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Abstract 

 

To best comprehend cellular behaviour and how it determines cell migration in 

metastatic cancer, the research described here has focused on cell mechanics. 

The signalling pathway involving Rho-associated kinase (ROCK) has emerged as 

being the main regulator for the cellular cytoskeleton and actomyosin contractility 

that play key roles in metastatic cancer formation.  In this thesis, an examination is 

made of how the cellular properties intertwine as ROCK is overexpressed.  In 

research towards being able to measure and describe the viscoelastic properties 

of a cell that are associated with cell mechanics, over a wide range of timescales, 

a novel AFM force indentation data analysis method was applied.  

In particular, as part of this study, pancreatic ductal adenocarcinoma (PDAC) cells 

were overexpressed with ROCK, and the influence of ROCK activity on cell’s 

elastic and viscoelastic properties were quantified. It was found that when ROCK 

activity was overexpressed in cells, their elasticity decreased while their viscosity 

remained unchanged.  These properties had a direct correlation with the activity of 

ADF/cofilin - the proteins downstream of ROCK.  This meant that with 

overexpression, more stable actin bundles were present along with their inward 

stresses generated by the actomyosin contraction. This is consistent with an 

increased level of compressive forces within cells.  Collective compressive forces 

between cell-cell are associated with the packing of cells that decreases cellular 

response.       

To further understand the role of ROCK activity in cancer invasion, a microfluidic 

device was created to mimic cell migration through tissue. The device consists of 

precisely defined microchannels with dimensions chosen to hinder and confine the 

cells in a manner similar to that found in a physiological environment.  It was found 

that overexpressed ROCK1 cells in the confinement had notable decrease in cell 

size and motility.  Along with this decrease in mechanical properties, observations 

also gave rise to questions about the connection between these properties that 

remain to be answered.   
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Chapter 1  Introduction 

 

1.1 Early cancer diagnostics 

Cancer is one of the leading causes of morbidity and mortality worldwide.  It has 

been estimated that, globally, there were approximately 8.2 million cancer related 

deaths in 2012 (B. W. Stewart and C. P. Wild, 2014).  Therefore, there has been a 

global action plan to reduce the mortality from cancer by extensive research in 

both science and medicine. To improve understanding of the disease condition 

and progression, active fields of research include cancer metabolism, growth, 

survival, invasion and metastasis.  

A definition of cancer is a disease that causes normal cells to change and grow in 

an uncontrollable manner before spreading to other parts of the body (B. W. 

Stewart and C. P. Wild, 2014).  These abnormal cells keep doubling until a lump 

(tumour) is formed.  Tumours are complex masses that are made up of billions of 

copies of the original cancerous cell.  In some cases, modifying the genetics and 

gene expression (epigenetics) of a cell can cause various functions such as 

growth, motility, metabolism, communication (signalling), and cell remodelling 

(Ben-Ze’ev, 1985) to change.  These alterations within a cell could contribute to 

tumour formation.    

Traditional methods to detect cancerous cells include palpation, visual 

identification of malignant changes, cell proliferation analysis, specific ligand-

receptor labeling, or genetic testing (Huang and Ingber, 2005; Iyer et al., 2009).  

These methods are known to be either insufficiently accurate or require lengthy 

and complicated analysis.  There have also been investigations into alternative 

methods to detect cancer that use traditional methods as their basis (Iyer et al., 

2009; Lekka et al., 2012).  For instance, it has been shown that elevated tissue 

stiffness is associated to tumour development (Samuel et al., 2011), though it is 

unclear how the mechanical properties of individual cells may contribute both to 

tissue stiffening and their physiological significance in tumour development.   
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1.2 Cellular mechanics in cancer  

1.2.1 Cell structure  

Living cells are complex organisms due to their dynamic nature and constant 

change in shape and structure.  They consist of many varying components, all 

having different roles contributing to maintaining the cell in a state of equilibrium.  

A eukaryotic cell is constantly being stabilised by the cellular skeleton 

(cytoskeleton), which is made up of three elements: actin filaments, microtubules 

and intermediate filaments (Suresh, 2007) (Figure 1.1).  These biopolymers play 

an important role in retaining the cell shape, cell migration, rigidity, and cell 

division.  Hence, the concentration and molecular state of all the macromolecular 

and polymeric biomolecules will determine the mechanical deformation 

characteristics of an individual cell (Zhu et al., 2000).  Below, we will discuss 

several of the biopolymers and their relevance to cellular behaviour.   

 

 

Figure 1.1│Schematic diagram of a typical eukaryotic cell with its subcellular 

elements. 

 

Actin filaments (filamentous actin; F-actin) are formed by polymerisation of actin 

monomers (globular actin; G-actin).  These biopolymers are the most abundant 

protein in most eukaryotes (typically 5–10% of total protein), with a helical cable-

like structure (having a diameter of about 7 nm and up to several micrometres in 

length) (Cooper, 2000).  These filaments can be arranged into two general types 

of structure, known as actin bundles and actin networks.  In bundles, the actin 

filaments are crosslinked into parallel arrays, which are found to support the 
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projections of the plasma membrane.  These bundles are also known as stress 

fibres.  In network, the filaments are loosely crosslinked in orthogonal arrays to 

form networks, which are localised at the periphery of a cell; beneath the plasma 

membrane. The formation of these structures is determined by a variety of actin-

binding proteins (e.g. fimbrin, α-actinin and filamin) that crosslink actin filaments.  

This process is reversible, though the presence of certain ions (Mg2+, K+, Na+) 

reduces the likelihood of polymerisation of actin monomers (Suresh, 2007).  

However, if the cell requires additional strength in response to an increase in 

stress, actin stress fibres tend to be formed.  These fibres will be attached and 

localised at the focal adhesions.  Actin filaments are highly associated with cell 

migration forming filopodia and lamellipodia as the initial step, with an interaction 

with myosin leading to actomyosin contractions that aid movement.     

Microtubules are formed from a globular protein known as tubulin, two types of 

which are the polypeptide families, α-tubulin and β tubulin.  These polypeptides 

string together, to form long strands of protofilaments.  When thirteen parallel 

protofilaments come together, they can form hollow rod structures, with a diameter 

of ~25 nm (Cooper, 2000).  Microtubules are polar structures and so the direction 

of movement is pre-determined.  The negative end of these structures is anchored 

in the centrosome (microtubule-organising centre) at one end, and the tubule can 

extend outward toward the cell periphery at the other.  In most cells, the 

centrosome is located near the nucleus.  The microtubules are under constant 

assemble and disassemble at each end.  This coexistence is known as dynamic 

instability, which can be regulated by the rate of GTP (guanosine triphosphate) 

hydrolysis.  Indications are that microtubules are the most rigid of the three 

cytoskeletal biopolymers:  When mechanically coupled with the surrounding 

cytoskeleton, microtubules have been shown to withstand large compression 

forces (Brangwynne et al., 2006).  This suggests that microtubules could provide a 

structural contribution towards a cell’s mechanical behaviour.  Microtubules have 

been shown to play an important role in mitosis (cell division) with the formation of 

mitotic spindles and cell migration, with the internal structure of cilia and flagella 

made of this biopolymer.  Research has also found that there are certain binding 

agents that inhibit the formation of microtubules, thus inhibiting mitosis (Suresh, 

2007).   

Intermediate filaments are made up of more than 50 different intermediate filament 

proteins that can be categorised into six groups: acidic keratin, neutral/basic 



  

4 
 

vimentin, neurofilament proteins, nuclear lamins and nestin (Cooper, 2000).  The 

filaments are collected from about eight protofilamemts that assemble together 

and form a rope-like structure, with a diameter of about 10 nm.  Unlike actin 

filaments and microtubules that are both polar, having distinct positive and 

negative ends, intermediate filaments do not have this degree of polarisation.  An 

intermediate filament network is formed in the cytoplasm of most cells, extending 

from the nucleus to the plasma membrane.  These filaments commonly work 

alongside microtubules, to provide strength and support to fragile tubulin 

structures.  Although there are intermediate filaments in each cell, each have 

specific functions.  For instance keratin filaments in epithelial cells are tightly 

anchored to the plasma membrane at junction between cell-cell contact 

(demosomes) and junction between cell-extracellular matrix (hemidemosomes) 

(Suresh, 2007).   When there are two anchors either side of a cell, they will provide 

a mechanical link between the nearby cells, and provide overall mechanical 

rigidity.  Another instance of a specific function is the vimentin intermediates 

filaments that provide mechanical strength to fibroblast and endothelial cells.    

 

1.2.2 Mechanical properties of cancer cells  

The role of cellular signalling pathways and mechanics are said to be 

interdependent sources that lead to cancer (Katira et al., 2013).  The signalling 

pathways that control cell proliferation and apoptosis can cause mutation in genes, 

which would activate or overexpress key proteins that would lead to transformation 

of cells.  We will discuss a particular signalling pathway in the next section.  

Meanwhile specific changes to the mechanical behaviour of cells as a 

consequence of their physiological environment can also be observed.  For 

example, it has been noticed that a mechanical change between healthy and 

cancerous cells was their reduced stiffness; this was shown for bladder, breast, 

colon, prostate, melanoma, and brain cancer cells (and so on) (Guo et al., 2014; 

Khan and Vanapalli, 2013; Lekka et al., 2012; Li et al., 2008).  A further 

mechanical property difference that has been seen is the reduced viscous nature 

of ovarian cancer cells (Ketene et al., 2012).  Hence, it has been suggested that 

stiffness differences between normal and cancer cells could be employed as a 

diagnostic tool (Kumar and Weaver, 2009). 
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The transformation of healthy cells into cancerous cells is associated with a 

change in internal and external environments (Yallapu et al., 2015).  Internally, the 

cytoskeleton governs the mechanical properties, which we have discussed above.  

In addition to the discussion above, it has been shown that there was an increase 

in actomyosin contractions within cancerous cells compared to healthy cells 

(Jonas et al., 2011; Kraning-Rush et al., 2012).  There are other internal 

organelles that have been suggested as being associated with the transformation 

of cells, including nucleus size organisation or condensation of complex 

macromolecules (i.e. DNA, RNA and proteins), and epithelial mesenchymal 

transitions (Yallapu et al., 2015).  Changes in the external environment can involve 

cell’s ability to bind to neighbouring cells or to the extracellular matrix.  It has been 

shown that modifying specific adhesion proteins can affect proliferation and 

invasiveness of a cell (Paredes et al., 2005; Ribeiro et al., 2010).  Furthermore, 

increasing of the extracellular matrix stiffness has been proven to lead to an 

increase the metastatic potential of cells (Gartland et al.) 

 

1.3 Rho-associated protein kinase (ROCK) 

Rho-associated kinase (ROCK) signalling has been extensively researched in 

cancer, particularly in relation to tumour cell motility and metastasis (Rath and 

Olson, 2012).  ROCK is a downstream effector protein from the Rho GTPase 

family.  The Rho GTPase family includes RhoA, Rac1 and Cdc42, which are well 

known in regulation of the actin cytoskeleton organisation (Hall, 2009).  Each 

member acts on different region of actin filament in a cell: RhoA is associated with 

stress fibres, Rac1 is associated with lamellipodia, and cdc42 is associated with 

filopodia.  RhoA proteins are downstream signal transducing proteins that play 

roles in various cellular processes such as gene expression, cell proliferation, 

migration and apoptosis (Boureux et al., 2007).  ROCK was the first effector of 

RhoA to be discovered.  There are two ROCK isoforms (ROCK1 and ROCK2) that 

have been identified.  Although there are two forms, it has been noted that the 

progenitor form is probably ROCK2 (Rath and Olson, 2012).   

The two forms of ROCK can be situated in different regions of the cell, and so 

although their signalling pathways are the same, it is possible the main functions 

are different.  ROCK1 has been shown to be diffusely located around the nucleus 

with stress fibres, whereas ROCK2 has been located both at the periphery of the 
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cell as well as being around the nucleus (Yoneda et al., 2005).  In addition, it has 

been shown that ROCK1 is important for the formation of stress fibres and focal 

adhesions, while ROCK2 is associated with myosin II-dependent phagocytosis 

(ingestion of material).   

The structure of ROCK comprises a kinase domain followed by a coiled-coil region 

with a Rho-binding domain (RBD) and Pleckstrin homology (PH) with an internal 

cystein-rich domain (CRD).  In an inactivated state, the ROCK structure is coiled 

into an auto-inhibitory ring (Figure 1.2A).  Once activated by GTP-RhoA, it can 

promote the generation of actomyosin contractile force, through mediating 

phosphorylation of some downstream proteins. These proteins included myosin 

light chain LIM kinases 1 and 2 (LIMK1 and LIMK2), the myosin regulatory light 

chain (MLC), and the myosin binding subunit (MYPT1) (Rath and Olson, 2012) 

(Figure 1.2B).  

 

 

Figure 1.2│Schematic diagram of (A) active and inactive ROCK with its structure 

and (B) a collective of ROCK signalling to promote actomyosin contractile force 

generation along with Rac signalling to promote actin dynamics.   

 

Many of the proteins phosphorylated by ROCKs regulate the amount of actin 

filaments present and the cellular contractility, thus a regulator of morphology and 

motility (Riento and Ridley, 2003).  ROCK stabilises actin filaments in two ways: 

LIMK phosphorylation that phosphorylates ADF (actin depolymerising factor)/ 

cofilin that leads to inactivation of actin-depolymerisation activity, and MLC 

phosphorylation that increases actin filaments and myosin-driven contraction.   

For cell migration, Rac signalling regulates the actin polymerisation to form the 

leading edge of a cell (lamellipodia) (Zhang et al., 2011a).  This involves the 
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downstream protein, PAK that in turn phosphorylates LIMK1 and 2, and inactivates 

cofilin.  Therefore stable and formation of actin filaments.    

 

1.4 Review of techniques for characterising cell mechanics 

There have been various techniques developed to measure the mechanical 

properties of a single cell.  These can be divided into two broad categories: active 

and passive, when considering the modes under which cell mechanics are 

measured.  An active method is when an applied force used to deform a cell to 

indicate stiffness, elastic or viscoelastic properties, whereas a passive method 

senses the force generated by the cell as a consequence of its tensile stress 

(Addae-Mensah and Wikswo, 2008).  Results from passive methods generally 

depend on the substrates used for measurements, which is not ideal for studies of 

sensitive cells.  Within this sub-section we have mainly focused on the literature 

for active methods, describing the basic principle of each procedure and their 

advantages and limitations.  Note, the use of an atomic force microscope to 

measure cell mechanics will be discussed in a separate section in further detail.    

 

1.4.1 Micropipette aspiration 

Micropipette aspiration (MA) was first developed by Mitchison and Swann, to study 

the mechanism of cell division of sea-urchin eggs by acquiring the elastic 

properties (Mitchison and Swann, 1954).  This method can be described when a 

cell is deformed by a gentle suction from a micropipette when in contact with its 

surface.  The change in cell geometry combined with the applied known pressure 

can then be used to calculate the force and thus the mechanical properties of a 

cell.  The typical range of controlled suction pressure is 100–10000 Pa with a 

typical force range of 1–100 nN (Kamm et al., 2010).  This procedure has been 

applied to range of cells such as: red blood cells, to look at the redistribution of 

cytoskeletal proteins (Discher et al., 1994); erythrocyte membranes, to observe the 

viscoelastic properties of the two phases of membrane (Chien et al., 1978); human 

leukocytes, to detect the shear modulus of applied fast and slow motion (Schmid-

Schönbein et al., 1981); and normal/ osteoarthritic chondrocytes, to compare the 

difference between the two Young’s moduli (Alexopoulos et al., 2003; Jones et al., 

1999).  Furthermore, the technique has been used to study cell-cell interactions by 
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taking two micropipettes both with a cell attached to the ends (Chu et al., 2004).  

The advantages of this technique are that it can be useful when studying relatively 

homogeneous structures, it can provide highly reproducible measurements, and it 

can exert a well-defined pressure to a specific localised region on the cell 

membrane (Oh et al., 2012).  However, cells can also get aspirated too far into the 

pipette causing large deformations (ratio of pipette and sample), and thus the 

interpretation of the experiments is not always straight forward (Pravincumar et al., 

2012).   

  

1.4.2 Magnetic particle microrheology 

Magnetic particle microrheology was first demonstrated to observe the magnetic 

motion of drag, twist and prodding within the cytoplasm of chick fibroblasts (Crick 

and Hughes, 1950).  The procedure involves attachment of magnetic beads onto 

the cell’s surface and subject them to magnetic force (Kamm et al., 2010).  These 

beads can either generate a torque to twist on the beads (known as magnetic 

twisting cytometry; MTC) or generate a linear force to pull the beads (known as 

magnetic tweezers).  The mechanical properties of a sample can be measured by 

either studying the magnetic field change during deformation, or particle-tracking 

the motion of the attached bead.  These procedures have been used on biological 

samples such as the actin network to look at local viscoelastic properties (Ziemann 

et al., 1994), mouse macrophages to observe the shear modulus of the surface 

(Bausch et al., 1999), and endothelial cells to understand the relationship between 

cytoskeletal stiffness and the applied stress (Wang et al., 1993).  Although the 

typical force generated by MTC (0.01–1 nN) and magnetic tweezers (0.1–10 nN) 

are ideal for detecting the mechanical properties of cells, there are a lot of 

disadvantages regarding these methods.  To highlight a few: it is difficult to control 

where the magnetic beads are attached on to a cell, the depth in which the bead is 

embedded and keeping the bead magnetised for a long period of time is also 

difficult.   

 

1.4.3 Optical tweezers 

Optical tweezers are similar to magnetic tweezers, as both techniques attach 

microscopic beads to the biological substrate then apply a controlled force to 
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determine the mechanical properties.  Instead of applying a magnetic force, optical 

tweezers uses an optical force that is generated by a high powered laser beam.  

This was first developed by Arthur Ashkin, who studied micro-sized particles for 

trapping and acceleration (Ashkin, 1970).  This procedure consisted of two beads, 

each of high refractive index allowing precise control of the bead in all directions. 

This leads to a force that can deform the sample.  Optical tweezers have been 

used with human erythrocytes to look at the difference between discotic and nearly 

spherical swollen cells (Dao et al., 2003; Hénon et al., 1999), and Escherichia coli 

cells to trap and measure their rotational movement (Neuman et al., 1999).  The 

advantages of this system are that multiple cells can be measured at once by the 

use of multiple beads, and that it provides high precision forces of a range typically 

between 1–500 pN (Kamm et al., 2010).  However, as the typical forces are low, 

higher laser powers are required if a larger force is needed to probe stiffer 

samples.  The use of a higher powered laser ultimately kills biological samples by 

overheating them.  Furthermore, even long exposure to regular wavelength and 

power of lasers can cause photo-induced damage.   

 

1.4.4 Micro-particle stretcher in microfluidic device  

Microparticles such as cells, in microfluidic devices can be stretched either 

optically or hydro-dynamically (Gossett et al., 2012; Guck et al., 2005).  Optical 

stretcher is an adaptation of optical tweezer, rather than using a single laser beam 

trap, it uses two beams; to trap and deform microparticles.  There has studies on 

red blood cells and epithelial cells using the optical stretcher (Guck et al., 2005; 

Sraj et al., 2010).  The limitations of this process are similar to the optical 

tweezers, and that it operates at a low-throughput; though faster than individual 

probing of cells (i.e. AFM).  Recently, it has been discovered by using 

hydrodynamic stretching of cells in a microfluidic device, one can collect high-

throughput mechanical data (Gossett et al., 2012).  Approximately 2000 cell/ s of 

mechanical data can be collected; from flowing cells into a uniform increased 

hydrodynamic stresses that deform the cells.  A high-speed camera was used to 

record the cell before and after deformation.  In my opinion, the only concern with 

this procedure is the analysis algorithm, whether irregular cells can be tracked. 
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1.4.5 Particle tracking microrheology 

Although particle tracking is not an active method as it does not apply an external 

force to the sample, we discuss this technique here as it can measure viscoelastic 

properties that can be compared alongside the above techniques.  Particle 

tracking microrheology was first developed by Mason et al, to measure the linear 

viscoelastic shear moduli of polyethylene oxide (Mason et al., 1997).  This was 

later used to measure semi-flexible polymers such as actin filaments (Xu et al., 

1998), and more recently to measure the viscosity of the cytoplasm (Wirtz, 2009).  

The procedure entails tracking the movement of beads that are embedded in a 

viscous liquid, under an optical microscope.  The beads are usually smaller than 1 

μm, so they can undergo random motion due to the negligible inertial forces 

(gravity).  This means that there are two forces acting on the bead within the 

viscous fluid: small random forces from the random bombardment of water 

molecules and movement of the fibrous network, and a frictional force from the 

movement of the beads.  As the inertial forces are neglected and the beads are in 

random motion, the two forces sum to zero.  By taking into account that the 

random motion was generated by thermal energy and there is diffusion from the 

bead, the viscosity of the viscous fluid can be determined.  For these 

measurements, it has been shown that not only can the beads be suspended in a 

viscous fluid (Lau et al., 2003), but they can also be located on the surface of the 

biological sample (Shin and Athanasiou, 1999).  This technique can thus be 

applied to analyse the beads in MTC/ magnetic tweezers and optical tweezers 

experiments.  The advantages of this procedure include ability to measure 

heterogeneous samples, short timescale data collection (10–20 s), and 

measurements of frequency-dependent viscoelastic moduli. Furthermore, multiple 

bead tracking can be used to measure multiple samples simultaneously (Wirtz, 

2009).  However, the drawbacks include random motion of the beads could cause 

imaging problems due to halo effects or disappearance of the bead, and would be 

challenging to apply to very stiff or viscous materials (Cicuta and Donald, 2007). 

 

1.5 Atomic force microscopy (AFM) force spectroscopy  

The AFM technique was developed in 1986 (Binnig et al., 1986), and now is 

routinely used for biological sample imaging, stiffness measurements and 
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quantifying molecular interactions (Kamm et al., 2010).  It was first used to image 

biological samples (H G Hansma and Hoh, 1994), before looking at their 

mechanical properties (Radmacher et al., 1993; Weisenhorn et al., 1993).  In this 

sub-section, we will discuss how force spectroscopy is carried out, along with how 

elasticity is extracted and other applications of AFM.   

 

1.5.1 Operational principle  

An AFM is a type of scanning probe microscope that uses a piezo drive 

mechanism to move the cantilever in any direction to gather the information 

required (Figure 1.3).  By reflecting a laser beam off the back of the cantilever, 

movement of the cantilever can be tracked by position sensitive photodiode 

detector.  This movement can be quantified by a change in voltage, compared to 

that when the laser hits the central position of the detector.  The systems usually 

contain a feedback loop that can be closed during measurement; outputs from this 

loop will monitor the deflection of the cantilever and adjust the z-piezo according to 

a set deflection specified by the user.   

 

 

Figure 1.3│Schematic diagram of the set-up for atomic force microscope (AFM), 

highlighting spherical probe indentation on a cell. 

 

To obtain elastic properties of a material, AFM force spectroscopy is used.  The 

various modes of force spectroscopy can be categorised into contact, tapping and 

non-contact modes (Friedbacher and Fuchs, 2009).  Here, we will discuss contact 



  

12 
 

mode force spectroscopy, as this is the most well-established form.  This process 

entails a probed cantilever being brought towards the surface of a sample in the z-

direction, and then retracted away without scanning in the x and y directions.  

Once the cantilever is retracted away, a plot of force-distance curve is produced 

(Figure 1.4).  The distance displayed in the curve corresponds to the piezo 

movement during the measurement. This means it does not take into account the 

change in deflection of the cantilever.  By calibrating the system prior to 

measurements, a conversion between voltage to force can be made (Hutter and 

Bechhoefer, 1993).  This means that the computed distance can be corrected for 

using the calibration measurement, so giving an indentation into the sample as 

opposed to the z-distance movement.   

The produced force-distance curves can provide information regarding the sample 

before any analysis is taken place.  In Figure 1.4, two curves are displayed. These 

describe the approach of the probed cantilever moving towards the surface of the 

sample (red line) and the retraction of the probed cantilever moving away from the 

surface (blue line).   

 

 

Figure 1.4│Typical force-distance curve on a cell computed out from AFM 

NanoWizard II (JPK Instruments). 
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There are four steps that the probed cantilever undergoes during a measurement.  

Firstly, the probed cantilever approaches the sample; this creates the baseline 

trace that must be accounted for in the measurements.  The fluctuations within this 

baseline can be either thermal fluctuation (if the measurement is in air) or 

hydrodynamic forces acting upon the cantilever (when the measurement is in 

liquid).  Once the indenter is in contact with the surface, the cantilever would start 

to deflect.  As the indenter moves into the sample, repulsive forces are acting on 

the cantilever.  This movement continues until the set force is approached and 

then the indenter starts to move out of the sample.  Upon retraction of the indenter 

off the sample, it is often noticed that there are adhesive forces between indenter 

and sample.  These forces could be caused by capillary forces when 

measurements are in air or specific/ non-specific binding forces when the sample 

is a cell.  Once pulled free, the probed cantilever moves away from the surface 

back to the original point and creates another baseline in the process.  In the 

above example, the difference between the approach and retracted baselines 

could be explained by hydrodynamic forces acting on the cantilever as it moves 

towards the liquid and away from the liquid.     

 

1.5.2 Elasticity calculation  

The stiffness can be extracted from force-indentation curves, without the need of 

modelling the data.  This property can be calculated from the gradient between 

force and distance, which is based on the sample obeying Hooke’s law.  The 

Hooke’s law states that the strain in a solid is proportional to the applied stress, 

within linear-elastic regime of loading.  This property is known to be a general term 

describing a solid body.  Meanwhile Young’s modulus (elasticity) is an example of 

stiffness, which is more specific and describes the property of a constituent 

material; the normal stress is divided by the normal strain experienced by the 

material within the linear-elastic loading regime. 

The Young’s modulus of the sample can be calculated from force-indentation 

curves by fitting the data to a mathematical contact model.  Although there are 

many contact models, the method was first pioneered by Heinrich Hertz and most 

other models are modifications of the original (Puttock and Thwaite, 1969; Shi and 

Zhao, 2004).  The Hertz model has been the most commonly used and most 

favoured model, especially with biological samples.  The model describes the 
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forces when two spheres with different radii are brought into contact  (Bhushan, 

1990) (Figure 1.5).  With the original model, there are a few assumptions: (i) the 

surfaces should be parabolic, continuous, smooth, regular and frictionless, (ii) the 

size of the contact area is small in comparison to the size of the bodies, i.e., small 

deformations typically < 10% of sample thickness and the indentation is > 200 nm 

(Pelling et al., 2007), and (iii) each of the bodies behave as an elastic half-space in 

the vicinity of the contact region.  The fact that biological samples such as cells are 

not elastic, homogenous, and isotropic, means that the calculated Young’s 

modulus will contain some degree of error.  In the Hertz model for a spherical 

indenter, the applied force (𝐹) can be written in terms of indentation (𝛿) as:  

𝐹 =
4

3

𝐸

1 − 𝜐2
√𝑅𝛿3 

where 𝜐 is the Poisson’s ratio (for a cell; 𝜐 = 0.5 assuming it is incompressible), 𝑅 

is the radius the indenter, and 𝐸 is Young’s modulus.   

 

 

Figure 1.5│Sketch of the cantilever probes. 

 

Sneddon’s variation of the Hertz’s model uses a conical indenter, though the 

assumptions for the model are the same (Figure 1.5).  This model can be 

expressed in terms of applied force as follows (Kuznetsova et al., 2007):  

𝐹 =
2

𝜋
𝑡𝑎𝑛𝛼

𝐸

1 − 𝜐2
𝛿2 

where 𝛼 is the half opening angle of the tip for conical indentation. 

When measurements are carried out on very thin material, the Hertz model cannot 

be applied, due to strong substrate effects.  However, by modifying the Hertzian 

model it can be applied., This variant is known as the Chen model or Tu model 

(Lee, 2011).  Chen’s model applies in a regime where the sample is attached to a 

substrate, for instance measuring the leading edge of a cell where the 
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cytoskeleton adheres to the substrate.  The advantages of this model include 

ability to measure elastic property and the Poisson’s ratio (this was assumed in the 

Hertz and Sneddon model).  The Chen model can be written in the ratio of the 

elastic constants for Hertz and Chen model (𝐾Hertz 𝐾Chen⁄ ) as follows (Mahaffy et 

al., 2004):   

𝐾Hertz

𝐾Chen
=

3𝜋

4
(1 − 𝜐)

𝑎Chen

𝑎Hertz
∑

𝑝𝑖
c(𝜐)

1 + 2𝑖

𝑁

𝑖=1

 

where 𝑎Chen ≡ 𝑎 and 𝑎Hertz ≡ √𝑅𝛿.  

Here, notations are similar to above with the addition of 𝑎 is the contact area, and 

𝑝𝑖
c values are calculated numerically and is dependent on the Poisson ratio.  

Tu’s model is applied to situations where the sample is sliding freely. Tu et al. 

modified the model system so as to describe a spherical body on a non-adherent 

layer, to limit the range of thickness (Tu and Gazis, 1964).  Both Chen and Tu 

model were used to measure frequency-dependent viscoelastic properties.  The 

Tu model can be written in the ratio of 𝐾Hertz 𝐾Tu⁄  can be written as the follow 

(Mahaffy et al., 2004):   

𝐾Hertz

𝐾Tu
=

3𝜋

4

𝑎Tu

𝑎Hertz
∑

𝑝𝑖
T

1 + 2𝑖

𝑁

𝑖=1

 

where 𝑎Tu ≡ 𝑎 and 𝑎Hertz ≡ √𝑅𝛿.  

Each of the above models includes the assumption that there are no adhesive 

forces between the surfaces.  However, there are models that include adhesive 

forces, such as the Derjaguin-Müller-Toporov (DMT), Johnson-Kendall-Roberts 

(JKR) and Maugis-Dugdale models.  A study comparing these models with the 

Hertz model concluded that if small loads were applied, the work of adhesion does 

not play a key role in the contacts (Shi and Zhao, 2004).  Hence, the models 

Hertz, Sneddon, Chen and Tu model can still be used even when adhesive forces 

are present, when measurements are applied at small loads.  

 

1.5.3 Applications of AFM methods to cell mechanics   

AFM techniques have been evolving for several decades and now it is a powerful 

tool to acquire biomechanical properties of biological samples such as 

biomolecules and cells (Goldmann et al., 1998; Lieber et al., 2004; Vahabi et al., 
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2013; Weisenhorn et al., 1993; Zhao et al., 2006).  Mechanical properties have 

been studied on the cell membrane (Scheffer et al., 2001) and measurements 

have been made of cell stiffness (Carl and Schillers, 2008) and cell viscoelasticity 

(Alcaraz et al., 2003; Ketene et al., 2012; Rebelo et al., 2013; Vadillo-Rodriguez et 

al., 2008).  These techniques have been highly favoured as a means to measure 

cell behaviour due to high precision control of the loading forces (10 pN–100 nN), 

an ability to record strain-stress characteristics of individual cells with nanometre 

resolution, minimal sample preparation and an ability to examine live cells under 

physiological conditions (Sokolov, 2007).   

 

1.6 Cancer cell migration  

Conventionally, our knowledge about cell migration has been obtained through 

two-dimensional (2D) studies (Doyle et al., 2009).  However, there have been 

studies to suggest that cells migrate differently in three-dimensional (3D) models 

compared to 2D models. This can occur as cell motion switches from an adhesion-

independent mechanism in 3D to adhesion-dependent mechanism in 2D 

(Lämmermann et al., 2008).  This in order to have a clearer understanding of 

cancer cell migration in vivo, we study cells in 3D model systems.  Here we will 

discuss current procedures used for 3D in-vitro cell migration by describing the 

principles of each procedure and highlighting their advantages and disadvantages.    

 

1.6.1 Boyden chamber  

The Boyden chamber (also known as transwell assay), is commonly used to study 

the chemotactic ability of cells through migration.  This technique was initially 

created to study the cell migration of leukocyte cells under the influence of 

antibody-antigen complexes (Boyden, 1962).  It involved two compartments 

separated by a membrane filter having a specific pore size (smaller than the 

investigated cells); the cells were seeded on one side while the chemoattractant 

was placed in the other.  Due to the chemical difference between the two 

compartments, over time cells would transmigrate through the porous membrane 

towards the chemoattractant.  These cells were then fixed, stained and counted 

under a microscope to calculate the migration rate.  More recently, this procedure 

has been modified by pre-coating the membrane with a Matrigel containing 
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extracellular components, to assess tumour cell invasion and motility through the 

gel (Saito et al., 1997).  In addition, a colorimetric assessment (crystal violet) as 

oppose to the microscopic assessment has been used to quantify the assay.  

Other modifications have been to place different cells in separate chambers, to 

study the effect of soluble factors on cell migration, or to seed cancer cells on a 

monolayer of endothelial cells (Katt et al., 2016; Rodriguez-Menocal et al., 2012).  

This general procedure offers the unique advantages of being able to analyse cell 

migration and cell invasion in response to a chemotactic gradient.  Furthermore, it 

has the ability to study either adherent or non-adherent cells (Hulkower and 

Herber, 2011).  However, there are several limitations to this method that include 

the fact that the established gradient is transient, the results can be misleading 

due to an uneven distribution (or staining) of cells, or the transmigrated cells could 

be a subpopulation of tumour cells (Brekhman and Neufeld, 2009).  Furthermore, it 

is often difficult to distinguish between the cells and the pores of the membrane 

(see images in Chapter 4).   

 

1.6.2 Gel invasion assay 

Biological hydrogels that include collagen, fibrin and agarose have been used for 

invasion assays.  There are three approaches to this method, which includes cells 

being cultured on glass/ polystyrene substrate with a hydrogel with a thickness of 

500 μm on top, or cells seeded onto a hydrogel with a thickness of 300 μm 

(Hooper et al., 2006).  The migrated cells can be viewed and measured by optical 

sectioning through/from the gel, or by radioactive labeling of the cells (Kramer et 

al., 2013).  The first mention of this type of assay is in a skin cancer cell invasion 

study, whereby the model was later known as organotypic skin model (Fusenig et 

al., 1983; Timpson et al., 2011a).  In this study, fibroblasts (or immune cells) were 

embedded in the gel and the keratinocytes were seeded on top, with the migrated 

cells being quantified using histochemical staining.  The advantages of this 

procedure are that it can mimic the in-vivo environment, allow observation of cell 

invasion and heterotypic cell-cell interactions between two seeded cells.  However, 

the drawbacks include preparation can take a long time, there is an inability to 

quantify extent of invasion due to unknown start positions, and cells on substrates 

face a competitive situation whereby they could favour either movement into the 

substrate or the gel matrix above. 
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1.6.3 3D tumour spheroid invasion assay  

The spheroid invasion assay was adapted from the situation that occurs whereby 

a cluster of tumour cells invade the surrounding tissue (Mueller-Klieser, 1987).  

Clusters of cells can be made in-vitro by forming small aggregates of cells that are 

known as multicellular spheroids.  These clusters of cells or single cell 

suspensions are embedded into an extracellular matrix gel that contains another 

cell type.  Cell invasion can be studied via cell migration towards the spheroids 

(intravasation) or when cells from the spheroids migrate out (extravasation).  This 

method has been used to study the invasion properties of malignant cells into the 

spheroid structured of non-malignant cells (Vinci et al., 2015).  The cells attached 

or invaded into the spheroids can be analysed using confocal fluorescence 

microscopy as the cells were fluorescently labelled or quantified by flow cytometry 

after trypsinisation.  The advantages of this procedure is that cancer cells in a 3D 

structure mimic a tumour micro-region or micro-metastasis, the size of the 

spheroids can be controlled, and the invasion assay can be performed along with 

tumour spheroid formation in the same plate (Kramer et al., 2013).  However, this 

process has similar drawbacks to the gel invasion assay in that the process can be 

long, the malignant cells are capable of forming spheroids, and movement is 

difficult to quantify due to an undefined origin of migration.   

 

1.6.4 Oris 3D embedded invasion assay  

The invasion assay uses a similar set-up to cell exclusion zone assay, whereby a 

single layer of cells were seeded around a small silicone stopper that creates the 

exclusion zone (Kramer et al., 2013).  In this procedure a thin coat of basal 

membrane extract (or collagen) was made prior to positioning the silicone stopper 

and cells.  Once cells have adhered, the stopper was removed (creating an 

exclusion zone), and the set-up was overlaid with a thicker layer of gel.  This 

meant that cells were embedded between two layer of gel and a cell-free zone 

filled with the gel.  The invasive cells would migrate into the cell-free zone and can 

be tracked under a microscope (Lim et al., 2010).  Fixation of cells along with 

immunofluorescent staining can be carried out too.  The advantages of this 

process is that the set-up is rather simple, real-time imaging of cell migration is 

possible due to the thin layer of gel and cell morphology can be studied at the end 
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of the assay (Kramer et al., 2013).  However, within this method there are no cell-

cell interactions established before the assay as cells were seeded in a layer of 

single cells, no chemical gradient present to drive the cells, and the possibility that 

cells can migrate upwards as opposed to along the gel.    

   

1.6.5 Microfluidic methods 

Currently, there are more studies adopting the microfluidic approach to investigate 

cell migration in 3D, due to the controllability of the design that can be tailored to 

the cells under investigation, the ability to mimic the cell’s physiological 

environment, and as a means to study low numbers of cells or single cells 

(Halldorsson et al., 2015).  In addition, microfluidic approach does not require 

large amounts of sample/reagents, it can be used in high-throughput experiments, 

and real-time cell migration can be observed using optical microscopy.     

To investigate the invasiveness of cancerous cells in a well-defined 3D 

environment, the development of micro-sized channel structures at various widths 

for cells to migrate through was required.  There are various studies using different 

channel dimensions to address certain issues (Hung et al., 2013; Mak et al., 2011, 

2013).  To highlight a few designs, there have been studies where four arrays of 

50 microchannels of dimensions between 6–100 µm in width with 3 or 12 µm in 

height are positioned above a central well that is connected to a media supply 

(Irimia and Toner, 2009).  This was used to study various cancer cells and whether 

treatment targeting microtubules affected migration.  Another approach has been 

to study the cell behaviour when moving from an unconfined space to a confined 

space. In this, the array of channels were tapered from 20 μm to 5 μm wide at a 

height of 10 μm, which was separated by two chambers (Rao et al., 2014).  A 

recent study, applied the two chamber approach to investigate how cells change 

when moving from one confinement to another. This was carried by using channel 

segments along the channel length with widths varying from 11.2 to 1.7 μm and 

having a constant height of 3.7 μm (Lautscham et al., 2015).  There have also 

been studies whereby cells were confined under 15 μm wide and 50 μm height 

channels, and the channel surfaces were treated with Matrigel, to mimic the 

physiological environment for cells.  The results showed that invasive cells can 

migrate faster through these channels as opposed to non-invasive cells (Chaw et 

al., 2007).   
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Under physiological conditions, cancer cells are not often in uniform environments.  

Instead, they are most often in complex chemical environments where chemotaxis 

is guided by concentration gradients of growth factors, chemokines, and/ or 

surface ligands (Halldorsson et al., 2015). Cells regulate their behaviour 

accordingly, to sense the variation in chemical concentration within their 

surrounding area (Keenan and Folch, 2007).  Steady state gradients in a 

microfluidic devices can be controlled by generating flow-based gradients, 

diffusion based gradients, or micro-patterning gradients (Huang et al., 2011).  

However, although chemical gradients can be controlled within microfluidic 

devices, it has been shown that cells can spontaneously migrate even in the 

absence of a gradient (Irimia and Toner, 2009).  Thus this needs to be considered 

when interpreting observations of cell movement. 

Another approach used to guide cell migration involves regulating the physical 

environment; such as substrate stiffness gradient or fluidic shear stress (Sant et 

al., 2010).  This process is known as mechanotaxis.  There has been evidence to 

show that fibroblasts, muscle cells and macrophages migrate from softer to stiffer 

surfaces (Kidoaki and Matsuda, 2008; Lo et al., 2000; Wong et al., 2003).   

 

1.7 Aims and objectives  

Cancer is one of the leading causes of death worldwide, in particular pancreatic 

ductal adenocarcinoma (PDAC).  ROCK signalling has been extensively 

researched in cancer, particularly in relation to tumour cell motility and metastasis 

(Rath and Olson, 2012).   However, the contributions of cell mechanics and cell 

migration have not been explored for PDAC, although tissue mechanics has been 

a feature used to distinguish between healthy and diseased pancreas.  Therefore, 

this thesis research aims to unravel the involvement of ROCK activity in PDAC 

cells, from single cell mechanical behaviour to single cell invasion.  To fulfil this 

aim, several objectives were constructed, as highlighted below. 

To discover the effect of ROCK activity on single cell mechanical response, our 

objective was to measure the elastic and viscoelastic properties of cells that can 

overexpress ROCK, using AFM.  Furthermore, to observe the cytoskeletal 

changes between normal and overexpressed ROCK, we used 

immunofluorescence staining of actin network.     
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Since it was known that there were limitations with using current methods to 

measure the viscoelastic properties of cells with AFM, thus there was a desire to 

establish a new procedure.  Establishing this new viscoelastic measurement 

procedure with cells, validation investigations were made by comparing compact 

rheometry measurements of complex materials (30 kPa, 100 kPa, multi-purpose 

tac and 20:1 polydimethylsiloxane) with those derived from the new AFM based 

technique.   

Finally, to investigate the effect of ROCK activity on single cell invasion, our 

objective was to design a microfluidic platform for these cells to probe migration 

through well-defined multidimensional restrictive channels.  This would be used to 

correlate the measure cellular mechanical behaviour with cell migration.  

 

1.8 Thesis outline  

The thesis was organised into six chapters which are structured as follows: 

Chapter 1: Introduction: discusses the background of the field of cell mechanics 

and cell migration for cancer research.  Initially explores the fundamental 

components of a cell that contributes towards cell mechanics, and then highlights 

advantages and disadvantages of the available mechanical techniques.  It 

includes descriptions of the basics of atomic force microscope force spectroscopy 

and the models used to extract elastic properties and the possible applications.  

Finally, discusses the basics of cancer cell migration in 3-dimentional techniques.     

Chapter 2: Effect of ROCK activation on cell elasticity: presents the elastic 

response of cells along with immunofluorescence imaging of actin network within 

the cells, when overexpression of ROCK activity was applied.  Furthermore, 

explores the possible downstream protein that contributes to the cellular response 

of overexpressed activity.    

Chapter 3: Cell viscoelasticity: describes a novel procedure to measure the 

continuous change in viscoelastic properties of cells, over a wide range of 

frequencies.  Initial investigations with applied procedure on cells have opened up 

a new method that can be used to measure cell mechanics.     

Chapter 4: Cancer cell migration: describes the design and fabrication of a high-

throughput microfluidic device with an array of microchannels with various 



  

22 
 

dimensions.  The effects of cell confinement on cell migration were observed with 

use of cells from chapter 2 and 3. 

Chapter 5: Conclusions and future work: draws together the conclusions of the 

experimental chapters and highlights the main findings and conclusion of this 

work.  In addition, further investigations that could be explored using the novel 

viscoelastic procedure, and established microfluidic device are mentioned. 
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Chapter 2  Effect of ROCK Activation on Cell Elasticity 

 

2.1 Abstract 

Pancreatic cancer is the fifth most common cause of cancer death, in Europe.  

There are no symptoms during the early stage, therefore it is often diagnosed at a 

very advanced stage, which leads to poor prognosis.  Although advances have 

been made in diagnosis and treatment, there has been less progress in treating 

the spread of the disease.  It is known that overexpression of rho-associated 

kinase (ROCK) can lead to cell invasion and metastasis, though how cells move 

through tissues remains unclear.  Here, we use atomic force microscope (AFM) 

force spectroscopy to measure the effect of ROCK overexpression, and cofilin 

activity on the mechanical properties of pancreatic cancer cells.  Overexpression 

of ROCK led to a reduction in elasticity by 49–58%, whereas with cofilin activity, 

cell elasticity increased by 36%.  This indicated that the cofilin activity is an 

important contributor towards the mechanical behaviour change that occurs with 

overexpression of ROCK.  These findings were in agreement with the observed 

actin structures. Blebbistatin was also used on the cells to inhibit the myosin II 

activity that occurs when ROCK is active.  However, as myosin II activity is not 

exclusive to ROCK activation, the decreased elasticity was observed for cells with 

both normal and overexpression of ROCK.   

 

2.2 Introduction 

Pancreatic adenocarcinoma occurs when cells from the exocrine duct begin to 

grow in an uncontrollable manner.  It is known to be one of the most lethal 

malignancies, and due to its aggressive nature, it is most frequently seen at the 

time of clinical diagnosis  (Kaneko et al., 2002).  Therefore there has been urgent 

need for new treatments and diagnostic approaches.    

ROCK signalling has been extensively researched in cancer, particularly in relation 

to cell motility, invasion, metastasis and apoptosis (Itoh et al., 1999; Lochhead et 

al., 2010; Riento and Ridley, 2003; Xu et al., 2012).  These cellular processes are 

controlled by reorganisation of the cytoskeleton and regulation of actomyosin 
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contractility.  ROCKs are downstream signal transducing proteins from Rho 

GTPase (Rath and Olson, 2012).  The pathway is activated by GTP-RhoA, which 

in turn phosphorylates various downstream proteins that include LIM kinase 1/ 2, 

myosin light chain (MLC), and the myosin binding subunit, MYPT1 (one of the 

three subunits that compose MLC phosphatase) (Figure 2.1).   

 

 

Figure 2.1│A schematic diagram of the ROCK signalling pathway once activated.  

 

The ROCK pathway can be divided into two elements that consist of actin 

organisation and stress fibre formation/ cell contraction.  The actin cytoskeleton is 

stabilised through activation of LIM kinases (Morgan-Fisher et al., 2013).  These 

kinases are involved in actin-binding that catalyses the transfer of phosphate 

groups to cofilin. The function of cofilin (actin depolymerisation factor (ADF)/cofilin) 

is to break down actin filaments (Popow-Woźniak et al., 2012).  This activity can 

be reversibly controlled by phosphorylation (addition of phosphate group) and 

dephosphorylation (removal of phosphate group).  With ROCK activation, the LIM 

kinases are activated and in turn cofilin is phosphorylated, thus inhibiting cofilin 

activity.     

The formation of stress fibres involves bundles of actin filaments of alternating 

polarity and myosin II (Riento and Ridley, 2003).  Adding adenosine triphosphate 

(ATP) to separate stress fibres generates contraction.  With ROCK activation, 

MLC is phosphorylated which increases myosin II ATPase activity and in turn 

contracts the bounded active myosin on actin filaments (Connell and Helfman, 

2006).  Increased levels of phosphorylated MLC occur during ROCK activation, 

through inactivation of MLC phosphatase.   
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Melanoma skin cancer was previously studied to understand how actomyosin 

cellular tension from activated ROCK2 activity affected the mechanical property of 

the formed tumour (Samuel et al., 2011).  However, it was unclear how 

keratinocytes that were differentiated and migrated from the epidermis layer had 

changed its cellular mechanics in relation to tissue stiffening.     

The mechanical properties of cells are dependent on two factors: changes in the 

structure of the cytoskeleton, and cytoskeletal tension (Martens and Radmacher, 

2008).  There have been studies to link mechanical properties of cells with 

signalling pathways in which these factors are regulated.  ROCK activation in cells 

has been shown to increase intercellular stiffness (Wilhelm et al., 2014), though 

there is a decrease of cellular compliance of the cytoplasm (Kole et al., 2004).  

The reason for the effect has been associated with cell morphology and adhesion.  

When ROCK was deleted, the cells increased in surface area as they became flat, 

displayed fewer central stress fibres and there was a decrease the number of focal 

adhesion points (Kümper et al., 2016; Yoneda et al., 2005).  This has been 

thought to be connected with both RhoA activity and degree of decoupling 

between RhoA and ROCK activity, regulators of cell spreading.     

Within this chapter, we try to observe the effect that overexpressed ROCK activity 

has on the mechanics of single cells.  This could lead to a better understanding of 

the proteins that may contribute to the change in mechanical properties.  The 

information gained could bring us a step closer in understanding how ROCK 

activity contributes the overall tissue stiffening.       

 

2.3 Materials and Methods  

2.3.1 Materials  

The general regents used throughout the experimental studies were purchased 

from Sigma Aldrich.  The materials used for cell culture were obtained from 

Invitrogen.  The remaining reagents that were not purchased from either company 

will be stated in the text.  
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2.3.2 Cell culture 

The cells used in the experiments describe include extracted primary murine 

keratinocytes and various pancreatic ductal adenocarcinoma (PDAC) cells.  All 

cells were supplied by the Beatson Institute of Cancer Research, Glasgow, UK.   

Extracted primary keratinocytes were from two murine models (Samuel et al., 

2011).  One set of mice expressed the human ROCK2 kinase domain fused to 

mutant 17b-estradiol, an insensitive estrogen receptor and enhanced green 

fluorescent protein, under the control of the K14 promoter (QKR:ER).  The other 

set contained a kinase dead protein version with similar fusion proteins (QKK:ER).  

These cells were only extracted from mouse tail skins and cultured when needed.  

The extraction process involved separation of dermis and epidermis, with the aid 

of 0.1% v/v 80 mg/ml dispase II (Roche) in PBS for 2 hours at room temperature.  

The keratinocytes present in the epidermis layer were extracted from the tissue by 

incubation at 37°C, with 5% CO2, in 0.25% trypsin- ethylenediaminetetraacetic 

acid solution for 10 minutes.  After incubation, the cells and tissue mixture was 

filtered using 40 µm cell strainer (BD Biosciences).  All the cells in the collected 

filtrate were sedimented at 716 x g for 5 minutes, and seeded onto collagen (3 

mg/ml Purecol; Advanced BioMatrix) coated petri dishes with keratinocyte growth 

medium (KGMTM-2 BulletKitTM; Lonza).  These coated dishes were created by 

coating the dish with 0.22% v/v collagen type I solution in PBS for 1 hour at 37°C; 

to assist attachment for the primary cells.   

In our investigations, there were two parental PDAC cells that were extracted from 

two murine models (Morton et al., 2010).  One set of mice expressed accumulating 

p53 mutants (p53 R172H), and the other set harboured a Trp53 null allele (p53 fl).  

These cells had been extracted and immortalised, so were sub-cultured when 

needed.  Further modifications were carried out using various procedures on 

PDAC p53 fl cells.  Ecotropic retroviral infection (Allele Biotechnology) was applied 

to PDAC p53 fl cells to tag them with an enhanced green fluorescent-estrogen 

receptor protein (EGFP:ER), and EGFP-conditionally active ROCK1- and ROCK2-

estrogen receptor fusion proteins (ROCK1:ER and ROCK2:ER).  For continuous 

selection of the expressed cells, an addition of 2.5 μg/ml puromyocin was added to 

the cell’s media, every third subculture.  Amaxa Nucleofector® kit (Lonza) was 

used to modify ROCK1:ER cells, which were tagged with red fluorescent protein 

(mcherry) and cofilin protein (CFL1).  Finally, Lipofectamine® 2000 reagent 



  

27 
 

(Invitrogen) was used to transfect ROCK1:ER cells, and tag them with MLC 

protein and non-phosphorylated MLC protein (MLC AA).  All cells were validated 

by western blotting, to ensure the modification was successful.  These modification 

processes were carried out by Dr. Nicola Rath and Dominika Rudzka at the 

Beatson Institute of Cancer Research, Glasgow, UK, and were done according to 

the manufacturer’s instructions.   

All PDAC cells were maintained in 25 cm2 tissue culture flasks with Dulbecco’s 

modified Eagle medium (DMEM) containing 10% v/v foetal bovine serum, 1% v/v 

antibiotics and 1% v/v L-glutamine.  Once the flasks reached 70% confluence, the 

cells were sub-cultured.  The cells were harvested from the culture flasks by 

washing with phosphate buffered saline (PBS) followed by incubation in 0.25% 

trypsin-ethylenediaminetetraacetic acid solution for 5 minutes, to detach cells from 

the flask surface.  The cells were collected and sedimented by centrifugation at 

318 x g for 4 minutes, before being reseeded into fresh flasks.  

All cells mentioned above were cultured at 37°C, with 5% carbon dioxide (CO2) in 

a humidified incubator.   

 

2.3.2.1 Single cell culture  

For atomic force microscope (AFM) force spectroscopy and immunofluorescence 

microscopy, cells were seeded at a sufficiently low density that they were present 

as single cells in the culture dishes.  For example, the cells were sub-cultured and 

reseeded on 34 mm petri dishes (TPP®) at a concentration of 659 cells/mm2.  

These cells were incubated overnight at 37°C, 5% CO2, so that they fully attached 

to the petri dish.   

 

2.3.2.2 ROCK activation 

The majority of the cells used for the experimental work contained an estrogen 

receptor fusion protein that could activate the ROCK pathway.  For these cells to 

be activated in-vitro, the cells were cultured in its medium that contained 1 μM (Z)-

4-hydroxytamoxifen-ethanol (4HT).  For the activation to be complete, the cells 

were incubated under their culturing conditions for more than 18 hours.  When the 

cells required activation over a period of several days, the 4HT medium was 

changed daily. 
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2.3.3 Atomic force spectroscopy 

The mechanical properties of single cells were performed with an atomic force 

microscope, NanoWizard II (JPK Instruments) combined with an inverted optical 

microscope, Zeiss AxioObserver A10 and a cell heater attachment.  The system 

was placed on top of a vibration isolation unit, Micro 40 (Halcyonics).  The 

complete set-up was in enclosed in an acoustically isolated in-house 

manufactured chamber.  The chamber was created to eliminate any ambient 

noises during system’s operation.    

The force-indentation measurements were performed by using in-house made 

spherical probes comprising silica beads glued onto tipless cantilevers.  To create 

these probes, it was required to collect together, a glass slide half covered with 

4.74 μm silica beads (Bang Laboratories Inc.), epoxy glue (B&Q), and a tipless 

silicon nitride cantilever (arrow TL-1; NanoWorld).   

To fabricate the probed cantilevers, firstly, a small portion of the epoxy glue was 

placed on the glass slide where there were no beads.  The AFM controls were 

then used to cause the tipless cantilever to approach the edge of the puddle of 

glue.  Once the glue surface was reached, the cantilever was moved laterally 

away from the glue, removing any express glue along the way.  The cantilever was 

then lifted off the surface, and positioned over another region of the microscope 

slide so as to locate an isolated bead.  Upon locating an isolated bead, the AFM 

controls were used to cause the cantilever to approach the bead, positioning the 

glue above it.   The glue on the cantilever was kept in contact with the bead for     

~ 30 seconds, before the bead and cantilever was retracted away.  The final step 

was to keep the probed cantilevers overnight at room temperature so that the 

epoxy glue fully cured.   

The cantilevers had a nominal spring constant value of ~ 0.03 N/m.  Unless 

specified differently within the experimental chapters, the probe size and spring 

constants for the cantilevers were as stated above.  Calibration procedures were 

performed before and after every probe addition and experiment; to deduce any 

variations in spring constants that might have occurred as a result of the 

experimentation.  The calibration procedure used was that of Hutter and 

Bechhoefer in which a glass slide is used to obtain the sensitivity and spring 

constant values for each set-up (Hutter and Bechhoefer, 1993).  Within the AFM 

software, the sensitivity value converts the applied voltage into distance value, 
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while the spring constant value converts the distance value to a force value.  

These experimentally determined probe constant values are essential to convert 

the raw voltages and displacements obtained from the AFM system into values 

that can be used in subsequent analysis.     

Once the probe cantilever had been calibrated, the cell sample was mounted onto 

the cell heater attachment, where it was heated at 38.5°C.  The temperature was 

set higher than 37°C to accommodate for the heat to be transferred from the 

attachment to the petri dish.  The cells can only be cultured outside CO2 

environment for 2 hours, which imposes a limit on the number of measurements 

that can be performed.  Therefore to measure cells in a CO2 free environment, the 

pH levels in the media were controlled.  A difference in pH could cause cells to 

move faster and contract at the cytoplasm (high pH) or reduce cell activity and 

eventually stop, causing gelation of the cell (low pH) (Taylor, 1962).  These effects 

could therefore lead to the overall change in a cell’s mechanical behaviour.  Here, 

I used HEPES buffered media to control the pH levels within the media, as HEPES 

is commonly used as a zwitterionic buffer (i.e. one that contains ions that can bear 

both positive and negative charges), with a buffering capacity range of pH 7.2–7.4 

(Good et al., 1966).  Although HEPES has the ability to control the pH level within 

the media, it has been suggested that cells were toxic (cytotoxic) with high 

concentrations of HEPES.  Therefore, to evaluate the minimal concentration to use 

so as to keep the pH of the media within an acceptable range over the course of 

AFM experiments, a range of concentrations were tested at 37°C in CO2 free 

environment for a period of 8 hours (Figure 2.2).   

The results showed that over the 8 hour period, all concentrations increased in pH 

by the same increment.  At the initial time point, 10 mM HEPES displayed the 

highest pH level (pH 7.59), compared to the other concentrations.  Typically cells 

prefer to be in a pH environment between 7.4–7.7 (pH & CO2 levels; ThermoFisher 

Scientific).  Therefore, it was concluded that 25 mM HEPES should be added into 

the media used for AFM cell experiments, as this concentration allowed the media 

to hold its pH level close to the required physiological level for the longest period 

of time.      
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Figure 2.2│ The effect of pH change according to the HEPES concentration in 

DMEM media, over 8 hours.  The highest concentration of HEPES gave the lowest pH 

value for a longer period of time, and vice versa for low concentrations.   

 

Apart from the culture conditions, there were several parameters that needed to be 

considered as part of the experimental set-up.  These included the substrate used 

for cell culture, indenter geometry, loading rate, position of tip-cell contact, depth of 

indentation, and the variability between cells in a population (Chiou et al., 2013; 

Lekka et al., 2012). 

Firstly, cells are known to sense substrate stiffness and modify their mechanical 

properties to mimic them by adjusting their adhesion properties, cytoskeleton and 

overall state (Discher et al., 2005).  Thin surface coatings (i.e. collagen, poly-l-

lysine or fibronectin) have also been shown to be implicated in the mechanical 

behaviour, e.g. as the coatings adhesive properties increases, their elastic 

properties also increase (Lekka et al., 2012; McPhee et al., 2010).  The objective 

of our investigations was to understand the mechanical behaviour of cells 

according to their expression of particular proteins.  Therefore, it was only 

essential for us to be consistent with the substrate used, so comparisons between 

mechanical properties due to cell expression can be made.  Consequently, for the 

majority of cells, culture on non-coated petri dishes was used.    
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For biological samples, it has been shown that spherical indenters can provide a 

wider surface-contact area, compared to using a sharp pyramid or conical indenter 

(Lin et al., 2006).  This means that pressure applied onto the cell would be more 

dispersed, and hence lower when using a spherical probe. Meanwhile, the 

irregularity of the shape of sharp indenters could cause uneven pressures to be 

exerted on the cell surfaces and lead to large variations between the extrapolated 

mechanical properties of different cells (Sokolov, 2007).  The reason for this could 

be due to local strain on the cell that resulted from non-uniform applications of 

pressure.  Therefore, to gain a representative overview of a cell’s mechanical 

properties, spherical indenters were used for all cell measurements.   

Importantly, the size of the indenter in the above measurements was smaller than 

the cell, so that there were no complications in determining the contact area 

(Chen, 2014).  The cells were typically 10–15 μm in size (refer to optical images 

within chapter), thus 4.74 µm silica beads were used within the investigations.   

For AFM force spectroscopy, the loading rate is defined as the speed at which the 

cantilever is moved towards the sample.  This rate has been shown to have an 

influence on the mechanical properties of benign and malignant cells (Lekka et al., 

2012).  When the speeds increased from 0.5 μm/s to 10 μm/s, both type of cells 

responded with an increased stiffness.  However another study concluded that 

mechanical behaviour was not affected by loading rates between 1 and 25 μm/s 

(McPhee et al., 2010).  Although there are mixed reviews on this matter, it was 

shown in that the variability between elasticity values was lower when low loading 

rates were used (0.5, 1.5 and 3 μm/s).  As aforementioned, if the conditions were 

kept constant, the measured elastic moduli should be comparable.  Hence, a 

loading rate of 2.5 μm/s was chosen for all the measurements in this study.       

Another parameter to consider for the experimental set-up was the location on the 

cell that should be used for indentation.  The elastic modulus of live cells have 

been shown to be significantly different for different regions of a cell (Kuznetsova 

et al., 2007).  The review showed that cells were not definitively softer at the 

nucleus compared to the cell periphery or vice versa, the variation of elasticity was 

shown to be dependent on the presence of stress fibres.  It has been suggested 

that measurements on the cell nuclei is advantageous as the nucleus is integrated 

with in cytoskeleton, so upon deformation it can remodel itself to maintain the 

cellular physiological environment (Liu et al., 2014).  Therefore, to achieve narrow 
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distributions in the measured elasticity for a particular cell line and for the 

consistency of using a well-defined point on the cell surface, the cells were 

measured at the apex of the cell nucleus.    

The depth of indentation on cells has been shown to have an influence on their 

stiffness due to the cell’s structural heterogeneity (McPhee et al., 2010).  It was 

noted that an indentation depth of <100 nm when using fibroblast cells resulted in 

a large variation in the elastic modulus; this could be associated with network 

differences in the actin filaments.  Meanwhile, the elasticity values for indentation 

depths of 300–600 nm were consistent.  To determine the appropriate indentation 

depth to apply, we considered the assumptions applied to the Hertz model.  For 

the model to work, small indentations should be applied to the material, <10% of 

sample’s thickness (Lekka et al., 2012).  We measured the height of the cells 

(PDAC p53 fl cells) using the AFM, which gave an average of 6.9 ± 1.9 μm.  

Therefore an indentation depth of 500 nm was chosen as a standard, used for all 

the cell experiments. 

Finally, the variability between cells within the same population is a parameter to 

acknowledge in that it could result in large variations in the measured elastic 

values (Lekka et al., 2012).  Within the same population, cells can vary according 

to their age, stage point in the mitosis cycle, or heterogeneity of cell surfaces 

(Sokolov, 2007).  Therefore, to achieve robust statistics, both measurements on a 

large sample size were taken (n = 80 cells), and small number of indentations (5 

indentations) on individual cells to observe their reproducibility were performed.    

Once the force-indentation measurements have been obtained on the cells, phase 

contrast images were carried out using 20x LD, 0.4 NA, Plan-Neofluar objective 

(Zeiss).  

  

2.3.3.1 Data analysis 

The data analysis was carried out using an in-house algorithm (written in R), to 

eliminate any human error created by allocating the contact point by oneself.  The 

procedure was adapted from Scott Crick and Frank Yin’s method (Crick and Yin, 

2007), to identify the contact point before applying a model to the data (Figure 

2.3).  The algorithm was written to firstly identify the “noise” present within the 

initial data (baseline).  A window between 12.5–37.5% of the initial data was taken 
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to calculate the mean and standard deviation (SD).  The data was normalised, by 

subtracting each data point against the calculated mean.  To identify the contact 

point, each data value was compared against the sum of the calculated mean and 

SD.  When the data begins to go above this value, and increases for a certain 

number of consecutive points, the first point in this rising trend was taken as the 

contact point.  However, to be certain this point provided the best model fit to the 

data, in fitting models, a 10% window was used.  This 10% window was defined as 

10% of the indentation depth used for the fitting model, i.e. 50 nm.  The force-

indentation data was then fitted to the Hertzian model, as this model describes a 

situation when a rigid spherical indenter was pressed on an incompressible 

linearly elastic half-space material. Formulaically this can be written as  

𝐹 =
4

3

𝐸

(1−𝜐2)
√𝑅𝛿3                               

where 𝐹 is the force applied, 𝐸 is the Young’s modulus (elastic modulus), 𝑣 is the 

Poisson ratio (assuming a cell is an incompressible material, 𝜐 = 0.5), 𝑅 is the 

radius of the indenter, and 𝛿 is the amount of indentation applied.   

 

 

Figure 2.3│ Analysed force-indentation result off cell measurement, using our in-

house made algorithm.  
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The procedure continued to apply fittings to the data that was within the 10% 

window.  The data value that achieved the highest coefficient of determination (r2) 

value was used to calculate the elastic modulus.  The r2 value from each 

measurement had to be above 0.95, for it to be used.   

   

2.3.4 Actin staining  

Immunofluorescence labelling was applied to the modified PDAC cells with and 

without the overexpression of ROCK.  The cells were cultured on glass coverslips 

overnight in a 5% CO2 incubator at 37oC, before stained for F-actin.  Briefly, the 

cells were washed with PBS and fixed with 3.8% formaldehyde in PBS, in 2% 

sucrose for 10 minutes at room temperature.  The cells were permeabilised with 

0.1% triton X-100 in PBS for 10 minutes at room temperature.  After 

permeabilisation, the cells were washed with PBS and blocked with 1% bovine 

serum albumin (BSA) in PBS for 30 minutes.  The actin filaments were stained 

using phalloidin, BSA in PBS (1:500; Alexa Fluor® 488, Life Technologies) for 1 

hour at room temperature.  The stained cells were washed in 0.5% Tween20 in 

PBS and finally mounted onto a coverslip using Vectashield mounting medium 

containing DAPI staining (Vector Laboratories Inc.).   

Differential interference contrast microscopy (DIC) and fluorescence imaging was 

carried out using a 40x, 0.75 NA objective on a Zeiss AxioObserver A10 

microscope coupled to a DU885 iXon CCD.  The set-up was operated using 

AxioVision software (Zeiss).  For fluorescence imaging, the FITC filter (XF100-2; 

Omega Optical) was used to excite and detect phalloidin, and the DAPI filter 

(XF06; Omega Optical) was used to excite and detect DAPI.  Each sample was 

exposed to the mercury lamp for different times dependent on the stain: phalloidin 

stains were exposed for 2 seconds, and DAPI stains were exposed for 0.3 

seconds. 

 

2.3.5 Statistics  

The data was presented and statistically analysed using Prism 6 (GraphPad 

Software).  The majority of the datasets in this chapter used two-way ANOVA 

statistical test that accepts or rejects null hypotheses.  This method was chosen 

since within the various data sets, there were always two factors to compare e.g. 
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cells and treatment.  The validity of using this method requires that the sample 

populations are independent, normally distributed, and their variances are equal – 

this is a reasonable supposition for the cells studied here.  The null hypotheses for 

our datasets would be that there was no difference in means of cells, no difference 

in means of treatments and no difference in means of cells and treatments.  If the 

test came back to show that the null hypothesis was rejected, then this means that 

at least the two populations were different from each other, using the 95% 

confidence value.  To understand which populations were different from which, a 

post hoc test (Sidak test) was executed.  The Sidak test is a conservative method, 

which means that the probability of falsely rejecting the null hypothesis is never 

greater than the nominal significance level (𝛼 = 0.05).  The test determines the 

significance by an alpha level that can be written as   

𝛼𝑠 = 1 − (1 − 𝛼)
1

𝑛⁄  

where 𝑛 is the number of independent (comparison) tests conducted, and 𝛼 is the 

nominal significance level.  In this case, the p-value must be smaller than 𝛼𝑠 for it 

to be considered as significant.  The statistical significance was cut off at p < 0.05, 

whereby the p-value is the probability of the result given that the null hypothesis 

was rejected.   

The remaining datasets whereby only one factor was compared, e.g. 

overexpression of cofilin, a paired two-tail student t-test was used.  This was to 

compare the mean of two populations with unequal variance (standard deviation), 

to accept or reject the null hypothesis.  The null hypothesis being that the two 

populations were equal to each other.   

 

2.4 Results and Discussion 

2.4.1 Effect of overexpression of ROCK on elastic modulus  

Previous work has shown that tumour formation occurs in the QKR:ER mouse 

model when ROCK is activated, whereas the QKK:ER mouse model remained 

healthy  (Samuel et al., 2011).  In that work, the overall tissue stiffness was shown 

to increase when going from a kinase dead to a kinase active model.  As it was 

unclear how individual cells changed during tissue stiffening, we investigated the 

effects of ROCK activation on these cells using AFM force spectroscopy, to probe 
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the elastic properties before and after estrogen treatment.   This treatment enables 

ROCK activation within the cells.  A sample size of 80 cells was used and the 

extracted elastic moduli (E) were generated from the force-indentation approach 

curves, using the Hertz model (Section 2.3.3).    

Prior to indentation measurements, the extracted keratinocytes were studied 

visually to see if there were any observations that should be considered when 

interpreting the AFM force spectroscopy measurements (Figure 2.4).   

For example, there had been evidence to suggest that ROCK activation causes an 

increase in actomyosin contractility that could result in either a reduction in cell 

size and/or them becoming rounded (Kole et al., 2004; Lochhead et al., 2010).  

However, the observations here showed that the morphology of the cells extracted 

from the tissue was similar, before and after estrogen treatment.  The measured 

surface area of individual cells confirms with the observations that showed 

untreated QKK:ER and QKR:ER cells were 178.58 ± 57.96 μm2 and 221.75 ± 

85.21 μm2, respectively (n = 80 cells), while estrogen treated QKK:ER and 

QKR:ER cells were 182.11 ± 65.49 μm2 and 224.78 ± 74.21 μm2, respectively (n = 

80 cells). 

 

 

Figure 2.4│Images of QKR:ER and QKK:ER cells in the absence and presence of 

estrogen (4HT) treatment.  All scale bars are 30 μm.   

 

The study of the elasticity in-vitro showed that the elastic modulus of ROCK 

activated cells (QKR:ER +4HT) was significantly lower compared to the counter 
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model cells (QKK:ER +4HT) and the untreated cells (QKR:ER -4HT) (p < 0.0001; 

Figure 2.5).  While there was a difference in cell elasticity due to ROCK activation, 

the mechanical response remained unchanged within 2 days of treatment.  This 

meant that the cells were unaffected by either the period of ROCK activation or of 

the increased cell density.   

The average elastic modulus was 2.86 ± 0.93 kPa for QKR:ER -4HT, 1.47 ±        

0.33 kPa for QKR:ER +4HT (1 day), and 3.21 ± 0.52 kPa for QKK:ER +4HT.  This 

gives an average modulus reduction of 49% between the treated and untreated 

cells and 54% reduction between kinase active and kinase dead cells.  Although, 

these observations were in close agreement with some studies where cancerous 

cells were more compliant than normal cells (Goldmann et al., 1998; Lekka et al., 

1999, 2012; Sokolov, 2007), it was contradictory to other studies on ROCK 

activation.   

 

Figure 2.5│Elasticity change of QKR:ER relative to QKK:ER following 4HT treatment 

(n = 80 cells), expressed as mean ± SD.  QKR:ER +4HT became softer in reference to 

the QKR:ER-4HT and QKK:ER+4HT (p < 0.0001).  

 

In the literature, it has been shown that ROCK activation resulted in an increase in 

the overall elastic mechanical property of cells, however there was a decrease in 

the viscoelastic property of the cell cytoplasm (Kole et al., 2004; Wilhelm et al., 

2014).  These effects can be explained by the downstream responses from 
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activated ROCK.  ROCK activation promotes actin microfilament stabilisation, 

increases actin microfilament bundling and myosin-driven contraction (Rath and 

Olson, 2012).  Due to the increased levels of contractile actin bundles, the overall 

stiffness increases and there has been evidence of an increase in actin cross-

linker concentration, bundling length and diameter of the bundles: all these these 

factors directly increase the bending stiffness of the actin bundles (Bathe et al., 

2008).  However, in our study, ROCK activation led to a decrease in the elastic 

properties of cells.  

The primary keratinocytes have exhibited softer characteristics when ROCK was 

activated. This could be associated with nuclei mechanical response to ROCK 

activation rather than the whole cell itself, as measurements were carried out on 

the apex of the nucleus.  To understand whether this cell behaviour was solely 

shown in this model or that we have revealed new findings in the field of Rho 

GTPase, we carried out the same investigation on another cell line, PDAC p53 fl.   

PDAC p53 fl cells were tagged with EGFP:ER, ROCK1:ER or ROCK2:ER.  All 

cells exhibited normal levels of ROCK expression, although with estrogen 

treatment, ROCK1:ER and ROCK2:ER would overexpress ROCK1 and ROCK2 

respectively.  Again, the cell morphologies were observed, prior to the mechanical 

studies (Figure 2.6). 

 

 

Figure 2.6│Images of modified PDAC p53 fl cells in the absence and presence of 

estrogen (4HT) treatment.  All scale bars are 30 μm.   
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For all three modified cells, EGFP:ER, ROCK1:ER and ROCK2:ER, there were no 

differences in cell morphology before and after estrogen treatment.  This was 

clarified with surface area measurements of cells from the images obtained.  The 

surface area of untreated EGFP:ER, ROCK1:ER and ROCK2:ER cells were 

322.71 ± 94.62 μm2, 363.65 ± 87.39 μm2 and 329.50 ± 87.62 μm2, respectively    

(n = 80 cells).  Meanwhile, estrogen treated EGFP:ER, ROCK1:ER and 

ROCK2:ER cells were 363.22 ± 81.94 μm2, 340.53 ± 77.35 μm2 and 342.44 ± 

83.87 μm2, respectively (n = 80 cells).  These cells were similar to the primary 

keratinocytes both in terms of semi-rounded structure, and that they grow in 

colonies.  As these cells were similar in morphology and grow in the same way to 

primary cells, our hypothesis was that these cells would exhibit a similar effect in 

mechanical response following an overexpression of ROCK.    

The findings collected from AFM force microscopy showed that both ROCK1:ER 

and ROCK2:ER activated cells were significantly softer relative to the control 

(EGFP:ER) and the untreated cells (p < 0.0001; Figure 2.7).  The ROCK1:ER cells 

displayed a reduction of 57% in Young’s modulus, from 2.22 ± 0.72 kPa for the 

untreated cells to 0.95 ± 0.17 kPa for the treated cells.   

 

Figure 2.7│Elasticity change of ROCK1:ER and ROCK2:ER relative to EGFP:ER 

following 4HT treatment (n = 80 cells), expressed as mean ± SD.  Both ROCK1:ER 

and ROCK2:ER cells were softer in reference to the EGFP:ER cells (p<0.0001). 
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Meanwhile, ROCK2:ER cells had a reduction of 58%, from 2.09 ± 0.71 kPa for the 

untreated cells to 0.88 ± 0.16 kPa for the treated cells.  Moreover, the average 

elasticity between the untreated samples was significantly different to each other 

(p < 0.0001).  Although it cannot be proven, the difference in elasticity could be 

associated with the number of proteins added to the cell, as there was no 

significant difference shown between the extracted primary cells.   

The overview of the two experiments have shown that overexpression of ROCK in 

primary keratinocytes and modified PDAC cells, led to a decrease in elastic 

response.  Although again this is contradictory to previous studies, the elasticity 

difference seen in these cells could be connected with the cells having grown 

colonies or the unchanged cell morphology.   

In the literature, measurements were carried out on isolated cells that 

overexpressed in ROCK, and here our single cell measurements involved cells in 

colonies.  This could mean that there was a cell-cell contribution to the measured 

mechanical response (Kole et al., 2004; Wilhelm et al., 2014).  Furthermore, as 

discussed previously overexpression of ROCK has shown to alter cell morphology 

from a stretched to rounded cell.  Although our cells were rounded before 

overexpression and the morphology did not change, the internal organisation 

within the cell may be different for overexpressed ROCK.   

To address how cells grown in groups may affect their elasticity, we measured the 

elasticity of untreated ROCK1:ER cells in two conditions; isolated single cell 

(separate) and single cell in a colony (cluster) (Figure 2.8A and B).  The culturing 

conditions were not altered to select for isolated or in colony cells, instead, over 

the same culture area, 17 randomly chosen cells from either condition were 

selected and probed to determine their elasticity.     

Before the extraction of the elastic modulus from the force-indentation approach 

curve, we studied the difference between the curves.  A typical force-indentation 

approach curve generated by a cell in a colony was found to be similar to a curve 

that was measured when a cell was isolated (Figure 2.8C).  This meant that the 

extrapolated elastic modulus for the two types of cells should also be similar.  The 

average elasticity value for cells measured in a cluster was 2.10 ± 0.78 kPa, while 

for isolated cells it was 2.20 ± 0.84 kPa (Figure 2.8D).  Although there was a large 

distribution of values for the cells, there was no significant difference between the 

two populations of cells.   
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Figure 2.8│Comparison between untreated ROCK1:ER cells grown independently or 

in clusters.  Cells in (A) clusters or are (B) isolated.  All scale bars are 30 μm.  (C) 

Representative force-indentation approach curves of cells in condition (A) and (B).  (D) 

Box and whiskers plot of elasticity values measured from clustered and isolated cells. 

n=17 (p= ns; non-significant).  

 

These observations were also found by other peers, which indicated that individual 

cells that were measured from the same position either isolated or grouped the 

cells would have similar mechanical properties (Stroka and Aranda-Espinoza, 

2010).  However, the elasticity changed when single cells were measured within a 

monolayer of cells.  According to these findings, unless the colonies from treated 

and untreated cells were extremely different (colony grown in size to form 

monolayer), the mechanical response would be similar.  Although there were no 

differences between isolated and group cells within the same population, this does 

not indicate whether ROCK activation of cells in colonies would have a 

downstream effect on the mechanical properties.   

As the external cell morphologies for estrogen treated and untreated cells were the 

same, we investigated the relationship between the intracellular structures of these 

cells (Figure 2.9).  This was performed by using immunofluorescence staining on 

EGFP:ER, ROCK1:ER and ROCK2:ER cells with and without treatment, to stain 

for F-actin and the nuclei within the cells.   
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Figure 2.9│Comparison between the actin filaments of modified PDAC cells in the 

presence and absence of 4HT treatment.  The fluorescent cells showing nucleus (blue) 

and F-actin (green).  All scale bars are 50 μm.  Red arrows indicate dense actin bundles. 

Overexpression of ROCK led to fewer bundles of stress fibres, and none at the centre of 

the cell compared to the control.    
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According to the images, a high density of actin bundles were present locally 

around the nucleus, in both EGFP:ER and untreated cells.  Meanwhile, when 

ROCK1:ER and ROCK2:ER cells were overexpressed, the actin bundles were 

located mainly around the periphery of the cells.  To understand the association 

between cell’s mechanical behaviour and its cytoskeleton when ROCK was 

overexpressed, we need to understand the function of ROCK. 

ROCK activation can stabilise actin cytoskeleton by the activation of LIM kinase 1/ 

2, the formation of stress fibres from increased actin bundling and cellular 

contractility by activation of MLC (Morgan-Fisher et al., 2013).  It was understood 

that cortical myosin II-dependent contractility occurred with ROCK activity.  This 

association with the cortical region could justify for the presence of actin filaments 

at the periphery of the cell, when cells were overexpressed with ROCK activity. 

To explain the difference in mechanical behaviour, we have to understand how 

cells in colonies act during contraction.  It has been suggested that adherent and 

contractile colonies of cells would cause inwards stresses (Mertz et al., 2012).  

These stresses could lead to cell packing within a colony and hence the 

arrangement of stress fibres at the periphery of the cell (Stroka and Aranda-

Espinoza, 2010).  This downstream effect would result in softer cells, similar to the 

findings we gathered for overexpressed ROCK.   

 

2.4.2 Cell activation in relation to ROCK 

As pancreatic cancer is one of the major causes of cancer death and there has not 

been much advancement in the field (Baker et al., 2016), from here onwards the 

focus of this thesis is on the understanding the effects of PDAC cells’ behaviour 

with overexpression of ROCK.   

There are several paths in the ROCK pathway that could lead to an overall 

mechanical change for a cell (Figure 2.1).  Interference on the main paths was 

conducted to further investigate how the cell mechanics of each element 

contributes to the overexpression of ROCK.  By using the PDAC cells that were 

tagged with EGFP:ER and ROCK1:ER, these paths were investigated using some 

of the downstream proteins in the ROCK pathway.  These proteins include cofilin, 

LIM kinase and MLC (details regarding these protein are given in Section 2.2).   
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Firstly, to investigate the effect of cofilin activation on the cell mechanics, we 

measured the elastic properties of ROCK1:ER cells that were tagged with cofilin 

using AFM force spectroscopy.  ROCK1 expression was of interest, as it has been 

shown to excessively express itself in pancreatic cancer, as opposed to ROCK2 

(Kaneko et al., 2002).  The ROCK1:ER cells were tagged with either red 

fluorescent protein (mcherry; control) or mcherry with cofilin type 1 (CFL1), as 

stated in Section 2.3.2.  Again, the morphology of these cells was similar to each 

other (surface area of ROCK1:ER mcherry was 338.70 ± 113.22 μm2 and 

ROCK1:ER CFL1 was 393.37 ± 181.53 μm2; n = 80 cells),  and to their parental 

cells (Figure 2.6 and Figure 2.10).   

 

 

Figure 2.10│Average elasticity measurements of PDAC p53 fl ROCK1:ER: mcherry; 

control, and cofilin cells (n = 80 cells), expressed as mean ± SD.  All scale bars are 30 

μm.  Cofilin activated cells presented to be significantly stiffer compared to the control (p < 

0.0001). 

   

CFL1 is a protein that can be widely distributed within a cell, which can 

depolymerise filamentous actin and inhibit the polymerisation of globular actin 

(actin monomer).  The aforementioned ROCK activation inactivates ADF/cofilin 

activity and hence stabilises the actin cytoskeleton.  Therefore activation of ADF/ 

cofilin should reorganise the actin cytoskeleton (Popow-Woźniak et al., 2012).  For 

these cells, no external treatment was needed as an active CFL1 plasmid was 
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inserted into one set of ROCK1:ER cells, whilst the other contained only the 

fluorescent protein. 

The measured elastic modulus for CFL1 activated cells displayed stiffer 

characteristics compared to the control (p < 0.0001; Figure 2.10).  For CFL1 

activated cells, the average elasticity increased by 51%, from 7.65 ± 2.19 kPa for 

the activated cells to 3.77 ± 0.84 kPa for the control cells.  These findings were in 

good agreement with cofilin activated breast cancer cells, which also showed an 

increase in cell elasticity (Cameron et al., 2015).  Together, through measuring the 

mechanical response from overexpression of ROCK1 (reduction in elasticity of 

57%), and cofilin activation, we have shown that the inactivated cofilin activity in 

ROCK may be the major contributor to the overall cell behaviour for 

overexpressed ROCK1:ER cells.  However, it is unclear to what degree actin 

contraction contributes to the overall cell behaviour too.  

Prior to understanding how actin contraction contributes to overexpressed ROCK 

cells, we observed the effect of elasticity on overexpressed ROCK cells when LIM 

kinases were inhibited.  This investigation could confirm the observations on cofilin 

activated cells and give the added information about whether cells fully returned to 

their original state.  Using EGFP:ER and ROCK1:ER cells, these cells were 

estrogen treated to overexpress ROCK1, and later inhibited with 12 μM of BMS-5 

(LIM kinase inhibitor), which was added to the estrogen media.  This inhibitor 

inhibits both LIM kinase 1 and 2.     

As seen previously, the overexpressed ROCK1:ER cells exhibited a reduced 

elastic behaviour compared to control and untreated cells (Figure 2.11).  Following 

LIM kinase inhibition, it was shown that the elastic modulus increased by 36%, 

from 0.98 ± 0.12 kPa for overexpressed ROCK1:ER cells to 1.54 ± 0.31 kPa for 

overexpressed ROCK1:ER + BMS-5 cells.   

The inhibition of LIM kinases may return the elastic properties of ROCK1:ER cells 

back to the values they had when untreated (E = 1.63 ± 0.31 kPa).  However, 

although the ROCK1:ER cells increased in elasticity with LIM kinase inhibitor, 

there were significant differences between the two populations of cells (estrogen + 

BMS-5 treated and untreated).  This information, in turn indicates the presence of 

another factor that could contribute to the overall mechanical response of 

overexpressed ROCK1 activity (p < 0.0001).      
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Figure 2.11│Average elasticity measurements of PDAC p53 fl+ ROCK1:ER relative 

to GFP:ER following 4HT and BMS-5 treatment (n = 80 cells), expressed as mean ± 

SD.  Although activated ROCK1:ER cells were softer compared to EGFP:ER (p < 0.0001), 

the cells returned to its original stiffness with LIM kinase inhibitor. 

 

To address the effect of actin contraction on the elastic response of the cell, we 

measured the elasticity of overexpressed ROCK1:ER cells that were tagged with 

MLC and MLC AA (Figure 2.12).   

The cells were transfected according to the method stated in Section 2.3.2.  The 

method of transfection was transient, which meant that the modification was not 

stable and the tagged proteins may not have been present when measurements 

were taken.  Therefore, as an added precaution we applied the normal estrogen 

treatment to one set of the cells, and to another we applied an ethanol treatment 

(1 μM).  The reason for ethanol treatment was that the estrogen was diluted in 

ethanol before being placed in the media; this should provide a good control to 

indicate if the transfection had worked.  

From the untreated cells, the average elasticity increased by 61% and 47%, for 

overexpressed ROCK1:ER + MLC AA and overexpressed ROCK1:ER + MLC 

cells, as respectively (p < 0.0001).  In comparison to the ethanol treated cells, the 

overexpressed ROCK1:ER + MLC cells were not significantly different from each 
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other;  5.18 ± 2.89 kPa for estrogen treated cells and 4.80 ± 1.38 kPa for the 

ethanol treated cells.  In addition, there was no significant difference between the 

two ethanol treated sets of cells; as stated above for overexpressed ROCK1:ER + 

MLC + ethanol the modulus was 4.80 ± 1.38 kPa and it was found to be 4.54 ± 

1.94 kPa for overexpressed ROCK1:ER + MLC AA + ethanol.         

 

Figure 2.12│Average elasticity measurements of PDAC p53 fl+ ROCK1:ER MLC and  

counterpart MLC AA cells following 4HT or ethanol treatment (n = 80 cells), 

expressed as mean ± SD.  MLC on overexpressed ROCK1 caused an increase in 

stiffness though similar effect was seen in ethanol and MLC AA cells (p < 0.0001). 

 

These results suggested that the cells had lost the tagged proteins within the 

timescale over which the measurements were performed.  The reason for this 

conclusion was that cells that had been estrogen treated (overexpressed in 

ROCK1) were found to be similar to the ethanol treated cells (normal levels of 

ROCK).  To support such a statement, we carried out fluorescence imaging on 

these cells to identify whether the tagged fluorescent protein (mcherry) was still 

present.  Fluorescence microscopy was performed with a Cy5 filter (XF102-2; 

Omega Optical) and each set of modified cells (ROCK1:ER + MLC and + MLC AA) 

were exposed for 0.02 seconds (Figure 2.13). 
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From the images, it was found that there was no mcherry expression in the 

ROCK1:ER + MLC AA cells and the same was true for majority of the ROCK1:ER 

MLC cells.  Based on these observations along with the outcome of the elastic 

data, there was reasonable doubt that the measured elasticity was a good 

representation of the effects of actin contraction, due to the loss of the proteins.  

 

 

Figure 2.13│Fluorescent image of PDAC p53 fl+ mcherry MLC and MLC AA cells 

showing the amount of expressed mcherry.  Scale bar showing 100 μm.  The red 

arrows indicating the mcherry expressed.    

 

Thus another approach was taken to investigate the effects of actin contraction. 

This involved recognising the effect on actin contraction when a small molecule 

inhibits myosin II activity, known as blebbistatin, is included in the culture media.  

In this investigation, the elastic responses of EGFP:ER and ROCK1:ER cells with 

and without blebbistatin treatment were compared (Figure 2.14).    

Firstly, it was observed that the morphologies of EGFP:ER and ROCK1:ER cells 

treated with media containing both estrogen (1 μM) and blebbistatin (5 μM) were 

different compared to those where only estrogen was added to the media (Figure 

2.6 and Figure 2.14).  The effect of blebbistatin caused both cells to collapse in 

structure, which would be due to the loss of cytoskeletal tension.  Blebbistatin 

targets all myosin II activity, which is regulated by two main signalling pathways; 

ROCK and MLCK (Martens and Radmacher, 2008).  As the inhibitor is not 

specifically targeted to ROCK activated myosin, this in turn clarifies why 

blebbistatin affected both types of cell as opposed to only those with 

overexpressed ROCK1 activity.  
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Both EGFP:ER and ROCK1:ER cells exhibited softer elastic properties when 

treated with blebbistatin.  An average reduction in elastic modulus was observed 

of 35% and 34% for EGFP:ER and ROCK1:ER cells, respectively.  It was also 

found that there was no significant difference between the two cell lines.  

Together, observations of the cells’ morphology and elastic behaviour have shown 

that in both types of cells actin contraction is inhibited in the same way.   

 

 

Figure 2.14│The comparison between PDAC p53 fl+ ROCK1:ER relative to EGFP:ER 

cells in the presence of blebbistatin treatment.  All scale bars are 30 μm.  The graph 

was expressed as mean ± SD from 80 cells.  Both EGFP:ER and ROCK1:ER cells 

exhibited decrease in elasticity with blebbistatin treatment (p < 0.0001). 

 

Here, we have revealed that ADF/cofilin activity within the cells largely contributes 

towards the overall mechanical response for overexpressed ROCK1 activity.  This 

is in agreement Kole et al., which showed that entangled actin networks and 
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bundles dominated intracellular stiffening, as oppose to actomyosin contractility 

and the formation of focal adhesions (Kole et al., 2004).  Although we were unable 

to see the effect of ROCK activated actin contraction, it was observed that 

inhibiting all the myosin II within the cell did reduce cellular stiffness.   

 

2.5 Conclusions 

We have investigated the effect of overexpression of ROCK activity on mechanical 

properties of cells in colonies by AFM force spectroscopy.  ROCK activation in 

cells was shown to provide stable actin cytoskeleton, and generate actomyosin 

contractions.  The results showed that overexpression of ROCK activity led to 

softening of the cells.  Furthermore, it changed the actin arrangement from dense 

actin bundles around the nucleus to actin bundles mainly situated at the periphery 

of the cell.  By combining the elastic behaviour to the observed actin structures, 

the cells’ behaviour is possibly connected to the inward stresses generated by 

actomyosin contraction, exerted on cells in colonies.  It was further noticed that 

ADF/cofilin activity contributes to majority of the cell response in overexpressed 

ROCK activity.  As we have shown that PDAC cells do not follow the conventional 

pattern, it remains unclear how the overexpressed ROCK activity completely 

influences the cell mechanics, in relation to cell invasion.  Hence, future 

investigations should focus on understanding how other parts of the cells, ROCK 

activated myosin and substrate influence could also affect the overall mechanical 

behaviour that occurs with overexpression of ROCK activity.   
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Chapter 3  Cell Viscoelasticity  

 

3.1 Abstract 

The study of cell mechanics using atomic force microscope (AFM) has been 

evolving for decades, from collecting simple cell stiffness values to obtaining 

complex viscoelastic properties. Although there have been advances in the field of 

cell mechanics, the existing methods for viscoelastic measurements contain 

limitations and cannot be applied over a wide range of frequencies. To address 

this situation, we developed a novel methodology, namely, Fourier transform-AFM-

microrheology (FT-AFM-M).  This method generates the viscoelastic properties of 

cells across a significantly wider frequency range than can be obtained from single 

experiments using other techniques.  Initially, the FT-AFM-M method was 

validated using traditional rheometer measurements on various complex materials.  

We then went on to use this method to uncover subtle mechanical behaviour 

changes within a variety of cancer cells, over more than five decades of frequency 

(0.005–2400 Hz).  In this chapter, we have used pancreatic ductal 

adenocarcinoma cells, to investigate the change in viscoelastic properties with 

morphology, deletion of the TP53 gene and the overexpression of Rho kinase, all 

of which have a relation to cell invasiveness.  The results showed that stretched 

cells exhibited ~44% increase in G’ (elasticity) and 25–68% increase in G’’ 

(viscosity) compared to the rounded cells on patterned surfaces, over the 

accessible frequency spectrum.  These observations were seen in both in mutant 

p53 (stretched) and deleted p53 cells (rounded), where their morphologies 

changed in a similar manner.  In the absence of this morphology difference, 

overexpression of ROCK led to a reduction in the elastic behaviour by ~25%, while 

the viscous properties remained constant.  Overall, we have shown that cells 

generally exhibit a soft glassy behaviour; hence the elastic characteristic is 

dominant within a cell.  The invasive cells have shown to transition from soft 

glassy behaviour to viscoelastic behaviour earlier than non-invasive cells.  This 

transition means that cells become more fluid-like, as the viscous characteristics 

become dominant within the cell.  However, to fully understand the mechanical 

response of cancer cells in their physiological conditions, further investigations 
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under other conditions will have to be performed.  However, this new procedure 

will aid in providing the best overview of information regarding a cell’s viscoelastic 

behaviour.  

 

3.2 Introduction 

Living cells are known to be complex materials, behaving both as an elastic solid 

and as a viscous fluid.  This means that cells do not fully fit within classical models 

that account for either elasticity or viscosity; this is because the main assumption 

of these models is that the materials are homogeneous, and this clearly does not 

apply to biological cells as these are dynamic.  Furthermore, the presence of 

hysteresis (the phenomenon that the system’s prior history influences the current 

and future internal states) between loading and unloading indentation curves 

indicates that the mechanical properties of cells are complex.   

Cells are a combination of a high water content fluid with a structural biopolymer 

matrix.  The majority of the fluid is made up of cytosol. This fluid coexists with solid 

phases that are composed of proteins, DNA, RNA and cytoskeleton filaments as 

well as organelles. The collection of solid and liquid phases within the region 

between the nucleus and the plasma membrane is known as the cytoplasm. The 

viscosity of the cytoplasm controls the shape, transport and movement of 

macromolecules within the cell. The cell’s overall elasticity can govern the 

movement of different elements on different timescales. For instance, it controls 

the response of the cytoplasm to external stresses within seconds; the organelles 

and cytoskeleton elements move over a period of a few minutes, and the 

contractile mechanical organisation can occur on even longer timescales (Bhat et 

al., 2012).   

To fully understand the mechanical response of cells and its complexity, the 

viscoelastic properties (rheology) has been studied (Zhu et al., 2000).  This 

property corresponds to both storage (elastic portion; G’) and loss (viscous 

portion; G’’) processes that occur during deformation. For a solid, the elastic 

characteristics can be defined as the ratio of stress and strain, however for a 

viscous fluid, the deformation under external stresses changes with time.  Hence, 

fluid viscosity is the ratio of stress to strain rate (change of strain over time).  In a 

complex material, G’ is the ability of a material to store energy and release it after 

deformation (in a time dependant manner), while G’’ is the energy dissipated due 
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to internal friction during deformation (again, this dissipation may occur with 

different time constants, depending on the bodies and processes involved) 

(Étienne and Duperray, 2011; Meyers and Chawla, 1999). 

The main techniques that are routinely used to measure the cell’s viscoelasticity 

are micropipette aspiration, magnetic twisting cytometry, optical tweezers, AFM 

and particle tracking microrheology (full details reviewed in Section 1.4).  Among 

these techniques, AFM is the method with the highest spatial resolution. Typically, 

it can impose forces that are in the range appropriate for studying eukaryotic cells 

(piconewton to micronewton).  It also has the ability to examine live cells under 

physiological conditions.  The current approaches employed to measure time-

dependent mechanical properties with AFM include creep tests, stress relaxation 

tests, acoustic methods and multifrequency AFM (Chyasnavichyus et al., 2015).   

In the time domain, measurements can be made using creep or stress relaxation 

tests.  For creep tests, the AFM cantilever probe is indented into the sample 

producing a cantilever deflection (load).  The deflection is kept constant by a 

closed feedback loop, which only moves the cantilever base whilst the tip moves 

freely, as the sample surface relaxes. In stress relaxation tests, the cantilever is 

indented into the sample and maintained at a constant deformation, while the 

deflection force is monitored. For a complex material, creep compliance is when 

the material experiences an increase in strain under constant stress.  Here, stress 

relaxation occurs when stress decreases even though there is a constant strain 

applied (Desprat et al., 2005; Moreno-Flores et al., 2010).  Both creep and stress 

relaxation experiments have been used to measure the viscoelastic properties of 

live bacteria (Vadillo-Rodriguez et al., 2008) and eukaryotic cells (Desprat et al., 

2005; Hiratsuka et al., 2009; Moreno-Flores et al., 2010; Wu et al., 1998), under 

physiological conditions.   

In the frequency domain, measurements can be made by observing small 

amplitude sinusoidal oscillations of the cantilever that is in contact with the sample, 

at various frequencies.  This can be accomplished using several instrumental 

modes that can be applied to the AFM; these include force modulation mode 

(FMM), contact resonance force mode (CRFM) and a multifrequency mode.  In 

FMM experiments, in addition to the conventional AFM setup a sinusoidal signal is 

added to either the tip or the sample’s piezo’s, whilst the z-feedback loop 

maintains a constant cantilever deflection.  The amplitude and phase components 
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of the measured AC signal are used to study the elastic properties of the surface. 

(Radmacher et al., 1993).  In contrast, CRFM uses resonance frequencies (where 

the forced motion is coherent with an oscillatory frequency) and mechanical quality 

factors of the cantilever, to measure the difference when the tip is above and in 

contact with the sample (Churnside et al., 2015; Yuya et al., 2008).  A 

multifrequency measurement is the process that involves simultaneously having 

two or more natural frequencies driven by sinusoidal base excitation of the 

cantilever.  Using amplitude and frequency modulation of the frequencies, it is 

possible to extract both frequency shifts and amplitude differences for the 

vibrations, and thus the mechanical parameters of tip-sample contact (Chawla and 

Solares, 2011; Sunyer et al., 2009).    

For each technique, the measured data from either a time or frequency domain 

approach can be interpreted via several ways to extract their time-dependent 

properties.  These approaches will be discussed in detail in the next subsection.    

 

3.3 Approaches to describe viscoelastic behaviour  

The collected data can be analysed with one of the following approaches; the 

spring and dashpot models, power-law model or frequency dependent stress-

strain representation.  Within this section, we will discuss how the viscoelastic 

properties can be calculated from the data, and the advantages and 

disadvantages for each procedure.   

There will be several equations discussed below, for ease a table with a list of 

symbols and their definitions were compiled (Table 3.1).   

 

Table 3.1│A list of symbols with their definitions. 

Symbol Name 

𝜎𝑠 stress of the spring 

𝐸 Young’s modulus (elasticity) 

𝜀𝑠 strain of the spring  

𝜎𝑑 stress of the dashpot 

𝜇 Viscosity 
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𝑑𝜀𝑑 𝑑𝑡⁄  strain rate of the dashpot (change of strain over time) 

𝜎̇ stress rate; 𝑑𝜎 𝑑𝑡⁄  

𝜀̇ strain rate; 𝑑𝜀 𝑑𝑡⁄  

𝐸1 modulus of the spring alone for standard linear solid (SLS) model 

𝐸2 modulus of the spring in series with the dashpot for SLS model  

𝜎 Stress 

𝜀0 oscillatory strain 

𝜎0 amplitude of the stress function 

𝑡 Time 

𝜏 characteristic time constant/ time variable  

𝜔 angular frequency 

𝐺∗ complex modulus 

𝐺′ storage modulus 

𝐺′′ loss modulus 

𝑖 imaginary number, i, the square root of -1  

𝛽 power-law exponent 

𝜂 structural damping coefficient 

𝐺0, 𝜔0 scaling factor 

Γ gamma function (all complex numbers) 

𝜑 phase lag 

𝜐 Poisson’s ratio 

𝑅 radius of the indenter probe 

𝛿0 operating indentation 

𝐹 force  

𝛿(𝜔) indentation oscillations 

𝑏 drag factor depending on the height from the cell surface 

𝐺𝛼(𝑡 − 𝜏) relaxation modulus 

𝐸0 elasticity at a random chosen time 
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𝑡0, 𝑡′
0 normalised timescales 

𝐺(𝑡) reduced relaxation function 

𝑇(𝑒)(𝛿) instantaneous elastic response that is a function of indentation 

𝛿 Indentation 

𝜕𝛿(𝜏) small change of indentation on a material at an instant of time 

‘ ̇ ’ denotes the rate of change with time  

‘ ̂ ’ denotes Fourier transform 

𝐺̂(𝜔) Fourier transformation of the material’s shear modulus 

𝐹̂(𝜔) Fourier transformation the force applied during deformation 

𝑇(𝑒)̂ (𝜔) Fourier transformation of the elastic response  

 

3.3.1 Spring and dashpot models 

The data collected via the time domain can be modelled with a collection of 

springs and dashpots arranged in series or parallel, to obtain the linear 

viscoelastic behaviour of a material (Kollmannsberger and Fabry, 2011).  The 

Maxwell model was first proposed in 1867, whereby the model was presented by 

two elements in series; a purely elastic spring and a purely viscous damper 

(Figure 3.1).  The spring obeys Hooke’s law, so stress is proportional to strain: 

𝜎𝑠 = 𝐸𝜀𝑠; the dashpot can be described as an element where stress is proportional 

to strain rate: 𝜎𝑑 = 𝜇 𝑑𝜀𝑑 𝑑𝑡⁄ .  Another configuration between the spring and 

dashpot, known as the Kelvin-Voigt model arranges these two elements in parallel 

instead.  Solares et al. has noted that the Maxwell model best describes stress 

relaxation with high accuracy, while the Kelvin-Voigt model best describes creep 

compliance (Solares, 2014).  This is because the surface in a creep system lacks 

a spring to accommodate for the instant force applied, and lacks the existence of a 

mechanism for surface recovery (López-Guerra and Solares, 2014).   

In the Maxwell model, the overall strain is the addition of strain of the spring and 

strain of the dashpot, while the stress is the same for all elements.  This means 

that the strain rate for the Maxwell model can be written as: 𝜀̇ = 𝜎̇ 𝐸⁄ + 𝜎 𝜇⁄  (where 

the rate of change with time is denoted by the symbol ‘ ̇ ’) (Vincent, 2012).  In a 

stress relaxation experiment, the strain is constant, thus strain rate equals to zero, 
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and the stress decays exponentially with a characteristic time constant; 𝜏 = 𝜇 𝐸⁄ .  

Therefore the equation for stress can be written as: 𝜎 = 𝜎0𝑒𝑥𝑝(−𝑡 𝜏⁄ ).    

 

 

Figure 3.1│Sketches of the spring and dashpot models. 

 

In the Kelvin-Voigt model, the overall stress is the addition of the stress of the 

spring and the stress of the dashpot, while the strain is the same for all elements.  

This means that the stress and strain rate for the Kevin-Voigt model can be written 

as: 𝜎 = 𝐸𝜀 + 𝜇𝜀̇ and 𝜀̇ = 𝜎 𝜇⁄ − 𝐸𝜀 𝜇⁄ , respectively (Vincent, 2012).  In a creep 

experiment, the stress is constant, thus the stress always equals the initial stress, 

the stress rate is equal to zero, and the strain decays exponentially with 𝜏; this 

means the equation for strain can be written as: 𝜀 = 𝜀0𝑒𝑥𝑝(−𝑡 𝜏⁄ ).   

To describe creep compliance and stress relaxation, a model with the combination 

of Maxwell and Kelvin-Voigt models was developed, which is known as the SLS 

(standard linear solid) model (Figure 3.1).  Within the model, the stress relaxes 

through the dashpot located in the series Maxwell, but some of the stress can be 

stored in the parallel spring.  In the SLS model, the strain rate can be defined as:                                

𝜀̇ = (𝐸1 + 𝐸2)−1(𝜎̇ + 𝐸2𝜎 𝜇⁄ − 𝐸1𝐸2𝜀 𝜇⁄ ), where 𝐸1 is the modulus of the spring 

alone, and 𝐸2 is the modulus of the spring that is in series with the dashpot 

(Chester, 2012).  Applying a sudden constant strain or a sudden constant stress to 

a viscoelastic material with characteristic time constant, 𝜏, the stress and strain for 

stress relaxation or creep compliance response can be written as 

𝜎 = 𝜀0 (𝐸1 + 𝐸2𝑒𝑥𝑝
𝐸2
𝜇

𝑡
)   𝜀 =

𝜎0

𝐸1
(1 −

𝐸2

𝐸1+𝐸2
𝑒𝑥𝑝

𝐸1𝐸2
(𝐸2+𝐸1)𝜇

𝑡
)     (3.1) 

Hence, the complex modulus of a material can be solved as 

𝐺′ =
𝐸1𝐸2

2+(𝐸1+𝐸2)𝜇2𝜔2

𝐸2
2+𝜇2𝜔2    𝐺′′ =

𝐸2
2𝜇𝜔

𝐸2
2+𝜇2𝜔2         (3.2) 
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where 𝜔 is the angular frequency, G’ is storage modulus, and G” is loss modulus.  

There are more complex spring and dashpot models that have been extensively 

reviewed (López-Guerra and Solares, 2014).  These models are good for 

interpreting time domain data to describe a viscoelastic material.  However, when 

there are multiple unknown parameters such as a number of relaxation times (to 

produce a preconceived model), application of these models to measured data 

could produce large fitting errors (Grant et al., 2013; López-Guerra and Solares, 

2014).   

 

3.3.2 Power-law models 

Power-law modelling was pioneered by Scott-Blair, to achieve properties from data 

collected in the frequency domain (Jaishankar and McKinley, 2013).  There are 

different formulations of power-law models that include structural damping and 

rheology.  The power-law structural damping model defines the complex shear 

(𝐺∗) model as (Alcaraz et al., 2003) 

𝐺∗(𝜔) = 𝐺′ + 𝑖𝐺′′                               (3.3) 

= 𝐺0 (
𝜔

𝜔0
)

𝛽
(1 + 𝑖𝜂)Γ(1 − 𝛽) cos (

𝛽𝜋

2
) + 𝑖𝜔𝜇                  (3.4) 

where 𝛽 is the power-law exponent, 𝜂 is the structural damping coefficient that can 

be given by 𝐺′′ 𝐺′⁄ = tan(𝛽𝜋 2⁄ )  𝐺0 and 𝜔0 are scaling factors. Γ is the gamma 

function.  This model can be  applied to AFM indentation to measure 𝐺∗ using the 

relationship: (Lim et al., 2006; Roca-Cusachs et al., 2006) 

𝐺∗ =
1−𝜐

4(𝑅𝛿0)1 2⁄ (
𝐹(𝜔)

𝛿(𝜔)
− 𝑖𝜔𝑏(0))                           (3.5) 

where 𝜐 is the Poisson’s ratio, 𝑅 is the radius of the indenter probe, 𝛿0 is the 

operating indentation, 𝛿(𝜔) is the indentation oscillation function, 𝑏 is a drag factor 

depending on the height from the cell surface and expressed as 𝑏(0) at contact.   

A second power law approach has been termed power-law rheology.  This has 

also been used in combination with AFM to measure the rheology of living cells 

(Kollmannsberger and Fabry, 2011).  The creep and stress relaxation responses 

of these cells were written in the form of  

𝜀(𝑡) =
𝜎0

𝐸0(
𝑡

𝑡0
)

𝛽 𝜎(𝑡) = 𝐸0𝜀0 (
𝑡

𝑡′
0
)

𝛽

                        (3.6) 
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where 𝐸0 is the elasticity at a randomly chosen time, 𝑡0 and 𝑡′
0 are normalised 

timescales that can also be chosen randomly.  Using these equations, a non-

exponential relaxation process can be described with small number of parameters.  

Here, the response of a complex material to dynamic loading follows a power law 

giving  

|𝐺∗(𝜔)| = √(𝐺′(𝜔))
2

+ (𝐺′′(𝜔))
2
                             

~ 𝜔𝛽                           (3.7) 

This approach has provided information on the dynamics of the elastic structures 

within the cell under deformation (Lange and Fabry, 2013).  When a material 

exhibits properties of a purely elastic solid, 𝛽 = 0, and when a purely viscous fluid, 

𝛽 = 1.  An example of this is applicable to biological cells is where an increase in 

the value of 𝛽 corresponds to the response following actin disruption.  Typically the 

𝛽 value for cells falls below 0.5 (Kollmannsberger and Fabry, 2011).  The main 

advantage of this approach is that it is simple method to describe the viscoelastic 

response of a material.  However, this model cannot describe plateau regions 

within the frequency domain, which means that highly elastic properties are 

uncounted for.    

 

3.3.3 Frequency dependent stress-strain representation 

Oscillations imposed and/or measured on living cells using AFM can be 

represented by simple stress and strain formulae to express the viscoelastic 

behaviour of cells.  If the time selected corresponds with a time at which the strain 

passes through its maximum, the response of stress is the same as strain but with 

a phase lag (𝜑) 

𝜀(𝑡) = 𝜀0 sin 𝜔𝑡  𝜎(𝑡) = 𝜎0 sin 𝜔𝑡 + 𝜑            (3.8) 

The stress-strain relationship for a linear isotropic material can be written in the 

time domain as (Fung, 1993) 

𝜎(𝑡) = ∫ 𝐺𝛼(𝑡 − 𝜏)
𝑡

−∞

𝑑𝜀

𝑑𝜏
𝑑𝜏                            (3.9)  

where 𝑑𝜀 𝑑𝑡⁄  is the shear rate and 𝐺𝛼(𝑡 − 𝜏) is the relaxation modulus describing 

both the deviatoric (change of shape; 𝛼 = 1) and the dilatational (change of 

volume; 𝛼 = 2) parts of the stress-strain relationship.  The strain (Equation 3.8) 
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can be substituted into Equation 3.9, to give the stress-strain relationship in terms 

of G’ and G’’ as (Moeendarbary and Harris, 2014) 

𝜎(𝑡) = 𝜀0[𝜔 ∫ 𝐺(𝜏) sin 𝜔𝜏 𝑑𝜏
∞

0
] sin 𝜔𝑡 + 𝜀0[𝜔 ∫ 𝐺(𝜏) cos 𝜔𝜏 𝑑𝜏

∞

0
] cos 𝜔𝑡    

        = 𝜀0𝐺′ sin 𝜔𝑡 + 𝜀0𝐺′′ cos 𝜔𝑡          (3.10) 

For a purely elastic material, stress is in phase with the strain, thus 𝐺′ = 𝐺, 𝐺′′ =

0, and |𝐺∗| = 𝐺.  On the other hand, for a purely viscous material 𝐺′ = 0, therefore 

the stress response has a phase lag of 𝜋 2⁄  with strain and 𝐺′′ = |𝐺∗| = 𝜇𝜔.  A 

viscoelastic material exhibits both elastic and viscous properties and 

conventionally the phase lag (0 < 𝜑 < 𝜋 2⁄ ) is given at that between the applied 

strain and the resultant stress.  Using Equation 3.10, the frequency-dependent of 

G’ and G’’ for a material can be given as (Moeendarbary and Harris, 2014) 

𝐺′ =
𝜎0

𝜀0
cos 𝜑 𝐺′′ =

𝜎0

𝜀0
sin 𝜑        (3.11)  

The approach of imposing oscillations on the cells can only provide discrete 

viscoelastic values at given frequencies. In addition, there are many environmental 

effects when measurements are carried out in liquid.  Within a liquid environment, 

the cantilever cannot be excited without piezoelectric excitation that could lead to 

damping effects in the cantilever and added mass effects from the liquid 

(Churnside et al., 2015).   

To overcome these limitations, we have developed a new approach whereby the 

time-dependent stress relaxation data are analysed via Fourier transformation of 

the convolutional integral between force and indentation (fully outlined in Section 

3.4).  This approach does not require fitting of data to one of the models described 

above but nevertheless provides both storage and loss moduli over a continuous 

frequency domain.  Obtaining this continuous frequency spectrum is important in 

the study of cells and biomaterials, since these bio-samples are constantly 

changing upon constant compression, no information would be lost like discrete 

measurements  (Tripathy and Berger, 2009).   

 

3.4 Fourier transform-AFM-microrheology 

The FT-AFM-M analysis has been developed by following the same principles 

adopted by Tassieri et al. for deducing the materials' linear viscoelastic properties 

over the widest range of experimentally accessible frequencies from a simple time-
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dependent step-strain measurement (Tassieri et al., 2016).  A feature of this 

method is that it does not rely on the need for preconceived models of the cell 

response nor the idealisation of real measurements.  This has been achieved by 

evaluating the Fourier transforms of raw experimental data describing both the 

time-dependent stress and strain functions by means of the analytical method 

introduced by Tassieri et al. (Tassieri et al., 2012).  In the original development of 

this method, particle trajectory data from optical tweezer measurements were used 

in the calculations.  Thus here it was necessary for us to make modifications to the 

original algorithm in order to use the uniaxial compression data that comes from 

AFM measurements. These modifications also accounted for indenter properties 

such as the indenter probe radius and tip-sample contact area; hence a partial 

preconceived model (Hertzian model) has been used.  

Using the model introduced by Fung et al. known as quasi-linear viscoelasticity, 

and the force-indentation data collected from the AFM, we can describe the 

material’s stress response (relaxation function; 𝐾(𝛿, 𝑡)) as (Fung, 1993) 

𝐾(𝛿, 𝑡) = 𝐺(𝑡)𝑇(𝑒)(𝛿)                                             (3.12) 

where 𝐺(𝑡) is the reduced relaxation function (shear modulus) (a normalised 

function of time), and 𝑇(𝑒)(𝛿) is the instantaneous elastic response that is a 

function of indentation.  In this equation, 𝐺(𝑡) expresses the material’s history of 

relaxation behaviour, so for an elastic solid with a response that is independent of 

its history, 𝐺(0) = 1.  In this case, the material’s stress response is equal to 

𝑇(𝑒)(𝛿).  

Generally, the instantaneous elastic response of a material can be calculated by 

Hertzian contact model (Puttock and Thwaite, 1969).  Using a rigid spherical 

indenter on an incompressible linearly elastic half-space model, this is given by 

𝑇(𝑒)(𝛿) = 𝐹(𝛿) =
16

9
𝐸√𝑅𝛿3                              (3.13) 

where 𝑅 is the radius the indenter, 𝐸 is elastic modulus, and assuming for an 

incompressible material, the Poisson ratio is 0.5.  For a complex material, the 

stress response to an infinitely small change of indentation (𝜕𝛿(𝜏)) on a material in 

a state of deformation at an instant of time can be written as (Tripathy and Berger, 

2009) 

𝐾(𝛿, 𝑡) = 𝐺(𝑡 − 𝜏)
𝑇(𝑒)[𝛿(𝜏)]

𝑑𝛿
𝑑𝛿(𝜏) 𝑡 > 𝜏                                    (3.14) 
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These functions of time can be connected by a linear constitutive equation 

(Equation 3.9), which is based on the principle that the effects of sequential 

changes in strain are additive, thus   

𝐹(𝑡) = ∫ 𝐺(𝑡 − 𝜏)
𝑇(𝑒)[𝛿(𝜏)]

𝑑𝛿

𝑑𝛿(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

−∞
                     

= ∫ 𝐺(𝑡 − 𝜏)𝑇̇(𝑒)(𝜏)𝑑𝜏
𝑡

−∞
                  (3.15) 

where 𝑇̇(𝑒)(𝜏) is the rate of change in elastic response with time.  Using Equation 

3.15, the integral can be resolved by Fourier transformation (to express a function 

of time into the angular frequency; denoted by the symbol ‘ ̂ ’),  

𝐹̂(𝜔) = ∫ 𝐹(𝑡)
∞

−∞
𝑒𝑥𝑝−𝑖𝜔𝑡𝑑𝑡    

 = ∫ [ ∫ 𝐺(𝑡 − 𝜏) 𝑇̇(𝑒)(𝜏)
∞

−∞
𝑑𝜏]

∞

−∞
𝑒𝑥𝑝−𝑖𝜔𝑡𝑑𝑡      

 =  [∫ 𝐺(𝑡 − 𝜏)
∞

−∞
𝑒𝑥𝑝−𝑖𝜔𝑡𝑑𝑡] ∫ 𝑇̇(𝑒)(𝜏)

∞

−∞
𝑑𝜏        

 = ∫ 𝐺(𝑡 − 𝜏)𝑒𝑥𝑝−𝑖𝜔(𝑡−𝜏)∞

−∞
𝑑𝑡 ∫ 𝑇̇(𝑒)(𝜏)

∞

−∞
𝑒𝑥𝑝−𝑖𝜔𝜏𝑑𝜏          

 = 𝐺̂(𝜔) ∫ 𝑇̇(𝑒)(𝜏)
∞

−∞
𝑒𝑥𝑝−𝑖𝜔𝜏𝑑𝜏                 (3.16) 

where 𝐺̂(𝜔) is the Fourier transformation of the material’s shear modulus.  The 

latter integral can be determined using integration by parts where 𝑢 = 𝑒𝑥𝑝−𝑖𝜔𝜏 and 

its derivative is 𝑑𝑢 𝑑𝑡⁄ = −𝑖𝜔𝑒𝑥𝑝−𝑖𝜔𝜏𝑑𝜏, while 𝑑𝑣 𝑑𝜏⁄ = 𝑇̇(𝑒)(𝜏)𝑑𝜏 and its integral is 

𝑣 = 𝑇(𝑒)(𝜏) 

𝑇̇(𝑒)̂ (𝜔) = ∫ 𝑇̇(𝑒)(𝜏)𝑒𝑥𝑝−𝑖𝜔𝜏∞

−∞
𝑑𝜏   

   = [𝑇(𝑒)(𝜏)𝑒𝑥𝑝−𝑖𝜔𝜏 ]
−∞

∞
− −𝑖𝜔 ∫ 𝑇(𝑒)(𝜏)𝑒𝑥𝑝−𝑖𝜔𝜏∞

−∞
 𝑑𝜏   

              = 𝑖𝜔 𝑇(𝑒)̂ (𝜔)                  (3.17) 

The force-indentation relationship for a linear isotropic material that can be 

rewritten in terms of complex modulus, 𝐺∗(𝜔) = 𝑖𝜔 𝐺(𝜔) (Ferry, 1980)  

𝐹̂(𝜔) =  𝐺̂(𝜔)𝑖𝜔 𝑇(𝑒)̂ (𝜔)     

         =  
𝐺∗(𝜔)

𝑖𝜔
𝑖𝜔𝑇(𝑒)̂ (𝜔)        

  = 𝑮∗(𝝎)𝑻(𝒆)̂ (𝝎)                     (3.18)  

The derived complex shear modulus from AFM acquired data can be equated with 

Equation 3.3, to give viscoelastic properties of a material  



  

63 
 

𝐺∗(𝜔) =   
𝐹̂̂(𝜔)

𝑇(𝑒)̂(𝜔)
           (3.19) 

= 𝐺′(𝜔) + 𝑖𝐺′′(𝜔)          

In this subsection, we have shown how to take the stress relaxation data collected 

from the AFM in terms of force and indentation (time domain), to achieve storage 

and loss moduli (frequency domain).  Each data point was included in the Fourier 

transforms to provide a set of continuous data over the frequency range and to 

maximise the frequency range over which the viscoelastic properties were 

calculated.  Furthermore, to reduce possible artefacts, a high sampling rate was 

used. 

 

3.5 Materials and Methods  

3.5.1 Samples 

The complex materials used for experimentation include gel pads with known 

stiffnesses (30 kPa and 100 kPa gel; ExCellness Biotech SA), multi-purpose tac 

(Niceday), and in-house made polydimethylsiloxane slabs (PDMS; 20:1 silicone 

elastomer to curing agent ratio; Dow Corning).  The 20:1 PDMS was evenly mixed, 

degassed and baked for 2 hour at 70°C.  All materials were kept at room 

temperature before use. 

The cells under investigation included pancreatic ductal adenocarcinoma mutant 

p53 (PDAC p53 R172H), deleted p53 (PDAC p53 fl) cells, modified PDAC p53 fl 

cells tagged with enhanced green fluorescent-estrogen receptor protein 

(EGFP:ER), and PDAC p53 cells containing conditionally active ROCK1- or 

ROCK2-estrogen receptor fusion proteins isoforms (ROCK1:ER and ROCK2:ER).  

To overexpress the ROCK isoforms, 1 μM of 4-hyroxytamoxifen (4HT) was added 

to the culture medium. 

 

 

3.5.2 Fabrication of cell pattern  

To investigate the effect of cell shape on their viscoelastic properties, micropattern 

substrates were created to control the shape of PDAC p53 R172H cells.  The 

micropattern consists of an array of 20 μm circles with 80 μm gaps on surface 
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treated glass slides.  Following the procedure developed earlier (Cuestas-Ayllon et 

al., 2012), the circular areas were modified with amino groups to promote cell 

adhesion, and the remaining areas were modified with polyethylene glycol (PEG) 

to prevent cell adhesion.  The glass substrates were cleaned with various solvents 

(acetone, methanol, isopropyl alcohol) and piranha solution (3:1 sulfuric acid to 

hydrogen peroxide) before being submerged in 5% (3-aminopropyl)trimethoxy-

silane in ethanol for 1 hour at room temperature.  The treated substrates were 

spin-coated with S1805 positive resist (MicroChem Corp) at 4000 rpm for 30 

seconds.  These coated substrates were soft-baked for 10 minutes at 95°C, to 

evaporate any solvents from the resist and to dissipate any bubbles created during 

spin coating.  When the substrates were ready, these were placed in the MA6 

mask aligner (SUSS MicroTec) along with the photomask that contained the 

pattern features.  The conditions for the machine were generally set to ‘hard 

contact’ (substrate and chrome mask in contact) during exposure and 50 μm gap 

for alignment, if necessary.  Each substrate was exposed to the UV light from a 

350 W mercury lamp (wavelength: 360 nm) for 4 seconds.  To develop the 

exposed resist surfaces, a 1:2 dilution of MF-321 developer to distilled water was 

used for 45 seconds, and then rinsed in distilled water.  The developed surfaces 

were fully dried using nitrogen gun before checked under an optical microscope, to 

ensure the complete removal of photoresist at the necessary regions.  After the 

development of the photoresist, the surface was modified with 1% 2-

[methoxy(polyethyleneoxy)propyl]-trichlorosilane in anhydrous toluene for 2 hours 

under vacuum to generate a PEG modified surface.  The pattern slides were 

complete once the remaining photoresist was removed using dimethyl sulfoxide, 

exposing amino-groups terminated array areas. For storage, the patterned slides 

were kept under vacuum. 

Prior to cell seeding, the slides were sterilised with ethanol and phosphate 

buffered saline (PBS) for 10 minutes each, at room temperature.  A cell density of 

1.08 x 105 cells/ cm2 was seeded onto the substrates, and incubated for 2 hours at 

37°C, with 5% carbon dioxide (CO2), to allow the cell pattern to form.  Once the 

majority of cells attached, the unsuspended cells were washed away with culture 

medium.  The pattern cells were incubated for another 2 hours to enable cells fully 

attached.   
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3.5.3 Immunofluorescence staining  

The patterned and unpatterned PDAC mutant p53 and deleted p53 cells were 

stained to highlight the actin filaments and nucleus after either 4 hours or overnight 

culturing at 37°C, with 5% CO2 in a humidified incubator.  The staining procedure 

involved washing the cells with PBS and fixing with 3.8% formaldehyde, 2% 

sucrose in PBS for 10 minutes at room temperature.  The cells were then 

permeabilised with 0.1% triton X-100 in PBS for 10 minutes at room temperature, 

and blocked with 1% bovine serum albumin (BSA) in PBS for 30 minutes.  The 

actin filaments were stained using phalloidin in BSA in PBS (1:500; Alexa Fluor® 

488, Life Technologies) for 1 hour at room temperature.  The stained cells were 

washed in 0.5% Tween 20 in PBS and mounted onto a coverslip using Vectashield 

mounting medium with DAPI (Vector Laboratories Inc.).  Bright field and 

fluorescent images were collected using Zeiss Axiovert microscope.  For 

fluorescent images, excitation filters of 340 ± 10 nm (blue, DAPI) and 485 ± 10 nm 

(green, FITC) were used for the two stains. 

  

3.5.4 Stress relaxation 

This procedure was carried out using a NanoWizard II AFM mounted on a Zeiss 

AxioObserver A10 inverted optical microscope.  In-house fabricated spherical 

probed cantilevers (McPhee et al., 2010) with the appropriate spring constant were 

used for the measurements: ~ 3 N/m (FESP; Bruker) for complex materials and    

~ 0.03 N/m (arrow TL-1; NanoWorld) for live cells.  The size of the probe was 

dependent on the tip-surface contact area of the sample in which the cantilever 

was approaching towards; larger the probe, larger the area (20 μm, 10 μm and 

4.74 μm probes for complex gels, complex materials and living cells, respectively).  

Cantilever calibration measurements were performed before and after each 

experiment using an analysis of the natural thermal tip vibrations in air at room 

temperature (Hutter and Bechhoefer, 1993).   Each sample was subjected to at 

least one stress-relaxation experiment.  The non-cell materials were placed on 

stage and measured in air at room temperature.  The cells were placed on a 

heater stage and measured in (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffered media at 37°C.  
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Measurements were made by positioning the probe above the sample’s surface 

for t = 10 s, to determine any forces that could lead to small drifts in the cantilever 

deflection.  The stress (force) relaxation was then measured when the indenter 

was held at a constant indentation distance into the sample (Figure 3.2).  This 

distance complied with the conditions for which Hertzian model is valid i.e. when   

<10% of the sample’s thickness is indented.  An indentation of ~ 0.8 μm, 3 μm, 1.3 

μm and 0.5 μm was applied to 30 kPa/ 100 kPa gels, 20:1 PDMS, multi-purpose 

tac and cells, as respectively.  All indentations were applied to the samples at a 

constant loading rate.  A range of loading rates (3–100 μm/s) and the holding 

times (1 s and 30 s) were examined to study whether they affected the 

measurements of viscoelastic properties of the samples.  However if not specified 

in the discussion, the loading rate and time were typically 10 μm/s and 30 s.    

 

Figure 3.2│Schematic diagram of the experimental procedure carried out for FT-

AFM-M.  

 

After the indentation, the cantilever was retracted away from the indentation spot 

and kept stationary for t = 20 s, so the sample could recover to its original position.  

For each stage of the procedure, the deflection force and indentation data were 

collected at a sample rate of 16 kHz (16000 data points per second).  For the 

complex materials, 4 randomly chosen areas on a sample were measured, while 

for each cell line, 50 cells from throughout the culture area were probed in the 

above manner.  The data was analysed using an in-house Labview algorithm (see 
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Section 3.4).  The viscoelastic data (G’ or G’’) was presented in a log-log graph 

against frequency (𝜔 = 2𝜋𝑓).   

 

3.5.5 Bulk rheology 

Oscillatory measurements were conducted with a modular compact rheometer, 

MCR 302 (Anton Paar) using a parallel plate tool of a diameter, 25 mm (PP25; 

Anton Paar).  Calibrations of the motor and the system were carried out prior to 

measurements of the samples.  The motor was calibrated by rotating the tool 

when force is equal to zero (in air) at a speed of 0.3 revolution/ min for 3 minutes 

followed by another 14 minutes calibration.  Once the motor was calibrated, the 

system was calibrated by looking at the inertia (uniform motion unless changed by 

an external force), which is related to the mass of the tool.  All calibrations were 

complete when a constant torque (-0.05 to 0.05 μNm) was displayed against 

deflection angle at a fixed speed of 0.3 revolution/ min.  A frequency sweep was 

carried out on all complex materials, to measure G’ and G’’ over an angular 

frequency range between 0.1 < 𝜔 < 100 rad/s, at a strain of 1%.  These were 

performed at room temperature. 

 

3.6 Results and Discussion  

3.6.1 Establishment of FT-AFM-M 

3.6.1.1 The FT-AFM-M procedure 

Figure 3.3 shows the front panel of the Labview algorithm for FT-AFM-M that 

performs the analytical method, to calculate the Fourier transforms of both the 

measured force and indentation functions and therefore obtain the material’s 

complex modulus with Equation 3.19.  

In detail, the algorithm reads the experimental raw data (i.e. [𝑡, 𝐹, 𝛿]) in the form of 

a tab-separated.txt file.  Once Labview computed in raw data, the measured 

indentation was taken aside and corrected for the geometry of the indenter used 

via Equation 3.13.  Then both force and corrected indentations were processed to 

calculate the viscoelastic moduli of the material under investigation.   

 



  

68 
 

 

Figure 3.3│Front panel of the Labview (National Instruments) algorithm that 

implements the analytical method to calculate the Fourier transforms of both 

measured force and indentation functions in Equation 3.19. 

 

Recently Tassieri et al. have presented a simple new analytical method for 

reducing the materials’ linear viscoelastic properties, over the widest range of 

experimentally accessible frequencies, from a simple step-strain measurement, 

without the need of preconceived models nor the idealisation of real 

measurements (Tassieri et al., 2016).  Although this has been successfully 

implemented in conventional linear oscillatory measurements, when using the 

AFM, the analysed data was too noisy at high frequencies to allow reliable 

conclusions to be drawn (Figure 3.4). This noise may be contributed to by the 

nonlinear deformation of the material during a fast indentation process, which 

makes it difficult to separate the non-linear elastic and non-linear viscous 

responses (Kollmannsberger et al., 2011). Because of this, only stress relaxation 

data was analysed (i.e. t = 0 is set instead to the point when force (stress) starts to 

relax; i.e. at the maximum force) (Moreno-Flores et al., 2010; Okajima et al., 

2007).    
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Figure 3.4│Viscoelastic properties of 30 kPa complex gel analysed with Labview 

program from initial approach segment.  At the high-end frequencies, a lot of noise 

present in the data, which made it difficult to establish G’ (white) and G’’ (red).  

 

The range of accessible frequencies is dictated by the extremes of the experiment 

time window [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]: i.e. 𝜔𝑚𝑎𝑥 = 1 𝑡𝑚𝑖𝑛⁄  and 𝜔𝑚𝑖𝑛 = 1 𝑡𝑚𝑎𝑥⁄  (Tassieri et al., 

2016); where 𝑡𝑚𝑖𝑛 is the time of the first measured point after t = 0, and 𝑡𝑚𝑎𝑥 is 

equal to the duration of the experiment.  Note, although the sampling rate used in 

the experiment of Figure 3.4 was 11 kHz, a rate of 16 kHz (the upper limit of the 

NanoWizard II), was used in the rest of the investigations, to maximise the 

accessible frequency range.    

 

3.6.1.2 The effect of probe dimension 

Physical cues such as probe geometry, loading force and loading rates could 

affect the measurements of viscoelastic properties of a material (Boccaccio et al., 

2015).  To understand the relationship between probe diameter and viscoelastic 

behaviour of a material, we used three spherical probe indenters (4.74 μm, 10 μm 

and 20 μm) and applied FT-AFM-M procedure to a piece of 20:1 PDMS (6 months 

old).  The piece of 20:1 PDMS had a volume of 14.14 cm3 (radius: 3 cm and 

height: 0.5 cm) and a contact area of 28.27 cm2.  For each indenter, 9 stress 

relaxation curves were performed and analysed (Figure 3.5).   
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Figure 3.5│The effect of indenter diameter on the viscoelastic properties of 20:1 

PDMS at a loading rate of 3 μm/s (n = 9 measurements), expressed as mean ± SD. 

The frequency sweeps below 10 Hz showed that there were differences in G’ between 

4.74 μm/ 10 μm and 20 μm probe geometries (p < 0.04), though G’’ did not change. 

 

The calculated viscoelastic properties of PDMS changed with probe dimension.  At 

the higher frequencies (𝑓 > 10 Hz), the average G’ was similar for 4.74 μm and   

10 μm indenters, while with the 20 μm indenter calculations using the indentation 

measurements suggested the material was significantly softer (p < 0.04).  At lower 

frequencies (𝑓 < 10 Hz), the average G’ followed the trend of 4.74 μm > 10 μm > 

20 μm. These findings could be associated with local strain on the material; as the 

probe indenter gets smaller, the tip-surface contact area is reduced (Sokolov, 

2007). However, the probe dimension did not show obvious effects on G”. This 

may be partially due to the rounded shape of indenters (Boccaccio et al., 2015), 

and the PDMS itself being an elastic-like material.  

These results clearly showed that different probe indenters could affect the 

calculated viscoelasticity.  Therefore to choose the appropriate probe indenter for 

an experiment, we have to consider the size of probe in relation to the surface 

area of the material.  The probe would have to be large enough to measure the 

material globally, but still obey the Hertzian model requirement for tip-surface 

contact.   
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3.6.1.3 The effect of loading rate 

To evaluate how loading rates influence measurements of the mechanical property 

of a material, we applied a range of rates between 3–100 μm/s to 30 kPa and   

100 kPa gels.  For each loading rate, 4 stress relaxations were performed and 

analysed, though only one measurement from each rate is shown here (Figure 

3.6).    

 

Figure 3.6│Various approach ramp speeds applied to gels.  The stress relaxation 

curves for (A) 30 kPa and (C) 100 kPa gels showed that speeds > 70 µm/s the force 

overshot, otherwise no difference.  The frequency sweep for (B) 30 kPa and (D) 100 kPa 

gels displayed speeds > 70 µm/s, G’ and G’’ were lower compared to other speeds.   

 

Before looking at any differences in the viscoelastic behaviour of the materials, 

general features in the stress relaxation curves of Figure 3.6 are discussed:  It can 

be seen that when the loading rates are increased there is a steeper gradient of 

the measured force with respect to time (Figure 3.6A and C).  This is as expected 

as the indentation depth was kept constant whilst the loading rates increased.  The 

consequence of this is that it would take a shorter time for the cantilever to reach 
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to the set indentation depth.  However, it should be pointed out that for 70 µm/s 

and 100 µm/s rates, the forces reached were different to those at the other loading 

rates: 3 µm/s, 10 µm/s and 30 µm/s - the z-piezo overshoots at the higher loading 

rates.  This effect leads to an increase in loading force by 9–13% compared to the 

force reached at the set indentation depth.  As a result, the extrapolated 

viscoelastic properties of the gels changed with increased loading rates (Figure 

3.6B and D).  With the same gel, lower G’ values were found at higher loading 

rates while G’’ remained unchanged, over the entire frequency range (0.005 < 𝑓   

< 2526 Hz).  The difference in elastic behaviour may be associated with a 

decrease in contact area as the loading rates were increased (Alao and Yin, 

2014).  

Each loading rate was applied to the same indentation depth, though it was found 

that at higher loading rates (i.e. 70 and 100 µm/s), the z-piezo overshot and in turn 

exceeded the reliable operation range of the instrument.  Therefore, as the 

viscoelastic behaviour for the gels was relatively constant for loading rates 

between 3–30 μm/s, a loading rate of 10 μm/s was chosen for the rest of the 

investigations.  

 

3.6.1.4 Validation of the FT-AFM-M method with complex materials 

Having established the AFM operational parameters that could be used to give 

reliable measurements, to validate the FT-AFM-M method, a range of complex 

materials were examined.  These materials included commercial gels (30 kPa and 

100 kPa), a multi-purpose tac and freshly made 20:1 PDMS.   Each material was 

investigated with both conventional oscillatory measurements using a compact 

rheometer equipped with parallel plate geometry of 25mm in diameter and the new 

FT-AFM-M approach.  The two studies were compared to see how close the 

viscoelastic parameters derived from the new technique were to those obtained 

from conventional measurements.  For the commercial gels, these values were 

also compared to those supplied by the company. 

For the 30 kPa gel, it was stated by the supplier that this gel had an average 

Young’s modulus value of 30 ± 6.67 kPa.  Figure 3.7 shows that the elastic 

properties (G’) from FT-AFM-M measurement were in good agreement with the 

discrete oscillatory rheology data over the frequency range that they share in 

common (Figure 3.7A). The viscous properties (G”) also showed a similar trend, 
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although the absolute values were lower.  Over the frequency range of the FT-

AFM-M measurement, G’ values of the material were between 10.01 and       

14.79 kPa, while G” were between 0.24 and 2.01 kPa, suggesting a dominant 

elastic nature of the material.  

Using the relationship between Young’s modulus (E) and shear modulus for a 

linear elastic material; 𝐸 = 2(1 + 𝜈)𝐺′, (where 𝜈 is 0.5 for the Poisson’s ratio of an 

incompressible material, (Landau et al., 1986)), the Young’s moduli calculated 

from the oscillatory and FT-AFM-M measurements were 30.03 kPa and 33.67 kPa 

respectively at the lower end of the frequency range studied.  This is in excellent 

agreement with the supplier’s value (i.e. 30 ± 6.67 kPa).     

 

Figure 3.7│Overlay rheology measurements from compact rheometer against FT-

AFM-M for a range of materials; (A) 30 kPa gel, (B) 100 kPa gel, (C) multi-purpose 

tac and (D) 20:1 PDMS.  The measurements obtained from both techniques were in good 

agreement with each other, on both G’ and G’’. 

 

Similar phenomena were observed for the 100 kPa gel (Young’s modulus of 

106.67 ± 40 kPa, supplied by the company). The measured G’ and G” from both 
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techniques displayed similar trends and absolute values over the frequency range 

in common (Figure 3.7B).  The Young’s modulus calculated from FT-AFM-M data 

gave 96.18 < E < 135.42 kPa, and 100.55 < E < 119.16 kPa from the oscillatory 

data.  Again, these values are in good agreement with the supplier’s value.  These 

results have shown that the new FT-AFM-M method can provide viscoelastic 

information that is not only in good agreement with that from conventional 

techniques, but also over a wider and continuous frequency range.   

The multi-purpose tac and freshly 20:1 PDMS were also investigated under the 

same experimental conditions as the gels.  For both materials, the viscoelastic 

data from the oscillatory and FT-AFM-M measurements were similar over the 

frequency range in common (Figure 3.7C and D). However, cross-over 

frequencies were only observed from the FT-AFM-M measurement. Based on this 

approach, the viscoelastic properties for multi-purpose tac was found to be 0.10 < 

G’ < 1.33 MPa and 0.47 < G’’ < 4.08 MPa (Figure 3.7C), indicating a typical 

viscoelastic material.  In contrast, the elastic and viscous properties for 20:1 

PDMS were found to be 20.26 < G’ < 63.06 kPa and 0.42 < G’’ < 65.68 kPa 

(Figure 3.7D).  It can be noted that the stiffness for this freshly prepared 20:1 

PDMS was relatively softer than that of 6 month old 20:1 PDMS (Figure 3.5).  The 

reason for the difference could be related to the aging of PDMS, as the material 

continued to crosslink even after being thermally-cured (Fuard et al., 2008).  

For all complex materials, it was shown that the G’ was relatively constant 

throughout the frequency range, while G’’ had dips at specific frequencies.  

Although it cannot be concluded whether these were artefacts from the data 

analysis or true behaviour of the materials, it would be interesting to measure a 

larger sample size and a wider range of materials to eliminate any uncertainties 

within the data.      

Within this subsection, I have shown that the FT-AFM-M method can not only be 

used to calculate viscoelastic properties of a material that are similar to those 

obtained from traditional techniques, but can also provide added information over 

a wider frequency range from a single measurement.  
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3.6.1.5 Viscoelastic properties of cells via the FT-AFM-M method 

Cells can response differently under short or long periods of deformation 

(Mitrossilis et al., 2010).  Short periods (t < 0.1 s) address the instantaneous 

actomyosin-dependent response caused by the cytoskeletal tension.  While at 

long periods (t >> 0.1 s) the stable response caused by cytoskeletal structure 

changes within the cell dominates.  It would be convenient to investigate both 

aspect of the cell with one single measurement.  However, a priori, it is uncertain 

whether the viscoelastic behaviour from long holding periods would provide the 

same information as the short holding periods.  To address this issue, we collected 

data for both short-relaxation (t = 1 s) and long-relaxation (t = 30 s) times on 

PDAC p53 R172H cells (Figure 3.8).        

 

Figure 3.8│Comparison between the short-relaxation and long-relaxation carried 

out on PDAC p53 R172H cells (n = 50 cells), expressed as mean ± SD.  The cells’ 

viscoelasticity was measured with (A) t = 1 s and (B) t = 30 s holding times.  Both 

relaxations displayed similar trends in (C) G’ and (D) G’’ properties.    
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The accessible frequency range was different for both relaxation times, due to the 

difference in holding times.  For short-relaxation times, it was between 0.16–   

2400 Hz, while for long-relaxation times, it was between 0.005–2400 Hz (Figure 

3.8A and B).  Whereas G’ responses could be calculated over the whole frequency 

range, G’’ responses were only calculated up to 660 Hz.  The reason for the 

omission of G’’ values at high frequency values from Figure 3.8 was due to 

knowledge that any induced hydrodynamic drag force on the cantilever only 

affects G’’ at these higher frequencies (Alcaraz et al., 2003).   

Both long- and short-relaxation times exhibited similar viscoelastic behaviour for 

PDAC mutant p53 cells, over the range 0.16 < 𝑓 < 2400 Hz (Figure 3.8C and D).  

For short-relaxation times, G’ values were consistently higher than G’’ values.  

Values for both moduli increased weakly with frequency.  Long-relaxation time 

measurements provided the same findings as those collected over short-relaxation 

times and added information regarding the cells’ mechanical behaviour at 

frequencies < 0.16 Hz.  At 𝑓 < 0.16 Hz, G’’ displayed a greater frequency 

dependence, which meant that the cells were under transition from one behaviour 

to another i.e. the cell exhibited the finger print of active dynamics (dissipating 

energy not just by friction) shown in living systems (Lieleg et al., 2008).  The 

dynamics of cells can be characterised to have the mechanical behaviour of three 

materials, over several frequency decades; rubbery and glassy material found at 

low and high frequencies as respectively, and viscoelastic material in the 

intermediate frequency regime (Vadillo-Rodríguez and Dutcher, 2011).  According 

to the characterisation, the cells under investigation transitioned from the 

mechanical behaviour of a viscoelastic complex material to a soft glassy material 

(low end of the regime) with increased frequency.    

As general definitions, a viscoelastic material can be described as either a 

viscoelastic solid or viscoelastic fluid.  A viscoelastic solid is when the material can 

substantially return to its original shape after a large applied load is removed, 

whereas in a viscoelastic liquid the shape is not regained.  This can be illustrated 

on a frequency sweep graph when G’ and G’’ crosses over once (viscoelastic 

solid) or many times (viscoelastic fluid) (Tassieri, 2015).  As the frequency sweep 

for long-relaxation time has displayed one possible cross over (Figure 3.8B), this 

meant that mutant p53 cells could be described as either a soft glassy material or 

a viscoelastic solid material.   
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From the results for both relaxation times, we can safely say that the analysed 

data from long-relaxation time included data from short-relaxation time and more.  

As mentioned previously, the widest range of frequencies will give the best 

overview of the material’s structure.  Henceforth, we measured each cell using a 

long-relaxation time protocol, to gain the most information in regards to its 

mechanical response.      

It was noted above that whilst the trends are the same, the absolute values 

measured with FT-AFM-M may differ slightly from those measured using other 

procedures.  Thus, as a means of cross checking the FT-AFM-M measurements 

on cells, we calculated the Young’s modulus of PDAC mutant p53 cells using both 

the common AFM indentation method (McPhee et al., 2010) and the FT-AFM-M 

method, Figure 3.9.  When examining the frequency dependence of the 

viscoelasticity of this cell line (Figure 3.8), it was noted that G’ values increased 

with frequency.  This means that the Young’s modulus calculated at 𝑓 = 0.005 Hz 

(E = 0.70 ± 0.33 kPa) is different to that calculated at 𝑓 = 2400 Hz (E = 2.01 ±  

0.67 kPa).   

 

Figure 3.9│Young’s modulus measured using the common AFM indentation method 

and the new FT-AFM-M method on PDAC p53 R172H at 𝒇 = 2400 Hz (n = 50 cells).  A 

good agreement with the two methods; the points lying within y = x line of best fit.   

 

Typically, in AFM indentation measurements the probe indenter being applied to 

the cell’s surface at a set force is then retracted away instantly.  Hence these 
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measurements would be comparable to G’ values at 𝑓 = 2400 Hz, as this 

frequency corresponds closest to the time period immediately after the stress 

relaxation was first recorded.  A sample size of 50 cells were measured, compared 

and presented in Figure 3.9.  Each cell was measured with both the conventional 

procedure and FT-AFM-M measurement.  A linear relationship is clearly shown, 

confirming that the absolute values for the Young’s modulus extracted from both 

methods is essentially the same.  This confirmation eliminates the uncertainty of 

whether the analysed viscoelasticity values are representative of those estimated 

using different techniques.   

 

3.6.2 Effect of cell morphology on viscoelasticity 

The viscoelastic properties of cells could be varied by morphology, genetics or 

overexpression in a signalling pathway.  These conditions were investigated and 

discussed separately to observe any differences in the elastic and viscous 

properties.  

Firstly, we controlled the morphology of PDAC p53 R172H cells by seeding them 

onto patterned surfaces (Figure 3.10A).  These patterned cells were compared 

against cells on non-pattern surfaces.  It can be noted that mutant p53 cells 

normally stretch and spread out when in culture.  Hence, confining cells to a 

pattern would restrict both their shape and movement, possibly leading to internal 

stresses.  All cells were cultured for 4 hours, prior to FT-AFM-M measurements.   

 

 

Figure 3.10│Fluorescent images of PDAC p53 R172H cells cultured on different 

surfaces, stained for F-actin (green) and DAPI (blue).  The cells were presented in (a) 

pattern; t = 4 hours, (b) non-pattern; t = 4 hours, and (c) non-pattern; t > 18 hours.  All 

scale bars are 50 μm. 
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The cells’ viscoelastic properties changed with morphology.  When 𝑓 > 1.9 Hz, 

there was a significant difference between the rounded cells on patterned surface 

and spreading cells on non-patterned surface. There was an increase in G’ data of 

between 59–62% and also in G’’ data of about 101%, when comparing spreading 

and rounded cells (p < 0.04; Figure 3.11A and B).  This indicates that during this 

short period of culture, the rounded cells on patterns are stiffer than those that 

spread on non-patterned surfaces. Although this contradicts other findings which 

predict that a reduction in the cell shape should lead to a decrease in cell stiffness 

(Tee et al., 2011), the difference here could be due to either the length of time for 

which the cells were cultured or the curvature of the rounded pattern cell.  

Intracellular pressures defined by Laplace equations have shown that edge 

tension and curvatures can overestimate cellular pressure (stress), which in turn 

means cell stiffness is higher (Brodland et al., 2014).     

When PDAC mutant p53 cells were cultured on non-patterned surface for t > 18 

hours, the cells exhibited higher elastic and viscous moduli compared to those 

cultured for 4 hours on non-patterned surface (p < 0.0001; Figure 3.11C and D).  It 

was found for non-patterned cells cultured for more than 18 hours exhibited an 

increase of 44% in G’ values and 25–68% in G’’ values, when compared to the 

values for patterned cells that were cultured for 4 hours of culture.  Our data 

agrees with previous finding that the elastic modulus of cells increases with time 

as it spreads on a surface (Pietuch and Janshoff, 2013).  They suggest that a 

change in cell morphology coupled with change in tension, increases the elastic 

modulus as the cell spreads (and so broadens the contact area).   

In addition, as actin filaments (F-actin) are the major contributor to stiffness for its 

availability within a cell and its association with cellular contraction, the differences 

were observed between short- and long-cultured cells.  From the fluorescence 

images (Figure 3.10), F-actin was dispersed evenly across a larger surface area 

with long-cultured cells, as opposed to being localised in smaller areas as found in 

short-cultured cells on non-patterned surface.  Hence, actin stress fibre 

formulation due to large cell spreading area and increased contractile tension, 

increases the overall stiffness during the initial culture period and then stabilises 

after long periods of culture (Byfield et al., 2009; Tee et al., 2011).   

At timescales corresponding to 𝑓 < 1.9 Hz (i.e. if cells are under constant strain for 

greater than 0.08 s), it has shown that G’ for both rounded and spreading cells 
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decreases, and shows a weak dependence on the frequency (Figure 3.11A and 

C).  Using the complex modulus (Equation 3.7), we can evaluate the gradients 

with power-law exponent (𝛽). The calculated 𝛽 value for rounded cells was 0.10, 

whilst for spreading cells on non-patterned surface at short- or long-culture it was 

0.07.  The physical origin of weak power-law values could be related to 

crosslinking protein (actin filament) dynamics (Hoffman and Crocker, 2009).  The 

weaker power-law value found in the spreading cells on the non-patterned cells 

therefore indicates more unfolding and cross-linked actin filaments, which was 

corroborated well with their immunofluorescence images (Figure 3.10).  

 

Figure 3.11│Frequency sweep of the PDAC p53 R172H cells cultured on different 

surfaces (n = 50 cells), expressed as mean ± SD.  Cells (t = 4 hours) on pattern and 

non-pattern surfaces were displayed as (A) G’ and (B) G’’.  At high-end frequencies, the 

non-patterned cells were softer and fluid-like compared to patterned cells (p < 0.04), whilst 

at low frequencies, both cells exhibit similar properties.  Cells on pattern (t = 4 hours) and 

non-pattern (t > 18 hours) surfaces were displayed as (C) G’ and (D) G’’.  For t > 18 

hours, the non-patterned cells were stiffer and more liquid-like than patterned cells (p < 

0.0001).       
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Interestingly, when 𝑓 < 0.2 Hz, G’’ for the spreading cells on non-patterned 

surfaces starts to increase with decreasing frequency, although G’’ for the rounded 

cells on patterns remains the same (Figure 3.11C and D).  Since the variations of  

viscosity are related to fluid movement within cytoskeleton network/ organelles and 

the shape change (Bhat et al., 2012) and/or active dynamics, this observation 

suggests that the spreading cells might have started to change shape (or migrate) 

in response to the imposed stress at this time scale (t < 0.76 s). Furthermore, it 

appears that constraining the cell shape provides an effective means to control 

cells viscous properties.  

The PDAC p53 R172H cells have been shown to be invasive and metastatic 

(Timpson et al., 2011b).  Again, by restricting the cell shape of these cells, we may 

be able to understand the effect of mechanical behaviour change and its 

contribution towards cell remodelling and motility.  In 2-dimensional culture, cells 

were stretched out, whereas in 3-dimensional culture, cells were rounder due to 

restrictions within a matrix (Morton et al., 2010; Timpson et al., 2011b).  This 

change in morphology can modify the mechanical response, as previously 

discussed.  With the change in properties, this in turn could assist cells to move 

through tissue easily.     

 

3.6.3  Effect of deleted p53 gene on viscoelasticity 

To address how genetics can affect the viscoelastic behaviour of cells, we 

investigate the mechanical properties of PDAC mutant p53 (PDAC p53 R172H) 

and deleted p53 (PDAC p53 fl) using FT-AFM-M.  TP53 is a tumour suppressor 

gene and is also often mutated in human pancreatic cancer through missense 

mutations (changes by switching one amino acid in the chain for another) (Scarpa 

et al., 1993).  With an increase amount of mutant p53 protein, this could potentially 

lead to gain-of-function or dominant-negative behaviour within a cell.  The PDAC 

mutant p53 cells were retrieved from genetically engineered mice model for the 

study of gain-of-function activity.  

The aforementioned mutant p53 cells have been shown to exhibit invasive activity 

in an in-vitro assay and demonstrate a prometastatic function, meanwhile deleted 

p53 does not (Morton et al., 2010).  In culture, mutant p53 and deleted p53 cells 

exhibit stretched and rounded morphologies, as respectively (Figure 3.12).  In 

addition, it was shown that although the F-actin distributions for both cells were 
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similar, the mutant p53 cells dominated a larger surface area.  Both morphology 

and metastatic potential difference could contribute to the overall mechanical 

behaviour (Pietuch and Janshoff, 2013; Rother et al., 2014).   

 

 

Figure 3.12│Comparison between the cell morphology of PDAC p53 R172H and 

PDAC p53 fl cells.  The cells were stained with DAPI to show nucleus (blue) and 

phalloidin to show F-actin (green).  All scale bars are 30 μm. 

 

Over more than five decades of frequency (0.005–2400 Hz), there were significant 

differences between the elastic properties of mutant p53 and deleted p53 cells     

(p < 0.01; Figure 3.13A).  For mutant p53 cells, G’ data at 0.005 Hz was 234 ±  

109 Pa and increased steadily with frequency following a power-law with exponent           

𝛽 = 0.07.  For deleted p53 cells, G’ data at 0.005 Hz was 117 ± 55 Pa and 

increased at the same rate with frequency, hence the power-law with exponent 

were similar, 𝛽 = 0.08.  Over the five decades of frequency, the mutant p53 cells 

were 45–50% higher in G’ compared to deleted p53 cells.  The difference in elastic 

behaviour could be due to a larger spreading area of mutant p53 cells and an 

increased amount of actin stress fibres (Figure 3.12), which increased contractile 

tension.  As a consequence, the overall properties would be stiffer (Tee et al., 

2011).   

The data of Figure 3.13B show that there were no obvious differences between 

the viscous properties of both cell types at high frequencies, though differences 
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shown at low frequencies (𝑓 < 0.05 Hz).  For both cell lines, G’’ data plateaued at 

around 70–80 Pa at the high-end frequency, but interestingly, started to increase 

with decreasing frequency when 𝑓 < 0.05 Hz - the same phenomenon as observed 

in Figure 3.11.  This indicates cells could experience change in mechanical 

behaviour from a soft glassy state to a transition viscoelastic state 

(Kollmannsberger and Fabry, 2009).  During long deformation period, the mutant 

p53 cells have been shown to dissipate more energy within the cell compare to 

deleted p53 cells.  This lost energy could be related to the internal friction induced 

by cytosol movement between macromolecules.     

 

Figure 3.13│Stress relaxation carried out on PDAC mutant p53 and deleted p53 

cells (n = 50 cells), expressed as mean ± SD.  Frequency sweeps of (A) G’ and (B) G’’.  

Over the frequency range, mutant p53 cells displayed stiffer properties compared to 

deleted p53 cells (p < 0.01), while their fluid-like properties remained the same.    

 

The PDAC mutant p53 cells have been known to be invasive and malignant, while 

deleted p53 cells were non-invasive and benign (Morton et al., 2010).  Due to p53 

protein deletion, the cell morphology changed; mutant p53 cells were stretched 

and deleted p53 cells were rounded.  The viscoelastic response observed for 

these cells contradicts other studies regarding invasive and metastatic cells 

(Rother et al., 2014; Shi and Zhao, 2004).  However, the cells within those studies 

had the same morphologies as each other.  Hence, the reason for mutant p53 

(stretched) and deleted p53 (semi-rounded) cells to exhibit similar properties when 

patterned and non-patterned.   

The overview of this investigation suggests that for cells that have undergone 

genetic modification, the overall elastic properties were dominated by morphology 
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changes, whereas the viscous properties were unaffected.  With this information in 

mind, we proceeded to study how overexpression of ROCK activity could affect a 

cell’s mechanical response, when the cell morphologies were kept constant.     

  

3.6.4 Effect of ROCK activation on viscoelasticity 

Overexpression of Rho kinase in cells was investigated to understand the 

downstream effect on their viscoelastic behaviour.  The PDAC p53 fl cells were 

tagged with EGFP:ER (control) and two ROCK isoforms; ROCK1:ER and 

ROCK2:ER.  Each cell line was measured with and without 4HT treatment on 

separate days.  These cells have been shown to exhibit invasive activity with 

ROCK activation, while their cell morphologies were unchanged (Figure 3.14).   

 

 

Figure 3.14│H&E-stained sections of modified PDAC cells with 4HT treatment 

cultured on organotypic matrix (8 days) and their cell morphologies.  Activated 

ROCK cells displayed its invasiveness through the matrix whilst the control cells remain 

on the surface.  All scale bars are 100 μm. (Data obtained from Dr. Nicola Rath)  

 

The acquired viscoelastic data for each modified PDAC p53 fl cells were 

compared against EGFP:ER cells (control),  which were measured on the same 

day.  The reason for interpreting the data in this way was so that the experimental 

errors due to environmental condition could be eliminated (Lanza et al., 2010).  

Over the frequency range (0.005–2400 Hz), there were significant differences 

between the elastic property of ROCK1:ER and ROCK2:ER cells against the 

control, for both treated and untreated conditions (p < 0.0001; Figure 3.15A and 

C).  In addition, for the two ROCK isoform cells, no differences in G’ was observed 

when they were overexpressed, though the cells were dissimilar when treatment 

was not applied (p < 0.04).  Meanwhile the viscous behaviour was consistent for 
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all cells treated or untreated except for EGFP:ER -4HT, over the entire frequency 

range (p < 0.04; Figure 3.15B).    

 

Figure 3.15│Frequency sweep of the modified PDAC cells following +/- 4HT 

treatment (n = 50 cells), expressed as mean ± SD.  Over the frequency range, treated 

ROCK1:ER and ROCK2:ER cells were more compliant relative to EGFP:ER cells            

(p < 0.0001), while their viscous properties were unchanged.      

 

Focusing on untreated cells, G’ data at 0.005 Hz was 259 ± 101 Pa for EGFP:ER, 

143 ± 60 Pa for ROCK1:ER and 179 ± 74 Pa ROCK2:ER cells.  Within these cells, 

G’ data increased steadily with frequency following a power-law exponent             

𝛽 = 0.06.  G’’ values were lower than G’ values throughout the frequency 

spectrum.  Given that cells were not treated with 4HT, there should not be a 

difference between the cells’ mechanical response.  However, not only was there 

a difference among the cell lines, these cells exhibited stiffer properties compared 

to their parental cell line (PDAC p53 fl).  The difference in G’ was most noticeable 

in EGFP:ER cells, where cells doubled in stiffness.  The change in elastic 

response may be associated with the tagged fluorescent protein, due possibly to 
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an increase in lateral interaction from molecules among phospholipid chains and 

so increases stiffness (Lulevich et al., 2009). 

For treated cells, G’ data at 0.005 Hz was 185 ± 57 Pa for EGFP:ER, 94 ± 30 Pa 

for ROCK1:ER and 82 ± 33 Pa ROCK2:ER cells.  A power-law exponent was 

obtained from viscoelastic curves, giving EGFP:ER, ROCK1:ER and ROCK2:ER 

values of  0.07, 0.08 and 0.09, as respectively.  These power-law values were 

stronger compared to untreated cells, which indicate that these cells display a 

more fluid-like behaviour.  The viscoelastic behaviour of the treated cells followed 

a similar trend to the untreated cells.  This meant that it was difficult to assess 

whether there was any real reduction in G’ for overexpressed Rho kinase.   

Therefore to distinguish between the actual reductions in stiffness, we drew up the 

table below outlining the percentage of reduction between ROCK1:ER and 

ROCK2:ER against EGFP:ER cells (with and without treatment), at low-end, mid-

range and high-end frequencies (Table 3.2).  These frequencies were chosen as 

this would provide us with exact reduction in elasticity at the initial, during and t = 

30 s of stress relaxation. 

 

Table 3.2│A table to display G’ values of ROCK activated and inactivated cells at 

low, mid-range and high frequencies and their differences relative to the control 

(%).  The values in the brackets display the percentage of reduction relative to the control 

and inactivated cells.   

 
Frequency (Hz) 

Cell Type 0.005 27.24 2400 

EGFP:ER -4HT 259.09 472.06 529.62 

ROCK1:ER – 4HT 143.74 - 45% 304.34 - 36% 334.49 - 37% 

ROCK2:ER -4HT 179.17 - 31% 364.66 - 23% 397.39 - 25% 

EGFP:ER +4HT 185.48 359.25 404.47 

ROCK1:ER +4HT 
93.87 

- 49% 
(- 4%) 212.36 

- 41% 
(- 5%) 

 
250.61 

- 38% 
(- 1%) 

ROCK2:ER +4HT 
82.32 

- 56% 
(- 25%) 192.18 

- 47% 
(- 24%) 246.85 

- 39% 
(- 14%) 

 

According to the table, the actual reduction in elastic behaviour for overexpressed 

ROCK1 was between 1–5%, while overexpressed ROCK2 was between 14–25%.  

Although these findings agree with our previous outcomes, the degree of reduction 

was different.   
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The modified PDAC ROCK cells were shown to exhibit invasive properties, when 

cells were overexpressed with Rho kinase.  As the difference in cell morphology 

was not a contributing factor, it was interesting to observe the change in 

viscoelastic behaviour between the cells.  Although the mechanical behaviour for 

ROCK1:ER and ROCK2:ER changed relative to EGFP:ER, either with or without 

treatment, overall the cells were softer with overexpression of Rho kinase.  

Meanwhile the viscous portion of the cell remains constant.  This may be related to 

the modification of gene expression.  As aforementioned in the previous chapter, 

while ROCK activation promotes stable actomyosin contractile force generation, it 

was observed that there was a decrease in number of actin bundles when Rho 

kinase was overexpressed.  Therefore even if the force contraction was generated 

by the filaments present, it would be insufficient compared to the inactivated 

ROCK cells.  The FT-AFM-M findings regarding the viscoelastic properties of cells 

with differing invasiveness were in agreement with other researchers, and so in 

turn could provide a possible diagnostic tool in identifying such cells (Rother et al., 

2014).   

 

3.7 Conclusions 

We have developed a novel procedure that only requires a single measurement to 

obtain the viscoelastic properties of a cell over a wide continuous frequency 

spectrum (0.005 < 𝑓 < 2400 Hz).  By achieving over five frequency decades, we 

can better understand the mechanical changes occurring with time and in turn 

details regarding a material’s overall structure.  Biologically, we have uncovered 

that predominately pancreatic cancer cells can be described as being in a soft 

glassy state even when confinement conditions were altered.  In addition, we have 

shown that cell morphology changes both elastic and viscous behaviour within 

cancer cells, though modification of gene expression only affects the elastic 

portion.  This means that cell morphology is one major factor that contributes 

towards the mechanical properties.  In reality, the mechanical response of cancer 

cells in its physiological conditions is very complex.  Hence, further investigation to 

understand the influence of conditions such as longer indentation stressing 

periods (e.g. t > 1 minute), different substrate stiffnesses and co-culture between 

cancer and normal cells, on the cell’s viscoelasticity. 
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Chapter 4   Cancer Cell Migration 

 

4.1 Abstract 

Cancer cell migration involves the ability of cells to migrate through 3-dimensional 

(3D) extracellular matrix tissue and to overcome any steric hindrance imposed 

upon them.  These hindrances may include small spaces that are smaller than the 

cell itself.  In the past decades, there has been usage of microfluidic devices to 

mimic the physiological environment to study these cell migrations.  However, it is 

still unclear how cell mechanics and cell migration are related to each other, 

especially when the cells are physically confined or constrained.  Here, we 

developed a high-throughput microfluidic device capable to study single cell 

migration under physical and chemical stimuli.  The device was composed of two 

chambers separated by an array of microchannels of 3, 4 and 5 μm wide with 

either abrupt or tapered openings, and together at heights of 5, 8 and 15 μm.  

Various pancreatic ductal adenocarcinoma (PDAC) cells with different mechanical 

properties modulated by the deletion of p53 gene or by overexpression of ROCK1 

activity were examined using both the microfluidic devices and transwell plates, on 

their migratory behaviour.  For both invasive mutant and non-invasive deleted p53 

cells it was found that the ability of them to pass through and their cell length 

changed with the width of the channels, but remained unchanged with the channel 

openings.  Furthermore, there was no difference between migration speeds and 

cell lengths within the channel of mutant p53 and deleted p53 cells, which is 

suggestive that their cellular behaviour was similar under confinement.  

Overexpression of the ROCK1 activity was also investigated and showed an 

average reduction of 6–20% in cell length and 45–50% in migration velocity, when 

cells were under confinement.  

 

4.2 Introduction 

Cell migration is an important feature for both tissue homeostasis and pathological 

processes, particularly in wound healing, inflammation and cancer (McGregor et 

al., 2016).  By changing the cell shape and mechanical behaviour to interact with 
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the surrounding tissue structures, cells can migrate.  Conventionally, it is thought 

that cancer cells invade or metastase by individual cells detaching off the primary 

tumour site, enter the lymphatic vessels or blood stream before developing a 

seconding tumour site elsewhere (Friedl and Wolf, 2003)(Friedl and Wolf, 2003).  

However, cells can detach and migrate from primary tumour site either as 

individual cells or as collectives of cells (Friedl and Wolf, 2003).  For single cell 

migration, there are two types of cells known as mesenchymal and amoeboid, 

which follow different cancer cell invasion (Lange and Fabry, 2013).  

Mesenchymal migration is characterised by an elongated cell morphology, longer 

protrusions and strong polarity (Huang et al., 2011).  The migration process that 

occurs here involves cells becoming polarised, forming actin-rich protrusions at the 

front of the cell that then focally attach to the substrate, cell contraction, and then 

the generation of actomyosin contraction that detaches the rear of the cell 

(Paňková et al., 2010).  This procedure has been stated to be highly associated 

with the Rac pathway, which is known to regulate actin polymerisation and 

membrane protrusions (Raftopoulou and Hall, 2004; Sahai and Marshall, 2003).   

Amoeboid migration is characterised by cells having a rounded structure, being 

highly deformable, having low adhesiveness to substrates, and short thin 

protrusions (Clark and Vignjevic, 2015).  Many cancer cells follow this mode of 

migration.  This process consists of cycles of expansion and retraction of the cell 

body facilitated by contraction of the cortical actin through association with the 

ROCK pathway (Paňková et al., 2010; Sahai and Marshall, 2003).   

A third mode of migration that can be detached from the primary tumour site is 

known as collective migration.  This involves a group of cells that migrate as a 

sheet/ cluster with constant cell-cell contact (Huang et al., 2011).  Individual cells 

within the group would behave as mesenchymal migration, and so as a collection 

they would be highly polarised with movements in the direction of high stress. 

The mechanical properties of cells and substrate play an important role during 

migration (Lange and Fabry, 2013).  Cells migrate due to the imbalance between 

transmitted contractile forces generated by the cell and adhesiveness between cell 

and substrate, which would lead to a net traction force (DiMilla et al., 1991).  The 

contractile forces would increase cytoskeletal pre-stress (pre-existing tension even 

without external load), and in turn increase cell stiffness (Wang et al., 2002).  

When cells have high stiffness, this would suggest more spreading and stronger 
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contractions occurs which, overall, along with strong adhesion forces with the 

matrix would lead to slow migration.       

During mesenchymal migration in 3D, cells pull themselves through the matrix and 

push interfering fibres away by proteolysis (break down of proteins/ peptides into 

amino acids) (Parri and Chiarugi, 2010).  This migration is known to be “path 

generating”, whereby traction forces, cell polarisation and orientation have to be 

connected for strong migration (Lange and Fabry, 2013).  Meanwhile for amoeboid 

migration, cells contain low mechanical properties and weak focal adhesions so 

they can move in between the matrix (Wolf et al., 2003).  This is known as “path 

finding” as these cells squeeze through confined spaces rather than degrading it.  

Finally collective migration, this is when cell-cell interactions are strong that in turn 

would lead to weaker cell-matrix adhesions (Al-Kilani et al., 2011).  This mode of 

migration is achieved by the imbalance forces between the cells rather than the 

forces difference between cell and matrix.     

Regulation of Rho GTPases has been shown to be associated with cell migration 

(Raftopoulou and Hall, 2004).  Three members of the family include Rho, Rac and 

Cdc42, which in turn play a specific role in cell migration.  During migration, Rho 

(ROCK) regulates the actomyosin contraction, Rac regulates the actin 

polymerisation to form the peripheral lamellipodia, and Cdc42 controls both the 

actin polymerisation to form filopodial protrusions and establish cell polarity 

(Morgan-Fisher et al., 2013).   

Our study focuses on ROCK activity, which is involved in the assembly of focal 

adhesions, the regulation of contraction forces in the cell body and retraction 

forces at the rear of the cell (Raftopoulou and Hall, 2004).  Aforementioned, when 

ROCK is activated, it phosphorylates LIM kinases and in turn inactivates cofilin 

that leads to actin stabilisation.  In parallel, ROCK activation phosphorylates 

myosin and inactivates myosin phosphatase (hence again activation of 

phosphorylates myosin), together an increased level of myosin activity that would 

then combine with actin filaments, to generate actomyosin contractions.  This 

activated pathway is applied to the rear of the cell to promote cell movement via 

traction forces and detachment at the rear of the cell via retraction forces 

(Mitchison and Cramer, 1996).  Due to its inability to create membrane 

protrusions, ROCK is ineffective at the front of the cell and could pose issues, thus 
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a counter activity to inhibit ROCK would occur during cell migration (Parri and 

Chiarugi, 2010).   

Within this chapter, I evaluated the effect of cell invasiveness and overexpressed 

ROCK1 activity on single cell migratory behaviour, and how this is associated with 

their mechanical properties.  This was carried out using a conventional transwell 

assay and a high-throughput microfluidic device that contained an array of 

microchannels with different degrees of narrowness.  Together, these studies 

facilitate the understanding of the correlations between cell mechanics and cell 

migration.   

 

4.3 Materials and Methods  

4.3.1 Cells 

The cells under investigation included PDAC mutant p53 (PDAC p53 R172H), 

deleted p53 (PDAC p53 fl) cells and modified PDAC p53 fl cells tagged with 

enhanced green fluorescent-estrogen receptor protein (EGFP:ER), and 

conditionally active ROCK1-estrogen receptor fusion proteins (ROCK1:ER).  To 

overexpress ROCK activity, 1 μM of 4-hyroxytamoxifen (4HT) was added to the 

culture medium, as shown in Section 2.3.2.2. 

 

4.3.2 Transwell assay 

Cell migration was assessed using 3 μm, 5 μm and 8 μm transwell plates (Corning 

Incorporated Transwell® 24 well with polycarbonate membrane inserts.  The plates 

including inserts were rehydrated by adding 50 μl and 200 μl of warm serum-free 

media to each insert and bottom chamber, respectively.  The transwell plate was 

then incubated at 37°C for 1 hour.  After rehydration, all the media was removed 

from inserts and bottom chambers.  For each well, 200 μl of 25000 cells/ ml in 

serum-free media was added to the transwell inserts, whereas 650 μl of serum 

media (contains 10% fetal bovine serum) was added to the bottom chambers.  In 

parallel with the transwell plates, 200 μl of cell densities with 5000, 10000, 15000, 

20000, and 25000 cells/ ml were seeded into separate wells on a 24 well plate.  All 

plates were cultured at 37°C with 5% CO2 in a humidified incubator for 16 hours.  

Once incubated for 16 hours, all media were removed from all plates.  The 
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migrated cells at the bottom of the inserts and cells from the separate 24 well plate 

were washed briefly with PBS and fixed with 3.8% formaldehyde, PBS in 2% 

sucrose for 10 minutes at room temperature.  The migrated cells were stained with 

0.1% crystal violet for 20 minutes, to stain the cell membrane by detecting the 

peptidoglycans present.  To quantify the stained transmigrated cells, these were 

dissolved in 10% acetic acid for 20 minutes.  A plate reader (BioTek, Synergy HT) 

was used to measure the absorption (600 nm) of both the migrated cells from the 

transwell plate and the cells from the separate plate.  A plate with known cell 

densities was used as a standard to convert the absorption values to a cell 

number. 

         

4.3.3 Microfluidics design and fabrication 

The microfluidic device was an adaptation of that described by Rao et al., whereby 

mechanical stresses are imposed on cells when they were chemotactically driven 

into confined channels (Rao et al., 2014).  The device consists of two open 

chambers with a dimension of 14 mm in length and 10mm in width, one of which 

holds cells in 200 μl of serum-free media and the other contains 200 μl of serum 

media alone (Figure 4.1).   

 

 
Figure 4.1│Schematic drawing of (A) the microfluidic device, (B) plane view of 

tapered and abrupt channel openings, and (C) the side profiles of the symmetric 

and asymmetric narrow channels.  (D) A table outlined to show the dimensions of 

the confined channels and including the total area in which cell migrate through.  
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The difference in serum composition or concentration will chemotactically drive the 

cells between the two chambers.  These two chambers were connected by 600 

microchannels of 3 μm, 4 μm and 5 μm widths with tapered and abrupt channel 

openings.  The heights of the channels were also varied between 5–15 μm.  The 

spacing between the adjacent channels was 15 μm in width, due to the typical cell 

size used within our studies was 10–15 μm.     

The stated design was drawn up in L-Edit program, and printed onto a chrome 

photomask for photolithography.  Contact photolithography was used to generate 

a patterned SU-8 (MicroChem Corp) layer of 5 μm, 8μm or 15 μm thickness on a 

silicon (Si) wafer, corresponding to the desired height of the microchannels (Table 

4.1).  The Si wafer was washed with acetone, methanol and isopropyl alcohol 

(IPA), each for 5 minutes in an ultrasonic bath; to remove any dust particles that 

could prevent resist from adhering or to cause any imperfections on the surface 

once coated with resist of functional chemical species.  In between each wash the 

wafer was fully dried using a nitrogen gun.  The SU-8 3000 series negative 

photoresist was spin-coated onto the Si wafer, and soft-baked at 95°C.  The 

substrate was then placed in the MA6 mask aligner (detailed conditions in Section 

3.5.3) along with the photomask, to expose the resist with the desired pattern.  

Post exposure, the wafer was heated again at 95°C, to accelerate the SU-8 

polymerisation and crosslinking process.  For development, microposit EC solvent 

was used, followed by rinsing with IPA.  The developed surface was fully dried 

using nitrogen gun before checked under an optical microscope.  To further 

crosslink the remaining resist and so minimise the risk of damage when used as a 

PDMS soft lithography mold, the developed pattern wafer was hard-baked at 

120°C for 2 hours.  

 

Table 4.1│A table outlining the pre-bake, exposure, and post-bake parameters used 

to achieve optimal thickness.  

Thickness 
(μm) 

SU8 
coating 

Spin speed 
(rpm) 

Pre-bake 
Exposure 
time (s) 

Post-bake 

5 3005 4000 2 min 20 3 min 

7 3005 2000 3 min 50 3 min 

8 3010 4000 8 min 30 3 min 

15 3010 1000 15 min 40 3 min 
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Once the microchannels were created, the remainder of the device was made to 

be 15 μm in height.  This meant that to achieve the final structure, the 5 μm and    

8 μm patterned features had to be accurately aligned in several, successive, 

photolithographic processing steps.  For each patterned layer, the surface was 

observed using profilometer (Dektak), to measure whether the desired thickness 

had been achieved.  The developed silicon wafers were hard baked between 

processes, and finally baked to be used in soft lithography.   

The patterned silicon wafers were silanized by immersion in 1% 

trichloro(1H,1H,2H,2H-perfluorooctyl)silane in heptane for 10 minutes at room 

temperature (covered).  This procedure was to help with removal of the PDMS off 

the silicon mold, by creating a hydrophobic surface.  The PDMS devices were 

made using a ratio of 10:1 PDMS oligomer to curing agent (Sylgard 184; Dow 

Corning).  The oligomer and curing agent was evenly mixed, and poured onto the 

silanized silicon mold.  The mixture was degassed under a vacuum and baked for 

2 hours at 70°C.   

The cured devices were peeled from the silicon mold, and along with glass 

coverslip slides (Thermo Scientific) were washed with acetone, methanol and IPA, 

each for 5 minutes in an ultrasonic bath.  To complete the microfluidic devices, the 

two cleaned surfaces were permanently bonded using oxygen plasma treatment 

for 40 seconds with 80 W RF power (Gala Instruments Plasma Prep 5).  The 

treated surfaces were pressed together and baked for 5 minutes at 70°C, to 

complete the seal. 

 

4.3.4 Cell loading and imaging in microfluidic device 

The fabricated devices were oxygen plasma treated (Diener electronic Zepto) for 

60 seconds with 80 W, prior to cell seeding.  This was done so that the surfaces 

were hydrophilic enough for capillary action (ability for liquids to flow through 

narrow spaces without the assistance from any external forces) to take place, 

when cells were seeded into the devices.  A cell density of 200000 cells/ml was 

made in serum-free media and 50 μl of this suspension was added straight into the 

plasma treated device.  Using an optical microscope, it was possible to observe 

the cells being positioned at the openings of the channel tapers.  Once most of the 

channels were filled with a single cell, we add 50 μl of 10% serum media to the 
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other chamber; to aid migration.  This set-up was cultured at 37°C with 5% CO2 in 

a humidified incubator for 2 hours for cells to settle and attach.   

An additional 150 μl of serum-free and serum media was added to the chamber 

with cells and the one without respectively.  Cell migration in the devices was 

observed under Zeiss AxioObserver microscope coupled with a DU885 iXon CCD 

digital camera (Andor Technology).  Using AxioVision software (Zeiss), we took 

images vertically along the device capturing every channel, with 20x, 0.5 NA 

objective lens.  The cells were kept under culturing conditions, whilst time-lapse 

images were taken every 5 minutes for 10 hours, to observe cell migration.     

The captured images were processed using ImageJ software (open source), to 

analyse the number of cell migrated in to the channels, cell lengths within confined 

channels at 2, 6 and 10 hour period.  In addition the migration velocities were also 

obtained of cells migrating over the 10 hours.   

 

4.4 Results and Discussion 

4.4.1 Invasiveness versus cell migration ability  

A transwell assay is one of the most commonly used methods to study cell 

migration according to their chemotactic behaviour (Decaestecker et al., 2007).  

Here, we have used this simple migration technique to evaluate the potential of 

PDAC cells to migrate through constrained spaces.  These results were later 

compared against the data obtained in the microfluidic devices.     

By using PDAC mutant 53 and deleted p53 cells, we measured the number of 

cells that migrated through 3, 5 and 8 μm pore filters.  The main difference 

between the two cell lines were their morphologies and metastatic potential.  The 

invasive mutant p53 cells have an elongated morphology and tend to be invasive 

via single cell migration (Figure 4.2A) (Morton et al., 2010).  Meanwhile non-

invasive deleted p53 cells, their morphologies were semi-rounded and grew in 

colonies, which meant that these cells could migrate as a collective (Figure 4.2).  

Prior to quantifying the transwells, DIC images were taken (according to Section 

2.3.4 procedure with 20x 0.5 NA objective) so correlation between the cell 

numbers could be made.  
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Figure 4.2│Percentage of migrated cells (PDAC mutant p53 and deleted p53) passed 

through various pore sizes.  Images displayed of (A) mutant p53 and (B) deleted p53 

cells on 8 μm transwell.  All scale bars are 50 μm.  (C) Percentage of migrated of both 

cells on 3, 5, and 8 μm transwell (n = 6 wells), expressed as mean ± SD.  Less migration 

was observed with deleted p53 cells compared to its counterpart at 8 μm pore (p < 

0.0001), though no difference in 3 μm and 5 μm pore sizes.     

 

Using quantitative staining analysis, it was found there was no significant 

difference between the percentages of migrated cells for mutant p53 cells and 

deleted p53 cells when using 3 μm and 5 μm transwells.  However, for 8 μm 

transwells more mutant p53 cells migrated compared to deleted p53 cells (p < 

0.0001; Figure 4.2C).   

Percentage of migrated mutant p53 and deleted p53 cells were 13 ± 7% and 9 ± 

7% for 3 μm transwells; 9 ± 2% and 15 ± 3% for 5 μm transwells and 16 ± 4% and 

50 ± 9% for 8 μm transwells.  These trends were also observed with the acquired 

images of transwell plates (Figure 4.2A and B).   

As mutant p53 cells were longer in size and migrate alone, they could pass 

through the pores easily, whereas deleted p53 cells were rounder and move as a 

cluster, which could hinder migration.  These findings was similar to other studies, 

whereby single cells were more motile than those involved in sheet/ cluster 

migration (Clark and Vignjevic, 2015; Friedl and Gilmour, 2009).  At smaller pore 

sizes there were no differences; this might be due to a similarity in nucleus size for 

both cell lines (measurements later discussed).   
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The transwell assay was also carried out on modified PDAC cells with EGFP:ER 

and ROCK1:ER cells, to investigate the effect of overexpression of ROCK1 activity 

has on cell migration  through confined pores. Increased ROCK1 activity has been 

shown to increase cell invasion through collagen matrices (see Section 3.6.4). The 

results showed that overexpression of ROCK1 activity lead to a significant 

decrease in the percentage of migrated cells through all pore sizes (Figure 4.3). 

 

Figure 4.3│Percentage of migrated cells (EGFP:ER and ROCK1:ER) passed through 

various pore sizes (n = 6 wells), expressed as mean ± SD.  There was a significant 

decrease in number of migrated cells when ROCK1 activity was overexpressed, though 

these were also view in the control.   

   

The percentage of migrated cells decreased from 34% to 25% in the 3 μm 

transwells, from 42% to 18% in the 5 μm transwells and from 49% to 25% in the   

8 μm transwells.  Meanwhile, the EGFP:ER cells exhibited similar tends to the 

overexpressed ROCK1:ER cells, excluding 3 μm pore size, where only ~ 20% of 

cells migrated.      

These observations regarding ROCK activity were in agreement with other studies 

that were experimented on the counter argument (Yang and Kim, 2014; Zhang et 

al., 2011b).  Proliferation and migration increases with ROCK inhibition due to 

disrupted cell junctions along with a loss of integrins from the membrane.  This 

means with ROCK activation, actomyosin contraction and the formation of focal 
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adhesions increase, which in turn creates an imbalance between cell-generated 

forces and the surface (Kole et al., 2004; Lange and Fabry, 2013).  Thus, a 

smaller number of migrated cells would pass through the same pore size.   

To summarise, it has been shown that cell migration through restricted pore sizes 

is dependent on cell morphology and whether isolated or in a group. 

Overexpressed ROCK1 activity has shown to reduce the number of migrated cells 

at the same pore size, which may be due to cells undergoing cellular stress along 

with increased number of focal adhesions, which subsequently impedes on cell 

movement.   

 

4.4.2 Cell migration through microfluidic device  

5.4.2.1 Characterisation of devices  

Microfluidic devices have become a useful tool in cancer research, due to the 

ability to better control the cellular microenvironment when compared to 

conventional cell migration assays.  Here, we propose a device whereby we 

observe how cells adapt their shape and migrate through microchannel openings 

and confined spaces, under a chemotactic gradient.  

Prior to cell studies, the device was characterised to see whether a chemical 

concentration gradient could be established across the microchannels.  This was 

done by investigating the diffusion of 25 μM fluorescein in PBS towards blank 

PBS, over 10 hours (the duration of the cell migration studies).  Fluorescein has 

been used a fluorescent tracer and can measured using a fluorescence 

microscope (details in Section 2.3.4; similar to phalloidin stain).  The acquired 

images were processed in ImageJ software, to observe the intensity profile across 

the microchannels, over the time period.   

The intensity profile across the microchannel with 5 μm and 8 μm height showed a 

steady decrease in profile from the fluorescein solution towards blank PBS, with a 

gradient of -0.13 arbitrary unit/ μm (Figure 4.4A and B).   

Note, although the 15 μm high microchannels did display steady a profile, this was 

only established after the initial 2 hours (Figure 4.4C).  However, this may be due 

experimental errors as the initial curve is similar to the later acquired curves, 

excluding 1 hr and 2 hr curves.  The gradient in these channels was significantly 

smaller at -0.06 arbitrary unit/ μm (a.u./ μm). 
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Figure 4.4│Chemical gradient established over a 4 μm microchannel of various 

heights using fluorescein and PBS, over 10 hours.  The heights of the microchannels 

include (A) 5 μm, (B) 8 μm and (C) 15 μm.    

 

Although fluorescein has shown to establish a steady gradient, this is different to 

the chemoattractant (serum) used.  According to Fick’s law of diffusion (the 

diffusion flux is proportional to the concentration gradient) an increase in molecular 

weight of molecules can increase the diffusion coefficients.  Fluorescein has a 

molecular weight of 332.31 g/mol (Sigma Aldrich datasheet), whilst serum has a 

molecular weight of 66.12 g/mol (Sigma Aldrich datasheet).  Therefore diffusion 

would occur faster with the chemoattractant compared to our test sample.   

Using the calculated gradients above, I can work out whether the channel widths 

have an effect on the chemical gradient (Figure 4.4 and Table 4.2).  According to 

the table, there is minimal difference between the chemical gradients in different 

channel widths, for each channel height device.  These findings show that the 

microchannels were clear, however, it is possible that channels can be blocked 
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(i.e. cells).  If this occurs, this would cause the chemical gradient to be 

unbalanced; as the cell would only exhibit no chemical or chemical environments.         

 

Table 4.2│A table outlining the calculated chemical gradient for each channel 

dimension.   

 

Chemical gradient (a.u./ μm) 

 

3 μm 4 μm 5 μm 

5 μm -0.10 -0.13 -0.17 

8 μm -0.10 -0.13 -0.17 

15 μm -0.05 -0.06 -0.08 

 

Once we understood that a chemoattractant gradient could be established, we 

decided to carry out an initial study on the 15 μm height device, to see whether 

mutant p53 cells would migrate into the channels via tapered and abrupt openings.  

As seen from the images recorded over 5 hours, it was a proven success that the 

cells travelled through the microchannels with both channel openings (Figure 4.5).  

Although from the images, we was noticed that our cells travelled at a very slow 

rate, henceforth longer cell migration studies were required in order to understand 

the cell’s migratory behaviour.    

    

 

Figure 4.5│Time-lapse images of PDAC mutant p53 cells travelling through 3 μm x 

15 μm microchannels, over 5 hours.  Red arrows indicate the movement of cells 

through the channel.  Cells passed through (A) tapered and (B) abrupt openings.    
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Here, I have shown that a steady fluorescein gradient was established in all the 

microfluidic devices for over 10 hours.  This indicates that by applying serum-free 

and serum media to the channel, a chemotactic gradient could be present. 

 

5.4.2.2 Effect of microchannel openings on cell migration 

The PDAC mutant p53 and deleted p53 cells were placed in the microfluidic 

devices, to investigate the effect of geometry of the microchannel openings and 

confined spaces on cell migration.  From the cell migration experiments, the 

number of migrated cells into the channels, the length of cells and the migration 

velocity were obtained.  The cell lengths were measured at 2, 6, and 10 hour 

intervals.  To understand whether the collected measurements at different times 

had an effect on the final values, we gathered data from the smallest and largest 

cross sectional area of the channels, for both mutant p53 and deleted p53 cells.  

The reason to use both cell lines was due to their difference in morphology that 

could be associated with the cell length measurements (Figure 4.6).  The surface 

area of the cells was measure from optical images using ImageJ software.  The 

average surface area for mutant p53 cells was 430.14 ± 75.20 μm2 (n = 12 cells), 

whereas 272.88 ± 69.59 μm2 (n = 12 cells) for deleted p53 cells.  

 

Figure 4.6│Effect acquired extended length measurements carried out on large and 

small cross sectional microchannels at different times (n = 3 devices), expressed as 

mean ± SD.  Two type of cells used; (A) PDAC mutant p53 and (B) deleted p53 cell.  

Although the measurements for different times were insignificant, a decrease in cross 

sectional area increases the extended lengths.     
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According to the results, there was no significant difference between the data 

collected at different time points from either small or large cross sectional area of 

the microchannel.  This meant that it was not necessary to measure cells at 

different time points.  Henceforth, all the measured cell lengths from the different 

time points were collected together and discussed as one, in these cell migration 

studies.  

Now, here we can investigate the effect of physical stimuli (microchannel 

openings) have on cell migration.  Tapered and abrupt openings were used, as 

these two covered the extreme geometries to stimulate cells at the interface of the 

microchannels.  For these discussions, we compare the effect on cells in 5 μm and 

15 μm high microchannels; showing both extremes of the dimensions created.   

The results showed that there was no significant difference between the openings 

of microchannel in both cell lines in 15 μm high microchannels (Figure 4.7).  In 

addition, it was noticed that there was no statistical difference between the two cell 

lines due to the large distributions.   

 

Figure 4.7│Comparison between PDAC mutant p53 and deleted p53 cells  moving 

into tapered (T) and abrupt (R) channel openings in 5 μm (A) and 15μm (B) height 

channels with three different channel widths (i.e. 3, 4, and 5 μm), expressed as 

mean ± SD from n = 3 devices.  On average there are less deleted p53 cells occupied in 

the microchannel as oppose to its counterpart.  No significant difference between the two 

channel openings against cells.       

 

For 5 μm high microchannels, due to the lack of data collected for this dimension, 

we were unable to do any statistical analysis. However, more cells migrated into 

15 μm high microchannels, as oppose to 5 μm high ones.  In the 5 μm high 
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microchannels, the average percentage of cell occupancy was between 1–10%   

(n = 806 cells) for mutant p53 cells, whereas the average percentage of cell 

occupancy was between 0–2% (n = 1807 cells) for deleted p53 cells.   

In the 15 μm high microchannels, the average percentage of cell occupancy was 

between 7–22% (n = 1909 cells) for mutant p53 cells, whereas the average 

percentage of cell occupancy was between 7–15% (n = 2689 cells) for deleted p53 

cells.  Although there was no statistical difference, the averages of the two cell 

lines suggest that mutant p53 cells migrate more easily through narrow channels.  

This can be explained by observations of the cell size and the ability for mutant 

p53 cells to squeeze through narrow microchannels (Lautscham et al., 2015).   

Once cells have entered into the microchannel through the opening provided, we 

can observe how cell length could have been affected by the geometry of the 

opening (Figure 4.8).   

 

Figure 4.8│Comparison between channel openings and extended lengths (PDACs) 

generated within the channel (n = 3 devices), expressed as mean ± SD.  No statistical 

difference between channel openings and cell length in (A & B) 5 μm and (C & D) 8 μm 

heights, though there were difference shown in channel widths. The cells used were (A & 

C) PDAC mutant p53 and (B & D) deleted p53 cells. 
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According to the data, it showed that there was no statistical difference between 

the two types of opening, for 5 μm high microchannels.  In the 5 μm high 

microchannels, the average cell length was between 43–61 μm (n = 119 cells) for 

mutant p53 cells, whereas the average cell length was between 26–36 μm (n = 25 

cells) for deleted p53 cells.  These results showed that the cell lengths were 

different between mutant p53 and deleted p53 cells, under confined spaces.  This 

could be explained by the cell’s morphology; mutant p53 cells exhibit an elongated 

shape that contains a larger surface area and hence large cell volume.  Therefore, 

mutant p53 cells would have needed to stretch more to maintain their volume in 

these confined spaces.   

Although there was no difference between the channel openings, there was a 

significant difference between some of the channel widths for both cells in the     

15 μm high channels (p < 0.02).  These differences were mainly observed in 

channels with wide dimension; 4 μm and 5 μm.  Discussion on the correlation 

between changes in channel dimensions to cell migratory behaviour will be 

reviewed later.   

The cell migration velocities were calculated based on the overall distance a single 

cell travelled over a period of time (Figure 4.9).  It was observed that cells could 

have travelled continuously for the entire 10 hours, although majority of the cells 

were stationary for some of the time.  This effect has been shown in breast, 

prostate and colon carcinoma cells that alternate between motile and stationary 

phases as they migrate through 3D collagen (Niggemann et al., 2004).   

Cell migration velocities were shown to be unaffected by channel openings in both 

cell lines and microchannel heights.  In the 5 μm high microchannels, the average 

migration velocity was between 0.20–0.30 μm/ min (n = 47 cells) for mutant p53 

cells, whereas the average migration was between 0.20– 0.39 μm/ min (n = 17 

cells) for deleted p53 cells.  Meanwhile, in the 8 μm high microchannels, the 

average migration velocity was between 0.31–0.42 μm/ min (n = 167 cells) for 

mutant p53 cells, whereas the average migration velocity was between 0.24–   

0.40 μm/ min (n = 198 cells) for deleted p53 cells.  

The findings here suggest that the migration velocities were not affected so much 

by channel widths, but more by channel heights.  In the literature, it has been 

shown that cells reduced in cell velocity as dimensions were reduced from 50 μm 

to 3 μm widths with a channel height of 10 μm (Tong et al., 2012).  These trends 
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were also seen when cells had a channel height of 3 μm and the widths reduced 

from 25 μm to 6 μm (Irimia and Toner, 2009).  However, when the channel height 

was 12 μm, cell motility was not affected by channel width.  This suggests that 

migration velocities are highly dependent on the cross-sectional aspect ratio of the 

confined space, although it remains unclear whether velocities are dependent on 

channel height, width or the overall cross sectional area difference.  If our data 

displayed the volume of the cells had filled the different aspect ratio of the 

microchannels, the migrated velocity could change according to the amount of cell 

contact to the glass substrate (later discussed in detail).   

 

Figure 4.9│Comparison between channel openings and the cell lengths (PDACs) 

generated within the channel (n = 3 devices), expressed as mean ± SD.  No statistical 

difference between channel openings, and widths on cell velocity in (A & B) 5 μm and (C 

& D) 8 μm heights.  The cells used were (A & C) PDAC mutant p53 and (B & D) deleted 

p53 cells. 

 

Within this subsection, we have shown that channel opening did not affect cell 

migration properties, though they can inhibit cell migration into the channels.  

Henceforth, the datasets from the two channel openings were collected together 
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and discussed as one.  We have shown that there could be a possible 22% 

increase in cell migration into the channels for both mutant p53 and deleted p53 

cells when going from 5 μm to 15 μm channel heights.  This can be explained as 

migrating properties can be altered according to the cell contact ratio between 

glass and PDMS (Figure 4.1C).  The aspect ratio of the microchannels can be 

defined by the contact ratio.  If the contact area was glass >> PDMS, cells could 

spread out on the substrate forming stronger focal adhesions, which could lead to 

slow migration.  On the other hand, if contact area was glass << PDMS, cells 

could not spread onto the surface, hence weaker focal adhesions, which could 

lead to faster cell migration.  Another explanation could be associated with the cell 

nucleus.  There has been an indication that cell nucleus was the main component 

that undergoes steric hindrance, hence without a change in its mechanical 

behaviour, it can prevent migration of cells occurring in confined spaces 

(Lautscham et al., 2015).   

 

5.4.2.3 Effect of cross sectional area on cell migration 

To address the effect of channel dimensions on cell migration behaviour, we 

created a range of confined channels with cross sectional areas ranging between 

15–75 μm2.  These dimensions were chosen to provide a difference between 

confinement and non-confinement both across and above the cell body.  As 

aforementioned, the nucleus is the main component within the cell that has to 

undergo confinement and hence, prior to cell migration studies, we measured the 

heights and widths of the nuclei for the various cell types studied.   

For nuclei height measurements, both mutant p53 and deleted cells were cultured 

and measured using atomic force microscopy.  This was carried out by observing 

the difference in piezo movement from the surface to the apex of the nucleus.  A 

sample size of 150 cells was measured for each cell line.  The average height was 

6.36 ± 2.22 μm for mutant p53 cells and 6.98 ± 1.88 μm for deleted p53 cells.   

To measure the width of the nucleus, the cells were fixed and stained with DAPI, 

so the nucleus can be visible using fluorescence microscopy.  The cells were 

exposed for 0.3 seconds and an image captured at 40x, 0.75 NA objective (details 

in Section 2.3.4).  Five captured images were analysed using ImageJ software, to 

measure the smallest distance across the span of the nucleus.  The average 
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nucleus width measured was 10.97 ± 1.49 μm for mutant p53 cells, whereas it was 

9.73 ± 1.15 μm for deleted p53 cells.   

Overall this means that the average cross sectional are these cells would be 69.77 

± 3.31 μm2 for mutant p53 cells and 67.92 ± 2.16 μm2 for the deleted p53 cells.  

Therefore channel dimensions of 15 μm heights with 4 and 5 μm widths may not 

strongly confine the cells, although they could be restricted in one or other 

dimension.      

Firstly, we discuss the effect of the channel dimensions on the percentage of 

migrated cells in the narrow channels.  For both cell lines, there was a decrease in 

number of cells that migrate into the channels as the channels become narrower 

(p < 0.004 for deleted p53 cells and p < 0.01 for mutant p53 cells; Figure 4.10).   

 

Figure 4.10│Comparison between cell occupancy (PDAC p53 cells) in 

microchannels against its cross sectional area (n = 3 devices), expressed as mean 

± SD.  A gradual decrease in cell occupancy as channels gets narrower (p < 0.004 for 

deleted p53 and p < 0.01 for mutant p53 cells).  The mutant p53 cells tend to migrate into 

the narrow channels more than its counterpart cells.  

 

This has been suggested to be related with the nucleus, whereby it requires 

deformation in an elongated manner (Lautscham et al., 2015).  As the cross 

sectional area of the channel decreases, the ability for cells to deform in such 
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manner decreases too, thus hindering cells entering the opening of the 

microchannel.   

The mutant p53 cells were shown to migrate into the channels more than the 

deleted p53 cells (p < 0.01).    These observations made here were in agreement 

with the transwell study.  However, with use of the microfluidic device and the 

guided openings, we can detect a difference between the cells here as oppose to 

the transwell data. 

Once the cells have migrated into the channel, it has been shown that the 

measured cell lengths within the channels were affected by channel size.  In both 

cell lines, an increase in cell lengths was observed when channel sizes were 

decreased (Figure 4.11).  This meant that as the channels became narrower the 

cells could have sensed the substrate confinement and in turn rearranged their 

cytoskeleton.  This elongated morphology was said to be related to generation of 

active actomyosin forces to maintain the cytoskeletal structure, through 

microtubules (Nasrollahi and Pathak, 2016).   

 

Figure 4.11│ Comparison between cell length (PDAC p53 cells) in microchannels 

against its cross sectional area (n = 3 devices), expressed as mean ± SD.  A gradual 

increase in cell lengths with decrease channel size.  The mutant p53 cells tend to 

elongate along the narrow channels more than deleted p53 cells.   
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Due to the large distributions between the datasets, there were no statistical 

differences between the two cell lines.  However, from the optical microscopy 

observations we can see that mutant p53 cells elongate more than the deleted p53 

cells.  Both statements can be explained by the difference in cell size.  If we 

consider the nucleus alone, both cells have similar dimensions, hence their 

squeezing ratio (cross section area of non-deformed nucleus against cross 

sectional area of confinement space) would be the same as the channel sizes 

were reduced.   

On the other hand, if we consider the cell as a whole, mutant p53 cells (surface 

area = 430.14 ± 75.20 μm2; n = 12 cells) have a cell size larger than deleted p53 

cells (surface area = 272.88 ± 69.59 μm2; n = 12 cells). These larger cells require 

more elongation to enter into narrower confinement compared to smaller cells 

(Khan and Vanapalli, 2013).   

Finally the migration velocities were studied against the channel sizes.  From the 

results, it was shown that there was no difference between the migration velocities 

of cells as the channel size decreases (Figure 4.12).   

 

Figure 4.12│ Comparison between migration velocity of PDAC p53 cells in 

microchannels against its cross sectional area (n = 3 devices), expressed as mean 

± SD.  No statistical difference between migration velocity and the channel size, in both 

cell lines.   
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This trend was observed in both cell lines.  The migration velocities are said to be 

dependent on cell stiffness, nuclear volume, cell adhesiveness and contractility 

(McGregor et al., 2016).  With this in mind, our results indicate that both mutant 

p53 and deleted p53 cells may be exhibiting similar cellular behaviours, under 

confinement.  The average migration velocity for the cell lines were between 0.23–

0.53 μm/ min.  These low speeds suggests that cells were migrating on stiff 

substrates (PDMS, E = 1.77 MPa; glass, E = 70 GPa), hence having a larger 

spreading area and in turn more focal adhesions on the each cell (Lange and 

Fabry, 2013; Lautscham et al., 2015).   

To summarise, I have shown that channel dimensions could affect both the degree 

of cell movement and elongation through narrow channels.  These factors have 

been shown to be associated with the size of the nucleus and its ability to squeeze 

through microchannels.  As there was no statistical difference between the mutant 

p53 and deleted p53 cells, it has also been noted that their cellular behaviour 

could be similar during confinement.   

 

5.4.2.4 Effect of overexpressed ROCK on cell migration  

Overexpression of ROCK1 activity was investigated to understand its effect on the 

mechanical and migratory properties when cells undergo confinement.  Cells were 

only examined in 15 μm channel height devices, as it had been found that more 

cells migrated into these channels.  Furthermore, this would provide a larger 

sample size for the study, and gain a better overview of any differences between 

the cells.  As aforementioned, a cell’s migratory behaviour has been shown to be 

dependent on the channel size and thus 3, 4 and 5 μm channel widths are also 

addressed in the discussion.   

For ROCK1:ER cells to overexpress ROCK1 activity, estrogen treatment of the 

cells for more than 18 hours is required.  For this reason, cells were cultured in 

estrogen treatment a day prior to cell migration studies, and kept under treatment 

during the time-lapse imaging.  As a control, this procedure was also carried out in 

a similar manner for EGFP:ER cells.       

Firstly, we observe the effect of overexpression of ROCK1 activity on the number 

of cells that entered into the channels.  It was shown that no significant difference 

between estrogen treated and untreated cells in both EGFP:ER and ROCK1:ER 
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cells (Figure 4.13).  In addition, there was no difference between the channel 

widths against any of the cells measured.  However, there were two statistical 

differences observed with EGFP:ER -4HT cells at 3 μm channel against 

ROCK1:ER -4HT cells at 4 μm (p < 0.04) and at 5 μm (p < 0.02). 

The average percentage of cells that occupied a microchannel was 7–13%          

(n = 1840 cells) for EGFP:ER -4HT cells, whereas the average percentage of cell 

occupancy was 10–14% (n = 2114 cells) for EGFP:ER +4HT cells.  Meanwhile, for 

ROCK1:ER -4HT cells the average number of cells that occupied a microchannel 

was 11–16% (n = 1957 cells) and 10–13% (n = 2044 cells) for ROCK1:ER +4HT 

cells.  These values were compared to parental (deleted p53) cells, and it was 

noticed that the percentage of cells occupying a channel were very similar.    

 

Figure 4.13││Comparison between EGFP:ER and ROCK1:ER in relation to cell 

occupancy within a microchannel following estrogen treatment (n = 3 devices), 

expressed as mean ± SD.  No significant difference between numbers of cells entered 

into the microchannels and treatment to cells.     

 

These findings contradict the data that was collected in the transwell assay, which 

indicated a difference between over and normal expression of ROCK1 activity; in 

particular there was a decrease in the number of migrated cells.  This may be due 

to cell-cell interaction prior to entering the pores in the transwell plates, meanwhile 
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no cell-cell interaction present prior to entering the channels in microfluidic devices 

(see Figure 4.5) (Lee et al., 2012).     

Once cells have entered into the channel, these migrate towards the serum media 

in the opposite chamber.  As the cells fill the channel, measurement of their 

lengths were obtained.  The results showed that for each of the cell lines, there 

was no significant difference in cell length for different channel widths.  However, it 

was noticed that there was a statistical difference between the estrogen treated 

and untreated for in both cell lines (p < 0.0001; Figure 4.14).   

The average cell length was 19–22 μm (n = 734 cells) for EGFP:ER -4HT cells, 

whereas the average cell length was 14–16 μm (n = 758 cells) for EGFP:ER +4HT 

cells.  Meanwhile, the average cell length was 17–20 μm (n = 793 cells) for 

ROCK1:ER -4HT cells, whereas the average cell length was 16 μm (n = 725 cells) 

for ROCK1:ER +4HT cells.  It was shown that an average reduction in cell length 

between untreated and treated cells was ~ 26.5% and 6–20% for EGFP:ER and 

ROCK1:ER cells, as respectively.   

 

Figure 4.14│ Comparison between EGFP:ER and ROCK1:ER in relation to cell 

lengths within a microchannel following estrogen treatment (n = 3 devices), 

expressed as mean ± SD.  A reduction in cell length in both EGFP:ER and ROCK:ER 

cells following treatment (p < 0.0001). 
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As aforementioned, ROCK activation in cells leads to actomyosin contraction and 

in turn causes change in cell morphology to a rounded state (Kole et al., 2004; 

Lochhead et al., 2010).  This is in agreement with the observation seen for 

overexpressed ROCK1:ER cells, as the morphology changes to a smaller size that 

in turn would occupy a smaller area (length) within the channel.  As EGFP:ER 

cells followed similar trends to ROCK1:ER cells, it could be thought that EGFP:ER 

cells may have undergone overexpression too.  This was also noticed in 

viscoelastic measurement of these cells, as EGFP:ER changed its viscoelastic 

behaviour after estrogen treatment in a similar way to the ROCK1:ER and 

ROCK2:ER cells (Section 3.6.4).       

Overexpression of ROCK1 activity has been shown to significantly decrease 

migration velocities as they move through confined channels (p < 0.01; Figure 

4.15).  Meanwhile, there was no difference between treated and untreated 

EGFP:ER cells.  Again, the channel widths were not affected by any cell lines.   

The average migration velocity was 0.27–0.37 μm/ min (n = 198 cells) for 

EGFP:ER -4HT cells, whereas the average cell migration velocity was 0.18–    

0.31 μm/ min (n = 30 cells) for EGFP:ER +4HT cells.  Furthermore, the average 

cell migration velocity was 0.54–0.66 μm/ min (n = 151 cells) for ROCK1:ER -4HT 

cells, whereas the average cell migration velocity was 0.27–0.36 μm/ min (n = 28 

cells) for ROCK1:ER +4HT cells.  An average reduction in migration velocity by 

45–50% was observed due to overexpression of the ROCK1 activity. 

Although our mechanical data showed overexpression of ROCK1 activity leads to 

a decrease in elastic behaviour, which would suggest enhanced ability for cells to 

squeeze through confined spaces (Rolli et al., 2010).  These observations were 

not found in our migration studies, as overexpressed ROCK1 has been shown to 

reduce motility.  These findings are in agreement with other studies that showed 

the counter argument that ROCK inhibition increases cell motility, due to up-

regulated Rac1 activity (Kümper et al., 2016; Lange and Fabry, 2013; Yang and 

Kim, 2014).  This has been thought to be associated with the disruption of cell 

junctions and produce less membrane protrusions; lamellipodia.  

 

   



  

114 
 

 

Figure 4.15│ Comparison between EGFP:ER and ROCK1:ER in relation to migration 

velocity within a microchannel following estrogen treatment (n = 3 devices), 

expressed as mean ± SD.  Overexpression of ROCK1 activity displayed a decrease in 

migration velocities (p < 0.01). 

 

Within this subsection, I have shown that overexpression of ROCK1 activity 

reduces both cell length and migration velocity, under confined space.  

Overexpression of ROCK1 activity has been shown to lead to cell contraction, thus 

the reduction in cell size that was observed in the reduction of cell length in the 

channels.  Furthermore ROCK1 activity has been shown to inactivate Rac1 activity 

and in turn fewer membrane protrusions, leading to a slow migration speed (Yang 

and Kim, 2014).          

 

4.5 Conclusions 

We have developed a high-throughput microfluidic platform, to investigate 

mechanical and migratory behaviour of various cells.  The advantages of this 

device include ability to screen a large sample size, and to acquire real-time 

imaging of cell migration through chemical and physical stimuli.  The results 

showed that the migratory properties of PDAC mutant p53 and deleted p53 cells 

were unaffected by the geometry of channel openings, though changed with 
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channel cross-section dimensions.  As the channels got narrower, this reduced the 

cells ability to migrate through the channels, and when in the channels, the cells 

required more deformation to travel through them.  In addition, it was found that 

there was no difference between the migration properties of mutant p53 and 

deleted p53 cells, which could indicate that their cellular behaviour was similar 

under confinement.  Alongside, this study, we observed that overexpression of 

ROCK1 activity showed a reduction in cell motility and size within the 

microchannels.  These findings were in agreement with the transwell assays, 

although the microfluidic devices provided us with added information regarding the 

cells.  The interest of the studies was to correlate cell mechanics to cell migration 

and in turn understand how cells invade through tissues.  To narrow the gap 

between the two behaviours in cells, we should further investigate the possible 

difference in cell mechanics from pre-, during and post- migration, how actin 

changes during cell migration when cells were overexpressed with ROCK1 

activity, and the effect of overexpression of Rac1 and ROCK1 activities on cell 

migration.     
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Chapter 5  Conclusions and Future Work 

   

5.1 Abstract 

Within this chapter, we will conclude on the overall findings obtained from the 

studies outlined in this thesis, and discuss future investigations that could be 

taken. 

 

5.2 Overall findings and conclusions 

Cell mechanics are one of the fundamental facets of cell behaviour that determine 

cell migration.  The inter-connection between the various mechanical properties 

could increase our understanding on diseases such as cancer, and offer potential 

developments in disease diagnostics and therapeutics.  These interactions were 

the motivation of the research described here. This research used several 

established models, to investigate the elastic and viscoelastic properties of 

particular cancer cell types and their influence on migratory properties in confined 

spaces.    

Initially, using an established AFM set-up, we took both primary keratinocyte cells 

and PDAC pancreatic cancer cells that were conditionally active with either 

ROCK1 or ROCK2 protein, to measure their elastic properties.  Measurements 

were also made on the downstream proteins related to the ROCK pathway: cofilin, 

LIM kinases, and MLC.  It was found that overexpression of ROCK activity led to 

softening of cells in colonies, due to the possible inward stresses generated by 

actomyosin contraction that pack the cells (Stroka and Aranda-Espinoza, 2010).  

Furthermore, the mechanical properties from the downstream proteins suggest 

that ADF/cofilin activity could contribute to the majority of the cellular response 

from overexpressed ROCK activity.   

 
Elastic properties of cells provide limited information regarding cell’s mechanical 

behaviour, and so a new procedure known as FT-AFM-M was developed to 

measure both the elastic and viscous properties of a cell.  The establishment of 

the procedure was outlined in Chapter 3.  The advantages of FT-AFM-M are that 
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with one, simple, time-dependent step-strain measurement, we can extract the 

viscoelastic properties over a continuous and wide range of frequencies. 

Furthermore, the extraction of these properties does not rely on the use of 

preconceived models of the cell response.  Biologically, we found that PDAC cells 

can be described as being in a soft glassy material state, however after long 

periods (t > 30s) of deformation, they could potentially transform into a viscoelastic 

material.  This meant that cell’s viscous properties would become more dominant 

over time.  For the overexpressed ROCK activity cells, only elastic properties 

changed with expression.  Moreover, it was found that cell morphology could be a 

major contributor towards cell mechanics, as both elastic and viscous properties 

changed with morphology.   

Once the mechanical properties of our cells were well understood, these cells 

were studied in confined spaces, to observe the effect of confinement on cell 

migration under chemical stimuli.  A microfluidic device was created that had 

precisely defined channel dimensions through which the cells could, or could not, 

migrate, as detailed in Chapter 4.  It was found that the migratory properties of 

invasive and non-invasive PDAC cells were affected by confinements.  As the 

microchannels were reduced in size, fewer cells were able to migrate into the 

channels, though cells that did became more elongated in size.  This indicated that 

cell size could hinder cell migration in confined spaces (Lautscham et al., 2015).  

In addition, the migratory properties for both types of PDAC cells were similar 

under confinement, which is suggestive that their cellular behaviour was similar 

too.  An overexpression of ROCK1 activity in cells under confinement showed a 

reduction in cell size and cell motility.  This suggests that migration was not 

dependent on cell mechanics, as smaller and softer cells tend to be more motile 

(Trepat et al., 2012).  These property changes could be associated with cellular 

contraction that reduces cell size, and inactivation of Rac activity that would 

reduce the number of membrane protrusions.   

In conclusion, we have shown that ROCK activity affected both mechanical and 

migratory properties.  However, the assumption that softer mechanical properties 

would aid motility was not found within our studies.  This indicates that there are 

other processes involved in bridging the connection between the mechanical and 

motility properties. 
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5.3 Future work 

5.3.1 Mechanical properties  

The mechanical properties of cells have been shown to change with its properties 

according to it surrounding environment (Suresh, 2007).  Within our studies, we 

have only observed the effect of overexpression of ROCK activity on single cell 

line cultured on polystyrene substrates.  Utilising FT-AFM-M procedure, future 

investigations could include observing the effect of ROCK activity when co-

cultured with fibroblast cells (known to be present within the collagen extracellular 

matrix), and measurement of the cells on softer substrates, to mimic the influence 

of physiological conditions has on the viscoelastic properties.  Furthermore, future 

work would involve investigating the length of time cells would have to be under 

deformation, before cells change it viscoelastic properties.  This would give us a 

clearer picture of the cellular behaviour within tumour sites.   

Collaborators from Beatson Institute of Cancer Research, Glasgow, UK, have 

shown that cell morphology of MDA-MB231 D3H2L luc breast cancer cells had 

changed once re-cultured after undergoing cell migration through 3 μm transwells 

three times.  We investigated the elastic properties of these selected cells that had 

experienced the effect of continuous confinement.  It was found that there was a 

significant reduction in elastic modulus when going from the parental to the 

selected cells.  This indicated that continuous confinement could potential modify 

cells without genetic or epigenetic modification.  Therefore an investigation could 

be carried out to observe the mechanical change for overexpressed ROCK activity 

cells before, during and after confinement with the aid of microfluidic devices.  As 

our cells have a semi-rounded morphology, it would be interesting to understand 

how the mechanical properties of cells change during migration, and whether 

properties would revert back.    

 

5.3.2 Microfluidic device 

For the microfluidic studies, it was thought that although we studied a range of 

cross sectional areas for the channel size, the height or width dimensions 

separately could contribute to the difference in migratory properties.  Further 

investigation could answer this question, by creating various channel dimensions 

though keeping the cross sectional area the same, for cells to migrate through.  In 
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addition, to understand the effect of overexpressed ROCK activity during cell 

migration, investigations could include observations of live actin structures in cells 

within the microchannels, and surface modification of the microchannels. 

The fabricated devices have shown to provide high-throughput data, hence this 

device could be used to screen cells from a small library of siRNAs that 

corresponds to various actin cytoskeletal or myosin proteins, and observe cell’s 

migratory behaviour change through confined microchannels.  This could 

potentially help identify any important proteins that modify motility when ROCK 

activity is overexpressed.    

 

  



  

120 
 

 

Chapter 6  References 

 

Addae-Mensah, K.A., and Wikswo, J.P. (2008). Measurement Techniques for 
Cellular Biomechanics In Vitro. Exp. Biol. Med. 233, 792–809. 

Alao, A.-R., and Yin, L. (2014). Loading rate effect on the mechanical behavior of 
zirconia in nanoindentation. Mater. Sci. Eng. A 619, 247–255. 

Alcaraz, J., Buscemi, L., Grabulosa, M., Trepat, X., Fabry, B., Farré, R., and 
Navajas, D. (2003). Microrheology of Human Lung Epithelial Cells Measured by 
Atomic Force Microscopy. Biophys. J. 84, 2071–2079. 

Alexopoulos, L.G., Haider, M.A., Vail, T.P., and Guilak, F. (2003). Alterations in the 
Mechanical Properties of the Human Chondrocyte Pericellular Matrix With 
Osteoarthritis. J. Biomech. Eng. 125, 323–333. 

Al-Kilani, A., de Freitas, O., Dufour, S., and Gallet, F. (2011). Negative Feedback 
from Integrins to Cadherins: A Micromechanical Study. Biophys. J. 101, 336–344. 

Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. 
Phys. Rev. Lett. 24, 156–159. 

Baker, L.A., Tiriac, H., Clevers, H., and Tuveson, D.A. (2016). Modeling pancreatic 
cancer with organoids. Trends Cancer 2, 176–190. 

Bathe, M., Heussinger, C., Claessens, M.M.A.E., Bausch, A.R., and Frey, E. 
(2008). Cytoskeletal Bundle Mechanics. Biophys. J. 94, 2955–2964. 

Bausch, A.R., Möller, W., and Sackmann, E. (1999). Measurement of Local 
Viscoelasticity and Forces in Living Cells by Magnetic Tweezers. Biophys. J. 76, 
573–579. 

B. W. Stewart, and C. P. Wild (2014). World Cancer Report. 

Ben-Ze’ev, A. (1985). Cell-Cell Interaction and Cell Configuration Related Control 
of Cytokeratins and Vimentin Expression in Epithelial Cells and in Fibroblastsa. 
Ann. N. Y. Acad. Sci. 455, 597–613. 

Bhat, S., Jun, D., C., B., and S Dahms, T.E. (2012). Viscoelasticity in Biological 
Systems: A Special Focus on Microbes. In Viscoelasticity - From Theory to 
Biological Applications, J. De Vicente, ed. (InTech), p. 

Bhushan, B. (1990). Contact between Solid Surfaces. In Tribology and Mechanics 
of Magnetic Storage Devices, (Springer US), pp. 157–230. 

Binnig, G., Quate, C., and Gerber, C. (1986). Atomic Force Microscope. Phys. 
Rev. Lett. 56, 930–933. 



  

121 
 

Boccaccio, A., Lamberti, L., Papi, M., Spirito, M.D., and Pappalettere, C. (2015). 
Effect of AFM probe geometry on visco-hyperelastic characterization of soft 
materials. Nanotechnology 26, 325701. 

Boureux, A., Vignal, E., Faure, S., and Fort, P. (2007). Evolution of the Rho Family 
of Ras-Like GTPases in Eukaryotes. Mol. Biol. Evol. 24, 203–216. 

Boyden, S. (1962). The Chemotactic Effect of Mixtures of Antibody and Antigen on 
Polymorphonuclear Leucocytes. J. Exp. Med. 115, 453–466. 

Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., 
Mahadevan, L., Parker, K.K., Ingber, D.E., and Weitz, D.A. (2006). Microtubules 
can bear enhanced compressive loads in living cells because of lateral 
reinforcement. J Cell Biol 173, 733–741. 

Brekhman, V., and Neufeld, G. (2009). A novel asymmetric 3D in-vitro assay for 
the study of tumor cell invasion. BMC Cancer 9, 415. 

Brodland, G.W., Veldhuis, J.H., Kim, S., Perrone, M., Mashburn, D., and Hutson, 
M.S. (2014). CellFIT: A Cellular Force-Inference Toolkit Using Curvilinear Cell 
Boundaries. PLOS ONE 9, e99116. 

Byfield, F.J., Reen, R.K., Shentu, T.-P., Levitan, I., and Gooch, K.J. (2009). 
Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 
3D. J. Biomech. 42, 1114–1119. 

Cameron, J.M., Gabrielsen, M., Chim, Y.H., Munro, J., McGhee, E.J., Sumpton, 
D., Eaton, P., Anderson, K.I., Yin, H., and Olson, M.F. (2015). Polarized Cell 
Motility Induces Hydrogen Peroxide to Inhibit Cofilin via Cysteine Oxidation. Curr. 
Biol. 25, 1520–1525. 

Carl, P., and Schillers, H. (2008). Elasticity measurement of living cells with an 
atomic force microscope: data acquisition and processing. Pflüg. Arch. - Eur. J. 
Physiol. 457, 551–559. 

Chaw, K.C., Manimaran, M., Tay, F.E.H., and Swaminathan, S. (2007). Matrigel 
coated polydimethylsiloxane based microfluidic devices for studying metastatic 
and non-metastatic cancer cell invasion and migration. Biomed. Microdevices 9, 
597–602. 

Chawla, G., and Solares, S.D. (2011). Mapping of conservative and dissipative 
interactions in bimodal atomic force microscopy using open-loop and phase-
locked-loop control of the higher eigenmode. Appl. Phys. Lett. 99, 74103. 

Chen, J. (2014). Nanobiomechanics of living cells: a review. Interface Focus 4, 
20130055. 

Chester, S.A. (2012). A constitutive model for coupled fluid permeation and large 
viscoelastic deformation in polymeric gels. Soft Matter 8, 8223. 

Chien, S., Sung, K.L., Skalak, R., Usami, S., and Tözeren, A. (1978). Theoretical 
and experimental studies on viscoelastic properties of erythrocyte membrane. 
Biophys. J. 24, 463–487. 



  

122 
 

Chiou, Y.-W., Lin, H.-K., Tang, M.-J., Lin, H.-H., and Yeh, M.-L. (2013). The 
Influence of Physical and Physiological Cues on Atomic Force Microscopy-Based 
Cell Stiffness Assessment. PLoS ONE 8, e77384. 

Chu, Y.-S., Thomas, W.A., Eder, O., Pincet, F., Perez, E., Thiery, J.P., and 
Dufour, S. (2004). Force measurements in E-cadherin–mediated cell doublets 
reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac 
and Cdc42. J. Cell Biol. 167, 1183–1194. 

Churnside, A.B., Tung, R.C., and Killgore, J.P. (2015). Quantitative Contact 
Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at 
the Solid–Liquid Interface. Langmuir 31, 11143–11149. 

Chyasnavichyus, M., Young, S.L., and Tsukruk, V.V. (2015). Recent advances in 
micromechanical characterization of polymer, biomaterial, and cell surfaces with 
atomic force microscopy. Jpn. J. Appl. Phys. 54, 08LA02. 

Cicuta, P., and Donald, A.M. (2007). Microrheology: a review of the method and 
applications. Soft Matter 3, 1449–1455. 

Clark, A.G., and Vignjevic, D.M. (2015). Modes of cancer cell invasion and the role 
of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22. 

Connell, L.E., and Helfman, D.M. (2006). Myosin light chain kinase plays a role in 
the regulation of epithelial cell survival. J. Cell Sci. 119, 2269–2281. 

Cooper, G.M. (2000). The Cell (Sinauer Associates). 

Crick, F.H.C., and Hughes, A.F.W. (1950). The physical properties of cytoplasm. 
Exp. Cell Res. 1, 37–80. 

Crick, S.L., and Yin, F.C.-P. (2007). Assessing Micromechanical Properties of 
Cells with Atomic Force Microscopy: Importance of the Contact Point. Biomech. 
Model. Mechanobiol. 6, 199–210. 

Cuestas-Ayllon, C., Xiao, Q., Glidle, A., Riehle, M.O., M. Cooper, J., de la Fuente, 
J.M., and B. Yin, H. (2012). A Robust Lithographic Method for Multiplex Surface 
Pattering. Curr. Anal. Chem. 9, 29–36. 

Dao, M., Lim, C.T., and Suresh, S. (2003). Mechanics of the human red blood cell 
deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280. 

Decaestecker, C., Debeir, O., Van Ham, P., and Kiss, R. (2007). Can anti-
migratory drugs be screened in vitro? A review of 2D and 3D assays for the 
quantitative analysis of cell migration. Med. Res. Rev. 27, 149–176. 

Desprat, N., Richert, A., Simeon, J., and Asnacios, A. (2005). Creep Function of a 
Single Living Cell. Biophys. J. 88, 2224–2233. 

DiMilla, P.A., Barbee, K., and Lauffenburger, D.A. (1991). Mathematical model for 
the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 
15–37. 



  

123 
 

Discher, D.E., Mohandas, N., and Evans, E.A. (1994). Molecular maps of red cell 
deformation: hidden elasticity and in situ connectivity. Science 266, 1032–1035. 

Discher, D.E., Janmey, P., and Wang, Y. (2005). Tissue Cells Feel and Respond 
to the Stiffness of Their Substrate. Science 310, 1139–1143. 

Doyle, A.D., Wang, F.W., Matsumoto, K., and Yamada, K.M. (2009). One-
dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell 
Biol. 184, 481–490. 

Étienne, J., and Duperray, A. (2011). Initial Dynamics of Cell Spreading Are 
Governed by Dissipation in the Actin Cortex. Biophys. J. 101, 611–621. 

Ferry, J.D. (1980). Viscoelastic Properties of Polymers (John Wiley & Sons). 

Friedbacher, G., and Fuchs, H. (2009). Classification of Scanning Probe 
Microscopies. Pure Appl. Chem. 71, 1337–1357. 

Friedl, P., and Gilmour, D. (2009). Collective cell migration in morphogenesis, 
regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457. 

Friedl, P., and Wolf, K. (2003). Tumour-cell invasion and migration: diversity and 
escape mechanisms. Nat. Rev. Cancer 3, 362–374. 

Fuard, D., Tzvetkova-Chevolleau, T., Decossas, S., Tracqui, P., and Schiavone, P. 
(2008). Optimization of Poly-di-methyl-siloxane (PDMS) Substrates for Studying 
Cellular Adhesion and Motility. Microelectron Eng 85, 1289–1293. 

Fung, Y.-C. (1993). Biomechanics: Mechanical Properties of Living Tissues (New 
York, NY: Springer New York). 

Fusenig, N.E., Breitkreutz, D., Dzarlieva, R.T., Boukamp, P., Bohnert, A., and 
Tilgen, W. (1983). Growth and differentiation characteristics of transformed 
keratinocytes from mouse and human skin in vitro and in vivo. J. Invest. Dermatol. 
81, 168s–75s. 

Gartland, A., Erler, J.T., and Cox, T.R. The role of lysyl oxidase, the extracellular 
matrix and the pre-metastatic niche in bone metastasis. J. Bone Oncol. 

Goldmann, W.H., Galneder, R., Ludwig, M., Xu, W., Adamson, E.D., Wang, N., 
and Ezzell, R.M. (1998). Differences in Elasticity of Vinculin-Deficient F9 Cells 
Measured by Magnetometry and Atomic Force Microscopy. Exp. Cell Res. 239, 
235–242. 

Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., and Singh, 
R.M.M. (1966). Hydrogen Ion Buffers for Biological Research. Biochemistry 
(Mosc.) 5, 467–477. 

Gossett, D.R., Tse, H.T.K., Lee, S.A., Ying, Y., Lindgren, A.G., Yang, O.O., Rao, 
J., Clark, A.T., and Carlo, D.D. (2012). Hydrodynamic stretching of single cells for 
large population mechanical phenotyping. Proc. Natl. Acad. Sci. 109, 7630–7635. 



  

124 
 

Grant, C.A., Alfouzan, A., Gough, T., Twigg, P.C., and Coates, P.D. (2013). Nano-
scale temperature dependent visco-elastic properties of polyethylene terephthalate 
(PET) using atomic force microscope (AFM). Micron 44, 174–178. 

Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, 
D., Erickson, H.M., Ananthakrishnan, R., Mitchell, D., et al. (2005). Optical 
Deformability as an Inherent Cell Marker for Testing Malignant Transformation and 
Metastatic Competence. Biophys. J. 88, 3689–3698. 

Guo, X., Bonin, K., Scarpinato, K., and Guthold, M. (2014). The effect of 
neighboring cells on the stiffness of cancerous and non-cancerous human 
mammary epithelial cells. New J. Phys. 16, 105002. 

H G Hansma, and Hoh,  and J.H. (1994). Biomolecular Imaging with the Atomic 
Force Microscope. Annu. Rev. Biophys. Biomol. Struct. 23, 115–140. 

Hall, A. (2009). The cytoskeleton and cancer. Cancer Metastasis Rev. 28, 5–14. 

Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., and Fleming, R.M.T. (2015). 
Advantages and challenges of microfluidic cell culture in polydimethylsiloxane 
devices. Biosens. Bioelectron. 63, 218–231. 

Hénon, S., Lenormand, G., Richert, A., and Gallet, F. (1999). A new determination 
of the shear modulus of the human erythrocyte membrane using optical tweezers. 
Biophys. J. 76, 1145–1151. 

Hiratsuka, S., Mizutani, Y., Toda, A., Fukushima, N., Kawahara, K., Tokumoto, H., 
and Okajima, T. (2009). Power-Law Stress and Creep Relaxations of Single Cells 
Measured by Colloidal Probe Atomic Force Microscopy. Jpn. J. Appl. Phys. 48, 
08JB17. 

Hoffman, B.D., and Crocker, J.C. (2009). Cell Mechanics: Dissecting the Physical 
Responses of Cells to Force. Annu. Rev. Biomed. Eng. 11, 259–288. 

Hooper, S., Marshall, J.F., and Sahai, E. (2006). Tumor Cell Migration in Three 
Dimensions. B.-M. in Enzymology, ed. (Academic Press), pp. 625–643. 

Huang, S., and Ingber, D.E. (2005). Cell tension, matrix mechanics, and cancer 
development. Cancer Cell 8, 175–176. 

Huang, Y., Agrawal, B., Sun, D., Kuo, J.S., and Williams, J.C. (2011). 
Microfluidics-based devices: New tools for studying cancer and cancer stem cell 
migration. Biomicrofluidics 5. 

Hulkower, K.I., and Herber, R.L. (2011). Cell Migration and Invasion Assays as 
Tools for Drug Discovery. Pharmaceutics 3, 107–124. 

Hung, W.-C., Chen, S.-H., Paul, C.D., Stroka, K.M., Lo, Y.-C., Yang, J.T., and 
Konstantopoulos, K. (2013). Distinct signaling mechanisms regulate migration in 
unconfined versus confined spaces. J. Cell Biol. 202, 807–824. 

Hutter, J.L., and Bechhoefer, J. (1993). Calibration of atomic‐force microscope 
tips. Rev. Sci. Instrum. 64, 1868–1873. 



  

125 
 

Irimia, D., and Toner, M. (2009). Spontaneous migration of cancer cells under 
conditions of mechanical confinement. Integr. Biol. Quant. Biosci. Nano Macro 1, 
506–512. 

Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., and Narumiya, S. 
(1999). An essential part for Rho–associated kinase in the transcellular invasion of 
tumor cells. Nat. Med. 5, 221–225. 

Iyer, S., Woodworth, C.D., Gaikwad, R.M., Kievsky, Y.Y., and Sokolov, I. (2009). 
Towards nonspecific detection of malignant cervical cells with fluorescent silica 
beads**. Small Weinh. Bergstr. Ger. 5, 2277–2284. 

Jaishankar, A., and McKinley, G.H. (2013). Power-law rheology in the bulk and at 
the interface: quasi-properties and fractional constitutive equations. Proc R Soc A 
469, 20120284. 

Jonas, O., Mierke, C.T., and Käs, J.A. (2011). Invasive cancer cell lines exhibit 
biomechanical properties that are distinct from their noninvasive counterparts. Soft 
Matter 7, 11488–11495. 

Jones, W.R., Ping Ting-Beall, H., Lee, G.M., Kelley, S.S., Hochmuth, R.M., and 
Guilak, F. (1999). Alterations in the Young’s modulus and volumetric properties of 
chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 
32, 119–127. 

Kamm, R., Lammerding, J., and Mofrad, M. (2010). Cellular Nanomechanics. In 
Springer Handbook of Nanotechnology, P.B. Bhushan, ed. (Springer Berlin 
Heidelberg), pp. 1171–1200. 

Kaneko, K., Satoh, K., Masamune, A., Satoh, A., and Shimosegawa, T. (2002). 
Expression of ROCK-1 in human pancreatic cancer: its down-regulation by 
morpholino oligo antisense can reduce the migration of pancreatic cancer cells in 
vitro. Pancreas 24, 251–257. 

Katira, P., Bonnecaze, R.T., and Zaman, M.H. (2013). Modeling the Mechanics of 
Cancer: Effect of Changes in Cellular and Extra-Cellular Mechanical Properties. 
Front. Oncol. 3. 

Katt, M.E., Placone, A.L., Wong, A.D., Xu, Z.S., and Searson, P.C. (2016). In Vitro 
Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right 
Platform. Front. Bioeng. Biotechnol. 4. 

Keenan, T.M., and Folch, A. (2007). Biomolecular gradients in cell culture 
systems. Lab. Chip 8, 34–57. 

Ketene, A.N., Schmelz, E.M., Roberts, P.C., and Agah, M. (2012). The effects of 
cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. 
Nanomedicine Nanotechnol. Biol. Med. 8, 93–102. 

Khan, Z.S., and Vanapalli, S.A. (2013). Probing the mechanical properties of brain 
cancer cells using a microfluidic cell squeezer device. Biomicrofluidics 7. 

Kidoaki, S., and Matsuda, T. (2008). Microelastic gradient gelatinous gels to 
induce cellular mechanotaxis. J. Biotechnol. 133, 225–230. 



  

126 
 

Kole, T.P., Tseng, Y., Huang, L., Katz, J.L., and Wirtz, D. (2004). Rho Kinase 
Regulates the Intracellular Micromechanical Response of Adherent Cells to Rho 
Activation. Mol. Biol. Cell 15, 3475–3484. 

Kollmannsberger, P., and Fabry, B. (2009). Active soft glassy rheology of adherent 
cells. Soft Matter 5, 1771. 

Kollmannsberger, P., and Fabry, B. (2011). Linear and Nonlinear Rheology of 
Living Cells. Annu. Rev. Mater. Res. 41, 75–97. 

Kollmannsberger, P., Mierke, C.T., and Fabry, B. (2011). Nonlinear viscoelasticity 
of adherent cells is controlled by cytoskeletal tension. Soft Matter 7, 3127–3132. 

Kramer, N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschläger, M., 
and Dolznig, H. (2013). In vitro cell migration and invasion assays. Mutat. Res. 
Mutat. Res. 752, 10–24. 

Kraning-Rush, C.M., Califano, J.P., and Reinhart-King, C.A. (2012). Cellular 
Traction Stresses Increase with Increasing Metastatic Potential. PLoS ONE 7. 

Kumar, S., and Weaver, V.M. (2009). Mechanics, malignancy, and metastasis: 
The force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127. 

Kümper, S., Mardakheh, F.K., McCarthy, A., Yeo, M., Stamp, G.W., Paul, A., 
Worboys, J., Sadok, A., Jørgensen, C., Guichard, S., et al. (2016). Rho-associated 
kinase (ROCK) function is essential for cell cycle progression, senescence and 
tumorigenesis. eLife 5, e12203. 

Kuznetsova, T.G., Starodubtseva, M.N., Yegorenkov, N.I., Chizhik, S.A., and 
Zhdanov, R.I. (2007). Atomic force microscopy probing of cell elasticity. Micron 38, 
824–833. 

Lämmermann, T., Bader, B.L., Monkley, S.J., Worbs, T., Wedlich-Söldner, R., 
Hirsch, K., Keller, M., Förster, R., Critchley, D.R., Fässler, R., et al. (2008). Rapid 
leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 
51–55. 

Landau, L.D., Kosevich, A.M., Pitaevskii, L.P., and Lifshitz, E.M. (1986). Theory of 
elasticity. 

Lange, J.R., and Fabry, B. (2013). Cell and tissue mechanics in cell migration. 
Exp. Cell Res. 319, 2418–2423. 

Lanza, M., Porti, M., Nafría, M., Aymerich, X., Whittaker, E., and Hamilton, B. 
(2010). Note: Electrical resolution during conductive atomic force microscopy 
measurements under different environmental conditions and contact forces. Rev. 
Sci. Instrum. 81, 106110. 

Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C., and Lubensky, T.C. (2003). 
Microrheology, Stress Fluctuations, and Active Behavior of Living Cells. Phys. 
Rev. Lett. 91, 198101. 

Lautscham, L.A., Kämmerer, C., Lange, J.R., Kolb, T., Mark, C., Schilling, A., 
Strissel, P.L., Strick, R., Gluth, C., Rowat, A.C., et al. (2015). Migration in Confined 



  

127 
 

3D Environments Is Determined by a Combination of Adhesiveness, Nuclear 
Volume, Contractility, and Cell Stiffness. Biophys. J. 109, 900–913. 

Lee, Y.J. (2011). Local Rheology of Human Neutrophils Investigated Using Atomic 
Force Microscopy. Int. J. Biol. Sci. 102–111. 

Lee, M.-H., Wu, P.-H., Staunton, J.R., Ros, R., Longmore, G.D., and Wirtz, D. 
(2012). Mismatch in Mechanical and Adhesive Properties Induces Pulsating 
Cancer Cell Migration in Epithelial Monolayer. Biophys. J. 102, 2731–2741. 

Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., and Hrynkiewicz, A.Z. 
(1999). Elasticity of normal and cancerous human bladder cells studied by 
scanning force microscopy. Eur. Biophys. J. 28, 312–316. 

Lekka, M., Pogoda, K., Gostek, J., Klymenko, O., Prauzner-Bechcicki, S., 
Wiltowska-Zuber, J., Jaczewska, J., Lekki, J., and Stachura, Z. (2012). Cancer cell 
recognition – Mechanical phenotype. Micron 43, 1259–1266. 

Li, Q.S., Lee, G.Y.H., Ong, C.N., and Lim, C.T. (2008). AFM indentation study of 
breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609–613. 

Lieber, S.C., Aubry, N., Pain, J., Diaz, G., Kim, S.-J., and Vatner, S.F. (2004). 
Aging increases stiffness of cardiac myocytes measured by atomic force 
microscopy nanoindentation. Am. J. Physiol. - Heart Circ. Physiol. 287, H645–
H651. 

Lieleg, O., Claessens, M.M. a. E., Luan, Y., and Bausch, A.R. (2008). Transient 
binding and dissipation in cross-linked actin networks. Phys. Rev. Lett. 101, 
108101. 

Lim, C.T., Zhou, E.H., and Quek, S.T. (2006). Mechanical models for living cells—
a review. J. Biomech. 39, 195–216. 

Lim, S.-O., Kim, H., and Jung, G. (2010). p53 inhibits tumor cell invasion via the 
degradation of snail protein in hepatocellular carcinoma. FEBS Lett. 584, 2231–
2236. 

Lin, D.C., Dimitriadis, E.K., and Horkay, F. (2006). Robust Strategies for 
Automated AFM Force Curve Analysis—I. Non-adhesive Indentation of Soft, 
Inhomogeneous Materials. J. Biomech. Eng. 129, 430–440. 

Liu, H., Wen, J., Xiao, Y., Liu, J., Hopyan, S., Radisic, M., Simmons, C.A., and 
Sun, Y. (2014). In Situ Mechanical Characterization of the Cell Nucleus by Atomic 
Force Microscopy. ACS Nano 8, 3821–3828. 

Lo, C.-M., Wang, H.-B., Dembo, M., and Wang, Y. (2000). Cell Movement Is 
Guided by the Rigidity of the Substrate. Biophys. J. 79, 144–152. 

Lochhead, P.A., Wickman, G., Mezna, M., and Olson, M.F. (2010). Activating 
ROCK1 somatic mutations in human cancer. Oncogene 29, 2591–2598. 

López-Guerra, E.A., and Solares, S.D. (2014). Modeling viscoelasticity through 
spring–dashpot models in intermittent-contact atomic force microscopy. Beilstein 
J. Nanotechnol. 5, 2149–2163. 



  

128 
 

Lulevich, V., Shih, Y.-P., Lo, S.H., and Liu, G. (2009). Cell tracing dyes 
significantly change single cell mechanics. J. Phys. Chem. B 113, 6511–6519. 

Mahaffy, R.E., Park, S., Gerde, E., Käs, J., and Shih, C.K. (2004). Quantitative 
Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using 
Atomic Force Microscopy. Biophys. J. 86, 1777–1793. 

Mak, M., Reinhart-King, C.A., and Erickson, D. (2011). Microfabricated Physical 
Spatial Gradients for Investigating Cell Migration and Invasion Dynamics. PLoS 
ONE 6, e20825. 

Mak, M., Reinhart-King, C.A., and Erickson, D. (2013). Elucidating mechanical 
transition effects of invading cancer cells with a subnucleus-scaled microfluidic 
serial dimensional modulation device. Lab. Chip 13, 340–348. 

Martens, J.C., and Radmacher, M. (2008). Softening of the actin cytoskeleton by 
inhibition of myosin II. Pflüg. Arch. - Eur. J. Physiol. 456, 95–100. 

Mason, T.G., Ganesan, K., van Zanten, J.H., Wirtz, D., and Kuo, S.C. (1997). 
Particle Tracking Microrheology of Complex Fluids. Phys. Rev. Lett. 79, 3282–
3285. 

McGregor, A.L., Hsia, C.-R., and Lammerding, J. (2016). Squish and squeeze — 
the nucleus as a physical barrier during migration in confined environments. Curr. 
Opin. Cell Biol. 40, 32–40. 

McPhee, G., Dalby, M.J., Riehle, M., and Yin, H. (2010). Can common adhesion 
molecules and microtopography affect cellular elasticity? A combined atomic force 
microscopy and optical study. Med. Biol. Eng. Comput. 48, 1043–1053. 

Mertz, A.F., Banerjee, S., Che, Y., German, G.K., Xu, Y., Hyland, C., Marchetti, 
M.C., Horsley, V., and Dufresne, E.R. (2012). Scaling of Traction Forces with the 
Size of Cohesive Cell Colonies. Phys. Rev. Lett. 108, 198101. 

Meyers, M.A., and Chawla, K.K. (1999). Mechanical behavior of materials 
(Prentice-Hall, Upper Saddle River, NJ). 

Mitchison, J.M., and Swann, M.M. (1954). The Mechanical Properties of the cell 
Surface. J. Exp. Biol. 31, 461–472. 

Mitchison, T.J., and Cramer, L.P. (1996). Actin-Based Cell Motility and Cell 
Locomotion. Cell 84, 371–379. 

Mitrossilis, D., Fouchard, J., Pereira, D., Postic, F., Richert, A., Saint-Jean, M., and 
Asnacios, A. (2010). Real-time single-cell response to stiffness. Proc. Natl. Acad. 
Sci. U. S. A. 107, 16518–16523. 

Moeendarbary, E., and Harris, A.R. (2014). Cell mechanics: principles, practices, 
and prospects. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 371–388. 

Moreno-Flores, S., Benitez, R., Vivanco, M. dM, and Toca-Herrera, J.L. (2010). 
Stress relaxation and creep on living cells with the atomic force microscope: a 
means to calculate elastic moduli and viscosities of cell components. 
Nanotechnology 21, 445101. 



  

129 
 

Morgan-Fisher, M., Wewer, U.M., and Yoneda, A. (2013). Regulation of ROCK 
Activity in Cancer. J. Histochem. Cytochem. 61, 185–198. 

Morton, J.P., Timpson, P., Karim, S.A., Ridgway, R.A., Athineos, D., Doyle, B., 
Jamieson, N.B., Oien, K.A., Lowy, A.M., Brunton, V.G., et al. (2010). Mutant p53 
drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. 
Proc. Natl. Acad. Sci. 107, 246–251. 

Mueller-Klieser, W. (1987). Multicellular spheroids. A review on cellular aggregates 
in cancer research. J. Cancer Res. Clin. Oncol. 113, 101–122. 

Nasrollahi, S., and Pathak, A. (2016). Topographic confinement of epithelial 
clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci. 
Rep. 6. 

Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., and Block, S.M. (1999). 
Characterization of Photodamage to Escherichia coli in Optical Traps. Biophys. J. 
77, 2856–2863. 

Niggemann, B., Drell IV, T.L., Joseph, J., Weidt, C., Lang, K., Zaenker, K.S., and 
Entschladen, F. (2004). Tumor cell locomotion: differential dynamics of 
spontaneous and induced migration in a 3D collagen matrix. Exp. Cell Res. 298, 
178–187. 

Oh, M.-J., Kuhr, F., Byfield, F., and Levitan, I. (2012). Micropipette Aspiration of 
Substrate-attached Cells to Estimate Cell Stiffness. J. Vis. Exp. 

Okajima, T., Tanaka, M., Tsukiyama, S., Kadowaki, T., Yamamoto, S., 
Shimomura, M., and Tokumoto, H. (2007). Stress relaxation of HepG2 cells 
measured by atomic force microscopy. Nanotechnology 18, 84010. 

Paňková, K., Rösel, D., Novotný, M., and Brábek, J. (2010). The molecular 
mechanisms of transition between mesenchymal and amoeboid invasiveness in 
tumor cells. Cell. Mol. Life Sci. 67, 63–71. 

Paredes, J., Albergaria, A., Oliveira, J.T., Jerónimo, C., Milanezi, F., and Schmitt, 
F.C. (2005). P-cadherin overexpression is an indicator of clinical outcome in 
invasive breast carcinomas and is associated with CDH3 promoter 
hypomethylation. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 11, 5869–
5877. 

Parri, M., and Chiarugi, P. (2010). Rac and Rho GTPases in cancer cell motility 
control. Cell Commun. Signal. CCS 8, 23. 

Pelling, A.E., Nicholls, B.M., Silberberg, Y.R., and Horton, M.A. (2007). 
Approaches for Investigating Mechanobiological Dynamics in Living Cells with 
Fluorescence and Atomic Force Microscopies. In Modern Research and 
Educational Topics in Microscopy, (Formatex), pp. 3–10. 

Pietuch, A., and Janshoff, A. (2013). Mechanics of spreading cells probed by 
atomic force microscopy. Open Biol. 3, 130084. 

Popow-Woźniak, A., Mazur, A.J., Mannherz, H.G., Malicka-Błaszkiewicz, M., and 
Nowak, D. (2012). Cofilin overexpression affects actin cytoskeleton organization 



  

130 
 

and migration of human colon adenocarcinoma cells. Histochem. Cell Biol. 138, 
725–736. 

Pravincumar, P., Bader, D.L., and Knight, M.M. (2012). Viscoelastic Cell 
Mechanics and Actin Remodelling Are Dependent on the Rate of Applied 
Pressure. PLOS ONE 7, e43938. 

Puttock, M.J., and Thwaite, E.G. (1969). Elastic Compression of Spheres and 
Cylinders at Point and Line Contact (Melbourne: Commonwealth Scientific and 
Industrial Research Organization). 

Radmacher, M., Tillmann, R.W., and Gaub, H.E. (1993). Imaging viscoelasticity by 
force modulation with the atomic force microscope. Biophys. J. 64, 735–742. 

Raftopoulou, M., and Hall, A. (2004). Cell migration: Rho GTPases lead the way. 
Dev. Biol. 265, 23–32. 

Rao, S.M.N., Tata, U., Lin, V.K., and Chiao, J.-C. (2014). The Migration of Cancer 
Cells in Gradually Varying Chemical Gradients and Mechanical Constraints. 
Micromachines 5, 13–26. 

Rath, N., and Olson, M.F. (2012). Rho-associated kinases in tumorigenesis: re-
considering ROCK inhibition for cancer therapy. EMBO Rep. 13, 900–908. 

Rebelo, L.M., Sousa, J.S. de, Filho, J.M., and Radmacher, M. (2013). Comparison 
of the viscoelastic properties of cells from different kidney cancer phenotypes 
measured with atomic force microscopy. Nanotechnology 24, 55102. 

Ribeiro, A.S., Albergaria, A., Sousa, B., Correia, A.L., Bracke, M., Seruca, R., 
Schmitt, F.C., and Paredes, J. (2010). Extracellular cleavage and shedding of P-
cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. 
Oncogene 29, 392–402. 

Riento, K., and Ridley, A.J. (2003). ROCKs: multifunctional kinases in cell 
behaviour. Nat. Rev. Mol. Cell Biol. 4, 446–456. 

Roca-Cusachs, P., Almendros, I., Sunyer, R., Gavara, N., Farré, R., and Navajas, 
D. (2006). Rheology of Passive and Adhesion-Activated Neutrophils Probed by 
Atomic Force Microscopy. Biophys. J. 91, 3508–3518. 

Rodriguez-Menocal, L., Salgado, M., Ford, D., and Van Badiavas, E. (2012). 
Stimulation of Skin and Wound Fibroblast Migration by Mesenchymal Stem Cells 
Derived from Normal Donors and Chronic Wound Patients. Stem Cells Transl. 
Med. 1, 221–229. 

Rolli, C.G., Seufferlein, T., Kemkemer, R., and Spatz, J.P. (2010). Impact of 
Tumor Cell Cytoskeleton Organization on Invasiveness and Migration: A 
Microchannel-Based Approach. PLoS ONE 5. 

Rother, J., Nöding, H., Mey, I., and Janshoff, A. (2014). Atomic force microscopy-
based microrheology reveals significant differences in the viscoelastic response 
between malign and benign cell lines. Open Biol. 4. 



  

131 
 

Sahai, E., and Marshall, C.J. (2003). Differing modes of tumour cell invasion have 
distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. 
Cell Biol. 5, 711–719. 

Saito, K., Oku, T., Ata, N., Miyashiro, H., Hattori, M., and Saiki, I. (1997). A 
Modified and Convenient Method for Assessing Tumor Cell Invasion and Migration 
and Its Application to Screening for Inhibitors. Biol. Pharm. Bull. 20, 345–348. 

Samuel, M.S., Lopez, J.I., McGhee, E.J., Croft, D.R., Strachan, D., Timpson, P., 
Munro, J., Schröder, E., Zhou, J., Brunton, V.G., et al. (2011). Actomyosin-
Mediated Cellular Tension Drives Increased Tissue Stiffness and β-Catenin 
Activation to Induce Epidermal Hyperplasia and Tumor Growth. Cancer Cell 19, 
776–791. 

Sant, S., Hancock, M.J., Donnelly, J.P., Iyer, D., and Khademhosseini, A. (2010). 
Biomimetic gradient hydrogels for tissue engineering. Can. J. Chem. Eng. 88, 
899–911. 

Scarpa, A., Capelli, P., Mukai, K., Zamboni, G., Oda, T., Iacono, C., and Hirohashi, 
S. (1993). Pancreatic adenocarcinomas frequently show p53 gene mutations. Am. 
J. Pathol. 142, 1534–1543. 

Scheffer, L., Bitler, A., Ben-Jacob, E., and Korenstein, R. (2001). Atomic force 
pulling: probing the local elasticity of the cell membrane. Eur. Biophys. J. EBJ 30, 
83–90. 

Schmid-Schönbein, G.W., Sung, K.L., Tözeren, H., Skalak, R., and Chien, S. 
(1981). Passive mechanical properties of human leukocytes. Biophys. J. 36, 243–
256. 

Shi, X., and Zhao, Y.-P. (2004). Comparison of various adhesion contact theories 
and the influence of dimensionless load parameter. J. Adhes. Sci. Technol. 18, 
55–68. 

Shin, D., and Athanasiou, K. (1999). Cytoindentation for obtaining cell 
biomechanical properties. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 17, 880–
890. 

Sokolov, I. (2007). Atomic Force Microscopy in Cancer Cell Research. In Cancer 
Nanotechnology – Nanomaterials for Cancer Diagnosis and Therapy, (American 
Scientific Publishers’ Inc.), pp. 43–59. 

Solares, S.D. (2014). Probing viscoelastic surfaces with bimodal tapping-mode 
atomic force microscopy: Underlying physics and observables for a standard linear 
solid model. Beilstein J. Nanotechnol. 5, 1649–1663. 

Sraj, I., Eggleton, C.D., Jimenez, R., Hoover, E., Squier, J., Chichester, J., and 
Marr, D.W.M. (2010). Cell deformation cytometry using diode-bar optical 
stretchers. J. Biomed. Opt. 15, 47010-047010–047017. 

Stroka, K.M., and Aranda-Espinoza, H. (2010). Effects of Morphology vs. Cell–Cell 
Interactions on Endothelial Cell Stiffness. Cell. Mol. Bioeng. 4, 9–27. 



  

132 
 

Sunyer, R., Trepat, X., Fredberg, J.J., Farré, R., and Navajas, D. (2009). The 
temperature dependence of cell mechanics measured by atomic force microscopy. 
Phys. Biol. 6, 25009. 

Suresh, S. (2007). Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 
413–438. 

Tassieri, M. (2015). Linear microrheology with optical tweezers of living cells “is 
not an option”! Soft Matter 11, 5792–5798. 

Tassieri, M., Evans, R.M.L., Warren, R.L., Bailey, N.J., and Cooper, J.M. (2012). 
Microrheology with optical tweezers: data analysis. New J. Phys. 14, 115032. 

Tassieri, M., Laurati, M., Curtis, D.J., Auhl, D.W., Coppola, S., Scalfati, A., 
Hawkins, K., Williams, P.R., and Cooper, J.M. (2016). i-Rheo: Measuring the 
materials’ linear viscoelastic properties “in a step”! J. Rheol. 1978-Present 60, 
649–660. 

Taylor, A.C. (1962). Responses of cells to pH changes in the medium. J. Cell Biol. 
15, 201–209. 

Tee, S.-Y., Fu, J., Chen, C.S., and Janmey, P.A. (2011). Cell Shape and Substrate 
Rigidity Both Regulate Cell Stiffness. Biophys. J. 100, L25–L27. 

Timpson, P., Mcghee, E.J., Erami, Z., Nobis, M., Quinn, J.A., Edward, M., and 
Anderson, K.I. (2011a). Organotypic Collagen I Assay: A Malleable Platform to 
Assess Cell Behaviour in a 3-Dimensional Context. J. Vis. Exp. JoVE. 

Timpson, P., McGhee, E.J., Morton, J.P., Kriegsheim, A. von, Schwarz, J.P., 
Karim, S.A., Doyle, B., Quinn, J.A., Carragher, N.O., Edward, M., et al. (2011b). 
Spatial Regulation of RhoA Activity during Pancreatic Cancer Cell Invasion Driven 
by Mutant p53. Cancer Res. 71, 747–757. 

Tong, Z., Balzer, E.M., Dallas, M.R., Hung, W.-C., Stebe, K.J., and 
Konstantopoulos, K. (2012). Chemotaxis of Cell Populations through Confined 
Spaces at Single-Cell Resolution. PLOS ONE 7, e29211. 

Trepat, X., Chen, Z., and Jacobson, K. (2012). Cell Migration. Compr. Physiol. 2, 
2369–2392. 

Tripathy, S., and Berger, E.J. (2009). Measuring Viscoelasticity of Soft Samples 
Using Atomic Force Microscopy. J. Biomech. Eng. 131, 094507–094507. 

Tu, Y.-O., and Gazis, D.C. (1964). The Contact Problem of a Plate Pressed 
Between Two Spheres. J. Appl. Mech. 31, 659–666. 

Vadillo-Rodríguez, V., and Dutcher, J.R. (2011). Viscoelasticity of the bacterial cell 
envelope. Soft Matter 7, 4101. 

Vadillo-Rodriguez, V., Beveridge, T.J., and Dutcher, J.R. (2008). Surface 
Viscoelasticity of Individual Gram-Negative Bacterial Cells Measured Using Atomic 
Force Microscopy. J. Bacteriol. 190, 4225–4232. 



  

133 
 

Vahabi, S., Nazemi Salman, B., and Javanmard, A. (2013). Atomic Force 
Microscopy Application in Biological Research: A Review Study. Iran. J. Med. Sci. 
38, 76–83. 

Vincent, J. (2012). Structural Biomaterials: Third Edition (Princeton University 
Press). 

Vinci, M., Box, C., and Eccles, S.A. (2015). Three-Dimensional (3D) Tumor 
Spheroid Invasion Assay. J. Vis. Exp. JoVE. 

Wang, N., Butler, J.P., and Ingber, D.E. (1993). Mechanotransduction across the 
cell surface and through the cytoskeleton. Science 260, 1124–1127. 

Wang, N., Tolić-Nørrelykke, I.M., Chen, J., Mijailovich, S.M., Butler, J.P., 
Fredberg, J.J., and Stamenović, D. (2002). Cell prestress. I. Stiffness and 
prestress are closely associated in adherent contractile cells. Am. J. Physiol. - Cell 
Physiol. 282, C606–C616. 

Weisenhorn, A.L., Khorsandi, M., Kasas, S., Gotzos, V., and Butt, H.-J. (1993). 
Deformation and height anomaly of soft surfaces studied with an AFM. 
Nanotechnology 4, 106. 

Wilhelm, K.R., Roan, E., Ghosh, M.C., Parthasarathi, K., and Waters, C.M. (2014). 
Hyperoxia Increases the Elastic Modulus of Alveolar Epithelial Cells Through Rho 
Kinase. FEBS J. 281, 957–969. 

Wirtz, D. (2009). Particle-Tracking Microrheology of Living Cells: Principles and 
Applications. Annu. Rev. Biophys. 38, 301–326. 

Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., 
Strongin, A.Y., Bröcker, E.-B., and Friedl, P. (2003). Compensation mechanism in 
tumor cell migration. J. Cell Biol. 160, 267–277. 

Wong, J.Y., Velasco, A., Rajagopalan, P., and Pham, Q. (2003). Directed 
Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels. 
Langmuir 19, 1908–1913. 

Wu, H.W., Kuhn, T., and Moy, V.T. (1998). Mechanical properties of L929 cells 
measured by atomic force microscopy: Effects of anticytoskeletal drugs and 
membrane crosslinking. Scanning 20, 389–397. 

Xu, J., Palmer, A., and Wirtz, D. (1998). Rheology and Microrheology of 
Semiflexible Polymer Solutions:  Actin Filament Networks. Macromolecules 31, 
6486–6492. 

Xu, X.-T., Song, Q.-B., Yao, Y., Ruan, P., and Tao, Z.-Z. (2012). Inhibition of 
RhoA/ROCK signaling pathway promotes the apoptosis of gastric cancer cells. 
Hepatogastroenterology. 59, 2523–2526. 

Yallapu, M.M., Katti, K.S., Katti, D.R., Mishra, S.R., Khan, S., Jaggi, M., and 
Chauhan, S.C. (2015). The Roles of Cellular Nanomechanics in Cancer. Med. 
Res. Rev. 35, 198–223. 



  

134 
 

Yang, S., and Kim, H.-M. (2014). ROCK Inhibition Activates MCF-7 Cells. PLOS 
ONE 9, e88489. 

Yoneda, A., Multhaupt, H.A.B., and Couchman, J.R. (2005). The Rho kinases I 
and II regulate different aspects of myosin II activity. J. Cell Biol. 170, 443–453. 

Yuya, P.A., Hurley, D.C., and Turner, J.A. (2008). Contact-resonance atomic force 
microscopy for viscoelasticity. J. Appl. Phys. 104, 74916. 

Zhang, L., Luo, J., Wan, P., Wu, J., Laski, F., and Chen, J. (2011a). Regulation of 
cofilin phosphorylation and asymmetry in collective cell migration during 
morphogenesis. Development 138, 455–464. 

Zhang, X., Li, C., Gao, H., Nabeka, H., Shimokawa, T., Wakisaka, H., Matsuda, S., 
and Kobayashi, N. (2011b). Rho kinase inhibitors stimulate the migration of human 
cultured osteoblastic cells by regulating actomyosin activity. Cell. Mol. Biol. Lett. 
16, 279–295. 

Zhao, M., Srinivasan, C., Burgess, D.J., and Huey, B.D. (2006). Rate- and depth-
dependent nanomechanical behavior of individual living Chinese hamster ovary 
cells probed by atomic force microscopy. J. Mater. Res. 21, 1906–1912. 

Zhu, C., Bao, G., and Wang, N. (2000). CELL MECHANICS: Mechanical 
Response, Cell Adhesion, and Molecular Deformation. Annu. Rev. Biomed. Eng. 
2, 189–226. 

Ziemann, F., Rädler, J., and Sackmann, E. (1994). Local measurements of 
viscoelastic moduli of entangled actin networks using an oscillating magnetic bead 
micro-rheometer. Biophys. J. 66, 2210–2216. 

 

 

 


