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SUMMARY

This thesis contains details of a series of studies in which 

the interrelationship of hyperbaric oxygen, hypothermia and 

tissue hypoxia has been examined. The data derive from both 

experimental and clinical observations.

The early experimental studies were designed to examine the 

pathophysiological changes occurring in animals subjected to 

various generalised hypoxic insults with a view to subsequent 

investigation of the effects of hyperbaric oxygen and hypo

thermia. The limitations of both techniques were revealed 

in later experimental and clinical studies. These investigations, 

however, were by no means entirely negative and yielded much 

information which proved to be of value in the management of a 

number of clinical conditions with an hypoxic basis, e.g., 

cardiac arrest, shock, severe anaemia, fat embolism and 

accidental hypothermia.

The introductory chapter includes a summary of the mechanisms 

of oxygen transport from the lungs to the tissues followed by 

a brief description of the principal physiological and
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biochemical disturbances associated with hypoxia. A review 

of the subjects of hyperbaric oxygen and hypothermia serves as 

an introduction to more detailed discussion in later chapters.

The ability of hyperbaric oxygen to increase oxygen storage 

capacity in the body was demonstrated by means of respiratory 

arrest in the anaesthetised dog. In the presence of a normally 

functioning circulation asphyxia was tolerated for periods of 

over 20 minutes after breathing oxygen at two atmospheres 

absolute (2 ATA). In the presence of an arrested circulation 

the equivalent period was eight minutes - representing only 

a modest increase on the duration of safe circulatory arrest 

attainable at normal atmospheric pressure. The combination of 

hyperbaric oxygen (2 ATA) and moderate hypothermia (28 deg C), 

induced by surface cooling techniques, extended the period of 

safe circulatory arrest to 30 minutes, approximately 10 minutes 

more than with normobaric oxygen at the same temperature.

The possibility of increasing the protective role of hypothermia 

and hyperbaric oxygen by further reduction in body temperature 

and increase in oxygen pressure was next considered. Cooling 

dogs to 20 deg C without the aid of cardiopulmonary bypass



presented some initial difficulties which were eventually 

overcome. The combination of hyperbaric oxygen (2 ATA) 

and deep hypothermia (20 deg C) was compatible with a 

maximum period of safe circulatory arrest of about 35 minutes. 

Increase in oxygen pressure to 3 ATA did not significantly 

improve this figure. The obvious conclusion from these 

various experiments was that the predominant factor determining 

the duration of safe arrest was the reduction in oxygen 

consumption consequent upon hypothermia. The contribution 

of hyperbaric oxygen was relatively minor presumably because 

the extra oxygen did not gain access to the tissues.

The last three chapters of the Experimental Section are devoted 

to studies of myocardial blood flow and metabolism in the intact 

dog. Hypoxia was shown to induce a substantial increase in 

myocardial blood flow. There was a critical arterial PC^

(35 mm Hg) above which increases in flow did not occur and 

there was no evidence that hypoxic vasodilatation was mediated 

through vascular /?-adrenoreceptors. The myocardial vascular 

and metabolic responses to hypoxia and hypercapnia were 

examined at mederate hypothermia (26 deg C) and although certain 

differences in these responses as compared with normothermia 

were detected, it was concluded that coronary vasuular reactivity 

in the normal heart remained unaltered in character at reduced
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temperature. In studies on dogs subjected to moderate and 

severe haemorrhage, hyperbaric oxygen (2 ATA) did not improve 

myocardial oxygen availability and failed to modify the 

changes in cardiac output, work, efficiency and oxygen 

consumption of the heart that resulted from blood loss.

In the Clinical Section there are four chapters dealing in 

turn with miscellaneous hypoxic conditions, severe anaemia, fat 

embolism and accidental hypothermia. The miscellaneous 

conditions included coal gas poisoning, pulmonary gas exchange 

disturbances, cardiac arrest and cyanotic congenital heart 

disease. It was shown that in severe hypoxic hypoxia hyperbaric 

oxygen could increase arterial PC^ and if the underlying 

condition was capable of resolution, long-term benefit might 

result. In ischaemic conditions, however, the advantages of 

hyperbaric oxygen were not so obvious.

The possibility that hyperbaric oxygen (2 ATA) might be of value 

in reducing the hazards associated with blood transfusion in 

the patient suffering from severe chronic anaemia was explored. 

Four patients with haemoglobin values ranging from 1.5 to

3.8 g/100 ml were exposed to hyperbaric oxygen during the acute 

phase of their illness. The resulting increase in tissue oxygen



availability appeared to reduce the related cardiovascular and 

metabolie disturbances.

Death from fat embolism has been attributed to a number of factors 

but recently it has been stated that the cause of death in 

this syndrome is almost invariably the hypoxia secondary to 

the effects of pulmonary fat emboli. The aim of a study 

in 11 patients with severe fat embolism was to maintain 

arterial PC^ as near as possible within the normal range and, 

otherwise, to apply only routine supportive measures, e.g., 

fluids and drugs to restore normal tissue perfusion. Survival 

of all 11 patients seemed to confirm the overriding importance 

of eliminating hypoxia in the treatment of the fat embolism 

syndrome.

The final chapter in the Clinical Section contains details 

of a prospective study of 44 patients suffering from 

accidental hypothermia. The aim of the study was to determine 

the effect on outcome of an aggressive approach to treatment, 

including the use of active external rewarming techniques.

The frequency and severity of hypoxaemia in accidental hypo

thermia was confirmed together with a number of other j

biochemical and haematological disturbances. The main 

components of treatment appeared to be restoration and j

maintenance of adequate arterial oxygenation and tissue
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perfusion; intermittent positive pressure ventilation was 

indicated in half the patients and fluid repletion was almost 

always required; vasoactive agents were rarely considered 

necessary. Active external rewarming was found to be an 

entirely safe procedure. During the past 10 years no patient 

in the series died during the phase of rewarming. The overall 

mortality was 27%, the lowest in any previously published series.



Chapter 1
 ----  30.

Introduction and Background

This thesis contains details of a series of studies in which the 

interrelationship of hyperbaric oxygen, hypothermia and tissue 

hypoxia has been examined. The data, which have been collected 

over a period of eighteen years, derive from both experimental 

and clinical observations. Throughout this period the author 

has published extensively on all three topics but much of the 

present material has not previously been submitted for 

publication.

The early experimental studies were designed to examine the 

pathophysiological changes occurring in animals subjected to 

various generalised hypoxic insults with a view to subsequent 

investigation of the effects of hyperbaric oxygen and hypo

thermia. The limitations of both techniques were revealed 

in later experimental and clinical studies. These investig

ations, however, were by no means entirely negative and 

yielded much information which proved to be of value in the 

management of a number of clinical conditions with an hypoxic 

basis, e.g., cardiac arrest, shock, severe anaemia, fat 

embolism and accidental hypothermia.

This introductory chapter includes a summary of the mechanisms 

of oxygen transport from the lungs to the tissues followed by 

a brief description of the principal physiological and bio

chemical disturbances associated with hypoxia. A concise



review of hyperbaric oxygen and hypothermia serves as an 

introduction to more detailed discussion of these topics 

in later chapters.

OXYGEN TRANSPORT 

An adequate oxygen tension (PC^) is essential for normal 

metabolism within the cell. In the mammalian mitochondrion 

the PO2  lies between 0.13 and 1.33 kPa (1 and 10 mm Hg) 

(Chance, 1965) although elsewhere in the cell values up to 

3 kPa (22.5 mm Hg) are reported (Nunn, 1977a). As long as 

intracellular PC^ remains above a critical level substrate 

utilisation and oxidative phosphorylation, the aerobic process 

by which energy is produced in the form of adenosine tri

phosphate (ATP), may proceed normally.

The oxygen transport mechanism (Flenley, 1967) has been 

likened to a cascade with the partial pressure of oxygen 

remaining high as it passes from the inspired air through 

the alveoli to the arterial blood but falling substantially 

on reaching the capillary blood (Fig. 1.1). The inspired 

oxygen pressure is determined by the inspired oxygen 

concentration and the barometric pressure. At normal 

atmospheric pressure with water vaporised at 37 deg C the



euo
Ea ao

oo

O

O

&0
oi

Q
w
HH
cuw
2kscnd

<

pi<
o
w

3

«o J<i— i
Pi
Q  
2  
O  
S3 
u  o
H

I*
Pic►J.J
PH <  

d OWHPi
<

Q)XJ03O0)cOO
a<D60>>
o

<uM0
to*Hfcn.



inspired oxygen pressure is 19.9 kPa (149 mm Hg). Alveolar 

PO^ is calculated using the alveolar air equation :

Alveolar PC^ = dry barometric I inspired oxygen - oxygen uptake/
pressure y concentration alveolar ventil

at ion

making allowance, when required for increased accuracy, for 

the small difference in volume between the inspired and expired 

gas. The alveolar PC^ obtained from this equation is an 

'ideal* value (Riley et al, 1946), equivalent to the PC> 2 of 

pulmonary end-capillary blood from normally perfused alveoli 

(about 14 kPa (105 mm Hg)). The alveolar/arterial PO2  

difference results from pulmonary venous admixture which is 

a combination of (i) frank shunt of deoxygenated blood either 

bypassing the alveoli or passing through unventilated alveoli 

and (ii) the scatter of ventilation/perfusion ratios from 

different parts of the lung. Normally frank or 'true' shunt 

constitutes less than 1% of cardiac output (Lenfant, 1964).

The alveolar/arterial PO2  difference does not exceed 2 kPa 

(15 mm Hg) in young healthy adults which, with respect to the 

alveolar P02 indicated above, gives a minimum arterial PC> 2  

of 12 kPa (90 mm Hg), a value which decreases with age to a 

mean of about 10.8 kPa (81 mm Hg) in the absence of obvious 

cardiorespiratory pathology.



Oxygen availability

Oxygen transport from the heart to the tissues (otherwise 

known as oxygen flux, delivery or availability) is determined 

by arterial blood flow and the oxygen content of arterial 

blood, which consists predominantly of oxygen in combination 

with haemoglobin together with a small amount in physical 

solution in plasma.

Arterial oxygen = haemoglobin x arterial oxygen saturation x 
content 1.39 + arterial PC^ x °<

1.39 is the theoretical value of oxygen (ml) which can 

combine with lg of haemoglobin. c< is the Bunsen solubility 

coefficient of oxygen in blood (0.0214 + 0.000108 x vol% O2  

capacity ml/ml/atmosphere) or the Ostwald coefficient (0.003 

vol%/mm Hg), at 37 deg C.

The normal value for arterial oxygen content is 19.30 ml/lOOml 

blood (of which 0.25 ml/lOOml is in physical solution) which when 

multiplied by a cardiac output of 5000 ml/min gives a figure of 

1000 ml/min for oxygen availability. Oxygen consumption is 

approximately 250 ml/min which means that 75% of the oxygen 

delivered to the tissues is not utilised under resting conditions. 

To a certain extent this reserve can be drawn upon under conditions
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of hypoxic stress (see section on hypoxia).

Oxygen dissociation

The importance of oxygen dissociation from haemoglobin in 

determining the adequacy of tissue oxygenation has been 

appreciated for many years. Changes in the shape and position 

of the oxygen dissociation curve (Fig. 1.2) may result from 

alterations in pH, temperature, ionic strength and

haemoglobin concentration (Finch and Lenfant, 1972). Oxygen 

affinity for haemoglobin is also influenced by the level of

2.3 diphosphoglycerate (2.3 DPG), one of a group of organic 

phosphates contained in the red blood cell (Benesch and Benesch, 

1967; Chanutin and Curnish, 1967).

Shifts in the oxyhaemoglobin dissociation curve are con

veniently described as changes in P50 (the oxygen partial 

pressure at which haemoglobin is 50% saturated under standard 

conditions of pH and temperature), a fall in P50 indicating 

a shift to the left and a rise a shift to the right. Increase 

in hydrogen ion concentration causes a shift to the right of 

the oxygen dissociation curve (the Bohr effect) which is 

generally considered to hinder oxygen uptake in the lungs 

and accelerate oxygen exchange in the tissues. Such a shift 

in the dissociation curve has a negligible effect on arterial
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PC^ unless the shift is extreme but venous PO^ is markedly 

affected, rising from a normal of 5.3 kPa (40 mm Hg) to 6.9 kPa 

(52 mm Hg) for a fall in pH from 7.4 to 7.0 units. Since 

tissue PO2  is related to venous PO^ this effect may be viewed 

as compensating for some of the adverse features of acidosis. 

Alkalosis produces a shift to the left of the dissociation 

curve with the result that blood will not release substantial 

quantities of oxygen until the PC^ falls to below normal levels.

2.3 DPG is a haemoglobin ligand, and when its level in the red 

blood cell falls, oxygen binding increases resulting in a shift 

to the left of the oxygen dissociation curve and consequent 

impairment of oxygen release to the tissues. Acidosis reduces 

the formation of DPG in the red cell, and in states of 

established acidosis the opposing action of these two mechanisms 

on oxygen dissociation is balanced. This balance is adversely 

disturbed if acidosis is corrected acutely, the increase in 

pH adding to the low DPG level and producing a marked reduction 

in P50. The reduction in P50 will be corrected only slowly 

as new DPG is formed. The oxygen dissociation curve of stored 

blood is shifted to the left (Valtis and Kennedy, 1954) because 

of its low organic phosphate content and infused red cells may 

take as long as 24 to 48 hours to acquire a normal complement
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of 2.3 DPG (Fig. 1.3). The maximum effect on P50 is of the 

order of 0.5 kPa (3.8 mm Hg) although blood stored in citrate- 

phosphate-dextrose is less affected than blood stored in 

acid-citrate-dextrose preservative (Jesch et al, 1975).

Although an acute reduction in P50 lowers venous PC^ and may 

impair oxygen discharge to the tissues, in due course compen

satory haemodynamic mechanisms come into play in the form of 

an increase in blood flow. The magnitude of the increases is 

often not fully appreciated. For example, depending on the 

absolute value of oxygen tension in blood reaching the right 

side of the heart (mixed venous PC^) a fall of 0.3 kPa (2 mm Hg) 

may result in a rise in cardiac output of over one litre, and 

if the fall exceeds 0.5 kPa (4 mm Hg), cardiac output may 

double to maintain a stable oxygen supply.

Tissue oxygenation

A number of factors influence oxygen delivery to a region 

including capillary density, local flow rates, blood viscosity, 

oxyhaemoglobin dissociation, the presence of local oxygen 

buffers such as myoglobin, vessel wall permeability and the 

variability of capillary perfusion pattern (Silver, 1977). 

Ultimately the rate of oxygen discharge from the blood to the
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tissues depends on the oxygen tension gradient between plasma 

and the tissue cells.

Early anatomical accounts of the microcirculation envisaged 

an essentially symmetrical parallel arrangement of the 

capillaries (Krogh, 1919 a,b) which, together with the 

assumption of unidirectional blood flow, made it relatively 

simple to calculate the presumed distribution of oxygen within 

the tissues (Thews, 1960). This relatively simple system 

did not appeal to Diemer (1963, 1965) who advanced evidence 

in support of a countercurrent system of blood flow. More 

recent studies (Fabel, 1968; Grunewald, 1969) suggest that 

an asymmetrical parallel array is most probable; blood may 

flow at varying rates in one direction in some capillaries 

and in the opposite direction in others and, under certain 

circumstances, flow may even reverse. The main advantage of 

this arrangement would be more uniform tissue oxygenation 

and greater resistance to fluctuations in oxygen delivery. 

Prediction of actual tissue PC^ is, however, more difficult 

and venous PC^ may at best be only a rough guide to the 

adequacy of tissue oxygenation (see section on hypoxia).

A further complication is that only a proportion of the 

blood flowing through a region may traverse ’nutrient* or



Exchange* vessels (i.e., those involved in active metabolic 

processes) the remainder of the blood negotiating 'bypass' 

or 'preferred route' low impedance vessels. Accurate and reliable 

measurement of tissue PO^ is the obvious solution to these 

difficulties and much valuable information has been obtained 

from experimental studies using tissue oxygen electrodes and 

enzyme fluorescence techniques (Kessler et al, 1969; Messmer 

et al, 1973). Unfortunately tissue PO^ measurements are open to 

a number of criticisms and so far have not been widely applied 

in the clinical situation (Scacci, McMahon and Miller, 1976).

Control of tissue oxygen delivery is exercised both at systemic 

and local levels. Systemic control is effected via central 

chemoreceptors and baroreceptors and the brain stem reflexes.

Local control mechanisms are less well understood. Silver (1977) 

describes an autoregulation feedback system (Fig. 1.4) involving 

a sensor, a comparator, and an effector. The precise nature of 

the sensor has not been established and a wide range of possibil

ities exist including some of the respiratory enzymes, local 

chemoreceptors, molecular oxygen binding processes and the 

relative concentration of the adenine nucleotides. The comparator 

is responsible for maintaining PO^ within a narrow range around 

the oxygen set point which varies for different tissues, and
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feedback may be fast or slow according to individual tissue 

requirement. The effector may take the form of pre-capillary 

sphincters but the capillaries themselves may exercise some 

control over their blood flow by proximal endothelial 

engorgement. The connection between these three mechanisms 

may be nervous, humoral or by membrane transfer.

HYPOXIA

Hypoxia not only stops the machine but wrecks the machinery. 

According to the Barcroft classification the causes of 

hypoxia fall readily into four categories - hypoxic, anaemic, 

stagnant and histotoxic. An alternative classification 

(Lambertsen, 1966) also has four subdivisions but arranged 

in a format more consistent with recent knowledge:

1) diminished blood oxygen carriage may be due to a low

arterial PO^ or to a low arterial oxygen content with a 

normal PĈ * In the former (corresponding to hypoxic hypoxia 

in the older classification) the low arterial PC^ is a 

consequence of breathing gas with a reduced PC^ or of 

defective pulmonary gas exchange; chemoreceptor activity 

is increased. In the latter (corresponding to anaemic 

hypoxia) the low arterial oxygen content occurs as a result



of reduced haemoglobin concentration or of defective 

haemoglobin oxygen carriage as in carbon monoxide poisoning 

or in any condition leading to the formation of methaemoglobin; 

stimulation of chemoreceptor activity is minimal.

2) diminished blood flow (corresponding to stagnant 

hypoxia) may be ischaemic or congestive in origin and 

generalised or localised in extent. In ischaemia an in

adequate arterial blood supply causes tissue damage commens

urate with the degree of reduction in blood flow and leads to 

the sequelae normally associated with shock (in the generalised 

form) or gangrene (in the localised form). Congestion and 

oedema usually result from venous obstruction which may be 

severe enough to produce thrombosis in the localised form;

the consequent hypoxia is of a less dramatic character than 

that which follows arterial obstruction.

3) Hypoxia resulting from oxygen requirement being

in excess of supply has no equivalent in the older termin

ology. A discrepancy between oxygen supply and demand may 

arise in exercise, convulsions and sepsis.

4) histotoxic hypoxia occurs when there is acute 

depression or inactivation of cellular oxidative systems 

such that the cells are unable to utilise the oxygen 

presented to them. Examples of this type of hypoxia are
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poisoning by cyanide, sulphide and by exposure to excess 

amounts of oxygen.

Severity of hypoxia

The severity of hypoxic damage is influenced by a number of 

factors. Clearly the nature and extent of the initiating 

insult have an important bearing on outcome and relate to 

the body’s ability to mobilise compensating mechanisms 

(Fig. 1.5).

Acute circulatory arrest and chronic hypoxaemia are at 

opposite ends of the spectrum, the one followed by death 

in minutes and dependent largely on the state of the 'oxygen 

stores', the other compatible with life by virtue of 

compensatory increases in cardiac output and haemoglobin 

oxygen carriage. The oxygen stores of the body are small and 

average 2 litres in a 70 kg man (Chemiack and Longobardo, 

1970); the major proportion is in the blood and the bulk 

of the remainder is in the lungs (functional residual 

capacity). Pulmonary oxygen storage can be increased 

substantially by breathing oxygen with the result that 

asphyxia may be tolerated for as long as eight minutes;
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the comparable value after air breathing is about one 

minute (Nunn, 1977b). Acute hypoxia appears to be more 

injurious to previously normally oxygenated tissues than to 

chronically hypoxic tissues possibly because glucose depletion 

in the latter reduces lactic acid formation (Geddes, 1967). 

Finally, by affecting oxygen consumption, metabolic rate 

modifies the impact of hypoxia on intracellular mechanisms. 

Pyrexia accelerates the onset of hypoxia and the opposite, 

i.e., protective, effect of hypothermia has been exploited 

in clinical practice for many years. Differences in metabolic 

rate between organs account, in part, for the variation in 

susceptibility to hypoxia from one tissue to another although 

the principal factor in this regard is glycogen content.

Brain, with a high metabolic rate for oxygen and glucose 

and virtually no glycogen reserve, can withstand hypoxia for 

only a few seconds while resting skeletal muscle with large 

glycogen stores can last for two to three hours. Heart, 

liver and kidney occupy intermediate positions and resistance 

to hypoxia can be enhanced by, for example, inducing asystolic 

arrest of the heart or increasing glycogen stores in the liver.

In the presence of an adequate oxygen supply ATP is formed
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continuously from the reaction of adenosine diphosphate 

(ADP) with inorganic phosphate. The energy released from 

hydrolysis of ATP sustains several essential processes 

within the body including muscle contraction, nerve excitation, 

active transport and synthesis of various compounds (exergonic 

reactions). All three foodstuffs contribute to a final 

common pathway which consists of the tricarboxylic acid 

cycle and the electron transport chain (Fig. 1.6). The 

common point of entry into the cycle is acetyl-coenzyme A 

(acetyl-CoA) and the combined processes thereafter yield 

30 molecules of ATP per molecule of glucose and 17 

molecules of ATP per Molecule* of fatty acid in addition 

to contributions from transamination of certain amino acids 

which enter the cycle beyond acetyl-CoA. With the onset of 

hypoxia the tricarboxylic cycle becomes inactive and the 

only mechanism for the production of ATP is the much less 

effective Embden-Meyerhof pathway (Fig. 1.7). Only two 

molecules of ATP are produced by this cytoplasmic process and 

an unlimited supply of glucose substrate is essential. The 

pyruvate so formed is converted to lactate preventing an 

otherwise lethal accumulation of reduced nicotinamide 

adenine dinucleotide (NADH). Although the profound reduction
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in ATP formation leads to depression of exergonic reactions 

the Embden-Meyerhof pathway is nevertheless an important 

defence mechanism against the damaging effects of hypoxia 

(Alberti, 1977).

Detection and Assessment of Hypoxia

Detection of tissue hypoxia presents difficulties. Tissue 

PO2  measurements seem the obvious solution and have proved 

to be of value under carefully controlled experimental con

ditions when the problems of electrode calibration and siting 

e.g., in relation to blood vessels, are not insurmountable 

(Lubbers and Kessler, 1972). In clinical practice such measure

ments have been largely restricted to the use of non-invasive 

transcutaneous electrodes; a linear relationship between the 

PO2  of skin warmed to 44 deg C and arterial oxygen tension 

has been demonstrated (Al-Diaidy et al, 1977). Because of 

the relative difficulty of tissue PO2  measurement, alternative 

sites have been sought and the results of such measurements in 

cerebrospinal fluid (Schoemaker, 1965), in lymph (Jacobson, 1965), 

in interstitial fluid (Hunt, Ledingham and Hutchison, 1966) and 

in urine (Bird and Bloor, 1968), amongst others, have been 

evaluated. The commonest indirect site for PC^ determination, 

however, is venous blood. Venous PC^ is a reflection
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of overall tissue PO^ but may be used to gauge hypoxia 

only under certain circumstances. The blood sampled must 

be draining tissue which is more or less uniformly hypoxic - 

patchy ischaemia will result in a disproportionate volume 

of blood from normally perfused tissue reaching the veins; 

in addition, the cells must be metabolically active, other

wise the venous blood will not become deoxygenated. In spite 

of these limitations venous PO^ is measured routinely in the 

experimental laboratory and may be of some value in clinical 

practice, where the commonest measurements are of mixed venous 

and jugular bulb

Mixed venous oxygen tension (or saturation) is a good 

indicator of the overall adequacy of tissue perfusion and 

oxygenation (Kasnitz et al, 1976). Ideally a true mixed 

venous sample should be obtained through a pulmonary artery 

catheter but samples withdrawn from a catheter in the right 

atrium may be an acceptable alternative (Schienman, Brown and 

Rapaport, 1969). Recently, apparatus has been developed which, 

by means of a dual wavelength infrared fiberoptic system, allows 

continuous measurement and display of mixed venous 

oxygen saturation (Polanyi, 1974). If arterial oxygen is
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stable, mixed venous oxygen saturation (normal value 70 

per cent) varies directly with cardiac output and inversely 

with oxygen consumption. In certain clinical situations, 

e.g., after cardiac surgery, oxygen consumption remains 

largely unaltered (Raison et al, 1970) and under these 

circumstances mixed venous oxygen saturation is an excellent 

guide to changes in cardiac output; a value below 50 per 

cent is associated with a low cardiac output and a poor 

prognosis (Kasnitz et al, 1976). In other clinical situations 

e.g., sepsis, interpretation of changes in mixed venous 

oxygen saturation may be more difficult since a number of 

factors may be changing simultaneously e.g., arterial oxygen 

content and oxygen consumption. Jugular bulb PO2  is a useful 

practicable measurement of the state of oxygenation of the 

brain and consciousness is lost when the PC^ falls below 

about 2.7 kPa (20 mm Hg), which would correspond roughly to 

an arterial oxygen tension of 4.8 kPa (36 mm Hg) (Nunn, 1977c).

Both tissue and venous PO2  measurements suffer from the dis

advantage that, even if valid and accurate, their real 

significance may be satisfactorily interpreted only when 

related to some other index of hypoxia. Furthermore, cell
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function does not respond uniformly to a fall in PO^ and 

structural damage is the last event in the sequence. This 

accounts, for example, for the observation that reduction 

in the formation of neuro transmit ter substances in the brain 

may lead to unconsciousness at a level of hypoxia not associated 

with a breakdown in membrane transport systems (Miller, 1977).

A number of different techniques are used to assess tissue

hypoxia. Spectrophometric analysis of excised tissue reveals

the consequences of hypoxia on the respiratory chain enzymes in

the form of reduced ATP/ADP and creatine phosphate/creatine

ratios and an increased NADH/NAD ratio. The latter may also

be studied in vivo using fluorometric techniques (Kessler et al,
1969)

Direct monitoring of tissue pH such as from an electrode 

placed on the surface of a muscle through a small skin 

incision (Kung, Le Blanc and Moss, 1976) is a useful measure 

of hypoxia which may anticipate subsequent changes in the 

blood. In clinical practice, the effects of reduced oxygen 

tension are most commonly measured by changes in the blood 

levels of lactate, hydrogen ion, potassium and certain 

cellular enzymes (e.g., lactate dehydrogenase, aspartate 

transaminase and alanine transaminase).
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Lactate and pyruvate are related to one another as in the 

following equations:

Lactate + NAD+ v N pyruvate + NADH + H+

^Lactate ] = fNADH] . 1 . Fh+1
pyruvate] [NAD ] K

The ratio of lactate to pyruvate (L/P) is proportional to

the ratio of NADH to NAD. A rise in L/P ratio in the blood

will reflect intracellular changes in the NADH/NAD ratio on 

the assumption that lactate and pyruvate are freely and 

equally diffusible from inside the cell, and that a state 

of equilibrium has been reached. One further point must be 

borne in mind. An increase in hydrogen ion concentration will 

theoretically increase L/P ratio without necessarily any 

change in redox state (Alberti, 1977; Cohen and Woods, 1976). 

The term * excess lactate* (Huckabee, 1958) has little obvious 

advantage over L/P ratio and is less popular than formerly. 

Arterial pH may also be used as an indicator of hypoxia 

but it is, of course, influenced by an even greater number 

of factors than lactate. The increase in serum potassium 

during hypoxia is a result of the build up of hydrogen ion 

concentration displacing potassium ions from within the cell.
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Release of cell enzymes into the circulation is a harbinger 

of cell death.

HYPERBARIC OXYGEN 

Effects on oxygen transport

The term hyperbaric oxygen (OHP) signifies the administration 

of oxygen at pressures exceeding normal barometric pressure.

The distinction from conventional oxygen administration is 

a matter of descriptive convenience rather than of physiological 

importance. There is certainly no clearcut change in the 

effects of oxygen at a pressure of 101 kPa (760 mm Hg).

As inspired oxygen pressure increases, nitrogen is rapidly 

washed out of the tissues and ultimately the difference between 

ambient oxygen pressure and alveolar oxygen pressure consists 

solely of the sum of the partial pressures of water vapour 

and carbon dioxide. At three atmospheres absolute (ATA), 

for example, the ambient pressure is 101 x 3 = 303 kPa (2280 

mm Hg), and with 100% oxygen, normal body temperature and 

normal ventilation, the alveolar PO2  c&n be 303 - (6.25 + 6.38) = 

290.4 kPa (2193 mm Hg). This represents a 22-fold increase 

over the PO^ of air breathing at normal pressure. (For 

reasons principally relating to oxygen toxicity, pressures 

in excess of three ATA are not used in clinical practice).



Early studies of the alveolar/arterial P02 difference in man 

during 100% oxygen breathing at increased pressure suggested 

values of several hundred mm Hg (Lambertsen et al, 1953 a and 

b; Whalen et al, 1964 a and b; Rosenberg, Shibata and MacLean, 

1966). Such differences, had they been confirmed, would have 

indicated major derangement of pulmonary function. Later invest

igations from this laboratory (McDowall, Ledingham and Tindall, 

1968) indicated the source of possible previous technical errors 

and revealed that, in the short term at least, there were no stat

istically significant differences in the mean values for alveolar/ 

arterial P02 difference at one, two and three ATA(Table 1.1). The 

absence of a large alveolar/arterial difference at hyperbaric 

pressures was subsequently confirmed (Clark and Lambertsen, 1971a).

From the standpoint of the clinical and experimental application 

of hyperbaric oxygen the Glasgow data (Table 1.2) demonstrated 

that the arterial P02 values attainable with normal respiratory 

function were very close to the values predictable on theoretical 

grounds. It should be emphasised that this statement is 

true for limited exposure to oxygen - at least three to 

five hours (Rosenberg, et al, 1966; Dewar et al, 1972); 

longer exposure to oxygen produces pathological changes in the 

lungs (Clarke et al, 1973; Shields, Smith and Ledingham,

1975) which are associated with a rapidly progressive



Table 1.1 Mean results for (A-a)D02 during 100% 02 
breathing at 1, 2, and 3 ATA after 
correction for heparin dilution.

At 1 ATA (A-a)D02 

At 2 ATA (A-a)D02 

At 3 ATA (A-a)D0o

17 mm Hg (SD + 7 mm Hg)

10 mm Hg (SD + 28 mm Hg)

36 mm Hg (SD + 33 mm Hg)

Table 1.2 Blood gas results during oxygen breathing
at 1, 2, and 3 ATA pressure after correction 
for heparin dilution

Chamber
pressure

Volunteer* s 
No.

PaC02 pao2 PaO

1 ATA 12 31.2 (D) 686 666
13 34.1 (D) 683 665
14 36.2 (D) 681 659
15 44.1 (D) 662 657
16 24.0 (D) 682 662

(A-a)D02

20
18
22
5

20

1 36.0 (D) 1,428 1,431 -3
2 38.5 (D) 1,426 1,445 -19

33 32.5 (D) 1,428 1,383 45
4 35.0 (D) 1,448 1,457 -9
5 24.0 (I) 1,446 1,411 35

3 ATA 6 30.0
7 36.0
8 32.5
9 33.5
10 36.5
11 33.2

All results expressed in mm Hg. 
CO2  electrode, (I) « measured b

(I) 2,128 2,112 16
(I) 2,206 2,226 -20
(I) 2,224 2,155 69
(D) 2,200 2,165 35
(D) 2,219 2,162 57
(D) 2,215 2,159 56

(D) - measured by direct 
interpolation technique.
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increase in alveolar/arterial PC^ difference.

In spite of the substantial increase in arterial PC^ the 

increase in oxygen content is only of the order of 6 ml/100 ml 

blood (Table 1.3) at three ATA. Nevertheless, this extra amount 

of oxygen, largely in physical solution (Fig. 1.8), is 

equivalent to the normal blood oxygen extraction of the 

body as a whole (Dittmer and Grebe, 1958) leaving the 

haemoglobin supply of oxygen largely untapped. This fact 

received convincing experimental support many years ago when 

Haldane (1895) was able to protect mice from a normally 

lethal environment of carbon monoxide by the simultaneous 

administration of oxygen at two ATA. The same principle 

was demonstrated in the "life without blood" experiments 

of Boerema et al (1960) in which dogs tolerated profound 

degrees of anaemia with the aid of hyperbaric oxygen. It 

should be remembered, however, that because of oxygen extraction 

requirements in excess of 6 ml/100 ml blood, certain organs 

e.g., the heart and brain, would not survive such extreme 

hypoxic insults without access to some of the oxygen carried 

by haemoglobin, or a proportionate increase in blood flow.

The effect of a large increase in arterial oxygen tension upon



Table 1.3

EFFECTS OF INCREASING INSPIRED OXYGEN PRESSURE 

ON ARTERIAL AND VENOUS PQ2 VALUES

At

Inspired gas

Arterial PO£
(kPa)
(mm Hg)

Arterial oxygen 
content

(ml/lOOml)

Venous oxygen 
content

(ml/lOOml)

Venous PO2

(kPa)
(mm Hg)

normal barometric 
pressure

Air Oxygen

13 80
100 600

19.3 21.3

14.3 16.3

5.2 6.4
39 48

At 2 atm. At 3 atm. 
absolute absolute

Oxygen Oxygen

175 270
1313 2026

23.4 25.5

18.4 20.5

9.1 48.0
68 360
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venous oxygen tension can be readily understood if reference 

is made to figures 1.9 and 1.10. In a tissue which extracts, 

say, eight volumes of oxygen when the arterial PO^ is about 

13 kPa (100 mm Hg) the venous PO^ will be about 4 kPa 

(30 mm Hg). If the arterial P0^ is raised to 266 kPa (2000 

mm Hg), about three ATA, the venous oxygen tension will be 

8.0 kPa (60 mm Hg). When the mean oxygen extraction is lower, 

correspondingly increased venous PO^ values can be expected.

In conscious man, mixed venous (right atrial) PO2  has been 

shown to rise from 5.5kPa (41 mm Hg) during air breathing at 

normal pressure to 56.4 kPa (424 mm Hg) during oxygen breathing 

at three ATA (Whalen et al, 1964a). It is clear that the 

increase in venous PO2  in no way reflects the magnitude 

of increase in arterial PO2  and only at the upper limit of 

the clinical hyperbaric range does mixed venous haemoglobin 

become fully saturated with oxygen. This pattern can be 

influenced by a number of factors which affect blood flow 

and oxygen consumption e.g., increased carbon dioxide tension 

and anaesthesia.

From what has been written already in this chapter it will be 

obvious that changes in mean tissue PC^ resulting from 

hyperbaric oxygenation are considerably less dramatic than
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might at first sight have been supposed. Mathematical models 

indicate that PC^ falls exponentially as blood passes from the 

arterial end of a capillary to the venous end and that mean 

tissue PO2  relates largely to venous PÔ . The precise change 

in tissue PC^ for a given increase in inspired PO^ oan only 

be determined by individual measurement since so many inter

reacting factors are involved. Nevertheless it can be calculated 

from available information that, for example, in brain exposed 

to 100% oxygen at three ATA, mean tissue P0^ should increase 

by a factor of three to four (Fig. 1.11) with a considerable 

scatter of values throughout the tissue. A small number 

of cells sited near the arterial end of the capillary will 

be exposed to very high PO^ values while the cells sited 

furthest from the capillary will have much lower values. One 

of the problems is to know which PO2  value relates most closely 

to the functional requirements of the tissues. Venous PO2  ra&y 

be less satisfactory in this respect than, for example, mid

capillary PO2  (Lanphier and Brown, 1966).

No account so far has been taken of the fact that OHP produces 

a fall in blood flow apparently affecting most tissues in the 

body (Ledingham, 1968). Although the degree of vasoconstriction 

varies from one region to another the overall effect is to reduce
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flow by an amount which will tend to maintain oxygen transport 

to the tissues at around normal (Winter et al, 1970). At the 

microcirculatory level the effect of reduced blood flow 

produced by OHP is less certain although it is probable that 

mean tissue PO^ will remain substantially below what might 

otherwise have been attained. Nevertheless, it is a general 

observation that in spite of the vasoconstrictive effect of OHP 

there is usually a net gain of oxygen to the tissues and the 

gain is greatest at three ATA. A dual effect of oxygen has been 

demonstrated on the coronary capillaries (Bourdeau-Mart ini et al, 

1974); it was shown that as arterial PC^ was increased from 100 to 

250 mm Hg there was a decrease in coronary capillary density but 

between 250 and 700 ram Hg capillary density increased.

Effects on Hypoxia

Hyperbaric oxygen was introduced into clinical medicine as a method 

of treating various hypoxic conditions, partly as an extension of 

conventional oxygen therapy and partly because of the possibility 

of more specific benefits.

Hypoxic hypoxia may be due to hypoventilation or to pulmonary 

venous admixture or to a mixture of both. If restoration of 

normal ventilation proves impossible hypoxaemia caused by 

hypoventilation is correctable by low concentrations of 

oxygen at normal barometric pressure. Increased pulmonary 

venous admixture may also be corrected by conventional oxygen 
administration as long as the shunt equivalent does not exceed



30% of cardiac output. In the absence of anatomical defects 

such gross shunts are unusual but in shock states normal 

pressure oxygenation may fail to restore arterial P02 to 

normal (Fig. 1.12). Hyperbaric oxygen has been shown to 

correct severe hypoxaemia associated with shock secondary to 

cardiac failure (Mackenzie et al, 1964; Cameron et al, 1966; 

Ledingham et al, 1968; Ledingham, 1971). If anatomical right 

to left shunts are present OHP consistently relieves hypoxaemia 

and for a number of years before cardiopulmonary bypass techniques 

reached their present level of sophistication, patients with 

cyanotic heart disease were operated upon under hyperbaric 

conditions. Those with major shunts were less liable to 

develop peroperative cardiac complications (Meijne et al,

1966; Bernhard et al, 1966).

Anaemic hypoxia, as in carbon monoxide poisoning or frank 

anaemia, can be successfully counteracted by hyperbaric 

oxygen. The previously mentioned experimental work (page 

has been amply confirmed by extensive clinical studies, and 

in carbon monoxide poisoning there is the additional advantage 

that carboxyhaemoglobin dissociation is accelerated (Smith 

et al, 1962; Douglas et al, 1962). Patients with profound 

anaemia, both acute and chronic, have responded favourably 

to OHP while more definitive measures were being instituted
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The rationale for the use of OHP in stagnant hypoxia was that 

the blood/tissue oxygen gradient and oxygen flow rate were 

both increased. Encouraging results were obtained in 

experimental studies of the cerebral circulation where oxygen 

at two ATA was shown to preserve cortical activity during 

ligation of the carotid and vertebral arteries (Smith et 

al, 1961). It soon became clear, however, that the small 

amount of additional oxygen in solution could not compensate 

for a major circulatory deficiency. The two most obvious, 

and indeed predictable, reasons for the disappointing effects of 

OHP in ischaemia were the lower than anticipated mean tissue 

PO^ (to which reference has already been made) and the diffusion 

limitation of oxygen (penetration beyond 0.5 mm from the 

functional mid-capillary point is minimal). Other rather less 

certain factors which might also impose limitations on the 

duration of tissue viability during ischaemia included the 

reduced delivery of substrates e.g., glucose, and the reduced rate 

of elimination of metabolites and carbon dioxide.

The most extreme form of stagnant hypoxia is total arrest of 

the circulation, and OHP was viewed as a possible means of



extending the period of "safe" circulatory arrest, which 

might prove of value in cardiac or major vascular surgical 

procedures. Although when this possibility was explored 

at normal body temperature the results were disappointing 

the combination of hypothermia and OHP appeared more 

rewarding. Further amplification of these statements 

will be made in subsequent chapters.

In hypoxia resulting from a discrepancy between oxygen supply 

and demand, the role of OHP (as indeed the role of conventional 

oxygenation) is least well understood. This form of hypoxia 

is believed by some to occur in major sepsis although there 

is little convincing evidence, and others have not been 

impressed by the value of increasing the oxygen supply above 

normal in this situation (Del Guercio et al, 1966; MacLean 

et al, 1967).

There is no good reason to expect OHP to be of much value in 

relieving histotoxic hypoxia although some experimental studies 

seem to suggest that in cyanide poisoning the high P02 may bypass 

the blocked enzyme mechanisms and increase cellular oxygenation 

(Skene, Norman and Smith, 1966; Trapp, 1970).



Other effects (including oxygen toxicity)

Hyperbaric oxygen has other effects which will not be discussed 

to any extent in this thesis, including its action on bacterial 

organisms (Zobell and Hittle, 1968), its influence on the 

radiosensitivity of malignant cells (Davison and Kaminsky, 1974) 

and its ability to reduce the size of gas loculi within the 

body (Bennett and Elliott, 1975; Nunn, 1977d; Masterson et 

al, 1978). Finally oxygen toxicity, an ever present problem 

when oxygen is administered in high concentration or at high 

atmospheric pressure, justifies further mention (Donald, 1947).

An increase in the inspired PO^ will lead eventually to a 

disturbance of the delicate balance which exists between 

pro-oxidant and anti-oxidant mechanisms within the body.

Whether the tissue poison is the oxygen molecule itself or 

one of the several free radicals produced by excess of oxygen 

(Gerschmann, 1964; Menzel, 1970; Fridovich, 1975) is not 

known (Fig. 1.13). At the cellular level the search for a 

single biochemical disturbance to account for all the 

manifestations of oxygen toxicity has met with little success. 

Many enzymes and co-enzymes are inhibited in the presence of 

an excess of oxygen, notably the flavoproteins and those
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containing sulphhydryl (SH) groups e.g., succinic dehydrogenase. 

Lipid peroxidation may also be caused by oxygen exposure, 

leading to disordered membrane function. Several stages of 

carbohydrate metabolism are susceptible to oxygen toxicity, 

perhaps the best documented being the oxidation of pyruvate, 

a number of the reactions in the tricarboxylic acid cycle and 

certain of the enzymes in the hydrogen- and electron-transport 

chain (Fig. 1.14). Formation of the adenine nucleotides also 

appears to be diminished in the presence of excess oxygen.

The biochemical disturbances which have been described so far

might account for the long term manifestations of oxygen

toxicity observed in the intact organism but are unlikely to

provide a satisfactory explanation for the short-term effects

e.g., convulsions. The observation that OHP causes oxidation

of reduced pyridine nucleotide in the tissues of the brain,

the kidney and the liver of the anaesthetised rat may be more

relevant to the short-term effects (Chance, Jamieson and Coles,
1965).

Furthermore, in the brain, reduction in the level of gamma 

aminobutyric acid (GABA) has been noted and this reduction 

is more obvious in animals which have exhibited severe 

convulsions (Wood, Watson and Stacey, 1966). Several substances
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e.g., glutathione, ethylenediaminetetraacetic acid (EDTA),

GABA and Vitamin E are known to diminish the toxic action of 

oxygen. Also of probable value in this respect are some of 

the enzymes which destroy the intermediate radicals, such 

as superoxide dismutase, catalase and the peroxidases 

(Crapo and Tierney, 1974).

In the intact organism the manifestations of oxygen toxicity 

vary with the absolute pressure and with the duration of 

exposure; a great number of factors will further modify 

the speed of onset of these effects (Clark and Lambertsen,

1971b; Clark, 1974). Only rarely has the tolerance of man 

been tried but his tolerance is almost certainly.higher than 

that of most other species. There is only one definite report 

of death related directly to hyperbaric oxygen administration 

(Fuson et al, 1965).

A well-marked threshold for sensitivity to oxygen seems to exist 

and in man this value may be around 59.9 kPa (450 mm Hg)

(Michel, Langevin and Gell, 1960; Mullinax and Beischer,

1958). Between 59.9 kPa (450 mm Hg) and 266 kPa (2000 mm Hg) 

(i.e., slightly less than 100% oxygen at three ATA) the lung 

is the apparent target organ. In normal subjects alterations



in pulmonary function begin to occur soon after commencement 

of oxygen breathing at two ATA (Fisher et al, 1967; Puy 

et al, 1967; Dewar et al, 19 72; Hendricks et al, 1977). 

Vital capacity, dynamic lung compliance, diffusing capacity 

and capillary blood were all significantly reduced following 

exposures of five or more hours. At this stage the changes 

are reversible. A fall in arterial PO^ occurs only late 

in acute pulmonary oxygen toxicity probably after the under

lying changes have become irreversible. Information about 

the later stages of pulmonary oxygen toxicity in man is 

almost entirely lacking but in a prospective study (Barber, 

Lee and Hamilton, 1970) on patients with irreversible brain 

damage who were being ventilated with either air or oxygen 

at normal atmospheric pressure, impairment of lung function 

was significantly worse in the oxygen group after 40 hr, the 

most sensitive indicator being an increase in the alveolar/ 

arterial PO2  difference.

Pulmonary oxygen toxicity may be modified by anaesthesia 

(Bean and Zee, 1966), intermittent positive pressure 

ventilation (Trapp, Yoshida and Grant, 1967), the presence 

of an inert gas (Clarkeet al, 1973), hypoxaemia (Winter et al,
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1967) and periodic respiration of air (Lambertsen, 1955; 

Ackerman and Brinkley, 1966; Hendricks et al, 1977). The 

mechanism of pulmonary oxygen toxicity falls outside the 

scope of this thesis but much of the available information 

is reviewed in two theses from this laboratory (Smith, 1971; 

Shields, 1976) and elsewhere (Clark and Lambertsen, 1973b; 

Winter and Smith, 1972).

When the PO^ exceeds 266 kPa (2000 mm Hg) oxygen toxicity 

in intact animals predominantly affects the central nervous 

system and commonly presents in two forms - grand mal 

convulsions (the onset of which may occur within a few 

minutes of oxygen breathing) and persistent paralysis. In 

man hyperoxic convulsions do not appear to lead to long-term 

neurological sequelae (Gillen, 1966). Persistent paralysis 

occurs after repeated brief exposure to OHP and in the rat 

necrotic lesions of the globus pallidus, substantia nigra and 

anteromedial horn cells of the spinal cord have been described 

(Balentine, 1968). The distribution and histological appear

ances of these lesions are unlike those of ischaemia or 

hypoxia, and occur in the absence of convulsions (Nolte and 

Schnakenburg, 1974).

Certain anaesthetic agents (e.g., pentobarbitone) can 

effectively eliminate hyperoxic convulsions but paradoxically
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increase the susceptibility to persistent paralysis. A 

reduction in cerebral metabolic rate seems a likely 

explanation for the anticonvulsant effect of the barbit

urates but this hypothesis has been weakened by the observ

ation that some other agents which are equally effective in 

reducing metabolic rate, do not prevent convulsions (Haugaard,

1968). Persistent paralysis has not been recorded in man.

Ever since oxygen was incriminated as the primary causative 

factor in retrolental fibroplasia of new-born infants the 

eye has been a source of interest to those concerned with 

oxygen toxicity. Additional pathological changes which have 

been described (Nichols and Lambertsen, 1969) include visual 

cell death, retinal detachment and microinfarct (cytoid-body 

formation). In man bilaterial contraction of the peripheral 

visual fields occurs after a minimum of four hours of oxygen 

breathing at three ATA and recovers quickly on resumption of 

air breathing (Behnke, Forbes and Motley, 1936). Individual 

susceptibility to optic toxicity has been described in man 

particularly when a history of ophthalmic disease 

exists (Nichols, Lambertsen and Clark, 1969). There 

is now reason to believe that partial and complete 

blindness have occurred in adult patients exposed to OHP 

within the therapeutic range and without other evidence of
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oxygen toxicity ( Thurston, 1978). An interesting physiological

observation is that carbon dioxide administration protects

the eye from the damaging effects of OHP but increases the

risk of hyperoxic convulsions (Anderson, Saltzman and Barbee, 1965).

Hyperbaric facilities

A detailed description of the whole range of hyperbaric 

apparatus presently available for clinical and experimental 

purposes would not be appropriate but a brief outline of 

the techniques used in the studies to be reported will be 

given.

Two main methods are available for the administration of 

high pressure oxygen. Figure 1.15 illustrates an example 

of a large air-compressed pressure vessel capable of 

containing both patient and a number of medical attendants.

Only the patient breathes oxygen which he receives via an 

endotracheal tube if anaesthetised or through a mask system, 

if conscious. Attention to the efficiency of the mask system 

avoids the needless exposure of patients and staff to higher 

ambient pressures, but the necessity for regular measurement 

of arterial oxygen tension with any such method is obvious.

In a study designed to evaluate two different types of mask



\
Figure 1.15. Large compressed-air hyperbaric chamber - exterior and 

interior views.



system at increased pressure (MacDowall et al, 1965) it was 

shown that the system of oxygen administration depicted in 

Figure 1.16 regularly achieved values for end-expiratory 

oxygen concentration of 83%. The incorporation of a 

humidification system into the latter circuit did not 

significantly alter its efficiency and diminished the 

irritant effects of dry oxygen administered over prolonged 

periods of time. When the patient is anaesthetised or 

unconscious, oxygen administration is less of a problem 

since endotracheal intubation with or without controlled 

ventilation will normally guarantee a high inspired oxygen 

concentration.

The alternative method of hyperbaric oxygen administration 

is depicted in Figure 1.17 - the one-man pressure vessel.

In a pressure chamber of this sort the compressing gas may 

be either oxygen or air, although the former gas is used 

almost exclusively. With oxygen as the compressing gas, 

high concentrations of inspired oxygen are easily achieved; 

moreover the surface of the patient is in contact with the 

high PC^* a feature of clinical importance in the treatment 

of certain types of infection.



Figure 1.16. Oxygen mask system used in hyperbaric chamber.



Figure 1.1/. One man pressure chamber.



Both the large air-compressed and the smaller oxygen-compressed 

pressure vessels have inherent advantages and disadvantages.

The larger pressure chamber is a more versatile piece of 

apparatus in which hyperbaric oxygen therapy is simply added 

to the patient* s routine management. The patient is at all 

times accessible to attendant staff. The financial outlay 

in establishing and maintaining such a facility, however, 

is prohibitive to all but the largest centres. The small one- 

man pressure chamber is much less expensive but has certain 

disadvantages the most important of which are the relative 

inaccessibility of patient to staff and the necessity of 

discontinuing most other forms of therapy and monitoring 

during the period of hyperbaric treatment. On the other 

hand, the small pressure chamber is the only practical 

proposition for the combined radiotherapy/hyperbaric oxygen 

treatment of malignant disease.

In both types of pressure vessel the patient is exposed 

to the potential hazards of barotrauma and oxygen toxicity.

In the large **walk in** vessels the attendant staff are 

exposed to the usual dangers of a compressed air environ

ment - barotrauma, decompression sickness (or *the bends*),



avascular bone necrosis and nitrogen narcosis (Walder, 1965). 

Finally, any increase in the oxygen content of the atmosphere 

carries with it an increased risk of fire.

HYPOTHERMIA

Hypothermia is defined as a fall in deep body (or core) 

temperature below 35 deg C (Exton-Smith, 1973). 'Core1 

temperature tends to be maintained stable while 'shell'

(or surface) temperature may fluctuate substantially in 

response to changes in environmental temperature (Aschoff 

and Wever, 1958; Cooper, 1969). Three temperature ranges 

are of both physiological and clinical importance (MacLean 

and Emslie-Smith, 1977a):

(1) 35 to 32 deg C. A fall in core temperature within

this range promotes extensive vasoconstriction (particularly 

of the skin vessels) and shivering.

(2) 32 to 25 deg C. Vasoconstriction is maintained

and blood viscosity increases; shivering disappears. Tissue 

metabolism is progressively depressed.

(3) Below 25 deg C. Physiological mechanisms for heat

conservation are obtunded and heat is lost passively to the 

environment.

Patients are at risk when core temperature falls below
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32 deg C, and below 28 deg C death may occur suddenly from 

ventricular fibrillation.

Clinical interest in hypothermia centres principally on two 

aspects. Induced hypothermia has been used over the years 

in a wide variety of clinical contexts - to reduce the risk 

of stagnant hypoxia during the course of surgical operations 

on the heart and blood vessels, to diminish the secondary 

effects of hypoxia e.g., brain swelling after cardiac arrest, 

and to preserve organs and tissues during transplantation.

These are only some of the many applications which have been 

explored (Popovic and Popovic, 1974a). Accidental hypothermia 

is the other area of clinical interest and two main sub

divisions are recognised - exposure of otherwise healthy 

individuals to cold, wet or windy conditions (Pugh, 1966), 

and hypothermia occurring in the very young or the elderly 

(often secondary to some underlying illness), and in the 

general population (secondary to drugs and alcohol).

Advantages and Disadvantages

The main advantages of hypothermia to the body are reduced 

oxygen and substrate consumption and increased arterial oxygen 

content (resulting from the greater solubility of oxygen in



cooled plasma. Whole body oxygen consumption falls with 

temperature in an exponential fashion (Horvath et al, 1953;

Horvath and Spurr, 1956), giving an initial Q 10 of about 2.3 which 

is in good agreement with Van't Hoff's law (1884) (Fig. 1.18), 

in other words, a fall in temperature of 10 deg C approximately 

halves oxygen consumption (Cooper, 1961; Rosomoff, 1964). 

Extrapolation of this general observation to individual 

organs and tissues has to be made with caution. The degree 

of cooling may not be uniform throughout the body, largely 

because of variation in blood flow responses from one region 

to another, and not all biological processes are equally 

affected by temperature changes. Metabolic and rhythmic 

processes are particularly depressed, but most physical 

processes, e.g., diffusion, have a Q 10 of one (MacLean 

and Emslie-Smith, 1971a.). Coincident with the reduction in 

oxygen consumption there is a fall in carbon dioxide pro

duction; depending on a number of factors respiratory quotient 

may fall (Blair, 1969), rise (Bickford and Mottram, 1958) or remain 

unchanged (Prakash et al, 1978).

The physical solution of oxygen in plasma and body water 

follows Henry's law which states that the amount of gas in 

physical solution is proportional to the partial pressure of
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the gas and its solubility constant. The importance of 

partial pressure has been mentioned in relation to hyperbaric 

oxygen (p.51). The solubility constant is temperature 

dependent:

At 37 deg C the value for oxygen is 0.024 ml at 101 

kPa (760 mm Hg) per ml H^O* (The corresponding 

values at 28 deg C and 20 deg G are 0.027 and 0.031 

respectively).

At an arterial PO^ of 13.3 kPa (100 mm Hg), there is a 20% 

increase in dissolved oxygen at 30 deg C and a 59% increase at 

20 deg C (Fairley, 1961).

The principal disadvantages of hypothermia are the shift to 

the left of the oxygen dissociation curve and reduction in 

blood flow. The effect on oxygen dissociation (Fig. 1.19) 

results from changes both in temperature and in pH (Brown 

and Hill, 1923; Dill and Forbes, 1941; Severinghaus, 1959). 

pH is influenced both by changes in pK, which rises 0.005 

for each degree centigrade of fall in temperature (Severinghaus, 

Stupfel and Bradley, 1956; Severinghaus, 1959), and in the 

solubility of carbon dioxide, which also rises with falling 

temperature (Rosenhain and Penrod, 1951). A correction factor 

(Rosenthal, 1948), based on in vitro estimations in anaerobic 

blood, indicates a rise of 0.0147 pH units per degree centigrade
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fall in temperature. More recently, calculation of the 

changes produced in pH, PO^ and PCO^ by temperature, 

taking into account other factors such as haemoglobin 

concentration, has been facilitated by the development of 

the Severinghaus slide rule (Severinghaus, 1966).

Reduction in blood flow in hypothermia is a consequence of 

increased viscosity and vasoconstriction. The viscosity 

effects are due to a combination of the normal change in 

fluid characteristics with temperature, and haemoconcentration. 

Agents which reduce the latter effects have been shown to 

improve perfusion during hypothermia (Mohri et al, 1968). 

Vasoconstriction is the usual response to cold with temp

eratures above 25 deg C; lower temperatures may produce 

vasodilatation.

Effects on Hypoxia

In spite of the aforementioned disadvantages, hypothermia 

of brief duration is generally considered to produce no 

significant harmful effects of itself and there is evidence 

of an increase in oxygen reserve of sufficient magnitude to 

be of significance during circulatory standstill. The



combination of hypothermia and hyperbaric oxygen was 

seen to offer additional advantages in this context (Fig. 1.20). 

The quantitative assessment of these advantages varied widely 

but several groups calculated that the gains would be 

considerable (Richards, Pinto and Coombs, 1963; Edwards, 

Holdefer and Dimick, 1965). The degree to which these 

theoretical estimates were substantiated in experimental 

and clinical practice will be indicated in subsequent 

chapters. Further amplification of the physiological 

consequences of hypothermia will also be presented together 

with the relevant therapeutic implications.
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Chapter 2

Apnoeic oxygenation and total circulatory arrest; preliminary 

studies using hyperbaric oxygen (2 ATA) at normothermia

The aim of the studies in the next five chapters was to 

determine the maximum period of total arrest of the circulation 

consistent with survival of the organism. The latter was 

defined as complete return to normal function and was 

distinguished from revival, a state associated with at least 

some degree of functional impairment. It was assumed that 

the central nervous system would be the principal limiting 

factor in determining survival. Clearly survival was expected 

to relate to the capacity of the oxygen stores of the body 

and to the ability of oxygen to diffuse into the tissues 

in the presence of a stagnant circulation. The effect of 

hyperbaric oxygen could thus be assessed in quantitative terms.

The studies in this chapter were subdivided as follows

A. Apnoeic oxygenation

B. Total circulatory arrest

(III) Oxygen at 2 ATA 

Discussion of both subdivisions (A and B) is presented at the 

end of the chapter.
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A. APNOEIC OXYGENATION

The size of the oxygen stores may be estimated using a 

modification of the procedure known as ’apnoeic oxygenation* 

which consists simply of arresting ventilation and allowing 

the body to utilize the oxygen made available from the 

lungs, blood and tissues. (A similar procedure is used 

under certain circumstances by anaesthetists but oxygen is 

continuously supplied via the trachea to maintain a normal 

arterial was i-nstructive to compare the results

of this technique, in which the circulation remained intact 

and functional, with those of the subsequent studies which 

involved circulatory standstill.

Materials and Methods (15/5/62 - 19/6/62; 3/8/66)

Six adult mongrel dogs weighing from 8.2 to 20.9 kg were 

lightly anaesthetised with intravenous sodium thiopentone 

and an endotracheal tube placed in situ. Measurements 

included heart rate, systemic arterial blood pressure, 

pupillary size, electrocardiograph (ECG), electroencephalogram 

(EEG - two animals), calibre of cerebral vessels through a 

trephine hole (two animals), mucosal colour changes and 

arterial blood gases. The technique for recording the
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the EEG was developed in this laboratory and is described 

in detail elsewhere (Smith et al, 1961). The blood gases 

were measured using one of the first two Micro-Astrup 

apparatuses to become available in this country. PO^ was 

derived from directly measured oxygen saturation, pH and 

base excess.

After initial stabilisation of the animal, manual hyper

ventilation was performed with four gases in random sequence:

(I) Air at normal atmospheric pressure

(II) Oxygen at normal atmospheric pressure

(III) Air at 2 ATA

(IV) Oxygen at 2 ATA

All six animals were subjected to hyperventilation with each 

of the four gases for a period averaging 15 minutes. When 

anaesthesia was judged to be stable (absent palpebral reflex 

and no ventilatory response to 15% carbogen gas) the endotracheal 

tube was clamped and a time-clock started. The time to onset 

of hypoxia was noted precisely, the endotracheal clamp removed 

and the animal allowed to recover for at least half an hour 

prior to repeating the procedure with the next gas mixture. 

Although the duration of apnoea coincident with a deterioration in



each of the measured variables was more or less similar, the 

most consistent and clearcut end-point proved to be the 

onset of progressive pupillary dilatation. This was used 

as the indicator for immediate termination of apnoea; it was 

noted to coincide with the appearance of cyanosis and severe 

slowing or inactivity of the EEG.

A single animal was studied later when the development of a 

reliable, accurate PO^ electrode facilitated examination of 

the time relationship between pupillary dilatation and arterial PC^ 

changes. Halothane was used as the anaesthetic agent but 

otherwise the technique was identical to that of the main 

series.

Results

The principal positive findings for the main series of animals 

are indicated in table 2 . 1  and figure 2 .1 .

There was a four- and twelve-fold increase in the time to 

onset of hypoxia (pupillary dilatation) with oxygen at normal 

pressure and oxygen at 2 ATA respectively. Pupillary dilatation 

occurred when haemoglobin oxygen saturation was becoming 

critical. Apnoea was associated with a fall in arterial pH
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AIR

AIR a t 
2 ATA

OXYGEN

OXYGEN a t 2 ATA
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2 6 10 14 18 22

Time(min)

Figure 2.1. Time to pupillary dilation during apnoea 

after breathing each of the four gases 

indicated.



(range 0.02 - 0.07 units/min of apnoea), an increase in PCO^ 

(range 4.4 - 5.2 mm Hg/min) and an increase in base deficit 

(0.17 - 0.67 meq/l/min). The rate of increase in base deficit 

per minute of apnoea was greatest with the short period of 

apnoea (air at normal pressure) and least with the long 

period of apnoea (oxygen at 2 ATA).

The relevant data for the single additional animal are 

illustrated in figure 2.2. Arterial PO2  remained elevated for 

a few minutes then fell precipitously. Progressive pupillary 

dilatation occurred at a PO2  of 38 and 55 mm Hg with oxygen 

at normal pressure and oxygen at 2 ATA respectively.

Comment

This study confirmed that hyperbaric oxygen could be used 

to increase the available oxygen stores in the apnoeic 

animal with an intact circulation. Pupillary dilatation was 

a reasonably valid and consistent indicator of the onset of 

hypoxia under these circumstances.

B. TOTAL CIRCULATORY ARREST 

In contrast to the previous study, hypoxia was induced in 

the next three studies by arrest of both ventilation and
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Figure 2.2. Fall in arterial P02 during apnoea
after a single animal breathed first 
oxygen at normal pressure and later 
oxygen at 2 ATA.



circulation. Return to normal activity was assessed during 

long-term follow-up studies extending over a period of days 

and, in some cases, weeks.

Material and Methods (27/2/62 - 7/11/62)

Adult mongrel dogs were anaesthetised with the smallest 

effective dose of intravenous sodium thiopentone and a cuffed 

Magill endotracheal tube was inserted. Anaesthesia was 

maintained with incremental doses of thiopentone.

Ventilation was carried out with :

(i) Air at normal atmospheric pressure (five dogs;

weight range 10.9 - 23.0 kg)

(II) Oxygen at normal atmospheric pressure (17 dogs; 

weight range 11.0 - 23.0 kg)

(III) Oxygen at 2 ATA (seven dogs; weight range 

8 . 2  - 2 2 . 8  kg)

using a Starling ventilator except for about 10 minutes 

immediately before the period of circulatory arrest and for 

a few minutes after the arrest phase when ventilation was 

performed manually. Using an aseptic technique, thoracotomy 

was performed through the bed of the fifth rib, and snares 

placed round the venae cavae and the vena azygos. Immediately



prior to the period of arrest, sodium bicarbonate was 

administered by the intravenous route (see section (II) for 

background and details). Circulatory arrest was established 

by occlusion of the veins followed a few seconds later by 

cross-clamping of the aorta and pulmonary artery via the 

transverse sinus (Fig. 2.3). At the end of the predetermined 

period of arrest the snares and clamp were removed in the 

reverse order and, if required, the heart given a few gentle 

squeezes to encourage coronary filling. No drugs were used 

during the phase of cardiac resuscitation. Once satisfactory 

myocardial action was restored, the chest was closed and the 

animals allowed to recover in the laboratory overnight before 

being returned to their cages. In the ensuing days and weeks, 

the clinical condition of the dogs was carefully observed, 

particularly with respect to evidence of damage to the central 

nervous system.

Measurements performed during the acute phase of the study 

included the basic cardiovascular and respiratory variables 

described in the previous study of apnoeic oxygenation. In 

addition, serum electrolytes, urea, haematocrit and serum 

glutamic oxaloacetic transaminase and serum glutamic pyruvic



AORTA

IRs.v.c.

I.V.C.

Figure 2.3. Occlusion of great vessels.



transaminase were estimated, using standard laboratory 

techniques, before induction of anaesthesia and daily there

after, for from eight to 10 days. At various times after 

arrest the dogs were sacrificed.

Pilot studies not included in this report indicated that 

animals subjected to three minutes of total circulatory arrest 

whilst breathing air at normal atmospheric pressure recovered 

promptly and without neurological sequelae. In the animals 

of the present series the period of arrest was increased by 

one or two minute intervals from four to five minutes (air 

at normal pressure), from four to seven minutes (oxygen at 

normal pressure) and from six to 10 minutes (oxygen at 2 ATA). 

The series of time increases was randomised although, for ease 

of understanding, the data are presented as if obtained in 

sequence.

Results

(I) Air at normal atmospheric pressure

The main cardiac and neurological findings during and 

immediately after the period of arrest are summarised in 

Table 2.2
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In five other dogs not here reported in detail, tris- 

hydroxymethylamino-methane (TRIS) was administered prior to 

the period of arrest instead of sodium bicarbonate. No 

difference between the effects of the two alkalis was observed.

Comment

The maximum safe circulatory arrest time with air at normal 

pressure would appear to be four minutes.

(II) Oxygen at normal atmospheric pressure

In the animals studied whilst breathing oxygen at 

normal pressure (p.74), detailed investigation was made of 

the acid-base disturbances associated with circulatory arrest, 

particularly with respect to restoration of cardiac function.

It was realised that proper assessment of neurological recovery 

from the period of hypoxic arrest depended on the rapid 

establishment of an adequate cardiac output. One possible 

reason for a delay in restoration of normal cardiac function 

was the increase in blood lactic acid and potassium during the 

arrest period (Fig. 2.4 and 2.5). The metabolic acidosis could 

be anticipated by the prior intravenous administration of sodium 

bicarbonate using the following formula to calculate dose: 

animal weight (kg) x 0.43 (recorded base excess 

immediately before arrest (meq/1 ) +

(1 meq Na HCO3  x duration of arrest (min))
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Figure 2.4. Blood lactic acid values in an animal 
subjected to a five minute period of 
total circulatory arrest.
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Figure 2.5. Serum potassium values in an animal 
subjected to a five minute period 
of total circulatory arrest.



The factor 0.43 was derived empirically and fell between 

that given by Astrup et al (1960) for the extracellular 

body space and that given by Palmer and Van Slyke (1918) 

for the whole body in corrections for non-respiratory 

disturbances of acid-base balance. The effect of this manoeuvre 

on the base excess level is illustrated in figure 2 .6 .

The details of the oxygen studies together with the results 

of the associated acid-base manipulations are presented in 

the reprint which follows.
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Figure 2.6. Acid-base control of circulatory arrest.
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Preliminary Communication 
reprinted from  T h e  L a n c e t ,  November 10, 1962, pp. 967-969

ACID-BASE STUDIES IN EXPERIMENTAL 
CIRCULATORY ARREST

Safe and com plete resuscitation of an animal from  a 
period o f circulatory arrest w ithout cardiopulm onary by
pass apparatus is dependent upon rapid and com plete 
recovery of adequate myocardial function. An inadequate 
cardiac ou tput, w hether or no t accom panied by cardiac 
arrhythm ias (in particular, ventricular fibrillation), may 
produce cerebral damage not associated w ith the period of 
arrest itself.

T h is  well-known hazard has led to the developm ent of 
m ethods o f determ ining the degree of anoxia which can be 
w ithstood by the brain, either w ithout arresting the 
system ic circulation 1 - or by m aintaining the pulm onary 
and coronary circulations in an isolated m anner.3-7 These 
techniques are not applicable to onen-heart surgery. But 
during a recent study of oxygen at increased pressure in 
total circulatory arrest in dogs, the im portance of achiev
ing rapid recovery of m yocardial function has become 
obvious.

T h e  present experim ents were designed to investigate 
the im portance of acid-base control m  the prevention of 
inefficient m yocardial action and the resultant neuro
logical damage after circulatory arrest.

M E T H O D S
Adult mongrel dogs weighing h orn 11 to 23 kg. were anass- 

thetised with the smallest effective dose of intravenous sodium 
thiopentone, and a cuffed y.l3gill endotracheal tube was 
inserted. Ventilation was carried out with 100°,, oxygen by a 
positive-pressure apparatus throughout each experiment, 
except for the 5 minutes immediately before the period of 
circulatory arrest and for a few minutes after the arrest phase, 
when ventilation was performed manually. Thoracotomy was

1. Rabat, H ., Dennis, C. Proc. Soc. exp. Biol., \  .Y. 1938, 38, 864.
2. Connolly, J. E., Boyd, R. J., Calvin, J. W. Surgery, i962, 52, 15.
3. Brockman, S. K., Jude, J. R. Bull. Johns Hopk. Hosp. 1960, 106, 74.
4. Kaupp, H. A ., Lazarus, R. E., Wetzel, N ., Starzl, T . E. Surgery , 1960,

48, 404.
5. Anabtawi, I. N ., Brockman, S. K. Ann. Surg. 1962, 155, 312.
6. Gunn, C. G., Williams, G. R., Parker, I. T . J . surg. Res. 1962, 2, 141.
7. Schaw, R. C., Zimmerman, J. M ., Schloerb, P. R. Surgery, 1962,

51, 373.
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2
performed through the bed of the fifth rib, and snares were 
placed around the venae cavae, proximal to the vena azygos, and 
around the roots of the aorta and pulmonary artery. Total 
circulatory arrest was then established for a predetermined 
length of time. Once satisfactory myocardial action was 
restored, the chest was closed and the animals allowed to 
recover.

The dogs were divided into two groups, A and B. In each, 
the acid-base status was followed from samples of central aortic 
blood obtained by means of a catheter introduced through a 
femoral artery. The pH, Pco,, standard bicarbonate, and base 
excess in this arterial blood were measured by the micro- 
Astrup apparatus.8 In the animals of group A no attempt was 
made to correct any acid-base imbalance, but in those of 
group B the acid-base status was carefully controlled. 8-4% 
sodium bicarbonate (1 mEq. per ml.) was used, and the 
dose given was calculated bv the formula: body-weight 
(kg.) x 0-43 x base excess. This is a modification of the 
formula suggested by Astrup 9 for man, which wre found to 
be more accurate in the dog.

A similar experiment was perform.-.: on a third group of 
animals (group C), but, for 5 minutes before the arrest of the 
circulation ventilation was performed with various carbogen 
mixtures (carbon dioxide in oxygen). The metabolic com
ponent of the acid-base balance was controlled as carefully as 
in the animals of group B.

In all groups, standard lead-II electrocardiograph (E.C.G.) 
tracings were recorded intermittently, and the blood-pressure 
was recorded with a mercury manometer. Samples of venous 
blood were removed from the dogs of groups B and C before 
and after circulatory arrest and for several days postoperatively. 
These samples were analysed for sodium, potassium, chloride, 
urea, serum glutamic-oxaloacetic transaminase (s.g .o .t .) and 
serum glutamic-pyruvic transaminase (s.g .p.t .), and the packed
cell volume was determined.

RESULTS
T able I shows the occurrence o f arrhythm ias after the 

period of circulatory arrest in  the dogs of groups A and B, 
together w ith the  tim e taken to achieve adequate ventri
cular ou tpu t (effective beat) as determ ined by direct 
inspection o f the heart, by m easurem ent of the  blood- 
pressure, and by exam ination of the e .c . g . T h e tim e taken 
for the  pupil, dilated by anoxia, to constrict is also shown, 
and  the condition of the dog 24 hours later.

T able II shows the acid-base param eters o f the dogs o f  
group A  together w ith the duration o f the circulatory

8. Anderson, O. S., Engel, K ., Jorgensen, K ., Astrup, P. Scand. J . clin.
lab. Invest. 1960, 12, 172.

9. Astrup, P., Andersen, O. S., Jorgensen, K ., Engel, K. Lancet,  1960,
i, 1035.
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TABLE II— ACID-BASE MEASUREMENTS IN ANIMALS OF GROUP A AT THE 
BEGINNING OF THE EXPERIMENT, JUST BEFORE ARREST OF THE 
CIRCULATION, AND WHEN EFFECTIVE BEAT RESTORED

D og
Body-
weight

(kg-)

Dura
tion of 
arrest 
(min.)

Stage 
of experi

ment
pH Pco,

, (mm.Hg)

Standard 
bicarbonate: 

(mEq. 
per 1.)

Base 
excess 
(mEq. 
per 1.)

1 16-4 4 Start 7-30 ! 38 18-0 -  6-7
Prearrest 7-56 ! 115 18-5 ! -  6-5
Postarrest 7-25 31 14-6 — 11-8

2 15-5 5 Start 7-33 i  33 20-5 - 3-5
Prearrest 7-51 ’ 19 20-5 -  3-0
Postartest 7-23 : 43 16-7 -  9-8

3 10 9 5 Start 7-26 45 18-5 , -  6 0
Prearrest 7-39 : 27 18-3 -  6-6
Postarrest 7-29 ! 26 15-4 -1 1 -8

4 23-7 6 Start 7-30 ! 33 16-6 -  8-5
Prearrest 7-43 18 15-2 -1 0 -2

I Postarrest 7-15 34 ; 12-6 ; -1 6 -8

5 15 6 Start 7-24 39 16-3 -1 1 -0
Prearrest 71 3 60 14-8 -1 3 -5
Postarrest 7-15 32 12-5 -1 8 -0

6 15-5 7 Start 7-31 ; 34 17-6 -  7-2
Prearrest 7-44 • 24 . 1 19-0 -  5-4
Postarrest 7-14 55 i 14-0 -1 3 -2

arrest. T hese values were m easured at the beginning of 
the experim ent, im m ediately before the arrest o f the 
circulation, and  upon  re-establishm ent o f adequate 
m yocardial function. T h e  figures for standard bicarbonate 
and  base excess, m easured before and after the period of 
circulatory arrest, show tha t a state of metabolic-acidosis 
developed to a degree dependent on the length of the arrest. 
T ab le  h i  shows the fall in  base excess during each period of 
arrest in  the dogs o f group A. T h e  calculated fall per 
m inute of arrest is also shew n, the m ean rate of fall being 
T1 m Eq. per litre o f blood per m inute of circulatory arrest.

O n the basis o f this inform ation, the dogs of groups B 
and  C  were given calculated doses of 8-4% sodium 
b icarbonate : the first was given early in the experim ent to

TABLE III— BASE EXCESS IN D.'»GS OF GROUP A SHOWING FALL PER MINUTE
of ascuT atory arrest

D og
Duration 
of arrest 

(min.)

Prearrcn 
base exceco 

(mEq. pei .’.)

1 Postarrest i  Fall in base excess 
; base excess j  per minute of arrest 
■ (mEq. per 1.) j (mEq. per 1. per min.)

1 4 -6 -5 i —11-8 1-3
2 5 - 3 0 . - 9 - 8 1-4
3 5 -6 - 6 — 11-8 1-0
4 6 -1 0 -2 - 1 6 8 1-1
5 6 -1 3 -5 -1 8 -0 0-8
6 7 - 5 - 4 j -1 3 -2 1-1

Mean 1 1
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correct any pre-existing acidosis, and the second was 
given. 10 to  15 m inutes before the arrest o f the circulation 
to create a m etabolic alkalosis of such m agnitude that the 
animals w ould be in acid-base balance at the end of the 
period of arrest. T h u s, if the arrest were to last 7 m inutes, 
the anim al was given an am ount of bicarbonate calculated 
to  raise its base excess to -j-7. Table iv shows the  acid- 
base param eters of the dogs of group B and the am ounts of 
bicarbonate given.

T h e  acid-base m easurem ents of the dogs o f group C, 
recorded before and after the circulatory arrest, are shown

TABLE XV— ACID-BASE MEASUREMENTS IN ANIMALS OF GROUP B TOGETHER 
WITH THE BICARBONATE REPLACEMENT GIVEN
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7 16-4 4 0 i 7-36 I 33 1 19-7 1 -4 -8
1 63 1 i • io
1
j

73 ! 7-45 j  31 ! 24-0 i  +1-8
! 86 | 7-43 I  31 1 22-4

00o1

8 2 3 0 5 ! 0 7-42 38 24-0 j + 1-4 j
1 60 50

75 7-54 34 29-5 j  +8-8

81 7-39 43 24-5 +  2-3

• 9 12-3 5 0 7-32 41 20-2 - 3 -8
43 20

7-40 39 23-4 +  0-8
83 23
91 7-62 21 26-5 ^5-0

103 7-32 47 21-7 - 1 -5

10 15-5 6 ‘  0 7-34 36 19-5 -5 - 0
22 34
40 7-36 40 21-5 - 1 8
51 53
59 7-55 28 26-0 +3-7

75 7-40 34 20-8 - 3 - 0

11 17-3 6 0 7-33 39 19-7 - 5 0
61 12
71 7-29 49 20-3 -4 - 0
78 80
83 7-46 39 27-2 +6-2

92 7-38. 41 23-0 -r-0-5

12 10-9 7 0 7-36 35 20-8 -4 - 0
50 19
70 7-36 44 22-9 ! 0

100 33
105 i 7-50 36 27-7 | +  6-3

123 j 7-50 17 22-0 j
i

- 1 - 5

•Point o f circulatory arrest indicated by dotted lines.
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TABLE V— ACID-BASE MEASUREMENTS BEFORE AND AFTER CIRCULATORY 
ARREST IN ANIMALS (GROUP C) BREATHING CARBOGEN MIXTURES FOR 
5 MIN. BEFORE ARREST

D og
Dura
tion of 
arrest 
(min.)

Pco, of 
respired 

gas 
(mm. Hg)

pH PCO j of 
(mm. Hg)

Standard i Base i  Pre
bicarbonate: excess : arrest 

(mEq. ; (mEq. j arrhyth- 
per 1.) , per 1.) j mias

13 6 31 7-54 30 27-3 4-6-0 j  None
7-41 36 22-9 0 1

14 7 43 7-42 52 30 0 4-9-0 1 None
7-29 51 21-7 -2 - 0  j

15 7 115 7 1 9 170 26 0 — 4-5 i None
7-43 27 21 0 -2 -9  j

16 7 115 7-22 92 28-5 4-7-0 I None
7-30 51 22-5 -0 -5  |

17 7 112 7-23 105 31-8 4-11-5 ! None
7-28 50

'
20-3 1 o

in table V, together w ith the Pco2 of the carbogen breathed. 
N o  cardiac arrhythm ias occurred while the gas m ixture 
was being inhaled.

T h e  figures obtained for the blood-electrolvtes, blood- 
urea, and packed-cell volume showed changes consistent 
with slight htemoconcentration but remained otherwise 
normal. T h e s.g .o .t. and s.g.p.t. levels did not rise above 
those shown to be consistent with thoracotomy alone.1"

DISCUSSION
M etabolic acidosis is known to develop in association 

w ith hypoxia since anaerobic glycolysis occurs in the 
absence of adequate oxygenation.11 Tissue oxygenation 
m ay be inadequate when respiration is controlled during 
general anesthesia  12 when there is sustained hypotension 
from  any cause,13 and when fiow-rates are low during 
cardiopulm onary bypass procedures.14 16 Com plete 
circulatory arrest m ust therefore be associated w ith a 
metabolic acidosis o f this type which m ust quickly become 
profound since the anoxic stimulus is as great as it can be. 
T h e  degree of acidosis produced in different animals should 
be the same for the same period o f circulatory arrest and 
should alter only w ith alteration in metabolic rate, such as
10. Nydick, I., Wroblewski, F., I.aDue, J. S. C ircu la tio n , 1955, 12, 161.
11. Huckabee, VC’. E. J .  d in . In vest. 195S, 37, 264.
12. Bunker, J. P. A n eesth esiclogy, 1962, 23. 107.
13. Root, \V. S., Allison, I. B., Cote, W. H., Holmes, L. H ., Walcott, W. W.,

Gregersen, M. I. A m e r .J .  P h y s io l. 1947, 149, 52.
14. Paneth, M ., Sellers, R., Gott, V. L., Weirisn, W. L., Allen, P., Reed, 

R. C., Lillehei, C. W. J .  th orac. card iovasc . S u rg . 1957, 34, 570.
15. Litwin, M . S., Panico, F. G., Rubini, C., Harken, D . E., Moore, F. D .

A nn. Surg. i959, 149, 188.
16. Glover, J. L. ibid. 1962, 155, 360.
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m ight be produced by hypotherm ia; and, in this instance, 
the  degree of acidosis should vary w ith tem perature.

I n  the dogs of group A (tables I and n ), the  hypoxic 
acidosis .produced is associated w ith delay in the estab
lishm ent of an adequate circulation and w ith the 
developm ent o f dangerous arrhythm ias after the longer 
periods o f circulatory arrest.

Since a consistent degree o f acidosis develops per 
m inute o f com plete circulatory arrest, the degree of 
acidosis likely to result from  a given period of arrest can 
be estim ated; then an am ount of sodium bicarbonate 
calculated to neutralise the acid produced can be adm inis
tered. T h e  frequency w ith which this am ount could be 
accurately forecast can be seen from  table iv. At the end 
of the period of circulatory arrest, the base excess in all 
the  animals of group B lay w ithin the norm al range 
(± 2 -3  m Eq. per litre of blood). In  this group, long periods 
of arrest were w ithstood w ithout troublesom e arrhythm ias 
and, m ore im portant, an adequate blood-pressure was 
quickly achieved and sustained when the circulation was 
restored. E bert et al.17 dem onstrated increased ventricular 
efficiency in the presence of alkalosis and decreased 
ventricular efficiency in the presence of acidosis. In  our 
experim ents, the degree of alkalosis produced in the 
im m ediate p rearrest phase in the dogs of groups B and C 
was no t associated with any deterioration in  ventricular 
function nor w ith any upset in the serum -sodium , serum - 
potassium , and serum -chloride figures. We have since 
given intracardiac adrenaline in the imm ediate postarrest 
phase to a small num ber of dogs (not included in this 
series), and in the alkalotic state, this has produced a 
rapid  ventricular response w ithout arrhythm ia. T his 
corresponds w ith the experience of o thers.17 18

24 hours postoperativelv the neurological condition of 
the animals of group B was m uch better than those of 
group A (table i), and this difference is presum ed to be 
related to the prom pt recovery of myocardial function in 
group B. A moderately severe acidosis was present in 
four o f the animals of group A on the day after operation, 
showing that they were uvaole to overcome the effects 
of hypoxia efficiently. C loves et a l.10 in a clinical review 
of patients undergoing thoracotomy, felt that the presence 
of acidosis lim ited their ability to com pensate for hypoxia.

Increasing tensions of carbon dioxide have been shown
17. Ebert, P. A., Greenfield, L. J., Austin, \V. G„ Morrow, A. Surg. ■

Gynec. Obstet. 1962, 114, 357.
18. Thrower, W. B., Derby, T . D.. Aldinger, E. E., Arch. Surg. 1961, 82, 56.
19. Clowes, G. H. A., Alichniewicz, A., DelGuereio, L. R. M ., Gillespie, D .

J . tkorac. cardiovasc. Surg. 1960, 39, 1.
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to  increase the  rate o f cerebral blood-flow 20 21 and to 
displace the  dissociation curve of oxyhem oglobin to the 
rig h t.22 T h e  dogs of group C were therefore ventilated with 
carbogen m ixtures of various concentrations for 5 minutes 
before the arrest of the circulation in an attem pt to fix the 
P co2 a t a high level while, at the same tim e, achieving 
full oxygenation. T hus, when the circulation was arrested, 
these dogs were in a state of respiratory acidosis com bined 
w ith m etabolic alkalosis; but, when the Pco2 of the gas 
m ixture used was nearer 40 mm. Hg, the resultant 
blood p H  either rem ained w ithin the normal range or was 
high. In  none of the dogs of group C was there any 
arrhythm ia associated w ith the high blood-Pco2 in the 
p rearrest phase, and in one only was there delay in restor
ing an adequate blood-pressure after the arrest. In  this 
animal the Pco, of the blood rose to 170 mm. H g before 
the circulation was arrested and this was presum ed to be 
due to inadequate ventilation.

A pparently, therefore, a vital factor in the restoration of 
efficient m yocardial function after circulatory arrest and 
in  the prevention of dangerous arrhythm ias is the avoid
ance of a hypoxic acidosis. N either a high Pco2 nor 
variation of pH  over a wide range {1-2-1-6) seems re
sponsible for inadequate myocardial function provided 
there is no accom panying metabolic acidosis.

We wish to thank Sir Charles Illingworth and Prof. George Smith 
for constant help and encouragement. Dr. T. A. Douglas allowed us 
to use his laboratory facilities for the estimation of the serum- 
electrolytes and serum-transaminases and kindly criticised the paper. 
We would also like to thank Mr. I. Jacobson and Dr. E. H. Bates for 
their helpful criticism and participation in some of the experiments, 
and Air. C. Henderson and Airs. R. Hume for able technical 
assistance.

I .  McA. L. received a grant from the Department of Health for 
Scotland and J. N. N. from the Aledical Research Council.
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Comment

The maximum period of safe circulatory arrest with oxygen 

at normal pressure would appear to be five minutes. The 

importance of rapid restoration of an adequate cardiac output 

was established. The adverse effect of metabolic acidosis 

could be diminished by the prior administration of sodium 

bicarbonate.

(Ill) Oxygen at 2 ATA

The main cardiac and neurological findings during and immediately 

after the period of arrest are summarised in Table 2.3.

Arterial pH decreased during the arrest by a mean of 0.006 

units/min and PCO2  and base deficit increased by 1.9 mm Hg and 

1 . 0  meq/l/min respectively.

Comment

The maximum period of safe circulatory arrest with oxygen at 

2 ATA would appear to be eight minutes.

GENERAL DISCUSSION 

The effects of asphyxia (apnoeic oxygenation) during air 

and oxygen breathing at normal atmospheric pressure are in
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reasonable agreement with other studies (Richards, Pinto 

and Coombs, 1963; Nunn, 1977b). The extended period of 

apnoea with oxygen at 2 ATA indicates a substantial increase 

in utilisable oxygen stores. Pupillary dilatation occurred 

in three of four animals at an arterial P0 2  level remarkably 

similar to that associated with the onset of unconsciousness 

in hypoxic man (Nunn, 1977e). During apnoea carbon dioxide 

accumulated at a rate within the predicted range. The decrease 

in the rate of formation of fixed acids with longer periods 

of apnoea may have two explanations; lactic acid formation 

will tend to decline as the body's glucose reserve is consumed 

and the presence of a greater oxygen reserve may also have 

contributed to a certain extent.

Using an identical model of circulatory arrest as that of the 

present studies, Ledingham (1962 - unpublished observations) 

confirmed that the method of vessel clamping was effective; 

radioiodinated serum albumin (RISA) injected into the left 

ventricle was not detected in subsequent assays of brain 

tissue. In fact, earlier work (Kaplan et al, 1956) showed 

that cross-clamping of the pulmonary artery and aorta was 

unnecessary since this did not affect the rate of fall of 

brain tissue P02  after inflow occlusion. Prolongation of



the safe circulatory arrest time would, therefore, appear to 

depend upon the increased PO^ breathed prior to arrest, since 

the observed values of pH, PCC^ and bicarbonate were comparable 

at that time in all groups of dogs.

The periods of safe circulatory arrest at normothermia 

reported here were confirmed by later studies (Edwards, Holdefer 

and Dimick, 1965; Moor et al, 1966; Takahashi et al, 1970).

The latter workers used recovery of normal EEG activity as 

their criterion of survival and considered that seven minutes 

was the maximum tolerable duration of arrest with oxygen at 

3 ATA. The relatively small difference in safe arrest time, 

and the negligible differences in time to pupillary dilatation 

and rate of increase in fixed acid, between these normothermic 

dogs hyperventilated with air, oxygen, and oxygen at 2 ATA was 

initially puzzling but on reflection understandable. It is 

now known that during hyperbaric oxygenation tissue PO^ is 

considerably lower than was originally supposed (Richards,

Pinto and Coombs, 1963) and oxygen diffusion capacity is 

poor (see p. 56). Furthermore, if, as was stated by Moor et 

al (1966), only the oxygen storage capacity of blood could 

influence cerebral oxygenation during circulatory arrest, a 

modest increase in safe arrest was all that could be expected - 

of the order of 25% with oxygen at 2 ATA.



Experiments on the cerebral circulation of dogs (Jacobson,

Harper and McDowall, 1963; Ledingham, McDowall and Harper,

1966) showed that cerebral venous PO^ was elevated by only a 

small amount during oxygen breathing at 2 ATA and there was no 

protective effect in animals subjected to middle cerebral 

artery occlusion (Jacobson and Lawson, 1963). Visual persistence 

time studies in retinal ischaemia have shown that dimness of 

vision occurs in five seconds with air at normal pressure and 

50 seconds with oxygen at 4 ATA. This represents a tissue 

penetration extension of only 0.073 mm in critical PO^

(Carlisle, Lanphier and Rahn, 1964; Lanphier and Brown, 1966).

In patients undergoing carotid artery surgery, oxygen at 2 ATA 

provided a comparatively minor degree of protection to the 

brain during periods of arterial occlusion (Jacobson et al,

1963; Jennett et al, 1970); the choice of anaesthetic agent 

is of particular importance under these circumstances because 

of their variable influence on cerebral oxygenation (McDowall 

et al, 1966).

Comparison of the respective effects of ventilatory and 

circulatory arrest was of interest although complicated by 

the different methods of assessing the hypoxic end-point.

The longer period of circulatory arrest with air breathing 

(four min versus 1 « 8  min during ’apnoeic oxygenation*) is



presumably largely explained on this basis. On the other hand, 

the shorter period of circulatory arrest with oxygen, 

particularly at 2 ATA, must be a reflection of the static 

circulation and perhaps problems arising during re-establishment 

of normal cardiac function. Certainly the rate of change in 

base deficit was greater (1.12 + 0.09 meq/l/min) during 

circulatory arrest than during asphyxia (0.17 4 - 0.08 meq/l/min;

p < 0 .0 0 1 ).

The importance of rapid restoration of adequate post-arrest 

myocardial function in assessing neurological recovery was 

discussed in the reprint. The beneficial action of prior 

administration of sodium bicarbonate was also reviewed. A 

number of other possible ways of determining the relationship 

between oxygen storage and neurological function independent of 

cardiac action were considered (see also pl06). One 

possibility which seemed worth exploring involved occlusion 

of the inferior vena cava, the superior vena cava (excluding 

the azygos vein), the brachiocephalic and subclavian arteries, 

and the descending aorta (Brockman and Jude, 1960). Five 

animals were thus studied. The small amount of recirculation 

via the azygos vein appeared to provide reasonable coronary 

perfusion and the heart continued to beat in sinus rhythm for



periods in excess of one hour at normothermia (three of the 

five dogs). Radioisotope studies of the brain, however, 

indicated the presence of a collateral circulation although 

the precise anatomical route could not be demonstrated 

by angiographic techniques. These studies were not further 

pursued.



Chapter 3

Total circulatory arrest; preliminary studies with hyperbaric 

oxygen (2 ATA) at hypothermia (28 deg C)

In view of the minor differences in the periods of safe 

circulatory arrest with air, oxygen and hyperbaric oxygen at 

normothermia, the possibility that increased protection might 

accrue from a combination of hyperbaric oxygen and hypothermia 

was next considered. A substantial decrease in oxygen consumption 

with hypothermia was assured. The question was whether the 

increase in solubility of oxygen with reduced blood temperature 

could be augmented to a significant degree by hyperbaric oxygen.

Material and Methods (3/5/61 - 18/10/61)

Twenty-eight adult mongrel dogs were anaesthetised, ventilated 

and monitored as described in the previous chapter. Cooling 

was effected by immersion in an ice water bath (Figs. 3.1 and 

3 .2 ) so that the nasopharyngeal and midoesophageal temperatures 

at the start of circulatory arrest were 2 8 + 1  deg C. The 

circulation was arrested without preliminary acid-base 

correction. The inspired gas throughout cooling, arrest and 

rewarming was either:
(I) Oxygen at normal atmospheric pressure (14 dogs; 

weight range 7 - 25 kg)

(II) Oxygen at 2 ATA (14 dogs; weight range 6  - 26 kg)



Figure 3.1. Animal being cooled in bath of iced water.



Figure 3.2. Elevation from water bath effected by 
cradle suspended from dexion frame.
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Animals which recovered were returned to their cages on the 

following day and biochemical estimations carried out on 

a daily basis as in the normothermic series. Thereafter the 

dogs were sacrificed at various intervals up to 134 days after 

operation.

Detailed histological examination (Dr F.D. Lee) was made 

of the myocardium, kidneys, lungs, liver, pancreas, and 

gastro-intestinal tract. The brains were removed intact 

and, after fixation, sections were examined naked eye; 

tissue was obtained for histological examination from the 

cerebral cortex, the basal ganglia, and the cerebellum. 

Fixation was effected with 10% formol saline immediately after 

death with subsequent postfixation in mercuric chloride-formol. 

Paraffin sections were stained with haemalum-eosin and, in 

addition, haematoxylin-van Gieson, Masson’s trichrome, 

Mallory’s phosphotungstic acid haematoxylin, Heidenhain’s iron 

haematoxylin, and the van Kossa technique for calcium 

deposition were used when necessary, particularly for 

elucidating the nature of the changes in the heart muscle.

A standard block was taken from the apex of the left ventricle 

muscle in all dogs.



Pilot studies indicated that animals subjected to 10 minutes of 

total circulatory arrest at 28 deg G whilst breathing oxygen 

at normal pressure recovered promptly and without neurological 

sequelae. In the animals of the present series the period of 

arrest was increased by three to 1 0  minute intervals from 

12 to 25 minutes (oxygen at normal pressure) and from 17 to 

40 minutes (oxygen at 2 ATA). As in the normothermic series 

of animals the safe circulatory arrest period was considered 

as that from which all the dogs in any one group recovered 

without permanent neurological damage. The earliest evidence 

of damage appeared to be minor degrees of ataxia and head 

’’weaving11 which frequently disappeared within a few days.

More severe damage was permanent ataxia and blindness.

Results

The number of animals surviving the period of arrest and the 

neurological outcome may be seen in tables 3.1 and 3.2.

The safe period of circulatory arrest appeared to be 20 minutes 

with oxygen at normal pressure and 30 minutes with oxygen 

at 2 ATA.

The biochemical changes were, in general, slight and consistent 

only with haemoconcentration. The changes in transaminase



Table 3.1
Circulatory arrest at 28°C 

with oxygen at normal pressure

Period of arrest No. dogs No. recovered Sequelae 
(min)

1 2 4 4 Nil

15 1 1 Nil

2 0 4 4 Nil

25 5 3 Lethargy and 
Ataxia

Table 3.2
Circulatory arrest at 28 C 

with oxygen at 2ATA

Period of arrest No. dogs
(min)

17 1

2 0 2

30 4

35 5

No. recovered Sequelae

1 Nil

2 Nil

4 Nil

3 Lethargy and
Ataxia

40 2 0 Coma and 
G.I. haemorrhage
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levels in the animals which survived the longer periods of 

arrest are illustrated in figures 3.3 and 3.4.

Histological examination of the heart revealed that in 

two of three dogs in which arrest had been effected for 25 

minutes with oxygen at normal pressure and in two of four 

in which it was continued for 35 minutes with oxygen at 2 ATA, 

numerous focal lesions were scattered irregularly throughout 

the whole thickness of the myocardium. This was not true 

with shorter periods of arrest. The lesion consisted of 

aggregations ,of necrotic muscle cells associated with marked 

histiocytic infiltration (Fig. 3.5). Phagocytosis of necrotic 

muscle debris by histiocytes was a prominent feature. No 

polymorphonuclear infiltration was noted. At a later stage 

in the evolution of this lesion, the necrotic foci were 

replaced by connective tissue. Remnants of necrotic muscle 

fibres could, however, persist for a considerable period of 

time and were observed 55 days post-operatively in one dog 

(Fig. 3.6). The necrotic muscle showed a marked affinity 

for calcium salts, but their deposition was not constant 

and did not appear to depend on the age of the lesion. 

Furthermore, the lesions were not all found at the same stage
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Figure 3.3. Mean changes in serum glutamic oxalacetic
transaminase and serum pyruvic transaminase 
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after oxygen at 2 ATA.
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Figure 3.5. Aggregations of necrotic muscle fibres with 

marked histiocytic infiltration x 7k.



Figure 3*6. Remnants of necrotic cardiac muscle fibres with

calcium deposition 55 days after operation x 116.



of evolution in any one case. The term microinfarct was 

applied to this lesion.

Additional evidence of myocardial damage was present. Necrotic 

muscle fibres, singly or in groups, were scattered throughout 

the heart. The affected cells showed markedly eosinophilic 

protoplasm with partial loss of striation and pyknotic nuclei.

There was no histiocytic reaction (Fig. 3.7). The term 

necrobiosis was applied to this change. It was seen not only 

in three of the four dogs with micro-infarction but also in the 

remaining dog in which arrest had been effected for 25 minutes with 

oxygen at normal pressure and in the four dogs arrested for 

30 minutes at 2  atmospheres of pressure.

No evidence of brain damage was found with an arrest period 

of 20 minutes with oxygen at normal pressure and 30 minutes 

at 2 ATA. In one dog in which the period of arrest was 

35 minutes at 2 ATA there was a microscopic focus of necrosis 

in the cerebral cortex.

Since the two dogs arrested for 40 minutes at 2 ATA showed 

severe neurological damage, they were sacrificed one and two 

days post-operatively. Only in these two dogs did significant



Figure 3*7* Necrobiosis of cardiac muscle fibres with

deeply eosinophilic cytoplasm, partial loss of 

striations, and pyknotic nuclei. Note lack of 

histiocytic infiltration.



103.

pathological lesions develop in the pancreas (one dog), and 

in the intestines (both dogs). At autopsy, intestinal 

haemorrhage was found, and on histological examination necrosis 

of the tips of the villi and of the superficial parts of the 

intestinal mucosa was evident without marked leucocytic 

infiltration. The necrotic process extended into the large 

intestine, but not into the stomach, in one animal. In 

one of these dogs haemorrhagic pancreatic necrosis was found.

In this latter dog, acute tubular necrosis of the kidneys 

was also noted which was the only significant lesion detected 

in the kidneys of any of the dogs examined. Examination 

revealed that no damage had occurred in the liver and lungs 

of any of the dogs.

Discussion

With a reduction of the body temperature to 28 deg C the 

metabolic requirements of the brain should be reduced to about one 

third (Rosomoff and Holaday, 1954). Assuming that the safe circu

latory arrest times in the normothermic dogs were correct, the 

expected arrest times at 28 deg C would therefore be roughly 15 

and 24 minutes with oxygen at normal pressure and 2 ATA respectively. 

At this temperature, however, the increased solubility of oxygen 

should produce a greater prolongation of the safe arrest time; 

this expectation was realised. Furthermore, as the temperature
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of the body is lowered, the benefit accruing from oxygen 

dissolved in the body fluids and cells should be correspondingly 

enhanced (see later chapters).

The safe circulatory arrest periods of 20 and 30 minutes 

with oxygen at normal pressure and 2 ATA respectively seemed 

to be substantiated both by the recovery rates and by the 

biochemical and pathological findings. It appeared that the 

degree of cell damage indicated by the transaminase levels 

was about the same in the 20 and 30 minute groups. When these 

times were exceeded by periods of five minutes, the transaminase 

elevations were again comparable in the two groups but at 

higher levels.

The myocardial microinfarcts closely resembled those reported 

to occur in dogs with hypothermia alone (Sarajas, 1956;

Sarajas et al, 1956). Duguid and his associates (1961) 

have reported similar lesions in human accidental hypothermia. 

The absence of polymorphonuclear infiltration may have been 

due to the relatively late stage at which these lesions were 

examined after operation. The cause of myocardial necrobiosis 

in uncertain. It may merely represent a less severe form of
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microinfarction but it may indicate progressive muscle damage 

since it was seen for as long as 134 days after operation.

The absence of histological evidence of cerebral damage in all 

but one of the animals subjected to prolonged arrest is curious 

and may simply indicate the scattered nature of any lesions which 

do occur (however, see chapter 6 ).

The intestinal lesions reported in this study were comparable 

with those which have been found in shocked dogs (McArdle 

et al, 1975) and occasionally in man.

These results at 28 deg C were reproduced by Edwards, Holdefer 

and Dimick (1965) and by McSherry, Patterson and Lanphier (1966). 

The latter used isolated occlusion of the cerebral circulation 

thus avoiding the problems of cardiac resuscitation at the end 

of the period of arrest. After occlusion of the cerebral 

circulation at 28 deg C EEG activity disappeared almost as 

quickly as it had done at normothermia (about 26 sec) and 

clearly bore no relationship to survival which was reported 

as 30 minutes with oxygen at 3 ATA. On the other hand,



Anabtawi and Brockman (1962) and Moor et al (1966) could only 

produce safe arrest for 15 minutes at 28 - 30 deg G and the 

latter demonstrated extensive neuronal loss amongst 50% 

of the animals which survived the operation.

As in the normothermic dogs (chapter 2), consideration was 

given to other ways of examining the relationhip between oxygen 

storage and neurological function which did not depend so 

critically on rapid post-arrest restoration of cardiac output.

A pilot study was performed on nine dogs using the technique 

of isolated, hypothermic (28 deg C) perfusion of the brain 

(Bjork, 1948; Kristiansen, Krog and Lund, 1960). After a 

30 minute period of cerebral circulatory arrest with oxygen 

at normal pressure, four of the nine dogs appeared to recover 

normal cerebral function (as judged short-term). The remaining 

five died as a result of various technical problems mostly 

related to bleeding with the heparinised perfusion circuit. 

However, enough information was gleaned from this brief 

study to indicate that cerebral dysfunction after total 

circulatory arrest relates not only to the duration of arrest 

but also to any degree of hypoperfusion which may occur 

during the acute phase of resuscitation.



107.
Chapter 4

Deep hypothermia (20 deg C); pathophysiological aspects and 

total circulatory arrest

The preliminary studies described in the previous chapter 

indicated that whereas at normothermia OHP had little to 

offer in protecting tissues deprived of their blood supply, 

the combination of hypothermia and OHP might prove valuable. 

Furthermore, it followed that this effect might be accentuated 

by increasing the depth of hypothermia or the pressure of 

oxygen, or both. In the first instance, increasing the 

depth of hypothermia was more attractive. Not only would 

there be a further reduction in oxygen consumption and 

increase in the amount of oxygen carried in physical 

solution but the adverse effects of any hypoperfusion 

associated with reduced temperature might be assuaged. The 

alternative of further increasing the partial pressure of 

oxygen was less appealing because of the uncertain risk of 

oxygen toxicity (Thomas et al, 1966).

Increasing the depth of hypothermia was not without its 

problems, perhaps the most obvious being the development of 

serious cardiac arrhythmias and progressive hypotension
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(Bigelow, Lindsay and Greenwood, 1950; Bigelow, Callaghan 

and Hopps, 1950; Hegnauer, Shriber and Haterius, 1950;

Covino and Hegnauer, 1956). In the absence of a pump- 

oxygenator, these hazards were considered to limit total 

body cooling in the human to temperatures above 28 deg C. 

Moreover, even if the problems of hypothermia itself could 

be overcome there was uncertainty as to the ability of the 

cooled heart to resume normal rhythm and function after a 

period of circulatory standstill. It was, therefore, decided 

to examine the pathophysiological changes of deep hypothermia 

with the aim of evolving a technique which would produce 

consistent recovery after induced total circulatory arrest. 

Thereafter the ability of OHP to support prolongation of the 

period of safe circulatory arrest at deep body temperature 

could be investigated (see following chapter).

This chapter reflects the above considerations and the 

experiments were designed to identify and, if possible 

eliminate, some of the factors which might contribute to the 

cardiovascular disturbances of deep hypothermia.

Materials and Methods (4/7/62 - 3/8/62)

Thirty-eight mongrel dogs weighing from 7 to 27 kg were



anaesthetised, intubated with a cuffed Magill endotracheal 

tube and ventilated by means of a Starling intermittent 

positive pressure ventilator. The minute volume was initially 

adjusted until the arterial PCC^ was within the range 35 to 

45 mm Hg. The inspired gas was either oxygen or, in some 

animals at low temperature, oxygen combined with 2 or 5% 

carbon dioxide. Hypothermia was induced in a bath of iced 

water and shivering prevented using gallamine, d-tubocurarine 

or suxamethonium.

Measurements were made of arterial blood pressure, heart rate 

and the acid-base state together with recordings of the EGG 

at regular intervals throughout the procedure. To avoid 

the problems of acid-base correction at different temperatures 

(about which there was considerable controversy at the time 

of these studies) the micro-Astrup apparatus was cooled 

commensurate with the animals.

There were four major experimental groups and the procedures 

undertaken in each are shown in table 4.1.

The five dogs of Group A were cooled to 28 deg C and the



Table 4.1 The procedures carried out in the 4 groups of dogs.

Group No. of 
dogs

Procedure Circulatory
Duration
(min)

Arrest
Temp.
( ° c )

Anaesthetic
agent

A 5 Hypothermia, 
circulatory 
arrest, and 
rewarming

15 /20 28 Thiopentone

B 4 Hypothermia 
and rewarming

none 20 Thiopentone

G 14 Hypothermia, 
circulatory 
arrest, and 
rewarming

20 /30 20 Thiopentone

D

14 Hypothermia, 
circulatory 
arrest, and

30 /20 20 Halothane

rewarming

1 Hypothermia 
and rewarming

none 20 Halothane
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circulation arrested for 15 or 20 minutes to determine changes 

in acid-base balance. Three of these animals were rewarmed, 

and later recooled and subjected to a further period of 

circulatory arrest at 28 deg C to assess the effect of 

prophylactic administration of sodium bicarbonate in a manner 

similar to that described in the normothermic experiments 

(chapter 2).

The four dogs of Group B were cooled to 20 deg C and rewarmed 

without circulatory arrest. One of these animals was not given 

relaxants in order to assess the effect of shivering on acid- 

base balance.

The 14 dogs of Group C were cooled to 20 deg C and the 

circulation arrested (in the manner previously described) 

for 20 minutes in 12 dogs, and for 30 minutes in the remaining 

two animals. Occasional use was made of aramine to maintain 

an adequate arterial blood pressure below 25 deg C, and 

atropine when the heart rate fell below 30 beats per minute. 

Sodium bicarbonate was administered during cooling and as 

indicated during the rewarming phase. Adrenaline and electrical 

defibrillation were used when required to expedite restoration 

of normal cardiac function at the end of the arrest period.



Fourteen of the 15 dogs in Group D were cooled to 20 deg C 

and the circulation arrested for 20 minutes in one animal, 

and for 30 minutes in 13 animals. The remaining dog in 

this group was simply cooled and rewarmed without circulatory 

arrest to observe the effect at deep hypothermia of altering 

the inspired carbon dioxide concentration by varying either 

the ventilatory volume or the inspired gas. Unlike the 

animals of Groups A, B and C, the dogs in Group D were given 

sodium thiopentone only to achieve intubation. Thereafter 

anaesthesia was maintained with halothane until the temperature 

was 28 deg C at which level anaesthesia was reduced. It did 

not prove necessary to use aramine or atropine.

Those dogs in Group C and D which recovered from the period 

of circulatory arrest were examined 24 hours later to determine 

their neurological status.

Results

In the five dogs of Group A the base deficit increased by a 

mean of 0.31 meq/l/min of circulatory arrest at 28 deg G.

Three of the dogs were subjected to a further 15 minute 

period of arrest to assess the effect of sodium bicarbonate 

but no difference in the speed of myocardial resuscitation



was observed. All the animals of this group survived.

The base deficit changes in the four dogs of Group B are 

illustrated in figure 4.1. It can be seen that uncontrolled 

shivering during cooling was associated with the development 

of metabolic acidosis; this was corrected spontaneously in 

the later stages of rewarming. When shivering was eliminated 

significant acidosis did not develop during cooling; during 

the early stages of slow surface rewarming, however, bradycardia 

and hypotension occurred with the development of an associated 

acidosis - again correcting spontaneously in the later stages 

of rewarming. In the fourth dog, shivering was prevented, 

and bradycardia and hypotension avoided by the initiation of 

rapid rewarming; metabolic acidosis did not develop.

Only four of the animals of Group C survived the whole procedure 

(Table 4.2). The cause of death in three was faulty technique. 

In dog 9 spontaneous ventricular fibrillation occurred during 

cooling attributable to inadequate control of shivering. 

Haemothorax accounted for the deaths of dogs 12 and 13 during 

rewarming. The remaining animals died of cardiac causes 

during resuscitation after arrest. In the animals which died,
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Figure 4.1a. Acidosis of uncontrolled shivering.
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Figure 4.1b. Shivering and acidosis eliminated 
during cooling.
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Figure 4.1c, Shivering and acidosis absent
throughout cooling and rewarming.
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the rate of cooling and the pre-arrest mean blood pressure 

and heart rate were lower than in the survivors. All the dogs 

which failed to recover from the period of arrest had a mean 

blood pressure of 35 mm Hg or less during the terminal stages 

of cooling but this was artificially raised using aramine to a 

level indistinguishable from that in the animals which recovered 

(Fig. 4.2; Table 4.4).

In Groups A, B and C, seven animals received gallamine, eight 

d-tubocurarine and seven suxamethonium in order to prevent shiver

ing. Gallamine and d-tubocurarine caused varying degrees of 

hypotension whereas suxamethonium was effective without adversely 

affecting blood pressure. Seven animals were ventilated with 

oxygen during the cooling phase and seven with oxygen/carbon 

dioxide mixtures. No difference between the two groups in 

respect of cardiac arrhythmias or recovery was observed.

Survival in Group D exceeded that in Group C (Table 4.3) in 

spite of a 10 minute increase in the period of circulatory 

arrest. The difference in survival between the two groups, 

however, was not significant. The cause of death in Group D 

dogs was to be found in the resuscitation phase. Two of the
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Figure 4.2. Animal of Group C anaesthetised with
thiopentone and subjected to 20 minute 
circulatory arrest. Note prolonged 
cooling, slow resuscitation and use of 
aramine (AR).
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Table 4. 4 Mean values obtained from those dogs of Groups 
C and D which recovered and those which died. 
The figures in brackets are those which were 
obtained before vasopressors were given.

Group No.
Dogs

Fate Period of
Arrest
min

Cooling
Time
min/kg

Pre-arrest 
mean BP 
mm Hg

Pre-arrest
HR
beats/min

C 4 Recovery- 20 11.5 65 33

10 Died 20 14.4 69 (44) 35 (16)

D 8 Recovery 30 8.6 74 32

6 Died 30 9.2 86 38

Table 4.5 The base excess and blood pressure on 5 occasions 
before and whilst breathing carbogen mixtures.

Before Breathing Carbogen Whilst Breathing Carbogen

Base excess 
mEq/L

Mean 
blood 
pressure 
mm Hg

PC02 
mm Hg

Base excess 
mEq/L

Mean 
blood 
pressure 
mm Hg

PC02 
mm Hg

+2.1 100 30 - 3 . 5 95 57

- 3 . 5 95 27 - 7 . 8 70 67

+3 • 0 85 10 - 6 . 2 70 55

+ 4 . 5 90 28

ovO1 70 53

+ 3 . 0 80 35 - 2 . 5 60 54
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deaths were due to technical factors - inadvertent cardiac 

distension during arrest in dog 3 and an aortic tear in dog 8.

Dogs 6, 7, 9 and 10 died of cardiac causes during investigations 

into the importance of ventilation and the respiratory component 

of the acid-base state. In these animals the arterial 

was adjusted to remain between 30 and 40 mm Hg during the cooling 

stage either by progressive reduction of ventilatory volume 

or by the addition of carbon dioxide to the inspired gas, 

while in the post-arrest phase of cardiac resuscitation manual 

ventilation was replaced by mechanical ventilation. The 

unsatisfactory outcome of these manoeuvres prompted a return 

to the original method of ventilation with 100% oxygen at a 

constant volume throughout the procedure (other than during 

the stage of cardiac resuscitation). When this approach 

was adopted in the final four dogs of Group D the results 

were entirely satisfactory. The cooling, arrest and rewarming 

sequence using halothane anaesthesia is illustrated in figure 4.3; 

the rapid cooling and rewarming times and the absence of 

hypotension was in contrast to the animals of Group C 

(Fig. 4.2; Table 4.4).

In view of the apparently adverse effects observed in those 

dogs of Group D in which arterial PC02 was maintained between
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Figure 4.3. Animal anaesthetised with halothane (as 
in animals of Group D) and subjected to 
40 minute circulatory arrest. Note rapid 
cooling, prompt resuscitation and avoidance 
of vasoactive agents.
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30 and 40 mm Hg, one further animal was subjected to deep 

hypothermia and ventilated with various oxygen/carbon dioxide 

mixtures. In this animal raising the arterial PCC^ was 

associated with hypotension and the development of metabolic 

acidosis at 20.3 deg C (Table 4.5).

Discussion

Prior to the studies reported in this chapter, attempts to 

subject animals to prolonged total circulatory arrest at 

around 20 deg C without the use of cardiopulmonary bypass 

had met with disappointing or indifferent results (Bigelow, 

Lindsay and Greenwood, 1950; Covino and Hegnauer, 1956).

Using the technique described for the Group D animals most of 

the major problems were overcome and (as can be seen in the 

following chapter) the technique was successfully adopted 

for the studies with hyperbaric oxygen.

The basis for success in any procedure involving surface 

cooling is that cardiac output and tissue perfusion should be 

affected as little as possible. If either of these variables 

is adversely affected, particularly during cooling and the 

early stages of rewarming, metabolic acidosis and cardiac 

dysrhythmias develop leading to a progressive downward spiral in
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cardiopulmonary function (Govino and Hegauer, 1956). If, on 

the other hand, cardiac output and perfusion are not 

substantially reduced, hypothermia by itself produces 

remarkably few acid-base disturbances.

Anaesthesia

The choice of anaesthetic agent is of considerable importance 

since many of these agents cause a diminution in cardiac 

output especially in the hypothermic animal, and some are more 

frequently associated with the onset of cardiac dysrhythmias 

than others (Bigelow et al, 1950; Covino and Hegnauer, 1956; 

Mohri et al, 1968). Volatile agents are generally to be 

preferred since they are not metabolised to any great degree 

as are the barbiturates, and both ether and halothane have been 

used extensively (Blair, 1969; Warner et al, 1970). In the 

present study there could be little doubt about the superiority 

of halothane over intermittent intravenous doses of thiopentone 

and some of the poor results previously reported with deep 

hypothermia might be explained on this basis (see also chapter 

13).

Although halothane diminishes cardiac output, the dose used 

in this study would have produced minimal myocardial depression
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(Shimosato, Tsung-Han and Etsten, 1963); the increased risk 

of ventricular fibrillation reported by some (Sprouse,

Galindo and Morrow, 1963) was not confirmed. The main action 

of halothane was to increase skin and muscle perfusion 

resulting in an increase in the cooling rate; myocardial 

resuscitation after the period of circulatory arrest was 

also more rapid. At 28 deg G there is evidence that halothane 

requirement is about 40% of normal (Munson, 1970) and in the 

group D animals when halothane administration was reduced at 

this temperature, heart rate and arterial blood pressure 

returned almost to pre-cooling levels. These factors 

seemed to favour prompt resuscitation although there is clearly 

disagreement about the cardiac effects of the various levels 

of anaesthesia, some believing that deep anaesthesia should 

be avoided (Popovic and Popovic, 1974b) while others take the 

opposite view (Rittenhouse, Mohri and Merendino, 1970).

Ventilation

The dangers of spontaneous ventilation in induced hypothermia 

have been appreciated for a number of years (Bigelow, Callaghan 

and Hopps, 1950; Osborn, 1953; Fleming, 1954; Brewin,

Nashat and Neil, 1956). Progressive respiratory failure and 

shivering (both leading to acidosis) are the two main problems, 

and the risk of ventricular fibrillation at higher temperatures
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is also increased. The importance of mechanical ventilation, 

together with muscle relaxant drugs (see fig. 4.1), is not, 

therefore, in doubt but there remains controversy on matters 

of detail. Swan and his colleagues (1953) were convinced 

of the advantages of hyperventilation particularly in reducing 

the incidence of ventricular fibrillation during cooling, and 

others have drawn attention to the association of acidosis 

and ventricular fibrillation (Riberi et al, 1955; Covino 

and Hegnauer, 1956). The manoeuvre of reducing minute volume 

to maintain a constant arterial PCC^ during hypothermia appeared 

to be associated with an increase in mortality in the present 

study and others have noted similar findings (Swan et al, 1953).

Perhaps the main debate concerns the advisability of adding 

carbon dioxide to the inspired gas. Respiratory alkalosis 

causes cerebral and coronary vasoconstriction (Mohri, Dillard
19and Merendino, 1972; Hagerdal, Harp and Siesjo, 1975; see 

also chapter 9) and a shift to the left of the oxygen dissociation 

curve. However, metabolic studies of the brain and the heart 

have not revealed evidence of hypoxia (Penrod, 1951; Carlsson, 

Hagerdal and Siesjo, 1976; see also chapter 9). Nevertheless, 

the addition of 5 to 10% carbon dioxide has been advocated 

by many who feel that the advantages outweigh the disadvantages
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(Niazi and Lewis, 1956; Borst et al, 1963). In a recent 

reappraisal of this problem Prakash et al (1978) concluded 

that ’normothermic ventilation without CC^ added to the inspired 

gas did not cause any apparent harm and is suggested as a 

simple and safe method for ventilation during cooling*. The 

present study indicated that the introduction of carbon dioxide 

during the late stages of cooling was associated with hypotension 

and metabolic acidosis, presumably caused by vasodilatation 

(Gollan, 1965), and suggested that if carbon dioxide were 

considered important it should be administered throughout 

cooling.

Drugs

The multiplicity of drugs which have been used to prevent the 

disturbances of cardiac rhythm produced by hypothermia suggests that 

no single agent has proved to be convincingly effective. Sympath

etic discharge increases the tendency for ventricular fibrillation 

(Nielson and Owman, 1969) and sympathetic blockade, either by 

surgical or pharmacological means, reduces the incidence of 

ventricular fibrillation (Riberi et al, 1955; Warner et al, 1970; 

Falck et al, 1972). On the other hand, the intravenous 

infusion of catecholamines appears to have an unpredictable 

effect since both an increase (Angelakos and Daniels, 1969;
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Falck et al, 1972) and a decrease (Covino and D*Amato, 1962) in 

the incidence of ventricular fibrillation have been reported. 

Procaine amide and quinidine seem to be effective anti-arrhythmic 

agents (Johnson et al, 1960).

The hypotension of induced hypothermia responds well to vaso

constrictors such as noradrenaline and aramine. Intravenous 

administration of aramine was effective in increasing blood 

pressure in the animals of Group C although the onset of response 

was delayed for several minutes. The use of this drug, however, 

did not alter the eventual outcome in hypotensive animals, an 

observation which confirmed the earlier work of Detterling and his 

colleagues (1955). Atropine was capable of increasing heart 

rate although its effect was inconsistent and delayed. During 

the course of cardiac resuscitation following circulatory 

arrest adrenaline proved to be a reliable drug not only in 

facilitating electrical defibrillation when required, but also 

in prompting vigorous cardiac contraction.

The value of bicarbonate could not be assessed in the animals 

of Groups C and D since all received the alkali as necessary 

during cooling, and routinely prior to the arrest period.
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Acidosis during the early rewarming phase was a common 

occurrence but was self-correcting during the later stages, 

presumably because the liver becomes able to metabolise 

lactate above 28 deg C (Brewin et al, 1955).

Neurological Recovery

None of the animals of Groups C and D which survived the 

resuscitation phase showed neurological damage although recovery 

was considerably delayed in the barbiturate animals possibly 

because of the continuing effects of the drug mobilised from 

the tissues during rewarming.
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Total Circulatory Arrest at Deep Hypothermia (20 deg C) 

with and without hyperbaric oxygen (2 ATA)

The studies reported in the previous chapter were essentially 

of an exploratory nature but provided much information which 

proved useful in the design of the more definitive experiments 

now to be presented. The two main aims of the experiments 

in this section were (1) to determine the maximum period of 

safe circulatory arrest at 20 deg C with oxygen at normal 

pressure and oxygen at 2 ATA, and (2) to investigate the 

role of prophylactic alkali administration in restoring 

adequate cardiac function after circulatory arrest.

Material and Methods (29/1/63 - 25/10/63)

Eighty mongrel dogs weighing from 8.2 to 29.1 kg were 

anaesthetised, ventilated and cooled to 20 deg C in the 

manner described for the animals of Group D in the previous 

chapter. The inspired gas was either oxygen at normal 

pressure (39 dogs) or oxygen at 2 ATA (41 dogs) and immediately 

prior to the period of circulatory arrest the animals were 

given either no alkali (37 dogs) or sufficient alkali to 

counteract the development of acidosis (43 dogs). The 

alkali took the form of sodium bicarbonate or sodium lactate.
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The predetermined duration of arrest was 30, 35 and 40 

minutes at normal pressure and 30, 35, 40 and 45 minutes 

at 2 ATA. Rewarming was carried out as before by immersion 

in a bath of water at 40 deg C.

The standard cardiorespiratory measurements were performed, 

in addition to which blood samples were removed at regular 

intervals throughout cooling, arrest and rewarming for 

estimation of blood gases, sodium, potassium, chloride 

calcium, phosphate, lactate, pyruvate, haemoglobin and packed 

cell volume. After rewarming the animals which recovered were 

returned to their cages for neurological assessment on the 

following day.

For the purposes of statistical analysis the five animals 

subjected to a 45 minute period of circulatory arrest at 2 ATA 

were eliminated; the analyses consisted of unpaired and 

paired t-test, chi-squared analysis, and F-test where 

appropriate; t-tests were performed unless otherwise indicated.

Results
Four of the five animals subjected to a 45 minute period of 

arrest at 2 ATA could not be resuscitated after arrest (Table 5.1)



Table 5.1

Total Circulatory Arrest at 20°C (30-45 min)

Mortality (%)

Normal Atmospheric 2ATA
pressure

Duration 
of arrest
(min) 30 35 40 30 35 40

No alkali 25 67 50 0 43 13

Alkali - 0 16 - 50 20
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and the fifth animal was comatose the following day. Clearly 

the upper limit for revival using this particular animal 

preparation had been defined. The data relating to mortality 

and the incidence of ventricular fibrillation and neurological 

damage refer to the 75 animals whose periods of arrest were of 

30 to 40 minutes duration. Since no clearcut differences 

attributable to duration of arrest were observed between the 

animals subjected to 30, 35 and 40 minutes of arrest, the results 

were pooled and distinguished solely on the basis of whether 

or not the animals received hyperbaric oxygen and whether or not 

they received alkali.

Hyperbaric oxygen was associated with a reduction in mortality 

in the animals not receiving alkali (Table 5.2). The admini

stration of alkali, however, reduced mortality in the animals
2breathing oxygen at normal pressure (x = 3.61; p<0.05)

such that no beneficial effect of oxygen at increased pressure 

could be observed. Death in all cases was attributable to 

irreversible fibrillation which was completely absent during 

the cooling phase but did occur, on occasions, during the 

period of arrest (when its onset was spontaneous (Table 5.3)), or 

during the period of cardiac resuscitation (when its onset was



Table 5.2

Total Circulatory Arrest 

at 20°C (30-40 min) 

Mortality (%)

Normal atmospheric 
pressure

2ATA Totals

No alkali 9/18 (50%) 4/19 (21%) 13/37 (35%)

Alkali 3/21 (14%) 4/17 (24%) 7/38 (18%)

Totals 12/39 (31%) 8/36 (22%)



Table 5.3
Total Circulatory Arrest 
at 20°C (30-40 min)

Spontaneous Ventricular Fibrillation (%)

Normal atmospheric 
pressure

2ATA Totals

No alkali 6/18 (33%) 3/19 (16%) 9/37 (24%)

Alkali 1/21 (5%) 4/17 (24%) 5/38 (13%)

Totals 7/39 (18%) 7/36 (19%)

Table 5.4 Total Circulatory Arrest 
at 20°C (30-40 min)

induced* Ventricular Fibrillation (%)

Normal atmospheric 
pressure

2ATA Totals

No alkali 6/18 (33%) 9/19 (47%) 15/37 (41%)

Alkali 9/21 (43%) 8/17 (47%) 17/38 (45%)

Totals 15/39 (38%) 17/36 (47%)
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associated with handling of the heart (Table 5.4)). Spontaneous 

ventricular fibrillation occurred less frequently (x̂  = 3.59; 

p < 0.05) amongst animals given alkali at normal atmospheric 

pressure but occurred with equal frequency in the other groups. 

The incidence of induced fibrillation was equal in all groups.

Neurological damage was assessed as being absent, slight or 

gross, and 24 hours after operation (Fig. 5.1) it was clear 

that only in the hyperbaric oxygen group were there animals 

with no evidence of neurological damage, but nonetheless even 

gross neurological damage was not entirely absent. In the 

interests of brevity data from the alkali and non-alkali groups 

are presented together but the impression was gained that the 

alkali group made speedier and better recoveries than those 

without alkali (see page 133).

The haemodynamic and biochemical results are presented 

separately for the three phases of the study - cooling, arrest 

and rewarming.

Cooling

The changes occurring during cooling are indicated in table 5.5



/ ATM. 2 ATM.

100-.

°/o 5 0Total

NONE SLIGHT GROSS NONE SLIGHT

4 7

fraMaasM

GROSS

20

Figure 5.1. Incidence of neurological damage.
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for all 80 animals in the two main groups breathing oxygen at 

normal pressure and at 2 ATA. Apart from the anticipated 

differences between the two groups in relation to arterial 

and venous P02 (Fig. 5.2) there was remarkably similarity 

in the data at all stages of cooling. The arterial blood 

pressure and heart rate changes, and the mean duration of 

cooling (Fig. 5.3), were identical to those previously 

described in this model (Group D, previous chapter). There 

was a consistent small rise in haemoglobin and packed cell 

volume which was not matched by changes suggesting haemo- 

concentration in the serum electrolytes (Fig. 5.4). Only 

minor fluctuations within the normal range occurred in 

potassium although the number of values was large enough 

for the difference between the normal pressure and 2 ATA 

animals to be significant at 20 deg C (p<0.05).

Coincident with a fall in arterial PC02, there was a progressive 

rise in pH; the minor changes in base excess towards acidosis 

as cooling proceeded were significant (p < 0.001) in both 

groups down to 25 deg C at which temperature there was a 

slight but significant difference (p < 0.05) between the 

two groups. There was no significant increase in lactate



1atm. --- 2 atm
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Figure 5.2. Mean arterial and venous P02 values (mm Hg) 
during cooling from 37 to 20 deg C - oxygen 
at normal pressure (1 Atm) and oxygen at 
2 ATA (2 Atm).
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Figure 5.3. Mean arterial blood pressure, heart rate 
and cooling time to 20 deg C - oxygen at 
normal pressure (1 Atm) and oxygen at 
2 ATA (2 Atm).



1 atm. ---- 2 atm

Na
142

K
4 * 4

Cl 113 

100

~ r
3 0

"T"
2 5

Figure 5.4. Mean serum electrolyte values (meq/1)
during cooling - oxygen at normal pressure 
(1 Atm) and oxygen at 2 ATA (2 Atm).
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with cooling although the slight difference between the 

normal pressure and 2 ATA groups at 30 deg C was significant 

(p < 0.05). Excess lactate rose slightly in the normal 

pressure group at 30 deg G.

Arrest

The biochemical changes during circulatory arrest are indicated 

in Table 5.5 for the normal pressure and 2 ATA dogs which did 

not receive alkali prior to arrest (16 animals). The expected 

decrease in pH and increases in base deficit, potassium, 

phosphate, lactate and excess lactate were observed (Fig. 5.5); 

base excess fell by a mean of 0.17 meq/1 and 0.13 meq/1 per 

minute of circulatory arrest in the normal pressure and 2 ATA 

groups respectively. Although the 2 ATA animals appeared to fare 

better in respect of all of these changes, there were no 

statistically significant differences between the two groups 

of dogs. Further statistical analysis also revealed that no 

unpredictable effects resulted from the administration of alkali 

in the pre-arrest period other than that those animals receiving 

sodium lactate showed a less marked increase in potassium 

(F = 10.3, p < 0.01).

Samples of arterial and venous blood withdrawn towards the
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Per cent increase in serum values of 
potassium, phosphate, lactate and excess 
lactate during total circulatory arrest.
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end of the period of arrest indicated mean PO^ values as 

follows:

Arterial (no. dogs) Venous (no. dogs)

normal pressure 70 (3) 43 (3)

2 ATA 110 (8) 344 (9)

A typical example of the PO^ changes with the passage of time 

during arrest is shown in figure 5.6.

Rewarming

Since rapid restoration of adequate perfusion was clearly 

important in determining neurological outcome, the haemo- 

dynamic parameters of the early stage of rewarming in 

particular were observed. There was, however, no statistically 

significant difference between the two main groups when the 

times taken to reach a sustained mean arterial pressure of 

60 mm Hg were compared, and throughout the remainder of the 

rewarming phase cardiovascular recovery was equally satisfactory.

Reference to table 5.5 indicates that during rewarming, the 

animals which had not received alkali prior to arrest displayed 

a progressive decrease in pH as rewarming progressed. This 

trend was due to an increase both in lactate and in PCO2  up to



mm Hg.
Arterial Venous

1000-

0 3 0 4 02010
S tart C irculatory Arrest (mins.) Finish

Figure 5.6. Arterial and venous P02 values during
a 40 minute period of total circulatory 
arrest,
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a temperature of 25 deg C; thereafter the effect of the 

increase in PCC^ predominated. Apart from a return to 

normal of serum potassium no other changes in the mean 

biochemical values during rewarming were noted and there 

were again no significant differences between the normal 

pressure and 2 ATA groups of animals. Examination of the 

effects of alkali revealed only one statistically significant 

difference - at 37 deg C arterial pH was 7.16 + 0.14 (M + S.E.) 

and 7.33 + 0.11 in the no alkali and bicarbonate groups 

respectively (p < 0.05).

Half the hyperbaric group of animals were arbitrarily decompressed 

at a temperature of about 30 deg C (referred to as the early 

removal group) while the remainder were retained at increased 

oxygen pressure until normothermic (referred to as the late 

removal group). The latter appeared to make a more satis

factory biochemical recovery (Fig. 5.7) when the values at 

37 deg C were compared.

Discussion

These data showed that the maximum period of safe circulatory 

arrest at 20 deg C using a surface-cooled experimental model 

was about 35 minutes. On the basis of numerous experimental



Late Removal Early Removal
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Figure. 5.7.
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Biochemical data for hyperbaric animals 
after return to normothermia (pH - units; 
standard bicarbonate - meq/1; base excess 
meq/1; potassium - meq/1; excess lactate 
mg/100 ml).
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results, Thauer (1965) suggested that the duration of safe 

circulatory arrest in dogs could be calculated from the 

following equation:

Bst = 150 x E "b*0-108

where Bst is the biological survival time and E is the rectal 

temperature. According to this equation it has been estimated 

that the safe circulatory arrest time at 18 deg G should be 

about 60 minutes and some reports have indicated even longer 

periods (Gordon, 1962; Rittenhouse et al, 1971). A number 

of factors may account for the reported differences in 

estimation of safe circulatory arrest, including actual brain 

temperature at the time of arrest, age of the experimental 

animal (or patient), type and depth of anaesthesia and method 

of cooling (Popovic and Popovic, 1974). Assessment of 

neurological recovery is also an imprecise technique.

In these studies, hyperbaric oxygen appeared to exert at most 

a marginal protective influence, and a detectable increase 

in the period of safe arrest using oxygen at 2 ATA was not 

achieved. During the late phase of rewarming hyperbaric oxygen 

may have made a minor contribution to the rate of restoration 

of normal cellular metabolism. No comparable study has been
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performed at 20 deg C with hyperbaric oxygen but Thomas et al 

(1966) described circulatory arrest (with recovery) of more 

than two hours at 3 deg C using oxygen at 3 ATA; cardiopulmonary 

bypass was used to induce cooling and rewarming and there were 

no normal pressure control animals.

The most obvious explanation for the lack of effect of hyperbaric 

oxygen at this temperature was that the extra oxygen did not 

gain access to the tissues. Evidence in support of this 

contention came from the PO^ data collected during the period 

of arrest, which showed that a substantial reserve of oxygen 

remained untapped (for further comment see Discussion in 

following chapter). The small increase in the duration of 

arrest in these experiments over that observed in animals 

at 28 deg G (30 minutes with oxygen at 2 ATA) is not easily 

explained although the two experimental methods were not 

identical and the cerebral metabolic rate of oxygen may not 

have been grossly different at the two temperatures. Another 

possible explanation is that hypoperfusion at the lower 

temperature may have reduced oxygen availability after the 

period of arrest.

Cooling per se was associated with remarkably few biochemical 

disturbances which is the usual pattern with uncomplicated



surface cooling (Cooper and Ross, 1960). Serum potassium fell 

slightly as did phosphate while calcium rose to a minor degree. 

Lactate formation did not occur during cooling. Acid-base 

balance presents special problems in hypothermia; physico

chemical changes occur in the ionic constituents of the body 

fluids, buffer capacity is reduced, and the kidney*s ability 

to regulate hydrogen ion exchange is disturbed (Rosenfeld, 1963; 

Linton and Ledingham, 1966). The pH changes during cooling in 

the present study were attributable almost entirely to the 

fall in arterial the changes in base excess being

negligible. An increase in packed cell volume has been reported 

in previous studies (Helmsworth, Stiles and Elstun, 1955; 

Kanter, 1968) and in the dog is likely to be due to splenic 

contraction possibly secondary to adrenergic discharge during 

induction of hypothermia. Shifts in water from plasma and 

interstitial compartments into the cells have been described 

but are usually trivial in the absence of shivering (D*Amato, 

1954), and as long as hypothermia is not deep and prolonged 

(Popovic, 1960). If haematocrit levels exceed 50%, as in 

the post-arrest phase of the present study, yield shear stress 

increases to a significant extent (Marty et al, 1971) and 

rheological benefit accrues from the administration of colloid
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solutions (Mohri et al, 1966).

As with the normothermic dogs (chapter 2), the administration 

of alkali immediately prior to the period of arrest proved 

to be of significant value (Benichoux et al, 1963). Not 

only was there a lower incidence of spontaneous ventricular 

fibrillation during arrest but successful defibrillation was 

the rule.

The absence of severe acidosis during rewarming in the bicarbonate 

treated group was presumed to have contributed favourably to 

the speed of neurological recovery in these animals.

The metabolic changes produced by the period of arrest were 

comparable in character to those found during normothermic 

arrest. The overall magnitude of change in such variables 

as base deficit, potassium and lactate during a 35 minute 

arrest at 20 deg C were of the same order as that of a five to 

six minute arrest at normal body temperature. This observation 

was particularly obvious in relation to base excess, reductions 

in which were as follows (per minute of circulatory arrest):
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Temperature Normal Pressure 2 ATA

370C 1.10 meq/1 1.0 meq/1

28°C 0.30 meq/1

20°C 0.17 meq/1 0.13 meq/1

The change in pH at hypothermia, however, was less marked 

than at normothermia apparently because of a negligible increase 

in PC0 2 » and in spite of reduced buffering capacity at low 

temperature.

The conclusion was drawn that the predominent factor determining 

the duration of safe arrest in these experiments was the 

reduction in oxygen consumption consequent to hypothermia.

The contribution of hyperbaric oxygen at 2 ATA was relatively 

minor.
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Chapter 6

Observations on cerebral blood flow responses to oxygen at 

3 ATA; total circulatory arrest combining deep hypothermia 

(20 deg C) and hyperbaric oxygen (3 ATA)

In the introduction to chapter 4 (p.107) it was suggested 

that increased protection against the hypoxic insult of 

circulatory arrest might accrue not only from deeper hypo

thermia but also from greater inspired oxygen pressures.

The results obtained from the experiments described in 

chapter 5, however, suggested that any benefit arising from 

a further increase in inspired PO2  could be expected to be 

small.

Coincidental with these experiments, a group of studies was 

in progress to determine the effects of oxygen at different 

pressure levels on cerebral blood flow and metabolism at normal 

body temperature. One of these studies, using oxygen at 3 ATA, 

had particular relevance to the circulatory arrest experiments 

and made it less easy to anticipate the results of arrest 

at 3 ATA.

This chapter, therefore, consists of two sections. The first 

section, in the form of the attached reprint, summarises the



the cerebral blood flow findings and the second section details 

the results obtained from a series of dogs subjected to total 

circulatory arrest after being ventilated with oxygen at
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• Cerebral Cortical B lood Flow Under Hyperbaric Conditions
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I. M c A .  L E DING H A M , D. G. M cD O W A L L , a n d  A. M . HARPER

University Department of Surgery, Western Infirmary 
University Department of Anaesthesia, Royal Infirmary, and 

Wellcome Surgical Research Laboratories, Glasgow, Scotland

The response of the cerebral vasculature 
to high pressure oxygen is a subject of 
interest and controversy. A more detailed 
knowledge of the mechanism of this re
sponse might help to provide a rational 
basis for applying OHP in the treatment 
of cerebral hypoxia. In addition, the re
lationship between the cerebrovascular re
sponse to hyperbaric oxygen and oxygen 
toxicity is not well understood.
Previous workers have shown that con

scious human subjects exposed to oxygen 
at 1 and 3.5 atm have cerebral vasocon
striction as determined by the nitrous ox
ide method for measuring total cerebral 
blood How.1- Lambertsen et al.- main
tained that the cerebral vasoconstriction 
which occurred during oxygen-breathing 
at 3.5 atm was due to arterial hypocapnia 
resulting from associated hyperventilation. 
Previous work carried out in this labora
tory on anesthetized dogs ;; demonstrated 
that oxygen at 2 atm was also associated 
with cerebral cortical vasoconstriction. 
These latter workers concluded, however, 
that the mechanism of vasoconstriction 
was based upon a direct effect of oxygen, 
because arterial pCO_. was held constant 
throughout their experiments. Quite pos
sibly, of course, physiologic differences 
may exist between conscious man and the 
anesthetized dog in this regard.

Further investigations on the anesthe
tized dog at 2 and 3 atm have made it 
apparent that the relationship between ce
rebral cortical blood How and increased 
arterial pO_. may be less simple than it 
first appeared.

. M aterials and M ethods

One hundred and seven determinations of 
blood flow through the cerebral cortex 
were made in eight unseleetcd mongrel 
dogs by the ' Kr clearance method of 
Lassen and Ingvar.4 By this method, the 
blood flow is calculated from the rate of 
clearance from the exposed brain cortex 
of 'TCr after its injection into the carotid 
artery. The clearance rate is measured by 
an end-window Geiger counter, mounted 
1 mm above the brain and connected to a 
ratemeter and recorder.
Anesthesia was induced with thiopen

tone and maintained with trichloroeth- 
vlene and intermittent suxamethonium 
chloride. McDouall et al:' have estab
lished that trichloroethylene in the con
centrations used in this experiment has no 
significant effect on cerebral cortical blood 
flow. In addition, it has been shown that 
when this preparation is used cerebral cor
tical blood flow remains stable for at least
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6 hours during air-breathing at normal 
pressure.
Respiration was controlled with a Star

ling ventilator, the stroke output of which 
was adjusted to maintain a constant ar
terial pCOo. Arterial blood samples were 
obtained from a cannula in the femoral 
artery, and in one case venous blood 
samples were obtained from the sagittal 
sinus. Blood pressure was measured on a 
damped mercury manometer. The pharyn
geal temperature was maintained at 38°C 
by controlling the environmental tempera
ture.
Arterial pH and pCO.. values were 

determined with two micro-Astrup ap
paratuses. The pCOo was also measured 
directly with a Severinghaus electrode. 
Arterial and venous pCX values were mea
sured with a Radiometer oxygen elec
trode.
In each animal, blood flow estimations 

were made first while the animal was 
breathing air at normal pressure, then 
during oxygen-breathing at 3 atm, and 
again during air-breathing at normal pres
sure. In three of the animals, intermediate 
measurements were made during oxygen- 
breathing at 2 atm.

R e s u l t s

Table 1 shows the values for cerebral 
cortical blood flow during eight separate 
experiments. All three animals exposed 
to oxygen at 2 atm showed a decrease in 
cerebral cortical blood flow, compared 
with the air control values. In six of the 
eight animals exposed to oxygen at 3 atm, 
the cerebral cortical blood flow rose; the 
two animals which had no increase had

T a b l e  2. Cerebral Cortical Blood Flows

Mean cerebral cortical blood flow (m l/gm /m in)
SD

Mean arterial pCO- (mm Hg)
SD

I. McA. Lcdingham et al.

T a e l e  1. Cerebral Cortical Blood Flows, 
with Air at 1 atm and Oxygen at 

2 and 3 atm a
Cerebral cortical blood flow 

Dog (m l/gm /m in)

1 atm air 2 atm CL 3 atm Os 1 atm air

1 1.77 — 2.16 —
2 1.34 — 1.39 1.05
3 1.60 — 1.83 1.26
4 1.04 — 1.38 1.02
5 0.83 0.82 0.95 0.76
£ 1.20 1.11 1.16 0.94
8 0.98 0.74 0.87 0.79
9 0.80 — 0.82 —

° In all but two instances, each value repre
sents the mean of at least three separate blood 
flow measurements.

previously been exposed to oxygen-breath
ing at 2 atm.
Table 2 shows the mean values for 

cerebral cortical blood flow and arterial 
pCO.j in the five animals breathing oxygen 
at 3 atm, with no intermediate step at 
2 atm. With arterial pCO_. virtually con
stant, the blood llow increased during oxy
gen-breathing at 3 atm and fell again 
with air-breathing at normal pressure. The 
increase was not statistically significant.
Table 3 shows the mean values for 

cerebral cortical blood flow and arterial 
pCOj in the three animals exposed to 
oxygen at 2 and 3 atm. In these animals, 
there was no increase in cerebral blood 
flow at 3 atm as compared with the air 
control values, although there was a re
version of the decrease resulting from the
2-atm exposure.
Table 4 shows the values for arterial 

blood pressure, pCCX, and pCF in each of 
the- inimals in the series; only the arterial 
pO_. varied significantly. Alterations in

with Air at 1 atm and Oxygen at 3 atm
1 atm air 3 atm CL 1 atm air

1.31 1.52 1.11
± 0 .4 0  ±0 .51  ±0.13

42 43 41
± 4  ± 3  ± 3
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T a b l e  3. Cerebral Cortical Blood Flows with Air at 1 atm and Oxygen at 2 and 3 atm
1 atm air 2 atm 0 3 3 atm 0 2 1 atm air

Mean cerebral cortical blood flow 1.00 0.89 0.99 0.83
(m l/gm /m in)

SD ± 0 .19 ± 0 .2 0 ±0.15 ± 0 .1 0
Mean arterial p C 0 3 (mm Hg) 44 44 43 42

SD ± 2 ±  1 ± 2 ± 1

arterial pH and the nonrespiratory com
ponents of acid-base balance, in response 
to the increased arterial p02, were simi
lar to alterations found under identical 
experimental conditions with air-breath
ing at normal pressure over the same 
period of time.
Figure 1 shows data obtained from one 

of the animals in the present series of 
studies. The mean value for cortical 
blood flow during air-breathing was 0.83 
ml/gm/min. Immediate and rapid in
crease in pressure to 2 atm over 5 min 
was followed initially by an increase in 
blood flow. The first flow at 2 atm was 
associated with an increase of 5 mm Hg 
in arterial pC02. The remaining pC02 
values at 2 atm and subsequently at 3 
atm did not differ from the air-flow pC02 
values by more than 2 mm Hg. Only at 
the end of 1 hour of oxygen-breathing at 
2 atm was there an actual reduction in 
blood flow, in this case amounting to 
25%. At this stage, compression to 3 
atm of oxygen was followed by a sharp 
increase in blood flow, which initially rose 
above the air control values.
The other animals tested at 2 atm

Oxygen (3ATA)

showed the same general pattern of blood 
flow changes, with a decrease in flow only 
in the latter half of the period of exposure 
to 2 atm. Figure 2 shows, in the five dogs 
exposed to oxygen at 3 atm only, that 
after the initial increase in cortical blood 
flow during the first 15 min, there was a 
fall toward but not below air control 
levels. These blood flow values were re
corded in four animals beyond 1.5 hours 
of exposure to 3 atm and showed no ten
dency to fall below air control values, in 
contrast to the blood flow values of ani
mals exposed to 2 atm.
After hyperbaric exposure, the normal 

response of the cortical blood flow to 
changes in arterial pC02' was tested and 
found to be within acceptable limits.
Figure 3 demonstrates the levels of p02 

and pC02 found in the sagittal sinus blood 
during air-breathing at normal pressure 
and during oxygen-breathing at 3 atm in 
one of the' animals of this series. The 
venous p02 rose from around 44 m m  Hg 
to 110 mm Hg immediately after com
pression to 3 atm. Thereafter, the venous 
p02 fluctuated between 75 and 95 m m

>  30 MINSt t - 3 0

Figure 1. Cerebral cortical blood flow related Figure 2. Cerebral cortical blood flow related 
to time and pressure. to time at 3 atm of oxygen.
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OXYGEN AT 1 ATA

Hg-

■--------  p o 2

*-------« PC O j

Figure 3. Changes in sagittal sinus blood gas
values with 3 atm of oxygen.

Hg. The venous pCCL rose from 46 mm 
Hg to 54 mm Hg initially. Then, despite 
a constant arterial pCCL and blood flow 
by this stage, the venous pCCK continued 
to rise, stabilizing at a level of about 65 
m m  Hg. The data obtained during the
3-atm exposure showed that there was 
no alteration in cerebral cortical oxygen 
uptake compared with the air control 
values.

D is c u ss io n

Although these results are admittedly of a 
preliminary nature, it seems that oxygen 
at increased pressure produces changes in 
cerebral cortical blood flow which vary 
with the absolute pressure and also with 
the length of exposure at a particular 
pressure. Our previous data, compared 
with the results in the initial air-breath
ing controls, showed that oxygen at 1 atm 
resulted in a 12% reduction in flow, and 
oxygen at 2 atm resulted in a 21 %  reduc
tion in flow. The present data, however, 
indicate that the vasoconstriction occur
ring during oxygen-breathing at 2 atm 
may be delayed for as long as 30-45 
min. In comparison, oxygen at 3 atm

appears to stimulate an actual increase in 
cerebral cortical blood flow initially, with 
a later fall toward the air control values. 
At no stage was it possible to demonstrate 
a vasoconstrictive action with oxygen- 
breathing at 3 atm.
In the presence of a constant arterial 

pCCL, the fact that oxygen at 3 atm is 
not associated w'ith a reduction in cerebral 
cortical blood flow w'ould seem to be in 
agreement with the opinion expressed by 
Lambertsen et air that the vasoconstric
tion at 3.5 atm in conscious humans is 
due to the drop in arterial pC02 caused 
by hyperventilation, rather than to a sin
gle direct vasoconstrictive action of in
creased arterial pCL. On the other hand, 
the present studies showed a marked in
crease in venous pC02, presumably a 
reflection of cortical tissue pCO._. and pre
sumably based upon the reduced isohydric 
buffering capacity of venous blood. On 
the basis of the suggested relationship 
between local cerebral flow and local 
metabolic rate,6 it seems possible that 
tissue pCOo has a regulating influence on 
flow. In these experiments, there was a 
marked increase in venous pCCL but no 
statistically significant change in flow. We 
would tentatively suggest that this points 
to a balance existing between the in
creased arterial p02 tending to vasocon- 
strict and the increased tissue pCCL tend
ing to vasodilate the cortical blood vessels.
Why the blood flow should decrease 

only after a certain time of exposure to 
2 atm and apparently not at 3 atm over 
the same period of time is not clear. A 
sound explanation based upon the avail
able evidence would be difficult, but some 
connection may exist with the recognized 
cerebral oxygen toxicity manifestations 
at 3 atm.
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DISCUSSION

D r. H . W ollman ( Philadelphia, Pa . ) :  I 
would like to offer an alternative explana
tion for these changes in cerebral blood flow 
w ith tim e. A t a constant abnorm ally high 
o r low p C 0 2, although the cerebral blood 
flow changes, it probably tends to return  
tow ard a norm al value over a period of 
several hours. Perhaps w hat we are looking 
at here is an increase in sagittal sinus or 
tissue p C 0 2, producing an increase in cere
bral blood flow. This m ight be followed 
by the cerebral vascular com pensation which 
I  have suggested, i.e., a type of autoregula- 
tory  constriction in response to increased 
carbon dioxide, resulting in the m easured 
decrease in cerebral blood flow. I adm it it 
occurs a little m ore quickly here than 
m ight be expected. Let me m ake an addi
tional com m ent on the pCL of venous blood 
draining the brain, which bears on Dr. 
Jacobson’s earlier rem arks. Only those areas 
with some circulation can contribute blood 
to  the venous drainage. Therefore, a high 
p 0 2 in jugular venous blood means only 
tha t those areas of the brain being per
fused have a high p 0 2. Areas which may 
have no blood flow at all (e.g.,  infarcts) 
do  not contribute to jugular blood, and 
thus jugular p 0 2 can be m isleading in cer
ta in  circum stances.

D r. L edingham: I think your comments 
pertaining to the blood-flow changes with 
time are perfectly reasonable. I doubt if 
they explain altogether the changes that we 
found with time, but I think that further 
investigation will elucidate this problem a 
bit more.

Dr. J. W. Severinghaus (San Francisco,  
Cali f . ) :  You made an assum ption that a 
high tissue pCCL might be expected to pro
duce cerebral vasodilation, and I wondered 
what both you and Dr. Lam bertsen think 
is the site at which carbon dioxide acts? I 
think, on the basis o f some transient studies, 
that it seems to act at the arterial level and 
probably does not relate to tissue p C 0 2. 
D r. L aser and I last year did an experi
ment in which we suddenly produced a
drop of arterial pCO._, in m an from  40 to
25 mm. i lg  within about 6 seconds, held it 
there for 2 hours and followed the A-V 
oxygen difference. The flow, at least as 
measured by oxygen difference, drops 
within 30 seconds to its low level, while 
the jugular venous pCO.„ and therefore 
presum ably the tissue p C 0 2. take about 7 
or 8 m inutes to get down, so that correla
tion with flow was with the arterial and
not with the tissue p C 0 2. In that case, the
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TOTAL CIRCULATORY ARREST WITH OXYGEN AT 3 ATA 

The aim of these experiments was to determine whether the 

maximum period of safe circulatory arrest at 20 deg C 

could be extended using oxygen at 3 ATA.

Material and Methods (2/2/66 - 14/9/66)

Seventeen adult mongrel dogs weighing from 9.5 to 24.0 kg were 

anaesthetised, ventilated and cooled to 20 deg C in the manner 

previously described for the animals of Group D in chapter 4.

The inspired gas was oxygen, delivered at 3 ATA for 30 minutes 

prior to the period of circulatory arrest and for 30 to 40 minutes 

after restoration of an adequate blood pressure; otherwise 

oxygen was delivered at normal atmospheric pressure (apart 

from the periods of compression and decompression). Bicarbonate 

was administered prior to arrest of the circulation which was 

of 40 minutes duration.

The standard cardiorespiratory measurements were performed, 

and arterial blood samples were withdrawn for assessment of 

acid-base balance (including lactate and pyruvate) at regular 

intervals throughout cooling and rewarming. During the period 

of arrest small samples of arterial and caval venous blood 

were withdrawn for measurement of PO^ (eight dogs); prior 

to withdrawal of the samples gentle mixing of the blood in
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the stagnant vascular chambers was carried out using a 10 ml 

syringe. After rewarming the animals were returned to their 

cages for long-term neurological assessment. In five of the 

dogs which recovered for more than a few days, careful post-mortem 

examination of the brain was performed after perfusion fixation 

(Prof. J.H. Adams). The details of the latter technique are 

described in the Appendix.

Results

Eight of the 17 animals died during the procedure, four as 

a result of irreversible ventricular fibrillation and four 

owing to respiratory complications during decompression 

(Table 6.1). Of the remaining nine only two were completely free 

from neurological disturbances; the others had a variety of 

sequelae similar to those described in previous chapters.

The changes in acid-base balance during cooling, arrest and 

rewarming were comparable to the bicarbonate-treated group 

of dogs at 2 ATA and, in particular, the increase in arterial 

lactate during arrest was not significantly different from the 

animals subjected to an equivalent period of arrest at normal 

atmospheric pressure and 2 ATA (Table 6.2).



Table 6.1

Total Circulatory Arrest at 20°C with 02 at 3ATA (40 min)

Dog
date/no.

Cooling
time
min/kg

Pre
arrest
BP
mmHg

Pre
arrest
HR
beats/
min

Period
of
arrest
(min)

Temp
of
arrest
(°c)

Fate Comment Time
after
arrest
(days)

2.2.66
(1)

8.8 85 30 40 20.0 Died Irreversible 
VF during 
arrest

0

8.2.66
(2)

9.0 76 12 40 18.0 Survived anoxic
episodes

1

23.2.66
(3)

6.7 105 40 40 20.8 Survived Nil
neurolog

58 BR

2.3.66
(4)

9.5 86 40 40 21.2 Died Resp. death 
during rewarm

0

30.3.66
(5)

7.2 60 38 40 21.8 Died Irrevers. VF 
during arr.

0

6.4.66 
(6)

11.9 70 38 40 21.0 Survived SI.neurolog 48 BR

13.4.66 
(7)

12.2 138 38 40 21.0 Died Haemothorax 0 EEG

18.5.66
(8)

12.5 140 40 40 20.5 Survived Lung collapse 2 EEG

15.6.66
(9)

8.4 90 20 40 20.0 Survived Lung collapse 2

13.7.66
(10)

6.0 93 38 40 20.5 Survived SI.neurolog 15 BR

18.7.66
(11)

8.4 81 38 40 21.0 Survived Nil
neurolog

16 BR

20.7.66
(12)

Died Cooling VF
voltage
thermocouple

0

21.7.66
(13)

8.7 56 40 40 21.0 Died no spont. 
vent.

0

27.7.66
(14)
17.8.66
(15)
31.8.66
(16)
14.9.66 
(17)

11.0

6.1

8.1

5.9

83

96

106

83

22

30

40

32

40

40

40

40

20.5

21.2

21.2

20.8

Died

Survived

Died

Survived

haemothorax

si.neurolog

irrevers. VF 
during rewarm 
Sl.neurolog

0

27 BR 

0 

3

Mean 
+ SEM

8.8 
+ 0.5

90.5 
+ 5.8

33.5 
+ 2.2

20.7 
+ 0.2

BR = Brain perf.
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The mean arterial and caval venous PO2  measurements (Fig. 6.1) 

showed a small progressive decrease during arrest but the 

blood in both chambers remained fully saturated throughout.

Histological examination of the five brains was rather un

rewarding and there was little, if any, convincing evidence 

of ischaemic or hypoxic damage. In dog 3 the only positive 

finding was a single focus of Purkinje cell loss in the 

cerebellum and a tiny infarct in the brain stem. In dog 6 

there were a few microglial nodules and the possibility of 

some symmetrical loss of the medially placed cells of the 

olives. Dogs 10, 11 and 15 showed no neuronal loss (apart 

from the previously noted changes affecting the olives, in 

dog 11). In dog 15 there were features suggestive of a 

subacute meningitis and ventriculitis.

GENERAL DISCUSSION 

The cerebral blood flow experiments at normothermia revealed 

an unexpected difference in cortical vascular response to 

oxygen at 2 and 3 ATA. The increase in blood flow at 3 ATA 

was most marked during the 30 minutes following the increase 

in inspired PO2  and this determined the pre-arrest duration



P02 DURING ARREST 8 DOGS (MEAN iS.E.M.)
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Figure 6.1, Arterial (upper) and venous (lower) P02 
values during a 40 minute period of 
circulatory arrest (mean + standard errorj.
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of exposure to oxygen at 3 ATA in the circulatory arrest 

studies. Whether it was reasonable to assume that the changes 

in cerebral blood flow which had been observed at normothermia 

would occur at 20 deg C is uncertain. The most obvious 

difference was that at 20 deg C the mixed venous (and possibly 

the cerebral venous) blood was fully saturated with oxygen 

at 2 ATA (p.128 chapter 5). If, therefore, the explanation 

advanced for the increase in flow at 3 ATA under normothermic 

conditions was correct, there would probably have been little 

difference in flow between 2 and 3 ATA under hypothermic 

conditions.

Whatever the truth of this enigma the fact was that the duration 

of safe circulatory arrest at 20 deg C could not be extended 

by the prior administration of oxygen at 3 ATA. The incidence 

of deaths attributable to irreversible ventricular fibrillation 

was unchanged from previous experiments at lower pressures of 

oxygen, and neurological sequelae were equally common. The 

increase in lactate during arrest was comparable to that 

recorded in animals subjected to an equivalent period of 

circulatory arrest at normal pressure and 2 ATA. Furthermore, 

the P02 measurements made during the period of arrest at both 

2 and 3 ATA indicated that the administration of hyperbaric
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oxygen undoubtedly increased oxygen storage but this was 

not reflected in an increase in tissue oxygen availability 

and consumption. The mixing manoeuvre described in the Methods 

section failed to influence this pattern in any way and the 

possibility arises that after a time, large areas of the 

capillary bed are no longer in communication with the main 

circulatory system.

Whether or not the reservoir of oxygen becomes useful once the 

circulation is restored is not clear. There was certainly no 

evidence from the 3 ATA experiments that acidosis disappeared 

more readily during rewarming or that neurological recovery 

was significantly improved.

The lack of major neuronal loss in the long-term survivors 

was curious since most of these animals showed some residual 

gait disturbances. None showed lateralizing signs, however, 

and none was blind. These results would seem to be at variance 

with the observations of Moor et al (1966) who showed that 

after circulatory arrest cryptic lesions of the cortex could be 

demonstrated regularly in animals with no obvious neurological 

deficit. The implication in the context of the author's 

experiments is that 40 minutes was a safe duration for total
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circulatory arrest using oxygen at 3 ATA under deep hypothermic 

(20 deg C) conditions. Without further evidence this conclusion 

is viewed with scepticism.
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Chapter 7

The effects of hypoxia on myocardial blood flow and oxygen 

consumption: negative role of beta adrenoreceptors

This chapter is the first of three in which the effects of 

hypoxia on the heart are examined in some detail. Hypoxic 

hypoxia was induced in dogs anaesthetised with trichlorethylene 

by lowering the inspired oxygen concentration. The details of 

the study are contained in the following reprint.
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THE EFFECTS OF H Y P O X I A  ON M Y O C A R D I A L  BLOOD  

FLOW A N D  O X Y G E N  C O N S U M P T I O N :  N E G A T I V E  ROLE  

OF BETA A D R E N O R E C E P T O R S

J. P. VANCE,* J. R. PARRATTf a n d  I. McA. L E D I N G H A M

Department of Surgery (Western Infirmary), University of Glasgow

{Received 2 December 1970)

S U M M A R Y

1. Myocardial blood flow was measured by using a 133xenon clearance technique 
in closed-chest dogs anaesthetized with trichlorethylene. A gradual decrease in the 
inspired oxygen tension resulted in an increase in myocardial blood flow only when 
the Pa,o2 fell to between 30 and 35 mmHg.
2. When hypoxia was rapidly induced and sustained for a mean period of 18-3 min, 

myocardial blood flow markedly increased (from a mean of 118 + 5 to 162 + 6 ml 
100 g-1 min-1). There was a critical mean arterial oxygen tension (35 mmHg) above 
which increases in myocardial blood flow did not occur. This corresponded to a mean 
coronary sinus Po2 of 18 mmHg or an oxygen content of 5-0 ml/100 ml. These flow 
increases were not dependent on changes in arterial or coronary sinus pH or carbon 
dioxide tension, nor were they dependent on changes in perfusion pressure or heart 
jate.
3. Despite the fact that oxygen availability was substantially decreased, myocardial 

oxygen consumption was maintained throughout the period of hypoxia by means of 
increased oxygen extraction.
4. Towards the end of the hypoxic period, Pa,co2 rose significantly from 40+1 to 

48 + T5 mmHg. There was no significant change in the non-respiratory component of 
acid-base balance.
5. During prolonged hypoxia (more than 30 min) myocardial blood flow remained 

consistently elevated, but oxygen consumption tended to fall progressively and this 
was associated with an increasingly severe metabolic acidosis. The haemodynamic 
and oxygen consumption changes returned to normal within a short time (15 min) 
after the resumption of a normal inspired oxygen concentration, as did the frequently 
observed electrocardiographic disturbances.
6. The responses to hypoxia were unaffected by a combination of atropine and
* Present address: University Department of Anaesthesia. Royal Infirmary, Glasgow, C.4. 
t  Present address: Department of Pharmacology, University of Strathclyde, Glasgow C.l.

Correspondence: Dr I. McA. Ledingham, Department of Surgery, Western Infirmary, Glasgow, W .l.
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propranolol. There was no evidence either that hypoxia-induced coronary vasodilata
tion was mediated through vascular ̂-adrenoreceptors or that propranolol interfered 
with the self-regulating control of myocardial blood flow.

It has been recognized for some time that hypoxia is capable of producing considerable 
increases in blood flow in the myocardium (Hilton & Eichholtz, 1925; Eckenhoff, Hafkenschiel, 
Landmesser & Harmel, 1947; Berne, Blackmon & Gardner, 1957; Feinberg, Gerola & Katz, 
1958; Aukland, Kiil, Kjekshus & Semb, 1967). Little is known, however, about the exact 
relationship between arterial oxygen tension and myocardial blood flow. Further, although 
several factors associated with hypoxia are known to influence myocardial blood flow, the 
relative importance of each is uncertain; such factors include a direct effect of hypoxia on 
coronary vascular smooth muscle and indirect effects relating to changes in perfusion pressure, 
heart rate, extravascular support and associated metabolic disturbances. Likewise, the 
influence of neurogenic factors on myocardial vascular tone during hypoxia has not been 
systematically examined.

M E T H O D
Anaesthesia was induced in twenty-seven healthy adult mongrel dogs with sodium thiopentone 
(15-20 mg/kg) administered intravenously. After endotracheal intubation anaesthesia was 
maintained by using a gas mixture containing 0-5-1 % trichlorethylene vaporized from a 
Tritec vaporizer (Cyprane); the carrier gas was a mixture of oxygen and nitrogen, the propor
tions of which were adjusted to produce for control measurements, an arterial oxygen tension 
of about 100 mmHg. Ventilation was controlled with a Palmer respiratory pump, the rate and 
stroke volume of which were adjusted to give an arterial carbon dioxide tension of about 40 
mmHg. Reflex movement was prevented by the intramuscular administration of succinyl- 
choline chloride (usually 50 mg at intervals of about 90 min). Catheters were inserted into the 
descending aorta and into the right atrium via the femoral vessels for pressure recording and 
blood sampling. During flow measurements arterial and right atrial pressures and the electro
cardiogram were recorded on a multi-channel ink jet recorder (Elema-Schonander Mingograph 
81), in addition to being continuously visible on an oscilloscope. Temperature was recorded 
from the rectum and mid-oesophagus by using direct recording copper-constantan thermo
couples (Ellab, Copenhagen).
Myocardial blood flow was measured by using a 133Xe clearance technique (Ross, Ueda, 

Lichtlen & Rees, 1964). A number 7 or 8 Sones catheter was introduced through the left 
common carotid artery in the neck and manipulated under fluoroscopic control until the tip 
lay about 5-10 mm within either the circumflex or anterior descending branch of the left 
coronary artery. In twenty-two of the twenty-seven dogs a wide-lumen catheter was introduced, 
by way of the left external jugular vein, several centimetres into the coronary sinus. Heparin 
(2500 i.u.) was administered immediately after coronary artery catheterization and at two- 
hourly intervals thereafter. For measurement of myocardial blood flow, part of the dead space 
of the coronary arterial catheter was filled with 0-5-1-0 ml of a solution of 133Xe which was 
then flushed into the coronary artery with 3 ml of heparinized saline. The xenon was obmiied 
in 10 ml ampoules of 1 mCi/ml from The Radiochemical Centre, Amersham, Bucks. The 
clearance of xenon from the myocardium (which is a function of capillary blood flow) was 
measured by means of a narrowly collimated Ekco GP scintillation counter suspended over the
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praecordium, an Ekco ratemeter (operating with a 3 s time constant) and a Servoscribe pen 
recorder (operating at a paper speed of 120 mm/min). Background counts remained at an 
acceptably low level in all preparations. The major part of the clearance curve was exponential 
and a straight-line, plot of c.p.s. at 5 s intervals was drawn on semi-log paper (see Fig. 1). The 
half-time (C) so obtained was substituted in the formula:

where p is the density of the myocardium (1-05 g/ml; Herd, Hollenberg, Thorburn, Kopald & 
Barger, 1962), X the partition coefficient of xenon between myocardium and blood (0-72; 
Conn, 1961) and k (the clearance rate constant) = loge2/C. The theory of the inert gas 
clearance technique of measurement of tissue blood flow has been discussed by Conn (1962) 
and Zierler (1965), and its application to the myocardium has been described in detail by 
Herd et al. (1962) and Ross et al. (1964).

. Fig . 1. Radioactive clearance curves from normal myocardium (a) and from the myocardium 
during systemic hypoxia (b) after the injection of a bolus of 133xenon into the coronary artery.
The respective semi-logarithmic plots are shown in the insets. Details are given in text.

Arterial and coronary sinus oxygen and carbon dioxide tensions and pH were measured by 
using appropriate electrode systems (Radiometer, Copenhagen). The oxygen and carbon 
dioxide electrodes were calibrated by using known pressures of the appropriate gas and the 
pH electrode with buffers of known pH. The oxygen and carbon dioxide tensions and pH 
values were corrected where necessary, for any difference in temperature between the electrode 
system and the animal’s mid-oesophagus, by using the dog cursor on a Radiometer blood gas 
calculator (984-300). To allow for the difference in measurement of oxygen tension between 
gas and blood, a blood-gas factor was derived for each experiment (McDowall, Ledingham & 
Tindal, 1968) with blood tonometered with a known tension of oxygen in a rotating syringe 
(Torres, I9c3). This factor was applied to every measurement of oxygen tension before the 
calculation of oxygen content which was made as follows: blood oxygen content (ml/100 
ml) = Hb(g) (measured by the cyanmethaemoglobin technique) x l-34x % saturation/100 +

kX100 ,myocardial blood flow =  ml 100 g tissue min
P

MBF *183 ml IQOq^min’

f
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Po2 (mmHg) x 0-0031 (Bunsen coefficient). There is a good correlation between this merhod of 
calculating blood oxygen content and the direct method of measurement of Van Slyke and 
Neil (Ledingham, McBride, Parratt & Vance, 1970). Lactate and pyruvate concentration; 
were measured in arterial and coronary sinus blood by using standard spectrophoto.netric 
methods (as described by C. F. Boehringer and Soehne, Mannheim, Germany). Blood glucose 
concentrations were determined by using the standard method of Folin & Wu (1920).
The following data were derived:

1. Myocardial oxygen consumption (ml 100 g-1 min-1) = myocardial blood flow (ml 100 
g-1 min-1) x arterial — coronary sinus oxygen content (ml/100 ml).

2. Coronary vascular resistance (arbitrary units) =
diastolic arterial blood pressure (mmHg) 
myocardial blood flow (ml 100 g-1 min-1)

3. Myocardial oxygen availability (ml 100 g-1 min-1) = arterial oxygen content (ml/100 
ml) x myocardial blood flow (ml 100 g"1 min-1).

4. Myocardial oxygen extraction (%) =
arterial — ocronary sinus oxygen content (ml/100 ml) x 100 

arterial oxygen content (ml/100 ml)
Hypoxaemia was induced in two ways. In the first group of five animals, which were those 

without coronary sinus catheterization, the arterial oxygen tension was gradually decreased by 
lowering the inspired oxygen concentration (Fin,o2) in a stepwise manner. This allowed blood 
flow measurements to be made at progressively low'er arterial oxygen tensions. The low'est 
Pa,o2 was 20 mmHg (corresponding to a mean Pin,o2 of 11-1 %).
In the second group of twenty-two animals (in which twenty-seven experiments were 

performed), hypoxaemia was induced by rapidly decreasing Pin,o2 to 10-11 % (mean 10-6%). 
This was facilitated by measuring the inspired oxygen concentration with a paramagnetic 
oxygen analyser (Servomex, Crowborough, Sussex). The average time from initial decrease of 
Pin,o2 to peak myocardial blood flow was 12-6 min. Hypoxaemia was sustained for an average 
of 18-3 min (range 10-54 min); in four of the animals hypoxia was sustained for more than 30 
min. In seven animals the hypoxic stimulus was repeated after the intravenous administration 
of atropine (0-04 mg/kg) and propranolol (0-2 mg/kg).

RESULTS
Gradually induced hypoxia 
The effects of gradually induced hypoxia on myocardial blood flow, mean arterial pressure 

and heart rate in five dogs are summarized in Fig. 2. Myocardial blood flow showed no change 
until Pa,o2 fell to a value of between 30 and 40 mmHg when a significant increase occurred 
(see also Fig. 3). Mean blood pressure rose throughout the procedure while heart rate showed 
little change until Pa,o2 fell below 50 mmHg when a decrease occurred.
Rapidly induced hypoxia 
In these experiments several sets of measurements wrere made during the hypoxic phase. The
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results presented are those that coincided with maximum recorded blood flow in each dog and, 
unless otherwise indicated, are expressed as the mean + SEM.
The effects of rapidly induced hypoxia on arterial and coronary sinus oxygen tension, oxygen 

saturation, oxyĝ u content, carbon dioxide tension and pH are shown in Table 1. The decrease 
in Fin,o2 produced a fall in Pa,o2 from 97 to 29 mmHg while the mean coronary sinus oxygen 
tension fell from 34 to 18 mmHg. There were corresponding changes in oxygen saturation and 
content. The lack of significant alteration in arterial and coronary sinus carbon dioxide ten
sions and pH at the time of the maximum myocardial blood flow is evident. However, when

Myocordial blood flow Mean blood pressure Heart rate
(ml lOOg^min'1) (mmHg) (beats/min)

180

160

140
T T i-i—. 

T ' T i  1 1
120

100

80

100 80 60 20 100 80 2040 20 100 80 60 4060 40
P a ,o 2 (mmHg)

F ig. 2. Changes in myocardial blood flow, mean blood pressure and heart rate during gradually 
induced hypoxia. Results from five dogs expressed as mean + SEM.

hypoxaemia was maintained for a further 10-15 min, as it was in twenty-one of the experiments, 
-Pa,cc52 rose to 48+1-5 mmHg (PcO-OOl). There was no significant change in the non-respira- 
tory component of acid-base balance, base excess, either during or after brief hypoxia.
The myocardial blood flow and haemodynamic changes associated with rapidly induced 

hypoxia are summarized in Table 2 and illustrated in Fig. 4. Mean arterial pressure, mean right 
atrial pressure and myocardial blood flow were all significantly increased while myocardial 
vascular resistance and heart rate were decreased. Although the mean heart rate decreased 
during hypoxia by 20 beats/min, in eleven of the twenty-seven experiments the heart rate 
increased (Table 3). The main point that emerges from this table and which is also evident in 
Fig. 4, is that myocardial blood flow was markedly increased during hypoxia whatever the 
direction of the heart-rate response.
In spite of the considerable increase in myocardial blood flow during hypoxia, myocardial 

oxygen availability was substantially decreased (from 23-4+1-0 to 17-2 + 0-9 ml 100 g-1 min-1, 
PcO-005, hvause of the magnitude of the decrease in arterial oxygen content (20-8 to 11-0 ml/ 
100 ml). However, myocardial oxygen extraction (for individual values see Fig. 5) was increased 
from a mean of 43 % to a mean of 55 %. These increases in oxygen extraction and flow allowed
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Myocardial blood flow 
(ml lOOg'1 min_l)

(mmHg)

Heart rote (beats/min)

AJ.OjfmmHg)

180
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140

120
•••

100 (- .. j

1 6 0 :-

140 -  • ' *  \

120

100 -
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8 0

•••4 0 «•
1806 0 120 3 0 02 4 0

Time (min)

Fig. 3. A comparison of the effects of rapidly and gradually induced hypoxia on myocardial blood 
flow, systemic arterial pressure, heart rate and Pa,co2 in a single dog. Myocardial blood flow is 
only raised when Pa,co2 falls below about 40 mmHg and the peak flows are similar whether the 
hypoxia is induced rapidly or gradually.

Table 2. Haemodynamic effects of rapidly induced hypoxia (mean±SEM, twenty-two dogs, twenty-seven
experiments)

Control Hypoxia
Post

hypoxia

Pa,o2 (mmHg) 97 ± 2 P <  0-001 29 ±  1 P<0-001 96±5
Mean blood pressure (mmHg) 119±3 P < 0 0 5 131 ± 5 P<0-05 113 ±  3
Heart rate (beats/min) 158 ± 6 P<  0-02 138±9 P<0-02 158±7
Right atrial pressure (mmHg) + 0 -6 ± 0 -l P < 0 0 1 + 2-7±0-l P<0-01 -0 -4  ±0-4
Myocardial blood flow (ml 100 g" 1 118± 5 P<  0001 162 ± 6 P <  0-001 108 ± 6

min-1)
Myocardial vascular resistance (units) 1-08 ±005 P<0-01 0-84±0-06 P<0-01 l-10±0-39
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Myocardial blood flow 
(ml lOOg^min'1)

Heart rote (beats /  min)

Mean blood pressure 
(mmHg)

A 3,o2 (mmHg)

2 0  4 0  6 0  20  4 0
Time (min)

Fig. 4. The cardiovascular effects of rapidly induced hypoxia (shaded areas) in two dogs. Myocar
dial blood flow was increased when Pa,o2 fell below 40 mmHg whatever the direction of the 
heart-rate response.

Table 3. Relationships of heart-rate changes to changes in myocardial blood flow, arterial mean pressure and 
myocardial oxygen consumption in response to rapidly induced hypoxia (mean ± SEM)

Heart rate decreased Heart rate increased
(sixteen experiments) (eleven experiments)

Control Hypoxia Control Hypoxia

Heart rate (beats/min) 160± 10 116±6 150 ± 1 0 177± 12
Myocardial blood flow 

(ml 100 g -1  min-1)
122 ± 6 F <  0-001 161 ± 7 113 ±  10 P<  0-001 164±9

Mean systemic blood pressure 
(mmHg)

121 ± 4 NS 131 ± 7 116±4 P<  0-005 137 ± 5

Myocardial oxygen consump
tion (ml 100 g-1  min-1)

9-5 ±0-6 NS 8-9 ±1-0 9-6 ±1-9 NS 12-1 ± 1-2

NS =  not significant.
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HypoxiaControl9 0

8 0

7 0

6 0

5 0

4 0

3 0

20
Fig. 5. Changes in myocardial oxygen extraction during rapidly induced hypoxia. Mean extrac
tions for the control and hypoxic periods are shown by the short horizontal bars (P<001).
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Fig. 6 . The relationship between myocardial blood (low and Pa,o2 coronary sinus Po2 and 
coronary sinus oxygen content. Myocardial blood flow was increased when the Pa,o2 fell below 
40 mmHg (equivalent to a coronary sinus Po2 of 18 mmHg or an oxygen content of 5-0 ml/100 ml 
coronary sinus blood). The results for Pa,o2 were obtained from twenty-seven animals and for 
coronary sinus P o2 and oxygen content from twenty-two animals.
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the myocardium to maintain oxygen consumption at normal levels during hypoxia (10-2 ±0-6 
ml 100 g-1 min-1 during the control period and 10-6 + 0-8 ml 100 g-1 min-1 during hynoxia . 
Myocardial oxygen consumption was also unchanged in the 15 min period immediately after 
termination of hypoxia (10-3 + 1-0 ml 100 g-1 min-1).
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Fig. 7. A comparison of the effects of rapidly induced hypercapnia (to Pa,co2 84 mmHg) and of 
hypoxia on myocardial blood flow mean systemic arterial blood pressure and heart rate. Note that 
maximal coronary vasodilatation was not obtained even at a Pa,o2 of 20 mmHg.

The relationship between myocardial blood flow and arterial oxygen tension, coronary 
sinus oxygen tension and coronary sinus oxygen content is shown in Fig. 6. The critical arterial 
oxygen tension (35 mmHg), above which marked flow increases did not occur, corresponds 
to a coronary sinus oxygen tension of 18 mmHg (equivalent to an oxygen content of 5-0
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ml/100 ml). After the critical level of arterial oxygen tension had been reached further small 
decrements in Pa.o2 were associated with increments in myocardial blood flow (Figs. 4, 7 and 
8). In some of the experiments in spite of a decrease of arterial oxygen tension to 20 mmHg it is 
probable that maximum coronary vasodilatation was not attained; for example, in the animal 
illustrated in Fig. 7 myocardial blood flow was 172 ml 100 g-1 min-1 at an arterial oxygen 
tension of 20 mmHg whereas a flow of 197 ml 100 g-1 min-1 was achieved during hypercapnia 
(Pa,co2 84 mmHg).
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Fig. 8. The effect of prolonged hypoxia on myocardial blood flow, heart rate, mean systemic arter
ial blood pressure, Pa,co2, Pa,o2, myocardial oxygen consumption (Mvo2) and arterial base 
excess.

Arterial and coronary sinus concentrations of lactate, pyruvate and glucose were measured 
in twelve of the animals in the rapidly induced hypoxia series (Table 4). During the control 
period the myocardium appeared to extract small amounts of lactate and pyruvate but not 
glucose. During hypoxia mild lactic acidosis and hyperglycaemia occurred but without a 
significant change either in arterial base excess or in the myocardial extraction of these sub
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strates. It should be noted that the results included under the heading ‘hypoxia’ in Table 4 did 
not necessarily coincide with the maximum recorded elevation in myocardial blood flow.
In four of the animals of the series hypoxia was sustained for more than 30 min. Myocardial 

blood flow remained consistently elevated throughout the period of hypoxia. Myocardial 
oxygen consumption appeared to fall progressively after the initial 10-15 min and was associ
ated with an increasingly severe metabolic acidosis. The results from one of the animals are 
illustrated in Fig. 8. Myocardial oxygen consumption fell progressively after the first 10 min in 
spite of a steadily rising myocardial blood flow and (not shown) a steadily rising myocardial
Table 4. Effect of rapidly induced hypoxia on arterial and coronary sinus concentrations of lactate, pyruvate

and glucose (mcan±SEM, twelve dogs)

Arterial Coronary sinus

Control Hypoxia Control Hypoxia

Lactate (mg/100 ml) 
Pyruvate (mg/100 ml) 
Glucose (mg/100 ml)

19-8± 3-0 
1-3 ±0-1 

115±6

P < 0 0 1
NS

F < 0-01

29-9 ±5-4 
■ T4±0T 

130 ± 6

15-1 ±2-2 
0-9±0-l 
113 + 6

P cO -02 
P c  0-005 
P<0-05

26-5 ±4-8 
1-2 ± 0-1 

128 ± 7

NS = not significant.
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Fig. 9. The effects of rapidly induced hypoxic, on myocardial blood flow, mean systemic arterial 
blood pressure, heart rate and myocardial oxygen consumption, before and after atropine (004 
mg/kg) and propranolol (0-2 mg/kg). The hypoxia-induced changes in myocardial blood flow 
and mean blood pressure were significant both before (P<  0-001; PcO-OS) and after (i>< 0  001; 
P<0-05) atropine and propranoiol. (Mean±SEM, seven dogs.)
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oxygen extraction such that the coronary sinus oxygen tension at 40 min was 1 mmHg (the 
corresponding mixed venous oxygen tension was 9 mmHg). Base excess also began to fall after 
35 min of hypoxia and reached a value of — 10 mEq/1 immediately before cessation of the 
hypoxia. Over the same time, the arterial lactate concentration rose from 13-7 to 68 mg/100 ml

Atropine + 

Propranolol
180

140
Myocardial, blood flow 

(ml lOOg"1 min*1)
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6 0
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Mean blood pressure 
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130 ( •e©
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20-
20 4 0  6 0 2 0  4 0  6 0

Time (min)

Fig. 10. Cardiovascular and blood-gas responses to rapidly induced hypoxia (shaded areas) 
before and after atropine (0 04 mg/kg) and propranolol (0-2 mg/kg) in a single dog.

and the arterial glucose concentration from 116 to 139 mg/100 ml. The myocardial consumption 
of lactate, pyruvate and glucose, however, remained minimal.
Disturbances of electrocardiographic pattern were frequently observed during hypoxia 

and included nodal rhythm (four animals), multiple ventricular extrasystoles (eleven animals),
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complete heart block (two animals) and ST-T wave abnormalities (eight animals). Prolonged 
hypoxia did not necessarily produce a progressive deterioration in the electrocardiographic 
pattern and sinus rhythm was promptly restored in all animals after the resumption of a normal 
inspired oxygen concentration.
The cardiovascular effects of atropine and propranolol in the dosage used in this study have 

been documented by Ledingham et al. (1970). The responses of seven dogs to rapidly induced 
hypoxia before and after atropine and propranolol are summarized in Fig. 9. Although 
atropine and propranolol themselves caused a decrease in myocardial blood flow, blood 
pressure, heart rate and myocardial oxygen consumption, the responses to hypoxia were essen
tially unaltered by these drugs. The results from a single dog of this series are shown in Fig. 10.

DISCUSSION
It is widely agreed that the myocardium has a very limited capability to function adequately 
when its oxygen supply is compromised either by anoxia or coronary occlusion (Tennant & 
Wiggers, 1935; Bing, 1965). The energy requirement of the myocardium cannot be fully met in 
the absence of oxygen and the heart rapidly fails. When the oxygen content of the blood per
fusing the heart is decreased the myocardium must either extract more oxygen or increase the 
volume flow of blood, or both. Since the myocardial extraction of oxygen is normally high 
(43 % during control measurements in this study), oxygen supply to the myocardium is most 
readily increased by an elevation of blood flow and this has been an invariable finding in 
studies of hypoxia. However, myocardial oxygen extraction by no means remains constant 
since all but five of the dogs in the rapidly induced hypoxia series showed increased oxygen 
extraction during hypoxia.
The demonstration of a critical level of arterial oxygen tension at which myocardial blood 

flow began to increase was a consistent finding in this study. The critical level suggested was an 
arterial oxygen tension of 30-35 mmHg, corresponding to a coronary sinus oxygen tension of 
about 18 mmHg. Fig. 6 shows that the scatter of coronary sinus oxygen tension values during 
hypoxia was rather less than the scatter of the arterial oxygen tension values and this would 
suggest that during hypoxia there is a particularly close relationship between myocardial blood 
flow and coronary sinus oxygen tension which is itself a reflection of myocardial tissue Po2. 
This value of venous oxygen tension may be critical in tissues other than the myocardium.since 
Ernsting (1966) has shown that consciousness is lost when the jugular venous oxygen tension 
falls to a similar value. Berne et al. (1957) suggested, from work on open-chest dogs with an 
artificially perfused coronary arterial circulation, that coronary blood flow increased when the 
coronary sinus blood oxygen content fell below 5*5 vol. %, regardless of the arterial oxygen 
content. The critical coronary sinus oxygen content of 5-0 ml/100 ml in the present study agrees 
closely with Berne’s value.
In the present study hypoxia was associated with a small rise in arterial Pco2 and a relatively 

larger Fall in arterial pH both of which factors increase myocardial blood flow. The maximum 
increase in myocardial blood flow during hypoxia, however, occurred before significant changes 
in chher Psl,co2 or arterial pH. The observation that myocardial blood flow remained elevated 
during sustained hypoxia also suggests a primary influence of the low arterial oxygen tension 
since in a previous study (Ledingham et al., 1970) myocardial blood flow returned towards 
control values in spite of sustained elevation of arterial Pco2 and decrease in arterial pH.
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Several authors have suggested that there is normally a close relationship between changes in 

myocardial blood flow and myocardial oxygen consumption (Braunwald, Sarnoff, Case, 
Stainsby & Welch, 1958; Feinberg, Katz & Boyd, 1962). In the present study a close relation
ship between myocardial blood flow and myocardial oxygen consumption was not so obvious. 
For example, myocardial blood flow rose in all animals irrespective of heart rate changes, 
while myocardial oxygen consumption fell when heart rate decreased and rose when heart 
rate increased (Table 3). In other situations where there is a direct coronary vasodilator 
effect, myocardial blood flow and myocardial oxygen consumption, as one might expect, 
diverge. This may be observed, for example, during hypercapnia.
It has been suggested that the general circulatory responses to systemic hypoxia will depend 

largely on whether or not the animal breathes spontaneously or is artificially ventilated (Daly & 
Scott, 1963; Kontos, Mauck, Richardson & Patterson, 1965). Spontaneously breathing animals 
will respond to hypoxia by hyperventilation which contributes considerably to the tachycardia, 
increase in cardiac output and peripheral vasodilatation which are the usual circulatory 
responses to systemic hypoxia. These circulatory elfects are largely the result of reflexes initiated 
by lung stretching (Daly & Scott, 1963). Although a cardio-accelerator response to hypoxia 
has also been reported in artificially ventilated animals (Krasney, 1967), the predominant 
effect in this situation is a reflex bradycardia resulting from the stimulation of carotid chemo- 
receptors by hypoxic blood (Kontos et al., 1965). It is clear that the circulatory responses to 
systemic hypoxia depend on a number of opposing influences. These include direct effects of 
the decreased oxygen tension on vascular smooth muscle, effects on chemoreceptors leading 
to reflex changes in cardiac rate and contractility and direct elfects on cardiac muscle. Some 
of these result in tachycardia, an increase in cardiac output and peripheral vasodilatation, 
others in bradycardia, a decrease in cardiac output and peripheral vasoconstriction.
In the present experiments, where the dogs were artificially ventilated and where succinyl- 

choline had been used to produce skeletal-muscle paralysis, there were two quite distinct 
heart rate responses to systemic hypoxia. In about one-third of the animals the response to 
hypoxia was a tachycardia. This was probably due to a combination of reflex cardiac sympath
etic nerve stimulation, the release of adrenal medullary catecholamines and an inhibition of 
vagal tone (Krasney, 1967). In most of the animals, however, there was a bradycardia which 
was often severe and probably resulted from stimulation of carotid and aortic body chemo
receptors together with a direct depressant effect on the myocardium (Kahler, Goldblatt & 
Braunwald, 1962). The most serious electrocardiographic evidence of myocardial depression 
in this series was the development of atrioventricular conduction defects. Harris (1951) 
showed that the commonest terminal electrocardiographic disturbance during hypoxia was the 
development of either pacemaker or atrioventricular conduction failure. Two of the animals 
in the present series developed complete heart block and four developed atrioventricular 
nodal rhythm. No arrhythmia observed in this series persisted after the resumption of a normal 
inspired oxygen concentration.
The metabolic disturbances associated with a mean arterial oxygen tension of 29 mmHg 

were minimal in the first 15 min, amounting to a mild systemic lactic acidosis and hyperglycae- 
mia. The increase in myocardial blood flow and oxygen extraction appeared to have prevented 
significant hypoxia arising in the myocardial cells. On the other hand, when hypoxia was 
sustained and the arterial Po2 had fallen to nearer 20 mmHg, severe systemic lactic acidosis did 
occur (Fig. 8). Even under these conditions, however, the myocardial cells did not appear
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consistently to demonstrate metabolic embarrassment in that handling of lactate, pyruvate 
and glucose in the majority of animals studied remained essentially unaltered.
The effects of systemic hypoxia on myocardial blood flow after /Fadrenoreceptor olockaae 

are in marked contrast with those reported by Folle & Aviado (1965). These authors measured 
coronary sinus outflow with a Shipley-Wilson rotameter in open-chest dogs and concluded 
that the increase in the outflow which occurred during inhalation of 5 % oxygen, 95 % nitrogen 
was abolished by the /Tadrenoreceptor-blocking drug sotalol (MJ 1999). Folle & Aviado (1965) 
concluded from their experiments that /Tadrenoreceptor-blocking drugs in general might 
seriously interfere with the self-regulating control of myocardial oxygen supply in patients with 
coronary artery disease. The present results give no indication that this might occur. Coronary 
vasodilatation resulting from the hypoxic stimulus was in no way influenced by doses of 
propranolol sufficient to abolish the cardiac effects of infused catecholamines and of sympathe
tic nerve stimulation. Further, the present results indicate that coronary vasodilatation, which 
occurs during hypoxia, is due to an effect of the lowered oxygen tension (or the release of some 
vasodilator metabolite) on vascular smooth muscle and is not mediated through vascular 
/?-adrenoreceptors. Although /Tadrenoreceptor-blocking drugs do not appear to interfere with 
hypoxia-induced coronary vasodilatation, in some instances myocardial depression resulting 
from hypoxia might be more pronounced after atropine and propranolol. Thus, in one of the 
dogs in the series, hypoxia after this drug combination resulted in complete heart block, severe 
hypotension (40/20 mmHg) and a greatly elevated right atrial pressure. The rapid restoration 
of the inspired oxygen tension resulted in a return to sinus rhythm and elevation of systemic 
arterial blood pressure.
The observation of a consistent rise in arterial Pco2 during hypoxia despite constant minute 

ventilation indicates an increase in pulmonary dead-space ventilation. Hypoxia is known to 
produce pulmonary vasoconstriction (Duke, 1951; Bergofsky, Haas & Porcelli, 1968) and this 
will be associated with changes in the pulmonary ventilation/perfusion ratios which probably 
give rise to areas of inadequate perfusion within the lungs relative to the volume of gas venti
lating them. Such disturbances of pulmonary function would also account for the gradual fall 
in arterial oxygen tension that was observed during hypoxia in spite of a stable inspired oxygen 
concentration.
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Chapter 8

Haemodynamic and myocardial effects of hyperbaric oxygen (2ATA)

in dogs subjected to haemorrhage

The second of the three chapters concerns the effects of 

stagnant hypoxia on the heart and its modification by 

hyperbaric oxygen (2ATA). The details of the study are 

contained in the following reprint.
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Haemodynamic and myocardial effects of 
hyperbaric oxygen in dogs subjected 
to haemorrhage

I. McA. Ledingham, J. R. Parratt1, G. Smith2, and J. P. Vance3 
From the H yperbaric Unit, D epartm ent o f  Surgery, ( University o f  G lasgow),
W estern Infirm ary, G lasgow

A u th ors' syn opsis  In c /o sed -ch est a n a esth e tized  dogs su b jec ted  to  m o dera te  an d  severe  
haem orrhage  (m ean b lo o d  p ressu res o f  70-75 an d  45-50 m m  H g  respec tive ly ), the adm in i
s tra tio n  o f  oxygen  a t 2 A T  A  (O H P ) ja i le d  to m o d ify  the decreases in card iac ou tpu t, w ork , 
efficiency, an d  m yo ca rd ia l oxygen  consum ption  that resu lt from  b lo o d  loss. O H P  fu r th er  
d ecrea sed  m yo ca rd ia l b lo o d f lo w  in these h ypo ten sive  dogs and, desp ite  the m a rk ed  increases  
in a r te r ia l oxygen  tension , m yo ca rd ia l oxygen  ava ila b ility  was not im proved.

Several years ago, G uyton and Crowell 
( 1 9 6 1 ) suggested that the basic mechanism 
in irreversible shock was related to  oxygen 
debt. D uring this period of oxygen deficit, 
the m yocardial cells developed structural 
dam age which m ade it impossible for them 
to  utilize nutrients, even after adequate 
supplies had been reinstituted. If  this 
supposition is valid, then correction of the 
m yocardial tissue hypoxia before these irre
versible changes take place should improve 
survival. There are two possible theoretical 
approaches. Firstly, to  im prove tissue per
fusion by increasing coronary driving pressure 
and decreasing coronary vascular resistance; 
secondly, by im proving m yocardial oxygen 
supply as a result of increasing the am ount of 
oxygen carried by the arterial blood. This 
second approach to the problem  can be 
achieved by using oxygen at increased am bi
ent pressure. Thus, Cowley and his colleagues 
(A ttar, Esm ond, and Cowley, 1 9 6 2 ; Cowley, 
A ttar, Blair, Esmond. O llodart, and Hashi- 
m oto, 1 9 6 5 ) have claimed increased survival 
o f dogs in shock by the use of hyperbaric 
oxygen and Ratliff, Hackel. and M ikat 
( 1 9 6 7 ) have shown that oxygen at high 
pressure can prevent subendocardial hae

1 Usual address: Department of Pharmacology, Uni
versity of Strathclyde. Glasgow C. 1.
2 University Department of Anaesthesia, Western 
Infirmary, Glasgow W.l.
3 Present address: Department of Anaesthetics, Royal 
Infirmary, Glasgow C.4.

m orrhages and necrosis associated with 
haem orrhagic shock. Recently, a case has 
been described in which hyperbaric oxygen 
perm anently relieved signs o f heart failure 
and myocardial ischaemia in a patient in 
haem orrhagic shock who, for religious 
reasons, had refused blood replacem ent 
(Am onic, Cockett, Lorhan, and Thom pson, 
1 9 6 9 ).

The object of the present experim ents was 
to examine the effects o f hyperbaric oxygen 
on cardiac work, m yocardial blood flow, 
and m yocardial oxygen consum ption in 
closed-chest dogs subjected to haem orrhage. 
Two blood pressure levels were chosen, 
75  mm Hg and the critical level of 4 5 - 5 0  
mm Hg, which is near the term inal portion  of 
the autoregulatory  m yocardial pressure-flow  
curve (Berne, 1 9 5 9 ; M osher, Ross, M cFate. 
and Shaw, 1 9 6 4 ; G rayson and P arra tt, 1 9 6 6 ).

M ethods
Twenty mongrel dogs, weighing between 16 and 
42 kg were used for the study. After induction of  
anaesthesia with intravenous sodium thiopentone  
(usually 20 mg/kg) and after endotracheal intu
bation. anaesthesia was maintained with tri- 
chlorethylene (0-5-1° „). This was vapourized 
from a Tritec vapourizer (Cvprane Ltd.). The 
animals were maintained on intermittent positive 
pressure ventilation using a Palmer pump: the 
stroke volume was adjusted to give an arteriai 
carbon dioxide tension o f  35-45 mm Hg at the 
commencement of the experiment. Thereafter 
respiratory rate and tidal volume were unchanged.
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Reflex movement was prevented by intermittent 
intramuscular injections o f  suxamethonium  
chloride (100 mg).

Catheters were inserted via the left femoral 
artery into the descending aorta and, via the 
left femoral vein, into the right atrium, for the 
measurement o f  aortic and central venous 
pressures using capacitance transducers (Elema-  
Schonander EMT 35 and 33 respectively). These, 
together with the electrocardiogram (lead II), 
were recorded on an Elema-Schonander ink- 
writing recorder (Mingograph 81). Mean pres
sures were obtained by electronic integration and 
the heart rate was calculated from the electro
cardiogram. Cardiac output was measured by 
dye-dilution. Indocyanine green (2-5 mg) was 
injected into the right atrium and blood with
drawn from the descending aorta through a 
Waters densitometer (XP-302 Waters Com 
pany, Rochester, Minnesota).

Myocardial blood flow was measured using a 
133xenon clearance technique similar to that out
lined by Ross, Ueda. Lichtlen, and Rees (1964). 
The full details have been outlined elsewhere 
(Ledingham, McBride, Parratt and Vance. 1970). 
A  Sones No.  7 or 8 catheter was introduced into 
the right common carotid artery in the neck and. 
under fluoroscopic control, manipulated until 
the tip o f  the catheter lay a distance of 5-1-0 mm  
in a major branch (usually the circumflex) of  the 
left coronary artery. Injections o f  133xenon 
(40-100 uc, dissolved in normal saline) were 
flushed into this catheter with 3 ml. heparinized 
saline. The myocardial clearance of the isotope  
(which is a function of blood flow) was measured 
using an Ekco scintillation counter placed over 
the praecordium. Details of  the calculation o f  
myocardial blood flow from the clearance curve, 
are given in the paper by Ledingham et at. (1970).

For the measurement o f  myocardial oxygen 
consumption, a catheter was positioned fluoro- 
scopically in the coronary sinus by way o f  the 
right external jugular vein. Anaerobic blood  
samples (2 ml.) were simultaneously obtained at 
frequent intervals from the coronary sinus, the 
right atrium, and the descending aorta. Blood  
oxygen tension (Po2), carbon dioxide tension 
(PC02), and pH were measured using appro
priately calibrated electrode systems (Radio
meter, Copenhagen) and, to allow for the 
difference in the measurement of oxygen tensions 
in gas and blood (McDowali ,  Ledingham, and 
Tindal, 1968), a blood-gas factor was derived 
for each experiment using blood tonometered 
with a known tension of oxygen in a rotating 
syringe (Torres, 1963). Blood gas tensions and 
pH were corrected for any temperature difference 
between the electrode systems and the mid
oesophagus using the Radiometer blood-gas  
calculator (Severinghaus, 1966). The oxygen 
content o f  blood w-as calculated using the formula:
. . .  ✓ % % saturation _ . ri ,Hb(g) x r -34 x —— — -------- h Po2(mm Hg)

x 0 0031
The blood oxy'gen saturation w'as calculated 
using the dog cursor on the blood-gas calculator

and the haemoglobin measured, by the cvan- 
methaemoglobin method. There is a good correla
tion betw'een blood oxygen contents calculated by 
this indirect method and simultaneous Van Slyke 
determinations (Ledingham et al.. 1970).

Derived calculations were:
1 Total oxygen availability (ml. kg/min) =  

arterial oxygen content (ml., too ml.) x cardiac 
output (ml./kg/min).

2 Total oxygen consumption (ml. kg.min) =  
arterial minus mixed venous oxygen content 
(ml./ml.) x cardiac output (ml. kg min).

3 Total peripheral vascular resistance (dynes 
sec/cm “5) =

mean arterial pressure (mm Hg) x 80 
cardiac output (I.,min)

4 External cardiac work (kgm/min) =
13-6 x mean arterial pressure (mm H g )x  cardiac 

output (I./min)
1,000

5 Myocardial oxygen consumption (m l./ ioo  
g/m in)- myocardial blood flow (ml. 100 g min) x 
arterial minus coronary sinus oxygen content 
(m l./ ioo  ml.).

6 Coronary vascular resistance (arbitrary 
units) =

diastolic arterial blood pressure (mm Hg) 
myocardial blood flow (m l./ ioo  g min)

7 Myocardial oxygen availability (ml. O y  
100 g/min) =  arterial oxygen content (ml. 100 ml.) 
x myocardial blood flow (m l. /100 g/min).

8 Myocardial oxygen extraction coefficient —
arterial minus coronary sinus oxygen content
_________________ (m l./ ioo  ml.)_________________

arterial oxygen content (m l./ ioo  ml.)
(Gorlin, i960).

9 Mechanical efficiency =
left ventricular work (kgm/min)
myocardial oxygen consumption  

(m l./ ioo  g/min) x 2-06
(Gorlin, i960).

After an initial period on pure oxygen, the 
dogs were ventilated with a mixture of nitrogen 
and oxygen to give an arterial Po2 o f  99-103  
mm Hg. This was facilitated by the use o f  a 
paramagnetic oxygen analyser (Servomex Con
trols, Crowborough, Sussex).

In the first group of nine animais ('moderate  
haemorrhage' -  series 1) the mean arterial pres
sure was lowered to a level o f  70-75 mm Hg. A 
bleeding bottle w-as attached to a catheter in the 
left femoral artery and the animals bled into the 
bottle at a rate adjusted so that the pressure 
reached a level of  70-75 mm Hg in 10-20 min. 
The dogs were maintained at this pressure, while 
breathing an air-mixture, for about 50 min and 
were then given io o ° 0 oxygen to breathe while 
the chamber was pressurized (over a 10-15 min. 
period) to 2 atmospheres absolute (ATA). In 
some o f  the experiments this procedure was 
modified as follows. After the catheters had been 
placed in position, the chamber was pressurized 
to 2 AT A  with the animals breathing an air- 
mixture. At pressure the air-mixture was adjusted
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MBP MBF AVAILABLE O2 MVO2x10 Extraction

(mm Hg) (nl/lOOg/min) (%) (ml./lOOg/min) Coefficient (%)

120

1 0 0 -
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8 0 -

6 0 -
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m20 -

9 9  95 1069A rteria l P O 2

mmHg

FIG. I Changes in mean blood pressure 
(M B P ) ,  m yocardial b lood flow  (M B F ) ,  
m yocardial oxygen availab ility , m yocardial 
oxygen consumption ( M V02), and m yo
cardial oxygen extraction  coefficient in 
norm otensive dogs (z), and after m oderate 
haemorrhage breathing A IR  (stipple) and 
hyperbaric oxygen  (d iagonal) .  Values are 
means ± S E  o f  the mean.

to give an arterial Po2 o f  90--100 mm Hg. The 
initial haemodynamic measurements were then 
taken and the animals bled as before. After 
stabilization at the low mean arterial pressure. 
100% oxygen was administered. This latter 
procedure had the advantage that the arterial 
Po2 could be increased rapidly and without a 
concomitant change in total ambient pressure. 
On five occasions dogs were returned to air- 
breathing (arterial Po2 90-100 mm Hg) and 
finally retransfused.

In the second series of  11 animals (‘severe 
haemorrhage* -  series 2) the mean arterial pres
sure was lowered to 40-45 mm Hg over a period 
of about 40 min and the dogs were maintained at 
this pressure, while breathing an air-mixture, for 
about 60 min. They were then given oxygen to 
breathe (1 ATA) and allowed to stabilize. The 
chamber was finally pressurized with the dogs still 
breathing 100% oxygen.

Results

Effects o f  "moderate haem orrhage’ (series 1) 
T he m ean weight o f  the dogs  in this series  
w a s 24 k g  (range 16 to 36 kg) and the mean  
v o lu m e  o f  b lo o d  w ithdraw n to obta in  a m ean  
arterial b lo o d  pressure o f  70~75 rnm H g  
w a s 43 ml., kg (range 25 to 63 m l./kg) .  T he  
m yocard ia l  and h a em o d y n a m ic  effects o f  this

degree o f  haem orrhage  are sum m arized in 
F igs  1 and  2.

H eart rate an d  total peripheral vascular  
resistance were significantly increased ( P <  
o-o 1) and m yocard ia l  b lo o d  flow, oxygen  
co n su m p t io n ,  cardiac output,  work, and  
efficiency were m arkedly  reduced. H a em o r
rhage  was thus associated  with a 1 educt ion  in 
m yocard ia l  b lo o d  flow, an increase in m y o 
cardial vascular resistance (from  r  12 +  0-06  
to  P 2 5 ± c - i 2  arbitrary units: m e a n ± S .E .  
o f  the m ean) and a m arked reduction in 
m yocardia l  stroke  output ( from  24-5 ± 3 -3  
m l./beat  to  8 - o ±  i - i  m l./beat ,  a reduction o f  
6 9 /0 ) .  There were a lso  reductions in c o r o n 
ary sinus P o2 and oxygen  content  (Table  1) 
and an increase in extraction  (Table  1 and  
Fig. 1). T he arterial P o 2 was m ainta ined,  
but because o f  the reduction in the packed  
cell v o lu m e  (from  44 to 38% ) and  in h a e m o 
glob in  (from  i 5 - o ± o - 5  to i 3 - o ± o - 5  g /100  
ml.) ,  arterial oxy g en  content  was consider
ably reduced (by 4 m l . / i o o  ml. b lo o d :  Table  
1). There was a m oderate  increase in arterial 
P C02 and a reduction in b lo o d  pH . This  
was greater than co u ld  be accou nted  for by 
the increase in P C02 a lone  and  indicates a 
reduction in arterial base excess  o f  from  
— 1 ± 2  m-equiv/1. (in the n orm oten s ive  dogs)  
to  — 9 ± 2  m-equiv/1. in the haem orrhagic  
preparations.

T he  adm inistrat ion  to these d o g s  o f  oxygen  
at 2 A T A  m arkedly  increased arterial P o 2 
(from  95 to  1,069 m m  H g, T able  1) and  
increased arterial ox y g en  content  to the level 
before haem orrhage.  H yperbaric  o x y g en  had  
no  significant effect, at this b lo o d  pressure  
level,  on heart rate, total peripheral vascular  
resistance, cardiac o utp ut or w ork  (F igs  1 
and 2) and the m ost pro no u nced  effects were  
a further reduction in m yocard ia l  b lo o d  flow 
and a further increase in m yocard ia l  vascular  
resistance (from  1-25 ± 0 - 1 2  to  1-67 +  0-17 ar
bitrary units).  D esp ite  the increase in arterial 
oxygen  content  therefore the total a m o u n t  o f  
oxygen  m ade available  to the m yocardial  
tissue w'as u n ch anged  (F ig .  t). M arked  
increases in co ron ary  sinus P o 2 arid oxygen  
content  occurred and thus the difference  
between the arterial and co ron ary  sinus  
ox y g en  co ntents  rem ained the sam e (Table  1). 
a l th o u g h  the extraction  coefficient returned  
tow ards the pre-haem orrhage  level.

In five o f  the preparations the effect o f  
returning to  air breathing was studied and  
this w a s  fo l lo w ed  by retransfusion. The  
effects o f  these  procedures o n  arterial b lood  
pressure, m yocardia l  b lood  flow', m yocardial  
o x y g en  availability  and  co n su m p t io n ,  cardiac  
outp ut  and work,  and  on  total peripheral
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CO&CW
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FIG. 2 Changes in heart rate  (H R ) ,  cardiac output (CO), external work (C W ) and efficiency 
a n d  in to ta l peripheral vascular resistance (P V R )  in normotensive dogs (□), and after m oder
a te  haemorrhage breathing A IR  (stipple) and hyperbaric oxygen  (diagonal) .  Values are 
m ean s  ±  S E  o f  the mean.

vascular resistance are i llustrated in F ig .  3. 
O n  returning to  a ir-breathing the m ost  pro 
n o u n c e d  effects were a rise in m yocard ia l  
b lo o d  f low  and  a reduction, in m yocardial  
vascular resistance (from  a m ean  o f  r 8  to  a 
m ea n  o f  r i  arbitrary units).  In each  o f  the  
d o g s  retransfusion o f  the shed b lo o d  was  
a cco m p a n ied  by increases in m yocard ia l

b lo o d  f low  and m yocard ia l  o x y g en  a va i la 
bility and  a partial return o f  b lo o d  pressure  
(w ith  one  exception) ,  cardiac outp ut  and  w ork  
tow ards pre-haem orrhage  levels (F ig .  3).

Effects o f  ‘severe haem orrhage’ (series 2)
In this series o f  d o g s  (w e ight  i h - 4 2  kg;  
m ea n  33 kg) the m ean  v o lu m e  o f  b lo o d  with-

T A B L E  I Blood-gas changes in dogs subjected to m oderate  (mean blood pressure  73 mm H g) 
a n d  severe (mean blood pressure 49 mm H g) haemorrhage

Moderate haemorrhage 

Hypotensive

Severe haemorrhage

Hypotensive

Control Air OHP Control Air Oxygen OHP

Pa0 2 (mm Hg) 99 ± 3 95 ±  3 1069 ± 2 5 103 ± 2 97 ± 5 421 ± 6 0 961 ±91
PaC0 2 (mm Hg) 41 ± 2 48 ± 3 52 ± 4 41 ±  1 57 ± 5 64 ±  6 59 ± 8
PaH (units) 7-386 ± 0 0 2 6 7-262 ±0-048 7-I7 5 ± o -055 7-369 ±0-037 7-117 ±0-051 6-999 ± 0-054 7-024 ±0-051
Base excess (m-equiv/1.) — I ± 2 — 9 ± 2 — II ± 2 — 2 ±  I - I 5 ± 2 -  17 ±  I — 17 ±  I
P cs0 2 (mm Hg) 3 I ± 2 27 ± 4 43 ± 5 3 I ± 2 30 ±  1 4°  ± 3 56 ± 7
Ca0 2 (ml. %) 20-0 ±o-8 i6-o ± o-9 20'0± I-I 20-5 ±0-5 i4 -8 ±  1-4 16-4 ±  1-4 I5'7 ±  1-4
Cc s0 2 (ml. %) n - 5 ± o -7 6-2 ±  i-o 9 '9 ± 0-8 9-8 ± o -5 5-4 ± o -9 7-1 ±0-8 9-3 H -2
A-CCs 0 2 (ml. %) 8-5 ± o -7 10-4 ±  1-4 I0-0 ±  1-2 io-9± i-i 9-4 ± o -8 9-3 ±0-9 7-31  i-i
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Haemorrhage Retransfusion
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mmHg
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M.B.F. 100‘ 
ml/IOOg/min

50-

30-1

25-

1 0 -

5 -

15-1 H  / /,

io-

MBP MBF AVAILABLE 0 2 MVO2 x 10 Extraction
(mmHg) (m!./100g/min) (X) (ml./100g/min) Coefficient{X)

Arterial P 0 2 ,Q3 97421961
mmHg

f i g .  3 Changes in mean blood pressure 
(M B P ) ,  myocardial blood flow  (M B F ) .  
myocardial oxygen availability (M A ) .  and 
myocardial oxygen consumption ( M V02) 
produced by moderate haemorrhage, 
hyperbaric oxygen , and retransfusion. Also 
indicated are cardiac output, cardiac work, 
and total peripheral vascular resistance. 
Cardiac output (I,:min) Z, Cardiac work 
(kg  mi min) (dots),  Peripheral vascular resist
ance (dynes!sec; cni~5)~ x i o ~ 3 H.

drawn to obtain  an arterial pressure o f  4 5 - 5 0  
m m  H g was 51 ml. kg (range 4 1 - 6 6  ml. kg). 
T his degree o f  haem orrhage  lowered the  
P C V  from  46 to 36%  and the h a em o g lo b in  
from  17-1 ± 0 - 9  to i 3 ' 6 ± i - 2  g / io o  ml. The  
response  to this degree o f  haem orrhage  was  
similar to  that described above ,  except that,  
in general, the changes  were more marked.  
There were substantia l reductions in m y o 
cardial ox y g en  c o n su m p t io n  and availability,  
in cardiac output,  work, and efficiency  
(F ig s  4 and 5), in stroke v o lum e  (from  i S- i  ±  
2-7 m l./beat  to 7-8 ±  1-3 m l./beat)  and in right 
atrial pressure (from  a m ean o f  —0-3 to  a 
m ean o f  —2-3 m m  Hg). M yocardial  b lo o d  
f low was not very different to that found in 
the first ( 'm o d e ra te  haem orrhage')  group.  
T his  is presum ably  because, at this pressure  
level,  f low  is just within the autoreguiatory  
range; coronary vascular resistance was  
certainly substantia lly  reduced ( from  1*25 ±  
0-07 to 0-96 ± 0 - 0 7  arbitrary units).  T h e  
oxygen  extraction  coefficient was again  raised  
and  there was a slight increase in heart rate. 
A t  this b lo o d  pressure level there was,  
how ever ,  considerable  e lectrocard iograph ic  
ev idence  o f  m yocardia l  ischaem ia:  ST  de 
pression, often  m arked, occurred in all the  
anim als.  In three an im als there were o c c a - ,  
s ional  nodal rhythm s and ventricular extra
systoles.

Ch anges  observed  in ac id-base  balance  
inc luded  a m arked increase in P C02 (T able  1) 
and a decrease in arterial pH . These  were  
associated  with  a substantia l  m etab o l ic  
acidosis ,  the arterial base excess falling from  
— 2± i  m -eq u iv /1. to  — I 5 ± 2  m-equiv/I.

C h a ng ing  to  ox y g en  at 1 A T A  and then  
at 2 A T A  (F ig s  4 and 5; T able  1) had little

f i g .  4  Changes in mean blood pressure, 
myocardial blood flow , oxygen availability 
and oxygen consumption and in myocardial 
oxygen extraction coefficient in normotensive 
dogs (z ) , and after severe haemorrhage 
breathing A IR  (stipple), oxygen at normal 
pressure (diagonal)  and oxygen at 2 A TA  (£=). 
Values are means ± S E  of the mean.
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FIG. 5 Changes in heart rate, cardiac output, external work and efficiency and in total 
peripheral vascular resistance in normotensive dogs (7), and after severe haemorrhage 
breathing A IR  (stipple), oxygen at normal pressure (diagonal) and oxygen at 2 ATA  (.- ). 
Values are means ± S E  o f  the mean.

t a b l e  2 '. Cardiac output, total oxygen 
availability and consumption in moderate 
haemorrhage (mean ± S E  o f  mean)

Cardiac
output
{ml. j kg. j min)

A cailable 
oxygen 
(ml. j kg! min)

Oxygen  
consumption 
(ml. j kg j min)

Control 145 ± 14 28-9 ± 3-7 5-0 ± 0-9
Haemorrhage (air) 48 ± 4 8-i + i-i 4-0 ± 0-3
Haemorrhage (OHP) 48 ±3 9-s ± TO 3‘2 ± 0-4
Haemorrhage (air) 54 ±2' 9-2 ± 0-7 4'6 ± 0 3
Retransfusion 89 ± 2 0 16-6 ± 3-7 4-8 + 0 2

T A B L E  3 Cardiac output, total oxygen
availability and consumption1 in severe
haemorrhage (mean ± S E  o f  mean)

Cardiac Available Oxygen
output oxygen consumption
(ml.,'kg! min) (ml., kg! min) (ml.; kg i min)

Control 64 ± 4 I2-8±o-4 2-1 ± 0-2
Haemorrhage (air) 31 ±3 4‘7 + o-S 3-2 ± 0-2
Haemorrhage 1 oxygen) 3i ±4 4-4 ± 0-6 3-t ±0-3
Haemorrhage (OHP) 29 ±3 5-1 ±o -6 2-9±o-5

effect on  b lood  pressure, m yocardia l  How, or  
cardiac fun ction;  the m ost  m arked effect was  
a substantia l increase in coron ary  sinus P o 2 
and oxygen  content  (Table  1) and, as in the  
‘ m oderate  h a em orrh age'  group,  a return o f  
the extract ion  coefficient tow ards pre-hae
m orrhage  levels.  In a few o f  the an im als  
there was a m arked e lectrocard iograph ic  
im pro v em ent  with O H P .

In an earlier study from this laboratory on  
d ogs  subjected to haem orrhagic  shock .  
Clark (1966) had dem onstra ted  that there  
w as an increase in total ox y g en  c o n su m p tio n  
w ith  hyperbaric  o xygen .  In v iew  o f  this fact 
and our o w n  finding that hyperbaric oxygen  
was associated  with a reduction in myocardial  
o xygen  consum ption*  total oxygen  c o n s u m p 
tion was calculated . T he changes  in cardiac  
output,  total o x y g en  availability ,  and total  
oxygen  c o n su m p t io n  produ ced  by m oderate  
and severe haem orrhage  and by the su b se 
quent adm inis tration  o f  hyperbaric  oxygen  
are ind icated in T ables  2 and 3. In the 
m oderate  haem orrhage  group, bleeding was  
assoc ia ted  with a 7 2 ° 0 and 20°,,  reduction in 
total  oxy g en  availability  and c onsu m ption .
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O x y g en  at 2 a tm o sp h eres  produced  a m ean  
increase  o f  1 7 % (8*1 to  9 5 m l . /k g /m in )  in 
to ta l  o x y g e n  availab il ity  during  h y p o ten s io n  
but to ta l  o x y g e n  c o n su m p t io n  fell by a 
further 20%  (4-0 to  3-2 m l . /k g /m in ) .  In the  
severe h aem orrh age  group ,  the sam e pattern  
o f  results w as noted ,  except  that total oxy g en  
c o n su m p t io n  after haem o rrh a g e  rose  a b o v e  
the  co n tro l  values.  T his  un exp ected  finding  
p r o b a b ly  related to  the lo w  initial cardiac- 
o utp ut  in these  anim als.

Discussion

B ecau se  o f  the c o m b in a t io n  o f  decreased  
m y o ca rd ia l  b lo o d  flow  and decreased arterial  
o x y g en  co n ten t  during severe haem orrhagic  
sh o ck ,  the heart rapidly b eco m es  hypoxic ,  
suffers characteristic  les ions (sub-endocardia l  
haem o rrh a g es  and  necrosis)  an d  ultimately  
fails . A l th o u g h  o n e  c a n n o t  o f  course  ignore  
the deterioration  o f  the peripheral circu lation  
in  sh o ck ,  there is ev id en ce  (review ed by 
G u y to n  and  Crowell .  1961) that the heart  
i t se lf  is the primary and lethal deteriorative  
structure in the c ircu lation . If this deteriora
tion  were due to hy p o x ia  a lone  it is c o n 
ceivable  that s im ply  rais ing the arterial  
ox y g en  conten t  w o u ld  act as a protective.  
It has,  in fact,  been dem onstra ted  (R atc lif f  
e t a l., 1967) that hyperbaric  oxygen  does  
decrease  the inc idence  o f  subendocardia l  
haem orrh age  in d o g s  subjected to h a e m o r 
rhagic  sh ock .  In the present experim ents,  
haem o rrh a g e  was assoc ia ted  with substantia l  
decrease in cardiac stroke  and m inute  output,  
w ork, ox y g en  co n su m p t io n ,  and m echanical  
efficiency. A d m in is tra t ion  o f  o x y g en  at 1 and  
2 A T A  did not  substantia lly  m odify  the 
function o f  the heart or o f  the peripheral  
c irculation . There  was no im provem ent  in 
cardiac  o u tp ut  or  w ork  and, in fact,  a de 
crease occurred in m yocard ia l  oxygen  c o n 
su m ption .  T his  appeared to  reflect m a n g e s  
occurring in other parts o f  the body. In the 
d o g s  subjected to m oderate  haem orrnage,  
hyperbaric  oxy g en  increased the c r ’erial 
oxy g en  content  but this was not  assoe .ated  
with  an increase in m yocardia l  oxygen  
availability  (since m yocardial  b lood  flow- 
fell) or  with an increased m yocardial  extrac
t io n  o f  oxygen .  T he  coron ary  sinus Po.j and  
oxy g en  content  were substantially  increased  
an d  o ne  can  on ly  co nc lu de  that the heart was  
for  so m e  reason incapable  o f  utiliz ing m ore  
o xygen .  A lth o u g h  in high concentrations  
o x y g en  itse lf  depresses cardiac function  
(D a n ie l l  and  Bagwell,  1968), the m ost  
l ikely reason w o u ld  appear to be severe  
m eta b o l ic  ac idosis  wh ich  a cco m p a n ied  ha e 

m orrhage. T his  depresses mydcardial c o n 
tractility (T hrower,  D arby ,  and  Aldinger.  
1961; O pie,  1965; N g ,  Levs-, and Zieske.  
1967) and reduces the inotropic  response to  
catecho lam in es  (T hrower et a l., 1961: Ford,  
Cline, and F lem ing .  1968). A different 
response  to  hyperbaric oxygen  in ha em o r
rhagic sh ock  m ay  well  be seen if this m eta 
bolic  ac idosis  were corrected.

A characteristic  effect o f  hyperbaric  
oxygen ,  especially  in the ’ m oderate  h a em o r
r h a g e ’ group, was a decrease in m yocardial  
blo o d  flow. Since system ic  b lood  pressure  
was unaltered (Fig.  1), this m eans an increase  
in m yocardial  vascular resistance and, since  
the various indices o f  contractility  and output  
were not substantia lly  changed ,  this can be 
interpreted as resulting from  m yocardial  
vasoconstr ic tion .  It is well d o cu m en ted  that  
100% ox y g en  at 1 and  at 2 A T A  reduces  
coron ary  b lo o d  f low in norm oten sive  open-  
chest d ogs  (S o b o l ,  W anlass .  Joseph, and  
A zarshahy,  1962; W eglicki .  Rubenste in ,  
Entm an, and  M cIntosh ,  1966), in c losed -  
chest dogs  previously  subjected to th o r a c o t 
o m y  (Ratliff,  H ackel ,  and M ikat.  1969) and  
in dogs  w ithout th o r a c o to m y  (L am m arant.  
D e Schrvver, Becsei and  M ertens-Strijthagen.  
1968; M cBride and  Ledingham , 1968; 
M cBride. 1969). T he  present experim ents  
dem onstrate  that, even when the perfusion  
pressure is lo w  and the vessels dilated, hyper
baric oxygen  is still capable  o f  causing  v a so 
constr iction  and that further, this is readily  
reversed on  returning to  air breathing (F ig .  
3). T he  surprising th ing perhaps is. the fact 
that hyperbaric  o x y g en  was not. in these  
experim ents,  capable  o f  im p ro v in g  m y o 
cardial ox y g en  availability .  A n y  increase in 
arterial b lo o d  oxy g en  co n ten t  was co u n te r 
acted  by a decrease in m yocard ia l  b lo o d  flow.  
Nevertheless ,  the oxygen  w'as delivered to the  
heart at a higher than norm al oxy g en  tension.  
S o m e  m yocard ia l  cells,  therefore,  w o u ld  be 
exposed  to  the high oxy g en  tension even  
a lthough  the m ean  tissue o x y g en  tension had  
not s ignificantly altered. M o reo v er  it w'ould 
not be valid from  these experim ents  a lo ne  to  
draw the c o n c lu s io n  that hyperbaric  oxygen  
cou ld  not increase oxygen  availability  to the  
heart in other  c ircum stances.  For exam ple ,  
in the case reported by A n io n ic  e t al. (1969).  
the h a e m o g lo b in  was so  low (2-2 g 100 ml.)  
that the increase in d isso lved  oxy g en  obta ined  
with hyperbaric  o x y g en  co u ld  not  fail but to  
have increased tissue oxygen  availability .  
It co u ld  be, how ever ,  that the failure to d e 
m onstrate  conc lu sive ly  the value o f  hyper
baric ox y g en  in acute  m yocard ia l  infarc
tion (C a m ero n ,  G ib b ,  L edingham , and
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M c G u in n ess ,  1965), c o u ld  be due  to  a fa ik u e  
to  im p ro v e  m yocard ia l  o x y g en  availability .  If 
the  v a so co n str ic t io n  induced  by ox y g en  could  
be counteracted  -  for  exam ple ,  by the use o f  
c o ro n a ry  v a so d i la to r  drugs -  it might indeed  
be po ss ib le  substantia lly  to  increase tissue  
o x y g en  co n ten t  in the d ev e lo p in g  infarct and  
therefore perhaps reduce infarct size.

Summary
Subject ing  c losed -ch es t  dogs ,  anaesthetized  
w ith  tr ichlorethylene ,  to  both  m oderate  and  
severe acute  b lo o d  loss (to  mean pressures o f  
7 0 - 7 5  an d  4 5 - 5 0  m m  H g  respectively) in
creased heart rate, total  peripheral vascular  
resistance (in the ‘ m o d era te  h a e m o r r h a g e ’ 
group on ly)  arterial P C02, and the m yocardial  
o x y g en  extraction  coefficient and decreased  
arterial base excess,  card iac  output,  work,  
efficiency and  m yocard ia l  b lo o d  flow, o x y 
gen  c o n su m p t io n  an d  availability .  T he  a d 
m in istrat ion  o f  o x y g e n  at 2 A T A  (O H P )  
su ch  that the arterial o x y g e n  tension  was  
raised from  9 5 - 9 7  m m  H g  to  9 6 1 -1 0 6 9  
m m  H g, fa iled significantly to  alter the output,  
w ork ,  or  efficiency o f  the heart. There was a 
further decrease in m yocard ia l  b lo o d  flow  
a n d  an increase in m yocard ia l  vascular  
res istance  such that m yocard ia l  oxygen  
availability ,  desp ite  the e n o r m o u s  increase in 
arterial o x y g e n  tension,  was unaltered. A n y  
increase in arterial b lo o d  ox y g en  content  was  
thu s  counteracted  by a decrease in b lo o d  
f low , due,  presum ably ,  to a direct effect o f  
o x y g e n  o n  m yocard ia l  vascular sm o o th  
m uscle .  T h ese  effects on  the m yocard ia l  
c ircu lation  were reversed w hen  the d o g s  were  
returned to  air-breathing.
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Chapter 9

Myocardial vascular and metabolic responses to hypoxia and 

hypercapnia during hypothermia (26°C)

In the third of the three chapters dealing with the heart, 

the myocardial vascular and metabolic responses to hypoxia 

and hypercapnia at normal body temperature and in the cooled 

state were compared.

Previous studies (Chapter 7 and Ledingham et al, 1970) showed 

that both hypoxia and hypercapnia produced marked increases in 

myocardial blood flow in the normothermic dog. Similar responses 

have been described at reduced temperature (Berne, 1954; Cross, 

Rieben and Salisbury, 1962) but the precise relationship between 

arterial PO^ and PCO^? and myocardial blood flow has not been 

established. This information together with related metabolic 

data may have clinical relevance in resuscitation of the 

hypothermic patient who shows evidence of cardiorespiratory in

sufficiency. The opportunity was taken to examine the effect of 

hypothermia on pulmonary oxygen transport.

Material and Methods (3/4/68 - 30/5/68; 10/1/72, 17/1/72, 20/1/72)

Anaesthesia was induced in a total of 13 adult mongrel dogs 

(weight - 19.5 + 2.8 kg: mean + standard error of the mean)
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with a 2.5% solution of thiopentone sodium administered 

intravenously (usually 20 mg/kg). After endotracheal intubation, 

intermittent positive pressure ventilation (IPPV) was established 

using a Palmer respiratory pump, the stroke volume of which was 

adjusted to maintain arterial carbon dioxide tension between 

35 and 45 mm Hg under control conditions at normothermia; the 

ventilation rate was kept constant. Reflex movement was 

prevented by the intramuscular administration of intermittent 

(100 mg) doses of suxamethonium. Anaesthesia was maintained 

with trichlorethylene (0.5 - 1.0% vaporized from a Tritec 

vaporizer (Cyprane Ltd.) in a mixture of nitrogen and oxygen, 

the proportions of which were adjusted so that under control 

conditions at normothermia the arterial oxygen tension was 

between 85 and 105 mm Hg. This was facilitated by monitoring 

the inspired oxygen concentration with a paramagnetic oxygen 

analyser (Servomex 0A101 Mk II, Servomex Controls, Crowborough, 

Sussex). The animal’s temperature was recorded routinely from 

the midoesophagus and occasionally also from the rectum using 

direct recording thermocouples.

Catheters were inserted into the descending aorta and into the 

right atrium via the femoral vessels for pressure recording 

and blood sampling. Arterial and right atrial pressures, central 

aortic dp/dt and lead two of the electrocardiogram (ECG) were
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recorded on a multi-channel ink jet recorder (Elema-Schonander 

Mingograph 81), in addition to being continuously visible on 

an oscilloscope.

133Myocardial blood flow was measured using the Xenon clearance 

technique described in detail in chapter 7. Arterial, coronary 

sinus and mixed venous oxygen and carbon dioxide tensions and 

pH were measured using appropriate electrode systems, calibrated 

as previously described; all blood gas values were corrected 

to normal body temperature. Lactate, pyruvate and glucose 

concentrations were measured using standard techniques.

The following data were dervied:

1. Myocardial oxygen availability (ml/lOOg/min) = arterial

oxygen content (ml/lOOml) x myocardial blood flow 

(ml/lOOg/min).

2. Myocardial oxygen extraction (%) =

arterial-coronary sinus oxygen content (ml/lOOml) x 100 
arterial oxygen content (ml/lOOml)

3. Myocardial oxygen consumption (ml/lOOg/min) = myocardial

blood flow (ml/lOOg/min) x arterial-coronary sinus 

oxygen content (ml/lOOml).

4. Coronary vascular resistance (arbitrary units) =

diastolic arterial blood pressure (mm Hg) 
myocardial blood flow (ml/lOOg/min)



5. Ifyocardial lactate and pyruvate extraction were measured 

as for 2. with lactate and pyruvate substituted for 

oxygen.

6. Myocardial lactate and pyruvate consumption were measured 

as for 3. with lactate and pyruvate substituted for 

oxygen.

7. Total oxygen extraction (%) = arterial oxygen content 

(ml/100ml) minus mixed venous oxygen content (ml/100ml)/ 

arterial oxygen content (ml/lOOml).

8. Alveolar-arterial oxygen tension difference (using the 

alveolar air equation to calculate alveolar oxygen 

pressure and assuming r = 0.8).

After completion of the appropriate series of measurements at 

normothermia (mean duration - 3.9 hours, range 3 - 5  hours), 

hypothermia was induced by immersing the animal in a bath of 

iced water at 4 deg C. Anaesthesia was discontinued soon after 

the animal entered the iced water. Cooling lasted 59 minutes 

(range 30 - 90 minutes), after which the animal was removed from 

the bath (mean mid-oesophageal temperature - 29.2 deg C, range 

26.3 - 30.9 deg C). The mid-oesophageal temperature fell further 

to a mean of 26.4 deg C (range 24.7 - 28.4 deg C). Rectal 

temperature was as much as 2 deg C higher than mid-oesophageal 

during cooling although rarely more than 0.5 deg C higher when 

hypothermia became stable. The position of the intravascular



catheters was checked by fluoroscopy after cooling and a 

further series of measurements made.

Hypoxaemia was induced by rapidly decreasing the inspired 

oxygen fraction (F^O^) to a mean of 0.095 at normothermia 

(six animals) and a mean of 0.076 at hypothermia (seven animals). 

Hypoxaemia was sustained for an average of 21 minutes (range 

12 - 35 minutes) at normothermia and an average of 32 minutes 

(range 15 - 54 minutes) at hypothermia. Hypercapnia was induced 

both at normothermia (seven animals) and at hypothermia (11 

animals) by rapidly adding carbon dioxide to the inspired gas 

mixture, the actual concentration (varying between 10 and 15%) 

being monitored on an infra-red carbon dioxide analyser (URAS4, 

Hartmann and Braun). Throughout the period of hypercapnia, which 

was sustained for 15 minutes (range 9 - 3 5  minutes) at normo

thermia and for 34 minutes (range 16 - 105 minutes) at hypothermia, 

the inspired oxygen concentration was adjusted so that the 

arterial oxygen tension remained between 80 and 110 mm Hg. The 

shorter period of hypercapnia at normothermia was determined by 

data obtained in an earlier study (Ledingham et al, 1970) 

showing that myocardial blood flow returned towards control 

values even when arterial carbon dioxide tension remained 

elevated. The upper and lower limits of hypoxaemia and hypercapnia 

were determined by myocardial blood flow responses described in



183.

previous studies (chapter 7 and Ledingham et al, 1970).

In three additional animals the haemodynamic and metabolic 

effects of hypothermia without prior hypoxia and hypercapnia 

were determined. Measurements were also made of cardiac output 

by dye dilution (indocyanine green) with a Waters densitometer 

(XP-302) and left ventricular pressure via a number 8 Sones 

catheter inserted through the carotid artery. The rate of change 

of left ventricular pressure with time (dp/dt) was obtained by
itmeans of an Elema Schonander differentiator circuit. Blood volume 

was measured using 1125 serum albumen (Amersham, England) with 

samples taken at five, 10 and 20 minutes post-injection and 

counted in a "blood volume computer" (D.A. Pitman, Weybridge, 

Surrey, England). Arterial and coronary sinus free fatty acids 

were measured using the Boehringer combination set.

Physiological dead space was calculated using the equation:

VD = (PaC02) VE/PaC02 

Expired gas was collected over a 20 minute period in a Douglas 

bag and the volume measured with a dry gas meter (Parkinson 

Cowan). Prolonged hypoxaemia (70 min) was induced in one of the 

animals and prolonged hypercapnia (34 and 70 minutes) in the 

other two during the later stages of hypothermia. The data 

from these animals were not included in the statistical analyses



184.

of data of the main series although changes similar to those 

observed in the main series occurred.

RESULTS

The Effect of Hypothermia

The effect of surface cooling to a mean mid-oesophageal 

temperature of 26.4 deg C on systemic and coronary haemodynamic 

values is illustrated in Fig. 9.1. The normothermic data were 

taken immediately before cooling commenced and therefore followed 

an episode of either hypoxaemia or hypercapnia although time was 

given for the animal to make a complete haemodynamic recovery 

from these procedures. The ’initial cooled* set of hypothermic 

data were taken within 30 minutes of cessation of active 

cooling with the exception of three animals in which the recordings 

were made within 60 minutes. The ’subsequent cooled* data refer to 

measurements made from 20 to 90 minutes after the first series. 

There were significant falls in heart rate (30% - p< 0.001), 

mean arterial pressure (11% - p<0.05) and aortic dp/dt (41% - 

p<0.05). Myocardial blood flow fell from 103 + 6 ml/lOOg/min 

to 60 + 6 ml/lOOg/min (by 41% - p< 0.001) and coronary vascular 

resistance rose by 62% (p <0.001). Right atrial pressure was 

not significantly altered by cooling.

In the three additional animals (Table 9.1), cardiac output fell
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by between 50 and 75% with a consistent fall in heart rate 

and a variable fall in stroke volume. The increase in total 

peripheral resistance was moderate to marked. Left ventricular 

dp/dt fell from 3,400 and 2,500 to 1,300 and 1,700 mm Hg/second 

respectively in two of the additional animals with no change in 

left ventricular end-diastolic pressure; (these together indicate 

a reduction in left ventricular contractility). Cardiac work 

fell substantially in all three animals and cardiac efficiency 

in two.

Arterial and coronary sinus blood gas and pH values at normo

thermia and hypothermia are indicated in table 9.2. Because of 

an anticipated fall in arterial oxygen tension (independent 

in vitro temperature changes), the inspired oxygen fraction 

(F̂ .0 2 ) was increased from 0.23 + 0.02 at normothermia to 0.34 + 0.04 

at hypothermia. Thus although there was no significant change in 

arterial oxygen tension with hypothermia the alveolar-arterial 

oxygen tension difference rose from 2 6 + 7  mm Hg at normothermia 

to 77 + 18 mm Hg at hypothermia (p <0.001). The fall in arterial 

carbon dioxide tension accounted entirely for the change in 

arterial pH, the non-respiratory component of acid-base balance 

remaining unaltered. The coronary sinus PO2  fell from 3 2 + 1  

to 15 + 1 mm Hg but this represented a decrease in oxygen content



Table 9.2 Arterial and coronary sinus
blood gas and pH values

a. NORMOTHERMIA (FIO2  - 0.23)

Arterial Coronary sinus

oxygen tension 
(mmHg)

105 + 5 32 + 1

Oxygen content 21.4 + 1.0 11.2 + 1.0
(ml/lOOml)

carbon dioxide 39 + 1 5 3 + 1
tension (mmHg)

pH (units) 7.35 + 0.01 7.32 + 0.01

base excess -4 + 1 —

(meq/L)

b. HYPOTHERMIA (FIO2  - 0.34)

Arterial Coronary sinus

oxygen tension 113 + 10 15 + 1
(mmHg)

oxygen content 21.9 + 1.0 10.3 + 1.2
(ml/lOOml)

carbon dioxide 2 4 + 1 35 + 2
tension (mmHg)

pH (units) 7.48 + 0.02 7.40 + 0.03

base excess - 4 + 1 -

(meq/L)
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of only 0.9 ml/lOOml. Dead space ventilation was increased 

from 16 to 34% in the three additional animals. Hypothermia 

per se did not produce a significant alteration in haemoglobin 

or packed cell volume. Blood volume estimations revealed 

decreases of from 17 to 20% (Table 9.1).

Myocardial oxygen availability fell from 21.9 +1.1 ml/lOOg/min 

to 12.5 + 1.3 ml/lOOg/min (by 43% - p <0.001) after cooling, 

myocardial oxygen extraction did not change significantly from 

the control value of 48% and myocardial oxygen consumption fell 

from 10.3 + 0.7 ml/lOOg/min to 7.1 + 0.8 ml/lOOg/min (by 31% - 

p <0.01). Whole body oxygen extraction did not change signific

antly; in the three animals in which cardiac output measurements 

were made, whole body oxygen consumption fell by 73% in each 

case.

Both arterial and coronary sinus lactate and pyruvate values 

fell with hypothermia (Table 9.3) but only the fall in arterial 

pyruvate was statistically significant (p <0.001). The rise in 

arterial blood glucose was small but significant (p<0.05); the 

high value of glucose in arterial blood at normothermia immediately 

prior to cooling was consequent on the earlier episodes of either 

hypoxaemia or hypercapnia (the first control value for arterial



Table 9.3 Arterial and coronary sinus lactate,
pyruvate and glucose

Normothermia Arterial Coronary sinus

lactate (mg/100ml) 20.5 + 3.7 15.9 + 3.3

pyruvate (mg/lOOml) 1.5 + 0.2 0.9 + 0.1

glucose (mg/lOOml) 129 + 14 123 + 14

Hypothermia

lactate (mg/lOOml) 17.3 + 2.9 NS 15.7 + 2.6 NS

pyruvate (mg/100ml) 0.8 + 0.2 P <0.001 0.8 + 0.2 NS

glucose (mg/lOOml) 154 +12 P <0.05 151 + 12 NS
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blood glucose was 105 + 5 ml/lOOml). Extraction and consumption 

of lactate and pyruvate by the myocardium fell but again only 

the pyruvate changes were significant (Fig. 9.2). No consistent 

consumption of glucose by the myocardium was demonstrable either 

at normothermia or at hypothermia. In the three additional animals, 

hypothermia of between one and two hours duration had no effect 

either on the absolute values of arterial glucose or on myocardial 

glucose consumption. Arterial free fatty acids showed no change 

in one and rose slightly in the other two of the three animals 

while fatty acid consumption fell from 36 and 47 millimicromoles/ 

lOOg/min to 10 and 20 millimicromoles lOOg/min respectively 

at hypothermia with no change in the remaining animal.

In nine animals, the repeat series of haemodynamic (Fig. 9.1) and 

metabolic measurements made after the first series at hypothermia 

showed no consistent alteration in any of the variables.

ECG Effects of Hypothermia

The mean change which occurred in the various components of the

ECG are illustrated in Fig. 9.3. Myocardial conductivity was

uniformly and progressively depressed during hypothermia and

the PR, QRS and QT (QT interval corrected for heart rate)o



LACTATE PYRUVATE

NORMOTHERMA HYPOTHERMIA NORMOTHERMIA . HYPOTHERMIA

6O-1
P < 0 0 5P > 0 1

4 0 -
EXTRACTION

20 -

0-
PRODUCTION

20-

P > 0 0 5 P < 0 0 1
1 2 -

CONSUMPTION 
mg /  lO O g/ m i n

-100

8-

- 0 -6 0  -

4 -

- 0-20
0-

PRODUCTION 
mg I lOOg /min •0-20

Figure 9.2. Extraction, consumption and production 
of lactate and pyruvate at normothermia 
and hypothermia; bars represent means.



COOLING

180

140
HEART RATE 
(Beats/min)

100

60

Qtc
(secs)

0-3

01

Figure 9.3a. Changes in components of ECG during cooling 
and in response to hypoxia and hypercapnia 
at normothermia and hypothermia; asterisks 
indicate significant differences from 
preceding or subsequent value.



'COOLING

[ca

K>

Q WAVE 
DEPTH 
(mm)

•COOLING'

itca
0-14

0-11

010

0 0 9

0 0 8

T WAVE 
HEIGHT (mm)

Figure 9.3b. Changes in components of ECG during cooling
and in response to hypoxia and hypercapnia 
at normothermia and hypothermia; asterisks 
indicate significant differences from 
preceding or subsequent value.



•COOLING COOLING

36*C I1CO-^2
0-08 0-08

0-07 0-07

0-06
P WAVE 

DURATION 
(seo) 0-05

0-06
QRS 

DURATION 
(sacs) 0 .05

0-04 0-04

0-03

"  16
QRS

HflGHT
(mm)

P WAVE 
HEIGHT

Figure 9.3c. Changes in components of ECG during cooling
and in response to hypoxia and hypercapnia 
at normothermia and hypothermia; asterisks 
indicate significant differences from 
preceding or subsequent value.

\



•COOLING
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intervals were all prolonged. The amplitudes of the atrial 

and ventricular action potentials, on the other hand, were 

little altered. A definite junctional (nJn) wave was seen 

on only three occasions. Dysrhythmias attributable to hypo

thermia were noted on seven occasions (regularly occurring 

ventricular extrasystoles - four animals; junctional rhythm - 

three animals).

The Effect of Hypoxia at Normothermia and Hypothermia 

Arterial oxygen tension fell from 108 + 2 to 30 + 2 mm Hg during 

hypoxia at normothermia (Fig. 9.4a). There was an associated 

maximal increase in myocardial blood flow of 24% (p< 0.001) and 

decrease in coronary vascular resistance of 14% (N.S.). The 

corresponding heart rate, aortic dp/dt, right atrial pressure 

and mean arterial blood pressure did not change significantly.

At hypothermia (Fig. 9.4b) arterial oxygen tension fell from 

113 + 8 mm Hg to 21 + 4 mm Hg during hypoxia. There was an 

associated maximal increase in myocardial blood flow of 53% 

(p<0.02) and decrease in coronary vascular resistance of 37% 

(p<0.05). The decrease in heart rate of 20 beats/min and 

arterial blood pressure of 12 mm Hg were not significant. 

Restoration of arterial oxygen tension to normal at hypothermia 

was associated with return to control haemodynamic values but 

at normothermia myocardial blood flow, mean arterial blood
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pressure and aortic dp/dt tended to be below control values.

Two differences in the pattern of myocardial blood flow response 

to hypoxia at the two temperatures were noted (Fig. 9.5).

1) The interval between the onset of hypoxia and the 

occurrence of peak flow was a mean of 11 minutes (range 

5 - 2 0  minutes) at normothermia and 18 minutes (range 

7 - 3 9  minutes) at hypothermia.

2) The absolute arterial oxygen tension producing peak 

flow response was 30 + 2 mm Hg at normothermia and

21 + 4 mm Hg at hypothermia (corresponding to inspired 

oxygen fractions of 0.095 and 0.076 respectively).

At both temperatures myocardial blood flow remained elevated 

throughout hypoxia. Two of the hypothermic series showed 

an early transient fall in flow in response to hypoxia.

Myocardial oxygen availability fell by 31% (p<0.01) and 

extraction rose from 39 + 2 to 63 + 5% (p<0.01) during hypoxia 

at normothermia; myocardial oxygen consumption did not change 

significantly. Myocardial oxygen availability, extraction 

and consumption were not significantly altered during hypoxia 

at hypothermia. Coronary sinus oxygen tension and content 

fell markedly at normothermia and less so at hypothermia
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(Fig. 9.6). During hypoxia there were no significant changes 

in arterial pH, PGO^ or base excess either at normothermia or 

hypothermia.

Arterial lactate rose by 5 and 6 mg/lOOml during hypoxia at 

normothermia and hypothermia respectively but only the former 

was a significant rise (p<0.05). Arterial pyruvate and glucose 

also rose but not significantly. Myocardial lactate extraction 

fell significantly (p<0.01) during hypoxia at normothermia 

but lactate consumption did not change. No significant change 

occurred in myocardial consumption of any of the substrates 

measured during hypoxia at hypothermia even when the hypoxia was 

sustained for over one hour.

ECG Effect on Hypoxia

Disturbances of the ECG pattern at normothermia included junctional 

rhythm (three animals), ventricular extrasystoles (four animals) 

and ST-T wave abnormalities (three animals). At hypothermia 

junctional rhythm was not observed in response to hypoxia 

but ventricular extrasystoles were common (six animals) and 

ST-T wave abnormalities were also noted (three animals).

Effect of Hypercapnia at Normothermia and Hypothermia 

Arterial carbon dioxide tension rose from 40 + 1 mm Hg to
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95 + 5 mm Hg during hypercapnia at normal body temperature 

(Fig. 9.7a). There was an associated maximal increase in 

myocardial blood flow of 32% (p<0.02) and decrease in coronary 

vascular resistance of 25% (p<0.01). Heart rate, arterial 

blood pressure and aortic dp/dt did not change significantly 

but right atrial pressure rose from -1.6 + 0.7 mm Hg to +0.4 + 1.1 

mm Hg (p<0.01). At hypothermia (Fig. 9.7b) arterial carbon 

dioxide tension rose from 25 + 1 mm Hg to 77 + 4 mm Hg during 

hypercapnia. There was an associated maximal increase in 

myocardial blood flow of 69% (p <0.001) and fall in coronary 

vascular resistance of 37% (p<0.001). Heart rate fell by a 

mean of 16 beats/min (p<0.01). Arterial blood pressure, 

aortic dp/dt and right atrial pressure were not significantly 

affected. Within 20 to 30 minutes of withdrawal of the added 

carbon dioxide the haemodynamic values had returned to normal.

Four differences in the pattern of myocardial response to hyper

capnia at the two temperatures were noted:

1) The interval between the onset of hypercapnia and peak 

flow was a mean of six minutes (range 3 - 1 0  minutes) 

at normothermia and 14 minutes (range 3 - 2 5  minutes) 

at hypothermia.

2) The response to sustained elevation of varied in
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that at normothermia myocardial blood flow fell rapidly 

towards control values after peak flow, while at 

hypothermia myocardial blood flow remained high for 

prolonged periods after peak flow (Fig. 9.8).

3) The absolute PaCC^ level related to peak flow at normo

thermia was 9 5 + 5  mm Hg and at hypothermia was 7 7 + 2 5  

mm Hg. The control PaCO^ levels in each situation

of course differed significantly. In four animals, 

increases in PaCC^ at hypothermia above that producing 

peak flow response resulted in a fall of myocardial 

blood flow. In two, the falls were severe and associated 

with supraventricular bradycardia and hypotension; 

in one of these sudden ventricular fibrillation occurred.

4) In four of the animals at hypothermia a transient fall 

in myocardial blood flow was observed in the first few 

minutes after elevation of PaCC^ (Fig. 9.9). This effect 

was not seen in any of the animals at normothermia.

Myocardial oxygen availability increased during hypercapnia at 

both temperature levels although proportionately more at hypo

thermia (70% - p <  0.001 and 35% - p<0.02) because of the 

greater increase in myocardial blood flow. Myocardial oxygen 

extraction fell significantly at both temperatures (p< 0.05 (n) 

p<0.01 (h); oxygen consumption was not significantly altered
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at normothermia but fell significantly at hypothermia (p <0.01). 

Coronary sinus oxygen tension and content rose markedly at both 

temperatures (Fig. 9.10).

Hypercapnia produced an expected fall in the pH of arterial 

blood at normothermia from 7.36 + 0.01 units to 7.09 + 0.02 

units with a minor shift in base excess from - 3 + 1  mEq/1 to -6 + 2 

mEq/1; at hypothermia the equivalent changes in pH were 7.47 +

0.02 units to 7.09 + 0.03 units with a more marked increase in 

base excess from - 4 + 1  mEq/1 to -10 + 1 mEq/1.

Arterial lactate fell during hypercapnia at normothermia (p <0.05) 

with no significant changes in coronary sinus lactate or arterial 

and coronary sinus pyruvate; arterial glucose rose by 17 mg/lOOml 

(N.S.). At hypothermia no significant changes occurred in 

lactate or pyruvate values during hypercapnia although there were 

significant increases (p<0.05 and <0.01 respectively) in 

the arterial and coronary sinus glucose values (by 45 mg/lOOml 

and 51 mg/100 ml respectively). Lactate extraction and consumption 

were unchanged during hypercapnia at normothermia but fell 

significantly at hypothermia (p<0.01 and <0.05 respectively); 

myocardial handling of pyruvate at hypothermia was unchanged.

In spite of the increase in arterial glucose with hypercapnia
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no utilisation of this substrate was consistently demonstrable 

at either temperature. Neither the arterial level nor the 

consumption by the heart of free fatty acids was influenced 

by hypercapnia at hypothermia in two animals.

ECG Effects of Hypercapnia

Raised arterial PCC^ had no statistically significant effects 

on the measured components of the ECG at normothermia (Fig. 9.3) 

but at hypothermia the PR interval was prolonged (p<0.05) and 

heart rate was reduced (p<0.02). The incidence of junctional 

rhythm, ventricular extrasystoles and ST-T wave abnormalities 

was comparable to hypoxia at normal body temperature. At 

hypothermia, however, multiple extrasystoles were more common 

and ventricular fibrillation occurred on one occasion.

Discussion

Effect of Hypothermia

The cardiovascular effects of surface-cooling hypothermia observed 

in this study are similar to those previously reported. The fall 

in cardiac output is attributed mainly to a decrease in heart 

rate (Bigelow, Lindsay and Greenwood, 1950; Kuhn 

and Turner, 1959); changes in stroke volume appear 

to relate more to depth of associated anaesthesia or 

reduced venous return (Prec et al, 1949). Since hypothermia
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P^p se appears to improve myocardial contractility at least 

to 27 deg C (Berne, 1959; Schmidt and Chang, 1960; Badeer,

1962; Badeer, 1967) the fall in left ventricular dp/dt during 

cooling may also be explained in part by the continuing effect 

of anaesthesia (Rittenhouse et al, 1971). Cardiac work and 

myocardial oxygen consumption decrease progressively with 

temperature but in the intact organism the relative magnitude 

of these changes varies such that cardiac efficiency may fall 

(Edwards et al, 1954; Jude, Haroutunian and Folse, 1957), rise 

(McMillan et al, 1957) or remain unchanged (Hansen et al, 1956).

It has been suggested that this difference depends on work load 

and that comparisons of efficiency at normal temperature and 

high work loads with efficiency at low temperature and low work 

loads may be misleading (Reissmann and Van Citters, 1956; Berne, 

1959).

Myocardial blood flow is reduced in response to a reduction in 

body temperature. Since coronary blood flow in the normothermic 

dog is intrinsically adjusted to cardiac metabolic needs (Gregg, 

1950), it seemed reasonable to explain the reduced blood flow 

during hypothermia on the basis of decreased cardiac work and 

oxygen consumption (Berne, 1954). There is disagreement about 

the precise effect of cold on the coronary vessels. Vasodilatation



has been observed in some studies (Markwalder and Starling, 

1913; Cruickshank and Subba Rau, 1927; Anrep, Blalock 

and Hammonda, 1929; Sabiston, Theilen and Gregg, 1955; Berne, 

1956; Mangiardi et al, 1965) while other studies have 

indicated no change or vasoconstriction (Gerola, Feinberg 

and Katz, 1959; Jude^Haroutounian and Folse, 1957; Gollan, 

1959). Cross, Rieben and Salisbury (1962) sought to explain 

these discrepancies and concluded that in the non-failing 

heart the coronary vessels only dilated during cooling if 

oxygen tension fell; in the failing heart, however, neither 

reduced temperature nor low oxygen tension altered coronary 

vasomotor tonus. In most in vivo hypothermia experiments, 

at least at moderate temperature levels, myocardial vascular 

resistance is increased. To what extent this is due to 

coronary vasoconstriction or to increased viscosity remains 

unclear.

Sympathetic stimulation and high catecholamine levels (Warner 

et al, 1970) would tend to dilate coronary blood vessels; on 

the other hand blood angiotensin levels are also elevated in 

hypothermia (Mundy and Noble, 1970), which would have the 

effect of reducing myocardial perfusion (Morton et al, 1977). 

The increase in blood viscosity with reduced temperature has 

been attributed to haemoconcentration (Hegnauer, Shriber and
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Haterius, 1950) and to changes in the rheological properties 

of plasma (Merrill et al, 1963). More recent work by Fukusumi 

and Adolph (1970) and Marty and his colleagues (1970) has 

highlighted the adverse flow effects in hypothermia of blood 

with a haematocrit in excess of 40%. Both vasoconstriction 

and increased viscosity could have accounted for the raised 

myocardial vascular resistance observed in the present experiments.

In spite of the reduction in myocardial blood flow it has been 

generally accepted that oxygen availability to the cooled heart 

is adequate for its requirements. The older concept that hypoxia 

was a major factor in producing the cardiac responses to hypo

thermia (Lang, Weiner and Gold, 1949; Osborn, 1953) has been 

discounted. Bigelow and his colleagues (1950) concluded that 

tissue hypoxia did not exist during hypothermia because (a) 

there were no residual effects in warmed dogs, (b) oxygen 

consumption was not increased after rewarming and (c) oxygen 

consumption did not change in dogs maintained at 19 deg C 

for periods up to four hours; Penrod (1951) reported that 

the coronary arteriovenous difference for oxygen was unchanged 

at hypothermia and was not affected by the administration of 

100% oxygen; Berne (1954) observed that myocardial function 

was not significantly altered at temperatures above 20 deg C;
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and Edwards et al (1954) found no change in myocardial lactate 

metabolism.

The data in the present study are in accord with these latter 

observations. Nevertheless, the author is wary of accepting 

unconditionally the conclusion that the myocardium is unharmed 

by hypothermia, particularly if prolonged. Histological studies 

in the dog (Sarajas, 1964) and in man (Keen and Dowlatshaki,

1970) show evidence of damage to the fine structure of the 

myocardium. Furthermore, the physiological findings do not 

necessarily imply that the myocardium is free from focal ischaemic 

areas, the existence of which would not be detected by sampling 

coronary sinus outflow (see chapter 1, p.45). In this respect the 

similarity of the cooled heart to the heart in shock states is of 

note (Heimbach et al, 1973). The possibility of foci of 

microvascular stasis in the myocardium led Fukusumi and Adolph 

(1970) to examine the effect of the administration ofdextran, 

apparently to good effect.

The ECG changes during hypothermia were unremarkable and confirmed 

previous observations (Hook and Stormant, 1941; Osborn, 1953). 

Emslie-Smith, Sladden and Stirling (1959) have pointed out that 

the "Jn wave can be detected in all cooled animals if sought 

carefully, and is of no sinister significance.



The fasted myocardium dervies its energy mainly from lipid 

metabolism although carbohydrate sources are also utilized 

(Hackel, 1960). Fatty acid, lactate and pyruvate consumption 

all fell in response to hypothermia but there was no obvious 

change in the proportion of each substrate utilized.

The only change in lung function directly attributable to 

hypothermia is an increase in physiological dead space due to 

bronchodilatation (Severinghaus, 1959; Prakash et al, 1978).

In the present study physiological dead space increased, and since 

respiratory minute volume was constant, alveolar ventilation 

fell. The alveolar/arterial oxygen tension difference rose, 

with the result that an increase in was required to maintain

a constant arterial P02« In & few animals the increase in 

^1^2 Was delayed untff reduced temperature had been attained; 
the degree of hypoxaemia in some was quite marked (for further 

discussion of this topic see chapter 13, p317).

Effect of Hypoxia

The coronary blood vessels dilated in response to hypoxic 

hypoxaemia much to the same extent during hypothermia as at 

normal body temperature. The apparently greater decrease in 

myocardial vascular resistance at reduced temperature may be 

explained by the lower arterial P02- At the point of maximum 

increase in flow at normothermia the mean coronary sinus P02 

was 17 mm Hg, corresponding to an oxygen content of 4.0 ml/lOOml
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blood (similar to that observed in the animals reported in 

chapter 7, pl50). At hypothermia the equivalent coronary 

sinus PO 2  was 12 mm Hg, corresponding to an oxygen content 

of 8.2 ml/lOOml blood (illustrating the alteration in oxygen 

dissociation). Coronary sinus PO2  would appear to be an important 

factor in the control of coronary blood flow at low temperature 

and is independent of coronary sinus PCC^ and pH which were, on 

average, 13 mm Hg and 0.19 units lower and higher respectively than 

the equivalent values during hypoxia at normothermia.

The observation that myocardial oxygen consumption remained 

unchanged during hypoxia at hypothermia indicates that the normal 

heart is able to protect itself satisfactorily under these 

circumstances. Penrod (1951) came to a similar conclusion when 

he reported that coronary arteriovenous oxygen differences 

remained quite large even when coronary sinus PO 2  was as low 

as 4 mm Hg. These observations were not substantiated, however, 

in the failing heart which was shown to be unresponsive to 

diminishing P02 (Cross, Rieben and Salisbury, 1962).

Effect of Hypercapnia

A coronary vasodilator response to hypercapnia during hypothermia



was observed. The decrease in myocardial vascular resistance, 

however, was greater at hypothermia than at normal body temper

ature and was sustained throughout the period of hypercapnia.

Why the coronary blood vessels at reduced temperature should not 

become refractory to the vasodilating effect of raised CC^ 

as they appeared to do at normothermia is uncertain. As had 

been noted in earlier studies (chapter 4, pL15), hypercapnia was 

associated with a number of undesirable side effects; although 

hypotension did not occur consistently, bradycardia and 

metabolic acidosis were common findings and if arterial PCC^ 

was further raised, nyocardial blood flow fell and dangerous 

arrhythmias ensued.

It was concluded that coronary vascular reactivity in the normal 

heart remains unaltered in character although not necessarily 

in degree under hypothermic conditions (26 deg C).
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Chapter 10

Treatment of patients suffering from generalised hypoxia (or 

its consequences) involving; hyperbaric oxygen, hypothermia 

and correction of acidosis; a miscellaneous group of 

clinical histories relevant to the Experimental Section

In this chapter data are presented from a series of patients 

in whom the common pathophysiological feature was generalised 

hypoxia although of widely varying aetiology.

COAL GAS POISONING 

It is appropriate to give priority to coal gas poisoning 

since historically this hypoxic condition was amongst the 

first to be treated with hyperbaric oxygen. The details 

of treatment and outcome have been extensively reviewed 

elsewhere (Norman and Ledingham, 1967; Ledingham, 1972) 

and only the main points will be cited here.

Carbon monoxide has an affinity for haemoglobin approximately 

250 times greater than that of oxygen and also affects the 

dissociation of the remaining oxyhaemoglobin. Tissue death 

occurs as an indirect result of hypoxia rather than of any 

direct toxic action of the gas. Apart from its lethal



effects, carbon monoxide poisoning is associated with 

prolonged, if not permanent, damage to several tissues 

of the body including the brain (Garland and Pearce, 1967), 

the peripheral nerves and the heart (Jaffe, 1965). The 

muscle and skin changes which have been described may be 

attributed, in many instances, to a combination of hypoxia 

and local pressure ischaemia.

Two factors are of particular importance in the treatment 

of carbon monoxide poisoning - the partial pressure of oxygen 

in the pulmonary capillaries and alveolar ventilation. The 

lungs offer the only pathway for excretion of the gas, and 

oxygen at 2 to 2.5 ATA is the optimum gas for treatment in 

that the maximum rate of excretion of carbon monoxide is 

combined with freedom from acute cerebral oxygen toxicity.

Although experimental evidence of the effectiveness of 

hyperbaric oxygen in carbon monoxide poisoning is abundant 

(Norman and Ledingham, 1967), clinical experience has not 

been so clearcut (Ledingham, 1967). There appear to be two 

facets to the problem and these can best be presented with 

reference to a recent study (Smith and Brandon, 1970) in a



defined population within the United Kingdom. The overall 

mortality from coal gas poisoning in this region was 40%.

As is common, the great majority (96%) died before reaching 

hospital and the only method of improving this figure in the 

future would be to provide mobile hyperbaric oxygen facilities. 

(Limited experience with such facilities in the Glasgow area 

was discouraging). Of the patients who were admitted to 

hospital only a very small number died (2%) and this confirmed 

the finding in another centre (Ledingham, 1967). In spite 

of its undoubted clinical efficacy, therefore (Fig. 10.1), 

hyperbaric oxygen has little or no part to play in increasing 

survival rate following carbon monoxide poisoning. On the 

other hand, hyperbaric oxygen may lower the morbidity 

associated with this condition. Prolonged delirium complicated 

20% of patients recovering from carbon monoxide poisoning in 

the study of Smith and Brandon (1970) and only 50% received 

any form of oxygen therapy. Clearly carbon monoxide receives 

less energetic treatment in some centres than the condition 

justifies and results from the Glasgow group (Smith et al,

1962) suggested that hyperbaric oxygen is capable of eliminating 

much of the long-term neurological sequelae.

One of the reasons advanced for the protracted delay in
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recovery of consciousness in patients with severe carbon 

monoxide poisoning has been the development of cerebral 

oedema. Hyperbaric oxygen can reduce raised intracranial 

pressure resulting from cerebral oedema (Miller, Ledingham 

and Jennett, 1970) but clinical evidence of the value of 

hyperbaric oxygen at this stage of carbon monoxide poisoning 

is lacking. Sluijter (1967), in an experimental study, was 

unable to demonstrate any beneficial influence of hyperbaric 

oxygen in delayed recovery of consciousness following severe 

poisoning although the protective influence of hypothermia 

was readily demonstrable.

It is fortunate that in the United Kingdom the change from 

coal gas to natural gas as a fuel source has reduced the 

incidence of carbon monoxide poisoning (Fig.10.2).

PULMONARY GAS EXCHANGE DISTURBANCES 

A number of assorted conditions have been grouped under 

this heading including severe pulmonary oedema, for which 

hyperbaric oxygen has been used, and paraquat poisoning and 

acute exacerbations of chronic respiratory failure, for which 

hyperbaric air has been used.
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Pulmonary Oedema

Severe pulmonary oedema may result from acute left ventricular 

failure, from the irritant effects of certain gases and liquids, 

from infection, or as a sequel to trauma and shock. An 

increase in the inspired oxygen concentration usually relieves 

the hypoxaemia until such time as recovery of the primary 

disturbance occurs. Occasionally high concentrations of 

oxygen together with intermittent positive pressure ventil

ation become necessary to maintain an adequate arterial PC^- 

The value of membrane oxygenators, which reduce dependency 

on the lungs, is currently being assessed.

Very few reports are available of treatment using hyperbaric 

oxygen (Horatz, 1966; Patrick et al, 1970; Jacobson et al,

1970) but there is no doubt that a low arterial PO 2  can be corrected 

in this way. Figure 10.3 shows data from a patient with severe 

hypoxaemia in whom oxygen at 2 ATA prevented a potentially lethal 

fall in arterial PO 2  on three occasions.

Another example concerns a patient of 28 years of age who 

was suffering from coliform septicaemia secondary to septic 

abortion. On admission the patient was in severe shock,
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hypotensive, cyanosed, toxic, and anaemic. The arterial 

blood gas values were: pH 7.49 units; PCO  ̂ 18 mm Hg;

base excess 7 mEq per litre; PO 2  not measured. Treatment 

with rapid intravenous infusion of blood, plasma, hydro

cortisone, and antibiotics (the latter two in large doses), 

and 100% oxygen was instituted. Three hours after the 

commencement of this therapy, the arterial blood gas 

values were: pH 7.41 units; FCO^ 32 mm Hg; base excess

4 mEq per litre; PO 2  260 mm Hg. The PO 2  of mixed venous 

blood, withdrawn from the pulmonary artery, was 37 mm Hg.

At the end of nine hours of continuous intensive therapy 

along these lines, the patient's clinical condition had 

deteriorated; shock was more marked, and oliguria was 

present. Chest x-ray revealed severe pulmonary congestion 

probably aggravated by somewhat enthusiastic intravenous 

fluid infusion.

Within two to two and a half hours of compression to 2 ATA 

the patient's clinical condition improved. The blood 

pressure was 115/60 and the arterial P02 had risen to 

560 mm Hg. Later arterial blood gas analysis revealed 

the following values: pH 7.40 units; PCO 2  4-0 mm Hg;
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base excess 0 mEq per litre; PO 2  S20 mm Hg. Mixed venous 

blood had an oxygen tension of 60 mm Hg. Exposure to 100% 

oxygen at 2 ATA was continued for 13 hours, by which time 

the patient was much improved clinically, her tachycardia 

had lessened, and she was passing reasonable quantities of 

urine. Decompression to normal pressure was completed 24 

hours after admission to the hospital.

During the initial phase of treatment, when the patient was 

breathing 100% oxygen at normal pressure, the calculated 

intrapulmonary true shunt was 25% of the cardiac output 

compared with the normal value of around 1%. With oxygen 

at twice atmospheric pressure, after an initial rise, the 

true shunt apparently fell to 18%. A reasonable explanation 

of these data would be that pulmonary oedema had been partially 

cleared during the exposure to oxygen at 2 ATA. Largely 

because of the haemolytic anaemia which was present in this 

patient during the shock state, the mixed venous oxygen 

content was only 4.2 ml/100 ml blood. Oxygen administration 

at normal pressure raised the mixed venous oxygen content 

to 8.3 ml/lOOml, while oxygen at 2 ATA increased the value 

to 11.8 ml/lOOml. Complete restoration of the mixed venous 

value to the normal of about 14 ml oxygen per 100 ml blood
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could have been achieved by increasing the ambient pressure 

to 3 ATA. Hyperbaric oxygen in this instance appeared to 

break the vicious circle of infection, hypotension and 

vasoconstriction.

The final example of the benefit accruing from the use of 

hyperbaric oxygen in selected cases of severe pulmonary 

oedema is described in detail in the following reprint.
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Sum m ary : T h re e  weeks after adm ission to a m aternity  
hospital for observation following m inor an tepartum  

haem orrhage, a prim iparous patien t aged 22  suffered a 
sudden left hem iplegia and becam e comatose. Congestive 
cardiac failure ensued and because of the subsequent 
severe hypoxaem ia she was transferred  to the hyperbaric 
oxygen unit at the W estern Infirm ary, Glasgow, w here 
it was found possible to im prove her condition by m eans 
of oxygen a t increased pressure. A caesarean section was 
successfully perform ed in the hyperbaric cham ber, and a 
norm al live fcm&le in fan t was delivered. T hough  the 
patien t’s general condition im proved she never regained 
consciousness and died alm ost three m onths later. 
N ecropsy confirm ed the clinical diagnosis of cardio
m yopathy of pregnancy w ith severe ischaem ic changes in 
the  brain.

Introduction
C ardiom yopathy of pregnancy is a relatively uncom m on and 
frequently fatal condition. T h e  following case presented some 
unusual features.
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Case H cport

On 26 H cam brr 1 966 I, 22-ycar-oM prlrniparn in the 37th week 
of ptegmmey wax ndmiltnl to n maternity hospital for observation 
beam >n of minor antepartum haemorrhage. There wax no record 
of any illness before her pregnancy, and until the time of her 
mlmiv.ion r.hc had been in good hcaltli. On ndmmion clinical 
examination was negative, her pulse rote being 84 per minute and 
bJood pressure 110/70 mm. H;'.

She was kept under observation for three weeks, during which 
no alteration occurred in her condition, until suddenly, while in 
bed at 6.50 p.m. on 16 January 1967, 6hc complained of tingling 
and pins-and-nccdlcs in her left limb and abruptly became un
conscious and cyanor.cd with stertorous respiration. Within minutes 
the pulse rate was 140 and the blood pressure 150/100. Neuro
logical examination revealed an unconscious patient with left-sided 
hemiplegia, the right pupil being larger than the left.

To eliminate the possibility of intracranial haemorrhage or occlu
sion of n major artery which might be amenable to surgery, emer
gency transfer was arranged to the Institute of Neurological Sciences 
(Killcarn Hospital). A right carotid angiogram showed no abnor
mality. The lumbar cerebrospinal fluid was clear though the 
protein level was 240 mg./lOO ml. The diagnosis therefore 
remained in serious doubt.

Ily the following morning (17 January) the patient's general con
dition had deteriorated, the most clamant features being hyper
ventilation and gross cyanosis. There was n persistent tachycardia 
(120 per minute), and the blood pressure was 135/100. The arterial 
blood gas values while the patient breathed air were: />IJ 7.330 
units ; IV.Oj 32 mm. 11g ; base excess - - 8  ml'.q/l. ; I’Oj 48 mm. Ifg. 
After the administration of 100 mliq of sodium bicarbonate a slight 
improvement in her condition was noted, and spontaneous move
ments of the left side were observed. Oxygenation of the patient, 
however, continued to be a source of anxiety, and during the sub
sequent administration of 1 0 0 % oxygen the arterial oxygen tension 
was found to be only 50 mm. Hg. A chest radiograph showed a 
severe degree of pulmonary oedema with enlargement of the heart. 
On the afternoon of 17 January— that is, 24 hours after the initial 
collapse— the patient vvas transferred to the hyperbaric oxygen unit 
of the Western Infirmary for further assessment and therapy.

On her admission the blood pressure, which had been 100/80 
before she left the neurosurgical centre, had fallen to 95/60, and 
the pulse rate was 144. The heart was clinically enlarged, and 
there was triple rhythm. No murmurs were noted. Clinical exam
ination of. the lungs showed widespread crepitations, and the jugular 
venous pressure was raised. An initial electrocardiogram (lead II 
only) showed sinus tachycardia. Blood gas values while the patient 
breathed 100% oxygen are shown in Table I.

Among other possible manoeuvres to relieve the patient’s hypoxia, 
the question of early caesarean section was raised at this stage. 
There was, however, little evidence of foetal distress, nor were 
there any acute obstetrical indications for the procedure. Obstetrical
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opinion favoured at least some delay In the hope that continued 
oxygenation at normal pressure with relief of metabolic acidosis 
might improve the patient's condition without the n e c e s s ity  for 
operative intervention. 'I he blood p.as values two hours later with 
the patient breathing oxvp.cn spontaneously arc given in Table 1. 
An electrocardiogram showed changes consistent witit widespread 
nntcrolatcral isr.hacmia ( l:ig. 2 ). because of the marginal nature 
of the improvement which had taken place in the patient’s condition 
with 1 0 0 % oxygen at normal pressure, and because of the onset now 
of foetal distress (the foetal heart rate had risen to approximately 
2 0 0  per minute and was irregular), it was decided to assess the effect 
of oxygen administration at 2 atmospheres absolute.

before compression started, however, the patient began to have 
generalized convulsions, which became continuous within minutes, 
and her general condition deteriorated until death was thought to 
be Imminent. Curare was administered intravenously nnd positivc- 
prcssurc ventilation begun, which brought the convulsions under 
control. The blood gas values after this episode, at four hours, arc 
given in Table I. Ventilation with 1 0 0 % oxygen and administration 
fcf bicarbonate promptly corrected the respiratory and metabolic 
acidoses, but the arterial oxygen tension remained unchanged at 
70 mm. Hg. Over the next 20 minutes the blood pressure rose to

fiG . 1.—Electrocardiogram taken during period of hypoxaemia, showing 
evidence of widespread anterolateral ischaemia.
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9 0 / CO, though gross peripheral vasoconstriction was present nnd the 
pulse rale was 166.

Eollowing compression lo 2 atmospheres absolute there was a 
marked improvement in the patient’s condition: the blood pressure 
rose to 100/70 mm. Up and the periphery became warm and pink. 
The- blood pas values shortly after reaching the increased pressure 
ore given in Table I, The foetal heart rate, which bad been 220 
and irregular immediately before compression, fell to 165 nnd be
came regular. Caesarean section was now performed (Professor I. 
Donald, University Department of Obstetrics and Gynaecology), 
nnd proceeded remarkably smoothly, though it was noted that the 
uterus remained slight cyanoscd in spite of the high maternal arterial 
oxygen tension. A normal live female child was born with an 
Apgar score of 9 (Apgar ci al., 195H).

After two hours at 2 atmospheres absolute the chamber was de
compressed to normal pressure, ventilation of the patient being 
continued by means of an East Radcliffc ventilator with 1 0 0% 
oxygen. The maximum arterial oxygen tension at increased pres
sure was 490 (Table I): a few minutes after reaching normal pres
sure it was 121 mm. Hg (Table I). Phcnytoin sodium and pheno- 
barbitone were given as anticonvulsants ; hydrocortisone and 
digoxin as non-specific therapy for cardiomyopathy. Mannitol was 
administered as prophylaxis against cerebral oedema.

Over the next few days the patient’s general condition improved 
until, breathing air without added oxygen, she was able to remain 
well oxygenated. lie  conscious level rose until she could grip to 
command with her right hand, but the left hemiplegia persisted. 
No further clinical improvement occurred, though serial electro
encephalography showed resolution of the profound abnormalities 
seen in the early stages. She remained in this state of unconscious
ness until her death two and a half months after admission.

During the period which succeeded the caesarean section attempts 
were made to clarify the primary diagnosis. Biparietnl burr-holes 
revealed normal intracranial pressure ; a brain biopsy specimen, was 
taken, the appearances being suggestive of recent ischaemic neuronal 
necrosis : viral studies on the biopsy fragments were negative. 
Enzyme studies on the blood were carried out (Table II). Evidence 
of continuing destruction of cells, was present, the myocardium being 
especially incriminated in view of the continued raised levels of the 
heart-specific fraction of lactic dehydrogenase.

Necropsy Report
Significant abnormalities were restricted to the cardiovascular 

and central nervous systems.
Cardiovascular System .—The heart (415 g.) was increased in its 

transverse diameter owing mainly to enlargement of the right 
ventricle. The valve cusps and the endocardium appeared normal, 
and there was no intramural thrombus. The coronary arteries, the 
aorta, and the major neck arteries were of entirely normal 
appearance. On section the myocardium was uniformly pale and



7 .MU.R II. — M o o d  I i n z y n n  Values  T h r o u g h o u t  Post  por t ion  Period

Mn/.ymc: 1..D.IT. 
(m u./ml.) (U .S.) 

(m u./ml.)

S.AsT. j S. A IT. 

(Prr.nkcl U niu )
Aldolase 
(m u./ml.)

C .l’.K.
(m u./m l.)

Normal
upper
lim lti 195 70 40 40 6 1 0

Day:
1 365 90
3 474 195 185 22
6 414 202 90 88 41
8 390 18 1 80 85 4 8
9 477 200 n o 180 3 6 0 64

12 328 166 105 125 3 1 0-53
13 328 155 90 100 2 5 0-42
14 312 141 105 125 2-7 0-64
16 220 135 80 125 2-9 0-32
19 314 121 125 260 4-3 0-53
22 264 —- 96 188 2-3
26 248 49 108 2-1
29 218 50 93 1-8
37 394 85 136 2-2
47 306 115 63 2-2
55 194 120 112
75 162 10 8 15

L .D .H . •• Lnctic dehydrogenase. L .D .II. (H .S.) — Lactic dehydrogenase (heart 
specific fraction). S.AsT. *» Serum aspartate aminotransferase. S.AIT. — Scrum  
■ limine aminotrunsfcrusc. C .l’.K. <■ Creatine pliuspliokinanc.

rather waxy in appearance. Microscopical examination disclosed 
many lightly collagcnizcd foci devoid of muscle fibres throughout 
the myocardium, but particularly in the subendocardial portion of 
the left ventricle. At the margins of these foci there were histio
cytes and empty s3rcolcmmal envelopes. There was no diffuse 
inflammatory process, but there were very occasional small discrete 
foci of lymphocytes and eosinophil leucocytes.

Central Nervous System .— In the brain (1,320 g.) the only ex
ternal abnormalities were small rather ill-defined bilateral depres
sions in the cortex of the frontal, parietal, and occipital lobes about 
1-2 cm. lateral to the intcrhemispheric fissure. Coronal sections 
of the cerebrum after fixation showed that these depressions were 
due >to bilateral essentially symmetrical bands in the boundary zone 
(“ watershed”) between the anterior and middle cerebral arterial 
territories where the cortex was.shrunken, soft, and rather granular, 
in  all of the many large sections examined microscopically the 
central part of each lesion had the appearance of old total infarc
tion. These foci of total necrosis were continuous on either side, 
with a narrow zone of subtotal and often pscudolaminar neuronal 
Iocs beyond which the cortex was normal. The entire lesion was 
rarely more than about 1.5 cm. wide and afFccted the cortex on the 
gyral crests as well as within sulci (Fig. 2). Where infarction of 
the cortex was complete there was a narrow subcortical band of 
myelin loss.

Mo other naked-eye abnormalities were observed in the brain or 
spinal cord, but a full neurohistological study showed more wide
spread morbidity. On the inferior aspect of the left occipital lobe, 
in the boundary zone between the middle and posterior cerebral 
arterial territories, there were two large foci of subtotal neuronal 
loss in the cortex. In each insula and in the temporal gyri there



was a mild laminar thinning of neurones. In Amnion’s horns there 
was subtotal neuronal loss and gliosis in cadi cndfolium and mild 
focal neuronal loss in the Sommer sectors. In the thalamus there
was a profound bilateral loss of neurones in the dorsomcdial nuclei
and in the anterior and lateral complexes. There v/as also a
moderate neuronal loss in the corticomcdial and central segments
of the amygdaloid nuclei. In the cerebellum there was a consider
able loss of Purkinjc cells.

Fie,. 2.— Diagram s of (a) pos
terior part of frontal lobes and  
(b) parietal lobes based on  
tracings made from  large
ccllo id in  sections. T h e  d istr i
bution of neuronal loss in the
cortex is show n by the dotted
areas. T h ese  lie in the bou n
dary zones (“ watersheds ”)
betw een the anterior and
m iddle cerebral arterial terri
tories. N euronal loss affects 
the fu ll th ickness of the cortex  
in the central part of each
abnorm al area but becom es
subtotal on each side. T h e  
reduction in thickness o f the
cortex secondary to the ischae

m ic dam age is not show n.

There was no naked-eye or microscopical evidence of vascular 
occlusion or of intrinsic arterial disease.

Discussion

T his patient presented problems both in diagnosis and m 
management. T here was clear evidence of abnormality in the 
brain and in the heart.

A diagnosis of cardiom yopathy of pregnancy was supported 
by the presence of an enlarged heart, triple rhythm , sinus tachy
cardia, and electrocardiographic abnormalities (Meadows, 
1960) ; the blood enzyme disturbances were also consistent w ith 
this diagnosis. There was no clinical or electrocardiographic 
support for the diagnosis of myocardial infarction, and at no 
tim e was there evidence of a valvular lesion. T he presence of 
cardiom yopathy was confirmed after death because of the pre
sence of many discrete collagcnizcd foci devoid of muscle fibres 
in the m yocardium  in the absence of any arterial abnormalities.

T he search for a specific actiological factor in this condition, 
or group of conditions, has failed in the past, and exhaustive 
investigations in the present case were also unsuccessful. T he 
only tenuous connecting factor was tha t prom ethazine hydro
chloride, a phenothiazine drug, had been adm inistered in  the 
*mtenatal period, and such drugs have been im plicated in

b



cardiom yopathies. W hether there is a cardiom yopathy specific 
to pregnancy is still an open question, but in a recent review 
Brown cl al. (1967) reported three cases in which this diagnosis 
was entertained.

It had been suggested in the past that embolism is the usual 
cause of strokes in patients w ith cardiom yopathy of pregnancy 
(Rosen, 1959), but there was no evidence of embolism in this 
ease nor was there any m ural throm bus in the heart. Connor 
and Adams (1966) have, however, emphasized that profound 
and fatal ischaemic cerebral damage apparently caused by an 
acute episode of cerebral perfusion failure may occur in cases 
of pregnancy cardiom yopathy. T he bilateral essentially sym
metrical watershed cortical infarcts in the present case asso
ciated w ith profound neuronal loss in the thalam us, moderately 
severe loss of Purkinjc cells, and only focal abnormalities in 
the A m m on’s horns w ith relative sparing of the “ vulnerable ” 
Som m er sectors, are in keeping with a severe though short-lived 
episode of cerebral perfusion failure. Adams ct al. (1966) have 
argued that ncuropathological abnormalities of this type arc due 
to systemic hypotension, and it would appear that in the present 
ca.'% a young woman with no occlusive arterial disease, the 
acute cerebral perfusion failure m ust be attributed to an episode 
of severe hypotension possibly associated with a transient dy:;~ 
rhythm ia, a known complication of cardiom yopathy of preg
nancy. A nother speculation is that in pregnancy there may be 
some disturbance of vascular reflexes predisposing to perfusion 
failure.

M anagem ent of such patients is lim ited to the standard 
therapy of congestive cardiac failure. Bed rest, digoxin, and 
diuretics remain the main pillars of treatm ent. T he position 
of steroids in cardiomyopathies is debatable. Some success 
w ith this therapy has been reported, but there is no convincing 
evidence that these drugs arc of definite value-

T h e  m anagem ent of the acute episode of hypoxacmia was of 
interest in relation to the adm inistration of hyperbaric oxygen. 
An arterial oxygen tension of 70 mm. H g would not by itself 
be a cause of serious anxiety even if, as in this ease, it were 
achieved when using positivc-pressure ventilation and 1 0 0 % 
oxygen. T h e  improved clinical condition of the patient, how
ever, following the increase of the arterial oxygen tension to 
over 300 mm. H g at 2 atmospheres absolute was striking, as 
was the relief of the signs of foetal distress. T he finding of 
an increase in arterial oxygen tension from  70 mm. H g with 
oxygen at norm al barom etric pressure to about 300 mm. H g as 
a result of oxygen adm inistration at 2 atmospheres absolute 
w ould be expected, assuming that there was no change in  the 
am ount of venous adm ixture (shunting) o r in cardiac output. 
T h e  later rise in arterial oxygen tension a t increased pressure
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to nearly 500 mm. Up is consistent with an increase in cardiac 
ou tpu t in the immediate postpartum  period (Adams, 1954).
Sustained im provem ent in oxygenation probably resulted from  
the effects of the increase in cardiac output combined w ith the 
disappearance of the acute pulm onary oedema for which in ter
m itten t positivc-prcssurc ventilation was most likely to have 
been responsible.

Cardiom yopathy docs not usually present in such a dram atic 
fashion, and there may even be unsuspected eases am ong preg
nant women, some of whom develop cardiac failure for no 
obvious reason. .Screening of the antenatal population w ith 
1 2 -lead electrocardiography may bring the problem to light.
I t  would seem logical to keep under close observation any >
patients who show unexplained electrocardiographic abnor
malities in order that immediate hospital admission m ight be 
arranged if early signs of cardiac decompensation occur. On 
the other hand, when catastrophic cerebral events develop 
w ithin m inutes, as in this patient, it would be impossible to 
suggest any specifically effective prophylactic o r therapeutic 
measure.

• ; We gratefully acknowledge the help and co-operation of Professor
I. Donald and staff of the University Department of Obstetrics and 
Gynaecology, and of Dr. J. G. iMone and Dr. J. P. Vance, of the 

i Department of Anaesthetics, in the management of this patient.
; We are further grateful to Dr. I. Haliburton, of the Department

of Biochemistry, for the detailed serum enzyme studies, and to 
Dr. Constance A. C. Ross for virological studies.

I
; R e f e r e n c e s

A dam s, J. Q . (1954). A m e r .  J. O bste t .  G yn ec . ,  67 , 741.
A dam s, J. H ., B ricrlcy, J. B ., C onnor, R. C . R ., and T rc ip , C . S . (1966). 

Brain, 89, 235.
A pgar, V ., H oladay, D . A ., Jam es, L. S ., W cisbrot, I. M ., and Berrien, 

J C . (1958 ). 7. A m er .  m ed .  Ass .,  168, 1985.
i '  B row n, A . K ., D oukas, N \, R id ing, W . D ., and Jones, E . W . (1967).
j Brit . H eart  J., 29 , 387.
’ C onnor, R . C . R ., and A dam s, J. H . (1966). J. clin. Path.,  19, 244.
; ■ M ead ow s, W . R . (1960 ). A m e r .  J. Cardio l .,  6 ,  788.

Rosen, S M . (1959). Brit. m e d .  J., 2 , 5

j  .______________________________ _— —------------------------------------ :-------------
‘ Printed in  Great Britain by Fiaher, Knight and C o., L td ., S t. A lbani.

848/68 . .

H

t

t

i



220.

Paraquat Poisoning

In the case of the pulmonary complications of paraquat 

poisoning the high pressure environment has been used for 

rather different reasons. When more than 60% oxygen at 

normal pressure is required to maintain an adequate 

arterial Partfcularly if this concentration has to

be administered over a prolonged period, the danger of 

oxygen toxicity has to be considered. There is evidence 

that oxygen in concentrations of this order at normal 

pressure can eventually lead to progressive thickening 

of the alveolar membrane with variable effects on the 

ephithelial lining of the alveoli and the endothelium 

of the pulmonary capillaries (Mullinax and Beischer, 1958; 

Michel, Langevin and Gell, 1960). No alternative to 

increasingly high concentrations of inspired oxygen is 

available at normal pressure in the presence of a steadily 

falling arterial PO^- On the other hand, use of a compressed 

air environment permits the maintenance of a normal arterial 

PC> 2 without the administration of unduly high concentrations 

of oxygen although the partial pressure of oxygen in the 

alveoli will, of course, be elevated. In a patient with 

severe paraquat poisoning the inspired and arterial blood 

gas data were as follows (gas tensions in mm Hg):
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Ambient pressure PIC>2 FI02 Pa(>2 PaC02 paH 

normal 600 0.84 63 44 7.43

These figures were achieved while the patient was mechanically 

ventilated. Later at 2 ATA the corresponding data were:

Ambient pressure PI02 FI02 Pa02 PaC02 paH 

normal 600 0.41 64 45 7.51

There is some experimental evidence that the presence of an 

inert gas such as nitrogen will delay the onset of oxygen 

toxicity by a mechanism similar to that of certain anaesthetic 

agents. It has been demonstrated, for example, that animals 

survive significantly longer at a pressure of 3 ATA when 

the inspired oxygen concentration is 66%, than at 2 ATA when 

the inspired oxygen concentration is 100%, in spite of 

identical alveolar and arterial oxygen tensions at both 

pressures (Clarke et al, 1973).

Acute Respiratory Failure

During acute exacerbations of their illness, some patients 

with chronic pulmonary disease require oxygen to alleviate 

serious hypoxaemia. An elevation of the arterial P02 of as
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little as 20 mm Hg may result in considerable improvement 

and this is normally achieved by raising the inspired 

oxygen concentration to 28-35%. Amongst the various 

problems associated with the administration of these concen

trations is the distinctly practical one that masks are not 

universally acceptable to patients over a prolonged period; 

the dangers of intermittent oxygenation in these patients 

have been described by several authors (Campbell, 1964).

An awareness of these difficulties led to the investigation 

of an alternative method of producing modest elevations of 

the inspired oxygen pressure - namely, increased pressure of 

air. It will be readily appreciated that, in terms of the 

inspired oxygen pressure, 30% oxygen at normal pressure 

(30/100 x 760 - 47) mm Hg is equivalent to 21% oxygen 

(air) at 5 p.s.i.g. (21/100 x 1061 - 47) mm Hg.

A group of 10 patients in acute respiratory failures were 

exposed first to an inspired gas mixture containing around 

30% oxygen at normal pressure (the exact concentration for 

each patient depending on individual requirement); subsequently 

they were exposed to increased air pressure with an equivalent
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partial pressure of oxygen. The mean increases in arterial 

P02 and PC02 in response to the two forms of oxygen admini

stration were measured (Fig. 10.4). In each case (circa 

30% oxygen at normal pressure and air at increased pressure) 

there was a satisfactory and similar increment in arterial 

P02- The increases in arterial PC02 were undramatic and 

equal in both situations. This manoeuvre was repeated using 

40% oxygen at normal pressure (and its equivalent at increased 

pressure) in 11 patients with acute respiratory failure.

There was the expected greater increase in arterial P02 in 

both groups (Fig. 10.5) but at the cost of a considerable 

elevation of PC02 which was significantly greater (p<0.05) 

at normal atmospheric pressure.

From these results it was accepted that, in general, there was 

little difference in the blood gas response to either form 

of oxygenation. The advantages of the method involving the 

administration of air at increased pressure were that no 

form of mask need be worn, thus avoiding anxiety about 

dangerous fluctuations in arterial P02: ancillary procedures

e.g., physiotherapy, were facilitated by the more co-operative 

attitude of the patient and humidification was a function of
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Figure 10.4. Increases in arterial P02 and PC02 in
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exposed to 30% oxygen at normal pressure 
and air at slightly increased pressure.
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the overall chamber humidity which could be controlled at 

will. Fears that the denser air might precipitate further 

respiratory deterioration (Saltzman, Sieker and Duffy,

1964) were not substantiated; expiratory reserve volume 

may, in fact, have increased (Yanda, Motley and Smart, 1964; 

Spence et al, 1970).

Experience of longer term management in some of these patients 

was gained (Fig. 10.6 and 10.7) from which it was concluded 

that air at increased pressure was advantageous in the treatment 

of a patient who was difficult to control by means of convent

ional oxygenation and in whom tracheostomy and positive pressure 

ventilation was not a readily acceptable alternative solution.

CARDIAC ARREST AND NEUROLOGICAL SEQUELAE 

The metabolic acidosis produced by total circulatory arrest 

has been described in some detail in the Experimental Section. 

Identical metabolic disturbances may follow cardiac arrest 

e.g., after myocardial infarction, and the inserted reprint 

outlines the successful treatment of ventricular fibrillation 

in one such patient using intravenous sodium bicarbonate as the 

sole pharmacological agent.
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WESTERN INFIRMARY, GLASGOW
E x t e r n a l  cardiac massage combined with external 

defibrillation has resulted in the resuscitation of patients 
who would otherwise have died from ventricular fibrilla
tion or asystole.

In  ventricular asystole cardiac massage, either external 
or internal, w'ill often restore sinus rhythm  and good 
cardiac ou tpu t; but in ventricular fibrillation this is 
unusual (W etherill and Nixon 1962, Semple and Dali 
1962). We describe here a case uf spontaneous reversion 
o f ventricular fibrillation.

Case-repori
A 58-year-old engineer with a 3-cry history of transient 

episodes of retrosternal pain on exeruon was admitted on 
April 29, 1963, at 1.15 p.m . on account of severe constricting 
chest pain of 4 hours’ duration, radiating to the throat and 
accompanied by cold sweating and breathlessness.

The patient was mildly shocked whh pallor and sweating, 
orthopnoea, and cyanosis of lips and ears. The pulse-rate was 72 
per minute, and the rhythm was regular with fair volume. The 
blood-pressure was 110/70 mm. Hg; the heart sounds were soft 
but normal, with no added soup ds. There was no evidence of con
gestive cardiac failure, but chest examination revealed bilateral 
basal crepitations. The electrocardiograph showed transmural 
anteroseptal myocardial inf.irw'on and sinus rhythm (fig. 1).

At 2 p.m . on the same day t ic peripheral pulses disappeared 
and breathing stopped. Within a minute effective external 
cardiac massage and artificial ventilation with a Brook airway 
were begun. The electrocardiograph showed ventricular 
fibrillation (fig. 2a). After 5 minutes, the trachea was intubated, 
and satisfactory oxygenation was obtained by means of a semi
closed circuit. External defibrillation was attempted at minutes 
15, 18, and 20 of resuscitation with voltages of 320, 440, and
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590 without electrocardiographic evidence of reversion to sinus 
rhythm (fig. 2b). 20 ml. of an 8-4% solution of sodium 
bicarbonate (1 mEq. per ml.) was then administered into the 
left external jugular vein, and about 2 minutes later, without, 
further electrical defibrillation, spontaneous reversion to sinus 
rhythm was noted on the electrocardiogram (fig. 2c). The 
radial pulse immediately became palpable, and soon afterwards 
the rate was 90 per minute and the blood-pressure was 100/60 
mm. Hg. About a minute later the patient gagged on the 
endotracheal tube, and after its removal he became fully con
scious and answered questions quickly and correctly.

External cardiac massage was maintained for 25 minutes, 
and at no time did the pupils dilate.

A further 80 ml. of a similar strength of sodium bicarbonate 
was given intravenously, and, as a prophylactic measure, pro
cainamide 250 mg. 4-hourly by mouth. Analysis of a sample 
of capillary blood, taken an hour later, by means of the micro- 
Astrup apparatus (Andersen et al. 1960) revealed the following: 
pH, 7-28, Pco?, 42 mm. Hg; standard bicarbonate, 19-1 mEq. 
per litre; base excess—5-2 mEq. per litre.

Using the formula suggested by Astrup (1960) (body-weight 
[kg.] x  0-3 x  base excess) we administered 105 mEq. of sodium 
bicarbonate intravenouslv to restore acid-base balance.

Lead 1

Lead 2

L e a d  3

AY.R.

AV.L.

nfcrv m

Hiw/**“W w —

Fig. 1—E le c tro c a rd io g ra p h  tra c in g  show ing  
a n te ro se p ta l  m y o c a rd ia l in fa rc tio n .
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Anticoagulant therapy with heparin 103000 units intra
venously was then begun, in addition to intrave/ious hydro
cortisone hemisuccinate 100 mg. 4-hourly and tetracycline 
100 mg. 6-hourly.

In the next 8 hours the patient’s condition gradually deter
iorated with the setting in of congestive cardiac failure and 
pulmonary oedema, which became more severe with the onset 
of ventricular tachycardia (fig. 2d). This was associated with 
acute dyspnoea and precordial pain. After a slow intravenous 
infusion of 10 mg. of morphine sulphate, 5 mg. of perphenazine, 
and 0-5 g. chlorothiazide, the peripheral pulses again dis
appeared. External cardiac massage was repeated, and 20 mEq. 
of sodium bicarbonate was again injected into the left external 
jugular vein. Before an electrocardiogram could be recorded 
the radial pulse returned. A subsequent electrocardiogram 
revealed sinus rhythm. 5 minutes later, complete consciousness 
returned. External cardiac massage on this occasion lasted 5 
minutes, and once again a corrective dose of sodium bicarbonate 
was given soon after.

The patient’s subsequent progress was entirely satisfactory, 
and he was discharged from hospital on the 53rd day. There 
was no evidence of neurological sequelae or of local mechanical 
trauma as a result of the external cardiac massage. He is now 
doing a full day’s work.

Discussion
This case illustrates the value of promptly executed 

external cardiac massage and its efficacy in providing 
adequate cerebral perfusion for many minutes. Of greater 
im portance perhaps in this case is the demonstration that 
intensive supportive therapy is needed if patients are to 
survive for long beyond the period of circulatory stand
still. Simple correction of existing metabolic disturbances 
can do much towards this end.

M etabolic acidosis, resulting from anaerobic glycolysis, 
and frequently hyperkalem ia are known to follow 
periods of circulatory arrest (Huckabee 1958, Brooks and 
Feldman 1962, Ledingham and N orm an 1962). Further, 
Ledingham and N orm an (1962) showed that myocardial

1
r a - ! i —

-b  — 4-- 4 —1— 
—i—

_r_
r c - - d —

—
<=■* A A f'V

— r  *~ H-t-— i— j—
— i—  

— i— !: I
- 4

' T

1 - L 3- iL

- rv —■
—j—

-Nr
— h

4
— i— p

-H i L4 - + -
....j. j_

-i— i—
v -y - [ ■ p / h r f r

-4—1---
1 j ujw

— 1—<-

Fig. 2— fc'.G.G. (lead II): a , V entricular fibrillation .
b , Persistence o f ventricular fib rillation  despite external defibrillation;
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d ,  V entricular tachycardia.
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function is m ore rapidly restored in dogs that are given 
a prophylactic dose of sodium bicarbonate intravenously 
immediately before arrest of the circulation than in dogs 
not so treated; dangerous arrhythmias were also less 
common in the postoperative phase in the group of 
animals treated w ith bicarbonate. Although externally 
applied countershock in this patient failed on three 
occasions to produce reversion to sinus rhythm , this 
reappeared after the adm inistration of intravenous sodium 
bicarbonate. In  a case reported by Gillespie and Thom p
son (1963) reference was made to the possible benefit of 
giving a potassium-glucosC insulin combination in the 
post-arrest phase, bu t we believe that in gross metabolic 
acidosis such an infusion can be regarded as only of 
secondary importance.

T here can be little doubt of the urgent need for adequate 
correction of acid-base imbalance after circulatory arrest, 
and experience in this hospital with several adult patients 
has shown that up to 200 mEq. of sodium bicarbonate 
should be adm inistered empirically as soon as possible 
after the arrest. U nder these conditions ventricular 
fibrillation, if present, will be more easily corrected with 
electrical countershock and left ventricular function will 
improve (Ebert et al. 1962). M ore precise correction of 
the metabolic acidosis can wait until after the acute 
incident has passed. Sodium lactate seems to be contra
indicated because of its slowness of action.

Summary
Ventricular fibrillation in  a 38-year-old m an with 

acute myocardial infarction failed to respond to external 
electrical countershock, but responded to adm inis
tration of intravenous sodium bicarbonate. A similar 
response was obtained in a later period of ventricular 
tachycardia.

We wish to thank Dr. K eith  Holloway for his help in the manage
ment of this patient; and Dr. J. A.' W. McCluskie for permission to 
present this report.
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Not all cardiac arrest victims have such an uneventful outcome. 

Of those who are resuscitated some develop evidence of pro

gressive cerebral oedema which is often fatal. Treatment 

consists of maintaining adequate oxygenation and reducing 

the oedema with steroids or mannitol. Apparent failure of these 

agents in a five year old child, who suffered cardiac arrest 

during surgical correction of a squint, prompted the instit

ution of total body hypothermia to 30 deg C. The details 

are given in the following case history.

Case Report M.McD. (F/5 yr)

Day 1 Operation for convergent strabismus; cardiac
(14/1/65)

arrest - given sodium bicarbonate and after 

external cardiac massage, blood pressure returned 

and pupils constricted. Appeared to lighten but 

did not regain consciousness.

Day 2 Deeply comatose. Cooled to 30 deg C and given

oxygen/spontaneous ventilation. Intravenous 

feeding with 20% laevulose.

Day 3 Conscious level improved - good cough reflex.

Chlorpromazine for shivering at 33 deg C.

Arterial blood gases (corrected for temperature) 

were: pH - 7.26: PCO^ - 40: base excess - -9.

Temperature fell to 29.4 deg C.
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Day 4 Apparently responding to name. Rewarmed (total

duration of hypothermia - 48 hr). Variable 

conscious level at normothermia.

Day 5 Developed signs of meningism then became

opisthotonic (Fig. 10.8). Given 10% dextrose;

EEG - multiple, extensive abnormalities; 

brainstem dysfunction.

Day 7 Open eyes between decerebrate attacks.

Day 14 First day of improvement; laughed.

Day 17 "Watches*1 conversation; less frequent decerebration.

Day 25 Says "yes" and "no".

Day 33 Counts fingers; left side very spastic.

Month 3 Stands alone

Month 5 Discharged from hospital. Cerebellar ataxia.

Year 2 Ataxic; educationally subnormal but attends

original school.

Year 8 Rational, intelligent, attractive, active; residual

spasticity left leg.

Year 12 Gainfully employed

Comment

The mechanism of action of hypothermia in the treatment of cerebral

oedema is two-fold - reduction of brain volume and reduction of cere

bral oxygen consumption. Experimental evidence that total body



Figure 10.8. Five year old girl with marked opisthotonus 
five days after cardiac arrest.



cooling reduces the incidence of neurological sequelae 

following cerebral hypoxia is limited (Rosomoff and Gilbert, 

1955; Sluijter, 1967). Favourable results after severe 

coal gas poisoning have been reported from several centres 

(Vialard, 1953; Binet et al, 1957, 1959; Craig et al,

1959). Following cardiac arrest an improved prognosis may 

be expected only if hypothermia is started immediately 

(Williams and Spencer, 1958; Rosomoff et al, 1960).

In the present case treatment with hypothermia was delayed 

because the conscious level appeared to improve after 

resuscitation. Presumably cerebral oedema was developing 

at this stage. There were no major problems during 

institution and maintenance of hypothermia at about 30 deg C. 

Ventilation was somewhat depressed as indicated by the normal 

arterial PCO2  but this was regarded as acceptable from the 

point of view of cerebral oxygenation. The moderate 

metabolic acidosis resulted from a combination of shivering 

and possibly the intravenous administration of 20% laevulose 

(Ledingham and Hanning, 1977). Whether there would have been 

any advantage in prolonging the period of hypothermia will 

never be known. The fact that the patient was a young child 

at the time of the arrest would contribute in a major way to 

the surprisingly good eventual outcome.



HYPOTHERMIC HYPERBARIC CIRCULATORY ARREST 
IN HUMAN CARDIAC SURGERY

The results of experimental total circulatory arrest at 28 deg 

C (chapter 3) had indicated that oxygen at 2 ATA might be of 

some value in human cardiac surgery, particularly in infants 

with congenital heart disease. It was also known that 70% 

of children born with this form of heart disease died if 

untreated within the first year of life.

Many of these infants were admitted to hospital in cardiac 

failure which often proved unresponsive to medical treatment. 

When this failed their only hope of survival was some form of 

surgical procedure. Operation might be palliative as in the 

case of banding of the pulmonary artery in cases of ventricular 

septal defect (VSD) with pulmonary hypertension, or curative 

where closure of a patent ductus arteriosus (PDA) or VSD was 

effected. In the best hands, operation on carefully selected 

infants under one year of age (Bernhard, 1966) 

might bring about cure or benefit in more than 70%. Operative 

procedures might be performed:

1) Under normal conditions, e.g., ligation of PDA, banding 

of the pulmonary artery, or creation of a systemic-pulmonary

shunt.



2) Under hypothermia, e.g., creation of an atrial septal 

defect for transposition of the great vessels, valvotomy 

for relief of a pulmonary valvular stenosis or closure

of an atrial septal defect.

3) Using cardiopulmonary bypass, e.g., complete correction 

of a Fallot’s tetralogy or closure of a VSD. Moderate 

hypothermia had its limitations allowing the surgeon 

approximately eight to 10 minutes of circulatory arrest at

28 deg C for the performance of the operation. Cardiopulmonary 

bypass presented special problems in very small infants.

The role of hyperbaric oxygen in infant cardiac surgery 

seemed to rest in the hope that the safe period of circulatory 

arrest might be prolonged at 28 deg C. This in turn would 

increase the scope for surgery.

Patients and Techniques (2/4/63 - 3/9/63)

Four children in cardiac failure were admitted for surgery. 

Three were under eight weeks of age. In one the lesion was 

transposition of the great vessels while two had large VSD1s. 

The fourth patient was a boy of two years of age who was 

diagnosed as suffering from transposition of the great vessels 

but who was discovered at operation to have Fallot’s tetralogy.
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The operations were carried out under halothane anaesthesia 

with oxygen at 2 ATA as the inspired gas. Hypothermia to 

around 28 deg C was achieved using surface cooling techniques 

(Fig. 10. 9 ). The children were placed in a bath on the 

operating table and cold water was circulated by means of a 

pump from a reservoir situated under the operating table. 

Thoracotomy was performed while the cooling process was in 

progress, and the temperature to which the child was cooled 

varied with the behaviour of the heart for it was only when 

ventricular fibrillation seemed imminent that the circulation 

was interrupted.

By raising the temperature in the water reservoir, reheating 

was instituted as soon as the operation was commenced so that 

at the end of the period of inflow occlusion, reheating was 

under way. This normally resulted in a rapid restoration of 

effective cardiac output after a period of inflow occlusion 

at 28 deg C.

All four children succumbed and Table 10.1 gives details of 

the procedures involved. In cases 1 and 3 blood loss was a 

decisive factor resulting in prolonged hypotension. In case 2



Figure 10.9. Baby in hypothermia bath.
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failure of the reheating mechanism resulted in a drop of 

body temperature to 21 deg C which necessitated a prolonged 

period of cardiac massage while the heart was in ventricular 

fibrillation. At autopsy the ventricular septal defect was 

(in both cases) satisfactorily closed. The fourth developed 

a post-operative pulmonary collapse after an apparently 

successful open infundibular resection.

To draw conclusions from this small number of infants would 

have been unwise, especially in view of the differences in 

technique between the experimental and human procedures.

These included performing thoracotomy during the actual 

cooling phase and ventilating the first three babies manually. 

Both these manoeuvres produced profound alterations in blood 

pressure, heart rate and rhythm, and acid-base balance of 

the babies before the arrest phase had begun. This was in 

marked contrast to the minor changes observed in the animals 

cooled to a similar temperature. In the fourth child the 

technique was altered to resemble more closely the experimental 

approach, including replacement of manual by controlled 

ventilation. The pre-arrest parameters were all within 

normal limits and the immediate operative course of this 

child was entirely uncomplicated.
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In view of the disappointing outcome in these four children 

it was decided to await the results of further experimental 

work at deeper hypothermia and increased partial pressures 

of oxygen (Chapter 6). The experimental work, however, 

failed to demonstrate any additional benefit accruing from 

the use of hyperbaric oxygen at 20 deg C and, thus, further 

clinical development was not pursued.

GENERAL COMMENTS AND CONCLUSIONS 

These heterogeneous clinical studies largely confirmed the 

earlier experimental observations. In severe hypoxic hypoxia 

hyperbaric oxygen was of definite value in elevating arterial 

P0 2 > if the underlying condition was capable of resolution, 

either spontaneously or in response to treatment, long term 

benefit might result (Jacobson et al, 1970; Levine, 1970).

In ischaemic conditions, however, the advantages of hyperbaric 

oxygen were not so obvious. In total circulatory arrest, at 

best only a marginal protective influence was observed.

Perhaps more surprising was the negligible effect of 

hyperbaric oxygen in low flow states, e.g., shock. Although 

not reported, the author's clinical experience completely 

substantiates the negligible effects seen in shocked dogs 

(Chapter 8). Others have also been unimpressed with the



clinical value of excess oxygen in shock (Del Guercio et al, 

1966; MacLean et al, 1967).
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Chapter 11

Hyperbaric Oxygenation in Resuscitation of the Severely Anaemic
Patient

Detailed information concerning resuscitation of the severely 

anaemic patient is scarce. The potential hazard of transfusion 

in these patients was recognised by Sharpey-Schafer in 1945 and 

the risk of congestive cardiac failure with even the most 

carefully monitored blood transfusion is well known. Attempts 

have been made to reduce this risk by the administration of 

packed cells over a prolonged period but this measure does not 

eliminate the problem in every instance. Further attempts 

have been made to reduce the fluid load by inducing a diuresis 

at the time of transfusion (Fisher, 1970). Exchange transfusion 

also undoubtedly helps to reduce the problems of acute 

circulatory overload (Fullerton and Turner, 1962). The 

possibility that hyperbaric oxygenation might be of value 

in this context has not been explored.

In this chapter data are presented from four severely anaemic 

patients who received oxygen at 2 ATA in addition to conventional 

treatment. During the period of acute resuscitation arterial 

and mixed venous blood gas measurements were made together 

with haemodynamic monitoring.
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Material and Methods

Four patients suffering from severe megaloblastic anaemia 

were admitted to the Western Infirmary, Glasgow. All were 

extremely ill and all were given oxygen at 2 ATA during the 

acute phase of their resuscitation.

Case 1

Mrs J.T. (40 yr) was admitted on 17/2/67 at 1.00 a.m. in a 

semi-comatose condition. Over the preceding 12 months 

she had become grossly debilitated with progressive weight loss, 

dysphagia and anorexia. On the evening of admission the 

immediate findings were agitation and dyspnoea. Clinical 

examination revealed a patient with pale, lemon yellow skin, 

white conjunctivae and palm creases, and a purpuric rash over 

the chest and arms. Congestive cardiac failure was present 

and the pulse rate and blood pressure were 108 beats/min and 

65/0 mm Hg respectively; a haemic murmur was audible. The 

relevant haematological data were:

Hb - 1.5 g/lOOml 

platelets - 20,000/cmm

blood film - macrocytosis, anisocytosis and poikilocytosis 

of the red cell series (some being nucleated); 

leucopenia with hyper segmented polymorphs.

The patient was transferred to the pressure chamber but before



pressurisation commenced, and while breathing oxygen through a 

close fitting, high concentration mask, she had a major convulsion 

with apnoea of two minutes duration. Recovery occurred 

spontaneously. Additional noteworthy features were the 

development of large haematomata at venous sample sites, and 

bouts of diarrhoea. Blood gas analysis (Table 11.1) revealed 

a severe metabolic acidosis with compensatory hyperventilation 

and normal oxygen exchange.

Soon after pressurisation to 2 ATA the patient became alert and 

the neck vein congestion disappeared. A slow transfusion of 

300 ml of packed cells was started at 06.00 hr and continued 

over about five hours. During a brief period when, for nursing 

reasons, the oxygen mask was removed a further major convulsion 

occurred which again responded to the resumption of oxygen 

breathing. The patient’s general condition improved markedly 

over the next few hours, the metabolic acidosis resolved spont

aneously and the oxygen was withdrawn without adverse effect.

(Since she remained at 2 ATA the inspired air had a PO^ equivalent 

to 40% oxygen at normal atmospheric pressure). Unfortunately 

while being prepared for decompression the patient suddenly 

died. Post-mortem revealed a large posterior fossa subarachnoid 

haemorrhage covering the pons and cerebellum, and associated
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tonsillar herniation.

Case 2

Mr D.B. (60 yr). This very obese man was admitted on 28/8/68 in 

a semi-comatose condition with gross congestive cardiac failure 

and profound anaemia. There was a long-standing history of 

epilepsy controlled by phenobarbitone. Clinical examination 

revealed extreme pallor, skin purpura and fundal haemorrhages.

The relevant haematological data were:

Hb - 3.7 g/lOOml (PCV - 10%) 

platelets - 20,000/cmm 

reticulocytes - 5%

marrow biopsy - megaloblastic changes, erythroid hypoplasia

and maturation arrest.

Initial treatment consisted of packed cells, Vit B ^  an^ folate 

but with no response in spite of simultaneous frusemide admini

stration. Exchange transfusion was performed in the pressure 

chamber with oxygen at 2 ATA (Table 11.2); there was some improve 

ment in the clinical features of cardiac failure. Blood gas 

analysis revealed poor pulmonary gas exchange with only a modest 

increase in arterial P02 in response to hyperoxygenation. After 

slow infusion of 550 ml packed cells (with simultaneous withdrawal 

of 350 ml of the patient*s blood) decompression to normal
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atmospheric pressure was accomplished without difficulty.

The patient*s general condition improved temporarily thereafter 

but severe thrombocytopenia with malaena continued and repeated 

blood transfusion was necessary to maintain an adequate haemo

globin. Six weeks later bronchopneumonia developed and the 

patient died. Post-mortem showed an old subdural haematoma, 

cerebral infarction, gut haemorrhages and acute tubular necrosis 

the bone marrow appearances were unchanged from the earlier 

examination. The persistent marrow failure was attributed to 

a combination of anti-epileptic drugs and possibly radiotherapy 

treatment which followed removal of a seminoma 24 years before.

Case 3

Mrs E. McF. (66 yr). This unfortunate lady was admitted in a 

dirty, disorientated state on 10/7/69. Mild congestive cardiac 

failure was present together with severe pernicious anaemia.

The relevant haematological data were:

Hb - 2.0 g/100ml (PCV - 8%) 

platelets - 30,000/cmm

bone marrow biopsy - megaloblastic changes

Treatment with B-̂ , folate, frusemide and blood transfusion was 

initiated but the features of cardiac failure became more
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pronounced.

Some four days after admission exchange transfusion was performed 

while the patient breathed oxygen at 2 ATA (Table 11.3). A good 

response to this treatment was obtained (500 ml infused, 1200 ml 

withdrawn) over a period of three and a half hours. Initial 

blood gas analysis revealed normal oxygen exchange and arterial 

PO2  rose to over 1000 mm Hg with oxygen at 2 ATA. Although 

cardiac output was not measured, the arterial/mixed venous 

content difference was small and mixed venous PO2  reached over 

400 mm Hg. Decompression to normal atmospheric pressure and 

return to the Intensive Therapy Unit were achieved without 

difficulty and two further units of packed cells were given.

At this time the serum potassium was noted to be 2.1 mmol/1 

and oral potassium supplements were immediately prescribed.

The patient responded well to and folate and was discharged 

in good health shortly afterwards.

Case 4
Mrs J.L. (66 yr) was admitted on 28/6/71 for investigation of 

anaemia and diarrhoea. Pyrexia was attributed to concomitant 

urinary tract infection. Haematological investigations confirmed
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a megaloblastic anaemia with a haemoglobin of 3.8 g/lOOml and 

haematocrit of 10%; the platelet count was 60,000/cmm.

Two days after admission, drowsiness and disorientation became 

marked and in spite of the degree of anaemia the skin appeared 

cyanosed. Blood gas analysis revealed an arterial PO2  of 

55 mm Hg, PCO2  37 mm Hg and pH of 7.50 units. Exchange 

transfusion in the pressure chamber was arranged. Catheters 

were inserted into the radial artery and the right atrium for 

arterial and central venous pressure measurements and for ease 

of withdrawal of blood samples. Cardiac output was measured 

using a standard dye dilution technique. From the above 

measurements, the following additional data were derived 

as described in chapter 8; total body oxygen availability, 

extraction and consumption; external cardiac work; systemic 

vascular resistance (Figs. 11.1, 11.2 and 11.3).

At 2 ATA breathing oxygen, arterial blood gas analysis indicated 

values for PC^ of 900 mm Hg, PCO2  28 11,111 anci 7*37 units.
During the first hour of OHP there was an apparent improvement in 

the patient*s mental state coincident with a small increase in oxy

gen availability from 183 ml/min to 239 ml/min (which occurred in 

spite of a fall in cardiac output from 3.8 1/min to 3.2 1/min).
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a patient with severe megaloblastic anaemia; 
blood transfusion whilst breathing oxygen at 
2 ATA.
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Over the same period pulse rate fell slightly while blood pressure 

and systemic vascular resistance remained unchanged. Thereafter 

two additional factors complicated interpretation of the data - 

the administration of packed cells (600 ml over 30 hr.) and 

sleep (9 hr as indicated in figs.). In view of the haemodynamic 

stability during infusion of the first unit of packed cells it 

was decided not to proceed with the original plan of exchange 

transfusion.

Coincident with the increase in haemoglobin there was a steady 

fall in cardiac output due to a decrease in both heart rate and 

stroke volume; right atrial pressure and arterial blood pressure 

changes were minor; calculated systemic vascular resistance 

increased substantially; oxygen availability remained unaltered 

since the rise in haemoglobin was matched by the fall in cardiac 

output. There was a marked increase in cardiac output when the 

patient awoke. Total body oxygen consumption appeared to increase 

initially with the increase in oxygen availability, fell during 

sleep and rose again when the patient awoke. The arterial and 

venous oxygen content and PCO^ returned progressively towards 

normal.

After 17 hours of oxygen breathing at 2 ATA (during which arterial
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^ 2  ^̂-uctua^eĉ between 750 and 900 mm Hg), the oxygen mask was 

removed and the patient breathed first air at 2 ATA, and later 

28% O2  via a ventimask system at normal atmospheric pressure.

Right atrial pressure, cardiac output and oxygen availability 

rose steadily throughout this period while oxygen extraction 

and systemic vascular resistance fell. The change in oxygen 

consumption was unremarkable.

The only other findings of note during the later period of 

resuscitation were hypokalaemia (lowest value 2.1 mmol/1) and 

troublesome diarrhoea. The patient eventually made a full and 

complete recovery.

Discussion

Chronic anaemia would cause tissue hypoxia were it not for two 

important compensatory mechanisms (see chapter 1). Moderate 

degrees of anaemia are associated with an elevation of 2:3 

diphosphoglycerate and a decrease in haemoglobin oxygen affinity 

(Finch and Lenfant, 1972). When haemoglobin falls below 7 g/lOOml 

cardiac output and blood volume increase. In the normal course 

of events, therefore, oxygen delivery is relatively well 

maintained. In the severely anaemic patient, however, particularly 

if coronary artery disease co-exists, the work load on the 

myocardium may become excessive. Cardiac failure results and
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oxygen delivery to vital organs such as the brain and kidney, 

is critically reduced.

Attempts to transfuse these patients with red cells can present 

difficulties. In anaemic patients with a high cardiac output 

and normal venous pressure, Duke, Herbert and Abelmann (1964) 

showed that transfusion was associated with a slight decrease 

in heart rate and increases in stroke volume, cardiac output and 

arterial pressure; venous pressure remained normal. On the 

other hand, in patients with a high cardiac output and elevated 

venous pressure, transfusion was accompanied by a slight 

decrease in heart rate and decrease in stroke volume and cardiac 

output; both arterial and venous pressure rose as did haematocrit. 

If, at this stage, blood was removed, stroke volume and cardiac 

output rose, venous pressure fell to pretransfusion levels and 

haematocrit remained unchanged. In the treatment of severe 

anaemia in pregnancy, exchange transfusion has been shown to 

lower mortality significantly (Fullerton and Turner, 1962).

Diuretics may also help to prevent the complications of 

circulatory overload and pulmonary oedema (Ledingham, 1964), and 

some have suggested that these agents may dispense with the 

need for venesection.
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The present studies have shown that oxygen administration at 

2 ATA can increase both arterial PC^ and oxygen availability 

although the increase in oxygen availability is not as great as 

might have been anticipated because of the associated fall in 

cardiac output. This latter effect is a well-documented 

response to hyperbaric oxygen and in the short-term is related 

to a fall in heart rate mediated via the vagus (Whalen et al, 

1965). Nevertheless oxygen delivery to the tissues appears 

to be increased and in this study there was evidence of 

improved cerebral function (cases 1 and 4), improved cardiac 

function (cases 1, 2, 3 and possibly 4), and improved metabolic 

function (elimination of acidosis - case 1, increased oxygen 

consumption - case 4).

Mortality in severe megaloblastic anaemia has been attributed to 

circulatory overload, for the reasons previously cited, or to 

hypokalaemia (Palva and Kaipainen, 1970). Two of the present 

patients demonstrated the fall that may occur in serum potassium 

during treatment (Lawson et al, 1970) and energetic replacement 

may be necessary. The fall in potassium is due to the sudden 

increase in intracellular requirement for the cation brought 

about by the haemopoietic stimulus of Vitamin b-̂ 2 therapy. 

Whether hypokalaemia alone is responsible for sudden death in
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severe anaemia is uncertain but it seems more reasonable to 

consider a combination of effects which also includes a critical 

reduction in myocardial oxygen availability and acidosis.

The hypoxic basis of the latter has been demonstrated by 

Coronata and Cohen (1969) in a patient whose acidosis disappeared 

after transfusion of red cells.

It is concluded that hyperbaric oxygen at 2 ATA can provide 

improved tissue oxygenation in the severely anaemic patient 

and may prevent death while the patient is being resuscitated 

by conventional means.
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Chapter 12 

TREATMENT OF THE FAT EMBOLISM SYNDROME

The fat embolism syndrome remains a diagnostic and therapeutic 

enigma (Wright, 1971). The original description of the 

syndrome is that of cyanosis, dyspnoea, pulmonary crepitations, 

petechiae and cerebral manifestations (including coma) occurring 

in a previously healthy patient with a recent fracture (Peltier, 

1965). Reports of mortality approaching 85% with this combination 

of clinical features (Sevitt, 1960; Ashbaugh and Petty, 1966) 

are probably no longer relevant, but the multiplicity of 

therapeutic regimens (Freeman, 1962; Denman et al, 1964;

O'Driscoll and Powell, 1967; Larson, 1968; Mokkhavesa et al, 

1969) suggests that no single method has proved to be con

vincingly effective. Recently the importance of correction of 

hypoxaemia has become increasingly accepted (Galloon and 

Gharkravarty, 1967; Ross, 1970) although in many of the 

clinical reports the simultaneous administration of other 

forms of treatment complicates interpretation of the results.

This chapter presents data from a prospective study of 11 

consecutive patients with the fat embolism syndrome admitted 

to an Intensive Therapy Unit (ITU). The aim of the study was 

to examine the truth of the suggestion that the cause of death
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from the fat embolism syndrome was ‘almost invariably the 

hypoxia secondary to the effects of pulmonary fat emboli1 

(Lancet, 1972) and that provided this hypoxia could be 

corrected, the patient would survive, usually without any 

sequelae (Benatar et al, 1972).

Personal interest in the fat embolism syndrome was stimulated 

by reports that oxygen administration (at inspired partial 

pressures above those required simply to correct hypoxaemia) 

might be of benefit as a form of treatment (Warren, 1946; Harman 

and Ragaz, 1950; Love and Stryker, 1957). Experience with one 

elderly patient with severe fat embolism who was treated with 

oxygen at 2 ATA prompted the author to reconsider the basic 

disturbance of pulmonary gas exchange in this syndrome and to 

determine whether it was necessary to do more than correct 

the existing hypoxaemia. In the event, re-exploration of the 

potential therapeutic role of hyperbaric oxygenation was not 

required.

MATERIAL AND METHODS 

A single patient who was severely hypoxaemic and exhibited most 

of the related features of fat embolism was treated with oxygen



at 2 ATA (11/5/65) for a period of four hours.

The main series consisted of 11 adult patients, apparently- 

suffering from the fat embolism syndrome, who were admitted to 

the Intensive Therapy Unit (ITU) of the Western Infirmary,

Glasgow, between 1969 and 1978. This represents the total 

number of patients admitted to the unit during that period who had 

a relevant clinical history and associated signs and symptoms.

Most of the patients were referred from the Orthopaedic 

Departments of the Western Infirmary and neighbouring hospitals.

The aim of treatment was to maintain arterial PO2  as near as 

possible within the normal range and, otherwise, to apply only 

routine supportive measures.

RESULTS

The single patient (male/75 yr) was drowsy and mildly hypotensive 

(90/65 mm Hg) on admission to the pressure chamber and arterial 

blood gas analysis revealed the following data: PO2  - 32 mm Hg;

pH - 7.57 units; PCO2 “ 20 mm Hg; base excess - +1 meq/1 (the 

inspired gas was air and the patient was breathing spontaneously). 

On exposure to oxygen at 2 ATA the patient’s conscious level 

lightened, arterial blood pressure rose and he became restless. 

Repeat arterial blood gas analysis showed: VO^ - 408 mm Hg;

pH - 7.54 units; PCO2 - 25 mm Hg; base excess - 0 meq/1.

After a three and a half hour period of hyperbaric oxygenation, 

decompression to normal atmospheric pressure was carried out and



repeat blood gas analysis (while the patient breathed oxygen at 

high concentration) was as follows: PC^ - 42 mm Hg; pH - 7.47

units; - 18 mm Hg; base excess - -8 meq/1.

Comment

The data from this patient confirmed the observations, reported 

in chapter 10 (p.236), concerning the ability of hyperbaric 

oxygen to increase arterial PO2  in patients with severe pulmonary 

oedema. Clearly, lower inspired oxygen concentrations could 

be used to correct the hypoxaemia in most patients suffering from 

fat embolism and since alternative methods were available to 

eliminate pulmonary oedema, the question was whether hyperbaric 

oxygen had any additional advantage to offer. One possibility 

was that OHP might be beneficial in dealing with cerebral oedema 

secondary to fat emboli obstructing the brain vessels, if indeed 

this factor was of clinical importance.

Main Series
A description of the injury sustained by each of the patients 

in the main series is contained in Table 12.1 from which it 

can be seen that nine of the 11 patients had fractures of the 

lower limbs. In two of the patients the syndrome appeared to



Table 12.1
FAT EMBOLISM 

DESCRIPTION OF INJURY

Patient 
(Series No. & Date)

Age
(yr) Sex History Inj ury

J.H. (1) 21.9.69 24 M RTA femur

D.B. (2) 24.5.70 24 M RTA femur
tibia
clavicle
nose

W.M. (3) 14.9.70 21 M RTA tibia

J.C. (4) 2.7.71 26 M RTA femur
tibia
metatarsals

J.T. (5) 31.10.71 71 M Post-op Aortic aneurysm 
bifurcation graft

M.H. (6) 29.9.72 72 F RTA pelvis
femur
tibia
ulna

H.M. (7) 9.2.73 66 M Agricult.
accident

pelvis
ribs

I.S. (8) 14.11.74 17 F Stabbing 
(L) loin

(L) kidney, 
pancreas, 
stomach, 
liver

A.B. (9) 30.12.74 20 F RTA pelvis
femur

A.McC.(10) 28.1.75 61 F RTA ribs
pelvis
tibia

G.W. (11) 4.7.78 20 M RTA tibia
knee



follow extensive retroperitoneal soft tissue injury. The 

clinical and laboratory data at the time of admission to the 

ITU, or soon thereafter, (Table 12.2 and 12.3) indicate the 

severity of hypoxaemia and the frequency of major cerebral 

manifestations observed in this series. Anaemia was a consistent 

finding.

The clinical and laboratory findings in each of the patients have 

been summarised and are presented together with relevant figures.
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Case 1 J.H. Male/24 yr 
Admitted 21/9/69

DAY COMMENT TREATMENT

1 Road traffic accident:
facial lacerations: compd $j: nose
simple*^@ femur

Resuscitation 
Routine surgery 
General anaesthesia

2 Sudden onset: coma
dyspnoea
cyanosis

Arterial P02 - 49 mm Hg (air/spont) 
Chest X-ray - pulmonary oedema

OXYGEN:IPPV
tracheostomy
mannitol

6 Chest - Clinical/radiological 
improvement 

AA-a P02+

OXYGEN reduced

12 Much improved OFF IPPV

16 General condition good
Chest X-ray - residual congestive
changes

Discharged from ITU

30 Chest X-ray clear
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Figure 12.1a. Case 1. Respiratory and blood gas data.
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Comment

This patient required 100% oxygen for the first 24 hours of 

his stay in the ITU and was not independent of the ventilator 

for nearly 10 days. Throughout the first four days of his 

illness, the patient*s neurological status gave cause for grave 

concern. There were no localising signs but there was clinical 

evidence of raised intracranial pressure for which treatment with 

intravenous mannitol was given. On day 7, the patient became 

alert and was able to communicate, and there was no regression 

in his conscious level thereafter. Other clinical features 

of note included:

(1) A coliform respiratory infection, which occurred on 

day 8 and was successfully treated with cephaloridine.

(2) Anaemia, normochromic and normocytic in type, for which 

blood transfusion was required.



Case 2 D.B. Male/24 yr 
Admitted' 24/5/70

DAY COMMENT TREATMENT

1 Road traffic accident 
facial lacerations: simple#® 
clavicle, (r) femur/patella, y!) 
tibia

Resuscitation 
Routine surgery 
General anaesthesia

2 Sudden onset: agitation 
dyspnoea 
cyanosis 
petechiae

Arterial PO2 - 67 mm Hg (on oxygen 
at high concn.)

Chest X-ray - widespread patchy 
opacities

OXYGEN
Heparin

4 Clinical/radiological features 
unchanged
Arterial PO2  - 40 mm Hg (aii^spont.)

OXYGEN: aggressive 
physiotherapy

8 Clinical/radiological improvement OFF OXYGEN

10 Chest X-ray normal
Arterial PO2  - 95 mm Hg (air/spont.)

Discharged from ITU
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Figure 12.2a. Case 2. Respiratory and blood gas data.
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Comment

This was the least severely ill patient of the series. Nevertheless 

hypoxaemia was marked and oxygen was required for nearly one 

week. Without oxygen the patient became cyanosed and extremely 

agitated. Haemoptysis (note also case 11) was noted during the 

first three days and heparin was commenced when an alternative 

diagnosis of pulmonary embolism was being considered.
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Case 3 W.M. Male/21 yr 
Admitted 14/9/70

DAY COMMENT TREATMENT

1 Road traffic accident: 
Simple # (p tibia

Long leg plaster 
general anaesthesia

2 Sudden onset: confusion/drowsiness
dyspnoea
cyanosis
petechiae

Arterial P02 - 53 mm Hg (air/spont.)
Chest X-ray - ’snowstorm lung*

OXYGEN

3 Chest - clinical deterioration 

AA-a P02f

IPPV

11 Chest - slow clinical/radiological 
improvement

AA-a P02'!'

AproL o u j l i i  (Lrasylul) 

tracheostomy

15 Chest much improved OFF IPPV

17 General condition good Discharged from ITU

20 Chest X-ray and blood gases normal
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Figure 12.3a. Case 3. Respiratory and blood gas data.
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Comment I

During the first day in the ITU (day 4 from the date of admission) 

an increase in the inspired oxygen concentration to about 75% |

produced a rise in arterial PO2  to 100 mm Hg. On the basis 

of information such as that contained in figure 12. 9, a course 

of the broad spectrum proteinase inhibitor, aprotonin (Trasylol), 

in a dose of 50,000 KIU hourly was given. The drug was singularly 

without effect. Indeed the progressive deterioration in arterial 

PO2  and in the patient’s conscious level during this period prompted 

the institution of intermittent positive pressure ventilation 

(IPPV). This experience helped to demonstrate the importance 

of early IPPV, preferably before the onset of major pulmonary 

gas exchange disturbances.

Another lesson was learned between days 8 to 10. On these days 

premature attempts were made to discontinue IPPV and on each 

occasion the patient became rapidly dyspnoeic and the arterial 

blood gases deteriorated. With hindsight it was realised that 

these were episodes of acute pulmonary oedema probably relating 

to the continuing presence of pulmonary vascular and alveolar 

abnormalities (see Discussion). Whatever the cause of the 

disturbance, weaning from the ventilator in subsequent cases 

was considered with greater circumspection, apparently to
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good effect.

The further clinical course of this patient was complicated 

by a brief Klebsiella chest infection and the usual combination 

of anaemia, thrombocytopenia and hypocalcaemia. The sequence 

of changes in the chest radiograph (12.4 a,b,c) is characteristic 

of the changes observed in all the patients of the series.



Figure 12.4. Chest radiographic appearances (a) on day of injury - 
normal (b) on 4th day after mju y - snowstorm _ung



Figure 12.4 (cont'd). Chest radiographic appearances
(c) two months later - normal



Case 4 J.C. Male/26 yr 
Admitted 2/7/71

262.

DAY COMMENT TREATMENT

1 Road traffic accident: simple 
#(§) femur/tibia, mata tar sals 
both feet; compd.patella

Recovery from anaesthesia:

- confusion/agitation 
dyspnoea 
cyanosis 
petechiae

Resuscitation 
Routine surgery 
General anaesthesia

Arterial PO2  - 53 mm Hg (air/spont.)

Chest X-ray - widespread pulmonary 
oedema

OXYGEN:IPPV 
tracheostomy

5 Chest - clinical/radiological 
improvement

AA-a P02^

OFF IPPV

6 Chest X-ray - clear 
blood gases almost normal

Discharged from ITU
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Figure 12.5a. Case 4. Respiratory and blood gas data.
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Figure 12.5b. Case 4. Haernatological and bacteriological data 
H - haemophilus AS - aerobic streptococci.
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Comment

This patient became confused and agitated during recovery from 

anaesthesia, and was reintubated and ventilated in haste because 

of the speed of deterioration in his clinical condition. The 

subsequent course of treatment was uneventful and no major 

infection ensued.



Case 5 J.T. Male/71 yr 
Admitted 31/10/71

264.

1—
DAY COMMENT 1TREATMENT

1 Ruptured aortic aneurysm Resuscitation 
Insertion 
bifurcation graft

2 Sudden onset : confusion
dyspnoea
cyanosis

Arterial P02 - 53 mm Hg (air/spont.)
Chest X-ray - widespread parenchymal 

nodulation

OXYGEN: antibiotics: 
frusemide; digoxin

5 Chest - clinical/radiological 
deterioration

Arterial PO2  - 52 mm Hg (oxygen at 
high concn.)

Petechiae

IPPV

13 Chest - slow clinical/radiological 
improvement

tracheostomy

16 Improvement maintained OFF IPPV (start)

22 Further improvement but persistent 
hyperventilation

OFF IPPV (final)

30 Chest - clinically much improved 
radiological residual 
changes only

Arterial PO2  - 74 mm Hg (air spont.)

DISCHARGED from ITU

33 Sudden cardiac arrest - died in ward
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Figure 12.6a. Case 5. Respiratory and blood gas data.
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Figure 12.6b. Case 5. Haematological and bacteriological
data.
c - coliforms: Ca - calcium:
Py - pseudomas pyocyanea: m - mannitol
SGOT - serum glutamic oxalacetic transaminase 
SGPT - serum glutamic pyruvic transaminase
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Comment

This patient was one of the two without bone fractures. At 

operation on the day of admission a Teflon graft was inserted 

for ruptured aortic aneurysm. Between days 2 and 5 he 

developed all the features of the fat embolism syndrome 

including very convincing petechiae. The subsequent clinical 

course was protracted before successful weaning from the 

ventilator was achieved. Hyperventilation was a striking 

feature during the weaning process although no single cause 

was detected apart possibly from residual infection. Cachexia 

was also present and a course of intravenous hyperalimentation 

was given; (the importance of the latter in the management of 

long-stay ITU patients was just being appreciated at this time).

Three days after return to the ward the patient had a sudden 

cardiorespiratory arrest from which he did not recovery. No 

autopsy was performed.
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Case 6 M.H. Female/72 yr 
Admitted 29/9/72

DAY COMMENT TREATMENT
1 Road traffic accident; simple

pelvis, femur, tibia and ulna
Sudden onset: coma

dyspnoea
petechiae

Arterial PO2 - 58 mmHg (oxygen at 
high concn.)

Chest X-ray - widespread * fluffy* 
opacities

Resuscitation 
Skeletal traction 
Local anaesthesia

OXYGEN

4 Unconscious
Chest - clinical/radiological 

deterioration 
A  A-a PO2t

IPPV/PEEP 
Tracheostomy 
Gentamicin 
Digoxin, frusemide

9 Chest - clinical/radiological 
improvement 

A A-a PO2  +
11 Continued respiratory improvement 

Conscious level only fair
OFF IPPV/PEEP (start)

12 -
25

Recurrent pulmonary infection Carbenic i11in

26 Improvement OFF IPPV (final)

37 Much improved: lucid, active Discharged from ITU
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M.H.: Age 72yrs 560988/K
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DAYS

Figure 12.7b. Case 6. Haematological and bacteriological 
data.
PYO - pseudomas pyocyanea.
CALB - Candida albicans
SCOT - serum glutamic oxalacetic transaminase 
C - coliforms



Comment

This patient was the eldest of the series and during the acute 

phase of resuscitation was extremely ill. On admission to the 

ITU she was comatose; in common with the other patients of the 

series no head injury had been sustained and conscious level was 

apparently normal at the time of admission to hospital. The 

initial response to IPPV was slow and for the first time in 

the series, positive end-expiratory pressure (PEEP) was added 

to the ventilator regimen with gratifying effect. The later 

clinical course was complicated by recurrent pulmonary infection 

associated with bronchospasm, the persistence of which prompted 

the administration of steroids for one week; no obvious benefit 

resulted. Recovery thereafter was slow but sure.
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Case 7 H.M. Male/66 yr
Admitted 9/2/73

DAY COMMENT TREATMENT

1 Tractor injury: 
rftpelvis, 3 ribs
Sudden onset: hypotension 

coma
dyspnoea
cyanosis

Arterial PO2  ~ 47 mmHg (oxygen at 
high concn.)

Resuscitation

OXYGEN

IPPV

5 Petechiae - neck/conjunctivae; 
frequent dysrhythmias 
Slow resolution lung lesion; 
platelets - 35,000/cmm

Tracheostomy
Carbenicillin
PEEP

14 Cerebral state fair 
M-a P02i

OFF IPPV (start)

20 Mentally clear (Isaiah - Chp. 40 
v. 29)
Continued slow resolution lung lesion

24 Much improved OFF IPPV (final)

28 Well OFF OXYGEN

30 In good shape Discharged from ITU
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H.M. :Age 66yrs 571060

AMR
SER

IGENTAMICINIcarbeniciluFT28,000-1
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12,00 0-

SPUTUM 4,000 
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Figure 12.8b. Case 7. Haematological and bacteriological
data.
Pr. - proteus. SCOT - serum glutamic oxal- 
acetic transaminase. Ent - enterococci 
SGPT - serum glutamic pyruvic transaminase, 
c. coliforms. LDH - lactate dehydrogenase 
K - Klebsiella. SB - serum bilirubin
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Comment

This island crofter/lay preacher was crushed by his tractor 

which overturned. Within two hours of transfer from Oban the 

patient’s condition rapidly deteriorated and he became shocked. 

The main features after resuscitation were sustained elevation 

of the alveolar/arterial PO^ gradient and protracted thrombo

cytopenia. Weaning rrom the ventilator proved difficult 

apparently because of marked inanition. When the patient 

finally recovered and was told how fortunate he had been to 

survive the accident, he indicated that luck was not involved 

and quoted from Isaiah; *He giveth power to the faint; and 

to them that have no might he increaseth strength.' So much 

for intravenous hyperalimentation.



Case 8 I.S. Female/1/ yr 
Admitted 14.11.74 270

DAY COMMENT TREATMENT
1 Stab injury (L) kidney, renal artery; 

stomach, pancreas, liver. Platelets 
40,000/mm3. pa02 - 40 mmHg (lPPV/100% 
O2 ). Chest X-ray - massive pulmonary 
oedema.

(J)nephrectomy; excis
ion tail pancreas; 
repair stomach, liver 
Resuscitation: 12%L 
fluid, IPPV (100% 02 + 
PEEP), calcium, ster
oids, digoxin.

3 AM General condition much improved 
AA-a PO2  marked^; platelets 
70,000mm3

PM Petechiae chest/arms; AA-a P02t

Ampicillin: frusemide 
PEEP OFF

4 Tachycardia, fever; platelets 55,000/ 
mm̂ . Chest X-ray - extensive pulmonary 
mottling

PEEP ON
L inc omy c in/G en tamic in 
tracheostomy

8 Chest - clinically improving. AA-a PO2  

steady!,; X-ray clearing; Platelets 
220,000/mm^. Petechiae neck/ 
conjunctivae - fresh crop

Carbenicillm

11 Continued improvement. DVT (E) leg PEEP OFF
14 AA-a P02i; tachycardia PEEP ON
17 Sudden marked respiratory deterioration 

(J) pneumothorax confirmed: B.proteus - 
trach.asp/L.F.C. - urine

Chest drain

20 Sudden onset (p apical pneumothorax; 
recurrence(§) pneumothorax

PEEP OFF; further 
chest drains. 
Cloxacillin

23 Very ill; Ps.pyocyanea-trach. asp/ 
urine; air leak -H-+ both chest drains

Chloramphenicol/ 
cotrimoxazole, digoxin

32 Continues very ill; sustained fever; 
? L subphrenic abscess

Carbenicillin

36 Improved; Ps. sepacia-trach. asp: 
trach. ulceration

OFF IPPV (start)

38 Pain (E)lumbar region
43 In fair shape; WCC remains high OFF IPPV (final)
45 Fluctuant, tender swelling (E) loin
47 General condition fair Drainage (f) perinephric/

subdiaphragmatic
abscess

50 General condition good Discharged from ITU
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Comment

This unfortunate girl had extensive retroperitoneal soft tissue 

injury and was in a parlous condition for the first 36 hours 

after injury but then markedly improved. The appearance of 

features of the fat embolism syndrome was rapid and the lungs 

were the principal focus of attack. As in previous cases 

recurrent pulmonary infection proved a major problem, further 

complicated in this instance by pulmonary barotrauma with 

sequential bilateral pneumothoraces. When the respiratory 

sequelae had been overcome, surgery was required for a large 

left perinephric abscess. Thereafter the patient's recovery was 

full and complete.

Follow-up studies have revealed only minor residual pulmonary 

problems and the patient has successfully completed her training 

as a nurse. The differential diagnosis in this case was the 

most difficult of the series and it would be impossible to 

exclude other possible causes of acute respiratory distress 

e.g., overtransfusion and shock.
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Case 9 A.B. Female/20 yr
Admitted 30/12/74

DAY COMMENT TREATMENT

1 Road traffic accident: simple 
pelvis, (S) femur; compd^^ 

femur

Resuscitation 
Routine surgery 
General anaesthesia 
IPPV

2 Tried off IPPV - unsuccessful: 
Platelets - 25,000; bleeding 
tendency: Hb 4G, Pa02 - HO mmHg 
(IPPV/100% 02)

Blood
Coagulation factors 
Thymoxamine 
Recommence IPPV

4 Petechiae (upper chest)
Chest X-ray - diffuse mottling

Tracheostomy
Blood

6 Platelets 45,000; jaundice +++ 
/I A-a P02^

Gentamicin

9 General condition much improved 
Fever (41°C): jaundice +++

OFF IPPV

15 General condition good Remanipulation rRJ 
femur
General anaesthesia

16 Recovered well from surgery Discharged from ITU



Comment

This was the second patient in the series who presented with 

features of the fat embolism syndrome during recovery from 

general anaesthesia. The response to IPPV and oxygenation was 

gratifying and no major complications ensued.
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Case 10 A.McC. Female/60 yr
Admitted 28/1/75

DAY COMMENT TREATMENT

1 Road traffic accident: 
Simple#ribs, pelvis, tibia

Resuscitation

3 Sudden onset: confusion
cyanosis
petechiae

Arterial P02 - 56 mm Hg (air/spont.) 
Chest X-ray - fine opacification 
Platelets - 60,000/mm^

OXYGEN
phy s i o the rapy

5 Remains confused

8 General condition good 
Chest - clear 
Platelets - 100,000/mm^

OFF OXYGEN

12 Well
Platelets - 305,000/mm^

Discharged from ITU



Comment

The principal presenting feature in this instance was confusion 

which was not immediately relieved by correction of hypoxaemia. 

Pulmonary gas exchange was closely monitored for three days by 

which time the patient had become lucid and it was clear that 

oxygen therapy was no longer required to maintain an adequate 

arterial
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Case 11 G.W. Male/20 yr
Admitted 4/7/78

DAY COMMENT TREATMENT
1 RTA: simple #(fp tibia, rupture 

ligaments (E) knee
Resuscitation 
Routine surgery 
General anaesthesia

3 Sudden onset: drowsiness 
dyspnoea 
petechiae

EMI scan - diffuse oedema

4 Arterial PO2 - 60 mm Hg (air): 
haemoptysis.
Chest X-ray - 1 snowstorm lung* 
Platelets - 110,000/cmm

OXYGEN
IPPV
PEEP

10 AA-a P02^ ; fever; leucocytosis 
Ps.pyocynea-sputum

Gentamicin

15 AA-a P02^ ; much improved OFF IPPV
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Comment

As in case 3, this young man had a relatively minor injury to the 

lower limbs and was apparently making a routine recovery when his 

condition rapidly deteriorated. So striking were the cerebral 

manifestations that he was transferred to the regional 

Neurosurgical Institute for an Emiscan examination although 

there was no history of head injury. Mild diffuse cerebral 

oedema was noted but by this time the respiratory features 

were obvious and the diagnosis was not in doubt. Haemoptysis was 

present for the first three days (note also case 2).

The disturbance of pulmonary gas exchange responded slowly to 

IPPV augmented by positive end-expiratory pressure. A relatively 

short-lived respiratory infection responded to antibiotics 

and the patient's recovery was uneventful.

Treatment

A summary of the treatment, together with the outcome in each 

case, is presented in table 12.4. All the patients recovered 

from the acute condition and were discharged from the unit.

Only one patient failed to make a long-term recovery (Case 5). 

After acute resuscitation, treatment consisted exclusively of 

oxygen and IPPV (in the later cases with PEEP). Heparin,



Ta
bl
e 

12.
4 

FAT
 
EM
BO
LI
SM

TR
EA
TM
EN
T 

AND
 
OU
TC
OM
E

rH rH rH rH rH rH rH r—1 rH rH rH
CU cd cd cd cd cO cd cd cd cd cd cd
& > > > > > > > > > > >
O •H ♦H •H •H •H •H •H •H •H
O > > > > > > > > > > >
4 J u U U n Vi Vi d Vi Vi Vi Vi
d d d d d d d d d d d d

o CO CO CO CO CO CO CO CO CO CO CO

/~N
rH y ~ s + /^N y*S

CM /■N s—y rH O UO r-x. tH
'w ' LT>

d
W

cu
rH  
'—/ CU

CM
'w ' w CM 

CU N-y'
pH •H rH t j T3 CO T )
o d d o •H d •H d T ) •H  fC d

/ ^ s 4-» •H o u B •H 6 •H •H E  »H •H
CO CO •H u 4J 1 •H cu X cu X O 1 CU X X 1 1
o o !>» £ cd o d CO o CO o Vi CO o o
d cd d P u u d d 6 0 d 6 0 CU d  6 0 6 0
P "O cd <u a cd Vi •H £ •H ■U U »H •H

Q '— S s c c Ph Q Ph Q CO Ph  Q a

CO
P *
W cd i i i 1 i 0 0 CO i 1 v£>
w T3 rH
PU 'w '

CO
> > x O' i CM c o ct> rH CO MS 1 rH
PU cd ▼H rH CM CM rH
PH T 3
HH N - /

d X“ N
<L> CO
0 0 > x rH r» . CO oo CO f"x rH
>% cd tH tH CM CM CM rH
X T J

o w
H
I S

!e 1

/ ^ s  
0 0  • • • •
-x—y

CO c n

w
P£J
H

• CM

CO

> r \
T 3
(U
O
d

•
4 3
a
cu

o

y-"x
CM Ge

nt
: 

Te
tr
.

(1
):
 

Ge
nt
.

Ca
rb
: 

Ny
st
at
.

(4
):
 

Ga
rb
.

Ge
nt
/L
in
c 

(4)
: 

Ca
rb
 

: 
Gh
lo
ra
m/
Go
tr
im
ox
 

(

Cl
ox
. 

(-
2)
: 

Ge
nt
.

Ma
gn
ap
en
 

(1
8)
.

Am
p.
 
Cl
ox
. 

(4
)

O (U • • • « N •« . . . . y—\
•H • • X • • X • •  O CM ✓“ S y-N y—x o
4-> jjjj o y ~ \ / * s o <T) a y^~x CM CO CM r v CO rHo o CM rH CO UO rH s - / cu CO w s - y 1 1 s . /
•H o v_y a N - / o CO s - y
rO • . • . .
•H > r • • • • • 4-J • • X rQ . X » V>
4-» cd £• a a a £ d a a o Vi O d d
C Q s s p 6 B CU P S  r "^ cd B  rH CU CUc < < < < o <d <  u o < CJ PLi O

rH / ~ std CO•H T3 ■U
4-> O •H CM CM vO M0 lO CM oo o
•H  O d rH rH
C  rH ^ d

M  ,jQ

y—"N
• y~xo o

i s rH rH
H /T s /---V y'-'x y ~ s y~x / N v - y rH
i s CO tH CM CO <)■ UO r - . oo O' v—y
W w v_/ __' \ » y '—y Ir , '—y . v -y x*^y x y e
M M o
H Pd 1 • • • • • • • • • o •C w i d PQ S o Eh s c SC CO PQ a
PH CO • • • • • • • • • • •

N -/ •o Q •o ^0 S £ M < < e>



278.

trasylol and a brief course of low dose hydrocortisone was given 

in one patient each, and appeared to be without effect. 

Antibiotics were given only when there was bacteriological 

confirmation of respiratory infection.

Discussion

The difficulty of making a definitive diagnosis of fat embolism 

is well recognised. Stainable fat in the sputum is common in 

pneumonia (Nuessle, 1951) and there are considerable technical 

problems associated with the demonstration of fat in the urine 

(Ross, 1970). The technique of Gurd (1970) in which pathological 

fat globules in venous blood could be detected both qualitatively 

and quantitatively has not been substantiated (Nolte et al,l974); 

estimation of fatty acids and serum lipase is likewise unhelpful 

and may be misleading (Ross, 1969). All the other clinical aids, 

many of which have been mentioned in the present study, are too 

non-specific to be of diagnostic value. In particular, the 

so-called characteristic 11 snowstorm” appearance of the chest 

radiograph is not pathognomonic of fat embolism. Similar 

radiographic appearances may be present in any condition leading 

to acute pulmonary oedema and vascular congestion (Ashbaugh et 

al, 1967). The fall in platelets and calcium could be explained 

inter alia on the basis of intravascular coagulation which
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appears to be a feature of fat embolism, but these are also 

common findings in patients with fractures (Ross, 1970) or 

major sepsis (Ledingham and McArdle, 1978). The anaemia, 

which was present in all 11 patients of this study, has been 

observed before in the fat embolism syndrome and has been 

attributed in part to haemodilution (for which there is more 

than one cause after trauma) and in part to intrapulmonary 

haemorrhage (Peltier, 1965). A haemolytic element may also 

be present with elevated serum bilirubin and urobilinogen 

in the urine. Superadded infection, if severe, can lead to 

bone-marrow depression.

In the absence of specific clinical and laboratory data, some 

authors have accepted that hypoxaemia without other explanation 

following long fracture is diagnostic of the fat embolism 

syndrome (Wright, 1971). Occasionally patients without fractures 

present with identical features (Herndon, Riseborough and 

Fischer, 1971) although the two included in this study had 

extensive soft tissue injury. The lack of specific diagnostic 

criteria in the fat embolism syndrome has led to the suggestion 

that it should be regarded simply as a variant of the acute 

adult respiratory distress syndrome (Ashbaugh et al, 1967).

In the author*s view this suggestion has much to recommend it.
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The pathophysiology of the fat embolism syndrome is another 

controversial issue. The two main theories are (a) the 

mechanical, which suggests that fat, liberated at the site 

of fracture, is carried via the venous system to the lungs 

(Sevitt, 1962) and (b) the physico-chemical, which postulates 

that the normally stable emulsion of fats in the blood stream 

becomes unstable, producing an aggregation of chylomicrons 

into fat globules of more than 8 u in diameter (Evarts,

1965). The latter have been shown to act as emboli of 

blocking small capillaries (Harman and Ragaz, 1949). Most 

experimental work supports the view that the bone-marrow 

is the source of the emboli (Lancet, 1972) and Hallgren and 

his colleagues (1966) showed, in dogs, that the triglyceride 

of emboli recovered from the lung had a composition similar 

to that of bone-marrow but unlike that of chylomicron 

fat.

In an experimental study (Bruecke et al, 1971), a biphasic 

physiological response was observed to follow the intravenous 

injection of the triglyceride, triolein. During the first 

three hours pulmonary vascular obstruction was considered to
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have been the cause of a 60% fall in cardiac output and a 30% 

increase in physiological dead space. Thereafter parenchymal 

damage was associated with marked hypoxaemia which the authors 

attributed to ventilation/perfusion inequalities rather than 

right to left shunt. The parenchymal lesion took the form of 

widespread alveolar oedema and haemorrhage caused possibly by 

oleic acid released by hydrolysis of triolein. Free fatty acids 

are known to be toxic to tissues (Baker, Pazell and Peltier, 1971), 

and particularly to capillaries (Fonte and Hausberger, 1971).

This effect may be caused by displacement of lipoproteins from 

cell walls and their subsequent destruction (Elkes, 1949) or by 

removal of calcium from cell walls (Jefferson and Necheles, 1948). 

Hypocalcaemia is certainly a feature of the fat embolism syndrome 

although, as previously mentioned, disseminated intravascular 

coagulation may also consume calcium together with platelets, 

with subsequent release of intensely vasoactive substances, such 

as 5-hydroxtryptamine and histamine. Either of these mechanisms 

could lead finally to diminished lung surfactant activity and 

the formation of hyaline membranes (Peltier, 1965; Ashbaugh 

et al, 1967).

Hypoxaemia is clearly of fundamental significance in the fat
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embolism syndrome. Its presence accounts for most of the 

clinical features of the syndrome and its elimination should 

be the main (and possibly exclusive) aim of treatment. The 

view has been expressed that hypoxaemia cannot explain the 

cerebral manifestations observed in some patients in that the 

administration of oxygen does not always relieve these symptoms 

(Sevitt, 1972). This argument is used to support the claim 

that cerebral fat emboli may also be of clinical significance. 

However, it should be appreciated that raising the inspired 

oxygen concentration may not always correct a critical reduction 

in oxygen availability to the brain in a patient with a low 

cardiac output and a low haemoglobin concentration. Both these 

factors may be present in the acute phase of the fat embolism 

syndrome and furthermore the associated hyperventilation, 

although not synonymous with hypocapnia, may diminish cerebral 

blood flow. In addition, if hypoxaemia has been present for any 

length of time, with or without the presence of fat emboli in 

the cerebral vessels, cerebral oedema may result. Under these 

circumstances, the conscious level in a previously comatose 

patient may not improve immediately in response to oxygen 

administration.

Four procedures would appear to be of importance in treatment -
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oxygen administration to provide prompt relief of hypoxaemia 

(Baker, 1976), intermittent positive pressure ventilation to 

prevent progressive deterioration in pulmonary gas exchange 

(Galloon and Chakravarty, 1967), positive end-expiratory 

pressure to reduce the shunt effect (Suter, Fairley and 

Isenberg, 1975; Gilston, 1977) and sedation, combined with 

muscle relaxants, to reduce cerebral metabolic rate and eliminate 

the strong afferent drive arising most probably from the stretch, 

or nj", receptors in the lung (Guz et al, 1970). The optimal 

arterial PC^ would appear to be about 100 mm Hg - high enough 

to counteract any hypoperfusion effect secondary to cerebral 

oedema. Other treatment is purely secondary to the main aim 

of achieving and maintaining adequate tissue oxygenation.

Digoxin may be necessary when evidence of cardiac failure 

is present and diuretics may be used to complement the 

effects of positive pressure ventilation, particularly in the 

event of inadvertent positive fluid balance. The judicious use 

of intravenous fluids may promote an improvement in cardiac 

output.

This study indicates that adoption of a therapeutic regimen 

which is designed simply to relieve hypoxaemia and support
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pulmonary gas exchange can be consistently successful. 

Nevertheless rigorous attention to detail is mandatory, with 

avoidance of any factor which might precipitate the re-appearance 

of pulmonary oedema. To this end total elimination of voluntary 

muscle movement during the acute phase of the condition is 

considered important as is avoidance of premature weaning from 

the ventilator. In the latter connection the chest radiograph 

and the platelet count would appear to be of predictive 

significance.

Intensive care methods such as those described above have 

reduced the mortality in the fat embolism syndrome. A precise 

comparison of results between different groups of patients 

is difficult because of the variable severity of the syndrome. 

Nevertheless all the patients in the present study had both 

systemic and pulmonary signs and symptoms, in spite of which all 

survived. In other recent reports the mortality varied from 

25 to 32% (Thomas and Ayyar, 1972; Baker, 1976; Wildsmith 

and Masson, 1978).

Evidence that other forms of treatment are necessary in the fat 

embolism syndrome is lacking. These include corticosteroids
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(Ashbaugh and Petty, 1966; Fischer et al, 1971), ethanol 

(Hermann, 1932), heparin (Sage and Tudor, 1958), low molecular 

weight dextran (Evarts, 1970), clofibrate (Cole, 1971), 

aprotonin (Mori, 1967), hypothermia (Larson, 1968) and 

hyperbaric oxygen. The side effects of these various drugs 

(Baker, 1976) would seem to be worth avoiding in the treatment 

of a condition which almost always regresses spontaneously 

and completely (Lancet, 1972).



Chapter 13  c  286.
Treatment of Accidental Hypothermia: A Prospective Clinical Study

Accidental hypothermia is the term used to describe the patho

physiological state in which an unintentional reduction in 

central temperature to below 35 deg C has occurred (BMA Special 

Committee, 1964; Royal College of Physicians Committee, 1966).

It is thus distinguished from hypothermia induced for the safer 

conduct of major cardiovascular surgery or for other therapeutic 

purposes. Accidental hypothermia may arise as a result of (1) 

exposure to adverse climatic conditions (Pugh, 1966); (2) immersion

in cold water (Reatinge, 1969; Golden, 1973) and (3) drug 

ingestion, intercurrent illness and impaired thermoregulation 

(Duguid, Simpson and Stowers, 1961). In the prospective 

clinical study which forms the basis of this chapter, the author*s 

experience of a group of patients falling into the third 

category is described. The main aim of the study was to 

determine the effect on outcome of a more aggressive approach 

to treatment.

Mortality amongst patients suffering from this form of accidental 

hypothermia is high - 40 to more than 80% (Mills, 1973) - and 

although some advances have been made within the past decade 

there is still no generally agreed treatment policy (Gregory and 

Doolittle, 1973). A number of key issues remain unresolved
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including the optimum rate of rewarming, the requirement for 

intravenous fluids, the role of oxygen administration and 

positive pressure ventilation, and the indications for drugs.

The treatment programme to be described owes its evolution to 

earlier laboratory studies of induced hypothermia modified in 

the light of experience with patients suffering from accidental 

hypothermia. The effect of treatment has been to eliminate 

mortality during the rewarming period. Overall mortality 

is also lower than in previously published series and is 

related to the underlying precipitating factor or disease rather 

than to hypothermia.

During the period of the prospective study a number of hypothermic 

patients were treated by others in the same institution along 

conventional, i.e., less aggressive, lines. This group of patients 

did not constitute a properly planned control group but the opport

unity was taken to determine their fate on a retrospective basis.

MATERIAL AND METHODS 

During the period from 1963 to 1978, 44 patients suffering from 

accidental hypothermia were referred from the Medical Units 

and the Accident and Emergency Department of the Western Infirmary,
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Glasgow. Since 1968 the patients received their initial treatment 

in the Intensive Therapy Unit (ITU).

On admission, preliminary assessment was made of the patient*s 

general condition and arterial blood samples were withdrawn for 

measurement of sodium, potassium, chloride, calcium, urea, 

creatinine, amylase, glucose, enzymes and osmolality, in addition 

to haemoglobin, haematocrit, white cell and platelet count and, 

on occasion, coagulation screen; blood gas analysis was performed 

using standard electrodes at 37 deg C and the usual convention 

was adopted (as described in chapter 9) of correcting for the 

difference in temperature between the electrodes and the patient 

(Severinghaus, 1966). A chest radiograph and full lead ECG 

were performed. Radial artery and central venous catheters were 

inserted for measurement of heart rate, systemic arterial and 

central venous blood pressure; thermocouples were placed in the 

rectum and on the great toe for measurement of central and 

peripheral temperatures; heart rate, arterial pressure, 

temperatures and lead II of the EGG were continuously displayed 

on a bedside monitor. Respiratory rate and inspired oxygen 

concentration were recorded in the spontaneously breathing 

patient and more detailed information in those being ventilated. 

Bladder catheterisation permitted accurate measurement of urine
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output. No exhaustive investigation was carried out at this 

stage to uncover the cause of hypothermia.

Occasionally more sophisticated measurements were performed 

including cardiac output, mixed venous PO2  and pulmonary artery 

pressures, which were used in conjunction with the more routine 

measurements to calculate such derived data as systemic vascular 

resistance, pulmonary vascular resistance, oxygen consumption, 

intrapulmonary shunt and alveolar/arterial P02 difference. A 

Swan-Ganz catheter (Swan et al, 1970; Lancet, 1978), passed 

via a peripheral vein into the pulmonary artery, was used to make 

the primary measurements.

Rewarming was achieved in all but two of the patients by means of 

a radiant heat cradle applied over the torso (Fig. 13.1); the 

skin of the torso was protected by a thin sheet. Active rewarming 

was discontinued at about 35 deg C to allow for the usual 

spontaneous further rise in temperature of 2 to 3 deg C.

The two patients not rewarmed by this method had thoracotomy 

and mediastinal irrigation with warmed fluids. Intravenous 

fluids were administered to reduce haemoconcentration, to 

restore circulating blood volume, and to maintain arterial 

pressure, central venous pressure and urine output at satisfactory 

levels; any fluids thus administered were warmed before infusion.
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Oxygen was administered to maintain arterial PO 2  (corrected for 

temperature) within the normal range; indications for 

intermittent positive pressure ventilation (IPPV) included 

(1) a combination of hypoxaemia and arterial PCC^ in excess of 

about 35 mm Hg (corrected for temperature) (2) evidence of 

deteriorating pulmonary gas exchange (3) coma and (4) cardio

vascular instability. Throughout rewarming careful observation 

was made of the cardiovascular and respiratory parameters outlined 

above and appropriate action instituted when required; biochemical 

and haematological disturbances were likewise detected early 

and remedied. No special consideration was given to the fact 

that the patient was hypothermic other than that hypotension 

was more frequently tolerated without recourse to pharmacological 

agents, and arterial PCC^ was maintained at levels below the 

normal range in patients being ventilated.

The patients were 'followed up* for a period of one month after 

the episode of hypothermia. Post-mortem examination was performed 

in nine of the 12 patients who died.

For the purposes of the retrospective study the hospital coding 

system was utilised. A total of 89 patients appeared to fulfil 

the required diagnostic criterion. Seventy seven adequate case
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records were recovered from which a preliminary analysis was 

made.

RESULTS

The mean age of the 44 patients in the prospective study was 

6 0 + 3  years (mean + S.E.) and the majority were in the fifth 

to seventh decades (Fig. 13.2); 24 were female and 20 male.

The commonest months for admission were December and March 

(Fig. 13.3) and the lowest individual recorded core temperature 

ranged from 20.0 to 34.3 deg C (Fig. 13.4); all but seven (84%) 

were below the "medically significant primary hypothermia" level 

of 32.2 deg C (Hockaday and Fell, 1969).

The precipitating factors and associated conditions are listed 

in tables 13.1 and 13.2. In 57% of the patients drugs appeared 

to be the predominant precipitating factor. In the remainder 

an assortment of acute and chronic medical ailments was found, 

with cardiovascular accidents and endocrine diseases being most 

numerous.

Clinical and Laboratory Data

The clinical and laboratory data corresponding to the lowest 

recorded temperature are illustrated in figures 13.5 to 13.16.

Heart rates tended to be slower at lower temperatures (Fig. 13.5)
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Figure 13.3. Month of admission.
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Table 13.1

ACCIDENTAL HYPOTHERMIA 
Precipitating factors

, _  9+n i ,phlong-acting 2
barbiturates “C .\  +ATRIother 8

Drugs'

others 8 (T/A,PH,M2,F,TRY,D,T)

Alcohol 4 (+N2)

Coal gas poisoning 3
TOTAL 25

4 

4

3 (+A2)

2 

1  

1

old age 1

injury 1

skin disease 1

mentally defective 1
TOTAL 19

cardiovascular accident 

endocrine disease 

malnutrition/dehydration 

malignancy

myocardial infarction 

pneumonia

A - alcohol M - meprobamate PH - phenothiazine
D - diazepam N - nembutal T - tryptazole
F - fluphenazine NI- nitrazepam TRI - trichloral

TRY - tryptophan



Table 13.2

ACCIDENTAL HYPOTHERMIA

Associated conditions

Psychiatric

None

alcohol

anaemia

cardiovascular

respiratory

malnutrition

infection

poisoning

malignant

multiple

cerebrovascular accident 2

myocardial infarction

20

8

3

3
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Figure 13.5. Heart rate at lowest temperature.
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but the relationship was not as striking as might have been 

expected. There was no consistent relationship between arterial 

blood pressure and temperature (Fig. 13.6) although in 10 

of the early patients, initial blood pressure on admission was 

found to be unrecordable. (This occurred at a time before 

intra-arterial pressure measurement became routine). Of the 

34 patients whose admission ECG record had been retained, 

more than 50% had dysrhythmias (Table 13.3); two of the three 

patients with ventricular fibrillation survived. The clinical 

details of one of these patients were published (see following 

reprint and Fig. 13. 7 ).



SYSTOLIC
B L O O D  PRESSURE  

(m m H g )
150 r

100

r = - 0 0 2  
m = -  0-24 
C -  99-88

TEM P °C

Figure 13.6. Systolic blood pressure at lowest temperature.



Table 13.3

ACCIDENTAL HYPOTHERMIA 

Prevalence of dysrhythmias on admission

Total no. ECG recordings 34

dysrhythmias 19

sinus bradycardia (<60 beats/min) 9

atrial fibrillation 7

ventricular fibrillation 3
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SEVERE HYPOTHERMIA WITH
BARBITURATE INTOXICATION

A . L .  L i n t o n  
M .B . E din ., M .R .C .P .E ., M .R .C .P .G .

SENIOR REGISTRAR IN MEDICINE
I. M c A .  L e d i n g h a m  

M .B . G lasg.
• M.R.C. SENIOR RESEARCH FELLOW IN SURGERY

WESTERN INFIRM ARY, GLASGOW i

D e s p it e  im p r o v e m e n t s  in  t h e  c a r e  o f  t h e  u n c o n s c io u s  ;
p a t ie n t ,  b a r b it u r a te  in t o x ic a t io n  s t i l l  c a r r ie s  a  m o r t a l i t y  o f
around 5% ;  and, if only severe cases are considered, the \
mortality is much greater (M aher et al. 1962). T he 
m ajority of the deaths are probably due to respiratory and
cardiovascular depression, or to the consequences of pro- •
longed unconsciousness. Lee and Ames (1965) have
(reported a high incidence of hypotherm ia in severe \
barbiturate intoxication, particularly w ith interm ediate- 
acting drugs. They noted several episodes of cardiac 
arrest in asystole, often associated with intubation.

W e report the present case because of the severity of the 
hypotherm ia (23 'C ), the associated cardiac complications, 
and the somewhat unusual resuscitative measures which
became necessary. In  addition, observations were made ;
on barbiturate clearances during profound hypotherm ia.

Case-report
A 27-year-old man was admitted to the infirmary on May 4,

1965, with a history of having taken 50 capsules of ‘ Sodium
Amytal ’ (sodium amylobarbitone), 50 tablets of cyclobarbitone, i
and a considerable amount of alcohol some 12 hours previously. (
On admission he was deeply unconscious, but blood-pressure
and respiration seemed adequate. Reflexes were absent, and an
endotracheal tube was inserted without difficulty. Gastric
lavage was not undertaken in view of the time interval since the
ingestion of the drugs. A few minutes later the patient
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suddenly became apnoeic, cyanosed, and pulseless. External 
cardiac massage and artificial ventilation were immediately 
begun.

At this time the rectal temperature was 23°C. The serum- 
barbiturate level was 5-7 mg. per 100 ml., blood-urea 23 mg. 
per 100 ml., electrolytes and blood-count normal. The 
electrocardiogram (e.c.g .) showed coarse ventricular fibrillation
(fig- 1).

The problem was therefore one of severe hypothermia with 
barbiturate and alcoholic intoxication as the precipitating
T 1 ! '! ; I ! M !■ j I j i !; 'pTT I - F p r - i-r  p

1 j J  S ■ i_1 : i 1 ! ! 1 \  - r

- X  f  ; ..
r j -1 i 1 f t  i ! i | f (.‘FT ■

X j f i i i . j ..i -! - ! •1.J. -i !...r i T l i d f
1' ig.  1— c m a d m i s s i o n ,  s h o w i n g  c o a r s e  v e n t r i c u l a r  f i b r i l l a t i o n .

factors. Ventricular fibrillation is a common cause of death in 
animals and probably in man during hypothermia (Hegnauer 
1959), but to our knowledge has not been recorded in 
barbiturate intoxication.

Continuous monitoring of the electrocardiograph (e.c.g .), 
blood gases, and temperature was established. A heat cage was 
placed over the lower trunk; 100 mg. of hydrocortisone and 
300 mEq. of bicarbonate were given intravenously. Successive 
attempts at external defibrillation with 240, 480, and 750 volts 
were unsuccessful; at the highest voltage a few beats of sinus 
rhythm appeared, but the rhythm reverted to ventricular 
fibrillation almost at once (fig. 2).

External cardiac massage was continued for 2 hours, but the 
external heating was ineffective, the oesophageal temperature 
at the end of this time being only 24 C. Thoracotomy was 
therefore done in order to warm the mediastinal region directly 
to a temperature at which the heart might be expected to 
remain permanently defibrillated. After the chest had been 
opened, internal cardiac massage was begun, along with 
repeated irrigation of the mediastinum with physiological saline 
solution at 40'C. In 35 minutes, the mediastinal temperature

Ext. D.F. V.G. Rhythm—•• Bradycardia 7 5 Ov

l-'ig. 2— li.C .G . show ing  tra n s ie n t  re v e rs a l to  sinus  rh y th m  w ith  e x te rn a l ile tib r i lla lio n  
(750 vo lts).
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had reached 28°C, and the fibrillation had changed from the 
atonic type associated with anoxia to the vigorous type found 

' when the myocardium is adequately oxygenated (Wiggers 
1940). Internal defibrillation at 125 volts was successful in 
restoring sinus rhythm at the second attempt, and this proved 
permanent (fig. 3).

Once it was obvious that heart action was likely to remain 
stable, the chest was closed and external rewarming continued. 
Pulse and Hond-pressure had returned, and spontaneous

l :ig. a— K .C .li. show ing  successfu l co n v ersio n  to s in u s  rh y lh m  w ith  
in te rn a l  d c fib r i l la t io n  (125 vo lts).

respiration began about 60 minutes later. Blood-gas analysis at 
this time confirmed that spontaneous ventilation was sufficient 
to prevent increasing hypercapnia, but that a very high level of 
inspired oxygen was necessary to maintain adequate oxygena
tion. (Arterial blood-gas data with the patient breathing 90% 
oxygen spontaneously: pH 7-34, Pco., 39 mm. Hg, Po2 62 mm. 
Hg.) The body temperature returned to normal 10 hours after 
admission—8 hours after thoracotomy. The e .c .g . was by then 
virtually normal.- Chest X-ray showed that the left lung had 
reinflated successfully.

The patient had been catheterised on admission, and during 
the hypothermic phase he had exhibited the polyuria normally 
associated with hypothermia (Wynn 1960). Once the tempera
ture returned to normal, the urine output fell sharply, probably 
because of the barbiturate intoxication, which now became the 
major therapeutic problem. The dose of barbiturate ingested 
had been large, and the blood-level on admission (5-7 mg. per 
100 ml.) moderately high for intermediate-acting barbiturate. 
It therefore seemed likely that unconsciousness might be pro
longed—in this case a greater hazard than usual. Once the 
cardiovascular state seemed satisfactory, cautious forced diuresis 
was begun as we have previously described (Linton et al. 1964), 
although the rate of fluid infusion was reduced by half for the 
first 12 hours to avoid overloading the circulation. No com
plication occurred, and the patient regained consciousness the 
next evening, 46 hours after ingestion of the tablets, 34 hours 
after admission, and after 20 hours of forced diuresis. At this 
time the serum-electrolvtes were normal; blood-urea was 
20 mg. per 100 ml., and blood-barbiturate level 1-6 mg. per 
100 ml.

Although the patient was permitted to breathe from air from 
this stage onwards, the arterial oxygen tension only gradually
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re tu rn ed  to  n o rm a l d u r in g  th e  n e x t w eek . O n  th e  d a y  a fter  
a d m iss io n  it w as e s t im a te d  th a t 2 0 0o o f  th e  ca rd ia c  o u tp u t  w as  
b e in g  sh u n ted  th ro u g h  u n v e n tila te d  a lv eo li.

A p a r t fro m  an  e p iso d e  o f  b r o n c h o p n e u m o n ia  9 d ays a fter  
a d m iss io n , w h ic h  q u ick ly  r e sp o n d e d  to  te tr a c y c lin e , th e  p a t ie n t  
h a d  an  u n c o m p lic a te d  c o n v a le sc e n c e . T h e r e  w as n o  e v id e n c e  
o f  cereb ra l d a m a g e , an d  th e  e le c tro e n c e p h a lo g r a m  w as n o rm a l. 
The p a tien t w as see n  b y  a p sy c h ia tr is t , an d  it e m e rg e d  th a t th e  
su ic id a l a tte m p t w as d u e  to  a d v erse  so c ia l c o n d it io n s  an d  
r ea c tiv e  d e p r e ss io n . H e  w as tra n sferred  to  a p sy c h ia tr ic  u n it  

. for  fu r th er  care 3 w eek s a fter  h is  o r ig in a l a d m iss io n .

D i s c u s s i o n

T his patient’s hypotherm ia was severe, and with one 
exception we can find no record of successful resuscitation 
from  a lower tem perature (Britton 1930, T albot et al. 
1941, D uguid et al. 1961, Read et al. 1961, M cNicol and 
Sm ith 1964, Rosin and Exton-Sm ith 1964). Laufm an 
(1951) recorded the survival of a patient whose tem pera
ture was only 18 C, but she lost all four limbs from  cold 
injury. O ur patient was a fit young man, and the outdoor 
tem perature on the night he became unconscious was 
1°C on the ground and 5 C in the air. He was found in a 
room  in a model lodging-house, fully clothed, and the 
room  tem perature did not seem tmdulv low. However, 
hypotherm ia seems to occur very readily in poisoning with 
the interm ediate-acting group of barbiturates (Lee and Ames 
1965). Day(1943) has observed that a completely motionless 
person, even at a tem perature as high as 28°C, cannot 
prevent a slow fall in body tem perature. T he complete 
inertia of the severely poisoned patient may therefore 
explain the occurrence of hypotherm ia in barbiturate 
intoxication. In  our patient, the vasodilator effect of 
alcohol may have contributed.

T h e  tim e spent attem pting external defibrillation was 
probably wasted, for defibnllation is likely to be main
tained only when the myocardial tem perature is at least 
28°C. A t this temperavure myocardial oxygenation is 
probably approaching the optim um , and myocardial 
conduction-tim e is returning rapidly to norm al: both  
factors contribute to sustd.ued reversion to sinus rhythm .

A patient w ith a mid-ccsophageal tem perature as low as 
23°C in the presence of ventricular fibrillation could be 
treated with pum p and heat exchanger, or by thoracotom y 
with direct rewarming of the mediastinum. W e chose the
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latter technique in order not to lose tim e while the heart- 
lung m achine was being prepared. *

T h e  severe disturbances of metabolic balance often 
found during the rewarming of patients w ith accidental 
hypotherm ia were largely prevented by the maintenance 
of adequate blood-pressure and oxygenation both before 
and after defibrillation. T he im portance of oxygenation 
in hypotherm ia may be underrated because the outward 
signs of respiratory insufficiency— cyanosis and dyspnoea— 
are usually absent (Ledingham  1964, M cNicol and Sm ith 
1964).

T reatm ent of the hypotherm ia and ventricular fibrilla
tion took precedence over any specific treatm ent for the 
barbiturate poisoning. T he barbiturate poisoning was 
moderately severe, and it was especially im portant in  this

BARBITURATE CLEARANCE

Specimen no. Time (hr.) Volume of 
urine (ml.)

Barbiturate level 
(nig. per 1 0 0  ml.) Clearance 

(ml. per min.)
Urine Serum

1 4 430 49 5-7 15
2 4 90 40 5 .5 . 2-7
3 8 770 46 5 . 4 145

Specimen no. 1: during hypothermia.
„ „ 2 : after correction ot hypothermia.
„ „ 3: during forced diuresis.

case to reduce the duration of unconsciousness as m uch as 
possible, to prevent respiratory complications. Haemo- 
dialysis would have been more effective than forced 
diuresis in removing barbiturate from the body (Linton 
et al. 1964), bu t cautious forced diuresis offered a safer 
compromise. N o difficulties were experienced, and urine 
excretion was excellent. D uring the period of hypo
therm ia, and before forced diuresis was begun, the 
continuing good urine-fiow contrasted strikingly w ith 
the  oliguria which is usual in severe barbiturate 
intoxication. Polyuria in hypotherm ia may be due either 
to  inhibition of antidiuretic horm one production, o r to  
insensitivity of the renal tubules to the  effects of anti
diuretic hormone (W ynn 1960). In  uncom plicated 
barbiturate intoxication production of antidiuretic hor
mone is increased, producing oliguria (de Bodo and 
Prescott 1945), and this more usual pattern was seen once 
the hypotherm ia was corrected. T h e  table shows that
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barbiturate clearance was good during hypotherm ia; but, 
once the hypotherm ia was corrected, both urine-flow and 
barbiturate clearance fell to very low levels. Forced 
diuresis restored the clearance to satisfactory levels, and 
the total am ount of barbiturate removed by the modified 
forced diuresis was 2-2 g. in 20 hours. Thus the duration 
of unconsciousness was probably much reduced. T he 
effect of hypotherm ia in inhibiting antidiuretic hormone 
production seems to overcome the opposite effect of 
barbiturate intoxication.

Summary
A case of severe barbiturate intoxication, complicated 

by profound hypotherm ia (body tem perature 23 C) and 
ventricular fibrillation is reported. Defibrillation was 
possible only after thoracotomy and direct warming of 
the m ediastinum . D iuresis and barbiturate clearance 
were good during hypothermia, but, as the body tem pera
ture rose, the antidiuretic effect of barbiturate poisoning 
appeared, and forced diuresis was needed. T he patient 
recovered completely. There is probably only one other 
recorded case of successful resuscitation from a tem pera
tu re  as low as 23 C.

Our thanks are due to Dr. R. L. Richards for permission to report 
this case and to the biochemistry department of Glasgow Royal 
Infirmary for assistance. We should aiso like to acknowledge the 
help given by Dr. K. B. Holloway and Dr. W. J. Thomson, of the 
department of anaesthetics.
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Thirty-nine per cent of the patients had obvious respiratory 

inadequacy on clinical examination - nine were apnoeic and eight 

nearly apnoeic. On initial chest x-ray 12 of 30 patients (40%) 

had patchy opacification (usually bilateral) and five more 

(a total of 57%) developed radiological changes in the ensuing 

days (Table 13.4). Blood gas analysis confirmed the frequency 

and severity of pulmonary gas exchange disturbances. The 

majority of the patients in whom analysis was performed during 

spontaneous air breathing had arterial PO2  values of less than 

55 mm Hg (Fig. 13.8) and in those breathing oxygen spontaneously 

or via a ventilator, the mean alveolar/arterial PC^ differences 

were 250 and 350 mm Hg respectively. Mean arterial PCO2  for 

the whole group was 32 mm Hg (Fig. 13.9) which accounted for 

a normal mean arterial pH of 7.38 units (Fig. 13.10) in the 

presence of a mean base deficit of -9 mmol/1 (Fig. 13.11).

The only consistently abnormal finding amongst the serum 

electrolytes (Figs. 13.12 and 13.13) was hypocalcaemia. The 

few patients with hyperkalaemia also had elevated blood urea 

(Fig. 13.14) levels which were a common occurrence. Subsequent 

events revealed that more often than not the high blood urea 

levels were prerenal in origin and consistent with other 

evidence of haemoconcentration including elevated packed cell



Table 13.4

ACCIDENTAL HYPOTHERMIA 

Chest Radiograph

On admission Later (day)

Normal

Normal

18-

Pathological

Pathological 12
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SPONTANOUS VENTILATION
ARTERIAL P C 0 2 

(mmHg)
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Figure 13.9a. Arterial PC02 in spontaneously breathing
patients, cross indicates mean and bars 
one standard deviation.
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Figure 13.9b. Arterial PC02 in ventilated patients
at lowest temperature; cross indicates 
mean and bars one standard deviation.
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Figure 13.10. Arterial pH at lowest temperature.
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Figure 13.11. Arterial base excess at lowest temperature.
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Figure 13.12. Serum sodium and potassium at lowest
temperature.
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volume (Fig. 13.15). Five patients had blood glucose levels 

below 3.3. mmol/1 (60mg/100ml) (Fig. 13.14), for which appropriate 

treatment was given. Serum amylase was above 300 IU/lOOml in 

14 of 29 patients (48%) but in only two did the level exceed 

2000 IU/lOOml. Serum enzyme levels were slightly elevated but 

only a few results were available. Haematological analysis 

revealed the frequency of thrombocytopenia and leucocytosis 

(Fig. 13.15), although the latter generally became less marked 

once the circulating fluid volume had been restored. During fluid 

repletion four of 26 patients had hourly urine outputs of less 

than 30 ml (Fig. 13.16); one of these subsequently developed 

acute renal failure.

Treatment

No patient was adversely affected by any of the manoeuvres 

instituted for the purposes of monitoring or treatment. Neither 

reflex cardiac slowing nor induced arrhythmias was seen.

Rewarming was achieved at a mean rate of 1.13 + 0.09 deg C per 

hour and the mean duration of rewarming was 8.03 + 0.85 hours.

The course of an uneventful active rewarming procedure is 

illustrated in Fig. 13.17; the patient breathed spontaneously 

throughout. Most patients received some intravenous fluids
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34r

TEMR

TIME (Hrs)

Figure 13.17a-d. Uneventful rewarming from 23.6°C in a 48
year old male who had taken some buto- 
barbitone and alcohol and was found lying 
outside his caravan. Cardiac output fell 
during rewarming; oxygen availability was 
consistently adequate for tissue requirement 
and base excess returned to normal spontan
eously; arterial P02 was low prior to 
oxygen administration and PC02 rose only 
marginally; (not shown) CVP varied between 
10-15 cm saline and urine output between 
25-50 ml/hr with a terminal diuresis after 
frusemide (20 mg).
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Figure 13.17b. See legend 13.17a.
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Figure 13.17c. See legend 13.17a.
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during this period and the mean volume infused was 2.1 + 0.2 

litres (Table 13.5). Dextrose (5%) and saline were the fluids 

most frequently infused but on occasions plasma and blood were 

given; potassium was administered as indicated by sequential 

biochemical analyses; calcium was not normally given. Oxygen 

(in high concentration) was administered in all but four of 

the patients and intermittent positive pressure ventilation (IPPV) 

was instituted in 48% of the series (Fig. 13.18). At the end of 

rewarming the standard criteria for weaning from the ventilator 

were observed (Beach, Millen and Grenvik, 1973) and adequate 

spontaneous ventilation was usually achieved without difficulty.

The most troublesome problem during rewarming was hypotension 

which was regarded as more than usual in 14 of the 44 patients 

(32%). Seven of these patients received drugs aimed at increasing 

blood pressure and thereby improving perfusion to vital organs. 

Four were given vasoconstrictors; one appeared to respond 

well, a second had a variable response (Fig. 13.19) and two 

showed no response (Fig. 13.20); (the clinical details of the 

first of these four patients were published as indicated in the 

following reprint).



Table 13.5

ACCIDENTAL HYPOTHERMIA 

Summary of Treatment

Total no. patients 44

Active rewarming 44

Oxygen [mean max. concn.] 40 (65%)

IPPV/warm air humidifier 21

IV fluids (volume/litres) 2.1 + 0.2

Drugs: Antibiotics 24

Steroids 7

Vasoactive^^ aramine 4 ) 
agents dopamine 2 ) 

\^isoprenaline 1) 
^  thymoxamine 1 )

8
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3.18. Active rewarming with recovery from 24°C in a 
77 year old female found unconscious in an un
heated bedroom; no cause for hypothermia was 
found. IPPV was commenced after earlier oxygen 
administration had failed to restore normal 
arterial P02.
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Case reports

Treatment of intoxication with combinations of drugs and 
management of the associated shock
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Self-poisoning with combinations of drugs is 
becoming increasingly common and such cases 
present considerable therapeutic problems.

The difficulty in measuring blood and urine levels 
o f many new sedatives and tranquillizers has meant 
that no firm guide-lines for treatment have been laid 
down; in particular, little evidence exists as to the 
value o f measures such as forced diuresis and 
haemodialysis in increasing the rate of removal of 
the drugs from the body. In addition, precise details 
o f the multiple drugs ingested are seldom available, 
and treatm ent often resolves itself into the applica
tion of good respiratory care and the correction of 
shock. This latter problem is often difficult, and 
persistent hypotension commonly contributes to the 
patient’s death. The present case is reported because 
o f the success of the therapeutic methods used, and 
the initial failure of forced diuresis.

Case report
A female aged 27 was found unconscious and 

adm itted to hospital at 11.00 hours on 18 September 
1968. Comprehensive enquiry suggested that she had 
taken phenobarbitone and other drugs, including 
chlordiazepoxide and phenelzine.

On admission she was deeply unconscious, 
totally areflexic and had fixed, dilated pupils. 
Respiration was clinically adequate and systolic 
blood pressure 105 mmHg. Serum barbiturate level 
was reported as 9 m g/100 ml and on the basis of 
percentage hydrolysis the barbiturate was said to be 
of the long-acting group (Broughton, 1956). This 
apparently confirmed the suggestion that the patient 
had taken phenobarbitone, and that the barbiturate 
was not a major factor in the intoxication; a 
diagnosis of mixed sedative-tranquillizer intoxication 
was made. This conclusion was later found to be an 
error, for there is now no reasonable doubt that the

barbiturate ingested was am ylobarbitone, both on 
the evidence of the patient and subsequent identifica
tion of the drug in the blood by thin-layer chrom ato
graphy. The patient had also taken large am ounts 
of chlordiazepoxide and phenelzine.

On the erroneous assumption that phenobarbitone 
had been the drug ingested, forced diuresis was 
begun as described by Linton et al. (1964). with the 
object of maintaining the circulation and removing at 
least the barbiturate component of the intoxication. 
Serum urea and electrolytes were normal, and there 
was no clinical evidence of pre-existing cardiac or 
renal disease. At 14.00 hours (3 hr after admission), 
increasing respiratory depression necessitated trans
fer of the patient to the Intensive Therapy Unit: 
systolic blood pressure had fallen to 70 mmHg and 
blood gases were: Po2 54 mmHg, P co 2 80 mmHg, 
pH  7-2 (spontaneous respiration, on air).

An endotracheal tube was passed and assisted 
ventilation was begun using a Cape ventilator. 
Breathing 100% oxygen with a minute volume of 
9-5 litres, blood gases (corrected for temperature) 
were: Po2 405 mmHg, P co 2 26-5 mmHg and pH 
7-61, with a base deficit of 6 mEq. Systolic blood 
pressure remained 70 mmHg and progressive fall in 
rectal temperature to 34 'C  necessitated re-warming 
with a heat cage. The rectal tem perature reached 
37° C at 23.00 hours on the day of admission.

By 19.00 hours on 19 September 1968 the patient 
had received 3500 ml of fluid intravenously, but urine 
volume was only 1450 ml despite the adm inistration 
of 80 mg of frusemide and 10 g of m annitol. Since 
there were no clinical signs of overhydration, it was 
thought that the relative failure of diuresis might be 
due to pre-existing dehydration. In addition, the 
hypotension of barbiturate intoxication has been 
attributed to a relative hypovolaemia from venous 
pooling of blood (Shubin & Weil, 1965), so it was

Reprinted from Postgraduate Medical Journal 1969, 45, 697-699
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decided to give 1000 ml of plasma and to continue 
with the forced diuresis in an attem pt to raise the 
falling blood pressure. Over the next 8 hr, however, 
blood pressure became unrecordable by standard 
methods, and a further 160 mg of frusemide given 
intravenously produced only a small increase in 
urine flow rate. At 09.00 hours on 19 September 1968, 
22 hr after admission, the patient was still deeply 
comatose with fixed, dilated pupils, the extremities 
were cold and the skin was pale, but there was no 
cyanosis. Direct recording of the arterial pressure 
using a transducer and ink-jet recorder (Elena- 
Schonander ‘M inograf 34') showed the blood 
pressure to be 50/30, mean 35 mmHg, although no 
pulses could be felt nor any blood pressure recorded 
by sphygmomanometer. Intermittent positive-pres- 
sure ventilation continued with apparently good air 
entry to both lungs; the blood gases were: P o2 
110 mmHg, P c o 2 32 mmHg and pH 7-48. Standard 
bicarbonate was 25 mEq/1 and base excess 1-8 mEq. 
The deterioration in P o2 was thought to be due to 
venous admixture effect consequent upon hypoten
sion and pulmonary oedema: the presence of pulm
onary oedema was confirmed on chest X-ray. Serum 
barbiturate level was 9-8 mg/100 ml and central 
venous pressure recordings started at this time 
indicated a level of 24 cm H 2Oi It was, therefore, 
obvious that forced diuresis had failed, and the 
patient now had considerable fluid overload. There 
was doubt whether vasopressor drugs would be of 
any value in view of the existing peripheral vaso
constriction; Shubin & Weil (1965) showed that the 
effect of such drugs in this situation may be to 
reduce urinary output and prevent satisfactory 
expansion in plasma volume, although the effect on 
cardiac output and peripheral vascular resistance 
appeared to vary with the dose of drug used. 
Equally, it was feared that attempts to improve tissue 
perfusion with a vasodilator drug would be likely to 
cause a further and probably fatal fall in blood 
pressure. A single dose of 100 mg of hydrocortisone 
was given to assess the effect of steroids, but at
11.30 hours the blood pressure had fallen to 45/25, 
mean 30 mmHg.

It was, therefore, decided to try the effect of 
mephentermine, and the patient was given 45 mg of 
this drug by slow intravenous injection. This im
mediately improved the mean blood pressure to 
50 mmHg and increased urine flow rate from an 
average 75 m l/hr to 350 ml in the next hour. A 
continuous infusion of mephentermine was begun 
(150 mg in 500 ml of 5%  dextrose), and given at a 
rate varying between 0-45 and 0-66 mg mcpnentcr- 
mine/min; this maintained the mean blood pressure 
around 50 mml-Ig. Despite the fears that mephenter
mine would further reduce cardiac output and tissue 
perfusion, the increase in pressure was associated

with a continued improvement in urine flow rate, 
this remaining around 250 ml/hr. The skin of the 
extremities also became noticeably pinker and 
warmer.

This regime was continued until 09.30 hours on 
20 September 1968 (46 hr after admission). It now 
proved possible further to increase :irine flow rate 
with frusemide (total of 560 mg given in 8 hr), and 
during the 24-hr period after the siart of mephenter
mine therapy, some 5 litres of the retained fluid were 
excreted (2000 ml in. 7000 ml out). Fluid intake and 
output since admission were now aimost equal, and 
the central venous pressure had fallen to 13-5 cm 
H 20 .  Serum barbiturate level was 6-5 mg/100 ml. 
Blood pressure was 75/40, mean 53 mmHg and 
gradual reduction in rate of mephentermine infusion 
was possible. The infusion was stopped at 14.00 hours 
on 20 September 1968, and there was no subsequent 
fall in blood pressure. During the next 18 hr, the 
patient’s condition improved steadily; blood pressure 
rose, and pupillary and cough reflexes returned. By 
09.00 hours on 21 September 1968 (70 hr after admis
sion) blood pressure was 117/62, m^an 85 mmHg. 
Spontaneous ventilation was resumed and the 
endotracheal tube was removed later in the day. 
The patient was fully conscious on the morning of 
22 September 1968, and suffered no ill-effects from 
her 90-hr period of unconsciousness other than a 
mild chest infection which responded quickly to 
antibiotics. There was no evidence of residual brain 
damage on clinical examination or on psychiatric 
assessment by a psychiatrist who had known her 
previously. Serum electrolytes and blood gas values 
were normal on 23 September 1968, and on 25 
September 1968 she was transferred for psychiatric 
treatment.

Discussion
The drugs ingested by the patient described above 

were phenelzine, chlordiazepoxide and amylo- 
barbitone. Pure phenelzine overdosage gives symp
toms of massive catecholamine release (Solberg, 
1961), which probably caused the widely dilated 
pupils and may have contributed to the peripheral 
vasoconstriction in this case. Chlordiazepoxide has 
been ingested in large doses without severe symptoms 
(Jenner & Parkin. 1961); deaths have occurred but 
only when the drug was taken together with other 
depressive agents (Cruz, Cramer & Parish, 1967). 
In retrospect, therefore, the am ylobarbitone ingested 
was the m ajor problem and the patient should 
probably have been treated by haemodialysis on 
the basis of our own previous criteria (Linton et al., 
1967b). Failure to institute hatrnodiaiysis was due 
to the erroneous clinical and biochemical inform a
tion suggesting that the barbiturate ingested had 
been phenobarbitone. Further studies on the
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identification of barbiturates as long or intermediate- 
| acting suggest that percentage hydrolysis is unsatis-
! factory for differentiation, and where clinical decisi

ons hinge on the result thin-layer chrom atography 
| should be used.
; Extensive previous experience with forced diuresis
j in barbiturate intoxication has dem onstrated its

safety and effectiveness (Strickler, 1966; Linton, 
Luke & Briggs, 1967a). In this case, however, a 
second error of management was made in assuming 

'* that the failure to induce a diuresis quickly was due
to  pre-existing dehydration. It is probable that the 
low urine flow was due to poor renal perfusion with 
consequent low glomerular filtration rate. The 

| resultant fluid overload should have been detected
I sooner by recording the central venous pressure
 ̂ earlier. It should, however, be emphasized that

this is the first occasion in the experience of one of 
us (A.L.L.) in over 150 patients treated with forced 
diuresis that significant overhydration has occurred.

The principal therapeutic problem posed by this 
patient was the severe hypotension: no blood 
pressure or pulse were detectable by standard 
clinical methods for over 24 hr. The adm inistration 
of fluids as suggested by Shubin & Weil (1965) failed 
to raise the blood pressure. The potential danger of 
treating shock with vasopressor agents is well 

j documented (Lancet, 1967) and their use in hypo-
volaemic states with failure of the vasoconstrictor 
mechanisms is illogical (Bloch et al., 1966). In order 
to  improve tissue perfusion Lillehei et al. (1964) 
suggest the use of vasodilator drugs with replacement 

I o f blood volume as required. However, for the
reasons already described, the patient was given 

i mephentermine, with immediate effect on blood
' pressure, skin colour, tem perature and urine

volume. It seems probable that in hypotension of 
this severity mephentermine is beneficial by reason 
o f its inotropic effect on the heart (Winsor, 1959; Li,

' Shimosato & Etsten, 1962) with a resultant increase
in cardiac output; there was no increase in heart 
rate  in this case. A paradoxical reduction in peri
pheral vascular resistance, as seen here, has been
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noted in severe hypotension with other vaso
constrictor agents, notably metaraminol and nor
adrenaline (Shubin & Weil, 1 9 6 5 ) . There is, however, 
r.o exa^: understanding of the mechanism of action, 
or indeed of the effect of vaso-active drugs under 
these conditions. Only by more frequent and inten
sive monitoring of haemodynamic changes in 
poison patients will empiricism be replaced by more 
logical therapy.
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Three of the patients received drugs having a major inotropic 

action on the heart; all responded well and the improvement 

in urine output was marked in the two patients given dopamine. 

One patient was given the<K-adrenotropic blocking agent 

thymoxamine because of persistent vasoconstriction toward 

the end of rewarming; a moderate response was noted.

Steroids had been administered on seven occasions prior to 

referral; only small doses had been given and their effect 

was impossible to judge. Antibiotics were not administered on 

a prophylactic basis but 24 patients (55%) received a variety 

of antibiotics when clinically significant infection (usually 

of respiratory origin) was confirmed on bacteriological 

examination.

Mortality

Data relating to mortality are presented in Table 13.6 and Fig. 

13.21. The overall mortality was 27%.

Only two patients died during rewarming; both deaths occurred 

in the early years of the study (1965 and 1968). One patient, 

who was 77 years of age and was found in a gas-filled room, died 

at a temperature of 34.5 deg C after IPPV had been discontinued



Table 13.6

ACCIDENTAL HYPOTHERMIA 

Prospective Study 

Mortality

44

2 (5%) 

12 (27%)

Total no. patients 

Mortality

Rewarming

Overall



No. of 
PATIENTS 
8r

6

4

2

ACCIDENTAL HYPOTHERMIA 
W.I.G. (ITU) Series 

PREVALENCE/MORTALITY

1965 1970 1975

Year

Figure 13.21. Mortality in patients suffering from
accidental hypothermia.
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and spontaneous ventilation proved inadequate for oxygen transport 

in the presence of severe hypotension (Fig. 13.20). The other 

patient, who was 65 years of age and a severe alcoholic, died, 

apparently from cardiac failure, at 29 deg C. On admission he 

had a central temperature of 20 deg G and was one of the two 

patients rewarmed by mediastinal irrigation via a thoracotomy. 

Laboratory data showed that this patient was extremely dehydrated 

and anaemic (haemoglobin - 7g/100ml); hypotension persisted 

throughout rewarming. On reflection, it is reasonable to assume 

that the main problem was a severe reduction in myocardial 

oxygen availability which, in the absence of adequate fluid 

repletion, became critical as oxygen consumption rose during 

rewarming.

The remaining 10 patients all died after regaining normal body 

temperature. The causes of death, confirmed at post-mortem 

examination in all but two, are listed in Table 13.7. Two deaths 

occurred on days 2 and 3 from acute cerebrovascular accidents, 

whether or not de novo could not be determined. Four more deaths 

occurred on day 4 - three from cardiovascular emergencies (one 

• further*myocardial infarction, one subarachnoid haemorrhage 

and one cardiac arrest associated with a serum calcium of 1.2 

mmol/1) and one from meningitis following surgery for pituitary



Table 13

Patient
(year)

F.R. (1965)

H.F. (1968) 

A.F. (1970)

R.McG. (1967) 

A.E. (1970) 

A.H. (1974)

F.A. (1974)

P.D. (1969) 

W.McD. (1978)

D.L. (1969) 

M.P. (1964)

J.N. (1974)

7 Accidental Hypothermia

Details of Non-Surviving Patients

Age/ Precipitating/ Day of
(yr) associated death
Sex factors

77M Coal gas poisoning 1 (R)

65M Alcoholism: 1 (R)
anaemia

80M Coal gas poisoning: 2
cerebrovascular 
accident

84F Cerebrovascular 3
accident

69F Myocardial infarction 4

(R - rewarming 
death)

Cause of Death

Respiratory fail
ure during re
warming (No PM)

Cardiac failure 
during rewarming

Cerebrovascular 
accident (No PM)

Cerebrovascular 
accident (No PM)

Further myocardial 
infarction

66M Hypertension

56M Chronic respiratory 4 
disease:
Diarrhoea/vomiting: 
Dehydration

59M Pituitary 4
tumour

78M Tuberculous 10
bronchopneumonia: 
cerebrovascular 
accident

60M Reticulosis: 11
anaemia

69F Myxoedema: 12
rheumatoid arthritis: 
anaemia:
myocardial infarction

80F Malaena: 19
dehydration : 
inanition

Subarachnoid 
haemorrhage: 
bronchopneumonia

Cardiac arrest 
(serum calcium 
-1.2 mmol/1)

Meningitis

Acute renal failure 
cerebral softening

Reticulosis:
bronchopneumonia
Septic shock: 
perforated 
stercoral ulcer

Myocardial
infarction
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tumour. The remaining four deaths occurred on days 10, 11, 12 

and 19. The first of these, a man of 78 years, developed acute 

renal failure and was discovered to have miliary tuberculosis - 

no treatment was instituted and at post-mortem recent cerebral 

softening was found. The other three patients had fully 

recovered from the hypothermic episode and were ambulant in the 

ward; one died from terminal complications of previously 

undiagnosed reticulosis, the second from a perforated stercoral 

ulcer and the third from an unheralded acute myocardial infarction.

Of the several factors which might have been expected to affect 

the ultimate outcome in patients suffering from hypothermia, 

three were considered in greater detail - age, temperature and 

nature of the principal precipitating condition. The mean age 

of non-survivors (71 + 9 yr) was significantly greater (p <0.001) 

than that of survivors (50 + 17 yr) (Fig. 13.22) but there was no 

statistically significant difference in temperature between the 

two groups (Fig. 13.23). Patients whose principal precipitating 

factor was drugs appeared to have a considerably better prognosis 

(two of 25 died) than those in whom hypothermia was not due to 

drugs (10 of 19 died: X2 = 8.7, p < 0.005). However, the

difference in the mean age of the two groups was markedly 

different (44 + 15 yr in the drug survivors and 64 + 10 yr
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in the non-drug survivors; p <0.001): there was no significant

difference between the mean ages of the non-survivors of the 

two groups (Fig. 13.24). Age did not significantly differentiate 

survivors and non-survivors in the non-drug group of patients.

Analysis of the data from the retrospective group of 77 patients 

(37M; 40F) revealed that the majority were in the seventh to 

ninth decades and the lowest individual recorded temperatures 

ranged from 20.0 to 34.7 deg C; 54 (71%) were below the level 

of 32.2 deg C. The overall mortality was 60%, the majority 

of patients (78%) dying during the first three days after 

admission (Table 13.8). The mean age of the non-survivors was 

73 + 2 yr and of the survivors was 67 + 3 yr (the difference 

was not statistically significant); the mean central 

temperature of the non-survivors was 29.6 + 0.5 deg G and of the 

survivors was 31.7 + 0.4 deg C (the difference was statistically 

significant - p < 0.005). Nineteen of the 77 patients were 

hypothermic as a result of drug abuse, alcohol being the drug 

most frequently in question; six of these patients died (32%). 

The majority of the patients (58) had either some serious under

lying illness or no obvious cause for hypothermia; 40 of these 

patients died (69%). The difference in mortality between the 

drug and the non-drug groups was significant (X =6.8; p <0.01).
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Table 13.8

ACCIDENTAL HYPOTHERMIA

Retrospective Study

Mortality

Total no. patients 77

Mortality

Rewarming 36 (47%)

Overall 46 (60%)
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DISCUSSION

Mortality

Mortality amongst patients suffering from accidental hypothermia 

is high. In a recent study (Tolman and Cohen, 1970) a 

mortality of 46% was claimed to be lower than 'in any previously 

published series'. As it happens this claim was not supported 

by fact since Paulley and his colleagues (1964) had previously 

reported a mortality of 41% but both studies compared favourably 

with other reports of mortality exceeding 80% (Emslie-Smith,

1958; Duguid, Simpson and Stowers, 1961; Rosin and Exton-Smith, 

1964; McNicol and Smith, 1964). Comparison of mortality between 

different groups of patients is complicated, however, by the 

variability of such factors as age, severity and duration of 

hypothermia, and nature of precipitating condition, all of 

which may affect mortality. Accepting these constraints for 

the meantime, the overall mortality of 27% reported in the 

present prospective study is the lowest on record.

The value of treatment of accidental hypothermia as a medical 

emergency (British Medical Journal, 1964a) may be assessed in 

relation to the time and circumstances of death of non

survivors. Using conservative ward management MacLean and 

Emslie-Smith (1977b) record that in their series of 100
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consecutive patients 41 died while still hypothermic, and 

others report similar experience (Duguid et al, 1961; Rosin 

and Exton-Smith, 1964; McNicol and Smith, 1964). Since 

restoration of normal body temperature using this technique may 

take 24 hours, or considerably longer if there are cardio

respiratory complications (Duguid et al, 1961; Exton-Smith, 

1968), it may be assumed that the majority of the patients in 

the retrospective study also died during rewarming; hypothermia 

per se cannot, therefore, be excluded as a significant cause 

of death in these patients. Indeed it is notoriously difficult 

to make unequivocal diagnoses (particularly of cardiovascular, 

respiratory and neurological conditions) in the presence of 

hypothermia.

By contrast, in the prospective study no patient after 1968 

failed to reach normal body temperature and most of the 

deaths occurred some time after rewarming and were readily 

explained on other grounds. It was not, of course, possible 

to exclude hypothermia as a contributing factor in the 

early acute cardiovascular deaths since vascular occlusions 

are believed to be a common post-mortem finding in hypo

thermia (Duguid et al, 1961; Mant, 1969 a and b). It may be 

concluded, however, that the treatment programme evolved in 

this centre has effectively eliminated deaths directly
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attributable to hypothermia and, by decreasing the duration of 

recovery, has probably reduced the number of deaths indirectly 

attributable to this cause.

Rate of Rewarming

One of the more controversial aspects of treatment concerns the 

rate and technique of rewarming. Rapid rewarming may be 

achieved (1) by external means such as hot baths (Sheehan and 

Summers, 1952; British Medical Journal, 1964b; Pugh, 1966; 

Keatinge, 1969; Anderson, Herbring and Widman, 1970), heat 

cradles (Ledingham and Mone, 1972, 1978) or various forms of 

heated blankets (Fernandez, O'Rourke and Ewy, 1970), or (2) 

by internal means such as extracorporeal heat exchange circuits 

(Davies, Millar and Miller, 1967; Fell et al, 1968), 

peritoneal dialysis (Lee and Ames, 1965; Lash, Burdette and 

Ozdil, 1967; Soung et al, 1977), or irrigation of the pleural 

space (Blades and Pierpoint, 1954) or the mediastinum (Linton 

and Ledingham, 1966).

Rapid external rewarming has been used largely, although 

by no means exclusively, for younger patients suffering 

from hypothermia of relatively brief duration, while rapid 

internal rewarming has usually been reserved for patients 

with profound hypothermia whose resuscitation by simpler methods 

proved to be difficult or impossible. Rapid external rewarming, 

particularly in the elderly, fell into some disrepute following
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the report of Rees (1958), and that of Duguid and her colleagues 

(1961) who stated that 'attempts at active rewarming were made 

in six of our earlier cases, all of whom promptly died'. The 

precise rewarming technique in the latter series was not 

described but the deaths were attributed to rapid release of 

intense vasoconstrictor tone resulting in hypotension and 

circulatory failure. Since then, with few exceptions, those 

concerned with management of the urban hypothermic patient have 

opted for the method known as passive external rewarming which 

consists of nursing the patient in an ambient temperature of 

25 - 32 deg G, covered with a heat-conserving metallised 'space' 

blanket (MacLean and Emslie-Smith, 1977).

Comparison of the results of rapid and slow rewarming (Gregory 

and Doolittle, 1973) is a largely unrewarding exercise since 

no clinical study has been designed to examine the two techniques 

whilst other factors in treatment were maintained constant.

The fact that no clearcut difference in efficacy between the 

two techniques has yet emerged is therefore not surprising.

What is clearer is that before about 1970, and apparently 

for good reason, the general approach to treatment was 

'conservative' with passive rewarming and minimal disturbance 

of the patient to lessen the risk of arrhythmias; during the
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past few years a more 'aggressive* attitude has begun to emerge 

as understanding of the underlying pathophysiological mechanisms 

has increased. The conservative approach tends to be adopted 

in general medical wards while the aggressive approach, with 

continuous (and often invasive) monitoring and treatment 

techniques, is more frequently practised in intensive therapy 

units.

Invasive techniques and fluid replacement

Several facts have emerged from the newer, aggressive approach 

to treatment. Perhaps the most obvious from the present 

prospective study and from the work of others (Harari et al,

1974; Nicolas et al, 1974) is that invasive monitoring and 

treatment manoeuvres are not in themselves harmful. Much 

was made of the dangers of such techniques as gastric aspiration, 

intravenous and urethral catheterisation, and endotracheal 

intubation (Cooper and Sellick, 1960; Lee and Ames, 1965; 

Hockaday and Fell, 1969; Hockaday, 1972). It appears that if 

ventricular fibrillation was precipitated by these manoeuvres, 

factors other than hypothermia per se were responsible e.g., 

hypoxia (Lloyd, 1972), hypotension or acidosis (Jones et al, 

1966). Awkward movement of a hypothermic patient may cause 

cardiac arrest or cerebral hypoxia (Freeman and Pugh, 1969) 

but the same is true when any critically ill patient is moved
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in such a fashion; clearly the frequency of such movements 

will be less the shorter the period of rewarming.

The response to fluid repletion in the dehydrated hypothermic 

patient is not noticeably different from normal although a 

degree of left ventricular failure may be demonstrated in some 

patients which disappears when normal body temperature is 

attained (Harari et al, 1974). Significant and persistent left 

ventricular failure accompanied by hypotension is rare and 

suggests underlying acute myocardial ischaemia. Inadvertent 

fluid overload in the hypothermic patient can be adequately 

treated with diuretics; IPPV reduces the risk of this 

complication. Low molecular weight dextran has been used with 

the aim of counteracting the tendency to intravascular coagulation 

and improving tissue perfusion (Mohri et al, 1968; Tolman and 

Cohen, 1970) but the case for the use of this agent in hypothermia 

remains unproven.

Oxygenation

In earlier chapters of this thesis the matter of tissue 

oxygenation in hypothermia was discussed. The conclusion 

was reached that, under the controlled conditions of induced 

hypothermia, there was little evidence of significant tissue
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hypoxia even at very low body temperatures. In the circumstances 

normally obtaining in accidental hypothermia the situation is 

different. Hypoxaemia is almost invariably present, and in 

many of the patients of the prospective study, was of marked 

degree. Since anaemia and low cardiac output (Nicolas et al, 1974) 

are also common features of accidental hypothermia it is obvious 

that tissue oxygen availability will be significantly reduced 

in most patients, and to a critical extent in some. Organs 

whose oxygen consumption falls less than others with reduced 

temperature e.g., the heart, will be particularly susceptible 

to hypoxic damage (Chapter 9, pl86). The presence of shivering 

aggravates the problem by increasing not only total body oxygen 

consumption (Michenfelder et al, 1965) but also e.g., cerebral 

oxygen consumption (Stone, Donnelly and Frobese, 1956).

McNicol and Smith (1964) were amongst the first to draw 

attention to the frequency of hypoxaemia amongst patients 

suffering from accidental hypothermia and these authors believed 

that 'anoxia was related to the high mortality* associated 

with this condition. They considered the possibility of 

'cold injury' to the lungs as a cause of the increased alveolar/ 

arterial PC^ gradients found in all of their patients but in



a later study by Hedley-White et al (1965) on patients 

subjected to induced hypothermia, no evidence for such a 

mechanism could be demonstrated. It is probable that the 

only effect on the lungs of hypothermia per se is broncho- 

dilatation (Severinghaus, 1959). Carbon dioxide excretion 

is not impaired (Severinghaus et al, 1957), nor is oxygen 

uptake (Hedley-White et al, 1965) and pulmonary mechanics 

are not altered (Blair et al, 1964; Prakash et al, 1978).

The main explanation for the hypoxaemia of accidental hypothermia 

(McNicol, 1967) is reduction in ventilation and depression 

of cough predisposing to collapse of alveolar units and larger 

segments of lung. Acidosis and infection may accelerate the 

deterioration in respiratory function.

Oxygen is clearly a logical component of treatment and previous 

concern about its use on the grounds that further respiratory 

depression might ensue (Duguid et al, 1961), has not been 

substantiated. The present study has shown that high 

concentrations of oxygen are required to restore arterial 

PO2 to normal. IPPV was considered to be justified in half the 

patients, most frequently in those with drug-induced hypothermia. 

In the critically ill patient the use of IPPV reduces the 

immediate anxiety about pulmonary gas exchange and allows
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concentration on potentially life-threatening cardiovascular 

disturbances.

Drugs

The interaction between drugs and hypothermia is complex and 

variable (Blair, 1969). For this reason it has seemed 

appropriate to restrict the use of all drugs during the phase 

of rewarming. Adoption of such a policy in the present study 

has not been regretted although on occasions the temptation, 

for example, to resort to vasoactive agents in the face of 

persistent hypotension has been considerable. In the latter 

context two points are worth making. The first is that 

hypotension may be more apparent than real; this observation 

has been confirmed with the more frequent use of intra-arterial 

pressure monitoring. The second is that hypotension usually 

responds to fluid infusion and may only require pharmacological 

support when there is associated evidence of organ or tissue 

hypoperfusion.

Of the various vasoactive agents available, the most extensive 

experience has been with the vasoconstrictors but on the whole 

they have proved disappointing (Duguid, 1961; McNicol and 

Smith, 1964). Limited experience in the present study would



support these observations and suggest that greater benefit 

results from the use of agents with a major inotropic 

and peripheral vasodilator effect. Harari et al (1974) have 

been impressed with the effect of isoprenaline in patients 

showing hypothermic left ventricular failure. The use of 

digitalis preparations, on the other hand, is controversial.

They were not used in this study because the ventricular rate 

was never rapid (Fruehan, 1960; Hockaday and Fell, 1969) 

and because short-acting inotropic agents could be given more 

safely by intravenous infusion. Nevertheless both ouabain 

(Motin et al, 1973) and digoxin (Nordqvist et al, 1960; MacLean 

et al, 1973) have been used, apparently with good effect, in 

combating cardiac failure although not in preventing dysrhythmias 

(Dundee and Clarke, 1964). Atropine undoubtedly increases 

heart rate in hypothermia although the increase may only 

be slight and delayed in onset. Certain antidysrhythmic 

agents, e.g., lignocaine, practolol and propranolol, are 

reported to be effective in controlling multiple ventricular 

extopic beats (Wollner and Spalding, 1973) but are rarely 

required in accidental hypothermia.

Other drugs have not been used in the present study. Steroids 

are not indicated on physiological ground since the plasma
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II-OHCS levels are elevated in most patients with accidental 

hypothermia (MacLean and Emslie-Smith, 1977) and evidence of 

the value of steroids in pharmacological doses is lacking. 

Triiodothyronine has not been used during rewarming even in 

myxoedema coma and heparin has also been withheld. The 

evidence that prophylactic antibiotics are of value in 

accidental hypothermia is absent and, in the present study, 

respiratory infection was satisfactorily treated once 

bacteriological information became available.

CONCLUSIONS

Patients suffering from accidental hypothermia can be consistently 

and safely rewarmed to normal body temperature irrespective 

of the cause of hypothermia. Normothermia may be achieved 

as rapidly as is compatible with adequate tissue perfusion 

and oxygenation; surface rewarming of the torso is perhaps 

the simplest technique at present available but more efficient, 

non-invasive methods need to be developed. Evidence from 

the studies of others and from the retrospective analysis in 

this centre indicates that passive rewarming prolongs recovery 

and often does not achieve its aim of restoring normal body 

temperature. Much of the confusion that tends to surround 

treatment of the hypothermic patient once he has reached 

hospital would disappear if the programme described in this
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chapter were more universally applied, preferably in an 

intensive care environment. Mortality would then be 

attributable to the underlying factor or disease and 

not to hypothermia.
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PERFUSION FIXATION OF THE BRAIN OF EXPERIMENTAL ANIMALS

1. Heparin is injected into the left ventricle.

2. The ascending aorta is cannulated via the left ventricle.

3. The descending aorta is clamped (unless spinal cord required).

4. The brain is perfused with physiological saline until

venous return from incised right atrium is clear.

5. The brain is perfused with FAM (40 ml for the rat and

1000 ml for Rhesus monkey).

Perfusion pressure not to exceed 40 mm Hg 

FAM was developed by DAVID, G.B. (1955. Exc. med. 

Neurol. Amsterdam, jS, 777) in order to obtain 

undistorted sections and optimal staining for 

nucleo-proteins with cresyl violet.

6. The animal is covered with a damp cloth and the brain

is left in situ for at least one hour but preferably

3-4 hours.

7. Carefully remove the brain and place into 25-50 vols. of 

fresh FAM.

8. Slice the brain into blocks of a convenient size and

leave in FAM at room temperature for 24 hours.

FAM 40% Formaldehyde A.R. 
Glacial Acetic Acid 
Absolute Methanol

1 part 
1 part 
8 part
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DEHYDRATION

1. Wash blocks in 80% methanol (two changes)

2. Upgrade in methanol in increasing concentration in 

steps of 10%

3. Leave in absolute methanol for at least six hrs. (several 

changes).

4. Place in Benzene A.R. overnight.

EMBEDDING

1. Place in 50% 'PARAPLAST' (Shandon Scientific Co. Ltd.)

in Benzene at 56 deg C for one hour.

2. Infiltrate with pure 'PARAPLAST' at 56 deg C for one hour.

3. Continue infiltration with pure 'PARAPLAST' at 56 deg C 

in vacuum embedding oven for two hours (two changes).

4. Cast the blocks, cooling them rapidly.
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