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PREFACE

A contral problsm of non-parametric inference is that of testing,
against specified alternatives, the hypothesis that the distribution
functions of several different populations are idemtical, A
cormon procedurs when faced with a problsm of this nature is to assume
that all populations from which samples have been taken are normel and
to establish a test of the hypothesis within the domain of normal
populations. This assumption, of course, is introduced primarily
because normal populations are particularly amenable to mathematical
analysis., But in justification of its apparently rather limiting
nature it is argued (i) that departure from normality of the
populations will not affect to any great extent (at least for large
samplos) the sampling distribution of the statistic used to establish
a critical region and (ii) that alternative approaches to the problem
involving no assumptions regarding the populations, will (again at
least for large samples) lead to similar inferences [5].

Ons such alternative approach that is often available is to use
the same statistic as is used in 'normal theory' but to obtain a
critical rogion from ths distribution of the statistic over equally
likely permutations of sample valuss. Ieaving aside questions of
the powsr of the test used justification of the normal theory approach
on the basis (ii) rests on the equivalence for large samples of the
randomisation distribution and the normal theory sampling distribution
of the statistic used.

Discussion of randomisation distributions has generally been
limited to finding the first four moments of the distributions [/0],

[13] . The first proof of the limiting form of a randomisation



distribution was given by Hotelling and Pabst [4], in connsction with
rank correlation, More recently Wald and Wolfowitz [/(],[12] , Noether [§] ,
Daniols(3] , Madow [7] have discussed the limiting forms of the
randomisation distributions of wvarious statistics,

In the present thesis wo discuss conditions under which ths
randomisation distributions and the normal theory distributions of
statistics belonging to a certain class are asy‘mptétically equivalent.

This thesis, which aross from a question pﬁt to m by Dr. C, E. V.
Iesor of Glasgow University, might be rogarded as a development of a
discussion initiated by, particularly, Wald and Wolfowitz [1]., The
pressnt viewpoint, however, is differenmt, The main points of overlap
with previous work on this subject are thesorems 2+6 and 3°5, Theorem
2+6 is proved here under more gemeral conditions than hitherto, whils
thoorem 3*5 is proved by a mew and morse direct method.

The additional paper on the logarithmic distribution arose from
a question concerning Professor Fisher's original paper on the subject
[/4] put to me by Mr, M.V, Brian of Glasgow University. Since it was
written. Mr., ¥. J. Anscombe has drawn my attention to the fact that
it is very similar to part of his own work on this subject [/5].

I wish to thank Dr. R. A. Robb of Glasgow University whose lectures
first stimulated my interest in mathematical statistics, who has kept
this interest alive in subsequent discussions, and who supervised the
major part of my research,

Finally I also wish to express my thanks, for a series of most
interés’cing and instructive lsctures, to the staff of the mathematical

statistics department in Cambridge University - in particular to Dr,.

H, E, Daniels, who supervised my study there.
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Introduction ¢ The following notation will be used throughout.

-

An ordered set of variables (or fixed values) Yoo Yoo eeeee Y/

na
will be denoted by Y |
Ay
T = H(9+%+ - + Yn)
] n —_ J- o
/"7'(7:") = R‘_é‘@[- '\7“) J - 2. 3.0.000
/ = LS j =1, 25 Bpeccces
W)z % 2y 1= 2 5
P{ R ) I, s I, yee.} = the probability of the relstion R given
infomtion i, P I: R EXEEE)
() = O(hf() _ (w) .
f n) = = W& ~——> & non-zero constant as n—>.o

f(k:) = O(b\f‘) = _dfp_\%.) —_ 0 as n —» o0
Fn) = o) = £(0)  either 0(x*)

or 00\'() .
Let (fé )} i=1, 2,s... bo a soquence of random variables.
Iet Hy( i, & ) denote the hypothssis that the distribution function .
of B 18 N( M, 6%) for all i, iue., P§ f <G [M(%8)f =cm [ o 267
f’,‘ can be rgpresented by a point in an n-dimgnsional Euclidean—:pace
Wn(the sample space) with mutually_{_raxas Of, ,08,-- - > Of&.
"Byl M, 6 ) dofims a probability masure in this space.
.o measurable
let t{ jf:} ) be a statistic which is a Borel/function and has the property
that P {é(@) <c | Ho(’“fé)f is indepondent of « and § , Then 1f ddesesk-
bima Ho domotes the hypothesis that the distribution function of
oach £ hes the same normal form without spedifying My 6 s
P qu‘g) SQI HO§ is meaningful and this is the normal theory distribution
function of t.
lot x; bo & fixed valus assumed by £ i =1, 2, 3,.... and lot the
sequence (X;] be such that mo(xp) # O m =2,

5.-.-.

Lot )X, denote the set of A! points in Wn obtained by pormuting the



2.
coordinates (xl s Xg ...v.‘.x_n) in all possible ways, _(In the case
whore some of the x's are equ_al a distinguishing label is supposed
attached to each, so that there may be n! pointa in ,X:v- some of
which may be coincident dub not all since m,{x,) # 0,)
let )in denote the gemeral point of X‘m.
let H", denote the hypothesis that each f. has the samo distribution
function,

,,,,,,

of x, » X5 se0eeeX, when Hs is true being given by
P K= >t - ’
for all permutations (ﬁ ,ﬁ o soses .Pn) of (1, 25 sesss n)
men P ft(() ¢ &K = 55 v{t(sal were
\% { th) 4 & f denotes the nu;aber of points of X, or which
£ ()&.9 4 &, is the randomisation distribution of t.
Wo are interssted in the equivaleance
Pz%og;) <a| H,,’S- = Pgé(g.() <a| h&,? (A)
for large values of n, N
There is & class of statistics for which the equivalonce (A} has a
cortain 'gweqmatr_i‘qaq. significance and it is this class meith which.w
é?!allbwon@emd- o o
. is the class of gtatistios t with the properties
(1) If a is any constant
Elhrifre - fra) = (B Bn)
{11} If b>0 is a constant |
€ (b4, bk, - b)) = t(G b o).

i.0. t is homogeneous of degree O.
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v 6 W N ‘ |
(114) f‘()if)) x t Qin ) for some distinct pair of points
( ol 3
X(:\)>x("\' ,ev‘f”" . . =
/ 5( ‘E_vg
?; includes many commonly occurring statistics for if fi z QFEiZ?;j
then any funch:.omf(/é«f) has the properties (i} and (ii}J, Many statistios
in common use are of the form t(?;.:) . The property (iii] of the
claga(J&»iq”intrqducqg_po oxclude statistics t wheso raddomisation

distribution is trivial,




- CHAPTER I The Goometrical Inte mtatmn of tgg Problam,

11llema : Ift ¢ ./é dsnotes the set of points ( f ) for
which }f =%, and M C‘M - m{(%). and Crs(€26) domotes the

subsot °f/@u~;_ in which t < a, then P‘Z f&n)‘ G H'o} is meaningful
/—P\—z ? Cn-z(i"a)f
Toa§ foua

and is equal to where | denotes r-dimensional
Lobesgue measure.
PrOOf' . . . . . L
The truth of Hyl M, § ) associates a probability wa:.ght
6,( ar € 2‘%(5 )" with the potnt fuof Wno
When Ho{ U , € ) is true all points of VWn for which Z(f —/“)
is constant are equally likely, i.e. all points on the surface ‘
of an n-sphere centred on (/«/ R /4’,.....‘...,/&) are equally likely.
Bonos if Cp _ r is a region of (n - r) dimemsions contained in the
surface of such a hypersphere whils %, - ¢ i8 a measurable subset of
n - x > | - Ly (c""* ).
P{ é“ € c"""'} H°(’“’ ‘) ’ 'Eﬁ‘ GCM"f - n—i‘(Cn—*)
In parbioular the set Cn _ o is contained on the surface of the

hypex 8phere with equation | _
O R R R L PV BV
for the hyperplane ? },_ cese + f: = kX, moots this whore it moets
f—' .- 4+ f.-w — Anp Ly + At = IA—[M Ow) +9A->Lu)”]
(e }"4—% o+ EF o= om0

Honoce all pointa of C _ p 8re equally likely and

P?{;(_%l\) < a } H (u,g)’ dé“ e/gn Lv{_ Ln-l gch-léff}i).‘g_ (|.(, l).

Ve have now to show that the R.S. of (3, 1, 1) is independent of

4,

A s & 5 Xuand m'(xn) It is clearly independent of/u, and € for

Cp - p depends on X,and m! () only.
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Varying E,,l is equivalent ‘to translating C, _ o in a direction parallel
to the lime é, =§z = ...'. =f““ and such translation leaves C, ,{t < a)
relatively unsltered by the property (i) of t. Hemce R.S. of (1,11}
-is independent of J-C-n and wo can taks 'a‘é.‘ = 0 80 that the centre of ‘
Cfn _ o 18 the origin. Varying m! (x;} is equivalent to altering the

radius of C _ and since by (ii} t is constant on any line of fixed

2
direction through the origin the R.S. of (1.1.1) is independent of

Honce P{téé\. } Hb(’“) 6):54 egnzg‘ ia'independent of Uy €0 %,
and m!, (x;} and 1t follows thst P{t<a Hofia moaningful and is
Luy § Cua(tea} »

1t Ly
T Lo § et

Note ¢ We have excluded the case m'a (xn) = O tacitly throughout the

proof, Since given .Ho( M a6 } m;_(_xn)V = 0 with probability zerd. the

exclusion of this case does not affect the result.

12 Ioma : Cp _ g D X

This is immediately obvious for if X.is any point of X, wo have
Xt Xa -+ X = Xg g - = Xp, = WXy

T T A L i R AR L M E S )

and so . Xp\ € /gtvl.
Honce %ng C, _ o and the equality sign can clea?ly be dropped.
1.3 : If Y 5 Cez Cfék& is the number of points of (.,

ocourring in C, _ o(t < a]

PSt0u) salhi{ - YEOmleol

n!

Honce the equivalence (A)J occurs if and only if
Vi Caltea)l _ bna§ G (tealf.
o nbooo Lh-zfeu.z‘}‘ T ;
i.e. if gnd only if the number of points of jenocourring in cu.gGé'a).



is proportional to the msasure of this set.
124 -+ Asymptotically the randomisation distribution and the
distribution under normal theory of any statistios t € g, will be
equivalent if the sequence (x,} is such that the set of points Ko
tonds to be uniformly distributed throughout C, __ ot i.0. if the
nuber of points ocourring in any measurable subset of C, _ 5 tends
to be proportional to its measurs.

This is a very restrictive condition which, as will be seen and
is intuitively to be expected, mocessitates that the set of measures
X s X3s eeeoXp should tend to be normelly distributed as n increases.

- For any particular , howover we require for (A) only that the
points xh should tend to be distributed uniformly relative to a
particular class of subsets of C, _ 5 viz., the class of subsets of
the form C, _ olt < a).

As is usually the case, this geomeirical interpretation of the
problem is more useful for its suggestivensss than for any other
purpose. We continue the discussion on a narrower basis by

t

considering subsets of j, with the geometrical picture as a guide.

6. °



CHAPTER II The Class of Linear Combinations,
let the sequence (Rp,) whare
f‘) ) Z#m(f }",,
i S ) 6 EF

whore ;,/M-—( Yins }f/m,...... >Yn) 8re assigned sets of constants for

n=2, 3 4, ... such that M.(Yx)# O, define for each n, the
statistic B, and lot (X bo the class of statistics of the form R,
From the point of view of randomisation theory i ‘may be regarded as
ﬁhe“set of standardised limnsar combinations. From the point of
view of normel theory J{ is the set of standardised product-mement
correlation coefficients,

Clearly Ry, € 3’»»

2°1 Theorem ¢ A necessary and sufficient condition that

L Pirbmealt= L PiRGealtf 4

A

for allg and_al} REe R is that the_ set of moasures X, p X, gecee Xp
should tend to be normally distributed.
The proof is divided into _several parts.

2¢2 - : |Nocessity. Consider the statistic R° defimed by

RS \/n (E-F)
i.e. (§> o-,(g -;u)
%‘ka =(1, 05 0p cevsves O)

Without loss of gonerality we can taks X, = O and m ( Xu} =1 so
that the hypersphere C, _ 5 has equations

Bohoo tho=o

£oge h -
Rg is constant {(and equal to C) on the intsrsection of Cp - o with

the hypersphers (?F = C,

7.
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Henoe if a, , &, are constants such that - [(n - 1) a,< 8, < (n—l),
! 2
- ole < Rn< a, ] is that part of Cn _ o contained between the

hyperplams E =8, f, =a, .

NW}. lc] </(n - 1) mosts Cn - o in the "surface" of an (n - 2) lphere
}Ql

of radius n cos 6 whsre sin 0=

. . \/_ \/(p—l) _n. ng ‘n—-l
The 'surface' of an n-sphare of radius r = l‘(;_)

o . s
Hence -0 n-2

% _ h-3
Loyea fcm (a,« Ry« a,)} j — (K ewe) v de,
oot o r(T)
—: \é‘")

e ‘L,\_z Z,gm} - (n;';) (VR n,)“

Afi-;.e‘r- r;duction this gives ,
R (n-l) ‘("'")

‘-n-zfc“(a'ﬁ Rrealf = O ¢ ) d '@'9' )

L W2 (—@ -2, ) I'Q\—z \/T—r Q

&)
w ) ( .‘cL- H
= (_n-l) \/ n (k‘z \/3"'

&

Now as n —> X ’\" n-4
" 1) —> | aMac(l )‘*‘ > e 2

: ;’%, — | )I-(”')

~uniformly in the 1ntervala<y432.
Ha _ —_’____ 42._1_2‘-
Lpfue kg alnt - i [

D ‘
let n@pla < x £ a,) bo the mumbor of the values of the set
X)9 X, """"n for whioch a,<x; £ 8y, _ ‘
Theh V{C.‘.‘,_ (4,; Riga,)}-: M ¢h(a,§xé a,,) ~ for there

are (‘n -~ 1)! points of x',\, with each fixed valus for f": .

Honce P%Q.s R (% ’f = P (asxca)




So in order that (B} be satisfied for R® it is necessary that

‘ . Qz _‘3_2..
L Dnlarc xsa,) = Jéﬁ“L e * dy

AD

i,0. that the x'»s should tend to be normally distributed.

2:3. ¢ Sufﬁciencx G e
2°3+1 lorma @ ia a;/“‘o = var | € = dye
k——),,o a,

for all R é‘.R o
Broof :  2:2'1 glves tho distribubion of iy j under normal
— - a Ga |
theory, for writing b 1= V) 0 b,= N ha.ve, for —| < b,< l:’* )
P{b<_‘ﬁ- b = oot 4
Ty = ’ v (" o -
Ra (£)
VO-D

qqmlation cqef_ﬁvci‘.ent in Vsamgle{s of . from a bivariate normal

has the same distribution as hau the product-moment;

population with zero correlation.
Ro (Es).
V1)
the n sets of measures (F » 1), ( % s O), (f ceves (fn . 0).
We show that every Rn( ?u ] has the same distribution when H, is truse.
et R, = Vi) & = # Lft §» o be any momber of 32"

Vfg@a RN

T R SIEE e Y/ - e ¢

Now let Ve \/‘2;@ §;)L be an oﬂho;/oil(#trznifomtlon
suéh tha¥ w ’ P’EW; |
o= \/—T\—Cf f’,.*“"*g’“)-

"hzZ'”;h?- n

> Y, are orthogona.l since Z-"yc = 0,

L=

is in fact the product—mmnt correlation ooefﬁcient for

If each fc is N(O, 1} and the £; are independenmt, then each % is
N(0, 1) and the Y's are independent. '

9.
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2
P2
Also we have —@'—‘— = ,_VL " .
h-t T +Yst+ " P

fbnce when H,(0, 1} is true every R, can be expressed in exactly the
same form in terms of ifxdependent N{0, 1) random variables.
So the distributisn of every R, when Hé(o, 1j is true ( and so when
Hy is true] is the sams. ,'
Honco under nmormsl theory svery R has the same limiting distribution
and this is the 11;nit;ng distribution of R°,
Thls proves the lomma, |
2:3°2 lomma ¢ let ol(h) = (6l,%,--o(x) be a partition of an integer
s, -
Let m)( Xn) e the symmetric polynomialoz )

h

S‘%)(X«,) = ng JCL; - Xe

whore summation extends over all ordered sets (i, , 12 ""’141’ of 4

integers from 1, 25.0s.000,
' 4

e S;cu)("" ) = "' T M, @Cm)  Tw)

where (M) is a sum of torms of the form C(ol 8) A 7TM (39.,)

’

and B( L'} is a partition of S such that each Pi is the sum of ome

or more &S , h' < h and C{a, B] is a funotion of the partitions

a(h). B(h') independent of + . ,’ 7 _ '

This lomma states an identity in symmetric polynomials, and the proof

is omitted as it occurs repeatedly (in slightly differenmt form) eg [7],
2:3:3 lomma : let E(O| H) denote the expectation of the random variable
2 whose distribution is defined by a hypothesis H,

oy oy 7 / __’_..
E( Xi, xt',_ - Xc_‘v ] Ho) = h}“’] S;(k)(x\f")

Then
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2:3°4 Iomma @ Iet r b a fixed integer > 2, and let n >r ,
If Xn=0, 9u=0 , M) mly) =1 and
v( )

m:’())c"\«) = 1&)-'@)' * O(l) ? J % ; J."'g:‘b"' .
) 0() ) J ocld
then ' |
2—4;-%, + o(1) , Teven
f<~w.m/ S

- Proof : Expanding (Z' g X ) by the multinomial Ox;pﬁnaibm. y
' rd
taking expectations term by term and collecting terms gives

E?Q"ﬁ?ﬁ? “JLXLYI H;} = %Z PaY C{dék)} g@)(g”) ozao(c“) | (c)

where summation extends over all partitions of r amd
! {_____ —_

whore, when the o's are all chosen from f differont positive integers
3y e J, .----Jp T of the a's are equal to ji.
Now by lemma (2¢3+2) sinoce the number of terms in U(m') is independent

of 1 and since %LQC/"') is at moij; o(1) , Bcs< -

4
o S () = 7 T ing e+ Qugy(),
where in(f;) (J&,\,) is at most O(P\:“'-‘)

N A
Honce -A‘F{j S:‘(A)Cxu) = H w.(oqm) + 0(').

¢ any o is odd T.’” (0 = o()

If v is odd at least ome ay in each partition a(h) is odd and so sincs the

number of terms on R.,S, of (C} is independent of 7,

E{(V—Z:y)(> ’Ho}- = o) , ~I'-o-'dd,



ngq ('i") < O(”"vz> ' This can be seen by applying lemma 3.3;2
S and noting that | fw JZ2 o
o aw»)(“cid o ( ot )4 _ ,h:sz
[m(ge)|= o [wiegies v | = a0 (00
I r is even, ssy r = 2q and if every dy is even say & =2 B;, B(h} is a

— e . - —

partit;on o?k qQ and

& (ﬁﬁu) l'
racer = 38

C=|

5 el

Bo we mm:L | @) (%), /

E3 ('Jifé:‘#xt)%/ “°} B *\ﬂ Z—TZI::@B)‘ B! 1:_'75’—_-‘%‘
M%) (1+ o)) +ol)

summation now taking place over all partitions a(h} in which each 0.1 is

, y
(&%) Wt %26 o TR ) .+om)}o®

_ ;_;j%-..[ u;b_:_ﬁﬁ]t . ol

- . = &
and .the lomma is proved. gﬁ"i/»l‘

even 0:1 =2 Bio

+ ot)

2°3°6 lorma ¢ If, for sufficiently large n

! .
m(acn) Z(ﬂ,;[_;/’_-%r—, 1-0(1 , o S ‘j=;2,3)4,""

[.M (')(...B/z_ o(1) . J ocel S
than the rarﬂomiaation distribution of any R ¢ & is asymptoticauy N( 0, 1}. |
For writing x{zx“ X, #m___.lw_* |

Vo m (3) 2 vV ”“sz&m)

any R (X,] can be written - ') Z’ Zﬁ )( where the eequences ( x’\ ’l
.% A= 7

{ 1"” } satisfy the conditions of lemma 2.3.4,

It follows that as n—><0 the rth moment of the distribution of K, (%)
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tonds to that of a N( 0,'_ 1) Vdistribution, Sinoe tho latier dig’sri.bution
is complately dqtemimd by its moments, rthe 1imiting ‘distribution of

Qn. (Xn) is N(O, 1), This completes the proof of Theorem 2°1.

2°4: Geometriocal Interpretation : The subset of C, _ o for which

a ¢ R < e, may be considered as an "interval” of C, _ o |

The geometrical interpretation of 2¢1 is that the set of points xy\,
tends to be distributed uniformly relative to all "intervals" of C -2
:l.f a.nd only,\_if the measures x j 8 X5 ssecescesXy tend to be normally
distributed, o o

Howover for uniform distribution of the set of points o%'h relative only
to various subsets of the class of all 'j,ntervals' of C -0 mch leoss
~ restrictive conditions on the distributions of the measures x, , X, ,...x,
is sufficient, as is shown by the following, theorem 2+6, ‘
2:5 lomma : Iet & bo a constant such that 0< a < % and let b =% - a.

If = 9n=0mf Xn ) =mf ¢u)=1

a(j-2) ) R . .
MJ () < O[h J 3= 3, 4y.e00Ts T boing a fixed
b (j-2) ‘ integer
MJ("S.")=°[W "3 <r < n,
then o
Z, X) } } C_‘;:r;:vzﬂ' O(I) r efon

Proof ¢ In 2¢3°4 (C( we had
2:5°1 E 5@:51 Xe/ /Ho} - n/zZ’”TI] C("ZW) Suu(l“) Sw(xn

sumation extending over all partitionms o.(h) of r. CL a(h)j is

independent of M and the number of terms on R.S. is independent of M ,




Applying lemma »2-'3-2 to -S;(«)C?‘t) and .‘-S:U») ( :J’c‘") - shows that

the R.S. can be expressed as a sum of terms of the form
2:5:2 c@zm)) & [«0), gk 304) | T 7 ; nell Mﬂb(yu)}zgv T"" (%n)}

where o » _ A
(1} the number of terms is independent of n .

U({l) . k .‘ ‘A)_ ) ‘A . )‘
v (ii);_ 8(4) is a partition of r in which £'< L and each @

is the sum of ome or more a's. :

(111) [dh), 8(h, J, b’(h,_)] is independent of n and is equal to
1if h=h, = h so that af(h), B(q} and K‘(hl aro the same partition of
.

We consider the order of the term 2-5-2,

If any Zj >9 and avery B; = 2 the order of the temm 2+5-2 is
%-/{,44» AT+ a.(o*-af'l)-& b(r-2 4,_1]

i

o[ b4, +20.'£1 —&j SM:\C.E a+b= '9,'_' .
_ o[%aM+:&A .RJ | O(l f\,‘é'&:’{\' 51(',, J)-_’O

If any Y-:lthe term 2¢5°2 is . zero.

Also if any Bi = 1 the torm 252 is zero,

Honce if r is odd, the R.S, of 2:5-1 is O(1}, for if r is odd at least
one Y in each term is odd i.e. is either 1 or is greater than_z. o
The only terms which can be greater than of 1] are those in which each
75:’ = 2. This necessitates r even. _

- If r is even and h, =§¢wm13 Y= ,=;;_... = 2’[2) = 2 then

(i} the term 2:5-2 is Oifany B; =1

(11) if each B; > 2 the term 2.5-2 is not greater than

O( 2ph, + 24, —-!\,)

and this is 6(1) unless h;= h, = h for 2bh, + 2ah, <h, the equality
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sign ocourring only when h = h + h,

Honce the only term of the form 2¢5°2 which may not be o(1) is the term

------

inwhich h,=h, =h and B(h, ) = (b, } = &b} = (2,3, ......2)

r
T}, %, bY 2°3°4 and the term itself

. —_ |
For this term k = 1, C[_a(h)J Tla
y ]

is
( 2'2_ o+ 0()
This completes the proof.
26 Tooren: IfO<aciamdb=%-a am X, is the subsst of the
class Mforwhich (1&“‘) O[},\M" -2) J =35 4pe0eeet

g <
rzu‘fk'l) |7
then the randomisation distribution of any R € & is N(O, 1} asymptotically

M ()(“) r ()2)
J/l = Olh' J J 3, 40000...,“.

provided .
Proof : This L’oﬁowa from 2°5 in the same ways as does 2+35 from 2°3+4,

Theorem 2+6 is a more general form of a theorem by Wald and Wolfowitz.
2°7: Gensral Discussion of Chapter 2. _ il
Theorem 2°1 goes part of the way towards answering the question -
is the asymptotic randomisation distribution of any statistic equivalent
to its asymptotic normal theory distribution, when in fact the population
from which tho sample has been drawn is normal? Intuition would _
indicate that this must e so. Theorem 2°1 answers the question for a
particular class of statistics - the class% of correlation coefficients,
Theorem 2°6 in the general form proved here, is also meinly of
theoretical interest in that it demonstrates how mild are the conditions
sufficient to ensurs that the asymptotic normal theory distribution and
the asymptotic randomisation distribution of a statistic R € az be |
equivalent, |

From this point of view it strengthens the conviction that the normel




theory approach for large samplss loads to more or less the same resulis
as the randomisation approach.

From a slightly different viewpoint this theorem emsrges as a .
particular case of the Contral Limit Theorem when the random variables
in the sequence concerned are not independent., This aspect of the
Central Limit Theorsm has not been fully treated at all and the main
results in this field which deal with cases in which certain
subsequences are 'ma;rly independent!' do not seem to be applicable in
the case of the sequence <X13 of random variables which are 'far from
independent’.

The main interest of this paper, howsver, lies in investigating the
asympiotic equivalence of the two approaches with reference to statistics
commonly used in tests of significance. While the results of the next
chapter are more useful in this respect, some commonly occurring statistics
are members of the claas& s 8and the corresponding cases of Theorem 2+6
are of spome interest per se.
2:7+1 ¢ Asymptotic normality of the préduct—moment rank correlation
coefficient, Thie result was first proved by Hotelling and Pabst.

It is derived from Theorem 2+6 setting

Y =1 1=1, 200

X, =1 i

1’ 23gocnooono

The correspording R( Xa ] is clearly the standardised product moment rank
correlation coefficient,

Also for these values
m; (Ynn) MJ(’—E") ‘ .-
d =5, e <. =3, 4,
(M2 (fan)] “ [z ()]% = O (l )
for

z.\,"= -’?-_-CM»!)
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My (Xn) = T:Lz (n‘if)

(o) = B9 [4007] "™ ]

whefe. ‘ Mdl (Jg,.) = Tl\,'é (X = O["Lﬁl}
Honce A”j (Jgk) :‘> @) ["\'JJ
and M, 09‘)

% 00

| [a Gen) % * 0 ) |
Honce tl}e cqndition_s 9: The oren 72'6 are satisfied a :E’ori;ior;i.L
This provides an interesting illustration of tl:xe woakness of the normal
assumption that the set of measures 1, 2,......n is a random sample from
& normal population would lead to more or less the sams rosult as (here)

the more conventional randomisation approach.




2:7°2 + Sampling withouf Replacemsnt from & Finite Populstion.

 Ist m bo the arithmetic mean of a random sample of fn. (where f »
the sampling fraction, is a constant between O and 1) drawn without
replacement from a finite population of n members with mean i and _
varience &% . Then the sampling distribution of m is asymptotioany
N[a, 26-0]
This result was proved by Madous [7] .

It 18 derived from Theorem 2+6 by setting
A ! 1

Yon = P~ L= P

-1 (= fn+l, -5
and considering the x's as the measures of the population., »
- If now we regard the first f_w measures of & permutation of the
populé.t‘i‘qn values a8 & random sample of fw members drawn without
replacemsnt from the population, the statistic By( X } corresponding

. to the above values of the y's is given by

Vi (m-m)
R (%) = T

Smen # 0 amel Z’ytu" fy\_ l(f_,)’-.;.n(n-f).;’;_

T =(F 1)

o .
also K= /u amd € -%g__’j( )t
For the statistic B we have

Mz(#un) = h}( )

 and m () = —Z(f"'(ﬁ‘»"h) rne-)(A)

i BGE-D+ -9

M (Yan) -
Zm;l(g@%._.o(,) j= Bd,e




Honce by Theorem 2+6 R is asymptotically distributed in the N(0, 1]

form provided ths population moments are such that

iﬂ),_(?g:)d — D(}\,J:'zz) J'= 354" -
[, (2&)] 7 ‘ )
This condition is satisfied by almost a2ll populations ~ effoctively the

only exception being, the case where almost all individusle in the
population have tsli‘;:wn;aasure [_'almost all' in the sense that the number
of individuals with this measure is O(n_)].
2:7:3 Studentisation of Bu{ Xn Jz

If in Ry( Xs ) we replace § by S, its sample estimate given by

"
o= P‘"-‘ g(xé-m)‘ and let the resulting statistic be denoted by

-t .A)S.“' Jo then t( )iu. ) is the analogus for a sample drawn without replacement

from a finite population, of Student's t for norma.l theory.
. Z= 3 h.g . > 2
Theorem: If &= 0(1) and if {:M L:tn)j"‘& ( ) s
- - .
| ve 4 mi0e) = o[ T | jra, v B Cune |, ar o
randomisation distribution of t( Xy. J ~N(0, 1J.
Proof : We show firstly that S® converges in probability to c*

In this proof P";) =m Lxﬂ) the population moments

.....

whore as in 2¢7¢2. x;, i=l,2,.....m are the‘pOpulation measures,
Without loss of generality we may take g. = 0,
Weo have
] Y
h —_— e
E{s*|He § = ,ei_T Mo = famt "2 T R
/7 2 / /
= ’“a“fn_cln—'v)gz Sinee S5 Fm iyt Sy
ond ST:: le)
= M,_[/ +75

s*,

n
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o ESYHY =(f;—'_jz Eggx—;’;(fx)‘] :/H,,’
s EES ) - ES - EES S
ﬂ-r // }= fnm4+ﬁ»_(&,)[5;__1$]

h(n-1)
Fu(fn-1) 2

G E 25(57 x:)‘/ bo b = m;g 1+0(x) Qggizg) b
— M:fl+o(l)} Semee Evo(n)
M; + o(1)  Smie M= O¢)

H

= &%+ o().

Similsrly the remsining terms in [ {s*/ﬂ;,} can be shown to be 8(1).
Bome  ger(sr) = E[s*/HF ~[EGHTH)]

= 6*4+o() — (§*+0())

= o) |
It follows by applying Tchebychsff's Inequality that Slcomverges in
probability to ¢* | _ o
Then, since the randomisation distribution R ~ N(O, 1} it follows by a
theorem of Cramer [2] that the randomisation distribution of ( Xn Fv

- We thus arrive at the analogus of the t-test in the case of finite
populations, and this test holds for mearly all large populatidns.
Of course this result can also be used to establish confidence limits

for the mean of & finite population.

If m  S* be respectively the mean and varisnce of a sample of N

individuals drawn at random without replacemsnt from a finite population
of N individuals where g- = f and N is large, then provided the




_1,

population is not & very unususl one, confidence limits (5%) for the -
population mesn are given by v E FILZV0-E) .
Thesé .a.ré the main peactical implications of Theorem 2¢6 - indeed of
chapter II.
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CHAPTER III

g;;_ : It has been stated that the results of Chapter II are mainly of
theoretical interest., Many more results 'justifying' the normal
sgsumption in commonly occurring tests of significance can be derived
from consideration of the asymptotic joint randomisation distr:li#ution of
more than one statistio belonging to the class ({ .

Of couree it does not follow that, if Rlve ZX and R, 6 Z)? are
separately asymptotically normally distributed under H{ , they are jointly
asymptotically normal under Hg.w From the geometrical standpoint we are
apparently asking more for asymptotic joint normality.

In the notation of section 1, under norrel theory the joint
distribution of R('r}) . Eozn) where (R(In) Jo (R(f) J defire respectively
- ;at;)imi N : » C; ) ivTHbyi _ Lefoa@0 2]

f R A Lon (B,

where (', (a)  1is tho subset of Cy _  for which B¢ a

cf-)l( L) mom L " " oo " R(zn) < b,
Hence as in section 1, for asymptotic equivalence of the joint distributions
of R | and R, upder normal theory and under randomisation theory we require
'uniform distribution of ﬁha set %'n relative to the class of subsets of
the form C ( a) /) C Cb) This is epperently asking more than
'uniform distribution of the set %m relative to the class of subsets of
the form C -;C ) o Caal()

— R
\ 4

Ci'fz-(a) c‘(fz(-b/) n-z ("‘-) n C(z) (b)
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From the geometrical standpoint, howsver, it is very difficult to
appreciate just how much more we ask for asymptotic equivalence of the
joint distribution of R and R under normal and randomisation thoories -
a three dixnénsional picture does not give much help in appreciating thll
situation - though it is quite clear that it is necessary to consider
separately the question of the asymptotic joint distribution of more than
one R ¢ ﬁ .

Sufficient conditions for asymptotic normality of the joint

olighidoudri
randomiaationho‘f a finite number of statistics belonging to the class R
can be obtaimed by a straightforward gensralisation of tho methods of
Chapter II. Wald and Wolfowitz discuss this question by a different
mothod, their argurent being much more subtle than the present straight-
forward gemeralisation,

Like Wald and Wolfowitz wo discuss the case of the joint randomisation
distribution of only two R's, R, 4 R, € { + Clearly & similar argument
introducing only additional algebraic complexity can be applied to the
case of more than two R's. No rew principle would be involved.

32 ¢ Joint -partitions ¢+ Ilet w , v be fixed +uc integers with U<n
**< h where n is soms given integer,
Iet q, r be +v¢ integors and p a +ve integer or zZero such that

p < min(q, r)

and let S = Z'i-‘f—-,b

I N ;4R = (W)
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0 < a" é a‘:_éo.ooc éa'

q

and (a, , a, seccccos a‘) is_’a.‘pq.le;."mt:@on of W,
and L =0 is=atl s
Alao Bi*o i.—lgoooclf?gq?P.q*'l. oo-.cos ;Y
, =0 j‘-k"‘p"'lgooocooq. ) o ‘ ) ‘
and (ﬂ, 2 ByacececccBy Bq +1° Bq + 2"“"'65, is a partition
o & L '

“ ~ | [ AR N XN X < [ ]
with Bp+ 1S Buags oo <8

~If somo of the a's from G| yeeeeee, a,p are equal then the B's oorreaponding
%0-equal a's are to be placed in ascending order of megnitude.

(g, Bls will be called a joint partition of U and +~, of order S. Two
Joint partitions (a, B)s end (o', B'}s’ are the sams if and only if S = 8!

a!ﬂ 03. CL' » Bi = B' i= 132.oooopsc

gj_g H btf s 8nd Y i =1,2,,..,n be two sets of n varla.blos.

......

Iet (1, , i, seessepiy) be an ordered set of S distinct integers from 1,

2

290.0-0-.11.

It S@tg; [ é‘ s 7"'] den?:ta. the' ;xpr;ssion

ST (E PN E E) (8595

where (a, B) is a joint parbzt:.on of wand - and sumation extends over

.....

a]_.l sots (i, Py iL ’ocooislt

hoLE s
/
ot '“’a;gJ.(én%) = T);é"%“,
';'hen .
3.3.1 lomma : S(:&@) {:é, .,“] can be expressed as a sum of terms
N’ .
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S 5 ‘ . .
of the form C@‘ S ) “’ I' m »;g;(fp,'&t) » vhere for each such term
S only when ( U, § Jg=(a Bl .

(i1} each D:) is tha sum of one or more G's and each SJ the sum of

(1) S'= S and §' =

the corresponding B's. »
(i1} _ C@,g)_g(doea not depend on n and the number of terms is
independent of n. |
This is a generalisation of lemma 2°3-2, A o 4
Proof: Assums the result true for every pair partition of order S - 1, of
any pair of integers LL' !, with w's Wand '€V, Now »

$ > ( ) (8590) B0l f Z £ (

"‘ ‘l—: Ls-u

= “Z:. (f d"‘?c, ) (5:.‘- 47(-'\5_,5_‘) ( é’:“?‘f‘)-
APV M (R

‘u‘z, )"s-l

by actual mltiplication of the L.H.S.

Now let w o= - O
o= v -8,
f AO(,,,B,; o/l,"@?; e A, ,ﬁ.,‘f -(o{,ﬁ)s_, ,88y,1s & jo'iu!;.

partition of order S = 1 of U’ and v’
Also {"(nﬁn 5 duﬂz;’"" - , d.janﬁ;‘-r; dj"'&; ﬁj*fgs; dJ*'J fs,j-l-l‘J"' ) "{s~nﬁs~|} is
a joint partition of L and " of order S - 1 and of the form ( § , § lg . 3

J
Lot this be written as ( ¥ e )_‘
Then the above identity may be written thus -~ omitting the és and Ys

Tor typogrephical brevity

ey 4 & ’M’“sﬁs = Q)(d ﬁ)S + Z ‘g('b: S)il.

R v =1




<6

d -
i, b@’@)s = h M"‘S fs ISQ:A&)&-: Jg %s)rr )

On thq F’,’fs,ia, of the initial_ a.aaump_tions véach S’ on R,S, ocan be expressed
in the required form and since the mumber of 5s inR,S. is independent
of n, then ,57@, p), °an be expressed in required form.
The result is true trivially for every joint partition of order 1 of any
pair of integers u,', o .
It is therefore true for partitions of higher order of any pair of
integers. |
Iomma 2¢3°2 follows as & special case by putting /=0 ,
3:4 : Orthogonsl Nembors of the Class UC

Lot R! » B, be two statistics of the class R [section 27 defined

rospectively by

JaN b
&fi = (E]n:,gui- : ’#M)

and 2 PPN 2) L@
' Li = {m. R jzi R SR gm\
- R, LR, will be said to be orthogonal statistics if for each n,

T @ Fey
Z\’Lf ;/nn)\_‘a{vm ’\") = 0
In what follm, without loss of gemerality, we will taks

4098 -0 L (g L)

‘et =/

Also it is comment to write ;{fﬁ. as ‘jsn where 33-. = (yfu,jc;,-';yn.)

~
though this does not imply that for n < mn, Y, is a subset of fin, .
3:5: Theorem: Iet Rl » B, be orthogomal statistics belonging to the
‘ Q)
class K » Then the joint randomisation distribution of R, ( X. ) and

R(:.J ( X}t } is asymptotically normal iff:’ ygen, )
Mo (o) < O[w “""._f Whive y4jp2) >2 s 0£a4<s

dl,}

the \’ /\ b .—". : .
n J ) — 0 LyL (ﬂ J LIhere b: 3‘!_&) J'SJI*I"'

‘ru,n.)r

»
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Proof : Iet M - ¢ Whore W and U-are fixed +v< integers, denote"l:ba

( W, J*B moment of the joint randomisation distribution of @’(&n)
lw

and R, (%) |

Without loss of gemerality we take m,( X, ) = 1 and X,= 0, Then

Maw = E 7 [RVG0]" [RECW]™ | Ho € |
e E{ (ko o gt (ot ) | «@.f

- By multiplying out each bracket and teking expectations term by term it

is olear that M, ,, consists of & linear sum of terms of the form

! | /
wu_«;:u- C@(‘B)S g,ﬁ)s(ggﬂ-;&»n ;:Z?] S:CSJ (I'J.) | (4)

C(a, BIB is a constant independent of n. ‘

The number of terms in the sum is also indepordent of m, depending solely |

on the number of joint partitions of L and -, Now applying lemma 3°3-1
g XL

to &(.ﬁ%(ym, ;) and lemma 2¢3°2 to S (¥n) it is clear that the

term (A) oomtributes to M, = terms (whose number is independemtiof n] of

|
|

the form

w0 ST by (o) €05 T gl
w — e (Ym0 > ] (%), |
K Qe 13 7 P Uintn) Cogy 77 11 7000

(4 (52 ¥, s «eeees § 7 1s & partition of L with oach Y the sum of |
om or more G, |In this partition we allow of zero VSJ

(33) (£ 5 8, soeveerens &} 18 & partition of O-with each & the sum of
ths corresponding B LAgain wo allow of zero Ss_] .



(£31] (K o K, 00000 ;K } i8 & partition of sUyith each K the sum
of one or more E£g .

(j.v) the C's are constants which do not depend on n.
We consider the order of the term (B). |
If any K; = 1, or any pair@;} S:,) is (1,0}, (0, 1} or (1, 1] the #érm B is O,
If any K, > 2, then as in theorem 2.5 the term (B} is either 0(1) or O,
Again as in theorem25, if every K;= 2 the term (B} is O(1} unless S,= §,= 8.
I£5,=8 =S, then K; =0 +5 , and Uj=of , & =B
Collecting these results the term B is either O or &(1l) unless possibly
wo have L and V- both even and

(&,B)s = [2,0 L 2,03 380 5 0,25 0,25 - 50:2_]

and the term B is that term in which G =S,= “t derived from the term

of the form A corresponding to this particular joint partition of WK
and V",

Evaluating the constants concorned shows that

w! !

/ N
. e L o S WS - ane bolhs Ui,
Mu..v- C;(_:): 2‘5’,_ C{): Q,% ( ) 430

: ; § O are bk esren,
o(1) q « "
Sinoe the bivariate normal distribution is completely determined by its

It

moments if follows that the asymptotic joint randomisation distribution
of }Rl » B, is subject, to the conditions of the theorem, normel and

that R , » B, are asymptotically independently distributed. The
extension to the case of more than two R's is obvious - fhe proof will
clea.rlyyge through in exactly the same mermer, We thus get the following

thoorem,
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......

3:6 : Theorem ¢ let R, 2 R,_...... Bm be m mutually orthogonal statistios
belonging to the class ﬂ s if

J:Jz (ﬂm :m, #Mn O[ 4('1‘2.)]

1
vhere JitJat """JM"‘ Js (fﬂ- J= 34, , 0f4a<3
: b(j-2) e L = __
and _@LL_JC" = 0[“" ] >

L_MLC.’(K)JJ/"

the joint randomisation diatnbution Of R) 5 B, seeedR is aaymptotioa.lly

multinormal and B, s R, cecene R are asymptotically mutua.lly independent,
Theorem 36 does not of course establish asymptotic equivalence of

the joint distributions of R , R,, eeeee Rm» under normel theory and

under rendomisstion theory., Its inmterest lies mainly in ite subsequent use

to establish asymptotic equq.vaiende of the distributions of certain other

statistics in the two cases.




CHAPTER IV ' Quadratic Forms :

Many. statistics in common use are based on quadratic forms in
random variables - especially those statistics used in analysis of
variance, It therefore seems natural to proceed from a discussion of
linsar forms to & discussion of quadré.tic forms., It is in this
conngction that Theorem 3+6 becomes important,

4°) : Quadratic Forms under Normal Theory : ILet
the column vector ' i’ in the random

denote

sLrT

| f‘"
veriables £ E ... £ . and

—/ - 0:;I
’_jn donote the transpose of —=n

- . . h
' &
let An be & symmetriot X n metrix Q. ) such that >, i = O
: A~ TR L = J
i= 1‘ 2"oo§ovoono

With this condition 1}3 has a latent vector / corresponding

|
to the latent root zero.

m y
>\l Ny

let the remaining latent roots of An be cosens Ay

/
E in Ei represents a quadratio ‘form Qn, say, in the

random va.r_iebla_q Ea . ‘
let the ssquence of matrices (Anj define for each n the statistic Q.

Qn can be reduced by an orthogonal transformation
n
- — 47“1 0 .
_Z:[n = ~’L(_T{?., whene _Z:"_Z;: o | OmA nan = R "Z_Z'Eo

Afan
™) [ ( 2
to the form Qn = }\' 47,: + X,_’a;z: Fooion e+ Dy Y

where if Hy(0, 1} is true the %5 are independent N(0, 1) random

variables, so that 7,  is distributed as X' with one degree of




freedom (written K;] .
Furthermore this transformation shows that Qn is distributed independently
of E,;' ’f;(é*fﬁ“'* i’») = VA Yun  whon Ho(O, 1} is true.
In general the distribution function of a linear combination of
independent X,‘Eq random variables is very complicated. However under
the vidq conditions of the Central Limit Thoorem, when ths number of
non zero )f“i' tends 0 < .infinity as n—.o the distribution of Qn will
be asymptotioally normal under Ho(O, 1), If the mmber of non-zero A s
remains finite as n-—> 0 tho distribution of f )\(m will not
peoasaar:.ly tond to normality but may still tqnd to a limiting form
which is completely determined by its moments.

We will suppose that this is ao,i.é., that the limiting form of
the distribution function of Q exists under H, (0, 1} and that it is

of a form completely determined by its moments,.

We will denote ﬁ P f Qe a [ Ho(o.) } L} Fa (&)

4:2: The statistic Q does mot, of courss, bslong to the class o

with which we are concernead. l
|

et (R = i:(cig)

Then the statistic (L defired by the sequence ( n } does belong to
tho class f simce o
(1) Un is homogeneous of degree O in the fs

G
—~ —
(11) ( — +Cm) A,\(H +a,,) whhene Cn = | &
= ;
o — al Anl™ L4 L G
- (—:’n “I—L-—flu+ A Hn o)t G An &n O-
Also ~ ~ s
" =[0,0, -~ 0] ant Andu=x (Ah) = |
o
because o
St




" (11i) Ve supposs that the third property of the olass | is satisfied,

Now when Ho(O, 1} is true ml( Eu } converges in probability to 1.

Honce

Pj M.\éalu,}- = Pfunsa }“o(o,l)} Simee ue:{

~J Fé(g) by a theorem of Cramer since M-;Céu}

converges in probability to 1. [2]

- L P{awea | ment

] ‘ n—==x
4°3 : Ve consider now U.\(&»\)

let X denote the column vector X

. *u
When dealing with the randomisation disi;ribubion of un wo mRy, without

loss of gemerality consider mz( 29,) =1,

The transformtion =P "‘n roduces X; A, X.n to the
form Z‘ )\(v\) Y‘: ~
=21
Ym = f=:) X, + ﬁ?lxﬁ ce o PinKn L=b2e Ao
mhere Z by = O

C=1,2,--- A1,

Z’ PL,;
The statistic. Yb defined by the sequence ( Y;.) belongs to the class (X
~ Now suppose all sets of m different YiS , Y,Yi,-- Yi. satisfy the
conditions imposed on R, , B; , e¢eeesp By in Theorem 3+6, Then,by
Theorem 36 if W (Xn) = [Wb(d _] J =3, 4se0ceeen.

eI o 7l G T ' & Eph B MMIHD(‘”)}**

whers T = o(1):
and ( @, , Gy ,......0y) i8 & partition of a fixed integer r < n .

‘



—

Se

Wo consider now

/ E{lwon] [H§ — E 7 ()" Hot [
,E?[Un(&uﬂv #o'} — E;[Gn(‘ﬁ-)_r/#,(o,/)}/ <6

where € = O(l) with respect to n by 4-2.

325 i e el G WL §-
B TR )M v

whore PZ' denotes summation over partitions (a (o @3 ......a.ml of r R
an . : ' '

denotes summation over ordered sets i, , i, ,.....i,.

S B IO 2 SR+ € o @)

whereh By ’(""”M) is a functlon of tho partition and the integers

¢ €

sty Ut\a

i| .ncoooooi Which is O(ll’ by 4’3’1.
3 '
Jl = O(‘)l:he B moments

of the distribution of (/, under normal theory and ranjomisation theory

It follows immediately that if Z, [ N

are asymptotically equal. Then since we are supposing that the limiting
distribl_xtion of Uh under normal theory oxists and is determined by its
moments, it follows that the a.symptotic distributions of U for the two
cases are equivalent. |

The geometrical interpretation of this result, as considersd in
Cahpter I, still applies but by this stage has outlived its usefulness.

Fuxfﬁlnmorq -the conditions set up in this section while sufficient
for asymptotic equivalence are by no means mecessary. They are

designed more for the case of statistics U whose mumeratorQ is defined by a




sequence of quadratic_formg(Qn) in which the rank of Q, remsins finite

as n —> 0 , than for those in which the rank of Qn——>°0 as n —=<d
This is illustrated by the fo;!.lowing two examples.

4°4 : Analysis of Variance - Ome way Classification ¢ In this we
consider the set g, »E.,--- ,§u  of random variables to be divided into
‘ﬁ classas, the ith class consisting of n; variables where LZ:? w =" and

each n; is O(n)., It is thorefors convenient to write the sat £, &, -- Fu

i.n th@ form Ej' N Eu,, T "'\-l) %z; $§u._| e Elﬂ-;_, Tttt %kl’%hl) 0T E.h",‘g.

Lot [ n,Z &
and QR = é“‘(gh‘ EA)L

L’-'n ' k )2(:

o) 7 ] 1 7 . ‘

. ) }n*"ﬁg,g_i = hgg&,mwm
L

When Hy(0, 1} is trus Q, is distributed as 'XD‘_,]

Under an orthogonal transformation .Z{n = In ;—_-0‘ in which

Ten =C¢n§§f} bf“,,,,i- (=12 ,k=1

where C; 1is & normalising constant, and in which

. ."7nn - \/.P-\- &n
«~%the well-known Holmert transformation -

Q, reducss to the form Y.+ ‘7:,], + - * 17;::,»\

Thus the limiting form of the distribution of Q ,, under normal theory 15
'X, k-] o & form completely determined by its momsnuts,

Also /m, Y’-h -5 Yeam satisfy the condition imposed on the R's

iz; T}xqorem ‘$°6>w1th a=86,

For wo have, for 1 <i £k ~1
[ ! 1 A R A & 00--0)
I:c.\, &(E,'k,,-"‘k,, T\’,_,JV\L,"‘ M”77 LR G Ry Rind,
Mol | i | DB R G

. .
- Ll LY
Write G = \/fr\,(n,+m-~ % i )§
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Then &'n oL g&“ » where.

' = L. /L Lo J 1 C )
/g,":f‘ - Cc‘n( My 777 W TRy, T Ry, T s T TR, T i, i, O O0/.

Also m, (yi.\) = |

L S SN

h
31 s 3_ s eeesdp are h positive integers and such that j, + j;x‘+..jh =3,

If i.' P4 i‘z‘él"o"ooo<‘i

= O

since Gy, = 9(_—};) and n, = 0(n) i =1,2,..0.k-1, |

then
. I [ P A _L!))
Mige - in (i S o) = % o G | W AR

[}

50 Y Yinseees, Yoo satisfy the conditions of Theorem»i”‘6q‘yv:§.1;h a=0.
;t follows that if -—-ng (3))}4 = 0 (nJ';-‘z) Ji=3 4:-....;
tl;s;;‘the asymptotic randomisatipn/qf U,= O“/ 1,&055) has the IXCR-!]‘
form,

This forms the basis of the randonﬁ.saticp 'justification' of the
normal theory assumption in the case of a ome-way classification analysis
of variance (see later].

The exact expression for the first three moments of the randomisation
appendix 1. - . .
4'5: Serial C_o‘;rcgiation :  While 4.3.2 is 0(1) iftzl‘l,\qu < O(l)

it is quite apparent that the &S may be such that 4:3°2 is 6(1) although -
this condition does not hold, So this condition may not be necessary
for asymptotic equivalence of the normal thsory and randomisation
distributions of statistids of the form Un. The fact that indeed it

is not necessary is shown by the following.



: " _
__’.. Z N/ A =
e Qo= FZ R E) v B R
Then Un= QnG_w) /M (B is the standardised serial correlation
0. s 2 E“) |
coefficient of lag 1, 4 ‘ ;
The distribution of “" under normal theory has been given by Anderson [/]
Asymptotically the normal theory distributiony U is N(0,1}. The
randomisation distribution of Ua (X/n) has been shown by Nosther [9],

in widening conditions given by Wald and Wolfowitz to bs N(0,1} provided
m (%) -
So subject to this condition the asymptotio distributions of this statistic

obtained bymbhe two approa.ches are equivalent, It will now be shown

that all the conditions of 4°3 are satisfied by Ua except the condition

h)

tat 2 [\ = 001 .

=1

/ —4 » ‘
2 Qulk) = A G, and In is the unit A*" matrix

then M (&t“/\ L ) 18 a circulant and the roots of duf-( An —AL,)=0

/ = - nd
are e_as‘irly shown to be O and N %é%ﬂ' R=1,2,--,n71,

km hel'@ ) ,\l;) = ‘VLR CVJ 2»;:1. ) ) i= 132000000.0 n -1

Y

Ir_r_x, is odd, say n=qn'+| » and . is an orthogonal matrix in which

o ot [ B el E ool WD), o b2T)] = o

‘fﬂ' (::O, I,Z)... ,“L’.
and

h_noéMm(zg%)_n)’@gﬁ@_z%\o,,))...‘.,rsu@ aa-n)rr)j g}

L E l'\.'H, > h.
N T=R &
then the subst:.tutzon L T =i reduces Q(‘E‘)‘ to tl‘a

form -—*Z’ Coo 24T 2”— "7:.»»
Now for 1 <1 <n' ,

M(Yen) = % QZ_’M (é 2ur)
Z[H o (R | =

while for n' < i <n-1

Mz(?#i"\) = /, Wﬁiy |




Hance if i’_ Py 12; .‘..‘ih ars h distinct integera from 1’ 2...... ne1l
and j; » J, s eeeodps &re h positive integers such that j, + j, +..J = J 1
2 ‘
thon Mg iy (Yo, Yipn, = i) = 7o times 8 sum of torms of
multiples of cosimes and sines, ths modulus of each term certainly
being less than or squal to 1,
T follows that i, (Yin, Yim, -~ Yan) < O

, W
Thus all sets of h different YL-,LS corresponding to non-zero ),; s

satisfy the conditions of Theorem 36 with a = O,

Also the limiting distribution function of . being N(0, 1) is

completaly determined by its moments.

R I <= . 2
But §/Ll=—ﬁ§/c«,—ﬁ]

- 1<t 2T

o CW Jromini
\F\ (] n
where n" 1is the greatest imteger
less than %. .
— . u
- L o (Z+3'T) s T
Vn S, ,
. T
Vn w[(l-m.")l:j Sim Gt _ O(“’h)
T sk /T ,

bThis emphasises the weakness in the conditions set out in 4'5. In
fact these _condj.tiona ares more or less useless for studying quadratic
forms whose rank tends to infinity with n because in almost all these
cases, this final condition is not satisfied,

Ny

M
I have trisd to weaken the condition 2 ;\;, < OQ) by
=1 )
studying the remainders & in 4°3+2. But en approach along these
lines would seem to lsad to conditions so complicated as to be uselsss.

I have also tried to establish conditions which would not




nacessitate reduction of the quadrati.e fom to cunonical form but
this approach (naturally enough} was évep less promising than the

former.




CHAPTER V :

In this chapter we deal with soms practical implications of results

obtained in previous chapters.

5:1.: Analysis of Variance,
Se1°l :+ One-way Classification : Here wo hats k samples, the i.th

sample contaming ni measures x; . X5 ......xmi 201 =1, 25, eeeee k.

Shiw xt-mz»cu, X~ LT ey

=
X ~ o + &; whers G, G, seesess 9 are constants amd €y
is a value of a normal random variable whoss distribution does not depend
on i or j,.
let H,j denote the hypothesis that var a =0,
Wo test H,y by means of thg statistic
F = 7;;’,—%& (.~ .

e i‘z (- %Y

large valuss being slgmfz.cant.

When Hop (0, 1} is true ,as n—> < , the denominator of F converges im
probability to unity., Hence the distribution of Py the distribution
of the numrstor and the muerator is distributed as kf, Z.z; s under
HaA(O. 1) i.e., asymptotically, under normal theory, F is distributed as
_.., X"ﬁh -]
Under randomisation theorx Wo assume that x5 j can be expressed in the
form x;. = a5 + 6 where @, , @, .,.0 are constants and e¢:- is a
value of a random va.riablq (not necessarily normal), whose distribution
does not depend on 5,'_°1f 3.

HoA denotes the hypothesis that var a =0 ,
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distribution of F5 g’m (0. =)

‘i‘ Zk’ Z, (- 2.)

asymptotloally, aubaact to a.kve#:y mild restriction.
2 2
Now Zz CJCLJ ~. ) j= %) + Z“" (%~ %
L= g=i t=y = bl
R
F
. 2% (%) | Zjmle-n)”

. / 2
“ 17 Yped

N
M
e
o

o
g

o AL
_ ¢:1='

R fﬁ(xr,w) > 2 (=)

The second term onL-t'he' R.S. converges ix;-p;:obability to Oas n—>«x
- SO o)

The second term on the R.S, converges in probability to Oasn -->‘<!

Tmrefom tm flra‘b ‘*0.0.'..‘l...........ll.l...... tola. n-—-'aﬂ

2
Therefore h—h ZIZ (xw -X:.) converges in probability to 1 as n—>-

Z“Z(x‘a Jc)

=1 5=

Hence the randomisation x"distributxon of F ~ -— JCL,,_,]

i..q,, a randomisation test using the same statistic as the usual normal
theory test is asymptotically equivalent to the latter and so for large

values of n the normal assumption'is in almost all cases unimportant.

M (%) J=2 ‘
Again the condition [ Loc:i]"/z = [ hE J - is satisfied in partioular,
for the ‘set ;EA = (l, 2, 3, -""A,n";h') |

Sq if the origir_:sl set of moasures are ranks, the analysis éf variance

technique can be spplied, without qualification.

5:1°2.: Iwo-way Classification : The set up in which we compare ‘
the randomisation and normal theory approaches in this paragraph isr the
following, ‘ | |

Pq measurss are arranged in p A-slasses and q B—claaséa. the measurs in

the ith A-class and Jth B-class being Xij o
A
Z'xLJ ’ xuj = k x‘.J 3 Pg Z’Zxc"

J.—l

Sa = 9 L_Z’:l(xc‘-- ) S = PZ (’cq




(=i g=

X b g 2 =
=22 (xij- X = X + X |

Under normal theory we assume that x; 5 oan be expressed in the form
X35 = G + B + 6‘5 where &% 1=1, 2,000eps Bj J=1e..=q aY® ‘
constants and GL‘J» is a value of a normsl random variable € whose
distribution does not depend gn i or j.
H,j denotes the hypothssis that var a =0
Hig eceesrescncercecencissecsa varf=0
We test H , by means of the statistic F, = F};T sﬂz/(p-l—)jﬁ:a) r

1

We tast HOB 0600002000000 200000000 FB = sa/(P_'Jts_l) .

These tests are independent of each other,
Undor randomisation theory we make a similar assumption omitting only
normality of the distribution of € .

In this cas~ [ " und "Hé& denots the corresponding hypothesés.

oR
As in 5¢1¢1 we can use the statistics Fy and Fy in the randomisation
approach and if p, q ars large, the randomisation distribution of F, and
Fp are equivalent to their normal distributions, For with the initial
assumption, whether or not K/ B is trus, if H' , is trus then all
permutations of the measures fjb where fj = XL - JC » are aqually likely
and this lsads &s in the one-way classification case to the same
asymptotic (with regard to p ) distribution of F as under normal theory
subject to the mild condition on the y's that has been applied previously.
Similarly for Fp .

It is clear that the whole ,analysis _of variance technique ocan be buj.lt

ilp in this way, and that provided we are dealing with large numbers,

in almost all cases the normel assumption can be dropped without
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altering to any extent the result of the test.,
5.2 ¢+ Ihe Froblom of m-rankings and a Gemeralisation of it: The
problem of merankings is.the following, |
m individuals each place n objects in'orde:c according to their vé_.ltmtion
of them, The question is whether there is any association between the
ways in which the different individuals order the objects. We discuss
the following more general problem which arises in commection with
analygis of variance,
In the notation of 5¢1+2 let p = n and q = m.

Xij =G ¥ B3+ € eennineininai(l)
is not always justifiable. There may be no reason to suppose that the
only effect of the B-classification say, may be a 'change of mean'! as
this assumption implies. In this case the Woakex: assumption that
X34 o8n be expressed in the form |

ETEE R eV ceereeenennnne (2)
where o, G, aeeeeess® 8T conatants and 6({” is a value of the random
variabls ¢ whose distribution depends on j (not mecessarily only with
regard to the ‘maan), may be more appropriate. With the assumption
(2) arises the wuestion of testing the hypothesis H;'A that var @ = O,
If HZA is trus, then on the assumption (2), for fixed j all permutations

of ths values x: X, ,’,.......xn‘_j are aqually liksly, This is so fer
. P - J

1d

j = l’ zaclotiolgm. ] o -
: '

Pitman and VWelsh have 'p;'qpqsed a test of H A o this basis though neither

has discussed in detail the asymptotic {for n 7} propertiss of the

test, [10),[/3].




While this problem arises from weakening assumptions in the analysis of
variance approach, as it tacitly re‘cognised by Pitman, it is most
conveniently treated in a similar fashion to the problem: 'éf m~rankings.
For if H:;A is true there is no tendency for mpasures of ‘relativelyv
similar magnitude to be grouped together in the same A-class, whils
if var a # 0, there is such a tendency.

x{. o x’J
Accordingly we let 9
\/ghz (x“, x'J) }

n
ot 7= 3

Then as in analysis of veriance ng is used as tho basis of a statiatio
for teati.ng‘ﬂ,’.ib .
Wo standardise s,;"by setting
L) Frreet (S.';z'.' -
and show that t_he distribution of W over equally likely permutations

within each B-class is asymptotically N(O, 1}.

We have gg":_ "é’(ZJCL
' n o om M
L E(EE )
bhR=1

L=l J=t

J*k .
L "

- L - roduct moment correlation
whore = T X Xg = P vt ‘,
coofficient between the measures in the j and kB classes,

i / gL I /2 n
Now — x5 = -
2 2GS
Va 'Z’“’
. » Vi) 4 h‘ '

Now the distribution of Vi j, over equally liksly permutations within

each of the j%0 and ¥PP B olasses is exactly the same as its distributien




over equally likely permutations of the jth class only for a given

permutation of the lv.'th class.

Honce by sectmn,(the distribution of each Jav), ~ N(0, 1] providod
the W* moment:. of the set (x g8 Xpgreeceres xnjf is [;L T [,U=34,""
for sach J...........v 5°2°1, _
Furthermore it can be ‘shown that subject to this restriction the set
of mczrjks are asymptotically indgpender‘ztly‘r\lj.stributed over equally
likely pefmtations within each B-class..sssess5°2¢2,
Thus \/?"C”“‘)} W is asymptotically distributed over equally likely
permutations within each B-class as the sum of m(;“) independent
N(0, 1} random variables.
Hence subject to these restrictions W is asymptotically distributed in
the N(O, 1) form.
The gtatement 5422 requires soms justification. TFor suppose we
consider m = 3. ‘
Then we have the three corrslation coefficients r, , T, » T,;.
It is immediately obvious‘ that these are pair-wise independently
distributed e.g., r,, and r,; 8are independent, since given any value
of T, the distribution of T3 is obtained from all permutations of
the third B-class relative to the first. But it is by no means obvious
that the three variables are independent, asymptotically. In fact
this would seem to be untrue since given T, = 1l and T, = 1, T,y is
of nocessity 1.

However, the fact that they are asymptotically independently
distribution can bs proved if the condition 5+2.1 is satisfied.
The method of proof is similar %o that used in Theorem 3+5 and only a
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skotch is given hers as the details ars almost identical with these
of Theorem 3°5,
We consider F L/C\/:l “’7;)“ \/\\_/‘—L ’7’13)0@1 ﬂ,)w/ Ho:)
We then defime a joint partition of the three integers W, Vv, W,
by an obvicus generalisation of 4-3. _
Denote such a joint partition by (a, B, ¥ )s.
By considering the expansion of (\/Tx ’ﬁz)%@ 7’5—3)1)-(\/‘: GOW we find
that [ [C\/ﬁ 772.\)%&/5 'fz,}';ff;afrz’fm)\(&/ Holr'\j can be expressed as
the sum of a number (independent of n)z torms of the form
o ks / : \
5:223, C@hﬂ,h’)s T2 g S;,(a.) (%) ‘n’m} ng&l)(%’l) Z/B*ﬂ éa(*s)(x*:;"'j
where
C@»B@; is & constant indeperdent of n.
élUM) is a partition of ( k+wr ) formed by the h, nON-ZeT0 SUmS
G =(it¥) of the joint-pertition (a, B,Y Js ;
A U\L) wowoom e C“* o) r

Eyj =@+ A;) of the joint-partition (o Bs ¥z 3

M ‘.4‘1_u“

&3 (hs) wooowoa (U+w; "
Car = (e +fe) Of te ot - partdtion (o, 6 ¥ )s 3
Sé .U\‘)(;g,(;) denotes & symmtric polynomial (as in 2.3¢2] in the
elementsl'(bxlz)x;i’....... , x.: ) of the i*P B-class.
Noting that h, +h, + hsv, 2S we find that if egch € > 2 and some € >3
the torm 825 1s 8(1), if M (ki) = o(wF) [T (=413,
Also if ore or more ¢ = 1 the term 5'2'3 is easily shown to be (1},

Subject to this condition.,

The remainder of the proof is similar to that of Theorem 3+5,



The facts that T, s Tze and T3 have asymptotically, independent

randomisation distributions and that in particular r,=Tr,; =1 implies
T,,= 1 for all n, seem to be ‘mutually contradictory.

That they are not in fact s0, is explained as follows.

.....

Iet ( x5, Yi. z)i= l. 2,......n be n sets of measures such that

T o= Rao- - o,
n o b\—l
Zo(:: gj'g‘x’ = ZZ‘L = /)

U=y 4 L=

Fo= weye = 6 5 Y=z = 5.

ru_and T 3 are respectively the product moment correlation coeffioients
betwoen x and y and x and z. ‘
We ask what are the limits of varistion of ry= Z {'/" 2 subjeoct to
these conditions, 7 A _ 7
Introducing legrangisn comstant )\, A»+A;s )\‘{_. wo have stationary
w}'a]nqs of Ty3 given by the solutions of the above equations and the
set of n eguations;

MNzi+h F hgi + MXe= 0, Lehneenn
A\, =0 by sddition, _
From this set of n equations we find easily that if T, is a stationmary

valve of r7_3 then

'l)kl+a‘l\3+ >‘4-
BN+ A+ &dp= O

N o+ oA -|-J>X,,*0

and henoer =ab < \/5(1 g H1- b)§
Clesrly T, has & ‘maxinum and & minimum value and thsse stationary values

must be these.
Ifa:b:lthan:z3=1, as wo had above.
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But if & = b = 0 then r,_ can lie betwoen & 13 and if a and b are both
very small the limits of variations of T,; are very nearly + 1,
Now the randomisstion distributions of r,and r,; discussed above are
independent of each other and each distribution is asymptotically
N0, % ).
Hence when n —> 00 with probability —>1, a and b can be taken to be
of 7'_; ) And so it is quite possible that asymptotically the random:llsSt-ion

distribution of the variablesr  , Tz » T, &re in fact independent.

2
This resolves the apparent contradiction above.

Returning to the asymptotic distribution of W considered above, if

xij =3 » i= 1.2..000."@ j = 1.2..-..... My then as has been seen
ad-2

. , o=
previously the xi'js satisfy the condition that ma( {"J' =06 nF )
a = 5.4‘ seses o

It follows that if the values xi.‘i from which we start are ranks, then the

distribution of W ~ N(o, 1).
/2 A 2nlm)
Honce the distribution of Sa N (m vy el

For the case of ranks Kendall {¢] has imtroduced s coefficient of

concordance which we will denote by W | where

| 2
W, = % Sa
(L, 2D
According to the above the diatributien of W,~ N (51, 5
Kendall has suggested f_b] that the distribution function F(W, ) of 'W|. is

given essymptotically by

! p- g _
I VALAPIY
OLF = BC"’J%) W| (’ W) I

p

where

\]

) . !
Zz(n-1)
. ~ . ]
- -1 S-’. el ) == '
v (~M )(_ lL ) mn N __/_ 2(M-,))f
The distribution suggested by Kendell tends as n —»> K to the iy ) A

[t}

as is easily shown.

e



This proves thét Kondall's suggestion is, in this sense, correct.
5:3: Ihe Multipls Correlation Coefficient: The case of .the multiple
correlation coefficient provides an interesting application of an aspect
of Theorem 3+6 that has not yet been discussed., This aspect is the .
following.

Theorem 36 stated that the Joint randomisation distribution of &
set B, , B, ,....R; of mutually orthogonal members of the class I{ is
asymptotically multinormal subject to certain conditions.
It followgtha.t subject to these conditions the joint randomisation
é;;tf;bution of m limearly independent limear combinations of B Rzﬁ,
esevacsy By is asymptotically multinormel,
The question then arises - under what conditions is the joint distribution
" of a set R, » By, «ev.ey R which are not mecessarily orthogomal,
asmtotiqa'.f.ly multinormal. This leads to the following corollary to
Theorem 3.6, ‘ . L o
531 lomma ¢ Iet Rj, i = 1,2,,.... m,‘ be ‘a set of m members of the
olass K, | |
whore REnJ(&n) = ‘;‘:{(ycyx.i-yc{)(,_i--'- -+ })(chn)

n

and 0{22"_4&{;* =0, :42(32\)= I, L= 1, 2--
Also we suppose :hat Z" % =0 and MGG = |
ot A= kSt | ,
I (a), Mg Jme Ui'v“) d2n >."'"'~'""“‘) < O[h"urﬂ hose. Deacty

=/

......

-j|+j200000+ ijj‘ amj=5’4’.‘..'.. i

(n)

(b) Ay —> Ay 0 W—> 20  and the matrix
] ’ﬁz, bt 'ﬁ»\.
\/ = "54 1 Tt 'f;.m
~ : : .
Toar Mo - |

Ssachet
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is non-singuler and so positive dsfinite 3

then 1f M (o) = O[P»bq")] whe. baxt-a  for j=ao

the jolnt rendomisation distribution of B, o B, peeses R is asyaphotioslly
miltinormal, '
Broof s let \/“’bs the mtrix (7% ’) with #0= | and let p be

chosen 80 large that this matrix is non-singular.

let QN = (Cf:)) be an orthogvml mxm matrix such that

Wo... o
Co‘)/ V(h_) C(h) _ 0o A(‘\‘ - O
~ ~ ~ ; ®
" & @) Qs Ak ™
where A\ N, .- - A are tho (non-zoro) latent roots of V
lot N ! ( o W Htv ® S .
K(’t" - J'A(.") (C':' R' e cl.('_ Rz + - .+ C M.L R: L.-lszg :"1
(3

The set R e Rz 8 secosey Rm is an orthogonel set of mombors of the chu .

R sor 1: . .
N (";CIXA + ‘;{cLX, +-- * %’m xn>
N w o |
then l#‘:d - \/’\{’U c"_ ?‘1 + Cz,: y’_‘ A -+ CM(, #Wt¢>
Aloe | Y (n; o &y
e +C 'f
c,Z, You Jie = mt",\w)zéu[ Cy Ty * @ Tha " | A
™ )
= \/(,\?" ) Z A; e Cy; L
oy _ 0 PH
- n \/(:t(‘") SLJ AJhere SCJ = Af b=J .
S ha N o
T Qo g =0 » ¥4
and m, ( &m) = | way
Also since MJIJ.;--- JM ( y!:‘)yi”) t T (JMK O [b\- J =3 4y,--— 2

since )\ —> A G Nn—> 0 whexe A\ is non-sero,
and ainoe [Cj<| 1t is olear that

I ——
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mf/ng-~Jm<4\4,i*»?L‘*""’?4r~9 L O[], jesi--
Iy i_’ollov.vs‘py"l‘.‘heorem 3°6 that the joint randomisation distribution of
\E‘ . \Rz s eeeec B 18 asymptotioally multinormal, |
Then since R, , R, ..., R, can be expressed as linear combinatienalof
}2, » \Rz sesees B 0 their joint randomisstion distribution is asymptotically
multinormal, N _
This completes the proof of the lommas. N |

5e3:2 ¢ Ve now apply this lomna to the case of the multiple correlation

coefficient. 7

Ist é 1o Yoo eseesYp bo (m+ 1) random variables.

Iet H,' denote the hypothesis that the distribution of } is independent

of the distribution of e Vs S ’

kkkkk

asswped by thqae random va_,riables n= 1,2.5. vesese

Without loass of generality in what follows we will assume that, in
previous notation X, = ’”;f Xu) = [, ‘ |

;Tc,\z 0 and M(Ya) =1 (=1,2--m,
for a.li values of n . |

Let "’"( Z f{u Jix

Let Xn in previous nota.tlon be a permutation of X
Let s’ = v,,. Z X« Yix

iet \(“‘) Lo fe (Mxm) maliak (~““’ hare P = |

Ve assume that as n o0 \L - ,\! 8 non-;-singu]a:; mym matrix,

It is essily shown that B, the multiple correlation cosfficient of

X on m ’32 » oooo,gmia gi‘von by
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nRY? = iwl(y‘u,)_'ghj

(o
where 6"" s,w
- hd sz

s‘“’ ' -
Thus h KW" is a quadratic form in the o
When Ho' is trus all permutations X,‘ are equally likely and the joint
distribution of X,, X,, ....,X,is this defired.

a(j-2)
¥ Mg (e o s ) = O[n2]
j| +j7— EEREY + Jm= j ’ j = 3,4, eo e tmn by lemm 5.3 l tm joiltb

randomisation distribution of the Si's is asymptotically multimormal.

Also [ ; S'?“S;"’/ Ho'} = 7': E Kg x&‘jéa(z:',xv(ﬂjd) }HII’ }
[ m (’“‘-)Z#Ld Ji« *+ h(n-n_) S(‘“)Z-I g"‘i y"f]

oc-.&{s
where 5/ (ac,,) is the symmetric polynomial in ths x's as before,

). ‘ )
= ﬁJ W(n-1) d§ &‘{ L

) A
= 'ﬁ;}“‘ ‘JI ..._.;'r‘J ap h—>0 .
o n—

ll

Honce the asymptotic correlstion matrix of the S‘:’s is V . _
Then since AR™® =£W(!@\?“é(ﬂ) it follows that ssymptotically the randomisation
distribution of nR*is of the j("form with m degrees of freedom, ,
_§_;§_-_§ Once again this result is the same as the normal theé:y‘:qgult.

For it is well-known that if the joint distribution of § ,¥ seeses¥m

is multinormal and the distribution of £ is independent of tha¥/y ,
’73 sevese s then the sampling/function F(R*} of R is given by
n-m-/
. ~1 2 2-—-1 bR
dF = B(W £y (-r) 2 =" (&) R

From this it is .easily "' shown that the sampling distribution of

nR2 ~ X* with m degrees of freedom.




Again, subject to very mild restrictions, the randomisation approach

and the normal theory approach are asymptotically equivalent.

52, |
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Conclusion

The applications given in Ghapter V cover a fairly wide field
and there arq_prob_a.bly ANy more statisticg, loss widely used, to
which ths ‘theory established in Chapters 1 - 4 is applicable,

_ of course any results of this paper are pursly of maﬁhematiqal
interest, In practice it is mecesssry only to find the first fow
moments of a randomisation distribution in order to get a good emough
approximatien to it, This is comonly dore, though it does often
require a fair amount of algebraic manipulation (e.g. appendix 1),

The main mathematical interest is the extreme weakmess of
conditions sufficient to ensure asymptotic equivalence of the
various randomisation and normal-theory distributions discussed.
And this is ju_st’ another facet of the 'theqrem on which so much statistical
theory is based ~ the Central Limit Theorem, though-this thesis does
little more than touch the fringe of this aspsct of it.




APPENDIX I | |
In this we find emact expressions for the first two moments of
the randomisation distribution of the sum of squares between classes

for a one-way classification analysis of variance.

Iet Xy , %2, 2%, Xy, - -- Xyu,- - - - -Xp, b8 & given set of mumbers
let X,,, X,,_, R Xm, Xz,, - in, .- - X,,,\ be & permutation of thés
set.
. -
let X, = & Z'
and f whore without loss of generality

X = O
we Buppose Z ; J
Suppose all permutations of the given set are equally likely

We have
UA=%fX:+XI:"' -1—an+ Q[’:"C mq&fﬂ’vmx” thi’
- 4 57 2 o
= n#y t K%, say where U denotes the expression

in square brackets and ga) dewotes a symmetnc pelynomial in the pn
values of x%’reviously.

Wo have 1 2 ' "Cz
E(%) = whs * = ‘%,7,5'
Now 572=;51'f‘ " M“”‘“S=O,'SZ“‘»5;
! 4
E(Ub)“ —E‘S;,[' P"-] f.ml
= (/"9 /?’L
where k; is the 50 k- gtatistio of the set of x's. .
Again  n* F(v}) = E(SZ +2u )
= S+ 4-,5;’E(“) + 4 E(w).

From the above E(u) = 3,(’,,,,.,) /sy

e - g N

i
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Also E(tc") = I’ ncz ({au)L‘J /5,7_,_ -+ 2p C (n-2) (’,n)l-ﬂ 5:."*
+ p- nc(’, C, 24«1-3)09)::47 ;S’

We have ,S;’_‘z 2*5;2 .

S St= S, +a8 + S+ S

Si5, = S+t Sy r

.574- 52"'4'5;:"'3:5:17‘4520"'5;'!‘ "
and so since § =0,

Sha = S5

S, = 2 S, - St

S e+ 35T

Honce collscting up terms we get after some algebraic‘ reduction

n=i K-y pG-1) ) p )
m— E(O"*) = fl Pn.- (f’n-l)(/m-»z.)(/m 3) } ‘S‘/ (/""’)(P“"Z) (/M:«]) E/

or in terms of the k's

E(0f) = R G R~ 2

’L(H.Ib'H) 4.
So  if nis large and k, emall | £ (02) = (p*) k.

A‘f“""r" , % E(Uf) = 1523'* 65;”‘5@.) +/25’2 Elu?) + 9£(u3) ,

We already have £ éu) E(u?) |
ST AT L
‘ -+ p"c { bC, = 2ne3 + 4(n2Xn3) + (%G, -2w)+2(p-,) "¢, } (f‘)"’:, +
+ pr()F (prele)-tur1) g F o) —nelfle- ) 10 A %&3
" A3 O (S eenf O] B

It is easily shown that
| Sis = — ¢+ 5"
Ssz,z QSL 52-52"'957
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Szzz = QSI‘ "fa*g*'g’- +'st

Slﬁzu = =6 S{ +5—'S‘7’S£ +d SSZ— S;'g

lg.:lmf = 345’4 = /81315:_ = gSSZ * 3513

_ S’mur. z ,"_/'20/5‘7, +v_%"g‘/ S/Z * 405‘:2‘ /5 513
The subsequent expression of E(Ug)in terms of the k's involves a
great deal of algebra and seems hardly worth whils., On carrying this
through and picking out terms of O(1) we get
E(02) = (Polps) & + (D

This verifies that the first three moments of the randomisatien
distribuﬁioxg qff % are, to the first order of approximation, those

of a ™ varieble with (P-1) degrees of freedom.
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In & series of N trials with constant probability T of success in
each trial, the probability of S successes is a term of a binomial
distribution viz., ¥Cs 7’75("77)”-5

The most familiar method of deriving the Poisson distribution
(giving the probability ,e-s ;-—v;‘s of S successes in a large number of
trials where the probability of success in each trial is small} is to
lot N—>.,0 and 77 —> 0 in the binomial distribution so that N7 —> m.

~ Fisher's logarithmio distribution can bo derived from the negative
binomial distribution in a similar mamner.

It is convenient to have in mind a particular set-up where the
negative binomial distribution applies. The following set-up was chosen,
despite its arti'ficiality, for ease of interpretation,

If, from an effectively infinite volums of liquid containing
organisms, & sampls of given volume is drawn, the probability that the
sample contains n organisms may be taksn as the n*? torm of a Poisson
distribution, The msan m of this distribution depends on the volums
 of the sample., A sampls of such volums that the corresponding Poisson
distribgtion has mean m will be called a sample of type m.

If the volume of the sample is not fixed in advance but is chosen
at T andom so that the probability that the sample type liss betwoen m
F‘la) {A’" m"f‘é 7” dm. then the probability that the sample

contains n organisms can egsily be shown to be a term of a negative

andm+dmj.a

v A . [(Ren) P"
binom:.al d:.stri‘bution viz., rRyn' GZ-EF)T{M
Suppose \' aan_:ples are drawn in _’ch.is waye

Then the expected number of samples containing n organisms is

[ken) _p°
V) wl bp




Now let V>« and k —> 0 so that Vk —>aq, a constant. Writing x',‘EF.,. g

gives in the limit the expeoted number of samples containing n

oL x"
A

organisms to be » 8 term of the logarithmic distribution.

Now let S denote the number of samples drewn containing at least i

ons organism, and lat N donote the total number of organisms obtained in

drawing V samplss, in the original case. B
The probability P{a, , &, s......) of drawing
V - 8 samples containing no organisms il

8, seececssssscscsss 1 oOrganism

' av-)_ escecsscssscssose 2 O’rga.nim }%

and so on, where

a, + a')_*ogg-o‘o‘- =8

8, 8, +ceceeee =N

is given by ~k(v-5)

h au‘
v! TT § Tlken) _p
P(astar--) =gl az.'---(M) U M) wt (1P
letting V—>.0 and k —>0, Vk —> 0, and writing x= F/i+p gives
&
- . [ et & o n*\n |
LPo-) = LGnds-—) = (-0 J.,TG:-) an!

L s then the likslihood function in the limiting case ie,the logarithmic

distribution case, This likelihood function lsads to the maximum

3
likelihood estimators @ and R of a and x respectively as the solutions

of the equations S=- &log(l~%)
N
X Py
N= —%
1-% @-

The limiting Form of the Joint Distribution of 8 and N.

In order to find the joint sampling distribution of 8 and N for the

logarithmic case, wo have to sum L over all values of &, , &,5..... such ¥
that r



a, + az+ as + cessee = S
and a, + 2+ 38,+ ... =N,
On performing this summation we get
o o5 2V PN
pis-sn-nd = =05 3 FL0)
, s
where fe(z) = [l (-2)]
noyve [dY ey
%os (o) {oTz" ﬁs@]z:o
Honos the distributionof S is g:.van by

Pis=si = (-~ g‘i Z"fs
NP f"”

= (-2 i‘-, £ 6o
= C/"‘X)“ o= [ %’(/’7()]

= (I-x)

Se

0% S€0d
B<N<L

S‘(/;A.CL fSN(O), 0, F’f ’

N=0O1,--- S-1,

&mo in the logarithmic case S is distributed in the Poissom form with

mean - a log{l - x),

- The moment generating function of the joint distribution of S and N

is ginn by t:.) N
£(e557) = G S 8D S gt

S=o0

S=p

- (- Z'(o(e Z(xeﬂ) fN(o
- U-x)"‘sgz—a,' Q‘_:jf £ (xe %)

S

S= 0
(-2

M %,
(1-xet)*¢

-

(-t 5 e f;l (1-xe*)]

Putting ¢, = O we pet the moment generating function of the distribution

of N to be _Q—-JC)
(e F




xo

It follows that N is distributed in the negative binomial form

o2 [CeN) N
ad PIN=N] = () ré(:)> x

Given S > 0O the distribution of N is of aom: interest, It is given by
PINNISE = [~ 4gl-0)] X £lo)

This distribution, the binognial vdistr’ibutic;n, the negative binomial

distribution; and the Poisson all fall into the sams class, as can be

seen as follows : v » S

Iat a random variable § taks the discrete set of values 0, 1,2,.....

and let

1ah , . : :
=h =
Pf § } J) n! 7 (o) where g(z} is a 'suitable' function.
If g(z)‘ =(1+ z)® where S is a + ve integer then 'E has the binomial

distribution with mean o = Cflea

' ! VAR
For g%0) = 3ir em Pffenf = (/+ )s(,_,,,)h G = SCu P'(-F)
If glz) = (1 - 2)~% then o) = —‘;—_—‘”Z‘—ﬂ"
and fie 3 nf = (J—a)” Ty o i, has a megative binomial -

tnf = Feo wl 5 distribution.

If glz} = ez then gn(
and P{}zﬂ}

Clearly other d;atributiona of this type can be derived by giving g(z}

'~‘i x “

i.e.f has a Poisson distribution,

different forms,

Returning to the original discussion we have

2

R o -
E(sN) = 9 . Z U] b
& b(: (/ Jtee" Gobi= o

. &+t .
_ (-nf [ 2 _"‘_E’-T__o.c é’*‘]
a ! Q-xe ".') . 6,=(‘;=O




5 e )
= dx(:-")“ [ 2¢ (l -:c)"cﬁl'“]e -0
| o Log (1~3¢)
= dx(l -x_)"[ T %CJ—";']
ol |
i

chu v (SN) = T

- '
(1 - x}ﬂ. »
The results obtained here for var S, var N and cov(S, N) differ from »

Also we have var S = = G log(l - x) and var N =

these obtained by Professor Fisher in his discussion of the logarithmic
distribution in commection with sampling a po;mlation of butterflies, |
This difference is accounted for as follows :-

Firstly we establish a correspéndence between the butterfly problem
and the negative binomial set-;up above by making

| - Type of sample —> Species of butterfly.

‘By establishing this correspondence we automatically associate with a
species a mumber m, which is the mean of the Poisson diétribu:bion arising
from sampling the particular species (see below).

~ We suppose also that the probability of the mumber m associated with a

. -k Rl -
species chosen at mndom lying betwsen m and m + dm is Fé_l-z-) b m*le h”'dm..

‘This maintains the correspondence.

We ﬁzrthez; assure that the result of our sampling activity is to
fix attention on V species, chosen at random from the population and
then to sample these species [This corresponds to drawing V samples_] .

With this correSpondence wo may ‘repla.ce 'type of sample containing
n orgamisis! by 'speci;es ropresented by n individuals throughout the

above discussion.




Interest lies in the limiting case where V>« and k — 0,
Increasing V of course means increasing the number of species on which
wo fix attention but even as V—> X wse retain an element of randomneass
in the choiop of species on which we fix attention,

In calculating var S and var N Professor Fisher considers a
situation into which this element of randommess does not enter, Con=
sequently the results here obtained for these quantities should bs greater
then his results., lathematically this difforence is brought out as
follows : M, |
1 Flm) = ,_w PR e T amd P= f Flm) ol , wWhese

0« m<m, then in choosing V samples at random, probab:.lity that

v=q
A " of these have a valxa of m between m and m + dm is VCa D(n P)
@P)" e
As V> © and k->0, this probability — — T
I

where P! = f —’; P

In other worda in the situation discusséd hore, in the limiting
cass, the number of species on which we fix attention for sampling with'
& value of m between m, and m, does not converge in probability to its
expeoted value « Ml— e-h%

Professor ﬁsbr evaluated var S in the limiting case on the basis
that 'the distribution of species according to m' is ‘given by unyb om
Ho was envisaging quite a different situation by considering the sampling
technique such as to fix attention on species to be sampled so that there
are, in the limiting case m e "dem such spocies whose associated
number lies between m and m + dm,

Finally there are two less artificial situations in whioh the

results hore obtained might  be applioablq.




(1) A population of individuals consiste of many different species.
In gach of various different ’Vdiatricts’ a very large number of species
are present but not all species occur in any ome district. The number m
associated with a species is the expected number of this spescies observed
as & result of a fixed sampling method in any tdistrict® in wh:}ch the
species is present, In the limiting case most species are very rare in
the districts in which they occur. We then assume that sampling by a
fixed method in a chosen district is equivalenf to choosing a random
selection of species from the population and then sampling this selasbtion
by the fixed sampling method.

(i1} A populstion of individuals consists of V different species.
The medium in which the population exists is heterogensous. So that in

sampling a single species the probability of observing n members of the
Flhin) ~ p"

Mo n! (+pR"
Every species in this situation has exsctly tho same status in the

species may be taken to be

population. The limiting case now corresponds to sampling a populatj.on of
individuals consisting of many species all of which are equally rare -
quite a differezrb situation from cass I,
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