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Abstract 

Advances in electroencephalography (EEG) and magnetoencephalography (MEG) 

have allowed the investigation into the neurophysiological basis of perceptual 

and cognitive disturbances across different stages of psychosis. The EEG/MEG 

recorded (neuromagnetic) mismatch negativity (MMN(m)) is a component of the 

event-related potential/field reflecting early pre-attentive auditory processing. 

Reduced MMN amplitude is a well-replicated finding in chronic schizophrenia 

patients and there is evidence for a smaller MMN impairment in first episode 

patients. Interestingly, studies have suggested that MMN deficits may be present 

even prior to the onset of psychosis in individuals at clinical high risk state for 

developing psychosis (CHR), suggesting that MMN amplitude could be a potential 

marker of psychosis risk. However, in contrast to the robust finding of an 

attenuated MMN amplitude in schizophrenia, results are more inconsistent at the 

earliest stages of illness. Moreover, to date most studies have used a 

conventional analysis for assessing MMN amplitudes in different stages of 

psychosis although brain connectivity measures, such as dynamic causal 

modelling (DCM) allow investigating effective connectivity in the brain network 

underlying the MMN generation. Also, two decades of research into 

characteristics of CHR individuals has revealed that they are functioning poorly 

regardless of subsequent transition to psychosis. However, while MMN amplitude 

has been studied as a potential marker for predicting psychosis among CHR 

individuals in several studies, its utility to predict other clinically relevant 

outcomes remains unknown. 

In the current thesis, I sought to examine MEG-recorded MMNm peak amplitude 

in individuals at different stages of psychosis as well as its association with 

neuropsychological performance, attenuated psychotic symptoms and 

psychosocial functioning in CHR individuals (chapter 3). The aim was to assess 

the potential of MMNm amplitude as a marker for early stages of psychosis and 

to examine whether MMNm deficits are pronounced in CHR individuals with poor 

functioning and cognitive deficits. Secondly, I employed DCM to examine 

whether effective connectivity in the underlying network of duration change 

detection is altered in CHR individuals compared to controls (chapter 4). Lastly, 

I investigated whether baseline MMNm amplitude is able to predict the 12-month 
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outcome of CHR individuals in terms of transition to psychosis or sustained 

subthreshold psychotic symptoms and poor functioning (chapter 5). Given that 

the current study is the first large study that recruited CHR individuals 

predominantly from the community, clinical findings will also be reviewed and 

compared to previous studies with CHR individuals recruited from special early 

detection and intervention services.  

The findings in chapter 3 show that compared to controls, MMNm peak 

amplitudes were intact in CHR individuals as well as in first episode patients. 

Chapter 3 also indicates a weak positive association between MMNm amplitudes 

and speed of information processing in CHR individuals. Chapter 4 results 

indicate that CHR individuals do not have abnormal duration deviant induced 

changes in frontotemporal connectivity network compared to controls. 

Collectively these findings suggest that neither the peak amplitude nor the 

measures of effective connectivity underlying the MMNm response are related to 

the CHR state. Lastly, chapter 5 indicates that baseline MMNm amplitude is not 

associated with progression to a first episode psychosis, although this finding 

needs to be considered limited due to the low transition rate to psychosis, or 

persistence of subthreshold psychotic symptoms and poor functioning in CHR 

individuals. Overall, the findings in the thesis do not support the utility of using 

MMNm as a marker for emerging psychosis. However, future longitudinal studies 

with several MEG recording time points are required to further determine the 

timing of MMN deficiency and whether it reflects emerging psychosis or illness 

progression. The clinical findings of the thesis demonstrate that CHR individuals 

recruited from the general population are characterised by several clinical 

concerns and despite the majority of them not developing psychosis and 

remitting symptomatically over 12 months, CHR individuals were characterised 

by persistent functional disability, highlighting the importance of evaluating and 

predicting more systematically psychosocial functioning in this clinically 

meaningful population. 

Finally, I discuss the key neurophysiological and clinical findings of the three 

data chapters in chapter 6 in the context of previous findings as well as the 

limitations and strengths of the current thesis. I also discuss the possibility and 

key challenges of implementing electrophysiological measures as part of a 
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multivariate and sequential testing in clinical practice as well as proposals for 

moving beyond the current UHR paradigm.
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TOI Time Interval of Interest 

UHR Ultra High Risk State for Psychosis 
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1 Introduction 

1.1 Psychosis  

1.1.1 Psychotic disorders 

Schizophrenia Spectrum and Other Psychotic Disorders- category in the 

Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-

5), (American Psychiatric Association, 2013) includes a group of mental disorders 

that affect the person’s thinking, perception and reality testing. Symptoms of 

psychotic disorders are typically divided into positive and negative symptoms 

(Kay, Fiszbein, & Opler, 1987) and the five key symptoms that define psychotic 

disorders are 1) delusions (false belief), 2) hallucinations (false perception), 3) 

disorganized speech, 4) disorganized behaviour (including catatonia) and 5) 

negative symptoms (American Psychiatric Association, 2013). While psychotic 

symptoms are a defining characteristic of the schizophrenia spectrum disorders, 

psychotic symptoms can also occur in bipolar and depressive disorders 

(Arciniegas, 2015). The lifetime prevalence of all psychotic disorders has been 

estimated to be around 3-4 % and with the high associated personal, familial and 

societal costs, they are a major public health concern (Bogren, Mattisson, Isberg, 

& Nettelbladt, 2009; Perälä et al., 2007). 

Schizophrenia is the most common psychotic disorder, affecting approximately 1 

% of the population worldwide (American Psychiatric Association, 2013) with an 

incidence rate of 15.2 per 100,000 persons per year (McGrath et al., 2004) and a 

prevalence rate of 23.6 million worldwide in 2013 (Vos et al., 2017). It is the 

most severe disorder in terms of disability out of 220 mental and physical health 

disorders (Salomon et al., 2012) and has enormous societal costs (Gustavsson et 

al., 2011). The current DSM-5 diagnosis for schizophrenia requires the presence 

of two or more of the five aforementioned key symptoms for a significant 

portion of time during a one-month period and at least one of the symptoms 

needs to be delusions, hallucinations or disorganized speech. In addition, a 

functional impairment in work, self-care or interpersonal relations should have 

been present for a significant portion of time since the onset of symptoms. 

Overall, continuous signs of symptoms and functional impairment need to be 

present at least for 6 months.  
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1.1.2 Aetiology of schizophrenia 

Despite decades of research, the exact causal factors and pathophysiology of 

schizophrenia remain unknown (Insel, 2010). One prominent and widely 

researched model, the neurodevelopmental model of schizophrenia, suggests 

that the neural basis of the disorder arise during abnormal brain development in 

the prenatal, perinatal and early adolescent periods due to an interaction of 

both genetic and environmental factors, resulting in the emergence of psychosis 

later in adulthood (McGrath, Féron, Burne, Mackay-Sim, & Eyles, 2003).  

Twin and family studies of schizophrenia during the 20th century provided 

evidence for high heritability estimates around 80 % (T. D. Cannon, Kaprio, 

Lönnqvist, Huttunen, & Koskenvuo, 1998; Cardno et al., 1999) and having a first-

degree relative with a diagnosis of schizophrenia is the greatest risk factor for 

developing the disorder (Laursen et al., 2005). While the exact genetic causes 

remain unknown, the rare-variant sequencing and genome-wide association 

studies (GWAS) have shown that the genetic architecture of schizophrenia is 

diverse and includes many common risk variants with low effect sizes and rare 

but penetrant genetic variants of larger effects (Henriksen, Nordgaard, & 

Jansson, 2017). An influential and ground-breaking large scale GWAS study with 

a sample size of 35,000 cases, testing for almost 10 million genetic variants, 

identified 108 independent schizophrenia-associated genomic loci that 

contribute to risk of schizophrenia (Ripke et al., 2014), highlighting the genetic 

complexity involving multiple risk factors. Furthermore, genetic changes may 

interact with each other as well as environmental risk factors, making it 

challenging to assess different factors separately and increasing the etiological 

complexity of the disorder (Van Os, Rutten, & Poulton, 2008). 

Early environmental life factors that might injure the developing brain prior or 

immediately after birth include maternal malnutrition (Susser, 2011), obstetric 

complications (M. Cannon, Jones, & Murray, 2002; Verdoux et al., 1997), 

prenatal infections (Brown, 2006), season of birth (Torrey, Miller, Rawlings, & 

Yolken, 1997) and place of birth (Marcelis, Navarro-Mateu, Murray, Selten, & Van 

Os, 1998). Past research has linked increased risk of schizophrenia to several 

late environmental factors as well. Later environmental risk factors include 

childhood trauma and neglect (Read, Van Os, Morrison, & Ross, 2005), cannabis 
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use (Smit, Bolier, & Cuijpers, 2004), migration (Cantor-Graae & Selten, 2005), 

urbanicity (Pedersen & Mortensen, 2001; Vassos, Pedersen, Murray, Collier, & 

Lewis, 2012) and socio-economic disadvantage (Byrne, Agerbo, Eaton, & 

Mortensen, 2004). Interestingly, a recent umbrella review examined the strength 

of evidence for associations between numerous environmental factors and 

psychosis based on 54 previous meta-analyses. The authors found convincing 

evidence for the ultra-high risk state for psychosis and Black-Caribbean ethnicity 

in England and highly suggestive evidence for another six factors, suggesting that 

despite several environmental risk factors for psychosis, they are associated with 

different levels of evidence (Radua et al., 2018). 

Longitudinal epidemiological and clinical studies have also provided evidence for 

the neurodevelopmental hypothesis by showing that individuals who later 

develop schizophrenia frequently have premorbid deficits in cognitive and motor 

performance in childhood and adolescence (Dickson, Laurens, Cullen, & Hodgins, 

2012). Furthermore, obstetric complications have been shown to interact with 

later motor developmental delays in an additive manner resulting in increased 

risk of schizophrenia (Clarke et al., 2011). Moreover, a number of neuroimaging 

studies have revealed structural brain abnormalities to be present before the 

onset of illness, especially reduced grey matter and enlargement of ventricles 

(T. D. Cannon et al., 2015; Dietsche, Kircher, & Falkenberg, 2017).  

1.1.3 Pathophysiology of schizophrenia 

There is a large body of research focused on elucidating the pathophysiology of 

schizophrenia, namely the disordered physiological processes associated with the 

disorder, which has revealed a number of aberrant neurotransmitter signalling 

systems in schizophrenia patients.  

1.1.3.1 The dopamine hypothesis 

The classical dopamine hypothesis of schizophrenia proposed by Van Rossum in 

1966 states that symptoms, particularly positive symptoms, present in the 

disorder are due to a hyperactive dopamine receptor signalling. This theory is 

supported by post-mortem studies revealing increased D2r/D3r levels in 

schizophrenia patients (Kessler et al., 2009) and findings demonstrating that 
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dopamine-mimetic drugs, such as levopoda and amphetamine, induce 

hallucinations while first-generation antipsychotics that are D2 receptor 

antagonists show efficacy in the reduction of positive symptoms (Abi-Dargham & 

Grace, 2010). The original dopamine hypothesis was later revised to account for 

negative and cognitive symptoms as well, the revised version suggesting that 

hypoactive dopamine system in the prefrontal cortex mediates negative 

symptoms and cognitive deficits whereas hyperactive dopamine transmission in 

the subcortical mesolimbic areas is related to positive symptoms (Brisch et al., 

2014; da Silva Alves, Figee, van Amelsvoort, Veltman, & de Haan, 2008; Walter, 

Kammerer, Frasch, Spitzer, & Abler, 2009). However, the findings showing that 

dopamine antagonists are not effective for all patients with schizophrenia 

indicate an involvement of other neurotransmitter systems in the 

pathophysiology of schizophrenia. 

1.1.3.2 Glutamate, GABA and serotonin 

There was a shift away from the dominating dopamine hypothesis in the 1980s 

when the main excitatory neurotransmitter in the central nervous system, 

glutamate, started to gain attention as it was found that antagonists of a major 

glutamate receptor subtype N-methyl-D-aspartate receptor (NMDAR), such as 

phencyclidine and ketamine, elicited and increased positive, negative and 

cognitive symptoms in controls and schizophrenia patients (Lahti, Holcomb, 

Medoff, & Tamminga, 1995; Malhotra et al., 1996, 1997; Reich & Silvay, 1989). 

Conversely, drugs that reduced glutamate release, for instance lamotrigine and 

topiramate, attenuated the psychotropic effects elicited by ketamine (Anand et 

al., 2003; Krystal et al., 2005) and improved symptoms in patients with 

schizophrenia (Patil et al., 2007; Tiihonen et al., 2005). In addition, a large 

GWAS has identified schizophrenia-associated genes belonging to the 

glutamatergic system (Ripke et al., 2014).  Furthermore, proton magnetic 

resonance spectroscopy imaging studies have revealed increased glutamate 

levels in early stages of the disorder (Fuente-Sandoval et al., 2011; Hashimoto et 

al., 2005) whereas schizophrenia patients show decreased glutamate levels 

(Tayoshi et al., 2009; Wijtenburg et al., 2017) with a recent review providing 

evidence for a decline with disease duration (Schwerk, Alves, Pouwels, & Van 

Amelsvoort, 2014). Moreover, a review of multiple lines of evidence from post 

mortem, genetic, imaging and psychopharmacological studies concluded that 
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dysfunction of glutamatergic neurotransmission may indeed play a role in the 

pathophysiology of schizophrenia (Goff & Coyle, 2001). Subsequently it has been 

proposed that if the glutamatergic dysfunction is present already prior to the 

onset of a first episode psychosis, glutamatergic therapies could be useful in 

psychosis prevention (Egerton, Fusar-Poli, & Stone, 2012). 

Another potential neurotransmitter playing a role in the pathophysiology of 

schizophrenia is gamma aminobutyric acid (GABA), the key inhibitory 

neurotransmitter in the brain. Evidence for GABA dysfunction comes mainly from 

post mortem studies which in combination with animal studies have shown that 

schizophrenia is associated with GABA dysfunction (Benes, Vincent, Marie, & 

Khan, 1996; Lewis, Volk, & Hashimoto, 2004; Sherman, Davidson, Baruah, 

Hegwood, & Waziri, 1991). On the other hand, a recent meta-analysis of 16 

proton magnetic resonance spectroscopy studies of GABA concentrations showed 

no consistent alterations in schizophrenia (Egerton, Modinos, Ferrera, & 

McGuire, 2017). However, there was a substantial amount of heterogeneity 

across studies, which highlights the need for further GABA studies with more 

similar clinical and methodological variables. Also serotonin has been studied as 

a potential neurotransmitter playing a role in schizophrenia as second generation 

antipsychotics are, among other neurotransmitters, serotonin antagonists (for a 

review, Abi-Dargham, 2007). Collectively, it is likely that several abnormal 

neurotransmitter systems and their interactions contribute to the 

pathophysiology of schizophrenia.  

1.1.4 Treatment and prognosis of psychosis 

The typical first generation antipsychotics, which block dopamine D2 receptors, 

were discovered in the 1950s. These drugs, however, are ineffective in treating 

negative and cognitive deficits associated with psychosis and cause a range of 

side effects including tremors and rigidity (Kinon & Lieberman, 1996; Miyamoto, 

Duncan, Marx, & Lieberman, 2005). Second-generation atypical antipsychotics 

introduced after the 1970s not only reduce dopamine neurotransmission but also 

act on other receptors, especially serotonin, and were developed to reduce side 

effects of typical antipsychotic medications. However, although second 

generation antipsychotics elicit less extrapyramidal symptoms (drug induced 

movement disorders) (Leucht, Wahlbeck, Hamann, & Kissling, 2003), metabolic 
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side-effects are frequent. Moreover, evidence for their superior efficacy or 

tolerability is not robust, apart from clozapine (Chakos, Lieberman, Hoffman, 

Bradford, & Sheitman, 2001; Geddes, Freemantle, Harrison, & Bebbington, 

2002). Although clozapine is the most effective medication for schizophrenia in 

terms of its efficacy and safety, it has a range of side effects, such as weight 

gain and cardiac problems (Newcomer et al., 2002; Üçok & Gaebel, 2008) that 

limit its use to treatment-resistant schizophrenia (Chakos et al., 2001; Daniel C 

Javitt, 2014; Wahlbeck, Cheine, Essali, & Adams, 1999). In terms of treating 

negative and cognitive symptoms, both antipsychotic types are rather ineffective 

and have shown little clinically meaningful improvement (Davidson et al., 2009; 

Swartz et al., 2007; Tandon, 2011). Moreover, schizophrenia is typically treated 

with antipsychotic medication and psychosocial therapy based on evidence 

showing supporting the combination of them to be more effective than 

medication alone to improve clinical and functional outcomes (Patterson & 

Leeuwenkamp, 2008).  

The long-term prognosis of schizophrenia is very heterogeneous and is typically 

characterised by periods of remission and relapse. Reviews and meta-analyses 

have reported a good outcome in approximately 40 % of schizophrenia patients 

(Hegarty, Baldessarini, Tohen, Waternaux, & Oepen, 1994; Menezes, Arenovich, 

& Zipursky, 2006), evidence suggesting females to be more likely to have a 

favourable outcome than males (A. Riecher-Rössler & Hafner, 200AD). Moreover, 

schizophrenia is associated with a two to three-fold increased mortality risk 

compared to the general population (Masoudzadeh, Khalilian, & Hosseini, 2007), 

evidence showing that this gap has increased in recent decades (Saha, Chant, & 

McGrath, 2007). Schizophrenia patients have a life expectancy of 15-20 years 

shorter than the general population (Hennekens, Hennekens, Hollar, & Casey, 

2005); they are more likely to die by suicide early in the course of the disorder 

(Palmer, Pankratz, & Bostwick, 2005) whereas older patients are more likely to 

die by cardiovascular diseases, the main cause of premature mortality in 

schizophrenia (Hennekens et al., 2005).  

Taken together, despite decades of research on pharmacological and 

psychosocial interventions, more effective treatments for psychotic disorders 

remain to be developed (Insel, 2010). In addition, non-compliance with available 

antipsychotic medication is a challenge in treatment (Leucht & Heres, 2006) as it 



23 
 

 
 

is associated with an elevated risk of relapse, longer time to remission and 

higher rates of suicide attempts and rehospitalisation (Robinson et al., 1999). 

Poor adherence is not only limited to anti-psychotics but is also a problem with 

other treatment recommendations, such as exercise and diet. 

1.1.5 Cognition in chronic schizophrenia and first episode 
psychosis 

During the last two decades, a large body of work has examined the pattern and 

extent of deficits in higher cognitive processes, such as working memory, 

attention, language and executive functioning, in schizophrenia patients. 

Despite high methodological and clinical heterogeneity across studies, several 

meta-analyses and systematic reviews have consistently reported impairments in 

all domains in schizophrenia (e.g. Heinrichs & Zakzanis 1998). For instance, a 

recent meta-analysis of 247 papers on cognitive performance reported 

schizophrenia patients to have deficits with large effect sizes in various 

cognitive functions compared to controls; patients performed worse in memory 

functioning (ES of 1.22), global cognitive functioning (ES = 0.96), language (ES = 

0.99), executive function (ES = 1.10) and attention (ES = 0.99) in contrast to 

controls (Fioravanti, Bianchi, & Cinti, 2012). In fact, cognitive deficits are 

currently considered to be a core feature of schizophrenia, although not a part 

of the diagnostic criteria, and they generally remain stable throughout the 

course of the illness and are largely independent from symptoms (Censits, 

Ragland, Gur, & Gur, 1997; Heaton et al., 2001). Moreover, changes in cognition 

have also consistently been found in first episode patients who show medium to 

large deficits in a range of neurocognitive measures compared to controls 

(Mesholam-Gately, Giuliano, Goff, Faraone, & Seidman, 2009) and cognitive 

abnormalities are often observed in unaffected relatives as well (Agnew-Blais & 

Seidman, 2013; Bora et al., 2014).  

Schizophrenia remains one of the most debilitating mental disorders in large part 

because of a decline in several cognitive functions and the fact that many anti-

psychotic medications are effective in treating only positive symptoms but not 

cognitive deficits (Keefe et al., 2012). In addition, cognitive deficits contribute 

to intellectual (McGlashan & Fenton, 1993) and functional impairments (Bowie et 

al., 2008) and data from several original studies as well as systematic reviews 
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have linked cognition to functional outcomes in schizophrenia patients with 

small to medium effect sizes (Green, 1996; Fett et al., 2011), making them 

potentially useful treatment targets (Green, 2006). As a result, the past two 

decades have seen a rapid increase in clinical and research interest in cognitive 

training methods to improve cognition and functional recovery in schizophrenia. 

Converging evidence suggests that cognitive training is an effective method for 

enhancing cognitive performance in schizophrenia, two meta-analyses reporting 

moderate effect sizes of cognitive remediation on improving cognition and daily 

functioning and a small effect size on symptoms (McGurk, Twamley, Sitzer, 

McHugo, & Mueser, 2007; Wykes, Huddy, Cellard, McGurk, & Czobor, 2011). Still, 

the best functional outcome is reached when cognitive training is combined with 

other psychosocial rehabilitation (McGurk et al., 2007; Wykes et al., 2011) and 

despite the encouraging results for cognitive training in schizophrenia 

treatment, it is an expensive and time-consuming treatment limiting its 

accessibility.  

1.2 Early psychosis detection and intervention paradigm 
and clinical staging model for psychosis 

1.2.1 Ultra high risk state for psychosis approach 

While aforementioned genetic and environmental risk factors for psychosis act in 

early life, it is not until later in adolescence and early adulthood that symptoms 

of psychosis typically begin to emerge, males having a slightly earlier psychosis 

onset than females (Aleman, Kahn, & Selten, 2003; Eranti, MacCabe, Bundy, & 

Murray, 2013). Moreover, retrospective studies of first episode patients have 

shown that the first episode of psychosis is preceded in about 75 % of all cases 

by an average prodromal phase of five to six years, characterised by non-specific 

symptoms (Häfner et al., 1998) which are often accompanied by psychosocial 

impairment (Jones et al., 1993). Given the individual and societal impact of 

psychosis and the association between longer duration of untreated psychosis 

(DUP), namely the time between symptom onset and treatment initiation, and a 

poorer outcome on treatment response and global functioning (Farooq, Large, 

Nielssen, & Waheed, 2009; Loebel et al., 1992), the importance of early 

detection of and intervention in psychosis started to be acknowledged in 

psychiatry in the 1980s. It is important to note, that the retrospective prodromal 
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concept implies inevitable progression to full blown psychosis, in line with the 

early views of Kraepelin (1919) and Bleuler (1950) emphasising the inevitable 

deterioration, and can be confirmed only after a formal diagnosis. As a result, 

Yung and McGorry (1996) introduced the At Risk Mental State term and the Ultra 

High Risk (UHR) state for psychosis paradigm and criteria to develop a 

prospective definition and identification of the prodromal stage in 1996 which 

subsequently initiated research into the high risk stages of psychosis.  

The UHR criteria was developed to identify help-seeking individuals at increased 

risk for developing a first episode psychosis in the near future (6 to 12 months) 

and it includes symptoms that resemble frank psychotic symptoms but are lower 

in intensity, frequency and/or duration. An individual might, for example, have 

a persecutory belief of someone trying to hurt him but with less than delusional 

conviction, or a delusional idea with a full conviction might be very fleeting and 

last for less than hour although it occurs twice a week. To operationalise the 

UHR criteria, Yung and colleagues developed the Comprehensive Assessment at 

Risk Mental States (CAARMS) in Melbourne in 1998. In order to be considered at 

risk for developing psychosis according to the UHR criteria, individuals need to 

have experienced attenuated positive symptoms (APS), brief limited intermittent 

psychotic symptoms (BLIPS) or to have a first degree relative with a psychotic 

disorder in a combination with recent functional decline (GRD) (for detailed 

inclusion and exclusion criteria and descriptions of the operationalised UHR 

criteria see Recruitment Process 3.2.2). Additionally, these experiences need to 

be new to differentiate them from schizotypal personality features that 

represent a trait rather than a state risk factor for developing psychosis.  

1.2.2 Basic symptoms approach 

In addition to the UHR approach, the basic symptom (BS) approach is often used 

as a complementary approach to the UHR criteria to identify individuals 

theorised to be at an earlier high risk stage than those identified using the UHR 

criteria (He & Hu, 2014; Frauke Schultze-Lutter, Ruhrmann, Berning, Maier, & 

Klosterkötter, 2010; Yung, Yuen, Phillips, Francey, & McGorry, 2003). The BS 

approach is based on longitudinal studies of schizophrenia patients in the 1960s 

when Huber and colleagues described subtle, subjective deficits in stress 

tolerance, affect, cognitive-perceptive processes, drive and vigilance that 
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occurred throughout various stages of the illness. Huber considered these 

deficits as the most fundamental and first psychopathological expressions of the 

organic processes underlying psychotic disorders and therefore termed them 

‘basic symptoms’. Instead of defining symptoms behaviourally, BS are based on 

the patient’s descriptions of their subjective experiences (Koehler & Sauer, 

1984) and thus the symptoms remain predominantly subjective although 

developed coping strategies, such as social isolation, may become observable to 

other people.  

BS were operationalised as 178 items in five categories in the Bonn Scale for the 

Assessment of Basic Symptoms (BSABS) by Gross and colleagues in 1987 and their 

prognostic accuracy was examined prospectively in the Cologne Early 

Recognition Study (1987-1991). This first long-term prospective early detection 

study revealed that baseline BS indeed predicted development of schizophrenia 

within an average follow-up period of 9.6 years. As a result, two partially 

overlapping BS criteria were developed for defining the initial prodrome of 

psychosis, especially schizophrenia: 1) the Cognitive-Perceptive basic symptoms 

criterion (COPER) that showed a 65 % transition rate to schizophrenia and 2) the 

Cognitive Disturbances (COGDIS) criterion that had a transition rate of 79 % 

during the 10 year follow-up period (Klosterkötter, Hellmich, Steinmeyer, & 

Schultze-Lutter, 2001). The subset of 14 BS included in these two criteria 

include symptoms that were specific to the development of a first episode 

psychosis within 9.6 years, unlike some of the original BS described by Huber 

that were diagnostically unspecific (Frauke Schultze-Lutter et al., 2016). 

Subsequently a shorter version of the BSABS, called the Schizophrenia Proneness 

Instrument (SPI-A, Schultze-Lutter et al., 2007) was designed to assess both 

characteristic and uncharacteristic BS with the possibility to assess only 

psychosis-specific symptoms by utilizing the COGDIS and COPER criteria.  

1.2.3 Two-stage model of clinical risk for psychosis 

The German Research Network on Schizophrenia has proposed a two-stage 

theoretical model of the high risk stage for psychosis that differentiates an early 

prodromal state (EPS), defined by the presence of BS that are thought to be the 

earliest manifestation of psychosis risk, from a late prodromal state (LPS), 

defined by the presence of APS or BLIPS (Häfner et al., 2004). According to the 
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two-stage framework, these two different at risk groups differ in their distance 

to psychosis onset and indeed there is some suggestive evidence showing that BS 

might occur before APS supporting the proposed sequence of symptom 

development in the at risk phase (Frauke Schultze-Lutter et al., 2010). To date 

there have been only a few studies comparing characteristics of individuals at 

different stages of high risk for psychosis but evidence suggests BS samples to 

have intermediate neurocognitive performance between controls and UHR 

individuals (Frommann et al., 2011) and P300 amplitude deficits to be greater in 

the late than early high risk stage (Frommann et al., 2008), indicating potential 

differences in electrophysiology and neuropsychology between the two high risk 

subgroups. 

1.2.4 Combining UHR and BS approach  

Based on the two-stage model suggesting the early high risk stage to be 

characterised by the presence of BS and APS to emerge in the later stage 

(Klosterkötter et al., 2001), it is common to combine BS and UHR criteria to 

improve the detection of individuals at risk for developing psychosis (Figure 1.1). 

The notion of combining the two approaches is supported by a 48-month follow-

up study that found individuals meeting both BS and UHR criteria to have a 

significantly higher transition risk (hazard rate = 0.66) and shorter time to 

transition to psychosis than individuals who met only BS (hr = 0.23) or UHR 

criteria alone (hr = 0.28) (Frauke Schultze-Lutter, Klosterkötter, & Ruhrmann, 

2014). On the other hand, a meta-analysis of twenty-seven studies that used 

UHR or/and BS criteria to define individuals at risk for psychosis reported the 

predictive accuracy of combined sets of criteria to be lower (22.5 %) compared 

to the BS approach (48.5 %) or the UHR approach (27.7 %) alone (Paolo Fusar-

Poli, Bonoldi, et al., 2012). However, a more recent meta-analysis concluded 

that individuals who met both UHR and BS criteria had higher psychosis risk than 

the UHR criteria only (Paolo Fusar-Poli, Cappucciati, et al., 2016). Accordingly, 

the present thesis combines the two approaches to identify individuals that meet 

the UHR and/or BS criteria and henceforth the term ‘individuals at clinical high 

risk (CHR) state for developing psychosis’ is used to describe these individuals in 

this thesis. 
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Figure 1.1 Model of psychosis onset from the clinical high-risk state based on the BS/UHR 
criteria (Paolo Fusar-Poli, Borgwardt, et al., 2013). 

1.2.5 Clinical staging model in psychiatry 

Unlike the use of clinical staging in general medicine, the application of clinical 

staging models to mental health disorders is less common (Cosci & Fava, 2013). 

The underlying idea of clinical staging is that intervening earlier will be more 

effective than in the later stages of the illness and can lead to better clinical 

and functional outcomes (Mcgorry, Hickie, Yung, Pantelis, & Jackson, 2006). 

However, the introduction of the UHR concept in 1996 resulted in an important 

paradigm shift towards a preventative approach in psychosis research and 

clinical practice and also facilitated the adoption of the clinical staging model in 

psychiatry, especially in the field of psychosis and more recently in non-

psychotic disorders (Hartmann, Nelson, Ratheesh, Treen, & McGorry, 2019).  

Clinical staging to psychiatric disorders was first introduced by Fava and Kellner 

in 1993 when they developed staging methods for depression, panic disorder and 

schizophrenia ranging from the prodromal to chronic stage (Fava & Kellner, 

1993). The staging for psychotic disorders was later elaborated by McGorry and 

colleagues in 2006 who developed a staging system for psychosis that uses the 

symptom severity to classify individuals into different illness stages accompanied 

by stage-specific treatments (Mcgorry et al., 2006). The model is based on the 

notion that psychosis emerges over time through successive stages marked 

by symptoms of increased clarity and intensity (Mcgorry & Van Os, 2013), ranging 

from stage 0 indicating a pre-symptomatic genetic risk to stage 1a with mild 
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non-specific symptoms followed by stage 1b characterised by more specific APS 

and ending with stages 2-4 that range from a first psychotic episode to 

chronicity. In the context of clinical staging, it has been suggested that the BS 

approach can be conceptualised as stage 1a and the UHR approach that 

identifies individuals at a later illness stage as 1b (Hartmann et al., 2019). The 

current thesis adopts the severity-based clinical staging for psychosis as a 

framework and focuses on the stages 1 (high risk) and 2 (first episode of 

psychosis), the stages 3 (persistent symptoms, relapses and remissions) and 4 

(unremitting illness) not being relevant here.   

1.3 Prevalence and characteristics of CHR individuals 

1.3.1 Prevalence rates of PLEs and CHR states in the general 
population 

Several studies using both self-report questionnaires and interviews have shown 

that psychotic-like experiences (PLE), namely subtle and subclinical 

hallucinations, are frequently reported by non-treatment-seeking general 

samples, especially by children and adolescents. A meta-analytical evidence 

shows a median prevalence rate of 5 % for subclinical psychotic symptoms in the 

general population (Van Os, Linscott, Myin-Germeys, Delespaul, & Krabbendam, 

2009) while studies among children and adolescents have shown even higher 

prevalence rates, one meta-analysis reporting a median prevalence rate of 17 % 

among 9- to 12-year-olds and 7.5 % among 13- to 18-year-olds (Ian Kelleher, 

Connor, et al., 2012). The relatively high prevalence of PLEs among the general 

population has raised questions regarding the utility of the UHR paradigm and 

concerns about misclassifying people with fluctuating PLEs as being at risk for 

developing psychosis (Carpenter, 2014; Weiser, 2011).  

One of the first community-based epidemiological studies using clinical 

interviews found that 0.9 % to 8 % of the general population aged 11 to 13 years 

old met the criteria for the at risk for developing psychosis, depending on the 

criteria applied (Ian Kelleher, Murtagh, et al., 2012). The prevalence rate seems 

to be lower among young adults as shown by study findings that only 0.3 % (with 

onset/worsening criterion) or 2.6 % (no onset/worsening criterion) of the 16- to 

40-year old general population sample met the APS criteria according to the 
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Structured Interview for Prodromal Syndromes (SIPS; Schultze-Lutter, Michel, 

Ruhrmann, & Schimmelmann, 2014). This is in line with more recent 

epidemiological studies reporting prevalence rates of 1.3 % and 2.4 % of 

individuals meeting UHR criteria in the general population (Schimmelmann, 

Michel, Martz-Irngartinger, Linder, & Schultze-Lutter, 2015; Frauke Schultze-

Lutter, Michel, Ruhrmann, & Schimmelmann, 2018). Collectively, these 

epidemiological studies demonstrate the effect of age on both PLEs and APS and 

the overall low prevalence of individuals meeting the high risk criteria for 

psychosis in the community.  

1.3.2 Clinical significance of APS 

Previous studies have examined the clinical significance of APS and found them 

to be associated with psychiatric comorbidity and lower functioning in both 

clinical and community-based CHR samples. Kelleher and colleagues, for 

instance, reported that a young (11-13 years) non-help-seeking CHR sample had 

a lower global functioning and a higher level of co-occurring psychopathology 

compared to controls (Ian Kelleher, Murtagh, et al., 2012). This is in accordance 

with findings from an older community CHR sample (16 to 40 years) that found 

APS to be associated with poorer functioning and higher levels of comorbid 

mental disorders (Frauke Schultze-Lutter, Michel, et al., 2014), mirroring 

findings in samples of help-seeking individuals who were engaged by specialised 

early-intervention services (Paolo Fusar-Poli, Nelson, Valmaggia, Yung, & 

McGuire, 2014). 

1.3.3 Characteristics of CHR individuals 

1.3.3.1 Functioning, suicidal ideation and comorbidity  

Impaired daily functioning, such as maintaining employment, communication 

with others, independent living and functioning in the community, is evident in 

schizophrenia and is present already during the first episode of psychosis 

(Bellack, Morrison, Wixted, & Mueser, 1990; Marwaha & Johnson, 2004); Lee, 

Kim, Lee, & An, 2017). Impaired functioning is largely responsible for the burden 

not only for patients but also for their families, caregivers and the wider society 

(Jungbauer, Wittmund, Dietrich, & Angermeyer, 2004; Knapp, Mangalore, & 

Simon, 2004; Perlick et al., 2006). Furthermore, a substantial body of evidence 
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shows that while more severe in schizophrenia, functional deficits are present 

already in CHR individuals who report reduced subjective quality of life 

(Bechdolf et al., 2005) and impairments in global, (Paolo Fusar-Poli et al., 2015; 

Hui et al., 2013) social, (Addington, Penn, Woods, Addington, & Perkins, 2008), 

occupational and academic functioning compared to controls (S. J. Lee et al., 

2017). In fact, the functional level of individuals in the at-risk stage has been 

shown to be closer to first episode patients than healthy controls (Paolo Fusar-

Poli et al., 2015). 

Besides functional impairments, the majority of schizophrenia patients have 

suicidal ideation with up to 80 % of patients reporting suicidal ideation at some 

point during their illness (Skodlar, Tomori, & Parnas, 2008). Moreover, a number 

of studies have found the CHR individuals to be characterised by high prevalence 

rates of suicidal ideation as well, with findings ranging from the prevalence rate 

of 43 % to 58 % (Gill et al., 2015; Hutton, Parker, Bowe, & Ford, 2012). An even 

higher 66 % prevalence rate of suicidal ideation among CHR individuals, similar 

to rates during the first episode of illness, was reported by a recent meta-

analysis of 21 studies (Taylor, Hutton, & Wood, 2015). 

Previous studies have found CHR samples to be characterised by a high level of 

comorbid non-psychotic diagnoses, especially mood and anxiety diagnoses. 

Specifically, a large study of 377 CHR individuals reported a prevalence of 69 % 

of one or more mood/anxiety diagnoses at baseline (Woods et al., 2009), similar 

to the 71 % prevalence rate of nonpsychotic diagnosis reported by another study 

(Salokangas et al., 2012). These findings were confirmed by a meta-analysis of 

1683 CHR individuals that found that 41 % had a comorbid baseline depressive 

disorder and 15 % anxiety disorder (Paolo Fusar-Poli et al., 2014). Importantly, 

depressive and anxiety disorders are not only highly prevalent in the high risk for 

psychosis stage but they have also been shown to contribute to functional 

deficits (Paolo Fusar-Poli et al., 2014) and to be the most frequent reason to 

seek help among CHR individuals (Falkenberg et al., 2015). Taken together, 

converging evidence suggests that individuals at clinical high risk for developing 

psychosis are characterised by extensive clinical co-morbidity in addition to APS. 
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1.3.3.2 Cognitive deficits 

Past studies have examined whether cognitive impairments observed in 

schizophrenia and first episode patients emerge prior to the onset of psychosis 

and have found that indeed deficits are present already in CHR individuals at the 

level that is intermediate between control and FEP samples (e.g. Keefe et al., 

2006; Lencz et al., 2006), those CHR individuals who later developed psychosis 

being more impaired at baseline than those who did not (Seidman et al., 2010). 

These individual study findings were confirmed by meta-analyses that found 

evidence for small to moderate cognitive deficits in each domain (Bora et al., 

2014), independent of recruitment strategies and inclusion criteria (Paolo Fusar-

Poli, Deste, et al., 2012), indicating that cognitive deficits are present already in 

the high risk stage but less pronounced than in the later stages of the illness. 

Accordingly, cognitive performance has been suggested to be a potential marker 

of increased vulnerability to psychosis. 

Previous studies examining cognitive performance as a potential predictor of 

functional outcome in CHR samples have suggested that the link between 

cognition and functioning exists already in the high risk stage of psychosis. For 

instance, Lin and colleagues (2011) found an association between functional 

outcome and specific baseline neurocognitive deficits, namely verbal learning 

and memory, processing speed and attention and verbal fluency, independent of 

transition to psychosis. Similarly another study reported baseline processing 

speed to predict 10 % and 7 % of social and role functioning independent of 

positive symptoms (Carrión et al., 2011) while Niendam and collagues (2007) 

found improved social and role functioning not to be predicted by baseline 

cognition but by improved processing speed and visual memory over the follow-

up period.  

1.4 Outcomes of CHR individuals 

1.4.1 The specificity of UHR criteria and transition rates  

One of the earliest studies to assess the predictive validity of clinical UHR 

criteria in relation to onset of psychosis reported a 40 % (8/20) transition rate at 

6 months, (Yung et al., 1998) and with an expanded sample size at 12 months a 

41 % (20/49) transition rate (Yung, Phillips, et al., 2003) and finally a 35 % 
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(36/104) transition rate with the final sample size at 12 months (Yung, Phillips, 

Yuen, & McGorry, 2004). In line with these transition rates, Miller and colleagues 

found a 54 % transition rate to a first episode psychosis at 12 months using a 

similar UHR criteria but a different instrument (Structured Interview for 

Prodromal Syndromes; SIPS) (Miller et al., 2002). However, in contrast to 

transition rates ranging from 30 % to 50 % reported by early CHR studies, there 

has been a higher variance in transition risks across more recent studies and 

lower transition rates ranging from 10 % to 20 % (Simon & Umbricht, 2010; Yung 

et al., 2008). Indeed, there is evidence for a decline in transition rates from 

1995 to 2000 in the Personal Assessment and Crisis Evaluation clinic which was 

partially explained by the earlier detection of UHR individuals (Yung et al., 

2007). Other factors contributing to declining rates suggested by later studies 

include effective treatment strategies, follow-up time, the level of clinic’s 

specialization in early detection of psychosis, recruitment and sample 

characteristics (Ruhrmann, Schultze-Lutter, & Klosterkötter, 2010). However, 

even the lower transition rates reported by more recent CHR studies are still 

greater than the transition rate of 0.6 % in samples of non-help-seeking general 

population reported by a meta-analysis of six studies (Kaymaz et al., 2012). 

Another key factor moderating the transition rates over the years is the 

recruitment method of CHR individuals. The first studies investigating the 

predictive utility of clinical CHR criteria relied systematically on samples 

recruited from special early detection and intervention services for psychosis 

whereas more recent studies have adopted wider recruitment strategies to reach 

the general public and as a result have included higher proportions of community 

recruited than clinically referred help-seeking individuals. A recent meta-

analysis of 11 studies examined the relationship between recruitment strategies 

and transition risks reported a 15 % pre-test risk for psychosis at 38 months, 

namely the underlying risk of the population from which the individual is 

selected, in clinically referred samples compared to a 0.1 % risk in samples 

recruited from the general population (Paolo Fusar-Poli, Schultze-Lutter, et al., 

2016).  

In terms of specific DCM/ICD diagnostic outcomes of CHR individuals, an early 

meta-analytical investigation found that out of 27 % of CHR individuals who 
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developed psychosis over the mean follow-up time of 2.3 years, 73 % of them 

transitioned to schizophrenia spectrum disorders (schizophrenia, 

schizophreniform, schizoaffective) and 11 % were diagnosed with affective 

psychoses (psychotic depression, bipolar psychosis) (Paolo Fusar-Poli, Bechdolf, 

et al., 2013). Moreover, although high risk individuals are commonly 

characterised by comorbid disorders, the majority of them are present already 

at baseline (A. Lin et al., 2015) and the UHR criteria has shown specificity for 

the development of psychotic disorders, not for emerging non-psychotic 

disorders (Paolo Fusar-Poli, Rutigliano, et al., 2017; Webb et al., 2015), 

supporting the specificity of the CHR criteria to identify prodromal phases of 

psychotic rather than non-psychotic disorders. 

1.4.2 Outcomes of CHR individuals who do not develop 
psychosis 

Since the introduction of the UHR paradigm and the clinical staging model of 

psychosis, the majority of research has focused on the progression from the high 

risk stage (stage 1) to a first episode of psychosis (stage 2). However, as 

discussed above, only a minority of CHR individuals become psychotic within the 

follow-up period (Yung et al., 2007). While the low incidence rates of psychotic 

disorders observed in recent studies fit well with the view of the UHR concept 

that progression from the high risk stage to psychosis is not inevitable, low 

sample sizes result in insufficient statistical power to study potential predictors 

of psychosis. Moreover, the emphasis on psychosis as the only outcome of 

interest has been criticised as the accumulation of evidence over time has shown 

that many CHR individuals have poor outcomes and require clinical care 

regardless of whether they transition to psychosis (Carrión et al., 2013; Os & 

Guloksuz, 2017). As a result, more recent research has started to investigate 

trajectories and outcomes of CHR individuals who do not transition to psychosis 

(CHR-NT).  

One of the first studies to investigate the outcomes of CHR-NT individuals made 

a distinction between individuals who sustained APS and those who remitted 

from their initial CHR status within the follow-up period (Addington et al., 

2011). Thus the first outcome studies of CHR-NT individuals mainly focused on 

the incidence of remission from baseline APS, reporting somewhat different but 
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relatively high symptomatic remission rates: 49.1 %, (Ziermans et al., 2011), 

59.2 % (Simon & Umbricht, 2010) and 36 % (Schlosser et al., 2012). The first 

meta-analysis of the prevalence of symptomatic remission in CHR-NT individuals 

based on eight original studies reported that 46 % of CHR individuals fully 

remitted from their baseline APS during a 2-year follow-up (Simon et al., 2013). 

Collectively evidence suggest that the majority of UHR individuals do not 

become psychotic and only about half of CHT-NTs still meet the CHR criteria in 

two years, suggesting a high number of CHR individuals to possibly exhibit 

transient APS. Interestingly though, one of the first studies to include a 

functional outcome in addition to a symptomatic remission found that despite 

CHR-NT individuals achieving symptomatic remission and showing improved 

social and role functioning, their functioning still remained impaired compared 

to controls at a 2.5 year follow-up (Addington et al., 2011), indicating persistent 

functional impairment in this population.  

Regarding the course of more general psychopathology of CHR-NT individuals, a 

recent study reported that nonpsychotic disorders were frequently (90 %) 

present at baseline, in line with evidence on comorbid diagnoses in CHR 

individuals discussed above, and were likely to persist (52 %) over the follow-up 

period (A. Lin et al., 2015). Furthermore, a recent meta-analysis examining 

several outcomes of CHR-NT individuals found that although about 50 % to 70 % 

remitted from their CHR status, more than half met the axis 1 or 2 disorder and 

many continued to have psychosocial impairments in a long term, highlighting 

the importance of assessing more systematically other clinically relevant 

outcomes and not solely APS in CHR studies.  

1.5 Predictors of outcome in CHR individuals 

The major focus of the high risk and early psychosis field has been on identifying 

predictors for progression from the high risk stage to the first episode stage to 

allow an early targeted proactive treatment approach. As discussed above, 

although the CHR individuals have an elevated risk for developing a first episode 

psychosis, most of them do not become psychotic within a 2-3 year follow-up 

(Yung et al., 2007). Thus a substantial body of research has been dedicated to 

finding clinical and neuropsychological predictors that could improve psychosis 
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prediction compared to the accuracy achieved based solely on the clinical CHR 

criteria. 

1.5.1 Transition to psychosis 

Several single- and multi-site studies have compared baseline demographic, 

clinical and neuropsychological characteristics of CHR individuals who 

transitioned to psychosis (CHR-T) and who did not (CHR-NT) and have found 

group differences in symptoms, global, social and role functioning (Atkinson et 

al., 2017; T. D. Cannon et al., 2008; Cornblatt et al., 2007; Mason et al., 2004). 

Moreover, a body of evidence shows that CHR-T groups have greater 

neuropsychological impairments than CHR-NT groups (Brewer et al., 2004; Lencz 

et al., 2006; Seidman et al., 2010), suggesting these clinical and cognitive 

measures to have potential utility as predictors of transition to psychosis. Large 

multi-site longitudinal studies have also revealed a number of variables that 

increase the positive predictive power for psychosis compared to using the at-

risk clinical criteria alone (T. D. Cannon et al., 2008; Ruhrmann, Schultze-Lutter, 

Salokangas, et al., 2010). For instance, one of the largest studies to date, a 

large North American multi-site study, found that combining demographic 

variables with symptoms had a higher predictive power for transition to 

psychosis (74 – 81 %) than SIPS criteria alone (35 %) (T. D. Cannon et al., 2008). 

However, results on predictive values of neuropsychological measures have been 

mixed and differences in group means do not always translate to improved 

prediction; while some studies have shown neuropsychological measures to 

increase clinical prediction beyond using only clinical variables (Anita Riecher-

Rössler et al., 2009), others have found cognitive variables not to contribute 

uniquely to psychosis prediction beyond clinical variables (Seidman et al., 2010). 

Overall, a number of different combinations of clinical and neuropsychological 

measures have been found to increase the predictive power for developing 

psychosis compared to the CHR criteria alone but the results and most significant 

predictors vary greatly across studies and there is a need for models to be 

externally validated on independent samples. 
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1.5.2 Symptomatic and functional outcomes 

Past studies investigating baseline clinical and cognitive differences between 

individuals who remitted from their initial CHR status and those who did not 

have reported conflicting results. While some studies did not find any group 

differences in baseline socio-demographic characteristics and clinical symptoms 

(de Wit et al., 2014; M. Kim, Lee, Yoon, Lee, & Kwon, 2018; M. Kim, Lee, Lee, 

Kim, & Kwon, 2015; T. Y. Lee, Shin, et al., 2014; Simon & Umbricht, 2010), 

others found that less severe baseline negative and mood/anxiety symptoms 

were associated with higher rates of both symptomatic and functional recovery 

(Schlosser et al., 2012). Moreover, Lee and colleagues (2014) found that non-

remitters had higher positive attenuated symptoms and higher antipsychotic 

medication at baseline compared to remitters. Regarding group differences in 

baseline cognitive performance, the same study found no difference in any 

cognitive domain between remitters and non-remitters. On the contrary, the 

largest single-site study to date found that baseline cognitive impairments 

differentiated those who remitted from their UHR status from those who did not 

(Lam et al., 2018) and another study found poor specific neurocognitive 

impairments to be related with functional outcomes regardless of transition to 

psychosis (A. Lin et al., 2011).  

1.6 The utility of functional neuroimaging methods in 
psychosis research 

In addition to aiming to utilise clinical and neuropsychological measures to 

improve psychosis prediction in CHR individuals, there has been a large interest 

in finding objective neuroimaging markers of transition from the high risk stage 

of psychosis to the first episode stage. Indeed the wide availability of non-

invasive neuroimaging techniques has resulted in an extensive use of them to 

search for potential imaging markers for psychosis prediction in addition to 

elucidating the neural correlates of perceptual and cognitive disruptions 

throughout various stages of psychosis. The second part of the introduction 

chapter focuses on what advanced non-invasive electrophysiological methods 

have revealed about early and late information processing across different 

stages of psychosis and the search for reliable and replicable EEG and MEG based 

markers for psychosis. 
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1.6.1 MEG and EEG methods 

Magnetoencephalography (MEG) is a non-invasive functional neuroimaging 

technique for mapping brain activity which was pioneered by Cohen in 1968 who 

later conducted an MEG recording using a superconducting quantum interference 

device that was capable of measuring weak magnetic fields created by the 

human brain in a magnetically shielded room resulting in signals that were 

comparable to electroencephalography (EEG) signals (Cohen, 1968; Cohen, 

1972). It is necessary to conduct MEG recordings in a magnetically shielded room 

designed to minimize magnetic interference because the magnetic fields created 

by the brain are very small, in the range of femto-Tesla (10-15 fT) to pico-Tesla 

(10-12 fT), compared to the Earth’s magnetic field (10-5 T). 

One main advantage of MEG compared to EEG is that magnetic fields are less 

distorted by the skull and scalp surrounding the brain compared to electric fields 

and thus localization of brain sources of the MEG signal is more accurate due to 

less complex forward models (Hämäläinen, Hari, Ilmoniemi, Knuutila, & 

Lounasmaa, 1993). Indeed MEG is frequently combined with magnetic resonance 

imaging (MRI) to map brain activity and estimate source location of the MEG 

signal. Besides the good spatial resolution, MEG has to an excellent temporal 

resolution and since the 1980s, whole-head MEG systems with 100 to 300 sensors 

have slowly been implemented in research and clinical settings in addition to 

more frequently employed EEG device.  

1.6.2 Origin/electrophysiological basis of MEG signal 

Event-related potentials (ERPs) and their magnetic equivalents, event-related 

fields (ERFs), are time-locked brain responses to internal or external stimuli, 

averaged across a large number of trials (Luck et al., 2014). The ERP/ERF 

component, one of the component waves of the entire waveform, is described in 

terms of its amplitude and latency, latency being defined as the time point 

where the amplitude reaches its maximal value (peak). Both EEG and MEG 

record neural activity from a large number of simultaneously active neurons of 

the cerebral cortex, approximately 50 000 pyramidal neurons needed to be 

active to record a MEG/EEG signal (Hämäläinen et al., 1993). While EEG 

measures electric currents generated by activated synchronous cells, MEG 
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records magnetic flux produced by this electrical activity. Thus folding of the 

cortex is relevant to the MEG signal as only neural currents or sources that are 

tangentially, not radially, oriented to skull generate magnetic fields around 

them that can be detected outside of head (Baillet, 2017). 

1.6.3 Electrophysiological techniques in psychiatric research 

As both MEG and EEG are high temporal-resolution electrophysiological 

techniques that can quantify changes in neuronal processing related to different 

states of activity in response to external or internal events over a few 

milliseconds, they provide a good non-invasive tool to assess perceptual and 

cognitive disturbances and their underlying neurophysiological mechanisms in 

psychiatric conditions such as schizophrenia. These advanced non-invasive 

neuroimaging techniques have not only enabled researchers to begin to 

elucidate the neurobiological basis of cognitive and perceptual deficits observed 

across different stages of psychosis but also resulted in search for reliable and 

replicable EEG and MEG based biomarkers for psychosis. 

Biological parameter, namely a biomarker is defined as “a characteristic that is 

objectively measured and evaluated as an indicator or healthy biological 

processes, pathological processes or pharmacological responses to therapeutic 

intervention ” (Biomarkers Definitions Working Group et al., 2001). Biomarkers 

have several potential applications as a tool for diagnosis, staging, prognosis and 

monitoring responses to interventions in psychiatry. Given that the diagnosis of 

psychotic disorders relies solely on subjective clinical assessments based on 

behavioural symptoms, there is a large body of research dedicated for searching 

a biomarker for psychosis, especially for schizophrenia. However, despite great 

efforts for finding clinically meaningful biomarkers to inform diagnosis or 

treatment in the field of psychosis, biomarkers or clinical tests for psychosis are 

still to be identified (Prata, Mechelli, & Kapur, 2014). Indeed, the ultimate aim 

of the clinical staging model of psychosis is to develop a clinicopathological 

model by supplementing different stages associated with different symptom 

severity and treatments with potential biomarkers as well (Mcgorry et al., 2006). 

However, currently there are no reliable electrophysiological measures for 

identifying different stages of psychosis or predicting illness progression. 

Interestingly though, there are several electrophysiological measures that have 
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been found to be abnormal in chronic schizophrenia that might emerge in earlier 

stages of psychosis and even prior to the onset of psychosis, potentially having 

utility as a marker for psychosis.  

1.6.4 Sensory processing deficits across different stages of 
psychosis 

1.6.4.1 In schizophrenia, first episode patients and unaffected relatives 

Besides examining cognitive impairments across different domains in 

schizophrenia, as discussed above, more recent research has focused on basic 

sensory functions and early information processing. Indeed a large body of 

evidence has revealed pronounced impairments in sensory processing, 

particularly in the auditory domain (for a review see   (Daniel C. Javitt & Sweet, 

2015)) but also in visual (D. Kim, Zemon, Saperstein, Butler, & Javitt, 2005; 

Revheim et al., 2006), olfactory (Moberg et al., 2014) and tactile domains 

(Teale, Pasko, Collins, Rojas, & Reite, 2013).  

In the auditory modality, several electrophysiological measures have been 

studied extensively using both EEG and more recently MEG to gain insights into 

early pre-attentive auditory processing and later information processing in 

schizophrenia (Van Der Stelt & Belger, 2007). Indeed, a growing body of 

evidence shows that there are disruptions in early sensory processes as indicated 

by aberrant ERP/ERF components in schizophrenia. For instance, P50, an early 

component thought to reflect a sensory gating mechanism or inhibiting 

redundant stimuli, is a well-known measure of early auditory processing (Adler, 

1982). Typically the P50 amplitude decreases in response to repeated stimuli, 

but there are several studies showing that patients with schizophrenia fail to 

show this normal P50 suppression, indicating an early auditory processing deficit 

in the disorder (e.g. Brockhaus-Dumke et al., 2008). Moreover, a meta-analysis 

of 20 studies reported a significantly larger P50 ratio (amplitude to the second 

stimulus divided by the amplitude to the first stimulus) with a large pooled 

standardized effect size of 1.56 in schizophrenia patients compared to controls 

(Elvira Bramon, Rabe-Hesketh, Sham, Murray, & Frangou, 2004). In contrast to 

established schizophrenia, findings on P50 gating among first episode patients 

have been inconsistent (de Wilde, Bour, Dingemans, Koelman, & Linszen, 2007; 

Morales-Muñoz et al., 2016). Interestingly, a recent meta-analysis provided 
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evidence for P50 suppression changes in unaffected relatives of schizophrenia 

patients (Earls, Curran, & Mittal, 2016).  

Besides impairments in shorter latency exogenous ERP components, 

electrophysiological indices of higher cognitive processes, such as the 

endogenous P300 amplitude that is associated with directed attention and 

working memory-related operations (see Linden, 2005 for a review), have been 

widely studied in schizophrenia patients. While previous studies have shown a 

reduced auditory P300 amplitude to be a consistent finding in schizophrenia 

patients, results are less consistent for the P300 latency; a meta-analysis of 46 

studies reported a large effect size of 0.85 for the P300 amplitude and a medium 

effect size of 0.57 for the P300 latency in schizophrenia patients compared to 

healthy controls (Elvira Bramon et al., 2004). Moreover, P300 deficiency seems 

to be also present in first episode patients, a recent meta-analysis reporting a 

smaller P300 amplitude with an effect size of 0.83 and prolonged P300 latency 

with an effect size of 0.48 (Qiu, Tang, Chan, Sun, & He, 2014), as well as in 

unaffected relatives (Earls et al., 2016). 

1.6.4.2 In individuals at clinical high risk state for psychosis  

Several recent studies have investigated sensory gating, as indexed by P50 

suppression, in CHR individuals but have revealed mixed results, some studies 

have found P50 suppression deficits in CHR individuals in comparison with 

controls (Brockhaus-Dumke et al., 2008; Myles-Worsley, Ord, Blailes, Ngiralmau, 

& Freedman, 2004), but others not (Cadenhead, Light, Shafer, & Braff, 2005; 

Hsieh et al., 2012; Van Tricht et al., 2015). Compared to P50 gating deficits, 

attenuated P300 abnormalities appear to be consistently reported in CHR 

individuals as a number of studies have found significant P300 amplitude 

reductions to be present in this population, suggesting it to be a potential 

marker for psychosis risk (del Re et al., 2015; Frommann et al., 2008; Özgürdal 

et al., 2008; Van Der Stelt, Lieberman, & Belger, 2005).  
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1.7 Mismatch negativity 

1.7.1 Basic characteristics of MMN 

Auditory mismatch negativity (MMN; Näätänen, Gaillard, & Mäntysalo, 1978) 

and its magnetic counterpart (MMNm; Hari et al., 1984), first described by 

Näätänen and colleagues in 1978, is a component of an auditory event-related 

brain potential/field that is elicited automatically by a violation of a previously 

established auditory regularity (Näätänen et al., 1978; Näätänen, Paavilainen, 

Rinne, & Alho, 2007) and can be recorded non-invasively with EEG and MEG. The 

MMN response is commonly studied by using a classic oddball paradigm in which 

a series of identical standard stimuli precede the elicitation of MMN by a low 

probability deviant stimulus that differs on one or more feature dimensions such 

as frequency, duration or intensity. However, MMN can also be evoked by more 

complex and abstract changes, for instance by violating regularity in roving 

paradigms (Baldeweg, Klugman, Gruzelier, & Hirsch, 2004) or rhythmic violations 

(Vuust et al., 2005). The elicited MMN is obtained by subtracting the ERP in 

response to standard stimuli from the ERP to deviant stimuli. The MMNm 

response is an early response that typically peaks at 150-250 ms post-stimulus 

and is most frequently quantified as a peak or mean amplitude across a time 

interval of interest and sometimes complemented by information about its 

latency (Bartha-Doering, Deuster, Giordano, Am Zehnhoff-Dinnesen, & Dobel, 

2015). As the MMN is optimally generated in the absence of attention unlike the 

P300, it makes it an ideal electrophysiological measure for clinical studies where 

motivation and attention are potential confounding variables (Näätänen, 2000). 

In the current study, we employed a simple visual detection task in order to 

direct participants’ attention away from the auditory stimulation. 

1.7.2 MMN paradigms 

The MMN response is evoked by any discriminable change in a repetitive auditory 

pattern but the standard stimulus needs to be repeated a few times at the 

beginning of a stimulus block so that a representation of a standard sound can be 

developed and a deviant sound can evoke an MMN response (Cowan, Winkler, 

Teder, & Näätänen, 1993). The amplitude of the MMN response increases with 

increasing number of standards which is believed to reflect the strength of the 
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underlying memory trace (e.g. Javitt, Grochowski, Shelley, & Ritter, 1998). The 

amplitude is also modulated by the inter stimulus interval (ISI) where shorter ISIs 

elicit larger MMN amplitude responses, the response vanishing when the ISI is 

more than 10 seconds (Sams, Hari, Rif, & Knuutila, 1993) potentially due to 

memory decay for the standard stimuli (Mäntysalo & Näätänen, 1987) . 

Additional factor affecting the MMN response is the probability of the deviant 

stimulus. For example, Javitt and collegues (1998) found that both in healthy 

controls and schizophrenia patients the MMN amplitude increased as the deviant 

occurrence decreased from 15 % to 0.56 %, potentially due a stronger 

representation of the standard stimuli with a lower deviant probability. Similarly 

it has been found that as the difference between the standard and deviant 

stimulus becomes larger in frequency, intensity (Novitski, Tervaniemi, 

Huotilainen, & Näätänen, 2004), or duration (Joutsiniemi et al., 1998), the MMN 

amplitude becomes larger and latency becomes shorter.  

1.7.3 Cerebral generators of MMN 

The hemispheric laterality of MMN depends on the stimulus type, namely the 

MMN response is right lateralized for simple tone stimuli (Levänen, Ahonen, Hari, 

McEvoy, & Sams, 1996) and left lateralized for language stimuli (Näätänen et al., 

1997). Regarding MMN sources, studies suggest that the MMN is generated 

primarily in the temporal lobes with some studies reporting sources in primarily 

the right frontal lobe. While some studies using fMRI have found both activation 

in the superior temporal gyri (STG) bilaterally and in the right inferior frontal 

gyrus (IFG) (Opitz, Rinne, Mecklinger, Von Cramon, & Schröger, 2002; 

Schonwiesner et al., 2007), other fMRI studies could not detect significant 

activation in the IFG (Cacciaglia et al., 2015).  

Source reconstruction studies using EEG have also reported frontal sources in 

addition to temporal sources (Doeller et al., 2003; Fulham et al., 2014; Marco-

Pallarés, Grau, & Ruffini, 2005; Waberski et al., 2001). However, it has turned 

out to be more difficult to find frontal sources using MEG (Recasens, Grimm, 

Wollbrink, Pantev, & Escera, 2014). For example, an early study using both EEG 

and MEG found frontal activation only with EEG but not with MEG (Rinne, Alho, 

Ilmoniemi, Virtanen, & Näätänen, 2000), hence it is possible that the frontal 
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MMN source is deeper in the brain or radially orientated to which MEG is blind 

(Hämäläinen et al., 1993).  

1.7.4 Neurobiology of MMN 

NMDAR is a glutamate receptor subtype that plays an important role in various 

functions such as long-term potentiation (Cotman & Monaghan, 1988), memory 

(D.C. Javitt, Steinschneider, Schroeder, & Arezzo, 1996; Malhotra et al., 1996), 

learning and synaptic plasticity (Paoletti, Bellone, & Zhou, 2013). NMDAR 

dysfunction has been shown to contribute to various brain disorders (Lakhan, 

Caro, & Hadzimichalis, 2013) and there is a large body of evidence implicating 

NMDA receptors in the pathophysiology of schizophrenia as well. Previous 

pharmacological studies have shown that NMDA antagonist drugs elicit positive, 

negative and cognitive symptoms in controls and triggers psychosis in patients 

(Lahti et al., 1995; Malhotra et al., 1996, 1997; Reich & Silvay, 1989) and GWAS 

have revealed schizophrenia-associated genes involved in the glutamatergic 

system (Ripke et al., 2014). In fact, the majority of evidence for the previously 

discussed abnormal glutamatergic transmission in schizophrenia has primarily 

implicated the hypofunction of NMDA subtype of the glutamate receptor (Rubio, 

Drummond, & Meador-Woodruff, 2012). 

The aforementioned well-replicated MMN alterations in schizophrenia have been 

linked to NMDA receptor hypofunction. Since the first study that demonstrated 

MMN to depend on NMDAR function in monkeys in 1996 (D.C. Javitt et al., 1996), 

a number of pharmacological studies in humans have shown MMN to be sensitive 

to activity of glutamate N-methyl-D-aspartate receptor (NMDAR) by blocking 

NMDA receptors using NMDAR antagonists, such as ketamine and phencyclidine 

(D. Umbricht, Koller, Vollenweider, & Schmid, 2002). Moreover, a recent meta-

analysis of eight ketamine studies on MMN generation in humans showed that 

ketamine decreased MMN amplitude and increased latencies, the effects not 

varying between different deviant types (Rosburg & Kreitschmann-Andermahr, 

2016). In the light of evidence for MMN generation to critically depend on 

NMDAR, MMN is typically considered as a useful non-invasive marker of NMDA 

receptor glutamate function in schizophrenia.  
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Although it remains largely unknown how the hypofunction of NMDAR results in 

excessive glutamate release, it has been suggested that NMDAR hypofunction 

disrupts the functioning of parvalbumin-expressing γ-Aminobutyric acid 

(GABA)ergic interneurons and results in an elevated excitatory and inhibitory 

ratio due to a loss of inhibition (Lewis, Hashimoto, & Volk, 2005; Marín, 2012), 

which has been proposed to play a role in the pathophysiology of schizophrenia 

(Gonzalez-Burgos & Lewis, 2012; Murray et al., 2014).  

1.7.5 Underlying mechanisms of MMN  

There are several theories to explain the generation of the MMN response and 

the underlying mechanisms continue to be debated. The model adjustment 

theory suggests that the MMN results from a comparison between the stimulus 

input and the memory trace, whereby the MMN response reflects an update of 

the auditory environment. According to this theory, the functional role of the 

MMN is to update the information about the auditory regularities rather than 

deviance detection per se (Winkler & Czigler, 1998; Winkler, Karmos, & 

Näätänen, 1996).  

Another relatively recent hypothesis of the MMN generation is the neural 

adaptation hypothesis that proposes that the repeated presentation of the 

standard stimulus results in attenuated responses of feature-selective neurons. 

The MMN is thus solely generated by the deviant stimulus activating different, 

less adapted populations of neurons in the auditory cortex resulting in a larger 

ERP response (May & Tiitinen, 2010). In this framework, the MMN is not related 

to a higher-level comparison process but simply an attenuated and delayed, i.e. 

a modulated, N1 response due to synaptic depression and lateral inhibition. 

More recently, a predictive coding account, which combines the model 

adjustment and neural adaptation hypothesis, has been proposed (Friston, 2005; 

Rao & Ballard, 1999). According to this framework, the brain constantly predicts 

the causes of sensory input by comparing incoming sensory input with top-down 

predictions generated by an internal model containing regularities extracted 

from previous sensory experiences. In this model, feedforward connections 

convey a residual prediction error between the thalamic input and the 

prediction that is conveyed by cortical feedback connections. This prediction 
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error signal in granular layer 4 is transmitted by feedforward connections 

upward to supragranural layers 2/3 to update the internal model and predictions 

about sensory input (Baldeweg, 2007; Friston, 2005). Importantly, evidence 

suggests that the auditory MMN signal is a direct index of a prediction error, and 

reflects implicit learning of sensory regularities (Garrido, Kilner, Stephan, & 

Friston, 2009; C. Wacongne, Changeux, & Dehaene, 2012). Moreover, previous 

studies have indicated that even unexpected sound omissions are capable of 

eliciting MMN (Salisbury, 2012; Catherine Wacongne et al., 2011; Yabe et al., 

1998), providing evidence for the predictive coding account of MMN suggesting it 

to emerge by a violation of an internal predictive model of upcoming events 

based on previously established auditory regularities. In the current thesis, we 

recorded MMNm responses to both duration deviants and sound omissions. 

1.8 MMN across different stages of psychosis 

1.8.1 MMN amplitude deficits in chronic schizophrenia and first 
episode patients 

Early auditory processing disruption as indexed by reduced MMN amplitude has 

consistently been shown to be present in schizophrenia patients since the first 

report in 1991 (Shelley et al., 1991), both in acute and chronic as well as in 

medicated and unmedicated patients (Catts et al., 1995). Indeed, it is now well 

established from more than 200 studies and confirmed by two meta-analyses 

that schizophrenia patients exhibit a large MMN deficit (ES = 0.95 – 0.99) 

(Erickson, Ruffle, & Gold, 2016; D. Umbricht & Krljesb, 2005), which has been 

linked to grey matter loss (Rasser et al., 2011; Salisbury, Kasai, McCarley, 

Kuroki, & Shenton, 2007) and NMDAR hypofunction (D.C. Javitt et al., 1996; 

Rosburg & Kreitschmann-Andermahr, 2016). Schizophrenia patients appear to be 

sensitive to the same aforementioned parameters as healthy controls, such as 

the probability of the deviant stimulus and the difference between the standard 

and deviant stimulus (Michie, Malmierca, Harms, & Todd, 2016). However, in 

line with a previous study suggesting MMN to complex regularities to be intact in 

schizophrenia (Todd et al., 2014), a recent meta-analysis comparing MMN 

amplitudes elicited by simple (frequency, intensity and duration) and complex 

(abstract) deviants in schizophrenia found that MMN deficits were larger to 

simple deviants compared to complex deviants (Avissar et al 2018).  
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Interestingly, evidence suggests that MMN deficits are present already in the 

earlier stages of psychosis before the chronic stage of the illness. Several studies 

have reported MMN amplitude to be attenuated already in first episode patients 

(e.g. R. Atkinson, Michie, & Schall, 2012; Higuchi et al., 2013; Kaur et al., 2011). 

On the other hand, some studies have failed to replicate this findings (Magno et 

al., 2008; Mondragón-Maya et al., 2013; D. Umbricht, Bates, Lieberman, Kane, & 

Javitt, 2006). However, a recent meta-analysis reported a medium MMN 

amplitude impairment (ES = 0.42) in first episode patients (Erickson, Ruffle, & 

Gold, 2016), which in comparison to a larger effect size of 0.99 in chronic 

schizophrenia could indicate MMN to have a progressive nature over the course 

of the illness as previously proposed by other studies (e.g. Salisbury, Shenton, 

Griggs, Bonner-Jackson, & McCarley, 2003). In summary, original studies of MMN 

amplitude in first episode patients have revealed inconsistent findings, which 

could be due to a number of confounds, but at a meta-analytical level it has 

been reported that MMN deficits are present in first episode patients.  

1.8.2 MMN amplitude in individuals at clinical high risk state for 
psychosis 

Past studies have investigated MMN amplitudes also in CHR individuals to 

examine whether the well-replicated large MMN deficit in schizophrenia and the 

smaller MMN deficit in first episode patients is present already before the first 

episode of psychosis. Interestingly, several studies have found impaired MMN 

responses to at least one type of deviant in CHR individuals compared to controls 

(Atkinson et al., 2012; Hsieh et al., 2012; Jahshan et al., 2012; Daniel C. Javitt 

& Sweet, 2015; Koshiyama et al., 2017; Lavoie et al., 2018; Nagai, Tada, 

Kirihara, Yahata, et al., 2013; Perez et al., 2014; Shaikh et al., 2012; Shin et al., 

2009; Solís-Vivanco et al., 2014), suggesting that MMN is compromised prior to 

psychosis onset and could represent a marker of risk for psychosis development. 

However, not all studies have found MMN deficits in CHR individuals (Atkinson et 

al., 2017; Bodatsch et al., 2011; Brockhaus-Dumke et al., 2005; Higuchi et al., 

2013; Hirt, Schubring, Schalinski, & Rockstroh, 2019; Koshiyama et al., 2017; 

Lepock et al., 2019; Mondragón-Maya et al., 2013). As some studies have 

reported reduced MMN to duration but not frequency deviants in CHR individuals 

(e.g. Nagai et al., 2013; Todd et al., 2008), it has been suggested that only 

duration MMN amplitude may be attenuated in the earlier stages of psychosis 
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and frequency MMN in the chronic stage of the illness. However, this notion is 

challenged by studies that found equally reduced duration and frequency MMN 

amplitudes in CHR individuals (Perez et al., 2014) and recent onset 

schizophrenia patients (Hay et al., 2015). Collectively, previous findings of 

reduced MMN amplitude in first episode patients and CHR individuals has led to 

the suggestion that MMN amplitude reduction has utility as a potential marker 

for early stages of psychosis. 

1.9 Associations of MMN with cognition, symptoms and 
functioning  

1.9.1 Schizophrenia 

Besides past studies demonstrating robust impairments in early auditory 

processing, cognition and functioning in schizophrenia, (D. Umbricht & Krljesb, 

2005), several studies have investigated basic auditory processing, as indexed by 

MMN, in relation to higher cognition, clinical symptoms and daily functioning. 

Interestingly, a number of studies have found that the degree of MMN 

impairment is linked to the degree of cognitive impairment (Baldeweg et al., 

2004; Kawakubo & Kasai, 2006; S. H. Lee, Sung, Lee, Moon, & Kim, 2014; 

Miyanishi, Seo, Higuchi, Suzuki, & Sumiyoshi, 2013; Toyomaki et al., 2007), 

suggesting that MMN may provide insights into the origin of cognitive deficits in 

schizophrenia. However, this result has not always been replicated and not all 

studies have found evidence for the association between MMN and 

neuropsychological deficits in schizophrenia (Brockhaus-Dumke et al., 2005; Y. 

T. Lin et al., 2012).  

Early auditory processing deficits have also been linked to functional 

impairments, including social cognition (Wynn, Sugar, Horan, Kern, & Green, 

2010) and everyday functioning, such as GAF, living in a highly structured setting 

and socio-occupational functioning, in schizophrenia patients (Fulham et al., 

2014; Hermens et al., 2010; M. Kim et al., 2014; S. H. Lee et al., 2014; Light & 

Braff, 2005; Rasser et al., 2011). This line of evidence supports the cascade 

model of information processing in which early auditory processing has a flow-on 

impact on cognition and functioning (Daniel C. Javitt, 2009). With regard to 

symptoms, while some studies have linked MMN to negative symptoms (e.g. 
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Javitt, Shelley, & Ritter, 2000; Kasai et al., 2002), and hallucinations (e.g. Youn, 

Park, Kim, Kim, & Kwon, 2003), two meta-analyses show that majority of studies 

could not find an association between MMN and symptoms in schizophrenia 

(Umbricht & Krljesb, 2005; Erickson et al., 2017).  

Interestingly, a recent large study of 1415 schizophrenia patients aimed to 

further disentangle the relationships between MMN, cognitive deficits and 

functioning. They reported that auditory information processing deficits, as 

measured by MMN, P3 and reorienting negativity, contributed to functional 

outcomes through a direct effect on both cognition and negative symptoms, 

providing evidence for the notion that low level auditory processing impacts 

higher level cognitive performance and functional outcome. Moreover, this also 

suggests low level auditory processing to be a potential treatment target to 

enhance cognition and functional outcome (Thomas et al., 2017).  

1.9.2 Clinical high risk state for psychosis 

Currently very little is known about the association between MMN and cognitive 

performance in individuals in the high risk stage of psychosis and the existing 

studies have revealed mixed results. While one study found an association 

between MMN amplitude and verbal fluency (Higuchi et al., 2013), two other 

studies did not find any links between MMN and different neuropsychological 

domains in CHR individuals (Brockhaus-Dumke et al., 2005; Koshiyama, Kirihara, 

Tada, Nagai, Fujioka, Koike, et al., 2018). Likewise, studies are rare and findings 

conflicting on the functional significance of MMN in CHR individuals. There is 

some evidence for a link between early auditory processing and social and role 

functioning (Daniel C. Javitt & Sweet, 2015) as well as global functioning 

(Koshiyama, Kirihara, Tada, Nagai, Fujioka, Koike, et al., 2018), however, 

majority of previous studies have found no correlation between MMN and global 

functioning in CHR individuals (Jahshan et al., 2012; Shin et al., 2009; Solís-

Vivanco et al., 2014). Comparable to findings in schizophrenia patients, majority 

of studies have failed to find correlations between symptoms and MMN in CHR 

individuals (Atkinson et al., 2012; Perez et al., 2014; Solís-Vivanco et al., 2014), 

apart from one study that reported CAARMS positive symptom and total severity 

scores to be moderately associated with MMN (Shin, Kim, et al., 2012), though 

the direction was different than hypothesised.  
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1.10 MMN amplitude as a potential marker for predicting 
psychosis and clinical outcomes in CHR individuals 

Besides previous neurophysiological studies revealing the presence of early 

auditory processing deficits as indexed by MMN deficits in the high risk stage of 

psychosis using EEG and MEG, there has also been an interest in examining the 

utility of MMN deficiency for predicting psychosis in CHR individuals. Indeed, 

several previous studies have found a reduced baseline MMN amplitude in CHR-Ts 

compared to CHR-NTs (e.g. Higuchi et al., 2013; Shaikh et al., 2012). On the 

other hand, not all studies have found reduced MMN amplitude in CHR-Ts 

compared to CHR-NTs (Atkinson et al., 2017; Hsieh et al., 2012). Interestingly, 

while a recent meta-analysis of 17 studies reported a medium MMN impairment 

(ES = 0.40) in CHR individuals irrespective of transition to psychosis, they found 

a significant difference in effect size between CHR-Ts (0.79) and CHR-NTs (0.17) 

(Erickson et al., 2016). Furthermore, in addition to studies 

investigating group differences in MMN between CHR-Ts and CHR-NTs, previous 

studies have also reported that reduced duration MMN amplitude predicts the 

onset of psychosis in CHR individuals. For instance, Bodatsch and colleagues 

(2011) found that besides the baseline group differences in MMN between CHR-Ts 

and CHR-NTs, MMN was able to predict conversion and enabled stratification of 

two risk classes that differed regarding time to transition. Similarly, Perez and 

colleagues (2014) found that MMN to double deviants (frequency + duration) was 

able to predict time to psychosis onset in CHR individuals. Overall, this line of 

research suggests MMN deficiency to be a potential marker for predicting onset 

of psychosis in CHR individuals. However, majority of previous studies have been 

limited by insufficient power due to small sample sizes, potentially biasing the 

aforementioned meta-analysis results as well and thus more research is required 

before conclusions can be drawn.  

Research on the utility of neurophysiological measures in predicting other 

important clinical outcomes in CHR individuals in addition to psychosis is 

important but currently scarce due to the focus on psychosis as the main interest 

of outcome. Interestingly, a recent study found that the P300 amplitude was 

able to predict symptom improvement over a 2-year follow up period, namely 

higher P300 amplitude was associated with greater negative and general 

symptom improvement, suggesting the amplitude of P300 to have predictive 



51 
 

 
 

validity for a short-term outcome in CHR individuals (M. Kim et al., 2015). 

Moreover, the same group recently reported that compared to controls and CHR 

individuals who remitted symptomatically and functionally, the MMN amplitude 

at baseline was reduced in non-remitters, suggesting MMN to have potential 

utility as a predictor for remission in addition to transition to psychosis. Finally, 

while it has been suggested that combining clinical variables with 

electrophysiological brain measures might improve psychosis prediction in CHR 

individuals, it remains unknown whether combining MMN with non-imaging 

markers enhances prediction of other clinically relevant outcomes in CHR 

individuals (McGuire & Dazzan, 2017; Paolo Fusar-Poli, Borgwardt, et al., 2013). 

This is an important question in terms of weighting the cost of obtaining an MMN 

measure compared to clinical and demographic variables that are financially 

more feasible and practically easier to obtain than electrophysiological 

measures. 

1.11 Thesis aims  

The main aim of chapter 3 was to investigate the characteristics of early 

auditory processing as indexed by MEG-based MMNm amplitude responses to both 

duration deviants and sound omissions in sensor and source space in a large 

sample of individuals at clinical high risk state for developing psychosis and in a 

smaller sample of first episode patients and healthy controls. Through this 

approach, the goal was to investigate whether the well-replicated MMN deficit in 

chronic schizophrenia (D. Umbricht & Krljesb, 2005) is present already in CHR 

individuals. The key question I sought to answer was whether MMNm amplitude is 

compromised prior to psychosis onset and could be a potential marker of risk for 

psychosis development. I also explored potential MMNm amplitude differences 

between CHR subgroups theorised to be in different high risk stages based on the 

two-stage model of clinical risk for psychosis (Frauke Schultze-Lutter et al., 

2010). Furthermore, the associations between MMNm amplitudes and cognitive 

and clinical measures were assessed in the CHR sample to determine whether 

MMNm impairments are associated with poor functioning and cognitive deficits. 

The final objective of chapter 3 was to examine the clinical characteristics of 

community recruited CHR individuals to determine whether, similar to CHR 

samples identified through specialised early intervention services, this 
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population is characterised by psychosocial problems and comorbid disorders 

that require clinical attention. 

In addition to the conventional analysis of MMNm peak amplitudes, the aim of 

chapter 4 was to use dynamic causal modelling (Friston, Harrison, & Penny, 

2003) to examine effective connectivity underlying MMNm responses in CHR 

individuals and healthy controls. More specifically, based on the dysconnectivity 

hypothesis of psychosis (Friston, 1998) and previous DCM studies reporting 

disrupted effective connectivity in the MMN brain network in schizophrenia 

patients (D. Dima, Frangou, Burge, Braeutigam, & James, 2012; Ranlund et al., 

2016), I sought to investigate whether altered connectivity is present prior to 

psychosis onset in the high risk stage of psychosis.  

Chapter 5 presents the outcomes of the clinical follow-ups of CHR individuals at 

12 months in terms of progression from the high risk stage to the first episode 

psychosis stage. In addition to transition to psychosis as an outcome of interest, I 

also examined the rates of both symptomatic and functional remission of CHR-

NTs. The first aim of chapter 5 was to investigate whether MMNm amplitude is 

associated with progression to psychosis by comparing MMNm amplitudes of CHR-

Ts and CHT-NTs. Moreover, we examined whether MMNm amplitude is able to 

discriminate those who achieved symptomatic and functional remission from 

those who did not. The final goal of chapter 5 was to determine whether MMNm 

amplitude has utility as a marker for predicting the severity of symptoms or 

functioning at 12 months in CHR individuals. Given that our study is the first 

study in a large sample of CHR individuals recruited predominantly from the 

community, follow-up clinical findings will also be reviewed and discussed to 

gain novel insights into trajectories of CHR individuals recruited from the 

community.
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2 Methods 

The recruitment, participants, study procedure as well as MEG stimuli, recording 

and data pre-processing covered in chapter 2 are applicable to all following 

three data chapters (chapter 3, 4 and 5). Chapter-specific statistical analyses 

are outlined separately in each chapter. 

2.1 Recruitment  

We recruited participants from different mental health services including the 

Community Mental Health Teams, the Child and Adolescent Mental Health 

Service, Early Intervention in Psychosis service and the Glasgow University 

counselling service. We also recruited participants from the general population 

through different recruitment strategies including the YouR-study website 

(https://www.your-study.org.uk/), email invitations to local university and 

college students in Glasgow and Edinburgh and advertisements on a free 

newspaper (Metro) and the Glasgow Subway. In addition, letters were sent to 

general practitioners (GP) and posters placed in the National Health Service 

clinics in Glasgow and Edinburgh. Finally, databases of GP practices were 

searched for potential participants who subsequently received an invitation 

letter that directed them to the YouR-study website. Recruitment pathways for 

HC, CHR and FEP groups are presented in Table 2.1. 

Table 2.1 Recruitment pathways for HC, CHR and FEP groups. 

GP CMHT CAMHS ESTEEM
Study 

Website
SPT 

Subway
UofG 

counselling
Third 
sector Other

HC 0 0 0 0 0 0 0 0 49
CHR 1 2 3 2 4 1 2 2 88
FEP 0 1 0 1 1 0 0 0 9
Total 1 3 3 3 5 1 2 2 146

Group

Recruitment Pathway

 GP, General practitioner; CMHT, Community Mental Health Teams; CAMHS, the Child and 
Adolescent Mental Health Service; ESTEEM, First Episode of Psychosis Service, SPT, 
Strathclyde Partnership for Transport; HC, healthy control; CHR, clinical high risk; FEP, first 
episode psychosis.  

2.2 Participants  

The CHR group consisted of 106 participants that were between 16 to 35 years of 

age with normal to corrected vision. Participants fulfilled one of the clinical CHR 
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inclusion criteria based on the positive symptom subscales of the CAARMS 

(unusual thought content, non-bizarre ideas, perceptual abnormalities and 

disorganised speech) (Yung et al., 2005) or/and the SPI-A (Schultze-Lutter et al., 

2007). Exclusion criteria for the CHR group included 1) existing neurological 

disorders, 2) metal implants in body, 3) pregnancy and 4) suicidal intent. The 

FEP group consisted of 17 participants and the inclusion criteria for the FEP 

group were similar to the CHR group but instead of fulfilling the CHR criteria, 

participants had experienced a first episode of psychosis based on the DSM-5 

295.0. The exclusion criteria for FEP participants was identical to that of CHR 

participants. 

We recruited 49 control participants from the University of Glasgow School of 

Psychology Subject Pool via email. Exclusion criteria for controls were identical 

to that of CHR and FEP participants with two additional criteria of not 

fulfilling the CHR criteria and not having a family history (1st degree relative) of 

schizophrenia. The Greater Glasgow and Clyde NHS Ethics board reviewed and 

approved the current study, and a written informed consent was obtained from 

all participants. All participants were compensated at the standard rate of six 

pounds per hour for their time.  

2.3 Design and procedure 

2.3.1 Online screening 

Participants were directed to the study website (https://www.your-

study.org.uk/) to complete an informed consent for the web screening and two 

questionnaires: 1) the 16-item version of the prodromal questionnaire (PQ-16) 

and 2) a 9-item perceptual and cognitive aberrations (PCA) scale that was 

developed to assess basic symptoms. The PQ-16 was developed from the 92-item 

prodromal questionnaire and designed for a screening of APS and to preselect 

participants for a subsequent screening interview. Previous study reported that 

among general help-seeking individuals a cut-off score of ≥ 6 items out of 16 on 

the PQ had a 87 % true positive rate and 87 % specificity for distinguishing CHR 

diagnosis from no CHR diagnosis (Ising et al., 2012). The nine items of the PCA 

were generated from existing patient descriptions of cognitive and perceptual 

experiences (Uhlhaas & Mishara, 2007) and from the SPI-A. Participants were 
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asked to provide ratings based on their experiences in the last 12 months. 

Participants who scored ≥ 6 items on the PQ and/or ≥ 3 on the PCA were invited 

through an email to participate in the second part of the study that involved a 

clinical assessment to determine their CHR status. 

2.3.2 Clinical screening  

All participants provided two informed consent forms, one for the participant 

and one for the study’s records, before the screening assessment and were 

informed about their right to withdraw from the study at any point without their 

medical care being affected. Following informed consent, basic demographic 

information and patient history including family history of mental illness, 

medication, drug use and psychological treatments were obtained and the SPI-A 

and the positive symptoms subscales of the CAARMS instrument were 

administered by trained research assistant and MSc/PhD level researchers. The 

SPI-A instrument assesses a range of basic symptoms and their severity according 

to the maximum frequency of occurrence in the past three months. According to 

the SPI-A, there are two basic symptom criteria: 1) the Cognitive-Perceptive 

Basic Symptoms (COPER) and 2) the Cognitive Disturbances (COGDIS) criteria. 

COPER criteria requires the presence of at least 1 of 10 cognitive basic 

symptoms of at least moderate severity (SPI-A score of ≥ 3) during the last three 

months with first occurrence more than 12 months ago (Table 2.2). COGDIS 

symptom criteria requires the presence of at least 2 of 9 cognitive basic 

symptoms of at least moderate severity (SPI-A score ≥ 3) during the last three 

months (Table 2.3).  
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Table 2.2 Cognitive-perceptive basic symptoms criteria based on the SPI-A. 
Presence of ≥ 1 of the following 10 basic symptoms with a SPI-A score of ≥ 3 
within the last 3 months and first occurrence ≥1 year ago
1.    Thought interference
2.    Thought blockages
3.    Disturbance of receptive speech
4.    Thought pressure
5.    Unstable ideas of reference
6.    Thought perseveration
7.    Decreased ability to discriminate between ideas and perception, fantasy 
and true memories
8.    Derealization
9.    Visual perception disturbances
10. Acoustic perception disturbances  

 Table 2.3 Cognitive disturbances criteria based on the SPI-A. 
Presence of ≥ 2 of the following 9 basic symptoms with a SPI-A score of ≥ 3 
within the last 3 months

1.      Inability to divide attention

2.      Disturbance of expressive speech 

3.      Disturbances of abstract thinking 

4.      Captivation of attention by details of the visual field 

5.      Thought interference 

6.      Thought blockages

7.      Disturbance of receptive speech 

8.      Thought pressure

9.      Unstable ideas of reference        
SPI-A, Schizophrenia Proneness Instrument, Adult Version. 

The CAARMS measures intensity, frequency and duration of subthreshold 

psychotic symptoms, and has shown to have good predictive validity for 

predicting transition to psychosis (Yung, Yuen, et al., 2003). Intensity and 

frequency for each subscale is scored on a 7-point Likert scale and distress 

caused by the symptom on a 0 – 100 scale. The CAARMS differentiates between 

three UHR-groups: 1) Trait and State Risk Factor Group (Trait), 2) Attenuated 

Psychotic Symptoms group (APS) and 3) Brief Limited Intermittent Psychotic 

Symptoms group (BLIPS). The operationalized UHR criteria for each of these 

groups are shown in Table 2.4. Notably, the current study did not adopt the later 

addition of a functional decline criterion to the intake CHR criteria. The total 

CAARMS symptom severity was operationalised as the sum of the global rating 

scale score multiplied by the frequency score of the four subscales (Morrison et 

al., 2012). 
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Overall functioning was assessed with the Global Assessment of Functioning 

(adapted from (Hall, 1995)) measure that is part of the CAARMS and is used to 

establish the level of functioning. It is a numeric scale ranging from 0 (in 

persistent danger) to 100 (superior functioning) to rate the social, occupational 

and psychological functioning of participants excluding impairment in 

functioning due to physical health or environmental limitations.  

Table 2.4 Summary of ultra-high risk criteria based on the CAARMS. 

Group Intake criteria checklist
Trait Group - Family history of psychosis in first-degree relative- 30 % drop in GAF score from pre-morbid level, sustained for 1 

month, occurred during last year or GAF score of 50 for last year 
or longer

APS: subthreshold intensity - Severity scale score of 3-5 on Unusual Thought Content subscale 
or Non-bizarre Ideas subscale, 3-4 on Perceptual Abnormalities 
subscale or 4-5 on Disorganized Speech subscales of the CAARMS-
- Frequency scale score of 3–6 on Unusual Thought Content, Non-
Bizarre Ideas, Perceptual Abnormalities or Disorganised Speech 
subscales of the CAARMS
 For at least 1 week 
 Symptoms present in past year

APS: subthreshold frequency  Severity scale score of 6 on Unusual Thought Content, Non-
Bizarre Ideas or Disorganised Speech subscales or 5-6 on 
Perceptual Abnormalities of the CAARMS
 Frequency scale score of 3 on Unusual Thought Content, Non-
Bizarre Ideas, Perceptual Abnormalities or Disorganised Speech 
subscales of the CAARMS
 Symptoms present in past year

BLIPS Group  Severity scale score of 6 on Unusual Thought Content, 6 on Non-
Bizarre Ideas, 6 on Disorganised Speech subscales or 5-6 on 
Perceptual Abnormalities of the CAARMS
 Frequency scale score of 4-6 on Unusual Thought Content, Non-
Bizarre Ideas, Perceptual Abnormalities or Disorganised Speech 
 Each episode of symptoms is present for less than one week and 
symptoms spontaneously remit on every occasion
 Symptoms occurred during last year      

APS, Attenuated Psychotic Symptoms; BLIPS, Brief Limited Intermittent Psychotic 
Symptoms 

2.3.3 Baseline visits 

Following the baseline clinical screening, participants were invited for a second 

visit that included a battery of questionnaires (Mini International 

Neuropsychiatric Interview 6.0, Scale for Premorbid Adjustment, Global 

Functioning Social and Role Scale). The Global Functioning: Social and the Global 

Functioning: Role measures were developed to measure prodromal functioning 
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and to cover the age range typical of the prodromal phase, disentangle social 

from role functioning and provide a brief and easy to use clinician ratings 

(Cornblatt et al., 2007).  

The third visit included administering the Brief Assessment of Cognition in 

Schizophrenia (BACS) version 3.1 to assess six domains of cognition, namely 

verbal memory and learning (list learning task), working memory (digit 

sequencing task), motor speed (token motor task), verbal fluency (semantic 

fluency task), executive function (Tower of London task) and processing speed 

(symbol coding task) (Keefe et al., 2004). Following the neuropsychological visit, 

participants were invited for a brain imaging visit, including an MEG recording 

and an MRI scan session. 

2.3.4 Follow-up assessments 

CHR participants were followed up for 12 months (at 6, 9 and 12 months). The 

four positive symptom subscales of the CAARMS instrument, Global Assessment 

of Functioning and self-report questionnaires were re-administered at every 

follow-up, namely at 6, 9 and 12 months. Global Functioning: Social and Global 

Functioning: Role Scale were assessed at 6 and 12 months. The Structured 

Clinical Interview 1 (SCID-1) for DSM-5 is a semi-structured interview for making 

the major DSM-5 diagnoses and was administered at 6 and 12 months.  

2.3.5 Data acquisition  

MEG recordings were conducted at the Centre for Cognitive Neuroimaging at the 

University of Glasgow on average 84.7 (SD = 76.1) days following the first clinical 

interview. During the MEG recording session, participants were seated in a 

reclining chair and asked to support their head against the back of the helmet of 

the MEG dewar to minimize head movement. Participants performed a short 

practice run to get familiar with the visual letter detection task and we checked 

that the tones presented were balanced in loudness between the ears. During 

the recording session, participants were instructed to sit as still as possible, 

ignore the auditory stimuli and respond as quickly as possible to the target 

letters by pressing a button on a response pad with their right index finger 

(LUMItouch, Lightwave Technologies, Surrey, BC, Canada).  
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MEG data was recorded with a 248-magnetometer whole-head MEG 

system (MAGNES® 3600 WH, 4-D Neuroimaging, San Diego) in a dimly lit 

magnetically shielded room. Prior to data acquisition, we attached five head 

position indicator coils to the participant's head to record the head position 

within the MEG helmet before and after each block. Blocks with head 

movements exceeding the threshold of 1.0 cm were repeated to avoid source 

localization errors. For each participant the positions of the head coils, three 

anatomical fiducial points (the nasion and the right and left preauricular) and 

their head shape were digitized using a 3D digitiser (FASTRAK®, Polhemus Inc., 

VT, USA). We used the digitized fiducial markers and the head shape for 

subsequent coregistration of the structural MRIs with the MEG data. 

Neuromagnetic signals were acquired at a 1017.25 Hz sampling rate with a 

bandwidth of 400 Hz.  

After the MEG recording a high-resolution anatomical MRI scan was acquired for 

each participant using a 3D magnetization-prepared rapid-acquisition gradient 

echo sequence (160 slices; voxel size: 1mm3; FOV: 256 mm; TR: 2300 ms; TE: 

3.93 ms). Scanning was performed with a 3-Tesla Siemens Trio scanner. 

2.4 MEG stimuli and task 

2.4.1 Auditory mismatch negativity paradigm 

All sounds were computer-generated complex sinusoidal sounds (400Hz * 800Hz) 

with 7-ms ascending and descending ramps. Series of four or five brief sounds 

were presented with a fixed stimulus onset asynchrony (SOA) of 150 ms and with 

a randomized inter-stimulus interval (ISI) that was jittered between 700 to 1000 

ms. Three types of auditory stimuli were presented: standard, deviant and 

omission trials. Standard trials contained five identical sounds, deviant trials 

comprised four identical sounds and a fifth duration-deviant sound, and omission 

trials contained only four identical sounds. The standard sound duration was 

80 ms and the deviant sound duration was 40 ms. All sounds were presented at 

the default level of 81 dB unless a participant’s hearing was too impaired (93 dB) 

or sensitive (71 dB) to be loud enough or comfortable. The auditory stimuli were 

presented as three blocks, each block consisting of 200 trials and lasting 

approximately five minutes. Each block consisted of 120 standard trials that 
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were presented with a probability of 0.6, 40 deviant trials with a probability of 

0.2 and 40 omission trials with a probability of 0.2. The trials were presented in 

pseudorandomized order so that each block started with three standard trials 

before delivering the first deviant/omission trials and two deviant trials were 

never consecutive (Figure 2.1). The auditory stimuli were presented binaurally 

via MEG-compatible 6-meter-long plastic tubes attached to earplugs using an 

Etymotic ER-30 system (Etymotic Research, Inc. United States of America). The 

MEG tasks were presented using Presentation® software (Version 18.0, 

Neurobehavioral Systems, Inc., Berkeley, CA). 
 

  

    120 standard sequences      [♪♪♪♪♪         ]   p = .6 

    40 deviant sequences          [♪♪♪♪♪         ] p = .2          

    40 omission sequences       [♪♪♪♪         ]  p = .2 

700 to 
1000ms 
 

150 ms 

40 ms 80 ms 

 

Figure 2.1 Auditory mismatch negativity paradigm. All three types of auditory sequences 
presented with a SOA of 150 ms. The ISI between two series varied from 700 to 1000 ms. 

2.4.2 Visual letter detection task  

The auditory MMNm paradigm was combined with a visual letter detection task 

to control for potential attention effects. The visual stimuli consisted of 20 

target letters (X) and 100 non-target letters (R, S, T, U, V, W, Y, Z) that were 

pseudo-randomized throughout the auditory series. Visual targets were 

always presented during standard trials and were time-locked to the 

presentation of the first sound. Both target and non-target letters were 

presented for 150 ms. The font-size was increased when necessary for 

participants with poor vision without their glasses. Viewing distance was 

approximately 80 cm.  
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2.5 Data analyses 

2.5.1 MEG data pre-processing  

I used an open source software package FieldTrip (Oostenveld, Fries, Maris, & 

Schoffelen, 2011) in Matlab (MathWorks, Natick, MA, USA) programming 

environment to pre-process MEG data. I segmented continuous MEG data into 

epochs of 1400 ms (200 ms pre-stimulus to 1200 ms post-stimulus), filtered 

epochs to remove power-line noise (50 100 150 Hz) using a discrete 50 HZ 

Fourier transform filter and used a z-score-based algorithm with a cut-off point 

of 20 to check semi-automatically for muscle artifacts and superconducting 

quantum interference device jumps. Then I denoised epochs using the reference 

sensor data recorded by 23 MEG reference channels and re-sampled the data 

from 1 kHz to 500 Hz and detected noisy channels by visual inspection and 

rejected them on a subject-to-subject basis. On average I identified and 

rejected six bad channels per subject. Subsequently I used an independent 

component analysis (Bell & Sejnowski, 1995) to detect and remove components 

containing muscle activity and electrooculographic and 

electrocardiographic artifacts from the MEG signals using the FieldTrip 

implemented ‘runica’ method. On average 3,4 components (minimum of 2 

components and maximum of 8 components) per participant were identified as 

representing muscle, ocular or cardiac artifacts based on the spatial topography 

and the time course of the components and subsequently removed from the 

signal. I interpolated the rejected channels using the nearest-neighbour 

approach. After pre-processing, there were sensor level data for 49 controls, 106 

CHR participants and 17 first episode patients, overall 172 participants. The 

average standard, deviant and omission trial numbers (standard deviations are in 

parentheses) were 296 (8.7), 113 (5.6) and 112 (5.6) for the controls, 290 (14.7), 

111 (6.8) and 110 (5.7) for CHR participants and 288 (9.5), 110 (5.1) and 110 

(5.8) for the first episode patients. 

Lastly I band-pass filtered the data between 1 Hz and 20 Hz and baseline 

corrected trials using the average activity between 200 to 0 ms pre-stimulus 

activity (the first 200 ms of each epoch). Then I averaged the artifact-free trials 

separately for each condition. For sensor level analyses the averaged axial (ERF) 

data were transformed to planar gradient configuration using the nearest-
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neighbour method to facilitate the topographical interpretation of the data 

(Hämäläinen et al., 1993).  The durMMNm response was computed by subtracting 

the waveform to the standard stimuli from the waveform to the deviant stimuli 

and in a similar manner the omiMMNm response was computed by subtracting 

the waveform to the standard sound from the waveform to the omitted sound. 

Latencies of both durMMNm and omiMMNm responses refer to the onset of the 

deviant or omitted sound (600 ms) rather than the onset of the sequence of five 

sounds.  

2.5.2 Virtual channels  

To assess potential group differences in durMMNm or omiMMNm peak amplitudes 

in specific regions of interests (ROI), I computed artifact-free virtual channel 

time-series at seven pre-specified ROIs for each participant. ROIs were defined 

for the left and right Heschl’s gyri (HG), superior temporal gyri (STG) and middle 

temporal gyri (MTG) and the right inferior frontal gyrus (IFG) (Figure 2.2) based 

on the Automated Anatomical Labelling atlas (AAL) that is widely used for 

macroanatomical parcellation. The selection of these seven ROIs was based on 

previous source localization studies reporting generators of MMN in both frontal 

and temporal regions including HG, STG and MTG using EEG/MEG (Doeller et al., 

2003; Fulham et al., 2014; Marco-Pallarés et al., 2005; Sauer et al., 2017) and 

DCM (Garrido et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009). See Figure 

2.2 for the exact locations of the nodes that I extracted time courses from and 

Table 2.5 for the Montreal Neurological Institute (MNI) coordinates of those ROIs.  

  

Figure 2.2 Regions of interests used for source level analyses. 



63 
 

 
 

Table 2.5 Abbreviations and MNI coordinates of regions of interests. 

Node Abbreviation x y z
Left heschl's gyrus L HG -42 -19 10
Right heschl's gyrus R HG 46 -17 10
Left superior temporal gyrus L STG -53 -21 7
Right superior temporal gyrus R STG 58 -22 7
Left middle temporal gyrus L MTG -56 -34 -2
Right middle temporal gyrus R MTG 57 -37 -2
Right inferior frontal gyrus R IFG 50 30 14

MNI coordinate

 

Using the Linearly Constrained Minimum Variance (LCMV) beamformer (Veen, 

Drongelen, Yuchtman, & Suzuki, 1997) and 5 % regularization I computed the 

spatial filters for the aforementioned seven ROIs and multiplied each of them 

with the original MEG data to reconstruct standard, deviant and omission source 

level time-series. To compute the duration and omission MMNm difference 

waveforms and to average virtual channels across participants, I used absolute 

values to avoid cancellation due to opposite polarities. This procedure resulted 

in virtual channel time-series data for 48 controls, 103 CHR participants and 16 

first episode patients, overall 167 participants. There was a loss of 1 HC, 3 CHR 

and 1 first episode patient due to T1 being unavailable and thus source 

reconstruction was not possible for these participants. 

2.6 Statistical analyses 

2.6.1 General 

All statistical analyses were performed using R statistical software (version 

3.3.2; R Foundation for Statistical Computing, Vienna, Austria) or the Statistical 

Package for Social Sciences (SPSS) version 22 (IBM Corp.).  

In general, if the sample size was < 30 and the central limit theorem could not 

be applied and the Kolmogorov-Smirnov test (sample > n = 50) or the Shapiro-

Wilk’s test (sample < n = 50) indicated that the normality assumption was 

violated I used an equivalent non-parametric test. More specifically, in case data 

did not meet the assumptions of the parametric test, I used the Wilcoxon Rank 

sum test instead of the (dependent, two-tailed) paired t-test, the Mann-Whitney 

U test instead of the (independent, two-tailed) unpaired t-test, the Kruskal-
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Wallis test instead of a one-way ANOVA, the Friedman Test instead of a one-way 

ANOVA with repeated measures and Spearman correlation instead of Pearson 

correlation. Bonferroni correction was applied for further analysis of effects that 

emerged from ANOVAs to avoid type 1 error and to adjust for multiple 

comparisons. A two-tailed alpha level of 5 % was considered significant 

throughout unless otherwise stated. Effect sizes for statistical tests were 

reported using Cohen’s d that is calculated as the difference between the means 

divided by the pooled standard deviation. D = 0.2 is considered a small effect 

size, d = 0.5 a medium effect size and d = 0.8 a large effect size.  

2.6.2 Analyses of demographic and clinical characteristics 
between groups 

I run a one-way analysis of variance (ANOVA) or an independent t-test for 

continuous variables and a chi-square test for categorical variables to investigate 

any potential group differences in baseline and follow-up demographic and 

clinical characteristics. Post-hoc pairwise comparisons with Bonferroni 

correction were performed after a significant omnibus test. 

2.6.3 Individual peak latency and amplitude estimation  

2.6.3.1 Sensor space 

At the sensor level, individual peak latencies, namely the time point with the 

highest amplitude, were automatically extracted on a subject-to-subject basis 

using search windows based on visual inspection of grand average planar 

transformed waveforms extracted from averaged data across twelve sensors of 

interest (SOI) over auditory regions (Left hemisphere: 'A97', 'A98', 'A129', 'A130', 

'A157', 'A158', right hemisphere: 'A112', 'A113', 'A144', 'A145', 'A171', 'A172', 

highlighted in red in Figure 2.3). Peak latencies were estimated separately for 

the left and right hemisphere by extracting averaged data across the SOIs over 

the left and right hemisphere. Peak amplitude values were then computed as 

the maximum value at the time of the peak latency for both hemispheres. 

For the between-condition analyses, individual peak ERF latencies in response to 

standard and deviant/omitted stimuli were automatically extracted on 

a subject-by-subject basis from a search window of 170-230 ms post stimulus for 
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the durMMNm effect and 46 – 56 ms and 110-120 ms for the omiMMNm effect 

using the quantification method outline above. For the group analyses, the 

automatic peak detection algorithm was used to extract peak MMNm latencies 

from averaged data across the SOIs over the left and right hemisphere from 

individual participant waveforms using a latency window of 160 to 210 ms for 

durMMNm and 40 to 130 ms for omiMMNm based on the 

grand average peaks.  

 

 

2.6.3.2 Source space 

At the source level, individual peak latencies were computed for each ROI (the 

left and right Heschl’s gyri (HG), superior temporal gyri (STG) and middle 

temporal gyri (MTG) and the right inferior frontal gyrus (IFG)) by extracting 

activity from a voxel within that ROI. Subsequently peak amplitude values were 

computed for each ROI using the identified peak latency. 

To assess the presence of a statistically significant MMNm effects in each ROI, 

individual ERF peak amplitudes elicited by standard, deviant and omitted stimuli 

were automatically extracted from a search window of 160 – 220 ms for 

durMMNm and 40 – 60 and 110 - 130 ms for omiMMNm based on inspection of 

grand average waves. To examine potential group differences in duration or 

omission MMNm peak amplitudes in any ROI, individual MMNm peak amplitudes 

were extracted from each ROI using the same search windows (160 to 210 ms for 

durMMNm and 40 to 130 ms for omiMMNm) as for the sensor level data. I 

performed a non-parametric Kruskal-Wallis H test due to non-normally 

distributed data to compare MMNm peak amplitudes between groups separately 

in each ROI. 

Figure 2.3 MEG sensors of interests used to extract sensor level data. 
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3 Neuromagnetic Mismatch Negativity in Clinical 
High Risk and Early Stages of Psychosis  

3.1 Introduction 

Auditory mismatch negativity (MMN; Näätänen, Gaillard, & Mäntysalo, 1978) 

and its magnetic counterpart (MMNm; Hari et al., 1984) is a component of the 

ERP/ERF evoked by an unexpected deviant stimulus presented in a series of 

repetitive auditory stimuli. Reduced MMN amplitude, a neurophysiological index 

of an early auditory processing dysfunction, is a robust finding in chronic 

schizophrenia patients with a large effect size of 1.0 (Cohen’s d) (Erickson et 

al., 2016; D. Umbricht & Krljesb, 2005). Moreover, while some findings of 

original studies examining MMN amplitude in first episode patients have been 

inconsistent, a recent meta-analysis provided evidence for a medium size MMN 

reduction (ES = 0.42) in first episode psychosis (Erickson et al., 2016). Most 

interestingly, recent studies have found MMN deficits to be present in individuals 

at clinical high risk state for developing psychosis, suggesting MMN amplitude to 

be compromised prior to psychosis onset and possibly represent a marker of risk 

for psychosis development (e.g. Shin et al. 2009; Shaikh et al. 2012; Atkinson et 

al. 2012; Perez et al. 2014). On the other hand, other studies have not been able 

to replicate this finding (E Bramon, 2004; Hirt et al., 2019; M. Kim et al., 2014; 

Magno et al., 2008; Price et al., 2005; Salisbury, Kasai, et al., 2007) and thus it 

remains unclear whether reduced MMN amplitude is present already in the high 

risk stage of psychosis.  

It has been suggested that inconsistent results regarding MMN deficits in CHR 

individuals might be due to high clinical heterogeneity within the high risk stage 

(Fusar-Poli, 2015). Indeed, typically CHR studies have not considered the 

potential existence of CHR subgroups but treated them as one clinical entity 

(Paolo Fusar-Poli, Cappucciati, et al., 2016; Frauke Schultze-Lutter et al., 2010). 

Thus, it could be beneficial to stratify neuroimaging data on the basis of CHR 

individuals that are in the EPS, defined by the presence of BS, and those in the 

LPS, defined by the presence of APS, as recommended by the two-stage model 

of clinical risk for psychosis (Häfner et al., 2004; Keshavan, DeLisi, & Seidman, 

2011). This theoretical separation of the high risk stage is supported by empirical 

cross-sectional evidence demonstrating CHR individuals in the EPS to have better 
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cognitive performance (Frommann et al., 2011), higher P300 amplitude 

(Frommann et al., 2008) and less pronounced structural abnormalities 

(Koutsouleris et al., 2009) than CHR individuals in the LPS. However, to date 

there are no studies comparing MMN in CHR individuals in different high risk 

stages and accordingly the first goal of the chapter was to explore whether 

MMNm amplitudes differ between CHR subgroups.  

The primary aim of the chapter was to investigate MMNm amplitudes in a large 

sample of CHR individuals predominantly recruited from the general population 

and compare them to a smaller sample of first episode patients and controls to 

examine whether the well-replicated MMN deficiency observed in chronic 

schizophrenia is present already during the high risk and early stage of psychosis. 

In addition, as heterogeneous recruitment methods may result in a variance of 

pre- and post-test risk for psychosis across CHR samples (Paolo Fusar-Poli, 

Schultze-Lutter, et al., 2016), potentially due to different combinations of risk 

and protective factors (Os & Guloksuz, 2017), questions have been raised 

regarding the comparability of samples recruited from different pathways 

(Oliver, Radua, Reichenberg, Uher, & Fusar-Poli, 2019). Indeed, a recent study 

found that CHR individuals recruited through the community differed from 

clinically recruited CHR individuals in terms of symptoms, functioning (Mills, 

Fusar-Poli, Morgan, Azis, & McGuire, 2017) and the most frequent comorbid 

diagnosis (Shi et al., 2017). Hence, we also compared CHR individuals recruited 

from the general population with those recruited through clinical pathways to 

explore potential group differences in neurophysiological as well as clinical and 

neuropsychological characteristics.  

In addition to examining the presence of reduced MMN in different stages of 

psychosis, past studies have also examined its association with cognition and 

functioning. Interestingly, MMN deficits have not only been shown to be 

associated with cognitive impairments (Baldeweg et al., 2004; Kawakubo & 

Kasai, 2006; S. H. Lee et al., 2014; Miyanishi et al., 2013; Toyomaki et al., 2007) 

and poor functioning (Fulham et al., 2014; Hermens et al., 2010; M. Kim et al., 

2014; S. H. Lee et al., 2014; Light & Braff, 2005; Rasser et al., 2011) but to 

directly impact higher cognition and negative symptoms in schizophrenia 

(Thomas et al., 2017), in line with the notion that early auditory processing 
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dysfunctions contribute to cognitive impairments (Daniel C. Javitt, 2009). 

However, much less is known about the association of MMN amplitude with 

cognition and functioning in the high risk stage of psychosis with previous studies 

reporting inconsistent results as discussed in the introduction chapter. Hence, 

the final aim of the chapter was to explore relationships between early auditory 

sensory information processing as indexed by MMNm amplitude and higher order 

cognition and functioning in the CHR sample. 

3.1.1 Hypotheses 

The following hypotheses will be tested: 

(1) Compared to controls, the BS + UHR group exhibits the most impaired MMNm 

peak amplitude, followed by the UHR and finally the BS group. 

(2) MMNm peak amplitudes are reduced in CHR individuals compared to healthy 

controls but to a lesser degree than in first episode patients.  

(3) CHR individuals recruited through clinical pathways have a smaller MMNm 

amplitude compared to community recruited CHR individuals. 

(4) Greater levels of auditory processing deficits, indexed by attenuated MMNm 

amplitudes, are associated with cognitive impairment and poor functioning in 

CHR individuals. 

3.2 Methods 

The methodology of the current chapter including the recruitment, participants, 

study procedure as well as MEG stimuli, recording and data pre-processing are 

presented in chapter 2 (Methods). 

3.2.1 Statistical analyses 

3.2.1.1 MMNm analyses in sensor space 

In order to evaluate the presence of significant MMNm effects across groups, the 

individual ERF peak amplitudes elicited by standard and deviant stimuli over the 

left and right hemisphere were assessed via a 2 x 2 repeated-measures ANOVA 
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with hemisphere (left, right) and stimulus type (standard, deviant) as within-

subjects factors. To assess potential group differences, mixed-design ANOVAs 

with one within-subjects factor of hemisphere with two levels (left, right) and 

one between-subjects factor of group were performed for analyses of durMMNm 

and omiMMNm and post hoc tests were used to confirm the sources of significant 

ANOVA effects.  

In addition to examining whether the HC, CHR and FEP groups differed in their 

central tendency of MMNm peak amplitude I also used a shift function 

(Rousselet, Pernet, & Wilcox, 2017) to compare full distributions of peak MMNm 

amplitudes to examine potential group differences in any part of the MMNm 

distributions. The deciles (the value at each tenth percentile of the distribution) 

of each group distribution were computed, the amplitude of Group 1 was 

subtracted from Group 2 at each decile and 95 % confidence intervals of the 

decile differences computed using a percentile bootstrap.  

3.2.1.2 MMNm analyses in source space 

Using the individual ERF peak amplitudes elicited by standard, deviant and 

omitted stimuli I performed a paired samples t-test to compare the peak 

amplitudes to assess the presence of a statistically significant MMNm effect in 

each ROI. To investigate group differences in MMNm responses, non-parametric 

Kruskal-Wallis H tests were conducted to compare MMNm peak amplitudes 

between groups separately in each ROI. 

3.2.1.3 Correlations between MMNm amplitudes and cognition, symptoms 
and functioning  

We explored associations between both durMMNm and omiMMNm peak amplitude 

values (overall 18 indices) and cognition (six domains and composite score), 

symptoms (CAARMS positive symptom severity score) and functioning (GAF score) 

in the CHR group using non-parametric two-tailed Spearman rank correlations. 

Due to multiple correlations, we used a more conservative p value of .01 for 

significance. 
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3.2.1.4 Predicting the GAF score from suicidality, comorbidity and symptom 
severity 

A three stage hierarchical multiple regression with the enter method was 

conducted with the GAF score as the dependent variable. The presence of 

suicidal ideation was entered at stage one of the regression (coded as 0 = “no”, 

1 = “yes”), comorbidity of mood or anxiety disorders (coded as 0 = “no”, 1 = 

“yes”) at stage two and finally the CAARMS symptom severity at stage three. The 

predictor variables were entered in this order to assess whether the severity of 

APS increases the variance explained in the GAF score over and beyond the 

presence of suicidal ideation and comorbidity of anxiety/mood disorders. 

3.3 Results 

3.3.1 Demographic and clinical characteristics 

3.3.1.1 HC, CHR and FEP groups 

Table 3.1 presents a summary of key demographic and clinical measures 

contrasting the HC, CHR and FEP groups at baseline. The groups differed in age, 

years of education, medication, psychological treatment and a family risk for 

schizophrenia. Post hoc pairwise comparisons showed that compared to controls, 

CHR participants were significantly more likely to have lower education, use 

prescription medication, especially anti-depressants (24,5 %), have a first-degree 

relative with a diagnosis of schizophrenia, received psychological treatment and 

had a higher level of current suicide risk (53 %) than controls. Compared to first 

episode patients, CHR participants were significantly younger. First episode 

patients were significantly more likely to use prescription medication, received 

psychological treatment and have a first-degree relative with schizophrenia 

compared to controls.  

As expected, the CHR group had significantly lower global, social and role 

functioning and higher APS severity than the HC group but higher global 

functioning and lower APS severity than the FEP group. The three groups 

differed in verbal memory, motor speed, processing speed and the BACS 

composite score. The post hoc results showed that the CHR group had a 

significantly poorer motor speed, processing speed and the BACS composite 
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score than the HC group but better than the FEP group. The FEP group had a 

significantly poorer verbal memory performance than the HC group. 

Table 3.1 Baseline demographic and clinical characteristics of HC, CHR and FEP groups. 
Measure Sub-Measure HC (n = 49) CHR (n = 106) FEP (n = 17) Statistics Significance Post Hoc 
Age 22.5 (3.57) 21.7 (4.53) 23.9 (4.08) H (2) = 7.25 p  = .027a CHR < FEP
Gender Male 16 28 8 χ  2 (2) = 3.15 n.s. (.207)

Female 33 78 9
Employment Full time paid 3 2 0 χ  2 (12) = 20.70 n.s. (.06)

Part time paid 2 7 1
Voluntary 1 1 0
Student 41 87 7
Unemployed 2 7 2

Years of Education 16.6 (3.03) 15.1 (3.29) 14.6 (2.58) H (2) = 8.83 p  = .012a HC > CHR
Medication + Any medication 0 55 9 χ  2 (10) = 50.17 p  < .001 HC < CHR & FEP 

None 49 50 3
Treated Mental Health Problems None 46 38 4 χ  2 (4) = 49.97 p  < .001 HC< CHR & FEP

Current 0 17 4
Past 3 105 12

Family History (1st Degree) + No 49 94 10 χ  2 (2) = 6.26 p  = .04 HC < CHR & FEP
Yes 0 10 2

GAF 87.6 (6.44) 59.0 (13.19) 43.0 (15.72) H (2) = 95.03 p  < .001a HC > CHR & FEP,       
GF: Social scale 8.82 (.391) 7.54 (1.074) U  = 722 p  < .001a HC > CHR
GF: Role scale  8.57 (.764) 7.50 (1.09) U  = 989.5 p  < .001a HC > CHR
CAARMS severity .73 (2.35) 27.90 (16.75) 89.45 (25.57) F  (2, 163) = 167.25 p  < .001 HC < CHR & FEP,       
Current Suicide Risk No 48 49 χ  2 (6) = 37.20 p  < .001 HC < CHR 

Yes Low 1 25
Yes Moderate 0 14
Yes High 0 16

Verbal memory 51.37 (9.04) 48.70 (11.21) 42.00 (13.06) F  (2, 163) = 3.356 p  = .037 HC > FEP

Motor speed 81.04 (11.60) 69.29 (15.62) 57.60 (9.28) F (2, 163) = 16.911 p  < .001 HC > CHR & FEP, 
Processing speed 73.20 (11.75) 66.47 (13.50) 52.55 (14.40) F  (2,164) = 12.20 p  < .001 HC > CHR & FEP, 
Verbal fluency 58.29 (13.89) 56.88 (12.78) 53.45 (9.75) F (2, 163) = .654 n.s. (.521)

Executive function 18.65 (1.77) 18.18 (2.47) 17.82 (3.37) F  (2, 162) = .904 n.s. (.407)
Working memory 21.06 (2.77) 20.63 (4.04) 20.09 (4.13) F  (2, 164) = .396 n.s. (.674)
BACS composite score 303.19 (24.85) 280.60 (40.49) 248.00 (30.79) F  (2, 159) = 11.61 p  < .001

HC > CHR & FEP,       
CHR > FEP  

HC, healthy control; CHR, clinical high risk; FEP, first episode psychosis; n.s., non-
significant; GAF, Global Assessment of Functioning; GF, global functioning; CAARMS, 
comprehensive assessment of at risk mental states; BACS, brief assessment of cognition in 
schizophrenia; a Non-normal distribution in the sample (Kolmogorov–Smirnov test; p < .05).  
Frequencies are reported for categorical variables, group means and standard deviations (in 
parenthesis) are reported for continuous variables, p > 0.05 listed as non-significant, + 
medication and 1st degree family history of schizophrenia was an exclusion criterion for 
controls.  

Compared to controls, CHR individuals were significantly more likely to have the 

following psychiatric disorders based on the Mini International Neuropsychiatric 

Interview: major depressive episode (current and past), panic disorder (lifetime 

and current), social phobia (current), obsessive-compulsive disorder (current) 

and generalised anxiety disorder (Appendix A.1). 

3.3.1.2 Community vs clinically recruited CHR groups 

Twelve out of 106 (11.3 %) CHR individuals were recruited through clinical 

pathways. The clinically referred CHR group differed from the community 

recruited CHR group (n = 94) in employment, years of education, role 

functioning and the BACS composite score (Table 3.2). 
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Table 3.2 Baseline demographic and clinical variables of community and clinically recruited 
CHR groups. 

Measure Sub-Measure
Community recruited 

(n = 94)
Clinical referrals 

(n = 12)
Statistics Significance

Age 21.97 (4.60) 20 (3.72) U = 405 n.s. (.121)
Gender Male 24 4 χ 2(1) = .333 n.s. (.394)

Female 70 8
Handedness Left 3 1 χ 2(2) =  5.130 n.s. (.077)

Right 58 5
Amdidextrous 10 4

Employment Full time paid 2 0 χ 2(5) = 24.65 p  < .001
Part time paid 6 0
Voluntary 1 0
Student 79 8
Unemployed 3 4

Years of Education 15.43 (3.12) 12.67 (3.70) U = 259 p = .002
Medication Any medication 46 9 χ 2(1) = 2.89 n.s. (.08)

None 48 3
Treated Mental Health Problems None 34 4 χ 2(2) = .781 n.s. (.677)

Current 14 3
Past 45 5

Family History (1st Degree) No 86 10 χ 2(1) = .829 n.s. (.315)
Yes 8 2

Global Assessment of Functioning 59.31 (13.60) 56.25 (9.40) t  (103) = .755 n.s. (.452)
GF: Social scale 7.59 (1.067) 7.17 (1.03) U = 426.5 n.s. (.165)
GF: Role scale 7.58 (1.067) 6.83 (1.15) U = 338 p  = .018
CAARMS severity 28.59 (17.28) 22.50 (10.92) U  = 445 n.s. (.255)
Comorbid anxiety/depression No 35 5 χ 2(1) = .046 n.s. (.533)

Yes 56 7
Suicidal ideations No 44 5 χ 2(1) = .162 n.s. (.464)

Yes 48 7
BACS composite score 284.40 (37.591) 249.55 (53.038) t  (100) = 11.247 p = .007 GF
, global functioning; CAARMS, comprehensive assessment of at risk mental states; BACS, 
brief assessment of cognition in schizophrenia; n.s., non-significant. 

3.3.2 MMNm analyses 

The results of subgroup analyses showed no significant differences in MMNm 

amplitudes between the three CHR subgroups, namely BS, UHR and BS + UHR 

(Appendix A.2), and thus the CHR subgroups were grouped into one CHR sample, 

which was used in the subsequent analyses. 

3.3.2.1 Sensor level analyses  

3.3.2.1.1 Condition effect across groups 

At the sensor level analysis, visual inspection of grand average planar 

transformed waveforms revealed a peak latency of 200 ms post stimulus for 

standard sounds and 185 ms for deviant sounds (Figure 3.1A). A 2 x 2 repeated-

measures ANOVA revealed a significant interaction (F (1, 171) = 22.15, p < .01) 

between stimulus type and hemisphere, which was due to higher ERF peak 

amplitudes to deviant compared to standard stimuli over the right hemisphere 

(Table 3.3). In analysis of the omiMMNm, grand average omiMMNm waveforms 

derived from averaged data across the twelve SOIs revealed two peaks: 52 ms 
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and 115 ms after the omitted stimulus (Figure 3.1B). A 2 x 2 repeated-measures 

ANOVA was performed on the ERF peak amplitudes in both time intervals of 

interest (TOI; 46 – 56 ms and 110 – 120 ms after the stimulus omission). There 

was a significant interaction (F (1, 171) = 22.13, p < .01) between stimulus type 

and hemisphere in the first TOI (46 – 56 ms), which was due to higher ERF peak 

amplitudes elicited by omitted compared to standard stimuli over the right 

hemisphere. In the second TOI (110 – 120 ms) there was a significant main effect 

of stimulus type (F (1,171 = 33.78, p < .01) and a significant main effect of 

hemisphere (F (1,171) = 23.05, p < .01), indicating that the ERF responses were 

higher over the right hemisphere compared to the left hemisphere across 

stimulus types. There was no significant interaction (F (1, 171) = .47, p = .49) 

between stimulus type and hemisphere in the second TOI. The distributions of 

individual ERF peak amplitudes elicited by standard, deviant and omitted sounds 

are presented in Appendix A.3. 

 
Figure 3.1 Sensor level durMMNm and omiMMNm waveforms and topographic plots. Time 
courses of grand average planar ERF responses to standard sounds (green line), deviant 
sounds (red line) and MMNm difference waveform (blue line) extracted from averaged data 
across the six left (dashed line) and right (solid line) sensors of interests as marked by the 
black dots in the topographic plots. The dotted line at the time point of 0.6 seconds 
indicates the fifth standard and deviant sound onset. Topographic maps of standard, 
deviant and MMNm waveforms in the TOIs (grey shaded areas) which were used to extract 
individual ERF peak amplitudes. The top panel (A) presents the durMMNm effect and the 
bottom panel (B) presents the omiMMNm effect. STD, standard; Dur DEV, duration deviant; 
OMI, omission. 

A 

110 -120 ms 

46 - 56 ms  

STD 

OMI omiMMNm 
B 

Dur DEV durMMNm
M 

STD 
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Table 3.3 Sensor level means and standard deviations of ERF peak amplitudes to standard 
and deviant stimuli over the left and right hemisphere. 

Hemisphere Standard Deviant STD vs DEV d
durMMNm
     Left 5.24 (2.62) 8.32 (4.74) 0.8
     Right 7.22 (3.20) 11.79 (5.34) 1.04
omiMMNm 1st TOI
     Left 2.46 (1.20) 3.64 (1.92) 0.74
     Right 3.13 (1.41) 5.06 (2.48) 0.96
omiMMNm 2nd TOI
     Left 3.01 (1.38) 3.78 (1.97) 0.45
     Right 3.63 (1.76) 4.55 (2.64) 0.41

Stimulus

 

3.3.2.1.2 Group effect 

In the sensor level analysis of durMMNm amplitudes, grand average waveforms 

extracted from the twelve SOIs revealed peak latencies of 174, 174 and 182 ms 

post stimulus for the HC, CHR and FEP group, respectively (Figure 3.2). A 2 x 3 

mixed-design ANOVA revealed a significant main effect of hemisphere (F (1, 169) 

= 25.18, p < .01). However, there was no significant main effect of group (F (2, 

169) = .32, p = .73) or group by hemisphere interaction (F (2, 169) = .93, p = .40) 

(Table 3.4). Similarly for omiMMNm, the ANOVA revealed a significant main 

effect of hemisphere (F (1, 169) = 18.12, p < .01) but no significant main effect 

of group (F (2, 169) = .43, p = .65) or group by hemisphere interaction (F (2, 169) 

= .48, p = .62) (Figure 3.3 & Table 3.4). The distributions of individual durMMNm 

and omiMMNm peak amplitudes are presented in Appendix A.3. 

 
Figure 3.2 Sensor level durMMNm waveforms and topographic plots for HC, CHR and FEP 
groups. Grand average standard (A), deviant (B) and durMMNm (C) waveforms for the HC 
(green line), CHR (red line) and FEP (blue line) group extracted from the six left (dashed line) 
and right (solid line) MEG sensors as indicated by the black dots in the topographic plots. 
(D) Topographic maps of the durMMNm responses for the HC, CHR and FEP group in the 

A B 

C D 
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interval of 160 to 210 ms (grey-shaded area) which was used to extract individual peak 
amplitudes. HC, healthy control; CHR, clinical high risk; FEP, first episode psychosis. 

 
Figure 3.3 Sensor level omiMMNm waveforms and topographic plots for HC, CHR and FEP 
groups. Grand average standard (A), deviant (B) and omiMMNm (C) waveforms for the HC 
(green line), CHR (red line) and FEP (blue line) group extracted from the six left (dashed line) 
and right (solid line) MEG sensors of interests marked by the black dots in the topographic 
plots. (D) Topographic maps omiMMNm responses for the time interval of 40 to 130 ms 
indicated by the grey shaded area that was used to extract individual omiMMNm peak 
amplitudes. HC, healthy control; CHR, clinical high risk; FEP, first episode psychosis. 

Table 3.4 Sensor level means and standard deviations of MMNm peak amplitudes for HC, 
CHR and FEP groups and effect sizes of group differences over the left and right 
hemisphere.  

 

Hemisphere HC (n = 49) CHR (n = 106) FEP (n = 17) HC vs CHR d HC vs FEP d
durMMNm
     Left 4.57 (4.65) 4.14 (3.52) 3.08 (2.05) 0.10 0.41
     Right 6.12 (4.49) 5.80 (4.47) 6.16 (3.46) 0.07 0.01
omiMMNm
     Left 2.79 (1.69) 2.66 (1.62) 2.74 (1.70) 0.07 0.03
     Right 3.57 (2.52) 3.38 (2.19) 4.03 (2.21) 0.08 0.2

Group

 

3.3.2.1.3 Shift function 

In addition to comparing central tendencies of the three groups, I used the shift 

function to examine whether the three groups differed in any part of their 

distributions of MMNm peak amplitudes over the left or right hemisphere. The 

shift function revealed that the durMMNm amplitude distributions of HC and CHR 

groups were identical; however, there was a significant group difference in the 

right tail of the peak amplitude distribution of the durMMNm extracted from SOIs 

over the left hemisphere between the HC and the FEP group. The significant 

difference for decile 9 indicates that the groups did not differ for smaller 

A B 

C D 
HC            CHR                    FEP 
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durMMNm amplitudes but only in terms of higher amplitudes (Figure 3.4A). For 

the omiMMNm distributions, the shift function revealed no significant group 

differences in any parts of the omiMMNm distributions (Figure 3.4B). 

 

 
Figure 3.4 Shift function comparing MMNm peak amplitude distributions between HC, CHR 
and FEP groups. Data are shown for the left and right hemisphere amplitudes. The x-axis 
shows the MMNm deciles for the first group of the comparison. The y–axis shows the 
MMNm difference scores (group 1 – group 2) for each decile, as a function of group 1 
deciles. Positive differences mean that group 1 had higher MMNm amplitudes than group 2. 
The vertical line indicates the 95% bootstrap confidence interval of the MMNm differences. 
HC, healthy control; CHR, clinical high risk; FEP, first episode psychosis. The top panel (A) 
presents durMMNm and the bottom panel (B) omiMMNm. 

A Left hemisphere                                             Right hemisphere 

B Left hemisphere                                                Right hemisphere 
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3.3.2.2 Virtual channel analyses  

3.3.2.2.1 Condition effect 

At the source level paired samples t-tests on the ERF peak amplitudes revealed a 

significant effect of stimulus type (standard, deviant) in each ROI (Figure 3.5A). 

For omiMMNm, the results revealed significantly higher ERF peak amplitudes for 

omitted compared to standard stimuli in each ROI in the first TOI (46 – 56 ms). In 

the second TOI of 110 to 130 ms, t-tests revealed significantly higher amplitudes 

to omitted compared to standard stimuli in L HG, L STG, L MTG and R IFG (Figure 

3.5B & Table 3.5). 

 
Figure 3.5 Virtual channel standard, deviant and omission time-series from each ROI. Grand 
averaged virtual channel waveforms with SEM error bars (shaded area) in response to 
standard (in black line) and deviant stimuli (in red line) plotted separately for each ROI. The 
onset of the deviant sound was at 0.6 seconds. Absolute values of the time series in ROIs 
are given. The left panel (A) contrasts the standard and duration deviant waveforms and the 
right panel (B) contrasts the standard and omission waveforms. L, left; R, right; HG, 
Heschl’s gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; IFG, inferior 
frontal gyrus; STD, standard; DEV, deviant; OMI, omission. 

A B 
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Table 3.5 Virtual channel means and standard deviations of ERF peak amplitudes to 
standard and deviant stimuli and statistical results comparing the ERF responses 
separately in each ROI. 

ROI Standard Deviant Statistics STD vs DEV d
durMMNm
     L HG 4.96 (5.27) 11.19 (12.30) t(166) = 7.87, p  < .001 0.41
     R HG 16.08 (15.11) 36.53 (37.56) t(166) = 8.99, p  < .001 0.71
     L STG 4.68 (5.03) 10.86 (12.45) t(166) = 7.56, p  < .001 0.65
     R STG 13.88 (12.87) 34.23 (36.0) t(166) = 9.19, p  < .001 0.75
     L MTG 3.32 (3.83) 8.47 (10.55) t(166) = 7.07, p < .001 0.64
     R MTG 6.02 (7.50) 14.46 (15.77) t(166) = 9.62, p  < .001 0.68
     R IFG 0.39 (0.39) 1.27 (1.85) t(166) = 6.54, p  < .001 0.08
omiMMNm 1st TOI
     L HG 1.56 (1.65) 2.82 (3.78) t(166) = 4.59, p  < .001 0.43
     R HG 2.86 (3.38) 7.02 (9.30) t(166) = 7.14, p  < .001 0.59
     L STG 1.30 (1.55) 2.40 (3.36) t(166) = 5.09, p < .001 0.42
     R STG 2.43 (2.91) 6.40 (7.93) t(166) = 7.90, p  < .001 0.66
     L MTG .93 (1.24) 1.82 (2.70) t(166) = 4.77, p  < .001 0.42
     R MTG 1.32 (1.56) 3.23 (4.34) t(166) = 6.23, p  < .001 0.58
     R IFG .20 (.29) .38 (.45) t(166) = 4.69, p  < .001 0.47
omiMMNm 2nd TOI
     L HG 2.17 (2.44) 3.41 (4.47) t(166) = 3.46, p  = .001 0.34
     R HG 4.68 (7.31) 5.58 (7.95) t(166) = 1.22, p  = .221 0.11
     L STG 1.94 (2.26) 2.76 (3.61) t(166) = 2.75, p = .006 0.27
     R STG 4.70 (6.45) 4.83 (6.75) t(166) = 0.19, p  = .846 0.01
     L MTG 1.58 (2.17) 2.38 (3.82) t(166) = 2.61, p  = .010 0.25
     R MTG 3.51 (4.68) 3.33 (5.58) t(166) = .36, p  = .719 0.03
     R IFG .22 (.27) .33 (.36) t(166) = 2.89, p  = .004 0.34

Stimulus

 
Uncorrected critical p-values listed. HG, Heschl’s gyrus; MTG, middle temporal gyrus; STG, 
superior temporal gyrus; IFG, inferior frontal gyrus.  

3.3.2.2.2 Group effect 

The results of non-parametric Kruskal-Wallis H tests showed no significant main 

effect of group on durMMNm (Figure 3.6) or omiMMNm (Figure 3.7) peak 

amplitudes in any of the ROIs (Table 3.6).  

 
Figure 3.6 Virtual channel durMMNm time-series from each ROI for HC, CHR and FEP 
groups. Grand mean durMMNm virtual channel waveforms with SEM error bars (shaded 

A B 



79 
 

 
 

area) comparing (A) controls (in black) with clinical high risks (in red) and (B) controls (in 
black) with first episode patients (in red) in each ROI. The onset of the deviant sound was at 
0.6 seconds. Absolute values are given. L, left; R, right; HG, Heschl’s gyrus; MTG, middle 
temporal gyrus; STG, superior temporal gyrus; IFG, inferior frontal gyrus. 

 
Figure 3.7 Virtual channel omiMMNm time-series from each ROI for HC, CHR and FEP 
groups. Grand mean omiMMNm virtual channel waveforms with SEM error bars (shaded 
area) comparing (A) controls (in black) with clinical high risks (in red) and (B) controls (in 
black) with first episode participants (in red) in each ROI. The onset of the deviant sound 
was at 0.6 seconds. Absolute values are given. L, left; R, right; HG, Heschl’s gyrus; MTG, 
middle temporal gyrus; STG, superior temporal gyrus; IFG, inferior frontal gyrus. 

Table 3.6 Virtual channel results of group differences in MMNm amplitudes between HC, 
CHR and FEP groups at each ROI. Means and standard deviations of MMNm peak 
amplitudes for each group, effect sizes of group differences and statistical results 
comparing the three groups separately in each ROI. 

ROI HC (n = 48) CHR (n = 103) FEP (n = 16) HC vs CHR d HC vs FEP d χ 2 df p
durMMNm
     L HG 8.88 (12.78) 8.40 (10.70) 6.43 (7.23) 0.04 0.24 0.62 2 0.73
     R HG 25.72 (28.42) 25.92 (33.64) 26.78 (26.00) 0.01 0.04 0.91 2 0.63
     L STG 9.93 (14.51) 7.86 (10.11) 5.23 (6.80) 0.17 0.41 0.87 2 0.65
     R STG 25.40 (29.98) 24.36 (30.18) 23.30 (26.17) 0.03 0.07 0.31 2 0.86
     L MTG 9.08 (13.40) 5.50 (7.19) 4.08 (4.85) 0.27 0.5 3.15 2 0.21
     R MTG 12.10 (13.36) 9.47 (10.67) 9.18 (11.79) 0.22 0.23 1.76 2 0.41
     R IFG .88 (.78) 1.05 (1.87) 1.12 (2.17) 0.1 0.15 0.96 2 0.62
omiMMNm
     L HG 4.30 (5.03) 4.09 (4.51) 4.88 (5.16) 0.04 0.11 0.41 2 0.81
     R HG 9.03 (9.30) 8.37 (9.92) 7.59 (5.51) 0.07 0.19 0.92 2 0.63
     L STG 3.92 (4.53) 3.12 (3.28) 3.99 (3.60) 0.20 0.02 1.39 2 0.50
     R STG 8.42 (8.10) 7.33 (8.49) 6.74 (5.74) 0.13 0.24 2.60 2 0.27
     L MTG 3.81 (5.05) 2.71 (3.56) 2.33 (2.50) 0.25 0.34 2.38 2 0.30
     R MTG 5.71 (7.32) 4.20 (5.60) 3.94 (3.84) 0.23 0.30 1.80 2 0.41
     R IFG 0.49 (.52) .56 (.61) 0.47 (.51) 0.12 0.04 0.16 2 0.92

Group

Uncorrected critical p-values listed. HC, healthy controls; CHR, clinical high risk; FEP, first 
episode participants; L, left; R, right; HG, Heschl’s gyrus; MTG, middle temporal gyrus; 
STG, superior temporal gyrus; IFG, inferior frontal gyrus. 
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3.3.3 Clinically vs. community recruited CHR individuals 

3.3.3.1 Sensor level 

For durMMNm, a 2 x 2 mixed-design ANOVA on the ERF amplitudes revealed a 

significant main effect of recruitment pathway (F (1, 104) = 59.84, p = .03), 

indicating an attenuated durMMNm amplitude across hemispheres in clinically 

referred CHR individuals compared to community recruited CHR individuals. 

There was also a main effect of hemisphere (F (1, 104) = 4.03, p = .047) but no 

hemisphere by recruitement pathway interaction (F (1, 104) = .83, p = .36) 

(Figure 3.8A). There was no significant main effect of recruitment pathway (F 

(1, 104) = 125.66, p = .14), hemisphere (F (1, 104) = 3.34, p = .07) or group by 

hemisphere interaction on omiMMNm peak amplitudes (F (1, 104) = .23, p = .63 

(Figure 3.8B & Table 3.7). 

 
Figure 3.8 Sensor level MMNm waveforms and topographic plots for the community and 
clinically recruited CHR groups. Grand average MMNm waveforms for the community (blue 
line) and clinically referred CHR (red line) groups extracted from the six left (dashed line) 
and right (solid line) SOIs as indicated by the black dots in the topographic plots. 
Topographic maps of the MMNm responses for each group in the TOIs (grey shaded areas), 
which were used to extract individual MMNm peak amplitudes. The panel (A) presents the 
durMMNm effect and the panel (B) presents the omiMMNm effect. 
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Table 3.7 Sensor level means and standard deviations of MMNm peak amplitudes for 
community and clinically recruited CHR groups and effect sizes of group differences over 
the left and right hemisphere. 

Hemisphere
Community recruited 

CHR (n = 94)
Clinically recruited 

CHR (n = 12)
Community vs Clinically 

recruited CHR d
durMMNm
     Left 4.35 (3.62) 2.57 (2.11) 0.60
     Right 6.13 (4.57) 3.24 (2.50) 0.78
omiMMNm
     Left 2.72 (1.67) 2.15 (1.10) 0.37
     Right 3.48 (2.59) 2.60 (1.35) 0.43

Group

 

3.3.3.2 Virtual channels 

One community and two clinically recruited CHR individuals did not have T1 

available and thus the sample sizes used for source space are different 

compared to those used for analyses in sensor space. The results of Mann-

Whitney U tests showed that the community recruited CHR group had a higher 

durMMNm amplitude in the left MTG compared to the clinically recruited CHR 

group (Figure 3.9A & Table 3.8). However, this effect is not significant when 

corrected for multiple comparisons. The group-level analyses in source space 

showed no effect of recruitment pathway on omiMMNm amplitude in any ROI 

(Figure 3.9B & Table 3.8). 

 
Figure 3.9 Virtual channel MMNm waveforms for the community and clinically recruited CHR 
groups. Grand mean MMNm virtual channel waveforms with SEM error bars (shaded area) 
comparing CHR individuals recruited from the community (in black) and clinical pathways 
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(in red) in each ROI. The onset of the deviant sound was at 0.6 seconds. Absolute values are 
given. Figure (A) presents the durMMNm effect and the figure (B) presents the omiMMNm 
effect. L, left; R, right; HG, Heschl’s gyrus; MTG, middle temporal gyrus; STG, superior 
temporal gyrus; IFG, inferior frontal gyrus. 

Table 3.8 Virtual channel results of group differences in MMNm amplitudes between 
community and clinically recruited CHR groups. Means and standard deviations of MMNm 
peak amplitudes for both groups, effect sizes of group differences and statistical results for 
each ROI. Uncorrected critical p-values listed. 

ROI
Community recruited 

CHR (n = 93)
Clinically recruited 

CHR (n = 10)
Community vs Clinically 

recruited CHR d Statistics
durMMNm
     L HG 8.46 (10.93) 7.82 (8.72) 0.06 U  = 436, p = .747
     R HG 27.51 (34.83) 11.11 (12.50) 0.63 U  = 350, p = .200
     L STG 8.14 (10.47) 5.34 (5.56) 0.33 U  = 427, p = .672
     R STG 25.68 (31.00) 12.15 (17.81) 0.53 U  = 342, p = .171
     L MTG 5.85 (7.37) 2.30 (4.26) 0.59 U  = 281, p = .040
     R MTG 9.79 (10.96) 6.49 (7.27) 0.35 U  = 407, p = .518
     R IFG 1.11 (.48) .48 (.57) 1.19 U  = 347, p = .189
omiMMNm
     L HG 4.12 (4.57) 3.77 (4.19) 0.08 U = 458, p  = .938
     R HG 8.85 (10.28) 3.90 (3.14) 0.65 U = 321, p  = .109
     L STG 3.15 (2.79) 2.79 (2.65) 0.13 U = 460, p  = .956
     R STG 7.72 (8.80) 3.68 (2.84) 0.62 U  = 370, p = .290
     L MTG 2.70 (3.68) 2.68 (2.23) 0.01 U = 405, p  = .504
     R MTG 4.45 (5.82) 1.87 (1.28) 0.61 U  = 372, p  = .300
     R IFG .55 (.60) .71 (.75) 0.24 U = 385, p  = .373

Group

 

3.3.4 Correlations of MMNm amplitude with cognitive and clinical 
measures in CHR 

Spearman rank correlations were calculated between MMNm peak amplitudes 

and six cognitive domains, BACS composite score, APS severity as well as social, 

role and global functioning scores in the CHR group. Due to multiple 

correlations, a more conservative p-value of .01 was used for significance to 

minimise the likelihood of type 1 errors. 

3.3.4.1 Cognitive measures 

In the CHR group, a significant positive correlation between processing speed 

and durMMNm amplitude over the right hemisphere (r = .24, p = .01) and in the 

right HG (r = .25, p = .01) was observed (Figure 3.10). 

 
Figure 3.10 Correlations between processing speed and durMMNm (A) over the right 
hemisphere and (B) in the right HG in the CHR sample.  
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3.3.4.2 Clinical measures 

There were no significant correlations between MMNm amplitudes and severity 

of APS, social, role or global functioning scores in the CHR sample. 

3.3.5 Predicting the GAF score from suicidality, comorbidity and 
symptom severity  

There was no multicollinearity between the three independent variables as 

indicated by tolerance (0.93 - 0.96) and Variance Inflation Factor values (VIF: 

1.04 – 1.08). The hierarchical multiple regression revealed that the model one 

with the presence of suicidal ideation as an independent variable was significant 

and accounted for 16.1 % of the variation in the GAF score. Adding the 

comorbidity variable explained an additional significant 4.4 % of the variation in 

the GAF scare. Introducing the APS severity also added significantly to the 

prediction model by explaining further 8.1 % of the variance. When all three 

independent variables were included in the model, they accounted for 28.6 % of 

the GAF score but comorbidity was not a significant predictor of the GAF score 

when controlling for other two variables. The presence of suicidal ideation was 

the most important predictor for the GAF score followed by the severity of APS 

(Table 3.9).  

Table 3.9 Summary of hierarchical regression analysis for variables predicting the GAF 
score in CHR individuals. 

Standardized 
Coefficients (β)

t p 95 % C.I. for β Tolerance VIF R 2 ∆R 2

Step 1 0.161 0.161
(Constant) 36.263 .000 60.88 - 67.93
Suicidality -.401 -4.402 .000 -15.66- -5.93 1.000 1.000

Step 2 0.205 0.044
(Constant) 31.233 .000 63.13- 71.7
Suicidality -.359 -3.944 .000 -14.52- -4.8 .961 1.041
Comorbidity -.214 -2.347 .021 -10.87- -0.91 .961 1.041

Step 3 0.286 0.081
(Constant) 27.855 .000 67.65- 78.03
Suicidality -.345 -3.978 .000 -13.92- -4.65 .959 1.043
Comorbidity -.160 -1.811 .073 -9.22- 0.42 .929 1.077
Symptom severity -.291 -3.356 .001 -0.37- -0.1 .960 1.042  

3.4 Discussion 

3.4.1 Neurophysiological findings 

Before assessing any potential group differences in MMNm peak amplitudes, the 

presence and characteristics of MMNm responses to duration and omission 
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deviants were examined in the sensor and source space across groups. Analyses 

of differences between standard and deviant conditions confirmed that the 

auditory MMNm paradigm successfully elicited significant durMMNm and 

omiMMNm responses. In line with previous findings in the literature, the visual 

inspection of ERFs revealed that the durMMNm amplitude peaked at around 175 

ms after the onset of the duration deviant stimulus (Jacobsen & Schröger, 2003) 

and omiMMNm around 50 to 120 ms after the sound omission (Bendixen, 

Schroger, & Winkler, 2009; Salisbury, 2012). Moreover, we observed a stronger 

MMNm response over the right hemisphere compared to the left hemisphere at 

the sensor and source level. This matches previous studies showing MMN to be 

right lateralized for simple tone stimuli in contrast to left lateralized for 

language paradigms (Levänen et al., 1996). Furthermore, the right IFG showed 

significant activation as a response to both deviant types, providing evidence for 

a frontal MMNm source, associated with involuntary attention switching (Giard, 

Perrin, Pernier, & Bouchet, 1990), in addition to temporal sources, associated 

with sensory memory and change detection (Rinne et al., 2000). The inconsistent 

findings in the literature regarding the presence of a frontal MMN generator 

might be due to variability in the imaging technique (Rinne et al., 2000) and 

auditory paradigm employed (MacLean, Blundon, & Ward, 2015).  

In contrast to our expectation, the CHR subgroups did not differ in duration or 

omission MMNm amplitudes, suggesting the two subgroups to be characterised by 

similar MMNm profiles. In light of recent meta-analytical evidence showing that 

the APS and BLIPS groups are two separate subgroups, the BLIPS subgroup having 

a significantly higher psychosis risk than the APS subgroup (Paolo Fusar-Poli, 

Cappucciati, et al., 2016), future studies could separate CHR individuals into 

these subgroups to investigate MMN amplitudes between them. Unfortunately, 

the current CHR sample only included individuals meeting the APS, not the BLIPS 

criteria, and thus we could not stratify our MMNm results according to these two 

subgroups. 

The main aim of the chapter was to investigate MMNm peak amplitudes in CHR 

individuals, first episode patients and controls to examine whether MMNm 

deficits are present during the first episode psychosis and even prior to psychosis 

onset. Against our expectations, we found no evidence for MMNm deficiency to 

be a feature of the high risk or first episode stage of psychosis. Furthermore, the 



85 
 

 
 

shift function revealed that the MMNm amplitude distributions of HC and CHR 

groups were identical, converging with the finding based on the mean 

amplitude. The current finding of intact MMNm amplitude in CHR individuals 

replicates previous findings (Atkinson et al., 2017; Bodatsch et al., 2011; 

Brockhaus-Dumke et al., 2005; Higuchi et al., 2013; Hirt et al., 2019; Koshiyama 

et al., 2017; Lepock et al., 2019; Mondragón-Maya et al., 2013) but is in contrast 

with studies reporting reduced MMN in CHR individuals (Atkinson et al., 2012; 

Hsieh et al., 2012; Jahshan et al., 2012; Daniel C. Javitt & Sweet, 2015; 

Koshiyama et al., 2017; Lavoie et al., 2018; Nagai, Tada, Kirihara, Yahata, et 

al., 2013; Perez et al., 2014; Shaikh et al., 2012; Shin et al., 2009; Solís-Vivanco 

et al., 2014). The observed effect sizes for MMNm differences between CHR 

individuals and controls in the current study are smaller both in sensor (d = 0.07 

to 0.10) and source space (d = 0.01 to 0.27) than those previously reported in 

the CHR literature ranging from small (d = 0.21; Mondragón-Maya et al., 2013) to 

large (d = 0.76; (Atkinson et al., 2012), with a recent meta-analysis reporting 

CHR individuals to exhibit a modest MMN reduction (d = 0.40) (Erickson et al., 

2016).  

Unexpectedly, we found no robust evidence for MMNm deficits in first episode 

patients either. However, a comparison of entire distributions of MMNm 

amplitudes revealed lower durMMNm amplitudes in the right tail of the 

distribution among first episode participants compared to controls, indicating 

that the groups differed only in high durMMNm amplitudes. Our finding that first 

episode patients did not differ from controls with respect to the mean MMNm 

amplitude is in line with previous studies that observed unaffected MMN 

amplitudes during the early stage of psychosis (Magno et al., 2008; Mondragón-

Maya et al., 2013; Salisbury et al., 2017; D. Umbricht et al., 2006) but in 

contrast with other studies (e.g. Atkinson, Michie, & Schall, 2012b; Higuchi et 

al., 2013a; Kaur et al., 2011) and a recent meta-analysis reporting a medium 

MMN impairment in first episode patients (Erickson et al., 2016). Collectively, 

based on our findings it appears that MMNm deficiency is not present during the 

high risk or first episode stage of psychosis, not supporting the notion of MMNm 

to be a candidate marker for early stages of psychosis (Koshiyama et al., 2017; 

Nagai, Tada, Kirihara, Araki, et al., 2013). Given the robustness of MMN deficits 

in chronic schizophrenia (Erickson et al., 2016), it might be that MMN deficiency 
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is related to illness progression, possibly reflecting grey matter loss (Rasser et 

al., 2011; Salisbury, Kasai, et al., 2007) and NMDA receptor glutamate 

dysfunction (D.C. Javitt et al., 1996; Rosburg & Kreitschmann-Andermahr, 2016).  

The analyses comparing the clinically and community recruited CHR individuals 

revealed that the clinically referred CHR group had an attenuated duration 

MMNm amplitude over the right and left hemisphere as well as lower 

employment rate, education, cognition and role functioning compared to 

community recruited CHR group. Given that the two CHR groups differed in some 

measures that have been suggested to be associated with transition to psychosis, 

namely role functioning (T. D. Cannon et al., 2008) and cognition (Paolo Fusar-

Poli, Deste, et al., 2012), it could be that the clinical CHR individuals had an 

elevated risk of psychosis compared to the community CHR individuals. However, 

our results are based on a small sample (n = 12) and thus should be interpreted 

with caution. Nevertheless, our data suggest that future studies should monitor 

the recruitment strategies and characteristics of CHR samples recruited from 

different pathways to reduce heterogeneity across CHR samples. 

In line with our hypothesis based on previous research showing reduced MMN to 

be associated with cognitive dysfunction in first episode and schizophrenia 

patients, we found speed of information processing deficits to be weakly 

associated with reduced MMNm over the right hemisphere and in the right HG in 

the CHR group. This is in line with a CHR study that also found durMMNm 

amplitude to be associated with neuropsychological performance (r = 0.55) but 

with a different domain, verbal fluency (Higuchi et al., 2013). The observed lack 

of significant correlations between MMNm and symptoms is in line with previous 

studies conducted in CHR (Atkinson et al., 2012; Perez et al., 2014; Solís-Vivanco 

et al., 2014) and schizophrenia samples (Erickson et al., 2017). Further, unlike 

several studies conducted in schizophrenia patients (Friedman, Sehatpour, Dias, 

Perrin, & Javitt, 2012; Light & Braff, 2005; Rasser et al., 2011), we found no 

evidence for MMNm to be associated with social, role or global functioning in the 

CHR group. This is in line with the majority of previous CHR studies (Jahshan et 

al., 2012; Shin et al., 2009; Solís-Vivanco et al., 2014) but in contrast with a 

recent study that found evidence for duration MMN to be associated with global 

functioning already in the early stages of psychosis (Koshiyama, Kirihara, Tada, 

Nagai, Fujioka, Koike, et al., 2018). Given the scarce and inconsistent evidence 
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whether MMN is associated with cognition and functioning in the high risk stage 

of psychosis, more research is warranted. 

3.4.2 Clinical findings 

As expected, we found that the largely community recruited CHR sample 

differed from controls on several demographic, clinical and neuropsychological 

measures. Firstly, in line with previous studies using clinically recruited CHR 

samples, CHR individuals had lower global (Hui et al., 2013), role and social 

functioning compared to controls (e.g. Cornblatt et al., 2007). However, the 

current CHR sample was characterised by a slightly higher global functioning 

score (GAF mean = 59) compared to that of a recent meta-analysis reporting a 

mean GAF score of 50 in the CHR population. Nonetheless, the observed pattern 

that the functional level of CHR individuals was closer to first episode patients 

than controls was the same as found in the aforementioned meta-analysis (Paolo 

Fusar-Poli et al., 2015). The current CHR sample also had slightly higher social 

(7.54) and role functioning (7.50) scores compared to the range of scores (5.0 to 

6.67) previously reported in CHR studies (Addington et al., 2011; Cornblatt, 

2011; Niendam et al., 2007). Unfortunately data was not available for social and 

role functioning in first episode patients to assess whether the extent of social 

and role deficits in the CHR sample is more similar to first episode patients than 

controls as reported in previous studies (Addington et al., 2008; S. J. Lee et al., 

2017). The slightly higher functioning CHR sample compared to previous CHR 

samples is likely be due to the fact that the current CHR sample was mainly 

community recruited instead of clinically referred from special early psychosis 

services.   

Secondly, our findings showed that 61.2 % of CHR individuals met either anxiety 

and/or depressive diagnosis, and were more likely to use medication and receive 

psychological treatment compared to controls. Specifically, 28.2 % of CHR 

individuals reported both anxiety and depressive symptoms (current or past), 

22.3 % had anxiety symptoms alone and only 10.7 % had depressive symptoms 

alone. The prevalence rate of 61.2 % of anxiety and/or depressive disorders 

observed in the current study is comparable to a previous study reporting that 69 

% of CHR individuals had one or more mood/anxiety diagnoses at baseline 

(Woods et al., 2009). Similarly another study found that 62 % of CHR individuals 
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met the clinical criteria for at least one current comorbid disorder (Salokangas 

et al., 2012). However, our finding of a higher number of anxiety disorders 

compared to depressive disorders in the CHR sample is contrary to that of a 

recent meta-analysis that reported a higher baseline prevalence rate of 

depressive disorders (41 %) compared to anxiety disorders (15 %) (Paolo Fusar-

Poli et al., 2014). On the other hand, our finding is consistent with a recent 

study that found the general anxiety disorder to be the most common mental 

disorder in their community recruited CHR sample (Shi et al., 2017). Therefore, 

one possible explanation for the conflicting findings regarding the most 

prevalent comorbid disorder in the CHR population may be that there is a 

difference in the most frequent comorbid diagnosis between community and 

clinical CHR samples.  

Thirdly, our findings show that CHR individuals reported higher levels of current 

suicide risk than controls, demonstrating that high prevalence rates of suicidal 

ideations can be found not only in chronic schizophrenia (Skodlar et al., 2008) 

patients but also in the high risk stage of psychosis. We found a high prevalence 

rate of 53 % of at least low suicidal risk in the CHR sample, which is slightly 

smaller compared to a prevalence of 66 % reported in a recent meta-analysis 

(Taylor et al., 2015), potentially because the current CHR sample was slightly 

better functioning overall than previous CHR samples in the literature. Finally, 

the CHR group had poorer neuropsychological performance compared to the 

control group but better than the first episode group, replicating the findings 

from CHR samples recruited from clinical pathways (Paolo Fusar-Poli, Deste, et 

al., 2012; Keefe et al., 2006; Lencz et al., 2006) and extending them to a 

community CHR sample.  

The current finding of APS to be associated with the presence of comorbid 

depressive/anxiety disorders as well as global, role and social functioning 

(Appendix A.4) is in line with a previous study indicating the clinical significance 

of APS in the general population (Frauke Schultze-Lutter, Michel, et al., 2014). 

Furthermore, our finding of APS contributing to global functioning over and 

beyond the presence of suicidal ideations and comorbidity suggests that APS by 

themselves are functionally disabling even before reaching the diagnostic 

threshold. The overall explained variance in global functioning using the three 

variables was moderate (28.6 %). However, the presence of suicidal ideation 
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explained a higher amount of variance in global functioning than APS, suggesting 

that suicidal thoughts have a stronger association with global functioning than 

the severity of APS in the community CHR population.  

3.4.3 Limitations and conclusions 

The sample size of the clinically referred CHR group (n = 12) is considered small 

for a neuroimaging study and thus the results should be interpreted with caution 

until replicated with a minimum sample of 20 participants as recommended by 

Simmons and colleagues (2011). Secondly, the CHR and FEP groups were not 

completely anti-psychotic free, some of them being on multiple medications and 

thus we cannot rule out the influence of medication on our results.  

In conclusion, the findings in this chapter suggest that MMNm deficits are not a 

feature of the earliest stages of psychosis. In the light of our data and the 

consistently reported reduced MMN in chronic schizophrenia in the literature 

(Erickson et al., 2016; D. Umbricht & Krljesb, 2005), it could be that MMN 

deficits relate to disease progression and emerge later in the chronic stage of 

the disorder. However, future longitudinal studies following individuals to 

progress through different clinical stages of psychosis with multiple recordings 

are required to confirm this. Lastly, the small positive associations between 

MMNm and speed of information processing in the CHR sample provide 

preliminary support for MMNm to be linked with cognition in the high risk stage. 

From the clinical point of view, our data contributes to the existing literature by 

demonstrating that similar to clinically presenting CHR individuals, the 

community CHR individuals exhibit several clinical concerns in addition to APS, 

indicating that the community CHR population deserves access to clinical care 

regardless of APS and potential future transition to psychosis. 
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4 Effective Connectivity Underlying the 
Neuromagnetic Mismatch Negativity in 
Individuals at Clinical High Risk for Psychosis 

4.1 Introduction 

The increased interest in functional brain connectivity, namely the interaction 

between different cerebral areas, since the early 1960s has resulted in several 

different mathematical models for computing connectivity that can be applied 

to a number of neurophysiological signals including EEG and MEG signals 

(Sakkalis, 2011). The analysis methods for functional integration are typically 

divided into two different categories, those measuring functional connectivity 

and those measuring effective connectivity (Friston, 1994). While functional 

connectivity is defined as the temporal correlation between remote 

neurophysiological events, operationalised as statistical dependencies of time-

series from different brain regions, effective connectivity is defined as the 

influence that one neural system has over another, describing the dynamic 

interaction within brain networks allowing causality to be assessed (Friston, 

Frith, & Liddle, 1993).  

Granger-causality (Granger, 1969) and dynamic causal modelling (DCM) (Friston 

et al., 2003) are two widely adopted effective connectivity approaches in 

neuroimaging to determine causal interactions between different brain areas. 

The key difference between the two methods is that the Granger-causality 

technique is data driven whereas DCM is not an exploratory but a model-based 

approach. The most frequent application of DCM is to compare different 

underlying mechanisms that could explain the recorded imaging data (K. E. 

Stephan et al., 2010). More specifically, DCM tests a number of competing 

hypotheses about how observed data were generated by comparing connectivity 

models that are pre-specified by sources that are connected by different types 

of connections (forward, backward and lateral) and rules determining which 

connections are allowed to change (modulations). Bayesian model selection 

(BMS) is used to select the model that best explains the given data using 

exceedance probability, namely the likelihood of a specific model being more 

frequent than other models (Klaas E Stephan, Penny, Daunizeau, Moran, & 

Friston, 2009). Model comparison process is typically then followed by obtaining 
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posterior parameter estimates (task effect modulations) of the winning model 

and entering them into a second-level frequentist test to compare groups in 

these parameters (Penny, Stephan, Mechelli, & Friston, 2004). Although DCM was 

originally developed for effective connectivity analysis of fMRI data in 2003 

(Friston, 2003), it was later extended to analyse evoked responses in EEG and 

MEG data (David et al., 2006; Kiebel, David, & Friston, 2006).  

In addition to healthy populations, DCM has been applied to psychiatric disorders 

to examine the neural mechanisms underlying perceptual and cognitive 

disruptions (Heinzle & Stephan, 2017) and indeed several psychiatric illnesses 

have been linked to connectivity abnormalities (Greicius, 2008; Menon, 2011). 

Especially since it was proposed that abnormal functional integration of 

distributed brain regions, i.e. dysconnectivity, plays a key role in the 

pathophysiology of schizophrenia two decades ago (Friston & Frith, 1995; Klaas 

E. Stephan, Friston, & Frith, 2009), several studies have investigated alterations 

in effective connectivity in different stages of psychosis. For instance, previous 

DCM studies have examined connections within the working memory 

frontoparietal network (Owen, McMillan, Laird, & Bullmore, 2005) to understand 

the network dysfunctions underlying the well-established working memory 

impairment in psychosis. Indeed, in line with the dysconnectivity hypothesis, 

schizophrenia patients exhibit a reduced influence of prefrontal connectivity 

over parietal cortex during a working memory task (Deserno, Sterzer, 

Wustenberg, Heinz, & Schlagenhauf, 2012). Interestingly, there is evidence for 

the same impaired top-down connectivity (Schmidt et al., 2013) in first episode 

patients and CHR individuals, suggesting this abnormal connectivity to be related 

to emerging psychosis and unlikely to be solely due to the illness progression.  

DCM has been also used to assess the mechanisms underlying the resistance of 

schizophrenia patients to the hollow mask illusion, namely why patients do not 

perceive the hollow mask as a concave mask but as a normal convex face. 

Previous studies using both fMRI (Danai Dima et al., 2009) and EEG data (Danai 

Dima, Dietrich, Dillo, & Emrich, 2010) have found a weaker top-down influence 

and a stronger bottom-up connection in patients compared to controls during the 

hollow mask presentation. These findings provide further support for the 

disconnection hypothesis of schizophrenia (Friston & Frith, 1995; Klaas E. 
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Stephan et al., 2009) and in terms of predictive coding (Friston, 2005; Rao & 

Ballard, 1999) suggest that the abnormal illusory perception in psychosis 

emerges as a result of aberrant dynamic interaction between bottom-up sensory 

input and top-down predictions.  

A few studies have also employed DCM to examine the effective connectivity 

underlying the well-replicated and robust MMN deficiency in schizophrenia 

patients (D. Umbricht & Krljesb, 2005). The first DCM study to examine 

connectivity during an auditory roving oddball MMN paradigm in schizophrenia 

patients found evidence for abnormal connectivity in the backward connection 

from the right IFG to STG, providing evidence for aberrant top down connectivity 

within the MMN brain network in schizophrenia (D. Dima et al., 2012). Moreover, 

the patients also exhibited a decreased intrinsic inhibitory self-connectivity in 

the right primary auditory cortex, which the authors interpreted to reflect a loss 

of adaptation within local neurons resulting in inability to form a memory trace 

of the sound. Another more recent study employed DCM for MMN in a group of 

patients with a psychotic illness as well as their first-degree unaffected relatives 

to specifically examine potential group differences in terms of intrinsic 

inhibitory changes (Ranlund et al., 2016). The results revealed a disrupted 

intrinsic connectivity within the right IFG in patients as well unaffected 

relatives, suggesting similar connectivity abnormalities in patients with psychosis 

as well as in individuals at (genetically) at risk for psychosis, suggesting 

abnormal gain control/excitability of the neural population to be a potential 

endophenotype for psychosis.  

However, no studies to date have examined effective connectivity in the brain 

network underlying the MMNm generation in CHR individuals. Accordingly, the 

aim of chapter 4 was to use DCM to investigate the underlying effective 

connectivity network of duration change detection in CHR individuals to examine 

whether alterations within the MMNm network are present already prior to 

illness onset. Based on previous findings in the literature and the disconnection 

hypothesis it was hypothesised that compared to controls, CHR individuals show 

abnormal duration deviant-induced changes within the MMNm network, 

especially connections integrating the frontal cortex.  



93 
 

 
 

4.2 Methods  

The recruitment process, study procedure as well as MEG stimuli, recording and 

data pre-processing are described in chapter 2 (Methods). 

4.2.1 Participants 

The CHR group consisted of 103 individuals (27 males; 76 females) aged between 

16 to 35 years old (mean = 21.76 years, SD = 4.57) with normal to corrected 

vision who fulfilled one of the clinical CHR inclusion criteria based on the 

positive symptom subscales of the CAARMS (Yung et al., 2005) or/and the SPI-A 

(Schultze-Lutter et al., 2007). The control group consisted of 48 individuals (15 

males; 33 females; mean age = 22.58 years, SD age = 3.55). More detailed 

information regarding the demographic and clinical characteristics of the two 

groups is provided in chapter 2 (Methods), section 2.2. 

4.2.2 Dynamic causal modelling 

We used DCM for event related fields as implemented in SPM12 (Statistical 

Parametric Mapping). The MEG data pre-processing and the generation of 

virtual-channel time-series in response to the standard and duration deviant 

stimuli was done using FieldTrip. I imported the standard and duration deviant 

time-series for five ROIs, namely bilateral Heschl’s gyrus (HG), bilateral superior 

temporal gyrus (STG) and the right inferior frontal gyrus (rIFG), directly into 

SPM12. The five ROIs and their coordinates in the Montreal Neurological Institute 

(MNI) space are show in Figure 4.1. The selection of these specific ROIs to form 

the asymmetrical three-level hierarchical brain network was based on previous 

EEG/MEG (Doeller et al., 2003; Fulham et al., 2014; Marco-Pallarés et al., 2005) 

and DCM (Garrido et al., 2008; Garrido, Kilner, Kiebel, et al., 2009) studies 

reporting MMN to be generated in both frontal and temporal sources. Moreover, 

using our own MEG data, MMNm analyses at the source level in chapter 3 

confirmed the presence of significant MMNm responses elicited by duration 

deviant tones in these five ROIs. The left and right HG were selected as cortical 

input for processing the auditory information and the canonical microcircuit 

neural model was used as the neural mass model to describe neural activity 

(Bastos et al., 2012). DCM was applied to ERFs to standard and duration deviant 
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sounds from 0 to 250 ms post stimulus onset to ensure modelling of the MMNm 

response itself rather than later components (Garrido et al., 2008). 

  
 

Figure 4.1 The source network used for DCMs of MMNm. (A) The distribution of five sources 
used for the DCM analysis, namely the left and right Heschl’s gyrus, left and right superior 
temporal gyrus and right inferior frontal gyrus and (B) their coordinates in MNI space (mm). 

4.2.3 Bayesian Model Selection  

Before investigating potential group differences in effective connectivity 

underlying the MMNm response, I used BMS to examine which modulatory 

connections best explained the difference between ERFs to standard and 

duration deviant tones in the pre-defined five source network model in healthy 

controls. I specified six candidate dynamic causal models, each allowing for a 

different subset of connections to be modulated between (extrinsic) and within 

(intrinsic) five sources to test hypotheses that the differences in ERF responses 

to standard and duration deviant tones were caused by changes in 1) forward 

connections (F-models) 2) backward connections (B-models) or 3) in both 

backward and forward connections (FB-models). Figure 4.2 displays the entire 

model space, in which the first row of models allowed for changes only in 

extrinsic connections and the second row of models allowed for changes in both 

extrinsic as well as intrinsic inhibitory self-connections. I used the random-

effects (RFX) BMS method that accounts for heterogeneity across subjects and 

allows different subjects to use different models to determine the most likely 

model that generated the observed duration MMNm response relative to other 

models (Klaas E Stephan et al., 2009). 

A B 
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Figure 4.2 DCM model space including all six models used for BMS. The models have the 
same network structure including five nodes and each model received auditory input at 
bilateral Heschl’s gurys but they differed in modulations of connections. Orange colour 
indicates modulated connections. F, forward; B, backward; FB, forward and backward.  

4.2.4 Statistical Analyses 

4.2.4.1 Group differences in modularity connections 

After the RFX-BMS, the posterior parameter estimates of the winning model 

were extracted for each subject to quantify the rate of changes in coupling 

strengths between five selected regions induced by the duration deviant 

condition (DCM.Ep.B values). Subsequently potential group differences in these 

modulatory connections were examined by comparing the posterior coupling 

means between the CHR and HC group using independent samples t-tests. 

4.3 Results 

4.3.1 Bayesian model selection 

The application of the (RFX) BMS, which penalises for increased model 

complexity (Penny et al., 2004), to the entire model space revealed that the 

winning model in the HC group with the highest exceedance probability that best 

explained the responses to deviants compared to standards was the one that 

allowed for modulations of both forward and backward connections (FB model). 

The exceedance probability for the best FB model was 0.54 and 0.46 for the next 

best FBi model (Figure 4.3A). Accordingly, the FB model was used in the 

subsequent analysis to assess potential group differences in stimulus dependent 
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changes in effective connectivity during the deviant sound processing between 

the CHR and HC group. 

 
Figure 4.3 RFX-BMS results and model fit. (A) Random effects Bayesian model selection 
results among all models expressed relative to other models. The winning model for 
explaining the effect of the deviant stimulus was the FB model that included modulations of 
both forward and backward connections. (B) Model fits of the winning FB model presenting 
predicted (solid line) and observed (dashed line) ERF responses to standard (blue) and 
deviant (red) tones. 

4.3.2 Group differences in modularity connections 

Figure 4.4 A shows that on average all forward and backward connection 

strengths increased as indicated by values > 1 when the duration deviant 

stimulus was presented in the HC and CHR group. The subject specific coupling 

parameters of the FB model were entered into independent t-tests to assess 

group differences between the HC and CHR group. The results did not reveal a 

group difference in any of the forward or backward connections (Figure 4.4A & 

B). The distributions of individual coupling changes between different regions in 

the HC and CHR group are displayed in Figure 4.4C. 

A B 
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Figure 4.4 Comparison of coupling changes between the HC and CHR group. (A) Mean DCM 
modulatory posterior estimates for all extrinsic connections in the HC and CHR group and 
the results for the between-group comparison of deviant-induced modulations in different 
connections. Coupling changes are presented as scaling effects comparing deviants to 
standards, 1 indicating no change, < 1 indicating a decrease in the coupling strength as a 
response to deviants and > 1 indicating an increase in the coupling strength as response to 
deviants. (B) Group differences in mean coupling changes (HC minus CHR) and p-values (in 
brackets) for all connections between controls and CHR individuals. Green colour indicates 
a higher modulatory effect of the deviant condition in the HC group compared to the CHR 
group. The red colour indicates a smaller modulatory effect in the HC group compared to 
the CHR group. (C) The distributions of individual coupling parameters in the HC (green) 
and CHR group (red) for each connection. 

4.4 Discussion 

In the current chapter, effective connectivity underlying the duration MMNm 

response was modelled using DCM to assess the presence of aberrant effective 

connectivity in CHR individuals compared to healthy controls. To this end, we 

first assessed how the neural coupling was modulated by the duration deviant 

stimulus in an asymmetrical three level model including bilateral HG and STG 

and the right IFG in healthy controls to determine the model that best explained 

the MMNm effect as accurately as possible with minimal complexity. The 

selected network architecture of five nodes was based on previous DCM studies 
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A B Connection HC (n = 48) CHR (n = 103) t p ES (d ')

LHG to LSTG 2.19 (3.34) 1.86 (2.18) 0.69 0.49 0.12

RHG to RSTG 2.01 (1.70) 2.18 (2.49) -0.42 0.67 0.08

RSTG to RIFG 1.98 (1.15) 1.95 (1.35) 0.14 0.88 0.02

LSTG to LHG 2.85 (3.22) 2.60 (3.26) 0.44 0.66 0.08

RSTG to RHG 3.77 (3.25) 3.85 (4.30) -0.11 0.91 0.02

RIFG to RSTG 1.97 (1.55) 1.72 (1.22) 1.11 0.27 0.18
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demonstrating them to underlie the MMN generation (Garrido et al., 2008) and 

our own results in chapter 3 confirming the presence of a significant duration 

MMNm response in all five brain regions.  

The model selection results revealed that the model that allowed for changes in 

extrinsic forward and backward connections (FB-model), but not intrinsic 

connections, had the highest exceedance probability and was most likely to 

explain the observed duration MMNm response in healthy controls. Notably, the 

exceedance probability of the winning FB model (54 %) was not that different 

compared to the next best model FBi (46 %) but overall there was more evidence 

for the FB than the FBi model. The finding that the FBi model with the highest 

number of parameters was not the winning model demonstrates that in DCM the 

most complex model is not necessarily the best model as the models are 

penalised for complexity (K. E. Stephan et al., 2010). Moreover, it is worth 

mentioning that although the model fit of the winning FB model was good, as 

demonstrated by the comparison of the predicted and observed ERF responses to 

standard and deviants tones, it might be that another unexplored network model 

could fit our duration MMNm data better as BMS chooses an optimal model from 

a set of pre-defined models considered (K. E. Stephan et al., 2010). Yet, this is 

unlikely considering the good model fit as well as previous validations of the 

MMN network structure and thus the current cortical network can be assumed to 

be a good index of the real network generating the MMN response (Garrido, 

Kilner, Kiebel, et al., 2009; Garrido, Kilner, Kiebel, Stephan, & Friston, 2007). 

Our finding that the MMNm effect emerges from modulations in all bidirectional 

extrinsic connections is in line with an early DCM study that also found that 

modulations of both forward and backward connections best explained the MMN 

response during a classic oddball paradigm in controls (Garrido et al., 2007). On 

the other hand, our results are in contrast with a DCM study reporting that the 

best model explaining MMN elicited in a roving paradigm was the one with 

changes in both feedforward and backward extrinsic connections as well as 

changes in bilateral intrinsic connections within primary auditory cortices 

(Garrido et al., 2008). However, although our winning model did not include 

changes in intrinsic connections, we cannot rule out the possibility that also 

those connections contribute to the MMNm effect, especially considering the 
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relative high confidence for the second best FBi model that included intrinsic 

changes.  

We observed that the duration MMNm response was on average mediated by 

increased forward and backward connections in both HC and CHR groups, 

suggesting all extrinsic connections to be important in processing a deviant 

stimulus. According to theoretical accounts of predictive coding, increases in 

bottom-up forward connections convey the prediction error between the sensory 

predictions and the actual stimulus input to update the model at higher levels 

whereas the top-down backward connections convey predictions trying to cancel 

the prediction error at lower levels (Garrido et al., 2007). However, against our 

hypothesis, CHR individuals did not exhibit aberrant modulations of feedforward 

or backward connections induced by duration deviants in the frontotemporal 

MMNm network compared to controls. Given that an abnormal effective 

connectivity from the right IFG to the right STG has been observed in 

schizophrenia patients (D. Dima et al., 2012), we expected especially this 

connection to be altered in the CHR group. However, this lack of observed 

reduction of top down connectivity may suggest top-down processing and 

efficient signalling of predictions at this stage of psychosis. 

Moreover, our finding is in contrast with previous effective connectivity findings 

in CHR individuals during different tasks reporting the CHR state to be associated 

with disrupted frontotemporal connectivity (Crossley et al., 2009; Schmidt et 

al., 2013). Overall, in light of our data and previous evidence for extrinsic and 

intrinsic dysconnectivity in the MMN network in patients with schizophrenia (D. 

Dima et al., 2012; Ranlund et al., 2016), it appears that the underlying effective 

connectivity network of change detection is intact in the high risk state for 

psychosis and the disrupted connectivity may emerge later as a consequence of 

the illness.
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5 The Utility of MMNm Amplitude for Predicting 
Outcomes in CHR Individuals 

5.1 Introduction 

The notion of indicated prevention in psychosis, namely targeting individuals 

with subthreshold psychotic symptoms thought to be in the pre-psychotic illness 

stage to prevent or delay the onset of a first episode of psychosis (Klosterkötter, 

2008), has received an increasing clinical and research interest since the 

introduction of the UHR paradigm 25 years ago (Yung & McGorry, 1996). 

However, although CHR individuals have an elevated risk of developing a 

psychotic disorder within a short period of time compared to the general 

population, most of them do not transition to psychosis (T. D. Cannon et al., 

2008), raising concerns regarding early intervention in the CHR population (De 

Koning et al., 2009; McGorry et al., 2009). Given that accurate identification of 

individuals truly at risk for developing psychosis is a prerequisite for safe and 

meaningful early intervention, a number of neuroimaging measures have been 

studied as potential markers for improving psychosis prediction in CHR 

individuals. 

It has been suggested that reduced MMN amplitude, a neurophysiological 

measure of early auditory processing dysfunction, is one of the most promising 

markers for psychosis prediction in CHR individuals (Näätänen, Shiga, Asano, & 

Yabe, 2015). Indeed, previous studies comparing MMN amplitudes of CHR 

individuals who transitioned to psychosis (CHR-T) and who did not (CHR-NT) have 

found MMN deficits only in CHR-Ts and not CHR-NTs, suggesting MMN amplitude 

to have value for predicting progression from the high risk state to first episode 

psychosis (Bodatsch et al., 2011; Higuchi et al., 2013; Lavoie et al., 2018; Perez 

et al., 2014; Shaikh et al., 2012). However, other studies, including the largest 

published CHR study to date, could not replicate these findings (Atkinson et al., 

2017; Hsieh et al., 2012). Moreover, although there is tentative meta-analytical 

evidence showing a large effect size (d = 0.79) of MMN impairment in CHR-Ts 

(Erickson et al., 2016), the majority of previous studies have been limited by 

insufficient statistical power due to small sample sizes. Accordingly, the first 

aim of this chapter was to examine whether MMNm amplitudes in the sensor and 

source space differ between individuals who transitioned from the CHR state to 



101 
 

 
 

full-blown psychosis and who did not within 12 months. To this end, we followed 

up the CHR group introduced in chapter 3 and assessed their symptom levels and 

functioning at 12 months. 

As a result of declining transition rates in CHR studies (Lim et al., 2018; Yung et 

al., 2007) and recent evidence showing that CHR individuals have unfavourable 

outcomes irrespective of transition to psychosis (Beck et al., 2019; A. Lin et al., 

2015), the UHR approach has been criticised for its focus on psychosis as the only 

outcome of interest. Consequently, the field has slowly started to move towards 

assessing and predicting other clinically relevant outcomes as well. CHR-NTs 

have been typically divided into those who remitted from their initial CHR state 

and those who sustained subthreshold psychotic symptoms, meta-analytical 

evidence indicating that around 46 % of CHR individuals no longer meet the UHR 

criteria at a 2-year follow-up (Simon et al., 2013).  

It is important to acknowledge that despite a high proportion of CHR individuals 

remitting from their APS, they continue to have a poor level of functioning 

(Addington et al., 2011; T. Y. Lee, Kim, et al., 2014) and a high prevalence of 

non-psychiatric disorders that are associated with poor outcome (Rutigliano et 

al., 2016). Yet, to date the question of how many CHR individuals recover both 

symptomatically and functionally has remained relatively unexplored as previous 

studies have mainly focused on examining symptomatic remission (Woods et al., 

2014). To address this gap in the existing literature, we used an operational 

definition of remission based on the criteria suggested by Lee and colleagues 

(2014) which takes into account both symptomatic and functional outcomes. 

Furthermore, due to the focus on the onset of psychosis as the predominantly 

only outcome of interest in the CHR literature, there is a lack of research 

examining whether reduced MMNm amplitude is associated with persistent CHR 

status and low functioning. Hence, the second objective of the chapter was to 

assess the symptomatic and functional remission rates in UHR individuals at 12 

months and examine whether MMNm amplitude can differentiate UHR individuals 

who achieved full remission (CHR-R) from those who did not (CHR-NR). 

Despite extensive research efforts, it has proven difficult to predict outcomes of 

CHR individuals based on clinical and cognitive measures (Seidman et al., 2010) 

and it has been suggested that combining imaging measures with clinical and 
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neuropsychological measures may improve outcome prediction. However, while 

previous studies have investigated the utility of MMN amplitude in predicting 

transition to psychosis (Bodatsch et al., 2011; Perez et al., 2014), its ability to 

predict the severity of APS or global functioning in CHR individuals remains 

unknown. Moreover, it is important to investigate whether adding MMNm data to 

more easily obtained and economically feasible clinical and neuropsychological 

measures improves outcome prediction in CHR individuals. Accordingly, the third 

and final goal of the chapter was to determine whether MMNm amplitude can 

predict the severity of APS and global functioning at 12 months above and 

beyond clinical and neuropsychological predictors.  

5.1.1 Hypotheses 

The following hypotheses will be tested: 

(1) CHR individuals who transitioned to psychosis within 12 months show an 

attenuated MMNm peak amplitude response compared to CHR individuals 

who did not transition and controls. 

(2) UHR individuals who did not achieve symptomatic and functional 

remission at 12 months show reduced MMNm amplitude compared to 

remitters and controls. 

(3) MMNm amplitude contributes to the prediction of the severity of APS and 

GAF in UHR individuals at 12 months above and beyond clinical and 

cognitive predictor variables. 

5.2 Methods 

The recruitment, participants, study procedure as well as MEG stimuli, recording 

and data pre-processing are outlined in chapter 2 (Methods). 

5.2.1 Transition criteria 

We used the transition criteria based on the definition by Yung and colleagues 

(1998) that requires the presence of at least 1 positive psychotic symptom 
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several times a week for longer than one week. Transition to psychosis was 

confirmed by a DSM-5 diagnosis on the SCID. 

5.2.2 Remission criteria 

Symptomatic and functional remission, referred as a full remission in this thesis, 

was defined a priori as an UHR individual (excluding individuals with only BS at 

baseline) not meeting the UHR criteria as based on the CAARMS (see General 

Methods 1.4.2. for the operationalised UHR criteria) and a GAF score of ≥ 60 at 

12 months. Although the GAF score of ≥ 60 out 100 is an arbitrary choice as a 

cut-off point for functional remission, it was chosen as it is frequently used to 

divide patients with mild functional impairment from those with moderate to 

severe functional impairment in clinical practice. 

5.2.3 Changes in symptom severity and global functioning 

Symptom change from baseline to a 12-month follow-up visit was calculated by 

subtracting the total severity of the positive symptom subscales of the CAARMS 

at baseline from scores at 12 months. Similarly, change in GAF score during the 

12-month follow-up period was calculated by subtracting GAF/social scores at 

baseline from scores at 12 months. 

5.2.4 Statistical analyses 

Changes in the severity of APS and GAF over time was compared in those UHR 

individuals who achieved full remission and who did not by a mixed-design 

ANOVA with one between-subjects factor of group (remitters vs non-remitters) 

and one within-subjects factor of time (baseline vs 12 months). 

To examine potential group differences in MMNm amplitudes at the sensor level, 

mixed-design ANOVAs with one within-subjects factor of hemisphere with two 

levels (left, right) and one between-subjects factor of group were performed for 

durMMNm and omiMMNm amplitudes. To investigate group differences in MMNm 

responses at the source level, non-parametric Kruskal-Wallis H tests were 

conducted to compare MMNm peak amplitudes between groups separately in 

each ROI. 
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Two separate two-stage hierarchical multiple regressions with the enter method 

were conducted with the severity of APS and the GAF score at 12 months as the 

dependent variable. Baseline role and social functioning, GAF score, APS severity 

and BACS composite score were entered simultaneously as predictor variables at 

stage one of the regression and the durMMNm amplitude over the right 

hemisphere was entered at stage two. Because of high collinearity between 

cognitive subtest scores and MMNm amplitudes in sensor and source space, only 

duration MMNm amplitude extracted from the six SOIs over the right hemisphere 

and the overall BACS cognitive score were selected. 

5.3 Results 

5.3.1 Demographic and clinical characteristics 

5.3.1.1 CHR individuals with and without follow-up information 

MMNm data were recorded for 106 CHR participants at baseline. 65 (61 %) of 

these participants had 12-month follow-up data available (Figure 5.1). The CHR 

individuals with follow-up data had a lower prevalence of suicidal ideations and 

a higher GAF score, APS severity and level of education than CHR participants 

without follow-up data. The groups did not differ in any other demographic or 

clinical characteristics or, most importantly, MMNm peak amplitude (Appendix 

B.1).  

 
Figure 5.1 CHR individuals with and without 12 month follow-up data. 15 out of 41 (37 %) 
CHR participants without follow up data had not yet reached the 12-month follow-up visit, 16 
(39 %) had reached the follow-up but missed it and 10 (24 %) had disengaged during the 12-
month follow-up period. FU, follow-up. 

5.3.1.2 CHTs vs CHR-NTs 

CHR individuals were divided into those who transitioned to psychosis (CHR-T) 

and those who did not (CHR-NT) during the 12-month follow-up period. Of the 65 
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CHR participants with follow-up data, 5 (7.7 %) had experienced a transition to 

psychosis during 12 months. The CHR-T group differed from the CHR-NT group 

only by having a lower social functioning score at baseline with a non-significant 

trend (p = .08) in the GAF score and age (Table 5.1). 

Table 5.1 Baseline characteristics of CHR-NT and CHR-T groups. 
Measure Sub-Measure CHR-NT (n = 60) CHR-T (n = 5) Statistics Significance
Age 22.23 (4.56) 18.60 (2.07) t (63) = 1.76 n.s. (.08)
Gender Male 14 1 χ 2(1) = .865 n.s. (.99)

Female 46 4
Employment Full time paid 1 0 χ 2(4) = .551 n.s. (.97)

Part time paid 3 0
Voluntary 1 0
Student 54 5
Unemployed 1 0

Years of Education 15.73 (3.68) 13.60 (2.30) t (63) = 1.27 n.s. (.21)
Medication + Any medication 31 3 χ 2(1) = .128 n.s. (.72)

None 29 2
Treated Mental Health Problems None 22 1 χ 2(2) = 2.59 n.s. (.27)

Current 8 2
High risk stage EPS 15 1 χ 2(2) = .062 n.s. (.80)

LPS 45 4
Clinically referred No 55 5 χ 2(1) = .451 n.s. (.50)

Yes 5 0
Past 30 2

Family History (1st Degree) + No 53 5 χ 2(1) = .654 n.s. (.99)
Yes 7 0

CAARMS severity 29.72 (15.97) 39.0 (20.86) t  (63) = - 1.22 n.s. (.23)
GAF 61.90 (12.81) 51.80 (5.40) t  (63) = 1.74 n.s. (.08)
GF: Social scale  7.67 (1.02) 6.60 (1.14) t  (63) = 2.23 p  = .03
GF: Role scale 7.67 (1.05) 7.40 (1.34) t  (63) = .53 n.s. (.60)
Current Suicide Risk No 34 3 χ 2(3) = 4.125 n.s. (.25)

Yes Low 11 0
Yes Moderate 7 0
Yes High 7 2

BACS composite score 277.50 (42.45) 284.0 (53.47) t  (63) = -.29 n.s. (.77)

  
CHR-NT, clinical high risk non-transitioners; CHR-T, clinical high risk transitioners; 
CAARMS, comprehensive assessment of at risk mental states; GAF, Global Assessment of 
Functioning; GF, global functioning; BACS, brief assessment of cognition in schizophrenia; 
n.s., non-significant. P > 0.05 listed as non-significant. 

5.3.1.3 Remitters vs non-remitters 

Out of 60 CHR-NTs, 43 (71.6 %) met the UHR criteria based on the CAARMS at 

baseline (excluding the BS only group). Out of these 43, 30 (70 %) participants 

remitted symptomatically and no longer met the UHR criteria at 12 months 

whereas 25 (58 %) participants remitted functionally. Only 17 (39.5 %) 

participants achieved the predefined full remission incorporating symptomatic 

and functional remission (CHR-R) and 26 (60.5 %) did not (CHR-NR) (Figure 5.2).  
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Figure 5.2 UHR individuals grouped according to their symptomatic and functional outcome 
at 12 months. Of the 26 (60.5 %) participants who did not fully remit (CHR-NR), 13 (30.2 %) 
participants remitted only symptomatically, while 8 (18.6 %) participants remitted only 
functionally and 5 (11.6 %) participants did not remit symptomatically or functionally. R, 
remission. 

At baseline, the CHR-R group had a higher GAF and role functioning score than 

the CHR-NR group but they did not differ in any other measure. In terms of 

group differences in GAF change over time, a mixed-design ANOVA revealed a 

significant time (baseline, 12 months) and group (remitter, non-remitters) 

interaction (F (1, 41) = 4.20, p = .047), indicating that only CHR-Rs, not CHR-

NRs, showed an improvement in the GAF score. Similarly there was a significant 

group difference in the change in the severity of APS (Time x Group: F (1, 41) = 

6.71, p =.01) and social functioning (Time x Group: F (1, 39) = 6.79, p = .01) over 

time. However, there was no significant change in role functioning over 12 

months in the CHR-R or CHR-NR group (Time: F (1, 39) = .08, p = .78) and there 

was no significant group difference in change in role functioning between the 

two groups (Time x Group: F (1, 39) = 2.46, p .13). It has to be noted that 

although CHRs showed a higher GAF improvement than CHR-NRs, the data show 

large individual differences in effect sizes and overlap between groups and 

indeed the group difference in the GAF change was just below the significance 

level of 0.05 (p = .047) (Figure 5.3).  
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Figure 5.3 GAF and APS change in CHR-NR and CHR-R groups over 12 months. (A) Paired 
observations of GAF scores at baseline and 12 months for CHR-R and CHR-NR groups and 
the changes in GAF score over 12 months. A positive score indicates an improvement in the 
GAF score. (B) Stripchart of paired observations showing the severity of APS in CHR-R and 
CHR-NR groups at baseline and 12 months and the changes in symptom severity over 12 
months. A negative score indicates an improvement in the symptom severity. GAF, Global 
Assessment of Functioning. 

 
As expected, controls were less likely to use medication, have mental health 

problems and a first-degree relative with a diagnosis schizophrenia than both the 

CHR-R and CHR-NR group. Controls also had higher global, social and role 

functioning and lower APS severity and suicide risk than the both CHR groups. 

The HC group had a higher BACS composite score than the CHR-NR group but not 

the CHR-R group (Table 5.2).  

 

  

  

B 

A 
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Table 5.2 Characteristics of CHR-NR, CHR-R and HC groups at baseline and 12 months. 
Measure Sub-Measure HC (n = 49) CHR-NR (n = 26) CHR-R (n = 17) Statistics Significance Post Hoc Comparisons
Age  22.5 (3.57) 22.65 (5.34) 22.00 (4.20) H (2) = .43 n.s. (.808)
Gender Male 16 6 4 χ 2(2) = .999 n.s. (.61)

Female 33 20 13
Handedness Left 4 1 2 χ 2(4) = 2.15 n.s. (.708)

Right 37 11 10
Amdidextrous 8

Employment Full time paid 3 1 0 χ 2(10) = 4.513 n.s.(.921)
Part time paid 2 1 1
Voluntary 1 0 1
Student 41 23 15
Unemployed 2 1 0

Years of Education  16.6 (3.03) 15.38 (4.23) 15.71 (3.04) H (2) = 3.77 n.s. (.152)
Medication Any medication 0 12 10 χ 2(2) = 30.53 p  < .001 HC < CHR-NR & CHR-R

None 49 14 7
Treated Mental Health Problems None 46 10 4 χ 2(4) = 42.530 p  < .001 HC < CHR-NR & CHR-R

Current 0 2 4
Past 3 14 9

Family History (1st Degree) No 49 23 15 χ 2(2) = 6.03 p  = .049 HC < CHR-NR & CHR-R
Yes 0 3 2

GAF  87.6 (6.44) 56.31 (10.94) 64.71 (11.36) F  (2,90) = 116.41 p  < .001 HC > CHR-NR & CHR-R, CHR-R > CHR-NR
GF: Social scale 8.82 (.391) 7.54 (1.10) 7.65 (.862) H (2) = 43.05 p  < .001 HC > CHR-NR & CHR-R
GF: Role scale 8.57 (.764) 7.31 (1.19) 8.06 (.66) H (2) = 30.30 p  < .001 HC > CHR-NR & CHR-R, CHR-R > CHR-NR
CAARMS total 0.73 (.235) 36.85 (14.76) 29.18 (16.20) F (2,90) = 112.97 p  < .001 HC < CHR-NR & CHR-R
Current suicide risk No 49 14 9 χ 2(2) = 30.51 p  < .001 HC < CHR-NR & CHR-R

Yes low 0 5 3
Yes moderate 0 2 4
Yes high 0 4 1

BACS 303.19 (24.85) 268.12 (46.37) 279.94 (44.47) F  (2, 90) = 8.61 p  < .001 HC > CHR-NR
Follow-up characteristics
GAF NA 54.77 (1.94) 71.65 (2.269) t  (41) = -5.58 p  < .001
GF: Social scale NA 6.88 (1.177) 8.07 (.884) U  = 86 p  = .003
GF: Role scale NA 7.08 (1.129) 8.33 (.617) U = 64 p  < .001
CAARMS total NA 24.69 (14.94) 4.53 (4.96) t  (41) = 5.36 p  < .001
Change in GAF NA  1.54 (13.38) 6.94 (13.07) t  (41) = -2.05 p  = .047
Change in Social scale NA  .654 (1.23) .33 (1.047) U = 109.5 p  = .017
Change in Role scale NA  0.231 (1.24) .33 (.816) U = 138 n.s. (.103)
Change in CAARMS total NA  12.15 (15.14)  24.65 (15.96) t  (41) = 2.59 p  = .013

HC, healthy controls; CHR-NR, clinical high risk non-remitters; CHR-R, clinical high risk 
remitters; CAARMS, comprehensive assessment of at risk mental states; GAF, Global 
Assessment of Functioning; GF, global functioning; BACS, brief assessment of cognition in 
schizophrenia; n.s., non-significant. P > 0.05 listed as non-significant. 

5.3.1.4 Symptom and functioning levels of the entire UHR sample at 12 
months 

Among the 43 UHR participants with 12-month follow-up data, there was a 

significant improvement in the severity of APS from baseline (M = 33.81, SD = 

15.62) to 12 months (M = 16.72, SD = 15.55) (t = 6.80, p < .01). However, there 

was no significant change in the GAF score from baseline (M = 59.63, SD = 11.73) 

to 12 months (M = 61.44, SD = 12.71), (t = 6.80, p = .39) (Figure 5.4). Similarly 

there was no significant improvement in role functioning (t = .14, p = .89) from 

baseline (M = 7.56, SD = 1.07) to 12 months (M = 7.54, SD = 1.14) or in social 

functioning (t = 1.50, p = .14) from baseline (M = 7.61, SD = 1.02) to 12 months 

(M = 7.32, SD = 1.21). Pearson correlation analysis showed that there was no 

significant relationship between symptomatic and functional remission (r = -.05, 

p = .78).  
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Figure 5.4 GAF and APS change in the entire UHR group over 12 months. (A) Change in the 
severity of APS and (B) the GAF score from baseline to a 12-month follow-up among UHR 
individuals. GAF, Global assessment of functioning. 

5.3.2 MMNm analyses 

5.3.2.1 Transition effect on MMNm 

5.3.2.1.1 Sensor level 

For durMMNm, a 2 x 3 mixed-design ANOVA with one within-subjects factor of 

hemisphere (left, right) and one between-subjects factor of group (HC, CHR-T, 

CHR-NT) revealed a significant main effect of hemisphere (F (1, 111) = 10.87, p < 

.01) but no significant main effect of group (F (2, 111) = .18, p = .84) or group by 

hemisphere interaction (F (2,111) = .60, p = .55). Similarly for omiMMNm, there 

was a significant main effect of hemisphere (F (1, 111) = 12.98, p = < .01) but no 

significant main effect of group (F (2, 111) = .76, p = .47) or group by 

hemisphere interaction (F (2, 111) = 2.19, p = .12) (Table 5.3). 

Table 5.3 Means and standard deviations of MMNm peak amplitudes for the CHR-NT, CHR-T 
and HC groups over the left and right hemisphere. 

Hemisphere CHR-NT (n = 60) CHR-T (n = 5) HC (n = 49) CHR-NT vs CHR-T d HC vs CHR-NT d HC vs CHR-T d
durMMNm
     Left 4.18 (3.47) 4.10 (4.58) 4.57 (4.65) 0.02 0.01 0.10
     Right 6.03 (4.43) 7.96 (6.23) 6.12 (4.49) 0.36 0.02 0.34
omiMMNm
     Left 2.80 (1.80) 2.63 (1.07) 2.79 (1.69) 0.10 0.01 0.11
     Right 3.33 (2.25) 5.44 (1.76) 3.57 (2.51) 1.05 0.10 0.86

Group

 
HC, healthy controls; CHR-NT, clinical high risk non-transitioners; CHR-T, clinical high risk 
transitioners. 

A 

B 
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5.3.2.1.2 Virtual channels 

Kruskal-Wallis tests did not reveal a significant main effect of group on 

durMMNm or omiMMNm peak amplitudes in any of the ROIs (Table 5.4).  

Table 5.4 Virtual channel means and standard deviations of MMNm peak amplitudes in the 
CHR-NT, CHR-T and HC group, effect sizes of group differences and statistical results 
comparing the groups on MMNm peak amplitudes in each ROI. 

ROI CHR-NT (n = 60) CHR-T (n = 5) HC (n = 48) CHR-NT vs CHR-T d HC vs CHR-NT d HC vs CHR-T d Statistics
durMMNm
     L HG 7.50 (8.26) 11.10 (12.00) 8.88 (12.78) 0.35 0.13 0.18 H(2) = 0.69, p  = .71
     R HG 26.74 (31.69) 21.74 (25.19) 25.72 (28.42) 0.17 0.03 0.15 H(2) = 0.07, p  = .97
     L STG 7.38 (8.39) 10.22 (9.22) 9.93 (14.51) 0.32 0.22 0.02 H(2) = 0.44, p  = .80
     R STG 24.19 (27.04) 28.53 (35.60) 25.40 (29.98) 0.14 0.04 0.1 H(2) = 0.09, p  = .96
     L MTG 4.90 (6.49) 5.16 (7.24) 9.08 (13.40) 0.04 0.4 0.36 H(2) = 2.78, p  = .25
     R MTG 9.72 (11.31) 12.40 (16.74) 12.10 (13.36) 0.19 0.2 0.02 H(2) = 0.83, p  = .66
     R IFG 1.07 (2.19) .62 (.40) .88 (.78) 0.29 0.12 0.42 H(2) = 1.07, p  = .59
omiMMNm
     L HG 3.96 (4.14) 1.80 (1.94) 4.30 (5.03) 0.67 0.07 0.66 H(2) = 1.79, p  = .41
     R HG 8.17 (10.05) 13.28 (16.11) 9.03 (9.30) 0.38 0.09 0.32 H(2) = 1.09, p  = .58
     L STG 2.91 (2.94) 1.47 (1.89) 3.92 (4.53) 0.58 0.26 0.71 H(2) = 2.59, p = .27
     R STG 7.11 (8.09) 10.48 (11.44) 8.42 (8.10) 0.34 0.16 0.21 H(2) = 2.83, p  = .24
     L MTG 2.89 (4.24) 1.29 (.73) 3.81 (5.05) 0.53 0.2 0.7 H(2) = 3.10, p  = .21
     R MTG 3.89 (5.52) 6.62 (6.12) 5.71 (7.32) 0.47 0.28 0.13 H(2) = 3.50, p  = .17
     R IFG .47 (.57) .41 (.45) 0.49 (.52) 0.12 0.004 0.16 H(2) = 0.47, p = .79

Group

 Uncorrected critical p-values listed. HC, healthy controls; CHR-NT, clinical high risk non-
transitioners; CHR-T, clinical high risk transitioners; ROI, region of interest; HG, Heschl’s 
gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; IFG, inferior frontal 
gyrus. 

5.3.2.2 Remission effect on MMNm 

5.3.2.2.1 Sensor level 

A 2 x 3 mixed-design ANOVA revealed a significant main effect of hemisphere (F 

(1, 89) = 8.34, p = .01) but no significant main effect of group (F (2, 89) = 1.44, 

p = .24) or group by hemisphere interaction (F (2, 89) = .16, p = .85) on 

durMMNm (Table 5.5 & Figure 5.5). In analysis of omiMMNm responses, the 

ANOVA revealed a significant main effect of hemisphere (F (1, 89) = 6.21, p = 

.02), but no main effect of group (F (2, 89) = .37, p = .70) or hemisphere by 

group interaction (F (2, 89) = .15, p = .86) (Table 5.5 & Figure 5.5). The 

distributions of individual MMNm peak amplitudes for each group are presented 

in Appendix B.2. 
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Table 5.5 Means and standard deviations of MMNm peak amplitudes for the CHR-NR, CHR-R 
and HC groups and the effect sizes of group differences over the left and right hemisphere. 

Hemisphere CHR-NR (n = 26) CHR-R (n = 17) HC (n = 49) CHR-R vs CHR-NR d
durMMNm
     Left 4.60 (3.37) 3.23 (3.26) 4.57 (4.65) 0.41
     Right 6.48 (4.70) 4.31 (3.89) 6.12 (4.49) 0.50
omiMMNm
     Left 3.09 (2.02) 2.49 (1.45) 2.79 (1.69) 0.34
     Right 3.55 (2.11) 3.24 (2.26) 3.57 (2.52) 0.14

Group

 
HC, healthy controls; CHR-R, clinical high risk remitters; CHR-NR, clinical high risk non-
remitters. 

 
Figure 5.5 DurMMNm and omiMMNm waveforms and topographic plots for the CHR-R, CHR-
NR and HC groups. Grand average MMNm waveforms for the HC (green line), CHR-R (blue 
line) and CHR-NR (red line) groups derived from the six left (dashed line) and right (solid 
line) MEG sensors as marked by the black dots in the topographic plots and topographic 
maps of MMNm components over the left and right hemisphere for each group in the TOIs 
(grey shaded area) which were used to extract individual MMNm peak amplitude values. The 
top panel (A) presents the durMMNm effect and the bottom panel (B) presents the 
omiMMNm effect. HC, healthy controls; CHR-R, clinical high risk remitters; CHR-NR, clinical 
high risk non-remitters. 

5.3.2.2.2 Virtual channels 

The results of Kruskal-Wallis tests suggested a group effect on omiMMNm peak 

amplitude in the right MTG. However, this effect is not significant when 

corrected for multiple comparisons. The results did not reveal any other group 

effects on durMMNm or omiMMNm peak amplitudes in any of the ROIs (Figure 5.6 

& Table 5.6).  

A 

B 

HC																		CHR-R													CHR-NR 

HC																				CHR-R																CHR-NR 
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Table 5.6 Means and standard deviations (in parentheses) of MMNm peak amplitudes in the 
CHR-NR, CHR-R and HC group, effect sizes of group differences and statistical results 
comparing the groups on MMNm peak amplitudes in each ROI.  
ROI CHR-NR (n = 26) CHR-R (n =  17) HC (n =  48) CHR-NR vs CHR-R d HC vs CHR-NR d HC vs CHR-R d Statistics
durMMNm
    L HG 7.97 (8.11) 5.88 (6.46) 8.88 (12.78) 0.29 0.09 0.3 X 2  (2)  = 0.47, p  = .79
    R HG 30.00 (36.49) 16.46 (20.92) 25.72 (28.42) 0.45 0.13 0.37 X 2  (2)  = 1.96, p = .38
    L STG 8.27 (8.44) 6.40 (7.71) 9.93 (14.51) 0.23 0.14 0.3 X 2  (2)  = 0.65, p  = .72
    R STG 24.85 (26.43) 17.56 (27.71) 25.40 (29.98) 0.27 0.02 0.27 X 2  (2)  = 2.04, p  = .36
    L MTG 5.44 (7.57) 3.92 (4.34) 9.08 (13.40) 0.25 0.33 0.52 X 2  (2)  = 2.48, p = .29
    R MTG 7.80 (7.30) 10.38 (14.66) 12.10 (13.36) 0.22 0.4 0.12 X 2  (2)  = 1.37, p  = .51
    R IFG .80 (1.27) 1.55 (3.65) .88 (.78) 0.27 0.08 0.25 X 2  (2)  = 1.77, p  = .41
omiMMNm
    L HG 3.45 (4.05) 3.30 (2.53) 4.30 (5.03) 0.04 0.19 0.25 X 2 (2) = 0.15, p  = .93
    R HG 7.85 (7.83) 8.07 (9.44) 9.03 (9.30) 0.03 0.14 0.1 X 2  (2) = 0.52, p  = .77
    L STG 2.89 (3.07) 2.68 (2.17) 3.92 (4.53) 0.08 0.266 0.35 X 2 (2) = 0.44, p  = .80
    R STG 6.16 (5.87) 8.95 (9.55) 8.42 (8.10) 0.35 0.32 0.06 X 2  (2) = 1.78, p  = .41
    L MTG 3.14 (5.60) 2.97 (2.68) 3.81 (5.05) 0.04 0.13 0.21 X 2  (2) = 2.53, p  =. 28
    R MTG 2.37 (2.74) 6.40 (7.83) 5.71 (7.32) 0.69 0.6 0.09 X 2  (2) = 6.41, p  = .04
    R IFG .43 (.61) .46 (.50) 0.49 (.52) 0.05 0.11 0.06 X 2  (2) = 0.98, p  = .61

Group

Uncorrected critical p-values listed. HC, healthy controls; CHR-R, clinical high risk 
remitters; CHR-NR, clinical high risk non-remitters; ROI, region of interest; HG, Heschl’s 
gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; IFG, inferior frontal 
gyrus. 

 

 
 

HC vs CHR-NR HC vs CHR-R A 
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Figure 5.6 Virtual channel durMMNm (A) omiMMNm (B) waveforms for the HC, CHR-R and 
CHR-NR groups. Grand average MMNm virtual channel time series with SEM error bars 
(shaded areas) comparing controls (black line) with CHR-NRs (red line) (left panel) and 
controls with CHR-Rs (right panel) in each ROI. The onset of the deviant sound was at 0.6 
seconds. Absolute values are given. HC, healthy controls; CHR-R, clinical high risk 
remitters; CHR-NR, clinical high risk non-remitters. 

5.3.3 Prediction models 

5.3.3.1 Predicting symptom levels at 12 months 

There was no multicollinearity between the six independent variables as 

indicated by tolerance (0.75 - 0.88) and Variance Inflation Factor values (VIF: 

1.14 – 1.33). The regression revealed that the model one with five clinical and 

cognitive variables was significant (F (5, 37) = 3.20, p = .01, R2 = .30) against a 

null model (no predictors) and accounted for 30 % of the variation in the severity 

of APS at 12 months. The duration MMNm amplitude explained an additional 5.2 

% of the APS at 12 months but the R2 change was not significant (∆F (1, 36) = 

2.92, p = .10, R2 = .052). The baseline APS severity was the only significant 

predictor of the APS severity at 12 months when controlling for other four 

factors (β = .43, p = .01). The positive regression coefficient suggests that as the 

baseline symptom severity increases by 1 point, the symptom level at 12 months 

goes up by 0.43 points (Table 5.7).  

HC vs CHR-NR HC vs CHR-R B 
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Table 5.7 Summary of multiple hierarchical regression analysis for variables predicting the 
APS severity at 12 months in CHR individuals. 

Standardized 
Coefficients t p Tolerance VIF R 2 ∆R 2

Step 1 0.302 0.302
(Constant) 1.654 .107
Baseline Role .127 .832 .411 .808 1.237
Baseline Social -.102 -.676 .503 .826 1.211
Baseline GAF -.180 -1.138 .262 .753 1.329
Baseline APS .425 2.757 .009 .792 1.263
Baseline BACS -.238 -1.578 .123 .827 1.210

Step 2 0.355 0.052
(Constant) 1.542 .132
Baseline Role .194 1.259 .216 .756 1.322
Baseline Social -.130 -.875 .388 .816 1.225
Baseline GAF -.192 -1.240 .223 .751 1.331
Baseline APS .377 2.460 .019 .765 1.308
Baseline BACS -.272 -1.832 .075 .812 1.232
DurMMNm .244 1.710 .096 .879 1.138  

GAF, Global Assessment of Functioning; CAARMS, comprehensive assessment of at risk 
mental states; BACS, brief assessment of cognition in schizophrenia. 

5.3.3.2 Predicting global functioning at 12 months 

A two-step hierarchical multivariate regression was used with the GAF score at 

12 months as the dependent variable. Baseline role and social functioning, GAF 

score, APS severity and BACS composite score were entered at step one and the 

durMMNm amplitude was incorporated into the model at step two. No sources of 

multicollinearity were present among predictor variables (Tolerance: 0.75 - 

0.88, VIF: 1.14 – 1.33). 

The results of the regression analysis revealed that the overall model with five 

clinical and cognitive factors was statistically significant compared to a null 

model (F (5, 37) = 3.04, p = .02, R2 = .29)), indicating that the model with the 

full set of variables successfully predicted the GAF score at 12 months. The 

model accounted for 30 % of the variation in the GAF score at 12 months. 

However, the durMMNm variable did not explain any additional variation in the 

GAF score and the R2 change was not significant (∆F (1, 36) = .04, p = .84, R2 = 

.01). In the predictive model with five factors (excluding the durMMNm 

amplitude), the baseline role functioning score (β = .37, p = .02) was the only 

significant predictor of the GAF score when other predictors in the model were 

hold constant. The positive regression coefficient indicates that as the baseline 

role functioning goes up by 1 point, the GAF score at 12 months improves by 0.24 

points (Table 5.8). 
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Table 5.8 Summary of multiple hierarchical regression analysis for variables predicting the 
GAF at 12 months in CHR individuals. 

Standardized 
Coefficients (β) t p Tolerance VIF R 2 ∆R 2

Step 1 0.291 0.291
(Constant) 2.019 .051
Baseline Role .373 2.420 .021 .808 1.237
Baseline Social -.123 -.805 .426 .826 1.211
Baseline GAF .241 1.509 .140 .753 1.329
Baseline APS -.193 -1.238 .224 .792 1.263
Baseline BACS -.101 -.664 .511 .827 1.210

Step 2 0.292 0.001
(Constant) 2.004 .053
Baseline Role .364 2.258 .030 .756 1.322
Baseline Social -.119 -.768 .448 .816 1.225
Baseline GAF .242 1.497 .143 .751 1.331
Baseline APS -.186 -1.162 .253 .765 1.308
Baseline BACS -.097 -.622 .538 .812 1.232
DurMMNm -.031 -.207 .837 .879 1.138  

GAF, Global Assessment of Functioning; CAARMS, comprehensive assessment of at risk 
mental states; BACS, brief assessment of cognition in schizophrenia. 

5.4 Discussion 

5.4.1 Transition to psychosis 

The first aim of the chapter was to investigate whether CHR-Ts show reduced 

baseline duration MMNm amplitude compared to CHR-NTs and controls. 

However, we were unable to find evidence for group differences in MMNm 

amplitudes and thus the current study does not provide evidence for MMNm 

amplitude to be associated with transition to psychosis in CHR individuals. Our 

results are in contrast with two recent meta-analyses reporting MMN deficits in 

CHR-Ts compared CHR-NTs (Bodatsch, Brockhaus-Dumke, Klosterkötter, & 

Ruhrmann, 2015; Erickson et al., 2016). On the other hand, our findings are in 

line with the largest longitudinal CHR study in the literature suggesting MMN not 

to be a promising marker for psychosis prediction in CHR individuals (Atkinson et 

al., 2017).   

Similar to several previous studies among clinically recruited CHR individuals 

(Lim et al., 2018; Yung et al., 2007), the majority of the current CHR sample did 

not experience a psychotic episode during the 12 month follow-up period. More 

specifically, only 5 out of 65 CHR individuals with follow-up data available 

experienced a transition to psychosis. CHT-NTs and CHR-Ts differed only in social 

functioning at baseline but not in any other demographic, clinical or 

neuropsychological characteristic. This is consistent with a previous CHR study 
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that reported poor baseline social functioning to predict psychosis onset 

(Cornblatt et al., 2007). On the other hand, despite a trend towards poorer 

global functioning and younger age of CHR-Ts compared to CHR-NTs, our results 

are in contrast with studies reporting baseline functioning and symptom severity 

to be associated with transition to psychosis (e.g. T. D. Cannon, Cadenhead, 

Cornblatt, Woods, et al., 2008). However, similar to previous longitudinal CHR 

studies examining MMN amplitude as a marker for predicting psychosis onset, our 

findings are limited by the lack of statistical power due to a small sample of 

CHR-Ts (n = 5), resulting in increased probability of a type 2 error. Hence, these 

results should be interpreted with caution until replicated in a larger, ideally in 

a sample of > 20 participants (Simmons et al., 2011). 

5.4.2 Symptomatic and functional remission 

Besides examining MMNm peak amplitude as a potential marker for transition to 

psychosis, we also sought to determine whether MMNm amplitude can 

discriminate UHR individuals who achieved the predefined full remission (no 

longer met the UHR criteria & the GAF score ≥ 60) from those who did not. In 

contrast to our expectations, UHR individuals who sustained the initial UHR state 

for psychosis and low functioning at 12 months did not show reduced MMNm. Our 

finding is inconsistent with a recent study that reported CHR-NRs to have 

reduced duration MMN amplitudes compared to CHR-Rs (Kim et al., 2018). The 

conflicting results are unlikely due to the operationalisation of remission or the 

quantification of the MMN amplitude as both studies were similar in these 

aspects. However, Kim and colleagues (2018) had a 6-year follow-up period that 

was substantially longer than the current follow-up period of 12 months. 

Moreover, Kim and colleagues (2018) recruited CHR individuals from a special 

early detection centre for people at risk for psychosis and both CHR-R and CHR-

NR groups in their study had substantially lower global functioning at baseline 

and follow-up compared to those in the current study. Thus, it could be that 

these inconsistent findings are due to variability in the follow-up period or 

different CHR samples.  

Previous studies have reported variable remission rates of CHR-Ts, potentially 

due to several reasons, such as the recruitment strategy, the length of the 

follow-up period and the lack of standardised definition and criteria of remission 
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(Polari et al., 2018). We used the definition based on both symptomatic and 

functional outcome, given that previous research has showed that remission 

from APS does not translate to a good functional outcome in CHR individuals 

(Addington et al., 2011). IN line with this, we observed that although 70 % of 

UHR individuals remitted from their initial UHR status, only 39.5 % achieved full 

remission at 12 months. This remission rate is almost identical to a 39.7 % 

symptomatic and functional remission rate at 2 years reported in a study among 

clinically recruited CHR individuals (T. Y. Lee, Kim, et al., 2014), suggesting 

similar full remission rates in clinical and community CHR samples. Given that 70 

% of the current UHR sample achieved symptomatic remission but only 58 % 

functional remission and the lack of correlation between functional and 

symptomatic remission, the current study replicates previous findings among 

clinical CHR individuals indicating that despite being symptom free, CHR 

individuals do not in general reach optimal functioning levels (Addington et al., 

2011; T. Y. Lee, Kim, et al., 2014). 

The current study revealed that CHR-Rs had better baseline global and role 

functioning compared to CHR-NR, suggesting these two measures to be 

associated with later symptomatic and functional remission. The existing 

literature on demographic and clinical profiles of remitters and non-remitters is 

conflicting. While some studies have not find evidence for symptom levels and 

functioning to be associated with a long-term outcome (M. Kim et al., 2018, 

2015), others have found differences in baseline positive symptoms, 

antipsychotic medication (T. Y. Lee, Kim, et al., 2014), negative symptoms and 

mood/anxiety symptoms between CHR-Rs and CHR-NRs (Schlosser et al., 2012). 

At 12 months, as expected, CHR-Rs had lower symptom levels and better 

functioning than CHR-NRs. Nonetheless, CHR-Rs still had poorer social and global 

functioning than healthy controls, suggesting that CHR-Rs continued to function 

poorly despite an improvement in symptoms and functioning over time.  

5.4.3 Predicting symptom levels and global functioning at 12 
months 

The final aim of the chapter was to investigate whether incorporating duration 

MMNm data with clinical and neuropsychological measures improves the 

prediction of symptom levels or global functioning at 12 months in UHR 
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individuals. Against our hypotheses, the results revealed that MMNm amplitude 

did not contribute to the prediction of the severity of APS or global functioning 

above and beyond clinical and cognitive predictor variables. The full set of five 

baseline clinical and cognitive variables accounted for moderate ~30 % of the 

variance in both symptom level and global functioning at 12 months. The 

baseline symptom level was the only significant predictor of later symptoms 

when controlling for other variables, while baseline role functioning was the only 

reliable predictor of global functioning at 12 months. Our findings are in contrast 

with the aforementioned study that in addition to group differences in MMN 

found it also to predict functional and symptomatic improvement (M. Kim et al., 

2018).  

5.4.4 Clinical outcomes of UHR individuals at 12 months 

Regarding the outcome of the entire UHR sample at 12 months, approximately 

92 % UHR individuals did not transition to psychosis and 70 % no longer met the 

UHR criteria, suggesting that the majority of individuals identified to be at the 

high risk state of psychosis represent false positives in our study. The low 

transition rate and the high symptomatic remission rate could be due to 

recruiting CHR individuals from the community resulting in a dilution of 

psychosis risk enrichment and subsequent transition rate as demonstrated by 

recent meta-analytical evidence (Paolo Fusar-Poli, Schultze-Lutter, et al., 

2016). Interestingly though, none of the CHR-Ts in the current study were 

clinically referred but came from the community, suggesting that the clinically 

referred CHR individuals did not have an elevated risk of psychosis compared to 

community recruited CHR individuals. Moreover, the CHR-T group included CHR 

individuals with both BS and APS and none of the CHT-Ts had a known family 

history of psychosis, overall suggesting that the recruitment pathway, high risk 

stage and family history were not associated with transition to psychosis in the 

current study.  

Considering that only 30 % of the current UHR sample still met the clinical UHR 

criteria at 12 months, it is possible that the majority of the UHR sample 

recruited from the community had transient APS, which have been shown to be 

common in the general population (I. Kelleher & Cannon, 2011). Alternatively, 

APS might have been related to the co-presence of depressive/anxiety disorders, 
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which were present in 61 % of the current sample at baseline. Indeed, we 

observed that CHR individuals with a comorbid anxiety/depressive disorder had a 

higher APS severity than CHR individuals without a comorbid disorder at baseline 

(Appendix B.3). This findings is consistent with descriptions of anxiety and 

depression to be associated with psychotic symptomatology in clinical (J. T.W. 

Wigman et al., 2011; Johanna T.W. Wigman et al., 2012) and non-clinical CHR 

samples (Shi et al., 2017). Thus, it is possible that most CHR individuals were not 

at risk for developing psychosis but exhibited a depressive/mood disorder with 

transient APS.  

Last but not least, it is important to note that despite the UHR sample showing a 

significant decrease in the severity of APS over 12 months, they did not improve 

significantly in terms of social, role or global functioning. These findings extend 

the current CHR literature by showing that similar to CHR individuals recruited 

through clinical services, community CHR individuals remain at a poor functional 

status despite remitting from their symptoms and highlights the importance of 

adding functioning as an outcome evaluation in CHR studies. 

5.4.5 Limitations and conclusions 

Several limitations of the current study need to be kept in mind when 

interpreting the results in chapter 5. Firstly, the low number of CHR-Ts resulted 

in underpowered statistical comparisons making it difficult to detect potential 

small group differences, a common challenge in the CHR field overall. To avoid 

this limitation in future studies, it might be beneficial to limit recruitment to 

clinically referred CHR individuals who are seeking help for mental health 

problems, as suggested by the European Psychiatric Association (F. Schultze-

Lutter et al., 2015), to obtain samples with a higher pre-test enrichment and 

potentially higher subsequent transition rates (Paolo Fusar-Poli, Schultze-Lutter, 

et al., 2016) or pool data from several studies. Secondly, the 12-month follow-up 

period was relatively short considering meta-analytical evidence suggesting that 

CHR individuals have an elevated risk for developing psychosis up to 3 years with 

the risk increasing over the years (Paolo Fusar-Poli, Bonoldi, et al., 2012). 

Therefore, the current follow-up period of 12 months might not be long enough 

to determine the final outcome of CHR individuals. Lastly, MMNm amplitude was 

assessed only cross-sectionally at baseline and thus we do not have longitudinal 
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data to determine whether MMNm amplitude changed along with symptoms or 

functioning. 

In conclusion, chapter 5 sought to extend the existing literature by examining 

whether MMNm amplitude differentiates UHR individuals who achieved the 

predefined symptomatic and functional remission from those who did not in 

addition to aiming to replicate past findings suggesting MMN to be able to 

distinguish CHR-Ts from CHR-NTs. However, contrary to our hypotheses and 

some recent findings, we found no evidence for an effect of transition or 

remission on MMNm amplitude in the current study. Furthermore, the current 

results revealed that neither symptom levels nor global functioning of CHR-NTs 

at 12 months was predicted by baseline duration MMNm amplitude, overall 

questioning the predictive utility of MMNm in the high risk stage of psychosis. 

Instead, the results showed that baseline symptoms predicted symptoms at 12 

whereas global functioning was reliable predicted by baseline role functioning. 

From the clinical perspective, baseline role functioning was highlighted as a key 

variable in our study as it was associated with full remission and predicted global 

functioning at 12 months. This finding suggests that CHR individuals with low 

role functioning should receive additional clinical support as they are more likely 

to sustain subthreshold psychotic symptoms and poor functioning than CHR 

individuals with higher role functioning. Overall, the follow-up analysis of the 

entire UHR sample revealed that there was a significant improvement in APS but 

not in functioning over 12 months, demonstrating that individuals who meet the 

UHR criteria for developing psychosis in the community are characterised by 

long-lasting poor functioning regardless of symptomatic remission. 
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6 General Discussion 

6.1 Overview  

Higher order cognitive as well as early sensory information processing deficits 

are core characteristics of established schizophrenia (Harvey, 2012; 

Nuechterlein, Dawson, & Green, 1994) but have also been observed early on in 

the illness in first episode patients and even in CHR individuals as discussed in 

the introduction chapter (chapter 1). Advancements in neuroimaging methods, 

such as EEG and MEG, have enabled examining non-invasively the 

neurophysiological basis of these perceptual and cognitive disturbances and have 

revealed impairments in several neural correlates of early and late sensory 

processing in different stages of psychosis. Previous work has shown a large 

MMN(m) deficit in chronic schizophrenia and pointed towards a moderate 

impairment in first episode patients (Erickson et al., 2016). Moreover, previous 

studies have suggested MMN alterations to occur even prior to the onset of 

psychosis, potentially representing a marker of risk for psychosis development. 

However, unlike robust findings of reduced MMN in chronically ill patients with 

schizophrenia, evidence on reduced MMN in CHR individuals as well as first 

episode patients is more inconsistent. Accordingly, the first aim of the thesis 

was to investigate MEG recorded MMNm amplitudes in CHR individuals and 

compare them to first episode patients and controls (chapter 3). A further goal 

of chapter 3 was to explore whether duration MMNm is associated with cognitive 

performance and functioning in CHR individuals. In addition to using a 

conventional approach to compare MMNm amplitudes between CHR individuals 

and healthy controls, I employed dynamic causal modelling to assess effective 

connectivity underlying the MMNm generation to determine whether CHR 

individuals exhibit aberrant connectivity compared to controls (chapter 4).  

The introduction of the UHR paradigm and criteria over two decades ago allowed 

the early detection of individuals at risk for developing a first episode of 

psychosis (Yung & McGorry, 1996) and currently targeting individuals with 

subthreshold psychotic symptoms who are actively seeking help is considered the 

most appropriate prevention strategy for psychosis (Klosterkötter, 2008; 

McGorry, Killackey, & Yung, 2008) and to reduce DUP (Millan et al., 2016), a 

valuable prognostic indicator in schizophrenia (Cechnicki, Hanuszkiewicz, 
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Polczyk, & Bielańska, 2011). However, in contrast to transition rates to psychosis 

in early CHR studies, there has been a decline over the years and more recent 

rates range from 10 % to 20 % over 2-3 years (Simon & Umbricht, 2010; Yung et 

al., 2008). This has raised concerns regarding stigmatising (Corcoran, Malaspina, 

& Hercher, 2005) and treating unnecessarily false positive individuals and recent 

research efforts have been focused on finding measures to improve outcome 

prediction in CHR individuals (Thompson, Marwaha, & Broome, 2016). To this 

end, by following-up the CHR group for 12 months, I aimed to assess the utility 

of baseline MMNm amplitude as a marker predicting psychosis development as 

well as functional and symptomatic remission at 12 months. Lastly, I also 

examined whether MMNm data improves prediction of symptom severity and 

global functioning at 12 months above and beyond clinical and 

neuropsychological measures in CHR individuals (chapter 5).  

6.2 Key findings and their implications 

6.2.1 Neurophysiological findings 

One common criticism of previous CHR studies is that they have treated CHR 

individuals as one clinical entity, overlooking heterogeneous clinical phenotypes 

within the high risk stage, which may impede the discovery of biomarkers. In 

chapter 3, the large sample of CHR individuals (n = 106) made it possible to 

address this limitation by examining MMNm amplitudes according to more 

homogeneous CHR subgroups (Frauke Schultze-Lutter et al., 2010). However, the 

results revealed similar MMNm responses in CHR subgroups.  

The main aim of chapter 3 was to investigate the presence of MMNm amplitude 

deficiency in CHR individuals. However, we did not find any significant group 

differences in MMNm amplitudes to duration deviants or sound omissions 

between CHR individuals and controls either on the sensor level or in source 

space ROIs. Moreover, the results of the shift function between the CHR and HC 

group revealed similar MMNm amplitude distributions in the two groups, 

providing further evidence that MMN deficiency is not present during the high 

risk stage of psychosis. Our finding corroborates previous findings of intact MMN 

amplitude in CHR individuals (Bodatsch et al., 2011; Brockhaus-Dumke et al., 

2005; Higuchi et al., 2013; Hirt et al., 2019). Similar to our data, the largest 
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published CHR study to date (UHR = 80, HC = 58) did not find evidence for 

reduced MMN in CHR individuals (Atkinson et al., 2017). On the other hand, our 

result is in contrast with studies that have suggested the CHR state to be 

characterised by MMN deficits. For instance, Atkinson and colleagues (2012) 

found reduced MMN amplitude to duration deviants in CHR individuals using EEG. 

This finding was replicated by Shin and colleagues (2012) using MEG. Notably, 

despite most MMN studies in the early psychosis literature using EEG, it is 

unlikely that the current finding is due to the imaging method as there is 

evidence for reduced MMN amplitude in CHR individuals in both EEG (Atkinson et 

al., 2012) and MEG studies (Shin, Jung, et al., 2012). Overall our finding 

challenges the notion that reduced duration MMN is a marker for early stages of 

psychosis whereas frequency MMN attenuation might only emerge later in the 

chronic phase (Koshiyama, Kirihara, Tada, Nagai, Fujioka, Koike, et al., 2018; 

Nagai, Tada, Kirihara, Yahata, et al., 2013; Todd et al., 2008). This notion is also 

opposed by previous studies that found reduced frequency MMN amplitudes in 

CHR individuals (Perez et al., 2014) and recent onset schizophrenia patients (Hay 

et al., 2015).  

In chapter 4 we examined effective connectivity underlying the duration MMNm 

response using dynamic causal modelling (Friston et al., 2003) in CHR individuals 

and controls. As expected, the results indicated that that the model that 

allowed for changes in extrinsic forward and backward connections (FB-model) 

had the highest exceedance probability (54 %) compared to the next best model 

FBi (46 %) and was most likely to explain the observed MMNm response in 

controls. However, there were no significant group differences in any of the 

forward or backward connections within the MMNm brain network between CHR 

individuals and controls. Thus, based on our data and previous DCM studies it 

appears that the frontotemporal network dysfunctions are not present in the 

high risk state of psychosis but only in later illness stages (D. Dima et al., 2012; 

Ranlund et al., 2016).  

It is possible that the lack of detecting small/moderate group differences in 

MMNm amplitudes or connectivity between CHRs and controls is due to 

insufficient power as the post-hoc power analysis showed that finding a 

moderate impairment (d = 0.40) with power of .80 would require a sample size 
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of 100 participants per group. On the other hand, the lack of reduced MMNm 

amplitude in CHR individuals and the modest replicability of attenuated MMN in 

CHR individuals in the literature overall might be due to the possibility that MMN 

impairments are only present in prodromal individuals (Bodatsch et al., 2011; 

Higuchi et al., 2013). However, our analysis in chapter 5 using clinical-follow up 

information to compare CHR individuals with and without conversion to full-

blown psychosis within 12 months did not find evidence for reduced MMNm 

amplitude in CHR-Ts compared to CHT-NTs, suggesting MMN not to be reduced in 

the prodromal phase of psychosis. This finding is inconsistent with two recent 

meta-analyses (Bodatsch et al., 2015; Erickson et al., 2016). On the other hand, 

our data are consistent with findings by Hsieh and colleagues (2012) as well as a 

recent large CHR study that actually reported increased MMNm amplitude in 

CHR-Ts compared to CHR-NTs (Atkinson et al., 2017). However, both of these 

studies were limited by small sample sizes of CHR-Ts (n = 6 and n = 7, 

respectively), resulting in insufficient statistical power. Likewise, the majority 

of the current CHR sample (92 %) did not transition to psychosis within 12 

months and thus the low number of CHR-Ts (n = 5) is a clear limitation of the 

current analysis and limits firm conclusions from the present results. In fact, 

Erickson and collagues (2016) pointed out that the effect size estimations for 

CHR-Ts and CHR-NTs in the aforementioned meta-analyses may also be 

unreliable due to studies with small samples. 

In addition to examining whether MMNm amplitude is related to progression to 

psychosis in CHR individuals in chapter 5, we also investigated whether it is 

associated with persistence of subthreshold psychotic symptoms and poor 

functioning at 12 months. However, our data provide no evidence for our 

hypothesis that MMNm peak amplitude is attenuated in CHR-NRs compared to 

CHR-Rs. Lastly, the results of the regression models in chapter 5 revealed that 

adding the MMNm amplitude value to a model with clinical and 

neuropsychological measures did not improve predicting the severity of 

symptoms or daily functioning at 12 months and thus our study does not support 

the use of MMNm amplitude in addition to non-imaging measures for predicting 

outcome in CHR individuals.  

Interestingly, the results from chapter 3 indicated intact mean MMNm 

amplitudes on the sensor and source level in first episode patients as well. The 
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shift function results revealed a group difference in the high end of the left 

hemisphere MMNm amplitude distribution, suggesting a group effect only on the 

high MMNm amplitudes. Our finding of a normal mean MMNm in first episode 

patients is in line with previous reports of unaffected MMN amplitudes in first 

episode patients (Magno et al., 2008; Mondragón-Maya et al., 2013; Salisbury et 

al., 2002; D. Umbricht et al., 2006). On the other hand, there are previous 

studies that have pointed towards MMN deficits to be present already in this 

population, with a recent meta-analysis reporting a medium (d = 0.42) MMN 

impairment in first episode psychosis (e.g. R. Atkinson, Michie, & Schall, 2012; 

Higuchi et al., 2013; Kaur et al., 2011). However, the current sample of 17 first 

episode patients is small and could have resulted in insufficient statistical power 

to detect small to medium group differences in central tendencies of MMNm 

amplitudes. Indeed, to have 80 % power to detect a medium effect size of 0.5, a 

sample size of 64 would be required. Future MMN studies could benefit from 

data pooling from several studies which is supported by a study that validated 

MMN for use in multi-site studies in schizophrenia research (Light et al., 2015). 

Previous studies examining MMN in high risk and early stages of psychosis have 

employed a variety of deviant types to evoke MMN, ranging from deviants that 

differ on a simple feature dimension such as frequency, duration or intensity to 

more complex deviants breaking abstract rules. Our study employed a simple 

oddball paradigm including a duration deviant tone and sound omission. Given 

the recent meta-analytical evidence reporting larger MMN impairments to simple 

compared to complex deviants in schizophrenia patients (Avissar et al., 2018), it 

is unlikely that the MMNm paradigm contributed to the current 

neurophysiological null results. Another noteworthy methodological strength of 

the current study is that in line with recommendations for utilising MMN in 

clinical research, the MMNm auditory task was combined with a visual distractor 

task, making the recording conditions optimal by eliminating potential attention-

related components (Duncan et al., 2009).  

The overarching finding that emerged from the MMNm data presented in this 

thesis suggests normal preattentive auditory processing of change detection in 

high risk, prodromal and early stages of psychosis, not supporting MMNm to be a 

marker for early stages of psychosis. Instead, these findings might suggest that 
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MMN is a potential marker for disease progression, reflecting GM loss (Rasser et 

al., 2011; Salisbury, Kuroki, Kasai, Shenton, & McCarley, 2007) and/or NMDA-R 

hypofunction (D.C. Javitt et al., 1996). This interpretation is in line with cross-

sectional studies that did not observe reduced duration MMN in first episode 

patients but only in recent onset and chronic schizophrenia patients (Magno et 

al., 2008; D. S. G. Umbricht, Bates, Lieberman, Kane, & Javitt, 2006). It could 

also be that the inconsistent MMN findings in high risk and early psychosis 

literature are related to the heterogeneity of long term outcomes in these 

populations; ranging from early sustained recovery to treatment resistant 

schizophrenia (Suvisaari et al., 2018). Thus, individuals with a favourable long-

term outcome might exhibit intact MMN amplitudes and effective connectivity in 

contrast to those with a non-favourable outcome who might have begun 

development of chronic illness related brain pathology and exhibit MMN 

deficiencies already in earlier stages of psychosis. However, future longitudinal 

studies with multiple clinical and neurophysiological measures ideally following 

CHR individuals across different illness stages are warranted to confirm the time 

point when the deficiencies in the amplitude and the underlying connectivity of 

MMN occur and whether they index emerging psychosis or progression to 

schizophrenia.  

Lastly, the results in chapter 3 indicated a weak positive association between 

MMNm amplitude and processing speed but no associations with symptoms or 

global functioning. While several studies have reported reduced MMN to 

correlate with poor functioning in chronic schizophrenia (Friedman et al., 2012; 

Light & Braff, 2005; Rasser et al., 2011), the evidence in the high risk stage is 

inconsistent, the majority of studies not reporting an association between MMN 

and functioning (Jahshan et al., 2012; Shin et al., 2009; Solís-Vivanco et al., 

2014) but see (Koshiyama, Kirihara, Tada, Nagai, Fujioka, Koike, et al., 2018).  

6.2.2 Clinical findings  

To date, this is the first MMNm study in a large sample of community CHR 

individuals. Our analyses comparing clinically and community recruited CHR 

individuals revealed an attenuated duration MMNm amplitude in the clinically 

recruited CHR sample as well as poorer role functioning and neuropsychological 

performance compared to the community recruited CHR sample. The current 



127 
 

 
 

findings are consistent with a recent study that also found community CHR 

individuals to have higher role functioning compared to CHR individuals 

presented to clinical services (Mills et al., 2017). In contrast with our study, 

however, the authors also found lower symptom severity and general 

psychopathology in the clinically referred CHR sample. These findings have 

practical implications for how future CHR samples are recruited as well as 

assessing and documenting in detail characteristics of community and clinical 

CHR samples to increase the homogeneity, comparability and replicability of 

samples. However, it is important to note that the current clinically recruited 

sample was small (n = 12) and therefore the findings should be interpreted with 

caution. 

The findings of chapter 3 contribute to the existing literature by demonstrating 

that similar to clinically recruited CHR samples, community recruited CHR 

individuals are also characterised by impaired functioning, high prevalence of 

suicidal ideation and comorbid diagnosis in addition to APS. Furthermore, our 

results indicated that APS explained variance in global functioning over and 

beyond the prevalence of suicidal ideation and comorbidity, demonstrating that 

APS are associated with significant disability even before they reach the 

diagnostic threshold. This supports a recent proposal of Mcgorry and colleagues 

(2018) that the term ‘subthreshold states’, namely the stage 1b in the clinical 

staging model, might be unhelpful as these individuals are in need for clinical 

care even before traditional diagnoses. Lastly, it is important to note that 

despite the majority of the current CHR sample being recruited from the general 

population, about half of the sample (52 %) was not medication-free at the time 

of recruitment and 63.2 % of them had previous or current clinical care and 

hence the current CHR sample should not be viewed as a medication-naïve and 

non-help-seeking sample. Taken together, the identification of CHR individuals, 

even through non-clinical pathways, seems to provide an important opportunity 

for early intervention and thus it is important to systematically assess general 

psychopathology in addition to APS and offer appropriate support.  

In chapter 5, the clinical follow up data revealed that the majority of the 

current CHR sample (92 %) did not transition to psychosis within 12 months and 

only 5 CHR individuals developed psychosis. Considering the proactive 
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recruitment of CHR participants from the community in our study, the transition 

rate could have been expected to be lower than in studies including clinically 

recruited CHR samples due to a diluted pre-test risk of psychosis (Paolo Fusar-

Poli, Rutigliano, et al., 2016; Paolo Fusar-Poli, Schultze-Lutter, et al., 2016; 

Oliver et al., 2019). However, this explanation is not supported by our data as 

none of the clinically referred CHR individuals transitioned to psychosis within 

the follow-up period of 12 months. Alternatively, the low number of CHR-Ts in 

our study might result partially from the high prevalence of CHR individuals with 

past or current psychological intervention (65 %) and medication (52 %), as 

evidence shows that CBT treatment may reduce psychosis risk at 12 months 

(Stafford, Jackson, Mayo-Wilson, Morrison, & Kendall, 2013) and a specific form 

of psychological treatment is associated with a lower transition rate than 

nonspecific psychiatric care (Paolo Fusar-Poli, Bonoldi, et al., 2012). However, 

unfortunately the nature of the treatment received was not documented in our 

study and this remains speculative. Nonetheless, it is important to note that the 

observed outcomes at 12 months in the current thesis might not reflect the 

natural course of CHR individuals recruited from the general population.  

The results from chapter 5 revealed that 70 % of the UHR-NTs no longer met the 

UHR criteria at 12 months. However, despite achieving symptomatic remission, 

these individuals did not necessarily improve functionally as demonstrated by 

the finding that less than half (40 %) of UHR-NTs achieved the full remission 

criteria. The regression results in chapter 5 showed that the baseline APS 

severity was the only significant predictor of the severity of APS at 12 months 

whereas the baseline role functioning was the only predictor of global 

functioning over time. The finding that baseline role functioning was the only 

measure associated with achieving full remission as well as being a significant 

predictor of daily functioning at 12 months might have research and clinical 

implications. Future studies should assess role functioning more systematically 

with the instrument specifically designed for prodromal individuals (Cornblatt et 

al., 2007) and monitor and offer additional clinical interventions to CHR 

individuals with low role functioning. While vocational and educational 

interventions have been used with first episode (Killackey et al., 2013) and 

schizophrenia patients (Bio & Gattaz, 2011), the current data suggest that role 

functioning could be an important target already in the high risk state of 
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psychosis. Collectively, our 12-month follow-up results demonstrated that 

despite a significant improvement in APS over 12 months, CHR individuals did 

not improve significantly in social, role or global functioning. This is in line with 

previous studies that indicated that symptomatic remission does not correlate 

with functional remission in CHR samples (Addington et al., 2011; Oorschot et 

al., 2012; Wunderink, Nieboer, Wiersma, Sytema, & Nienhuis, 2013).  

One of the strengths of the chapter 5 was the operationalisation of remission by 

incorporating symptomatic and functional remission (T. Y. Lee, Kim, et al., 

2014). On the other hand, the symptomatic and functional outcome of UHR 

individuals was defined based on one-off cross-sectional measure at 12 months. 

Since we did not have information about potential fluctuations in APS between 

baseline and follow-up, it could be that some of the individuals classified as 

remitters were already in recovery, namely remission maintained for > 6 months, 

and that some of the individuals classified as non-remitters were in relapse, 

namely presence of UHR status after recovery. Although defining an outcome 

based on a single-data point is a common approach in the literature, Polari and 

collagues (2018) recently proposed standardised definitions for identifying more 

refined longitudinal trajectories of CHR individuals based on multiple assessment 

points to capture the unstable and changeable pattern of symptoms in the early 

stages of psychosis. Hence, future studies examining the predictive value of 

MMN, as well as other measures, should adopt more refined and standardised 

definitions of outcomes to be able to better replicate and generalise findings.  

It is worth noting the relatively high percentage (39 %) of CHR individuals 

without 12-month follow-up data in chapter 5. A group comparison of CHR 

participants with and without 12-month follow-up data in Appendix B.1 showed 

that CHR individuals participating at a 12-month follow-up visit had better global 

functioning and lower prevalence of suicidal ideation but higher APS severity at 

baseline than CHR individuals with no follow-up data. This is similar to a recent 

longitudinal study that also found CHR individuals with follow-up data to have a 

higher global functioning than those who did not complete the follow-up 

assessment (M. Kim et al., 2018). Similarly Atkinson and colleagues (2017) found 

that CHR individuals lost prior to the 12-month follow-up visit had lower baseline 

functional status than participating CHR individuals. Importantly, because these 
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differing characteristics were used as outcome measures in chapter 5, CHR 

groups with and without follow-up data might differ in terms of the outcome at 

12 months and potentially the reported rate of symptomatic remitters is 

underestimated as the current findings showed higher baseline severity of APS to 

predict APS at 12 months. Most importantly, however, the two groups did not 

differ in MMNm amplitude.  

6.3 Strengths and limitations of the thesis 

Several results of the present thesis, namely those related to the effects of 

recruitment pathway in chapter 3 and transition to psychosis in chapter 5, are 

limited as they relied on small sample sizes of 12 and 5 participants that are 

considered small for neuroimaging studies and might result in an increased risk 

of false positive results. Thus these results should be treated with caution until 

replicated using sample sizes minimum of 20 participants as recommended in the 

neuroimaging literature (Poldrack et al., 2017; Simmons et al., 2011) 

In the current thesis, similar to the majority of past CHR studies, global 

functioning was based on the GAF instrument that takes into account both 

functioning and positive symptoms and thus might confound these two variables. 

Indeed the use of GAF to assess functionality has been heavily criticised in CHR 

research (Roy-Byrne, Dagadakis, Unutzer, & Ries, 1996) (but see Startup, Mike, 

& Bendix, 2010). Nonetheless, one strength of our study is that we also 

employed two other measures of functioning, namely role and social functioning, 

that are independent of symptoms and have been developed specifically to 

provide a short and easy to use ratings on prodromal functioning and to 

disentangle role and social functioning profiles (Cornblatt et al., 2007).  

Not all first episode patients and CHR individuals were naïve to antipsychotic 

treatment at the study entry and thus we cannot rule out the possibility that 

antipsychotic medication affected MMNm amplitudes and underlying 

connectivity. However, this is unlikely considering previous studies showing that 

antipsychotics do not improve MMN in schizophrenia patients (D. Umbricht et al., 

1998; D. Umbricht, Kane, et al., 2002). On the other hand, other studies have 

reported contradicting results and found antipsychotics to significantly increase 

the amplitude of MMN and P300 in schizophrenia patients, suggesting 
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antipsychotic medication to normalise some of the electrophysiological 

abnormalities associated with psychosis (Su, Cai, Shi, & Wang, 2012; Zhou, Zhu, 

& Chen, 2013). In fact, the high heterogeneity of exclusion and inclusion criteria 

in terms of use of previous/current anti-psychotic medication in the CHR field 

overall has been criticised for resulting in non-comparable CHR samples (Os & 

Guloksuz, 2017) and hence it is important for future studies to obtain detailed 

medication profiles of participants. Furthermore, previous studies have shown 

that nicotine increases MMN amplitude in controls (Baldeweg, Wong, & Stephan, 

2006; Martin, Davalos, & Kisley, 2009) and schizophrenia patients (Dulude, 

Labelle, & Knott, 2010). As we did not ask participants to refrain from smoking 

prior to the MEG recording, we cannot rule out the potential impact of nicotine 

on MMNm amplitudes. 

We employed MEG as a tool to assess MMNm in the current study and the imaging 

method has some noteworthy characteristics. Firstly, it is a non-invasive and 

safe method with a high temporal resolution, which makes it suitable for 

studying early auditory processing on the order of milliseconds in the high risk 

and early psychosis participants. Secondly, MEG has an advantage in terms of 

spatial resolution over EEG as magnetic fields are less distorted by the skull and 

scalp than electric fields resulting in more accurate source localisation of the 

signal (Hämäläinen et al., 1993). This was important in order to be able to 

investigate group differences in ROIs in chapter 3 and effective connectivity 

underlying the generation of the MMNm response in chapter 4. However, while 

scalp EEG can detect activity in the sulci and gyri, MEG is limited to detecting 

activity from neurons in the sulci. Thus, when comparing studies using different 

imaging methods, it is important to keep in mind that the chosen method is 

likely to have an effect especially on identifying generators of the MMNm signal. 

For instance, as discussed in the introduction chapter, previous MMN studies 

using EEG have reported frontal MMN sources more frequently than MMN studies 

using MEG, which might be due to the source location being radially orientated 

to which MEG is blind (Hämäläinen et al., 1993).  

There are some common methodological limitations in the early psychosis 

literature, which contribute to a problematic large degree of clinical and 

methodological heterogeneity between CHR and first episode studies. Firstly, 
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the lack of standardized recruitment methods results in high clinical 

heterogeneity as demonstrated by a recent meta-analysis (Paolo Fusar-Poli, 

Schultze-Lutter, et al., 2016; Oliver et al., 2019). Our preliminary results from 

chapter 3 are in line with the notion that CHR samples recruited from the 

community might not be directly comparable to clinically recruited CHR 

samples. On the other hand, while it has been suggested that individuals 

recruited through clinical pathways have a higher risk for psychosis (15 % at 3 

years) compared to those from the community (0.43 % at 3 years) (Paolo Fusar-

Poli, Rutigliano, et al., 2016), this was not the case in our study. Nonetheless, 

while the exact factors contributing to the psychosis risk enrichment remain 

unknown, assessing well-established factors for psychosis in future studies could 

help understanding and controlling for factors that may contribute to pre-test 

risk (Paolo Fusar-Poli, Tantardini, et al., 2017). 

Secondly, there is a number of symptom criteria developed to assess psychosis 

risk, in fact one review listed 22 different instruments designed to assess the risk 

for psychosis, and different criteria and instruments are combined to increase 

the detection of at risk individuals which again increases clinical heterogeneity 

(Daneault et al., 2013). Similarly there is also a lack of consensus regarding the 

operational definition of first episode of psychosis (Breitborde, Srihari, & Woods, 

2009). In terms of assessing and predicting longitudinal clinical trajectories and 

outcomes of CHR individuals, a lack of standardised definition for remission, 

recovery, relapse and transition to psychosis further complicates replicating 

findings as recently underlined by Polari and collagues (2018).   

Lastly, MMNm is especially suitable for clinical research compared to other 

electrophysiological measures as it is has a good test-retest reliability ranging 

from 0.81 to 0.90 (Recasens & Uhlhaas, 2017) and is elicited optimally in the 

absence of attention (Paavilainen, Tiitinen, Alho, & Näätänen, 1993), which is 

vital in clinical studies. However, while eliciting MMN is relatively easy and 

straight-forward, some of the inconsistent findings in the literature maybe due 

to methodological differences in terms of quantifying the MMN amplitude. While 

guidelines for quantifying MMN are available, there are still different ways 

adopted to quantify this component, resulting in the inability to fully generalise 

and replicate outcomes (Duncan et al., 2009). We quantified the MMNm response 
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as the peak rather than the frequently used mean amplitude, following the 

guidelines for the use of ERPs in clinical research (Duncan et al., 2009).  

6.4 Directions for future  

Regardless of advancements in neuroimaging and genetic technology enabling 

investigations of different electrophysiological, structural and functional imaging 

measures and genetic variants as potential biomarkers for psychosis over the 

past five decades, currently there are no clinically meaningful biomarkers for 

psychosis available. Moreover, only a few of the potential biomarkers have been 

rigorously assessed in the literature and overall the field has been suggested to 

be limited by small samples, unclear biomarker terminology and lack of 

replications (P. Fusar-Poli & Meyer-Lindenberg, 2016). Furthermore, a 

systematic review of psychosis-related biomarkers found evidence for a 

publication bias in the literature (Prata et al., 2014), highlighting the 

importance of systematically reporting all study findings, including the null 

findings, to promote progress in the field. 

In addition to utilising neuroimaging methods to elucidate the underlying 

pathophysiology of emerging psychosis, EEG/MEG parameters would make ideal 

markers because they are easy to elicit, inexpensive and fast to obtain in a non-

invasive manner even in a clinical setting. In fact, a recent study demonstrated 

the feasibility of recording MMN and P3 using a simple 2-channel EEG system in a 

large scale multi-site study, supporting the introduction of these two ERP 

components into clinical, non-expert, practice (Light et al., 2015). However, 

even if the implementation of ERP/ERF based biomarkers to clinical practice 

would be supported by empirical evidence, studies are based on group means 

and it is difficult to interpret evoked responses on an individual level because of 

individual differences (Luck, Mathalon, Donnell, Hämäläinen, & Spencer, 2012). 

For instance, the key challenge for using MMN in clinical practice would be the 

lack of a normative reference point against which to assess an individual’s MMN 

amplitude (Näätänen, Todd, & Schall, 2016), as even healthy controls show high 

inter-individual variability in MMN amplitudes (Koelsch, Schröger, & Tervaniemi, 

1999; Lang et al., 1995; Sanju & Kumar, 2016). However, considering the current 

lack of evidence for using MMNm as a marker for emerging psychosis and the 

possibility of rather using it for indexing illness progression and related ongoing 
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pathological process, a repeated measures design would allow observing changes 

in MMN over multiple time points which could possible provide information about 

the trajectory of chronic illness progression at an individual level as suggested 

by Näätänen and colleagues (2016). 

Although the lack of specificity would prevent the hypothetical use of MMN 

(Hermens, Chitty, & Kaur, 2018), as well as other ERPs, as a predictive or 

diagnostic marker in clinical practice, its specificity could be improved by using 

multivariate data by obtaining data related to well-known environmental (Paolo 

Fusar-Poli, Tantardini, et al., 2017), clinical and neuropsychological risk factors 

for psychosis. In addition to using MMN adjunctively to non-imaging measures, it 

could be combined with other potential neurophysiological markers, for 

instance, to improve sensitivity and specificity for psychosis prediction in CHR 

individuals. For example, as discussed in the introduction chapter, some neural 

correlates of early sensory processing (P50 and P300) have shown potential as 

markers for psychosis prediction in CHR individuals (Bodatsch et al., 2015). Also 

gamma-band auditory steady-state response, possibly reflecting GABAergic 

interneuron dysfunction, has been found to be abnormal in CHR individuals, 

although its utility as predicting psychosis remains unknown (Koshiyama, 

Kirihara, Tada, Nagai, Fujioka, Ichikawa, et al., 2018; Tada et al., 2016). By 

adopting a sequential testing approach starting with easily obtained clinical, 

environmental and neurocognitive measures and finally obtaining imaging data 

could keep the procedure feasible. Overall, if supported by empirical research, 

the use of neurophysiological ERP/ERF markers as a part of multivariate and 

multi-sequential testing could potentially be used, for instance, by early 

psychosis detection and intervention services for risk prediction. 

Recent work has revealed that psychotic disorders emerge from non-psychotic 

high risk states in addition to the CHR state for psychosis (T. Y. Lee, Lee, Kim, 

Choe, & Kwon, 2018) and about 30 % of first episode patients do not report APS 

prior to their first psychotic episode (Shah et al., 2017). This line of evidence 

questions whether the current CHR state captured by the clinical CHR criteria 

represents a good prototypical phase of risk for developing psychosis (Paolo 

Fusar-Poli, 2018) and if not, it could complicate finding replicable and reliable 

markers for early psychosis. Moreover, the high number of false positives 

captured by the CHR criteria, as reflected by the low number of CHR-Ts in the 
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present as well as previous studies, is problematic as in addition to potentially 

provoking stigmatization and anxiety in mislabelled individuals (Corcoran et al., 

2005; Yang, Wonpat-Borja, Opler, & Corcoran, 2010), it results in insufficient 

power to examine the utility of candidate markers for improving psychosis 

prediction in CHR individuals.  

Refining the detection strategy of CHR individuals might address the limitation 

of the insufficient statistical power in future longitudinal studies aiming to 

determine the predictive value of candidate measures for psychosis in CHR 

individuals. It could be valuable to adopt a wider identification approach 

incorporating psychotic and non-psychotic symptoms to also detect individuals 

with heterogeneous pathways to psychosis outside of the UHR framework. In 

fact, there is an ongoing debate in the literature whether staging models for 

mental disorders should be conceptualised as disorder-specific or transdiagnostic 

(Scott & Henry, 2017). Interestingly, the developers of the disorder-specific UHR 

paradigm have recently started to make a move towards a broader at risk mental 

state framework and have introduced a novel approach called the Clinical High 

At Risk Mental State (Mcgorry et al., 2018). The aim of the approach is to 

identify a broader range of subthreshold at risk states and outcome disorders 

instead of only focusing on psychosis (Hartmann et al., 2017; Mcgorry et al., 

2018).  

6.5 Conclusions 

In conclusion, based on the current thesis it appears that neither the peak 

amplitude nor the DCM extracted effective connectivity measures of MMNm 

response are associated with the clinical high risk state for psychosis and thus 

are unlikely to be potential MEG-based markers of psychosis risk. Moreover, we 

did not find evidence for reduced MMNm amplitude in first episode patients 

either, the current data suggesting MMNm deficiency not to be a marker for 

early stages of psychosis. Lastly, in contrast to our expectations, findings from 

this thesis do not provide evidence for MMNm as a potential marker for 

predicting psychosis, although this result has to be considered limited due to the 

small sample size of CHR-Ts, or as a tool that might improve outcome prediction 

when combined with non-imaging measures in CHR individuals. Given the 

robustness of a large MMNm impairment in chronic schizophrenia reported in the 
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literature and the current lack of support for the presence of a reduced MMNm 

amplitude in high risk and first episode stages of psychosis, MMNm deficits may 

represent a marker for illness progression. The current preliminary finding 

suggesting a difference in MMNm, clinical and cognitive measures between 

community and clinical CHR samples highlights the importance of controlling for 

recruitment strategies in future studies. Further sufficiently powered 

longitudinal studies with multiple recordings are necessary to determine what 

contribution MMNm can make to identification of early stages of psychosis and 

prediction of outcome in CHR individuals. 
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Appendices 

 
APPENDIX A: Supplementary Material Chapter 3 

A.1 Interviewer-rated psychiatric conditions for HC and 
CHR groups 

Supplementary 1 Interviewer-rated psychiatric conditions for HC and CHR groups. 

Measure Sub-Measure Frequency Percent Frequency Percent Statistics Significance
MDE current No 49 100 67 63.8 χ  2 (1) = 23.11 p  < .001

Yes 0 0 38 36.2
MDE past No 49 100 78 76.7 χ  2 (1) = 13.96 p  < .001

Yes 0 0 23 23.3
Panic disorder (lifetime) No 49 100 67 63.8 χ  2 (1) = 20.60 p  < .001

Yes 0 0 38 36.2
Panic disorder (current) No 49 100 96 91.4 χ  2 (1) = 4.46 p  = .028

Yes 0 0 9 8.6
Social phobia (current) No 49 100 75 71.4 χ  2 (1) = 17.39 p  < .001

Yes 0 0 30 28.6
OCD (current) No 49 100 91 88.3 χ  2 (1) = 6.08 n.s. (.08)

Yes 0 0 12 11.7
Anorexia nervosa No 49 100 103 99 χ  2 (1) = .47 n.s. (.68)

Yes 0 0 1 1
Bulimia nervosa No 49 100 98 93.3 χ  2 (1) = 2.42 n.s. (.084)

Yes 0 0 7 6.7
GAD (current) No 49 100 51 49 χ  2 (1) = 38.21 p  < .001

Yes 0 0 53 51

HC (n = 49) CHR (n = 106)

 
HC, healthy control; CHR, clinical high risk; MDE, major depressive episode; OCD, 
obsessive-compulsive disorder; GAD, generalised anxiety disorder; n.s., non-significant. P 
> 0.05 listed as non-significant.  

A.2 CHR subgroup analyses 

A.2.1 Baseline demographic information 

Supplementary 2 provides key baseline variables for the three CHR subgroups (BS 

only, UHR only and BS + UHR) and controls. All three subgroups were 

significantly different from controls in medication, treated mental health 

problems, drug dependence, social, role and global functioning. Post hoc 

pairwise comparisons showed that the UHR group was less likely to have received 

psychological treatment than the BS + UHR group and the BS + UHR group had a 

significantly lower GAF score compared to the BS only and UHR only group.  
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Supplementary 2 Baseline demographic and clinical characteristics of CHR subgroups. 
Measure Sub-Measure HC (n = 49) UHR (n  = 34) BS (n  = 29) BS + UHR (n  = 42) Statistics Significance Post Hoc 
Age  (mean & SD) 22.5 (3.57) 20.97 (4.30) 21.38 (4.00) 22.62 (5.00) H (3) = 5.80a n.s. (.122)
Gender Male 16 7 9 12 χ 2 (3) = 1.55 n.s. (.671)

Female 33 27 20 30
Handedness Left 4 3 1 0 χ 2 (6) = 4.40 n.s. (.623)

Right 37 20 19 24
Amdidextrous 8 3 5 6

Employment Full time paid 3 1 0 1 χ 2 (15) = 10.96 n.s. (.755)
Part time paid 2 3 0 3
Voluntary 1 1 0 0
Student 41 27 26 34
Unemployed 2 2 1 4

Years of Education  (mean & SD) 16.6 (3.03) H (3) = 11.74a n.s. (.008)
Medication Any medication 0 15 16 18 χ 2 (3) = 38.10 p  < 0.001 HC < BS, UHR, BS & UHR

None 49 19 13 24
Treated Mental Health Problems

None 46 17 11 10 χ 2 (6) =54.07 p  < 0.001

Current 0 7 3 7
Past 3 10 15 25

Family History (1st Degree) No 49 29 27 39 χ 2 (3) = 7.22 n.s. (.065)
Yes 0 5 2 3

Drug (non alcohol) dependence No 49 30 24 37 χ 2 (3) = 7.93 p  = .048 HC < BS, UHR, BS & UHR
Yes 0 4 5 5

Drug (non alcohol) abuse No 48 30 25 35 χ 2 (3) = 4.24 n.s. (.237)
Yes 0 3 2 3

GF: Role scale  (mean & SD) 8.57 (.764) 7.59 (.892) 7.83 (.889) 7.19 (1.30) χ 2 (15) = 60.52a p  < 0.001 HC < BS, UHR, BS & UHR
GF: Social scale  (mean & SD) 8.82 (.391) 7.50 (.992) 7.90 (.976) 7.33 (1.162) χ 2 (15) = 79.83a p  < 0.001 HC < BS, UHR, BS & UHR
GAF  (mean & SD) 87.6 (6.44) 59.18 (13.67) 65.80 (11.64) 54.07 (11.87) H (3) = 92.91a p  < 0.001

HC > BS, UHR, BS & UHR 
and UHR & BS < BS, UHR

HC < BS, UHR, BS & UHR, 
UHR < BS & UHR

 
HC, healthy control group; UHR, Ultra High Risk; BS, Basic Symptoms; n.s., non-significant; 
GAF, Global Assessment of Functioning, a Non-normal distribution in the sample 
(Kolmogorov–Smirnov test; p < .05). Frequencies are reported for categorical variables, 
group means and standard deviations (in parenthesis) are reported for continuous 
variables, p > 0.05 listed as non-significant, + medication and 1st degree family history of 
schizophrenia was an exclusion criteria for controls.  

A.2.2 MMNm analyses 

A.2.2.1 Sensor level analysis 

For durMMNm analysis, a 2 x 4 mixed-design ANOVA revealed a main effect of 

hemisphere (F (1, 150) = 21.29, p < .01) but no significant main effect of CHR 

subgroup (F (3, 150) = 1.69, p = .17) or group by hemisphere interaction (F (3, 

150) = .38, p = .77) (Supplementary 3). Similarly for omiMMNm, a 2 x 4 ANOVA 

revealed a main effect of hemisphere (F (1, 150) = 40.76, p < .01) but in contrast 

to our hypothesis there was no significant main effect of CHR subgroup (F (3, 

150) = .50, p = .68) or group by hemisphere interaction (F (3, 150) = .56, p = 

.64). 
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Supplementary 3 Sensor level durMMNm for HC and CHR subgroups. (A) Grand average 
durMMNm waveforms for the HC (green line), BS (yellow line), UHR (blue line) and BS + UHR 
(red line) group extracted from the six left and right sensors as indicated by the black dots 
in the topographic plots. (B) Topographic maps of the durMMNm response for each group in 
the 160 to 210 ms interval (grey shaded area), which was used to extract individual 
durMMNm peak amplitudes. 

 
Supplementary 4 Sensor level omiMMNm for HC and CHR subgroups. (A) Grand average 
planar transformed omiMMNm difference waveforms for HC (green line), BS (yellow line), 
UHR (blue line) and BS + UHR (red line) group derived from the six left and right SOIs. Grey 
shaded areas mark the time interval of 40 to 130 ms post stimulus which was used to 
extract the individual omiMMNm peak amplitudes. (B) Topographic maps of the omiMMNm 
response for each group. 

Supplementary 5 Means and standard deviations of MMNm peak amplitudes for HC and 
CHR subgroups and effect sizes of group differences over the left and right hemisphere. 

Hemisphere HC (n = 49) BS (n  = 29) UHR (n = 34) BS + UHR (n = 42) HC vs BS d HC vs UHR d HC vs BS + UHR d
durMMNm
     Left 4.57 (4.65) 3.92 (4.02) 3.50 (3.34) 4.86 (3.27) 0.15 0.26 0.07
     Right 6.12 (4.49) 5.99 (4.48) 4.54 (4.18) 6.78 (4.54) 0.02 0.36 0.15
omiMMNm
     Left 2.79 (1.69) 2.38 (1.53) 2.50 (1.56) 2.99 (1.72) 0.26 0.18 0.03
     Right 3.57 (2.52) 2.43 (1.49) 2.62 (1.81) 2.87 (1.63) 0.55 0.43 0.33

Group

 

HC                BS                         UHR                              BS + UHR  

A 

B 

Left hemisphere Right hemisphere 

Left hemisphere 
A 

B 

Right hemisphere 

HC                BS                          UHR                             BS + UHR  
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A.2.2.2 Virtual channel analysis 

The Kruskal-Wallis tests revealed no significant group differences in durMMNm or 

omiMMNm peak amplitudes in any of the ROIs. 

 
Supplementary 6 Virtual channel durMMNm time-courses for HC and CHR subgroups. 
Grand averaged durMMNm virtual channel time courses for the HC (green), BS (orange), 
UHR (red) and BS + UHR (black) group plotted separately for each ROI. 

 
Supplementary 7 Virtual channel omiMMNm time-courses for HC and CHR subgroups. 
Grand averaged omiMMNm virtual channel time courses for the HC (green), BS (orange), 
UHR (red) and BS + UHR (black) group in seven ROIs. 
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Supplementary 8 Virtual channel results of group differences in MMNm amplitudes between 
HC and CHR subgroups. Means and standard deviations of MMNm peak amplitudes for each 
group, effect sizes of group differences and statistical results for each 
ROI.

ROI HC (n = 48) BS (n = 28) UHR (n = 32) BS + UHR (n = 42) HC vs BS d HC vs UHR d HC vs BS + UHR d χ 2 df p
durMMNm
     L HG 8.88 (12.78) 10.55 (14.98) 6.50 (8.54) 8.15 (8.56) 0.11 0.22 0.07 2.56 3 0.46
     R HG 25.72 (28.42) 26.94 (31.77) 21.16 (30.27) 29.53 (37.51) 0.04 0.16 0.11 1.40 3 0.71
     L STG 9.93 (14.51) 8.84 (13.63) 6.20 (8.81) 8.19 (8.17) 0.08 0.31 0.15 2.75 3 0.43
     R STG 25.40 (29.98) 27.63 (32.10) 18.84 (24.78) 26.99 (32.71) 0.07 0.24 0.05 1.71 3 0.63
     L MTG 9.08 (13.40) 5.51 (7.43) 4.94 (7.33) 5.65 (6.92) 0.33 0.38 0.32 3.58 3 0.31
     R MTG 12.10 (13.36) 10.67 (12.30) 8.36 (12.08) 9.68 (8.37) 0.11 0.3 0.22 3.36 3 0.34
     R IFG .88 (.78) 1.14 (1.26) 1.05 (2.72) .97 (1.43) 0.25 0.08 0.08 3.64 3 0.30
omiMMNm
     L HG 4.30 (5.03) 4.08 (4.31) 4.83 (5.20) 3.53 (4.15) 0.05 0.1 0.17 2.485 3 .478
     R HG 9.03 (9.30) 8.8 (11.30) 9.55 (11.82) 7.34 (7.18) 0.02 0.05 0.2 .718 3 .869
     L STG 3.92 (4.53) 2.8 (2.97) 3.44 (3.41) 2.98 (3.40) 0.29 0.12 0.23 1.794 3 .616
     R STG 8.42 (8.10) 7.26 (8.00) 8.36 (9.76) 6.74 (7.92) 0.14 0.01 0.21 2.750 3 .432
     L MTG 3.81 (5.05) 2.01 (2.46) 2.23 (2.52) 3.57 (4.62) 0.45 0.4 0.05 6.204 3 .102
     R MTG 5.71 (7.32) 4.03 (4.75) 4.58 (4.15) 4.13 (7.02) 0.27 0.19 0.22 4.733 3 .192
     R IFG 0.49 (.52) 0.66 (.74) 0.58 (.62) 0.47 (.51) 0.27 0.16 0.04 1.126 3 .771

Group

 

A.3 MMNm distributions  

A.3.1 Condition effect 

A.3.1.1 Sensor space 

 
Supplementary 9 Sensor level STD, DEV and OMI peak amplitude distributions. The 
distributions of individual ERF peak amplitudes in response to deviant (in red) and standard 
(in green) sounds over the left and right hemisphere. Panel (A) presents the durMMNm 
effect and (B) omiMMNm effect in the two TOIs. STD, standard; DEV, deviant; OMI, omission.  

A 

B 
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A.3.1.2. Source space 

 
Supplementary 10 Virtual channel STD and DEV peak amplitude distributions in each ROIs. 
ERF peak amplitudes to standard (green) and duration deviant (red) stimulus for each ROI. 
HG, Heschl’s gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus. 

 

 
Supplementary 11 Virtual channel STD and OMI peak amplitude distributions. Distributions 
of individual ERF peak amplitudes to standard (green) and omitted (red) stimulus for each 
ROI. Panel (A) presents the omiMMNm effect in the 46-56 ms TOI and (B) omiMMNm effect in 
the 110-120 TOI. HG, Heschl’s gyrus; MTG, middle temporal gyrus; STG, superior temporal 
gyrus. HG, Heschl’s gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus. 

A 

B 



143 
 

 
 

A.3.2 MMNm distributions for the HC, CHR and FEP groups 

A.3.2.1 Sensor space 

 
Supplementary 12 Sensor level distributions of individual MMNm peak amplitudes for HC 
(green), CHR (red) and FEP (grey) groups over the left and right hemisphere. Panel (A) 
presents the durMMNm effect and (B) omiMMNm effect. 

A.3.2.2 Source space 

 
Supplementary 13 Virtual channel distributions of individual MMNm peak amplitudes in six 
ROIs for the HC (green), CHR (red) and FEP (grey) group. Panel (A) presents the durMMNm 
effect and (B) omiMMNm effect. 

A 

B 

A 

B 
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A.4 Associations between the severity of APS and 
comorbidity and global, role and social functioning in 
the CHR sample 

The results of Spearman’s correlations indicate that the CAARMS positive 

symptom severity correlates with the presence of comorbid anxiety/depressive 

disorders (r = .20, p =.046) as well as global (r = - .36, p < .01), social (r = -.26, p 

= .01) and role functioning (r = -.27, p = .01) in the CHR sample.
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APPENDIX B: Supplementary Material Chapter 5 

B.1 CHR individuals with and without follow-up 
information 

Supplementary 14 Demographic and clinical characteristics of CHR individuals with and 
without 12 month follow-up data. 
Measure Sub-Measure Not Followed Up (n = 41) Followed Up (n  = 65) Statistics Significance
Age 21.40 (4.59) 21.95 (4.51) t  (103) = - .607 n.s. (.545)
Gender Male 13 15 x 2 (1) = .963 n.s. (.326)

Female 28 50
Employment Full time paid 1 1 x 2 (5) = 10.70 n.s. (.06)

Part time paid 3 3
Voluntary 0 1
Student 28 59
Unemployed 6 1

Years of Education  14.38 (2.53) 15.57 (3.62) t (103) = -1.93 p  = 0.05
Medication + Any medication 21 34 x 2 (1) = .012 n.s. (.536)

None 20 31
Treated Mental Health Problems None 15 23 x 2 (2) = .192 n.s. (.908)

Current 7 10
Past 18 32

Family History (1st Degree) + No 38 58 x 2 (1) = .351 n.s. (.554)

Yes 3 7
CAARMS severity 23.78 (16.71) 30.43 (16.38) t (103) = -2.006 p  = 0.047
GAF 55.45 (13.43) 61.12 (12.66) t  (103) = -2.178 p  = 0.032
GF: Social scale  7.48 (1.11) 7.58 (1.06) t  (103) = -.506 n.s. (.614)
GF: Role scale 7.25 (1.10) 7.65 (1.07) t  (103) = -1.824 n.s. (.071)
Current Suicide Risk No 12 37 x 2 (1) = 7.642 p  = .006

Yes 28 27
Verbal memory 48.33 (10.43) 48.94 (11.74) t  (103) = -.271 n.s. (.787)
Working memory 21.10 (3.70) 20.34 (4.24) t  (103) = .937 n.s. (.351)
Motor speed 73.03 (15.07) 66.98 (15.62) t (103) = 1.95 n.s. (.006)
Verbal fluency 59.35 (13.43) 55.35 (12.22) t (103) = 1.57 n.s. (.120)
Processing speed 64.50 (10.44) 67.68 (15.03) t  (103) = -1.173 n.s. (.243)
Executive funtion 17.87 (2.07) 18.38 (2.69) t (101) = -1.002 n.s. (.319)
BACS composite score 285.08 (37.102) 277.91 (42.739) t  (103) = .860 n.s. (.392)
durMMNm left 4.09 (3.56) 4.18 (3.52) t (104) = -.125 n.s. (.901)
durMMNm right 5.20 (4.31) 6.18 (4.56) t (104) = -1.094 n.s. (.277)
omiMMNm left 2.45 (1.39) 2.79 (1.74) t (104) = -1.036 n.s. (.302)
omiMMNm right 3.20 (2.06) 3.49 (2.27) t  (104) = -.677 n.s. (.500)  
 
B.2 MMNm distributions for the CHR-R, CHR-NR and HC 
groups 

 
Supplementary 15 Distributions of individual durMMNm peak amplitude values for the HC 
CHR-R and CHR-NR group. 
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Supplementary 16 Distributions of individual omiMMNm peak amplitude values for the HC 
CHR-R and CHR-NR group. 

B.3 Association between the severity of APS and 
comorbidity in CHR individuals 

There was a significant difference in the CAARMS positive symptom severity 

between CHR individuals with a comorbid anxiety/depressive disorder (M = 

30.68, SD = 17.04) and without a comorbid disorder (M = 23.80, SD = 15.88) (t 

(101) = -2.05, p = .04).  
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