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Abstract  

Childhood onset growth hormone deficiency (CO-GHD) may contribute to low bone mass and 

alterations to body composition. This thesis consists of a series of studies utilising dual-energy X-

ray absorptiometry (DXA), peripheral quantitative computerized tomography (pQCT) and 

biochemical assessment of bone health and body composition of CO-GHD. In addition, metabolic 

profiles, glucose metabolism as well as quality of life have been studied in these subjects. 

Furthermore, an interventional study of weight bearing exercise (WBE) was performed to explore 

its role in influencing the bone health of children and adolescents with CO-GHD.  

Chapter 1, relevant literature reviews explore: bone structure, growth, development and strength; 

GH/IGF-1 system and its actions; CO-GHD and its impacts during childhood and transition; and 

WBE and its mechanism and impacts on bone health. Chapter 2 presents the rationale and specific 

aims of this thesis. 

Chapter 3, a retrospective multicentre review of management of young adults with CO-GHD in 

four paediatric centres in Scotland during transition. Medical records of 130 eligible CO-GHD 

adolescents (78 males), who attained final height between 2005-2013 were reviewed. Of the 130, 

74/130(57%) had GH axis re-evaluation by stimulation tests /IGF-1 measurements. Of those, 

61/74(82%) remained GHD with 51/74(69%) restarting adult rhGH. Predictors of persistent GHD 

included an organic hypothalamic-pituitary disorder and multiple pituitary hormone deficiencies 

(MPHD). Despite clinical guidelines, there was significant variation in the management of CO-

GHD in young adulthood across Scotland. 

Chapter 4, a cross-sectional control study of bone DXA measurements in (n=21) subjects with CO-

GHD treated with rhGH and had attained final height from 2005 to 2013 in a single tertiary 

paediatric centre compared to (n= 21) heights /age matched healthy controls. By applying different 

models of DXA adjustment, our analysis revealed lower TB-BMC for bone area in males with CO-

GHD and lower LS-BMAD SDS in females with CO-GHD compared to matched controls. In 

addition, subjects with CO-GHD had lower LM for height and higher FM for height compared to 

controls, and this was more pronounced in males than females (p=0.04). The time of onset and 

aetiology of CO-GHD have a larger influence on accrual of bone mass in these patients. These 

findings indicate that adolescents with CO-GHD have a low bone mass, despite prior long term 

rhGH replacement therapy. 

In chapter 5, we investigated bone health of subjects with CO-GHD at time of initial evaluation and 

retesting at final height. A total of 25 children (first time assessment group) undergoing GH 

stimulation tests for investigation of short stature (naive GHD-15, normal-10), and 11adolescents 

with CO-GHD (retesting group) undergoing biochemical re-evaluation at final height after 

withdrawal of rhGH therapy (persistent GHD-7, GH-sufficient-4) were recruited from Royal 

Hospital for Children between 2012-2013. By using further bone health assessment methods in 

addition to DXA (including p.QCT, mechanography, bone profiles and biomarkers), the bone 

density and body composition did not differ when we compared GHD to matched height but 
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normal GH at initial evaluation and retesting. However, naive GHD had lower muscle force as 

assessed by mechanography compared to the normal. In addition, bone resorption biomarker CTX 

was significantly higher in naive GHD vs. normal and that was significantly correlated to PTH 

levels in both first time assessment and retesting groups. Our results suggest that muscle force and 

serum PTH may be important determinants of bone health in subjects with CO-GHD. 

Chapter 6 investigates lipids, adipokines (leptin- adiponectin- resistin) and glucose homeostasis and 

their relationship with bone and body composition in children and adolescents with CO-GHD at 

times of initial evaluation and retesting at final height (same population as chapter 5). Lipid 

profiles, adipokines and glucose homeostasis were not different between those with GHD and those 

who had normal GH levels across the groups of first time assessment and retesting. In the retesting 

group, those who were older at the time of diagnosis of CO-GHD with a shorter duration of rhGH 

therapy were more likely to have higher cholesterol(r=0.9, p<0.001), leptin (r=0.8, p<0.001), and 

lower osteoclacin (r=-0.7, p=0.01) at final height. Leptin levels correlated positively with 

osteocalcin at diagnosis (r=0.51, p=0.01) but inversely at retesting (r=-0.91, p<0.01). The 

conclusion was that the timing and duration of childhood rhGH therapy might influence adiposity 

parameters and bone metabolism in subjects with CO-GHD. 

In chapter 7 the study participants of chapter 5 were asked to complete either Short Form-36 (SF-

36) or Adult Growth Hormone Deficiency Assessment (AGHDA) quality of life (QoL) 

questionnaires at the time of assessment of their GH axis. Our analysis showed that the overall QoL 

was not altered in children with naive GHD with a total score of SF-36 [93 (77, 96) naive GHD vs. 

90 (84, 93) normal, P=0.56] (higher scores reflect better QoL). However, naive GHD had less 

energy and vitality scores compared with normal (75 (65, 100) vs. 95 (65,100) respectively, 

p=0.04), when the normal scored lower in the subscale of emotional well-being compared to those 

with naive GHD (78 (55, 84) vs. 90 (68, 96) respectively, p<0.001). In the retesting group, those 

with persistent GHD scored better in the AGHDA than GH sufficient (6 points (2, 8) vs. 9 points 

(7, 17) respectively, though not significant (p= 0.10) (higher scores reflect poorer QoL). 

Unexpectedly, subscale analysis showed that GH-sufficient subjects significantly lacked energy 

and complained of tiredness compared to those who were confirmed to have persistent GHD (5 

points (3, 6) vs. 1 point (0, 1) respectively, p= 0.03). Further studies to validate QoL specific 

instruments in this population are needed with greater insight to elucidate factors that modify the 

relationship between GH status and QoL in children and adolescents. 

Chapter 8 was a prospective intervention, randomised controlled study of 14 subjects among the 

first time assessment group (GHD-10, normal-4) and five subjects with CO-GHD among retesting 

group (persistent GHD-4, GH-sufficent-1). Subjects were randomised into either an exercise 

intervention group (EX) (25 jumps off 25 cm platform step/ three days /week for six months) or a 

control, in addition to rhGH being prescribed. The results of this study were limited by the small 

sample size and poor compliance. Therefore, there were insufficient data to recommend the use of 

weight bearing exercise in the absence of rhGH in children and adolescents with CO-GHD. Further 
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studies with adequate sample size that can more rigorously exam the optimal exercise interventions 

are needed. 

Chapter 9 discusses the main findings of each chapter in this thesis and outlines potential 

limitations of the thesis methodology, and some important and interesting areas for future research 

in children and adolescents with CO-GHD.



 
 

V 
 

Author’s Declaration 

I hereby declare that all work presented in this thesis was performed entirely by myself, and was 

performed under the supervision of Dr M G Shaikh and Professor S F Ahmed. 

No part of this thesis has been submitted in support of an application for another degree or 

qualification of this or any other University. 

 

 

Dr Mahjouba Ahmid  

 

I certify that the work reported in this thesis has been performed by Dr Mahjouba Ahmid and that 

during the period of study she has fulfilled the conditions of the ordinances and regulations 

governing the Degree of Doctor of Philosophy, University of Glasgow. 

 

 

 

Dr MG Shaikh and Prof SF Ahmed 

 



 
 

VI 
 

Acknowledgement 

“In the name of Allah Almighty, the most merciful, the most beneficent” 

My special praise for Holy Prophet, Mohammed (may peace and the mercy of Allah be upon him), 

who is ever the best role model for all humankind. 

First of all I am most thankful to Allah, the Almighty, for giving me the strength to complete this 

thesis.  

Foremost I offer my sincerest gratitude to my supervisors. I would like to thank my principal 

supervisor Dr Shaikh who has supported me throughout the duration of the PhD with his patience 

and knowledge supervision and guidance. My second supervisor, Professor Syed Faisal Ahmed, 

has also provided me with continued positive support and feedback. Without their help and 

encouragement I would not have reached to this stage. 

I owe a great deal of appreciation and gratitude to Dr Sheila Shepherd for carrying out bone 

scanning and Mr. Martin McMillan for analysing blood samples. I also gratefully acknowledge the 

help of endocrine nurses and Ward 1C staff for all their assistance and helping in collection of 

blood samples. I would like to thank all participants and their families who took part in this thesis. 

I am indebted to my many colleagues for providing a stimulating and fun filled environment. My 

thanks go in particular to Dr Mabrouka and Dr Niemah and Dr Najela, for their encouragement 

during the good and difficult times, kept me going. 

Additionally, I would like to thank all members of research and development group and staff in 

department of child health. Special thanks to Mrs. Karyn Cooper for her continued support at 

various stages of my PhD, her co-operation and for assisting in several administrative matters. 

Finally and most importantly, I would like to express my greatest appreciation to my family. They 

have always been my number one supporters and I know that wherever life brings me, I have them. 

Words will never be enough to express my love for them. 

 

I gratefully acknowledge the financial support from Gaddafi International Fundation for Charity 

Assossociation. 



 
 

VII 
 

Dedication  

This thesis is dedicated to my husband Ihfaf Alshibane and my children Moussa, Maysam and 

Mutasim for they gave me values; enjoyment and love. Without their encouragement and 

understanding it would have been impossible for me to finish this work. I dedicate this work to 

them. 

This thesis is also dedicated to my father Arhouma Emhammed and my brothers and sisters who 

have all supported me and given me the strength to complete this thesis. 

This thesis is also dedicated to the living memory of my Mother Hafsa may Almighty ALLAH 

bless her.



 
 

VIII 
 

Publications  

Full Papers 

1- Ahmid M, Fisher V, Graveling AJ, McGeoch S, McNeil E, Roach J, Bevan JS, Bath L, 

Donaldson M, Leese G, Mason A, Perry CG, Zammitt NN, Ahmed SF, Shaikh MG. An audit of the 

management of childhood-onset growth hormone deficiency during young adulthood in Scotland. 

Int J Pediatr Endocrinol. 2016;2016:6. doi: 10.1186/s13633-016-0024-8. Epub 2016 Mar 16. 

2- Ahmid M, C G Perry , S F Ahmed, M G Shaikh. Growth Hormone Deficiency during Young 

Adulthood and the Benefits of Growth Hormone Replacement. Endocr Connect. 2016 

May;5(3):R1-R11. doi: 10.1530/EC-16-0024. Epub 2016 Apr 29. 

3- Ahmid M, S Shepherd1, M McMillan1,S F Ahmed1, M G Shaikh1  Bone Health, Body 

Composition and Metabolic Profilies, and Quality of life in Childhood Onset Growth Hormone 

Deficiency, in press. 

 

Abstracts and Presentations 

1- Audit of outcome of childhood onset growth hormone deficiency in young adults at the Royal 

Hospital for Sick Children, Yorkhill, Glasgow from 2005-2011 Poster presentation, British Society 

for Paediatric Endocrinology and Diabetes (BSPED), Leeds 2012 and Society for Endocrinology 

BES, Harrogate, 2012. 

 

2-Management of childhood onset growth hormone deficiency in young adults. Oral presentation 

Scottish Paediatric Endocrine Group (SPEG), Dunkeld  2013 

 

3- Management of Childhood-Onset Growth  Hormone Deficiency in Young Adulthood. Poster 

presentation European Society for Paediatric Endocrinology (ESPED) Milan, 2013 

 

4- Bone Mass and Body Composition in Adolescent with Childhood Onset-Growth Hormone 

Deficiency At Final Height Poster presentation British Society for Paediatric Endocrinology and 

Diabetes BSPED, Colchester 2014 

 

5- Metabolic parameters and glucose homeostasis in children and adolescents with childhood-onset 

growth hormone deficiency at time of diagnosis and retesting. Poster presentation  Glasgow 

paediatric research day 2015. 

 

6- Bone Health and Body Composition in Childhood Onset Growth Hormone Deficiency at Time 

of Initial Evaluation and Retesting .European Society for Paediatric Endocrinology (ESPED 2016 ). 

 



 
 

IX 
 

7- Metabolic Parameters and Glucose Homeostasis in in Childhood Onset Growth Hormone 

Deficiency at Time of Initial Evaluation and Retesting. European Society for Paediatric 

Endocrinology (ESPED 2016 ). 



 
 

X 
 

Table of Contents 

Abstract ............................................................................................................................ II 
Author’s Declaration ...................................................................................................... V 

Acknowledgement ......................................................................................................... VI 
Dedication ..................................................................................................................... VII 
Table of Contents ........................................................................................................... X 

List of Tables ............................................................................................................... XIII 
List of Figures ............................................................................................................... XV 

Abbreviations ............................................................................................................. XVIII 
CHAPTER 1 .................................................................................................................... 20 

 Introduction ............................................................................................................ 20 

1.1 Bone Biology ..................................................................................................... 21 

1.2 Growth Hormone (GH) ....................................................................................... 38 

1.3 Growth Hormone Deficiency .............................................................................. 54 

1.4 Weight Bearing Exercise and Bone Health ........................................................ 71 

CHAPTER 2 .................................................................................................................... 82 

 Aims ........................................................................................................................ 82 

2.1 Rationale, Specific Aims .................................................................................... 83 

CHAPTER 3 .................................................................................................................... 85 

 An Audit of the Management of Childhood-Onset Growth Hormone Deficiency 
during Young Adulthood in Scotland ........................................................................... 85 

3.1 Abstract ............................................................................................................. 86 

3.2 Introduction ........................................................................................................ 87 

3.3 Patients and Methods ........................................................................................ 88 

3.4 Statistical Analysis ............................................................................................. 88 

3.5 Results .............................................................................................................. 89 

3.6 Discussion ......................................................................................................... 96 

3.7 Conclusion ......................................................................................................... 98 

CHAPTER 4 .................................................................................................................... 99 

 Bone Mass and Body Composition in Adolescents with Childhood Onset-
Growth Hormone Deficiency at Final Height................................................................ 99 

4.1 Abstract ........................................................................................................... 100 

4.2 Introduction ...................................................................................................... 101 

4.3 Study Subjects and Methods ........................................................................... 101 

4.4 Statistical Analysis ........................................................................................... 103 

4.5 Results ............................................................................................................ 103 

4.6 Discussion ....................................................................................................... 121 

4.7 Conclusion ....................................................................................................... 123 

CHAPTER 5 .................................................................................................................. 124 

 Bone Health and Body Composition in Childhood Onset Growth Hormone 
Deficiency at Time of Initial Evaluation and Retesting .............................................. 124 



 
 

XI 
 

5.1 Abstract ........................................................................................................... 125 

5.2 Introduction ...................................................................................................... 126 

5.3 Subjects and Methods ..................................................................................... 127 

5.4 Statistical Analysis ........................................................................................... 131 

5.5 Results ............................................................................................................ 131 

5.6 Discussion ....................................................................................................... 157 

5.7 Conclusion ....................................................................................................... 160 

CHAPTER 6 .................................................................................................................. 161 

 Metabolic Parameters and Glucose Homeostasis in Children and Adolescents 
with Childhood-Onset Growth Hormone Deficiency at Time of Initial Evaluation and 
Retesting at Final Height ............................................................................................. 161 

6.1 Abstract ........................................................................................................... 162 

6.2 Introduction ...................................................................................................... 163 

6.3 Subjects and Methods ..................................................................................... 164 

6.4 Statistical Analysis ........................................................................................... 165 

6.5 Results ............................................................................................................ 165 

6.6 Discussion ....................................................................................................... 184 

6.7 Conclusion ....................................................................................................... 186 

CHAPTER 7 .................................................................................................................. 187 

 Quality of Life in Children and Adolescents with Childhood Onset Growth 
Hormone Deficiency .................................................................................................... 187 

7.1 Abstract ........................................................................................................... 188 

7.2 Introduction ...................................................................................................... 189 

7.3 Subjects and Methods ..................................................................................... 191 

7.4 Statistical Analyses .......................................................................................... 194 

7.5 Results ............................................................................................................ 194 

7.6 Discussion ....................................................................................................... 209 

7.7 Conclusion ....................................................................................................... 211 

CHAPTER 8 .................................................................................................................. 212 

 The Effect of Weight Bearing Exercise in Children and Adolescents with 
Childhood-Onset Growth Hormone Deficiency ......................................................... 212 

8.1 Abstract ........................................................................................................... 213 

8.2 Introduction ...................................................................................................... 214 

8.3 Aims and Hypotheses ...................................................................................... 215 

8.4 Study Methodologies ....................................................................................... 215 

8.5 Statistical Analysis ........................................................................................... 221 

8.6 Results ............................................................................................................ 221 

8.7 Discussion ....................................................................................................... 271 

8.8 Conclusion ....................................................................................................... 274 

CHAPTER 9 .................................................................................................................. 275 

 General Discussion and Future Directions ........................................................ 275 

9.1 General Discussion ......................................................................................... 276 

9.2 Conclusions ..................................................................................................... 280 



 
 

XII 
 

9.3 Limitations ....................................................................................................... 280 

9.4 Future Directions ............................................................................................. 281 

Appendices .................................................................................................................. 282 

10.1 Appendix A: Proforma Form of an audit of the management of childhood-onset 
growth hormone deficiency during young adulthood in Scotland ................................ 283 

10.2 Appendix B: SF-36(tm) Health Survey ............................................................. 286 

10.3 Appendix C: The Quality of Life-Assessment of Growth Hormone Deficiency in 
Adults Questionnaire .................................................................................................. 290 

10.4 Appendix D: Exercise Regimen ....................................................................... 292 

List of References ........................................................................................................ 294 



 
 

XIII 
 

List of Tables 

Table  1-1 Bone cells and extracellular bone matrix structure and function ...................................... 24 

Table  1-2 Factors stimulate bone formation and bone resorption. .................................................... 29 

Table  1-3 Systemic and local bone growth factors regulate bone growth and development. ........... 32 

Table  1-4 Factors affecting GH secretion ......................................................................................... 39 

Table  1-5 Adipokines, their action on bone and relationship to GH................................................. 51 

Table  1-6 Aetiology of growth hormone deficiency (GHD) ............................................................ 55 

Table  1-7 Summary of cross sectional studies, non-interventional- observational studies of the 
effects of GHD adolescents with CO-GHD. ..................................................................................... 62 

Table  1-8 Summary of RCT and longitudinal studies of the effects of GHD and rhGH replacement 
in adolescents with CO-GHD ........................................................................................................... 63 

Table  1-9 GHD and fracture risk in young adults with CO-GHD .................................................... 65 

Table  1-10 Effects of exercise on bone through hormones. .............................................................. 73 

Table  1-11 Summary of animal studies of jumping exercises and bone ........................................... 76 

Table  1-12 Summary of RCT involving jumping exercises on bone. ............................................... 78 

Table  3-1 The categories of patients with CO-GHD according to aetiology and centres distribution 
is shown as (A, B, C, D). .................................................................................................................. 90 

Table  3-2 Management of patients with CO-GHD according to each Scottish centre ..................... 94 

Table  3-3 Variation in the management of patients with CO-GHD between the four Scottish centres 
according to GHD categories ............................................................................................................ 95 

Table  4-1 Anthropometric characteristics of patients with CO-GHD and controls. ....................... 105 

Table  4-2 Parameters of bone density at total body. ....................................................................... 107 

Table  4-3 Parameters of bone density at lumber spine. .................................................................. 108 

Table  4-4 Body composition parameters of patients with CO-GHD at final height and controls. . 112 

Table  4-5 Clinical and anthropometrics of patients with congenital GHD, and acquired GHD. .... 115 

Table  4-6 Spearman correlation between bone density, anthropometric and body composition 
measures .......................................................................................................................................... 118 

Table  4-7 Multiple linear regressions showing the effect of body parameters on TB-BMC and LS-
BMAD after adjustment for variables age, height, and BMI .......................................................... 120 

Table  5-1 Auxological and clinical characteristics of the first time assessment and the retesting 
groups .............................................................................................................................................. 135 

Table  5-2 Bone parameters and body composition as measured by DXA in the first time assessment 
and the retesting groups .................................................................................................................. 137 

Table  5-3 Tibia bone geometry and density as measured by pQCT in the first time assessment and 
the retesting groups ......................................................................................................................... 142 

Table  5-4 Bone profiles and metabolism markers in the first time assessment and the retesting 
groups .............................................................................................................................................. 147 

Table  5-5 Individual data of Mechanography measurements and the related clinical and body 
composition data. ............................................................................................................................ 151 

Table  6-1 Auxological and clinical characteristics of the first time assessment and the retesting 
groups. ............................................................................................................................................. 166 



 
 

XIV 
 

Table  6-2 Lipid profiles, adipokines and glucose homeostasis parameters in the first time 
assessment and the retesting groups. ............................................................................................... 168 

Table  6-3 Individual data of the first time assessment subjects with HOMA-IR > 4.5. ................. 174 

Table  6-4 Individual data of the retesting subjects with HOMA-IR >4.5....................................... 174 

Table  6-5 Spearman correction between adipokines and other metabolic and clinical data in the first 
time assessment and the retesting groups ....................................................................................... 179 

Table  6-6 Spearman correlations between glucose homeostasis parameters and clinical, metabolic 
in the first time assessment and the retesting groups ...................................................................... 182 

Table  7-1 Questionnaires tools measures used to assess quality of life in relation to GH .............. 190 

Table  7-2 Clinical characteristics of the retesting group ................................................................ 196 

Table  7-3 Baseline characteristics of the first time assessment and the retesting groups ............... 198 

Table  7-4 SF-36 questionnaire scores in the first time assessment group. ..................................... 200 

Table  7-5 AGHDA scores of the retesting group. .......................................................................... 203 

Table  8-1First time assessment group individual demographic and clinical characteristics. ......... 225 

Table  8-2 Demographic characteristics of the first time assessment group .................................... 228 

Table  8-3 DXA -TB, LS bone density parameters at baseline, follow up and percentage changes in 
the first time assessment group. ...................................................................................................... 234 

Table  8-4 DXA-body composition parameters at baseline, follow up and percentage changes in the 
first time assessment group. ............................................................................................................ 240 

Table  8-5Tibia pQCT parameters (4% and 38% sites) at baseline, follow up and percentage 
changes of the first time assessment group ..................................................................................... 243 

Table  8-6 Tibia pQCT parameters at 66% site at baseline, follow up and percentage changes in the 
first time assessment group. ............................................................................................................ 245 

Table  8-7 Bone minerals, bone biomarkers at baseline, follow up and percentage changes in the 
first time assessment group ............................................................................................................. 247 

Table  8-8 Metabolic profiles at baseline, follow up and percentage changes in the first time 
assessment group. ........................................................................................................................... 249 

Table  8-9 SF-36 scores at baseline, follow up and absolute changes in the first time assessment 
group ............................................................................................................................................... 252 

Table  8-10 Clinical and demographic characteristics of the retesting group .................................. 257 

Table  8-11 Total body and lumber spine DXA bone density parameters at baseline, follow up and 
percentage changes of the retesting group ...................................................................................... 260 

Table  8-12 Individual data of DXA-body composition parameters at baseline, follow up and 
percentage changes of the retesting group. ..................................................................................... 263 

Table  8-13 Tibia pQCT parameters at baseline, follow up and percentage changes of the retesting 
group ............................................................................................................................................... 265 

Table  8-14 Bone profiles and mineralisation at baseline, follow up and percentage changes of the 
retesting group ................................................................................................................................ 267 

Table  8-15 Metabolic profiles, adipokines and glucose homeostasis parameters at baseline, follow 
up and percentage changes of the retesting group .......................................................................... 268 

Table  8-16 AGHDA scores of quality of life assessment at baseline, follow up and absolute 
changes of the retesting group. ....................................................................................................... 270 



 
 

XV 
 

List of Figures 

Figure  1-1 Bone macrostructure and microstructure ........................................................................ 23 

Figure  1-2 Bone remodelling cycle. .................................................................................................. 27 

Figure  1-3 Factors determine bone strength ..................................................................................... 34 

Figure  1-4 Intracellular pathways involved in growth hormone signalling. ..................................... 41 

Figure  1-5  GH/IGF-1 axis and actions in bone, muscle and body metabolism. .............................. 44 

Figure  1-6 Somatomedin hypothesis. ................................................................................................ 46 

Figure  1-7 Schematic representation of mesenchymal stem cells (MSCs) differentiating into 
osteoblasts or adipocytes. .................................................................................................................. 50 

Figure  1-8 Schema for assessing (A) and reassessing (B) the GH/ IGF-1 axis during childhood and 
the transition period. ......................................................................................................................... 58 

Figure  1-9 Mechanism of influence of weight-bearing exercise on bone ......................................... 74 

Figure  3-1 Flow chart of study cohort and the outcome of management of CO-GHD in Scotland .. 92 

Figure  4-1 Study cohort flow chart ................................................................................................. 104 

Figure  4-2 Individual values (median-range) of total body bone mass parameters of patients with 
CO-GHD at final height and controls. ............................................................................................ 109 

Figure  4-3 Individual values (median-range) of lumbar spine bone density parameters of patients 
with CO-GHD at final height and controls. .................................................................................... 110 

Figure  4-4 Individual values of body composition parameters of patients with CO-GHD and 
controls. ........................................................................................................................................... 113 

Figure  4-5 Individual data of bone density parameters in groups of congenital GHD vs. acquired 
GHD. ............................................................................................................................................... 116 

Figure  4-6 Fat mass and number of additional pituitary hormone deficiencies .............................. 117 

Figure  5-1 Tibia pQCT. .................................................................................................................. 129 

Figure  5-2 Leonardo mechanography. ............................................................................................ 130 

Figure  5-3 Flow diagram of study recruitment ............................................................................... 132 

Figure  5-4 Total body bone density and mineralisation of the first time assessment (A) and the 
retesting (B) groups. ........................................................................................................................ 138 

Figure  5-5 Lumber spine bone density and mineralisation of the first time assessment (A) and the 
retesting (B) groups. ........................................................................................................................ 139 

Figure  5-6Body composition parameters of the first time assessment (A) and the retesting (B) 
groups. ............................................................................................................................................. 140 

Figure  5-7 Tibia bone geometry at 38% site of the first time assessment (A) and the retesting (B) 
groups. ............................................................................................................................................. 143 

Figure  5-8 Tibia PQCT measurement of trabecular density, and cortical density in the first time 
assessment (A) and the retesting (B) groups. .................................................................................. 144 

Figure  5-9 Tibia pQCT measurements of cortical bone, muscle and fat cross sectional area of the 
first time assessment (A) and the retesting (B) groups. .................................................................. 145 

Figure  5-10 Bone profiles and metabolism markers in the first time assessment (A) and the 
retesting (B) groups. ........................................................................................................................ 148 

Figure  5-11 Bone biomarkers of the first time assessment (A) and the retesting (B) groups. ........ 149 

Figure  5-12 Scatterplot of maximum - force and GH peak in naive GHD and normal of the first 
time assessment group .................................................................................................................... 152 



 
 

XVI 
 

Figure  5-13 Scatterplot of LM and GH-peak in naive GHD and normal of the first time assessment 
group ............................................................................................................................................... 152 

Figure  5-14 Scatterplot of maximum - force and tibia muscle cross sectional area in naive GHD and 
normal of the first time assessment group ...................................................................................... 153 

Figure  5-15 Scatterplot of the correlation between maximum-power (kN) and tibia muscle CSA 153 

Figure  5-16 Scatterplots showing correlation between GH peak levels and CTX levels in in the first 
time assessment group .................................................................................................................... 155 

Figure  5-17 Scatterplots showing correlation between duration of stopping rhGH and CTX levels at 
retesting ........................................................................................................................................... 155 

Figure  5-18 Scatterplots showing correlation between PTH levels and CTX levels in the first time 
assessment group ............................................................................................................................ 156 

Figure  5-19 Scatterplots showing correlations between PTH levels and CTX levels in the retesting 
group ............................................................................................................................................... 156 

Figure  6-1 Individual data of lipid profiles in the first time assessment group. ............................. 169 

Figure  6-2 Individual data of lipid profiles in the retesting group. ................................................. 170 

Figure  6-3 Individual data of adipokines levels in the first time assessment group. ...................... 172 

Figure  6-4 Individual data of adipokines levels in the retesting group. .......................................... 173 

Figure  6-5 Individual data of glucose homeostasis in the first time assessment (A) and the retesting 
groups (B). ...................................................................................................................................... 175 

Figure  6-6 Scatterplots showing correlations between total cholesterol levels at retesting and age of 
starting childhood rhGH ................................................................................................................. 177 

Figure  6-7 Scatterplots showing correlations between total cholesterol levels at retesting and 
duration of childhood rhGH ............................................................................................................ 177 

Figure  6-8 Scatterplots showing correlations between leptin and osteocalcin in the first time 
assessment group ............................................................................................................................ 180 

Figure  6-9 Scatterplots showing correlations between leptin and osteocalcin in the retesting group
 ........................................................................................................................................................ 180 

Figure  6-10 Scatterplots showing correlations between HOMA-IR and the ratio of lean mass to fat 
mass in the first time assessment group. ......................................................................................... 183 

Figure  7-1 SF-36 Sub-scales measure physical and mental components of health ........................ 192 

Figure  7-2 Quality of Life Assessment of Growth Hormone Deficiency in Adults (AGHDA) ..... 193 

Figure  7-3 Flow diagram of study recruitment process .................................................................. 195 

Figure  7-4 SF-36 QoL questionnaire scores in the first time assessment group. ............................ 201 

Figure  7-5 Individual data of energy and fatigue aspect of SF-36 QoL in the first time assessment
 ........................................................................................................................................................ 202 

Figure  7-6 Individual data of emotional wellbeing aspect of SF-36 QoL in the first time assessment
 ........................................................................................................................................................ 202 

Figure  7-7 Individual data of total AGHDA QoL in the retesting group. ....................................... 204 

Figure  7-8 Individual data for five subscales of AGHDA QoL in the retesting group. .................. 205 

Figure  7-9 Spearman`s correlation between GH peak and aspect of energy/fatigue in SF-36 QoL of 
the first time assessment group ....................................................................................................... 207 

Figure  7-10 Spearman`s correlation between GH peak and aspect of emotional wellbeing inSF-36 
QoL of the first time assessment group .......................................................................................... 207 

Figure  7-11 Spearman`s correlation between retesting IGF-1 levels and aspect of memory and 
concentration in AGHDA in the retesting group. ........................................................................... 208 



 
 

XVII 
 

Figure  8-1 Study design and data collection protocol ..................................................................... 217 

Figure  8-2 Reebok Step. ................................................................................................................. 219 

Figure  8-3 Flow diagram of study recruitment. .............................................................................. 222 

Figure  8-4 Flow chart of the first time assessment. ........................................................................ 224 

Figure  8-5 Individual data of delta height SDS and percentage changes in weight and BMI of the 
first time assessment group. ............................................................................................................ 227 

Figure  8-6 Percentage changes in total body bone parameters of the first time assessment group 230 

Figure  8-7 Total body bone BMD, bone area, BMC and BMC for bone area SDS at baseline and 
follow up of the first time assessment groups. ................................................................................ 231 

Figure  8-8 Percentage changes in lumber spine bone parameters of the first time assessment group
 ........................................................................................................................................................ 232 

Figure  8-9 Lumber spine bone BMD, BMAD, BMC and BMC for bone area SDS at baseline and 
follow up of the first time assessment group. ................................................................................. 233 

Figure  8-10 Percentage changes in body composition (LM-FM-A/G ratio) of the first time 
assessment group ............................................................................................................................ 237 

Figure  8-11 Individual data of lean mass and lean mass for height centile from baseline to follow 
up of the first time assessment group. ............................................................................................. 238 

Figure  8-12 Individual data of fat mass; fat mass for height SDS, and A/G fat ratio from baseline to 
follow up of the first time assessment group. ................................................................................. 239 

Figure  8-13 Percentage changes in tibia pQCT parameters from baseline to follow up of the first 
time assessment group .................................................................................................................... 242 

Figure  8-14 Individual QoL-SF-36 at baseline and follow up of the first time assessment group. 251 

Figure  8-15 Scatterplot of the correlation between percentages changes in lean mass and tibia total 
density in those with GHD who received rhGH alone or in combination with exercise ................ 254 

Figure  8-16 Flow chart of the retesting group. ............................................................................... 256 

Figure  8-17 Individual data of total body and lumber spine BMC/BMD SDS from baseline to 
follow up in the retesting group. ..................................................................................................... 258 

Figure  8-18 Percentage changes in TB-BMD, BMC, and bone area (A), LS-BMD, BMC, and 
BMAD from baseline to follow up of the retesting group. ............................................................. 259 

Figure  8-19. Individual data of body composition from baseline to follow up in the retesting group.
 ........................................................................................................................................................ 261 

Figure  8-20 Percentage changes in LM, FM and A/G ratio from baseline to follow up of the 
retesting group. ............................................................................................................................... 262 

Figure  8-21 Percentage changes in tibia pQCT parameters from baseline to follow up of the 
retesting group. ............................................................................................................................... 264 

Figure  8-22 Individual QoL-AGHDA scores at baseline and follow up in the retesting group. .... 269 



 
 

XVIII 
 

Abbreviations 

25 (OH) D    25-hydroxyvitamin D 

AGHDA       Assessment in Growth Hormone Deficiency in Adults 

A/G ratio      Android (trunk) /gynoid (legs) fat ratio 

BA               Bone area 

BAP             Bone-specific alkaline phosphatase 

BL                Baseline  

BMAD         Bone mineral apparent density 

BMD            Bone mineral density 

BMC            Bone mineral content 

BMI             Body mass index 

Ca                Calcium 

CO-GHD     Childhood onset growth hormone deficiency 

CSA             Cross sectional area 

CTh              Cortical thickness 

CTX             Cross-linked C-terminal telopeptide of type I collagen  

DXA            Dual energy X-ray absorptiometry 

EC                Endosteal circumference 

EFI               Esslinger fitness index 

EX                Exercise 

FFA              Free fatty acid 

F-max          Maximum - force 

FM               Fat mass 

FN                Femoral neck  

FL                Follow up 

GH               Growth hormone 

GHD          Growth hormone deficiency; 

GHBP          Growth hormone binding protein 

GHR            Growth hormone receptors 

GHRH         Growth hormone releasing hormone 

HDL            High-density lipoprotein 

HOMA-IR   Homeostasis model assessment insulin resistance index 

IGF-1           Insulin-like growth factor 1; 

IGHD           Isolated growth hormone deficiency  

IGFBP          Insulin likes growth factor binding proteins 

IL                 Interleukin 

ISCD           International Society for Clinical Densitometry 

ITT              Insulin tolerance test   



 
 

XIX 
 

JAK2           Tyrosine kinase Janus kinase 2 

LDL             Low-density lipoprotein 

LM               Lean mass 

LS                Lumbar spine  

MAPK         Mitogen-activated protein kinases 

Mg               Magnesium 

MSC            Mesenchymal stem cells 

MPHD         Multiple pituitary hormone deficiencies;  

MRI             Magnetic resonance imaging       

OC               Osteocalcin 

OPG             Osteoprotegerin 

OR               Odds ratio 

PC                Periosteal circumference 

PC%            Percentage change 

p.QCT         Peripheral quantitative computed tomography 

PO4             Phosphate 

PICP            Carboxy-terminal propeptide of type I procollagen 

PINP            Amino-terminal propeptide of type I procollagen 

P-max          Maximum-power 

PPV             Positive predictive value; 

PTH             Parathyroid hormone 

QoL             Quality of life  

RANK         Receptor activator of nuclear factor κβ 

RCT             Randomised controlled trial 

RhG             Recombinant human growth hormone 

SCOS2         Suppressor of cytokine signalling-2 

SD                Standard deviation 

SDS             Standard deviation score 

SF-36           Short form-36 

SSI               Stress-strain index 

STAT           Signal transducers and activators of transcription 

TB               Total Body  

TG               Triglycerides 

TNF-           Tumour necrosis factors-α 

TrvBMD     Trabecular density 

TvBMD       Total density 

V-max          Maximum-velocity   

 WBE           Weight bearing exercise    



 
 

20 
 

 

 

 

CHAPTER 1 

 
 

 Introduction 

 



 
 

21 
 

1.1 Bone Biology 

1.1.1 Bone structure  

Bone is a dynamic connective tissue composed of bone cells (osteoblasts, osteocytes and 

osteoclasts), an extracellular matrix of collagen and non-collagenous proteins called osteoid, with 

inorganic mineral salts deposited within the matrix and water (1,2), (Table 1-1). 

Histologically, bone can be classified as lamellar bone or woven bone. Lamellar bone is mature 

bone with collagen fibres arranged parallel to each other in lamellae around the medullary cavity 

where red bone marrow and/or yellow bone marrow (adipose tissue) is stored. The thickness of 

each lamellae is about 3-7 μm and is separated by an interlamellar layer around1μm thick (3). 

Woven bone is immature bone, in which collagen fibres are arranged in irregular arrays (non-

lamellar). Woven bone has poor mineral content and is formed during the early stage of fracture 

healing (3).  

Bone can be also classified morphologically into two components according to tissue type: cortical 

bone and trabecular bone, (Figure 1-1). 

Cortical bone (compact bone) is dense compact bone tissue which comprises 80% of the total bone 

mass of an adult skeleton. It is found in the shaft of long bones and as a thin layer covering other 

short and flat bones. Cortical bone is composed of cylindrical units called osteons (Haversian 

systems). The diameter of each osteon typically ranges from 20-110µm. Each osteon contains 

concentric lamellae layers of hard calcified matrix with osteocytes (bone cells) lodged in lacunae 

spaces between the lamellae. In the centre of each osteon, there is a central canal (Haversian canal) 

containg blood vessels and nerve fibres. Thiny canals (canaliculi) radiate outward from Haversian 

canal connecting the lacunae with each other and with the Haversian canal, providing nutrient 

exchange. Each osteon is in direct contact with the outer bone surface (periosteum), the bone 

marrow and other osteons via Volkmann’s canals. Cortical bone porosity is around 3-5% in young 

individuals, and has less metabolic activity (3,4). 

Trabecular bone (cancellous bone) comprises around 20% of the adult human skeleton and is found 

sandwiched between cortical bone layers such as in the interior of vertebrae and the head of the 

femur. Unlike cortical bone, trabecular bone does not contain osteons or Haversian systems. 

Instead, it is composed of a latticework of thin, mineralized irregularly shaped plates called 

trabeculae. Similar to osteon, trabecula has also osteocytes that lie in lacunae between calcified 

lamellae arranged parallel to each other, with bone marrow situated within this network providing 

the vascular and neural supply for the bone via diffusion from the inner bone surface (endosteum) 

lining the bone marrow spaces. Trabecular thickness is variable and ranges from 100-200µm(3,5).  

As in osteon, canaliculi present in trabeculae provide connections between osteocytes. However, 

since each trabecula is only a few cell layers thick, each osteocyte is able to exchange nutrients 

with nearby blood vessels. Trabecular bone rich in cancellous, is mainly responsible for the 

metabolic function of bone. Trabecular bone also has a high surface-to-volume ratio that is nearly 
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ten times the surface area of the cortical bone. This makes trabecular bone more prone for 

remodelling more than cortical bone with around 25% trabecular bone and 4% of cortical bone 

remodelling each year (6). The ratios of cortical bone to trabecular bone vary among different sites. 

For example, vertebrae are composed of cortical and trabecular bone in a ratio of 25:75. This ratio 

is 50:50 in the femoral head and 95:5 in the radial diaphysis (6). 

Bone has also two surfaces that have different behavioural and functional properties: the 

periosteum and the endosteum. The periosteum is a thick fibrous membrane covering the external 

surface of cortical and trabecular bone (apart from its articular cartilage), and serves as an 

attachment for muscles and tendons. It consists of an outer layer of collagenous tissue containing a 

few fibroblast-like cells and an inner layer of fine elastic fibres with an osteogenic layer composed 

of osteoclast and osteoblast bone cells as well as mesenchymal cells. The inner layer of periosteum 

plays role in bone growth and metabolism as well as fracture repair. The periosteum is also 

enriched with nerves and blood vessels that innervate and nourish underlying bone by perforating 

(Sharpey’s) fibres that extend from the periosteum into the bone matrix. The endosteum is a thin, 

vascular membrane that lines the medullary cavity and covers the trabeculae and may provide a 

barrier between the fluid within the canalicular and lacunar spaces and the extracellular fluid found 

in the marrow cavity and vessels. Like the periosteum, the endosteum has an osteogenic layer 

composed of osteoclast and osteoblast (3).
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Figure  1-1 Bone macrostructure and microstructure 
 
A- Bone macrostructure (adapted and modified from www.dreamstime.com) 

B- Bone microstructure adapted from Copyright © 2004 Pearson Education, Inc., publishing as 
Benjamin Cummings   

 

A 

B 
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Table  1-1 Bone cells and extracellular bone matrix structure and function 
 
 

Location and Structure Function 

Bone cells  
 
Osteocyte 
 
 
 
 
 
 
 
Osteoclasts 
 
 
 
 
Osteoblasts 

 
 
Star-shaped mature terminal 
differentiation stage of the 
osteoblasts, and the most common 
cell type in bone tissue (90% of 
bone cells). 
 
 
 
Large (over 50 µm in diameter), 
multinucleated cells of 
hematopoietic origin. 
 
 
Large bone-forming cells (20-30 
µm) in diameter derived from 
pluripotent mesenchymal stem 
cells.   

 
 
Embedded in a mineralized matrix and thought to 
function as mechanosensors of mechanical loading. 
Osteocytes may undergo apoptosis, and may also 
be involved in the recruitment of osteoclasts and 
initiation of new bone remodelling.  
 
 
 
The only cells that erode and resorb previously 
formed bone, and also dissolve mineral and release 
calcium and phosphorus into the extracellular fluid. 
 
 
Responsible for bone formation, synthesise and 
secrete unmineralised extracellular matrix (osteoid) 
and control the mineralisation with secreting 
vesicles containing alkaline phosphatase. 

Extracellular matrix 
 
Organic  
 
Collagen 
 
 
 
 
 
 
Non-collagen  

 
 
 
Consists primarily of type I 
collagen (~90%) in the form of 
fibrils oriented together in 
bundles throughout the tissue, and 
trace amounts of collagen types 
III and V. 
 
 
It form 10% of the organic matrix 
and is made up of non-
collagenous proteins, such as 
bone sialoprotein, osteonectin, 
osteopontin, osteocalcin, matrix-
GLA-protein, and others. 
 

 
 
 
Collagens and minerals together play an important 
function in the biomechanical properties and 
functional integrity of bone. Collagen proteins are 
organised in a preferential way in order to increase 
bone toughness and reduce the risk of fracture. 
 
 
 
May play a role in binding the collagen and 
minerals together, and is involved in regulating 
bone mineralization and remodelling. 

Inorganic  
 
Bone minerals  

 
Calcium and phosphorus in the 
form of an insoluble salt called 
hydroxyapatite [Ca10 

(PO4)6(OH)2], in addition to 
carbonate, citrate, fluoride, 
chloride, sodium, magnesium, 
potassium and strontium. 

 
Bone stores 99% of the body's minerals, which 
 provide hardness to the bone, and play a role in 
keeping blood levels within a narrow range for 
normal physiological functioning. 
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1.1.2 Bone modelling  

Bone modelling refers to a process in which bones are shaped or reshaped by the independent 

activities of osteoclasts and osteoblasts. Bone modelling involves three stages of the production and 

maturation of osteoid matrix, followed by mineralization of the matrix. As a result, bone tissue 

increases by expansion of the marrow cavity following matrix deposition. By the end of modelling, 

50-70% of osteoblasts remain on the surface as inactive flat lining cells, and around 15% of mature 

osteoblasts become embedded in new bone matrix to differentiate into osteocytes (7). Bone 

modelling differs from bone remodelling, because this process at a single site involves bone 

formation that is not coupled with prior bone resorption. The modelling process is most 

pronounced during bone growth and development, which is determined in part by genetics (8), and 

is less frequent than remodelling in adults (9,10).  

 

1.1.3 Bone remodelling  

Bone remodelling is defined as the process of bone being renewed to maintain bone strength and 

mineral homeostasis throughout life by removing and replacing skeletal structures during growth or 

adaptive responses to a change in mechanical loading patterns. Bone remodelling involves 

sequential activities conducted by complex coordination between osteoblasts, osteoclasts, and 

osteocytes which are known as basic multicellular units (BMUs) within bone remodeling 

compartment (BRC). However, recently, more cell types have been identified to contribute to 

remodelling (such as T-cells, macrophages, and precursor populations of osteoblasts and 

osteoclasts) (11). The bone remodelling cycle can be divided into the following phases: 

 

The activation phase involves retraction of the bone lining cells, recruitment and activation of 

osteoclast precursors from the circulation to produce osteoclasts at a quiescent bone surface. 

During this stage, osteoblast-lineage cells (osteocytes, lining cells and  preosteoblasts cells) 

produce receptor activator of the NF-κB ligand (RANKL), a member of the tumour necrosis factor 

(TNF) family, and macrophage colony stimulating factor (MCSF) drive the differentiation and 

survival of the osteoclast precursors into osteoclasts. RANKL can be activated by binding to 

RANK receptors on the cell membrane of osteoclast precursors and is inhibited by osteoprotegerin 

(OPG), which is a glycoprotein secreted mainly by osteoblast lineage cells. RANKL/RANK/OPG 

system  is the key regulator of the bone resorption cycle that bone resorption and bone formation 

are coupled among others (6). 

 

 

 

 



 
 

26 
 

The resorption phase is the stage when osteoclasts begin acidification and dissolution of the 

mineral matrix and decomposition of the osteoid matrix. Osteoclast resorption is by means of 

releasing enzymes cathepsin K, matrix metalloproteinase-9 (MMP-9) and tartrate resistant acid 

phosphatase (TRAP) to break down the organic components (12). This process takes around two to 

four weeks during each remodelling cycle. 

 

The reversal phase occurs at the end of resorption phase. Mononucleated cells (reversal cells 

including monocytes, osteocytes) appear at the same resorption site, cover the bone surface and 

prepare the surface for new osteoblasts to begin bone formation, and provide signals for osteoblast 

precursor’s differentiation and migration (1). During this phase, osteoblasts interact and 

communicate with osteoclasts in a process known as ‘coupling’ that allows transtion from bone 

resorption to bone formation phase. The coupling may be controlled by several factors including 

matrix-derived factors (such as tansforming growth factor β (TGF- β) and insulin-like growth 

factor-I; osteoclast secreted factors (such as sphingosine-1-phosphate, Wnt 10b, BMP-6); and 

osteoclast membrane bound factors (such as EphrinB2 and Semaphorin D) (13,14). This stage may 

last up to four or five weeks. 

 

In the formation phase, osteoblasts fill the resorptive cavity by depositing newly synthesized bone 

matrix. The osteoblasts first secrete the unmineralised osteoid, which is composed of 90% type I 

collagen; the remaining 10% is made up of some minor types of collagen, proteoglycans and 

specific bone proteins such as osteopontin, bone sialoprotein and osteocalcin. Subsequently, 

osteoblasts trigger mineralisation of new matrix by releasing matrix vesicles and initial mineral 

deposition. This is a longer stage of the remodelling cycle that can continue for four months until 

the new bone structural unit is completed. On completing this phase, osteoblasts undergo apoptosis 

so the surface is covered with flattened lining cells and a prolonged resting period begins until a 

new remodelling cycle is initiated (8), (Figure 1-2). 

 

Approximately 20% of bone tissue is replaced annually, varying by site and type through the 

remodelling process (15). The majority of bone remodelling occurs on the surface of bone in the 

trabecular bone (60%) and takes approximately seven months in trabecular bone compared with 

four months in cortical bone (8). After peak bone mass is attained, a very small percentage of bone 

is lost with each remodelling cycle, such that over one year approximately 0.5 to 1% of the total 

body bone mass is lost (6). 
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Figure  1-2 Bone remodelling cycle.  
Bone formation markers include: bone alkaline phosphatase (BAP), terminal propeptides of 
procollagen type I (PINP, PICP), and osteocalcin. Bone resorption markers include: Collagen type 
1 cross-linked C-telopeptide (CTX) and N-telopeptides (NTX) pyridinoline (PYD) and 
deoxypyridinoline (DPD). See the text for more details.
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1.1.4 Bone metabolism biomarkers 

Bone metabolism biomarkers are specific bone-derived molecules that reflect enzymatic activity of 

the bone cells and bone turnover. Bone metabolism biomarkers can be classified into two 

categories: bone formation and bone resorption markers. Both physiological (such as age, puberty 

or growth velocity) and pathological conditions can cause significant changes in the concentrations 

of bone markers (16,17). The balance between bone resorption and formation (bone turnover) is 

regulated by several factors, mainly genetic (70%), in addition to mechanical, vascular, nutritional, 

hormonal, and local factors as summarized in Table 1-2. The imbalance between bone resorption or 

bone formation can lead to several pathological bone diseases such as osteoporosis and Paget’s 

disease. 

High bone turnover and increased osteoclast activity predisposes to increase bone loss, decrease 

trabecular and cortical thickness and increases in porosity, whereas, low bone turnover and reduced 

bone formation is associated with reduced trabecular penetration and erosion and relative 

preservation of bone micro architecture (18). In clinical practice, bone metabolism biomarkers are 

used for therapeutic decision making in osteoporosis and therapeutic monitoring, but their use 

alone to predict fracture risk has yet to be established (19). In paediatric practice, bone biomarker 

measurement may be interpreted relative to age and sex reference curves (20). Some of the widely 

used types of bone biomarkers and those used in this thesis are detailed in the next section. 



 
 

29 
 

Table  1-2 Factors stimulate bone formation and bone resorption.  
Summarized from reference (8) 

 Stimulate formation Stimulate resorption 

Local factors 

Cytokines / Adipocytokines 
IL-4, IL-3, IL-18 

OPG, TNF-β, Adiponectin 

TNF-α, IL-1, IL-6, IL-8, IL-

11, PG, Leptin 

Growth factors  

BMP-2, BMP-4, BMP-6, 

BMP-7, IGF-1, IGF-2, TGF-β, 

FGF, PDGF 

EGF, M-CSF, GM-CSF, 

PDGF, FGF 

Systematic factors 

PTH* ↓ ↑ 

VIT-D ↑ ↓ 

GH ↑ ↑ 

T3,4 ↑ ↑ 

Oestrogens ↑ ↓ 

Glucocorticoid ↓ ↑ 

Calcitonin - ↓ 

Genetic factors +  

Mechanical factors  +  

 

Bone morphogenic protein (BMP), Insulin-like growth factor1 -2 (IGF-1, IGF-2), transforming growth 
factor (TGF), fibroblast growth factors (FGF) and platelet-derived growth factor (PDGF), epidermal 
growth factor (EGF), macrophage colony-stimulating factor (M-CSF), Granulocyte macrophage 
colony-stimulating factor (GM-CSF), tumour necrosis factors-α, β (TNF-α, β ), Interleukin (IL-
1,3,4,6, 8,11,18) and prostaglandins (PG), osteoprogestrin(OPG), parathyroid hormone(PTH), 
growth hormone(GH), thyroid hormones (T3,T4). 

* PTH action on bone formation markers and resorption markers is dependent on PTH secretion 
patterns 
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1.1.4.1 Bone formation markers 

Bone formation markers reflect osteoblast activity in the process of bone formation and can be 

measured in serum or plasma. The most commonly used markers of bone formation are bone 

alkaline phosphatase and osteocalcin which are released at different stages of osteoblast 

proliferation and differentiation. 

1.1.4.1.1 Bone alkaline phosphatase (BAP) 
 
Alkaline phosphatases (ALP) are a group of isoenzymes encoded by four genes that code for non-

specific, intestinal, placental and placenta-like isoenzymes. The majority of total serum alkaline 

phosphatases in serum is produced by the same gene from bone and liver which differ only by post-

translational glycosylation (21). In adults with normal liver function, approximately 50% of the 

total ALP activity in serum is derived from the liver, while 50% arises from bone. In children and 

adolescents the bone-specific isoenzyme predominates (up to 90%) because of skeletal growth 

(22). Current available immunoassays allow simple and rapid quantitation of either enzyme activity 

or enzyme mass. However, these assays still have cross-reactivity with the liver isoenzyme of 15–

20% (23). The bone isoform of ALP (BAP) is produced by osteoblasts in the bone and released in 

high amounts into the circulation during the early stage of bone formation cycle. The precise 

function of the enzyme is yet unknown, but it obviously plays an important role in osteoid 

formation and mineralisation  (23). BAP has two identified major isoforms (B1 and B2) specified 

for cortical and trabecular bone activity respectively, and two minor isoforms (B/I and B1x) (24). 

However, whether certain isoforms are more prevalent in certain clinical conditions has not yet 

been determined. BAL levels during childhood correlate positively with age and height velocity as 

well as puberty in both genders (25). Serum levels of BAP show no significant circadian variations 

(26) and it has a long half-life (1-2 days) (27). Therefore, BAP level assays have been considered 

to be the most widely available, inexpensive marker of bone formation markers.  

1.1.4.1.2 Osteocalcin 
 
Serum osteocalcin (OC) is a 5.8 kDa, hydroxyapatite-binding protein that is exclusively 

synthesized by the osteoblasts and is considered the most accurate marker of bone formation. OC is 

also known as bone Gla protein because it contains three vitamin K-dependent γ-carboxyglutamic 

acids (Gla) residues, which serve as calcium binding sites and may be involved in bone 

mineralization (23). OC accounts for about 1% of the total bone proteins and is the most abundant 

non-collagenous bone matrix protein, with larger amounts found in cortical bone (25). OC can be 

considered a specific marker of osteoblast activity in the process of osteoid mineralisation with 

around 10-40% of OC released into circulation during the bone matrix mineralization phase (28). 

OC can be found in two forms: carboxylated OC accumulates in bone and tightly binds to Ca ions 

in hydroxypatite, and decarboxylated OC is the most circulator and active form of OC but has less 

affinity for Ca. However, in addition to the intact molecule, several forms of immune reactive 
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fragments of various size of OC have been identified in circulation (29). It has also been suggested 

that OC (N-terminal isoform) may be released during bone resorption phase and be involved in 

feedback regulation of bone remodelling (30). Recent animal studies suggest that decarboxylated 

OC is inversely related to increased insulin resistance and visceral adiposity and is involved in 

regulation of energy metabolism through stimulation of insulin secretion and production by 

pancreatic β-cells (31,32). There is limited evidence to support the association between OC and 

human glucose metabolism from clinical studies (33).  

OC has a short half-life of about five minutes, with significant circadian variations with a nocturnal 

peak and a drop of about 30% towards morning (34). For OC instability, there are pre-analytical 

cautions that the sample be collected on ice, separated within one hour and frozen under −20 °C for 

short-term storage and at −70 °C for longer term storage (23).   

 

1.1.4.2 Bone resorption markers   

Bone resorption markers are products of bone collagen degradation mediated by osteoclasts. Five 

types of bone resorption markers have been established: Collagen cross-linked molecules 

(pyridinoline and deoxypyridinoline), pyridinium cross-links, cross-linked telopeptides of collagen 

type 1, hydroxyproline, and hydroxylysine. During bone resorption, 60% of bone matrix 

degradation products are released in urine in the form of peptide-attached cross-links and 40% as 

free fraction pyridinium crosslinks (21). 

More commonly used assays use antibodies against amino acid sequences within the collagen type 

1 C- and N-terminal telopeptides (CTX and NTX, respectively) in serum and urine. 

1.1.4.2.1 Collagen type 1 cross-linked C-telopeptide(CTX) 
 
CTX is cleaved from type 1 collagen by cathepsin K activity during bone resorption. CTX is 

reported to be more specific to bone resorption than other markers (35). There are two specific 

types of CTX isomers: non-isomerized (αCTX) and beta-isomerized (βCTX) forms which 

presumably measure degradation of relatively young and old bone respectively (36).  

There is also evidence that CTX can be used as an early marker of bone mass in response to 

treatment, with 49.5% sensitivity for detecting improvement in bone density (37). However, the 

major disadvantage of CTX is its large circadian variation (38) and a high dependence on fasting 

status, necessitating a morning fasting sample for accurate interpretation (39). According to several 

published references, CTX levels are highest in neonates and then markedly decrease in children 

after one year of age. A second peak is observed in girls aged 11–13 years and in boys aged 14–17 

years, which coincides with the pubertal growth spurt (25). 
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1.1.5 Bone growth and development 

Bones grow and change across the lifespan, predominantly during childhood with longitudinal 

linear growth followed by intramembranous bone growth and expansion. There are several genetic 

and epigenetic factors that influence and regulate bone growth and development. Genes regulate 

cell differentiation and ultimately the morphogenesis of bone. Genes produce transcription products 

that are translated via signalling pathways into regulatory, enzymatic, or structural proteins (40). 

Epigenetic factors that occur following genetic determination include regulation, systemic and local 

bone growth factors, in addition to mechanical control factors (41,42) as listed in (Table 1-3). 

 

Table  1-3 Systemic and local bone growth factors regulate bone growth and development. 
Summarised from reference (42) 

 
Systematic factors Local factors 

 
 
Linear 

 
Growth hormone (GH), insulin-like 
growth factor 1 (IGF-1), thyroid 
hormones (T3) and (T4), sex steroid, and 
glucocorticoids (suppressed). 

 
Parathyroid hormone–related peptide (PTHrP), and 
fibroblast growth factors (FGFs), indian hedgehog 
(Ihh), bone morphogenetic proteins (BMP), 
vascular endothelial growth factor (VEGF), 
cytokines, growth factors, and prostaglandins. 
In addition to tension and mechanical factors (body 
weight-bone length) 

Width  
Sex steroid (Androgen stimulated: 
oestrogen suppressed), GH, parathyroid 
hormone 

Genetic, mechanical force 

 

1.1.5.1 Longitudinal growth (linear) 

Bone linear growth occurs mostly during childhood by enhancing chondrogenesis and ossification 

at the end plates of long bones. This involves first proliferation and then differentiation of 

mesenchymal cells into pre-chondroblasts and then into chondroblasts instead of osteoblasts within 

the proliferative zone, in between the growth plate’s reserve zone and the zone of provisional 

calcification (43). Hypertrophic chondrocytes alter the structure of the surrounding cartilage matrix 

and is involved in the degradation of most of the cartilage matrix. This alteration allows the 

vascularisation and secretion of woven bone matrix and mineralisation adjacent to the remaining 

columns of chondrocytes while degraded cartilage matrix is replaced by collagen X (41). The rate 

of longitudinal bone growth is controlled by genetic, hormonal and biomechanical factors, in 

addition to numerous systemic and local growth mediators which all contribute to establishing the 

final height of an individual (42). The importance of GH and IGF- 1 in stimulating longitudinal 

growth has long been established. GH is considered as the main stimulator of chondrocyte 

proliferation in the growth plate, while IGF-1 is understood to act mainly on post-proliferation in 

the hypertrophic zone and in chondrocyte differentiation (44). 
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1.1.5.2 Intramembranous growth (width) 

Bone growth in width is one of the most important determinants of bone strength throughout life. 

Bones grow in width through periosteal expansion as a result of osteoblasts adding new bone 

matrix on the outer or periosteal surface which is later mineralized. At the same time, osteoclasts 

located on the inner (endocortical) surface of the cortex resorb bone, thus increasing the size of the 

marrow cavity (7,41). Periosteal expansion of diaphyseal cortical bone is suggested to be 

exclusively exerted by circulatory IGF-1 (45).  

 

1.1.5.3 Bone growth during puberty 

Puberty is a dynamic period marked with rapid changes in bone size and structure of both males 

and females. Bone changes during puberty occur dominantly in the spinal regions and are 

characterised by gender differentiation under the influence of sex steroids. In boys, periosteal 

apposition expands and increases the bone width while endosteal resorption enlarges the medullary 

cavity. Cortical thickness increases because periosteal apposition is greater than endocortical 

resorption. In girls, periosteal apposition decelerates earlier, and there is no change in medullary 

size in girls at some sites, but there is medullary contraction at other sites (46,47). As a result of 

decelerated periosteal apposition and contraction of the medullary cavity in girls, bones become 

smaller in width and in medullary size than in boys, but with a similar cortical thickness and bone 

size (48).  

 

1.1.6 Bone strength   

Bone strength is generally defined as the maximal bone resistance to external load without yielding 

or fracture (49). Although bone strength is largely determined by genetic factors, it could generally 

be influenced by a combination of several factors that determine bone quantity and quality, 

including geometry (size and shape), bone density (BMC-BMD), microarchitecture 

(trabecular/cancellous architecture and cortical thickness/porosity), and bone structure (mineral and 

collagen composition) (50), (Figure 1-3). 
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1.1.6.1 Bone density and geometry  

Bone mass and density account for 66 to 74% of bone strength (49). Bone mass is described as a 

result of two processes: firstly, acquisition of bone mass during childhood and, secondly, 

maintenance of the existing bone mass throughout life (51). Genetic factors account for 50-80% 

influence on bone mass, in addition to nutrition, physical activity, height, weight, and hormonal 

status (GH, sex steroid) (52). 

Compartment density (bone BMD) has been widely used as a noninvasive surrogate of bone mass 

as well as a predictor of fracture risk (53). BMD can be measured by non-invasive imaging 

modality such as dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computer 

tomography (pQCT). DXA is the most commonly used method in assessment of BMD but only 

takes two-dimensional areas into account (areal BMD), disregarding bone depth (54), while pQCT 

is a research tool used to assess volumetric BMD of cortical and trabecular components (55). In 

addition to bone density, bone size and its geometry is an important factor in determining 

distribution of bone mass and the ability of bone to resist bending and torsional loading (49,56).   

Figure  1-3 Factors determine bone strength 
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1.1.6.2 Bone microarchitecture 

Bone microarchitecture makes an important contribution to bone strength (57,58). Bone 

microarchitecture assessment is based on a measure of trabecular bone number, thickness and 

separation, as well as their spatial organization in the marrow space. The combination of 

architectural features with bone volume explain > 90% of bone strength (59). There are few 

methods currently clinically validated to assess and monitor bone microarchitecture, including 3D 

non-invasive scanning methods such as high-resolution peripheral quantitative computed 

tomography (HR-pQCT), and nonionizing high-resolution MRI (58). 

 
1.1.6.3 Bone matrix and microfractures   

The optimal balance in bone matrix elements (mineral homeostasis and collagen) and 

microstructure are known to play important roles in skeletal development and strength (56). 

Regulation of bone mineral (calcium, phosphate and magnesium) homeostasis occurs at three target 

tissues, kidney, intestine, and bone, principally via the complex integration of two chemicals, 

parathyroid hormone (PTH) and vitamin D. Calcium metabolism plays an important role in bone 

turnover and deficiency of either calcium or vitamin D interferes with mineral deposition (60). 

Magnesium, in addition to its role in living cells including bone cells, is an important contributor in 

bone health through alteration of the structure of hydroxyapatite crystals and its release follows the 

resorption of bone (61).  

PTH is known to maintain calcium within a narrow range through its actions on both kidney and 

bone (62). In addition, PTH has dual effects on bone metabolism through stimulation both bone 

formation and bone resorption depending on the pattern of its secretion (62,63). It has been 

suggested that intermittent PTH secretion stimulates bone formation by reactivation of lining cells 

to become active osteoblasts and promoting osteoblastogenesis and survival of mature osteoblasts 

to prolong their matrix synthesizing function. In contrast, continues PTH indirectly promotes 

osteoclast formation and bone resorption by increasing RANKL and inhibiting OPG through its 

actions on osteoblast and osteocytes (64). 

On the other hand, the accumulation of microfractures and suppression of its repair may contribute 

to bone weakness and fragility (65). The degree of bone mineralization and microfractures is 

dependent on bone turnover. Low bone turnover leads to an accumulation of microfractures, but 

there is more time for mineralization to proceed, while excessive bone turnover with greater bone 

resorption than formation leads to microarchitectural deterioration (65). 
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1.1.6.4 Muscle force and function 

Based on the Mechanostat theory (66,67), it is now widely accepted that skeletal muscle 

contraction imposes a major mechanical stimulus for bone development, suggesting a coupling of 

the muscle-bone function unit indices of bone strength (68). Based on this concept, bone adapts its 

geometry and strength to withstand challenges from maximum muscle force during growth (69). 

The adaptation of bone to muscular forces (musculoskeletal interaction) may serve as a useful tool 

in differentiating between different pathogenetic pathways of endocrine and metabolic bone 

diseases (68). Muscle function can be defined as the coordinated contraction of individual muscle 

fibres within each skeletal muscle generating muscle force or power (70). Muscle force cannot be 

measured directly in clinical studies, but there are several parameters implied to reflect maximal 

muscle force either through measuring muscle mass (kinematics) or muscle force (kinetics) which 

is a more reasonable reflection of maximal force(71). Several studies explored the utility of 

isokinetic dynamometry using a hand force grip device in assessing muscle torque in the paediatric 

population (72). However, hand force grip has been known to have low reliability limited its 

clinical applications.  Therefore, much higher peak forces have been measured for eccentric 

contraction at the shaft using a ground reaction force platform (GRFP; approx. 10•5 times body 

weight) than isokinetic dynamometry (approx. 4•8 times body weight) (73). Fricke et al. (74) 

introduced a jumping mechanographic device to measure muscle function and power which derive 

from individual ground reaction forces in children and adolescents. Since then, several published 

studies have validated Mechanography in measurement of muscular function in children, 

adolescents and adults (75-78). 

 
1.1.6.5 Bone strength and osteoporosis   

Osteoporosis is a common disease defined by the World Health Organization (WHO) as a 

“systemic skeletal disease characterized by low bone mass and micro-architectural deterioration of 

bone tissue, with a consequent increase in bone fragility and susceptibility to fractures”(79). In 

adults, definition of osteoporosis is based only on the lumbar spine /femoral neck BMD of DXA 

scan which has to be -2.5 standard deviations or lower than the average bone mass of healthy 

young adults (T-score) to enable a diagnosis (80,81). However, definition and diagnosis of 

osteoporosis in children and adolescents is less established than in adults. In clinical practice, 

diagnosis of osteoporosis in children and adolescents requires the presence of a clinically 

significant fracture history and low BMC or BMD. A clinically significant fracture history is 

defined as one or more of the following: long bone fracture of the lower extremities, vertebral 

compression fracture or two or more long bone fractures of the upper extremities. Low BMC or 

BMD is defined as a BMC or areal BMD Z-score that is less than or equal to −2.0, adjusted for age, 

gender and body size, as appropriate. A Z-score between −1.0 and −2.0 is defined as the low range 

of normality (82). Recently, the International Society for Clinical Densitometry (ISCD) issued 
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statements specifying to use low bone mass and density rather than osteoporosis in the absence of a 

history of clinically significant fractures (83). 

As in adults, osteoporosis in the paediatric population can be classified according to aetiology into 

primary osteoporosis and secondary osteoporosis. Primary osteoporosis is rare but it can be 

idiopathic or related to hereditary disorders of connective tissue such as osteogenesis imperfecta. 

Secondary osteoporosis is related to endocrine disorders (hypogonadism, hyperthyroidism, vitamin 

D deficiency, and primary hyperparathyroidism), gastrointestinal disorders, genetic diseases or 

medication. These causes have their own pathogenesis, epidemiologic features, and effects on bone 

quality (84). Osteoporosis generally develops by three main mechanisms: inadequate bone mass, 

excessive bone resorption, and inadequate formation of new bone during remodelling (85). 

 

1.1.6.6 Growth hormone deficiency (GHD) and osteoporosis 

GHD is a heterogeneous disorder, and skeletal manifestations in patients developing GHD in their 

childhood are different than in patients developing the disease after they have reached their final 

height (86). Histomorphometric data of bone biopsies taken from adults with GHD revealed a 

decrease in osteoid and mineralizing surfaces and low bone formation rate (87). Animal model 

studies of null GH/IGF-1 knockout mice suggested GHD impaired periosteal bone formation, but 

had limited impacts on trabecular bone structure and density (44). Likewise, clinical studies of 

children with CO-GHD showed a reduction in bone turnover (88) and lower cortical bone (89) at 

first diagnosis, and in the long term if left untreated (90). Furthermore, studies of adults with GHD 

have proposed abnormalities in the circadian rhythm of PTH in GHD, which may affect bone 

remodelling (91). Based on these different mechanisms, there is still a lack of clear evidence that 

GHD could increase fracture risk or be a direct causes of osteoporosis (92) as will be described in 

this thesis.
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1.2 Growth Hormone (GH) 

1.2.1 GH Physiology  

GH is a polypeptide hormone, 80% of which consists of a 22 kDa (kilodalton) single-chain 

α−helical non-glycosylated polypeptide with 191 amino acids and two intra-molecular disulfide 

bonds. However, due to alternative splitting, a short form of 20 kDa (10-20%) is also produced. 

The GH is encoded by two genes on the long arm of chromosome 17 (called GH-N or 1 in the 

pituitary and GH-V or 2 in the placenta). 

 

1.2.2 GH secretion and neuroendocrine regulation 

1.2.2.1 GH secretion 

GH is secreted by the anterior pituitary somatotrope cells and has a half-life of 20-30 minutes (93). 

GH is detectable in the human foetal pituitary as early as 12 weeks gestation at a level of 20 ng/ml, 

increases to a maximum of approximately 80 ng/ml at 22 weeks gestation and then declines at term 

to approximately 10 ng/ml (94). Thereafter, GH is secreted in a pulsatile pattern with the highest 

rate at the onset of puberty and reaching 2-3 times the prepubertal level by mid and late puberty. 

This occurs earlier in girls than in boys because of the effects of sex steroid hormones (93). Healthy 

non-obese young adults’ spontaneous physiological GH secretion is 0.25+0.03 mg/m2 of body 

surface per 24 h (0.4–0.5 mg/24 h) (95). After the age of 20 years and thereafter, the secretion of 

GH starts to decline with the age and body mass index (BMI) up to 14% each decade and 6% for 

each unit increases in BMI (96).  

 

1.2.2.2 GH neuroendocrine regulation  

GH secretion is regulated by two peptides from the hypothalamus, GH releasing hormone (GHRH) 

which stimulates GH release and somatostatin (SS) which inhibits GH release. These peptides are 

secreted into sinusoidal capillaries of the median eminence and reach the anterior pituitary gland 

via its portal veins. An intact interaction between these two peptides is needed for the GH 

pulsatility pattern (97). Recently, researchers have suggested ghrelin, a peptide released by gastric 

cells in the stomach, participates in the pulsative regulation and enhancement of GH secretion (98). 

In addition to hormonal regulations, GH secretion is also influenced by several neural, metabolic 

and pathophysiological factors (99), as summarised in Table 1-4. 
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Table  1-4 Factors affecting GH secretion 
 
 Stimulation Inhibition 

Physiology 

-Sleep 

-Exercise 

-Stress 

- Psychological stress 

Hormonal 

- GHRH 

- Ghrelin 

-Hyperthyroidism 

- α2-adrenergic agonists and cholinergic agents, 

and dopamine agonist 

- Sex steroid (Oestrogen) 

 

- Somatostain 

- IGF-1 

-Glucocorticoids 

-Hypothyroidism 

Metabolic 
-Hypoglycaemia 

-Amino acid (arginine) 

-Hyperglycaemia 

-Fatty acid 

Pathological 

-Renal failure 

-Anorexia nervous 

-Acromegaly 

 

-Obesity 

 

 
 

1.2.3 Growth hormone binding protein and receptor signalling  

1.2.3.1 GH-binding protein (GHBP) 

Secreted GH circulates both unbound and bound to GH binding protein (GHBP), which is a portion 

of the extracellular domain of the GH receptor (GH-R). GHBP is produced mainly by the liver and 

other tissues (100). Approximately 50% of circulating GH is bound to GHBP, whereas free GH 

depends much on prevalent total GH and GHBP concentrations (101). GHBP acts as a circulating 

buffer or reservoir for GH, prolonging the half-life of plasma GH and competing with GH-R, of 

which the extra membranous portion is identical to GHBP. Levels of GHBP reflect the level and 

activity of GHR (102).  

 

1.2.3.2 GH receptor (GH-R) signalling  

GH-R, which is a 620-amino-acid cytokine protein that has been identified in many tissues 

including muscle, fat, liver, heart, kidney, brain and pancreas (103). Signal transduction starts when 

GH binds to the extracellular domain of its receptor; each single GH molecule binds to two GHRs, 

in two asymmetric sites. Binding one GH molecule to two GHR molecules leads to the activation 

of receptor-associated Janus kinase (JAK) 2 and subsequent cross-phosphorylation of tyrosine 

residues in the kinase domain of each JAK2 molecule, followed by tyrosine phosphorylation of the 

GHR. This phosphorylation leads to further phosphorylation of the Signal Transducers and 

Activator of Transcription (STAT) protein, activating the STAT pathway (104). 
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 Activation of the STAT pathway, in particular STAT5b, results in the activation of several genes 

that bring about stimulation of osteoclast differentiation, epiphyseal growth, lipolysis and amino 

acid uptake into muscle (103,105). GH-R signalling has also been associated with the activation of 

phosphatidylinositol 3-kinase (PI3K), and the mitogen-activated protein kinase (MAPK) pathways. 

These two pathways have been linked with increases in protein synthesis and inhibition of protein 

degradation, and mediate the various metabolic and mitogenic responses elicited by insulin and 

IGF-1 (103). The JAK-STAT pathway of GH signalling is negatively regulated by the cytokine-

inducible Suppressor of Cytokine Signalling (SOCS) family (mainly SOCS-1, -2, -3 and CIS 

(cytokine-inducible SH2-containing protein)) through binding to JAK2 and to certain cytokine 

receptors and signalling molecules, thereby suppressing cytokine signalling and terminating the GH 

signal (106), (Figure 1-4).
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Figure  1-4 Intracellular pathways involved in growth hormone signalling. 
 
Binding of GH-GHBP to GH-R activates Janus kinase 2 (JAK2), signal transducer and activator of 
transcriptions (STATs particular 5).JAK2 also activates other signalling pathways, such as mitogen-
activated protein kinases (MAPKs) and phosphoinositol 3kinase (PI3K). Suppressors of Cytokine 
Signalling (SOCS) are the negative regulators of GH-GHR action. Solid and hutched black arrows 
indicate GH signalling pathways, Red hatched arrows indicate pathway negatively regulated GH 
signalling 
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1.2.4 Insulin-like growth factor system 

The insulin-like growth factor system consists of insulin-like growth factors (IGF-1, IGF-2) with 

six IGF-binding proteins (IGFBPs) and IGF-1 receptors (IGF-1R). Insulin-like growth factor 1 

(IGF-1), also called somatomedin C, is a peptide hormone which has 50% similarity in amino acids 

to proinsulin and insulin (107). IGF-1 is produced under the direction of GH predominantly in the 

liver (circulatory-IGF-1), and is also secreted locally by other tissues (bone and muscle) where 

paracrine and autocrine signalling take place(local-IGF-1) (108). Approximately 99% of 

circulatory IGF-1 is bound to one of the six IGFBPs, with around 90% of total serum IGF-1 

binding to IGFBP-3 on the ternary complex with an acid labile sub-unit (ALS) (109). Both IGFBPs 

and ALS are produced mainly by the liver and act as a reservoir for IGF-1, increasing their plasma 

half-life from 10 minutes to 3-4 hours. They transport IGF-1into target cells, and modulate the 

interaction of IGF-1 with its receptor to exert IGF-1-independent effects (109). The majority of 

IGF-1-dependent actions are mediated mainly by the union of IGF-1 to IGF-1R, which has tyrosine 

kinase activity. Upon binding, the IGF-1R undergoes auto-phosphorylation and creates 

phosphorylated tyrosine residue signals through the PI3K pathway (110). IGF-1 also binds with 

low affinity to the insulin receptor and shares its hypoglycemic effect (110). It is widely established 

that IGF-1 has a major role in prenatal growth, independent of GH (111). During foetal life, the 

concentration of IGF-1 is positively correlated with gestational age (30-50% of adult levels), and a 

gradual increase occurs postnatally during childhood, peaking during pubertal development to 

achieve 2–3 times the normal adult values followed by a gradual decline with age (111,112). So 

far, numerous animals models and cell cultures studies have been attempted to distinguish between 

endocrine (circulatory IGF-1) and autocrine/paracrine (local IGF-1) effects in bone growth and 

metabolism (113). These studies clearly indicated that circulatory IGF-1 plays an important role in 

bone modelling (increasing bone formation), periosteal expansion, but a lesser role in longitudinal 

growth. In contrast, locally expressed IGF-1 plays a more important role in linear growth and bone 

metabolism through regulation chondrocyte differentiation, and coordination endosteal bone 

formation and resorption during growth and trabecular bone mineralization along with GH (113-

115). However, it was suggested that circulatory and local IGF-1 appear to be redundant and can 

compensate for each other (116).  

In addition to GH, IGF-1 signalling is required for PTH anabolic effects on bone (117). IGF-1 also 

has important insulin-like metabolic effects on peripheral tissues and plays a role in maintaining 

glucose homeostasis and insulin sensitivity (118).
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1.2.5 GH Actions  

GH has numerous biological actions, many occurring directly through the GH-R and indirectly 

through IGF-1. GH/IGF-1 has no specific target organ and it acts on most, if not all, tissues (Figure 

1-5). 
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                                                            Figure  1-5  GH/IGF-1 axis and actions in bone, muscle and body metabolism. 
 

+, stimulation: -, inhibition: GHRH, Growth-hormone-releasing hormone: CVS, cardiovascular system, VO2 Max: maximal oxygen consumption                                                              
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1.2.5.1 Growth and bone  

Both GH and IGF-1 have been shown to stimulate longitudinal bone growth make it difficult to 

attribute specific actions directly to GH or through IGF-1 (44,106). According to somatomedin 

hypothesis (Figure 1-6), GH can stimulate linear bone growth via systemic and local IGF-1 

production (108). Evidence from animal models studies have clearly shown that bone growth is 

more severely reduced  in the double null GH/IGF-1 than in either GH and IGF-1 null mice alone 

(119) and null GH mice showed a greater reduction in growth compared with only null IGF-1 

(120). Recently, a study clearly showed that GH enhances linear growth without accompanying 

increase in IGF-1 levels (121), suggesting GH may have an IGF-1-independent effect on bone 

growth. On the other hand, it is also well documented that  IGF-1 can stimulate bone growth in the 

lack of GH as in cases with GH receptor defects (Laron syndrome) (122).  

In addition to severe growth retardation, null GHR mice showed reductions in cortical bone 

geometry and trabecular bone volume, and cross sectional bone area (123). Likewise, GH increase 

bone remodelling and turnover rate with a balance between bone resorption and formation either 

directly by interaction with GH receptors on osteoblasts or through producing IGF-1 (124). 

GH directs stimulates the proliferation of osteoblasts lineage cells toward the osteoblastic and 

chondrocytic lineages over the adipocytic lineage. GH stimulates, either directly or indirectly via 

IGF-1, function of the differentiated mature osteoblast and bone formation (125). GH also 

stimulates the carboxylation of osteocalcin, which is a marker of osteoblastic activity. Unlike bone 

formation, the effects of GH and IGF-1 on bone resorption are less clear. GH and IGF-1 can 

stimulate osteoblasts to produced paracrine mediators and cytokines such as TNF-α and IL-6, 

which can promote osteoclastogenesis and osteoclastic resorption (126). It has been suggested that 

GH independently induces-osteoclast differentiation, whereas the activation of osteoclast is 

dependent on IGF-1 (106). Another mechanism has been suggested from in vivo and in virto 

studies that the GH and IGF-1 may influence the activation of osteoclast through alteration the 

balance of  RANKL/OPG ratio (127).  
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Figure  1-6 Somatomedin hypothesis. 
Adapted and modified from (Le Roith et al. (108), Endocrine Rev, 2001). 

In the 1950s, the original somatomedin hypothesis demonstrating that the pituitary gland produced 
somatomedian (ST), which, in turn, increased growth. In 1980s the somatomedian hypothesis was 
revised to put forward that growth is determined by GH acting primarily on the liver, where it 
stimulates IGF-1 synthesis and release. IGF-I then circulates to the main target organs, such as 
cartilage and bones, and thus acts in an endocrine mode. In 2000, the somatomedin hypothesis 
was revised again as the locally produced IGF-1—that is, synthesized locally in target tissues, but 
not the IGF-1 in the circulation—mediated the effects of ST in an autocrine or paracrine manner.
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1.2.5.2 Muscles growth and metabolism  

Both GH and IGF-1 regulate muscle metabolism by promoting positive protein balance by 

increasing protein synthesis and possibly through inhibiting protein breakdown by up-regulation of 

Lipoprotein lipase expression (LPL) (110). In addition, it has been reported that GH induces 

muscle hypertrophy which is likely mediated mainly by locally produced IGF-1 autocrine/paracrine 

actions, as IGF-1 appears to regulate human myotube size by activating protein synthesis, 

inhibiting protein degradation and inducing fusion of the reserve cells required to maximize growth 

(128). GH has also been shown to induce lipid accumulation in the muscles to shift in substrate 

utilization from glucose to lipids in the skeletal muscle which was well described in patients with 

excessive GH (acromegaly) (129). There is also insufficient evidence, mainly from theoretical 

animal studies, suggesting that GH may play a role in regulation of skeletal muscle fibre 

composition and induce a shift in muscle fibre from fibre type II (glycolytic fast-twitch fibres) to 

fibre type I (oxidative slow-twitch fibres) which may reflect the impact of GH on muscle strength 

and power (128,130). 

 

1.2.5.3 Protein metabolism  

GH has an anabolic effect on protein metabolism, as it stimulates protein synthesis while repressing 

proteolysis either directly or via IGF-1 endocrine and paracrine mechanisms (131,132). The 

majority of studies suggest GH has modest anabolic actions that may include increased protein 

synthesis and decreased breakdown at the whole body level, and  decrease amino acid 

degradation/oxidation in muscles (133). 

 

1.2.5.4 Lipid metabolism  

GH has remarkable independent effects on lipids metabolism with little influence on IGF-1 through 

stimulation of lipolysis and ketogenesis. GH decreases body fat by increasing the hydrolysis of 

triglycerides(TG), releasing free fatty acids (FFA) and glycerol with increased lipid oxidation while 

decreasing FFA re-esterification(133,134). Data suggest that GH increases lipolysis by increasing 

adipose tissue hormone-sensitive lipase (HSL) and suppresses LPL activity mainly in visceral 

adipose tissue leading to reduced uptake of FFA from circulating very-low-density 

lipoprotein(VLDL) and TG (135,136). There is also some evidence to suggest that GH increases 

lipid metabolism by increasing the expression of low-density lipoprotein (LDL) receptors in the 

liver, enhancing LDL catabolism and inducing TG uptake by increasing LPL and hepatic lipase 

(HL) (135,137). 
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1.2.5.5 Glucose metabolism  

GH is pivotal for the maintenance of glucose metabolism and homeostasis. Some of these effects 

are direct actions, whereas others are IGF-1 mediated largely through its insulin-like effects 

(opposite to those of GH) (133). GH lipolytic effect appears to be the most important monitoring of 

GH anti-insulin actions, through oxidation of FFA and subsequent inhibition of glycolytic 

enzymes, which ultimately inhibit insulin-stimulated glucose uptake (133,138). Furthermore, the 

GH anti-insulin effects included increasing hepatic glucose production and reduction in 

carbohydrate oxidation and hepatic and peripheral insulin sensitivity as mediated by its lipolytic 

effects (139). Other mechanisms have been implicated on the metabolic effects of GH  through 

downregulation of insulin signaling included increasing suppressors of cytokine signalling 

(particular SOCS 1 and 3), and increasing expression of p85 regulatory sub-unit of PI3K activity in 

adipose tissue (135).  

 

1.2.5.6 GH, energy expenditure and exercise 

As described previously, GH is known as stimulates lipolysis and increases levels of FFA during 

resting and exercises. Data suggest GH effect on energy supply via stimulating ATP production 

from glycolysis, leading to an increase in anaerobic exercise capacity in skeletal muscle and 

enhance muscle function by increasing availability of FFA and pyruvate as metabolic fuels for 

energy production (128). GH also increases resting cardiac output and blood flow in several organs, 

including skeletal muscle and kidneys all of which are likely to elevate resting energy expenditure 

(140).  

Exercise is one of physiologic conditions amplified secretion of GH, the GH peak of 10 ng/l was 

observed at 15-20 minutes after exercise test (141). Although the full mechanism of the influence 

of exercise on GH secretion is not fully understood, it is assumed that adrenergic mechanisms  may 

play role as exercise induced GH may be enhanced by pre-treatment with beta receptor antagonist 

and inhibited by alpha receptor antagonist (141). It was also proposed that GH response to 

exercises which subsequently induced lipolysis and decrease abdominal fat (142).  

 

1.2.5.7 GH and adipokines 

Adipokines are bioactive peptides secreted by white adipose tissue and act at both local 

(autocrine/paracrine) and systemic (endocrine) levels, modulating lipid and glucose metabolism, 

inflammation, reproduction, cardiovascular function and immune systems (143-145). Leptin, 

adiponectin and resistin are the most commonly assayed adipokines, produced mainly by 

adipocytes of white adipose tissue, but not exclusively. There are other various products of adipose 

tissue including certain cytokines, such as tumour-necrosis factor (TNF), interleukin-6 (IL-6) and 

mediators that contribute to local and systemic actions (146). Leptin is a hormone product of the 

OB gene that regulates energy expenditure and food intake balance. Circulating leptin levels are 
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influenced by sex hormones, inflammatory cytokines and body fat (147). Leptin is involved in 

regulating energy balance through central actions, which is of importance particularly in the 

context of fat accumulation and metabolic disorders (148). Leptin also has many peripheral actions, 

mainly on the circulatory and respiratory systems, glucose homeostasis and reproduction (149). 

Adiponectin is a protein secreted exclusively by adipocytes and is the most abundant adipokine 

secreted by adipose tissue and expressed by bone marrow adipocytes. Adiponectin is involved in 

glucose synthesis in the liver, increasing insulin sensitivity, enhancing glucose uptake and fatty 

acid β-oxidation while decreasing gluconeogenesis in the skeletal muscle and liver, as well as 

having anti-inflammatory properties (150). Resistin belongs to the cysteine-rich family, and was 

discovered in 2001 in mouse adipocytes. Human resistin is produced and secreted mainly by 

peripheral-blood mononuclear cells (147). The physiological function of resistin in the mouse and 

human is still controversial. Data have shown that resistin may have a role in insulin resistance and 

diabetes in a variety of biological processes, including atherosclerosis and cardiovascular disease 

(151). It was suggested that GH may act as an important modulator in the production of adipokines, 

although the net directionality of these effects cannot be concluded (152). Data on the relationship 

between adipokines and the alteration of GH action show that GH lowers serum leptin levels, while 

its effects on adiponectin are contradictory in humans and rodents, with few studies on resistin 

(135). Recently, researchers have focused on the relationship between adipokines and bone 

metabolism (153). The critical role of adipokines and bone is highlighted by both adipocytes and 

osteoblast/osteoclast differentiation originating from mesenchymal cells, in which GH directs 

mesenchymal stem cells to adopt osteoblastic and chondrocytic lineages instead of adipocytic 

lineage, (Figure 1-7) (154,155). Leptin is known to play a role as regulator of bone metabolism by 

inhibits bone formation through decreasing osteoclacine and osteoclast inhibitor osteoprotegerin 

(OPG) (156,157). Adiponectin increases bone formation by stimulation of osteoblastogenesis, 

inhibiting osteoclastogenesis, and decreasing osteoclast numbers (158,159). Resistin has been 

shown to modestly increase the proliferation of osteoblasts in both cell and organ culture systems 

and increases the formation and activity of osteoclasts (160). Table 1-5 summaries the actions and 

the effects of leptin, adiponectin and resistin. 
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Figure  1-7 Schematic representation of mesenchymal stem cells (MSCs) differentiating into 
osteoblasts or adipocytes. 
 

MSCs' commitment and differentiation toward either the osteoblast or adipocyte lineage is 
regulated by numerous pathways that converge on the regulation of four main transcription factors: 
peroxisome proliferator-activated receptor-γ (PPARγ), Runt-related transcription factor 2 (Runx2), 
bone morphogenic protein (BMP) and CCAAT/enhancer-binding protein(C/EBPs).  Adipocytes 
blocks aosteoblastogenesis and promote osteoclastogenesis through PPARγ signalling and 
secretion of adipokines. GH blocks adipocyte lineage and stimulates osteoblast lineage. 

Abbreviations: GH, growth hormone; MSCs, Mesenchymal stem cells; BMP, Bone Morphogenetic 
Protein; Runx2, Runt-related transcription factor 2; PPARy2, Peroxisome proliferator-activated 
receptor gamma 2;C/EBPs, CCAAT/enhancer-binding protein; RANKL, receptor activator of 
nuclear factor kappa B ligand; OPG, osteoprotegerin; Black sold arrow, stimulation; red dote arrow, 
inhibition. 
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Table  1-5 Adipokines, their action on bone and relationship to GH 
 

Adipokines Original Metabolic Bone Relationship  to GH Ref 

 

Leptin 

A 16 kD a protein secreted by 
white adipose tissue cells , 
endothelial cells 

- Regulates appetite and weight. 

- Mediator of immune-mediated 
diseases and has pro 
inflammatory effects 

-It may have a regulatory role in osteoblast 
proliferation and differentiation 
 
- It inhibits bone formation through decreasing 
osteoclacine and osteoclast inhibitor 
osteoprotegerin (OPG) 
 
-It has both positive and negative effects on 
bone mass 

-GH decreases leptin 

-Leptin may act as a metabolic 
signal to regulate GH secretion. 

(152,156,157,161) 

 

 

 

Adiponectin 

A 28 kD a protein secreted by 
white adipose tissue cells, 
fibroblasts 

- Mediator in the regulation of 
insulin resistance and has anti-
inflammatory effects 

-Play role in pathophysiology of 
atherosclerosis 

- Promotes bone regeneration by affecting the 
differentiation of MSCs to pre-osteoblasts 

- increases bone formation by inhibition of 
Osteoclastogenesis 

- Decreases osteoclast numbers and stimulation 
of osteoblastogenesis 

-Increasing mineralisation activity of 
osteoblasts proliferation and maturation. 

No consistent relationship 
between GH and adiponectin 
either decreasing  or no 
relationship 

(152,158,159,161) 

 

Resistin A 12.5 kD a cysteine-rich 
polypeptide expressed and 
secreted by white adipose tissue 
,monocytes, macrophages 

- Induced endothelial cell 
activation, inhibits adipogenesis 

- Associated with insulin 
resistance and  has pro-
inflammatory properties 

- Modestly increases the proliferation of 
osteoblasts and increases the formation and 
activities of osteoclasts in vivo studies 

GH increases resistin (152,160-162) 
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1.2.5.8 GH, bone mineral homeostasis and kidneys   

GH and IGF-1 play an important role in adapting phosphate-calcium homeostasis to compensate 

rapid bone accrual and formation demands during growth in childhood and adolescence (163). GH 

increases renal phosphate retention by the stimulation of the maximum rate of renal tubular 

reabsorption of phosphate independent of PTH and vitamin D actions (164). GH mediates the 

action of IGF-1 on calcium homeostasis mainly through stimulation of 1 α-hydroxylase in the 

proximal tubule and the effect on vitamin D metabolism (164). The relationship between GH and 

PTH is still controversial, with studies suggesting that GH may have a regulatory role in PTH 

circadian rhythm (165). 

Both GH and IGF-1 are known to cause sodium (Na) and water retention, although the exact 

mechanism underlying this antinatriuretic action is not fully explained. It was suggested that the 

possible mechanism may be related to GH stimulating Na+K+-ATPase activity in the distal 

nephron allowing for increased extracellular water (166). Other studies have suggested that GH 

may affect both renal haemodynamics and renal tubular function through direct stimulation of the 

renin-angiotensin-aldosterone system (RAAS) (167,168). 

 

1.2.5.9 GH and quality of life  

GH may affect cognition and psychology and thereby quality of life (QoL) by altering mental 

functions at central nervous system (CNS) sites. Emerging data from animal and human studies 

indicate that the GH/IGF-1 axis affects cognitive function and modulates the mood by modifying 

neurotransmission (dopamine - aspartate) (169,170). The evidence for this was based on a high 

density of GH and IGF-I receptors in brain areas known to be of importance in cognitive 

functioning, mood, memory, learning and sleep (171,172). There is also reliable evidence from 

clinical studies which revealed that patients with GHD showed cognitive impairment mainly in 

memory and attentional functions (173,174). In addition, GH may affect QoL via its effects on 

bone, body composition, cardiovascular function, and metabolism (175).  
 

1.2.6 Therapeutic use  

Human GH was first used in the late 1950s almost exclusively for children with clinical symptoms 

and short stature suggestive of severe GHD. After 1985, the production of biosynthetic GH using 

recombinant DNA techniques led to greater availability of recombinant human GH (rhGH) for all 

children with short stature without classical GHD criteria such as idiopathic short stature, growth 

failure associated with chronic renal insufficiency, growth failure in children born small for 

gestational age, and short stature in Prader-Willi syndrome, Turner’s syndrome, Noonan syndrome, 

and short stature home box-containing gene deficiency on the X chromosome (SHOX) (176). In 

general, children with these conditions appear to respond to pharmacological dosages of GH, 

although growth acceleration generally is not as good as replacement therapy of GHD (177). 
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Contraindications to rhGH use include active malignancy, active proliferative or severe non-

proliferative retinopathy, acute critical illness, children with Prader-Willi syndrome (PWS) who are 

severely obese or have severe respiratory impairment, children with closed epiphyses, and 

hypersensitivity to somatropin or excipients (178). 

 

1.2.6.1 Short term and long term adverse effects 

The most common short-term adverse effects of rhGH treatment include headache, muscular pain, 

prepubertal gynecomastia, arthralgia, oedema, benign intracranial hypertension, and slipped capital 

femoral epiphysis. Symptoms are usually transient and resolved upon reduction of hGH dosage or 

upon discontinuation of the hGH treatment (179). Although long-term studies after 30 years of 

rhGH treatment are scarce, the majority of data are favourable towards the safety profile for most 

paediatric rhGH indications (180). A recent systematic review by Bunderen et al.(181) showed 

weak evidence that rhGH replacement is associated with an increased risk of primary malignancies 

or tumour recurrence, development of type 1 or type 2 diabetes mellitus, and overall mortality. 
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1.3 Growth Hormone Deficiency 

Growth hormone deficiency (GHD) is an endocrine condition resulting from impairment of GH 

secretion or actions which can potentially impact on an individual’s life from childhood, 

adolescence to young adulthood and later. In the UK, the prevalence of congenital childhood onset-

GHD (CO-GHD) has been estimated to be between 1 in 3,500 – 4,000 live births, whereas the 

prevalence of adult onset (AO) GHD in addition to those with previous CO-GHD is as high as 3 in 

10,000 of the UK adult population (178,182). 

 
1.3.1 Aetiology  

GHD may occur by itself or in combination with one or more other pituitary hormone deficiencies. 

Although there are many known causes of GHD, either congenital or acquired (Table 1-6), most 

cases appear to have an idiopathic basis with normal hypothalamic pituitary axis and it is not 

known whether that can be attributed to unreliable stimulation tests or unrecognised genetic defects 

(183). Clinically it is important to rule out all other causes of GHD before referring to the aetiology 

of the condition as idiopathic. 

 
1.3.1.1 Congenital GHD 

Congenital GHD causes can be further subdivided into genetic defects and anatomical 

abnormalities (e.g. hypothalamic-pituitary stalk transection, optic nerve hypoplasia, and cranial 

anomalies including holoprosencephaly). The majority of congenital GHD causes are sporadic with 

around 5-30% having a familiar pattern indicating a genetic compound (183). There are several 

genetic defects that lead to GHD such as those involving GH-1 and GHRHR genes. Congenital 

GHD can be also caused by pituitary anatomy defects include pituitary hypoplasia, pituitary 

aplasia, and congenital absence of the pituitary gland. Although these conditions often have no 

identifiable aetiology, ongoing advances in understanding pituitary development have provided a 

genetic basis to account for pituitary anomalies such as mutation of HESX1, PROP1 and others 

(184). In addition to structural developmental abnormalities associated with genetic causes, GHD 

can occur in the siting of other cranial or midline defects such as holoprosencephaly, nasal 

encephalocele, single incisor and cleft lip and palate, prosencephaly, septo-optic dysplasia (SOD), 

and midline craniocerebral or midfacial abnormalities, can be associated with anomalies of the 

pituitary gland (185). Many of these are associated with some genetic abnormalities (183).  
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1.3.1.2 Acquired GHD 

GHD can be acquired at any time of life. A wide range of destructive lesions affect the 

hypothalamo-pituitary axis, ranging from tumours to infection, vascular effects, infiltrative 

diseases, or damage secondary to trauma, surgery, or irradiation. GHD may develop in about 35% 

of cancer survivors after cranial irradiation (186), although this development depends on radiation 

dose, patient age, and the nature of the underlying deficit. It was reported that 58% of children who 

underwent cranial radiation in excess of 30 Gy will have GHD and a relatively large proportion 

will develop additional pituitary hormone deficits within five years of radiotherapy (187). 

Table  1-6 Aetiology of growth hormone deficiency (GHD) 
Summarised from(188)  

 
Aetiology 

Congenital  

 

Associated with midline structural 

defects  

 

 

 

 

Genetic mutations 

 

 

Agenesis of the corpus callosum, Septo-optic dysplasia, 

Holoprosencephaly,  Encephalocele 

Hydrocephalus, Cleft lip or palate, Single central incisor 

 

 

GRHR receptor, Pituitary transcription factors 

Hesx1 (Rpx), Ptx2 (Pitx2, P-OTX2, Rieg) 

Lhx3 (Lim-3, P-LIM), Types Ia, Ib, II, and III inherited IGHD, 

Multiple GH family gene deletions, GH receptor mutation 

IGF-Iand IGF-I receptor mutation, Stat 5b mutations 

Acquired  

 

Tumours/irradiation  

 

 

 

Head trauma  

 

 

Inflammatory  

 

 

Infiltration  

 

 

Craniopharyngioma, germinoma, optic glioma, dysgerminoma, 

ependymoma, pituitary adenoma, meningioma, chordoma  

 

 

TBI: birth brain trauma; after neurosurgery ;Subarachnoid hemorrhage 

(pituitary apoplexy, vascular causes) 

 

Meningitis, encephalitis, pituitary abscess, sarcoidosis, tuberculosis, 

autoimmune processes, lymphocytic hypophysitis 

 

Langerhans cell histiocytosis Iron overload: hemochromatosis, 

thalassemia and diseases requiring chronic transfusions 
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1.3.2 Clinical presentation  

The variability and age at presentation are highly influenced by the time of onset, severity and 

duration of GHD at the time the patient first presents. In the neonatal period, a presence of 

hypoglycemia and midline facial defects will suggest the possibility of hypopituitarism (189). 

Infants who born with congenital GHD may show normal length standard deviation at birth but 

deceleration of growth is reported in the first 6-12 months of life (190). Children with less severe 

deficiency present later in life with short stature, delayed bone age and reduced growth velocity 

after excluding other causes of poor growth. Among children presenting with short stature, 

approximately 10% have pathologic GHD (191). They may appear ‘chubby’ or have a ‘cherubic’ 

facial appearance with flat nasal bridge and midface hypoplasia. In addition, sparse/thin hair, 

delayed closure of the anterior fontanelle, delayed dentition and delayed puberty may be seen 

(189).  

 

1.3.3 Assessment of GHD during childhood and adolescence 

Investigation of GHD in paediatric practice is based on auxological and clinical assessment 

combined with biochemical tests and pituitary imaging (188). However, establishment of GHD 

diagnosis in children is challenging with marked variability and lack of consensus on standard 

guidelines. After the initial auxological assessment, biochemical GH stimulation tests with 

different stimuli are employed to discriminate idiopathic short stature children and GHD (192). 

However, these tests still limit reproducibility and accuracy for the influence of sex, body 

composition and pubertal stage (193,194). The cut-off used to define GHD is arbitrary and varies 

according to the type of stimulus, but a peak level above 7-10 µg/l (20 mU/l) generally indicates a 

normal response (183,194,195). Given the limitations of the GH stimulation tests, it is generally 

advised that at least two tests are used for diagnosing GHD in children in order to improve 

sensitivity and specificity (178). In addition, both insulin-like growth factors-1 (IGF-1) and the IGF 

binding protein-1 type 3 (IGFBP3) in blood with a cut-off value below -2 SD for age and sex have 

also been used to assist with the diagnosis of GHD during childhood. However, it is frequently 

reported that IGF-1 and IGFBP3 levels have low reproducibility for the influence of chronic 

diseases and nutritional status, so the utility of IGF-1 and IGFBP3 measurements are subject to 

limited sensitivity (196).  

 

In cases of high likelihood of GHD, imaging of the hypothalamic pituitary region obtained by 

magnetic resonance imaging (MRI) can contribute significantly to determining the cause of GHD. 

Molecular study of the GH gene in some cases can also assist in establishing the diagnosis. 

At attainment of final height and satisfactory linear growth, adolescents with CO-GHD are required 

to have a reassessment of their GH axis as not all will have GHD as adults (197-199). According to 

established criteria, published guidelines classify CO-GHD on the basis of the probability of 
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persistent GHD into high likelihood and low likelihood (200-202). With a low probability of 

persistent GHD, GH stimulation tests are considered to re-evaluate GH secretion taking into 

account appropriate cut-off limits with different assay measurements (203)(204). GH peak cut-offs 

during transition are arbitrary with studies using either a peak GH cut-off <6.1 µg/l (205),  <5.6 

µg/l (198) or <5.1 µg/l (206), using the insulin tolerance test (ITT) as an acceptable criterion for 

GH replacement in the transition phase. In CO-GHD with a high probability of persistent GHD, a 

low IGF-I level (< -2 SD for age and gender) after at least one month of GH therapy is considered 

to be sufficient for persistent GHD without additional stimulation testing (207). The process and 

schema of diagnosis and re-evaluation of CO-GHD patients is summarized in (Figure 1-8).  
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Figure  1-8 Schema for assessing (A) and reassessing (B) the GH/ IGF-1 axis during 
childhood and the transition period. 
*patients with severe congenital or acquired panhypopituitarism with three or more pituitary 
hormone deficiency GH can be continued without interruption.  

A schema is according to local practice;  B schema is adapted and modified from Clayton et al. 
(200).

Individuals with childhood-onset GHD who have attained adult height 
(Linear growth is <2cm/year) 

Known acquired hypothalamic- pituitary disease, or a proven 
genetic/molecular defect involving the proximal portion of the 

GH-IGF1-axis. 

Previous diagnosis of idiopathic (normal 
head MRI), Isolated (no other 

hypothalamic-pituitary hormone 

deficiencies)  
 

Screen with serum IGF-1 and/or 
dynamic GH stimulation tests 

Serum IGF-1 > 2SD/ GH 
peak >5 µg/l 

 
 

Serum IGF-1 < 2 SD/ 
GH peak <5 µg/l 

Consider re-evaluating in 
2-5 years based on clinical 

scenario 

GH replacement until 
attainment PBM (25-

30yr) 

Serum IGF-1 < 2SD 
 

No GH testing 
required 

Profound GHD 

Serum IGF-1 >2SD 
 

Dynamic GH stimulation 
test 

GH peak > 
5 µg/l 

GH Peak <5 
µg/l  

GH replacement 

Discontinue GH for 1-3 months* 
 

Child with Short stature 
 

 
Auxology assessment 

Height <-2 SD 
Height velocity <-2 SD over1 year 

Neonatal signs/symptoms 
Hypoglycaemic, prolonged jaundice, 

microhpallus/ craniofacial midline 
abnormalities 

General investigation Radiology (Bone age) 
Karyotype (in girls) 

Signs of intracranial lesion 
Signs of multi pituitary hormone deficiency 

  
 

Endocrine assessment 

IGF-1 measurement 
GH stimulation test 

GH peak response < 6.6 µg/l  
IGF-1 < -2 SD 

Abnormal pituitary 
MRI 

 
  

 
Establish GHD 

GHD replacement therapy 
Genetic testing 
if appropriate 

Pituitary MRI 
 
  Normal pituitary 

MRI 
 
  Repeated GH 

stimulation test 
 
  

A 

B 
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1.3.4 GH treatment, dose and monitoring  

The doses of GH vary by age and by how it is calculated. In paediatric practice, a GH dose is 

usually calculated either according to body surface area [0.7–1.0 mg/m2/d] or body weight [0.17-

0.35 mg/kg/wk] divided into daily subcutaneous injection. The total dose varies between Europe 

[25-35 µg/kg/d] and USA [25-43 µg/kg/d]. It is generally accepted that a daily dose of 25-35 

µg/kg/d is sufficient to increase growth velocity to more than 10 cm/y in children with severe GHD 

(208). 

 

GH dose is modified during transition towards adult treatment; 0.2-0.5 mg/d is recommended and 

not more than 2 mg/d (3 – 7 µg/kg/d in 70 kg individuals). Women generally require higher GH 

doses than men with 0.3 mg/d recommended for young females, 0.2 mg/d for young males, and 0.1 

mg/d for older patients According to published recommendations, it has been suggested to start GH 

with a low dose (12.5 µg/kg/day), then titrate to attain IGF1 normal levels. IGF1 should be 

measured at 1- 2 month intervals during dose adjustment and at least once a year during therapy to 

be kept in a normal range appropriate for age and sex. Furthermore, the changes in body 

composition associated with GH treatment should be measured, such as DXA which is employed 

annually to measure lean mass (LM), fat mass (FM), and bone mineral density (BMD) (200-202). 

 

1.3.5 Benefits of rhGH during childhood and transition  

1.3.5.1 Childhood growth  

In early-treated children, catch-up growth is excellent, with a normal final height and an average 

gain of 30 cm. The reported adult height in untreated GHD is between -6.1 and -4.8 SDS (134-146 

cm) in males and -5.9 to -3.9 SDS (128-134 cm) in females (209), whereas treated GHD children 

grow at a mean velocity of 2.7 cm/year faster than untreated children and gain a mean adult height 

range between 1.5-2.0 SDS (210,211). However, this figure is affected by variables such as birth 

weight, height and age at the start of treatment, duration of treatment, frequency of growth 

hormone injections, and height at the start of puberty (212). 

 

1.3.5.2 Benefits of rhGH during transition 

The transition period, the time from mid to late teens until six or seven years after achievement of 

final height (200), is a critical phase for accrual of maximal peak bone mass and muscle strength, 

which is an important determinant of the risk of osteoporosis-related fractures in later life (51).  

During the transition period, healthy individuals’ bone mineral density (BMD) and bone mineral 

content (BMC) increases 4-6 fold, together with lean mass (LM) over 2-3 years after attainment of 

final height (213-215). The effects of GHD and the benefits of rhGH therapy during transition have 

been reported in several studies as summarised in several reviews (216-219). 
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1.3.5.3 Bone mass and risk of fracture  

1.3.5.3.1 Bone mass  
 
GH plays a role in attaining and maintaining peak bone mass which is known to be a predictor of 

fracture risk and osteoporosis in late adulthood (220). For individuals with GHD, acquiring bone 

mass in childhood is influenced by several factors, including age of diagnosis, age at 

commencement and duration of rhGH treatment, height, weight, and body composition.  Cross 

sectional and observational studies of bone density in rhGH treated children with CO-GHD at time 

of completing linear growth have shown inconsistent findings with either low areal bone mineral 

density (BMD) (g/cm2), normal or slightly reduced total body (TB) BMD, bone mineral density 

(BMC)  and lumber spinal (LS) volumetric mineral apparent density (BMAD) (g/cm3) (221-225) 

(Table 1-7). Early rhGH treatment in childhood results in better indices of bone mass on 

completion of treatment at final height (221). Beyond transition, a longitudinal study reported a 

delayed timing of peak bone mass at LS and a rapid decline over the following 2 years was 

observed in adolescents with CO-GHD who discontinued rhGH after final height compared with 

controls (226). 

Therefore, there was a concern that childhood rhGH treated subjects with CO-GHD may not 

achieve peak bone mass as a consequence of discontinuing GH treatment at final height.  

Over the past few decades, a series of clinical trials studies have been conducted to examine the 

effects of continuation, discontinuation, and recommencement of rhGH during the transition phase 

of adolescents with CO-GHD, but thus far they yield conflicting results, Table 1-8. Continuation of 

rhGH is reported to be associated with an increase in TB-BMC and LS-BMD in the range 3-6% 

either after one year (227), or two years (228-230) as assessed with dual energy X-ray 

absorptiometry (DXA). However, this net gain is similar to what would be expected in the normal 

population during this stage (213,231). 

 It was also reported that bone mass does continue to increase in adolescents who discontinue rhGH 

therapy, yet the net gain is about half of that achieved by adolescents who continue rhGH therapy 

(228,229).  

In contrast other studies have showed no change in BMD up to two years following discontinuation 

of rhGH after attainment of final height (223) , and no benefit from continuation of rhGH 2 years 

after final height (232,233). It was therefore proposed that 2 years was a safe period to be without 

rhGH, after which rhGH treatment would be recommenced in confirmed GHD patients. However, 

according to Tritos et al., an interval of 6-12 months off GH therapy was associated with a lower 

femoral neck (FN)-BMD and therefore a firm recommendation of a safe duration off rhGH 

replacement therapy with regard to BMD cannot be made (234).  
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Dose-dependency with regard to the impacts of rhGH on bone mass has only been studied in two 

studies;  a 2-year randomized controlled trial found a higher dose (25 µg/kg/day) of rhGH impact 

differently in favour of bone mass than a lower dose (12.5 µg/kg/day) (229), when no significant 

difference was found in another similar study over same period (228). 

It is noteworthy that among all the studies reported in table 2, there was considerable variability in 

definition of GHD during transition and retesting in terms of stimulated GH peak cut offs, 

population heterogeneity between isolated GHD/ multiple pituitary hormone deficiencies (MPHD) 

and aetiologies of GHD, duration of discontinuation of rhGH after final height, rhGH dose during 

childhood and after final height. In addition,  measurement of bone density using DXA in children 

and adolescents with CO-GHD is challenging by confounding effects of body size and 

composition, with no consensus as to what is the optimal adjustment to express bone densitometry, 

additional to the lack of reference data that adjusts for different confounding factors of growth  

impaired children and adolescents (83). Therefore, this variation may substantially affect the 

interpretation of the results, limiting the analysis to certain groups of patients with the greatest 

benefit from the rhGH treatment during transition. 

It is also increasingly recognised that the bone health and fracture prediction is not only dependent 

on bone density, but also on bone geometry and microarchitecture (82). The consequences of GHD 

and rhGH replacement on bone geometry and structure in subjects with CO-GHD have been 

investigated in few studies demonstrating reduced cortical area and thickness, but normal cortical 

and trabecular density at time of diagnosis during childhood which was significantly reduced after 

one year of rhGH treatment (235). At final height and after discontinuation of rhGH, marked lower 

height corrected cortical thickness and wider endosteal circumference, but a normal cortical and 

trabecular density compared with a healthy reference population (236). Two years of rhGH 

replacement results in a significant increase in cortical thickness compared to non -treated control 

group of young adults with CO-GHD (237), when a significant reductions in cortical bone area and 

thickness in untreated CO-GHD adults compared to AO-GHD was reported elsewhere (238). One 

recent study with more advanced imaging (high-resolution magnetic resonance imaging (micro-

MRI) investigated the bone structure of ten young adults with hypogonadism and/or CO-GHD and 

reported that ratio of apparent bone volume to total volume (appBV/TV) and apparent trabecular 

number (appTbN) were significantly  lower in GHD than in the age-matched control group (239), 

although the relationship between  trabecular size and number, to bone fragility and fracture risk 

has not been established yet.
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Table  1-7 Summary of cross sectional studies, non-interventional- observational studies of the effects of GHD adolescents with CO-GHD. 
     

Ref N 
MPHD/ 
IGHD 

Design 
Age 
yrs 

 
Tool 

Groups 
 

TB 
 

LS 
Body 

composition 
CVS 
risks 

Glucose 
metabolism 

QOL 
 

 
(240) 
(223) 
(241) 
(242) 

 
40 

 
28/12 

 
2-yr-  
Long 
 

 
16±21 

 
DXA 

 
n=22 GHD 
n=19 GH-
sufficient 
n=16 control 

 
↑5% -BMC 

 
↑4% BMD 

 
↓ 8% in LM in 
GHD 
↑7% FM%   in 
GHD 

 
↑ in 
GHD 

 
↔ 

 
↔1 

(226) 16 0/16 
6-yr-  
Long 

17·1 ± 
0·9 DXA n=16 GHD - 

↓ areal and 
volume 
BMD 

- - - - 

 
(236) 

 
90 

  
C.S 

 
 

 
PQCT 

 
n=37 GHD 
n=53 GH-
sufficient 

↓ cortical thickness 
Z-scores in both 
↑ Cortical CSA in 
both 
↓SSI Z-score in 
GHD 

- 

 
↓ Muscle CSA in 
GHD 
↑fat/muscle in 
GHD 

 
↓ HDL 
↑LDL/ 
HDL 

- - 

 
(225) 
 

 
18 

  
C.S 

 
18-30 

 
DXA 
isokinetic 
dynamomet
er 

 
n=9 GHD 
n=9 GH-
sufficient 
n=18 control 

 
↓ BMD in GHD and 
GH-sufficient  vs. 
Control 

 
↓ BMD in 
GHD and  
GH-sufficient 
vs. Control 

 
↓ LM  
↓FM  
↓ muscle strength  
in  GHD and  GH-
sufficient  vs. 
control 

- - - 

 

↑,increase ; ↓,decrease; ↔, no significant changes or different; Long, longitudinal; C.S, cross sectional; n, Number of patients; GHD, growth hormone 
deficiency; ; IGHD, Isolated growth hormone deficiency; MPHD, multiple pituitary hormone deficiencies; DXA, dual energy x-ray absorptiometry; PQCT, 
peripheral quantitative computed tomography;  BMD, bone mineral density; BMAD, bone mineral apparent density ; BMC, bone mineral content; LM, lean 
mass; FM, fat mass; LS, lumbar spine; TB, total body; CVS, cardiovascular system; HDL, high-density lipoprotein ; LDL, low-density lipoprotein; 1 Nottingham 
Health Profile, Psychological General Well-Being, Mood Adjective Check List, visual analog scale and more



       

63 
 

Table  1-8 Summary of RCT and longitudinal studies of the effects of GHD and rhGH replacement in adolescents with CO-GHD 

Ref N 
MPH

D/ 
IGHD 

Age 
yrs 

Design Groups rhGH 
doses 

TB LS Body 
composition 

CVS 
risks 

Glucose 
metabolism 

QOL 

(243) 
(244) 

18  15/3 20.2+1 2-yr 
RCT 

n= 9 on rhGH 
n=10 on placebo 

3.6 IU/d - - ↑6% in LM in rhGH 
↓ 6% FM  in rhGH 

↔ ↓IS in rhGH ↔2 

(227) 
(245) 

24  
 20/4 17+1.4 

1 yr. 
RCT  

n=12 on rhGH 
n=12 no rhGH 17 µg/kg/d 

↑6% -BMC in rhGH   
 

↑5% BMC 
in rhGH   

↑ (6%)  LM in rhGH  
No change FM ↔  - 

(229) 64  
 

52/12 23+4.2 
 

2 yrs  
RCT  

n=20 on adult GH 
n=23on  paed GH 
n= 21 Placebo 

12.5 and 
25.0 
µg/kg/d 

↑3.3 % BMD adult GH  
↑5% BMD in paed-GH 
↑1.3 % BMD placebo 

- 
↑LM of 13.4% in 
rhGH Vs 3.1% in 
placebo  

↔ - ↔3 

(228) 
(246) 
(247) 

92  
 

72/20 19+2.8 2-yr 
RCT 

n=59 on adult -GH 
n=58 on paed-GH  
n=32 on Placebo 

12.5 and 
25.0 
µg/kg/d 

↑ 9%  BMC in rhGH  
↑5% BMC  in placebo 
↑5% BMD in rhGH   
↑ 3% BMD in placebo 

- 

↑14% LM 
 in rhGH Vs  2%  in 
no GH 
↓  FM 

↔ -  
↔4 

(232) 
58  
  
 

25/33 15.8 2 yrs 
RCT  

n=25 on rhGH 
n=15 on placebo 
n=18  GH-sufficient 

20 µg/kg/d 
↔ in BMD 
across all groups  at 
baseline and after 2y 

↔ ↔ in LM 
↔ in FM 

 
↔ 

 
↔ HOMA-
IR- QUICKI 

 
↔3 

(248) 
 
 

10 
 

5/5 
 

17–20 
 

1yr  
Long 

n= 10 on rhGH 
n=10 control 

8–10 
μg/kg·d 

- - - 

+ effect on lipids 
↔in IMT in GHD 

↓IMT in GH- 
sufficient 

↑ HOMA  in 
rhGH 

↓HOMA in 
GH-sufficient 

- 

(249) 
 

23 9/14 15-20  
n=15 on rhGH 
n=8  GH-sufficient 
n=23 control 

       

(230) 
(237) 

160  
 
 

35/12
5 

 18-25 
2yrs, 
RCT  

n=109 on  rhGH 
n=51 no rhGH 
 

0.2-0.4 
mg/d   

↔in BMD  
↑cortical  thickness 
↓endosteal  diameter  

↑3.5% 
BMD in 
rhGH  

 
- 

 
- 
 

 
- 

- 

(233) 40  
 

12/28 15.6-
17.3 

2ys 
Long 

n=23 on rhGH  
n=17 no rhGH 

0.4–1.3 
mg/d 

 ↔BMD SDS  ↔ BMAD  ↓LM ↑FM  in 
untreated 

 
- 

- - 

↑,increase ; ↓,decrease; ↔, no significant changes or different; Long, longitudinal; RCT,  randomised control trial; n, Number of patients; rhGH, recombinant 
human growth hormone; BMD, bone mineral density; BMAD, bone mineral apparent density ; BMC, bone mineral content; LM, lean mass; FM, fat mass; LS, 
lumbar spine; TB, total body; CO, childhood-onset GH deficiency; IGHD, Isolated growth hormone deficiency; MPHD, multiple pituitary hormone deficiencies; 
CVS, cardiovascular system; IMT, intima-media thickness; HOMA-IR, Homeostasis Model Assessment- Insulin resistance; IS, insulin sensitivity; QUICKI, 
quantitative insulin sensitivity check index.1 Nottingham Health Profile, Psychological General Well-Being, Mood Adjective Check List, visual analog scale 
and more; 2 General Health Questionnaires (GHQ); 3AGHDA; 4 QLS-H questionnaires 
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1.3.5.3.2 Risk of fracture  
 
Although data on the association between bone density and fractures in children is limited, it is 

generally established that the fracture risk may be higher in healthy children and adolescents who 

have low BMC and bone accrual (250,251). The association between GHD, low bone mass and 

subsequent fracture risk in adolescents and young adults with CO-GHD is less clear than that 

observed in adults with GHD and hypopituitarism (252,253). However, in these studies, it was not 

known if that is a result of being GH deficient per se or due to other pituitary hormone deficiencies. 

Accordingly, other studies showed no evidence that isolated GHD (IGHD) may increase fracture 

risk (254,255). With regard to the impact of rhGH replacement therapy on fracture rates, childhood 

studies suggest a protective effect of rhGH treatment in children with GHD with a fourfold 

decrease in fracture frequency from diagnosis to final height compared to matched healthy controls, 

but fracture prevalence increased to 3 % at final height particularly in those with reduced lumbar 

BMD (Z-score <1) (224). Studies in adults involving both CO- and AO-GHD reported a lower 

incidence of fracture risk in CO-GHD compared to AO (252,254,256), with a double incidence of 

non-osteoporotic fracture in women with CO-GHD compared to men with CO-GHD despite 

continuation of rhGH treatment (256), Table 1-9. In view of these studies, CO-GHD was queried as 

a cause of osteoporosis due to the lack of evidence for increased fracture risk in children and adults 

with CO-GHD or severe GH resistance (92). 

To summarise this section, data thus far demonstrate contradictory results, with most studies, but 

not all, showing a small increase in bone density and mineralisation during rhGH therapy in 

transition. However, the extent of GHD and replacement with regard to bone density and 

architecture is unclear. Using more advanced non-invasive imaging tools that assess bone quality, 

may provide a greater insight into the effects of GHD and rhGH on bone. 

In addition, there is insufficient evidence of increased fracture risk in patients with CO-GHD as the 

reporting of the risk of fracture in GHD had considerable limitations. Therefore, it remains unclear 

whether early adulthood rhGH treatment would offer protection from osteoporosis and fracture risk 

in late adulthood. Prospective long-term follow up studies are still lacking.
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Table  1-9 GHD and fracture risk in young adults with CO-GHD 
 

Ref Design CO/AO 
MPHD/ 
IGHD 

Age 
(yrs) 

Duration of 
rhGH  (yr) 

Measurement 
of outcome 

Result Fracture sites Comment 

(224) 
 
Cross 
sectional 

 
46/0 

 
0/46 

 
14.8–19.9 

 
8.6 ± 1.6 

 
Prevalence of 
fracture 

 
No different vs normal 
population 
 

Osteoporotic 
fractures* 

 
LS BMDvolume of fractured patients 
was significantly lower than fracture-
free 

(255) 
 
Cross 
sectional 

 
66/0 

 
27-OMPHD 
21-CMPHD 
18-IGHD 

 
>18 yr. 

 
n=43 never 
received GH 

 
Lifetime low-
energy fracture 
prevalence 

 
IGHD no risk 
OMPHD OR = 3.0; 0.6 
CMPHD OR=7.4; 2.2 
fractures per patient 

 
All sites, more at 
wrist, 

 
TB,LS,FN-BMC ,areal BMD, and 
volumetric BMD were marked 
decreased in all group more in 
OMPHD 

(254) 
Cross 
sectional 
(KIMS) 

709/ 
2159 602/107 

23-28 
 One year 

Prevalence of 
fracture risk 

20% in CO-GHD vs. 25% in 
AO 
 

- No bone density data 

(256) Cross 
sectional 

100/732 

 
68/32 

27-28 

 
12-15 

Fracture 
incidence rate 
ratio 

Women COGHD double 
increase IRR(2.3) 

No change in IRR of CO  GHD 
men (0.6)and AO (0.5) 

Non osteoporotic 
fractures 

No bone density data 

 

OR, odd ratio; IRR, incidence rate ratio; COGHD, childhood-onset GH deficiency; AO, adult-onset GHD; IGHD, Isolated GHD; MPHD, multiple pituitary hormone 
deficiencies; OMPHD, open growth plates MPHD;CMPHD, close growth plates MPHD; LS, lumbar spine;TB, total body; BMD, bone mineral density; KIMS, the 
Pharmacia& Upjohn International Metabolic Database 

* Osteoporotic fractures = vertebra, wrist, upper arm, and hip 
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1.3.5.4 Body composition and muscle strength 

During transition, studies indicate that patients who were reconfirmed to have persistent GHD and 

discontinued rhGH in the transition period showed decreased lean mass (LM) (-8%) and increased 

fat mass (FM) (10-17%) compared to either sufficient or those who continued rhGH after 2 years of 

observation (233,240,243,245). A study measured the early changes in body composition in CO-

GHD patients after a median of 6 months after cessation of rhGH in patients who attained final 

height. The authors stated that patients with persistent GHD (n=37) had a significantly lower 

muscle cross-sectional area (CSA) Z-score (-0.24+1.6 vs. 0.44+1.42, p<0.03), a 2 fold increase in 

fat  CSA (1329+ 100 mm2 vs. 878+91mm2) compared to patients who were no longer GH deficient 

at final height (236). Recommencement of rhGH therapy was documented to result in a marked 

improvement in body composition, with an increase in LM by 14%, and reduction in FM by -7% 

over two years of replacement (229,246), yet longer term studies are scarce in determining the 

sustainability of these changes. Mauras et al. is the only study that showed no significant difference 

in the changes of LM and FM from baseline to two year between continuation of rhGH as 

compared to placebo-treated or control subjects (232). 

In terms of the relationship between CO-GHD, rhGH and muscle strength, it has been reported that 

discontinuation of rhGH in CO-GHD for two years has potentially negative consequences on 

muscular strength in some studies (241,257), but not all (232,243). From a recently published cross 

sectional study investigating muscle strength and body composition of 18 males with CO-GHD 

(aged 18-30 years), of those, 9 (4-IGHD) were reconfirmed to have GHD after re-evaluating them 

at final height during transition. This study suggested muscle strength as measured by a isokinetic 

dynamometer was lower in those with persistent GHD compared to sufficient and healthy controls 

(p<0.05) (225). However, data so far do not support the use of rhGH therapy to increase muscle 

strength during transition and young adulthood (229,233,243). 

The majority of research has shown favourable differences in body composition with 

recommencing rhGH during transition, although encouraging, further research in the field with 

long-term follow-up is needed. 
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1.3.5.5 Cardiovascular risks 

Epidemiological evidence shows negative effects of GHD on cardiovascular risk factors including 

unfavourable lipid profiles, hypercoagulability, atherosclerosis and endothelial dysfunction, which 

could contribute to increased morbidity and mortality of adults with GHD and hypopituitarism 

without rhGH therapy (258), with a higher hazard ratio in AO- compared to CO-GHD (3.0 (2.1–

4.4) vs. 1.4 (1.0–1.8) respectively (259). Cardiovascular risk in CO-GHD and benefits of rhGH 

have been documented during childhood (260,261) and adolescence (248).  

1.3.5.5.1 Lipid profiles 
 
It has been well-established that discontinuation of rhGH therapy after final height results in an 

increase in unfavourable lipid profile (236,246,249,262), while the effect of restarting rhGH 

therapy remains unclear. Some studies have shown reversal in the levels of unfavourable lipid 

profiles (263), whereas others report no change in lipid profile either on cessation or continuation 

of rhGH therapy during transition (229,232,245). A study of KIMS database (Pfizer International 

Metabolic Database) reported that those who were older at first starting childhood rhGH (short 

duration of childhood rhGH replacement) and had a longer time off rhGH during transition were 

more likely to have higher total cholesterol and triglyceride levels during transition (264). 

1.3.5.5.2 Cardiac structure and performance 
 
At final height, cross sectional echocardiographic studies indicate that all cardiac dimensions of 

adolescents with GHD who were treated with rhGH during childhood were significantly smaller 

than their age-and sex- matched healthy controls after withdrawal of rhGH (5.7+4.5 years), 

whereas reinstituting rhGH results in a significant increase in LV mass and LV mass index after 

16-24 months (265) with improvement in endothelial function within the first 6 months of 

restarting rhGH (266).  

There is also conflicting data on alterations in carotid artery intima-media thickness (IMT), a 

surrogate marker of early atherosclerosis with increasing in IMT thickness, in subjects with CO-

GHD. Murata et al. showed a significantly higher IMT in adults with CO-GHD compared to both 

adults with AO-GHD and healthy controls (267). However, this alteration in IMT was not evident 

in adolescents with CO-GHD during and after discontinuation of rhGH (249,268). A study 

involved 23 subjects with CO-GHD (14- IGHD) (aged 15–20 years) showed that 6 months off 

rhGH in adolescents who were confirmed GHD did not result in a significant alteration of the 

common carotid arteries, whereas in adolescents who were not confirmed to have GHD, IMT 

increased during rhGH treatment and reversed to normal 12 months after rhGH withdrawal (249). 

In summary: the current evidence suggests that discontinuation rhGH during transition is associated 

with a pro-atherogenic lipid profile; however, the effects of recommencement of rhGH treatment 

and a prolonged period off treatment are less clear. There is no evidence demonstrating that 
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discontinuation of rhGH therapy during transition has any detrimental consequences on the 

cardiovascular system in the short or long term.  

1.3.5.5.3 Glucose metabolism  
 
Few studies have investigated CO-GHD and its replacement on insulin and glucose metabolism 

during transition in relation to concomitant changes in body composition and metabolism. 

After cessation of rhGH at final height, some studies reported an increase in; insulin sensitivity as 

estimated by either means of a hyperinsulinemic euglycemic clamp (244) or homeostasis model 

assessment (HOMA) (245) and increase in fasting glucose (243) in those who had persistent GHD, 

with similar changes were reported elsewhere in those who were not confirmed to be GH deficient 

at final height (269). Inversely, significantly impaired insulin resistance as measured by HOMA 

was recorded within 6 months off rhGH, but returned to baseline levels after 6 months after 

restarting rhGH replacement (249). At two years of resuming rhGH therapy during transition there 

was an insignificant or limited effect on insulin resistance, insulin sensitivity and glycosylated 

haemoglobin (HbA1c) (229,232,244). In addition to the variation of techniques used to assess 

glucose homeostasis in these studies, other factors particular body compositions and short term 

duration results in limited evidence with regards to impairment of glucose homeostasis in GHD and 

rhGH replacement during transition. Long-term studies are necessary to identify the influence of 

different aspects of GHD and replacement on glucose homeostasis during transition. 

Generally, there is weak evidence that GHD or rhGH replacement induces an increase in the risk of 

type 2 diabetes (T2DM) in subjects with GHD. With regard to GHD, the KIMS database has 

demonstrated that the prevalence of T2DM in untreated adults with AO-GHD and hypopituitarism 

was higher than expected with an overall standardised prevalence proportion ratio (1.13 (95% CI, 

1.04–1.23%)), which was largely to be explained by high BMI and the adverse body composition 

(270). In terms of rhGH replacement, there is an uncertain relationship between rhGH treatment 

and the risk of T2DM in particular in those with GHD, and whether rhGH therapy leads to 

increased risk of diabetes has not been established yet. Paediatric studies demonstrated modest 

increases in the incidence of T2DM in rhGH -treated children with predisposed risks relative to the 

general population, but not in those with GHD individually (271,272). 

In conclusion, in GHD, there is insufficient evidence available to conclude whether or not rhGH 

therapy in childhood or transition alters insulin sensitivity and increases the risk of T2DM in 

adulthood. More research is needed to clarify the elements of the dual effects of GH during 

transition in adolescents with CO-GHD with regards to both the impact on body composition/BMI 

and insulin resistance. 
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1.3.5.6 Quality of life (QoL) 

The health related quality of life issue has emerged as an important aspect in consideration of rhGH 

therapy in adulthood, but not during childhood or transition (273). In relation to QoL in individuals 

with CO-GHD, some studies reported that children and adolescents with GHD have some 

difficulties with psychosocial functioning, mood, behaviour and cognitive ability (274) despite the 

achievement of acceptable final height (275). A retrospective study suggested that adolescents with 

CO-GHD who were not treated with rhGH after attaining final height have some psychological 

difficulties with self-confidence and social contact,  and this was worse in those who were either 

rhGH treated after the age of 12 years or those who were shorter at the start of treatment (274). A 

report from the KIMS database showed a positive relationship between height gain during 

childhood treatment and improvement in QoL at transition and an inverse relationship between 

QoL and duration off rhGH therapy with a longer period off rhGH associated with a poorer QoL 

(264). Re-instituting rhGH treatment has a significant positive change in health related QoL aspects 

(242,264). However, longitudinal studies evaluated the effects of discontinuation and resumption of 

rhGH treatment on QoL in young adults with CO-GHD, showed that discontinuation of rhGH 

treatment for one year leads to a decrease in QoL within 6 months, which is counteracted in 3-6 

months after re-initiating rhGH therapy (276,277). This was disputed in follow up and RCT  

studies showing that QoL is less effected in adolescents with GHD measured after discontinuation 

rhGH at final height (242) with  no difference in  being off rhGH therapy and after re-commencing 

rhGH (229,232,247). However, using different questionnaire tools (generic and disease-specific 

questionnaires) which assess different dimensions of health related quality of life in adolescents 

with CO-GHD makes comparisons of the outcomes of these studies difficult. 

In summary, there is variability in the assessment of QoL by different studies in terms of the 

instruments used and the effects measured which may reflect the different outcome results in QoL. 

In addition, QoL is multifactorial and factors such as short stature combined with other pituitary 

hormones deficient may influence QoL in this particular group of patients. To date there is no clear 

consensus on the appropriate QoL measurement tools in children and adolescents with GHD. 

Therefore, there is currently no evidence of reduced QoL that rhGH may have beneficial effects on 

QoL in subject with CO-GHD during transition. 
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1.3.5.7 Summary 

GHD is an important condition that has detrimental effects on both physical and psychological 

health throughout life, whereas rhGH therapy shows benefits in both children and young adults 

with GHD throughout each stage of their life. It seems from the current data that rhGH has less 

direct impact on bone density, with a greater impact on body composition and cardiovascular risk 

factors, including improvement in serum lipid profiles, and to a lesser extent on insulin sensitivity 

and QoL. Even with scarce evidence, substantial short term studies during transition revealed 

untreated GHD has a risk of alteration in somatic and metabolic consequences, although it is 

difficult to establish whether these mild alterations represent the early long-term consequences and 

whether subsequent rhGH treatment improves long term health. Larger studies, of longer duration 

of rhGH therapy will be required to determine whether the metabolic alterations in adolescent GH-

deficient patients persist in later adulthood and if recommencement of rhGH therapy has a positive 

impact on these aspects.
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1.4 Weight Bearing Exercise and Bone Health 

It has been well established for several decades that physical activity and exercise are associated 

with promotion of physical and psychological aspects of growth and development. Studies 

highlight the positive impact of exercises in management of several existing chronic illnesses and 

prevention of long term complications (278), with a strong emphasis on physical activities being a 

preventative measure to combat or offset osteoporosis and fractures (279). Substantial experimental 

and clinical evidence has highlighted the importance of functional loading for optimal bone gain 

and strength during growth and reduced bone loss later in life (280). Weight bearing exercise 

(WBE) in particular has been found to enhance bone health parameters during growth (281). WBE 

is defined as force-generating exercises placing higher mechanical stress on skeletal regions, such 

as jumping, aerobics, circuit training, volleyball and other sports that generate impact on the 

skeleton (282). Studies have shown that WBEs have a greater osteogenic effect on bone than non-

weight-bearing exercises (283). High impact WBEs such as jumping exercises are studied 

extensively in relation to bone mass and bone mineral density. Jumping exercises provide a 

dynamic loading effect on the bones through the axial mechanical load elicited when ground-

reaction forces reaches 6-8 times body weight (284). In the majority of studies, jumping exercise, 

even with low repetition, is efficient. Kato et al. (2006) reported that 10 maximal vertical jumps 

three times per week increased femoral neck BMD by 3.8% and lumbar spine BMD by 1.8% 

during six months of training in premenopausal women (285). A review of bone growth and 

exercise suggests childhood and adolescence is the optimal time that exercise programs can 

improve bone strength by maximising peak bone mass (286,287), and that declined precipitously 

with late adolescence (288). Importantly, the bone benefits from WBE seem to be maintained into 

adulthood and may reduce the facture risk in later life (289). For this reason, there has been 

considerable interest in quantifying the effects of exercise on bone accrual during growth and 

defining the appropriate mode, intensity, frequency and duration of exercise, in addition to the 

precise timing of exercise (childhood or adolescence), required to optimize bone health throughout 

life. 
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1.4.1 Mechanism of influence of weight-bearing exercise on bone 

The link between WBE and positive gains in skeletal mass is illustrated by three main mechanisms 

as seen in Figure 1-9. 

 

1.4.1.1  Exercise effects on bone through mechanical force 

When mechanical force is applied over bone tissue, bone tissue is deformed at the site where 

loading acts. Osteocytes and bone-lining cells detect that bone is being loaded and generate 

hydrostatic pressures within bone canaliculi and interstitial spaces causing tissue fluid to move 

through the canalicular spaces. Fluid flow creates a fluid shear stress which leads to a transduction 

of the mechanical signal  into a biochemical response of the effector cell (osteoblast-osteoclast) to 

initiate formation or resorption of bone cell tissue through an increase in the levels of the 

osteogenic factors such as intracellular calcium, prostaglandin E2, nitric oxide and others 

(290,291). These products are potent regulators of osteoblasts and osteoclasts during bone 

remodelling and stimulate new bone formation by promoting both proliferation and differentiation 

of osteoblastogenesis (292). The process by which mechanical forces are converted into 

biochemical responses that are then integrated into cellular responses is known as 

mechanotransduction. There are several factors that can have an effect on the mechanotransduction 

process in bone, such as type and frequency of mechanical loading, age and gender (293). Although 

osteocytes act as primary mechanosensors of mechanical loading on bone, mechanical loading also 

has an impact on osteoblasts leading to reduce recruitment and differentiation of osteoclasts by 

augmentation of OPG and reduction of RANKL expression, which in turn reduces the possibility of 

bone loss (294). 

 

1.4.1.2  Effects of exercise on bone through muscle 

Another mechanism of bone adaptation to mechanical loading has been suggested to be explained 

by the mechanostat theory (a refinement of Wolff’s law), by which load bearing bones maintain 

shape and strength in response to muscle strain and mechanical usage (66). It has been suggested 

that muscle contraction activates bone mechanoreceptors in the bone periosteum (291). Another 

suggested mechanism is where exercise activates IGF-1 and insulin receptors in muscle in response 

to activated bone mechanoreceptors and these receptors play a paracrine role on periosteal cells and 

apoptosis inhibition (295). These theories support the evidence that peak rates of bone mineral 

acquisition are preceded by peak rates of muscle mass gain, strengthening the idea that exercise 

programs aiming first to improve muscle mass and strength would stimulate bone formation and 

acquisition of bone mass (296).  
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1.4.1.3 Effects of exercise on bone through hormones 

Exercise has been found to affect the levels of calciotropic hormones, vitamin D and parathormone 

(PTH), which are essential regulators of bone metabolism (297). Several studies have shown that 

acute resistance exercise can increase concentrations of anabolic hormones, such as GH/IGF-1 and 

FSH/LH/oestrogen, across a wide age range (298). These anabolic hormones have been shown to 

have either positive or negative impacts on bone growth and metabolism under the influence of 

exercise intensity. as summarised by Chilibeck 2010 (299) in Table 1-10. 

 

Table  1-10 Effects of exercise on bone through hormones. 
Adapted and modified from reference (299) 

Hormone Effect of hormone on bone Effect of exercise on hormone level 

Oestrogen  
↑ Ca absorption; 

↓ Bone turnover  

Extreme training with low energy intake: 

↓ release 

Progesterone ↑ Bone formation and  resorption Same as above 

 

Testosterone ↑ Ca absorption; ↑ bone formation  

Extreme training: ↓ release  

Acute exercise ↑ release   

Chronic exercise  ↑ release or ↔ 

Growth hormone 

↑ Bone formation; 

↑ Production of active form of 

vitamin D 

Acute exercise:  ↑ release 

Chronic exercise: ↔ 

IGF-1 ↑ Bone formation 
Acute exercise: ↑ release 

Chronic exercise ↑ release, or ↔ 

PTH 

↑ Bone resorption when continuously 

released 

↑ Bone formation when intermittently 

released 

Extreme training: ↓ release 

 Acute exercise: ↑ release 

 Chronic exercise: ↔ 

Calcitonin ↓ Bone resorption Chronic exercise ↔ or  ↓  

Vitamin D ↑ Ca absorption 
Extreme training: ↓ release 

 Chronic exercise ↑ release 

 

↑ = increase; ↓ = decrease; ↔ = no change; IGF-1 = insulin-like growth factor 1, PTH= parathyroid 
hormone, Ca = calcium  
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Figure  1-9 Mechanism of influence of weight-bearing exercise on bone 
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1.4.2 Effectiveness of weight-bearing exercise on the bone health 
of children and adolescents 

1.4.2.1 Short terms benefits of WBE on bone 

The majority of randomized control trials (RCT) and longitudinal studies were carried out on a 

variety of animal and human cohorts to assess the benefits of WBE on bone density and bone 

strength. 

1.4.2.1.1 Animal studies 
 
Animal model studies have been fundamental to the design of exercise regimens that aim to 

enhance human bone health. The majority of these studies indicate that high impact and weight 

bearing exercises provide an increase in bone mass and strength, as summarised in Table 1-11.  

Among WBEs, jumping programs seem to be the most beneficial in terms of bone density and 

strength (300,301). Studies have demonstrated that the mechanical load of jumping exercises in rats 

showed significant higher  bone formation (302,303),  volumetric bone mineral density and 

mechanical structure and bone strength (304). Ju and colleagues found significant increases in the 

total cortical area of the tibia and femur, which was reflected in increased periosteal circumference 

following as few as 5-20 jumps per day in young male rats (305,306). Similarly, another research 

group revealed that as few as five jumps per day in growing rats improved bone mass and strength 

with few differences between animals that jumped between 10 and 40 times per day (307). Jump 

training with minimal loading showed more favourable bone geometry, and was more effective at 

augmenting cortical bone integrity compared with high load jump training in skeletally mature rats 

(308). It was also reported that the beneficial effects of jumping exercises could be maintained for a 

period of 24 weeks when followed up with exercise consisting of 11% to 18% of the initial exercise 

load (309).
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Table  1-11 Summary of animal studies of jumping exercises and bone  
 

Total 
Age 

 
Sex Exercise programs 

Duration 
(wk) 

Groups and numbers measurement Results 

(305) 28 5 wk M 
Treadmill running: 25 m/min, 1 
h/day, 5 days/wk.  
Jumping: 10 jumps/day, 5 days/wk 

5 

n=7 tail suspended 
n=7 jumping  
n=7 treadmill running 
n=7 control 

Femur BMD - 
Trabecular 
architecture 

Femur BMD was significantly increased in both 
running and jumping groups compared with controls. 
Jumping exercise increased BV/TV (38%) and Tb.Th 
(22%) and decreased Tb.Sp (16%) and TBPf (38%) 
compared with controls. 

(306) 24 8 wk M 30 jumps/day, five days/wk 3 
n=8 tail suspended  
n=8 sedentary control  
n=8 jump exercise  

Femur BMD - 
Trabecular 
architecture 

Jump exercise during the tail suspension period 
increased trabecular thickness (14%, p < 0.001) and 
suspended reduction of trabecular number.  

(310) 144 12 wk F 
40 jumps per day, 5 days/wk for 8 wk 
then either maintaining or decreasing 
the frequency or intensity 

8-24 

n=10 8wk vs. n=10 sedentary, 
n=10 sedentary 32 wks.  
nine groups  n=10 each for 8 wks 
of standard training ( STP) 
followed by 24 wks of continuous 
exercise (CTP) 

Bone turnover 
markers and 
tibia bone 
mass 

Increases in tibia mass were observed in rats that 
continued to exercise at workloads of 30 jumps/wk and 
above after 8 STP. Serum alkaline phosphatase 
concentrations increased whereas serum CTX 
concentrations decreased in rats given workloads of 40 
jumps/wk and above. 

(311) 
 

80 
Young 
adults 

F 

1 - Swimming: 5 days/wk for 60 
min/day 
2 - Jumping: 20 jumps per session, 5 
days/wk for 3 wks 
3 - Vibrating: a longitudinal 
amplitude of 1 mm and frequency of 
50 Hz 5 days/wk, 20 min/session 

3 
 

n=10 hind limb suspension 
n=10 controls 
n=10 swimming 
n=10 swimming controls 
n=10 swimming+jumping 
n=10 jumping  
n=10 jumping controls 
n=10 vibration therapy  

Femur BMD, 
bone strength, 
and  bone 
markers 

There was no significant difference between the three 
physical exercises, but the oestrogenic effect of 
vibration was slightly lower than that of swimming and 
jumping. 

(312) 42 6 Mon M 

15 sessions of resistance jumping 
with a starting weight of 80. 50 
repetitions on session 1 and 
increasing up to 410 in session 15. 

5 
n=16 high-load jump 
n=15 low-load jump  
n=11 sedentary control  

Tibia and 
femoral neck  

Greater bone formation in jumping groups vs. controls. 
Greater bone volume vs. trabecular volume (BV/TV) in 
jumping groups vs. control. 

(313) 
48/ Wk. 
30/Daily 10 wk. F 

Jumping session consisting of 
jumping 45 cm high 8 

n=8 sedentary group 
n=10 one jump/wk. 
n=10 three jump/wk. 
n=10 five jump/wk. 
n=10 seven jump/wk. 

Fracture test 
and 
tibia cross 
sectional   

The cortical area, periosteal perimeter and moment 
of inertia were significantly greater in all exercise 
groups than their respective sedentary groups. 
There was little additional benefit of bones being 
loaded by two separate exercise sessions daily. 

Wk: week; Mon: month; F: females; M: males; Tb.Th: Trabecular thickness; Tb.Sp: Trabecular separation; TBPf: Trabecular bone pattern factor 
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1.4.2.1.2 Human studies 
 
 Following promising findings of animal studies, several human studies, varying in size, duration, 

exercise intervention, frequency and the subjects’ age group, tested WBE as a causal factor for 

bone strength (Table 1-12). 

The osteogenic effects of WBE, particular jumping exercise interventions, was well summarized by 

Hind (286) who reviewed 22 studies indicating that after at least seven months of jumping 

intervention, jumpers had an increase of 1.4 - 6.2% BMD: 0.9 - 5% BMC at femoral neck (FN), 

and an increase of 0.9 - 5.5% BMD: 0.9 - 3.3% BMC at lumbar spine (LS) compared with control 

children. On the other hand, other studies have reported little or no effect on bone density (314-

316). A recently meta-analysis of WBE concluded that WBE increases bone mass and BMD during 

the prepubertal years, but has little or no effect during puberty (281). Another group of researchers 

reported that a short term (seven months) of jumping exercises in pre-pubertal individuals (males 

and females) had a great effect on bone density with a 3.5% increase at LS and a 4.5% increase at 

FN in the interventional group compared with the control (284), and the changes at FN of the 

intervention group were retained and maintained for one year (317) or 4 years after detraining 

(318). In another study, the skeletal gain of jumping exercises in the intervention group at total 

body, LS and FN after eight months of regular exercise (319) were sustained for the following 

three years after intervention (320). 

 

In contrast to findings in DXA-based studies, few studies using pQCT to evaluate the effects of 

high-impact exercise on bone structure and geometry revealed either improvement (321-324)or no 

significant effects (325). The geometric bone changes (structural/properties) in early pubertal girls 

doing jumping exercise for seven months improve significantly compared with the controls (326). 

Several studies indicated that both frequency and amount of loading in WBE during growth could 

be important contributors to increased bone mass. It was reported that the optimal dose of impact 

loading required for bone FN-BMD in children includes simple jumping programs (100 two-footed 

jumps off 61-cm boxes, three times per day for seven months (284); or 10 counter-movement 

jumps, three times a day for eight months (327). 

 

However, many of these studies had a high risk for bias and poor exercise compliance was a 

common concern. In addition, a problem for the interpretation of many of these studies is the multi-

modal nature of interventions; incorporating activities within the same programme making it 

impossible to isolate the effectiveness of individual exercise modalities although jumping exercises 

are a common component of the most successful interventions. 
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Table  1-12 Summary of RCT involving jumping exercises on bone. 
 

Study No of subjects/groups  
Age range 

(years) 
Intervention Measurements Results 

(284)  

Intervention 
n=25 males 
n=20 females 
Control 
n=26 males 
n=18 females 

5.9-9.8 
100 two-foot jumps off 61” box 3 
days/wk for 7 months DXA-LS-FN-BMC/BMD/BA 

 
4.5%-3.1% change in LS-FN, higher BMC in intervention 
than control. 

(328)  
All female 
Intervention: n=32 
Control: n=43  

8.8–11.7 
Jumping for 10 minutes, 3 times/wk 
for 20 months DXA TB-LS-FN-BMC 

There were substantially greater gains in LS-BMC  
(41.7% vs. 38.0%) and FN-BMC (24.8% vs. 20.2%) in 
intervention than in control girls (p < .05). 

(327) 

Intervention  
n=23 males 
n=28 females 
Control  
n=23 males 
n=28 females 

8.9-10.8 
10 counter-movement jumps 3 
times/day for 8 months DXA LS-FN BMC/BA 

1.4% increase in LS-BMC2% increase in FN-BMC in 
intervention vs. control. 

(326) 

Prepubertal females 
Intervention: n=43 
Control: n= 63 
Early puberty females 
Intervention: n =43 
Control: n=25 

9-12  
Jumping for 10 minutes, 3 times/wk 
for 7 months 

FN-geometry and density 

No changes in bone structure in the prepubertal girls.  
Early puberty intervention group showed significantly 
greater gains in FN (2.6%, p = 0.03) and IT (1.7%, p = 
0.02). 

(325) 

Intervention 
n=12 males 
n=14 females 
Control 
n=11 males 
n=17 females 

3-18 25 jumps/day from 45cm box, 
5days/wk for 12 weeks 

DXA TB-BMC 
pQCT Tibia 

Greater increases in TB- BMC than control at all pubertal 
stages. No significant change in tibia. 
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(329) 
Intervention and control: 
n=21-sets of twin females 8-9.4 

WBE involving rope skipping 50 
times, hopping 20 times, jumping 
off box 30 times. 10 min session 3 
times/wk for 9 months 

DXA TB-LS-FN BMD/BMC 
 

No difference in bone parameters. 
 

(322)  

Intervention:  
n=76  females 
Control  
n=75 females 

10-11.2 
10 mins jumping 3 times/wk plus 
capoeira (Brazilian sport) for 
9 months 

DXA TB-LS-FN BMC 
  pQCT tibia and radius  

Radius -BMC at the 4% site tended to increase more in EX 
than CON (+ 36.1% vs. + 10.7%, p = 0.065), and there was 
a tendency for greater improvements in radial cortical 
density at the 66% site in EX than CON (+ 2.7% vs. 
+ 0.3%, p = 0.072). 

(330) 

Intervention 
n=12 males 
n=10 females 
Control  
n=11 males 
n=12 females 

8-12 
10 mins jumping activity twice /wk 
for 8 months 

pQCT tibia strength and 
geometry No significant differences. 

 (319),  
(320) 

Intervention 
n=22 males 
n=23 females 
Control 
n=24 males 
n=30 females 
n=30 control  

13.4-14.2 
300 jumps /10  min twice/wk for 8 
months DXA LS/FN-BMC 

Intervention group gained significantly more 
FN-BMC than controls (185.4 ± 91.9 versus 110.4 ±96.1 
g; p = 0.009) with no changes in other significant 
parameters.  
These changes were maintained for one, and following 
three years. 

 

DXA, dual-energy X-ray absorptiometry; pQCT,  peripheral quantitative computer tomography; BMD, bone mineral density; BMAD, bone mineral apparent density ; 
BMC, bone mineral content; LS, lumbar spine; TB, total body; FN, femoral neck; BA, bone area 
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1.4.3 Long term benefits of WBE on osteoporosis risk 

Although there is overwhelming evidence that exercise can optimize skeletal development, it 

remains incompletely understood whether exercise-induced skeletal gains during childhood are 

maintained into later life. Researchers suggest the amount of bone mineral acquired during 

childhood and adolescence accounts for approximately 60% of the risk for osteoporosis in later life 

(331) and the susceptibility to osteoporosis may be detectable in early childhood  as bone status 

during childhood is a strong predictor of bone status in young adulthood, when peak bone mass is 

achieved (332). It has been calculated that a 10% increase in peak bone mass would delay the onset 

of osteoporosis by 13 years (220) and could reduce fracture risk by as much as 50% (333). 

However, few studies have addressed the question of whether reported short-term benefits of WBE 

continue to accrue with participation over a longer term. Prospective observational animals and 

human studies suggest some of the benefits of exercise on bone during childhood may be 

maintained into young adulthood (334,335), a possible preventive strategy against fragility 

fractures in old age (333) . On the other hand, the reversibility effect of exercises on bone has been 

reported elsewhere, showing a marked decline in BMD upon discontinuation of WBE (336). 

Perhaps there is no reason to believe that some regression would not occur in adolescence (337). 

Nevertheless, some other benefits (on geometry, microarchitecture, and/or strength) may persist 

despite loss of bone mass (335,338). 

 

1.4.4 Other benefits of exercise 

Exercise regimens targeting bone are unique and different from other regimens proposed for other 

systems such as metabolic and cardiovascular. However, some exercises regimens are often 

combined to target a wider range of tissues, with the aim of improving several aspects of health 

outcomes simultaneously.  

 

1.4.4.1 Body composition  

The effects of WBE on body composition have shown conflicting results. Numerous studies of 

children and adolescents show that WBE induces increases in muscle mass and strength (339), and 

increasing duration or increasing frequency of short-duration regimens may contribute to greater 

benefits in bone and body composition (340,341). A study showed that a twice-weekly, school-

based, 10-min jumping regime resulted in increased  lean mass in a group of boys and girls 

compared with matched controls, and boys gained more lean mass and had a significant decrease in 

fat mass compared with controls (342). On the other hand, it has been reported that exercise in 

early pubertal children shows little or no effect on body composition (343) and jumping-focused 

interventions may reduce fat and enhance musculoskeletal tissue in school-age children but does 

not increase lean mass (329,341).  
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1.4.4.2 Lipids profiles  

Several studies have established the beneficial of exercise in improving plasma lipid profiles by 

increasing the ratio of HDL to total cholesterol and reducing the ratio of LDL to total cholesterol 

(142,344). Low and high-intensity exercises may be particularly beneficial in reducing the risks of 

hyperlipidemia and cardiovascular disease (345,346), which was shown to be independent of 

weight loss (347). In contrast, studies have reported that resistance and high impact exercises have 

limited efficacy in improving lipid profiles (348).  

 

1.4.4.3 Insulin sensitivity  

There is an accumulation of evidence to support the belief that resistance exercise is effective in 

decreasing fasting insulin and glucose and improving insulin resistance in children, adolescents 

(349) and young adults (350) and that could be applied to the prevention of T2DM (351). A recent 

meta-analysis of effectiveness of exercise training on fasting insulin and insulin resistance in 

children and adolescents revealed a 11.4-U/mL (95% CI: 5.2–17.5) improvement in fasting insulin 

and an improvement in HOMA-IR of 2.0 (95% CI: 0.4–3.6)  (349). Studies exploring the impact of 

mechanical load exercise on insulin resistance are few. There appears to be improvement in insulin 

sensitivity with aerobic exercise regimens and combinations of aerobic and resistance training in 

obese (352) and non-obese children (353). 

 
1.4.4.4 Quality of life 

Both weight-bearing and non-weight-bearing exercise programs are reported to improve health-

related QoL (354,355). A review of adult data obtained from cross-sectional studies showed a 

consistently positive association between physical activity level and health-related quality of life 

(356). 

 

1.4.5 Summary  

Although several favourable benefits of WBE, in particular jumping exercise, for bone are well 

established, it is still not known the extent to which it is recommended for the prevention of 

osteoporosis. Long-term follow-up is necessary to determine whether WBE during childhood and 

adolescence can optimize peak bone strength through growth to affect osteoporosis risk in later life. 
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2.1 Rationale, Specific Aims  

It is well known that growth hormone (GH) brings about several effects, involving bone, body 

composition, lipid and glucose homeostasis as well as health related quality of life. However, the 

complex interplay between these parameters is rather poorly studied in children and adolescents 

with childhood-onset-GH deficiency (CO-GHD). Data showed that CO-GHD may contribute to 

low bone density and osteoporosis in adulthood. However, the direct mechanisms of which CO-

GHD effects on bone health remain largely unknown. Therefore, the overall aim of this PhD thesis 

is to achieve more knowledge about the impacts of CO-GHD on bone health at time of initial 

evaluation and retesting at final height. In addition through this thesis the following specific aims 

are proposed: 

 

2.1.1 An audit of the management of CO-GHD during young 
adulthood in Scotland (Chapter 3).   

Hypothesis: Patients with CO-GHD require biochemical re-evaluation and reconfirmation of GHD 

during transition before reinstituting adult rhGH therapy. 

Aim: To review the management of CO-GHD after final height in Scotland; in addition to assess 

the incidence of, and to find out the predictors of, persistent GHD, in patients with CO-GHD after 

retesting at final height. 

 

2.1.2 Bone mass and body composition in adolescent with CO-
GHD at final height (Chapter 4). 

Hypothesis: Bone health is adversely affected in patients with CO-GHD during transition after 

attenuation final height. 

Aim: To compare size/height corrected DXA parameters of bone mass and body composition in 

CO-GHD adolescents with healthy controls.  

 

2.1.3 Bone health and body composition in children and 
adolescents with CO-GHD at time of initial evaluation and 
retesting (Chapter 5). 

Hypothesis: Bone health is adversely affected in patients with CO-GHD at time of initial 

evaluation and retesting at final height. 

Aims: 1-To evaluate musculoskeletal health in children and adolescents with CO-GHD at time of 

initial evaluation and retesting at final height. 2 -To explore the relationship of bone and body 

composition parameters with bone metabolism and turnover biomarkers in subjects with CO-GHD. 
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2.1.4  Metabolic parameters and glucose homeostasis in children 
and adolescents with CO-GHD at time of initial evaluation 
and retesting (Chapter 6). 

Hypotheses: 1-Deterioration of metabolic parameters and glucose homeostasis in children and 

adolescents with CO-GHD. 

2- Metabolic and adiposity markers have determined effects on bone health of subjects CO-GHD.  

Aim: To investigate lipids, adipokines (leptin- adiponectin- resistin) and glucose homeostasis and 

their relationship with bone and body composition in children and adolescents with CO-GHD at 

time of initial evaluation and retesting at final height.  

 

2.1.5 Quality of Life of Children and Adolescents with CO-GHD 
(Chapter 7). 

Hypothesis: Dimension in health related quality of life in CO-GHD in relation to GH statue.  

 Aim: To evaluate quality-of-life in children and adolescents with CO-GHD at the time of initial 

evaluation or retesting at final height. 

 

2.1.6 The effect of weight bearing exercise in children and 
adolescents with CO-GHD (Chapter 8). 

 Hypotheses: 1-Exercise mitigates the effect on bone health in CO-GHD patients. 

2- The beneficial effect on bone health is greater in those who have exercise and rhGH. 

Aim: To explore the feasibility performing weight bearing exercise (jumping exercise) in children 

and adolescents with CO-GHD, and to assess its effects on the bone health and body composition 

with or without rhGH therapy.  
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CHAPTER 3 

 

 An Audit of the Management of Childhood-Onset 
Growth Hormone Deficiency during Young 

Adulthood in Scotland 
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3.1 Abstract 

Background: Adolescents with childhood onset growth hormone deficiency (CO-GHD) require re-

evaluation of their growth hormone (GH) axis on attainment of final height to determine eligibility 

for adult GH therapy (rhGH). 

 

Aim: Retrospective multicentre review of management of young adults with CO-GHD in four 

paediatric centres in Scotland during transition.  

 

Patients: Medical records of 130 eligible CO-GHD adolescents (78 males), who attained final 

height between 2005-2013 were reviewed. Median (range) age at initial diagnosis of CO-GHD was 

10.7yrs (0.1-16.4) with a stimulated GH peak of 2.3μg/l (0.1- 6.5). Median age at initiation of 

rhGH was 10.8yrs (0.4-17.0). 

 

 Results: Of the 130 CO-GHD adolescents, 74/130 (57%) had GH axis re-evaluation by stimulation 

tests /IGF-1 measurements. Of those, 61/74(82%) remained GHD with 51/74(69%) restarting adult 

rhGH. Predictors of persistent GHD included an organic hypothalamic-pituitary disorder and 

multiple pituitary hormone deficiencies (MPHD). Of the remaining 56 /130 (43%) patients who 

were not re-tested, 34/56 (61%) were transferred to adult services on rhGH without biochemical 

retesting and 32/34 of these had MPHD. The proportion of adults who were offered rhGH without 

biochemical re-testing in the four centres ranged between 10% and 50% of their total cohort.  

 

Conclusions: A substantial proportion of adults with CO-GHD remain GHD, particularly those 

with MPHD and most opt for treatment with rhGH. Despite clinical guidelines, there is significant 

variation in the management of CO-GHD in young adulthood across Scotland. 
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3.2 Introduction  

The transition of care from childhood to adulthood for many chronic disorders requires a careful 

coordinated approach and this is particularly important in growth hormone deficiency (GHD). 

Traditionally, children with childhood onset GHD (CO-GHD) discontinue recombinant human GH 

therapy (rhGH) after attaining final height. However, adults with CO-GHD may have increased fat 

mass, decreased muscle mass and low bone mineral density, as well as reduced cardiac 

performance, altered lipid status, reduced physical performance, impaired cognitive function and 

reduced well-being (133,203). Reports suggest that these adults may benefit from rhGH (357,358).  

 

A number of studies have shown that a high proportion of CO-GHD patients remain GH deficient 

as adults especially those with multiple pituitary hormone deficiencies (MPHD) and/or structural 

abnormalities, whereas the majority of those with idiopathic or isolated GHD no longer have GHD 

in adulthood (359-361). Therefore, after childhood treatment it is necessary to review GH status in 

order to assess appropriateness of adult rhGH replacement (264). However, the extent of benefit 

from this therapy may be variable and the decision to reinstitute rhGH needs to be undertaken 

carefully.  

 

In this context, clinical practice guidelines have been issued on the subject of transition of care of 

young adults with CO-GHD (200-202,362). However, the practicalities of these guidelines as well 

as the extent to which these guidelines have been implemented in clinical practice are unclear. The 

purpose of this multicentre study was to understand the variation that may exist in the management 

of young adults with CO-GHD after attainment of final height. 
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3.3 Patients and Methods 

We reviewed databases from the four specialist endocrine centres in Scotland and identified young 

adults who had been diagnosed as having CO-GHD and who had been treated with GH during 

childhood and had subsequently reached final height between 2005-2013. Study entry criteria were: 

CO-GHD (low GH peak response on stimulation test <6.6µg/l), GH treatment during childhood, 

attainment of final height between 2005-2013 (height velocity <1cm/year as defined in all centres), 

and evaluation of GH- axis by stimulation tests and/or IGF-1 levels after withdrawal of GH for at 

least one month. Exclusion criteria included: untreated CO-GHD, GH-treated patients with CO-

GHD who have not yet attained final height. Baseline demographic data included: aetiology of CO-

GHD, age at diagnosis of CO-GHD, duration of GH treatment, presence of multiple pituitary 

hormone deficiencies (MPHD), re-evaluation of GH axis, and whether adult GH treatment was 

recommenced or not (Appendix A). The persistent GHD after retesting  for four centers was 

defined  as cutoff <5 μg/L GH peak response for dynamic stimulation testes and/or low serum IGF-

1 levels (<2 SD for age and sex)(200). IGF-1 level measurement for centres A, B, and D were done 

using IDS iSys and centre C measured IGF-1 levels by immunoassay on the Siemens Immulite. All 

IGF-1 levels were corrected for age and sex accordingly. 

 

3.4 Statistical Analysis 

Data were analyzed using Minitab software (Version 16) with a significance level of <0.05 and are 

described as median, ranges and percentage. Additionally, the Mann–Whitney U–test was used for 

calculation of significance of differences between median values.  Association with clinical factors 

was assessed by Spearman’s rank coefficient and a positive predictive value (PPV) was calculated 

for the identified predictors of persistent GHD. 
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3.5 Results 

3.5.1 General characteristics 

A total of 142 patients were screened, 130 of whom met inclusion criteria. The 130 patients (78 

male) comprised of: 70 from centre A, 32 from B, 18 from C and 10 from D. Table 3-1 displays the 

aetiology of CO-GHD.  An approximately of 29% of our cohort had congenital GHD of organic 

aetiology and around 40% had acquired GHD of oncology and cranial irradiation. In addition, 20% 

of our cohort, their GHD was a one feature of either a syndrome or multiple organs defects.  

Median age at diagnosis of CO-GHD was 10.7 years (0.1 - 16.4) with an initial stimulated GH peak 

of 2.3μg/l (0.1 - 6.5), and basal IGF-1 was 74μg/l (4.0 - 410.0). Median age at initiation of rhGH 

was 10.8 years (0.4- 17.0). GH peak at diagnosis was lower in those with MPHD compared to 

IGHD (1.9μg/l (<0.1- 6.4) vs. 3.0μg/l (0.3- 6.5) respectively: p<0.01). 
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Table  3-1 The categories of patients with CO-GHD according to aetiology and centres 
distribution is shown as (A, B, C, D).  
 

 
 

Total number 
of cases 130 

IGHD 
48/130(37%) 

MPHD* 
82/130 (63%) 

Congenital n (%) (A,B,C,D) 

   -Pituitary axial structural abnormalities  (A,B,C,D) 

  -Midline axial structure defects (SOD)(A,B,C,D) 

38/130 (29%) 

24 

14 

12 (8,1,2,1) 

9(6,1,1,1) 

3(2,0,1,0) 

26 (14,3,4,5) 

15 (6,3,1,5) 

11(8,0,3,0) 

Oncology/cranial irradiation  n(%)(A,B,C,D) 

   - Craniopharyngioma (A,B,C,D) 

    - Hematologic malignancies (A,B,C,D) 

   - Medulloblastoma (A,B,C,D) 

    - Other CNS tumors (A,B,C,D) 

51/130 (40%) 

15 

12 

6 

18 

8 (5,3,0,0) 

- 

4 (4,0,0,0) 

1 (0,1,0,0) 

3 (1,2,0,0) 

43(18,19,4,2) 

15 (6,7,1,1) 

8 (6,0,1,1) 

5 (1,4,0,0) 

15 (5,8,2,0) 

Idiopathic1  n (%) (A,B,C,D) 15/130 (11%) 13 (7,1,5,0) 2 (1,1,0,0) 

Others2 n (%) (A,B,C,D) 

   -Crohn's disease (A,B,C,D) 

   -Coeliac disease (A,B,C,D) 

   -Haematological diseases 3(A,B,C,D) 

   -other diseases 4 (A,B,C,D) 

  -Syndromes 5 (A,B,C,D) 

  -Acquired Brain injury  (A,B,C,D) 

26/130 (20%) 

4 

2 

2 

11 

6 

1 

15 (12,1,1,1) 

4 (3,0,0,1) 

- 

1 (1,0,0,0) 

8 (6,1,1,0) 

2 (2,0,0,0) 

- 

11 (5,3,2,1) 

- 

2 (0,1,1,0) 

1 (1,0,0,0) 

3 (0,2,1,0) 

4 (3,0,0,1) 

1 (1,0,0,0) 

 
Data are presented as the numbers of patients and percentages are given in parentheses  
*33/82 patients with one additional pituitary hormone deficiency, 17/82 with two additional 
deficiencies, 19/82  with three and 13/82 with four additional deficiencies ‘panhypopituitarism’. 
IGHD, isolated growth hormone deficiency; MPHD, multiple-pituitary hormone deficiencies; SOD, 
Septo-optic dysplasia 
1 Normal pituitary MRI, GHD is not associated with other conditions;  2 Normal pituitary MRI (or no 
MRI report), but GHD is associated with other conditions;  3 (Thalassemia, X-linked Sideroblastic 
Anaemia); 4 (Microephaly with learning disability, history of intrauterine growth retardation, 
gastrochisis with history of small  for gestational age, Asthma,  joint hypermobility syndrome, 
pesudohypoparathyrodism); 5 (Charge syndrome, Noonan syndrome, Kallman Syndrome, trisomy 
22, Klinefelter's syndrome, Turner's syndrome with GHD). 
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3.5.2 Re-evaluation of GH axis 

A total of 74/130 (57%) patients with CO-GHD (IGHD=31 (42%): MPHD=43(58%)) were 

biochemically retested at a median age of 18.2 years (14.5- 21.3) (with one outlier patient who was 

retested at the age of 27.5 years), rhGH treatment was discontinued at the median age of 16.4 years 

(10.8 - 21.0). Biochemical retesting was performed after a median period of 0.5 years (0.1- 5.6) off 

rhGH (21/74 (28%) were retested over period of (0.1-0.3 years) and 34/74(46%) over a period of 

(0.4-5.7 years), with incomplete data on timing of re-testing in 20/74 (27%). Median duration of 

childhood treatment was 5.3 years (0.4- 16.8). At retesting, the median GH peak was 1.6μg/l (0.1- 

23.7) and IGF-1 was 88.0μg/l (15.0- 631.0). Of those retested, 61/74 (82%) (32 males) remained 

GHD and were eligible for adult rhGH, with 51/61 (84%) re-starting adult rhGH and 10/61 (16%) 

declining therapy although it is possible that they may have restarted at a later stage. The remaining 

13/74 (18%)(10 males) who were no longer GH deficient consisted of eight with idiopathic IGHD, 

two brothers with central hypothyroidism and normal pituitary MRI, one with an ectopic pituitary, 

one with hypogonadism and Coeliac disease and one with a history of cranial irradiation. Of the 56 

of 130 (43%) cases of CO-GHD who were not retested 34 (61%) were transferred from paediatric 

to adult services without biochemical retesting during transition, 12 (21%) stopped treatment 

without biochemical re-evaluation and 10 (18%) were lost to follow up whilst on treatment (Figure. 

3-1). 

Dynamic function stimulation tests were performed in 40/74 (54%) patients who were retested, 

with 35/40 (88%) of subjects having a low GH peak response <5µg/l, with 27/35 of them having 

severe GHD with a GH peak response <3µg/l.  Of the remaining 34/74 (46%) patients who were 

retested, IGF-1 levels alone were available and low enough to confirm GHD (< -2 SD for age and 

gender) in 19/34 (56%) of which 15 had MPHD and 4 had IGHD (organic causes and abnormal 

pituitary MRI). Two patients (MPHD) had IGF-1 levels within normal range on initial retesting (> 

2 SD for age and gender), but were confirmed to have GHD following GH stimulation tests. 
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Figure  3-1 Flow chart of study cohort and the outcome of management of CO-GHD in Scotland 
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3.5.3 Reconfirmation of GHD and initiation of adult GH 
replacement therapy  

Of the 130 with CO-GHD, 34 (26%) patients continued adult rhGH without temporary cessation of 

therapy or formal retesting. Of these 34, nine had structural abnormalities on MRI, 22 were related 

to late effects of cancer therapy and three had unexplained GHD. Of those 34, 31 (91%) had 

MPHD (17/32 of them had three or more additional pituitary hormone deficiencies (PHDs)); and 

3/34 (9%) had IGHD (two with pituitary structural abnormalities on MRI and one with tumour 

related GHD). These patients were advised to continue rhGH until their mid-20s.  

For patients who were re-tested, GH cut offs for considering rhGH varied between centres. Not all 

patients found to have persistent GHD restarted adult GH therapy despite low peak GH levels at re-

testing. There were four patients who were found not to have severe GHD with GH peaks 4-5 µg/l 

(three patients from centre B, one from centre A) and were not offered rhGH as they did not meet 

adult criteria for replacement. However, among those who were offered rhGH after retesting, one 

patient with IGHD (centre C) had a GH peak >5 µg/l (5.5 µg/l). 

 

3.5.4 Variation in the management between centres 

There were substantial variations in the management of CO-GHD between Scottish centres. Re-

testing with stimulation testes and/or IGF-1 levels was found to be the highest in centre A (68%), 

while centre C had the lowest percentage of retested patients (28%), although this did include all 

IGHD patients from centre C. Centre B did not retest those with a high likelihood of permanent 

GHD (especially those with three or more additional PHDs) and had the highest percentage of 

adults on rhGH without biochemical re-evaluation (Table 3-2). A total of 32/130 patients in the 

cohort had three or more additional PHDs (Table 3-3). Of these 32, 14 (44%) were retested using 

their IGF-1 levels alone and all were confirmed to have adult GHD, 17 (53%) continued on rhGH 

without biochemical retesting and one was lost to follow up whilst on treatment. 
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Table  3-2 Management of patients with CO-GHD according to each Scottish centre 
 

 All centres A B C D 

Total number of patients  (n) 130 70 32 18 10 

Total number of patients re-tested n (%) 

       Persistent GHD n (%) 

       Those with persistent GHD who restarted rhGH n (%) 

74/130 (57) 

61/74 (82) 

51/61 (83) 

48/70 (69) 

43/48 (90) 

35/43 (81) 

16/32 (50) 

12/16 (75) 

11/12 (92) 

5/18 (28) 

1/5 (20) 

1/1 (100) 

5/10 (50) 

5/5 (100) 

4/5 (80) 

Total number of patients not-retested n (%) 

       Continued adult rhGH therapy without re-testing n (%) 

       Lost to follow up whilst on treatment n (%) 

       Stopped GH, no re-testing required n (%) 

56/130 (43) 

34/56 (61) 

10/56 (18) 

12/56 (21) 

22/70 (31) 

7/22 (32) 

9/22 (41) 

6/22 (27) 

16/32 (50) 

16/16 (100) 

0 

0 

13/18 (72) 

7/13 (54) 

0 

6/13 (46) 

5/10 (50) 

4/5 (80) 

1/5 (20) 

0 

 

Data are presented as the numbers of patients and percentages are given in parentheses 
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Table  3-3 Variation in the management of patients with CO-GHD between the four Scottish centres according to GHD categories 
 

            Centres A B C D 

 IGHD MPHD IGHD MPHD IGHD MPHD IGHD MPHD 

 
Total CO-GHD  n=130 [32]  

 
32 

 
38[16] 

 
6 

 
26[10] 

 
8 

 
10[3] 

 
2 

 
8[3] 

Retested     n=74 [14] 

               With structural abnormalities1 

              Tumour related2 

              Idiopathic/unexplained3 

    Re-confirmed GHD 

21 

8 

3 

10 

16 

27[13] 

13[5] 

13[8] 

1 

27[13] 

4 

- 

2 

2 

3 

12[0] 

2 

7 

3 

9[0] 

4 

1 

- 

3 

1 

1 [0] 

- 

1 

- 

0 

2 

- 

- 

2 

2 

3[1] 

- 

1 

2[1] 

3[1] 

Not retested (but on adult rhGH) n=34 [17]  

              With structural abnormalities1  

              Tumour related2 

               Idiopathic/unexplained3 

0 

- 

- 

- 

7[2] 

- 

5[2] 

2 

2 

2 

- 

- 

14[10] 

1 

12[10] 

1 

1 

1 

- 

- 

6 [3] 

3 [3] 

3 

- 

- 

- 

- 

- 

4[2] 

1 

1[1] 

2[1] 

 

Data are presented as number of patients with CO-GHD and [number of patients who have three and more additional pituitary hormones deficiencies].   

 1 MRI imaging reported hypothalamic-pituitary axial structural abnormalities ; 2 Cranial irradiation;  3 Normal pituitary MRI /Congenital GHD unexplained (no MRI 
report)/ and /or associated with chronic disease 



 

96 
 

3.5.5 Predictors of persistent GHD on re-evaluation 

Patients with persistent GHD were diagnosed at an earlier age ((8.4 years (0.3- 16.0) vs. 11.6 years 

(7.1- 15.5), p=0.01) and reached final height with re-evaluation of their GH axis in earlier 

adolescence ((17.9 years (14.2- 21.2) vs. 19.3 years (17.3- 21.3), p=0.004) than those who were no 

longer GH deficient on retesting. No significant differences in the other parameters between 

persistent GHD and non-persistent GHD were identified at time of diagnosis or re-evaluation. In 

this population the peak GH level on retesting was positively related with the GH peak level at 

childhood (r = 0.4, P = 0.02). 

The number of additional PHDs was a predictor of a low peak GH on retesting as all patients with 

two or more additional PHDs had a lower GH response (<5µg/l) at reassessment with a PPV 

(93%). The presence of hypothalamic–pituitary structural abnormalities has a high PPV (96%) of 

persistent GHD, as of the 25 who were retested, 24 were reconfirmed with persistent GHD. 

Similarly, CO-GHD with a history of cranial irradiation predicted persistent GHD in adulthood 

(96%). 

 

3.6 Discussion 

In this study, we reviewed the management of CO-GHD during transition in Scotland. The 

aetiology and the categories in the distribution of our cohort among the Scottish centres are 

consistent with previously reported by KIMS database of adult with CO-GHD (Pfizer International 

Metabolic Database)(234), and with National Cooperative Growth Study (NCGS) (USA-Canada) 

(363). We cannot comment on racial differences, as the data was not available. However, the 

(NCGS) revealed that 85% of patients receiving GH therapy for idiopathic GHD were white 

Caucasian, 6% were black African, and 2% were Asian (363).  

Our data confirm that a high proportion (82%) of the retested patients with CO-GHD continue to 

have GHD as adults. The majority (80%) of those who remain GH deficient opted to resume adult 

GH treatment, however it is unknown whether they complied with therapy and for how long they 

continued with the treatment. It may also be the case that those adults who were GHD initially 

declined to restart rhGH during transition, but later reconsidered GH therapy. Factors influencing 

this decision would be an important area for future studies. 

Previous published studies have reported variable estimates of persistent GHD in adulthood 

ranging from 12.5-90% (364,365) but the high incidence of ongoing GHD in adulthood in our 

cohort may be attributed to the large proportion of patients with organic causes for their GHD. 

Some of our subjects with MPHD who had no structural abnormalities on MRI continued to have 

GHD, raising the possibility of an underlying genetic disorder. Similarly, the majority of idiopathic 

IGHD who were re-evaluated were GH deficient which may also indicate an underlying genetic 

predisposition. These findings suggest the importance of follow up and regular assessment of 

pituitary function in those with a low probability of persistent GHD, as they may develop other 
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pituitary hormone deficiencies as previously demonstrated(366,367). On the other hand, some 

patients who would be considered as having a moderate to high probability of persistent GHD 

(IGHD with structural abnormalities, patients with MPHD or those with a history of cranial 

irradiation) were no longer GH deficient. These findings demonstrate the limitations in using “at 

risk” groups to determine who require re-evaluation of their GH axis and those who do not.  

Our data confirm that while there are no unequivocal auxological or clinical signs that predict the 

transiency or the persistence of GHD, a history of organic disease, the presence of two or more 

additional PHDs (368,369), presence of hypothalamic-pituitary structural abnormalities and  

tumour related organic GHD are strong indicators of persistence GHD(199,206,370,371).  

In terms of timing of retesting, the current guidelines suggest that a period from one to three 

months off rhGH is sufficient for retesting (200). Our data show a variable interval between 

stopping treatment and reassessment, with only 28% of patients off rhGH for less than 3 months. It 

is not clear for those who were off rhGH for longer duration before reassessment whether their 

stopping rhGH was for reasons other than re-testing. However, this prolonged period off rhGH may 

be associated with detrimental effects on somatic bone and body composition development during 

transition (234,245), with recommendations for prompt resumption of rhGH in individuals with 

clinical evidence of persistent GHD (217).  Furthermore, a longer interval off rhGH may increase 

the risk of being lost to follow up in these already vulnerable patients and continued follow up 

around this time is essential (372). We recommend that in patients who are under the care of 

paediatric services, the evaluation of GHD in transition should be undertaken by the paediatric 

clinic, ideally in the context of a joint transition service to improve the follow up and smooth 

transfer of adolescents with chronic endocrine conditions to the adult services as previously 

suggested (373).  

The principle of offering rhGH during transition for those who have ongoing severe deficiency was 

variable between centres as the cut-offs chosen are variable, though the majority were in keeping 

with the guidance suggesting a GH peak <5 μg/l constituting severe GHD in transition (200,201). 

Few patients in our cohort declined restarting adult rhGH, they may be asymptomatic and therefore 

reluctant to restart rhGH therapy. Approximately one third of our subjects were considered to be 

very likely to have permanent GHD and therefore continued rhGH uninterrupted, apart from 

adjustment to an adult GH dose. This is in line with current guidelines which recommend that 

patients with severe congenital or acquired panhypopituitarism with three or more pituitary 

hormone deficiencies or identified genetic mutations may not require re-evaluation of their GH 

status; otherwise all patients with CO-GHD require biochemical re-evaluation and reconfirmation 

of GHD during transition before reinstituting adult GH replacement therapy (200,362). However, 

of the 34 patients who continued adult rhGH without formal retesting, nine had structural 

abnormalities on MRI probably were at high risk of ongoing GHD, but three had unexplained GHD 

and probably should have been retested. Furthermore, some centres still retested those with a high 

likelihood of permanent GHD, by checking their IGF1 levels, although all were reconfirmed GHD 

and resumed rhGH. On these grounds, it seems that no clear consensus has been reached as to 



 

98 
 

whether or not to withdraw treatment and retest those at high risk of permanent GHD. It is also 

unclear whether those who continued rhGH without biochemical re-testing were re-evaluated at a 

later stage. For those who restarted rhGH, according to the current guidelines, at completion of 

somatic growth (approximately 25-30 years old) further re-evaluation should be undertaken with 

the offer of adult GH replacement therapy and monitoring in accordance with National Institute for 

Health and Care Excellence guidance (NICE) (TA 64 August 2003). 

 

3.7 Conclusion 

In conclusion, this study not only provided a snapshot of the differences in management of CO-

GHD during transition across Scotland, but it has also enabled us to identify areas of uncertainty 

despite there being clinical practice recommendations. Our data showed a substantial proportion of 

patients with CO-GHD remain GH deficient and most opt for rhGH as adults, although not all 

patients may require re-evaluation of their GH axis. This study also raises concerns about follow up 

of those who no longer have GHD and patients with GHD who opted not to resume adult rhGH. 

The optimal management of adolescents with CO-GHD requires continuous follow up during 

transition and effective communication between paediatric and adult services. 
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CHAPTER 4 

 

 Bone Mass and Body Composition in 
Adolescents with Childhood Onset-Growth 

Hormone Deficiency at Final Height 
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4.1 Abstract  

Background: Childhood onset growth hormone deficiency (CO-GHD) may contribute to low bone 

density and osteoporosis in adulthood. Data on bone mass and body composition in GH-treated 

adolescents with CO-GHD at final height are inconsistent. 

 

Aims: To compare size/height corrected parameters of bone mass and body composition in CO-

GHD adolescents with healthy controls. 

 

Method: Review of CO-GHD treated with recombinant human growth hormone (rhGH) and who 

had attained final height between 2005 to 2013 in a single tertiary paediatric centre.  

 

Results: DXA scan results of 21 adolescents with CO-GHD [12 males, (6 with isolated GHD)] 

were compared to 21 age/height matched controls. The CO-GHD were diagnosed at age 9.4yrs(1.2, 

14.5) and first treated with GH at age 10.1 yrs(1.3,14.7) with median duration of treatment 5.6 

yrs(2.0, 16.3). Lower TB- BMC for height SDS and for bone area SDS was seen in CO-GHD 

adolescents, which was pronounced in males but not in females.  BMAD SDS of CO-GHD subjects 

were also significantly lower CO-GHD females, but not in males, compared to controls. 

Furthermore, subjects with CO-GHD have lower LM for height and higher FM for height 

compared to controls, and this was more pronounced in males than females (p=0.04). Neither bone 

nor body composition parameters were correlated with stimulated peak GH /IGF-1 levels at 

retesting, or with duration of childhood GH treatment or duration of discontinuation of treatment 

for all patients, or either gender. In this cohort, LM, but not FM, showed significant correlations 

with TB/LS bone mass.  

 

Conclusion: Males with CO-GHD unlike females have lower TB bone mineralisation for their size 

and height whereas CO-GHD females appeared to have less mineralisation at the LS. These 

findings indicate that adolescents with CO-GHD have a low bone mass, despite prior long term 

rhGH replacement therapy. 
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4.2 Introduction 

Childhood onset GH deficiency (CO-GHD) may contribute to low bone density and osteoporosis in 

adulthood (92,263). Dual-energy X-ray absorptiometry (DXA), the most commonly used technique 

to measure bone density and body composition, is subject to the confounding effect of body size, 

body composition and pubertal maturation in normal growing children as well as children with 

chronic disease such as GHD (374-376). Recently, the International Society for Clinical 

Densitometry (ISCD) made recommendations based on reviews of several approaches and methods 

of the scientific literature that allow adjustment of DXA derivatives (83). Although statements from 

this and other expert panels have highly recommended to adjust DXA results for height (377), bone 

size (378-380) and body composition (381), there is still no agreement to what is the optimal 

approach for correction and interpretation of  DXA parameters in clinical practice. 

In line with this, clinical studies thus far demonstrate conflicting results regarding bone mass of 

adolescents with CO- GHD who received childhood recombinant human growth hormone (rhGH) 

at time of final height. Studies have shown adolescents with CO- GHD to have either normal 

(223,224) or lower bone mass when compared to the normal population (233,365,382,383). These 

reports however, have not considered the bone size and height of CO-GHD subjects and no 

size/height correction was made on the reported data. 

This study therefore aims to apply different models of DXA adjustment looking for bone and body 

composition of GH treated adolescents with CO-GHD after attainment of final height. 

 

4.3 Study Subjects and Methods 

4.3.1 Subjects  

CO-GHD patients treated with rhGH who had attained final height between 2005 to 2013 at the 

Royal Hospital for Children, Glasgow were reviewed retrospectively. Eligibility criteria included: 

fulfilled the clinical and diagnostic criteria for CO-GHD (childhood stimulation GH peak <6.6 

µg/l), treated with rhGH during childhood for more than one year before attainment of final height, 

had attained final height between 2005 -2013 (height velocity <2cm/year), and had DXA scanning 

of total body (TB) and lumbar spine (LS) as part of their clinical management and re-evaluation at 

final height and before recommencing adult rhGH. The exclusion criteria were untreated CO-GHD, 

short duration of childhood rhGH(< one year) or who have not yet attained final height and 

individuals receiving rhGH for other indications (i.e. Turner syndrome, small for gestational age, 

SHOX gene haploinsufficiency, and chronic renal insufficiency). All data were collected 

retrospectively from patients’ notes. 
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4.3.2 Controls 

A total of 21 height, age and sex matched healthy controls to the patients were selected from 

healthy children who had participated in a research project to collect local reference data for bone 

mass and body composition. All control children underwent TB/ LS-DXA, but no biochemical tests 

were performed. Pubertal stage was tanner stage 4 to 5 in all males and females in the selected 

controls, which means they were at or near their final height. 

 

4.3.3 Anthropometry 

 Weight and height were measured at time of the scan for both patients and controls. Weight, height 

and BMI were converted to SDS scores using British 1990 reference data (384).  

 

4.3.4 DXA parameters  

DXA scans were performed at TB, LS using a narrow fan beam lunar prodigy densitometer (GE 

Medical Systems, Waukesha, Wisconsin, U.S.A) using the Encore software (Version 8.80.001). 

Lunar software calculated an ethnicity-, age- and gender-matched bone mineral density (BMD) Z 

scores using a reference population of over 2,000 US children between the ages of 5 years and 19 

years. DXA outcomes were adjusted using the following methods: 

BMD Height age Z-score; Height age is at which a child is at 50th percentile for height on growth 

chart. Children whose height was greater than the median value for height 18years were assigned a 

height age at 18. BMD Height age Z score for TB, LS were generated by completes software –USA 

reference ranges.  

LS-bone mineral apparent density (BMAD) was calculated as = BMDareal x (4/(π x (mean of 

L2+L4 width) (378).  BMAD SDS was calculated according to age- and sex-matched reference 

values from the Dutch population (385). 

TB, LS- bone area for age and bone mineral content (BMC) for bone area SDSs were calculated 

according to age- and sex-matched reference values from the Dutch population (385). 

The relationship between LM and BMC was estimated according to Crabtree et al (381). 

SDSs of the ratio of BMC for height, bone area for height, lean mass (LM) for height, BMC for 

LM and fat mass (FM) for height were calculated from local Glasgow reference data by dividing 

the difference of index from the mean of matched height reference on SD [(value – the mean for 

height)/SD].  
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4.4 Statistical Analysis 

All data were analysed using Minitab software version 17.1. Analyses were performed for whole 

cohort and separately for males and females. Data are expressed as medians (range) and mean ± 

SD. Mann-Whitney non-parametric tests were used to examine the differences between groups. 

Fisher’s exact test used to compare categorical data. Spearman rank correlations were used to 

compare any association between variables. Multiple linear regression models were used to 

estimate the regression coefficients for LS- BMAD, TB-BMC as dependent variables according to 

gender and TB and LS bone area, LM, FM, and android (trunk) /gynoid (legs) (A/G) fat ratio as 

independent variables after adjusting for confounders of age, height, and BMI at final height. All 

graphs were prepared using GraphPad Prism 6 software (GraphPad Software, San Diego, CA, 

USA). P value of < 0.05 was considered significant. This is a retrospective review of CO-GHD 

treated with recombinant human growth hormone (rhGH) and who had attained final height 

between 2005 to 2013 in a single tertiary paediatric centre, no sample size and power calculation 

were required.   

 

4.5 Results 

4.5.1 General characteristics  

A total of 70 patients were identified, only 21(12 males, 9 females) who met inclusion criteria were 

included, Figure 4-1. 

CO-GHD was diagnosed at median (range) age 9.5 years (1.2, 14.5) and rhGH started during 

childhood at age 10.1 years (1.3, 14.7) with median duration of treatment of 5.6 years (2.0, 16.3).  

Out of 21 CO-GHD subjects, 12 (57%) had a congenital form of GHD, (10/12 (48%) a structural 

hypothalamic-pituitary abnormality and idiopathic GHD in two (9%)), while the remaining 9/21 

(43%) had acquired GHD secondary to tumour or tumour related cranial irradiation. 

Six patients of the 21(29%) (3 males, 3 females) had isolated GHD, four had a structural 

hypothalamic-pituitary abnormality on MRI scan and two had idiopathic GHD. 

15 of the 21 (71%) (9 males, 6 females) had multiple pituitary hormone deficiencies (MPHD) (n=8 

had one additional pituitary hormone deficiency (PHD), n=3 with two, n=1 with three and n=3 with 

four additional PHDs (panhypopituitrism)). Of these, six had a structural hypothalamic-pituitary 

abnormality on MRI scan and 9 were secondary due to tumour or tumour related cranial irradiation. 

All the MPHD subjects were on hormonal replacement where necessary (glucocorticoid (n=6), T4 

(n=9), sex steroid (n=10), and desmopressin (n=4)) and all were adequately controlled. 

All patients ceased rhGH treatment at final height and their DXA scans were performed at a 

median of 0.6years (0.0, 2.0) after stopping rhGH.  After retesting, 19/21 of them were confirmed 

with persistent GHD, whereas two patients with IGHD (idiopathic and ectopic posterior pituitary) 

were no longer GH deficient on retesting
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Figure  4-1 Study cohort flow chart 
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4.5.2 Anthropometric characteristics 

Anthropometric characteristics are summarized in (Table 4-1, Figure 4-2). For all subjects 

combined and separately, age, height SDS, weight SDS and BMI SDS were similar in patients with 

CO-GHD and controls. Of the 21 patients with CO-GHD, four patients (19%) (Three males- one 

female) were obese (BMI SDS > + 2; 3.4, 2.9, 3.6, 2.6 respectively) and among the control group, 

only one male was obese (BMI SDS 2.9). 

 

Table  4-1 Anthropometric characteristics of patients with CO-GHD and controls.  
 

 

CO-GHD 

(n=21) 

Controls 

(n=21) P-value* 

(95%CI) 
Median (range) Median (range) 

Sex m:f 12:9 12:9 - 

Age(yrs) 

All 

Males 

Females 

 

17.0 (14.9, 19.5) 

17.6 (15.2,  19.2) 

16.6 (14.9,  19.5) 

 

16.9 (14.8,  19.0) 

17.0 (15.4,  18.5) 

16.2 (14.8, 19.0) 

 

0.31(-0.38,1.43) 

0.34(-0.30,1.30) 

0.53 (-2.13,1.04) 

Height SDS 

All 

Males 

Females 

 

-0.9 (-1.9,  1.2) 

-0.7 (-1.9,  1.2) 

-1.0 (-1.6,   0.5) 

 

-0.3  (-2.3, 1.3) 

-0.3  (-1.4,  1.2) 

-0.7 (-2.3,  0.2) 

 

0.16(-0.80,0.23) 

0.50(-0.60,1.06) 

0.18(-0.31,0.92) 

Weight SDS 

All 

Males 

Females 

 

0.2 (-2.3,  4.2) 

0.1 (-2.3,  4.2) 

0.3 (-1.8,   2.1) 

 

-0.1 (-1.4 - 2.2) 

0.1 (-0.8 -  2.2) 

-0.4  (-1.4 - 1.0) 

 

0.49(-0.61,1.13) 

0.93(-1.41,1.33) 

0.2 (-1.83,0.70) 

BMI SDS 

All 

Males 

Females 

 

0.7  (-1.8,  3.6) 

0.5 (-1.8,  3.6) 

1.1 (-1.3,  2.6) 

 

0.4 (-1.5,  2.9) 

0.5  (-1.3,  2.9) 

0.0  (-1.5, 1.2) 

 

0.23(-0.30,1.30) 

0.79(-1.79,1.04) 

0.09(-2.05,0.19) 

 

Data are presented as median and ranges are given in parentheses 

* Mann-Whitney tests p value (95% confidence interval)
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4.5.3 Bone measures at TB and LS 

Median and ranges of TB and LS measurements of patients with CO-GHD compared with control 

data are reported in (Table 4-2, 4-3), and individual data is shown graphically in (Figure 4-2, 4-3). 

BMD-Z-score height-age at both sites TB/LS did not differ significantly between males and females 

with CO-GHD and their controls (all within the range of+2 SD of age). Lower TB-BMC for both 

bone area and height SDSs were seen in CO-GHD and that was pronounced in males but not in 

females, Table 4-2.  

BMAD SDS of CO-GHD subjects were also significantly lower than controls, with approximately 

one quarter of CO-GHD (n=5/21 (24%)) having reduced LS-BMAD SDS < -1.5 SDS, but none 

below – 2 SDS. These were three males (Ectopic posterior pituitary- Septo-optic dysplasia with 

hypopituitarism –Idiopathic isolated GHD (Charge syndrome)) and two females (Idiopathic 

isolated GHD- Craniopharyngioma). 
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Table  4-2 Parameters of bone density at total body.  

 

The data are presented as median (range) and mean (standard deviation) 

* Mann-Whitney tests p value (95% confidence interval)  

 

 

CO-GHD 

(n=21) 

Controls 

(n=21) P-value* 

(95%CI) 
Median (range) Mean (SD) Median (range) Mean (SD) 

TB-BMD  (g/cm2) 

All 

Males 

Females 

 

1.04 (0.97, 1.31) 

1.04 (0.97, 1.31) 

1.01( 0.97, 1.09) 

 

1.06 (0.09) 

1.08 (0.10) 

1.02 (0.04) 

 

1.16(1.04, 1.30) 

1.20(1.11, 1.30) 

1.06 ( 1.04, 1.21) 

 

1.15(0.08) 

1.19(0.06) 

1.09(0.06) 

 

<0.01(-0.15, -0.04) 

0.01(0.03, 0.20) 

0.04 (0.01, 0.12) 

TB-BMD  Z-score age 

 All 

Males 

Females 

 

-1.40 (-2.50,  1.20) 

-1.10 (-2.50,  1.20) 

-1.4 (-2.20,  -0.20) 

 

-1.08(1.04) 

-0.95(1.23) 

-1.25(0.75) 

 

-0.30 (-1.40, 1.20) 

0.20 (-1.40, 1.20) 

-0.60 (-0.90, 1.10) 

 

0.03(0.84) 

0.25(0.83) 

-0.26(0.79) 

 

<0.01(-1.70, -0.50) 

0.01 (0.20, 2.30) 

0.04 (0.01, 1.60) 

TB-BMD Z-score height-age 

All 

Males 

Females 

 

-0.15(-1.80, 2.10) 

-0.40 (-1.80, 2.10) 

-0.10 (-0.90, 1.30) 

 

-0.07(1.01) 

-0.18( 1.22) 

0.05(0.72) 

 

0.50 (-1.40,  2.60) 

0.65(-1.40,  2.60) 

0.2(-0.30, 1.90) 

 

0.52( 1.03) 

0.47( 1.19) 

0.60(0.83) 

 

0.05 (-1.40, 0.00) 

0.16 (-0.40,1.80) 

0.18 (-0.40, 1.40) 

TB-BMC(g) 

All 

Males 

Females 

 

2055.9 (1721.9, 4008.8) 

2509.0 (1832.5, 4008.8) 

1865.2 (1721.9, 2162.8) 

 

2252 (557) 

2542 (608) 

1897.9(138.8) 

 

2565.2 (1824.0, 3412.7) 

2903.9 (2452.7, 3412.7) 

2143.6 (1824.0, 2767.1) 

 

2552 (452) 

2866.1(295.6) 

2168.6(275.0) 

 

0.01(-677.0, -61.6) 

0.06 (-44.6, 789.3) 

0.01 (43.6, 462.0) 

TB-BMC for BA SDS 

All 

Males 

Females 

 

0.05(-0.60,  0.70) 

-0.20(-0.60, 0.70) 

0.1 (-0.50, 0.50) 

 

-0.01( 0.40) 

-0.03(0.46) 

0.02(0.34) 

 

0.16 (-0.15,  1.10) 

0.55(-0.10, 1.10) 

0.1(-0.10, 0.70) 

 

0.33(0.33) 

0.43(0.35) 

0.20(0.28) 

 

0.01(-0.59, -0.09) 

0.02 (0.06, 0.90) 

0.68 (-0.12,0.59) 

BMC for height  SDS 

All 

Males 

Females 

 

-0.03(-2.84,  2.15) 

-0.45(-2.84,  2.15) 

0.21(-1.11,  0.71) 

 

-0.18(1.06) 

-0.47(1.30) 

0.15( 0.54) 

 

0.45(-1.46,  1.91) 

0.41(-1.46, 1.66) 

0.73(-0.97, 1.91) 

 

0.45(0.86) 

0.35(0.78) 

0.57(0.99) 

 

0.03 (-1.19, -0.02) 

0.04 (0.07, 1.68) 

0.33 (-0.57,1.32) 

TB- Bone area (cm²) 

All 

Males 

Females 

 

2013.0 (1710.0, 3060.0) 

2282.0 (1881.0, 3060.0) 

1823.0 (1710.0, 2025.0) 

 

2089.7(338.8) 

2295.2(321.7) 

1838.4(119.3) 

 

2226.5(1753.0, 2694.0) 

2378.0(2080.0, 2694.0) 

1940.0(1753.0, 2277.0) 

 

2203.5(267.9) 

2387.4(184.9) 

1978.8(156.2) 

 

0.12 (-330.9, 54.0) 

0.25 (-88.9, 331.0) 

0.05 (-9.0, 282.0) 

Bone area for height SDS 

All 

Males 

Females 

 

0.08 (-2.26,  3.23) 

-0.47(-2.26, 3.23) 

0.32(-1.46, 1.20) 

 

0.13(1.27) 

0.08(1.64) 

0.19(0.71) 

 

0.46(-1.49,  1.67) 

0.40 (-1.49, 1.50) 

0.75 (-1.01,  1.67) 

 

0.36(0.90) 

0.30(0.97) 

0.43(0.86) 

 

0.28 (-1.01,0.38) 

0.47 (-1.02,1.67) 

0.72 (-0.71,1.01) 
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Table  4-3 Parameters of bone density at lumber spine. 

 

The data are presented as median (range) and mean (standard deviation) 

* Mann-Whitney tests p value (95% confidence interval)  

LS: lumbar spine; BMD: bone mineral density; BMC: bone mineral content; BMAD: bone mineral 
apparent density 

 

 

CO-GHD 

(n=21) 

Controls 

(n=21) P-value* 

(95% CI) 
Median (ranges) Mean (SD) Median (ranges) Mean (SD) 

LS-BMD (g/cm2) 

All 

Males 

Females 

 

1.01(0.88, 1.39) 

1.11(0.88, 1.39) 

0.99(0.91, 1.11) 

 

1.05( 0.13) 

1.10(0.15) 

0.99(0.05) 

 

1.12(0.95, 1.47) 

1.15(0.95, 1.3) 

1.09 (1.03, 1.47) 

 

1.14(0.11) 

1.15(0.09) 

1.14(0.13) 

 

0.01 (-0.15, -0.03) 

0.58 (-0.06,0.18) 

<0.01 (0.05, 0.20) 

LS-BMD Z-score age 

All 

Males 

Females 

 

-1.40(-2.40,  1.10) 

-0.95(-2.40, 1.10) 

-1.80(-2.30, 1.10) 

 

-1.13(1.08) 

-0.82(1.20) 

-1.55(0.78) 

 

-0.40(-2.90, 2.80) 

-0.35(-2.90, 1.0) 

-1.10(-1.70, 2.80) 

 

-0.51(1.23) 

-0.61(1.09) 

-0.37(1.45) 

 

0.07 (-1.30, 0.10) 

0.62 (-0.79,1.40) 

0.04 (0.01, 2.10) 

LS-BMD  Z-score height-age 

All 

Males 

Females 

 

-0.30(-1.30, 1.30) 

-0.15(-1.30, 1.30) 

-0.30 (-1.10,  0.40) 

 

-0.09(0.90) 

0.05(1.11) 

-0.28(0.51) 

 

0.20(-2.90,  3.00) 

0.15(-2.90, 1.00) 

0.20(-0.30,  3.00) 

 

0.24(1.14) 

-0.14(0.99) 

0.76(1.18) 

 

0.16 (-0.90, 0.20) 

0.90 (-1.10, 0.90) 

0.04 (0.01, 2.20) 

LS-BMC(g) 

All 

Males 

Females 

 

37.50 (28.13, 66.60) 

46.20 (35.6, 66.60) 

34.34(28.13, 44.11) 

 

41.52(9.93) 

49.66(12.19) 

34.80(4.67) 

 

49.0(37.26, 64.47) 

53.37(43.3, 60.6) 

42.85(37.26, 64.47) 

 

49.52(7.84) 

53.23(5.18) 

44.57( 8.27) 

 

<0.01(-14.92, -3.51) 

0.28 (-3.97,13.40) 

<0.01 (3.81, 14.07) 

LS-BMC for BA SDS 

All 

Males 

Females 

 

0.00(-1.00, 1.20) 

0.05(-1.00, 1.20) 

-0.10(-0.70, 1.10) 

 

0.03(0.66) 

0.07(0.75) 

-0.01(0.55) 

 

0.13(-0.70, 1.30) 

0.16 (-0.70, 1.20) 

-0.10(-0.50, 1.30) 

 

0.18(0.51) 

0.22(0.46) 

0.14(0.59) 

 

0.32 (-0.55, 0.19) 

0.49 (-0.57,0.80) 

0.69 (-0.40,0.75) 

LS-Width 

All 

Males 

Females 

 

3.90(3.40, 4.70) 

4.30(3.70, 4.70) 

3.60(3.40, 4.20) 

 

3.98(0.39) 

4.22(0.32) 

3.66(0.23) 

 

4.20(3.40, 4.60) 

4.40(4.00, 4.60) 

3.90(3.40, 4.50) 

 

4.16(0.34) 

4.35(0.18) 

3.90(0.32) 

 

0.13(-0.50,0.10) 

0.34 (-0.10,0.40) 

0.10 (-0.10,0.50) 

LS-BMAD  (g/cm3) 

All 

Males 

Females 

 

0.35(0.29, 0.37) 

0.33(0.29, 0.37) 

0.35(0.30, 0.37) 

 

0.33(0.02) 

0.32(0.03) 

0.34(0.02) 

 

0.36(0.30, 0.44) 

0.34(0.30, 0.42) 

0.38(0.31, 0.44) 

 

0.36(0.03) 

0.34(0.03) 

0.38(0.03) 

 

0.03 (-0.04,-0.00) 

0.26 (-0.01,0.04) 

0.01 (0.01, 0.07) 

LS-BMAD  SDS age  

All 

Males 

Females 

 

-0.91(-2.03, 0.99) 

-0.67(-2.0, 1.0) 

-1.0(-1.7, -0.5) 

 

-0.67(0.87) 

-0.44(1.06) 

-0.97( 0.42) 

 

0.02(-1.90,  1.90) 

0.12 (-1.4,  1.9) 

-0.5(-1.9,  1.1) 

 

0.03(0.90) 

0.17(0.88) 

-0.14(0.95) 

 

0.01(-1.28,-0.17) 

0.26 (-0.44,1.51) 

0.04 (0.03,1.71) 
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Figure  4-2 Individual values (median-range) of total body bone mass parameters of patients 
with CO-GHD at final height and controls. 
(Blue Square, Males; Red Circle, Females). 
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Figure  4-3 Individual values (median-range) of lumbar spine bone density parameters of 
patients with CO-GHD at final height and controls. 
(Blue Square, Males; Red Circle, Females 
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4.5.4 Body composition 

From (Table 4-4 and Figure 4-4), subjects with CO-GHD had significant reduced LM for height 

(index of primary muscle defect “Sarcopenia”) [-0.63 (-3.00, 1.87) CO-GHD vs. 0.29 (-1.75, 1.97) 

controls, p=0.04] with one girl (GHD with hypogonadism) having LM for height SDS below -2. 

 

CO-GHD had higher FM for height compared to controls [1.01 (-0.65, 6.92) CO-GHD vs. -0.32 (-

1.15, 3.25) controls, p<0.01], and this was more obvious in males than females (three males (two 

septo-optic dysplasia/hypopituitarism and one patient craniopharyngioma) and one female 

(craniopharyngioma) having extremely high FM for height SDS >5). 

 The median SDS of BMC for LM (index of primary bone defect “Osteopenia”) in CO-GHD was 

comparable to control subjects (p =0.67) with only two patients (males) (10%) having BMC for LM 

SDS less than -2 (craniopharyngioma, idiopathic IGHD). 

 

The median of A/G ratio was also significantly higher in CO-GHD compared to controls (1.10 

(0.55, 1.24) vs. 0.59 (0.53, 1.45) respectively, p<0.01).
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Table  4-4 Body composition parameters of patients with CO-GHD at final height and 
controls. 

 
 CO-GHD 

(n=21) 
Controls 
(n=21) P-value* 

(95% CI) 
Median (ranges) Mean (SD) Median (ranges) Mean (SD) 

LM (kg) 

All 

Males 

Females 

 

38.20(26.10,  62.31) 

47.1 (36.5,  62.3) 

30.0(26.1, 39.0) 

 

40.79(10.57) 

47.74(8.68) 

32.29(4.86) 

 

49.0(29.8, 60.3) 

53.8 (46.9, 60.4) 

34.9(29.8, 48.1) 

 

46.34(10.52) 

54.04(4.82) 

36.08(6.09) 

 

0.13 (-13.26,1.15) 

0.06 (-0.27,13.11) 

0.21(-2.63, 8.81) 

LM for height  SDS 

All 

Males 

Females 

 

-0.63 (-3.00,  1.87) 

-0.39 (-1.57,  1.87) 

-0.87 (-3.00,  1.71) 

 

-0.47(1.24) 

-0.21(0.98) 

-0.78(1.50) 

 

0.29 (-1.75,  1.97) 

0.39 (-1.31,  1.89) 

0.29 (-1.75,  1.97) 

 

0.24 ( 1.06) 

0.30 (0.96) 

0.17(1.24) 

 

0.04 (-1.52, -0.01) 

0.16 (-0.29, 1.33) 

0.18 (-0.58, 2.44) 

BMC for LM SDS 

All 

Males 

Females 

 

0.56 (-4.20,  5.65) 

0.23 (-4.20,  5.65) 

0.63 (-0.92,  2.61) 

 

0.54(2.13) 

0.47(2.84) 

0.62(0.84) 

 

0.5 (-1.51,  1.96) 

0.18 (-1.52,  1.96) 

0.62 (-2.51,  1.82) 

 

0.32(0.95) 

0.10(0.98) 

0.58(0.88) 

 

0.67(-0.50, 0.94) 

0.64 (-1.73,1.28) 

0.92 (-0.93, 0.76) 

FM (kg) 

All 

Males 

Females 

 

21.35 (4.59,  70.78) 

16.27 (4.59,  70.78) 

23.67 (14.54, 44.94) 

 

26.04(17.60) 

26.78(22.82) 

25.15(9.14) 

 

10.11(5.66, 48.10) 

7.76 (5.66, 32.52) 

16.22 (9.31, 48.10) 

 

14.45(10.22) 

11.03(7.85) 

19.01(11.65) 

 

<0.01(2.86, 15.51) 

0.02 (-31.29, -1.58) 

0.07 (-14.72, 0.34) 

FM for height SDS 

All 

Males 

Females 

 

1.01(-0.65, 6.29) 

0.98 (-0.65, 6.29) 

1.05 (0.41, 5.77) 

 

1.92(2.25) 

1.87(2.68) 

1.97(1.74) 

 

-0.32 (-1.15, 3.25) 

-0.47 (-1.15,  2.61) 

0.52 (-0.56, 3.25) 

 

0.14(1.14) 

-0.12(1.03) 

0.51(1.23) 

 

<0.01 (0.43, 2.29) 

0.02 (-3.68, -0.18) 

0.05 (-2.70, 0.01) 

A/G fat ratio 

ALL 

Males 

Females 

 

1.10(0.55, 1.24) 

1.14 (0.55, 1.24) 

1.03 (0.71, 1.24) 

 

1.03(0.19) 

1.04(0.23) 

1.01(0.14) 

 

0.59 (0.53, 1.45) 

0.69 (0.53, 1.45) 

0.68 (0.53, 0.98) 

 

0.76(0.23) 

0.80(0.28) 

0.71(0.16) 

 

<0.01 (0.17, 0.46) 

0.07 (-0.51, 0.03) 

<0.01 (-0.47, -0.13) 

 

The data are presented as median (range) and mean (standard deviation) 

* Mann-Whitney tests p value (95% confidence interval)  

LM: lean mass; FM: fat mass; A/G: Android/Gynoid fat ratio 
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Figure  4-4 Individual values of body composition parameters of patients with CO-
GHD and controls. 
(Blue Square, Males; Red Circle, Females) 
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4.5.5 DXA parameter in relation to disease condition 

Biochemical data was similar in the group of patients who had congenital GHD (total n=12, 7 

males, 5 IGHD: 7 MPHD) to those with acquired GHD (n=9, 5 males, 1 IGHD: 8 MPHD) with no 

differences in the time of diagnosis and duration of childhood rhGH treatment, Table 4-5.  

Lower TB and LS (p=0.01) -BMC for bone area SDS (p= 0.03, 0.01, respectively) in congenital 

GHD compared to those with acquired GHD (Figure 4-5). These differences existed in subgroups 

analysis of those with IGHD (n=6) to those with MPHD (n=15) as patients with IGHD had lower 

BMC for bone area SDS significantly at LS (P=0.04), but not significant at TB (p= 0.31) compared 

to those with MPHD. 
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Table  4-5 Clinical and anthropometrics of patients with congenital GHD, and acquired GHD. 
 

 

Congenital 

(n=12) 

Acquired 

(n=9) 

P-value* 

(95%CI) 

Gender (m/f) 7/5 5/4 0.9 

Age  17.7 (15.9, 19.5) 16.5 (14.9, 18.5) 0.09 (-0.30,2.39) 

Age of diagnosis 7.9 (1.2, 14.2) 9.5 (4.6, 14.3) 0.65 (-5.94,3.09) 

Age of starting rhGH therapy 10.5 (1.3, 14.7) 9.9 (7.1, 14.3) 0.54 (-6.65,3.33) 

Duration of rhGH treatment 5.0 (3.3,  16.3) 4.1 (2.0, 10.8) 0.14 (-1.69,8.49) 

Age of stopping rhGH 17.8 (14.7, 19.2) 16.3 (14.4, 18.2) 0.56 (-0.58,1.99) 

Height SDS -0.9 (-1.9,  0.8) -1.1 (-1.9,  1.2) 0.64 (-0.68,1.02) 

Weight SDS 0.0 (-2.4, 3.6) 0.3 (-0.8, 4.2) 0.37 (-2.42,0.92) 

BMI SDS 0.3 (-1.8,  3.4) 0.8 (0.4, 3.6) 0.30 (-2.24,0.70) 

GH peak on diagnosis  0.5 (0.1, 5.7) 2.1 (1.7, 2.4) 0.18 (-2.30,4.03) 

GH peak at retesting 0.5 (0.1,  23.7) 0.5 (0.1,  3.2) 0.62 (-0.29,2.90) 

No of additional PHDs(0/1/2/3/4) (5/5/1/1/2) (1/3/2/0/1) - 

 

Data are presented as median and ranges are given in parentheses 

*Mann-Whitney tests p value (95% confidence interval) 
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Figure  4-5 Individual data of bone density parameters in groups of congenital GHD vs. acquired GHD. 
 (Diamond, Congenital GHD; Triangle, Acquired GHD) (Red, IGHD; Black, MPHD). 
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4.5.6 Correlation of DXA parameters and clinical data 

Neither bone at both sites TB/LS nor body composition parameters were correlated with stimulated 

peak GH /IGF1 levels at retesting or with duration of childhood rhGH treatment. 

 FM correlated positively with the number of additional PHDs in subjects with GHD (r= 0.52, P = 

0.02), and higher FM was more likely in those who were received thyroxine (T4) and hydrocortisone 

replacement therapy (r=0.51, p= 0.02 T4; r=0.45, p= 0.04 glucocorticoid), Figure 4-6. 
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Figure  4-6 Fat mass and number of additional pituitary hormone deficiencies 

(r= 0.52, P = 0.02) 
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4.5.7 Relationships between body composition and bone mass  

Lean mass had a stronger positive correlation with BMC and BMD at different sites TB/LS as 

compared to fat mass in both groups. BMI and A/G ratio had a positive correlation with TB-BMC 

only in CO-GHD group, Table 4-6. 

 

Table  4-6 Spearman correlation between bone density, anthropometric and body composition 
measures 
 

 
TB-BMC TB-BMD LS-BMC LS-BMD LS-BMAD 

Age 

All 

Cases 

Controls 

 

0.02, p=0.90 

-0.07, p= 0.75 

0.26, p= 0.25 

 

-0.11, p=0.48 

-0.29, p= 0.19 

0.25, p= 0.28 

 

-0.09, p=0.53 

-0.06, p=0.78 

-0.08, p=0.71 

 

-0.21, p= 0.17 

-0.07, p=0.75 

-0.36, p= 0.10 

 

-0.10, p= 0.50 

0.03, p=0.88 

-0.22, p= 0.33 

Height 

All 

Cases 

controls 

 

0.74, p<0.01 

0.75, p<0.01 

0.76, p<0.01 

 

0.46, p=0.02 

0.32, p= 0.14 

0.56, p=0.01 

 

0.65, p<0.01 

0.71, p<0.01 

0.55, p<0.01 

 

0.41, p<0.01 

0.45, p= 0.03 

0.27, p=0.23 

 

-0.17, p=0.26 

-0.16, p= 0.47 

-0.31, p= 0.16 

BMI 

All 

Cases 

Controls 

 

0.31, p=0.05 

0.45, p=0.04 

0.38, p=0.09 

 

0.25, p= 0.11 

0.35, p=0.11 

0.36, p=0.11 

 

0.12, p=0.42 

0.25, p=0.25 

0.18, p= 0.42 

 

0.14, p=0.36 

0.40, p=0.06 

-0.04, p=0.85 

 

-0.09,p=0.57 

0.22,p= 0.33 

-0.23,p=0.30 

LM 

All 

Cases 

Controls 

 

0.86, p<0.01 

0.83, p<0.01 

0.92, p<0.01 

 

0.62, p<0.01 

0.47,p= 0.03 

0.74, p<0.01 

 

0.86, p<0.01 

0.77, p<0.01 

0.612, p<0.01 

 

0.76, p<0.01 

0.58, p<0.01 

0.28, p= 0.21 

 

-0.22,  p=  0.1 

-0.11,p=0.63 

-0.45,p= 0.06 

FM 

All 

Cases 

Controls 

 

-0.09, p=0.54 

0.18, p=0.43 

-0.17, p=0.47 

 

-0.11, p=0.47 

0.08, p=0.72 

0.00, p=0.99 

 

-0.27, p= 0.08 

-0.04, p=0.86 

-0.26, p= 0.24 

 

-0.15, p=0.33 

0.07, p= 0.7 

-0.28, p=0.20 

 

0.01, p= 0.91 

0.13, p= 0.56 

0.171, p= 0.45 

A/G 

All 

Cases 

Controls 

 

0.01, p=0.90 

0.46, p= 0.03 

0.08, p=0.72 

 

-0.03, p=0.81 

0.43, p=0.05 

0.02, p=0.90 

 

-0.17, p=0.28 

0.32, p= 0.15 

-0.13, p=0.56 

 

-0.08, p=0.58 

0.38, p=0.09 

-0.31, p= 0.17 

 

-0.23, p=0.14 

0.13,p= 0.56 

-0.32 ,p= 0.16 

 

TB: total body; LS: lumbar spine; BMI: Body Mass Index; BMD: bone mineral density; BMC: bone 
mineral content; BMAD: bone mineral apparent density; A/G: Android/Gynoid fat ratio 
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For parameters showing significant correlations with BMC and BMD at both sites, gender specific 

multiple generalized linear models were constructed to determine their potential independent 

contributions to TB-BMC and LS-BMAD after adjusting for age, height and BMI among either 

gender groups. 

Multiple linear regression analysis revealed that bone area was the strongest predictor of TB- BMC in 

both CO-GHD and controls, followed by LM and A/G ration in females as seen in Table 4-7. 

No other predictions were observed for both TB-BMC and LS-BMAD in both gender groups of CO-

GHD. 
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Table  4-7 Multiple linear regressions showing the effect of body parameters on TB-BMC and LS-BMAD after adjustment for variables age, height, 
and BMI 

 

β: regression coefficient; TB: total body; LS: lumbar spine; BMC: total body bone mineral content; BMAD: bone mineral apparent density; LM: lean mass; FM: 
fat mass; A/G: Android/Gynoid fat ratio 

 

Independent 

All population CO-GHD Controls 

Males Females Males Females Males Females 

β P-value β P-value β P-value β P-value β P-value β P-value 

Bone area 

TB-BMC 

LS-BMAD 

 

1.966 

-0.003 

 

<0.01 

0.04 

 

1.834 

-0.000 

 

<0.01 

0.85 

 

2.041 

-0.006 

 

<0.01 

0.14 

 

0.712 

-0.0077 

 

0.45 

0.08 

 

1.387 

-0.00 

 

<0.01 

0.69 

 

3.022 

-0.003 

 

<0.01 

0.48 

LM 

TB-BMC 

LS-BMAD 

 

0.025 

-0.00 

 

0.17 

0.98 

 

0.045 

0.000 

 

<0.01 

0.10 

 

-0.012 

0.000 

 

0.82 

0.82 

 

0.025 

-0.00 

 

0.16 

0.91 

 

0.021 

-0.000 

 

0.43 

0.25 

 

0.029 

0.000 

 

0.31 

0.39 

FM 

TB-BMC 

LS-BMAD 

 

-0.030 

-0.00 

 

0.05 

0.81 

 

0.014 

0.000 

 

0.13 

0.06 

 

-0.022 

-0.000 

 

0.61 

0.44 

 

-0.0174 

-0.00 

 

0.39 

0.93 

 

-0.0151 

0.000 

 

0.60 

0.31 

 

0.014 

0.00 

 

0.15 

0.11 

A/G 

TB-BMC 

LS-BMAD 

 

-146 

0.020 

 

0.71 

0.63 

 

-689 

-0.0819 

 

0.03 

0.13 

 

427 

0.069 

 

0.65 

0.24 

 

312 

-0.0388 

 

0.42 

0.57 

 

-782 

-0.0178 

 

0.04 

0.75 

 

-690 

-0.046 

 

0.29 

0.75 
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4.6 Discussion  

In this study, bone and body composition of adolescents with CO-GHD after final height were 

compared with normal subjects matched for age, height and sex. Several studies so far have 

investigated bone and body composition of adolescents with CO-GHD at time of final height yet 

were inconsistent (233,236,365,382,383). Using DXA corrected for age, height, size and body 

composition, our analysis showed that adolescents with CO-GHD have normal areal BMD height-

age Z-score but lower volumetric LS-BMAD with reduced BMC measures for bone area and 

height; although most of the values fell within the normal range (+ 2 SDS). Our findings are 

consistent with previous reports of lower bone density and mineralisation in CO-GHD adolescents 

with during transition (233) and young adults (238). However, it could be assumed that bone deficit 

in some patients of our cohort  may be related, at least in part, to the fact that they have delayed or 

not yet attained their peak bone mass at the time of final height (386). Reviewing the literature, the 

precise age at which peak bone mass is achieved is still uncertain and varies by age, sex, evaluated 

sites and assessment methods. Boot et al estimated that the peak of bone mass in a healthy 

Caucasian population is attained between the age of 18-20 years in females and 20-23 years in 

males (387), however a Canadian study estimated timing of peak lumber spinal BMD occurs 

between 33-40 years in females and 19-33 years in males (388). It was generally believed that  

about 85–90% of final adult bone mass is acquired by the age of 18 years in females and 20 years 

in males (389).  Late-onset puberty might be another contributing factors resulting in bone deficit 

in our cohort as late-onset puberty and timing of the adolescence growth spurt are inversely  

associated with peak bone mass in both genders as previously established (390-392).  

Our study has also provided further evidence on gender differences and sexual dimorphism in the 

way of skeletal response to long-term rhGH replacement in CO-GHD.  As  previously reported 

(233,393,394), CO- GHD males unlike females had lower TB bone mineralisation for their size and 

height, which may reflect lower cortical bone density, whereas CO-GHD females appeared to have 

less mineralisation at the LS, which is a region of higher trabecular bone. It could be assumed that 

sexual differences in sites of bone deficit appears to be obvious contributors in  sex differences in 

fractures risk distribution in males and females adult with CO-GHD reported previously (256).  

 

Our analysis also showed that adolescents with congenital and IGHD had lower mineralisation in 

TB and LS than those with acquired and had MPHD. These findings clearly indicate that time of 

onset and aetiology of CO-GHD, but not additional pituitary hormone deficiencies may have a 

larger influence on accrual of bone mass in these patients, as those with acquired late onset GHD 

had a longer period of normal growth before the onset of GHD (395,396). 

Given that, it seems the mild deficit in bone health in CO-GHD at final height still exists even over 

a prolonged period of childhood rhGH replacement therapy. Although several randomised control 

trials have shown that bone deficits in CO-GHD at final height were largely corrected with 

resuming rhGH therapy (397,398), it is still currently uncertain whether recommencement of  rhGH 
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therapy in CO-GHD will result in  normalization of detected deficit and reduced risk of fracture in 

adulthood (399). 

 

To date, there have been relatively few studies comparing diagnostic accuracy of the different size 

adjustment techniques of DXA derivative bone and body composition parameters. In our results, all 

size adjustment techniques reduced the number of patients classified as abnormal (majority of SDS 

within the range of + 2). In accordance with  the Crabtree approach (381), the percentage of 

sarcopenic and osteopenic subjects was very small with no GHD patient in our study having a 

mixed muscle and bone defect. Currently, there is debate around the appropriate adjustment 

method to apply in assessment of bone in children with chronic conditions effecting their growth 

and maturation. Recently the international society for clinical densitometry (ISCD) recommended 

applying LS-BMAD and TB- BMC for height into routine clinical practice for investigating bone 

health in children and adolescents (83). 

 

With regards to body composition in most studies after discontinuation of childhood rhGH 

treatment, a significant decrease is seen in LM, paralleled by an increase in FM in CO- GHD 

patients (233,236,245,246). In our study, no differences were found in LM between CO-GHD 

patients and healthy controls in either gender. However, when LM was adjusted for height, CO-

GHD patients had a significant lower LM for height, but their TB-BMC were normally adapted for 

the reduction in LM. On the other hand, males with CO-GHD, but not females, had higher FM and 

FM for height SDS than control subjects. By contrast, higher A/G fat ratio, the measure of central 

adiposity, was in females with CO-GHD compared to matched controls.  

In normally growing children, the relationship between LM and height is exponential, with the LM 

for height ratio increasing in males beyond age 20 years and in females until age 14 years, with no 

significant increases thereafter (400). In light of our data, it is unclear whether these gender 

differences are mediated by the pattern of response to rhGH replacement in our patients or by 

gonadal steroid hormones. Therefore, it was argued that continuation of rhGH after final height not 

only optimizes progression to peak bone mass, but also affects the late stage of gender-specific 

maturation to adult body composition (246).  

 

Different authors speculate about possible factors being responsible for bone and body composition 

alteration in previously childhood rhGH treated subjects with CO-GHD. In our study, the values of 

bone or body composition were not correlated with clinical findings, stimulation GH peak/serum 

IGF-1 levels on re-testing at final height, or duration of childhood treatment as previous reported 

(224). However, FM increased with increasing numbers of other pituitary hormone deficiencies.  

In fact, due to the heterogeneity of our cohort, it was very difficult to examine the possibility of 

GHD as an independent factor in alteration of body composition in these subjects and to be certain 

to what extent other pituitary hormones, particular sex steroids contribute in these alterations.   
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The present study showed significant correlations between LM, but not FM, with BMC and BMD 

in both normal individuals and patients with CO-GHD, with regression analyses have confirmed 

LM to be the second strongest predictor of BMC in females alongside A/G ratio following bone 

area, after adjusting for age, sex and BMI. Increased LM perhaps results in more mechanical 

loading of body as compared to FM, resulting in a greater increase in bone mass (401). Given that, 

it seems vital that strategies are set onward to maximize the chances of attaining the highest 

possible peak bone mass through maximizing LM (e.g. through nutrition and increased weight 

bearing physical activity). Although FM has low influence on BMC/BMD in our study, fat 

distribution (android/ gynoid fat ratio) had also important factors, but only in females, in prediction 

of TB-BMC (402). 

 

Study limitations 

The present results should be interpreted within a number of potential limitations.  In addition to 

small size cohort, cross sectional design and heterogeneity of our CO-GHD cohort did not allow us 

to establish any causal relationships between patient’s bone deficit and GHD. Another potential 

limitation of our study is that we have derived predictive equations for calculating SDS of the ratio 

of LM, FM, and bone area for height from a fairly small local reference population. Furthermore, 

although we have used size correction of bone measures to avoid misinterpretation of two 

dimensional DXA, still this technique does not account for other important parameters of bone 

strength as micro architecture, intrinsic properties of materials that comprise bone (cortical 

geometry, trabecular, and material) and the three dimensional organization of the trabecular etc. 

We also have not accounted for physical activity as there was no available data. 

 

4.7 Conclusion  

In summary, adolescents with CO-GHD after final height showed a clear deficit in bone mass and 

density, with alteration in body composition compared to age/height matched healthy controls. 

Lower bone mass in our patients with congenital IGHD support the view that the onset and 

duration of GH deficiency per se could be responsible for part of the observed deficit. These 

findings may raise the question how GH deficiency may have resulted in deficient bone mass 

despite rhGH treatment. Further prospective longitudinal studies are needed to evaluate this finding 

in more depth. 
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CHAPTER 5 

 

 Bone Health and Body Composition in 
Childhood Onset Growth Hormone Deficiency at 

Time of Initial Evaluation and Retesting 
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5.1 Abstract  

Background: Childhood onset growth hormone deficiency (CO-GHD) may cause some alterations 

in bone density and body composition. However, the direct mechanisms by which GHD effects 

bone health are not yet clearly defined.  

Aims: 1- To evaluate musculoskeletal health and body composition in CO-GHD children and 

adolescents at the time of initial evaluation and retesting after final height.  

2- To explore the relationship of bone mass and body composition parameters with bone 

metabolism and bone turnover biomarkers in subjects with CO-GHD. 

Methods: This is a cross-sectional study of assessing bone health and body composition by imaging 

(DXA-pQCT) and biochemical assessment of patients with CO-GHD at the time of initial 

evaluation and retesting at final height. 

Population: A total of 25 first time assessment group of children undergoing GH stimulation tests 

for investigation of short stature (naive GHD –15, median age (range) 10.9years (5.6, 16.0)), and 

11 adolescents with CO-GHD undergoing biochemical re-evaluation at final height after 

withdrawal of rhGH therapy (persistent GHD-7, median age 16.7years (14.9, 18.6)) were involved 

in the study. 

Results: After adjusting for age, height, and bone area, GH deficient individuals were not different 

in bone and body composition parameters as measured by DXA and pQCT from those who had 

normal GH levels at time of initial evaluation and retesting after final height. Assessing muscle 

strength by mechanograph, the median of maximum - force (F-max (kN) in naive GHD patients 

was significantly lower than normal subjects [0.5 (0.3, 2.8) vs. 2.7 (2.2, 3.3) respectively, p= 0.03] 

which was proportional to their tibia muscle cross sectional area. There were no significant 

differences in bone profiles and metabolism; (Calcium-Phosphate-Magnesium-Parathyroid 

hormone (PTH)-OH25-vit-D) and bone formation markers (bone-specific alkaline phosphatase - 

osteocalcin) among all studied groups. However, the bone resorption marker, C-terminal 

telopeptide (CTX), was significantly higher in naive GHD vs. normal of the first time assessment 

group (2.0 ng/ml (1.4, 3.9) vs. 1.6 ng/ml (0.9, 2.8), respectively, p=0.02). In univariate analysis, a 

significant and positive correlation was found between CTX and PTH levels at time of initial 

evaluation (r=0.46, p=0.02) and retesting (r=0.77, p=0.02) and CTX with duration of withdrawal 

rhGH to retesting (r= 0.73, p=0.04). 

Conclusion: Subjects with CO-GHD appear to have normal bone mass and body composition at 

time of initial evaluation and retesting after withdrawal of rhGH at final height. However, 

significant lower muscle force and higher CTX was found in naive GHD compared to normal. Our 

results suggest that muscle force and serum PTH may be important determinants of bone health in 

subjects with CO-GHD. However, a large-scale study is required to verify our findings.  
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5.2 Introduction  

Growth hormone (GH) is an important contributor for optimizing bone mass accrual and body 

composition during childhood and adolescence (403,404). The existing studies assessing the impact 

of childhood onset GH deficiency (CO-GHD) on bone and body composition thus far are not 

conclusive. Studies suggest that CO-GHD is associated with alterations in bone and body 

composition, resulting in developmental deficits in bone mass at time of diagnosis (88,89) and 

retesting at final height (263). However, bone mass data of children with CO-GHD has been 

difficult to disentangle because the majority of these data have been assessed using dual-energy x-

ray absorptiometry (DXA), with few studies having used peripheral quantitative computed 

tomography (pQCT). Indeed, both DXA and pQCT methods can be challenging and provide 

misleading values when used in small and young children if no adjustment to variables of age, 

height and bone size are considered (83,405,406).  

Despite the increasing number of studies investigating variables related to musculoskeletal 

development of CO-GHD, a direct mechanism underlying the effects of CO-GHD on bone mass 

and strength is not yet clearly defined.  Considering the concept of a “Functional Muscle-Bone 

Unit” which has clearly reflected the relationship of muscle mass and force to bone mass and 

geometry in the developing skeleton during childhood and adolescence of normal population  

(68,407,408), it was suggested that GHD may initially produce a deficit in muscle mass and force 

that will ultimately affect bone geometry and density (92).  

In addition to mechanical properties of bone mass, bone minerals and turnover are other factors 

involved in bone mass and strength in children and adolescents (60). Biochemical markers of bone 

turnover have been used in clinical practice to look at overall bone metabolism and  dynamic bone 

turnover (409). It is well proven  that GH plays a crucial role in regulating and maintaining the 

balance between bone formation and resorption (163). In parallel, studies have shown that bone 

formation and resorption markers were either low (410) or within normal reference ranges at 

baseline in individuals with CO-GHD prior to commencing  recombinant  human GH (rhGH) 

(235), or at time of retesting after withdrawal rhGH at final height (230). 

In view of the above, our objective is, therefore, to study parameters indicative of bone density and 

bone structure in relation to body composition, muscle function, bone metabolism and biomarkers 

of patients with CO-GHD at time of initial evaluation prior to starting childhood rhGH treatment 

and at retesting after termination of childhood rhGH treatment at final height. 
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5.3 Subjects and Methods  

5.3.1 Study design and subject 

This is baseline data collected for the main longitudinal, controlled study of 6 months duration 

looking to evaluate the effect of weight bearing exercises-and rhGH replacement therapy on bone 

status and body composition in CO-GHD subjects at time of initial evaluation and retesting after 

terminating childhood rhGH therapy, detailed description of the study will be illustrated in chapter 

8. 

Inclusion criteria: 1- Children who are having GH stimulation tests as part of 

their assessment/investigation of short stature. 2- Adolescents with CO-GHD who attained final 

height and are having their GH axis re-assessed.  

Exclusion criteria: 1- History of major (abdominal) surgery within the previous three months. 2- 

Skeletal abnormalities associated with joint and limb deformity.  3- Patient or family who in the 

investigators opinion are not able to comply with the trial protocol. 4- Children < 5 years of age. 

The study protocol was approved by the national research ethics service and all participants and 

their care givers provided written informed consent. 

 

5.3.2 Anthropometry measurements 

Anthropometry measurements (weight and height) were measured at time of the scan and were 

converted to SDS scores using the British 1990 reference (384). Tanner staging was recorded from 

patients clinical cases note at time of clinical evaluation. Tanner stage I is defined as prepubertal, 

Tanner stages II and III are defined as early pubertal, Tanner stage IV is defined as late pubertal, 

and Tanner stage V is considered fully mature. 

 

5.3.3 Biochemical assays 

In 33/36 subjects, fasting blood samples were taken on the day of the stimulation tests (insulin 

tolerance test (ITT)/ arginine stimulation test as per local protocols of Scottish Paediatric Endocrine 

Group (SPEG) guidelines) after overnight fasting. Bone profiles and elements (Calcium, phosphate, 

magnesium, parathyroid hormone (PTH), 25-hydroxyvitamin D (25 (OH) D)) were measured 

immediately after blood sampling in Biochemistry laboratory in Royal Hospital for Children 

(RHC), Glasgow with standard methods and references ranges of CALIPER (411).  The remainder 

of the samples was separated immediately by centrifugation for 5min at 2500 rpm and then stored 

at -80◦C until the assays were performed. Serum Osteocalcin (OC) was measured by enzyme 

immunoassay (EIA) using kit manufactured by BioSource, Nivelles, Belgium with intra- assay 

coefficients of variation (CV) 0.8% –3.1%. Serum bone-specific alkaline phosphatase (BAP) was 

measured by Ostase® BAP immunoenzymetric assay (Immunodiagnostic Systems Ltd (IDS Ltd, 

Boldon, UK) with an intra-assay CV of 0% to 2.3%. Serum cross linked C-telopeptide of type I 
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collagen (CTX) was determined using serum crossLaps® ELISA (IDS Ltd, Boldon, UK) with an 

intra-assay CV of 1.6% to 2.0%.  The ELISAs were performed by Martin McMillan in the 

department of child health, RHC, Glasgow. 

 

5.3.4 DXA parameters  

DXA scans were performed at total body (TB), lumbar spinal (LS) in 32/36 of the study 

participants using a narrow fan beam lunar prodigy densitometer (GE Medical Systems, Waukesha, 

Wisconsin, U.S.A) using the Encore software (Version 8.80.001). To minimise the size effects in 

DXA bone densitometry, bone and body composition parameters were corrected for bone 

area/height/age as described in chapter-4. In this chapter, measurement of TB/LS BMD Z scores 

height age and BMC for bone area SDS were excluded in children aged <6 years. 

All DXA scans were carried out by Dr Sheila Shepherd at RHC, Glasgow.  

 

5.3.5 Peripheral quantitative computed tomography (pQCT) 

In this study, 28/36 subjects had Tibia pQCT using (XCT-2000; Stratech, Pforzheim, Germany 

software v5.5). All pQCT scans were carried out by Dr Sheila Shepherd at (RHC), Glasgow. Tibia 

length was measured manually from the medial malleolus to the superior margin of the medial 

condyle. The average of two measurements was used to determined tibia length. The 66% 

measurement site was calculated (tibia length [cm] × 0.66), measured distally from the medial 

malleolus and marked on the subject’s calf with non-permanent ink. The subject’s leg was then 

extended into the instrument gantry (Figure 5-1, A). A scout scan was performed to visualize the 

distal growth plate and reference line placed at the most proximal line of the growth plate or at the 

end plate in case of the fussed growth plate (Figure 5-1, B). After establishing the distal line, the 

4% distal cross section was identified and measured by scanner. Total volumetric bone mineral 

density (TvBMD) and trabecular density (vBMD) were determined at the 4% site, but cortical 

density (vBMD) measured at the mid-shaft (38% tibia). Tibia geometry: cortical thickness (mm), 

endosteal and periosteal circumferences were measured at the 38% site. Muscle and fat mass were 

determined at the 66% site, (Figure 5-1, C, D). The pQCT bone outcomes were converted to Z-

scores relative to age, sex and height based on recent references data (412). We calculated age and 

height Z scores for tibia bone geometries at only 38% site. Age Z scores were calculated for 

(CvBMD at 38%) and (TrvBMD at 4%).  



 

129 
 

 

Figure  5-1 Tibia pQCT. 
 

A-Tibia pQCT(Adapted from www.galileo-training.com) 

B-Determine reference line before scanning 

C-Scan sites, slides and outcomes of tibia pQCT:  4%, 38% and 66%  

D-Tibia PQCT outcome as measured at each site (Adapted from 
https://sites.psu.edu/emilysouthmaydthesis/the-study with permission) 

 

https://sites.psu.edu/emilysouthmaydthesis/the-study
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5.3.6 Muscle strength  

The Leonardo mechanograph (version 4.2-Novotecc Medical GmbH, Pforzheim, Germany) was 

used to measure lower limb muscle force, power, velocity, jumping height and efficiency of the 

movement. There are five mechanographic tests; procedures include multiple one-legged hopping, 

multiple two-legged hopping, single two-legged jump, heel-rise test, chair-rise test, but single two-

legged jump is the commonly used in children to evaluate the maximal force to which the tibia is 

exposed(76). A single two-legged jump with bare feet (wearing only socks) was assessed as a 

counter movement with freely moving arms. The individual stood on the plate force, and each foot 

was placed on one section of the jumping force plate. Each participant was instructed to jump as 

high as possible for at least three times and the result of highest jump was included. Parameters 

used for analysis were jump height (m), maximum-velocity (V-max (m/s), Esslinger fitness index 

(EFI (%), maximum - force (F-max (kN), maximum-power (P-max (kW), efficiency (%) of the 

movement, (Figure 5-2). 

 

 

Figure  5-2 Leonardo mechanography. 
  
A - Leonardo mechanography software version 4.2 (used in this thesis). Force plate composed of 
two symmetrical force plates that separate the platform into a left and a right, with eight sensors 
each sensor recording force the vertical ground reaction force exerted on the platform at a 
sampling frequency of 800 Hz. 

B- Single two-legged jump. The Force-Time, SpeedTime and Power-Time curves are shown as 
well as the phases of the movement corresponding to the indicated points on the Speed-Time 
curve ( adapted from Veilleux &Rauch (76) with permission). 

C- Mechanography printed measurement report
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5.4 Statistical Analysis  

Data were reported as the median and range (minimum-maximum). Categorical variables were 

compared using Fisher’s exact and chi-square tests, and continuous variables using the Mann–

Whitney test. Correlations among variables were determined by using the Spearman’s test. All 

analysis performed using the Minitab17 software (Minitab, Coventry, UK), with significance set at 

a level of 5% (P<0.05). All graphs were performed using GraphPad Prism 6 software (GraphPad 

Software, San Diego, CA, USA). 

 

5.5 Results  

5.5.1 Patient characteristics  

63 eligible children were approached children during the period August 2012 to November 2013 

from the single tertiary centre (RHC). A total of 36 children were recruited, and 27 were excluded 

for a range of reasons as seen in Figure 5-3. 

36 children who enrolled in the study were categorised according to their timing of assessment 

into: 25/36 subjects who were undergoing GH stimulation tests for short stature (first time 

assessment group) and 11/36 subject with CO-GHD who were undergoing retesting after 

withdrawal rhGH therapy at final height (retesting group).
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Figure  5-3 Flow diagram of study recruitment
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5.5.2 First time assessment group 

In all children GH levels were measured either after one (n=21) or two (n=4) GH stimulation testes 

(ITT, arginine stimulation test). GHD was defined as low GH peak response on stimulation test 

below (6.6µg/l).  

A total of 15 out of 25 were confirmed as having naive GHD. All the 15 naive GHD have isolated 

GHD. Pituitary MRI was performed in all of the 15 naive GHD, seven patients showed structural 

hypothalamic-pituitary abnormalities (n=2 ectopic pituitary, n= 2 arachnoid cyst, nerve gliomas, 

craniopharyngioma, empty sella syndrome). Six patients showed normal MRI (idiopathic GHD), 

and no access to MRI reports in two patients. Among those who were GHD, five children had 

another known illness (21-trisomny)-(neurofibromatosis and precocious puberty) - (two with 

obesity (BMI >+2 SDS)) – (mosaic variegated aneuploidy).  

10 of the 25 had normal GH levels (normal) on stimulation testes, of those, 6/10 were "short 

normal" children with no known other illness, and n=4 have other conditions: (Autoimmune 

polyendocrinopathy ectodermal dystrophy), (Mitochondrial disease with primary ovarian failure), 

(Juvenile rheumatoid arthritis), and (45/46 XY gonadal dysgenesis). 

 

5.5.3 Retesting group 

A total of n=11 adolescents with CO-GHD were first diagnosed at age 9.5yrs (2.6, 11.4) and rhGH 

treated during childhood at age 10.8 yrs (7.1, 13.6) with median duration of treatment is 4.3 

yrs(2.9,7.8). Five subjects of the 11 had isolated GHD, four of them had idiopathic GHD, and one 

had ectopic posterior pituitary on MRI scan. Of the remaining six of the 11, they had multi pituitary 

hormones deficiencies (MPHD) and received hormonal replacement therapy, where necessary, with 

glucocorticoid, Levothyroxine, sex steroid (Estradiol - Testeterone) and desmopressin. Of those, 

one had hypoplastic pituitary on MRI scan and five had tumour related cranial irradiation. All 

patients’ ceased GH treatment at final height to re-test their GH status at age 15.7 yrs (14.7,17.9) 

after a period of 0.6 yrs (0.2, 1.0) off rhGH either by stimulation tests (n=9) and /or IGF-1 levels 

alone(n=3). After re-testing, 7/11 of them were reconfirmed to have persistent GHD (low GH peak 

<5, and or low IGF1 <-2 SD for age references) and were eligible for adult GH replacement 

therapy, the other 4 were no longer GHD after retesting (GH-sufficient).   
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5.5.4 Anthropometric and biochemical characteristics 

A summary of the baseline characteristics of the first time assessment and the retesting groups are 

given in Table 5-1. 

The anthropometric characteristics were similar in those with naive GHD and normal of the first 

time assessment group and that was even after excluding subjects with known co-morbidities from 

both groups. There were also no significant differences in age, weight or BMI between the group of 

previously treated CO-GH deficient-patients who had persistent GHD and those with GH 

sufficient. 

Regarding the puberty status of the first time assessment group, 10/15 (66%) of naive GHD and 

5/10 (50%) of normal were prepubertal (tanner stage I). Of remaining, 3/15 (20%) of naive GHD 

and 2/10 (20%) normal were tanner stage II, and 2/15 (13%) naive GHD, 2/10 (20%) normal were 

stage III, with only one normal subject was between stage III-IV. 

All retested adolescents with CO-GHD were considered fully mature- tanner stage V. 
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Table  5-1 Auxological and clinical characteristics of the first time assessment and the retesting groups 
 

 

First time assessment 
(n=15) 

Retesting 
(n=11) 

Naive GHD 
(n=15) 

Normal 
(n=10) P-value 

Persistent  GHD 
(n=7) 

GH sufficient 
(n=4) P-value 

M/F   13/2  7/3 0.30 3/4 1/3 0.50 

Age(yrs) 10.9 (5.6,  15.2) 12.1 (5.8, 16.5) 0.90 16.6 (14.9, 18.6) 16.8(16.3, 20.4) 0.73 

Anthropometry 
 
Height (cm) 
Height -SDS 
Weight (kg) 
Weight-SDS 
BMI 
BMI-SDS 

 
 

129.0 (97.7,  152.2) 
-2.5 (-3.4, 1.3) 

26.5 (15.0, 71.4) 
-1.8 (-3.6,  1.9) 

16.5 (14.2, 32.3) 
0.0(-1.8- 3.0) 

 
 

130.1(96.1, 153.3) 
-2.2 (-4.6,  -0.1) 
29.3 (13.3, 56.7) 
-1.3 (-4.7,  0.7) 

17.2(14.4,  24.7) 
0.0 (-2.4, 1.6) 

 
 

0.76 
0.51 
0.94 
0.93 
0.97 
0.57 

 
 

158.7(152.7, 179) 
-1.2 (-1.9, 1.2) 

60.6(45.6, 71.2) 
0.6 (-1.8, 1.4) 

22.4(18.8, 28.0) 
0.9 (-1.1, 2.0) 

 
 

153.5(145.3, 166.4) 
-1.6(-3.0,  0.5) 

56.0(37.6- 66.7) 
0.0(-3.2- 1.1) 

23.8(17.8-24.1) 
1.0(-1.4-  1.1) 

 
 

0.35 
0.50 
0.63 
0.63 
0.65 
0.59 

GH-peak(μg/l) 
IGF1 levels(ng/ml) 
IGF1 levels SDS 

2.6 (0.7, 4.7) 
65.0 (14.0, 433.0) 
-3.2 (<-5.0,  0.3) 

8.0 (6.7, 22.3) 
85.5(28.0,  295.0) 

-2.0 (-4.5, -0.9) 

<0.01 
0.52 
0.72 

2.0 (0.1, 3.8) 
141.0 (18.0, 294.0) 
-3.2 (<-5.0, -1.3) 

8.3(6.4,  10.2) 
241.5(117, 327.0) 
-2.0 (-3.5,  -0.9) 

0.05 
0.24 
0.27 

Tanner stages n (%) 
 I 
II 
III 
IV 
V 

 
10 (66%) 
3 (20%) 
2 (13%) 

0 
0 

 
5(50%) 
2(20%) 
2(20%) 
1(10%) 

0 

 
0.44 
0.95 
0.94 
0.20 

- 

- - 
 

Retesting data 
Age of childhood diagnosis (yr) 
Age of start treatment(yr) 
Duration of childhood rhGH (yr) 
Age of stopping  rhGH (yr) 
Duration of stopping  rhGH (yr) 

   

 
9.5 (2.6, 10.3) 

10.3 (7.1, 13.6) 
4.7 (2.9, 7.8) 

15.9 (14.4, 17.9) 
0.6(0.2, 1.0) 

 
11.4(7.0, 12.0) 
11.4(7.0, 12.0) 
8.0 (4.3, 10.2) 

17.0(15.7, 20.0) 
0.7(0.4, 1.0) 

 
0.23 
0.76 
 0.24 
0.36 
0.51 
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5.5.5 Bone density and body composition (DXA) 

There were no differences in TB-BMD between the naive GHD and those with GH normal of the 

first time assessment group with none of subjects having a BMD height age Z score below -2. 

The median of TB-bone mineral content (BMC) tended to be lower in naive GHD but not 

significant (1069.6(g) (432.5, 2169.7) vs.1325.9 (g) (34.0, 1797.1) respectively, p=0.76) and all 

were within (+ 2 SDS) when adjusted for bone area, height and LM, Figure 5-4. 

There were also no differences in LS-BMD and BMC between naive GHD and normal of the first 

time assessment group, and the same pattern was observed after the estimation of volumetric LS-

BMAD and BMAD SDS as seen in Table 5-2, Figure 5-5. Two of the naive GHD had LS-BMAD 

SDS below -2 SDS (a girl with idiopathic GHD and down syndrome- a boy with ectopic posterior 

hypoplasia pituitary). 

Body composition compartments (LM-FM) were also similar across groups of the first time 

assessment, Figure 5-6. Two naive GHD had their FM for height SDS >+2 SDS (a boy with 

idiopathic GHD- boy with ectopic posterior pituitary). 

Similar to the first time assessment group, the retesting group of adolescents who were previously 

treated with childhood rhGH exhibited areal and volumetric bone density and body composition 

parameters values similar to those who were GH sufficient after retesting at final height even after 

adjustments for height, bone area, and LM, as seen in Table 5-2 and illustrated in Figures 5-4, 5-5, 

5-6. Only one girl with persistence GHD (idiopathic-isolated) had here FM for height SDS > +2. 
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Table  5-2 Bone parameters and body composition as measured by DXA in the first time assessment and the retesting groups 
 

 

First time assessment 
(n=23) 

Retesting 
(n=10) 

Naive GHD 
(n=14) 

Normal 
(n=9) 

p-
value 

Persistent GHD 
(n=7) 

GH sufficient 
(n=3) 

p-
value 

TB-BMD (g/cm2) 
TB-BMD-Z-score-age 
TB-BMD Z score-height-age 

0.9 (0.7, 1.1) 
-0.5 (-1.9,  1.4) 
0.7 (-0.2, 3.6) 

0.9 (0.7, 1.1) 
-1.5 (-2.3,  0.1) 
0.5 (-1.0,  2.2) 

0.99 
0.07 
0.53 

1.0 (1.0, 1.2) 
-0.9(-2.2,  0.9) 
-0.1(-1.5,  2.1) 

1.0(0.8,  1.1) 
-1.4(-4.1, 0.6) 
-0.6(-1.3, 0.3) 

0.83 
0.59 
0.67 

TB-BMC(g) 
TB-BMC for BA SDS 
TB-BMC for LM centile 

1069.6 (432.5,  2169.7) 
0.4 (-0.3,  2.1) 

66.0 (21.0,  94.0) 

1325.9(34.0, 1797.1) 
0.4 (-0.7,  2.2) 
47.0 (9.0, 97.0) 

0.76 
0.85 
0.86 

1992.3 (1721.9,  3051.0) 
-0.2(-0.5, 0.6) 

74.0 (9.0,  97.0 

1851.9(1074.0, 2162.8) 
-0.1(-0.6,  0.1) 

26.0(25.0,  68.0) 

0.39 
0.09 
0.39 

TB-BA(cm2) 
TB-BA for height-SDS 

119.0 (594.0, 1959.0) 
-0.7 (-2.4,  4.6) 

1367.0 (521.0,  1736.0) 
-0.1 (-3.4, 1.0) 

0.89 
0.90 

19882.0 (1714.0, 2481.0) 
-0.1 (-0.5,  3.2) 

1826.0(1301.0, 2001.0) 
-1.2(-1.4,  0.8) 

0.34 
0.13 

LS-BMD(g/cm2) 
LS-BMD-Z age 
LS-BMD-Z  height-age 

0.7(0.4, 1.0) 
-1.2 (-2.8,  1.1) 
0.2 (-2.4, 1.3) 

0.8 (0.5, 1.0) 
-1.4 (-2.3,  -0.5) 
-0.1 (-1.2,  1.6) 

0.45 
0.76 
0.90 

1.1(0.9, 1.2) 
-0.4 (-2.3, 0.7) 
0.8 (-1.1,  1.3) 

1.0(0.7, 1.1) 
-1.6(-3.8,  -0.7) 
-0.6(-1.4,  0.3) 

0.54 
0.45 
0.28 

LS-BMC(g) 
LS-BMC/BA-SDS 

17.3(6.8, 31.0) 
0.0 (-0.9,  1.9) 

22.0(6.4,  32.5) 
-0.1(-0.5,  2.6) 

0.45 
0.54 

40.1(28.1,  57.3) 
0.3(-0.7,  1.2) 

35.6(19.7, 44.7) 
-0.3(-0.9, -0.1) 

0.67 
0.29 

LS-BMAD(g/cm3) 
LS-BMAD-SDS 

0.28 (0.19, 0.37) 
0.2(-2.5,  2.3) 

0.24 (0.22, 0.29) 
-1.4 (-3.2,  -0.2) 

0.96 
0.28 

0.35 (0.30, 0.35) 
-0.2 (-1.7, 1.0) 

0.36 (0.31, 0.37) 
-0.7(-1.7, -0.5) 

0.39 
0.53 

LM(kg) 
LM for height centile 

22.8(11.4, 36.9) 
35.0 (19.0, 95.0) 

23.0(10.3,  37.4) 
43.0 (2.0-88.0 

0.87 
0.87 

37.8(28.3, 50.2) 
66.0 (21.0, 93.0) 

30.9(22.8, 38.9) 
45.0(5.0, 49.0) 

0.38 
0.59 

FM(kg) 
FM for height-SDS 
A/G ratio 

4.9(1.5,  31.8) 
0.0 (-1.7, 4.2) 
0.7(0.5, 1.2) 

4.1(1.9,  15.1) 
-0.3 (-1.4,  0.9) 

0.6(0.4, 1.1) 

0.35 
0.19 
0.24 

17.3(21.1, 28.1) 
1.0(0.4,  2.8) 
1.1(0.7,  1.2) 

18.0 (12.7, 24.7) 
0.6 (0.1,  1.0) 
0.8 (0.8, 1.0) 

0.99 
0.20 
0.24 

TB: total body; LS: lumbar spine; BMD: bone mineral density; BMC: bone mineral content; BMAD: bone mineral apparent density; BA: bone area LM: lean mass; FM: 
fat mass; A/G: Android/Gynoid fat ratio. 
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.  

 Figure  5-4 Total body bone density and mineralisation of the first time assessment (A) and the retesting (B) groups. 
TB, total body; BMD: bone mineral density; BMC: bone mineral content; BA, bone area 
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Figure  5-5 Lumber spine bone density and mineralisation of the first time assessment (A) and the retesting (B) groups. 
Individual values (median-range) (blue circle, CO-GHD; Red Square, normal).   

TB, total body; BMD: bone mineral density; BMC: bone mineral content; BMC/BA SDS 
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Figure  5-6Body composition parameters of the first time assessment (A) and the retesting (B) groups. 
Individual values (median-range) (blue circle, CO-GHD; Red Square, normal). LM: lean mass; FM: fat mass; A/G: Android/Gynoid fat ratio 
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5.5.6 Bone geometry and density (pQCT) 

Table 5-3 presents tibia pQCT parameters at each site of each group. 

The absolute values of bone geometries and height z scores were not different between the GHD 

and normal in the first time assessment, Figure 5-7. The median values of total density, cortical 

density and trabecular density and age-Z scores were also similar naive GHD vs. normal, Figure 5-

8.  

In the retesting group, significantly wider periosteal circumferences at the 38% site in those with 

persistence GHD compared to GH sufficient (74.0 mm (65.7,77.5) vs. 60.0 mm (57.5, 64.2) 

respectively, p=0.02) and slightly more wider endo-oesteal circumferences 47.3mm(37.6, 53.3) vs. 

37.3mm (33.3, 42.8) respectively, p=0.09) without any differences in medians of cortical thickness 

among the groups. However, these observations were not evident when adjusted for height Z 

scores, Figure 5-7. 

Cortical density (CvBMD) in those with persistent GHD was significantly lower than those who 

were GH sufficient (1155.9 mg/cm3 (1123.6, 1162.4) vs. 1171.0 mg/cm3 (1165.8, 1177.1) 

respectively, p=0.02) but not when adjusted for age Z score (0.8 (-0.2, 2.2) vs. 0.7 (0.6, 1.1), 

p=0.90), with no significant differences in total and trabecular density across the groups, Figure 5-

8. 

No other tibia pQCT bone and composition parameters showed any differences between those with 

persistent GHD and GH sufficient in the retesting group, Figure 5-9. 
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Table  5-3 Tibia bone geometry and density as measured by pQCT in the first time assessment and the retesting groups 
 

 

First time assessment 
(n=19) 

Retesting 
(n=9) 

Naive GHD 
(n=13) 

Normal 
(n=6) 

P value Persistent GHD 
(n=6) 

GH sufficient 
(n=3) 

P value 

Cortical thickness(CTh) 38%(mm) 
CTh height- z-score 

3.3 (1.6, 4.2) 
0.4 (-1.4, 3.6) 

3.0(2.4, 4.9) 
0.6(-1.9, 1.8) 

0.95 
0.95 

3.9(3.3, 5.9) 
-0.4(-1.4, 1.0) 

3.9(2.7, 4.3) 
-1.0(-2.7,  1.3) 

0.89 
0.69 

Periosteal circumference (PC) 38%(mm) 
PC height-z-score 

58.3  (43.1, 78.8) 
0.2 (-0.6, 3.8) 

58.7(47.4, 72.6) 
0.0(-1.7, 1.6) 

0.95 
0.56 

74.0(65.7, 77.5) 
-0.1(0.8, 2.3) 

60.0(57.5, 64.2) 
-1.5(-3.2 , 0.3) 

0.02 
0.24 

Endosteal circumference (EC) 38% (mm)  
EC height-z-score 

38.4 (31.7, 60.2) 
0.1 (-1.6, 3.5) 

35.4(31.2, 51.6) 
-0.2(-1.4, 1.9) 

0.49 
0.56 

47.3(37.6, 53.3) 
0.6(-1.8, 1.9) 

37.3(33.3, 42.8) 
-0.6(-2.2, 0.3) 

0.09 
0.24 

Total density(TvBMD) 4%(mg/cm3)  301.7(213.9, 720.2) 306.3(238.7, 347.8) 0.71 279.8(212.4, 351.0) 308.7(170.1, 311.5) 0.89 

Trabecular density (TrvBMD) (mg/cm3) 4% 
TrvBMD-age-z-score  

204.8 (144.2,  281.3) 
-0.3 (-0.2,  2.0) 

204.1(172.3, 313.2) 
0.2(-1.4,  1.8) 

0.63 
0.62 

220.7(161.0, 268.5) 
-0.4(-2.6, 1.0) 

193.8(117.8, 252.1) 
-1.0(-4.3,  0.7) 

0.51 
0.51 

Cortical density (CvBMD) 38% (mg/cm3) 
CvBMD –age-z-score 

1067.2(999.9,  1115.9) 
0.2(-0.8, 2.1) 

1077.6(1039.2, 1168.0) 
0.6(-2.0,  2.6) 

0.54 
0.89 

1155.9 (1123.6, 1162.4) 
0.8(-0.2, 2.2) 

1171.0(1165.8, 1177.1) 
0.7 (0.6, 1.1) 

0.02 
0.90 

Strength strain index  (SSI) 38% 696.4(217.6, 1267.1) 781.1(305.1, 1067.7) 0.76 1227.1(1078.6, 1558.0) 832.3(808.5, 1193.7) 0.15 

Cortical  CSA 66% (mm2) 191.1 (77.2,  317.5) 217.2(71.2, 280.5) 0.98 295.6(266.0,  445.2) 278.5(165.7, 304.7) 0.51 

Muscle  CSA  66%  (mm2) 3488.0(77.8, 6551.3) 3567.3(368.5, 4633.2) 0.90 5163.8(4003.7, 8176.2) 3996.5(3356.2, 5247.2) 0.29 

Fat CSA 66%  (mm2) 1618.0 (789.5,  5311.0) 1411.8 (1118.0, 2964.7) 0.63 2462.2(1269.2, 3543.0) 2817.2(2358.5, 3247.7) 0.58 

Bone/Muscle ratio 5.5 (3.8,  6.6) 5.2 (3.0, 7.9) 0.84 5.5 (4.8, 6.6) 5.8 (4.9, 6.9) 0.69 
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Figure  5-7 Tibia bone geometry at 38% site of the first time assessment (A) and the retesting (B) groups. 
Individual values with median (range) (blue circle, CO-GHD; Red Square, normal).   
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 Figure  5-8 Tibia PQCT measurement of trabecular density, and cortical density in the first time assessment (A) and the retesting (B) 
groups. 
Individual values with median (range) (blue circle, CO-GHD; Red Square, normal). 
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 Figure  5-9 Tibia pQCT measurements of cortical bone, muscle and fat cross sectional area of the first time assessment (A) and the retesting (B) groups. 
 
Individual values with median (range) (blue circle, CO-GHD; Red Square, normal).   

Mus-CSA: Muscle cross-sectional area; Fat-CSA: fat cross-sectional area; cortical CSA: cortical cross-sectional area; SSI: Stress-strain index  
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5.5.7 Bone mineralisation and biomarkers  

There were no significant differences in serum calcium, phosphorus, and magnesium between 

GHD and normal among the first time assessment and retesting groups and the majority were 

within normal range, Table 5-4, and Figure 5-10.  

The majority of the first time assessment group had inadequate vitamin D levels (< 75 nmol/l). 

25(OH) D levels tended to be lower in normal subjects vs. naive GHD within the first time 

assessment group, although not significantly (55.7 (23.0, 102.0) naive GHD vs. 35.5 (20.0, 69.0) 

normal, P=0.16). The percentages of 25(OH) D deficiency (<50 nmol/l) in the whole cohort of the 

first time assessment was high with 5/15(34%) of the naive GHD: 6/10 (60%) of normal subjects.  

Similar to the first time assessment group, all subjects of retesting group had inadequate vitamin D 

levels (< 75 nmol/l). The percentage of 25 (OH) D deficiency among the retesting group subjects is 

high as well, with the majority of subjects in both the GH sufficient and those with persistent GHD 

were 25(OH) D deficient (<50 nmol/l). 

On the other hand, the majority of our subjects who were 25(OH) D deficient showed PTH levels 

within the normal range with no significant difference among groups. However, raised PTH> 6.8 

pmol/l was noticed in only two subjects: one in the first time assessment (normal) and one in the 

retesting group (sufficient GH) with a corresponding low 25(OH) D <30nmol/L. In addition, there 

was a known case of hypoparathyrodism with a low PTH level (0.3 (pmol/l)) in the first time 

assessment group who had normal GH levels and was excluded from this analysis. 

Biochemical markers of bone formation (BAP -OC) were also similar between groups of the first 

time assessment and retesting, Figures 5-11. However, the medians of OC levels in the first time 

assessment group were at the lower normal range with (6/15, 40% of naive GHD) and (6/10, 60% 

of normal) had their OC levels at or below the 10th centiles. Bone resorption marker (CTX) was 

significantly higher in those with naive GHD compared to normal [2.0 ng/ml (1.4, 3.9) vs. 1.6 

ng/ml (0.9, 2.8), respectively, p=0.02], with a median concentration below 10th centiles in the 

normal group. 
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Table  5-4 Bone profiles and metabolism markers in the first time assessment and the retesting groups 
 

 First time assessment 
(n=25) 

Retesting 
(n=9) 

Normal ranges 
Naive -GHD 

(n=15) 
Normal 
(n=10) P-value 

Persistent GHD 
(n=7) 

GH sufficient 
(n=2) P-value 

Bone minerals parameters 

Ca  (mmol/L) 

PO4 (mmol/l) 

Mg   mmol/L 

PTH  (pmol/l) 

25 (OH) Vit-D (nmol/l)* 

 

      25(OH) D <50 (n, %) 

      25(OH) D 50-75(n, %) 

      25(OH) D >75(n, %) 

      No data 

 

2.4 (2.2 ,  2.9) 

1.4 (1.2,  1.6) 

0.8 (0.7,  1.0) 

4.0 (2.3,  5.6) 

55.7 (23.0, 102.0) 

 

5, 34% 

6,40% 

2,13% 

2,13% 

 

2.3 (2.1, 2.9) 

1.3 (0.9, 1.7) 

0.8 (0.7, 1.0) 

3.3 (0.3*,  8.7) 

35.5 (20.0,  69.0) 

 

6,60% 

4, 40% 

- 

- 

 

0.15 

0.33 

0.45 

0.15 (0.27)* 

0.16 

 

0.24 

1.00 

- 

- 

 

2.4 (2.3, 2.5) 

1.1 (0.9, 1.3) 

0.9 (0.7, 0.9) 

4.6 (3.4, 6.7) 

33.5 (32.0, 55.0) 

 

5, 71% 

2,29% 

- 

- 

 

2.2 (2.1, 2.3) 

1.4 (1.4, 1.4) 

0.8 (0.7, 0.8) 

7.7 (6.2, 9.2) 

31.0 (23.0, 39.0) 

 

2,100% 

- 

- 

- 

 

0.13 

0.90 

0.18 

0.24 

0.86 

 

- 

- 

- 

- 

 

(2.2, 2.7 mmol/l) 

(0.9, 1.8 mmol/l) 

(0.75, 1.00 mmol/L) 

(1.0, 6.8 pmol/l) 

(>75 nmol/L) 

Bone biomarkers+ 

BAP (μg/l) 

OC(ng/ml) 

CTX (ng/ml) 

 

89.5 (17.3, 136.8) 

50.2 (31.8, 83.6) 

2.0 (1.4, 3.9) 

 

69.9 (0.5, 146.9) 

46.0 (31.8, 76.5) 

1.6 (0.9, 2.8) 

 

0.25 

0.16 

0.02 

 

28.7 (11.8, 81.1) 

33.6 (25.4, 35.1) 

1.1(0.5, 1.6) 

 

22.1(15.7, 28.6) 

21.7(15.7, 18.4) 

1.2 (0.5, 2.0) 

 

0.61 

0.27 

0.89 

 

(48, 121 μg/l) 

(47, 191 ng/ml) 

(2, 3.8 ng/ml) 

 

Ca:calcium; PO4: phosphate; Mg:magnisum; PTH: parathyroid hormone; 25 (OH) Vit-D: 25 hydroxy vitamin D; BAP: bone-specific alkaline phosphatase; OC: 
osteocalcine; CTX: cross linked C-telopeptide of type I collagen 

* Known case of hypoparathyrodism was excluded from this analysis (p-value  after exclusion). 

+ The reference ranges (10th, 90thcentiles) for BAP, OC and CTX were according to local data for children aged from 5years to 16years



 

148 
 

 
 

 
Figure  5-10 Bone profiles and metabolism markers in the first time assessment (A) and the retesting (B) groups. 
Individual values with median (range) (blue circle, CO-GHD; Red Square, normal).   

Ca: calcium; mg:magnisum; PTH: parathyroid hormone; 25 (OH) Vit-D: 25 hydroxy vitamin D 
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 Figure  5-11 Bone biomarkers of the first time assessment (A) and the retesting (B) groups. 
Individual values with median (range) (blue circle, CO-GHD; Red Square, normal).   

BAP: Bone-specific alkaline phosphatase; OC: osteocalcine; CTX: cross linked C-telopeptide of type I collagen 
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5.5.8 Muscle strength  

The Leonardo mechanograph was used to measure lower limb muscle force, power, velocity, 

jumping height and efficiency of the movement. For technical reason related to a fault in the cable 

connects the mechanography platform to the laptop software, therefore mechanography was only 

available for a few subjects (10/36). Of those, n=8/10 patients were first time assessment; five 

patient were naive GHD and three normal. Of the remaining 2/10 they were in the retesting group; 

one of them was reconfirmed persistent GHD and the other was GH sufficient. Individual patient 

measurements are shown in Table 5-5. 

The median of maximum - force (F-max (kN) in naive GHD patients was significantly lower than 

those who had normal GH levels [0.5 (0.3, 2.8) vs. 2.7 (2.2, 3.3) respectively, p= 0.03] which was 

proportional to tibia muscle CSA, but not to LM. Scatterplot of maximum – force, GH peak, tibia 

muscle CSA and LM in naive GHD and normal of first time assessment group are illustrated in 

Figures 5-12, 5-13, 5- 14. There were no significant differences in the other mechanography 

parameter measurements although the naive GHD group showed lower medians in all of the 

measured parameters. To assess the muscle–bone relationship, we correlated mechanogrphic data 

with tibia pQCT data. Tibia muscle CSA was correlated positively with maximal power (r= 0.85, 

p=0.01), Figure 5-15.  

With regards to the two adolescents’ patients who were CO-GHD, from Table 5-5, the individual 

with persistent GHD, mechanogroph measurements were lower than the patient who was GH 

sufficient.  

 

 

 

 



 

151 
 

Table  5-5 Individual data of Mechanography measurements and the related clinical and body composition data. 
 

Subject Age 
(Yrs) Sex GH-peak 

(mg/l) 
Jump height 

(m) V-max(m/s) EFI% Fmax(tot)kN P-max(tot)kW Efficiency % TB-LM 
(Kg) 

Tibia-Muscle 
CSA (mm2) 

Pt-11 11.0 M 2.3 
0.48 2.51 117 0.95 1.9 120 

32.5 
4889.2 

Pt-21 15.0 M 0.9 0.31 2.01 83 1.92 2.83 73 36.9 5516.0 

Pt-31 5.6 M 2.4 0.12 1.15 72 0.4 0.3 63 11.4 1989.7 

Pt-41 10.9 M 4.2 
0.48 1.61 92 0.48 0.53 77 

22.9 
4070.0 

Pt-51 8.2 M 3.1 0.2 1.67 94 0.5 0.54 77 11.9 2170.5 

Pt-62 5.8 F 6.7 0.16 1.55 97 2.71 0.50 86 13.3 368.5 

Pt-72 9.0 M 6.7 0.26 2.02 115 3.33 0.91 83 17.7 - 

Pt-82 16.5 M 8 0.37 2.30 82 2.29 1.53 86 29.6 3524.7 

Pt-93 18.6 F 3.3 0.19 1.74 65 1.11 1.42 66 28.0 4003.7 

Pt-104 16.3 F 10.2 0.28 2.03 79 2.4 2.45 79 38.9 5247.2 

Median (range) 
(naive  GHD) 
n=5 

10.9 
(5.6-12.0) - - 0.31 

(0.12,  0.48) 
1.6 

(1.1, 2.5) 
92.5 

(72.0, 117.0) 
0.5 

(0.3, 2.8) 
0.5 

(0.3, 2.8) 
77.0 

(63.0, 120) 
22.9 

(11.4, 36.9) 
4070.0 

(1989.8, 5516.0) 

Median(range) 
(Normal) 

n=3 

9.0 
(5.8-16.5) - - 0.26 

(0.16, 0.37) 
2.0 

(1.5, 2.3) 
97.0 

(82.0, 115.0) 
2.7 

(2.29, 3.33) 
0.9 

(0.5, 1.5) 
86.0 

(83.0, 86.0) 
17.7 

(13.3, 29.9) 
1946.6 

(368.5, 3524.8) 

P-value 0.91 - - 0.76 0.76 0.74 0.03 1.00 0.32 0.99 0.25 

 

1: naive GHD; 2: normal; 3: persistent GHD; 4: GH sufficient 

V-max (m/s: Maximum-velocity; EFI %: Esslinger fitness index; F-max (tot) (kN): maximum –force; P-max (tot) kW: maximum-power; TB-LM: total body lean mass; tibia 
muscle CSA: tibia muscles cross sectional area  
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Figure  5-12 Scatterplot of maximum - force and GH peak in naive GHD and normal of the 
first time assessment group 
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Figure  5-13 Scatterplot of LM and GH-peak in naive GHD and normal of the first time 
assessment group 
 

 



 

153 
 

 

6000500040003000200010000

3.0

2.5

2.0

1.5

1.0

0.5

Mus CSA (mm2)

F-
m

ax
(t

ot
) 

kN

naive GHD
normal

 

Figure  5-14 Scatterplot of maximum - force and tibia muscle cross sectional area in naive 
GHD and normal of the first time assessment group   
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Figure  5-15 Scatterplot of the correlation between maximum-power (kN) and tibia muscle 
CSA  
 

 

r= 0.85, 
p=0.01 
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5.5.9 Correlation between DXA and pQCT tibia parameters with 
clinical and anthropometric data  

Age and anthropometric parameters (height-weight-BMI) were significantly related to all of the 

markers of bone density and geometry in the first time assessment group, but the relations became 

attenuated in the retesting group. 

Both FM and LM were positively correlated with TB/LS BMD, BMC and BA of the first time 

assessment group, when only LM was correlated positively with TB/LS BMC and BA of the 

retesting group. Our data showed strong positive correlations (r ranges (0.56, 0.98), all p<0.05) 

between DXA derivative parameters (TB/LS-BMD-BMC-BA-LM-FM) and tibia bone geometry 

(cortical thickness, and periosteal circumferences, cortical bone area and SSI) in the first time 

assessment group, but these significant relationships were weak (not significant) in the retesting 

group (all p>0.05). None of these DXA parameters showed any relation with tibia-pQCT density 

parameters (total density -trabecular density- cortical density) (all P >0.05) in both groups. 

GH peak levels did not correlated to bone density and body composition parameters as measured 

by DXA and pQCT in both first time assessment and retesting groups, but IGF-1 levels in the first 

time assessment were correlated significantly positively with TB/LS BMD, BMC and LM of DXA 

measurement and only with cortical thickness, periosteal circumference, cortical density, cortical 

CSA and muscle CSA of pQCT (all p<0.01).  

In the first time assessment, GH peak levels was correlated negatively with CTX levels (r=-0.46, 

p=0.02) Figure 5-16, when among the retesting group, CTX levels was correlated positively with 

duration from discontinuation rhGH to retesting (r= 0.731, p=0.04), Figure 5-17. 

No significant correlations were observed between 25 (OH) Vit-D with Ca, PTH and bone 

biomarkers in both groups. However, PTH levels showed significant positive correlations with 

CTX in both first time assessment (r=0.46, p=0.02) and retesting groups (r=0.77, p=0.02), Figures 

5-18, 5-19. 

No significant correlations were found between levels of bone profile parameters and metabolism 

biomarkers with either scanning data of bone or body composition. 
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Figure  5-16 Scatterplots showing correlation between GH peak levels and CTX levels in in 
the first time assessment group 
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Figure  5-17 Scatterplots showing correlation between duration of stopping rhGH and 
CTX levels at retesting 
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Figure  5-18 Scatterplots showing correlation between PTH levels and CTX levels in the first 
time assessment group 
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Figure  5-19 Scatterplots showing correlations between PTH levels and CTX levels in the 
retesting group 
 

r =0.77, p=0.02 

r=0.46 
p=0.02 



 

157 
 

5.6 Discussion  

In this cross-sectional study, we showed that bone mass and body composition characteristics using 

DXA and pQCT images in subjects with CO-GHD at the time of first evaluation and retesting after 

final height are strikingly similar to those who have normal GH secretion at either time point. 

Considering various correction methods, no major differences in areal and volumetric total body 

and lumber spinal bone density have been found between children with short stature as a result of 

GHD at baseline and prior to receiving rhGH or at retesting after withdrawal of rhGH at final 

height when compared to normal GH levels matched groups, Our results are consistent with 

previously published data (89,223,232,413). On the other hand, pQCT based studies found children 

and adults with CO-GHD to have low cortical thickness but normal volumetric density (235,238). 

Our results, however, showed similar tibia bone geometry and density between naive GHD and 

normal in the first time assessment group, but persistent GHD in the retesting group had larger 

periosteal circumferences and lower cortical density without significant differences in cortical 

thickness compared to GH sufficient, which were not evident when adjusted for height and age Z 

scores. However, we postulated this mild differences may arise from gender dimorphism during 

puberty maturation between compared groups of retesting n=6 (3males-3 females) persistent GHD 

vs. n=3 (3 females) GH sufficient (414). 

In fact, measurement of bone density in children and adolescents is less standardized than in adults. 

DXA as a projectional technique has several limitations for the assessment of bone status in 

children. The major limitation of DXA is size dependence of the density measuring areal BMD in 

the two-dimensional area of a three-dimensional bone structure, disregarding  bone depth (54). 

Other DXA limitations are: DXA cannot differentiate between cortical and trabecular bone, and 

imaging artifacts can also cause inaccuracies of DXA measurements (415). On the other hand, 

pQCT has mostly been carried out as a research tool allowing for the measurement of true 

volumetric BMD at peripheral sites (distal raids and distal tibia). In contrast to DXA, pQCT can 

distinguish between  cortical bone from trabecular bone (405). Technically, pQCT is similar to or 

worse than DXA, as patient movement during scanning in particular in very young age can cause 

errors in locating the measurement site affecting reproducibility (405,415). In addition, the most 

challenging  limitation of pQCT is underestimation of cortical vBMD when the cortical 

thickness is below 2mm which is known as the partial volume effect and happens when a voxel 

in the image represents more than one tissue type (overlapping bone and soft tissue)  (405). 

Therefore, pQCT tibia measurement  is suggested to be more preferred in children than the radius 

to overcome parietal volume effects and is less susceptible to movement artifacts (416). pQCT has 

also limitations in locating scanning sites, in particular for longitudinal studies. In growing 

children, it can be difficult to obtain repeated pQCT measurement of the same location in paediatric 

longitudinal studies due to changing size of the metaphysis with growth and inconsistence 

landmarks for reference line placement (406,417). To date, there is no established reference data 

for tibia pQCT measurement in children due to a lack of a sufficiently large representative sample 
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of healthy children, with the added difficulty in using various scanner device models and software 

versions (406,416). 

Hence, the impact of CO-GHD on bone of children and adolescents has been a challenge to 

discern. Considering limitations of both DXA and pQCT with incomplete fracture data in CO-

GHD, new insights into the relationships between cortical and trabecular bone macrostructure, 

microarchitecture in CO-GHD are emerging with advances in imaging techniques. Evolving data 

from animal and human studies demonstrated that GHD may impair bone microarchitecture based 

on histomorphometric findings supported by microCT images (235,238,418). Mice studies revealed 

that GHD results in a deterioration of bone size, microarchitecture but not mechanical properties 

(418). A recent study using advanced micro-MRI images to describe detailed bone 

microarchitecture of CO-GHD revealed a significantly lower ratio of apparent bone volume to total 

volume (appBV/TV) and apparent trabecular number (appTbN) in GHD compared to age-matched 

control group (239). Further studies using advance imaging techniques are needed to explore bone 

microstructure in CO-GHD.  

It has been long recognized that adaptation of bone morphology is dominated by mechanical loads 

placed on the skeleton (408). Consequently, it was assumed that changes in muscle mass and 

function as a result of GHD may play a crucial role in determining bone density of subjects with 

GHD (419). Accordingly, it has been suggested that the deficits in somatic development with lower 

LM in children with GHD is a potential confounding factor in the determination of bone density 

and mass (381,420). Indeed, the expected body composition in patients with GHD is an increased 

proportion of FM to LM as it was frequently reported in adult onset GHD (421), adults with 

childhood-onset GHD (233,245),  but less frequently in childhood studies (88,422). Although we 

did not show any differences in either LM or FM between studied groups, theses compartments 

were positively associated with TB/LS BMC, BMD and BA and with only with tibia geometry but 

not tibia density. 

In terms of muscle strength , in previous studies, a lower maximum isotonic strength as measured 

by hand grip force has been documented in young adults with CO-GHD and adult- onset GHD 

(225,423,424), but still remains to be completely elucidated in children with CO-GHD. In fact, 

assessment of muscle function and strength by hand grip force has limited relevance for the 

examination of muscle force because it only assesses isometric force at the upper extremity (non-

weight-bearing part of the body). Leonardo jumping mechanography is a new reliable technique of 

evaluation muscle function and strength in children, adolescents and adults (75-78). Unlike 

isometric force measurements, mechanography allows to measure maximum muscle force and peak 

power using various tests (76). Evidence suggests that there is a positive correlation between 

maximum force and tibia bone parameters as measured by pQCT, and shows that the maximum 

force predicted 84% of tibia BMC of children and adults (71). Currently, there is no consistent 

paediatric reference data, but there are several published reference data intended to assist clinicians 

in the assessment of muscle function by jumping mechanography in Caucasian children and 
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adolescents (425,426). Although small data, a significant lower maximum-force as measured by 

mechanography was observed in naive GHD compared to normal in the first time assessment 

group, when the only assessed two subjects among retesting group, the persistent GHD showed 

lower muscle force and power compared to the subject with GH sufficient. Up to our knowledge, 

few studies have analysed the connection between bone and muscle strength in adults with GHD 

(427), with no existing data targeting children and adolescents with CO-GHD. Although were not 

able to provide complete data on the muscle–bone interaction in our cohort, it can nevertheless be 

interpreted in the framework of the mechanostat theory. 

 

Our data also showed a high percentage of the first time and the retesting groups had abnormal 

levels of 25(OH) D according to Endocrine Society recommendations (428). However, to date, 

there is limited data on which levels of 25(OH) D are associated with subtle abnormalities of bone 

density, metabolism and neuromuscular function (60). Although the relation between 25(OH) D, 

PTH, and GH/IGF-1 axis is well documented (429-431), this relationship is not clearly established 

in subjects with GHD. It has been suggested that GH/IGF-1 increases 1α-hydroxylase activity in 

the kidney, thereby increasing 1, 25-dihydroxyvitmin D levels (155,432). Recent studies 

demonstrated a high prevalence of hypovitaminosis D (<30 ng/mL) in children (433) and adults 

with GHD(434). In the present study, the majority of subjects had inadequate vitamin D levels 

whether they had GHD or normal GH levels, with no significant correlations with either GH peak 

or IGF-1 levels. 

 

On the other hand, there is evidence suggesting  an interactive relationship between PTH and GH 

on bone: PTH plays an important catabolic role on bone metabolism through stimulating osteoclast 

differentiation and increasing bone resorption and remodelling (62,63) and GH may have a 

regulatory role in modulating PTH secretion and circadian rhythm (44,165). In the context of GHD, 

studies of adults with GHD assumed PTH may underlie bone deficits in GHD through reducing 

bone turnover and increasing bone resorptive activity (91,435). In addition, it was suggested that 

subjects with GHD showed a decrease in organ sensitivity to PTH leading to a state of PTH 

resistance without a significant change in concentrations (436).  In support of this concept, our 

analysis showed a significant positive correlation between PTH and CTX levels and that was more 

pronounced in those with GHD among both groups. In addition CTX levels showed positive 

correlation with duration of discontinuation rhGH after final height in retesting group which may 

relate to increases PTH actions after withdrawal rhGH.  

 

There is also strong evidence from in vivo and vitro studies reporting that GH increases bone 

turnover by acting directly and indirectly on target bone cells (163).So far, data is not all conclusive 

whether CO-GHD results in imbalanced bone turnover which ultimately could cause low bone 

mass (92). It is well documented that adults with GHD have low bone turnover predisposing them 

to osteoporosis (437). Intervention studies showed that rhGH replacement increases biochemical 
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markers of bone turnover in the normal population (438) children with GHD during childhood and 

at final height when restarting rhGH (223,410). Although the medians of formation markers were 

not different between groups of the first time assessment and retesting, it appears that in terms of 

the percentage of higher bone resorptive and lower formation activities was more pronounced in 

GHD patients. As no significant correlations between both GH/IGF-1 and bone turnover 

biomarkers, except CTX levels in the first time assessment group, were found in our data, it could 

indicate that factors other than GH statue may play a role. 

 

Although we must take into account the limitations of this study that we cannot gain any insight on 

bone pathophysiology in GHD from the small size cross sectional data, our data may suggest the 

possibilities that may be needed to further investigated in larger studies. 

 

5.7 Conclusion  

The present study provides additional evidence that bone density and body composition were not 

affected in children and adolescents with CO-GHD either at time of first assessment or on retesting 

at final height as measured by DXA and pQCT using various corrections methods. Muscle strength 

decline may be an issue connected with the bone health in subjects with CO-GHD. Our results also 

suggest that serum PTH may be an important determinant of bone metabolism in subjects with CO-

GHD. These findings may explain a possible underlying mechanism for the impact of CO-GHD on 

bone health. However, a large-scale study is required to verify our findings to derive a more 

accurate and trustworthy conclusion. 
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CHAPTER 6 

 

 Metabolic Parameters and Glucose Homeostasis 
in Children and Adolescents with Childhood-
Onset Growth Hormone Deficiency at Time of 
Initial Evaluation and Retesting at Final Height
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6.1 Abstract  

Background: It is well known that growth hormone (GH) has several functions and effects, 

involving bone, body composition, lipids and glucose homeostasis. However, the complex 

interplay between these parameters is rather poorly studied in children with childhood-onset-GH 

deficiency (CO-GHD). 

Aim: To investigate lipids, adipokines (leptin- adiponectin- resistin) and glucose homeostasis and 

their relationship with bone and body composition in children and adolescents with CO-GHD at 

time of initial evaluation and retesting at final height. 

Study population and methods: A cross-sectional study of children undergoing GH stimulation 

tests for investigation of short stature (total –25, GH deficiency identified –15, median age (range) 

10.9years (5.6-16.0)) and adolescents with CO-GHD undergoing biochemical revaluation of the 

GH axis at final height after withdrawal of GH therapy (total- 11, persistent GHD-7, age 16.7years 

(14.9-18.6)). 

Results: At the time of initial evaluation and retesting, lipid profiles, adipokines and glucose 

homeostasis were not different between those with GH deficiency and those who had normal GH 

levels across groups. Leptin levels in both groups correlated positively with fat mass (r=0.9, 

p<0.01), and with osteocalcin positively at initial evaluation (r=0.51, p<0.01) but inversely at 

retesting (r=-0.91, p<0.01). In the retesting group, those who were older at the time of diagnosis of 

CO-GHD with a shorter duration of GH therapy were more likely to have a higher cholesterol 

(r=0.9, p<0.001) and leptin (r=0.8, p<0.001), with a lower osteoclacin (r=-0.7, p=0.01) at final 

height. 

Conclusion: Metabolic profiles and glucose homeostasis were not significantly different between 

those with GH deficiency and those with normal GH levels at time of initial evaluation and 

retesting at final height. Timing and duration of childhood treatment may influence adiposity 

parameters and bone formation biomarkers in adolescents with CO-GHD. Differences in 

relationship between leptin and osteoclacin at time of initial diagnosis and at the time of retesting 

may be related to active growth. Further studies are still required to clarify the relationship between 

adipokines, metabolic profiles and bone in subjects with CO-GHD. 
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6.2 Introduction  

The main role of growth hormone (GH) in growing children and adolescents is to promote linear 

growth and maintain bone health and body composition (362,439). Nevertheless, it is well known 

that GH brings about a large number of metabolic effects, involving lipid profiles, adipokines and 

glucose homeostasis (133). These issues have become the focus of research in recent years. Studies 

have demonstrated a slight increase in unfavourable lipid profiles in children with childhood onset 

GH-deficiency (CO-GHD), both at the time of diagnosis (440,441) and in GH-deficient adolescents 

after discontinuation of recombinant human GH (rhGH) treatment (268,442). These parameters 

have been shown to improve after rhGH replacement therapy (440-442).  

While it is well documented that adult subjects with GHD are more likely to be insulin resistant 

(443), children with CO-GHD are known to be more insulin sensitive at time of first diagnosis 

(444) and after withdrawal of rhGH at final height (244). However, it is not clear whether GHD 

itself, body composition and adiposity or both are responsible for glucose homeostasis changes in 

these subjects. Adipokines (particular leptin, adiponectin and resistin) have been suggested to be 

involved in insulin sensitivity status and in the regulation of glucose homeostasis and energy 

metabolism (144). Interestingly, recent studies provide evidence that adipokines might also 

participate in bone metabolism through different mechanisms (445). Several reports indicate leptin, 

which correlates positively with BMI and fat mass and negatively with insulin sensitivity, may also 

play a role in bone mass regulation by stimulating osteoblastic activity and controlling 

osteoclastogenesis (160).  Adiponectin has been proposed to play an important role in the 

regulation of energy homeostasis and insulin sensitivity (446), but its role in bone density and 

metabolism is unclear (158,447). Resistin, another cytokine, has been implicated in the regulation 

of inflammatory processes and insulin sensitivity (448), but debate is still ongoing with its exact 

biological functions in humans and animals studies. Resistin in rodents is clearly directly linked 

with  insulin resistance, when human resistin is shown to have a significant role in inflammation 

processes which may be indirectly causing insulin resistance (449). So far, there are a few studies 

evaluating adipokines in children and adolescents with CO-GHD (440,449-452), but no study has 

been carried out showing the relationship between adipokines and bone metabolism in these 

patients. 

Therefore, we aim to investigate lipid glucose homeostasis, adipokines levels and their relationship 

with bone metabolism markers and body composition in children and adolescents with CO-GHD at 

time of initial evaluation or retesting at final height. 
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6.3 Subjects and Methods 

6.3.1 Patients 

We studied 25 children undergoing GH stimulation tests for investigation of short stature (first time 

assessment group), aged median (range) 10.9 years (5.6-16.0), and 11 adolescents with CO-GHD 

who had biochemical retesting at final height after withdrawal of childhood rhGH therapy 

(retesting group), aged 16.7 years (14.9-18.6). The inclusion and exclusion criteria of this study 

were described in chapter 5. Of the 25 first time assessments, 15 were confirmed GH deficient 

(naive-GHD) (GH peak on stimulation tests <6.6 μg/l), and seven of the 11-retesting group had 

persistent GHD (GH peak <5 μg/l and or low IGF1 < -2 SD for age references). Obesity was 

defined as BMI SDS > +2 SDS above the mean using UK 1990 growth references, and 

underweight was defined as BMI SDS < -2 SDS (384,453). 

Only subjects who had fasting blood samples taken and tested were involved in this analysis. 

 

6.3.2 Hormone and biochemical assays 

Blood samples for metabolic parameters were taken after overnight fasting, on the day of the 

stimulation test before starting GH therapy. Lipid profiles (total cholesterol, high-density 

lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides (TG)) levels were measured 

immediately after blood sampling in a biochemistry laboratory in RHC with standard methods and 

reference ranges from CALIPER (411).   

Leptin levels were measured by ELISA according to the manufacturer’s instructions (Linco 

Research, Inc., St Charles, MO, USA) with intra-assay CV% values of 2.0–2.5%. Adiponectin 

levels were measured by ELISA according to the manufacturer’s instructions (Linco Research, 

Inc.) with inter-assay CV values of 20.3 to 0.9%. Resistin concentration was assayed with an 

enzyme-linked immunosorbent assay kit (EZHR-95K, Linco Research, St Charles, MO). The 

sensitivity of the assay was 0.16 ng/mL, with intra-assay CV of 3.1% to 15.2%.  As serum 

adipokine levels are dependent on the amount of adipose tissue, adipokine levels were adjusted for 

fat mass (FM) by dividing the measured concentration by FM as measured by DXA (chapter-5). 

The serum free fatty acid (FFA) concentration was determined using the ACS.ACOD method 

(Wako Pure Chemical Industries, Osaka, Japan) with intra-assay coefficients and a variation of less 

than 1.5 %.  Serum insulin was measured by ELISA enzymeimmunoassay (DRG Human Insulin 

EIA-2935, Germany) with intra essay CV of 1.4-1.7%. All ELISAs were performed by Mr Martin 

McMillan in the Department of Child Health at RHC, Glasgow. Fasting insulin normal reference 

values by age and weight were according to (453) and (454). The insulin resistance was estimated 

using the homeostasis model assessment insulin resistance index (HOMA-IR), and using the 

following formula: fasting serum insulin (μU/ml) × fasting plasma glucose (mmol/l)/22.5 (455). 

HOMA-IR estimates steady state beta pancreatic cell function and reflects target-tissue insulin 
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sensitivity to insulin as percentage from a normal reference population. This measure is simple, 

minimally invasive and well correspond to other surrogate markers of insulin resistance such as 

QUICKI, hyperinsulinaemic clamp and the oral glucose tolerance test (456) with some cautions for  

its implications for clinical practice (457,458). There is currently no consensus as to the optimal 

cut-offs for HOMA-IR amongst children and adolescents. In this study HOMA-IR values of > 2.2 

(age 5-8), >3.3 (age 9-11) and > 4.5 (age 12-19) were chosen as an indicator of reduced insulin 

sensitivity (453,454). 

 

6.3.3 Bone and body composition 

Bone turnover markers and body composition data were described in chapter-5. 

 

6.4 Statistical Analysis 

Data were reported as the median and range (minimum-maximum). Differences between medians 

were analysed by the Mann- Whitney U-test (nonparametric test). Correlations among continuous 

variables without normal distribution were determined by using the Spearman’s test. Linear 

regression analysis was used to test the relationships of adipokines with other variables (focused 

significance cutoff: <0.05 for univariate analysis) after adjusting for FM. P< 0.05 was considered 

statistically significant. All graphs were performed using GraphPad Prism 6 software (GraphPad 

Software, San Diego, CA, USA).  

 

6.5 Results  

6.5.1 General characteristics  

Auxological and clinical parameters of both groups are reported in Table 6-1. Both groups were 

similar in age, height and BMI (p values were not significant). However, two subjects with naive 

GHD were obese (BMI SDS: 2.9, 3.0), and one subject with normal GH levels was under weight 

(BMI SDS: -2.4). The majority of first time assessment were prepubertal (tanner stage I) 

10/15(67%) of naive GHD; 5/10(50%) of normal subjects. 

No differences were recorded in the age of diagnosis, duration of treatment and time off treatment 

in the retesting group between those who had persistent GHD and those who were now GH 

sufficient.
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Table  6-1 Auxological and clinical characteristics of the first time assessment and the retesting groups. 
 

 

First time assessment 
(n=25) 

P-value 

Retesting 
(n=9) 

P-value 
Naive-GHD 

(n=15) 
Normal 
(n=10) 

Persistent  GHD 
(n=7) 

GH-sufficient 
(n=2) 

M/F 13/2 7/3 0.30 3/4 0/2 0.50 

Age(yrs) 10.9 (5.6, 15.2) 12.1 (5.8, 16.5) 0.90 16.6 (14.9, 18.6) 16.8(16.3-20.4) 0.73 

Anthropometry 
Height (cm) 
Height -SDS 
Weight (kg) 
Weight-SDS 
BMI 
BMI-SDS 

 
129.0 (97,152.2) 
-2.5 (-3.4, 1.3) 
26.5 (15, 71.4) 
-1.8 (-3.6, 1.9) 

16.5 (14.2, 32.3) 
0.0(-1.8, 3.0) 

 
130.1(96.1, 153.3) 
-2.2 (-4.6,  -0.1) 
29.3 (13.3, 56.7) 
-1.3 (-4.7, 0.7) 

17.2(14.4, 24.7) 
0.0 (-2.4, 1.6) 

 
0.76 
0.51 
0.94 
0.93 
0.97 
0.57 

 
158.7(152.7,  179) 

-1.2 (-1.9,  1.2) 
60.6(45.6,  71.2) 
0.6 (-1.8,  1.4) 

22.4(18.8,  28.0) 
0.9 (-1.1, 2.0) 

 
153.5(145.3, 166.4) 

-1.6(-3.0, 0.5) 
56.0(37.6,  66.7) 

0.0(-3.2,  1.1) 
23.8(17.8, 24.1) 
1.0(-1.4,  1.1) 

 
0.35 
0.50 
0.63 
0.63 
0.65 
0.59 

 Biochemical data 
GH-peak(μg/l) 
IGF1 levels(ng/ml) 
IGF1 levels SDS 

 
2.6 (0.7, 4.7) 

65.0 (14.0, 433.0) 
-3.2 (<-5.0, 0.3) 

 
8.0 (6.7, 22.3) 

85.5(28.0, 295.0) 
-2.0 (-4.5,  -0.9) 

 
<0.01 
0.52 
0.72 

 
2.0  (0.1, 3.8) 

141.0 (18.0, 294.0) 
-3.2 (<-5.0,  -1.3) 

 
8.3 (6.4, 10.2) 

241.5(117, 327.0) 
-2.0 (-3.5,  -0.9) 

 
0.05 
0.28 
0.28 

Tanner stages n (%) 
 I 
II 
III 
IV 
V 

 
10 (66) 
3 (20) 
2 (20) 

0 
0 

 
5 (50) 
2 (20) 
2 (20) 
1 (10) 

0 

 
0.44 
0.95 
0.94 
0.20 

 
- 

 
-  

Retesting data 
Age of diagnosis (yr) 
Age at starting  rhGH(yr) 
Duration of rhGH (yr) 
Age at stopping  rhGH(yr) 
Duration of  stopping rhGH (yr) 

   

 
9.5  (2.6, 10.3) 

10.3  (7.1,  13.6) 
4.7  (2.9, 7.8) 

15.9  (14.4,  17.9) 
0.6  (0.2, 1.0) 

 
9.2  (7.0,  11.4) 
9.2  (7.0, 11.4) 
7.3  (4.3, 10.2) 

16.4  (15.7,  17.0) 
0.7  (0.4, 1.0) 

 
0.56 
0.56 
0.68 
0.86 
0.86 

Data are reported as median and (range) 
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6.5.2 Lipid profiles  

From Table 6-2, at time of initial evaluation and retesting, no statistical significant differences were 

found in lipid profiles: total cholesterol, LHD, LDL, TG, CHOL/HDL ratio and FFA between those 

with GH deficiency and those who had normal GH levels in both studied groups. 

Individual data of lipid profiles in the first time assessment and the retesting groups are illustrated 

in Figures 6-1, 6-2.  
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Table  6-2 Lipid profiles, adipokines and glucose homeostasis parameters in the first time assessment and the retesting groups. 
Data are reported as median and (range) 

 First time assessment 

P-value 

Retesting 
 

P-value 
Normal ranges Naive-GHD 

(n=15) 

Normal 

(n=10) 

Persistent GHD 

(n=7) 

GH-sufficient 

(n=2) 

Lipid profiles  

T-CHOL (mmol/L) 

HDL  (mmol/L) 

LDL  (mmol/L) 

T-CHOL /HDL ratio  

TG  (mmol/L) 

FFA  (mmol/L) 

 

3.8(2.8, 5.2) 

1.5(1.1, 2.1) 

1.9(1.4, 3.2) 

2.5(2.0, 3.8) 

0.7(0.4, 1.5) 

0.6(0.3, 1.1) 

 

4.4(2.9, 5.2) 

1.3(0.9, 2.2) 

2.3(1.7, 3.4) 

2.9(2.1, 4.8) 

0.7(0.5, 1.4) 

0.8(0.3, 1.6) 

 

0.89 

0.18 

0.12 

0.07 

0.76 

0.12 

 

4.0(3.3, 4.8) 

1.1(0.9, 2.1) 

2.1(1.6, 3.3) 

3.5(2.0,  4.8) 

1.1(0.8, 1.3) 

0.4(0.2, 0.8) 

 

3.7(3.2, 4.1) 

1.1(0.9, 1.3) 

2.3(2.0, 2.5) 

3.4(3.2,  3.6) 

0.7(0.7, 0.7) 

0.5(0.4, 0.6) 

  

0.50 

0.99 

0.99 

0.61 

0.73 

0.95 

 

 (2.97–4.72) 

(0.73–1.87) 

(1.5– 4.2) 

<4 

<1.7 

(0.4 to 0.8) 

Adipokines  

Leptin (ng/ml) 

Leptin/FM 

Adiponectin (ng/l) 

Adiponectin/FM 

Resistin (ng/ml) 

Resistin/FM 

 

4.4(1.1, 55.0) 

1.1(0.5, 5.2) 

10.9 (5.9, 29.9)  

2.5 (0.4, 14.7) 

3.9 (1.9, 7.0) 

0.9 (0.1, 3.2) 

 

2.4(0.9, 41.7) 

0.7(0.4, 7.4) 

15.5 (8.0, 20.6)  

4.2(1.2, 10.8) 

4.1(2.4,  12.4) 

1.6(0.3, 3.0) 

 

0.24 0.45 

0.37 

0.49 

0.24 

 0.18 

 

11.9(2.1,  37.4) 

0.6(0.2, 1.3) 

6.7 (1.7, 20.1)  

0.3(0.1, 1.4) 

4.0(2.9,  22.3) 

0.3(0.2, 0.8) 

 

17.4(10.0, 24.7) 

0.9(0.8,  1.0) 

9.7 (6.2, 13.2)  

0.6(0.3, 1.0) 

7.6(6.8,  8.5) 

0.5(0.3, 0.7) 

 

0.88 

 0.40 

0.88 

0.61 

0.18 

0.24 

 

Glucose homeostasis 

F-Glucose (mmol/L) 

F-Insulin (uIU/ml) 

HOMA-IR 

 

4.6 (3.5,  5.3) 

8.3 (4.2, 57.8) 

1.8 (0.9, 13.4) 

 

4.4(3.7,  5.2) 

11.1(1.6, 103.8) 

2.2(0.3, 19.4) 

 

0.41 

0.73 

0.68 

 

4.2(4.0, 4.5) 

12.5(10.0,  45.8) 

2.3(1.9, 8.5) 

 

4.5(4.4, 4.6) 

20.3(7.5, 33.1) 

4.0(1.5, 6.5) 

 

 0.17 

0.84 

0.56 

 

(3.5-5.5) 

<20* 

<4.5* 

 
T-CHOL: total -cholesterol LDL: Low Density Lipoprotein Cholesterol; HDL: High Density Lipoprotein Cholesterol; TG: triglyceride; FFA: free fatty acid; F: fasting; 
HOMA-IR: Homeostatic model assessment; FM: fat mass. 
* Normal ranges of fasting insulin and HOMA-IR were according age- and sex-specific paediatric reference interval as indicated in references (453,454).
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Figure  6-1 Individual data of lipid profiles in the first time assessment group. 
  LDL: Low Density Lipoprotein Cholesterol; HDL: High Density Lipoprotein Cholesterol; TG: triglyceride; FFA: free fatty acid 
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Figure  6-2 Individual data of lipid profiles in the retesting group.  
HDL: High Density Lipoprotein Cholesterol; TG: triglyceride; FFA: free fatty acid. 



  

171 
 

6.5.3 Adipokines 

From Table 6-2 and Figure 6-3, no differences were found in either absolute or fat mass (FM) 

adjusted values of serum concentrations of adipokines (leptin- adiponectin- resistin) between naive 

GHD and normal children in the first time assessment; even when obese children were excluded. 

However, the median of leptin/FM ratio was slightly higher in naive GHD compared to normal 

children [1.1 (0.5, 5.2) naive GHD vs. 0.7 (0.4, 7.4) normal] although not statistically significant 

(p= 0.42). The median ratios of adiponectin/FM and resistin/FM also tended to be lower in naive 

GHD than normal but insignificantly (2.5 vs. 4.2 and 0.9 vs. 1.6, respectively).  

Absolute and FM adjusted adipokine levels in the retesting group were similar between those with 

persistent GHD and GH sufficient. However, those with persistent GHD tended to have lower 

leptin, adiponectin and resistin levels compared to those who were GH sufficient (Figure 6-4). 
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Figure  6-3 Individual data of adipokines levels in the first time assessment group. 
 (A absolute values - B adjusted to fat mass) 
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 Figure  6-4 Individual data of adipokines levels in the retesting group. 
 ( A absolute values - B adjusted to fat mass) 
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6.5.4 Glucose Homeostasis 

Individual data of glucose homeostasis parameters in the first time assessment and the retesting 

groups are illustrated in Figure 6-5. In the first time assessment group, naive GHD tended to be 

more insulin sensitive with a lower HOMA-IR index compared to normal [1.8 (0.9-13.4) vs. 2.2 

(0.3-19.4), respectively, p=0.68]. 

Five children in the first time assessment group had a HOMA-IR index at more than 4.5 (three 

naïve GHD, two normal), Table 6-3. 

Table  6-3 Individual data of the first time assessment subjects with HOMA-IR > 4.5. 
* BMI>+2 SDS (obesity)  

 
Age 
(yr) 

sex Tanne
r stage 

GH-
peak 
(μg/l) 

GHD Aetiology 
and/or other 

morbidity 
BMI BMI

SDS 
F-

Glucose 
F-

insulin 
HOMA-

IR 

1 15.1 M II 0.9 Idiopathic GHD 31.8 2.9* 5.2 57.8 13.4 

2 14.9 M III 0.7 Empty sella-GHD 18.6 -0.3 4.5 25.0 5.0 

3 12.9 F II 0.7 Idiopathic GHD 32.3 3.0* 5.1 25.2 5.7 

4 14.2 F II 18.6 
Mitochondrial 

disease with primary 
ovarian failure 

24.7 1.6 4.0 49.3 8.7 

5 13.7 F III 8.5 

Autoimmune 
polyendocrinopathy 

ectodermal 
dystrophy 

17.7 -0.7 4.2 103.8 19.4 

 

HOMA-IR index was not different in those with reconfirmed persistent GHD in the retesting group 

compared to those with GH sufficiency (2.3 (1.9-8.5) persistent GHD, 4.0(1.5-6.5) GH sufficient, 

P=0.56), Figure 6-5. Two of those who were confirmed with persistent GHD and one who was GH 

sufficient among the retesting group have HOMA-IR >4.5 (8.5, 6.6, and 6.5 respectively) as shown 

in Table 6-4. 

Table  6-4 Individual data of the retesting subjects with HOMA-IR >4.5 
 

 
Age 
(yr) Sex 

GH-
peak 
(μg/l) 

Aetiology and 
other morbidity BMI 

BMI
SDS 

F- 
Glucose 

F-
Insulin 

HOMA-
IR 

1 15.1 F 3.8 IGHD (Idiopathic), 
Previous Celiac 

disease 

28.0 2.0 4.2 45.8 8.5 

2 14.9 M 3.2 MPHD (Oncology) 25.7 1.7 4.5 32.8 6.6 

3 12.9 F 10.2 IGHD (Ectopic 
posterior pituitary) 

24.1 1.1 4.4 33.1 6.5 
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Figure  6-5 Individual data of glucose homeostasis in the first time assessment (A) and the retesting groups (B). 
*Cut-off lines for fasting insulin (20) and HOMA-IR (≥4.5) were according to Viner et al 2012 (441) 
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6.5.5 Relation between body metabolic parameters and bone 
parameters  

No associations were found between lipid profiles levels and any variables in our first time 

assessment group.   

In the retesting group, we found total cholesterol levels at time of retesting were correlated 

positively with the age of starting rhGH treatment at childhood (r=0.89, p=0.01), but negatively 

with the duration of rhGH replacement during childhood: (r=-0.95, p<0.01) as seen in Figures 6-6, 

6-7. However, the duration from stopping rhGH treatment to retesting was not associated with any 

adverse metabolic parameters in our cohort.
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Figure  6-6 Scatterplots showing correlations between total cholesterol levels at retesting 
and age of starting childhood rhGH 
 

 

Figure  6-7 Scatterplots showing correlations between total cholesterol levels at retesting 
and duration of childhood rhGH 
 

 

r=-0.95, p<0.01 

r=0.89, p=0.01 
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Table 6-5 reports Spearman correlations between adipokines, bone metabolism and body 

composition in the two groups. 

Leptin was found to be positively and strongly correlated with BMI and FM in both first time 

assessment and retesting groups (p<0.001). No correlation between adiponectin and resistin with 

any other metabolic parameters in either group was observed even when adjusted for fat mass. In 

the retesting group age at childhood diagnosis correlated positively with leptin levels at retesting 

(r=0.89, p<0.01). 

Leptin levels were also positively correlated with osteocalcin (OC) in the first time assessment 

group (r=0.51, p=0.01) but inversely with OC and bone-specific alkaline phosphatase (BAP) in the 

retesting group (r= -0.91, P<0.01: r=-0.81, P<0.01, respectively), as illustrated in Figures 6-8, 6-9. 
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Table  6-5 Spearman correction between adipokines and other metabolic and clinical data in the first time assessment and the retesting groups 
 

 

First time assessment 
N=25 

Retesting 
n=9 

Leptin Adiponectin Resistin Leptin Adiponectin Resistin 

r value P value r value P value r value P value r value P value r value P value r value P value 

Age (yr) 
BMI 

0.28 
0.55 

0.19 
<0.01 

-0.40 
-0.33 

0.06 
0.13 

0.07 
-0.16 

0.73 
0.45 

0.00 
0.71 

0.90 
0.04 

0.26 
0.57 

0.48 
0.91 

0.33 
0.04 

0.38 
0.91 

GH-peak (μg/l) 
IGF-1 levels (ng/ml) 

-0.23 
0.18 

0.29 
0.42 

0.18 
-0.16 

0.41 
0.48 

0.31 
0.03 

0.14 
0.89 

0.26 
-0.30 

0.53 
0.43 

0.47 
-0.40 

0.23 
0.28 

0.64 
-0.08 

0.08 
0.83 

Cholesterol(mmol/L) 
 TG(mmol/L) 
FFA(mmol/L) 

0.15 
0.47 
0.40 

0.49 
0.02 
0.06 

-0.20 
-0.08 
0.22 

0.36 
0.71 
0.35 

-0.27 
0.24 
0.03 

0.22 
0.26 
0.90 

0.39 
0.06 
-0.26 

0.33 
0.88 
0.53 

-0.04 
-0.53 
0.31 

0.91 
0.17 
0.45 

-0.28 
-0.57 
-0.11 

0.49 
0.13 
0.77 

F-Glucose(mmol/L) 
F-Insulin(uIU/ml) 
HOMA-IR 

0.41 
0.52 
0.56 

0.06 
0.01* 

<0.01* 

-0.17 
-0.20 
-0.24 

0.43 
0.35 
0.28 

0.02 
0.15 
0.19 

0.92 
0.48 
0.39 

-0.22 
0.64 
0.42 

0.63 
0.11 
0.33 

0.00 
-0.03 
-0.17 

0.90 
0.93 
0.70 

0.03 
0.21 
0.00 

0.93 
0.64 
0.97 

BAL (μg/l) 
OC (ng/ml)   
CTX (ng/ml)   

0.37 
0.51 
0.14 

0.08 
0.01* 
0.51 

-0.26 
-0.35 
-0.10 

0.23 
0.10 
0.63 

0.19 
0.32 
-0.13 

0.37 
0.14 
0.54 

-0.81 
-0.91 
0.36 

<0.01* 
<0.01* 

0.33 

-0.18 
-0.35 
-0.35 

0.63 
0.35 
0.35 

-0.61 
-0.60 
0.23 

0.07 
0.08 
0.54 

LM (kg) 
FM (kg) 
LM/FM ratio 

0.21 
0.82 
-0.82 

0.35 
<0.01 
<0.01 

-0.46 
-0.30 
0.01 

0.32 
0.18 
0.96 

0.07 
0.05 
0.06 

0.97 
0.80 
0.78 

0.00 
0.92 
-0.85 

0.99 
<0.01 
<0.01 

-0.66 
0.28 
-0.66 

0.09 
0.49 
0.07 

-0.09  
0.28 
-0.38 

0.82 
0.49 
0.35 

Age of childhood diagnosis(yr)  
Duration of childhood rhGH (yr) 
Duration of stopping  rhGH(yr) 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

0.89 
-0.51 
0.21 

<0.01* 
0.15 
0.57 

0.07 
-0.08 
-0.07 

0.87 
0.83 
0.84 

-0.14 
0.23 
-0.00 

0.76 
0.54 
0.98 

 
BMI: body mass index; IGF-1 insulin growth factor -1; TG: triglyceride; BAL; bone-specific alkaline phosphatase; OC: Osteocalcin; CTX: cross linked C-telopeptide of 
type I collagen; LM: lean mass; FM: fat mass; * Not significant when adjusted for FM 
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Figure  6-8 Scatterplots showing correlations between leptin and osteocalcin in the first time 
assessment group 
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Figure  6-9 Scatterplots showing correlations between leptin and osteocalcin in the retesting 
group 
 

r=0.91, 
p<0.01 

r=0.51, 
p<0.01 
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Table 6-6 summarised Spearman correlations between glucose homeostasis parameters and 

clinical, metabolic data in both studied groups. We found a statistically significant direct 

correlation between HOMA-IR and FM in the first time assessment and the retesting group 

(r=0.70, P<0.01, r=0.88, P=0.01, respectively), HOMA-IR with LM (r=0.78, p<0.01) and LM/FM 

ratio (r= -0.45, p= 0.03) (Figure 6-10) only in the first time assessment.  There were also 

correlations between fasting insulin levels and HOMA-IR with both BAP and OC in the first time 

assessment group (F-insulin(r=0.55, P=0.04; r=0.80, P<0.01, respectively): HOMA-IR, r=0.77, 

p=0.03; r=0.56, p<0.01, respectively) but these observations did not reach statistical significance in 

the retesting group. 
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Table  6-6 Spearman correlations between glucose homeostasis parameters and clinical, metabolic in the first time assessment and the retesting groups 
 

 

First time assessment 
(n=25) 

Retesting group 
(n=9) 

F-Insulin F-Glucose HOMA-IR F-Insulin F-Glucose HOMA-IR 

r value P value r value P value r value P value r value P value r value P value r value P value 

Age (yr) 
BMI 

0.76 
0.71 

<0.01 
<0.01 

0.16 
0.33 

0.44 
0.11 

0.85 
0.67 

<0.01 
0.01 

-0.14 
0.88 

0.76 
0.01 

-0.22 
-0.27 

0.63 
0.60 

-0.39 
0.94 

0.38 
<0.01 

GH peak (μg/l) 
IGF-1 levels (ng/ml) 

0.00 
0.55 

0.97 
<0.01 

-0.19 
0.11 

0.36 
0.60 

0.02 
0.76 

0.92 
<0.01 

0.32 
0.14 

0.48 
0.76 

0.63 
0.81 

0.12 
0.02 

0.21 
0.17 

0.64 
0.70 

FM (kg) 
LM (kg) 
LM/FM 

0.75 
0.78 
-0.41 

<0.01 
<0.01 
0.05 

0.44 
0.17 
-0.43 

0.03 
0.42 
0.04 

0.70 
0.76 
-0.45 

<0.01 
<0.01 
0.03 

0.94 
-0.39 
-0.60 

<0.01 
0.43 
-0.20 

-0.09 
0.25 
-0.03 

0.86 
0.62 
0.95 

0.88 
0.37 
0.39 

0.01 
0.46 
0.39 

Cholesterol (mmol/L) 
TG (mmol/L) 
FFA (mmol/L) 

0.22 
0.49 
-0.33 

0.33 
0.02 
0.16 

0.26 
0.10 
-0.42 

0.24 
0.64 
0.05 

0.24 
0.57 
-0.35 

0.28 
0.01 
0.13 

0.36 
0.30 
-0.67 

0.42 
0.50 
0.09 

-0.41 
-0.34 
-0.37 

0.35 
0.45 
0.41 

0.23 
0.45 
-0.28 

0.61 
0.30 
0.23 

BAL (μg/l) 
OC (ng/ml) 
CTX (ng/ml) 

0.52 
0.52 
0.18 

0.01 
0.01 
0.41 

0.22 
0.21 
0.34 

0.31 
0.31 
0.10 

0.50 
0.55 
0.17 

0.01 
<0.01 
0.45 

-0.35 
-0.32 
0.67 

0.43 
0.48 
0.09 

0.44 
0.18 
-0.48 

0.31 
0.69 
0.27 

-0.17 
0.00 
0.39 

0.70 
0.98 
0.38 

Age of childhood diagnosis (yr) 
Duration of childhood rhGH 
Duration of stopping  rhGH(yr) 

- - - - - - 0.70 
-0.46 
0.34 

0.18 
0.29 
0.45 

0.56 
0.18 
-0.35 

0.32 
0.69 
0.43 

0.60 
-0.39 
-0.01 

0.28 
0.38 
0.96 

 

BMI: body mass index; IGF-1 insulin growth factor -1; TG: triglyceride; BAL; bone-specific alkaline phosphatase; OC: Osteocalcin; CTX: cross linked C-telopeptide of 
type I collagen; LM: lean mass; FM: fat mass 
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Figure  6-10 Scatterplots showing correlations between HOMA-IR and the ratio of lean mass 
to fat mass in the first time assessment group. 
 

r=-0.43, 
P=0.03 
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6.6 Discussion  

The present study demonstrates no differences in lipids, adipokines and glucose homeostasis 

parameters in patients with CO-GHD and those with normal GH levels at time of initial evaluation 

and retesting after withdrawal of childhood rhGH at final height, with the majority of these 

parameters within the normal range. 

 Data in the literature regarding lipid profiles in CO-GHD at these two points in time are 

inconsistent. Studies found similar levels of unfavourable lipid profiles in untreated children with 

GHD at time of diagnosis compared to short stature controls (459) or slightly increased in GHD 

(440,441,450,451). Adolescents with CO-GHD are also reported to have unfavourable alterations 

in lipid profiles after discontinuation of rhGH treatment at final height as early as 6 months and up 

to two years in some studies (236,245,262,442,460), but not all (229,232,245,365). 

 In this study, we tried to identify factors related to CO-GHD that may be associated with 

alterations in lipids profiles after withdrawal of rhGH at final height. The novel finding of our 

analysis is that those who were older when first starting childhood rhGH and had a shorter duration 

of replacement before final height were more likely to have higher total cholesterol levels during 

transition. Although a similar observation was previously reported (264), our findings speculate 

delay in starting rhGH in these particular subjects results in altered lipid profiles, with potentially 

increased cardiovascular risk in the future, whether they were classified as GH deficient or 

sufficient on retesting. Therefore, early detection and starting rhGH treatment in GHD is not only 

better for height outcome, but also better for long-term metabolic and cardiovascular risks. It was 

reported previously that longer duration of discontinuation rhGH aggravated lipid profiles (264). 

From our data, however, it could be assumed that lipid alterations observed at the time of 

discontinuation of rhGH may be explained in part to the short-term effects of rhGH therapy and 

could not be considered independently of duration of treatment during childhood (269). This 

assumption was supported by evidence that emerged from studies of adults with GHD which 

revealed that only long duration of rhGH therapy (5-10 years) improved lipid profiles in adults with 

GHD (443,461). Further studies are needed to confirm this assumption in CO-GHD. 

 

With regards to glucose homeostasis aspects, some studies reported that the subjects with CO-GHD 

were more insulin sensitive at time of initial diagnosis (444,462) and after withdrawal of rhGH at 

final height (244,245). Our data, however, did not reveal any significant differences between GHD 

and those with normal GH levels, either in insulin, glucose or HOMA-IR index, neither prior to 

starting childhood rhGH treatment or after discontinuation of rhGH at final height. This finding is 

consistent with previous studies in which no major differences have been found between GHD and 

non-GHD controls either at baseline or following rhGH therapy (440,441,450,463). In this study, 

HOMA-IR was correlated positively with IGF-1 but negatively with LM/FM ratio. From this 

finding and consistent with the existing evidence, it seems that glycometabolic parameters in 

subjects with CO-GHD are more likely to be related not only to the GH/IGF-1axis, but also to the 
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alterations in the lean to fat mass ratio. Considering the cut off guidance of Obesity Services for 

Children and Adolescents (OSCA) in the UK, a few of our subjects showed hyperinsulinemia and 

had a HOMA-IR > 4.5 which could be attributed to either higher BMI or other existing conditions. 

Also, these alterations may be related to temporary insulin resistance during the early stages of 

puberty in some of our cohort (464).  

Our results have also indicated that adipokines (leptin, adiponectin and resistin) were comparable 

in GHD subjects and those with normal GH levels at time of diagnosis and retesting even when the 

influence of FM was eliminated. Conflicting data are available in the literature on adipokines levels 

in GHD patients.  Similar to the present results, leptin, adiponectin and resistin levels were 

generally normal and comparable between children with GHD and healthy controls at time of 

initial diagnosis (440) but higher leptin and adiponectin were reported elsewhere (451). At present, 

there are limited data with regards to adipokine levels following discontinuation of rhGH at final 

height. A study found lower adiponectin levels in untreated GHD adolescents when compared to 

both treated GHD subjects and healthy controls (452). Similar to the literature, a strong correlation 

between leptin/ adiponectin and parameters of body composition (BMI-FM) was observed in our 

cohort (451,452). While a definite role of resistin in human metabolism has yet to be established 

(449), our study has shown no significant relationship between resistin with bone or body 

composition in both studied groups. 

Although adipokines, especially leptin, have been extensively studied in recent years, the 

relationship between adipokines and bone turnover markers is not completely understood. In vitro 

studies suggested that leptin stimulates bone formation possibly by acting directly on marrow 

stromal cells to enhance osteoblast and inhibit adipocyte differentiation (465) or indirectly through 

stimulating the sympathetic nervous system which then signals to increase osteoblasts activity and 

decrease osteocalcin activity (156). However, clinical studies are less consistent with regard to the 

relationship between leptin and bone biomarkers. Previous studies revealed a negative relationship 

between leptin and OC in normal weight (466) and obese children and adolescents (467). Our 

analysis demonstrated a different relationship among our studied groups: a positive correlation in 

the first time assessment group but negative in the retesting group. This finding suggests that the 

relationship between leptin and OC in our first time assessment could be influenced by active 

growth, particularly as OC concentrations are known to vary with age, gender, height, growth 

velocity and puberty (468). Although GH/IGF-1 may act as an important modulator in production 

of adipose derivative adipokines (152), we were unable to demonstrate a significant relationship 

between the levels of GH and IGF-1 and adipokines. This result supports the hypothesis that the 

influence of adipokines, in particular leptin, on bone metabolism might be independent of the 

effects of IGF-1 and GH (469).   

By contrast, it has been shown that not only are leptin and metabolic profiles involved in regulation 

of bone metabolism and turnover, but also that vice versa the bone metabolism turnover influences 

the endocrine regulation of glucose and fat metabolism (156,470). It is well established that leptin 

is strongly positively associated with insulin resistance independent of age, gender and BMI (471), 
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whereas OC was assumed to increase insulin secretion and sensitivity (470). Our data, however, 

showed a positive relationship between serum insulin and HOMA-IR with both bone formation 

biomarkers (BAP and OC) and leptin levels in the first time assessment group, but this was not 

evident at final height in our retesting group.  

We must take into account the small sample size of this study that limits the power to properly 

control for confounding variables and determine true associations. In the retesting group, only two 

were GH sufficient which makes drawing statistical conclusions difficult. However, our data has 

great validity as venous blood samples were collected in a fasting state and at the exact same time 

of day in each patient. Additionally, by adjusting adipokine levels for a direct measure of fat mass, 

we were able to examine differences among groups taking into account their actual adiposity. 

 

6.7 Conclusion 

In conclusion, metabolic and adiposity parameters were not altered in CO-GHD patients at the time 

of diagnosis prior to starting rhGH and re-testing after withdrawal of rhGH at final height. 

However, our findings suggested timing and duration of childhood treatment may influence 

adiposity parameters seen in adolescents with CO-GHD. Further research is needed for evaluating 

the potential role of adipokines in bone metabolism as well as to better understand how body 

adiposity contributes to bone and body metabolism in this population
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CHAPTER 7 

 

 Quality of Life in Children and Adolescents with 
Childhood Onset Growth Hormone Deficiency
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7.1 Abstract  

Background: Health related quality of life (QoL) is increasingly considered as an important aspect 

in clinical practice to assess the impact of illness or health interventions on the individual’s life. 

Childhood onset-growth hormone deficiency (CO-GHD) is reported to have an impact on QoL. So 

far, there is no conclusive evidence that deterioration in aspects of QoL are directly related to 

GHD. 

 

Aim: To compare quality-of-life in a group of children and adolescents with CO-GHD at the time 

of initial evaluation and retesting at final height. 

 

Patients and methods: In this cross-sectional study, subjects undergoing either GH stimulation tests 

for investigation for short stature (first time assessment group-total-18: 12 naive GHD, 6 normal: 

age range (5.6, 14.9)) or biochemical re-evaluation at final height after withdrawal of rhGH therapy 

(retesting group-total-8: 5 persistent GHD, 3 GH sufficient:  age range (14.9, 20.2)) were asked to 

complete either 36-SF or AGHDA QoL questionnaires at the time of assessment of their GH axis. 

  

Results: QoL was not significantly altered in children with naive GHD with total scores of SF-36 

[93 (77, 96) naive GHD vs. 90 (84, 93) normal, P=0.56]. However, naive GHD subjects feel less 

energetic than normal controls (75 (65, 100) vs. 95 (65,100) respectively, p=0.04). Unexpectedly, 

subjects with normal GH levels in the first time assessment group scored lower in the subscale of 

emotional wellbeing compared to those with naive GHD (78 (55, 84) normal vs. 90 (68, 96) naive 

GHD, p<0.001). In the retesting group, those with persistent GHD scored better in the AGHDA 

questionnaire than GH sufficient individuals (6 points (2, 8) vs. 9 points (7, 17) respectively, but 

this was not significant (p= 0.10).  Subscale analysis showed that GH sufficient subjects 

significantly lacked energy and complained of tiredness compared to those who were confirmed to 

have persistent GHD (1 point (0, 1) persistent GHD vs. 5 points (3, 6) GH sufficient, p= 0.03). 

There were no correlations between the levels of either stimulated GH peak or IGF-1 and total QoL 

scores in either group. However, IGF-1 levels at time of retesting correlated inversely with the 

subscale of memory and concentration in the AGHDA questionnaire. 

   

Conclusion: Neither questionnaire found significant differences in total QoL scores between 

patients with CO-GHD and those who had normal GH levels at time of initial evaluation or 

retesting at final height. Further studies to validate QoL specific instruments in this population are 

needed with greater insight to elucidate factors that modify the relationship between GH status and 

QoL in children and adolescents
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7.2 Introduction  

Quality of life (QoL) has been defined broadly by the World Health Organization as ‘the state of 

complete physical, mental, and social well-being and not merely the absence of disease or 

infirmity’ (472). The relationship between childhood onset growth hormone deficiency (CO-GHD) 

and QoL has not been clearly detailed.  Emerging data suggests that QoL is impaired in short 

stature children and adolescents with CO-GHD or idiopathic SS (ISS) (473,474) and that 

recombinant human growth hormone (rhGH) treatment may improve QoL in those children (475-

477). However, the evidence of improvements in QoL with rhGH particular during childhood is not 

still strong enough to be conclusive. Some studies suggested that the impact of rhGH on QoL 

relates to its influence on stature (478), whereas other data showed no evidence to support the link 

between height and QoL (479) and  an increase in height does not guarantee an improvement in the 

quality of life (275,480-482).  

Similarly, during transition from childhood to adulthood, studies suggest that adolescents with CO-

GHD who were treated with rhGH and discontinued at final height have some psychological 

problems compared to healthy peers, which are reported to improve significantly on recommencing 

rhGH treatment (242). A study showed an inverse relationship between QoL and duration off GH 

therapy with a longer period off rhGH associated with a poorer QoL (264)-whereas re-instituting 

rhGH treatment has a significant positive change in health related QoL aspects (242,264). 

Inversely, other studies did not find any effect of either GHD or rhGH replacement on QoL in this 

particular population (232,247,274).  

Perhaps it should be noted the fact that measuring QoL in children and adolescents with CO-GHD 

is challenging. One confounding factor in a such issue is the range of tools that have been used to 

measure QoL in relation to GHD including both generic and disease-specific questionnaires as 

summarised in  Table 7-1 by Hull & Harvey 2003 (175). Unfortunately, the existing disease 

specific questionnaires were designed for adults with GHD with no available disease specific 

questionnaires for children with CO-GHD. However, a number of generic measures such as 

(KINDL, Pediatric Quality of Life Inventory (PedsQL), Child Health Questionnaire (CHQ)) have 

been developed to quantify QoL in children on self-reporting or on parental report and they have 

been applied to GHD children (481,482), but have not been well validated nor extensively used. 

 

Giving that, it is imperative that QoL in CO- GHD children and adolescents be assessed separately 

from stature and prior to undergoing investigation and confirmation of the diagnosis of CO-GHD. 

The goal of this study therefore is to evaluate QoL of children and adolescents with CO-GHD at 

time of initial evaluation and retesting after withdrawal rhGH at final height. 

.
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Table  7-1 Questionnaires tools measures used to assess quality of life in relation to GH 
 

Generic Tools Disease Specific Tools 

AS – Apathy Evaluation Scale 

BDI – Beck Depression Inventory 

BSI – Brief Symptom Inventory 

CIS – Clinical Interview Scale 

CPRS – Comprehensive Psychological Rating Scale 

CHQ- Child Health Questionnaire 

DSQ – Disease Specific Questionnaire 

GHQ – General Health Questionnaire 

GWBS – General Well-Being Schedule 

HDS - Hamilton Depression Scale 

HSCL – Hopkins Symptoms Check-List 

HADS – Hospital Anxiety and Depression Scale 

KSQ – Kellner Symptom Questionnaire 

KINDL 

LFS – Life Fulfilment Scale 

LSC – List of Somatic Complaints 

MADRS – Montgomery Asberg Depression Rating Scale 

MFQ – Mental Fatigue Questionnaire 

MFS – Mental Fatigue Scale 

MMPI-2 - Minnesota Multiphasic Personality Inventory-2 

MACL – Mood Adjective Check List 

NHP – Nottingham Health Profile 

PAS – Personality Assessment Schedule 

PedsQL- Pediatric Quality of Life Inventory 

POMS – Profile of Mood States 

PGWB – Psychological and General Well-Being Schedule 

SES – Self Esteem Scale 

SF-36 – Short Form 36 

SAS – Social Adjustment Scale 

SRS – Social Relationship Scale 

SCL-90 – Symptom Check-List-90 

SQ – Symptom Questionnaire 

 

QLS(M)-H – Questions on Life Satisfaction 

Modules-Hypopituitarism 

DSQ – Disease Specific Questionnaire 

AGHDA – Adult Growth Hormone 

Deficiency Assessment 

GHD-LFS – Modified Life Fulfillment Scale 

GHD-IS – Modified Impact Scale 

GHDQ – Growth Hormone Deficiency 

Questionnaire 

 

(Adapted and developed from Hull & Harvey 2003(175)) 
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7.3 Subjects and Methods  

7.3.1 Patient characteristics 

The original study design, inclusion and exclusion criteria have been described in chapter 5. 

Enrolment into the study occurs on a day when the patient attends for clinical investigations of GH 

axis. We analysed baseline data of 36 consecutively documented patients enrolled in the original 

study. In preliminary analyses, patients were classified into two age groups: first time assessment 

group and retesting group.  

 

7.3.2 Quality of life assessment  

In this study, QoL was evaluated using: short form-36 (SF-36) generic health survey for first time 

assessment group and Quality of Life Assessment in Growth Hormone Deficiency in Adults 

(AGHDA) for retesting group. After obtaining the informed consent, all study participants (or one 

of their parents) were asked to fill out one of QoL questionnaire form. Copies of the questionnaires 

can be found in the Appendix B and C.  

 

7.3.2.1 Short Form-36 (SF-36) 

SF-36 is a multi-item generic health survey intended to measure general health concepts not 

specific to any age, disease or treatment group. The SF-36 was first time published in 1992 (483) 

with the revised versions published in 2000 (484). The UK version was used in the present study. 

Although it is a generic measure, SF-36 measure has been shown to have high reliability, criterion 

validity and discriminant validity. It is easy to administer and does not require too much time and 

effort for its completion and has age-sex-based normal references for adolescents and adults 

(485,486), but not for children. SF-36 has been widely applied for children and adolescents with 

GHD (232,487,488). The SF-36 has 8 subscales with Likert scales of 2 to 6 response options that 

reproduce the two summary scores of the physical components scores (PCS) and the mental 

components scores (MCS) and an additional item on perceived change in health over the previous 

year, Figure 7-1. SF-36 subscale scores range from 0 to100, (higher scores indicating better 

functioning). Instruction of scoring and scales is available at link 

http://www.rand.org/health/surveys_tools/mos/mos_core_36item.html.  

The participants’ parent (or care giver) self-completed a questionnaire SF-36 in relation to their 

child at the time of investigation, children older than 8 to 15 years were asked with their parent’s 

help to complete the questionnaire.

http://www.rand.org/health/surveys_tools/mos/mos_core_36item.html
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Figure  7-1 SF-36 Sub-scales measure physical and mental components of health 
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7.3.2.2 Quality of Life Assessment of Growth Hormone Deficiency in Adults 
(AGHDA)  

AGHDA is a disease-specific, unidimensional, patient needs-based QoL questionnaire. This 

questionnaire had been validated in GHD patients from different countries and across languages. In 

the normal population, the mean values of total AGHDA scores range between 4 and 7 in various 

international studies, with higher scores indicating reduced QoL (489,490). A score of 11 or more 

on the QoL-AGHDA is one of the UK National Institute for Health and Clinical Excellence’s 

requirements (NICE) for rhGH replacement therapy in adults (273). AGHDA has been used 

previously in assessment QoL of adolescents with CO-GHD (232,274). The 25 items in AGHDA 

clustered into five domains: memory and concentration (six questions), tiredness (seven questions), 

tenseness (three questions), social isolation (five questions) and self-confidence (four questions), 

Figure 7-2. All patients with CO-GHD have self-completed an AGHDA questionnaire at the time 

of retesting. The sum of ‘yes’ responses constitute a score, with a high score denoting a poor QoL.  

 

 

 
 
 
Figure  7-2 Quality of Life Assessment of Growth Hormone Deficiency in Adults (AGHDA) 
 



 

194 
 

7.4 Statistical Analyses 

Statistical analysis was performed with Minitab17 (Minitab, Coventry, UK), with significance set 

at a level of < 0.05. Data were presented as median and ranges and inter-group differences were 

assessed using Mann-Whitney tests. The correlation between the variables was measured by 

Spearman rank test. All graphs were performed using GraphPad Prism 6 software (GraphPad 

Software, San Diego, CA, USA). 

 

7.5 Results 

7.5.1 Study population 

Auxological and clinical characteristics of both groups were described in chapter 5.  

For purposes of this study, we have excluded any patients who have another known underlying 

illness which could affect their physical or mental aspect and influence their overall score and those 

with missing data in both groups. Only 18 subjects within the first time assessment group and eight 

subjects of the retesting group were included in this study, Figure 7-3. 

A total of 12 of the 18 subjects among the first time assessment group were confirmed to have 

isolated GHD (GH peak < 6.6 μg/l), in whom MRI was performed: six patients showed structural 

hypothalamic-pituitary abnormalities (n=2 ectopic pituitary, n= 1 arachnoid cyst, n=1 nerve 

gliomas, n=1 craniopharyngioma, n=1 empty sella syndrome), five patients showed normal MRI 

(idiopathic GHD), with no access to the MRI report in one patient. Of the remaining, 6 of the 18 

had normal GH levels and were apparently healthy children without any known diseases or 

disorders. 

 

The retesting group of adolescents with CO-GHD (n=8) were diagnosed at median age 9.5yrs(2.6, 

12.0) and started treatment with rhGH during childhood at age 10.3 yrs(7.1, 13.6) with the median 

duration of treatment  5.6 yrs(4.1, 10.2). Four patients of the 8 had isolated GHD, three of them had 

idiopathic GHD and one had an ectopic posterior pituitary on MRI scan. The other four patients 

had multiple pituitary hormone deficiencies (MPHD) and received additional hormonal 

replacement therapy. Of those, one had hypoplastic pituitary on MRI scan, two had tumour related 

cranial irradiation and one with craniopharyngioma. All patients received appropriate replacement, 

where necessary, with glucocorticoids, thyroxine, sex steroids and desmopressin. All patients’ 

ceased rhGH treatment at final height to re-evaluate their GH status at age 15.8yrs (14.4, 20.0) 

either by stimulation tests (n=6) and /or IGF-1 levels alone (n=2).  

After retesting, 5/8 of them were reconfirmed to have persistent GHD (low GH peak <5 μg/l, 

and/or low IGF-1levels <-2 SD for age/sex references) and were eligible for adult rhGH therapy. 

Individual clinical characteristics data of our retesting group show in Table 7-2. 
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                                                                        Figure  7-3 Flow diagram of study recruitment process 
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Table  7-2 Clinical characteristics of the retesting group  
 

ID Aetiology Age 
(yrs) Sex Pituitary -MRI 

Other pituitary 
hormones 

replacement 

Duration of 
childhood 

rhGH (yrs) 

Duration  of 
off rhGH 

therapy (yrs) 

Retesting 
GH peak 

( μg/l ) 

Retesting 
IGF-1 

(mg/l)+ 

1 IGHD 16.6 F Normal - 5 0.6 3.8 90 

2 MPHD (GHD-hypogonadism) 18.6 F Hypo plastic 
pituitary Ethnylestradiol 4.3 0.7 3.3 148 

3 Craniopharyngioma-MPHD  14.9 F Oncology Hydrocortisone 4.1 0.5 - 45 

4 Multisystem langerhans cell 
histiocytosis-MPHD 15.2 M Oncology Desmopressin 7.8 0.2 0.8 140 

5 Large cell anaplastic lymphoma-
MPHD 16.8 M Oncology Thyroxin-

Testosterone 6.3 0.7 0.7 269 

6 IGHD-22 deletion 17.0 F Normal - 10.2 0.3 6.4 205 

7 IGHD-Obesity (BMI SDS=3.1) 20.4 M Normal - 8.0 0.7 - 137* 

8 IGHD 16.3 F Ectopic posterior 
pituitary - 4.3 0.6 10 327 

 

+ Normal IGF-1 levels (96-417 mg/l) 

* This patient who had CO-GHD was re-tested by only checking IGF l level as he failed to attend stimulation tests three time and was lost to follow 
up , however, on clinical re-evaluation he was most like to be GH sufficient 
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The baseline relevant clinical and anthropometric data of both studied groups are presented in Table  7-3. 

There were no differences between the examined groups according to age, weight, height, and BMI. 

Stimulated GH peaks were significantly lower in naive GHD group than in normal (2.5 μg/l (0.7, 4.2) vs. 

7.5 μg/l (6.7, 15.0), respectively, p<0.001), but did not reach significant levels between those who 

confirmed with persistent GHD and those who were GH sufficient in the retesting group (2.1 μg/l (0.3, 

3.8) vs. 8.3 μg/l (6.4, 10.2), respectively, p=0.05). IGF-1 concentrations were not significantly different 

between studied groups.  

There were no significant differences in duration of childhood rhGH treatment and duration off rhGH 

between those with persistent GHD and GH sufficient levels within the retesting group. 
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Table  7-3 Baseline characteristics of the first time assessment and the retesting groups 
 

 
Naive-GHD 

(n=12) 
Normal 
(n=6) P-value Persistent  GHD 

(n=5) 
GH sufficient 

(n=3) P-value 

Male/Female 11/1 5/1 0.91 2/3 1/2 0.99 

Age(yrs) 10.5(5.6, 14.9) 8.2(5.8, 12.1) 0.12 16.6(14.9, 18.6) 17.0(16.3, 20.4) 0.39 

Height (cm) 128.9(97.7, 152.2) 114.0(96.1, 138.4) 0.10 158.0(152.7,179.7) 155.9(145.3, 166.4) 0.84 

Height -SDS -2.4(-3.4, 1.3) -2.4(-3.9, 1.4) 0.96 -1.3(-1.9,  1.2) -1.3(-3.0, 0.5) 0.84 

Weight (kg) 26.4(15.0, 63.4) 20.9(13.3, 33.8) 0.26 55.6(45.6, 69.9) 52.2(37.6, 66.7) 0.88 

Weight-SDS -1.8(-3.5, 1.1) -1.4(-3.9, -0.5) 0.86 0.3(-1.8,  1.4) -1.1(-3.2, 1.1) 0.88 

BMI (kg/m2) 16.2(14.2, 11.3) 16.7(14.4, 17.6) 0.81 20.9(18.8, 28.0) 20.9(17.8, 24.1) 0.84 

BMI-SDS 0.1 (-1.1, 3.9) 0.6(-1.2, 1.6) 0.77 0.4(-1.1,  2.0) -0.2(-1.4, 1.1) 0.84 

GH-peak( μg/l) 2.5(0.7, 4.2) 7.5(6.7, 15.0) <0.001 2.1(0.3, 3.8) 8.3(6.4, 10.2) 0.19 

IGF1 levels(mg/l) 52.5(14.0, 433) 76.0(28.0, 140.0) 0.87 141.0(45.0, 269.0) 205.0(117.0, 327.0) 0.37 

IGF1 levels SDS -3.4(-5.5, 0.3) -2.1(-3.1, 0.9) 0.15 -3.4(<-5.0,  1.5) -2.5(-3.7, -0.9) 0.37 

Duration of childhood 
rhGH treatment(yr) - - - 5.0(4.1, 7.8) 8.0(4.3, 10.2) 0.25 

Duration of stopping  
rhGH (yr) - - - 0.6(0.2, 0.7) 0.6(0.3, 0.7) 0.98 
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7.5.2 SF-36 QoL scores in the first time assessment group 

Before diagnosis and commencing rhGH, a total QoL scores as measured by SF-36 of first time 

assessment group were comparable between those who were confirmed naive GHD and normal, Table 7-

4. The medians of physical components scores (PCS) score and mental components scores (MCS) in the 

SF-36 were also not significantly different between groups, Figure 7-4. However, in the subscale analysis, 

the “energy/fatigue” dimension was significantly worse in naive GHD compared to normal [75 (65,100) 

naive GHD vs. 95 (65,100) normal, (P=0.04)], when those with normal GH levels scored significantly 

lower in emotional wellbeing subscale compared to naive GHD [90 (68, 96) naive GHD vs. 78 (55, 84) 

normal, p<0.001], Figure 7-5, 7-6. 
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Table  7-4 SF-36 questionnaire scores in the first time assessment group. 
(Higher scores reflect better QoL) 

Subscale Naive-GHD 
(n=12) 

Normal 
(n=6) P-value 

Total QoL 93(77, 96) 90(84, 93) 0.56 

Physical component  91(76, 100) 91(78, 96) 0.86 

    Physical function 100(80, 100) 100(95, 100) 0.38 

    Role limitations due to physical health 100(25, 100) 100(75, 100) 0.82 

    pain 100(60, 100) 100(60, 100) 0.79 

    General health 89(50, 100) 66(60, 85) 0.20 

Mental component  92(75, 96) 91(77, 96) 0.44 

    Role limitations due to emotional  problems 100(100, 100) 100(75, 100) NS 

    Energy/fatigue 75(65, 100) 95(65, 100) 0.04 

    Emotional well being 90(68, 96) 78(55, 84) <0.001 

    Social functioning 100(63, 100) 100(80, 100) 0.66 

Health change from one year ago 50(50, 100) 50(50, 50) NS 
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Figure  7-4 SF-36 QoL questionnaire scores in the first time assessment group. 
 

A-Total scores, B-Physical components scores, C-Mental components scores 

(Higher scores reflect better QoL) 
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Figure  7-5 Individual data of energy and fatigue aspect of SF-36 QoL in the first time assessment 
(Higher scores reflect better QoL) 

 

 

Figure  7-6 Individual data of emotional wellbeing aspect of SF-36 QoL in the first time assessment 
(Higher scores reflect better QoL) 
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7.5.3 AGHDA QoL scores in the retesting group 

Among the retesting group, there were no statistically significant differences in total QoL-AGHDA scores 

between those who were have persistent GHD and those who were GH sufficient after retesting (6 points 

(2, 8) persistent GHD vs. 9 points (7, 17) GH sufficient, respectively, p=0.10), Table 7-5, Figure 7-7. The 

worst QoL-AGHDA score (17) was recorded in patient ID 7 (IGHD-Obesity (BMI SDS=3.1) who was 

considered GH sufficient after retesting. However, unexpectedly, all GH sufficient patients tended to have 

a poor QoL across most of aspects of AGHDA and they significantly lacked energy and complained of 

tiredness compared to those with persistent GHD (1 point (0, 1) persistent GHD vs. 5 points (3, 5) GH 

sufficient, p= 0.03) as seen in Figure 7-8.  

 

Table  7-5 AGHDA scores of the retesting group. 
 (Higher scores reflect poorer QoL) 

Subscale 
 

Persistent GHD 
(n=5) 

GH sufficient 
(n=3) 

P-value 

Total scores(25) 6 (2, 8) 9(7, 17) 0.10 

Memory and concentration(6) 1(0, 3) 3(0, 4) 0.55 

Tiredness (7) 1(0, 1) 5(3, 6) 0.03 

Tenseness (3) 1(0, 2) 2(0, 3) 0.55 

Social isolation (5) 2(0, 3) 1(0, 2) 0.45 

Self-confidence (4) 1(0, 1) 1(0, 3) 0.65 
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               5.4 reference line for the UK general population (aged 18-25 years) (490)  

              9.5 reference line for young adult with CO-GHD in UK (264) 

 

Figure  7-7 Individual data of total AGHDA QoL in the retesting group. 
(Higher scores reflect poorer QoL) 
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Figure  7-8 Individual data for five subscales of AGHDA QoL in the retesting group. 
(Higher scores reflect poorer QoL) 
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7.5.4 Correlation between QoL and clinical data 

There were no correlations between anthropometric and clinical parameters (age, sex, weight, 

height, and BMI) and SF-36 total scale or subscale of first time assessment group. However, GH 

peak levels were correlated positively with the scale of level of energy and fatigue (r=0.59, P = 

0.04), but negatively with the scale of emotional well-being (r=-0.68, P<0.001), Figures 7-9, 7-10. 

No correlations were found between total and subscale scores of SF-36 with either DXA or tibia 

bone and body compositions parameters (data was obtained from chapter 5). In addition, there were 

no correlations between total and subscales scores of SF-36 and muscle function parameter 

measured by mechanography (data was obtained from chapter 5, only seven subjects of first time 

assessment had their muscle function assessed).  
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Figure  7-9 Spearman`s correlation between GH peak and aspect of energy/fatigue in SF-36 
QoL of the first time assessment group  
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Figure  7-10 Spearman`s correlation between GH peak and aspect of emotional wellbeing 
inSF-36 QoL of the first time assessment group  
 

r=0.59,  
P = 0.04 

r=-0.68, 
P<0.001 
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With regard to the retesting group, there were no correlations between anthropometric and clinical 

parameters at time of retesting (age, sex, weight, height, BMI, duration of childhood rhGH and 

duration of discontinuation of rhGH) and total scale or subscales of AGHDA. Furthermore, there 

were no correlations between total AGHDA with either GH peak or IGF-1 levels on retesting. 

However, we found a significant negative correlation between IGF-1 levels at time of retesting and 

memory/ concentration scores (r=-0.65, p=0.04) indicating that a lower level of IGF-1 corresponds 

to poorer scores of memory and concentration, Figure 7-11.   
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Figure  7-11 Spearman`s correlation between retesting IGF-1 levels and aspect of memory 
and concentration in AGHDA in the retesting group. 
(Higher scores reflect poorer QoL) 

r=-0.65, p=0.04 
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7.6 Discussion 

In this chapter we compared QoL in subjects with CO-GHD subjects with similar height but with 

normal GH levels subjects. Our data showed that QoL was not substantially altered in patients with 

CO-GHD at time of initial evaluation or retesting at final height. In our study, however, naive GHD 

reported lack of energy and tiredness at time of diagnosis (491). However it is unknown whether 

this impairment is implicated directly to lack of energy due to GHD or that partly caused by muscle 

weakness of GHD. Conversely, emotional wellbeing was poorer in normal subjects compared to 

naive GHD. This finding is similar to previously reported in short stature children with and without 

GHD (476,482) suggesting that short stature and not GHD per se is associated with reduced QoL in 

childhood. However, other studies reported  that there is no evidence of impaired QoL in short 

stature children and adolescents with or without GHD (492), suggesting that other factors other 

than height and GH levels may have impact on QoL (493). A large population-based study reported 

short stature children did not differ from their non-short peers in a range of social, emotional and 

behavioural outcomes (494), when short stature in adult life may be associated with a significant 

reduction in health related QoL (495). In the same context, an increase in self-esteem has also been 

reported in a previous study of rhGH treatment in GHD children (491,496), but not in children with 

idiopathic short stature who were rhGH-treated (497). It is of note; however, the proxy reports of 

SF-36 in our cohort would be considered the parents' own functioning and well-being in this 

finding. Research on the relationship between children’s self-reports and parent proxy reports show 

parents of short children commonly report problems of cognitive development, personality, self-

esteem or social relations (492), and parental perceptions to seek health care for their child are most 

likely to influence their child functioning and well-being (498). 

The QoL-AGHDA disease specific instrument was developed particularly to measure QoL in 

adults with GHD with limited studies in adolescents with CO-GHD at final height (232,274). The 

mean QoL AGHDA scores for the UK general population (aged 18-25 years) is 5.4 (95% CI: 4.91–

5.98) (490), and for patients with CO-GHD is  9.5 (95% CI: 8.81–10.20) (264). Our retesting group 

showed overall AGHDA scores within the range of the mean QoL AGHDA scores for the UK 

general population with no significant differences between the medians scores of those who have 

persistent GHD and those who were GH sufficient after retesting. The finding of the present study 

is not unprecedented. Several previous large longitudinal studies evaluated the effects of 

discontinuation and resumption of rhGH treatment on QoL elements in young adults with CO-

GHD demonstrating no changes in QoL in adolescents with CO-GHD as measured at baseline 

when they stopped rhGH after final height and then re-measured after two years either being off 

GH or re-commencing rhGH therapy (229,232,247). Conversely, other studies demonstrated that 

discontinuation of rhGH treatment leads to a decrease in QoL within 6 months, which is 

counteracted within 3-6 months after restarting rhGH therapy (276,277). 

Surprisingly, our subscale analyses revealed paradoxical and unexpected results with those who 

were GH sufficient after retesting feeling significantly more tired and having poorer energy and 
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vitality scores than those who had persistent GHD. This finding suggests there are possible other 

unknown confounders which interfere with energy levels and tiredness rather than GH status in our 

cohort. From the literature, untreated adults with CO-GHD reported to have low energy levels, 

vitality, mental fatigue, emotional reactions and social isolation (499). In particular, the increased 

fatigue was a key element associated with GHD which substantially diminishes quality of life 

(499). Therefore, it can be assumed that in previously CO-GHD particularly those who were 

considered partially GHD (GH peak > 5 μg/l but < 10 μg/l) QoL may be still affected, however, to 

a lesser extent than those who were conformed persistent GHD (500). This finding indicates the 

importance of follow up and reassessment in those who were CO-GHD and are then no longer GH 

deficient after retesting.  

In the present data of the retesting group, GH peak levels at retesting were not correlated with 

AGHDA scores. However, lower IGF-1 levels were linked with poorer memory and concentration 

performance. This finding assumes that the IGF-1 levels seem a more valuable predictor of the 

impact of rhGH discontinuation on QoL as was reported previously (276,277,501), though the 

underlying mechanism is not fully understood. Further prospective studies to elucidate this 

question are needed to measure QoL while still on rhGH and after a period off rhGH. 

Nevertheless, there are a number of issues that should be considered to justify our findings in the 

retesting group. Firstly, a small sample size that we may not have enough data to compute the 

effect of discontinuation of rhGH after final height in adolescents with CO-GHD. Another issue to 

consider, is the short duration of time off rhGH in our cohort which it means it was probably too 

early for the perception of a decline in QoL to emerge as previously stated (242). In addition, 

AGHDA-QoL is a self-rating questionnaire that may underestimate the true impairment of QoL 

(502), and it could lack  the sensitivity in recognizing impaired QoL in this particular population of 

adolescents and young adults with CO-GHD (500,503). 

Generally, this study has several limitations that should be acknowledged since they might 

negatively affect the interpretation of the results. In addition to the small sample size, this is only a 

cross-sectional baseline analysis. It would be ideal to analyse QoL longitudinally in GHD children 

before, during and after initiation of rhGH treatment to see whether the reason for these effects lies 

in GH itself or in other factors remains to be determined in further investigation. Another limitation 

to consider is that the QoL measures tools (SF-36- AGHDA) may lack sensitivity to detect the 

differences between our studied groups, as the existing measures have not been developed for, or 

validated within the population of children and adolescents with CO-GHD.



 

211 
 

7.7 Conclusion  

In summary, our study demonstrated normal ranges of overall QoL aspects in children and 

adolescents with CO-GHD compared to subjects of same stature but with normal GH levels. Naive 

GHD subjects scored lower in energy and vitality but higher in the subscale emotional well-being 

than normal subjects, whereas GH sufficient adolescents with CO-GHD have reported significantly 

poorer scores on the scale of energy and tiredness than those with persistent GHD after retesting. 

Further large longitudinal studies using more specific validate instruments are needed to assess 

QoL in children and adolescents with GHD before and after initiating rhGH treatment.  
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CHAPTER 8 

 

 The Effect of Weight Bearing Exercise in 
Children and Adolescents with Childhood-Onset 
Growth Hormone Deficiency 
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8.1 Abstract  

Background: Childhood onset growth hormone deficiency (CO-GHD) is a disorder that impacts 

several aspects of individual health throughout life. Growth hormone replacement therapy (rhGH) 

during childhood has been used to increase growth and final height in children with CO-GHD. 

However, rhGH has other benefits on bone health and metabolism and may be useful for a longer 

period during the transition from childhood to adulthood. There is also some evidence that weight 

bearing exercise (WBE) can optimize bone health and development during childhood and 

adolescence.  

Aim: To assess the effect of weight bearing exercise on the bone health of children and adolescents 

with CO-GHD with or without GH replacement therapy. 

Patients and methods: This was a prospective pilot study of 14 subjects among a first time 

assessment group (age 5 to 13.8 years) and five subjects with CO-GHD among a retesting group 

(age 15.2 to16.9 years). They were randomised to an exercise program (EX) (25 jumps off 25 cm 

platform step/ three days /week for six months) or no exercise (control), in addition to rhGH as 

prescribed. Measurements were performed at baseline and six-months assessing bone health and 

body composition by imaging (DXA and p.QCT) and biochemical assessment.  

Results: Of the 14 subjects among the first time assessment group (10-GHD, 4- normal), eight 

subjects were allocated EX (compliance rate median (range) is 33% (7-80)) alone or combined with 

rhGH. Over the study period, TB/LS- BMD, BMC and BA have increased in all subjects. However, 

TB/LS BMC for bone area SDS tended to decrease in all subjects, but remained within +2 SDS. 

There was relative positive gain in LM in both GHD with rhGH alone and rhGH combined with 

EX, percentage change (PC %) range ((13.3%, 23.5%), (10.3%, 28.6%) respectively). Of the 

remaining group, the two GHD subjects on EX alone and the normal subjects had positive PC% in 

LM ranged from 2.5% to 19.4%. FM decreased in three of the five subjects who were on rhGH 

alone (ranged: -24% to -16%)   and in all three who had combined rhGH with EX (ranged: -44% to 

-15%). However, FM noticeably increased in those who had GHD with EX alone (111%, 80%), 

with no obvious change in normal subjects. In the retesting group, of the five retesting group 

subjects (4-persistent GHD (3 received rhGH), one GH sufficient) three were allocated to have EX 

(compliance rate is 26% (16-83)) either alone or combined with rhGH as required. All subjects had 

steady bone density with no noticeable changes from baseline to follow up, and all had a value of 

TB/LS BMC for bone area SDS between +2 SDS. LM tended to increase in all patients, FM did not 

change obviously in most patients, with only one subject (GH sufficient on EX alone and high 

compliance rate (83%) losing 11.4% FM from baseline. 

Conclusion: There was insufficient data to recommend the use of WBE in the absence of rhGH in 

children and adults with CO-GHD. However, WBE may be more beneficial combined with rhGH 

in these subjects and that require further large studies to explore the interactions between rhGH 

replacement and exercise on bone health of CO-GHD. 
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8.2 Introduction  

Patients with growth hormone deficiency (GHD) exhibit clinical and biochemical abnormalities 

involving alteration in the muscular skeletal, the cardiovascular system, lipid metabolism and 

quality of life (133,247). Until quite recently, the management of children with childhood onset-

GHD (CO-GHD) had focused on the use of recombinant human growth hormone (rhGH) therapy 

to maximise adult height, which most adolescents achieve in the middle of the second decade of 

life. However, it is becoming increasingly recognised that rhGH has other benefits during 

childhood and may be useful for a longer period during the transition from childhood to adulthood 

for optimising other aspects of health (247,358). Based on these suggestions, a handful of studies, 

supported by the pharmaceutical industry, have been performed to explore the benefits of rhGH on 

bone health and body composition after attaining final height and transition. In some placebo 

controlled studies, rhGH therapy has been reported to have had a favourable effect on BMC, BMD, 

LM, and FM (227,229)  whilst another has not shown any significant effect (232).  

On the other hand, it is well documented that mechanical loading is a major regulator of bone mass 

and geometry and contributes to a large part of  BMC accretion in weight-bearing bones (504). A 

handful of studies have been carried out on children and adolescents and confirmed that weight-

bearing exercise (WBE) (in particular jumping exercise) appears to enhance bone mineral accrual 

and improve bone strength by maximising peak bone mass (281,286,287). Weight-bearing 

activities have been also found to contribute to favourable benefits to body composition and 

regulation of body metabolism (342). Additionally, it has been suggested that physical activity 

itself may be directly associated with measures of health related quality of life and the feeling of 

well-being (356). 

In view of the above, more interesting  evidence from animal models showed that the combination 

of rhGH and mild exercise has markedly enhanced bone density (505). However, it is unclear as to 

whether WBE with/without rhGH has any effect on bone mass, body composition and quality of 

life in subjects with CO-GHD. The role of exercise in altering these health outcomes and altering 

the need for therapy with rhGH deserves further exploration. 
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8.3 Aims and Hypotheses 

Through the present pilot study, we aim to collect preliminary data that examines the short-term 

effects of a supervised WBE regimen with /or without rhGH on bone health, in addition to body 

composition, metabolism and quality of life.  

 

8.3.1 Hypotheses 

1. Bone health is adversely affected in patients with CO-GHD. 

 2. Exercise mitigates the effect on bone health in CO-GHD patients 

3. The beneficial effect on bone health is greater in those who have exercise and rhGH.   

 

8.3.2 Primary outcome measures 

Change in dual x-ray absorptiometry (DXA) based total body (TB) and lumber spine (LS) bone 

mineral content (BMC).  

 

8.3.3 Secondary Outcome Measures 

To investigate the effects of rhGH and exercise intervention on  

a. Change in markers of bone turnover 

b. Markers of glucose homeostasis 

c. Change in body composition 

d. Change in quantitative computed tomography (pQCT) based Tibial vBMD and Cortical 

Thickness 

e. Quality of life measures (AGHDA, SF-36)  

 

8.4 Study Methodologies 

8.4.1 Study design and subjects 

Open intervention, randomised controlled, study design and data collection have been 

illustrated in Figure 8-1. Inclusion and exclusion criteria were described in chapter 5. 
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8.4.2 Sample size and power 

This is a pilot study aimed to study the effects of a jumping exercises program on TB and LS -

BMC in patients with CO-GHD (primary end point). Literature indicated favourable significant 

change in LS-BMC [ranging from 0.9% to 3.9%] of jumping exercise interventions in healthy 

children and adolescents in a seven month average period compared with controls (284,286,327). 

Since no prior research existed regarding the impact of jumping exercise training among 

participants with CO-GHD, it is therefore difficult to calculate the sample size adequately.  

For this preliminary pilot study, there will be four groups of patients - those who are randomised to 

exercise will consist of some with GHD (exercise-GHD) and some who will have normal GH 

secretion (exercise- normal). Those who will act as a control group will also consist of children 

with GHD (control-GHD) and those with normal GH secretion (control- normal). We assumed that 

there will be approximately 50 eligible subjects who newly receive rhGH treatment each year in the 

Royal Hospital for Children as well as adolescents who are retested for GHD after attaining final 

height. It is anticipated that 60 patients will be recruited over 1.4 years.  With a total sample size of 

60 participants, a convenience sample of around 15 subjects in each group was deemed to be 

sufficient to characterise differences in LS/TB BMC.  

 

8.4.3 Ethics  

The study was approved by the National Research Ethics Service and informed consent was 

obtained from all parents and children, where appropriate. 
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Figure  8-1 Study design and data collection protocol 
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8.4.4 Participants 

Potential participants (who were being referred either for assessment of poor growth /short stature 

in childhood or for retesting of CO-GHD in adolescence after completing final height and off 

rhGH) were identified from the endocrine nurse appointment list diary. A study invitation letter 

with appropriate information sheets was posted two weeks prior to their appointments. On the day 

of testing, potential participants were provided further details and explanation of the study and 

ascertained whether they were interested in taking part in the study. When the participants (and 

their care giver) agreed to participate in the study and met inclusion criteria, written informed 

consent was obtained from each participant (and their care giver). 

 

8.4.5  Randomisation  

Randomization was performed prior to recruitment using the random function in Excel with a block 

of 10 and 5 in each arm to ensure approximately equal size of study groups and that was repeated 

once the first set was allocated.  

After all inclusion and exclusion criteria were checked, and informed consent given, patients were 

assigned to either intervention (exercise) or control (no exercise) arms according to the schedule of 

randomization results in Excel. 

 

8.4.6 Exercise Regimen 

The home-based exercise program consists of jumping off a 25 cm high platform step 

(Reebok step with safe anti-slip surface, Figure 8-2) up to 25 jumps/a day three times a 

week for 6 months. We assumed jumping off a 25 cm step height could generate ground 

reaction forces of 3 to 4 times body weight (506). To standardise the exercise, each 

participant was instructed to jump as high as they can off the box and land with his/her 

knees slightly bent (instruction leaflet was provided, appendix D). The exercise program 

was recorded using provided video camera by children or their caregiver as appropriate. 

All participants were asked to start the exercise immediately or with starting rhGH when it 

was prescribed.  

The control group would receive their usual medical care and advice and undergo the same 

investigations as the intervention group 
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                                                   Figure  8-2 Reebok Step. 
 

Bubble surface for no-slip feet on the workout surface, adjustable to three levels 

(15 cm, 20 cm and 25 cm). 
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8.4.7 Compliance 

Compliance percentage was calculated from the video diary (using provided Vivitar DVR638 HD 

Camcorder) as number of sessions completed divided by the 72 possible sessions (3 times/week/6 

months) x 100. 

 

8.4.8 Biochemical assays 

Fasting blood samples were taken to coincide with routine clinic visits after overnight fasting at 

baseline and follow up visits. Bone profiles and elements (Calcium, phosphate, magnesium, 

parathyroid hormone (PTH) - vitamin D (25 (OH) Vit-D)) and lipids profiles were measured 

immediately after blood sampling in a Biochemistry laboratory in RHSC with standard methods.  

The remaining samples were centrifuged at 2600-2800 rev/minute for 10min, and the serum was 

subsequently stored at -70C until the assays were performed (bone biomarkers-adipokines-F-

insulin-FFA) as described in chapters 5 and 6. 

 

8.4.9 Bone densitometry and geometry  

DXA scan (Lunar Prodigy, GE Medical Systems, and Waukesha, Wisconsin, USA) was performed 

to assess bone parameters and body composition. To minimise the size effects in DXA bone 

densitometry, bone and body composition parameters were corrected for bone area/height/age as 

described in chapter-4. Similar to chapter 5, measurement of TB/LS BMD Z scores height age and 

BMC for bone area SDS were excluded in children aged <6 years. 

Tibial volumetric BMD, geometric  and surrogate markers of bone strength were also determined 

by a peripheral quantitative CT scan (pQCT) (Stratec XCT 2000, Software version 6.00, 

Pforzheim, Germany) at the 4% , 38% and 66% site and stress-strain index (SSI) (mm3) at (38%). 

In addition, lean and fat areas were assessed at the 66% site. The pQCT bone outcomes were 

converted to Z-scores relative to age, sex and height based on recent references data (412). The 

pQCT scans with any movement artifacts and other potential problems were excluded. 

 

8.4.10 Quality of life measures  

As described in chapter 7: 

1- Short form-36 (SF-36) questionnaire was used for first time assessment at baseline and follow 

up. The scores were transformed to values between 0 and 100, with higher values indicating better 

QoL. 

2- A questionnaire Quality of Life Assessment of Growth Hormone Deficiency in Adults 

(AGHDA) was used for retesting the group at baseline and on follow up. The ‘yes’ responses 

constitute a score, with a higher score denoting a poor QoL. 
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8.5 Statistical Analysis 

The outcome variables were expressed either as percentage change between the baseline or follow 

up ((follow up-baseline)/baseline) *100) or absolute change (follow up-baseline). Delta change in 

height SDS was calculated as [(height SDS at follow up - height SDS at baseline) / (age at follow 

up - age at baseline)]. Spearman correlations were used as appropriate to determine associations 

between variables. All statistical analyses were performed using the Minitab17 software (Minitab, 

Coventry, UK), with significance set at a level of 5% (P<0.05). All graphs were performed using 

prism 5- GraphPad. 

 

8.6 Results  

8.6.1 Study population 

Of the 63 children approached during the study period (Aug-2012-Nov-2013), 36 were recruited 

and agreed to take part in the study, and 27 declined for a range of reasons (Figure 8-3). 

The 36 patients (n=25 were in the first time assessment group of children, and n=11 were in the 

retesting group of adolescents with CO-GHD), were allocated according to randomisation into 

either carrying out WBE or acting as controls. 

Of the n=18 assigned to the exercise group (n=9 GHD: n=9 normal), only n=9 had completed the 

study. Of the remaining n=9 who were dropouts, four children withdrew from the study even 

before starting the exercise regimen (one  with persistent GHD was lost at follow up and when she 

returned, it was out of the study timeframe)- (three children were never returned after their normal 

GH results), four children were lost at follow up after starting the exercise regimen (three subjects 

with normal-GH levels who failed to attend follow up appointments, and one naive GHD was lost 

to follow up as well); another child was excluded as she suffered from deterioration of a non-

related chronic illness. 

In the n=18 control group (n=12 GHD: n=6 normal), n= 10 patients had completed the study. The 

remaining n=8 were dropouts, five children with naive GHD declined to participate in the study 

because they moved to other centres(3) or they were not willing to have rhGH treatment(2), and  

three with normal were also discharged from the clinic and contact was lost. 

The overall study drop-out rate was high (47%) and was caused by lost to follow-up of the study 

cohort particularly those with normal GH results who had a high “Did not Attend” (DNA) clinic 

rate.  From figure 3, amongst the subjects who completed the study, n=14 (n=6 exercise - n=8 

controls) were in the first time assessment group. Of the remaining, n= 5 (n=3 exercise: n=2 

control) were in the retesting group of adolescents with CO-GHD. 
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                                                                               Figure  8-3 Flow diagram of study recruitment. 
N: number of subjects; LOF before: loss of follow up before starting exercises; LOF after: loss of follow up after starting exercises; GHD: growth hormone deficiency
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8.6.2 Compliance 

Of the nine patients randomized to the exercise regimen and who completed the study, two patients 

had returned their video diary; their compliance was calculated depending on recorded sessions. 

The other two had not returned the video diary but reported that they had only missed six sessions 

or fewer. Three patients had not recorded any sessions and self-reported (or by their parents) that 

they had performed three sessions per week only in the first month then stopped (lost interest and 

motivation – became busy and got new job, one parent was sick and not able to continue). Of the 

remaining two, one had performed only one session every week over the study period (weekend 

day only) and the other had less than one session every four weeks over the study period. The 

median of overall compliance in the first time assessment group is 33% (7- 80) and in the retesting 

group is 26% (16- 83). 

No adverse events attributable to the jumping exercise program were reported. 

Due to the high dropout rate, small sample size, poor compliance and heterogeneity of subjects in 

each arm, we could not test the exercise intervention per se; hence we attempted to isolate the 

effects of rhGH treatment or exercise, and both, by individual data in each group (first time 

assessment group- retesting group), thereby limiting the effects of variability in receiving rhGH 

with exercise compliance. 

 

8.6.3 First time assessment group 

8.6.3.1 General characteristics 

Fourteen subjects who completed the study belonged to the first time assessment group 

(age range 5.6, 15.6 years: 11 boys); ten of them were confirmed with naive GHD and four 

with normal GH levels (Figure 8-4).  

Of those, n=10/14 (eight with GHD, two with normal GH levels) have started rhGH 

(paediatric dose: 25-35ug/kg/d). According to randomisation of the exercise program (EX) 

and starting rhGH, of these 14 participants, five with GHD had only rhGH, three with 

GHD had combined rhGH and the exercise, two with GHD had only the exercise, one 

normal with normal had combined rhGH with the exercise, one normal had only rhGH, and 

two normal had neither rhGH nor exercise. The median duration from baseline to follow 

up for the whole cohort is 0.9 yr (0.6, 1.5).  

Individual data of the first time assessment group who completed the study are shown in 

Table 8-1.
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Figure  8-4 Flow chart of the first time assessment. 

rhGH: recombinant human growth hormone; EX: exercise 
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Table  8-1First time assessment group individual demographic and clinical characteristics.    
*F stands for first time assessment; ID: patient identification; rhGH: recombinant human growth hormone; EX: exercise 

 Group ID 
Age at 

BL 
(yrs) 

GH-
peak 
(µg/l) 

Pituitary MRI rhGH 
(yes, no) 

Exercise 
compliance 

(%) 

follow 
up 

(yr) 

Intervention 
(yr) 

Habitual P.A 
hrs/W Co- morbidities /medications 

GHD 

Only  rhGH 

F1 9.2 3.5 - Yes Control 0.8 0.6 - Trisomy 21 

F2 8.2 3.1 Normal Yes Control 1.0 0.9 - - 

F3 10.0 0.9 Ectopic posterior 
pituitary 

Yes Control 0.9 0.9 - - 

F4 12.3 2.5 Normal Yes Control 0.9 0.8 3 (football) Tourette's syndrome (ADHD) 

F5 10.9 2.8 Arachnoid cyst Yes Control 0.6 0.5 6 (football) - 

rhGH with EX 

F6 5.6 2.4 Ectopic Yes EX (80%) 0.8 0.6 1.5(swimming) - 

F7 14.9 0.7 Empty sella Yes EX (66%) 0.7 0.7 - - 

F8 10.2 2.8 craniopharyngioma Yes EX (16%) 1.3 0.9 - - 

Only EX 
F9 11 2.8 Neuro-glioma No EX (50%) 0.9 0.8 - Neurofibromatosis – Precocious 

puberty 

F10 10.9 4.2 Idiopathic No EX (16%) 1.5 0.5 - - 

Normal 

rhGH with EX F11 5.8 8.0 - Yes EX (7%) 0.6 0.5 - 45/46 XY gonadal dysgenesis 

Only  rhGH F12 
15.6 22.3 - Yes Control 0.8 0.5 - Juvenile rheumatoid arthritis 

( Predenisolone-methotrexate- 
sulfasalazine-abatacept) 

Neither rhGH 
 or EX 

F13 5.8 6.8 - No Control 0.9 - 2 (Dance class) - 

F14 14.4 18.8 - No Control 0.8 - 2 (football) Mitochondrial disease with 
primary ovarian failure 
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8.6.3.2 The anthropometric characteristics from baseline to follow up   

The individual demographic characteristics of the first time assessment group who completed 

baseline and follow-up assessments are shown in Table 8-2. 

Positive delta (∆) changes in height SDS were observed in all subjects with GHD who received 

rhGH ranging from (0.4 to 1.0) in rhGH alone, (0.4 to 0.9) in rhGH with EX, but a small change in 

height SDS ∆ was recorded in those who were GHD on only EX (-0.1 and  0.2). In normal subjects 

of the first time assessment group, patient’s ID (F11) who received rhGH with EX showed the 

highest positive ∆ SDS (∆=2.2) compared with rhGH alone (patient’s ID (F12) ∆= 0.3), or either 

(patient’s IDs; F13 ∆ = -0.1, F14 ∆= 0.0), Figure 8-5. 

Weight and BMI were not obviously changed over the study period in the present cohort apart from 

three subjects [(Patient’s ID; F3 (GHD on rhGH alone) - Patient’s IDs F9 and F10 (GHD on EX 

alone)] who showed high percentage change (PC %) in their weight and BMI. 
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Figure  8-5 Individual data of delta height SDS and percentage changes in weight and BMI of the first time assessment group.
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Table  8-2 Demographic characteristics of the first time assessment group 
 

 Group ID Time 
Height 
(Cm) 

Height-
SDS* 

Weight 
(Kg) 

Weight 
SDS 

BMI 
 

BMI 
SDS 

Tanner 
stage 

 

GHD 

Only rhGH 

F1 
BL 
FL 

PC% 

106.4 
110.0 
3.4 

-3.4 
-3.2 
0.3 

18.6 
20.4 
9.7 

-3.2 
-3.2 

- 

16.4 
16.9 
2.4 

0.0 
0.0 
- 

I 
I 
- 

F2 
BL 
FL 

PC% 

110.0 
118.9 
8.1 

-3.43 
-2.6 
0.8 

17.2 
20.6 
19.8 

-3.5 
-2.6 

- 

14.2 
14.6 
2.5 

-1.2 
-1.1 

- 

I 
I 
- 

F3 
BL 
FL 

PC% 

128.6 
137.7 
7.1 

-1.5 
-0.9 
0.7 

32.4 
41.4 
27.8 

0.2 
1.0 
- 

19.6 
25.0 
27.8 

1.4 
1.8 
- 

I 
I 
- 

F4 
BL 
FL 

PC% 

133.5 
140.0 
4.9 

-2.2 
-2.0 
0.4 

26.3 
29.0 
10.3 

-2.67 
-2.5 

- 

14.8 
14.8 
0.3 

-1.8 
-2.1 

- 

I 
I 
- 

F5 
BL 
FL 

PC% 

129.3 
133.4 
3.2 

-2.0 
-1.7 
1.0 

26.6 
29.5 
10.9 

-1.7 
-1.2 

- 

15.9 
16.6 
4.2 

-0.5 
-0.3 

- 

I 
I 
- 

rhGH with 
EX 

F6 
BL 
FL 

PC% 

97.7 
106.1 
8.6 

-3.3 
-2.6 
0.9 

15.0 
17.2 
14.7 

-2.5 
-2.0 

- 

15.7 
15.3 
-2.8 

0.2 
-0.2 

- 

I 
I 
- 

F7 
BL 
FL 

PC% 

144.9 
150.5 
3.9 

-2.8 
-2.7 
0.4 

39.0 
40.5 
3.8 

-1.9 
-2.2 

- 

18.6 
17.9 
-3.7 

-0.3 
-0.9 

- 

III 
IV 
- 

F8 
BL 
FL 

PC% 

124.0 
133.2 
7.4 

-2.4 
-1.9 
0.4 

25.6 
27.8 
8.6 

-1.5 
-1.8 

- 

16.6 
15.7 
-5.9 

0.1 
-0.9 

- 

I 
I 
- 

Only EX 

F9 
BL 
FL 

PC% 

152.2 
156.6 
2.9 

1.3 
1.2 
-0.1 

42.1 
51.2 
21.6 

1.0 
1.5 
- 

18.2 
20.9 
14.9 

0.6 
1.4 
- 

III 
III 
- 

F10 
BL 
FL 

PC% 

130.3 
137.6 
5.6 

-1.9 
-1.6 
0.2 

33.2 
44.4 
33.7 

0.2 
0.7 
- 

19.6 
23.5 
19.9 

1.2 
2.0 
- 

I 
II 
- 

Normal 

rhGH, with 
EX 

F11 
BL 
FL 

PC% 

96.1 
107.0 
11.3 

-3.88 
-2.4 
2.2 

13.3 
14.6 
9.8 

-3.9 
-3.6 

- 

14.4 
12.8 
-11.5 

-1.0 
-2.7 

- 

I 
I 
- 

Only rhGH F12 
BL 
FL 

PC% 

153.3 
155.1 
1.2 

-2.37 
-2.6 
-0.3 

41.8 
43.8 
4.8 

-2.09 
-2.4 

- 

17.8 
18.2 
2.4 

-0.9 
-1.0 

- 

III 
IV 
- 

Neither 
rhGH or 

EX 

F13 
BL 
FL 

PC% 

104 
109 
4.8 

-2.1 
-2.3 
-0.1 

18.6 
19.4 
4.3 

0.5 
1.1 
- 

17.2 
16.3 
-5.0 

1.0 
0.4 
- 

I 
I 
- 

F14 
BL 
FL 

PC% 

151.5 
153.4 
1.3 

-1.5 
-1.4 
0.0 

56.7 
59.3 
4.6 

0.6 
0.7 
- 

24.7 
25.2 
2.0 

1.6 
1.6 
- 

I 
II 
- 

 

BL: baseline; FL: follow up; PC%: percentage change 

Delta changes in height SDS was calculated from baseline to follow up
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8.6.3.3 Densitometric changes 

8.6.3.3.1 Total body 
 
The subjects with GHD, whether they were on rhGH, EX, both or neither, showed higher positive 

PC% in TB- BMD,TB- BMC and TB-BA compared to the normal (Figure 8-6). However, their 

relative gain in TB-BMC was lower in relation to the relative gain in bone size (expressed as BMC 

for bone area SDS) which was noticeably declined from baseline to follow up (Figure 8-7). 

There were no obvious differences in TB-BMD, BMC, and BA between those who had rhGH alone 

or with additional EX.  

8.6.3.3.2 Lumber spine 
 
LS- BMD, LS-BMC and LS-BMAD were modestly changed from baseline to follow up in the 

majority of subjects, and there was no obvious difference between those who were on rhGH alone 

or combined with EX (Figure 8-8). 

Similar to TB-BMC for bone area SDS, LS-BMC for bone area SDS was obviously declined from 

baseline to follow up in subjects with GHD who were on rhGH (Figure 8-9). 

  

When we considered the time spent in habitual physical activities and participated in sport and 

exercise (hours per week ) as stated in Table 8-1, there were no obvious differences between those 

with  highest physical activity (particularly patient’s ID; F4, F5 who spent 3 and 6 hours a week 

training football respectively)), compared to those who were less active.  

  

The individual data of TB and LS parameters are shown in Table 8-3 
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Figure  8-6 Percentage changes in total body bone parameters of the first time assessment group 
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Figure  8-7 Total body bone BMD, bone area, BMC and BMC for bone area SDS at baseline and follow up of the first time assessment groups. 
Red dots represented those who were on exercise but had poor compliance rate <20% 

e 
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Figure  8-8 Percentage changes in lumber spine bone parameters of the first time assessment group 
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Figure  8-9 Lumber spine bone BMD, BMAD, BMC and BMC for bone area SDS at baseline and follow up of the first time assessment group. 
Red dots represented those who were on exercise but had poor compliance rate <20% 
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Table  8-3 DXA -TB, LS bone density parameters at baseline, follow up and percentage changes in the first time assessment group. 
 

Group ID Time 

TB-BMD TB-BMC TB-BA LS-BMD LS-BMC LS-BMAD 
LS-BA 
(cm2) BMD 

(g/cm2) 

Z 
score-

height-age 

BMC 
(g) 

BMC/
BA 
SDS 

BA 
(cm2) 

BA/H 
SDS 

BMD 
(g/cm2) 

Z 
score-

height-age 

BMC 
(g) 

BMC/ 
BA 
SDS 

BMAD 
(g/cm3) 

BMAD 
SDS 

GHD 

Only 
rhGH 

F1 BL 
FL 
PC% 

0.747 
0.749 
0.3 

- 
- 
- 

515 
582.5 
13.1 

- 
- 
- 

689 
778 
12.9 

-1.1 
-0.4 

- 

0.513 
0.558 

8.8 

- 
- 
- 

9.75 
11.09 
13.7 

- 
- 
- 

0.258 
0.221 
-14.3 

-2.5 
-1.5 

- 

19.01 
19.87 
4.5 

F2 BL 
FL 
PC% 

0.792 
0.794 
0.3 

0.2 
-0.3 

- 

640.2 
743.5 
16.1 

2.1 
0.9 

-57.1 

808 
936 
15.8 

-0.4 
0.4 
- 

0.578 
0.589 

1.9 

-0.7 
-1.0 

- 

10.91 
12.2 
11.8 

0.9 
0.1 
- 

0.237 
0.237 
-0.3 

-1.1 
-1.1 

- 

18.86 
20.7 
9.8 

F3 BL 
FL 
PC% 

0.874 
0.902 
3.2 

0.6 
0.6 
- 

1087 
1370 
26.0 

0.0 
-0.4 

- 

1244 
1518 
22.0 

1.5 
2.5 
- 

0.758 
0.809 

6.7 

0.6 
0.6 

17.76 
21.98 
23.8 

0.5 
0.2 
- 

0.294 
0.296 
0.9 

0.4 
0.3 
- 

23.44 
27.18 

16 

F4 BL 
FL 
PC% 

0.889 
0.892 
0.3 

0.8 
0.1 
- 

1052.2 
1120.8 

6.5 

0.4 
0.1 
- 

1183 
1256 
6.2 

-0.8 
-1.9 

- 

0.673 
0.719 

6.8 

-0.5 
-0.5 

- 

18.77 
20.53 
9.4 

-0.9 
-0.7 

- 

0.261 
0.259 
-0.7 

-0.7 
-0.8 

- 

27.9 
28.54 
2.3 

F5 BL 
FL 
PC% 

0.987 
0.99 
0.3 

3.6 
2.5 
- 

1240.2 
1310.6 

5.7 

0.8 
0.7 
- 

1257 
1314 
4.5 

1.5 
0.9 
- 

0.725 
0.732 

1.0 

0.6 
0 
- 

19.02 
20.85 
9.6 

-0.4 
-0.6 

- 

0.258 
0.259 
0.4 

-0.6 
-0.7 

- 

26.25 
28.48 
8.5 

rhGH 
and  
EX 

F6 BL 
FL 
PC% 

0.728 
0.723 
-0.7 

- 
- 
- 

432.5 
510.3 
18.0 

- 
- 
- 

594 
706 
18.9 

-2.4 
-1.5 

- 

0.43 
0.455 

5.8 

- 
- 
- 

6.77 
7.93 
17.1 

- 
- 
- 

0.193 
0.185 
-3.9 

-2.1 
-2.1 

- 

15.76 
17.42 
10.5 

F7 BL 
FL 
PC% 

0.891 
0.904 
1.5 

-0.2 
-0.5 

- 

1220.3 
1370.6 
12.3 

-0.2 
-0.4 

- 

1370 
1517 
10.7 

-1.2 
0.6 
- 

0.703 
0.754 

7.3 

-0.8 
-0.8 

20.19 
27.95 
38.4 

-0.8 
-1.2 

- 

0.242 
0.271 
11.6 

-0.8 
-2.0 

- 

28.72 
37.06 
29.0 

F8 BL 
FL 
PC% 

0.88 
0.893 
1.5 

- 
0.6 
- 

929.3 
1110.8 
19.5 

0.8 
0.2 
- 

1056 
1245 
17.9 

-0.7 
0.1 
- 

0.696 
0.755 

8.5 

- 
0.2 
- 

13.34 
16.06 
20.4 

1.9 
1.2 
- 

0.336 
0.334 
-0.9 

1.5 
1.5 
- 

19.17 
21.27 
11.0 
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Only 
EX 

F9 BL 
FL 
PC% 

0.956 
0.986 
3.1 

0.2 
0.5 
- 

1641.7 
1879.6 
14.5 

-0.3 
-0.3 

- 

1718 
1906 
10.9 

0.8 
1.1 
- 

0.905 
0.939 

3.8 

0.4 
0.9 

31.91 
34.08 
6.8 

-0.3 
-0.3 

0.302 
0.297 
-1.6 

0.4 
0.5 

35.25 
36.34 
3.1 

F10 BL 
FL 
PC% 

0.927 
0.956 
3.1 

1.5 
1.5 
- 

1118.5 
1406.6 
25.8 

0.5 
0.1 
- 

1207 
1471 
21.9 

-0.1 
2.4 
- 

0.737 
0.805 

9.2 

0.2 
0.6 

16.78 
19.27 
14.8 

0.5 
0.7 
- 

0.310 
0.328 
6.0 

1.3 
0.7 
- 

22.76 
23.93 
5.1 

Normal 

rhGH 
and EX 

 

F11 BL 
FL 
PC% 

0.699 
0.703 
0.6 

- 
- 
- 

364.5 
416.2 
14.2 

- 
- 
- 

521 
592 
13.6 

-3.4 
-3.2 

- 

0.481 
0.497 

3.3 

- 
- 
- 

6.35 
7.81 
23.0 

- 
- 
- 

0.256 
0.254 
-0.4 

-0.2 
-0.4 

- 

13.19 
15.84 
20.1 

Only  
rhGH 

F12 BL 
FL 
PC% 

0.962 
0.978 
1.7 

0.5 
0 
- 

1670.8 
1712.6 

2.5 

-0.3 
-0.2 

- 

1736 
1751 
0.9 

0.8 
-0.4 

- 

0.931 
0.915 
-1.7 

0.9 
0.0 
- 

32.45 
32.09 
-1.1 

-0.2 
-0.3 

- 

0.314 
0.320 
1.7 

0.1 
-0.5 

- 

34.85 
35.06 
0.6 

Neither 
rhGH 
or EX 

F13 BL 
FL 
PC% 

0.738 
0.747 
1.2 

- 
- 
- 

508.1 
563 
10.8 

2.3 
1.4 
- 

689 
754 
9.4 

-0.7 
-0.5 

- 

0.629 
0.625 
-0.6 

- 
- 
- 

11.06 
12.09 
9.3 

- 
- 
- 

0.274 
0.275 
0.6 

-0.3 
-0.5 

17.6 
19.35 
9.9 

F14 BL 
FL 
PC% 

0.906 
0.919 
1.4 

-0.8 
-0.8 

- 

1503.6 
1583.1 

5.3 

-0.6 
-0.6 

- 

1661 
1722 
3.7 

-0.1 
0.1 
- 

0.802 
0.813 

1.4 

-1.2 
-1.2 

- 

22.54 
24.01 
6.5 

-0.5 
-0.6 

- 

0.318 
0.313 
-1.4 

-1.4 
0.1 
- 

28.1 
29.53 
5.1 

 

BL: baseline; FL: follow up; PC%: percentage change; TB: total body; LS: lumbar spine; H: height; BMD: bone mineral density; BMC: bone mineral content; BMAD: 
bone mineral apparent density; BA: bone area 
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8.6.3.4 Changes in body composition measured by DXA 

There was a relative positive gain in LM in the majority of subjects in the group. GHD subjects 

who were on rhGH alone and those on a combination of rhGH with EX showed higher gain in LM 

compared with the other group (PC% ranging from (13.3% to 23.5%), (10.3% to 28.6%) 

respectively), whilst the one GHD subject with EX alone and normal subjects with neither rhGH or 

EX showed the lowest change in LM (PC%; 2.7%, 4.6 % and 2.5%), (Figure 8-10). Similarly, the 

changes in LM for height centile were obviously higher in those with GHD and on rhGH compared 

to others, and that was not different between those who had rhGH combined with /without EX, 

(Figure 8-11).  

 

Loss of FM was observed in three of the five subjects who were GHD on only rhGH (PC%; -20%, 

-16%, -24%), when the other two patients (patient IDs: F1, F3) had (4.4%, 38%) increase in FM 

over follow-up period. Noticeably, all subjects with GHD and combined rhGH with EX showed a 

proportionally greater decline in FM (PC%: -44%, -15%,-28%) compared with the other. On the 

other hand, the two patients who were confirmed to have GHD but were only on EX (patient IDs: 

F9, F10) had the highest gain in FM (PC%: 111%, 80%) from the baseline to the follow up 

compared to the others (Figure 8-10, 8- 12). Normal subjects (patient IDs: F11, F12, F13 and F14) 

showed modest changes in FM regardless whether they were on rhGH, EX, or either. 

  

A/G ratio demonstrated a slightly raised central fat distribution in three of the five GHD subjects 

who were on only rhGH  and the two GHD subjects on only EX, whereas  A/G ratio was declined 

in all those who were on a combination of rhGH with EX 

 

The individual data of DXA body composition parameters in the first time assessment group are is 

outlined in Table 8-4 
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Figure  8-10 Percentage changes in body composition (LM-FM-A/G ratio) of the first time assessment group 
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Figure  8-11 Individual data of lean mass and lean mass for height centile from baseline to follow up of the first time assessment group. 
Red dots represented those who were on exercises but had poor compliance rate <20% 
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Figure  8-12 Individual data of fat mass; fat mass for height SDS, and A/G fat ratio from baseline to follow up of the first time assessment group. 
Red dots represented those who were on exercises but had poor compliance rate <20 



 

240 
 

Table  8-4 DXA-body composition parameters at baseline, follow up and percentage changes 
in the first time assessment group. 
 

Groups ID Time 

LM FM 

LM 
(Kg) 

LM/H 
centile 

FM 
(Kg) 

FM/H 
SDS 

A/G ratio 

GHD 

Only 
rhGH 

F1 
BL 
FL 
PC% 

13.4 
15.2 
13.7 

45 
70 

56.0 

4.0 
4.2 
4.4 

1.5 
-0.1 

- 

0.6 
0.6 
-9.0 

F2 
BL 
FL 
PC% 

14.4 
17.7 
22.8 

29 
33 

14.0 

1.6 
1.3 

-20.0 

-0.6 
-0.8 

- 

0.6 
0.7 
14.0 

F3 
BL 
FL 
PC% 

22.1 
27.2 
23.5 

66 
99 

50.0 

8.9 
12.2 
38.0 

3.0 
5.5 
- 

0.7 
0.8 
8.0 

F4 
BL 
FL 
PC% 

21.6 
24.5 
13.4 

27 
29 
8.0 

3.2 
2.7 

-16.0 

-0.7 
-1.4 

- 

0.6 
0.6 
-7.0 

F5 
BL 
FL 
PC% 

22.5 
25.7 
14.4 

68 
85 

25.0 

2.4 
1.9 

-24.0 

-1.7 
-1.1 

- 

0.5 
0.7 
32.0 

rhGH 
and  EX 

F6 
BL 
FL 
PC% 

11.4 
14.7 
28.6 

25 
62 

148.0 

2.7 
1.5 

-44.0 

-0.1 
-0.6 

- 

0.6 
0.5 

-25.0 

F7 
BL 
FL 
PC% 

27.2 
29.9 
10.3 

33 
35 
6.0 

9.8 
8.3 

-15.0 

0.0 
0.0 
- 

0.7 
0.7 
-1.0 

F8 
BL 
FL 
PC% 

17.8 
22.1 
24.2 

19 
36 

90.0 

5.9 
4.3 

-28.0 

1.0 
-0.4 

- 

0.7 
0.6 

-13.0 

Only EX 

F9 
BL 
FL 
PC% 

32.6 
33.4 
2.7 

53 
36 

-32.0 

7.3 
15.4 

111.0 

0.3 
1.4 
- 

0.7 
0.8 
21.9 

F10 
BL 
FL 
PC% 

23.0 
26.9 
16.9 

70 
74 
5.7 

8.4 
14.9 
80.0 

0.9 
2.8 
- 

0.7 
0.9 
34.9 

Normal 

rhGH 
and EX F11 

BL 
FL 
PC% 

10.3 
12.3 
19.4 

7 
5 

-28.6 

1.9 
1.4 

-28.5 

-0.4 
-0.7 

- 

0.8 
0.6 

-27.9 

Only rhGH F12 
BL 
FL 
PC% 

37.5 
38.6 
3.1 

88 
88 
0.0 

2.5 
2.9 
17.5 

-1.4 
-0.9 

- 

0.4 
0.6 
48.6 

Neither 
rhGH or 

EX 

F13 
BL 
FL 
PC% 

13.8 
14.4 
4.6 

72 
57 

-20.0 

3.7 
3.8 
8.1 

0.9 
-0.2 

- 

0.6 
0.6 
7.9 

F14 
BL 
FL 
PC% 

28.2 
28.8 
2.5 

26 
23 

-11.0 

25.9 
27.7 
6.3 

1.4 
1.6 
- 

1.1 
1.1 
-0.1 

BL: baseline; FL: follow up; PC%: percentage change; LM: lean mass; FM: fat mass; FM/H SDS; 
fat mass for height SDS; A/G: Android/Gynoid fat ratio 
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8.6.3.5 Tibia bone and muscle parameters 

Of the 14, 11 had their pQCT scans done at baseline and follow up. Two subjects’ (patient IDs: F4, 

F6) geometric data at the 38% site were excluded for movement error, Table 8-5. 

From the available data, there was variability in the cortical thickness, periosteal circumferences 

and endo-osteal circumferences across the group, Figure 8-13. Cortical thickness and periosteal 

circumferences tended to expand in GHD on rhGH with/ without EX, without obvious change in 

endo-osteal circumferences. The two GHD on only EX (patient IDs: F 9, F10) showed small 

reduced in cortical thickness and enlarged in periosteal and endo-osteal circumferences. These 

measurements were not obviously changes in the two normal subjects with neither rhGH or EX 

(patient IDs: F13, F14).  

Cortical density tended to fall in all GHD subjects receiving rhGH, when trabecular density 

increased only in three subjects (patient IDs: F4, F6, F8).  Total density remained unchanged in the 

majority of subjects. 

Muscle-CSA tended to enlarge only in subjects who received rhGH, when those with GHD on only 

EX (patient IDs: F9, F10) had lower muscle CSA and height fat CSA on follow up than their 

baseline data, Table 8-6. 
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Figure  8-13 Percentage changes in tibia pQCT parameters from baseline to follow up of the first time assessment group 
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Table  8-5Tibia pQCT parameters (4% and 38% sites) at baseline, follow up and percentage changes of the first time assessment group 
 

 

Site 38% 38% 38% 4% 38% 4% 38% 

Measurement CTh PC EC TrvBMD CvBMD TvBMD 

SSI 
ID Time (mm) 

Height
- z-

score 
(mm) 

Height -
z-score 

(mm) 
Height 

-z-
score 

mg/cm
3 

Age 
-Z 

score 
mg/cm3 

Age 
-Z 

score 
mg/cm3 

GHD 

Only 
rhGH 

F1 
BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

F2 
BL 
FL 
PC% 

2.3 
2.9 

23.3 

0.8 
0.5 
- 

48.5 
36.6 
24.5 

-0.1 
-1.7 

- 

33.8 
31.1 
-8.0 

-0.5 
-1.0 

- 

182.1 
176.0 
-3.4 

-0.6 
-0.9 

- 

1061.7 
1018.5 

-4.1 

1.2 
-0.2 

- 

275.3 
279.9 
1.7 

328.1 
77.1 
-76 

F3 
BL 
FL 
PC% 

3.6 
4.3 

20.9 

0.7 
1.0 
- 

54.3 
60.1 
10.7 

-0.6 
-0.1 

- 

31.7 
32.8 
3.4 

-1.0 
-1.2 

- 

245.6 
212.8 
-13.4 

1.1 
0.1 
- 

1024.9 
1002.3 

-2.2 

-0.1 
-0.9 

- 

318.9 
331.1 
3.8 

538.2 
792.9 
47.3 

F4 
BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

184.5 
258.4 
40.0 

-0.9 
1.1 
- 

1116.0 
1102.0 

-1.3 

1.8 
1.3 
- 

284.2 
294.0 
3.5 

696.4 
753.9 
8.3 

F5 
BL 
FL 
PC% 

4.2 
4.5 
7.6 

1.3 
1.4 

57.9 
59.8 
2.0 

0.3 
0.2 
- 

31.7 
30.9 
-2.7 

-1.0 
-1.4 

258.0 
232.0 
-10.0 

1.4 
0.7 
- 

1113.8 
1084.1 

-2.7 

2.1 
1.3 
- 

380.8 
363.6 
-4.5 

743.8 
825.6 

11 

rhGH 
and EX 

F6 
BL 
FL 
PC% 

1.7 
- 
- 

3.6 
- 
- 

43.1 
- 
- 

-0.4 
- 
- 

33.0 
- 
- 

-1.6 
- 
- 

144.2 
192.1 
33.2 

-2.0 
-0.2 

1022.3 
1021.5 

-0.1 

-0.1 
0.0 

241.8 
257.3 
6.4 

225.1 
232.0 
3.0 

F7 
BL 
FL 
PC% 

3.5 
3.7 
3.8 

-0.2 
-0.2 

- 

63.8 
67.2 
5.3 

0.0 
0.3 
- 

41.6 
44.2 
6.2 

0.3 
0.5 
- 

238.8 
218.1 
-8.7 

0.2 
-0.5 

- 

1086.6 
1064.0 

-2.1 

0.2 
-0.7 

- 

321.8 
286.6 
-10.9 

986.7 
984.5 
-0.2 
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F8 
BL 
FL 
PC% 

3.1 
2.7 

-12.3 

0.3 
-0.9 

- 

53.9 
63.8 
18.4 

-0.2 
1.3 
- 

34.6 
46.9 
35.6 

-0.2 
1.9 
- 

281.4 
388.5 
38.1 

2.0 
3.9 
- 

1092.4 
1025.4 

-6.1 

1.7 
-0.3 

- 

341.0 
380.7 
11.6 

522.1 
510.4 
-2.2 

Only EX 

F9 
BL 
FL 
PC% 

4.0 
3.9 
-1.9 

0.1 
-0.1 

- 

75.6 
82.0 
8.4 

2.0 
2.8 
- 

50.6 
57.4 
13.4 

1.6 
2.4 
- 

221.4 
172.9 
-21.9 

0.4 
-1.3 

- 

1067.3 
1089.0 

2.0 

0.9 
1.3 

281.9 
311.5 
10.5 

1267.1 
1402.7 

10.7 

F10 
BL 
FL 
PC% 

3.6 
3.2 

-11.5 

0.5 
-0.4 

- 

64.1 
70.2 
9.6 

1.7 
2.3 
- 

41.5 
50.2 
21.0 

1.1 
2.3 
- 

278.4 
276.1 
-0.8 

1.8 
1.6 
- 

1085.1 
1094.6 

0.9 

1.4 
1.3 
- 

321.4 
304.3 
-5.3 

906.3 
889.1 
-1.9 

Normal 

 
rhGH 

and EX 
F11 

BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

 
Only rhGH F12 

BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

Neither 
rhGH or 

EX 

F13 
BL 
FL 
PC% 

2.4 
2.0 

-17.6 

0.6 
-1.5 

- 

47.4 
50.2 
6.0 

-0.1 
0.2 
- 

32.3 
37.8 
17.0 

-0.2 
0.8 
- 

208.2 
207.7 
-0.3 

0.4 
0.4 
- 

1046.2 
980.1 
-6.3 

1.1 
-1.0 

- 

303.9 
296.1 
-2.6 

305.1 
329.3 
7.9 

F14 
BL 
FL 
PC% 

3.3 
3.9 

15.9 

-1.0 
0.0 
- 

72.6 
66.6 
-8.3 

1.6 
0.1 
- 

51.6 
42.2 
-18.1 

1.9 
0.2 
- 

172.3 
169.7 
-1.5 

-1.4 
-1.6 

- 

1049.9 
1089.7 

3.8 

-2.0 
-1.1 

- 

242.3 
221.0 
-8.8 

1067.7 
1085.7 

1.7 

 

BL: baseline; FL: follow up; PC%: percentage change; CTh: Cortical thickness; PC: Periosteal circumference; EC:  Endosteal circumference; TvBMD: Total density; 
TrvBMD: Trabecular density; CvBMD: Cortical density; SSI: Strength strain index 
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Table  8-6 Tibia pQCT parameters at 66% site at baseline, follow up and percentage changes 
in the first time assessment group.  
 

Group 

Site 66% 

ID Time 
Cortical  

CSA 
(mm2) 

Muscle  
CSA 

(mm2) 

Fat 
CSA 

(mm2) 

Bone/Muscle 
ratio 

GHD 

Only rhGH 

F1 
BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

F2 
BL 
FL 
PC% 

121.0 
140.3 
15.9 

2170.5 
2724.5 

25.5 

789.5 
707.0 
-10.4 

5.6 
5.2 
-7.5 

F3 
BL 
FL 
PC% 

191.3 
232.8 
21.7 

3799.3 
4167.8 

9.7 

1842.8 
2245.3 

21.8 

5.0 
5.5 
9.3 

F4 
BL 
FL 
PC% 

190.5 
209.8 
10.1 

3488.0 
3625.0 

3.9 

1006.5 
949.5 
-5.7 

5.5 
5.8 
6.0 

F5 
BL 
FL 
PC% 

238.0 
256.3 

7.7 

3970.0 
4670.3 

17.6 

910.5 
661.3 
-27.4 

6.0 
5.5 
-8.3 

rhGH and 
EX 

F6 
BL 
FL 
PC% 

77.3 
53.5 
-30.7 

1989.8 
2253.8 

13.3 

1031.0 
826.8 
-19.8 

3.9 
2.4 

-38.9 

F7 
BL 
FL 
PC% 

219.0 
253.5 
15.8 

5016.5 
5005.8 

-0.2 

2504.3 
2016.3 
-19.5 

4.4 
5.1 

15.8 

F8 
BL 
FL 
PC% 

163.3 
201.0 
23.1 

2940.3 
3538.3 

20.3 

2109.8 
1359.0 
-35.6 

5.6 
5.7 
2.3 

Only EX 

F9 
BL 
FL 
PC% 

292.8 
284.0 
-3.0 

4889.3 
4930.8 

0.8 

1618.0 
2284.3 

41.2 

6.0 
5.8 
-3.9 

F10 
BL 
FL 
PC% 

238.5 
299.3 
25.5 

4070.0 
3674.5 

-9.7 

2134.3 
2969.5 
39.0` 

5.9 
8.1 

38.1 

Normal 

rhGH and 
EX 

 
F11 

BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

Only rhGH F12 
BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

Neither 
rhGH or 

EX 

F13 
BL 
FL 
PC% 

71.3 
89.8 
26.0 

2368.5 
2312.0 

-2.4 

1118.0 
1110.1 

-0.7 

3.0 
3.9 

28.9 

F14 
BL 
FL 
PC% 

238.8 
248.5 

4.1 

4633.3 
4505.0 

-2.8 

2964.8 
2670.0 

-9.9 

5.2 
5.5 
7.2 

 

BL: baseline; FL: follow up; PC%: percentage change 
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8.6.3.6 Changes in bone profiles and metabolism  

Only 9/14 subjects had blood samples available for both baseline and follow up. Overall, there 

were no apparent changes from baseline to follow up in bone profiles (Ca-Po4-Mg) in any of these 

groups (GHD, normal), all remained within the normal range. PTH and 25OH vit-D remained 

steady during the study period in those who received rhGH in either groups, but tended to rise in 

those who were not receiving rhGH, (Table 8-7).  

The changes in bone turnover markers (BAP-OC-CTX) were higher in GHD receiving rhGH alone 

or combined with EX than others. 
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Table  8-7 Bone minerals, bone biomarkers at baseline, follow up and percentage changes in 
the first time assessment group  
 

Groups ID Time 

Bone mineralisation Bone biomarkers 

Ca 
mmol/l 

Po4 
mmol/l 

Mg 
mmol/l 

PTH 
pmol/l 

Vit-D 
nmol/l 

BAP 
μg/l 

OC 
ng/ml 

CTX 
ng/ml 

GHD 

Only 
rhGH 

F1 
BL 
FL 
PC% 

2.2 
2.3 
4.5 

1.38 
1.2 

-13.0 

0.8 
- 
- 

2.9 
3.8 
30.0 

55 
39 

-30.0 

62.1 
83.8 
35.0 

48.8 
103.3 
112.0 

1.8 
1.8 
2.0 

F2 
BL 
FL 
% 

2.36 
- 
- 

1.41 
- 
- 

0.8 
- 
- 

4 
- 
- 

102 
- 
- 

110.7 
- 
- 

58.1 
- 
- 

2.1 
- 
- 

F3 
BL 
FL 
PC% 

2.45 
2.5 
2.0 

1.3 
1.5 
15.0 

1.0 
0.8 

-18.0 

3.7 
2.8 

-25.0 

64 
48 

-25.0 

138.4 
85.4 
-38.0 

29.3 
38.9 
33.0 

0.8 
1.4 
73.0 

F4 
BL 
FL 
PC% 

2.46 
2.58 
5.0 

1.26 
1.64 
30.0 

. 
0.8 
- 

- 
3.2 
- 

- 
34 
- 

- 
- 
- 

43.7 
51.7 
18.0 

1.1 
1.9 
68.0 

F5 
BL 
FL 
PC% 

2.34 
2.6 
11.0 

1.31 
1.31 
0.0 

0.8 
0.8 
0.0 

2.3 
2.9 
26.0 

68 
68 
0.3 

89.5 
135.7 
51.0 

31.6 
- 
- 

1.6 
2.1 
30.0 

rhGH 
and  
EX 

F6 
BL 
FL 
PC% 

2.32 
2.4 
4.0 

1.61 
1.89 
18.0 

0.8 
0.8 
0.0 

4.2 
4.7 
10.0 

56 
56 
0.5 

24.3 
17.3 
-29.0 

39.2 
44.6 
14.0 

3.4 
2.0 

-40.0 

F7 
BL 
FL 
PC% 

2.4 
. 
- 

1.58 
- 
- 

0.9 
0.8 
0.0 

5.8 
- 
- 

23 
- 
- 

136.8 
90.3 
-34.0 

75.3 
98.3 
31.0 

3.9 
1.6 

-60.0 

F8 
BL 
FL 
PC% 

2.51 
2.4 
-5.0 

1.39 
1.35 
-3.0 

0.8 
0.8 
0.0 

4.0 
3.6 
-9.0 

39 
42 
8.0 

67.0 
75.3 
12.0 

65.7 
94.7 
44.0 

1.9 
0.7 

-64.0 

Only 
EX 

F9 
BL 
FL 
PC% 

2.32 
2.5 
8.0 

1.24 
1.4 
13.0 

0.78 
0.93 
19.0 

3.9 
4.6 
18.0 

64 
51 

-20.0 

99.0 
125.3 
27.0 

71.7 
83.6 
17.0 

2.0 
1.9 
-4.0 

F10 
BL 
FL 
PC% 

2.4 
- 
- 

1.4 
- 
- 

0.66 
- 
- 

5.9 
- 
- 

29 
- 
- 

110.0 
- 
- 

77.7 
- 
- 

2.4 
- 
- 

Normal 

rhGH 
and EX 

F11 
BL 
FL 
PC% 

2.2 
- 
- 

1.38 
- 
- 

0.8 
- 
- 

8.7 
- 
- 

35 
- 
- 

76.7 
- 
- 

42.1 
- 
- 

1.3 
- 
- 

Only rhGH F12 
BL 
FL 
PC% 

2.33 
- 
- 

1.2 
- 
- 

0.75 
- 
- 

1.4 
- 
- 

36.0 
- 
- 

50.0 
- 
- 

34.4 
- 
- 

1.3 
- 
- 

Neither 
rhGH 
or EX 

F13 
BL 
FL 
PC% 

2.2 
2.3 
3 

1.46 
1.4 
-4.0 

0.93 
0.94 
1.1 

6.7 
5.5 

-18.0 

20 
27 

35.0 

51.4 
52.1 
1.5 

69.7 
31.8 
-54.0 

1.9 
2.06.1 

F14 
BL 
FL 
PC% 

2.4 
2.6 
8.0 

1.0 
1.4 
44.0 

0.89 
0.89 
0.0 

3.6 
6.7 
88.0 

27 
36 

33.0 

181.0 
105.3 
-41.0 

51.6 
76.5 
48.0 

1.9 
0.9 

-52.0 

 

BL: baseline; FL: follow up; PC%: percentage change; Ca: calcium; PO4: phosphate; mg: 
magnisum; PTH: parathyroid hormone; 25 (OH) Vit-D: 25 hydroxy vitamin D; BAP: bone-specific 
alkaline phosphatase; OC: osteocalcine; CTX: cross linked C-telopeptide of type I collagen 
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8.6.3.7 Changes in metabolic profiles  

From the available data, there were no noticeable changes in any of the metabolic parameters from 

baseline to follow up across groups over the study duration as seen in Table 8-8. However, the 

GHD patient (patient ID; F9) with only EX had higher total cholesterol, LDL and TG levels on 

follow up than the baseline. Similarly, adipokines measurements (leptin- adiponectin- resistin) 

were noticeably variable among the groups.  

There was also an increase in fasting glucose levels, but a decrease in insulin and HOMA-IR values 

in the majority of the groups over the study period. Only one patient (F1- GHD on rhGH alone) had 

a rather higher F-insulin and HOMA-IR (PC%:  141%, 100%, respectively). 
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Table  8-8 Metabolic profiles at baseline, follow up and percentage changes in the first time assessment group. 
 

 Group ID Time 

Lipid profiles Adipokines Glucose homeostasis 

T-Chol 
mmol/l 

HDL 
mmol/l 

LDL 
mmol/l 

TG 
mmol/l 

FFA 
mmol/l 

Leptin 
ng/ml 

Adiponectin 
ng/l 

Resistin 
ng/ml 

F-
Glucose 
mmol/l 

F- 
Insulin 
uIU/ml 

HOMA-
IR 

GHD 

Only 
rhGH 

F1 
BL 
FL 
PC% 

3.7 
3.3 

-11.0 

- 
0.9 
- 

- 
3.7 
- 

0.5 
0.6 

20.0 

0.44 
0.54 
23.0 

7.0 
3.7 

-47.0 

25.9 
11.0 
-58.0 

4.3 
4.3 
1.4 

4.7 
3.8 

-19.0. 

7.3 
17.6 

141.0 

1.5 
3.0 

100.0 

F2 
BL 
FL 
PC% 

2.8 
- 
- 

1.1 
- 
- 

2.5 
- 
- 

0.7 
- 
- 

0.7 
- 
- 

1.1 
- 
- 

22.2 
- 
- 

4.8 
- 
- 

3.7 
- 
- 

8.01 
- 
- 

1.3 
- 
- 

F3 
BL 
FL 
PC% 

3.5 
2.9 

-18.0 

1.24 
1.0 

-20.0 

2.8 
2.9 
3.6 

1.` 
1.2 

16.0 

0.92 
0.74 
-20.0 

12.9 
5.4 

-58.0 

8.0 
11.6 
45.0 

2.4 
2.6 
5.9 

4.6 
4.9 
7.0 

26.2 
16.3 
-38.0 

5.7 
3.3 

-41.0 

F4 
BL 
FL 
PC% 

- 
3.7 
- 

- 
1.9 
- 

- 
1.9 
- 

- 
0.8 
- 

- 
0.6 
- 

1.7 
- 
- 

7.2 
- 
- 

3.3 
- 
- 

4.7 
5.9 
26.0 

9.2 
- 
- 

2.4 
- 
- 

F5 
BL 
FL 
PC% 

3.87 
3.8 
-1.8 

1.2 
1.3 
4.0 

3.1 
2.9 
-6.3 

0.6 
0.6 
9.0 

0.70 
0.33 
-52.0 

1.8 
1.0 

-47.0 

10.1 
6.8 

-33.0 

4.2 
5.4 
29.0 

4.1 
4.6 
12.0 

4.2 
- 
- 

0.9 
- 
- 

rhGH 
and EX 

F6 
BL 
FL 
PC% 

4.3 
4.4 
2.3 

1.6 
1.4 

-13.0 

2.7 
3.1 

0.7 
1.5 

114.0 

1.08 
0.76 
-30.0 

1.4 
2.8 

101.0 

10.1 
19.9 
97.0 

3.0 
3.8 
25.0 

3.8 
5.0 
31.0 

5.8 
6.25 
8.0 

1.3 
1.1 

-18.0 

F7 
BL 
FL 
PC% 

5.2 
- 
- 

1.81 
- 
- 

2.9 
- 
- 

1.5 
- 
- 

0.54 
0.25 
-54.0 

11.6 
2.8 

-75.0 

9.3 
9.8 
6.2 

4.0 
2.9 

-26.0 

4.5 
- 
- 

25.01 
13.6 
-45.0 

5.0 
2.5 

-50.0 

F8 
BL 
FL 
PC% 

3.93 
4.35 
11.0 

1.4 
1.86 
23.0 

2.8 
- 
- 

1.3 
0.4 

-66.0 

0.59 
0.67 
13.6 

30.5 
3.6 

-88.0 

7.6 
20.0 

165.0 

7.0 
5.1 

-28.0 

4.7 
- 
- 

5.8 
6.7 
17.0 

1.2 
- 
- 
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Only 
EX 

F9 
BL 
FL 
PC% 

3.8 
4.7 
24.0 

1.5 
1.8 
20.0 

2.5 
2.6 
4.0 

0.6 
0.9 

50.0 

0.86 
0.21 
-75.0 

11.3 
3.5 

-70.0 

8.8 
5.9 

-34.0 

3.3 
4.2 
25.0 

4.7 
4.6 
-2.0 

27.4 
19.2 
-30.0 

5.6 
4.0 

-28.0 

F10 
BL 
FL 
PC% 

3.63 
- 
- 

1.55 
- 
- 

2.3 
- 
- 

0.6 
- 
- 

0.31 
- 
- 

15.0 
- 
- 

12.1 
- 
- 

3.2 
- 
- 

4.6 
- 
- 

15.1 
- 
- 

3.1 
- 
- 

Normal 

rhGH 
and EX 

 
F11 

BL 
FL 
PC% 

3.3 
- 
- 

1.04 
- 
- 

3.2 
- 
- 

0.6 
- 
- 

1.56 
- 
- 

2.2 
- 
- 

20.6 
- 
- 

3.1 
- 
- 

3.9 
- 
- 

3.5 
- 
- 

0.6 
- 
- 

Only rhGH F12 
BL 
FL 
PC% 

4.1 
- 
- 

1.32 
- 
- 

3.1 
- 
- 

0.68 
- 
- 

1.37 
- 
- 

0.9 
- 
- 

16.0 
- 
- 

3.0 
- 
- 

3.7 
- 
- 

10.8 
- 
- 

1.8 
- 
- 

Neither 
rhGH 
or EX 

F13 
BL 
FL 
PC% 

4.1 
4.4 
7.0 

0.9 
0.8 
-6.0 

4.8 
5.5 
15.0 

0.62 
0.6 
-3.0 

0.6 
0.8 
38.0 

1.8 
1.6 

-13.0 

16.1 
15.6 
-3.0 

4.1 
2.4 

-40.0 

4.4 
4.9 
0.5 

14.2 
1.6 

-12.0 

3.1 
0.3 

-88.0 

F14 
BL 
FL 
PC% 

4.0 
4.3 
8.0 

1.4 
1.0 

-27.0 

- 
4.3 
- 

1.4 
2.6 

85.0 

0.7 
0.7 
0.4 

28.2 
41.7 
48.0 

5.9 
8.0 
37.0 

5.2 
9.4 
81.0 

4.0 
4.9 
0.9 

- 
- 
- 

- 
- 
- 

 

 BL: baseline; FL: follow up; PC%: percentage change; T-Chol: total Cholesterol; LDL: low density lipoprotein cholesterol; HDL: high density lipoprotein cholesterol; TG; 
triglyceride; FFA: free fatty acid; F: fasting; HOMA-IR: homeostasis model assessment insulin resistance index 
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8.6.3.8 Changes in quality of life measures (SF-36) 

 Thirteen of the fourteen subjects had a complete QoL assessment from baseline to follow up. 

Three out of the five children with GHD on rhGH alone showed improvement in overall total SF-

36 scores from baseline to follow up, where all those with combined rhGH and EX showed rather 

slight diminished total scores, Figure 8-14. Among the SF-36 subscales (Table 8-9) physical 

functioning, social functioning, emotional role functioning and mental health scales did not change 

over the study period in the whole cohort. Of notice, scores of emotional wellbeing in children on 

rhGH were higher at baseline than those who had no rhGH, but became lower on follow up. 

Similarly, energy/fatigue subscale scores appear to be diminished in children with GHD in four  of 

the five who were on rhGH alone and all three GHD subjects  who were on combined rhGH and 

EX. Inversely, this scale seems to improve in those who have GHD on only EX.  

 

 
 

 

 

 

 

 

 

 

 

 

Figure  8-14 Individual QoL-SF-36 at baseline and follow up of the first time 
assessment group. 
(Higher scores reflect better QoL) 
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Table  8-9 SF-36 scores at baseline, follow up and absolute changes in the first time assessment group 
 

Group ID Time Total 
 

Physical components Mental components 
Previous 

year Total-
PC P.F R.P Pain G.H Total- 

MC R.E E/F E.W.B S.F 

GHD 

Only 
rhGH 

F1 
BL 
FL 
PC% 

44 
63 
43 

23 
34 
45 

10 
70 

600 

50 
50 
0 

55 
48 
-13 

40 
40 
0 

61 
68 
13 

100 
100 

0 

35 
60 
71 

92 
76 
-17 

25 
37.5 
50 

50 
75 
50 

F2 
BL 
FL 
PC% 

80 
87 
8 

32 
47 
44 

85 
85 
0 

25 
100 
300 

100 
57.5 
-42 

95 
100 

5 

85 
86 
1 

100 
100 

0 

65 
60 
-7 

88 
84 
-4 

87.5 
100 
14 

50 
100 
100 

F3 
BL 
FL 
PC% 

93.8 
94.0 
0.2 

37 
39 
5 

100 
100 
0 

100 
100 
0 

60 
100 
66 

90 
90 
0 

94 
90 
-4 

100 
100 

0 

80 
65 
-18 

96 
96 
0 

100 
100 

0 

50 
50 
0 

F4 
BL 
FL 
PC% 

96 
72.1 
-25 

36 
23 
-35 

100 
80 
-20 

100 
100 
0 

80 
57.5 
-28 

95 
45 
-52 

96 
71 
-25 

100 
100 

0 

100 
55 
-45 

84 
68 
-19 

100 
62.5 
-37 

50 
25 
-50 

F5 
BL 
FL 
PC% 

93 
81 
-13 

36 
26 
-26 

100 
95 
-5 

100 
100 
0 

100 
67.5 
-32 

75 
51.2 
-31 

93 
78 
-15 

100 
100 

0 

75 
50 
-33 

96 
88 
-8 

100 
75 
-25 

50 
25 
-50 

rhGH 
and  EX 

F6 
BL 
FL 
PC% 

96 
93 
-3 

36 
43 
19 

100 
100 
0 

100 
100 
0 

100 
100 
0 

90 
90 
0 

94 
88 
-6 

100 
100 

0 

85 
65 
-23 

92 
88 
-4 

100 
100 

0 

50 
75 
50 

F7 
BL 
FL 
PC% 

96 
91 
-6 

49 
42 
-15 

100 
100 
0 

100 
100 
0 

100 
100 
0 

100 
75 
-25 

92 
88 
-4 

100 
100 

0 

75 
65 
-13 

92 
88 
-4 

100 
100 

0 

100 
75 
-25 

F8 
BL 
FL 
PC% 

93 
92 

-0.6 

36 
36 

-0.8 

95 
100 
5 

100 
100 
0 

100 
100 
0 

88 
95 
9 

91 
95 
4 

100 
100 

0 

80 
65 
-18 

88 
80 
-9 

100 
100 

0 

50 
50 
0 
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Only EX 

F9 
BL 
FL 
PC% 

91 
90 

-0.1 

35 
36 
1.2 

100 
85 
-15 

100 
100 
0 

100 
100 
0 

70 
85 
21 

89 
93 
4.2 

100 
100 
0 

65 
80 
23 

92 
92 
0 

100 
100 

0 

50 
50 
0 

F10 
BL 
FL 
PC% 

93 
95 
3 

36 
38 
5 

100 
100 
0 

100 
100 
0 

60 
100 
66 

100 
85 
-15 

94 
88 
-7 

100 
100 
0 

75 
87 
16 

88 
92 
5 

100 
100 

0 

50 
50 
0 

Normal 

rhGH 
and EX F11 

BL 
FL 
PC% 

92 
91 

-0.4 

34 
34 
0 

100 
100 
0 

100 
100 
0 

100 
100 
0 

70 
65 
-7 

92 
86 
-6 

100 
100 
0 

90 
87 
-4 

80 
84 
5 

100 
100 

0 

50 
50 
0 

Only rhGH F12 
BL 
FL 
PC% 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

Neither 
rhGH nor 

EX 

F13 
BL 
FL 
PC% 

89 
87 
-2 

35 
34 
-2 

100 
100 
0 

100 
100 
0 

60 
100 
67 

60 
45 
-25 

68 
32 
-54 

100 
100 
0 

100 
80 
-20 

76 
84 
11 

100 
88 
-13 

50 
50 
0 

F14 
BL 
FL 
PC% 

65 
57 
-12 

28 
27 
-4 

75 
85 
13 

100 
100 
0 

60 
60 
0 

15 
30 

100 

93 
93 
0 

100 
100 
0 

55 
65 
18 

56 
36 
-35 

63 
25 
-60 

50 
50 
0 

 

BL: baseline; FL: follow up; PC%: percentage change; Total-PC: total physical component; P.F: Physical function; R.P: Role limitations due to physical health; G.H; 
General health; Total MC:  total mental component; R.E: Role limitations due to emotional problems; E/F: energy/fatigue; E.W.B: Emotional wellbeing; S.F: social 
functioning 
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8.6.3.9 Association between change in growth, musculoskeletal parameters, 
metabolic, and quality of life in the first time assessment group 

There was a significant positive correlation between percentage change in height and changes in 

TB parameters (BMC, BMD, BA, LM, FM) in all groups, but not in LS site parameters. However, 

the change in height showed no correlation with the changes in bone structure and geometry 

(pQCT) (all p>0.1).  

There was a positive correlation between percentage change in LM and total density (vBMD) only 

in GHD who received rhGH alone or in  combination with EX (r=0.8, p=0.01), Figure 8-15. 

No correlations were found between percentage change in height, percentage change in bone 

density parameters at both sites and the change in parameters of bone turnover among both groups. 

Also, changes in bone biomarkers do not correlate with changes in volumetric bone density and 

geometric structures. 
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Figure  8-15 Scatterplot of the correlation between percentages changes in lean mass and 
tibia total density in those with GHD who received rhGH alone or in combination with 
exercise 
 

r=0.8, p=0.01 
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8.6.4 Retesting group 

8.6.4.1 The anthropometric characteristics from baseline to follow up 

As was illustrated in Figure 8- 3, five of the nineteen who had completed the study were 

adolescents with CO-GHD at time of retesting. All five patients (two-IGHD: three- MPHD) 

received rhGH during childhood with median duration of 5.0 yrs (2.9, 7.8) and ceased rhGH 

treatment at final height to re-test their GH status at age 16.6yrs (15.2, 16.9). The median duration 

between off rhGH and retesting is 0.6 yrs (0.2, 0.7). All patients underwent ITT; of those, 4/5 were 

reconfirmed to have persistent GHD (GH peak <5mg/l), and three of them recommenced adult 

rhGH (adult dose: 0.2-0.5mg/d). According to randomisation, 3/5 were also allocated to exercise 

and 2/5 acted as controls (Figure 8-16). Clinical and demographic characteristics of these patients 

are shown in Table 8-10. 
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Figure  8-16 Flow chart of the retesting group. 
rhGH: recombinant human growth hormone; EX: exercise 
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Table  8-10 Clinical and demographic characteristics of the retesting group 
 

 

Age 
at 

baseline 

GHD-type 
(aetiology) 

Duration of 
rhGH (yrs) 

Period off 
rhGH 

GH 
peak on 
retesting 

(µg/l) 

Re-
start- 
rhGH 

Randomisation 
EX (%) 

Follow 
up 

period 
(yr) 

Duration 
Intervention 

EX/rhGH 
(yr) 

Habitual 
P.A 

hrs/W 

Co- morbidities 
/Medication 

*R1 16.6 IGHD 
(Idiopathic) 5.0 0.6 3.8 - Y(16) 1.0 1.0 

5 
walking 
machine 

Celiac disease/on 
Vitamin D 

supplementation 

R2 16.5 MPHD 
(Oncology) 2.9 0.7 3.2 Y Y(20) 1.5 0.5 - Thyroxine- tegretol-

clobazam 

R3 15.2 MPHD 
(Oncology) 7.8 0.2 0.8 Y C 1.4 0.7 - Desmopressin 

R4 16.9 MPHD 
(Oncology) 6.3 0.7 0.2 Y C 1.1 0.6 - Thyroxine-

testosterone 

R5 16.6 

IGHD 
(Ectopic 
posterior 
pituitary) 

4.3 0.6 10.2 - Y(83) 0.5 0.5 - - 

Median 
(range)  

16.6 
(15.2, 16.9) - 5.0 

(2.9, 7.8) 
0.6 

(0.2, 0.7) - - 26% 
(16, 83) 

1.1 
(0.5, 1.5) 

0.6 
(0.5, 1.0) - - 

 

* R stands for retesting group 
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8.6.4.2 Densitometry changes 

All the subjects of the retesting group had steady bone density parameters with no obvious changes 

from baseline to follow up and all had a value of TB/LS BMD between +2 and −2SD of normal 

mean, none was below -2 SD, Figure 8-17. 

From Figure 8-18, (patient ID: R3), who had persistent GHD and was on only rhGH, showed the 

highest gain in TB-BMD/BMC (PC%: 3.8 %, 5.2%, respectively). On the other hand, (patient ID: 

R1), who had persistent GHD with only EX and poor compliance rate (16%), showed the highest 

gain in LS-BMC (PC%; 12%).  

The individual data of TB and LS parameters are shown in Table 8-11 

 

 

 

Figure  8-17 Individual data of total body and lumber spine BMC/BMD SDS from baseline to 
follow up in the retesting group. 
 

Orange dot = R1: Persistent GHD (Only EX)  

Green dot = R2: Persistent GHD (rhGH and EX) 

Red dots =R3, R4: Persistent GHD (Only rhGH) 

Black dot = R5: GH-sufficient (Only EX) 
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Figure  8-18 Percentage changes in TB-BMD, BMC, and bone area (A), LS-BMD, BMC, and 
BMAD from baseline to follow up of the retesting group. 
 

1: Persistent GHD (Only EX); 2: Persistent GHD (rhGH and EX); 3: Persistent GHD (Only rhGH; 4: 
Persistent GHD (Only rhGH); 5: GH-sufficient (Only EX). 
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Table  8-11 Total body and lumber spine DXA bone density parameters at baseline, follow up 
and percentage changes of the retesting group 
 

 

Retesting group 
n=5 

 Time R1 R2 R3 R4 R5 

TB 

TB-BMD 
(g/cm2) 

BL 
FL 
PC% 

0.98 
1.007 
2.3 

1.23 
1.267 
3.0 

1.079 
1.12 
3.8 

1.012 
1.028 
1.6 

1.08 
1.097 
1.6 

TB-BMC 
(g) 

BL 
FL 
PC% 

1992.3 
2047.5 

2.8 

3051.0 
3050.4 

0.0 

2552.1 
2685 
5.2 

2004.9 
2012.9 

0.4 

2162.8 
2121.5 

-1.9 

TB-BA 
(cm2) 

BL 
FL 
PC% 

2025 
2033 
0.4 

2481 
2408 
-2.9 

2366 
2395 
1.2 

1982 
1958 
-1.2 

2001 
1934 
-3.3 

TB-BMC 
for BA SDS 

BL 
FL 
PC% 

-0.5 
-0.4 
-20 

0.6 
0.8 
33 

0.2 
0.0 

-100 

-0.3 
-0.2 
-33 

0.1 
0.2 
100 

LS 

LS-BMD 
(g/cm2) 

BL 
FL 
PC% 

0.905 
0.975 
7.7 

1.209 
1.196 
-1.1 

1.184 
1.193 

0.8 

1.149 
1.123 
-2.3 

1.114 
1.092 
-2.0 

LS-BMC 
(g) 

BL 
FL 
PC% 

32.1 
36.13 
12.2 

43.32 
43.79 
1.1 

57.31 
59.04 

3.0 

44.22 
44.94 
1.6 

44.67 
45.96 
2.9 

LS-BA 
(cm2) 

BL 
FL 
PC% 

35.45 
37.06 
4.5 

35.82 
36.62 
2.2 

48.4 
34.91 
-27.9 

38.48 
40.01 
4.0 

40.11 
42.07 
4.9 

LS-BMC 
for BA SDS 

BL 
FL 
PC% 

-0.7 
-0.5 
-28 

1.2 
1.0 
-16 

0.3 
0.3 
0 

0.6 
0.0 

-100 

-0.1 
-0.3 
200 

LS-BMAD 
(g/cm3) 

BL 
FL 
PC% 

0.325 
0.336 
3.4 

0.354 
0.350 
-1.1 

0.351 
0.353 

0.8 

0.348 
0.341 
-2.3 

0.369 
0.357 
-3.2 

LS-BMAD 
SDS 

BL 
FL 
PC% 

-1.5 
-1.3 

-12.8 

0.6 
0.6 

-10.9 

1.0 
0.6 

-40.0 

-0.5 
-0.5 
17.5 

-0.5 
-0.8 
35.2 

 

R1: Persistent GHD (Only EX)  

R2: Persistent GHD (rhGH and EX) 

R3: Persistent GHD (Only rhGH) 

R4: Persistent GHD (Only rhGH) 

R5: GH-sufficient (Only EX) 
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8.6.4.3 Changes in body composition measured by DXA 

LM did not obviously change from baseline to follow up in the majority of the group. The patient 

ID (R4) who had persistent GHD and restarted rhGH showed the highest gain in LM from baseline 

to follow up compared to the others (PC% =12.7%), when the lowest percentage change in LM 

(PC%= 0.7%) was recorded in (patient ID: R1) with persistent GHD, but only EX (compliance 

16%). FM was not changed in the majority of the subjects with only (patient ID: R5, GH sufficient 

on only EX) having the highest loss in FM (PC%= -11.4%), from 24.7 kg at baseline to 21.8 kg on 

follow up. 

The changes in A/G ratios were various among the group as seen in Figures 8-19, 8-20. 

 

The individual data of body composition parameters at baseline and follow up are shown in Table 

8-12. 

 

 
 

 

 

 

 

 

 

Figure  8-19. Individual data of body composition from baseline to follow up in the 
retesting group. 
 
Orange dot = R1: Persistent GHD (Only EX)  

Green dot = R2: Persistent GHD (rhGH and EX) 

Red dots =R3, R4: Persistent GHD (Only rhGH) 

Black dot = R5: GH-sufficient (Only EX) 
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Figure  8-20 Percentage changes in LM, FM and A/G ratio from baseline to follow up of the 
retesting group. 
1: Persistent GHD (Only EX); 2: Persistent GHD (rhGH and EX); 3: Persistent GHD (Only rhGH; 4: 
Persistent GHD (Only rhGH); 5: GH-sufficient (Only EX). 
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Table  8-12 Individual data of DXA-body composition parameters at baseline, follow up and 
percentage changes of the retesting group. 
 

 

Retesting 
n=5 

 Time R1 R2 R3 R4 R5 

LM 

LM 
(kg) 

BL 
FL 
PC% 

39.0 
39.3 
0.7 

47..1 
48.8 
3.5 

50.2 
51.6 
2.8 

36.5 
41.2 
12.7 

38.9 
39.4 
1.5 

LM for 
height centile 

BL 
FL 
PC% 

93.0 
93.0 
0.0 

85.0 
85.0 
0.0 

21.0 
31.0 
47.6 

47 
85 

80.9 

54 
94 

74.1 

FM 

FM 
(kg) 

BL 
FL 
PC% 

28.1 
29.3 
4.0 

20.1 
20.0 
-0.4 

12.1 
12.5 
3.0 

13.4 
14.2 
5.8 

24.7 
21.8 
-11.4 

FM for 
height  SDS 

BL 
FL 
PC% 

2.8 
3.0 
- 

1.2 
1.2 
- 

0.5 
0.5 
- 

1.0 
1.1 
- 

1.1 
0.6 
- 

A/G ratio 
BL 
FL 
PC% 

0.93 
0.93 
-0.3 

1.14 
1.17 
3.3 

1.11 
1.14 
2.8 

1.18 
1.34 
13.9 

1.03 
0.99 
-4.1 

 

BL: baseline; FL: follow up; PC%: percentage change; LM: lean mass; FM: fat mass; A/G: 
Android/Gynoid fat ratio 
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8.6.4.4 Tibia bone and muscle parameters 

The patient ID (R1) has no pQCT at baseline so she was excluded. Of the remaining four patients, 

there was variation but no remarkable changes concerning bone structure and geometry. Cortical 

thickness, periosteal circumference and endoeosteal circumference were somewhat various in the 

group (Table 8-13, Figure 8-20). Similarly, there were no apparent changes in the parameters of 

tibia bone density  

Muscle CSA increased in patient IDs: R2, R4, and R5, with patient ID: R4 having the highest 

muscle CSA percentage change, gaining 21% from his baseline value. Conversely, patient ID: R3 

lost -2.6 % of his muscle CSA from baseline to follow up, but had the highest gaining in fat CSA 

from baseline to follow up (1269.25 mm2 to 1615.00 mm2, PC% =  27.2%). Fat CSA was only 

decreased in patient ID: R2 from 2168.75 mm2 to 1815.00 mm2, PC% = -16.3%. 

. 

  

 

Figure  8-21 Percentage changes in tibia pQCT parameters from baseline to follow up of the 
retesting group. 
1: Persistent GHD (Only EX); 2: Persistent GHD (rhGH and EX); 3: Persistent GHD (Only rhGH; 4: 
Persistent GHD (Only rhGH); 5: GH-sufficient (Only EX) 
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Table  8-13 Tibia pQCT parameters at baseline, follow up and percentage changes of the 
retesting group 
 

Retesting 
n=5 

 Time R1 R2 R3 R4 R5 

CTh -38% 
(mm) 

BL 
FL 
PC% 

- 
3.7 
- 

5.9 
5.8 
-2.5 

3.9 
4.6 
18.9 

3.9 
3.8 
-4.1 

4.3 
4.3 
0.6 

CTh -38% 
Height-z score 

BL 
FL 
PC% 

- 
-0.8 

- 

1.0 
0.9 
- 

-0.7 
-0.2 

- 

-0.1 
-0.2 

- 

1.3 
0.5 
- 

PC -38% 
(mm) 

BL 
FL 
PC% 

- 
65.7 

- 

74.5 
82.2 
10.4 

77.5 
70.8 
-8.6 

66.7 
66.6 
-0.2 

64.2 
64.8 
1.0 

PC -38% 
Height-z score 

BL 
FL 
PC% 

- 
-0.5 

- 

0.2 
1.6 
- 

-0.6 
-2.1 

- 

-0.8 
-0.9 

- 

0.3 
-0.7 

- 

EC -38% 
(mm) 

BL 
FL 
PC% 

- 
- 
- 

37.6 
46.2 
23.0 

53.2 
41.7 
-21.2 

41.7 
42.6 
2.1 

37.3 
37.8 
1.3 

PC -38% 
Height-z score 

BL 
FL 
PC% 

- 
0.2 
- 

-1.8 
0.0 
- 

1.0 
-1.3 

- 

-0.5 
-0.3 

- 

-0.6 
-0.9 

- 

TvBMD  4 % 
(mg/cm3) 

BL 
FL 
PC% 

- 
264.6 

- 

351.1 
362.9 
3.4 

227.8 
243.9 
7.0 

294.9 
293.6 
-0.4 

308.8 
314.1 

1.7 

TrvBMD 4% 
(mg/cm3) 

BL 
FL 
PC% 

- 
210.7 

- 

268.5 
269.0 
0.2 

193.6 
204.5 
5.6 

230.8 
243.5 
5.5 

252.1 
253.6 

0.6 

TrvBMD 4% 
Age-z score 

BL 
FL 
PC% 

- 
-0.4 

- 

0.7 
0.4 
- 

-1.2 
-1.2 

- 

-0.4 
-0.4 

- 

0.7 
0.8 
- 

CvBMD 38% 
(mg/cm3) 

BL 
FL 
PC% 

- 
1154.2 

- 

1154.5 
1087.6 

-5.8 

1158.0 
1176.0 

1.6 

1123.68 
1156.95 

3.0 

1171.0 
1171.3 

0.0 

CvBMD 38% 
Age-z score 

BL 
FL 
PC% 

- 
0.3 
- 

1.7 
1.7 
- 

2.2 
2.3 
- 

0.5 
1.0 
- 

0.6 
0.7 
- 

SSI 38% 
BL 
FL 
PC% 

- 
1190.4 

- 

1558.0 
1524.5 

-2.2 

1263.9 
1549.9 

22.6 

1145.4 
1133.1 

1.1 

1193.8 
1202.4 

0.7 

Cortical CSA 66% 
(mm2) 

BL 
FL 
PC% 

- 
288.0 

- 

445.2 
419.0 
-5.0 

303.2 
316.5 
4.4 

267.5 
275.5 
3.0 

304.8 
309.0 

1.4 

Muscle CSA 66% 
(mm2) 

BL 
FL 
PC% 

- 
5107.0 

- 

8176.2 
8418.0 

3.0 

6117.0 
5939.8 

-2.6 

5220.8 
6310.0 

20.9 

5247.2 
5448.8 

3.8 

Fat CSA 66% 
(mm2) 

BL 
FL 
PC% 

- 
3543.0 

- 

2168.8 
1815.0 
-16.3 

1269.2 
1615.0 

27.2 

2755.5 
2781.0 

0.9 

2817.2 
2836.8 

0.7 

BL: baseline; FL: follow up; PC%: percentage change; CTh: Cortical thickness; PC: Periosteal 
circumference; EC:  Endosteal circumference; TvBMD: Total density; TrvBMD: Trabecular density; 
CvBMD: Cortical density; SSI: Strength strain index; 
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8.6.4.5 Changes in bone profiles and metabolism  

Ca, Po4 and Mg levels were within the reference range and not obviously changed from baseline to 

follow up in the majority of subjects. PTH levels were slightly decreased with increased vit-D in 

patient IDs: R1, R2 and R3 during the study period. Bone metabolic biomarkers were various 

among the group, Table 8-14.  

 

8.6.4.6 Changes in metabolic profiles 

From Table 8-15, a rise in total cholesterol and LDL was observed in (patient IDs R2, R3, R4), 

who were on rhGH during the study period, particularly (patient ID: R3) showed higher level of 

total cholesterol on follow up compared to baseline value.  

FFA levels decreased from baseline values in all patients except (patient ID: R5) who showed a 

22.9% higher FFA levels from baseline to follow up. 

 

Similarly, leptin levels rose from baseline to follow up in those who were on rhGH, when (patient 

ID: R1) who had GHD but did not receive rhGH yet showed a lower leptin level nearly half of the 

baseline value. Adiponectin levels were steady in (patient IDs: R1, R2, R3), but decreased in 

(patient IDs: R4 and R5), unlike resistin which was mostly decreased in (patient ID: R1) but 

increased in patient ID: R5 during the study period.  

 

With regard to glucose homeostasis parameters, (patient ID: R1) showed the highest decrease in 

both fasting insulin and HOMA IR from baseline to follow up compared to the rest of the group. 

Of the remaining, fasting insulin and HOMA-IR reduced in both (patient IDs: R2 and R5), but 

increased in (patient ID: R4) the values of baseline to follow up. 
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Table  8-14 Bone profiles and mineralisation at baseline, follow up and percentage changes 
of the retesting group 
 

  

Retesting 
(n=5) 

Time R1 R2 R3 R4 R5 

Bone profiles 

Ca 
mmol/l 

 

 
BL 
FL 
PC% 

 
2.3 
2.3 
0.9 

 
2.5 
2.5 
-0.8 

 
2.4 
2.4 
-1.2 

 
2.5 
2.4 
-4.8 

 
2.3 
2.3 
0.0 

Po4 
mmol/l 

BL 
FL 
PC% 

0.9 
1.2 

34.8 

0.85 
1.02 
20.0 

0.98 
1.18 
20.4 

1.0 
0.9 

-15.9 

0.9 
0.9 
1.0 

Mg 
mmol/l 

BL 
FL 
PC% 

0.8 
0.9 
7.2 

0.9 
0.9 
-1.1 

0.9 
0.8 
-3.3 

0.8 
0.8 
-4.7 

0.7 
0.7 
-5.5 

PTH 
pmol/l 

BL 
FL 
PC% 

6.4 
5.1 

-19.5 

4.3 
3.0 

-30.2 

3.4 
3.7 
8.5 

6.7 
3.9 

-42.1 

9.2 
7.6 

-17.4 

25OH vit-D 
(nmol/l) 

BL 
FL 
PC% 

55.0 
59.0 
8.5 

37.0 
87.0 

135.1 

32.0 
36.0 
13.4 

33.0 
30.7 
-7.0 

23.0 
22.0 
-4.3 

Bone biomarkers 

 
BAP 
μg/l 

BL 
FL 
PC% 

11.7 
13.1 
11.8 

33.6 
23.1 
-31.1 

23.7 
44.8 
88.4 

81.1 
56.7 
-26.4 

15.6 
24.4 
55.7 

OC 
ng/ml 

BL 
FL 
PC% 

25.4 
18.9 
-25.5 

33.2 
26.2 
-21.1 

34.1 
41.7 
22.2 

35.0 
21.3 
-39.2 

14.9 
15.3 
2.7 

CTX 
ng/ml 

BL 
FL 
PC% 

1.5 
0.3 

-74.7 

1.0 
3.5 

247.3 

0.6 
1.2 
85.1 

1.6 
1.4 

-13.1 

1.9 
1.7 

-10.0 

 

BL: baseline; FL: follow up; PC%: percentage change; Ca: calcium; PO4: phosphate; Mg: 
magnisum; PTH: parathyroid hormone; 25 (OH) Vit-D: 25 hydroxy vitamin D; BAP: bone-specific 
alkaline phosphatase; OC: osteocalcine; CTX: cross linked C-telopeptide of type I collagen 
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Table  8-15 Metabolic profiles, adipokines and glucose homeostasis parameters at baseline, 
follow up and percentage changes of the retesting group 
 

  

Retesting 
(n=5) 

Time R1 R2 R3 R4 R5 

Lipids profiles 

Total 
cholesterol 

mmol/L 

BL 
FL 
PC% 

3.4 
3.3 
-5.2 

4.7 
5.4 
14.6 

3.3 
4.54 
37.6 

3.9 
4.8 

22.1 

4.1 
3.6 

-12.2 

HDL 
mmol/L 

BL 
FL 
PC% 

1.0 
0.9 

-15.9 

1.2 
0.9 

-25.6 

0.87 
1.0 
14.9 

1.21 
1.1 
-9.1 

1.3 
1.3 
0.0 

LDL 
mmol/L 

 

BL 
FL 
PC% 

2.0 
2.1 
5.0 

2.9 
3.6 
23.3 

1.9 
3.11 
57.9 

2.1 
2.8 

30.2 

2.5 
2 

-20.0 

TG 
mmol/L 

BL 
FL 
PC% 

1.1 
0.6 

-45.5 

1.2 
1.9 
49.6 

1.0 
0.9 
-6.9 

1.2 
- 
- 

0.7 
0.6 

-14.3 

FFA 
mmol/L 

BL 
FL 
PC% 

0.3 
0.2 

-21.2 

0.3 
0.2 

-16.7 

0.4 
0.3 

-18.6 

0.44 
- 
- 

0.3 
0.4 

22.9 

Adipokines 

Leptin 
ng/ml 

 

BL 
FL 
PC% 

37.4 
15.4 
-58.8 

11.8 
13.2 
11.0 

2.0 
3.2 
55.9 

8.2 
11.4 
39.1 

24.6 
24.6 
-0.2 

Adiponectin 
ng/l 

 

BL 
FL 
PC% 

8.0 
7.8 
-2.6 

3.3 
3.2 
-0.9 

2.8 
2.8 
-1.0 

1.7 
1.0 

-40.4 

6.2 
3.2 

-47.0 

Resistin 
ng/ml 

BL 
FL 
PC% 

22.2 
8.2 

-63.2 

3.8 
2.5 

-32.9 

3.9 
3.9 
0.2 

2.9 
3.0 
5.8 

6.7 
8.3 

22.9 

Glucose metabolism 

F-Glucose 
mmol/L 

BL 
FL 
PC% 

4.2 
3.8 
-9.5 

4.5 
4.8 
6.7 

4.2 
4.8 
14.3 

5.6 
4.6 

-17.9 

4.4 
5.1 

15.9 

F-Insulin 
uIU/ml 

BL 
FL 
PC% 

45.8 
20.2 
-55.9 

32.8 
22.2 
-32.2 

10.2 
11.1 
8.8 

- 
44.9 

- 

33.1 
21.9 
-33.8 

HOMA-IR 
BL 
FL 
PC% 

8.5 
3.4 

-60.1 

6.6 
4.7 

-27.6 

1.9 
2.4 
24.4 

- 
9.2 
- 

6.5 
5.0 

-23.3 

  

BL: baseline; FL: follow up; PC%: percentage change; LDL: low density lipoprotein cholesterol; 
HDL: high density lipoprotein cholesterol; TG; triglyceride; FFA; free fatty acid; F- glucose: fasting 
glucose; F- insulin: fasting insulin; HOMA-IR:homeostasis model assessment insulin resistance 
index 
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8.6.4.7 Changes in quality of life measures (AGHDA) 

Looking for individual AGHDA scores in Figure 8-22, Table 8-16, all patients except one 

(patient’s ID: R2) had poorer  scores at follow-up compared to their baseline scores regardless of 

whether they were on rhGH or not. The patient’s ID: R2 (persistent GHD on combined rhGH+EX) 

was the only patient who achieved improvement in his total QoL scores from baseline to follow up 

by - 8 points. Unlike, patient’s ID: R1 (persistent GHD with only EX) and patient’s ID: R5 (GH 

sufficient and only EX) who had reported poorer QOL scores on follow up (+6 points, +5 points, 

respectively). From aspects of AGHDA, the scales of memory and tiredness are mostly affected in 

our subjects. The patient’s ID R1 and R5, reported reduced memory and concentration (+3 points, 

+4 points: respectively) from their baseline levels, when patient’s ID R3 (persistent GHD on only 

rhGH) and patient’s ID: R5 (GH sufficient and only EX) showed poorer scores on the scale of 

tiredness from baseline (+3points each).  

 

 

 
 

 
 
 
 
 

Figure  8-22 Individual QoL-AGHDA scores at baseline and follow up in the 
retesting group. 
(Higher scores reflect poorer QoL) 
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Table  8-16 AGHDA scores of quality of life assessment at baseline, follow up and absolute 
changes of the retesting group. 
 (Higher scores reflect poorer QoL) 

Subscale 

Retesting 
(n=5) 

Time R1 R2 R3 R4 R5 

Total scores (25) 
BL    
FL     
AC 

8 
14 
+6 

15 
7 
-8 

7 
9 

+2 

2 
3 

+1 

7 
12 
+5 

Memory and 
concentration(6) 

BL 
FL 
AC 

2 
5 

+3 

5 
3 
-2 

1 
0 
-1 

0 
0 
0 

0 
4 

+4 

Tiredness(7) 
BL 
FL 
AC 

1 
1 
0 

7 
4 
-3 

1 
4 

+3 

0 
0 
0 

3 
6 

+3 

Tenseness(3) 
BL 
FL 
AC 

1 
2 

+1 

0 
0 
0 

2 
2 
0 

0 
0 
0 

2 
1 
-1 

Social isolation(5) 
BL 
FL 
AC 

3 
3 
0 

1 
0 
-1 

3 
3 
0 

2 
2 
0 

2 
0 
-2 

Self-confidence(4) 
BL 
FL 
AC 

1 
3 

+2 

2 
0 
-2 

0 
0 
0 

0 
1 

+1 

0 
1 

+1 

 

BL: baseline; FL: follow up; AC: absolute change 

 

8.6.4.8 Association between change in musculoskeletal parameters, 
metabolic, and quality of life in the retesting group 

In the retesting group, no significant correlations were found between changes in bone metabolism 

parameters and changes in bone structure. There were also no statistically significant correlations 

between percentage changes of bone, body composition and metabolism parameters observed 

either with being treated with rhGH or the exercise regimen.
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8.7 Discussion  

There is increasing evidence that WBE, as simple as a jumping regimen, represents a very 

important mechanical positive influence on bone mass and bone size in growing children and 

adolescents (281,286). Recently, WBE has become one of the strategies for prevention and 

treatment of osteoporosis in several conditions: menopausal; diabetes, cancer and other metabolic 

diseases (507-510). However, the interaction between WBE, GHD and rhGH has not been studied 

before, with the growing concern of the cost effectiveness of rhGH on health aspects of adolescents 

with CO-GHD during transition of adolescents with CO-GHD after attaining final height.  

Numerous previous studies of rhGH therapy in adolescents with persistent GHD beyond final 

height  reported  a net benefit change in LS-BMD with rhGH about  3 to 6 % after one (227) or two 

years (230), which is similar in magnitude to the gain in LS- BMD (4.5%) observed  in the jumping 

exercise at 7-months (286). This is supporting the potential clinical relevance of suggesting WBE 

as an alternative or complementary strategy that may enhance bone health. Therefore, in this pilot 

study we have investigated the short term effects of either/or combined rhGH with WBE exercise 

on children and adolescents with CO-GHD.  

Since we hypothesized WBE would enhance bone health parameters, we were not able to show 

definite efficacy of WBE in bone or any other health aspect parameter of GHD for several reasons. 

Disappointingly poor compliance to the exercise program seems to be important for the lack of 

impact on the primary end points. In addition to poor compliance rate, the small sample size made 

it difficult to establish any significant differences between groups. Additionally, the short duration 

of exercise intervention particular combined with rhGH could be an issue due to short term bone 

changes of rhGH (remodelling) (44). The available data suggest, however, that the WBE could 

make a significant contribution towards marked changes in body composition (increase LM, 

decrease FM) of patients with GHD but in combination with rhGH.  

Additionally in this study, our ambition was not to only test WBE, rather, this study was designed 

to examine the feasibility of using WBE in a clinical setting and to generate empirical evidence, on 

which hypotheses can be based in future, large-scale studies. Our study revealed that the concept of 

exercise intervention as a replacement or complement intervention was not applicable at home; 

particular as it was more challenging for the parents, who needed to have a an active role with this 

intervention. To translate this program to a real-world setting, we would suggest an exercise 

intervention for these children either within a hospital setting or an alternative optimal option 

would be within school-based interventions (511).  

 

On the effect of rhGH in our studied groups, as expected, in the rhGH treated first time assessment 

group, TB-BMC gain during rhGH was significantly lower for the gain to bone area and LM. 

Numerous well-controlled studies demonstrate homogenous results of initial reduction of bone 

density after 6-12 months of starting therapy with rhGH of children with GHD; when therapy 

continued, BMD increase appeared after 18 months and was sustained at 24 months (235,413). It 
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was suggested that reduction in bone density results from increase in bone modelling and 

remodelling together with the catch-up growth during the first year of rhGH therapy in GHD 

children (235), and  rhGH causes a maximal effect on bone resorption after 3 months and on bone 

formation after 6 months (44). In another setting, it was reported that the growth in bone size 

results in relatively under mineralized bone and increased fracture risk in the pubertal years 

(250,512). In line with the lack of significant changes in overall rate of bone turnover, no changes 

were observed in TB-LS bone BMD/BMC in our adolescents group.  

 In terms of bone morphology and structure in response to rhGH, there is evidence that GH 

stimulates cortical bone apposition leading to an increase in bone mass through increasing cortical 

thickness and density; with limited or no influence on GH on trabecular bone (163). In contrast to 

the literature (235), and contrary to our initial hypothesis, we found a normal cortical density 

before the start of therapy, which decreased on treatment without obvious changes in trabecular 

density.  

Our data results also confirm that rhGH significantly changes body composition with a significant 

gain in LM and decreased FM in those treated with rhGH compared to those who were not treated 

among the first time assessment group (233,513). In contrast, the discontinuation and 

recommencement effects of rhGH on body composition of the retesting group were not evident in 

our data, which was assumed to be due to the short duration off treatment and small numbers. 

However, a similar observation was reported previously from larger studies over a longer period up 

to two years showing no differences in body composition from time of withdrawal of rhGH at final 

height and two years, whether or not rhGH treated (232). 

 

Besides its beneficial effects on bone and body compositions, rhGH replacement is also suggested 

to alleviate at least some of the aspects of metabolic profile lipids, adipokines and glucose 

homeostasis. Total and HDL cholesterol were comparable between rhGH- and non rhGH- GHD of 

the first time assessment and retesting subjects and that did not change significantly over the period 

of follow up, similar to what was previously reported (514). Unlike other studies which showed 

significant favourable changes in lipids profiles over one year of rhGH therapy in children 

(261,441,450) and adolescents with CO-GHD (442). 

 

The action of GH on adipose tissue is documented by its effects on adipokines secreted by 

adipocytes such as leptin, adiponectin, and resistin which are known to play an important role in 

glucose homeostasis as well as bone metabolism (144). However, there were insignificant 

reductions in the levels of leptin in the course of rhGH treatment which have been associated with 

decreases in FM in those with GHD treated with rhGH.  These results were comparable to those 

previously reported in children (440,450,451,463) and adults with CO-GHD (515). Similarly, it is 

well documented that GH has antagonistic effects on insulin, and increased insulin resistance has 

been reported as a possible negative effect of GH treatment (444). Relatively few studies have 

investigated insulin sensitivity in children with GHD during rhGH replacement therapy, with 
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inconsistent findings (450,462,516). In subjects treated with rhGH, there is a slight reduction in 

insulin sensitivity, as measured by HOMA-IR, which was related with decreased insulin levels. 

However, it is well documented that rhGH induced insulin resistance is counteracted by an increase 

in LM and a decrease in FM (138). In our retesting cohort, those with persistent GHD were more 

sensitive to insulin than those with normal growth hormone secretion. From the literature, rhGH 

induced insulin resistance reported in GHD adults (517) was not observed in adolescents (518) .  

 

The beneficial effects of rhGH replacement on QoL of individuals with GHD are less conclusive. 

Studies have showed that rhGH treated GHD showed greater self-esteem compared to short stature 

and normal stature children (482,496). However, our data, in keeping with other (492,519) , did not 

show any different in QoL measures of subjects receiving rhGH therapy. However, a slightly 

diminished in the aspect of emotional wellbeing was observed in some of subjects receiving hGH 

in our group. This finding could be explained, in part, by the emotional distress  of repeated 

injections in those children and parents,  similar to what was previously reported in children and 

families with type 1diabetes (520). 

 

With regarding our retesting group, the majority of our subjects’ demonstrated rather poorer QoL 

AGHDA scores on follow up compared to baseline. Reviewing the literature,  it was previously 

reported that there is an inverse relationship between QoL and duration of off  rhGH therapy with a 

longer period off rhGH associated with a poorer QoL (264); whereas, re-instituting rhGH treatment 

has a significant positive change in health related QoL aspects (242,264). A study reported that 

rhGH replacement therapy has a beneficial effect on attentional performance in adult patients with 

GHD when treated for at least 3 months (521). Some studies indicate less improvement in QoL of 

patients with CO-GHD than those with adult-onset disease (247) even after long term rhGH 

therapy (4-10 years) (522). 

 

The current study had several limitations. The very small sample size was, in our opinion, too 

limited to explore the effects of weight bearing exercise. It does demonstrate very well the 

challenges of getting good compliance in a weight bearing intervention at home, and this would be 

a better significant finding for the significance of the first pilot study. Another limitation is that we 

have not measured the habitual physical activity.  
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8.8 Conclusion  

There was insufficient evidence to recommend the use of jumping exercise in the absence of rhGH 

in children and adults with GHD. Our data suggest that jumping exercises may be more beneficial 

when combined with rhGH in these subjects. This requires further large studies to explore the 

interactions between rhGH and exercise training on bone health and body composition in CO-

GHD. In addition, this study underlines the short term beneficial effects of rhGH on not only the 

growth, but also body composition and metabolism of children with CO-GHD. 
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CHAPTER 9 

 

 General Discussion and Future Directions 
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9.1 General Discussion 

The primary object of this thesis was to study bone health and body composition of children and 

adolescents with CO-GHD at the time of initial evaluation and at retesting after withdrawal of 

rhGH therapy at final height. There is currently conflicting evidence in the existing literature that 

CO-GHD may contribute to low bone mass and increase fracture risk in adulthood (227,233,523), 

although the pathophysiology and mechanism of reduced bone mass is not fully explained. Indeed, 

the conflicting data on bone mass in CO-GHD might be affected by many factors such as age at 

onset, gender, height, body composition, gonadal status, the severity of GHD, and assessment 

methods. This thesis comprised several hypotheses which were explored in six studies with 

different groups of subjects with CO-GHD.  

 

In chapter 3, we retrospectively reviewed the management of CO-GHD in Scotland from 2005 to 

2013 after patients reached their final height. Our aims were to assess the incidence of, and to 

determine the predictors of persistent GHD in patients with CO-GHD after retesting at final height.  

Our data showed a substantial proportion (82%) of the retested patients with CO-GHD continue to 

have GHD as adults and most opt for GH therapy as adults. Our data also confirm that there are no 

clear auxological or clinical signs that predict the transiency or the persistence of GHD except for a 

history of organic disease and the presence of two or more additional PHDs, presence of 

hypothalamic-pituitary structural abnormalities and tumour related organic GHD (199,206,368-

371). This study also raises a concern about follow-up of those who no longer have GHD, and 

patients with persistent GHD who opted not to resume adult rhGH therapy. Follow-up studies are 

needed for both of those groups of subjects. Despite the availability of clinical guidelines, there 

was significant variation in clinical practice of the management of CO-GHD between the four 

Scottish centres. The findings of this study suggest that the optimal management of adolescents 

with CO-GHD requires continuous follow-up during transition and effective communication 

between paediatric and adult services. In addition, appropriate re-evaluation during transition 

remains a crucial concept for continuing rhGH therapy in those with persistent CO-GHD. 

 

Bone health and body composition of subjects with CO-GHD was explored in chapter 4. A 

retrospective analysis of DXA results of 21 childhood- treated adolescents with CO-GHD who 

have attained final height between 2005-2013 in the Royal Hospital for Children, Glasgow, 

compared with 21 age, gender and height matched healthy controls. After adjusting for several 

confounders (age, height, bone size and body composition), our results revealed that despite 

childhood rhGH replacement, adolescents with CO-GHD have a bone mass deficit after reaching 

their final height compared with controls.  Our results also suggest that the beneficial effect of 

childhood rhGH therapy on bone compartments is affected by gender. In addition, indicators of the 

time of onset and aetiology of CO-GHD, but not additional pituitary hormone deficiencies, may 

have a larger influence on accrual of bone mass in these patients as those with congenital early 
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onset isolated GHD had lower bone mass that those with late-onset acquired GHD and MPHD. In 

terms of body composition, in consistent with some studies (229,233,236,241,245), CO-GHD 

patients had a significant lower LM for height and higher FM for height compared with controls. 

Our analysis also confirms that LM rather than FM had a stronger positive correlation with BMC 

and BMD at different sites TB/LS of either gender (381,524). However, once adjusted for age, 

height and weight, the data revealed that bone area was the strongest predictor of TB-BMC, 

followed by LM, in both CO-GHD and controls. Although several studies of children and 

adolescents have confirmed that both LM and FM are positively correlated with bone mass 

(525,526), there is a conflict over which has greater influence. In fact, the contribution of FM to 

bone mass has been inconsistent, with positive (527) and negative (528) relationships. Overall, our 

data confirmed that LM is an important factor in maximizing the chances of attaining the highest 

possible bone mass in patients with CO-GHD. 

  

Considering the findings of chapter 4, our aims for chapter 5 were to study bone health and body 

composition of patients with CO-GHD at the time of initial evaluation prior to starting rhGH and 

retesting after withdrawal rhGH, and identifying any factors that may influence bone health in 

these subjects. In addition to DXA scans, we used pQCT scans for studying bone geometry and 

volumetric trabecular and cortical density separately. Muscle function and strength were assessed 

using jumping mechanography. Furthermore, we assessed bone profiles and mineralisation as well 

as biochemical markers of bone metabolism.  Our results reveal that subjects with CO-GHD were 

not different in bone density and body composition parameters as measured by DXA and pQCT 

from those who had normal GH levels at either time points. Nevertheless, two main findings 

emerged from this study.  

Firstly, though the sample size was small, our data clearly indicated declining muscle strength (max 

force) in naive GHD patients, which was proportional to their tibia muscle CSA. This finding is 

consistent with previously studies that reported low muscle strength in adolescents with CO-GHD 

after reaching final height (225,241) and in adulthood (423). 

 It is known that muscle strength is determined by the maximal force generated by fast twitch type 

II muscle fibres (high contractile force, but easy fatigability) (128). There is insufficient evidence 

that GH plays a role in the regulation of muscle fibre composition and induces a shift in muscle 

fibre from fibre type II (glycolytic fast-twitch fibres) to fibre type I (oxidative slow-twitch fibres) 

(128). However, it is unlikely that muscle weakness in GHD can be attributed to a shift in the 

distribution of fibre types, as muscle biopsies studies in adults with CO-GHD failed to identify any 

differences in fibre types compared with healthy controls (529). Therefore, it has been suggested 

that diminished muscle strength in GHD may arise from reduced muscle mass rather than from 

reduced contractile function (128). Therefore, regardless of the underlying mechanisms, it seems 

that reduction of muscle force is an early sign of alteration in musculoskeletal health in subjects 

with CO-GHD which is ultimately likely to play a key role in bone mass deficit in CO-GHD. 
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The second phenomenon to be considered from our analysis is the positive correlation between 

CTX levels and PTH levels time of diagnosis (r = 0.46, p = 0.02) and retesting (r = 0.77, p = 0.02). 

This relationship was supported by other observations of significantly higher CTX levels in naive 

GHD compared with normal, and a positive correlation between CTX levels and the duration of off 

rhGH in the retesting group. It is well known that PTH plays an important role in bone metabolism, 

and its fluctuations in concentration are important in determining its anabolic and catabolic bone 

effects (62,63). Experimental studies have suggested that low pulsatile secretion of PTH may have 

an important effect on bone formation and remodelling (anabolic effect), while continuous 

secretion of PTH may induce bone resorption and bone loss (catabolic effect) (530,531). GH may 

have a regulatory role in modulating PTH circadian rhythm and enhancing PTH anabolic effects, 

although the underlying mechanism remains unexplained (44,165). It has been previously 

described that untreated adults with GHD showed reduction in the sensitivity of PTH target organs 

(kidney and bone), with abnormalities in the PTH circadian pattern resulting in catabolic effects on 

bone metabolism without change in PTH concentration, and in maintaining calcium homeostasis 

(91,435).  To our knowledge, there are no existing studies looking at PTH actions in children and 

adolescents with CO-GHD. Our data therefore suggest that serum PTH may be an important 

determinant of bone health in subjects with CO-GHD, and further studies are warranted.  

 

In chapter 6 we aimed to investigate lipid profiles, glucose homeostasis and adipokine levels, and 

their relationship with bone metabolism markers and body composition in children and adolescents 

with CO-GHD at the time of initial evaluation and at retesting after they reached final height. Our 

data show no differences in lipid, adipokine and glucose homeostasis parameters in patients with 

CO-GHD and those with normal GH levels at both time points, and the majority of these 

parameters were within the normal range. In this study, however, we observed that the timing and 

duration of childhood treatment may influence the outcome of unfavorable lipid profile (total 

cholesterol) in adolescents with CO-GHD at final height. This relationship indicated that those who 

were older when they first started childhood rhGH and had a shorter duration of replacement before 

reaching their final height were more likely to have higher total cholesterol levels at final height 

after withdrawal of rhGH. There was a similar relationship between duration of childhood 

treatment but with HDL-cholesterol levels in adulthood reported previously by a study of the KIMS 

database (Pfizer International Metabolic Database): those who had a longer childhood duration of 

rhGH were likely to have higher HDL-cholesterol levels in adulthood (264). Although the causality 

remains unclear, we anticipated that, in keeping with the observation made from studies of adult 

with GHD (443,461), the favourable lipid profiles outcome of rhGH therapy in CO-GHD required 

an early commitment for long duration of rhGH therapy. 

Our analysis in this study also revealed differences in the relationship between osteocalcin (bone 

formation marker) and leptin among our studied groups: they were positively correlated in the first-

time assessment group but negatively in the retesting group. Although a number of studies have 

examined the relationship between leptin and bone metabolism in various cohorts, the results 
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remain conflicting because of the complexity of the leptin effect on bone with respect to age, 

gender and bone site and compartments (156). It appears that leptin affects bone metabolism either 

positively or negatively, and more research is needed to fully elucidate the role of leptin in the 

regulation of bone metabolism in subjects with CO-GHD. 

 

The link between height, GHD and replacement and QoL has not been clarified to date. Therefore, 

the goal of chapter 7 was to evaluate QoL of children and adolescents with CO-GHD at the time of 

initial evaluation and at retesting after withdrawal of rhGH at final height. In this study, QoL was 

evaluated using the Short Form-36 (SF-36) generic health survey for the first-time assessment 

group and the Adult Growth Hormone Deficiency Assessment (AGHDA) disease-specific 

questionnaire for the retesting group. Our study demonstrated normal ranges of overall QoL aspects 

in children and adolescents with CO-GHD compared with subjects of the same stature but with 

normal GH levels. However, subscale analysis showed higher emotional wellbeing, but lower 

energy and vitality in naive GHD compared with normal. We were not able to explain whether this 

impairment is implicated directly in lack of energy due to GHD or partly caused by muscle 

weakness caused by GHD. Our retesting group also showed overall AGHDA scores within the 

range of the mean QoL AGHDA scores for the general population of the UK, with no significant 

differences between the medians scores of those who have persistent GHD and those with 

sufficient GH levels after retesting. However, an unexpected paradox finding was observed, with 

those who were GH-sufficient after retesting feeling significantly more tired and having poorer 

energy and vitality scores than those who had persistent GHD. This finding suggests that there are 

possible other unknown confounders aside from GH status which interfere with energy levels and 

tiredness in our cohort. The present finding also points to the importance of follow up and 

reassessment in those who had CO-GHD and were no longer GH deficient after retesting. 

 

The overall results of our studies in this thesis revealed that muscle mass and strength are important 

contributors to bone health of subjects with CO-GHD. In addition, according to mechanostat theory 

(66), muscles mass and force cause mechanical loading on bones, and the subsequent bone 

response determine bone mass and strength. Therefore, enhancing muscle strength via exercise, for 

instance, is beneficial for bone mass accrual and bone strength. There is some evidence that 

suggests that jumping exercises  may be a feasible and effective way to improve BMC when the 

subjects participate in training sessions at least three times a week over an average period of seven 

months (281,286,287). Therefore, chapter 8 aimed to investigate the feasibility and the effect of 

weight-bearing exercise (WBE) on bone health in subjects with CO-GHD. Although the study was 

based on a reasonable concept, unfortunately, because of a high dropout rate and low adherence, 

with such a small sample size, exploration of the effect of WBE was limited. Therefore, from our 

limited data, there was insufficient evidence to recommend the use of jumping exercise in the 

absence of rhGH in children and adults with CO-GHD. Further studies are necessary in different 
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circumstances to assess the optimum level and frequency of WBE on bone outcomes in children 

and adolescents with CO-GHD.  

 

9.2 Conclusions  

The overall conclusion of this thesis is that bone health in CO-GHD is not directly affected by GH 

status. Muscle mass and strength is the important contributor for optimal bone health in CO-GHD. 

PTH actions in CO-GHD could be another factor that impacts bone health, as indicated by 

increased CTX levels (bone resorption marker), and eventually results in bone loss. In the present 

study, there were no alterations observed in metabolic profiles and QoL of patients with CO-GHD 

between the initial evaluation and retesting. However, the early detection and commencement of 

rhGH treatment in CO-GHD is not only better for growth and bone health outcome, but also better 

for long-term metabolic and cardiovascular risks. Specific instruments are required to elucidate 

factors that modify the relationship between GH status and QoL in children and adolescents with 

CO-GHD. Whereas in this thesis, the effect of jumping exercises on the bone health and metabolic 

profiles was assessed, but for future research to be more informative, it may be useful to consider 

larger sample sizes to test programs, different settings and optimal doses that enhance bone health 

in children and adolescents with CO-GHD. Overall, careful follow-up is required to ensure optimal 

bone health in these children and adolescents with CO-GHD. 

 

9.3 Limitations 

There are several limitations, mainly related to the study populations and applied methodology, that 

were identified in this thesis.  

The major drawback of our thesis is the limited sample size which limits the power to properly 

control for confounding variables and determine true associations. Furthermore, the wide age range 

including various pubertal stages might theoretically have weakened some of the relationships. The 

variety of aetiology and heterogeneity of our subjects with CO-GHD, and short stature of those 

with normal GH levels is another issue that was considered in our data. Although we applied 

several adjustment methods to DXA and pQCT bone assessment methods to avoid 

misinterpretation of the results, these techniques still do not account for other important parameters 

of bone strength, such as microarchitecture. Additional limitations drawn from the cross-sectional 

design of chapters 5, 6 and 7 make it difficult to determine causality. Another important issue is 

worth considering in chapter 7 that the QoL measures tools (SF-36- AGHDA) may lack sensitivity 

to detect the differences between our studied groups.  No existing measures have not been 

developed for or validated within the population of children and adolescents with CO-GHD. For 

our longitudinal study (chapter 8), we believed that it would be relatively easy to recruit a larger 

number of patients. However, the study did not achieve the requisite 60 subjects; 36 subjects were 

recruited for the study and only 19 subjects completed the study. Poor adherence to the assigned 
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exercise program is a critical challenge in our study. Loss of motivation to adhere to an exercise 

programme is a remarkable cause of poor compliance.   

A final limitation is that we did not measure the patients’ habitual physical activity objectively. 

Although in our initial proposal we intended to use accelerometers to measure habitual physical 

activity, owing to technical problems and the loss of devices, the high costs, and limited availability 

of such devices made us unable to continue to provide accelerometers.  

 

9.4 Future Directions 

In this thesis we studied the bone health and body composition in subjects with CO-GHD and the 

underlying mechanism of deterioration of bone health was proposed. These encouraging results 

lead us to feel that there is some promise in this area for further research. Many of the research 

questions which stem from the present thesis would be ideally investigated in further studies. 

  

1- What is the optimal management of CO-GHD during transition? Further studies are needed on 

the current practice of assessment and management of CO-GHD and to investigate the long term 

follow up of patients with reconfirmed GHD, whether or not they opt to continue on adult rhGH 

replacement in adulthood. 

 

2- What is the relationship between bone health measurements and risk of fracture in CO-GHD? A 

prospective study on patients with newly diagnosed CO-GHD would be optimal to evaluate bone 

health development, using more advanced non-invasive imaging tools such as micro-MRI, with 

special emphasis on evaluation the functional muscle-bone relationship in clinical siting may be 

more useful in these patients. The mechanisms of PTH action and its interaction with GH warrant 

further investigation in subjects with CO-GHD. Additionally, long-term follow up of the patients 

until late adolescence is required to evaluate their peak bone mass, a major determinant of 

osteoporosis later in life. 

 

3- How does CO-GHD impact on individual quality of life during childhood and adolescence, and 

does rhGH treatment improve QoL of these subjects? Further longitudinal studies using more 

specific validation instruments are needed to assess QoL in children and adolescents with GHD 

before, during and after initiating rhGH treatment. 

 

4- What is the optimal and feasible physical activity programme for bone health of subjects with 

CO-GHD? Further research is needed to test the efficacy, effectiveness, and feasibility of 

implication of exercises regimen in different settings that encompasses both bone and metabolic 

health of subjects with CO-GHD. It must take into account, however, any exercise regimen must be 

considered alongside rhGH, and more attention is required to identify factors that enhance long-

term adherence, motivation, and interest. 
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10.1 Appendix A: Proforma Form of an audit of the 
management of childhood-onset growth hormone 
deficiency during young adulthood in Scotland 

 

 

Medical history [clinical diagnosis and medications] 

  

Hospital  ID: 

_________ 

  

Sex:  

Male 

Female 

  

Date of Birth:  

_________ 

  

Parents height 

Mother: _________ 

Father:   _________ 

  Mid parental  height________ 

Height prior 
start GH  

Measurement 
date 

Final Height Weight at final 
height 

Measurement 
date 

Cms:______   _________  Cms:______ Kgs:________ _________ 

Puberty induction 

□No   □ Yes    

Induction date  _________ 

 

Other pituitary deficiencies              

                                                               □ Thyroid 

                                                               □ Cortisol 

                                                               □  Sex steroids 

                                                               □ DDAVP 

Diagnosis /medications Date of onset  
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Growth hormone stimulation test 

 

Reasons for testing/underlying causes for GHD 

Short Stature assessment 

CNS tumours 

Cranial radiation 

Others  

Specify :____________ 

Diagnostic GH stimulation test date_________ 

Type of test                      □   ITT                                  

                                            □    Arginine 

                                             □  Other-state____________ 

 GH peak response at diagnosis                           IGF1 level  

Date of start GH therapy_________  

Date of stop GH therapy_________ 

referral for re-evaluation            □No         □ Yes    

Date of referral _________ 

Date of re-testing_________ 

Type of test 

                                            □   ITT                                  

                                            □    Arginine 

                                             □  Other-state____________ 

   GH peak response at retesting  

     IGF1 level at retesting  
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Imaging 

 

Clinical decision  

 

Additional information 

 

 

 

Pituitary MRI: □No   □ Yes    Date :____________ 

Pituitary MRI report:  ____________  

DXA:   □No   □ Yes    Date :____________ 

Reasons for DXA:____________ 

DXA report: ____________ 

Stop GH            □No   □ Yes    

Adult GH           □No   □ Yes    

Patient decision- continue with adult GH  □No   □ Yes       
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10.2 Appendix B: SF-36(tm) Health Survey 
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10.3 Appendix C: The Quality of Life-Assessment of 
Growth Hormone Deficiency in Adults Questionnaire 
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10.4 Appendix D: Exercise Regimen 
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