,5, derived in
section II.B, is sﬁbstantially correct, and that equetion II. F.6,
involving only the permaneni polarisation of point dipol:s and their
reﬁulsion energies, and neglecting the induced part of the inertial
polarisation due to bending and stretching, gJves oniy part of the total
inertial polarisation 17. Tuus, althouzh a si2llcr value of T,
corresponding to ¥ = 5.5, wiil give a larger neat of hvdration, it has

(26)

been shown by Carmichael and Webster that the continuum model in

the Jortner formalism will not give a greate than 1+15 eV,

E
T Ztot

Farthermore, in the Tachiya model, the polarisation is varied
until the lowest energy is cbtained, whereas a Jortaer-type model does

this automatically. The Tachiya model may therefore be useful in
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describing some unrelaxed states, but this author sees no reason for
using it to calculate ground-state 1s or even inertially relaxed 2p
states.

Of all the medels surveyed in this chapter, it appears that ihe
Jortner-type Hartree ravity model, as represented by Carmichael ard
Webster, and the auther's own calculations, is the most defensibie, if
it is recognised that cross-cavity H-H repulsions and interacticns at
short range are igncred. However, the values of HS = 145 eV as
against the experimasntai 1.7 eV for H20 are worrying. Any correctiuns
cuch as the neglented ruplusions would lower HS, as would allowarnce
for dielectric saturation effects. ?urther improvements seem to lie
in the introduction of short range effects, which will slightly
modify the powerful long-range trapping potential, and will also

12

account for initisal trapping, which occurs in js,k x 107°° sec for

1,0 (31)

priarisation,

s a time much lese tlian the relaxation time of the incrtial
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TABLE II. E.1

1s greound state of cavity continnum model. Parameters and total energies

a L k Ro(A-c) Etot (eV)
0.6063810  0.1969600  0.6531700 0 ~1.438575
0.6768780  C.1985580  0.6404009 1 ~1.423945
0.5978920  0.2163389  0.562611C 2 ~1.300962
0.5793020  0,213¢630  0.4752800 5 ~1.130322
C.5558500  0,1904120  0.4021659 b ~0.9814352
0.4913670 0.1792630 0.3520949 - 5 ~0.8621777
0.5976689  0.1723440  0.3104540 6 ~0.7657071
0.6175390  0.1685200  0.2798200 7 -0.6883588
0.5839710  0.3319310  0.2602119 8 06201384
0.6611470  0,1281559  .2276130 9 -0.5736178
0.5829020  0.3431480  0,2196810 10 -0.5241349




TABLE 1I. E.2

1s ground state of cavity continuum model.

Cavity radii, ¥ and % charge within cavity

R, (4°) F(A°) % charge in cavity
0 2.248857 0
3 2.296614 9.040057
2 2.734307 30.56958
3 3.336785 L5.76541
I 4010876 5479335
5 L.672568 61.23030
6 5.312502 6624449
7 5944705 70.06462
8 6.744312 71.36682
9 7.278027 7@.27205
10 '8.07716 75.3346k
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TABLE II. E.4

2p excited state of cavity continuum model.

Energies and exponent of wavefunctions

g Ro(A°) €, (eV)

0.2864, 0 0.12573
0;28.':,6 1 0.09265
0.2641 2 -0,12162
0.2368 3 -0.27312
0.2108 I ~0.34,688
0.1890 5 -0.37324
0.1716 6 -0.37856
0.1566 7 -0.37289
0,142 8 -0.36350
0.1538 9 -0.35116
0.1249 10 -0.33789

\

R q’= Nre & cos 6



2p excited state of cavity contintum model,

TABLE II. E.5
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Effects of

cavity expansion on mean charge radius and % charge in cavity

e o o

Ro(Cavity Radius in A®)|F(Mes. Charge Radius in 20

s
1
/

# Charge in Cavity

10

4,619
4,297
5.009
5.587
6.276
7.000
7.705
8,448
9.174
9.887

10,592

o
0.496
5.232

13.486
21.706
28.815
34.996
39.911
L. 115
L7.761

50.920




FIG.II, A.2

The Cavity Conbinuum Hodel

FIG.II, A.3

Tha Semicontinuum Model
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III

Self-Consistent Field Molecular Orbital Theory

A. Introduction

In order to prepare the way for the studies of shert-range
interactions via the structural models éf the éolvated electron, the
general theory of ab initio and approximate SCF molecular calculations
will be set out here, The study of open-shell cases will require some

care and justification in its treatment.

B. Basic SCF Theary. Tne Hartree-Fock Method for Closed Shells

(1)

Solutior of the Schrédinger equation s

1&?= Eg:) for molecules requires the construction of a meciecuvlar

Hamiltonian. Classically, for an assemblage of n interacting rvarticles,

n 2
Py
H= Z o +  V (1,2,00eiy00edyaeen),
i=1
where P; and m, are the momentum and mass, respectively, of the i th
particle, and V is the ensrgy of the system due to the particles'
positions {2) . Thus, for z system of N nuclei and n electrons, with no

relativistic irteractions,

o2 &2 dhdhzg, o0 & &
H= Ef.(. + ¥ ‘.)..i._ + _ﬁ__ﬂ_ e + -
) ?MH ) Y 2m, R“P ri

. 1 4 - .
"= 1 i=1 =1 =1 i=1 =48 "3J
n N
\ Zee
- R s, taking coordinates from the centre of mass.
xi
i=]1 «=1 (3)
The quantum-mechanicel llamiltonian may now be obtained

by the transformation ’F - - ih <, giving
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2
H-- th Ve h?-vl Z ZoZpe” g_z_ 7 zee
2:M°¢ RK ﬁ r. . Re. s
or, in atomic units,
g:éf:_ voc ¢ Vl Z._._LZ“ 1 ¥ is
2~’ Rec g rij . Rui
e i< i,

Application of the Born-Oppenheimer approximation allows

(2)

separation of the nuclear and electronic terms to give

}é/-. Vi. Z Z (III. B.1)
= L 3 1j

i<

Choice of a suitable electronic wavefunction will then affect the
level of accuracy obtainable, the ideal function being one which treats
the probability of the position of each e;gctron as a function of ihe
positions of all the otherc., Computational impracticability generally
leads to the postulation of a similar wavefunction, in which the
positional probabilities of all the electrons are treated independently,

i.€.,

q/lu)q»z(l)...g;nu)
PP P n)

where}l)i is a single elaciron molecular orbital wavefunction, and the

; 1
? (1.2,...,n) =,vTr"i—

requisite antisy.oictry with respect to particle exchange of Feimions is

provided by the properties of the determinant (2). Since the
Hamiltonian in III. B.1l is non-relativistic, it is purely spatial, and
(%)

electron spin is commoaly introduced by writing

?i(j) = Y:(3)7(35), wnere |; is a spatial and 7 a spin

function. Ifm =+3},77 = andifm =-34, %7 =A.
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Thus if we constrain pairs of electrons of opposite spin to
occupy the same spatial orbitals, we have, for a w©losed shell

configuration, a Restricted Hartree-Fock wavefunction:
Yy (030 (1) Y1) AQ1)e. g (1) (1) (1)8(2)
\J) BeF = Y
B Y (2n) et (2n)... W (2n)A(2n)

(III. B.2)

usually written

Dmr = @iy {900 §,(2)3(2). ..y, (20)8 (20)| — (TL.B.3)

Tlie most common way ¢f finding the eigenvalues oi‘,}’;;e is the

Hartree~Fock Self-Consistent Field Method (2,34, 5, 6)

in which the
< “4e . ce . -
expcotation ofﬁ is minimised with respect to #he MOs L})i under the

constraint that these ¥0s remsin orthonormal.
i. e.,(?l# '&} »1is minimised with respect to all qj s subject

to £ q)l' (Vj> = ij‘ This leads to an energy cxpr<ssion in which each
electron is ascuwed to move in the average potential due to all the

others, i.e.,

T = Z Q:/d'zl eee do Z g; {/dz‘l...d't

is3

ZZﬁ’ = ) ar, .. o,

Indistinguishability of electrons implies tnat we may replace the i and

J labels by, e.g., 1 and 2, and

= - (2;1)5? \1; A7 ... 47, + %Zn(a—l)(gj IZ.J(d‘ru-
-Z‘ Zu.2n.5gj ™ g) v, ... 47,
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= (2n)<@ I]:,{ | q/ > +n(2n—l)<? } j (P >, where#

is the core Hamiltonian,

Expansion of the Slater determinant and use of oithogonality gives

E = ZZHii + Z (2Jij - Kij)’ where

i i,J

Hys = <Yl Wi >y 9y
“<‘V1%l ol Wi >

The Coulomb integral, JlJ, rcpresents the avercgad elsctrostatic

Il
A
<
P
=&
ﬁi“
<
’.l
=
\/
5
o

repulsion between MOs i and j, but the exchange integral, Ki*’ is non-
classical, arising from the use of au antisymmeiric determinant
(equation III. B.2) instead of a simgole orbital product. As has been

shown by Slater (2b)

this term corrects for (a) the term Jij’ which
includes a contribution for an eleciron in its own averagcd potential
and (b) the fact that the close approach of two clectrons iz very
unlikely, although this "Fermi Hole" correction only operates on electrens
of parallel spin, whereas ideally one should also allow for a "Coulomb
Hole" which also prevents electrons of opposite spin from apprsaching
too closely.

Subseéuent variation of E under the orthoncimality constraine,

using Lagrange's Method of Undetermined Multipliers (7) gives

F‘Vi"‘z €559

J
the matrix of undetermined multipliers, {lykg the Mis and F the Fock

~ (III. B.4), where éij is

matrix, where

- c —_—
F -[# +Z(2Jj- Kj)] , (III. B.5)
3

and  Jiyy = Jg, KoYy = K.
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Thus the problem can be reduced tc a one-electron operator one,
and equation II. B.4 is normally operated on via a unitary transformation
(2, 6), which preservesthe determinant I1I, B.2, since (8)
futaul = Juf[allul= Tu=" o ilal = 1o tuli al=]al
This gives
U'lFUlyi =7 -1E:U Y, and since é: is Hermitian ty supposition

(2b) there exists a unitary transformation which diagonalises it, giving

FY, = ei(yi , ~———— (III. B.6)

the common form of the pseudo-eigenvalue Hartree-Fock equatirns,
It should be noted that an extre restrictiorn is imposcod on the

transformation: since it is of the form

qJ Z qu/J , =——— (IIL. B.7)

where qu are spln-orblt.als of the form (V (L)’Z(m ), then all the q}j

in B.7 must have 7 = e« or 7 = $ if \1/ is to be ¢l the same form,
(9)

i.e. the spin function must facterise out , and senarste

transformations for o and A spin orbitals, which do rot wix orbitals
of opposite spin, must be used.

In the closed-shell Hartree-Fock case this presents no problem,
but in general such unitary transformations co not exist for open-

(10, 21)

shell RHF wavefunctions and vhe off-diagonal Lagrangian

multipliers cannot be made to disappear.

Techniques employed to circumveni, this include (i) igacring the

€. .(10’ (6) and
1)
(iii) the Unrestricted Hartree-Fock Method (12, L'), which will be

11) (ii) the introduction of coupling operators

described later in this chapter.
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C. The Roothaan-Hall Equationg for Closed Shells

The solution of the Hartree-Fock equations may be performed
numerically. but in the case of molecular systems it is more usual to

express the MOs as linear combinations of comple¥.e sets of orthonormal

. . r6) .
basis functions *7°, i.e.,
¥i= icm W5 where <8,[9,>= &5, , and as
s=]

long as the conditions are s=atisfied, any coniplet= cet will suffice.
Impracticability constrains us to the use of partial summations
of non-orthogonal functions, however, e.g.,

Lyi = Cui®eu ——— (III. C.1), and in this case the

=1
choice of functicns is critical.

Substitution of IiX. C.1 into III. B.3 (3’}” é) and minimisation of E
wi.th respect to each Slai, under the constraints ""Wi “"’J > =
using the same methods, leads to

Z(lj‘“,cyi - Z Eijcyj S“") =0, -—-— (III. C.2)

v
where F,, = H,y + tPAO. { ¥ ao ) - %Q“AIVV )} s -

o Ao |
= ¥* P —— ’ 5y,
Bo = 2 i Cas Coy 2 (I1I, C.2b)

i=1
(where the summation is over the cccupied orbitaks only)

and («v|Ac) =SS§V(1)QV(1) ;i; Q;\(Z)QO,(ZMY‘I 47,

If we again assume a 'Ymitary Transformation which diagonalises C s We
obtain

Z(F)av“ figmﬂ Cyi= 0
v -

the Roothaan-ilall equations (6a, 13) . wholse validity depends on the

iy

(III, C.2a)

(III.C.2¢)

(III. C.3)

feasibility of the Unitary Transformation on the matrix Cyi‘

Further transformation gives the pseudo-eigenvalue equations
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F¢/ =c¢'s ———— (III. C.4)

-1
where F = S 2FS% and ¢' = S%C. Solution of the secular equation
! - Cn————————
£y - € Sul=o (III. c.5)
gives the eigenvelues of the occupied MOs, and the eigenvectors (as

columns of C') are then found by solution of

Z(z;’w- € 8.) C,; =0——— (III. C.6)
for eaé; 61' Geuerally, equation III. C.5 is solved by numerical
diagonalisation of F', and III. 0;6 yields the required coefficieats.

The whole process, z=fter a suitable set of basis functicng has
been chosen, consists of calculation of the one and two electron
integrals used in III, C.2, and the construction of a density mat:ix
via III, C.2b. The resulting Fock matrix is then transformed and
diagonalised as described above, new eigeﬂfectors are found, ard the

process repeated until the energy converges to a self-consisten! value,

6, 12)

D. Treatment of Open Sheils - the UHF Wavefunctions (3, 4,

In general, cpen shell calculations, as will be necessary for
the investigation of molezular clusters dressed with an excess electron,
present more problems than closed shell ones, Spin and spatial
synmetry coﬁsiderations regquire that for singlet states of diradicals we
use more than one Slater determinant; He in the sk lslconfiguration

requires a wavefunction of the form

gl (1,2) ='\/%'- { 1s(1)2s(2) + 1s(2)2s(1)} {«(1);9(2) -ﬂ(l)xiz)j' ’

i.e., 4715._‘ {l 1s(1)x(1)2s(2)8(2) | +1 1s(1),8(1)2s(2)u(2)] }

However, any configuration with one electron outside closed
shells (e.g., the excess electron molecular cluster models) will require

only one Slater determinant,
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Another disadvantage of the open-shell RHF wavefunction is that
no valid Unitary Transformation preserving the RHF wavefunctions exists
which may be used on equation III. A.) to remove the off-diagonal

(9)

Tagrangian multipliers ,» as was mentioned at the end of section ILI.B.
Again, however, this uifficulty does not arise with Unrestricted
Hartree-Fock wavefunictions, where separate HF equations are soclved for
o¢and B electrons.

In the ULF methcd, the space parts of the wavefunctions are nc

longer constrained tvo bc identical, and S.DUHF is written as

‘I’UHF ‘l%(l\*‘l/l}'”( B(2). i (2n- 1)%(2n- 1)[, —— (111.0.1)

for a single excess electron. This leads (4,12) to the equations

Z(r;w e ,,) =0 ——— (III. D.2)

Z( . y)z,l—o

(III. D.3)

&y
wher F;y }2“, [ﬂ WV”\O‘) - (A‘O‘!AV]

o
F,‘fv": H’“y+)¢" [’)?\o- (v ) - P;o_ («olAv )] ,

O™
which are solved as befoic.
The UHF method suffers from the disadvantage that the
waveSfunction is not an eigocnfunction of 52, where S = i + 85

xi 7
(14, 15), but it remains an

+ S k
Zoa
is the to‘aal el>ctronic ssin operator
eigenfunction of Sz. Althcugh this may appear serious, the effect

judged on ah initio computations by the present author, has been slight,

values of ~0+76 instead of 0¢75 being obtained for<82>.

The truncated basis sets used in LCAO calculations should be
chosen carefully, ané many such sets have been developed, the criteria

being that they give energy values sufficiently near the Hartree-Fock
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limit and that they reproduce quite well properties such as spin and
charge densities, dipole moments, bond lenghths and angles, »tc., Most
basis sets are of the form f(r) Y(G, R), where f(r) is a radial

function, and »/(@, W) is a spherical harmonic; the form of f(r) giving

(ié)

best results, namely the Slater function, ci form

f(r) - Nrn-le-fr

’

does not give two-electron integrals capable of aralytical evaluation,
and more time-consuming numerical techniques must be employed.

Gaussian functions, of the form
- n2

£f(r) = Nr'e
with »/(6, ®) sometimes written as x}szk, vhere i, j and k are

(17, 18) nese, although giving two

(17, 18, 19),

integers, were introduced by Boys
electron integrals susceptible of analy’ical evaluation
require morelfunctions, and hence many'mo£é integrals, to duplicate the
effect of Slater functions.

Many other approaches have been used, such as the use of cusp

(21, 22)

functions (20) and Floating Spherical Gaussians ,» bui the atom-
centred Slater and Gaussian functicns remain the most popular, and
comparisons by Hosteny et al. (23) on H20 showed. that the Slcter-Type
Orbitals (STOS) were suitable for the immer shells, while Gaussians
were better for the valence shells, and hence for properties like
potential surfaces, equilibrium geometries and excitation energies.
Least-squares fitting of Gaussians to Slaters has also been tried by
Pople et al. (24) with marked success.

Most common in the literature is the optimised contracted basis
set; this is derived from the ordinary coptimised kasis set of so-called
primitive Gaussians (25), which is nermally unduly large for the SCF
iteration procedure, and is usually contracted to a set of linear

(26, 27, 28)

combinations of primitives tc reduce running time and
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storage space. Choice of a basis set depends on balancing time

considerations against accuracy, and even a very flexible basis set may
give poor results for dipole moments and more esoteric properties (29).

Interwoven with the flexibility is the question of angular

dependence, It has beex shown, in the case of NHB’ that the inversion
barrier cannot be adequately predicted without the use of polarisation
functions (30, 31, 32), and that bonding in some sulphur compounds (33)
requires the consideration of d-orbitals. Care must therefore be taken

to include polarization functions in cases where the orbital

hybridisation is likely to alter,

F. Avproximate Methods - CNDO and INDO

(i) The CNDC scheue

The spectacular increase in availability of SCF b initio methods
in recent years has been offset by the vast demands such calculations.
make on computer resources, since the number of two-electron integrals
required goes up as the fourth power of the number of basis functions.

Such problems have nurtured the semi-empirical methods, which
simplify integrale by a combination of systerwatic neglect and semi-
empirical parameterisation, enavling larger molecules to be tackled.

In the wake of Parr's Zero Differential Overlap Approximation (BA),

Pople and co-workers produced various rotation--invariant approximation
methods such as CNDO, INDO and NDDO, which increase iin complexity as they
do in usefulness,

Such methods rely basically on the neglect of two electron
repulsion integrais involving overiap distributions over different
atomic cintres, and of tuie overlan integrals involved in normalisation

of the M0s 3% 36)  mnay s,
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(«vAo ) = (ﬂﬁ]M)Sﬂvsm ————— (III. F.1)

and S,«.V = S,a.V ——— (III. F.2)

where 4 and ¥ must be on'the same atom, and A and o- must be on the same
atom; in thiz way all three and four, and many two centTre . integrals
may be removed, The one-electron integrals over the core Hamilteonian,
which describe the bonding in the molecule, are constructed partly from
experimental data,

Ideally, the olservables obtained should be, as they are with the
Roothaan equations; unchanged under a linear transformation of the baeis
set, that is, under rotation, hybridisation and symmetry combination,
but the above expression does not guarantee this. Pople et al. have

(35)

shown that invariance under rotation and hybridisation can bc

assumed if equation (IIL. F.1) is written as

(/‘"VIAO') = &‘yng_ S (III. F’B)
vinere XAB = (/"A,“A] P B'AB) ————— (III. F.4)

is dependent only <on atome A and B, and not on the particular orbitals;
it is an average repulsion term for electrons associated with atoms 4 and
B.

Similar approximations are made for H,y, namely (if &4 and s+ are

both on atom A),

2
—<ﬂ|3ﬁ IV> -V? -V, fv>- Z<A’{VBIv>,—-—(III.F.5)

B¥ A
where Vk is the potential due to the nucleus and core electrons of atom K.

V|V > ————— (III. F.6)

U = 0 by the \phe;lcal symmebry cof VA if the wavefunctions are
ron-hybrid unless 4 =¥ , and < 4 ]vB]V 4> is written, by analogy
with III. F.4, as VAB’ the average potential on any valence electron of

A due to the nucleus and core eiectrons of atom B.
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B¥ A
If « and ¥ are on A and B, then some form ¢{ paramcterisation

is required, for

2
= < \ —
Hey=<s| -5 -V, -V lv> - s | ow_|v> (I1I. F.8)
CxA,B
which, by the usual approximations, gives

2
= v =

This, which requires empirical parameterisation, is 5 resonance

(37)

integral giving the energy of the two electrons in the field of

the cores of A and B, and in the CNDO method, this is writien as

fﬁy: A?KB S

My » —_—— (lIIo Fclo)

where 4 ZB is a solely atom-pair dependent parameter, this Leing

gimplified further via
Ao =382 +A%) o (III. F.11)
AB" A B,' -I-J-c ‘cll

Finally, these single-atom bonding parameters are fitted using
ab initio calculation results with a minimal basis szt.

Since the adjustable parameters, namely U

Uepus Vpns XAB and

A ZB may be specified in various ways, different schemes snch ag
CNDO/1 and CNDO/2 have arisen, but neither of these directly concern

the present work.

(ii) The INDO scheme

In studying excess electrons, cne wishes to account for properties
dependent on excess spin densities, and to allow for effects due to
parallel and opposing spins. Since the iwo-sleciron sxchange integral
(«¥|#v) is neglected in the CNDO schemes, spin densities in inner
orbitals and separate states due to spin differemces cannot be accounted

for in this method.



In the INDO formulation, all the main approximations of CNDO are
included, with perameterisation as in CNDO/2 with the exception that
monatomic differential overlap in one-centre integrals is now retained
(38) 39), . yl {Ly‘ 2 o . . . .

s that is, («¥|-VY) iz retained, provided that 4 and ¥V reside
on the came atomic ccontre, The extra integrals are then evaluated in

(2)

terms of Slater-Condon parameters » Which are obtained empirically,
with the exception or Fo, corresponding o XAA’ this being evaluated
analyticaily as it is in the CN0DO/2 approximsticn. Similarly, Slater-

Condon pzrameters aiso appear in the U, , expressions.

{iii) Extensions to the INDO scheme for solvated «lectron models

Since excess electron states prove to vz fairly lociely bound

(40, 41) it is desirable to introduce some facility for

and diffuse
including linear combinations of diffuse orbitals as exnensions to the
less than mihimal INDC basis set. The present author has made
alterations to the besic INDO prcgramme of Pcple and Beveridge, to
enable floating sphericel Slaters (FSS ) tc bz used, as follows:

(a) Extra data on the new floating Slater are stored in the

unused array space reserved for He atoms.

{v) XAB’ evaluated in the INDO approximation as

g 1\
gj&;(l) o L (a7, e,

is evaluated as usnal if A, (or B, or hcth) is a floating
spherical Slater.

(c) Since the FSS has only one 1s orbital, the integral such
as (pr' SRX), which involve higher Slater-Condon parameters than F°,
do not require computation for the FSS. Only (ss,ss) =¥ = 8AA is

used.
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(a) v the potential on an electron of A when affected by the

AB’
core of B, given in INDO as

Vin =2 N (1) L d?, is evaluated as usual, the Z of the
AB B G B

FSS being set to zero.

(e) 1, o the energy of an electron in the field of its own core,
is not set to zero, since the FSS electron possesses kinetic energy,
but no nucleus,

Thus i

2

Uooua™ < l“v'fg"iM>

-§3

:‘_-eo, 9&/‘= '5' 9 2 f
-9r
(2‘52e
where §(r) = = is the FSS.

(£) vy IV.F. 9, i0, 11,

2
I‘L“y = <,ul..v-2— - VA - VBI v > s when s« and ¥ are on different

—

cenires, and

@“v=1€av =~ PO 5 vz%('eZ**'lBg)Sﬂv;

AB T A~
it will be assuned, for want of a better criterion, that each ,30 atowic
“term involves about half ihe KE plus its own potential. Thus, for the

floating Slater, we parametcrise ’9; as
3 ,
T s which is probably slightly on the pessimistic side for

bonding purposes, but we wish to avoid introducing noa-existeat strong
bonding in calrsulations designed to adduce which structures are likely
to trap an exvess eluctron,

With these extra refinements, a set of floating Slaters, all with

£
(2]
b
£
&}
¢t
0
~
o+
[¢)
(o]
¢
g
da
-
@
&
Q

the same exponent, can be intreduced into 2
effects of greater diffuseness and flexibility of basis sets.
The study of excited open-shell states is also basic to solvated

electron theory, and since Koopmén's Theorem is in general invalid for



(3)

open-shell cases , & more rigorous evaluation of excitation energies
was carried out; further modifications by the author wcre made to the
INDO programme to allow SCF calculations on promoted electron states
via reordering of MOs before the first calculiation ¢f the density

matrix, The next chapter will include calculatious using the above

technique, as an aid to the study of short-range interactions.
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v

Water Clusters - Short-Range Interactions

A, Introduction_and Comments on Criteria for Solvation

Sinze the electror, in water and icc at least, is inferred to be
localised on a few molecules, il may be valid to represent the short-
range interactions bty molecular SCF calculations, and the long-range
ones by a continvwous dielectric medium (34). Shor-t-range properties
such as spin densities will then be mainly determinea by the local
structure, and long-range properties such as thz total cnergy will be
related to the mediun polarisaiion field. For irstance, a spherically
disposed charge of one electron confined in a cavity of radius 3A° in
water will be stabilised to the extent of 1.1 ¢V vy the optical
polarication alone, while total relaxation of tue dielectric medium will
yield 2.4 eV,

Thus 2 negative ion cluster may exceed the energy of its neutral
species by up to 1.0 eV and still favour eleciroir trapping; energetic
criteria ars therefore not an absclute measure of trapping ability, but
may serve to grade clusiers on a relative scale as possible trapping
centres,

The chcice cf basis cet requires equal cauvtion. As has been

(1, 2)

pointed out by various workers s & systen wiich doze not bind

an excess electron will demonstrate a lowering in its eunergy as
progressively more diffuse basis functions are added, approaching
asymptotically from above the energy of the neutral state plus a free
electron. In ab initio calculations on the solvated electron, the
jdeal should be to add to the basis set apposite to the neutral cluster
a succession of diffuse orbitals, which invariably lower the energy of

the negati.e ion state. If the energy of the excess electron state is

below that of the neutral state, one may with caution infer a bound
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stable state; if the converse is true, one may be observing either a
drifting off of the electron or a stable but diffuse bound state;
again, energetic criteria alone will not suffice.

However, if the eigenvalue of lhe excess electron MO is negative,
or if its eigenvector does not pessess its hiphesu atomie orhital
coefficient in the most diffuse MO, then we msy tentatively assume
binding. The spatial behaviour of thc excess spin density, f’s, on
addition of diffuse functions, may alsc provide a binding criterion.
Similarly, fitting of calculations to experimentali data such as

solvation energies, optical absorption peaks(l’B’A’5’7’l7’32j and

(10)

proton spin densities may be used as guides to a cluster's
suitability, since these may be faiily insensitive to long-range
effects. If should be noted that even 2 positive electron airinity, found
with a flexible and adequate basis set, in a properly parameicrised
calculation,.does not in itself imply solvation, since it may occur

on a highly improbable part of the configuration curve fer the cluster,

Studies of energies versus configuration coordinates are nore

definitive than "single shot" evalvatious.

B. Theoretical Models of Other Workers. Water Dimers and Largoer

Clusters

(i) Early models

Among the earlier and more approzimate theoretical models are

those of Raff and Pohl (6)

s Who considered Hg— perturbed by two
hydroxyl ions, and McAloon and Webster (7), who performed extended
HY¥ckel calculations on water and ammoniz dimers. The laticr results
indicated that a dimer with Structure TI (See Fig. IV. B.1l) gave

reasonable excitation energies, and delocalised spin densities, but

displayed a red shift on compression, contrary to experimental
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evidence (8).

A structure similar to I also displayed reasohable excitation
*energies and compressional shifts but retained al! its spin density
on one molecule,

The famous structural model of Natori and Watanabe (9) (Structure
III in Fig.IV. B.1) was trested using a linear combination of the four
inner hydrogen 1s furctionz in the potential due to the O and H atoms,
giving h¥ & 0-80 eV, and an estimated heat of solwvaticn of ~ - 2:4 eV,
This, however, inclodes « term for the reroval of a central H20 from
Structure I1I, whereas thc c¢iidence (see Section 1) sncyeéts that such
defects &zre formed prior to electron capture, and neglects the long-range
medium pclarisation,

The natural continuation of such work is through better
semicmpirica; results to an ab initio levéi, cost permitting, and this
has been the recent trend.

(ii) A Spin Density Ootimised Calculation

The INDO minimal uasis calculations of Ker:» ana lellams (10)

interesting in that they make no attempt to use energy as a criterion,
relying instead on fitting calculated f’s values for waler structures

to experimental results (11’12)¢ All possible (320)5 dimer structures
were thoroughly studied, bond lengths and angles being optimised at each
stage. Ncne of the fbs approached the experiwental reosuli of total/°s

< .08 ‘*1’12’27), but sene structures gave markedly

on all protons, P> S
lower total f’H than others (~0°2) and these wers. acsumed to be the
optimal conformations. The disparity between theory and experiment was

still large, btut may have been due to lack of a suitably diffuse and

¥ For one of the orientations
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flexible set of basis orbitals. The Dimer structure most favoured was
almost identical to Structure II, which may be used for all practical
purposes: an 0O.,.0 distance of 3-3A9, an O-H lengti of 1-24° and a
bond angle of 105° gave inner and ouver proton spin densities of 0.091
and 0.018 respectively, or a total protonic snin «lensity of 0-218,

A tetramer structure gave a value of 0.383, but not all possible
tetramer structures were investigated.

No other properties, such as optical transition evergics, were
calculated, but it is of interest that the optimim diner configuration
for the excess electron state agrees with that obtained hy lialeway and

(13)

Schwartz » using energetic criteria,

(iii) Ab Initio Studies on Dimers

The work of Naleway and Schwartz consists of a similarly thorough
search through possible dimer orientationé, with calculation of tetal
energies and electronic transition cnergies. Ab initio calculavions
were performed using a flexible double zeta Gaussian basis sob (obtained
by splitting off the most diffuse function from a servicseble set of

contracted Gaussians) and a fixed !I.C monomer geometry of R(0-H) =

2
A
1-80882 au (0-957167A°) and HOH 104-52° (lh).
The neutral case of Structure I displayed the lowest energy,

(12)

confirming the results of Del Bene and Pople s at an 0,...0

distance of 5-67 au (3-00A°). The energies of the neutral ars excess
electron species were calculated as -i52+0186 au and ~151-79%74 au
respectively, with a transition of 2.21 eV to an excess electron excited
state. On the other hand, in support of Kerr and Williams' findings,
the most favoured structure for the excess electron state is Structure
II, with O...0 distance 7 au (3:70A°) and energies of -151.9999 au and

-151-8495 for the neutral and excess electron state, The electronic

transition energy from the excess electron state was 2+48 eV, yet
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(16)

further from the experiment value of 1.72 eV « MAssessment of thé
effects of geometirical relaxation was made by stretching of the inner
O-H bond, which revealed that for one geometry the energy of the excess
electron fell below that of the corresponding neutral one. This fact,
unnoticed by Naleway and Schwariz, has been graph<d by the present
author (see Fig.IV. B.2); <%he relevant energy rewersal occurs at

R(O-H inner) = 242 au (1.284°), |

However, examination reveals that the energstic minimum for this
stretching is well above thut of the neuiral state by about 1.6 eV,
demonstrating the necessity of examining more tham one¢ 3oint on the
configuration curve before forming conclusions abzut stability.

The same workers have also examined the effe:ct of more diffuse
basis vete, such 2s 3s ou oxygen and (3s, 3p, on z=xygen plus 2s on
hydrogen. Such additions lower the energy of the excess electron state,
but 1o corresponding excitation energies are quoted. This very thorough
study of the water dimei; though informative as i.0. favoured structures,
gives no idea of the spatial behaviour of the excess electron as
geometry and basis set are varied, nor of the demendence of the
excitation energy on basis,

(iv) INDO Calculations on Dimers and Tetramers

The H20 dimer has also been treated at an IEDO SUHF level, using
a ninimal valence basis, by Howat and Webstei (1?9, wi:o carried out an
investigation of Structure II, obtaining energies, spin densities and
excitation energies. Using a gecmetry of R(O-H} = 58A H8H =

o (17)

10445 » they kept the monomer geometry fixed, varying the

intermolecular geparation, Ae in the Naleway and Schwartz studies, a
configuratiornal minimuin appears in the excess electron state, this time

at an 0...0 separation of 3«116A°, with energies of -38-4,953 au and

-38.2787 au (neglecting oxygen 1ls energies) for the neutral and excess
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electron states respectively. In accord with the neglect of most
multicentre differential overlap integrals in the INDO method (18),

spin densities on the various nuclei are evaluated by summation oI the
diagonal elements of the spin density matrix pertaining to each nucleus,
neglecting off-diagonzl contributions., The results are encouraging:
spin delocalises over the cluster to the extent of 0-28 on O, 0.18 un
the inner nydrogens, and 0<04 on the outer ones., While this gives a
total.f’g of 0440, as azainst 0°218 for the specifically spin-
optimised calculetions cof Kerr and Williams, and the experimental

result of K 0408, it nevertheless confirms that spin delocalisatinn can
occur on clustering. in excitation energy of 1.98 eV, with the

(19)

expected compressional blue shift is in reasonable agreemeni with
experiment, ecpecially since the excited-state energies were calecwlated
by a non SCF repopulation of the MOs optimised for the ground state.
Cycling to sélf-consistency would have been expected to lower this
energy closer to the experimental 172 eV. A slight shift of spin
density to the peripheral hydrogens is observed on excitation, with

/’s values of 0°22, 0«15 and 0-13 on oxygen and the inner and cuvter
protons, respectively, but since the values were obtained from a non-SCF
cslculation, their value is limited,

Further calculations by the same investigators on a wurizite-like
struéture rlus excess eleotron, generally similar to Structure I,
elucidated that ..ts ground state spin density resided almost entirely
on one molecule, shifting to the other on excitation, providing, they
suggest, a possible mechanism for photoconduction.

However, the Struacture I-like model has excitation energies
upwards of 5 eV, and a lack of delocalisation, making it an unlikely

candidate for an electron trap.
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While dimer studies are useful in predicting general trends, the
experimental evidence, as has been shown, points %o larger molecules,

(¢)

Building on the work of Natori and Watanabe , fowat and Webster have
also performed minimal valence basis INDO computxtions on tetramer
defect clusters of type III (see Fig.IV.B.,l) and its equivalent, IIIa,
when both H atoms on each water molecule point towards the centre,
Energy curves for these electron statzs once again display a
configurational minimum in the symmetric breathing mode of the cluster,
at R(centre-0) = 1.918A° for Structure III, wherz the neutral and
excess electron states have energies of -77.008 au and -76-524 au
respectively, and at R(centre- 0) = 1:6778° for Structure IIIa, which
is reported to be less stable, Spin densities and excitation effects
are more illuminating.

Both forms have total f’; of 0.22 and 0.36 for I.I and Iila, a
result still .far from £0.08, but less than the dimer result, showing a spin
shift to the oxygen centre on clustering., However, structurz III has
an excitation energy of 2:08 eV with a blue shift on rommression, while
IIIa displays 086 eV and a red shift on ccompression. While this is
slightly worse than the dimeric result, it is clear that the
compressional blue shift, and the expected lowering of hv on SCF
treatment of the excited state, will favour Structure III over 11la,

(v) CNDO/2 Results on Tetramers

Extra basis functions have been added to ilarger clusters in the
CNDO/2 calculations of Weissmann and £ohan (1’3), wno examined
Structures III and IV (see Fig.IV. B.1), along with some five-molecule
chains. Since each structure has been examined only at its experimentally
observed neutral geometry, the magnitude of any electron affinity
obtained is subject to change as the structure relaxes, but the fact

that Structure III, with R(centre- 0) = 2:764° has -79-495 au and
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-79+51L au for its neutral and excess electron states shows a strong
apparent tendency o electron capture. Structure IV, similarly,
displays energies of -99.-410 au and -99.441 au. Since also the lowest
occupied MO of the negative ican states of Struetures I1II and IV has
eigenvolues of - 0-35 eV ard -0-57 eV, it appears that the excess
electron state is the energ=ztically preferred one, even when evaluated
at a geometry more favourable to the neutral state. Weissmann and
Cohan take these resultis as iniplying that a reguler icelike structure
is the favoured trapping s=ite, and estimaie from the eigenvalues an
excitation energy of ~ 1.9 V. The excited negavive iecn state is
further inferred to be bound, provided that long-range polarisation
effects the ground and excited states equally,; and unbound otherwise.

ilovever, their solvation energies appeazr %2 be at variance with
experimental and other theoretical data, iﬁ the fbllowing way. The
calculations indicate spontaneous electron trapping orn isolated
clusters containing upwerds off four water mclacules, the icelike
pentamer (Structure IV) oeing particularly favoured Lo the extent of
~ 0.8 eV,

Now a crude estimate of the additional energy obt:ined from electron
/long-range dielectric mediwn interactions would be 2 2.5 eV (see Chapter
VI), leading to a solvation energy of over 3 eV, discounting the cluster
relaxatiori., The observed heat or solvation fur wate:r i: i.7 eV, More
concretely, favouring a reguiar ice structure as a trapping site would
make the large decrease in solvated electron yield ac temperature is
lowered (21) difficult to explain; furthermore, the structure
disrupting F ion greatly increases the trapping ability of pure
crystalline ice (20). A defect model, on the other haud, fits these

data, and the observations c¢i Section I, more aptly. If the calculated

energy drop is not realistic, this may be because of the parameterisation
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chosen, or because the extra orbitals added were specifically optimisad
10 fit the e state rather than the neutral one. It would be difficult
not to obtain "solvation® in such circumstances.

(vi) SUHF INDC Calculations on Four and Six-Membered Clusters
(22)

Similar results are obtained by Fukui et al. s who perforned
cluster calculations using some diffuse functions at an INDO SUHF
rather than a CNDO/2 level, on tetramer Structures IIL and IIIa, and
ca octahedrally disposed water molecules. 1s, 2s and 2p orbitals are
centred in the model, after suitable parameterisation of the s {the
Slater exponents) and.,ﬁo, the partial resonance integrals (see Chapter
III) for the functions; these are arranged empirically to fit the
observed proton spin densities, f’;, and to fit the energy of the highest
occupied orbital in the negative ion state to the observed solvatinu
energy. As.already discusced, the first c;iterion (f’;) is relevant, but
there is no a priori jusiification for fitting the ionisation potential
of the isolated cluster to the observed property of solvation energy.
Furthermore, there is scme dubiety aboubt the idea of calculating spin
densities using a method parameterised by means of these quantities, and
the same argument applies to conclusions about solvation energies.
Results using the most flexible basis (extra 1s, 2s and 2p
orbitals at the cluster centre) show values of -1+48 eV (Model ITI) and
-1+54 eV (Model IIIa ) for the energy difference (E -Epeyt), with
excitation energies of 1.42 eV and 1+51 eV, accompanying total /o ;
values of -0.022) ani -0.016 respectively. (The excitation energy is
defined by an approximate first order perturbation method rather than
an SCF-type calculation), The cluster geometry is based cn the R{centre-
0) distance of 2.924° deduced for H,0 (23,2L) | e octahedrally
disposed clusters yield solvations energies D2 eV, but all the models

in which two or three extra Afunctions are centred in the cavity
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display a tendency for the excess electron spin demsity to concentrate
in these extra orbitals, although Fukui et al. claim that sufficient
total spin density extends outwards to warrant the inclusion of a second
solvation shell. Ideally, one would place more extra orbitals outside
the cluster to determine whether they were being preferentially occupied,
but again this is time consuming.

They show also, from examination of the excess electron MO, “hat
on excitation the exress electron is transferred from the l1ls and 2s
extra central orbitals to almost total occupation of the 2pZ orbital,
and their spin density olots indicate an expansion of the excess
electron density in the z direction, and slight reduction in other
directions. Thvs there is a slight tendency for spin density to shift
outwards on excitvaiion, _

Thus the general behaviour of the excess electron on solvation
and excitation has been ¢xamined by the preceding groups of workers, but
the practice of parametcerising the calculations in order to make the
excess electron state luwer than the neutral one may cast doubt on the
subsequent calculated solvation energies, since one may have a negative
electron aifinity for an ijsolated cluster but still stabilise the system

by means of long-range polsrisation in the surrounding dielectric.

c. Investigation of The Hydrated Electron in Water and Ice - Methods

and Results

(i) Introduction

The structural model studies reviewed in Section B indicate that
disparities in calculations-may occur for various reasons; the basis
set used may be unsuiiable; states may be examined only at a single
geometry; different levels of approximation may be used, e.g., extenred

Huckel, CNDO/2, INDO and ab initio; the difficult problem of
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parameterisation of semiempirical calculations for extra, diffuse
functions may be biased in favour of the properties sought; the
criteria for the existence of a solvation centre may bz based on
calculated energy differences for isolated clusters, and nothing else.
It seems more reasonable to take spi: densities and =xciiation energies
into account.

The ideal calculation is clearly a CI ireatiment of a flexible,
diffuse Hartree-Fock limit basis set at an ab initio level un a
cluster in the presence of a large number of background molecules, but
computational economies preclude this, although Clem~snti et al. have
produced definitive papers on the role of water in solvation using
large-scale calculations (25).

Even Hartree-Fock limit ab initic calculations vith a basis set
suitable for the excess electron ave prohibitive, and at present more
limited treétments are the norm. it was therefore decided ito investigate
the solvated electron in water and ice at several differcnt levels,

beginning with the water dimer,

(2) The Water Dimer - an Ab Initio Study

An ab initio minimal basis investigation of Structures I and II
was essayed, in the manner of Naleway and Schwartz, but with more
emphasis on-the excited states, and calculation of Mulliken spin
densities, in the hope of observing at an ab initio level what had
hitherto been investigated using the INDO approximation (17).

(a) Method

The ab initio spin-unrestricted Hartree-Fock technique has been
discussed in Section III. Since many geometrical configurations for
neutral, excess electron and excited excess electronr: state were to be

studied, it was decided to limit the basis set to a minimal valence
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STO-4G one used by Del Bene and Pople (15)

for studies of H-bonding in
neutral dimers (Table IV. $.1). This will tend to place the energies
of excess electron states %oo high, but should show how the energies
of the states and their spatial spin distributions respond to
configuraticnal changes.

The monomer geometry of R(O-H) = 0-99154°, HOH = 100.053° (15)
was kept constant; tre intermolecular geometry being varied for
Structures I (Cg) and IT (CoyJ.

Mulliken spin densities were evaluated for each atomic centre A

by
S _ ¢ 5% ﬁ
AT Z (Buuu = Beoer S ujon
A on A

for each AO, £+, associated with that centre; this methed should
demonsirate how spin is partitioued, provided that the basis sets on
each centrevare reasonably balanced. i

The excited excess electron state was obtaineri by reoccupying
the MOs for the corresponding ground state, a2nd cycling to self-
consistency. This was usually effective, but some sitates were difficult
to obtain.

Finally, lest the UHF method produce eigenfunctions too far from
the eigenfunctions of S 2, the value of < g} ) S‘?:’ q}'}\ms monitored
for each state, and found to be within 0.05 of the expected 0.75. -%
was also found to be within 0,0z of the Virial Theorem value of 2 for
all cases studied.

’

{b) Results and Discussion

Ground state energies for Structure I are shown in Table IV, C.2.

minimum appears (see Fig.IV. €.1) a% an equilibrium O...0 separation of
2-73A°, corresponding to an energy of -150-975 au. Addition of an

excess electron to give the 2A’state preserves this minimum (see
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Fig.IV. C.2), but contracts the structure to an 0...0 distance of
2.408°, with an energy of -150+498 au, a value 0.477 au, or 12.98 eV
above the neutral state. Restricting structural relaxation during
capture places the oxcess electron state 13.4 eV above the neutrali.
Structure I, favoured in the neutral state, does not appear to be a
geod electron trap, in accord with the results of other workers (17).

As'can be seen from the results of Naleway and Schwartz (13),
zddition of further diffuse orbitals lowers this energy gap, but does
not render it favourable to solvation.

Model II, with ites cpposing protons, is found to have no stable
configurational minimum, as illustrated in Table IV, C.3, and
Fig. IV, C.3, vhe tendency being for the molecules to drift apart, or
possibly rearrange until the more stable H-bonded Structure I is
obtained. The corresponding excess elect;ﬁn‘state displays an snergetic
minimum, however (see Fig.iV. C.4) at an H...H separation of 1~15A°,
with an energy cf -150.570 au, rendering it more favourable to an
excess electron than Structure I.

Examination of excess electron Mulliken spin distributions gives
results as shown in Fig.IV. C.3, where over 95% of P?® is on the right
hand water molecule of Structure I, with a large part on the protons.
Since we may infer that greater delocalisation of e  over the
molecular structure impiiee greater stabilisation, such asymneiry does
not favour Struc:iure I &s a trapping site. This is reinforced by the
observaticn that rel4xsiion towards the e state equilibrium geometry
(0...0 = 2.4A°) increases the asymmetrical distribution.

Structure IT shows both 2 delecalisation of spin density over
the two moleculés, and also a lowering of the spin on the hydrogsns
towards the experimental result of 0:16 per proton for alkaline ice(27a).

A tendency for almost all the/°§'to collect on the inner protons can
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also be noticed; this is in qualitative agreement with the INDO
calculations of Howat and Webster (17).

Excitation produces interesting results. The excited shates of
Structure I reveal two interesting states, of ?K!and 2Alsymmetry,
respectively, with energies as shown in Table IV. C./4. Plotting the
energies of these states against 0...0 separation (Fig.IV. C.5) reveals
an unbound state (2A3 and a state with an energetic minimum of
~=150+340 au at R(0...0) = 237A° (2K3. Although extrapslation from
such a model is speculative, this behaviour agrees wiih aitempts by
some workers to fit the e aq optical spectrum to a ccabivziion of
bound/bound and bound/free state transitions (28): it shenld be
emphasised, however, that the e  ground state of Structure I has been
deemed less favourable than that of Structure II. For compleieness,
the energy qf the bound-bound transition ﬁas been evelnated on & Franck-
Condon basis from the SCF data (sce Table IV. C.5 and Fig.1v. C.6),

2,1 L .
A transiticns show a2 blue shift on

showing two opposing trends: 2Af-+
expansion, while the strictly symmetry-forbidden QA!-é 2A'oues reveal a
red shift, the latter being in accerd with experiment(zg). At the e

ground state equilibrium geometry of'~'2-hA°; however, this leads to an

20—y 2"

excitation energy of ~ L4+9 eV as against 27 eV for the former
transition, The observed peak value for the transition is 1:72 eV with
a peak width of ~ 0.92 &v (30,

Structure II, with the more favcured ground state for e , exhibits

a non-binding excited state (see Tabie IV, C.6 and Fig.IV. C.7), which

is in accord with suggestions by some workers (31) that the optical

Condon transition from the ground state would require abouvt 5.8 =V, and

a compressional blue shift is indicated.
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Such a crude but broad-ranging semiempirical calculation cannot be
expected to give results of quantitative accuracy. However, some new
qualitative results have emerged. In neither model does the energy of
the negative ion state fall below that of the neuiral, but this is not
expected, since, (a) the tasis set was not sufficiently flexible and
diffuse to describe the mo»: diffuse negative ion state and (b) it is
probable that long range polarisation fields are the principal factors
determining whether solvation can ultimately occui.

Although there are thus disparities between calculated and measured
solvation energies, ancd optical spectra, it has been ¢ctablished that
Structure II posscsses a cenfigurational minimum in the e state, making
it a better candidate for trapping than the regular H-Bonded dimer.

This wvindicates te some :xtent the speculaticns from experimental data
on traponing in crystalline ice (see Secti&ﬁ I) that defect sites may
favour electron trapping.

The excitation energies are high, probebly for reasons detailed in
(a) above, but are qualicatively interesting: ii mizht Le conjectured

2A” states of Structure ¥ could give rise to a

that the crossed 2 and
complex optical spectrum, blending bound-bound and beund-quasifree
transitions, as suggested by Deiahay et al. (32}. On ths other hand,

the excess electiron 2A' ground state for Structure I is configurationally
unstable, and Structure II is the more likely eleclron ivap. The latter
has the correct spectral shift on compression, ama its excited state has
no configurational minimum, reiniorcing the idea «i touvnd-quasifree
transitions. Improvement of the basis set and addition of diffuse
functions is expected to lower 2all the energy lewels, affecting the more
diffuse excited states to a greater extent; a reduction in h¥ on

improvemenit of basis set is thus expected, towards the experimental

‘value of 1.72 eV for water, The limitation that Structure II must excite
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to an unbound state is not a serious one: not all modes of relaxation
have been explored; an improved basis set may preferentially lower
another excited state; a dimer unit may be too small to model accurately
all the short-range interactions. It is also possible that the ohLseived

spectrum does not invclve bound-bound transitions at all. - . _

-z 7

Mulliken spin densities for Structure I are shown in Fig.IV.(.9.
Tlhie 2A' e ground stats has most of its spin density concentrated on the
right-hand molecule, and the delocalisation which Kerr and Williams
otipulate for stahilisation is absent. Nor does excitation improve
matters: the 25" state retains the éame type of distribution, arnd in the
2Al state the disposition is reversed, spin having transferred to the
other molecule, (Similar bzhaviour was noted in the Howat and Vebsier
INDO calculations on a Wurtzite-type arrangement).

The Structure II results are more reassuring: (Fig.IV. C.8) the
exccss electron appears to reside in the interior of the dimer, and is
distributed over bcih molecules, giving a total f’; of 0-38, as against
Kerr and Williams' specifically spin-optimised INDO result of 0.208 (}O{
Excitation transférs spin to the outside of the dimer, as shown, but
lcaves it symmet:ically distributed, so that Structure II may be
juferred, from spin distriiutions, to be the better trap.

Again, the limited hasis used, and the use of Mulliken distriﬁﬁﬁons
rather than.dire';t evaluation of P at points in space, leaves the
actual figures cbtained opcn to question, but indicates the H-tonded
structure of water to be less favourable to electron trapping than

defect centres of the Stiructure II type.
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D, Water Multimers

If the solvated electron in woter is indeed lccalised on some
defect structure, it is of interest to investigatie the extent of its
localisation: Kawabata's evidence (see Section I) suggests that the

region is not macroscopically significant, and NER resulcvs indicate that

(11)

in both crystalline (27) and glassy ice the electronic hyperfine

interaction is with 4, 6 or 8 protons, and line sfhape enalyses suggesth

81:2 (12). Various structures containing from 4 to 12 H?O molecules were

examined at the INDO level, using the INDO prograwme of Peple and
(33)

Beveridge » specially modified by the author 1o harsle excited states

and use spherical floating Slaters (see Section IIL.F).

For the basic H,0 unit, a minimal valence bmsis set with orbital

(18) ) thne

2
exponents as optimised by Pople and Bever@dge was used
molecular geometry being fixed at R(O-H) = 0-9584°, HOH = 104-45°, as
used by Howat and Webster (17). Data obtained im the monomer
calculation are shown in Table IV, D.1. HQO- itself is clezrly
unstable with respect to thé neutral mclecule plws a free electron. One
significant point is the tendency for the spin demsity to shift outward
to the protons on the 2A1 - 2B1 excitation.

(i) The Effect of Environment on a Small Cluster-Solvation Shells

In this study, an attempt was made to simullate the additicn of

2d

(H,0), cluster, where L protons pointed towards the centre, while the
2L

solvation shells to (Hzo)h. The basic unit (Fig.IV. D.1) was a D

remaining 4 were disposed outside., Data on the mesutral and excess
electron states are displayed in Table IV. D.2. The energy of the
charged (azo}h cluster is above that of ithe neuiwal one with the same
geometry, but all long-range medium polarisation has bi=en neglected.
Spin shifts have been large: 75.6% of the excess spin now lies on the

oxygens, as against 39.01% in the monomer, and the total spin density
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on the central protons is 0-196; in fact, the total proton spin density
of 0-24), is approaching Kerr and Williams' carefully optimised result of
0-208 (10),

Four more water molecules were then placed tetrahedrally round the
cluster at a distance of 3R from the centre, wherm: R was th: centre to
vertex distance in the inner cluster (R = 1-918A°) and a similar shell
was again added at 5R to give a 3(}{2(})1+ structure. FEnergies, and spin
densities at 0, central and outer protcns in the inner ciustar are
displayed in Table IV. D.2, so that the effecis =f a sclvation shell
can be assessed., The changes are not{ great; the exress #nin remains
firmly in the inner cluster, and the faintest spim shift towards the
oxygens is noted; clustering has had little effect on the inner water

etramer.

Alternative solvation shells at 2R and 2R -+ AR were trizd, and
although calﬁulations on the latter did not converge, resulis from the
former are included in Table IV. D.2, Here a slight shifit ol the inner
cluster spin is noted, from 1.000 to 0994, and & slisht decrease in
/”;i confirms this small outward t::ocnd, but the solvation shell has
little effect on the spin distfibution. With these indications of the
localised nature of the trapped electron, it was decided to investigate
a possible trapping site on another structure which might exist in
water,

(ii) An H-bonded Double Ring Stiucturz

For this model, 2 H-bonded (H20)6 chair rings~were stacked as
sketched in Fig. IV. D.2, with the H20 molecules in each ring in a
quasi-random orientation, to simulate a possible H-bonded water fragment.
Coordinates were evaluated using a programme written by the author.

Three oxygen molecules in the upper ring were H-bonded to three in the

lower, the H.0 geometry being as detailed in Section IV, D(i), and the

2
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upper O-H-lower O distance was 2-76A°. INDO calculations were performed
on the neutral and excess electron states of this cluster, firstly with
the regular INDC minimal basis set as specified by Pople and Beveridge
(18), end sccondly with a variable exponent flosating spherical 1s Slater
orbital at the centre of the siructure, utilising various values of 'f,
some of which did not yield iterative convergence.

The same geomelry was maintained throughout.

Table IV, D.3 shows the cnergies obtained with various values of 5.
(It was uot possible to force convergence to any sxcited excess electron
states). Increasing contraction of the central orbital leads to a drop
in the neutral state energy with a corresponding chargs shift out of the
" centre of the cluster, whereas the excess electron state has a minimum at
T = Col,bcoupled with retention of 99% of the spin density in the
centrali orbital. (A full set o data obtained is set out in Table IV.
D.3). Once.again it appears that the excess electron is best described

as being quite well localised on the cluster.
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Slater exponents (STO-4G) for minimal basis ab initio wuter dimer

. TABLE IV. C.1.

calculations

Atomic Orbital Fxponent
Oxygen $ 1 - 7.66
Oxygen fz 2.23
Hydrogen % 1 1.23

b
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TABLE IV. C.2.

Ab initio minimal basis {STO-4G) calculations on the Structure I

geometry of the Ho0 dimer. Neutral and open shell ground states

0...0 Separation A’ Neutral State 2K e~ State Energy

(A°) Erergy(au) (au)

1.5 ~149.52477025 -149.13645527
1.7 ~150.46790078 -150.06226250
1.8 -150.66743131 ~15G,25293669
1.9 -150.78817243 ~150.364,62280
2.0 -150.86278673 ~-150.4301987
2.1 -150.90930660 ~150.46750880
2.2 -150.93816182 - ~150.48733145
2.3 -15C.95569714 -150-1'-960h078
2.35 -150.96154051 ~150.,4985942
2.3 ~150.96516140 -150.49'785331
2.4 -150.96594090 -150.49780415
2.5 -150.97152495 -150. 49538559
2.6 -150.97418866 -150,49063039
2.73 ~150.97512250 15043290492
2.8 -150.97495033 -150., 4785522}
2.9 -150.97427958 =150.47249124
3.0 -150.97336878 -150.46684491
3.1 ~150.97239850 ~150.46174499
3.2 -150.9711+7025 -150.45723700
3.3 -150.,97063455 ~150.45331621
3.5 -150.96929643 ~150.44708671




TABLE IV. C.3.

Ab initio minimal basis (STO-4G) calculations om the Structure II

geometry of the Ho0 dimer. Neutral and open shell ground statez

H...H Separation lAg Neutral State 2ﬁge— State Energy

(4°) Energy(au) (au)
1.0 -150,92030086 ~150. 56004661
1.1 ~150.93374778 ~150.56830966
1.15 ~150,93876636 ~150.56999840
1.2 ~150.94292034 _ -150.57038627
1.3 ~150,94922627 ~150.56801197
1.4 -150.95359195 ~150.56243457
1.5 -150.95663620 ~150.55460003
1.6 -156.95877600 -150.54525669
2.0 -150.96275483 ~150.5034256)
2.5 ~150,96413362 15046204877

-150.961,60308 -150.43923518

3.0




Ab initio minimal basis (STO0-4G) calculations cm the Siructure I

TABLE IV, C..L.

geometry of the HyO dimer,

Excited open shell states

0...0 Separation

2)" Excited State

Za! Excited State

(x°) (au) (an)
1.5 ~149.09476821
1.7 ~149.99927003
1.8 -150,18164121
1.9 -150.28£49978
2,0 ~150.54640269
2.1 -150,37922907
2.2 ~150,39529095
2.3 -150.29335048
2.4 ~150. 40007950 -150.31880701
2.5 ~150.39553946 -150,33783119 g
2.6 -150.38906596 ~150,35219502
2.73 -150.37966186 ~150.36596481
2.8 -150,37465224 -150.37171636
2.9 ~150.36792916 ~150.37847649
3.0 -150.38393174
3.1 ~150,35680369

~150,39537922

3.3
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TABLE IV. C.5.

Ab initio minimal basis (STG-4G) calculations on the Structure I
geometry of the HpO diwer, Excitation energies %o the two excited

0...0 Separation hv(eV) hy (eV)
(2°) 20 _, 240 NN
1.5 1.13
1.7 1.7
1.8 1.94
1.9 2.13
2.0 2,28
2.1 ' 240 -

© 2.2 2,50
2.3 | 552
2.4 2,66 487
2.5 2.72 L.29
2.6 2.76 3.77
2.72 | 2.81 3.18
2.8 | 2.83 2.91
a9 2.84 2456
3.0 2.26
3.1 2,86
3.3 1.58




TABLE IV, C.b.

Ab_initio minimal basis (STO-AG) calculations on the Structure IT
of the water dimer. Excited state energies

H...H Separation 2B, Excited State hw (eV)
(1°) Energy(au) 2Ag — g,
1.0 | -150,32777688 6.32
1.1 - -150,34276521 6.14
1.15 -150.34852322 6,03
1.2 -150.35340103 5.90
1.3 -150,36112657 5,63

1. | -150.36690920 5.32
1.5 ~150,37141118 498
1.6 ' -150.37509177 L.63
2.0 ~150.38666742 3.18
2,5 ' ~150,40026434 1.68
3.0 -150.41107686 0.77
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TABLE IV. D,1

INDO calculations on H,0 monower: neutral (1A1), excess electron (2A1)

and excited (2B1) states

State Energy{au) 2 P ;;1 Total 0%,
Neutral 1A, ~19.0142
Excess Electron “A;  -18.7262 0.390  0.305 0.610
Excited 2
Excess Electron B2 -18,.4852 -0,242 0,621 1.242

TABLE IV, D.3,

(Hzo)l? H-bonded structure with Central Slater Is Orbital

" (CENTRAL g5, ceenr o)
ENERGY (£.U.) § opormary /P o(CENT. OR.) /R e
-228.0058939315 -— —_ Neuiral
~227.80572826&8 —_ —_ Excess Electron
-228,0335911250 G.1 -— 0.0182 Neatral
-227,9859261951 Cc.1 0.9902 1.,0090 Excess Electron
=227.95€1857347 0.7677 0.8392 rLuxcess Electron
-228,138168586 0.5 —_ ¢.0819 Neutral
-227.9611713895 0.5 10.11%9 0.2087 Excess Electron







© FIG.IV. B.1 (Contd.)
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Methanol and Ammonia - Short-Range Interactions

No study of the solvated electron would bz complete without
reference to its trapping in alcohols and ammoniz, since a great amount
of information is available on these (1, 2) « In the case of alcohols,
it was decided to restrict calculation to a small methanol cluster,
examining the effect of cluéter size, and the adeition of extra
orbitals, at an INDO level. The ammonia studies were carried out at an
ab initio level on monomers and dimers, to determine the effects of
geometry and basis size and flexibilily on the emergies and spin

distributions of the species studied.

A, The Methanol Tetramer - an INNO Study

The cluster studied was a L‘2 g (MeOH‘) " arramgement; as depicted in
Fig. V. A.l.., with the hydroxyl protons pointing tcwards the ceatre,
round which the oxygen atoms are tetrahedrally dicposesd. The CHBOH
geometry was kept fixed at that optimiced by Poplke and Eeveridge (3) .
The cluster, imagined to be situated tetrahedrally in a cube, was
examined with floating Spherical Slaters placed centrally on the cube
faces, and one at the cube centre, or various combinations of these, the
orbitals all having the same Slater exponent. |

Energies, eigenvectors and spin and charge densities were
evaluated using the modified INDO programme deseribed in Szction IIILF,
with the tetramer radius, R (the distance from the centre to an 0 atom)

initially set at 2-5A°.

The floating Gaussian exponent,  , was raised in steps of 0-1 au

. . s 1 de
from 0-1 to 0.5, and comparisons of the negative ion energles were ma

between clusters with extra orbitals on the cube face only and those

with the Slaters on the cube faces and the centre.
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Energles and exponents are listed in Table W. A.1. Both sets of
results show a preferential lowering of the energy at § = 0-3, with
the cube faces plus centre set of orbitals giving lower energies
throughout., This set is used in the remaining calculations , since
either the the extra flexibility of che set with the central orbital,
of this orbital's location, favours the e state.

Optimisation of the cluster radius, using tihe above basis set,
was carried out in such a way that the “cube face" Slaters vlways
remained on the faces of the cube delineated by ihe %ztrahedrally
disposed O atoms,

Energies using the full basis, end using ne extra orbitals at all
are compared in Table V. A.2. (neuiral state) and V., A.3. (excess
electron state). Although the data ar:z incomplefe ¥#; two conclusions
emerge: the e state displays an op’r,imum/cavity' radius at ~-24° on
the minimal ibasis calculation, and in each case the additicu of the
diffuse basis lowers the energy levels considerakiy.

One expects, as shown in Table V. A.3., that thz ¢ siate with
the diffuse basis will also show such a configurational minimum, but
at more negative energies than the minimal basis calculations.

However, the energy of the excess elecurom state still remaing
above the neutral state in each case, although addition of the diffuse
basis narrows the gap: for instence, ai R = 1«5i’i°, and a minimal
valence basis, the gap is 2.9 eV, whereas addition of 7 f = 03
Slaters reduces this to 1+8 eV. If cther criterda for eleciron-
trapping are studied, we obtain similar results.

Preferential stabilisation of the e  state might be expected to

as i en
* Convergence was unobtainable in some of the cases, especially wh

extra floating Slaters were added.
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yield a negative eigenvalue for the excess ot spin MO; these were
examined, the results being listed in Table V. A.h. In each case, the
magnitude of the eigenvalue is reduced by the diffuse besis, but remains
positive. Finally, the excess Mulliken spin distributions were examined
for the two bases at several cluster radii, as shown in Takhle V. A.5.
Here, the results seem to indicate soime tendency towards excess electron
capture: the minimal basis cluster, on expansion from Ro = 1~5A°,
experiences a spin density shift to the four central protene, this
density, at the energetically optimal radius of 2A°$ being 004 per
proton; addition of the 7 extra orbitals magnifies thie shift, since
_the total P 5 associated with the central orbitals varies rrom 9-02 at
R, = 1-58° to 0-83 at 2:54°.

Thus, although theoretical results indicate some localisation of
the excess electron, no definitc evidence of trapping on a lone
(CHBOH)A cluster has yet been acduced. Several improvements might be
made in the above study:

(a) the INDO calculations used possess by nscecsiiy some
arbitrary parameterisation, which could be dispensed with in an ab iritio
calculation

(b) the diffuseness and flexibility of the basis set might be
further improved

(c) if we are to use the excess spin density round the molecule

as a trapping criterion, the Muliiken methcd is inadequate; a spatial

l -T- AsS, _ T
PYplot of<? | fs(ﬁ)l
at the point R, is required. This is tried in Section V.C.

shere /°S(§) is the gpyin density operator
b4 .

With these ideas in mind, work was bsgun on a small cluster,
namely (NH3)2, using a fairly flexible and diffuse basis set, at an

ab initio level.
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B. An Ab Initio Study of Possible Electron Trapping on an (NH3),

Cluster: The Effect of Basis Diffuseness

The geometrical configuration used is depiectied in Fig. V. B.1l.,
where the N-H H-N bonds are linear, and the dimer lies ir the staggered
conformation (Point group C2h)' The experimentally cbserved geometry
(L) of 1NH = 106-7° and R(N-H) = 1-9117 au was used.

Since this calculation was to use a larger bkasis set, the dimer
geometry was restricted to two cases having N...J# separaticns of
5el au and 5-6 au respectively.

(1) Basis set

It was intended to make the besis set diffuse (%o more easily
accommodate a loosely bound electron) but flexibie enough to avoid a
spuriously high energy for the neutral species. Following tiie method
of Naleway and Schwartz (5) a split duuble-zeta type Gaussian set was
obtained as follows: a (N/7,3,1) 2s, 2p, 1d GTO basis set with a d-type
polarisation function developed for N.H3 by Roos amd Siegwvahn (éa, 6p) was
"gplit" by removing the most diffusc Gaussian in %he s and p contractions,

(7).

and using these with the zetas unchanged For hydrogen a

polarisation set of GIOs by Dunning (&) was split in the same way.

Full details of the basis set are in Table V. B.6., where it can be

seen that the set for N comprised effectively 4 s orbitals (2 normal

and 2 diffuée), 2 p orbitals (1 normal and 1 diffuse) and 1 d orbital:

H, similarly, had 2 s orbitals (1 normal and 1 diffuse) and 1 p orbital.

Calculations vindicate this basis, giving an energy of ~56.145 au for the

neutral NH3 monomer (Virial coefficient 2.004,) as opposed to Roos and

Siegbahn's -56.138 au for their original (N/7,3,1), (H/4,1) basis set.
However, since the excess electron may be a loosely bound species,

this diffuse N basis was supplemented by four very diffuse GTOs with

exponents 0-008, 0-005, 0-002 and 0001 %o form a hyperdiffuse basis set.
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With this set, neutral NH3 gave an energy of -56-146 au (Virial
coefficient 2:00;45) showing only a difference of 0.001 au over the

diffuse set. For the excess electron state of NH,, the diffuse and

3:
hyperdiffuse sets gave energies of -55.978 and -:5.145 au respectively.
This differencs of 0-167 2u indicates the hyperdiffuse basis to be more

apposite to such negative icn states.

(ii) Properties of the dimer and effect of the hyperdiffuse orbitals

(a) Energies. The energies for the dimer zround state (lAg),
excess electron ground state (2Ag) and excess electron excited state
(2Bu) for both basis sc<is anc both geometries are detailed in Tables
V. B.l. and V. B.2. The most, pertinent fact about stabilities is that
the cnergy of (NH3)£ is higher than that of NHj + NH3' with both basis
sets, incicating either (1) that the (NHB)Z arrangemeht chosen will not
stalilise an electron or (2) that the two/geomctries chcsen lie on an
unfavourable part of the configuration coordinate curve, as illustrated
in Fig.V. B.2. The latter hypothesis is refuted by the diffuse basis
restlts, where the 5-4 au negative dimer (-1i2.U45 au) has an energy
below that of the 5.6 au negative dimer (-111.963 au), but both are
above the NH, + NH

3 3
to a configuration curve. Improvement of the basis set %o hyperdiffuse

energy of -112¢123: no possible {‘% can be made

quality reverses the 5.4 au and 5¢6 au energy levels (see again
Fig.V. B.2), making a fit possible; it is conjectured that such
orbitals may be viﬁal in dealing with excess e¢lecironic states,

For the diffuse basis, the excess electron staie in (NHB)Z lies
Le48 eV above the neutral state at the 5.4 au geometry, and 4.2 eV
above it for the 5-% 2u one, but the hyperdiffuse basis reduces both
these gaps to 0-03 eV. Evidently any such energy difference is very

basis-sensitive.

ys 2
Similarly, Franck-Condon transitions between the 2Ag and "By
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states yield 1.26 eV and 0924 eV for the diffuse basis, but 0.023 eV
for both with the hyperdiffuse basis, as against the experimental
observation of C.80 eV (9). This energy lowering is clearly not in
agreement, and suggests that the electron in (NR,)é' is in fact bound
at these geometries, an< that the favouring of hyperdiffuse functions
indicates its tendency to leave the cluster altogether.

Since no more calculations on different N...N separations were
essayed, no configuration curvi which might have given indicators of
the stabllities of these states was available. Howcver, it can be
concluded from the data on the hyperdiffuse set energiss that a
‘configurational minimum for the (NHB)Z“ calculation exists at
Ne.oN 3> 5¢6 au, but that further diffuse functions may cause the
electron to "drift off*® compleiely. With this in mind, the other
propertics may be investigated.

(b) H.0.0. Eigenvalues., Table V. B.5. shows the cigenvalues of

the highest occcupied orbital for the 2Ag and 2Bu state in the two
geomeiries and basis sets. Nowhere does thic have the negative value
which mighi denote electron capture, but the eigenvalues of the 5.6 au
geometry are consistently the lower, and the hyperdiffurce basis lowers
the eigenvalue significantly in all cases. (Asain, whether more
diffuse functions would lower the value below zero or merely nearer to

zero cannot be decided).

(¢) Mulliken Spin Distributions. Thece ave shown in Table V. B.3.

According to the diffuse basis results, little spin density resides on
the inner protons, and much more on the outer ones, apparently refuting
the qualitative notion that opposed protons act as 2 Irind of electron
trap (see also Section VI.E). Expanding the dimer from 5.4 au to 5-6au
causes an inward shift in spin density from the outer protons, so that

the 5.6 au geometry has an outer proton spin density of 0-258, as
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against 0+292 for the 5.4 au geometry. Excitation, however, reverses
this effect: in both cases the spin is shifted outwards (cf the INDO
water dimer calculations of Section IV), but the 5-6 au geometry
acquires a spin density of 0.309 on its outer protons, while the other
dimer has 0+304. This is consistent both with the concept that the
excess electron expands on excitation, and that hyperdiffuse orbitals
are required for an adequate simulation.

Addition of the hyperdiffuse orbitals has dramatic results: all
the Mulliken spin density in both geometries and both states is now
assocliated with the four hyperdiffuse s-type GTOs on the nitrogean
atoms.

Of course; this does not suggest localisation of the excess
electron on nitrogen: +the Mulliken spin distribution merely indicates
the partitioning of excess spin between the various orbitals, and since
cne set, namely the nitiogen s orbitals, has been grossly overloaded
with hyperdiffuse functions which appear to describe the electron more
accurately, the spin becomes associated with the nitrogen. The more
equable distribution of orbitals in the diffuse basis calculatious
should result in 2 better, but not satisfactory, refiection of the true
partitioning. It was thus fell necessary to step beyond the limited
applicability of the Mulliken analysis and compute the actual values
of £ (y | P S(E)i LI} >at various points in space and at the nucliear
centres,

(d) Actual Spin Density and Potential Calculations. Since

calculation of actual spin densities and potentials, although useful,
is expensive in terms of computer time and core (typically 20 min and
570X on an IBM 370/158 for one set of results on one such molecule)
computation was limited to the hyperdiffuse case only, and ﬁo the N...N

axis of the dimer. Properties at a set of points along this axis, and
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at the nuclei, were evaluated using the ATMOL properties package (10).
The data obtained for each case are listed in Tables V. B. 7-12.

Examination of net spin densities at points from the molecular
centre up to 14 au along the N...N axis show the walues to be negligibly
émall, the only nonzerc value being one of 0:0003 au cn nitrogen Ior the
2Ag state of both geometries, a scarcel& significant value. The
suggestion is (although the diffuse basis properties would be neeiod to
verify it) that since, as seen in Section V. B., wirtually all the
excess spin density resides in the hyperdiffuse orbitals, the effective
spin density in any small volume has been reduced to near zero: one is
forced to conclude, especially from the nuclear spin densities, that the
excess electron deces not biad to the dimer, and that addition of Zfurther
hyperdiffuse orbitals will merely remove the excess electron from the
molecule, leaving (NH3)2+ e . In this structure, therefore, any eiectron
capture mns£ be transient and loose.

Finally, in Fig.V. B.3. and Fig.V. B.4., total potentials for the
reutral 1Ag 5./, av and 5.6 au geometries are ploﬁtéd along the N...N
axis (graphs for the 2Ag and 2Bu, which were virtually indistinguiskable,
are not shown). The graphs, when considered as traps for a negative
charge, have a deep potential well (+ 14.85 au) in the vicinity of the
nitrogen nucleus, and a sizllower one (~ -6 au} at the central protons;
ths outer protons have uv discernible effect on the shape of the curve.
I7 such combinations of deep and shallow wells exist in other molecules,
they may serve as models for, e.g., the photo-shuttle effect (11) and
other situations where different trap depths are observed (12, 13),
such as selective photopleaching and time-dependent spectra.

(e) H.0.0. M.0. Coefficients. These confirm the tendency for

the structure to lose the excess electron. The orbital coefficients of

the highest occupied orbital were examined for all the excess electron
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states, on the basis that if the coefficient of the most diffuse orbital
did not predominate, then the electron was showing some tendency to
remain in the vicinity of the cluster. The coefficients are shown in
Table V. B.13., whence it can be seen that the most difiuse orbital is
the greatest contribution in each case; and that excitation accentuates
this tendency greatly.

(iii) Conclusions

It can be adduced from the above studies that %he (Nlij.)2 cluster
examined is not a likely candidate for electron irapning. Addition of
more diffuse functions causes the excess electron to "drift" further
‘off the cluster, as judged by a variety of criteria, and excitation
accentuates the process. The partiticning of the electron, as measured
by the Mulliken Analysis, is highly depen@ent on the nature and
distribution of the basis set, anc calculation of nuclear spin densities

(14, 15, 16)

of excess electrons made in such & way rust be viewed in
this light. Spatially evaluated spin densities im the molecule suffer a
dilution due to the diffuseness of the electron bmt useful data should

be obtainable in cases where the eiectron is boumd to the cluster. The
combination of deep and shallow potentials dstected moy serve as eleciron
traps in more stable clusters, leading to preferemntial spectral
bleaching, photo-shuttling and time-dependent variations in the optical
spectra.

It may be that the most favourable trapping situation lies at a

non-regular geometry of the molecule (17). With this in mind, a

vibrating NH3 molecule was chosen for study.
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C. Non-Regular Geometries - the Umbrella Vibration of NH3 and NH3

(i) Ceometry and Basis set

Calculations so far using E (neutral) > E (megative state) as the

sole criterion for electron trapping, have failed to define any stable

structures which preferentially capture electirons, althrcugh Webster (18)

has pestulated such capture from ab initio calculations oa HBO and HZC'
While long-range medium effects are obviously of importance in these

studies, it may be that certain esoteric geometries (17) fzJour electron
‘capture for long enough to allow stabilising relixalior processes to
occur, This has led to the present ab initio study of the umbrella
‘vibration of NH3 and NHé' using the ATMOL suite of programmes.

The geometry chosen had a bond length as in Section V. B., but
the lone-pair-N-H angle, 6, was allgwei to vary from 20° to 130o in
ten-degree steps (see Fig.V. C.1). ‘

The bésis set used was the diffuse set of Section V. B., although
some results were obtained using the hyperdiffuse sel, As is well
known from attempts to calculate the inversion barrier in Nij (3&-39),
polarisation orbitals such as d on nitrogen and p on hydrogen are
indispensable to describe adequately tﬁe planar QBh transition state.
Table V. B.6. shows the basis set used by the present author.

" With this basis, the inversion barrier E (DBh) - E (CBV) is
placed at 0¢55 eV for the diffuse basic and 0-57 eV for the Lhyperdiffuse;
19)

/
comparing reasonably with the experimental value of 0°25 oV 777/,

(ii) Change of Properties on Vibration

The energies and properties of the neutral state (lA; for 6 = 90o
- and lA1 for 6 ¥ 90°) were evaluated in the standard manner, the excess
electron state being calculated using a SUHF technique (20, 21, 22).
MO occupations were found to be as follows: for the D3h geometry,

neutral; 1al(2)23i(2)1d(h) 132(2)5 327(0)..., and excess electron;
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lai(2)2&1(2)16(&)1&2(2)331(1)§ 2¢'(0) ...; and for the C3v geometries,
neutral; la1(2)2a1(2)le(u)3a1(2)§ hal(O) excess electron;
1a1(2)231(2)1e(h)331(2)ha1(1)§ 2e¢(0j... « Thus promotion from the
excess electron state is to a doubly degeneratz & in each case, and the
excited state cannot be described by a single Siaéer detorminant. For
this reason only the neutral and excess electron states were studied.
(a) Energies. Energies obtained are shcwm in Table V. C.1. From
a plot of the Neutral State Energy (Diffuse Basis) against & (Fig. V.
C.2), an energetic minimum in the region of 8 ~ 116" is apparent, as is
the inversion barrier at © = 90°. The excess electron shate energy
‘(Diffuse Basis) against © (Fig. V. C.2), although higher in energy at

each point than the neutral state (K -E =2 L,=6 eV at © = 112.1°)

neut

nevertheless displays an energetic minimum at 1169, furming a fairly
shallow trap of depth ~ 05 eV, Comparis;n with the available
hyperdiffuse results shows the same trend as the dimer calcuiations:
the neutral states are barely affected by the extra crbitals, but the
excess electron states drop to about 0.COl au abowe itiae neutral ones,
suggesting again a tendency to formation of the meutral monomer plus
a free electron. The H.0.0. eigenvalues in Table V. C.2. further

confirm this.

(b) Mulliken Spin Densities. The Mulliken Spin Densities for

the excess electron state (Diffuse Basis) are shown in Table V. C.3.

The proton spin density is at a maximum for the planar form, decreasing

as the hybridisation of N moves froan sp2 to spB, while the nitrogen

spin density is negative, becoming less so as the molecule differs from

planarity: thus the net trend is for spin teo skift to the centre upon

bending. However, proton magnetic resonance data on sodium/émmonia

(23, 24,

solutions indicate a negative value for the proton spin density

25) in disagreement with the results of Table V. C.3. For a more

’
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realistic descripticn of the spin densities, it was decided to evaluate
<g/,/°s(§)} g[l > at varicus points.

(¢) Spin Densities at the Nuclei - Negative Spin Densities on the

Ammonisa Proton

Spin and shsrge densities and potentials were evaluated at points
along the 03 axis of symaetry of the molecule, up to 9 au from the
nitrogen atom in both directions, using the ATMOL properties programme.
The results for different valuzs of 6 are shown in Tables V. C.h. -

V. C.8., wherc the propcrties at the nuclei are also shown, Now the
general trend is seen to be reversed - as the molecule deviates from
planarity, spin shifts away from the nitrogen nucleus, Even more
strilz-ing is the negative proton spin density, which is emphasised as 6

increases from 100°, Svch a negative spin density has been suggested
(25, 24, 25) , 4

(27, 28)

by r.m.r. observations on metal-ammonia solutions

(14, 26) and Newton

obtained théoretically by Ishimaru et al.
However, the former usel scmi-ompirical-type calculations, involving

a Mulliken-type anajysis. 0oince the present calculation involves no
arbitrary parameters, and spin densities are evaluated et the nuclei,
it is more comparable with that of Newton. At @ = 110%, the N and H
spin densities are + ().5115:—).‘;'3 and --0-0063&*.(;'3 respectively, compared
with Newton's values of +O-05a.c;'3 and -O'OOOOBa;{Zfbr his dipole-
criented {NHB)A cluster surrounded by a polarised mediun,

4 would thus appcar tnat constraining ire =lectron to an isolated

NH, molecule causes greater spin densities at the nuelei, with greater

3
disparity between them.

A pointer to the behaviour of the excess electron in NH3 is the
fact that the spin densities at all the nuclei decrease as 6 increases

from 90°, suggesting a tendency for the species to mcve off the

molecule.
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“D. Conclusions: the Nature and Scope of Short-Range Effects on

Electron Solvation

Many data have been presented on the possibility of solvation. The
inescapable conclusicn for the models studied so far is that for a
cluster of n moleculec of X, (where X is a normal neutral molecule),
E(¥n) > E(Xu) both at an ab initio and reasonably parameterised JSKDO
level. The only case where the reverse obtains would appear to be in im-
probable molecular distortions, as mentioned in Section IV. B's comments
on the unnoticed resul: of Naleway and Schwartz (5).

One can escape this dilema either by redefinition of A E as
E(Xn) - E(nX+e™) (26) or by recognising that this energy change is not
the only factor defining solvation., Examination of other criteria,
huwever, such ac (a) the eigenvalue of the highest occupied orbital,

(b) the coefficients of the most diffuse orbitals in the highest

" oceupied M.O., (c) Mulliken spin distributions and (d) actual point spin
densities in sp-.ce, shows that although the excess electron states
sbudied in these chdanteis may possess energetic configurational minima,
the addition of more dififuse orbitals indicates a tendency for the
electron to leave the molecule completely.

Several intevesting points have been highlighted in the process.
Neutral/excess slectron states have energy differences which are
critically &ependent on tiae diffuseness of the basis set, and in the
(NHB)Z and NH3 studies, where exceptionally diffuse orbitals have been
added, this difference tends to zero. Added flexibility can have its
disadvantages, and the examination of some of the previous cluster
calculations (14’15’29)vdxh such orbitals added might lead to a
drastic fall in reported negative ion state energies. Indeed, such an
outcome is anticipated and well rationalised by Naleway and Schwartz,
who regard very diffuse orbitals as being unrealistic for the liquid

state, where other molecules would encroach on them.
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Excitation energies, where available, appear to be dependent on the
naturc of the basis set, and any agreement obtained with more limited
sets can be argued to be {ortuitous,

Mulliken spin densities, used by other workers in such
calculaticns, can be varied by shifting the weighting of orbitals on
atomic centres, and, although useful for determining general trends in
spin shift (15) suowld not be guantitatively related to e.s.r. spectra.
The evaluation of actual spin densities at the nuclci is in principle
preferable, but in ithis study has the disadvantage that Gaussians do

. (30
nct reproduce the cusp hehaviour at the nucleus (30)

(31)

, aithough cusped-
Gaussian functions could be used.

It would appear that clusters alone do not stabilise an excess
electron, and that neither enlargement of-the cluster size (Section IV.D)
nor great flexibility of the basis set (Sections V. B and D) will alter
this. For effective solvation. it seems that the sur:ounding medium and
its concomitant long-range inferactions cannot be neglected.

Small clusters, perhaps in some vibrationally Jistorted mode,
could act as transient traps for the electron, localising it until long-
range medium elecironic and inertial polarisation field:s have formed.

This picture of an el.ectron loosely bound rnear some cluster in
the liquid, but retzined by long-range and more uniform polarisation
fields, could go a long way towards explaining the similarity of shape

(32, 33)

in the optical spectra of the trapped electron regardless of

the nature of the solvent,
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TABLE V. A.1.

(CH3OH)h Clusters - Excess Electron State Energies: R = 2°5A°
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ENERGY OF e~ STATE (au)
e Slaters on Cube Faces Only Slaters on Faces and Centre
0.1 -110,0044273861 ~110,028924,8104
0.2 ~110.2016688202 -110.2625457388
0.3 ~110.26580260L5 -110.3422086751
0.4 ~110.2179873142 -110.2968608103
0.5 ~110.1216349625 -110.1812048919

TABLE V. A.2,

(CH3OH)h Clusiers -~ Neutral State Energies as Radius is Varicd

E, ' ENERGY OF NEUTRAL STATE (au)

(A°) | With 7 Extra Floating Slaters (¥=0.3) Minimal Valence Basis
1.5 ~110.0101400676 -109.090883978&5
2.0 -110.$289200934 -109.88871736855
2.5 -109.8880774757
3.0 -110,2587757730

TABLE V. A.3.

(CH3CH),, Clusters - e~ State Energies as Radius is Varied

ENERGY OF e~ STATE (au)
o
Roh With 7 Extra Floating Slaters (¥=0.3) Minimal Valence Basis

1.5 105 .9424,004,630 ~108.982943042)
2.0 ~110. 5444328947 -109.7542213754
2.5 ~110.3422086751 -109.7035179698

3.0 -109.6785470761




TABLE

V. Ahe

(CHBOH)I+ Clusters: Eigenvalues of the Excess o Spin MO
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v R (AO) EIGENVALUE OF THE EXCESS o SPIN MO (au)
° Diffuse Basis (¥ = 0.3) Minimal Valence Basis
1.5 0.0036 0,031
2.0 0.C953
2.5 0.0783 - 0,1638
3.0 0.1952
TABLE V, A.5,
(CHBOH)L’ Clusters: Mulliken Spin Densities
EXCESS SPIN DENSITIES FOR EXCESS SPIN DENSITIES FOR
RO(AO) EXTRA BASIS CALCULATIONS VALENCE BASIS
_* -—
s s s(Central s s D S.
Po /OH IOCOrbltal) '00 PH £ “iner H
d
1.5 0.27 0.01 0.02 0.03 0.29 ~-0.02 ~C.05
2.0 - 0,00 0.00 0.83 1.00 0,20 0.00 0.04
2.5 0.G0 0.00 0.83 1.00 0.13 0.01 0.10
3.0 0.09 0.01 C.11

* Average f° s

on the 3 Methyl Protons

3¢ .
Total A% on the 7 Diffuse Orbitals
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TABLE V. B.3.

Ab Injtio (NH3)2 Cluster: Comparison of Mulliken Spin Densities for the

Diffuse and Hyperdiffuse Basis Set at the 5., au Geometry

DIFFUSE HYPERDIFFUSE
BaSTs: £° | Basis: 05
Ns (DIFFUSE) -0.207 0.000
Excess Electron = Ns (HYPERDIFFUSE) 0.500
Ground State N (TOTAL) | -0.212 0.500
(2Ag) . H INNER 0.128 0.000
H OUTER 0.292 0.000
Ns (DIFFUSE) ~0.158 0.000
Escess Electron Ns (HYPERDIFFUSE) 0.500
Excited State N (TOTAL) -0.158 0.500
(®B,) H INNER 0.051 0.000
H OUTER 0.304 ' 0.000




Ab Initio (NH3), Cluster:

TABLE V. B.4.
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Comparison of Muiliken Spin Densities for the

Basis Set at the 5.6 au Geometry

Diffuse and Hyperdiffuse

HYPERDIFFUSE

DIFFUSE

STATE ORBITAL BASIS 2% | Basis P°
Ne (DIFFUSE) -0.146 0.000
Excess Electron Ne {4YPERDIFFUSE) 0,500
Ground State N {TOTAL) -0.146 0.500
(*ag) H INNER 0.130 0.000
| H OUTER 0.258 0.000
Ns (DIFFUSE) -0.206 0,000
Fxcess Electron Ns (HYPERDIFFUSE) 0.500
Excited State N (TOTAL) -0.198 0.500
(°By) H INMER 0.081 0.000
H OYTZR 0.309 0.000
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Ab Initio (NH3)2 Cluster: Comparison of Eigenvalues of Highest Occupied

Orbital for Diffuse and Hyperdiffuse Basis set at the 5.4 au and 5.6 au

Geometries
DIFFUSE HYPERDIFFUSE
GEOMETRY STATE BASIS BASIS
5.4 au | Excess Electron Ground State | 0.1583005 0.0011L06
2
(*ag)
Excess Electron Excited '10.20655h8 0.001%51),
State  (°Bu)
5.6 au | Excess Electron Ground State | 0.1477628 0.0011380
2
(“Ag)
Excess Electron Excited 0.1850785 0.0019579

state  (%Bu)




Diffuse double-zeta set used in NH3 ab initio calculations

TABLE V. B.6,.

Atom/Orbital
N
N (s8)
N (s)
N (s)
N (p)
N (p)
N (a)
H (s)
H (s)

H (p)

Coefficient

0.0044790
0.03;5810
0.1642630
0.4538980
0.4689790
0.0380390

1.0

-0,0009810
-0,0777822
-0,037808
-0,128928
-0.197084

0.513598 -

1.0

o.1196§4
C.h74629

1.0
1.0
0.03283
0.23121
0.81724
1.0

1.0

Zeta

2038.41

301.489
66,463
17.8081

5.30452
0.7€4993

0.2344210

2023.41

301..689
66.483
17.8081

5030452
0.764992

0.2

5.95461
1.23292

0,286752
0.95
13.3615
© 2.0133
0.4538
0.1233

0.789

137



TABLE V. B.7.
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Ab Initio (NH3)2 Cluster: Hyperdiffuse Basis: N...N 5.4 au: Potential,

and Spin and Cherge Dersities:

1

Neutral Ag State

Eiqt;ngfa;l?;i) P v {au)
Y 0.1252 - 9.70L4
1 0.3910 -16.1536
2 0.5056 -16.7841
3 3.7796 -35.9400
L 0.1466 - 8.6580
5 0.0140 - 5.38L44
6 0.0012 - 4,.0638
7 - -3.2994
8 -  -2.7892
9 - -2.4220

10 - -2.1438
11 - -1,9254
lé - -1.7486
13 - -1,6026
14 - -1.4796
N 185.9316 14.85L0
H inner 0,4126 - 6.4026
H cuter - 4.8868
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TABLE V. B.8.

Ab Initio (NH3), Cluster: Hyperdiffuse Basis: N...N 5+4 au: Potential,

and Spin and Charge Densities: Excess Electron 2Ag State

piotencoslene | ow4p | gwohge |y
0 0.1252 0 - 9.67
1 0.3910 - -16.1294
2 0.5056 - -16.7501
3 3.7796 - -38.9055
L 0.1466 - - 8.623%7
5 0.1400 - - 5.3500
6 0.0012 - - 4.0255
7 0 - - 3.26L9
8 - - - 2.7549
9 - - - 2.3878
10 - - - 2,1098
11 - - - 1.8914
12 - - - 1.7148
13 - - - 1.5690
14 - - - 1.4462
N 185.9317 0.0003 . 14.8863
H inner 0.4126 - - 6.3681
H outer 0.3800 - - 4.8524
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TABLE V. B.9.

Ab Initio (NH3), Cluster: Hyperdiffuse Basis: N...N 56 au; Potential,

and Spin and Charge Densities: Excess Electron Excited 2B,‘1 State

Mool axis (s0) prrE | PP V (au)
0 0.1252 0 - 9.6779
1 0.3910 - -16.1373
2 0.5056 - -16.7579
3 3.7796 - -38.9134
L 0.1466 - - 8.6315%
5 0.0140 - - 5.3578
6 0,0012 S - - 4,.0371
7 - - - 3.2723
8 - - - 2,7620.
9 - - - 2.3946

10 - - - 2,1162
11 - - - 1.8976
12 - - - 1,7206
13 . - - - 1.57k4
14 - - - 1.4512
N 185.9316 - 1h.8805.
H inner i 0.4126 - - 6.3759
H outer 0.38 - - l;.8_602




TABLE V, B.10
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An Initio (NH3), Cluster: Hyperdiffuse Basis: N...N 5¢6 au: Potential,

-
and Spin and Charge Densities: Neuiral “A_ Svatz
o

Mool heia (ag) prrA v (au)
0 0.0940 - 9.0374
1 0.4136 ~24,,2702
2 0.4678 148468
3 13.2042 ~60.1402
" 0.1858 - 9.21,62
5 0.0174 - 5.5174

6 0.0016 - 4.1186
7 - - 3.3290
8 - - 2.8074
9 - - 2.4342

10 - - 2.152}

11 - - 1.9316

12 - - 1.7534

13 - - 1,6062
14 - - 1.4826

N 14,9062
H inner - 6.2104
H outer - 49246




TABLE V. B.11,
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Ab Initio (NH3)2 Cluster: Hyperdiffuse Basis: N...N 5¢6 au: Potential,

and Spin and Charge Densitiecs: Excess Electron 2An State
(=)

3??‘.’3“2%21?2% PR AR ¥ (au)
) 0.G540 - - 9.0029
1 0.4136 - ~24.2357
2 0.4678 - -14.8123
3 13,2042 - 60,1059
L 0.1858 - - 9.2118
5 0.0174 - - 5.4829
6 10,0016 - - - 14,0842
7 - - - 3.2944
8 - - - 2.7731
g - - - 2.4000
15 - - - 2.1183
11 - - - 1.8976
12 - - - 1.7195
13 . - - - 1,5726
1 - - - 1.4491
N 0.0003 14.9407
H inner - - 6.1759
H outer - - 4.8901
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TABLE V., B.12.

Ab Initio (NH3)2 Cluster: Hyperdiffuse Basis: N...N 56 au: Potential,

B

and Spin and Charge Densities: Excess Electron ﬁﬁu State

gmt;n:;il?fﬁ) pE+A pP=E vV (au)
0 0.0940 - 9.0109
1 0.4136 =2L 2437
2 0.4678 -14.8203
3 13.2042 -60,1137
4 0.1858 - 9.2196
5 0.0172 - 5.4907
6 0.0016 - 4.0918
7 - - 3.3020
8 - - 2,7803
) - - 2.1069
10 - - 2.1249
11 - - 1.9039
12 - - 1.7255
13. - ~ 1.5781
14 - - 14542
N 185.9396 14,9328
H inner 0.4088 - 6.1838
H cuter 0.3896 - 1,8980




TABLE V. B.13.
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Ab Initio (NH3)p Cluster: Hyperdiffuse Basis: Coefficients of the H.C.O.
Geometry and State Orbital ¥
N...N 0.008 0.005 0.002 0.001
5¢4 au | Excess Electron Zag | -0.2097 | 0.4356 | -0.8414 | 1.0586
Excess Electron 2Bu ~0,4298 | =1.2474 } L4431 | -9.9875
N...N
5+6 au | Excess Electron 2Ag 0.21021} -0.4371| 0.84201| -1.0587
Excess Electron 2Bu |-0.4186| 1.2110 [ -4.3107 | 9.65L5

\.
A Ay B e et

!
1
W
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TABLE V, C.1,

An Initio NH3: Umbrella Vibration: Energies of Neutral. and Excess

Electron States

Diffuse Basis Hypeirdiffuse Basis
}one pair | Neutral Excess Electiron| Neutral Excess Llectron

NH (©) State State State Stoie

(degrees) | Energy(au) | Energy(au) Energy(au) | Energy(au)

90 -56.1251 -55.9619 -56.1252 -56,1240

100 -56.1319 -55.9674 -56.1322 -56.1311
110 ~56.1437 -55.9766 - -

112.1 -56.1453 -55.9778 -56.1462 -56.1451
120 -56.1439 -55.9768 - -
130 -56.1164 ~55.9556 - -

TABLE V, C.2.

Ab Initio NH3: Umbrella Vibration: Highest Occupied COrbital Eigenvalues

Diffuse Basis Hyperdiffuse Basis
Lone pair | Neutral Excess Electron | Neutral Excess Electron
NH (8) |StateH.0.0.|State H.0.0. State H.0.0.| State H.0.0.
(degrees) | Eigenvalue |Eigenvalue Eigenvalue | Eigenvalue
90  |0.1680001 0.1576784 | 0.0011377 0.0011377
100 0.1703001 0.1581062 0.0G011353 0.0C11353
110 0.1744529 0.1591953 - -
112.1 0.1750889 0.1592543 0.0011297 0.0011297
120 0.1757106 0.1577410 - -
130 0.1712992 0.1496762 - -




146

TABLE V. C.3,

Ab Initio NH3: Uxbrella Vibration: Excess Electron State: Variation

of Mulliken Spin Densitiecs with Angle: Diffuse Basis

Lone pair-N-H (8) Py Py (T0TAL) Pe()
(degrees) s
P M—
90 ~0.4973 -0,5972 0.5331
100 ~0.4768 -0.5423 0.5141
110 +0.4280 004465 0.4822
112,1 ~0.415L -0.42E5 0.4762
120 -C.3650 | "-0.3713 0.4571
130 -0,2584, 03115 | 0.4372
i [}



TABLE V., C.4.
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Ab Initio NH3: Diffuse Basis: Excess Electron State: Charge and Spin

Densities and Potentials for the 6 = 90° Case

Dlsta;c:a\:;)» 03 Axis /o°‘+'a /o“ -4 =/,s v (au)
-9' 0 0 ~ 0.4450
-8 " " - 0.5008
-7 u " - 0.5725
-6 " " - 0.6681
-5 " Tom - 0.8021
-4 " " - 1,0030
-3 0.0043 -0,0001 - 2,8901
~2.6 0.0121 -0,0001 - 3.8823
-2.2 0.0288 0.0
-1.8 0.0661 0.0009 - L.7386
-1.4 0.1643 0.0045 - 6.1716
-1.0 0.3778 0.0146 - 9.0427
-0.6 0.6981 0.0225 -16.5774
-0.2 14,0593 0.0340 -58.0387

N 186,0452 0.6296
H 0.3578 0.0012




TABLE V, C.5,
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Ab Initio NHB: Diffuse Basis: Excess Electron St.ate: Charge and Spin

Densities and Potentials for the © = 100° Case

Distance up C; Axis .
R (auI; ’ pets P =2 v (au)
-9 0 0 - 1.0043
-8 - - = 1,1297
-7 - - - 1,2505
-6 - - -~ 1,504
-5 0,0002 0,0002 | - 1.802%
-l 0.0008 0.0006 | -~ 2.2L69
-3 0.0037 0.000L - 2.9717
-2.6 0.009% -0,0002 - 3.4203
-2.2 0.0241 0.G001 - L,0224
-2,0 0.0373 0.0009 - L4163
-1.8 0.0587 | ©0.0027 | - 4.9039
-1.4 0.1527 0.0133 - 6.3536
-1.0 0.3575 0.04C1 - 5.221C
-0.6 0.6668 0.0648 -16.7146
-0.2 13.38%6 C.0066& -58.,0882
0.2 13.3274 0.0714 -57.9803
0.6 0.7108 ~0,000% -16.4810
1.0 0.3881 -C.0C15 - 8.9177
1.4 0.1704 -0.0012 - 6.0435
1.8 0.0707 -0,0005 - 4.6296
2,0 0.0473 -0,0003 - L.1511
2,2 0.0321 -0.0001 - 3.7783
2.6 0.0142 0 - 3.2199
3 0.0054 - - 2.8174
L 0,0002 - - 2.1561
5 - - - 1.7452
6 - - - 1.4646
7 - - - 1.2611
8 - - -1.1m
9 - - - 0.9864
N 186.0976 0.5890 17.0724
H 0.3615 -0,0021 2.9338
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TABLE V. C.6.
Excess Electron State:

Ab Initio NH3: Diffuse Basis: Charge and Spin

Densities and Potentials for the 6 = 110° Case

Distance up Cq Axds .
R (auI; ! /°“+ﬂ ﬂ'“"a V (au)
-9 0 o - 1.0128
-8 " g - 1.1404
-7 " " - 1.3044
-6 0.0001 0.0G01 - 1.5230
-5 0.0005 0.06:05 - 1.8294
-l 0.0019 0.COi7 - 2.2933
-3 0.0046 0.002 « = 3,0737
-2.6 0.0091 0.0G01 ! - 3.5487
-2,2 0.0213 -0.0003 - 4.1872
-2.0 0.0336 0, GO0 - 4.5989
-1.8 0.0541 0.0¢27 | - 5.1020
-1.4 0.1456 0.0172 | - 6.5688
-1.0 0.3438 0.0546 - 9.4214
-0.6 0.6388 0.0928 -16.8586
-0.2 13.3954 ~0.,0016 -58.1399
0.2 13.2997 0,025 -57.993L
0.6 0.7030 0.0a02 ~16.4273
1.0 0.3845 -0.06125 ~ 8.8478
1.4 0.1687 -0.0m11 - 5.9701
1.8 0.0705 -0.0001 - 4.5487
2.0 0.0475 0.€01 - 4.0829
2.2 0.0325 0.0001 - 3.7133
2.6 0.0148 0.0002 - 3.1623
3.0 0.0059 2,601 - 2.7676
L 0.0002 0.0 - 2,1227
5 0.0 " - 1.7223
6 ] " - 1.4480
7 " " - 1.2486
8 " " - 1,0972
9 " w - 0.9785
N 186.1965 0.5115 17.0631
H 0.3685 -0.0063 2.9588




TABLE V., C.7.

Ab Initio NH3: Diffuse Basis:

Excess Electron State:

150

Charge and Spin

Nensities and Potentials for the © = 120° Case

pasarse w ¢y asis | s | s |y
-9 0 0 - 1,0215
-8 " " - 1.1515
-1 " " - 1.3189
-6 0.0001 0.0001 - 1.5427
-5 0.0010 0.0010 - 1,8585
-4 0.0040 0.0036 - 2.3462
-3 0.0075 0.0037 - 3.1926
2.6 " 0.0113 0.0015 - 3.7115
2.2 0.0233 -0.0005 - 4.3995
-2.,0 0.0360 -0,0004 - 4.8343
-1.2 0.0573 0.0015 - 5.3561
-1.4 0.1507 0.0169 - 6.8337
-1.0 0.3442 0.0584 - 9.6459
-0.6 0.6208 0.1030 -16.9994
-0,2 13.3947 -0.0021 -58.1834
0.2 13.2777 0.0979 ~57.9795
0.6 0.6862 0.0062 -16.3941
1.0 0.3738 0.0008 - 8.8084
1.4 0.1625 0.0009 - 59297
1.8 0.0675 0.0007 - 4.5093
2,0 0.0454 0.0006 - L0446
2.2 0.0310 0.0006 - 3,6762
2.6 0.0141 0.0003 - 3.1282
3.0 0.0057 0.0001 - 2.7365
L 0.0003 0.0001 - 2.0994
5 0 0 - 1.7051
6 ] ] - 1.4350
7 ] ([} - 1.2385
8 ] " - 1,0892
9 " " - 0.9719
N 186.2787 0. 4427 17.058
H 0.3732 -0,0074 3.0105

b .




TABLE V., C.8,

Ab Initio NHB: Diffuse Basis:

Excess Electron State:

151

Charge and Spin

Densities and Potentials for the @ = 1300 Case

Dlstazcc(eazl; 03 Axis /0“ + 4 /0“ A v (a)

-9 0 0

_8 n i

..7 1] 1"

-6 0.0002 0.0002

-5 0.0018 0.0018

A 0.0066 0.0062 - 2.4192

-3 0.0127 0.0071 - 3.3546

-2,6 0.0183 0.0037 - 3.9515

-2.2 0.0341 ~-0.0001 - L7173

-2.0 0.0497 -0.0011 - 5.187C

-1.8 0.0744 0.0 - 5.7337

-1.4 0.1732 0.0154 - 7.2CH9

-1.0 0.3591 0.0593 - 9.9229

-0.6 0.6075 0.1075 -17.1465

-0.2 13.3891 -0,0007 -58.2202
0.2 13.2542 0.0986 -57.9¢57
0.6 0.6642 0.0116 -16.37i5
1.0 0.3590 0.0040 - 8.7862
Loby 0.1539 0.0025 - 5.9086
1.8 0.0629 0.0015 - L.4889
2.0 0.0418 0.0012 - 4.0245
2.2 0.0284 0.0010 - 3.6564
2.6 0.0128 0.0004 - 3.1089
3.0 0.0051 0.0001 - 2.7179
L 0.0002 0.0 - 2.0834
5 0.0 u - 1.6922
6 u " - 1.4248
7 " u - 1,2303
8 " " - 1.0824
9 " " - 0.9664
N 186.3441 0.3861
H 0.3710 -0.0064
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Energy(au) - FIG.V. B.2
Diffuse Basis

-111°663

-112-045

E(NHANH)  -112:23

N..N Separaticn in au

—

Energy au

~

‘Myperdiffuse Basis

-112:211
~112:236

E(NH3+NH;) -112-261

A N..N Separation in au

Ab Initio {HHB)é Cluster Calculations. Suggested Relative
Locations Cf The 5.4 au and 5.6 au (N...¥ Separations) Cn a
Hypothetical Configuration Coordinats Curve.
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'FIG.Y. C.1
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Parameter Used For The NHB Umbrella Vibration Calculé.tions. -
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Vi

Short and long-Range Effects - a Resolution

A, ueneral Methods of Aopreach

Structural model calculations are detailed buc inadequate; long-
range potentials considezed alone are végue. Combination of both
approaches would seem to bhe the next step, since spin densities and
excitation energies must be affected to some exient by the long-range
polarisation field ¢f thea surrounding medium. The ideal method would be
a detailed SCF calculation on an assembly of several hundred medium
molecules in the presence of an excess electron; the practical approach
is to include the polarisation potential of the surrounding medium in a
cluster-type calculation,

(1)

Pioneering work by Newton has ugéd a spheric2l cavity
surruunding.various clusters, assuming also a sphericsl free charge
- distribution for the purnoses cf calculating the potential. The
fractional charge method of Noegll and Morokuma (24) should also be
noted,

It was therefore decided by the present author to present a
‘theoretical analysis of the problem, highlighting the various

approximation methods which might be necessary.

B. Derivation of a Suitable Potential

(1) Energetic Considerations

Consider a charged molecule in the vicinity of a dielectric
medium. One may replace the polariséd medium by a set of bound surface
and volume charges (see Section I1I. B), induced in the dielectric by

the fields of the nuclei and electrons in the molecule. Thus the total

energy of the system is

w=E+TT+€,
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where E is the energy of the molecule in vacuo, T7T is the energy
required to polarise the dieleciric, and € is the molecule/polarised
dielectric interaction energy. (see Equation II. B.4).

“hus the additional energy in the presence of a dielectric is

(from Egquation 1I. £.5)

E-m+ ¢ =3 (P (nas,

where Vp(g) is the potential due to the induced surface and volume
charges in the dielectriz. and P (5) includes the oneclear and
electronic charge distributions. Inclusion of a dielectric in the
calculation thus reguirzcs zn expression for 4Vp(‘r_:).

(ii) Calculation of the Polarisation Potential, T:p(g)

4£s illustrated in Section II. B, the dielectric may be replaced
by a set of bound volume charges P’ s so that
¢ - :
P = - Vog ’
and surface charges ¢', so ihai

6' = -Po‘fl',
~ P

where ﬁ’ is the unit vector pointing into the dielectric.

By Equation II. B.13, the polarisation potential in SI units is

3 3 ] P ’ 1"
Vv (r)= hT;Tf- P{r) ).:1,!(5) - 1 Vr.’,,(;; )d ,
P ° ¢ jr - | LTE, ” |-z

where tre first integral is sver the closed surface of any cavity which
is in the dielectric, and the second integral is over the volume of

the dielectric,

or 1 o'(r) d,{(},") 1 S Pix) a7’

T- 7 TIwE ) -z ’
?

'U<:
7~
L
~.’
i
1
=~
- |
N
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or in the form of Equation II. B.19,

1
1__
= - -'l - d ———1_—- =
v, (x) (1-3,(z) LWE SQ(;'). vr'(lE'E'l Jar!
inside
cavity

(VI. B.1.)

where Vf is the potential due to the free charge distribution, and d is
the dielectric constant of the medium.

Approximations can be effected as follows:

(a) No cavity in dielectric.

In this (unrealistic) case, the potential reduces to:

TV (5) = - (1- v ,(p) (VI. B.2a)

or

’ Z ’ 2, »
V(r) = -(1-2)¢ A \LED @l (y1. B
p~ T d ;,E-BAI |z-zf ‘

Thus the only integration required is over all- space, and the pctential
can be readily incorporated in SCF calculations (see Section VI. C).
This method is simple but unrealistic, and the continuous dielectric
medium cannot be supposed to extend into the interior of the molecule,
A cutoff radius for the medium, or cavity, should thus be considered,
but the second integral in fquation VI. B.l. requires some
simplification.

(b) Assurrtion of a cavity and spherical symmetry.

We may app-oximate instead by assuming the charge distributicr. and
cavity to have spherical symmetry, when (see Section II. B) the

spherically symmetric potential given by Equation II. B.16-is obtained,

namely

0
1l- 1 2
V()= - d L) r'* ar
~ »
P €o r,

o .

where r = max(r,r’) when r >R, and Vp(r)=Vp(R°) vhen r £ R,
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d.e., Vp(r) = -(1- %—)Vf(r) when r > R

(VI. B.3.)

- 1 n
Vp(r) = -(l—d)Vf(Ro) when r R

This leads to a formalism similar to that of Newbon (1); however,
this potential must also be considered to act on the nuclei as well as
the electrons.

(¢) Wavefunction in cavity.

Here the most drastic assumption is made that the wavefunction is
spherically symmetrical and included totally in #he caviiy.

Thus the charged cluster is regarded as a spherically symmetric
‘charge distribution of net value -1 lying in the cavity. Since there is
no free charge in the medium, only surface polarisation charges appear
at the cavity boundary, and the potential Vp is that of a spnerical

distribution of radius Ro’ the cavity radius, and total charge

2 1
AWRO o’.
By Equation II. B.13a, this gives (in SI umits)
1-% Q
Vp(r) = - 477€o ~ » whenr >Ro

1
1_._3
g d Q
and Vp(r)= -l&"‘o 7= » when r &

o
or, V()= -@-P 3, r >R,
in au (VI. B.4.)
"V (e) = L 8
Vp(r) = - (l-d) R, , r.sRo

c. Incorporation of the Potential in the Cluster Model - Approximate
Methods

(i) The No-Cavitvy Approximation

Assuming every electron in the molecule to mcve in an average
polarisation potential due to the induced charges in the medium, (this

method neglects specific electron-medium correlation energies), then
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the total energy due to the presence of the medium is

3 .SP(}_')VP(;‘;)d'z‘ + % ZZAVP(;;A)

A
and we may write the Hamiltonian for the system as

A A

,%___ ZVl Z ZRlA : Z y +ZR—iB—B - %Zvi + 3 ZZAV
i< A<B 1 A

where V. = Vp(_{;i ), etc.

Now in Section II. B, it was secen that €= TT (medium rearrangement

energy) + € (charge/mediur: interaction), where £ = 1 \/’(r)Vp(r)d‘t’,

$and €=28. Thus for the electronic term,

€=LZ

’%eparatlng '\ut (a) all terms involving *he nuclei alone, i.e.,

terms four and six, and (b) the medium rearrangcmwent energy, viz.

3 V. for the electronic part, we have
: ’\'7 §
el Z - Z._.» ““+ Z — (VL. G.1)
n__\ lA
i<

cor
Treatment of V (r ) as a one-electron term analogous to %

gives the tetal electronic energy contribution as

2-{* Z 7 (2Jij - Kij),
where V Sq}l ri) Lpi daz.

Similariy, by analogy with III, C.2a, we oblain for the modified

Fock matrix in the RHF formalism

Fl

Buv =1

"“"+Z”J\o- [ (wrjac ) - uAve )]- Uy, — (VI. C.2.)

where V= ( Qﬂ(l)v (r )Qu( )47,

But by Equatlon .VI. B.2b,
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Z. (r?)
— 1 A P-v 1/
e 1091 ) i S [
A

So
W, 1)z, ] (1 ) (y (1)532 Bro W28 5 (2)aT ] (1)a7
‘o ]

--(1-- 2KJ) T14 r

since f(gz) = - ; B 'QA(Z) &0..(2)
1O

12

i.e.,
L8 (1)ar
=-(1-—)(£( A ,( 2 Zu o @viho) — (V1. c.3.)
ac
, g 2 z
stnoe 1, <l H b= (0] - B2 - T Ay gy,
/ A

the first term of Equation VI. C.3 may be incorporated in this, to give

2 7, '
1 1
j!&g (1) -3 ; ?‘I}I §,(1) 47, ——— (VI. C.4.)

Similarly, the second t,erm may be incorporated in the two-electron part
of F,,, so that

/‘
F‘ = H + % F' l L——2’ - %(“ ;5'”0') l s (UI. CQ,;.)

oY Y
Ao
As can be seen, this gives the normal Fock matrix when ¢ =1 (i.e., when

the medium is absent).

Consideration of the SUHF equations of Section IIf.D. leads, by

analogy with IV, D.2, to

ffw = H ot Z[P?‘o- vl ) - Pﬁo- (ol Ay)] “av?
AG
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o -
F =1 + [PAO' (a.y‘ko-)-P: (,uo-lﬁy)]'

(Vi. c.6.) |

:ﬂ _ ! ' I a A '
Ij“y-:}i“y-FZLPAU- (V] Ao )- PA o | Av) |

Again, when d = 1, these give the normai. Fock matrices
where H, » is given by Equation VI. C.L.

Thus only winor meodification is reguired in an ab initio SCF
prograrme. When self-consistency is achieved, ths addition of the
nuclear energies and medium rearrangement energy will give the total
energy of the cluster in a continuous dielectric medium. Although
application of this techrique is relatively simgle, the permeation of
the cluster by a continuous dielectric is unrealistic, and overlarge
stabilisatic;n energies are thus expected.

(ii) The Spherical Symmetry Aporoximation (With Cavity)

With a cavity, or cutoff region for the diclectric, the
assurption of spherical symmetry leads to simplification, This is the
approach used by Newton (1).

The Fock operator becomes

Fl = '#core+ Z(2Jj - Ky) - V5,
J
vhere Vi = Vp(gj)
From Equation VI. B.3,
V(r) = -(1- ,(r) r>R,
and ¥ (r) =-(1- Lv(r) , r KB

where Ro is the "cavity radius," d the relevant dielectric céhstant,

and V., the potential due to all the free charges in the system.

£
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Thus

(r')
v (r) = -(1- -) Z: ZS

where ry is the larger of r and r’, and for r & R

Vp(r) = Vp(Ro)

The charges ZA are restricted to the cavity for simplicity.

20
The problem of evaluating the integral 5 W (r') qr' may be

tackled numerically. but the procedure can be t1me~consuming. Newlon
has solved this problem vsing a combination of analytical and numerical
i,echniques.

However, one important differehce emerges: although he oo?rectly
includes nuclear charges in the expression for Vp, he does not tzks the
interaction Between Vp and the ZA into account in the total energy.
Thus the term | -

% Z V (r ), or since the Z, all lie within the cavity,

% V (R ) ZdA, is missing from the total energy,

obtainable from the expression

€ = Slo(r)V (r)d + 3 ZZ r ) , by substitution of the
expressions for V (r)e.

(iii) The localisation in Cavity Approximation

Since, in this approximation, we assume a spherical charge
distribution confined within a spherical cavity, the potential (see

Equation VI. B.4) is

)

s Where r

Vp(r) =-(1-

[N [

5 = max(r,Ro)

v'ie

and since the charge distribution Q is confined to the cavity,
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E’—'-%XQx(l-é—);% ’

2
i.e., €=-3 %— (1-1) (VI. B.8.)
[o]

o ] o

Thus the energy due to the presence of the medium is independent
of the size of the charge distribution Q, and is merely added to the

result of a suitable SCF cluster calculation.

. The Optimum Model 2

~

(1) Practical Drawbacks of Theoretical Models

None of the rethcds of Section C is ideal. The full treatwment of
a macroscopic cluster by ab initio methods is at present prohibiiive,
Even full inclucion of dielectric with a cutoff radius round a central
cluster (see fiquation VI. B.1l) is intractable without assumption or
. spherical symmetiy, and thc total neglect of a cutoff radius (see
Section VI, C.(i)) is feasible but unrealistic.

The method of Section VI. C.(ii) and Newton, which invokes
spherical symmetry, and nossible penetration of the trapped electron
beyond the cutoff radius, requires considerable extra computation.

The final method of Section VI. C.(iii), although mathematically
very simple, merely makes the one additional assumption that the
trapned electron does noi. extend sufficiently outwards to penetrate the
surrounding dielectric medium to any great extent. This may not be
unreasonable: the cavity model of Section 1I. E for H20 shows that
60 - 70Z of the electrcn density is typically contained in the cavity,
and the cluster calculations of Sections IV. B and IV. C indicate a
very rapid fall-off of spin density from the centre of the cluster,
Newton, too, on dipole-oriented (Hzo)h- finds 84% containment for a

radius of 2+65 A%,
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(ii) Application of the localisation in Cavity Model

The procedure in this case is to perform an SCF calculation on
the excess eleétron cluster in vacuo, using a reasonably flexible and
diffuse basis set, the energy term of Equation VI. B.8 then being added.
Thus the spin densitics and excitation encergies are evaluate& by ihe
SCF calculation, while the energy of solvation is determined by the
“eavity size," that is, the radius at which the continuous dieleciric
redium is suppesed to commence. Calculated values of stabilisation
energies for liquid H

2

Since the ealculaved energy difference between the excess electron

0 and liquid NH3 are shown in Table VI. D.1.

and neutral structures is small (e.g., for the hyperdiffuse basit on
planar NH3 (sce Table IV. C.1), AE = 0+03 eV) for a sufficiently
flexible and diffuse basis, we may take the calculated stabilisatior
enecgies in Table VI. D.1 as representing the whole of the solvation
renergy. Fufthcrmore, the aerivations of Sections VI.B and VI.C
caiculate £, the difference between the energy of an unpolarised
dielectric conieining a cavity and the polarised dielectric with a
spherically symmetric charged cluster wholly within the cavity; thus
‘Vo, the ensrgy of injecticn of an electron into the medium (2,3,4) is
ircluded ini €. Terms invclving energy of cavity formation, such as

, .
" \1,5) w:ll have no bearing on € if the cavities are

(6).

vgurface tensic.
preformed by thermal motlon and radiation effects
From the t-ble, water appears to form energetically deeper traps
thah ammonia at the samc cavity radius, and Newton's calculations
confirm this (lb), showing stabilisations of -1-62 eV for HZO with
R, = 265 A°, and -0.82 eV for NH, with R, = 2.75°, In the present
author's model, to fit the observed heats of solvatidn for water and
ammonia, namely -1.7 eV and -1-7 & 0-7 eV, radii of 418 A® and 4-04 A°

respectively are required. Thus, if a continuous dielectric medium is
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considered to start at a radius 2 4 A® from the molecule(s) on which
‘an electron is localised, the solvation energy can be fitted quite well

to experiment. However, restriction of the diffuseness of the orbitals

is necessary vo prevent the excess electron "drifting off" in this

mcdel, whereas SCF calculations allowing for penetration into the medium

will automatically prevent this occurrence. ' i
The main problems of the structural/continuum models can be
summarised thus:
(a) the present work,by extending the flexibility of ab initio
calculations on structures containing e , has inferred that such a
model does not stabilise an excess electron when the cluster size is

limited: alone, such clusters would be centres for transient eleciron

capture rather than long-term stabilisation. Previous structural

{7, 8)

-models claiming stability have not had sufficiently flexible
or optimised basis sets.
(b) the cluster model does not predict the optimum orientation
for electron trapping: only by trial and error are some orientations ,i
found to be the lowest in energy,
(¢) +ihe long-range stabilisation energy is large compared to

the energy differences between different possible cluster orientations.

(iii) A Sugpested Qualitative Scheme

Taking into account the discussion in Section I.A and the
theoretical data, a rough scheme for electron solvation in crystalline
ice and liquid water can be suggested. This may also apply to liquid
NH,, but the situation in alkaline glasses appears to be totally
different.

Electron stabilisation occurs mainly at a defect in the crystel
structure. In ice at 77K the defects are few, leading to low yields

of ez, but the trap population may be increased by heating,
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incorporation of F~ ion or dosage with radiation.
One type of defect predominates, with a small percentage of

deeper and shallower traps,

E. Addendum - Experiment Versus Theory

As discussed earlier, (Section IV. C) various investigators have
found the most stable conformation of (H20)5 to be that illustrated in

Fig.IV. C.4., where two protons face each other, according to

(%) (10)

energetic and spin density considerations. Naleway and

Schwartz point out the similarity of this trapping centre to the
&)
\.Ll, 12)

1,

Bjerrum D defect in ice s suggesting that these may be the

trapping centres in the medium. This is also intuitively appealirng,

since an H...H centre should appear more positively charged to an excess

electron than, say, O-H...0 or O0...0. However, Kawabata (13) has found
that the trapping of e in crystalline ice is much enhanced by the
presence of F ion in tke crystalline lattice. If, as he suggests, F_
replaces an H20 molccule, the expected effect would be the orientation
of protons toward F, with consequent propagation of Bjerrum L defeéts
(0...0 type) throughout the lattice. Since the F~ has no other effect
on the shape of the optical spectrum of e;, or the photobleaching
behaviour, it would appear that the electron is not trapped near F,
but near oné of the resultant L defects.

In view of this experimental result, it may be more pertinent to.
examine theoretically very large H20 crystal fragments containing an
L defect, rather than a D one, if and when this type of SCF calculation

becomes feasible,
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TABLE VI. D.1,

Simple Cavity Mcdel: Stabilisziion Energies (eV) for water and liguid
ammonia for Different Cavity Radii (A°) |

' Energy (eV) i
Radius (4°)
NH3(1) H,0 (2)
1.0 -6.87 -7.11
1.5 -4.58 -4
2,0 -3.4k  =3.56
2.5 ~2.75 -2.54 I
3.0 -2,29 -2.37
4.0 | -1.72 -1.78
5.0 =1.37 ~1.42
6.0 : -1,15 -1,1%
7.0 -0,982 -1.C2
8.0 -0.859 -0.839
9.0 -0.764 -0.790
10,0 -0.687 -0,711

(1) static dielectric constant = 22

(2) static dielectric constant = 8037




