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Summary

On the basis of a review of experimental data on electron 

trapping in crystalline ice and liquid water, it may be conjectured that 

these media trap electrons at defect sites, which may be present in some 

quantity naturally, and can be augmented by additives or radiative 

disruption. This work reports the results of theoretical investigations 

into structures and situations possibly favourable to electron capture.

Calculations are performed, using a flexible analytical 

wavefunction, on an electron trapped in a cavity in a linear, isotropic 

and homogenous dielectric in order to assess the <cor.tributi.ons of long- 

range effects to electron trapping.

Attention is then focussed on the short-raage effects due to the 

detailed nature of the trapping site. After a discussion on possible 

criteria for trapping, two possible structures or a water dimer are 

examined, using a minimal basis set in ab initio UHF SCF MO calculations. 

The behaviour of energies, spin densities and excitation energies as 

intermolecular distance varies is discussed and the relevance of each 

structure to electron solvation is considered.

This is succeeded by UHF INDO calculations on a water tetramer 

trapping site, using additional diffuse orbitals, and similar 

investigations on an cluster.

Other solvents are not neglected; the breathing modes of a 

methanol tetramer with up to eight molecules in t>:o solvation shells 

are examined, and the behaviour of such structures with an excess 

electron considered. A larger basis set ab initio UHF calculation on 

an ammonia dimer illustrates the importance of hyperdiffuse orbitals in 

such treatments, and concludes that such a dimer in isolation will not 

stabilise a trapped electron.

Since non-regular geometries may be relevant, especially in the
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initial capture of an electron, the umbrella vibration of NH^ is studied 

by ab initio UHF methods, with and without hyperdiffuse orbitals; in 

the excess electron state, the effect of these latter is marked, but no 

evidence of stabilisation with respect to the neutral state is apparent* 

Examination and discussion of all these resu3.ts leads to several 

conclusions: (i) because of the essentially arbitrary nature of its

parameterization, the INDO method cannot yield definitive results on 

electron solvation*

(ii) some st±*uctures can be labelled as possible electron 

traps, and others can be considered unlikely. This is detailed in the 

text.

(iii) in all the structures studied, absolute energetic 

stabilisation with respect to the neutral state was not achieved; it is 

concluded that the long-range effects of the medium are an essential 

factor in stabilisation, and must be included in the SCF calculations.

The work concludes with an examination of the theoretical basis 

for molecular calculations which involve a surrounding dielectric 

medium, and identifies three main levels of approximation. The most 

sweeping of these is put forward as a useful guide to the magnitude of 

stabilisation energies, and suggestions for future work are made.
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I
Experimental Clues: the Aims and Scope of this Work

A, Some Data on the Solvated Electron: the Nature of the Trapping

Site in Water

Electron solvation in liquids has a long history.

Ever since the observation of the dissolution of sodium in liquid

ammonia observations on, and theorising a boar- the phenomenon have

mushroomed. Extensive reviews of all types of experimental observation
(1-8)of the species are plentiful . B y  restricting consideration to a

few solvents, and examining information relating to the nature of the

trapping site, one may gain insight 0:1 which to base theoretical studies.

Such an approach is adopted in this work.

The e.s.r. spectrum of the excess electron in ice has been
(9)examined both in 2-5 M alkaline glasses , which cannot be very

representative of ice structure, and in ice lightly doped with UK^F

(11,12) an£ ^^h aikali metal ions , The latter case shows an

independence of the spectrum on the doping cation, expecially at low

concentrations, with an increase in resolution as the doping

concentrations are lowered. The same effect obtains on gradual warming,

and has been attributed to the removal of direct dipolar in^-eraciiors as
(9)the trapped electron population diminishes. A quintet * or septet of

lines, showing a uniform spacing of 5-6 G and indicating interactions

with four or six equivalent protons, is observed, and the role of the

protons in the splitting is confirmed when deuteration causes collapse 
nrpw-

of the Jfine structure, with narrowing of the electron resonance line.

Such data suggest (a) a localisation of the trapped electron in ice on 

a small number of equivalently arranged water molecules, and (b) that 

the traps are not part of the regular ice structure, since the ion
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concentration is found to regulate the spectral intensity.

Further confirmation of this latter point is provided by the work of

Kawabata et al.^^**^\ It was found during pulse radiolysis
-2experiments that doping crystalline ice with 10 M NH^F produced

spectra with absorbances and optical decay properties identical t? chose

of pure ice, but with up to a six-fold increase in optical density.

Thus the solute appears to increase the number of trapping sites,

without itself influencing the spectrum of the trapped species.

Production of a defect centre is inferred, and comparison of NH^Cl and

NH^OH dopings shows J1’”to be the active agent.

Yet more evidence cf the defect nature of traps in ice is provided

by the repeated irradiation of 10 NH^F doped and pure D^O crystalline 
(12)ice v . Successive irradiations at 106 K caused the optical density 

of absorption to increase by a final factor of about seven, whil -> 

subsequent annealing at I43 K and recooling restored the origin*1 

absorption characteristics. The inference here is that traps produced 

by radiation ar? "frozen" into the ice, with an energy barrier of ^  143 K 

( -£0»01232 eV). lAfhether many of these pre-exist in non-irradiated ice 

is still a moot point, with arguments for ^ ^ a n d  against 

Probably, in low temperature ice, the number of thermally generated 

traps is small in any caswc

The absence of a sudden discontinuity in the optical spectrum when 

the ice-water phase boundary is traversed is interesting, and

suggestive of the same defect-type trap in water, and of localisation of 

the electron, while a steady increase in e~ yields with temperature 

indicates easier trap formation. G for ice at 77 K is ̂ 1 0  ^-10 

comparing markedly with 2-3 for ordinary water and suggesting 

increased trap production as the icelike structures fragment.

Solvation of the species in water is extremely rapid. Absorption



appears in the infra-red at ̂ 2  p sec and the complete spectrum,
(17)identical to that originally measured by Boag and Hart is

(25)established at 4 P sec, although this time may be even smaller

Such a result precludes gross rearrangement of a cluster by rotation or
— 1 (16)even vibration, but admits 0-H group rotation 0 sec) and

electronic long-range relaxations.

It is of interest to note that the longer-term orientational

polarisation of the medium has no effect on the optical spectrum.

Uniformity of traps in ice and v/ater is a3.so hinted at. The half-
(19 20)width of the optical absorption is rather small (^0*5 eV) 9 and

shows none of the anomalous "photo-shuttle" effects peculiar to alkaline 
(1A 27 3glasses 9 , but photobleaches almost totally uniformly at all

wavelengths

The evidence would seem to point to-trapping in water and ice by

a defect structure containing few molecules, which pre-exists before

electron capture but may make some minor readjustments within -^4 P sec

of the event. There is probably only one main type of trapping centre.

More data on the contributions of long and short-range interactions
(21 22)in water are provided by experimental studies of Jortner et al. 9 ,

where the optical spectrum of e  ̂was observed in D^O vapour down to a

density of 0*2 g cm . At-^663 K the optical peak shows only a flight
-3blue shift on increasing density up to— ’O S  g cm , when it rises raore 

sharply. Such data show localised trapping on a smal.l cluster to be 

possible. The change in hy at higher densities may indicate that the 

excited state wavefunction is raised more in energy on clustering than 

the ground state one. Since the gound state has been inferred to be 

localised, it may be that the electron becomes more diffuse, losing some 

of its long-range medium stabilisation energy, on excitation. However, 

since interactions in H-bonded water differ from those in the vapour 
phase, conclusions cannot be definite. Recently, some workers have
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performed theoretical calculations on the electron affinity of an

isolated water monomer, using a LCAO-MO-SCF formalism with the

inclusion of diffuse orbitals ('^,28, 29)^
(C.hipman • suggests that the monomer mgiht have a positive 

electron affinity, at its regular geometry, but radicates that his 

present results are by no means conclusive.

A noteworthy point may be added. A shouldter in the ice spectrum,
(2° )first noted by Shubin ec al. appears at about: 2*3 eV. Independent 

observations of Kevan J shew that phctoblearhiing efficiency in X- 

irradiated single crystal ice sets in sharply ab 2-3 eV upwards. A 

transition to a bound state at the spectral peafc of eV is implied,

with transitions to the continuum commencing at 22*3 eV, which would give 

the spectrum in ice (and water) the observed asymmetry characteristic of 

the species in most solvents. This shoulder is (confirmed at 2*2-2»5 eV 

by Kawabata et a l . ^ ^ 7.

B. Aims and Scope of this Investigation

The above experimental data indicate the mature of possible 

trapping sites in water and ice, and the behavicunr of electrons in these 

situations.

It was decided (a) to limit investigations of trapping and 

solvation to (i) water and ice (ii) ammonia (iiil) methanol

(b) to examine theoretically the feasibility of 

trapping being due to short-range molecular Ibrtaes aione, with due 

consideration being given to various types of structure, levels of 

approximation in calculation, and criteria for solvation

(c) to examine the effects: of long-range 

interactions, such as polarisation, on solvatiom

(d) to combine the purely structural models and 

long-range formalism in an exact or approximate scheme, depending on the
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complexity of the result.

In this thesis, we first examine the various methods used to 

describe long-range polarisation effects, and develop an analytical yet 

flexibly optimised expression for the energy of an electron in a 

dielectric. Short-range effects are then examined by a series of 

ab initio and modified INDO calculations on various small molecular 

clusters with and without an extra electron. It is concluded that even 

with the most flexible basis set, such calculations alone cannot model 

a trapped electron, despite the claims of some workers in the field.

Finally, the theoretical basis of a model combining long and short- 

range interactions is examined, exact and approximate analytical 

expressions being derived. Suggestions for future theoretical work are 

made.

UW v... '.LC'-CvlaUTi; 1 }

I'-; , . u *

' /r<;

■ -i?., S., ar:d'K- OLevv;,



8

References I

1. W. Weyl, Pogg. Ann,, 121 (1864) 601.

2* F.S. Dainton, Endeavour, 26 (1967) 115*

3. U. Schindev.'olf, Angew. Chem., Int. Ed. 2 (1968) 7.

4. E.J. Hart and M. Anbar, The Hydrated Electron, Wiley, N.Y. 1970.

5. R. Catterall and N.F. Mott, Advan. Physics, 18 (1969) 665.

6. B.C. Webster an0 0. Howat, Radiat. Res. Rev., 4. (1972) 259.

7. (a) Metal-Amiaonia Solutions, Colloque Weyl I, eds. G. Lepoutre

and M.J. Sicivko, W.A. Benjamin, N.Y. 1964.

(b) Metal-Ammonia Solutions, Colloque Weyl II, eds.

J.J. Lagowski and M.J. Sienko, Butterworths, London, 1970.

(c) Electrons in Fluids, (Colloque Weyl III) eds. J. Jortner and 

N.R. Kestner-, Springer-Verlag, Berlin, 1973-

(d) Colloque Weyl IV, J. Chenffphys^? 29 (1975) No.26.

8. Electron-Solvent and Anion-Solvent Interactions, eds. L, Kevan 

and B.C. VJebster, Elsevier, Amsterdam, 1976.

9. L. Kevan, J. Am. Chem. Soc., 87 (1965) 1481.

10. J.E. Bennett, B. Mi.le and A. Thomas, J. Chem. Soc., A (1969) 1502«

11. (a) K. Kav/abata, d, Chem. Phys., 55 (1971) 3672.

(b) K. Kawa'oata, 3. Okabe and S. Taniguchi, J. Chem. Phys*, 57

(1972) 2855.

12. K. Kawatata, S. Okabe and H. Horii, Chem. Phys. Lett., 20 (1973) 

586.
13. K. Kawabata, H. Horii and S. Okabe, Chem. Phys. Lett., 14 (1972) 

223.

14* I.A. Taub and K, Eiben, J. Chem. Phys., 42. (1968) 2499.

15. J.A. Ghormley and C.J. Hochanadel, J. Phys. Chem., 25. (1971)i.

16. P.M. Rentzepis, R.P. Jones and J. Jortner, J. Chem. Phys., 59 

(1973) 766.



9

17. J.W. Boag and E.J. Hart, J. Am. Chem. Soc., 84 (1962) 4090.

18. S.K. Garg and C.P. Smyth, J. Phys. Chem., 69 (1965) 1294.

19.* K. Eiben and I.A. Taub, Nature, 212 (1966) 1002.

20. O.F. Kodzhaev, 3.G. Ershov and A.K. Pikaev, Izv. Akad. Nauk.

SSSR Otd Khim. Nauk 1968, 246.

21. A. Gaathon, G. Czapski and J. Jortner, J. Chem. Phys., £8 (1973) 

264S.

22. A. Gaathon and J. Jortner in Electrons in Fluids, ref.7(c).

23- V.N. Shubin, V.A. Zhigunov, V.I. Zolotarevsky and P.I. Dolin,

Nature, 212 (1966) 1002.

24. L. Kevan, J. Phys, Chem., 26 (1972 ) 3830.

25. p.207, Rtf.8*

26. B.C. Webster, J. Phys. Chem., 22 (1975) 2809.

27. G.V. Buxton- F*S. Pain ton, T.E. Lantry and F.P. Sargent, Trsns.

Faraday Soc., 66 (1970)2962.

28. K. D. Jordan and J.J. Wendoloski, Chem. Phys., 21_ (1977) 145.

29. D.M. Chipman, J. Phys- Chem., to be published.

30. J.C. Thomson, Electrons in Liquid Ammonia, O.U.P., 1976.



10

II
Long-Range Interactions - The Continuum Model

A. The Main Types of Treatment

Various methods have been evolved for the description of the excess 

electron in liquids and solids,

a) The polaron model
(5)One of the earliest schemes was the polaron model of Pekar , 

which (See Fig. II. A.l) treats the excess electron as a wavefunction 

localised in a continuous, linear, isotropic homogenous dielectric. Once 

localised, the electron orients the dielectric polarisation vector so as 

to deepen the trapping potential - this has been referred to as ‘'digging 

its own hole.” Such a model allows for the long-range effects of 

dielectric polarisation, but ignores any local structure in the vicinity 

of the trapped species. Although it is reasonable to treat a distant 

piece of the trapping medium as a continuous dielectric, the discrete 

nature of the solvent near the trapping centre must somehow be 

acknowledged. However, this approach has the advantage of mathematical 

simplicity.

(ii) The cavity continuum model
(16)An improvement on this, due to Jortner , introduced the idea 

o?7 an electron cenored on a spherical cavity in a linear, homogenous 

and isotropic dielectric (See Fig. II. A.2). This treats the surrounding 

medium as continuous at a distance from the trapping centre, but allows 

for empty space near the centre of the charge distribution, as would be 

the case for an electron centred on a cluster of molecules. The idea of

a cavity is also in accord with experimental data on volume
(1,21,22) expansion 9 J

Refinement of the electronic wavefunction for this model (a) by
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the author, using analytical methods (See Section II. E) and (b) by
(26)Carmichael and Webster has shown it to be surprisingly good at

mimicking the gross energetic properties of the solvated electron.

Qll) The semi continuum models

This refinement of the cavity continuum mod&l generally consists 

of a dielectric containing a cavity as before, but with the inclusion 

of a number of dipoles within the cavity, in an attempt to simulate more 

detailed local interactions in the solvent (See Fig. II. Ac>). Such
/ r\ r\ \

models have been developed by Jortner et al. * and Ksvan et al.
(29 33)v s >  ̂ tjie inciucie(i dipoles being treated as point multi .pules, and

the number within the cavity being varied from U. to 12. Allowances can 

be made for temperature dependence by relating T to the average dipole 

direction via the Langevin equation, and more than one shell of dipoles 

can be included in the calculation. This model can be tailored to fit 

some experimental data with reasonable accuracy.

(iv) Other approaches

Methods involving inclusion of short-range effects by detailed

SCF calculations on molecular clusters are dealt with in Chapters
(2) (3)III - VI, and the methods of Iguchi and Tachiya. et al. are

discussed in Section II.F.

The present chapter examines in detail the methods and validity

of the cavity continuum model, considering both the quasi-adiabatic and

Hartree approaches. In Section II.E the author’s own analytical

wavefunction for the ground state of this model is described, and

comments are made on the significance and applicability of the ensuing

results.
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B. Theory of Wavefunctions in Dielectrics

This section is devoted to a more rigorous derivation of the

relevant energy terms in the cavity continuum riodels of solvated

electrons. The full derivations are presented here, because

papers in the field not only skim over the origins of the expressions,

but also contain errors and ambiguities which still excite controversy 
(6,7,8,11)

The analysis which follows will be in S.I. uniir>. with modification

to e.g.s. or a.u. as necessary.
(9)It can be shown that if an arbitrary charge distribution is 

assembled in the presence of dielectrics, then the total energy required 

to achieve this is

/^(r)V(r)d'T-------- (II. B.l), where /'(r) is the final

free charge density at r, and V(jry' the final potential at r. In the

case of point charges, to avoid singularities, we must employ the

potential due to all the other charges, exclusive of the ono whose 

position we consider, i.e.,

w = 2 (r)d-2---- ---- (II. B.2), where

being the position of the ith cha/.ge and V*(|L ) the potential at EL,

due to all cha/ges save Q^.

The W term is evaluated with reference to the state where the 

dielectric is unmoved, but the charge distribution removed to infinity, 

and dissipated; it involves (a) the energy required to assemble the 

distribution in vacuo, (b) the energy required to polarise the dielectric 

and (c) the energy of interaction between the charge distribution and the 

induced dielectric polarisation.
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W = E + n+ £ ------- (IX. B.3)
Now the free charge distribution feels two potentials: one due to the

other parts of itself, V̂ , and one due to the induced charges in the

dielectric. V .P

Thus V = V- + V f p

The self-energy of the free charge distribution is

E = £ ̂ ^(r)V^(r)d "£-----  (II. B.4)> and the energy due to the

charge-medium interaction alone is

6 = T7+ i = W-E -- j \/’{r)V(r)dr - | jl(r)Vf (r)d-t'

= i\/f’(r)V (r)dr------- (II. B.5)
J ~ ’ P *V’

Similarly, the energy required to assemble the charge distribution 

in an already polarised dielectric, neglecting the self-energy term, is

( “J"/°(r)Vp(r)dr------   (II. B.6)

so that T7, the energy to polarise the dielectric, is 

rr= £ - <C = . ij/°(r)Vp(r)dr ------- (II. B.7)

This polarisation energy, or medium rearrangement energy, 

represents the energy required to polarise and orient the molecules of 

the dielectric-

The successful evaluation of these terms depends on the calculation 

of 7 , snd the difficulty reflects the con^lexity of the model chosen. 

With a continuous dielectric extending over all space, one may

write
D

F = E - y ------- (II. B.8),
' c 2where E is the field due to all charges, y is the field due to 

** o
the charges only (D being the electric displacement vector), and F is 

the net field due to the induced polarisation charges.
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D D
Thus g, = t t ” - T“ (since in a linear, homogenous, isotropic 

S  ''O

dielectric, E, = d £ g, d being the dielectric constant).

-> p- d-|) 5
vo

= > W  = - (I-t)VV, ------ (II. B.9)P Q I
D

since - K7 V = F and - W -  = 7—
p ~ f f0

Boundary conditions thus ensure that

'P - -(1-d->vf ------ ( n - Ba0)

Thus the total energy of the charge-dielectric system, excluding the 

self-energy of the free charge distribution, is

£ = n + £ = i j vp(£)/’(£)dr = - i ( l - V f(r)/°(r)dr>

i.e. £ = Vf J > ------  (II. B.ll),

if y  is a wavefunction describing a negative free charge distribution.

The introduction of a cavity into the dielectric causes

coinplication, since d is now a non-continuously differentiable

function, and equation (II, B.10) will not, in general, apply. As is

well known, the potential 7^(r) due to a dielectric medium with

polarisation P is
1 r P(r' ) «(r -r')dr'

where the integration is over the volume of the dielectric.

Application of the vector identity

V.(fA) - f *7.A + A f followed by the Divergence Theorem, 

yields ^
S (£'). dtfr' ) . 1 f  V r. -Ptr'X  (II.B.13)

l£-£’l /r-r'|

where*ris the volume of the dielectric, and S is its bounding surface.
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(We see that if the dielectric has no cavity, then the first 
integral becomes zero, and the second is merely - ( l - p r o v i d i n g  

we have a linear, isotropic, homogenous dielectric: see below), (Also,

d points out of the dielectric by convention).

Thus we may replace the dielectric by a series of bound volume 

charges P — - VP, and surface charges cT — P , n, where n is the unit 

normal vector pointing out of the dielectric in the case of a

cavity in such a medium ̂ it is more convenient to use the unit normal 

vector pointing out of the cavity into the dielectric, n1, and hence 

cr = -P.n .A* +*

When the charge distribution is spherically symmetric and 

confined to the cavity,

= V, P " (l- ̂ )V. D = (l- ̂ )/*£ = 0, the second integral

vanishes and thus

*
F(r* ).d$(r') _ x £p(r’).<*/(£’)

,j " H - P l  l £ -£ ' l
1 f ?(r'

where r> = max (r,r;)> (Spherical symmetry simplifies the Tr~T~pi term)
l~ ~ I

and thus 1 71
it t \ d  ̂C  C  D(^o)Ro . 1̂ j jV (r) = - 7-=?t—  V V — ---  s m  0 d 0 d \P \ r> X

_ D(^o)^o f p \** ~C  \T  > = max (r, Ho)To r> 7

Since I»(̂ o) = > where Q is the total charge contained

within the cavity,

Y (r) = ^--y r; u  d' 4^C*0 r^

* the negative sign appears if we change our convention so that dtf 

points into the dielectric, that is, out of the cavity.
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That is,

Vp(r)— ( l - i j p & Y -  ^  r«B0, * *  V (r)--(l- if r >«or 0 0 o

------- (II. B.13.a)

Thus, since the charge Q is contained in the cavity,

£ = ijf(r)Vp(r)dr = -i(l -j)' £,hr • or> 111 au'

£ = - (1-v)   (II. B.u).

If the charge is not confined to the cavity, but is permitted to 

be diffuse but still spherically symmetric, then Q above is replaced 

by R0 2
f* (r1 )r* ar', and the second term of equation II. B.13 is non-

o
zero, being

^  C P i r* )- — —7—  V drj where r> = max (r,r*), i.e.,
4 \> r>

0 ( \
Thus

VP
(r) - - t1- j ( A r 11 r‘2dr'+(^rl2r'2d r ' + 1' \r Xr r - ' )

when r>RQ

and V (r) = V (Ro) when i% R0. Thus, for the spherically symmetric P P
case of the cavity model.,

Vp(r) = -(1 - j)V,(r) when r>R£
______  (II. B.16)

= -(1 - j)Vf(Ro) when r^Ro

which is of the same form as equation (II. B.10), and identical to it 

in the absence of a cavity. This resemblance exists because of the 

assumption of spherical symmetry, however, and is not a general one, 

since in non-spherical cases the surface integral loses the simple form 

of equation II. B.13.a.
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We have, from the above potential

£ =  -i<YIVp|y>= J(l-j)<l|>|Vft y > , ------- (II. B.17)

£ = -<y |vp|^and n  = K^lvp|lf>,

where V is defined as in II. B.16.P
Generally, for an arbitrary cavity in the medium, 

v (r) = )------  (lI.B.l8a)
P ~ '

,n' and P $

, , 5(r-).d/(r’) rV.B(r') dr',
•• V ~ } ’ ( 'fy |r-r'| +\|r-r'l

V-* r - V
Now, we may write the first integral as

C  Ste' '■•d£'E' ) (VrJ-i D(r') ) dr'> where the integration

1 =5/“ F r £l X t  F " ? l  ,
is over the interior volume of the cavity.

dr',I - C  D(r').^j^.?p| j d r ' + C v .  D(r')
' i n k  ~

i.e., I=C j d* ' + (  frfj-
-'int ^int \

• V M  = - — i ( B(r‘)7-f 1 } B' ^* • “ J ; t|£- S'\' r ) r-r )
V ^ t  J..   /

i.e. vp(r) = -(i-ijVr)
Sint

all space

(n. B.19)
'int

which is the general expression for the potential due to medium 

polarisation. As before,

t = - h<flv iy>, where is represented by equation II. B.19. 

The second term is the one which causes difficulty, and it is 

convenient to assume cither a spherical distribution of charge, or 

the absence of a cavity in most calculations, since the term then 

vanishes.
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More subtle problems arise when the potential expressions are 

considered in the light of dielectric relaxation times and electron- 

medium correlation, and these are considered in the next section*

C* The Quasi-Adiabatic and Hartree-Fock Approximations

(i) Since the potential — I acting on a trapped electron is

dependent on the polarisation of the medium, the speed with which the 

medium polarisation can respond to instantaneous changes in the 

position of the trapped species is of great importance*

The total medium polarisation is comprised of three contributions
(9)

(a) the polarisation due to electron-nuclear displacement; 

normally termed the optical.* or electronic polarisation, this readjusts 

rapidly to electric field changes,

(b) that due to nuclear movements such as stretching and bending

(c) that due to rotation of molecules.

The disparity in relaxation times between (a) and (b) and (c) is such 

that we usually write

p s p -pp. 6) p electronic polarisation^ and~ e ~i ~e
P. the inertial, as represented by (b) and (c).

Now the trapped electrons will,in general, tend to be lees 

strongly bound than the electrons of the medium molecules, and will 

therefore, by the Virial Theorem, have lower kinetic energies and 

velocities. If their binding energies are comparable with those of the 

medium electrons, then a Hartree-type wavefunction is in order 

but if the energies of the excess species are lower, they may not be 

able to follow the motions of the medium electrons (and hence the
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{

fluctuations in P ), and the adiabatic approximation may be more 
apposite (5, 6,i3)>

(ii) The (Quasi) Adiabatic Approximation

If the velocity of a trapped electron is so low that it cannot
(Ofellow the motions of ohe medium electrons, then we may write 

for the total wavefunction

it5 = V  » ------- (I1* c*1)

where m refers to the coordinates of all the medium electrons, and t to 

those of the trapped electron. Thus the trapped electron 

wavefunction, has no specific correlation with the medium electrons, but 

the faster-moving medium electrons have a wavefunction depending on the 

position of the hrapped electron.

Gouraray and Adrian have shown that the usual adiabatic

approximation, involving particles of greatly disparate mass, is

valid but that it cannot be rigorously proven for the case of two sets 

cf electrons.

The approximation, when applied to the trapped electron case,

they term the quasi-adiabatic approximation, and conclude that it is

probably valid ?.s long as the trapped electron does not spend much time

within the atomic cores of the medium.

Thus, within the quasi-adiabatic approximation as adopted by

Fekar and the early papers of Jortner the inertial

polarisation, sees only the time-averaged distribution of the excess

electron, whereas the electronic polarisation, , adjusts instantly to

the species1 motion. Since the potential well created by P follows the0
trapped electron instantaneously, and is everywhere the same in a

homogenous dielectric, it is a position-independent constant potential

so long as the electron remains in the medium, and the energy of the

electron /P interaction is independent of r.^ 0 ■rL"r
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Now, if Dg is the static dielectric constant, and Dq the optical,

P = ( i - I )g - (ii. c.2)
s

and P = (1- i )E -- (II. C.3)«*• e u ?+o

and P. = ( ~  - :r-).£, and equation II. B.10 becomes u  L) o s

Vo“ “ ̂ D~ “ Vf* usually written V - - 
p o s p

Thus equation II- B.ll would give

#= £/8<lf/l7fHlJ>+ K, ------  (II. C.4)

where the first term represents the electron/J1 interaction, and the

second the electron /P one. This approach is still used by some*" e
authors but it has been pointed out that whereas in F-

centre theory, the binding energy of the excess electron is low and the 

quasi-adiabatic theory may be justified, solvated electrons in polar 

media have a greater binding energy of the order of 1- 2 eV, precluding 

the use of this method.

(iii) The Hartree-(Fockj Approximation

A more suitable method for the situation where the medium and 

trapped electrons have comparable velocities is the Hartree-Fock method,
Cjo ig}

we31 described elsewhere ' ' * . When the velocities of the two sets

of electrons are comparable, the medium electrons will respond 

instantly to spatial shifts of the trapped electrons, and vice versa. 

Since a rigorous treatment of this correlation would involve 

configuration interaction methods, it is usually ignored, and the 

assumption made that the medium electrons see an averaged field due to 

the trapped electron, and vice versa, the wavefunction being written as

$  („V ~rt> - W  >----- ------ (I1- c*5)-
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Since all exchange between the two sets of electrons is neglected,

even that of a medium electron and a trapped one of opposite spin, this

is more properly termed a Hartree approximation. The neglect of this

wcorrelation polarisationM term is not serious if the t-rappeci electron
(13 17)is not too diffuse ' , i.e.,if ics binding energy is reasonably

high.

It follows that in the Hartree Approximation both P. and P see 

a time-averaged distribution of the trapped electron, and thus the 

self-consistent trapping potential contains a P. and a P contribution;^  2. c

that is, Pe no longer follows the detailed motion of the trapped 

electron, but provides a position-dependent trapping potential.

Equation II. B.ll becomes

V = -(l-^-)V^in this approximation, and the corresponding 
P s ^

electron/medium energy

i= i d - |  )<^/vfl^>,S

or 6 = | (*+y)<qi1vf -------(II. c.6)

i f y =  (i-i)

Thus the essential difference between fche two approximations is

that the <  l[/| V^J (Ĵ > term is preceded by JS in the quasi-adiabaiie case,
(17)and by (^+*0 in the Hartree case .
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D. History of Continuous Dielectric Type Models and Critique of Methods 

Early theories of the solvated electron evolved from work on so- 

called F centres, that is, electrons trapped in defects in ionic 

crystals such as alkali halides ^ 9 ‘^9
(10)In a crucial paper on electron trapping in crystals, landau

showed that local crystal disturbances can cause localisation of the

normally diffuse and periodic electronic wavefunction; such a

temporary trapping then intensifies the local polarisation field, which

in turn reacts to deepen the potential trapping t*he electron. Such

a self-sustaining process has been referred to as the electron "digging

its own hole." This idea seemed naturally applicable to excess electron

states in liquids, and when some of the volume expansion data on metal/
(1 21 22)ammonia solutions 9 9 was considered, a model involving

electronic trapping in cavities in dielectrics was indicated-. This 

approach was adopted by Ogg who considered an electronic charge

totally confined within a cavity of radius Rq.

By equation II. B.14>

20 1£ = - (l- - ), and if the de Broglie wavelength of the
o s

particle is set equal to the cavity diameter,

^ - .J - 2*o = > ? " W 0 »
2 2

i#e#' * U = K E +  £ = 4 R^.2m ~ ir* or> 111 au>o s

■ W - g r  - £  H ’ ------(1I'"-1)
1 d ̂

Neglecting ^ anc* setting —  = 0 gives 
s “o

Rq = 27T2 au = 19*74 au

and E. . = - au = - 0*013 au = - 0*34 eV.tot g?/2
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Although this model predicts an overlarge cavity radius, it does 

highlight the role of long-range medium polarisation effects in 

electron trapping,
/ r 23 21 )Other models were developed by the Russian school * * in

which F-centre ideas were taken over and generalised, that of Peker

being particularly advanced, in that he uses a fairly flexible

analytical wavefunction for the electron and a self-consistent

potential. No cavity is employed.
( )In his first paper , he uses what we now recognise as the 

quasi-adiabatic approximation (See Section II.C) in treating an electron 

localised in a crystal, and derives a functional for the total energy 

of the electron and inertiaily polarised medium in the form of equation

II. B.17> using

j<v> = * W  = I - T  l <p>+ i d  - 1 )«F  i U r  ) iv> ,
o s

C i » . '  2 /  » '

where V̂ .(r) -• - \i:r r7^' • Taking a function of the form
) I/W rt' (

IjJ = N (l + ar+ br^)e"a r , ------  (II. D.2)

Pekar's equations give*

a - 0-6585 (§ - 5 ) ? = 0«45l6a2 5 E = -0-l64(| - £) — (II.B.3)
o s  o s

In a second paper in which he purports to give details of

calculations for an inertiaily polarising medium, he involves the total 

medium polarisation, not merely the inertial part, in the SCF 

calculation, which is equivalent to using a Hartree-type approximation 

(See Section II.C) for the medium/excess electron interaction.

* Letting/t, the reduced mass of the electron equal the usual electron 

mass.
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Thus

a = 0*6585 (1- k ) ; b = 0*45l6a?; 3 |) 0-164 a n  (II.D.4)
s s

is the result.

Although Pekar neglects the additive term cfiae to I.he interactions 

with the electronic polarisation of the medium, fn the first paper, 

and confuses his polarisation terms in the second the method in the 

second paper is the best for the model chosen, aivi the >;avef unction, as 

will be seen later (Section II.E) almost as flexible as necessary.

The synthesis of dielectric and cavity models was xnrst performed 

by Jortner in a quasi-adiabatic non-SCF cavity model of electrons

solvated in liquid ammonia.

This uses energy expressions of the type

(See equations III. B.17)> where, however, the SGF expression lor 

is not used, the simple one

variational solution for the electronic energy in the field of the 

inertial polarisation. To this is added the inertial part of the 

medium rearrangement energy, FT, and finally an electronic polarisation 

term which involves the total energy of interaction of the electron and

T(r) = r>R0

q  > being used instead (See equations II, B.13)- - 5 r«Ro)
o J  (This potential assumes all the charge to be

in the cavity).

Substitution of a single-parameter Is type Slater function, 

e~Ar £0r an(j minimisation of E* with respect to/*, gives a
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electronic medium polarisation.

Several flaws appear in this early model. The use of the quasi-

adiabatic model for electrons in polar liquids has since been rejected 
M 7}by Jorcner in favour of a Hartree-type model, because of the

f V }greater velocity of sucn bound electrons. Tachiya v has recently 

criticised Jortner's use of the expression

7f = ̂  f"zr] 4^ dr, on the grounds that with the
0 j8fixed potential - ~

the correct energy express2.on 2.3

= tzz- (Sse equation II. B.14).
2Ro

This is true, but Jcrsner has improved on this by inserting a

diffuse wavefunction in the fixed potential, and it would be far more
2  ̂ -

inconsistent to compute ( as < Ijj J - -g-| ijJ but keep TT as
J L  U  __V.,_______________(11) .  >
2Ro

However, Jortner himself points out ' that his expression 

TT - J V  [~J 4# r" dr is wrongs and that

U =  * \ Vis [ ( ]  UVr2 dr = 2<V! r ) V  >  (&ee U ’BA7)
So >

is the correct one.

Other objections may be noted:

(i) rr, beivjg dependent, on *I>, should be included in the 
variational procedure

(ii) E ; + Se, where Se (Jortner's notation) is the "contribution

of the electronic polarisation to the energy" is quoted as the total
6single-particle electronic binding energy; S , however, given as 

- g  , r being the mean electronic radius, contains an implicit 

medium electronic polarisation term;
/ yE - ~ should be used, and the one electron E. and E~ values ? 9 is 2p

quoted by Jortner are thu3 incorrect. However, the total energy,
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E = E* + S e +TT1 , (where the i is added to emphasise that this

is the inertial part of the polarisation energy) , is not affected.8
0 © 1 p rsince the extra T7 term implicit in S combines with the TT to give TT, 

leaving a true elecIronic contribution to the electron/medium energy in

U *

(iii) Under the adiabatic approximation, the electron should be

treated as a point charge interacting with the electronic polarisation.
e yThus, when no cavity is present, S — - is a good approximation,

^ e yor, when the electron is restricted to a cavity, S = - gj- , but the
o

present situation is more complex. Fortunately, the abandonment of the 

adiabatic model removes this problem.

Later, a Hartree-type model was adopted by Jortner, in which 

these problems were overcome and the expressions III. C.6 were used,

i.e.,

Etot - < VI - t ! V > + < V ' Vf I t f» ,

where AY )dr*
if r > R , and o

Vf(r) = Vf(Ko) if r ^ R o 

Application of this to the ground state of water with 

^is = ̂ V  e'^r gives

E. . = -l-30*ev at R = 0A°, and -0-91 at R = 3’3 A0tOTr O O

A freshly excited 2p state is defined in which the wavefunction,

V»(r) =

v2P =V2'r2p — V^" re”̂ -1 cos 0 is assumed to be affected by the original 

inertial Is medium polarisation (which has not yet relaxed).

Spherically symmetric potentials are assumed in order to avoid the 

difficulties of the second term of II. B.19. Estimation of hJ/ =

E2d ” Els gives 1#33 eV at Ro = 0A and 0#93 eV at Ro = 3*3 A > vrLth
* Not 1*32 eV, as quoted in the original paper.
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oscillator strength of— 1 at Rq = 0*0, indicating that most of the

spectrum is due to this transition. As the cavilify radius decreases to

zero, this model predicts an increase in the Is —» 2p transition energy,

up to 1-35 eV, which falls short of the experimental value of 1*72 eV,

and indicates, unrealistically, a zero cavity radius,
(25)It was realised by Kevan et al. that a more flexible ground-

state wavefunction might affect the results, and they used a linear 

combination of Is and 2s type functions of the form

*= N(^lg + obtaining a "heat of so*Ivatu.cn"

H = 1*81 eV (i.e., E. . = - 1-81 eV) and h y «  IMS eV at R = 0. s tot o
It was also noted that hi/ decreased as R increased, but mathematicalo
complexity debarred further calculation. Thus their results imply that 

the use of a more flexible wavefunction causes h)r to agree with the 

experimental value at a finite cavity radius.

It is clearly of interest to explore the limits of wavefunction
(26)flexibility, and this has been achieved by Carmichael and Webster ,

who used numerical wave functions of high accuracy, obtaining H =1*440 ©V

and h t „ = 1*529 eV for water, at R = 0 A°» a result more like that Is —>2p o
(17) (5)of Jortner and Pekar rather than that of Kevan et al» They

have also pointed out that in evaluating the oscillator strengths of

transitions, one should use the difference in siiagle-particle energies

of the states, not the difference in total energies, since the

wave functions in the transition moment integral have the former, not

the latter, as their eigenvalues.

f^(ls 2p) is derived as 0*714 and fv(ls —£ 2p) as 0*917.

While this work represents the limit to which such a model can be

developed, it is nevertheless useful ho have a simple analytical

function which can be used in place of the numerical one at various

cavity radii and in various media; such a model was developed by the
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present author, and is described in section E, where long-range 

polarisation effects are investigated.

Obviously, the microscopic structure of a solvent near the zone 

of electron localisation will have a detailed effect which is not 

allowed for in the continuous dielectric type models, and this has led 

to the development of structural and semi continuum models e

E. A Flexible Analytical Hartree Type Model: Long-Range Polarisation

Effects

(i) Introduction

In this model, the Jortner Hartree-type approximation vas used in

conjunction with the flexible analytical wavefunction to obtain ground-

state energies for the hydrated electron. While not as accurate as the
(26)numerical Carmichael and Webster function , it was nevertheless 

found to be sufficiently close in the Is state, and the analytical form 

allows for a more compact statement of the function.

(ii) Method

In the Hartree-type SCF model, the total energy is given by 

expressions II. C.6; i.e.,

Etot = KE+6 =<ij;|.’£n|;> + tf±£I<ij;|vi.|̂ >,

where Vf(r)= ( <&' if r >  Rq
-'o

and Vf(r)» V(Rq) if r ̂  Rq

For the Is state, a three-parameter wavefunction or the form

IjJ = N^(l + ar + br^)e~*cr

was used, where is a normalising factor, and a, b and k are

adjustable parameters. Such a function is more flexible than that of 
(5)Pekar , who used a two-parameter expression where k = a.
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Etot ŝls evaluated using these equations* giving rise to an 

analytical expression; this was one of considerable complexity, 

containing some 10,000 terms. The expression for using a 3- 

parameter wavefunct i.cn is in fact so involved as to preclude analytical 

evaluation of this soi*t using 4 or more parameters.

Using an IBM 370/155 machine and a steepest descent minimisation 

programme specially written by the author, the values and a, b and k 

vere optimised to y:eld the lowest value of ^or a given cavity

radius, additional computations on medium polarisation energies, % 

charge in cavity, etc., being performed at the same time.

The optical spectrum was studied by means of a similar calculation 

on a 2p state affected by the old inertial polarisation due to thy Is 

state, but the new optical polarisation due to the 2p state. (A Franck- 

Condon type transition).

The single parameter wavefunction

^2 = ^2 re~^r cos ®
Pz !

was employed.

(lii) Results

Optimised parameters4 total energies and single particle energies 

for the ground state at various cavity radii are displayed in Table 

II. E.l.

The formulation of Pekar places E^^ at - 1*45 eV when Rq - 0-0,

whereas this more flexible function gives an energy of - 1*439 eV, a
(26)value upheld by the numerical Carmichael and Webster calculations 

Slight error in Pekar's figures must be assumed. The present method is 

accurate for the Is state, as is illustrated by its agreement with the 

numerical wavefunction, but allows simple definition of if/ (r) because 

of its analytical form.
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Decreasing the cavity radius seems to stabilise the system, as

remarked by Jortner, with the greatest stability at Rq = 0*0, which

suggests at first sight a polaron model for the hydrated electron.

Figure II. E.l shows this energetic trend, cucn a view is however

naive. Cross-cavity repulsion forces, such as th^se introduced in some
(S)of the semicontinuum models , will counteract a total collapse, 

stabilising the cavity at some interim radius. Naive also is the 

assumption that the medium will behave like an isotropic, homogeneous 

or even linear dielectric at short range. However, it has sufficed to 

show that, under the assumptions made, an electron may remain trapped 

and will tend to localise further, with a concomitant levering of E. .uOu
until stopped by short-range repulsive forces.

Expansion of the cavity leads to a drop in. the value of k, as

shown by Table II. E.l and Fig. II. E.2, indicating increasing

diffuseness of the electron. Taken with Fig. II. E«3, the interrelation

of cavity size and electron localisation can be seen?, the trend is

towards shrinkage of both the cavity and the electron distribution.

More useful are the concepts of the mean charge radius,

r=<ylr|lf>> ------  (II. E.l)

and the percentage of charge within the cavity, given by 
✓Ro

iooV. y 2dr, -------  (II. E.2)
'O

where Rq is the cavity radius.

Table II. E.2 shows both these criteria. While trapped, the

electron is fairly diffuse, this diffuseness, as gauged by r,

increasing with Rq, as shown in Fig. II. E.3* Similarly, Fig. II. E.4 
2 2 2graphs P (r) = r R (r) normalised against Rq for some cavity radii 

underlining the outward shift with increasing Rq.

However, the percentage of charge retained in the cavity is seen
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to increase with Rq, reaching 50% at 4A° and 75% &t 10A° (Table II. E.2)« 

The cavity expansion overtakes the outward spread of the wavefunction.

Other data such as medium polarisation energies show a similar 

trend, lessening as Rq expands, sine j the increasingly diffuse charge 

polarises the dielectric to a lesser extent $ tb.*~?e crends are exhibited

in Table II. E.3.

Similar SCF calculations on the 2p state (using a one-parameter 

wavefunction) assumed it to be freshly excited; that is, the medium

electronic polarisation was allowed tc relax, but not, the slower

inertial polarisation. This was assumed to be the situation obtaining 

immediately after a Is —* 2p transition.

Thus the potential for the 2p state in au Is

V (r) = - (1-i )V - (~ - ~  )Vf , --(II. E.3)
p o 2p o s Is

and the energy of the unrelaxed excited state is,

where the terms are, respectively, the kinetic energy, the electron/ 

electronic polarisation interaction energy, the electronic polarisation 

energy of the medium, the electron/inertial poinrisation interaction 

energy and the inertial polarisation energy of the medium.

Thus
2

< if* I 1 (M o  + v_, i m.,_ >+e<y/.i v_, i in >I 2p* 2 • T ii i-cp* - f i

where 5T = (l- ) and fi = ^ )
o o s
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As before, the energy E ^  was minimised with respect to the

parameter g, and energies for various cavity radii obtained, as shown

in Table II. E.4.

This time, as illustrated in Fig. II. E.5, an optimal cavity

radius i3 in evidence at ~-'6A°.. corresponding to an energy of - 0*379 eV,

However, since the optical transition to the 2p state is assumed to be of

Franck-Condon type, where the cavity radius and inertial polarisation do

not have time to relax, thi3 gives no clue as to +,ht; optimal Rq for the
(1 7 9 ̂ ̂ground state. One might expect to obtain such information

by fitting the calculated optical absorption energy to the observed
(27)value of 1*72 eV for water at 300 K , but as Fig. II. E.6 shows, 

only at Rq = 0*0 A0 does hV (1*56 eV) begin to approach this. That this

is a feature of the model and net of the warefunctions has already been

Feng 
(25)

(26)illustrated by numerical calculations 5 the claim of Fueki, Feng

and iievan to have surpassed this limit with an analytic function 

must be regarded with circumspection. The blue shift on compression

illustrated in Fig. II. S.6 is in qualitative agreement with
• . (28) experiment «

Examination of g indicates increasing difuseness r.o Rq increases,

and examination of r confirms this. Table II. E.5 indicates an

expansion of the mean charge radius with Rq, but shows it to be greater

than the corresponding ground state Is values. For instance, at Rq =

1*0 A0, I* = 2*25 A0, but r„ = 4.30 A0, and at R = 10 A°, r\ =8*08 A° Is 2p o ' I s
while r^p “ 10*60 A°. Excitation, as would be expected, tends to

expand the charge. The charge contained in the cavity (See Table II.E.5)

is again correspondingly less, being 75*3% at Rq = 10 A0 for the ground

state as against 51*0$ for the excited state at the same radius. Such

expansion is depicted in Fig, II. E.7> which illustrates the radial parts

of the 2p_function for different cavity radii, z
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(iv) Conclusion

Within its limitations, the model functions well. Trends in the

energetics have been studied as the cavity size is varied, and the

extent and degree of containment of the charge assessed. Values of the

optical transition energies approach the experimental ones to a

surprising degree for such a crude model, and the behaviour of hv on

compression is qualitatively reproduced. It should be noted that this

is all obtained by the input of two experimentally observed

parameters j the mox*e complex semicontinuum mode3_s of some workers
(S 29 30)reproduce the data more accurately 9 9 , but at the expense of

a large number of both experimentally observed and arbitrarily 

adjustable variables; such models may mimic observation better, but 

their predictive value would be questionable.

However, whi3.e this model may duplicate some long-range effects 

quite well, it is inadequate for describing the detailed short-range 

effects due to the structure of the fluid and the properties of its 

constituent molecules. The continuum cavity SCF model has shown us 

that electron localisation in a dielectric is possible and has given us 

the approximate energies involved; it is for the structural models to 

provide details abcut short-range effects.
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F, Footnote; Similar Models

Other methods of treatment, in a similar vein to those in this

chapter, may be mentioned, namely the oriented dipole technique of

Iguchi anci the configuration coordinate model of Tachiya et al.
(3a, 3b)

•

In the former model, Iguchi treats the medium as a large collection 

of discrete identical point dipoles, instead of a continuous 

dielectric, and splits the polarisation contributions into a temperatTire- 

dependent orientation effect, which cannot follow the trapped electron, 

and a molecular polarisation part, which can. TMs is similar to the 

quasi-adiabatic approach, save that here the effects of molecular 

bonding are included in the quickly-relaxing part of the polarisation, 

rather than in the inertial part.

The field due to dipole orientation alone, tJ(r), is obtained via

g(g' _ _  (II. F.l)
'» 3U(r) = - e

(in e.g.s. units)

= - Ufie \ P(r)dr ------  (I1* F‘2)Ar
If P, due to the permanent dipole moment .alone, is radially 

symmetric.
(9)Iguchi then obtains P(r) via the Langevin equation , namely 

P(r) = nBA»0 ( c o t h ^ -  - J S - ) ,
o

where nm is the number of molecules per unit volume at the temperature 

T.

n m — i'Iq (l t s(T - T )) us also assumed, where as 273 

2 2
Solution of £ - ~  ^  + U(r) - wj (p ~ 0 gives the single

particle energy of the solvated electron trapped by the orientational
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polarisation of the medium. Iguchi then adds the: orientational medium 

polarisation energy,

f f  r /)P(r;,)*(r-r; )dr dr;
n dd-jJ |r-r'|3 J j  jl-r'/5

“ (II F.3)

which is the energy required to orient the dipoles against their

mutual repulsion.

Finally, the total electron-medium energy dire to molê 'ilar

polarisation is added, this being 
r-to

Si - \_Pmol(r')dr' “ " 2* A a  Ij,--------(I1- P**>

where rj_ is the mean radius of the orbital for the state 1.

Quite good agreement with respect to heats of solvation,

excitation energies, and temperature dependent spectral shifts is

obtained by this method, but a further and more realistic attempt
(2b)by Iguchi to introduce a cavity worsens agreement

Iguchi1s method has the advantage of accounting for temperature 

dependence, but uses not merely an adiabatic type of approach, which is
n\

in some doubt ( , but one in which the whole of the molecular 

polarisability, instead of just the electronic part, is assumed to have 

an extremely small relaxation time.

Tachiya et al.'s configuration coordinate model is based on a. 

different philosophy. They point out that the orientational 

polarisation determines the final energy, and that, since it relaxes 

more slowly than the electronic polarisation, one may construct a 

configuration coordinate diagram of energy versus polarisation just 

as one may ccnsx>rucx> clxugrams ci energy versus nuc-Lear separaujLcn xor 

a diatomic molecule. They point out two ways of* obtaining the 

orientational polarisation energy: the expression of Jortner et al.

gives
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TT ~ znij- - \ ?2cr  (II. F.5)

(2a)on a continuum model; the expression of Iguchi corrected by
( o c

Tachiya w  ' gives

n=7j'( pa i - i ~  dr, ------(II. F.6)
Jr>L 4r

where L is the distance between adjacent point dipoles, the energy 

being totally due to dipole-dip;>le repulsions,. Tachiya et al, then 

observed that both of these have the form

n  = &'̂ 'p̂ d'£'> and that- ¥ is greater by a factor of three or 

four in the first expression,

They therefore proceed to perform the calculation so that the 

calculated heat of hydration of the electron is equal to the observed 

value of 1*7 eV, by adjustment of if, obtaining an intermediate value 
of V = 5*5.

They naturally suggest that the first expression overestimates and

the second underestimates b, but no explanation of the dichotomy is

afforded. The present author suggests that equation II, F,5, derived in

section II.B, is substantially correct, and that equation II. F.6,

involving only the permanent polarisation of point dipo3. ?s and their

repulsion energies, and neglecting the induced part of the inertial

polarisation due to bending and stretching, gives only part of the total

inertial polarisation VI. Thus, although a sir all or value of VT,

corresponding to fc" =■= 5*5, will give a larger neat of hydration, it has
(26)been shown by Carmichael and Webster that the continuum model in

the Jortner formalism will not "ive a "reater E, , than 1*45 eV,° “ tot
Furthermore, in the Tachiya model, the polarisation is varied 

until the lowest energy is obtained, whereas a Jortner-type model does 

this automatically. The Tachiya model may therefore be useful in



37

describing some unrelaxed states, but this author sees no reason for 

using it to calculate ground-state Is or even inertially relaxed 2p 

states.

Of all the models surveyed in this chapter, it appears that the

Jortner-type Hartree cavity model, as represented by Carmichael and

Webster, and the author’s own calculations, is the most defensible, if

it is recognised that cross-cavity H-H repulsions and interactions at

short range are ignored. However, the values of H = 1*45 ©V ass
against the expeiimsntai 1*7 eV for H^O are worrying. Any corrections

such as the neglected ronfusions would lower H , as would allowances
for dielectric saturation effects. Further improvements seem to lie

in the introduction of short range effects, which will slightly

modify the powerful long-range trapping potential, and will also
*■12account for initial trapping, which occurs in 4 x 10 sec for 

( 31)11̂ 0 , a time much loss than the relaxation time of the inertial

polarisation.

YV : "Y; ■ " r -aYv V,.

w a ,y , ,
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TABLE II, E.l

Is ground state of cavity continuum model. Parameters and total energies

a L k ao(Ac) Btot(eV)

0.6063310 0.1969600 0.6531700 0 -1.438575

0.6763730 0,3986380 0.6404009 1 -1.423945

0,5978920 0.. 21823 39 0.5626110 2 -1.300962

0.3793020 0.213c630 0.4752800 ■j -1.130322

0.3553300 0.1904120 0.4021659 4 -0.9814352

0.4913670 0.1792630 0.3520949- 5 -0.8621777

0.5976639 0.1723440 0.3104540 6 -0.7657071

0,6175390 0.1685200 0.2798200 7 -0.6883588

0.5339710 0.3319310 0.2602119 8 -0.6201384

0.6611470 0.1281559 0.2276130 9 -0.5736178

0.5329020 0.3431480 0.2196810 10 -0.5241349



TABLE II. E.2

Is ground state of cavity continuum model.
Cavity radii, r and % charge within cavity

R0(A°) r(A°) # charge in cavity

0 2.248857 0

J. 2.296614 9.040057

2 2.734307 30.56958

3 3.336785 45.76544

4 4.010876 54.79335

5 4.672568 61.23030

6 5.312502 66.24449

7 5.944705 70.06462

8 6.744312 71.36682

9 7.278027 74.27205

10 '8.07716 75.33464
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TABLE II. E.4

2p excited state of cavity continuum model.
Energies and exponent of -wavefunction*

g Ro(A°) £ 2p(eV)

0.2364 0 0.12573

0.2346 1 0.09265

0.2641 2 -0.12162

0.2368 3 -0.27312

0.2108 4 -0.34688

0.1890 5 -0.37324

0.1716 6 -0.37356

0.1566 7 -0.37239

0.1442 8 -0.36350

0.1333 9 -0.35116

0.1249 10 -0.33739

* y  ~ N re” cos 0
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TABLE II, E.5

2p excited state oI cavity continuum model., Effects of 

cavity expansion on mean charge radius and % charge in cavity

R (Cavity Radius in A°)jr(Meai- Charge Radius it: A0)
° .... _ 1 ..... ............

% Charge in Cavity

0 4.619 0

1 4.297 0.496

2 5.009 5.232

3 5.587 " 13.486

4 6.276 21.706

5 7.000 28.815

6 7.705 34.996

7 8.443 39.911

8 9.174 44.115

9 9.887 47.761

10 10.592 50.920
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FIG. II.' A.l 

The Polaron Model

FIG.IX, A, 2 
The Cavity Continuum Model

FIG.II. A.3 
Th<* Semi continuum Model
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FIG.II, IS a

13 State of Cavity Continuum Model* Energy in eV Versus
oCavity Radius in A '•
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Is State of Cavity Continuum Modal, k Versus P-0»
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III

Self-Consistent Field Molecular Orbital Theory

A. Introduction

In order to prepare the way for the studies of short-range 

interactions via the structural models of the solvated electron, the 

general theory of ab initio and approximate SCF molecular calculations 

will be set out here, The study of open-shell cases will require some 

care and justification in its treatment.

B. Basic SCF Theory, fne Hartree-Fock Method for Closed Shells

Solution of the Schrcdinger equation

for molecules requires the construction of a molecular 

Hamiltonian. Clastically, for an assemblage of n interacting particles, 
n 2

H = y  ̂ V (l,2, •. .i, • •. j, . • .n),
i=l

where p^ and m^ are the momentum and mass, respectively, of the ith

particle, and V is the energy of the system due to the particles1 
*2)positions ' . Thus, for a system of N nuclei and n electrons, with no

relativistic interactions,
N o  i' 2 N N n n

■ - E
c<= 1 i~l oc= 1 fi=l i= 1 j=i+l j

n N 
V ’Zoce

h  (3)
The quantum-mechanical Hamiltonian say now be obtained
Lg  , taking coordinates from the centre of mass,

x i

by the transformation - iti 7 j giving



Application of the Born-Oppenheimer approximation allows
(2)separation of the nuclear and electronic terms to give

(III. B.l)

Choice of a suitable electronic wavefunction will then affect the 

level of accuracy obtainable, the ideal function being one which treats 

the probability of the position of each electron as a function of the 

positions of all the others. Computational impracticability generally 

leads to the postulation of a similar wavefunction, in which the 

positional probabilities of all the electrons are treated independently, 

i.e.,

where is a single electron molecular orbital wavefunction, and the 

requisite antisy.inctry with respect to particle exchange of Fennions is

Hamiltonian in III. B.l is non-relativistic, it is purely spatial, and 

electron spin is commonly introduced by writing

(pi(j) = where {j/± is a spatial and Tf a spin

function. If mg = + ~ anc* ^  ms = “ if *1 ~ P  *

(2)provided by the properties of the determinant . Since the
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Thus if we constrain pairs of electrons of opposite spin to 

occupy the same spatial orbitals, we have, for a closed shell 

configuration, a Restricted Hartree-Fock wavefmiction:

<f/3(l)«(l) (1>.. . « (X) (pn(l)y8(l)
= _J- i •A|;eKF {Zn'.Ts .

1^(2n)<*(2n)... l|/n(2n)yfl(2n)

 -----  (III. B.2)

usually written

lpEHF = i Va <!>•* (1) (2 > . . - C|/a (2n)>S(2n)|---(m.B.3)
Tl>.e most common way of finding the eigenvaimes is the

Hartree-Fock Self-Consistent Field Method (2, 5> 6)̂ ^he

expectation of W  is minimised with respect to tfoe MOs ^  under the 

constraint that these KOs remain orthonormai.

>  is minimised with respect to all subject

to | tj/j ̂  = ^ij# ^is leads to an energy expression in which each

electron is assumed to move in the average potential due to all the 

others, i.e.,

E = 'E rJ $ dri - d*n +E  f$ ̂  $dri dr”
1 J i<j,

■E E  f dri ■■■dr"1 j
Indistinguishability of electrons implies tnat wc may replace the i and 

j labels by, e.g., 1 and 2, and

= - (a»)jip Y  J  dTj... drn + J2n(2n - l ) ^  ~ ~  $  d*^... drn 

z«.2n.fipii- dr1 ... drn
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=> i = (2n)<(p iffij (J/ >  + n(2n-l)<(p J ^ |  (£> >  , where 

is the core Hamiltonian,

Expansion of the Slater determinant and use of orthogonality gives 

E «= 2 ) H. . + ) (2J. . - K. .), where
L~x11 L  ^  ^
i

Hii = <lFil^fc l'Fi>' Ju - < V i ^ i ^ l V i « p j >  3,111

^  = < ^ 1 ^ 1  V j 4,i >  •

The Coulomb integral, J. ., represents the avervged electrostatic■̂0
repulsion between MOs i and j, but the exchange .integral, K. is non- 

classical, arising from the use of an antisymmetric determinant 

(equation III, B,2) instead of a simple orbital product. As has been 

shown by Slater this term corrects for (a) the term J.,, which

includes a contribution for an electron in its own averaged potential 

and (b) the fact that the close approach of two electrons is very 

unlikely, although this “Fermi Hole" correction only operates on electrons 

of parallel spin, whereas ideally one should also allow for a "Coulomb 

Hole" which also prevents electrons of opposite spin from approaching 

too closely.

Subsequent variation of E under the orthonormality constraint,
(7)using Lagrange’s Method of Undetermined Multipliers gives

—  (ill. B.4)* where £.. is
j 1J

the matrix of undetermined multipliers, w  the }%j s and F the Fock 

matrix, where

F - [ # ■  + ) ^ (2J j -  V] »   ( I1 1 * B>5)

and J. U/. = J.., K, UA =K... jfi ji* jri ji
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Thus the problem can be reduced to a one-electron operator one,

and equation II. B.4 is normally operated on via a unitary transformation
(26) (B), which preserves the determinant III. B.2, since '

| u _1a u | = | u _1|| A (J u | =  l u - ’ l i u  i l A I = I d " 1 u l i  A-i =  1 A 1

This gives

u _1f u(j/̂ = u _1 ûi|/. and since ^ is Hermitian by supposition
( 2b )' there exists a unitary transformation which diagonalises it, giving

F Vi = '   (III. B.6)

the common form of the pseudo-eigenvalue Hartree-Fock equations.

It should be noted that an extra restriction is imposed on the 

transformation: since it is of the form

= E ° i j $ v  — ( m * B * 7 )

where (p^ are spin-orbitals of the form then all the

in B.7 must have ^  or ?? - ft if (1/̂  is to be of the same form,
(9)i.e. the spin function must factorise out , and separate 

transformations for ** and >5 spin orbitals, which do not mix orbitals 

of opposite spin, must be used.

In the closed-shell Hartree-Fock case this presents no problem, 

but in general such unitary transformations do not exist for open- 

shell RHF wavefunctions ^  and the off-diagonal Lagrangian 

multipliers cannot be made to disappear*

Techniques employed to circumvent this include (i) ignoring the

ll) (ii) the introduction of coupling operators

(iii) the Unrestricted Hartree-Fock Method which will be

described later in this chapter.
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C• The Roothaan-Hall Equations for Closed Shells

The solution of the Hartree-Fock equations may be performed 

numerically, but in the case of molecular systems- it is more usual to

express the MOs as linear combinations of complet,e sets of orthonormal
(6)basis functions ’* i.e.,

«̂i = f  cAi where = , and as
1

long as the conditions are satisfied, any complete; set will suffice.

Impracticability constrains us to the use partial summations 

of non-orthogonal functions, however, e.g.,

^  (III. C.l), and in this case the
/*= 1

choice of functions is critical.

Substitution of III. C.l into III. B.3 h>c) minimisation of E 

with respect to each C ., under the constraints^.^. /((;.>= S. 

using the same methods, leads to

E  - E  & = °’ — (ni- c-2)

where F^y - H^y + / 1 ^ v  ̂' i ^ l yVr ) I » ----- U 11* c-2a)
ooo 9,0- 'OC C  'ACT

P< W  = 2 E  *&• ’   (I11- C-2l")
i= 1

(where the summation is over the occupied orbitals only)

and (av|Ao- ) \  ( 2 ) ^ ( 2 ^  dr2   (lII.C.2c)

If we again assume a Unitary Transformation whicla diagonalises ^ , we 

obtain

E ^ U ^   ( m .  o.3)
y

the Roothaan-Hall equations 9 • wholse validity depends on the

feasibility of the Unitary Transformation on the matrix •

Further transformation gives the pseudo-eigenvalue equations
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f V = c'e , -------- (III. c.4)
i -1 A f Awhere F = S 2FS2 and C = S2C. Solution of the secular equation

If;„ - q  sAVU  o  (h i . c.5)
gives the eigenvalues of the occupied MOs, and the eigenvectors (as 

columns of C*) are then found by solution of

= 0   (III. C.6)
y*

for each 6^. uenerally, equation III. C.5 is solved by numerical 

diagonalisation of F1, and III. C.6 yields the required coefficients.

The whole process,, after a suitable set of basis functions has 

been chosen, consists of calculation of the one and two electron 

integrals used in III, C.2, and the construction of a density mat.vix 

via III. C.2b. The resulting Fock matrix is then transformed and 

diagonalised as described above, new eigenvectors are found, and the 

process repeated until the energy converges to a self-consistent value.

D, Treatment of Open Shells - the UHF Wavefunctions ^

In general, cpen shell calculations, as will be necessary for 

the investigation of molecular clusters dressed with an excess electron, 

present more problems than closed shell ones. Spin and spatial 

symmetry considerations require that for singlet states of diradicals we 

use more than one Slater determinant; He in the *S configuration

requires a wavefunction of the form

(p(l,2) ls(l)2s(2) + Is(2)2s(l)j |*(lj*(2) -/fl(l)«(2)j ,

i.e., ,^L||ls(l)*(l)28(2)jS(2)| + I ls(l)yS(l)2s(2)K(2)J j .

However, any configuration with one electron outside closed 

shells (e.g., the excess electron molecular cluster models) will require 

only one Slater determinant.
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Another disadvantage of the open-shell RHF -wavefunction is that

no valid Unitary Transformation preserving the RHF wavefunctions exists

which may be used on equation III. A.4 to remove the off-diagonal
fo)Lagrangian multipliers , as was mentioned at the end of section IiI.B. 

Again, however, this difficulty does not arise with Unrestricted 

Hartree-Fock wavefunctions, where separate HF equations are solved for 

<*and p electrons.

In the UUF method, the space parts of the wavefunctions are no 

longer constrained uo bo identical, and (pyjjp is written as

(j)UHF l)<2n- l) [ , ---- (III.D.1)
for a single excess electron. This leads to the equations

Yj&v- )Cy± = 0   (III. D.2)
i/

)Ĉ i "  °    (I11 ' D'3)

there f£ v - H^.,+ jj^. U* v | ! W  ) - UcrJ>,v)|
^  O-

b r~ b^1/= H*.y + j > v | J W  ) - PAcr (X O-lbv )J ,
%o~which are solved as before.

The UHF method suffers from the disadvantage that the
2wavefunction is not an eigenfunction of S , where S * S . + S . + S kc * ~ xi yj z~

is the total electronic spin operator bat it remains an

eigenfunction of S . Although this may appear serious, the effect

judged on ab initio computations by the present author, has been slight,
2values of-^0*76 instead of 0*75 being obtained for<S >.

£ .  c n o ic e  ox xxagjls wees

The truncated basis sets used in LCAO calculations should be 

chosen carefully, and many such sets have been developed, the criteria 

being that they give energy values sufficiently near the Hartree-Fock
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limit and that they reproduce quite well properties such as spin and

charge densities, dipole moments, bond lengths and angles, »tc. Most

basis sets are of the form f(r)Y"(&, where f(r) is a radial

function, and ^(0, is a spherical harmonic; the form of f(r) giving
("* 6)best results, namely the Slater function, o£ form

\ w n-1 -^r f (r) = Nr e ,

does not give two-electron integrals capable of analytical evaluation,

and more time-consuming numerical techniques must be employed,

Gaussian functions, of the form

f (r) = Nr e

with )S() sometimes written as where i, j and k are
( 18)integers, were introduced by Boys 1' . These, although giving two

(IV 3 8 19)electron integrals susceptible of analytical evalisatic-n * * ,

require more functions, and hence many more integrals, to duplicate the 

effect of Slater functions.

Many other approaches have been used, such &i> the use of cusp
(20) f ^functions and Floating Spherical Gaussians  ̂ , but the atom-

centred Slater and Gaussian functions remain the most popular, and
(23)comparisons by Hosteny et al, on H^O showed that the Slater-Type

Orbitals (STOS) were suitable for the inner shells, while Gaussians

were better for the valence shells, and hence for properties like

potential surfaces, equilibrium geometries and excitation energies.

Least-squares fitting of Gaussians to Slaters has also been tried by 
(2/*.)Pople et al, with marked success.

Most common in the literature is the optimised contracted basis

set; this is derived from the ordinary optimised basis set of so-called
(25)primitive Gaussians , which is normally unduly large for the SCF 

iteration procedure, and is usually contracted to a set of linear
/ pA p7 pf>)

combinations of primitives 9 to reduce running time and
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storage space. Choice of a basis set depends on balancing time

considerations against accuracy* and even a very flexible basis set may
(29)give poor results for dipole moments and more esoteric properties .

Interwoven with the flexibility is the question of angular 

dependence. It has been shown,, in the case of NH^, that the inversion

barrier cannot be adequately predicted without the use of polarisation
(30 31 32) (33)functions > ‘ * , and that bonding in some sulphur compounds

requires the consideration of u-orbitals. Care must- therefore be taken

to include polarisation functions in cases where the orbital

hybridisation is likely to alter.

F. Approximate Methods - CNDO and INDO

(i) The CNDO scheme

The spectacular increase in availability of SCF ab initio methods

in recent years has been offset by the vast demands such calculations

make on computer resources* since the number of two-electron integrals

required goes up as the fourth power of the number of basis functions.

Such problems have nurtured the semi-empirical methods* which

simplify integrals by a combination of systematic neglect and semi-

empirical parameterisation, enabling larger molecules to be tackled.
(31.)In the wake of Parr’s Zero Differential Overlap Approximation ,

Pople and co-workers produced various rotation-invariant approximation 

methods such as CNDO, INDO and NDDO, which increase in complexity as they 

do in usefulness.

. Such methods rely basically on the neglect of two electron 

repulsion integrals involving overlap distributions over different 

atomic centres, and of the overlap integrals involved in normalisation 

of the MOs That is,
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Ĉ vlAo- ) = C^la*) Ŝ ySAo.   (III. F.l)
and Sy^v = S U v    (III. F.2)

where and y must be on the same atom, and A  and cr must be on the same

atom; in this way all three and four, and many two centre ^ integrals

may be removed. The one-electron integrals over the core Hamiltonian,

which describe the bonding in the molecule, are constructed partly from

experimental data.

Ideally, the observables obtained should be, as they are with the

Roothaan equations, unchanged under a linear transformation of the basis

set, that is, under rotation, hybridisation and symmetry combination,

but the above expression does not guarantee this. Pople et al. have
(35)shown that invariance under rotation and hybridisation can be

assumed if equation (III. F.l) is written as

C^v/Acr) =    (III. F.3)

where *  m  - (-"A-*A | * B^ B ) ------  (III. F.4)

is dependent only on atoms A and B, and not on the particular orbitals; 

it is an average repulsion term for electrons associated with atoms k and 

B.

Similar approximations are made for H^y, namely (if>* and y  are 

both on atom A),
1 2 = <“|#T' > ^ < y U - \ -V- -Vjl/>- --(III.?.5)

BV A
where is the potential due to the nucleus and core electrons of atom K.

i.e., H^y = U ^ y -  V^<>c|vB|l/ >    (III. F.6)
B* A

“ 0 by the spherical GyiTJiis v ry of if the wavefunctions are

non-hybrid unless = V  , and <£ J^bI^ ‘wr^ ^ en> by analogy
with III. F.4> as the average potential on any valence electron of

A due to the nucleus and core electrons of atom B.
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Thus ^ V Afi    (III. F.7)
B* A

I f ^  and v are on A and 3, then some form of parameterAsation 

is required, for
2  i— i

- VB|v> -Y<~\ vjv>  (“I* F*8>
C;V A, B

which, by the usual approximations, gives
2

H*y= <-^ | - X  ' VA ‘ VB I V > = ̂  V _______ (I11' F,9)

This, which requires empirical parameterisation. is a resonance 
(37 )integral V-M ' giving the energy of the two electrons in the field of 

the cores of A and B, and in the CNDO method, this is written as

& =   (XII. F.10)

where fi AB is a solely atom-pair dependent parameter, this being 

simplified further via

^AB = +>5B)-  (I11* Flll)

Finally, these single-atom bonding parameters are fitted using 

ab initio calculation results with a minimal basis set.
Since the adjustable parameters, namely VAB* *AB and

may be specified in various ways, different schemes such as 

CNDO/l and CNDO/2 have arisen, but neither of these directly concern 

the present work.

(ii) The INDO scheme

In studying excess electrons, cne wishes to account for properties 

dependent on excess spin densities, and to allowr for effects due to 

parallel and opposing spins. Since the two-electron exchange integral 

is neglected in the CNDO schemes, spin densities in inner 

orbitals and separate states due to spin differences cannot be accounted 

for in this method.



65

In the INDO formulation, all the main approximations of CNDO are

included, with parameterisation as in CNDO/2 with the exception that

monatomic differential overlap in one-centre integrals is now retained

(33, 39). that is, i?, retained, provided that ̂  and V reside

on the came atomic centre,, The* extra integrals are then evaluated in
(2)terms of Slater-Condon parameters , which are obtained empirically, 

with the exception of F°, corresponding to this being evaluated

analytically as it is in the CN00/2 approximation. 'Similarly, Slater- 

Condon parameters also appear in the expressions.

(ill) Extensions to the INDO scheme for solvated electron models

Since excess electron states prove to be fairly loosely bound 
( AO * 1)and diffuse , M , it3s desirable to introduce some facility for

including linear combinations of diffuse orbitals as extensions to the 

less than minimal INDO basis sot. The present author has made 

alterations to the basic INDO programme of Pcple and Beveridge, to 

enable floating spherical Slaters (FSS ) to be u*ed, as follows:

(a) Extra data on the new floating Slator are stored in the 

unused array space reserved for He atoms.

CO evaluated in the INDO approximation as

(i) r ~  «  (2)dr, dr 
JJ A 12 B *

is evaluated as usual if A, (or B, or both) is a floating 

spherical Slater.

(c) Since the FSS has only one Is orbital, the integral such 

as (SPX I spx)> which involve higher Slater-Condon parameters than F°, 

do not require computation for the FSS. Only (ssjss) = F° = is 

used.
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(d) the potential on an electron of A when affected by the

core of B, given in INDO as

= zr \ ̂  (l) is evaluated as usual, the Z of the
b J  SA rlB

FSS being set to zero.

(e) TJ'u ̂  the energy of an electron in the field of its own core, 

is not set to zero, since the FSS electron possesses kinetic energy, 

but no nucleus.

Thus

;i.e u = % -  ,

where &(r) = e is the FSS.

(f) by IV,F. 9, 10, 11,

H^y = J —  VA - Vgj V >• , when and v* are on different

centres, and

 ̂cit will be assumed, for want of a better criterion, that each/* atomic

term involves about half the KE plus its own potential. Thus, for the

floating Slater, we parametcrise as

'S3j- , which is probably slightly on the pessimistic side for 

bonding purposes, but we wish to avoid introducing non-existent strong 

bonding in calculations designed to adduce which structures are likely 

to trap an excess electron.

With these extra refinements, a set of floating Slaters, all with 

the same exponent, can be introduced into a cluster to examine the 

effects of greater diffuseness and flexibility of basis sets.

The study of excited open-shell states is also basic to solvated 

electron theory, and since Koopman's Theorem is in general invalid for

2 r
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(3)open-shell cases , a more rigorous evaluation of excitation energies 

was carried out; further modifications by the author were made to the 

INDO programme to allow SCF calculations on promoted electron states 

via reordering of MOs before the first calculation of the density 

matrix. The next chapter will include calculations using the above 

technique, as an aid to the study of short-range interactions.
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IV

Water Clusters - Short-Range Interactions

A. Introduction and Coroments on Criteria for Solvation

Since the electron, in water and ice at least, is inferred to be

localised on a few molecules, it may be valid to represent the short-

range interactions by molecular SCF calculations, and the long-range
(31)ones by a continuous dielectric medium • Short-range properties 

such as spin densities will then be mainly determine! by the local 

structure, and long-range properties such as the total energy will be 

related to the medium polarisation field. For instance, a spherically 

disposed charge of one electron confined in a cavity of radius 3A° in 

water will be stabilised to the extent of 1*1 cV by the optical 

polarisation alone, while total relaxation of the dielectric medium will 

yield 2*4 ©V.

Thais a negative ion cluster may exceed the energy of its neutral 

species by up to 1*0 eV and still favour electron trapping; energetic 

criteria are therefore not an absolute measure of trapping ability, but 

may serve to grade clusters on a relative scale as possible trapping 

centres.

The choice of basis sot requires equal caution. As has been
(l ?)pointed out by various workers 9 , a system which do3s not bind

an excess electron will demonstrate a lowering in its energy as 

progressively more diffuse basis functions are added, approaching 

asymptotically from above the energy of the neutral state plus a free 

electron. In ab initio calculations on the solvated electron, the 

ideal should be to add to the basis set apposite to the neutral cluster 

a succession of diffuse orbitals, which invariably lower the energy of 

the negative ion state. If the energy of the excess electron state is 

below that of the neutral state, one may with caution infer a bound
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stable state; if the converse is true, one may be observing either a 

drifting off of the electron or a stable but diffuse bound state; 

again, energetic criteria alone will not suffice.

However, if the eigenvalue of the excess electron MO is negative, 

or if its eigenvector does not possess its highest atomic orbital 

coefficient in the most diffuse MO, then we may tentatively assume 

binding. The spatial behaviour of the excess spin density, P S, on 

addition of diffuse functions, may also provide a binding criterion. 

Similarly, fitting of calculations to experimental data such as 

solvation energies, optical absorption p e a k s ^ 5,7,17*22, 

proton spin densities may be used as guides to a cluster’s

suitability, since these may be fairly insensitive to long-range 

effects. It should be noted that even a positive electron affinity, found 

with a flexible and adequate basis set, in a properly parametrised 

calculation, does not in itself imply solvation, since it may occur 

on a highly improbable part of the configuration curve for the cluster. 

Studies of energies versus configuration coordinates are more 

definitive than ’’single shot” evaluations.

B. Theoretical Models of Other Workers! Water Dimers and Larger 
Clusters

(i) Early models

Among the earlier and more approximate theoretical models are

those of Raff and Pohl who considered perturbed by two
(7)hydroxyl ions, and McAloon and Webster , who performed extended 

Huckel calculations on water and ammonia dimers. The latter results 

indicated that a dimer with Structure T.I (See Fig. IV* B.l) gava 

reasonable excitation energies, and delocalised spin densities, but 

displayed a red shift on compression, contrary to experimental
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(8)evidence .

A structure similar to I also displayed reasonable excitation 

* energies and compressioiial shifts but retained all its spin density 

on one molecule,
(9)The famous structural model of Natori and Watanabe (Structure 

III in Fig.IV. B.l) was treated using a linear combination of the four 

inner hydrogen Is functions in the potential due to the 0 and H atoms, 

giving hi/^ 0*80 eV, and an estimated heat of solvation o f - 2*4 eV. 

This, however, includes a term for the removal of a central H^O from 

Structure III, whereas the evidence (see Section .1) suggests that such 

defects are formed prior to electron capture, and neglects the long-range 

medium polarisation.

The natural continuation of such work is tlirough better 

semicmpirical results to an ab initio level, cost- permitting, and this 

has been the recent trend.

(ii) A Spin Density Optimised Calculation

The INDO minimal basis calculations of Kerr and Williams are

interesting in that they make no attempt to use energy as a criterion, 

relying instead on fitting calculated f* 3 values for water structures 

to experimental results All possible dimer structures

were thoroughly studied, bond lengths and angles being optimised at each

stage. None of the f* 5 approached the expei’imeutal result of total P  3
g  ^  1 12 27)on all protons, r J C.08 but some structures gave markedly

lower total f* 3 than others (•̂ '0*2) and these wer*. aesumed to be the

optimal conformations. The disparity between theory and experiment was

still large, but may have been due to lack of a suitably diffuse and

* For one of the orientations
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flexible set of basis orbitals. The Dimer structure most favoured was 

almost identical to Structure II, which may be used for all practical 

purposes: an 0...0 distance of 3-3A°, an 0-K length of 1*2A° and a

bond angle of 105° gave inner and ou'.er proton spin densities of 0*091 

and 0*018 respectively, or a total pc.oton.ic spin ‘density of 0*218.

A tetramer structure gave a value of 0*383> n0* aH  possible

tetramer structures were investigated.

No other properties, such as optical transition energies, were 

calculated, but it is of interest that the optionra diner configuration 

for the excess electron state agrees with that obtained by lialeway and
(13)Schwartz , using energetic criteria.

(iii) Ab Initio Studies on Dimers

The work of Naleway and Schwartz consists of a similarly thorough 

search through possible dimer orinutations, with calculation of total 

energies and electronic transition energies. Ab initio calculations 

were performed using a flexible double zeta Gaussian basis set (obtained 

by splitting off the most diffuse function from a serviceable set of 

contracted Gaussians) and a fixed IÎ O monomer geosnetry of R(O-H) ~ 

1*80882 au (0*957l67A°) and HOH 104-52°

The neutral case of Structure I displayed the lowest energy,
(lc)confirming the results of Del Bene and Pople at an 0...0

distance of 5-67 au (3-OOA0). The energies of the neutral and excess 

electron species were calculated as -152-0186 au and -151-7974 au 

respectively, with a transition of 2*21 eV to an excess electron excited 

state. On the other hand, in support of Kerr and Williams’ findings, 

the most favoured structure for the excess electron state is Structure 

II, with 0...0 distance 7 au (3*70A°) and energies of -151*9999 au and 

-151-8495 f°r the neutral and excess electron state. The electronic 

transition energy from the excess electron state was 2*48 eV, yet
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(l6)further from the experiment value of 1*72 eV « Assessment of the 

effects of geometrical relaxation was made by stretching of the inner 

0-H bond, which revealed that for one geometry the energy of the excess 

electron fell below that of the corresponding neutral one. This fact, 

unnoticed by Naleway and Schwartz, has been graphed by the present 

author (see Fig.IV. B.2); the relevant energy reversal occurs at 

R(0-H inner) = 2*42 au (l«28A°).

However, examination reveals that the energetic minimum for this 

stretching is well above that of the neutral state by about 1*6 eV, 

demonstrating the necessity of examining more than one point on the 

configuration curve before forming conclusions about stability.

The same workers have also examined the effect of more diffuse 

basis sets, such as 3s on oxygen and (3s, 3p) oli ©xygen plus 2s on 

hydrogen. Such additions lower the energy of the excess electron state, 

but no corresponding excitation energies are quoted. This very thorough 

study of the water dimer, though informative as to> favoured structures, 

gives no idea of the spatial behaviour of the excsess electron as 

geometry and basis set are varied, nor of the dependence of the 

excitation energy on basis.

(iv) INDO Calculations on Dimers and Tetraimers

The H^O dimer has also been treated at an IMDO SUKF level, using
(1a minimal valence basis, by Howat and Webster* ', aho carried out an

investigation of Structure II, obtaining energies, spin densities and
/ \, o Aexcitation energies. Using a geometry of E(O-H) — C*958A , HOH =

104*45° they kept the monomer geometry fixed, varying the

intermolecular separation• As in the Naleway and Schwartz studies, a

configurational minimum appears in the excess electron state, this time

at an 0...0 separation of 3*H6A°, with energies of -38*4953 au and

-38*2787 au (neglecting oxygen Is energies) for the neutral and excess
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electron states respectively. In accord with the neglect of most
(18)multicentre differential overlap integrals in the INDO method , 

spin densities on the various nuclei are evaluated by summation of the 

diagonal elements of the spin density matrix pertaining to each nucleus, 

neglecting off-diagonal contributions. The results are encouraging: 

spin delocalises over the cluster to the extent of 0*28 on 0, 0*18 on 

the inner hydrogens, and 0*04 on the outer ones. While this gives a 

total P  ® of 0 *440, as against 0*218 for the specifically spin-ri
optimised calculations of Kerr and Williams, and the experimental

result of ^  0*08, it nevertheless confirms that spin delocalisation can

occur on clustering. An excitation energy of 1*98 eV, with the
(19)expected compressional blue shift is in reasonable agreement with

experiment, especially since the excited-state energies were calculated 

by a non SCF repopulation of the MOs optimised for the ground state. 

Cycling to self-consistency would have been expected to lower this 

energy closer to the experimental 1*72 eV. A slight shift of spin 

density to the peripheral hydrogens is observed on excitation, w.ith 

P S values of 0*22, 0*15 and. 0*13 on oxygen and the inner and enter 
protons, respectively, but since the values were obtained from a non-SCF 

calculation, their value is limited.

Further calculations by the same investigators on a wurtzite-like 

structure plus excess electron, generally similar to Structure I, 

elucidated that it3 ground state spin density resided almost entirely 

on one molecule, shifting to the other on excitation, providing, they 

suggest, a possible mechanism for photoconduction.

However, the Structure I-like model has excitation energies 

upwards of 5 eV, and a lack of delocalisation, making it an unlikely 

candidate for an electron trap.
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While dimer studies are useful in predicting general trends, the

experimental evidence, as has been shown, points to larger molecules.
(o)Building on the work of Natori and Watanabe , Mcwat and Webster have 

also performed minimal valence basis IRDO computations on tetramer 

defect clusters of type III (see Fig.IV. B,>l) -and Its equivalent, Ilia, 

when both H atoms on each water molecule point towards the centre.

Energy curves for these electron states once again display a 

configurational minimum in the symmetric breathing mode of the cluster, 

at R(centre - 0) = 1*918A° for Structure III, where the neutral and 

excess electron states have energies of -77*008 au and -?6-'d'24 au 

respectively, and at R(centre - 0) = 1*677A° for Structure Ilia, which 

is reported to be less stable. Spin densities and excitation effects 

are more illuminating.

Both forms have total f* ̂  of 0*12 and 0.38 for III and Ilia, a 

result still far from ̂ 0.08, but less than the dimer result, showing a spin 

shift to the oxygen centre on clustering. However, structure III has 

an excitation energy of 2*08 eV with a blue shift on compression, while 

Ilia displays 0*86 eV and a red shift on compression. While this is 

slightly worse than the dimeric result, it is clear that the 

compressional blue shift, and the expected lowering of hv on SCF 

treatment of the excited state, will favour Structure III over III a.

(v) CNDO/2 Results on Tetramers

Extra basis functions have been added to larger clusters in the
(1 31CNDO/2 calculations of Weissmann and Cohan , who examined

Structures III and IV (see Fig.IV. B.l), along with some five-molecule 

chains. Since each structure has been examined only at its experimentally 

observed neutral geometry, the magnitude of any electron affinity 

obtained is subject to change as the structure relaxes, but the fact 

that Structure III, with R(centre- 0) = 2*78A° has -79*A95 &u and
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apparent tendency to electron capture. Structure IV, similarly, 

displays energies of -99*4X0 au and -99*441 Since also the lowest

occupied MO of the negative ion states of Structures III and IV has 

eigenvalues of • 0*3/ eV and -0* 57 eV, it appears that the excess 

electron state is the energetically preferred one, even when evaluated 

at a geometry more favourable to the neutral state. Weis smarm and 

Cohan take these results as implying that a regular icelike structure 

is the favoured trapping site, and estimate from the eigenvalues an 

excitation energy of /~w' 1*9 eV. The excited negative ion state is 

further inferred to be bound, provided that long-range polarisation 

effects the ground and excited states equally, and unbound otherwise.

However, their solvation energies appear to be at variance with 

experimental and other theoretical data, in the following way. The 

calculations indicate spontaneous electron trapping on isolated 

clusters containing upwards of four water molecules, the icelike 

pentamer (Structure IV) oeing particularly favoured to the extent of 

^0.6 eV.

Now a crude estimate of the additional energy obtained from electron

/Long-range dielectric medium interactions would be ^*2*5 eV (see Chapter

VI), leading to a solvation energy of over 3 eV, discounting the cluster

relaxation. The observed heat of solvation for water is 1*7 eV. More

concretely, favouring a regular ice structure as a trapping site would

make the large decrease in solvated electron yield, ac temperature is
(21)lowered difficult to explain; furthermore, the structure

disrupting F ion greatly increases the trapping ability of pure 

crystalline ice A defect model, on the other hand, fits these

data, and the observations of Section I, more aptly. If the calculated 

energy drop is not realistic, this may be because of the parameterisation
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chosen, or because the extra orbitals added were specifically optimised 

to fit the e~state rather than the neutral one. It would be difficult 

not to obtain "solvation11 in such circumstances.

(vi) SUHF INDQ Calculations on Four and Six-Membered Clusters
(22)Similar results are obtained by Fukui et al. , who performed 

cluster calculations using some diffuse functions at an INDO SUHF 

rather than a CNDO/2 level, on tetramer Structures III and Ilia, and 

on octahedrally disposed water molecules. Is, 2s and 2p orbitals are 

centred in the model, after suitable parameterisation of the f̂s (the 

Slater exponents) and the partial resonance integrals (see Chapter

III) for the functions; these are arranged empirically to fit the
Sobserved proton spin densities, r g, and to fit the energy of the highest 

occupied orbital in the negative ion state to the observed solvation 

energy. As already discussed,the first criterion is role/ant, but

there is no a priori justification for fitting the ionisation potential 

of the isolated cluster to the observed property of solvation energy. 

Furthermore, there is some dubiety about the idea of calculating spin 

densities using a method parameterised by means of these quantities, and 

the same argument applies to conclusions about solvation energies.

Results using the most flexible basis (extra Is, 2s and 2p 

orbitals at the cluster centre) show values of -1*48 eV (Model III) and 

-1*54 eV (Model Ilia ) for the energy difference (E~-Sneut)* with 

excitation energies of 1*42 eV and 1*51 eV, accompanying total f* ®n
values of -0.0224 and -0«0l6 respectively. (The excitation energy is 

defined by an approximate first order perturbation method rather than 

an SCF-type calculation). The cluster geometry is based on the R(centre- 

0) distance of 2*92A° deduced for H^O (^3*24)^ octahedrally

disposed clusters yield solvations energies ^  2 eV, but all the models 

in which two or three extra functions are centred in the cavity
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display a tendency for the excess electron spin density to concentrate 

in these extra orbitals, although Fukui et al. claim that sufficient 

total spin density extends outwards to warrant the inclusion of a second 

solvation shell. Ideally, one would place more extra orbitals outside 

the cluster to determine whether they were being preferentially occupied, 

but again this is time consuming.

They show also, from examination of the excess electron MO, that 

on excitation the excess electron is transferred from the Is and 2s 

extra central orbitals to almost total occupation of the 2pz orbital, 

and their spin density plots indicate an expansion of the excess 

electron density in the a direction, and slight reduction in other 

directions. Thvs there is a slight tendency for spin density to shift 

outwards on excitation*

Thus the general behaviour of the excess electron on solvation 

and excitation has been examined by the preceding groups of workers, but 

the practice of parameterising the calculations in order to make the 

excess electron state lower than the neutral one may cast doubt on the 

subsequent calculated so3.vation energies, since one may have a negative 

electron affinity for an isolated cluster but still stabilise the system 

by means of long-range polarisation in the surrounding dielectric*

C. Investigation of The Hydrated Electron in Water and Ice - Methods 
and Result 3

(i) Introduction

The structural model studies reviewed in Section B indicate that 

disparities in calculations may occur for various reasons; the basis 

set used may be unsuitable; states may be examined only at a single 

geometry; different levels of approximation may be used, e.g., extended 

Hiickel, CNDO/2, INDO and ab initio; the difficult problem of



81

parameterisation of semiempirical calculations for extra, diffuse 

functions may be biased in favour of the properties sought; the 

criteria for the existence of a solvation centre may be based on 

calculated energy differences for isolated clusters, and nothing else.

It seems more reasonable to take spir. densities and excitation energies 

into account.

The ideal calculation is clearly a Cl treatment of a flexible,

diffuse Hartree-Fock limit basis set at an ab initio level on a

cluster in the presence of a large number of background molecules, but

computational economies preclude this, although Clementi cfc al. have

produced definitive papers on the role of water in solvation using
(25)large-scale calculations

Even Hartree-Fock limit ab initio calculations vdth a basis set 

suitable for the excess electron are prohibitive, and at present more 

limited treatments are the norm. It was therefore decided to investigate 

the solvated electron in water and ice at several different levels, 

beginning with the water dimer.

(2) The Water Dimer - an Ab Initio Study

An ab initio minimal basis investigation of Structures I and II 

was essayed, in the manner of Naleway and Schwartz, but with more 

emphasis on the excited states, and calculation of Mulliken spin 

densities, in the hope of observing at an ab initio level what had 

hitherto been investigated using the INDO approximation

(a) Method

The ab initio spin-unrestricted Hartree-Fock technique has been 

discussed in Section III. Since many geometrical configurations for 

neutral, excess electron and excited excess electron state were to be 

studied, it was decided to limit the basis set to a minimal valence
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(15)ST0-4G one used by Del Bene and Pople v 7 for studies of H-bonding in

neutral dimers (Table IV. C.l). This will tend to place the energies 

of excess electron states too high, but should show how the energies 

of the states and their spatial spin distributions respond to 

configurational changes.

was kept constant, the jntermolecular geometry being varied for 

Structures I (Cs) and II

Mulliken spin densities were evaluated for each atomic centre A

for each k09/+ , associated with that centre$ this method should 

demonstrate how spin is partitioned, provided that the basis sets on 

each centre are reasonably balanced.

The excited excess electron state was obtained by reoccupying 

the MOs for the corresponding ground state, and cycling to self- 

consistency. This was usually effective, but some states were difficult 

to obtain.

Finally, lest the UHF method produce eigenfunctions too far from

the eigenfunctions of S the -value of <C ) S'' I (p >  vras monitored
yfor each state, and found to be within 0.05 of the expected 0.75. 

was also found to be within 0.02 of the Viri<*l Theorem value of 2 for 

all cases studied.

(b) Results and Discussion

Ground state energies for Structure I are shown in Table IV. C.2.

In agreement with previous results, a shallow configurational

minimum appears (see Fig,IV. 0.1) at an equilibrium 0...0 separation of

2*73A°, corresponding to an energy of -150*975 au. Addition of an
2 /excess electron to give the A state preserves this minimum (see

The monomer geometry of R(0-H) = 0*9915A°, H0H — 100*053°

by

y**- on k
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Fig,IV. C.2), but contracts the structure to an 0...0 distance of

2*40A°, with an energy of -150*498 au, a value 0*477 au, or 12*98 eV

above the neutral state. Restricting structural relaxation during

capture places the excess electron state 13*4 ®V above the neutral.

Structure I, favoured in the neutral state, does not appear to be a
(17)good electron trap, in accord with the results of other workers .

As can be seen from the results of Naleway and Schwartz y, 

addition of further diffuse orbitals lowers this energy gap, but does 

not render it favourable to solvation.

Model II, with its opposing protons, is found to have no stable 

configurational minimum, as illustrated in Table IV. C.3* and 

Fig. IV. C.3> »*he tendency being for the molecules to drift apart, or 

possibly rearrange until the more stable H-bonded Structure I is 

obtained. The corresponding excess electron state displays an energetic 

minimum, however (see Fig.IV. C.4) at an H...H separation of l*i5A°, 

with an energy of -150.570 au, rendering it more favourable to an 

excess electron than Structure I.

Examination of excess electron Mulliken spin distributions gives 

results as shown in Fig.IV. C.3, where over 95$ of P  s is on the right 

hand water molecule of Structure I, with a large part on the protons. 

Since we may infer that greater delocalisation of e~ over the 

molecular structure implies greater stabilisation, such asymmetry doe3 

not favour Structure I as a trapping site. This is reinforced by the 

observation that relaxation towards the e~ state equilibrium geometry 

(0...0 = 2*4A°) increases the asymmetrical distribution.

Structure II shows both a delocalisation of soin density over 

the two molecules, and also a lowering of the spin on the hydrogens 

towards the experimental result of 0*16 per proton for alkaline ice^2^3̂  

A tendency for almost all the/®3 to collect on the inner protons can
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also be noticed; this is in qualitative agreement with the INDO
(17)calculations of Howat and Webster •

Excitation produces interesting results. The excited states of
2 ;f 2 *Structure I reveal two interesting states, of “A and A symmetry,

respectively, with energies as shown in Table IV. C«4» Flouting the

energies of these states against 0...0 separation (Fig.IV* C.5) reveals 
o /an unbound state ( A ) and a state with an energet.i c minimum of

^-150*340 au at R(0...0) = 2*37A° (¥). Although extrapolation from

such a model is speculative, this behaviour agrees with attempts by

some workers to fit the e~aq optical spectrum to a combination of
(2$ )bound/bound and bound/free state transitions : it should be

emphasised, however, that the e~ ground state of Structure I has been

deemed less favourable than that of Structure II. For completeness,

the energy of the bound-bound transition has been evaluated on a Franck-

Condon basis from the SCF data (see Table IV. C.5 and Fig.IV. C.6),
? ' 2 11showing two opposing trends: "k —* A transitions show a blue shift on

2 * 2 'expansion, while the strictly symmetry-forbidden A —> A ones reveal a
(29)red shift, the latter being in accord with experiment . At the e

ground state equilibrium geometry of 2*4A°.} however, this leads to an
2  ̂ 2, //excitation energy of ̂ 4*9 eV as against 2*7 eV for the former A —> k'

transition. The observed peak value for the transition is 1*72 eV with

a peak width of ̂  0*92 eV ^0)^

Structure II, with the more favoured ground state for e~, exhibits

a non-binding excited state (see Table IV. C.6 and Fig.IV. C.7), which
(31)is in accord with suggestions by some workers that the optical

spectrum of e aq has a phctcicnication efficency profile. A Franck- 

Condon transition from the ground state would require about 5*8 eV, and 

a compressional blue shift is indicated.
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Such a crude but broad-ranging seraiempirical calculation cannot be

expected to give results of quantitative accuracy* However, some new

qualitative results have emerged. In neither model does the energy of

the negative ion state fall below that of the neutral, but this is not

expected, since, (a) the basis set was not sufficiently flexible and

diffuse to describe the mo~'3 diffuse negative ion state and (b) it is

probable that long range polarisation fields are the principal factors

determining whether solvation can ultimately occur.

Although there are thus disparities between calculated and measured

solvation energies, and optical spectra, it has been established that

Structure II possesses a configurational minimum In the e state, making

it a better candidate for trapping than the regular H-Bonded dimer.

This vindicates to some extent the speculations from experimental data

on trapping in crystalline ice (see Section I) that defect sites may

favour electron trapping.

The excitation energies are high, probably for reasons detailed in

(a) above, but are qualitatively interesting: it might be conjectured
2 t 2 uthat the crossed A and A states of Structure I could give rise to a

complex optical spectrum, blending bound-bound and beunJ.-quasifree
(y>\transitions, as suggested by Delahav et al. . On the other hand, 

the excess electron ^A' ground state for Structure I is configurationally 

unstable, and Structure II is the more likely electron trap. The latter 

has the correct spectral shift on compression, and its excited state has 

no configurational minimum, reinforcing the idea of tound-quasifree 

transitions. Improvement of the basis set and addition of diffuse 

functions is expected to lower all the energy levels, affecting the more 

diffuoe excited states to a greater extent; a reduction in hv on 

improvement of basis set is thus expected, towards the experimental 

value of 1*72 eV for water. The limitation that Structure II must excite
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to an unbound state is not a serious one: not all modes of relaxation 

have been explored; an improved basis set may preferentially lower 

another excited state; a dimer unit may be too small to model accurately 

all the short-range .interactions. It is also possible that the observed 

spectrum does not involve bound-bound transitions at all.

Mulliken spin densities for Structure I are shown in Fig.IV. C.9.
2 /The A e ground stat? has most of its spin density concentrated on the

right-hand molecule, and the delocalisation which Kerr and Williams

stipulate for stabilisation is absent. Nor does excitation improve 
2matters: the A state retains the same type of distribution, and 3Ji the

2 1A state the disposition i3 reversed, spin having transferred to the

other molecule. (Similar behaviour was noted in the Howat and Webster

INDO calculations on a Wurtzite-type arrangement).

The Structure II results are more reassuring: (Fig.IV. CbS) the

excess electron appears to reside in the interior of the dimer, and is

distributed over both molecules, giving a total of 0*38, as against
0  0)Kerr and Williams’ specifically spin-optimised INDO result of 0*208 

Excitation transfers spin to the outside of the dimer, as shown, but 

leaves it symmetrically distributed, so that Structure II may be 

inferred, from spin distributions, to be the better trap.

Again, the limited basis used, and the use of Mulliken distributions 

rather than direct evaluation of P  3 at points in space, leaves the 

actual figures obtained open to question, but indicates the H-bonded 

structure of water to be less favourable to electron trapping than 

defect centres of the Structure II type.
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D. Water Multlmers

If the solvated electron in water is indeed localised on some 

defect structure, it is of interest to investigate the extent of its 

localisation: Kawabata's evidence (see Section I) suggests that the

region is not macroscopically significant, and NMl results indicate that
(27) (ll)in both crystalline and glassy ice the electronic byperfine

interaction is with 4, 6 or 8 protons, and line s3*ape analyses suggest

8-2 Various structures containing from 4 to 12 Ĥ ,0 molecules were

examined at the INDO level, using the INDO programme of Pople and 
(33)Beveridge , specially modified by the author to hanoie excited states

and use spherical floating Slaters (se^ Section XII.F).

For the basic Hp0 unit, a minimal valence basis set with orbital
(18)exponents as optimised by Pople and Beveridge was used , the

molecular geometry being fixed at P.(O-H) = 0953A!0, HOH = 104*45°, as
(17)used by Howat and Webster . Bata obtained ia the monomer

calculation are shown in Table IV. D.l. H^O itself is clearly

unstable with respect to the neutral molecule plsss a free electron. One

significant point is the tendency for the spin density to shift outward
2 2to the protons on the —> B^ excitation.

(i) The Effect of Environment on a Small (COLuster-Solvatdon Shells

In this study, an attempt was made to simulate the addition of

solvation shells to (^O)^. The basic unit (Fig*IV. D.l) was a

(Ho0), cluster, where 4 protons pointed towards the centre, while the 4
remaining 4 were disposed outside. Data on the iseutral and excess 

electron states are displayed in Table IV. D.2. The energy of the 

charged (“2^4 c -̂us^er is shove that of the neutral one with the same 

geometry, but all long-range medium polarisation has been neglected.

Spin shifts have been large: 75*6$ of the excess spin now lies on the

oxygens, as against 39*01$ in the monomer, and the total spin density
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on the central protons is 0*196; in fact, the total proton spin density 

of 0*244 is approaching Kerr and Williams1' carefully optimised result of 

0*208

Four more water molecules were then placed tetrahedrally round the 

cluster at a distance of 3R from the centre, where R was the centre to 

vertex distance in the inner cluster (R = 1*91&A°) and a similar shell 

was again added at 5R to give a 3( ^ 0)̂  structure.* Energies, and spin 

densities at 0, central and outer protons in the inner cluster are 

displayed in Table IV. D.2, so that the effects of a solvation shell 

can be assessed. The changes are not great; the excess spin remains 

firmly in the inner cluster, and the faintest spin shift towards the 

oxygens is noted; clustering has had little effect on the innei* water 

tetramer.

Alternative solvation shells at 2R and 2R. -t 4R were tried, and 

although calculations on the latter did not converge, results from the 

former are included in Table IV. D.2. Here a slight shift of the inner 

cluster spin is noted, from 1.000 to 0*994> 2nd 8 slight decrease in
o confirms this small outward trend, but the solvation shell has 

little effect on the spin distribution. With these indications of the 

localised nature of the trapped electron, it was decided to investigate 

a possible trapping site on another structure which might exist in 

water.

(ii) An H-bonded Double Ring Structure

For this model, 2 H-bonded (^O)^ chair rings were stacked as 

sketched in Fig. IV. D.2, with the H^O molecules in each ring in a 

quasi-random orientation, to simulate a possible H-bonded water fragment. 

Coordinates were evaluated using a programme written by the author.

Three oxygen molecules in the upper ring were H-bonded to three in the 

lower, the H^O geometry being as detailed in Section IV. D(i), and the
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upper 0-H-lower 0 distance was 2«76A°. INDO calculations were performed

on the neutral and excess electron states of this cluster, firstly with

the regular INDO minimal basis set as specified by Pople and Beveridge
(18), r.nd secondly with a variable exponent floating spherical Is Slater 

orbital at the centre of the structure, utilising various values of vf, 

some of which did not yield iterative convergence.

The same geometry was maintained throughout.

Table IV. D.3 shows the energies obtained witn various values of T. 

(it was not possible to force convergence to any excited excess electron 

states). Increasing contraction of the central orbital leads to a drop 

in the neutral state energy with a corresponding charge shift out of the 

centre of the cluster, whereas the excess electron state has a minimum at 

If = 0*1, coupled with retention of 99$ of the spin density in the 

central orbital. (A full set of data obtained is set out in Table IV.

D.3)* Once again it appears that the excess electron is best described 

as being quite well localised on the cluster*

: r i .  '' ..U, :V- ./U

' Pies,, 2 Z  '• '*
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TABLE IV. C.l.

Slater exponents (ST0-4G) for minimal basis ab initio water dimer 
calculations

Atomic Orbital Exponent

Oxygen ^

Oxygen

Hydrogen

- 7.66

2.23

1.23 »i
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TABLE IV. C,2.

Ab initio minim?.! basis (STO-AG) calculations on the Structure I 
geometry of the HgO dimer. Neutral and open shell ground states

0...0 Separation 
(A0)

Neutral State 
Energy(au)

2 / -A e State Energy 
(au)

1.5 -149.52477025 -149.13645527

1.7 -150.46790078 -150.06226250

1.8 -150.66743131 -150.25293669

1.9 -150.78817243 -150.36462230

2.0 -150.86278673 -150.4301987

2.1 -150.90930660 -150.46750880

2.2 -150.93816182 -150.48733145

2.3 -150.95569714 -150.49604078

2.35 -150.96154051 -150.4985942

2.39 -150.96516140 -150.49785331

2.4 -150.96594090 -150.49780415

2.5 -150.97152496 -150.49538559

2.6 -150.97418866 -150.49063039

2.73 -150.97512250 -150.48290492

2.8 -150.97495033 -150,47855224

2.9 -150.97427958 -150.47249124

3.0 -150.97336878 -150.46684491

3.1 -150.97239850 -150.46174499

3.2 -150.97147025 -150.457237OO

3.3 -150.97063455 -150.45331621

3.5 -150.96929643 -150.44708671



TABLE IV. C.3.

Ab initio minimal basis (STO-AG) calculations on the Structure II 
geometry of the HpO dimer. Neutral and open shell ground states

H...H Separation 
(A0)

*A Neutral State g
Energy(au)

%  e” State Energy 
(au)

1.0 -150.92030086 -150.56004661

1.1 -150.9337A778 -150.56830966

1.15 -150.93876636 -150.56999840

1.2 -150.94292034. -150.5703862?

1.3 -150.94922627 -150.56801197

1.4 -150.95359195 -150.56243457

1.5 -150.95663620 -150.55460008

1.6 -150.95877600 -150.54525669

2.0 -150.96275483 -150.50342564

2.5 -150.96413362 -150.46204877

3.0 -150.96460308 -150.43923518
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TABLE IV, C.4.

Ab initio minimal basis (ST0-4G) calculations cm the Structure I 
geometry of the H2O dimer. Excited open shell states

0...0 Separation 
(A°)

2a* Excited State 
(au)

''a! Excited State 
(au)

1.5 -149.09476821

1.7 -149o99927003

1.3 -150.18164121

1.9 -150.28649978

2.0 -150.34640269

2.1 -150.37922907

2.2 -150.39529095

2.3 -150.29335048

2.4 -150.40007950 -150.31880701

2.5 -150.39553946 -150.33783119

2.6 -150.38906596 -150.35219602

2.73 -150.37966186 -150.36596481

2.8 -150.37465224 -150.37171836

2.9 -150.36793916 -150.37847649

3.0 -150.38393174

3.1 -150.35680369

3.3 -150.39537928
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TABLE IV. C.5.

Ab initio min-imal basis (ST0-4G) calculations on the Structure I 
geometry of the H2O dimer. Excitation energies to the two excited 
states

0...0 Separation 
(A°)

hv(eV) 
2a' -> V

hv(eV) 
2.1 2,'A —► A

1.5 1.13

1.7 1.71

1.8 1.94

1.9 2.13

2.0 2.28

2.1 2.40 -

2.2 2.50

2.3 5.52

2.4 2.66 4.87

2.5 2.7 2 4.29

2.6 2.76 3.77

2.73 2.81 3.18

2.8 2.83 2.91

2.9 2.84 2.56

3.0 2.26

3.1 2.86

3.3 1.58
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TABLE IV. C.6.

Ab initio minimal basis (ST0-4G) calculations on the Structure IJ. 
of the water dimer. Excited state energies

H...H Separation 
(A0)

^Bu Excited State 
Energy(au)

hv(eV) 

\  -  \

1.0 -150.32777688 6.32

1.1 -150.34276521 6*14

1.15 -150.34352322 6.03

1.2 -150.35340103 5.90

1.3 -150.36112657 5.63

1.4 -150.36690920 5.32

1.5 -150.37141113 4.98

1.6 -150.37509177 4.63

2.0 -150.33666742 3.18

2.5 -150.40026434 1.68

3.0 -150.41107686 0.77
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TABLE IV. D.l

INDO calculations on H20 monomer: neutral (1A1), excess electron (2Ai )
2 """ " and excited ( B^) states

State Energy(au) > o 
to

1

o
Total

Neutral ^A^ -19.0142
2Excess Electron 'Â -18.7282 0.390 0.305 0.610

Excited ^
Excess Electron ^Bp -18.4852 -0.242 0.6211 1.242

TABLE IV. D.3.

(H^O)^^ H-bonded structure v/ith Central Slater Is Orbital

ENERGY (A.U.) 1.0WTAL) /'c'’CENT* 0E,)

-228.0058939315 — — Neutral
-227.3067282688 — — Excess Electron

-228.0335911250 0.1 — 0.0182 Neutral

-227.9859261951 0.1 0.9902 1.9090 Excess Electron

-228.1127817914 0.3 — 0.0670 Neutral

-227.9561857347 0.7677 0.8392 Excess Electron

-228.138168586 0.5 — 0.08J.9 Neutral

-227.9611713895 0.5 0.1169 0.2087 Excess Electron
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V

Mftanol and Ammonia - Short-Range Interactions

No study of the solvated electron would be. 'complete without 

reference to its trapping in alcohols and ammonia, since a great amount 

of information is available on these U ' 2\  In the case of alcohols, 

it was decided to restrict calculation to a small methanol cluster, 

examining the effect of cluster size, and the addition of extra 

orbitals, at an INDO level. The ammonia studies vare carried out at an 

ab initio level on monomers and dimers, to determine the effects of 

geometry and basis size and flexibility on the en&rgiea and spin 

distributions of the species studied.

A, The Methanol Tetramer - an INDO Study

The cluster studied was a (MeOH)^ arrangement, as depicted in

Fig. V. A.I., with the hydroxyl protons pointing towards the centre,

round which the oxygen atoms are tetrahedrally disposed. The CH^OH
(3)geometry was kept fixed at that optimised by Popie and Beveridge .

The cluster, imagined to be situated tetrahedrally in a cube, was 

examined with floating Spherical Slaters placed centrally on the cube 

faces, and one at the cube centre, or various combinations oi these, the 

orbitals all having the same Slater exponent.

Energies, eigenvectors and spin and charge densities w^re 

evaluated using the modified INDO programme described in Section III. F, 

with the tetramer radius, RQ (the distance from the centre to an 0 atom)

initially set at 2*5A°.
The floating Gaussian exponent, f was raised in steps of 0 1 au 

from 0*1 to 0*5, and comparisons of the negative ion energies were made 

between clusters with extra orbitals on the cube face only and those 

with the Slaters on the cube faces and the centre.
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Energies and exponents are listed in Table if. A.I. Both sets of

results show a preferential lowering of the energy at S = 0.3, with

the cube faces plus centre set of orbitals giving lower energies

throughout. This set is used in the remaining calculations, since

either the the extra flexibility of the set with the centra}, orbital,

of this orbital’s location, favours the e" state.*

Optimisation of the cluster radius, using t/he above basis set,

was carried out in such a way that the “cube face1" Slaters always

remained on the faces of the cube delineated by tfoe t atrahedrally

disposed 0 atoms.

Energies using the full basis, end using ne» extra orbitals at all

are compared in Table V. A.2, (neutral state) and. V. A.3. (excess

electron state). Although the data arj incomplete*, two conclusions

emerge: the e~ state displays an optimum cavity iradius at 2A° on

the minimal basis calculation, ancl in each case ttoe addition of the

diffuse basis lowers the energy levels considerably.

One expects, as shown in Table V. A.3«, that the e state with

the diffuse basis will also show such a configurational minimum, but

at more negative energies than the minimal basis* (calculations.

However, the energy of the excess electron. state still remains

above the neutral state in each case, although adkdition of the diffuse

basis narrows the gap: for instance, at RQ ~ , and a minimal
n — n -avalence basis, the gap is 2*9 ®V, whereas addition of / i ~ *3

Slaters reduces this to 1*8 eV. If-other criteria for electron-

trapping are studied, we obtain similar results*
Preferential stabilisation of the e state might be expected to

* Convergence was unobtainable in some of the cases, especially 

extra floating Slaters were added.
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yield a negative eigenvalue for the excess oC spin MO; these were 

examined, the results being listed in Table Vt A.4. In each case, the 

magnitude of the eigenvalue is reduced by the diffuse basis, but remains 

positive. Finally, the excess Mulliken spin distributions were examined 

for the two bases at several cluster radii, as shown in Table V. A.5. 

Here, the results seem to indicate some tendency towards excess electron 

capture: the minimal basis cluster, on expansion from Rq = 1*5A°,

experiences a spin density shift to the four central protons, this 

density, at the energetically optimal radius of 2A°, being 0*04 per 

proton; addition of the 7 extra orbitals magnifies this shift, since 

the total P  s associated with the central orbitals varies from 0*02 at 

Rq = 1«5A° to 0*83 at 2*5A°.

Thus, although theoretical results indicate some localisation of 

the excess electron, no definite evidence of trapping on a lone 

(CH^OH)^ cluster has yet been adduced. Several improvements might be 

made in the above study:

(a) the INDO calculations used possess by necessity some 

arbitrary parameterisation, which could be dispensed with in an ab initio 

calculation

(b) the diffuseness and flexibility of the basis set might be 

further improved

(c) if we are to use the excess spin density round the molecule 

as a trapping criterion, the Mulliken method is inadequate; a spatial

plot of< where />S(R̂  is the spin density operator

at the point R, is required. This is tried in Section V.C.

With these ideas in mind, work was begun on a small cluster, 

namely (NH^)«, using a fairly flexible and diffuse basis set, at an 

ab initio level.
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B. An Ab Initio Study of Possible Electron Trapping on an (NH3)2 
Cluster: The Effect of Basis Diffuseness

The geometrical configuration used is depicted in Fig. V. B.I., 

where the N-H H-N bonds are linear, and the diner* lies ir the staggered 

conformation (Point group C^). The experimentally observed geometry 

^  of HNH = 106-7° and R(N-H) = 1*9117 au was used.

Since this calculation was to use a larger basis set, the dimer 

geometry was restricted to two cases having N.„ .3f separations of 

5*4 au and 5*6 au respectively.

(l) Basis set

It was intended to make the basis set diffuse (to more easily

accommodate a loosely bound electron) but flexible enough to avoid a

spuriously high energy for the neutral species. Following the method
(5)of Naleway and Schwartz v a split double-zeta type Gaussian set was

obtained as follows: a (N/7,3*l) 2 s , 2p, Id GTO basis set with a d-type

polarisation function developed for NH^ by Roos and Siegbahr- was

"split11 by removing the most diffuse Gaussian in the s and p contractions,
( 7 )and using these with the zetas unchanged . For hydrogen a

(8)polarisation set of GTOs by Dunning } was split in the same way.

Full details of the basis set are in Table V. B.6., where it can be 

seen that the set for N comprised effectively 4 s orbitals (?. normal 

and 2 diffuse), 2 p orbitals (l normal and 1 diffuse) and 1 d orbital:

H, similarly, had 2 s orbitals (l normal and 1 diffuse) and 1 p orbital. 

Calculations vindicate this basis, giving an energy of -56-145 au for the 

neutral NH^ monomer (Virial coefficient 2-0044) as opposed to Roos and 

Siegbahn1s -56-138 au for their original (N/7,3,l)> (H/4,l) basis set.

However, since the excess electron may be a loosely bound species, 

this diffuse N basis was supplemented by four very diffuse GTOs with 

exponents 0 - 0 0 8 ,  0 - 0 0 5 ,  0 - 0 0 2  and 0 - 0 0 1  to form a hyperdiffuse basis set.



118

With this set, neutral NH^ gave an energy of -56*146 au (Virial 

coefficient 2»0C^5) showing only a ’difference of 0.001 au over the 

diffuse set. For the excess electron state of NH^, the diffuse and 

hyperdiffuse sets gave energies of -55*978 and -56*145 au respectively. 

This difference o.t 0*167 au indicates the hyperdiffuse basis to be more 

apposite to such negative ion states.

(ii) Properties of the dimer and effect of the hyperdiffuse orbitals

(a) Energies. The energies for the dimer ground state (^A ),S2excess electron ground state ( Ag) and excess electron excited state 
2
( Bu) for both basis s*ts and both geometries are detailed in Tables 

V. B.l. and V. B.2. The most pertinent fact about stabilities is that 

the energy of (NH^)^ is higher than that of NH^ + NK^” with both basis 

sets, indicating either (l) that the (NH^)^ arrangement chosen will not 

stabilise an electron or (2) that the two geometries chosen lie on an 

unfavourable part of the configuration coordinate curve, as illustrated 

in Fig.V. B.2. The latter hypothesis is refuted by the diffuse basis 

results, where the 5*4 au negative dimer (-112*u45 au) has an energy 

below that of the 5*6 au negative dimer (-111*963 au), but both are 

above the NH^ + N.Ĥ  energy of -112*123• no possible fit can be made 

to a configuration curve. Improvement of the basis set to hyperdiffuse 

quality reverses the 5*4 au and 5*6 au energy levels (see again 

Fig.V. B.2), making a fit possible; it is conjectured that such 

orbitals may be vital in dealing with excess electronic states.

For the diffuse basis, the excess electron otaLe in (NH^)2 lies 

4*48 eV above the neutral state at the 5*4 au geometry, and 4*2 eV 

above it for the 5*6 au one, but the hyperdiffuse basis reduces both 

these gaps to 0.03 eV. Evidently any such energy difference is very 

basis-sensitive.
2 2Similarly, Franck-Condon transitions between the Ag and Bu
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states yield 1 * 2 6  eV and 0 * 9 2 4  eV for the diffuse basis, but 0*023 eV 

for both with the hyperdiffuse basis, as against the experimental 

observation of 0 * 8 0  eV . This energy lowering is clearly not in 

agreement, and suggests that the electron in (NFL)~ is in fact bound
j «-

at these geometries, and that the favouring of hyperdiffuse functions 

indicates its tendency to leave the cluster altogether.

Since no more calculations on different N...N separations were 

essayed, no configuration curve which might have given indicators of 

the stabilities of these states was available. However, it can be 

concluded from the data on the hyperdiffuse set energies that a 

configurational minimum for the (NH^)^ calculation exists at 

N...N > 5*6 au, but that farther diffuse functions may cause the 

electron to “drift off11 completely. With this in mind, the other 

properties may be investigated.

(b) H.0.0. Eigenvalues. Table V. B.5* shows the eigenvalues of
2 2the highest occupied orbital for the Ag and "'Bu state in the two 

geometries and basis sets. Nowhere does this ha^e the negative value 

which might denote electron capture, but the eigenvalues of the 5*6 au 

geometry are consistently the lower, and the hyperdiffuse basis lowers 

the eigenvalue significantly in all cases. (Again, whether more 

diffuse functions would lower the value below zero or merely nearer to 

zero cannot be decided).

(c) Mulliken Spin Distributions. These are shown in Table V. B.3. 

According to the diffuse basis results, little spin density resides on 

the inner protons, and much more on the outer ones, apparently refuting 

the qualitative notion that opposed protons act as a land of electron 

trap (see also Section VI. S). Expanding the dimer from 5*4 au to 5*6au 

causes an inward shift in spin density from the outer protons, so that 

the 5*6 au geometry has an outer proton spin density of 0*258, as
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against 0*292 for the 5*4 au geometry. Excitation, however, reverses 

this effect: in both cases the spin is shifted outwards (cf the INDO 

water dimer calculations of Section IV), but the 5*6 au geometry 

acquires a spin density of 0*309 on its outer protons, while the other 

dimer has 0*304* This is consistent both with the concept that the 

excess electron expends on excitation, and that hyperdiffuse orbitals 

are required for an adequate simulation.

Addition of the hyperdiffuse orbitals has dramatic results: all

the Mulliken spin density in both geometries and both states is now 

associated with the four hyperdiffuse s-type GTOs on the nitrogen 

atoms,

Of course^ this does not suggest localisation of the excess 

electron on nitrogen: the Mulliken spin distribution merely indicates

the partitioning of excess spin between the various orbitals, and since 

one set, namely the nitrogen s orbitals, has been grossly overloaded 

with hyperdiffuse functions which appear to describe the electron more 

accurately, the spin becomes associated with the nitrogen. The more 

equable distribution of orbitals in the diffuse basis calculations 

should result in a better, but not satisfactory, reflection of the true 

partitioning. It was thus felt necessary to step beyond the limited 

applicability of the Mulliken analysis and compute the actual values 

of < * ! / •  $  ̂ »at various points in space and at the nuclear

centres•
(d) Actual Spin Density and Potential Calculations. Since 

calculation of actual spin densities and potentials, although useful, 

is expensive in terms of computer time and core (typically 20 min and 

57GX on an IBM 370/158 for one set of results on one such molecule) 

computation was limited to the hyperdiffuse case only, and to the N...N 

atH s of the dimer. Properties at a set of points along this axis, and
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at the nuclei, were evaluated using the ATMOL properties package

The data obtained for each case are listed in Tables V. B. 7-12.

Examination of net spin densities at points from the molecular

centre up to 14 au along the N...N axis show the values to be negligibly

small, the only nonzero value being one of 0*0003 au on nitrogen for the 
2Ag state of both geometries, a scarcely significant value. The

suggestion is (although the diffuse basis properties would be needed to

verify it) that since, as seen in Section V. B., virtually all the

excess spin density resides in the hyperdiffuse orbitals, the effective

spin density in any small volume has been reduced to near zero: one is

forced to conclude, especially from the nuclear spin densities, that the

excess electron dees not bind to the dimer, and that addition of farther

hyperdiffuse orbitals will merely remove the excess electron from the

molecule, leaving (NH^)^ «"”• In this structure* therefore, any electron

capture must be transient and loose.

Finally, in Fig.V. B.3. and Fig.V. B.4*, total potentials for the

neutral *Ag 5*4 au and 5*6 au geometries are plotted along the K...N
2 2axis (graphs for the Ag and Bu> which were virtually indistinguishable,

are not shown). The grapne, when considered as traps for a negative

charge, have a deep potential well (+ 14*85 au) in the vicinity of the

nitrogen nucleus, and a shallower one (-*"' -6 au) at the central protons>

tho outer protons have u«j discernible effect on the shape of the curve.

If such combinations of deep and shallow wells exist in other molecules,

they may serve as models for, e.g., the photo-shuttle effect and
(12 13)other situations where different trap depths are observed * 

such as selective photobleaching and time-dependent spectra.

(e) H.0.0. M.O. Coefficients. These confirm the tendency for

the structure to lose the excess electron. The orbital coefficients of 

the highest occupied orbital were examined for &11 the excess electron
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states, on the basis that if the coefficient of t-Ihe most diffuse orbital 

did not predominate, then the electron was showing some tendency to 

remain in the vicinity of the cluster. The coefjTicients are shown in 

Table V. B.13., whence it can be seen that the most difc'use orbital is 

the greatest contribution in each case, and that, (excitation accentuates 

this tendency greatly.

(iii) Conclusions

It can be adduced from the above studies that the (Nh.)o cluster 

examined is not a likely candidate for electron ‘Lrapning. Addition of 

more diffuse functions causes the excess electron to "drift" further 

off the cluster, as judged by a variety of criteria, and excitation 

accentuates the process. The partitioning of the electron, as measured 

by the Mulliken Analysis, is highly dependent on the nature and 

distribution of the basis set, ana calculation of nuclear spin densities 

of excess electrons made in such a way must be viewed in

this light. Spatially evaluated spin densities im the molecule suffer a 

dilution due to the diffuseness of the electron but useful data should 

be obtainable in cases where the electron is bound to the cluster. The 

combination, of deep and shallow potentials detected may serve as electron 

traps in more stable clusters, leading to preferential spectral 

bleaching, photo-shuttling and time-dependent variations in the optical 

spectra.
It may be that the most favourable trapping situation lies at a

(17) . . . .non-regular geometry of the molecule • With this in mind, a

vibrating NH^ molecule was chosen for study.
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C. Non-Regular Geometries - the Umbrella Vibration of NH3 and NH3"”

(i) Geometry and Basis set

Calculations so far using E (neutral) > E  (negative state) as the 

sole criterion for electron trapping, have failed to define any stable 

structures which preferentially capture electrons, although Webster 

has postulated such capture from ab initio calculations on H^O and H^C. 

While long-range medium effects are obviously of Importance in these
/ 1 y \

studies, it may be that certain esoteric geometries favour electron

capture for long enough to allow stabilising relaxation processes to

occur* This has led to the present ab initio study of the umbrella

vibration of NH^ and NĤ ~ using the ATMOL suite of programmes.

The geometry chosen had a bond J.ength as in Section V. B., but

the lone-pair-N-H angle, 0, was allowed to vary from 90° to 130° in

ten-degree steps (see Fig.V* C.l)*

The basis set used was the diffuse set of Section V. B., although

some results were obtained using the hyperdiffuse set. As is well
( Î -?9)known from attempts to calculate the inversion barrier in NIÎ  ,

polarisation orbitals such as d on nitrogen and p on hydrogen are
indispensable to describe adequately the planar transition state.

Table V. B.6. shows the basis set used by the present author.

With this basis, the inversion barrier E ® ^3v^

placed at 0*55 eV for the diffuse basis and 0-57 eV for the hyperdiffuse,
' 19)comparing reasonably with the experimental value cf 0*25 e? v

(ii) Change of Properties on Vibration

The energies and properties of the neutral state ( ^  for 0 = 90°

and *A for 0 ¥ 90°) were evaluated in the standard manner, the excess
(20 21 22)electron state being calculated using a SUilF technique 9 9  •

MO occupations were found to be as follows: for the D3h geometry,
«

neutral; la'1(2)2a'1(2)le'(4) la^ 2); 3a^(0)..., and excess electron;
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la^(2)2a'(2)le(4)la2(2)3a^(l)I 2^(0) . and for the Cgeometries, 

neutral; la1(2)2a1(2)le(4)3a1(2): ^ ( 0 )  excess electron; 

la^(2)2a^(2)le(4)3a^(2)4a^(l)I 2e(0)... * Thus promotion from the

excess electron state is to a doubly degenerate M j in each case, and the 

excited state cannot be described by a single Slater determinant* For 

this reason only the neutral and excess electron states were studied*

(a) Energies. Energies obtained are shorn in Table V. C.l. From

a plot of the Neutral State Energy (Diffuse Basis) against 0 (Fig* V.

C.2), an energetic minimum in the region of 0~^il6c* is apparent, as is

the inversion barrier at 0 = 90°. The excess electron state energy

(Diffuse Basis) against 0 (Fig. V. 0*3)> although higher in energy at

each point than the neutral state (E -E . ^  43& eV at 0 = 112*1°)e neux>
nevertheless displays an energetic minimum at 116°, forming a fairly 

shallow trap of depth — '0*5 eV. Comparison with the available 

hyperdiffuse results shows the same trend as the dimer calculations: 

the neutral states are barely affected by the extra orbitals, but the 

excess electron states drop to about 0*001 au above the neutral ones, 

suggesting again a tendency to formation of the neutral monomer plus 

a free electron. The H.0.0. eigenvalues in Table V. C.2* further 

confirm this.

(b) Mulliken Spin Densities. The Mulliken Spin Densities for

the excess electron state (Diffuse Basis) are shown in Table V. C*3*

The proton spin density is at a maximum for the planar form, decreasing
2 3as the hybridisation of N moves from sp to sp * while the nitrogen 

spin density is negative, becoming less so as the molecule differs from 

planarity: thus the net trend is for spin to shift to the centre upon

bending. However, proton magnetic resonance data on sodium/ammonia
/ 2*3 pi

solutions indicate a negative value for the proton spin density ** *

2^\ in disagreement with the results of Table V. C.3. For a more
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realistic description of the spin densities, it was decided to evaluate 

(H) | $  > at various points,

(°) Spin Densities at the Nuclei - Negative Spin Densities on the 
Ammonia Proton

Spin and charge densities and potentials were evaluated at points 

along the axis of symmetry of the molecule, up to 9 au from the 

nitrogen atom in both directions, using the ATMOL properties programme. 

The results for different values of 0 are shown in Tables V. C.4. - 

V, C.8., where the properties at the nuclei are also shown. Now the 

general trend is seen to be reversed - as the molecule deviates from 

planarity, spin shifts away from the nitrogen nucleus. Even more 

3tril:iug is the negative proton spin density, which is emphasised as 0 

increases from 100°. Such a negative spin density has been suggested
( p iby r.m.r. observations on nietal-ammonia solutions * * and

obtained theoretically by Ishimaru et al. and Newton (^7*28)^

However, the former used scmi-ompirical-type calculations, involving 

a Mulliken-type analysis. Since the present calculation involves no 

arbitrary parameters, and spin densities are evaluated at the nuclei,

it is more comparable with that of Newton. At 0 = 110°, the N and H
-3 -3spin densities are + 0*5115aQ and -0*0063aQ^ respectively, compared
-3 . -3with Newton's values of +0*05a and -0*000c»3a for his dipole-o o

oriented (NH0). cluster surrounded by a polarised medium.J 4
It would thus appear that constraining the electron to an isolated 

NH^ molecule causes greater spin densities at the nuclei, with greater 

disparity between them.

A pointer to the behaviour of the excess electron in NH^ is the 

fact that the spin densities at all the nuclei decrease as 0 increases 

from 90°, suggesting a tendency for the species to move off the 

molecule.
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D# Conclusions: the Nature and Scope of Short-Range Effects on
Electron Solvation

Many data have been presented on the possibility of solvation. The 

inescapable conclusion for the models studied so far is that for a 

cluster of n molecules of X, (where X is a normal neutral molecule),

E(Xn) > E(Xn) both at an ab initio and reasonably parameterised J.NDO 

level. The only case where the reverse obtains would appear to be in im

probable molecular distortions, as mentioned in Section IV, B’s comments
(k )on the unnoticed result of Naleway and Schwartz •

One can escape this dilema either by redefinition of ^  £ as 

E(Xii) - E(nX+e”) or by recognising that this energy change is not

the only factor defining solvation. Examination of other criteria, 

however, such ac (a) the eigenvalue of the highest occupied orbital,

(b) the coefficients of the most diffuse orbitals in the highest 

occupied M.O., (c) Mulliken spin distributions and (d) actual point spin 

densities in space, shows that although the excess electron states 

studied in these chapters may possess energetic configurational minima, 

the addition of more diffuse orbitals indicates a tendency for the 

electron to leave the molecule completely.

Several interesting points have been highlighted in the process. 

Neutral/excess electron stdtes have energy differences which are 

critically dependent on the diffuseness of the basis set, and in the 

(NH~)9 and NIL studies, where exceptionally diffuse orbitals have been 

added, this difference tends to zero. Added flexibility can have its 

disadvantages, and the examination of some of the previous cluster 

calculations such orbitals added might lead to a

drastic fall in reported negative ion state energies. Indeed, such an 

outcome is anticipated and well rationalised by Naleway and Schwartz, 

who regard very diffuse orbitals as being unrealistic for the liQuid 

state, where other molecules would encroach on them.
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Excitation energies, where available, appear to be dependent on the

nature of the basis set, and any agreement obtained with more limited

sets can be argued to be fortuitous.

Mulliken spin densities, used by other workers in such

calculations, can be varied by shifting the weighting of orbitals on

atomic centres, and, although useful for determining general trends in 
(15)spin shift should not be quantitatively related to e.s.r. spectra.

The evaluation of actual spin densities at the nuclei is in principle

preferable, but in ihis study has the disadvantage that Gaussians do

not reproduce the cusp behaviour at the nucleus although cusped-
(31)Gaussian functions could be used.

It would appear that clusters alone do not stabilise an excess

electron, and that neither enlargement of the cluster size (Section IV.D)

nor great flexibility of the basis set (Sections V. B and D) will alter

this. For effective solvation, it seems that the surrounding medium and

its concomitant long-range interactions cannot be neglected.

Small clusters, perhaps in some vibrationally distorted mode,

could act as transient traps for the electron, localising it until long-

range medium electronic and inertial polarisation fields have formed.

This picture of an electron loosely bound near some cluster in

the liquid, but retained by long-range and more uniform polarisation

fields, could go a long way towards explaining the similarity of shape
/on *23)

in the optical spectra of the trapped electron * regardless of 

the nature of the solvent.
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TABLE V. A.I.

(CH^OH)^ Clusters - Excess Electron State Energies: R = 2*5A0

■r
ENERGY OF e' 

Slaters on Cube Faces Only
" STATE (au)

Slaters on Faces and Centre

0.1 -110.0044273861 -110.0289248104
0.2 -110.2016688202 -110.2625457388
0.3 -110.2658026045 -110.3422086751
0.4 -110.2179673142 -110.2968608103
0.5 -IIO.1216349625 -110.1812048919

TABLE V. A.2.

(CĤ OH)/̂  Clusters - Neutral State Energies as Radius is Varied

P-0
(A0)

ENERGY OF NEUTRAL STATE (au)
With 7 Extra Floating Slaters (=0.3) Minimal Valence Basis

--
--

1
b* 

1 
• vn -HO.OIOI4OO676 -109.0908839786

2.0 -110.6289200934 -109.88871736855
2.5 -109.8880774757
3.0 -110.2587757730

TABLE V. A.3.

(CH^CH)^ Clusters - e“ State Energies as Radius is Varied

R0A°
ENERGY OF e" STATE (au)

With 7 Extra Floating Slaters (S=0.3) Minimal Valence Basis

1.5 -109.9424004630 -108.9829430424
2.0 -110.5444328947 -109.7542213754
2.5 -110.3422086751 -109.7035179698
3.0 -109.6785470761
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TABLE V. A.4,

(CH^OH)^ Clusters: Eigenvalues of the Excess <* Spin MO

V A°> EIGENVALUE OF THE EXCESS <* SPIN MO (au) 
Diffuse Basis ( J = 0.3) Minimal Valence Basis

1.5 0.0036 0.0431
2.0 0.0953

2.5 0.0783 0.1638

3.0 0.1952

TABLE V. A.5.

(CH^OH)^ Clusters: Mulliken Spin Densities

R0(A°)
EXCESS SPIN 
EXTRA BASIS

n n
DENSITIES FOR 
CALCULATIONS
a s( Central ps **
* C Orbital) T 1

EXCESS SPIN DENSITIES FOR 
VALENCE BASIS

P l  p \  /?Sanner H

1.5 0.27 0.01 0.02 0.03
i
| 0.29 -0.02 -0.05

2.0 0.00 0.00 0.83 1.00 0.20 0.00 0.04

2.5 0.00 0.00 0.83 1.00 0.13 0.01 0.10

3.0 0.09 0.01 0.11

* Average p S on the 3 Methyl Protons
X X  *

Total r  on the 7 Diffuse Orbitals
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TABLE V. B.3,

Ab Initio (NH3 )g Cluster: Comparison of Mulliken Spin Densities for the
Diffuse and Hyperdiffuse Basis Set at the 5.4 au Geometry

DIFFUSE 
BASIS: /°S

HYPERDIFFUSE 
Basis: /°s

Ns (DIFFUSE) -0.207 0.000
Excess Electron Ns (HYPERDIFFUSE) 0.500

Ground State N (TOTAL) -0.212 0.500

(2Ag) • H INNER 0.128 0.000
H OUTER 0.292 0.000

Ns (DIFFUSE) -0.158 0.000
Excess Electron Ns (HYPERDIFFUSE) 0.500

Excited State N (TOTAL) -0.158 0.500

(2bu) H INNER 0.051 0.000
H OUTER 0.304 ! 0.000
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TABLE V. B.4.

Ab Initio (N^jg Cluster: Comparison of Mulliken Spin Densities for the
Diffuse and Hyperdiffuse Basis Set at the 5.6 au Geometry

STATE ORBITAL
DIFFUSE 
BASIS /®S

HYPERDIFFUSE 
BASIS /°S

Ns (DIFFUSE) -0.146 0.000

Excess Electron Ns {HYPERDIFFUSE) 0.500

Ground State N (TOTAL) -0.146 0.500

(2Ag) H INNER 0.130 0.000

1 H OUTER 0.258 0.000

Ns (DIFFUSE) -0.206 0.000

Excess Electron Ns (HI'PERDIFFUSE) 0.500

Excited State N (TOTAL) -0.198 0.500

C2^ ) H INNER 0.081 0.000

H OUTER 0.309 0.000
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TABLE V. B.5.

Ab Initio Cluster: Comparison of Eigenvalues of Highest Occupied
Orbital for Diffuse and Hyperdiffuse Basis set at the 5.4 au and 5-,6 au 
Geometries

.........

GEOMETRY STATE
DIFFUSE
BASIS

HYPERDIFFUSE
BASIS

5.4 au Excess Electron Ground State 
(2Ag)

Excess Electron Excited 
State (^Bj)

0.1533005

0.2065543

0.0011406

0.0019914

5.6 au Excess Electron Ground State 
(2Ag)

Excess Electron Excited 
State (^Bu)

0.1477623

0.1850735

0.0011380

0.0019979
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Diffuse double-zeta

TABLE V. B.6, 

set used in NH^ ab :iLnitio calculat:

Atom/Orbital Coefficient Zeta

H (s) 0.0044790 2038.41
0.0345810 301.689
0.1642630 66,463
0.4538930 17.8081
0.4689790 5.30452
0.0380390 0.764993

N (s) 1.0 0.234424<

H (s) -0.0009810 2033.41
-0.007822 301.689
-0.037808 66.463
-0.128928 17.8081
-O.I97O84 5.30452
0.513598 0.764993

N (s) 1,0 0.2

N (p) 0.119664 5.95461
0,474629 1.23293

N (p) 1.0 0.286752

N (d) 1.0 0.95

H (s) 0.03283 13.3615
0.23121 2.0133
0.81724 0.4538

H (s) 1.0 0.1233

H (p) 1.0 0.789
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TABLE V. B.7.

Ab Initio (NH^^ Cluster: Hyperdiffuse Basis: N...N 5*4 au: Potential,

and Spin and Charge Densities: Neutral ^A State    —  g -------------

Distance along 
N...N axis (au)

......
P V (an)

0 0.1252 - 9.7044

1 0.3910 -16.1636

2 0.5056 -16.7644

3 3.7796 -36.9400

4 0.1466 - - 8.6560

5 0.0140 - 5.3844

6 0.0012 - 4.0638

7 - -3.2994

8 - -2.7892

9 - -2.4220

10 - -2 >.1438

11 - -1.9254

12 - -1.7486

13 - -1,6026

14 - -1.4796

N 185.9316 14.8540

H inner 0.4126 - 6.4026

H cuter - 4.8868
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TABLE V. B.8.

Ab Initio ( ^ 3)2 Cluster: Hyperdiffuse Basis: N...N 5*4 au: Potential,
— — — —

and Spin and Charge Densities: Excess Electron A State6

Distance along 
N...N axis (au) y0* “£= y0S V (au)

0 0.1252 0 - 9.67

1 0.3910 - -16.1294

2 0.5056 - -16.7501

3 3.7796 - -38.9055

4 0.1466 - - 8.6237

5 0.1400 - - 5.3500 J
6 0.0012 - - 4.0295

7 0 - - 3.264V

8 - - - 2.7549

9 - - - 2.3873

10 - - - 2.1098

11 - - - 1.8914

12 - - - 1.7148

13 - - - 1.5690

14 - - - 1.4462

N 185.9317 0.0003 . 14.8863

H inner 0.4126 - - 6.3681

H outer 0.3800 - - 4.8524
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TABLE V. B.9.

Ab Initio ( ^ 3)2 Cluster: Hyperdiffuse Basis: N...N 5*6 au; Potential,
-

and Spin and Charge Densities: Excess Electron Excited Bu State

Distance along 
N...N axis (au) V (au)

0 0.1252 0 - 9.6779

1 0.3910 - -16.1373

2 0.5056 - -16.7579

3 3.7796 - -38.9134

4 O.1466 - - 8.6315

5 0.0140 - - 5.3578

6 0.0012 - - 4.0371

7 - - - 3.2723

a - - - 2.7620

9 - - - 2.3946

10 - - - 2.1163

11 - - - 1.8976

12 - - - 1.7206

13 - - - 1.5744
14 - - - 1.4512
N 185.9316 -

i
14.8805

H inner 0.4126 - - 6.3759
H outer 0.38 - - 4.8602
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TABLE V. B.10

An Initio (1̂ 3)2 Cluster: Hyperdiffuse Basis; 5*6 au: Potential,
and Spin and Charge Densities: Neutral XA StateO

Distance along 
N...N Axis (au) V (au)

0 0.0940 - 9.0374

1 0.4136 -24.2702

2 0.4676 -14.8468

3 13.2042 -60.1402

4 0.1858 - 9.2462

5 0.0174 - 5.5174

. 6 0.0016 - 4.1186

7 - - 3*3290

8 - - 2.8074

9 - - 2.4342

10 - - 2.1524

11 - 1.9316

12 - - 1.7534

13 - - 1.6062

14 - - 1.4826

N 14.9062

H inner - 6.2104

H outer - 4.9246
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TABLE V. B.ll.

Ab Initio (NH^^ Cluster: Hyperdiffuse Basis: N...N 5*6 au: Potential,; , p
and Spin and Charge Densities: Excess Electron A^ State

Distance along 
N...N axis (au) r

* 11 V (au)

0 0,0940 - - 9.0029

1 0.4136 - -24.2357

2 0.4678 - -14.8123

3 13.2042 - -60.1059

4 0.1658 - - 9.2118

5 0.0174 - - 5.4829

6 0.0016 - - 4.0842

7 - - - 3.2944

a - - - 2.7731

9 - - - 2.4000

10 - - - 2.1183

11 - - - 1.8976

12 - - - 1.7195

13 - - - 1.5726

14 - - - 1.4491

N 0.0003 14.9407

H inner - - 6.1759

H outer - - 4.8901
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TABLE V. B.12.

Ab Initio (NH-^^ Cluster: Hyperdiffuse Basis: Jf.-.N 5*6 au: Potential,
.v

and Spin and Charge Densities: Excess Electron State

Distance along 
N...N axis (au) V (au)

- 9.01090.0940

-14.8203

-60.1137

- 9.21960.1858
0.0172
0.0016 -  4.0918

-  3.3020
- 2.7803

- 1.9039

12

- 1.4542

185.9396

-  6.1838H inner

H outer
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TABLE V. B.13.

Ab Initio (NH3 Cluster: Hyperdiffuse Basis: Coefficients of the H.0.0.

Geometry and State Orbital I?

N...N 0.008 0.005 0.002 0.001

5*4 au Excess Electron ^Ag 

Excess Electron ^Bu

-0.2097

-0.429S

0.4356

-1.2474

-0.8414

4.4431

1.0586

-9.9875

N...N

5*6 au 2Excess Electron Ag 
2Excess Electron Ru

0.2102

-0.4186

-0.4371

1.2110

0.8420

-4.3107

-1.0587

9.6545

I
i
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TABLE V. C.l.

An Initio NH^: Umbrella Vibration: Energies of Neutral and Excess
Electron States

Lone pair 
NH (0) 
(degrees)

Diffuse Basis Hyperdiffuse Basis

Neutral
State
Energy(au)

Excess Electron
State
Energy(au)

Neutral
State
Energy(au)

Excess Electron 
S oat e 
Energy(au)

90 -56.1251 -55.9619 -56.1252 -56.1240
100 -56.1319 -55.9674 -56.1322 -56.1311
110 -56.1437 -55.9766 - -

112.1 -56.1453 -55.977a -56.1462 -56.1451
120 -56.1439 -55.9763 - -
130 -56.1164 -55.9556 - -

TABLE V. C.2."

Ab Initio NHo: Umbrella Vibration: Highest Occupied Orbital Eigenvalues

Lone pair 
NH (0) 
(degrees)

Diffuse Basis Hyperdiffuse Basis
Neutral 
State H.0.0. 
Eigenvalue

Excess Electron 
State H.0.0. 
Eigenvalue

Neutral 
State H.0.0. 
Eigenvalue

Excess Electron 
State H.0.0. 
Eigenvalue

90
100
110

112.1
120
130

0.1680001
0.1703001
0.1744529
0.1750889
0.1757106
0.1712992

0.1576734
0.1581062
0.1591953
0.1592543
0.1577410
0.1496762

0.0011377
0.0011353

0.0011297

0.0011377
O.OC11353

0.0011297
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TABLE V. C.3.

Ab Initio NH3: Umbrella Vibration: Excess Electron State: Variation
of Mulliken Spin Densities with Angle: Diffuse Basis

Lone pair-N-H (6) 
(degrees)

AS
' Ns

/>jj(T0TAL) f>S( H)

90 -0.4973 -0.5992 0.5331

100 -0.476$ -0.5423 0.5141

110 -0.42S0 -0.4465 0.4822

112.1 -0.4154 -0.4265 0.4762

120 -C.3650 -0.3713 0.4571

130 -0.2984 -0.3115 0.4372

; !
\ ■ 0,^1-• ; 
i. ,/

i
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TABLE V. C.4.

Ab Initio NH^: Diffuse Basis: Excess Electron State: Charge and Spin

Densities and Potentials for the 9 = 90° Case

Distance up C^ Axis 
R (au) V (au)

-9 0 0 - 0.4450
II it - 0.5008

-7 II ii - 0.5725

-6 It - 0.6681

-5 H " ii - 0.8021

-4 II ii - 1.0030

-3 0.0043 -0.0001 - 2.8901

-2.6 0.0121 -0.0001 - 3.3828

-2.2 0.0288 0.0

-1.8 0.0661 0.0009 - 4.7336

-1.4 0.1643 0.0045 - 6.1716

-1.0 0.377# 0.0146 - 9.0427

- 0. 6 0.6981 0.0225 -16.5774

-0 .2 14.0593 0.0340 -58.0387

N 186.0452 0.6296

H 0.3573 0.0012
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TABLE V. C.5.

Ab Initio NH^: Diffuse Basis: Excess Electron State: Charge and Spin

Densities and Potentials for the 0 — 100° Case

Distance up C3 Axis 
R (au)

/>«+>*
p * - * = t 3 V (au)

-9 0 0 - 1.0043
-8 - - « 1.1297
-7 - - - 1.2905
-6 - - - 1.5044
-5 0.0002 0.0002 | - 1.8024
-4 0.0008 0.0006 ; - 2.2469
-3 0.0037 0.0001 - 2.9777
-2 .6 0.0098 -0.0002 - 3.4203
-2 .2 0.0241 0.0001 - 4.0224
-2 .0 0.0373 0.0009 - 4.4163
-1 .8 0.0587 0.002? - 4.9039
-1 .4 0.1527 0.0133 - 6.3536
-1 .0 0.3575 0.0401 -  9.221C

-0 .6 0.6668 0.0648 -16.7146
-0 .2 13.3866 0.0066 -58.0882
0.2 13.32.74 0.0714 -57.9803
0.6 0.7108 -0.0004 -16.4810

1.0 0.3881 -C.0C15 - 8.9177
1.4 0.1704 -0.0012 - 6.0435
1.8 0.0707 -0,0005 -  4.6196

2.0 0.0473 -0,0003 - 4.1511
2.2 0.0321 -0.0001 - 3.7783
2.6 0.0142 0 - 3.2199
3 0.0054 - -  2.8174
4 0.0002 - -  2.1561

5 - - -  1.7452
6 - - -  I.4646

7 - - -  1.2611

8 - - - 1.1071

9 - - - 0.9864
N 186.0976 0 .5890 17.0724
H 0.3615 -0.0021 2.9338
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TABLE V. C.6.
Ab Initio NH3: Diffuse Basis: Excess Electron S3tate: Charge and Spin
Densities and Potentials for the 9 = 110° Case

Distance up G3 Axis 
R (au)

- oC -
f V (au)

-9 0 0) -  1.0128
-8 ti lit -  1.1404
-7 11 it: -  1.3044
-6 0.0001 0.0GD1 -  1.5230
-5 0.0005 0.0005 -  1.8294
-4 0.0019 0.CQ17 -  2.2933
-3 0.0046 0.0012 -  3.0737
-2 .6 0.0091 0.0001 | -  3.5487
-2 .2 0.0213 -0.0003 -  4.1872
-2 .0 0.0336 0.0004 -  4.5989
-1 .8 0.0541 0.0CS27 -  5.1020

-1 .4 0.1456 O.OI72 -  6.5688
-1 .0 0.3438 0.0546 -  9.4214
-0 .6 0.6388 0.0$28 -16.8586

-0 .2 13.3954 - 0.0016 -58.1399
0.2 13.2997 Q.0£25 -57.9934
0.6 0.7030 0.0002 -16.4273
1.0 0.3845 -0.0-525 -  8.8478

1.4 0.1687 -O.C011 -  5.9701

1.8 0.0705 -0.0001 -  4.5487
2.0 0.0475 O.G0O1 -  4.0829

2.2 O.Q325 0.0001 -  3.7133

2.6 0.0148 Q.Q0D2 -  3.1623

3.0 0.0059 C.C0O1 -  2.7676

4 0.0002 0 .0 -  2.1227

5 0.0 IB -  1.7223

6 n m -  1.4480

7 it M -  1.2486

8 n « -  1.0972

9 it to -  0.9785

N 186.1965 0.5115 17.0631

H 0.3685 -0.0063 2.9588
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TABLE V. C.7.
Ab Initio NH3: Diffuse Basis; Excess Electron State: Charge and Spin
densities and Potentials for the 9 = 120° Case

Distance up Axis 
R (au)

/oe‘ + '8 V (au)

-9 0 0 -  1.0215
-8 It 11 -  1.1515

-7 II 11 -  1.3189
-6 0.0001 0.0001 -  1.5427

-5 0.0010 0.0010 -  1.8585

- 4 0.0040 0.0036 -  2.3462

-3 0.0075 0.0037 -  3.1926

-2 .6 0.0113 0.0015 -  3 .7U 5
-2 .2 0.0233 - 0.0005 -  4.3995
-2 .0 0.0360 - 0.0004 -  4.8343
- 1 .8 0.0573 0.0015 -  5.3561

- 1 .4 0.1507 -  0.0169 -  6.8337

- 1 .0 0.3442 0.0584 -  9.6459

-0 .6 0.6208 0.1030 -16.9994

-0 .2 13.3947 -0.0021 -58.1834

0.2 13.2777 0.0979 -57.9799

0.6 0.6862 0.0062 -16.3941

1 .0 0.3738 0.0008 -  8.80B4

1 .4 0.1625 0.0009 -  5.9297

1 .8 0.0675 0.0007 -  4.5093

2 .0 0.0454 0.0006 - 4.0446

2 .2 0.0310 0.0006 -  3.6762

2 .6 0.0141 0.0003 -  3.1282

3 .0 0.0057 0.0001 -  2.7365

4 0.0003 0.0001 -  2.0994

5 0 0 -  1.7051

6 H n -  1.4350

7
II 11 -  1.2385

8 ft n -  1.0892

9
ft n -  0 .9719

N 186.2787 0.4427 17.058

H 0.3732 -0.0074 3.0105 j
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TABLE V. C.8.
Ab Initio NH^: Diffuse Basis: Excess Electron State: Charge and Spin

Densities and Potentials for the 9 = 130° Case

Distance up C  ̂ Axis 
E (au) V (au)

-9 0 0

-8 it ii

-7 ii ti

-6 0 .0002 0 .0002

-5 0.0018 0.0018

-4 0 .0066 0.0062 -  2 .4192

-3 0.0127 0.0071 -  3 .3646

- 2 .6 0.0183 0.0037 -  3 .9515

- 2 .2 0.0341 -0 .0 0 0 1 -  4 .7173

- 2 .0 0.0497 -0 .00 1 1 -  5 .1870

- 1 .8 0 .0744 0 .0 -  5 .7337

- 1 .4 0 .1732 0 .0154 -  7 .2049

- 1 .0 0.3591 0.0593 -  9 .9229

- 0 .6 0.6075 0.1075 -17 .1465

- 0 .2 13.3891 -0 .0 0 0 7 -5 8 .2 2 0 2

0 .2 13.2542 0.0986 -5 7 .9 6 57

0 .6 0 .6642 0 .0116 -1 6 .3 7 1 5

1 .0 0.3590 0.0040 -  8 .7862

1 .4 0.1539 0 .0025 -  5 .9086

1 .8 0.0629 0.0015 — 4*4889

2 .0 0.0418 0 .0012 -  4 .0245

2 .2 0 .0284 0 .0010 -  3 .6 5 64

2 .6 0.0128 0 .0004 -  3 .1089

3 .0 0.0051 0.0001 -  2 .7179

4 0.0002 0 .0 -  2 .0834

5 0 .0 n -  1 .6922

6 « n -  1 .4248

7
tt ii -  1 .2303

8 ti tt -  1 .0824

9 ii ii -  0 .9664

N 186.3441 0.3861

H 0 .3710 -0 .0 0 6 4
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Energy (au)
Diffuse Basis

 o
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Ab Initio Cluster Calculations, Suggested Relative

locations Of The 5*4 au and 5.6 au (N...S Separations) On a
Hypothetical Configuration Coordinate Curve,
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FIG.V. C.l
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FIG.V. C.2
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VI

Short and Long-Range Effects - a Resolution

A. iieneral Methods of Approach

Structural model calculations are detailed buo inadequate; long- 

range potentials considered alone are vague. Combination of both 

approaches would seem to be the next step, since spin densities and 

excitation energies must be affected to some extent by the long-range 

polarisation field cf the surrounding medium. The ideal method would be 

a detailed SCF calculation 0:1 an assembly of several hundred medium 

molecules in the presence of an excess electron; the practical approach 

is to include the polarisation potential of the surrounding medium in a 

cluster-type calculation.

Pioneering work by Newton has used a spheric?! cavity 

surrounding various clusters, assuming also a spherical free charge 

distribution for the purposes cf calculating the potential. The
(i/,)fractional charge method of Noell and Morokuma should also be

noted.

It was therefore decided by the present author to present a 

theoretical analysis of the problem, highlighting the various 

approximation methods which might be necessary.

B. Derivation of a Suitable Potential

(i) Energetic Considerations

Consider a charged molecule in the vicinity of a dielectric 

medium. One may replace the polarised medium by a set of bound surface 

Aprf volume charges (see Section II. B), induced in the dielectric by 

the fields of the nuclei and electrons in the molecule. Thus the total 

energy of The system is
w = e + n + £ ,
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where E is the energy of the molecule in vacuo, Tf is the energy 

required to polarise the dielectric, and £ is the molecule/polarised 

dielectric interaction energy, (see Equation II. B.4)*

Thus the additional energy in the presence of a dielectric is 

(from Equation XI. I'.„5)

i = n  + € = i \/°(r) Vp (r)dr,f a -

where V (r) is the potential due to the induced surface and volume P
charges in the dielectric, and /°(r) includes the nuclear and

electronic charge distributions. Inclusion of a dielectric in the

calculation thus requires an expression for V (r).P ^
(ii) Calculation of the Polarisation Potential, Vc(r)—i ......... . .  ......   —i . i  P..
As illustrated in Section II. B, the dielectric may be replaced 

by a set of bound volume charges r , so that

/0,= - V . P ,
and surface charges cr1, so that.

ar' » -P. n' ,

where n # is the unit vector pointing into the dielectric.

By Equation II. B.13* the polarisation potential in SI units is

V (r) -  - _ 1
p - 'Y ir - r'j 47T

! (V r,#F(r')dr'
U  " E'l

where the first integral is over the closed surface of any cavity which 

is in the dielectric, and the second integral is over the volume of 

the dielectric,

or  1 _  £  o-^rO d/(r') ! (  /°(x’) dr""4W60 J U-ri 4Trfco ^jr-r*j
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or in the form of Equation II. B.19,

inside
cavity

(VI. 3.1.)

where V^ is the potential due to the free charge distribution, and d is 

the dielectric constant of the medium.

Approximations ran be effected as follows:

(a) No cavity in dielectric.

In this (unrealistic) case, the potential reduces to:

Thus the only integration required is over all space, and the potential 

can be readily incorporated in SCF calculations (see Section VI. C).

This method is simple but unrealistic, and the continuous dielectric 

medium cannot be supposed to extend into the interior of the molecule.

A cutoff radius for the medium, or cavity, should thus be considered, 

but the second integral in Equation VI. B.l. requires some 

simplification•

(b) Assumption of a cavity and spherical symmetry.

We may approximate instead by assuming the charge distribution and 

cavity to have spherical symmetry, when (see Section II. B) the 

spherically symmetric potential given by Equation II. B.l6 is obtained, 

namely

(VI. B.2a)

or

(VI. B.2b)

to
P(r‘) r'2 dr'

9

where r^ = max(r,r/) when r >R0 and Vp(r)— Vp(RQ) when r ̂  RQ



(l)This leads to a formalism similar to that of Newton ; however,

this potential must also be considered to act on the nuc.lei as well as 

the electrons.

(c) Wavefunction in cavity.

Here the most drastic assumption is made t&at the wavefunction is

spherically symmetrical and included totally in the cavity.

Thus the charged cluster is regarded as a spherically symmetric

charge distribution of net value -1 lying in the cavity. Since there is

no free charge in the medium, only surface polarisation charges appear

at the cavity boundary, and the potential V is that of a .sphericalP
distribution of radius Rq, the cavity radius, and total charge

C. Incorporation of the Potential in the Cluster Model - Approximate 
Methods

(i) The No-Cavity Approximation

Assuming every electron in the molecule to move in an average

kitRo2 a-'.
By Equation II. B.13a, this gives (in SI umits)

when r > R* t

when r R

polarisation potential due to the induced charges in the medium, (this 

method neglects specific electron-medium correlation energies), then
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the total energy due to the presence of the medium is

£ = i Q*(r>vp(£)dV 4 i  ̂ Z AVp(rA)
A

and we may write the Hamiltonian for the system as

i i A i<j A<B i A
where V = V (r.), etc.I p -i19

Now in Section II. B, it was seen that § = TT (medium rearrangement 

energy) + £ (charge/mediurn interaction), where £ ~  J (r)dr,

TT = -  »> and £ — 2 £ . Thus ior the electronic term,

{- *IN-IN
i i

Separating out (a) all terms involving the nuclei alone, i.e., 

terms four- and sir;, and (b) the medium rearrangement energy, viz.

J for the electronic part, we have

¥ iL tr  11 - IN — ^i i A i < j i cor
Treatment of V (r. ) as a one-electron tern analogous to jpS (î >p ~-i

gives the total electronic energy contribution as*

E = 2 T ^ i i  - 2 Y j a

r  i i
.. = \  o;* v (r.)u;. d r .II J t 1 pVi/ T 1where Vil

Sindlarly, by analogy with III. C.2a, we obtain for the modified 

Fock matrix in the RHF formalism

£ „ =  [ O W A c r  ) - )]- Y^y,---  (VI. C.2.)
(- Jko-

where ^ V S ^ ^ y C l ) ^

But by Equation.VI. B.2b,
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dr

So

^  - u .

since A r 2) = - E  ^  5^(2) ^ ( 2 )

i.e• >

f A J  *1A ficr

Since Hk„=<^.|#0[i)|v>= ̂  y i )  - - V  ~  | \V(l)dri'
-/ ^ A 1AJ

the first term of Equation VI. C.3 may be incorporated in this, to give

j  *W(1) f -  ¥  - i  £  £ { V d  dr! ------- < w * c -^-)

Similarly, the second term may be incorporated in the two-electron part 

of F̂ j/, so that

5iv- H j >  [ i s s t o .  iC*X|vo-)]     (VI. c.5.)
TkCr

As can be seen, this gives the normal Fock matrix when d = 1 (i.e., when 

the medium is absent).

Consideration of the SUHF equations of Section III.D. leads, by 

analogy with IV. D.2, to

Si! - 3* v+ 0 P*<r ̂ v̂ <r} - v  ̂  I **>]
A ct

ZA
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i.e.,

(VI. C.6.)

Again, when d = 1, these give the normal Fock matrices 

where is given by Equation VI. C.4.

Thus only minor modification is required in an ab initio SGF 

programme. When self-consistency is achieved,, the addition of the 

nuclear energies and medium rearrangement energy will give the total 

energy of the cluster in a continuous dielectric medium. Although 

application of this technique is relatively simple, the permeation of 

the cluster by a continuous dielectric is unrealistic, and overlarge 

stabilisation energies are thus ejected.

(ii) The Spherical Symmetry Approximation (With Cavity)

With a cavity, or cutoff region for the dielectric, the 

assumption of spherical symmetry leads to simplification. This is the 

approach used by Newton (l).

The Fock operator becomes

F' = J T re+ - V  - Vj,

where V.. = V (rv r J

From Equation VI. B.3*

Vp(r) = -(l- j)Vf(r) r > R 0

and Vp(r) = -(l-i)Vf(H0) , r ^ E 0

where R is the "cavity radius," d the relevant dielectric constant, o
and Vf the potential due to all the free charges in the system.
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ThUS ( /• 2 \ vp(r)-.(1.l,|^.^j'E£l dr'j,
where is the larger of r and r', and for r ̂  Rq,

V (r) = V (R )P p o7

The charges Z^ are restricted to the cavity for simplicity.

The problem of evaluating the integral C  ̂ i^r  ̂^t may be
J r>

tackled numerically,, but the procedure can be time-consuming. Newton 

has solved this problem using a combination of analytical and numerical 

techniques.

However, one important difference emerges: although he correctly

includes nuclear charges in the expression for V , he does not take theP
interaction between V and the into account in the total energy.

Thus the term

LZ^Vp(r^), or since the Z^ all lie within the cavity,

A
4 vp(Ro) £ z a, is missing from the total energy,

A
obtainable from the expression

t ■ i C a  r)Vp(r)d + g y  ̂ Z^VpCr^) , by substitution of the

egressions for V (r).P
(iii) The Localisation in Cavity Approximation 

Since, in this approximation, we assume a spherical charge 

distribution confined within a spherical cavity, the potential (see 

Equation VI. B.A) is

Vp(r) = -(l- , where r> = max(r,RQ)

and since the charge distribution Q is confined to the cavity,
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t  = - £x Q x (1- j) j|- 9
o

2
i.e., £ = 4 § - ( l - j )    (VI. B.8.)

o

Thus the energy due to the presence of the medium is independent 

of the size of the charge distribution Q, and is merely added to the 

result of a suitable SCF cluster calculation.

The Optimum Model ?
N

(i) Practical Drawbacks of Theoretical Models

None of the rethods of Section C is ideal. The full treatment of 

a macroscopic cluster by ab initio methods is at present prohibitive. 

Even full inclusion of dielectric with a cutoff radius round a central 

cluster (see Equation VI* B.l) is intractable without assumption of 

spherical symmetry, and the total neglect of a cutoff radius (see 

Section VI. C,(i)) is feasible but unrealistic.

The method of Section VI. C.(ii) and Newton, which invokes 

spherical symmetry, and possible penetration of the trapped electron 

beyond the cutoff radius, requires considerable extra computation.

The final method of Section VI. C.(iii), although mathematically 

very simple, merely makes the one additional assumption that the 

trapped electron does not- extend sufficiently outwards to penetrate the 

surrounding dielectric medium to any great extent. This may not be 

unreasonable: the cavity model of Section II. E for H^O shows that

60 - 70# of the electron density is typically contained in the cavity, 

and the cluster calculations of Sections IV. B and IV. C indicate a 

very rapid fall-off of spin density from the centre of the cluster. 

Newton, too, on dipole-oriented finds 84# containment for a

radius of 2*65 A0.
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(ii) Application of the Localisation in Cavity Model 

The procedure in this case is to perform an SCF calculation on 

the excess electron cluster in vacuo, using a reasonably flexible and 

diffuse basis set, the energy term of Equation VI. B.8 then being added.

Thus the spin densities and excitation energies are evaluated by the 

SCF calculation, while the energy of solvation is determined by the 

“cavity size,“ that is, the radius at which the continuous dielectric 

medium is supposed to commence. Calculated values of stabilisation 

energies for liquid H^O and liquid NH^ are shown in Table VI. D.l.

Since the calculated energy difference between the excess electron 

and neutral structures is small (e.g., for the hyperdiffuse basis on 

planar NH^ (see Table IV. C.l), A E  = 0*03 eV) for a sufficiently 

flexible and diffuse basis, we may take the calculated stabilisation 

energies in Table VI. D.l as representing the whole of the solvation 

energy. Furthermore, the derivations of Sections VI.B and VI.C 

calculate £, the difference between the energy of an unpolarised 

dielectric containing a cavity and the polarised dielectric with a 

spherically symmetric charged cluster wholly within the cavity; thus
/  p  O L }

VQ, the energy of injection of an electron into the medium * 9 is

included in £ • Terms Involving energy of cavity formation, such as \
11 5) a“surface tension" v 9 will have no bearing on c if the cavities are

preformed by thermal motion and radiation effects

From the t-ible, water appears to form energetically deeper traps

than ammonia at the same cavity radius, and Newton's calculations

confirm this showing stabilisations of -1*62 eV for H^O with

R =2*65 A°, and -0*82 eV for NH^ with R = 2*75°. In the present o ✓ “
author's model, to fit the observed heats of solvation for water and 

ammonia, namely -1*7 ©V and -1*7 - 0*7 ©V, radii of 4*18 A and 4*04 A 

respectively are required. Thus, if a continuous dielectric medium is
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considered to start at a radius ^  4 A° from the molecule(s) on which 

an electron is localised, the solvation energy can be fitted quite well 

to experiment. However, restriction of the diffuseness of the orbitals 

is necessary to prevent the excess electron ‘'drifting off" in this 

model, whereas SCF calculations allowing for penetration into the medium 

will automatically prevent this occurrence.

The main problems of the structural/continuum models can be 

summarised thus:

(a) the present work, by extending the flexibility of ab initio

calculations on structures containing e~, has inferred that such a

model does not stabilise an excess electron when the cluster size is

limited: alone, such clusters would be centres for transient electron

capture rather than long-term stabilisation. Previous structural
(7 g)models claiming stability ' 9 have not had sufficiently flexible 

or optimised basis sets.

(b) the cluster model does not predict the optimum orientation 

for electron trapping: only by trial and error are some orientations

found to be the lowest in energy,

(c) the long-range stabilisation energy is large compared to 

the energy differences between different possible cluster orientations.

(iii) A Suggested Qualitative Scheme

Taking into account the discussion in Section I. A and the 

theoretical data, a rough scheme for electron solvation in crystalline 

ice and liquid water can be suggested. This may also apply to liquid 

NH^, but the situation in alkaline glasses appears to be totally 

different.

Electron stabilisation occurs mainly at a defect in the crystal 

structure. In ice at 77K the defects are few, leading to low yields 

of e ,̂ but the trap population may be increased by heating,
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incorporation of F ion or dosage with radiation.

One type of defect predominates, with a small percentage of 

deeper and shallower traps,

E, Addendum -Experiment Versus Theory

As discussed earlier, (Section IV. C) various investigators have 

found the most stable conformation of (^0)^ to be that illustrated in 

Fig.IV. C.4., where two protons face each other, according to 

energetic and spin density considerations. Naleway and

Schwartz point out the similarity of this trapping centre to the
^11 12)Bjerrum D defect in ice 9 , suggesting that these may be the

trapping centres in the medium. This is also intuitively appealing,

since an H...H centre should appear more positively charged to an excess
(13)e3.ectron than, say, 0-H,..0 or 0...0. However, Kawabata N ' has found 

that the trapping of e in crystalline ice is much enhanced by the 

presence of F~ ion in the crystalline lattice. If, as he suggests, F~ 

replaces an H90 molecule, the expected effect would be the orientation 

of protons toward F~, with consequent propagation of Bjerrum L defects 

(0...0 type) throughout the lattice. Since the F has no other effect 

on the shape of the optical spectrum of e~, or the photobleaching 

behaviour, it would appear that the electron is not trapped near F , 

but near one of the resultant L defects.

In view of this experimental result, it may be more pertinent to 

examine theoretically very large H^O crystal fragments containing an 

L defect, rather than a D one, if and when this type of SCF calculation 

becomes feasible.



172

References VI

1. (a) M.,D. Newton, J. Chem. Phys., j>8 (1973) 5833.

(b) M.D. Newton, J. Phys. Chem., 22. (1975) 2795.

2. B.E. Springett, M.H. Cohen and J. Jortner, Phys. Rev., 159 (1967) 

183.

3. B.E. Springett, J, Jortner and M.K. Cohen, J. Chem. Phys., /j8 

(1968) 2720.
4. R.A. Holroyd and M. Allen, J. Chem. Phys., C3971) 5014*

5. K. Fueki, D-F. Fong, L. Kevan and R.E. Christoffersen, J. Phys. 

Chem., 21 (1971) 2297.

6. K. Kawabata, S. Okabe and H. Horii, Chem. Phys. Lett., 20 (1973) 

586.
7. M. Weissmann and N.V. Cohan, Chem. Phys. Lett., 2 (1970) 445.

8. S. Ishimaru, H. Kato, T. Yamabe and K* Fukei, J. Phys. Chem.,

22 (1973) 1450.

9. C.A. Naleway and M.E. Schwartz, J. Phys. Chem., 21 (1972) 3905*

10. C.M.L. Kerr and F. Williams, J. Phys. Chem., 21 (1972) 3838.

11. N. Bjerrum. K. Dan. Vidensk.Slesk. Mat. Fys. Skr., 22 (1951) 1.

12. R. Catterall and N.F. Mott, Adv. Physics, 18 (1969) 665.

13. K. Kawabata, J. Chem. Phys., 55 (1971) 3672.

14. J.O. Noell and K. Morokuma, J. Phys. Chem., 81̂  (1977) 2295.



173

TABLE VI, D.l.

Simple Cavity Medel: Stabilisation Energies (eV) for water and liquid 
ammonia for Different Cavity Radii (A°)

Energy (eV)
Radius ( a 0 )

-6.871.0 - 7.11
1.5

2.0

3.0 -2.37

4.0

5.0 -1.37

-1.15

7.0 -1.C2
8.0 -0.839-0.839

9.0

10.0 -0.711

(1) Static dielectric constant = 22

(2) Static dielectric constant = 80*37


